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Application Programming Interface 

“a set of functions and procedures that 

allow the creation of applications which 

access the features or data of an operating 

system, application, or other service.” 

 — Oxford English Dictionary 
 

“An interface or go-between that enables a 

software program to interact with other 

software.” — Investopedia 
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Types of API 

•  Programming language libraries, e.g. C 

– malloc(), printf(), strcpy() 

•  Operating systems, e.g. Android 
–  findViewById(R.id.search).setText(""); 

•  Plug-in APIs, e.g. NPAPI for browsers 

– NPError NP_Initialize(…) 

•  Web APIs, e.g. Yahoo! BOSS 
–  http://yboss.yahooapis.com/ysearch/web?q=API 
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Web APIs 

•  Same infrastructure as websites 

– Request—Response over HTTP 

– Open and exposed to the world 

•  Textual request/response 

– URLs in, JSON/XML out (generally) 

•  Many simply wrap web requests… 

– e.g. search APIs, Twitter posting 

•  …but many go far beyond 
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Example: Facebook Graph API 
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Amazon Product Advertising API 
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Twitter REST API 
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Growth in Web APIs 
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API Billionaires’ Club 
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Why offer an API? 

•  Avoid (control) scraping 

•  Develop partnerships 

– “Business development 2.0” 

•  New distribution channels 

•  Increase revenue (if paid) 

•  Externalize innovation 

– Copy the best? 

•  Customer lock-in through integration 
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Business questions 

•  What is our goal for the API? 

– How does it contribute to business? 

•  Free vs paid? 

– Revenue generation vs marketing 

•  Who will use it? 

– Aim at those developers’ success 

•  What do they want to do with it? 

– Can our competitors make use of it? 
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API-focused companies: Stripe 
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API-focused companies: Zencoder 
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API-only companies: SendGrid 
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API-only companies: Twilio 
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API vs licensing code 

•  Better business model 
– Recurring revenue (by usage) 

– Suits small and large clients 

•  Easier to maintain 
– No need for “releases” 

– Controlled environment 

•  Keep control over IP 

•  But it’s a serious operation 

– Risk of downtime (SLAs?) 

From Code to Product Lecture 9 — Web API Design — Slide 17 gidgreen.com/course 



Lecture 9 

•  Introduction 

•  REST 

•  Data formats 

•  Security 

•  Maintenance 

•  Documentation 

•  Resources 

From Code to Product Lecture 9 — Web API Design — Slide 18 gidgreen.com/course 



REST 

•  Representational State Transfer 

– Most popular design model for Web APIs 

•  Entities (“resources”) = URLs 

•  Actions = HTTP commands 

– GET, POST, PUT, DELETE 

•  Resources are self-descriptive 

•  No hidden server-side state 

•  (UI Principles applied to developers!) 
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HTTP request example 

PUT /api/dogs/3 HTTP/1.1 

Host: dog-db.com 

Content-Type: application/x-www-form-urlencoded 

Content-Length: 21 

 

Request data... 
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HTTP/1.1 200 OK 

Content-Type: application/json;charset=utf-8 

Content-Length: 94 

 

Response data… 



REST GET Example 1 

GET http://dog-db.com/api/dogs 
 

[ 

 { id:1, name:"Fido" }, 

 { id:2, name:"Rover" }, 

 { id:3, name:"Spot" }, 

 { id:4, name:"Fluffy" }, 

] 
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REST GET Example 2 

GET http://dog-db.com/api/dogs/3 
 

{ 

 id:3, 

 name:"Spot", 

 dob:"2009-05-21", 

 type:"spaniel", 

 photo:"http://dog-db/images/… 
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Expressing relationships 

{ 

 id:3, 

 name:"Spot", 

 dob:"2009-05-21", 

 owner:{ 

  id:16, 

  name:"Sam", 

  url:"http://dog-db.com/api/owners/16" 

 } 

 … 
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HTTP 
command 

Database 
operation 

/dogs /dogs/3 

GET Read List all dogs Get dog details 

POST Create Create new dog — 

PUT Update — Update detail/s 

DELETE Delete Delete all dogs Delete this dog 

REST as CRUD 
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REST PUT Example 

