
Javascript Essentials
a Keyhole Software tutorial

This tutorial covers:

✔ JavaScript Execution Environment

✔ The structure of the JavaScript language

✔ The importance of Objects

✔ Prototypes and Inheritance

✔ Functions and Closures

✔ AJAX

If you've been developing enterprise web applications, it's likely that you have applied JavaScript in some

fashion - probably to validate user input with a JavaScript function that validates a form control, manipulate

an HTML document object model (DOM) for a user interface effect, or even to use AJAX to access the server

to eliminate a page refresh.

Single Page Application architectures allow rich, responsive application user interfaces to be developed.

There are many frameworks and approaches available, excluding plug-in technologies, that are JavaScript-

based. This means that developers need a deeper understanding of the JavaScript language features. This

tutorial assumes you have programming experience in a traditional object oriented language like Java or C#,

and introduces features of JavaScript that allows it to be a general purpose programming language. You may

be surprised by its expressiveness and object oriented capabilities.

Page 1 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

TABLE OF CONTENTS

1. Environment ... 3
 Open Source Steps Up ..3

2. Modularity / Structure .. 4
 Memory ..4

Global Variables ..4

 Whitespace and Semicolons ...5

 Comments ..5

 Arithmetic Operators ..5

 == and === ...6

 Flow Control ..6

 Code Blocks ...6

Scope ..7

 AMD/CommonJS Module Specifications ...7

3. Data Types …... 7

 Primitive ...8

 Arrays ..8

 Array Operations ..8

 Undefined and Null …...9

4. Objects.. 9

 Built-In Objects ...10

 Creating Objects ..10

Literal Objects ..10

Constructor Function Objects ... 12

 Prototypes ..12

 Prototype Chaining / Inheritance ..13

Prototypes in Action – Implementing the singleton pattern......................14

5. Functions.. 15

 Anonymous/Closures ..16

 Memoizing ..16

 Execution Context .. 17

 Function Closures in Action and Modularity Support18

 Dependency Injection ...20

6. Exceptions/Errors... 20

 AJAX ..21

7. Summary... 22

Page 2 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

1. ENVIRONMENT

One clue that JavaScript was not originally intended to be a general purpose language is the fact that a

browser is required to execute it. The snippet below shows how an HTML page loads a JavaScript function

defined inline. Normally this assumes the HTML page and JavaScript file reside on a web server.

Listing 1 – HTML page loading a JavaScript function

<script>
 function sayhello() {
 alert('hello world');
 }
</script>

...

<input type=”button” value=”say hello” onclick=”sayhello();”/>

The sayhello()function defined above can invoked and executed in a variety of ways, including:

1. Putting inline JavaScript tags at the beginning or end of the file when the HTML form button is

clicked.

2. Calling the function when a form button is clicked.

3. Putting <script> </script> elements at the beginning or end of an HTML document, depending on

the browser you're using.

4. Executing JavaScript on a page load using the jQuery framework.

As you can see, there is not any kind of main method or entry point mechanism like other languages, so a

browser and an HTML page load of some kind is required to execute JavaScript. Some server side Java

solutions have recently become available, but generally speaking JavaScript for UI development requires a

browser.

Open Source Steps Up

Luckily, innovations of the open source community have filled this need. Environments have been created

that allow JavaScript to be executed outside of a browser, commonly referred to as “headless,” or server side

JavaScript.

Node.js is one popular open source framework that provides a JavaScript runtime environment outside of

a browser. With Node.js, JavaScript can be executed from a command line or by specifying files. Node.js is

also available for most operating systems. Phantom.js is another viable option on the market. Although

similar, the intent of the headless environments is different between the two. Phantom.js has HTML DOM

(Document Object Model) available while Node.js does not. But both still provide a way to develop and test

code outside of a browser and web server. Here are links to these projects:

• Node – http://nodejs.org/

• Phantom – http://phantomjs.org/

The examples presented in this tutorial can all be typed into and executed with a headless JavaScript

environment. Assuming Node.js or Phantom.js binaries have been installed on your operating system, you

can execute the previous JavaScript file with the expressions that follow:

Page 3 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20
http://phantomjs.org/
http://nodejs.org/

// Java Script defined // Executing with a node console
// in HelloWorld.js text file

function helloWorld() {
 console.log(“hello world”)
}
helloWorld();

// Execute JavaScript
$node helloworld.js
$phantomjs helloworld.js

Figure 1 – Executing JavaScript from the

command line

2. MODULARITY/STRUCTURE

JavaScript does not have a lot of structural elements like other languages. Part of this is due to its original

origins as a dynamic prototype-based language. Modularity is accomplished by partitioning JavaScript

functionality into separate files. Typically JavaScript libraries are defined in one giant file which can be painful

to maintain and comprehend.

Upcoming tutorials will present modularity workarounds that are necessary for developing large

applications with JavaScript, but it is still important to understand primitive JavaScript to establish a

foundation of understanding.

Memory

Like other object oriented languages, developers don't specifically need to worry about or perform allocation

and deallocation of memory. Since everything is an object that is dynamically created, the runtime

environment will utilize a garbage collection mechanism to reclaim objects that are no longer visible or

reachable by the current execution context.

In theory, developers should not to worry about memory reclaiming or leaks. However, there are ways

that object references become zombied or unreachable by the garbage collector. Closures are one way object

references can become unreachable causing a memory leak.

