
Natural Sciences, Part IB, Introduction to Computing

C++ Programming Tutorial
and

Instructions for Practical Sessions

Christopher Lester

Deptartment of Physics

(based on earlier versions by David MacKay, Roberto Cipolla and Tim Love)

November 4, 2013

• The course homepage is : http://www.hep.phy.cam.ac.uk/lester/c++2013/

• There is also a course wiki at https://wiki.csx.cam.ac.uk/cphysics/

This document provides an introduction to computing and the C++ programming
language. It will help you teach yourself to write, compile, execute and test simple
computer programs in C++ and describes some of the computing exercises to be
completed in the IB course.
Please read the whole of this tutorial guide as soon as possible.
Pages 6–25 must be read before the first laboratory session.
Pages 25–48 should be read before the second and third laboratory session.
Pages 48–64 should be read before the fourth laboratory session.
The rest of the tutorial guide should be read before the remaining two sessions.

Laboratory Sessions:

You are advised to attend the hands-on lab sessions. These sessions run from Thursday 17th
October to Wednesday 4th December 2013 inclusive, and take place in the Cavendish in the same
building as practical classes. Demonstrators will be on-hand each day between 2pm and 4pm to
help you and answer your questions, though the room itself can be used by students at any time
it is open (see notices). Attendance at one session per week should be sufficient to complete the
course.

Bring your PWF password to the laboratory sessions or you will be unable to log in!

1

Contents

1 Introduction 6
1.1 Aims of the Computing Course . 6
1.2 Organisation of Laboratory Sessions . 6
1.3 The Six Pieces Of Submitted Work (“SESSIONS”) 6
1.4 Why self assessment? . 7
1.5 Assessment deadlines . 8
1.6 Collaboration . 8
1.7 Copying . 9
1.8 Feedback . 9

2 Introduction 10
2.1 What is a computer program? . 10
2.2 The C++ Programming Language . 10

3 Editing, compiling and executing a simple program 10
3.1 A simple C++ program to add two numbers . 10
3.2 Overview of program structure and syntax . 11
3.3 The development environment and the development cycle 13

4 INSTRUCTIONS FOR PRACTICAL SESSION 1 14
4.1 Objectives . 14
4.2 Getting started . 14
4.3 Computing exercise – editing, compiling and executing a simple program that adds

numbers . 17
4.4 Exploring compiler error messages . 18
4.5 Compiler warnings . 19
4.6 Makefiles . 19
4.7 Practice . 19
4.8 Assessment . 21
4.9 Instructions for submitting your self-assessed work 21

5 Variables and constants 25
5.1 Variable types . 25
5.2 Declaration of a variable . 25
5.3 Storage of variables in computer memory . 26

6 Assignment of variables 26
6.1 Assignment statements . 26
6.2 Arithmetic expressions . 27
6.3 Precedence and nesting parentheses . 28
6.4 Initialisation of variables . 28
6.5 Expressions with mixed variable types . 28
6.6 Declaration and initialisation of symbolic constants 29

7 Simple input and output 29
7.1 Printing to the screen using output stream . 30
7.2 Input of data from the keyboard using input stream 30

2

8 Control Statements 31

8.1 Boolean expressions and relational operators . 31

8.2 Compound boolean expressions using logical operators 31

8.3 The IF selection control statement . 31

8.4 The IF/ELSE selection control statement . 32

8.5 ELSE IF multiple selection statement . 33

8.6 SWITCH multiple selection statement . 35

8.7 The WHILE repetition control statement . 37

8.8 Increment and decrement operators . 38

8.9 The FOR repetition control statement . 38

8.10 The DO. . .WHILE repetition control statement 40

9 INSTRUCTIONS FOR PRACTICAL SESSION 2 41

9.1 Objectives . 41

9.2 Computing Exercises . 41

9.3 Tips . 42

9.4 Assessment . 43

10 INSTRUCTIONS FOR PRACTICAL SESSION 3 44

10.1 Objectives . 44

10.2 Computing Exercises . 44

10.3 Assessment . 47

11 Functions 49

11.1 Function definition . 49

11.2 Example of function definition, declaration and call 50

11.3 Function header and body . 52

11.4 Function declaration . 53

11.5 Function call and execution . 53

11.6 Function arguments . 54

11.7 Another example . 55

11.8 Passing by value or reference . 56

12 Math library and system library built-in functions 57

12.1 Mathematical functions . 58

12.2 Random numbers . 58

12.3 How can I find out what library a function is in? 59

13 INSTRUCTIONS FOR PRACTICAL SESSION 4 61

13.1 Objectives . 61

13.2 Computing Exercises . 61

13.3 The bisection method . 61

13.4 Notes on algorithm and implementation . 62

13.5 Assessment . 64

13.6 ‘Have I done enough?’ . 65

3

14 Arrays 66
14.1 Declaration . 66
14.2 Array elements and indexing . 66
14.3 Assigning values to array elements . 67
14.4 Passing arrays to functions . 69
14.5 Character arrays . 69
14.6 Multi-dimensional arrays . 70
14.7 Structures . 73
14.8 Enumerated constants . 73

15 Reading and writing to files 74

16 Direct allocation of arrays with “new” 76

17 Modularizing 77

18 Structures and packages 81

19 Formatted output 85

20 Notes concerning the remaining SESSIONS 5, 6 and 7. 86

21 INSTRUCTIONS FOR PRACTICAL SESSION 5 : “PLANET” 87
21.1 Objectives . 87
21.2 Task . 87
21.3 Ideas for what to do . 88
21.4 What to hand in . 90

22 INSTRUCTIONS FOR PRACTICAL SESSION 6 : “BONKERS” 91
22.1 Objectives . 91
22.2 Task . 91
22.3 Ideas for what to do . 92
22.4 What to hand in . 93

23 INSTRUCTIONS FOR PRACTICAL SESSION 7 : “RECURSION” (optional!) 95
23.1 Objectives . 95
23.2 Recursion exercises . 98

A PLANET: step by step guidance 99

B An introduction to object-oriented programming and classes 102

C Further reading 104

D Objectives of each section 105
D.1 Session 1 . 105
D.2 Session 2 . 105
D.3 Session 3 . 105
D.4 Session 4 . 105
D.5 Session 5 : “PLANET” . 105

4

D.6 Session 6 : “BONKERS” . 105
D.7 Optional session 7 : “RECURSION” . 106

E Thirty useful unix commands 107

5

Part IB Introduction to Computing Outline

1 Introduction

1.1 Aims of the Computing Course

This guide provides a tutorial introduction to computing and the C++ computer programming
language. It will help you teach yourself to write, compile, execute and test simple com-
puter programs in C++ which read data from the keyboard, perform some computations on
that data, and print out the results; and how to display the results graphically using gnuplot.

By the end of the course, you should be able to use computing to help you understand physics
better.

1.2 Organisation of Laboratory Sessions

Students are encouraged to attend two-hour laboratory sessions in the Cavendish, where demon-
strators will be on call to provide general help and answer questions. These take place at the
times and locatiosn indicated on the front cover of this handout, five days per week. If you are
new to programming, these are an ideal place to learn. The majority of problems may be resolved
quickly by simply asking the person sitting next to you, or by asking a demonstrator. As you
progress you will be able to find more information online to help you, but in the beginning the
help of another person is invaluable.

In these sessions you should work through the examples and exercises described in this docu-
ment. Each session consists of a tutorial (which must be read before the start of the laboratory
session) and interleaved computing exercises. To benefit most from the laboratory session and
from the demonstrators’ help you must read the tutorial sections before the start of each
session. Please allow two hours preparation time per week.

You are expected to attend the sessions weekly (though it is not a problem if you attend
more frequently). If you attend weekly for the full seven weeks, and if you submit the required
self-assessed work at the end of each session, you will meet all six submission deadlines, and you
will find the seventh week is spare.

[Aside: in principle you are permitted to do the work for this course in College or on your
own laptop, etc, (and many people who have programmed before will take that option) but bear
in mind that if you do so you will not receive formal “support”.]

1.3 The Six Pieces Of Submitted Work (“SESSIONS”)

In this course, your progress will be self-assessed by submitting six pieces of work – one for
each laboratory session. Unimaginatively, but hopefully intuitively, the six pieces of work are
entitiled “SESSION 1” (pages 14-24), “SESSION 2” (pages 41-43), “SESSION 3” (pages 44-48),
“SESSION 4” (pages 61-64), “SESSION 5” (pages 87-90) and “SESSION 6” (pages 91-94), and
contain instructions for what to do for each self assessment.

The all-important submission deadlines are found in section 1.5 of this document.
Most people will submit their self-assessed work at the rate of one submission a week, uploading
the work at the end of each of the first six laboratory sessions using the link on the course webpage

6

(url on the front cover of this document).1 Doing is good practice as it will ensure that you submit
all work in good time.

You are strongly encouraged to submit the self-assessment exercises by the relevant deadlines,
because doing so will get you 100% of the marks for that session, and not doing so will get you
no marks at all! Deadlines may be found in section 1.5.

Everyone who is switched on should expect to achieve full marks. Last year approximately
90% of people taking the course achieved full marks. The majority of those who lost marks lost
them by failing to meet one or more submission deadlines (in some cases by mere seconds!) or
by failing to hand in any work at all. Do not leave your work to the last minute! You have been
warned.

There are a total of 8 marks2 available in total for the the work submitted in the course. The
submissions for sessions 1 through 4 can acquire 1 mark each. The submissions for the extended
projects (sessions 5 and 6) contain 2 marks each (the additional mark reflecting the additional
physics/investigative content needed by these sessions). Late work, or work that suggests the
student did not engage with the spirit of the self assessment, or submissions which fail to justify
why the nominated self-assessed task was appropriate for the student in question, scores nothing.3

1.4 Why self assessment?

The self-assessment process is based on a desire to treat you as adults, and on the assumption that
you are interested in learning, capable of choosing goals for yourself, and capable of self-evaluation.

There are different types of programmers. Some people like to get into the nuts and bolts and
write programs from scratch, understanding every detail – like building a house by first learning
how to make bricks from clay and straw. Other people are happy to take bricks as a given, and
get on with learning how to assemble bricks into different types of building. Other people are
happy to start with an existing house and just make modifications, knocking through a wall here,
and adding an extension there.

I don’t mind what sort of programmer you become. All these different skills are useful. I
encourage you to use this course to learn whatever skills interest you. The exercises give oppor-
tunities for various styles of activity.

Programming is an essential skill, just like graph-sketching. If you don’t know how to sketch
graphs, what do you do? – practice, read books, talk to supervisors and colleagues, practice some
more. As second-year physicists, graph sketching should be second nature, and you should use it
as a tool in all physics problems you study. Similarly, programming is a valuable tool for thinking,
exploring, investigating, and understanding almost any scientific or technical topic. You should
find that programming can help you with your 2nd year, 3rd year, and 4th year courses. This
course exists to get you up to speed on programming, for the benefit of all your courses.

1Note, there is nothing to stop people submitting work at a faster rate if they so desire. In 2010, one student
submitted responses to all six assessments by the and of week two.

2These marks do not carry the same weight as marks in a IB Physics B Tripos examination.
3All students who enter into the spirit of the course and submit work on time, should be able to score 100%,

and indeed this has been the modal score in all previous years, even though there is always a sizeable number of
students who lose marks through late submissions or through failing to justify why their self-assessed task was
appropriate for them. Note that every year a small number of student spend far too much time on this course, and
complain about that time, presumably having failed to note the almost binary nature of the mark scheme, and
that it is up to them to set themselves tasks of an appropriate difficulty. Programming is supposed to be a useful
skill that will help you solve problems, not a time consuming chore. If the task you are setting yourself is taking
ages and ages, then perhaps you have set your sights too high. Different people have different pre-existing skills
and will need to set themselves tasks at different levels. That is why this is a self-assessed course! No one who
follows the course instructions carefully, should need this course to consume inordinate amounts of his/her time.

7

As the main form of assessment for all this work will be self-assessment. Ask yourself “have
I mastered this stuff?” If not, take appropriate action. Think, read, tinker, experiment, talk to
demonstrators, talk to colleagues. Sort it out. Sort it out well before the final deadline. When
you have checked your own work and fully satisfied your self-assessment, you should submit an
electronic record of your self-assesment in the manner described at the end of the SESSION 1
instructions (pages 14-24) – i.e. by using the assessment upload link on the course webpage.
By submitting your work, you are confirming that you have assessed yourself and achieved the
session’s objectives. All self-assessed submissions will be made available to the IB examiners.

Each session has tasks of two types: first, “write a program to do X”; and second “set your
own additional goal (Y), further testing your skill, and write a program to do Y”. This “additional
programming goal” doesn’t have to be any harder than X. You should choose the goal yourself,
and be imaginative. This goal and its solution are what you submit.

1.5 Assessment deadlines

The laboratory sessions attended by demonstrators begin on Thursday 17th October 2013, and
will then run for seven successive weeks (Thursday to Wednesday following). It is expected that
you will attend one of these lab sessions per week, and that you will submit the corresponding
piece of work at the end of that session. Accordingly, the nominal deadline for the task in
“SESSION 1” (pages 14-24) is 11pm on Wednesday the 23rd October, as this is the last day of
the 1st week of lab sessions. Similarly, the work for SESSION 2 is due at 11pm on the next
Wednesday, and so on. This is summarised in the following table.

Name Pages Corresponding lab sessions Nominal Deadline (extended deadline)
SESSION 1 14-24 17th Oct - 23rd Oct 11pm 23rd Oct 11pm 30th Oct
SESSION 2 41-43 24th Oct - 30th Oct 11pm 30th Oct 11pm 6th Nov
SESSION 3 44-48 31st Oct - 6th Nov 11pm 6th Nov 11pm 13th Nov
SESSION 4 61-64 7th Nov - 13th Nov 11pm 13th Nov 11pm 20th Nov
SESSION 5 87-90 14th Nov - 20th Nov 11pm 20th Nov 11pm 27th Nov
SESSION 6 91-94 21st Nov - 27th Nov 11pm 27th Nov 11pm 4th Dec
SESSION 7 95-98 28th Nov - 4th Dec NONE – optional! NONE – optional!

You will note the additional column headed “extended deadline” which is always one week later
than the nominal deadline. Very occasionally people are seriously ill, or affected by an unavoidable
and unforseeable event that makes it not possible to meet a deadline. If such a situation arises,
an extension will automatically be granted to the “extended deadline” for no loss of credit.4

1.6 Collaboration

How you learn to program is up to you, but let me make a recommendation:

4It is not necessary to apply for this extension! Don’t mail me to ask for one! Handing work in between the
Nominal and Extended deadlines is itself treated as an application for extension and is automatically granted.
Note that extensions beyond the exended deadline, even by seconds, will never be granted. Two weeks is more
than enough time to find to attend a session and do the two hours of work. Similarly, acts of God (power outages,
the room was locked, my computer died, my college network was down) in the period of the extended deadline
are immaterial. The extension facility is there to allow for the possibility that such things happened prior to
the *nominal* deadline. Going beyong the norminal deadline means you are on borrowed time. Note that time
management is a skill, and by being given the prospect of “automatic” extensions, you are being given just enough
rope to hang yourself. Don’t allow this to happen.

8

I recommend that you do most of your programming work in pairs, with the weaker
programmer doing the typing, and the stronger one looking over his/her shoulder.

Working in pairs greatly reduces programming errors. Working in pairs means that there is
always someone there to whom you can explain what you are doing. Explaining is a great way of
enhancing understanding. It’s crucial to have the weaker programmer do the typing, so that both
people in the pair understand everything that’s going on.

At the end of the day, you must all self-assess individually, and you must submit individual
electronic records of your work via the link on the course webpage.

1.7 Copying

When programming in real life, copying is strongly encouraged.

• Copying saves time;

• Copying avoids typing mistakes;

• Copying allows you to focus on your new programming challenges.

Similarly, in this course, copying may well be useful. For example, copy a working program similar
to what you want to do; then modify it. Feel free to copy programs from the internet. The bottom
line is: “do you understand how to solve this sort of programming problem?” Obviously, copying
someone else’s perfect answer verbatim does not achieve the aim of learning to program. Always
self-assess. If you don’t understand something you’ve copied, tinker with it until you do.

You should not copy anyone else’s “additional programming goal”. You should devise this goal
yourself, and solve it yourself.

If necessary, set yourself further additional programming goals.

1.8 Feedback

Your feedback on all aspects of this new course is welcome. Feedback given early is more valu-
able than feedback delivered through the end-of-term questionnaires. Early feedback allows any
problems arising to be fixed immediately rather than next year!

Dr Christopher Lester Tel: +44 (0)1223 337232

Room 952, Department of Physics, Cavendish Laboratory

lester at hep.phy.cam.ac.uk

9

2 Introduction

2.1 What is a computer program?

Computers process data, perform computations, make decisions and instigate actions under the
control of sets of instructions called computer programs. The computer (central processing unit,
keyboard, screen, memory, disc) is commonly referred to as the hardware while the programs
that run on the computer (including operating systems, word processors and spreadsheets) are
referred to as software.

Program instructions are stored and processed by the computer as a sequence of binary digits
(i.e., 1s and 0s) called machine code. In the early days programmers wrote their instructions in
strings of numbers called machine language. Although these machine instructions could be
directly read and executed by the computer, they were too cumbersome for humans to read and
write. Later, assemblers were developed to map machine instructions to English-like abbreviations
called mnemonics (or assembly language). In time, high-level programming languages (e.g.
FORTRAN (1954), COBOL (1959), BASIC (1963) and PASCAL (1971)) developed, which enable
people to work with something closer to the words and sentences of everyday language. The
instructions written in the high-level language are automatically translated by a compiler (which
is just another program) into machine instructions which can be executed by the computer later.
The compiled program may be called a ‘binary’ or an ‘executable’.

Note that the word “program” is used to describe both the set of written instructions created
by the programmer and also to describe the resulting piece of executable software.

2.2 The C++ Programming Language

The C++ programming language (Stroustrup (1988)) evolved from C (Ritchie (1972)) and is
emerging as the standard in software development. For example, the Unix and Windows operating
systems and applications are written in C and C++. C++ facilitates a structured and disciplined
approach to computer programming called object-oriented programming. This course will cover
the basic elements of C++.

3 Editing, compiling and executing a simple program

3.1 A simple C++ program to add two numbers

The following is an example of a simple program (source code) written in the C++ programming
language. The program is short but nevertheless complete. The program is designed to read two
numbers typed by a user at the keyboard, compute their sum and print the result on the screen.

10

// Program to add two integers typed by user at keyboard

#include <iostream>

using namespace std;

int main()

{

int a, b, total;

cout << "Enter integers to be added:" << endl;

cin >> a >> b;

total = a + b;

cout << "The sum is " << total << endl;

return 0;

}

3.2 Overview of program structure and syntax

C++ uses notation that may appear strange to non-programmers. The notation is part of the
syntax of a programming language, i.e., the formal rules that specify the structure of a legal
program. These rules will be explained in more detail later, in sections 5–7. Here we give a quick
overview.

Every C++ program consists of a header and a main body and has the following structure.5

// Comment statements, which are ignored by computer but inform reader

#include <header file name >

int main()

{
declaration of variables ;

statements ;

return 0;

}

We will consider each line of the program: for convenience the program is reproduced on the
next page with line numbers to allow us to comment on details of the program. You must not
put line numbers in an actual program.

5Actually this is not true. Strictly it is only C (not C++) programs which need to have the structure indicated
in which all variable declarations must come together in a single group which precedes the statements which use
them. In contrast, C++ programs are allowed to mix declarations and statements. This can be a great advantage
as the declaration can be much closer to the point of use, making (among other benefits) programs more readable.
We will gloss over this distinction for the moment, however, and use C++ as it it were C for a little while.

11

1 // Program to add two integers typed by user at keyboard

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 int a, b, total;

8

9 cout << "Enter integers to be added:" << endl;

10 cin >> a >> b;

11 total = a + b;

12 cout << "The sum is " << total << endl;

13

14 return 0;

15 }

Line 1 At the top of the program are comments and instructions, which will not be executed.
Lines beginning with // indicate that the rest of the line is a comment. Comments are in-
serted by programmers to help people read and understand the program. Here the comment
states the purpose of the program. Comments are not executed by the computer. They can
in general be placed anywhere in a program.

Line 2 Lines beginning with # are instructions to the compiler’s preprocessor. The include
instruction says “what follows is a file name, find that file and insert its contents right here”.
It is used to include the contents of a file of definitions that may be used in the program.
Here the file iostream contains the definitions of some of the symbols used later in the
program (e.g. cin, cout).

Line 3 This is used to specify that names used in the program (such as cin and cout) are defined
in the standard C and C++ libraries. This is used to avoid problems with other libraries
that may also use these names.

Line 5 When this program is executed the instructions will be executed in the order they appear
in the main body of the program. The main body is delimited by main() and the opening
and closing braces (curly brackets). This line also specifies that main() will return a value
of type integer (int) on its completion (see line 14). Every C++ program, irrespective of
what it is computing, begins in this way.

Line 6 The opening (left) brace marks the beginning of the main body of the program. The main
body consists of instructions, which are declarations defining the data or statements on
how the data should be processed. All C++ declarations and statements must end with a
semicolon.

Line 7 This is a declaration of variables – like the cast of characters that precedes the script of
a play. The words a, b and total are the names of variables. A variable is a location in the
computer’s memory where a value can be stored for use by a program. We can assign and
refer to values stored at these locations by simply using the variable’s name. The declaration
also specifies the variables’ type. Here the variables a, b and total are declared to be data

12

of type int, which means these variables hold integer values. At this stage, the variables’
values are undefined.

