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Abstract

These notes present an introduction to template programming in C++.

They are aimed particularly at readers who are reasonably familiar with

functional languages, such as OCAML. We will concentrate on features

and idioms that are well understood from functional languages: paramet-

ric polymorphism and pattern-matching on function arguments.
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1 Introduction

These notes are intended for readers who are familiar with basic procedural
programming in a C-like syntax (such as Java) as well as functional programming
(e.g., in OCAML). They were written with the students on my second-year
C/C++ course in mind, who have been taught both Java and OCAML in their
first year. See
http://www.cs.bham.ac.uk/~hxt/2013/c-programming-language/

However, readers may safely skip everything about OCAML when they do not
find the comparison helpful.

In these notes, I am trying to go deep (to the extent possible in an under-
graduate first course in C/C++) rather than broad. If there is something I find
complicated or not absolutely necessary for the development at hand, I will try
to be silent about it rather than muddy the waters. As the old saying goes,
“somewhere inside C++ there is a smaller, cleaner language trying to get out”,
and until that language appears, all we can do is form subsets to our taste.

Templates are perhaps the part of C++ where compilers are most likely to
deviate from the standard [C++], hence one may sometimes get different be-
haviours from different compilers. The examples below were tested with Xcode
5.0.2.

2 Templates in the design of modern C++

In object-oriented programming, the word “polymorphism” is often used for
dynamic dispatch of methods calls (in C++ terminology: virtual functions).
In Java, you get this dynamic dispatch behaviour for all overidden methods.
See also http://www.cs.bham.ac.uk/~hxt/2013/c-programming-language/

objects-in-c.pdf

The “polymorphism” in dynamic dispatch is completely different from the
parametric polymorphism provided by templates. For comparison:

Templates Dynamic dispatch

When compile-time run-time
Typing Type parameters Subtyping
Efficiency + no runtime overhead - indirection via pointers

- potential code bloat at runtime
Related to OCAML and Haskell polymorphism Objective C messages

Java generics Java methods
ML functors

As C++ provides both templates and dynamic dispatch, they can be combined,
which can become quite complex. On the other hand, it is an interesting ques-
tion whether the increasing power of templates in C++ makes inheritance less
important than it was claimed to be in the 1990s. The C++ standard library
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in now called the Standard Template Library (STL), and templates seem more
central to its design then elaborate deep class hierarchies.

C++ can be thought of as composed of two layers of language constructs.
The lower layer is a simple procedural language aimed at low-level data struc-
tures built mainly from structs and pointers. That language is the “C” layer
in “C++”. On top of it, the “++” layer, so to speak, provides abstraction
mechanisms aimed at constructing complex software in a structured and type-
safe way. The best known features of this high-level language layer that C++
puts on top of C are perhaps objects and classes, so that C++ is sometimes
regarded, inaccurately, as an “object-oriented language”. While C++ histori-
cally evolved [Str94] from “C with classes”, the latest standard, C++11, defines
a much more general language. Object-oriented programming is one of many
programming styles supported by C++11. Note that using classes in C++
does not by itself constitute object-oriented programming. The term “class” is
used rather widely for user-defined types in C++ and more or less interchange-
ably with struct. If one does not use inheritance and in particular virtual
functions, there is nothing particularly object-oriented about such classes or
structures. For instance, we may use a class with only static member functions
as the best approximation that C++ provides to (tuples of) first-class functions,
and structures may be plain old data tuples.

In these notes, we will concentrate on a subset of C++11 that may be seen as
“C with templates”. Templates are by far the most advanced part of C++ and,
perhaps surprisingly, the part of C++ that is closest to functional programming
and lambda calculus. Templates form a higher-order, typed, purely functional
language that is evaluated at compile time [Str12b, Str12a]. Note, however,
that we will not pretend that C++ is, or ought to be, a functional programming
language. The lower language level (inside functions and structures) can still be
typical and idiomatic C, with assignments, pointers and all the rest; it is only the
higher level of abstraction mechanisms that resembles functional programming.

