
Writing MySQL Scripts with PHP and PDO

Paul DuBois
paul@kitebird.com

Document revision: 1.02

Last update: 2013-08-11

PHP makes it easy to write scripts that access databases, enabling you to create dynamic web pages that

incorporate database content. PHP includes several specialized database-access interfaces that take the

form of separate sets of functions for each database system. There is one set for MySQL, another for Inter-

Base, another for PostgreSQL, and so forth. However, having a different set of functions for each database

makes PHP scripts non-portable at the lexical (source code) level. For example, the function for issuing an

SQL statement is named mysql_query(), ibase_query(), or pg_exec(), depending on whether

you are using MySQL, InterBase, or PostgreSQL.

In PHP 5 and up, you can avoid this problem by using the PHP Data Objects (PDO) extension. PDO sup-

ports database access in an engine-independent manner based on a two-level architecture:

• The top level provides an interface that consists of a set of classes and methods that is the same for all

database engines supported by PDO. The interface hides engine-specific details so that script writers

need not think about which set of functions to use.

• The lower level consists of individual drivers. Each driver supports a particular database engine and

translates between the top-level interface seen by script writers and the database-specific interface

required by the engine. This provides you the flexibility of using any database for which a driver exists,

without having to consider driver-specific details.

This architectural approach has been used successfully with other languages—for example, to develop the

DBI (Perl, Ruby), DB-API (Python), and JDBC (Java) database access interfaces. It’s also been used with

PHP before: PHPLIB, MetaBase, and PEAR DB are older packages that provide a uniform database-inde-

pendent interface across different engines.

I hav e written elsewhere about using the PEAR DB module for writing PHP scripts that perform database

processing in an engine-independent manner (see ‘‘Resources’’). This document is similar but covers PDO

instead. The examples use the driver for MySQL.

Preliminary Requirements

PDO uses object-oriented features available only in PHP 5 and up, so you must have PHP 5 or newer

installed to use PDO for writing scripts that access MySQL.

PDO uses classes and objects to present an object-oriented interface. This article assumes that you are

familiar with PHP’s approach to object-oriented programming. If you are not, you may wish to review the

‘‘Classes and Objects’’ chapter of the PHP Manual.

Writing MySQL Scripts with PHP and PDO - 2 -

Writing PDO Scripts

Scripts that use the PDO interface to access MySQL generally perform the following operations:

1. Connect to the MySQL server by calling new PDO() to obtain a database handle object.

2. Use the database handle to issue SQL statements or obtain statement handle objects.

3. Use the database and statement handles to retrieve information returned by the statements.

4. Disconnect from the server when the database handle is no longer needed.

The next sections discuss these operations in more detail.

Connecting to and Disconnecting from the MySQL Server

To establish a connection to a MySQL server, specify a data source name (DSN) containing connection

parameters, and optionally the username and password of the MySQL account to use. To connect to the

MySQL server on the local host to access the test database with a username and password of testuser
and testpass, the connection sequence looks like this:

$dbh = new PDO("mysql:host=localhost;dbname=test", "testuser", "testpass");

For MySQL, the DSN is a string that indicates the database driver (mysql), and optionally the hostname

where the server is running and the name of the database to use. Typical syntax for the DSN looks like this:

mysql:host=host_name;dbname=db_name

The default host is localhost. If dbname is omitted, no default database is selected.

The MySQL driver also recognizes port and unix_socket parameters, which specify the TCP/IP port

number and Unix socket file pathname, respectively. If you use unix_socket, do not specify host or

port.

For other database engines, the driver name is different (for example, pgsql for PostgreSQL) and the

parameters following the colon might be different as well.

When you invoke the new PDO() constructor method to connect to your database server, PDO determines

from the DSN which type of database engine you want to use and acesses the low-level driver appropriate

for that engine. This is similar to the way that Perl or Ruby DBI scripts reference only the top-level DBI

module; the connect() method provided by the top-level module looks at the DSN and determines

which particular lower-level driver to use.

