
University of Bristol Information Services document acc-4

Access: using
operators and

functions in queries

Reference document

Aims and Learning Objectives

This document aims to cover all the query language elements (expressions, functions
etc) that are available for you to use in your queries, and on your forms and reports.

Access: using operators and functions in queries (acc-4)

Access: using operators and functions in queries (May 2006)

© 2007 University of Bristol. All rights reserved

Document information

This document is available on the web. To find this, go to
www.bristol.ac.uk/is/learning/resources and in the Keyword box, type the document code
given in brackets at the top of this page.

Related documentation

Other related documents are available from the web at:

http://www.bristol.ac.uk/is/learning/resources

http://www.bristol.ac.uk/is/learning/resources
http://www.bristol.ac.uk/is/learning/resources

Access: using operators and functions in queries (acc-4)

Contents

Document information

Null values ... 1

Operators .. 1

Arithmetic operators ... 1

Character operator .. 1

Logical operators... 1

Relational operators .. 2

Character matching ... 3

Functions .. 4

Aggregate functions .. 4

Domain aggregate functions used for subset of records 5

Number functions .. 6

Character functions ... 7

Date functions .. 8

Conversion functions .. 9

Other functions .. 10

Special values .. 10

Handling dates and times .. 11

Other format elements .. 13

Financial functions ... 14

Access: using operators and functions in queries (acc-4)

Introduction

Unless specified, the following query elements are available in all versions of
Access. Where a version is mentioned, then that element is only available from
that version.

Access: using operators and functions in queries (acc-4)

 1

Null values

Null values are excluded from calculations. For example, if an average is requested, the
value returned is the average of the non-null values only.

The reserved word null matches null values and is used with the 'is' operator, not '='

Note that null values come first in ascending order, last in descending order.

Operators

Arithmetic operators

*, +, -, / standard operators
For example, 5/2 returns 2.5

\ round to integer
For example, 5\2 returns 2

^ power of
For example, 2^3 returns 8

mod remainder of result
For example, 5 mod 2 returns 1

Character operator

& concatenation
For example, [initials]&" "&[surname]

Logical operators

and, or, not (join two criterion together) For example town ="Bristol" and sex
="m"

eqv if both expressions true or both expressions false then return true else
return false

imp if the first expressions implies the second expression then return true
else return false eg a>b imp b>c

xor if both expressions true or both false then return true else return false

Access: using operators and functions in queries (acc-4)

 2

Relational operators

<, <=, =, > >=, <> surname>"M"
no_children>10

between birth_date between #1/1/70# and #1/1/80#
surname between "A" and "L"
value betwen 1 and 3

in in ("Bristol","Bath")
returns either Bristol or Bath

exists not exists (select * from courses where
courses.course_code=students.course_code)
find students doing unknown courses

like like "A*
wild card search (cannot use'=' since * is not part of the value so
'like' indicates it is using * as a pattern

Access: using operators and functions in queries (acc-4)

 3

Character matching

* any number of any
character

S* any string starting with S

? a single character S? any 2 character string starting with S

a single digit S# any 2 character string starting with S
and followed by a digit

[] give a list of values to
use

S[A-M]

S[!A-M]

any 2 character string starting with S
and followed by a letter in the range A
to M

any 2 character string starting with S
followed by a letter not in the range A to
M (note the use of ! for not)

[] enclose wild card
character

[]* find an asterisk somewhere in string

Character expressions are enclosed in double quotes and are used in pattern matching
with the like operator. The following can be used in character expressions:

Access: using operators and functions in queries (acc-4)

 4

Functions

Aggregate functions

avg(numeric data/expression) average
avg ([year])

count(any kind of data) count
count(*)

max(any kind of data) maximum
max ([year])

min(any kind of data) minimum
min ([year])

sum(numeric data/expression) total
sum([number of students])

first(any kind of data) first record field value
first([year])

last(any kind of data) last record field value
last([year])

stdev(numeric data/expression) standard deviation for a sample
stdev([year])

stdevp (numeric
data/expression)

standard deviation for a population
stdevp([year])

var(numeric data/expression) variance for a sample
var([year])

varp(numeric data/expression) variance for a population
varp([year])

Access: using operators and functions in queries (acc-4)

 5

Domain aggregate functions used for subset of records

Note that condition on text needs quotes around the text. Since double or single quotes
can be used for a condition, it is easier to standardise on double quotes for the function
arguments, and single quotes for a string condition to avoid confusion. Note also that
condition is optional. Very useful on forms and reports if based on a table rather than a
query. Less likely to be used in a query because the condition can be expressed easily.

davg(numeric data/expression,table, condition) average for a given condition
davg ("[year]","[students]",
"[sex]='female'")

find average year of female
students (note extra quotes around
text string)

dcount(any kind of data, table, condition) count for a given condition
dcount ("*", "[students]" ,"
[year]=1")

find how many students in year 1
(numeric so no extra quotes)

dmax(any kind of data, table, condition) maximum for a given condition
dmax ("[year]", "[students]",
"[year]<4")

max year of students lower than
year 4

dmin(any kind of data, table, condition) minimum for a given condition
dmin ("[year]", "[students]",
"[year]>3 and [sex]='female'")

dsum(numeric data/expression, table,
condition)

total for a given condition
dsum ("[year]", "[students]",
"[sex]='"& [which sex]&"'")

