
9 — Web API Design

From Code to Product

gidgreen.com/course

Lecture 9

•  Introduction

•  REST

•  Data formats

•  Security

•  Maintenance

•  Documentation

•  Resources

From Code to Product Lecture 9 — Web API Design — Slide 2 gidgreen.com/course

Application Programming Interface

“a set of functions and procedures that

allow the creation of applications which

access the features or data of an operating

system, application, or other service.”

 — Oxford English Dictionary

“An interface or go-between that enables a

software program to interact with other

software.” — Investopedia

From Code to Product Lecture 9 — Web API Design — Slide 3 gidgreen.com/course

Types of API

•  Programming language libraries, e.g. C

– malloc(), printf(), strcpy()

•  Operating systems, e.g. Android
–  findViewById(R.id.search).setText("");

•  Plug-in APIs, e.g. NPAPI for browsers

– NPError NP_Initialize(…)

•  Web APIs, e.g. Yahoo! BOSS
–  http://yboss.yahooapis.com/ysearch/web?q=API

From Code to Product Lecture 9 — Web API Design — Slide 4 gidgreen.com/course

Web APIs

•  Same infrastructure as websites

– Request—Response over HTTP

– Open and exposed to the world

•  Textual request/response

– URLs in, JSON/XML out (generally)

•  Many simply wrap web requests…

– e.g. search APIs, Twitter posting

•  …but many go far beyond

From Code to Product Lecture 9 — Web API Design — Slide 5 gidgreen.com/course

Example: Facebook Graph API

From Code to Product Lecture 9 — Web API Design — Slide 6 gidgreen.com/course

Amazon Product Advertising API

From Code to Product Lecture 9 — Web API Design — Slide 7 gidgreen.com/course

Twitter REST API

From Code to Product Lecture 9 — Web API Design — Slide 8 gidgreen.com/course

Growth in Web APIs

From Code to Product Lecture 9 — Web API Design — Slide 9 gidgreen.com/course

API Billionaires’ Club

From Code to Product Lecture 9 — Web API Design — Slide 10 gidgreen.com/course

h
tt

p
:/

/
b
lo

g
.p

ro
g
ra

m
m

a
b
le

w
e
b
.c

o
m

/
2
0
1
2
/
0
5
/
2
3
/

w
h
ic

h
-a

p
is

-a
re

-h
a
n
d
li
n
g
-b

il
li
o
n
s-

o
f-

re
q
u
e
st

s-
p
e
r-

d
a
y
/

Why offer an API?

•  Avoid (control) scraping

•  Develop partnerships

– “Business development 2.0”

•  New distribution channels

•  Increase revenue (if paid)

•  Externalize innovation

– Copy the best?

•  Customer lock-in through integration

From Code to Product Lecture 9 — Web API Design — Slide 11 gidgreen.com/course

Business questions

•  What is our goal for the API?

– How does it contribute to business?

•  Free vs paid?

– Revenue generation vs marketing

•  Who will use it?

– Aim at those developers’ success

•  What do they want to do with it?

– Can our competitors make use of it?

From Code to Product Lecture 9 — Web API Design — Slide 12 gidgreen.com/course

API-focused companies: Stripe

From Code to Product Lecture 9 — Web API Design — Slide 13 gidgreen.com/course

API-focused companies: Zencoder

From Code to Product Lecture 9 — Web API Design — Slide 14 gidgreen.com/course

API-only companies: SendGrid

From Code to Product Lecture 9 — Web API Design — Slide 15 gidgreen.com/course

API-only companies: Twilio

From Code to Product Lecture 9 — Web API Design — Slide 16 gidgreen.com/course

API vs licensing code

•  Better business model
– Recurring revenue (by usage)

– Suits small and large clients

•  Easier to maintain
– No need for “releases”

– Controlled environment

•  Keep control over IP

•  But it’s a serious operation

– Risk of downtime (SLAs?)

From Code to Product Lecture 9 — Web API Design — Slide 17 gidgreen.com/course

Lecture 9

•  Introduction

•  REST

•  Data formats

•  Security

•  Maintenance

•  Documentation

•  Resources

From Code to Product Lecture 9 — Web API Design — Slide 18 gidgreen.com/course

REST

•  Representational State Transfer

– Most popular design model for Web APIs

•  Entities (“resources”) = URLs

•  Actions = HTTP commands

– GET, POST, PUT, DELETE

•  Resources are self-descriptive

•  No hidden server-side state

•  (UI Principles applied to developers!)