Some introductions to templates put a lot of emphasis on their ability to
perform arbitrary computations at compile-time. For instance, you can write a
template that computes the factorial function during C++ compilation, and it
might even output the result in compiler error messages for extra strangeness.
However, in the latest C++11 standard, constexpr functions already provide
compile-time functional computation. Here we will put greater emphasis to the
relation of templates to type parametrization than their compile-time compu-
tation aspect, sometimes called meta-programming.

3 Templates and type parameters

The basic idea of C++ templates is simple: we can make code depend on
parameters, so that it can be used in different situations by instantiating the
parameters as needed. In C, as in practically all programming languages, the
most basic form of code that takes a parameter is a function. For example,
consider this C function:

int square(int n)

{

return n * n;

}
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Here the expression n * n has been made parametric in n. Hence we can apply
it to some integer, say

square(42)

Templates take the idea of parameterizing code much further. In particular, the
parameters may be types. For example, if F is a C++ template, it could be
instantiated with int as the type, as in

F<int>

A typical example is the standard library template vector. By instantiating it
with int, as in vecor<int>, we get a vector of integers.

Note the fundamental difference to the function square above. In the func-
tion, int is the type of the argument, whereas in F<int>, the argument is int
itself.

There are two kinds of templates in C++:

1. Class templates

2. Function templates

These correspond roughly to polymorphic data types and polymorphic functions
in functional languages.

To a first approximation, you can think of template instantiation as substi-
tution of the formal parameters by the actual arguments. Suppose we have a
template

template<typename T>

struct s {

... T ... T ...

};

Then instantiating the template with argument A replaces T with A in the tem-
plate body. That is, s<A> works much as if we had written a definition with the
arguments filled in:

struct sA {

... A ... A ...

};

The reality is more complex, but details may depend on the C++ implemen-
tation. A naive compiler may cause code bloat by creating and then compiling
lots of template instantiations s<A1>, s<A2>, s<A3>, . . . . It is an interesting
question how an optimizing compiler and/or a careful template programmer
may avoid this risk of potential code bloat. On the other hand, because the
argument replacement happens at compile time, there is no more overhead at
runtime. Templates can produce very efficient code, in keeping with the aim of
C++ to provide “zero-overhead” abstractions [Str12b].

In C, a similar form of replacement of parameters could be attempted using
the macro processor. Templates, however, are far more structured than macros,
which should be avoided in C++.

Readers who know λ-calculus may notice the similarity of template instanti-
ation to β-reduction via substitution: we may read template<typename T> as
analogous to λ T.
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4 Parametric polymorphism

If you are familiar with a typed functional language such as OCAML [Ler13] or
Haskell, you have already seen parametric polymorphism. That will make C++
templates much easier to understand.

The type of lists is polymorphic. There is a type of integer lists, a type of
string lists, and so on. For example, here the OCAML compiler automatically
infers that [1; 2; 3] is a list of integers:

# [1; 2; 3];;

- : int list = [1; 2; 3]

Analogously, for a list of strings, we get:

# [ "foo"; "bar"; "qux" ];;

- : string list = ["foo"; "bar"; "qux"]

These examples are quite similar to vector<int> and vector<string> in C++.
Note, however, that in C++ we often have to give the type parameters (int
and string) explicitly rather than have the compiler infer them automatically.

When we define new types in OCAML, they may depend on a type parame-
ter. For example, here is a definition of binary tree trees where the leaves carry
data of type ’a.

type ’a bt = Leaf of ’a

| Internal of ’a bt * ’a bt;;

Such parametric type definitions correspond to template classes in C++.
Not only types but also function can be polymorphic. A standard example

is the function twice:

# let twice f x = f(f x);;

val twice : (’a -> ’a) -> ’a -> ’a = <fun >

Polymorphic datatypes and functions can be combined. For example, we have
both a polymorphic list type and functions like list reversal that operate on
them:

val rev : ’a list -> ’a list

As we will see, a polymorphic data type corresponds to a class template in C++,
which may be of the following form:

template <typename T>

struct S

{

// members here may depend on type parameter T

T data; // for example a data member

void f(T); // or a member function

using t = T; // or making t an alias for T

};

Similarly, a polymorphic definition of a function f may be of the following
form:
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template <typename T>

A f(B) // return type A and parameter type B may depend on T

{

// function body may depend on T:

T x; // for example , variable x of type T

T::g(); // or calling function g from class T

}

Note that the keyword typename in the parameter list of the templates gives
the “type” of the parameter T. That is, T is itself a type.