Line 9 This statement instructs the computer to output the string of characters contained be-
tween the quotation marks, followed by a new line (endl). The location of the output is
denoted by cout, which in this case will be the terminal screen.

Line 10 This statement tells the computer to read data typed in at the keyboard (standard
input), denoted by cin. These values are assigned to (stored in) variables a and b.

Line 11 This statement is an arithmetic expression assigning the value of the expression a + b

(the sum of the integer values stored at a and b) to the variable total.

Line 12 Instructs the computer to display the value of the variable total.

Line 14 The last instruction of every program is the return statement. The return statement
with the integer value 0 (zero) is used to indicate to the operating system that the program
has terminated successfully.

Line 15 The closing (right) brace marks the end of the main body of the program.

Blank lines (Lines 4, 8 and 13) have been introduced to make the program more readable. They
will be ignored by the compiler. Whitespace (spaces, tabs and newlines) are also ignored
(unless they are part of a string of characters contained between quotation marks). They
too can enhance the visual appearance of a program.

Indentation It does not matter where you place statements, either on the same line or on separate
lines. A common and accepted style is that you indent after each opening brace and move
back at each closing brace.

3.3 The development environment and the development cycle

C++ programs go through 3 main phases during development: editing (writing the program),
compiling (i.e., translating the program to executable code and detecting syntax errors) and
running the program and checking for logical errors (called debugging).

1. Edit
The first phase consists of editing a file by typing in the C++ program with a text editor
and making corrections if necessary. The program is stored as a text file on the disk, usually
with the file extension .cc to indicate that it is a C++ program (e.g. SimpleAdder.cc).

2. Compile
A compiler translates the C++ program into machine language code (object code), which
it stores on the disk as a file with the extension .o (e.g. SimpleAdder.o). A linker then links
the object code with standard library routines that the program may use and creates an
executable image, which is also saved on disk, usually as a file with the file name without
any extension (e.g. SimpleAdder).

3. Execute
The executable is loaded from the disk to memory and the computer’s processing unit
(Central Processing Unit) executes the program one instruction at a time.

13

Part IB Computing Course 2013

PRACTICAL SESSION 1

4 Instructions

4.1 Objectives

• Familiarisation with the teaching system and C++ development environment

• Edit, compile and execute a working program

• Become familiar with the compiler’s messages

4.2 Getting started

Once you’ve found the Cavendish MCS/PWF computer room, find yourself a computer. You
should already have read sections 2–3 of the tutorial guide, so let’s get down to business:

• If the computer is running Windows when you are arrive, reboot it and select linux or unix
or ubuntu from the boot-loader.6

• If you are not familiar with Linux or other Unix systems, you might find it handy to note
the existence of section D.7 in the Appendix, which describes Thirty useful unix commands,
some of which are used by the tutorial.

• Log in. As you might have guessed, your username will be your CRSID (from the start
of your “@cam.ac.uk” e-mail address) while the password will be the MCS/PWF password
you were given centrally. The university computing service can reset it if you have forgotten
it.

We recommend what can at first appear to be an “old-fashioned” style of computer program-
ming, involving a lot of “typing commands in a terminal window”. There are many other ways
of learning to program, some of which are particularly handy if you want to design programs
with glossy graphical user interface7 however we want to expose you the bare bones of lower level
programming in this course. This style of working naturally leads into scripting and automa-
tion, and will provide you with skills you can use in many places. Though the terminal-based
computing model may seem strange to someone only familiar with “point and click” computing,
it is the model almost universally adopted for scientific programming requiring a high degree of
automation. Most research computing done in The Cavendish or in similar institutions would be
done in the manner described.

The place in which you type commands that the computer will then execute is called a “ter-
minal”. We will need to create (open) a terminal window so that we have somewhere to type out
commamds! Let’s do it. On the 2012 MCS/PWF machines, you open a terminal by clicking
on the terminal icon in the task bar. The icon is supposed to look like a black window or screen

6While you may do all the work for this course on any machine of your choice, such as your own laptop, or on
a College Computer, we only provide support for those of you using the MCS/PWF machines under linux.

7You may like to google “integrated development environments”, ‘IDEs, Netbeans, eclipse, ...

14

containing a white prompt at which commands will be typed. On many unix systems (but not the
current version in the PWF) a terminal can be obtained by right-clicking on the desktop to get
the context menu. Occasionally you have to drill down to find terminals under “programming” or
“system-tools” etc. If you cannot see how to open a terminal, ask a demonstrator or the person
sitting next to you. [Note: It is sometimes convenient to open more than one terminal at the same
time, doing certain kinds of things in one, and other kinds of things in the other.]

Once your terminal has opened you can run unix commands it. For example, you can type

whoami

in the terminal, and when you hit the ENTER key it should tell you the user-id you used to log in,
or you can type

cal

and after you hit ENTER you should see a calendar for the current month. Note that commands
take oprtional “arguments” (i.e. extra words after the command) that change what they do. For
example, typing

cal 1976

will show you a calendar for the year 1976 instead of for the current month. To get help on a
command (i.e. find out what it can do) some people use google, but it is often faster and easier
to use the man command (man is short for “manual” as in “hand book”). For example, to find out
what the cal command can do, and what options it can be given, type:

man cal

Press PageUp and PageDown to navigate the manual, and q to quit it.

A command you will use a lot is

ls

which should show you the name of the directory you are currently “in”.8 You might not have
any files yet, but you will have some soon. Also useful is

pwd

which should show you which directory you are currently in. Remember, if none of this is familiar
to you, stop this part of the session and go straight to section D.7 of the Appendix to get familiar
with unix commands. You can try typing all sorts of things in the terminal with little fear of
doing serious damage. The worst commands you could type are perhaps

rm -rf *

which would delete all the files in the current directory and any directories contained within it, or

rm *

8What windows calls a “folder” unix tends to call a “directory”. Two different words, but the concept is
identical. Note that slashes separating directories and files are forward slashes in unix /like/this whereas they
are \backwards\in\windows.

15

which would delete the files in the current directory only. Be very careful with the “rm”
command. So long as you don’t accidentally type either of those commands or variants
thereof, you should be able to experiment to your heart’s content.

Now something more practical. Let’s try to start a plain text editor - the sort of thing we
might use to type in and edit a C++ program. We don’t want to use a word processor like
Microsoft Word, since we are not interested in formatting, fonts and pictures, etc. Programs don’t
have those. We would also like to use an editor that knows a little bit about computer programs
so that it can be help us (e.g. by highlighting/colouring the different kinds of programmings in
differently to allow us to spot mistakes).

Unfortunately there are a huge number of different code-editing programs, each with different
features, new ones are being created all the time, and no one can agree which is the best. Here
are some examples. Type their names into the terminal window, and see which you like best:

jedit I’d never heard of this one until a couple of months ago, but it looks pretty friendly for new
users. It probably doesn’t have many high level features for experienced programmers, but
it starts up quickly, and does have pretty code formatting. If you are new, maybe try this
one first.

gedit Easy to use, but seems very “heavy”, takes a while to start, not overly specific to program-
ming, but found on many machines.

kate Similar to gedit.

emacs This is one of the two big grand-daddy programs – beloved by some programmers and hated
by others – it has been around for decades. Hugely configurable (but only in an obscure
language called “lisp”), it does at least have menus and knows what a mouse is, but the
menus are very quirkly. Expect to use the control and alt keys a lot.

vi or vim Older even than emacs, but my personal favourite, this program is so old that it doesn’t
have menus, doesn’t expect you to have a mouse, doesn’t expect you to even have arrow
keys, expects you to remember to type things like “[ESC]q![ENTER]” just to quit it, or
“[ESC]%:shCathDoghg[ENTER]” to do a search-and-replace from “Cat” to “Dog” everywhere
in the document being edited. But vim is hugely powerful, fast, elegant, and does what you
want (once you know how). Beginners should not try this program, except in a nuclear
winter, when it is the only editor that will still work.

To open jedit, type

jedit &

in a terminal. (Just typing jedit (without the & symbol at the end) would also start the editor,
but then your terminal would remain “locked up” waiting for the jedit process to finish. You
wouldn’t be able to start new commands in your termainl window until you had quit jedit.
Putting the & at the end of any unix command makes that command run ‘in the background’. In
effect, the & means “run the preceding command (in this case it is “start jedit”) and then give
me back the command prompt so that I can run more commands, or start more programs, while
that program (jedit) is still running”. In practice, the commands you are likely to want to run
“in the background” are editors and other terminals.)

16

4.3 Computing exercise – editing, compiling and executing a simple

program that adds numbers

With the aid of the instructions below, use an editor to type in the simple adder
program (SimpleAdder.cc) listed on page 11 and then compile and run it.

Then execute it with different numbers at the input and check that it adds up the
numbers correctly. What happens if you input two numbers with decimal places?

1. Create a new folder

You’ll be creating many files. To keep things tidy we suggest that you get into the habit of
creating a folder or sub-folder for each topic you tackle. So start as you mean to go on –
create a new Folder called, say, c++. You can do this in a terminal with the command

mkdir c++

after which you can change into that directory with

cd c++

2. Create and edit a new file

Create a new file called SimpleAdder.cc containing the listing from page 11. There are
two ways you can do this. You can either (i) start an editor without any arguments
(e.g. emacs &), then type in the text, then ”save As” SimpleAdder.cc, or (ii) you can
create an empty file of a given name with touch SimpleAdder.cc, then open this in an edi-
tor (e.g. emacs SimpleAdder.cc &), then edit it, and finally ”save” your changes as normal.
Option (ii) is slightly better, as the editor then knows you are typing a program even before
you save it, and so may be able to colour code your program sooner.

.cc extension informs the editor that the file will be a C++ program. Avoid putting
spaces into the file name. (If you really want to avoid typing, you can find the file in
/ux/PHYSICS/PART_1B/c++/examples/.)

One bit of emacs jargon: when you open or load a file, emacs calls it a “buffer”.

Emacs understands enough about C++ to be able to colour-code the text (comments in one
colour, keywords in another, etc). It also tries to indent your code in the approved style. To
ask Emacs to reindent a line you’ve edited, press the Tab key.

3. Compile

To compile your program, get your terminal into the right directory (that is, the same folder
where the .cc file is located) – type cd c++. Make sure you’ve saved the file, and type

g++ SimpleAdder.cc -o SimpleAdder

If all is well, an executable called SimpleAdder will have been created in your folder. (Type
ls to check.) If you have made a typing mistake, find the error and correct it using the
editor. Save the corrected file and try the compilation again.

17

4. Run

You can execute the program by typing ./SimpleAdder in a terminal. When the program
prompt appears, input the two integer numbers to the program by typing in two numbers
separated by spaces and followed by a return. The program should respond by printing out
the sum of the two numbers.

You can run the program as many times as you wish.

5. Modify

Modify the program in your editor to change its behaviour in some way. Recompile the
program. It’s a bit of a faff typing the whole command

g++ SimpleAdder.cc -o SimpleAdder

isn’t it? Try typing

make SimpleAdder

instead. ‘make’ is a smart unix program that knows how to do things. If you tell it to make
SimpleAdder and it notices that there’s a file called SimpleAdder.cc nearby, make guesses
the right thing to do.

4.4 Exploring compiler error messages

As you write computer programs in C++, you will repeatedly edit, compile, and run programs.
And sometimes the compiler will give you error messages. Often the messages can be quite cryptic.
It’s a good idea to make some deliberate errors, to get a feel for what your future errors might
mean. (Just as trainee doctors learn best by giving known diseases to patients.)

Grab a copy of the program /ux/PHYSICS/PART_1B/c++/examples/HelloFor.cc listed below.
(Also available from http://tinyurl.com/6ft9c4l)

// HelloFor.cc

#include <iostream>

using namespace std;

int main()

{

for (int i=1; i<=10; i++) {

cout << i << " hello world" << endl ;

if (i == 7) {

cout << "that was lucky!" << endl ;

} else {

cout << endl ;

}

}

}

You can copy it to your current directory (known as ‘.’) with the unix command:

18

cp /ux/PHYSICS/PART_1B/c++/examples/HelloFor.cc .

First compile this program and run it. Remember, once you’ve got the .cc file, you can compile
it with the command make HelloFor; run it with the command ./HelloFor

This program contains several C++ features that you haven’t learned yet, but don’t worry;
take a look at the program and the output, and see if you can figure out roughly what’s going on
in the lines following the word main. The program uses the special C++ commands for and if.

Once you have a feel for what the program is doing, modify the program and explore the
error-messages generated by the compiler when you compile programs with deliberate syntax
errors.

For example, try omitting a quote character ("), or inserting an extra quote character. Try
omitting the semicolon (;) at the end of a line. Try omitting or adding a left-brace ({) or right-
brace (}). How many different types of error can you get the compiler to produce? Make a list.
When the compiler gives error messages, it tells you the line-number where it finds an error. Is
this line-number always the same as the line number where you introduced the typing error?

Assuming you make a single-character typing error, how big can you make the distance between
the actual line-number of the error and the line-number where the compiler reports the error?

This knowledge of deliberately inflicted diseases and their symptoms should help you diagnose
future bugs.

4.5 Compiler warnings

What happens if you replace the equality test (i==7) by (i=7)? Make the change and see. Then
see if you can guess why the output is different. This is learning to program!

[By the way: if you want to stop a running program, hit ctrl-C.]
Now try compiling the program with the incorrect equals sign using this command:

g++ -Wall HelloFor.cc -o HelloFor

The flag -Wall means ‘Warnings (all)’. What difference does adding the flag -Wall make?
Suggested lesson: always compile with Warnings switched on.

4.6 Makefiles

You can switch the warning flags on automatically by telling make your own personal rules. Rules
for make are normally placed in a file called Makefile. You can grab an example like this:

cp /ux/PHYSICS/PART_1B/c++/examples/Makefile .

This Makefile tells make to use -Wall and a few other flags when compiling C++ programs.
When you’ve copied the Makefile to the directory where HelloFor.cc is located, you can type
make HelloFor again and see what happens for the two versions of the program. Notice that
make only actually runs the compiler if the source file HelloFor.cc has been touched and thus
needs recompiling.

4.7 Practice

The example SimpleAdder.cc showed you how to make a simple interactive program, which
prompts the user for an integer using the special command cin.

19

Modify HelloFor.cc using code from SimpleAdder.cc to make a program that first asks the
user to enter a lucky number (which plays the role of 7), then prints out the numbers 1 to 10,
highlighting the lucky number in some way when it is printed. Modify the program so that the
number of loops (currently 10) is also chosen interactively by the user.

20

4.8 Assessment

This course proceeds by self-assessment. Here is the part of SESSION 1 that you must submit for
assessment. You should do this bit by yourself. It’s fine to do all the other work in pairs, as long
as it is the weaker programmer who does the typing; but this bit, the assessed bit, you must do
alone.

Set yourself an additional programming task along the lines of the preceding tasks,
and solve it! Be imaginative!
[If that sounds “too vague” to you, go back and read the description of self assessment
in Section 1.4 of this document to remind yourself how to enter into the spirit of this
course.]

When you are done, create a file called README containing text something like the following:

I set myself the following additional goal (devised by me):

I decided to write a program to [BLAH BLAH BLAH] and extended

modified it to [ETC ETC ETC] until it could [BLAH BLAH BLAH].

My solution was in a file called ________.cc

If you are not confident that you have mastered the material in SESSION 1, seek help right
away. Seek help from fellow students, from demonstrators, or from the course wiki (see fron-
tispiece). If you are still stuck, email the lecturer. Otherwise, pat yourself on the back, and
submit your work as follows:

4.9 Instructions for submitting your self-assessed work

Submission of work will be by what is (hopefully) a simple web-based form. The link to the upload
form may be found under “Submitting asessed work” near the top of the course homepage, whose
url is on the cover of this document. [N.B. : The form is slightly modified this year, so it is not
impossible that teething problems will be found in the first few days. Report any problems with
the submission process to the lecturer as soon as possible.] The page should require you to supply:

• Your name. Hopefully you know what this is!

• Your email address. This is only used for the purposes of mailing you the upload confirma-
tion.

• The session for which you are submitting work, i.e. SESSION 1, SESSION 2, etc.

• A title for the task which you set yourself. This might be: “My toasted teacake timer” or “A
program to calculate prime numbers” or “My first foray into C++” or whatever describes
your program in a few words.

• A brief description of the task you set yourself. Into this box you should paste to contents of
the README file you created earlier. About 100 words should be sufficient, here. 1000 words
would be excessive! As an example you might paste in the text:

21

I set myself the following additional goal (devised by me):

I decided to write a program to print out the

complete works of Charles Dickens, and then

modified it by removing words repeatedly until

it could only print Hello World.

My solution was in a file called Dickens.cc and in addition

I created a file called MOO.TXT containing the word "cow"

of which I am moderately proud.

• Finally you will need to paste in the sourcecode of your program(s) that you wrote to solve
the problem(s) which you set for yourself. You might ask why this stage asks you to paste
sourcecode into a text-box, rather than getting you to upload the sourcecode files themselves
directly. The reason is that many people in previous years have managed to bungle their
file uploads by sending the executables they compiled from their sourcecode rather than
by sending the sourcecode itself!9 Executables cannot be read by examiners and therefore
cannot be marked. Sourcecode can be read by humans, and so can be marked. You get
marks in this course for examinable submissions. If your program is split across a number
of files, please paste them one after another into the sourcecode box on the web submission
form, separating each with a comment on a line of its own of the form:

// Here begins file _________.cc

and so on. While it is expected that the majority of the sourcecode submitted will be C++,
there may be circumstances later in term when you find it beneficial to submit one or two
additional short shell scripts, or scripts containing “gnuplot” commands, etc. This is fine,
so long as the content is “plain text”, and is human readable. Just past them all into the
box with the separators as indicated above. Do not attempt to submit pictures or any form
of binary or executable! Here you might imagine pasting in the following:

// Here begins file Dickens.cc

#include <iostream>

int main() {

std::cout << "Hello World" << std::endl;

return 0;

}

// Here begins file MOO.TXT

cow

If all is in order, after you click “Submit” you should be presented with a message
resembling that shown on the next page. You should also receive the confirmation via email
shortly after. If all that happens, your submission was a success and you can continue to the next
task. If you suspect any problem with submission, contact the lecturer.

If you finish SESSION 1 with time to spare, why not make a start on SESSION 2 ?

9This despite numerous reminders not to do this.

22

Thank you for submitting work for SESSION 1.

If you are on a shared computer, close this tab and restart

your browser after reading the confirmation below, to ensure

nobody else can submit work pretending to be you.

An email has been sent to you confirming your upload. If you

don’t receive an email within 24 hours it is likely that your

email address has been entered incorrectly. In this case please

send an email to cgl20@cam.ac.uk. The email should contain

the following text:

To: cgl20@cam.ac.uk,lester@hep.phy.cam.ac.uk

Subject: Confirmation of IB NST Physics B upload

for Compution course, SESSION 1

Dear Christopher Lester,

This is an automatically generated mail.

Thank you for submitting work for SESSION 1.

Your work was submitted at 14:51 and 01 seconds on 18/01/2011.

Your submission was entitled ‘Hello World’, and was described

as follows:

I set myself the following additional goal (devised by me):

I decided to write a program to print out the

complete works of Charles Dickens, and then

modified it by removing words repeatedly until

it could only print Hello World.

My solution was in a file called Dickens.cc and in addition

I created a file called MOO.TXT containing the word "cow"

of which I am moderately proud.

You submitted the following code:

// Here begins file Dickens.cc

#include <iostream>

int main() {

std::cout << "Hello World" << std::endl;

return 0;

}

// Here begins file MOO.TXT

cow

END OF SESSION 1

23

24

5 Variables and constants

Programs need a way to store the data they use. Variables and constants offer various ways to
represent and manipulate data. Constants, as the name suggests, have fixed values. Variables, on
the other hand, hold values that can be assigned and changed as the program executes.

5.1 Variable types

Every variable and constant has an associated type, which defines the set of values that can be
legally stored in it. Variables can be conveniently divided into integer, floating point, character
and boolean types for representing integer (whole) numbers, floating point numbers (real numbers
with a decimal point), the ASCII character set (for example ‘a’, ‘b’, ‘A’) and the boolean set
(true or false) respectively.

More complicated types of variable can be defined by a programmer, but for the moment, we
will deal with just the simple C++ types. These are listed below:

int to store a positive or negative integer (whole) number

float to store a real (floating point) number

bool to store the logical values true or false

char to store one of 256 character (text) values

5.2 Declaration of a variable

A variable is introduced into a program by a declaration, which states the variable’s type (i.e.,
int, float, bool, or char) and its name, which you are free to choose. A declaration must take
the form: “type variableName;” as is seen in these four examples:

int count;

float length;

char firstInitial;

bool switched_on;

or the form: “type variableName1, variableName2, . . . , variableNameN ;” as is seen in these two
examples:

float base, height, areaCircle;

int myAge, number_throws;

The variable name can be any sequence of characters consisting of letters, digits and under-
scores that do not begin with a digit. It must not be a special keyword of the C++ language and
cannot contain spaces. C++ is case-sensitive: uppercase and lowercase letters are considered to
be different. Good variable names tell you how the variable is used and help you understand the
flow of the program. If you want to use a name made of two or more words, you may indicate the
word boundaries by the underscore symbol (_) or by using an uppercase letter for the beginning
of words.