PUT http://dog-db/api/dogs/3 

name=Fifi&type=poodle 
 

{ 

 id:3, 

 name:”Fifi", 

 dob:"2009-05-21", 

 type:”poodle”, 
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Rules for REST actions 

•  GET does not change server state 

– Allows caching, prefetching 

– Like requesting web page 

•  PUT and DELETE are “idempotent” 

– Repeated calls don’t matter 

•  POST can change server state each time 

– Classic example: transfer money 

– Like submitting web form 
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Choosing REST URLs 

•  Stick to plural forms 

– /dogs → /dogs/3 not /dog/3 

•  Avoid abstractions 

– /dogs/3 better than /entities/3 

•  If multiple return types: 

– /dogs/3?type=json 

– /dogs/3.json 

•  Consistency is king! 
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More URL best practices 

•  Pagination of results 

– ?start=20&count=10 

•  Subset of fields 

– ?fields=id,name,owner,type 

•  API calls not on resources 

– GET /api/search?q=... 

– GET /api/convert?
from=km&to=inch&value=0.63 
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Other protocols 

•  Simple Object Access Protocol (SOAP) 

– XML-based + lots of extra cruft 

– Hard to read and write manually 

– Formalization and discovery via WSDL 

•  XML-Remote Procedure Call (XML-RPC) 

– Simpler precursor to SOAP 

– Based on functions, e.g. getDogName() 

•  Neither uses URLs for entities 
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Important data types 

•  String 

•  Number 

•  Boolean 

•  Date/time 

•  Null/nil 

•  Binary large objects (BLOBs) 

•  Array = unlabeled ordered list 

•  Object = labeled (ordered) list 
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Extensible Markup Language (XML) 

<dogs> 

 <dog id="3"> 

  <name>Spot</name> 

  <age>7</age> 

  <type></type> 

  <owner id="16"> 

   <name>Sam</name> 

  </owner> 

  <collar>true</collar> 

 </dog> 

 <dog id="4"> 

  ... 
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  User friendly 

  Looks like HTML 

⨯ Wordy 

⨯ Elements vs 

attributes 

⨯ Implicit typing 

⨯ "123" 

⨯ Array of one 



RSS 2.0 (see also: Atom) 

<rss version="2.0"> 

 <channel> 

  <title>Dog Tales</title> 

  <description>Stories about dogs</description> 

  <link>http://dog-tales.com/</link> 

  <item> 

   <title>Cat chasing</title> 

   <description>A dog ran after a cat</description> 

   <link>http://dog-tales.com/</link> 

   <pubDate>Thu, 09 May 2013 16:45:00 +0000</pubDate> 

  </item> 

  <item> 

   ... 
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Javascript Object Notation (JSON) 

[ 

 { 

  id:3, 

  name:"Spot", 

  age:7, 

  type:null, 

  owner:{id:16,name:"Sam"}, 

  collar:true, 

 }, 

 { 

  id:4, 

  ... 

From Code to Product Lecture 9 — Web API Design — Slide 34 gidgreen.com/course 

  Compact 

  Explicit types 

  [] vs {} 

  Javascript-ish 

  JSONP for 

web access 

⨯ Feels like 

programming 



Urlencoding 

•  URL parameters 

•  Multifield forms (PUT/POST) 
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http://dog-tales.com/ 



BLOBs (rich media) 

•  Raw delivery 

– Can’t be combined with other data 

– For HTTP use MIME to identify 

•  Provide URL (string) 

– Separate request to retrieve 

•  Base64 encoding 

–  Inflates size by 33% 

– Standard method for web forms 
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Error reporting 

•  Use HTTP response code 

– Allow suppression, e.g. for Flash 

•  Error in response: 
{ 

  http-code:401, 

  error-code:-329, 

  error-message:"Invalid API key", 

  error-help:"http://dog-db.com/docs 
   errors/-329.html” 
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HTTP response codes 
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HTTP code Meaning 

200 OK 

4xx Bad request (client’s fault) 

5xx Failed request (server’s fault) 

