
Relational
Model and Algebra

Introduction to Databases

CompSci 316 Fall 2014

Announcements (Thu. Aug. 28)

• Registration
• As a courtesy to others, please add/drop ASAP
• Tonight: permission #’s will be emailed to 18 on the wait list
• Monday evening: another round of permission #’s
• If you are not on the official wait list, check

������������	�
���
������		������������	������
�������������������	�����

• UTAs and office hours to be announced soon

• Next week
• Brett will run the class (I will be away at a conference)
• Tuesday: lab to help with setup, VM, RA—bring laptop!
• Thursday: relational database design

• Homework #1 assigned; due in ~2 weeks
• Sign up for Gradiance and Piazza
• Wait for our email to start setting up VM (and signing up for

Amazon if needed)

2

Edgar F. Codd (1923-2003)

• Pilot in the Royal Air Force in WW2

• Inventor of the relational model
and algebra while at IBM

• Turing Award, 1981

3

��������������
�����������������
��� � !�

�"��

Relational data model

• A database is a collection of relations (or tables)

• Each relation has a set of attributes (or columns)

• Each attribute has a name and a domain (or type)
• Set-valued attributes are not allowed

• Each relation contains a set of tuples (or rows)
• Each tuple has a value for each attribute of the relation

• Duplicate tuples are not allowed
• Two tuples are duplicates if they agree on all attributes

�Simplicity is a virtue!

4

Example
5

Ordering of rows doesn’t matter
(even though output is
always in some order)

uid name age pop

��# $��� �% %�&

�#� '�����	 �% %�#

()* +�	� (%�*

�)� ,���� (%��

- - - -

gid name

�.� $��� !��.

��/ 0��
��12�/�����

�	 3�
 4������10�����

- -

uid gid

��#
�	

�#� ��/

()* �.�

()* ��/

�)� �.�

�)� ��/

- -

User
Group

Member

Schema vs. instance

• Schema (metadata)
• Specifies how the logical structure of data

• Is defined at setup time

• Rarely changes

• Instance
• Represents the data content

• Changes rapidly, but always conforms to the schema

�Compare to type vs. objects of type in a
programming language

6

Example

• Schema
• User (uid int, name string, age int, pop float)

• Group (gid string, name string)

• Member (uid int, gid string)

• Instance
• User: {〈��#, $���, �%, %�&〉, 〈()*, '�����	, �%, %�#〉, …}

• Group: {〈�.�, $��� !��.〉, 〈��/, 0��
�� 2�/�����〉, …}

• Member: {〈��#,
�	〉, 〈�#�, ��/〉, …}

7

Relational algebra

A language for querying relational data
based on “operators”

8

RelOp

RelOp

• Core operators:
• Selection, projection, cross product, union, difference,

and renaming

• Additional, derived operators:
• Join, natural join, intersection, etc.

• Compose operators to make complex queries

Selection

• Input: a table �

• Notation: ���
• � is called a selection condition (or predicate)

• Purpose: filter rows according to some criteria

• Output: same columns as �, but only rows or � that
satisfy �

9

Selection example

• Users with popularity higher than 0.5
��	�
�.����

10

uid name age pop

��# $��� �% %�&

�#� '�����	 �% %�#

()* +�	� (%�*

�)� ,���� (%��

- - - -

uid name age pop

��# $��� �% %�&

()* +�	� (%�*

- - - -

��	�
�.

More on selection

• Selection condition can include any column of �,
constants, comparison (=, ≤, etc.) and Boolean
connectives (∧: and, ∨: or, ¬: not)

• Example: users with popularity at least 0.9 and age
under 10 or above 12

��	���.��∧� �������∨����
�� �����

• You must be able to evaluate the condition over a
single row of the input table!

• Example: the most popular user
��	����� �!"��	��#$�%&�!�����

11

Projection

• Input: a table �

• Notation: '(�
•) is a list of columns in �

• Purpose: output chosen columns

• Output: same rows, but only the columns in)

12

Projection example

• IDs and names of all users
'*#+,$�-� �����

13

uid name age pop

��# $��� �% %�&

�#� '�����	 �% %�#

()* +�	� (%�*

�)� ,���� (%��

- - - -

'*#+,$�-�

uid name

��# $���

�#� '�����	

()* +�	�

�)� ,����

- -

More on projection

• Duplicate output rows are removed (by definition)
• Example: user ages

'��� �����

14

uid name age pop

��# $��� �% %�&

�#� '�����	 �% %�#

()* +�	� (%�*

�)� ,���� (%��

- - - -

'*#+,$�-�

age

�%

�%

(

(

-

age

�%

(

-

Cross product

• Input: two tables R and S

• Natation: � × /

• Purpose: pairs rows from two tables

• Output: for each row � in � and each � in /, output
a row �� (concatenation of � and �)