From Code to Product Lecture 9 — Web API Design — Slide 19 gidgreen.com/course

HTTP request example

PUT /api/dogs/3 HTTP/1.1

Host: dog-db.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 21

Request data...

From Code to Product Lecture 9 — Web API Design — Slide 20 gidgreen.com/course

HTTP/1.1 200 OK

Content-Type: application/json;charset=utf-8

Content-Length: 94

Response data…

REST GET Example 1

GET http://dog-db.com/api/dogs

[

 { id:1, name:"Fido" },

 { id:2, name:"Rover" },

 { id:3, name:"Spot" },

 { id:4, name:"Fluffy" },

]

From Code to Product Lecture 9 — Web API Design — Slide 21 gidgreen.com/course

REST GET Example 2

GET http://dog-db.com/api/dogs/3

{

 id:3,

 name:"Spot",

 dob:"2009-05-21",

 type:"spaniel",

 photo:"http://dog-db/images/…

From Code to Product Lecture 9 — Web API Design — Slide 22 gidgreen.com/course

Expressing relationships

{

 id:3,

 name:"Spot",

 dob:"2009-05-21",

 owner:{

 id:16,

 name:"Sam",

 url:"http://dog-db.com/api/owners/16"

 }

 …

From Code to Product Lecture 9 — Web API Design — Slide 23 gidgreen.com/course

HTTP
command

Database
operation

/dogs /dogs/3

GET Read List all dogs Get dog details

POST Create Create new dog —

PUT Update — Update detail/s

DELETE Delete Delete all dogs Delete this dog

REST as CRUD

From Code to Product Lecture 9 — Web API Design — Slide 24 gidgreen.com/course

REST PUT Example

PUT http://dog-db/api/dogs/3

name=Fifi&type=poodle

{

 id:3,

 name:”Fifi",

 dob:"2009-05-21",

 type:”poodle”,

From Code to Product Lecture 9 — Web API Design — Slide 25 gidgreen.com/course

Rules for REST actions

•  GET does not change server state

– Allows caching, prefetching

– Like requesting web page

•  PUT and DELETE are “idempotent”

– Repeated calls don’t matter

•  POST can change server state each time

– Classic example: transfer money

– Like submitting web form

From Code to Product Lecture 9 — Web API Design — Slide 26 gidgreen.com/course

Choosing REST URLs

•  Stick to plural forms

– /dogs → /dogs/3 not /dog/3

•  Avoid abstractions

– /dogs/3 better than /entities/3

•  If multiple return types:

– /dogs/3?type=json

– /dogs/3.json

•  Consistency is king!

From Code to Product Lecture 9 — Web API Design — Slide 27 gidgreen.com/course

More URL best practices

•  Pagination of results

– ?start=20&count=10

•  Subset of fields

– ?fields=id,name,owner,type

•  API calls not on resources

– GET /api/search?q=...

– GET /api/convert?
from=km&to=inch&value=0.63

From Code to Product Lecture 9 — Web API Design — Slide 28 gidgreen.com/course

Other protocols

•  Simple Object Access Protocol (SOAP)

– XML-based + lots of extra cruft

– Hard to read and write manually

– Formalization and discovery via WSDL

•  XML-Remote Procedure Call (XML-RPC)

– Simpler precursor to SOAP

– Based on functions, e.g. getDogName()

•  Neither uses URLs for entities

From Code to Product Lecture 9 — Web API Design — Slide 29 gidgreen.com/course

Lecture 9

•  Introduction

•  REST

•  Data formats

•  Security

•  Maintenance

•  Documentation

•  Resources

From Code to Product Lecture 9 — Web API Design — Slide 30 gidgreen.com/course

Important data types

•  String

•  Number

•  Boolean

•  Date/time

•  Null/nil

•  Binary large objects (BLOBs)

•  Array = unlabeled ordered list

•  Object = labeled (ordered) list

From Code to Product Lecture 9 — Web API Design — Slide 31 gidgreen.com/course

Scalars

Extensible Markup Language (XML)

<dogs>

 <dog id="3">

 <name>Spot</name>

 <age>7</age>

 <type></type>

 <owner id="16">

 <name>Sam</name>

 </owner>

 <collar>true</collar>

 </dog>

 <dog id="4">

 ...