If new PDO() fails, PHP throws an exception. Otherwise, the constructor method returns an object of the

PDO class. This object is a database handle that you use for interacting with the database server until you

close the connection.

An alternative to putting the connection code directly in your script is to move it into a separate file that you

reference from your main script. For example, you could create a file pdo_testdb_connect.php that looks

like this:

<?php
pdo_testdb_connect.php - function for connecting to the "test" database

function testdb_connect ()
{
$dbh = new PDO("mysql:host=localhost;dbname=test", "testuser", "testpass");
return ($dbh);

}
?>

- 3 - Writing MySQL Scripts with PHP and PDO

Then include the file into your main script and call testdb_connect() to connect and obtain the data-

base handle:

require_once "pdo_testdb_connect.php";

$dbh = testdb_connect ();

This approach makes it easier to use the same connection parameters in several different scripts without

writing the values literally into every script; if you need to change a parameter later, just change

pdo_testdb_connect.php. Using a separate file also enables you to move the code that contains the connec-

tion parameters outside of the web server’s document tree. That has the benefit of preventing it from being

displayed literally if the server becomes misconfigured and starts serving PHP scripts as plain text.

Any of the PHP file-inclusion statements can be used, such as include or require, but

require_once prevents errors from occurring if any other files that your script uses also reference

pdo_testdb_connect.php.

When you’re done using the connection, close it by setting the database handle to NULL:

$dbh = NULL;

After that, $dbh becomes invalid as a database handle and can no longer be used as such.

If you do not close the connection explicitly, PHP does so when the script terminates.

While the database handle is open and you are using it to issue other PDO calls, you should arrange to han-

dle errors if they occur. You can check for an error after each PDO call, or you can cause exceptions to be

thrown. The latter approach is simpler because you need not check for errors explicitly; any error raises an

exception that terminates your script. If you enable exceptions, you also have the option of catching them

yourself instead of permitting them to terminate your script. By doing this, you can substitute your own

error messages for the defaults, perform cleanup operations, and so on.

To enable exceptions, set the PDO error mode as follows after connecting:

$dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

That statement is something you could add to the testdb_connect() function if you want the error

mode to be set automatically whenever you connect.

For more information on dealing with errors, see ‘‘Handling Errors.’’

Issuing Statements

After obtaining a database handle by calling new PDO(), use it to execute SQL statements:

• For statements that modify rows and produce no result set, pass the statement string to the database han-

dle exec() method, which executes the statement and returns an affected-rows count:

$count = $dbh->exec ("some SQL statement");

• For statements that select rows and produce a result set, invoke the database handle query() method,

which executes the statement and returns an object of the PDOStatement class:

$sth = $dbh->query ("some SQL statement");

This object is a statement handle that provides access to the result set. It enables you to fetch the result

set rows and obtain metadata about them, such as the number of columns.

To illustrate how to handle various types of statements, the following discussion shows how to create and

populate a table using CREATE TABLE and INSERT (statements that return no result set). Then it uses

SELECT to generate a result set.

Writing MySQL Scripts with PHP and PDO - 4 -

Issuing Statements That Return No Result Set

The following code uses the database handle exec() method to issue a statement that creates a simple ta-

ble animal with two columns, name and category:

$dbh->exec ("CREATE TABLE animal (name CHAR(40), category CHAR(40))");

After the table has been created, it can be populated. The following example invokes the exec() method

to issue an INSERT statement that loads a small data set into the animal table:

$count = $dbh->exec ("INSERT INTO animal (name, category)
VALUES

(’snake’, ’reptile’),
(’frog’, ’amphibian’),
(’tuna’, ’fish’),
(’racoon’, ’mammal’)");

exec() returns a count to indicate how many rows were affected by the statement. For the preceding

INSERT statement, the affected-rows count is 4.

Issuing Statements That Return a Result Set

Now that the table exists and contains a few records, SELECT can be used to retrieve rows from it. To

issue statements that return a result set, use the database handle query() method:

$sth = $dbh->query ("SELECT name, category FROM animal");
printf ("Number of columns in result set: %d\n", $sth->columnCount ());
$count = 0;
while ($row = $sth->fetch ())
{
printf ("Name: %s, Category: %s\n", $row[0], $row[1]);
$count++;

}
printf ("Number of rows in result set: %d\n", $count);

A successful query() call returns a PDOStatement statement-handle object that is used for all opera-

tions on the result set. Some of the information available from a PDOStatement object includes the row

contents and the number of columns in the result set:

• The fetch() method returns each row in succession, or FALSE when there are no more rows.

• The columnCount() methods returns the number of columns in the result set.

Note: A statement handle also has a rowCount() method, but for statements that return a result set, it

cannot be assumed to reliably return the number of rows. Instead, fetch the rows and count them, as shown

in the preceding example.

Other Ways To Fetch Result Set Rows

fetch() accepts an optional fetch-mode argument indicating what type of value to return. This section

describes some common mode values. Assume in each case that the following query has just been issued to

produce a result set:

$sth = $dbh->query ("SELECT name, category FROM animal");

• PDO::FETCH_NUM

Return each row of the result set as an array containing elements that correspond to the columns named

in the SELECT statement and that are accessed by numeric indices beginning at 0:

- 5 - Writing MySQL Scripts with PHP and PDO

while ($row = $sth->fetch (PDO::FETCH_NUM))
printf ("Name: %s, Category: %s\n", $row[0], $row[1]);

• PDO::FETCH_ASSOC

Return each row as an array containing elements that are accessed by column name:

while ($row = $sth->fetch (PDO::FETCH_ASSOC))
printf ("Name: %s, Category: %s\n", $row["name"], $row["category"]);

• PDO::FETCH_BOTH

Return each row as an array containing elements that can be accessed either by numeric index or by col-

umn name:

while ($row = $sth->fetch (PDO::FETCH_BOTH))
{

printf ("Name: %s, Category: %s\n", $row[0], $row[1]);
printf ("Name: %s, Category: %s\n", $row["name"], $row["category"]);

}

• PDO::FETCH_OBJ

Return each row as an object. In this case, you access column values as object properties that have the

same names as columns in the result set:

while ($row = $sth->fetch (PDO::FETCH_OBJ))
printf ("Name: %s, Category: %s\n", $row->name, $row->category);

If you invoke fetch() with no argument, the default fetch mode is PDO::FETCH_BOTH unless you

change the default before fetching the rows:

• The query() method accepts an optional fetch-mode argument following the statement string:

$sth = $dbh->query ("SELECT name, category FROM animal", PDO::FETCH_OBJ);
while ($row = $sth->fetch ())

printf ("Name: %s, Category: %s\n", $row->name, $row->category);

• Statement handles have a setFetchMode() method to set the mode for subsequent fetch() calls:

$sth->setFetchMode (PDO::FETCH_OBJ);
while ($row = $sth->fetch ())

printf ("Name: %s, Category: %s\n", $row->name, $row->category);

Another way to fetch results is to bind variables to the result set columns with bindColumn(). Then you

fetch each row using the PDO::FETCH_BOUND fetch mode. PDO stores the column values in the vari-

ables, and fetch() returns TRUE instead of a row value while rows remain in the result set:

$sth = $dbh->query ("SELECT name, category FROM animal");
$sth->bindColumn (1, $name);
$sth->bindColumn (2, $category);
while ($sth->fetch (PDO::FETCH_BOUND))
printf ("Name: %s, Category: %s\n", $name, $category);

Using Prepared Statements

exec() and query() are PDO object methods: You use them with a database handle and they execute a

statement immediately and return its result. It is also possible to prepare a statement for execution without

executing it immediately. The prepare() method takes an SQL statement as its argument and returns a

PDOStatement statement-handle object. The statement handle has an execute() method that exe-

cutes the statement:

$sth = $dbh->prepare ($stmt);
$sth->execute ();

Writing MySQL Scripts with PHP and PDO - 6 -

Following the execute() call, other statement-handle methods provide information about the statement

result:

• For a statement that modifies rows, invoke rowCount() to get the rows-affected count:

$sth = $dbh->prepare ("DELETE FROM animal WHERE category = ’mammal’");
$sth->execute ();
printf ("Number of rows affected: %d\n", $sth->rowCount ());

• For a statement that produces a result set, the fetch() method retrieves them and the column-
Count() method indicates how many columns there are. To determine how many rows there are,

count them as you fetch them. (As mentioned previously, rowCount() returns a row count, but

should be used only for statements that modify rows.)

