
Non-Programmer’s Tutorial for Python
2.6

Wikibooks.org

March 13, 2013

On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia

projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An

URI to this license is given in the list of figures on page 119. If this document is a derived work

from the contents of one of these projects and the content was still licensed by the project under

this license at the time of derivation this document has to be licensed under the same, a similar or a

compatible license, as stated in section 4b of the license. The list of contributors is included in chapter

Contributors on page 115. The licenses GPL, LGPL and GFDL are included in chapter Licenses on

page 123, since this book and/or parts of it may or may not be licensed under one or more of these

licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of

figures on page 119. This PDF was generated by the LATEX typesetting software. The LATEX source

code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the

PDF file, we recommend the use of http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/

utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting

Save Attachment. After extracting it from the PDF file you have to rename it to source.7z. To

uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX

source itself was generated by a program written by Dirk Hünniger, which is freely available under

an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf.

This distribution also contains a configured version of the pdflatex compiler with all necessary

packages and fonts needed to compile the LATEX source included in this PDF file.

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.7-zip.org/
http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf

Contents

1 Front matter 3

2 Intro 5

2.1 First things first . 5

3 Hello, World 11

4 Who Goes There? 17

5 Count to 10 23

6 Decisions 29

7 Debugging 35

8 Defining Functions 41

9 Advanced Functions Example 49

10 Lists 55

11 For Loops 65

12 Boolean Expressions 69

13 Dictionaries 77

14 Using Modules 83

15 More on Lists 87

16 Revenge of the Strings 91

17 File IO 99

18 Dealing with the imperfect 107

19 The End 111

20 FAQ 113

21 Contributors 115

List of Figures 119

III

Contents

22 Licenses 123

22.1 GNU GENERAL PUBLIC LICENSE . 123
22.2 GNU Free Documentation License . 124
22.3 GNU Lesser General Public License . 125

1

1 Front matter

All example Python source code in this tutorial is granted to the public domain. Therefore
you may modify it and relicense it under any license you please. Since you are expected to
learn programming, the GNU Free Documentation License would require you to keep all
programs that are derived from the source code in this tutorial under that license. Since the
python source code is granted to the public domain, that requirement is waived.

This tutorial was originally written in LaTeX and was available at: http://www.honors.

montana.edu/~jjc/easytut/. It was moved here because the other server is going away and
it was being read at least ten times a day. This document is available as LaTeX, HTML, PDF,
and Postscript. Go to http://jjc.freeshell.org/easytut/ (Also could try http://

web.archive.org/web/*/http://www.honors.montana.edu/~jjc/easytut/ or http://

www.geocities.com/jrincayc/easytut.tar.gz) to see all these forms. There are also
versions of this in Korean, Spanish, Italian and Greek in the tar file.

The Non-Programmers' Tutorial For Python is a tutorial designed to be an introduction
to the Python programming language. This guide is for someone with no programming
experience.

If you have programmed in other languages I recommend using Python Tutorial for
Programmers1 written by Guido van Rossum.

If you have any questions or comments please use the discussion pages or see ../Authors2 for
author contact information. I welcome questions and comments about this tutorial. I will
try to answer any questions you have as best I can.

Thanks go to James A. Brown for writing most of the Windows install info. Thanks also
to Elizabeth Cogliati for complaining enough :) about the original tutorial (that is almost
unusable for a non-programmer), for proofreading, and for many ideas and comments on it.
Thanks to Joe Oppegaard for writing almost all the exercises. Thanks to everyone I have
missed.

1.0.1 Other resources

• Python Home Page3

• Python Documentation4

• Python Tutorial for Programmers5

1 http://docs.python.org/tutorial/

2 http://en.wikibooks.org/wiki/..%2FAuthors

3 http://www.python.org

4 http://www.python.org/doc/

5 http://www.python.org/doc/current/tut/tut.html

3

http://www.honors.montana.edu/~jjc/easytut/.
http://www.honors.montana.edu/~jjc/easytut/.
http://jjc.freeshell.org/easytut/
http://web.archive.org/web/*/http://www.honors.montana.edu/~jjc/easytut/
http://web.archive.org/web/*/http://www.honors.montana.edu/~jjc/easytut/
http://www.geocities.com/jrincayc/easytut.tar.gz
http://www.geocities.com/jrincayc/easytut.tar.gz
http://docs.python.org/tutorial/
http://en.wikibooks.org/wiki/..%2FAuthors
http://www.python.org
http://www.python.org/doc/
http://www.python.org/doc/current/tut/tut.html

Front matter

• LaTeX, PDF, and Postscript, and Zip versions6

See also chapter The End7 for some more comments.

6 http://www.honors.montana.edu/~jjc/easytut/

7 Chapter 19 on page 111

4

http://www.honors.montana.edu/~jjc/easytut/

2 Intro

2.1 First things first

So, you've never programmed before. As we go through this tutorial, I will attempt to teach
you how to program. There really is only one way to learn to program. You must read code

and write code (as computer programs are often called). I'm going to show you lots of code.
You should type in code that I show you to see what happens. Play around with it and
make changes. The worst that can happen is that it won't work. When I type in code it
will be formatted like this:

##Python is easy to learn

print "Hello, World!"

That's so it is easy to distinguish from the other text. If you're reading this on the web,
you'll notice the code is in color -- that's just to make it stand out, and to make the different
parts of the code stand out from each other. The code you enter will probably not be colored,
or the colors may be different, but it won't affect the code as long as you enter it the same
way as it's printed here.

If the computer prints something out it will be formatted like this:

Hello, World!

(Note that printed text goes to your screen, and does not involve paper. Before computers
had screens, the output of computer programs would be printed on paper.)

If you try this program out and you get a syntax error, check and see what version of python
you have. If you have python 3.0, you should be using the Non-Programmer's Tutorial for
Python 3.01. This article was made for Python 2.6

There will often be a mixture of the text you type (which is shown in bold) and the text
the program prints to the screen, which would look like this:

Halt!

Who Goes there? Josh

You may pass, Josh

(Some of the tutorial has not been converted to this format. Since this is a wiki, you can
convert it when you find it.)

1 http://en.wikibooks.org/wiki/Non-Programmer%27s%20Tutorial%20for%20Python%203.0

5

http://en.wikibooks.org/wiki/Non-Programmer%27s%20Tutorial%20for%20Python%203.0

Intro

I will also introduce you to the terminology of programming - for example, that programming
is often referred to as coding. This will not only help you understand what programmers are
talking about, but also help the learning process.

Now, on to more important things. In order to program in Python you need the Python
software. If you don't already have the Python software go to http://www.python.org/

download/ and get the proper version for your platform. Download it, read the instructions
and get it installed.

2.1.1 Installing Python

For Python programming you need a working Python installation and a text editor. Python
comes with its own editor IDLE, which is quite nice and totally sufficient for the beginning.
As you get more into programming, you will probably switch to some other editor like emacs,
vi or another.

The Python download page is http://www.python.org/download2. The most recent version
is 3.1, but any Python 2.x version since 2.2 will work for this tutorial. Be careful with the
upcoming Python 3, though, as some major details will change and break this tutorial's
examples. A version of this tutorial for Python 3 is at Non-Programmer's Tutorial for
Python 33. There are various different installation files for different computer platforms
available on the download site. Here are some specific instructions for the most common
operating systems:

Linux, BSD and Unix users

You are probably lucky and Python is already installed on your machine. To test it type
python on a command line. If you see something like that in the following section, you are
set.

If you have to install Python, just use the operating system's package manager or go to
the repository where your packages are available and get Python. Alternatively, you can
compile Python from scratch after downloading the source code. If you get the source code
make sure you compile in the Tk extension if you want to use IDLE.

Mac users

Starting from Mac OS X (Tiger), Python ships by default with the operating system, but
you might want to update to the newer version (check the version by starting python in a
command line terminal). Also IDLE (the Python editor) might be missing in the standard
installation. If you want to (re-)install Python, have a look at the Mac page on the Python
download site4.

2 http://www.python.org/download

3 http://en.wikibooks.org/wiki/Non-Programmer%27s%20Tutorial%20for%20Python%203

4 http://www.python.org/download/mac/

6

http://www.python.org/download/
http://www.python.org/download/
http://www.python.org/download
http://en.wikibooks.org/wiki/Non-Programmer%27s%20Tutorial%20for%20Python%203
http://www.python.org/download/mac/

First things first

Windows users

Some computer manufacturers pre-install Python. To check if you already have it installed,
open command prompt (cmd in run menu) or MS-DOS and type python. If it says "Bad
command or file name" you will need to download the appropriate Windows installer (the
normal one, if you do not have a 64-bit AMD or Intel chip). Start the installer by double-
clicking it and follow the procedure. Python for windows can be downloaded from the official
site of python5

2.1.2 Interactive Mode

Go into IDLE (also called the Python GUI). You should see a window that has some text
like this:

Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit

(Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

**

Personal firewall software may warn about the connection IDLE

makes to its subprocess using this computer's internal loopback

interface. This connection is not visible on any external

interface and no data is sent to or received from the Internet.

**

IDLE 1.2.1

>>>

The >>> is Python's way of telling you that you are in interactive mode. In interactive
mode what you type is immediately run. Try typing 1+1 in. Python will respond with 2.
Interactive mode allows you to test out and see what Python will do. If you ever feel you
need to play with new Python statements, go into interactive mode and try them out.

2.1.3 Creating and Running Programs

Go into IDLE if you are not already. In the menu at the top, select File then New Window.
In the new window that appears, type the following:

print "Hello, World!"

Now save the program: select File from the menu, then Save. Save it as "hello.py" (you
can save it in any folder you want). Now that it is saved it can be run.

Next run the program by going to Run then Run Module (or if you have a older version
of IDLE use Edit then Run script). This will output Hello, World! on the *Python

Shell* window.

5 http://www.python.org/getit/

7

http://www.python.org/getit/

Intro

For a more in-depth introduction to IDLE, a longer tutorial with screenshots can be found
at http://hkn.eecs.berkeley.edu/˜dyoo/python/idle_intro/index.html6

Running Python Programs in Unix

If you are using Unix (such as Linux, Mac OSX, or BSD), if you make the program executable
with chmod, and have as the first line:

#!/usr/bin/env python2

you can run the python program with ./hello.py like any other command.

Note: In some computer environments, you need to write:

!/usr/bin/env python

Program file names

It is very useful to stick to some rules regarding the file names of Python programs. Otherwise
some things might go wrong unexpectedly. These don't matter as much for programs, but
you can have weird problems if you don't follow them for module names (modules will be
discussed later).

1. Always save the program with the extension .py. Do not put another dot somewhere
else in the file name.

2. Only use standard characters for file names: letters, numbers, dash (-) and underscore
(_).

3. White space ("") should not be used at all (use e.g. underscores instead).
4. Do not use anything other than a letter (particularly no numbers!) at the beginning

of a file name.
5. Do not use "non-english" characters (such as ä, ö, ü, å or ß) in your file names—or,

even better, do not use them at all when programming.

2.1.4 Using Python from the command line

If you don't want to use Python from the command line, you don't have to, just use IDLE.
To get into interactive mode just type python without any arguments. To run a program,
create it with a text editor (Emacs has a good Python mode) and then run it with python

program_name.

Additionally, to use Python within Vim, you may want to visit Using vim as a Python IDE7

6 http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html

7 http://www.ibiblio.org/obp/pybiblio/tips/elkner/vim4python.php

8

http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html
http://www.ibiblio.org/obp/pybiblio/tips/elkner/vim4python.php

First things first

2.1.5 Where to get help

At some point in your Python career you will probably get stuck and have no clue about
how to solve the problem you are supposed to work on. This tutorial only covers the basics
of Python programming, but there is a lot of further information available.

Python documentation

First of all, Python is very well documented. There might even be copies of these documents
on your computer, which came with your Python installation: * The official Python

Tutorial8 by Guido van Rossum is often a good starting point for general ques-

tions.

• For questions about standard modules (you will learn what this is later), the Python
Library Reference9 is the place to look.

• If you really want to get to know something about the details of the language, the Python
Reference Manual10 is comprehensive but quite complex for beginners.

Python user community

There are a lot of other Python users out there, and usually they are nice and willing to
help you. This very active user community is organised mostly through mailing lists and a
newsgroup:

• The tutor mailing list11 is for folks who want to ask questions regarding how to learn
computer programming with the Python language.

• The python-help mailing list12 is python.org's help desk. You can ask a group of
knowledgeable volunteers questions about all your Python problems.

• The Python newsgroup [news:comp.lang.python comp.lang.python] (Google groups
archive13) is the place for general Python discussions, questions and the central meeting
point of the community.

In order not to reinvent the wheel and discuss the same questions again and again, people
will appreciate very much if you do a web search for a solution to your problem before

contacting these lists!

8 http://docs.python.org/tut/tut.html

9 http://docs.python.org/lib/lib.html

10 http://docs.python.org/ref/ref.html

11 http://mail.python.org/mailman/listinfo/tutor

12 http://www.python.org/community/lists/#python-help

13 http://groups.google.com/group/comp.lang.python/

9

http://docs.python.org/tut/tut.html
http://docs.python.org/lib/lib.html
http://docs.python.org/ref/ref.html
http://mail.python.org/mailman/listinfo/tutor
http://www.python.org/community/lists/#python-help
http://groups.google.com/group/comp.lang.python/

3 Hello, World

3.0.6 What you should know

You should know how to edit programs in a text editor or IDLE, save the file and run the
file once the files have been saved to your disk.

3.0.7 Printing

Programming tutorials since the beginning of time have started with a little program called
"Hello, World!"1 The syntax changed in Python 3.0. If you are using Python 3.0, you should
be reading Non-Programmer's Tutorial for Python 32 instead. So here is the Python 2.6
example:

print "Hello, World!"

If you are using the command line to run programs then type it in with a text editor, save
it as hello.py and run it with python hello.py

Otherwise go into IDLE, create a new window, and create the program as in section Creating
and Running Programs3.

When this program is run here's what it prints:

Hello, World!

Now I'm not going to tell you this every time, but when I show you a program I recommend
that you type it in and run it. I learn better when I type it in and you probably do too.

Now here is a more complicated program:

print "Jack and Jill went up a hill"

print "to fetch a pail of water;"

print "Jack fell down, and broke his crown,"

print "and Jill came tumbling after."

When you run this program it prints out:

1 List of "Hello, world!" programs in many programming languages ˆ{http://en.wikibooks.org/wiki/

Computer%20Programming%2FHello%20world}

2 http://en.wikibooks.org/wiki/Non-Programmer%27s%20Tutorial%20for%20Python%203

3 Chapter 2.1.3 on page 7

11

http://en.wikibooks.org/wiki/Computer%20Programming%2FHello%20world
http://en.wikibooks.org/wiki/Computer%20Programming%2FHello%20world
http://en.wikibooks.org/wiki/Non-Programmer%27s%20Tutorial%20for%20Python%203

Hello, World

Jack and Jill went up a hill

to fetch a pail of water;

Jack fell down, and broke his crown,

and Jill came tumbling after.

When the computer runs this program it first sees the line:

print "Jack and Jill went up a hill"

so the computer prints:

Jack and Jill went up a hill

Then the computer goes down to the next line and sees:

print "to fetch a pail of water;"

So the computer prints to the screen:

to fetch a pail of water;

The computer keeps looking at each line, follows the command and then goes on to the next
line. The computer keeps running commands until it reaches the end of the program.

Terminology

Now is probably a good time to give you a bit of an explanation of what is happening - and
a little bit of programming terminology.

What we were doing above was using a command called print. The print command is
followed by one or more arguments. So in this example

print "Hello, World!"

there is one argument, which is "Hello, World!". Note that this argument is a group
of characters enclosed in double quotes ("). This is commonly referred to as a string of

characters, or string, for short. Another example of a string is "Jack and Jill went up a

hill".

A command and its arguments are collectively referred to as a statement, so

print "Hello, World!"

is an example of a statement.

That's probably more than enough terminology for now.

12

First things first

3.0.8 Expressions

Here is another program:

print "2 + 2 is", 2 + 2

print "3 * 4 is", 3 * 4

print "100 - 1 is", 100 - 1

print "(33 + 2) / 5 + 11.5 is", (33 + 2) / 5 + 11.5

And here is the output when the program is run:

2 + 2 is 4

3 * 4 is 12

100 - 1 is 99

(33 + 2) / 5 + 11.5 is 18.5

As you can see, Python can turn your six hundred dollar computer into a 2 dollar calculator.

In this example, the print command is followed by two arguments, with each of the arguments
separated by a comma. So with the first line of the program

print "2 + 2 is", 2 + 2

The first argument is the string "2 + 2 is" and the second argument is the mathematical

expression 2 + 2, which is commonly referred to as an expression.

What is important to note is that a string is printed as is (the string is what is within the
double quotes but doesn't include the double quotes themselves. So the string is printed
without the enclosing double quotes.) But an expression is evaluated, (in other words,
converted) to its actual value.

Python has six basic operations for numbers:

Operation Symbol Example

Power (exponentiation) ** 5 ** 2 == 25

Multiplication * 2 * 3 == 6

Division / 14 / 3 == 4

Remainder (modulo) % 14 % 3 == 2

Addition + 1 + 2 == 3

Subtraction - 4 - 3 == 1

Notice that division follows the rule, if there are no decimals to start with, there will

be no decimals to end with. The following program shows this:

print "14 / 3 = ", 14 / 3

print "14 % 3 = ", 14 % 3

print

print "14.0 / 3.0 =", 14.0 / 3.0

print "14.0 % 3.0 =", 14.0 % 3.0

print

print "14.0 / 3 =", 14.0 / 3

print "14.0 % 3 =", 14.0 % 3

print

print "14 / 3.0 =", 14 / 3.0

13

Hello, World

print "14 % 3.0 =", 14 % 3.0

print

With the output:

14 / 3 = 4

14 % 3 = 2

14.0 / 3.0 = 4.66666666667

14.0 % 3.0 = 2.0

14.0 / 3 = 4.66666666667

14.0 % 3 = 2.0

14 / 3.0 = 4.66666666667

14 % 3.0 = 2.0

Notice how Python gives different answers for some problems depending on whether or not
decimal values are used.

The order of operations is the same as in math:

• parentheses ()

• exponents **

• multiplication *, division /, and remainder %

• addition + and subtraction -

So use parentheses to structure your formulas when needed.

3.0.9 Talking to humans (and other intelligent beings)

Often in programming you are doing something complicated and may not in the future
remember what you did. When this happens, the program should probably be commented.
A comment is a note to you and other programmers explaining what is happening. For
example:

Not quite PI, but an incredible simulation

print 22.0 / 7.0 # 355/113 is even more incredible rational approx

to PI

Which outputs

3.14285714286

Notice that the comment starts with a hash: #. Comments are used to communicate with
others who read the program and your future self to make clear what is complicated.

Note that any text can follow a comment, and that when the program is run, the text after
the # through to the end of that line is ignored. The # does not have to be at the beginning
of a new line:

Output PI on the screen

print 22.0 / 7.0 # Well, just a good approximation

14

First things first

3.0.10 Examples

Each chapter (eventually) will contain examples of the programming features introduced
in the chapter. You should at least look over them and see if you understand them. If
you don't, you may want to type them in and see what happens. Mess around with them,
change them and see what happens.

Denmark.py

print "Something‚s rotten in the state of Denmark."

print " -- Shakespeare"

Output:

Something's rotten in the state of Denmark.

-- Shakespeare

School.py

This is not quite true outside of USA

and is based on my dim memories of my younger years

print "First Grade"

print "1 + 1 =", 1 + 1

print "2 + 4 =", 2 + 4

print "5 - 2 =", 5 - 2

print

print "Third Grade"

print "243 - 23 =", 243 - 23

print "12 * 4 =", 12 * 4

print "12 / 3 =", 12 / 3

print "13 / 3 =", 13 / 3, "R", 13 % 3

print

print "Junior High"

print "123.56 - 62.12 =", 123.56 - 62.12

print "(4 + 3) * 2 =", (4 + 3) * 2

print "4 + 3 * 2 =", 4 + 3 * 2

print "3 ** 2 =", 3 ** 2

print

Output:

First Grade

1 + 1 = 2

2 + 4 = 6

5 - 2 = 3

Third Grade

243 - 23 = 220

12 * 4 = 48

12 / 3 = 4

13 / 3 = 4 R 1

Junior High

123.56 - 62.12 = 61.44

(4 + 3) * 2 = 14

4 + 3 * 2 = 10

3 ** 2 = 9

15

Hello, World

3.0.11 Exercises

1. Write a program that prints your full name and your birthday as separate strings.
2. Write a program that shows the use of all 6 math functions.

Solution

1. Write a program that prints your full name and your birthday as separate strings.

print "Ada Lovelace", "born on", "November 27, 1852"

2. Write a program that shows the use of all 6 math operations.

Anything along these lines is acceptable:

Addition

print "2 + 5 = ", 2 + 5

subtraction

print "9 - 3 = ", 9 - 3

multiplication

print "3 * 3 = ", 3 * 3

division

print "90 / 5 = ", 90 / 5

exponents

print "7 to the power of 2 (squared) = ", 7 ** 2

remainder

print "the remainder when doing 22 / 9 = ", 22 % 9

Footnotes

16

4 Who Goes There?

4.0.12 Input and Variables

Now I feel it is time for a really complicated program. Here it is:

print "Halt!"

user_reply = raw_input("Who goes there? ")

print "You may pass,", user_reply

When I ran it, here is what my screen showed:

Halt!

Who goes there? Josh

You may pass, Josh

Note: After running the code by pressing F5, the Python shell will only give output:

Halt!

Who goes there?

You need to enter your name in the Python shell, and then press Enter to get the rest of the

output.

Of course when you run the program your screen will look different because of the raw_-

input() statement. When you ran the program you probably noticed (you did run the
program, right?) how you had to type in your name and then press Enter. Then the program
printed out some more text and also your name. This is an example of input. The program
reaches a certain point and then waits for the user to input some data that the program can
use later.

Of course, getting information from the user would be useless if we didn't have anywhere
to put that information and this is where variables come in. In the previous program
user_reply is a variable. Variables are like a box that can store some piece of data. Here is
a program to show examples of variables:

a = 123.4

b23 = ‚Spam‚

first_name = "Bill"

b = 432

c = a + b

print "a + b is",c

print "first_name is",first_name

print "Sorted Parts, After Midnight or",b23

17

Who Goes There?

