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• The copyright and this legal notice must appear in any copies of this document made in whole or in

part.

• None of material herein can be sold or otherwise distributed for commercial purposes without written

permission of the copyright holder.

• Instructors at any educational institution may freely use this document in their classes as a primary

or optional textbook under the conditions specified above.
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• None of material herein can be sold or otherwise distributed in an electronic form for commercial
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Additionally, a hardcopy or a local electronic copy must contain the uniform resource locator (URL)

providing a link to the original content so the reader can check for updated and corrected content. The

current standard URL is http://python.cs.southern.edu/cppbook/progcpp.pdf.
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and where this book is used helps me justify to my employer that it is providing a useful service to the community and
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The source code for all labeled listings is available at
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Chapter 1

The Context of Software Development

A computer program, from one perspective, is a sequence of instructions that dictate the flow of electri-

cal impulses within a computer system. These impulses affect the computer’s memory and interact with

the display screen, keyboard, mouse, and perhaps even other computers across a network in such a way

as to produce the “magic” that permits humans to perform useful tasks, solve high-level problems, and

play games. One program allows a computer to assume the role of a financial calculator, while another

transforms the machine into a worthy chess opponent. Note the two extremes here:

• at the lower, more concrete level electrical impulses alter the internal state of the computer, while

• at the higher, more abstract level computer users accomplish real-world work or derive actual plea-

sure.

So well is the higher-level illusion achieved that most computer users are oblivious to the lower-level

activity (the machinery under the hood, so to speak). Surprisingly, perhaps, most programmers today write

software at this higher, more abstract level also. An accomplished computer programmer can develop

sophisticated software with little or no interest or knowledge of the actual computer system upon which it

runs. Powerful software construction tools hide the lower-level details from programmers, allowing them

to solve problems in higher-level terms.

The concepts of computer programming are logical and mathematical in nature. In theory, computer

programs can be developed without the use of a computer. Programmers can discuss the viability of a

program and reason about its correctness and efficiency by examining abstract symbols that correspond

to the features of real-world programming languages but appear in no real-world programming language.

While such exercises can be very valuable, in practice computer programmers are not isolated from their

machines. Software is written to be used on real computer systems. Computing professionals known

as software engineers develop software to drive particular systems. These systems are defined by their

underlying hardware and operating system. Developers use concrete tools like compilers, debuggers, and

profilers. This chapter examines the context of software development, including computer systems and

tools.
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1.1 Software

A computer program is an example of computer software. Software makes a computer a truly universal

machine transforming it into the proper tool for the task at hand. One can refer to a program as a piece of

software as if it were a tangible object, but software is actually quite intangible. It is stored on a medium. A

hard drive, a CD, a DVD, and a USB pen drive are all examples of media upon which software can reside.

The CD is not the software; the software is a pattern on the CD. In order to be used, software must be stored

in the computer’s memory. Typically computer programs are loaded into memory from a medium like the

computer’s hard disk. An electromagnetic pattern representing the program is stored on the computer’s hard

drive. This pattern of electronic symbols must be transferred to the computer’s memory before the program

can be executed. The program may have been installed on the hard disk from a CD or from the Internet. In

any case, the essence that was transferred from medium to medium was a pattern of electronic symbols that

direct the work of the computer system.

These patterns of electronic symbols are best represented as a sequence of zeroes and ones, digits from

the binary (base 2) number system. An example of a binary program sequence is

10001011011000010001000001001110

To the underlying computer hardware, specifically the processor, a zero here and three ones there might

mean that certain electrical signals should be sent to the graphics device so that it makes a certain part of

the display screen red. Unfortunately, only a minuscule number of people in the world would be able to

produce, by hand, the complete sequence of zeroes and ones that represent the program Microsoft Word

for an Intel-based computer running the Windows 8 operating system. Further, almost none of those who

could produce the binary sequence would claim to enjoy the task.

The Word program for older Mac OS X computers using a PowerPC processor works similarly to the

Windows version and indeed is produced by the same company, but the program is expressed in a com-

pletely different sequence of zeroes and ones! The Intel Core i7 processor in the Windows machine accepts

a completely different binary language than the PowerPC processor in the Mac. We say the processors have

their own machine language.

1.2 Development Tools

If very few humans can (or want) to speak the machine language of the computers’ processors and software

is expressed in this language, how has so much software been developed over the years?

Software can be represented by printed words and symbols that are easier for humans to manage than

binary sequences. Tools exist that automatically convert a higher-level description of what is to be done

into the required lower-level code. Higher-level programming languages like C++ allow programmers to

express solutions to programming problems in terms that are much closer to a natural language like English.

Some examples of the more popular of the hundreds of higher-level programming languages that have been

devised over the past 60 years include FORTRAN, COBOL, Lisp, Haskell, C, Perl, Python, Java, and C#.

Most programmers today, especially those concerned with high-level applications, usually do not worry

about the details of underlying hardware platform and its machine language.

One might think that ideally such a conversion tool would accept a description in a natural language,

such as English, and produce the desired executable code. This is not possible today because natural

languages are quite complex compared to computer programming languages. Programs called compilers

that translate one computer language into another have been around for over 60 years, but natural language
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processing is still an active area of artificial intelligence research. Natural languages, as they are used

by most humans, are inherently ambiguous. To understand properly all but a very limited subset of a

natural language, a human (or artificially intelligent computer system) requires a vast amount of background

knowledge that is beyond the capabilities of today’s software. Fortunately, programming languages provide

a relatively simple structure with very strict rules for forming statements that can express a solution to any

problem that can be solved by a computer.

Consider the following program fragment written in the C++ programming language:

subtotal = 25;
tax = 3;
total = subtotal + tax;

These three lines do not make up a complete C++ program; they are merely a piece of a program. The

statements in this program fragment look similar to expressions in algebra. We see no sequence of bi-

nary digits. Three words, subtotal, tax, and total, called variables, are used to hold information.

Mathematicians have used variables for hundreds of years before the first digital computer was built. In

programming, a variable represents a value stored in the computer’s memory. Familiar operators (= and +)

are used instead of some cryptic binary digit sequence that instructs the processor to perform the operation.

Since this program is expressed in the C++ language, not machine language, it cannot be executed directly

on any processor. A C++ compiler is used to translate the C++ code into machine code.

The higher-level language code is called source code. The compiled machine language code is called

the target code. The compiler translates the source code into the target machine language.

The beauty of higher-level languages is this: the same C++ source code can be compiled to different

target platforms. The target platform must have a C++ compiler available. Minor changes in the source code

may be required because of architectural differences in the platforms, but the work to move the program

from one platform to another is far less than would be necessary if the program for the new platform had

to be rewritten by hand in the new machine language. Just as importantly, when writing the program the

human programmer is free to think about writing the solution to the problem in C++, not in a specific

machine language.

Programmers have a variety of tools available to enhance the software development process. Some

common tools include:

• Editors. An editor allows the user to enter the program source code and save it to files. Most pro-

gramming editors increase programmer productivity by using colors to highlight language features.

The syntax of a language refers to the way pieces of the language are arranged to make well-formed

sentences. To illustrate, the sentence

The tall boy runs quickly to the door.

uses proper English syntax. By comparison, the sentence

Boy the tall runs door to quickly the.

is not correct syntactically. It uses the same words as the original sentence, but their arrangement

does not follow the rules of English.

Similarly, programmers must follow strict syntax rules to create well-formed computer programs.

Only well-formed programs are acceptable and can be compiled and executed. Some syntax-aware

editors can use colors or other special annotations to alert programmers of syntax errors before the

program is compiled.
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Figure 1.1 Source code to target code sequence
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• Compilers. A compiler translates the source code to target code. The target code may be the machine

language for a particular platform or embedded device. The target code could be another source

language; for example, the earliest C++ compiler translated C++ into C, another higher-level language.

The resulting C code was then processed by a C compiler to produce an executable program. C++

compilers today translate C++ directly into machine language.

The complete set of build tools for C++ includes a preprocessor, compiler, and linker:

– Preprocessor—adds to or modifies the contents of the source file before the compiler begins

processing the code. We use the services of the preprocessor mainly to #include information

about library routines our programs use.

– Compiler—translates C++ source code to machine code.

– Linker—combines the compiler-generated machine code with precompiled library code or

compiled code from other sources to make a complete executable program. Most compiled

C++ code is incapable of running by itself and needs some additional machine code to make a

complete executable program. The missing machine code has been precompiled and stored in

a repository of code called a library. A program called a linker combines the programmer’s

compiled code and the library code to make a complete program.

We generally do not think about the preprocessor, compiler, and linker working as three separate

programs (although they do); the tools we use make it appear as only one process is taking place:

translating our source code to an executable program.

• Debuggers. A debugger allows a programmer to more easily trace a program’s execution in order

to locate and correct errors in the program’s implementation. With a debugger, a developer can

simultaneously run a program and see which line in the source code is responsible for the program’s

current actions. The programmer can watch the values of variables and other program elements to see

if their values change as expected. Debuggers are valuable for locating errors (also called bugs) and

repairing programs that contain errors. (See Section 4.6 for more information about programming

errors.)

• Profilers. A profiler collects statistics about a program’s execution allowing developers to tune ap-

propriate parts of the program to improve its overall performance. A profiler indicates how many

times a portion of a program is executed during a particular run, and how long that portion takes to

execute. Profilers also can be used for testing purposes to ensure all the code in a program is actually

being used somewhere during testing. This is known as coverage. It is common for software to fail

after its release because users exercise some part of the program that was not executed anytime during

testing. The main purpose of profiling is to find the parts of a program that can be improved to make

the program run faster.

The programming components of the development process are illustrated in Figure 1.1.

Many developers use integrated development environments (IDEs). An IDE includes editors, debug-

gers, and other programming aids in one comprehensive program. Examples of IDEs for C++ include

Microsoft’s Visual Studio 2015, the Eclipse Foundation’s Eclipse CDT, and Apple’s XCode.

Despite the plethora of tools (and tool vendors’ claims), the programming process for all but trivial

programs is not automatic. Good tools are valuable and certainly increase the productivity of developers,

but they cannot write software. There are no substitutes for sound logical thinking, creativity, common

sense, and, of course, programming experience.
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1.3 Learning Programming with C++

Bjarne Stroustrup of AT&T Bell Labs created C++ in the mid 1980s. C++ is an extension of the programming

language C, a product of AT&T Bell Labs from the early 1970s. C was developed to write the Unix

operating system, and C is widely used for systems-level software and embedded systems development.

C++ initially provided object-oriented programming features (see Chapter 13 and Chapter 14) and later

added generic programming capabilities. C++’s close relationship to C allows C++ programs to utilize a

large collection of code developed in C.

C++ is widely used in industry for commercial software development. It is an industrial strength pro-

gramming language used for developing complex systems in business, science, and engineering. Examples

of software written in C++ include Microsoft Windows 8, Microsoft Office, macOS, and Adobe Creative

Suite.

In order to meet the needs of commercial software development and accomplish all that it does, C++

itself is complex. While experienced programmers can accomplish great things with C++, beginners some-

times have a difficult time with it. Professional software developers enjoy the flexible design options that

C++ permits, but beginners need more structure and fewer options so they can master simpler concepts

before moving on to more complex ones.

This book does not attempt to cover all the facets of the C++ programming language. Experienced

programmers should look elsewhere for books that cover C++ in much more detail. The focus here is on

introducing programming techniques and developing good habits. To that end, our approach avoids some of

the more esoteric features of C++ and concentrates on the programming basics that transfer directly to other

imperative programming languages such as Java, C#, and Python. We stick with the basics and explore

more advanced features of C++ only when necessary to handle the problem at hand.

1.4 Exercises

1. What is a compiler?

2. How is compiled code different from source code?

3. What tool does a programmer use to produce C++ source code?

4. What tool(s) does a programmer use to convert C++ source code into executable machine code?

5. What does the linker do?

6. Does the linker deal with files containing source code or machine language code?

7. What does the preprocessor do to source code?

8. List several advantages developing software in a higher-level language has over developing software

in machine language.

9. How can an IDE improve a programmer’s productivity?

10. Name a popular C++ IDE is used by programmers developing for Microsoft Windows.

11. Name a popular C++ IDE is used by programmers developing for Apple macOS.
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Chapter 2

Writing a C++ Program

Properly written C++ programs have a particular structure. The syntax must be correct, or the compiler

will generate error messages and not produce executable machine language. This chapter introduces C++

by providing some simple example programs and associated fundamental concepts. Most of the concepts

presented in this chapter are valid in many other programming languages as well. While other languages

may implement the concepts using slightly different syntax, the ideas are directly transferable to other

languages like C, Java, C#, and Ada.

2.1 General Structure of a Simple C++ Program

Listing 2.1 (simple.cpp) is one of the simplest C++ programs that does something:

Listing 2.1: simple.cpp

#include <iostream>

int main() {
std::cout << "This is a simple C++ program!\n";

}

You can type the text as shown in Listing 2.1 (simple.cpp) into an editor and save it to a file named

simple.cpp. The actual name of the file is irrelevant, but the name “simple” accurately describes the nature

of this program. The extension .cpp is a common extension used for C++ source code.

After creating this file with a text editor and compiling it, you can run the program. The program prints

the message

This is a simple C++ program!

Listing 2.1 (simple.cpp) contains four non-blank lines of code:

• #include <iostream>

This line is a preprocessing directive. All preprocessing directives within C++ source code begin with

a # symbol. This one directs the preprocessor to add some predefined source code to our existing
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2.2. EDITING, COMPILING, AND RUNNING THE PROGRAM 8

source code before the compiler begins to process it. This process is done automatically and is

invisible to us.

Here we want to use an object from the iostream library, a collection precompiled C++ code that

C++ programs (like ours) can use. The iostream library contains elements that handle input and

output (I/O)—printing to the display, getting user input from the keyboard, and dealing with files.

One of the items used in Listing 2.1 (simple.cpp), std::cout, is not part of the C++ language itself.

This item, along with other things related to input and output, were developed in C++, compiled, and

stored in the iostream library. The compiler needs to be aware of these iostream items so it

can compile our program. The #include directive specifies a file, called a header, that contains

the specifications for the library code. The compiler checks how we use std::cout within our

code against its specification in the <iostream> header to ensure that we are using the library code

correctly.

Most of the programs we write use this #include <iostream> directive, and some programs

we will write in the future will #include other headers as well.

• int main() {

This specifies the real beginning of our program. Here we are declaring a function named main. All

C++ programs must contain this function to be executable. Details about the meaning of int and

the parentheses will appear in later chapters. More general information about functions appear in

Chapter 8 and Chapter 9.

The opening curly brace at the end of the line marks the beginning of the body of a function. The

body of a function contains the statements the function is to execute.

• std::cout << "This is a simple C++ program!\n";

The body of our main function contains only one statement. This statement directs the executing

program to print the message This is a simple C++ program! on the screen. A statement is the

fundamental unit of execution in a C++ program. Functions contain statements that the compiler

translates into executable machine language instructions. C++ has a variety of different kinds of

statements, and the chapters that follow explore these various kinds of statements. All statements in

C++ end with a semicolon (;). A more detailed explanation of this statement appears below.

• }

The closing curly brace marks the end of the body of a function. Both the open curly brace and close

curly brace are required for every function definition.

Note which lines in the program end with a semicolon (;) and which do not. Do

not put a semicolon after the #include preprocessor directive. Do not put a

semicolon on the line containing main, and do not put semicolons after the curly

braces.

2.2 Editing, Compiling, and Running the Program

C++ programmers have two options for C++ development environments. One option involves a command-

line environment with a collection of independent tools. The other option is to use an IDE (see Section 1.2)

which combines all the tools into a convenient package. Visual Studio is the dominant IDE on the Microsoft
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Windows platform, and Apple Mac developers often use the XCode IDE. Appendix A provides an overview

of how to use the Visual Studio 2015 IDE to develop a simple C++ program.

The myriad of features and configuration options in these powerful IDEs can be bewildering to those

learning how to program. In a command-line environment the programmer needs only type a few simple

commands into a console window to edit, compile, and execute programs. Some developers prefer the

simplicity and flexibility of command-line build environments, especially for less complex projects.

One prominent command-line build system is the GNU Compiler Collection (http://gcc.gnu.
org), or GCC for short. The GCC C++ compiler, called g++, is one of most C++ standards conforming

compilers available. The GCC C++ compiler toolset is available for the Microsoft Windows, Apple Mac,

and Linux platforms, and it is a free, open-source software project with a world-wide development team.

Appendix B provides an overview of how to use the GCC C++ compiler.

Visual Studio and XCode offer command line development options as well. Appendix B provides an

overview of the Visual Studio command line development process.

2.3 Variations of our simple program

Listing 2.2 (simple2.cpp) shows an alternative way of writing Listing 2.1 (simple.cpp).

Listing 2.2: simple2.cpp

#include <iostream>

using std::cout;

int main() {
cout << "This is a simple C++ program!\n";

}

The using directive in Listing 2.2 (simple2.cpp) allows us to use a shorter name for the std::cout
printing object. We can omit the std:: prefix and use the shorter name, cout. This directive is optional,

but if we omit it, we must use the longer name. The name std stands for “standard,” and the std prefix

indicates that cout is part of a collection of names called the standard namespace. The std namespace

holds names for all the standard C++ types and functions that must be available to all standards-conforming

C++ development environments. Components outside the standard library provided by third-party develop-

ers reside in their own separately-named namespaces. These include open-source projects and commercial

libraries.

Listing 2.3 (simple3.cpp) shows another way to use the shorter name for cout within a C++ program.

Listing 2.3: simple3.cpp

#include <iostream>

using namespace std;

int main() {
cout << "This is a simple C++ program!\n";

}

While Listing 2.2 (simple2.cpp) made the name cout known to the compiler via its focused using di-

rective, Listing 2.3 (simple3.cpp) provides a blanket using directive that makes all names in the std
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namespace available to the compiler. This approach offers some advantages for smaller programs, such as

examples in books and online tutorials. This blanket using directive allows programmers to use shorter

names as in the more more focused using directives, and it also can use fewer lines of code than the more

focused using directives, especially when the program uses multiple elements from the std namespace.

Our choice of using directives (or not) makes no difference in our final product, the executable pro-

gram. The compiler generates the same machine language code for all three versions—no using, focused

using, and blanket using. We thus must select an approach that enhances our ability to write and manage

our software projects.

It is important to note that while this blanket using approach has its place, its use generally is dis-

couraged for more complex software projects. At this point we cannot fully appreciate the rationale for

avoiding the using namespace std directive, but later, in Section 20.6, we will have enough experi-

ence to understand the disadvantages of the blanket using namespace std directive. We will strive

for best practices from the start and avoid the blanket using statement. We generally will use the full

names of the elements in the std namespace and use the more focused using directives in our code when

it makes sense to do so.

The statement in the main function in any of the three versions of our program uses the services of an

object called std::cout. The std::cout object prints text on the computer’s screen. The text of the

message as it appears in the C++ source code is called a string, for string of characters. Strings are enclosed

within quotation marks ("). The symbols << make up the insertion operator. You can think of the message

to be printed as being “inserted” into the cout object. The cout object represents the output stream;

that is, text that the program prints to the console window. The end of the message contains the symbol

sequence \n. This known as a character escape sequence, and this combination of backslash and the letter

n represents the newline character. It indicates that the printing on that line is complete, and any subsequent

printing should occur on the next line. This newline character effectively causes the cursor to move down

to the next line. If you read the statement from left to right, the cout object, which is responsible for

displaying text on the screen, receives the text to print terminated with the newline character to move to the

next line.

For simplicity, we’ll refer to this type of statement as a print statement, even though the word print does

not appear anywhere in the statement.

With minor exceptions, any statement in C++ must appear within a function definition. Our single print

statement appears within the function named main.

Any function, including main, may contain multiple statements. In Listing 2.4 (arrow.cpp), six print

statements draw an arrow on the screen:

Listing 2.4: arrow.cpp

#include <iostream>

int main() {
std::cout << " * \n";
std::cout << " *** \n";
std::cout << " ***** \n";
std::cout << " * \n";
std::cout << " * \n";
std::cout << " * \n";

}

The output of Listing 2.4 (arrow.cpp) is

*
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***
*****

*
*
*

Each print statement “draws” a horizontal slice of the arrow. The six statements

std::cout << " * \n";
std::cout << " *** \n";
std::cout << " ***** \n";
std::cout << " * \n";
std::cout << " * \n";
std::cout << " * \n";

constitute the body of the main function. The body consists of all the statements between the open curly

brace ({) and close curly brace (}). We say that the curly braces delimit the body of the function. The word

delimit means to determine the boundaries or limits of something. The { symbol determines the beginning

of the function’s body, and the } symbol specifies the end of the function’s body.

We can rewrite Listing 2.4 (arrow.cpp) to achieve the same effect with only one long print statement as

Listing 2.5 (arrow2.cpp) shows.

Listing 2.5: arrow2.cpp

#include <iostream>

int main() {
std::cout << " * \n"

<< " *** \n"
<< " ***** \n"
<< " * \n"
<< " * \n"
<< " * \n";

}

At first, Listing 2.4 (arrow.cpp) and Listing 2.5 (arrow2.cpp) may appear to be identical, but upon closer

inspection of this new program we see that std::cout appears only once within main, and only one

semicolon (;) appears within main. Since semicolons in C++ terminate statements, there really is only one

statement. Notice that a single statement can be spread out over several lines. The statement within main
appearing as

std::cout << " * \n"
<< " *** \n"
<< " ***** \n"
<< " * \n"
<< " * \n"
<< " * \n";

could have just as easily been written as

std::cout << " * \n" << " *** \n"
<< " ***** \n" << " * \n"
<< " * \n" << " * \n";

©2018 Richard L. Halterman Draft date: December 2, 2018



2.4. TEMPLATE FOR SIMPLE C++ PROGRAMS 12

but the first way of expressing it better portrays how the output will appear. Read this second version

carefully to convince yourself that the printed pieces will indeed flow to the std::cout printing object

in the proper sequence to produce the same picture of the arrow.

Consider the mistake of putting semicolons at the end of each of the lines in the

“one statement” version:

std::cout << " * \n";
<< " *** \n";
<< " ***** \n";
<< " * \n";
<< " * \n";
<< " * \n";

If we put this code fragment in main, the program will not compile. The reason

is simple—the semicolon at the end of the first line terminates the statement on

that line. The compiler expects a new statement on the next line, but

<< " *** \n";

is not a complete legal C++ statement since the << operator is missing the

std::cout object. The string " *** \n" has nothing to “flow into.”

Listing 2.6 (empty.cpp) is even simpler than Listing 2.1 (simple.cpp).

Listing 2.6: empty.cpp

int main() {
}

Since Listing 2.6 (empty.cpp) does not use the std::cout object and so does not need the #include
and using directives. While it is legal and sometimes even useful in C++ to write functions with empty

bodies, such functions will do nothing when they execute. Listing 2.6 (empty.cpp) with its empty main
function is, therefore, truly the simplest executable C++ program we can write, but it does nothing when we

runs it!

In general, a C++ program may contain multiple functions, but we defer such generality until Chapter 9.

For now, we will restrict our attention to programs with only a main function.

2.4 Template for simple C++ programs

For our immediate purposes all the programs we write will have the form shown in Figure 2.1.

Our programs generally will print something, so we need the #include directive that brings the

std::cout definition from <iostream> into our program. Depending on what we need our program

to do, we may need additional #include directives. The main function definition is required for an

executable program, and we will fill its body with statements that make our program do as we wish. Later,

our programs will become more sophisticated, and we will need to augment this simple template.
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Figure 2.1 The general structure of a very simple C++ program.

program statements

int main() {

}

include directives

2.5 Exercises

1. What preprocessor directive is necessary to use statements with the std::cout printing stream

object?

2. What statement allows the short name cout to be used instead of std::cout?

3. What does the name std stand for?

4. All C++ programs must have a function named what?

5. The body of main is enclosed within what symbols?

6. What operator directs information to the std::cout output stream?

7. Write a C++ program that prints your name in the console window.

8. Write a C++ program that prints your first and last name in the console window. Your first name

should appear on one line, and your last name appear on the next line.

9. What other files must you distribute with your executable file so that your program will run on a

Windows PC without Visual Studio installed?

10. Can a single statement in C++ span multiple lines in the source code?
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Chapter 3

Values and Variables

In this chapter we explore some building blocks that are used to develop C++ programs. We experiment

with the following concepts:

• numeric values

• variables

• declarations

• assignment

• identifiers

• reserved words

In the next chapter we will revisit some of these concepts in the context of other data types.

3.1 Integer Values

The number four (4) is an example of a numeric value. In mathematics, 4 is an integer value. Integers

are whole numbers, which means they have no fractional parts, and an integer can be positive, negative, or

zero. Examples of integers include 4, −19, 0, and −1005. In contrast, 4.5 is not an integer, since it is not a

whole number.

C++ supports a number of numeric and non-numeric values. In particular, C++ programs can use integer

values. It is easy to write a C++ program that prints the number four, as Listing 3.1 (number4.cpp) shows.

Listing 3.1: number4.cpp

#include <iostream>

int main() {
std::cout << 4 << '\n';

}
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Notice that unlike the programs we saw earlier, Listing 3.1 (number4.cpp) does not use quotation marks

("). The number 4 appears unadorned with no quotes. The expression '\n' represents a single newline

character. Multiple characters comprising a string appear in double quotes ("), but, in C++, a single character

represents a distinct type of data and is enclosed within single quotes ('). (Section 3.8 provides more

information about C++ characters.) Compare Listing 3.1 (number4.cpp) to Listing 3.2 (number4-alt.cpp).

Listing 3.2: number4-alt.cpp

#include <iostream>

int main() {
std::cout << "4\n";

}

Both programs behave identically, but Listing 3.1 (number4.cpp) prints the value of the number four, while

Listing 3.2 (number4-alt.cpp) prints a message containing the digit four. The distinction here seems unim-

portant, but we will see in Section 3.2 that the presence or absence of the quotes can make a big difference

in the output.

The statement

std::cout << "4\n";

sends one thing to the output stream, the string "4\n". The statement

std::cout << 4 << '\n';

sends two things to the output stream, the integer value 4 and the newline character '\n'.
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In published C++ code you sometimes will see a statement such as the following:

std::cout << 4 << std::endl;

This statement on the surface behaves exactly like the following statement:

std::cout << 4 << '\n';

but the two expressions std::endl and '\n' do not mean exactly the same

thing. The std::endl expression does involve a newline character, but it also

performs some additional work that normally is not necessary.

Programs that do significant printing may execute faster if they terminate their

output lines with '\n' instead of std::endl. The difference in speed is neg-

ligible when printing to the console, but the different can be great when printing

to files or other output streams. For most of the programs we consider, the differ-

ence in program execution speed between the two is imperceptible; nonetheless,

we will prefer '\n' for printing newlines because it is a good habit to form (and

it requires five fewer keystrokes when editing code).

The three major modern computing platforms are Microsoft Windows, Apple ma-

cOS, and Linux. Windows handles newlines differently from macOS and Linux.

Historically, the character '\n' represents a new line, usually known as a line

feed or LF for short, and the character '\r' means carriage return, or CR for

short. The terminology comes from old-fashioned typewriters which feed a piece

of paper into a roller on a carriage that moves to the left as the user types (so the

imprinted symbols form left to right). At the end of a line, the user must advance

the roller so as to move the paper up by one line (LF) and move the carriage back

all the way to its left (CR). Windows uses the character sequence CR LF for new-

lines, while macOS and Linux use LF. This can be an issue when attempting to

edit text files written with an editor on one platform with an editor on a different

platform.

The good news is that the C++ standard guarantees that the std::cout output

stream translates the '\n' character as it appears in C++ source code into the

correct character sequence for the target platform. This means you can print '\n'
via std::cout, and it will behave identically on all the major platforms.

In C++ source code, integers may not contain commas. This means we must write the number two

thousand, four hundred sixty-eight as 2468, not 2,468. Modern C++ does support single quotes (') as

digit separators, as in 2'468. Using digit separators can improve the human comprehension reading large

numbers in C++ source code.

In mathematics, integers are unbounded; said another way, the set of mathematical integers is infinite.

In C++ the range of integers is limited because all computers have a finite amount of memory. The exact

range of integers supported depends on the computer system and particular C++ compiler. C++ on most

32-bit computer systems can represent integers in the range −2,147,483,648 to +2,147,483,647.

What happens if you exceed the range of C++ integers? Try Listing 3.3 (exceed.cpp) on your system.

Listing 3.3: exceed.cpp

#include <iostream>

int main() {
std::cout << -3000000000 << '\n';
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}

Negative three billion is too large for 32-bit integers, however, and the program’s output is obviously wrong:

1294967296

The number printed was not even negative! Most C++ compilers will issue a warning about this statement.

Section 4.6 explores errors vs. warnings in more detail. If the compiler finds an error in the source, it will

not generate the executable code. A warning indicates a potential problem and does not stop the compiler

from producing an executable program. Here we see that the programmer should heed this warning because

the program’s execution produces meaningless output.

This limited range of values is common among programming languages since each number is stored in

a fixed amount of memory. Larger numbers require more storage in memory. In order to model the infinite

set of mathematical integers an infinite amount of memory would be needed! As we will see later, C++

supports an integer type with a greater range. Section 4.8.1 provides some details about the implementation

of C++ integers.

3.2 Variables and Assignment

In algebra, variables are used to represent numbers. The same is true in C++, except C++ variables also can

represent values other than numbers. Listing 3.4 (variable.cpp) uses a variable to store an integer value and

then prints the value of the variable.

Listing 3.4: variable.cpp

#include <iostream>

int main() {
int x;
x = 10;
std::cout << x << '\n';

}

The main function in Listing 3.4 (variable.cpp) contains three statements:

• int x;

This is a declaration statement. All variables in a C++ program must be declared. A declaration

specifies the type of a variable. The word int indicates that the variable is an integer. The name

of the integer variable is x. We say that variable x has type int. C++ supports types other than

integers, and some types require more or less space in the computer’s memory. The compiler uses

the declaration to reserve the proper amount of memory to store the variable’s value. The declaration

enables the compiler to verify the programmer is using the variable properly within the program; for

example, we will see that integers can be added together just like in mathematics. For some other

data types, however, addition is not possible and so is not allowed. The compiler can ensure that a

variable involved in an addition operation is compatible with addition. It can report an error if it is

not.

The compiler will issue an error if a programmer attempts to use an undeclared variable. The com-

piler cannot deduce the storage requirements and cannot verify the variable’s proper usage if it not

declared. Once declared, a particular variable cannot be redeclared in the same context. A variable

may not change its type during its lifetime.
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• x = 10;

This is an assignment statement. An assignment statement associates a value with a variable. The

key to an assignment statement is the symbol = which is known as the assignment operator. Here the

value 10 is being assigned to the variable x. This means the value 10 will be stored in the memory

location the compiler has reserved for the variable named x. We need not be concerned about where

the variable is stored in memory; the compiler takes care of that detail.

After we declare a variable we may assign and reassign it as often as necessary.

• std::cout << x << '\n';

This statement prints the variable x’s current value.

Note that the lack of quotation marks here is very important. If x has the value

10, the statement

std::cout << x << '\n';

prints 10, the value of the variable x, but the statement

std::cout << "x" << '\n';

prints x, the message containing the single letter x.

The meaning of the assignment operator (=) is different from equality in mathematics. In mathematics,

= asserts that the expression on its left is equal to the expression on its right. In C++, = makes the variable

on its left take on the value of the expression on its right. It is best to read x = 5 as “x is assigned the

value 5,” or “x gets the value 5.” This distinction is important since in mathematics equality is symmetric:

if x = 5, we know 5 = x. In C++, this symmetry does not exist; the statement

5 = x;

attempts to reassign the value of the literal integer value 5, but this cannot be done, because 5 is always 5

and cannot be changed. Such a statement will produce a compiler error:

error C2106: ’=’ : left operand must be l-value

Variables can be reassigned different values as needed, as Listing 3.5 (multipleassignment.cpp) shows.

Listing 3.5: multipleassignment.cpp

#include <iostream>

int main() {
int x;
x = 10;
std::cout << x << '\n';
x = 20;
std::cout << x << '\n';
x = 30;
std::cout << x << '\n';

}
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Observe the each print statement in Listing 3.5 (multipleassignment.cpp) is identical, but when the program

runs the print statements produce different results.

A variable may be given a value at the time of its declaration; for example, Listing 3.6 (variable-init.cpp)

is a variation of Listing 3.4 (variable.cpp).

Listing 3.6: variable-init.cpp

#include <iostream>

int main() {
int x = 10;
std::cout << x << '\n';

}

Notice that in Listing 3.6 (variable-init.cpp) the declaration and assignment of the variable x is performed in

one statement instead of two. This combined declaration and immediate assignment is called initialization.

C++ supports another syntax for initializing variables as shown in Listing 3.7 (alt-variable-init.cpp).

Listing 3.7: alt-variable-init.cpp

#include <iostream>

int main() {
int x{10};
std::cout << x << '\n';

}

This alternate form is not commonly used for simple variables, but it necessary for initializing more com-

plicated kinds of variables called objects. We introduce objects in Chapter 13 and Chapter 14.

Multiple variables of the same type can be declared and, if desired, initialized in a single statement. The

following statements declare three variables in one declaration statement:

int x, y, z;

The following statement declares three integer variables and initializes two of them:

int x = 0, y, z = 5;

Here y’s value is undefined. The declarations may be split up into multiple declaration statements:

int x = 0;
int y;
int z = 5;

In the case of multiple declaration statements the type name (here int) must appear in each statement.

The compiler maps a variable to a location in the computer’s memory. We can visualize a variable and

its corresponding memory location as a box as shown in Figure 3.1.

We name the box with the variable’s name. Figure 3.2 shows how the following sequence of C++ code

affects memory.

int a, b;
a = 2;
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Figure 3.1 Representing a variable and its memory location as a box

5

a

b = 5;
a = b;
b = 4;

Importantly, the statement

a = b;

does not mean a and b refer to the same box (memory location). After this statement a and b still refer

to separate boxes (memory locations). It simply means the value stored in b’s box (memory location) has

been copied to a’s box (memory location). a and b remain distinct boxes (memory locations). The original

value found in a’s box is overwritten when the contents of b’s box are copied into a. After the assignment

of b to a, the reassignment of b to 4 does not affect a.

3.3 Identifiers

While mathematicians are content with giving their variables one-letter names like x, programmers should

use longer, more descriptive variable names. Names such as altitude, sum, and user_name are much

better than the equally permissible a, s, and u. A variable’s name should be related to its purpose within the

program. Good variable names make programs more readable by humans. Since programs often contain

many variables, well-chosen variable names can render an otherwise obscure collection of symbols more

understandable.

C++ has strict rules for variable names. A variable name is one example of an identifier. An identifier

is a word used to name things. One of the things an identifier can name is a variable. We will see in later

chapters that identifiers name other things such as functions and classes. Identifiers have the following

form:

• Identifiers must contain at least one character.

• The first character must be an alphabetic letter (upper or lower case) or the underscore

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_

• The remaining characters (if any) may be alphabetic characters (upper or lower case), the underscore,

or a digit

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_0123456789

• No other characters (including spaces) are permitted in identifiers.
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Figure 3.2 How memory changes during variable assignment

? ?

a b
int a, b;

2 ?

a b
a = 2;

2 5

a b
b = 5;

5 5

a b
a = b;

5 4

a b
b = 4;

• A reserved word cannot be used as an identifier (see Table 3.1).

Here are some examples of valid and invalid identifiers:

• All of the following words are valid identifiers and so qualify as variable names: x, x2, total,

port_22, and FLAG.

• None of the following words are valid identifiers: sub-total (dash is not a legal symbol in an

identifier), first entry (space is not a legal symbol in an identifier), 4all (begins with a digit),

#2 (pound sign is not a legal symbol in an identifier), and class (class is a reserved word).

C++ reserves a number of words for special use that could otherwise be used as identifiers. Called

reserved words or keywords, these words are special and are used to define the structure of C++ programs

and statements. Table 3.1 lists all the C++ reserved words.

The purposes of many of these reserved words are revealed throughout this book.

You may not use any of the reserved words in Table 3.1 as identifiers. Fortunately, if you accidentally

attempt to use one of the reserved words in a program as a variable name, the compiler will issue an error

(see Section 4.6 for more on compiler errors).

In Listing 2.1 (simple.cpp) we used several reserved words: using, namespace, and int. Notice

that include, cout, and main are not reserved words.

Some programming languages do not require programmers to declare variables before they are used;

the type of a variable is determined by how the variable is used. Some languages allow the same variable
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alignas decltype namespace struct
alignof default new switch
and delete noexcept template
and_eq double not this
asm do not_eq thread_local
auto dynamic_cast nullptr throw
bitand else operator true
bitor enum or try
bool explicit or_eq typedef
break export private typeid
case extern protected typename
catch false public union
char float register unsigned
char16_t for reinterpret_cast using
char32_t friend return virtual
class goto short void
compl if signed volatile
const inline sizeof wchar_t
constexpr int static while
const_cast long static_assert xor
continue mutable static_cast xor_eq

Table 3.1: C++ reserved words. C++ reserves these words for specific purposes in program construction. None of the

words in this list may be used as an identifier; thus, you may not use any of these words to name a variable.

to assume different types as its use differs in different parts of a program. Such languages are known as

dynamically-typed languages. C++ is a statically-typed language. In a statically-typed language, the type of

a variable must be explicitly specified before it is used by statements in a program. While the requirement

to declare all variables may initially seem like a minor annoyance, it offers several advantages:

• When variables must be declared, the compiler can catch typographical errors that dynamically-typed

languages cannot detect. For example, consider the following section of code:

int ZERO;
ZER0 = 1;

The identifier in the first line ends with a capital “Oh.” In the second line, the identifier ends with the

digit zero. The distinction may be difficult or impossible to see in a particular editor or printout of

the code. A C++ compiler would immediately detect the typo in the second statement, since ZER0
(last letter a zero) has not been declared. A dynamically-typed language would create two variables:

ZERO and ZER0.

• When variables must be declared, the compiler can catch invalid operations. For example, a variable

may be declared to be of type int, but the programmer may accidentally assign a non-numeric

value to the variable. In a dynamically-typed language, the variable would silently change its type

introducing an error into the program. In C++, the compiler would report the improper assignment as

error, since once declared a C++ variable cannot change its type.

• Ideally, requiring the programmer to declare variables forces the programmer to plan ahead and think

more carefully about the variables a program might require. The purpose of a variable is tied to its

type, so the programmer must have a clear notion of the variable’s purpose before declaring it. When
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variable declarations are not required, a programmer can “make up” variables as needed as the code is

written. The programmer need not do the simple double check of the variable’s purpose that writing

the variable’s declaration requires. While declaring the type of a variable specifies its purpose in only

a very limited way, any opportunity to catch such errors is beneficial.

• Statically-typed languages are generally more efficient than dynamically-typed languages. The com-

piler knows how much storage a variable requires based on its type. The space for that variable’s

value will not change over the life of the variable, since its type cannot change. In a dynamically

typed language that allows a variable to change its type, if a variable’s type changes during program

execution, the storage it requires may change also, so memory for that variable must be allocated

elsewhere to hold the different type. This memory reallocation at run time slows down the program’s

execution.

C++ is a case-sensitive language. This means that capitalization matters. if is a reserved word, but

none of If, IF, or iF are reserved words. Identifiers are case sensitive also; the variable called Name is

different from the variable called name.

Since it can be confusing to human readers, you should not distinguish variables merely by names that

differ in capitalization. For the same reason, it is considered poor practice to give a variable the same name

as a reserved word with one or more of its letters capitalized.

3.4 Additional Integer Types

C++ supports several other integer types. The type short int, which may be written as just short,

represents integers that may occupy fewer bytes of memory than the int type. If the short type occupies

less memory, it necessarily must represent a smaller range of integer values than the int type. The C++

standard does not require the short type to be smaller than the int type; in fact, they may represent the

same set of integer values. The long int type, which may be written as just long, may occupy more

storage than the int type and thus be able to represent a larger range of values. Again, the standard does

not require the long type to be bigger then the int type. Finally, the long long int type, or just

long long, may be larger than a long. The C++ standard guarantees the following relative ranges of

values hold:

short int ≤ int ≤ long int ≤ long long int

On a small embedded device, for example, all of these types may occupy the exact same amount of memory

and, thus, there would be no advantage of using one type over another. On most systems, however, there

will some differences in the ranges.

C++ provides integer-like types that exclude negative numbers. These types include the word unsigned

in their names, meaning they do not allow a negative sign. The unsigned types come in various potential

sizes in the same manner as the signed types. The C++ standard guarantees the following relative ranges of

unsigned values:

unsigned short ≤ unsigned ≤ unsigned long ≤ unsigned long long

Table 3.2 lists the differences among the signed and unsigned integer types in Visual C++. Notice that

the corresponding signed and unsigned integer times occupy the same amount of memory. As a result,

the unsigned types provide twice the range of positive values available to their signed counterparts. For

applications that do not require negative numbers, the unsigned type may be a more appropriate option.
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Type Name Short Name Storage Smallest Magnitude Largest Magnitude

short int short 2 bytes −32,768 32,767
int int 4 bytes −2,147,483,648 2,147,483,647
long int long 4 bytes −2,147,483,648 2,147,483,647
long long int long long 8 bytes −9,223,372,036,854,775,808 9,223,372,036,854,775,807

unsigned short unsigned short 2 bytes 0 65,535
unsigned int unsigned 4 bytes 0 4,294,967,295
unsigned long int unsigned long 4 bytes 0 4,294,967,295
unsigned long long int unsigned long long 8 bytes 0 18,446,744,073,709,551,615

Table 3.2: Characteristics of Visual C++ Integer Types

Within the source code, any unadorned numerical literal without a decimal point is interpreted as an

int literal; for example, in the statement

int x = 4456;

the literal value 4456 is an int. In order to represent 4456 as an long, append an L, as in

long x = 4456L;

C++ also permits the lower-case l (elle), as in

long x = 4456l;

but you should avoid it since on many display and printer fonts it looks too much like the digit 1 (one).

Use the LL suffix for long long literals. The suffixes for the unsigned integers are u (unsigned), us
(unsigned short), uL (unsigned long), and uLL (unsigned long long). The capitalization

is unimportant, although capital Ls are preferred.

Within C++ source code all integer literals are int values unless an L or l is

appended to the end of the number; for example, 2 is an int literal, while 2L is

a long literal.

3.5 Floating-point Types

Many computational tasks require numbers that have fractional parts. For example, the formula from math-

ematics to compute the area of a circle given the circle’s radius, involves the value π, which is approximately

3.14159. C++ supports such non-integer numbers, and they are called floating-point numbers. The name

comes from the fact that during mathematical calculations the decimal point can move or “float” to vari-

ous positions within the number to maintain the proper number of significant digits. The types float and

double represent different types of floating-point numbers. The type double is used more often, since it

stands for “double-precision floating-point,” and it can represent a wider range of values with more digits of

precision. The float type represents single-precision floating-point values that are less precise. Table 3.3

provides some information about floating-point values as commonly implemented on 32-bit computer sys-

tems. Floating point numbers can be both positive and negative.

As you can see from Table 3.3, doubles provide more precision at the cost of using more memory.

Listing 3.8 (pi-print.cpp) prints an approximation of the mathematical value π.
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Type Storage Smallest Magnitude Largest Magnitude Minimum Precision

float 4 bytes 1.17549×10−38 3.40282×10+38 6 digits

double 8 bytes 2.22507×10−308 1.79769×10+308 15 digits

long double 8 bytes 2.22507×10−308 1.79769×10+308 15 digits

Table 3.3: Characteristics of Floating-point Numbers on 32-bit Computer Systems

Listing 3.8: pi-print.cpp

#include <iostream>

int main() {
double pi = 3.14159;
std::cout << "Pi = " << pi << '\n';
std::cout << "or " << 3.14 << " for short" << '\n';

}

The first line in Listing 3.8 (pi-print.cpp) declares a variable named pi and assigns it a value. The second

line in Listing 3.8 (pi-print.cpp) prints the value of the variable pi, and the third line prints a literal value.

Any literal numeric value with a decimal point in a C++ program automatically has the type double, so

3.14

has type double. To make a literal floating-point value a float, you must append an f or F to the number,

as in

3.14f

(The f or F suffix is used with literal values only; you cannot change a double variable into a float
variable by appending an f. Attempting to do so would change the name of the variable!)

All floating-point literals are double values unless an f or F is appended to the

end of the number; for example, 2.0 is a double literal, while 2.0f is a float
literal.

Floating-point numbers are an approximation of mathematical real numbers. As in the case of the

int data type, the range of floating-point numbers is limited, since each value requires a fixed amount of

memory. In some ways, though, ints are very different from doubles. Any integer within the range of

the int data type can be represented exactly. This is not true for the floating-point types. Consider the

real number π. Since π contains an infinite number of digits, a floating-point number with finite precision

can only approximate its value. Since the number of digits available is limited, even numbers with a finite

number of digits have no exact representation; for example, the number 23.3123400654033989 contains too

many digits for the double type and must be approximated as 23.3023498654034. Section 4.8.2 contains

more information about the consequences of the inexact nature of floating-point numbers.

We can express floating-point numbers in scientific notation. Since most programming editors do not

provide superscripting and special symbols like ×, C++ slightly alters the normal scientific notation. The

number 6.022×1023 is written 6.022e23. The number to the left of the e (we can use capital E as well) is
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the mantissa, and the number to the right of the e is the exponent of 10. As another example, −5.1 × 10−4

is expressed in C++ as -5.1e-4. Listing 3.9 (scientificnotation.cpp) prints some scientific constants using

scientific notation.

Listing 3.9: scientificnotation.cpp

#include <iostream>

int main() {
double avogadros_number = 6.022e23, c = 2.998e8;
std::cout << "Avogadro's number = " << avogadros_number << '\n';
std::cout << "Speed of light = " << c << '\n';

}

Section 4.8.2 provides some insight into the implementation of C++ floating-point values and explains how

internally all floating-point numbers are stored in exponential notation with a mantissa and exponent.

3.6 Constants

In Listing 3.9 (scientificnotation.cpp), Avogadro’s number and the speed of light are scientific constants;

that is, to the degree of precision to which they have been measured and/or calculated, they do not vary. C++

supports named constants. Constants are declared like variables with the addition of the const keyword:

const double PI = 3.14159;

Once declared and initialized, a constant can be used like a variable in all but one way—a constant may not

be reassigned. It is illegal for a constant to appear on the left side of the assignment operator (=) outside its

declaration statement. A subsequent statement like

PI = 2.5;

would cause the compiler to issue an error message:

error C3892: ’PI’ : you cannot assign to a variable that is const

and fail to compile the program. Since the scientific constants do not change, Listing 3.10 (const.cpp) is a

better version of Listing 3.9 (scientificnotation.cpp).

Listing 3.10: const.cpp

#include <iostream>

int main() {
const double avogadros_number = 6.022e23, c = 2.998e8;
std::cout << "Avogadro's number = " << avogadros_number << '\n';
std::cout << "Speed of light = " << c << '\n';

}

Since it is illegal to assign a constant outside of its declaration statement, all constants must initialized

where they are declared.

By convention, C++ programmers generally express constant names in all capital letters; in this way,

within the source code a human reader can distinguish a constant quickly from a variable.
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3.7 Other Numeric Types

C++ supports several other numeric data types:

• long int—typically provides integers with a greater range than the int type; its abbreviated

name is long. It is guaranteed to provide a range of integer values at least as large as the int type.

An integer literal with a L suffix, as in 19L, has type long. A lower case elle (l) is allowed as a

suffix as well, but you should not use it because it is difficult for human readers to distinguish between

l (lower case elle) and 1 (digit one). (The L suffix is used with literal values only; you cannot change

an int variable into a long by appending an L. Attempting to do so would change the name of the

variable!)

• short int—typically provides integers with a smaller range than the int type; its abbreviated

name is short. It is guaranteed that the range of ints is at least as big as the range of shorts.

• unsigned int—is restricted to nonnegative integers; its abbreviated name is unsigned. While

the unsigned type is limited in nonnegative values, it can represent twice as many positive values

as the int type. (The name int is actually the short name for signed int and int can be

written as signed.)

• long double—can extend the range and precision of the double type.

While the C++ language standard specifies minimum ranges and precision for all the numeric data types,

a particular C++ compiler may exceed the specified minimums.

C++ provides such a variety of numeric types for specialized purposes usually related to building highly

efficient programs. We will have little need to use many of these types. Our examples will use mainly

the numeric types int for integers, double for an approximation of real numbers, and, less frequently,

unsigned when nonnegative integral values are needed.

3.8 Characters

The char data type is used to represent single characters: letters of the alphabet (both upper and lower

case), digits, punctuation, and control characters (like newline and tab characters). Most systems support the

American Standard Code for Information Interchange (ASCII) character set. Standard ASCII can represent

128 different characters. Table 3.4 lists the ASCII codes for various characters.

In C++ source code, characters are enclosed by single quotes ('), as in

char ch = 'A';

Standard (double) quotes (") are reserved for strings, which are composed of characters, but strings and

chars are very different. C++ strings are covered in Section 11.2.6. The following statement would produce

a compiler error message:

ch = "A";

since a string cannot be assigned to a character variable.

Internally, chars are stored as integer values, and C++ permits assigning numeric values to char
variables and assigning characters to numeric variables. The statement
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Table 3.4: ASCII codes for characters

ch = 65;

assigns a number to a char variable to show that this perfectly legal. The value 65 is the ASCII code for

the character A. If ch is printed, as in

ch = 65;
std::cout << ch;

the corresponding character, A, would be printed because ch’s declared type is char, not int or some

other numeric type.

Listing 3.11 (charexample.cpp) shows how characters can be used within a program.

Listing 3.11: charexample.cpp

#include <iostream>

int main() {
char ch1, ch2;
ch1 = 65;
ch2 = 'A';
std::cout << ch1 << ", " << ch2 << ", " << 'A' << '\n';

}

The program displays

A, A, A

The first A is printed because the statement

ch1 = 65;

assigns the ASCII code for A to ch1. The second A is printed because the statement
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ch2 = 'A';

assigns the literal character A to ch2. The third A is printed because the literal character 'A' is sent directly

to the output stream.

Integers and characters can be freely assigned to each other, but the range of chars is much smaller

than the range of ints, so care must be taken when assigning an int value to a char variable.

Some characters are non-printable characters. The ASCII chart lists several common non-printable

characters:

• '\n'—the newline character

• '\r'—the carriage return character

• '\b'—the backspace character

• '\a'—the “alert” character (causes a “beep” sound or other tone on some systems)

• '\t'—the tab character

• '\f'—the formfeed character

• '\0'—the null character (used in C strings, see Section 11.2.6)

These special non-printable characters begin with a backslash (\) symbol. The backslash is called

an escape symbol, and it signifies that the symbol that follows has a special meaning and should not be

interpreted literally. This means the literal backslash character must be represented as two backslashes:

'\\'.

These special non-printable character codes can be embedded within strings. To embed a backslash

within a string, you must escape it; for example, the statement

std::cout << "C:\\Dev\\cppcode" << '\n';

would print

C:\Dev\cppcode

See what this statement prints:

std::cout << "AB\bCD\aEF" << '\n';

The following two statements behave identically:

std::cout << "End of line" << '\n';
std::cout << "End of line\n";

On the Microsoft Windows platform, the character sequence "\r\n" (carriage return, line feed) appears

at the end of lines in text files. Under Unix and Linux, lines in text files end with '\n' (line feed). On

Apple Macintosh systems, text file lines end with the '\r' (carriage return) character. The compilers that

adhere to the C++ standard will ensure that the '\n' character in a C++ program when sent to the output

stream will produce the correct end-of-line character sequence for the given platform.
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3.9 Enumerated Types

C++ allows a programmer to create a new, very simple type and list all the possible values of that type. Such

a type is called an enumerated type, or an enumeration type. The enum keyword introduces an enumerated

type. The following shows the simplest way to define an enumerated type:

enum Color { Red, Orange, Yellow, Green, Blue, Violet };

Here, the new type is named Color, and a variable of type Color may assume one of the values that

appears in the list of values within the curly braces. The semicolon following the close curly brace is

required. Sometimes the enumerated type definition is formatted as

enum Color {
Red,
Orange,
Yellow,
Green,
Blue,
Violet

};

but the formatting makes no different to the compiler.

The values listed with the curly braces constitute all the values that a variable of the enumerated type

can attain. The name of each value of an enumerated type must be a valid C++ identifier (see Section 3.3).

Given the Color type defined as above, we can declare and use variables of the enum type as shown

by the following code fragment:

Color myColor;
myColor = Orange;

Here the variable myColor has our custom type Color, and its value is Orange.

When declaring enumerated types in this manner it is illegal to reuse an enumerated value name within

another enumerated type within the same program. In the following code, the enumerated value Light
appears in both the Shade type and Weight type:

enum Shade { Dark, Dim, Light, Bright };
enum Weight { Light, Medium, Heavy };

These two enumerated types are incompatible because they share the value Light, and so the compiler

will issue an error.

This style of enumerated type definition is known as an unscoped enumeration. C++ inherits this un-

scoped enumeration style from the C programming language. The C++ standards committee introduced

relatively recently an enhanced way of defining enumerated types known as scoped enumerations, also

known as enumeration classes. Scoped enumerations solve the problem of duplicate enumeration values in

different types. The following definitions are legal within the same program:

enum class Shade { Dark, Dim, Light, Bright };
enum class Weight { Light, Medium, Heavy };

When referring to a value from a scoped enumeration we must prepend the name of its type (class), as in
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Shade color = Shade::Light;
Weight mass = Weight::Light;

In this case Shade and Weight are the scoped enumeration types defined above. Prefixing the type name

to the value with the :: operator enables the compiler to distinguish between the two different values.

Scoped enumerations require the type name prefix even if the program contains no other enumerated types.

In modern C++ development, scoped enumerations are preferable to unscoped enumerations. You should

be familiar with unscoped enumerations, though, as a lot of published C++ code and older C++ books use

unscoped enumerations.

Whether scoped or unscoped, the value names within an enum type must be unique. The convention in

C++ is to captialize the first letter of an enum type and its associated values, although the language does not

enforce this convention.

An enum type is handy for representing a small number of discrete, non-numeric options. For example,

consider a program that controls the movements made by a small robot. The allowed orientations are

forward, backward, left, right, up, and down. The program could encode these movements as integers,

where 0 means left, 1 means backward, etc. While that implementation will work, it is not ideal. Integers

may assume many more values than just the six values expected. The compiler cannot ensure that an integer

variable representing a robot move will stay in the range 0...5. What if the programmer makes a mistake and

under certain rare circumstances assigns a value outside of the range 0...5? The program then will contain

an error that may result in erratic behavior by the robot. With enum types, if the programmer uses only the

named values of the enum type, the compiler will ensure that such a mistake cannot happen.

A particular enumerated type necessarily has far fewer values than a type such as int. Imagine making

an integer enum type and having to list all of its values! (The standard 32-bit int type represents over four

billion values.) Enumerated types, therefore, are practical only for types that have a relatively small range

of values.

3.10 Type Inference with auto

C++ requires that a variable be declared before it is used. Ordinarily this means specifying the variable’s

type, as in

int count;
char ch;
double limit;

A variable may be initialized when it is declared:

int count = 0;
char ch = 'Z';
double limit = 100.0;

Each of the values has a type: 0 is an int, 'Z' is a char, and 0.0 is a double. The auto keyword

allows the compiler to automatically deduce the type of a variable if it is initialized when it is declared:

auto count = 0;
auto ch = 'Z';
auto limit = 100.0;

The auto keyword may not be used without an accompanying initialization; for example, the following

declaration is illegal:
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auto x;

because the compiler cannot deduce x’s type.

Automatic type inference is supported only by compilers that comply with the lat-

est C++11 standard. Programmers using older compilers must specify a variable’s

exact type during the variable’s declaration.

Automatic type deduction with auto is not useful to beginning C++ programmers. It is just as easy to

specify the variable’s type. The value of auto will become clearer when we consider some of the more

advanced features of C++ (see Section 20.2).

3.11 Exercises

1. Will the following lines of code print the same thing? Explain why or why not.

std::cout << 6 << '\n';
std::cout << "6" << '\n';

2. Will the following lines of code print the same thing? Explain why or why not.

std::cout << x << '\n';
std::cout << "x" << '\n';

3. What is the largest int available on your system?

4. What is the smallest int available on your system?

5. What is the largest double available on your system?

6. What is the smallest double available on your system?

7. What C++ data type represents nonnegative integers?

8. What happens if you attempt to use a variable within a program, and that variable is not declared?

9. What is wrong with the following statement that attempts to assign the value ten to variable x?

10 = x;

10. Once a variable has been properly declared and initialized can its value be changed?

11. What is another way to write the following declaration and initialization?

int x = 10;

12. In C++ can you declare more than variable in the same declaration statement? If so, how?

13. In the declaration

int a;
int b;
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do a and b represent the same memory location?

14. Classify each of the following as either a legal or illegal C++ identifier:

(a) fred

(b) if

(c) 2x

(d) -4

(e) sum_total

(f) sumTotal

(g) sum-total

(h) sum total

(i) sumtotal

(j) While

(k) x2

(l) Private

(m) public

(n) $16

(o) xTwo

(p) _static

(q) _4

(r) ___

(s) 10%

(t) a27834

(u) wilma's

15. What can you do if a variable name you would like to use is the same as a reserved word?

16. Why does C++ require programmers to declare a variable before using it? What are the advantages of

declaring variables?

17. What is the difference between float and double?

18. How can a programmer force a floating-point literal to be a float instead of a double?

19. How is the value 2.45×10−5 expressed as a C++ literal?

20. How can you ensure that a variable’s value can never be changed after its initialization?

21. How can you extend the range of int on some systems?

22. How can you extend the range and precision of double on some systems?

23. Write a program that prints the ASCII chart for all the values from 0 to 127.

24. Is "i" a string literal or character literal?

25. Is 'i' a string literal or character literal?
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26. Is it legal to assign a char value to an int variable?

27. Is it legal to assign an int value to a char variable?

28. What is printed by the following code fragment?

int x;
x = 'A';
std::cout << x << '\n';

29. What is the difference between the character 'n' and the character '\n'?

30. Write a C++ program that simply emits a beep sound when run.

31. Create an unscoped enumeration type that represents the days of the week.

32. Create a scoped enumeration type that represents the days of the week.

33. Create an unscoped enumeration type that represents the months of the year.

34. Create a scoped enumeration type that represents the months of the year.

35. Determine the exact type of each of the following variables:

(a) auto a = 5;

(b) auto b = false;

(c) auto c = 9.3;

(d) auto d = 5.1f;

(e) auto e = 5L;

©2018 Richard L. Halterman Draft date: December 2, 2018



3.11. EXERCISES 36

©2018 Richard L. Halterman Draft date: December 2, 2018



37

Chapter 4

Expressions and Arithmetic

This chapter uses the C++ numeric types introduced in Chapter 3 to build expressions and perform arith-

metic. Some other important concepts are covered—user input, source formatting, comments, and dealing

with errors.

4.1 Expressions

A literal value like 34 and a properly declared variable like x are examples of simple expressions. We can

use operators to combine values and variables and form more complex expressions. Listing 4.1 (adder.cpp)

shows how the addition operator (+) is used to add two integers.

Listing 4.1: adder.cpp

#include <iostream>

int main() {
int value1, value2, sum;
std::cout << "Please enter two integer values: ";
std::cin >> value1 >> value2;
sum = value1 + value2;
std::cout << value1 << " + " << value2 << " = " << sum << '\n';

}

In Listing 4.1 (adder.cpp):

• int value1, value2, sum;

This statement declares three integer variables, but it does not initialize them. As we examine the rest

of the program we will see that it would be superfluous to assign values to the variables here.

• std::cout << "Please enter two integer values: ";

This statement prompts the user to enter some information. This statement is our usual print state-

ment, but it is not terminated with the end-of-line marker '\n'. This is because we want the cursor

to remain at the end of the printed line so when the user types in values they appear on the same line

as the message prompting for the values. When the user presses the enter key to complete the input,

the cursor will automatically move down to the next line.
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• std::cin >> value1 >> value2;

This statement causes the program’s execution to stop until the user types two numbers on the key-

board and then presses enter. The first number entered will be assigned to value1, and the second

number entered will be assigned to value2. Once the user presses the enter key, the value entered is

assigned to the variable. The user may choose to type one number, press enter, type the second num-

ber, and press enter again. Instead, the user may enter both numbers separated by one of more spaces

and then press enter only once. The program will not proceed until the user enters two numbers.

The std::cin input stream object can assign values to multiple variables in one

statement, as shown here:

int num1, num2, num3;
std::cin >> num1 >> num2 >> num3;

A common beginner’s mistake is use commas to separate the variables, as in

int num1, num2, num3;
std::cin >> num1, num2, num3;

The compiler will not generate an error message, because it is legal C++ code. The

statement, however, will not assign the three variables from user input as desired.

The comma operator in C++ has different meanings in different contexts, and here

it is treated like a statement separator; thus, the variables num2 and num3 are not

involved with the std::cin input stream object. We will have no need to use

the comma operator in this way, but you should be aware of this potential pitfall.

std::cin is a object that can be used to read input from the user. The >> operator—as used here

in the context of the std::cin object—is known as the extraction operator. Notice that it is “back-

wards” from the << operator used with the std::cout object. The std::cin object represents

the input stream—information flowing into the program from user input from the keyboard. The >>
operator extracts the data from the input stream std::cin and assigns the pieces of the data, in

order, to the various variables on its right.

• sum = value1 + value2;

This is an assignment statement because it contains the assignment operator (=). The variable sum
appears to the left of the assignment operator, so sum will receive a value when this statement exe-

cutes. To the right of the assignment operator is an arithmetic expression involving two variables and

the addition operator. The expression is evaluated by adding together the values of the two variables.

Once the expression’s value has been determined, that value can be assigned to the sum variable.

All expressions have a value. The process of determining the expression’s value is called evaluation.

Evaluating simple expressions is easy. The literal value 54 evaluates to 54. The value of a variable named

x is the value stored in the memory location reserved for x. The value of a more complex expression is

found by evaluating the smaller expressions that make it up and combining them with operators to form

potentially new values.

Table 4.1 lists the main C++ arithmetic operators. Table 4.1. The common arithmetic operations, ad-

dition, subtraction, and multiplication, behave in the expected way. All these operators are classified as

binary operators because they operate on two operands. In the statement

x = y + z;
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Operator Meaning

+ addition

- subtraction

* multiplication

/ division

% modulus

Table 4.1: The simple C++ arithmetic operators

the right side is an addition expression y + z. The two operands of the + operator are y and z.

Two of the operators above, + and -, serve also as unary operators. A unary operator has only one

operand. The - unary operator expects a single numeric expression (literal number, variable, or complex

numeric expression within parentheses) immediately to its right; it computes the additive inverse of its

operand. If the operand is positive (greater than zero), the result is a negative value of the same magnitude;

if the operand is negative (less than zero), the result is a positive value of the same magnitude. Zero is

unaffected. For example, the following code sequence

int x = 3;
int y = -4;
int z = 0;
std::cout << -x << " " << -y << " " -z << '\n';

within a program would print

-3 4 0

The following statement

std::cout << -(4 - 5) << '\n';

within a program would print

1

The unary + operator is present only for completeness; when applied to a numeric value, variable, or

expression, the resulting value is no different from the original value of its operand. Omitting the unary +
operator from the following statement

x = +y;

does not change the statement’s behavior.

All the arithmetic operators are subject to the limitations of the data types on which they operate; for

example, on a system in which the largest int is 2,147,483,647, the expression

2147483647 + 1

will not evaluate to the correct answer since the correct answer falls outside the range of ints.

If you add, subtract, multiply, is divide two ints, the result is an integer. As long as the operation does

not exceed the range of ints, the arithmetic works as expected. Division, however, is another matter. The

statement

std::cout << 10/3 << " " << 3/10 << '\n';
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Figure 4.1 Integer division vs. integer modulus. Integer division produces the quotient, and modulus

produces the remainder. In this example, 25/3 is 8, and 25%3 is 1.

3)25

 -24

   1

8 25/3

25%3

prints

3 0

because in the first case 10 divided by 3 is 3 with a remainder of 1, and in the second case 3 divided by

10 is 0 with a remainder of 3. Since integers are whole numbers, any fractional part of the answer must

be discarded. The process of discarding the fractional part leaving only the whole number part is called

truncation. 10 divided by 3 should be 3.3333..., but that value is truncated to 3. Truncation is not rounding;

for example, 11 divided by 3 is 3.6666..., but it also truncates to 3.

Truncation simply removes any fractional part of the value. It does not round.

Both 10.01 and 10.999 truncate to 10.

The modulus operator (%) computes the remainder of integer division; thus,

std::cout << 10%3 << " " << 3%10 << '\n';

prints

1 3

since 10 divided by 3 is 3 with a remainder of 1, and 3 divided by 10 is 0 with a remainder of 3. Figure 4.1

uses long division for a more hands on illustration of how the integer division and modulus operators work.

The modulus operator is more useful than it may first appear. Listing 4.11 (timeconv.cpp) shows how

we can use it to convert a given number of seconds to hours, minutes, and seconds.

In contrast to integer arithmetic, floating-point arithmetic with doubles behaves as expected:

std::cout << 10.0/3.0 << " " << 3.0/10.0 << '\n';

prints

3.33333 0.3
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Figure 4.2 Range of ints vs. range of doubles
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Since a char is stored internally as a number (see Section 3.8), we can perform arithmetic on charac-

ters. We will have little need to apply mathematics to characters, but sometimes it is useful. As an example,

the lower-case letters of the alphabet a–z occupy ASCII values 97–123, with a = 97, b = 98, etc. The upper-

case letters A–Z are coded as 65–91, with A = 65, B = 66, etc. To capitalize any lower-case letter, you need

only subtract 32, as in

char lower = 'd', upper = lower - 32;
std::cout << upper << '\n';

This section of code would print D. If you do not remember the offset of 32 between upper- and lower-case

letter, you can compute it with the letters themselves:

upper = lower - ('a' - 'A');

In this case, if lower has been assigned any value in the range 'a' to 'z', the statement will assign to

upper the capitalized version of lower. On the other hand, if lower’s value is outside of that range,

upper will not receive a meaningful value.

4.2 Mixed Type Expressions

Expressions may contain mixed elements; for example, the following program fragment

int x = 4;
double y = 10.2, sum;
sum = x + y;

adds an int to a double, and the result is being assigned to a double. How is the arithmetic performed?

As shown in Figure 4.2, the range of ints falls completely within the range of doubles; thus, any

int value can represented by a double. The int 4 also can be expressed as the double 4.0. In fact,

since the largest int on most systems is 2,147,483,647, the minimum 15 digits of double precision are

more than adequate to represent all integers exactly. This means that any int value can be represented by

a double. The converse is not true, however. 2,200,000,000 can be represented by a double but it is too

big for the int type. We say that the double type is wider than the int type and that the int type is

narrower than the double type.

It would be reasonable, then, to be able to assign int values to double variables. The process is

called widening, and it is always safe to widen an int to a double. The following code fragment
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double d1;
int i1 = 500;
d1 = i1;
std::cout << "d1 = " << d1 << '\n';

is legal C++ code, and when part of a complete program it would display

d1 = 500

Assigning a double to an int variable is not always possible, however, since the double value may

not be in the range of ints. Furthermore, if the double variable falls within the range of ints but is

not a whole number, the int variable is unable to the manage fractional part. Consider the following code

fragment:

double d = 1.6;
int i = d;

The second line assigns 1 to i. Truncation loses the 0.6 fractional part (see Section 4.1). Note that proper

rounding is not done. The Visual C++ compiler will warn us of a potential problem:

warning C4244: ’=’ : conversion from ’double’ to ’int’, possible loss of data

This warning reminds us that some information may be lost in the assignment. While the compiler and

linker will generate an executable program when warnings are present, you should carefully scrutinize all

warnings. This warning is particularly useful, since it is easy for errors due to the truncation of floating-

point numbers to creep into calculations.

Converting from a wider type to a narrower type (like double to int) is called narrowing. It often is

necessary to assign a floating-point value to an integer variable. If we know the value to assign is within the

range of ints, and the value has no fractional parts or its truncation would do no harm, the assignment is

safe. To perform the assignment without a warning from the compiler, we use a procedure called a cast, also

called a type cast. The cast forces the compiler to accept the assignment without a issuing a warning. The

following statement convinces the compiler to accept the double-to-int assignment without a warning:

i = static_cast<int>(d);

The reserved word static_cast performs the narrowing conversion and silences the compiler warning.

The item to convert (in this case the variable d) is placed in the parentheses, and the desired type (in this

case the type int) appears in the angle brackets. The statement

i = static_cast<int>(d);

does not change the type of the variable d; d is declared to be a double and so must remain a double
variable. The statement makes a copy of d’s value in a temporary memory location, converting it to its

integer representation during the process.

We also can cast literal values and expressions:

i = static_cast<int>(1.6);
i = static_cast<int>(x + 2.1);
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Narrowing a floating-point value to an integer discards any fractional part. Nar-

rowing truncates; it does not round. For example, the double value 1.7 narrows

to the int value 1.

The widening conversion is always safe, so a type cast is not required. Narrowing is a potentially

dangerous operation, and using an explicit cast does not remove the danger—it simply silences the compiler.

For example, consider Listing 4.2 (badnarrow.cpp).

Listing 4.2: badnarrow.cpp

#include <iostream>

int main() {
double d = 2200000000.0;
int i = d;
std::cout << "d = " << d << ", i = " << i << '\n';

}

The Visual C++ compiler issues a warning about the possible loss of precision when assigning d to i.

Silencing the warning with a type cast in this case is a bad idea; the program’s output indicates that the

warning should be heeded:

d = 2.2e+009, i = -2147483648

The printed values of i and d are not even close, nor can they be because it is impossible to represent the

value 2,200,000,000 as an int on a system that uses 32-bit integers. When assigning a value of a wider

type to a variable of a narrower type, the programmer must assume the responsibility to ensure that the

actual value to be narrowed is indeed within the range of the narrower type. The compiler cannot ensure

the safety of the assignment.

Casts should be used sparingly and with great care because a cast creates a spot in the program that is

immune to the compiler’s type checking. A careless assignment can produce a garbage result introducing

an error into the program.

When we must perform mixed arithmetic—such as adding an int to a double—the compiler auto-

matically produces machine language code that copies the int value to a temporary memory location and

transforms it into its double equivalent. It then performs double-precision floating-point arithmetic to

compute the result.

Integer arithmetic occurs only when both operands are ints. 1/3 thus evaluates to 0, but 1.0/3.0,

1/3.0, and 1.0/3 all evaluate to 0.33333.

Since double is wider than int, we say that double dominates int. In a mixed type arithmetic

expression, the less dominant type is coerced into the more dominant type in order to perform the arithmetic

operation.

Section 3.9 introduced enumerated types. Behind the scenes, the compiler translates enumerated values

into integers. The first value in the enumeration is 0, the second value is 1, etc. Even though the underlying

implementation of enumerated types is integer, the compiler does not allow the free exchange between

integers and enumerated types. The following code will not compile:
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enum class Color { Red, Orange, Yellow, Green, Blue, Violet };
std::cout << Color::Orange << " " << Color::Green << '\n';

The std::cout printing object knows how to print integers, but it does not know anything about our

Color class and its values. If we really want to treat an enumerated type value as its underlying integer,

we must use a type cast. Listing 4.3 (enumcast.cpp) shows how to extract the underlying integer value from

an enumerated type.

Listing 4.3: enumcast.cpp

#include <iostream>

int main() {
enum class Color { Red, Orange, Yellow, Green, Blue, Violet };
std::cout << static_cast<int>(Color::Orange) << " "

<< static_cast<int>(Color::Green) << '\n';
}

Listing 4.3 (enumcast.cpp) prints prints

1 3

This is the expected output because Color::Red is 0, Color::Orange is 1, Color::Yellow is 2,

Color::Green is 3, etc.

Even though enumerated types are encoded as integers internally, programmers may not perform arith-

metic on enumerated types without involving casts. Such opportunities should be very rare; if you need to

perform arithmetic on a variable, it really should be a numerical type, not an enumerated type.

4.3 Operator Precedence and Associativity

When different operators are used in the same expression, the normal rules of arithmetic apply. All C++

operators have a precedence and associativity:

• Precedence—when an expression contains two different kinds of operators, which should be applied

first?

• Associativity—when an expression contains two operators with the same precedence, which should

be applied first?

To see how precedence works, consider the expression

2 + 3 * 4

Should it be interpreted as

(2 + 3) * 4

(that is, 20), or rather is

2 + (3 * 4)
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(that is, 14) the correct interpretation? As in normal arithmetic, in C++ multiplication and division have

equal importance and are performed before addition and subtraction. We say multiplication and division

have precedence over addition and subtraction. In the expression

2 + 3 * 4

the multiplication is performed before addition, since multiplication has precedence over addition. The

result is 14. The multiplicative operators (*, /, and %) have equal precedence with each other, and the

additive operators (binary + and -) have equal precedence with each other. The multiplicative operators

have precedence over the additive operators.

As in standard arithmetic, in C++ if the addition is to be performed first, parentheses can override the

precedence rules. The expression

(2 + 3) * 4

evaluates to 20. Multiple sets of parentheses can be arranged and nested in any ways that are acceptable in

standard arithmetic.

To see how associativity works, consider the expression

2 - 3 - 4

The two operators are the same, so they have equal precedence. Should the first subtraction operator be

applied before the second, as in

(2 - 3) - 4

(that is, −5), or rather is

2 - (3 - 4)

(that is, 3) the correct interpretation? The former (−5) is the correct interpretation. We say that the subtrac-

tion operator is left associative, and the evaluation is left to right. This interpretation agrees with standard

arithmetic rules. All binary operators except assignment are left associative. Assignment is an exception; it

is right associative. To see why associativity is an issue with assignment, consider the statement

w = x = y = z;

This is legal C++ and is called chained assignment. Assignment can be used as both a statement and an

expression. The statement

x = 2;

assigns the value 2 to the variable x. The expression

x = 2

assigns the value 2 to the variable x and evaluates to the value that was assigned; that is, 2. Since assignment

is right associative, the compiler would interpret the chained assignment example as if it were written as

w = (x = (y = z));

which behaves as follows:

• The expression y = z is evaluated first. z’s value is assigned to y, and the value of the expression

y = z is z’s value.
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Arity Operators Associativity

Unary +, -
Binary *, /, % Left

Binary +, - Left

Binary = Right

Table 4.2: Operator precedence and associativity. The operators in each row have a higher precedence than the operators

below it. Operators within a row have the same precedence.

• The expression x = (y = z) is evaluated. The value of y = z, that is z, is assigned to x. The

overall value of the expression x = y = z is thus the value of z. Now the values of x, y, and z are

all equal (to z).

• The expression w = (x = y = z) is evaluated. The value of the expression x = y = z is

equal to z’s value, so z’s value is assigned to w. The overall value of the expression w = x = y = z
is equal to z, and the variables w, x, y, and z are all equal (to z).

As in the case of precedence, we can use parentheses to override the natural associativity within an expres-

sion.

The unary operators have a higher precedence than the binary operators, and the unary operators are

right associative. This means the statements

std::cout << -3 + 2 << '\n';
std::cout << -(3 + 2) << '\n';

which display

-1
-5

behave as expected.

Table 4.2 shows the precedence and associativity rules for some C++ operators. The * operator also has

a unary form that has nothing to do with mathematics; it is covered in Section 10.7.

4.4 Comments

Good programmers annotate their code by inserting remarks that explain the purpose of a section of code or

why they chose to write a section of code the way they did. These notes are meant for human readers, not

the compiler. It is common in industry for programs to be reviewed for correctness by other programmers

or technical managers. Well-chosen identifiers (see Section 3.3) and comments can aid this assessment

process. Also, in practice, teams of programmers develop software. A different programmer may be

required to finish or fix a part of the program written by someone else. Well-written comments can help

others understand new code quicker and increase their productivity modifying old or unfinished code. While

it may seem difficult to believe, even the same programmer working on her own code months later can have

a difficult time remembering what various parts do. Comments can help greatly.

Any text contained within comments is ignored by the compiler. C++ supports two types of comments:

single line comments and block comments:

• Single line comment—the first type of comment is useful for writing a single line remark:
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// Compute the average of the values
avg = sum / number;

The first line here is a comment that comment explains what the statement that follows it is supposed

to do. The comment begins with the double forward slash symbols (//) and continues until the end

of that line. The compiler will ignore the // symbols and the contents of the rest of the line. This

type of comment is also useful for appending a short comment to the end of a statement:

avg = sum / number; // Compute the average of the values

Here, an executable statement and the comment appear on the same line. The compiler will read the

assignment statement here, but it will ignore the comment. The compiler generates the same machine

code for this example as it does for the preceding example, but this example uses one line of source

code instead of two.

• Block comment—the second type of comment begins with the symbols /* and is in effect until

the */ symbols are encountered. The /*. . . */ symbols delimit the comment like parentheses

delimit a parenthetical expression. Unlike parentheses, however, these block comments cannot be

nested within other block comments.

The block comment is handy for multi-line comments:

/* After the computation is completed
the result is displayed. */

std::cout << result << '\n';

What should be commented? Avoid making a remark about the obvious; for example:

result = 0; // Assign the value zero to the variable named result

The effect of this statement is clear to anyone with even minimal C++ programming experience. Thus, the

audience of the comments should be taken into account; generally, “routine” activities require no remarks.

Even though the effect of the above statement is clear, its purpose may need a comment. For example:

result = 0; // Ensures 'result' has a well-defined minimum value

This remark may be crucial for readers to completely understand how a particular part of a program works.

In general, programmers are not prone to providing too many comments. When in doubt, add a remark.

The extra time it takes to write good comments is well worth the effort.

4.5 Formatting

Program comments are helpful to human readers but ignored by the compiler. Another aspect of source

code that is largely irrelevant to the compiler but that people find valuable is its formatting. Imagine the

difficulty of reading a book in which its text has no indentation or spacing to separate one paragraph from

another. In comparison to the source code for a computer program, a book’s organization is quite simple.

Over decades of software construction programmers have established a small collection of source code

formatting styles that the industry finds acceptable.

The compiler allows a lot of leeway for source code formatting. Consider Listing 4.4 (reformattedvariable.cpp)

which is a reformatted version of Listing 3.4 (variable.cpp).
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Listing 4.4: reformattedvariable.cpp

#include <iostream>
int
main
(
)
{
int
x
;
x
=
10
;
std
::
cout
<<
x
<<
'\n'
;
}

Listing 4.5 (reformattedvariable2.cpp) is another reformatted version of Listing 3.4 (variable.cpp).

Listing 4.5: reformattedvariable2.cpp

#include <iostream>
int main(){int x;x=10;std::cout<<x<<'\n';}

Both reformatted programs are valid C++ and compile to the same machine language code as the orig-

inal version. Most would argue that the original version is easier to read and understand more quickly

than either of the reformatted versions. The elements in Listing 3.4 (variable.cpp) are organized bet-

ter. Experienced C++ programmers would find both Listing 4.4 (reformattedvariable.cpp) and Listing 4.5

(reformattedvariable2.cpp) visually painful.

What are some distinguishing characteristics of Listing 3.4 (variable.cpp)?

• Each statement appears on its own line. A statement is not unnecessarily split between two lines of

text. Visually, one line of text implies one action (statement) to perform.

• The close curly brace aligns vertically with the line above that contains the corresponding open curly

brace. This makes it easier to determine if the curly braces match and nest properly. It also better por-

trays the logical structure of the program. The ability to accurately communicate the logical structure

of a program becomes very important as write more complex programs. Programs with complex logic

frequently use multiple nested curly braces (for example, see Listing 5.11 (troubleshoot.cpp)). With-

out a consistent, organized arrangement of curly braces it can difficult to determine which opening

brace goes with a particular closing brace.

• The statements that constitute the body of main are indented several spaces. This visually em-

phasizes the fact that the elements are indeed logically enclosed. As with curly brace alignment,

indentation to emphasize logical enclosure becomes more important as more complex programs are

considered.
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• Spaces are used to spread out statements and group pieces of the statement. Space around the op-

erators (=) makes it easier to visually separate the operands from the operators and comprehend the

details of the expression. Most people find the statement

total_sale = subtotal + tax;

much easier to read than

total_sale=subtotal+tax;

since the lack of space in the second version makes it more difficult to pick out the individual pieces

of the statement. In the first version with extra space, it is clearer where operators and variable names

begin and end.

In a natural language like English, a book is divided into distinct chapters, and chapters are composed

of paragraphs. One paragraph can be distinguished from another because the first line is indented or

an extra space appears between two paragraphs. Space is used to separate words in each sentence.

Consider how hard it would be to read a book if all the sentences were printed like this one:

Theboyranquicklytothetreetoseethestrandedcat.

Judiciously placed open space in a C++ program can greatly enhance its readability.

C++ gives the programmer a large amount of freedom in formatting source code.

The compiler reads the characters that make up the source code one symbol at a

time left to right within a line before moving to the next line. While extra space

helps readability, spaces are not allowed in some places:

– Variable names and reserved words must appear as unbroken units.

– Multi-symbol operators like << cannot be separated (< < is illegal).

One common coding convention that is universal in C++ programming is demonstrated in Listing 3.10

(const.cpp). While programmers usually use lower-case letters in variable names, they usually express

constant names with all capital letters; for example, PI is used for the mathematical constant π instead of

pi. C++ does not require constants to be capitalized, but capitalizing them aids humans reading the source

code so they can quickly distinguish between variables and constants.

Figure 4.3 shows the four most common ways programmers use indentation and place curly braces in

C++ source code.

The K&R and ANSI styles are the most popular in published C++ source code. The Whitesmith and

Banner styles appear much less frequently. http://en.wikipedia.org/wiki/Indent_style
reviews the various ways to format C++ code. Observe that all the accepted formatting styles indent the

block of statements contained in the main function.

Most software development organizations adopt a set of style guidelines, sometimes called code conven-

tions. These guidelines dictate where to indent and by how many spaces, where to place curly braces, how

to assign names to identifiers, etc. Programmers working for the organization are required to follow these

style guidelines for the code they produce. This better enables any member of the development team to read

and understand more quickly code written by someone else. This is necessary when code is reviewed for

correctness or when code must be repaired or extended, and the original programmer is no longer with the

development team.
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Figure 4.3 The most common C++ coding styles.
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Even if you are not forced to use a particular style, it is important to use a consistent style throughout

the code you write. As our programs become more complex we will need to use additional curly braces

and various levels of indentation to organize the code we write. A consistent style (especially one of the

standard styles shown in Figure 4.3) makes it easier to read and verify that the code actually expresses our

intent. It also makes it easier to find and fix errors. Said another way, haphazard formatting increases the

time it takes to develop correct software because programmer’s mistakes hide better in poorly formatted

code.

Good software development tools can boost programmer productivity, and many programming editors

have the ability to automatically format source code according to a standard style. Some of these editors

can correct the code’s style as the programmer types in the text. A standalone program known as a pretty

printer can transform an arbitrarily formatted C++ source file into a properly formatted one.

4.6 Errors and Warnings

Beginning programmers make mistakes writing programs because of inexperience in programming in gen-

eral or because of unfamiliarity with a programming language. Seasoned programmers make mistakes due

to carelessness or because the proposed solution to a problem is faulty and the correct implementation of an

incorrect solution will not produce a correct program. Regardless of the reason, a programming error falls

under one of three categories:

• compile-time error

• run-time error

• logic error

4.6.1 Compile-time Errors

A compile-time error results from the programmer’s misuse of the language. A syntax error is a common

compile-time error. For example, in English one can say

The boy walks quickly.

This sentence uses correct syntax. However, the sentence
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The boy walk quickly.

is not correct syntactically: the number of the subject (singular form) disagrees with the number of the verb

(plural form). It contains a syntax error. It violates a grammatical rule of the English language. Similarly,

the C++ statement

x = y + 2;

is syntactically correct because it obeys the rules for the structure of an assignment statement described in

Section 3.2. However, consider replacing this assignment statement with a slightly modified version:

y + 2 = x;

If a statement like this one appears in a program and the variables x and y have been properly declared, the

compiler will issue an error message; for example, the Visual C++ compiler reports (among other things):

error C2106: ’=’ : left operand must be l-value

The syntax of C++ does not allow an expression like y + 2 to appear on the left side of the assignment

operator.

(The term l-value in the error message refers to the left side of the assignment operator; the l is an

“elle,” not a “one.”.)

The compiler may generate an error for a syntactically correct statement like

x = y + 2;

if either of the variables x or y has not been declared; for example, if y has not been declared, Visual C++

reports:

error C2065: ’y’ : undeclared identifier

Other common compile-time errors include missing semicolons at the end of statements, mismatched curly

braces and parentheses, and simple typographical errors.

Compile-time errors usually are the easiest to repair. The compiler pinpoints the exact location of the

problem, and the error does not depend on the circumstances under which the program executes. The exact

error can be reproduced by simply recompiling the same source code.

Compilers have the reputation for generating cryptic error messages. They seem to provide little help

as far as novice programmers are concerned. Sometimes a combination of errors can lead to messages that

indicate errors on lines that follow the line that contains the actual error. Once you encounter the same

error several times and the compiler messages become more familiar, you become better able to deduce the

actual problem from the reported message. Unfortunately C++ is such a complex language that sometimes a

simple compile-time error can result in a message that is incomprehensible to beginning C++ programmers.

4.6.2 Run-time Errors

The compiler ensures that the structural rules of the C++ language are not violated. It can detect, for exam-

ple, the malformed assignment statement and the use of a variable before its declaration. Some violations of

the language cannot be detected at compile time, however. A program may not run to completion but instead

terminate with an error. We commonly say the program “crashed.” Consider Listing 4.6 (dividedanger.cpp)

which under certain circumstances will crash.
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Listing 4.6: dividedanger.cpp

// File dividedanger.cpp

#include <iostream>

int main() {
int dividend, divisor;

// Get two integers from the user
std::cout << "Please enter two integers to divide:";
std::cin >> dividend >> divisor;
// Divide them and report the result
std::cout << dividend << "/" << divisor << " = "

<< dividend/divisor << '\n';
}

The expression

dividend/divisor

is potentially dangerous. If the user enters, for example, 32 and 4, the program works nicely

Please enter two integers to divide: 32 4
32/4 = 8

and displays the answer of 8. If the user instead types the numbers 32 and 0, the program reports an error

and terminates. Division by zero is undefined in mathematics, and integer division by zero in C++ is illegal.

When the program attempts the division at run time, the system detects the attempt and terminates the

program.

This particular program can fail in other ways as well; for example, outside of the C++ world, 32.0 looks

like a respectable integer. If the user types in 32.0 and 8, however, the program crashes because 32.0 is not

a valid way to represent an integer in C++. When the compiler compiles the source line

std::cin >> dividend >> divisor;

given that dividend has been declared to be an int, it generates slightly different machine language

code than it would if dividend has been declared to be a double instead. The compiled code expects

the text entered by the user to be digits with no extra decoration. Any deviation from this expectation results

in a run-time error. Similar results occur if the user enters text that does not represent an integer, like fred.

Observe that in either case—entry of a valid but inappropriate integer (zero) or entry of a non-integer

(32.0 or fred)—it is impossible for the compiler to check for these problems at compile time. The compiler

cannot predict what the user will enter when the program is run. This means it is up to the programmer

to write code that can handle bad input that the user may provide. As we continue our exploration of

programming in C++, we will discover ways to make our programs more robust against user input (see

Listing 5.2 (betterdivision.cpp) in Chapter 5, for example). The solution involves changing the way the

program runs depending on the actual input provided by the user.

4.6.3 Logic Errors

Consider the effects of replacing the expression
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dividend/divisor;

in Listing 4.6 (dividedanger.cpp) with the expression:

divisor/dividend;

The program compiles with no errors. It runs, and unless a value of zero is entered for the dividend, no

run-time errors arise. However, the answer it computes is not correct in general. The only time the correct

answer is printed is when dividend = divisor. The program contains an error, but neither the compiler

nor the run-time system is able detect the problem. An error of this type is known as a logic error.

Listing 4.20 (faultytempconv.cpp) is an example of a program that contains a logic error. Listing 4.20

(faultytempconv.cpp) compiles and does not generate any run-time errors, but it produces incorrect results.

Beginning programmers tend to struggle early on with compile-time errors due to their unfamiliarity

with the language. The compiler and its error messages are actually the programmer’s best friend. As

the programmer gains experience with the language and the programs written become more complicated,

the number of compile-time errors decrease or are trivially fixed and the number of logic errors increase.

Unfortunately, both the compiler and run-time environment are powerless to provide any insight into the

nature and sometimes location of logic errors. Logic errors, therefore, tend to be the most difficult to find

and repair. Tools such as debuggers are frequently used to help locate and fix logic errors, but these tools

are far from automatic in their operation.

Errors that escape compiler detection (run-time errors and logic errors) are commonly called bugs.

Since the compiler is unable to detect these problems, such bugs are the major source of frustration for

developers. The frustration often arises because in complex programs the bugs sometimes only reveal

themselves in certain situations that are difficult to reproduce exactly during testing. You will discover this

frustration as your programs become more complicated. The good news is that programming experience

and the disciplined application of good programming techniques can help reduce the number logic errors.

The bad news is that since software development in an inherently human intellectual pursuit, logic errors

are inevitable. Accidentally introducing and later finding and eliminating logic errors is an integral part of

the programming process.

4.6.4 Compiler Warnings

A warning issued by the compiler does mark a violation of the rules in the C++ language, but it is an notifi-

cation to the programmer that the program contains a construct that is a potential problem. In Listing 4.10

(tempconv.cpp) the programmer is attempting to print the value of a variable before it has been given a

known value.

Listing 4.7: uninitialized.cpp

// uninitialized.cpp

#include <iostream>

int main() {
int n;
std::cout << n << '\n';

}

An attempt to build Listing 4.7 (uninitialized.cpp) yields the following message from the Visual C++

compiler:
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warning C4700: uninitialized local variable ’n’ used

The compiler issued a warning but still generated the executable file. When run, the program produces a

random result because it prints the value in memory associated with the variable, but the program does not

initialize that memory location.

Listing 4.8 (narrow.cpp) assigns a double value to an int variable, which we know from Section 4.1

truncates the result.

Listing 4.8: narrow.cpp

#include <iostream>

int main() {
int n;
double d = 1.6;
n = d;
std::cout << n << '\n';

}

When compiled we see

warning C4244: ’=’ : conversion from ’double’ to ’int’, possible loss of data

Since it is a warning and not an error, the compiler generates the executable, but the warning should prompt

us to stop and reflect about the correctness of the code. The enhanced warning level prevents the program-

mer from being oblivious to the situation.

The default Visual C++ warning level is 3 when compiling in the IDE and level 1 on the command line

(that is why we use the /W3 option on the command line); the highest warning level is 4. You can reduce

the level to 1 or 2 or disable warnings altogether, but that is not recommended. The only reason you might

want to reduce the warning level is to compile older existing C++ source code that does meet newer C++

standards. When developing new code, higher warning levels are preferred since they provide more help to

the programmer. Unless otherwise noted, all the complete program examples in this book compile cleanly

under Visual C++ set at warning level 3. Level 3 is helpful for detecting many common logic errors.

We can avoid most warnings by a simple addition to the code. Section 4.2 showed how we can use

static_cast to coerce a wider type to a narrower type. At Visual C++ warning Level 3, the compiler

issues a warning if the cast is not used. The little code that must be added should cause the programmer to

stop and reflect about the correctness of the construct. The enhanced warning level prevents the programmer

from being oblivious to the situation.

Use the strongest level of warnings available to your compiler. Treat all warnings

as problems that must be corrected. Do not accept as completed a program that

compiles with warnings.

We may assign a double literal to a float variable without any special type casting. The compiler

automatically narrows the double to a float as Listing 4.9 (assignfloat.cpp) shows:
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Listing 4.9: assignfloat.cpp

#include <iostream>

int main() {
float number;
number = 10.0; // OK, double literal assignable to a float
std::cout << "number = " << number << '\n';

}

The statement

number = 10.0;

assigns a double literal (10.0) to a float variable. You instead may explicitly use a float literal as:

number = 10.0f;

4.7 Arithmetic Examples

The kind of arithmetic to perform in a complex expression is determined on an operator by operator basis.

For example, consider Listing 4.10 (tempconv.cpp) that attempts to convert a temperature from degrees

Fahrenheit to degrees Celsius using the formula

◦C =
5

9
× (◦F −32)

Listing 4.10: tempconv.cpp

// File tempconv.cpp

#include <iostream>

int main() {
double degreesF, degreesC;
// Prompt user for temperature to convert
std::cout << "Enter the temperature in degrees F: ";
// Read in the user's input
std::cin >> degreesF;
// Perform the conversion
degreesC = 5/9*(degreesF - 32);
// Report the result
std::cout << degreesC << '\n';

}

Listing 4.10 (tempconv.cpp) contains comments that document each step explaining the code’s purpose.

An initial test is promising:

Enter the temperature in degrees F: 32
Degrees C = 0

Water freezes at 32 degrees Fahrenheit and 0 degrees Celsius, so the program’s behavior is correct for this

test. Several other attempts are less favorable—consider
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Enter the temperature in degrees F: 212
Degrees C = 0

Water boils at 212 degrees Fahrenheit which is 100 degrees Celsius, so this answer is not correct.

Enter the temperature in degrees F: -40
Degrees C = 0

The value −40 is the point where the Fahrenheit and Celsius curves cross, so the result should be −40, not

zero. The first test was only coincidentally correct.

Unfortunately, the printed result is always zero regardless of the input. The problem is the division 5/9
in the statement

degreesC = 5/9*(degreesF - 32);

Division and multiplication have equal precedence, and both are left associative; therefore, the division is

performed first. Since both operands are integers, integer division is performed and the quotient is zero (5

divided by 9 is 0, remainder 5). Of course zero times any number is zero, thus the result. The fact that a

floating-point value is involved in the expression (degreesF) and the overall result is being assigned to a

floating-point variable, is irrelevant. The decision about the exact type of operation to perform is made on

an operator-by-operator basis, not globally over the entire expression. Since the division is performed first

and it involves two integer values, integer division is used before the other floating-point pieces become

involved.

One solution simply uses a floating-point literal for either the five or the nine, as in

degreesC = 5.0/9*(degreesF - 32);

This forces a double-precision floating-point division (recall that the literal 5.0 is a double). The correct

result, subject to rounding instead of truncation, is finally computed.

Listing 4.11 (timeconv.cpp) uses integer division and modulus to split up a given number of seconds to

hours, minutes, and seconds.

Listing 4.11: timeconv.cpp

// File timeconv.cpp

#include <iostream>

int main() {
int hours, minutes, seconds;
std::cout << "Please enter the number of seconds:";
std::cin >> seconds;
// First, compute the number of hours in the given number
// of seconds
hours = seconds / 3600; // 3600 seconds = 1 hours
// Compute the remaining seconds after the hours are
// accounted for
seconds = seconds % 3600;
// Next, compute the number of minutes in the remaining
// number of seconds
minutes = seconds / 60; // 60 seconds = 1 minute
// Compute the remaining seconds after the minutes are
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// accounted for
seconds = seconds % 60;
// Report the results
std::cout << hours << " hr, " << minutes << " min, "

<< seconds << " sec\n";
}

If the user enters 10000, the program prints 2 hr, 46 min, 40 sec. Notice the assignments to

the seconds variable, such as

seconds = seconds % 3600

The right side of the assignment operator (=) is first evaluated. The remainder of seconds divided by

3,600 is assigned back to seconds. This statement can alter the value of seconds if the current value of

seconds is greater than 3,600. A similar statement that occurs frequently in programs is one like

x = x + 1;

This statement increments the variable x to make it one bigger. A statement like this one provides further

evidence that the C++ assignment operator does not mean mathematical equality. The following statement

from mathematics

x = x+1

is surely never true; a number cannot be equal to one more than itself. If that were the case, I would deposit

one dollar in the bank and then insist that I really had two dollars in the bank, since a number is equal to

one more than itself. That two dollars would become 3.00, then 4.00, etc., and soon I would be rich. In

C++, however, this statement simply means “add one to x and assign the result back to x.”

A variation on Listing 4.11 (timeconv.cpp), Listing 4.12 (enhancedtimeconv.cpp) performs the same

logic to compute the time pieces (hours, minutes, and seconds), but it uses more simple arithmetic to

produce a slightly different output—instead of printing 11,045 seconds as 3 hr, 4 min, 5 sec, List-

ing 4.12 (enhancedtimeconv.cpp) displays it as 3:04:05. It is trivial to modify Listing 4.11 (timeconv.cpp)

so that it would print 3:4:5, but Listing 4.12 (enhancedtimeconv.cpp) includes some extra arithmetic to

put leading zeroes in front of single-digit values for minutes and seconds as is done on digital clock displays.

Listing 4.12: enhancedtimeconv.cpp

// File enhancedtimeconv.cpp

#include <iostream>

int main() {
int hours, minutes, seconds;
std::cout << "Please enter the number of seconds:";
std::cin >> seconds;
// First, compute the number of hours in the given number
// of seconds
hours = seconds / 3600; // 3600 seconds = 1 hours
// Compute the remaining seconds after the hours are
// accounted for
seconds = seconds % 3600;
// Next, compute the number of minutes in the remaining
// number of seconds
minutes = seconds / 60; // 60 seconds = 1 minute
// Compute the remaining seconds after the minutes are
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// accounted for
seconds = seconds % 60;
// Report the results
std::cout << hours << ":";
// Compute tens digit of minutes
int tens = minutes / 10;
std::cout << tens;
// Compute ones digit of minutes
int ones = minutes % 10;
std::cout << ones << ":";
// Compute tens digit of seconds
tens = seconds / 10;
std::cout << tens;
// Compute ones digit of seconds
ones = seconds % 10;
std::cout << ones << '\n';

}

Listing 4.12 (enhancedtimeconv.cpp) uses the fact that if x is a one- or two-digit number, x / 10 is the

tens digit of x. If x / 10 is zero, x is necessarily a one-digit number.

4.8 Integers vs. Floating-point Numbers

Floating-point numbers offer some distinct advantages over integers. Floating-point numbers, especially

doubles have a much greater range of values than any integer type. Floating-point numbers can have

fractional parts and integers cannot. Integers, however, offer one big advantage that floating-point numbers

cannot—exactness. To see why integers are exact and floating-point numbers are not, we will explore the

way computers store and manipulate the integer and floating-point types.

Computers store all data internally in binary form. The binary (base 2) number system is much simpler

than the familiar decimal (base 10) number system because it uses only two digits: 0 and 1. The decimal

system uses 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Despite the lack of digits, every decimal integer has an

equivalent binary representation. Binary numbers use a place value system not unlike the decimal system.

Figure 4.4 shows how the familiar base 10 place value system works.

Figure 4.4 The base 10 place value system

· · · 4 7 3 4 0 6

· · · 105 104 103 102 101 100

· · · 100,000 10,000 1,000 100 10 1

473,406 = 4×105 +7×104 +3×103 +4×102 +0×101 +6×100

= 400,000+70,000+3,000+400+0+6

= 473,406

With 10 digits to work with, the decimal number system distinguishes place values with powers of 10.

Compare the base 10 system to the base 2 place value system shown in Figure 4.5.
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Figure 4.5 The base 2 place value system

· · · 1 0 0 1 1 1

· · · 25 24 23 22 21 20

· · · 32 16 8 4 2 1

1001112 = 1×25 +0×24 +0×23 +1×22 +1×21 +1×20

= 32+0+0+4+2+1

= 39

With only two digits to work with, the binary number system distinguishes place values by powers of

two. Since both binary and decimal numbers share the digits 0 and 1, we will use the subscript 2 to indicate

a binary number; therefore, 100 represents the decimal value one hundred, while 1002 is the binary number

four. Sometimes to be very clear we will attach a subscript of 10 to a decimal number, as in 10010.

In the decimal system, it is easy to add 3+5:

3

+ 5

8

The sum 3+9 is a little more complicated, as early elementary students soon discover:

3

+ 9

The answer, of course, is 12, but there is no single digit that means 12—it takes two digits, 1 and 2. The

sum is
1

03

+ 09

12

We can say 3+9 is 2, carry the 1. The rules for adding binary numbers are shorter and simpler than decimal

numbers:
02 +02 = 02

02 +12 = 12

12 +02 = 12

12 +12 = 102

We can say the sum 12 +12 is 02, carry the 12. A typical larger sum would be

11

910 = 10012

+ 310 = 112

1210 = 11002

4.8.1 Integer Implementation

Mathematical integers are whole numbers (no fractional parts), both positive and negative. Standard C++

supports multiple integer types: int, short, long, and long long, unsigned, unsigned short,
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unsigned long, and unsigned long long. These are distinguished by the number of bits required

to store the type, and, consequently, the range of values they can represent. Mathematical integers are in-

finite, but all of C++’s integer types correspond to finite subsets of the mathematical integers. The most

commonly used integer type in C++ is int. All ints, regardless of their values, occupy the same amount

of memory and, therefore use the same number of bits. The exact number of bits in an int is processor

specific. A 32-bit processor, for example, is built to manipulate 32-bit integers very efficiently. A C++

compiler for such a system most likely would use 32-bit ints, while a compiler for a 64-bit machine might

represent ints with 64 bits. On a 32-bit computer, the numbers 4 and 1,320,002,912 both occupy 32 bits

of memory.

For simplicity, we will focus on unsigned integers, particularly the unsigned type. The unsigned
type in Visual C++ occupies 32 bits. With 32 bits we can represent 4,294,967,296 different values, and so

Visual C++’s unsigned type represents the integers 0 . . .4,294,967,295. The hardware in many computer

systems in the 1990s provided only 16-bit integer types, so it was common then for C++ compilers to

support 16-bit unsigned values with a range 0 . . .65,535. To simplify our exploration into the properties

of computer-based integers, we will consider an even smaller, mythical unsigned integer type that we will

call unsigned tiny. C++ has no such unsigned tiny type as it has a very small range of values—

too small to be useful as an actual type in real programs. Our unsigned tiny type uses only five bits of

storage, and Table 4.3 shows all the values that a variable of type unsigned tiny can assume.

Binary Bit String Decimal Value

00000 0
00001 1
00010 2
00011 3
00100 4
00101 5
00110 6
00111 7
01000 8
01001 9
01010 10
01011 11
01100 12
01101 13
01110 14
01111 15
10000 16
10001 17
10010 18
10011 19
10100 20
10101 21
10110 22
10111 23
11000 24
11001 25
11010 26
11011 27
11100 28
11101 29
11110 30
11111 31

Table 4.3: The unsigned tiny values

Table 4.3 shows that the unsigned tiny type uses all the combinations of 0s and 1s in five bits. We

can derive the decimal number 6 directly from its bit pattern:

00110 =⇒ 0

16

0

8

1

4

1

2

0

1
=⇒ 0×16+0×8+1×4+1×2+0×1 = 6
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To see that arithmetic works, try adding 4+3:

410 = 001002

+ 310 = 000112

710 = 001112

That was easy since involved no carries. Next we will try 3+1:

11

310 = 000112

+ 110 = 000012

410 = 001002

In the ones column (rightmost column), 12 + 12 = 102, so write a 0 and carry the 1 to the top of the next

column to the left (that is, the twos column). In the twos column, 12 +12 +02 = 102, so we must carry a 1

into the fours column as well.

The next example illustrates a limitation of our finite representation. Consider the sum 8+28:

11

810 = 010002

+ 2810 = 111002

410 = 1 001002

In the this sum we have a carry of 1 from the eights column to the 16s column, and we have a carry from the

16s column to nowhere. We need a sixth column (a 32s column), another place value, but our unsigned
tiny type is limited to five bits. That carry out from the 16s place is lost. The largest unsigned tiny
value is 31, but 28+ 8 = 36. It is not possible to store the value 36 in an unsigned tiny just as it is

impossible to store the value 5,000,000,000 in a C++ unsigned variable.

Consider exceeding the capacity of the unsigned tiny type by just one:

11111

3110 = 111112

+ 110 = 000012

010 = 1 000002

Adding one to the largest possible unsigned tiny, 31, results in the smallest possible value, 0! This

mirrors the behavior of the actual C++ unsigned type, as Listing 4.13 (unsignedoverflow.cpp) demon-

strates.

Listing 4.13: unsignedoverflow.cpp

#include <iostream>

int main() {
unsigned x = 4294967293; // Almost the largest possible unsigned value
std::cout << x << " + 1 = " << x + 1 << '\n';
std::cout << x << " + 2 = " << x + 2 << '\n';
std::cout << x << " + 3 = " << x + 3 << '\n';

}

Listing 4.13 (unsignedoverflow.cpp) prints
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Figure 4.6 The cyclic nature of 32-bit unsigned integers. Adding 1 to 4,294,967,295 produces 0, one

position clockwise from 4,294,967295. Subtracting 4 from 2 yields 4,294,967,294, four places counter-

clockwise from 2.

0
1

2

3

4

4,294,967,295

4,294,967,294

4,294,967,293

4,294,967,292

2,147,483,647

2,147,483,646

2,147,483,648

2,147,483,645

4

AddSubtract

2,147,483,649

2,147,483,650

4294967293 + 1 = 4294967294
4294967293 + 2 = 4294967295
4294967293 + 3 = 0

In fact, Visual C++’s 32-bit unsigneds follow the cyclic pattern shown in Figure 4.6.

In the figure, an addition moves a value clockwise around the circle, while a subtraction moves a value

counterclockwise around the circle. When the numeric limit is reached, the value rolls over like an auto-

mobile odometer. Signed integers exibit a similar cyclic pattern as shown in Figure 4.7.

In the case of signed integers, as Figure 4.7 shows, adding one to the largest representable value pro-

duces the smallest negative value. Listing 4.14 (integeroverflow.cpp) demonstrates.

Listing 4.14: integeroverflow.cpp

#include <iostream>

int main() {
int x = 2147483645; // Almost the largest possible int value
std::cout << x << " + 1 = " << x + 1 << '\n';
std::cout << x << " + 2 = " << x + 2 << '\n';
std::cout << x << " + 3 = " << x + 3 << '\n';

}
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Figure 4.7 The cyclic nature of 32-bit signed integers. Adding 1 to 2,147,483,647 produces

−2,147,483,648, one position clockwise from 2,147,483,647. Subtracting 5 from −2,147,483,645 yields

2,147,483,646, five places counterclockwise from −2,147,483,645.

0
1

2

3

4

‒1

‒2

‒3

‒4

2,147,483,647‒2,147,483,647

2,147,483,646

‒2,147,483,648

‒2,147,483,646

‒2,147,483,645
2,147,483,645

4

AddSubtract
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Listing 4.14 (integeroverflow.cpp) prints

2147483645 + 1 = 2147483646
2147483645 + 2 = 2147483647
2147483645 + 3 = -2147483648

Attempting to exceed the maximum limit of a numeric type results in overflow, and attempting to exceed

the minimum limit is called underflow. Integer arithmetic that overflow or underflow produces a valid, yet

incorrect integer result. The compiler does not check that a computation will result in exceeding the limit of

a type because it is impossible to do so in general (consider adding two integer variables whose values are

determined at run time). Also significantly, an overflow or underflow situation does not generate a run-time

error. It is, therefore, a logic error if a program performs an integral computation that, either as a final result

or an intermediate value, is outside the range of the integer type being used.

4.8.2 Floating-point Implementation

The standard C++ floating point types consist of float, double, and long double. Floating point

numbers can have fractional parts (decimal places), and the term floating point refers to the fact the dec-

imal point in a number can float left or right as necessary as the result of a calculation (for example,

2.5× 3.3 = 8.25, two one-decimal place values produce a two-decimal place result). As with the integer

types, the different floating-point types may be distinguished by the number of bits of storage required and

corresponding range of values. The type float stands for single-precision floating-point, and double
stands for double-precision floating-point. Floating point numbers serve as rough approximations of math-

ematical real numbers, but as we shall see, they have some severe limitations compared to actual real

numbers.

On most modern computer systems floating-point numbers are stored internally in exponential form

according to the standard adopted by the Institute for Electrical and Electronic Engineers (IEEE 754). In

the decimal system, scientific notation is the most familiar form of exponential notation:

One mole contains 6.023×1023 molecules.

Here 6.023 is called the mantissa, and 23 is the exponent.

The IEEE 754 standard uses binary exponential notation; that is, the mantissa and exponent are binary

numbers. Single-precision floating-point numbers (type float) occupy 32 bits, distributed as follows:

Mantissa 24 bits

Exponent 7 bits

Sign 1 bit

Total 32 bits

Double-precision floating-point numbers (type double) require 64 bits:

Mantissa 52 bits

Exponent 11 bits

Sign 1 bit

Total 64 bits
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Figure 4.8 A tiny float simplified binary exponential value

0

2

2
2

−1
2

−2
. 1 10

01

−3

22
1

The details of the IEEE 754 implementation are beyond the scope of this book, but a simplified example

serves to highlight the limitations of floating-point types in general. Recall the fractional place values in

the decimal system. The place values, from left to right, are

. . . 10,000 1,000 100 10 1 • 1
10

1
100

1
1000

1
10,000 . . .

. . . 104 103 102 101 100 • 10−1 10−2 10−3 10−4 . . .

Each place value is one-tenth the place value to its left. Move to the right, divide by ten; move to the left,

multiply by ten. In the binary system, the factor is two instead of ten:

. . . 16 8 4 2 1 • 1
2

1
4

1
8

1
16 . . .

. . . 24 23 22 21 20 • 2−1 2−2 2−3 2−4 . . .

As in our unsigned tiny example (see Section 4.8.1), consider a a binary exponential number that

consists of only five bits—far fewer bits than either floats or doubles in C++. We will call our mythical

floating-point type tiny float. The first three bits of our 5-bit tiny float type will represent the

mantissa, and the remaining two bits store the exponent. The three bits of the mantissa all appear to the

right of the binary point. The base of the 2-bit exponent is, of course, two. Figure 4.8 illustrates such a

value.

To simplify matters even more, neither the mantissa nor the exponent can be negative. Thus, with three

bits, the mantissa may assume one of eight possible values. Since two bits constitute the exponent of tiny
floats, the exponent may assume one of four possible values. Table 4.4 lists all the possible values that

tiny float mantissas and exponents may assume. The number shown in Figure 4.8 is thus

(1×2−1 + 0×2−2 + 1×2−3)×2(1×21+0×20) =

(

1

2
+

1

8

)

×22

=
5

8
×4

= 2.5

Table 4.5 combines the mantissas and exponents to reveal all possible tiny float values that we can

represent with the 32 different bit strings made up of five bits. The results are interesting.

The range of our tiny float numbers is 0 . . .7. Just stating the range is misleading, however, since

it might give the impression that we may represent any value in between 0 and 7 down to the
1

8
th place.

This, in fact, is not true. We can represent 2.5 with this scheme, but we have no way of expressing 2.25.

Figure 4.9 plots all the possible tiny float values on the real number line.
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3-bit Mantissas

Bit String Binary Value Decimal Value

000 0.0002

0

2
+

0

4
+

0

8
= 0.000

001 0.0012

0

2
+

0

4
+

1

8
= 0.125

010 0.0102

0

2
+

1

4
+

0

8
= 0.250

011 0.0112

0

2
+

1

4
+

1

8
= 0.375

100 0.1002

1

2
+

0

4
+

0

8
= 0.500

101 0.1012

1

2
+

0

4
+

1

8
= 0.625

110 0.1102

1

2
+

1

4
+

0

8
= 0.750

111 0.1112

1

2
+

1

4
+

1

8
= 0.875

2-bit Exponents

Bit String Binary Value Decimal Value

00 2002 20 = 1

01 2012 21 = 2

10 2102 22 = 4

11 2112 23 = 8

Table 4.4: The eight possible mantissas and four possible exponents that make up all tiny float values

Figure 4.9 A plot of all the possible tiny float numbers on the real number line. Note that the numbers

are more dense near zero and become more sparse moving to the right. The precision in the range 0 . . .1
is one-eighth. The precision in the range 1 . . .2 is only one-fourth, and over the range 2 . . .4 it drops to

one-half. In the range 4 . . .7 our tiny float type can represent only whole numbers.
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Table 4.5 and Figure 4.9 reveal several troubling issues about our tiny float type:

1. There are many gaps; for example, the value 2.4 is missing and thus cannot be represented exactly (2.5

is the closest approximation). As another example, 0.75 and 1.75 both appear, but 2.75 is missing.

2. The scheme duplicates some numbers; for example, three different bit patterns represent the decimal

value 0.5:

0.100×200 = 0.010×201 = 0.001×210 = 0.510

This duplication limits the number of different values that can be represented by a given number of

bits. In our tiny float example 12 of the 32 bit strings (37.5%) are redundant.

3. The numbers are not uniformly dense. There are more values nearer to zero, and the numbers become

more sparse farther away from zero.

Our unsigned tiny type discussed in Section 4.8.1 exhibits none of these weaknesses. All integers

in a given range (0 . . .31) are present, no two bit strings represent the same value, and the integers are

uniformly distributed across their specified range. While the standard integer types provided by C++ have

much greater ranges than our unsigned tiny type, they all share these same qualities: all values in

their ranges are present, and all bit strings represent unique integer values. The standard floating-point

types provided by C++ use many more bits than our tiny float type, yet they exhibit the same problems
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Bit String Interpretation Decimal Equivalent Value

00000 .0002 × 2002 0.000 × 1 0.000

00001 .0002 × 2012 0.000 × 2 0.000

00010 .0002 × 2102 0.000 × 4 0.000

00011 .0002 × 2112 0.000 × 8 0.000

00100 .0012 × 2002 0.125 × 1 0.125

00101 .0012 × 2012 0.125 × 2 0.250

00110 .0012 × 2102 0.125 × 4 0.500

00111 .0012 × 2112 0.125 × 8 1.000

01000 .0102 × 2002 0.250 × 1 0.250

01001 .0102 × 2012 0.250 × 2 0.500

01010 .0102 × 2102 0.250 × 4 1.000

01011 .0102 × 2112 0.250 × 8 2.000

01100 .0112 × 2002 0.375 × 1 0.375

01101 .0112 × 2012 0.375 × 2 0.750

01110 .0112 × 2102 0.375 × 4 1.500

01111 .0112 × 2112 0.375 × 8 3.000

10000 .1002 × 2002 0.500 × 1 0.500

10001 .1002 × 2012 0.500 × 2 1.000

10010 .1002 × 2102 0.500 × 4 2.000

10011 .1002 × 2112 0.500 × 8 4.000

10100 .1012 × 2002 0.625 × 1 0.625

10101 .1012 × 2012 0.625 × 2 1.250

10110 .1012 × 2102 0.625 × 4 2.500

10111 .1012 × 2112 0.625 × 8 5.000

11000 .1102 × 2002 0.750 × 1 0.750

11001 .1102 × 2012 0.750 × 2 1.500

11010 .1102 × 2102 0.750 × 4 3.000

11011 .1102 × 2112 0.750 × 8 6.000

11100 .1112 × 2002 0.875 × 1 0.875

11101 .1112 × 2012 0.875 × 2 1.750

11110 .1112 × 2102 0.875 × 4 3.500

11111 .111 2 × 2112 0.875 × 8 7.000

Table 4.5: The tiny float values. The first three bits of the bit string constitute the mantissa, and the last two bits

represent the exponent. Given five bits we can produce 32 different bit strings. Notice that due to the ways different

mantissas and exponents can combine to produce identical values, the 32 different bit strings yield only 20 unique

tiny float values.

shown to a much smaller degree: missing values, multiple bit patterns representing the same values, and

uneven distribution of values across their ranges. This is not solely a problem of C++’s implementation

of floating-point numbers; all computer languages and hardware that adhere to the IEEE 754 standard

exhibit these problems. To overcome these problems and truly represent and compute with mathematical

real numbers we would need a computer with an infinite amount of memory along with an infinitely fast

processor.

Listing 4.15 (imprecisedifference.cpp) demonstrates the inexactness of floating-point arithmetic.

Listing 4.15: imprecisedifference.cpp

#include <iostream>
#include <iomanip>

int main() {
double d1 = 2000.5;
double d2 = 2000.0;
std::cout << std::setprecision(16) << (d1 - d2) << '\n';
double d3 = 2000.58;
double d4 = 2000.0;
std::cout << std::setprecision(16) << (d3 - d4) << '\n';

}
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The output of Listing 4.15 (imprecisedifference.cpp) is:

0.5
0.5799999999999272

The program uses an additional #include directive:

#include <iomanip>

This preprocessor directive allows us to use the std::setprecision output stream manipulator that

directs the std::cout output stream object to print more decimal places in floating-point values. During

the program’s execution, the first subtraction yields the correct answer. We now know that some floating-

point numbers (like 0.5) have exact internal representations while others are only approximations. The

exact answer for the second subtraction should be 0.58, and if we round the reported result to 12 decimal

places, the answer matches. Floating-point arithmetic often produces results that are close approximations

of the true answer.

Listing 4.16 (precise8th.cpp) computes zero in a roundabout way:

1− 1

8
− 1

8
− 1

8
− 1

8
− 1

8
− 1

8
− 1

8
− 1

8
= 0

Listing 4.16: precise8th.cpp

#include <iostream>

int main() {
double one = 1.0,

one_eighth = 1.0/8.0,
zero = one - one_eighth - one_eighth - one_eighth

- one_eighth - one_eighth - one_eighth
- one_eighth - one_eighth;

std::cout << "one = " << one << ", one_eighth = " << one_eighth
<< ", zero = " << zero << '\n';

}

Listing 4.16 (precise8th.cpp) prints

one = 1, one_eighth = 0.125, zero = 0

The number
1

8
has an exact decimal representation, 0.625. It also has an exact binary representation, 0.0012.

Consider, however,
1

5
. While

1

5
= 0.2 has a finite representation in base 10, it has no finite representation in

base 2:
1

5
= 0.2 = 0.00110011001100112

In the binary representation the 00112 bit sequence repeats without end. This means
1

5
does not have an

exact floating-point representation. Listing 4.17 (imprecise5th.cpp) illustrates with arithmetic involving
1

5
.
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Listing 4.17: imprecise5th.cpp

#include <iostream>

int main() {
double one = 1.0,

one_fifth = 1.0/5.0,
zero = one - one_fifth - one_fifth - one_fifth

- one_fifth - one_fifth;

std::cout << "one = " << one << ", one_fifth = " << one_fifth
<< ", zero = " << zero << '\n';

}

one = 1, one_fifth = 0.2, zero = 5.55112e-017

Surely the reported answer (5.551122× 10−17 = 0.00000000000000005551122) is close to the correct

answer (zero). If you round it to the one-quadrillionth place (15 places behind the decimal point), it is

correct.

What are the ramifications for programmers of this inexactness of floating-point numbers? Section 9.4.6

shows how the misuse of floating-point values can lead to logic errors in programs.

Being careful to avoid overflow and underflow, integer arithmetic is exact and, on most computer sys-

tems, faster than floating-point arithmetic. If an application demands the absolute correct answer and inte-

gers are appropriate for the computation, you should choose integers. For example, in financial calculations

it is important to keep track of every cent. The exact nature of integer arithmetic makes integers an attractive

option. When dealing with numbers, an integer type should be the first choice of programmers.

The limitations of floating-point numbers are unavoidable since computers have finite resources. Com-

promise is inevitable even when we do our best to approximate values with infinite characteristics in a finite

way. Despite their inexactness, double-precision floating-point numbers are used every day throughout

the world to solve sophisticated scientific and engineering problems; for example, the appropriate use of

floating-point numbers have enabled space probes to reach distant planets. In the example C++ programs

above that demonstrate the inexactness of floating-point numbers, the problems largely go away if we agree

that we must compute with the most digits possible and then round the result to fewer digits. Floating-point

numbers provide a good trade-off of precision for practicality.

4.9 More Arithmetic Operators

As Listing 4.12 (enhancedtimeconv.cpp) demonstrates, an executing program can alter a variable’s value

by performing some arithmetic on its current value. A variable may increase by one or decrease by five.

The statement

x = x + 1;

increments x by one, making it one bigger than it was before this statement was executed. C++ has a shorter

statement that accomplishes the same effect:

x++;

This is the increment statement. A similar decrement statement is available:
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x--; // Same as x = x - 1;

These statements are more precisely post-increment and post-decrement operators. There are also pre-

increment and pre-decrement forms, as in

--x; // Same as x = x - 1;
++y; // Same as y = y + 1;

When they appear alone in a statement, the pre- and post- versions of the increment and decrement

operators work identically. Their behavior is different when they are embedded within a more complex

statement. Listing 4.18 (prevspost.cpp) demonstrates how the pre- and post- increment operators work

slightly differently.

Listing 4.18: prevspost.cpp

#include <iostream>

int main() {
int x1 = 1, y1 = 10, x2 = 100, y2 = 1000;
std::cout << "x1=" << x1 << ", y1=" << y1

<< ", x2=" << x2 << ", y2=" << y2 << '\n';
y1 = x1++;
std::cout << "x1=" << x1 << ", y1=" << y1

<< ", x2=" << x2 << ", y2=" << y2 << '\n';
y2 = ++x2;
std::cout << "x1=" << x1 << ", y1=" << y1

<< ", x2=" << x2 << ", y2=" << y2 << '\n';
}

Listing 4.18 (prevspost.cpp) prints

x1=1, y1=10, x2=100, y2=1000
x1=2, y1=1, x2=100, y2=1000
x1=2, y1=1, x2=101, y2=101

If x1 has the value 1 just before the statement

y1 = x1++;

then immediately after the statement executes x1 is 2 and y1 is 1.

If x1 has the value 1 just before the statement

y1 = ++x1;

then immediately after the statement executes x1 is 2 and y1 is also 2.

As you can see, the pre-increment operator uses the new value of the incremented variable when eval-

uating the overall expression. In contrast, the post-increment operator uses the original value of the in-

cremented variable when evaluating the overall expression. The pre- and post-decrement operator behaves

similarly.

For beginning programmers it is best to avoid using the increment and decrement operators within more

complex expressions. We will use them frequently as standalone statements since there is no danger of

misinterpreting their behavior when they are not part of a more complex expression.
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C++ provides a more general way of simplifying a statement that modifies a variable through simple

arithmetic. For example, the statement

x = x + 5;

can be shorted to

x += 5;

This statement means “increase x by five.” Any statement of the form

x op= exp;

where

• x is a variable.

• op= is an arithmetic operator combined with the assignment operator; for our purposes, the ones most

useful to us are +=, -=, *=, /=, and %=.

• exp is an expression compatible with the variable x.

Arithmetic reassignment statements of this form are equivalent to

x = x op exp;

This means the statement

x *= y + z;

is equivalent to

x = x * (y + z);

The version using the arithmetic assignment does not require parentheses. The arithmetic assignment is

especially handy if a variable with a long name is to be modified; consider

temporary_filename_length = temporary_filename_length / (y + z);

versus

temporary_filename_length /= y + z;
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Figure 4.10 The bit positions of a 32-bit C++ unsigned integer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Do not accidentally reverse the order of the symbols for the arithmetic assignment

operators, like in the statement

x =+ 5;

Notice that the + and = symbols have been reversed. The compiler interprets this

statement as if it had been written

x = +5;

that is, assignment and the unary operator. This assigns x to exactly five instead

of increasing it by five.

Similarly,

x =- 3;

would assign −3 to x instead of decreasing x by three.

Section 4.10 examines some additional operators available in C++.

4.10 Bitwise Operators

In addition to the common arithmetic operators introduced in Section 4.1, C++ provides a few other special-

purpose arithmetic operators. These special operators allow programmers to examine or manipulate the

individual bits that make up data values. They are known as the bitwise operators. These operators consist

of &, |, ^, ∼ , >>, and <<. Applications programmers generally do not need to use bitwise operators very

often, but bit manipulation is essential in many systems programming tasks.

Consider 32-bit unsigned integers. The bit positions usually are numbered right to left, starting with

zero. Figure 4.10 shows how the individual bit positions often are numbered.

The bitwise and operator, &, takes two integer subexpressions and computes an integer result. The

expression e1 & e2 is evaluated as follows:

If bit 0 in both e1 and e2 is 1, then bit 0 in the result is 1; otherwise, bit 0 in the result is 0.

If bit 1 in both e1 and e2 is 1, then bit 1 in the result is 1; otherwise, bit 1 in the result is 0.

If bit 2 in both e1 and e2 is 1, then bit 2 in the result is 1; otherwise, bit 2 in the result is 0.

...
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If bit 31 in both e1 and e2 is 1, then bit 31 in the result is 1; otherwise, bit 31 in the result is 0.

For example, the expression 13 & 14 evaluates to 12, since:

1310 = 000000000000000000000000000011012

& 1410 = 000000000000000000000000000011102

1210 = 000000000000000000000000000011002

Bits 2 and 3 are one for both 13 and 14; thus, bits 2 and 3 in the result must be one.

The bitwise or operator, |, takes two integer subexpressions and computes an integer result. The ex-

pression e1 | e2 is evaluated as follows:

If bit 0 in both e1 and e2 is 0, then bit 0 in the result is 0; otherwise, bit 0 in the result is 1.

If bit 1 in both e1 and e2 is 0, then bit 1 in the result is 0; otherwise, bit 1 in the result is 1.

If bit 2 in both e1 and e2 is 0, then bit 2 in the result is 0; otherwise, bit 2 in the result is 1.

...

If bit 31 in both e1 and e2 is 0, then bit 31 in the result is 0; otherwise, bit 31 in the result is 1.

For example, the expression 13 | 14 evaluates to 15, since:

1310 = 000000000000000000000000000011012

| 1410 = 000000000000000000000000000011102

1510 = 000000000000000000000000000011112

Bits 4–31 are zero in both 13 and 14. In bits 0–3 either 13 has a one or 14 has a one; therefore, the result

has ones in bits 0–3 and zeroes everywhere else.

The bitwise exclusive or (often refered to as xor) operator (^) takes two integer subexpressions and

computes an integer result. The expression e1 ^ e2 is evaluated as follows:

If bit 0 in e1 is the same as bit 0 in e2, then bit 0 in the result is 0; otherwise, bit 0 in the result is 1.

If bit 1 in e1 is the same as bit 1 in e2, then bit 1 in the result is 0; otherwise, bit 1 in the result is 1.

If bit 2 in e1 is the same as bit 2 in e2, then bit 2 in the result is 0; otherwise, bit 2 in the result is 1.

...

If bit 31 in e1 is the same as bit 31 in e2, then bit 31 in the result is 0; otherwise, bit 31 in the result

is 1.

For example, the expression 13 ^ 14 evaluates to 3, since:

1310 = 000000000000000000000000000011012

ˆ 1410 = 000000000000000000000000000011102

310 = 000000000000000000000000000000112

Bits 0 and 1 differ in 13 and 14, so these bits are one in the result. The bits match in all the other positions,

so these positions must be set to zero in the result.

The bitwise negation operator ( ∼ ) is a unary operator that inverts all the bits of its expression. The

expression ∼ e is evaluated as follows:

©2018 Richard L. Halterman Draft date: December 2, 2018



4.10. BITWISE OPERATORS 74

If bit 0 in e is 0, then bit 0 in the result is 1; otherwise, bit 0 in the result is 0.

If bit 1 in e is 0, then bit 1 in the result is 1; otherwise, bit 1 in the result is 0.

If bit 2 in e is 0, then bit 2 in the result is 1; otherwise, bit 2 in the result is 0.

...

If bit 31 in e is 0, then bit 31 in the result is 1; otherwise, bit 31 in the result is 0.

For example, the unsigned expression ∼ 13u evaluates to 4,294,967,282, since

1310 = 000000000000000000000000000011012

negate ↓
−1410 = 111111111111111111111111111100102

For signed integers the 31st bit stores the number’s sign. Signed integers use a representation called two’s

complement binary, a slight variation of the standard binary layout. Suffice it to say that the int expression

∼ 13 evaluates to the same bit pattern as ∼ 13u, but as a signed integer it represents −14.

The shift operators move all the bits in an integer to the left or right:

• Shift left (<<). The expression x << y, where x and y are integer types, shifts all the bits in x
to the left y places. Zeros fill vacated positions. The bits shifted off the left side are discarded.

The expression 5 << 2 evaluates to 20, since 510 = 1012 shifted two places to the left yields

101002 = 2010. Observe that x << y is equal to x×2y.

• Shift right (>>). The expression x >> y, where x and y are integer types, shifts all the bits in x to

the right y places. What fills the vacated bits on the left depends on whether the integer is signed or

unsigned (for example, int vs. unsigned):

– For signed values the vacated bit positions are filled with the sign bit (the original leftmost bit).

– For unsigned values the vacated bit positions are filled with zeros.

The bits shifted off the right side are discarded. The expression 5 >> 2 evaluates to 1, since

510 = 1012 shifted two places to the left yields 0012 = 2010 (the original bits in positions 1

and 0 are shifted off the end and lost). Observe that x >> y is equal to x÷2y.

Do not confuse the left shift operator (<<) with the output stream insertion opera-

tor (<<). The operators are identical, but the context differentiates them. If the left

operand is an integer type, << means left shift; if the left operand is a stream out-

put object like std::cout, << means send the right-hand operand to the output

stream object for display.

Similarly, the input stream object std::cin uses the >> for a different purpose

from the right shift operator used with integers.

Listing 4.19 (bitwiseoperators.cpp) experiments with bitwise operators.
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Listing 4.19: bitwiseoperators.cpp

#include <iostream>

int main() {
int x, y;
std::cout << "Please enter two integers: ";
std::cin >> x >> y;
std::cout << x << " & " << y << " = " << (x & y) << '\n';
std::cout << x << " | " << y << " = " << (x | y) << '\n';
std::cout << x << " ^ " << y << " = " << (x ^ y) << '\n';
std::cout << "∼" << x << " = " << ∼x << '\n';
std::cout << x << " << " << 2 << " = " << (x << 2) << '\n';
std::cout << x << " >> " << 2 << " = " << (x >> 2) << '\n';

}

Developers use bitwise operations for a variety of systems-level programming tasks. For example, in a

graphical user interface (GUI), the user generates events by interacting with an application using the mouse

and a keyboard. One event might be clicking a mouse button over a particular graphical element (like a

button) within a window. Multiple pieces of information about this event can be stored in a single integer.

For example, bit 0 may indicate whether or not the ↑ Shift key was held down when the mouse button

was clicked. Bit 1 may be responsible for the Alt key, bit 3 for the Ctrl key, etc. Thus the integer value

5, which in binary is

00000000000000000000000000000101

means that when the mouse button was clicked both the ↑ Shift and Alt keys were being held down.

This might require a different action on the part of the program than if some other combination of keys

(or none) were being pressed. For example, suppose the int variable key_status holds information

about which keys the user was depressing during the most recent mouse click. Consider the expression

key_status & 1. The bit string

00000000000000000000000000000001

represents the expression 1, and the value of key_status is unknown, so key_status & 1 is

key_status = ????????????????????????????????2

& 110 = 000000000000000000000000000000012

010 or 110 = 0000000000000000000000000000000?2

If the answer is zero, this means bit 0 is 0 in key_status, and so the ↑ Shift key is not depressed. On

the other hand, if the answer is one, this means bit 0 is 1, and so the ↑ Shift key is depressed. In the

expression

key_status & 1

the 1 is called a mask, since it serves to mask off, or “remove” the first 31 bits of key_status.

Usually the GUI library will define constants that help programmers examine or modify particular bits;

for example, given the following constants:

const int SHIFT_DOWN = 1; // This is 0...0001
const int CTRL_DOWN = SHIFT_DOWN << 1; // This is 0...0010
const int ALT_DOWN = CTRL_DOWN << 1; // This is 0...0100
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the expression

key_status & 1

is better written

key_status & SHIFT_DOWN

The expression

key_status & SHIFT_DOWN | ALT_DOWN

can test for both the ↑ Shift and Alt keys being down during the mouse event. Do you see how the

expression SHIFT_DOWN | ALT_DOWN means both keys are down simultaneously?

We can use masks to ensure that certain bits are on or off. To see how, consider the mask 5, which is

00000000000000000000000000000101

If x is a 32-bit integer variable, we can selectively turn on its bits 0 and 2 with the statement

x = x | 5;

Next, consider the unsigned value 4294967290u, which is ∼ 5u, or

11111111111111111111111111111010

If x is a 32-bit integer variable, we can selectively turn off its bits 0 and 2 with the statement

x = x & 4294967290u;

We cannot fully appreciate the utility of using bitwise operators for masking purposes until we consider

conditional execution in Chapter 5. Even then, since we concentrate on applications programming instead

of systems programming in this book, we will have little use for the bitwise operators except for a few

isolated situations. It is good to be aware of their presence, though, since their accidental use may lead to

difficult to diagnose compiler messages and logic errors.

Like the other C++ arithmetic operators that work on two operands, we may combine the bitwise binary

operators &, |, ^, <<, and >> with assignment to simplify the modification of a variable; for example, the

following statement

x = x | y; // Turn on bits in x determined by

may be written as

x |= y; // Turn on bits in x determined by

Table 4.6 lists the possibilities.

4.11 Algorithms

An algorithm is a finite sequence of steps, each step taking a finite length of time, that solves a problem or

computes a result. A computer program is one example of an algorithm, as is a recipe to make lasagna. In
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Assignment Short Cut

x = x & y; x &= y;
x = x | y; x |= y;
x = x ^ y; x ^= y;
x = x << y; x <<= y;
x = x >> y; x >>= y;

Table 4.6: The bitwise assignment operators

both of these examples, the order of the steps matter. In the case of lasagna, the noodles must be cooked

in boiling water before they are layered into the filling to be baked. It would be inappropriate to place the

raw noodles into the pan with all the other ingredients, bake it, and then later remove the already baked

noodles to cook them in boiling water separately. In the same way, the ordering of steps is very important

in a computer program. While this point may be obvious, consider the following sound argument:

1. The relationship between degrees Celsius and degrees Fahrenheit can be expressed as

◦C =
5

9
× (◦F −32)

2. Given a temperature in degrees Fahrenheit, the corresponding temperature in degrees Celsius can be

computed.

Armed with this knowledge, Listing 4.20 (faultytempconv.cpp) follows directly.

Listing 4.20: faultytempconv.cpp

// File faultytempconv.cpp

#include <iostream>

int main() {
double degreesF = 0, degreesC = 0;
// Define the relationship between F and C
degreesC = 5.0/9*(degreesF - 32);
// Prompt user for degrees F
std::cout << "Enter the temperature in degrees F: ";
// Read in the user's input
std::cin >> degreesF;
// Report the result
std::cout << degreesC << '\n';

}

Unfortunately, the executing program always displays

-17.7778

regardless of the input provided. The English description provided above is correct. No integer division

problems lurk, as in Listing 4.10 (tempconv.cpp). The problem lies simply in statement ordering. The

statement

degreesC = 5.0/9*(degreesF - 32);
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is an assignment statement, not a definition of a relationship that exists throughout the program. At the

point of the assignment, degreesF has the value of zero. The executing program computes and assigns

the degreesC variable before receiving degreesF’s value from the user.

As another example, suppose x and y are two integer variables in some program. How would we

interchange the values of the two variables? We want x to have y’s original value and y to have x’s original

value. This code may seem reasonable:

x = y;
y = x;

The problem with this section of code is that after the first statement is executed, x and y both have the same

value (y’s original value). The second assignment is superfluous and does nothing to change the values of

x or y. The solution requires a third variable to remember the original value of one the variables before it

is reassigned. The correct code to swap the values is

temp = x;
x = y;
y = temp;

This small example emphasizes the fact that algorithms must be specified precisely. Informal notions about

how to solve a problem can be valuable in the early stages of program design, but the coded program

requires a correct detailed description of the solution.

The algorithms we have seen so far have been simple. Statement 1, followed by Statement 2, etc. until

every statement in the program has been executed. Chapter 5 and Chapter 6 introduce some language

constructs that permit optional and repetitive execution of some statements. These constructs allow us to

build programs that do much more interesting things, but more complex algorithms are required to make it

happen. We must not lose sight of the fact that a complicated algorithm that is 99% correct is not correct.

An algorithm’s design and implementation can be derailed by inattention to the smallest of details.

4.12 Exercises

1. Is the literal 4 a valid C++ expression?

2. Is the variable x a valid C++ expression?

3. Is x + 4 a valid C++ expression?

4. What affect does the unary + operator have when applied to a numeric expression?

5. Sort the following binary operators in order of high to low precedence: +, -, *, /, %, =.

6. Write a C++ program that receives two integer values from the user. The program then should print the

sum (addition), difference (subtraction), product (multiplication), quotient (division), and remainder

after division (modulus). Your program must use only integers.

A sample program run would look like (the user enters the 10 and the 2 after the colons, and the

program prints the rest):

Please enter the first number: 10
Please enter the second number: 2
10 + 2 = 12
10 - 2 = 8
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10 * 2 = 20
10 / 2 = 5
10 % 2 = 0

Can you explain the results it produces for all of these operations?

7. Write a C++ program that receives two double-precision floating-point values from the user. The

program then should print the sum (addition), difference (subtraction), product (multiplication), and

quotient (division). Your program should use only integers.

A sample program run would look like (the user enters the 10 and the 2.5 after the colons, and the

program prints the rest):

Please enter the first number: 10
Please enter the second number: 2.5
10 + 2.5 = 12.5
10 - 2.5 = 7.5
10 * 2.5 = 25
10 / 2.5 = 4

Can you explain the results it produces for all these operations? What happens if you attempt to

compute the remainder after division (modulus) with double-precision floating-point values?

8. Given the following declaration:

int x = 2;

Indicate what each of the following C++ statements would print.

(a) std::cout << "x"<< '\n';

(b) std::cout << 'x'<< '\n';

(c) std::cout << x << '\n';

(d) std::cout << "x + 1"<< '\n';

(e) std::cout << 'x'+ 1 << '\n';

(f) std::cout << x + 1 << '\n';

9. Sort the following types in order from narrowest to widest: int, double, float, long, char.

10. Given the following declarations:

int i1 = 2, i2 = 5, i3 = -3;
double d1 = 2.0, d2 = 5.0, d3 = -0.5;

Evaluate each of the following C++ expressions.

(a) i1 + i2

(b) i1 / i2

(c) i2 / i1

(d) i1 * i3

(e) d1 + d2

(f) d1 / d2

(g) d2 / d1
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(h) d3 * d1

(i) d1 + i2

(j) i1 / d2

(k) d2 / i1

(l) i2 / d1

(m) i1/i2*d1

(n) d1*i1/i2

(o) d1/d2*i1

(p) i1*d1/d2

(q) i2/i1*d1

(r) d1*i2/i1

(s) d2/d1*i1

(t) i1*d2/d1

11. What is printed by the following statement:

std::cout << /* 5 */ 3 << '\n';

12. Given the following declarations:

int i1 = 2, i2 = 5, i3 = -3;
double d1 = 2.0, d2 = 5.0, d3 = -0.5;

Evaluate each of the following C++ expressions.

(a) i1 + (i2 * i3)

(b) i1 * (i2 + i3)

(c) i1 / (i2 + i3)

(d) i1 / i2 + i3

(e) 3 + 4 + 5 / 3

(f) (3 + 4 + 5) / 3

(g) d1 + (d2 * d3)

(h) d1 + d2 * d3

(i) d1 / d2 - d3

(j) d1 / (d2 - d3)

(k) d1 + d2 + d3 / 3

(l) (d1 + d2 + d3) / 3

(m) d1 + d2 + (d3 / 3)

(n) 3 * (d1 + d2) * (d1 - d3)

13. How are single-line comments different from block comments?

14. Can block comments be nested?

15. Which is better, too many comments or too few comments?
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16. What is the purpose of comments?

17. The programs in Listing 3.4 (variable.cpp), Listing 4.4 (reformattedvariable.cpp), and Listing 4.5

(reformattedvariable2.cpp) compile to the same machine code and behave exactly the same. What

makes one of the programs clearly better than the others?

18. Why is human readability such an important consideration?

19. Consider the following program which contains some errors. You may assume that the comments

within the program accurately describe the program’s intended behavior.

#include <iostream>

int main() {
int n1, n2, d1; // 1
// Get two numbers from the user
cin << n1 << n2; // 2
// Compute sum of the two numbers
std::cout << n1 + n2 << '\n'; // 3
// Compute average of the two numbers
std::cout << n1+n2/2 << '\n'; // 4
// Assign some variables
d1 = d2 = 0; // 5
// Compute a quotient
std::cout << n1/d1 << '\n'; // 6
// Compute a product
n1*n2 = d1; // 7
// Print result
std::cout << d1 << '\n'; // 8

}

For each line listed in the comments, indicate whether or not a compile-time, run-time, or logic error

is present. Not all lines contain an error.

20. What distinguishes a compiler warning from a compiler error? Should you be concerned about

warnings? Why or why not?

21. What are the advantages to enhancing the warning reporting capabilities of the compiler?

22. Write the shortest way to express each of the following statements.

(a) x = x + 1;

(b) x = x / 2;

(c) x = x - 1;

(d) x = x + y;

(e) x = x - (y + 7);

(f) x = 2*x;

(g) number_of_closed_cases = number_of_closed_cases + 2*ncc;

23. What is printed by the following code fragment?
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int x1 = 2, y1, x2 = 2, y2;
y1 = ++x1;
y2 = x2++;
std::cout << x1 << " " << x2 << '\n';
std::cout << y1 << " " << y2 << '\n';

Why does the output appear as it does?

24. Consider the following program that attempts to compute the circumference of a circle given the

radius entered by the user. Given a circle’s radius, r, the circle’s circumference, C is given by the

formula:

C = 2πr

#include <iostream>

int main() {
double C, r;
const double PI = 3.14159;
// Formula for the area of a circle given its radius
C = 2*PI*r;
// Get the radius from the user
cout >> "Please enter the circle's radius: ";
cin << r;
// Print the circumference
std::cout << "Circumference is " << C << '\n';

}

(a) The compiler issues a warning. What is the warning?

(b) The program does not produce the intended result. Why?

(c) How can it be repaired so that it not only eliminates the warning but also removes the logic

error?

25. In mathematics, the midpoint between the two points (x1,y1) and (x2,y2) is computed by the formula

(

x1 + x2

2
,

y1 + y2

2

)

Write a C++ program that receives two mathematical points from the user and computes and prints

their midpoint.

A sample run of the program produces

Please enter the first point: (0,0)
Please enter the second point: (1,1)
The midpoint of (0,0) and (1,1) is (0.5,0.5)

The user literally enters "(0,0)" and "(1,1)" with the parentheses and commas as shown. To see how

to do this, suppose you want to allow a user to enter the point (2.3,9), assigning the x component

of the point to a variable named x and the y component to a variable named y. You can add the

following code fragment to your program to achieve the desired effect:
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Food Calories

Bean burrito 357

Salad w/dressing 185

Milkshake 388

Table 4.7: Calorie content of several fast food items

double x, y;
char left_paren, comma, right_paren;
std::cin >> left_paren >> x >> comma >> y >> right_paren;

If the user literally types (2.3,9), the std::cin statement will assign the ( character to the

variable left_paren. It next will assign 2.3 to the variable x. It assigns the , character to the

variable named comma, the value 9 to the y variable, and the ) character to the right_paren
variable. The left_paren, comma, and right_paren variables are just placeholders for the

user’s input and are not used elsewhere within the program. In reality, the user can type in other

characters in place of the parentheses and comma as long as the numbers are in the proper location

relative to the characters; for example, the user can type *2.3:9#, and the program will interpret

the input as the point (2.3,9).

26. Table 4.7 lists the Calorie contents of several foods. Running or walking burns off about 100 Calories

per mile. Write a C++ program that requests three values from the user: the number of bean burritos,

salads, and shakes consumed (in that order). The program should then display the number of miles

that must be run or walked to burn off the Calories represented in that food. The program should run

as follows (the user types in the 3 2 1):

Number of bean burritos, bowls of salad, and milkshakes eaten? 3 2 1

You ingested 1829 Calories
You will have to run 18.29 miles to expend that much energy

Observe that the result is a floating-point value, so you should use floating-point arithmetic to com-

pute the answers for this problem.
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Chapter 5

Conditional Execution

All the programs in the preceding chapters execute exactly the same statements regardless of the input, if

any, provided to them. They follow a linear sequence: Statement 1, Statement 2, etc. until the last statement

is executed and the program terminates. Linear programs like these are very limited in the problems they

can solve. This chapter introduces constructs that allow program statements to be optionally executed,

depending on the context (input) of the program’s execution.

5.1 Type bool

Arithmetic expressions evaluate to numeric values; a Boolean expression, evaluates to true or false.

While Boolean expressions may appear very limited on the surface, they are essential for building more

interesting and useful programs.

C++ supports the non-numeric data type bool, which stands for Boolean. The term Boolean comes

from the name of the British mathematician George Boole. A branch of discrete mathematics called

Boolean algebra is dedicated to the study of the properties and the manipulation of logical expressions.

Compared to the numeric types, the bool type is very simple in that it can represent only two values:

true or false. Listing 5.1 (boolvars.cpp) is a simple program demonstrating the use of Boolean vari-

ables.

Listing 5.1: boolvars.cpp

#include <iostream>

int main() {
// Declare some Boolean variables
bool a = true, b = false;
std::cout << "a = " << a << ", b = " << b << '\n';
// Reassign a
a = false;
std::cout << "a = " << a << ", b = " << b << '\n';
// Mix integers and Booleans
a = 1;
b = 1;
std::cout << "a = " << a << ", b = " << b << '\n';
// Assign Boolean value to an integer
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Operator Meaning

== Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

!= Not equal to

Table 5.1: C++ Relational operators

int x = a, y = true;
std::cout << "a = " << a << ", b = " << b

<< ", x = " << x << ", y = " << y << '\n';
// More mixing
a = 1725; // Warning issued
b = -19; // Warning issued
std::cout << "a = " << a << ", b = " << b << '\n';

}

As you can see from running Listing 5.1 (boolvars.cpp), the Boolean values false and true are

represented as integer 0 and integer 1. More precisely, zero represents the bool value false, and any

non-zero integer (positive or negative) means true. The direct assignment to a bool variable of an integer

other than 0 or 1 may result in a warning (Visual C++ reports truncation of ’int’ to ’bool’), but the variable

is still interpreted as true. The data type bool is basically a convenience for programmers; any C++

program that uses bool variables can be rewritten using integers instead to achieve the same results. While

Boolean values and variables are freely compatible and interchangeable with integers, the bool type is

convenient and should be used when the context involves truth values instead of numbers.

It is important to note that the Visual C++ compiler issues warnings for the last two assignment state-

ments in Listing 5.1 (boolvars.cpp). Even though any non-zero value is considered true, 1 is the preferred

integer equivalent to true (as you can see when you attempt to print the literal value true). Since the

need to assign to a Boolean variable a value other than true or false or the equivalent 1 or 0 should be

extremely rare, the compiler’s message alerts the programmer to check to make sure the assignment is not

a mistake.

5.2 Boolean Expressions

The simplest Boolean expressions are false and true, the Boolean literals. A Boolean variable is also

a Boolean expression. An expression comparing numeric expressions for equality or inequality is also a

Boolean expression. The simplest kinds of Boolean expressions use relational operators to compare two

expressions. Table 5.1 lists the relational operators available in C++.

Table 5.2 shows some simple Boolean expressions with their associated values. An expression like

10 < 20 is legal but of little use, since the expression true is equivalent, simpler, and less likely to

confuse human readers. Boolean expressions are extremely useful when their truth values depend on the

values of one or more variables.

The relational operators are binary operators and are all left associative. They all have a lower prece-

dence than any of the arithmetic operators; therefore, the expression
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Expression Value

10 < 20 always true

10 >= 20 always false

x == 10 true only if x has the value 10

X != y true unless x and y have the same values

Table 5.2: Relational operator examples

x + 2 < y / 10

is evaluated as if parentheses were placed as so:

(x + 2) < (y / 10)

C++ allows statements to be simple expressions; for example, the statement

x == 15;

may look like an attempt to assign the value 15 to the variable x, but it is not.

The = operator performs assignment, but the == operator checks for relational

equality. If you make a mistake and use == as shown here, Visual C++ will issue

a warning that includes the message

warning C4553: ’==’ : operator has no effect; did you intend ’=’?

Recall from Section 4.6.4 that a compiler warning does not indicate a violation of

the rules of the language; rather it alerts the programmer to a possible trouble spot

in the code.

Another example of an expression used as a statement is

x + 15;

This statement is a legal (but useless) C++ statement, and the compiler notifies us

accordingly:

warning C4552: ’+’ : operator has no effect; expected operator with

side-effect

Why are expressions allowed as statements? Some simple expressions have side

effects that do alter the behavior of the program. One example of such an ex-

pression is x++. Listing 4.18 (prevspost.cpp) showed how x++ behaves both as a

standalone statement and as an expression within a larger statement. A more com-

mon example is the use of a function call (which is an expression) as standalone

a statement. (We introduce functions in Chapter 8.) In order to keep the structure

of the language as uniform as possible, C++ tolerates useless expressions as state-

ments to enable programmers to use the more useful expression-statements. For-

tunately, most compilers issue informative warnings about the useless expression-

statements to keep developers on track.
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5.3 The Simple if Statement

The Boolean expressions described in Section 5.2 at first may seem arcane and of little use in practical

programs. In reality, Boolean expressions are essential for a program to be able to adapt its behavior at run

time. Most truly useful and practical programs would be impossible without the availability of Boolean

expressions.

The run-time exceptions mentioned in Section 4.6 arise from logic errors. One way that Listing 4.6

(dividedanger.cpp) can fail is when the user enters a zero for the divisor. Fortunately, programmers can take

steps to ensure that division by zero does not occur. Listing 5.2 (betterdivision.cpp) shows how it might be

done.

Listing 5.2: betterdivision.cpp

#include <iostream>

int main() {
int dividend, divisor;

// Get two integers from the user
std::cout << "Please enter two integers to divide:";
std::cin >> dividend >> divisor;
// If possible, divide them and report the result
if (divisor != 0)

std::cout << dividend << "/" << divisor << " = "
<< dividend/divisor << '\n';

}

The second std::cout statement may not always be executed. In the following run

Please enter two integers to divide: 32 8
32/8 = 4

it is executed, but if the user enters a zero as the second number:

Please enter two integers to divide: 32 0

the program prints nothing after the user enters the values.

The last statement in Listing 5.2 (betterdivision.cpp) begins with the reserved word if. The if state-

ment allows code to be optionally executed. In this case, the printing statement is executed only if the

variable divisor’s value is not zero.

The Boolean expression

divisor != 0

determines if the single statement that follows the right parenthesis is executed. If divisor is not zero,

the message is printed; otherwise, the program prints nothing.

Figure 5.1 shows how program execution flows through the if statement. of Listing 5.2 (betterdivision.cpp).

The general form of a simple if statement is
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Figure 5.1 if flowchart

do the division 

and print result

Is

divisor ≠ 0?

yes

no
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condition

statement

if (           )

• The reserved word if begins the if statement.

• The Boolean expression condition determines whether or not the body will be executed. The Boolean

expression must be enclosed within parentheses as shown.

• The statement is the statement to be executed if the Boolean expression is true. The statement makes

up the body of the if statement. Section 5.4 shows how the body can be composed of multiple

statements.

Good coding style dictates we should indent the body to emphasize the optional execution and improve

the program’s readability. The compiler does not require the indentation. Sometimes programmers will

place a one-statement body on the same line as the if; for example, the following if statement optionally

assigns y:

if (x < 10)
y = x;

and could be written as

if (x < 10) y = x;

but should not be written as

if (x < 10)
y = x;

because the lack of indentation hides the fact that the program optionally executes the assignment statement.

The compiler will accept it, but it is misleading to human readers accustomed to the indentation convention.

The compiler, of course, will accept the code written as

if(x<10)y=x;

but the lack of spaces makes it difficult for humans to read.
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When the if statement is written the preferred way using two lines of source

code, it is important not to put a semicolon at the end of the first line:

if (x < 10); // No! Don't do this!
y = x;

Here, the semicolon terminates the if statement, but the indentation implies that

the second line is intended to be the body of the if statement. The compiler,

however, interprets the badly formatted if statement as if it were written as

if (x < 10)
; // This is what is really going on.

y = x;

This is legal in C++; it means the if statement has an empty body. In which

case the assignment is not part of the body. The assignment statement is after

the body and always will be executed regardless of the truth value of the Boolean

expression.

When checking for equality, as in

if (x == 10)
std::cout << "ten";

be sure to use the relational equality operator (==), not the assignment opera-

tor (=). Since an assignment statement has a value (the value that is assigned,

see Section 4.3), C++ allows = within the conditional expression. It is, however,

almost always a mistake when beginning programmers use = in this context. Vi-

sual C++ at warning Level 4 checks for the use of assignment within a conditional

expression; the default Level 3 does not.

5.4 Compound Statements

Sometimes you need to optionally execute more than one statement based on a particular condition. List-

ing 5.3 (alternatedivision.cpp) shows how you must use curly braces to group multiple statements together

into one compound statement.

Listing 5.3: alternatedivision.cpp

#include <iostream>

int main() {
int dividend, divisor, quotient;

// Get two integers from the user
std::cout << "Please enter two integers to divide:";
std::cin >> dividend >> divisor;
// If possible, divide them and report the result
if (divisor != 0) {
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quotient = dividend / divisor;
std::cout << dividend << " divided by " << divisor << " is "

<< quotient << '\n';
}

}

The assignment statement and printing statement are both a part of the body of the if statement. Given

the truth value of the Boolean expression divisor != 0 during a particular program run, either both

statements will be executed or neither statement will be executed.

A compound statement consists of zero or more statements grouped within curly braces. We say the

curly braces define a block of statements. As a matter of style many programmers always use curly braces

to delimit the body of an if statement even if the body contains only one statement:

if (x < 10) {
y = x;

}

They do this because it is easy to introduce a logic error if additional statements are added to the body later

and the programmer forgets to add then required curly braces.

The format of the following code

if (x < 10)
y = x;
z = x + 5;

implies that both assignments are part of the body of the if statement. Since

multiple statements making up the body must be in a compound statement within

curly braces, the compiler interprets the code fragment as if it had been written

if (x < 10)
y = x;

z = x + 5;

Such code will optionally execute the first assignment statement and always exe-

cute the second assignment statement.

The programmer probably meant to write it as

if (x < 10) {
y = x;
z = x + 5;

}

The curly braces are optional if the body consists of a single statement. If the body consists of only one

statement and curly braces are not used, then the semicolon that terminates the statement in the body also

terminates the if statement. If curly braces are used to delimit the body, a semicolon is not required after

the body’s close curly brace.

An empty pair of curly braces represents an empty block. An empty block is a valid compound state-

ment.
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5.5 The if/else Statement

One undesirable aspect of Listing 5.2 (betterdivision.cpp) is if the user enters a zero divisor, the program

prints nothing. It may be better to provide some feedback to the user to indicate that the divisor provided

cannot be used. The if statement has an optional else clause that is executed only if the Boolean expres-

sion is false. Listing 5.4 (betterfeedback.cpp) uses the if/else statement to provide the desired effect.

Listing 5.4: betterfeedback.cpp

#include <iostream>

int main() {
int dividend, divisor;

// Get two integers from the user
std::cout << "Please enter two integers to divide:";
std::cin >> dividend >> divisor;
// If possible, divide them and report the result
if (divisor != 0)

std::cout << dividend << "/" << divisor << " = "
<< dividend/divisor << '\n';

else
std::cout << "Division by zero is not allowed\n";

}

A given program run will execute exactly one of either the if body or the else body. Unlike in

Listing 5.2 (betterdivision.cpp), a message is always displayed.

Please enter two integers to divide: 32 0
Division by zero is not allowed

The else clause contains an alternate body that is executed if the condition is false. The program’s flow

of execution is shown in Figure 5.2.

Listing 5.4 (betterfeedback.cpp) avoids the division by zero run-time error that causes the program to

terminate prematurely, but it still alerts the user that there is a problem. Another application may handle

the situation in a different way; for example, it may substitute some default value for divisor instead of

zero.

The general form of an if/else statement is

condition

statement 1

if (           )

else

statement 2
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Figure 5.2 if/else flowchart
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• The reserved word if begins the if/else statement.

• The condition is a Boolean expression that determines whether the running program will execute

statement 1 or statement 2. As with the simple if statement, the condition must appear within

parentheses.

• The program executes statement 1 if the condition is true. To make the if/else statement more

readable, indent statement 1 more spaces than the if line. This part of the if statement is sometimes

called the body of the if.

• The reserved word else begins the second part of the if/else statement.

• The program executes statement 2 if the condition is false. To make the if/else statement more

readable, indent statement 2 more spaces than the else line. This part of the if/else statement is

sometimes called the body of the else.

The body of the else clause of an if/else statement may be a compound statement:

if (x == y)
std::cout << x;

else {
x = 0;
std::cout << y;

}

or the if body alone may be a compound statement:

if (x == y) {
std::cout << x;
x = 0;

}
else

std::cout << y;

or both parts may be compound:

if (x == y) {
std::cout << x;
x = 0;

}
else {

std::cout << y;
y = 0;

}

or, as in Listing 5.4 (betterfeedback.cpp), both the if body and the else body can be simple statements.

Remember, if you wish to associate more than one statement with the body of

the if or else, you must use a compound statement. Compound statements are

enclosed within curly braces ({}).
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If you ever attempt to use an if/else statement and discover that you need to leave the else clause

empty, as in

if (x == 2)
std::cout << "x = " << x << '\n';

else
; // Nothing to do otherwise

or, using a slightly different syntax, as

if (x == 2)
std::cout << "x = " << x << '\n';

else {
} // Nothing to do otherwise

you instead should use a simple if statement:

if (x == 2)
std::cout << "x = " << x << '\n';

The empty else clauses shown above do work, but they complicate the code and make it more difficult for

humans to read.

Due to the imprecise representation of floating-point numbers (see Listing 4.17 (imprecise5th.cpp) in

Section 4.1), programmers must use caution when using the equality operator (==) by itself to compare

floating-point expressions. Listing 5.5 (samedifferent.cpp) uses an if/else statement to demonstrate the

perils of using the equality operator with floating-point quantities.

Listing 5.5: samedifferent.cpp

#include <iostream>
#include <iomanip>

int main() {
double d1 = 1.11 - 1.10,

d2 = 2.11 - 2.10;
std::cout << "d1 = " << d1 << '\n';
std::cout << "d2 = " << d2 << '\n';
if (d1 == d2)

std::cout << "Same\n";
else

std::cout << "Different\n";
std::cout << "d1 = " << std::setprecision(20) << d1 << '\n';
std::cout << "d2 = " << std::setprecision(20) << d2 << '\n';

}

In Listing 5.5 (samedifferent.cpp) the displayed values of d1 and d2 are rounded so they appear equivalent,

but internally the exact representations are slightly different. By including the header iomanip we can use

the std::setprecision stream manipulator to force std::cout to display more decimal places in

the floating-point number it prints. Observe from the output of Listing 5.5 (samedifferent.cpp) that the two

quantities that should be identically 0.01 are actually slightly different.

d1 = 0.01
d2 = 0.01
Different
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e1 e2 e1 && e2 e1 || e2 !e1

false false false false true

false true false true true

true false false true false

true true true true false

Table 5.3: Logical operators—e1 and e2 are Boolean expressions

d1 = 0.010000000000000009
d2 = 0.0099999999999997868

This result should not discourage you from using floating-point numbers where they truly are needed.

In Section 9.4.6 we will see how to handle floating-point comparisons properly.

5.6 Compound Boolean Expressions

Simple Boolean expressions, each involving one relational operator, can be combined into more complex

Boolean expressions using the logical operators && (and), || (or), and ! (not). A combination of two or

more Boolean expressions using logical operators is called a compound Boolean expression.

To introduce compound Boolean expressions, consider a computer science degree that requires, among

other computing courses, Operating Systems and Programming Languages. If we isolate those two courses,

we can say a student must successfully complete both Operating Systems and Programming Languages to

qualify for the degree. A student that passes Operating Systems but not Programming Languages will not

have met the requirements. Similarly, Programming Languages without Operating Systems is insufficient,

and a student completing neither Operating Systems nor Programming Languages surely does not qualify.

Logical AND works in exactly the same way. If e1 and e2 are two Boolean expressions, e1 && e2 is true

only if e1 and e2 are both true; if either one is false or both are false, the compound expression is false.

To illustrate logical OR, consider two mathematics courses, Differential Equations and Linear Algebra.

A computer science degree requires one of those two courses. A student who successfully completes

Differential Equations but does not take Linear Algebra meets the requirement. Similarly, a student may

take Linear Algebra but not Differential Equations. It is important to note the a student may elect to take

both Differential Equations and Linear Algebra (perhaps on the way to a mathematics minor), but the

requirement is no less fulfilled.

Logical OR works in a similar fashion. Given our Boolean expressions e1 and e2, the compound ex-

pression e1 || e2 is false only if e1 and e2 are both false; if either one is true or both are true, the compound

expression is true. Note that logical OR is an inclusive or, not an exclusive or. In informal conversion we

often imply exclusive or in a statement like “Would you like cake or ice cream for dessert?” The implica-

tion is one or the other, not both. In computer programming the or is inclusive; if both subexpressions in

an or expression are true, the or expression is true.

Logical NOT simply reverses the truth value of the expression to which it is applied. If e is a true

Boolean expression, !e is false; if e is false, !e is true.

Table 5.3 is called a truth table. It shows all the combinations of truth values for two simple expres-

sions and the values of compound Boolean expressions built from applying the &&, ||, and ! C++ logical

operators.

Both && and || are binary operators; that is, they require two operands, both of which must be Boolean
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expressions. Logical not (!) is a unary operator (see Section 4.1); it requires a single Boolean operand

immediately to its right.

Operator ! has higher precedence than both && and ||. && has higher precedence than ||. && and ||
are left associative; ! is right associative. && and || have lower precedence than any other binary operator

except assignment. This means the expression

x <= y && x <= z

is evaluated

(x <= y) && (x <= z)

Some programmers prefer to use the parentheses as shown here even though they are not required. The

parentheses improve the readability of complex expressions, and the compiled code is no less efficient.

The relational operators such as < compare two operands. The result of the com-

parison is a Boolean value, which is freely convertible to an integer. The misappli-

cation of relational operators can lead to surprising results; consider, for example,

the expression

1 <= x <= 10

This expression is always true, regardless of the value of x! If the programmer’s

intent is to represent the mathematical notion of x falling within the range 1...10

inclusive, as in 1 ≤ x ≤ 10, the above C++ expression is not equivalent.

The expression

1 <= x <= 10

is evaluated as

(1 <= x) <= 10

If x is greater than or equal to one, the subexpression 1 ∼ <= ∼ x evaluates to

true, or integer 1. Integer 1, however, is always less than 10, so the overall expres-

sion is true. If instead x is less than one, the subexpression 1 ∼ <= ∼ x evaluates

to false, or integer 0. Integer 0 is always less than 10, so the overall expression is

true. The problem is due to the fact that C++ does not strictly distinguish between

Boolean and integer values.

A correct way to represent the mathematical notion of 1 ≤ x ≤ 10 is

1 <= x && x <= 10

In this case x must simultaneously be greater than or equal to 1 and less than

or equal to 10. The revised Boolean expression is a little more verbose than the

mathematical representation, but it is the correct formulation for C++.

The following section of code assigns the indicated values to a bool:

bool b;
int x = 10;
int y = 20;
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b = (x == 10); // assigns true to b
b = (x != 10); // assigns false to b
b = (x == 10 && y == 20); // assigns true to b
b = (x != 10 && y == 20); // assigns false to b
b = (x == 10 && y != 20); // assigns false to b
b = (x != 10 && y != 20); // assigns false to b
b = (x == 10 || y == 20); // assigns true to b
b = (x != 10 || y == 20); // assigns true to b
b = (x == 10 || y != 20); // assigns true to b
b = (x != 10 || y != 20); // assigns false to b

Convince yourself that the following expressions are equivalent:

(x != y)
!(x == y)
(x < y || x > y)

In the expression e1 && e2 both subexpressions e1 and e2 must be true for the overall expression to be

true. Since the && operator evaluates left to right, this means that if e1 is false, there is no need to evaluate

e2. If e1 is false, no value of e2 can make the expression e1 && e2 true. The logical and operator first tests the

expression to its left. If it finds the expression to be false, it does not bother to check the right expression.

This approach is called short-circuit evaluation. In a similar fashion, in the expression e1 || e2, if e1 is

true, then it does not matter what value e2 has—a logical or expression is true unless both subexpressions

are false. The || operator uses short-circuit evaluation also.

Why is short-circuit evaluation important? Two situations show why it is important to consider:

• The order of the subexpressions can affect performance. When a program is running, complex ex-

pressions require more time for the computer to evaluate than simpler expressions. We classify an

expression that takes a relatively long time to evaluate as an expensive expression. If a compound

Boolean expression is made up of an expensive Boolean subexpression and an less expensive Boolean

subexpression, and the order of evaluation of the two expressions does not affect the behavior of the

program, then place the more expensive Boolean expression second. If the first subexpression is false

and && is being used, then the expensive second subexpression is not evaluated; if the first subex-

pression is true and || is being used, then, again, the expensive second subexpression is avoided.

• Subexpressions can be ordered to prevent run-time errors. This is especially true when one of the

subexpressions depends on the other in some way. Consider the following expression:

(x != 0) && (z/x > 1)

Here, if x is zero, the division by zero is avoided. If the subexpressions were switched, a run-time

error would result if x is zero.
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Arity Operators Associativity

unary (post) ++, (post) --, static_cast
unary (pre) ++, (pre) --, !, +, -
binary *, /, % left

binary +, - left

binary <<, >> left

binary >, <, >=, <= left

binary ==, != left

binary && left

binary || left

binary =, +=, -=, *=, /=, %= right

Table 5.4: Precedence of C++ Operators (High to Low)

Suppose you wish to print the word “OK” if a variable x is 1, 2, or 3. An informal

translation from English might yield:

if (x == 1 || 2 || 3)
std::cout << "OK\n";

Unfortunately, x’s value is irrelevant; the code always prints the word “OK.” Since

the == operator has lower precedence than ||, the expression

x == 1 || 2 || 3

is interpreted as

(x == 1) || 2 || 3

The expression x == 1 is either true or false, but integer 2 is always interpreted

as true, and integer 3 is interpreted as true is as well.

The correct statement would be

if (x == 1 || x == 2 || x == 3)
std::cout << "OK\n";

The revised Boolean expression is more verbose and less similar to the English

rendition, but it is the correct formulation for C++.

Our current list of C++ operators is shown in Table 5.4.

5.7 Nested Conditionals

The statements in the body of the if or the else may be any C++ statements, including other if/else
statements. We can use nested if statements to build arbitrarily complex control flow logic. Consider

Listing 5.6 (checkrange.cpp) that determines if a number is between 0 and 10, inclusive.

Listing 5.6: checkrange.cpp

#include <iostream>
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int main() {
int value;
std::cout << "Please enter an integer value in the range 0...10: ";
std::cin >> value;
if (value >= 0) // First check

if (value <= 10) // Second check
std::cout << "In range";

std::cout << "Done\n";
}

Listing 5.6 (checkrange.cpp) behaves as follows:

• The program checks the value >= 0 condition first. If value is less than zero, the executing

program does not evaluate the second condition and does not print In range, but it immediately

executes the print statement following the outer if statement which prints Done.

• If the executing program finds value to be greater than or equal to zero, it checks the second

condition. If the second condition is met, it displays the In range message; otherwise, it is not.

Regardless, the program prints Done before it terminates.

For the program to display the message In range both conditions of this nested if must be met. Said

another way, the first condition and the second condition must be met for the In range message to be printed.

From this perspective, we can rewrite the program to behave the same way with only one if statement, as

Listing 5.7 (newcheckrange.cpp) shows.

Listing 5.7: newcheckrange.cpp

#include <iostream>

int main() {
int value;
std::cout << "Please enter an integer value in the range 0...10: ";
std::cin >> value;
if (value >= 0 && value <= 10)

std::cout << "In range\n";
}

Listing 5.7 (newcheckrange.cpp) uses a logical && to check both conditions at the same time. Its logic

is simpler, using only one if statement, at the expense of a slightly more complex Boolean expression in

its condition. The second version is preferable here because simpler logic is usually a desirable goal.

Sometimes a program’s logic cannot be simplified as in Listing 5.7 (newcheckrange.cpp). In Listing 5.8

(enhancedcheckrange.cpp) one if statement alone is insufficient to implement the necessary behavior.

Listing 5.8: enhancedcheckrange.cpp

#include <iostream>

int main() {
int value;
std::cout << "Please enter an integer value in the range 0...10: ";
std::cin >> value;
if (value >= 0) // First check

if (value <= 10) // Second check

©2018 Richard L. Halterman Draft date: December 2, 2018



5.7. NESTED CONDITIONALS 102

std::cout << value << " is acceptable\n";
else

std::cout << value << " is too large\n";
else

std::cout << value << " is too small\n";
}

Listing 5.8 (enhancedcheckrange.cpp) provides a more specific message instead of a simple notification

of acceptance. The program prints exactly one of three messages based on the value of the variable. A single

if or if/else statement cannot choose from among more than two different execution paths.

Listing 5.9 (binaryconversion.cpp) uses a series of if statements to print a 10-bit binary string represent-

ing the binary equivalent of a decimal integer supplied by the user. (Section 4.8 provides some background

information about the binary number system.) We use if/else statements to print the individual digits

left to right, essentially assembling the sequence of bits that represents the binary number.

Listing 5.9: binaryconversion.cpp

#include <iostream>

int main() {
int value;
// Get number from the user
std::cout << "Please enter an integer value in the range 0...1023: ";
std::cin >> value;
// Integer must be less than 1024
if (0 <= value && value < 1024) {

if (value >= 512) {
std::cout << 1;
value %= 512;

}
else

std::cout << 0;
if (value >= 256) {

std::cout << 1;
value %= 256;

}
else

std::cout << 0;
if (value >= 128) {

std::cout << 1;
value %= 128;

}
else

std::cout << 0;
if (value >= 64) {

std::cout << 1;
value %= 64;

}
else

std::cout << 0;
if (value >= 32) {

std::cout << 1;
value %= 32;

} else
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std::cout << 0;
if (value >= 16) {

std::cout << 1;
value %= 16;

}
else

std::cout << 0;
if (value >= 8) {

std::cout << 1;
value %= 8;

}
else

std::cout << 0;
if (value >= 4) {

std::cout << 1;
value %= 4;

}
else

std::cout << 0;
if (value >= 2) {

std::cout << 1;
value %= 2;

}
else

std::cout << 0;
std::cout << value << '\n';

}
}

In Listing 5.9 (binaryconversion.cpp):

• The outer if checks to see if the value the use provides is in the proper range. The program works

only for nonnegative integer values less than 1,024, so the range is 0-1023.

• Each inner if compares the user-supplied entered integer against decreasing powers of two. If the

number is large enough, the program:

– prints the digit 1 to the console, and

– removes via the remainder operator that power of two’s contribution to the value.

If the number is not at least as big as the given power of two, the program prints a 0 instead and

moves on without modifying the input value.

• For the ones place at the end no check is necessary—the remaining value will be 0 or 1 and so the

program prints whatever remains.

The following shows a sample run of Listing 5.9 (binaryconversion.cpp):

Please enter an integer value in the range 0...1023: 805
1100100101

Figure 5.3 illustrates the execution of Listing 5.9 (binaryconversion.cpp) when the user enters 805.

Listing 5.10 (simplerbinaryconversion.cpp) simplifies the logic of Listing 5.9 (binaryconversion.cpp) at

the expense of some additional arithmetic. It uses only one if statement.
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Figure 5.3 The process of the binary number conversion program when the user supplies 805 as the input

value.

Print prompt

Get value

0 ≤ 805 ≤ 1023?

805 ≥  512?

→  Please enter ...

← 805

Yes

Remainder 805÷512 → 293

293 ≥ 256?

Yes,  → 1

Remainder 293÷256 → 37

37 ≥ 128?

Yes,  → 1

37 ≥ 64?

No,  → 0

Remainder 37÷32 → 5
5 ≥ 16?

No,  → 0

No,  → 0

5 ≥ 8?

Remainder 5÷4 → 1
1 ≥ 2?

No,  → 0

Print remaining value

→  1

37 ≥ 32?

Yes,  → 1

No,  → 0

5 ≥ 4?

Yes,  → 1

©2018 Richard L. Halterman Draft date: December 2, 2018



5.7. NESTED CONDITIONALS 105

Listing 5.10: simplerbinaryconversion.cpp

#include <iostream>

int main() {
int value;
// Get number from the user
std::cout << "Please enter an integer value in the range 0...1023: ";
std::cin >> value;
// Integer must be less than 1024
if (0 <= value && value < 1024) {

std::cout << value/512;
value %= 512;
std::cout << value/256;
value %= 256;
std::cout << value/128;
value %= 128;
std::cout << value/64;
value %= 64;
std::cout << value/32;
value %= 32;
std::cout << value/16;
value %= 16;
std::cout << value/8;
value %= 8;
std::cout << value/4;
value %= 4;
std::cout << value/2;
value %= 2;
std::cout << value << '\n';

}
}

The sole if statement in Listing 5.10 (simplerbinaryconversion.cpp) ensures that the user provides an inte-

ger in the proper range. The other if statements that originally appeared in Listing 5.9 (binaryconversion.cpp)

are gone. A clever sequence of integer arithmetic operations replace the original conditional logic. The two

programs—binaryconversion.cpp and simplerbinaryconversion.cpp—behave identically but simplerbinarycon-

version.cpp’s logic is simpler.

Listing 5.11 (troubleshoot.cpp) implements a very simple troubleshooting program that (an equally

simple) computer technician might use to diagnose an ailing computer.

Listing 5.11: troubleshoot.cpp

#include <iostream>

int main() {
std::cout << "Help! My computer doesn't work!\n";
char choice;
std::cout << "Does the computer make any sounds "

<< "(fans, etc.) or show any lights? (y/n):";
std::cin >> choice;
// The troubleshooting control logic
if (choice == 'n') { // The computer does not have power

std::cout << "Is it plugged in? (y/n):";
std::cin >> choice;
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if (choice == 'n') { // It is not plugged in, plug it in
std::cout << "Plug it in. If the problem persists, "

<< "please run this program again.\n";
}
else { // It is plugged in

std::cout << "Is the switch in the \"on\" position? (y/n):";
std::cin >> choice;
if (choice == 'n') { // The switch is off, turn it on!

std::cout << "Turn it on. If the problem persists, "
<< "please run this program again.\n";

}
else { // The switch is on

std::cout << "Does the computer have a fuse? (y/n):";
std::cin >> choice;
if (choice == 'n') { // No fuse

std::cout << "Is the outlet OK? (y/n):";
std::cin >> choice;
if (choice == 'n') { // Fix outlet

std::cout << "Check the outlet's circuit "
<< "breaker or fuse. Move to a "
<< "new outlet, if necessary. "
<< "If the problem persists, "
<< "please run this program again.\n";

}
else { // Beats me!

std::cout << "Please consult a service "
<< "technician.\n";

}
}
else { // Check fuse

std::cout << "Check the fuse. Replace if "
<< "necessary. If the problem "
<< "persists, then "
<< "please run this program again.\n";

}
}

}
}
else { // The computer has power

std::cout << "Please consult a service technician.\n";
}

}

This very simple troubleshooting program attempts to diagnose why a computer does not work. The

potential for enhancement is unlimited, but this version only deals with power issues that have simple fixes.

Notice that if the computer has power (fan or disk drive makes sounds or lights are visible), the program

directs the user to seek help elsewhere! The decision tree capturing the basic logic of the program is shown

in Figure 5.4.

The steps performed are:

1. Is it plugged in? This simple fix is sometimes overlooked.

2. Is the switch in the on position? This is another simple fix.
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Figure 5.4 Decision tree for troubleshooting a computer system

3. If applicable, is the fuse blown? Some computer systems have a user-serviceable fuse that can blow

out during a power surge. (Most newer computers have power supplies that can handle power surges

and have no user-serviceable fuses.)

4. Is there power at the receptacle? Perhaps the outlet’s circuit breaker or fuse has a problem.

The program directs the user to make the easier checks first. It progressively introduces more difficult

checks as it continues. Based on your experience with troubleshooting computers that do not run properly,

you may be able to think of many enhancements to this simple program.

Note that in Listing 5.11 (troubleshoot.cpp) curly braces are used in many places where they strictly

are not necessary. Their inclusion in Listing 5.11 (troubleshoot.cpp) improves the readability of the pro-

gram and makes the logic easier to understand. Even if you do not subscribe to the philosophy of using

curly braces for every if/else body, it is a good idea to use them in situations that improve the code’s

readability.

Recall the time conversion program in Listing 4.11 (timeconv.cpp). If the user enters 10000, the

program runs as follows:

Please enter the number of seconds:10000
2 hr 46 min 40 sec

and if the user enters 9961, the program prints:

Please enter the number of seconds:9961
2 hr 46 min 1 sec
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Suppose we wish to improve the English presentation by not using abbreviations. If we spell out hours,

minutes, and seconds, we must be careful to use the singular form hour, minute, or second when the

corresponding value is one. Listing 5.12 (timeconvcond1.cpp) uses if/else statements to express to

time units with the correct number.

Listing 5.12: timeconvcond1.cpp

// File timeconvcond1.cpp

#include <iostream>

int main() {
// Some useful conversion constants
const int SECONDS_PER_MINUTE = 60,

SECONDS_PER_HOUR = 60*SECONDS_PER_MINUTE; // 3600
int hours, minutes, seconds;
std::cout << "Please enter the number of seconds:";
std::cin >> seconds;
// First, compute the number of hours in the given number
// of seconds
hours = seconds / SECONDS_PER_HOUR; // 3600 seconds = 1 hours
// Compute the remaining seconds after the hours are
// accounted for
seconds = seconds % SECONDS_PER_HOUR;
// Next, compute the number of minutes in the remaining
// number of seconds
minutes = seconds / SECONDS_PER_MINUTE; // 60 seconds = 1 minute
// Compute the remaining seconds after the minutes are
// accounted for
seconds = seconds % SECONDS_PER_MINUTE;
// Report the results
std::cout << hours;
// Decide between singular and plural form of hours
if (hours == 1)

std::cout << " hour ";
else

std::cout << " hours ";
std::cout << minutes;
// Decide between singular and plural form of minutes
if (minutes == 1)

std::cout << " minute ";
else

std::cout << " minutes ";
std::cout << seconds;
// Decide between singular and plural form of seconds
if (seconds == 1)

std::cout << " second";
else

std::cout << " seconds";
std::cout << '\n';

}

The if/else statements within Listing 5.12 (timeconvcond1.cpp) are responsible for printing the correct

version—singular or plural—for each time unit. One run of Listing 5.12 (timeconvcond1.cpp) produces
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Please enter the number of seconds:10000
2 hours 46 minutes 40 seconds

All the words are plural since all the value are greater than one. Another run produces

Please enter the number of seconds:9961
2 hours 46 minutes 1 second

Note the word second is singular as it should be.

Please enter the number of seconds:3601
1 hour 0 minutes 1 second

Here again the printed words agree with the number of the value they represent.

An improvement to Listing 5.12 (timeconvcond1.cpp) would not print a value and its associated time

unit if the value is zero. Listing 5.13 (timeconvcond2.cpp) adds this feature.

Listing 5.13: timeconvcond2.cpp

// File timeconvcond1.cpp

#include <iostream>

int main() {
// Some useful conversion constants
const int SECONDS_PER_MINUTE = 60,

SECONDS_PER_HOUR = 60*SECONDS_PER_MINUTE; // 3600
int hours, minutes, seconds;
std::cout << "Please enter the number of seconds:";
std::cin >> seconds;
// First, compute the number of hours in the given number
// of seconds
hours = seconds / SECONDS_PER_HOUR; // 3600 seconds = 1 hours
// Compute the remaining seconds after the hours are
// accounted for
seconds = seconds % SECONDS_PER_HOUR;
// Next, compute the number of minutes in the remaining
// number of seconds
minutes = seconds / SECONDS_PER_MINUTE; // 60 seconds = 1 minute
// Compute the remaining seconds after the minutes are
// accounted for
seconds = seconds % SECONDS_PER_MINUTE;
// Report the results
if (hours > 0) { // Print hours at all?

std::cout << hours;
// Decide between singular and plural form of hours
if (hours == 1)

std::cout << " hour ";
else

std::cout << " hours ";
}
if (minutes > 0) { // Print minutes at all?

std::cout << minutes;
// Decide between singular and plural form of minutes

©2018 Richard L. Halterman Draft date: December 2, 2018



5.7. NESTED CONDITIONALS 110

if (minutes == 1)
std::cout << " minute ";

else
std::cout << " minutes ";

}
// Print seconds at all?
if (seconds > 0 || (hours == 0 && minutes == 0 && seconds == 0)) {

std::cout << seconds;
// Decide between singular and plural form of seconds
if (seconds == 1)

std::cout << " second";
else

std::cout << " seconds";
}
std::cout << '\n';

}

In Listing 5.13 (timeconvcond2.cpp) each code segment responsible for printing a time value and its English

word unit is protected by an if statement that only allows the code to execute if the time value is greater

than zero. The exception is in the processing of seconds: if all time values are zero, the program should

print 0 seconds. Note that each of the if/else statements responsible for determining the singular or

plural form is nested within the if statement that determines whether or not the value will be printed at all.

One run of Listing 5.13 (timeconvcond2.cpp) produces

Please enter the number of seconds:10000
2 hours 46 minutes 40 seconds

All the words are plural since all the value are greater than one. Another run produces

Please enter the number of seconds:9961
2 hours 46 minutes 1 second

Note the word second is singular as it should be.

Please enter the number of seconds:3601
1 hour 1 second

Here again the printed words agree with the number of the value they represent.

Please enter the number of seconds:7200
2 hours

Another run produces:

Please enter the number of seconds:60
1 minute

Finally, the following run shows that the program handles zero seconds properly:

Please enter the number of seconds:0
0 seconds

©2018 Richard L. Halterman Draft date: December 2, 2018



5.8. MULTI-WAY IF/ELSE STATEMENTS 111

Figure 5.5 Flowchart with multiple optional execution pathways

5.8 Multi-way if/else Statements

A simple if/else statement can select from between two execution paths. Suppose we wish to choose

one execution path from among several possible paths, as shown in Figure 5.5?

Listing 5.8 (enhancedcheckrange.cpp) showed how to select from among three options. What if exactly

one of many actions should be taken? Nested if/else statements are required, and the form of these

nested if/else statements is shown in Listing 5.14 (digittoword.cpp).

Listing 5.14: digittoword.cpp

#include <iostream>

int main() {
int value;
std::cout << "Please enter an integer in the range 0...5: ";
std::cin >> value;
if (value < 0)

std::cout << "Too small";
else

if (value == 0)
std::cout << "zero";

else
if (value == 1)

std::cout << "one";
else

if (value == 2)
std::cout << "two";

else
if (value == 3)

std::cout << "three";
else
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if (value == 4)
std::cout << "four";

else
if (value == 5)

std::cout << "five";
else

std::cout << "Too large";
std::cout << '\n';

}

Observe the following about Listing 5.14 (digittoword.cpp):

• It prints exactly one of eight messages depending on the user’s input.

• Notice that each if body contains a single printing statement and each else body, except the last

one, contains an if statement. The control logic forces the program execution to check each condi-

tion in turn. The first condition that matches wins, and its corresponding if body will be executed.

If none of the conditions are true, the last else’s Too large message will be printed.

• No curly braces are necessary to delimit the if or else bodies since each body contains only a

single statement (although a single deeply nested if/else statement is a mighty big statement).

Listing 5.14 (digittoword.cpp) is formatted according to the conventions used in earlier examples. As

a consequence, the mass of text drifts to the right as more conditions are checked. A commonly used

alternative style, shown in Listing 5.15 (restyleddigittoword.cpp), avoids this rightward drift.

Listing 5.15: restyleddigittoword.cpp

#include <iostream>

int main() {
int value;
std::cout << "Please enter an integer in the range 0...5: ";
std::cin >> value;
if (value < 0)

std::cout << "Too small";
else if (value == 0)

std::cout << "zero";
else if (value == 1)

std::cout << "one";
else if (value == 2)

std::cout << "two";
else if (value == 3)

std::cout << "three";
else if (value == 4)

std::cout << "four";
else if (value == 5)

std::cout << "five";
else

std::cout << "Too large";
std::cout << '\n';

}

Based on our experience so far, the formatting of Listing 5.15 (restyleddigittoword.cpp) somewhat hides

the true structure of the program’s logic, but this style of formatting multi-way if/else statements is
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so common that it is regarded as acceptable by most programmers. The sequence of else if lines all

indented to the same level identifies this construct as a multi-way if/else statement.

Listing 5.16 (datetransformer.cpp) uses a multi-way if/else to transform a numeric date in month/-

day format to an expanded US English form and an international Spanish form; for example, 2/14 would

be converted to February 14 and 14 febrero.

Listing 5.16: datetransformer.cpp

#include <iostream>

int main() {
std::cout << "Please enter the month and day as numbers: ";
int month, day;
std::cin >> month >> day;
// Translate month into English
if (month == 1)

std::cout << "January";
else if (month == 2)

std::cout << "February";
else if (month == 3)

std::cout << "March";
else if (month == 4)

std::cout << "April";
else if (month == 5)

std::cout << "May";
else if (month == 6)

std::cout << "June";
else if (month == 7)

std::cout << "July";
else if (month == 8)

std::cout << "August";
else if (month == 9)

std::cout << "September";
else if (month == 10)

std::cout << "October";
else if (month == 11)

std::cout << "November";
else

std::cout << "December";
// Add the day
std::cout << " " << day << " or " << day << " de ";
// Translate month into Spanish
if (month == 1)

std::cout << "enero";
else if (month == 2)

std::cout << "febrero";
else if (month == 3)

std::cout << "marzo";
else if (month == 4)

std::cout << "abril";
else if (month == 5)

std::cout << "mayo";
else if (month == 6)

std::cout << "junio";
else if (month == 7)
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std::cout << "julio";
else if (month == 8)

std::cout << "agosto";
else if (month == 9)

std::cout << "septiembre";
else if (month == 10)

std::cout << "octubre";
else if (month == 11)

std::cout << "noviembre";
else

std::cout << "diciembre";
std::cout << '\n';

}

A sample run of Listing 5.16 (datetransformer.cpp) is shown here:

Please enter the month and day as numbers: 5 20
May 20 or 20 de mayo

Figure 5.6 compares the structure of the if/else statements in a program such as Listing 5.15

(restyleddigittoword.cpp) to those in a program like Listing 5.9 (binaryconversion.cpp).

In a program like Listing 5.15 (restyleddigittoword.cpp), the if/else statements are nested, while in

a program like Listing 5.9 (binaryconversion.cpp) the if/else statements are sequential.

C++ provides the tools to construct some very complicated conditional statements. It is important to

resist the urge to make things overly complex. Consider the problem of computing the maximum of five

integer values provided by the user. The complete solution is left as an exercise in Section 5.10, but here

we will outline an appropriate strategy.

Suppose you allow the user to enter all the values at once; for example, for integer variables n1, n2,

n3, n4, and n5:

std::cout << "Please enter five integer values: ";
std::cin >> n1 >> n2 >> n3 >> n4 >> n5;

Now, allow yourself one extra variable called max. All variables have a meaning, and their names

should reflect their meaning in some way. We’ll let our additional max variable mean "maximum I have

determined so far." The following is one approach to the solution:

1. Set max equal to n1. This means as far as we know at the moment, n1 is the biggest number because

max and n1 have the same value.

2. Compare max to n2. If n2 is larger than max, change max to have n2’s value to reflect the fact that

we determined n2 is larger; if n2 is not larger than max, we have no reason to change max, so do

not change it.

3. Compare max to n3. If n3 is larger than max, change max to have n3’s value to reflect the fact that

we determined n3 is larger; if n3 is not larger than max, we have no reason to change max, so do

not change it.

4. Follow the same process for n4 and n5.

In the end the meaning of the max variable remains the same–"maximum I have determined so far," but,

after comparing max to all the input variables, we now know that it is the maximum value of all five input
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Figure 5.6 The structure of the if statements in a program such as Listing 5.15 (restyleddigittoword.cpp)

(left) vs. those in a program like Listing 5.9 (binaryconversion.cpp) (right)
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numbers. The extra variable max is not strictly necessary, but it makes thinking about the problem and its

solution easier.

Something to think about: Do you want a series of if statements or one large multiway if/else
construct?

Also, you may be tempted to write logic such as

if (n1 >= n2 && n1 >= n3 && n1 >= n4 && n1 >=n5)
std::cout << "The maximum is " << n1 << '\n';

else if ( n2 >= n1 && n2 >= n3 && // the rest omitted . . .

This will work, but this logic is much more complicated and less efficient (every >= and && operation

requires a few machine cycles to execute). Since it is more complicated, it is more difficult to write correctly,

in addition to being more code to type in. It is easy to use > by mistake instead of >=, which will not produce

the correct results. Also, if you use this more complicated logic and decide later to add more variables, you

will need to change all of the if conditions in your code and, of course, make sure to modify each one

of the conditions correctly. If you implement the simpler strategy outlined before, you need only add one

simple if statement for each additional variable.

Chapter 6 introduces loops, the ability to execute statements repeatedly. You easily can adapt the first

approach to allow the user to type in as many numbers as they like and then have the program report the

maximum number the user entered. The second approach with the more complex logic cannot be adapted

in this manner. With the first approach you end up with cleaner, simpler logic, a more efficient program,

and code that is easier to extend.

5.9 Errors in Conditional Statements

Consider Listing 5.17 (badequality.cpp).

Listing 5.17: badequality.cpp

#include <iostream>

int main() {
int input;
std::cout << "Please enter an integer:";
std::cin >> input;
if (input = 2)

std::cout << "two\n";
std::cout << "You entered " << input << '\n';

}

Listing 5.17 (badequality.cpp) demonstrates a common mistake—using the assignment operator where

the equality operator is intended. This program, when run, always prints the message “two” and insists the

user entered 2 regardless of the actual input. Recall from Section 4.3 that the assignment expression has a

value. The value of an assignment expression is same as the value that is assigned; thus, the expression

input = 2

has the value 2. When you consider also that every integer can be treated as a Boolean value (see Sec-

tion 5.1) and any non-zero value is interpreted as true, you can see that the condition of if statement
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if (input = 2)
std::cout << "two\n";

is always true. Additionally, the variable input is always assigned the value 2.

Since it is such a common coding error, most C++ compilers can check for such misuse of assignment. At

warning Level 4, for example, Visual C++ will issue a warning when assignment appears where a conditional

expression is expected:

warning C4706: assignment within conditional expression

Occasionally the use of assignment within a conditional expression is warranted, so the compiler does not

perform this check by default. For our purposes it is good idea to direct the compiler to perform this extra

check.

Carefully consider each compound conditional used, such as

value > 0 && value <= 10

found in Listing 5.7 (newcheckrange.cpp). Confusing logical and and logical or is a common programming

error. If you substitute || for &&, the expression

x > 0 || x <= 10

is always true, no matter what value is assigned to the variable x. A Boolean expression that is always true

is known as a tautology. Think about it. If x is an int, what value could the variable x assume that would

make

x > 0 || x <= 10

false? Regardless of its value, one or both of the subexpressions will be true, so this compound logical or

expression is always true. This particular or expression is just a complicated way of expressing the value

true.

Another common error is contriving compound Boolean expressions that are always false, known as

contradictions. Suppose you wish to exclude values from a given range; for example, reject values in the

range 0...10 and accept all other numbers. Is the Boolean expression in the following code fragment up to

the task?

// I want to use all but 0, 1, 2, ..., 10
if (value < 0 && value > 10)

/* Code to execute goes here . . . */

A closer look at the condition reveals it can never be true. What number can be both less than zero and

greater than ten at the same time? None can, of course, so the expression is a contradiction and a compli-

cated way of expressing false. To correct this code fragment, replace the && operator with ||.

5.10 Exercises

1. What values can a variable of type bool assume?

2. Where does the term bool originate?
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3. What is the integer equivalent to true in C++?

4. What is the integer equivalent to false in C++?

5. Is the value -16 interpreted as true or false?

6. May an integer value be assigned to a bool variable?

7. Can true be assigned to an int variable?

8. Given the following declarations:

int x = 3, y = 5, z = 7;
bool b1 = true, b2 = false, b3 = x == 3, b4 = y < 3;

evaluate the following Boolean expressions:

(a) x == 3

(b) x < y

(c) x >= y

(d) x <= y

(e) x != y - 2

(f) x < 10

(g) x >= 0 && x < 10

(h) x < 0 && x < 10

(i) x >= 0 && x < 2

(j) x < 0 || x < 10

(k) x > 0 || x < 10

(l) x < 0 || x > 10

(m) b1

(n) !b1

(o) !b2

(p) b1 && b2

9. Express the following Boolean expressions in simpler form; that is, use fewer operators. x is an int.

(a) !(x == 2)

(b) x < 2 || x == 2

(c) !(x < y)

(d) !(x <= y)

(e) x < 10 && x > 20

(f) x > 10 || x < 20

(g) x != 0

(h) x == 0

10. What is the simplest tautology?

11. What is the simplest contradiction?
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12. Write a C++ program that requests an integer value from the user. If the value is between 1 and 100

inclusive, print “OK;” otherwise, do not print anything.

13. Write a C++ program that requests an integer value from the user. If the value is between 1 and 100

inclusive, print “OK;” otherwise, print “Out of range.”

14. The following program attempts to print a message containing the English word corresponding

to a given integer input. For example, if the user enters the value 3, the program should print

"You entered a three". In its current state, the program contains logic errors. Locate the

problems and repair them so the program will work as expected.

#include <iostream>

int main() {
std::cout << "Please in value in the range 1...5: ";
int value;
std::cin >> value;
// Translate number into its English word
if (month == 1)

std::cout << "You entered a";
std::cout << "one";
std::cout << '\n';

else if (month == 2)
std::cout << "You entered a";
std::cout << "two";
std::cout << '\n';

else if (month == 3)
std::cout << "You entered a";
std::cout << "three";
std::cout << '\n';

else if (month == 4)
std::cout << "You entered a";
std::cout << "four";
std::cout << '\n';

else if (month == 5)
std::cout << "You entered a";
std::cout << "five";
std::cout << '\n';

else // Value out of range
std::cout << "You entered a";
std::cout << "value out of range";
std::cout << '\n';

}

15. Consider the following section of C++ code:

// i, j, and k are ints
if (i < j) {

if (j < k)
i = j;

else
j = k;
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}
else {

if (j > k)
j = i;

else
i = k;

}
std::cout << "i = " << i << " j = " << j << " k = " << k << '\n';

What will the code print if the variables i, j, and k have the following values?

(a) i is 3, j is 5, and k is 7

(b) i is 3, j is 7, and k is 5

(c) i is 5, j is 3, and k is 7

(d) i is 5, j is 7, and k is 3

(e) i is 7, j is 3, and k is 5

(f) i is 7, j is 5, and k is 3

16. Consider the following C++ program that prints one line of text:

#include <iostream>

int main() {
int input;
std::cin >> input;
if (input < 10) {

if (input != 5)
std::cout << "wow ";

else
input++;

}
else {

if (input == 17)
input += 10;

else
std::cout << "whoa ";

}
std::cout << input << '\n';

}

What will the program print if the user provides the following input?

(a) 3

(b) 21

(c) 5

(d) 17

(e) -5

17. Why does the following section of code always print "ByeHi"?
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int x;
std::cin >> x;
if (x < 0);

std::cout << "Bye";
std::cout << "Hi\n";

18. Write a C++ program that requests five integer values from the user. It then prints the maximum and

minimum values entered. If the user enters the values 3, 2, 5, 0, and 1, the program would indicate

that 5 is the maximum and 0 is the minimum. Your program should handle ties properly; for example,

if the user enters 2, 4, 2, 3, and 3, the program should report 2 as the minimum and 4 as maximum.

19. Write a C++ program that requests five integer values from the user. It then prints one of two

things: if any of the values entered are duplicates, it prints "DUPLICATES"; otherwise, it prints

"ALL UNIQUE".
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Chapter 6

Iteration

Iteration repeats the execution of a sequence of code. Iteration is useful for solving many programming

problems. Iteration and conditional execution are key components of algorithm construction.

6.1 The while Statement

Listing 6.1 (counttofive.cpp) counts to five by printing a number on each output line.

Listing 6.1: counttofive.cpp

#include <iostream>

int main() {
std::cout << 1 << '\n';
std::cout << 2 << '\n';
std::cout << 3 << '\n';
std::cout << 4 << '\n';
std::cout << 5 << '\n';

}

When compiled and run, this program displays

1
2
3
4
5

How would you write the code to count to 10,000? Would you copy, paste, and modify 10,000 printing

statements? You could, but that would be impractical! Counting is such a common activity, and computers

routinely count up to very large values, so there must be a better way. What we really would like to do

is print the value of a variable (call it count), then increment the variable (count++), and repeat this

process until the variable is large enough (count == 5 or perhaps count == 10000). This process

of executing the same section of code over and over is known as iteration, or looping, and in C++ we can

implement loops in several different ways.
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Listing 6.2 (iterativecounttofive.cpp) uses a while statement to count to five:

Listing 6.2: iterativecounttofive.cpp

#include <iostream>

int main() {
int count = 1; // Initialize counter
while (count <= 5) {

std::cout << count << '\n'; // Display counter, then
count++; // Increment counter

}
}

Listing 6.2 (iterativecounttofive.cpp) uses a while statement to display a variable that is counting

up to five. Unlike the approach taken in Listing 6.1 (counttofive.cpp), it is trivial to modify Listing 6.2

(iterativecounttofive.cpp) to count up to 10,000—just change the literal value 5 to 10000.

The line

while (count <= 5)

begins the while statement. The expression within the parentheses must be a Boolean expression. If the

Boolean expression is true when the the program’s execution reaches the while statement, the program

executes the body of the while statement and then checks the condition again. The program repeatedly

executes the statement(s) within the body of the while as long as the Boolean expression remains true.

If the Boolean expression is true when the while statement is executed, the body of the while state-

ment is executed, and the body is executed repeatedly as long as the Boolean expression remains true.

The statements

std::cout << count << '\n';
count++;

constitute the body of the while statement. The curly braces are necessary since more than one statement

makes up the body.

The while statement has the general form:

condition

statement

while (           )

• The reserved word while begins the while statement.

• The Boolean expression condition determines whether the body will be (or will continue to be) exe-

cuted. The expression must be enclosed within parentheses as shown.

• The statement is the statement to be executed while the Boolean expression is true. The statement

makes up the body of the while statement. The statement may be a compound statement (multiple

statements enclosed within curly braces, see Section 5.4).
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Figure 6.1 while flowchart for Listing 6.2 (iterativecounttofive.cpp)
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Except for using the reserved word while instead of if, a while statement looks identical to an

if statement. Sometimes beginning programmers confuse the two or accidentally type if when they

mean while or vice-versa. Usually the very different behavior of the two statements reveals the problem

immediately; however, sometimes, especially in nested complex logic, this mistake can be hard to detect.

Figure 6.1 shows how program execution flows through Listing 6.2 (iterativecounttofive.cpp).

The program checks the while’s condition before executing the body, and then re-checks the condition

each time after it executes the body. If the condition is initially false the program’s execution skips the

body completely and continues executing the statements that follow the while’s body. If the condition is

initially true, the program repeatedly executes the body until the condition becomes false, at which point

the loop terminates. Program execution then continues with the statements that follow the loop’s body, if

any. Observe that the body may never be executed if the Boolean expression in the condition is initially

false.

Listing 6.3 (countup.cpp) counts up from zero as long as the user wishes to do so.

Listing 6.3: countup.cpp

©2018 Richard L. Halterman Draft date: December 2, 2018



6.1. THE WHILE STATEMENT 126

/*
* Counts up from zero. The user continues the count by entering
* 'Y'. The user discontinues the count by entering 'N'.
*/

#include <iostream>

int main() {
char input; // The users choice
int count = 0; // The current count
bool done = false; // We are not done

while (!done) {

// Print the current value of count
std::cout << count << '\n';
std::cout << "Please enter \"Y\" to continue or \"N\" to quit: ";
std::cin >> input;
// Check for "bad" input
if (input != 'Y' && input != 'y' && input != 'N' && input != 'n')

std::cout << "\"" << input << "\""
<< " is not a valid choice" << '\n';

else if (input == 'Y' || input == 'y')
count++; // Keep counting

else if (input == 'N' || input == 'n')
done = true; // Quit the loop

}
}

A sample run of Listing 6.3 (countup.cpp) produces

0
Please enter "Y" to continue or "N" to quit: y
1
Please enter "Y" to continue or "N" to quit: y
2
Please enter "Y" to continue or "N" to quit: y
3
Please enter "Y" to continue or "N" to quit: q
"q" is not a valid choice
3
Please enter "Y" to continue or "N" to quit: r
"r" is not a valid choice
3
Please enter "Y" to continue or "N" to quit: W
"W" is not a valid choice
3
Please enter "Y" to continue or "N" to quit: Y
4
Please enter "Y" to continue or "N" to quit: y
5
Please enter "Y" to continue or "N" to quit: n

In Listing 6.3 (countup.cpp) the expression
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input != 'Y' && input != 'y' && input != 'N' && input != 'n'

is true if the character variable input is not equal to one of the listed character literals. The Boolean

variable done controls the loop’s execution. It is important to note that the expression

!done

inside the while’s condition evaluates to the opposite truth value of the variable done; the expression

does not affect the value of done. In other words, the ! operator applied to a variable does not modify the

variable’s value. In order to actually change the variable done, you would need to reassign it, as in

done = !done; // Invert the truth value

For Listing 6.3 (countup.cpp) we have no need to invert its value. We ensure that its value is false initially

and then make it true when the user enters a capital or lower-case N.

Listing 6.4 (addnonnegatives.cpp) is a program that allows a user to enter any number of nonnegative

integers. When the user enters a negative value, the program no longer accepts input, and it displays the

sum of all the nonnegative values. If a negative number is the first entry, the sum is zero.

Listing 6.4: addnonnegatives.cpp

/*
* Allow the user to enter a sequence of nonnegative
* integers. The user ends the list with a negative
* integer. At the end the sum of the nonnegative
* integers entered is displayed. The program prints
* zero if the user enters no nonnegative integers.
*/

#include <iostream>

int main() {
int input = 0, // Ensure the loop is entered

sum = 0; // Initialize sum

// Request input from the user
std::cout << "Enter numbers to sum, negative number ends list:";

while (input >= 0) { // A negative number exits the loop
std::cin >> input; // Get the value
if (input >= 0)

sum += input; // Only add it if it is nonnegative
}
std::cout << "Sum = " << sum << '\n'; // Display the sum

}

The initialization of input to zero coupled with the condition input >= 0 of the while guarantees

that program will execute the body of the while loop at least once. The if statement ensures that a

negative entry will not be added to sum. (Could the condition have used > instead of >= and achieved the

same results?) When the user enters a negative integer the program will not update sum, and the condition

of the while will no longer be true. The program’s execution then leaves the loop and executes the print

statement at the end.

Listing 6.4 (addnonnegatives.cpp) shows that a while loop can be used for more than simple counting.

The program does not keep track of the number of values entered. The program simply accumulates the
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entered values in the variable named sum.

It is a little awkward in Listing 6.4 (addnonnegatives.cpp) that the same condition appears twice, once

in the while and again in the if. Furthermore, what if the user wishes to enter negative values along with

nonnegative values? We can simplify the code with a common C++ idiom that uses std::cin and the

extraction operator as a condition within a while statement.

If x is an integer, the expression

std::cin >> x

evaluates to false if the user does not enter a valid integer literal. Armed with this knowledge we can

simplify and enhance Listing 6.4 (addnonnegatives.cpp) as shown in Listing 6.5 (addnumbers.cpp).

Listing 6.5: addnumbers.cpp

#include <iostream>

int main() {
int input, sum = 0;
std::cout << "Enter numbers to sum, type 'q' to end the list:";
while (std::cin >> input)

sum += input;
std::cout << "Sum = " << sum << '\n';

}

The condition reads a value from the input stream and, if it is successful, it is interpreted as true.

When the user enters 'q', the loop is terminated. If the user types 'q' at the beginning, the loop is not

entered. The if statement is no longer necessary, since the statement

sum += input;

can be executed only if input has been legitimately assigned. Also, the variable input no longer needs

to initialized with a value simply so the loop is entered the first time; now it is assigned and then checked

within the condition of the while.

In Listing 6.5 (addnumbers.cpp), the program’s execution will terminate with any letter the user types;

an entry of 'x' or Ctrl-Z will terminate the sequence just as well as 'q'.

If you use the

while (std::cin >> x) {
// Do something . . .

}

idiom, be aware that when the loop is exited due to the input stream being unable

to read a value of the type of variable x, the std::cin input stream object is left

in an error state and cannot be used for the rest of the program’s execution. It you

wish to use this technique and reuse std::cin later, you must reset std::cin
and extract and discard keystrokes entered since the last valid use of the extractor

operator. This recovery process is covered in Section 13.2, but, for now, use this

idiom to control a loop only if the program does not require additional user input

later during its execution.
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Listing 6.6 (powersof10.cpp) prints the powers of 10 from 1 to 1,000,000,000 (the next power of ten,

10,000,000,000, is outside the range of the int type).

Listing 6.6: powersof10.cpp

#include <iostream>

int main() {
int power = 1;
while (power <= 1000000000) {

std::cout << power << '\n';
power *= 10;

}
}

Listing 6.6 (powersof10.cpp) produces

1
10
100
1000
10000
100000
1000000
10000000
100000000
1000000000

It is customary to right justify a column of numbers, but Listing 6.6 (powersof10.cpp) prints the powers

of ten with their most-significant digit left aligned. We can right align the numbers using a stream object

called a steam manipulator. The specific stream manipulator we need is named std::setw. setw means

“set width.” It can be used as

std::cout << std::setw(3) << x << '\n';

This statement prints the value of x right justified within a three character horizontal space on the screen.

Listing 6.7 (powersof10justified.cpp) shows the affects of setw.

Listing 6.7: powersof10justified.cpp

#include <iostream>
#include <iomanip>

// Print the powers of 10 from 1 to 1,000,000,000
int main() {

int power = 1;
while (power <= 1000000000) {

// Right justify each number in a field 10 wide
std::cout << std::setw(10) << power << '\n';
power *= 10;

}
}

Listing 6.7 (powersof10justified.cpp) prints
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1
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

Observe that in order to use setw the compiler needs to be made aware of it. The needed information about

std::setw is not found in the iostream header file, so an additional preprocessor include directive is

required:

#include <iomanip>

The std::setw manipulator “conditions” the output stream for the next item to be printed. The

values passed to the “conditioned” stream are all right justified within the number of spaces specified by

std::setw.

As an aside, this is good place to reveal another trick to improve the output of a C++ program. List-

ing 6.8 (powersof10withcommas.cpp) enhances Listing 6.7 (powersof10justified.cpp) by adding commas in

the appropriate places in the displayed numbers.

Listing 6.8: powersof10withcommas.cpp

#include <iostream>
#include <iomanip>
#include <locale>

// Print the powers of 10 from 1 to 1,000,000,000
int main() {

int power = 1;
std::cout.imbue(std::locale(""));
while (power <= 1000000000) {

// Right justify each number in a field 10 wide
std::cout << std::setw(13) << power << '\n';
power *= 10;

}
}

Listing 6.8 (powersof10withcommas.cpp) prints

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000
1,000,000,000
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Figure 6.2 Decision tree for troubleshooting a computer system Listing 6.9 (troubleshootloop.cpp)

The statement

std::cout.imbue(std::locale(""));

adjusts the std::cout object to print number with digit separators appropriate for the current country. If

you replace the statement with

std::cout.imbue(std::locale("german"));

the output becomes

1
10

100
1.000

10.000
100.000

1.000.000
10.000.000

100.000.000
1.000.000.000

because the German language uses periods in place of commas for digit separators. The "german" locale

also would display a comma where the decimal point would appear in an English floating-point number.

We can use a while statement to make Listing 5.11 (troubleshoot.cpp) more convenient for the user.

Recall that the computer troubleshooting program forces the user to rerun the program once a potential

program has been detected (for example, turn on the power switch, then run the program again to see what

else might be wrong). A more desirable decision logic is shown in Figure 6.2.
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Listing 6.9 (troubleshootloop.cpp) incorporates a while statement so that the program’s execution

continues until the problem is resolved or its resolution is beyond the capabilities of the program.

Listing 6.9: troubleshootloop.cpp

#include <iostream>

int main() {
std::cout << "Help! My computer doesn't work!\n";
char choice;
bool done = false; // Initially, we are not done

while (!done) { // Continue until we are done
std::cout << "Does the computer make any sounds "

<< "(fans, etc.) or show any lights? (y/n):";
std::cin >> choice;
// The troubleshooting control logic
if (choice == 'n') { // The computer does not have power

std::cout << "Is it plugged in? (y/n):";
std::cin >> choice;
if (choice == 'n') { // It is not plugged in, plug it in

std::cout << "Plug it in.\n";
}
else { // It is plugged in

std::cout << "Is the switch in the \"on\" position? (y/n):";
std::cin >> choice;
if (choice == 'n') { // The switch is off, turn it on!

std::cout << "Turn it on.\n";
}
else { // The switch is on

std::cout << "Does the computer have a fuse? (y/n):";
std::cin >> choice;
if (choice == 'n') { // No fuse

std::cout << "Is the outlet OK? (y/n):";
std::cin >> choice;
if (choice == 'n') { // Fix outlet

std::cout << "Check the outlet's circuit "
<< "breaker or fuse. Move to a "
<< "new outlet, if necessary.\n";

}
else { // Beats me!

std::cout << "Please consult a service "
<< "technician.\n";

done = true; // Exhausted simple fixes
}

}
else { // Check fuse

std::cout << "Check the fuse. Replace if "
<< "necessary.\n";

}
}

}
}
else { // The computer has power

std::cout << "Please consult a service technician.\n";
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done = true; // Only troubleshoots power issues
}

}
}

The bulk of the body of the Listing 6.9 (troubleshootloop.cpp)is wrapped by a while statement. The

Boolean variable done is often called a flag. You can think of the flag being down when the value is

false and raised when it is true. In this case, when the flag is raised, it is a signal that the program should

terminate.

Notice the last 11 lines of Listing 6.9 (troubleshootloop.cpp):

}
}

}
}
else { // The computer has power

std::cout << "Please consult a service technician.\n";
done = true; // Only troubleshoots power issues

}
}

}

In the way this code is organized, the matching opening curly brace of a particular closing curly brace can be

found by scanning upward in the source code until the closest opening curly brace at the same indentation

level is found. Our programming logic is now getting complex enough that the proper placement of curly

braces is crucial for human readers to more quickly decipher how the program should work. See Section 4.5

for guidelines on indentation and curly brace placement to improve code readability.

6.2 Nested Loops

Just like in if statements, while bodies can contain arbitrary C++ statements, including other while
statements. A loop can therefore be nested within another loop. To see how nested loops work, consider a

program that prints out a multiplication table. Elementary school students use multiplication tables, or times

tables, as they learn the products of integers up to 10 or even 12. Figure 6.3 shows a 10 × 10 multiplication

table. We want our multiplication table program to be flexible and allow the user to specify the table’s

size. We will begin our development work with a simple program and add features as we go. First, we will

not worry about printing the table’s row and column titles, nor will we print the lines separating the titles

from the contents of the table. Initially we will print only the contents of the table. We will see we need

a nested loop to print the table’s contents, but that still is too much to manage in our first attempt. In our

first attempt we will print the rows of the table in a very rudimentary manner. Once we are satisfied that

our simple program works we can add more features. Listing 6.10 (timestable-1st-try.cpp) shows our first

attempt at a muliplication table.

Listing 6.10: timestable-1st-try.cpp

#include <iostream>

int main() {
int size; // The number of rows and columns in the table
std::cout << "Please enter the table size: ";
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Figure 6.3 A 10 × 10 multiplication table

std::cin >> size;
// Print a size x size multiplication table
int row = 1;
while (row <= size) { // Table has 10 rows.

std::cout << "Row #" << row << '\n';
row++; // Next row

}
}

The output of Listing 6.10 (timestable-1st-try.cpp) is somewhat underwhelming:

Please enter the table size: 10
Row #1
Row #2
Row #3
Row #4
Row #5
Row #6
Row #7
Row #8
Row #9
Row #10

Listing 6.10 (timestable-1st-try.cpp) does indeed print each row in its proper place—it just does not

supply the needed detail for each row. Our next step is to refine the way the program prints each row. Each

row should contain size numbers. Each number within each row represents the product of the current row

and current column; for example, the number in row 2, column 5 should be 2 × 5 = 10. In each row,

therefore, we must vary the column number from from 1 to size. Listing 6.11 (timestable-2nd-try.cpp)

contains the needed refinement.

Listing 6.11: timestable-2nd-try.cpp

#include <iostream>

int main() {
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int size; // The number of rows and columns in the table
std::cout << "Please enter the table size: ";
std::cin >> size;
// Print a size x size multiplication table
int row = 1;
while (row <= size) { // Table has size rows.

int column = 1; // Reset column for each row.
while (column <= size) { // Table has size columns.

int product = row*column; // Compute product
std::cout << product << " "; // Display product
column++; // Next element

}
std::cout << '\n'; // Move cursor to next row
row++; // Next row

}
}

We use a loop to print the contents of each row. The outer loop controls how many total rows the program

prints, and the inner loop, executed in its entirity each time the program prints a row, prints the individual

elements that make up a row.

The result of Listing 6.11 (timestable-2nd-try.cpp) is

Please enter the table size: 10
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

The numbers within each column are not lined up nicely, but the numbers are in their correct positions rela-

tive to each other. We can use the std::setw stream manipulator introduced in Listing 6.7 (powersof10justified.cpp)

to right justify the numbers within a four-digit area. Listing 6.12 (timestable-3rd-try.cpp) contains this align-

ment adjustment.

Listing 6.12: timestable-3rd-try.cpp

#include <iostream>
#include <iomanip>

int main() {
int size; // The number of rows and columns in the table
std::cout << "Please enter the table size: ";
std::cin >> size;
// Print a size x size multiplication table
int row = 1;
while (row <= size) { // Table has size rows.

int column = 1; // Reset column for each row.
while (column <= size) { // Table has size columns.

int product = row*column; // Compute product
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std::cout << std::setw(4) << product; // Display product
column++; // Next element

}
std::cout << '\n'; // Move cursor to next row
row++; // Next row

}
}

Listing 6.12 (timestable-3rd-try.cpp) produces the table’s contents in an attractive form:

Please enter the table size: 10
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Input values of 5:

Please enter the table size: 5
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

and 15:

Please enter the table size: 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120
9 18 27 36 45 54 63 72 81 90 99 108 117 126 135

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
11 22 33 44 55 66 77 88 99 110 121 132 143 154 165
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
13 26 39 52 65 78 91 104 117 130 143 156 169 182 195
14 28 42 56 70 84 98 112 126 140 154 168 182 196 210
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225

also give good results.

All that is left is to add the row and column titles and the lines that bound the edges of the table.

Listing 6.13 (timestable.cpp) adds the necessary code.
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Listing 6.13: timestable.cpp

#include <iostream>
#include <iomanip>

int main() {
int size; // The number of rows and columns in the table
std::cout << "Please enter the table size: ";
std::cin >> size;
// Print a size x size multiplication table

// First, print heading: 1 2 3 4 5 etc.
std::cout << " ";
// Print column heading
int column = 1;
while (column <= size) {

std::cout << std::setw(4) << column; // Print heading for this column.
column++;

}
std::cout << '\n';

// Print line separator: +------------------
std::cout << " +";
column = 1;
while (column <= size) {

std::cout << "----"; // Print line for this column.
column++;

}
std::cout << '\n';

// Print table contents
int row = 1;
while (row <= size) { // Table has size rows.

std::cout << std::setw(2) << row << " |"; // Print heading for row.
int column = 1; // Reset column for each row.
while (column <= size) { // Table has size columns.

int product = row*column; // Compute product
std::cout << std::setw(4) << product; // Display product
column++; // Next element

}
row++; // Next row
std::cout << '\n'; // Move cursor to next row

}
}

When the user supplies the value 10, Listing 6.13 (timestable.cpp) produces

Please enter the table size: 10
1 2 3 4 5 6 7 8 9 10

+----------------------------------------
1 | 1 2 3 4 5 6 7 8 9 10
2 | 2 4 6 8 10 12 14 16 18 20
3 | 3 6 9 12 15 18 21 24 27 30
4 | 4 8 12 16 20 24 28 32 36 40
5 | 5 10 15 20 25 30 35 40 45 50
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6 | 6 12 18 24 30 36 42 48 54 60
7 | 7 14 21 28 35 42 49 56 63 70
8 | 8 16 24 32 40 48 56 64 72 80
9 | 9 18 27 36 45 54 63 72 81 90

10 | 10 20 30 40 50 60 70 80 90 100

An input of 15 yields

Please enter the table size: 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+------------------------------------------------------------
1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 | 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
3 | 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
4 | 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
5 | 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
6 | 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90
7 | 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105
8 | 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120
9 | 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135

10 | 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
11 | 11 22 33 44 55 66 77 88 99 110 121 132 143 154 165
12 | 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
13 | 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195
14 | 14 28 42 56 70 84 98 112 126 140 154 168 182 196 210
15 | 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225

If the user enters 7, the program prints

Please enter the table size: 7
1 2 3 4 5 6 7

+----------------------------
1 | 1 2 3 4 5 6 7
2 | 2 4 6 8 10 12 14
3 | 3 6 9 12 15 18 21
4 | 4 8 12 16 20 24 28
5 | 5 10 15 20 25 30 35
6 | 6 12 18 24 30 36 42
7 | 7 14 21 28 35 42 49

The user even can enter a 1:

Please enter the table size: 1
1

+----
1 | 1

As we can see, the table automatically adjusts to the size and spacing required by the user’s input.

This is how Listing 6.13 (timestable.cpp) works:

• It is important to distinguish what is done only once (outside all loops) from that which is done

repeatedly. The column heading across the top of the table is outside of all the loops; therefore, it is

printed all at once.
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• The work to print the heading for the rows is distributed throughout the execution of the outer loop.

This is because the heading for a given row cannot be printed until all the results for the previous row

have been printed.

• A code fragment like

if (x < 10)
std::cout << " ";

std::cout << x;

prints x in one of two ways: if x is a one-digit number, it prints a space before it; otherwise, it does

not print the extra space. The net effect is to right justify one and two digit numbers within a two

character space printing area. This technique allows the columns within the times table to be properly

right aligned.

• In the nested loop, row is the control variable for the outer loop; column controls the inner loop.

• The inner loop executes size times on every single iteration of the outer loop. How many times is

the statement

std::cout << product << " "; // Display product

executed? size × size times, one time for every product in the table.

• A newline is printed after the contents of each row is displayed; thus, all the values printed in the

inner (column) loop appear on the same line.

Nested loops are used when an iterative process itself must be repeated. In our times table example, a

while loop is used to print the contents of each row, but multiple rows must be printed. The inner loop

prints the contents of each row, while the outer is responsible for printing all the rows.

Listing 6.14 (permuteabc.cpp) uses a triply-nested loop to print all the different arrangements of the

letters A, B, and C. Each string printed is a permutation of ABC.

Listing 6.14: permuteabc.cpp

// File permuteabc.cpp

#include <iostream>

int main() {
char first = 'A'; // The first letter varies from A to C
while (first <= 'C') {

char second = 'A';
while (second <= 'C') { // The second varies from A to C

if (second != first) { // No duplicate letters
char third = 'A';
while (third <= 'C') { // The third varies from A to C

// Don't duplicate first or second letter
if (third != first && third != second)

std::cout << first << second << third << '\n';
third++;

}
}
second++;

}
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first++;
}

}

Notice how the if statements are used to prevent duplicate letters within a given string. The output of

Listing 6.14 (permuteabc.cpp) is all six permutations of ABC:

ABC
ACB
BAC
BCA
CAB
CBA

6.3 Abnormal Loop Termination

By default, a while statement executes until its condition becomes false. The executing program checks

this condition only at the “top” of the loop. This means that even if the Boolean expression that makes

up the condition becomes false before the program completes executing all the statements within the body

of the loop, all the remaining statements in the loop’s body must complete before the loop can once again

check its condition. In other words, the while statement in and of itself cannot exit its loop somewhere in

the middle of its body.

Ordinarily this behavior is not a problem. Usually the intention is to execute all the statements within

the body as an indivisible unit. Sometimes, however, it is desirable to immediately exit the body or recheck

the condition from the middle of the loop instead. C++ provides the break and continue statements to

to give programmers more flexibility designing the control logic of loops.

6.3.1 The break statement

C++ provides the break statement to implement middle-exiting control logic. The break statement causes

the immediate exit from the body of the loop. Listing 6.15 (addmiddleexit.cpp) is a variation of Listing 6.4

(addnonnegatives.cpp) that illustrates the use of break.

Listing 6.15: addmiddleexit.cpp

#include <iostream>

int main() {
int input, sum = 0;
std::cout << "Enter numbers to sum, negative number ends list:";
while (true) {

std::cin >> input;
if (input < 0)

break; // Exit loop immediately
sum += input;

}
std::cout << "Sum = " << sum << '\n';

}
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The condition of the while in Listing 6.15 (addmiddleexit.cpp) is a tautology. This means the condition

is true and can never be false. When the program’s execution reaches the while statement it is guaranteed

to enter the loop’s body and the while loop itself does not provide a way of escape. The if statement in

the loop’s body:

if (input < 0) // Is input negative
break; // If so, exit the loop immediately

provides the necessary exit. In this case the break statement, executed conditionally based on the value of

the variable input, exits the loop. In Listing 6.15 (addmiddleexit.cpp) the break statement executes only

when the user enters a negative number. When the program’s execution encounters the break statement,

it immediately jumps out of the loop. It skips any statements following the break within the loop’s body.

Since the statement

sum += input; // Accumulate user input

appears after the break, it is not possible for the program to add a negative number to the sum variable.

Some software designers believe that programmers should use the break statement sparingly because

it deviates from the normal loop control logic. Ideally, every loop should have a single entry point and

single exit point. While Listing 6.15 (addmiddleexit.cpp) has a single exit point (the break statement),

some programmers commonly use break statements within while statements in the which the condition

for the while is not a tautology. Adding a break statement to such a loop adds an extra exit point (the

top of the loop where the condition is checked is one point, and the break statement is another). Using

multiple break statements within a single loop is particularly dubious and you should avoid that practice.

Why have the break statement at all if its use is questionable and it is dispensable? The logic in

Listing 6.4 (addnonnegatives.cpp) is fairly simple, so the restructuring of Listing 6.15 (addmiddleexit.cpp)

is straightforward; in general, the effort to restructure code to avoid a break statement may complicate

the logic a bit and require the introduction of an additional Boolean variable. As shown in Figure 6.4, any

program that uses a break statement can be rewritten so that the break statement is not used.

The no-break version introduces a Boolean variable, and the loop control logic is a little more com-

plicated. The no-break version uses more memory (an extra variable) and more time to execute (requires

an extra check in the loop condition during every iteration of the loop). This extra memory is insignificant,

and except for rare, specialized applications, the extra execution time is imperceptible. In most cases, the

more important issue is that the more complicated the control logic for a given section of code, the more

difficult the code is to write correctly. In some situations, even though it violates the “single entry point,

single exit point” principle, a simple break statement is an acceptable loop control option.

6.3.2 The goto Statement

The break statement exits the single loop in which it is located. A break statement is insufficient to jump

completely out of the middle of a nested loop. The goto statement allows the program’s execution flow

to jump to a specified location within the function. Listing 6.16 (exitnested.cpp) uses a goto statement to

jump out from the middle of a nested loop.

Listing 6.16: exitnested.cpp

#include <iostream>

int main() {
// Compute some products
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Figure 6.4 The code on the left generically represents any loop that uses a break statement. It is possible

to transform the code on the left to eliminate the break statement, as the code on the right shows.

Condition 1

Condition 2

Part A

Part B

Part C

while (           ) {

    if (           ) {

        break;

    }

}

Eliminate

the

break

statement

bool looping = true;

while ( looping  &&            ) {

    if (           ) {

        looping = false;    

    }

    else {

    }

}

Condition 1

Part A

Condition 2

Part B

Part C

int op1 = 2;
while (op1 < 100) {

int op2 = 2;
while (op2 < 100) {

if (op1 * op2 == 3731)
goto end;

std::cout << "Product is " << (op1 * op2) << '\n';
op2++;

}
op1++;

}
end:

std::cout << "The end" << '\n';
}

When op1 * op2 is 3731, program flow will jump to the specified label within the program. In this

example, the label is named end, but this name is arbitrary. Like variable names, label names should be

chosen to indicate their intended purpose. The label here named end comes after and outside the nested

while loops.

A label’s name is an identifier (see Section 3.3), and a label is distinguished by the colon that immedi-

ately follows its name. A label represents a target to which a goto can jump. A goto label must appear

before a statement within a function.

With the goto statement, the while is superfluous; for example, Listing 6.2 (iterativecounttofive.cpp)

could be rewritten without the while statement as shown in Listing 6.17 (gotoloop.cpp).
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Listing 6.17: gotoloop.cpp

#include <iostream>

int main() {
int count = 1; // Initialize counter

top:
if (count > 5)

goto end;
std::cout << count << '\n'; // Display counter, then
count++; // Increment counter
goto top;

end:
; // Target is an empty statement

}

Early programming languages like FORTRAN and early versions of BASIC did not have structured

statements like while, so programmers were forced to use goto statements to write loops. The problem

with using goto statements is that it is easy to develop program logic that is very difficult to understand,

even for the original author of the code. See the Wikipedia article about spaghetti code (http://en.
wikipedia.org/wiki/Spaghetti_code). The structured programming revolution of the 1960s

introduced constructs such as the while statement and resulted in the disappearance of the use of goto
in most situations. All modern programming languages have a form of the while statement, so the goto
statement in C++ is largely ignored except for the case of breaking out of a nested loop. You similarly

should restrict your use of the goto statement to the abnormal exit of nested loops.

6.3.3 The continue Statement

When a program’s execution encounters a break statement inside a loop, it skips the rest of the body

of the loop and exits the loop. The continue statement is similar to the break statement, except the

continue statement does not necessarily exit the loop. The continue statement skips the rest of the

body of the loop and immediately checks the loop’s condition. If the loop’s condition remains true, the

loop’s execution resumes at the top of the loop. Listing 6.18 (continueexample.cpp) shows the continue
statement in action.

Listing 6.18: continueexample.cpp

#include <iostream>

int main() {
int input, sum = 0;
bool done = false;
while (!done) {

std::cout << "Enter positive integer (999 quits): ";
std::cin >> input;
if (input < 0) {

std::cout << "Negative value " << input << " ignored\n";
continue; // Skip rest of body for this iteration

}
if (input != 999) {

std::cout << "Tallying " << input << '\n';
sum += input;

}
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else
done = (input == 999); // 999 entry exits loop

}
std::cout << "sum = " << sum << '\n';

}

Programmers do not use the continue statement as frequently as the break statement since it is easy

to transform code using continue into an equivalent form that does not. Listing 6.19 (nocontinueexample.cpp)

works exactly like Listing 6.18 (continueexample.cpp), but it avoids the continue statement.

Listing 6.19: nocontinueexample.cpp

#include <iostream>

int main() {
int input, sum = 0;
bool done = false;
while (!done) {

std::cout << "Enter positive integer (999 quits): ";
std::cin >> input;
if (input < 0)

std::cout << "Negative value " << input << " ignored\n";
else

if (input != 999) {
std::cout << "Tallying " << input << '\n';
sum += input;

}
else

done = (input == 999); // 999 entry exits loop
}
std::cout << "sum = " << sum << '\n';

}

Figure 6.5 shows how we can rewrite any program that uses a continue statement into an equivalent

form that does not use continue. The transformation is simpler than for break elimination (see Fig-

ure 6.4) since the loop’s condition remains the same, and no additional variable is needed.

The version that uses continue is no more efficient than the version that uses else; in fact, the Vi-

sual C++ and GNU C++ compilers generate the same machine language code for Listing 6.18 (continueexample.cpp)

and Listing 6.19 (nocontinueexample.cpp). Also, the logic of the else version is no more complex than

the continue version. Therefore, unlike the break statement above, there is no compelling reason to use

the continue statement. Sometimes a programmer may add a continue statement at the last minute

to an existing loop body to handle an exceptional condition (like ignoring negative numbers in the example

above) that initially went unnoticed. If the body of the loop is lengthy, the programmer can add a condi-

tional statement with a continue near the top of the loop body without touching the logic of the rest of

the loop. The continue statement thus merely provides a convenient alternative for the programmer. The

else version is preferred.

6.4 Infinite Loops

An infinite loop is a loop without an exit. Once the program flow enters an infinite loop’s body it cannot

escape. Some infinite loops are by design; for example, a long-running server application, like a Web
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Figure 6.5 The code on the left generically represents any loop that uses a continue statement. It is

possible to transform the code on the left to eliminate the continue statement, as the code on the right

shows.
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Condition 2
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server, may need to continuously check for incoming connections. This server application can perform this

checking within a loop that runs indefinitely. All too often, however, beginning programmers create infinite

loops by accident, and these infinite loops represent logic errors in their programs.

Intentional infinite loops should be made obvious. For example,

while (true) {
/* Do something forever . . . */

}

The Boolean literal true is always true, so it is impossible for the loop’s condition to be false. The only

ways to exit the loop is via a break statement, return statement (see Chapter 9), or an exit call (see

Section 8.1) embedded somewhere within its body.

It is easy to write an intentional infinite loop. Accidental infinite loops are quite common, but can be

puzzling for beginning programmers to diagnose and repair. Consider Listing 6.20 (findfactors.cpp) that

attempts to print all the integers with their associated factors from 1 to 20.

Listing 6.20: findfactors.cpp

#include <iostream>

int main() {
// List of the factors of the numbers up to 20
int n = 1;
const int MAX = 20;
while (n <= MAX) {

int factor = 1;
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std::cout << n << ": ";
while (factor <= n)

if (n % factor == 0) {
std::cout << factor << " ";
factor++;

}
std::cout << '\n'; // Go to next line for next n
n++;

}
}

It displays

1: 1
2: 1 2
3: 1

and then “freezes up” or “hangs,” ignoring any user input (except the key sequence Ctrl C on most

systems which interrupts and terminates the running program). This type of behavior is a frequent symptom

of an unintentional infinite loop. The factors of 1 display properly, as do the factors of 2. The first factor

of 3 is properly displayed and then the program hangs. Since the program is short, the problem may be

easy to locate. In some programs, though, the error may be challenging to find. Even in Listing 6.20

(findfactors.cpp) the debugging task is nontrivial since it involves nested loops. (Can you find and fix the

problem in Listing 6.20 (findfactors.cpp) before reading further?)

In order to avoid infinite loops, we must ensure that the loop exhibits certain properties:

• The loop’s condition must not be a tautology (a Boolean expression that can never be false). For

example,

while (i >= 1 || i <= 10) {
/* Body omitted */

}

is an infinite loop since any value chosen for i will satisfy one or both of the two subconditions.

Perhaps the programmer intended to use a && instead of || to stay in the loop as long as i remains

in the range 1...10.

In Listing 6.20 (findfactors.cpp) the outer loop condition is

n <= MAX

If n is 21 and MAX is 20, then the condition is false, so this is not a tautology. Checking the inner

loop condition:

factor <= n

we see that if factor is 3 and n is 2, then the expression is false; therefore, it also is not a tautology.

• The condition of a while must be true initially to gain access to its body. The code within the body

must modify the state of the program in some way so as to influence the outcome of the condition

that is checked at each iteration. This usually means code within the body of the loop modifies one of

the variables used in the condition. Eventually the variable assumes a value that makes the condition

false, and the loop terminates.
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In Listing 6.20 (findfactors.cpp) the outer loop’s condition involves the variable n and constant MAX.

MAX cannot change, so to avoid an infinite loop it is essential that n be modified within the loop.

Fortunately, the last statement in the body of the outer loop increments n. n is initially 1 and MAX is

20, so unless the circumstances arise to make the inner loop infinite, the outer loop should eventually

terminate.

The inner loop’s condition involves the variables n and factor. No statement in the inner loop

modifies n, so it is imperative that factor be modified in the loop. The good news is factor is

incremented in the body of the inner loop, but the bad news is the increment operation is protected

within the body of the if statement. The inner loop contains one statement, the if statement. That

if statement in turn has two statements in its body:

while (factor <= n)
if (n % factor == 0) {

std::cout << factor << " ";
factor++;

}

If the condition of the if is ever false, the state of the program will not change when the body of the

inner loop is executed. This effectively creates an infinite loop. The statement that modifies factor
must be moved outside of the if statement’s body:

while (factor <= n) {
if (n % factor == 0)

std::cout << factor << " ";
factor++;

}

Note that the curly braces are necessary for the statement incrementing factor to be part of the body

of the while. This new version runs correctly.

Programmers can use a debugger to step through a program to see where and why an infinite loop

arises. Another common technique is to put print statements in strategic places to examine the values of the

variables involved in the loop’s control. The original inner loop can be so augmented:

while (factor <= n) {
std::cout << "factor = " << factor

<< " n = " << n << '\n';
if (n % factor == 0) {

std::cout << factor << " ";
factor++;

}
}

It produces the following output:

1: factor = 1 n = 1
1
2: factor = 1 n = 2
1 factor = 2 n = 2
2
3: factor = 1 n = 3
1 factor = 2 n = 3
factor = 2 n = 3
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factor = 2 n = 3
factor = 2 n = 3
factor = 2 n = 3
factor = 2 n = 3

.

.

.

The program continues to print the same line until the user interrupts its execution. The output demonstrates

that once factor becomes equal to 2 and n becomes equal to 3 the program’s execution becomes trapped

in the inner loop. Under these conditions:

1. 2 < 3 is true, so the loop continues and

2. 3 % 2 is equal to 1, so the if statement will not increment factor.

It is imperative that factor be incremented each time through the inner loop; therefore, the statement

incrementing factor must be moved outside of the if’s guarded body.

6.5 Iteration Examples

We can implement some sophisticated algorithms in C++ now that we are armed with if and while
statements. This section provides several examples that show off the power of conditional execution and

iteration.

6.5.1 Drawing a Tree

Suppose we must write a program that draws a triangular tree, and the user provides the tree’s height. A

tree that is five levels tall would look like

*
***

*****
*******

*********

whereas a three-level tree would look like

*
***

*****

If the height of the tree is fixed, we can write the program as a simple variation of Listing 2.4 (arrow.cpp)

which uses only printing statements and no loops. Our program, however, must vary its height and width

based on input from the user.

Listing 6.21 (startree.cpp) provides the necessary functionality.

Listing 6.21: startree.cpp
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#include <iostream>

int main() {
int height; // Height of tree
std::cout << "Enter height of tree: ";
std::cin >> height; // Get height from user
int row = 0; // First row, from the top, to draw
while (row < height) { // Draw one row for every unit of height

// Print leading spaces
int count = 0;
while (count < height - row) {

std::cout << " ";
count++;

}
// Print out stars, twice the current row plus one:
// 1. number of stars on left side of tree
// = current row value
// 2. exactly one star in the center of tree
// 3. number of stars on right side of tree
// = current row value
count = 0;
while (count < 2*row + 1) {

std::cout << "*";
count++;

}
// Move cursor down to next line
std::cout << '\n';
// Change to the next row
row++;

}
}

When a user runs Listing 6.21 (startree.cpp) and enters 7, the program displays

Enter height of tree: 7
*

***
*****
*******

*********
***********

*************

Listing 6.21 (startree.cpp) uses two sequential while loops both nested within a while loop. The

outer while loop is responsible for drawing one row of the tree each time its body is executed:

• The program will execute the outer while loop’s body as long as the user enters a value greater than

zero; if the user enters zero or less, the program terminates and does nothing. This is the expected

behavior.

• The last statement in the body of the outer while:

row++;
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ensures that the variable row increases by one each time through the loop; therefore, it eventually

will equal height (since it initially had to be less than height to enter the loop), and the loop will

terminate. There is no possibility of an infinite loop here.

• The body of the outer loop consists of more than one statement; therefore, the body must be enclosed

within curly braces. Whenever a group of statements is enclosed within curly braces a block is

formed. Any variable declared within a block is local to that block. A variable’s scope (the section of

the source code in which the variable exists and can be used) is from its point of declaration to the end

of the block in which it is declared. For example, the variables height and row are declared in the

block that is main’s body; thus, they are local to main. The variable count is declared within the

block that is the body of the outer while statement; therefore, count is local to the outer while
statement. An attempt to use count outside the body of the outer while statement would be an

error.

What does it mean for a variable x to be local to a particular section of code? It means x does not exist

outside its scope. There may be other variables in the program named x, but they are different variables. If

it seems odd that you can have two different variables in the same program with the same name, consider

the fact that there can be two people in the same room with the same name. They are different people, but

they have the same name. Similarly, the meaning of a variable depends on its context, and its name is not

necessarily unique.

The two inner loops play distinct roles:

• The first inner loop prints spaces. The number of spaces printed is equal to the height of the tree the

first time through the outer loop and decreases each iteration. This is the correct behavior since each

succeeding row moving down contains fewer leading spaces but more asterisks.

• The second inner loop prints the row of asterisks that make up the tree. The first time through the

outer loop, row is zero, so no left side asterisks are printed, one central asterisk is printed (the top of

the tree), and no right side asterisks are printed. Each time through the loop the number of left-hand

and right-hand stars to print both increase by one and the same central asterisk is printed; therefore,

the tree grows one wider on each side each line moving down. Observe how the 2*row + 1 value

expresses the needed number of asterisks perfectly.

• While it seems asymmetrical, note that no third inner loop is required to print trailing spaces on the

line after the asterisks are printed. The spaces would be invisible, so there is no reason to print them!

6.5.2 Printing Prime Numbers

A prime number is an integer greater than one whose only factors (also called divisors) are one and itself.

For example, 29 is a prime number (only 1 and 29 divide into it with no remainder), but 28 is not (2, 4, 7,

and 14 are factors of 28). Prime numbers were once merely an intellectual curiosity of mathematicians, but

now they play an important role in cryptography and computer security.

The task is to write a program that displays all the prime numbers up to a value entered by the user.

Listing 6.22 (printprimes.cpp) provides one solution.

Listing 6.22: printprimes.cpp

#include <iostream>

int main() {
int max_value;
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std::cout << "Display primes up to what value? ";
std::cin >> max_value;
int value = 2; // Smallest prime number
while (value <= max_value) {

// See if value is prime
bool is_prime = true; // Provisionally, value is prime
// Try all possible factors from 2 to value - 1
int trial_factor = 2;
while (trial_factor < value) {

if (value % trial_factor == 0) {
is_prime = false; // Found a factor
break; // No need to continue; it is NOT prime

}
trial_factor++;

}
if (is_prime)

std::cout << value << " "; // Display the prime number
value++; // Try the next potential prime number

}
std::cout << '\n'; // Move cursor down to next line

}

Listing 6.22 (printprimes.cpp), with an input of 90, produces:

Display primes up to what value? 90
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89

The logic of Listing 6.22 (printprimes.cpp) is a little more complex than that of Listing 6.21 (startree.cpp).

The user provides a value for max_value. The main loop (outer while iterates over all the values from

two to max_value:

• Two new variables, local to the body of the outer loop, are introduced: trial_factor and

is_prime. is_prime is initialized to true, meaning value is assumed to be prime unless our

tests prove otherwise. trial_factor takes on all the values from two to value - 1 in the inner

loop:

int trial_factor = 2;
while (trial_factor < value) {

if (value % trial_factor == 0) {
is_prime = false; // Found a factor
break; // No need to continue; it is NOT prime

}
trial_factor++;

}

The expression value % trial_factor is zero when trial_factor divides into value
with no remainder—exactly when trial_factor is a factor of value. If the executing program

determines that any of the values of trial_factor is a factor of value, then it sets is_prime
to false and exits the loop via the break. If the loop continues to completion, the program never sets

is_prime to false, which means it found no factors and value is indeed prime.

• The if statement after the inner loop:

if (is_prime)
std::cout << value << " "; // Display the prime number
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simply checks the status of is_prime. If is_prime is true, then value must be prime, so it

prints value along with an extra space for separation from output it may produce during subsequent

iterations.

Some important questions we can ask include:

1. If the user enters a 2, will it be printed?

In this case max_value = value = 2, so the condition of the outer loop

value <= max_value

is true, since 2 <= 2. is_prime is set to true, but the condition of the inner loop

trial_factor < value

is not true (2 is not less than 2). Thus, the inner loop is skipped, is_prime is not changed from

true, and 2 is printed. This behavior is correct because 2 is the smallest prime number (and the only

even prime).

2. if the user enters a number less than 2, is anything printed?

The while condition ensures that values less than two are not considered. The body of the while
will never be entered. Only the newline is printed, and no numbers are displayed. This behavior is

correct.

3. Is the inner loop guaranteed to always terminate?

In order to enter the body of the inner loop, trial_factor must be less than value. value
does not change anywhere in the loop. trial_factor is not modified anywhere in the if
statement within the loop, and it is incremented within the loop immediately after the if state-

ment. trial_factor is, therefore, incremented during each iteration of the loop. Eventually,

trial_factor will equal value, and the loop will terminate.

4. Is the outer loop guaranteed to always terminate?

In order to enter the body of the outer loop, value must be less than or equal to max_value.

max_value does not change anywhere in the loop. value is increased in the last statement within

the body of the outer loop, and value is not modified anywhere else. Since the inner loop is guaran-

teed to terminate as shown in the previous answer, eventually value will exceed max_value and

the loop will end.

We can rearrange the logic of the inner while to avoid the break statement. The current version is:

while (trial_factor < value) {
if (value % trial_factor == 0) {

is_prime = false; // Found a factor
break; // No need to continue; it is NOT prime

}
trial_factor++;

}

We can rewrite it as:

while (is_prime && trial_factor < value) {
is_prime = (value % trial_factor != 0);
trial_factor++; // Try next factor

}
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This version without the break introduces a slightly more complicated condition for the while but re-

moves the if statement within its body. is_prime is initialized to true before the loop. Each time through

the loop it is reassigned. trial_factor will become false if at any time value % trial_factor
is zero. This is exactly when trial_factor is a factor of value. If is_prime becomes false, the

loop cannot continue, and if is_prime never becomes false, the loop ends when trial_factor be-

comes equal to value. Due to operator precedence, the parentheses are not necessary. The parentheses do

improve readability, since an expression including both == and != is awkward for humans to parse. When

parentheses are placed where they are not needed, as in

x = (y + 2);

the compiler simply ignores them, so there is no efficiency penalty in the compiled code.

We can shorten the loop even further:

while (is_prime && trial_factor < value)
is_prime = (value % trial_factor++ != 0);

This version uses the post-increment operator within the test expression (see Section 4.9). Recall that with

the post-increment operator the value of the variable is used in the surrounding expression (if any), and then

the variable is incremented. Since the while’s body now contains only one statement, the curly braces are

not needed.

6.6 Exercises

1. In Listing 6.4 (addnonnegatives.cpp) could the condition of the if statement have used > instead of

>= and achieved the same results? Why?

2. In Listing 6.4 (addnonnegatives.cpp) could the condition of the while statement have used > instead

of >= and achieved the same results? Why?

3. Use a loop to rewrite the following code fragment so that it uses just one std::cout and one '\n'.

std::cout << 2 << '\n';
std::cout << 4 << '\n';
std::cout << 6 << '\n';
std::cout << 8 << '\n';
std::cout << 10 << '\n';
std::cout << 12 << '\n';
std::cout << 14 << '\n';
std::cout << 16 << '\n';

4. In Listing 6.4 (addnonnegatives.cpp) what would happen if the statement containing std::cin is

moved out of the loop? Is moving the assignment out of the loop a good or bad thing to do? Why?

5. How many asterisks does the following code fragment print?

int a = 0;
while (a < 100) {

std::cout << "*";
a++;

}
std::cout << '\n';
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6. How many asterisks does the following code fragment print?

int a = 0;
while (a < 100)

std::cout << "*";
std::cout << '\n';

7. How many asterisks does the following code fragment print?

int a = 0;
while (a > 100) {

std::cout << "*";
a++;

}
std::cout << '\n';

8. How many asterisks does the following code fragment print?

int a = 0;
while (a < 100) {

int b = 0;
while (b < 55) {

std::cout << "*";
b++;

}
std::cout << '\n';

}

9. How many asterisks does the following code fragment print?

int a = 0;
while (a < 100) {

if (a % 5 == 0)
std::cout << "*";

a++;
}
std::cout << '\n';

10. How many asterisks does the following code fragment print?

int a = 0;
while (a < 100) {

int b = 0;
while (b < 40) {

if ((a + b) % 2 == 0)
std::cout << "*";

b++;
}
std::cout << '\n';
a++;

}

11. How many asterisks does the following code fragment print?
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int a = 0;
while (a < 100) {

int b = 0;
while (b < 100) {

int c = 0;
while (c < 100) {

std::cout << "*";
c++;

}
b++;

}
a++;

}
std::cout << '\n';

12. What is printed by the following code fragment?

int a = 0;
while (a < 100)

std::cout << a++;
std::cout << '\n';

13. What is printed by the following code fragment?

int a = 0;
while (a > 100)

std::cout << a++;
std::cout << '\n';

14. Rewrite the following code fragment using a break statement and eliminating the done variable.

Your code should behave identically to this code fragment.

bool done = false;
int n = 0, m = 100;
while (!done && n != m) {

std::cin >> n;
if (n < 0)

done = true;
std::cout << "n = " << n << '\n';

}

15. Rewrite the following code fragment so it eliminates the continue statement. Your new code’s

logic should be simpler than the logic of this fragment.

int x = 100, y;
while (x > 0) {

std::cin >> y;
if (y == 25) {

x--;
continue;

}
std::cin >> x;

©2018 Richard L. Halterman Draft date: December 2, 2018



6.6. EXERCISES 156

std::cout << "x = " << x << '\n';
}

16. Suppose you were given some code from the 1960s in a language that did not support structured

statements like while. Your task is to modernize it and adapt it to C++. The following code fragment

has been adapted to C++ already, but you must now structure it with a while statement to replace

the gotos. Your code should be goto free and still behave identically to this code fragment.

int i = 0;
top: if (i >= 10)

goto end;
std::cout << i << '\n';
i++;
goto top;

end:

17. What is printed by the following code fragment?

int a = 0;
while (a < 100);

std::cout << a++;
std::cout << '\n';

18. Write a C++ program that accepts a single integer value entered by the user. If the value entered is

less than one, the program prints nothing. If the user enters a positive integer, n, the program prints

an n×n box drawn with * characters. If the users enters 1, for example, the program prints

*

If the user enters a 2, it prints

**
**

An entry of three yields

***
***
***

and so forth. If the user enters 7, it prints

*******
*******
*******
*******
*******
*******
*******

that is, a 7×7 box of * symbols.

19. Write a C++ program that allows the user to enter exactly twenty double-precision floating-point

values. The program then prints the sum, average (arithmetic mean), maximum, and minimum of the

values entered.
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20. Write a C++ program that allows the user to enter any number of nonnegative double-precision

floating-point values. The user terminates the input list with any negative value. The program then

prints the sum, average (arithmetic mean), maximum, and minimum of the values entered. The termi-

nating negative value is not used in the computations. If the first number the user supplies is negative,

the program simply prints the text NO NUMBERS PROVIDED.

21. Redesign Listing 6.21 (startree.cpp) so that it draws a sideways tree pointing right; for example, if

the user enters 7, the program would print

*
**
***
****
*****
******
*******
******
*****
****
***
**
*

22. Redesign Listing 6.21 (startree.cpp) so that it draws a sideways tree pointing left; for example, if the

user enters 7, the program would print

*
**

***
****
*****

******
*******
******
*****
****
***
**
*
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Chapter 7

Other Conditional and Iterative Statements

The if/else and while statements are sufficient to implement any algorithms that involve conditional

execution and looping. The break and continue statements are convenient but are not necessary. C++

provides some additional conditional and iterative statements that are more convenient to use in some

circumstances. These additional statements include

• switch: an alternative to some multi-way if/else statements

• the conditional operator: an expression that exhibits the behavior of an if/else statement

• do/while: a loop that checks its condition after its body is executed

• for: a loop convenient for counting

These alternate constructs allow certain parts of algorithms to expressed more clearly and succinctly.

This chapter explores these other forms of expressing conditional execution and iteration.

7.1 The switch Statement

The switch statement provides a convenient alternative for some multi-way if/else statements like the

one in Listing 5.15 (restyleddigittoword.cpp). Listing 7.1 (switchdigittoword.cpp) is a new implementation

of Listing 5.15 (restyleddigittoword.cpp) that uses a switch statement instead of a multi-way if/else
statement.

Listing 7.1: switchdigittoword.cpp

#include <iostream>

int main() {
int value;
std::cout << "Please enter an integer in the range 0...5: ";
std::cin >> value;
switch (value) {
case 0:

std::cout << "zero";
break;
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case 1:
std::cout << "one";
break;

case 2:
std::cout << "two";
break;

case 3:
std::cout << "three";
break;

case 4:
std::cout << "four";
break;

case 5:
std::cout << "five";
break;

default:
if (value < 0)

std::cout << "Too small";
else

std::cout << "Too large";
break;

}
std::cout << '\n';

}

The general form of a switch is:
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integral expression

integral constant 1

switch (               ) {

    case                :

        break;

    case                :

        break;

    case                :

        break;

    case                :

        break;

    default:

}

statement sequence 1

integral constant 2

integral constant 3

integral constant n

statement sequence 2

statement sequence 3

statement sequence n

default statement sequence

In a switch statement

• The reserved word switch identifies a switch statement.

• The required parenthesized expression that follows the word switch must evaluate to an integral

value. Any integer type, characters, and Boolean expressions are acceptable. Floating point expres-

sions and other non-integer types are forbidden.
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• The body of the switch is enclosed by required curly braces.

• Each occurrence of the word case is followed by an integral constant and a colon (:). We call the

integral constant a case label. This label can be either a literal value or a const symbolic value

(see Section 3.6). In particular, non-const variables and other expressions are expressly forbidden.

The case label defines a position within the code; it is not an executable statement. A case label

represents a target to which the program’s execution flow can jump.

If the case label matches the switch’s expression, then the statements that follow that label are

executed up until the break statement is encountered. The statements and break statement that

follow each case label are optional. One way to execute one set of statements for more than one

case label is to provide empty statements for one or more of the labels, as in:

std::cin >> key; // get key from user
switch (key) {

case 'p':
case 'P':

std::cout << "You choose \"P\"\n";
break;

case 'q':
case 'Q':

done = true;
break;

}

Here either an upper- or lowercase P result in the same action— You chose P is printed. If the user

enters either an upper- or lowercase Q, the done Boolean variable is set to true. If the user enters

neither P nor Q, none of the statements in the switch is executed.

The break statement is optional. When a case label is matched, the statements that follow are

executed until a break statement is encountered. The control flow then transfers out of the body of

the switch. In this way, the break within a switch works just like a break within a loop: the

rest of the body of the statement is skipped and program execution resumes at the next statement fol-

lowing the body. A missing break statement, a common error, when its omission is not intentional,

causes the statements of the succeeding case label to be executed. The process continues until a

break is encountered or the end of the switch body is reached.

• The default label is matched if none of the case labels match. It serves as a catch all option like

the final else in a multi-way if/else statement. The default label is optional. If it is missing

and none of the case labels match the expression, then no statement within the switch’s body is

executed.

The switch statement has two restrictions that make it less general than the multi-way if/else:

• The switch argument must be an integral expression.

• Case labels must be constant integral values. Integral literals and constants are acceptable. Variables

or expressions are not allowed.

To illustrate these restrictions, consider the following if/else statement that translates easily to an equiv-

alent switch statement:
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if (x == 1) {
// Do 1 stuff here . . .

}
else if (x == 2) {

// Do 2 stuff here . . .
}
else if (x == 3) {

// Do 3 stuff here . . .
}

The corresponding switch statement is:

switch (x) {
case 1:

// Do 1 stuff here . . .
break;

case 2:
// Do 2 stuff here . . .
break;

case 3:
// Do 3 stuff here . . .
break;

}

Now consider the following if/else:

if (x == y) {
// Do "y" stuff here . . .

}
else if (x > 2) {

// Do "> 2" stuff here . . .
}
else if (z == 3) {

// Do 3 stuff here . . .
}

This code cannot be easily translated into a switch statement. The variable y cannot be used as a case
label. The second choice checks for an inequality instead of an exact match, so direct translation to a case
label is impossible. In the last condition, a different variable is checked, z instead of x. The control flow

of a switch statement is determined by a single value (for example, the value of x), but a multi-way

if/else statement is not so constrained.

Where applicable, a switch statement allows programmers to compactly express multi-way selection

logic. Most programmers find a switch statement easier to read than an equivalent multi-way if/else
construct.

A positive consequence of the switch statement’s restrictions is that it allows the compiler to produce

more efficient code for a switch than for an equivalent if/else. If a choice must be made from one of

several or more options, and the switch statement can be used, then the switch statement will likely be

faster than the corresponding multi-way if/else.
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7.2 The Conditional Operator

As purely a syntactical convenience, C++ provides an alternative to the if/else construct called the

conditional operator. It has limited application but is convenient nonetheless. The following code fragment

assigns one of two things to x:

• the result of y/z, if z is nonzero, or

• zero, if z is zero; we wish to avoid the run-time error of division by zero.

// Assign a value to x:
if (z != 0)

x = y/z; // Division is possible
else

x = 0; // Assign a default value instead

This code has two assignment statements, but only one is executed at any given time. The conditional

operator makes for a more compact statement:

// Assign a value to x:
x = (z != 0) ? y/z : 0;

The general form of a conditional expression is:

condition expression 1(           )?            :             expression 2

• condition is a normal Boolean expression that might appear in an if statement. Parentheses around

the condition are not required but should be used to improve the readability.

• expression 1 is the overall value of the conditional expression if condition is true.

• expression 2 is the overall value of the conditional expression if condition is false.

The conditional operator uses two symbols (? and :) and three operands. Since it has three operands it

is classified as a ternary operator (C++’s only one). The overall type of a conditional expression is the more

dominant of exp1 and exp2 The conditional expression can be used anywhere an expression can be used. It

is not a statement itself; it is used within a statement.

As another example, the absolute value of a number is defined in mathematics by the following formula:

|n| =
{

n, when n ≥ 0

−n, when n < 0

In other words, the absolute value of a positive number or zero is the same as that number; the abso-

lute value of a negative number is the additive inverse (negative of) of that number. The following C++

expression represents the absolute value of the variable n:
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(n < 0) ? -n : n

Some argue that the conditional operator is cryptic, and thus its use reduces a program’s readability. To

seasoned C++ programmers it is quite understandable, but it is used sparingly because of its very specific

nature.

7.3 The do/while Statement

An executing program checks the condition of a while statement (Section 6.1) before executing any of

the statements in its body; thus, we say a while loop is a top-checking loop. Sometimes this sequence

of checking the condition first then executing the body is inconvenient; for example, consider Listing 7.2

(goodinputonly.cpp).

Listing 7.2: goodinputonly.cpp

#include <iostream>

int main() {
int in_value = -1;
std::cout << "Please enter an integer in the range 0-10: ";
// Insist on values in the range 0...10
while (in_value < 0 || in_value > 10)

std::cin >> in_value;
// in_value at this point is guaranteed to be within range
std::cout << "Legal value entered was " << in_value << '\n';

}

The loop in Listing 7.2 (goodinputonly.cpp) traps the user in the while until the user provides a number

in the desired range. Here’s how it works:

• The condition of the while specifies a set that includes all values that are not in the desired range.

The initialization of in_value to −1 ensures the condition of the while will be true initially, and,

thus, the program always will execute the loop’s body at least one time.

• The user does not get a chance to enter a value until program’s execution is inside the loop.

• The only way the user can escape the loop is to enter a value that violates the condition—precisely a

value in the desired range.

The initialization of in_value before the loop check is somewhat artificial. It is there only to ensure

entry into the loop’s body. It seems unnatural to check for a valid value before the user gets a chance to

enter it. A loop that checks its condition after its body is executed at least once would be more appropriate.

The do/while statement is a bottom-checking loop that behaves exactly in this manner. Listing 7.3

(betterinputonly.cpp) uses a do/while statement to check for valid input.

Listing 7.3: betterinputonly.cpp

#include <iostream>

int main() {
int in_value;
std::cout << "Please enter an integer in the range 0-10: ";
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Figure 7.1 The flowcharts for while and do/while loops

// Insist on values in the range 0...10
do

std::cin >> in_value;
while (in_value < 0 || in_value > 10);
// in_value at this point is guaranteed to be within range
std::cout << "Legal value entered was " << in_value << '\n';

}

Notice that there is no need to initialize in_value since its value is not used until after it is assigned

through the input stream std::cin. Figure 7.1 compares the flowcharts of a while and do/while
loop.

The do/while statement has the general form:

condition

statement

do

while (           );

• The reserved words do and while identify a do/while statement. The do and while keywords
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delimit the loop’s body, but curly braces are still required if the body consists of more than one

statement.

• The condition is associated with the while at the end of the loop. The condition is a Boolean

expression and must be enclosed within parentheses.

• The statement is exactly like the statement in the general form of the while loop (see Section 6.1).

It can be a compound statement enclosed within curly braces.

The body of a do/while statement, unlike the while statement, is guaranteed to execute at least

once.

The do/while loop is a convenience to the programmer and is not an essential programming construct.

It is easy to transform any code that uses a do/while statement into code that behaves identically that

uses a while statement instead. In practice, programmers use while loops much more frequently than

do/while loops because more algorithms require top-checking loops than bottom-checking loops. The

do/while statement is included in C++ for a reason, however. Transforming an algorithm that can be

expressed more naturally with a bottom-checking loop into one the uses a top-checking loop can lead to

awkward code. Use do/while when appropriate.

7.4 The for Statement

Recall Listing 6.2 (iterativecounttofive.cpp). It simply counts from one to five. Counting is a frequent

activity performed by computer programs. Certain program elements are required in order for any program

to count:

• A variable must be used to keep track of the count; in Listing 6.2 (iterativecounttofive.cpp), count
is the aptly named counter variable.

• The counter variable must be given an initial value. In the case of Listing 6.2 (iterativecounttofive.cpp),

the initial value is 1.

• The variable must be modified (usually incremented) as the program counts. The statement

count++;

increments count in Listing 6.2 (iterativecounttofive.cpp).

• A way must be provided to determine if the counting has completed. In Listing 6.2 (iterativecounttofive.cpp),

the condition of the while statement determines if the counting is complete or must contine.

C++ provides a specialized loop that packages these four programming elements into one convenient

statement. Called the for statement, its general form is

condition

statement

for (           ;           ;           )modificationinitialization
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• The reserved word for identifies a for statement.

• The loop is controlled by a special variable called the loop variable.

• The header, contained in parentheses, contains three parts, each separated by semicolons:

– Initialization. The initialization part assigns an initial value to the loop variable. The loop

variable may be declared here as well; if it is declared here, then its scope is limited to the for
statement. This means you may use that loop variable only within the loop. It also means you

are free to reuse that variable’s name outside the loop to declare a different variable with the

same name as the loop variable.

The initialization part is performed one time.

– Condition. The condition part is a Boolean expression, just like the condition of a while
statement. The condition is checked each time before the body is executed.

– Modification. The modification part generally changes the loop variable. The change should be

such that the condition will eventually become false so the loop will terminate. The modification

is performed during each iteration after the body is executed.

Notice that the last part (modification) is not following by a semicolon; semicolons are used

strictly to separate the three parts.

• The statement is like the body of any other loop. It may be a compound statement within curly braces.

Any for loop can be rewritten as a while loop. The general form of the for loop given above can be

written equivalently as

condition

statement

while (           ) {

}

modification

initialization

Listing 7.4 (forcounttofive.cpp) uses a for statement to count to five.

Listing 7.4: forcounttofive.cpp

#include <iostream>

int main() {
for (int count = 1; count <= 5; count++)

std::cout << count << '\n'; // Display counter
}
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With a while loop, the four counting components (variable declaration, initialization, condition, and

modification can be scattered throughout the code. With a for loop, a programmer should be able to

determine all the important information about the loop’s control by looking at one statement.

Recall Listing 6.13 (timestable.cpp) that prints a multiplication table on the screen. We can organize

its code better by converting all the while statements to for statements. The result uses far less code, as

shown in Listing 7.5 (bettertimestable.cpp).

Listing 7.5: bettertimestable.cpp

#include <iostream>
#include <iomanip>

int main() {
int size; // The number of rows and columns in the table
std::cout << "Please enter the table size: ";
std::cin >> size;
// Print a size x size multiplication table

// First, print heading
std::cout << " ";
for (int column = 1; column <= size; column++)

std::cout << std::setw(4) << column; // Print heading for this column.
std::cout << '\n';
// Print line separator
std::cout << " +";
for (int column = 1; column <= size; column++)

std::cout << "----"; // Print separator for this column.
std::cout << '\n';
// Print table contents
for (int row = 1; row <= size; row++) {

std::cout << std::setw(4) << row << " |"; // Print row label.
for (int column = 1; column <= size; column++)

std::cout << std::setw(4) << row*column; // Display product
std::cout << '\n'; // Move cursor to next row

}
}

A for loop is ideal for stepping through the rows and columns. The information about the control of

both loops is now packaged in the respective for statements instead of being spread out in various places

in main. In the while version, it is easy for the programmer to forget to update one or both of the counter

variables (row and/or column). The for makes it harder for the programmer to forget the loop variable

update, since it is done right up front in the for statement header.

It is considered bad programming practice to do either of the following in a for statement:

• Modify the loop control variable within the body of the loop—if the loop variable is modified

within the body, then the logic of the loop’s control is no longer completely isolated to the for state-

ment’s header. The programmer must look elsewhere within the statement to understand completely

how the loop works.

• Prematurely exit the loop with a break—this action also violates the concept of keeping all the

loop control logic in one place (the for’s header).
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The language allows both of these practices, but experience shows that it is best to avoid them. If it seems

necessary to violate this advice, consider using a different kind of loop. The while and do/while loops

do not imply the same degree of control regularity expected in a for loop.

Listing 7.6 (permuteabcd.cpp) is a rewrite of Listing 6.14 (permuteabc.cpp) that replaces its while
loops with for loops and adds an additional character.

Listing 7.6: permuteabcd.cpp

// File permuteabcd.cpp

#include <iostream>

int main() {
for (char first = 'A'; first <= 'D'; first ++)
for (char second = 'A'; second <= 'D'; second++)

if (second != first) // No duplicate letters
for (char third = 'A'; third <= 'D'; third++)

if (third != first && third != second)
for (char fourth = 'A'; fourth <= 'D'; fourth++)

if (fourth != first && fourth != second && fourth != third)
std::cout << first << second << third << fourth << '\n';

}

Notice that since all the variable initialization and incrementing is taken care of in the for statement

headers, we no longer need compound statements in the loop bodies, so the curly braces are unnecessary.

Listing 7.6 (permuteabcd.cpp) prints all 24 permutations of ABCD:

ABCD
ABDC
ACBD
ACDB
ADBC
ADCB
BACD
BADC
BCAD
BCDA
BDAC
BDCA
CABD
CADB
CBAD
CBDA
CDAB
CDBA
DABC
DACB
DBAC
DBCA
DCAB
DCBA

Listing 7.7 (forprintprimes.cpp) is a rewrite of Listing 6.22 (printprimes.cpp) that replaces its while
loops with for loops.
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Listing 7.7: forprintprimes.cpp

#include <iostream>

int main() {

int max_value;
std::cout << "Display primes up to what value? ";
std::cin >> max_value;
for (int value = 2; value <= max_value; value++) {

// See if value is prime
bool is_prime = true; // Provisionally, value is prime
// Try all possible factors from 2 to value - 1
for (int trial_factor = 2;

is_prime && trial_factor < value;
trial_factor++)

is_prime = (value % trial_factor != 0);
if (is_prime)

std::cout << value << " "; // Display the prime number
}
std::cout << '\n'; // Move cursor down to next line

}

As shown in Listing 7.7 (forprintprimes.cpp), the conditional expression in the for loop is not limited

to a simple test of the loop control variable; it can be any legal Boolean expression. Programmers can use

the logical and (&&), or (||), and not (!) operators to create complex Boolean expressions, if necessary.

The modification part of the for loop is not limited to simple arithmetic and can be quite elaborate. For

example:

for (double d = 1000; d >= 1; std::cin >> d) {
/* Body goes here */

}

Here d is reassigned from the input stream. If necessary, multiple variables can be initialized in the initial-

ization part:

for (int i = 0, j = 100; i < j; i++) {
/* Body goes here */

}

While the for statement supports such complex headers, simpler is usually better. Ordinarily the for
loop should manage just one control variable, and the initialization, condition, and modification parts should

be straightforward. If a particular programming situation warrants an overly complicated for construction,

consider using another kind of loop.

Any or all of the parts of the for statement (initialization, condition, modification, and body) may be

omitted:

• Initialization. If the initialization is missing, as in

for (; i < 10; i++)
/* Body goes here */

then no initialization is performed by the for loop, and it must be done elsewhere.

©2018 Richard L. Halterman Draft date: December 2, 2018



7.4. THE FOR STATEMENT 172

• Condition. If the condition is missing, as in

for (int i = 0; ; i++)
/* Body goes here */

then the condition is true by default. A break or goto must appear in the body unless an infinite

loop is intended.

• Modification. If the modification is missing, as in

for (int i = 0; i < 10; )
/* Body goes here */

then the for performs no automatic modification; the modification must be done by a statement in

the body to avoid an infinite loop.

• Body. An empty body, as in

for (int i = 0; i < 10; i++) {}

or

for (int i = 0; i < 10; i++);

results in an empty loop. Some programmers use an empty loop to produce a non-portable delay in

the program’s execution. A programmer may, for example, need to slow down a graphical animation.

Such an attempt using an empty loop is non-portable for several reasons. If the program actually

executes the loop, slower computers will delay longer than faster computers. The timing of the

program’s delay will differ from one computer to another. Worse yet, some compilers may detect

that such code has no functional effect and optimize away the empty loop. This means the compiler

will ignore the for statement altogether.

As mentioned in Section 5.3, be careful about accidentally putting a semicolon at

the end of the for header, as in

for (int i = 0; i < 10; i++);
/* Intended body goes here */

The semicolon terminates the for statement, and the intended body that follows

is not the body, even though it may be properly indented.

One common C/C++ idiom to make an intentional infinite loop is to use a for statement with all control

information missing:

for ( ;; )
/* Body goes here */

Omitting all the parts of the for header is a statement from the programmer that says “I know what I am

doing—I really want an infinite loop here.” In reality the loop may not be infinite at all; its body could

contain a break or goto statement.

While the for statement supports the omission of parts of its header, such constructs should be avoided.

The intention of the for loop is to allow the programmer to see all the aspects of the loop’s control in one

place. If some of these control responsibilities are to be handled elsewhere (not in the for’s header) then

consider using another kind of loop.
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Programmers usually select a simple name for the control variable of a for statement. Recall that

variable names should be well chosen to reflect the meaning of their use within the program. It may come

as a surprise that i is probably the most common name used for an integer control variable in a for loop.

This practice has its roots in mathematics where variables such as i, j, and k are commonly used to index

vectors and matrices. Such mathematical structures have programming analogs in arrays and vectors,

which we explore in Chapter 11. Computer programmers make considerable use of for loops in array

and vector processing, so programmers have universally adopted this convention of short control variable

names. Thus, it generally is acceptable to use simple identifiers like i as loop control variables.

C++ allows the break, continue, and goto statements to be used in the body of a for statement.

Like with the while and do/while statements, break causes immediate loop termination, continue
causes the condition to be immediately checked to determine if the iteration should continue, and goto
jumps to a label somewhere in the function. As previously mentioned, however, for loop control should be

restricted to its header, and the use of break, continue, and goto within for loops should be avoided.

Any for loop can be rewritten with a while loop and behave identically. For example, consider the

for loop

for (int i = 1; i <= 10; i++)
std::cout << i << '\n';

and next consider the while loop that behaves exactly the same way:

int i = 1;
while (i <= 10) {

std::cout << i << '\n';
i++;

}

Which is better? The for loop conveniently packages the loop control information in its header, but in

the while loop this information is distributed throughout the small section of code. The for loop thus

provides a better organization of the loop control code. Does one loop outperform the other? No, most

compilers produce essentially the same code for both constructs. Thus, the for loop is preferred in this

example.

7.5 Exercises

1. Consider the following code fragment.

int x;
std::cin >> x;
switch (x + 3) {

case 5:
std::cout << x << '\n';
break;

case 10:
std::cout << x - 3 << '\n';
break;

case 20:
std::cout << x + 3 << '\n';
break;

}
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(a) What is printed when the user enters 2?

(b) What is printed when the user enters 5?

(c) What is printed when the user enters 7?

(d) What is printed when the user enters 17?

(e) What is printed when the user enters 20?

2. Consider the following code fragment.

char ch;
std::cin >> ch;
switch (ch) {

case 'a':
std::cout << "*\n";
break;

case 'A':
std::cout << "**\n";
break;

case 'B':
case 'b':

std::cout << "***\n";
case 'C':
case 'c':

std::cout << "****\n";
break;

default:
std::cout << "*****\n";

}

(a) What is printed when the user enters a?

(b) What is printed when the user enters A?

(c) What is printed when the user enters b?

(d) What is printed when the user enters B?

(e) What is printed when the user enters C?

(f) What is printed when the user enters c?

(g) What is printed when the user enters t?

3. What is printed by the following code fragment?

int x = 0;
do {

std::cout << x << " ";
x++;

} while (x < 10);
std::cout << '\n';

4. What is printed by the following code fragment?
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int x = 20;
do {

std::cout << x << " ";
x++;

} while (x < 10);
std::cout << '\n';

5. What is printed by the following code fragment?

for (int x = 0; x < 10; x++)
std::cout << "*";

std::cout << '\n';

6. Rewrite the following code fragment so that a switch is used instead of the if/else statements.

int value;
char ch;
std::cin >> ch;
if (ch == 'A')

value = 10;
else if (ch == 'P')

value = 20;
else if (ch == 'T')

value = 30;
else if (ch == 'V')

value = 40;
else

value = 50;
std::cout << value << '\n';

7. Rewrite the following code fragment so that a multi-way if/else is used instead of the switch
statement.

int value;
char ch;
std::cin >> ch;
switch( ch) {
case 'A':

value = 10;
break;

case 'P':
std::cin >> value;
break;

case 'T':
value = ch;
break;

case 'V':
value = ch + 1000;
break;

default:
value = 50;

}
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std::cout << value << '\n';

8. Rewrite the following code fragment so that a multi-way if/else is used instead of the switch
statement.

int value;
char ch;
std::cin >> ch;
switch (ch) {
case 'A':

std::cout << ch << '\n';
value = 10;
break;

case 'P':
case 'E':

std::cin >> value;
break;

case 'T':
std::cin >> ch;
value = ch;

case 'C':
value = ch;
std::cout << "value=" << value << ", ch=" << ch << '\n';
break;

case 'V':
value = ch + 1000;
break;

}
std::cout << value << '\n';

9. Rewrite the following code fragment so a while loop is used instead of the for statement.

for (int i = 100; i > 0; i--)
std::cout << i << '\n';

10. Rewrite the following code fragment so that it uses the conditional operator instead of an if state-

ment:

if (value % 2 != 0) // Is value even?
value = value + 1; // If not, make it even.

11. Rewrite the following code fragment so that it uses the conditional operator instead of an if/else
statement:

if (value % 2 == 0) // Is value even?
value = 0; // If so, make it zero.

else
value = value + 1; // Otherwise, make it even.

12. Would the following multi-way if/else be a good candidate to rewrite as a switch statement?

If so, rewrite the code using a switch; otherwise, explain why it is impractical to do so.
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int x, y;
std::cin >> x >> y;
if (x < 10)

y = 10;
else if (x == 5)

y = 5;
else if (x == y)

y = 0;
else if (y > 10)

x = 10;
else

x = y;
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Chapter 8

Using Functions

Suppose you must write a C++ program that computes the square root of a number supplied by the user.

Listing 8.1 (computesquareroot.cpp) provides a simple implementation.

Listing 8.1: computesquareroot.cpp

// File squareroot.cpp

#include <iostream>

int main() {
double input;

// Get value from the user
std::cout << "Enter number: ";
std::cin >> input;
double diff;
// Compute a provisional square root
double root = 1.0;

do { // Loop until the provisional root
// is close enough to the actual root

root = (root + input/root) / 2.0;
std::cout << "root is " << root << '\n';
// How bad is the approximation?
diff = root * root - input;

}
while (diff > 0.0001 || diff < -0.0001);

// Report approximate square root
std::cout << "Square root of " << input << " = " << root << '\n';

}

The program is based on a simple algorithm, Newton’s Method, that uses successive approximations to

zero in on an answer that is within 0.0001 of the true answer.

One sample run is

Enter number: 2
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root is 1.5
root is 1.41667
root is 1.41422
Square root of 2 = 1.41422

The actual square root is approximately 1.4142135623730951 and so the result is within our accepted

tolerance (0.0001). Another run is

Enter number: 100
root is 50.5
root is 26.2401
root is 15.0255
root is 10.8404
root is 10.0326
root is 10.0001
root is 10
Square root of 100 = 10

which is, of course, the exact answer.

While this code may be acceptable for many applications, better algorithms exist that work faster and

produce more precise answers. Another problem with the code is this: What if you are working on a

significant scientific or engineering application and must use different formulas in various parts of the

source code, and each of these formulas involve square roots in some way? In mathematics, for example,

you use square root to compute the distance between two geometric points (x1,y1) and (x2,y2) as

√

(x2 − x1)2 +(y2 − y1)2

and, using the quadratic formula, the solution to the equation ax2 +bx+ c = 0 is

−b±
√

b2 −4ac

2a

In electrical engineering and physics, the root mean square of a set of values {a1,a2,a3, . . . ,an} is

√

a2
1 +a2

2 +a2
3 + . . .+a2

n

n

Suppose we are writing one big program that, among many other things, needs to compute distances and

solve quadratic equations. Must we copy and paste the relevant portions of the square root code in List-

ing 8.1 (computesquareroot.cpp) to each location in our source code that requires a square root compu-

tation? Also, what if we develop another program that requires computing a root mean square? Will we

need to copy the code from Listing 8.1 (computesquareroot.cpp) into every program that needs to compute

square roots, or is there a better way to package the square root code and reuse it?

Code is made reusable by packaging it in functions. A function is a unit of reusable code. In Chapter 9

we will write our own reusable functions, but in this chapter we examine some of the functions available

in the C++ standard library. C++ provides a collection of standard precompiled C and C++ code stored

in libraries. Programmers can use parts of this library code within their own code to build sophisticated

programs.
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Figure 8.1 Conceptual view of the square root function

8.1 Introduction to Using Functions

In mathematics, a function computes a result from a given value; for example, from the function definition

f (x) = 2x+ 3, we can compute f (5) = 13 and f (0) = 3. A function in C++ works like a mathematical

function. To introduce the function concept, we will look at the standard C++ function that implements

mathematical square root.

In C++, a function is a named sequence of code that performs a specific task. A program itself consists

of a collection of functions. One example of a function is the mathematical square root function. Such

a function, named sqrt, is available to C and C++ programs (see Section 8.2). The square root function

accepts one numeric value and produces a double value as a result; for example, the square root of 16 is

4, so when presented with 16.0, sqrt responds with 4.0. Figure 8.1 visualizes the square root function.

For the programmer using the sqrt function within a program, the function is a black box; the pro-

grammer is concerned more about what the function does, not how it does it.

This sqrt function is exactly what we need for our square root program, Listing 8.1 (computesquareroot.cpp).

The new version, Listing 8.2 (standardsquareroot.cpp), uses the library function sqrt and eliminates the

complex logic of the original code.

Listing 8.2: standardsquareroot.cpp

#include <iostream>
#include <cmath>

int main() {
double input;

// Get value from the user
std::cout << "Enter number: ";
std::cin >> input;

// Compute the square root
double root = sqrt(input);

// Report result
std::cout << "Square root of " << input << " = " << root << '\n';

}

The line

#include <cmath>
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directs the preprocessor to augment our source code with the declarations of a collection of mathematical

functions in the cmath library. The sqrt function is among them. Table 8.1 lists some of the other

commonly used mathematical functions available in the cmath library. The compiler needs this augmented

code so it can check to see if we are using the sqrt function properly.

The expression

sqrt(input)

is a function invocation, also known as a function call. A function provides a service to the code that uses

it. Here, our main function is the caller1 that uses the service provided by the sqrt function. We say

main calls, or invokes, sqrt passing it the value of input. The expression sqrt(input) evaluates to

the square root of the value of the variable input. Behind the scenes—inside the black box as it were—

precompiled C code uses the value of the input variable to compute its square root. There is nothing

special about this precompiled C code that constitutes the sqrt function; it was written by a programmer

or team of programmers working for the library vendor using the same tools we have at our disposal. In

In Chapter 9 we will write our own functions, but for now we will enjoy the functions that others have

provided for us.

When calling a function, a pair of parentheses follow the function’s name. Information that the function

requires to perform its task must appear within these parentheses. In the expression

sqrt(input)

input is the information the function needs to do its work. We say input is the argument, or parameter,

passed to the function. We also can say “we are passing input to the sqrt function.”

While we might say “we are passing input to the sqrt function,” the program really is not giving the

function access to main’s input variable. The sqrt function itself cannot change the value of main’s

input variable, it simply uses the variable’s value to perform the computation.

The following simple analogy may help explain how the communication works between main and

sqrt, The main function has work to do, but instead of doing all the work itself, it delegates some of

the work (in this case the hard part) to sqrt. When main needs to compute the square root of input,

it writes down the value of its input variable on a piece of paper and hands it to sqrt. main then

sits idly until sqrt finishes its work. The sqrt function accepts main’s note and begins working on

the task (computing the square root of the number on the note main gave it). When it is finished, sqrt
does two things: sqrt hands back to main a different piece of paper with the answer, and sqrt throws

away the piece of paper main originally passed to it. When main receives the note from sqrt it uses the

information on the note and then discards the note. The main function then can continue with its other

business.

The sqrt function thus has no access to main’s original input variable; it has only a copy of input,

as if “written on a piece of paper.” (Similarly, if the sqrt function uses any variables to do its work, main
is oblivious to them and has no way to access them.) After sqrt is finished and returns to main its

computed answer, sqrt discards its copy of input (by analogy, the function “throws away” the paper

with the copy of input that main gave it). Thus, during a function call the parameter is a temporary,

transitory value used only to communicate information to the function. The parameter lives only as long as

the function is executing.

Figure 8.2 illustrates a program’s execution involving simple function calls.

Figure 8.2 shows that a program’s execution begins in its main function. Here main calls the sqrt
function twice. A vertical bar represents the time that a function is active, or “alive.” A function’s variables

1The term client can be used as well, although we reserve the term client for code that interacts with objects (see Chapter 13).
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Figure 8.2 The diagram on the right visualizes the execution of the program on the left. Time flows from

left to right. A rectangular bar represents the time that a function is active. A C++ program’s execution

begins with its main function. Here, main calls the sqrt function twice. The shaded parts of main’s bar

shows the times main has to wait for sqrt to complete.

Program Execution
int main() {

    double value;

    //  Assign variable
    value = 16;

    //  Compute s square root
    double root = sqrt(value);

    //  Compute another
    root = sqrt(100);

}

16

4

100

10

main

sqrt sqrt

Time

exist while a function is active. Observe that the main function is active for the duration of the program’s

execution. The sqrt becomes active twice, exactly the two times main calls it.

The sqrt function can be called in other ways, as Listing 8.3 (usingsqrt.cpp) illustrates:

Listing 8.3: usingsqrt.cpp

/*
* This program shows the various ways the
* sqrt function can be used.
*/

#include <iostream>
#include <cmath>

int main() {
double x = 16.0;
// Pass a literal value and display the result
std::cout << sqrt(16.0) << '\n';
// Pass a variable and display the result
std::cout << sqrt(x) << '\n';
// Pass an expression
std::cout << sqrt(2 * x - 5) << '\n';
// Assign result to variable
double y = sqrt(x);
// Use result in an expression
y = 2 * sqrt(x + 16) - 4;
// Use result as argument to a function call
y = sqrt(sqrt(256.0));
std::cout << y << '\n';

}
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Figure 8.3 Conceptual view of the maximum function

The sqrt function accepts a single numeric argument. The parameter that a caller can pass to sqrt
can be a literal number, a numeric variable, an arithmetic expression, or even a function invocation that

produces an acceptable numeric result.

Some C++ functions, like sqrt, compute a value and return it to the caller. The caller can use this result

in various ways, as shown in Listing 8.3 (usingsqrt.cpp). The next to the last statement passes the result of

calling sqrt to sqrt, thereby computing
√√

256, which is 4.

If the caller code attempts to pass a parameter to the function that is incompatible with the type expected

by the function, the compiler will issue an error.

std::cout << sqrt("16") << '\n'; // Illegal, a string is not a number

The compiler is able to determine that the above statement is illegal based on the additional information the

preprocessor added to the code via the

#include<cmath>

directive.

Listing 8.3 (usingsqrt.cpp) shows that a program can call the sqrt function as many times and in as

many places as needed. As noted in Figure 8.1, to the caller of the square root function, the function is a

black box; the caller is concerned strictly about what the function does, not how the function accomplishes

its task.

We safely can treat all functions as black boxes. We can use the service that a function provides without

being concerned about its internal details. We are guaranteed that we can influence the function’s behavior

only via the parameters that we pass, and that nothing else we do can affect what the function does or how

it does it. Furthermore, the function cannot affect any of our code, apart from what we do with the value it

computes.

Some functions take more than one parameter; for example, the C++ max function requires two argu-

ments in order to produce a result. The max function selects and returns the larger of the two parameters.

The max function is visualized in Figure 8.3.

The max function could be used as

std::cout << "The larger of " << 4 << " and " << 7
<< " is " << max(4, 7) << '\n';

Notice that the parameters are contained in parentheses following the function’s name, and the parameters

are separated by commas.

From the caller’s perspective a function has three important parts:

©2018 Richard L. Halterman Draft date: December 2, 2018



8.1. INTRODUCTION TO USING FUNCTIONS 185

• Name. Every function has a name that identifies the location of the code to be executed. Function

names follow the same rules as variable names; a function name is another example of an identifier

(see Section 3.3).

• Parameter type(s). A caller must provide the exact number and types of parameters that a function

expects. If a caller attempts to call a function with too many or too few parameters, the compiler will

issue an error message and not compile the code. Similarly, if the caller passes parameters that are

not compatible with the types specified for the function, the compiler will report appropriate error

messages.

• Result type. A function can compute a result and return this value to the caller. The caller’s use of

this result must be compatible with the function’s specified result type. The result type returned to

the caller and the parameter types passed in by the caller can be completely unrelated.

These three crucial pieces of information are formally described for each function in a specification

known as a function prototype. The prototype for the sqrt function is

double sqrt(double)

and the max function’s prototype can be expressed as 2

int max(int, int)

In a function prototype, the return type is listed first, followed by the function’s name, and then the param-

eter types appear in parentheses. Sometimes it is useful to list parameter names in the function’s prototype,

as in

double sqrt(double n)

or

int max(int a, int b)

The specific parameter names are irrelevant. The names make it easier to describe what the function does;

for example, sqrtcomputes the square root of n and max determines the larger of a and b.

When using a library function the programmer must include the appropriate #include directive in

the source code. The file specified in an #include directive contains prototypes for library functions. In

order to use the sqrt function, a program must include the

#include <cmath>

preprocessor directive. For the max function, include

#include <algorithm>

although under Visual C++, includeing <iostream> is sufficient.

Armed with the function prototypes, the compiler can check to see if the calling code is using the library

functions correctly. An attempt to use the sqrt function as

std::cout << sqrt(4.0, 7.0) << '\n'; // Error

2 The prototype for the actual library function max uses generic types; generic types are beyond the scope of this introductory

book, so the prototype provided here is strictly for illustrating a point.
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will result in an error because the prototype for sqrt specifies only one numeric parameter, not two.

Some functions do not accept parameters; for example, the C++ function to generate a pseudorandom

number, rand, is called with no arguments:

std::cout << rand() << '\n';

The rand function returns an int value, but the caller does not pass the function any information to do its

task. The rand prototype is

int rand()

Notice the empty parentheses that indicate this function does not accept any parameters.

Unlike mathematical functions that must produce a result, C++ does not require a function to return a

value to its caller. The C++ function exit expects an integer value from the caller, but it does not return a

result back to the caller. A prototype for a function that returns nothing uses void as the return type, as in:

void exit(int);

The exit function immediately terminates the program’s execution. The integer argument passed to exit
is returned to the operating system which can use the value to determine if the program terminated normally

or due to an error. C++ programs automatically return zero when main finishes executing—no exit call

is necessary.

Note that since exit does not return a value to the caller, code such as

std::cout << exit(8) << '\n'; // Illegal!

will not compile since the expression exit(8) evaluates to nothing, and the std::cout stream object

requires an actual value of some kind to print. A void function is useful for the side effects it produces

instead a value it computes. Example side effects include printing something on the console, sending data

over a network, or animating a graphical image.

8.2 Standard Math Functions

The cmath library provides much of the functionality of a scientific calculator. Table 8.1 lists only a few

of the available functions.
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mathfunctions Module

double sqrt(double x)
Computes the square root of a number: sqrt(x) =

√
x

double exp(double x)
Computes e raised a power: exp(x) = ex

double log(double x)
Computes the natural logarithm of a number: log(x) = loge x = lnx

double log10(double x)
Computes the common logarithm of a number: log(x) = log10 x

double cos(double)
Computes the cosine of a value specified in radians: cos(x) = cosx; other trigonometric

functions include sine, tangent, arc cosine, arc sine, arc tangent, hyperbolic cosine, hyper-

bolic sine, and hyperbolic tangent

double pow(double x, double y)
Raises one number to a power of another: pow(x,y) = xy

double fabs(double x)
Computes the absolute value of a number: fabs(x) = |x|

Table 8.1: A few of the functions from the cmath library

The cmath library also defines a constant named HUGE_VAL. Programmers can use this constant to

represent infinity or an undefined value such the slope of a vertical line or a fraction with a zero denominator.

A complete list of the numeric functions available to C++ can be found at http://www.cplusplus.
com/reference/clibrary/cmath/.

Be careful to put the function’s arguments in the proper order when calling a

function; for example, the call pow(10,2) computes 102 = 100, but the call

pow(2,10) computes 210 = 1,024.

A C++ program that uses any of the functions from the cmath library must use the following prepro-

cessor #include directive:

#include <cmath>

Functions in the cmath library are ideal for solving problems like the one shown in Figure 8.4. Suppose

a spacecraft is at a fixed location in space relative to some planet. The spacecraft’s distance to the planet,

therefore, also is fixed. A satellite is orbiting the planet in a circular orbit. We wish to compute how much

farther away the satellite will be from the spacecraft when it has progressed 10 degrees along its orbital

path.

We will let the origin of our coordinate system (0,0) be located at the center of the planet which cor-

responds also to the center of the circular orbital path. The satellite is initially at point (x1,y1) and the

spacecraft is stationary at point (px, py). The spacecraft is located in the same plane as the satellite’s orbit.

We need to compute the difference in the distances between the moving point (satellite) and the fixed point

(spacecraft) at two different times during the satellite’s orbit.

Facts from mathematics provide solutions to the following two problems:
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Figure 8.4 Orbital distance problem. In this diagram, the satellite begins at point (x1,y1), a distance of d1

from the spacecraft. The satellite’s orbit takes it to point (x2,y2) after an angle of θ rotation. The distance

to its new location is d2.

(0,0)

(x1,y1)

(x2,y2)

(px,py)

d2

d1

θ 

1. Problem: We must recompute the location of the moving point as it moves along the circle.

Solution: Given an initial position (x1,y1) of the moving point, a rotation of θ degrees around the

origin will yield a new point at (x2,y2), where

x2 = x1 cosθ − y1 sinθ

y2 = x1 sinθ + y1 cosθ

2. Problem: The distance between the moving point and the fixed point must be recalculated as the

moving point moves to a new position.

Solution: The distance d1 in Figure 8.4 between two points (px, py) and (x1,y1) is given by the

formula

d1 =
√

(x1 − px)2 +(y1 − py)2

Similarly, the distance d2 in Figure 8.4 is

d2 =
√

(x2 − px)2 +(y2 − py)2

Listing 8.4 (orbitdist.cpp) uses these mathematical results to compute the difference in the distances.

Listing 8.4: orbitdist.cpp

#include <iostream>
#include <cmath>

int main() {
// Location of orbiting point is (x,y)
double x; // These values change as the
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double y; // satellite moves
const double PI = 3.14159;

// Location of fixed point is always (100, 0),
// AKA (p_x, p_y). Change these as necessary.
const double p_x = 100;
const double p_y = 0;

// Radians in 10 degrees
const double radians = 10 * PI/180;

// Precompute the cosine and sine of 10 degrees
const double COS10 = cos(radians);
const double SIN10 = sin(radians);

// Get starting point from user
std::cout << "Enter initial satellite coordinates (x,y):";
std::cin >> x >> y;

// Compute the initial distance
double d1 = sqrt((p_x - x)*(p_x - x) + (p_y - y)*(p_y - y));

// Let the satellite orbit 10 degrees
double x_old = x; // Remember x's original value
x = x*COS10 - y*SIN10; // Compute new x value
// x's value has changed, but y's calculate depends on
// x's original value, so use x_old instead of x.
y = x_old*SIN10 + y*COS10;

// Compute the new distance
double d2 = sqrt((p_x - x)*(p_x - x) + (p_y - y)*(p_y - y));

// Print the difference in the distances
std::cout << "Difference in distances: " << d2 - d1 << '\n';

}

We can use the square root function to improve the efficiency of our primes program. Instead of trying

all the factors of n up to n− 1, we need only try potential factors up to the square root of n. Listing 8.5

(moreefficientprimes.cpp) uses the sqrt function to reduce the number of factors that need be considered.

Listing 8.5: moreefficientprimes.cpp

#include <iostream>
#include <cmath>

int main() {

int max_value;
std::cout << "Display primes up to what value? ";
std::cin >> max_value;
for (int value = 2; value <= max_value; value++) {

// See if value is prime
bool is_prime = true; // Provisionally, value is prime
double r = value, root = sqrt(r);
// Try all possible factors from 2 to the square
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// root of value
for (int trial_factor = 2;

is_prime && trial_factor <= root; trial_factor++)
is_prime = (value % trial_factor != 0);

if (is_prime)
std::cout << value << " "; // Display the prime number

}
std::cout << '\n'; // Move cursor down to next line

}

The sqrt function comes in three forms:

double sqrt(double)
float sqrt(float)
long double sqrt(long double)

The function names are the same, but the parameter types differ. We say that the sqrt function is over-

loaded. (Overloaded functions are covered in more detail in Section 10.3.) When a caller invokes the sqrt
function, the compiler matches the call to the closest matching prototype. If the caller passes a double
parameter, the compiler generates code to call the double version. If the caller instead passes a float
variable, the compiler selects the float version of sqrt. When an int is passed to sqrt, the compiler

cannot decide which version to use, because an int can be converted automatically to either a float,

double, or long double. The compiler thus needs some help to resolve the ambiguity, so we intro-

duced an additional variable of type double so the compiler will use the double version of the sqrt
function. Another option is to use a type cast to convert the integer value into one of the types acceptable

to the sqrt function.

8.3 Maximum and Minimum

C++ provides standard functions for determining the maximum and minimum of two numbers. Listing 8.6

(maxmin.cpp) exercises the standard min and max functions.

Listing 8.6: maxmin.cpp

#include <iostream>
#include <algorithm>

int main() {
int value1, value2;
std::cout << "Please enter two integer values: ";
std::cin >> value1 >> value2;
std::cout << "max = " << std::max(value1, value2)

<< ", min = " << std::min(value1, value2) << '\n';
}

To use the standard max and min functions in a program you must include the <algorithm> header.
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8.4 clock Function

The clock function from the <ctime> library requests from the operating system the amount of time an

executing program has been running. The units returned by the call clock() is system dependent, but it

can be converted into seconds with the constant CLOCKS_PER_SEC, also defined in the ctime library.

Under Visual C++, the CLOCKS_PER_SEC constant is 1,000, which means the call clock() returns the

number of milliseconds that the program has been running.

Using two calls to the clock function you can measure elapsed time. Listing 8.7 (timeit.cpp) measures

how long it takes a user to enter a character from the keyboard.

Listing 8.7: timeit.cpp

#include <iostream>
#include <ctime>

int main() {
char letter;
std::cout << "Enter a character: ";
clock_t seconds = clock(); // Record starting time
std::cin >> letter;
clock_t other = clock(); // Record ending time
std::cout << static_cast<double>(other - seconds)/CLOCKS_PER_SEC

<< " seconds\n";
}

The type clock_t is a type defined in the <ctime> header file. clock_t is equivalent to an

unsigned long, and you can perform arithmetic on clock_t values and variables just as if they are

unsigned longs. In the expression

static_cast<double>(other - seconds)/CLOCKS_PER_SEC

the cast is required to force floating-point division; otherwise, the result is truncated to an integer value.

Listing 8.8 (measureprimespeed.cpp) measures how long it takes a program to display all the prime

numbers up to half a million using the algorithm from Listing 7.7 (forprintprimes.cpp).

Listing 8.8: measureprimespeed.cpp

#include <iostream>
#include <ctime>
#include <cmath>

// Display the prime numbers between 2 and 500,000 and
// time how long it takes

int main() {
clock_t start_time = clock(), // Record start time

end_time;
for (int value = 2; value <= 500000; value++) {

// See if value is prime
bool is_prime = true; // Provisionally, value is prime
// Try all possible factors from 2 to n - 1
for (int trial_factor = 2;

is_prime && trial_factor < value;

©2018 Richard L. Halterman Draft date: December 2, 2018



8.5. CHARACTER FUNCTIONS 192

trial_factor++)
is_prime = (value % trial_factor != 0);

if (is_prime)
std::cout << value << " "; // Display the prime number

}
std::cout << '\n'; // Move cursor down to next line
end_time = clock();
// Print the elapsed time
std::cout << "Elapsed time: "

<< static_cast<double>(end_time - start_time)/CLOCKS_PER_SEC
<< " sec." << '\n';

}

On one system, the program took 93 seconds, on average, to print all the prime numbers up to 500,000.

By comparison, the newer, more efficient version, Listing 8.5 (moreefficientprimes.cpp), which uses the

square root optimization takes only 15 seconds to display all the primes up to 500,000. Exact times will

vary depending on the speed of the computer.

As it turns out, much of the program’s execution time is taken up printing the output, not computing the

prime numbers to print. We can compare the algorithms better by redirecting the program’s output to a file.

If the executable program is named primes.exe, you can redirect its output at the command line by issuing

the command

primes > run1.out

This creates a text file named run1.out that can be viewed with any text editor. Its contents are exactly what

would have been printed to the screen if the redirection is not used.

When run using redirection, the time difference is even more dramatic: The unoptimized version gen-

erates the prime numbers up to 500,000 in 77 seconds, while the optimized square root version requires

only 2 seconds to generate the same number of primes! An even faster prime generator can be found in

Listing 11.25 (fasterprimes.cpp); it uses a completely different algorithm to generate prime numbers.

You must #include the <ctime> header to use the standard time function in a program.

8.5 Character Functions

The C library provides a number of character functions that are useful to C++ programmers. Listing 8.9

(touppercase.cpp) converts lowercase letters to uppercase letters.

Listing 8.9: touppercase.cpp

#include <iostream>
#include <cctype>

int main() {
for (char lower = 'a'; lower <= 'z'; lower++) {

char upper = toupper(lower);
std::cout << lower << " => " << upper << '\n';

}
}

The first lines printed by Listing 8.9 (touppercase.cpp) are
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a => A
b => B
c => C
d => D

Interestingly, the toupper function returns an int, not a char. At the enhanced warning level 4 for

Visual C++ a cast is required to assign the result to the variable upper:

char upper = static_cast<char>(toupper(lower));

Some of the more useful character functions are described in Table 8.2.

charfunctions Module

int toupper(int ch)
Returns the uppercase version of the given character; returns the original character if no

uppercase version exists (such as for punctuation or digits)

int tolower(int ch)
Returns the lowercase version of the given character; returns the original character if no

lowercase version exists (such as for punctuation or digits)

int isupper(int ch)
Returns a nonzero value (true) if ch is an uppercase letter (’A’–’Z’); otherwise, it returns

0 (false)

int islower(int ch)
Returns a nonzero value (true) if ch is an lowercase letter (’a’–’z’); otherwise, it returns

0 (false)

int isalpha(int ch)
Returns a nonzero value (true) if ch is a letter from the alphabet (’A’–’Z’ or ’a’–’z’);

otherwise, it returns 0 (false)

int isdigit(int ch)
Returns a nonzero value (true) if ch is a digit (’0’–’9’); otherwise, it returns 0 (false)

Table 8.2: A few of the functions from the cctype library

Other functions exist to determine if a character is a punctuation character like a comma or semicolon

(ispunct), a space, tab, or newline character (isspace).

To use the standard C character functions in your C++ program, you must include the <cctype> header

file.

8.6 Random Numbers

Some applications require behavior that appears random. Random numbers are useful particularly in games

and simulations. For example, many board games use a die (one of a pair of dice) to determine how many

places a player is to advance. (See Figure 8.5.) A die or pair of dice are used in other games of chance. A

die is a cube containing spots on each of its six faces. The number of spots range from one to six. A player

rolls a die or sometimes a pair of dice, and the side(s) that face up have meaning in the game being played.

The value of a face after a roll is determined at random by the complex tumbling of the die. A software

adaptation of a game that involves dice would need a way to simulate the random roll of a die.
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Figure 8.5 A pair of dice

All algorithmic random number generators actually produce pseudorandom numbers, not true random

numbers. A pseudorandom number generator has a particular period, based on the nature of the algorithm

used. If the generator is used long enough, the pattern of numbers produced repeats itself exactly. A

sequence of true random numbers would not contain such a repeating subsequence. The good news is

that all practical algorithmic pseudorandom number generators have periods that are large enough for most

applications.

C++ programmers can use two standard C functions for generating pseudorandom numbers: srand and

rand:

void srand(unsigned)
int rand()

srand establishes the first value in the sequence of pseudorandom integer values. Each call to rand
returns the next value in the sequence of pseudorandom values. Listing 8.10 (simplerandom.cpp) shows

how a sequence of 100 pseudorandom numbers can be printed.

Listing 8.10: simplerandom.cpp

#include <iostream>
#include <cstdlib>

int main() {
srand(23);
for (int i = 0; i < 100; i++) {

int r = rand();
std::cout << r << " ";

}
std::cout << '\n';

}

The numbers printed by the program appear to be random. The algorithm is given a seed value to begin,

and a formula is used to produce the next value. The seed value determines the sequence of numbers gener-

ated; identical seed values generate identical sequences. If you run the program again, the same sequence is

displayed because the same seed value, 23, is used. In order to allow each program run to display different

sequences, the seed value must be different for each run. How can we establish a different seed value for

each run? The best way to make up a “random” seed at run time is to use the time function which is found

in the ctime library. The call time(0) returns the number of seconds since midnight January 1, 1970.
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This value obviously differs between program runs, so each execution will use a different seed value, and the

generated pseudorandom number sequences will be different. Listing 8.11 (betterrandom.cpp) incorporates

the time function to improve its randomness over multiple executions.

Listing 8.11: betterrandom.cpp

#include <iostream>
#include <cstdlib>
#include <ctime>

int main() {
srand(static_cast<unsigned>(time(0)));
for (int i = 0; i < 100; i++) {

int r = rand();
std::cout << r << " ";

}
std::cout << '\n';

}

Each execution of Listing 8.11 (betterrandom.cpp) produces a different pseudorandom number se-

quence. The actual type of value that time returns is time_t, so the result from a call to time must

be cast to unsigned int before being used with srand.

Notice that the numbers returned by rand can be rather large. The pseudorandom values range from 0

to a maximum value that is implementation dependent. The maximum value for Visual C++ś rand function

is 32,767, which corresponds to the largest 16-bit signed int value. The cstdlib header defines the

constant RAND_MAX that represents the largest value in the range. The following statement

std::cout << RAND_MAX << '\n';

would print the value of RAND_MAX for a particular system.

Ordinarily we need values in a more limited range, like 1...100. Simple arithmetic with the modulus

operator can produce the result we need. If n is any nonnegative integer and m is any positive integer, the

expression

n % m

produces a value in the range 0 . . .m−1.

This means the statement

int r = rand() % 100;

can assign only values in the range 0...99 to r. If we really want values in the range 1...100, what can we

do? We simply need only add one to the result:

int r = rand() % 100 + 1;

This statement produces pseudorandom numbers in the range 1...100.

We now have all we need to write a program that simulates the rolling of a die.

Listing 8.12 (die.cpp) simulates rolling die.
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Listing 8.12: die.cpp

#include <iostream>
#include <cstdlib>
#include <ctime>

int main() {
// Set the random seed value
srand(static_cast<unsigned>(time(0)));

// Roll the die three times
for (int i = 0; i < 3; i++) {

// Generate random number in the range 1...6
int value = rand() % 6 + 1;

// Show the die
std::cout << "+-------+\n";
switch (value) {

case 1:
std::cout << "| |\n";
std::cout << "| * |\n";
std::cout << "| |\n";
break;

case 2:
std::cout << "| * |\n";
std::cout << "| |\n";
std::cout << "| * |\n";
break;

case 3:
std::cout << "| * |\n";
std::cout << "| * |\n";
std::cout << "| * |\n";
break;

case 4:
std::cout << "| * * |\n";
std::cout << "| |\n";
std::cout << "| * * |\n";
break;

case 5:
std::cout << "| * * |\n";
std::cout << "| * |\n";
std::cout << "| * * |\n";
break;

case 6:
std::cout << "| * * * |\n";
std::cout << "| |\n";
std::cout << "| * * * |\n";
break;

default:
std::cout << " *** Error: illegal die value ***\n";
break;

}
std::cout << "+-------+\n";

}
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}

The output of one run of Listing 8.12 (die.cpp) is

+-------+
| * * |
| |
| * * |
+-------+
+-------+
| * * * |
| |
| * * * |
+-------+
+-------+
| |
| * |
| |
+-------+

Since the values are pseudorandomly generated, actual output will vary from one run to the next.

8.7 Exercises

1. Suppose you need to compute the square root of a number in a C++ program. Would it be a good idea

to write the code to perform the square root calculation? Why or why not?

2. In C++ source code what is one way to help you distinguish a variable name from a function name?

3. Which one of the following values could be computed by the rand function?

4.5 34 -1 RAND_MAX + 1

4. What does clock_t represent?

5. What does CLOCKS_PER_SEC represent?

6. Ordinarily how often should a program call the srand function?

7. In Listing 8.2 (standardsquareroot.cpp), what does the main function do while the sqrt function

is computing the square root of the argument that main provides?

8. Consider each of the following code fragments below that could be part of a C++ program. Each

fragment contains a call to a standard C/C++ library function. Answer each question in one of the

following three ways:

• If the code fragment contains a compile-time error, write the word error for the answer.

• If the code fragment contains no compile-time errors and you can determine its output at

compile-time, provide the fragment’s literal output.

• If the code fragment contains no compile-time errors but you cannot determine its exact output

at compile-time, provide one possible evaluation and write the word example for the answer and

provide one possible literal output that the code fragment could produce.
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(a) std::cout << sqrt(4.5) << '\n';

(b) std::cout << sqrt(4.5, 3.1) << '\n';

(c) std::cout << rand(4) << '\n';

(d) double d = 16.0;
std::cout << sqrt(d) << '\n';

(e) std::cout << srand() << '\n';

(f) std::cout << rand() << '\n';

(g) int i = 16;
std::cout << sqrt(i) << '\n';

(h) std::cout << srand(55) << '\n';

(i) std::cout << tolower('A') << '\n';

(j) std::cout << exp() << '\n';

(k) std::cout << sqrt() << '\n';

(l) std::cout << toupper('E') << '\n';

(m) std::cout << toupper('e') << '\n';

(n) std::cout << toupper("e") << '\n';

(o) std::cout << exp(4.5) << '\n';

(p) std::cout << toupper('h', 5) << '\n';

(q) std::cout << ispunct('!') << '\n';

(r) std::cout << tolower("F") << '\n';

(s) char ch = 'D';
std::cout << tolower(ch) << '\n';

(t) std::cout << exp(4.5, 3) << '\n';

(u) std::cout << toupper('7') << '\n';

(v) double a = 5, b = 3;
std::cout << exp(a, b) << '\n';
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Figure 8.6 Right triangle

Side 1

S
id

e
 2

Hypotenuse

(w) std::cout << exp(3, 5, 2) << '\n';

(x) std::cout << tolower(70) << '\n';

(y) double a = 5;
std::cout << exp(a, 3) << '\n';

(z) double a = 5;
std::cout << exp(3, a) << '\n';

9. From geometry: Write a computer program that given the lengths of the two sides of a right triangle

adjacent to the right angle computes the length of the hypotenuse of the triangle. (See Figure 8.6.)

If you are unsure how to solve the problem mathematically, do a web search for the Pythagorean

theorem.
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Chapter 9

Writing Functions

As programs become more complex, programmers must structure their programs in such a way as to ef-

fectively manage their complexity. Most humans have a difficult time keeping track of too many pieces of

information at one time. It is easy to become bogged down in the details of a complex problem. The trick

to managing complexity is to break down the problem into more manageable pieces. Each piece has its

own details that must be addressed, but these details are hidden as much as possible within that piece. The

problem is ultimately solved by putting these pieces together to form the complete solution.

So far all of our programs have been written within one function—main. As the number of statements

within a function increases, the function can become unwieldy. The code within such a function that does

all the work by itself is called monolithic code. Monolithic code that is long and complex is undesirable for

several reasons:

• It is difficult to write correctly. All the details in the entire piece of code must be considered when

writing any statement within that code.

• It is difficult to debug. If the sequence of code does not work correctly, it is often difficult to find

the source of the error. The effects of an erroneous statement that appears earlier in the code may not

become apparent until a correct statement later uses the erroneous statement’s incorrect result.

• It is difficult to extend. All the details in the entire sequence of code must be well understood before

it can be modified. If the code is complex, this may be a formidable task.

Using a divide and conquer strategy, a programmer can decompose a complicated function (like main)

into several simpler functions. The original function can then do its job by delegating the work to these

other functions. In this way the original function can be thought of as a “work coordinator.”

Besides their code organization aspects, functions allow us to bundle functionality into reusable parts. In

Chapter 8 we saw how library functions can dramatically increase the capabilities of our programs. While

we should capitalize on library functions as much as possible, sometimes we need a function exhibiting

custom behavior that is not provided by any standard function. Fortunately we can create our own functions,

and the same function may be used (called) in numerous places within a program. If the function’s purpose

is general enough and we write the function properly, we may be able to reuse the function in other programs

as well.
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9.1 Function Basics

Recall the “handwritten” square root code we saw in Listing 8.1 (computesquareroot.cpp). We know that

the better option is the standard library function sqrt; however, we will illustrate custom function devel-

opment by writing our own square root function based on the code in Listing 8.1 (computesquareroot.cpp).

In Listing 9.1 (customsquareroot.cpp) we see the definition for the square_root function.

Listing 9.1: customsquareroot.cpp

#include <iostream>
#include <iomanip>
#include <cmath>

// Compute an approximation of
// the square root of x
double square_root(double x) {

double diff;
// Compute a provisional square root
double root = 1.0;

do { // Loop until the provisional root
// is close enough to the actual root

root = (root + x/root) / 2.0;
//std::cout << "root is " << root << '\n';
// How bad is the approximation?
diff = root * root - x;

} while (diff > 0.0001 || diff < -0.0001);
return root;

}

int main() {
// Compare the two ways of computing the square root
for (double d = 1.0; d <= 10.0; d += 0.5)

std::cout << std::setw(7) << square_root(d) << " : " << sqrt(d) << '\n';
}

The main function in Listing 9.1 (customsquareroot.cpp) compares the behavior of our custom square_root
function to the sqrt library function. Its output:

1 : 1
1.22474 : 1.22474
1.41422 : 1.41421
1.58116 : 1.58114
1.73205 : 1.73205
1.87083 : 1.87083

2 : 2
2.12132 : 2.12132
2.23607 : 2.23607
2.34521 : 2.34521
2.44949 : 2.44949
2.54952 : 2.54951
2.64577 : 2.64575
2.73861 : 2.73861
2.82843 : 2.82843
2.91548 : 2.91548
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3 : 3
3.08221 : 3.08221
3.16228 : 3.16228

shows a few small differences in the results. Clearly we should use the standard sqrt function instead of

ours.

There are two aspects to every C++ function:

• Function definition. The definition of a function specifies the function’s return type and parameter

types, and it provides the code that determines the function’s behavior. In Listing 9.1 (customsquareroot.cpp)

the definition of the square_root function appears above the main function.

• Function invocation. A programmer uses a function via a function invocation. The main function

invokes both our square_root function and the sqrt function. Every function has exactly one

definition but may have many invocations.

A function definition consists of four parts:

• Name—every function in C++ has a name. The name is an identifier (see Section 3.3). As with

variable names, the name chosen for a function should accurately portray its intended purpose or

describe its functionality.

• Type—every function has a return type. If the function returns a value to its caller, its type corre-

sponds to the type of the value it returns. The special type void signifies that the function does not

return a value.

• Parameters—every function must specify the types of parameters that it accepts from callers. The

parameters appear in a parenthesized comma-separated list like in a function prototype (see Sec-

tion 8.1). Unlike function prototypes, however, parameters usually have names associated with each

type.

• Body—every function definition has a body enclosed by curly braces. The body contains the code to

be executed when the function is invoked.

Figure 9.1 dissects a our square_root function definition.

The simplest function accepts no parameters and returns no value to the caller. Listing 9.2 (simplefunction.cpp)

is a variation of Listing 4.1 (adder.cpp) that contains such a simple function definition.

Listing 9.2: simplefunction.cpp

#include <iostream>

// Definition of the prompt function
void prompt() {

std::cout << "Please enter an integer value: ";
}

int main() {
int value1, value2, sum;
std::cout << "This program adds together two integers.\n";
prompt(); // Call the function
std::cin >> value1;
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Figure 9.1 Function definition dissection

double square_root(double x) {
    double diff;
    //  Compute a provisional square root
    double root = 1.0;

    do { //  Loop until the provisional root
        //  is close enough to the actual root
        root = (root + x/root) / 2.0;
        //  How bad is the approximation?
        diff = root * root - x;
    } while (diff > 0.0001 || diff < -0.0001);
    return root;
}
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prompt(); // Call the function again
std::cin >> value2;
sum = value1 + value2;
std::cout << value1 << " + " << value2 << " = " << sum << '\n';

}

The prompt function simply prints a message. The program runs as follows:

1. The program’s execution, like in all C++ programs, begins with the first executable statement in the

function named main. The first line in the main function simply declares some variables needed for

compiler housekeeping, so the next line actually begins the executable code.

2. The first executable statement prints the message of the program’s intent.

3. The next statement is a call of the prompt function. At this point the program’s execution transfers

to the body of the prompt function. The code within prompt is executed until the end of its body

or until a return statement is encountered. Since prompt contains no return statement, all of

prompt’s body (the one print statement) will be executed.

4. When prompt is finished, control is passed back to the point in main immediately after the call of

prompt.

5. The next action after prompt call reads the value of value1 from the keyboard.

6. A second call to prompt transfers control back to the code within the prompt function. It again

prints its message.

7. When the second call to prompt is finished, control passes back to main at the point of the second

input statement that assigns value2 from the keyboard.

8. The remaining two statements in main are executed, and then the program’s execution terminates.

As another simple example, consider Listing 9.3 (countto10.cpp).

Listing 9.3: countto10.cpp

#include <iostream>

int main() {
for (int i = 1; i <= 10; i++)

std::cout << i << '\n';
}

which simply counts to ten:

1
2
3
4
5
6
7
8
9
10
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If counting to ten in this way is something we want to do frequently within a program, we can write a

function as shown in Listing 9.4 (countto10func.cpp) and call it as many times as necessary.

Listing 9.4: countto10func.cpp

#include <iostream>

// Count to ten and print each number on its own line
void count_to_10() {

for (int i = 1; i <= 10; i++)
std::cout << i << '\n';

}

int main() {
std::cout << "Going to count to ten . . .";
count_to_10();
std::cout << "Going to count to ten again. . .";
count_to_10();

}

Our prompt and countto10 functions are a bit underwhelming. The prompt function could be

eliminated, and each call to prompt could be replaced with the statement in its body. The same could be

said for the countto10 function, although it is convenient to have the simple one-line statement that hides

the complexity of the loop. Using the prompt function does have one advantage, though. If prompt is

removed and the two calls to prompt are replaced with the print statement within prompt, we have to make

sure that the two messages printed are identical. If we simply call prompt, we know the two messages

printed will be identical because only one possible message can be printed (the one in the body of prompt).

We can alter the behavior of a function through a mechanism called parameter passing. If a function

is written to accept information from the caller, the caller must supply the information in order to use the

function. The caller communicates the information via one or more parameters as required by the function.

The countto10 function does us little good if we sometimes want to count up to a different number.

Listing 9.5 (countton.cpp) generalizes Listing 9.4 (countto10func.cpp) to count as high as the caller needs.

Listing 9.5: countton.cpp

#include <iostream>

// Count to n and print each number on its own line
void count_to_n(int n) {

for (int i = 1; i <= n; i++)
std::cout << i << '\n';

}

int main() {
std::cout << "Going to count to ten . . .";
count_to_n(10);
std::cout << "Going to count to five . . .";
count_to_n(5);

}

When the caller, in this case main, issues the call

count_to_n(10);
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the argument 10 is assigned to n before the function’s statements begin executing.

A caller must pass exactly one integer parameter (or other type that is assignment-compatible with

integers) to count_to_n during a call. An attempt to do otherwise will result in a compiler error or

warning:

count_to_n(); // Error, missing parameter during the call
count_to_n(3, 5); // Error, too many parameters during the call
count_to_n(3.2); // Warning, possible loss of data (double to int)

We can enhance the prompt function’s capabilities as shown in Listing 9.6 (betterprompt.cpp)

Listing 9.6: betterprompt.cpp

#include <iostream>

// Definition of the prompt function
int prompt() {

int result;
std::cout << "Please enter an integer value: ";
std::cin >> result;
return result;

}

int main() {
int value1, value2, sum;
std::cout << "This program adds together two integers.\n";
value1 = prompt(); // Call the function
value2 = prompt(); // Call the function again
sum = value1 + value2;
std::cout << value1 << " + " << value2 << " = " << sum << '\n';

}

In this version, prompt takes care of the input, so main does not have to use any input statements. The

assignment statement within main:

value1 = prompt();

implies prompt is no longer a void function; it must return a value that can be assigned to the variable

value1. Furthermore, the value that prompt returns must be assignment compatible with an int be-

cause value1’s declared type is int. A quick look at the first line of prompt’s definition confirms our

assumption:

int prompt()

This indicates that prompt returns an int value.

Because prompt is declared to return an int value, it must contain a return statement. A return
statement specifies the exact value to return to the caller. When a return is encountered during a func-

tion’s execution, control immediately passes back to the caller. The value of the function call is the value

specified by the return statement, so the statement

value1 = prompt();

assigns to the variable value1 the value indicated when the return statement executs.
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Note that in Listing 9.6 (betterprompt.cpp), we declared a variable named result inside the prompt
function. This variable is local to the function, meaning we cannot use this particular variable outside of

prompt. It also means we are free to use that same name outside of the prompt function in a different

context, and that use will not interfere with the result variable within prompt. We say that result is

a local variable.

We can further enhance our prompt function. Currently prompt always prints the same message.

Using parameters, we can customize the message that prompt prints. Listing 9.7 (evenbetterprompt.cpp)

shows how parameters are used to provide a customized message within prompt.

Listing 9.7: evenbetterprompt.cpp

#include <iostream>

// Definition of the prompt function
int prompt(int n) {

int result;
std::cout << "Please enter integer #" << n << ": ";
std::cin >> result;
return result;

}

int main() {
int value1, value2, sum;
std::cout << "This program adds together two integers.\n";
value1 = prompt(1); // Call the function
value2 = prompt(2); // Call the function again
sum = value1 + value2;
std::cout << value1 << " + " << value2 << " = " << sum << '\n';

}

In Listing 9.7 (evenbetterprompt.cpp), the parameter influences the message that it printed. The user is

now prompted to enter value #1 or value #2. The call

value1 = prompt(1);

passes the value 1 to the prompt function. Since prompt’s parameter is named n, the process works as

if the assignment statement

n = 1;

were executed as the first action within prompt.

In the first line of the function definition:

int prompt(int n)

n is called the formal parameter. A formal parameter is used like a variable within the function’s body, but

it is declared in the function’s parameter list; it is not declared in the function’s body. A formal parameter

is a parameter as used in the formal definition of the function.

At the point of the function call:

value1 = prompt(1);

the parameter (or argument) passed into the function, 1, is called the actual parameter. An actual parameter

is the parameter actually used during a call of the function. When a function is called, any actual parameters
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are assigned to their corresponding formal parameters, and the function begin executing. Another way to say

it is that during a function call, the actual parameters are bound to their corresponding formal parameters.

The parameters used within a function definition are called formal parameters.

Formal parameters behave as local variables within the function’s body; as such,

the name of a formal parameter will not conflict with any local variable or for-

mal parameter names from other functions. This means as a function developer

you may choose a parameter name that best represents the parameter’s role in the

function.

If you are writing a function, you cannot predict the caller’s actual parameters.

You must be able to handle any value the caller sends. The compiler will ensure

that the types of the caller’s parameters are compatible with the declared types of

your formal parameters.

To remember the difference between formal and actual parameters, remember this:

• A formal parameter is a parameter declared and used in a function’s formal

definition.

• An actual parameter is a parameter supplied by the caller when the caller

actually uses (invokes or calls) the function.

When the call

value1 = prompt(1);

is executed in main, and the statement

std::cout << "Please enter integer #" << n << ": ";

within the body of prompt is executed, n will have the value 1. Similarly, when the call

value2 = prompt(2);

is executed in main, and the statement

std::cout << "Please enter integer #" << n << ": ";

within the body of prompt is executed, n will have the value 2. In the case of

value1 = prompt(1);

n within prompt is bound to 1, and in the case of

value2 = prompt(2);

n within prompt is bound to 2.
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A function’s definition requires that all formal parameters be declared in the paren-

theses following the function’s name. A caller does not provide actual parameter

type declarations when calling the function. Given the square_root function

defined in Listing 9.1 (customsquareroot.cpp), the following caller code fragment

is illegal:

double number = 25.0;
// Legal, pass the variable's value to the function
std::cout << square_root(number) << '\n';
// Illegal, do not declare the parameter during the call
std::cout << square_root(double number) << '\n';

The function definition is responsible for declaring the types of its parameters, not

the caller.

9.2 Using Functions

The general form of a function definition is

type name( parameterlist ) {
body

}

• The type of the function indicates the type of value the function returns. Often a function will perform

a calculation and the result of the calculation must be communicated back to the place where the

function was invoked. The special type void indicates that the function does not return a value.

• The name of the function is an identifier (see Section 3.3). The function’s name should indicate the

purpose of the function.

• The parameterlist is a comma separated list of pairs of the form

type name

where type is a C++ type and name is an identifier representing a parameter. The caller of the func-

tion communicates information into the function via parameters. The parameters specified in the

parameter list of a function definition are called formal parameters. A parameter is also known as an

argument. The parameter list may be empty; an empty parameter list indicates that no information

may be passed into the function by the caller.

• The body is the sequence of statements, enclosed within curly braces, that define the actions that the

function is to perform. The statements may include variable declarations, and any variables declared

within the body are local to that function.

The body may contain only one statement, many statements, or no statements at all; regardless, the

curly braces always are required.

Observe that multiple pieces of information can be passed into a function via multiple parameters, but

only one piece of information can be passed out of the function via the return value. Recall the greatest
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Figure 9.2 Cutting plywood
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Figure 9.3 Squares too small
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common divisor (also called greatest common factor) from elementary mathematics. To determine the GCD

of 24 and 18 we list all of their common factors and select the largest one:

24: 1, 2, 3, 4, 6 , 8, 12, 24

18: 1, 2, 3, 6 , 9, 18
The greatest common divisor function is useful when reducing fractions

to lowest terms; for example, consider the fraction
18

24
. The greatest common divisor of 18 and 24 is 6, and

so we divide the numerator and the denominator of the fraction by 6:
18÷6

24÷6
=

3

4
. The GCD function has

applications in other areas besides reducing fractions to lowest terms. Consider the problem of dividing a

piece of plywood 24 inches long by 18 inches wide into square pieces of maximum size without wasting

any material. Since the GCD(24, 18) = 6, we can cut the plywood into twelve 6 inch × 6 inch square pieces

as shown in Figure 9.2.

If we cut the plywood into squares of any other size without wasting the any of the material, the squares

would have to be smaller than 6 inches × 6 inches; for example, we could make forty-eight 3 inch × 3 inch

squares as shown in pieces as shown in Figure 9.3.
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Figure 9.4 Squares too large
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If we cut squares larger than 6 inches × 6 inches, not all the plywood can be used to make the squares.

Figure 9.4. shows how some larger squares would fare.

In addition to basic arithmetic and geometry, the GCD function plays a vital role in cryptography,

enabling secure communication across an insecure network.

Listing 9.8: gcdprog.cpp

#include <iostream>

int main() {
// Prompt user for input
int num1, num2;
std::cout << "Please enter two integers: ";
std::cin >> num1 >> num2;

// Determine the smaller of num1 and num2
int min = (num1 < num2) ? num1 : num2;

// 1 is definitely a common factor to all ints
int largestFactor = 1;
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for (int i = 2; i <= min; i++)
if (num1 % i == 0 && num2 % i == 0)

largestFactor = i; // Found larger factor
std::cout << largestFactor << '\n';

}

Listing 9.8 (gcdprog.cpp) implements a straight-forward but naive algorithm that seeks potential factors by

considering every integer less than the smaller of the two values provided by the user. This algorithm is not

very efficient, especially for larger numbers. Its logic is easy to follow, with no deep mathematical insight

required. Soon we will see a better algorithm for computing GCD.

If we need to compute the GCD from several different places within our program, we should package

the code in a function rather than copying it to multiple places. The following code fragment defines a C++

function that that computes the greatest common divisor of two integers. It determines the largest factor

(divisor) common to its parameters:

int gcd(int num1, int num2) {
// Determine the smaller of num1 and num2
int min = (num1 < num2) ? num1 : num2;
// 1 is definitely a common factor to all ints
int largestFactor = 1;
for (int i = 2; i <= min; i++)

if (num1 % i == 0 && num2 % i == 0)
largestFactor = i; // Found larger factor

return largestFactor;
}

This function is named gcd and expects two integer arguments. Its formal parameters are named num1 and

num2. It returns an integer result. Its body declares three local variables: min, largestFactor, and i
(i is local to the for statement). The last line in its body is a return statement. A return statement is

required for functions that return a value. A void function is not required to have a return statement. If a

void function does have a return statement, it must simply consist of return followed by a semicolon

(in other words, it cannot return a value, like gcd’s return statement does). A void function that does

not contain a return statement simply returns at the end of its body.

Recall from Section 6.5 that local variables have meaning only within their scope. This means that

when you write a function you can name a local variable without fear that its name may be used already

in another part of the program. Two different functions can use local variables named x, and these are two

different variables that have no influence on each other. Anything local to a function definition is hidden to

all code outside that function definition.

Since a formal parameter is a local variable, you can reuse the names of formal parameters in different

functions without a problem.

It may seem strange that we can use the same name in two different functions within the same program

to refer to two distinct variables. The block of statements that makes up a function definition constitutes

a context for local variables. A simple analogy may help. In the United States, many cities have a street

named Main Street; for example, there is a thoroughfare named Main Street in San Francisco, California.

Dallas, Texas also has a street named Main Street. Each city and town provides its own context for the use

of the term Main Street. A person in San Francisco asking “How do I get to Main Street?” will receive the

directions to San Francisco’s Main Street, while someone in Dallas asking the same question will receive

Dallas-specific instructions. In a similar manner, assigning a variable within a function block localizes its

identity to that function. We can think of a program’s execution as a person traveling around the U.S. When
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in San Francisco, all references to Main Street mean San Francisco’s Main Street, but when the traveler

arrives in Dallas, the term Main Street means Dallas’ Main Street. A program’s thread of execution cannot

execute more than one statement at a time, which means the compiler can use its current context to interpret

any names it encounters within a statement. Similarly, at the risk of overextending the analogy, a person

cannot be physically located in more than one city at a time. Furthermore, Main Street may be a bustling,

multi-lane boulevard in one large city, but a street by the same name in a remote, rural township may be a

narrow dirt road! Similarly, two like-named variables may have two completely different types. A variable

named x in one function may represent an integer, while a different function may use a string variable

named x.

Another advantage of local variables is that they occupy space in the computer’s memory only when

the function is executing. Space is allocated for local variables and parameters when the function begins

executing. When the function is finished and control returns to the caller, the variables and parameters go

out of scope, and the memory they held is freed up for other purposes within the running program. This

process of local variable allocation and deallocation happens each time a caller invokes the function. More

information about how C++ handles memory management during a program’s execution can be found in

Section 18.1.

Once we have written a complete function definition we can use the function within our program. We

invoke a programmer-defined function in exactly the same way as a standard library function like sqrt
(Section 8.2) or rand (Section 8.6). If the function returns a value (that is, it is not declared void), then we

can use its invocation anywhere an expression of that type is allowed. The parameters used for the function

call are known as actual parameters. The function gcd can be called as part of an assignment statement:

int factor = gcd(val, 24);

This call uses the variable val as its first actual parameter and the literal value 24 as its second actual

parameter. Variables, expressions, and literals can be freely used as actual parameters. The function then

computes and returns its result. This result is assigned to the variable factor.

How does the function call and parameter mechanism work? It’s actually quite simple. The actual

parameters, in order, are assigned (bound) to each of the formal parameters in the function definition, then

control is passed to the body of the function. When the function’s body is finished executing, control passes

back to the point in the program where the function was called. The value returned by the function, if any,

replaces the function call expression. In the statement

int factor = gcd(val, 24);

an integer value is assigned to factor. The expression on the right is a function call, so the function is

invoked to determine what to assign. The value of the variable val is assigned to the formal parameter

num1, and the literal value 24 is assigned to the formal parameter num2. The body of the gcd function

is then executed. When the return statement in the body is encountered, program execution returns

back to where the function was called. The argument of the return statement becomes the value that is

assigned to factor. This process of copying actual parameters to formal parameters works exactly like

during assignment. This means the compiler, where possible, automatically will widen or narrow (see

Section 4.2) the value of an actual parameter to make it compatible with its corresponding formal parameter;

for example, if val is declared to a char, its value would automatically be copied to a temporary location

and converted to an int. This temporary value would then be bound to the formal parameter num1.

Note that gcd could be called from many different places within the same program, and, since different

parameter values could be passed at each of these different invocations, gcd could compute a different

result at each invocation.

Other invocation examples include:
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• std::cout << gcd(36, 24);

This example simply prints the result of the invocation. The value 36 is bound to num1
and 24 is bound to num2 for the purpose of the function call. The value 12 will be printed,

since 12 is the greatest common divisor of 36 and 24..

• x = gcd(x - 2, 24);

The execution of this statement would evaluate x - 2 and bind its value to num1. num2
would be assigned 24. The result of the call is then assigned to x. Since the right side of

the assignment statement is evaluated before being assigned to the left side, the original

value of x is used when calculating x - 2, and the function return value then updates x.

• x = gcd(x - 2, gcd(10, 8));

This example shows two invocations in one statement. Since the function returns an inte-

ger value its result can itself be used as an actual parameter in a function call. Passing the

result of one function call as an actual parameter to another function call is called function

composition.

The compiler will report an error if a function call does not agree with the function’s definition. Possible

problems include:

• Number of actual parameters do not agree with the number of formal parameters. The number

of parameters must agree exactly. For example, the statement

int factor = gcd(24); // Error: too few parameters

is illegal given the above definition of gcd, since only one actual parameter is provided when two

are required.

• Passing an actual parameter that is not assignment compatible with the formal parameter. For

example, passing the std::cout object when an int has been defined, as in

int factor = gcd(36, std::cout); // Error: second parameter is wrong type

The compiler will detect that std::cout is not a valid int and report an error.

• Using the result in a context where an expression of that type is not allowed. For example, a

function that returns void cannot be used where an int is expected:

std::cout << srand(2); // Error: srand does not return anything

The compiler will disallow this code.

9.3 Pass by Value

The default parameter passing mechanism in C++ is classified as pass by value, also known as call by value.

This means the value of the actual parameter is copied to the formal parameter for the purpose of executing

the function’s code. Since it is working on a copy of the actual parameter, the function’s execution cannot

affect the value of the actual parameter owned by the caller.

Listing 9.9 (passbyvalue.cpp) illustrates the consequences of pass by value.
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Listing 9.9: passbyvalue.cpp

#include <iostream>

/*
* increment(x)
* Illustrates pass by value protocol.
*/

void increment(int x) {
std::cout << "Beginning execution of increment, x = "

<< x << '\n';
x++; // Increment x
std::cout << "Ending execution of increment, x = "

<< x << '\n';
}

int main() {
int x = 5;
std::cout << "Before increment, x = " << x << '\n';
increment(x);
std::cout << "After increment, x = " << x << '\n';

}

For additional drama we chose to name the actual parameter the same as the formal parameter. Since the

actual parameter and formal parameter are declared and used in different contexts and represent completely

different memory locations, their names can be the same without any problems.

Listing 9.9 (passbyvalue.cpp) produces

Before increment, x = 5
Beginning execution of increment, x = 5
Ending execution of increment, x = 6
After increment, x = 5

The memory for the variable x in main is unaffected since increment works on a copy of the actual

parameter.

C++ supports another way of passing parameters called pass by reference. Pass by reference is intro-

duced in Section 10.9.

A function communicates its return value to the caller in the same way that the caller might pass a

parameter by value. In the prompt function we saw earlier:

int prompt(int n) {
int result;
std::cout << "Please enter integer #" << n << ": ";
std::cin >> result;
return result;

}

the return statement is

return result;

The variable result is local to prompt. We informally may say we are returning the result variable,

but, in fact, we really are returning only the value of the result variable. The caller has no access to
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the local variables declared within any function it calls. In fact, the local variables for a function exist

only when the function is active (that is, executing). When the function returns to its caller all of its local

variables disappear from memory. During subsequent invocations, the function’s local variables reappear

when the function becomes active and disappear again when it finishes.

9.4 Function Examples

This section contains a number of examples of how we can use functions to organize a program’s code.

9.4.1 Better Organized Prime Generator

Listing 9.10 (primefunc.cpp) is a simple enhancement of Listing 8.5 (moreefficientprimes.cpp). It uses the

square root optimization and adds a separate is_prime function.

Listing 9.10: primefunc.cpp

#include <iostream>
#include <cmath>

/*
* is_prime(n)
* Determines the primality of a given value
* n an integer to test for primality
* