
(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 1 - Introduction

Prof. Dr. Harald Störrle

University of Innsbruck
mgm technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

1 - Introduction
History and Predecessors

� The UML is the “lingua franca” of
software engineering.

� It subsumes, integrates and
consolidates most predecessors.

� Through the network effect, UML has a
much broader spread and much better
support (tools, books, trainings etc.)
than other notations.

� The transition from UML 1.x to UML
2.0 has
– resolved a great number of issues;
– introduced many new concepts and

notations (often feebly defined);
– overhauled and improved the

internal structure completely.

� While UML 2.0 still has many problems,
it is much better than what we ever had
before.

current version (“the standard”)
formal/05-07-04 of August ‘05

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

1 - Introduction
Usage Scenarios

� UML has not been designed for specific, limited usages.

� There is currently no consensus on the role of the UML:

– Some see UML only as tool for sketching class diagrams
representing Java programs.

– Some believe that UML is “the prototype of the next generation of
programming languages”.

� UML is a really a system of languages (“notations”, “diagram types”)
each of which may be used in a number of different situations.

� UML is applicable for a multitude of purposes, during all phases of
the software lifecycle, and for all sizes of systems - to varying
degrees.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

1 - Introduction
Usage Scenarios

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

1 - Introduction
Diagram types in UML 2

UML is a coherent system of languages rather than a single language.

Each language has its particular focus.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 6

1 - Introduction
Diagram types also depend on their usage

� Each diagram type may be used in
a multitude of settings, for each of
which different rules and best
practices may apply.

� For instance, class diagrams may
be used during analysis as well as
during implementation.

� During analysis, this class diagram
is bad, or at least suspicious.

� During implementation, it is bad if
and only if it does not correspond
to the code (or other structure) it
is used to represent.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 7

1 - Introduction
Internal Structure: Overview

� The UML is structured using a metamodeling approach with four layers.

� The M2-layer is called metamodel.

� The metamodel is again structured into rings, one of which is called
superstructure, this is the place where concepts are defined (“the
metamodel” proper).

� The Superstructure is structured into a tree of packages in turn.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 8

1 - Introduction
Internal Structure: Layers

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 9

1 - Introduction
Internal Structure: Layers

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 10

1 – Introduction
Internal Structure: Rings

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 11

1 - Introduction
Internal Structure: Packages

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 12

1 - Introduction
Diagrams and models

diagram name

(pragmatic)
diagram kind

model
(abstract syntax)

diagram
(concrete syntax)

represent present

datastructure,
instance of the metamodel

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 13

1 - Introduction
UML is not (only) object oriented

� A popular misconception about UML is that it is “object oriented” by
heart – whatever that means.

� It is true that

– UML defines concepts like class and generalization;

– UML is defined using (mainly) a set of class models;

– UML 2.0 rediscovers the idea of behavior embodied in objects.

� However, UML 2.0

– also encompasses many other concepts of non- or pre-OO origin
(Activities, StateMachines, Interactions, CompositeStructure, …);

– may be used in development projects completely independent of
their implementation languages (Java, Cobol, Assembler, …);

– is not tied to any language or language paradigm, neither by
accident nor purpose.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 14

1 - Introduction
UML 1.x vs. UML 2.0

UML 1.x

� Collaboration diagram

� ActivityGraph is a StateMachine

UML 2.0

� Communication diagram

� Activity is a Behavior (“Petri-like”)

New features in UML 2.0

� Activities: exceptions, streams,
structured nodes, …

� traverse-to-completion

� Timing diagram

� interaction overview diagram

� composite structure diagram

� interaction operators

� collaborations

Other novelties

� Detail changes everywhere

� New overall structure

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 15

1 - Introduction
UML 1.x vs. UML 2.0

� UML 2.0 has several advantages over UML 1.x:

– many powerful new concepts

– much better definitions (i.e. semantics)

– improved internal structuring

� However, even though UML 2.0 is much better defined than UML 1.5, the
state is still not satisfying, e.g.

– syntax
� overloaded notation: too many synonyms, too much sugaring,

� lack of notational orthogonality, some people don’t even want this,

– semantics
� lack of precise semantics: informal, unclear and contradictory definitions,

– pragmatics
� lack of methodological basis such as model consistency conditions, usage types etc.

� Still, it‘s the best comprehensive (“unified”) modeling language we ever had.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 16

1 - Introduction
Wrap up

� UML is the lingua franca of software engineering.

� It has many problems, yet it is better than anything we had before.

� It may be used during the whole software lifecycle. UML may help to
plan, analyze, design, implement, and document software.

� The UML is structured

– by a 4-layer metamodeling approach
(M0: system, M1: model, M2: meta model, M3: meta meta model),

– the metamodel is structured into 3 rings
(infrastructure, superstructure, extensions),

– the superstructure is organized as a tree of packages.
(e.g. Actions, Activities, Common Behaviors, Classes, …)

� UML is not “object oriented” by heart.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 2 – Classes and packages

Prof. Dr. Harald Störrle
University of Innsbruck
MGM technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

2 – Classes and packages
A first glimpse

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

2 – Classes and packages
History and predecessors

� Structured analysis and design

– Entity-Relationship (ER) diagrams (Chen 1976)

� Semantic nets

– Conceptual structures in AI (Sowa 1984)

� Object-oriented analysis and design

– Shlaer/Mellor (1988)

– Coad/Yourdon (1990)

– Wirfs-Brock/Wilkerson/Wiener (1990)

– OMT (Rumbaugh 1991)

– Booch (1991)

– OOSE (Jacobson 1992)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

2 – Classes and packages
Usage scenarios

ImplementationDesignAnalysis

√×Code

√√×Set of objects

√√Type

×√Concept

� Classes and their relationships describe the vocabulary of a system.

– Analysis: Ontology, taxonomy, data dictionary, …

– Design: Static structure, patterns, …

– Implementation: Code containers, database tables, …

� Classes may be used with different meaning in different software
development phases.

– meaning of generalizations varies with meaning of classes

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

2 – Classes and packages
Analysis class diagram (1)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 6

� Structural features (are typed elements)

– properties
� commonly known as attributes

� describe the structure or state of class instances

� may have multiplicities (e.g. 1, 0..1, 0..*, *, 2..5)

(default: 0..* = *, but 1 for association ends)

� Behavioral features (have formal parameters)

– operations
� services which may be called

� need not be backed by a method, but may be
implemented otherwise

2 – Classes and packages
Classes

� Classes describe a set of instances with common features (and
semantics).

– Classes induce types (representing a set of values).

– Classes are namespaces (containing named elements).

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 7

2 – Classes and packages
Associations

� Associations describe sets of tuples whose values refer to typed
instances.

– In particular, structural relationship between classes

– Instances of associations are called links.

� Association ends are properties.

– correspond to properties of the opposite class
(but default multiplicity is 1)

� Association ends may be navigable.

– in contrast to general properties

navigable not navigable
association end

association namereading
direction

ternary associationqualified end (fh per date)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 8

2 – Classes and packages
Association classes

� Association classes combine classes with associations.

– not only connect a set of classifiers but also define a set of
features that belong to the relationship itself and not to any of
the classifiers

equals association name

� each instance of Booking has one passenger and one flight
� each link of Booking is one instance of Booking

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 9

2 – Classes and packages
Data types and enumerations

� Data types are types whose instances are identified by their value.

– Instances of classes have an identity.

– may show structural and behavioral features

� Enumerations are special data types.

– instances defined by enumeration literals
� denoted by Enumeration::EnumerationLiteral or #EnumerationLiteral

– may show structural and behavioral features

compartments for attributes
and operations suppressed

enumeration literals

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 10

2 – Classes and packages
Analysis class diagram (2)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 11

2 – Classes and packages
Inheritance (1)

� Generalizations relate specific classes to more general classes.

– instances of specific class also instances of the general class

– features of general class also implicitly specified for specific class

– does not imply substitutability (in the sense of Liskov & Wing)
� must be specified on specific class separately by { substitutable }

� Generalizations also apply to
associations.

– as both are Classifiers

{ abstract } class
(no direct instances,
only specializations
may have instances)

if decorated with { root }: no superclass

if decorated with { leaf }: no subclass

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 12

� Generalization sets detail the relation between a general and more
specific classifiers.

– { complete } (opposite: { incomplete })
� all instances of general classifier are instances of one of the specific

classifiers in the generalization set

– { disjoint } (opposite: { overlapping })
� no instance of general classifier belongs to more than one specific classifier

in the generalization set

– default: { disjoint, incomplete }

– several generalization sets may be applied to a classifier
� useful for taxonomies

2 – Classes and packages
Inheritance (2)

name of generalization set

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 13

2 – Classes and packages
Constraints

� Constraints restrict the semantics of model elements.

– constraints may apply to one or more elements

– no prescribed language
� OCL is used in the UML 2.0 specification

� also natural language may be used

user defined constraint

UML predefined constraint
(owner is either a person or a company)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 14

� Packages group elements.

– Packages provide a namespace for its grouped elements.

– Elements in a package may be
� public (+, visible from outside; default)

� private (-, not visible from outside)

– Access to public elements by qualified names
� e.g., Flights::MilesAccount

2 – Classes and packages
Packages (1)

Notational variants

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 15

� Package imports simplify qualified names.

2 – Classes and packages
Packages (2)

private ElementImport public ElementImport

public PackageImport renaming private ElementImport

public importpublicXB

default visibilitypublicQB

private import, renamingprivateRB

public

private

Visibility

all remaining visible elements of BQA

separate private element import

(otherwise public overrides private)

XA

ElementPackage

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 16

� Package mergings combine concepts incrementally.

– … but use with care

2 – Classes and packages
Packages (3)

– The receiving package
defines the increment.

– The receiving package
is simultaneously the
resulting package.

– Merging is achieved
by (lengthy)
transformation rules
(not defined for
behavior).