And here is the output:

a + b is 555.4

first_name is Bill

Sorted Parts, After Midnight or Spam

The variables in the above program are a, b23, first_name, b, and c. A variable in Python
can store any type of data - in this example we stored some strings (e.g. "Bill") and some
numbers (e.g. 432).

Note the difference between strings and variable names. Strings are marked with quotation
marks, which tells the computer "don't try to understand, just take this text as it is":

print "first_name"

This would print the text:

first_name

as-is. Variable names are written without any quotation marks and instruct the computer
"use the value I've previously stored under this name":

print first_name

which would print (after the previous example):

Bill

4.0.13 Assignment

Okay, so we have these boxes called variables and also data that can go into the variable.
The computer will see a line like first_name = "Bill" and it reads it as "Put the string
Bill into the box (or variable) first_name. Later on it sees the statement c = a + b and
it reads it as "put the sum of a + b or 123.4 + 432 which equals 555.4 into c". The right
hand side of the statement (a + b) is evaluated and the result is stored in the variable on
the left hand side (c). This is called assignment, and you should not confuse the assignment
equal sign (=) with "equality" in a mathematical sense here (that's what == will be used for
later).

Here is another example of variable usage:

a = 1

print a

a = a + 1

print a

a = a * 2

print a

And of course here is the output:

18

First things first

1

2

4

Even if it is the same variable on both sides the computer still reads it as "First find out the
data to store and then find out where the data goes".

One more program before I end this chapter:

number = input("Type in a number: ")

text = raw_input("Type in a string: ")

print "number =", number

print "number is a", type(number)

print "number * 2 =", number * 2

print "text =", text

print "text is a", type(text)

print "text * 2 =", text * 2

The output I got was:

Type in a Number: 12.34

Type in a String: Hello

number = 12.34

number is a <type 'float'>

number * 2 = 24.68

text = Hello

text is a <type 'str'>

text * 2 = HelloHello

Notice that number was gotten with input() while text was gotten with raw_input().
raw_input() returns a string while input() returns a number. When you want the user to
type in a number use input() but if you want the user to type in a string use raw_input().

Only use input() when you trust your users with the
computer the program runs on.

Everything entered into input() dialog is evaluated as a
Python expression and thus allows the user to take con-
trol of your program. For example, entering __import_-

_('os').system('dir') executes the dir command. You
should instead get a string and convert it to the neccessary
type like int(raw_input()) or float(raw_input()).

The second half of the program uses type() which tells what a variable is. Numbers are of
type int or float, which are short for integer and floating point (mostly used for decimal
numbers), respectively. Text strings are of type str, short for string. Integers and floats
can be worked on by mathematical functions, strings cannot. Notice how when python

19

Who Goes There?

multiplies a number by an integer the expected thing happens. However when a string is
multiplied by an integer the result is that multiple copies of the string are produced (i.e.,
text * 2 = HelloHello).

The operations with strings do different things than operations with numbers. Here are
some interactive mode examples to show that some more.

>>> "This" + " " + "is" + " joined."

'This is joined.'

>>> "Ha, " * 5

'Ha, Ha, Ha, Ha, Ha, '

>>> "Ha, " * 5 + "ha!"

'Ha, Ha, Ha, Ha, Ha, ha!'

>>>

This could also be done as a program:

print "This" + " " + "is" + " joined."

print "Ha, " * 5

print "Ha, " * 5 + "ha!"

Here is the list of some string operations:

Operation Symbol Example

Repetition * "i" * 5 == "iiiii"

Concatenation + "Hello, " + "World!" == "Hello, World!"

4.0.14 Examples

Rate_times.py

This program calculates rate and distance problems

print "Input a rate and a distance"

rate = input("Rate: ")

distance = input("Distance: ")

print "Time:", (distance / rate)

Sample runs:

Input a rate and a distance

Rate: 5

Distance: 10

Time: 2

Input a rate and a distance

Rate: 3.52

Distance: 45.6

Time: 12.9545454545

Area.py

This program calculates the perimeter and area of a rectangle

print "Calculate information about a rectangle"

length = input("Length: ")

20

First things first

width = input("Width: ")

print "Area", length * width

print "Perimeter", 2 * length + 2 * width

Sample runs:

Calculate information about a rectangle

Length: 4

Width: 3

Area 12

Perimeter 14

Calculate information about a rectangle

Length: 2.53

Width: 5.2

Area 13.156

Perimeter 15.46

temperature.py

Converts Fahrenheit to Celsius

temp = input("Fahrenheit temperature: ")

print (temp - 32.0) * 5.0 / 9.0

Sample runs:

Fahrenheit temperature: 32

0.0

Fahrenheit temperature: -40

-40.0

Fahrenheit temperature: 212

100.0

Fahrenheit temperature: 98.6

37.0

4.0.15 Exercises

Write a program that gets 2 string variables and 2 integer variables from the user, concatenates
(joins them together with no spaces) and displays the strings, then multiplies the two numbers
on a new line.

Solution

Write a program that gets 2 string variables and 2 integer variables from the user,
concatenates (joins them together with no spaces) and displays the strings, then multiplies
the two numbers on a new line.

21

Who Goes There?

string1 = raw_input(‚String 1: ‚)

string2 = raw_input(‚String 2: ‚)

int1 = input(‚Integer 1: ‚)

int2 = input(‚Integer 2: ‚)

print string1 + string2

print int1 * int2

Another Solution

print "this is an exercise"

number_1 = input("please input the first number: ")

number_2 = input("Please input the second number: ")

string_1 = raw_input("Please input the first half of the word: ")

string_2 = raw_input("please input the second half of the word: ")

print "the word you input is ‚" + string_1 + string_2 + "‚"

print "the result of the 2 numbers is:", number_1 * number_2

22

5 Count to 10

5.0.16 While loops

Here we present our first control structure. Ordinarily the computer starts with the first line
and then goes down from there. Control structures change the order that statements are
executed or decide if a certain statement will be run. Here's the source for a program that
uses the while control structure:

a = 0

while a < 10:

a = a + 1

print a

And here is the extremely exciting output:

1

2

3

4

5

6

7

8

9

10

And you thought it couldn't get any worse after turning your computer into a five dollar
calculator?

So what does the program do? First it sees the line a = 0 and sets a to zero. Then it sees
while a < 10: and so the computer checks to see if a < 10. The first time the computer
sees this statement a is zero so it is less than 10. In other words as long as a is less than ten
the computer will run the tabbed in statements. This eventually makes a equal to ten (by
adding one to a again and again), and the while a < 10 is not true any longer. Reaching
that point the program will not run the indented lines any longer.

Always remember to put a colon ":" after the "while" statement!

Here is another example of the use of while:

a = 1

s = 0

print ‚Enter Numbers to add to the sum.‚

print ‚Enter 0 to quit.‚

while a != 0:

print ‚Current Sum:‚, s

a = input(‚Number? ‚)

s = s + a

print ‚Total Sum =‚, s

23

Count to 10

Enter Numbers to add to the sum.

Enter 0 to quit.

Current Sum: 0

Number? 200

Current Sum: 200

Number? -15.25

Current Sum: 184.75

Number? -151.85

Current Sum: 32.9

Number? 10.00

Current Sum: 42.9

Number? 0

Total Sum = 42.9

Notice how print 'Total Sum =', s is only run at the end. The while statement only
affects the lines that are indented with whitespace. The != means "does not equal" so "while

a != 0:" means: "until a is zero, run the tabbed statements that follow."

Infinite loops

Now that we have while loops, it is possible to have programs that run forever. An easy
way to do this is to write a program like this:

while 1 == 1:

print "Help, I‚m stuck in a loop."

The "==" operator is used to test equality of the expressions on the two sides of the operator,
just as "<" was used for "less than" before (you will get a complete list of all comparison
operators in the next chapter).

This program will output Help, I'm stuck in a loop. until the heat death of the universe
or until you stop it, because 1 will forever be equal to 1. The way to stop it is to hit the
Control (or Ctrl) button and C (the letter) at the same time. This will kill the program.
(Note: sometimes you will have to hit enter after the Control-C.)

5.0.17 Examples

Fibonacci.py

This program calculates the Fibonacci sequence

a = 0

b = 1

count = 0

max_count = 20

while count < max_count:

count = count + 1

we need to keep track of a since we change it

old_a = a

old_b = b

a = old_b

b = old_a + old_b

Notice that the , at the end of a print statement keeps it

from switching to a new line

print old_a,

24

First things first

Output:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

Note the output on a single line by use of a comma at the end of the print statement.

Password.py

Waits until a password has been entered. Use Control-C to break

out without

the password

Note that this must not be the password so that the

while loop runs at least once.

password = "no password"

note that != means not equal

while password != "unicorn":

password = raw_input("Password: ")

print "Welcome in"

Sample run:

Password: auo

Password: y22

Password: password

Password: open sesame

Password: unicorn

Welcome in

5.0.18 Exercises

Write a program that asks the user for a Login Name and password. Then when they type
"lock", they need to type in their name and password to unlock the program.

Solution

Write a program that asks the user for a Login Name and password. Then when they
type "lock", they need to type in their name and password to unlock the program.

name = raw_input("What is your UserName: ")

password = raw_input("What is your Password: ")

print "To lock your computer type lock."

command = ""

input1 = ""

input2 = ""

while command != "lock":

command = raw_input("What is your command: ")

while input1 != name:

input1 = raw_input("What is your username: ")

25

Count to 10

while input2 != password:

input2 = raw_input("What is your password: ")

print "Welcome back to your system!"

If you would like the program to run continuously, just add a while 1 == 1: loop
around the whole thing. You will have to indent the rest of the program when you add
this at the top of the code, but don't worry, you don't have to do it manually for each
line! Just highlight everything you want to indent and click on "Indent" under "Format"
in the top bar of the python window. Note that you can use empty strings like this: "".

Another way of doing this could be:

name = raw_input(‚Set name: ‚)

password = raw_input(‚Set password: ‚)

while 1 == 1:

nameguess=passwordguess=key="" multiple assignment

while (nameguess != name) or (passwordguess != password):

nameguess = raw_input(‚Name? ‚)

passwordguess = raw_input(‚Password? ‚)

print "Welcome,", name, ". Type lock to lock."

while key != "lock":

key = raw_input("")

Notice the or in while (name != "user") or (password != "pass"):, which we
haven't yet introduced. You can probably figure out how it works.

login = "john"

password = "tucker"

logged=2

while logged != 0:

while login != "Phil":

login = raw_input("Login : ")

while password != "McChicken":

password = raw_input("Password: ")

logged = 1

print "Welcome!"

print "To leave type lock "

while logged == 1:

leave = raw_input ("» ")

if leave == "lock":

logged = 0

26

First things first

print "Goodbye!!"

This method, although a bit more crude also works. Notice it uses the as of yet un-
introduced if function.

27

6 Decisions

6.0.19 If statement

As always I believe I should start each chapter with a warm-up typing exercise, so here is a
short program to compute the absolute value of a number:

n = input("Number? ")

if n < 0:

print "The absolute value of", n, "is", -n

else:

print "The absolute value of", n, "is", n

Here is the output from the two times that I ran this program:

Number? -34

The absolute value of -34 is 34

Number? 1

The absolute value of 1 is 1

So what does the computer do when it sees this piece of code? First it prompts the user
for a number with the statement "n = input("Number? ")". Next it reads the line "if n

< 0:". If n is less than zero Python runs the line "print "The absolute value of", n,

"is", -n". Otherwise it runs the line "print "The absolute value of", n, "is", n".

More formally Python looks at whether the expression n < 0 is true or false. An if

statement is followed by an indented block of statements that are run when the expression is
true. Optionally after the if statement is an else statement and another indented block of
statements. This second block of statements is run if the expression is false.

There are a number of different tests that an expression can have. Here is a table of all of
them:

operator function

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal

!= not equal

<> another way to say not equal (old style, not recommended)

Another feature of the if command is the elif statement. It stands for else if and means
if the original if statement is false but the elif part is true, then do the elif part. And if

29

Decisions

neither the if or elif expressions are true, then do what's in the else block. Here's an
example:

a = 0

while a < 10:

a = a + 1

if a > 5:

print a, ">", 5

elif a <= 7:

print a, "<=", 7

else:

print "Neither test was true"

and the output:

1 <= 7

2 <= 7

3 <= 7

4 <= 7

5 <= 7

6 > 5

7 > 5

8 > 5

9 > 5

10 > 5

Notice how the elif a <= 7 is only tested when the if statement fails to be true. There
can be more than one elif expression, allowing multiple tests to be done in a single if

statement.

6.0.20 Examples

This Program Demonstrates the use of the == operator

using numbers

print 5 == 6

Using variables

x = 5

y = 8

print x == y

And the output

False

False

High_low.py

Plays the guessing game higher or lower

This should actually be something that is semi random like the

last digits of the time or something else, but that will have to

wait till a later chapter. (Extra Credit, modify it to be random

after the Modules chapter)

number = 78

guess = 0

while guess != number:

30

First things first

guess = input("Guess a number: ")

if guess > number:

print "Too high"

elif guess < number:

print "Too low"

print "Just right"

Sample run:

Guess a number: 100

Too high

Guess a number: 50

Too low

Guess a number: 75

Too low

Guess a number: 87

Too high

Guess a number: 81

Too high

Guess a number: 78

Just right

even.py

Asks for a number.

Prints if it is even or odd

number = input("Tell me a number: ")

if number % 2 == 0:

print number, "is even."

elif number % 2 == 1:

print number, "is odd."

else:

print number, "is very strange."

Sample runs:

Tell me a number: 3

3 is odd.

Tell me a number: 2

2 is even.

Tell me a number: 3.14159

3.14159 is very strange.

average1.py

keeps asking for numbers until 0 is entered.

Prints the average value.

count = 0

sum = 0.0

number = 1 # set to something that will not exit the while loop

immediately.

print "Enter 0 to exit the loop"

31

Decisions

while number != 0:

number = input("Enter a number: ")

if number != 0:

count = count + 1

sum = sum + number

print "The average was:", sum / count

Sample runs:

Enter 0 to exit the loop

Enter a number: 3

Enter a number: 5

Enter a number: 0

The average was: 4.0

Enter 0 to exit the loop

Enter a number: 1

Enter a number: 4

Enter a number: 3

Enter a number: 0

The average was: 2.66666666667

average2.py

keeps asking for numbers until count numbers have been entered.

Prints the average value.

sum = 0.0

print "This program will take several numbers then average them"

count = input("How many numbers would you like to average: ")

current_count = 0

while current_count < count:

current_count = current_count + 1

print "Number", current_count

number = input("Enter a number: ")

sum = sum + number

print "The average was:", sum / count

Sample runs:

This program will take several numbers then average them

How many numbers would you like to average: 2

Number 1

Enter a number: 3

Number 2

Enter a number: 5

The average was: 4.0

This program will take several numbers then average them

How many numbers would you like to average: 3

Number 1

Enter a number: 1

Number 2

Enter a number: 4

Number 3

32

First things first

Enter a number: 3

The average was: 2.66666666667

6.0.21 Exercises

Modify the higher or lower program from this section to keep track of how many times the
user has entered the wrong number. If it is more than 3 times, print "That must have been
complicated." Note that the program does not have to quit asking for the number before it
is guessed, it just has to print this after the number is guessed.

Write a program that asks for two numbers. If the sum of the numbers is greater than 100,
print "That is a big number."

Write a program that asks the user their name, if they enter your name say "That is a nice
name", if they enter "John Cleese" or "Michael Palin", tell them how you feel about them ;),
otherwise tell them "You have a nice name."

Solution

Modify the higher or lower program from this section to keep track of how many times
the user has entered the wrong number. If it is more than 3 times, print "That must
have been complicated."

number = 42

guess = 0

count = 0

while guess != number:

count = count + 1

guess = input(‚Guess a number: ‚)

if guess > number:

print ‚Too high‚

elif guess < number:

print ‚Too low‚

else:

print ‚Just right‚

break

if count > 2:

print ‚That must have been complicated.‚

break

Write a program that asks for two numbers. If the sum of the numbers is greater than
100, print "That is a big number."

33

Decisions

number1 = input(‚1st number: ‚)

number2 = input(‚2nd number: ‚)

if number1 + number2 > 100:

print ‚That is a big number.‚

Write a program that asks the user their name, if they enter your name say "That is a
nice name", if they enter "John Cleese" or "Michael Palin", tell them how you feel about
them ;), otherwise tell them "You have a nice name."

name = raw_input(‚Your name: ‚)

if name == ‚Ada‚:

print ‚That is a nice name.‚

elif name == ‚John Cleese‚ or name == ‚Michael Palin‚:

print ‚... some funny text.‚

else:

print ‚You have a nice name.‚

34

7 Debugging

7.0.22 What is debugging?

"As soon as we started programming, we found to our surprise that it wasn't as easy to
get programs right as we had thought. Debugging had to be discovered. I can remember
the exact instant when I realized that a large part of my life from then on was going to be
spent in finding mistakes in my own programs." — Maurice Wilkes discovers debugging,
1949

By now if you have been messing around with the programs you have probably found that
sometimes the program does something you didn't want it to do. This is fairly common.
Debugging is the process of figuring out what the computer is doing and then getting it to
do what you want it to do. This can be tricky. I once spent nearly a week tracking down
and fixing a bug that was caused by someone putting an x where a y should have been.

This chapter will be more abstract than previous chapters.

7.0.23 What should the program do?

The first thing to do (this sounds obvious) is to figure out what the program should be
doing if it is running correctly. Come up with some test cases and see what happens. For
example, let's say I have a program to compute the perimeter of a rectangle (the sum of the
length of all the edges). I have the following test cases:

height width perimeter

3 4 14

2 3 10

4 4 16

2 2 8

5 1 12

I now run my program on all of the test cases and see if the program does what I expect it
to do. If it doesn't then I need to find out what the computer is doing.

More commonly some of the test cases will work and some will not. If that is the case you
should try and figure out what the working ones have in common. For example here is the
output for a perimeter program (you get to see the code in a minute):

Height: 3

Width: 4

perimeter = 15

35

Debugging

Height: 2

Width: 3

perimeter = 11

Height: 4

Width: 4

perimeter = 16

Height: 2

Width: 2

perimeter = 8

Height: 5

Width: 1

perimeter = 8

Notice that it didn't work for the first two inputs, it worked for the next two and it didn't
work on the last one. Try and figure out what is in common with the working ones. Once
you have some idea what the problem is finding the cause is easier. With your own programs
you should try more test cases if you need them.

7.0.24 What does the program do?

The next thing to do is to look at the source code. One of the most important things to do
while programming is reading source code. The primary way to do this is code walkthroughs.

A code walkthrough starts at the first line, and works its way down until the program is
done. While loops and if statements mean that some lines may never be run and some
lines are run many times. At each line you figure out what Python has done.

Lets start with the simple perimeter program. Don't type it in, you are going to read it, not
run it. The source code is:

height = input("Height: ")

width = input("Width: ")

print "perimeter =", width + height + width + width

Question: What is the first line Python runs?

Answer: The first line is always run first. In this case it is: height = input("Height:

")

What does that line do?

Prints Height: , waits for the user to type a number in, and puts that in the variable
height.

What is the next line that runs?

In general, it is the next line down which is: width = input("Width: ")

What does that line do?

36

First things first

Prints Width: , waits for the user to type a number in, and puts what the user types in
the variable width.

What is the next line that runs?

When the next line is not indented more or less than the current line, it is the line right
afterwards, so it is: print "perimeter = ", width + height + width + width (It may
also run a function in the current line, but that's a future chapter.) What does that line
do?

First it prints perimeter = , then it prints width + height + width + width.

Does width + height + width + width calculate the perimeter properly?

Let's see, perimeter of a rectangle is the bottom (width) plus the left side (height) plus the
top (width) plus the right side (huh?). The last item should be the right side's length, or
the height.

Do you understand why some of the times the perimeter was calculated "cor-

rectly"?

It was calculated correctly when the width and the height were equal.

The next program we will do a code walkthrough for is a program that is supposed to print
out 5 dots on the screen. However, this is what the program is outputting:

. . . .

And here is the program:

number = 5

while number > 1:

print ".",

number = number - 1

print

This program will be more complex to walkthrough since it now has indented portions (or
control structures). Let us begin.

What is the first line to be run?

The first line of the file: number = 5

What does it do?

Puts the number 5 in the variable number.

What is the next line?

The next line is: while number > 1:

What does it do?

Well, while statements in general look at their expression, and if it is true they do the
next indented block of code, otherwise they skip the next indented block of code.

So what does it do right now?

37

Debugging

If number > 1 is true then the next two lines will be run.

So is number > 1?

The last value put into number was 5 and 5 > 1 so yes.

So what is the next line?

Since the while was true the next line is: print ".",

What does that line do?

Prints one dot and since the statement ends with a ',' the next print statement will not be
on a different screen line.

What is the next line?

number = number - 1 since that is following line and there are no indent changes.

What does it do?

It calculates number - 1, which is the current value of number (or 5) subtracts 1 from it,
and makes that the new value of number. So basically it changes number's value from 5 to
4.

What is the next line?

Well, the indent level decreases so we have to look at what type of control structure it is.
It is a while loop, so we have to go back to the while clause which is while number > 1:

What does it do?

It looks at the value of number, which is 4, and compares it to 1 and since 4 > 1 the while
loop continues.

What is the next line?

Since the while loop was true, the next line is: print ".",

What does it do?

It prints a second dot on the line.

What is the next line?

No indent change so it is: number = number - 1

And what does it do?

It takes the current value of number (4), subtracts 1 from it, which gives it 3 and then
finally makes 3 the new value of number.

What is the next line?

Since there is an indent change caused by the end of the while loop, the next line is: while

number > 1:

What does it do?

It compares the current value of number (3) to 1. 3 > 1 so the while loop continues.

38

First things first

What is the next line?

Since the while loop condition was true the next line is: print ".",

And it does what?

A third dot is printed on the line.

What is the next line?

It is: number = number - 1

What does it do?

It takes the current value of number (3) subtracts from it 1 and makes the 2 the new value
of number.

What is the next line?

Back up to the start of the while loop: while number > 1:

What does it do?

It compares the current value of number (2) to 1. Since 2 > 1 the while loop continues.

What is the next line?