There is a great deal more to templates than what has been sketched here,
but polymorphic data structures and functions already provide powerful pro-
gramming idioms familiar from functional programming. As usual in C++,
there is a certain amount of syntactic complication, but there are also uses of
templates that go far beyond what one can with polymorphism in OCAML.

5 Writing templates by abstracting over types

A good way to write template is to start with data structures or functions
that work for a particular type and then generalizing that type to a template
parameter.

Here is a type of linked lists of integers, together with a function that sums
all the elements of such lists:

struct LinkedInt

{

int head;

struct LinkedInt* tail;

};

Listing 1: Linked list

int sumInt(struct LinkedInt *p)

{

int acc = 0;

while (p) {

acc += p->head;

p = p->tail;

}

return acc;

}

It is easy to see that a linked list works the same for all types. Hence we
can replace int in listing 1 with T and make it a template parameter:

template <typename T>

struct Linked

{

T head;

Linked <T>* tail;

};
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Note that T is a bound variable whose scope is the struct. We could have
chosen any other name for it, e.g.

template <typename TypeParameter >

struct Linked

{

TypeParameter head;

Linked <TypeParameter >* tail;

};

6 Classes and pointers as template arguments

Generalizing the function is more involved. We do not just generalize int to T

but we also need to generalize the operation + and the constant 0 in some way.
There are several ways of doing so. The most general and arguably cleanest is
to pass a class as a parameter, so that the class provides the required operations
as static member functions.

The function template is:

template <typename T, typename Ops >

T fold(Linked <T> *p)

{

T acc = Ops:: initial ();

while (p) {

acc = Ops::bin(acc , p->head);

p = p->tail;

}

return acc;

}

Listing 2: Function template

For the case of integers, a class that implements the required operations can
be defined as follows:

struct IntOps {

static int initial () { return 0; };

static int bin(int x, int y) { return x + y; }

};

Here is a main function for testing the function template on integers:

int main(int argc , const char * argv [])

{

auto sumup = fold <int , IntOps >;

Linked <int > x {3, nullptr };

Linked <int > y {2, &x };

std::cout << sumup(&y);

return 0;

}
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Now suppose we want to instantiate the linked list type and the function
template to strings rather than integers. A class that implements string opera-
tions can be written as follows:

class StrOps {

public:

static std:: string initial () { return ""; };

static std:: string bin (std:: string x, std:: string y)

{

return x + y;

}

};

Here is a main function for testing the function template on strings:

int main(int argc , const char * argv [])

{

Linked <std::string > b = { "bar", nullptr };

Linked <std::string > a = { "foo ", &b };

auto sumupstr = fold <std::string , StrOps >;

std::cout << sumupstr (&a) << "\n";

return 0;

}

Exercise 6.1 In the function template in Listing 2, the template takes two
parameters, a type T and operations on that type, which are given by the second
parameter. Rewrite the code so that only one parameter is passed. Hint: C++
structs can contain types as members, so you can merge the first parameter into
the second.

Exercise 6.2 In the OCAML standard library, there is:

val fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

The intended meaning is

fold_left f a [b1; ...; bn] = f (... (f (f a b1) b2) ...) bn

Generalize the function template so that it takes two type parameters T1

and T2.