Example of a parameter query.
Note of the single quotes around
the parameter which sex

dfirst(any kind of data, table, condition) first record field value for a given
condition
dfirst([year], "student")

(notice condition is optional)

dlast(any kind of data, table, condition) last record field value for a given
condition

dstdev(numeric data/expression, table, standard deviation for a sample for

Access: using operators and functions in queries (acc-4)

 6

condition) a given condition

dstdevp (numeric data/expression, table,
condition)

standard deviation for a population
for a given condition

dvar(numeric data/expression, table,
condition)

variance for a sample for a given
condition

dvarp(numeric data/expression, table,

condition)

variance for a population for a
given condition

Number functions

exp base of natural logarithm - complement to log

log natural log

sqr square root

atn arctangent

cos cosine

sin sine

tan tangent

fix like int for positive values but returns first negative less than number.
fix(-8.4) returns -8, fix(8.9) returns 8

int truncates.
int(-8.4) returns -9, int(8.9) returns 8

abs absolute.
abs(-100) returns 100

sgn returns value indicating sign of number(negative returns -1, zero 0,
positive 1)
sgn(-3) returns -1

rnd random number- single real number between 0 and 1

Access: using operators and functions in queries (acc-4)

 7

Character functions

asc ASCII value of char.
asc("A") returns 65

chr(n) character with given ASCII value.
chr(65) returns "A"

instr(n, char1, char2, type) position of char2 in char1, starting at n. type identifies
if case sensitive (0) or not (1).
instr("fred","d") returns 4

left(char,n) first n letters.
left("fred",2) returns "fr"

len(char) length of char.
len("fred") returns 4

lcase(char) force to lower case.
lcase("FRED") returns "fred"

ltrim(char) remove leading spaces.
ltrim(" fred") returns "fred"

mid(char,m,n) middle letters starting at m length n.
mid("fred",2,2) returns "re

space (number) string with specified number of spaces.
space(5) returns 5 spaces

strcomp (char1,char2,n) compare two strings where n=0 for case-sensitive, 1
for not case-sensitive (default), 2 using database sort
order. Returns -1 true, 0 equal, or 1 false.
strcomp("a","b") returns -1

string (n,char) return strings first character a specified number of
times.
string(5,"*") returns "*****"

trim (char) strip leading and trailing spaces

right(char,n) return n rightmost chars.
right("fred",2) returns "ed"

rtrim(char) remove trailing spaces

Access: using operators and functions in queries (acc-4)

 8

ucase (char) force to uppercase.
ucase("fred") returns "FRED"

nz (field, char) return char if field is null (Access 97 upwards).
nz(fee,"no fee given") returns either the value of the
fee or the given text

hyperlinkpart (field, part) return part of hyperlink field (Access 97 upwards). part
= 0 for hyperlink (default), 1 for display text, 2 for
address, 3 for subaddress

strconv (field,3) convert text to first letter of each word capitalised
(Access 97 upward).
strconv("joe bloggs",3) returns "Joe Bloggs"

Date functions

dateadd(interval,n,date) date plus n intervals (eg "m"). Intervals described in
handling dates section.
dateadd("d",3,date()) adds 3 days to today's date

datediff(interval,d1, d2) number of intervals (described in handling dates
section)between dates d1 and d2 where d1 is earlier
date.
datediff("m",sent_date,date()) gives the number of
months betwen the two dates (date()-sent_date
gives the difference in days)

datepart(interval,date) return specific part of date.
datepart("yyyy",birth_date) is equivalent to
year(birth_date)

dateserial(year,month,day) returns date.
dateserial(1,12,2) returns 2nd December 2001. If
year>29 then the previous century is returned

datevalue(char) returns date.
e.g datevalue("1 feb") returns "01/02/2003"

day(date) returns day of month(1-31)

Access: using operators and functions in queries (acc-4)

 9

month(date) returns month number(1-12)

year(date) returns year (100-9999)

weekday(date) returns weekday number(1-7)

hour(date) returns hour(0-23)

cdate (char) returns string as date (in current century if only 2 year
digit and year<=29) (Access 97 up). 30th December
1899 returned if can not convert

minute(date) returns minute(0-59)

second(date) returns second(0-59)

timeserial(hour,minute,second) returns time, date set to 30 December 1899
e.g timeserial(1,2,3) returns 01:02:03

timevalue(time) returns time, date set to 30 December 1899
e.g timevalue(now()) returns 16:31:53

Conversion functions

hex(number) number to hexadecimal.
hex(5) returns A

oct(number) number to octal.
oct(8) returns 10

ccur(number) double to currency.
ccur(2) returns £2.00

cdbl(number) currency to double

cint(number) double to integer (rounds)

clng(number) single to long

isdate(expression) true if can convert to date

Access: using operators and functions in queries (acc-4)