From Code to Product Lecture 9 — Web API Design — Slide 32 gidgreen.com/course

  User friendly

  Looks like HTML

⨯ Wordy

⨯ Elements vs

attributes

⨯ Implicit typing

⨯ "123"

⨯ Array of one

RSS 2.0 (see also: Atom)

<rss version="2.0">

 <channel>

 <title>Dog Tales</title>

 <description>Stories about dogs</description>

 <link>http://dog-tales.com/</link>

 <item>

 <title>Cat chasing</title>

 <description>A dog ran after a cat</description>

 <link>http://dog-tales.com/</link>

 <pubDate>Thu, 09 May 2013 16:45:00 +0000</pubDate>

 </item>

 <item>

 ...

From Code to Product Lecture 9 — Web API Design — Slide 33 gidgreen.com/course

Javascript Object Notation (JSON)

[

 {

 id:3,

 name:"Spot",

 age:7,

 type:null,

 owner:{id:16,name:"Sam"},

 collar:true,

 },

 {

 id:4,

 ...

From Code to Product Lecture 9 — Web API Design — Slide 34 gidgreen.com/course

  Compact

  Explicit types

  [] vs {}

  Javascript-ish

  JSONP for

web access

⨯ Feels like

programming

Urlencoding

•  URL parameters

•  Multifield forms (PUT/POST)

From Code to Product Lecture 9 — Web API Design — Slide 35 gidgreen.com/course

http://dog-tales.com/

BLOBs (rich media)

•  Raw delivery

– Can’t be combined with other data

– For HTTP use MIME to identify

•  Provide URL (string)

– Separate request to retrieve

•  Base64 encoding

–  Inflates size by 33%

– Standard method for web forms

From Code to Product Lecture 9 — Web API Design — Slide 36 gidgreen.com/course

Error reporting

•  Use HTTP response code

– Allow suppression, e.g. for Flash

•  Error in response:
{

 http-code:401,

 error-code:-329,

 error-message:"Invalid API key",

 error-help:"http://dog-db.com/docs
 errors/-329.html”

From Code to Product Lecture 9 — Web API Design — Slide 37 gidgreen.com/course

HTTP response codes

From Code to Product Lecture 9 — Web API Design — Slide 38 gidgreen.com/course

HTTP code Meaning

200 OK

4xx Bad request (client’s fault)

5xx Failed request (server’s fault)

401 Unauthorized request

404 Resource not found

500 Internal error (bug)

503 Server overloaded

Lecture 9

•  Introduction

•  REST

•  Data formats

•  Security

•  Maintenance

•  Documentation

•  Resources

From Code to Product Lecture 9 — Web API Design — Slide 39 gidgreen.com/course

Simple HTTP Authentication

GET /api/dogs/?appID=29838&key=k234nb3bf89

Host: dog-db.com

GET /api/dogs/

Host: dog-db.com

Authorization: Basic QWxhZGRpbjpvcGc2FtZQ==

From Code to Product Lecture 9 — Web API Design — Slide 40 gidgreen.com/course

  Trivial for developers

⨯ Visible to intermediaries

  https can solve this

Signing API calls

•  Client and server share secret key

•  Signature is hash (one-way function) of:

– Request

– Parameters (alphabetical order)

– Secret key

•  Best practice: multiple keys per user

– Users can disable some applications

•  Problem: replay attacks

From Code to Product Lecture 9 — Web API Design — Slide 41 gidgreen.com/course

OAuth 1.0

•  Standard for digitally signing API calls

•  Permits delegation

– User grants temporary access to API for them

•  Prevents replay attacks

– Via ‘nonce’ = number used once

•  Popular industry standard

– Dropbox, Evernote, Flickr, Twitter

•  See also: OAuth 2.0

From Code to Product Lecture 9 — Web API Design — Slide 42 gidgreen.com/course

Rate limiting

•  Per IP address, but…

– Proxy networks e.g. Tor

– Temporary cloud instances

•  Per API key, but…

– Multiple key signups

•  Per queried entity

•  Based on (API) server load

•  Charging solves everything…

From Code to Product Lecture 9 — Web API Design — Slide 43 gidgreen.com/course

Final comments on security

•  Do not trust clients

– All input must be sanitized

•  Clients must store key

– So desktop/mobile apps hackable

•  You can’t take back data

– Limit scope of responses

•  Don’t reinvent the wheel

– Save developers time

From Code to Product Lecture 9 — Web API Design — Slide 44 gidgreen.com/course

Lecture 9

•  Introduction

•  REST

•  Data formats

•  Security

•  Maintenance

•  Documentation

•  Resources

From Code to Product Lecture 9 — Web API Design — Slide 45 gidgreen.com/course

Maintenance issues

•  Downtime

•  Versioning

•  Scaling

•  Monitoring

•  Logging

From Code to Product Lecture 9 — Web API Design — Slide 46 gidgreen.com/course

Downtime

•  Developers test then deploy

– When you go down, they go down

•  So avoid at all costs by:

– Monitoring

– Versioning

•  If unavoidable then:

– Do it on the weekend

– Give advanced notice

From Code to Product Lecture 9 — Web API Design — Slide 47 gidgreen.com/course

API status

From Code to Product Lecture 9 — Web API Design — Slide 48 gidgreen.com/course

Versioning

GET http://dog-db.com/api/v1/dogs/

•  Version at start of URL

•  v1 then v2 — no v1.1

– Makes compatibility clear

•  Maintain one version back

•  It’s still a failure

– Add URLs/parameters instead

From Code to Product Lecture 9 — Web API Design — Slide 49 gidgreen.com/course

Scaling

•  Usage volumes can surprise you

– You’re serving software, not people

– Small number of heavy users

– Very peaky traffic

•  Caching is your friend

•  Drop expensive requests under load

•  Slow response better than none

•  Separate domain: api.dog-db.com

From Code to Product Lecture 9 — Web API Design — Slide 50 gidgreen.com/course

Monitoring

•  Volume of API calls

•  Popular calls

•  Response time

•  Error rates

•  Active developers

– Hyperactive developers

•  Revenue (+indirect) vs costs

From Code to Product Lecture 9 — Web API Design — Slide 51 gidgreen.com/course

Monitoring made public

From Code to Product Lecture 9 — Web API Design — Slide 52 gidgreen.com/course

Logging

•  Log everything

–  Incoming requests

– Outgoing response

– Response time

•  To enable…

– Bug resolution

– Abuse forensics

– Deeper (offline) analytics

From Code to Product Lecture 9 — Web API Design — Slide 53 gidgreen.com/course

Lecture 9

•  Introduction

•  REST

•  Data formats

•  Security

•  Maintenance

•  Documentation

•  Conclusion

From Code to Product Lecture 9 — Web API Design — Slide 54 gidgreen.com/course

Documentation

•  Reference

•  Examples

•  API explorer

•  Language libraries

•  Example apps

•  Discussion forum

•  (and support)

From Code to Product Lecture 9 — Web API Design — Slide 55 gidgreen.com/course

Reference: security

From Code to Product Lecture 9 — Web API Design — Slide 56 gidgreen.com/course

Reference: URLs

From Code to Product Lecture 9 — Web API Design — Slide 57 gidgreen.com/course

Reference: input parameters

From Code to Product Lecture 9 — Web API Design — Slide 58 gidgreen.com/course

For each input parameter

•  Name of parameter

•  Explanation/meaning

•  Possible values/range

•  Example values

•  Optional or required?

– Default value if optional

From Code to Product Lecture 9 — Web API Design — Slide 59 gidgreen.com/course

Reference: output fields

From Code to Product Lecture 9 — Web API Design — Slide 60 gidgreen.com/course

Reference: response codes

From Code to Product Lecture 9 — Web API Design — Slide 61 gidgreen.com/course

Examples

From Code to Product Lecture 9 — Web API Design — Slide 62 gidgreen.com/course

API explorer

From Code to Product Lecture 9 — Web API Design — Slide 63 gidgreen.com/course

Language libraries

From Code to Product Lecture 9 — Web API Design — Slide 64 gidgreen.com/course

  Developers

save time

 Get fewer bad

API calls

⨯ You must learn

many languages

⨯ Maintenance

Example apps

From Code to Product Lecture 9 — Web API Design — Slide 65 gidgreen.com/course

Discussion forum

From Code to Product Lecture 9 — Web API Design — Slide 66 gidgreen.com/course

Lecture 9

•  Introduction

•  REST

•  Data formats

•  Security

•  Maintenance

•  Documentation

•  Conclusion

From Code to Product Lecture 9 — Web API Design — Slide 67 gidgreen.com/course

Things to avoid

•  Lengthy signup process

•  Exposing raw/ugly data

•  Complex security model

•  Breaking backwards compatibility

•  Inaccurate documentation

•  Multi-call operations (“chatty APIs”)

•  Developer frustration

From Code to Product Lecture 9 — Web API Design — Slide 68 gidgreen.com/course

Books

From Code to Product Lecture 9 — Web API Design — Slide 69 gidgreen.com/course

Resources and services

From Code to Product Lecture 9 — Web API Design — Slide 70 gidgreen.com/course