$sth = $dbh->prepare ("SELECT name, category FROM animal");
$sth->execute ();
printf ("Number of columns in result set: %d\n", $sth->columnCount ());
$count = 0;
while ($row = $sth->fetch ())
{

printf ("Name: %s, Category: %s\n", $row[0], $row[1]);
$count++;

}
printf ("Number of rows in result set: %d\n", $count);

If you are not sure whether a given SQL statement modifies or returns nows, the statement handle itself

enables you to determine the proper mode of processing. See ‘‘Determining the Type of a Statement.’’

As just shown, prepared statements appear to offer no advantage over exec() and query() because

using them introduces an extra step into statement processing. But there are indeed some benefits to them:

• Prepared statements can be parameterized with placeholders that indicate where data values should

appear. You can bind specific values to these placeholders and PDO takes care of any quoting or escap-

ing issues for values that contain special characters. ‘‘Placeholders and Quoting’’ discusses these topics

further.

• Separating statement preparation from execution can be more efficient for statements to be executed

multiple times because the preparation phase need be done only once. For example, if you need to

insert a bunch of rows, you can prepare an INSERT statement once and then execute it repeatedly, bind-

ing successive row values to it for each execution.

Placeholders and Quoting

A prepared statement can contain placeholders to indicate where data values should appear. After you pre-

pare the statement, bind specific values to the placeholders (either before or at statement-execution time),

and PDO substitutes the values into the statement before sending it to the database server.

PDO supports named and positional placeholders:

• A named placeholder consists of a name preceded by a colon. After you prepare the statement, use

bindValue() to provide a value for each placeholder, and then execute the statement. To insert

another row, bind new values to the placeholders and invoke execute() again:

$sth = $dbh->prepare ("INSERT INTO animal (name, category)
VALUES (:name, :cat)");

$sth->bindValue (":name", "ant");
$sth->bindValue (":cat", "insect");
$sth->execute ();
$sth->bindValue (":name", "snail");
$sth->bindValue (":cat", "gastropod");
$sth->execute ();

- 7 - Writing MySQL Scripts with PHP and PDO

As an alternative to binding the data values before calling execute(), you can pass the values

directly to execute() using an array that associates placeholder names with the values:

$sth->execute (array (":name" => "black widow", ":cat" => "spider"));

• Positional placeholders are characters within the statement string. You can bind the values prior to call-

ing execute(), similar to the previous example, or pass an array of values directly to execute():

$sth = $dbh->prepare ("INSERT INTO animal (name, category)
VALUES (?, ?)");

use bindValue() to bind data values
$sth->bindValue (1, "ant");
$sth->bindValue (2, "insect");
$sth->execute ();
pass values directly to execute() as an array
$sth->execute (array ("snail", "gastropod"));

Positional placeholder numbers begin with 1.

An alternative to bindValue() is bindParam(), which adds a level of indirection to value-binding.

Instead of passing a data value as the second argument to bindParam(), pass a variable to associate the

variable with the placeholder. To supply a value for the placeholder, assign a value to the variable:

$sth = $dbh->prepare ("INSERT INTO animal (name, category)
VALUES (?, ?)");

$sth->bindParam (1, $name);
$sth->bindParam (2, $category);
$name = "ant";
$category = "insect";
$sth->execute ();
$name = "snail";
$category = "gastropod";
$sth->execute ();

The preceding examples use INSERT statements, but placeholder techniques are applicable to any type of

statement, such as UPDATE or SELECT.

