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1 Introduction

This book covers techniques for the design and analysis of algorithms. The algorithmic
techniques covered include: divide and conquer, backtracking, dynamic programming, greedy
algorithms, and hill-climbing.

Any solvable problem generally has at least one algorithm of each of the following types:

1. the obvious way;
2. the methodical way;
3. the clever way; and
4. the miraculous way.

On the first and most basic level, the "obvious" solution might try to exhaustively search for
the answer. Intuitively, the obvious solution is the one that comes easily if you're familiar
with a programming language and the basic problem solving techniques.

The second level is the methodical level and is the heart of this book: after understanding
the material presented here you should be able to methodically turn most obvious algorithms
into better performing algorithms.

The third level, the clever level, requires more understanding of the elements involved in
the problem and their properties or even a reformulation of the algorithm (e.g., numerical
algorithms exploit mathematical properties that are not obvious). A clever algorithm may be
hard to understand by being non-obvious that it is correct, or it may be hard to understand
that it actually runs faster than what it would seem to require.

The fourth and final level of an algorithmic solution is the miraculous level: this is reserved
for the rare cases where a breakthrough results in a highly non-intuitive solution.

Naturally, all of these four levels are relative, and some clever algorithms are covered in this
book as well, in addition to the methodical techniques. Let's begin.

1.1 Prerequisites

To understand the material presented in this book you need to know a programming language
well enough to translate the pseudocode in this book into a working solution. You also need
to know the basics about the following data structures: arrays, stacks, queues, linked-lists,
trees, heaps (also called priority queues), disjoint sets, and graphs.

Additionally, you should know some basic algorithms like binary search, a sorting algorithm
(merge sort, heap sort, insertion sort, or others), and breadth-first or depth-first search.
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Introduction

If you are unfamiliar with any of these prerequisites you should review the material in the
Data Structures1 book first.

1.2 When is Efficiency Important?

Not every problem requires the most efficient solution available. For our purposes, the term
efficient is concerned with the time and/or space needed to perform the task. When either
time or space is abundant and cheap, it may not be worth it to pay a programmer to spend
a day or so working to make a program faster.

However, here are some cases where efficiency matters:

• When resources are limited, a change in algorithms could create great savings and
allow limited machines (like cell phones, embedded systems, and sensor networks) to be
stretched to the frontier of possibility.

• When the data is large a more efficient solution can mean the difference between a task
finishing in two days versus two weeks. Examples include physics, genetics, web searches,
massive online stores, and network traffic analysis.

• Real time applications: the term "real time applications" actually refers to computations
that give time guarantees, versus meaning "fast." However, the quality can be increased
further by choosing the appropriate algorithm.

• Computationally expensive jobs, like fluid dynamics, partial differential equations, VLSI
design, and cryptanalysis can sometimes only be considered when the solution is found
efficiently enough.

• When a subroutine is common and frequently used, time spent on a more efficient
implementation can result in benefits for every application that uses the subroutine.
Examples include sorting, searching, pseudorandom number generation, kernel operations
(not to be confused with the operating system kernel), database queries, and graphics.

In short, it's important to save time when you do not have any time to spare.

When is efficiency unimportant? Examples of these cases include prototypes that are used
only a few times, cases where the input is small, when simplicity and ease of maintenance is
more important, when the area concerned is not the bottle neck, or when there's another
process or area in the code that would benefit far more from efficient design and attention
to the algorithm(s).

1.3 Inventing an Algorithm

Because we assume you have some knowledge of a programming language, let's start with
how we translate an idea into an algorithm. Suppose you want to write a function that will
take a string as input and output the string in lowercase:

1 http://en.wikibooks.org/wiki/Computer%20Science%3AData%20Structures
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Inventing an Algorithm

// tolower -- translates all alphabetic, uppercase characters in str to lowercase

function tolower(string str): string

What first comes to your mind when you think about solving this problem? Perhaps these
two considerations crossed your mind:

1. Every character in str needs to be looked at
2. A routine for converting a single character to lower case is required

The first point is "obvious" because a character that needs to be converted might appear
anywhere in the string. The second point follows from the first because, once we consider
each character, we need to do something with it. There are many ways of writing the
tolower function for characters:

function tolower(character c): character

There are several ways to implement this function, including:

• look c up in a table -- a character indexed array of characters that holds the lowercase
version of each character.

• check if c is in the range 'A' ≤ c ≤ 'Z', and then add a numerical offset to it.

These techniques depend upon the character encoding. (As an issue of separation of concerns,
perhaps the table solution is stronger because it's clearer you only need to change one part
of the code.)

However such a subroutine is implemented, once we have it, the implementation of our
original problem comes immediately:

// tolower -- translates all alphabetic, uppercase characters in str to lowercase

function tolower(string str): string

let result := ""

for-each c in str:

result.append(tolower(c))

repeat

return result

end

This code sample is also available in Adaa

a http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23To_Lower

The loop is the result of our ability to translate "every character needs to be looked at"
into our native programming language. It became obvious that the tolower subroutine call
should be in the loop's body. The final step required to bring the high-level task into an
implementation was deciding how to build the resulting string. Here, we chose to start with
the empty string and append characters to the end of it.

5
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Now suppose you want to write a function for comparing two strings that tests if they are
equal, ignoring case:

// equal-ignore-case -- returns true if s and t are equal, ignoring case

function equal-ignore-case(string s, string t): boolean

These ideas might come to mind:

1. Every character in strings s and t will have to be looked at
2. A single loop iterating through both might accomplish this
3. But such a loop should be careful that the strings are of equal length first
4. If the strings aren't the same length, then they cannot be equal because the considera-

tion of ignoring case doesn't affect how long the string is
5. A tolower subroutine for characters can be used again, and only the lowercase versions

will be compared

These ideas come from familiarity both with strings and with the looping and conditional
constructs in your language. The function you thought of may have looked something like this:

// equal-ignore-case -- returns true if s or t are equal, ignoring case

function equal-ignore-case(string s[1..n], string t[1..m]): boolean

if n != m:

return false \if they aren't the same length, they aren't equal\

fi

for i := 1 to n:

if tolower(s[i]) != tolower(t[i]):

return false

fi

repeat

return true

end

This code sample is also available in Adaa

a http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Equal_Ignore_Case

Or, if you thought of the problem in terms of functional decomposition instead of iterations,
you might have thought of a function more like this:

// equal-ignore-case -- returns true if s or t are equal, ignoring case

function equal-ignore-case(string s, string t): boolean

return tolower(s).equals(tolower(t))

end

Alternatively, you may feel neither of these solutions is efficient enough, and you would
prefer an algorithm that only ever made one pass of s or t. The above two implementations
each require two-passes: the first version computes the lengths and then compares each
character, while the second version computes the lowercase versions of the string and then
compares the results to each other. (Note that for a pair of strings, it is also possible to
have the length precomputed to avoid the second pass, but that can have its own drawbacks
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at times.) You could imagine how similar routines can be written to test string equality
that not only ignore case, but also ignore accents.

Already you might be getting the spirit of the pseudocode in this book. The pseudocode
language is not meant to be a real programming language: it abstracts away details that
you would have to contend with in any language. For example, the language doesn't assume
generic types or dynamic versus static types: the idea is that it should be clear what is
intended and it should not be too hard to convert it to your native language. (However, in
doing so, you might have to make some design decisions that limit the implementation to
one particular type or form of data.)

There was nothing special about the techniques we used so far to solve these simple string
problems: such techniques are perhaps already in your toolbox, and you may have found
better or more elegant ways of expressing the solutions in your programming language of
choice. In this book, we explore general algorithmic techniques to expand your toolbox
even further. Taking a naive algorithm and making it more efficient might not come so
immediately, but after understanding the material in this book you should be able to
methodically apply different solutions, and, most importantly, you will be able to ask
yourself more questions about your programs. Asking questions can be just as important as
answering questions, because asking the right question can help you reformulate the problem
and think outside of the box.

1.4 Understanding an Algorithm

Computer programmers need an excellent ability to reason with multiple-layered abstractions.
For example, consider the following code:

function foo(integer a):

if (a / 2) * 2 == a:

print "The value " a " is even."

fi

end

To understand this example, you need to know that integer division uses truncation and
therefore when the if-condition is true then the least-significant bit in a is zero (which means
that a must be even). Additionally, the code uses a string printing API and is itself the
definition of a function to be used by different modules. Depending on the programming task,
you may think on the layer of hardware, on down to the level of processor branch-prediction
or the cache.

Often an understanding of binary is crucial, but many modern languages have abstractions
far enough away "from the hardware" that these lower-levels are not necessary. Somewhere
the abstraction stops: most programmers don't need to think about logic gates, nor is
the physics of electronics necessary. Nevertheless, an essential part of programming is
multiple-layer thinking.

But stepping away from computer programs toward algorithms requires another layer:
mathematics. A program may exploit properties of binary representations. An algorithm

7



Introduction

can exploit properties of set theory or other mathematical constructs. Just as binary itself is
not explicit in a program, the mathematical properties used in an algorithm are not explicit.

Typically, when an algorithm is introduced, a discussion (separate from the code) is needed
to explain the mathematics used by the algorithm. For example, to really understand a
greedy algorithm (such as Dijkstra's algorithm) you should understand the mathematical
properties that show how the greedy strategy is valid for all cases. In a way, you can think
of the mathematics as its own kind of subroutine that the algorithm invokes. But this
"subroutine" is not present in the code because there's nothing to call. As you read this
book try to think about mathematics as an implicit subroutine.

1.5 Overview of the Techniques

The techniques this book covers are highlighted in the following overview.

• Divide and Conquer: Many problems, particularly when the input is given in an array,
can be solved by cutting the problem into smaller pieces (divide), solving the smaller parts
recursively (conquer), and then combining the solutions into a single result. Examples
include the merge sort and quicksort algorithms.

• Randomization: Increasingly, randomization techniques are important for many ap-
plications. This chapter presents some classical algorithms that make use of random
numbers.

• Backtracking: Almost any problem can be cast in some form as a backtracking algorithm.
In backtracking, you consider all possible choices to solve a problem and recursively
solve subproblems under the assumption that the choice is taken. The set of recursive
calls generates a tree in which each set of choices in the tree is considered consecutively.
Consequently, if a solution exists, it will eventually be found.Backtracking is generally
an inefficient, brute-force technique, but there are optimizations that can be performed
to reduce both the depth of the tree and the number of branches. The technique is
called backtracking because after one leaf of the tree is visited, the algorithm will go back
up the call stack (undoing choices that didn't lead to success), and then proceed down
some other branch. To be solved with backtracking techniques, a problem needs to have
some form of "self-similarity," that is, smaller instances of the problem (after a choice has
been made) must resemble the original problem. Usually, problems can be generalized to
become self-similar.

• Dynamic Programming: Dynamic programming is an optimization technique for
backtracking algorithms. When subproblems need to be solved repeatedly (i.e., when
there are many duplicate branches in the backtracking algorithm) time can be saved by
solving all of the subproblems first (bottom-up, from smallest to largest) and storing
the solution to each subproblem in a table. Thus, each subproblem is only visited and
solved once instead of repeatedly. The "programming" in this technique's name comes
from programming in the sense of writing things down in a table; for example, television
programming is making a table of what shows will be broadcast when.

• Greedy Algorithms: A greedy algorithm can be useful when enough information is
known about possible choices that "the best" choice can be determined without considering
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all possible choices. Typically, greedy algorithms are not challenging to write, but they
are difficult to prove correct.

• Hill Climbing: The final technique we explore is hill climbing. The basic idea is to
start with a poor solution to a problem, and then repeatedly apply optimizations to that
solution until it becomes optimal or meets some other requirement. An important case of
hill climbing is network flow. Despite the name, network flow is useful for many problems
that describe relationships, so it's not just for computer networks. Many matching
problems can be solved using network flow.

1.6 Algorithm and code example

1.6.1 Level 1 (easiest)

1. Find maximum2 With algorithm and several different programming languages

2. Find minimum3 With algorithm and several different programming languages

3. Find average4 With algorithm and several different programming languages

4. Find mode5 With algorithm and several different programming languages

5. Find total6 With algorithm and several different programming languages

6. Counting7 With algorithm and several different programming languages

1.6.2 Level 2

1. Talking to computer Lv 18 With algorithm and several different programming languages

2. Sorting-bubble sort9 With algorithm and several different programming languages

3.

1.6.3 Level 3

1. Talking to computer Lv 210 With algorithm and several different programming languages

2 http://en.wikibooks.org/wiki/..%2FFind%20maximum

3 http://en.wikibooks.org/wiki/..%2FFind%20minimum

4 http://en.wikibooks.org/wiki/..%2FFind%20average

5 http://en.wikibooks.org/wiki/..%2FFind%20mode

6 http://en.wikibooks.org/wiki/..%2FFind%20total

7 http://en.wikibooks.org/wiki/..%2FCounting

8 http://en.wikibooks.org/wiki/..%2FTalking%20to%20computer%20Lv%201

9 http://en.wikibooks.org/wiki/..%2FSorting-bubble%20sort

10 http://en.wikibooks.org/wiki/..%2FTalking%20to%20computer%20Lv%202
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1.6.4 Level 4

1. Talking to computer Lv 311 With algorithm and several different programming languages

2. Find approximate maximum12 With algorithm and several different programming
languages

1.6.5 Level 5

1. Quicksort13

11 http://en.wikibooks.org/wiki/..%2FTalking%20to%20computer%20Lv%203

12 http://en.wikibooks.org/wiki/..%2FFind%20approximate%20maximum

13 http://en.wikibooks.org/wiki/Algorithm_Implementation%2FSorting%2FQuicksort
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2 Mathematical Background

Before we begin learning algorithmic techniques, we take a detour to give ourselves some
necessary mathematical tools. First, we cover mathematical definitions of terms that are used
later on in the book. By expanding your mathematical vocabulary you can be more precise
and you can state or formulate problems more simply. Following that, we cover techniques
for analysing the running time of an algorithm. After each major algorithm covered in this
book we give an analysis of its running time as well as a proof of its correctness

2.1 Asymptotic Notation

In addition to correctness another important characteristic of a useful algorithm is its time
and memory consumption. Time and memory are both valuable resources and there are
important differences (even when both are abundant) in how we can use them.

How can you measure resource consumption? One way is to create a function that describes
the usage in terms of some characteristic of the input. One commonly used characteristic of
an input dataset is its size. For example, suppose an algorithm takes an input as an array of
n integers. We can describe the time this algorithm takes as a function f written in terms
of n. For example, we might write:

f(n) = n2 +3n+14

where the value of f(n) is some unit of time (in this discussion the main focus will be
on time, but we could do the same for memory consumption). Rarely are the units of
time actually in seconds, because that would depend on the machine itself, the system it's
running, and its load. Instead, the units of time typically used are in terms of the number
of some fundamental operation performed. For example, some fundamental operations we
might care about are: the number of additions or multiplications needed; the number of
element comparisons; the number of memory-location swaps performed; or the raw number
of machine instructions executed. In general we might just refer to these fundamental
operations performed as steps taken.

Is this a good approach to determine an algorithm's resource consumption? Yes and no.
When two different algorithms are similar in time consumption a precise function might
help to determine which algorithm is faster under given conditions. But in many cases it
is either difficult or impossible to calculate an analytical description of the exact number
of operations needed, especially when the algorithm performs operations conditionally on
the values of its input. Instead, what really is important is not the precise time required to
complete the function, but rather the degree that resource consumption changes depending
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on its inputs. Concretely, consider these two functions, representing the computation time
required for each size of input dataset:

f(n) = n3 −12n2 +20n+110

g(n) = n3 +n2 +5n+5

They look quite different, but how do they behave? Let's look at a few plots of the function
(f(n) is in red, g(n) in blue):

Figure 1 Plot of f and g, in range 0 to
5

Figure 2 Plot of f and g, in range 0 to
15

Figure 3 Plot of f and g, in range 0 to
100

Figure 4 Plot of f and g, in range 0 to
1000

In the first, very-limited plot the curves appear somewhat different. In the second plot they
start going in sort of the same way, in the third there is only a very small difference, and at
last they are virtually identical. In fact, they approach n3, the dominant term. As n gets
larger, the other terms become much less significant in comparison to n3.

As you can see, modifying a polynomial-time algorithm's low-order coefficients doesn't help
much. What really matters is the highest-order coefficient. This is why we've adopted a
notation for this kind of analysis. We say that:

f(n) = n3 −12n2 +20n+110 = O(n3)

We ignore the low-order terms. We can say that:
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O(logn) ≤ O(
√

n) ≤ O(n) ≤ O(n logn) ≤ O(n2) ≤ O(n3) ≤ O(2n)

This gives us a way to more easily compare algorithms with each other. Running an insertion
sort on n elements takes steps on the order of O(n2). Merge sort sorts in O(n logn) steps.
Therefore, once the input dataset is large enough, merge sort is faster than insertion sort.

In general, we write

f(n) = O(g(n))

when

∃c > 0,∃n0 > 0,∀n ≥ n0 : 0 ≤ f(n) ≤ c ·g(n).

That is, f(n) = O(g(n)) holds if and only if there exists some constants c and n0 such that
for all n > n0 f(n) is positive and less than or equal to cg(n).