 10

isnull(expression) true if expression contains no data

isnumeric(expression) true if can convert to number

csng(number) double to single (rounds)

cstr(number) double to string(reserves leading space for sign)

str(number) number to string(reserves leading space for sign)

rowidtochar(rowid) row identifier to character string

format(x, fmt) date or number x to specified format (see date and
time handling section for list of formats available

Other functions

iif(expression,x,y)

return x if expression true else y.
iif(sex="m", "male", "female")
iif(isnull(Forms![Student Form]![course_code]),
"don'tknow",Forms![Student
Form]![course_code])

dlookup (field, table,
condition)

look up the field value from another table
dlookup("[coursename]", "[subjects]","[subjects].
[subject]= '" & [students]. [subject] & "'")

Special values

time() current system time

timer () number of seconds since midnight

date() today (no time)

now() today (including time)

null null value

user() current username

Access: using operators and functions in queries (acc-4)

 11

Handling dates and times

The normal format for dates is DD-MM-YY, but dates may be given as DAY MONTH
YEAR. The only exception is when importing dates when you must change the date field to
be data type text. You can then change the data type back after the import.

 Press Alt/Tab to switch to Program Manager.

 Click on the International icon.

 Check that country is United Kingdom.

 Check the date format. This is the date format that will be used for all Windows
applications.

 Change the long date format to include the day of the week.

 Change the year to display as 4 digits. (Access 2 assumes a 2 digit year as current
century. Access 97 assumes 00 - 29 as current century, 30-99 as last.)

At least two components of the date must be given. If day number is omitted then 1 will be
the default. If year is omitted then the current year will be default. If a date alone is stored,
a time of 00:00 is assumed. Dates can range in value from 1 January 100 to 31 December
9999

The special value date and now return the current date and time.

Arithmetic can be performed on dates using the datediff.

Intervals used in the date functions dateadd, datepart, datediff are:

yyyy year

q quarter

m month

y day of year

d day

w weekday

ww week

h hour

n minute

s second

Access: using operators and functions in queries (acc-4)

 12

The date can be displayed in different formats using functions, for example:

format(birth_date, 'dddd d MMMM yyyy')

displays the date as, for example, 'Monday 23 January 1989'.

Elements of dates which may be used to specify the date format are listed below. The
case of the output follows the case used in the format, for example MMMM produces
FEBRUARY, mmmm produces February.

Element meaning sample output

YYYY Year 1990

YY Last 2 digits of year 90

Q Quarter of year 1 2 3 4

M, or MM Month 01 1

MMM M or MMM Name of month or first 3 letters February Feb

D Day of week 7

DDDD or DDD Name of day, or first 3 letters Monday Mon

am/pm Meridian indicator am pm

AM/PM Meridian indicator AM PM

a/p Meridian indicator a p

A/P Meridian indicator A P

H or HH Hour of day (0-23) 2 02 10 22

N or NN Minute 08 31

S or SS Second 05 40

It may be worth considering using two fields for data and time to make validation easier
(but not if subtracting two dates over midnight).

Character strings can be converted to dates using the format function. For example, if the
'first_built' column of the CAR table had been declared as char, and the data was entered

Access: using operators and functions in queries (acc-4)

 13

in a consistent format such as '01/01/00 12:00', it could be converted to dates when
required by:

format (birth_date, 'dd/mm/yy hh:mm')

To convert a number to a date, it must first be converted to a char using the format
function: For example, if the 'first_built' column had been declared as a 6 digit number, the
actual values would be 5 or 6 digits (depending on the day of the month). These could be
converted first to a 6 character string then to a date by:

format (format (birth_date, '099999'), 'ddmmyy')

Other format elements

Element meaning sample output

digit or blank format(1,"##") returns 1,
format(1000,"#,###")
returns 1,000

0 digit or 0 format(1,"0#") returns
01

% percent format(1,"#.00%")
returns 100.00%

< lowercase format("FRED","<")
returns fred

> uppercase format("fred",">")
returns FRED

Access: using operators and functions in queries (acc-4)

 14

Financial functions

ddb (cost, salvage, life, period, factor) return double declining balance

fv (rate, no-period, payment, present-value, type) return future value

ipmt (rate, pay-period, no-period, present-value,
future-value, type)

return interest payment

irr (array ofcash flow values, guess) return interest rate of return

mirr (array of values, finance-rate, reinvest-rate) return modified interest rate

hper (rate, payment, present value, future value,
type)

return number of periods for an
annuity

npv (rate, array of values) return net value of investment

pmt (rate, no-period, present value, future value,
type)

return payment for an annuity

pv (rate, no-period, payment, future value, type) return present value

rate (no-period, payment, present value, future
value, type, guess)

return interest rate for period

sln (cost, salvage, life) return straight line depreciation

syd (cost, salvage, life, period) return sum of years depreciation