15

Cross product example

���� × 0�12��

16

uid name age pop

�#� '�����	 �% %�#

()* +�	� (%�*

- - - -

uid gid

�#� ��/

()* �.�

()* ��/

- -
×

uid name age pop uid gid

�#� '�����	 �% %�# �#� ��/

�#� '�����	 �% %�# ()* �.�

�#� '�����	 �% %�# ()* ��/

()* +�	� (%�* �#� ��/

()* +�	� (%�* ()* �.�

()* +�	� (%�* ()* ��/

- - - - - -

A note a column ordering

• Ordering of columns is unimportant as far as
contents are concerned

• So cross product is commutative, i.e., for any � and
/, � × / = / × � (up to the ordering of columns)

17

uid name age pop uid gid

�#� '�����	 �% %�# �#� ��/

�#� '�����	 �% %�# ()* �.�

�#� '�����	 �% %�# ()* ��/

()* +�	� (%�* �#� ��/

()* +�	� (%�* ()* �.�

()* +�	� (%�* ()* ��/

- - - - - -

uid gid uid name age pop

�#� ��/ �#� '�����	 �% %�#

()* �.� �#� '�����	 �% %�#

()* ��/ �#� '�����	 �% %�#

�#� ��/ ()* +�	� (%�*

()* �.� ()* +�	� (%�*

()* ��/ ()* +�	� (%�*

- - - - - -

=

Derived operator: join

(A.k.a. “theta-join”)

• Input: two tables � and /

• Notation: � ⋈� /

• � is called a join condition (or predicate)

• Purpose: relate rows from two tables
according to some criteria

• Output: for each row � in � and each row � in
/, output a row �� if � and � satisfy �

• Shorthand for �� � × /

18

⋈ %&�!.*#+4
5�-6�!.*#+

Join example

• Info about users, plus IDs of their groups
���� ⋈%&�!.*#+45�-6�!.*#+ 0�12��

19

uid name age pop uid gid

�#� '�����	 �% %�# �#� ��/

�#� '�����	 �% %�# ()* �.�

�#� '�����	 �% %�# ()* ��/

()* +�	� (%�* �#� ��/

()* +�	� (%�* ()* �.�

()* +�	� (%�* ()* ��/

- - - - - -

uid name age pop

�#� '�����	 �% %�#

()* +�	� (%�*

- - - -

uid gid

�#� ��/

()* �.�

()* ��/

- -×⋈ %&�!.*#+4
5�-6�!.*#+

uid name age pop uid gid

�#� '�����	 �% %�# �#� ��/

()* +�	� (%�* ()* �.�

()* +�	� (%�* ()* ��/

- - - - - -

Prefix a column reference
with table name and “.” to
disambiguate identically named
columns from different tables

Derived operator: natural join

• Input: two tables � and /

• Notation: � ⋈ /

• Purpose: relate rows from two tables, and
• Enforce equality between identically named columns

• Eliminate one copy of identically named columns

• Shorthand for '(� ⋈� / , where
• � equates each pair of columns common to � and /

•) is the union of column names from � and / (with
duplicate columns removed)

20

uid name age pop uid gid

�#� '�����	 �% %�# �#� ��/

()* +�	� (%�* ()* �.�

()* +�	� (%�* ()* ��/

- - - - - -

uid name age pop gid

�#� '�����	 �% %�# ��/

()* +�	� (%�* �.�

()* +�	� (%�* ��/

- - - - -

Natural join example
21

���� ⋈ 0�12�� = '? ���� ⋈? 0�12��
= '*#+,$�-�,���,�	�,�#+ ���� ⋈ %&�!.*#+4

5�-6�!.*#+

0�12��

uid name age pop

�#� '�����	 �% %�#

()* +�	� (%�*

- - - -

uid gid

�#� ��/

()* �.�

()* ��/

- -

⋈⋈ %&�!.*#+4
5�-6�!.*#+⋈

Union

• Input: two tables � and /

• Notation: � ∪ /
• � and / must have identical schema

• Output:
• Has the same schema as � and /

• Contains all rows in � and all rows in / (with duplicate
rows removed)

22

Difference

• Input: two tables � and /

• Notation: � − /
• � and / must have identical schema

• Output:
• Has the same schema as � and /

• Contains all rows in � that are not in /

23

Derived operator: intersection

• Input: two tables � and /

• Notation: � ∩ /
• � and / must have identical schema

• Output:
• Has the same schema as � and /

• Contains all rows that are in both � and /

• Shorthand for

• Also equivalent to / − / − �

• And to � ⋈ /

24

� − � − /

Renaming

• Input: a table � and /

• Notation: ;<��, ; =>,=?,…
�, or ;< =>,=?,…

�

• Purpose: “rename” a table and/or its columns

• Output: a table with the same rows as �, but called
differently

• Used to
• Avoid confusion caused by identical column names

• Create identical column names for natural joins

• As with all other relational operators, it doesn’t
modify the database

• Think of the renamed table as a copy of the original

25

Renaming example

• IDs of users who belong to at least two groups
0�12�� ⋈? 0�12��

'*#+ 0�12�� ⋈5�-6�!.*#+45�-6�!.*#+�∧
5�-6�!.�#+A5�-6�!.�#+

0�12��

'*#+>

; *#+>,�#+>
0�12��

⋈*#+>4*#+?�∧��#+>A�#+?

; *#+?,�#+?
0�12��

26

Expression tree notation
27

; *#+>,�#+>
; *#+?,�#+?

0�12�� 0�12��

⋈*#+>4*#+?�∧��#+>A�#+?

'*#+>

Summary of core operators

• Selection: ���

• Projection: '(�

• Cross product: � × /

• Union: � ∪ /

• Difference: � − /

• Renaming: ;< =>,=?,…
�

• Does not really add “processing” power

28

Summary of derived operators

• Join: � ⋈� /

• Natural join: � ⋈ /

• Intersection: � ∩ /

• Many more
• Semijoin, anti-semijoin, quotient, …

29

An exercise

• Names of users in Lisa’s groups

30

Users in
Lisa’s groups ����

⋈

'$�-�Their names

0�12��

⋈

'*#+

0�12��

⋈

'�#+Lisa’s groups

����

�$�-�4B(#&�B

Who’s Lisa?

Writing a query bottom-up:

Another exercise

• IDs of groups that Lisa doesn’t belong to

31

IDs of Lisa’s groupsAll group IDs
−

'�#+

C�DE�

0�12��

����

⋈

�$�-�4B(#&�B

'�#+

Writing a query top-down:

A trickier exercise

• Who are the most popular?
• Who do NOT have the highest pop rating?

• Whose pop is lower than somebody else’s?

32

'*#+

����

−

��������

;%&�!> ;%&�!?

⋈%&�!>.�	��%&�!?.�	�

'%&�!>.*#+

A deeper question:
When (and why) is “−” needed?

Monotone operators

• If some old output rows may need to be removed
• Then the operator is non-monotone

• Otherwise the operator is monotone
• That is, old output rows always remain “correct” when

more rows are added to the input

• Formally, for a monotone operator D�:
� ⊆ �G implies D� � ⊆ D� �G for any �, �G

33

RelOp

Add more rows
to the input...

What happens
to the output?

Classification of relational operators

• Selection: ���

• Projection: '(�

• Cross product: � × /

• Join: � ⋈� /

• Natural join: � ⋈ /

• Union: � ∪ /

• Difference: � − /

• Intersection: � ∩ /

34

Monotone

Monotone

Monotone

Monotone

Monotone

Monotone

Monotone w.r.t. �; non-monotone w.r.t /

Monotone

Why is “ ” needed for “highest”?

• Composition of monotone operators produces a
monotone query

• Old output rows remain “correct” when more rows are
added to the input

• Is the “highest” query monotone?
• No!

• Current highest pop is 0.9

• Add another row with pop 0.91

• Old answer is invalidated

�So it must use difference!

35

Why do we need core operator ?

• Difference
• The only non-monotone operator

• Cross product
• The only operator that adds columns

• Union
• The only operator that allows you to add rows?

• A more rigorous argument?

• Selection? Projection?
• Homework problem

36

Extensions to relational algebra

• Duplicate handling (“bag algebra”)

• Grouping and aggregation

• “Extension” (or “extended projection”) to allow
new column values to be computed

�All these will come up when we talk about SQL

�But for now we will stick to standard relational
algebra without these extensions

37

Why is r.a. a good query language?

• Simple
• A small set of core operators

• Semantics are easy to grasp

• Declarative?
• Yes, compared with older languages like CODASYL

• Though operators do look somewhat “procedural”

• Complete?
• With respect to what?

38

Relational calculus

• E. EHI� �E ∈ ���� ∧
¬ ∃EG ∈ ����: E. �D� < EG. �D� }, or

• E. EHI� �E ∈ ���� ∧
∀EG ∈ ����: E. �D� ≥ EG. �D� }

• Relational algebra = “safe” relational calculus
• Every query expressible as a safe relational calculus

query is also expressible as a relational algebra query

• And vice versa

• Example of an “unsafe” relational calculus query
• E. PQ1�� �¬ E ∈ ����

• Cannot evaluate it just by looking at the database

39

Turing machine

• A conceptual device that can
execute any computer algorithm

• Approximates what general-
purpose programming languages
can do

• E.g., Python, Java, C++, …

�So how does relational algebra compare with a
Turing machine?

40

��������������
����������������5��� 6����� ������"��

Alan Turing (1912-1954)

Limits of relational algebra

• Relational algebra has no recursion
• Example: given relation Friend(uid1, uid2), who can Bart

reach in his social network with any number of hops?
• Writing this query in r.a. is impossible!

• So r.a. is not as powerful as general-purpose languages

• But why not?
• Optimization becomes undecidable

�Simplicity is empowering

• Besides, you can always implement it at the application
level, and recursion is added to SQL nevertheless!

41

