
SQL: Transactions
Introduction to Databases

CompSci 316 Fall 2014

Announcements (Thu., Oct. 16)

• Project Milestone #1 due today

• Homework #1 grades/feedback released on Sakai

• Midterm grades and sample solution to be posted
on Sakai by Tuesday

2

Transactions

• A transaction is a sequence of database operations
with the following properties (ACID):

• Atomic: Operations of a transaction are executed all-or-
nothing, and are never left “half-done”

• Consistency: Assume all database constraints are
satisfied at the start of a transaction, they should remain
satisfied at the end of the transaction

• Isolation: Transactions must behave as if they were
executed in complete isolation from each other

• Durability: If the DBMS crashes after a transaction
commits, all effects of the transaction must remain in
the database when DBMS comes back up

3

SQL transactions

• A transaction is automatically started when a user
executes an SQL statement

• Subsequent statements in the same session are
executed as part of this transaction

• Statements see changes made by earlier ones in the
same transaction

• Statements in other concurrently running transactions
do not

• ������ command commits the transaction
• Its effects are made final and visible to subsequent

transactions

• �����	�
 command aborts the transaction
• Its effects are undone

4

Fine prints

• Schema operations (e.g., ���	�� �	���)
implicitly commit the current transaction

• Because it is often difficult to undo a schema operation

• Many DBMS support an 	��������� feature,
which automatically commits every single
statement

• You can turn it on/off through the API
• Examples later in this lecture

• For PostgreSQL:
•
��� command-line processor turns it on by default

• You can turn it off at the ���� prompt by typing:
�����	���������������

5

Atomicity

• Partial effects of a transaction must be undone
when

• User explicitly aborts the transaction using �����	�

• E.g., application asks for user confirmation in the last step and

issues ������ or �����	�
 depending on the response

• The DBMS crashes before a transaction commits

• Partial effects of a modification statement must be
undone when any constraint is violated

• Usually only this statement is rolled back; the
transaction continues

• How is atomicity achieved?
• Logging (to support undo)

6

Durability

• DBMS accesses data on stable storage by bringing
data into memory

• Effects of committed transactions must survive
DBMS crashes

• How is durability achieved?
• Forcing all changes to disk at the end of every

transaction?
• Too expensive

• Logging (to support redo)

7

Consistency

• Consistency of the database is guaranteed by
constraints and triggers declared in the database
and/or transactions themselves

• Whenever inconsistency arises, abort the statement or
transaction, or (with deferred constraint checking or
application-enforced constraints) fix the inconsistency
within the transaction

8

Isolation

• Transactions must appear to be executed in a serial
schedule (with no interleaving operations)

• For performance, DBMS executes transactions
using a serializable schedule

• In this schedule, operations from different transactions
can interleave and execute concurrently

• But the schedule is guaranteed to produce the same
effects as a serial schedule

• How is isolation achieved?
• Locking, multi-version concurrency control, etc.

9

SQL isolation levels

• Strongest isolation level: ����	���	���
• Complete isolation

• Weaker isolation levels: ����	�	��� ��	�,
��	� ���������, ��	� �����������

• Increase performance by eliminating overhead and
allowing higher degrees of concurrency

• Trade-off: sometimes you get the “wrong” answer

10

��	�������������

• Can read “dirty” data
• A data item is dirty if it is written by an uncommitted

transaction

• Problem: What if the transaction that wrote the
dirty data eventually aborts?

• Example: wrong average
• �� ��� �� � �
���	������!
����
�
�"�#$%%
&'����()* "��+ , �������	-./
�
0

1�������!,
�����	�
,

������,

11

��	�����������

• No dirty reads, but non-repeatable reads possible
• Reading the same data item twice can produce different

results

• Example: different averages
• �� ��� �� � �

�������	-./
�
0
1�������!,

���	������!
����
�
�"�#$%%
&'��������"��+ ,
������,

�������	-./
�
0
1�������!,
������,

12

����	�	������	�

• Reads are repeatable, but may see phantoms

• Example: different average (still!)
• �� ��� �� � �

�������	-./
�
0
1�������!,

���������������!
-	����/23%4�������5�4

�#4�#$�0,
������,

�������	-./
�
0
1�������!,
������,

13

Summary of SQL isolation levels

• Syntax: At the beginning of a transaction,
������	��	����������	�������-���
isolation_level [��	�����6 | ��	��&����]�

• ��	� ����������� can only be ��	� ���6

• PostgreSQL defaults to ��	� ���������

14

Isolation level/anomaly Dirty reads Non-repeatable reads Phantoms

��	������������� Possible Possible Possible

��	����������� Impossible Possible Possible

����	�	������	� Impossible Impossible Possible

����	���	��� Impossible Impossible Impossible

Transactions in programming

Using
7�8�
9 as an example:
8�55�"�
�78�
9 $8�55�8�/*:5;<�"�:��!��0

8�55$���=����)�5/)���;�)�5=��>��"�����	���	����4
!�;*7=�5�7"1;���4
;(��8�<<)�"�!(�0

•)���;�)�5=��>�� defaults to ��	� ���������
• !�;*=�5�7 defaults to 1;���
• ;(��8�<<)� defaults to 1;���

• When ;(��8�<<)� is 1;���, commit/abort
current transaction as follows:

8�55$8�<<)�/0

8�55$!���:;8?/0

15

ANSI isolation levels are lock-based

• ��	�������������
• Short-duration locks: lock, access, release immediately

• ��	�����������
• Long-duration write locks: do not release write locks

until commit

• ����	�	������	�
• Long-duration locks on all data items accessed

• ����	���	���
• Lock ranges to prevent insertion as well

16

Isolation levels not based on locks?

Snapshot isolation in Oracle

• Based on multiversion concurrency control
• Used in Oracle, PostgreSQL, MS SQL Server, etc.

• How it works
• Transaction � performs its operations on a private

snapshot of the database taken at the start of �
• � can commit only if it does not write any data that

has been also written by a transaction committed
after the start of �

• Avoids all ANSI anomalies

• But is NOT equivalent to ����	���	���
because of write skew anomaly

17

Write skew example

• Constraint: combined balance � + � ≥ 0

• � = 100, � = 100

• T1 checks � + �
–
200 ≥ 0, and then proceeds to
withdraw 200 from �

• T2 checks � + �
–
200 ≥ 0, and then proceeds to
withdraw 200 from �

• Possible under snapshot isolation because the
writes (to � and to �) do not conflict

• But � + � = −200 < 0 afterwards!

18

Bottom line

• Group reads and dependent writes into a
transaction in your applications

• E.g., enrolling a class, booking a ticket

• Anything less than ����	�	��� is potentially very
dangerous

• Use only when performance is critical

• ��	� ���6 makes weaker isolation levels a bit safer

19