GLOBAL VARIABLES

When a page with JavaScript is loaded, objects and variables created and defined with the page consume

memory. The garbage collector will track and reclaim memory by objects that are no longer referenced by

anything. However there is a way for global objects to be defined that is visible during the lifetime of the

browser executable that JavaScript is executing within. A runtime window variable is visible that references a

globally available object. You can freely add/attach objects to the window variable. The following code shows

an example of a global variable definition.

window.userId = "jdoe"; ← Global Variable

var userId = "jdoe; ← Local Variable

It's important to note that if you define a variable without VAR, then it's attached to the global window

object. The following code shows this:

userId = "jdoe"; ← Attached to Window

BEST PRACTICE: You should rarely need to define global variables by attaching to the window property. For a

Single Page Application, most frameworks will provide a pattern for defining global objects.

Page 4 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

Whitespace and Semicolons

Previous tutorials have described the origins of JavaScript and pointed out its features as a dynamic object-

based language. The name “JavaScript” likely came to be due the similarity with the Java syntax. Like Java,

JavaScript syntax is simple, free form, and case sensitive. Expressions are terminated with a semicolons.

Listing 2 – An example of JavaScript syntax

var abc = 'a' + 'b' + 'c';
var def =

 'd' +
 'e' +
 'f';

console.log(abc + def);

Semicolons are required to terminate expressions, but JavaScript cuts slack to lazy developers who forget

to terminate their expressions with semicolons. However, it's best practice to always terminate expressions

with a semicolon.

Comments

Comments are non executable lines of code that can be applied to help document your code. Block and line

comments can be defined.

/*
 Block comments
*/

...

// line comments

...

var a = "abc"; // end of line comment

Arithmetic Operators

Available operators are as you would expect for arithmetic operations (+, -, /, %). The + is overloaded to

support string concatenation. Unary increment and decrement operators are supported in the same fashion

as C, C#, and Java. Listing 3 shows some example operators in action.

Listing 3 – An example of arithmetic operators

var count = 5; ← Increment/decrement
console.log(--count); // logs 4
console.log(++count); // logs 5
console.log(count--); // logs 4
console.log(count++); // logs 5

var x = 5; ← Assignment
var y+= 5; // y = 10;
var y-= 5; // y = 5;
var y*= 5; // y = 25;
var y/= 5; // y = 5;
var s1 = "hello"; ← String Concatenation
var s2 = "world";
var s3 = s1 + s2;

Page 5 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

== and ===

The assignment operation == is used for equality checks. It will perform type conversions before checking

equality. JavaScript also introduces the === operator which checks for equality. It will not perform type

conversion. Study the expressions in listing 4 below and you'll see this nuance.

Listing 4 – An example of ==

console.log(0 == ''); ← logs true, performs type conversion
console.log(0 === ''); ← logs false, no type conversion

console.log (5 == '5'); ← logs true, performs type conversion
console.log (5 === '5'); ← logs false, no type conversion

console.log (true == '1'); ← logs true, performs type conversion
console.log (true === '1'); ← logs false, no type conversion.

BEST PRACTICE: For safeness, always use the === for equality checks.

Flow Control

Execution paths are controlled using if/else and looping commands. They are fairly straight forward, basically

the same as you have used in almost all languages.

Listing 5 – An example of execution path control

var list = [1,2,3,4,5];
for (item in list) { ← For Loop
 console.log(item);
}

for each (item in list) { ← Same as for, deprecated, don't use
 console.log(item);
}

for (var i=0;i<list.length;i++)
{
 console.log(list[i]); ← For loop with index
}

if (1 + 1 == 2) { ← if/else
console.log("The world makes sense...");

 } else {
 console.log("The chaos ensues...");
 }

var count = 10;
while (count > 0) { ← Do Loop
 console.log("Count = "+count--);
}

Code Blocks

JavaScript expressions can be enclosed code blocks that can be attached to function definitions or defined to

delineate conditional and looping expressions. Code blocks are defined using {} characters.

function() {...}

If/Else
if (<condition>) {...}

For Loop
for (< expression>) {…}

Page 6 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

SCOPE

Scoping around code blocks with JavaScripts differs from what you would expect with other languages.

Variables defined within conditional and looping constructs are not locally scoped to an enclosing code block.

This is important to understand in order to prevent possible side effects.

What would you expect the console output to be if the expressions that follow are executed?

var a = 'abc';

if (true) {
 var a = 'def';

}

console.log(a);

You may be surprised to know the output would be def, and not abc. The variable defined in the

conditional code block overrides the outer variable definitions. Scoping behavior within function code blocks

behaves as you would expect.

Here is another example. What would you expect the console output to be when these expressions are

executed?

var a = 'abc';

function s() {
 var a = 'def';
}

s(); A
console.log(a); ← Execute function

Variable a is visible and scoped to function s(). So the log output would be abc;. Did you answer it

correctly?

AMD/CommonJS Module Specifications

Efforts have been made to make JavaScript a viable server side language. Modularity was one area that

needed to be addressed, so open source projects created a common module API. One popular open source

project is commonJs.org which defines an API for defining module and dependencies. Another popular

module API is AMD, which stands for Asynchronous Module Definition. Both have their advantages.

Require.js implements the AMD specification. Loading JavaScript modules asynchronously, instead of

synchronously, allows modules to be loaded in an on-demand manner, and helps with performance,

debugging an other issues, especially in the browser environment.

The module pattern shown in this section is essentially part of the implementation for used for the

specifications. So, in practice you should use an existing proven module dependency framework to support

your SPA, but having some understanding of what is going on under the covers is helpful.

3. DATA TYPES

JavaScript has a dynamic type system. This is in contrast to static type languages such a Java and C#, which

require data variables to be typed. While this provides type safeness and arguably software that is easier to

maintain, it also requires a compilation step, where JavaScript does not, as expressions are interpreted at

runtime. There is much debate in the IT community regarding the agility and flexibility of dynamic versus

typed languages. Both offer advantages, so you will have to make your own decisions on this debate.

