
AJAX Toolkit Developer's Guide

Version 32.0, Winter ’15

 @salesforcedocs

Last updated: October 3, 2014

https://twitter.com/salesforcedocs

© Copyright 2000–2014 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com,

inc., as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: The AJAX Toolkit . 1

When to Use the AJAX Toolkit . 2

AJAX Toolkit Support Policy . 2

Other Resources . 2

AJAX Typographical Conventions . 2

Sample Visualforce Page Using the AJAX Toolkit . 3

Chapter 2: Working with the AJAX Toolkit . 5

Connecting to the API . 6

Embedding API Calls in JavaScript . 6

Processing Results . 8

Chapter 3: API Calls and the AJAX Toolkit . 10

Synchronous and Asynchronous Calls with the AJAX Toolkit . 11

API Call Syntax in the AJAX Toolkit . 11

Object Functions . 11

Data Types in AJAX Toolkit . 12

The source Context Variable . 12

Debugging with the AJAX Toolkit . 12

Using the Samples . 12

Synchronous Examples . 13

Asynchronous Examples . 23

Chapter 4: Using SOAP Header Options with the AJAX Toolkit 26

Chapter 5: Error Handling with the AJAX Toolkit . 28

Chapter 6: Advanced Topics . 30

QueryResultIterator . 31

Differences in Escaping Reserved Characters . 31

Working with Base64 Binary Encoded Strings . 31

Using the Timeout Parameter with Asynchronous Calls . 32

AJAX Proxy . 33

remoteFunction Syntax and Parameters . 34

Downloading the Salesforce Client Certificate . 34

Glossary . 35

Index . 47

CHAPTER 1 The AJAX Toolkit

The AJAX Toolkit is a JavaScript wrapper around the API:In this chapter ...

• The AJAX Toolkit is available for any organization that has API access.
• When to Use the

AJAX Toolkit • The AJAX Toolkit supports Microsoft® Internet Explorer® versions 7, 8, 9, 10, and 11 with the latest

Microsoft hot fixes applied, and Mozilla® Firefox®, most recent stable version.• AJAX Toolkit Support

Policy • The AJAX Toolkit is based on the partner WSDL. Because there is no type checking in JavaScript, the

type information available in the enterprise WSDL is not needed.• Other Resources

• You can execute any call in the API, and access any API object that you normally have access to.• AJAX Typographical

Conventions • You can issue asynchronous calls, and use callback functions to handle the results. For more

information, see API Calls and the AJAX Toolkit.• Sample Visualforce

Page Using the AJAX

Toolkit
• You can use header options with a different syntax than in the API. For more information, see Using

SOAP Header Options with the AJAX Toolkit.

• You can handle errors with the AJAX Toolkit. For more information, see Error Handling with the AJAX

Toolkit.

• The AJAX Toolkit supports relationship queries. See Synchronous Examples for examples of relationship

queries.

Note: Before you use the AJAX Toolkit, you should be familiar with JavaScript and with the

information about the API in the SOAP API Developer's Guide.

This document explains how to use the AJAX Toolkit in JavaScript to embed API calls and processes,

such as within a Visualforce page.

1

https://www.salesforce.com/apidoc

When to Use the AJAX Toolkit

For best performance, use the AJAX Toolkit when working with small amounts of data.

Because information is delivered via a browser, AJAX works best with relatively small amounts of data (up to 200 records, approximately

six fields with 50 characters of data each). The larger the data set returned, the more time it will take to construct and deconstruct a

SOAP message, and as the size of an individual record gets larger, the impact on performance becomes greater. Also, as more HTML

nodes are created from the data, the potential for poor performance increases. Because browsers are not efficient, careful consideration

needs to be given to browser memory management if you intend to display a large amount of data.

The following are examples of appropriate uses:

• Display or modify a single record.

• Display two or three fields from many records.

• Perform one or more simple calculations, then update a record.

The following are examples of scenarios that require case-by-case analysis:

• Update more than 200 records.

• Update records that are unusually large. For example, what happens if the user clicks the browser stop button?

• Recalculate a complex value for more than 200 records.

An example of inappropriate usage is providing a sortable grid of many records. This would require too much processing time, and

browser rendering would be too slow.

AJAX Toolkit Support Policy

The current release of the AJAX Toolkit is the only version that receives bug fixes and enhancements. When a new version is released,

the previous version continues to be available, but is not supported.

Other Resources

In addition to the content of this document, there are other resources available for you as you learn to use the AJAX Toolkit:

• Eclipse plug-in: Force.com IDE

• Message boards: Salesforce Developers

AJAX Typographical Conventions

Topics about the AJAX Toolkit use the following typographical conventions:

DescriptionConvention

In an example, Courier font indicates items that you should type the

information as shown. This includes sample code, literals, methods,

calls, functions, and events from a variety of languages.

<script
src="/soap/ajax/32.0/connection.js"
type="text/javascript"></script>

In an example or syntax statement, italics represent variables. You

supply the actual value.

sforce.connection.header_option_name="value";

2

When to Use the AJAX ToolkitThe AJAX Toolkit

https://developer.salesforce.com/page/Tools
http://community.salesforce.com/sforce/board?board.id=ajax_toolkit

Sample Visualforce Page Using the AJAX Toolkit

This example demonstrates using the AJAX Toolkit in a Visualforce page.

To add JavaScript to an Visualforce page, use the following procedure:

1. Create the Visualforce page. For more information on this, see the Visualforce Developer's Guide.

2. Cut and paste the following sample code into your Visualforce page.

The JavaScript code queries your organization and returns every account ID, account name, and industry type, if any:

<apex:page >
<script type="text/javascript">
var __sfdcSessionId = '{!GETSESSIONID()}';
</script>
<script src="../../soap/ajax/32.0/connection.js"

type="text/javascript"></script>
<script type="text/javascript"> window.onload = setupPage;
function setupPage() {
//function contains all code to execute after page is rendered

var state = { //state that you need when the callback is called
output : document.getElementById("output"),
startTime : new Date().getTime()};

var callback = {
//call layoutResult if the request is successful
onSuccess: layoutResults,

//call queryFailed if the api request fails
onFailure: queryFailed,
source: state};

sforce.connection.query(
"Select Id, Name, Industry From Account order by Industry",
callback);

}

function queryFailed(error, source) {
source.output.innerHTML = "An error has occurred: " + error;

}

/**
* This method will be called when the toolkit receives a successful
* response from the server.
* @queryResult - result that server returned
* @source - state passed into the query method call.
*/
function layoutResults(queryResult, source) {
if (queryResult.size > 0) {
var output = "";

//get the records array
var records = queryResult.getArray('records');

3

Sample Visualforce Page Using the AJAX ToolkitThe AJAX Toolkit

http://www.salesforce.com/us/developer/docs/pages/index_Left.htm

//loop through the records and construct html string
for (var i = 0; i < records.length; i++) {
var account = records[i];

output += account.Id + " " + account.Name +
" [Industry - " + account.Industry + "]
";

}

//render the generated html string
source.output.innerHTML = output;
}

}
</script>

<div id="output"> </div>

</apex:page>

After creating and navigating to the aboveVisualforce page, you should see text similar to this image:

Note: An easier way to create this page is by using an Apex controller. However, the sample is intended to show basic functionality

with the AJAX Toolkit that contains API calls and processes Salesforce data.

4

Sample Visualforce Page Using the AJAX ToolkitThe AJAX Toolkit

CHAPTER 2 Working with the AJAX Toolkit

Most JavaScript that you add to Visualforce pages, buttons, or links has three sections: first, connecting

to the AJAX Toolkit, next, embedding the API methods in JavaScript, and finally, processing the results.

This section explains each of these steps.

In this chapter ...

• Connecting to the API

• Embedding API Calls

in JavaScript

• Processing Results

5

Connecting to the API

The first portion of any JavaScript code that uses the AJAX Toolkit must make the toolkit available to the JavaScript code. The syntax for

this is different depending on whether you are embedding JavaScript in a Visualforce page, or a button or link.

• For Visualforce pages or any source other than a custom onclick JavaScript button, specify a <script> tag that points to the

toolkit file:

<apex:page>
<script src="../../soap/ajax/32.0/connection.js"

type="text/javascript"></script>
...

</apex:page>

• For a custom onclick JavaScript button, specify the login call to log into the API:

<body>
{!requireScript("/soap/ajax/32.0/connection.js")}
sforce.connection.login("username", "password");
...

The AJAX Toolkit picks up the endpoint and manages the session ID. You do not need to set them.

The version of the AJAX Toolkit is in the URL.

After this script executes, the toolkit is loaded and a global object, sforce.connection , is created. This object contains all of the

API calls and AJAX Toolkit methods, and manages the session ID. No other session management is needed.

Salesforce checks the IP address from which the client application is logging in, and blocks logins from unknown IP addresses. For a

blocked login via the API, Salesforce returns a login fault. Then, the user must add their security token to the end of their password in

order to log in. A security token is an automatically-generated key from Salesforce. For example, if a user's password is mypassword ,

and their security token is XXXXXXXXXX , then the user must enter mypasswordXXXXXXXXXX to log in. Users can obtain their

security token by changing their password or resetting their security token via the Salesforce user interface. When a user changes their

password or resets their security token, Salesforce sends a new security token to the email address on the user's Salesforce record. The

security token is valid until a user resets their security token, changes their password, or has their password reset. When the security

token is invalid, the user must repeat the login process to log in. To avoid this, the administrator can make sure the client's IP address is

added to the organization's list of trusted IP addresses. For more information, see “Security Token” in the in the SOAP API Developer's

Guide.

Tip: It is recommended that you obtain your security token via the Salesforce user interface from a trusted network prior to

attempting to access Salesforce from a new location.

If Single Sign-On (SSO) is enabled for your organization, users who access the API or a desktop client cannot log in to Salesforce unless

their IP address is included on your organization's list of trusted IP addresses or on their profile, if their profile has IP address restrictions

set. Futhermore, the delegated authentication authority usually handles login lockout policies for users with the “Uses Single Sign-On”

permission. However, if the security token is enabled for your organization, then your organization's login lockout settings determine

the number of times a user can attempt to log in with an invalid security token before being locked out of Salesforce. For more information,

see “Setting Login Restrictions” and “Setting Password Policies” in the online help.

Embedding API Calls in JavaScript

After you have made the toolkit available using the procedure in Connecting to the API, you can write the JavaScript code that contains

your API calls and processing. Be sure to check the SOAP API Developer's Guide for information about each call that you wish to use. The

syntax for calls is different in the AJAX Toolkit; for details see API Calls and the AJAX Toolkit.

6

Connecting to the APIWorking with the AJAX Toolkit

http://www.salesforce.com/us/developer/docs/api/apex_api.pdf
http://www.salesforce.com/us/developer/docs/api/apex_api.pdf
https://www.salesforce.com/apidoc

The following example shows a simple synchronized call that you can issue after connecting. This query returns the Name and Id for

every User and writes them to the log.

result = sforce.connection.query("Select Name, Id from User");
records = result.getArray("records");

for (var i=0; i< records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}

We recommend that you wrap your JavaScript code so that the entire HTML page is rendered by the browser before the code executes,

to avoid errors. For example:

<body onload="setupPage();">
<div id="output"></div>

</body>

When you specify setupPage() in the body onload , the browser initializes all HTML elements before it calls setupPage() .

For example, the following code could be added to a Visualforce page to retrieve data:

<script type="text/javascript>
function setupPage() {

sforce.connection.query("Select Id, Name, Industry From Account
order by Industry"),

{onSuccess : layoutResults,
onFailure : queryFailed,

source : {
output : document.getElementById("output"),
startTime : new Date().getTime()

}
});

}
</script>

The API interaction in the code above is accomplished in the first line of the setupPage function. A SOQL statement specifies what

data to return. For more information about the source context variable, see The source Context Variable.

After fetching the data in this example, you should handle error conditions, for example:

function queryFailed(error, source) {
source.output.innerHTML = "

An error has occurred: <p>" + error;
}

For more about error handling, see Error Handling with the AJAX Toolkit.

Use a callback function to handle the results of this asynchronous call. A callback function is a function that is passed by reference to the

AJAX Toolkit. The AJAX Toolkit calls the callback function under defined conditions, for example, upon completion. For more information

about callback function syntax, see API Calls and the AJAX Toolkit.

For example, the following code verifies that at least one result was returned, and iterates through the result set if it exists:

/**
* This method will be called when the toolkit receives a successful
* response from the server.
* @queryResult - result that server returned

7

Embedding API Calls in JavaScriptWorking with the AJAX Toolkit

* @source - state passed into the query method call.
*/

function layoutResults(queryResult, source) {

if (queryResult.size > 0) {
var output = "";

//get the records array
var records = queryResult.getArray('records');

//loop through the records and construct html string
for (var i = 0; i < records.length; i++) {

var account = records[i];
output += account.Id + " " + account.Name +
" [Industry - " + account.Industry + "]
";

}

//render the generated html string
source.output.innerHTML = output;
}

}

A suggested best practice is to use JavaScript onFailure as the callback function for failure conditions and JavaScript onSuccess
for processing results that are successfully returned.

For more information about embedding API calls in JavaScript with the AJAX Toolkit, especially the differences in syntax and availability

of asynchronous calls, see API Calls and the AJAX Toolkit.

Processing Results

You can process the results of a query that returns enough rows to require queryMore and queryLocator , much as you do

now, iterating across the results:

var result = sforce.connection.query("select name, id from account");
var queryMore = true;
while (queryMore) {

var records = result.getArray("records");
for (var i = 0; i < records.length; i++) {

//process records[i]
}
if (result.getBoolean("done")) {

queryMore = false;
} else {

result = sforce.connection.queryMore(result.queryLocator);
}

}

However, the AJAX Toolkit provides the QueryResultIterator object so that you can easily iterate through results without

invoking queryMore and queryLocator . If you are experienced with the API and JavaScript, see QueryResultIterator.

8

Processing ResultsWorking with the AJAX Toolkit

For other calls, you must handle the batching of up to 200 records at a time yourself. For example, the following sample shows how to

batch files for a create() call:

var accounts = [];

for (var i=0; i<10; i++) {
var account = new sforce.SObject("Account");
account.Name = "my new account " + i;
accounts.push(account);
}

var result = sforce.connection.create(accounts);

var sb = "";

for (var i=0; i<result.length; i++) {
if (result[i].getBoolean("success")) {
sb += "\n new account created with id " + result[i].id;
} else {
sb += "\n failed to create account " + result[i];
}

}

alert("Result : " + sb);

For more examples, see Synchronous Examples.

9

Processing ResultsWorking with the AJAX Toolkit

CHAPTER 3 API Calls and the AJAX Toolkit

Use the following sections to understand how API calls are used with the AJAX Toolkit. All calls described

in the SOAP API Developer's Guide, plus the runTests call documented in the Force.com Apex Code

Developer's Guide can be used with the AJAX Toolkit.

In this chapter ...

• Synchronous and

Asynchronous Calls

with the AJAX Toolkit

• API Call Syntax in the

AJAX Toolkit

• Object Functions

• Data Types in AJAX

Toolkit

• The source Context

Variable

• Debugging with the

AJAX Toolkit

• Using the Samples

• Synchronous

Examples

• Asynchronous

Examples

10

http://www.salesforce.com/apidoc
http://www.salesforce.com/us/developer/docs/apexcode/index.htm
http://www.salesforce.com/us/developer/docs/apexcode/index.htm

Synchronous and Asynchronous Calls with the AJAX Toolkit

The AJAX Toolkit supports both synchronous and asynchronous calls.

The AJAX Toolkit allows you to issue synchronous or asynchronous calls. Asynchronous calls allow the client side process to continue

while waiting for a call back from the server. To issue an asynchronous call, you must include an additional parameter with the API call,

referred to as a callback function. Once the result is ready, the server invokes the callback method with the result.

API Call Syntax in the AJAX Toolkit

SOAP API calls use slightly different syntax in AJAX Toolkit.

Synchronous syntax:

sforce.connection.method("arg1","arg2", ...);

For example:

sforce.connection.login("MyName@MyOrg.com","myPassword1");

Asynchronous syntax:

method("arg1","arg2", ..., callback_method);

For example:

var callback = {onSuccess: handleSuccess, onFailure: handleFailure};
function handleSuccess(result) {}
function handleFailure(error) {}
sforce.connection.query("Select name from Account", callback);

In this example, onSuccess is the callback function, which will return the results when they are ready.

See Core Calls in the SOAP API Developer's Guide for call usage, arguments, and best practices, but use the AJAX Toolkit syntax for methods

you embed in JavaScript.

Note: Because delete is a JavaScript keyword, use deleteIds instead of the API call delete .

Object Functions

AJAX Toolkit has several ways of accessing object information.

Property values can be accessed directly or by using a generic set or get method:

• A get function for each field in the object. For example, an Account object has a get("Name") function. This can be used

instead of object.Field (for example, account.Name).

• A set function for each field in the object. For example, an Account object has a set("Name) function. This can be used instead

of object.Field = value .

For example, you can get the value of the Name field from an Account using either of these methods:

• account.get("Name")
• account.Name
• account["Name"]

11

Synchronous and Asynchronous Calls with the AJAX ToolkitAPI Calls and the AJAX Toolkit

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_list.htm

You can set the value of the Name field from an Account using either of these methods:

• account.set("Name", "MyAccount");
• account.Name = "MyAccount";
• account["Name"]="MyAccount";
For information about processing results, see Processing Results.

Data Types in AJAX Toolkit

AJAX Toolkit provides ways of converting between different data types.

The AJAX Toolkit returns all data as strings. If needed, you can convert the data into an appropriate datatype by using one of the functions

supplied with the returned object:

• getDate maps dates to JavaScript Date.

• getDateTime maps dateTime values to JavaScript Date.

• getInt maps integer values to JavaScript Int.

• getFloat maps float values to JavaScript Float.

• getBoolean maps boolean values to JavaScript Boolean.

• getArray retrieves arrays of values.

• getBase64Binary returns the decoded value of a Base64 binary encoded string. This is typically used for working with

documents and attachments. See Working with Base64 Binary Encoded Strings for information about working with Base64 binary

encoded strings.

If you request a field whose value is null in a query, the returned value will be null. If you do not request a field, whether the value is null

or not, the value is not returned, and is therefore undefined.

The source Context Variable

The AJAX Toolkit provides a context variable, source , which allows you to pass in any context and get it back in the callback method.

For an example of how to use source in an error handling context, see Error Handling with the AJAX Toolkit.

Debugging with the AJAX Toolkit

The AJAX Toolkit provides a debugging window that pops up when certain errors are encountered.

You can invoke logging explicitly using the log method. For example, if you wanted to display the debugging window with the value

of a variable at a certain point in your client application, you could add this line at the appropriate place:

sforce.debug.log(myVar);

You can open the debugging window at any point by using this command:

sforce.debug.open();

Using the Samples

The next two sections contain examples of synchrononous and asynchronous calls.

12

Data Types in AJAX ToolkitAPI Calls and the AJAX Toolkit

The AJAX Toolkit provides a debugging window that pops up when certain errors are encountered.

You can invoke logging explicitly using the log() method. For example, if you wanted to display the debugging window with the

value of a variable at a certain point in your client application, you could add this line at the appropriate place:

sforce.debug.log(myVar);

The AJAX Toolkit samples in the following sections use log() . To use the samples in the following sections, add this simple version

of the log code before the first use of log :

function log(message) {
alert(message);

}

You can make log() as sophisticated as you wish.

Synchronous Examples

The following examples are synchronous calls. No callback methods are required.

Data Call Examples
login Example:

try{
var result = sforce.connection.login("myname@myemail.com", "password");
log("logged in with session id " + result.sessionId);

}catch(error) {
if (error.faultcode.indexOf("INVALID_LOGIN") != -1) {
log("check your username and passwd, invalid login");

} else {
log(error);

}
}

query Example:

result = sforce.connection.query("Select Name, Id from User");
records = result.getArray("records");

for (var i=0; i< records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}

queryMore Example:

var result = sforce.connection.query("select name, id from account");

var queryMore = true;
while (queryMore) {

var records = result.getArray("records");
var sb = new sforce.StringBuffer();

for (var i = 0; i < records.length; i++) {

13

Synchronous ExamplesAPI Calls and the AJAX Toolkit

sb.append(records[i].Name).append(",");
}

log(records.length);
log(sb.toString());

if (result.getBoolean("done")) {
queryMore = false;

} else {

result = sforce.connection.queryMore(result.queryLocator);
}

}

queryAll Example:

var result = sforce.connection.queryAll("Select Name, Id from Account");
var records = result.getArray("records");

for (var i=0; i<records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}

Relationship Query Example—Child to Parent:

var result = sforce.connection.query("SELECT c.Id, c.firstname, " +
"c.lastname, c.leadsource, a.Id, a.name, a.industry, c.accountId " +
"FROM Contact c, c.account a ORDER BY leadsource LIMIT 10");

var it = new sforce.QueryResultIterator(result);

while(it.hasNext()) {
var record = it.next();
var accountName = record.Account ? record.Account.Name : null;

log(record.FirstName + " " + record.LastName +
" in account " + accountName);

}

Note: Relationship name formats differ depending on the direction of the relationship (parent-to-child or child-to-parent), and

also depending on whether the objects are standard or custom objects. For more information, see Relationship Queries in the

SalesforceSOQL and SOSL Reference Guide at www.salesforce.com/us/developer/docs/soql_sosl/index.htm .

Relationship Query Example—Parent to Child:

var result = sforce.connection.query("select a.Name, a.Industry, " +
"(select c.LastName, c.LeadSource from a.Contacts c) " +
"from account a order by industry limit 100");

var ait = new sforce.QueryResultIterator(result);

while(ait.hasNext()) {
var account = ait.next();

14

Synchronous ExamplesAPI Calls and the AJAX Toolkit

http://www.salesforce.com/us/developer/docs/soql_sosl/index.htm

var contacts = [];
if (account.Contacts) {
var cit = new sforce.QueryResultIterator(account.Contacts);
while(cit.hasNext()) {
var contact = cit.next();
contacts.push(contact.LastName);

}
}

log(account.Name + ": " + contacts.join(","));
}

create Example:

var account = new sforce.SObject("Account");
account.Name = "my new account";
var result = sforce.connection.create([account]);

if (result[0].getBoolean("success")) {
log("new account created with id " + result[0].id);

} else {
log("failed to create account " + result[0]);

}

Batch create Example:

var accounts = [];

for (var i=0; i<10; i++) {
var account = new sforce.SObject("Account");
account.Name = "my new account " + i;
accounts.push(account);

}

var result = sforce.connection.create(accounts);

for (var i=0; i<result.length; i++) {
if (result[i].getBoolean("success")) {
log("new account created with id " + result[i].id);

} else {
log("failed to create account " + result[i]);

}
}

delete Example:

//create an example account
var account = new sforce.SObject("Account");
account.Name = "my new account";
var result = sforce.connection.create([account]);

if (result[0].getBoolean("success")) {
log("new account created with id " + result[0].id);
account.Id = result[0].id;

} else {
throw ("failed to create account " + result[0]);

15

Synchronous ExamplesAPI Calls and the AJAX Toolkit

}

//now delete the example account
var delResult = sforce.connection.deleteIds([account.Id]);
if (delResult[0].getBoolean("success")) {
log("account with id " + result[0].id + " deleted");

} else {
log("failed to delete account " + result[0]);

}

merge Example:

//create two accounts
var account1 = new sforce.SObject("Account");
account1.Name = "myName";
account1.Phone = "2837484894";

var account2 = new sforce.SObject("Account");
account2.Name = "anotherName";
account2.Phone = "938475950";

var result = sforce.connection.create([account1, account2]);
if (result.length != 2) throw "create failed";

account1.id = result[0].id;
account2.id = result[1].id;

//create merge request
var request = new sforce.MergeRequest();
request.masterRecord = account1;
request.recordToMergeIds = account2.id;

//call merge
result = sforce.connection.merge([request]);

if (result[0].getBoolean("success")) {
log("merge success " + result[0]);

} else {
log("merge failed " + result[0]);

}

process Example:

var request = new sforce.ProcessSubmitRequest();
request.objectId = "id of object that has a workflow rule on it"; // valid id
request.comments = "automated approval";

var request2 = new sforce.ProcessSubmitRequest();
request2.objectId = 'id of object that does NOT have a workflow rule on it' ; // valid id,
not useful for workflow
request2.comments = "approval that will fail";

var processRes = sforce.connection.process([request, request2]);

16

Synchronous ExamplesAPI Calls and the AJAX Toolkit

if(!processRes[0].getBoolean('success')){
log("The first process request failed and it should not have");

}

if(processRes[1].getBoolean('success')){
log("The second process request succeeded and it should not have");

}

log(processRes[0].errors);
log(processRes[1].errors);

update Example:

//create an account
var account = new sforce.SObject("Account");
account.Name = "myName";
account.Phone = "2837484894";
result = sforce.connection.create([account]);

//update that account
account.id = result[0].id;
account.Phone = "12398238";
result = sforce.connection.update([account]);

if (result[0].getBoolean("success")) {
log("account with id " + result[0].id + " updated");

} else {
log("failed to update account " + result[0]);

}

undelete Example:

var account = new sforce.SObject("Account");
account.Name = "account to delete";
account.Phone = "2837484894";
result = sforce.connection.create([account]);
account.id = result[0].id;
log("account created " + account);

result = sforce.connection.deleteIds([account.id]);
if (!result[0].getBoolean("success")) throw "delete failed";
log("account deleted " + result);

result = sforce.connection.undelete([account.id]);
if (!result[0].getBoolean("success")) throw "undelete failed";
log("account undeleted " + result[0]);

upsert Example:

var account = new sforce.SObject("Account");
account.Name = "TestingAjaxUpsert";
account.Phone = "2837484894";
// this will insert an account
var result = sforce.connection.upsert("Id", [account]);

account.Id = result[0].id;

17

Synchronous ExamplesAPI Calls and the AJAX Toolkit

account.Name = "TestingAjaxUpsert2";
// this will update the account
result = sforce.connection.upsert("Id", [account]);

if(result[0].getBoolean("success") && result[0].id == account.Id) {
log("upsert updated the account as expected");
}
else {
log("upsert failed!");
}

retrieve Example:

var account = new sforce.SObject("Account");
account.Name = "retrieve update test";
account.Phone = "2837484894";
var result = sforce.connection.create([account]);
if (result[0].getBoolean("success") == false) throw "create failed";
log("account created " + result[0]);

result = sforce.connection.retrieve("Name,Phone", "Account", [result[0].id]);
if (result[0] == null) throw "retrive failed";
log("account retrieved: " + result[0]);

result[0].Phone = "111111111111";
result = sforce.connection.update(result);
if (result[0].getBoolean("success") == false) throw "update failed";
log("account updated: " + result[0]);

search Example:

var result = sforce.connection.search(
"find {manoj} in Name fields RETURNING Account(name, id)");

if (result) {
var records = result.getArray("searchRecords");

for (var i=0; i<records.length; i++) {
var record = records[i].record;
log(record.Id + " -- " + record.Name);

}
}

getDeleted Example:

var start = new Date();
var end = new Date();
start.setDate(end.getDate() - 1);

var result = sforce.connection.getDeleted("Account", start, end);

var records = result.getArray("deletedRecords");

log("following records are deleted:");

for (var i=0; i<records.length; i++) {

18

Synchronous ExamplesAPI Calls and the AJAX Toolkit

log(records[i].id);
}

getUpdated Example:

var start = new Date();
var end = new Date();
start.setDate(end.getDate() - 1);

var result = sforce.connection.getUpdated("Account", start, end);

var records = result.getArray("ids");

log("following records are updated:");
for (var i=0; i<records.length; i++) {
log(records[i]);

}

convertLead Example:

var account = new sforce.SObject("Account");
account.Name = "convert lead sample";
account.Phone = "2837484894";
result = sforce.connection.create([account]);
account.Id = result[0].id;

var lead = new sforce.SObject("Lead");
lead.Country = "US";
lead.Description = "This is a description";
lead.Email = "someone@somewhere.com";
lead.FirstName = "first";
lead.LastName = "last";
lead.Company = account.Name;
result = sforce.connection.create([lead]);
lead.Id = result[0].id;

var convert = new sforce.LeadConvert();
convert.accountId = account.Id;
convert.leadId = lead.Id;
convert.convertedStatus = "Qualified";

result = sforce.connection.convertLead([convert]);
if (result[0].getBoolean("success")) {
log("lead converted " + result[0]);

} else {
log("lead convert failed " + result[0]);

}

Describe Examples
describeSObject Account Example:

var result = sforce.connection.describeSObject("Account");

log(result.label + " : " + result.name + " : ");

19

Synchronous ExamplesAPI Calls and the AJAX Toolkit

log("---------- fields ---------");
for (var i=0; i<result.fields.length; i++) {
var field = result.fields[i];
log(field.name + " : " + field.label + " : " + field.length + " : ");

}

log("---------- child relationships ---------");

for (var i=0; i<result.childRelationships.length; i++) {
var cr = result.childRelationships[i];
log(cr.field + " : " + cr.childSObject);

}

log("---------- record type info ----------");
for (var i=0; i<result.recordTypeInfos.length; i++) {
var rt = result.recordTypeInfos[i];
log(rt.name);

}

describeSObjects Example:

var result = sforce.connection.describeSObjects(["Account", "Contact"]);

for (var i=0; i<result.length; i++) {
log(result[i].label + " : " + result[i].name + " : ");

}

describeGlobal Example:

var result = sforce.connection.describeGlobal();

var sobjects = result.getArray("sobjects");
for (var i=0; i<sobjects.length; i++) {
log(sobjects[i].name);

}

describeLayout Example:

var result = sforce.connection.describeLayout("Account");

var layouts = result.getArray("layouts");

for (var i=0; i<layouts.length; i++) {
var layout = layouts[0];
detailLayoutSections(layout.detailLayoutSections);

}

function detailLayoutSections(sections) {
for (var i=0; i<sections.length; i++) {
var section = sections[i];
log(section.columns + ":" + section.heading + ":");
layoutRows(section.getArray("layoutRows"));

}
}

20

Synchronous ExamplesAPI Calls and the AJAX Toolkit

function layoutRows(rows) {
for (var i=0; i<rows.length; i++) {
var row = rows[i];
layoutItems(row.getArray("layoutItems"));

}
}

function layoutItems(items) {
for (var i=0; i<items.length; i++) {
var item = items[i];
log(" " + item.label);

}
}

describeTabs Example:

var result = sforce.connection.describeTabs();

for (var i=0; i<result.length; i++) {
var tabSet = result[i];
log(tabSet.label);
displayTabs(tabSet.get("tabs"));

}

function displayTabs(tabs) {
for(var i=0; i<tabs.length; i++) {
var tab = tabs[i];
log(" " + tab.label + " " + tab.url);

}
}

Utility Examples
getServerTimestamp Example:

var result = sforce.connection.getServerTimestamp();
log(result.timestamp);

getUserInfo Example:

var user = sforce.connection.getUserInfo();
log("Hello " + user.userName);
log("Your email id is " + user.userEmail);
log("and you work for " + user.organizationName);

resetPassword and setPassword Example:

var username = "myname@myemail.com";

var result = sforce.connection.query(
"SELECT ID from User WHERE User.username='" + username + "'");

var records = result.getArray("records");
if (records.length != 1) throw "unable to find user";
var id = records[0].Id;

21

Synchronous ExamplesAPI Calls and the AJAX Toolkit

sforce.connection.resetPassword(id);
sforce.connection.setPassword(id, "123456");

sendEmail Example:

// single mail request
var singleRequest = new sforce.SingleEmailMessage();
singleRequest.replyTo = "jsmith@acme.com";
singleRequest.subject = "sent through ajax test driver";

singleRequest.plainTextBody = "this test went through ajax";
singleRequest.toAddresses = ["noone@nowhere.com"];

// mass mail request - need to get email template ID

var queryResponse = sforce.connection.query("select id from emailtemplate");
var templatedId = queryResponse.getArray("records")[0].Id;
var massRequest = new sforce.MassEmailMessage();
massRequest.targetObjectIds = [globalContact.id];
massRequest.replyTo = "jsmith@acme.com";
massRequest.subject = "sent through ajax test driver";
massRequest.templateId = templateId;

var sendMailRes = sforce.connection.sendEmail([singleRequest, massRequest]);

The following sample shows best practice techniques by putting all processing in a function that does not execute until the HTML page

is loaded.

<html>
<head>
<script src="/soap/ajax/32.0/connection.js"></script>
<script>
var contactId = "{!Contact_ID}";
function initPage() {

try{
var contact = sforce.connection.retrieve("AccountId", "Contact", [contactId])[0];

var accountsRetrieved = sforce.connection.retrieve("Id, Name, Industry,
LastModifiedDate", "Account", [contact.AccountId]);

if (accountsRetrieved.length > 0) {
var account = accountsRetrieved.records[0];
document.body.innerHTML += "Account name: <a href='/" + account.Id;
document.body.innerHTML += "' target='_blank'>" + account.Name + "
;
document.body.innerHTML += "Industry: " + account.Industry + "
";

}
} catch (e) {

document.body.innerHTML += "Error retrieving contact information";
document.body.innerHTML += "
Fault code: " + e.faultcode;
document.body.innerHTML += "
Fault string: " + e.faultstring;
}

}
</script>
</head>
<body onload="initPage();">

22

Synchronous ExamplesAPI Calls and the AJAX Toolkit

</body>
</html>

Asynchronous Examples

The following examples are asynchronous calls. These samples use callback methods to the API call.

query Example:

var result = sforce.connection.query("Select Name,Id from User", {
onSuccess : success,
onFailure : failure

});

function success(result) {
var records = result.getArray("records");

for (var i=0; i<records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}
}

function failure(error) {
log("An error has occurred " + error);

}

query Inline Function Example:

var result = sforce.connection.query("Select Name,Id from User", {
onSuccess : function(result) {

var records = result.getArray("records");

for (var i=0; i<records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}
},
onFailure : function(error) {
log("An error has occurred " + error);

}
});

query With LIMIT Example:

var result = sforce.connection.query("Select Name, Id from Account
order by Name limit 10", {

onSuccess : success, onFailure : failure});

function success(result) {
var it = new sforce.QueryResultIterator(result);
while(it.hasNext()){

23

Asynchronous ExamplesAPI Calls and the AJAX Toolkit

var record = it.next();
log(record.Name + " -- " + record.Id);

}
}

function failure(error) {
log("An error has occurred " + error);

}

queryResultIterator Example:

var result = sforce.connection.query("Select Name,Id from User", {
onSuccess : success, onFailure : failure});

function success(result) {
var it = new sforce.QueryResultIterator(result);
while(it.hasNext()){
var record = it.next();
log(record.Name + " -- " + record.Id);

}
}

function failure(error) {
log("An error has occurred " + error);

}

queryMore Example:

sforce.connection.query("Select Name,Id from Account", {
onSuccess : success, onFailure : log });

function success(result) {
var records = result.getArray("records");

var sb = new sforce.StringBuffer();
for (var i=0; i<records.length; i++) {
var record = records[i];
sb.append(record.Name).append(",");

}

log(records.length);
log(sb.toString());

if (result.queryLocator) {
sforce.connection.queryMore(result.queryLocator, {

onSuccess : success, onFailure : log});
}

}

create Example:

var account = new sforce.SObject("Account");
account.Name = "my new account";

sforce.connection.create([account],
{onSuccess : success, onFailure : failed});

24

Asynchronous ExamplesAPI Calls and the AJAX Toolkit

function success(result) {
if (result[0].getBoolean("success")) {
log("new account created with id " + result[0].id);

} else {
log("failed to create account " + result[0]);

}
}

function failed(error) {
log("An error has occurred " + error);

}

create Other Objects Example:

var campaign = new sforce.SObject("Campaign");
campaign.Name = "new campaign";
campaign.ActualCost = 12938.23;
campaign.EndDate = new Date();
campaign.IsActive = true;

sforce.connection.create([campaign],
{onSuccess : success, onFailure : log});

function success(result) {
if (result[0].getBoolean("success")) {
log("new campaign created with id " + result[0].id);

} else {
log("failed to create campaign " + result[0]);

}
}

retrieve Account Example:

var account = new sforce.SObject("Account");
account.Name = "retrieve update test";
account.Phone = "2837484894";
var result = sforce.connection.create([account]);
if (result[0].getBoolean("success") == false) throw "create failed";
log("account created " + result[0]);

var callback = {
onSuccess: function(result) {
if (result[0] == null) throw "retrive failed";
log("account retrieved: " + result[0]);

},
onFailure: function(error) {
log("failed due to " + error);

}
};

result = sforce.connection.retrieve("Name,Phone", "Account",
[result[0].id], callback);

25

Asynchronous ExamplesAPI Calls and the AJAX Toolkit

CHAPTER 4 Using SOAP Header Options with the AJAX

Toolkit

All header options in the API are supported in the toolkit, but they are specified differently than in the API. Use the following syntax for

specifying header options:

• For headers that have only one option such as CallOptions and QueryOptions:

sforce.connection.header_option_name="value";

• For headers that have more than one option such as AssignmentRuleHeader:

sforce.connection.header_name = {}
sforce.connection.header_name.header_option_name="value";

The following table lists each valid option and a description (and the corresponding SOAP header name in the API for your reference).

• From the AssignmentRuleHeader:

assignmentRuleId
ID of a specific assignment rule to run for the case or lead. Can be an inactive assignment rule. The ID can be retrieved by querying

the AssignmentRule object. If specified, do not specify useDefaultRule . This element is ignored for accounts, because all

territory assignment rules are applied. If the value is not in correct ID format (15-character or 18-character Salesforce ID), the call

fails and a MALFORMED_ID exception is returned.

useDefaultRule
If true for a Case or Lead, uses the default (active) assignment rule for a Case or Lead. If specified, do not specify an

assignmentRuleId . If true for an account, all territory assignment rules are applied, and if false, no territory assignment

rules are applied.

• From CallOptions:

client
A string that identifies a particular client.

defaultNamespace
A string that identifies a developer namespace prefix.

• From EmailHeader:

triggerAutoResponseEmail
Indicates whether to trigger auto-response rules (true) or not (false), for leads and cases. In the Salesforce user interface,

this email can be automatically triggered by a number of events, for example resetting a user password.

triggerOtherEmail
Indicates whether to trigger email outside the organization (true) or not (false). In the Salesforce user interface, this email

can be automatically triggered by creating, editing, or deleting a contact for a case.

triggerUserEmail
Indicates whether to trigger email that is sent to users in the organization (true) or not (false). In the Salesforce user

interface, this email can be automatically triggered by a number of events; resetting a password, creating a new user, adding

comments to a case, or creating or modifying a task.

• From LoginScopeHeader:

26

organizationId
The ID of the organization against which you will authenticate Self-Service users.

portalId
Specify only if user is a Customer Portal user. The ID of the portal for this organization. The ID is available in the Salesforce user

interface:

– From Setup, click Customize > Customer Portal > Settings

– Select a Customer Portal name, and on the Customer Portal detail page, the URL of the Customer Portal displays. The Portal

ID is in the URL.

• From MruHeader:

updateMru
Indicates whether to update the list of most recently used items (true) or not (false). For retrieve, if the result has only one

row, MRU is updated to the ID of the retrieve result. For query, if the result has only one row and the ID field is selected, the MRU

is updated to the ID of the query result.

• From QueryOptions:

batchSize
Batch size for the number of records returned in a query or queryMore call. Child objects count toward the number of records

for the batch size. For example, in relationship queries, multiple child objects may be returned per parent row returned. The

default is 500; the minimum is 200, and the maximum is 2,000.

• From SessionHeader:

sessionId
Session ID returned by the login call to be used for subsequent call authentication. Since session management is done for you

by the AJAX Toolkit, most scripts won't need to use this header option.

• From UserTerritoryDeleteHeader:

transferToUserId
The ID of the user to whom open opportunities in that user's territory will be assigned when an opportunity's owner (user) is

removed from a territory.

For more information about SOAP headers in the API, see the SOAP API Developer's Guide.

27

Using SOAP Header Options with the AJAX Toolkit

https://www.salesforce.com/apidoc

CHAPTER 5 Error Handling with the AJAX Toolkit

The AJAX Toolkit provides the ability to handle errors for synchronous and asynchronous calls:

Error Handling for Synchronous Calls

If the API call fails, then the AJAX Toolkit throws an exception. The exception contains all the available error information. For example:

<html>
<head>

<script src="/soap/ajax/32.0/connection.js" type="text/javascript"></script>

<script>

function setupPage() {
var output = document.getElementById("output");
var startTime = new Date().getTime()

try {
var queryResult = sforce.connection.query("Select Id, Name, Industry From

Account order by Industry limit 30");
layoutResults(queryResult, output, startTime);

} catch(error) {
queryFailed(error, output);

}
}

function queryFailed(error, out) {
out.innerHTML = "An error has occurred: <p>" + error;

}

function layoutResults(queryResult, out, startTime) {
var timeTaken = new Date().getTime() - startTime;

if (queryResult.size > 0) {
var output = "";
var records = queryResult.getArray('records');

for (var i = 0; i < records.length; i++) {
var account = records[i];
output += account.Id + " " + account.Name + " [Industry - "

+ account.Industry + "]
";
}

out.innerHTML = output + "
 query complexted in: " + timeTaken + " ms.";

} else {
out.innerHTML = "No records matched.";

28

}
}

</script>
</head>

<body onload="setupPage()">
<div id="output"></div>
</body>
</html>

Error Handling for Asynchronous Calls

For asynchronous calls, the onFailure property of the asynchronous object is called. For example:

connection.query("Select Name From Account",
{onSuccess: displayResult,

onFailure: queryFailed});

function displayResult(result){}
function queryFailed(error){}

If the onFailure property was not defined, the AJAX Toolkit pops up a new read-only browser window showing the error.

29

Error Handling with the AJAX Toolkit

CHAPTER 6 Advanced Topics

This chapter contains information about advanced activities in the AJAX Toolkit.In this chapter ...

• QueryResultIterator

• Differences in

Escaping Reserved

Characters

• Working with Base64

Binary Encoded

Strings

• Using the Timeout

Parameter with

Asynchronous Calls

• AJAX Proxy

30

QueryResultIterator

The AJAX Toolkit provides the QueryResultIterator object so that you can easily iterate through results without invoking queryMore
and queryLocator .

You can use the QueryResultIterator object and functions to iterate over query results returned by the AJAX Toolkit:

var result = sforce.connection.query("select id, name from account");
var it = new sforce.QueryResultIterator(result);

while (it.hasNext()) {
var account = it.next();
sforce.debug.log(account.Name);

}

1. The sforce.connection.query method returns a QueryResult object.

2. A QueryResultIterator object is created and passed the QueryResult object.

3. The code iterates through the records.

Differences in Escaping Reserved Characters

The AJAX Toolkit has special escaping rules for some reserved characters.

If you have a single quote or backslash in a string literal, you must use two backslashes instead of one to escape it. For example, the

following statement in a Java client program is valid for finding account names like Bob's B-B-Q:

SELECT ID from ACCOUNT WHERE Name LIKE 'Bob\'s B-B-Q%'

But if you are using the AJAX Toolkit, you need to escape the single quote literal character twice:

SELECT ID from ACCOUNT WHERE Name LIKE 'Bob\\'s B-B-Q%'

Working with Base64 Binary Encoded Strings

When working with Base64 encoded binary documents, you should access the document directly using the Id, rather than decoding

Base64 in JavaScript.

Base64 encoding and decoding is very slow in JavaScript. Also, encoding and decoding does not work correctly for binary or multibyte

strings. We do not recommend that you manipulate Base64 binary encoded strings with the AJAX Toolkit. However, if you want to read

a document with Base64 binary encoding, you can use the API to query for the Id of the document and then download it directly from

the server.

The following example demonstrates how to query for the document Id and then download it from the server:

<html>
<head>
<script type="text/javascript" src="/js/dojo/0.3.1/dojo.js"></script>
<script src="/soap/ajax/32.0/connection.js"></script>

<script>
function setup() {
var document_ta = document.getElementById("document-ta");

31

QueryResultIteratorAdvanced Topics

sforce.connection.query("select name, id from document limit 1",
{onSuccess : querySuccess,
onFailure : function(error, doc_ta) {

doc_ta.value = "Oops something went wrong: " + error;
},
source: document_ta});

}

function querySuccess(result, doc_ta) {
var records = result.getArray("records");

if (records.length == 1) {
dojo.io.bind({
url: "/servlet/servlet.FileDownload?file=" + records[0].Id,
load: loadDocument});

} else {
doc_ta.value = "no records found";

}
}

function loadDocument(type, data, event) {
var document_ta = document.getElementById("document-ta");
document_ta.value = data;

}

</script>
</head>

<body onload="setup()">
<textarea id="document-ta" cols="80" rows="20">
</textarea>
</body>
</html>

Note: This example uses the JavaScript toolkit Dojo. For more information, see http://dojotoolkit.org/ .

Using the Timeout Parameter with Asynchronous Calls

If necessary, you can specify a maximum timeout for an asynchronous call with AJAX Toolkit.

If an asynchronous call does not complete in an appropriate amount of time, you can end the call. To do this, specify the timeout
parameter in the callback section of any asynchronous call:

var account = new sforce.SObject("Account");
account.Name = "my new account";

sforce.connection.create([account], {onSuccess: print, onFailure: printerr, timeout: 100});
Values for this parameter are in milliseconds, and valid values are integers beginning with 1 .

If the call is successful within the time specified by the callout, no additional actions are taken. If the call is not successful, the onFailure
action is performed.

32

Using the Timeout Parameter with Asynchronous CallsAdvanced Topics

http://dojotoolkit.org/

Warning: Use this parameter with caution. Because the timeout is performed on the client side, it is possible that the call

may complete on the server but the timeout is still triggered. For example, you might issue a create call to create 100 new

accounts, and any number of them, 1 or 100, might be created just before the timeout is triggered; your onFailure action

would still occur, but the accounts would have been created.

AJAX Proxy

AJAX Toolkit provides an AJAX proxy for browsers with external services limitations.

Some browsers don't allow JavaScript code to connect to external servers directly. Therefore, you may need to send requests through

the AJAX proxy.

Note: To use the AJAX proxy, you must register all external services in the Salesforce user interface, from Setup, in Security

Controls > Remote Site Settings.

For security reasons, Salesforce restricts the outbound ports you may specify to one of the following:

• 80: This port only accepts HTTP connections.

• 443: This port only accepts HTTPS connections.

• 1024–66535 (inclusive): These ports accept HTTP or HTTPS connections.

The AJAX proxy is part of the AJAX Toolkit. Access it using remoteFunction defined in connection.js . You can specify any

HTTP method in remoteFucntion , for example HTTP GET or POST, and it will be forwarded to the external service.

The following examples illustrate typical approaches for GET and POST:

GET Example:

sforce.connection.remoteFunction({
url : "http://www.myExternalServer.com",
onSuccess : function(response) {

alert("result" + response);
}

});

POST Example:

var envelope = ""; //request envelope, empty for this example
sforce.connection.remoteFunction({

url : "http://services.xmethods.net:80/soap",
requestHeaders: {"Content-Type":"text/xml",

"SOAPAction": "\"\""
},

requestData: envelope,
method: "POST",
onSuccess : function(response) {

sforce.debug.log(response);
},

onFailure : function(response) {
alert("Failed" + response)

}
});

33

AJAX ProxyAdvanced Topics

remoteFunction Syntax and Parameters

AJAX proxy uses remoteFunction to proxy calls.

The remoteFunction syntax and parameters:

sforce.connection.remoteFunction({
url : endpoint_url,
onSuccess : callback_method
onFailure : error_callback
method : http_method
mimeType : "text/plain" | "text/xml"
async : true | false
requestHeaders : http_headers
requestData : http_post_data
cache : true | false
timeout : client_side_timeout_in_ms
});

Note: cache and timeout are available in version 10.0 and later.

Downloading the Salesforce Client Certificate
When using AJAX proxy, you might need to validate Salesforce using client certificates.

Your application (endpoint) server's SSL/TLS may be configured to require client certificates (two-way SSL/TLS), in order to validate the

identity of the Salesforce server when it takes the role of client to your server. If this is the case, you can download the Salesforce client

certificate from the Salesforce API page.

To download the certificate, use this procedure:

• From Setup, click Develop > API to display the WSDL download page.

• In the WSDL download page, right-click Generate Client Certificate and save it to an appropriate location on your local drive.

• Import the downloaded certificate into your application server, and configure your application server to request the client certificate.

The application server then checks that the certificate used in the SSL/TLS handshake matches the one you downloaded.

Note: Your application (endpoint) server must send any intermediate certificates in the certificate chain, and the certificate chain

must be in the correct order. The correct order is:

1. Server certificate.

2. Intermediate certificate that signed the server certificate if the server certificate was not signed directly by a root certificate.

3. Intermediate certificate that signed the certificate in step 2.

4. Any remaining intermediate certificates. Do not include the root certificate authority certificate. The root certificate is not sent

by your server. Salesforce already has its own list of trusted certificates on file, and a certificate in the chain must be signed by

one of those root certificate authority certificates.

34

remoteFunction Syntax and ParametersAdvanced Topics

GLOSSARY

A |B |C |D |E |F |G |H |I |J |K |L |M |N |O |P |Q |R |S |T |U |V |W |X |Y |Z

A

AJAX Toolkit

A JavaScript wrapper around the API that allows you to execute any API call and access any object you have permission to view from

within JavaScript code. For more information, see the AJAX Toolkit Developer's Guide.

Anonymous Block, Apex

Apex code that does not get stored in Salesforce, but that can be compiled and executed through the use of the

ExecuteAnonymousResult() API call, or the equivalent in the AJAX Toolkit.

Apex

Apex is a strongly typed, object-oriented programming language that allows developers to execute flow and transaction control

statements on the Force.com platform server in conjunction with calls to the Force.com API. Using syntax that looks like Java and

acts like database stored procedures, Apex enables developers to add business logic to most system events, including button clicks,

related record updates, and Visualforce pages. Apex code can be initiated by Web service requests and from triggers on objects.

Application Programming Interface (API)

The interface that a computer system, library, or application provides to allow other computer programs to request services from it

and exchange data.

B

Boolean Operators

You can use Boolean operators in report filters to specify the logical relationship between two values. For example, the AND operator

between two values yields search results that include both values. Likewise, the OR operator between two values yields search results

that include either value.

Bulk API

The REST-based Bulk API is optimized for processing large sets of data. It allows you to query, insert, update, upsert, or delete a large

number of records asynchronously by submitting a number of batches which are processed in the background by Salesforce. See

also SOAP API.

C

Callout, Apex

An Apex callout enables you to tightly integrate your Apex with an external service by making a call to an external Web service or

sending a HTTP request from Apex code and then receiving the response.

Child Relationship

A relationship that has been defined on an sObject that references another sObject as the “one” side of a one-to-many relationship.

For example, contacts, opportunities, and tasks have child relationships with accounts.

See also sObject.

35

http://www.salesforce.com/us/developer/docs/ajax/index.htm

Class, Apex

A template or blueprint from which Apex objects are created. Classes consist of other classes, user-defined methods, variables,

exception types, and static initialization code. In most cases, Apex classes are modeled on their counterparts in Java.

Component, Visualforce

Something that can be added to a Visualforce page with a set of tags, for example, <apex:detail> . Visualforce includes a

number of standard components, or you can create your own custom components.

Component Reference, Visualforce

A description of the standard and custom Visualforce components that are available in your organization. You can access the

component library from the development footer of any Visualforce page or the Visualforce Developer's Guide.

Controller, Visualforce

An Apex class that provides a Visualforce page with the data and business logic it needs to run. Visualforce pages can use the standard

controllers that come by default with every standard or custom object, or they can use custom controllers.

Custom Field

A field that can be added in addition to the standard fields to customize Salesforce for your organization’s needs.

Custom Help

Custom text administrators create to provide users with on-screen information specific to a standard field, custom field, or custom

object.

Custom Links

Custom links are URLs defined by administrators to integrate your Salesforce data with external websites and back-office systems.

Formerly known as Web links.

Custom Object

Custom records that allow you to store information unique to your organization.

Custom S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created

s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can

still be edited.

Custom Web content for use in custom links. Custom s-controls can contain any type of content that you can display in a browser,

for example a Java applet, an Active-X control, an Excel file, or a custom HTML Web form.

D

Data Loader

A Force.com platform tool used to import and export data from your Salesforce organization.

Data Manipulation Language (DML)

An Apex method or operation that inserts, updates, or deletes records from the Force.com platform database.

Date Literal

A keyword in a SOQL or SOSL query that represents a relative range of time such as last month or next year .

Delegated Authentication

A security process where an external authority is used to authenticate Force.com platform users.

Developer Edition

A free, fully-functional Salesforce organization designed for developers to extend, integrate, and develop with the Force.com platform.

Developer Edition accounts are available on developer.salesforce.com.

36

Glossary

http://www.salesforce.com/us/developer/docs/pages/index.htm
http://developer.salesforce.com

Salesforce Developers

The Salesforce Developers website at developer.salesforce.com provides a full range of resources for platform developers, including

sample code, toolkits, an online developer community, and the ability to obtain limited Force.com platform environments.

Document Library

A place to store documents without attaching them to accounts, contacts, opportunities, or other records.

E

Email Alert

Email alerts are workflow and approval actions that are generated using an email template by a workflow rule or approval process

and sent to designated recipients, either Salesforce users or others.

Email Template

A form email that communicates a standard message, such as a welcome letter to new employees or an acknowledgement that a

customer service request has been received. Email templates can be personalized with merge fields, and can be written in text,

HTML, or custom format.

Enterprise Edition

A Salesforce edition designed for larger, more complex businesses.

Enterprise WSDL

A strongly-typed WSDL for customers who want to build an integration with their Salesforce organization only, or for partners who

are using tools like Tibco or webMethods to build integrations that require strong typecasting. The downside of the Enterprise WSDL

is that it only works with the schema of a single Salesforce organization because it is bound to all of the unique objects and fields

that exist in that organization's data model.

Entity Relationship Diagram (ERD)

A data modeling tool that helps you organize your data into entities (or objects, as they are called in the Force.com platform) and

define the relationships between them. ERD diagrams for key Salesforce objects are published in the SOAP API Developer's Guide.

F

Field

A part of an object that holds a specific piece of information, such as a text or currency value.

Field-Level Security

Settings that determine whether fields are hidden, visible, read only, or editable for users. Available in Enterprise, Unlimited,

Performance, and Developer Editions only.

Force.com

The salesforce.com platform for building applications in the cloud. Force.com combines a powerful user interface, operating system,

and database to allow you to customize and deploy applications in the cloud for your entire enterprise.

Foreign Key

A field whose value is the same as the primary key of another table. You can think of a foreign key as a copy of a primary key from

another table. A relationship is made between two tables by matching the values of the foreign key in one table with the values of

the primary key in another.

Formula Field

A type of custom field. Formula fields automatically calculate their values based on the values of merge fields, expressions, or other

values.

37

Glossary

http://developer.salesforce.com
http://www.salesforce.com/us/developer/docs/api/index.htm

Function

Built-in formulas that you can customize with input parameters. For example, the DATE function creates a date field type from a

given year, month, and day.

G

Gregorian Year

A calendar based on a 12-month structure used throughout much of the world.

Group Edition

A product designed for small businesses and workgroups with a limited number of users.

H

HTTP Debugger

An application that can be used to identify and inspect SOAP requests that are sent from the AJAX Toolkit. They behave as proxy

servers running on your local machine and allow you to inspect and author individual requests.

I

ID

See Salesforce Record ID.

Inline S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created

s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can

still be edited.

An s-control that displays within a record detail page or dashboard, rather than on its own page.

Instance

The cluster of software and hardware represented as a single logical server that hosts an organization's data and runs their applications.

The Force.com platform runs on multiple instances, but data for any single organization is always consolidated on a single instance.

Integration User

A Salesforce user defined solely for client apps or integrations. Also referred to as the logged-in user in a SOAP API context.

ISO Code

The International Organization for Standardization country code, which represents each country by two letters.

J

Junction Object

A custom object with two master-detail relationships. Using a custom junction object, you can model a “many-to-many” relationship

between two objects. For example, you may have a custom object called “Bug” that relates to the standard case object such that a

bug could be related to multiple cases and a case could also be related to multiple bugs.

38

Glossary

K

No Glossary items for this entry.

L

License Management Application (LMA)

A free AppExchange app that allows you to track sales leads and accounts for every user who downloads your managed package

(app) from the AppExchange.

License Management Organization (LMO)

The Salesforce organization that you use to track all the Salesforce users who install your package. A license management organization

must have the License Management Application (LMA) installed. It automatically receives notification every time your package is

installed or uninstalled so that you can easily notify users of upgrades. You can specify any Enterprise, Unlimited, Performance, or

Developer Edition organization as your license management organization. For more information, go to

http://www.salesforce.com/docs/en/lma/index.htm.

Logged-in User

In a SOAP API context, the username used to log into Salesforce. Client applications run with the permissions and sharing of the

logged-in user. Also referred to as an integration user.

M

Manual Sharing

Record-level access rules that allow record owners to give read and edit permissions to other users who might not have access to

the record any other way.

Many-to-Many Relationship

A relationship where each side of the relationship can have many children on the other side. Many-to-many relationships are

implemented through the use of junction objects.

Master-Detail Relationship

A relationship between two different types of records that associates the records with each other. For example, accounts have a

master-detail relationship with opportunities. This type of relationship affects record deletion, security, and makes the lookup

relationship field required on the page layout.

Metadata

Information about the structure, appearance, and functionality of an organization and any of its parts. Force.com uses XML to describe

metadata.

Metadata WSDL

A WSDL for users who want to use the Force.com Metadata API calls.

Multitenancy

An application model where all users and apps share a single, common infrastructure and code base.

39

Glossary

http://www.salesforce.com/docs/en/lma/index.htm

N

Namespace

In a packaging context, a one- to 15-character alphanumeric identifier that distinguishes your package and its contents from packages

of other developers onAppExchange, similar to a domain name. Salesforce automatically prepends your namespace prefix, followed

by two underscores (“__”), to all unique component names in your Salesforce organization.

O

Object

An object allows you to store information in your Salesforce organization. The object is the overall definition of the type of information

you are storing. For example, the case object allow you to store information regarding customer inquiries. For each object, your

organization will have multiple records that store the information about specific instances of that type of data. For example, you

might have a case record to store the information about Joe Smith's training inquiry and another case record to store the information

about Mary Johnson's configuration issue.

Object-Level Help

Custom help text that you can provide for any custom object. It displays on custom object record home (overview), detail, and edit

pages, as well as list views and related lists.

Object-Level Security

Settings that allow an administrator to hide whole objects from users so that they don't know that type of data exists. Object-level

security is specified with object permissions.

One-to-Many Relationship

A relationship in which a single object is related to many other objects. For example, an account may have one or more related

contacts.

Organization-Wide Defaults

Settings that allow you to specify the baseline level of data access that a user has in your organization. For example, you can set

organization-wide defaults so that any user can see any record of a particular object that is enabled via their object permissions, but

they need extra permissions to edit one.

Outbound Call

Any call that originates from a user to a number outside of a call center in Salesforce CRM Call Center.

Outbound Message

An outbound message is a workflow, approval, or milestone action that sends the information you specify to an endpoint you

designate, such as an external service. An outbound message sends the data in the specified fields in the form of a SOAP message

to the endpoint. Outbound messaging is configured in the Salesforce setup menu. Then you must configure the external endpoint.

You can create a listener for the messages using the SOAP API.

Overlay

An overlay displays additional information when you hover your mouse over certain user interface elements. Depending on the

overlay, it will close when you move your mouse away, click outside of the overlay, or click a close button.

Owner

Individual user to which a record (for example, a contact or case) is assigned.

40

Glossary

P

Parent Account

An organization or company that an account is affiliated. By specifying a parent for an account, you can get a global view of all

parent/subsidiary relationships using the View Hierarchy link.

Partner WSDL

A loosely-typed WSDL for customers, partners, and ISVs who want to build an integration or an AppExchange app that can work

across multiple Salesforce organizations. With this WSDL, the developer is responsible for marshaling data in the correct object

representation, which typically involves editing the XML. However, the developer is also freed from being dependent on any particular

data model or Salesforce organization. Contrast this with the Enterprise WSDL, which is strongly typed.

Personal Edition

Product designed for individual sales representatives and single users.

Platform Edition

A Salesforce edition based on Enterprise, Unlimited, or Performance Edition that does not include any of the standard Salesforce

CRM apps, such as Sales or Service & Support.

Primary Key

A relational database concept. Each table in a relational database has a field in which the data value uniquely identifies the record.

This field is called the primary key. The relationship is made between two tables by matching the values of the foreign key in one

table with the values of the primary key in another.

Production Organization

A Salesforce organization that has live users accessing data.

Professional Edition

A Salesforce edition designed for businesses who need full-featured CRM functionality.

Q

Queue

A holding area for items before they are processed. Salesforce uses queues in a number of different features and technologies.

Query Locator

A parameter returned from the query() or queryMore() API call that specifies the index of the last result record that was

returned.

Query String Parameter

A name-value pair that's included in a URL, typically after a '?' character. For example:

http://na1.salesforce.com/001/e?name=value

R

Record

A single instance of a Salesforce object. For example, “John Jones” might be the name of a contact record.

Record Name

A standard field on all Salesforce objects. Whenever a record name is displayed in a Force.com application, the value is represented

as a link to a detail view of the record. A record name can be either free-form text or an autonumber field. Record Name does

not have to be a unique value.

41

Glossary

Record Type

A record type is a field available for certain records that can include some or all of the standard and custom picklist values for that

record. You can associate record types with profiles to make only the included picklist values available to users with that profile.

Record-Level Security

A method of controlling data in which you can allow a particular user to view and edit an object, but then restrict the records that

the user is allowed to see.

Recycle Bin

A page that lets you view and restore deleted information. Access the Recycle Bin by using the link in the sidebar.

Related Object

Objects chosen by an administrator to display in the Agent console's mini view when records of a particular type are shown in the

console's detail view. For example, when a case is in the detail view, an administrator can choose to display an associated account,

contact, or asset in the mini view.

Relationship

A connection between two objects, used to create related lists in page layouts and detail levels in reports. Matching values in a

specified field in both objects are used to link related data; for example, if one object stores data about companies and another

object stores data about people, a relationship allows you to find out which people work at the company.

Relationship Query

In a SOQL context, a query that traverses the relationships between objects to identify and return results. Parent-to-child and

child-to-parent syntax differs in SOQL queries.

Report Type

A report type defines the set of records and fields available to a report based on the relationships between a primary object and its

related objects. Reports display only records that meet the criteria defined in the report type. Salesforce provides a set of pre-defined

standard report types; administrators can create custom report types as well.

Role Hierarchy

A record-level security setting that defines different levels of users such that users at higher levels can view and edit information

owned by or shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

Roll-Up Summary Field

A field type that automatically provides aggregate values from child records in a master-detail relationship.

Running User

Each dashboard has a running user, whose security settings determine which data to display in a dashboard. If the running user is a

specific user, all dashboard viewers see data based on the security settings of that user—regardless of their own personal security

settings. For dynamic dashboards, you can set the running user to be the logged-in user, so that each user sees the dashboard

according to his or her own access level.

S

SaaS

See Software as a Service (SaaS).

Salesforce SOA (Service-Oriented Architecture)

A powerful capability of Force.com that allows you to make calls to external Web services from within Apex.

Sandbox Organization

A nearly identical copy of a Salesforce production organization. You can create multiple sandboxes in separate environments for a

variety of purposes, such as testing and training, without compromising the data and applications in your production environment.

42

Glossary

Session ID

An authentication token that is returned when a user successfully logs in to Salesforce. The Session ID prevents a user from having

to log in again every time he or she wants to perform another action in Salesforce. Different from a record ID or Salesforce ID, which

are terms for the unique ID of a Salesforce record.

Session Timeout

The period of time after login before a user is automatically logged out. Sessions expire automatically after a predetermined length

of inactivity, which can be configured in Salesforce from Setup by clicking Security Controls. The default is 120 minutes (two hours).

The inactivity timer is reset to zero if a user takes an action in the Web interface or makes an API call.

Setup

A menu where administrators can customize and define organization settings and Force.com apps. Depending on your organization’s

user interface settings, Setup may be a link in the user interface header or in the drop-down list under your name.

Sharing

Allowing other users to view or edit information you own. There are different ways to share data:

• Sharing Model—defines the default organization-wide access levels that users have to each other’s information and whether

to use the hierarchies when determining access to data.

• Role Hierarchy—defines different levels of users such that users at higher levels can view and edit information owned by or

shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

• Sharing Rules—allow an administrator to specify that all information created by users within a given group or role is automatically

shared to the members of another group or role.

• Manual Sharing—allows individual users to share records with other users or groups.

• Apex-Managed Sharing—enables developers to programmatically manipulate sharing to support their application’s behavior.

See Apex-Managed Sharing.

Sharing Model

Behavior defined by your administrator that determines default access by users to different types of records.

Sharing Rule

Type of default sharing created by administrators. Allows users in a specified group or role to have access to all information created

by users within a given group or role.

Sites

Force.com Sites enables you to create public websites and applications that are directly integrated with your Salesforce

organization—without requiring users to log in with a username and password.

SOAP (Simple Object Access Protocol)

A protocol that defines a uniform way of passing XML-encoded data.

Software as a Service (SaaS)

A delivery model where a software application is hosted as a service and provided to customers via the Internet. The SaaS vendor

takes responsibility for the daily maintenance, operation, and support of the application and each customer's data. The service

alleviates the need for customers to install, configure, and maintain applications with their own hardware, software, and related IT

resources. Services can be delivered using the SaaS model to any market segment.

SOQL (Salesforce Object Query Language)

A query language that allows you to construct simple but powerful query strings and to specify the criteria that should be used to

select data from the Force.com database.

SOSL (Salesforce Object Search Language)

A query language that allows you to perform text-based searches using the Force.com API.

43

Glossary

Standard Object

A built-in object included with the Force.com platform. You can also build custom objects to store information that is unique to

your app.

Syndication Feeds

Give users the ability to subscribe to changes within Force.com sites and receive updates in external news readers.

System Log

Part of the Developer Console, a separate window console that can be used for debugging code snippets. Enter the code you want

to test at the bottom of the window and click Execute. The body of the System Log displays system resource information, such as

how long a line took to execute or how many database calls were made. If the code did not run to completion, the console also

displays debugging information.

T

Test Method

An Apex class method that verifies whether a particular piece of code is working properly. Test methods take no arguments, commit

no data to the database, and can be executed by the runTests() system method either through the command line or in an

Apex IDE, such as the Force.com IDE.

Translation Workbench

The Translation Workbench lets you specify languages you want to translate, assign translators to languages, create translations for

customizations you’ve made to your Salesforce organization, and override labels and translations from managed packages. Everything

from custom picklist values to custom fields can be translated so your global users can use all of Salesforce in their language.

Trigger

A piece of Apex that executes before or after records of a particular type are inserted, updated, or deleted from the database. Every

trigger runs with a set of context variables that provide access to the records that caused the trigger to fire, and all triggers run in

bulk mode—that is, they process several records at once, rather than just one record at a time.

Trigger Context Variable

Default variables that provide access to information about the trigger and the records that caused it to fire.

U

Unit Test

A unit is the smallest testable part of an application, usually a method. A unit test operates on that piece of code to make sure it

works correctly. See also Test Method.

Unlimited Edition

Unlimited Edition is salesforce.com's solution for maximizing CRM success and extending that success across the entire enterprise

through the Force.com platform.

V

Validation Rule

A rule that prevents a record from being saved if it does not meet the standards that are specified.

Visualforce

A simple, tag-based markup language that allows developers to easily define custom pages and components for apps built on the

platform. Each tag corresponds to a coarse or fine-grained component, such as a section of a page, a related list, or a field. The

44

Glossary

components can either be controlled by the same logic that is used in standard Salesforce pages, or developers can associate their

own logic with a controller written in Apex.

W

Web Service

A mechanism by which two applications can easily exchange data over the Internet, even if they run on different platforms, are

written in different languages, or are geographically remote from each other.

WebService Method

An Apex class method or variable that can be used by external systems, like a mash-up with a third-party application. Web service

methods must be defined in a global class.

Web Services API

A Web services application programming interface that provides access to your Salesforce organization's information. See also SOAP

API and Bulk API.

Workflow and Approval Actions

Workflow and approval actions, such as email alerts, tasks, field updates, and outbound messages, can be triggered by a workflow

rule or approval process.

Workflow Action

A workflow action, such as an email alert, field update, outbound message, or task, fires when the conditions of a workflow rule are

met.

Workflow Email Alert

A workflow action that sends an email when a workflow rule is triggered. Unlike workflow tasks, which can only be assigned to

application users, workflow alerts can be sent to any user or contact, as long as they have a valid email address.

Workflow Field Update

A workflow action that changes the value of a particular field on a record when a workflow rule is triggered.

Workflow Outbound Message

A workflow action that sends data to an external Web service, such as another cloud computing application. Outbound messages

are used primarily with composite apps.

Workflow Queue

A list of workflow actions that are scheduled to fire based on workflow rules that have one or more time-dependent workflow actions.

Workflow Rule

A workflow rule sets workflow actions into motion when its designated conditions are met. You can configure workflow actions to

execute immediately when a record meets the conditions in your workflow rule, or set time triggers that execute the workflow

actions on a specific day.

Workflow Task

A workflow action that assigns a task to an application user when a workflow rule is triggered.

Wrapper Class

A class that abstracts common functions such as logging in, managing sessions, and querying and batching records. A wrapper class

makes an integration more straightforward to develop and maintain, keeps program logic in one place, and affords easy reuse across

components. Examples of wrapper classes in Salesforce include theAJAX Toolkit, which is a JavaScript wrapper around the Salesforce

SOAP API, wrapper classes such as CCritical Section in the CTI Adapter for Salesforce CRM Call Center, or wrapper classes

created as part of a client integration application that accesses Salesforce using the SOAP API.

45

Glossary

WSDL (Web Services Description Language) File

An XML file that describes the format of messages you send and receive from a Web service. Your development environment's SOAP

client uses the Salesforce Enterprise WSDL or Partner WSDL to communicate with Salesforce using the SOAP API.

X

No Glossary items for this entry.

Y

No Glossary items for this entry.

Z

No Glossary items for this entry.

46

Glossary

INDEX

A
Advanced topics 30

AJAX proxy 33

API calls, see Calls 10

assignmentRuleID header option 26

Asynchronous calls

error handling 28

introduction 10

samples 23

using the timeout parameter 32

B
Base64 binary encoded strings 31

batchSize header option 26

C
callback function

and API calls 10

defined 1

in sample s-control 3

Calls

API with AJAX Toolkit 10

different syntax with AJAX Toolkit 11

Client certificate download 34

client header option 26

Connecting to AJAX Toolkit 6

connection.js 6

Context variable source 12

D
Data types

Base64 issues 12

converting 12

Debugging window 12

E
Embedding calls in JavaScript 6

Error handling 28

G
get method 11

Getting started 6

Getting started examples 6

H
Header options for SOAP messages 26

I
Introduction 1

L
log method 12

O
Object functions 11

onclick JavaScript button 6

organizationId header option 26

Other resources 2

Outbound port restrictions 33

P
Port restrictions 33

Processing results 8

Proxy for AJAX 33

Q
queryLocator, see QueryResultIterator 31

queryMore, see QueryResultIterator 31

QueryResultIterator 31

R
remoteFunction 34

requireScript 6

Reserved characters, differences in escaping 31

Resources for developers 2

Results processing 8

S
S-control sample 3

Samples

asynchronous calls 23

how to use 12

s-control 3

synchronous calls 13

sessionId header option 26

set method 11

SOAP headers 26

source context variable 12

Support policy 2

47

Synchronous calls

error handling 28

introduction 10

samples 13

T
timeout parameter with asynchronous calls 32

transferToUserId 26

triggerAutoResponseEmail header option 26

triggerOtherEmail header option 26

triggerUserEmail 26

Typographical conventions 2

U
updateMru header option 26

useDefaultRule header option 26

W
When to use the AJAX Toolkit 2

48

Index

	The AJAX Toolkit
	When to Use the AJAX Toolkit
	AJAX Toolkit Support Policy
	Other Resources
	AJAX Typographical Conventions
	Sample Visualforce Page Using the AJAX Toolkit

	Working with the AJAX Toolkit
	Connecting to the API
	Embedding API Calls in JavaScript
	Processing Results

	API Calls and the AJAX Toolkit
	Synchronous and Asynchronous Calls with the AJAX Toolkit
	API Call Syntax in the AJAX Toolkit
	Object Functions
	Data Types in AJAX Toolkit
	The source Context Variable
	Debugging with the AJAX Toolkit
	Using the Samples
	Synchronous Examples
	Asynchronous Examples

	Using SOAP Header Options with the AJAX Toolkit
	Error Handling with the AJAX Toolkit
	Advanced Topics
	QueryResultIterator
	Differences in Escaping Reserved Characters
	Working with Base64 Binary Encoded Strings
	Using the Timeout Parameter with Asynchronous Calls
	AJAX Proxy
	remoteFunction Syntax and Parameters
	Downloading the Salesforce Client Certificate

	Glossary
	Index