– Package merging is
used extensively in
the UML 2.0
specification.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 17

2 – Classes and packages
Metamodel

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 18

2 – Classes and packages
Design class diagram

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 19

� … are redefinable (unless decorated by { leaf })

– in classes that specialize the context class

2 – Classes and packages
Features

visible to elements …

in owning namespace only

in the same package as the owning namespace

with generalization to owning namespace

that can access owning namespace

(by membership, import, or access)

private-

package~

protected#

public+

Visibility kinds (no default)

� … belong to a namespace (e.g., class or package)

� … can be defined on instance or class level

isStatic
default value

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 20

2 – Classes and packages
Properties

Set (default)√×

Bag××

Sequence×√
OrderedSet√√
Collection type{ unique }{ ordered }

/ ({ derived }) can be computed from other information (default: false)

{ readOnly } can only be read, not written (default: false = unrestricted)

{ union } union of subset properties (implies derived)

{ subsets … } which property this property is a subset of

undefined (!)shared

valuecomposite

referencenone

Aggregation kinds (default: none)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 21

2 – Classes and packages
Behavioral features

� … are realized by behaviors (e.g., code, state machine).

– { abstract } (virtual) behavioral features declare no behavior
� behavior must be provided by specializations

– Exceptions that may be thrown can be declared

– Limited concurrency control

� { active } classes define their own concurrency control

� in passive classes:

all invocations may proceed concurrently{ concurrent }

only one execution, other invocations are blocked{ guarded }

no concurrency management{ sequential }

Call concurrency kinds (no default)

active class (with own behavior which
starts on instance creation)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 22

2 – Classes and packages
Operations (1)

� An operation specifies the name, return type, formal parameters,
and constraints for invoking an associated behavior.

– «pre» / «post»

� precondition constrains system state on operation invocation

� postcondition constrains system state after operation is completed

– { query }: invocation has no side effects

� «body»: body condition describes return values

– { ordered, unique } as for properties, but for return values

– exceptions that may be thrown can be declared

both waysinout

return from callee (at most 1)return

one way from calleeout

one way from callerin

Parameter direction kinds (default: in)

parameter name

parameter type

parameter multiplicity

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 23

2 – Classes and packages
Operations (2)

� Several semantic variation points for operations

– What happens, if a precondition is not satisfied on invocation?

– When inherited or redefined
� invariant, covariant, or contravariant specialization?

� How are preconditions combined?

� No predefined resolution principle for inherited or redefined
operations

– “The mechanism by which the behavior to be invoked is determined from
an operation and the transmitted argument data is a semantic variation
point.”

– a single-dispatch, object-oriented resolution principle is mentioned
explicitly in the UML 2.0 specification

� Operation invocations may be synchronous or asynchronous.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 24

2 – Classes and packages
Signals and receptions

� A signal is a specification of type of send request instances
communicated between objects.

– Signals are classifiers, and thus may carry arbitrary data.

– A signal triggers a reaction in the receiver in an asynchronous
way and without a reply (no blocking on sender).

� A reception is a declaration stating that a classifier is prepared to
react to the receipt of a signal.

– Receptions are behavioral features and thus are realized by
behavior (e.g., a state machine).

Reception

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 25

2 – Classes and packages
Interfaces

� Interfaces declare a set of coherent public features and obligations.

– i.e., specify a contract for implementers (realizers)

client

provider

features to be offered

Several notations for client/provider relationship

lollipop
joint

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 26

2 – Classes and packages
Templates

template parameters
exposed parameterable elements

template binding

Template class
(ParameterableElement)

Bound class
(TemplateableElement)

subtype polymorphism vs. parameteric polymorphism

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 27

2 – Classes and packages
Object diagram

Slot with

ValueSpecification

underlining and association end adornments are optional

InstanceSpecification InstanceValue

link

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 28

2 – Classes and packages
Instances specifications

UML metamodel

user model

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 29

2 – Classes and packages
UML 1.x vs. UML 2.0

� Most changes from UML 1.x to UML 2.0 on the technical side

� Metamodel consolidated in UML 2.0

– categorization of elements by their properties
• NamedElement, PackageableElement, RedefineableElement

– only one level of modeling
• InstanceSpecification (in contrast to Instance in UML 1.x), ValueSpecification

– association ends are properties

– clarification of template mechanism

� Only few new modeling elements in UML 2.0

– properties ({ unique, union, … }) of properties

– generalization sets (and powertypes)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 30

2 – Classes and packages
Wrap up

• Classifiers and their Relationships describe the vocabulary of a
system.

• Classifiers describe a set of instances with common Features.

– StructuralFeatures (Property’s)

– BehavioralFeatures (Operations, Receptions)

• Associations describe structural relationships between classes.

– Association ends are Property’s.

• Generalizations relate specific Classifiers to more general Classifiers.

• Packages group elements

– and provide a Namespace for grouped elements.

• InstanceSpecifications and links describe system snapshots.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 2a – Object Constraint Language

Prof. Dr. Harald Störrle
University of Innsbruck
MGM technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

2a – Object Constraint Language
A first glimpse

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

2a – Object Constraint Language
History and predecessors

� Predecessors

– Model-based specification languages, like
� Z, VDM, and their object-oriented variants; B

– Algebraic specification languages, like
� OBJ3, Maude, Larch

� Similar approaches in programming languages

– ESC, JML

� History

– developed by IBM as an easy-to-use formal annotation language

– used in UML metamodel specification since UML 1.1

– current version: OCL 2.0
� specification: formal/06-05-01

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

2a – Object Constraint Language
Usage scenarios

� Constraints on implementations of a model

– invariants on classes

– pre-/post-conditions for operations
� cf. protocol state machines

– body of operations

– restrictions on associations, template parameters, …

� Formalization of side conditions

– derived attributes

� Guards

– in state machines, activity diagrams

� Queries

– query operations

� Model-driven architecture (MDA)/query-view-transformation (QVT)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

2a – Object Constraint Language
Language characteristics

� Integration with UML

– access to classifiers, attributes, states, …

– navigation through attributes, associations, …

– limited reflective capabilities

– model extensions by derived attributes

� Side-effect free

– not an action language

– only possibly describing effects

� Statically typed

– inherits and extends type hierarchy from UML model

� Abstract and concrete syntax

– precise definition new in OCL 2.0

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 6

2a – Object Constraint Language
Simple types

� Predefined primitive types

– Boolean true, false

– Integer -17, 0, 3

– Real -17.89, 0.0, 3.14

– String “Hello”

� Types induced by UML model

– Classifier types, like
� Passenger no denotation of objects, only in context

– Enumeration types, like
� Status Status::Albatros, #Albatros

– Model element types
• OclModelElement, OclType, OclState

� Additional types

– OclInvalid invalid (OclUndefined)

– OclVoid null

– OclAny top type of primitives and classifiers

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 7

2a – Object Constraint Language
Parameterized types

� Collection types

– Set(T) sets

– OrderedSet(T) like Sequence without duplicates

– Bag(T) multi-sets

– Sequence(T) lists

– Collection(T) abstract

� Tuple types (records)

– Tuple(a
1
: T

1
, …, an : Tn)

� Message type

– OclMessage for operations and signals

Examples

– Set{Set{ 1 }, Set{ 2, 3 }} : Set(Set(Integer))

– Bag{1, 2.0, 2, 3.0, 3.0, 3} : Bag(Real)

– Tuple{x = 5, y = false} : Tuple(x : Integer, y : Boolean)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 8

2a – Object Constraint Language
Type hierarchy

� Type conformance (reflexive, transitive relation ≤)
– OclVoid, OclInvalid ≤ T for all types T

– Integer ≤ Real

– T ≤ T’ ⇒ C(T) ≤ C(T’) for collection type C

– C(T) ≤ Collection(T) for collection type C

– generalization hierarchy from UML model

– B ≤ OclAny for all primitives and classifiers B

Counterexample

– ¬(Set(OclAny) ≤ OclAny)

� Casting

– v.oclAsType(T) if v : T’ and (T ≤ T’ or T’ ≤ T)

– upcast necessary for accessing overridden properties
� but are (still) forbidden in the specification

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 9

2a – Object Constraint Language
Expressions

� Local variable bindings

let x = 1 in x+2

� Iteration

c->iterate(i : T; a : T’ = e’ | e)

source collection

iteration variable
(bound to current value in c)

accumulator with initial value e’

(gathers result, returned after iteration)

iteration expression
(using variables i and a)

Set{1, 2}->iterate(i : Integer; a : Integer = 0 | a+i) = 3

Example:

� Many operations on collections are reduced to iterate

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 10

� Operations on primitive types (written: v.op(…))
– operations without () are mixfix

� Operations on collection types (written: v->op(…))

2a – Object Constraint Language
Expressions: Standard library (1)

size(), concat(s), substring(l, u), …String

=, <>, oclIsTypeOf(T), oclIsKindOf(T), …OclAny

+, -, *, /, floor(), round(), …Real

+, -, *, /, div(i), mod(i), …Integer

and, or, xor, implies, notBoolean

append(s), first(), at(i), asOrderedSet(), …Sequence

size(), includes(v), isEmpty(), …Collection

union(b), including(v), flatten(), asSet(), …Bag

append(s), first(), at(i), …OrderedSet

union(s), including(v), flatten(), asBag(), …Set

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 11

2a – Object Constraint Language
Expressions: Standard library (2)

� Finite quantification

– c->forAll(i : T | e) = c->iterate(i : T; a : Boolean = true | a and e)

– c->exists(i : T | e) = c->iterate(i : T; a : Boolean = false | a or e)

� Selecting values

– c->any(i : T | e) some element of c satisfying e

– c->select(i : T | e) all elements of c satisfying e

� Collecting values

– c->collect(i : T | e) collection of elements with e applied to
each element of c

– c.p collection of elements v.p for each v in c
(short-hand for collect)

is value v undefined (null) or invalid?v.oclIsUndefined()

is value v invalid?v.oclIsInvalid()

is o currently in state machine state s?o.oclIsInState(s)

all current instances of classifier CC.allInstances()

