
Relational Database
Design Theory

Introduction to Databases

CompSci 316 Fall 2014

Announcements (Thu. Sep. 11)

• Homework #1 due next Tuesday (11:59pm)

• Course project description posted
• Milestone #1 right after fall break

• Teamwork required: 4 people per team

2

Motivation

• Why is UserGroup (uid, uname, gid) a bad design?
• It has redundancy—user name is recorded multiple

times, once for each group that a user belongs to
• Leads to update, insertion, deletion anomalies

• Wouldn’t it be nice to have a systematic approach
to detecting and removing redundancy in designs?

• Dependencies, decompositions, and normal forms

3

uid uname gid

��� ���� �	

��� �����
� ���

��� �
� ���

��� �
� ���

��� ���	� ���

��� ���	� ���

� � �

Functional dependencies

• A functional dependency (FD) has the form � → �,
where � and � are sets of attributes in a relation �

• � → � means that whenever two tuples in � agree
on all the attributes in �, they must also agree on
all attributes in �

4

� � �

� 	

� ? ?

… … …

� � �

� 	

� 	 ?

… … …Must be 	 Could be anything

FD examples

Address (street_address, city, state, zip)

• street_address, city, state→ zip

• zip → city, state

• zip, state→ zip?
• This is a trivial FD

• Trivial FD: LHS ⊇ RHS

• zip→ state, zip?
• This is non-trivial, but not completely non-trivial

• Completely non-trivial FD: LHS ∩ RHS = ∅

5

Redefining “keys” using FD’s

A set of attributes � is a key for a relation � if

• � → all (other) attributes of �
• That is, � is a “super key”

• No proper subset of � satisfies the above condition
• That is, � is minimal

6

Reasoning with FD’s

Given a relation � and a set of FD’s ℱ

• Does another FD follow from ℱ?
• Are some of the FD’s in ℱ redundant (i.e., they follow

from the others)?

• Is � a key of �?
• What are all the keys of �?

7

Attribute closure

• Given �, a set of FD’s ℱ that hold in �, and a set of
attributes � in �:
The closure of � (denoted ��) with respect to ℱ is
the set of all attributes ��, ��, … functionally
determined by � (that is, � → ����…)

• Algorithm for computing the closure
• Start with closure = �

• If � → � is in ℱ and � is already in the closure, then also
add � to the closure

• Repeat until no new attributes can be added

8

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Assume that there is a 1-1 correspondence between
our users and Twitter accounts

• uid→ uname, twitterid

• twitterid→ uid

• uid, gid → fromDate

Not a good design, and we will see why shortly

9

Example of computing closure

• gid, twitterid � = ?

• twitterid→ uid
• Add uid

• Closure grows to { gid, twitterid, uid }

• uid→ uname, twitterid
• Add uname, twitterid

• Closure grows to { gid, twitterid, uid, uname }

• uid, gid→ fromDate
• Add fromDate

• Closure is now all attributes in UserJoinsGroup

10

ℱ includes:
uid→ uname, twitterid

twitterid→ uid

uid, gid→ fromDate

Using attribute closure

Given a relation � and set of FD’s ℱ

• Does another FD � → � follow from ℱ?
• Compute �� with respect to ℱ

• If � ⊆ ��, then � → � follows from ℱ

• Is � a key of �?
• Compute �� with respect to ℱ

• If �� contains all the attributes of �, � is a super key

• Still need to verify that � is minimal (how?)

