
Beginners Guide to

C#
and the

.NET Micro Framework

September 24th 2012

Rev 2.1

Copyright © 2012 GHI Electronics, LLC

www.GHIElectronics.com

Community: www.TinyCLR.com

Gus Issa

Licensed under Creative Commons Share Alike 3.0

http://www.ghielectronics.com/
http://www.TinyCLR.com/

Beginners guide to C# and NETMF

Table of Contents

1.About the Book..3
1.1.Intended Audience..3
1.2.Disclaimer..3

2.Introduction..4
2.1.Advantages...4

3..NET Gadgeteer..5
4.Getting Started..6

4.1.System Setup..6
4.2.The Emulator...6

Create a Project...6
Selecting Transport..8
Executing...9
Breakpoints..10

4.3.Running on Hardware......................................11
MFDeploy can Ping!...11
Deploying to Hardware.....................................12

5.C# Level 1...13
5.1.What is .NET?...13
5.2.What is C#?...13

“Main” is the Starting Point...............................13
Comments..14
while-loop...15
Variables..16
Assemblies...18
What Assemblies to Add?................................21
Threading...22

6.Digital Input & Output..25
6.1.Digital Outputs...25

Blink an LED...27
6.2.Digital Inputs..28

6.3.Interrupt Port...30
6.4.Tristate Port...31

7.C# Level 2...33
7.1.Boolean Variables...33
7.2.if-statement..35
7.3.if-else-statements..36
7.4.Methods and Arguments.................................38
7.5.Classes..39
7.6.Public vs. Private...40
7.7.Static vs. non-static...40
7.8.Constants..41
7.9.Enumeration..41

8.Assembly/Firmware Matching.................................44
Boot-up Messages...44

9.Garbage Collector...46
9.1.Losing Resources..47
9.2.Dispose...48
9.3.GC Output Messages......................................49

10.C# Level 3...50
10.1.Byte...50
10.2.Char...50
10.3.Array..51
10.4.String...52
10.5.For-Loop..53
10.6.Switch Statement...55

11.Additional Resources...58
Tutorials and Downloads..................................58
Community: Forum, Codeshare and more.......58
eBooks...58
Books...58

Copyright © 2012 GHI Electronics, LLC Page 2/58

Beginners guide to C# and NETMF 1.About the Book

1. About the Book

1.1. Intended Audience
This book is for beginners wanting to get started on .NET Micro Framework. No prior
knowledge is necessary. The book covers the basics of .NET Micro Framework, Visual Studio
and even C#!

If you're a hobbyist or an engineer, you will find a good deal of info in this book. This book
makes no assumption about what you, the reader, knows so everything is explained
extensively.

1.2. Disclaimer
This is a free book use it for your own knowledge and at your own risk. Neither the writer nor
GHI Electronics is responsible for any damage or loss caused by this free eBook or by any
information supplied by it. There is no guarantee any information in this book is valid.

Copyright © 2012 GHI Electronics, LLC Page 3/58

Beginners guide to C# and NETMF 2.Introduction

2. Introduction
Have you ever thought of some great idea for a product but you couldn't bring it to life
because technology wasn't on your side? Or maybe thought, “there's got to be an easier
way!” Maybe you are a programmer that wanted to make a security system but then thought
using a PC is too expensive to run a simple system? The answer is Microsoft's .NET Micro
Framework!

Here is a scenario, you want to make a pocket-GPS-data-logger that saves positions,
acceleration, and temperatures on a memory card and displays them on a small display.
GPS devices can send position data over a serial port, so you can easily write some code on
a PC to read the GPS data and save it on a file. But a PC won't fit in your pocket! Another
problem is how would you measure temperature and acceleration on a PC? If you make this
project using classic microcontrollers, like AVR, or PIC micro, all this can be done but then
you need a compiler for the microcontroller you chose (which probably very expensive), a
week to learn the processor, a week to write a serial driver, a month or more to figure out the
FAT file system and more time for memory cards...etc. Basically, it can be done in few weeks
or months of work.

2.1. Advantages
If you are using .NET Micro Framework then there are many advantages:

1. It runs on Microsoft's Visual C# Express, free and and high-end IDE.

2. .NET Micro Framework is open-source and free.

3. Your same code will run any NETMF device with almost no changes.

4. Full debugging capabilities. (Breakpoints, stepping in code, variables...etc.)

5. Has been tested in many commercial products, with assured quality.

6. Includes many bus drivers.(SPI, UART , I2C...etc.)

7. Eliminates the need to use complicated and long processors' datasheets.

8. If you are already a PC C# programmer then you are know NETMF.

Throughout this document, I will refer to .NET Micro Framework as NETMF.

Copyright © 2012 GHI Electronics, LLC Page 4/58

Beginners guide to C# and NETMF 3..NET Gadgeteer

3. .NET Gadgeteer
.NET Gadgeteer platform definitions take NETMF's flexibility to the next level. It is a set of
rules on how hardware modules can interact with a mainboard. The complete specifications
and software are open-source. GHI Electronics is proud to the first to offer a .NET Gadgeteer
platform.

More details are found at http://www.ghielectronics.com/products/dotnet-gadgeteer

This book is not meant to be used for Gadgeteer devices but it is a great tool to
understanding NETMF, which is Gadgeteer's core engine.

Copyright © 2012 GHI Electronics, LLC Page 5/58

http://www.ghielectronics.com/products/dotnet-gadgeteer

Beginners guide to C# and NETMF 4.Getting Started

4. Getting Started
Important note: If you have just received your hardware or you are not sure what firmware is
loaded on it, you MUST update the firmware. This page summarizes the firmware update
steps http://wiki.tinyclr.com/index.php?title=Firmware_Update

Also, make sure to read the “firmware/assembly matching” section in this book.

4.1. System Setup
Before we try anything, we want to make sure the PC is setup with needed software. First
download and install Visual C# express 2010

http://www.microsoft.com/express/vcsharp/

Now, download and install .NET Micro Framework 4.2 SDK (not the porting kit) and the GHI
package installer. Both are found on this page

http://www.ghielectronics.com/support/dotnet-micro-framework

By the way, you may want to bookmark this page as it has about everything you need to use
NETMF.

4.2. The Emulator
NETMF includes an emulator that allows you to run NETMF applications right on your PC. For
our first project, we will use the emulator to run a very simple application.

Create a Project

Open Visual C# Express and, from the menu, select file -> New Project. The wizard should
now have the “Micro Framework” option in the left menu. Click on it, and from the templates,
select “Console Application”.

Copyright © 2012 GHI Electronics, LLC Page 6/58

http://www.ghielectronics.com/support/dotnet-micro-framework
http://www.microsoft.com/express/vcsharp/
http://wiki.tinyclr.com/index.php?title=Firmware_Update

Beginners guide to C# and NETMF 4.Getting Started

Click the “OK” button and you will have a new project that is ready to run. The project only
has one C# file, called Program.cs, which contains very few lines of code. The file is shown
in “Solution Explorer” window. If this window is not showing then you can open it by clicking
“View->Solution Explorer” from the menu.

using System;

using Microsoft.SPOT;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 Debug.Print(

 Resources.GetString(Resources.StringResources.String1));

 }

 }

}

Copyright © 2012 GHI Electronics, LLC Page 7/58

Beginners guide to C# and NETMF 4.Getting Started

For simplicity change the code to look like the listing below

using System;

using Microsoft.SPOT;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 Debug.Print("Amazing!");

 }

 }

}

Selecting Transport

Don't worry if you do not understand the code. I will explain it later. For now, we want to run it
on the emulator. Let's make sure you have everything setup properly. Click on “Project-
>Properties” from the menu. In the new showing window, we want to make sure we select the
emulator. On the left side tabs, select “.NET Micro Framework” and make sure the window
looks like the image below.

Transport: Emulator

Copyright © 2012 GHI Electronics, LLC Page 8/58

Beginners guide to C# and NETMF 4.Getting Started

Device: Microsoft Emulator

Make sure the output window is visible, click on

View->Output

If you are not seeing such option, then you need to enable expert settings first, found at

Tools-> Settings-> Expert Settings.

Executing

Finally, we are ready to run our first application. Press F5 key on the computer. This is a very
useful shortcut and you will be using it a lot to run your applications. After you press F5, the
application will be compiled and loaded on the emulator and in couple seconds everything will
stop! That is because our program had finished execution so fast that we didn't see much.

We want to “debug” the code now. Debugging means that you are able to step in the code
and see what it is doing. This is one of the greatest values of NETMF.