7 Function pointers as template arguments

Another possibility for passing the operations as template parameters to the
function is to use value, rather than type parameters, in addition to the type
parameter T. In particular, C function pointers can be passed as values.
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template <typename T, T init , T (*bin)(T, T)>

T fold2(Linked <T> *p)

{

T acc = init;

while (p != nullptr) {

acc = bin(acc , p->data);

p = p->next;

}

return acc;

}

Listing 3: Function pointer as template argument

Here is how we can use the function template:

inline int sum(int x, int y)

{

return x + y;

}

auto sumup2 = fold2 <int , 0, sum >;

Although a function pointer as a template parameter looks like an indirect
call, “it would be reasonable for the call to be inline” [VJ02, Section 22.5.5]
given a sufficiently optimizing C++ compiler.

Another example is the old functional programming favourite twice. In
OCAML, we write it as follows:

# let twice f x = f(f x);;

val twice : (’a -> ’a) -> ’a -> ’a = <fun >

# let inc n = n + 1;;

val inc : int -> int = <fun >

# twice inc 0;;

- : int = 2

With templates, we can translate the above as follows:

template <typename T, T (*f)(T)>

T twice(T x)

{

return f(f(x));

}

int inc(int x)

{

return x + 1;

}

int main(int argc , char * argv [])

{

std::cout << twice <int , inc >(0);

}
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Exercise 7.1 Explain where and how the OCAML type

(’a -> ’a) -> ’a -> ’a

of twice is represented in the function template.

8 Member functions of template classes

A polymorphic data structure and a function operating on it can be defined
separately, as is typical in functional programming. In a more object-oriented
style, data and operations on it can be packaged together in a class, by defining
member functions of the class.

Now we can use the function object together with a function template:

template <typename T>

struct Linked

{

T data;

Linked <T>* next;

void apply_each(void(*f)(T));

};

template <typename T>

void Linked <T>:: apply_each(void(*f)(T))

{

T* p = data;

while(p) {

f(p->data);

p = p->next;

}

}

Note that the member function is defined outside the class declaration.
Hence it is outside the scope of the template parameter T of struct Linked.
As the function definition needs to be in the scope of the template parameter,
it has to be preceded by template<typename T> to avoid the variable T being
unbound.

Exercise 8.1 Does the template parameter T in the member function definition
have to be the same as in the class declaration, or can it be renamed, say to T2?

9 Function objects and templates

A function object is an object that can be used like a function. One of its mem-
ber functions overloads the function call syntax (). Such an object can have
its own data members. We can create function object dynamically, unlike C
functions. In functional programming terms, function objects simulate closures.
Function objects are often used with templates. Objects cannot be template
parameters, only function parameters. Roughly speaking, this restriction make
some sense, because objects exist at run-time and template are processed en-
tirely at compile-time.

Here is an example:
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// class for curried addition function

class cadd {

private:

int n;

public:

cadd(int n) { this ->n = n; }

int operator () (int m) { return n + m; }

};

int main(int argc , const char * argv [])

{

// make a new function object in local var

cadd addfive (5);

cout << addfive (7);

}

This prints 12.
Function objects can be parameters to functions. Here is an example where

the template type parameters can be inferred automatically by the compiler:

template <typename T, typename Op>

T twice(T x, Op f)

{

return f(f(x));

}

int main(int argc , const char * argv [])

{

cadd addfive (5); // create function object

cout << twice <int , cadd >(10, addfive)

<< endl;

// <...> can be omitted

cout << twice(10, addfive)

<< endl;

}

This prints 20 twice.
C++11 adds a more concise syntax for function objects: so-called “lambda

expression” [Str12a, Section 11.4]. The word “lambda” comes from the λ-
calculus.

Here is an example:

[=] (int x) { return x + a; }

It is like

fun x -> x + a

in OCAML or
λx.x+ a
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in λ-calculus. The syntax [=] indicates that all variables in scope should be
“captured” and become part of the closure. The variable a needs to be in scope.

We can use a “lambda expression” as a parameter, as follows:

int foo = 10;

cout <<

twice(1, [=] (int x) { return x + foo; })

<< endl;;

This prints 21.
C++ tries to approximate functional programming, more or less analogous

to the following:

# let cadd n m = n + m;;

val cadd : int -> int -> int = <fun >

# cadd 5 7;;

- : int = 12

# List.map (cadd 5) [1; 2; 3];;

- : int list = [6; 7; 8]

Compare iterators in the C++ Standard Template Library.