25

5.3 Storage of variables in computer memory

When you run your program it is loaded into computer memory (RAM) from the disk file. A
variable is in fact a location in the computer’s memory in which a value can be stored and later
retrieved. The variable’s name is merely a label for that location – a memory address. It may
help to think of variables as named boxes into which values can be stored and retrieved.

The amount of memory required for the variables depends on their type. This can vary between
machines and systems but is usually one byte (8 bits) for a char variable, four bytes (32 bits) for
an int and four bytes for a float. This imposes limits on the range of numbers assigned to each
variable. Integer numbers must have values in the range −2147483648 to 2147483647 (i.e., ±231).
Floats must be real numbers with magnitudes in the range 5.9 × 10−39 to 3.4 × 1038 (i.e., 2−127

to 2128). They are usually stored using 1 bit for the sign (s), 8 bits for the exponent (E) and 23
bits for the mantissa (m) such that the number is equal to s × m × 2E. The number of bits in
the mantissa determines the accuracy of addition and subtraction. If two numbers are added and
the smaller is smaller than than 2−23 ≈ 10−7 times the larger then the outcome of the addition
will simply be the larger number. This inaccuracy of addition can cause problems for numerical
methods such as dynamical simulations.

If an application requires very small or large numbers beyond these ranges, or greater precision,
C++ offers an additional data types for floating point numbers: double. Variables of type double
require double the amount of memory for storage but are useful when computing values to a high
precision. Some programmers follow the rule ‘always use doubles, not floats’.

6 Assignment of variables

6.1 Assignment statements

It is essential that every variable in a program is given a value explicitly before any attempt is
made to use it. It is also important that the value assigned is of the correct type.

The most common form of statement in a program uses the assignment operator, =, and
either an expression or a constant to assign a value to a variable:

variable = expression ;

variable = constant ;

The symbol of the assignment operator looks like the mathematical equality operator but in
C++ its meaning is different. The assignment statement indicates that the value given by the
expression on the right hand side of the assignment operator (symbol =) must be stored in the
variable named on the left hand side. The assignment operator should be read as “becomes equal
to” and means that the variable on the left hand side has its value changed to the value of the
expression on the right hand side. (In other programming languages the assignment operator is
represented by := or <-.) For the assignment to work successfully, the type of the variable on the
left hand side should be the same as the type returned by the expression.

The statement in line 11 of the simple adder program is an example of an assignment statement
involving an arithmetic expression.

total = a + b;

It takes the values of a and b, sums them together and assigns the result to the variable total.
As discussed above, variables can be thought of as named boxes into which values can be stored.

26

Whenever the name of a box (i.e., a variable) appears in an expression, it represents the value
currently stored in that box. When an assignment statement is executed, a new value is dropped
into the box, replacing the old one. Thus, line 10 of the program means “get the value stored in
the box named a, add it to the value stored in the box named b and store the result in the box
named total.”

The assignment statement:

total = total + 5;

is thus a valid statement since the new value of total becomes the old value of total with 5
added to it. Remember the assignment operator (=) is not the same as the equality operator in
mathematics (represented in C++ by the operator ==).

6.2 Arithmetic expressions

Expressions can be constructed out of variables, constants, operators and brackets. The commonly
used mathematical or arithmetic operators include:

operator operation

+ addition
- subtraction
* multiplication
/ division
% modulus (modulo division)

The definitions of the first four operators are as expected. The modulo division (modulus)
operation with an integer is the remainder after division, e.g. 13 mod 4 (13%4) gives the result 1.

Although addition, subtraction and multiplication are the same for both integers and reals
(floating point numbers), division is different. If you write (see later for declaration and initiali-
sation of variables on the same line):

float a=13.0, b=4.0, result;

result = a/b;

then a real division is performed and 3.25 is assigned to result. A different result would have
been obtained if the variables had been defined as integers:

int i=13,j=4, result;

result = i/j;

here result is assigned the integer value 3.
The remainder after integer division can be determined by the modulo division (modulus)

operator, %. For example, the value of i%j would be 1. Be careful when using division and
modulo division with negative integers. What is -13/4? What is -13%4? It’s easy to get tripped
up because there are two possible conventions, and each programming language makes its own
choice. In most languages the division and remainder operators will be consistent in the sense
that

for all a and b, (a/b)*b + a%b = a.

but this still permits two conventions. In C++, -13/4 is -3 and -13%4 is -1.

27

6.3 Precedence and nesting parentheses

The use of parentheses (brackets) is advisable to ensure the correct evaluation of complex expres-
sions. Here are some examples:

4 + 2 * 3 equals 10
(4+2) * 3 equals 18
-3 * 4 equals −12
4 * -3 equals −12 (but it’s safer to use parentheses: 4 * (-3))
0.5(a+b) illegal (missing multiplication operator)
(a+b) / 2 equals the average value of a and b if they are of type float

The order of execution of mathematical operations is governed by rules of precedence. These
are similar to those of algebraic expressions. Parentheses are always evaluated first, followed by
multiplication, division and modulus operations. Addition and subtraction are last. The best
thing, however, is to use parentheses (brackets) instead of trying to remember the rules.

6.4 Initialisation of variables

Variables can be assigned values when they are first defined (called initialisation):

type variable = literal constant ;

float ratio = 0.8660254;

int myAge = 19;

char answer = ’y’;

bool raining = false;

The terms on the right hand side are called constants. Note the ASCII character set is repre-
sented by type char. Each character constant is specified by enclosing it between single quotes
(to distinguish it from a variable name). Each char variable can only be assigned a single char-
acter. These are stored as numeric codes. (The initialisation of words and character strings will
be discussed later in the section on advanced topics.)

You may assign the value of an expression too –

type variable = expression ;

float product = factor1*factor2;

– as long as the variables in the expression on the right hand side have already been declared and
had values assigned to them. When declaring and initialising variables in the middle of a program,
the variable exists (i.e., memory is assigned to store values of the variable) up to the first right
brace that is encountered, excluding any intermediate nested braces, {}.

6.5 Expressions with mixed variable types

At a low level, a computer is not able to perform an arithmetic operation on two different data
types of data. In general, only variables and constants of the same type should be combined in
an expression. The compiler has strict type checking rules to check for this.

In cases where mixed numeric types appear in an expression, the compiler replaces all variables
with copies of the highest precision type. It promotes them so that in an expression with integers
and float variables, the integer is automatically converted to the equivalent floating point number
for the purpose of the calculation only. The value of the integer is not changed in memory. Hence,
the following is legal:

28

int i=13;

float x=1.5;

x = (x * i) + 23;

Here the values of i and 23 are automatically converted to floating point numbers and the result
is assigned to the float variable x. However the expression i/j here:

int i=13,j=4;

float result;

result = i/j;

is evaluated by integer division and therefore produces the incorrect assignment of 3.0 for the
value of result. You should try to avoid expressions of this type but occasionally you will need to
compute a fraction from integer numbers. In these cases the compiler needs to be told specifically
to convert all the variables on the right-hand side of the assignment operator to type float or
double. This is done by casting.

In the C++ language this is done by using the construction:

static_cast<type > expression

For example:

int count=13, N=400;

float fraction;

fraction = static_cast<float>(count)/N;

converts (casts) the value stored in the integer variable count into a floating point number, 13.0.
The integer N is then promoted into a floating point number to give a floating point result.

6.6 Declaration and initialisation of symbolic constants

Like variables, symbolic constants have types and names. A constant is declared and initialised
in a similar way to variables but with a specific instruction to the compiler that the value cannot
be changed by the program. The values of constants must always be assigned when they are
created.

const type constant-name = literal constant ;

const float Pi = 3.14159265;

const int MAX = 10000;

The use of constants helps programmers avoid inadvertent alterations of information that
should never be changed. The use of appropriate constant names instead of using the numbers
also helps to make programs more readable.

b

7 Simple input and output

C++ does not, as part of the language, define how data is written to a screen, nor how data is read
into a program. This is usually done by “special variables” (objects) called input and output
streams, cin and cout, and the insertion and extraction operators. These are defined in the
header file called iostream. To be able to use these objects and operators you must include the
file iostream at the top of your program by including the following line of code before the main
body in your program.

29

#include <iostream>

followed by

using namespace std;

[Note: In principle you can omit the “using namespace std;” line, but then you need to re-
member to always type “std::cout” and “std::cin” and “std::endl” further down this page,
where you would otherwise been able to get away with typing “cout” and “cin” and “endl” in
the manner the handout shows. For the moment you can think of the “using namespace std;”
line as saying something like

“I’m lazy! Please put ‘std::’ in front of anything that needs it!”.10

You will see some programs written with one style, and others with the other.]

7.1 Printing to the screen using output stream

A statement to print the value of a variable or a string of characters (set of characters enclosed
by double quotes) to the screen begins with cout, followed by the insertion operator, (<<),
which is created by typing the “less than” character (<) twice. The data to be printed follows the
insertion operator.

cout << "text to be printed ";

cout << variable ;

cout << endl;

The symbol endl is called a stream manipulator and moves the cursor to a new line. It is
an abbreviation for end of line.

Strings of characters and the values of variables can be printed on the same line by the repeated
use of the insertion operator. For example

int total = 12;

cout << "The sum is " << total << endl;

prints out

The sum is 12

and then moves the cursor to a new line.

7.2 Input of data from the keyboard using input stream

The input stream object cin and the extraction operator, (>>), are used for reading data from
the keyboard and assigning it to variables.

cin >> variable ;

cin >> variable1 >> variable2 ;

Data typed at the keyboard followed by the return or enter key is assigned to the variable. The
value of more than one variable can be entered by typing their values on the same line, separated
by spaces and followed by a return, or on separate lines.

10More formally, programmers say “std is the namespace in which “cout” and “cin” and “endl” are declared.
Google “c++ namespace” to find out more about namespaces.

30

8 Control Statements

In most of the programs presented above, the statements have been sequential, executed in the
order they appear in the main program.

In many programs the values of variables need to be tested, and depending on the result,
different statements need to be executed. This facility can be used to select among alternative
courses of action. It can also be used to build loops for the repetition of basic actions.

8.1 Boolean expressions and relational operators

In C++ the testing of conditions is done using boolean expressions, which yield bool values
that are either true or false. The simplest and most common way to construct such an expression
is to use the so-called relational operators.

x == y true if x is equal to y

x != y true if x is not equal to y

x > y true if x is greater than y

x >= y true if x is greater than or equal to y

x < y true if x is less than y

x <= y true if x is less than or equal to y

Be careful to avoid mixed-type comparisons. If x is a floating point number and y is an integer
the equality tests will not work as expected.

8.2 Compound boolean expressions using logical operators

If you need to test more than one relational expression at a time, it is possible to combine the
relational expressions using the logical operators.

Operator C++ symbol Example

AND &&, and expression1 && expression2

OR ||, or expression1 || expression2

NOT ! !expression

The meaning of these will be illustrated in examples below.

8.3 The IF selection control statement

The simplest and most common selection structure is the if statement, which is written in a
statement of the form:

if(boolean-expression) statement ;

The if statement tests for a particular condition (expressed as a boolean expression) and only
executes the following statement(s) if the condition is true. An example follows of a fragment of
a program that tests if the denominator is not zero before attempting to calculate fraction.

if(total != 0)

fraction = counter/total;

31

If the value of total is 0, the boolean expression above is false and the statement assigning
the value of fraction is ignored.

If a sequence of statements is to be executed, this can be done by making a compound
statement or block by enclosing the group of statements in braces.

if(boolean-expression)

{
statements ;

}

An example of this is:

if(total != 0)

{
fraction = counter/total;

cout << "Proportion = " << fraction << endl;

}

8.4 The IF/ELSE selection control statement

Often it is desirable for a program to take one branch if the condition is true and another if it is
false. This can be done by using an if/else selection statement:

if(boolean-expression)

statement-1 ;

else

statement-2 ;

Again, if a sequence of statements is to be executed, this is done by making a compound
statement by using braces to enclose the sequence:

if(boolean-expression)

{
statements ;

}
else

{
statements ;

}

An example occurs in the following fragment of a program to calculate the roots of a quadratic
equation.

32

// testing for real solutions to a quadratic

d = b*b - 4*a*c;

if(d >= 0.0)

{
// real solutions

root1 = (-b + sqrt(d)) / (2.0*a);

root2 = (-b - sqrt(d)) / (2.0*a);

real_roots = true;

}
else

{
// complex solutions

real = -b / (2.0*a);

imaginary = sqrt(-d) / (2.0*a);

real_roots = false;

}

If the boolean condition is true, i.e. (d ≥ 0), the program calculates the roots of the quadratic
as two real numbers. If the boolean condition is false, then a different sequence of statements is
executed to calculate the real and imaginary parts of the complex roots. Note that the variable
real_roots is of type bool. It is assigned the value true in one of the branches and false in
the other.

8.5 ELSE IF multiple selection statement

Occasionally a decision has to be made on the value of a variable that has more than two pos-
sibilities. This can be done by placing if statements within other if-else constructions. This
is commonly known as nesting and a different style of indentation is used to make the multiple-
selection functionality much clearer. This is given below:

if(boolean-expression-1)

statement-1 ;

else if(boolean-expression-2)

statement-2 ;
...

else

statement-N ;

For compound statement blocks, braces must be used. Here follows a dull example of ELSE IF
multiple selection in use:

33

// Program to assess the user’s for suitability as a major college donor:

// Find out how many houses are owned:

int howManyHousesSheOwns;

cout << "How many houses do you own?" << endl;

cin >> howManyHousesSheOwns;

// Give feedback

if (howManyHousesSheOwns<=0)

{

cout << "And have you come far today?" << endl;

}

else if (howManyHousesSheOwns<10)

{

cout << "Student hardship funds make a real difference to

many students lives!" << endl;

}

else if (howManyHousesSheOwns<100)

{

cout << "Have I told you about the business park the college

would like to build in the Cotswolds?" << endl;

}

else

{

// I’m speechless!

}

Note that since whitespace outside of strings is irrelevant in C++, you also see formatting like
the following, which is entirely equivalent and preferred by many:

// Program to assess the user’s for suitability as a major college donor:

// Find out how many houses are owned:

int howManyHousesSheOwns;

cout << "How many houses do you own?" << endl;

cin >> howManyHousesSheOwns;

// Give feedback

if (howManyHousesSheOwns<=0) {

cout << "And have you come far today?" << endl;

} else if (howManyHousesSheOwns<10) {

cout << "Student hardship funds make a real difference to

many students lives!" << endl;

} else if (howManyHousesSheOwns<100) {

cout << "Have I told you about the business park the college

would like to build in the Cotswolds?" << endl;

} else {

// I’m speechless!

}

34

8.6 SWITCH multiple selection statement

Instead of using multiple if/else statements C++ also provides a special control structure,
switch.

For an integer variable x, see footnote11, the switch(x) statement tests whether x is equal
to the constant values x1, x2, x3, etc. and takes appropriate action. The default option is the
action to be taken if the variable does not have any of the values listed.

switch(x)

{
case x1 :

statements1 ;

break;

case x2 :

statements2 ;

break;

case x3 :

statements3 ;

break;

default:

statements4 ;

break;

}

The break statement causes the program to proceed to the first statement after the switch

structure. Note that the switch control structure is different to the others in that braces are
not required around multiple statements. If you forget to put in one of the break statements,
then execution can continue from one case statement into another. Sometimes you intend this
to happen, but more often than not it is not intended and a source of many bugs. Be careful to
include all the break statements unless you are very sure there are some you do not need.

The following example uses the switch statement to produce a simple calculator that branches
depending on the value of the operator being typed in. The operator is read and stored as a
character value (char). The values of char variables are specified by enclosing them between
single quotes. The program is terminated (return -1) if two numbers are not input or the simple
arithmetic operator is not legal. The return value of −1 instead of 0 signals that an error took
place.

11The variable x must be either an integer type, or one that can evaluate to an integer. In practice this means
you can successfully use switch on ints and chars, since single characters are represented by their so-called ASCII
code and thus are on an equal footing as integers – indeed are the most basic of the integer types. Do not attempt
to use switch on a variable which is a float or a double or a string. It almost certainly won’t work, and even if
it appears to work, it could fail at some later point.

35

// CalculatorSwitch.cc

// Simple arithmetic calculator using switch() selection.

#include <iostream>

using namespace std;

int main()

{

float a, b, result;

char operation;

// Get numbers and mathematical operator from user input

cin >> a >> operation >> b;

// Character constants are enclosed in single quotes

switch(operation)

{

case ’+’:

result = a + b;

break;

case ’-’:

result = a - b;

break;

case ’*’:

result = a * b;

break;

case ’/’:

result = a / b;

break;

default:

cout << "Invalid operation. Program terminated." << endl;

return -1;

}

// Output result

cout << result << endl;

return 0;

}

36

8.7 The WHILE repetition control statement

Repetition control statements allow the programmer to specify actions that are to be repeated
while some condition is true. In the while repetition control structure:

while(boolean-expression)

{
statements ;

}

the boolean expression (or ‘condition’) is tested and the statements enclosed by the braces are
executed repeatedly while the condition given by the boolean expression is true. The loop termi-
nates as soon as the boolean expression is evaluated and tests false. Execution will then continue
on the first line after the closing brace. You can have as many statements as you like inside the
loop, including one or zero.

Note that if the boolean expression is initially false the statements are not executed. In the
following example the boolean condition becomes false when the first negative number is input at
the keyboard. The sum is then printed.

// AddWhilePositive.cc

// Computes the sum of numbers input at the keyboard.

// The input is terminated when input number is negative.

#include <iostream>

using namespace std;

int main()

{

float number, total=0.0;

cout << "Input numbers to be added: " << endl;

cin >> number;

// Stay in loop while input number is positive

while(number >= 0.0)

{

total = total + number;

cin >> number;

}

// Output sum of numbers

cout << total << endl;

return 0;

}

37

8.8 Increment and decrement operators

Increasing and decreasing the value of an integer variable is a commonly used method for counting
the number of times a loop is executed. C++ provides a special operator ++ to increase the value
of a variable by 1. The following are equivalent ways of incrementing a counter variable by 1.

count = count + 1;

count++;

The operator -- decreases the value of a variable by 1. The following are both decrementing
the counter variable by 1.

count = count - 1;

count--;

C++ also provides the operators += and -=, which increase and decrease the value of a variable
by an expression. For example:

count -= 5;

total += x + y;

the first line decreases count by 5; the second increases total by the value of the expression x+y.

8.9 The FOR repetition control statement

Often in programs we know how many times we will need to repeat a loop. A while loop could
be used for this purpose by setting up a starting condition; checking that a condition is true; and
then incrementing or decrementing a counter within the body of the loop. For example we can
adapt the while loop in AddWhilePositive.cc so that it executes the loop N times and hence
sums the N numbers typed in at the keyboard.

i=0; // initialise counter

while(i<N) // test whether counter is still less than N

{
cin >> number;

total = total + number;

i++; // increment counter

}

The initialisation, test and increment operations of the while loop are so common when executing
loops a fixed number of times that C++ provides a concise representation – the for repetition
control statement:

for(int i=0; i<N; i++)

{
cin >> number;

total = total + number;

}

This control structure has exactly the same effect as the while loop listed above.

38

The following is a simple example of a for loop with an increment statement using the incre-
ment operator to calculate the sample mean and variance of N numbers. The for loop is executed
N times.

//ForStatistics.cc

//Computes the sample mean and variance of N numbers input at the keyboard.

//N is specified by the user but must be 10 or fewer in this example.

#include <iostream>

using namespace std;

int main()

{

int N=0;

float number, sum=0.0, sumSquares=0.0;

float mean, variance;

// Wait until the user inputs a number in correct range (1-10)

// Stay in loop if input is outside range

while(N<1 || N>10)

{

cout << "Number of entries (1-10) = ";

cin >> N;

}

// Execute loop N times. Start with i=1; increment i at end of each loop;

// exit loop when i = N+1.

for(int i=1; i<=N; i++)

{

cout << "Input item number " << i << " = ";

cin >> number;

sum = sum + number;

sumSquares = sumSquares + number*number;

}

mean = sum/float(N);

variance = sumSquares/float(N) - mean*mean;

cout << "The mean of the data is " << mean <<

" and the variance is " << variance << endl;

return 0;

}

A more general form of the for repetition control statement is given by:

for(statement1 ; boolean-expression ; statement3)

{
statement2 ;

}

39

The first statement (statement1) is executed and then the boolean expression (condition) is
tested. If it is true statement2 (which may be more than one statement) and statement3 are
executed. The boolean expression (condition) is then tested again and if true, statement2 and
statement3 are repeatedly executed until the condition given by the boolean expression becomes
false.

On page 38, we gave an example where we executed a loop N times using

for(int i=0; i<N; i++) { ... }
In the ForStatistics.cc example, we used this form to loop N times.

for(int i=1; i<=N; i++) { ... }
Notice the two differences between these two commands.

The first example starts out with i=0 and continues looping as long as i<N, which means that
the values that i takes on in the loop are 0, 1, . . .N-1. This is a very common style in C++ – to
start at zero, and go up to N − 1.

The second example starts out with i=1 and continues looping as long as i<=N, which means
that the values that i takes on in the loop are 1, 2, . . .N. After we exit the loop, i will be equal
to N+1.

Beware! One of the most common programming errors is to mix up the ‘zero-offset’ convention
and the ‘one-offset’ convention.

8.10 The DO. . .WHILE repetition control statement

Both the while and the for repetition methods check the condition before every iteration. This
means that it’s possible that the body of the loop may never be executed – if the condition is
already not true at the start. Sometimes this is exactly what you want. For example, if you want
to find how many times a positive integer n is exactly divisible by 2, you could use:

i=0; while((n%2)==0) { n /= 2; i ++ ; }

or

i=0; for(;(n%2)==0;) { n /= 2; i ++ ; }

On the other hand, sometimes you want the body of the loop always to be executed at least
once, and you want the condition to be tested only before subsequent iterations. In such cases,
you can use the construction

do

{
body statements ;

} while (boolean-expression) ;

Notice the final semicolon after the condition, in constrast to for and while.
A good example of this is a ‘please enter a number’ dialogue, where the question must be asked

once, and perhaps repeated until the user supplies a valid answer.

do {

cout << "Enter a number between 1 and 10:" ;

cin >> N ;

} while((N<1) || (N>10)) ;

In English, this says ‘ask for a number N , repeatedly, as long as the number N is outside the
range’. Remember, the two-pipes symbol ‘||’ is the logical operator OR.

40

Part IB Computing Course 2013

PRACTICAL SESSION 2

9 Instructions

9.1 Objectives

By now you should feel able to:

• Declare and define variables and constants

• Assign values to variables and manipulate them in arithmetic expressions

• Write the value of variables to the screen

• Read in the value of variables from the keyboard

• Write simple programs that use loops.

You will now use these skills to write and execute the program described in the following
computing exercise (section 9.2). Details and hints on the writing and debugging of the programs
are given in section 9.3 and beyond.

9.2 Computing Exercises

Modify the SimpleAdder.cc program from earlier so that it converts a physical quantity
in one set of units to another set of units and displays the result as a floating point
number. For example, read in a time in years, and display that time in seconds; or read
in a power in kWh per day and display it in W.

Write a program that uses a for loop to sum the first N odd numbers, where N is a
number supplied by the user. When it has computed the sum, your program should
check that

N
∑

i=1

(2i − 1) = N2

Write a program that uses a loop to print out the sequence of floating-point numbers:

1, 1 +
1

1
, 1 +

1

1 + 1
1

, 1 +
1

1 + 1
1+ 1

1

, 1 +
1

1 + 1
1+ 1

1+ 1
1

, . . .

(Print out the first 20 terms.) If you would like to see more digits of precision than the
default (6), see the output formatting instructions on page 85.

41

Modify your program so that it reads in a number x from the user, then prints out the
sequence of floating-point numbers:

x, x +
1

x
, x +

1

x + 1
x

, x +
1

x + 1
x+ 1

x

, x +
1

x + 1
x+ 1

x+ 1
x

, . . .

What does this sequence

2, 2 +
1

2
, 2 +

1

2 + 1
2

, 2 +
1

2 + 1
2+ 1

2

, 2 +
1

2 + 1
2+ 1

2+ 1
2

, . . .

tend to?

Write a program that uses a loop to print out the sequence of floating-point numbers:

√
1,

√

1 +
√

1,

√

1 +
√

1 +
√

1,

√

1 +

√

1 +
√

1 +
√

1, . . .

What does this sequence tend to? The square root function in C++ is called sqrt(....).
To tell the C++ compiler that you want to use maths functions such as sqrt you must put
#include <cmath> at the top of your program, before or after the #include <iostream>

statement.

Optional: Write a program that prints out all prime numbers less than or equal to N .
Hint: use the modulo division operator (%).

9.3 Tips

1. Start with a working program

The easiest way to write programs is to modify the existing programs. Make small modifi-
cations, compiling whenever possible.

2. Making modifications

• Mentally check that the program is doing what it is required to do.

• Check that your program is laid out correctly with indentation at the beginning and
semi-colons at the end of each statement.

• Include comment statements to help you and others understand what the program is
doing.

3. Checking syntax

Compile, using g++ -Wall or make. If there are no syntax errors, the program will compile
successfully. One or more errors will cause the compiler to print out error or warning
messages, which will be listed along with program line numbers indicating where the error
occurred. Remember the tips on page 19 – always use warnings when compiling. And
save typing by using make.

42

4. Compilation errors

Don’t be worried by the number of error messages. The compiler is trying to give as much
help as it can. You can get a lot of error messages from just one mistake so always look
at the first error message first.

Find the line in the file to which it refers (there is a Goto-line option on the editor Edit

menu) and try to correct it. Often, the compiler will report that the error is in a line just
after the one in which there was a mistake. If you cannot spot the mistake straight away,
look at neighbouring lines.

The most common errors will be due to undeclared variables or variables incorrectly declared,
and missing or incorrect punctuation. If you are feeling stuck, a really good way to track
down the cause of an error message is to explain to a friend, step by step, how you modified
a compilable program to get the program with the compilation error.

5. Debugging tips

You don’t need to close the editor each time you save the file and recompile; you should
have only one copy of Emacs running at any time.

Continue with this compile/debug/edit procedure until your program compiles successfully.

6. Finding logical errors

Run your program and check that it gives the correct answer.

9.4 Assessment

Here’s the self-assessed bit.

Set yourself an additional programming task along the lines of the preceding
tasks, and solve it by yourself. Then submit your task statement and the sourcecode
of your solution in the same manner as described for SESSION 1.

If you finish SESSION 2 with time to spare, why not make a start on SESSION 3 ?

END OF SESSION 2

43

Part IB Computing Course 2013

PRACTICAL SESSION 3

10 Instructions

10.1 Objectives

Here we will test our understanding of:

• Boolean expressions with relational operators

• Simple control structures for selection and repetition

You will now use these skills in the following computing exercises. You’ll also learn to use the
graphing program, gnuplot.

10.2 Computing Exercises

Reminder: programming in pairs is a very good idea, as long as the weaker programmer does the
typing.

10.2.1 Simple Monte Carlo

Monte Carlo methods use random numbers to generate approximate answers to mathematical
questions. A good Monte Carlo method has the property that the more random numbers are
used, the more accurate the answer becomes.

The program RandDemo6.cc on the next page shows how to generate N pairs (x, y) uniformly
distributed in the unit square, and test whether each pair is in the unit circle or not. The variable
N is supplied by the user on the command line. (I recommend this non-interactive method of
getting inputs from the user, rather than cin.) This program has several other new features,
some of which we’ll explain later. For the moment, don’t worry about the lines with #include,
#define, using, or sscanf.

Make sure you understand everything inside the main for loop.
The program uses the ’ternary conditional operator’ “?” in the assignment

outcome = (x*x + y*y < 1.0) ? 1 : 0

In general,

outcome = (expression1) ? expression2 : expression3

means that outcome is set equal to expression2 if expression1 is true, and to expression3 if
expression1 is false.

Rewrite the program so as to use an if-else in place of this ternary conditional. Explain to
a friend how the program works.

When RandDemo6 runs, the last two columns of its output contain the values of N and 4.0 * fraction_i

What do you expect the value of 4.0*fraction_in to do as N gets big? (If necessary,
recall one of the demos in the introductory lectures of the course.)

44

// RandDemo6.cc

// usage:

// ./RandDemo6 [<N> [<seed>]]

// example:

// ./RandDemo6 (Run with default value of N and seed)

// ./RandDemo6 30 9237832 (Run with N=30 and seed=9237832)

// * uses random() to get a random integer

// * gets parameters from command line

#include <iostream>

#include <cstdlib>

#include <cstdio>

using namespace std;

#define ranf() \

((double)random()/(1.0+(double)0x7fffffff)) // Uniform from interval [0,1)

// obtained by division by 2**31

int main(int argc, char* argv[])

{

int outcome, N=10, count_in=0 , seed=123 ;

double fraction_in ;

if(argc>1) {

sscanf(argv[1], "%d", &N) ; // put the first command-line argument in N

}

if(argc>2) {

sscanf(argv[2], "%d", &seed) ; // put the 2nd argument in seed

}

// Write out a summary of parameters

cout << "# " << argv[0] << " N=" << N << " seed=" << seed << endl ;

// Initialise random number generator

srandom(seed);

// Perform N experiments.

for(int n=1; n<=N; n++) {

double x = ranf(); // ranf() returns a real number in [0,1)

double y = ranf();

outcome = (x*x + y*y < 1.0) ? 1 : 0 ;

count_in += outcome ;

//Integer variables must be converted (cast) for correct division

fraction_in = static_cast<double>(count_in)/n;

cout << "Location" << outcome << "\t" << x << "\t" << y << "\t"

<< count_in << "\t" << n << "\t" << 4.0 * fraction_in << endl;

}

return 0;

}

45

When you are running a program in a terminal (also known as a shell), the symbol > can be
used to redirect the output of the program to a file. Send the output of RandDemo6 to a file, using,
say,

./RandDemo6 20 2389 > tmpfile

Start gnuplot by typing gnuplot in a terminal. When it has started, gnuplot gives you a prompt,
which looks like this: gnuplot>. Plot the generated points (x, y) using, for example,

gnuplot> plot ’tmpfile’ u 2:3 w points

What we mean here is “please type plot ’tmpfile’ u 2:3 w points”. gnuplot has many
options for making nice plots. Type help to get help. You can change the options interactively –
for example,

gnuplot> set size square

gnuplot> replot

– but I recommend writing the gnuplot commands in a plain text file – say splat.gnu – and then
loading the commands thus

gnuplot> load ’splat.gnu’

Putting the commands in a file has the advantage that you then have a permanent record of how
a plot was generated, should you want to replot or modify it in the future.

Unix provides many utilities for dealing with textfiles. When you are doing scientific com-
putation, we recommend that you write the results of the computation out in plain text files,
then handle subsequent inspection or processing of the results with other programs – rather than
writing a single monolithic program that does everything. Here’s an example. First run in your
terminal:

./RandDemo6 200 1234321 > tmpfile

– which puts 200 outcomes in tmpfile. Now in your terminal run

grep Location1 tmpfile > file1

grep -v Location1 tmpfile > file0

The first grep command looks at every line in tmpfile and prints out the lines that contain the
string Location1. The output went into file1 because of the redirect (>). You can check what
happened with the command:

more file1

The second command uses grep with a special flag -v, which means ‘invert the match’. Every
line in tmpfile that does not contain the string Location1 gets printed.

Use file0, file1, and gnuplot to make a pretty picture that you could use to explain to
someone how this Monte Carlo method can be used to estimate π. By the way, gnuplot can
easily plot functions as well as datafiles. For example,

gnuplot> plot sqrt(1-x*x) with line 3

46

plots the function
√

1 − x2 with a line of colour ‘3’ (which might be blue). gnuplot always calls
the variable on the horizontal axis x. You can grab a screenshot of your pretty picture with the
terminal command: import pretty.png or by typing gnome-screenshot in a terminal. Note
that these are terminal commands, not gnuplot commands!

Having generated N points, what’s the estimate of π? How close do you expect this estimate to
be to the true value? Write down the expected error σ(N) of the estimate as a function
of N .

Use gnuplot to plot π ± σ(N) as a function of N .
You can define and plot functions in gnuplot like this:

gnuplot> f(N) = 1.0/N

gnuplot> set xrange [1:200]

gnuplot> plot pi+f(x) with lines linetype 5, pi-f(x) with lines linetype 5

NB: the function f(N) is not the answer to the question above.
Now superpose your plot of the theoretical prediction about the estimate [π ± σ(N)] on the

Monte Carlo estimate (column 6) as a function of N . The estimate can be plotted with

plot ’tmpfile’ u 5:6 with linespoints

Does the Monte Carlo method work as expected? How many points are required to get
an answer that’s probably accurate to 1%? Do a couple of runs of that length, putting the
outputs in separate files (say tmpfile1 and tmpfile2), and see what happens. Zoom in on the
interesting yrange. (You may be able to zoom in to a plot by right-clicking on the gnuplot display.
Alternatively, use set yrange [3.1:3.2].)

The output files may get rather large, and slow to plot. Modify your C++ program so
that rather than printing a line for every outcome, it prints a gradually decreasing
fraction of the lines as n increases.

How many points are required to get an answer that’s probably accurate to 2 decimal places?
To 0.1%? Make a prediction, then check it.

Exercise: Now write a program that estimates ln(2) to 2 decimal places by a
Monte Carlo method.
[Hint: you may find the function y = 1/x interesting to think about.]

10.3 Assessment

If you solved the previous ln(2) exercise by yourself, then please submit your so-
lution to it as you piece of assessed work. It is important that you briefly describe
your approach, and include a statement that you made the solution yourself. Submit
this in the usual manner.
If on the other hand, you didn’t solve the ln(2) exercise by yourself, please set
yourself an additional programming task along the lines of the preceding tasks,
and solve it by yourself. Then submit your task statement and your solution to that
task instead, making sure to describe it well.

10.3.1 More efficient Monte Carlo (optional exercise)

How can you modify the Monte Carlo method to reduce the number of random numbers required
to obtain ln(2) to a given accuracy?

47

10.3.2 Comment

A Monte Carlo approach seems a pretty goofy way to evaluate an integral, but in high-dimensional
problems in statistical physics, quantum physics, and statistical inference, Monte Carlo methods
are very widely used. See Information Theory, Inference, and Learning Algorithms, David J.C.
MacKay, Cambridge University Press (2003) – available free online at www.inference.phy.cam.
ac.uk/mackay/itila or tinyurl.com/d6vck – for further reading about modern Monte Carlo
methods.

10.3.3 Testing for randomness (optional exercise)

Returning to the points (x, y) that you plotted a couple of pages ago: do you think these plot-
ted points (x, y) look like perfectly random points? If you think not, define a measure of non-
randomness that captures what you think is wrong with the so-called random points, and write a
program to measure this quantity for the points generated by the random() routine.

10.3.4 Estimating the value of π II (optional exercise)

Write a program to print out the first N terms in the series:

N
∑

i=1

1

i2
= 1 +

1

4
+

1

9
+

1

16
+ . . . +

1

N2

The number of terms, N , is to be input by the user at the keyboard or on the command line.
Modify your program so that for each value of the index i, it evaluates the sum of the first i

terms.
The sum of this series can be shown (Leonhard Euler (1707-1783)) to converge to π2/6. Make

another modification to your program so that at each iteration the estimate of π is printed along-
side the sum. [To use the mathematical library function sqrt() you must include the header
file cmath at the top of your program.] Plot the estimate as a function of N . How good is the
estimate of π after N=100 iterations? How many iterations are needed to get an estimate of π that
is accurate to 2 decimal places?

If you finish SESSION 3 with time to spare, why not make a start on SESSION 4 ?

END OF SESSION 3

48

11 Functions

Computer programs that solve real-world problems are usually much larger than the simple pro-
grams discussed so far. To design, implement and maintain larger programs it is necessary to break
them down into smaller, more manageable pieces or modules. Dividing the problem into parts and
building the solution from simpler parts is a key concept in problem solving and programming.

In C++ we can subdivide the functional features of a program into blocks of code known as
functions. In effect these are subprograms that can be used to avoid the repetition of similar
code and allow complicated tasks to be broken down into parts, making the program modular.

Until now you have encountered programs where all the code (statements) has been written
inside a single function called main(). Every executable C++ program has at least this function.
In the next sections we will learn how to write additional functions.

11.1 Function definition

Each function has its own name, and when that name is encountered in a program (the function
call), execution of the program branches to the body of that function. After the last statement of
the function has been processed (the return statement), execution resumes on the next line after
the call to the function.

Functions consist of a header and a body. The header includes the name of the function and
tells us (and the compiler) what type of data it expects to receive (the parameters) and the type
of data it will return (return value type) to the calling function or program.

The body of the function contains the instructions to be executed. If the function returns a
value, it will end with a return statement. The following is a formal description of the syntax for
defining a function:

return-value-type function-name (parameter-list)

{
declaration of local variables ;

statements ;

return return-value ;

}

The syntax is very similar to that of the main program, which is also a function. main() has
no parameters and returns the integer 0 if the program executes correctly. Hence the return value
type of the main() function is int.

int main()

{
declarations ;

statements ;

return 0;

}

49

11.2 Example of function definition, declaration and call

Let us first look at an example of program written entirely in the function main() and then we
will modify it to use an additional function call.

We illustrate this with a program to calculate the factorial (n!) of an integer number (n) using
a for loop to compute:

n! = 1 · 2 · 3 . . . (n − 2) · (n − 1) · n
// MainFactorial.cc

// Program to calculate factorial of a number

#include <iostream>

using namespace std;

int main()

{

int number=0, factorial=1;

// User input must be an integer number between 1 and 10

while(number<1 || number>10)

{

cout << "Enter integer number (1-10) = ";

cin >> number;

}

// Calculate the factorial with a FOR loop

for(int i=1; i<=number; i++)

{

factorial = factorial*i;

}

// Output result

cout << "Factorial = " << factorial << endl;

return 0;

}

Even though the program is very short, the code to calculate the factorial is best placed inside a
function since it is likely to be executed many times in the same program or in different programs
(e.g., calculating the factorials of many different numbers, computing binomial coefficients and
permutations and combinations).

50

// FunctionFactorial.cc

// Program to calculate factorial of a number with function call

#include <iostream>

using namespace std;

// Function declaration (prototype)

int Factorial(int M);

int main()

{

int number=0, result;

// User input must be an integer number between 1 and 10

while(number<1 || number>10)

{

cout << "Integer number = ";

cin >> number;

}

// Function call and assignment of return value to result

result = Factorial(number);

//Output result

cout << "Factorial = " << result << endl;

return 0;

}

// Function definition (header and body)

// An integer, M, is passed from caller function.

int Factorial(int M)

{

int factorial=1;

// Calculate the factorial with a FOR loop

for(int i=1; i<=M; i++)

{

factorial = factorial*i;

}

return factorial; // This value is returned to caller

}

Three modifications to the program have been made to incorporate a function. If we look at
the modified sample program, FunctionFactorial.cc, we find:

51

1. The declaration of the function above the main program. The declaration (also known as
the prototype) tells the compiler about the function and the type of data it requires and will
return on completion.

2. The function call in the main body of the program determines when to branch to the
function and how to return the value of the data computed back to the main program.

3. The definition of the function Factorial() below the main program. The definition con-
sists of a header, which specifies how the function will interface with the main program,
and a body, which lists the statements to be executed when the function is called.

Before a function can be used it must be declared (0), usually at the top of the program file.12

When the function name is encountered in the main body of the program (1), execution branches
to the body of the function definition (2). Copies of the values of function arguments are stored
in the memory locations allocated to the parameters. The statements of the function are then
executed (3) up to the first return statement when control returns to the main body (4). Any
value returned by the function is stored by an assignment statement. Execution in the main body
is resumed immediately after the function call (5).

// Function declaration
int Factorial(int M);

int main()
{

 // Function call
 result = Factorial(number);

 return 0;

0

}

// Function definition
int Factorial(int M)
{

 return factorial;
}

1

3

4

5

2

11.3 Function header and body

The function is defined below the body of main(). The header in this example:

int Factorial(int M)

12Strictly speaking, it’s not always essential to declare a function before it is used, as long as the compiler
encounters the function’s definition before the function is used.

52

indicates that the Factorial() function expects to be passed an integer value (the parameter
type) from the main body of the program and that the value passed will be stored locally in a
variable named M (the formal parameter name). The return value type of the function is also int

in this example, indicating that at the end of executing the body of the function, an integer value
will be returned to the statement in which the function was called. Functions that do not return
a value have return value type void.

The body of the function computes the factorial of a number in exactly the same way as in
the example with only a main() function. The execution of the function terminates with a return
statement :

return factorial;

which specifies that the value stored in the function variable factorial should be passed back to
the calling function.

11.4 Function declaration

Every function should be declared before it is used. The declaration tells the compiler the name,
return value type and parameter types of the function. In this example the declaration:

int Factorial(int M);

tells the compiler that the program passes the value of an integer to the function and that the
return value must be assigned to an integer variable. The declaration of a function is called its
prototype, which means the “first” time the function is identified to your program.

The function prototype and the function definition must agree exactly about the return value
type, function name and the parameter types. The function prototype is usually a copy of the
function header followed by a semicolon to make it a declaration and placed before the main
program in the program file.

11.5 Function call and execution

The function definition is entirely passive. By itself it does nothing unless instructed to execute.
This is done by a statement in the main program called the function call.

For example the statement:

result = Factorial(number);

calls the function Factorial() and passes a copy of the value stored in the variable, number. When
the function is called, computer memory is allocated for the parameter, M, and the value passed is
copied to this memory location. Memory is also allocated to the (local) variables factorial and
i. The statements of the function are then executed and assign a value to the variable factorial.
The return statement passes this value back to the calling function. The memory allocated to the
parameters and local variables is then destroyed. The value returned is assigned to the variable on
the left-hand side, result, in the expression used to call the function. The net effect of executing
the function in our example is that the variable result has been assigned the value of the factorial
of number.

A function can be called any number of times from the same or different parts of the program.
It can be called with different parameter values (though they must be of the correct type). For
example the following fragment of code can be used to print out the factorials of the first 10
integers:

53

for(int i=1; i<=10; i++)

{
result = Factorial(i);

cout << i << "! = " << result << endl;

}

and:

binomialCoefficient = Factorial(n)/(Factorial(k) * Factorial(n-k));

can be used to compute the binomial coefficient:

n!

k!(n − k)!

(though this is not the best way to compute a binomial coefficient!).

11.6 Function arguments

The names of variables in the statement calling the function will not in general be the same as the
names in the function definition, although they must be of the same type. We often distinguish
between the formal parameters in the function definition (e.g. M) and the actual parameters
for the values of the variables passed to the function (e.g. number in the example above) when it
is called.

Function arguments (actual parameters) can include constants and mathematical expressions.
For example the following statement assigns the value 24 to the variable result.

result = Factorial(4);

The function arguments can also be functions that return an appropriate value (for example
Factorial(Factorial(4)), although this concise style makes the code harder to read and debug.

54

11.7 Another example

Here is is another example of the declaration, definition and call of a function, AreaTriangle(), in
a program to calculate the area of a regular hexagon inscribed in a circle of radius input by the user.

// HexagonValue.cc

// Program to calculate the area of a regular hexagon inscribed in a

// circle as sum of areas of 6 triangles by calling AreaTriangle()

#include <iostream>

using namespace std;

// AreaTriangle function prototype

float AreaTriangle(float base, float height);

int main()

{

float side, segmentHeight, hexagonArea;

float cosTheta = 0.866025;

cout << "Program to calculate the area of a hexagon" << endl;

cout << "Enter side of hexagon: ";

cin >> side;

// Base of triangle is equal to side, height is side*cos(30)

segmentHeight = side*cosTheta;

// Function returns area of segment. 6 segments for total area.

hexagonArea = 6.0f * AreaTriangle(side,segmentHeight);

cout << "Area of hexagon = " << hexagonArea << endl;

return 0;

}

// AreaTriangle function definition

float AreaTriangle(float base, float height)

{

float area;

area = (base*height)/2.0f;

return area;

}

The statement:

hexagonArea = 6.0f * AreaTriangle(side,segmentHeight);

calls the function to calculate the area of a triangle with base and height given by the values stored
in side and segmentHeight and then assigns the value of 6 times the area (the return value of
the function) to the variable hexagonArea. It is therefore equivalent to the following:

55

segmentArea = AreaTriangle(side,segmentHeight);

hexagonArea = 6.0f*segmentArea;

Note that 6.0f has been used instead of plain 6.0 to suppress a compiler warning about the
possibility that we might care whether 6.0 was represented as a single-precision or dobule-precision
number. The ‘f’ says we want it to be a single-precision float. But we don’t really care here.

11.8 Passing by value or reference

There are two ways to pass values to functions. Up to now we have looked only at examples of
passing by value. In the passing by value way of passing parameters, a copy of the variable
is made and passed to the function. Changes to that copy do not affect the original variable’s
value in the calling function. This prevents the accidental corrupting of variables by functions
and so is often the preferred method for developing correct and reliable software systems. One
disadvantage of passing by value however, is that only a single value can be returned to the caller.
If the function has to modify the value of an argument or has to return more than one value, then
another method is required.

An alternative uses passing by reference in which the function is told where in memory the
data is stored (i.e., the function is passed the memory address of the variables). In passing the
address of the variable we allow the function to not only read the value stored but also to change
it.

Here’s an analogy. When you tell a friend about a webpage on the course wiki, you can either
print out a copy of the webpage for them; or you can send them the URL of the webpage. Giving
them the copy is ‘pass by value’; giving them the URL is ‘pass by reference’. When you ‘pass by
value’, they can manipulate their copy of the page, and their manipulations have no effect on the
original page. When you ‘pass by reference’, they will be able to edit the contents of the webpage.

There are two ways to pass a parameter by reference. The simple (and rather subtle) way is
described here in the example SortReference.cc. An alternative approach to passing by reference
is demonstrated on the web in SortReference2.cc. (http://tinyurl.com/38fp68)

To indicate that a function parameter is passed by reference the symbol & is placed next to the
variable name in the parameter list of the function definition and prototype (but not the function
call). Inside the function the variable is treated like any other variable. Any changes made to it,
however, will automatically result in changes in the value of the variable in the calling function.

A simple example of passing by reference is given below for a function that swaps the values
of two variables in the calling function’s data by reading and writing to the memory locations of
these variables. Note that the parameters are mentioned only by name in the function call. This
appears to be the same as calling by value. The function header and prototype, however, must use
the & symbol by the variable name to indicate that the call is by reference and that the function
can change the variable values.

56

// SortReference.cc

// Program to sort two numbers using call by reference.

// Smallest number is output first.

#include <iostream>

using namespace std;

// Function prototype for call by reference

void swap(float &x, float &y);

int main()

{

float a, b;

cout << "Enter 2 numbers: " << endl;

cin >> a >> b;

if(a>b)

swap(a,b);

// Variable a contains value of smallest number

cout << "Sorted numbers: ";

cout << a << " " << b << endl;

return 0;

}

// A function definition for call by reference

// The variables x and y will have their values changed.

void swap(float &x, float &y)

// Swaps x and y data of calling function

{

float temp;

temp = x;

x = y;

y = temp;

}

12 Math library and system library built-in functions

Functions come in two varieties. They can be defined by the user or built in as part of the
compiler package. As we have seen, user-defined functions have to be declared at the top of the
file. Built-in functions, however, are declared in header files using the #include directive at the
top of the program file, e.g. for common mathematical calculations we include the file cmath with
the #include <cmath> directive, which contains the function prototypes for the mathematical
functions in the cmath library.

57

12.1 Mathematical functions

Math library functions allow the programmer to perform a number of common mathematical
calculations:

Function Description

sqrt(x) square root
sin(x) trigonometric sine of x (in radians)
cos(x) trigonometric cosine of x (in radians)
tan(x) trigonometric tangent of x (in radians)
exp(x) exponential function
log(x) natural logarithm of x (base e)
log10(x) logarithm of x to base 10
fabs(x) absolute value (unsigned)
ceil(x) rounds x up to nearest integer
floor(x) rounds x down to nearest integer
pow(x,y) x raised to power y

12.2 Random numbers

Other header files that contain the function prototypes of commonly used functions include
cstdlib and ctime. These contain functions for generating random numbers and for manipulating
time and dates respectively. If you want to use these functions then you would need to have lines
like #include <cstdlib> or #include <ctime> at the top of your program.

The function random() randomly generates an integer between 0 and the maximum value that
can be stored as an integer. Every time the function is called:

randomNumber = random();

a different number will be assigned to the variable randomNumber. Each number is supposed to
have an equal chance of being chosen each time the function is called. The details of how the
function achieves this will not be discussed here.

Before a random number generator is used for the first time it should be initialised by giving
it a number called the seed. Each seed will result in a different sequence of numbers. The function
srandom() initialises the random number generator, random(). It must be called with an arbitrary
integer parameter (the seed). If you want fresh random numbers every time, you can conveniently
generate a fresh seed by using the value returned by the system clock function time() with the
parameter NULL. This returns the calendar time in seconds, converted to an integer value. The
following call, which is usually used only once, can be used to initialise the random number
generator:

srandom(time(NULL));

Alternatively, if you want to make random experiments that can be exactly reproduced, you might
prefer to give the user explicit control of the seed.

The RandDemo6.cc program used these system functions. Here’s another example.

58

// Function to simulate rolling a single 6-sided die.

// Function takes no arguments but returns an integer.

// Each call will randomly return a different integer between 1 and 6.

int RollDie()

{

int randomNumber, die;

randomNumber = random();

die = 1 + (randomNumber % 6);

return die;

}

12.3 How can I find out what library a function is in?

Sometimes you know the name of a function you want to use (e.g. cosh) but don’t know the name
of the library it might be in. There is a simple unix terminal command that will tell you straigt
away. For example, to find out which library cosh(x) is in, and how to use it, type man 3 cosh

into a terminal window, and you should see a response looking something like this:

COSH(3) Linux Programmers Manual COSH(3)

NAME

cosh, coshf, coshl - hyperbolic cosine function

SYNOPSIS

#include <math.h>

double cosh(double x);

float coshf(float x);

long double coshl(long double x);

Link with -lm.

DESCRIPTION

The cosh() function returns the hyperbolic cosine of x,

which is defined mathematically as (exp(x) + exp(-x)) / 2.

CONFORMING TO

SVr4, POSIX, 4.3BSD, C99. The float and the long double

variants are C99 requirements.

SEE ALSO

acosh(3), asinh(3), atanh(3), ccos(3), sinh(3), tanh(3)

2002-07-27 COSH(3)

59

which indicates not only the name of the header file you will have to include (in this case “math.h”)
but also supplied info on related functions that are in the same library. Press Q to quit viewing
this manual page. Note that in C++ programs, you often see cmath instead of math.h. You can
use them interchangably, but the former is to be preferred in C++ programs, and the latter in C
programs.

60

Part IB Computing Course 2013

PRACTICAL SESSION 4

13 Instructions

13.1 Objectives

After reading through sections 7 and 8 of the tutorial guide and studying and executing the C++
programs in the examples (boxed) you should now be familar with

• Definition, declaration and calling of functions

• Passing values to and returning values from functions

• Math and system library functions

You will now use these skills in the following computing exercises. The information in sections C
and D will help you to think about what is involved in producing a working solution. Suggestions
for the algorithms (mathematical recipes) and their implementation in C++ are provided.

13.2 Computing Exercises

13.2.1 Finding a solution to f(x) = 0 by iteration

Write a function that computes the square root of a number in the range 1 < x ≤ 100
with an accuracy of 10−4 using the bisection method. The Math library function must
not be used.

Test your function by calling it from a program that prompts the user for a single
number and displays the result.

Modify this program so that it computes the square roots of numbers from 1 to 10. Com-
pare your results with the answers given by the sqrt() mathematical library function.

13.3 The bisection method

The problem of finding the square root of a number, c, is a special case of finding the root of a
non-linear equation of the form f(x) = 0 where f(x) = c − x2. We would like to find values of x
such that f(x) = 0.

A simple method consists of trying to find values of x where the function changes sign. We
would then know that one solution lies somewhere between these values. For example: If f(a) ×
f(b) < 0 and a < b then the solution x must lie between these values: a < x < b. We could then
try to narrow the range and hopefully converge on the true value of the root. This is the basis of
the so-called bisection method.

The bisection method is an iterative scheme (repetition of a simple pattern) in which the
interval is halved after each iteration to give the approximate location of the root. After i iterations
the root (let’s call it xi, i.e., x after i iterations) must lie between

ai < xi ≤ bi

61

and an approximation for the root is given by:

pi =
(ai + bi)

2

where the error between the approximation and the true root, ǫi, is bounded by:

ǫi = ±(bi − ai)

2
= ±(b1 − a1)

2i
.

At each iteration the sign of the functions f(ai) and f(pi) are tested and if f(ai) × f(pi) < 0
the root must lie in the half-range ai < x < pi. Alternatively the root lies in the other half (see
figure). We can thus update the new lower and upper bound for the root:

if f(ai) × f(pi) < 0 then ai+1 = ai and bi+1 = pi

else ai+1 = pi and bi+1 = bi

The bisection method is guaranteed to converge to the true solution but is slow to converge
since it uses only the sign of the function. An alternative is the Newton–Raphson method, which
takes into account the gradient of the function, f ′(x), and only needs one starting guess for the
root. In the Newton–Raphson method the next approximation to the root is given by:

pi+1 = pi −
f(pi)

f ′(pi)
.

13.4 Notes on algorithm and implementation

0 1 2 3 4 5 6 7 8 9 10 11
−60

−40

−20

0

20

40

60

pa b

f(p)

f(a)

f(b)

c

The square root of a number will be found by calling a user-defined function to implement
one of the iterative algorithms (i.e., repetition of a pattern of actions) described above. Review
tutorial section 11, which describes how to define a function and how to pass parameters to the
function and return values to the main program.

62

You are required to define a function to find the square root of a number c, i.e., find the zeroes
of f(x) = c − x2. Your solution is to be accurate to 5 decimal places. Since the number input by
the user is between 1 and 100 the root will satisfy 0 < x ≤ 10 and a valid initial guess for the
lower and upper bound for the solution will always be a1 = 0.1 and b1 = 10.1. The error after
i iterations will be ±10

2i . To produce a solution that is accurate to 5 decimal places we will need
more than 20 iterations.

1. Getting Started:

Start with a very simple program that prompts the user for the value of a real number in
the range 1 < c ≤ 100. Alternatively, steal RandDemo6.cc’s method of getting the float
c from the command-line (something like sscanf(..., "%f", &c), and not forgetting to
#include the relevant headers).

2. Function definition

You are required to define a function, MySquareRoot(), which is passed the number (i.e., a
single parameter of type float) and returns the approximate value of its square root (i.e.,
return value type is float).

The C++ code for the function should be placed below the body of main(). Begin the
implementation of the function by typing in the function header and the opening and closing
braces. For example:

float MySquareRoot(float square)

{

// Body of function definition

}

3. Function body and implementation of algorithm

Inside the body of the function (i.e., after the opening brace):

(a) You will need to declare local variables to store the values of ai, bi, pi and f(ai)×f(pi).
For example: lower, upper, root and sign. Initialize the values of lower and upper to
0.1 and 10.1 respectively. (A possible additional programming goal would be to make a
smarter initialization method such that square roots can be found for any c in a larger
range.)

(b) Set up a loop using the while or for repetition control statements to repeat the fol-
lowing algorithm (bisection method) at least 20 times.

(c) In each execution of the loop:

• Estimate the value of the root as the average of the lower and upper bounds. Store
this value in variable root.

• Evaluate the function at the current value of lower (i.e., ai) and at the current
estimate of the root, (pi).

• Evaluate f(ai) × f(pi) and store this value in variable sign.

• Depending on the value of sign update the lower and upper bounds by the bisection
method described above.

(d) The function must end with a return statement to pass back the approximate value
of the square root.

63

4. Function declaration:

Declare the function by including the function prototype before main(). Compile your
program to make sure you have not made any typing or syntax errors.

5. Testing of function:

Call your function from your program with the (actual) parameter, e.g. number. The return
value of the function is to be assigned to a variable (e.g. squareRoot) which should also be
declared in main():

squareRoot = MySquareRoot(number);

Test your function creatively.

6. Loop

Set up a loop in the main routine to call the function 10 times to calculate the square roots
of the integers 1, 2, . . . 10.

13.5 Assessment

Set yourself an additional programming task along the lines of the preceding
tasks, and solve it by yourself. Then submit your task statement and your solution
in the usual manner.

If you finish SESSION 4 with time to spare, why not start to prepare for the remaining two
assessments? They are harder than those we have done so far, and gain more credit.

END OF SESSION 4

64

13.6 ‘Have I done enough?’

If you find yourself asking “Have I done enough for this week’s session?”, the answer is “please
self-assess!” Do you feel you’ve got a firm grasp of all the highlighted concepts? If so, then that’s
enough. One thing to check is “have I developed my understanding of this week’s physics topic?”
That’s one of the aims this term – to get fresh insights into orbits, dynamics, waves, statistical
physics, pressure, temperature, and so forth.

65

More programming concepts
The new programming tools we’ll use now are arrays (great for representing vectors, or lists of
similar things); structures (great for organizing things that belong together, such as a particle’s
position, mass, and velocity, or a vector and its range of indices); and how to modularize your
code.

We now cover the following topics.

arrays how to allocate memory on the fly for
things like vectors

modularizing chopping up your code so you can reuse it
elegantly

structures and packages how to use structures in your elegant mod-
ules

formatted output getting the number of decimal places that
you want

14 Arrays

More realistic programs need to store and process a substantial number of items of data. The
types of variable considered so far have been simple data types capable of holding a single value.

Arrays are a consecutive group of variables (memory locations) that all have the same type and
share a common name. In many applications, arrays are used to represent vectors and matrices.
We now describe a simple approach to arrays. A more elegant approach will be described in due
course.

14.1 Declaration

An array is declared by writing the type, followed by the array name and size (number of elements
in the array) surrounded by square brackets.

type array-name [number-elements];

float position[3];

int count[100];

char YourSurname[50];

The above examples declare position to be an array that has 3 elements which are real
numbers (e.g., 3D vector). YourSurname contains 50 characters (e.g., storing a surname) and
count is an array of 100 integer values.

An array can have any legal variable name but it cannot have the same name as an existing
variable. The array’s size is fixed when the array is declared and remains the same throughout
the execution of the program.

14.2 Array elements and indexing

To refer to a particular element of the array we specify the name of the array and the position
number or index of the particular element. Array elements are counted from 0 and not 1. The

66

first elements will always have position and index 0 and the last element will have index number
(position) N-1 if the array has N elements.

The first elements in the arrays declared above are referred to by position[0], count[0] and
YourSurname[0] respectively. The last element of an array declared as array[N] with N elements
is referred to by array[N-1]. The last elements of the example arrays above are therefore referred
to by position[2], count[99] and YourSurname[49] respectively.

The index of an array can also be an expression yielding an integer value.

14.3 Assigning values to array elements

Elements of an array can be treated like other variables but are identified by writing the name of
the array followed by its index in square brackets. So for instance the statements:

marks[1] = 90.0;

scaled[1] = (marks[1] - mean)/deviation;

show how the second element of an array called marks is assigned a value and how the second
element of the array scaled is assigned the result of a calculation using this element value.

What is useful about arrays is that they fit well with the use of loops. For example:

int count[100];

for(int i=0; i< 100; i++)

{

count[i] = 0;

}

can be used to initialise the 100 elements of an integer array called count by setting them all
to 0. The following program uses arrays and loops to calculate the scalar product of two vectors
input by the user.

67

// ScalarProduct.cc

// Calculating the scalar product between vectors input by user

#include <iostream>

using namespace std;

int main()

{

float vectorA[3], vectorB[3], scalar=0.0;

// Get input vectors from user.

cout << "Enter elements of first vector: " << endl;

for(int i=0;i<3;i++)

{

cin >> vectorA[i];

}

cout << "Enter elements of second vector: " << endl;

for(int i=0;i<3;i++)

{

cin >> vectorB[i];

}

// Calculate scalar product.

for(int i=0;i<3;i++)

{

scalar = scalar + (vectorA[i] * vectorB[i]);

}

// Output result.

cout << "The scalar product is " << scalar << endl;

return 0;

}

Note: care must be taken never to try to assign array elements that are not defined. For example,
there’s nothing to stop you from including the statement cin >> vectorA[723] in your program.
The program will compile and will execute, but the consequences of such assignments on the
execution of the program are unpredictable and very difficult to detect and debug. It is left to
the programmer to check that the array is big enough to hold all the values and that undefined
elements are not read or assigned. Assigning array values outside the permitted range is probably
one of the most common programming errors. An object-oriented approach to programming,
which we’ll discuss in due course, can reduce the risk of such programming errors. There are also
debugging utilities, which can help spot memory mismanagement. We’ll discuss these later in the
course.

68

14.4 Passing arrays to functions

14.4.1 Function definition and prototype

To pass an array to a function, the array type and name is included in the formal parameter list
(i.e., in the function definition and prototype parameter list). The following is a function header
for a function that receives an array of real numbers.

void NormaliseData(float arrayName[], int arraySize)

14.4.2 Function call

In C++ the entire array is passed using the array name (and no square brackets). This looks
similar to pass by value but is actually a pass by reference. The actual parameter passed to the
function, the name of the array, is in fact the memory address of the first element of the array.
The important point to note here is that (as with passing by reference) when you pass an array to
a function you will be able to access and modify the values of any of its elements. Arrays cannot
be passed by value.

In the following call to the NormaliseData() function, a 300 element array, marks, is passed
to the function:

NormaliseData(marks, 300);

The function can read and change the value of any of the elements of the array.
RotationMatrix.cc on page 72 is a working example.
If you need to pass only a single element of the array and you want to take advantage of the

simplicity and safety of passing by value, this can be done, for example, by having marks[2] as
an actual parameter in the call to the function. For example in the following function:

float ProcessIndividual(float mark); //Function prototype

scaledMark = ProcessIndividual(marks[2]); //Function call

the call passes the value of marks[2], which it stores as a local variable (mark). Changes to the
value of the local variable will not affect the value in the calling function.

Another way to enforce safe passing of an array that should not be modified by a function is
to declare the array const from the point of view of the function, as illustrated by this function:

void print1(const float array[] , int N) {

for (int n = 0 ; n < N ; n ++) {

cout << array[n] << " " ;

}

cout << endl;

}

14.5 Character arrays

A common use of the one-dimensional array structure is to create character strings. A character
string is an array of type char that is terminated by the null terminator character, ’\0’. The
symbol \0 looks like two characters but represents one. It is called an escape sequence.

A character array can be initialised on declaration by enclosing the characters in double quotes.
The null character will be automatically appended.

69

// CharacterArray.cc

// Initialisation of a character array and passing to functions

#include <iostream>

using namespace std;

void PrintExtensionNumber(char phoneNumber[]);

int main()

{

char phone[11];

char prompt[] = "Enter telephone number: ";

// Get phone number

cout << prompt ;

cin >> phone ;

// If first two digits are 3 then it is a university number.

if(phone[0]==’3’ && phone[1]==’3’)

{

cout << "University extension ";

PrintExtensionNumber(phone);

}

else

{

cout << "Dial 9-" << phone[0];

PrintExtensionNumber(phone);

}

return 0;

}

// Function to print out a phone number, ignoring the first digit.

void PrintExtensionNumber(char phoneNumber[])

{

for(int i=1; phoneNumber[i] != ’\0’; i++)

{

cout << phoneNumber[i];

}

cout << endl;

}

14.6 Multi-dimensional arrays

The arrays that we have looked at so far are all one-dimensional arrays, however, C++ allows
multidimensional arrays. For example to declare a two-dimensional array to represent the data of
a 3 by 4 matrix called myMatrix we could use the following statement and syntax:

70

float myMatrix[3][4];

You may think of the element with indices i and j, myMatrix[i][j], as the matrix element
in the i row and j column, but remember that array indices always start from 0.