401 Unauthorized request 

404 Resource not found 

500 Internal error (bug) 

503 Server overloaded 



Lecture 9 

•  Introduction 

•  REST 

•  Data formats 

•  Security 

•  Maintenance 

•  Documentation 

•  Resources 

From Code to Product Lecture 9 — Web API Design — Slide 39 gidgreen.com/course 



Simple HTTP Authentication 

GET /api/dogs/?appID=29838&key=k234nb3bf89 

Host: dog-db.com 

 

GET /api/dogs/ 

Host: dog-db.com 

Authorization: Basic QWxhZGRpbjpvcGc2FtZQ== 
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  Trivial for developers 

⨯ Visible to intermediaries 

  https can solve this 



Signing API calls 

•  Client and server share secret key 

•  Signature is hash (one-way function) of: 

– Request 

– Parameters (alphabetical order) 

– Secret key 

•  Best practice: multiple keys per user 

– Users can disable some applications 

•  Problem: replay attacks 
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OAuth 1.0 

•  Standard for digitally signing API calls 

•  Permits delegation 

– User grants temporary access to API for them 

•  Prevents replay attacks 

– Via ‘nonce’ = number used once 

•  Popular industry standard 

– Dropbox, Evernote, Flickr, Twitter 

•  See also: OAuth 2.0 
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Rate limiting 

•  Per IP address, but… 

– Proxy networks e.g. Tor 

– Temporary cloud instances 

•  Per API key, but… 

– Multiple key signups 

•  Per queried entity 

•  Based on (API) server load 

•  Charging solves everything… 
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Final comments on security 

•  Do not trust clients 

– All input must be sanitized 

•  Clients must store key 

– So desktop/mobile apps hackable 

•  You can’t take back data 

– Limit scope of responses 

•  Don’t reinvent the wheel 

– Save developers time 
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Maintenance issues 

•  Downtime 

•  Versioning 

•  Scaling 

•  Monitoring 

•  Logging 
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Downtime 

•  Developers test then deploy 

– When you go down, they go down 

•  So avoid at all costs by: 

– Monitoring 

– Versioning 

•  If unavoidable then: 

– Do it on the weekend 

– Give advanced notice 
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API status 
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Versioning 

GET http://dog-db.com/api/v1/dogs/ 

 

•  Version at start of URL 

•  v1 then v2 — no v1.1 

– Makes compatibility clear 

•  Maintain one version back 

•  It’s still a failure 

– Add URLs/parameters instead 
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Scaling 

•  Usage volumes can surprise you 

– You’re serving software, not people 

– Small number of heavy users 

– Very peaky traffic 

•  Caching is your friend 

•  Drop expensive requests under load 

•  Slow response better than none 

•  Separate domain: api.dog-db.com 
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Monitoring 

•  Volume of API calls 

•  Popular calls 

•  Response time 

•  Error rates 

•  Active developers 

– Hyperactive developers 

•  Revenue (+indirect) vs costs 
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Monitoring made public 
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Logging 

•  Log everything 

–  Incoming requests 

– Outgoing response 

– Response time 

•  To enable… 

– Bug resolution 

– Abuse forensics 

– Deeper (offline) analytics 
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Documentation 

•  Reference 

•  Examples 

•  API explorer 

•  Language libraries 

•  Example apps 

•  Discussion forum 

•  (and support) 
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Reference: security 
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Reference: URLs 
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Reference: input parameters 
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For each input parameter 

•  Name of parameter 

•  Explanation/meaning 

•  Possible values/range 

•  Example values 

•  Optional or required? 

– Default value if optional 
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Reference: output fields 
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Reference: response codes 
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Examples 
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API explorer 
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Language libraries 
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  Developers 

save time 

 Get fewer bad 

API calls 

⨯ You must learn 

many languages 

⨯ Maintenance 



Example apps 
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Discussion forum 
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Things to avoid 

•  Lengthy signup process 

•  Exposing raw/ugly data 

•  Complex security model 

•  Breaking backwards compatibility 

•  Inaccurate documentation 

•  Multi-call operations (“chatty APIs”) 

•  Developer frustration 
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Books 
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Resources and services 
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