11

Rules of FD’s

• Armstrong’s axioms
• Reflexivity: If � ⊆ �, then � → �

• Augmentation: If � → �, then �� → �� for any �

• Transitivity: If � → � and � → �, then � → �

• Rules derived from axioms
• Splitting: If � → ��, then � → � and � → �

• Combining: If � → � and � → �, then � → ��

�Using these rules, you can prove or disprove an FD
given a set of FDs

12

Non-key FD’s

• Consider a non-trivial FD � → � where � is not a
super key

• Since � is not a super key, there are some attributes (say
�) that are not functionally determined by �

13

� � �

� 	
�

� 	
�

… … …

That 	 is associated with � is recorded multiple times:
redundancy, update/insertion/deletion anomaly

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

• uid→ uname, twitterid

(… plus other FD’s)

14

uid uname twitterid gid fromDate

��� ���� ������ !	
�" �	
 �#��$%�$�#

��� �����
� ������
�&�"' ��� �#�#$��$��

��� �
� ��
�
!	
�" ��� �#��$%�$�#

��� �
� ��
�
!	
�" ��� �#��$%#$%�

��� ���	� ����	�(���! ��� �##�$%�$��

��� ���	� ����	�(���! ��� �##�$%#$%�

� � � � �

Decomposition

• Eliminates redundancy

• To get back to the original relation:

15

⋈

uid uname twitterid gid fromDate

��� ���� ������ !	
�" �	
 �#��$%�$�#

��� �����
� ������
�&�"' ��� �#�#$��$��

��� �
� ��
�
!	
�" ��� �#��$%�$�#

��� �
� ��
�
!	
�" ��� �#��$%#$%�

��� ���	� ����	�(���! ��� �##�$%�$��

��� ���	� ����	�(���! ��� �##�$%#$%�

� � � � �

uid uname twitterid

��� ���� ������ !	
�"

��� �����
� ������
�&�"'

��� �
� ��
�
!	
�"

��� ���	� ����	�(���!

� � �

uid gid fromDate

��� �	
 �#��$%�$�#

��� ��� �#�#$��$��

��� ��� �#��$%�$�#

��� ��� �#��$%#$%�

��� ��� �##�$%�$��

��� ��� �##�$%#$%�

� � �

uid twitterid

��� ������ !	
�"

��� ������
�&�"'

��� ��
�
!	
�"

��� ����	�(���!

� �

uid uname

��� ����

��� �����
�

��� �
�

��� ���	�

� �

Unnecessary decomposition

• Fine: join returns the original relation

• Unnecessary: no redundancy is removed; schema is
more complicated (and uid is stored twice!)

16

uid uname twitterid

��� ���� ������ !	
�"

��� �����
� ������
�&�"'

��� �
� ��
�
!	
�"

��� ���	� ����	�(���!

� � �

uid fromDate

��� �#��$%�$�#

��� �#�#$��$��

��� �#��$%�$�#

��� �#��$%#$%�

��� �##�$%�$��

��� �##�$%#$%�

� �

Bad decomposition

• Association between gid and fromDate is lost

• Join returns more rows than the original relation

17

uid gid fromDate

��� �	
 �#��$%�$�#

��� ��� �#�#$��$��

��� ��� �#��$%�$�#

��� ��� �#��$%#$%�

��� ��� �##�$%�$��

��� ��� �##�$%#$%�

� � �
uid gid

��� �	

��� ���

��� ���

��� ���

��� ���

��� ���

� �

Lossless join decomposition

• Decompose relation � into relations � and �
• ����� � = ����� � ∪ ����� �

• � = !"##$% & �

• � = !"##$% ' �

• The decomposition is a lossless join decomposition
if, given known constraints such as FD’s, we can
guarantee that � = � ⋈ �

• Any decomposition gives � ⊆ � ⋈ � (why?)
• A lossy decomposition is one with � ⊂ � ⋈ �

18

uid gid fromDate

��� �	
 �#��$%�$�#

��� ��� �#�#$��$��

��� ��� �#��$%�$�#

��� ��� �#��$%#$%�

��� ��� �##�$%�$��

��� ��� �##�$%#$%�

� � �

uid gid fromDate

��� �	
 �#��$%�$�#

��� ��� �#�#$��$��

��� ��� �#��$%#$%�

��� ��� �#��$%�$�#

��� ��� �##�$%�$��

��� ��� �##�$%#$%�

� � �

Loss? But I got more rows!