10 Template std::function

The template std::function gives general function types. They are useful for
typing lambda expressions. For example:

#include <iostream >

using namespace std;

function <int(int)> f(int n)

{

return [=] (int m) { return n + m; };

}

int main(int argc , const char * argv [])

{

auto g = f(2);

cout << g(3) << endl ;

cout << g(4) << endl ;

}

This prints 5 and 6.

11 Void pointers and polymorphism

To some extent, the flexibility of templates can be approximated in C by ac-
cessing data via pointers. It is instructive to compare the use of template type
parameters to the (much more unsafe) use of void pointers in C.

Here is a linked list type that stores a pointer to the data:
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struct Linked

{

void* data;

struct Linked* next;

};

Here is a function that operates on such lists:

void* fold(struct Linked *p, void *initial ,

void *(* bin)(void *x, void *y))

{

void *acc;

acc = initial;

while (p) {

acc = bin(acc , p->data);

p = p->next;

}

return acc;

}

In addition to the linked list, the function takes a function pointer as a param-
eter.

Here is a function that can be used when we want to instantiate to integers:

void *ptr2sum(void *x, void *y)

{

int *p;

p = malloc(sizeof(int));

*p = *(int *)x + *(int *)y;

return p;

}

Here is a main function for testing the code above:

int main(int argc , const char * argv [])

{

int zero = 0;

int one = 1;

int two = 2;

int three = 3;

struct Linked x = {&three , NULL };

struct Linked y = {&two , &x };

struct Linked z = {&one , &y };

int *r = fold(&z, &zero , ptr2sum);

printf("%d\n\n", *r);

return 0;

}

The main difference between templates and the old style of void pointer
polymorphism in C is that the type system cannot ensure that void pointers are
used consistently. It is entirely up to the programmer to make sure that a void
pointer points at data of the expected type when it is dereferenced.
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Exercise 11.1 Suppose you have a linked list of pointers to floats and you try
to sum it up by using a function that works on pointers to integers. What will
happen? Is it reasonably to expect the compiler to detect the problem; or that
type conversions are done automatically?

12 Template template parameters

There is still more to templates that should be easy for functional programmers.
Templates can themselves be arguments to templates.

Templates as template arguments may arise quite naturally when we pass a
container class like vector to a template.

template <template <typename >class Cont >

struct UseContainer {

Cont <int > ic;

// now we can put int data into ic

};

...

UseContainer <vector > uc;

Passing the container and letting the template apply it as it wishes can be a more
flexible design than passing the container already instantiated to int [VJ02].
In the Standard Template Library, the template class vector takes an allocator
as its second parameter, which is itself a template parametric in a type [Str12a,
Section 31].

Of course, in functional programming it is straightforward for a function to
take another function as a parameter, for instance we can write:

# fun f -> f 42;;

- : (int -> ’a) -> ’a = <fun >

13 Type-safety and templates

One of the killer apps, so to speak, of templates are type-safe containers. Sup-
pose we want to store objects of different types in some container, such as an
array or a list. In Java, one could try to use an array of Object as a universal
container that can hold objects of any class type. Due to subtyping, you can
indeed store objects of any class type A in such an array. The problem is what
you get back when reading from the array: the type is Object, not A. To use
the object, for example calling one of is methods, one may have to cast it to A.
The need for casting shows that the array of objects is not type-safe. In fact, it
has similar problems to the use of void pointers in C. The type-safe container
problem was solved when generics were added to Java. With generics or C++
templates, a container such as vector<A> is specific to the type A. That means
you are guaranteed to get back an A, without the need for unsafe casting. More
generally, this situation illustrates the difference between subtyping, as found
in typed object-oriented languages, and parametric polymorphism, as found in
functional languages and also C++ templates.
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One of the advantages of templates is that they allow compile-time type
checking, unlike void pointers as a kind of poor man’s polymorphism for ex-
ample. However, templates do not quite provide the same degree of type
safety as polymorphism in OCAML. Concerning template type checking, Strous-
trup [Str12b] writes that

[...] the arguments to a template are unconstrained and only their
instantiations are type checked. This [...] leads to late (link-time)
type checking and appallingly poor error messages.