This time use F11 instead of F5, this will “step” in the application instead of just running it.
This will deploy the application on the emulator and stop at the very first line of code. This is
indicated by the yellow arrow.

C# applications always start from a method called Main and this is where the arrow stopped.
Press F11 again and the debugger will run the next line of code, which is the line you
changed before. You probably have guessed it right, this line will print “Amazing!” to the
debug window. The debug window is the output window on Visual C# Express. Make sure
Output window is visible like explained earlier and press F11 one more time. Once you step
on that line, you will see the word “Amazing!”, showing in the output window.

Copyright © 2012 GHI Electronics, LLC Page 9/58

Beginners guide to C# and NETMF 4.Getting Started

If you now press F11 again, the program will end and the emulator will exit.

Breakpoints

Breakpoints are another useful feature when debugging code. While the application is
running, the debugger checks if execution has reached a breakpoint. If so, the execution will
pause. Click the bar to the left of the line that prints “Amazing!” This will show a red dot which
indicates a breakpoint.

Now press F5 to run the software and when the application reaches the breakpoint, the
debugger will pause, as shown in the image below

Now, you can step in the code using F11 or continue execution using F5.

Copyright © 2012 GHI Electronics, LLC Page 10/58

Beginners guide to C# and NETMF 4.Getting Started

4.3. Running on Hardware
Running NETMF applications on hardware is very simple. Instructions can be slightly different
on different hardware. This book uses FEZ for demonstration purposes but any other
hardware will work similarly.

MFDeploy can Ping!

Before we use the hardware, let us make sure it is properly connected. The NETMF SDK
comes with software from Microsoft called MFDeploy. There are many good uses for
MFDeploy but for now we only need it to “ping” the device. Basically, “ping” means that
MFDeploy will say “Hi” to the device and then checks if the device will respond with “Hi” back.
This is good to make sure the device is connected properly and transport with it has no
issues.

Open MFDeploy and connect FEZ using the included USB cable to your PC. If this is the first
time you plugged in FEZ, Windows will look for the drivers and automatically find them. If not,
supply the driver from the SDK folder and wait till windows is finished.

In the drop-down menu, select USB. You should see your device showing in the device list.
In my example, I see USBizi. Select your device and click the “Ping” button. You should now
see TinyCLR.

Copyright © 2012 GHI Electronics, LLC Page 11/58

Beginners guide to C# and NETMF 4.Getting Started

Deploying to Hardware

Now that we checked that the hardware is connected using MFDeploy, we need to go back to
Visual Studio. From the project properties, select USB for transport and then your device
(mine is USBizi). Make sure your setup looks similar to the image below.

Pressing F5 will now send our simple application to FEZ and it will run right inside the real
hardware. Switching from emulator to real hardware is that simple!

Try the steps we did with the emulator, like setting breakpoints and using F11 to step in the
code. Note that “Debug.Print” will still forward the debug messages from the hardware back to
the output window on Visual Studio.

Copyright © 2012 GHI Electronics, LLC Page 12/58

Beginners guide to C# and NETMF 5.C# Level 1

5. C# Level 1
This book is not meant to cover C# in details but I will cover most of basics to help you get
started.

5.1. What is .NET?
.NET Framework was developed to standardize programming. (Note how I am talking about
the full .NET Framework and not the Micro Framework.) Once you program in .NET, you are
no longer concerned of the underlying operating system. It offers a set of libraries that
developers can use from many programming languages.

The .NET Framework runs on PCs and not on smaller devices, because it is a very large
framework. Also, the full framework has many things (methods) that wouldn't be very useful
on smaller devices. This is how .NET Compact Framework was born. The compact
framework removed unneeded libraries to shrink down the size of the framework. This smaller
version runs on Windows CE and smart phones. The compact framework is smaller than the
full framework but it is still too large for mini devices because of its size and because it
requires an operating system to run.

.NET Micro Framework is the smallest version of those frameworks. It removed more libraries
and it became OS independent. Because of the similarity among these three frameworks,
almost the same code can now run on PCs and small devices, with little or no modifications.

For example, using the serial port on a PC, WinCE device or FEZ works the same way, when
using .NET.

5.2. What is C#?
C and C++ are the most popular programming languages. C# is an updated and modernized
version of C and C++. It includes everything you would expect from a modern language, like
garbage collector and run-time validation. It is also object-oriented which makes programs
more portable and easier to debug and port. Although C# puts a lot of rules on programming
to shrink down the bug-possibilities, it still offers most of the powerful features C/C++ have.

“Main” is the Starting Point

Like we seen before, programs always start at a method called Main. A method is a little
chunk of code that does a certain task. Methods start and finish with open/close curly
brackets. In our first program, we only had one line of code between our curly brackets.

The line was Debug.Print("Amazing!");

Copyright © 2012 GHI Electronics, LLC Page 13/58

Beginners guide to C# and NETMF 5.C# Level 1

You can see how the line ends with a semicolon. All lines must end the same way.

This line calls the Print method that exists in the Debug object. It calls it while passing the
string “Amazing!”

Confused? Let's try to clear it out a bit. Let's say you are an object. You also have multiple
methods to control you, the object. One method can be “Sit” and another can be “Run”. Now
what if I want you to “Say” amazing? I will be calling your speak method with the sentence
(string) “Amazing!”. So the code will look like:

You.Say(“Amazing!”);

Now, why do we need the quotes before and after the word Amazing? That is because C#
doesn't know if the text you are writing is actually a command or it is actually text (strings).
You can see how it is colored in red when you add quotes, which makes reading code easier
for us, humans.

Comments

What if you want to add comments/notes/warnings in your code? Those comments will help
you and others understand what the code means. C# completely ignores these comments.
There are 2 ways to create comments, line comments and block comments. Comments
(Ignored text) are shown in green.

To comment a line, or part of a line, add // before the comment text. The color of the text will
change to green indicating that the text is now comment and is ignored by C#.

using System;

using Microsoft.SPOT;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 // This is a comment

 Debug.Print("Amazing!");//this is a comment too!

 }

 }

}

Copyright © 2012 GHI Electronics, LLC Page 14/58

Beginners guide to C# and NETMF 5.C# Level 1

You can also comment a whole block. Start the comment with /* and then end it with */
symbols

using System;

using Microsoft.SPOT;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 /* This is a comment

 it's still a comment

 the block will end now */

 Debug.Print("Amazing!");

 }

 }

}

while-loop

It is time for our first keyword, “while”. The while-loop starts and ends with curly brackets to
contain some code. Everything inside will continuously run while a statement is true. For
example, I can ask you to keep reading this book “while” you are awake!

So, let's make a program that continuously prints “Amazing!” endlessly. This endless loop has
no ending so it will always be “true”.

using System;

using Microsoft.SPOT;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 while(true)

 {

 Debug.Print("Amazing!");

 }

 }

 }

}

Copyright © 2012 GHI Electronics, LLC Page 15/58

Beginners guide to C# and NETMF 5.C# Level 1

In the code above, execution will start at the “Main” method as usual and then it will go to the
next line, which is the while-loop. The while-loop is telling the run time to execute the code
inside its brackets while the statement is “true”. Actually, we do not have a statement there,
but we have “true” instead which means this loop will always run.

Do not hit F5 to run the program or you will flood the output window with the word “Amazing!”.
Instead, hit F11 and step in the code to understand how the loop works. Note that this
program will never end so you will need to force stop using shift+F5.

Note: You can reach all these debug shortcuts from the menu under Debug.

Variables

Variables are places in memory reserved for your use. The amount of memory reserved for
you depends on the type of the variable. I will not cover every single type here but any C#
book will explain this in details.

We will be using an int variable. This type of variable is used to hold integer numbers.

Simply saying:

int MyVar;

will tell the system that you want some memory reserved for you. This memory will be
referenced to as MyVar. You can give it any name you'd like, as long as the name doesn't
contain spaces. Now, you can put any integer number into this memory/variable.

MyVar = 1234;

You can also use mathematical operations to calculate numbers:

MyVar = 123 + 456;

or you can increment the number by one:

MyVar++;

or decrement it by one:

MyVar- -;

With all that, can we make a program that prints the word 'Amazing!' three times. Here is the
code

using System;

using Microsoft.SPOT;

namespace MFConsoleApplication1

{

 public class Program

 {

Copyright © 2012 GHI Electronics, LLC Page 16/58

Beginners guide to C# and NETMF 5.C# Level 1

 public static void Main()

 {

 int MyVar;

 MyVar = 3;

 while(MyVar>0)

 {

 MyVar--;

 Debug.Print("Amazing!");

 }

 }

 }

}

Notice how the while-loop statement is not “true” anymore, but it is MyVar>0. This means
keep looping as long as MyVar's value is greater than 0.