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 12

2a – Object Constraint Language
Evaluation

� Strict evaluation with some exceptions

• (if (1/0 = 0) then 0.0 else 0.0 endif).oclIsInvalid() = true

• (1/0).oclIsInvalid() = true

– Short-cut evaluation for and, or, implies

• (1/0 = 0.0) and false = false

• true or (1/0 = 0.0) = true

• false implies (1/0 = 0.0) = true

• (1/0 = 0.0) implies true = true

• if (0 = 0) then 0.0 else 1/0 endif = 0.0

� In general, OCL expressions are evaluated over a system state.

e.g., represented
by an object diagram

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 13

2a – Object Constraint Language
Connection to UML

� Import of classifiers and enumerations as types

� Properties accessible in OCL

– Attributes
• p.milesCard (with p : Passenger)

– Association ends
• p.flight, p.booking, p.booking[flight]

– { query } operations

� Representation of multiplicities

a : Bag(T)a[*] : T { bag }

a : OrderedSet(T)a[*] : T { ordered }

a : Set(T)a[*] : T { unordered }

a : Set(T)a[m..n] : T

a : Set(T) or Ta[0..1] : T

a : Ta[1] : T

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 14

2a – Object Constraint Language
Invariants

context Passenger
inv: ma.statusMiles > 10000 implies

status = Status::Albatros

boolean expression

context Passenger
inv statusLimit: self.ma.statusMiles > 10000 implies

self.status = Status::Albatros

context p : Passenger
inv statusLimit: p.ma.statusMiles > 10000 implies

p.status = Status::Albatros

optional name

replacement for self

Notational variants

context classifier

explicit self (refers to instance of discourse)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 15

2a – Object Constraint Language
Semantics of invariants

context C

inv: I
1

context C

inv: I
2

context C

inv: I
1
and I

2

� Restriction of valid states of classifier instances

– when observed from outside

� One possibility: Combination of several invariants by conjunction

� Invariants (as all constraints) are inherited via generalizations

– but how they are combined is not predefined

↝

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 16

2a – Object Constraint Language
Pre-/post-conditions

context Passenger::consumeMiles(b : Booking) : Boolean
pre: ma->notEmpty() and

ma.flightMiles >= b.flight.miles

context Passenger::consumeMiles(b : Booking) : Boolean
post: ma.flightMiles = ma.flightMiles@pre-b.flight.miles and

result = true

� Some constructs only available in post-conditions

– values at pre-condition time p@pre

– result of operation call result

– whether an object has been newly created o.oclIsNew()

– messages sent o^op(), o^^op()

� In UML models, pre- and post-conditions are defined separately

– not necessarily as pairs

– «precondition» and «postcondition» as constraint stereotypes

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 17

2a – Object Constraint Language
Semantics of pre-/post-conditions

� Standard interpretation

– A pre-/post-condition pair (P, Q) defines a relation R on system states

such that (σ, σ’) ∈ R, if σ ⊨ P and (σ, σ’) ⊨ Q.
� system state σ on operation invocation

� system state σ’ on operation termination (Q may refer to σ by @pre).

– Thus (P, Q) equivalent to (true, P@pre and Q).

� Meyer’s contract view

– A pre-/post-condition pair (P, Q) induces benefits and obligations.

– benefits and obligations differ for implementer and user

P establishedif P satisfied, establish Qimplementer

Q establishedsatisfy Puser

benefitobligation

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 18

2a – Object Constraint Language
Combining pre-/post-conditions

� Standard interpretation

– joining pre- and post-conditions conjunctively

� Alternative interpretation

– case distinction (like in protocol state machines)

– only useful for pre-/post-condition pairs

context C::op()

pre: P
1

post: Q
1

context C::op()

pre: P
2

post: Q
2

context C::op()

pre: P
1
or P

2

post: (P
1
@pre implies Q

1
)

and (P
2
@pre implies Q

2
)

context C::op()

pre: P
1

post: Q
1

context C::op()

pre: P
2

post: Q
2

context C::op()

pre: P
1
and P

2

post: Q
1
and Q

2

↝

↝

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 19

context Subject::hasChanged()
post: let messages : Set(OclMessage) =

observer^^update(? : Subject)
in messages->notEmpty() and

messages->forAll(m |

m.result().oclIsUndefined() and

m.hasReturned() and

m.subject = self)

2a – Object Constraint Language
Messages

context Subject::hasChanged()
post: observer^update(self)

context Subject::hasChanged()
post: observer^update(? : Subject)

in calls on hasChanged,
some update message with argument
self will have been sent to observer

the actual argument
does not matter

all those
messages

result of message call

whether it has finished

its actual parameter value

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 20

� Initial values

– fix the initial value of a property of a classifier

2a – Object Constraint Language
Initial values and derived properties

package Booking

context Passenger::status

init: Status::Swallow

endpackage

-- which package

-- which property

-- initial value

� { derived } properties

– define how the value of a property is derived from other information

context Passenger::currentFlights : Sequence(Flight)

derive: self->collect(booking)

->select(date = today()).flight->asSequence()

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 21

2a – Object Constraint Language
Query bodies and model features

� Bodies of { query } operations

– define the value returned by a query operation

– can be combined with a precondition

context TravelHandling::delay() : Minutes

body: tsh.delay->sum()

context TravelStageHandling

def: isEarly() : Boolean = self.delay < 0

context TravelHandling

def: someEarly() : Boolean = tsh->exists(isEarly())

� Definition of additional model features

– defined for the context classifier

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 22

2a – Object Constraint Language
UML/OCL 1.x vs. UML/OCL 2.0

� Improvements in OCL 2.0

– Model extensions by definitions

– Explicit flattening of collections

– Clarification of type hierarchy

– Precise abstract and concrete syntax

– Formal semantics

� but only as a non-normative appendix

� New features in OCL 2.0

– Specification of initial values, derived attributes

– Specification of messages

� (still) Open problems

– semantics of definitions

� inheritance, recursion

– semantics of pre-/post-conditions

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 23

2a – Object Constraint Language
Wrap up

� Formal language for specifying

– invariants context C inv: I

– pre-/post-conditions context C::op() : T

pre: P post: Q

– query operation bodies context C::op() : T body: e

– initial values context C::p : T init: e

– derived attributes context C::p : T derive: e

– modeling attributes and operations context C def: p : T = e

� Side-effect free

� Typed language

� OCL specifications provide

– verification conditions

– assertions for implementations

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 2b – Profiles

Dr. Harald Störrle
University of Innsbruck
MGM technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

2b – Profiles
A first glimpse

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

2b – Profiles
Usage scenarios

� Metamodel customization for

– adapting terminology to a specific platform or domain

– adding (visual) notation

– adding and specializing semantics

– adding constraints

– transformation information

� Profiling

– packaging domain-specific extensions

– “domain-specific language” engineering

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

2b – Profiles
Stereotypes (1)

� Stereotypes define how an existing (UML) metaclass may be
extended.

optional

� Stereotypes may be applied textually or graphically.

� The UML specification does not tell how to define a
visual stereotype.

� Visual stereotypes may replace original notation.

– But the element name should appear below the icon…

extension

lower-case initial

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

2b – Profiles
Stereotypes (2)

� Stereotypes may define meta-properties.

– commonly known as “tagged values”

� Stereotypes can be defined to be required.

– Every instance of the extended metaclass has to be extended.

– If a required extension is clear from the context it need not be
visualized.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 6

2b – Profiles
Profiling

� Profiles package extensions.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 7

2b – Profiles
Metamodel

� Based on infrastructure library constructs

– Class, Association, Property, Package, PackageImport

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 8

2b – Profiles
Metamodeling with Profiles

� Profile extension mechanism imposes restrictions on how the UML
metamodel can be modified.

– UML metamodel considered as “read only”.

– No intermediate metaclasses, no meta-associations

– “As part of a profile, it is not possible to have an association
between two stereotypes or between a stereotype and
metaclass.”

� Stereotypes metaclasses below UML metaclasses.

� How to introduce meta-associations between stereotypes?

1. Add constraints specializing some existing associations

2. Extend metaclass Dependency by a stereotype and define
specific constraint on this stereotype

� Access to stereotypes in OCL via v.stereotype

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 9

2b – Profiles
UML 1.x vs. UML 2.0

UML 1.x

� String-based extension
mechanism

– Stereotypes

– Tagged values

UML 2.0

� Stereotypes are metaclasses

– Tagged values replaced by
meta-properties

� Required extensions

� Packaging of extensions into
profiles

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 10

2b – Profiles
Wrap up

� Metamodel extensions

– with stereotypes and meta-properties

– for restricting metamodel semantics

– for extending notation

� Packaging of extensions into profiles

– for declaring applicable extensions

– “domain-specific language” engineering

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 2c – Systems Modeling Language

(SysML)

Prof. Dr. Harald Störrle
University of Innsbruck
MGM technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

2c – SysML
SysML as an example for a UML profile

Nowadays very much talked
about: Systems Modeling
Language (SysML).

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

2c – SysML
SysML vs. UML

� Protracted struggle between two
competing proposals fueld by
massive commercial interests.

� New standard “ptc/06-05-04”
finally adopted by OMG just now
(May 2006).

� Apart from mere customization to
match systems engineering
standards and terminology, it also
introduces some physical aspects:

– continuous flows,

– handling of physical items.

outside of what can be
described with UML means?

official OMG diagram

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

2c – SysML
Diagram tpes of SysML

official OMG diagram

class diagram

significant new aspects:
-item flow
-continuous variables
-activation disabling
- control operators

assembly diagramassembly diagram

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

2c – SysML
Wrap up

� Tries to extend UML towards systems engineering, i.e.
physical/continuous systems.

� Probably the most talked about and largest UML profile.

� After a long and fierce debate, now finally OMG approved.