The following program illustrates the passing of arrays to and from functions. The function
ComputeMatrix() assigns values to the elements of a 2 by 2 rotation matrix. The actual parame-
ters passed are the name of the rotation matrix (i.e., memory address of the first element) and an
expression to determine the rotation angle in radians. The element matrix[0][1] is the element
of the first row and second column of the matrix.

The function RotateCoordinates() computes the coordinates of a point after transformation
by the following equation:

[

x
′

y
′

]

=

[

cosθ sinθ
−sinθ cosθ

] [

x
y

]

It is passed the name of the matrix and the name of the initial position vector and transformed
position vector.

71

// RotationMatrix.cc

// Program to calculate coordinates after rotation

#include <iostream>

#include <cmath>

using namespace std;

void ComputeMatrix(float matrix[2][2], float angle);

void RotateCoordinates(float rot[2][2], float old[2], float transformed[2]);

int main()

{

float angle, point[2], transformedPoint[2];

float rotation[2][2];

// Get angle of rotation and initial position from input.

cout << "Enter magnitude of rotation in xy plane in degrees: " ;

cin >> angle;

cout << "Input x and y coordinates: " << endl;

cin >> point[0] >> point[1];

// Calculate coefficients of rotation matrix and transform point.

// The value of pi is declared in math as M_PI.

ComputeMatrix(rotation, (M_PI*angle/180.0));

RotateCoordinates(rotation, point, transformedPoint);

// Output result.

cout << "The (x,y) coordinates in the rotated system are ";

cout << transformedPoint[0] << " and " << transformedPoint[1] << endl;

return 0;

}

void ComputeMatrix(float matrix[2][2], float angle)

{

matrix[0][0] = cos(angle);

matrix[0][1] = sin(angle);

matrix[1][0] = -sin(angle);

matrix[1][1] = cos(angle);

}

void RotateCoordinates(float rot[2][2], float old[2], float transformed[2])

{

transformed[0] = (rot[0][0] * old[0]) + (rot[0][1] * old[1]);

transformed[1] = (rot[1][0] * old[0]) + (rot[1][1] * old[1]);

}

72

14.7 Structures

Arrays are examples of data structures in which all the elements must be of the same type. C++
allows the user to define more general data structures, using the keyword struct to define a
collection of related variables of any type, called a structure. For example:

struct StudentType{

char name[100];

int age;

int entryYear;

float marks[5];

char college[20];

};

defines a new data type called StudentType, which is made up of five fields or data members: two
integers, an array of floating point numbers and two character arrays. The body of the structure
definition is delineated by braces and must end with a semicolon. The definition is placed at the
top of a program file, between include directives and the function prototypes.

Once a structure has been defined, the structure name can be used to declare objects of that
type. This is analogous to declaring simple variables.

StudentType person;

StudentType firstYear[400];

declares the variable person and the one-dimensional array, firstYear[400] to be of type
StudentType.

Data members of a structure are accessed and assigned values by specifying the field (data
member) name using the dot operator, for example:

person.age = 19;

firstYear[205].entryYear = 1999;

Structures have the advantage that, by collecting related items together, they can be manipu-
lated as single items. For example whole structures can be copied using an assignment statement
(unlike arrays):

firstYear[24] = person;

and manipulated efficiently with repetition control statements:

for(int i=0; i< 400; i++)

{

firstYear[i].entryYear = 1999;

}

14.8 Enumerated constants

There are many examples of data that are not inherently numeric. For example, the days of the
week, months of the year, colours. We can refer to such data types by defining symbolic constants
and using these symbolic constants in expressions in the program. For example:

const int Mon=0, Tue=1, Wed=2, Thu=3, Fri=4, Sat=5, Sun=6;

73

C++ provides a more convenient way for the user to define a new data type. The C++ enumer-
ation statement:

enum Days {Thu, Fri, Sat, Sun, Mon, Tue, Wed};

creates a new variable type with legal values Thu, Fri, . . . , Wed, which are in fact symbolic
constants for 0, 1, . . . , 6. The enumeration is simply assigning an integer to a symbolic constant.
The definition makes it convenient to work with days of the week.

Variables can be declared as having the user-defined type and this will ensure that they are
only assigned one of the legal values. The following statement declares the variable day to have
the user-defined type, Days.

Days day;

15 Reading and writing to files

Storage of data in variables and arrays is temporary. Files are used for permanent retention of
large amounts of data. We will now show how C++ programs can process data from files. To
perform file processing in C++, the header file <fstream> must be included. The latter includes
the definitions of ifstream and ofstream classes (special structure definitions). These are used
for input from a file and output to a file.

The following command opens the file called, name.dat, and reads in data, which it stores
sequentially in variables a and b:

ifstream fin;

fin.open("name.dat");

fin >> a >> b;

The object called fin is declared to be of type (class) ifstream. The member function called
open() is used to associate the file name, name.dat, with the object name, fin.

In a similar way we can write data (in this example, the values of an array) to a file called
output.dat with:

ofstream fout;

fout.open("output.dat");

for(int i=0; i<N; i++)

{

fout << array[i] << endl;

}

fin and fout are ifstream and ofstream objects respectively. Note that fin and fout are
arbitrary names assigned by the programmer. Using fin and fout highlights the similarity with
the simple input and output statements of section 7, which use the input and output stream
objects cin and cout respectively. The syntax of the input and output statements is identical.
The only difference is that care must be taken to ensure the files are opened and closed correctly,
i.e., that the file exists and is readable or writable. This can be checked by testing the value of
fin.good() or fout.good(). These will have the values true if the files are opened correctly.

The program on the next page reports an error if the file name specified was not found or
could not be opened and prompts the user for another file name. After finishing reading from and
writing to files, the files must be closed using:

74

fin.close();

fout.close();

and the ifstream and ofstream objects fin and fout can be re-assigned.

// OpenFile.cc

// Program to read data from a file. File name is input by user.

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

char fileName[80];

// Get filename from keyboard input

cout << "Enter input file name: ";

cin >> fileName;

// Declare fin to be of type (class) ifstream

// Associate file name with fin

ifstream fin;

fin.open(fileName);

// Prompt for new file name if not able to open

while(fin.good() == false)

{

cout << "Unable to open file. Enter a new name: ";

cin >> fileName;

// once bad, the file stream will stay bad unless cleared

fin.clear();

fin.open(fileName);

}

return 0;

}

Health Warning. The following section is included be-
cause it’s good to see examples of how blocks of memory
can be allocated. However, if you find yourself needing to
use arrays (or array-like things) with sizes determined at
run time in C++ you almost certainly would be better-
off using one of the “Standard Template Library Container
Classes” such as the the “std::vector”. Sadly, these are
not covered in this course, though they feature in the Part
II course.

75

16 Direct allocation of arrays with “new”

Above, we declared arrays of fixed size like this

float position[3];

int count[100];

for(int i=0; i< 100; i++)

{

count[i] = 0;

}

This fixed-size approach is an inflexible way of doing things, and it hard-wires numbers like ‘3’
and ‘100’ into your code, whereas such numbers should almost always be parameters. It would
be more elegant to replace the ‘100’ above by a name (such as N), and use that name everywhere,
and fix the value of N just once at the start of the program. It can sometimes be useful to allow N

to be set interactively or on the command-line of the program – in the way that RandDemo6.cc,
for example, could optionally set the number of points N (page 34 of tutorial 1). The ugly way of
doing arrays does not allow the creation of arrays of size controlled by a variable.

In C++ we can create variable-sized arrays on the fly while a program is running. We use a
special command new to allocate the memory for an array, and a complementary command delete

to free up the memory again when we don’t need it any more.
The example program NewDelete.cc illustrates how to use new and delete, and how to pass

an array to a function.

// NewDelete.cc

#include <iostream>

using namespace std;

void show(double *a , int N){

for(int n=0; n<N; n++)

cout << "a["<<n<<"]=\t"

<< a[n]

<< endl ;

}

int main()

{

double *a ;

// This creates a pointer but doesn’t allocate any memory for the array

int N = 20 ;

a = new double[N] ; // allocates memory for a[0]..a[N-1]

for(int n=0; n<N; n++)

a[n] = n*n ;

show(a , N) ;

delete [] a ; // frees the memory

}

In C++, array indices by default run from zero. But if you want an array that runs from, say, 1
to N, then you can do this by creating an array a[0]. . . a[N-1] of the right size, then offsetting the

76

pointer by 1 (using b=a-1), so that b[1]. . . b[N] points to the same locations as a[0]. . . a[N-1].
This convenient offsetting is demonstrated in the next example.

We can also allocate memory on the fly for more complex objects such as matrices. A good
way to think of an M ×N matrix with typical entry q[m][n] is that it consists of M vectors, each
of length N . We can allocate memory for a pointer (q) to an array of pointers (q[1]. . .q[M]).
Each of the pointers q[1]. . . q[M] is just like the pointer a in the previous example, pointing to
its own personal chunk of memory of size N. This way of handling matrices is demonstrated in
several examples on the website.

You can pass arrays to functions only by reference, not by value.

17 Modularizing

In section 11, we introduced the idea of chopping a program into small chunks called functions.
It’s good style to put each conceptual bit of the program in its own function. Try to avoid writing
the same piece of code more than once.

In accordance with this principle of writing everything once only, it’s also a good idea to put
any function that you might want to use again into a file that other programs can make use of.
There’s a couple of ways to split programs over multiple files.

1. The simple way with #include. If you put the directive #include "blah.cc" on one line of
a C++ program then the compiler will behave exactly as if the contents of the file blah.cc

were there, in your file, at that point. In this way you need to compile only one file – the
other files get read in appropriately.

2. The professional way with linking. Alternatively, you can split the program into multiple
files each of which is compiled separately. In this approach, the compiler needs to be run
several times, once for each separate file, and then a final time to link the compiled files
together. Compiling each individual .cc file creates a corresponding .o file. Linking takes
all the .o files and combines them into a single executable. Just one of the .cc files should
contain a definition of the main function, which is where the executable starts.

When compiling an individual file, the compiler doesn’t need to know anything about the
functions in the other files, except for the syntax of any functions that get used in the current
file. That syntax is conveyed to the compiler by function declarations. The recommended
technique to handle these function declarations is to ensure that all functions in the file
blah.cc are declared in another file called blah.h, which is #included by blah.cc and by
any other files that wish to use blah.cc’s functions.

This ‘linking’ technique is illustrated by the four files that follow. The main program is in
package1.cc. This program uses utility functions for memory allocation and array printing,
located in the file tinyutils.cc. Both package1.cc and tinyutils.cc include the header
file tinyutils.h. And finally, to keep track of what needs compiling when, it is essential to
use a Makefile. The Makefile must contain an explicit statement that “package1 depends on
package1.o and tinyutils.o”, and (on the following line, which must start with a single tab
character) an explicit instruction of how to link them together.

77

// tinyutils.h

// declares the functions defined in tinyutils.cc

using namespace std;

// memory management

double *dvector (int low, int high) ;

void freedvector (double* a , int low) ;

// printing

void printVector(double *b , int lo , int hi , int style=1) ;

// Note that any default parameter values (such as ’style=1’)

// must be specified in the declaration.

// maths

double square(double a) ;

Note that in the makefile below, the indentation must be done with a tab character,(not with
spaces and not ignored) or the makefile will not work.

Makefile for package1 and package2

CFLAGS = -ansi -g -Wall

LIBS = -l stdc++ -lm

CXX = g++

These lines define what package1 depends on, and how to make it

package1: package1.o tinyutils.o

$(CXX) $(CFLAGS) $(LIBS) package1.o tinyutils.o -o package1

package2: package2.o tinyutils2.o

$(CXX) $(CFLAGS) $(LIBS) package2.o tinyutils2.o -o package2

%.o: %.cc

$(CXX) $(CFLAGS) $< -c -o $@

%: %.cc Makefile

$(CXX) $(CFLAGS) $(LIBS) $< -o $@

78

// package1.cc

// demonstrates how to use functions

// defined in a separately-compiled file (tinyutils.cc)

#include <iostream>

using namespace std;

// Both this file and tinyutils.cc include the

// function declarations from a single header file:

#include "tinyutils.h"

// In this example, we use functions ’dvector’,

// ’square’, ’printVector’, and ’freedvector’, all defined in

// tinyutils.cc

int main()

{

double *b , *a ;

int N = 20 ;

// allocate the space for b[1]..b[N]

b = dvector(1 , N) ;

a = dvector(1 , N) ;

for (int n = 1 ; n <= N ; n ++)

a[n] = static_cast<double>(n) ;

for (int m = 1 ; m <= N ; m ++)

b[m] = square(a[m]) ;

printVector(b , 1 , N) ;

// free the memory

freedvector(b , 1) ;

freedvector(a , 1) ;

return 0;

}

79

// tinyutils.cc

// provides functions for double vectors allocation and clean-up

#include <iostream>

using namespace std;

#include "tinyutils.h"

// allocates memory for an array of doubles, say b[low]..b[high]

// example usage: b = dvector(1 , N) ;

double *dvector (int low, int high) {

int N = high-low+1 ;

double *a ;

if (N <= 0) {

cerr << "Illegal range in dvector: "

<< low << ", " << high << endl ;

return 0 ; // returns zero on failure.

}

a = new double[N] ; // allocates memory for a[0]..a[N-1]

if(!a) {

cerr << "Memory allocation failed\n" ;

return 0 ; // returns zero on failure.

}

return (a-low) ; // offset the pointer by low.

} // the user uses b[low]..b[high]

void freedvector (double *b , int low) {

delete [] &(b[low]) ; // The ’[]’ indicate that what’s

} // being freed is an array

// Note that default parameter values (such as ’style=0’) have already

// been specified in the function declaration in tinyutils.h.

void printVector(double * b , int lo , int hi , int style) {

// style 1 means "all on one line"; style 0 means "in one column"

for (int n = lo ; n <= hi ; n ++) {

cout << b[n] ;

if(style) {

if (n == hi) cout << endl;

else cout << "\t" ;

} else {

cout << endl;

}

}

}

double square(double x) {

return x*x ;

}

When we type make package1, the following things happen.

80

1. make looks at the Makefile and learns that package1 depends on package1.o and tinyutils.o.

2. If package1.o needs to be made, make invokes

g++ -ansi -pedantic -g -Wall package1.cc -c -o package1.o

At this stage, the compiler compiles just the functions that are defined in package1.cc.

3. Similarly for tinyutils.o, make invokes

g++ -ansi -pedantic -g -Wall tinyutils.cc -c -o tinyutils.o

4. For the final linking step, make invokes

g++ -ansi -pedantic -g -Wall -l stdc++ -lm package1.o tinyutils.o -o package1

yielding the executable package1. It’s at this stage that the compiler will complain if any
functions have been declared but not defined.

18 Structures and packages

We described, last term, how to use structures. Structures are a great way to organize things that
belong together, and that should never really be separated from each other, such as a vector and
its index range. By putting such things together into a single object, we can make code briefer
(because we just refer to the one object, rather than its parts), and less buggy. The next example
shows how to rewrite the previous example’s vector-creation and vector-printing using a structure
that contains the vector’s pointer and its index range. The structure is defined in the header
file. Why is it a good idea to use this structure? For this toy example, it doesn’t seem like a big
deal, but what you can notice is that function-calls that do things with the vector, once it’s been
created (such as printDvector(b)), are simpler and briefer, because we don’t need to send along
the baggage (low, high) that is required in the un-structured approach. The structure contains
this baggage, so when we pass the pointer to the structure to other functions, those functions get
access to exactly the baggage they need. The only down-side of this structured approach is that
when we want to access the contents of the vector, we have to get the pointer to the vector out of
the structure, so what used to be a[n] in the old approach (where a was the pointer to the array)
becomes a.v[n] in the new approach (where a is the structure).

81

// package2.cc

// demonstrates how to use structures and functions

// defined in a separately-compiled file (tinyutils2.cc).

// The structure Dvector is defined in tinyutils2.h

#include <iostream>

using namespace std;

// Both this file and tinyutils2.cc include the

// function declarations from a single header file:

#include "tinyutils2.h"

int main()

{

Dvector a , b ;

int N = 20 ;

// allocate the space for b.v[1]..b.v[N]

allocate(b , 1 , N) ;

allocate(a , 1 , N) ;

for (int n = 1 ; n <= N ; n ++)

a.v[n] = static_cast<double>(n) ;

for (int m = 1 ; m <= N ; m ++)

b.v[m] = square(a.v[m]) ;

printDvector(b) ;

// free the memory

freeDvector(b) ;

freeDvector(a) ;

return 0;

}

82

// tinyutils2.h

// declares the structures and functions defined in tinyutils2.cc

using namespace std;

struct Dvector {

double *v ; // the vector itself

int low;

int high;

} ; // don’t forget the semicolon in the structure definition

// memory management

int allocate(Dvector &a , int low, int high) ;

void freeDvector (Dvector &a);

// printing

void printDvector(Dvector &b , int style=0) ;

// Default parameter values (such as ’style=0’)

// must be specified in the declaration.

// maths

double square(double a) ;

83

// tinyutils2.cc

// provides functions for double vectors allocation and clean-up

#include <iostream>

using namespace std;

#include "tinyutils2.h"

// allocates memory for an array of doubles. Example: allocate(b, 1 , N) ;

int allocate (Dvector &a , int low, int high) {

a.low = low ; a.high = high ;

int N = high-low+1 ;

if (N <= 0) {

cerr << "Illegal range in dvector: "

<< low << ", " << high << endl ;

return 0 ; // returns zero if failure.

}

a.v = new double[N] ; // allocates memory for a[0]..a[N-1]

if(!a.v) {

cerr << "Memory allocation failed\n" ;

return 0 ;

} else {

a.v -= low ; // offset the pointer by low.

return 1 ;

}

}

void freeDvector (Dvector &b) {

delete [] &(b.v[b.low]) ;

b.high = b.low - 1 ;

}

// Note that default parameter values (such as ’style=0’) have already

// been specified in the function declaration in tinyutils2.h.

void printDvector(Dvector &b , int style) {

// style 1 means "all on one line"; style 0 means "in one column"

for (int n = b.low ; n <= b.high ; n ++) {

cout << b.v[n] ;

if(style) {

if (n == b.high) cout << endl;

else cout << "\t" ;

} else {

cout << endl;

}

}

}

double square(double x) {

return x*x ;

}

84

19 Formatted output

We’ve mainly printed out numbers using cout with commands like

cout << myint << " " << mydouble << endl ;

What if you don’t like the way cout makes your numbers look, however? Too many decimal
places? Too few? Well, cout can be bossed around and can be told to serve up numbers with
different numbers of decimal places. You can find out more about cout by looking in a manual
online or on paper.

Here we’ll describe another way to control output formatting, using the old-fashioned C func-
tion, printf (which means print, formatted). It’s probably worth learning a bit about printf
because its syntax is used in quite a few languages.

The commands

int age = 84; printf("his age is %d years" , age) ;

will print the string ‘his age is 84 years’. The command

printf("%d %d\n" , i , j) ;

causes the integers i and j to be printed, separated by a single space, and followed by a newline
(just like cout << i << " " << j << endl ;). The command

printf("%3d %-3d\n" , i , j) ;

causes the same numbers to be printed out but encourages i to take up 3 columns, and to be
right-aligned within those 3 columns; and encourages j to take up 3 columns and to be left-aligned.
Text and numbers can be mixed up. For example,

printf("from %3d to %-3d\n" , i , j) ;

might be rendered as
from 123 to 789

Notice how you specify the format of the whole string first, then the missing bits, each of which
was indicated in the format string by a specfier, %something. The format specifier for a single
character is %c; for a string of characters, %s. The special character \n is a newline; \t is a tab;
\" gives a double quote; \\ gives a single backslash. The command

printf("%f %e %g \n" , x , y , z) ;

prints the floating point numbers x, y, and z as follows: x is printed as a floating point number
with a default number of digits (six) shown after the decimal point; y is printed in scientific
(exponential) notation; z is printed using whichever makes more sense, fixed floating point or
scientific notation. The program Printf.cc on the website illustrates more examples. I usually
use the format

printf("%12.6g %12.6g %12.6g" , x , y , z) ;

to print my real numbers – this format gives each of them 12 columns, and shows 6 digits of
precision.

85

20 Notes concerning the remaining SESSIONS 5, 6 and 7.

The aim of the remaining SESSIONS will be not only to learn
more about C++ but also to see how programming can help you
understand physics better.

This final two assessed tasks are harder than last term’s.
It’s essential to prepare before each week’s programming exercises.
Read this manual and sketch out a plan of what you are going to
do before sitting down at the computer.
The exercises involve physics, so you will need to prepare both
physics thoughts and computing thoughts. Please allow two
hours preparation time per week.

Remember that you can use the linux PWF system remotely. If you have a personal computer,
set up a C++-programming environment for yourself – all the software used in this course is free
software, available for any computer platform.

86

Part IB Computing Course 2013

PRACTICAL SESSION 5 : “PLANET”

21 Instructions

21.1 Objectives

Physics objectives: to better understand Newton’s laws, circular motion, angular momentum,
planets’ orbits, Rutherford scattering, and questions about spacemen throwing tools while
floating near space shuttles.

Computing objectives: structures, arrays, using gnuplot; simulation methods for differential
equations (Euler, Leapfrog).

You are encouraged to work in pairs, with the weaker programmer doing all the typing.