Page 7 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20
http://commonjs.org/

Primitive

Like other object languages, JavaScript provides built-in system primitive types. Primitive types exist for

performance, but some primitive types are also defined as objects which allow method calls and can be

extended. Like classical languages such as C# and Java, primitive types are passed by value instead of by

reference. Since primitive types are typical to most languages, the expression in listing 6 should provide

enough usage information.

Listing 6 – Example Primitive Data Types

var i = 100;f = 100.10; ← Numbers, stored as 64 bit base 10 floating point
var s = 5.98e24; ← Very large or small number scientific notation
var s = "hello World"; ← String, double or single quotes
var b = true; ← Boolean

BEST PRACTICE: Use a Math library when arithmetic values need to be exact. JavaScript’s float has issues

(e.g. 0.1 + 0.2 = 0.30000000004) and inexactness in enterprise applications is problematic.

Arrays

Arrays can be created literally or using a constructor approach. Like other languages they are zero-based.

Also, since JavaScript is dynamic, initial size does not have to be declared. They just have to be defined.

Listing 7 shows some implementation examples:

Listing 7 – Array implementation example

var states = ['ks','mo','ne','co'];
console.log(states);

var countries =
countries[0] = "United States";
countries[1] = "Canada";
console.log(countries);

var mixed = ['text',true,10.00];
console.log(mixed);

Array Operations

Besides containing a list of data objects, arrays have methods defined to help manipulate and iterate over

their contents. There many methods. Listing 8 shows some interesting ones and how you can iterate over

them:

Listing 8 – Array operations

var a = ['ks','mo','ne','co'];
var b = ['az','ok','tx'];

console.log(a.concat(b)); ← New array concatenated

console.log(a.join(b)); ← Joins arrays into a string

a.push('me'); ← Push elements to end of array, returns length

console.log(a.pop()); ← Removes element from end of array and returns it

for (var ele in a) { ← Loop over array
 console.log(ele);

}

Page 8 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

Undefined and Null

JavaScript introduces a “not defined” data type. This is not to be confused with a null value, as they are not

the same. Again, compiled languages do not need an undefined distinction, since anything not defined will

result in a compilation error. Undefined data types are set to variables that do not have a value assigned. The

null data type represents a value of null. The snippet below illustrates the differences:

var v;
console.log(v); ← Undefined
var v = null;
console.log(v); ← Null

Undefined and null causes confusion as many assume that variables and object properties are

automatically assigned a null value when defined. The example above shows that they are assigned an

undefined value or type. Since undefined equals nothing, JavaScript provides a shortcut mechanism to check

for undefined variables, as with the expression below. This works for undefined and null.

var v;
if (v) {console.log{true)} ← true
var v = null;
if (v) console.log(true); ← true

 Since undefined is assigned by default, it's safer to use the shortcut method to check for empty data values,

instead of doing null checks, as shown below:

 var v = null;
 if (v == null) { console.log(“value is null”); }

Why, well what happens if the developer forgets to initialize a data value with null? A bug in logic could occur.

BEST PRACTICE: Don't initialize your variables and properties with null. Rely upon JavaScript undefined

default and perform checks using the if(value) default value.

4. OBJECTS

Everything in JavaScript is an object. Strings, Numbers, Arrays, and even functions, are objects that have

properties and methods. System objects supplied by the runtime environment implements objects for

primitive types. They are sometimes called “wrapper objects,” as they wrapper their respective primitive data

types.

Here are some expressions that send methods calls to some high level primitive objects supplied:

var s = 'hello world'; ← String
console.log(s.length); ← Number, Displays 11

var amount = 100.12345; ← Number
console.log(amount.toFixed(2)); ← Number, Displays 100.12

Like object oriented languages, JavaScript also has a new operator. It can be used to create primitive

object instances.

Listing 9 (located on page 10) shows some examples using the new operator. There's more about the new

operator further along in this tutorial, so stay tuned.

Page 9 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

Listing 9 – New operators in JavaScript

var s = 'hello world' ← String
console.log(s.length); ← Displays 11

var amount = 100.12345; ← Number
console.log(amount.toFixed(2)); ← Displays 100.12

var s = new String('hello world'); ← String Object
console.log(s.length); ← Displays 11

var amount = new Number(100.12345); ← Number Object
console.log(amount.toFixed(2)); ← Displays 100.12

var d = new Date(); ← Date Object
console.log(d.getMonth()); ← Displays current date month (0-11)

Built-In Objects

Everything in JavaScript is an object provided by the JavaScript runtime environment. Here is a list of

available object types:

• String – Array of character values

• Boolean – Conditional true/false

• Date - Represents date time value

• Number – Represents all integral and floating point numeric values

• Math – Provides methods for mathematical functions such as abs, log, tan, etc.

• Function – Executable block of code that can accept parameters and return a value

• Object – Base object prototype for all objects

• RegExp – Perform pattern matching, search, and replace on strings

You've already seen how some of these objects are used for primitive data types and arrays. What may

not be obvious is that functions are also objects, or “first-class objects,” meaning function objects can be

created using JavaScript syntax. More details about function objects are coming up, but first let's jump into

some details about JavaScript objects.

Creating Objects

You've seen system objects provided by the JavaScript runtime. Like other object oriented languages,

customer or user defined objects can be created and used. However, JavaScript objects differ from classic

“class”-based object oriented languages which have inheritance, encapsulation, and polymorphism constructs

built into the language. JavaScript objects are dynamic and to support this dynamic behavior, a prototype-

based approach is taken to object creation. The next sections should give you a good idea for how this

works.

There are two ways to create objects with JavaScript: literally or with a constructor function.

LITERAL OBJECTS

Literal JavaScript objects are defined using JavaScript Object Notation (JSON). Some may think that JSON is

just a data format used for transmitting data from a server or remote system. It is, but its real purpose is to

define JavaScript objects that have properties and executable methods, or actually functions.