� Semantics completely unclear, seems to go even more into the
direction of Petri-nets.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 3 - Use Cases

Prof. Dr. Harald Störrle
University of Innsbruck
MGM technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

3 - Use Cases
A first glimpse

� Displayed aspects

– System boundary and context of system

– Users and neighbor systems

– Functionalities

– Relationships between functionalities (calling/dependency, taxonomy)

– Functional requirements

– Some non-functional (“quality”) requirements as comments/annotations

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

3 - Use Cases
History and predecessors

� 1970’s

– Structured methods (SADT etc.) use top-level DFD as context
diagram

– Structured methods use function trees

� 1980’s

– Jacobson (Objectory) introduces the concept of use case as an aid
for communicating with domain experts

� 1997

– UML 1.3 encompasses Use Cases

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

3 - Use Cases
Usage scenarios

� Use case inventory/ domain architecture

– complete catalog of all subdomains and (groups of)
business processes and business functions

– overview of system’s (domain) capabilities

� “Classical” use cases

– illustrate context of individual functionality

– useful in design/documentation of business processes
(i.e. analysis phase and reengineering)

� Use Case / Test case table

– schematic detail description of business
process/function/test case

� Function tree

– describe functional decomposition of system behavior

– useful for non-OO construction and for re-architecting
pre-OO systems

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

3 – Use Cases
Types of use cases

� The UML provides only the concept of use case. In many
applications, however, there are two fundamentally different kinds of
use cases:

– business processes (“processes”)
� white box, large scale, long running (suspendable), customized processes

� either dialogue or batch processes

� directly support the business or domain of the system, create or destroy value

� are subject to rearrangement when business changes

� may contain some manual steps and business functions

– business functions (“services”)
� black box, small(er) scale, short(er) running, atomic, reusable function

� small recurring functionality, plausibility, user dialogue, interface call, . . .

� implements stable functionality likely not to be affected by business changes

� is executed fully automatic

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 6

3 - Use Cases
Main concepts (concrete syntax)

Actor

Class (also possible: Component)

extends
(is a Dependency)

UseCase

includes
(is a Dependency)

Association

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 7

3 - Use Cases
Inclusion & extension

� Inclusion

– plain old call

– directed from caller to callee

– may occur once or many times

� Extension

– covers variant or exceptional
behavior

– relationship is directed from
exception to standard case

– may or may not occur

– occurs at most once

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 8

3 - Use Cases
Extension points

� An extension occurs at a (named)
ExtensionPoint, when a specific
condition is satisfied.

� In a way, ExtensionPoints are
similar to user exits or hooks.

� In real world systems, there are
many ExtensionPoints, most of
which are poorly documented.

UseCase with ExtensionPoint,
alternative syntax suitable for
large numbers of ExtensionPoints

ExtensionPoint

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 9

3 - Use Cases
Any level of abstraction is ok

� A use case represents an individual
functionality of a system.

� Systems exist on every level of
granularity.

� Thus, use cases may be used for
functionality of any granularity :

– from high level business
processes,

– via (web) services,

– to individual methods or
functions.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 10

3 - Use Cases
Emulating function trees

� Structured methods relied on
functional decomposition.

� Although this is not state of the art
these days, and UseCases have
been introduced in an attempt to
get away from it:

– many systems out there are
constructed using these
principles,

– many people out there have
this mindset.

� For e.g. reengineering purposes, it
is frequently helpful to be able to
represent function trees.

� This can be done using UseCases
and Includes-Relationships.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 11

3 - Use Cases
Generalization

� As for all Classifiers, UseCases
may be arranged in taxonomic
hierarchies.

� This is particularly useful for
catalogues of functionalities.

� From methodological point of
view, abstract use cases are similar
to functional subsystems.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 12

3 - Use Cases
Semantics

� Use cases have no semantics in UML.

� There are many consistency conditions in conjunction with other
models, but that’s methodology, and beyond the scope of this
tutorial.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 13

3 - Use Cases
UML 1.x vs. UML 2.0

� no changes conceptually

� slight adaptations in the metamodel

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 14

3 - Use Cases
Wrap up

� Use cases may be used to represent a high-level view of
functionality, as in

– functionality overview / domain architecture

– detail description of context of individual use case

– function tree (particularly for reengineering and documentation
purposes)

� The UML still does not come with a (textual) schema for describing
use cases.

� Basically, use cases in UML 2.0 are the same as in UML 1.x.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 4 - Architecture

Prof. Dr. Harald Störrle
University of Innsbruck
MGM technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

4 - Architecture
A first glimpse

Context & domain architecture Composite structure
(“assembly”) diagrams

Collaboration

Deployment

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

4 - Architecture
History and Predecessors

� Context and domain architecture diagram
– 1970’s: SADT et al. use top level DFD as context diagram
– 1988: Shlaer/Mellor introduce domain chart

� Part/port/connector-concepts, composite structure (“assembly”) diagram
– 1976: SDL (block/gate/channel)
– 1978: SARA (module/socket/interconnection)
– 1993: RAPIDE (module/type/binding)
– 1994: ROOM (actor/port/connector)
– 1999: UML/RT,… (capsule/port/connector)
– 2000: UML 1.3 (subsystem/-/-)

� collaboration
– 1997: Catalysis (D’Souza, Wills)

� computing system structure diagram (“deployment”)
– traditional

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

4 - Architecture
Usage Scenarios / Architectural views

� Context diagram
– define the system’s boundaries in terms of its users and neighbor

systems
– define names/abbreviations for systems and neighbor systems

� Domain architecture
– provide overview of high-level domain components
– define names/abbreviations for subsystems

� Composite structure diagram (system assembly diagram)
– define ports (“system interfaces”) with names and abbreviations
– define connections between interfaces

� Composite structure diagram (class assembly diagram)
– as above on fine level of granularity
– define (programming language) interfaces for ports, too

� Collaboration
– document design decisions (“patterns”) on any level of granularity

� System structure diagram
– physical nodes and connections between them

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

4 - Architecture
Main concepts: Composite structure diagrams

Part

Port
interface
of a Part

Connector

Actor

a system as a
Class or a

Component

Part
with visual
stereotype

Port
with visual
stereotype

better name: assembly diagrams

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 6

4 - Architecture
Usage: Stepwise refinement

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 7

4 - Architecture
Usage: Quantity structures

� Quantity structures are
indispensable for the dimensioning
of large systems:

– numbers of (concurrent) users,

– amount of data traffic on a
given interface,

– availability, MTBF,…

– number of (collaborating)
systems or components
(dynamic architectures).

� Quantity structures are not
covered directly in UML so we need
to use comments (but that’s no
problem).

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 8

4 - Architecture
Usage: Plumbing components together

� Connecting Ports amounts to
delegate/call-Dependencies.

� Using the joint-notation reveals
details about the number and
direction of connections.

� From left to right:

– two connectors, one in each
direction

– one connector with direction

– and one connector without
direction.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 9

4 - Architecture
Components

� UML 1.x components were just binaries. In UML 2.0, components are
defined much more comprehensively.

– “A component represents a modular part of a system that
encapsulates its contents and whose manifestation is replaceable
within its environment.

– A component defines its behavior in terms of provided and
required interfaces. As such, a component serves as a type,
whose conformance is defined by these provided and required
interfaces (encompassing both their static as well as dynamic
semantics). One component may therefore be substituted by
another only if the two are type conformant. […]

– A component is modeled throughout the development life cycle
[…].”

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 10

4 - Architecture
Metamodel: Parts and ports

dashed outlines:
defined in another package

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 11

4 - Architecture
Collaboration

� The purpose of collaborations is to
abstractly describe a form of
linkage without being specific.

� Declared as the way to describe
design and analysis patterns.

� Might help in early stages of
architectural design.

� Could also be used to describe
global constraints.

� May be nested and composed.

� Methodologically, Collaborations
are the structural equivalent to
UseCases.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 12

4 - Architecture
System structure

Node

Comment
for quantitative information

CommunicationPath
is a kind of

Association

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 13

4 - Architecture
Stereotyping

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 14

4 - Architecture
Deployment

� A Deployment is a mapping of
artifacts to system nodes.

– Artifacts may include
� binaries

� component instances

– System nodes may include
� hardware (Device)

� software (ExecutionEnvironment)

� Formally, a deployment is a
Deployment Relationship.

� It may be presented either as
placing the deployed items or their
names on the deployment target.

Artifact

Node may be specialized to either
Device or

ExecutionEnvironment

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 15

4 - Architecture
Metamodel: Deployment

dashed outlines:
defined in another package

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 16

4 - Architecture
Semantics

� Mappings from assemblies to Architecture Description Languages
(ADLs) or SDL should be possible. Is it much use? Can there be a
uniform semantics for all kinds of ADLs?

� Collaborations seem to have no formal semantics.

� System structures may be mapped to quantitative models for
analytical purposes.

� Deployments might be turned into deployment descriptors of
application servers.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 17

4 - Architecture
UML 1.x vs. UML 2.0

UML 1.x

� “system boundary”

� components are binaries

� patterns as templates

UML 2.0

� Parts/Ports

� artifacts

� components are life cycle units

� patterns (=collaborations) are now
first class citizens

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 18

4 - Architecture
Wrap up

� Popular concepts of architectural modeling (“capsule”/“actor”, “port”)
have finally been included into UML. The metamodeling is a little
dodgy, though.

� Deployments, artifacts and related concepts have been extended,
and they are now first-class citizens.

� Components have finally got a decent definition as life cycle units,
artifacts and deployments are now first-class citizens.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 5 - Activities

Prof. Dr. Harald Störrle
University of Innsbruck
MGM technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

5 - Activities
A first glimpse

� Activity diagrams present all kinds of control flow and data flow.

� They are kind of dual to state machines: focus is on actions rather than
states.

