
university-logo

Introduction to C++
Flow Control and Functions

A SHORT COURSE ON C++

Dr. Johnson

School of Mathematics

Semester 1 2008

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

OUTLINE

1 INTRODUCTION TO C++
Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

2 FLOW CONTROL AND FUNCTIONS

If Else
Looping
Functions
Cmath Library
Prototyping

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

A structured language can hide information from the rest of
the program.

Structuring code and data allows

easy upgrades
many programmers to work on a large project

Object-oriented programming imposes a high level of structure

Problems are broken down into subproblems, and then into
self-contained units called objects

Common traits of object-oriented languages are:

encapsulation
polymorphism
inheritance

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

USING OBJECTS

1 Encapsulation:
functions and data inside an object have restricted access.

2 Polymorphism:
represents the concept of “one interface, multiple method”.
The same interface can be used to do different things for
different objects: i.e. define + to add numbers, but perform
string concatenation on characters and strings, ‘a’ + ‘b’ =
‘ab’.

3 Inheritance:
allows one object to acquire the properties of another. An
example would be to define a generic object “car” that has a
steering wheel, four wheels and an engine. The new object
“sports car” inherits all these properties and adds a sun roof,
go-faster stripes and a huge stereo.

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

WRITING C++

The key elements of C/C++ syntax are:

Semicolon used to mark end of statements

Case is important

Totally free form, lines and names can be as long as you like!

Comments take the form /* C style comment */ or // C++
style comment

Code blocks are surrounded by braces {}

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

A VERY SIMPLE C++ CODE

The following is a C++ program.

main()

{
}

There are no commands to execute.

If we save it in the file “simple prog.cc”,

we can compile and run it with the commands:

> c++ simple prog.cc

> ./a.out

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

INTRINSIC VS. INCLUDE

Unlike Fortran, there are almost no intrinsic functions in C++

This includes the ability to print to screen.

We can include standard libraries for:

Input/Output
Advanced Storage
Strings
Mathematical functions

The syntax for including libraries is:

#include <library name >

Include statements must appear before any other statements.

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

HELLO WORLD

A simple example of the standard input/output library:

#include <iostream>

using namespace std;

main(){
cout << ’Hello World!’ << endl;

}

The output at a terminal will look like:

> c++ hello world.cc

> ./a.out

Hello World!

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

STANDARD DATA TYPES

There are six basic data types in C++:

char – CHARACTER
int – INTEGER
float – REAL
double – REAL(dp)
bool – LOGICAL
void

Corresponding fortran variables are shown in red.

We use void for functions that do not return a value
(SUBROUTINE).

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

DECLARING VARIABLES

We may declare variables anywhere in the code.

Variables will be localised to the block in which they are
declared

What is the output from the following?

#include <iostream>

using namespace std

main()

{ int i=0;

cout << " i= " << i << endl;

{ int i=10;

cout << " i= " << i << endl; }
cout << " i= " << i << endl;

}

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

ARRAYS

We declare and reference arrays using square brackets [] .

int array[100]; // 100 integer array

array[0] = 0;

array[1] = 1 + array[0]

Arrays are indexed from 0, and this cannot easily be changed.

Multidimensional arrays are declared in the obvious way

int array 2D[5][5]; // 2D array

array 2D[0][0] = 0;

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

OPERATORS

We have the same simple operators + - * / like Fortran

There is no equivalent to the power **

There are three extra operators:

% is the modulus operator, giving the remainder of integer
division
++ adds 1 to its operand
-- takes 1 away from its operand

We can write the code x=x+1 as x++.

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

SIMPLE INPUT AND OUTPUT

We use stream variables to access the screen, keyboard and
files.

They are like UNITS in Fortran.

We need to include stream libraries at the top of the program

#include<iostream>

using namespace std

main(){
int i

cout << " Enter a number. " << endl;

cin >> i; //read in a number

cout << " Your number is " << i << endl;

}

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

SIMPLE INPUT AND OUTPUT

cout is the standard screen variable, and cin the standard
keyboard variable

To pass data to and from the stream we use the << and >>

operators.

<< data is passed right to left, in the example the string is
passed to cout

>> data is passed left to right, in the example the integer is
passed from cin to i

Multiple bits of data can be passed to the stream by stringing
them together in the same command.

Use endl to finish a line.

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

Object-Orientated Programming
Syntax
Handling Data and Variables
Input/Output

FILE INPUT AND OUTPUT

To read and write to files we must include the fstream library.

Input streams have type ifstream, and output streams
ofstream

ifstream file input; // an input file stream

ofstream file output; // an output file stream

ifstream and ofstream have intrinsic functions to open and
close files.

We can also check if the file is open with the is open()

function.

file input.open("input.in"); // open file input.in

if(file input.is open()) // check file is open

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

If Else
Looping
Functions
Cmath Library
Prototyping

IF, ELSE IF AND ELSE

We can use if, else if, and else to control flow through
the program.

int i;

cout << " Enter a number " << endl;

cin >> i;

if(i<0)cout << " i is negative" << endl;

else if(i==0)cout << " i is zero" << endl;

else cout << " i is positive" << endl;

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

If Else
Looping
Functions
Cmath Library
Prototyping

IF, ELSE IF AND ELSE

To execute more than one command on an if condition use
blocks

if(condition){
// lots of commands in here

}
else {
// and in here too.

}

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

If Else
Looping
Functions
Cmath Library
Prototyping

FOR LOOPS

The general form for a loop is

for(initialisation ; condition ; increment)

statement ;

We can loop over multiple commands using a block

for(int i=0;i<10;i++){
temp = i*10;

cout << " value " << temp << endl;

}

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

If Else
Looping
Functions
Cmath Library
Prototyping

EXITING A LOOP

The command break can be used like the command EXIT in
Fortran.

for(int loop=0;loop<iter max;loop++){
solve for U(u,y,U);

if(residual(x,y,U)<tolerance)break;

}

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

If Else
Looping
Functions
Cmath Library
Prototyping

FUNCTIONS

The general syntax for a function is:

data type function name(arguments)

{ function statements }

Functions must be declared before the main program.

All functions must return a value of the data type specified in
the declaration.

Even if this is void!

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

If Else
Looping
Functions
Cmath Library
Prototyping

EXAMPLE FUNCTION

#include<iostream>

using namespace std

// square an integer

int square(int i)

{ return i*i; }
// Main Program

main(){
int number=5

cout << square(number) << endl;

}

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

If Else
Looping
Functions
Cmath Library
Prototyping

ACCESSING THE MATH LIBRARY

Simply include the library at the top of your code:

#include<cmath>

All of the trigonometric, hyperbolic and exponential functions
are present.

There is also a pow(x,y) to raise x to the power y.

and a sqrt() function.

Dr. Johnson C++

university-logo

Introduction to C++
Flow Control and Functions

If Else
Looping
Functions
Cmath Library
Prototyping

A function must be defined before it can be called.

Use prototypes to declare functions before they are used.

data type function name(arguments)

The main body of the function can be placed somewhere else
in the code (or even a separate file)

This is like the EXTERNAL declaration in Fortran.

Dr. Johnson C++

	Introduction to C++
	Object-Orientated Programming
	Syntax
	Handling Data and Variables
	Input/Output

	Flow Control and Functions
	If Else
	Looping
	Functions
	Cmath Library
	Prototyping