Note that the equal sign used in this notation describes a relationship between f(n) and
g(n) instead of reflecting a true equality. In light of this, some define Big-O in terms of a
set, stating that:

f(n) ∈ O(g(n))

when

f(n) ∈ {f(n) : ∃c > 0,∃n0 > 0,∀n ≥ n0 : 0 ≤ f(n) ≤ c ·g(n)}.

Big-O notation is only an upper bound; these two are both true:

n3 = O(n4)

n4 = O(n4)

If we use the equal sign as an equality we can get very strange results, such as:

n3 = n4

which is obviously nonsense. This is why the set-definition is handy. You can avoid these
things by thinking of the equal sign as a one-way equality, i.e.:

n3 = O(n4)

does not imply
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O(n4) = n3

Always keep the O on the right hand side.

2.1.1 Big Omega

Sometimes, we want more than an upper bound on the behavior of a certain function. Big
Omega provides a lower bound. In general, we say that

f(n) = Ω(g(n))

when

∃c > 0,∃n0 > 0,∀n ≥ n0 : 0 ≤ c ·g(n) ≤ f(n).

i.e. f(n) = Ω(g(n)) if and only if there exist constants c and n0 such that for all n>n0 f(n)
is positive and greater than or equal to cg(n).

So, for example, we can say that

n2 −2n = Ω(n2), (c=1/2, n0=4) or

n2 −2n = Ω(n), (c=1, n0=3),

but it is false to claim that

n2 −2n = Ω(n3).

2.1.2 Big Theta

When a given function is both O(g(n)) and Ω(g(n)), we say it is Θ(g(n)), and we have a
tight bound on the function. A function f(n) is Θ(g(n)) when

∃c1 > 0,∃c2 > 0,∃n0 > 0,∀n ≥ n0 : 0 ≤ c1 ·g(n) ≤ f(n) ≤ c2 ·g(n),

but most of the time, when we're trying to prove that a given f(n) = Θ(g(n)), instead of
using this definition, we just show that it is both O(g(n)) and Ω(g(n)).

2.1.3 Little-O and Omega

When the asymptotic bound is not tight, we can express this by saying that f(n) = o(g(n))
or f(n) = ω(g(n)). The definitions are:

f(n) is o(g(n)) iff ∀c > 0,∃n0 > 0,∀n ≥ n0 : 0 ≤ f(n) < c ·g(n) and

f(n) is ω(g(n)) iff ∀c > 0,∃n0 > 0,∀n ≥ n0 : 0 ≤ c ·g(n) < f(n).

14
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Note that a function f is in o(g(n)) when for any coefficient of g, g eventually gets larger
than f, while for O(g(n)), there only has to exist a single coefficient for which g eventually
gets at least as big as f.

[TODO: define what T(n,m) = O(f(n,m)) means. That is, when the running time of an
algorithm has two dependent variables. Ex, a graph with n nodes and m edges. It's important
to get the quantifiers correct!]

2.2 Algorithm Analysis: Solving Recurrence Equations

Merge sort of n elements: T (n) = 2∗T (n/2)+ c(n) This describes one iteration of the merge
sort: the problem space n is reduced to two halves (2 ∗ T (n/2)), and then merged back
together at the end of all the recursive calls (c(n)). This notation system is the bread and
butter of algorithm analysis, so get used to it.

There are some theorems you can use to estimate the big Oh time for a function if its
recurrence equation fits a certain pattern.

[TODO: write this section]

2.2.1 Substitution method

Formulate a guess about the big Oh time of your equation. Then use proof by induction to
prove the guess is correct.

[TODO: write this section]

2.2.2 Summations

[TODO: show the closed forms of commonly needed summations and prove them]

2.2.3 Draw the Tree and Table

This is really just a way of getting an intelligent guess. You still have to go back to the
substitution method in order to prove the big Oh time.

[TODO: write this section]

2.2.4 The Master Theorem

Consider a recurrence equation that fits the following formula:

T (n) = aT

(

n

b

)

+O(nk)
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for a ≥ 1, b > 1 and k ≥ 0. Here, a is the number of recursive calls made per call to the
function, n is the input size, b is how much smaller the input gets, and k is the polynomial
order of an operation that occurs each time the function is called (except for the base cases).
For example, in the merge sort algorithm covered later, we have

T (n) = 2T

(

n

2

)

+O(n)

because two subproblems are called for each non-base case iteration, and the size of the
array is divided in half each time. The O(n) at the end is the "conquer" part of this divide
and conquer algorithm: it takes linear time to merge the results from the two recursive calls
into the final result.

Thinking of the recursive calls of T as forming a tree, there are three possible cases to
determine where most of the algorithm is spending its time ("most" in this sense is concerned
with its asymptotic behaviour):

1. the tree can be top heavy, and most time is spent during the initial calls near the
root;

2. the tree can have a steady state, where time is spread evenly; or
3. the tree can be bottom heavy, and most time is spent in the calls near the leaves

Depending upon which of these three states the tree is in T will have different complexities:

The Master Theorem

Given T (n) = aT
(

n
b

)

+O(nk) for a ≥ 1, b > 1 and k ≥ 0:

• If a < bk, then T (n) = O(nk) (top heavy)
• If a = bk, then T (n) = O(nk · logn) (steady state)
• If a > bk, then T (n) = O(nlogb a) (bottom heavy)

For the merge sort example above, where

T (n) = 2T

(

n

2

)

+O(n)

we have

a = 2, b = 2,k = 1=⇒bk = 2

thus, a = bk and so this is also in the "steady state": By the master theorem, the complexity
of merge sort is thus

T (n) = O(n1 logn) = O(n logn)
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2.3 Amortized Analysis

[Start with an adjacency list representation of a graph and show two nested for loops: one
for each node n, and nested inside that one loop for each edge e. If there are n nodes and m
edges, this could lead you to say the loop takes O(nm) time. However, only once could the
innerloop take that long, and a tighter bound is O(n+m).]
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3 Divide and Conquer

The first major algorithmic technique we cover is divide and conquer. Part of the trick
of making a good divide and conquer algorithm is determining how a given problem could
be separated into two or more similar, but smaller, subproblems. More generally, when we
are creating a divide and conquer algorithm we will take the following steps:

Divide and Conquer Methodology

1. Given a problem, identify a small number of significantly smaller subproblems of
the same type

2. Solve each subproblem recursively (the smallest possible size of a subproblem is
a base-case)

3. Combine these solutions into a solution for the main problem

The first algorithm we'll present using this methodology is the merge sort.

3.1 Merge Sort

The problem that merge sort solves is general sorting: given an unordered array of elements
that have a total ordering, create an array that has the same elements sorted. More precisely,
for an array a with indexes 1 through n, if the condition

for all i, j such that 1 ≤ i < j ≤ n then a[i] ≤ a[j]

holds, then a is said to be sorted. Here is the interface:

// sort -- returns a sorted copy of array a

function sort(array a): array

Following the divide and conquer methodology, how can a be broken up into smaller
subproblems? Because a is an array of n elements, we might want to start by breaking the
array into two arrays of size n/2 elements. These smaller arrays will also be unsorted and it
is meaningful to sort these smaller problems; thus we can consider these smaller arrays
"similar". Ignoring the base case for a moment, this reduces the problem into a different
one: Given two sorted arrays, how can they be combined to form a single sorted array that
contains all the elements of both given arrays:
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// merge -- given a and b (assumed to be sorted) returns a merged array that

// preserves order

function merge(array a, array b): array

So far, following the methodology has led us to this point, but what about the base case?
The base case is the part of the algorithm concerned with what happens when the problem
cannot be broken into smaller subproblems. Here, the base case is when the array only has
one element. The following is a sorting algorithm that faithfully sorts arrays of only zero or
one elements:

// base-sort -- given an array of one element (or empty), return a copy of the

// array sorted

function base-sort(array a[1..n]): array

assert (n <= 1)

return a.copy()

end

Putting this together, here is what the methodology has told us to write so far:

// sort -- returns a sorted copy of array a

function sort(array a[1..n]): array

if n <= 1: return a.copy()

else:

let sub_size := n / 2

let first_half := sort(a[1,..,sub_size])

let second_half := sort(a[sub_size + 1,..,n])

return merge(first_half, second_half)

fi

end

And, other than the unimplemented merge subroutine, this sorting algorithm is done!
Before we cover how this algorithm works, here is how merge can be written:

// merge -- given a and b (assumed to be sorted) returns a merged array that

// preserves order

function merge(array a[1..n], array b[1..m]): array

let result := new array[n + m]

let i, j := 1

for k := 1 to n + m:

if i >= n: result[k] := b[j]; j += 1

else-if j >= m: result[k] := a[i]; i += 1

else:

if a[i] < b[j]:

result[k] := a[i]; i += 1

else:

result[k] := b[j]; j += 1

fi

fi

repeat

end
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[TODO: how it works; including correctness proof] This algorithm uses the fact that, given
two sorted arrays, the smallest element is always in one of two places. It's either at the head
of the first array, or the head of the second.

3.1.1 Analysis

Let T (n) be the number of steps the algorithm takes to run on input of size n.

Merging takes linear time and we recurse each time on two sub-problems of half the original
size, so

T (n) = 2 ·T
(

n

2

)

+O(n).

By the master theorem, we see that this recurrence has a "steady state" tree. Thus, the
runtime is:

T (n) = O(n · logn).

3.1.2 Iterative Version

This merge sort algorithm can be turned into an iterative algorithm by iteratively merging
each subsequent pair, then each group of four, et cetera. Due to a lack of function overhead,
iterative algorithms tend to be faster in practice. However, because the recursive version's
call tree is logarithmically deep, it does not require much run-time stack space: Even
sorting 4 gigs of items would only require 32 call entries on the stack, a very modest amount
considering if even each call required 256 bytes on the stack, it would only require 8 kilobytes.

The iterative version of mergesort is a minor modification to the recursive version - in
fact we can reuse the earlier merging function. The algorithm works by merging small,
sorted subsections of the original array to create larger subsections of the array which
are sorted. To accomplish this, we iterate through the array with successively larger "strides".

// sort -- returns a sorted copy of array a

function sort_iterative(array a[1..n]): array

let result := a.copy()

for power := 0 to log2(n-1)

let unit := 2ˆpower

for i := 1 to n by unit*2

let a1[1..unit] := result[i..i+unit-1]

let a2[1..unit] := result[i+unit..min(i+unit*2-1, n)]

result[i..i+unit*2-1] := merge(a1,a2)

repeat

repeat

return result

end

This works because each sublist of length 1 in the array is, by definition, sorted. Each
iteration through the array (using counting variable i) doubles the size of sorted sublists by
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merging adjacent sublists into sorted larger versions. The current size of sorted sublists in
the algorithm is represented by the unit variable.

3.2 Binary Search

Once an array is sorted, we can quickly locate items in the array by doing a binary search.
Binary search is different from other divide and conquer algorithms in that it is mostly divide
based (nothing needs to be conquered). The concept behind binary search will be useful
for understanding the partition and quicksort algorithms, presented in the randomization
chapter.

Finding an item in an already sorted array is similar to finding a name in a phonebook: you
can start by flipping the book open toward the middle. If the name you're looking for is
on that page, you stop. If you went too far, you can start the process again with the first
half of the book. If the name you're searching for appears later than the page, you start
from the second half of the book instead. You repeat this process, narrowing down your
search space by half each time, until you find what you were looking for (or, alternatively,
find where what you were looking for would have been if it were present).

The following algorithm states this procedure precisely:

// binary-search -- returns the index of value in the given array, or

// -1 if value cannot be found. Assumes array is sorted in ascending order

function binary-search(value, array A[1..n]): integer

return search-inner(value, A, 1, n + 1)

end

// search-inner -- search subparts of the array; end is one past the

// last element

function search-inner(value, array A, start, end): integer

if start == end:

return -1 // not found

fi

let length := end - start

if length == 1:

if value == A[start]:

return start

else:

return -1

fi

fi

let mid := start + (length / 2)

if value == A[mid]:

return mid

else-if value > A[mid]:

return search-inner(value, A, mid + 1, end)

else:

return search-inner(value, A, start, mid)

fi

end

Note that all recursive calls made are tail-calls, and thus the algorithm is iterative. We
can explicitly remove the tail-calls if our programming language does not do that for us
already by turning the argument values passed to the recursive call into assignments, and
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then looping to the top of the function body again:

// binary-search -- returns the index of value in the given array, or

// -1 if value cannot be found. Assumes array is sorted in ascending order

function binary-search(value, array A[1,..n]): integer

let start := 1

let end := n + 1

loop:

if start == end: return -1 fi // not found

let length := end - start

if length == 1:

if value == A[start]: return start

else: return -1 fi

fi

let mid := start + (length / 2)

if value == A[mid]:

return mid

else-if value > A[mid]:

start := mid + 1

else:

end := mid

fi

repeat

end

Even though we have an iterative algorithm, it's easier to reason about the recursive version.
If the number of steps the algorithm takes is T (n), then we have the following recurrence
that defines T (n):

T (n) = 1 ·T
(

n

2

)

+O(1).

The size of each recursive call made is on half of the input size (n), and there is a constant
amount of time spent outside of the recursion (i.e., computing length and mid will take the
same amount of time, regardless of how many elements are in the array). By the master
theorem, this recurrence has values a = 1, b = 2,k = 0, which is a "steady state" tree, and
thus we use the steady state case that tells us that

T (n) = Θ(nk · logn) = Θ(logn).

Thus, this algorithm takes logarithmic time. Typically, even when n is large, it is safe to let
the stack grow by logn activation records through recursive calls.

difficulty in initially correct binary search implementations

The article on wikipedia on Binary Search also mentions the difficulty in writing a correct
binary search algorithm: for instance, the java Arrays.binarySearch(..) overloaded function
implementation does an interative binary search which didn't work when large integers
overflowed a simple expression of mid calculation mid = ( end + start) / 2 i.e. end + start
> max_positive_integer . Hence the above algorithm is more correct in using a length =
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end - start, and adding half length to start. The java binary Search algorithm gave a return
value useful for finding the position of the nearest key greater than the search key, i.e. the
position where the search key could be inserted.

i.e. it returns - (keypos+1) , if the search key wasn't found exactly, but an insertion point
was needed for the search key ( insertion_point = -return_value - 1). Looking at boundary
values1, an insertion point could be at the front of the list ( ip = 0, return value = -1 ), to
the position just after the last element, ( ip = length(A), return value = - length(A) - 1) .

As an exercise, trying to implement this functionality on the above iterative binary search
can be useful for further comprehension.

3.3 Integer Multiplication

If you want to perform arithmetic with small integers, you can simply use the built-in
arithmetic hardware of your machine. However, if you wish to multiply integers larger than
those that will fit into the standard "word" integer size of your computer, you will have to
implement a multiplication algorithm in software or use a software implementation written
by someone else. For example, RSA encryption needs to work with integers of very large
size (that is, large relative to the 64-bit word size of many machines) and utilizes special
multiplication algorithms.2

3.3.1 Grade School Multiplication

How do we represent a large, multi-word integer? We can have a binary representation
by using an array (or an allocated block of memory) of words to represent the bits of the
large integer. Suppose now that we have two integers, X and Y , and we want to multiply
them together. For simplicity, let's assume that both X and Y have n bits each (if one is
shorter than the other, we can always pad on zeros at the beginning). The most basic way
to multiply the integers is to use the grade school multiplication algorithm. This is even

1 http://en.wikibooks.org/wiki/boundary%20values

2 A (mathematical) integer larger than the largest "int" directly supported by your computer's hardware
is often called a "BigInt". Working with such large numbers is often called "multiple precision arithmetic".
There are entire books on the various algorithms for dealing with such numbers, such as:

• Modern Computer Arithmetic ˆ{http://www.loria.fr/~zimmerma/mca/pub226.html} , Richard Brent
and Paul Zimmermann, Cambridge University Press, 2010.

• Donald E. Knuth, The Art of Computer Programming , Volume 2: Seminumerical Algorithms (3rd
edition), 1997.

People who implement such algorithms may
• write a one-off implementation for one particular application
• write a library that you can use for many applications, such as GMP, the GNU Multiple Pre-

cision Arithmetic Library ˆ{http://gmplib.org/} or McCutchen's Big Integer Library ˆ{https:

//mattmccutchen.net/bigint/} or various libraries http://www.leemon.com/crypto/BigInt.html

https://github.com/jasondavies/jsbn https://github.com/libtom/libtomcrypt http://www.gnu.

org/software/gnu-crypto/ http://www.cryptopp.com/ used to demonstrate RSA encryption
• put those algorithms in the compiler of a programming language that you can use (such as Python and

Lisp) that automatically switches from standard integers to BigInts when necessary
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Integer Multiplication

easier in binary, because we only multiply by 1 or 0:

x6 x5 x4 x3 x2 x1 x0

× y6 y5 y4 y3 y2 y1 y0

-----------------------

x6 x5 x4 x3 x2 x1 x0 (when y0 is 1; 0 otherwise)

x6 x5 x4 x3 x2 x1 x0 0 (when y1 is 1; 0 otherwise)

x6 x5 x4 x3 x2 x1 x0 0 0 (when y2 is 1; 0 otherwise)

x6 x5 x4 x3 x2 x1 x0 0 0 0 (when y3 is 1; 0 otherwise)

... et cetera

As an algorithm, here's what multiplication would look like:

// multiply -- return the product of two binary integers, both of length n

function multiply(bitarray x[1,..n], bitarray y[1,..n]): bitarray

bitarray p = 0

for i:=1 to n:

if y[i] == 1:

p := add(p, x)

fi

x := pad(x, 0) // add another zero to the end of x

repeat

return p

end

The subroutine add adds two binary integers and returns the result, and the subroutine
pad adds an extra digit to the end of the number (padding on a zero is the same thing as
shifting the number to the left; which is the same as multiplying it by two). Here, we loop n
times, and in the worst-case, we make n calls to add. The numbers given to add will at
most be of length 2n. Further, we can expect that the add subroutine can be done in linear
time. Thus, if n calls to a O(n) subroutine are made, then the algorithm takes O(n2) time.

3.3.2 Divide and Conquer Multiplication

As you may have figured, this isn't the end of the story. We've presented the "obvious"
algorithm for multiplication; so let's see if a divide and conquer strategy can give us something
better. One route we might want to try is breaking the integers up into two parts. For
example, the integer x could be divided into two parts, xh and xl, for the high-order and
low-order halves of x. For example, if x has n bits, we have

x = xh ·2n/2 +xl

We could do the same for y:

y = yh ·2n/2 +yl

But from this division into smaller parts, it's not clear how we can multiply these parts such
that we can combine the results for the solution to the main problem. First, let's write out
x×y would be in such a system:
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x×y = xh ×yh · (2n/2)2 +(xh ×yl +xl ×yh) · (2n/2)+xl ×yl

This comes from simply multiplying the new hi/lo representations of x and y together. The
multiplication of the smaller pieces are marked by the "×" symbol. Note that the multiplies
by 2n/2 and (2n/2)2 = 2n does not require a real multiplication: we can just pad on the right
number of zeros instead. This suggests the following divide and conquer algorithm:

// multiply -- return the product of two binary integers, both of length n

function multiply(bitarray x[1,..n], bitarray y[1,..n]): bitarray

if n == 1: return x[1] * y[1] fi // multiply single digits: O(1)

let xh := x[n/2 + 1, .., n] // array slicing, O(n)

let xl := x[0, .., n / 2] // array slicing, O(n)

let yh := y[n/2 + 1, .., n] // array slicing, O(n)

let yl := y[0, .., n / 2] // array slicing, O(n)

let a := multiply(xh, yh) // recursive call; T(n/2)

let b := multiply(xh, yl) // recursive call; T(n/2)

let c := multiply(xl, yh) // recursive call; T(n/2)

let d := multiply(xl, yl) // recursive call; T(n/2)

b := add(b, c) // regular addition; O(n)

a := shift(a, n) // pad on zeros; O(n)

b := shift(b, n/2) // pad on zeros; O(n)

return add(a, b, d) // regular addition; O(n)

end

We can use the master theorem to analyze the running time of this algorithm. Assuming
that the algorithm's running time is T (n), the comments show how much time each step
takes. Because there are four recursive calls, each with an input of size n/2, we have:

T (n) = 4T (n/2)+O(n)

Here, a = 4, b = 2,k = 1, and given that 4 > 21 we are in the "bottom heavy" case and thus
plugging in these values into the bottom heavy case of the master theorem gives us:

T (n) = O(nlog
2

4) = O(n2).

Thus, after all of that hard work, we're still no better off than the grade school algorithm!
Luckily, numbers and polynomials are a data set we know additional information about. In
fact, we can reduce the running time by doing some mathematical tricks.

First, let's replace the 2n/2 with a variable, z:

x×y = xh ∗yhz2 +(xh ∗yl +xl ∗yh)z +xl ∗yl

This appears to be a quadratic formula, and we know that you only need three co-efficients
or points on a graph in order to uniquely describe a quadratic formula. However, in our
above algorithm we've been using four multiplications total. Let's try recasting x and y as
linear functions:
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Px(z) = xh ·z +xl

Py(z) = yh ·z +yl

Now, for x×y we just need to compute (Px ·Py)(2n/2). We'll evaluate Px(z) and Py(z) at
three points. Three convenient points to evaluate the function will be at (Px ·Py)(1),(Px ·
Py)(0),(Px ·Py)(−1):

[TODO: show how to make the two-parts breaking more efficient; then mention that the
best multiplication uses the FFT, but don't actually cover that topic (which is saved for the
advanced book)]

3.4 Base Conversion

[TODO: Convert numbers from decimal to binary quickly using DnC.]

Along with the binary, the science of computers employs bases 8 and 16 for it's very easy
to convert between the three while using bases 8 and 16 shortens considerably number
representations.

To represent 8 first digits in the binary system we need 3 bits. Thus we have, 0=000, 1=001,
2=010, 3=011, 4=100, 5=101, 6=110, 7=111. Assume M=(2065)8. In order to obtain its
binary representation, replace each of the four digits with the corresponding triple of bits:
010 000 110 101. After removing the leading zeros, binary representation is immediate:
M=(10000110101)2. (For the hexadecimal system conversion is quite similar, except that
now one should use 4-bit representation of numbers below 16.) This fact follows from the
general conversion algorithm and the observation that 8=23 (and, of course, 16=24). Thus it
appears that the shortest way to convert numbers into the binary system is to first convert
them into either octal or hexadecimal representation. Now let see how to implement the
general algorithm programmatically.

For the sake of reference, representation of a number in a system with base (radix) N may
only consist of digits that are less than N.

More accurately, if

(1)M = akNk +ak−1Nk−1 + ...+a1N1 +a0

with 0 <= ai < N we have a representation of M in base N system and write

M = (akak−1...a0)N

If we rewrite (1) as

(2)M = a0 +N ∗ (a1 +N ∗ (a2 +N ∗ ...))
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the algorithm for obtaining coefficients ai becomes more obvious. For example, a0 =
M modulo n and a1 = (M/N) modulo n, and so on.

3.4.1 Recursive Implementation

Let's represent the algorithm mnemonically: (result is a string or character variable where I
shall accumulate the digits of the result one at a time)

result = ""

if M < N, result = 'M' + result. Stop.

S = M mod N, result = 'S' + result

M = M/N

goto 2

A few words of explanation.

"" is an empty string. You may remember it's a zero element for string concatenation. Here
we check whether the conversion procedure is over. It's over if M is less than N in which
case M is a digit (with some qualification for N>10) and no additional action is necessary.
Just prepend it in front of all other digits obtained previously. The '+' plus sign stands
for the string concatenation. If we got this far, M is not less than N. First we extract its
remainder of division by N, prepend this digit to the result as described previously, and
reassign M to be M/N. This says that the whole process should be repeated starting with
step 2. I would like to have a function say called Conversion that takes two arguments M
and N and returns representation of the number M in base N. The function might look like this

1 String Conversion(int M, int N) // return string, accept two

integers

2 {

3 if (M < N) // see if it's time to return

4 return new String(""+M); // ""+M makes a string out of a

digit

5 else // the time is not yet ripe

6 return Conversion(M/N, N) +

new String(""+(M mod N)); // continue

7 }

This is virtually a working Java function and it would look very much the same in C++
and require only a slight modification for C. As you see, at some point the function calls
itself with a different first argument. One may say that the function is defined in terms of
itself. Such functions are called recursive. (The best known recursive function is factorial:
n!=n*(n-1)!.) The function calls (applies) itself to its arguments, and then (naturally)
applies itself to its new arguments, and then ... and so on. We can be sure that the process
will eventually stop because the sequence of arguments (the first ones) is decreasing. Thus
sooner or later the first argument will be less than the second and the process will start
emerging from the recursion, still a step at a time.
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3.4.2 Iterative Implementation

Not all programming languages allow functions to call themselves recursively. Recursive
functions may also be undesirable if process interruption might be expected for whatever
reason. For example, in the Tower of Hanoi puzzle, the user may want to interrupt the
demonstration being eager to test his or her understanding of the solution. There are
complications due to the manner in which computers execute programs when one wishes to
jump out of several levels of recursive calls.

Note however that the string produced by the conversion algorithm is obtained in the wrong
order: all digits are computed first and then written into the string the last digit first.
Recursive implementation easily got around this difficulty. With each invocation of the
Conversion function, computer creates a new environment in which passed values of M, N,
and the newly computed S are stored. Completing the function call, i.e. returning from
the function we find the environment as it was before the call. Recursive functions store
a sequence of computations implicitly. Eliminating recursive calls implies that we must
manage to store the computed digits explicitly and then retrieve them in the reversed order.

In Computer Science such a mechanism is known as LIFO - Last In First Out. It's best
implemented with a stack data structure. Stack admits only two operations: push and pop.
Intuitively stack can be visualized as indeed a stack of objects. Objects are stacked on top of
each other so that to retrieve an object one has to remove all the objects above the needed
one. Obviously the only object available for immediate removal is the top one, i.e. the one
that got on the stack last.

Then iterative implementation of the Conversion function might look as the following.

1 String Conversion(int M, int N) // return string, accept two

integers

2 {

3 Stack stack = new Stack(); // create a stack

4 while (M >= N) // now the repetitive loop is clearly seen

5 {

6 stack.push(M mod N); // store a digit

7 M = M/N; // find new M

8 }

9 // now it's time to collect the digits together

10 String str = new String(""+M); // create a string with a

single digit M

11 while (stack.NotEmpty())

12 str = str+stack.pop() // get from the stack next digit

13 return str;

14 }

The function is by far longer than its recursive counterpart; but, as I said, sometimes it's
the one you want to use, and sometimes it's the only one you may actually use.

3.5 Closest Pair of Points

For a set of points on a two-dimensional plane, if you want to find the closest two points,
you could compare all of them to each other, at O(n2) time, or use a divide and conquer
algorithm.
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[TODO: explain the algorithm, and show the nˆ2 algorithm]

[TODO: write the algorithm, include intuition, proof of correctness, and runtime analysis]

Use this link for the original document.

http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairDQ.html

3.6 Closest Pair: A Divide-and-Conquer Approach

3.6.1 Introduction

The brute force approach to the closest pair problem (i.e. checking every possible pair of
points) takes quadratic time. We would now like to introduce a faster divide-and-conquer
algorithm for solving the closest pair problem. Given a set of points in the plane S, our
approach will be to split the set into two roughly equal halves (S1 and S2) for which we
already have the solutions, and then to merge the halves in linear time to yield an O(nlogn)
algorithm. However, the actual solution is far from obvious. It is possible that the desired
pair might have one point in S1 and one in S2, does this not force us once again to check
all possible pairs of points? The divide-and-conquer approach presented here generalizes
directly from the one dimensional algorithm we presented in the previous section.

3.6.2 Closest Pair in the Plane

Alright, we'll generalize our 1-D algorithm as directly as possible (see figure 3.2). Given a
set of points S in the plane, we partition it into two subsets S1 and S2 by a vertical line l
such that the points in S1 are to the left of l and those in S2 are to the right of l.

We now recursively solve the problem on these two sets obtaining minimum distances of d1
(for S1), and d2 (for S2). We let d be the minimum of these.

Now, identical to the 1-D case, if the closes pair of the whole set consists of one point from
each subset, then these two points must be within d of l. This area is represented as the two
strips P1 and P2 on either side of l

Up to now, we are completely in step with the 1-D case. At this point, however, the extra
dimension causes some problems. We wish to determine if some point in say P1 is less
than d away from another point in P2. However, in the plane, we don't have the luxury
that we had on the line when we observed that only one point in each set can be within
d of the median. In fact, in two dimensions, all of the points could be in the strip! This
is disastrous, because we would have to compare n2 pairs of points to merge the set, and
hence our divide-and-conquer algorithm wouldn't save us anything in terms of efficiency.
Thankfully, we can make another life saving observation at this point. For any particular
point p in one strip, only points that meet the following constraints in the other strip need
to be checked:

• those points within d of p in the direction of the other strip
• those within d of p in the positive and negative y directions

30

http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairDQ.html


Closest Pair: A Divide-and-Conquer Approach

Simply because points outside of this bounding box cannot be less than d units from p (see
figure 3.3). It just so happens that because every point in this box is at least d apart, there
can be at most six points within it.

Now we don't need to check all n2 points. All we have to do is sort the points in the strip by
their y-coordinates and scan the points in order, checking each point against a maximum of
6 of its neighbors. This means at most 6*n comparisons are required to check all candidate
pairs. However, since we sorted the points in the strip by their y-coordinates the process
of merging our two subsets is not linear, but in fact takes O(nlogn) time. Hence our full
algorithm is not yet O(nlogn), but it is still an improvement on the quadratic performance
of the brute force approach (as we shall see in the next section). In section 3.4, we will
demonstrate how to make this algorithm even more efficient by strengthening our recursive
sub-solution.

3.6.3 Summary and Analysis of the 2-D Algorithm

We present here a step by step summary of the algorithm presented in the previous section,
followed by a performance analysis. The algorithm is simply written in list form because I
find pseudo-code to be burdensome and unnecessary when trying to understand an algorithm.
Note that we pre-sort the points according to their x coordinates, and maintain another
structure which holds the points sorted by their y values(for step 4), which in itself takes
O(nlogn) time.

ClosestPair of a set of points:

1. Divide the set into two equal sized parts by the line l, and recursively compute the
minimal distance in each part.

2. Let d be the minimal of the two minimal distances.
3. Eliminate points that lie farther than d apart from l.
4. Consider the remaining points according to their y-coordinates, which we have pre-

computed.
5. Scan the remaining points in the y order and compute the distances of each point to

all of its neighbors that are distanced no more than d(that's why we need it sorted
according to y). Note that there are no more than 5(there is no figure 3.3 , so this 5 or
6 doesnt make sense without that figure . Please include it .) such points(see previous
section).

6. If any of these distances is less than d then update d.

Analysis:

• Let us note T(n) as the efficiency of out algorithm
• Step 1 takes 2T(n/2) (we apply our algorithm for both halves)
• Step 3 takes O(n) time
• Step 5 takes O(n) time (as we saw in the previous section)

so,

T (n) = 2T (n/2)+O(n)

which, according the Master Theorem, result
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T (n)O(nlogn)

Hence the merging of the sub-solutions is dominated by the sorting at step 4, and hence
takes O(nlogn) time.

This must be repeated once for each level of recursion in the divide-and-conquer algorithm,

hence the whole of algorithm ClosestPair takes O(logn*nlogn) = O(nlog2n) time.

3.6.4 Improving the Algorithm

We can improve on this algorithm slightly by reducing the time it takes to achieve the
y-coordinate sorting in Step 4. This is done by asking that the recursive solution computed
in Step 1 returns the points in sorted order by their y coordinates. This will yield two sorted
lists of points which need only be merged (a linear time operation) in Step 4 in order to yield
a complete sorted list. Hence the revised algorithm involves making the following changes:
Step 1: Divide the set into..., and recursively compute the distance in each part, returning
the points in each set in sorted order by y-coordinate. Step 4: Merge the two sorted lists
into one sorted list in O(n) time. Hence the merging process is now dominated by the linear
time steps thereby yielding an O(nlogn) algorithm for finding the closest pair of a set of
points in the plane.

3.7 Towers Of Hanoi Problem

[TODO: Write about the towers of hanoi algorithm and a program for it]

There are n distinct sized discs and three pegs such that discs are placed at the left peg in
the order of their sizes. The smallest one is at the top while the largest one is at the bottom.
This game is to move all the discs from the left peg

3.7.1 Rules

1) Only one disc can be moved in each step.

2) Only the disc at the top can be moved.

3) Any disc can only be placed on the top of a larger disc.

3.7.2 Solution

Intuitive Idea

In order to move the largest disc from the left peg to the middle peg, the smallest discs
must be moved to the right peg first. After the largest one is moved. The smaller discs are
then moved from the right peg to the middle peg.
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Recurrence

Suppose n is the number of discs.

To move n discs from peg a to peg b,

1) If n>1 then move n-1 discs from peg a to peg c

2) Move n-th disc from peg a to peg b

3) If n>1 then move n-1 discs from peg c to peg a

Pseudocode

void hanoi(n,src,dst){

if (n>1)

hanoi(n-1,src,pegs-{src,dst});

print "move n-th disc from src to dst";

if (n>1)

hanoi(n-1,pegs-{src,dst},dst);

}

Analysis

The analysis is trivial. T (n) = 2T (n−1)+O(1) = O(2n)
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4 Randomization

As deterministic algorithms are driven to their limits when one tries to solve hard problems
with them, a useful technique to speed up the computation is randomization. In randomized
algorithms, the algorithm has access to a random source, which can be imagined as tossing
coins during the computation. Depending on the outcome of the toss, the algorithm may
split up its computation path.

There are two main types of randomized algorithms: Las Vegas algorithms and Monte-Carlo
algorithms. In Las Vegas algorithms, the algorithm may use the randomness to speed up
the computation, but the algorithm must always return the correct answer to the input.
Monte-Carlo algorithms do not have the former restriction, that is, they are allowed to give
wrong return values. However, returning a wrong return value must have a small probability,
otherwise that Monte-Carlo algorithm would not be of any use.

Many approximation algorithms use randomization.

4.1 Ordered Statistics

Before covering randomized techniques, we'll start with a deterministic problem that leads
to a problem that utilizes randomization. Suppose you have an unsorted array of values and
you want to find

• the maximum value,
• the minimum value, and
• the median value.

In the immortal words of one of our former computer science professors, "How can you do?"

4.1.1 find-max

First, it's relatively straightforward to find the largest element:

// find-max -- returns the maximum element

function find-max(array vals[1..n]): element

let result := vals[1]

for i from 2 to n:

result := max(result, vals[i])

repeat

return result

end
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An initial assignment of −∞ to result would work as well, but this is a useless call to the
max function since the first element compared gets set to result. By initializing result
as such the function only requires n-1 comparisons. (Moreover, in languages capable of
metaprogramming, the data type may not be strictly numerical and there might be no good
way of assigning −∞; using vals[1] is type-safe.)

A similar routine to find the minimum element can be done by calling the min function
instead of the max function.

4.1.2 find-min-max

But now suppose you want to find the min and the max at the same time; here's one solution:

// find-min-max -- returns the minimum and maximum element of the given array

function find-min-max(array vals): pair

return pair {find-min(vals), find-max(vals)}

end

Because find-max and find-min both make n-1 calls to the max or min functions (when
vals has n elements), the total number of comparisons made in find-min-max is 2n−2.

However, some redundant comparisons are being made. These redundancies can be removed
by "weaving" together the min and max functions:

// find-min-max -- returns the minimum and maximum element of the given array

function find-min-max(array vals[1..n]): pair

let min := ∞

let max := −∞

if n is odd:

min := max := vals[1]

vals := vals[2,..,n] // we can now assume n is even

n := n - 1

fi

for i:=1 to n by 2: // consider pairs of values in vals

if vals[i] < vals[i + n by 2]:

let a := vals[i]

let b := vals[i + n by 2]

else:

let a := vals[i + n by 2]

let b := vals[i] // invariant: a <= b

fi

if a < min: min := a fi

if b > max: max := b fi

repeat

return pair {min, max}

end

Here, we only loop n/2 times instead of n times, but for each iteration we make three
comparisons. Thus, the number of comparisons made is (3/2)n = 1.5n, resulting in a 3/4
speed up over the original algorithm.
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Only three comparisons need to be made instead of four because, by construction, it's always
the case that a ≤ b. (In the first part of the "if", we actually know more specifically that
a < b, but under the else part, we can only conclude that a ≤ b.) This property is utilized by
noting that a doesn't need to be compared with the current maximum, because b is already
greater than or equal to a, and similarly, b doesn't need to be compared with the current
minimum, because a is already less than or equal to b.

In software engineering, there is a struggle between using libraries versus writing customized
algorithms. In this case, the min and max functions weren't used in order to get a faster find-

min-max routine. Such an operation would probably not be the bottleneck in a real-life
program: however, if testing reveals the routine should be faster, such an approach should be
taken. Typically, the solution that reuses libraries is better overall than writing customized
solutions. Techniques such as open implementation and aspect-oriented programming may
help manage this contention to get the best of both worlds, but regardless it's a useful
distinction to recognize.

4.1.3 find-median

Finally, we need to consider how to find the median value. One approach is to sort the
array then extract the median from the position vals[n/2]:

// find-median -- returns the median element of vals

function find-median(array vals[1..n]): element

assert (n > 0)

sort(vals)

return vals[n / 2]

end

If our values are not numbers close enough in value (or otherwise cannot be sorted by a
radix sort) the sort above is going to require O(n logn) steps.

However, it is possible to extract the nth-ordered statistic in O(n) time. The key is
eliminating the sort: we don't actually require the entire array to be sorted in order to find
the median, so there is some waste in sorting the entire array first. One technique we'll use
to accomplish this is randomness.

Before presenting a non-sorting find-median function, we introduce a divide and conquer-
style operation known as partitioning. What we want is a routine that finds a random
element in the array and then partitions the array into three parts:

1. elements that are less than or equal to the random element;
2. elements that are equal to the random element; and
3. elements that are greater than or equal to the random element.

These three sections are denoted by two integers: j and i. The partitioning is performed "in
place" in the array:

// partition -- break the array three partitions based on a randomly picked element

function partition(array vals): pair{j, i}
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Note that when the random element picked is actually represented three or more times in
the array it's possible for entries in all three partitions to have the same value as the random
element. While this operation may not sound very useful, it has a powerful property that
can be exploited: When the partition operation completes, the randomly picked element
will be in the same position in the array as it would be if the array were fully sorted!

This property might not sound so powerful, but recall the optimization for the find-min-

max function: we noticed that by picking elements from the array in pairs and comparing
them to each other first we could reduce the total number of comparisons needed (because
the current min and max values need to be compared with only one value each, and not
two). A similar concept is used here.

While the code for partition is not magical, it has some tricky boundary cases:

// partition -- break the array into three ordered partitions from a random element

function partition(array vals): pair{j, i}

let m := 0

let n := vals.length - 1

let irand := random(m, n) // returns any value from m to n

let x := vals[irand]

// values in vals[n..] are greater than x

// values in vals[0..m] are less than x

while (m <= n)

if vals[m] <= x

m++

else

swap(m,n) // exchange vals[n] and vals[m]

n--

endif

endwhile

// partition: [0..m-1] [] [n+1..] note that m=n+1

// if you need non empty sub-arrays:

swap(irand,n)

// partition: [0..n-1] [n..n] [n+1..]

end

We can use partition as a subroutine for a general find operation:

// find -- moves elements in vals such that location k holds the value it would when sorted

function find(array vals, integer k)

assert (0 <= k < vals.length) // k it must be a valid index

if vals.length <= 1:

return

fi

let pair (j, i) := partition(vals)

if k <= i:

find(a[0,..,i], k)

else-if j <= k:

find(a[j,..,n], k - j)

fi

TODO: debug this!

end

Which leads us to the punch-line:
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// find-median -- returns the median element of vals

function find-median(array vals): element

assert (vals.length > 0)

let median_index := vals.length / 2;

find(vals, median_index)

return vals[median_index]

end

One consideration that might cross your mind is "is the random call really necessary?"
For example, instead of picking a random pivot, we could always pick the middle element
instead. Given that our algorithm works with all possible arrays, we could conclude that the
running time on average for all of the possible inputs is the same as our analysis that used
the random function. The reasoning here is that under the set of all possible arrays, the
middle element is going to be just as "random" as picking anything else. But there's a pitfall
in this reasoning: Typically, the input to an algorithm in a program isn't random at all.
For example, the input has a higher probability of being sorted than just by chance alone.
Likewise, because it is real data from real programs, the data might have other patterns in
it that could lead to suboptimal results.

To put this another way: for the randomized median finding algorithm, there is a very
small probability it will run suboptimally, independent of what the input is; while for a
deterministic algorithm that just picks the middle element, there is a greater chance it will
run poorly on some of the most frequent input types it will receive. This leads us to the
following guideline:

Randomization Guideline:

If your algorithm depends upon randomness, be sure you introduce the randomness
yourself instead of depending upon the data to be random.

Note that there are "derandomization" techniques that can take an average-case fast algorithm
and turn it into a fully deterministic algorithm. Sometimes the overhead of derandomization
is so much that it requires very large datasets to get any gains. Nevertheless, derandomization
in itself has theoretical value.

The randomized find algorithm was invented by C. A. R. "Tony" Hoare. While Hoare is
an important figure in computer science, he may be best known in general circles for his
quicksort algorithm, which we discuss in the next section.

4.2 Quicksort

The median-finding partitioning algorithm in the previous section is actually very close to
the implementation of a full blown sorting algorithm. Until this section is written, building
a Quicksort Algorithm is left as an exercise for the reader.

[TODO: Quicksort Algorithm]
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4.3 Shuffling an Array

This keeps data in during shuffle

temporaryArray = { }

This records if an item has been shuffled

usedItemArray = { }

Number of item in array

itemNum = 0

while ( itemNum != lengthOf( inputArray) ){

usedItemArray[ itemNum ] = false None of the items have been shuffled

itemNum = itemNum + 1

}

itemNum = 0 we'll use this again

itemPosition = randdomNumber( 0 --- (lengthOf(inputArray) - 1 ))

while( itemNum != lengthOf( inputArray ) ){

while( usedItemArray[ itemPosition ] != false ){

itemPosition = randdomNumber( 0 --- (lengthOf(inputArray)

- 1 ))

}

temporaryArray[ itemPosition ] = inputArray[ itemNum ]

}

inputArray = temporaryArray

4.4 Equal Multivariate Polynomials

[TODO: as of now, there is no known deterministic polynomial time solution, but there
is a randomized polytime solution. The canonical example used to be IsPrime, but a
deterministic, polytime solution has been found.]

4.5 Skip Lists

[TODO: Talk about skips lists. The point is to show how randomization can sometimes
make a structure easier to understand, compared to the complexity of balanced trees.] In
order to compare the complexity of implementation, it is a good idea to read about skip
lists and red-black trees ; the internet has the skip list's author paper spruiking skip lists in
a very informed and lucid way, whilst Sedgewick's graduated explanation of red-black trees
by describing them as models of 2-3 trees is also on the internet on the website promoting
his latest algorithms book.

4.5.1 Recap on red-black trees

What Sedgewick does is to diagrammatically show that the mechanisms maintaining 2-3
tree nodes as being either 2 nodes (a node with 2 children and 1 value) or 3 nodes (2 values
separating 3 children) by making sure 4 nodes are always split into three 2-nodes , and the
middle 2-node is passed up into the parent node, which may also split. 2-3 tree nodes are
really very small B-trees in behavior. The inductive proof might be that if one tries to load
everything into the left side of the tree by say a descending sequence of keys as input, the
tree still looks balanced after a height of 4 is reached, then it will looked balanced at any
height.
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He then goes to assert that a 2 node can be modeled as binary node which has a black link
from its parent, and a black link to each of its two children, and a link's color is carried by
a color attribute on the child node of the link; and a 3-node is modeled as a binary node
which has a red link between a child to a parent node whose other child is marked black,
and the parent itself is marked black ; hence the 2 nodes of a 3-node is the parent red-linked
to the red child. A 4-node which must be split, then becomes any 3 node combination which
has 2 red links, or 2 nodes marked red, and one node , a top most parent, marked black.
The 4 node can occur as a straight line of red links, between grandparent, red parent, and
red grand child, a zig-zag, or a bow , black parent, with 2 red children, but everything gets
converted to the last in order to simplify splitting of the 4-node.

To make calculations easier, if the red child is on the right of the parent, then a rotation
should be done to make the relationship a left child relationship. This left rotation1 is done
by saving the red child's left child, making the parent the child's left child, the child's old
left child the parents right child ( formerly the red child), and the old parent's own parent
the parent of the red child (by returning a reference to the old red child instead of the old
parent), and then making the red child black, and the old parent red. Now the old parent
has become a left red child of the former red child, but the relationship is still the two same
keys making up the 3-node. When an insertion is done, the node to be inserted is always
red, to model the 2-3 tree behavior of always adding to an existing node initially ( a 2-node
with all black linked children marked black, where terminal null links are black, will become
a 3-node with a new red child).

Again, if the red child is on the right, a left rotation is done. It then suffices to see if the
parent of the newly inserted red node is red (actually, Sedgewick does this as a recursive
post insertion check, as each recursive function returns and the tree is walked up again, he
checks for a node whose left child is red, and whose left child has a red left child ) ; and
if so, a 4-node exists, because there are two red links together. Since all red children have
been rotated to be left children, it suffices to right rotate at the parent's parent, in order to
make the middle node of the 4- node the ancestor linked node, and splitting of the 4 node
and passing up the middle node is done by then making left and right nodes black, and the
center node red, (which is equivalent to making the end keys of a 4-node into two 2-nodes,
and the middle node passed up and merged with node above it). Then , the above process
beginning with "if the red child is on the right of the parent ..." should then be carried out
recursively with the red center node, until all red nodes are left child's , and the parent is
not marked red.

The main operation of rotation is probably only marginally more difficult than understanding
insertion into a singly linked list, which is what skip lists are built on , except that the
nodes to be inserted have a variable height.

4.5.2 Skip list structure

A skip list node is an array of singly-linked list nodes, of randomized array length (height) ,
where a node array element of a given index has a pointer to another node array element
only at the same index (=level) , of another skip list node. The start skip list node is

1 http://en.wikibooks.org/wiki/..%2FLeft%20rotation
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referenced as the header of the skip list, and must be as high as the highest node in the skip
list , because an element at a given index(height) only point to another element at the same
index in another node, and hence is only reachable if the header node has the given level
(height).

In order to get a height of a certain level n, a loop is iterated n times where a random
function has successful generated a value below a certain threshold on n iterations. So for
an even chance threshold of 0.5, and a random function generating 0 to 1.0, to achieve a
height of 4, it would be 0.5 ˆ 4 total probability or (1/2)ˆ4 = 1/16. Therefore, high nodes
are much less common than short nodes , which have a probability of 0.5 of the threshold
succeeding the first time.

Insertion of a newly generated node of a randomized height, begins with a search at the
highest level of the skip list's node, or the highest level of the inserting node, whichever is
smaller. Once the position is found, if the node has an overall height greater than the skip
list header, the skip list header is increased to the height of the excess levels, and all the
new level elements of the header node are made to point to the inserting node ( with the
usual rule of pointing only to elements of the same level).

Beginning with header node of the skip list ,a search is made as in an ordered linked list
for where to insert the node. The idea is to find the last node which has a key smaller
than insertion key by finding a next node's key greater than the inserting key; and this last
smaller node will be the previous node in a linked list insertion. However, the previous node
is different at different levels, and so an array must be used to hold the previous node at
each level. When the smallest previous node is found, search is recommenced at the next
level lower, and this continues until the lowest level . Once the previous node is known for
all levels of the inserting node, the inserting node's next pointer at each level must be made
to point to the next pointer of the node in the saved array at the same level . Then all the
nodes in the array must have their next pointer point to the newly inserted node. Although
it is claimed to be easier to implement, there is two simultaneous ideas going on, and the
locality of change is greater than say just recursively rotating tree nodes, so it is probably
easier to implement, if the original paper by Pugh is printed out and in front of you, and
you copy the skeleton of the spelled out algorithm as pseudocode from the paper down into
comments, and then implement the comments. It is still basically singly linked list insertion,
with a handle to the node just before , whose next pointer must be copied as the inserted
node's next pointer, before the next pointer is updated as the inserted node; but there are
other tricky things to remember, such as having two nested loops, a temporary array of
previous node references to remember which node is the previous node at which level ; not
inserting a node if the key already exists and is found, making sure the list header doesn't
need to be updated because the height of the inserting node is the greatest encountered so
far, and making multiple linked list insertion by iterating through the temporary array of
previous pointers.

4.5.3 Role of Randomness

The idea of making higher nodes geometrically randomly less common, means there are
less keys to compare with the higher the level of comparison, and since these are randomly
selected, this should get rid of problems of degenerate input that makes it necessary to do
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tree balancing in tree algorithms. Since the higher level list have more widely separated
elements, but the search algorithm moves down a level after each search terminates at a
level, the higher levels help "skip" over the need to search earlier elements on lower lists.
Because there are multiple levels of skipping, it becomes less likely that a meagre skip at a
higher level won't be compensated by better skips at lower levels, and Pugh claims O(logN)
performance overall.

Conceptually , is it easier to understand than balancing trees and hence easier to implement
? The development of ideas from binary trees, balanced binary trees, 2-3 trees, red-black
trees, and B-trees make a stronger conceptual network but is progressive in development, so
arguably, once red-black trees are understood, they have more conceptual context to aid
memory , or refresh of memory.

4.5.4 Idea for an exercise

Replace the Linux completely fair scheduler red-black tree implementation with a skip list ,
and see how your brand of Linux runs after recompiling.

4.6 Treaps

A treap is a two keyed binary tree, that uses a second randomly generated key and the
previously discussed tree operation of parent-child rotation to randomly rotate the tree
so that overall, a balanced tree is produced. Recall that binary trees work by having all
nodes in the left subtree small than a given node, and all nodes in a right subtree greater.
Also recall that node rotation does not break this order ( some people call it an invariant),
but changes the relationship of parent and child, so that if the parent was smaller than a
right child, then the parent becomes the left child of the formerly right child. The idea of a
tree-heap or treap, is that a binary heap relationship is maintained between parents and
child, and that is a parent node has higher priority than its children, which is not the same
as the left , right order of keys in a binary tree, and hence a recently inserted leaf node in a
binary tree which happens to have a high random priority, can be rotated so it is relatively
higher in the tree, having no parent with a lower priority. See the preamble to skip lists
about red-black trees on the details of left rotation2.

A treap is an alternative to both red-black trees, and skip lists, as a self-balancing sorted
storage structure.

4.7 Derandomization

[TODO: Deterministic algorithms for Quicksort exist that perform as well as quicksort in
the average case and are guaranteed to perform at least that well in all cases. Best of all,
no randomization is needed. Also in the discussion should be some perspective on using
randomization: some randomized algorithms give you better confidence probabilities than

2 http://en.wikibooks.org/wiki/..%2FLeft%20rotation
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the actual hardware itself! (e.g. sunspots can randomly flip bits in hardware, causing failure,
which is a risk we take quite often)]

[Main idea: Look at all blocks of 5 elements, and pick the median (O(1) to pick), put all
medians into an array (O(n)), recursively pick the medians of that array, repeat until you
have < 5 elements in the array. This recursive median constructing of every five elements
takes time T(n)=T(n/5) + O(n), which by the master theorem is O(n). Thus, in O(n) we
can find the right pivot. Need to show that this pivot is sufficiently good so that we're still
O(n log n) no matter what the input is. This version of quicksort doesn't need rand, and it
never performs poorly. Still need to show that element picked out is sufficiently good for a
pivot.]

4.8 Exercises

1. Write a find-min function and run it on several different inputs to demonstrate its
correctness.
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5 Backtracking

Backtracking is a general algorithmic technique that considers searching every possible
combination in order to solve an optimization problem. Backtracking is also known as
depth-first search or branch and bound. By inserting more knowledge of the problem,
the search tree can be pruned to avoid considering cases that don't look promising. While
backtracking is useful for hard problems to which we do not know more efficient solutions,
it is a poor solution for the everyday problems that other techniques are much better at
solving.

However, dynamic programming and greedy algorithms can be thought of as optimizations
to backtracking, so the general technique behind backtracking is useful for understanding
these more advanced concepts. Learning and understanding backtracking techniques first
provides a good stepping stone to these more advanced techniques because you won't have
to learn several new concepts all at once.

Backtracking Methodology

# View picking a solution as a sequence of choices# For each choice, consider every
option recursively# Return the best solution found

This methodology is generic enough that it can be applied to most problems. However, even
when taking care to improve a backtracking algorithm, it will probably still take exponen-
tial time rather than polynomial time. Additionally, exact time analysis of backtracking
algorithms can be extremely difficult: instead, simpler upperbounds that may not be tight
are given.

5.1 Longest Common Subsequence (exhaustive version)

Note that the solution to the longest common subsequence (LCS) problem discussed in this
section is not efficient. However, it is useful for understanding the dynamic programming
version of the algorithm that is covered later.

The LCS problem is similar to what the Unix "diff" program does. The diff command in
Unix takes two text files, A and B, as input and outputs the differences line-by-line from
A and B. For example, diff can show you that lines missing from A have been added to B,
and lines present in A have been removed from B. The goal is to get a list of additions and
removals that could be used to transform A to B. An overly conservative solution to the
problem would say that all lines from A were removed, and that all lines from B were added.
While this would solve the problem in a crude sense, we are concerned with the minimal
number of additions and removals to achieve a correct transformation. Consider how you
may implement a solution to this problem yourself.
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The LCS problem, instead of dealing with lines in text files, is concerned with finding
common items between two different arrays. For example,

let a := array {"The", "great", "square", "has", "no", "corners"}

let b := array {"The", "great", "image", "has", "no", "form"}

We want to find the longest subsequence possible of items that are found in both a and b in
the same order. The LCS of a and b is

"The", "great", "has", "no"

Now consider two more sequences:

let c := array {1, 2, 4, 8, 16, 32}

let d := array {1, 2, 3, 32, 8}

Here, there are two longest common subsequences of c and d:

1, 2, 32; and

1, 2, 8

Note that

1, 2, 32, 8

is not a common subsequence, because it is only a valid subsequence of d and not c (because
c has 8 before the 32). Thus, we can conclude that for some cases, solutions to the LCS
problem are not unique. If we had more information about the sequences available we
might prefer one subsequence to another: for example, if the sequences were lines of text in
computer programs, we might choose the subsequences that would keep function definitions
or paired comment delimiters intact (instead of choosing delimiters that were not paired in
the syntax).

On the top level, our problem is to implement the following function

// lcs -- returns the longest common subsequence of a and b

function lcs(array a, array b): array

which takes in two arrays as input and outputs the subsequence array.

How do you solve this problem? You could start by noticing that if the two sequences start
with the same word, then the longest common subsequence always contains that word. You
can automatically put that word on your list, and you would have just reduced the problem
to finding the longest common subset of the rest of the two lists. Thus, the problem was
made smaller, which is good because it shows progress was made.

But if the two lists do not begin with the same word, then one, or both, of the first element
in a or the first element in b do not belong in the longest common subsequence. But yet,
one of them might be. How do you determine which one, if any, to add?
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The solution can be thought in terms of the back tracking methodology: Try it both ways
and see! Either way, the two sub-problems are manipulating smaller lists, so you know
that the recursion will eventually terminate. Whichever trial results in the longer common
subsequence is the winner.

Instead of "throwing it away" by deleting the item from the array we use array slices. For
example, the slice

a[1,..,5]

represents the elements

{a[1], a[2], a[3], a[4], a[5]}

of the array as an array itself. If your language doesn't support slices you'll have to pass
beginning and/or ending indices along with the full array. Here, the slices are only of the
form

a[1,..]

which, when using 0 as the index to the first element in the array, results in an
array slice that doesn't have the 0th element. (Thus, a non-sliced version of this
algorithm would only need to pass the beginning valid index around instead, and that value
would have to be subtracted from the complete array's length to get the pseudo-slice's length.)

// lcs -- returns the longest common subsequence of a and b

function lcs(array a, array b): array

if a.length == 0 OR b.length == 0:

// if we're at the end of either list, then the lcs is empty

return new array {}

else-if a[0] == b[0]:

// if the start element is the same in both, then it is on the lcs,

// so we just recurse on the remainder of both lists.

return append(new array {a[0]}, lcs(a[1,..], b[1,..]))

else

// we don't know which list we should discard from. Try both ways,

// pick whichever is better.

let discard_a := lcs(a[1,..], b)

let discard_b := lcs(a, b[1,..])

if discard_a.length > discard_b.length:

let result := discard_a

else

let result := discard_b

fi

return result

fi

end

5.2 Shortest Path Problem (exhaustive version)

To be improved as Dijkstra's algorithm in a later section.
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5.3 Largest Independent Set

5.4 Bounding Searches

If you've already found something "better" and you're on a branch that will never be as
good as the one you already saw, you can terminate that branch early. (Example to use:
sum of numbers beginning with 1 2, and then each number following is a sum of any of the
numbers plus the last number. Show performance improvements.)

5.5 Constrained 3-Coloring

This problem doesn't have immediate self-similarity, so the problem first needs to be
generalized. Methodology: If there's no self-similarity, try to generalize the problem until it
has it.

5.6 Traveling Salesperson Problem

Here, backtracking is one of the best solutions known.
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6 Dynamic Programming

Dynamic programming can be thought of as an optimization technique for particular
classes of backtracking algorithms where subproblems are repeatedly solved. Note that the
term dynamic in dynamic programming should not be confused with dynamic programming
languages, like Scheme or Lisp. Nor should the term programming be confused with the act
of writing computer programs. In the context of algorithms, dynamic programming always
refers to the technique of filling in a table with values computed from other table values.
(It's dynamic because the values in the table are filled in by the algorithm based on other
values of the table, and it's programming in the sense of setting things in a table, like how
television programming is concerned with when to broadcast what shows.)

6.1 Fibonacci Numbers

Before presenting the dynamic programming technique, it will be useful to first show a
related technique, called memoization, on a toy example: The Fibonacci numbers. What
we want is a routine to compute the nth Fibonacci number:

// fib -- compute Fibonacci(n)

function fib(integer n): integer

By definition, the nth Fibonacci number, denoted Fn is

F0 = 0

F1 = 1

Fn = Fn−1 +Fn−2

How would one create a good algorithm for finding the nth Fibonacci-number? Let's begin
with the naive algorithm, which codes the mathematical definition:

// fib -- compute Fibonacci(n)

function fib(integer n): integer

assert (n >= 0)

if n == 0: return 0 fi

if n == 1: return 1 fi
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return fib(n - 1) + fib(n - 2)

end

This code sample is also available in Adaa

a http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Simple_Implementation

Note that this is a toy example because there is already a mathematically closed form for
Fn:

F (n) =
φn − (1−φ)n

√
5

where:

φ =
1+

√
5

2

This latter equation is known as the Golden Ratio1. Thus, a program could efficiently
calculate Fn for even very large n. However, it's instructive to understand what's so
inefficient about the current algorithm.

To analyze the running time of fib we should look at a call tree for something even as small
as the sixth Fibonacci number:

Figure 5

Every leaf of the call tree has the value 0 or 1, and the sum of these values is the final result.
So, for any n, the number of leaves in the call tree is actually Fn itself! The closed form
thus tells us that the number of leaves in fib(n) is approximately equal to

(

1+
√

5

2

)n

≈ 1.618n = 2lg(1.618n) = 2n lg(1.618) ≈ 20.69n.

1 http://en.wikipedia.org/wiki/golden_ratio
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(Note the algebraic manipulation used above to make the base of the exponent the number
2.) This means that there are far too many leaves, particularly considering the repeated
patterns found in the call tree above.

One optimization we can make is to save a result in a table once it's already been computed,
so that the same result needs to be computed only once. The optimization process is called
memoization and conforms to the following methodology:

Memoization Methodology

# Start with a backtracking algorithm# Look up the problem in a table; if there's a
valid entry for it, return that value# Otherwise, compute the problem recursively, and
then store the result in the table before returning the value

Consider the solution presented in the backtracking chapter for the Longest Common
Subsequence problem. In the execution of that algorithm, many common subproblems were
computed repeatedly. As an optimization, we can compute these subproblems once and
then store the result to read back later. A recursive memoization algorithm can be turned
"bottom-up" into an iterative algorithm that fills in a table of solutions to subproblems.
Some of the subproblems solved might not be needed by the end result (and that is where
dynamic programming differs from memoization), but dynamic programming can be very
efficient because the iterative version can better use the cache and have less call overhead.
Asymptotically, dynamic programming and memoization have the same complexity.

So how would a fibonacci program using memoization work? Consider the following program
(f[n] contains the nth Fibonacci-number if has been calculated, -1 otherwise):

function fib(integer n): integer

if n == 0 or n == 1:

return n

else-if f[n] != -1:

return f[n]

else

f[n] = fib(n - 1) + fib(n - 2)

return f[n]

fi

end

This code sample is also available in Adaa

a http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Cached_Implementation

The code should be pretty obvious. If the value of fib(n) already has been calculated it's
stored in f[n] and then returned instead of calculating it again. That means all the copies of
the sub-call trees are removed from the calculation.

51

http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Cached_Implementation


Dynamic Programming

Figure 6

The values in the blue boxes are values that already have been calculated and the calls can
thus be skipped. It is thus a lot faster than the straight-forward recursive algorithm. Since
every value less than n is calculated once, and only once, the first time you execute it, the
asymptotic running time is O(n). Any other calls to it will take O(1) since the values have
been precalculated (assuming each subsequent call's argument is less than n).

The algorithm does consume a lot of memory. When we calculate fib(n), the values
fib(0) to fib(n) are stored in main memory. Can this be improved? Yes it can, al-
though the O(1) running time of subsequent calls are obviously lost since the values
aren't stored. Since the value of fib(n) only depends on fib(n-1) and fib(n-2) we
can discard the other values by going bottom-up. If we want to calculate fib(n), we
first calculate fib(2) = fib(0) + fib(1). Then we can calculate fib(3) by adding fib(1)
and fib(2). After that, fib(0) and fib(1) can be discarded, since we don't need them
to calculate any more values. From fib(2) and fib(3) we calculate fib(4) and discard
fib(2), then we calculate fib(5) and discard fib(3), etc. etc. The code goes something like this:

function fib(integer n): integer

if n == 0 or n == 1:

return n

fi

let u := 0

let v := 1

for i := 2 to n:

let t := u + v

u := v

v := t

repeat

return v

end

This code sample is also available in Adaa

a

http://en.wikibooks.org/wiki/Ada_Programming%2FAlgorithms%23Memory_Optimized_

Implementation
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Longest Common Subsequence (DP version)

We can modify the code to store the values in an array for subsequent calls, but the point is
that we don't have to. This method is typical for dynamic programming. First we identify
what subproblems need to be solved in order to solve the entire problem, and then we
calculate the values bottom-up using an iterative process.

6.2 Longest Common Subsequence (DP version)

This will remind us of the backtracking version and then improve it via memoization. Finally,
the recursive algorithm will be made iterative and be full-fledged DP. [TODO: write this
section]

6.3 Matrix Chain Multiplication

Suppose that you need to multiply a series of n matrices M1, . . . ,Mn together to form a
product matrix P :

P = M1 ·M2 · · ·Mn−1 ·Mn

This will require n−1 multiplications, but what is the fastest way we can form this product?
Matrix multiplication is associative, that is,

(A ·B) ·C = A · (B ·C)

for any A,B,C, and so we have some choice in what multiplication we perform first. (Note
that matrix multiplication is not commutative, that is, it does not hold in general that
A ·B = B ·A.)

Because you can only multiply two matrices at a time the product M1 ·M2 ·M3 ·M4 can be
paranthesized in these ways:

((M1M2)M3)M4

(M1(M2M3))M4

M1((M2M3)M4)

(M1M2)(M3M4)

M1(M2(M3M4))
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Two matrices M1 and M2 can be multiplied if the number of columns in M1 equals the
number of rows in M2. The number of rows in their product will equal the number rows
in M1 and the number of columns will equal the number of columns in M2. That is, if the
dimensions of M1 is a× b and M2 has dimensions b× c their product will have dimensions
a× c.

To multiply two matrices with each other we use a function called matrix-multiply that
takes two matrices and returns their product. We will leave implementation of this function
alone for the moment as it is not the focus of this chapter (how to multiply two matrices in
the fastest way has been under intensive study for several years [TODO: propose this topic
for the Advanced book]). The time this function takes to multiply two matrices of size a× b
and b× c is proportional to the number of scalar multiplications, which is proportional to
abc. Thus, paranthezation matters: Say that we have three matrices M1, M2 and M3. M1

has dimensions 5×100, M2 has dimensions 100×100 and M3 has dimensions 100×50. Let's
paranthezise them in the two possible ways and see which way requires the least amount of
multiplications. The two ways are

((M1M2)M3), and

(M1(M2M3)).

To form the product in the first way requires 75000 scalar multiplications (5*100*100=50000
to form product (M1M2) and another 5*100*50=25000 for the last multiplications.) This
might seem like a lot, but in comparison to the 525000 scalar multiplications required by the
second parenthesization (50*100*100=500000 plus 5*50*100=25000) it is miniscule! You
can see why determining the parenthesization is important: imagine what would happen if
we needed to multiply 50 matrices!

6.3.1 Forming a Recursive Solution

Note that we concentrate on finding a how many scalar multiplications are needed instead
of the actual order. This is because once we have found a working algorithm to find the
amount it is trivial to create an algorithm for the actual parenthesization. It will, however,
be discussed in the end.

So how would an algorithm for the optimum parenthesization look? By the chapter
title you might expect that a dynamic programming method is in order (not to give the
answer away or anything). So how would a dynamic programming method work? Because
dynamic programming algorithms are based on optimal substructure, what would the optimal
substructure in this problem be?

Suppose that the optimal way to parenthesize

M1M2 . . .Mn

splits the product at k:

(M1M2 . . .Mk)(Mk+1Mk+2 . . .Mn)
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Then the optimal solution contains the optimal solutions to the two subproblems

(M1 . . .Mk)

(Mk+1 . . .Mn)

That is, just in accordance with the fundamental principle of dynamic programming, the
solution to the problem depends on the solution of smaller sub-problems.

Let's say that it takes c(n) scalar multiplications to multiply matrices Mn and Mn+1, and
f(m,n) is the number of scalar multiplications to be performed in an optimal parenthesization
of the matrices Mm . . .Mn. The definition of f(m,n) is the first step toward a solution.

When n − m = 1, the formulation is trivial; it is just c(m). But what is it when the
distance is larger? Using the observation above, we can derive a formulation. Sup-
pose an optimal solution to the problem divides the matrices at matrices k and k+1
(i.e. (Mm . . .Mk)(Mk+1 . . .Mn)) then the number of scalar multiplications are.

f(m,k)+f(k +1,n)+ c(k)

That is, the amount of time to form the first product, the amount of time it takes to form
the second product, and the amount of time it takes to multiply them together. But what
is this optimal value k? The answer is, of course, the value that makes the above formula
assume its minimum value. We can thus form the complete definition for the function:

f(m,n) =

{

minm≤k<n f(m,k)+f(k +1,n)+ c(k) if n−m > 1

0 if n = m

A straight-forward recursive solution to this would look something like this (the language is
Wikicode2):

function f(m, n) {

if m == n

return 0

let minCost := ∞

for k := m to n - 1 {

v := f(m, k) + f(k + 1, n) + c(k)

if v < minCost

minCost := v

}

return minCost

}

2 http://en.wikipedia.org/wiki/Wikipedia:Wikicode
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This rather simple solution is, unfortunately, not a very good one. It spends mountains of
time recomputing data and its running time is exponential.

Using the same adaptation as above we get:

function f(m, n) {

if m == n

return 0

else-if f[m,n] != -1:

return f[m,n]

fi

let minCost := ∞

for k := m to n - 1 {

v := f(m, k) + f(k + 1, n) + c(k)

if v < minCost

minCost := v

}

f[m,n]=minCost

return minCost

}

6.4 Parsing Any Context-Free Grammar

Note that special types of context-free grammars can be parsed much more efficiently than
this technique, but in terms of generality, the DP method is the only way to go.
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7 Greedy Algorithms

In the backtracking algorithms we looked at, we saw algorithms that found decision points
and recursed over all options from that decision point. A greedy algorithm can be thought
of as a backtracking algorithm where at each decision point "the best" option is already
known and thus can be picked without having to recurse over any of the alternative options.

The name "greedy" comes from the fact that the algorithms make decisions based on a single
criterion, instead of a global analysis that would take into account the decision's effect on
further steps. As we will see, such a backtracking analysis will be unnecessary in the case of
greedy algorithms, so it is not greedy in the sense of causing harm for only short-term gain.

Unlike backtracking algorithms, greedy algorithms can't be made for every problem. Not
every problem is "solvable" using greedy algorithms. Viewing the finding solution to an
optimization problem as a hill climbing problem greedy algorithms can be used for only
those hills where at every point taking the steepest step would lead to the peak always.

Greedy algorithms tend to be very efficient and can be implemented in a relatively straight-
forward fashion. Many a times in O(n) complexity as there would be a single choice at
every point. However, most attempts at creating a correct greedy algorithm fail unless a
precise proof of the algorithm's correctness is first demonstrated. When a greedy strategy
fails to produce optimal results on all inputs, we instead refer to it as a heuristic instead of
an algorithm. Heuristics can be useful when speed is more important than exact results (for
example, when "good enough" results are sufficient).

7.1 Event Scheduling Problem

The first problem we'll look at that can be solved with a greedy algorithm is the event
scheduling problem. We are given a set of events that have a start time and finish time, and
we need to produce a subset of these events such that no events intersect each other (that is,
having overlapping times), and that we have the maximum number of events scheduled as
possible.

Here is a formal statement of the problem:

Input: events: a set of intervals (si,fi) where si is the start time, and fi is the finish time.

Solution: A subset S of Events.

Constraint: No events can intersect (start time exclusive). That is, for all intervals
i = (si,fi), j = (sj ,fj) where si < sj it holds that fi ≤ sj .

Objective: Maximize the number of scheduled events, i.e. maximize the size of the set S.
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We first begin with a backtracking solution to the problem:

// event-schedule -- schedule as many non-conflicting events as possible

function event-schedule(events array of s[1..n], j[1..n]): set

if n == 0: return ∅ fi

if n == 1: return {events[1]} fi

let event := events[1]

let S1 := union(event-schedule(events - set of conflicting events), event)

let S2 := event-schedule(events - {event})

if S1.size() >= S2.size():

return S1

else

return S2

fi

end

The above algorithm will faithfully find the largest set of non-conflicting events. It brushes
aside details of how the set

events - set of conflicting events

is computed, but it would require O(n) time. Because the algorithm makes two recursive
calls on itself, each with an argument of size n − 1, and because removing conflicts takes
linear time, a recurrence for the time this algorithm takes is:

T (n) = 2 ·T (n−1)+O(n)

which is O(2n).

But suppose instead of picking just the first element in the array we used some other criterion.
The aim is to just pick the "right" one so that we wouldn't need two recursive calls. First,
let's consider the greedy strategy of picking the shortest events first, until we can add no
more events without conflicts. The idea here is that the shortest events would likely interfere
less than other events.

There are scenarios were picking the shortest event first produces the optimal result. However,
here's a scenario where that strategy is sub-optimal:

Figure 7
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Dijkstra's Shortest Path Algorithm

Above, the optimal solution is to pick event A and C, instead of just B alone. Perhaps
instead of the shortest event we should pick the events that have the least number of conflicts.
This strategy seems more direct, but it fails in this scenario:

Figure 8

Above, we can maximize the number of events by picking A, B, C, D, and E. However, the
events with the least conflicts are 6, 2 and 7, 3. But picking one of 6, 2 and one of 7, 3
means that we cannot pick B, C and D, which includes three events instead of just two.

7.2 Dijkstra's Shortest Path Algorithm

With two (high-level, pseudocode) transformations, Dijsktra's algorithm can be derived from
the much less efficient backtracking algorithm. The trick here is to prove the transformations
maintain correctness, but that's the whole insight into Dijkstra's algorithm anyway. [TODO:
important to note the paradox that to solve this problem it's easier to solve a more-general
version. That is, shortest path from s to all nodes, not just to t. Worthy of its own colored
box.]
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7.3 Minimum spanning tree

w:Minimum spanning tree1

1 http://en.wikipedia.org/wiki/Minimum%20spanning%20tree
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8 Hill Climbing

Hill climbing is a technique for certain classes of optimization problems. The idea is to
start with a sub-optimal solution to a problem (i.e., start at the base of a hill) and then
repeatedly improve the solution (walk up the hill) until some condition is maximized (the
top of the hill is reached).

Hill-Climbing Methodology

# Construct a sub-optimal solution that meets the constraints of the problem# Take
the solution and make an improvement upon it# Repeatedly improve the solution
until no more improvements are necessary/possible

One of the most popular hill-climbing problems is the network flow problem. Although
network flow may sound somewhat specific it is important because it has high expressive
power: for example, many algorithmic problems encountered in practice can actually be
considered special cases of network flow. After covering a simple example of the hill-climbing
approach for a numerical problem we cover network flow and then present examples of
applications of network flow.
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8.1 Newton's Root Finding Method

Figure 9 An illustration of Newton's method: The zero of the f(x)
function is at x. We see that the guess xn+1 is a better guess than xn

because it is closer to x. (from Wikipediaa)

a http://en.wikipedia.org/wiki/Newton%27s%20method

Newton's Root Finding Method is a three-centuries-old algorithm for finding numerical
approximations to roots of a function (that is a point x where the function f(x) becomes
zero), starting from an initial guess. You need to know the function f(x) and its first
derivative f ′(x) for this algorithm. The idea is the following: In the vicinity of the initial
guess x0 we can form the Taylor expansion of the function

f(x) = f(x0 + ǫ)≈ f(x0)+ ǫf ′(x0)+ ǫ2

2 f ′′(x0)+ ...

which gives a good approximation to the function near x0. Taking only the first two terms
on the right hand side, setting them equal to zero, and solving for ǫ, we obtain

ǫ = − f(x0)

f ′(x0)

which we can use to construct a better solution

x1 = x0 + ǫ = x0 − f(x0)

f ′(x0)
.
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Network Flow

This new solution can be the starting point for applying the same procedure again. Thus, in
general a better approximation can be constructed by repeatedly applying

xn+1 = xn − f(xn)

f ′(xn)
.

As shown in the illustration, this is nothing else but the construction of the zero from the
tangent at the initial guessing point. In general, Newton's root finding method converges
quadratically, except when the first derivative of the solution f ′(x) = 0 vanishes at the root.

Coming back to the "Hill climbing" analogy, we could apply Newton's root finding method
not to the function f(x) , but to its first derivative f ′(x) , that is look for x such that
f ′(x) = 0. This would give the extremal positions of the function, its maxima and minima.
Starting Newton's method close enough to a maximum this way, we climb the hill.

Instead of regarding continuous functions, the hill-climbing method can also be applied to
discrete networks.

8.2 Network Flow

Suppose you have a directed graph (possibly with cycles) with one vertex labeled as the
source and another vertex labeled as the destination or the "sink". The source vertex only
has edges coming out of it, with no edges going into it. Similarly, the destination vertex
only has edges going into it, with no edges coming out of it. We can assume that the graph
fully connected with no dead-ends; i.e., for every vertex (except the source and the sink),
there is at least one edge going into the vertex and one edge going out of it.

We assign a "capacity" to each edge, and initially we'll consider only integral-valued capacities.
The following graph meets our requirements, where "s" is the source and "t" is the destination:
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Figure 10

We'd like now to imagine that we have some series of inputs arriving at the source that we
want to carry on the edges over to the sink. The number of units we can send on an edge at
a time must be less than or equal to the edge's capacity. You can think of the vertices as
cities and the edges as roads between the cities and we want to send as many cars from the
source city to the destination city as possible. The constraint is that we cannot send more
cars down a road than its capacity can handle.

The goal of network flow is to send as much traffic from s to t as each street can bear.

To organize the traffic routes, we can build a list of different paths from city s to city t.
Each path has a carrying capacity equal to the smallest capacity value for any edge on the
path; for example, consider the following path p:
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Figure 11

Even though the final edge of p has a capacity of 8, that edge only has one car traveling on it
because the edge before it only has a capacity of 1 (thus, that edge is at full capacity). After
using this path, we can compute the residual graph by subtracting 1 from the capacity of
each edge:
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Figure 12

(We subtracted 1 from the capacity of each edge in p because 1 was the carrying capacity of
p.) We can say that path p has a flow of 1. Formally, a flow is an assignment f(e) of values
to the set of edges in the graph G = (V,E) such that:

1. ∀e ∈ E : f(e) ∈ R

2. ∀(u,v) ∈ E : f((u,v)) = −f((v,u))

3. ∀u ∈ V,u 6= s, t :
∑

v∈V f(u,v) = 0

4. ∀e ∈ E : f(e) ≤ c(e)

Where s is the source node and t is the sink node, and c(e) ≥ 0 is the capacity of edge e.
We define the value of a flow f to be:

Value(f) =
∑

v∈V

f((s,v))

The goal of network flow is to find an f such that Value(f) is maximal. To be maximal
means that there is no other flow assignment that obeys the constraints 1-4 that would have
a higher value. The traffic example can describe what the four flow constraints mean:

1. ∀e ∈ E : f(e) ∈ R. This rule simply defines a flow to be a function from edges in the
graph to real numbers. The function is defined for every edge in the graph. You could
also consider the "function" to simply be a mapping: Every edge can be an index into
an array and the value of the array at an edge is the value of the flow function at that
edge.
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The Ford-Fulkerson Algorithm

2. ∀(u,v) ∈ E : f((u,v)) = −f((v,u)). This rule says that if there is some traffic flowing
from node u to node v then there should be considered negative that amount flowing
from v to u. For example, if two cars are flowing from city u to city v, then negative
two cars are going in the other direction. Similarly, if three cars are going from city u
to city v and two cars are going city v to city u then the net effect is the same as if
one car was going from city u to city v and no cars are going from city v to city u.

3. ∀u ∈ V,u 6= s, t :
∑

v∈V f(u,v) = 0. This rule says that the net flow (except for the
source and the destination) should be neutral. That is, you won't ever have more cars
going into a city than you would have coming out of the city. New cars can only come
from the source, and cars can only be stored in the destination. Similarly, whatever
flows out of s must eventually flow into t. Note that if a city has three cars coming
into it, it could send two cars to one city and the remaining car to a different city.
Also, a city might have cars coming into it from multiple sources (although all are
ultimately from city s).

4. ∀e ∈ E : f(e) ≤ c(e).

8.3 The Ford-Fulkerson Algorithm

The following algorithm computes the maximal flow for a given graph with non-negative
capacities. What the algorithm does can be easy to understand, but it's non-trivial to show
that it terminates and provides an optimal solution.

function net-flow(graph (V, E), node s, node t, cost c): flow

initialize f(e) := 0 for all e in E

loop while not done

for all e in E: // compute residual capacities

let cf(e) := c(e) - f(e)

repeat

let Gf := (V, {e : e in E and cf(e) > 0})

find a path p from s to t in Gf // e.g., use depth first search

if no path p exists: signal done

let path-capacities := map(p, cf) // a path is a set of edges

let m := min-val-of(path-capacities) // smallest residual capacity of p

for all (u, v) in p: // maintain flow constraints

f((u, v)) := f((u, v)) + m

f((v, u)) := f((v, u)) - m

repeat

repeat

end

8.4 Applications of Network Flow

1. finding out maximum bi - partite matching . 2. finding out min cut of a graph .
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9 Ada Implementation

9.1 Introduction

Welcome to the Ada implementations of the Algorithms1 Wikibook. For those who are new
to Ada Programming2 a few notes:

• All examples are fully functional with all the needed input and output operations.
However, only the code needed to outline the algorithms at hand is copied into the text -
the full samples are available via the download links. (Note: It can take up to 48 hours
until the cvs is updated).

• We seldom use predefined types in the sample code but define special types suitable for
the algorithms at hand.

• Ada allows for default function parameters; however, we always fill in and name all
parameters, so the reader can see which options are available.

• We seldom use shortcuts - like using the attributes Image or Value for String <=> Integer
conversions.

All these rules make the code more elaborate than perhaps needed. However, we also hope
it makes the code easier to understand

Category:Ada Programming3

9.2 Chapter 1: Introduction

The following subprograms are implementations of the Inventing an Algorithm examples4.

9.2.1 To Lower

The Ada example code does not append to the array as the algorithms. Instead we create
an empty array of the desired length and then replace the characters inside.

File: to_lower_1.adb

function To_Lower (C : Character) return Character renames

1 http://en.wikibooks.org/wiki/Algorithms

2 http://en.wikibooks.org/wiki/Ada%20Programming

3 http://en.wikibooks.org/wiki/Category%3AAda%20Programming

4 Chapter 1.3 on page 4
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Ada Implementation

Ada.Characters.Handling.To_Lower;

-- tolower - translates all alphabetic, uppercase characters

-- in str to lowercase

function To_Lower (Str : String) return String is

Result : String (Str'Range);

begin

for C in Str'Range loop

Result (C) := To_Lower (Str (C));

end loop;

return Result;

end To_Lower;

Would the append approach be impossible with Ada? No, but it would be significantly more
complex and slower.

9.2.2 Equal Ignore Case

File: to_lower_2.adb

-- equal-ignore-case -- returns true if s or t are equal,

-- ignoring case

function Equal_Ignore_Case

(S : String;

T : String)

return Boolean

is

O : constant Integer := S'First - T'First;

begin

if T'Length /= S'Length then

return False; -- if they aren't the same length, they

-- aren't equal

else

for I in S'Range loop

if To_Lower (S (I)) /=

To_Lower (T (I + O))

then

return False;

end if;

end loop;

end if;

return True;

end Equal_Ignore_Case;

9.3 Chapter 6: Dynamic Programming

9.3.1 Fibonacci numbers

The following codes are implementations of the Fibonacci-Numbers examples5.

5 Chapter 6.1 on page 49

70



Chapter 6: Dynamic Programming

Simple Implementation

File: fibonacci_1.adb

...

To calculate Fibonacci numbers negative values are not needed so we define an integer type
which starts at 0. With the integer type defined you can calculate up until Fib (87). Fib

(88) will result in an Constraint_Error.

type Integer_Type is range 0 .. 999_999_999_999_999_999;

You might notice that there is not equivalence for the assert (n >= 0) from the original
example. Ada will test the correctness of the parameter before the function is called.

function Fib (n : Integer_Type) return Integer_Type is

begin

if n = 0 then

return 0;

elsif n = 1 then

return 1;

else

return Fib (n - 1) + Fib (n - 2);

end if;

end Fib;

...

Cached Implementation

File: fibonacci_2.adb

...

For this implementation we need a special cache type can also store a -1 as "not calculated"
marker

type Cache_Type is range -1 .. 999_999_999_999_999_999;

The actual type for calculating the fibonacci numbers continues to start at 0. As it is a
subtype of the cache type Ada will automatically convert between the two. (the conversion

is - of course - checked for validity)

subtype Integer_Type is Cache_Type range

0 .. Cache_Type'Last;
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In order to know how large the cache need to be we first read the actual value from the
command line.

Value : constant Integer_Type :=

Integer_Type'Value (Ada.Command_Line.Argument (1));

The Cache array starts with element 2 since Fib (0) and Fib (1) are constants and ends
with the value we want to calculate.

type Cache_Array is

array (Integer_Type range 2 .. Value) of Cache_Type;

The Cache is initialized to the first valid value of the cache type — this is -1.

F : Cache_Array := (others => Cache_Type'First);

What follows is the actual algorithm.

function Fib (N : Integer_Type) return Integer_Type is

begin

if N = 0 or else N = 1 then

return N;

elsif F (N) /= Cache_Type'First then

return F (N);

else

F (N) := Fib (N - 1) + Fib (N - 2);

return F (N);

end if;

end Fib;

...

This implementation is faithful to the original from the Algorithms6 book. However, in Ada
you would normally do it a little different:

File: fibonacci_3.adb

when you use a slightly larger array which also stores the elements 0 and 1 and initializes
them to the correct values

type Cache_Array is

array (Integer_Type range 0 .. Value) of Cache_Type;

F : Cache_Array :=

(0 => 0,

1 => 1,

others => Cache_Type'First);

6 http://en.wikibooks.org/wiki/Algorithms
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and then you can remove the first if path.

return N;

els
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if F (N) /= Cache_Type'First then

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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This will save about 45% of the execution-time (measured on Linux i686) while needing only
two more elements in the cache array.

Memory Optimized Implementation

This version looks just like the original in WikiCode.

File: fibonacci_4.adb

type Integer_Type is range 0 .. 999_999_999_999_999_999;

function Fib (N : Integer_Type) return Integer_Type is

U : Integer_Type := 0;

V : Integer_Type := 1;

begin

for I in 2 .. N loop

Calculate_Next : declare

T : constant Integer_Type := U + V;

begin

U := V;

V := T;

end Calculate_Next;

end loop;

return V;

end Fib;

No 64 bit integers

Your Ada compiler does not support 64 bit integer numbers? Then you could try to use
decimal numbers7 instead. Using decimal numbers results in a slower program (takes about

three times as long) but the result will be the same.

The following example shows you how to define a suitable decimal type. Do experiment
with the digits and range parameters until you get the optimum out of your Ada compiler.

File: fibonacci_5.adb

type Integer_Type is delta 1.0 digits 18 range

0.0 .. 999_999_999_999_999_999.0;

You should know that floating point numbers are unsuitable for the calculation of fibonacci
numbers. They will not report an error condition when the number calculated becomes too
large — instead they will lose in precision which makes the result meaningless.

7 http://en.wikibooks.org/wiki/Ada%20Programming%2FTypes%2Fdelta
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11 Licenses

11.1 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. Preamble

The GNU General Public License is a free, copyleft
license for software and other kinds of works.

The licenses for most software and other practi-
cal works are designed to take away your freedom
to share and change the works. By contrast, the
GNU General Public License is intended to guaran-
tee your freedom to share and change all versions
of a program–to make sure it remains free software
for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our
software; it applies also to any other work released
this way by its authors. You can apply it to your
programs, too.

When we speak of free software, we are referring
to freedom, not price. Our General Public Li-
censes are designed to make sure that you have
the freedom to distribute copies of free software
(and charge for them if you wish), that you receive
source code or can get it if you want it, that you
can change the software or use pieces of it in new
free programs, and that you know you can do these
things.

To protect your rights, we need to prevent others
from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain re-
sponsibilities if you distribute copies of the soft-
ware, or if you modify it: responsibilities to respect
the freedom of others.

For example, if you distribute copies of such a pro-
gram, whether gratis or for a fee, you must pass
on to the recipients the same freedoms that you re-
ceived. You must make sure that they, too, receive
or can get the source code. And you must show
them these terms so they know their rights.

Developers that use the GNU GPL protect your
rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you
legal permission to copy, distribute and/or modify
it.

For the developers’ and authors’ protection, the
GPL clearly explains that there is no warranty for
this free software. For both users’ and authors’
sake, the GPL requires that modified versions be
marked as changed, so that their problems will not
be attributed erroneously to authors of previous
versions.

Some devices are designed to deny users access to
install or run modified versions of the software in-
side them, although the manufacturer can do so.
This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software.
The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to pro-
hibit the practice for those products. If such prob-
lems arise substantially in other domains, we stand
ready to extend this provision to those domains in
future versions of the GPL, as needed to protect
the freedom of users.

Finally, every program is threatened constantly by
software patents. States should not allow patents
to restrict development and use of software on
general-purpose computers, but in those that do,
we wish to avoid the special danger that patents
applied to a free program could make it effectively
proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-
free.

The precise terms and conditions for copying, dis-
tribution and modification follow. TERMS AND
CONDITIONS 0. Definitions.

“This License” refers to version 3 of the GNU Gen-
eral Public License.

“Copyright” also means copyright-like laws that ap-
ply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work
licensed under this License. Each licensee is ad-
dressed as “you”. “Licensees” and “recipients” may
be individuals or organizations.

To “modify” a work means to copy from or adapt
all or part of the work in a fashion requiring copy-
right permission, other than the making of an exact
copy. The resulting work is called a “modified ver-
sion” of the earlier work or a work “based on” the
earlier work.

A “covered work” means either the unmodified Pro-
gram or a work based on the Program.

To “propagate” a work means to do anything with it
that, without permission, would make you directly
or secondarily liable for infringement under appli-
cable copyright law, except executing it on a com-
puter or modifying a private copy. Propagation in-
cludes copying, distribution (with or without mod-
ification), making available to the public, and in
some countries other activities as well.

To “convey” a work means any kind of propagation
that enables other parties to make or receive copies.
Mere interaction with a user through a computer

network, with no transfer of a copy, is not convey-
ing.

An interactive user interface displays “Appropriate
Legal Notices” to the extent that it includes a con-
venient and prominently visible feature that (1) dis-
plays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (ex-
cept to the extent that warranties are provided),
that licensees may convey the work under this Li-
cense, and how to view a copy of this License. If
the interface presents a list of user commands or
options, such as a menu, a prominent item in the
list meets this criterion. 1. Source Code.

The “source code” for a work means the preferred
form of the work for making modifications to it.
“Object code” means any non-source form of a
work.

A “Standard Interface” means an interface that ei-
ther is an official standard defined by a recognized
standards body, or, in the case of interfaces spec-
ified for a particular programming language, one
that is widely used among developers working in
that language.

The “System Libraries” of an executable work in-
clude anything, other than the work as a whole,
that (a) is included in the normal form of packag-
ing a Major Component, but which is not part of
that Major Component, and (b) serves only to en-
able use of the work with that Major Component,
or to implement a Standard Interface for which an
implementation is available to the public in source
code form. A “Major Component”, in this context,
means a major essential component (kernel, window
system, and so on) of the specific operating system
(if any) on which the executable work runs, or a
compiler used to produce the work, or an object
code interpreter used to run it.

The “Corresponding Source” for a work in object
code form means all the source code needed to gen-
erate, install, and (for an executable work) run
the object code and to modify the work, including
scripts to control those activities. However, it does
not include the work’s System Libraries, or general-
purpose tools or generally available free programs
which are used unmodified in performing those ac-
tivities but which are not part of the work. For
example, Corresponding Source includes interface
definition files associated with source files for the
work, and the source code for shared libraries and
dynamically linked subprograms that the work is
specifically designed to require, such as by intimate
data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include any-
thing that users can regenerate automatically from
other parts of the Corresponding Source.

The Corresponding Source for a work in source code
form is that same work. 2. Basic Permissions.

All rights granted under this License are granted
for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met.
This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The out-
put from running a covered work is covered by this
License only if the output, given its content, con-
stitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as pro-
vided by copyright law.

You may make, run and propagate covered works
that you do not convey, without conditions so long
as your license otherwise remains in force. You may
convey covered works to others for the sole purpose
of having them make modifications exclusively for
you, or provide you with facilities for running those
works, provided that you comply with the terms
of this License in conveying all material for which
you do not control copyright. Those thus making or
running the covered works for you must do so exclu-
sively on your behalf, under your direction and con-
trol, on terms that prohibit them from making any
copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is permit-
ted solely under the conditions stated below. Subli-
censing is not allowed; section 10 makes it unneces-
sary. 3. Protecting Users’ Legal Rights From Anti-
Circumvention Law.

No covered work shall be deemed part of an effec-
tive technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumven-
tion of such measures.

When you convey a covered work, you waive any
legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is ef-
fected by exercising rights under this License with
respect to the covered work, and you disclaim any
intention to limit operation or modification of the
work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid
circumvention of technological measures. 4. Con-
veying Verbatim Copies.

You may convey verbatim copies of the Program’s
source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately
publish on each copy an appropriate copyright no-
tice; keep intact all notices stating that this License
and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipi-
ents a copy of this License along with the Program.

You may charge any price or no price for each copy
that you convey, and you may offer support or war-
ranty protection for a fee. 5. Conveying Modified
Source Versions.

You may convey a work based on the Program, or
the modifications to produce it from the Program,
in the form of source code under the terms of sec-
tion 4, provided that you also meet all of these con-
ditions:

* a) The work must carry prominent notices stating
that you modified it, and giving a relevant date. *
b) The work must carry prominent notices stating
that it is released under this License and any con-
ditions added under section 7. This requirement
modifies the requirement in section 4 to “keep in-
tact all notices”. * c) You must license the entire
work, as a whole, under this License to anyone who
comes into possession of a copy. This License will
therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This
License gives no permission to license the work in
any other way, but it does not invalidate such per-
mission if you have separately received it. * d) If
the work has interactive user interfaces, each must
display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not dis-
play Appropriate Legal Notices, your work need not
make them do so.

A compilation of a covered work with other sepa-
rate and independent works, which are not by their
nature extensions of the covered work, and which
are not combined with it such as to form a larger
program, in or on a volume of a storage or distri-
bution medium, is called an “aggregate” if the com-
pilation and its resulting copyright are not used to
limit the access or legal rights of the compilation’s
users beyond what the individual works permit. In-
clusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the
aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form
under the terms of sections 4 and 5, provided that
you also convey the machine-readable Correspond-
ing Source under the terms of this License, in one
of these ways:

* a) Convey the object code in, or embodied in,
a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding
Source fixed on a durable physical medium custom-
arily used for software interchange. * b) Convey the
object code in, or embodied in, a physical product
(including a physical distribution medium), accom-
panied by a written offer, valid for at least three
years and valid for as long as you offer spare parts
or customer support for that product model, to
give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the
software in the product that is covered by this Li-
cense, on a durable physical medium customarily
used for software interchange, for a price no more
than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the
Corresponding Source from a network server at no
charge. * c) Convey individual copies of the object
code with a copy of the written offer to provide
the Corresponding Source. This alternative is al-
lowed only occasionally and noncommercially, and
only if you received the object code with such an of-
fer, in accord with subsection 6b. * d) Convey the
object code by offering access from a designated
place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way
through the same place at no further charge. You
need not require recipients to copy the Correspond-
ing Source along with the object code. If the place
to copy the object code is a network server, the Cor-
responding Source may be on a different server (op-
erated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear
directions next to the object code saying where to
find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long
as needed to satisfy these requirements. * e) Con-
vey the object code using peer-to-peer transmission,
provided you inform other peers where the object
code and Corresponding Source of the work are be-
ing offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose
source code is excluded from the Corresponding
Source as a System Library, need not be included
in conveying the object code work.

A “User Product” is either (1) a “consumer prod-
uct”, which means any tangible personal property
which is normally used for personal, family, or
household purposes, or (2) anything designed or
sold for incorporation into a dwelling. In deter-
mining whether a product is a consumer product,
doubtful cases shall be resolved in favor of cover-
age. For a particular product received by a par-
ticular user, “normally used” refers to a typical or
common use of that class of product, regardless of
the status of the particular user or of the way in
which the particular user actually uses, or expects
or is expected to use, the product. A product is a
consumer product regardless of whether the prod-
uct has substantial commercial, industrial or non-
consumer uses, unless such uses represent the only
significant mode of use of the product.

“Installation Information” for a User Product
means any methods, procedures, authorization
keys, or other information required to install and
execute modified versions of a covered work in that
User Product from a modified version of its Corre-
sponding Source. The information must suffice to
ensure that the continued functioning of the modi-
fied object code is in no case prevented or interfered
with solely because modification has been made.

If you convey an object code work under this sec-
tion in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a
transaction in which the right of possession and
use of the User Product is transferred to the re-
cipient in perpetuity or for a fixed term (regard-
less of how the transaction is characterized), the
Corresponding Source conveyed under this section
must be accompanied by the Installation Informa-
tion. But this requirement does not apply if neither
you nor any third party retains the ability to install
modified object code on the User Product (for ex-
ample, the work has been installed in ROM).

The requirement to provide Installation Informa-
tion does not include a requirement to continue to
provide support service, warranty, or updates for a
work that has been modified or installed by the re-
cipient, or for the User Product in which it has been
modified or installed. Access to a network may be
denied when the modification itself materially and
adversely affects the operation of the network or
violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation
Information provided, in accord with this section
must be in a format that is publicly documented
(and with an implementation available to the public
in source code form), and must require no special
password or key for unpacking, reading or copying.
7. Additional Terms.

“Additional permissions” are terms that supplement
the terms of this License by making exceptions from
one or more of its conditions. Additional permis-
sions that are applicable to the entire Program
shall be treated as though they were included in
this License, to the extent that they are valid un-
der applicable law. If additional permissions apply
only to part of the Program, that part may be used
separately under those permissions, but the entire
Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may
at your option remove any additional permissions
from that copy, or from any part of it. (Additional
permissions may be written to require their own re-
moval in certain cases when you modify the work.)
You may place additional permissions on material,
added by you to a covered work, for which you have
or can give appropriate copyright permission.

Notwithstanding any other provision of this Li-
cense, for material you add to a covered work, you
may (if authorized by the copyright holders of that
material) supplement the terms of this License with
terms:

* a) Disclaiming warranty or limiting liability dif-
ferently from the terms of sections 15 and 16 of this
License; or * b) Requiring preservation of specified
reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices
displayed by works containing it; or * c) Prohibit-
ing misrepresentation of the origin of that material,
or requiring that modified versions of such material
be marked in reasonable ways as different from the
original version; or * d) Limiting the use for pub-
licity purposes of names of licensors or authors of
the material; or * e) Declining to grant rights under
trademark law for use of some trade names, trade-
marks, or service marks; or * f) Requiring indem-
nification of licensors and authors of that material
by anyone who conveys the material (or modified
versions of it) with contractual assumptions of lia-
bility to the recipient, for any liability that these
contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are con-
sidered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any
part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a
further restriction, you may remove that term. If a
license document contains a further restriction but
permits relicensing or conveying under this License,
you may add to a covered work material governed
by the terms of that license document, provided
that the further restriction does not survive such
relicensing or conveying.

If you add terms to a covered work in accord with
this section, you must place, in the relevant source
files, a statement of the additional terms that ap-
ply to those files, or a notice indicating where to
find the applicable terms.

Additional terms, permissive or non-permissive,
may be stated in the form of a separately written
license, or stated as exceptions; the above require-
ments apply either way. 8. Termination.

You may not propagate or modify a covered work
except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is
void, and will automatically terminate your rights
under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)



from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, you do not qualify to receive new
licenses for the same material under section 10. 9.
Acceptance Not Required for Having Copies.

You are not required to accept this License in or-
der to receive or run a copy of the Program. Ancil-
lary propagation of a covered work occurring solely
as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require accep-
tance. However, nothing other than this License
grants you permission to propagate or modify any
covered work. These actions infringe copyright if
you do not accept this License. Therefore, by mod-
ifying or propagating a covered work, you indicate
your acceptance of this License to do so. 10. Auto-
matic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient
automatically receives a license from the original
licensors, to run, modify and propagate that work,
subject to this License. You are not responsible
for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transfer-
ring control of an organization, or substantially all
assets of one, or subdividing an organization, or
merging organizations. If propagation of a cov-
ered work results from an entity transaction, each
party to that transaction who receives a copy of the
work also receives whatever licenses to the work the
party’s predecessor in interest had or could give un-
der the previous paragraph, plus a right to posses-
sion of the Corresponding Source of the work from
the predecessor in interest, if the predecessor has it
or can get it with reasonable efforts.

You may not impose any further restrictions on the
exercise of the rights granted or affirmed under this
License. For example, you may not impose a license
fee, royalty, or other charge for exercise of rights
granted under this License, and you may not ini-
tiate litigation (including a cross-claim or counter-
claim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who autho-
rizes use under this License of the Program or a
work on which the Program is based. The work
thus licensed is called the contributor’s “contribu-
tor version”.

A contributor’s “essential patent claims” are all
patent claims owned or controlled by the contribu-
tor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permit-
ted by this License, of making, using, or selling its
contributor version, but do not include claims that
would be infringed only as a consequence of further
modification of the contributor version. For pur-
poses of this definition, “control” includes the right
to grant patent sublicenses in a manner consistent
with the requirements of this License.

Each contributor grants you a non-exclusive, world-
wide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, of-
fer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent li-
cense” is any express agreement or commitment,
however denominated, not to enforce a patent (such
as an express permission to practice a patent or
covenant not to sue for patent infringement). To
“grant” such a patent license to a party means to
make such an agreement or commitment not to en-
force a patent against the party.

If you convey a covered work, knowingly relying
on a patent license, and the Corresponding Source
of the work is not available for anyone to copy,
free of charge and under the terms of this License,
through a publicly available network server or other
readily accessible means, then you must either (1)
cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or
(3) arrange, in a manner consistent with the re-
quirements of this License, to extend the patent
license to downstream recipients. “Knowingly re-
lying” means you have actual knowledge that, but
for the patent license, your conveying the covered
work in a country, or your recipient’s use of the cov-
ered work in a country, would infringe one or more
identifiable patents in that country that you have
reason to believe are valid.

If, pursuant to or in connection with a single trans-
action or arrangement, you convey, or propagate
by procuring conveyance of, a covered work, and
grant a patent license to some of the parties re-
ceiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is
automatically extended to all recipients of the cov-
ered work and works based on it.

A patent license is “discriminatory” if it does not in-
clude within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically
granted under this License. You may not convey a
covered work if you are a party to an arrangement
with a third party that is in the business of dis-
tributing software, under which you make payment
to the third party based on the extent of your ac-
tivity of conveying the work, and under which the
third party grants, to any of the parties who would
receive the covered work from you, a discrimina-
tory patent license (a) in connection with copies
of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in
connection with specific products or compilations
that contain the covered work, unless you entered
into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as ex-
cluding or limiting any implied license or other de-
fenses to infringement that may otherwise be avail-
able to you under applicable patent law. 12. No
Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you
from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultane-
ously your obligations under this License and any
other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you
agree to terms that obligate you to collect a roy-
alty for further conveying from those to whom you
convey the Program, the only way you could satisfy
both those terms and this License would be to re-
frain entirely from conveying the Program. 13. Use
with the GNU Affero General Public License.

Notwithstanding any other provision of this Li-
cense, you have permission to link or combine any
covered work with a work licensed under version
3 of the GNU Affero General Public License into
a single combined work, and to convey the result-
ing work. The terms of this License will continue
to apply to the part which is the covered work, but
the special requirements of the GNU Affero General
Public License, section 13, concerning interaction
through a network will apply to the combination
as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised
and/or new versions of the GNU General Public Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.

Each version is given a distinguishing version num-
ber. If the Program specifies that a certain num-
bered version of the GNU General Public License
“or any later version” applies to it, you have the
option of following the terms and conditions either
of that numbered version or of any later version
published by the Free Software Foundation. If the
Program does not specify a version number of the
GNU General Public License, you may choose any
version ever published by the Free Software Foun-
dation.

If the Program specifies that a proxy can decide
which future versions of the GNU General Public
License can be used, that proxy’s public statement
of acceptance of a version permanently authorizes
you to choose that version for the Program.

Later license versions may give you additional or
different permissions. However, no additional obli-
gations are imposed on any author or copyright
holder as a result of your choosing to follow a later
version. 15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PRO-
GRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLI-
CABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CON-
VEYS THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. 17. In-
terpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of lia-
bility provided above cannot be given local legal ef-

fect according to their terms, reviewing courts shall
apply local law that most closely approximates an
absolute waiver of all civil liability in connection
with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in
return for a fee.

END OF TERMS AND CONDITIONS How to Ap-
ply These Terms to Your New Programs

If you develop a new program, and you want it to
be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the pro-
gram. It is safest to attach them to the start of
each source file to most effectively state the exclu-
sion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief
idea of what it does.> Copyright (C) <year>
<name of author>

This program is free software: you can redistribute
it and/or modify it under the terms of the GNU
General Public License as published by the Free
Software Foundation, either version 3 of the Li-
cense, or (at your option) any later version.

This program is distributed in the hope that
it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU Gen-
eral Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by elec-
tronic and paper mail.

If the program does terminal interaction, make it
output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of au-
thor> This program comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is
free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’
should show the appropriate parts of the General
Public License. Of course, your program’s com-
mands might be different; for a GUI interface, you
would use an “about box”.

You should also get your employer (if you work
as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if nec-
essary. For more information on this, and
how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit
incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you
may consider it more useful to permit linking pro-
prietary applications with the library. If this is
what you want to do, use the GNU Lesser General
Public License instead of this License. But first,
please read <http://www.gnu.org/philosophy/why-
not-lgpl.html>.

11.2 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Soft-
ware Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. 0. PREAMBLE

The purpose of this License is to make a manual,
textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it,
with or without modifying it, either commercially
or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get
credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means
that derivative works of the document must them-
selves be free in the same sense. It complements
the GNU General Public License, which is a copy-
left license designed for free software.

We have designed this License in order to use it
for manuals for free software, because free software
needs free documentation: a free program should
come with manuals providing the same freedoms
that the software does. But this License is not lim-
ited to software manuals; it can be used for any tex-
tual work, regardless of subject matter or whether
it is published as a printed book. We recommend
this License principally for works whose purpose is
instruction or reference. 1. APPLICABILITY AND
DEFINITIONS

This License applies to any manual or other work,
in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under
the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in dura-
tion, to use that work under the conditions stated
herein. The "Document", below, refers to any such
manual or work. Any member of the public is a li-
censee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any
work containing the Document or a portion of it, ei-
ther copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a
front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or

authors of the Document to the Document’s overall
subject (or to related matters) and contains noth-
ing that could fall directly within that overall sub-
ject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not ex-
plain any mathematics.) The relationship could be
a matter of historical connection with the subject
or with related matters, or of legal, commercial,
philosophical, ethical or political position regard-
ing them.

The "Invariant Sections" are certain Secondary Sec-
tions whose titles are designated, as being those of
Invariant Sections, in the notice that says that the
Document is released under this License. If a sec-
tion does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text
may be at most 25 words.

A "Transparent" copy of the Document means a
machine-readable copy, represented in a format
whose specification is available to the general pub-
lic, that is suitable for revising the document
straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs
or (for drawings) some widely available drawing ed-
itor, and that is suitable for input to text format-
ters or for automatic translation to a variety of for-
mats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged
to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not
Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called
"Opaque".

Examples of suitable formats for Transparent
copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF de-
signed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that
can be read and edited only by proprietary word
processors, SGML or XML for which the DTD
and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or

PDF produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the
title page itself, plus such following pages as are
needed to hold, legibly, the material this License
requires to appear in the title page. For works in
formats which do not have any title page as such,
"Title Page" means the text near the most promi-
nent appearance of the work’s title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that
distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit
of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below,
such as "Acknowledgements", "Dedications", "En-
dorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document
means that it remains a section "Entitled XYZ" ac-
cording to this definition.

The Document may include Warranty Disclaimers
next to the notice which states that this License
applies to the Document. These Warranty Dis-
claimers are considered to be included by reference
in this License, but only as regards disclaiming war-
ranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on
the meaning of this License. 2. VERBATIM COPY-
ING

You may copy and distribute the Document in any
medium, either commercially or noncommercially,
provided that this License, the copyright notices,
and the license notice saying this License applies to
the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those
of this License. You may not use technical mea-
sures to obstruct or control the reading or further
copying of the copies you make or distribute. How-
ever, you may accept compensation in exchange for
copies. If you distribute a large enough number of
copies you must also follow the conditions in sec-
tion 3.

You may also lend copies, under the same condi-
tions stated above, and you may publicly display
copies. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media
that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you

must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these
copies. The front cover must present the full title
with all words of the title equally prominent and
visible. You may add other material on the covers
in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Doc-
ument and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too volu-
minous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the
Document numbering more than 100, you must ei-
ther include a machine-readable Transparent copy
along with each Opaque copy, or state in or with
each Opaque copy a computer-network location
from which the general network-using public has
access to download using public-standard network
protocols a complete Transparent copy of the Doc-
ument, free of added material. If you use the lat-
ter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until
at least one year after the last time you distribute
an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you con-
tact the authors of the Document well before redis-
tributing any large number of copies, to give them
a chance to provide you with an updated version of
the Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of
the Document under the conditions of sections 2
and 3 above, provided that you release the Modi-
fied Version under precisely this License, with the
Modified Version filling the role of the Document,
thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modi-
fied Version:

* A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Document,
and from those of previous versions (which should,
if there were any, be listed in the History section
of the Document). You may use the same title as
a previous version if the original publisher of that
version gives permission. * B. List on the Title



Page, as authors, one or more persons or entities
responsible for authorship of the modifications in
the Modified Version, together with at least five of
the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless
they release you from this requirement. * C. State
on the Title page the name of the publisher of the
Modified Version, as the publisher. * D. Preserve
all the copyright notices of the Document. * E. Add
an appropriate copyright notice for your modifica-
tions adjacent to the other copyright notices. * F.
Include, immediately after the copyright notices, a
license notice giving the public permission to use
the Modified Version under the terms of this Li-
cense, in the form shown in the Addendum below. *
G. Preserve in that license notice the full lists of In-
variant Sections and required Cover Texts given in
the Document’s license notice. * H. Include an unal-
tered copy of this License. * I. Preserve the section
Entitled "History", Preserve its Title, and add to it
an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "His-
tory" in the Document, create one stating the title,
year, authors, and publisher of the Document as
given on its Title Page, then add an item describ-
ing the Modified Version as stated in the previous
sentence. * J. Preserve the network location, if any,
given in the Document for public access to a Trans-
parent copy of the Document, and likewise the net-
work locations given in the Document for previous
versions it was based on. These may be placed in
the "History" section. You may omit a network lo-
cation for a work that was published at least four
years before the Document itself, or if the original
publisher of the version it refers to gives permission.
* K. For any section Entitled "Acknowledgements"
or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and
tone of each of the contributor acknowledgements
and/or dedications given therein. * L. Preserve all
the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or
the equivalent are not considered part of the section
titles. * M. Delete any section Entitled "Endorse-
ments". Such a section may not be included in the
Modified Version. * N. Do not retitle any existing
section to be Entitled "Endorsements" or to conflict
in title with any Invariant Section. * O. Preserve
any Warranty Disclaimers.

If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary
Sections and contain no material copied from the
Document, you may at your option designate some
or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled "Endorsements",
provided it contains nothing but endorsements of
your Modified Version by various parties—for ex-
ample, statements of peer review or that the text
has been approved by an organization as the au-
thoritative definition of a standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may
be added by (or through arrangements made by)
any one entity. If the Document already includes
a cover text for the same cover, previously added
by you or by arrangement made by the same entity
you are acting on behalf of, you may not add an-

other; but you may replace the old one, on explicit
permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do
not by this License give permission to use their
names for publicity for or to assert or imply en-
dorsement of any Modified Version. 5. COMBIN-
ING DOCUMENTS

You may combine the Document with other docu-
ments released under this License, under the terms
defined in section 4 above for modified versions,
provided that you include in the combination all
of the Invariant Sections of all of the original doc-
uments, unmodified, and list them all as Invariant
Sections of your combined work in its license no-
tice, and that you preserve all their Warranty Dis-
claimers.

The combined work need only contain one copy of
this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there
are multiple Invariant Sections with the same name
but different contents, make the title of each such
section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher
of that section if known, or else a unique number.
Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections
Entitled "History" in the various original docu-
ments, forming one section Entitled "History"; like-
wise combine any sections Entitled "Acknowledge-
ments", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorse-
ments". 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Docu-
ment and other documents released under this Li-
cense, and replace the individual copies of this Li-
cense in the various documents with a single copy
that is included in the collection, provided that you
follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a col-
lection, and distribute it individually under this Li-
cense, provided you insert a copy of this License
into the extracted document, and follow this Li-
cense in all other respects regarding verbatim copy-
ing of that document. 7. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its derivatives
with other separate and independent documents or
works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright re-
sulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what
the individual works permit. When the Document
is included in an aggregate, this License does not
apply to the other works in the aggregate which are
not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is appli-
cable to these copies of the Document, then if the
Document is less than one half of the entire aggre-
gate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers
if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket
the whole aggregate. 8. TRANSLATION

Translation is considered a kind of modification, so
you may distribute translations of the Document
under the terms of section 4. Replacing Invariant
Sections with translations requires special permis-
sion from their copyright holders, but you may in-
clude translations of some or all Invariant Sections
in addition to the original versions of these Invari-
ant Sections. You may include a translation of this
License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you
also include the original English version of this Li-
cense and the original versions of those notices and
disclaimers. In case of a disagreement between the
translation and the original version of this License
or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled "Acknowl-
edgements", "Dedications", or "History", the re-
quirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under
this License. Any attempt otherwise to copy, mod-
ify, sublicense, or distribute it is void, and will
automatically terminate your rights under this Li-
cense.

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)
from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, receipt of a copy of some or all
of the same material does not give you any rights
to use it. 10. FUTURE REVISIONS OF THIS LI-
CENSE

The Free Software Foundation may publish new, re-
vised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguish-
ing version number. If the Document specifies that
a particular numbered version of this License "or
any later version" applies to it, you have the op-
tion of following the terms and conditions either of
that specified version or of any later version that
has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify
a version number of this License, you may choose
any version ever published (not as a draft) by the
Free Software Foundation. If the Document speci-
fies that a proxy can decide which future versions of

this License can be used, that proxy’s public state-
ment of acceptance of a version permanently autho-
rizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or
"MMC Site") means any World Wide Web server
that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is
an example of such a server. A "Massive Multiau-
thor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus pub-
lished on the MMC site.

"CC-BY-SA" means the Creative Commons
Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in
San Francisco, California, as well as future copyleft
versions of that license published by that same
organization.

"Incorporate" means to publish or republish a Doc-
ument, in whole or in part, as part of another Doc-
ument.

An MMC is "eligible for relicensing" if it is licensed
under this License, and if all works that were first
published under this License somewhere other than
this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an
MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, pro-
vided the MMC is eligible for relicensing. ADDEN-
DUM: How to use this License for your documents

To use this License in a document you have written,
include a copy of the License in the document and
put the following copyright and license notices just
after the title page:

Copyright (C) YEAR YOUR NAME. Permission is
granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documen-
tation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation
License".

If you have Invariant Sections, Front-Cover Texts
and Back-Cover Texts, replace the "with . . .
Texts." line with this:

with the Invariant Sections being LIST THEIR TI-
TLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts,
or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of
program code, we recommend releasing these exam-
ples in parallel under your choice of free software
license, such as the GNU General Public License,
to permit their use in free software.

11.3 GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed.

This version of the GNU Lesser General Public Li-
cense incorporates the terms and conditions of ver-
sion 3 of the GNU General Public License, supple-
mented by the additional permissions listed below.
0. Additional Definitions.

As used herein, “this License” refers to version 3
of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General
Public License.

“The Library” refers to a covered work governed by
this License, other than an Application or a Com-
bined Work as defined below.

An “Application” is any work that makes use of an
interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass
of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by com-
bining or linking an Application with the Library.
The particular version of the Library with which
the Combined Work was made is also called the
“Linked Version”.

The “Minimal Corresponding Source” for a Com-
bined Work means the Corresponding Source for
the Combined Work, excluding any source code for
portions of the Combined Work that, considered in
isolation, are based on the Application, and not on
the Linked Version.

The “Corresponding Application Code” for a Com-
bined Work means the object code and/or source
code for the Application, including any data and
utility programs needed for reproducing the Com-
bined Work from the Application, but excluding the
System Libraries of the Combined Work. 1. Excep-
tion to Section 3 of the GNU GPL.

You may convey a covered work under sections 3
and 4 of this License without being bound by sec-
tion 3 of the GNU GPL. 2. Conveying Modified
Versions.

If you modify a copy of the Library, and, in your
modifications, a facility refers to a function or data
to be supplied by an Application that uses the fa-
cility (other than as an argument passed when the
facility is invoked), then you may convey a copy of
the modified version:

* a) under this License, provided that you make a
good faith effort to ensure that, in the event an Ap-
plication does not supply the function or data, the
facility still operates, and performs whatever part
of its purpose remains meaningful, or * b) under
the GNU GPL, with none of the additional permis-
sions of this License applicable to that copy.

3. Object Code Incorporating Material from Li-
brary Header Files.

The object code form of an Application may incor-
porate material from a header file that is part of
the Library. You may convey such object code un-
der terms of your choice, provided that, if the in-
corporated material is not limited to numerical pa-
rameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten
or fewer lines in length), you do both of the follow-
ing:

* a) Give prominent notice with each copy of the
object code that the Library is used in it and that
the Library and its use are covered by this License.
* b) Accompany the object code with a copy of the
GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of
your choice that, taken together, effectively do not
restrict modification of the portions of the Library
contained in the Combined Work and reverse en-
gineering for debugging such modifications, if you
also do each of the following:

* a) Give prominent notice with each copy of the
Combined Work that the Library is used in it and
that the Library and its use are covered by this Li-
cense. * b) Accompany the Combined Work with a
copy of the GNU GPL and this license document. *
c) For a Combined Work that displays copyright no-
tices during execution, include the copyright notice
for the Library among these notices, as well as a ref-
erence directing the user to the copies of the GNU
GPL and this license document. * d) Do one of the
following: o 0) Convey the Minimal Corresponding
Source under the terms of this License, and the Cor-
responding Application Code in a form suitable for,
and under terms that permit, the user to recombine
or relink the Application with a modified version
of the Linked Version to produce a modified Com-
bined Work, in the manner specified by section 6 of
the GNU GPL for conveying Corresponding Source.
o 1) Use a suitable shared library mechanism for
linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Li-
brary already present on the user’s computer sys-
tem, and (b) will operate properly with a modified
version of the Library that is interface-compatible
with the Linked Version. * e) Provide Installation
Information, but only if you would otherwise be re-
quired to provide such information under section 6
of the GNU GPL, and only to the extent that such
information is necessary to install and execute a
modified version of the Combined Work produced
by recombining or relinking the Application with
a modified version of the Linked Version. (If you
use option 4d0, the Installation Information must
accompany the Minimal Corresponding Source and
Corresponding Application Code. If you use option
4d1, you must provide the Installation Information
in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work
based on the Library side by side in a single library
together with other library facilities that are not
Applications and are not covered by this License,
and convey such a combined library under terms of
your choice, if you do both of the following:

* a) Accompany the combined library with a copy
of the same work based on the Library, uncombined
with any other library facilities, conveyed under
the terms of this License. * b) Give prominent no-
tice with the combined library that part of it is a
work based on the Library, and explaining where
to find the accompanying uncombined form of the
same work.

6. Revised Versions of the GNU Lesser General
Public License.

The Free Software Foundation may publish revised
and/or new versions of the GNU Lesser General
Public License from time to time. Such new ver-
sions will be similar in spirit to the present version,
but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version num-
ber. If the Library as you received it specifies that
a certain numbered version of the GNU Lesser Gen-
eral Public License “or any later version” applies to
it, you have the option of following the terms and
conditions either of that published version or of any
later version published by the Free Software Foun-
dation. If the Library as you received it does not
specify a version number of the GNU Lesser Gen-
eral Public License, you may choose any version of
the GNU Lesser General Public License ever pub-
lished by the Free Software Foundation.

If the Library as you received it specifies that a
proxy can decide whether future versions of the
GNU Lesser General Public License shall apply,
that proxy’s public statement of acceptance of
any version is permanent authorization for you to
choose that version for the Library.
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