LOCALIZATION OF E-GOVERNANCE PROJECT

PHP S Classes and Objects

Prepared by:

Project Team,
The e-platform model,

DIT, MoIC, RGoB

Contents

1. Introduction 2

2. Sample Exercise (Class) 2

3. Using Constructors 5

4. Using private 6

5. Inheritance Concept 8

6. Using final 10
7. Using Destructors 11
8. get class() and get parent class() 12
9. Autoloading Objects 14
10. Visibility 15
11. Scope Resolution Operator (::) 19
12. Static Keyword 21
13. Class Abstraction 22
14. Object Iteration 25
15. Magic Methods 26
16. Patterns 27
17. Late Static Bindings 30
18. Objects and references 34
19. Interfaces 35
20. Exceptions 37

PHP 5 Classes and Objects Page 1

Introduction

In PHP, a class is simply a set of program statements which perform a specific task. A typical class
definition contains both variables and functions, and serves as the template from which to spawn
specific instances of that class.

These specific instances of a class are referred to as objects. Every object has certain characteristics,
or properties, and certain pre-defined functions, or methods. These properties and methods of the
object correspond directly with the variables and functions within the class definition.

Once a class has been defined, PHP allows you to spawn as many instances of the class as you like.
Each of these instances is a completely independent object, with its own properties and methods, and
can therefore be manipulated independently of other objects. This comes in handy in situations where
you need to spawn more than one instance of an object - for example, two simultaneous database
links for two simultaneous queries, or two shopping carts.

Classes also help you keep your code modular - you can define a class in a separate file, and include
that file only in the scripts where you plan to use the class - and simplify code changes, since you

only need to edit a single file to add new functionality to all your spawned objects.

Sample Exercise (Class)

To understand this better, pick an animal, any animal. For example, we can take bear. every bear has
certain characteristics - age, weight, sex - which are equivalent to object properties. And every bear
can perform certain activities - eat, sleep, walk, run, mate - all of which are equivalent to object
methods.

Let's take it a little further. Since all bears share certain characteristics, it is possible to conceive of a
template Bear (), which defines the basic characteristics and abilities of every bear on the planet.
Once this Bear () ("class") is used to create a new Sbear ("object"), the individual characteristics
of the newly-created Bear can be manipulated independently of other Bears that may be created from
the template.

Now, if you sat down to code this class in PHP 5, it would probably look something like this:

PHP 5 Classes and Objects Page 2

PHP 5 Classes and Objects

PHP 5 Classes and Objects

e > B 2 B meieborvor]

PHP Classes and Objects Example 1

Daddy Bear is killing prey...
Mommy Bear is eating...
Baby Bear is eating...
Mommy Bear is sleeping...
Daddy Bear is sleeping...
Baby Bear is eating...

Using Constructors

It's also possible to automatically execute a function when the class is called to create a new object.
This is referred to in geek lingo as a constructor and, in order to use it, your PHP 5 class definition
must contain a special function, construct ().

For example, if you'd like all newly born bears to be brown and weigh 100 units, you could add this

to your class definition:

PHP 5 Classes and Objects Page 5

Here, the constructor automatically sets default properties every time an object of the class is

instantiated. Therefore, when you run the script above, you will see this:

Baby Bear is brown and weighs 100 units at birth

Baby Bear is brown and weighs 100 units at birth

Using private

PHP 5 makes it possible to mark class properties and methods as private, which means that they
cannot be manipulated or viewed outside the class definition. This is useful to protect the inner
workings of your class from manipulation by object instances. Consider the following example,
which illustrates this by adding a new private variable, $ lastUnitsConsumed, to the

Bear () class:

PHP 5 Classes and Objects Page 6

Now, since the $ lastUnitsConsumed variable is declared as private, any attempt to modify it

from an object instance will fail. Here is the output:

EI&MiHE http:!ﬂocalhostlworkfhome_workfclaii Google d‘

Bobby Bear is eating 100 units of food... Bobby Bear is eating 200 units of food... Units consumed in last :
meal were 200

Fatal error: Cannot access private property Bear-$_lastUnitsConsumed in C:\xampp'htdocs'work
\home_work\class_example_3.php on line 37

Q, 100%

In a similar way, class methods can also be marked as private.