As an example, consider an object that models an account with an ID, name, and balance properties, with

methods that debit and credit the account. Figure 2 (located on page 11) shows an account object model and

source code using JSON for its Javascript implementation.

Page 10 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

Figure 2 – Petty Cash account object model and source code using JSON

Additionally, Listing 10 below shows a “literal” account object definition with debit and credit methods and

relevant properties:

Listing 10 – Literal Account Object Definition

var account = { id: 100,
 name: 'Petty Cash',
 balance: 0.00,
 debit: function(amount) { this.balance = this.balance - amount; return this; },
 credit: function(amount) { this.balance = this.balance + amount; return this; }
 };

Notice in the listing above that the account object has properties representing account ID, balance, and

name, along with methods defined for debiting and crediting. Methods are evaluated against the object

instance using the “.” operator. Notice how methods can be cascaded since the method implementations

return this. The expression below shows the cascading debit and credit calls to the account object:

account.credit(100.25).debit(50.75);
console.log('Account name='+account.name+' Balance = '+account.balance);

The dynamic nature of JavaScript can be seen when adding new properties or methods, as you simply add

them to the object. Here's how a close() account method can be dynamically added to the account object:

account.close = function() { this.balance = 0;}; ← Add new close function to account object
account.credit(100.25).debit(50.75); ← Debit/credit account
console.log('Account name='+account.name+' Balance = '+account.balance);
account.close(); ← Close the account

All Objects are instances of the JavaScript system Object type, and is simply comprised of an associative

array and a prototype. We'll talk more about that later. Listing 11 provides some insight into how properties

of an object are stored an associative array:

Listing 11 – Properties stored as an associated array

var object = { x: 100, ← Literal object
 y: 200,
 add: function() { console.log(this.x + this.y)}
 }

for (key in object) {
 console.log(key); ← Outputs property names x y add to the console

}

Property elements can be accessed using the property name. Listing 12 (located on page 12) shows a

literal object created as a mechanism to map state abbreviations to state name.

Page 11 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

var account = { id: 100, ← Create an account object with debit and credit methods
name: 'Petty Cash',
balance: 0.00,
debit: function(amount) { this.balance = this.balance -
amount; return this; },
credit: function(amount) { this.balance = this.balance +
amount; return this; }

 };

account.credit(100.25).debit(50.75); ← Debit and credit the account object with cascading operator
console.log('Account name='+account.name+' Balance = '+account.balance)

Account

balance : Number
name : String
id : Number

debit(amount)
credit(amount)

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

Listing 12 – An example of using array subscript syntax

var map = { ks: "Kansas", ← Object Map of States
 mo: "Missouri",
 ca: "California"
 };

 console.log(map["ks"]); ← Access by key, outputs Kansas

Notice how the object property is accessed using array type access, but instead of an index number the

name of the property is specified.

CONSTRUCTOR FUNCTION OBJECTS

An alternative way to define and create an object is referred to as an object constructor. This approach feels

a little more like the classic approach, as the classical “new” operator is used to create an instance. Also,

constructor objects allow an instance to be initialized with supplied values.

In listing 13, the account object is defined and used with the constructor approach. Notice how the initial

balance is initialized and the instance is created with the new operator.

Listing 13 – An example of object constructor

var Account = ← Constructor account object
 function(initialBalance) {
 this.id = 200,
 this.name = 'R&D',
 this.balance = initialBalance
 this.debit = function(amount) { this.balance =

 this.balance - amount; return this; },
 this.credit = function(amount) { this.balance = this.balance

 + amount; return this; }
 };

var object = new Account(5123.25); ← Create instance
console.log('Account name = '+object.name+' Balance = '+object.balance);

BEST PRACTICE: Variables referencing constructor functions are typically camel-cased and with the first

character capitalized. Create a factory that hides the "new" keyword since it's easy to forget.

Functions are discussed in an upcoming section. But, as you have seen constructor objects look like

functions, look closely. They really aren't functions; they provide a way to initialize objects, enclose the

structure of an object, and provide a way to “construct” objects when needed. This is as opposed to defining

them literally.

Prototypes

Now that we have explored a couple of ways to define and create objects, let's dive under the covers and see

whats going on with objects.

JavaScript is referred to as a Prototype-based language. This can be contrasted to the classic class-based

languages in which classes contain methods and properties are defined. At runtime, class meta data is turned

into a type system object model. However, available classes must be defined at construction time.

JavaScript's dynamic nature applies a prototyped-based approach to objects. As indicated, JavaScript objects

are instances of an object with an associative array (key/value) of other data objects or function objects.

And, as we have seen, objects can be created at runtime, with methods and properties being added at will.

Every constructor-based object definition has a prototype property that points to the same prototype of

the constructor function. Adding a new method to the constructor object is visible to all instances that have

been created from it, as shown in listing 14 located on page 13.

Page 12 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

Listing 14 – Adding a new method to the prototype

var Name = function() { ← Name constructor object definition
 this.first = null,
 this.middle = null,
 this.last = null};

 var nameA = new Name(); ← Instance is created
 nameA.first = 'Jane';
 nameA.last = 'Doe';

 var nameB = new Name(); ← Another instance is created
 nameB.first = 'John';
 nameB.last = 'Doe';

 Name.prototype.middle = 'Chris': ← Middle name added to Name prototype

 Console.log(nameA.middle); ← Middle name is visible to both instances
 Console.log(nameB.middle);

Listing 14 showed a definition of a constructor function object named Name. It has two properties: first

and last name. Two instances are created using the new operator and properties are set. Notice these two

instances reference the constructor objects prototype property. Then a middle name property is added to the

prototype reference. This makes the middle-name property visible to both instances, nameA and nameB.