One of the benefits of using placeholders is that PDO handles any quoting or escaping of special characters

or NULL values. For example, if you bind the string "a’b’c" to a placeholder, PDO inserts

"’a\’b\’c’" into the statement. To bind the SQL NULL value to a placeholder, bind the PHP NULL
value. In this case, PDO inserts the word ‘‘NULL’’ into the statement without surrounding quotes. (Were

quotes to be added, the value inserted into the statement would be the string "’NULL’", which is incor-

rect.)

PDO also provides a database handle quote() method to which you can pass a string and receive back a

quoted string with special characters escaped. However, I find this method deficient. For example, if you

pass it NULL, it returns an empty string, which if inserted into a statement string does not correspond to the

SQL NULL value. Use quote() with care if you use it.

Determining the Type of a Statement

When you issue a statement using a database handle, you must know whether the statement modifies rows

or produces a result set, so that you can invoke whichever of exec() or query() is appropriate. How-

ev er, under certain circumstances, you might not know the statement type, such as when you write a script

to execute arbitrary statements that it reads from a file. To handle such cases, use prepare() with the

database handle to get a statement handle and execute() to execute the statement. Then check the state-

ment’s column count:

• If columnCount() is zero, the statement did not produce a result set. Instead, it modified rows and

you can invoke rowCount() to determine the number of affected rows.

Writing MySQL Scripts with PHP and PDO - 8 -

• If columnCount() is greater than zero, the statement produced a result set and you can fetch the

rows. To determine how many rows there are, count them as you fetch them.

The following example determines whether a statement modifies rows or produces a result set, and then

processes it accordingly:

$sth = $dbh->prepare ($stmt);
$sth->execute ();
if ($sth->columnCount () == 0)
{
there is no result set, so the statement modifies rows
printf ("Number of rows affected: %d\n", $sth->rowCount ());

}
else
{
there is a result set
printf ("Number of columns in result set: %d\n", $sth->columnCount ());
$count = 0;
while ($row = $sth->fetch (PDO::FETCH_NUM))
{
display column values separated by commas
print (join (", ", $row) . "\n");
$count++;

}
printf ("Number of rows in result set: %d\n", $count);

}

Handling Errors

When you invoke new PDO() to create a database handle, occurrance of an error causes a PDOExcep-
tion to be thrown. If you don’t catch the exception, PHP terminates your script. To handle the exception

yourself, use a try block to perform the connection attempt and a catch block to catch any error that

occurs:

try
{
$dbh = new PDO("mysql:host=localhost;dbname=test", "testuser", "testpass");

}
catch (PDOException $e)
{
print ("Could not connect to server.\n");
print ("getMessage(): " . $e->getMessage () . "\n");

}

A PDOException is an extension of the PHP Exception class, so it has getCode() and getMes-
sage() methods that return an error code and descriptive message, respectively. (However, I find that

getCode() always returns 0 for connection errors and is meaningful only for PDO exceptions that occur

after the connection has been established.)

After you successfully obtain a database handle, PDO handles subsequent calls that use it according to the

PDO error mode. There are three modes:

• PDO::ERRMODE_SILENT

When an error occurs in silent or warning mode for a given object method, PDO sets up error informa-

tion that you can access when the method returns. This is the default error mode.

• PDO::ERRMODE_WARNING

This is like silent mode but PDO also displays a warning message in addition to setting up error infor-

mation when an error occurs.

- 9 - Writing MySQL Scripts with PHP and PDO

• PDO::ERRMODE_EXCEPTION

PDO sets up error information when an error occurs and throws a PDOException.

PDO sets error information for the object to which the error applies, regardless of the error mode. This

information is available via the object’s errorCode() and errorInfo() methods. errorCode()
returns an SQLSTATE value (a five-character string). errorInfo() returns a three-element array con-

taining the SQLSTATE value, and a driver-specific error code and error message. For MySQL, the driver-

specific values are a numeric error code and a descriptive error message.