In the very first loop MyVar is 3. Inside every loop, we decrement MyVar by one. This will
result in the loop running exactly three times and therefore printing “Amazing!” three times.

Let's make things more interesting. I want to print the numbers 1 through 10. OK, we know
how to make a variable and we know how to increment it but how do we print a number to the
debug output window? Simply giving MyVar to Debug.Print will give you an error and it won't
work. This is because Debug.Print will only accept strings, not integers. How do we convert
an integer variable “ToString”? It is very simple, call MyVar.ToString(). That was easy!

using System;

using Microsoft.SPOT;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 int MyVar;

 MyVar = 0;

 while(MyVar<10)

 {

 MyVar++;

 Debug.Print(MyVar.ToString());

 }

 }

 }

}

Last thing to add is that we want to make the program print

Copyright © 2012 GHI Electronics, LLC Page 17/58

Beginners guide to C# and NETMF 5.C# Level 1

Count: 1

Count: 2

...

...

Count: 9

Count:10

This can be easily done by adding strings. Strings are added using the + symbol just like how
you would add any numbers.

Try the following code

using System;

using Microsoft.SPOT;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 int MyVar;

 MyVar = 0;

 while(MyVar<10)

 {

 MyVar++;

 Debug.Print("Count: " + MyVar.ToString());

 }

 }

 }

}

Assemblies

Assemblies are files containing compiled (assembled) code. This allows developers to use
the code but they don't have access to the assemblies source code. We have already used
Debug.Print. Who made the Debug class/object and who made the Print method that is in it?
Those are made by the NETMF team at Microsoft. They compile the code and give you an
assembly to use it. This way, users are not messing with the internal code but they can still
use it.

At the top of the code used before, we see using Microsoft.SPOT;

This tells C# that you want to use the “namespace” Microsoft.SPOT. Okay, but what is a

Copyright © 2012 GHI Electronics, LLC Page 18/58

Beginners guide to C# and NETMF 5.C# Level 1

namespace? Programs are split into regions or “spaces”. This is very important when
programs are very large. Every chunk of code or library is assigned a “name” for its “space”.
Programs with the same “namespace” see each other but if the name space is different then
we can optionally tell C# to “use” the other name space.

The “name” for our program's “space” is namespace MFConsoleApplication1

To “use” another name space like "Microspft.SPOT" you need to add using Microsoft.SPOT;

What is SPOT anyways? Here is a short story! A few years ago, Microsoft privately started a
project called SPOT. They realized that this project was a good idea and wanted to offer it to
developers. They decided to change the product name to .NET Micro Framework but they
kept the code the same way for backwards compatibility. In short, SPOT is NETMF!

Back to coding, now try to remove or comment out using Microsoft.SPOT; and your code will
not work anymore.

Here is the error message shown after I commented out using Microsoft.SPOT;

We used the assemblies but where are they added?

Uncomment the code and make sure it still works. Now take a look at the “Solution Explorer”
window. Click the little + sign by the word “References” and you should see two assemblies.

Copyright © 2012 GHI Electronics, LLC Page 19/58

Beginners guide to C# and NETMF 5.C# Level 1

Now, right-click on “Microsoft.SPOT.Native” then click “Remove”

Our program will still be exactly the same as before, but now it's missing a very important
assembly. Try to run it and you will see something like this

Copyright © 2012 GHI Electronics, LLC Page 20/58

Beginners guide to C# and NETMF 5.C# Level 1

Let's add it back and make sure our program still runs. Right click on the “References” folder
and select “Add Reference...”

In the new window, select “.NET” tab and then select “Microsoft.SPOT.Native” and click OK.

Run the program to make sure it's working again. If you have any errors, please go back and
repeat the steps to fix it before moving on.

What Assemblies to Add?

Throughout this book, I provide many examples but I do not tell you what assemblies I am
using. This is really easy to figure out from the documentation but you may find it difficult
sometimes. Why not just add them all? As a beginner, your applications are still very small so

Copyright © 2012 GHI Electronics, LLC Page 21/58

Beginners guide to C# and NETMF 5.C# Level 1

you will have a lot of memory even if you add all of the assemblies, even if you are not using
them.

The assemblies below are most commonly used. Add them for all of your projects for now.
Once you know where everything belongs, you can start removing the ones you don't need.
These assemblies do not include the ones needed for networking or graphics.

Microsoft.SPOT.Hardware

Microsoft.SPOT.Native

Microsoft.SPOT.Hardware.SerialPort

Microsoft.SPOT.Hardware.OneWire

Microsoft.SPOT.Hardware.PWM

Microsoft.SPOT.IO

mscorlib

System

System.IO

If a sample code did not compile with an error about a missing assembly then please check
the library documentation for the name of the assembly (DLL) needed.

Threading

This can be a very advanced topic. Note that only very basic information is covered here.

Processors/programs only run one instruction at a time. Remember how we stepped in the
code? Only one instruction got executed and then the flow went on to the next instruction.
Then how is it possible that your PC can run multiple programs at the same time? Actually,
your PC is never running them a once! What it is doing is running every program for a short
time, stops it and goes on to run the next program.

Generally, threading is not recommended for beginners but there are things that can be done
much easier using threads. For example, you want to blink an LED. It would be nice to blink
an LED in a separate thread and never have to worry about it in the main program.

Also, adding delays in the code require the threading namespace. You will understand this
better in upcoming examples.

By the way, LED stands for Light Emitting Diodes. You see LEDs everywhere around you.
Take a look at any TV, DVD or electronic device and you will see a little Red or other color
light bulb. These are LEDs.

Add “using System.Threading” to your program.

Copyright © 2012 GHI Electronics, LLC Page 22/58

Beginners guide to C# and NETMF 5.C# Level 1

That is all we need to use threads! It is important to know that our program itself is a thread.
On system execution start-up, C# will look for “Main” and run it in a thread. We want to add a
delay in our thread (our program), so it will print the word 'Amazing!' once every second. To
delay a “thread”, we put it to “Sleep”. Note that this “Sleep” is not for the whole system. It will
only “Sleep” the “thread”.

Add:

Thread.Sleep(1000);

To our While-loop.

The “Sleep” method takes time in milliseconds. So, for 1 second we will need 1000
milliseconds.

using System;

using Microsoft.SPOT;

using System.Threading;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 while (true)

 {

 Debug.Print("Amazing!");

 Thread.Sleep(1000);

 }

 }

 }

}

Try to run the program and look at the output window. If you've tried it on the emulator and it
wasn't exactly 1 second, don't worry about it. Try it on real hardware (FEZ) and it will be very
close to 1 second.

Let's create a second thread (our first was automatically created, remember?) We will need to
create a new thread object handler (reference) and name it something useful, like
MyThreadHandler. And create a new local method and name it MyThread. Then, run the new
thread.

Copyright © 2012 GHI Electronics, LLC Page 23/58

Beginners guide to C# and NETMF 5.C# Level 1

We are not using the “Main” thread anymore so I will put it in an endless sleep.

Here is the code listing. If you don't understand it then don't worry about it. All that is needed
at this point is that you know how to “Sleep” a thread.

using System;

using Microsoft.SPOT;

using System.Threading;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void MyThread()

 {

 while (true)

 {

 Debug.Print("Amazing!");

 //sleep this thread for 1 second

 Thread.Sleep(1000);

 }

 }

 public static void Main()

 {

 // create a thread handler

 Thread MyThreadHandler;

 // create a new thread object

 //and assign to my handler

 MyThreadHandler = new Thread(MyThread);

 // start my new thread

 MyThreadHandler.Start();

 /////////////////////////////////

 // Do anything else you like to do here

 Thread.Sleep(Timeout.Infinite);

 }

 }

}

Copyright © 2012 GHI Electronics, LLC Page 24/58

Beginners guide to C# and NETMF 6.Digital Input & Output

6. Digital Input & Output
On processors, there are many “digital” pins that can be used as inputs or outputs. by “digital”
pins we mean the pin can be “one” or “zero”.

Important note: Static discharge from anything including the human body will damage the
processor. You know how sometimes you touch someone or something and you feel a little
electronic discharge? This little discharge is high enough to kill electronic circuits.
Professionals use equipment and take precautions handling the static charges in their body.
You may not have such equipment so just try to stay away from touching the circuit if you
don't have to. You may also use an Anti-static wrist band.