We could define a template that formalizes the interface for the parameter
of the template in Listing 2:

template <typename T>

struct AbsOps {

static T initial ();

static T bin(T x, T y);

};

In Java, interfaces are used in this way to type parameters in generics. This
is sometimes called bounded polymorphism. In contrast, in C++ the arguments
of templates need not be derived from any base class. The C++ type system is
not expressive enough to capture what is and is not a valid argument for a given
template. There may be type errors that are only caught when a template is
applied, not when it is declared (although this is still at compile time and not
at run time). The design of generics in Java had more input from type theory
than the evolution of C++ templates. Moreover, C++ templates are a more
general mechanism than Java generics, so it is to be expected that typing them
is harder. (Some current research involves so-called concepts and traits.)

Passing a function pointer as a template parameter can give more type safety
than passing a class. For example, the polymorphic function twice can be
written as:

template <typename T, T (*f)(T)>

T twice(T x)

{

return f(f(x));

}

Here the typing of the template parameters, and f in particular, ensures that
the body of the function,

f(f(x))

is well typed whenever the template arguments match the types in the parameter
list. By contrast, if we pass the function f as part of a class, the template
parameter list looks like this:

template <typename T, typename F>

and we would have to look inside the body of the function to see if operations
from F are applied correctly.

There is at least one case where the typing of C++ templates is less power-
ful than Java generics: template member functions cannot be virtual, whereas

15



in Java all functions are virtual, including parametrically polymorphic ones.
That means that a cleaner typing of the Visitor pattern can be programmed in
Java [BT06] than is possible in C++.

The typing of higher-order templates has some aspects of simply-typed λ-
calculus, so that it catches some type errors. Specifically, errors are detected
that are due to parameters and arguments not matching at the right level of
templates, template templates, template template templates, etc. The standard
example of something that cannot be typed1 is a self-application, f(f). Here
f has some type A → B, so that it has to be applied to something of type A.
However, it is applied to f , which has type A → B and not A as required. In
OCAML, we get this message if we try to type a self-application:

# fun f -> f f;;

Error: This expression has type ’a -> ’b

but an expression was expected of type ’a

The type variable ’a occurs inside ’a -> ’b

The same issue arises if we attempt to apply a template to itself.

template <typename T>

struct f {

};

f<f> s; // error: template argument required

To fix the problem, we could try to make the parameter a template template:

template <template <typename >class T>

class f2 {

};

Now f2<f> is well typed, but not the self-application f2<f2>. The latter pro-
duces a type error at the level of template templates. In sum, this part of the
template type system is fairly clean and close to functional programming.

14 Template typing versus derived class typing

It is instructive to compare and contrast the typing of templates with that of
C++ virtual functions using dynamic dispatch. (In Java, all method overriding
behaves like C++ virtual functions.) Virtual functions are sometimes called
runtime polymorphims, and they are statically typed using a form of subtyping
(derived classes have a subtype of their base class).

Here is a standard example of using virtual functions.:

class animal // base class

{

public:

virtual void speak() { printf("Grunt."); }

// default if not overriden in derived class

};

1at least not in the simply-typed λ-calculus
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class baboon : public animal

// subtyping: baboon can be used where animal is expected

{

public:

void speak() { printf("I R Baboon!"); }

// override virtual function

};

class weasel : public animal

{

public:

void speak() { printf("I M Weasel!"); }

};

int main(int argc , const char * argv [])

{

animal *p;

if (random_bool ()) // cannot predict at compile time

p = new baboon (); // OK due to subtyping

else

p = new weasel (); // OK due to subtyping

p->speak (); // baboon or weasel? Either works

}

Listing 4: Overriding virtual function speak

Suppose we have a pointer p of type animal*. The pointer may in fact point
to an object of the derived class baboon. When we call p->speak(), the ap-
propriate function for baboon is selected at run time (the dynamic in dynamic
dispatch). All concrete classes derived from animal must implement a member
function speak. In that sense, the C++ type system ensures that nothing goes
horribly wrong because we try to run some code that does not exist. (But using
casts you can do so, and get exciting errors at runtime, including the dreaded
arbitrary code execution.)