PHP 5 Classes and Objects Page 7

Inheritance Concept

Two of the best things about OOP, whether in PHP 4 or in PHP 5, are extensibility and inheritance.
Very simply, this means that you can create a new class based on an existing class, add new features
(read: properties and methods) to it, and then create objects based on this new class. These objects
will contain all the features of the original parent class, together with the new features of the child
class.

As an illustration, consider the following PolarBear () class, which extends the Bear () class

with a new method.

PHP 5 Classes and Objects Page 8

The extends keyword is used to extend a parent class to a child class. All the functions and
variables of the parent class immediately become available to the child class. This is clearly visible in

the following code snippet:

E'B http://localhost/work/home_work/class_example_4.php -

Bobby Bear is running . Bobby Bear is killing prey... Bobby Bear is swimming .. Tommy Bear is running. . Tommy Bear is killing

prey...
Fatal error: Call to undefined method Bearzswim() in C:\xampp'htdocs'work'home work\class_example 4.php on line 62

PHP 5 Classes and Objects

In this case, the final call to Stom->swim () will fail and cause an error, because the Bear () class
does not contain a swim () method. However, none of the calls to S$Sbob->run () or Sbob-
>k1i11 () will fail, because as a child of the Bear () class, PolarBear () inherits all the methods
and properties of its parent.

Note how the parent class constructor has been called in the PolarBear () child class constructor -
it's a good idea to do this so that all necessary initialization of the parent class is carried out when a
child class is instantiated. Child-specific initialization can then be done in the child class constructor.

Only if a child class does not have a constructor, is the parent class constructor automatically called.

Using final

To prevent a class or its methods from being inherited, use the final keyword before the class or
method name (this is new in PHP 5 and will not work in older versions of PHP). Here's an example,

which renders the Bear () class un-inheritable (if that's actually a word):

<?php
// class definition
final class Bear {
// define properties
// define methods
}
// extended class definition
// this will fail because Bear () cannot be extended
class PolarBear extends Bear {
// define methods
}
// create instance of PolarBear ()
// this will fail because Bear () could not be extended
Sbob = new PolarBear;
Sbob->name = "Bobby Bear";
echo $bob->weight;

?>

PHP 5 Classes and Objects Page 10

Using Destructors

Just as there are constructors, so also are there destructors. Destructors are object methods which are
called when the last reference to an object in memory is destroyed, and they are usually tasked with
clean-up work - for example, closing database connections or files, destroying a session and so on.

Destructors are only available in PHP 5, and must be named _ destruct (). Here's an example:

PHP 5 Classes and Objects

Daddy Bear is killing prey...

Daddy Bear is eating 2000 units of food...

Daddy Bear is running. ..

Daddy Bear is eating 100 units of food... Daddy Bear is dead. He was 10 vears old and 2200 units heavy. Rest in peace!

Q, 100%

get class () and get parent class()

PHP 4 and PHP 5 come with a bunch of functions designed to let you discover object properties and
methods, and find out which class an object belongs to. The first two of these are the get class ()
and get parent class () functions, which tell you the name of the classes which spawned a

particular object. Consider the following class definition:

PHP 5 Classes and Objects Page 12

You can view all the properties exposed by a class with get class vars (), and all its methods

with get class methods () function. To view properties of the specific object instance, use

get object vars () instead of get class vars (). Here is an example:

Array ([name] => [sex] => [colour] => [weight] =>)
Array ([0] => eat [1] => weightt)
Array ([name] => Daddy Dog [sex] => Male [colowr] == Bhue [weight] => 120)

As noted in one of the previous segments of this tutorial, the print r () function allows you to

look inside any PHP variable, including an object.

PHP 5 Classes and Objects Page 13

Autoloading Objects

In PHP 5, it is no longer necessary to create one PHP source file per-class definition while writing
object-oriented application. You may define an autoload function which is automatically called
in case you are trying to use a class/interface which hasn't been defined yet. By calling this

function the scripting engine is given a last chance to load the class before PHP fails with an error.
Note: Exceptions thrown in autoload function cannot be caught in the catch

block and results in a fatal error.
Note: Autoloading is not available if using PHP in CLI interactive mode.
Note: If the class name is used e.g. in call user func() then it can contain some

dangerous characters such as ../. It is recommended to not use the user-input in

such functions or at least verify the input in _ autoload() .

The example below attempts to load the class Bear from the files Bear.php.