NETMF supports digital input and output pins through the “Microsoft.SPOT.Hardware”
assembly and name space.

Go ahead and add the assembly and namespace like we learned before.

We are now ready to use the digital pins.

6.1. Digital Outputs
We know that a digital output pin can be set to zero or one. Note that one doesn't mean it is 1
volt but it means that the pin is supplying voltage. If the processor is powered off of 3.3V then
state 1 on a pin means that there is 3.3V on the output pin. It is not going to be exactly 3.3V
but very close. When the pin is set to zero then it's voltage is very close to zero volts.

Those digital pins are very weak! They can't be used to drive devices that require a lot of
power. For example, a motor may run on 3.3V but you can NOT connect it directly to the
processor's digital pin. That is because the processor's output is 3.3V but with very little
power. The best you can do is drive a small LED or “signal” 1 or 0 to another input pin.

Copyright © 2012 GHI Electronics, LLC Page 25/58

Beginners guide to C# and NETMF 6.Digital Input & Output

All FEZ boards have a LED connected to a digital pin. We want to blink this led.

Digital output pins are controlled through an OutputPort object. We first create the object
handler (reference), and then we make a new OutputPort object and assign it to our handler.
When creating a new OutputPort object, you must specify the initial state of the pin, 1 or 0.
The one and zero can be referred to high or low and also can be true for high and false for
low. We will make the pin true (high) in this example to turn on our LED by default.

Here is the code using pin number 4, the FEZ Domino on-board LED.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 OutputPort LED;

 LED = new OutputPort((Cpu.Pin)4, true);

 Thread.Sleep(Timeout.Infinite);

 }

 }

}

The GHI SDK ships with special assemblies containing the pin mapping of your device. For
example, “FEZMini_GHIElectronics.NETMF.FEZ” is needed for FEZ Mini.

Now, modify the code by adding “using GHIElectronics.NETMF.FEZ” at the top of your
program. Your device may have a different DLL.

Here is the code, this time using the FEZ pin enumeration class.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

Copyright © 2012 GHI Electronics, LLC Page 26/58

Beginners guide to C# and NETMF 6.Digital Input & Output

 public static void Main()

 {

 OutputPort LED;

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 Thread.Sleep(Timeout.Infinite);

 }

 }

}

See how much easier that is? We really do not need to know where the LED is connected.

Run the program and observe the LED. It should be lit now. Things are getting more exciting!

Blink an LED

To blink an LED, we need to set the pin high and delay for some time then we need to set it
low and delay gain. Its important to remember to delay twice. Why? It's because our eyes are
too slow for computer systems. If the LED comes on and then it turns back off very fast, your
eyes will not see that it was off for a very short time.

What do we need to blink a LED? ... We learned how to make a while-loop, we know how to
delay, and we need to know how to set the pin high or low. This is done by calling the Write
method on the OutputPort object. Note that you can't use “OutputPort.Write” This is very
wrong because what output ports are you referring to? Instead, use “LED.Write” which makes
complete sense.

Here is the code to blink the on-board LED on FEZ Domino/Mini

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 OutputPort LED;

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 while (true)

 {

 LED.Write(!LED.Read());

 Thread.Sleep(200);

Copyright © 2012 GHI Electronics, LLC Page 27/58

Beginners guide to C# and NETMF 6.Digital Input & Output

 }

 }

 }

}

This is another way, a simpler way, to blink a LED.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 OutputPort LED;

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 while (true)

 {

 LED.Write(true);

 Thread.Sleep(200);

 LED.Write(false);

 Thread.Sleep(200);

 }

 }

 }

}

Let's see if you can change the sleep time to make the LED blink faster or slower. Also, try
to use a different value for its state so it is on for a long time and then it is off for a short
time.

Important note: Never connect two output pins together. If they are connected and one is
set to high and the other is set to low, you will damage the processor. Always connect an
output pin to an input, driving circuit or a simple load like a LED.

6.2. Digital Inputs
Digital inputs sense if the state of its pin is high or low. There is a limitation on these input
pins. For example, the minimum voltage on the pin is 0 volts. A negative voltage may damage
the pin or the processor. Also, the maximum you can supply to a pin, must be less than the

Copyright © 2012 GHI Electronics, LLC Page 28/58

Beginners guide to C# and NETMF 6.Digital Input & Output

processor's power source voltage. All GHI Electronics boards use processors that run on 3.3V
so the highest voltage the pin should ever see is 3.3V. This is true for ChipworkX and FEZ
Hydra but not for EMX. EMX is 5V-tolerant. This means that even though the processor runs
on 3.3V, it is capable of tolerating up to 5V on its inputs. Most digital chips that you would be
interfacing with are 5V. Being 5V tolerant allows us to use any of those digital circuits with our
processor.

Important note: 5V-tolerant doesn't mean the processor can be powered off of 5V. Always
power it with 3.3V. Only the input pins can tolerate 5V on them.

The InputPort object is used to handle digital input pins. Any pin on the processor's GHI use
can be an input or an output, but of course, not both! Unconnected input pins are called
floating. You would think that unconnected input pins are low but this is not true. When a pin
is an input and is not connected, it is open for any surrounding noise which can make the pin
high or low. To take care of this issue, modern processors include an internal weak pull-down
or pull-up resistor, that are usually controlled by software. Enabling the pull-up resistor will pull
the pin high. Note that the pull-up resistor doesn't make a pin high but it pulls it high. If nothing
is connected then the pin is high by default.

There are many uses for input ports but the most common is to connect it to a button or a
switch. Many FEZ boards already includes an on-board button connected to the loader pin.
The loader pin is used on power up to enter the boot loader but we can still use this pin at
run-time. The button is enumerated as “LDR” or “Loader”.

The button will connect between ground and the input pin. We will also enable the pull-up
resistor. This means that the pin will be high (pull-up) when the button is not pressed and low
(connected to ground) when the button is pressed.

We will read the status of the button and pass its state to the LED. Note that the pin is high
when the button is not pressed (pulled-high) and it is low when the button is pressed. This
means the LED will turn off when the button is pressed.

The code:

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 OutputPort LED;

 InputPort Button;

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 Button = new InputPort((Cpu.Pin)FEZ_Pin.Digital.LDR, false,

Copyright © 2012 GHI Electronics, LLC Page 29/58

Beginners guide to C# and NETMF 6.Digital Input & Output

 Port.ResistorMode.PullUp);

 while (true)

 {

 LED.Write(Button.Read());

 Thread.Sleep(10);

 }

 }

 }

}

6.3. Interrupt Port
If we want to check the status of a pin, we will always have to check its state periodically. This
wastes the processor's time on something not important. You will be checking the pin, maybe,
a million times before it is pressed! Interrupt ports allows us to set a method that will be
executed when the button is pressed (when pin is low for example).

We can set the interrupt to fire on many state changes on the pin, when the pin is low or
maybe when it is high. The most common use is the “on change”. The change from low to
high or high to low creates a signal edge. The high edge occurs when the signal rises from
low to high. The low edge happen when the signal falls from high to low.

In the example below, I am using both edges so our method “IntButton_OnInterrupt” will
automatically run whenever the state of our pin changes.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

 // this moved out here so it can be used by other methods

 static OutputPort LED;

 public static void Main()

 {

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 // the pin will generate interrupt on high and low edges

 InterruptPort IntButton =

 new InterruptPort((Cpu.Pin)FEZ_Pin.Interrupt.LDR, true,

 Port.ResistorMode.PullUp,

 Port.InterruptMode.InterruptEdgeBoth);

 // add an interrupt handler to the pin

 IntButton.OnInterrupt +=

Copyright © 2012 GHI Electronics, LLC Page 30/58

Beginners guide to C# and NETMF 6.Digital Input & Output

 new NativeEventHandler(IntButton_OnInterrupt);

 //do anything you like here

 Thread.Sleep(Timeout.Infinite);

 }

 static void IntButton_OnInterrupt(uint port, uint state,

 DateTime time)

 {

 // set LED to the switch state

 LED.Write(state == 0);

 }

 }

}

Note: Most but not all pins on the processor support interrupts.

6.4. Tristate Port
If we want a pin to be an input and output, what can we do? A pin can never be in and out
simultaneously but we can make it output to set something and then make it input to read a
response back. One way is to “Dispose” the pin. We make an output port, use it and then
dispose it. Then we can make the pin an input and read it.