� The UML 1.x notation has been kept (with a different meaning), and much
extended.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

5 - Activities
History and predecessors

� 1962

– Petri-nets

� 1969

– Flow charts (IBM, ISO)

� 1970‘s

– Nassi-Shneiderman-diagrams

� 1980‘s

– Structured Methods (SADT etc.) introduce data flow diagrams

– Methodologies like IDEF are based on these notations

� 1990‘s

– event process chains (particularly in BPR & SAP R/3 context)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

5 - Activities
Usage scenarios

� Activity diagrams have applications throughout the whole
software life cycle for many purposes.

� Analysis

– design or document processes in the application
domain (business processes)

� Design

– design or document processes as compositions of
preexisting elements like manual tasks or automated
jobs

� Implementation

– document existing programs (i.e. functions, services, …)

– design algorithmic processes with an intention of
turning them into implementation language code

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

5 - Activities
Main concepts

Partition

InitialState

FinalState

ActivityEdge

ObjectNode

ActivityNode

MergeNode

DecisionNode

JoinNode

ForkNode

ObjectFlow

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 6

5 - Activities
Main concepts

FlowFinal

stereotyped

ObjectNode

refined Activity

Partitions
may be represented
explicitly

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 7

5 - Activities
Pins

� Data flow may be represented

– explicitly,

– by dataflow nodes attached to control flow,

– by “Pins” on Activities, or

– as combinations.

Pin

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 8

5 - Activities
Activity parameters

� Pins act as parameters for Activities.

ActivityParameter

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 9

5 - Activities
Pin types

Pin type
a) streaming
b) streaming
c) exception
d) unidirectional
e) collection data

Parameter sets
a) {x, y}
b) {x}, {y}
c) {x}, {x, y}

ParameterSet may be used to define applicable sets of parameters

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 10

5 - Activities
Data flow details

� Data flow defines the transport of
data items between buffers by
activities.

� Buffers may have capacities and
orderings.

� Apart form the transport as such,
data flow may also define

– selection of a particular data
item, and

– transformation of data items.

� It is often useful to denote the
state of a data item in a buffer.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 11

5 – Activities
Streaming

� Streaming means that data is
processed pipeline-style.

� Streaming-like behavior was not
expressible in UML 1.x.

� Streaming is expressed by

– solid black pins

– explicit annotation at pins

– black arrowhead arcs, or

– stream mode at expansion
regions.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 12

5 - Activities
Exceptions

ExceptionEdge

handler Activity
Exception

unhandled

Exception

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 13

5 - Activities
Raising exceptions

InterruptibleActivityRegion

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 14

5 - Activities
Expansion regions for mass data processing

� Activities are often used to specify
processing of mass data (batch
runs) rather than individual items.

� UML offers ExpansionRegions to
support this usage scenario.

� An expansion region declares a
portion of an activitiy as applicable
to a whole bunch of items.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 15

5 - Activities
Expansion Regions

� An expansion region may be processed in one of three modes

– iterative,

– concurrent,

– stream.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 16

5 - Activities
Structured nodes

� Structured nodes for

– sequence,

– loop,

– conditional.

� No/insufficient syntax (let alone semantics) defined by standard.

� We’re probably best of with a Nassi-Shneiderman-like notation.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 17

5 - Activities
Metamodel

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 18

5 – Activities
Semantics

� The standard declares “Petri-like
semantics”. The naive approach is

– intuitive for simple control and
data flow

– reasonable for structured
nodes

– technically difficult for
exceptions

– a little awkward for streams
and ExpansionRegions.

� There are a number of semantical
problems, though, and integrating
the bits and pieces is a challenge.

� Still, it is the most convincing
approach so far.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 19

5 – Activities
Semantics: Petri-net vs. CCS

Sp
ot

 th
e

er
ro

r!

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 20

5 – Activities
Problem 1: Scope of exceptions

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 21

5 – Activities
Problem 2: Accidental synchronization of streams

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 22

5 – Activities
Problem 3: Traverse-to-completion

� Transforming an Activity into a Petri-net following the naive
approach results in artificial places that have no direct equivalent in
the underlying Activity.

� The UML, however, disallows buffering in control nodes.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 23

5 - Activities
Semantics

� The standard declares that activities have a “Petri-like” semantics,
but lacks a formal definition of what that means.

� A straight-forward approach of mapping activities to Petri-nets soon
runs into a semantic quagmire.

� Other algorithmic target languages (e.g. BPEL or Workflow Execution
Languages), and other formalisms (e.g. CCS) would encounter the
same problems, plus their own.

� Abstract descriptions using special-purpose logics are only at the
beginning.

� Many open questions that will trouble us for some time to come.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 24

5 – Activities
UML 1.x vs. UML 2.0

UML 1.x

• ActivityGraph subclass of StateMachine

� thus implicit rtc-semantics

UML 2.0

� Activity on same level as StateMachine

� new “Petri-like” semantics

� Many new concepts

– Exceptions

• InterruptibleActivityRegion

• ExceptionEdge, ProtectedNode

– StructuredNodes

– FlowFinal

– Streaming

– Collection data

– ActivityParameters

� Many new notations

– Pins, “attached” dataflow
notation, …

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 25

5 - Activities
Wrap up

� Presents control flow and data flow for analysis, design, and implementation
level models.

� Not a special kind of StateMachine any more.

� Petri-net inspired semantics, though currently not entirely clear.

� Many new concepts and notations, including

– Exception handling

– Data streaming

– Collection data handling

– Structured nodes (loops, expansion regions)

– Pin-notation for dataflow.

� Overall: Activity diagrams are now the algorithmic description language –
not only within the UML.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 6 – State machines

Dr. Harald Störrle
University of Innsbruck
MGM technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

6 – State machines
History and predecessors

� 1950’s: Finite State Machines

– Huffmann, Mealy, Moore

� 1987: Harel Statecharts

– conditions

– hierarchical (and/or) states

– history states

� 1990’s: Objectcharts

– adaptation to object orientation

� 1994: ROOM Charts

– run-to-completion (RTC) step

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

� Object life cycle

– Behavior of objects according to business rules

– in particular for active classes

� Use case life cycle

– Integration of use case scenarios

– Alternative: activity diagrams

� Control automata

– Embedded systems

� Protocol specification

– Communication interfaces

6 – State machines
Usage scenarios

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

6 – State machines
States and transitions

simple State

trigger (CallEvent) guard (Constraint)initial Pseudostate

FinalStateeffect (CallAction)Transition

� State machines model behavior

– using states interconnected …

– with transitions triggered …

– by event occurrences.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

� Context
defines which

– events can
occur

– features are
available

6 – State machines
Relation to class diagrams

Operation

corresponding CallEvent

called Operation

CallAction

� State machines are defined in the context of a BehavioredClassifier.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 6

6 – State machines
Triggers and events (1)

ChangeEvent
TimeEvent

(relative)

completion
event
(no explicit
trigger)

SignalEvent

deferred
event

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 7

6 – State machines
Triggers and events (2)

• CallEvent

– receipt of a (a)synchronous Operation call

– triggering after Behavior of Operation executed

• SignalEvent

– receipt of an asynchronous Signal instance

– reaction declared by a Reception for the Signal

• TimeEvent

– absolute reference to a time point (at t)

– relative reference to trigger becoming active (after t)
� presumably meaning relative to state entry

• ChangeEvent

– raised each time condition becomes true
� may be raised at some point after condition changes to true

� could be revoked if condition changes to false

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 8

6 – State machines
Triggers and events (3)

� completion event

– raised when all internal activities of a state are finished
� do activity, subregion

� no metamodel element for completion events

– dispatched before all other events in the event pool

� deferred events

– events that cannot be handled in a state but should be kept in
the event pool

� reconsidered when state is changed

� no predefined deferring policy

� internal transitions

– … are executed without leaving and

entering their containing state
� normally, on transition execution states are left and entered

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 9

6 – State machines
Behaviors

entry Behavior

(on entering a state)

exit Behavior

(on exiting a state)

do activity Behavior

(concurrently while
in state, may be
interrupted)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 10

6 – State machines
How state machines communicate

network

event pool event pool

starts new RTC-step

signals: asynchronous (no waiting)
calls: asynchronous or synchronous (waiting for RTC of callee)

during

run-to-completion (RTC)

No assumptions are made on timing between
event occurrence, event dispatching, and event consumption.

Event occurrences for which no trigger exists may be discarded
(if they are not deferred).

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 11

6 – State machines
Hierarchical states (1)

composite State

� Hierarchical states allow to encapsulate behavior and facilitate reuse.

� However, they are rarely used this way.

� UML 2.0 provides concepts supporting this usage.