Now compare the above to the situation with templates. Suppose we have
a function template that requires its arguments to provide a speak function:

template <typename T>

void let_speak ()

{

T:: speak();

}

We can instantiate the template using a class that has a speak function:

class baboon

{

public:

static void speak () { printf("I R Baboon!"); }

};

Note that here we need a static function. Then the following works:

let_speak<baboon>();

But now suppose we have some class completely unconnected to baboon:
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class academic

{

public:

static void speak () { printf("lambda lambda lambda"); }

};

As there is no base class in this case, there is no potential for subtyping and
dynamic dispatch. Again, instantiating the template works fine:

let_speak<academic>();

There is no requirement for template arguments to have a common base class,
very much in contrast to Listing 4. A problem only arises when we provide a
template argument that does not provide the required function at all:

class plant { void vegetate (); };

Then we get a compiler error when attempting to instantiate the template with
it:

let_speak<plant>(); // error at template instantiation

The typing of template arguments and derived classes is an instance of an old
question in programming language design: definitional versus structural type
equivalence. Suppose we have two different definitions of types, but they contain
the same information (like speak above). Should the types be regarded as
interchangeable? Templates and classes take a different view: the former say
yes, while the latter only when the types are related via the class hierarchy
(subtyping).

Long before C++ and objects, C already chose the definitional view in its
type system:

struct cm { float val; };

struct inch { float val; }; // same or different?

int main(int argc , char * argv [])

{

struct cm x;

struct inch y;

x = y; // error: incompatible types

x.val = 2.54 * y.val; // OK , same type float

}

15 Specialization as pattern-matching on tem-
plate arguments

In OCAML, the canonical way to process tree-shaped data structures is to use
pattern matching on the constructors. For example, suppose we have a binary
tree type defined as follows:

# type ’a bt = Leaf of ’a

| Internal of ’a bt * ’a bt;;
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Then a function can pattern-match on the cases of Leaf and Internal. In each
case, the pattern also matches variables. On a pattern Leaf x, the compiler
knows that Leaf is the constructor and x is a variable bound in the pattern.
Similarly, in a pattern Internal (left, right), the two variables left and
right are bound, and we may call the function recursively on them to process
the tree.

The pattern-matching in C++ templates works similarly to that in func-
tional languages. However, instead of user-defined data types, the language
provides a special built-in tree-shaped data type that can be matched: the lan-
guage of type expressions. For instance, the C type of arrays of pointers to
integers, int *[], corresponds to a tree where the type constructor [] is at the
top, followed by the type constructor * for pointers and finally the type int at
the bottom. The C++ compiler knows these type constructors, as they are part
of the language.

Exercise 15.1 Draw the tree for the C type expression float(*[])(int*).

The motivation for template specialization is to provide better implementa-
tions for particular types. A container class cloud be specialed for type bool to
chose a more efficient bit vector representation [VJ02]. In the Thrust template
library [HB11] for GPU programming, the template for sorting is specialized in
the case of int to chose a radix sort implementation that is more efficient than
the general purpose sorting algorithm

If there is an implementation that works for all pointer types, one can write
a specialization that handles all types of the form T *:

template <typename T>

struct C<T*>

... // implementation for pointer types

How does the compiler determine what in a pattern is a variable and what
is not? In some languages, constructors and variables are distinguished lexi-
cally. In C++, the variables in a pattern are introduced beforehand. Somewhat
confusingly, this variable introduction is done by writing template again.