21.2 Task

Simulate Newton’s laws for a small planet moving near a massive sun. For ease of plotting, assume
the planet and its velocity both lie in a two-dimensional plane. Put the sun at the origin (0, 0) and
let the planet have mass m and inital location x(0) = (x1, x2) and initial velocity v(0) = (v1, v2).
The equations of motion are:

dx
dt

= v(t)
mdv

dt
= f(x, t),

(1)

where, for a standard inverse-square law (gravity or electrodynamics) the force f is:

f(x, t) = A
x

(

√

∑

i x
2
i

)3 , (2)

with A = −GMm for gravitation, and A = Qq/(4πǫ0) for electrodynamics with two charges Q
and q.

Try to write your programs in such a way that it’ll be easy to switch the force law from
inverse-square to other force laws. For example, Hooke’s law says:

f(x, t) = kx. (3)

How should we simulate Newton’s laws (1) on a computer? One simple method called Euler’s
method makes small, simultaneous steps in x and v. We repeat lots of times the following block:

Euler’s method

1: Find f = f(x, t)
2: Increment x by δt × v
3: Increment v by δt × 1

m
f

4: Increment t by δt

87

We might hope that, for sufficiently small δt, the resulting state sequence (x,v) in the computer
would be close to the true solution of the differential equations.

Euler’s method is not the only way to approximate the equations of motion.
An equally simple algorithm can be obtained by reordering the updates. In the following block,

the updates of f and x have been exchanged, so the force is evaluated at the new location, rather
than the old.

A: Increment x by δt × v
B: Find f = f(x, t)
3: Increment v by δt × 1

m
f

4: Increment t by δt

It’s not at all obvious that this minor change should make much difference, but often it does.
This second method, in which position and velocity are updated alternately, is called the Leapfrog
method. Here is a precise statement of the Leapfrog method.

Leapfrog method

Repeat
{

Increment x by 1
2
δt × v

Increment t by 1
2
δt

Find f = f(x, t)
Increment v by δt × 1

m
f

Increment x by 1
2
δt × v

Increment t by 1
2
δt

}

In this version, we make a half-step of x, a full-step of v, and a half-step of x. Since the end of
every iteration except the last is followed by the beginning of the next iteration, this algorithm
with its half-steps is identical to the previous version, except at the first and last iterations.

When simulating a system like this, there are some obvious quantities you should look at: the
angular momentum, the kinetic energy, the potential energy, and the total energy.

Techniques to use:

1. Represent the vectors x, v, and f using arrays. Make sure you look at some simple examples
of arrays before using them for planets.

2. Put all the variables and arrays associated with a single object (such as a planet) in a
structure. Make sure you look at some simple examples of structures.

21.3 Ideas for what to do

This is a self-directed and self-assessed course, and I’d like you to choose a planet-simulating
activity that interests you. Here are some suggestions. You don’t have to do all of these.
You can also invent your own. The more you do, the more educational it’ll be. But do take
your pick, and feel free to steal working code (e.g. from the course website) if you’d prefer to focus
your energy on experimenting with working code, rather than writing and debugging your own.

1. Write code that implements Euler’s method and the Leapfrog method. Get it going for
one initial condition, such as x(0) = (1.5, 2), v(0) = (0.4, 0). Before running your program,
predict the correct motion, roughly. Compare the two methods, using gnuplot to look at the

88

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Figure 1: The initial condition x(0) = (1.5, 2), v(0) = (0.4, 0).

resulting trajectories, the energies, and the angular momenta. (If you’d like more detailed
guidance through a possible approach to this task, see the appendix on p. 99. A worked
solution for this first part is also available.)

2. Once you have a trustworthy simulation: take a collection of similar initial conditions, all
having the same initial position and initial energy but differing in the direction of the initial
velocity. What happens? Show all the evolving trajectories in a single movie.

3. Or take initial conditions that differ slightly in their initial position or velocity, such as “the
spaceshuttle and the spaceman who is 100 yards from the spaceshuttle, both orbitting the
earth” (in what direction does he need to nudge himself in order to get home?). Or “the
spaceman and the hammer” – if he throws his hammer ‘forwards’, where does it end up
going? If he throws it ‘back’ or ‘sideways’, where does it end up going? (Here the idea is
to simulate two planets orbitting a single sun; to get the spaceman analogy, think of the
spaceman and his shuttle being like the two planets, and the earth playing the role of the
sun.)

4. Get an initial condition that leads to a perfectly circular orbit. Now perturb that initial
condition by giving a little kick of momentum in 8 different directions. Show all nine resulting
trajectories in a single movie. Which kicks lead to the period of the orbit changing? Which
kicks lead to the period of the orbit staying the same? Which kicks lead to orbits that come
back to the place where the kick occurred? If an object is in an elliptical orbit, what kicks
do you give it in order to make the orbit larger and circular? What kicks do you give it to
make the orbit smaller and circular? What’s the best time, in an elliptical orbit, to give the
particle a kick so as to get the particle onto an orbit that never comes back, assuming we
want the momentum in the kick to be as small as possible?

5. Take initial conditions coming in from a long way away, particles travelling along equally-
spaced parallel lines. What happens? (The distance of the initial line from the sun is called
the impact parameter of the initial condition.)

6. People who criticise Euler’s method often recommend the Runge–Kutta method. Find out
what Runge–Kutta is (Google knows), implement it, and compare with the Leapfrog method.
Choose a big enough step-size δt so that you can see a difference between the methods.
Given equal numbers of computational operations, does Runge–Kutta or Leapfrog do a

89

better job of making an accurate trajectory? For very long runs, and again assuming equal
numbers of computational operations, does Runge–Kutta or Leapfrog do a better job of
energy conservation? Of angular momentum conservation?

21.4 What to hand in

This SESSION has a slightly different than SESSIONS 1 to 4 as the emphasis is now on using
computing to help you learn about physics, rather than just learning to program. This means
that there is greater importance attached to the “Brief Description” part of the
submission than in the earlier sessions, and consequently it will be longer than in the
earlier sessions, and will contain a greater discussion of physics directed goals than
of the computing ones.

You will be expected to use the “brief description” part of the web-based submission form to
explain not only the technical/computational challenges which you faced, but also to devote a
greater than normal time to explaining the physics goals which you set yourself (perhaps based
on the suggestions of section 21.3) and what use of your program helped you learn about them.
This additional part of the “Brief Description” is the part you must ‘engage with’ if you are to
gain the extra credit for this section.

As usual, you will gain credit for uploading the programs you used to solve the problems, but
here it is possible (though not required) that you may have used gnuplot, or other tools, and may
decide to hand in evidence of them too. The choice is yours. In all cases, explain what your
submissions allowed you to do or to test.

As the description will be longer than normal, and to avoid having to curse your browser if
you hit the “back button” inadvertently, you are reminded to create your brief description in a
separate README file (saving as you compose) before pasting it into the submission form as the
final step. The form itself is crude and will not remember text if you happen to hit the back
button or visit another page seconds before pressing “submit” !

END OF SESSION 5 : “PLANET”

90

Part IB Computing Course 2013

PRACTICAL SESSION 6 : “BONKERS”

22 Instructions

22.1 Objectives

Physics objectives: to better understand collisions, conservation laws, and statistical physics,
especially equipartition, properties of ideal gases, the concept of temperature, and the Boltz-
mann distribution; also the way in which microscopic physics leads to macroscopic phenom-
ena; what happens when a piston compresses an ideal gas; adiabatic expansion; fluctuations
and dissipation, equilibration of systems with different temperatures.

Computing objectives: structures, arrays, using gnuplot; memory allocation.

You are encouraged to work in pairs, with the weaker programmer doing all the typing.

22.2 Task

We’re going to simulate hard spheres colliding with each other elastically in a box. An incredible
range of interesting physics phenomena can be studied in this way.

The heart of this computing exercise is going to be a single function – let’s call it collide –
which receives two particles with masses m1 and m2 and velocities u1 and u2, and returns the new
velocities v1 and v2 of the two particles after an elastic collision between the two.

You could start by writing a function that implements this elastic collision. Check your function
with special cases that you’ve solved by hand, and by putting in a range of initial conditions and
evaluating whether total momentum and total energy are indeed conserved as they should be.

An elegant approach to this programming task uses a structure to represent each particle –
something like this, for a particle moving in one dimension:

struct particle {

double x ; // position

double p ; // momentum

double im ; // inverse mass

double v ; // velocity

double T ; // kinetic energy

double a ; // radius of particle

} ; // Note the definition of a structure ends with a semicolon

At this stage it’s not crucial, but at some point I recommend making sure all references to the
particle’s mass use the inverse mass, rather than the mass – this allows you to treat the walls of
the box as standard particles that just happen to have infinite mass (that is, inverse-mass zero).

91

Once you have defined a struct like particle, you may define an array of particles in just
the same way that you define arrays of other objects like ints or doubles. For example

a = new particle[N] ;

22.3 Ideas for what to do

There’s a lot of choice. This is a self-directed and self-assessed course, and I’d like you to choose
a bonking-simulating activity that interests you.

Here are some suggestions. You don’t have to do all of these. You can also invent your
own. The more you do, the more educational it’ll be. But do take your pick, and feel free to steal
working code (e.g. from the course website) if you’d prefer to focus your energy on experimenting
with working code, rather than writing and debugging your own.

1. Write code that uses a one-dimensional collide function to simulate the motion of N parti-
cles in a one-dimensional box. Each particle can collide only with its immediate neighbours;
each of the two end particles can collide with one wall too. To simulate the dynamics, you
must identify the times at which collisions occur, and (assuming you want to make a realistic
movie for showing in gnuplot) spit out the state of the simulation at equally spaced times. A
suggested strategy is to take the current state and figure out which pair of adjacent particles
will collide next. Then advance the simulation exactly to the moment of that next collision
(stopping if appropriate at intermediate times along the way, so as to spit out the required
states for the movie, equally spaced in time). Collisions should be handled by passing the
pair of particles to the collide function. Motion in between collisions is simple (since there
are no forces) and it should be handled by another function, leapForward, say. Printing out
of the state at certain times of interest should be handled by another function, showState,
say. (A worked solution for this first part is available on the course website.)

[A possible difficulty with this approach of computing all collisions that occur is that it
is conceivable that the true number of collisions in a finite time might be very large, a
phenomenon known as chattering. You can get the idea of chattering by imagining quickly
squashing a moving ping-pong ball between a table-tennis bat and a table.]

2. Testing: Put just two particles in a box, with equal masses. Check that the dynamics
are right. Make the two masses unequal. Make a scatter-plot of the positions of the two
particles. Make a scatter-plot of the velocities of the two particles. Use more masses. Check
that kinetic energy is conserved.

3. Put quite a few unequal masses in the box (say, 10 masses, with a variety of masses spanning a
range of a factor of 4 in magnitude), run the simulation for a long time, and make histograms
of the velocities of two of the particles whose masses are in the ratio 4:1. What do you find?
Make histograms of the positions of the particles. If you make some of the particles really
heavy compared to their neighbours, what happens to the histogram of the positions of the
neighbours? For example, make all the particles except for the two end particles be much
larger; or make half the particles (those on the left hand side) heavy, and the other half
light. (In all simulations make sure no two adjacent particles have identical masses.)

4. What happens if the right-hand wall (with infinite mass) is moved at constant speed towards
or away from the other wall?

Ye have heard it said that, under some circumstances, pV γ = constant. What is γ for a
one-dimensional ideal gas? How should the total energy vary with V under these conditions?

92

5. Set up N1 light masses to the left of a single big heavy mass, and N2 more light masses
to the right of the heavy mass. Call the heavy mass a piston, if you like, and think of it
as separating two ideal gases from each other. The light masses don’t need to be identical
to each other. An example set of masses for N1 = N2 = 5 could be (1.1, 1.2, 1.1, 1.3,
1.1, 100.0, 4.1, 4.2, 4.1, 4.8, 4.4) where the 100-mass is the piston. Give randomly chosen
velocities to the particles. What should happen? How long does it take for ‘equilibrium’
to be reached? Give an enormous velocity to the piston and small velocities to the other
particles. What should happen? How long does it take for ‘equilibrium’ to be reached? Can
you get the piston to oscillate roughly sinusoidally (before ‘equilibrium’ is reached)? What
is the frequency of such oscillations? Predict the frequency using the theory of adiabatic
expansion/compression of gases.

 0

 1

 2

 3

 4

 5

 0 1 2 3

tim
e

position

w
al

l

m
as

s=
3

m
as

s=
1

w
al

l The first six collisions
between two particles of
masses 3 and 1 and two
walls.

22.4 What to hand in

This SESSION has a slightly different than SESSIONS 1 to 4 as the emphasis is now on using
computing to help you learn about physics, rather than just learning to program. This means
that there is greater importance attached to the “Brief Description” part of the
submission than in the earlier sessions, and consequently it will be longer than in the
earlier sessions, and will contain a greater discussion of physics directed goals than
of the computing ones.

You will be expected to use the “brief description” part of the web-based submission form to
explain not only the technical/computational challenges which you faced, but also to devote a
greater than normal time to explaining the physics goals which you set yourself (perhaps based
on the suggestions of section 22.3) and what use of your program helped you learn about them.

93

This additional part of the “Brief Description” is the part you must ‘engage with’ if you are to
gain the extra credit for this section.

As usual, you will gain credit for uploading the programs you used to solve the problems, but
here it is possible (though not required) that you may have used gnuplot, or other tools, and may
decide to hand in evidence of them too. The choice is yours. In all cases, explain what your
submissions allowed you to do or to test.

As the description will be longer than normal, and to avoid having to curse your browser if
you hit the “back button” inadvertently, you are reminded to create your brief description in a
separate README file (saving as you compose) before pasting it into the submission form as the
final step. The form itself is crude and will not remember text if you happen to hit the back
button or visit another page seconds before pressing “submit” !

END OF SESSION 6 : “BONKERS”

94

Part IB Computing Course 2013

PRACTICAL SESSION 7 : “RECURSION” (optional!)

23 Instructions

23.1 Objectives

This is an optional extra.

Physics objectives: to better understand statistical physics by counting some interesting things.

Computing objectives: recursion.

Recursion means defining a function f in terms of the function f . For example we could define
the factorial function f(x) by:

1. if x > 1 then return x × f(x − 1)

2. otherwise return 1.

A recursive function in a computer program is one that calls itself. Here’s an example, following
the above definition closely.

// factorial calculator - recursive

#include <iostream>

using namespace std;

int factorial (int a)

{

if (a > 1)

return (a * factorial (a-1));

else

return (1);

}

int main ()

{

int number;

cout << "Please type a number: ";

cin >> number;

cout << number << "! = " << factorial(number) << endl;

return 0;

}

Errors in the definition of recursive functions often lead to disaster, since it’s all too easy to
write a function that keeps calling itself and never stops.

95

Some programmers find recursion an elegant way to express many programming tasks. Here
is an example. The task is ‘print all ternary strings of length L’. For L = 1 the output should be

0, 1, 2.

For L = 2 the output should be

00, 01, 02, 10, 11, 12, 20, 21, 22

Here is a solution.

// allStrings.cc

// Enumerate all ternary strings by recursion

#include <iostream>

using namespace std;

void appendAllStrings(char *prefix , int remainingLength)

{

if (remainingLength == 0)

cout << prefix << endl ;

else {

int lp = strlen(prefix) ;

for (int i = 0 ; i <= 2 ; i ++) { // Extend prefix by one character.

prefix[lp] = i+’0’ ; // By adding i to the character ’0’

// we get the characters ’0’, ’1’, ’2’

appendAllStrings(prefix , remainingLength-1);

}

prefix[lp] = ’\0’ ; // Remove what was added

// [’\0’ is the null character]

}

return ;

}

int main ()

{

int length;

cout << "Please type a length: ";

cin >> length;

char *prefix ;

prefix = new char[length] ; // Assume this memory is all-null

appendAllStrings(prefix , length) ;

delete [] prefix ; // Free the memory

return 0;

}

The function strlen returns the length of the string generated so far; the line

prefix[lp] = ...

extends the string by one character. The algorithm proceeds by starting from the null string, and
extending it by all possible single characters, extending each in turn by all possible characters,
and so forth.

96

Such ‘branching processes’ are the type of problem for which recursion is especially recom-
mended.

97

23.2 Recursion exercises

Solve each of these tasks using a recursive function.

1. Write a function called twos that takes a single integer as its argument and returns the
number of factors of 2 in the number. (Hint: odd numbers have no factors of 2, numbers
that are twice an odd number have one, numbers that are four times an odd have two, and
so on.) For example: twos(-12); should return 2.

2. Write a function called printWithCommas that takes a single nonnegative long integer argu-
ment and displays it with commas inserted in the conventional way. For example:

• printWithCommas(12045670); displays 12,045,670.

• printWithCommas(1); displays 1.

3. Interesting properties of a hard sphere gas.

A legal state of four particles in a
10 × 10 box.

A square box of size H×H lattice-points contains one big particle and T = 3 little particles.
The big particle occupies 4×4 lattice points. Each little particle occupies 2×2 lattice points.
Particles may not overlap. All legal states of this T + 1-particle system are equiprobable.
How probable are the alternative locations of the big particle? Find the answer for H = 10
(by recursively enumerating all legal states, and keeping count). It is a good idea to spit out
the answer for smaller values of T along the way towards the answer for the biggest value
of T .

If not all locations of the big particle are equiprobable then we can describe the effect of
the little particles in terms of an effective ‘force’ acting on the big particle. Such forces are
called ‘entropic forces’. Entropic forces in hard-sphere mixtures with a variety of sizes of
spheres are an area of industrial research interest.13

END OF SESSION 7 : “RECURSION” (optional!)

13Y. Mao, P. Bladon, H. N. W. Lekkerkerker, and M. E. Cates. Mol. Phys. 92, 151 (1997).
R. Dickman, P. Attard, and V. Simonian. ‘Entropic Forces in Binary Hard-Sphere Mixtures: Theory and

Simulation’, J. Chem. Phys. 107, 205–213 (1997).
‘Entropic Attraction and Repulsion in Binary Colloids Probed with a Line Optical Tweezer’ J. C. Crocker, J. A.

Matteo, A. D. Dinsmore, and A. G. Yodh. Physical Review Letters, 82, 4352–4355 (1999).

98

Appendices

A PLANET: step by step guidance

1. Chop the problem into small pieces.

2. Define a structure that contains the state of the planet. (See page 81 of this tutorial and
page 60 of the first term’s tutorial.) Your structure could be as simple as:

struct particle {

double x[2] ; // (x,y) coordinates

double v[2] ; // velocity

} ;

but as you continue, you will probably think of other sensible things to add to the structure.
You might find it elegant to give a name to the dimensionality of the position space, say D.

#define D 2 // number of dimensions

struct particle {

double x[D] ; // (x,y) coordinates

double v[D] ; // velocity

} ; // Note the definition of a structure ends with a semicolon

If you then use D everywhere, it makes the meaning of your code clearer (compared with
using ‘2’), and it makes it easier to update your simulation’s dimension (say from 2 to 3
dimensions).

3. Write a simple main that defines a particle, and check that it compiles and runs.

int main()

{

particle a ;

a.v[0] = 0.4;

a.v[1] = 0.0;

a.x[0] = 1.5;

a.x[1] = 2;

return 0;

}

4. Write a function showState that prints out the particle’s position and velocity. Call it from
main and check that your program compiles and runs correctly. Here is an example of a
function that does the right sort of thing:

99

void showState (particle &a)

{

int i=0;

cout << "some of the state: " << a.x[i] << endl ;

}

This could be called by main using a command such as

showState(a) ;

Notice the use of the ampersand in the function definition

void showState (particle &a).

This ampersand means that we are passing the particle by reference, rather than by value.
(See page 45 of last term’s tutorial.)

5. Remember the tips from last term about debugging your code. (1) Use a makefile. (2)
Switch on all the compiler warnings. (3) Whenever you think that your code ought to
compile, check that it does so. (4) If you have code that compiles ok, but that doesn’t
behave as expected when you run it, run it in a debugger (for example, kdbg). Even if it
seems to be running as expected, it might be a good idea to run it in a debugger. When I
use kdbg, the main things I click on are ‘set breakpoint’ (right click), ‘run’, and the ‘step

over’ icon.

6. Write a function that computes the squared-distance from the origin.

7. Write a function Force that computes the force acting on the particle, or the acceleration
of the particle. (Perhaps the force or acceleration should be in your structure?)

8. Write a function PositionStep that makes a change of a particle’s position in the direction
of its velocity. One of the arguments of this function should be the required time step size.

9. Write a function VelocityStep that makes a change of a particle’s velocity in the direction
of its acceleration.

10. Write a function that computes the energy (kinetic and potential) of the particle.

11. Write a function that computes the angular momentum about the origin.

12. Write a Leapfrog simulator with a loop that calls the above functions appropriately.

13. Write the simulated trajectory to a file using a function like showState. To plot the trajec-
tory from a file whose columns are

time, x1, x2, v1, v2,

the following gnuplot commands may be useful.

100

set size ratio -1 ; ## this makes units on the x and y axes have equal size

plot ’tmp’ u 2:3 w l, ’tmp’ every 10 u 2:3:4:5 w vector

this plots (x1,x2) with lines, and plots every 10th state using a vector

of length (v1,v2) based at the point (x1,x2)

gnuplot’s plot command is very versatile. The website shows how you can make a gnuplot
animation using a single data file containing a trajectory.