Since the while loop is continuing: print ".",

What does it do?

It discovers the meaning of life, the universe and everything. I'm joking. (I had to make
sure you were awake.) The line prints a fourth dot on the screen.

What is the next line?

It's: number = number - 1

What does it do?

Takes the current value of number (2) subtracts 1 and makes 1 the new value of number.

What is the next line?

Back up to the while loop: while number > 1:

What does the line do?

It compares the current value of number (1) to 1. Since 1 > 1 is false (one is not greater
than one), the while loop exits.

What is the next line?

Since the while loop condition was false the next line is the line after the while loop exits,
or: print

What does that line do?

Makes the screen go to the next line.

Why doesn't the program print 5 dots?

39

Debugging

The loop exits 1 dot too soon.

How can we fix that?

Make the loop exit 1 dot later.

And how do we do that?

There are several ways. One way would be to change the while loop to: while number >

0: Another way would be to change the conditional to: number >= 1 There are a couple
others.

7.0.25 How do I fix the program?

You need to figure out what the program is doing. You need to figure out what the program
should do. Figure out what the difference between the two is. Debugging is a skill that has
to be practiced to be learned. If you can't figure it out after an hour, take a break, talk to
someone about the problem or contemplate the lint in your navel. Come back in a while
and you will probably have new ideas about the problem. Good luck.

40

8 Defining Functions

8.0.26 Creating Functions

To start off this chapter I am going to give you an example of what you could do but
shouldn't (so don't type it in):

a = 23

b = -23

if a < 0:

a = -a

if b < 0:

b = -b

if a == b:

print "The absolute values of", a, "and", b, "are equal"

else:

print "The absolute values of", a, "and", b, "are different"

with the output being:

The absolute values of 23 and 23 are equal

The program seems a little repetitive. Programmers hate to repeat things -- that's what
computers are for, after all! (Note also that finding the absolute value changed the value
of the variable, which is why it is printing out 23, and not -23 in the output.) Fortunately
Python allows you to create functions to remove duplication. Here is the rewritten example:

def absolute_value(n):

if n < 0:

n = -n

return n

a = 23

b = -23

if absolute_value(a) == absolute_value(b):

print "The absolute values of", a, "and", b, "are equal"

else:

print "The absolute values of", a, "and", b, "are different"

with the output being:

The absolute values of 23 and -23 are equal

The key feature of this program is the def statement. def (short for define) starts a function
definition. def is followed by the name of the function absolute_value. Next comes a
'(' followed by the parameter n (n is passed from the program into the function when the

41

Defining Functions

function is called). The statements after the ':' are executed when the function is used. The
statements continue until either the indented statements end or a return is encountered.
The return statement returns a value back to the place where the function was called.

Notice how the values of a and b are not changed. Functions can be used to repeat tasks
that don't return values. Here are some examples:

def hello():

print "Hello"

def area(w, h):

return w * h

def print_welcome(name):

print "Welcome", name

hello()

hello()

print_welcome("Fred")

w = 4

h = 5

print "width =", w, "height =", h, "area =", area(w, h)

with output being:

Hello

Hello

Welcome Fred

width = 4 height = 5 area = 20

That example shows some more stuff that you can do with functions. Notice that you can
use no arguments or two or more. Notice also when a function doesn't need to send back a
value, a return is optional.

8.0.27 Variables in functions

When eliminating repeated code, you often have variables in the repeated code. In Python,
these are dealt with in a special way. So far all variables we have seen are global variables.
Functions have a special type of variable called local variables. These variables only exist
while the function is running. When a local variable has the same name as another variable
(such as a global variable), the local variable hides the other. Sound confusing? Well, these
next examples (which are a bit contrived) should help clear things up.

a = 4

def print_func():

a = 17

print "in print_func a = ", a

print_func()

print "a = ", a

When run, we will receive an output of:

42

First things first

in print_func a = 17

a = 4

Variable assignments inside a function do not override global variables, they exist only
inside the function. Even though a was assigned a new value inside the function, this newly
assigned value was only relevant to print_func, when the function finishes running, and
the a's values is printed again, we see the originally assigned values.

8.0.28 Complex example

a_var = 10

b_var = 15

e_var = 25

def a_func(a_var):

print "in a_func a_var = ", a_var

b_var = 100 + a_var

d_var = 2 * a_var

print "in a_func b_var = ", b_var

print "in a_func d_var = ", d_var

print "in a_func e_var = ", e_var

return b_var + 10

c_var = a_func(b_var)

print "a_var = ", a_var

print "b_var = ", b_var

print "c_var = ", c_var

print "d_var = ", d_var

The output is:

in a_func a_var = 15

in a_func b_var = 115

in a_func d_var = 30

in a_func e_var = 25

a_var = 10

b_var = 15

c_var = 125

d_var =

Traceback (most recent call last):

File "C:\Python24\def2", line 19, in -toplevel-

print "d_var = ", d_var

NameError: name 'd_var' is not defined

In this example the variables a_var, b_var, and d_var are all local variables when they are
inside the function a_func. After the statement return b_var + 10 is run, they all cease
to exist. The variable a_var is automatically a local variable since it is a parameter name.
The variables b_var and d_var are local variables since they appear on the left of an equals
sign in the function in the statements b_var = 100 + a_var and d_var = 2 * a_var .

Inside of the function a_var has no value assigned to it. When the function is called with
c_var = a_func(b_var), 15 is assigned to a_var since at that point in time b_var is 15,

43

Defining Functions

making the call to the function a_func(15). This ends up setting a_var to 15 when it is
inside of a_func.

As you can see, once the function finishes running, the local variables a_var and b_var

that had hidden the global variables of the same name are gone. Then the statement print

"a_var = ", a_var prints the value 10 rather than the value 15 since the local variable
that hid the global variable is gone.

Another thing to notice is the NameError that happens at the end. This appears since the
variable d_var no longer exists since a_func finished. All the local variables are deleted
when the function exits. If you want to get something from a function, then you will have
to use return something.

One last thing to notice is that the value of e_var remains unchanged inside a_func since
it is not a parameter and it never appears on the left of an equals sign inside of the function
a_func. When a global variable is accessed inside a function it is the global variable from
the outside.

Functions allow local variables that exist only inside the function and can hide other variables
that are outside the function.

8.0.29 Examples

temperature2.py

converts temperature to fahrenheit or celsius

def print_options():

print "Options:"

print " ‚p‚ print options"

print " ‚c‚ convert from celsius"

print " ‚f‚ convert from fahrenheit"

print " ‚q‚ quit the program"

def celsius_to_fahrenheit(c_temp):

return 9.0 / 5.0 * c_temp + 32

def fahrenheit_to_celsius(f_temp):

return (f_temp - 32.0) * 5.0 / 9.0

choice = "p"

while choice != "q":

if choice == "c":

temp = input("Celsius temperature: ")

print "Fahrenheit:", celsius_to_fahrenheit(temp)

elif choice == "f":

temp = input("Fahrenheit temperature: ")

print "Celsius:", fahrenheit_to_celsius(temp)

elif choice != "q":

print_options()

choice = raw_input("option: ")

Sample Run:

Options:

'p' print options

44

First things first

'c' convert from celsius

'f' convert from fahrenheit

'q' quit the program

option: c

Celsius temperature: 30

Fahrenheit: 86.0

option: f

Fahrenheit temperature: 60

Celsius: 15.5555555556

option: q

area2.py

By Amos Satterlee

print

def hello():

print ‚Hello!‚

def area(width, height):

return width * height

def print_welcome(name):

print ‚Welcome,‚, name

name = raw_input(‚Your Name: ‚)

hello(),

print_welcome(name)

print

print ‚To find the area of a rectangle,‚

print ‚enter the width and height below.‚

print

w = input(‚Width: ‚)

while w <= 0:

print ‚Must be a positive number‚

w = input(‚Width: ‚)

h = input(‚Height: ‚)

while h <= 0:

print ‚Must be a positive number‚

h = input(‚Height: ‚)

print ‚Width =‚, w, ‚Height =‚, h, ‚so Area =‚, area(w, h)

Sample Run:

Your Name: Josh

Hello!

Welcome, Josh

To find the area of a rectangle,

enter the width and height below.

Width: -4

Must be a positive number

Width: 4

Height: 3

Width = 4 Height = 3 so Area = 12

45

Defining Functions

8.0.30 Exercises

Rewrite the area2.py program from the Examples above to have a separate function for the
area of a square, the area of a rectangle, and the area of a circle (3.14 * radius ** 2).
This program should include a menu interface.

Solution

Rewrite the area2.py program from the Examples above to have a separate function for
the area of a square, the area of a rectangle, and the area of a circle (3.14 * radius **

2). This program should include a menu interface.

def square(length):

return length * length

def rectangle(width , height):

return width * height

def circle(radius):

return 3.14 * radius ** 2

def options():

print

print "Options:"

print "s = calculate the area of a square."

print "c = calculate the area of a circle."

print "r = calculate the area of a rectangle."

print "q = quit"

print

print "This program will calculate the area of a square, circle or

rectangle."

choice = "x"

options()

while choice != "q":

choice = raw_input("Please enter your choice: ")

if choice == "s":

length = input("Length of square: ")

print "The area of this square is", square(length)

options()

elif choice == "c":

radius = input("Radius of the circle: ")

print "The area of the circle is", circle(radius)

options()

elif choice == "r":

width = input("Width of the rectangle: ")

height = input("Height of the rectangle: ")

46

First things first

print "The area of the rectangle is", rectangle(width,

height)

options()

elif choice == "q":

print "",

else:

print "Unrecognized option."

options()

47

9 Advanced Functions Example

Some people find this section useful, and some find it confusing. If you find it confusing you
can skip it (or just look at the examples.) Now we will do a walk through for the following
program:

def mult(a, b):

if b == 0:

return 0

rest = mult(a, b - 1)

value = a + rest

return value

print "3 * 2 = ", mult(3, 2)

Output

3 * 2 = 6

Basically this program creates a positive integer multiplication function (that is far slower
than the built in multiplication function) and then demonstrates this function with a use of
the function. This program demonstrates the use of recursion, that is a form of iteration
(repetition) in which there is a function that repeatedly calls itself until an exit condition
is satisfied. It uses repeated additions to give the same result as mutiplication: e.g. 3 + 3
(addition) gives the same result as 3 * 2 (multiplication).

RUN 1

Question: What is the first thing the program does?

Answer: The first thing done is the function mult is defined with all the lines except the
last one.

function mult defined

def mult(a, b):

if b == 0:

return 0

rest = mult(a, b - 1)

value = a + rest

return value

49

Advanced Functions Example

This creates a function that takes two parameters and returns a value when it is done.
Later this function can be run.

What happens next?

The next line after the function, print "3 * 2 = ", mult(3, 2) is run.

And what does this do?

It prints 3 * 2 = and the return value of mult(3, 2)

And what does mult(3, 2) return?

We need to do a walkthrough of the mult function to find out.

RUN 2

What happens next?

The variable a gets the value 3 assigned to it and the variable b gets the value 2 assigned
to it.

And then?

The line if b == 0: is run. Since b has the value 2 this is false so the line return 0 is
skipped.

And what then?

The line rest = mult(a, b - 1) is run. This line sets the local variable rest to the
value of mult(a, b - 1). The value of a is 3 and the value of b is 2 so the function call is
mult(3,1)

So what is the value of mult(3, 1) ?

We will need to run the function mult with the parameters 3 and 1.

RUN 2

def mult(3, 2):

if b == 0:

return 0

rest = mult(3, 2 - 1)

rest = mult(3, 1)

value = 3 + rest

return value

RUN 3

50

First things first

So what happens next?

The local variables in the new run of the function are set so that a has the value 3 and b

has the value 1. Since these are local values these do not affect the previous values of a

and b.

And then?

Since b has the value 1 the if statement is false, so the next line becomes rest = mult(a,

b - 1).

What does this line do?

This line will assign the value of mult(3, 0) to rest.

So what is that value?

We will have to run the function one more time to find that out. This time a has the value
3 and b has the value 0.

So what happens next?

The first line in the function to run is if b == 0:. b has the value 0 so the next line to
run is return 0

And what does the line return 0 do?

This line returns the value 0 out of the function.

So?

So now we know that mult(3, 0) has the value 0. Now we know what the line rest =

mult(a, b - 1) did since we have run the function mult with the parameters 3 and 0. We
have finished running mult(3, 0) and are now back to running mult(3, 1). The variable
rest gets assigned the value 0.

What line is run next?

The line value = a + rest is run next. In this run of the function, a = 3 and rest = 0

so now value = 3.

What happens next?

The line return value is run. This returns 3 from the function. This also exits from the
run of the function mult(3, 1). After return is called, we go back to running mult(3,

2).

Where were we in mult(3, 2)?

We had the variables a = 3 and b = 2 and were examining the line rest = mult(a, b -

1).

So what happens now?

The variable rest get 3 assigned to it. The next line value = a + rest sets value to 3

+ 3 or 6.

So now what happens?

51

Advanced Functions Example

The next line runs, this returns 6 from the function. We are now back to running the line
print "3 * 2 = ", mult(3, 2) which can now print out the 6.

What is happening overall?

Basically we used two facts to calculate the multiple of the two numbers. The first is that
any number times 0 is 0 (x * 0 = 0). The second is that a number times another number
is equal to the first number plus the first number times one less than the second number
(x * y = x + x * (y - 1)). So what happens is 3 * 2 is first converted into 3 + 3 *

1. Then 3 * 1 is converted into 3 + 3 * 0. Then we know that any number times 0 is 0
so 3 * 0 is 0. Then we can calculate that 3 + 3 * 0 is 3 + 0 which is 3. Now we know
what 3 * 1 is so we can calculate that 3 + 3 * 1 is 3 + 3 which is 6.

This is how the whole thing works:

3 * 2

3 + 3 * 1

3 + 3 + 3 * 0

3 + 3 + 0

3 + 3

6

Should you still have problems with this example, look at the process backwards. What
is the last step that happens? We can easily make out that the result of mult(3, 0) is 0.
Since b is 0, the function mult(3, 0) will return 0 and stop.

So what does the previous step do? mult(3, 1) does not return 0 because b is not 0. So the
next lines are executed: rest = mult (a, b - 1), which is rest = mult (3, 0), which
is 0 as we just worked out. So now the variable rest is set to 0.

The next line adds the value of rest to a, and since a is 3 and rest is 0, the result is 3.

Now we know that the function mult(3, 1) returns 3. But we want to know the result of
mult(3,2). Therefore, we need to jump back to the start of the program and execute it
one more round: mult(3, 2) sets rest to the result of mult(3, 1). We know from the
last round that this result is 3. Then value calculates as a + rest, i. e. 3 + 3. Then the
result of 3 * 2 is printed as 6.

The point of this example is that the function mult(a, b) starts itself inside itself. It does
this until b reaches 0 and then calculates the result as explained above.

Recursion

Programming constructs of this kind are called recursive and probably the most intuitive
definition of recursion is:

Recursion

If you still don't get it, see recursion.

These last two sections were recently written. If you have any comments, found any errors
or think I need more/clearer explanations please email. I have been known in the past to

52

First things first

make simple things incomprehensible. If the rest of the tutorial has made sense, but this
section didn't, it is probably my fault and I would like to know. Thanks.

9.0.31 Examples

factorial.py

#defines a function that calculates the factorial

def factorial(n):

if n <= 1:

return 1

return n * factorial(n - 1)

print "2! =", factorial(2)

print "3! =", factorial(3)

print "4! =", factorial(4)

print "5! =", factorial(5)

Output:

2! = 2

3! = 6

4! = 24

5! = 120

countdown.py

def count_down(n):

print n

if n > 0:

return count_down(n-1)

count_down(5)

Output:

5

4

3

2

1

0

Commented function_interesting.py

The comments below have been numbered as steps, to make explanation

of the code easier. Please read according to those steps.

(step number 1, for example, is at the bottom)

def mult(a, b): # (2.) This function will keep repeating itself,

because....

if b == 0:

return 0

rest = mult(a, b - 1) # (3.)Once it reaches THIS, the

sequence starts over again and goes back to the top!

53

Advanced Functions Example

value = a + rest

return value # (4.) therefore, "return value" will not happen

until the program gets past step 3 above

print "3 * 2 = ", mult(3, 2) # (1.) The "mult" function will first

initiate here

The "return value" event at the end can therefore only happen

once b equals zero (b decreases by 1 everytime step 3 happens).

And only then can the print command at the bottom be displayed.

See it as kind of a "jump-around" effect. Basically, all you

should really understand is that the function is reinitiated

WITHIN ITSELF at step 3. Therefore, the sequence "jumps" back

to the top.

Commented factorial.py

Another "jump-around" function example:

def factorial(n): # (2.) So once again, this function will REPEAT

itself....

if n <= 1:

return 1

return n * factorial(n - 1) # (3.) Because it RE-initiates HERE,

and goes back to the top.

print "2! =", factorial(2) # (1.) The "factorial" function is

initiated with this line

print "3! =", factorial(3)

print "4! =", factorial(4)

print "5! =", factorial(5)

Commented countdown.py

Another "jump-around", nice and easy:

def count_down(n): # (2.) Once again, this sequence will repeat

itself....

print n

if n > 0:

return count_down(n-1) # (3.) Because it restarts here, and

goes back to the top

count_down(5) # (1.) The "count_down" function initiates here

54

10 Lists

10.0.32 Variables with more than one value

You have already seen ordinary variables that store a single value. However other variable
types can hold more than one value. The simplest type is called a list. Here is an example
of a list being used:

which_one = input("What month (1-12)? ")

months = [‚January‚, ‚February‚, ‚March‚, ‚April‚, ‚May‚, ‚June‚,

‚July‚,

‚August‚, ‚September‚, ‚October‚, ‚November‚, ‚December‚]

if 1 <= which_one <= 12:

print "The month is", months[which_one - 1]

and an output example:

What month (1-12)? 3

The month is March

In this example the months is a list. months is defined with the lines months

= ['January', 'February', 'March', 'April', 'May', 'June', 'July', and
'August', 'September', 'October', 'November', 'December'] (note that a \ could
also be used to split a long line, but that is not necessary in this case because Python is
intelligent enough to recognize that everything within brackets belongs together). The [

and] start and end the list with commas (,) separating the list items. The list is used in
months[which_one - 1]. A list consists of items that are numbered starting at 0. In other
words if you wanted January you would use months[0]. Give a list a number and it will
return the value that is stored at that location.

The statement if 1 <= which_one <= 12: will only be true if which_one is between one
and twelve inclusive (in other words it is what you would expect if you have seen that in
algebra).

Lists can be thought of as a series of boxes. Each box has a different value. For example,
the boxes created by demolist = ['life', 42, 'the universe', 6, 'and', 7] would
look like this:

55

Lists

b
o
x

n
u

m
b

e
r

0
1

2
3

4
5

d
em

ol
is

t
"l

if
e"

42
"t

h
e

u
n
iv

er
se

"
6

"a
n
d
"

7

56

First things first

Each box is referenced by its number so the statement demolist[0] would get 'life',
demolist[1] would get 42 and so on up to demolist[5] getting 7.

10.0.33 More features of lists

The next example is just to show a lot of other stuff lists can do (for once I don't expect
you to type it in, but you should probably play around with lists until you are comfortable
with them.). Here goes:

demolist = ["life", 42, "the universe", 6, "and", 7]

print "demolist = ",demolist

demolist.append("everything")

print "after ‚everything‚ was appended demolist is now:"

print demolist

print "len(demolist) =", len(demolist)

print "demolist.index(42) =", demolist.index(42)

print "demolist[1] =", demolist[1]

Next we will loop through the list

c = 0

while c < len(demolist):

print "demolist[", c, "] =", demolist[c]

c = c + 1

del demolist[2]

print "After ‚the universe‚ was removed demolist is now:"

print demolist

if "life" in demolist:

print "‚life‚ was found in demolist"

else:

print "‚life‚ was not found in demolist"

if "amoeba" in demolist:

print "‚amoeba‚ was found in demolist"

if "amoeba" not in demolist:

print "‚amoeba‚ was not found in demolist"

demolist.sort()

print "The sorted demolist is", demolist

The output is:

demolist = ['life', 42, 'the universe', 6, 'and', 7]

after 'everything' was appended demolist is now:

['life', 42, 'the universe', 6, 'and', 7, 'everything']

len(demolist) = 7

demolist.index(42) = 1

demolist[1] = 42

demolist[0] = life

demolist[1] = 42

demolist[2] = the universe

demolist[3] = 6

demolist[4] = and

demolist[5] = 7

demolist[6] = everything

After 'the universe' was removed demolist is now:

['life', 42, 6, 'and', 7, 'everything']

'life' was found in demolist

57

Lists

'amoeba' was not found in demolist

The sorted demolist is [6, 7, 42, 'and', 'everything', 'life']

This example uses a whole bunch of new functions. Notice that you can just print a
whole list. Next the append function is used to add a new item to the end of the list. len

returns how many items are in a list. The valid indexes (as in numbers that can be used
inside of the []) of a list range from 0 to len - 1. The index function tells where the
first location of an item is located in a list. Notice how demolist.index(42) returns 1,
and when demolist[1] is run it returns 42. The line # Next we will loop through the

list is a just a reminder to the programmer (also called a comment). Python will ignore
any lines that start with a #. Next the lines:

c = 0

while c < len(demolist):

print ‚demolist[‚, c, ‚] =‚, demolist[c]

c = c + 1

create a variable c, which starts at 0 and is incremented until it reaches the last index of the
list. Meanwhile the print statement prints out each element of the list. The del command
can be used to remove a given element in a list. The next few lines use the in operator to
test if an element is in or is not in a list. The sort function sorts the list. This is useful
if you need a list in order from smallest number to largest or alphabetical. Note that this
rearranges the list. In summary, for a list, the following operations occur:

example explanation

demolist[2] accesses the element at index 2

demolist[2] = 3 sets the element at index 2 to be 3

del demolist[2] removes the element at index 2

len(demolist) returns the length of demolist

"value" in demolist is True if "value" is an element in demolist

"value" not in demolist is True if "value" is not an element in demolist

demolist.sort() sorts demolist

demolist.index("value") returns the index of the first place that "value"

occurs

demolist.append("value") adds an element "value" at the end of the list

demolist.remove("value") removes the first occurrence of
value from demolist (same as del

demolist[demolist.index("value")])

This next example uses these features in a more useful way:

menu_item = 0

namelist = []

while menu_item != 9:

print "--------------------"

print "1. Print the list"

print "2. Add a name to the list"

print "3. Remove a name from the list"

print "4. Change an item in the list"

print "9. Quit"

menu_item = input("Pick an item from the menu: ")

58

First things first

if menu_item == 1:

current = 0

if len(namelist) > 0:

while current < len(namelist):

print current, ".", namelist[current]

current = current + 1

else:

print "List is empty"

elif menu_item == 2:

name = raw_input("Type in a name to add: ")

namelist.append(name)

elif menu_item == 3:

del_name = raw_input("What name would you like to remove: ")

if del_name in namelist:

namelist.remove(del_name) would work just as fine

item_number = namelist.index(del_name)

del namelist[item_number]

The code above only removes the first occurrence of

the name. The code below from Gerald removes all.

while del_name in namelist:

item_number = namelist.index(del_name)

del namelist[item_number]

else:

print del_name, "was not found"

elif menu_item == 4:

old_name = raw_input("What name would you like to change: ")

if old_name in namelist:

item_number = namelist.index(old_name)

new_name = raw_input("What is the new name: ")

namelist[item_number] = new_name

else:

print old_name, "was not found"

print "Goodbye"

And here is part of the output:

1. Print the list

2. Add a name to the list

3. Remove a name from the list

4. Change an item in the list

9. Quit

Pick an item from the menu: 2

Type in a name to add: Jack

Pick an item from the menu: 2

Type in a name to add: Jill

Pick an item from the menu: 1

0 . Jack

1 . Jill

Pick an item from the menu: 3

What name would you like to remove: Jack

Pick an item from the menu: 4

What name would you like to change: Jill

What is the new name: Jill Peters

Pick an item from the menu: 1

0 . Jill Peters

59

Lists

Pick an item from the menu: 9

Goodbye

That was a long program. Let's take a look at the source code. The line namelist = []

makes the variable namelist a list with no items (or elements). The next important line
is while menu_item != 9:. This line starts a loop that allows the menu system for this
program. The next few lines display a menu and decide which part of the program to run.