• “Loss” refers not to the loss of tuples, but to the
loss of information

• Or, the ability to distinguish different original relations

19

No way to tell
which is the original relation

uid fromDate

��� �#��$%�$�#

��� �#�#$��$��

��� �#��$%�$�#

��� �#��$%#$%�

��� �##�$%�$��

��� �##�$%#$%�

� �

uid gid

��� �	

��� ���

��� ���

��� ���

��� ���

��� ���

� �

Questions about decomposition

• When to decompose

• How to come up with a correct decomposition (i.e.,
lossless join decomposition)

20

An answer: BCNF

• A relation � is in Boyce-Codd Normal Form if
• For every non-trivial FD � → � in �, � is a super key

• That is, all FDs follow from “key→ other attributes”

• When to decompose
• As long as some relation is not in BCNF

• How to come up with a correct decomposition
• Always decompose on a BCNF violation (details next)

�Then it is guaranteed to be a lossless join
decomposition!

21

BCNF decomposition algorithm

• Find a BCNF violation
• That is, a non-trivial FD � → � in � where � is not a super

key of �

• Decompose � into �� and ��, where
• �� has attributes � ∪ �

• �� has attributes � ∪ �, where � contains all attributes
of � that are in neither � nor �

• Repeat until all relations are in BCNF

22

BCNF decomposition example
23

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid→ uname, twitterid

twitterid→ uid

uid, gid→ fromDate

BCNF violation: uid→ uname, twitterid

User (uid, uname, twitterid) Member (uid, gid, fromDate)

BCNF
BCNF

uid→ uname, twitterid

twitterid→ uid

uid, gid→ fromDate

Another example
24

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid→ uname, twitterid

twitterid→ uid

uid, gid→ fromDate

BCNF violation: twitterid→ uid

UserId (twitterid, uid)

Member (twitterid, gid, fromDate)

BCNF

BCNF

twitterid→ uname

twitterid, gid→ fromDate

UserJoinsGroup’ (twitterid, uname, gid, fromDate)

BCNF violation: twitterid→ name

UserName (twitterid, uname)

BCNF

Why is BCNF decomposition lossless

Given non-trivial � → � in � where � is not a super
key of �, need to prove:

• Anything we project always comes back in the join:
� ⊆ !)* � ⋈ !)+ �

• Sure; and it doesn’t depend on the FD

• Anything that comes back in the join must be in the
original relation:

� ⊇ !)* � ⋈ !)+ �

• Proof will make use of the fact that � → �

25

Recap

• Functional dependencies: a generalization of the
key concept

• Non-key functional dependencies: a source of
redundancy

• BCNF decomposition: a method for removing
redundancies

• BNCF decomposition is a lossless join decomposition

• BCNF: schema in this normal form has no
redundancy due to FD’s

26

BCNF = no redundancy?

• User (uid, gid, place)
• A user can belong to multiple groups

• A user can register places she’s visited

• Groups and places have nothing to do with other

• FD’s?
• None

• BNCF?
• Yes

• Redundancies?
• Tons!

27

uid gid place

��� �	
 	�"�)���

��� �	
 *�
�����

��� ��� 	�"�)���

��� ��� �������

��� ��� 	�"�)���

��� ��� �������

� � �

Multivalued dependencies

• A multivalued dependency (MVD) has the form
� ↠ �, where � and � are sets of attributes in a
relation �

• � ↠ � means that whenever
two rows in � agree on all the
attributes of �, then we can
swap their � components and
get two rows that are also in �

28

� � �

� 	�
�

� 	�
�

… … …

� � �

� 	�
�

� 	�
�

� 	�
�

� 	�
�

… … …

MVD examples

User (uid, gid, place)

• uid↠ gid

• uid↠ place
• Intuition: given uid, gid and place are “independent”

• uid, gid↠ place
• Trivial: LHS ∪ RHS = all attributes of �

• uid, gid↠ uid
• Trivial: LHS ⊇ RHS

29

Complete MVD + FD rules

• FD reflexivity, augmentation, and transitivity

• MVD complementation:
If � ↠ �, then � ↠ ����� � − � − �

• MVD augmentation:
If � ↠ � and . ⊆ /, then �/ ↠ �.