<?php
function _autoload($class_name) {
require once $class name . '.php';
}
Sobj = new Bear();
>
r 1
@ http://localhost/work/home_work/class_example_autoload.php - Windows Internet ... (= & e
@U « |2 nttpr/riocalhost/work/home + | ‘f| X || Live Search L -
f — I i »
Y < | http:/flocalhost/work/ho... | @ v B v @ v [Page v (G Tooks ¥

PHP Classes and Objects Example 1

Daddy Bear is killing prey...
Mommy Bear is eating...
Baby Bear is eating...
Mommy Bear is sleeping...
Daddy Bear is sleeping... n

Baby Bear is eating....

' Done € Internet | Protected Mode: On ®100% ~

PHP 5 Classes and Objects Page 14

Visibility

The visibility of a property or method can be defined by prefixing the declaration with the keywords:
public, protected or private. Public declared items can be accessed everywhere.
Protected limits access to inherited and parent classes (and to the class that defines the item).

Private limits visibility only to the class that defines the item.

Members Visibility

Class members must be defined with public, private, or protected.

PHP 5 Classes and Objects Page 15

IOmmawmwoﬂ

Method Visibility

Class methods must be defined with public, private, or protected. Methods without any declaration

are defined as public.

PHP 5 Classes and Objects Page 16

PHP 5 Classes and Objects

PHP 5 Classes and Objects

Scope Resolution Operator (::)

The Scope Resolution Operator, the double colon, is a token that allows access to static, constant, and

overridden members or methods of a class.

Example #1 :: from outside the class definition

Example #2 :: from inside the class definition

PHP 5 Classes and Objects Page 19

Example #3 Calling a parent's method

PHP 5 Classes and Objects Page 20

1@ http:/localhost/work/home work/scope_reso_2php - W.. /= (=] |-

@C} - |@ http:/flocalhostiwe = | 4,| x | | L ive Search

s

s < | hitp://localhostiworkih...]_| = v ey

My Class:myvFunc() OtherClass-mvFunc()

@ Internet | Protected Mode: On & 100% o+

Static Keyword

Declaring class members or methods as static makes them accessible without needing an
instantiation of the class. A member declared as static cannot be accessed with an instantiated class

object (though a static method can).

Because static methods are callable without an instance of the object created, the pseudo variable

$this is not available inside the method declared as static.

Note : Static properties cannot be accessed through the object using the arrow operator ->.

<?php
class Hello
{
public static $my static = 'testing hello';

public function staticValue () {

return self::Smy static;

class Bar extends Hello
{
public function testing helloStatic () {
return parent::Smy static;

PHP 5 Classes and Objects Page 21

print Hello::$my static . "\n";

Stesting hello = new Hello();
print $testing hello->staticValue() . "\n";

print $testing hello->my static . "\n"; // Undefined "Property" my static

print Bar::Smy static . "\n";
Sbar = new Bar();
print $bar->testing helloStatic() . "\n";

?>

€ httpi/flocalhost/work/home work/static_var.php - Wind... la@ﬁ

Live Search

>)~ B ntpstocanostiwe »[49 x |

B o

'ﬂ? i |E httpcffbccathustfworkfh,,.[] i il i E% i

testing hello testing hello testing hello testing_hello

@ Internet | Protected Mode: On . 100% -

Class Abstraction

PHP 5 introduces abstract classes and methods. It is not allowed to create an instance of a class that
has been defined as abstract. Any class that contains at least one abstract method must also be
abstract. Methods defined as abstract simply declare the method's signature they cannot define the

implementation.

When inheriting from an abstract class, all methods marked abstract in the parent's class declaration
must be defined by the child; additionally, these methods must be defined with the same (or a less
restricted) visibility. For example, if the abstract method is defined as protected, the function

implementation must be defined as either protected or public, but not private.
<?php
abstract class AbstractClass

{

PHP 5 Classes and Objects Page 22

PHP 5 Classes and Objects

A Real time Example for Abstract Class

PHP 5 Classes and Objects

OUTPUT FOR THE ABOVE PROGRAM IS

Object Iteration

PHP 5 provides a way for objects to be defined so it is possible to iterate through a list of items, with,

for example a foreach statement. By default, all visible properties will be used for the iteration.

PHP 5 Classes and Objects Page 25

The above example will output:

Magic Methods

__toString

PHP 5 Classes and Objects

The above example will output:

clone

The above example will output:

Patterns

Patterns are ways to describe best practices and good designs. They show a flexible solution to

common programming problems.

PHP 5 Classes and Objects Page 27

Factory

The Factory pattern allows for the instantiation of objects at runtime. It is called a Factory Pattern
since it is responsible for "manufacturing" an object. A Parameterized Factory receives the name of
the class to instantiate as argument.

Example #1 Parameterized Factory Method

Defining this method in a class allows drivers to be loaded on the fly. If the Example class was a

database abstraction class, loading a MySQL and SQLite driver could be done as follows:

Singleton
The Singleton pattern applies to situations in which there needs to be a single instance of a class. The

most common example of this is a database connection. Implementing this pattern allows a

programmer to make this single instance easily accessible by many other objects.

PHP 5 Classes and Objects Page 28

Example #2 Singleton Function

PHP 5 Classes and Objects

This allows a single instance of the Example class to be retrieved.
<?php
// This would fail because the constructor is private

//Stest = new Example;

// This will always retrieve a single instance of the class
Stest = Example::singleton () ;
Stest->bark () ;

// This will issue an E_USER_ERROR.
Stest clone = clone $test;

?>

,':é http:/localhostfwork/home_work/Singleten.php - Windows Interne... E@ﬁ

{:;,I * |E http:/flocalhost/we = |“$I b4 | | Live Search
{ : —:
b [E] http://localhost/work/h...]M T -

1 am constructedWoofl
Fatal error: Clone is not allowed. in
C:'xampp‘htdocs'work'home work!\Singleton.php on line 33

@ Internet | Protected Mode: On & 100% =

Late Static Bindings

This feature was named "late static bindings" with an internal perspective in mind. "Late binding"
comes from the fact that static: : will no longer be resolved using the class where the method is
defined but it will rather be computed using runtime information. It was also called

a "static binding" as it can be used for (but is not limited to) static method calls.

Limitations of self::
Static references to the current class like self:: or CLASS are resolved using the class in

which the function belongs, as in where it was defined:

PHP 5 Classes and Objects Page 30

Example #1 self:: usage

The above example will output:

Example #2 static:: simple usage

PHP 5 Classes and Objects

The above example will output:

Example #3 static:: usage in a non-static context

The above example will output:

PHP 5 Classes and Objects Page 32

Example #4 Forwarding and non-forwarding calls

The above example will output:

Example #5 Late static bindings inside magic methods

PHP 5 Classes and Objects

The above example will output:

Objects and references

One of the key-point of PHP5 OOP that is often mentioned is that "objects are passed by references

by default" This is not completely true. This section rectifies that general thought using some

examples.

Example #1 References and Objects

PHP 5 Classes and Objects Page 34

The above example will output:

Interfaces

Object interfaces allow you to create code which specifies which methods a class must implement,
without having to define how these methods are handled.

Interfaces are defined using the interface keyword, in the same way as a standard class, but without
any of the methods having their contents defined.

All methods declared in an interface must be pub1i c, this is the nature of an interface.

PHP 5 Classes and Objects Page 35

implements
To implement an interface, the implements operator is used. All methods in the interface must be

implemented within a class; failure to do so will result in a fatal error. Classes may implement more
than one interface if desired by separating each interface with a comma.

Example # Interface example

PHP 5 Classes and Objects

Sthis->vars[$Sname] = $var;

?>

4 & & » ﬂm il @http:_f,"lu:rcalhu:rstfworka’hnme_wnv E] Google *

Fatal error: Class BadTemplate contains 1 abstract method and must therefore be declared
abstract or implement the remaining methods (il emplate-getHtml) in C:\xampp'htdocs'work
‘home work'interface.php on line 42

@ B A 100% ¥

Exceptions

PHP 5 has an exception model similar to that of other programming languages. An exception can be
thrown, and caught ("catched") within PHP. Code may be surrounded in a try block, to
facilitate the catching of potential exceptions. Each try must have at least one corresponding catch

block. Multiple catch blocks can be used to catch different classes of exeptions.

When an exception is thrown, code following the statement will not be executed, and PHP will
attempt to find the first matching catch block. If an exception is not caught, a PHP Fatal Error will be
issued with an "Uncaught Exception ..." message, unless a handler has been defined with
set exception handler ().

Example #1 Throwing an Exception
<?php
function inverse ($x) {
if (!$x) {
throw new Exception('Division by zero.');

}

else return 1/$x;

try {

PHP 5 Classes and Objects Page 37

Example #2 Nested Exception

The above example will output:

PHP 5 Classes and Objects Page 38