The section

current = 0

if len(namelist) > 0:

while current < len(namelist):

print current, ".", namelist[current]

current = current + 1

else:

print "List is empty"

goes through the list and prints each name. len(namelist) tells how many items are in
the list. If len returns 0, then the list is empty.

Then, a few lines later, the statement namelist.append(name) appears. It uses the append

function to add an item to the end of the list. Jump down another two lines, and notice this
section of code:

item_number = namelist.index(del_name)

del namelist[item_number]

Here the index function is used to find the index value that will be used later to remove the
item. del namelist[item_number] is used to remove a element of the list.

The next section

old_name = raw_input("What name would you like to change: ")

if old_name in namelist:

item_number = namelist.index(old_name)

new_name = raw_input("What is the new name: ")

namelist[item_number] = new_name

else:

print old_name, "was not found"

uses index to find the item_number and then puts new_name where the old_name was.

Congratulations, with lists under your belt, you now know enough of the language that you
could do any computations that a computer can do (this is technically known as Turing-
Completeness). Of course, there are still many features that are used to make your life
easier.

10.0.34 Examples

test.py

This program runs a test of knowledge

First get the test questions

60

First things first

Later this will be modified to use file io.

def get_questions():

notice how the data is stored as a list of lists

return [["What color is the daytime sky on a clear day? ",

"blue"],

["What is the answer to life, the universe and

everything? ", "42"],

["What is a three letter word for mouse trap? ", "cat"]]

This will test a single question

it takes a single question in

it returns True if the user typed the correct answer, otherwise

False

def check_question(question_and_answer):

extract the question and the answer from the list

question = question_and_answer[0]

answer = question_and_answer[1]

give the question to the user

given_answer = raw_input(question)

compare the user‚s answer to the testers answer

if answer == given_answer:

print "Correct"

return True

else:

print "Incorrect, correct was:", answer

return False

This will run through all the questions

def run_test(questions):

if len(questions) == 0:

print "No questions were given."

the return exits the function

return

index = 0

right = 0

while index < len(questions):

Check the question

if check_question(questions[index]):

right = right + 1

index = index + 1

go to the next question

else:

index = index + 1

notice the order of the computation, first multiply, then

divide

print "You got", right * 100 / len(questions),\

"% right out of", len(questions)

now let‚s run the questions

run_test(get_questions())

The values True and False point to 1 and 0, respectively. They are often used in sanity
checks, loop conditions etc. You will learn more about this a little bit later (chapter
../Boolean Expressions/1).

Sample Output:

What color is the daytime sky on a clear day?green

Incorrect, correct was: blue

1 Chapter 12 on page 69

61

Lists

What is the answer to life, the universe and everything?42

Correct

What is a three letter word for mouse trap?cat

Correct

You got 66 % right out of 3

10.0.35 Exercises

Expand the test.py program so it has a menu giving the option of taking the test, viewing
the list of questions and answers, and an option to quit. Also, add a new question to ask,
"What noise does a truly advanced machine make?" with the answer of "ping".

Solution

Expand the test.py program so it has menu giving the option of taking the test, viewing
the list of questions and answers, and an option to quit. Also, add a new question to
ask, "What noise does a truly advanced machine make?" with the answer of "ping".

This program runs a test of knowledge

questions = [["What color is the daytime sky on a clear day? ",

"blue"],

["What is the answer to life, the universe and

everything? ", "42"],

["What is a three letter word for mouse trap? ", "cat"],

["What noise does a truly advanced machine make?",

"ping"]]

This will test a single question

it takes a single question in

it returns True if the user typed the correct answer, otherwise

False

def check_question(question_and_answer):

extract the question and the answer from the list

question = question_and_answer[0]

answer = question_and_answer[1]

give the question to the user

given_answer = raw_input(question)

compare the user‚s answer to the testers answer

if answer == given_answer:

print "Correct"

return True

else:

print "Incorrect, correct was:", answer

return False

62

First things first

This will run through all the questions

def run_test(questions):

if len(questions) == 0:

print "No questions were given."

the return exits the function

return

index = 0

right = 0

while index < len(questions):

Check the question

if check_question(questions[index]):

right = right + 1

go to the next question

index = index + 1

notice the order of the computation, first multiply, then

divide

print ("You got", right * 100 / len(questions),

"% right out of", len(questions))

showing a list of questions and answers

def showquestions():

q = 0

while q < len(questions):

a = 0

print "Q:" , questions[q][a]

a = 1

print "A:" , questions[q][a]

q = q + 1

now let‚s define the menu function

def menu():

print "––––––––-"

print "Menu:"

print "1 - Take the test"

print "2 - View a list of questions and answers"

print "3 - View the menu"

print "5 - Quit"

print "––––––––-"

choice = "3"

while choice != "5":

if choice == "1":

run_test(questions)

elif choice == "2":

63

Lists

showquestions()

elif choice == "3":

menu()

print

choice = raw_input("Choose your option from the menu above: ")

64

11 For Loops

And here is the new typing exercise for this chapter:

onetoten = range(1, 11)

for count in onetoten:

print count

and the ever-present output:

1

2

3

4

5

6

7

8

9

10

The output looks awfully familiar but the program code looks different. The first line
uses the range function. The range function uses two arguments like this range(start,

finish). start is the first number that is produced. finish is one larger than the last
number. Note that this program could have been done in a shorter way:

for count in range(1, 11):

print count

Here are some examples to show what happens with the range command:

>>> range(1, 10)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(-32, -20)

[-32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21]

>>> range(5,21)

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

>>> range(5)

[0, 1, 2, 3, 4]

>>> range(21, 5)

[]

The next line for count in onetoten: uses the for control structure. A for control
structure looks like for variable in list:. list is gone through starting with the first
element of the list and going to the last. As for goes through each element in a list it puts
each into variable. That allows variable to be used in each successive time the for loop
is run through. Here is another example (you don't have to type this) to demonstrate:

65

For Loops

demolist = [‚life‚, 42, ‚the universe‚, 6, ‚and‚, 9, ‚everything‚]

for item in demolist:

print "The Current item is:",

print item

The output is:

The Current item is: life

The Current item is: 42

The Current item is: the universe

The Current item is: 6

The Current item is: and

The Current item is: 9

The Current item is: everything

Notice how the for loop goes through and sets item to each element in the list. Notice how
if you don't want print to go to the next line add a comma at the end of the statement (i.e.
if you want to print something else on that line). So, what is for good for? The first use is
to go through all the elements of a list and do something with each of them. Here's a quick
way to add up all the elements:

list = [2, 4, 6, 8]

sum = 0

for num in list:

sum = sum + num

print "The sum is:", sum

with the output simply being:

The sum is: 20

Or you could write a program to find out if there are any duplicates in a list like this program
does:

list = [4, 5, 7, 8, 9, 1, 0, 7, 10]

list.sort()

prev = list[0]

del list[0]

for item in list:

if prev == item:

print "Duplicate of", prev, "found"

prev = item

and for good measure:

Duplicate of 7 Found

Okay, so how does it work? Here is a special debugging version to help you understand (you
don't need to type this in):

l = [4, 5, 7, 8, 9, 1, 0, 7, 10]

print "l = [4, 5, 7, 8, 9, 1, 0, 7, 10]", "\t\tl:", l

l.sort()

66

First things first

print "l.sort()", "\t\tl:", l

prev = l[0]

print "prev = l[0]", "\t\tprev:", prev

del l[0]

print "del l[0]", "\t\tl:", l

for item in l:

if prev == item:

print "Duplicate of", prev, "found"

print "if prev == item:", "\t\tprev:", prev, "\titem:", item

prev = item

print "prev = item", "\t\tprev:", prev, "\titem:", item

with the output being:

l = [4, 5, 7, 8, 9, 1, 0, 7, 10] l: [4, 5, 7, 8, 9, 1, 0, 7,

10]

l.sort() l: [0, 1, 4, 5, 7, 7, 8, 9, 10]

prev = l[0] prev: 0

del l[0] l: [1, 4, 5, 7, 7, 8, 9, 10]

if prev == item: prev: 0 item: 1

prev = item prev: 1 item: 1

if prev == item: prev: 1 item: 4

prev = item prev: 4 item: 4

if prev == item: prev: 4 item: 5

prev = item prev: 5 item: 5

if prev == item: prev: 5 item: 7

prev = item prev: 7 item: 7

Duplicate of 7 found

if prev == item: prev: 7 item: 7

prev = item prev: 7 item: 7

if prev == item: prev: 7 item: 8

prev = item prev: 8 item: 8

if prev == item: prev: 8 item: 9

prev = item prev: 9 item: 9

if prev == item: prev: 9 item: 10

prev = item prev: 10 item: 10

The reason I put so many print statements in the code was so that you can see what is
happening in each line. (By the way, if you can't figure out why a program is not working,
try putting in lots of print statements so you can see what is happening.) First the program
starts with a boring old list. Next the program sorts the list. This is so that any duplicates
get put next to each other. The program then initializes a prev(ious) variable. Next the
first element of the list is deleted so that the first item is not incorrectly thought to be a
duplicate. Next a for loop is gone into. Each item of the list is checked to see if it is the
same as the previous. If it is a duplicate was found. The value of prev is then changed so
that the next time the for loop is run through prev is the previous item to the current.
Sure enough, the 7 is found to be a duplicate. (Notice how \t is used to print a tab.)

The other way to use for loops is to do something a certain number of times. Here is some
code to print out the first 9 numbers of the Fibonacci series:

a = 1

b = 1

for c in range(1, 10):

print a,

n = a + b

a = b

b = n

67

For Loops

with the surprising output:

1 1 2 3 5 8 13 21 34

Everything that can be done with for loops can also be done with while loops but for

loops give an easy way to go through all the elements in a list or to do something a certain
number of times.

68

12 Boolean Expressions

Here is a little example of boolean expressions (you don't have to type it in):

a = 6

b = 7

c = 42

print 1, a == 6

print 2, a == 7

print 3, a == 6 and b == 7

print 4, a == 7 and b == 7

print 5, not a == 7 and b == 7

print 6, a == 7 or b == 7

print 7, a == 7 or b == 6

print 8, not (a == 7 and b == 6)

print 9, not a == 7 and b == 6

With the output being:

1 True

2 False

3 True

4 False

5 True

6 True

7 False

8 True

9 False

What is going on? The program consists of a bunch of funny looking print statements.
Each print statement prints a number and an expression. The number is to help keep track
of which statement I am dealing with. Notice how each expression ends up being either
False or True. In Python, false can also be written as 0 and true as 1.

The lines:

print 1, a == 6

print 2, a == 7

print out a True and a False respectively just as expected since the first is true and the
second is false. The third print, print 3, a == 6 and b == 7, is a little different. The
operator and means if both the statement before and the statement after are true then the
whole expression is true otherwise the whole expression is false. The next line, print 4, a

== 7 and b == 7, shows how if part of an and expression is false, the whole thing is false.
The behavior of and can be summarized as follows:

expression result

true and true true

true and false false

69

Boolean Expressions

expression result

false and true false

false and false false

Notice that if the first expression is false Python does not check the second expression since
it knows the whole expression is false.

The next line, print 5, not a == 7 and b == 7, uses the not operator. not just gives
the opposite of the expression. (The expression could be rewritten as print 5, a != 7

and b == 7). Here is the table:

expression result

not true false

not false true

The two following lines, print 6, a == 7 or b == 7 and print 7, a == 7 or b == 6,
use the or operator. The or operator returns true if the first expression is true, or if the
second expression is true or both are true. If neither are true it returns false. Here's the
table:

expression result

true or true true

true or false true

false or true true

false or false false

Notice that if the first expression is true Python doesn't check the second expression since it
knows the whole expression is true. This works since or is true if at least one half of the
expression is true. The first part is true so the second part could be either false or true, but
the whole expression is still true.

The next two lines, print 8, not (a == 7 and b == 6) and print 9, not a == 7 and

b == 6, show that parentheses can be used to group expressions and force one part to be
evaluated first. Notice that the parentheses changed the expression from false to true. This
occurred since the parentheses forced the not to apply to the whole expression instead of
just the a == 7 portion.

Here is an example of using a boolean expression:

list = ["Life", "The Universe", "Everything", "Jack", "Jill", "Life",

"Jill"]

make a copy of the list. See the More on Lists chapter to explain

what [:] means.

copy = list[:]

sort the copy

copy.sort()

prev = copy[0]

del copy[0]

count = 0

70

First things first

go through the list searching for a match

while count < len(copy) and copy[count] != prev:

prev = copy[count]

count = count + 1

If a match was not found then count can‚t be < len

since the while loop continues while count is < len

and no match is found

if count < len(copy):

print "First Match:", prev

And here is the output:

First Match: Jill

This program works by continuing to check for match while count < len(copy) and

copy[count] is not equal to prev. When either count is greater than the last index of
copy or a match has been found the and is no longer true so the loop exits. The if simply
checks to make sure that the while exited because a match was found.

The other "trick" of and is used in this example. If you look at the table for and notice that
the third entry is "false and won't check". If count >= len(copy) (in other words count <

len(copy) is false) then copy[count] is never looked at. This is because Python knows
that if the first is false then they can't both be true. This is known as a short circuit and is
useful if the second half of the and will cause an error if something is wrong. I used the first
expression (count < len(copy)) to check and see if count was a valid index for copy. (If
you don't believe me remove the matches "Jill" and "Life", check that it still works and then
reverse the order of count < len(copy) and copy[count] != prev to copy[count] !=

prev and count < len(copy).)

Boolean expressions can be used when you need to check two or more different things at
once.

12.0.36 A note on Boolean Operators

A common mistake for people new to programming is a misunderstanding of the way that
boolean operators works, which stems from the way the python interpreter reads these
expressions. For example, after initially learning about "and " and "or" statements, one
might assume that the expression x == ('a' or 'b') would check to see if the variable
x was equivalent to one of the strings 'a' or 'b'. This is not so. To see what I'm talk-
ing about, start an interactive session with the interpreter and enter the following expressions:

>>> 'a' == ('a' or 'b')

>>> 'b' == ('a' or 'b')

>>> 'a' == ('a' and 'b')

>>> 'b' == ('a' and 'b')

And this will be the unintuitive result:

71

Boolean Expressions

>>>'a' == ('a' or 'b')

True

>>>'b' == ('a' or 'b')

False

>>>'a' == ('a' and 'b')

False

>>>'b' == ('a' and 'b')

True

At this point, the and and or operators seem to be broken. It doesn't make sense that, for
the first two expressions, 'a' is equivalent to 'a' or 'b' while 'b' is not. Furthermore, it
doesn't make any sense that 'b' is equivalent to 'a' and 'b'. After examining what the
interpreter does with boolean operators, these results do in fact exactly what you are asking
of them, it's just not the same as what you think you are asking.

When the Python interpreter looks at an or expression, it takes the first statement and
checks to see if it is true. If the first statement is true, then Python returns that object's
value without checking the second statement. This is because for an or expression, the
whole thing is true if one of the values is true; the program does not need to bother with the
second statement. On the other hand, if the first value is evaluated as false Python checks
the second half and returns that value. That second half determines the truth value of the
whole expression since the first half was false. This "laziness" on the part of the interpreter
is called "short circuiting" and is a common way of evaluating boolean expressions in many
programming languages.

Similarly, for an and expression, Python uses a short circuit technique to speed truth value
evaluation. If the first statement is false then the whole thing must be false, so it returns
that value. Otherwise if the first value is true it checks the second and returns that value.

One thing to note at this point is that the boolean expression returns a value indicating
True or False, but that Python considers a number of different things to have a truth value
assigned to them. To check the truth value of any given object x, you can use the function
bool(x) to see its truth value. Below is a table with examples of the truth values of various
objects:

True False

True False

1 0

Numbers other than zero The string 'None'

Nonempty strings Empty strings

Nonempty lists Empty lists

Nonempty dictionaries Empty dictionaries

Now it is possible to understand the perplexing results we were getting when we tested
those boolean expressions before. Let's take a look at what the interpreter "sees" as it goes
through that code:

First case:

72

First things first

>>>'a' == ('a' or 'b') # Look at parentheses first, so evaluate expression "('a' or

'b')"

'a' is a nonempty string, so the first

value is True

Return that first value: 'a'

>>>'a' == 'a' # the string 'a' is equivalent to the string 'a', so

expression is True

True

Second case:

>>>'b' == ('a' or 'b') # Look at parentheses first, so evaluate expression "('a' or

'b')"

'a' is a nonempty string, so the first

value is True

Return that first value: 'a'

>>>'b' == 'a' # the string 'b' is not equivalent to the string 'a',

so expression is False

False

Third case:

>>>'a' == ('a' and 'b') # Look at parentheses first, so evaluate expression "('a' and

'b')"

'a' is a nonempty string, so the first

value is True, examine second value

'b' is a nonempty string, so second

value is True

Return that second value as result of

whole expression: 'b'

>>>'a' == 'b' # the string 'a' is not equivalent to the string 'b',

so expression is False

False

Fourth case:

>>>'b' == ('a' and 'b') # Look at parentheses first, so evaluate expression "('a' and

'b')"

'a' is a nonempty string, so the first

value is True, examine second value

'b' is a nonempty string, so second

value is True

Return that second value as result of

whole expression: 'b'

>>>'b' == 'b' # the string 'b' is equivalent to the string 'b', so

expression is True

True

So Python was really doing its job when it gave those apparently bogus results. As mentioned
previously, the important thing is to recognize what value your boolean expression will
return when it is evaluated, because it isn't always obvious.

Going back to those initial expressions, this is how you would write them out so they
behaved in a way that you want:

73

Boolean Expressions

>>>'a' == 'a' or 'a' == 'b'

True

>>>'b' == 'a' or 'b' == 'b'

True

>>>'a' == 'a' and 'a' == 'b'

False

>>> 'b' == 'a' and 'b' == 'b'

False

When these comparisons are evaluated they return truth values in terms of True or False,
not strings, so we get the proper results.

12.0.37 Examples

password1.py

This programs asks a user for a name and a password.

It then checks them to make sure the user is allowed in.

name = raw_input("What is your name? ")

password = raw_input("What is the password? ")

if name == "Josh" and password == "Friday":

print "Welcome Josh"

elif name == "Fred" and password == "Rock":

print "Welcome Fred"

else:

print "I don‚t know you."

Sample runs

What is your name? Josh

What is the password? Friday

Welcome Josh

What is your name? Bill

What is the password? Money

I don't know you.

12.0.38 Exercises

Write a program that has a user guess your name, but they only get 3 chances to do so until
the program quits.

Solution

Write a program that has a user guess your name, but they only get 3 chances to do so
until the program quits.

print "Try to guess my name!"

count = 3

74

First things first

name = "Tony"

guess = raw_input("What is my name? ")

while count > 1 and guess != name:

print "You are wrong!"

guess = raw_input("What is my name? ")

count = count - 1

if guess != name:

print "You are wrong!" this message isn‚t printed in the third

chance, so we print it now

print "You ran out of chances."

quit

else:

print "Yes! My name is", name + "!"

75

13 Dictionaries

This chapter is about dictionaries. If you open a dictionary, you should notice every entry
consists of two parts, a word and the word's definition. The word is the key to finding
out what a word means, and what the word means is considered the value for that key. In
Python, dictionaries have keys and values. Keys are used to find values. Here is an example
of a dictionary in use:

def print_menu():

print ‚1. Print Dictionary‚

print ‚2. Add definition‚

print ‚3. Remove word‚

print ‚4. Lookup word‚

print ‚5. Quit‚

print

words = {}

menu_choice = 0

print_menu()

while menu_choice != 5:

menu_choice = input("Type in a number (1-5): ")

if menu_choice == 1:

print "Definitions:"

for x in words.keys():

print x, ": ", words[x]

print

elif menu_choice == 2:

print "Add definition"

name = raw_input("Word: ")

means = raw_input("Definition: ")

words[name] = means

elif menu_choice == 3:

print "Remove word"

name = raw_input("Word: ")

if name in words:

del words[name]

print name, " was removed."

else:

print name, " was not found."

elif menu_choice == 4:

print "Lookup Word"

name = raw_input("Word: ")

if name in words:

print "The definition of ", name, " is: ", words[name]

else:

print name, "No definition for ", name, " was found."

elif menu_choice != 5:

print_menu()

And here is my output:

1. Print Dictionary

2. Add definition

77

Dictionaries

3. Remove word

4. Lookup word

5. Quit

Type in a number (1-5): 2

Add definition

Word: Python

Definition: A snake, a programming language, and a British comedy.