NETMF supports better options for this, through a Tristate port. Tristate means three states;
that is input, output low and output high. One minor issue about tristate pins is; if a pin is set
to output and then you set it to output again, we will receive an exception. One way to get
around this is by checking the direction of the pin before changing it. The direction of the pin
is its “Active” property where false means input and true is output. I personally do not
recommend the use of Tristate ports unless absolutely necessary.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

 static void MakePinOutput(TristatePort port)

 {

 if (port.Active == false)

 port.Active = true;

 }

 static void MakePinInput(TristatePort port)

 {

Copyright © 2012 GHI Electronics, LLC Page 31/58

Beginners guide to C# and NETMF 6.Digital Input & Output

 if (port.Active == true)

 port.Active = false;

 }

 public static void Main()

 {

 TristatePort TriPin =

 new TristatePort((Cpu.Pin)FEZ_Pin.Interrupt.LDR, false,

 false, Port.ResistorMode.PullUp);

 MakePinOutput(TriPin);// make pin output

 TriPin.Write(true);

 MakePinInput(TriPin);// make pin input

 Debug.Print(TriPin.Read().ToString());

 }

 }

}

Note: Due to internal design, TristatePort will only work with interrupt capable digital pins.

Important Note: Be careful not to have the pin connected to a switch and then set the pin to
output and high. This will damage the processor. I would say, for beginner applications you do
not need a tristate port so do not use it until you are comfortable with digital circuits.

Copyright © 2012 GHI Electronics, LLC Page 32/58

Beginners guide to C# and NETMF 7.C# Level 2

7. C# Level 2

7.1. Boolean Variables
We learned how integer variables hold numbers. In contrast, Boolean variables can only be
true or false. A light can only be on or off, representing this using an integer doesn't make a
lot of sense but using Boolean, it is true for on-state and false for off-state. We have already
used those variables to set digital pins high and low, LED.Write(true);

To store the value of a button in a variable we use

bool button_state;

button_state = Button.Read();

We also used while-loops and we asked it to loop forever, when we used true for the
statement

while (true)

{

 //code here

}

Take the last code we did and modify it to use a boolean, so it is easier to read. Instead of
passing the Button state directly to the LED state, we read the button state into button_state
boolean then we pass the button_state to set the LED accordingly.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 OutputPort LED;

 InputPort Button;

 bool button_state;

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

Copyright © 2012 GHI Electronics, LLC Page 33/58

Beginners guide to C# and NETMF 7.C# Level 2

 Button = new InputPort((Cpu.Pin)FEZ_Pin.Digital.LDR, false,

 Port.ResistorMode.PullUp);

 while (true)

 {

 button_state = Button.Read();

 LED.Write(button_state);

 Thread.Sleep(10);

 }

 }

 }

}

Can you make an LED blink as long as the button is pressed?

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 OutputPort LED;

 InputPort Button;

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 Button = new InputPort((Cpu.Pin)FEZ_Pin.Digital.LDR, false,

 Port.ResistorMode.PullUp);

 while (true)

 {

 while (Button.Read() == false)//Button is false when pressed

 {

 LED.Write(true);

 Thread.Sleep(300);

 LED.Write(false);

 Thread.Sleep(300);

 }

 }

 }

 }

}

Important note: The == is used to check for eqality in C#. This is different from = which is
used to assign values.

Copyright © 2012 GHI Electronics, LLC Page 34/58

Beginners guide to C# and NETMF 7.C# Level 2

7.2. if-statement
An important part of programming is checking some state and taking action accordingly. For
example, “if” the temperature is over 80, turn on the fan.

To try the if-statement with our simple setup, we want to turn on the LED “if” the button is
pressed. Note this is the opposite from what we had before since in our setup, the button is
low when it is pressed. So, to achieve this we want to invert the state of the LED from the
state of the button. If the button is pressed (low) then we want to turn the LED on (high). The
LED needs to be checked repeatedly so we will do it once every 10ms.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 OutputPort LED;

 InputPort Button;

 bool button_state;

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 Button = new InputPort((Cpu.Pin)FEZ_Pin.Digital.LDR, false,

 Port.ResistorMode.PullUp);

 while (true)

 {

 button_state = Button.Read();

 if (button_state == true)

 {

 LED.Write(false);

 }

 if (button_state == false)

 {

 LED.Write(true);

 }

 Thread.Sleep(10);

 }

 }

 }

}

Copyright © 2012 GHI Electronics, LLC Page 35/58

Beginners guide to C# and NETMF 7.C# Level 2

7.3. if-else-statements
We learned how if-statements work. Now, we want to use the else-statement. Basically, “if” a
statement is true, the code inside the if-statement runs or “else” the code inside the else-
statement will run. With this new statement, we can optimize the code above to be like this

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 OutputPort LED;

 InputPort Button;

 bool button_state;

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 Button = new InputPort((Cpu.Pin)FEZ_Pin.Digital.LDR, false,

 Port.ResistorMode.PullUp);

 while (true)

 {

 button_state = Button.Read();

 if (button_state == true)

 {

 LED.Write(false);

 }

 else

 {

 LED.Write(true);

 }

 Thread.Sleep(10);

 }

 }

 }

}

I will let you in on a secret! We only used the if-statement and the else-statement in this
example as a demonstration purpose. We can write the code this way.

using System;

Copyright © 2012 GHI Electronics, LLC Page 36/58

Beginners guide to C# and NETMF 7.C# Level 2

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 OutputPort LED;

 InputPort Button;

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 Button = new InputPort((Cpu.Pin)FEZ_Pin.Digital.LDR, false,

 Port.ResistorMode.PullUp);

 while (true)

 {

 LED.Write(Button.Read() == false);

 Thread.Sleep(10);

 }

 }

 }

}

Or even this way!

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 OutputPort LED;

 InputPort Button;

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 Button = new InputPort((Cpu.Pin)FEZ_Pin.Digital.LDR, false,

 Port.ResistorMode.PullUp);

 while (true)

 {

 LED.Write(!Button.Read());

 Thread.Sleep(10);

 }

Copyright © 2012 GHI Electronics, LLC Page 37/58

Beginners guide to C# and NETMF 7.C# Level 2

 }

 }

}

Usually, there are many way to write the code. Use what makes you comfortable and with
more experience, you will learn how to optimize the code.

7.4. Methods and Arguments
Methods are actions taken by an object. It can also be called a function of an object. We have
already seen methods and have used them. Do you remember the object Debug which has a
Print method? We have already used Debug.Print many times before, where we gave it a
“string” to display in the output window. The “string” we passed is called an argument.

Methods can take one or more optional arguments but it can only return one optional value.

The Print method in the Debug object only takes one string argument. Other methods may not
require any arguments or may require more than one argument. For example, a method to
draw a circle can take four arguments, DrawCircle(posx, posy, diam, color). An example for
returning values can be a method that returns the temperature.

So far, we have learned of three variable types, int, string and bool. We will cover other types
later but remember that everything we talk about here applies to other variable types.

The returned value can be an optional variable type. If there is no returned value then we
replace the variable type with “void”. The “return” keyword is used to return values at the end
of a method.

Here is a very simple method that “returns” the sum of two integers.

int Add(int var1, int var2)

{

 int var3;

 var3 = var1 + var2;

 return var3;

}

We started the method with the return value type, “int” followed by the method name. Then
we have the argument list. Arguments are always grouped by parenthesis and separated by
commas.

Inside the Add method, a local integer variable has been declared, var3. Local variables are
created inside a method and die once we exit the method. Now, we add our two variables and
finally return the result.

What if we want to return a string representing the sum of two numbers? Remember that a

Copyright © 2012 GHI Electronics, LLC Page 38/58

Beginners guide to C# and NETMF 7.C# Level 2

string containing the number 123 is not the same as an integer containing 123. An integer is a
number but a string is an array or characters that represent text or numbers. To humans
these are the same thing, but in the computer world, this is totally different.

Here is the code to return a string.

string Add(int var1, int var2)

{

 int var3;

 var3 = var1 + var2;

 string MyString;

 MyString = var3.ToString();

 return MyString;

}

You can see how the returned type was changed to a string. We couldn't return var3 because
it is an integer variable, so we had to convert it to a string. To do that, we create a new
variable object named MyString. Then convert var3 "ToString" and place the new string in
MyString.

The question now is why we called a "ToString" method on a variable of type integer? In
reality, everything in C# is an object, even the built in variable types. This book is not going
into these details as it is only meant to get you started.

This is all done in multiple steps to show you how it is done but we can compact everything
and results will be exactly the same.

string Add(int var1, int var2)

{

 return (var1+var2).ToString();

}

I recommend you do not write code that is extremely compact, like the example above, until
you are very familiar with the programming language. Even then, there should be limits on
how much you compact the code. You still want to be able to maintain the code after
sometime and someone else may need to read and understand your code.