PROTOTYPE CHAINING/INHERITANCE

The previous section showed how methods and properties that need to be shared across all instances can be

made global to all instances by adding properties to the constructor objects prototype. When a property or

method is sent to an object during execution, the runtime environment will look for the property/method in

the current instance, then in the existing prototype and up the chain until Object.prototype is encountered.

This is shown in figure 3.

Figure 3 – Prototype Chaining

Inheritance

This is referred to as prototype chaining and is how inheritance works in JavaScript. The next expression

(located on page 14) demonstrates this chaining behavior by adding a replicate() method to the built-in

Objects prototype property.

Page 13 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

Prototype

replicate()

Object

String

prototype

MyObject

prototype

Prototype
Chain

Prototype
Chain

Prototype

replicate() visible
to all objects

prototype

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

Object.prototype.repeat = function(count) { ← All objects now have
 return count < 1 ? '' : new Array(count + 1).join(this); replicate() method
};

console.log("Hello".repeat(3)); ← logs "HelloHelloHello";

This new replicate() is now visible to all objects. While it works for String objects, it will probably throw

an error trying to execute when run against other objects since the split() method is expecting a String

object. So, adding the replicate() method to the String objects prototype makes it visible to only String

objects.

String.prototype.repeat = function(count) { ← All String objects now have
 return count < 1 ? '' : new Array(count + 1).join(this); replicate() method
};

console.log("Hello".repeat(3)); ← logs "HelloHelloHello";

As you can see, this is similar to inheritance. Let's apply this to an anonymous function, shown with these

expressions in listing 15:

Listing 15 – Prototype chaining inheritance with an anonymous function

 var XY = function() { this.x = 100,
 this.y = 200 };

var a = new XY(); ← #A Create instance
a.multiply = function() { return this.x * this.y;}; ← #B Add multiply method
console.log(a.multiply()); ← logs 2000
var b = new XY(); ← #C Create another instance
console.log(b.multiply()); ← #D Error multiply() is not defined

XY.prototype.multiply = function() { return this.x * this.y;}; ← #E Add multiply to XY prototype
console.log(b.multiply()); ← #F Multiply is available and
 displays 20000

The example defined an XY constructor object #A, then assigned a multiply function #B and executes it.

Then another XY instance is created #C and the multiply method is issued, but it is undefined #D. This is

because the multiply() method was added to an object, but not its prototype. Adding the multiply function

the XY constructor functions objects prototype #E, makes it available to all instances created from the XY

object #F.

PROTOTYPES IN ACTION – IMPLEMENTING THE SINGLETON PATTERN

Prototype behavior can be seen in action when trying to implement the singleton pattern with JavaScript.

Singletons are a pattern seen commonly in classical object languages. Its intent is to implement a global

single instance of an object. With JavaScript it is easy, too easy, to make an object a global variable in

JavaScript. Simply set an object reference to the globally visible window object. Here is how the current user

of an application can be made global:

CurrentUser = {userId: 'jdoe', name:'John Doe' };

or

window.CurrentUser = {userId: 'jdoe', name:'John Doe' };

For a large application, putting this global module definition in its own JavaScript file will help make things

more modular and maintainable. However, if this file is loaded or referenced multiple times, it will wipe out

previous values. So the single pattern can be applied to ensure only a single instance of an object exists no

matter how many times this file is loaded. The singleton pattern for a global CurrentUser is shown in listing

16.

Page 14 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

Listing 16 – Singleton instance implementation

var CurrentUser = function() {
var User = function() {

var userid = '';
var name = '';

return {

getName : function() {
return name;

},
getUserId : function() {

return userid;
},
setName : function(newName) {

name = newName;
},
setUserId : function(newUserId) {

userid = newUserId;
},

};
};
if (User.prototype._instance) {

return User.prototype._instance;
}
User.prototype._instance = new User;
return User.prototype._instance;

}();
 ← set singleton value
CurrentUser.setUserId("jdoe");
CurrentUser.setName("John Doe");

console.log(CurrentUser.getUserId());

JavaScript prototype behavior provides a convenient way to enforce the singleton instance of a current

user no matter how many times the file is loaded. A closure is defined that returns the singleton instance.

The singleton instance is set to the constructor functions prototype for the first request and subsequent calls

just return the original instance.

Also, notice how getter/setter access methods were defined, as this is a practice not typically done in

JavaScript OO development. But, for this example, it shows how access to the data can be encapsulated with

methods.

5. FUNCTIONS

Everything in JavaScript is an object, and functions are no exception. JavaScript functions represent a

modular unit of execution and are considered first class objects, as they can be created literally, dynamically,

assigned to variables, and passed around as data. Literal functions are something you have already seen in

this tutorial. Here's a basic literal function definition you've probably seen before:

function helloWorld() {
 console.log("hello world");
}
 ← execute function
helloWorld();

Literal functions are akin to method implementations in classic languages like Java and C#. JavaScript

being dynamic in nature does not really have much in common with compiled-based languages. Comparisons

are probably made to Java due to the “Java” in “JavaScript.”

Page 15 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

One advantage that dynamic-based languages like JavaScript have over their compiler-based competitors

is that functional programming capabilities are made possible by the ability to treat chunks of code like data.

This can lead to elegant designs that do more with less code.

Anonymous/Closures

Anonymous functions or closures are a powerful element in JavaScript. Closures are a key element to

functional programming techniques. Other languages such as C# provide closures. Java has been promising

closures for a number of releases, but has yet to provide this capability.

Closure functions are defined and assigned to a variable that can be passed around just like a piece of

data, and then executed. You'll see closures commonly used to provide callback and event handling

functionality. Functions can be defined and assigned to a variable that can then be passed around and

executed.

Check out listing 17 below, as this example contrasts a literal function with one that is created

anonymously, or as a closure.