Type in a number (1-5): 2

Add definition

Word: Dictionary

Definition: A book where words are defined.

Type in a number (1-5): 1

Definitions:

Python: A snake, a programming language, and a British comedy.

Dictionary: A book where words are defined.

Type in a number (1-5): 4

Lookup Word

Word: Python

The definition of Python is: A snake, a programming language, and a

British comedy.

Type in a number (1-5): 3

Remove Word

Word: Dictionary

Dictionary was removed.

Type in a number (1-5): 1

Definitions:

Python: A snake, a programming language, and a British comedy.

Type in a number (1-5): 5

This program is similar to the name list from the earlier chapter on lists (note that lists use
indexes and dictionaries don't). Here's how the program works:

• First the function print_menu is defined. print_menu just prints a menu that is later
used twice in the program.

• Next comes the funny looking line words = {}. All that line does is tell Python that
words is a dictionary.

• The next few lines just make the menu work.

for x in words.keys():

print x, ": ", words[x]

• This goes through the dictionary and prints all the information. The function
words.keys() returns a list that is then used by the for loop. The list returned
by keys() is not in any particular order so if you want it in alphabetic order it must be
sorted. Similar to lists the statement words[x] is used to access a specific member of
the dictionary. Of course in this case x is a string.

• Next the line words[name] = means adds a word and definition to the dictionary. If
name is already in the dictionary means replaces whatever was there before.

if name in words:

del words[name]

• See if name is in words and remove it if it is. The expression name in words returns
true if name is a key in words but otherwise returns false. The line del words[name]

removes the key name and the value associated with that key.

78

First things first

if name in words:

print "The definition of ", name, " is: ", words[name]

• Check to see if words has a certain key and if it does prints out the definition associated
with it.

• Lastly if the menu choice is invalid it reprints the menu for your viewing pleasure.

A recap: Dictionaries have keys and values. Keys can be strings or numbers. Keys point
to values. Values can be any type of variable (including lists or even dictionaries (those
dictionaries or lists of course can contain dictionaries or lists themselves (scary right? :-))).
Here is an example of using a list in a dictionary:

max_points = [25, 25, 50, 25, 100]

assignments = [‚hw ch 1‚, ‚hw ch 2‚, ‚quiz ‚, ‚hw ch 3‚, ‚test‚]

students = {‚#Max‚: max_points}

def print_menu():

print "1. Add student"

print "2. Remove student"

print "3. Print grades"

print "4. Record grade"

print "5. Print Menu"

print "6. Exit"

def print_all_grades():

print ‚\t‚,

for i in range(len(assignments)):

print assignments[i], ‚\t‚,

print

keys = students.keys()

keys.sort()

for x in keys:

print x, ‚\t‚,

grades = students[x]

print_grades(grades)

def print_grades(grades):

for i in range(len(grades)):

print grades[i], ‚\t‚, ‚\t‚,

print

print_menu()

menu_choice = 0

while menu_choice != 6:

print

menu_choice = input("Menu Choice (1-6): ")

if menu_choice == 1:

name = raw_input("Student to add: ")

students[name] = [0] * len(max_points)

elif menu_choice == 2:

name = raw_input("Student to remove: ")

if name in students:

del students[name]

else:

print "Student:", name, "not found"

elif menu_choice == 3:

print_all_grades()

elif menu_choice == 4:

print "Record Grade"

name = raw_input("Student: ")

if name in students:

grades = students[name]

print "Type in the number of the grade to record"

79

Dictionaries

print "Type a 0 (zero) to exit"

for i in range(len(assignments)):

print i + 1, assignments[i], ‚\t‚,

print

print_grades(grades)

which = 1234

while which != -1:

which = input("Change which Grade: ")

which = which - 1

if 0 <= which < len(grades):

grade = input("Grade: ")

grades[which] = grade

elif which != -1:

print "Invalid Grade Number"

else:

print "Student not found"

elif menu_choice != 6:

print_menu()

and here is a sample output:

1. Add student

2. Remove student

3. Print grades

4. Record grade

5. Print Menu

6. Exit

Menu Choice (1-6): 3

hw ch 1 hw ch 2 quiz hw ch 3

test

#Max 25 25 50 25

100

Menu Choice (1-6): 5

1. Add student

2. Remove student

3. Print grades

4. Record grade

5. Print Menu

6. Exit

Menu Choice (1-6): 1

Student to add: Bill

Menu Choice (1-6): 4

Record Grade

Student: Bill

Type in the number of the grade to record

Type a 0 (zero) to exit

1 hw ch 1 2 hw ch 2 3 quiz 4 hw ch 3 5

test

0 0 0 0 0

Change which Grade: 1

Grade: 25

Change which Grade: 2

Grade: 24

Change which Grade: 3

Grade: 45

Change which Grade: 4

Grade: 23

Change which Grade: 5

Grade: 95

Change which Grade: 0

80

First things first

Menu Choice (1-6): 3

hw ch 1 hw ch 2 quiz hw ch 3

test

#Max 25 25 50 25

100

Bill 25 24 45 23

95

Menu Choice (1-6): 6

Heres how the program works. Basically the variable students is a dictionary with the
keys being the name of the students and the values being their grades. The first two
lines just create two lists. The next line students = {'#Max': max_points} creates a
new dictionary with the key {#Max} and the value is set to be [25, 25, 50, 25, 100],
since thats what max_points was when the assignment is made (I use the key #Max since
is sorted ahead of any alphabetic characters). Next print_menu is defined. Next the
print_all_grades function is defined in the lines:

def print_all_grades():

print ‚\t‚,

for i in range(len(assignments)):

print assignments[i], ‚\t‚,

print

keys = students.keys()

keys.sort()

for x in keys:

print x, ‚\t‚,

grades = students[x]

print_grades(grades)

Notice how first the keys are gotten out of the students dictionary with the keys function
in the line keys = students.keys(). keys is a list so all the functions for lists can be used
on it. Next the keys are sorted in the line keys.sort() since it is a list. for is used to go
through all the keys. The grades are stored as a list inside the dictionary so the assignment
grades = students[x] gives grades the list that is stored at the key x. The function
print_grades just prints a list and is defined a few lines later.

The later lines of the program implement the various options of the menu. The line
students[name] = [0] * len(max_points) adds a student to the key of their name. The
notation [0] * len(max_points) just creates a list of 0's that is the same length as the
max_points list.

The remove student entry just deletes a student similar to the telephone book example.
The record grades choice is a little more complex. The grades are retrieved in the line
grades = students[name] gets a reference to the grades of the student name. A grade is
then recorded in the line grades[which] = grade. You may notice that grades is never
put back into the students dictionary (as in no students[name] = grades). The reason
for the missing statement is that grades is actually another name for students[name] and
so changing grades changes student[name].

Dictionaries provide a easy way to link keys to values. This can be used to easily keep track
of data that is attached to various keys.

81

14 Using Modules

Here's this chapter's typing exercise (name it cal.py (import actually looks for a file named
calendar.py and reads it in. If the file is named calendar.py and it sees a "import calendar"
it tries to read in itself which works poorly at best.)):

import calendar

year = input("Type in the year number: ")

calendar.prcal(year)

And here is part of the output I got:

Type in the year number: 2001

2001

January February March

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr

Sa Su

1 2 3 4 5 6 7 1 2 3 4 1 2 3

4

8 9 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9 10

11

15 16 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16

17 18

22 23 24 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23

24 25

29 30 31 26 27 28 26 27 28 29 30

31

(I skipped some of the output, but I think you get the idea.) So what does the program
do? The first line import calendar uses a new command import. The command import

loads a module (in this case the calendar module). To see the commands available in
the standard modules either look in the library reference for python (if you downloaded
it) or go to http://docs.python.org/library/. If you look at the documentation for the
calendar module, it lists a function called prcal that prints a calendar for a year. The line
calendar.prcal(year) uses this function. In summary to use a module import it and then
use module_name.function for functions in the module. Another way to write the program
is:

from calendar import prcal

year = input("Type in the year number: ")

prcal(year)

83

http://docs.python.org/library/.

Using Modules

This version imports a specific function from a module. Here is another program that uses
the Python Library (name it something like clock.py) (press Ctrl and the 'c' key at the same
time to terminate the program):

from time import time, ctime

prev_time = ""

while True:

the_time = ctime(time())

if prev_time != the_time:

print "The time is:", ctime(time())

prev_time = the_time

With some output being:

The time is: Sun Aug 20 13:40:04 2000

The time is: Sun Aug 20 13:40:05 2000

The time is: Sun Aug 20 13:40:06 2000

The time is: Sun Aug 20 13:40:07 2000

Traceback (innermost last):

File "clock.py", line 5, in ?

the_time = ctime(time())

KeyboardInterrupt

The output is infinite of course so I canceled it (or the output at least continues until Ctrl+C
is pressed). The program just does a infinite loop (True is always true, so while True: goes
forever) and each time checks to see if the time has changed and prints it if it has. Notice
how multiple names after the import statement are used in the line from time import

time, ctime.

The Python Library contains many useful functions. These functions give your programs
more abilities and many of them can simplify programming in Python.

14.0.39 Exercises

Rewrite the High_low.py program from section Decisions1 to use a random integer between
0 and 99 instead of the hard-coded 78. Use the Python documentation to find an appropriate
module and function to do this.

Solution

Rewrite the High_low.py program from section Decisions2 to use an random integer
between 0 and 99 instead of the hard-coded 78. Use the Python documentation to find
an appropriate module and function to do this.

from random import randint

number = randint(0, 99)

1 Chapter 6.0.20 on page 30

84

First things first

guess = -1

while guess != number:

guess = input ("Guess a number: ")

if guess > number:

print "Too high"

elif guess < number:

print "Too low"

print "Just right"

85

15 More on Lists

We have already seen lists and how they can be used. Now that you have some more
background I will go into more detail about lists. First we will look at more ways to get at
the elements in a list and then we will talk about copying them.

Here are some examples of using indexing to access a single element of a list:

>>> some_numbers = ['zero', 'one', 'two', 'three', 'four', 'five']

>>> some_numbers[0]

'zero'

>>> some_numbers[4]

'four'

>>> some_numbers[5]

'five'

All those examples should look familiar to you. If you want the first item in the list
just look at index 0. The second item is index 1 and so on through the list. However
what if you want the last item in the list? One way could be to use the len() function
like some_numbers[len(some_numbers) - 1]. This way works since the len() function
always returns the last index plus one. The second from the last would then be
some_numbers[len(some_numbers) - 2]. There is an easier way to do this. In Python
the last item is always index -1. The second to the last is index -2 and so on. Here are some
more examples:

>>> some_numbers[len(some_numbers) - 1]

'five'

>>> some_numbers[len(some_numbers) - 2]

'four'

>>> some_numbers[-1]

'five'

>>> some_numbers[-2]

'four'

>>> some_numbers[-6]

'zero'

Thus any item in the list can be indexed in two ways: from the front and from the back.

Another useful way to get into parts of lists is using slicing. Here is another example to give
you an idea what they can be used for:

>>> things = [0, 'Fred', 2, 'S.P.A.M.', 'Stocking', 42, "Jack", "Jill"]

>>> things[0]

0

>>> things[7]

'Jill'

>>> things[0:8]

87

More on Lists

[0, 'Fred', 2, 'S.P.A.M.', 'Stocking', 42, 'Jack', 'Jill']

>>> things[2:4]

[2, 'S.P.A.M.']

>>> things[4:7]

['Stocking', 42, 'Jack']

>>> things[1:5]

['Fred', 2, 'S.P.A.M.', 'Stocking']

Slicing is used to return part of a list. The slicing operator is in the form things[first_-

index:last_index]. Slicing cuts the list before the first_index and before the
last_index and returns the parts inbetween. You can use both types of indexing:

>>> things[-4:-2]

['Stocking', 42]

>>> things[-4]

'Stocking'

>>> things[-4:6]

['Stocking', 42]

Another trick with slicing is the unspecified index. If the first index is not specified the
beginning of the list is assumed. If the last index is not specified the whole rest of the list is
assumed. Here are some examples:

>>> things[:2]

[0, 'Fred']

>>> things[-2:]

['Jack', 'Jill']

>>> things[:3]

[0, 'Fred', 2]

>>> things[:-5]

[0, 'Fred', 2]

Here is a (HTML inspired) program example (copy and paste in the poem definition if you
want):

poem = ["", "Jack", "and", "Jill", "", "went", "up", "the",

"hill", "to", "", "fetch", "a", "pail", "of", "",

"water.", "Jack", "fell", "", "down", "and", "broke",

"", "his", "crown", "and", "", "Jill", "came",

"", "tumbling", "after"]

def get_bolds(text):

true = 1

false = 0

is_bold tells whether or not the we are currently looking at

a bold section of text.

is_bold = false

start_block is the index of the start of either an unbolded

segment of text or a bolded segment.

start_block = 0

for index in range(len(text)):

Handle a starting of bold text

if text[index] == "":

if is_bold:

print "Error: Extra Bold"

print "Not Bold:", text[start_block:index]

is_bold = true

88

First things first

start_block = index + 1

Handle end of bold text

Remember that the last number in a slice is the index

after the last index used.

if text[index] == "":

if not is_bold:

print "Error: Extra Close Bold"

print "Bold [", start_block, ":", index, "]",

text[start_block:index]

is_bold = false

start_block = index + 1

get_bolds(poem)

with the output being:

Bold [1 : 4] ['Jack', 'and', 'Jill']

Bold [11 : 15] ['fetch', 'a', 'pail', 'of']

Bold [20 : 23] ['down', 'and', 'broke']

Bold [28 : 30] ['Jill', 'came']

The get_bold() function takes in a list that is broken into words and tokens. The tokens
that it looks for are which starts the bold text and which ends bold text. The
function get_bold() goes through and searches for the start and end tokens.

The next feature of lists is copying them. If you try something simple like:

>>> a = [1, 2, 3]

>>> b = a

>>> print b

[1, 2, 3]

>>> b[1] = 10

>>> print b

[1, 10, 3]

>>> print a

[1, 10, 3]

This probably looks surprising since a modification to b resulted in a being changed as well.
What happened is that the statement b = a makes b a reference to a. This means that b

can be thought of as another name for a. Hence any modification to b changes a as well.
However some assignments don't create two names for one list:

>>> a = [1, 2, 3]

>>> b = a * 2

>>> print a

[1, 2, 3]

>>> print b

[1, 2, 3, 1, 2, 3]

>>> a[1] = 10

>>> print a

[1, 10, 3]

>>> print b

[1, 2, 3, 1, 2, 3]

In this case b is not a reference to a since the expression a * 2 creates a new list. Then
the statement b = a * 2 gives b a reference to a * 2 rather than a reference to a. All
assignment operations create a reference. When you pass a list as an argument to a function

89

More on Lists

you create a reference as well. Most of the time you don't have to worry about creating
references rather than copies. However when you need to make modifications to one list
without changing another name of the list you have to make sure that you have actually
created a copy.

There are several ways to make a copy of a list. The simplest that works most of the time is
the slice operator since it always makes a new list even if it is a slice of a whole list:

>>> a = [1, 2, 3]

>>> b = a[:]

>>> b[1] = 10

>>> print a

[1, 2, 3]

>>> print b

[1, 10, 3]

Taking the slice [:] creates a new copy of the list. However it only copies the outer list.
Any sublist inside is still a references to the sublist in the original list. Therefore, when the
list contains lists, the inner lists have to be copied as well. You could do that manually but
Python already contains a module to do it. You use the deepcopy function of the copy

module:

>>> import copy

>>> a = [[1, 2, 3], [4, 5, 6]]

>>> b = a[:]

>>> c = copy.deepcopy(a)

>>> b[0][1] = 10

>>> c[1][1] = 12

>>> print a

[[1, 10, 3], [4, 5, 6]]

>>> print b

[[1, 10, 3], [4, 5, 6]]

>>> print c

[[1, 2, 3], [4, 12, 6]]

First of all notice that a is a list of lists. Then notice that when b[0][1] = 10 is run both
a and b are changed, but c is not. This happens because the inner arrays are still references
when the slice operator is used. However with deepcopy c was fully copied.

So, should I worry about references every time I use a function or =? The good news is that
you only have to worry about references when using dictionaries and lists. Numbers and
strings create references when assigned but every operation on numbers and strings that
modifies them creates a new copy so you can never modify them unexpectedly. You do have
to think about references when you are modifying a list or a dictionary.

By now you are probably wondering why are references used at all? The basic reason is
speed. It is much faster to make a reference to a thousand element list than to copy all the
elements. The other reason is that it allows you to have a function to modify the inputed
list or dictionary. Just remember about references if you ever have some weird problem with
data being changed when it shouldn't be.

90

16 Revenge of the Strings

And now presenting a cool trick that can be done with strings:

def shout(string):

for character in string:

print "Gimme a " + character

print "‚" + character + "‚"

shout("Lose")

def middle(string):

print "The middle character is:", string[len(string) / 2]

middle("abcdefg")

middle("The Python Programming Language")

middle("Atlanta")

And the output is:

Gimme a L

'L'

Gimme a o

'o'

Gimme a s

's'

Gimme a e

'e'

The middle character is: d

The middle character is: r

The middle character is: a

What these programs demonstrate is that strings are similar to lists in several ways. The
shout() function shows that for loops can be used with strings just as they can be used
with lists. The middle procedure shows that that strings can also use the len() function
and array indexes and slices. Most list features work on strings as well.

The next feature demonstrates some string specific features:

def to_upper(string):

Converts a string to upper case

upper_case = ""

for character in string:

if ‚a‚ <= character <= ‚z‚:

location = ord(character) - ord(‚a‚)

new_ascii = location + ord(‚A‚)

character = chr(new_ascii)

upper_case = upper_case + character

return upper_case

print to_upper("This is Text")

with the output being:

91

Revenge of the Strings

THIS IS TEXT

This works because the computer represents the characters of a string as numbers from 0 to
255. Python has a function called ord() (short for ordinal) that returns a character as a
number. There is also a corresponding function called chr() that converts a number into
a character. With this in mind the program should start to be clear. The first detail is
the line: if 'a' <= character <= 'z': which checks to see if a letter is lower case. If it
is then the next lines are used. First it is converted into a location so that a = 0, b = 1,
c = 2 and so on with the line: location = ord(character) - ord('a'). Next the new
value is found with new_ascii = location + ord('A'). This value is converted back to a
character that is now upper case.

Now for some interactive typing exercise:

>>> # Integer to String

>>> 2

2

>>> repr(2)

'2'

>>> -123

-123

>>> repr(-123)

'-123'

>>> ‘123‘

'123'

>>> # String to Integer

>>> "23"

'23'

>>> int("23")

23

>>> "23" * 2

'2323'

>>> int("23") * 2

46

>>> # Float to String

>>> 1.23

1.23

>>> repr(1.23)

'1.23'

>>> # Float to Integer

>>> 1.23

1.23

>>> int(1.23)

1

>>> int(-1.23)

-1

>>> # String to Float

>>> float("1.23")

1.23

>>> "1.23"

'1.23'

>>> float("123")

123.0

>>> ‘float("1.23")‘

'1.23'

If you haven't guessed already the function repr() can convert a integer to a string and
the function int() can convert a string to an integer. The function float() can convert
a string to a float. The repr() function returns a printable representation of something.

92

First things first

‘...‘ converts almost everything into a string, too. Here are some examples of this:

>>> repr(1)

'1'

>>> repr(234.14)

'234.14'

>>> repr([4, 42, 10])

'[4, 42, 10]'

>>> ‘[4, 42, 10]‘

'[4, 42, 10]'

The int() function tries to convert a string (or a float) into a integer. There is also a
similar function called float() that will convert a integer or a string into a float. Another
function that Python has is the eval() function. The eval() function takes a string and
returns data of the type that python thinks it found. For example:

>>> v = eval('123')

>>> print v, type(v)

123 <type 'int'>

>>> v = eval('645.123')

>>> print v, type(v)

645.123 <type 'float'>

>>> v = eval('[1, 2, 3]')

>>> print v, type(v)

[1, 2, 3] <type 'list'>

If you use the eval() function you should check that it returns the type that you expect.

One useful string function is the split() method. Here's an example:

>>> "This is a bunch of words".split()

['This', 'is', 'a', 'bunch', 'of', 'words']

>>> text = "First batch, second batch, third, fourth"

>>> text.split(",")

['First batch', ' second batch', ' third', ' fourth']

Notice how split() converts a string into a list of strings. The string is split by whitespace
by default or by the optional argument (in this case a comma). You can also add another
argument that tells split() how many times the separator will be used to split the text.
For example:

>>> list = text.split(",")

>>> len(list)

4

>>> list[-1]

' fourth'

>>> list = text.split(",", 2)

>>> len(list)

3

>>> list[-1]

' third, fourth'

93

Revenge of the Strings

16.0.40 Slicing strings (and lists)

Strings can be cut into pieces — in the same way as it was shown for lists in the previous
chapter — by using the slicing "operator" [:]. The slicing operator works in the same way
as before: text[first_index:last_index] (in very rare cases there can be another colon and a
third argument, as in the example shown below).

In order not to get confused by the index numbers, it is easiest to see them as clipping places,
possibilities to cut a string into parts. Here is an example, which shows the clipping places
(in yellow) and their index numbers (red and blue) for a simple text string:

94

First things first

0
1

2
.
.
.

-
2

-
1

↓
↓

↓
↓

↓
↓

↓

t
e
x
t

=
"

S
T

R
I

N
G

"

↑
↑

[
:

:
]

95

Revenge of the Strings

Note that the red indexes are counted from the beginning of the string and the blue ones
from the end of the string backwards. (Note that there is no blue -0, which could seem to
be logical at the end of the string. Because -0 == 0, (-0 means "beginning of the string" as
well.) Now we are ready to use the indexes for slicing operations:

text[1:4] → "TRI"

text[:5] → "STRIN"

text[:-1] → "STRIN"

text[-4:] → "RING"

text[2] → "R"

text[:] → "STRING"

text[::-1] → "GNIRTS"

text[1:4] gives us all of the text string between clipping places 1 and 4, "TRI". If you
omit one of the [first_index:last_index] arguments, you get the beginning or end of the
string as default: text[:5] gives "STRIN". For both first_index and last_index we can
use both the red and the blue numbering schema: text[:-1] gives the same as text[:5],
because the index -1 is at the same place as 5 in this case. If we do not use an argument
containing a colon, the number is treated in a different way: text[2] gives us one character
following the second clipping point, "R". The special slicing operation text[:] means "from
the beginning to the end" and produces a copy of the entire string (or list, as shown in the
previous chapter).

Last but not least, the slicing operation can have a second colon and a third argument,
which is interpreted as the "step size": text[::-1] is text from beginning to the end, with
a step size of -1. -1 means "every character, but in the other direction". "STRING" backwards
is "GNIRTS" (test a step length of 2, if you have not got the point here).

All these slicing operations work with lists as well. In that sense strings are just a special
case of lists, where the list elements are single characters. Just remember the concept of
clipping places, and the indexes for slicing things will get a lot less confusing.

16.0.41 Examples

This program requires an excellent understanding of decimal numbers

def to_string(in_int):

"""Converts an integer to a string"""

out_str = ""

prefix = ""

if in_int < 0:

prefix = "-"

in_int = -in_int

while in_int / 10 != 0:

out_str = chr(ord(‚0‚) + in_int % 10) + out_str

in_int = in_int / 10

out_str = chr(ord(‚0‚) + in_int % 10) + out_str

return prefix + out_str

def to_int(in_str):

"""Converts a string to an integer"""

out_num = 0

if in_str[0] == "-":

multiplier = -1

96

First things first

in_str = in_str[1:]

else:

multiplier = 1

for x in range(0, len(in_str)):

out_num = out_num * 10 + ord(in_str[x]) - ord(‚0‚)

return out_num * multiplier

print to_string(2)

print to_string(23445)

print to_string(-23445)

print to_int("14234")

print to_int("12345")

print to_int("-3512")

The output is:

2

23445

-23445

14234

12345

-3512

97

17 File IO

Here is a simple example of file IO (input/output):

Write a file

out_file = open("test.txt", "w")

out_file.write("This Text is going to out file\nLook at it and see!")

out_file.close()

Read a file

in_file = open("test.txt", "r")

text = in_file.read()

in_file.close()

print text

The output and the contents of the file test.txt are:

This Text is going to out file

Look at it and see!

Notice that it wrote a file called test.txt in the directory that you ran the program from.
The \n in the string tells Python to put a newline where it is.

A overview of file IO is:

• Get a file object with the open function.
• Read or write to the file object (depending on how it was opened)
• Close it

The first step is to get a file object. The way to do this is to use the open function. The
format is file_object = open(filename, mode) where file_object is the variable to
put the file object, filename is a string with the filename, and mode is "r" to read a file or
"w" to write a file (and a few others we will skip here). Next the file objects functions can
be called. The two most common functions are read and write. The write function adds
a string to the end of the file. The read function reads the next thing in the file and returns
it as a string. If no argument is given it will return the whole file (as done in the example).

Now here is a new version of the phone numbers program that we made earlier:

def print_numbers(numbers):

print "Telephone Numbers:"

for x in numbers.keys():

print "Name:", x, "\tNumber:", numbers[x]

print

def add_number(numbers, name, number):

numbers[name] = number

def lookup_number(numbers, name):

99

File IO

if name in numbers:

return "The number is " + numbers[name]

else:

return name + " was not found"

def remove_number(numbers, name):

if name in numbers:

del numbers[name]

else:

print name," was not found"

def load_numbers(numbers, filename):

in_file = open(filename, "r")

while True:

in_line = in_file.readline()

if not in_line:

break

in_line = in_line[:-1]

name, number = in_line.split(",")

numbers[name] = number

in_file.close()

def save_numbers(numbers, filename):

out_file = open(filename, "w")

for x in numbers.keys():

out_file.write(x + "," + numbers[x] + "\n")

out_file.close()

def print_menu():

print ‚1. Print Phone Numbers‚

print ‚2. Add a Phone Number‚

print ‚3. Remove a Phone Number‚

print ‚4. Lookup a Phone Number‚

print ‚5. Load numbers‚

print ‚6. Save numbers‚

print ‚7. Quit‚

print

phone_list = {}

menu_choice = 0

print_menu()

while True:

menu_choice = input("Type in a number (1-7): ")

if menu_choice == 1:

print_numbers(phone_list)

elif menu_choice == 2:

print "Add Name and Number"

name = raw_input("Name: ")

phone = raw_input("Number: ")

add_number(phone_list, name, phone)

elif menu_choice == 3:

print "Remove Name and Number"

name = raw_input("Name: ")

remove_number(phone_list, name)

elif menu_choice == 4:

print "Lookup Number"

name = raw_input("Name: ")

print lookup_number(phone_list, name)

elif menu_choice == 5:

filename = raw_input("Filename to load: ")

load_numbers(phone_list, filename)

elif menu_choice == 6:

filename = raw_input("Filename to save: ")

save_numbers(phone_list, filename)

elif menu_choice == 7:

break

else:

100

First things first

print_menu()

print "Goodbye"

Notice that it now includes saving and loading files. Here is some output of my running it
twice:

1. Print Phone Numbers

2. Add a Phone Number

3. Remove a Phone Number

4. Lookup a Phone Number

5. Load numbers

6. Save numbers

7. Quit

Type in a number (1-7): 2

Add Name and Number

Name: Jill

Number: 1234

Type in a number (1-7): 2

Add Name and Number

Name: Fred

Number: 4321

Type in a number (1-7): 1

Telephone Numbers:

Name: Jill Number: 1234

Name: Fred Number: 4321

Type in a number (1-7): 6

Filename to save: numbers.txt

Type in a number (1-7): 7

Goodbye

1. Print Phone Numbers

2. Add a Phone Number

3. Remove a Phone Number

4. Lookup a Phone Number

5. Load numbers

6. Save numbers

7. Quit

Type in a number (1-7): 5

Filename to load: numbers.txt

Type in a number (1-7): 1

Telephone Numbers:

Name: Jill Number: 1234

Name: Fred Number: 4321

Type in a number (1-7): 7

Goodbye

The new portions of this program are:

def load_numbers(numbers, filename):

in_file = open(filename, "r")

while True:

in_line = in_file.readline()

if not in_line:

break

in_line = in_line[:-1]

name, number = in_line.split(",")

numbers[name] = number

in_file.close()

101

File IO

def save_numbers(numbers, filename):

out_file = open(filename, "w")

for x in numbers.keys():

out_file.write(x + "," + numbers[x] + "\n")

out_file.close()

First we will look at the save portion of the program. First it creates a file object with
the command open(filename, "w"). Next it goes through and creates a line for each of
the phone numbers with the command out_file.write(x + "," + numbers[x] + "\n").
This writes out a line that contains the name, a comma, the number and follows it by a
newline.

The loading portion is a little more complicated. It starts by getting a file object. Then
it uses a while True: loop to keep looping until a break statement is encountered. Next
it gets a line with the line in_line = in_file.readline(). The readline function will
return a empty string when the end of the file is reached. The if statement checks for this
and breaks out of the while loop when that happens. Of course if the readline function
did not return the newline at the end of the line there would be no way to tell if an empty
string was an empty line or the end of the file so the newline is left in what readline returns.
Hence we have to get rid of the newline. The line in_line = in_line[:-1] does this for
us by dropping the last character. Next the line name, number = in_line.split(",")

splits the line at the comma into a name and a number. This is then added to the numbers

dictionary.

17.0.42 Exercises

Now modify the grades program from section ../Dictionaries/1 so that is uses file IO to keep
a record of the students.

Solution

Now modify the grades program from section ../Dictionaries/2 so that is uses file IO to
keep a record of the students.

assignments = [‚hw ch 1‚, ‚hw ch 2‚, ‚quiz ‚, ‚hw ch 3‚, ‚test‚]

students = { }

def load_grades(gradesfile):

inputfile = open(gradesfile, "r")

grades = []

while True:

student_and_grade = inputfile.readline()

student_and_grade = student_and_grade[:-1]

if not student_and_grade:

break

else:

studentname, studentgrades = student_and_grade.split(",")

1 Chapter 13 on page 77

102

First things first

studentgrades = studentgrades.split(" ")

students[studentname] = studentgrades

inputfile.close()

print "Grades loaded."

def save_grades(gradesfile):

outputfile = open(gradesfile, "w")

for i in students.keys():

outputfile.write(i + ",")

for x in students[i]:

outputfile.write(x + " ")

outputfile.write("\n")

outputfile.close()

print "Grades saved."

def print_menu():

print "1. Add student"

print "2. Remove student"

print "3. Load grades"

print "4. Record grade"

print "5. Print grades"

print "6. Save grades"

print "7. Print Menu"

print "9. Quit"

def print_all_grades():

keys = students.keys()

if keys:

keys.sort()

print ‚\t‚,

for i in range(len(assignments)):

print assignments[i], ‚\t‚,

print

for x in keys:

print x, ‚\t‚,

grades = students[x]

print_grades(grades)

else:

print "There are no grades to print."

def print_grades(grades):

for i in range(len(grades)):

print grades[i], ‚\t‚,

print

print_menu()

103

File IO

menu_choice = 0

while menu_choice != 9:

print

menu_choice = input("Menu Choice: ")

if menu_choice == 1:

name = raw_input("Student to add: ")

students[name] = [0] * len(assignments)

elif menu_choice == 2:

name = raw_input("Student to remove: ")

if name in students:

del students[name]

else:

print "Student:", name, "not found"

elif menu_choice == 3:

gradesfile = raw_input("Load grades from which file? ")

load_grades(gradesfile)

elif menu_choice == 4:

print "Record Grade"

name = raw_input("Student: ")

if name in students:

grades = students[name]

print "Type in the number of the grade to record"

print "Type a 0 (zero) to exit"

for i in range(len(assignments)):

print i + 1, assignments[i], ‚\t‚,

print

print_grades(grades)

which = 1234

while which != -1:

which = input("Change which Grade: ")

which = which - 1

if 0 <= which < len(grades):

grade = raw_input("Grade: ") Change from

input() to raw_input() to avoid an error when saving

grades[which] = grade

elif which != -1:

print "Invalid Grade Number"

else:

print "Student not found"

elif menu_choice == 5:

print_all_grades()

elif menu_choice == 6:

gradesfile = raw_input("Save grades to which file? ")

save_grades(gradesfile)

elif menu_choice != 9:

print_menu()

104

First things first

105

18 Dealing with the imperfect

18.0.43 ...or how to handle errors

So you now have the perfect program, it runs flawlessly, except for one detail, it will crash
on invalid user input. Have no fear, for Python has a special control structure for you. It's
called try and it tries to do something. Here is an example of a program with a problem:

print "Type Control C or -1 to exit"

number = 1

while number != -1:

number = int(raw_input("Enter a number: "))

print "You entered:", number

Notice how when you enter @#& it outputs something like:

Traceback (innermost last):

File "try_less.py", line 4, in ?

number = int(raw_input("Enter a number: "))</source>

ValueError: invalid literal for int(): @#&

As you can see the int() function is unhappy with the number @#& (as well it should be).
The last line shows what the problem is; Python found a ValueError. How can our program
deal with this? What we do is first: put the place where the errors occurs in a try block,
and second: tell Python how we want ValueErrors handled. The following program does
this:

print "Type Control C or -1 to exit"

number = 1

while number != -1:

try:

number = int(raw_input("Enter a number: "))

print "You entered:", number

except ValueError:

print "That was not a number."

Now when we run the new program and give it @#& it tells us "That was not a number."
and continues with what it was doing before.

When your program keeps having some error that you know how to handle, put code in a
try block, and put the way to handle the error in the except block.

Here is a more complex example of Error Handling.

Program by Mitchell Aikens 2012

No copyright.

import math

107

Dealing with the imperfect

def main():

success = 0

while (success == 0):

try:

epact()

success = 1

except ValueError:

print "Error. Please enter an integer value."

year = 0

except NameError:

print "Error. Please enter an integer value."

year = 0

except SyntaxError:

print "Error. Please enter an integer value."

year = 0

finally:

print "Program Complete"

def epact():

year = int(input("What year is it?\n"))

C = year/100

epactval = (8 + (C/4) - C + ((8*C + 13)/25) + 11 * (year%19))%30

print "The Epact is: ",epactval

main()

The program above uses concepts from previous lessons as well as the current lesson. Let's
look at the above program in sections.

After we define the function called "main", we tell it that we want to "try" function named
"epact". It does so "while" there is no "success". The interpreter then goes to the the line
year = int(input("What year is it?\n")). The interpreter takes the value entered by
the user and stores it in the variable named "year".

If the value entered is not an integer or a floating point number (which would be converted
to an integer by the interpreter), an exception would be raised, and execution of the try

block ends, just before success is assigned the value 1.

Let's look at some possible exceptions. the program above does not have an except clause
for every possible exception, as there are numerous types or exceptions.

If the value entered for year is an alphabetical character, a NameError exception is raised.
In the program above, this is caught by the except NameError: line, and the interpreter
executes the print statement below the except NameError:, then it sets the value of "year"
to 0 as a precaution, clearing it of any non-numeric number. The interpreter then jumps
back to the first line of the while loop, and the process restarts.

The process above would be the same for the other exceptions we have. If an exception is
raised, and there is an except clause for it in our program, the interpreter will jump to the
statements under the appropriate except clause, and execute them.

The finally statement, is sometimes used in exception handling as well. Think of it as the
trump card. Statements underneath the finally clause will be executed regardless of if
we raise and exception or not. The finally statement will be executed after any try or
except clauses prior to it.

Below is a simpler example where we are not looped, and the finally clause is executed
regardless of exceptions.

108

First things first

#Program By Mitchell Aikens 2012

#Not copyright.

def main():

try:

number = int(input("Please enter a number.\n"))

half = number/2

print "Half of the number you entered is ",half

except NameError:

print "Error."

except ValueError:

print "Error."

except SyntaxError:

print "Error."

finally:

print "I am executing the finally clause."

main()

If we were to enter an alphabetic value for number = int(input("Please enter a

number.\n")), the output would be as follows:

Please enter a number.

t

Error.

I am executing the finally clause.

18.0.44 Exercises

Update at least the phone numbers program (in section ../File IO/1) so it doesn't crash if a
user doesn't enter any data at the menu.

1 Chapter 17 on page 99

109

19 The End

For the moment I recommend looking at The Python Tutorial1 by Guido van Rossum2

for more topics. If you have been following this tutorial, you should be able to understand
a fair amount of it. If you want to get deeper into Python, Dive Into Python3 is a nice
on-line textbook, although targeted at people with a more solid programming background.
The Python Programming4 wikibook can be worth looking at, too.

This tutorial is very much a work in progress. Thanks to everyone who has sent me emails
about it. I enjoyed reading them, even when I have not always been the best replier.

Happy programming, may it change your life and the world.

1 http://docs.python.org/tut/tut.html

2 http://www.python.org/~guido/

3 http://www.diveintopython.org/

4 http://en.wikibooks.org/wiki/Python%20Programming

111

http://docs.python.org/tut/tut.html
http://www.python.org/~guido/
http://www.diveintopython.org/
http://en.wikibooks.org/wiki/Python%20Programming

20 FAQ

Question: Can't use programs with input.

Answer: If you are using IDLE then try using command line. This problem seems to be
fixed in IDLE 0.6 and newer. If you are using an older version of IDLE try upgrading to
Python 2.0 or newer.

Is there a printable version?

Yes, see the next question.

Is there a PDF or zipped version?

Yes, go to http://www.honors.montana.edu/~jjc/easytut for several different versions.
Note that this will not always be up to date with the Wikibooks version. The Wikibook
can be printed from the print version1.

What is the tutorial written with?

Originally, LaTeX, see the easytut.tex file.

I can't type in programs of more than one line.

If the programs that you type in run as soon as you are typing them in, you need to edit a
file instead of typing them in interactive mode. (Hint: interactive mode is the mode with
the >>> prompt in front of it.)

My question is not answered here.

Ask on the talk page. Please post source code if at all relevant (even, (or maybe especially)
if it doesn't work). Helpful things to include are what you were trying to do, what happened,
what you expected to happen, error messages, version of Python, Operating System, and
whether or not your cat was stepping on the keyboard. (The cat in my house has a fondness
for space bars and control keys.)

I want to read it in a different language.

There are several translations that I know of. One is in Korean and is available at http:

//home.hanmir.com/~johnsonj/easytut/easytut.html. Another is in Spanish and at
http://www.honors.montana.edu/~jjc/easytut/easytut_es/. Another is in Italian
and is available at http://www.python.it/doc/tut_begin/index.html. Another is in
Greek and available at http://www.honors.montana.edu/~jjc/easytut/easytut_gr/.

Several people have said they are doing a translation in other languages such as French, but
I never heard back from them. If you have done a translation or know of any translations,
please either send it to me or send me a link.

1 http://en.wikibooks.org/wiki/..%2FPrint%20version

113

http://www.honors.montana.edu/~jjc/easytut
http://home.hanmir.com/~johnsonj/easytut/easytut.html.
http://home.hanmir.com/~johnsonj/easytut/easytut.html.
http://www.honors.montana.edu/~jjc/easytut/easytut_es/.
http://www.python.it/doc/tut_begin/index.html.
http://www.honors.montana.edu/~jjc/easytut/easytut_gr/.
http://en.wikibooks.org/wiki/..%2FPrint%20version

FAQ

How do I make a GUI in Python?

You can use either TKinter at http://www.python.org/topics/tkinter/ or WXPython
at http://www.wxpython.org/

How do I make a game in Python?

The best method is probably to use PYgame at http://pygame.org/

How do I make an executable from a Python program?

Short answer: Python is an interpreted language so that is impossible. Long answer is that
something similar to an executable can be created by taking the Python interpreter and
the file and joining them together and distributing that. For more on that problem see
http://www.python.org/cgi-bin/faqw.py?req=all#4.28. A project that does make
executable python files is py2exe - see http://www.py2exe.org.

I need help with the exercises

Hint, the password program requires two variables, one to keep track of the number of
times the password was typed in, and another to keep track of the last password typed in.
Also you can download solutions from http://www.honors.montana.edu/~jjc/easytut/

What and when was the last thing changed?

• 2000-Dec-16, added error handling chapter.
• 2000-Dec-22, Removed old install procedure.
• 2001-Jan-16, Fixed bug in program, Added example and data to lists section.
• 2001-Apr-5, Spelling, grammar, added another how to break programs, url fix for PDF

version.
• 2001-May-13, Added chapter on debugging.
• 2001-Nov-11, Added exercises, fixed grammar, spelling, and hopefully improved explana-

tions of some things.
• 2001-Nov-19, Added password exercise, revised references section.
• 2002-Feb-23, Moved 3 times password exercise, changed l to list in list examples question.

Added a new example to Decisions chapter, added two new exercises.
• 2002-Mar-14, Changed abs to my_abs since python now defines a abs function.
• 2002-May-15, Added a faq about creating an executable. Added a comment from about

the list example. Fixed typos from Axel Kleiboemer.
• 2002-Jun-14, Changed a program to use while true instead of while 1 to be more clear.
• 2002-Jul-5, Rewrote functions chapter. Modified fib program to hopefully be clearer.
• 2003-Jan-3, Added average examples to the decisions chapter.
• 2003-Jan-19, Added comment about value of a_var. Fixed mistake in average2.py

program.
• 2003-Sep-5, Changed idle instruction to Run->Run Module.
• 2004-Jun-1, Put on Wikibooks
• Since then all changes are visible through the Wikibooks version keeping system.

114

http://www.python.org/topics/tkinter/
http://www.wxpython.org/
http://pygame.org/
http://www.python.org/cgi-bin/faqw.py?req=all#4.28.
http://www.py2exe.org.
http://www.honors.montana.edu/~jjc/easytut/

21 Contributors

Edits User

55 33rogers1

1 Acannon8282

40 Adrignola3

6 Alain4

9 Allen Moore5

1 Aruziell6

1 Astroman3D7

2 Atelaes8

4 Balabalame9

4 Benjamin Meinl10

2 Benonsoftware11

4 Cm.squared12

1 Dablackwood13

4 Darklama14

7 Del4515

1 Dirk Hünniger16

1 Dm3da17

19 Dooglus18

1 Eva Griffeth19

2 Ezzieyguywuf20

1 Fishpi21

1 http://en.wikibooks.org/w/index.php?title=User:33rogers

2 http://en.wikibooks.org/w/index.php?title=User:Acannon828

3 http://en.wikibooks.org/w/index.php?title=User:Adrignola

4 http://en.wikibooks.org/w/index.php?title=User:Alain

5 http://en.wikibooks.org/w/index.php?title=User:Allen_Moore

6 http://en.wikibooks.org/w/index.php?title=User:Aruziell

7 http://en.wikibooks.org/w/index.php?title=User:Astroman3D

8 http://en.wikibooks.org/w/index.php?title=User:Atelaes

9 http://en.wikibooks.org/w/index.php?title=User:Balabalame

10 http://en.wikibooks.org/w/index.php?title=User:Benjamin_Meinl

11 http://en.wikibooks.org/w/index.php?title=User:Benonsoftware

12 http://en.wikibooks.org/w/index.php?title=User:Cm.squared

13 http://en.wikibooks.org/w/index.php?title=User:Dablackwood

14 http://en.wikibooks.org/w/index.php?title=User:Darklama

15 http://en.wikibooks.org/w/index.php?title=User:Del45

16 http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger

17 http://en.wikibooks.org/w/index.php?title=User:Dm3da

18 http://en.wikibooks.org/w/index.php?title=User:Dooglus

19 http://en.wikibooks.org/w/index.php?title=User:Eva_Griffeth

20 http://en.wikibooks.org/w/index.php?title=User:Ezzieyguywuf

21 http://en.wikibooks.org/w/index.php?title=User:Fishpi

115

http://en.wikibooks.org/w/index.php?title=User:33rogers
http://en.wikibooks.org/w/index.php?title=User:Acannon828
http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:Alain
http://en.wikibooks.org/w/index.php?title=User:Allen_Moore
http://en.wikibooks.org/w/index.php?title=User:Aruziell
http://en.wikibooks.org/w/index.php?title=User:Astroman3D
http://en.wikibooks.org/w/index.php?title=User:Atelaes
http://en.wikibooks.org/w/index.php?title=User:Balabalame
http://en.wikibooks.org/w/index.php?title=User:Benjamin_Meinl
http://en.wikibooks.org/w/index.php?title=User:Benonsoftware
http://en.wikibooks.org/w/index.php?title=User:Cm.squared
http://en.wikibooks.org/w/index.php?title=User:Dablackwood
http://en.wikibooks.org/w/index.php?title=User:Darklama
http://en.wikibooks.org/w/index.php?title=User:Del45
http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
http://en.wikibooks.org/w/index.php?title=User:Dm3da
http://en.wikibooks.org/w/index.php?title=User:Dooglus
http://en.wikibooks.org/w/index.php?title=User:Eva_Griffeth
http://en.wikibooks.org/w/index.php?title=User:Ezzieyguywuf
http://en.wikibooks.org/w/index.php?title=User:Fishpi

Contributors

1 G-Brain22

1 Geocachernemesis23

2 Herbythyme24

1 Jkover900025

5 Jomegat26

5 JoshuaGolbez27

114 Jrincayc28

4 Jshadias29

4 Koex30

1 Krade31

1 Kristianpaul32

2 Legoktm33

1 LudoA34

1 Mabdul35

1 Mats Halldin36

6 Monobi37

1 MrChimp38

1 Msaikens39

1 Neoptolemus40

1 Ngch8941

2 NipplesMeCool42

1 Noclue43

4 OmnificienT44

1 Pancake45

1 Panic2k446

22 http://en.wikibooks.org/w/index.php?title=User:G-Brain

23 http://en.wikibooks.org/w/index.php?title=User:Geocachernemesis

24 http://en.wikibooks.org/w/index.php?title=User:Herbythyme

25 http://en.wikibooks.org/w/index.php?title=User:Jkover9000

26 http://en.wikibooks.org/w/index.php?title=User:Jomegat

27 http://en.wikibooks.org/w/index.php?title=User:JoshuaGolbez

28 http://en.wikibooks.org/w/index.php?title=User:Jrincayc

29 http://en.wikibooks.org/w/index.php?title=User:Jshadias

30 http://en.wikibooks.org/w/index.php?title=User:Koex

31 http://en.wikibooks.org/w/index.php?title=User:Krade

32 http://en.wikibooks.org/w/index.php?title=User:Kristianpaul

33 http://en.wikibooks.org/w/index.php?title=User:Legoktm

34 http://en.wikibooks.org/w/index.php?title=User:LudoA

35 http://en.wikibooks.org/w/index.php?title=User:Mabdul

36 http://en.wikibooks.org/w/index.php?title=User:Mats_Halldin

37 http://en.wikibooks.org/w/index.php?title=User:Monobi

38 http://en.wikibooks.org/w/index.php?title=User:MrChimp

39 http://en.wikibooks.org/w/index.php?title=User:Msaikens

40 http://en.wikibooks.org/w/index.php?title=User:Neoptolemus

41 http://en.wikibooks.org/w/index.php?title=User:Ngch89

42 http://en.wikibooks.org/w/index.php?title=User:NipplesMeCool

43 http://en.wikibooks.org/w/index.php?title=User:Noclue

44 http://en.wikibooks.org/w/index.php?title=User:OmnificienT

45 http://en.wikibooks.org/w/index.php?title=User:Pancake

46 http://en.wikibooks.org/w/index.php?title=User:Panic2k4

116

http://en.wikibooks.org/w/index.php?title=User:G-Brain
http://en.wikibooks.org/w/index.php?title=User:Geocachernemesis
http://en.wikibooks.org/w/index.php?title=User:Herbythyme
http://en.wikibooks.org/w/index.php?title=User:Jkover9000
http://en.wikibooks.org/w/index.php?title=User:Jomegat
http://en.wikibooks.org/w/index.php?title=User:JoshuaGolbez
http://en.wikibooks.org/w/index.php?title=User:Jrincayc
http://en.wikibooks.org/w/index.php?title=User:Jshadias
http://en.wikibooks.org/w/index.php?title=User:Koex
http://en.wikibooks.org/w/index.php?title=User:Krade
http://en.wikibooks.org/w/index.php?title=User:Kristianpaul
http://en.wikibooks.org/w/index.php?title=User:Legoktm
http://en.wikibooks.org/w/index.php?title=User:LudoA
http://en.wikibooks.org/w/index.php?title=User:Mabdul
http://en.wikibooks.org/w/index.php?title=User:Mats_Halldin
http://en.wikibooks.org/w/index.php?title=User:Monobi
http://en.wikibooks.org/w/index.php?title=User:MrChimp
http://en.wikibooks.org/w/index.php?title=User:Msaikens
http://en.wikibooks.org/w/index.php?title=User:Neoptolemus
http://en.wikibooks.org/w/index.php?title=User:Ngch89
http://en.wikibooks.org/w/index.php?title=User:NipplesMeCool
http://en.wikibooks.org/w/index.php?title=User:Noclue
http://en.wikibooks.org/w/index.php?title=User:OmnificienT
http://en.wikibooks.org/w/index.php?title=User:Pancake
http://en.wikibooks.org/w/index.php?title=User:Panic2k4

First things first

1 QuiteUnusual47

1 Rmunn48

2 Robot Chicken49

4 Rpruyne50

1 Sam Hocevar51

1 Seshull52

185 Siebengang53

1 Spacebar26554

1 Specialized55

2 Spedley56

1 Switch3276357

2 TBOL358

1 Taxman59

3 Tehdrago60

1 The Kid61

2 TheLostOne62

2 Tualha63

1 Van der Hoorn64

1 Webaware65

58 Whiteknight66

2 Wmcleod67

1 Wutsje68

2 Xania69

2 Zastard70

47 http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual

48 http://en.wikibooks.org/w/index.php?title=User:Rmunn

49 http://en.wikibooks.org/w/index.php?title=User:Robot_Chicken

50 http://en.wikibooks.org/w/index.php?title=User:Rpruyne

51 http://en.wikibooks.org/w/index.php?title=User:Sam_Hocevar

52 http://en.wikibooks.org/w/index.php?title=User:Seshull

53 http://en.wikibooks.org/w/index.php?title=User:Siebengang

54 http://en.wikibooks.org/w/index.php?title=User:Spacebar265

55 http://en.wikibooks.org/w/index.php?title=User:Specialized

56 http://en.wikibooks.org/w/index.php?title=User:Spedley

57 http://en.wikibooks.org/w/index.php?title=User:Switch32763

58 http://en.wikibooks.org/w/index.php?title=User:TBOL3

59 http://en.wikibooks.org/w/index.php?title=User:Taxman

60 http://en.wikibooks.org/w/index.php?title=User:Tehdrago

61 http://en.wikibooks.org/w/index.php?title=User:The_Kid

62 http://en.wikibooks.org/w/index.php?title=User:TheLostOne

63 http://en.wikibooks.org/w/index.php?title=User:Tualha

64 http://en.wikibooks.org/w/index.php?title=User:Van_der_Hoorn

65 http://en.wikibooks.org/w/index.php?title=User:Webaware

66 http://en.wikibooks.org/w/index.php?title=User:Whiteknight

67 http://en.wikibooks.org/w/index.php?title=User:Wmcleod

68 http://en.wikibooks.org/w/index.php?title=User:Wutsje

69 http://en.wikibooks.org/w/index.php?title=User:Xania

70 http://en.wikibooks.org/w/index.php?title=User:Zastard

117

http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
http://en.wikibooks.org/w/index.php?title=User:Rmunn
http://en.wikibooks.org/w/index.php?title=User:Robot_Chicken
http://en.wikibooks.org/w/index.php?title=User:Rpruyne
http://en.wikibooks.org/w/index.php?title=User:Sam_Hocevar
http://en.wikibooks.org/w/index.php?title=User:Seshull
http://en.wikibooks.org/w/index.php?title=User:Siebengang
http://en.wikibooks.org/w/index.php?title=User:Spacebar265
http://en.wikibooks.org/w/index.php?title=User:Specialized
http://en.wikibooks.org/w/index.php?title=User:Spedley
http://en.wikibooks.org/w/index.php?title=User:Switch32763
http://en.wikibooks.org/w/index.php?title=User:TBOL3
http://en.wikibooks.org/w/index.php?title=User:Taxman
http://en.wikibooks.org/w/index.php?title=User:Tehdrago
http://en.wikibooks.org/w/index.php?title=User:The_Kid
http://en.wikibooks.org/w/index.php?title=User:TheLostOne
http://en.wikibooks.org/w/index.php?title=User:Tualha
http://en.wikibooks.org/w/index.php?title=User:Van_der_Hoorn
http://en.wikibooks.org/w/index.php?title=User:Webaware
http://en.wikibooks.org/w/index.php?title=User:Whiteknight
http://en.wikibooks.org/w/index.php?title=User:Wmcleod
http://en.wikibooks.org/w/index.php?title=User:Wutsje
http://en.wikibooks.org/w/index.php?title=User:Xania
http://en.wikibooks.org/w/index.php?title=User:Zastard

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://

creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://

creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://

creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://

creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.

org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.

org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.

org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.

org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.

html

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose,
provided that the copyright holder is properly attributed. Redistribution, derivative
work, commercial use, and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design
of the common face of the euro coins belongs to the European Commission. Authorised
is reproduction in a format without relief (drawings, paintings, films) provided they
are not detrimental to the image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

119

http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://artlibre.org/licence/lal/de

List of Figures

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.

php

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses71. Please
note that images in the public domain do not require attribution. You may click on the
image numbers in the following table to open the webpage of the images in your webbrower.

71 Chapter 22 on page 123

120

http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php

List of Figures

1 Dsmurat72 and penubag73 PD

72 http://en.wikibooks.org/wiki/User%3ADsmurat

73 http://en.wikibooks.org/wiki/User%3APenubag

121

http://en.wikibooks.org/wiki/File:Ambox_important.svg
http://en.wikibooks.org/wiki/User%3ADsmurat
http://en.wikibooks.org/wiki/User%3APenubag

22 Licenses

22.1 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. Preamble

The GNU General Public License is a free, copyleft
license for software and other kinds of works.

The licenses for most software and other practi-
cal works are designed to take away your freedom
to share and change the works. By contrast, the
GNU General Public License is intended to guaran-
tee your freedom to share and change all versions
of a program–to make sure it remains free software
for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our
software; it applies also to any other work released
this way by its authors. You can apply it to your
programs, too.

When we speak of free software, we are referring
to freedom, not price. Our General Public Li-
censes are designed to make sure that you have
the freedom to distribute copies of free software
(and charge for them if you wish), that you receive
source code or can get it if you want it, that you
can change the software or use pieces of it in new
free programs, and that you know you can do these
things.

To protect your rights, we need to prevent others
from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain re-
sponsibilities if you distribute copies of the soft-
ware, or if you modify it: responsibilities to respect
the freedom of others.

For example, if you distribute copies of such a pro-
gram, whether gratis or for a fee, you must pass
on to the recipients the same freedoms that you re-
ceived. You must make sure that they, too, receive
or can get the source code. And you must show
them these terms so they know their rights.

Developers that use the GNU GPL protect your
rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you
legal permission to copy, distribute and/or modify
it.

For the developers’ and authors’ protection, the
GPL clearly explains that there is no warranty for
this free software. For both users’ and authors’
sake, the GPL requires that modified versions be
marked as changed, so that their problems will not
be attributed erroneously to authors of previous
versions.

Some devices are designed to deny users access to
install or run modified versions of the software in-
side them, although the manufacturer can do so.
This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software.
The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to pro-
hibit the practice for those products. If such prob-
lems arise substantially in other domains, we stand
ready to extend this provision to those domains in
future versions of the GPL, as needed to protect
the freedom of users.

Finally, every program is threatened constantly by
software patents. States should not allow patents
to restrict development and use of software on
general-purpose computers, but in those that do,
we wish to avoid the special danger that patents
applied to a free program could make it effectively
proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-
free.

The precise terms and conditions for copying, dis-
tribution and modification follow. TERMS AND
CONDITIONS 0. Definitions.

“This License” refers to version 3 of the GNU Gen-
eral Public License.

“Copyright” also means copyright-like laws that ap-
ply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work
licensed under this License. Each licensee is ad-
dressed as “you”. “Licensees” and “recipients” may
be individuals or organizations.

To “modify” a work means to copy from or adapt
all or part of the work in a fashion requiring copy-
right permission, other than the making of an exact
copy. The resulting work is called a “modified ver-
sion” of the earlier work or a work “based on” the
earlier work.

A “covered work” means either the unmodified Pro-
gram or a work based on the Program.

To “propagate” a work means to do anything with it
that, without permission, would make you directly
or secondarily liable for infringement under appli-
cable copyright law, except executing it on a com-
puter or modifying a private copy. Propagation in-
cludes copying, distribution (with or without mod-
ification), making available to the public, and in
some countries other activities as well.

To “convey” a work means any kind of propagation
that enables other parties to make or receive copies.
Mere interaction with a user through a computer

network, with no transfer of a copy, is not convey-
ing.

An interactive user interface displays “Appropriate
Legal Notices” to the extent that it includes a con-
venient and prominently visible feature that (1) dis-
plays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (ex-
cept to the extent that warranties are provided),
that licensees may convey the work under this Li-
cense, and how to view a copy of this License. If
the interface presents a list of user commands or
options, such as a menu, a prominent item in the
list meets this criterion. 1. Source Code.

The “source code” for a work means the preferred
form of the work for making modifications to it.
“Object code” means any non-source form of a
work.

A “Standard Interface” means an interface that ei-
ther is an official standard defined by a recognized
standards body, or, in the case of interfaces spec-
ified for a particular programming language, one
that is widely used among developers working in
that language.

The “System Libraries” of an executable work in-
clude anything, other than the work as a whole,
that (a) is included in the normal form of packag-
ing a Major Component, but which is not part of
that Major Component, and (b) serves only to en-
able use of the work with that Major Component,
or to implement a Standard Interface for which an
implementation is available to the public in source
code form. A “Major Component”, in this context,
means a major essential component (kernel, window
system, and so on) of the specific operating system
(if any) on which the executable work runs, or a
compiler used to produce the work, or an object
code interpreter used to run it.

The “Corresponding Source” for a work in object
code form means all the source code needed to gen-
erate, install, and (for an executable work) run
the object code and to modify the work, including
scripts to control those activities. However, it does
not include the work’s System Libraries, or general-
purpose tools or generally available free programs
which are used unmodified in performing those ac-
tivities but which are not part of the work. For
example, Corresponding Source includes interface
definition files associated with source files for the
work, and the source code for shared libraries and
dynamically linked subprograms that the work is
specifically designed to require, such as by intimate
data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include any-
thing that users can regenerate automatically from
other parts of the Corresponding Source.

The Corresponding Source for a work in source code
form is that same work. 2. Basic Permissions.

All rights granted under this License are granted
for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met.
This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The out-
put from running a covered work is covered by this
License only if the output, given its content, con-
stitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as pro-
vided by copyright law.

You may make, run and propagate covered works
that you do not convey, without conditions so long
as your license otherwise remains in force. You may
convey covered works to others for the sole purpose
of having them make modifications exclusively for
you, or provide you with facilities for running those
works, provided that you comply with the terms
of this License in conveying all material for which
you do not control copyright. Those thus making or
running the covered works for you must do so exclu-
sively on your behalf, under your direction and con-
trol, on terms that prohibit them from making any
copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is permit-
ted solely under the conditions stated below. Subli-
censing is not allowed; section 10 makes it unneces-
sary. 3. Protecting Users’ Legal Rights From Anti-
Circumvention Law.

No covered work shall be deemed part of an effec-
tive technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumven-
tion of such measures.

When you convey a covered work, you waive any
legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is ef-
fected by exercising rights under this License with
respect to the covered work, and you disclaim any
intention to limit operation or modification of the
work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid
circumvention of technological measures. 4. Con-
veying Verbatim Copies.

You may convey verbatim copies of the Program’s
source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately
publish on each copy an appropriate copyright no-
tice; keep intact all notices stating that this License
and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipi-
ents a copy of this License along with the Program.

You may charge any price or no price for each copy
that you convey, and you may offer support or war-
ranty protection for a fee. 5. Conveying Modified
Source Versions.

You may convey a work based on the Program, or
the modifications to produce it from the Program,
in the form of source code under the terms of sec-
tion 4, provided that you also meet all of these con-
ditions:

* a) The work must carry prominent notices stating
that you modified it, and giving a relevant date. *
b) The work must carry prominent notices stating
that it is released under this License and any con-
ditions added under section 7. This requirement
modifies the requirement in section 4 to “keep in-
tact all notices”. * c) You must license the entire
work, as a whole, under this License to anyone who
comes into possession of a copy. This License will
therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This
License gives no permission to license the work in
any other way, but it does not invalidate such per-
mission if you have separately received it. * d) If
the work has interactive user interfaces, each must
display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not dis-
play Appropriate Legal Notices, your work need not
make them do so.

A compilation of a covered work with other sepa-
rate and independent works, which are not by their
nature extensions of the covered work, and which
are not combined with it such as to form a larger
program, in or on a volume of a storage or distri-
bution medium, is called an “aggregate” if the com-
pilation and its resulting copyright are not used to
limit the access or legal rights of the compilation’s
users beyond what the individual works permit. In-
clusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the
aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form
under the terms of sections 4 and 5, provided that
you also convey the machine-readable Correspond-
ing Source under the terms of this License, in one
of these ways:

* a) Convey the object code in, or embodied in,
a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding
Source fixed on a durable physical medium custom-
arily used for software interchange. * b) Convey the
object code in, or embodied in, a physical product
(including a physical distribution medium), accom-
panied by a written offer, valid for at least three
years and valid for as long as you offer spare parts
or customer support for that product model, to
give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the
software in the product that is covered by this Li-
cense, on a durable physical medium customarily
used for software interchange, for a price no more
than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the
Corresponding Source from a network server at no
charge. * c) Convey individual copies of the object
code with a copy of the written offer to provide
the Corresponding Source. This alternative is al-
lowed only occasionally and noncommercially, and
only if you received the object code with such an of-
fer, in accord with subsection 6b. * d) Convey the
object code by offering access from a designated
place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way
through the same place at no further charge. You
need not require recipients to copy the Correspond-
ing Source along with the object code. If the place
to copy the object code is a network server, the Cor-
responding Source may be on a different server (op-
erated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear
directions next to the object code saying where to
find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long
as needed to satisfy these requirements. * e) Con-
vey the object code using peer-to-peer transmission,
provided you inform other peers where the object
code and Corresponding Source of the work are be-
ing offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose
source code is excluded from the Corresponding
Source as a System Library, need not be included
in conveying the object code work.

A “User Product” is either (1) a “consumer prod-
uct”, which means any tangible personal property
which is normally used for personal, family, or
household purposes, or (2) anything designed or
sold for incorporation into a dwelling. In deter-
mining whether a product is a consumer product,
doubtful cases shall be resolved in favor of cover-
age. For a particular product received by a par-
ticular user, “normally used” refers to a typical or
common use of that class of product, regardless of
the status of the particular user or of the way in
which the particular user actually uses, or expects
or is expected to use, the product. A product is a
consumer product regardless of whether the prod-
uct has substantial commercial, industrial or non-
consumer uses, unless such uses represent the only
significant mode of use of the product.

“Installation Information” for a User Product
means any methods, procedures, authorization
keys, or other information required to install and
execute modified versions of a covered work in that
User Product from a modified version of its Corre-
sponding Source. The information must suffice to
ensure that the continued functioning of the modi-
fied object code is in no case prevented or interfered
with solely because modification has been made.

If you convey an object code work under this sec-
tion in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a
transaction in which the right of possession and
use of the User Product is transferred to the re-
cipient in perpetuity or for a fixed term (regard-
less of how the transaction is characterized), the
Corresponding Source conveyed under this section
must be accompanied by the Installation Informa-
tion. But this requirement does not apply if neither
you nor any third party retains the ability to install
modified object code on the User Product (for ex-
ample, the work has been installed in ROM).

The requirement to provide Installation Informa-
tion does not include a requirement to continue to
provide support service, warranty, or updates for a
work that has been modified or installed by the re-
cipient, or for the User Product in which it has been
modified or installed. Access to a network may be
denied when the modification itself materially and
adversely affects the operation of the network or
violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation
Information provided, in accord with this section
must be in a format that is publicly documented
(and with an implementation available to the public
in source code form), and must require no special
password or key for unpacking, reading or copying.
7. Additional Terms.

“Additional permissions” are terms that supplement
the terms of this License by making exceptions from
one or more of its conditions. Additional permis-
sions that are applicable to the entire Program
shall be treated as though they were included in
this License, to the extent that they are valid un-
der applicable law. If additional permissions apply
only to part of the Program, that part may be used
separately under those permissions, but the entire
Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may
at your option remove any additional permissions
from that copy, or from any part of it. (Additional
permissions may be written to require their own re-
moval in certain cases when you modify the work.)
You may place additional permissions on material,
added by you to a covered work, for which you have
or can give appropriate copyright permission.

Notwithstanding any other provision of this Li-
cense, for material you add to a covered work, you
may (if authorized by the copyright holders of that
material) supplement the terms of this License with
terms:

* a) Disclaiming warranty or limiting liability dif-
ferently from the terms of sections 15 and 16 of this
License; or * b) Requiring preservation of specified
reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices
displayed by works containing it; or * c) Prohibit-
ing misrepresentation of the origin of that material,
or requiring that modified versions of such material
be marked in reasonable ways as different from the
original version; or * d) Limiting the use for pub-
licity purposes of names of licensors or authors of
the material; or * e) Declining to grant rights under
trademark law for use of some trade names, trade-
marks, or service marks; or * f) Requiring indem-
nification of licensors and authors of that material
by anyone who conveys the material (or modified
versions of it) with contractual assumptions of lia-
bility to the recipient, for any liability that these
contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are con-
sidered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any
part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a
further restriction, you may remove that term. If a
license document contains a further restriction but
permits relicensing or conveying under this License,
you may add to a covered work material governed
by the terms of that license document, provided
that the further restriction does not survive such
relicensing or conveying.

If you add terms to a covered work in accord with
this section, you must place, in the relevant source
files, a statement of the additional terms that ap-
ply to those files, or a notice indicating where to
find the applicable terms.