– entry and exit points

Transition triggering is prioritized inside-out, i.e., transitions deeper in the hierarchy
are considered first.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 12

6 – State machines
Hierarchical states (2)

detailed
(non-orthogonal)
composite State

Region

substates

default entry

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 13

6 – State machines
Orthogonal regions

orthogonal Regions,
both active if
Client/Server active

� Simple State: containing no Region

� Composite State: containing at least one Region

- simple composite State: exactly one

- orthogonal composite State: at least two

orthogonal states are “concurrent” as a single event may trigger a transition
in each orthogonal region “simultaneously”

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 14

6 – State machines
Forks and joins

fork Pseudostate
(one incoming, at least two outgoing Transitions;
outgoing Transitions must target States in different Regions of an orthogonal State)

join Pseudostate
(restrictions dual to forks)

all Regions must be
entered simultaneously

all Regions are left
simultaneously
(if FinalStates are reached)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 15

� Entry and exit points (Pseudostates)

– provide better encapsulation of composite states

– help avoid “unstructured” transitions

6 – State machines
Entry and exit points (1)

entry
point

exit point (on border of state machine
diagram or composite state)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 16

6 – State machines
Entry and exit points (2)

Notational alternatives

Semantically equivalent

“unstructured” transitions

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 17

6 – State machines
History states

shallow history Pseudostate

(enter last State in this Region)

deep history Pseudostate

(enter last States in this Region

and all sub-Regions)

� History states represent the last active

– substate (shallow history), or

– configuration (deep history)

of a region.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 18

6 – State machines
Metamodel

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 19

6 – State machines
Run-to-Completion Step: Overview

� Choose an event from the event pool (queue)

� Choose a maximal, conflict-free set of transitions enabled by the event

� Execute set of transitions

– exit source states (inside-out)

– execute transition effects

– enter target states (outside-in)

thereby generating new events and activities

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 20

6 – State machines
Run-to-Completion Step: Preliminaries (1)

� Active state configuration

– the states the state machine currently is in

– forms a tree
� if a composite state is active, all its regions are active

� Least-common-ancestor (LCA) of states s
1

and s
2

– the least region or orthogonal state (upwards) containing s
1

and s
2

bold: active state configuration bold: LCA of states A1 and A2

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 21

6 – State machines
Run-to-Completion Step: Preliminaries (2)

� Compound transitions

– transitions for an event are “chained” into compound transitions
� eliminating pseudostates like junction, fork, join, entry, exit

� this is not possible for choice pseudostates where the guard of outgoing
transitions are evaluated dynamically (in contrast to junctions)

– several source and target states

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 22

6 – State machines
Run-to-Completion Step: Preliminaries (3)

� Main source / target state m of compound transition t

– Let s be LCA of all source and target states of t

– If s region: m = direct subvertex of s containing all source states of t

– If s orthogonal state: m = s

– Similarly for main target state

– All states between main source and explicit source states are exited, all
state between main target and explicit target states are entered.

� Conflict of compound transitions t
1

and t
2

– intersection of states exited by t
1

and t
2

not empty

� Priority of compound transition t
1

over t
2

– si “deepest” source state of transition ti
– s

1
(direct or transitive) substate of s

2

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 23

6 – State machines
Run-to-Completion Step (1)

RTC(env, conf) ≡
⎡event ← fetch()

step ← choose steps(conf, event)

if step = ∅ ∧ event ∈ deferred(conf)

then defer(event)

fi

for transition ∈ step do

conf ← handleTransition(env, conf, transition)

od

if isCall (event) ∧ event ∉ deferred(conf)

then acknowledge(event)

fi

conf ⎦

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 24

6 – State machines
Run-to-Completion Step (2)

steps(env, conf, event) ≡
⎡transitions ← enabled(env, conf, event)

{step | (guard, step) ∈ steps(conf, transitions) ∧ env ⊨ guard } ⎦

steps(conf, transitions) ≡
⎡steps ← {(false, ∅)}
for transition ∈ transitions do

for (guard, step) ∈ steps(conf, transitions \ {transition}) do

if inConflict(conf, transition, step)

then if higherPriority(conf, transition, step)

then guard ← guard ∧ ¬guard(transition) fi

else step ← step ∪ {transition}

guard ← guard ∧ guard(transition) fi

steps ← steps ∪ {(guard, step)} od od

steps⎦

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 25

6 – State machines
Run-to-Completion Step (3)

handleTransition(conf, transition) ≡
⎡for state ∈ insideOut(exited(transition)) do

uncomplete(state)

for timer ∈ timers(state) do stopTimer(timer) od

execute(exit(state))

conf ← conf \ {state}

od

execute(effect(transition))

for state ∈ outsideIn(entered(transition)) do

execute(entry(state))

for timer ∈ timers(state) do startTimer(timer) od

conf ← conf ∪ {state}

complete(conf, state)

od

conf ⎦

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 26

6 – State machines
Semantic variation points

� Some semantic variation points have been mentioned before.

– delays in event pool

– handling of deferred events

– entering of composite states without default entry

� Which events are prioritized?

– Completion events only

– All internal events (completion, time, change)

� Which (additional) timing assumptions?

– delays in communication

– time for run-to-completion step
� zero-time assumption

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 27

6 – State machines
State machine refinement

no refinement possible

not refined
(may be omitted)

� State machines are
behaviors and may thus
be refined.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 28

6 – State machines
Protocol state machines

precondition

postcondition

specified operation

ProtocolTransition

� Protocol state machines specify which behavioral features of a
classifier can be called in which state and under which condition and
what effects are expected.

– particularly useful for object life cycles and ports

– no effects on transitions, only effect descriptions

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 29

6 – State machines
Protocol state machines

Several operation specifications are combined conjunctively:

context C::op()

pre: inState(S
1
) and P

1

post: Q
1
and inState(S

3
)

context C::op()

pre: inState(S
2
) and P

2

post: Q
2
and inState(S

4
)

results in

context C::op()

pre: (inState(S
1
) and P

1
) or (inState(S

2
) and P

2
)

post: (inState@pre(S
1
) and P

1
@pre) implies (Q

1
and inState(S

3
))

and (inState@pre(S
2
) and P

2
@pre) implies (Q

2
and inState(S

4
))

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 30

6 – State machines
UML 1.x vs. UML 2.0

� Consolidated metamodel

– introduction of regions instead of composite states only

– no transitions between regions of an orthogonal state
� the “more esoteric case” of UML 1.x

� New encapsulation means

– entry and exit points

� Protocol state machines

– side-effect free

� Clarification of semantic variation points

– but, still, no formal semantics

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 31

6 – State machines
How things work together

� Static structure

– sets the scene for state machine behavior

– state machines refer to
� properties

� behavioral features (operations, receptions)

� signals

� Interactions

– may be used to exemplify the communication of state machines

– refer to event occurrences used in state machines

� OCL

– may be used to specify guards and pre-/post-conditions

– refers to actions of state machines (OclMessage)

� Protocols and components

– state machines may specify protocol roles

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 32

6 – State machines
Wrap up

� State machines model behavior

– object and use case life cycles

– control automata

– protocols

� State machines consist of

– Regions and …

– … (Pseudo)States (with entry, exit, and do-activities) …

– connected by Transitions (with triggers, guards, and effects)

� State machines communicate via event pools.

� State machines are executed by run-to-completion steps.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 7 - Interactions

Dr. Harald Störrle

University of Innsbruck
MGM technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

7 - Interactions
A first glimpse

sequence diagram

communication
diagram

timing diagram

all three are
semantically
equivalent

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

7 - Interactions
History and predecessors

� simple sequence diagrams
– 1990‘s

� Message Sequence Charts (MSCs) used in TelCo-industry
� several OO-methods use sequence diagrams

� complex sequence diagrams
– 1996: Complex MSCs introduced in standard MSC96
– 1999: Life Sequence Charts (LSCs)

� communication diagrams
– 1991: used in Booch method
– 1994: used in Cook/Daniels: Syntropy

� timing diagrams
– traditionally used in electrical engineering
– 1991: used in Booch method
– 1993: used in early MSCs

� interaction overview
– 1996: high-level MSCs (graphs of MSCs as notational alternative)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

7 - Interactions
Usage scenarios

� Class/object interactions
– design or document message exchange between objects
– express synchronous/asynchronous messages, signals

and calls, activation, timing constraints

� Use case scenarios
– illustrate a use case by concrete scenario
– useful in design/documentation of business processes

(i.e. analysis phase and reengineering)

� Test cases
– describe test cases on all abstraction levels

� Timing specification/documentation

� Interaction overview
– organize a large number of interactions in a more visual

style
– defined as equivalent to using interaction operators

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

7 - Interactions
Syntactical variants

� Sequence diagram

– traditional sequence diagrams + interaction operators

– focuses on exchanging many messages in complex patterns
among few interaction partners

� Communication diagram

– “collaboration diagram” in UML 1.x

– focuses on exchanging few messages between (many)
interaction partners in complex configuration

� Timing diagram

– new in UML 2.0, oscilloscope-type representation, not
necessarily metric time

– focuses on (real) time and coordinated state change of
interaction partners over time

� Interaction overview diagram

– looks like restricted activity diagram, but isn’t

– arrange elementary interactions to highlight their interaction

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 6

7 - Simple Interactions
Main concepts

Lifeline

Interaction
partner

call

asynchronous signal

replyOccurrenceSpecification
aka. EventOccurrence

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 7

7 - Simple Interactions
Message types

termination Event
non-instantaneous

Message

lost & found Messages
(i.e.: very slow messages)

instantiation Event

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 8

7 - Simple Interactions
Activation

activation bar

activation
suspended

nested activation

warp lines
(non-UML)

external

Event

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 9

7 - Interactions
Usage: Use case scenarios

� Interaction participants
are actors and systems
rather than classes and
objects.

� May be refined
successively.

� Useful also for specifying
high-level non-functional
requirements such as
response times.

� All kinds of interaction
diagrams may be applied,
depending on the
circumstances.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 10

7 - Interactions
Usage: Class interactions

� Interaction participants are
classes and objects rather
than actors and systems.

� Again, successive refinement
may be applied in different
styles:

– break down processing of
messages

– break down structure of
interaction participants.

� All kinds of interaction
diagrams may be applied,
depending on the
circumstances.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 11

7 - Interactions
Usage: Test cases

� Like any other interaction, but with a different intention.

� Typically accompanied by a tabular description of purpose, expected
parameters and result (similar to use case description).

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 12

7 - Interactions
Usage: Timing specification

� For embedded and real-time
systems, it may be important to
specify absolute timings and state
evolution over time.

� This is not readily expressed in
sequence diagrams, much less
communication diagrams.

� UML 2.0 introduces timing
diagrams for this purpose.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 13

7 - Interactions
Abstraction in timing diagram

� An alternative syntax presents
states not on the vertical axis but
as hexagons on the lifeline.

� Timing diagrams present the
coordination of (the states of)
several objects over (real) time.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 14

7 - Interactions
Usage: Interaction overview

also allowed: fork/join
(said to be equivalent to par, but …)

choice/merge
equivalent to alt/opt

sequence probably
equivalent to seq

� Organize large number of interactions in a more visual style

� Defined as equivalent to using interaction operators

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 15

7 - Interactions
Complex interactions

Interaction

Operator

Interaction

Fragment

Interaction

Operand

� A complex interaction is like a functional expression:

– an InteractionOperator,

– one or several InteractionOperands (separated by dashed lines),

– (and sometimes also numbers or sets of signals).

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 16

7 - Interactions
Interaction operators (overview)

� strict

– operand-wise sequencing

� seq

– lifeline-wise sequencing

� loop

– repeated seq

� par

– interleaving of events

� region (aka. “critical”)

– suspending interleaving

� consider

– restrict model to specific messages

– i.e. allow anything else anywhere

� ignore

– dual to consider

� ref

– macro-expansion of fragment

� alt

– alternative execution

� opt

– optional execution

– syntactic sugar for alt

� break

– abort execution

– sometimes written as “brk”

� assert

– remove uncertainty in specification

– i.e. declare all traces as valid

� neg

– declare all traces as invalid

(→ three-valued semantics)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 17

7 - Interactions
Main concepts (metamodel)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 18

7 - Interactions
Semantics

� The meaning of an interaction is

– a set of valid traces, plus

– a set of invalid traces.

(ignore the latter for the time being)

� Traces are made up of occurrences
of events such as

– sending/receiving a message,

– instantiating/terminating an
object, or

– time/state change events.

� Two types of constraints determine
the valid traces:

1) send occurs before receive,

2) order on lifelines is definite.

a
b

c

d
e

f

This diagram contains the following
seven constraints:

1) a→d, e→b, f→c
2) a→b, b→c, d→e, e→f

The set of resulting traces is:
{ a.d.e.b.f.c, a.d.e.f.b.c }.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 19

7 - Interactions
Interaction operators seq & strict

� seq

– compose two interactions sequentially lifeline-wise (default!)

� strict

– compose two interactions sequentially diagram-wise

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 20

7 - Interactions
Interaction operator loop

� loop

– repeated application of seq

loop(P, min, max) = seq(P, loop(P, min-1, max-1))

loop(P, 0, max) = seq(opt(P), loop(P, 0, max-1))

loop(P, *) = seq(opt(P), loop(P, *))

for some interaction

fragment P

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 21

7 - Interactions
Interaction operators: interleaving

� par

– shuffle arguments

� region

– execute argument atomically, i.e. disallow interleaving

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 22

7 - Interactions
Interaction operators alt, opt, brk: choice

� alt

– alternative complete execution of one of two interaction
fragments

� opt

– optional complete execution of interaction fragment:

opt(P) = alt(P, nop)

� break

– execute interaction fragment partially, skip rest, and jump to
surrounding fragment

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 23

7 - Interactions
Interaction operators: abstraction

� ignore, consider

– dual way of expressing:
� allow the ignorable messages (!) anywhere

� present only those messages that are to be considered

• ignore(P,Z) = shuffle(P , Z*)

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 24

7 – Complex Interactions
Interaction operator ref & parameters

� ref

– refers to a fragment defined elsewhere (macro-expansion)

– Formal and actual parameters (bindings) are declared in the
diagram head.

� Signals to the containing classifier appear as arrows form the
diagram border.

declaration

call

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 25

7 - Interactions
Interaction operators: negation

� The semantics of neg and assert is unclear.

� In contrast to that the other operators, they refer not just to the
positive traces, but to invalid and inconclusive traces as well.

� neg

– declare all valid traces as invalid

– inconclusive traces: unknown

� assert

– remove uncertainty by declaring all inconclusive traces as invalid

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 26

7 - Interactions
UML 1.x vs. UML 2.0

UML 1.0

� collaboration diagram

UML 2.0

� communication diagram

� timing diagram

� interaction overview diagram

� complex interaction

� Lifeline is now a first-class citizen

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 27

7 – Interactions
Wrap up

� Complex interactions like high-level MSCs added.

� New diagram types:

– timing diagrams (like oscilloscope), and

– interaction overview (similar to restricted activity diagram)

– renamed collaboration diagram to communication diagram

� Completely new metamodel.

� Almost formal three-valued semantics of valid, invalid and
inconclusive interleaving traces of events.

� Some semantical problems are yet to be solved.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 8 – Tools

Dr. Harald Störrle
University of Innsbruck
MGM technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

8 – Tools
Overview

� UML 2.0 modeling tools

– subjective selection for test

– not an evaluation

� What has been covered

– UML 2.0 diagrams

– UML 2.0 metamodel

– import/export

– special features

� There are many more, like

– Omondo: Omondo for Eclipse

– Sparx Systems: Enterprise Architect

Rhapsody

TAU

MagicDraw

Software
Modeler

Poseidon

Together
Architect

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

8 – Tools
I-Logix: Rhapsody

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

8 – Tools
I-Logix: Rhapsody

� Tested version: Rhapsody V6.0 in C++

– mainly targeted on embedded systems design and real-time
operation systems

� Fair UML 2.0 support

– but sometimes deviating terminology

� Nice features

– code generation based on templates
� mainly for state machines

– support for structured analysis/design

www.ilogix.com

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

8 – Tools
Telelogic: TAU/Developer

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 6

8 – Tools
Telelogic: TAU/Developer

� Tested version: TAU V2.4

� Fair UML 2.0 support

– import from XMI (Rose, Together)

� Nice features:

– code generation based on libraries

– continuous consistency checks
� some messages not overly instructive

– UML 2 textual syntax

www.telelogic.com

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 7

8 – Tools
NoMagic: MagicDraw

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 8

8 – Tools
NoMagic: MagicDraw

� Tested version: MagicDraw 11.5 Enterprise

� Very good UML 2.0 support

– sometimes deep nesting of property sheets

– export as XMI 2.1, EMF

� Nice features

– OCL syntax check
� but not more

– metamodel-based model comparison

– model metrics

www.nomagic.com

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 9

8 – Tools
IBM: Rational Software Modeler

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 10

8 – Tools
IBM: Rational Software Modeler

� Tested version: Rational Software Modeler Trial

� Good UML 2.0 support

– some features are deep down in property sheets

– export as UML2 (XMI 2.0), EMF, …

� Nice features

– Integrated into Eclipse

– ensures consistency by selection from available features and
drawing restrictions

� but not for constraints

www.ibm.com/rational

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 11

8 – Tools
Gentleware: Poseidon

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 12

8 – Tools
Gentleware: Poseidon

� Tested version: Poseidon 4.2.1 community edition

– professional versions include code generation, version control,
Eclipse integration, …

� Good UML 2.0 support

– but no templates, composite structures, …

– export as XMI 1.2

� Nice features

– UML 2.0 diagram interchange

– Community edition for free

www.gentleware.com

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 13

8 – Tools
Borland: Together Architect

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 14

8 – Tools
Borland: Together Architect

� Tested version: Together Architect 2006, version 8.0

� Fair UML 2.0 support

– export as XMI 2.0

� Nice features

– Eclipse integration

– Good OCL support
� OCL-based model transformations

– ECore API

www.borland.com

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 15

8 – Tools
Comparison (1)

○
○
●
●

×

●

Poseidon
CE

○
○
○
○

●
●

Together
Architect

○
●
●
●

●
●

Magic
Draw

○●○Component

●×●Object

●●○Deployment

○○○Package

●○×Composite
structure

●●●Class

Software
Modeler

Trial

TAU/
Developer

Rhapsody

average (some important features missing)○
not available×

good (all important features present)●

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 16

8 – Tools
Comparison (2)

×

×

●
●
●
●
●

Poseidon
CE

×

●
●
●
●
●
●

Magic
Draw

××●×Interaction
overview

●●○●State machine

●●●○Sequence

●●×●Communication

××××Timing

○
○

Together
Architect

○○○Use case

●●○Activity

Software
Modeler

Trial

TAU/
Developer

Rhapsody

average (some important features missing)○
not available×

good (all important features available)●

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 17

8 - Tools
Which one is best for me?

� Many tools claim to support UML (or even UML 2.0), but few do
justice to this claim.

� Of those that come anywhere close to UML 2.0, there is no single
best tool.

� If you want to select a tool for you, your company, or your
organization, go ahead as follows.

– Make a short list of 3-6 candidate tools following crude criteria like
price, platform, size of tool manufacturer, previous experience, and
expert advice.

– Determine evaluation criteria like required notations, input/output file
formats, reporting/printing capabilities, code generation facilities and so
on.

– Evaluate all candidate tools – a UML expert will be able to do a
reasonable (superficial) analysis of any tool in half a day.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 1

Unified Modeling Language 2.0
Part 9 - Best Practices for the

management of large models

Dr. Harald Störrle
University of Innsbruck
MGM technology partners

Dr. Alexander Knapp
University of Munich

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 2

9 - Best practices
Management of large models

� Creating and handling small models presents some challenges.

� But managing large models is a problem in its own right, which
comes in addition to all of these:

– versioning, diff/patch, merge

– migration between tool platforms

– long term maintenance of models

– round-trip with manual interference

– measures, queries, checks, analysis of models

– simulation, code generation

– reporting

� Today, we don’t have appropriate tool support for the majority of
these tasks, and it is very cumbersome to do it by hand.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 3

9 - Best practices
What exactly means “large” for a model?

� Project size (only model-related activites!)

– Manpower: 5-100 Persons (rather: Person-equivalents)

– Duration: 1-10 Years

– Budget/Cost: 1-50 Mio €

� Number of model elements (“population”)

– 200-5.000 classes (times 10-20 attributes)

– 100-1.000 business processes (times 10-20 functions, steps)

– 5-10/10-20/20-50 systems/subsystems/segments

– 50-200 interfaces

� Compare with large scale software systems, e.g. SAP R/3

– over 100 Mio LoC, more than 33.000 database tables

– 14 systems, 35 subsystems, ca. 32.000 programs

– ca. 2.500 interfaces

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 4

9 – Best practices
Probleme and gaps in large modeling projects

Characteristics of large projects

� overal situation

– often extremly „political“ environment

– inhomogeneous, large organisation

– long and critical previous project history

– very long project duration

– extreme expectations, big
dissappointments

– hostile competitors involved
(„Mehrfrontenkrieg“)

� Qualifications

– Customer

– Colleagues

– oneself

–

� Work organisation

– several companies and organisations
involved

– distribution over several places

Specific for modeling projects

� Tools

– inappropriate tools previous decisions
Untaugliche Werkzeuge gesetzt

– überhaupt keine Werkzeuge verfügbar

– Versionsverwaltung/Diff selten

– Releases, Auslieferung, Sicherung

� structuring of models and method

– “the usual suspects” are insufficient

� Quality of models

– what does it mean in the first place?