7.5. Classes
All objects we talked about so far are actually “classes” in C#. In modern object oriented
programming languages, everything is an object and methods always belong to one object.
This allows for having methods of the same name but they can be for completely different

Copyright © 2012 GHI Electronics, LLC Page 39/58

Beginners guide to C# and NETMF 7.C# Level 2

objects. A “human” can “walk” and a “cat” can also “walk” but do they walk the same way?
When you call the “walk” method in C# it is not clear if the cat or the human will walk but using
human.walk or cat.walk makes it more clear.

Creating classes is beyond the scope of this book. Here is a very simple class to get you
started

class MyClass

{

 int Add(int a, int b)

 {

 return a + b;

 }

}

7.6. Public vs. Private
Methods can be private to a class or publicly accessible. This is only useful to make the
objects more robust from programmer misuse. If you create an object (class) and this object
has methods that you do not want anyone to use externally then add the keyword “private”
before the method return type; otherwise, add the “public” keyword.

Here is a quick example

class MyClass

{

 public int Add(int a, int b)

 {

 // the object can use private methods

 // inside the class only

 DoSomething();

 return a + b;

 }

 private void DoSomething()

 {

 }

}

7.7. Static vs. non-static
Some objects in life have multiple instances but others only exist once. The objects with
multiple instances are non-static. For example, an object representing a human doesn't mean

Copyright © 2012 GHI Electronics, LLC Page 40/58

Beginners guide to C# and NETMF 7.C# Level 2

much. You will need an “instance” of this object to represent one human. So this will be
something like

human Mike;

We now have a “reference” called Mike of type human. It is important to note this reference at
this point is not referencing any object (no instance assigned) just yet, so it is referencing
NULL.

To create the “new” object instance and reference it from Mike

Mike = new human();

We now can use any of the human methods on our “instance” of Mike

Mike.Run(distance);

Mike.Eat();

bool hungry = Mike.IsHungry();

We have used those non-static methods already when we controlled input and output pins.

When creating a new non-static object, the “new” keyword is used with the “constructor” of the
object. The constructor is a special type of method that returns no value and is only used
when creating (construction) new objects.

Static methods are easier to handle because there is only one object that is used directly
without creating instances. The easiest example is our Debug object. There is only one debug
object in the NETMF system so using its methods, like Print, is used directly.

Debug.Print(“string”);

I may not have used the exact definitions of static and instances but I wanted to describe it in
the simplest way.

7.8. Constants
Some variables may have fixed values that never change. What if you accidentally change
the value of this variable in your code? To protect it from changing, add the “const” keyword
before the variable declaration.

const int hours_in_one_day = 24;

7.9. Enumeration
An Enumeration is very similar to a constant. Let's say we have a device that accepts four

Copyright © 2012 GHI Electronics, LLC Page 41/58

Beginners guide to C# and NETMF 7.C# Level 2

commands, those are MOVE, STOP, LEFT, RIGHT. This device is not a human, so these
commands are actually numbers. We can create constants (variables) for those four
commands like the following:

const int MOVE = 1;

const int STOP = 2;

const int RIGHT = 3;

const int LEFT = 4;

//now we can send a command...

SendCommand(MOVE);

SendCommand(STOP);

The names are all upper case because this is how programmers usually name constants. Any
other programmer seeing an upper case variable would know that this is a constant.

The code above is okay and will work but it will be nicer if we can group those commands

enum Command

{

 MOVE = 1,

 STOP = 2,

 RIGHT = 3,

 LEFT = 4,

}

//now we can send a command...

SendCommand(Command.LEFT);

SendCommand(Command.STOP);

With this new approach, there is no need to remember what commands exist and what the
command numbers are. Once the word “Command” is typed in, Visual Studio will give you a
list of available commands.

C# is also smart enough to increment the numbers for enumerations so the code can be like
this listing and will work exactly the same way

enum Command

{

 MOVE = 1,

 STOP ,

 RIGHT,

 LEFT ,

}

//now we can send a command...

SendCommand(Command.LEFT);

Copyright © 2012 GHI Electronics, LLC Page 42/58

Beginners guide to C# and NETMF 7.C# Level 2

SendCommand(Command.STOP);

Copyright © 2012 GHI Electronics, LLC Page 43/58

Beginners guide to C# and NETMF 8.Assembly/Firmware Matching

8. Assembly/Firmware Matching
NETMF devices usually include extended features provided by the manufactures. It is very
important that the firmware loaded on the device matches the assemblies being loaded from
Visual Studio. The firmware will fail to run if the version of the assembly/library that
used in the project does not match the version of the firmware.

This is a very common issue that users run into when updating the firmware where the
application just stops working and debugging seems to fail. You may see “checksum
mismatch” in the output window.

Here is what happens:

Scenario #1: A developer has received a new device. This device happens to have firmware
version 1.0 on it. Then the developer went to the website and downloaded the latest SDK.
The SDK has firmware version 1.1 in it. When trying to upload a project, VS2010 will fail to
attach to the device with no indication why! The developer will now think the new device is not
functioning, but actually, the device is just fine. In this example, the firmware is version 1.0
and the assembly is version 1.1 so the system will refuse to run. To fix the issue, update the
firmware on the device to match the firmware in the SDK.

Scenario #2: A developer has a perfectly working system that, for example, uses firmware
version 2.1. Then a new SDK comes out with firmware version 2.2, so the developer installs
the new SDK on the PC then uploads the new firmware to the device (FEZ). When rebooting
the device, it stops working because the new loaded firmware is version 2.2 but the user
application is still using assembly version 2.1. To fix this issue, open the project that has
the user application and remove any device-specific assemblies. After they are
removed, go back and add them back. With this move the new files will be fetched from
the new SDK.

Boot-up Messages

We can easily see why the system is not running using MFDeploy. NETMF outputs many
useful messages on power up. Should the system become unresponsive, fails to run or for
any other debug purposes, we can use MFDeploy to display these boot up messages. Also,
all “Debug.Print” messages that we usually see on the output window are visible on
MFDeploy.

To display the boot up messages, click on “Target->Connect” from the menu then reset the
device. Right after you reset the device in one second, click on “ping”. MFDeploy will freeze
for a second then display a long list of messages.

Copyright © 2012 GHI Electronics, LLC Page 44/58

Beginners guide to C# and NETMF 8.Assembly/Firmware Matching

Copyright © 2012 GHI Electronics, LLC Page 45/58

Beginners guide to C# and NETMF 9.Garbage Collector

9. Garbage Collector
When programming in older languages like C or C++, programmers had to keep track of
objects and release them when necessary. If an object is created and not released then this
object is using resources from the system that will never be freed. The most common
symptom is memory leaks. A program that is leaking memory will contentiously use more
memory till the system runs out of memory and probably crashes. Those bugs are usually
very difficult to find in code.

Modern languages have garbage collector's that keeps track of used objects. When the
system runs low on memory resources, the garbage collector jumps in and searches through
all objects and frees the ones with no “references”. Do you remember how we created objects
before using the “new” keyword and then we assigned the object to a “reference”? An object
can have multiple references and the garbage collector will not remove the object till it has
zero references.

// new object

OutputPort Ref1 = new OutputPort(FEZ_Pin.Digital.LED, true);

// second reference for same object

OutputPort Ref2 = Ref1;

// lose the first reference

Ref1 = null;

// Our object is still referenced

// it will not be removed yet

// now remove the second reference

Ref2 = null;

// from this point on, the object is ready to be

// removed by the garbage collector

Note that the object is not removed immediately. When needed, the Garbage collector will run
and remove the object. This can be an issue in some rare cases because the garbage
collector needs some time to search and remove objects. It will only be few milliseconds but
what if your application can't afford that? If so, the garbage collector can be forced to run at a
desired anytime.

//force the garbage collector

Debug.GC(true);

Copyright © 2012 GHI Electronics, LLC Page 46/58

Beginners guide to C# and NETMF 9.Garbage Collector

9.1. Losing Resources
The garbage collector ease's object allocation but it can also cause problems if we are not
careful. A good example would be on using digital output pins. Lets say we need a pin to be
high. We create an OutputPort object and set the pin high. Later on we lose the “reference”
for that object for some reason. The pin will still be high when the reference is lost so all is
good so far. After a few minutes, the garbage collector kicks in and it finds this unreferenced
object, so it will be removed. Freeing an OutputPort will cause the pin to change its state to
input. Now, the pin is not high anymore!