Additional terms, permissive or non-permissive,
may be stated in the form of a separately written
license, or stated as exceptions; the above require-
ments apply either way. 8. Termination.

You may not propagate or modify a covered work
except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is
void, and will automatically terminate your rights
under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)

from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, you do not qualify to receive new
licenses for the same material under section 10. 9.
Acceptance Not Required for Having Copies.

You are not required to accept this License in or-
der to receive or run a copy of the Program. Ancil-
lary propagation of a covered work occurring solely
as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require accep-
tance. However, nothing other than this License
grants you permission to propagate or modify any
covered work. These actions infringe copyright if
you do not accept this License. Therefore, by mod-
ifying or propagating a covered work, you indicate
your acceptance of this License to do so. 10. Auto-
matic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient
automatically receives a license from the original
licensors, to run, modify and propagate that work,
subject to this License. You are not responsible
for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transfer-
ring control of an organization, or substantially all
assets of one, or subdividing an organization, or
merging organizations. If propagation of a cov-
ered work results from an entity transaction, each
party to that transaction who receives a copy of the
work also receives whatever licenses to the work the
party’s predecessor in interest had or could give un-
der the previous paragraph, plus a right to posses-
sion of the Corresponding Source of the work from
the predecessor in interest, if the predecessor has it
or can get it with reasonable efforts.

You may not impose any further restrictions on the
exercise of the rights granted or affirmed under this
License. For example, you may not impose a license
fee, royalty, or other charge for exercise of rights
granted under this License, and you may not ini-
tiate litigation (including a cross-claim or counter-
claim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who autho-
rizes use under this License of the Program or a
work on which the Program is based. The work
thus licensed is called the contributor’s “contribu-
tor version”.

A contributor’s “essential patent claims” are all
patent claims owned or controlled by the contribu-
tor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permit-
ted by this License, of making, using, or selling its
contributor version, but do not include claims that
would be infringed only as a consequence of further
modification of the contributor version. For pur-
poses of this definition, “control” includes the right
to grant patent sublicenses in a manner consistent
with the requirements of this License.

Each contributor grants you a non-exclusive, world-
wide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, of-
fer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent li-
cense” is any express agreement or commitment,
however denominated, not to enforce a patent (such
as an express permission to practice a patent or
covenant not to sue for patent infringement). To
“grant” such a patent license to a party means to
make such an agreement or commitment not to en-
force a patent against the party.

If you convey a covered work, knowingly relying
on a patent license, and the Corresponding Source
of the work is not available for anyone to copy,
free of charge and under the terms of this License,
through a publicly available network server or other
readily accessible means, then you must either (1)
cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or
(3) arrange, in a manner consistent with the re-
quirements of this License, to extend the patent
license to downstream recipients. “Knowingly re-
lying” means you have actual knowledge that, but
for the patent license, your conveying the covered
work in a country, or your recipient’s use of the cov-
ered work in a country, would infringe one or more
identifiable patents in that country that you have
reason to believe are valid.

If, pursuant to or in connection with a single trans-
action or arrangement, you convey, or propagate
by procuring conveyance of, a covered work, and
grant a patent license to some of the parties re-
ceiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is
automatically extended to all recipients of the cov-
ered work and works based on it.

A patent license is “discriminatory” if it does not in-
clude within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise
of one or more of the rights that are specifically
granted under this License. You may not convey a
covered work if you are a party to an arrangement
with a third party that is in the business of dis-
tributing software, under which you make payment
to the third party based on the extent of your ac-
tivity of conveying the work, and under which the
third party grants, to any of the parties who would
receive the covered work from you, a discrimina-
tory patent license (a) in connection with copies
of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in
connection with specific products or compilations
that contain the covered work, unless you entered
into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as ex-
cluding or limiting any implied license or other de-
fenses to infringement that may otherwise be avail-
able to you under applicable patent law. 12. No
Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you
from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultane-
ously your obligations under this License and any
other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you
agree to terms that obligate you to collect a roy-
alty for further conveying from those to whom you
convey the Program, the only way you could satisfy
both those terms and this License would be to re-
frain entirely from conveying the Program. 13. Use
with the GNU Affero General Public License.

Notwithstanding any other provision of this Li-
cense, you have permission to link or combine any
covered work with a work licensed under version
3 of the GNU Affero General Public License into
a single combined work, and to convey the result-
ing work. The terms of this License will continue
to apply to the part which is the covered work, but
the special requirements of the GNU Affero General
Public License, section 13, concerning interaction
through a network will apply to the combination
as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised
and/or new versions of the GNU General Public Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.

Each version is given a distinguishing version num-
ber. If the Program specifies that a certain num-
bered version of the GNU General Public License
“or any later version” applies to it, you have the
option of following the terms and conditions either
of that numbered version or of any later version
published by the Free Software Foundation. If the
Program does not specify a version number of the
GNU General Public License, you may choose any
version ever published by the Free Software Foun-
dation.

If the Program specifies that a proxy can decide
which future versions of the GNU General Public
License can be used, that proxy’s public statement
of acceptance of a version permanently authorizes
you to choose that version for the Program.

Later license versions may give you additional or
different permissions. However, no additional obli-
gations are imposed on any author or copyright
holder as a result of your choosing to follow a later
version. 15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PRO-
GRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECES-
SARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLI-
CABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CON-
VEYS THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. 17. In-
terpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of lia-
bility provided above cannot be given local legal ef-

fect according to their terms, reviewing courts shall
apply local law that most closely approximates an
absolute waiver of all civil liability in connection
with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in
return for a fee.

END OF TERMS AND CONDITIONS How to Ap-
ply These Terms to Your New Programs

If you develop a new program, and you want it to
be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the pro-
gram. It is safest to attach them to the start of
each source file to most effectively state the exclu-
sion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief
idea of what it does.> Copyright (C) <year>
<name of author>

This program is free software: you can redistribute
it and/or modify it under the terms of the GNU
General Public License as published by the Free
Software Foundation, either version 3 of the Li-
cense, or (at your option) any later version.

This program is distributed in the hope that
it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU Gen-
eral Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by elec-
tronic and paper mail.

If the program does terminal interaction, make it
output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of au-
thor> This program comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is
free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’
should show the appropriate parts of the General
Public License. Of course, your program’s com-
mands might be different; for a GUI interface, you
would use an “about box”.

You should also get your employer (if you work
as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if nec-
essary. For more information on this, and
how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit
incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you
may consider it more useful to permit linking pro-
prietary applications with the library. If this is
what you want to do, use the GNU Lesser General
Public License instead of this License. But first,
please read <http://www.gnu.org/philosophy/why-
not-lgpl.html>.

22.2 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Soft-
ware Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed. 0. PREAMBLE

The purpose of this License is to make a manual,
textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it,
with or without modifying it, either commercially
or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get
credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means
that derivative works of the document must them-
selves be free in the same sense. It complements
the GNU General Public License, which is a copy-
left license designed for free software.

We have designed this License in order to use it
for manuals for free software, because free software
needs free documentation: a free program should
come with manuals providing the same freedoms
that the software does. But this License is not lim-
ited to software manuals; it can be used for any tex-
tual work, regardless of subject matter or whether
it is published as a printed book. We recommend
this License principally for works whose purpose is
instruction or reference. 1. APPLICABILITY AND
DEFINITIONS

This License applies to any manual or other work,
in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under
the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in dura-
tion, to use that work under the conditions stated
herein. The "Document", below, refers to any such
manual or work. Any member of the public is a li-
censee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any
work containing the Document or a portion of it, ei-
ther copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a
front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or

authors of the Document to the Document’s overall
subject (or to related matters) and contains noth-
ing that could fall directly within that overall sub-
ject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not ex-
plain any mathematics.) The relationship could be
a matter of historical connection with the subject
or with related matters, or of legal, commercial,
philosophical, ethical or political position regard-
ing them.

The "Invariant Sections" are certain Secondary Sec-
tions whose titles are designated, as being those of
Invariant Sections, in the notice that says that the
Document is released under this License. If a sec-
tion does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text
may be at most 25 words.

A "Transparent" copy of the Document means a
machine-readable copy, represented in a format
whose specification is available to the general pub-
lic, that is suitable for revising the document
straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs
or (for drawings) some widely available drawing ed-
itor, and that is suitable for input to text format-
ters or for automatic translation to a variety of for-
mats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged
to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not
Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called
"Opaque".

Examples of suitable formats for Transparent
copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF de-
signed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that
can be read and edited only by proprietary word
processors, SGML or XML for which the DTD
and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or

PDF produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the
title page itself, plus such following pages as are
needed to hold, legibly, the material this License
requires to appear in the title page. For works in
formats which do not have any title page as such,
"Title Page" means the text near the most promi-
nent appearance of the work’s title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that
distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit
of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below,
such as "Acknowledgements", "Dedications", "En-
dorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document
means that it remains a section "Entitled XYZ" ac-
cording to this definition.

The Document may include Warranty Disclaimers
next to the notice which states that this License
applies to the Document. These Warranty Dis-
claimers are considered to be included by reference
in this License, but only as regards disclaiming war-
ranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on
the meaning of this License. 2. VERBATIM COPY-
ING

You may copy and distribute the Document in any
medium, either commercially or noncommercially,
provided that this License, the copyright notices,
and the license notice saying this License applies to
the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those
of this License. You may not use technical mea-
sures to obstruct or control the reading or further
copying of the copies you make or distribute. How-
ever, you may accept compensation in exchange for
copies. If you distribute a large enough number of
copies you must also follow the conditions in sec-
tion 3.

You may also lend copies, under the same condi-
tions stated above, and you may publicly display
copies. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media
that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you

must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these
copies. The front cover must present the full title
with all words of the title equally prominent and
visible. You may add other material on the covers
in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Doc-
ument and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too volu-
minous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the
Document numbering more than 100, you must ei-
ther include a machine-readable Transparent copy
along with each Opaque copy, or state in or with
each Opaque copy a computer-network location
from which the general network-using public has
access to download using public-standard network
protocols a complete Transparent copy of the Doc-
ument, free of added material. If you use the lat-
ter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until
at least one year after the last time you distribute
an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you con-
tact the authors of the Document well before redis-
tributing any large number of copies, to give them
a chance to provide you with an updated version of
the Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of
the Document under the conditions of sections 2
and 3 above, provided that you release the Modi-
fied Version under precisely this License, with the
Modified Version filling the role of the Document,
thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modi-
fied Version:

* A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Document,
and from those of previous versions (which should,
if there were any, be listed in the History section
of the Document). You may use the same title as
a previous version if the original publisher of that
version gives permission. * B. List on the Title

Page, as authors, one or more persons or entities
responsible for authorship of the modifications in
the Modified Version, together with at least five of
the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless
they release you from this requirement. * C. State
on the Title page the name of the publisher of the
Modified Version, as the publisher. * D. Preserve
all the copyright notices of the Document. * E. Add
an appropriate copyright notice for your modifica-
tions adjacent to the other copyright notices. * F.
Include, immediately after the copyright notices, a
license notice giving the public permission to use
the Modified Version under the terms of this Li-
cense, in the form shown in the Addendum below. *
G. Preserve in that license notice the full lists of In-
variant Sections and required Cover Texts given in
the Document’s license notice. * H. Include an unal-
tered copy of this License. * I. Preserve the section
Entitled "History", Preserve its Title, and add to it
an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "His-
tory" in the Document, create one stating the title,
year, authors, and publisher of the Document as
given on its Title Page, then add an item describ-
ing the Modified Version as stated in the previous
sentence. * J. Preserve the network location, if any,
given in the Document for public access to a Trans-
parent copy of the Document, and likewise the net-
work locations given in the Document for previous
versions it was based on. These may be placed in
the "History" section. You may omit a network lo-
cation for a work that was published at least four
years before the Document itself, or if the original
publisher of the version it refers to gives permission.
* K. For any section Entitled "Acknowledgements"
or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and
tone of each of the contributor acknowledgements
and/or dedications given therein. * L. Preserve all
the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or
the equivalent are not considered part of the section
titles. * M. Delete any section Entitled "Endorse-
ments". Such a section may not be included in the
Modified Version. * N. Do not retitle any existing
section to be Entitled "Endorsements" or to conflict
in title with any Invariant Section. * O. Preserve
any Warranty Disclaimers.

If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary
Sections and contain no material copied from the
Document, you may at your option designate some
or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled "Endorsements",
provided it contains nothing but endorsements of
your Modified Version by various parties—for ex-
ample, statements of peer review or that the text
has been approved by an organization as the au-
thoritative definition of a standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may
be added by (or through arrangements made by)
any one entity. If the Document already includes
a cover text for the same cover, previously added
by you or by arrangement made by the same entity
you are acting on behalf of, you may not add an-

other; but you may replace the old one, on explicit
permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do
not by this License give permission to use their
names for publicity for or to assert or imply en-
dorsement of any Modified Version. 5. COMBIN-
ING DOCUMENTS

You may combine the Document with other docu-
ments released under this License, under the terms
defined in section 4 above for modified versions,
provided that you include in the combination all
of the Invariant Sections of all of the original doc-
uments, unmodified, and list them all as Invariant
Sections of your combined work in its license no-
tice, and that you preserve all their Warranty Dis-
claimers.

The combined work need only contain one copy of
this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there
are multiple Invariant Sections with the same name
but different contents, make the title of each such
section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher
of that section if known, or else a unique number.
Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections
Entitled "History" in the various original docu-
ments, forming one section Entitled "History"; like-
wise combine any sections Entitled "Acknowledge-
ments", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorse-
ments". 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Docu-
ment and other documents released under this Li-
cense, and replace the individual copies of this Li-
cense in the various documents with a single copy
that is included in the collection, provided that you
follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a col-
lection, and distribute it individually under this Li-
cense, provided you insert a copy of this License
into the extracted document, and follow this Li-
cense in all other respects regarding verbatim copy-
ing of that document. 7. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its derivatives
with other separate and independent documents or
works, in or on a volume of a storage or distribution
medium, is called an "aggregate" if the copyright re-
sulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what
the individual works permit. When the Document
is included in an aggregate, this License does not
apply to the other works in the aggregate which are
not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is appli-
cable to these copies of the Document, then if the
Document is less than one half of the entire aggre-
gate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers
if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket
the whole aggregate. 8. TRANSLATION

Translation is considered a kind of modification, so
you may distribute translations of the Document
under the terms of section 4. Replacing Invariant
Sections with translations requires special permis-
sion from their copyright holders, but you may in-
clude translations of some or all Invariant Sections
in addition to the original versions of these Invari-
ant Sections. You may include a translation of this
License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you
also include the original English version of this Li-
cense and the original versions of those notices and
disclaimers. In case of a disagreement between the
translation and the original version of this License
or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled "Acknowl-
edgements", "Dedications", or "History", the re-
quirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under
this License. Any attempt otherwise to copy, mod-
ify, sublicense, or distribute it is void, and will
automatically terminate your rights under this Li-
cense.

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)
from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, receipt of a copy of some or all
of the same material does not give you any rights
to use it. 10. FUTURE REVISIONS OF THIS LI-
CENSE

The Free Software Foundation may publish new, re-
vised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguish-
ing version number. If the Document specifies that
a particular numbered version of this License "or
any later version" applies to it, you have the op-
tion of following the terms and conditions either of
that specified version or of any later version that
has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify
a version number of this License, you may choose
any version ever published (not as a draft) by the
Free Software Foundation. If the Document speci-
fies that a proxy can decide which future versions of

this License can be used, that proxy’s public state-
ment of acceptance of a version permanently autho-
rizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or
"MMC Site") means any World Wide Web server
that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is
an example of such a server. A "Massive Multiau-
thor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus pub-
lished on the MMC site.

"CC-BY-SA" means the Creative Commons
Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in
San Francisco, California, as well as future copyleft
versions of that license published by that same
organization.

"Incorporate" means to publish or republish a Doc-
ument, in whole or in part, as part of another Doc-
ument.

An MMC is "eligible for relicensing" if it is licensed
under this License, and if all works that were first
published under this License somewhere other than
this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an
MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, pro-
vided the MMC is eligible for relicensing. ADDEN-
DUM: How to use this License for your documents

To use this License in a document you have written,
include a copy of the License in the document and
put the following copyright and license notices just
after the title page:

Copyright (C) YEAR YOUR NAME. Permission is
granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documen-
tation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation
License".

If you have Invariant Sections, Front-Cover Texts
and Back-Cover Texts, replace the "with . . .
Texts." line with this:

with the Invariant Sections being LIST THEIR TI-
TLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts,
or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of
program code, we recommend releasing these exam-
ples in parallel under your choice of free software
license, such as the GNU General Public License,
to permit their use in free software.

22.3 GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing
it is not allowed.

This version of the GNU Lesser General Public Li-
cense incorporates the terms and conditions of ver-
sion 3 of the GNU General Public License, supple-
mented by the additional permissions listed below.
0. Additional Definitions.

As used herein, “this License” refers to version 3
of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General
Public License.

“The Library” refers to a covered work governed by
this License, other than an Application or a Com-
bined Work as defined below.

An “Application” is any work that makes use of an
interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass
of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by com-
bining or linking an Application with the Library.
The particular version of the Library with which
the Combined Work was made is also called the
“Linked Version”.

The “Minimal Corresponding Source” for a Com-
bined Work means the Corresponding Source for
the Combined Work, excluding any source code for
portions of the Combined Work that, considered in
isolation, are based on the Application, and not on
the Linked Version.

The “Corresponding Application Code” for a Com-
bined Work means the object code and/or source
code for the Application, including any data and
utility programs needed for reproducing the Com-
bined Work from the Application, but excluding the
System Libraries of the Combined Work. 1. Excep-
tion to Section 3 of the GNU GPL.

You may convey a covered work under sections 3
and 4 of this License without being bound by sec-
tion 3 of the GNU GPL. 2. Conveying Modified
Versions.

If you modify a copy of the Library, and, in your
modifications, a facility refers to a function or data
to be supplied by an Application that uses the fa-
cility (other than as an argument passed when the
facility is invoked), then you may convey a copy of
the modified version:

* a) under this License, provided that you make a
good faith effort to ensure that, in the event an Ap-
plication does not supply the function or data, the
facility still operates, and performs whatever part
of its purpose remains meaningful, or * b) under
the GNU GPL, with none of the additional permis-
sions of this License applicable to that copy.

3. Object Code Incorporating Material from Li-
brary Header Files.

The object code form of an Application may incor-
porate material from a header file that is part of
the Library. You may convey such object code un-
der terms of your choice, provided that, if the in-
corporated material is not limited to numerical pa-
rameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten
or fewer lines in length), you do both of the follow-
ing:

* a) Give prominent notice with each copy of the
object code that the Library is used in it and that
the Library and its use are covered by this License.
* b) Accompany the object code with a copy of the
GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of
your choice that, taken together, effectively do not
restrict modification of the portions of the Library
contained in the Combined Work and reverse en-
gineering for debugging such modifications, if you
also do each of the following:

* a) Give prominent notice with each copy of the
Combined Work that the Library is used in it and
that the Library and its use are covered by this Li-
cense. * b) Accompany the Combined Work with a
copy of the GNU GPL and this license document. *
c) For a Combined Work that displays copyright no-
tices during execution, include the copyright notice
for the Library among these notices, as well as a ref-
erence directing the user to the copies of the GNU
GPL and this license document. * d) Do one of the
following: o 0) Convey the Minimal Corresponding
Source under the terms of this License, and the Cor-
responding Application Code in a form suitable for,
and under terms that permit, the user to recombine
or relink the Application with a modified version
of the Linked Version to produce a modified Com-
bined Work, in the manner specified by section 6 of
the GNU GPL for conveying Corresponding Source.
o 1) Use a suitable shared library mechanism for
linking with the Library. A suitable mechanism
is one that (a) uses at run time a copy of the Li-
brary already present on the user’s computer sys-
tem, and (b) will operate properly with a modified
version of the Library that is interface-compatible
with the Linked Version. * e) Provide Installation
Information, but only if you would otherwise be re-
quired to provide such information under section 6
of the GNU GPL, and only to the extent that such
information is necessary to install and execute a
modified version of the Combined Work produced
by recombining or relinking the Application with
a modified version of the Linked Version. (If you
use option 4d0, the Installation Information must
accompany the Minimal Corresponding Source and
Corresponding Application Code. If you use option
4d1, you must provide the Installation Information
in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work
based on the Library side by side in a single library
together with other library facilities that are not
Applications and are not covered by this License,
and convey such a combined library under terms of
your choice, if you do both of the following:

* a) Accompany the combined library with a copy
of the same work based on the Library, uncombined
with any other library facilities, conveyed under
the terms of this License. * b) Give prominent no-
tice with the combined library that part of it is a
work based on the Library, and explaining where
to find the accompanying uncombined form of the
same work.

6. Revised Versions of the GNU Lesser General
Public License.

The Free Software Foundation may publish revised
and/or new versions of the GNU Lesser General
Public License from time to time. Such new ver-
sions will be similar in spirit to the present version,
but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version num-
ber. If the Library as you received it specifies that
a certain numbered version of the GNU Lesser Gen-
eral Public License “or any later version” applies to
it, you have the option of following the terms and
conditions either of that published version or of any
later version published by the Free Software Foun-
dation. If the Library as you received it does not
specify a version number of the GNU Lesser Gen-
eral Public License, you may choose any version of
the GNU Lesser General Public License ever pub-
lished by the Free Software Foundation.

If the Library as you received it specifies that a
proxy can decide whether future versions of the
GNU Lesser General Public License shall apply,
that proxy’s public statement of acceptance of
any version is permanent authorization for you to
choose that version for the Library.

	1 Front matter
	2 Intro
	2.1 First things first

	3 Hello, World
	4 Who Goes There?
	5 Count to 10
	6 Decisions
	7 Debugging
	8 Defining Functions
	9 Advanced Functions Example
	10 Lists
	11 For Loops
	12 Boolean Expressions
	13 Dictionaries
	14 Using Modules
	15 More on Lists
	16 Revenge of the Strings
	17 File IO
	18 Dealing with the imperfect
	19 The End
	20 FAQ
	21 Contributors
	List of Figures
	22 Licenses
	22.1 GNU GENERAL PUBLIC LICENSE
	22.2 GNU Free Documentation License
	22.3 GNU Lesser General Public License