– consistency

– coherene and validity

– clear focus („big picture“)

– adherance to conventions

…but each gap is also a starting point!many gaps…

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 5

9 – Best practices
Starting points in large modeling projects

� Model structure and methodology
– no/few established standards thus

much leeway
– impact on almost all other areas
– requires intensive training and

coaching („Navigation overview“)

� Model design
– Layout, naming conventions
– Guidelines for model sizes and

levels of abstractions
– Change markers
– Plan header
– Attribute states (open questions,

defaults, errors)

� Organisation of project
– Quality assurance criteria
– Distributed work
– Process of modeling, tasks

� Conviction
– large and demotivated teams must be

convinced and activated
– support for standards such as
– poster of model inventory
– navigation overview
– coaching (less useful: trainings)
– handzettel mit Arbeitsanleitungen

� Automatisation / Integration
– XMI (e.g. Modelbridge)
– self-made tools, e.g.
– naming conventions
– measures for size/complexity
– reporting
– generating

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 6

9 – Best practices
Model, Diagram, Plan

XMI, MDL, ADL, …

UML, EPK, ERD, …

projectspecific

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 7

9 – Best practices
Model, Diagram, Plan

� Model

– A Modell is an abstract entity, existing e.g. in a data structure

– Parts of models may be modles again

– standardised (XMI) or proprietary (MDL, ADL, …)

� Diagram

– a diagram is a either
� the visual presentation of a model,

� or an informal sketch.

– A diagram defines a model: the one consisting of those model
elements that are presented visually.

� Plan

– A plan is a diagram in a frame of reference.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 8

9 - Best practices
Model information

� Title

– Name

– pragmatic type

� Text field

– Author/Manager

– Customer/Project

– date/version

– view, phase, intention

– scale, section, unit

– QA status

� Legend

– Stereotypes

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 9

9 – Best practices
Role model civil architecture: detail section of a plan

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 10

9 – Best practices
Role model civil architecture: plan header (DIN 6771)

� other relevant ISO standards

– ISO 128:1996 Technical Drawings (in 29 parts)

– ISO 3098:1997 Lettering (in 7 parts)

– ISO 7200:1984 Technical drawings — Title blocks

– ISO 5455:1979 Scales

– ISO 5457:1999 Drawing sheet formats for technical documentation

– ISO 13567:1998 Technical product documentation — Organization and
naming of layers for CAD

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 11

9 – Best practices
Role model civil architecture: plan header real life example

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 12

9 – Best practices
Role model civil architecture: plan header in tools

� Administrative informationen of
this kind should be presented
(partially) in a plan header.

� Filling slots like predefined Values
and state transitions should be
supported.

� Reports on qa-status, version,
model type etc. are important.

� If ther is no support for model
headers (almost always the case)
use comment boxes: more effort
but feasible and better than
nothing.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 13

9 – Best practices
Contents of a legend

� legend

– Depending on the audience,
one might need descriptions of

– the complete notation

– stereotypes only

– colour coding of model
changes

� change marker

– Lists of added, removed, and
modified modell elements

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 14

9 – Best practices
Putting a legend in a plan

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 15

9 – Best practices
Change markers

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 16

9 – Best practices
Change markers

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 17

9 – Best practices
States of attributes

work in
progress

submitted

for approval

partially
approved

qa approved

attribute state

modified

<Value>

??

filled

open question

empty
ok

unchanged

modify

unchecked checked

check

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 18

9 – Best practices
Alternatives for model storage – Pros/cons

File

� e.g. Magic Draw, Rose

� storage in a single file

– size

– conflicting access

– distributed work

� storage in redundant files

– consistency

� storage of non-overlapping parts
in a directory tree

– references

– integration

Repository/database

� e.g. StP, Adonis

� storage in tool-repository

– distributed work

– versioning

– back up

� structuring facilities

– …of the tool

grouping / tree

– …of the modeling language

packages, classes

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 19

9 – Best practices
Versioning – the problem

� Only very few tools have appropriate functionality. Marketing is
often more advanced than reality.

� It is possible to store your models in a CM tool, but…

– Some tools are DB-based (e.g. StP, Adonis), so that models must
be extracted/exported first (often manually), which is error prone
and tedious.

– The extraction format may be (that is, in reality it always is)
difficult to interpret and process (e.g. diff of XMI files including
diagrams).

– Even if the modell is well structured, this does not guarantee that
the modell-Dump is well structured, too.

� So, probably there is no model version control system available
when you want it!

� Therefore, you need to resort to the „poor man‘s repository“.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 20

9 – Best practices
Versioning - Alternatives

� Case 1: a small group of modellers

– versioning only by backups

– coordination directly (bilaterally) between all people involved

– may become critical under spatial distribution

� Case 2: model structure similar to project structure

– The whole model is structured in 1 overarching part and n more
specific parts, depending only on the overarching part.

– Each of these n+1 parts is created and modified by exactly one
group (everybody else may read). Within each group, case 1
applies.

– The groups are coordinated by a special group, e.g. formed by
the group leaders.

� Case 3: Chaos

– Get a new job.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 21

9 - Best practices
Creating good diagrams

� Naming conventions

– There must be conventions for names and abbreviations.

– There must be a glossary to describe the terminology of the project,
including domain-specific names.

� Graphic design conventions

– The graphic of a diagram (layout, color, size, pen etc.) is essential for
the usability of the model it represents, e.g.:

� discussing and modeling,

� presentation,

� quality assurance,

� implementation.

– Thus, a good graphical design is an essential part of the model, equally
important than the “contents itself”.

– Bad diagrams often indicate bad models, for modeling errors are less
apparent when there are many other errors around.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 22

9 - Best Practices
Creating good diagrams: Names

� A name should express what an element is about. Good names are
important!

� The same things should follow a consistent naming schema, so that
the name already hints at what an element is supposed to be.

– system/subsystem/group of use cases: noun, gerund + noun,
e.g. Payment

– business process: gerund + noun, e.g. awarding Miles

– business function: verb noun, e.g. select flight

– class/attribute: noun, e.g. passenger number, flight, booking

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 23

9 - Best Practices
Creating good diagrams: Names

� Subsysteme

– Noun | Nounphrase

(also substantivised verb)

– Names of previously used
systems (abbreviations!)

„Document management“

„Order book “

„Invoice“

� Schnittstellen

– From ‘-‘ To

– fixed and well known names

„DS052“

„DMS-BInfo“

� Business process and functions

– Verb Nounphrase

„file application“

„assess payment according to
law XY and check solvency
(manually)“

� Conditions

– [Nounphrase] (Adjective |

Adverb)

„tax identification code
present“

„done“

� Adherence of conventions

– Glossary

– Automated checker

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 24

9 - Best Practices
Creating good diagrams: Layout

� A model should be complete, non-redundant, clear, and adequate.

� Completeness
– All relevant facts are contained in the model and displayed according to

their importance.
� Non-redundancy

– No part of a model is displayed more than once except there is a good
reason.

� Clarity
– There should be around 7±2 (main) elements per screen/paper page.
– If necessary, split diagrams or introduce abstractions. If the resulting

system of diagrams is a tree, the tree should be balanced.
� Adequacy

– know your audience: what aspect is particularly interesting for this
audience?

– What is the purpose of this diagram, why do I draw it in the first place? Is
this goal achieved?

– Is there a better way to achieve this goal, such as using another diagram
type, another layout altogether, or something else?

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 25

9 - Best Practices
Creating good diagrams: Layout

� Observe the Gestalt-laws
– present similar things similarly

� Things presented differently will be perceived as different things.

– uniform size, color, orientation, alignment
� Things of similar importance should be present in approximately the same size.
� Things presented in the same way will be perceived as similar.

– Non-uniform presentation transports (unwanted) information

� Observe reading order
– left right, top bottom (at least in the west)
– clockwise arrangement for states

� Layout
– Avoid crossings, strive for clarity

� Further aspects
– Use colors, pen sizes, fonts, etc. very sparingly (consider printability)
– If you do use them, use them carefully, and make sure who you’re

talking to.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 26

9 - Best Practices
Industrial experiences

� Contrary to common belief, many domain experts are quite happy
when confronted with UML diagrams - analysis level only, of course.

� With UML 2, many things may now be captured, which were difficult
to capture before.

� The tool support is not yet sufficient, however, partly due to the
enormous complexity of the UML.

� Bottom line: it’s a step ahead, but we’re not yet there.

(c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp

UML 2.0 – Tutorial (v4) 27

9 - Best Practices
A look into the crystal ball

� It’s very likely, that a version UML 2.1 will be coming to sort out the
problems that are currently contained in the UML.

� There might also be UML 2.2 and UML 2.3 – but will there be a UML
3.0?

� There can only be one unified modeling language, though there will
probably be simpler modeling languages.

� Domain-specific languages are neither unified, nor (usually) simpler
than UML, and hard evidence of their other claimed benefits are
nowhere to be seen.

	1 - Introduction.pdf
	2 - Static structure.pdf
	2a - OCL.pdf
	2b - Profiles.pdf
	2c - SysML.pdf
	3 - Use Cases.pdf
	4 - Architecture.pdf
	5 - Activities.pdf
	6 - State machines.pdf
	7 - Interactions.pdf
	8 - Tools.pdf
	9 - Best Practices.pdf