// Turn the LED on

OutputPort LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

LED = null;

// we have lost the reference but the LED is still lit

//force the garbage collector

Debug.GC(true);

// The LED is now off!

An important thing to note is that if we make a reference for an object inside a method and the
method returns then we have already lost the reference. Here is an example

using System;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

namespace Test

{

 public class Program

 {

 static void TurnLEDOn()

 {

 // Turn the LED on

 OutputPort LED =

 new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 }

 public static void Main()

 {

 TurnLEDOn();

 // we think that everythign is okay but it is not

 // run the GC

 Debug.GC(true);

 // is LED still on?

 }

 }

}

Copyright © 2012 GHI Electronics, LLC Page 47/58

Beginners guide to C# and NETMF 9.Garbage Collector

To solve this, we need a reference that is always available. Here is the correct code

using System;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

namespace Test

{

 public class Program

 {

 static OutputPort LED;

 static void TurnLEDOn()

 {

 // Turn the LED on

 LED = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.LED, true);

 }

 public static void Main()

 {

 TurnLEDOn();

 // run the GC

 Debug.GC(true);

 // is the LED on?

 }

 }

}

Another good example is using timers. NETMF provides a way to create timers that handle
work after a determined time. If the reference for the timer is lost and the garbage collector
runs, the timer is now lost and it will not run as expected.

Important note: If you have a program that is working fine but then right after you see the GC
running in the “Output Window”, and the program stops working or raises an exception, then
this is because the GC has removed an object that you need. Again, that is because you
didn't keep references to the object you wanted to keep alive.

9.2. Dispose
The garbage collector will free objects at some point but what if we need to free one particular
object immediately? Most objects have a Dispose method. If an object needs to be freed at
anytime, we can “dispose” of it.

Disposing an object is very important in NETMF. When we create a new InputPort object, the
assigned pin is reserved. What if we want to use the same pin as an output? Or even use the
same pin as an analog input? We will first need to free the pin and then create the new object.

Copyright © 2012 GHI Electronics, LLC Page 48/58

Beginners guide to C# and NETMF 9.Garbage Collector

OutputPort OutPin = new OutputPort((Cpu.Pin)FEZ_Pin.Digital.Di5, true);

OutPin.Dispose();

InputPort InPort = new InputPort((Cpu.Pin)FEZ_Pin.Digital.Di5, true,

 Port.ResistorMode.PullUp);

9.3. GC Output Messages
When the garbage collector runs, it outputs a lot of useful information to the output window.
These messages give you an idea of what is using resources in the system. Although not
recommended, you may want to disable those messages to free up the output window for
your own usage. This is easily achievable using this line of code.

Debug.EnableGCMessages(false);

Copyright © 2012 GHI Electronics, LLC Page 49/58

Beginners guide to C# and NETMF 10.C# Level 3

10. C# Level 3
This section will cover all the C# materials we wanted to include in this book. A good and free
eBook to continue learning about C# is available at

http://www.programmersheaven.com/2/CSharpBook

10.1. Byte
We learned how int is useful to store numbers. They can store very large numbers but every
int consumes four bytes of memory. You can think of a byte as a single memory cell. A byte
can hold any value from 0 to 255. It doesn't sound like much but this is enough for a lot of
things. In C# bytes are declared using “byte” just like how we use “int”.

byte b = 10;

byte bb = 1000;// this will not work!

The maximum number that a byte can hold is 256 [0..255], What’s going to happen if we
increment it over 255? Incrementing 255 by one would overlap the value back to zero.

You will probably want to use int for most of your variables but we will learn later where bytes
are very important when we start using arrays.

10.2. Char
To represent a language like English, we need 26 values for lower case and 26 for upper
case then 10 for numbers and maybe another 10 for symbols. Adding all these up will give us
a number that is well less than 255. So a byte will work for us. If we create a table of letters,
numbers and symbols, we can represent everything with a numerical value. Actually, this
table already exists and is called the ASCII table.

So far a byte is sufficient to store all “characters” we have in English. Modern computer
systems have expanded to include other languages, some use very complex non-Latin
characters. The new characters are called Unicode characters. Those new Unicode
characters can be more than 255 and so a byte is not sufficient and an integer (four bytes) is
too much. We need a type that uses 2-bytes of memory. 2-bytes is good to store numbers
from 0 to over 64,000. This 2-byte type is called “short”, which we are not using in this book.

Systems can represent characters using 1-byte or using 2-bytes. Programmers decided to
create a new type called char where char can be 1-byte or 2-bytes, depending on the system.
Since NETMF is made for smaller systems, its char is actually a byte! This is not the case on

Copyright © 2012 GHI Electronics, LLC Page 50/58

http://www.programmersheaven.com/2/CSharpBook

Beginners guide to C# and NETMF 10.C# Level 3

a PC where a char is a 2-byte variable!

Do not worry about all this mess, do not use char if you do not have to and if you use it,
remember that it is 1-byte on NETMF.

10.3. Array
If we are reading an analog input 100 times and we want to pass the values to a method, it is
not practical to pass 100 variables in 100 arguments. Instead, we create an “array” of our
variable type. You can create an array of any object. We will mainly be using byte arrays.
When you start interfacing to devices or accessing files, you will always be using byte arrays.

Arrays are declared similar to objects.

byte[] MyArray;

The code above creates a “reference” of an object of type “byte array”. This is a reference but
it doesn't have an object yet, it is null. If you forgot what is a reference then go back and read
more in the C# Level 2 chapter.

To create the object we use the “new” keyword and then we need to tell it the size of our
array. This size is the count of how many elements of the type we will have in an array. Our
type is a byte, so the number is how many bytes we are allocating in memory.

byte[] MyArray;

MyArray = new byte[10];

We have created a byte array with 10 elements in it. The array object is referenced from
“MyArray”.

We now can store/read any of the 10 values in the array by indicating which “index“ we want
to access.

byte[] MyArray;

MyArray = new byte[10];

MyArray[0] = 123;// first index

MyArray[9] = 99;// last index

MyArray[10] = 1;// This is BAD...ERROR!!

A very important note here is that indexes start from zero. So, if we have an array of size 10,
then we have indexes from 0 to 9. Accessing index 10 will NOT work and will raise an
exception.

Copyright © 2012 GHI Electronics, LLC Page 51/58

Beginners guide to C# and NETMF 10.C# Level 3

We can assign values to elements in an array at the time of initialization. This example will
store the numbers 1 to 10 in indexes 0 to 9.

byte[] MyArray = new byte[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

To copy an array, use the Array class as follows

byte[] MyArray1 = new byte[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

byte[] MyArray2 = new byte[10];

Array.Copy(MyArray1, MyArray2, 5);//copy 5 elements only

One important and useful property of an array is the Length property. We can use it to
determine the length of an array.

byte[] MyArray1 = new byte[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

byte[] MyArray2 = new byte[10];

Array.Copy(MyArray1, MyArray2, MyArray1.Length);//copy the whole array

10.4. String
We have already used strings in many places. We will review what we have learned and add
more details.

Programs usually need to construct messages. Those messages can be human readable
text. Because this is useful and a commonly used feature in programs, C# supports strings
natively. C# knows if the text in a program is a string if it is enclosed by double-quotes.

This is a string example.

string MyString = "Some string";

string ExampleString = "string ExampleString";

Whatever is inside the double quotes is colored in red and considered to be a string. Note
how in the second line I purposely used the same text in the string to match what I used to
assign the string. C# doesn't compile anything in quotes (red text) but only takes it as it is; a
string.

You may still have confusion on what the difference between an integer variable that has 5 in
it and a string that has 5 in it is. Here is example code

Copyright © 2012 GHI Electronics, LLC Page 52/58

Beginners guide to C# and NETMF 10.C# Level 3

string MyString = "5" + "5";

int MyInteger = 5 + 5;

What do you think the actual value of the variables now? For integer, it is 10 as 5+5=10. But
for string this is not true. Strings do not know anything about what is in it, text or numbers
make no difference. When adding two strings together, a new string is constructed to combine
both. And so “5”+”5”=”55” and not 10 like integers.

Almost all objects have a ToString method that converts the object information to a printable
text. This demonstration shows how ToString works

int MyInteger = 5 + 5;

string MyString = "The value of MyInteger is: " + MyInteger.ToString();

Debug.Print(MyString);

Running the above code will print:

The value of MyInteger is: 10

Strings can be converted to byte arrays if desired. This is important if we want to use a
method that only accepts bytes and we want to pass our string to it. If we do that, every
character in the string will be converted to its equivalent byte value and stored in the array

using System.Text;

.....