14. Be aware of the size of the files you are writing. If you give gnuplot a file of more than 1
megabyte, you should expect it to be sluggish. Maybe it would be a good idea to reduce
the amount of information written to file. You may be able to get better performance by
using the local filesystem of the machine at which you are sitting. You can write anything
you want into the folder /tmp. For example,

ls > /tmp/mylist

The /tmp folder is a good place to put anything large and anything that you want to access
frequently or quickly. But don’t leave anything important in /tmp – after you log out, the
/tmp folder may be cleaned up.

101

B An introduction to object-oriented programming and

classes

One of the most important differences between the C++ programming language and some other
programming languages is the emphasis on the representation of data using programmer or user-
defined data types. In C++ an extension to the definition of structures allows the user to include
both data members (as above) and member functions which are allowed to process the data. The
encapsulation of data and functions into packages called objects of user-defined types called classes
is a key part of object-oriented programming.

In its simplest form, a class is like a structure that includes the definition of functions (member
functions or class methods) that are allowed to process the data. See the simple example below.

1. Classes and Objects

The class (e.g. Date in the example) can be considered as a specification while the actual
item (e.g. today) is an instance of a class and is called an object. Declaring an object is
very similar to declaring a variable:

class-name object-name ;

2. Accessing data members and functions

The data members and member functions of the class can be accessed by simply naming
them in conjunction with the name of the object they belong to using the dot operator.

object-name.item-name

3. Defining a class member function

The declaration and definition of class member functions is similar to those used for standard
functions: we use function prototypes to declare the functions and place the statements to
be executed in a function definition. The only difference is that with a class member function
we must tell the compiler which class the function is a member of. This is done by including
the name of the class in the function header using a scope resolution operator represented
by ::.

return-type class-name ::function-name (parameter-list)

4. Restricting access to class members

One of three levels of access can be specified for each class member (both data and functions)
using the keywords public, private or protected followed by a colon. These refer to how
the class members may be accessed in a program.

The public members of a class may be accessed directly from anywhere in the program that
has access to an object of the class. The private members can be read or modified only by
class member functions.

102

B.0.1 A simple example

This example shows how to create a simple class and define the class’s member functions.

// SimpleClass.cc

// A program to demonstrate creation and use of a simple class for dates

#include <iostream>

using namespace std;

// Declaration of Date class

class Date {

public:

void set(int, int, int);

void print();

private:

int year;

int month;

int day;

};

int main()

{

// Create a Date object called today

Date today;

// Call Date member function set()

today.set(1,9,1999);

cout << "This program was written on ";

today.print();

cout << endl;

return 0;

}

// Date member function definitions

void Date::set(int d, int m, int y)

{

if(d>0 && d<31) day = d;

if(m>0 && m<13) month = m;

if(y>0) year =y;

}

void Date::print()

{

cout << day << "-" << month << "-" << year << endl;

}

103

C Further reading

This tutorial has introduced the basic elements of the C++ programming language. The following
references provide a comprehensive treatment and useful tips on good programming practice.

1. C++ How to Program (5th edition), Deitel, H.M and Deitel, P.J.
Prentice Hall, Englewood (NJ), 2005.

2. Code Complete: A Practical Handbook of Software Construction, McConnell, S.
Microsoft Press, Redmond (WA), 1993.

3. C++ in plain English, Brian Overland.
M&T Books, 1999.

104

D Objectives of each section

D.1 Session 1

• Familiarisation with the teaching system and C++ development environment

• Edit, compile and execute a working program

• Become familiar with the compiler’s messages

D.2 Session 2

• Declare and define variables and constants

• Assign values to variables and manipulate them in arithmetic expressions

• Write the value of variables to the screen

• Read in the value of variables from the keyboard

• Write simple programs that use loops.

D.3 Session 3

• Boolean expressions with relational operators

• Simple control structures for selection and repetition

D.4 Session 4

• Definition, declaration and calling of functions

• Passing values to and returning values from functions

• Math and system library functions

D.5 Session 5 : “PLANET”

Physics objectives: to better understand Newton’s laws, circular motion, angular momentum,
planets’ orbits, Rutherford scattering, and questions about spacemen throwing tools while
floating near space shuttles.

Computing objectives: structures, arrays, using gnuplot; simulation methods for differential
equations (Euler, Leapfrog).

D.6 Session 6 : “BONKERS”

Physics objectives: to better understand collisions, conservation laws, and statistical physics,
especially equipartition, properties of ideal gases, the concept of temperature, and the Boltz-
mann distribution; also the way in which microscopic physics leads to macroscopic phenom-
ena; what happens when a piston compresses an ideal gas; adiabatic expansion; fluctuations
and dissipation, equilibration of systems with different temperatures.

Computing objectives: structures, arrays, using gnuplot; memory allocation.

105

D.7 Optional session 7 : “RECURSION”

This is an optional extra.

Physics objectives: to better understand statistical physics by counting some interesting things.

Computing objectives: recursion.

106

E Thirty useful unix commands

107

Thirty useful unix commands

This guide, based on a University computing service leaflet, is intended to be as generally valid as
possible, but there are many different versions of Unix available within the University, so if you
find a command option behaving differently on your local machine you should consult the on-line
manual page for that command. Some commands have numerous options and there is not enough
space to detail them all here, so for fuller information on these commands use the relevant on-line
manual page.

The names of commands are printed in bold, and the names of objects operated on by these
commands (e.g. files, directories) are printed in italics.

Thirty useful unix commands – index

1. cat - display or concatenate files

2. cd - change directory

3. chmod - change the permissions on a file or directory

4. cp - copy a file

5. date - display the current date and time

6. diff - display differences between text files

7. file - determine the type of a file

8. find - find files of a specified name or type

9. ftp - file transfer program

10. grep - searches files for a specified string or expression

11. gzip - compress a file

12. help - display information about bash builtin commands

13. info - read online documentation

14. kill - kill a process

15. lpr - print out a file

16. ls - list names of files in a directory

17. man - display an on-line manual page

18. mkdir - make a directory

19. more - scan through a text file page by page

20. mv - move or rename files or directories

108

21. nice - change the priority at which a job is being run

22. passwd - change your password

23. ps - list processes

24. pwd - display the name of your current directory

25. quota - disk quota and usage

26. rm - remove files or directories

27. rmdir - remove a directory

28. sort - sort and collate lines

29. ssh - secure remote login program

30. scp - securely copy files between computers

109

1. cat – display or concatenate files

cat takes a copy of a file and sends it to the standard output (i.e., to be displayed on your terminal,
unless redirected elsewhere), so it is generally used either to read files, or to string together copies
of several files, writing the output to a new file.

cat ex
displays the contents of the file ex.

cat ex1 ex2 > newex
creates a new file newex containing copies of ex1 and ex2, with the contents of ex2 following the
contents of ex1.

2. cd – change directory

cd is used to change from one directory to another.

cd dir1
changes directory so that dir1 is your new current directory. dir1 may be either the full pathname
of the directory, or its pathname relative to the current directory.

cd
changes directory to your home directory.

cd ..
moves to the parent directory of your current directory.

3. chmod – change the permissions on a file or directory

chmod alters the permissions on files and directories using either symbolic or octal numeric codes.
The symbolic codes are given here:-

u user + to add a permission r read
g group − to remove a permission w write
o other = to assign a permission explicitly x execute (for files), access (for directories

The following examples illustrate how these codes are used.

chmod u=rw file1
sets the permissions on the file file1 to give the user read and write permission on file1. No other
permissions are altered.

chmod u+x,g+w,o-r file2
alters the permissions on the file file2 to give the user execute permission on file2, to give members
of the user’s group write permission on the file, and prevent any users not in this group from reading
it.

chmod u+w,go-x dir1
gives the user write permission in the directory dir1, and prevents all other users having access to
that directory (by using cd. They can still list its contents using ls.)

chmod g+s dir2
means that files and subdirectories in dir2 are created with the group-ID of the parent directory,
not that of the current process.

110

4. cp – copy a file

The command cp is used to make copies of files and directories.

cp file1 file2

copies the contents of the file file1 into a new file called file2. cp cannot copy a file onto itself.

cp file3 file4 dir1

creates copies of file3 and file4 (with the same names), within the directory dir1. dir1 must already
exist for the copying to succeed.

cp -r dir2 dir3

recursively copies the directory dir2, together with its contents and subdirectories, to the directory
dir3. If dir3 does not already exist, it is created by cp, and the contents and subdirectories of
dir2 are recreated within it. If dir3 does exist, a subdirectory called dir2 is created within it,
containing a copy of all the contents of the original dir2.

5. date – display the current date and time

date returns information on the current date and time in the format shown below:-

Wed Jan 9 14:35:45 GMT 2002

6. diff – display differences between text files

diff file1 file2 reports line-by-line differences between the text files file1 and file2. The default out-
put will contain lines such as ‘ n1 a n2,n3 ’ and ‘ n4,n5 c n6,n7 ’, (where ‘ n1 a n2,n3 ’ means
that file2 has the extra lines n2 to n3 following the line that has the number n1 in file1, and
‘ n4,n5 c n6,n7 ’ means that lines n4 to n5 in file1 differ from lines n6 to n7 in file2). After each
such line, diff prints the relevant lines from the text files, with < in front of each line from file1
and > in front of each line from file2.

There are several options to diff, including diff -i , which ignores the case of letters when
comparing lines, and diff -b , which ignores all trailing blanks.

diff -cn produces a listing of differences within n lines of context, where the default is three
lines. The form of the output is different from that given by diff, with + indicating lines that
have been added, − indicating lines that have been removed, and ! indicating lines that have
been changed.

diff dir1 dir2 will sort the contents of directories dir1 and dir2 by name, and then run diff on
the text files that differ.

111

7. file – determine the type of a file

file tests named files to determine the categories their contents belong to.

file file1
can tell if file1 is, for example, a source program, an executable program or shell script, an empty
file, a directory, or a library, but (a warning!) it does sometimes make mistakes.

8. find – find files of a specified name or type

find searches for files in a named directory and all its subdirectories.

find . -name ’*.cc’ -print
searches the current directory and all its subdirectories for files ending in .cc, and writes their
names to the standard output. In some versions of Unix the names of the files will only be written
out if the -print option is used.

find /local -name core -user user1 -print
searches the directory /local and its subdirectories for files called core belonging to the user user1
and writes their full file names to the standard output.

9. ftp – file transfer program – no longer recommended. See the section on scp and
ssh instead.

ftp is an interactive file transfer program. While logged on to one machine (described as the local
machine), ftp is used to logon to another machine (described as the remote machine) that files
are to be transferred to or from. As well as file transfers, it allows the inspection of directory
contents on the remote machine. There are numerous options and commands associated with ftp,
and man ftp will give details of those.
A simple example ftp session, in which the remote machine is hermes, is shown below:-

ftp hermes.cam.ac.uk

If the connection to hermes is made, it will respond with the prompt:-

Name (hermes.cam.ac.uk:user1) :

(supposing user1 is your username on your local machine). If you have the same username on
hermes, then just press Return; if it is different, enter your username on hermes before pressing
Return. You will then be prompted for your hermes password, which will not be echoed.

After logging in using ftp you will be in your home directory on hermes. Some Unix commands,
such as cd, mkdir, and ls, will be available. Other useful commands are:

help
lists the commands available to you while using ftp.

get remote1 local1
creates a copy on your local machine of the file remote1 from hermes. On your local machine this
new file will be called local1. If no name is specified for the file on the local machine, it will be
given the same name as the file on hermes.

send local2 remote2
copies the file local2 to the file remote2 on hermes, i.e., it is the reverse of get.

quit

112

finishes the ftp session. bye and close can also be used to do this.

Some machines offer a service called “anonymous ftp”, usually to allow general access to certain
archives. To use such a service, enter anonymous instead of your username when you ftp to the
machine. It is fairly standard practice for the remote machine to ask you to give your email
address as a password. Once you have logged on you will have read access in a limited set of
directories, usually within the /pub directory tree. It is good etiquette to follow the guidelines
laid down by the administrators of the remote machine, as they are being generous in allowing
such access. See leaflet G72 for more detailed examples of using ftp.

WARNING! When you use ftp the communications between the machines are not encrypted.
This means that your password could be snooped when you use it make an ftp connection.
If available, the commands sftp (secure file transfer program) or scp (secure remote file copy
program) are preferable, as they provide encrypted file transfer. See later discussion of this scp.

10. grep – searches files for a specified string or expression

grep searches for lines containing a specified pattern and, by default, writes them to the standard
output.

grep motif1 file1
searches the file file1 for lines containing the pattern motif1. If no file name is given, grep acts
on the standard input. grep can also be used to search a string of files, so

grep motif1 file1 file2 ... filen

will search the files file1, file2, ... , filen, for the pattern motif1.

grep -c motif1 file1
will give the number of lines containing motif1 instead of the lines themselves.

grep -v motif1 file1
will write out the lines of file1 that do NOT contain motif1.

11. gzip – compress a file

gzip reduces the size of named files, replacing them with files of the same name extended by .gz.
The amount of space saved by compression varies.

gzip file1
results in a compressed file called file1.gz, and deletes file1.

gzip -v file2
compresses file2 and gives information, in the format shown below, on the percentage of the file’s
size that has been saved by compression:-

file2 : Compression 50.26% -- replaced with file2.gz

To restore files to their original state use the command gunzip. If you have a compressed
file file2.gz , then

gunzip file2
will replace file2.gz with the uncompressed file file2.

113

12. help – display info about bash builtin commands

help gives access to information about builtin commands in the bash shell. Using help on its
own will give a list of the commands it has information about. help followed by the name of one
of these commands will give information about that command. help history, for example, will
give details about the bash shell history listings.

13. info – read online documentation

info is a hypertext information system. Using the command info on its own will enter the info
system, and give a list of the major subjects it has information about. Use the command q to
exit info. For example, info bash will give details about the bash shell.

14. kill – kill a process

To kill a process using kill requires the process id (PID). This can be found by using ps.
Suppose the PID is 3429, then

kill 3429

should kill the process. If it doesn’t then sometimes adding -9 helps. . .

kill -9 3429

15. lpr – print out a file

lpr is used to send the contents of a file to a printer. If the printer is a laserwriter, and the file
contains PostScript, then the PostScript will be interpreted and the results of that printed out.

lpr -Pprinter1 file1

will send the file file1 to be printed out on the printer printer1. To see the status of the job
on the printer queue use

lpq -Pprinter1

for a list of the jobs queued for printing on printer1. (This may not work for remote printers.)

114

16. ls – list names of files in a directory

ls lists the contents of a directory, and can be used to obtain information on the files and directories
within it.

ls dir1
lists the names of the files and directories in the directory dir1, (excluding files whose names begin
with .). If no directory is named, ls lists the contents of the current directory.

ls -a dir1
will list the contents of dir1, (including files whose names begin with .).

ls -l file1
gives details of the access permissions for the file file1, its size in kbytes, and the time it was last
altered.

ls -l dir1
gives such information on the contents of the directory dir1. To obtain the information on dir1
itself, rather than its contents, use

ls -ld dir1

17. man – display an on-line manual page

man displays on-line reference manual pages.

man command1
will display the manual page for command1, e.g man cp, man man.

man -k keyword
lists the manual page subjects that have keyword in their headings. This is useful if you do not
yet know the name of a command you are seeking information about, but can produce a lot of
output. To refine the output you could, for example, use man -k keyword | grep ’(1’ to get a
list of user commands with keyword in their headings (user commands are in section 1 of the man
pages). The | means that the output of man -k is piped to (i.e., is used as the input for) grep.

man -Mpath command1
is used to change the set of directories that man searches for manual pages on command1

18. mkdir – make a directory

mkdir is used to create new directories. In order to do this you must have write permission in
the parent directory of the new directory.

mkdir newdir
will make a new directory called newdir.

mkdir -p can be used to create a new directory, together with any parent directories required.

mkdir -p dir1/dir2/newdir
will create newdir and its parent directories dir1 and dir2, if these do not already exist.

115

19. more – scan through a text file page by page

more displays the contents of a file on a terminal one screenful at a time.

more file1
starts by displaying the beginning of file1. It will scroll up one line every time the return key is
pressed, and one screenful every time the space bar is pressed. Type ? for details of the commands
available within more. Type q if you wish to quit more before the end of file1 is reached.

more -n file1
will cause n lines of file1 to be displayed in each screenful instead of the default (which is two lines
less than the number of lines that will fit into the terminal’s screen).

20. mv – move or rename files or directories

mv is used to change the name of files or directories, or to move them into other directories. mv
cannot move directories from one file-system to another, so, if it is necessary to do that, use cp
instead – copy the whole directory using cp -r oldplace newplace then remove the old one using
rm -r oldplace.

mv name1 name2
changes the name of a file called name1 to name2.

mv dir1 dir2
changes the name of a directory called dir1 to dir2, unless dir2 already exists, in which case dir1
will be moved into dir2.

mv file1 file2 dir3
moves the files file1 and file2 into the directory dir3.

21. nice – change the priority at which a job is being run

nice causes a command to be run at a lower than usual priority. nice can be particularly useful
when running a long program that could cause annoyance if it slowed down the execution of other
users’ commands. An example of the use of nice is

nice gzip file1
which will execute the compression of file1 at a lower priority.

If the job you are running is likely to take a significant time, you may wish to run it in the
background, i.e., in a subshell. To do this, put an ampersand &, after the name of your command
or script. For instance,

rm -r mydir &
is a background job that will remove the directory mydir and all its contents.

The command jobs gives details of the status of background processes, and the command fg can
be used to bring such a process into the foreground.

22. passwd – change your password

Use passwd when you wish to change your password. You will be prompted once for your current
password, and twice for your new password. Neither password will be displayed on the screen.

116

23. ps – list processes

ps displays information on processes currently running on your machine. This information includes
the process id, the controlling terminal (if there is one), the cpu time used so far, and the name
of the command being run.

ps
gives brief details of your own processes in your current session.

To obtain full details of all your processes, including those from previous sessions use:-
ps -fu user1
using your own user name in place of user1.

ps is a command whose options vary considerably in different versions of Unix. Use man ps for
details of all the options available on the machine you are using.

24. pwd – display the name of your current directory

The command pwd gives the full pathname of your current directory.

25. quota – display disk quota and usage

quota gives information on a user’s disk space quota and usage.

On some systems using quota without options will only give details of where you have exceeded
your disk quota on local disks, in which case, use the -v option

quota -v
to get details of your quota and usage on all mounted filesystems.

26. rm – remove files or directories

rm is used to remove files. In order to remove a file you must have write permission in its directory,
but it is not necessary to have read or write permission on the file itself.

rm file1
will delete the file file1. If you use

rm -i file1
instead, you will be asked if you wish to delete file1, and the file will not be deleted unless you
answer y. This is a useful safety check when deleting lots of files.

rm -r dir1
recursively deletes the contents of dir1, its subdirectories, and dir1 itself, and should be used with
suitable caution.

rm -rf dir1
is like rm -r, except that any write-protected files in the directory are deleted without query. This
should be used with even more caution.

117

27. rmdir – remove a directory

rmdir removes named empty directories. If you need to delete a non-empty directory rm -r can
be used instead.

rmdir exdir
will remove the empty directory exdir.

28. sort – sort and collate lines

The command sort sorts and collates lines in files, sending the results to the standard output.
If no file names are given, sort acts on the standard input. By default, sort sorts lines using a
character by character comparison, working from left to right, and using the order of the standard
character set.

sort -d
uses “dictionary order”, in which only letters, digits, and white-space characters are considered in
the comparisons.

sort -r
reverses the order of the collating sequence.

sort -n
sorts lines according to the arithmetic value of leading numeric strings. Leading blanks are ignored
when this option is used, (except in some System V versions of sort, which treat leading blanks
as significant. To be certain of ignoring leading blanks use sort -bn instead.).

29. ssh – secure remote login program

ssh is used for logging onto a remote machine, and provides secure encrypted communications
between the local and remote machines using the SSH protocol. The remote machine must be
running an SSH server for such connections to be possible. For example,

ssh -X YourCRSID@linux.phy.pwf.cam.ac.uk
will commence a login connection to the Physics PWF server.

You can connect using your password for the remote machine, or you can set up a system of
passphrases to avoid typing login passwords directly (see the man page for ssh-keygen for infor-
mation on how to create these).

The optional -X flag makes it possible for the remote machine to open X windows on your
local machine.

118

30. scp – securely copy files between computers

scp is used for copying files between any two computers that you can log on to with ssh.

Suppose you could log in via ssh to computer computer1.co.uk with user-id britBoy on
which there was a file /var/allmypasswords.txt. And suppose that you wished to copy this file
to one called /home/ici.txt on a different computer ordinateur2.fr, which you are customarily
able to log into via ssh with user-id pierre. Then to effect that file transfer you would type the
following from a terminal on any computer:

scp britboy@computer1.co.uk:/var/allmypasswords.txt pierre@ordinateur2.fr:/home/ici.txt

If it so happened that the terminal from which you wanted to execute the scp command was
already on computer1.co.uk then you could use the simpler form:

scp /var/allmypasswords.txt pierre@ordinateur2.fr:/home/ici.txt

Likewise, if it so happened that the terminal from which you wanted to execute the scp command
was already on ordinateur2.fr then you could use the simpler form:

scp britboy@computer1.co.uk:/var/allmypasswords.txt /home/ici.txt

scp can also copy directories and all the contents recursively. To do the above on directories
one would need something like:

scp -r britboy@computer1.co.uk:/var pierre@ordinateur2.fr:/home

where the -r means “Do this recursively on directories”.

119