Listing 17 – Literal function contrasted with closure

function helloWorld() { ← Literal function definition
 console.log("hello world");
}

helloWorld(); ← Execute function, outputs “hello world”
var hello = function() { console.log("hello"); }; ← Define anonymous function and assign to variable
hello(); ← Execute function, outputs “hello”

var log = function(text) { console.log(text); }; ← Define anonymous function with argument
log("Hello World"); ← Execute function, outputs “Hello World”

Let's make things a little more interesting with the next example. These expressions define an anonymous

function that is passed into another function and then executed. Notice how arguments are handled in the

following expressions:

var hello = function() { console.log("hello"); }; ← define hello function
var executor = function(func) { console.log(func()); }; ← define executor function

executor(hello); ← invoke executor function, pass in hello
 function as an argument, outputs 'hello'

Memoizing

Since functions can be treated as data, an interesting feature becomes available, referred to as

“memoization.” This feature provides the ability to hide or remember data. Variables scoped by an outer

function and referenced by an inner function remember their values every time the function is invoked.

Memoization can be seen in listing 18 (located on page 17). This example implements a literal function

that returns anonymous functions for a specific operation. Each operation function can then be executed and

results returned. Notice how the sum variable is remembered between operation calls.

Page 16 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

 Listing 18 – Memoization Closure Example

function operationFactory(operation,initialValue) { ← #1 function that returns operation
 closure function and sets initial value
 var sum = initialValue; ← sum variable will be “memoized” by
 operation closure functions
 if (operation == "+")
 { return function(x) { sum += x;return sum;} };
 if (operation == "-")
 { return function(x) { sum -= x;return sum;} };
 if (operation == "*")
 { return function(x) { sum *= x;return sum;} };
}

var add = operationFactory("+",0); ← #2 get operation functions from factory
var subtract = operationFactory("-",200); and assign to variable
var multiply = operationFactory("*",10.0);

add(100); ← #3 execute add function, sum variable will be 100
console.log(add(200)); ← #4 add 200, output will be 300, as the previous

 add variable is remembered
subtract(100); ← console output will be 50
console.log(subtract(50));

multiply(0.5); ← console output will be 2.5
console.log(multiply(0.5));

Let's walk through code listing, as this is an important concept to see in action. Step #1 defines an

operationFactory function that accepts an operation identifier and an initial value. When called, a closure is

returned that performs an arithmetic operation against the outer functions sum variable. Step #2 gets

operation closure functions from the factory and assigns them to variables. Step #3 then invokes the

function with a value of 100. Step #4 invokes the add function again with 200 and outputs 300 to the log.

Since the add function was executed to separate times, you might think that the second add execution

would output 200. Closure memoization remembers the sum variable across executions of the same function

instance.

 What do you think the output of the expression shown below will be?

var add = operationFactory("+",100);
add(50);
add(50);
console.log(add(50));

If you guessed 250, then you are right. The initial value of the “memoized” sum variable is set to 100.

Execution Context

This is a concept that causes confusion, especially with closures. Classical object oriented developers

understand the concept of the this keyword, which provides a way to reference an existing object reference.

This is especially useful when having to access properties/methods and in passing object references around.

However, in JavaScript “this” may not be the “this” you were expecting. Since JavaScript is dynamic code,

it has the concept of an execution stack, and since JavaScript runs on a single thread, only one code block is

visible in the execution context. “this” is referencing that execution context.

Here are some common JavaScript execution contexts for the this operator:

• Window

• Document

• Function

• Method

• Constructor Method

Page 17 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

Here is where context problems often occur. Say you are defining a literal object method that defines a

closure that performs a calculation and prints results when a button is clicked. It could look something like

the source below:

var add = { ← Literal object
 sum: 0,
 execute: function(x,y) {this.sum = x + y; } ← this is in object method context
 print: function() {

 var btn = document.getElementById("print_button"); ← Get document button object
 btn.onClick = function() {

 this.execute(100,100): ← WILL FAIL, why?...context, or this will be in document context
 alert(this.sum); ← WILL FAIL, why?...context or this will be in document context
 }
 }
 }

However, this will fail when the button is clicked with an error indicating that this.execute() and

this.sum are undefined. Why? Because when the closure function is executed, this will be in the HTML

document context.

How can this be fixed? Memoization is the answer. The correct context is preserved and referenced in the

closure by defining a variable that references this. This variable is then referenced by the closure,

preserving correct context reference, and not using the current context of this.

Here is the same JavaScript snippet that works. Notice how the this context reference is memoized in the

closure:

var add = { ← Literal object
 sum: 0,
 execute: function(x,y) {this.sum = x + y; } ← this is in object method context
 print: function() {

 var btn = document.getElementById("print_button"); ← Get document button object

 var _this = this; ← Reference to this method context

 btn.onClick = function() {
 _this.execute(100,100): ← Won't fail, memoized _this is correct context
 alert(_this.sum); ← Won't fail, memoized _this is correct context
 }
 }
 }

You can also supply an execution context. It can also be specified and supplied to a function using the

function call or apply methods.

Here's an example:

function add(a,b) { ← Function definition
 return this.x + this.y + a + b;

}
var o = {x:100, y:100}; ← Object definition

console.log(add.call(o,200,200)); ← Invoke function with call, specifying a
 context for this. Outputs 600 to console.

This is something that you will encounter often, especially in SPA development, when you will be writing a

lot of JavaScript client logic to create user interface elements, and for reacting to events in the HTML

document context.

Function Closures in Action and Modularity Support

Modularity and dependency injection are not mechanisms built into JavaScript. With JavaScript, you can use

folders/files to help modularize code. Compare this with other languages; enforcing modularity in Java is

accomplished using package definitions, while C# uses Namespaces. As dependency injection is not a part of

Page 18 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

any language, frameworks have filled the gap. This is changing as both C# and Java have indicated a future

in implementing built-in dependency injection mechanisms in their language specifications.

Modularity and dependency injection are key for managing SPA like applications that have rich user

interaction requirements. However, the goal of this section is to understand JavaScript functions and

closures. Understanding how to apply modularity will help with this goal. Figure 4 illustrates the concept of

modularity and dependency injection, showing how modules can be used and dependent modules injected:

Figure 4 – Modularity and Dependency Injection

Available JavaScript modularity mechanisms are functions or JavaScript code defined in separate files that

are loaded using a <script> tag. Modularity allows complexity and information to be hidden from consumers

of a module. Classical OO languages provide language access visibility to methods and properties of objects.

Access modifiers are available and can be specified to make properties and methods private. Private access

modifiers prevents developers from changing or accessing elements that are not a part of a module's public

access API. JavaScript does have an access modifier, however a pattern has been invented that allows

methods and attributes to be hidden.

The module pattern evaluates a function closure that returns a literal object function methods that

accesses the private data. Listing 19 shows how an address object is modularized:

Listing 19 – Module Pattern for address

var addressModule = (function () { ← Address Module reference to object literal
 var address = ['street','city','state','zip',]; ← Array holds address segments (street, city,
 return { state, zip, etc.)
 street: function (street) {

 address[0] = street;
 return this;
 },
 city: function(city) {

 address[1] = city;
 return this;

 },
 state: function(state) {

 address[2] = state;
 return this;

 },
 zip: function(zip) {

 address[3] = zip;
 return this;

 },
 format: function () {
 return address[0]+"\n"+address[1]+','+address[2]+' '+address[3];
 }
 };
})(); ← Function closure evaluated on load
addressModule.street('123 Easy Street').city('Lawrence').state('KS').zip('123456'); ← Invokes module
 methods
console.log(addressModule.format()); ← Outputs formatted address to console

Page 19 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

application.js address.js formatter.js

jQuery.js

customer.js

uses

uses

uses
injects

injects

injects
injects

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

Notice how in listing 19, the address elements are stored in an array. Methods are defined to allow array

elements to be set, and a method to return a formatted address is defined. Only the methods returned by

the literal object returned are visible to the user of the address object. This pattern effectively makes the

address array visible or private to the returned literal object.

Dependency Injection

Another pattern commonly found in classical languages is dependency injection. This is simply a pattern for

referencing other “dependent” modules. Doing this in a consistent manner communicates dependent modules

and provides a way to report or assert modules that are not present, which can help with maintenance and

debugging. Listing 20 shows how the previous module pattern introduces a module that formats addresses:

Listing 20 – Injecting a dependent address module

var addressModule = (function (printer) { ← Printer module supplied to address module
 var address = ['street','city','state','zip',];
 return {
 street: function (street) {

 address[0] = street;
 return this;
 },
 city: function(city) {

 address[1] = city;
 return this;

 },
 state: function(state) {

 address[2] = state;
 return this;

 },
 zip: function(zip) {

 address[3] = zip;
 return this;

 },
 format: function () {
 return printer.format(address); ← Engage printer module and format address
 }
 };
})(printerModule); ← printer module reference, assume this is a
 global variable
addressModule.street('123 Easy Street').city('Lawrence').state('KS').zip('123456');
 ← check the counter value and reset, Outputs: 1
console.log(addressModule.format());

The address module is “injected” as an argument in module closure, and a reference to the injected

module(s) are applied in the module loaded function call.

6. EXCEPTIONS / ERRORS

When errors occur during JavaScript execution, an error object is thrown. You may be surprised to know that

problems can be caught by errors being thrown or raised. Exceptions are an integral part of Java, C#, and

C++ languages. You don't see a lot of exception handling code in JavaScript. Typed languages mentioned

above have the advantage of having exception types that can provide additional debugging information as to

why the exception occurred.

Exceptions in JavaScript are actually errors that have occurred during execution. Let's say you want to

catch an undefined error, here's how this is accomplished with a try/catch code block:

try {
var x = 0;
var z = x + y;

 } catch (error) { ← Y not being defined will throw an exception
 console.log("Y is not defined, you big dummy :)"); ← catch block outputs message to console
 }

Page 20 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

You can also throw or raise errors in your code using the throw clause. You can throw any object type

and this instance will be available in the catch block. Here are some examples of throwing an error with

various object types:

 Throw -1; ← throw -1 number
 throw 'Error Message'; ← throw error message string

 throw {code: 100, message: 'error message'); ← throw object literal instance with error
 information

Catch blocks will have access to the object instances that are thrown.

AJAX

Asynchronous JavaScript and XML (AJAX) is a technology supported by all browsers and is a simple

mechanism that provides a profoundly improved user experience. Before AJAX, browsers and JavaScript code

would be executed whenever an HTML page was requested from the web server. Then the browser, along

with JavaScript, would render an HTML user interface.

AJAX provides a way to request XML or String data from the web server and then process this data with

JavaScript. Being able to update individual HTML elements at any granularity likely started the movement

towards the SPA applications we see today. You are probably already using AJAX if you are developing web

applications using JEE or .NET server side MVC frameworks. Many UI components leverage AJAX to provide a

more responsive user interface.

Let's dive into how an AJAX request is made from JavaScript and a response is processed. You've probably

noticed the XML emphasis with AJAX. This is due to expecting an AJAX server request to return an HTML

document object model (DOM), which is in XML format. Listing 21 shows JavaScript that makes an AJAX call

to return an HTML/XML document from the web server:

Listing 21 – XML AJAX request

var xmlhttp = new XMLHttpRequest(); ← Create request instance

xmlhttp.onreadystatechange=function() ← Process server side results from call
 {
 if (xmlhttp.readyState==4 && xmlhttp.status==200)
 {
 document.getElementById("myDiv").innerHTML=xmlhttp.responseXML; ← XML response
 }
 }

xmlhttp.open("GET","info.html",true); ← Server side resource to access
xmlhttp.send(); ← Initiate AJAX Request

The xmlhttp is a global object provided by the JavaScript runtime. The open method specifies put, post,

or get operation, the file to open, and returns from the server true if this an asynchronous call, which makes

it AJAX. Otherwise it's a synchronous call. A callback function assigned to the onreadystatechange property

will process the results.

AJAX requests can also return string values from the server instead of XML. Since a JSON string is easily

turned into actual JSON with JavaScript, SPA applications will typically utilize server URL requests that return

JSON strings containing only application data. SPA applications produce HTML on the client side with

JavaScript, so JSON data will be merged with client side dynamic HTML.

Listing 22 (located on page 22) shows how JavaScript invokes a server side URL that returns a JSON

string and then turns the string into a JSON object.

Page 21 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

Listing 22 – JSON AJAX Request

var xmlhttp = new XMLHttpRequest(); ← Create request instance

xmlhttp.onreadystatechange=function() ← Process server side results from call
 {
 if (xmlhttp.readyState==4 && xmlhttp.status==200)
 {
 var json = JSON.parse(xmlhttp.responseText); ← Parse JSON Text to JSON
 }
 }

xmlhttp.open("GET","info.do",true); ← Server side resource to access
xmlhttp.send(); ← Initiate AJAX Request

The mechanism of AJAX is supported by all modern browsers and is essential to SPA-based applications.

Upcoming tutorials will introduce SPA JavaScript frameworks. One mechanism some of these frameworks

implement is a way to access server side data in a RESTful manner. AJAX allows these frameworks to access

server side data then update a portion of the user interface, with no page refresh, reinforcing a Rich User

Interface.

7. SUMMARY

This tutorial introduced beginning and advanced JavaScript programming features and concepts. A thorough

understanding of these topics is necessary for building web SPA applications, as much JavaScript will be

developed, used, and applied throughout that process.

If some concepts are still fuzzy, I recommend that you play around with and modify some of the samples

to see if it helps your understanding.

References

• Osmani, Addy. Learning JavaScript Design Patterns. Volume 1.5.2

http://addyosmani.com/resources/essentialjsdesignpatterns/book/

• Mozilla Developer Network. https://developer.mozilla.org/en-US/

• W3 Schools. http://www.w3schools.com/

• CommonJS Wiki Community. http://wiki.commonjs.org/wiki/CommonJS

• Asynchronous Module Definition (n.d.) In Wikipedia.

http://en.wikipedia.org/wiki/Asynchronous_module_definition

About The Author

David Pitt is a Sr. Solutions Architect and Managing Partner of Keyhole Software with nearly 25 years IT

experience. Since 1999, he has been leading and mentoring development teams with software development

utilizing Java (JEE) and .NET (C#) based technologies. Most recently, David has been helping organizations to

make the architecture shift to JavaScript/HTML5 and use best practices to create rich client and single page

applications.

About Keyhole Software

Keyhole Software is a Midwest-based software development and consulting firm with specialization in Java,

JavaScript and .NET technologies. Experts in application development, technical mentoring, and the

integration of enterprise-level solutions, Keyhole was founded on the principle of delivering quality solutions

through a talented technical team.

Page 22 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20
https://developer.mozilla.org/en-US/
http://www.w3schools.com/
http://en.wikipedia.org/wiki/Asynchronous_module_definition
http://wiki.commonjs.org/wiki/CommonJS
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://www.keyholesoftware.com/

Keyhole Software JavaScript Services

➢ Outsourced Development – A Keyhole team provided to perform analysis, design, development,

testing and deployment of JavaScript-based SPA applications

➢ Development Support – Specialized members of our team participate as project team member and

perform development activities

➢ HTML5 / Javascript Education – 2-day custom course to teach your team the ins and outs of

effective enterprise development with JavaScript

➢ Mentoring / Player Coaching – Coaching and knowledge transfer, working with your team to help

them understand, use and know best practices in JavaScript and SPA development

For More Information

Keyhole Corporate Kansas City
8900 State Line Road, Suite 455
Leawood, KS 66206

Tel: (877) 521-7769

Keyhole St. Louis
Phone: (314) 329-1699

Keyhole Chicago
200 E Randolph St
Chicago, IL 60601

Phone: (630) 460-8317

TUTORIAL PUBLISHED: OCTOBER 18, 2013

Page 23 of 23

Keyhole Software, LLC. 8900 State Line Road, Suite 455 Leawood, KS 66206 Tel 877-521-7769 www.keyholesoftware.com

Copyright © 2013 Keyhole Software, LLC. All rights reserved.

file:///C:/Users/Lauren%20Fournier/Documents/Marketing/White%20Paper/www.keyholesoftware.com%20

	Table of contents
	1. Environment
	Open Source Steps Up

	2. Modularity/Structure
	Memory
	Whitespace and Semicolons
	Comments
	Arithmetic Operators
	== and ===
	Flow Control
	Code Blocks
	AMD/CommonJS Module Specifications

	3. Data types
	Primitive
	Arrays
	Array Operations
	Undefined and Null

	4. objects
	Built-In Objects
	Creating Objects
	Prototypes

	5. Functions
	Anonymous/Closures
	Memoizing
	Execution Context
	Function Closures in Action and Modularity Support
	Dependency Injection

	6. Exceptions / errors
	AJAX
	7. summary
	References
	About The Author
	About Keyhole Software
	Keyhole Software JavaScript Services
	For More Information