.....

byte[] buffer = Encoding.UTF8.GetBytes("Example String");

10.5. For-Loop
Using the while-loop is enough to serve all our loop needs but for-loop can be easier to use in
some cases. The simplest example is to write a program that counts from 1 to 10. Similarly,
we can blink an LED 10 times as well. The for-loop takes three arguments on a variable. It
needs the initial value, how to end the loop and what to do in every loop

int i;

for (i = 0; i < 10; i++)

{

 //do something

}

Copyright © 2012 GHI Electronics, LLC Page 53/58

Beginners guide to C# and NETMF 10.C# Level 3

We first need to declare a variable to use. Then in the for-loop, we need to give it three
arguments (initial, rule, action). In the very first loop, we asked it to set variable “i” to zero.
Then the loop will keep running as long as the variable “i” is less then 10. Finally, the for-loop
will increment variable i in every loop. Let us make a full program and test it.

using System.Threading;

using Microsoft.SPOT;

using System;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 int i;

 for (i = 0; i < 10; i++)

 {

 Debug.Print("i= " + i.ToString());

 }

 }

 }

}

If we run the program above, we will see that it is printing i from 0 to 9 but not 10. But, we
wanted it to run from 1 to 10 and not 0 to 9! To start from 1 and not 0, we need to set i to 1 in
the initial loop. Also, to run to 10, we need to tell the for-loop to turn all the way to 10 and not
less than 10 so we will change the less than (“<”) with less than or equal (“<=”)

using System.Threading;

using Microsoft.SPOT;

using System;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 int i;

 for (i = 1; i <= 10; i++)

 {

 Debug.Print("i= " + i.ToString());

 }

Copyright © 2012 GHI Electronics, LLC Page 54/58

Beginners guide to C# and NETMF 10.C# Level 3

 }

 }

}

Can we make the 'for' loop count only even numbers (increment by two)?

using System.Threading;

using Microsoft.SPOT;

using System;

namespace MFConsoleApplication1

{

 public class Program

 {

 public static void Main()

 {

 int i;

 for (i = 2; i <= 10; i = i + 2)

 {

 Debug.Print("i= " + i.ToString());

 }

 }

 }

}

The best way to understand for-loops is by stepping in code and seeing how C# will execute
it.

10.6. Switch Statement
You probably won't use the switch statement for beginner applications but you will find it very
useful when making large programs, especially when handling state-machines. The switch-
statement will compare a variable to a list of constants (only constants) and make an
appropriate jump accordingly. In this example, we will read the current “DayOfWeek” value
and then from its value we will print the day as a string. We can do all this using if-statement
but you can see how much easier switch-statement is, in this case.

using System.Threading;

using Microsoft.SPOT;

using System;

namespace MFConsoleApplication1

{

Copyright © 2012 GHI Electronics, LLC Page 55/58

Beginners guide to C# and NETMF 10.C# Level 3

 public class Program

 {

 public static void Main()

 {

 DateTime currentTime = DateTime.Now;

 int day = (int)currentTime.DayOfWeek;

 switch (day)

 {

 case 0:

 Debug.Print("Sunday");

 break;

 case 1:

 Debug.Print("Monday");

 break;

 case 2:

 Debug.Print("Tuesday");

 break;

 case 3:

 Debug.Print("Wednsday");

 break;

 case 4:

 Debug.Print("Thursday");

 break;

 case 5:

 Debug.Print("Friday");

 break;

 case 6:

 Debug.Print("Saturday");

 break;

 default:

 Debug.Print("We should never see this");

 break;

 }

 }

 }

}

One important note about switch-statements is that it compares a variable to a list of
constants. After every “case” we must have a constant and not a variable.

We can also change the code to switch on the enumeration of days as the following shows:

using System.Threading;

using Microsoft.SPOT;

using System;

namespace MFConsoleApplication1

{

 public class Program

 {

Copyright © 2012 GHI Electronics, LLC Page 56/58

Beginners guide to C# and NETMF 10.C# Level 3

 public static void Main()

 {

 DateTime currentTime = DateTime.Now;

 switch (currentTime.DayOfWeek)

 {

 case DayOfWeek.Sunday:

 Debug.Print("Sunday");

 break;

 case DayOfWeek.Monday:

 Debug.Print("Monday");

 break;

 case DayOfWeek.Tuesday:

 Debug.Print("Tuesday");

 break;

 case DayOfWeek.Wednesday:

 Debug.Print("Wednsday");

 break;

 case DayOfWeek.Thursday:

 Debug.Print("Thursday");

 break;

 case DayOfWeek.Friday:

 Debug.Print("Friday");

 break;

 case DayOfWeek.Saturday:

 Debug.Print("Saturday");

 break;

 default:

 Debug.Print("We should never see this");

 break;

 }

 }

 }

}

Try to step in the code to see how switch is handled in details.

Copyright © 2012 GHI Electronics, LLC Page 57/58

Beginners guide to C# and NETMF 11.Additional Resources

11. Additional Resources

Tutorials and Downloads

This page includes plenty of tutorials covering about everything NETMF. It also includes all
needed links for downloads, references and any other links needed by NETMF users. You
may want to bookmark this page.

http://www.ghielectronics.com/support/dotnet-micro-framework

Community: Forum, Codeshare and more

http://www.tinyclr.com/ is the most active NETMF and gadgeteer website on the web. Its
forum is very active with users ranging from expert system architects to hobbyists with with
very limited knowlede. Check it out today http://www.tinyclr.com/forum.

The website also include code share section which includes hundreds of code snippets and
complete projects provided by the community. The source of the files is visible right on the
website for those wanting to look for a “cheat sheet” or you can download the complete files
as well. We look forward to see your own contributions http://www.tinyclr.com/codeshare

eBooks

• Beginners' NETMF Guide:
http://www.ghielectronics.com/downloads/FEZ/Beginners%20guide%20to%20NETMF.pdf

• Beginners' NETMF Porting Guide:
http://www.ghielectronics.com/downloads/FEZ/Beginners%20Guide%20to%20Porting%20NETMF.pdf

• Internet of things:
http://www.ghielectronics.com/downloads/FEZ/FEZ_Internet_of_Things_Book.pdf

Books

• Getting started with .NET Gadgeteer Book, by Simon Monk, O'Reilly

• Expert .NET Micro Framework, by Jens Kuhner, APress

Copyright © 2012 GHI Electronics, LLC Page 58/58

http://www.tinyclr.com/
http://www.tinyclr.com/forum
http://www.ghielectronics.com/downloads/FEZ/FEZ_Internet_of_Things_Book.pdf
http://www.ghielectronics.com/downloads/FEZ/Beginners%20Guide%20to%20Porting%20NETMF.pdf
http://www.ghielectronics.com/downloads/FEZ/Beginners%20guide%20to%20NETMF.pdf
http://www.tinyclr.com/codeshare
http://www.ghielectronics.com/support/dotnet-micro-framework

	1. About the Book
	1.1. Intended Audience
	1.2. Disclaimer

	2. Introduction
	2.1. Advantages

	3. .NET Gadgeteer
	4. Getting Started
	4.1. System Setup
	4.2. The Emulator
	Create a Project
	Selecting Transport
	Executing
	Breakpoints

	4.3. Running on Hardware
	MFDeploy can Ping!
	Deploying to Hardware

	5. C# Level 1
	5.1. What is .NET?
	5.2. What is C#?
	“Main” is the Starting Point
	Comments
	while-loop
	Variables
	Assemblies
	What Assemblies to Add?
	Threading

	6. Digital Input & Output
	6.1. Digital Outputs
	Blink an LED

	6.2. Digital Inputs
	6.3. Interrupt Port
	6.4. Tristate Port

	7. C# Level 2
	7.1. Boolean Variables
	7.2. if-statement
	7.3. if-else-statements
	7.4. Methods and Arguments
	7.5. Classes
	7.6. Public vs. Private
	7.7. Static vs. non-static
	7.8. Constants
	7.9. Enumeration

	8. Assembly/Firmware Matching
	Boot-up Messages

	9. Garbage Collector
	9.1. Losing Resources
	9.2. Dispose
	9.3. GC Output Messages

	10. C# Level 3
	10.1. Byte
	10.2. Char
	10.3. Array
	10.4. String
	10.5. For-Loop
	10.6. Switch Statement

	11. Additional Resources
	Tutorials and Downloads
	Community: Forum, Codeshare and more
	eBooks
	Books