• MVD transitivity:
If � ↠ � and � ↠ �, then � ↠ � − �

• Replication (FD is MVD):
If � → �, then � ↠ �

• Coalescence:
If � ↠ � and � ⊆ � and there is some / disjoint
from � such that / → �, then � → �

30

Try proving things using these!?

An elegant solution: chase

• Given a set of FD’s and MVD’s 0, does another
dependency 1 (FD or MVD) follow from 0?

• Procedure
• Start with the hypothesis of 1, and treat them as “seed”

tuples in a relation

• Apply the given dependencies in 0 repeatedly
• If we apply an FD, we infer equality of two symbols

• If we apply an MVD, we infer more tuples

• If we infer the conclusion of 1, we have a proof

• Otherwise, if nothing more can be inferred, we have a
counterexample

31

Proof by chase

• In � �, 2, 3, 4 , does � ↠ 2 and 2 ↠ 3 imply that
� ↠ 3?

32

5 6 7 8

� 	�
� 1�

� 	�
� 1�

5 6 7 8

� 	�
� 1�

� 	�
� 1�

Have: Need:

� 	�
� 1�

� 	�
� 1�
� ↠ 2

� 	�
� 1�

� 	�
� 1�
2 ↠ 3

� 	�
� 1�

� 	�
� 1�
2 ↠ 3

�

�

Another proof by chase

• In � �, 2, 3, 4 , does � → 2 and 2 → 3 imply that
� → 3?

33

5 6 7 8

� 	�
� 1�

� 	�
� 1�

Have: Need:

� =
�

� → 2 	� = 	�

2 → 3
� =
�

�

In general, with both MVD’s and FD’s,
chase can generate both new tuples and new equalities

Counterexample by chase

• In � �, 2, 3, 4 , does � ↠ 23 and 34 → 2 imply
that � → 2?

34

5 6 7 8

� 	�
� 1�

� 	�
� 1�

Have: Need:
	� = 	�

� 	�
� 1�

� 	�
� 1�
� ↠ 23

�

Counterexample!

4NF

• A relation R is in Fourth Normal Form (4NF) if
• For every non-trivial MVD � ↠ � in �, � is a superkey

• That is, all FD’s and MVD’s follow from “key → other
attributes” (i.e., no MVD’s and no FD’s besides key
functional dependencies)

• 4NF is stronger than BCNF
• Because every FD is also a MVD

35

4NF decomposition algorithm

• Find a 4NF violation
• A non-trivial MVD � ↠ � in � where � is not a superkey

• Decompose � into �� and ��, where
• �� has attributes � ∪ �

• �� has attributes � ∪ � (where � contains � attributes
not in � or �)

• Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm

• Any decomposition on a 4NF violation is lossless

36

4NF decomposition example
37

uid gid place

��� �	
 	�"�)���

��� �	
 *�
�����

��� ��� 	�"�)���

��� ��� �������

��� ��� 	�"�)���

��� ��� �������

� � �

User (uid, gid, place)

4NF violation: uid↠9gid

Member (uid, gid) Visited (uid, place)
4NF 4NFuid gid

��� �	

��� ���

��� ���

� �

uid place

��� 	�"�)���

��� *�
�����

��� 	�"�)���

��� �������

� �

Summary

• Philosophy behind BCNF, 4NF:
Data should depend on the key,
the whole key,
and nothing but the key!

• You could have multiple keys though

• Other normal forms
• 3NF: More relaxed than BCNF; will not remove

redundancy if doing so makes FDs harder to enforce

• 2NF: Slightly more relaxed than 3NF

• 1NF: All column values must be atomic

38