To handle errors in silent mode, you must check the result of each PDO call. The following example shows

how to test for errors during an operation that uses a database handle, $dbh, and a statement handle, $sth
(you would not necessarily print all the available information as the example does):

if (!($sth = $dbh->prepare ("INSERT INTO no_such_table")))
{
print ("Could not prepare statement.\n");
print ("errorCode: " . $dbh->errorCode () . "\n");
print ("errorInfo: " . join (", ", $dbh->errorInfo ()) . "\n");

}
else if (!$sth->execute ())
{
print ("Could not execute statement.\n");
print ("errorCode: " . $sth->errorCode () . "\n");
print ("errorInfo: " . join (", ", $sth->errorInfo ()) . "\n");

}

Testing the result of every call can become messy quickly. Another way to deal with failures is to set the

error handling mode so that any error raises an exception:

$dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

In this case, you can assume that if you invoke a method and it returns, it succeeded. You can either leave

exceptions uncaught or catch and handle them yourself. If you leave them uncaught, exceptions cause PHP

to print a backtrace and terminate your script. To catch exceptions, perform PDO operations using a

try/catch construct. The try block contains the operations and the catch block handles an execption

if one occurs.

try
{
$sth = $dbh->prepare ("INSERT INTO no_such_table");
$sth->execute ();

}
catch (PDOException $e)
{
print ("The statement failed.\n");
print ("getCode: ". $e->getCode () . "\n");
print ("getMessage: ". $e->getMessage () . "\n");

}

By using try and catch, you can substitute your own error messages if you like, perform cleanup opera-

tions, and so on.

As shown in the preceding example, the try block can contain operations on multiple handles. However,

if an exception occurs in that case, you won’t be able to use the handle-specific errorCode() or

errorInfo() methods in the catch block very easily because you won’t know which handle caused

the error. You’ll need to use the information available from the exception methods, as shown.

Writing MySQL Scripts with PHP and PDO - 10 -

Using Transactions

In MySQL, some storage engines are transactional (including InnoDB, the default storage engine as of

MySQL 5.5). A transactional engine enables you to perform an operation and then commit it permanently

if it succeeded or roll it back to cancel its effects if an error occurred. PDO provides a mechanism for per-

forming transactions that is based on the following database-handle methods:

• To start a transaction, invoke beginTransaction() to disable autocommit mode so that database

changes do not take effect immediately.

• To commit a successful transaction or roll back an unsuccessful one, invoke commit() or roll-
back(), respectively.

The easiest way to use these methods is to enable PDO exceptions and use try and catch to handle

errors:

$dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
try
{
$dbh->beginTransaction (); # start the transaction
... perform database operation ...
$dbh->commit (); # success

}
catch (PDOException $e)
{
print ("Transaction failed: " . $e->getMessage () . "\n");
$dbh->rollback (); # failure

}

For additional paranoia, you can place the rollback() call within a nested try/catch construct so

that if rollback() itself fails and raises another exception, the script doesn’t get terminated.

Resources

• The home sites for MySQL and MySQL documentation are:

http://www.mysql.com/
http://dev.mysql.com/doc

• The home site for PHP is:

http://www.php.net/

• The book MySQL discusses at length how to use PDO for PHP programming. See Chapter 9, ‘‘Writing

Programs using PHP.’’ Appendix I provides a reference for PDO classes and methods. The Web site

for this book has sample code for several PDO applications that you can examine:

http://www.kitebird.com/mysql-book/

(The first and second editions cover the interface provided by the native PHP MySQL functions, the

third edition covers the PEAR DB interface. Editions from the fourth up cover PDO.)

• Other documents similar to the one you are reading are available that show how to access MySQL using

interfaces for other programming languages:

http://www.kitebird.com/articles/

- 11 - Writing MySQL Scripts with PHP and PDO

Revision History

• 1.00—Original version.

• 1.01, 2008-05-07—Removed my mistaken statement that the PDO driver for MySQL requires the

mysqli extension. It does not. The driver uses libmysqlclient directly.

• 1.02, 2013-08-11—Minor revisions and updates.