As an example, we will solve Kernighan and Richie’s [KR88] exercise of
translating C type expressions into English in a labour-saving way without hav-
ing to write a parser. Template specialization matches the type expression and
recursively constructs a string that describes the type in English, e.g. int*

should produce “pointer to int”.

template <typename T>

struct NameofType;

template <typename T, typename S>

struct NameofType <T(*)(S)> {

static void p()

{

std::cout << "pointer to function returning a ";

NameofType <T>::p();

std::cout << " and taking an argument of type ";

NameofType <S>::p();

}

};
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template <>

struct NameofType <int > {

static void p()

{

std::cout << "int";

}

};

template <>

struct NameofType <float > {

static void p()

{

std::cout << "float";

}

};

template <typename T>

struct NameofType <T*> {

static void p()

{

std::cout << "pointer to ";

NameofType <T>::p();

}

};

template <typename T>

struct NameofType <T[]> {

static void p()

{

std::cout << "array of ";

NameofType <T>::p();

}

};

For example, we can instantiate the template to some complicated type
expression like float(*[])(int*) and then call its p function:

NameofType<float(*[])(int*)>::p();

The function call prints the following:

array of pointer to function returning a float

and taking an argument of type pointer to int

The parsing of the type expression is done by the C++ compiler at compile
time. Some cases, e.g. long and functions of more than one argument, are left
as exercises for the reader.

For a more substantial use of templates that pattern-match on types, see
[VJ02, Section 19].

16 Dependent types via templates

In parametric polymorphism, a type can depend on another type. In dependent
types, a type can depend on a value. For example, there could be a type of
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vectors with exactly n elements, where n is an integer. Such dependent types
cannot be defined in core OCAML, but they exist in some research languages,
for example Agda [Nor09].

With templates, we can define a type of square n × n matrices, depending
on n.

template <typename T, int n>

struct squareMatrix {

T a[n][n];

};

squareMatrix <float , 2> sqmat =

{ { { 1.0, 2.0 },

{ 3.0, 4.0} }

};

In a more advanced use of templates for matrices, we let the dimension of the
matrix depend on a parameter n. This (very rough) example uses recursive
template specialization.

template <typename T, int n>

struct ndimMatrix;

template <typename T>

struct ndimMatrix <T, 0>

{

T m[];

};

template <typename T, int n>

struct ndimMatrix

{

ndimMatrix <T,n - 1> m[];

};

For a fully developed design of n-dimensional matrices using templates, see
Chapter 29 of Stroustrup’s C++ book [Str12a]. Recursion over a dimension
parameter [VJ02, Section 17.7] can also be used for loop unrolling.

17 Higher-order templates (for λ-calculus fans)

Templates can be the result of templates (wrapped into a struct). That means
we can write type constructors of higher order.

Here is a more involved example of higher-order templates: currying.

template <template <typename , typename >class F>

struct curry {

template <typename A>

struct t1 {

template <typename B>

struct t2 {

using t = F<A,B>;

};

};
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};

template <typename A, typename B>

struct prod {

A fst;

B snd;

};

For example, if we apply curry to prod, we get a template, which we can
then apply to int and then to double. The result is a type, which we can then
use to declare a variable q.

curry<prod>::t1<int>::t2<double>::t q { 1, 2.0 } ;

Compare the above to a function that curries its argument in λ-calculus:

λf.λa.λb.f(a, b)

Exercise 17.1 (If you know enough λ-calculus) Prove that there is a β-
reduction

(λf.λa.λb.f(a, b)) p a b →β p(a, b)

The point of the preceding exercise should become clearer with the next one:

Exercise 17.2 Argue that

curry<prod>::t1<int>::t2<double>::t

should be equivalent to

struct prod {

int fst;

double snd;

};

You may assume that template instantiation works by argument substitution.
For instance, prod is substituted for F in curry, and A and B are then substituted
by int and double.

Note that the templates operate at the level of types, not values, so we
have a higher-order λ-calculus like Fω. Convincing examples that use the full
power of higher-order templates are not necessarily easy to find, so we content
ourselves here with noting out that these powerful abstraction mechanisms are
available in C++. The Boost template library [AG04] makes extensive use of
templates for type computations, based on an encoding of untyped λ-calculus
in templates.
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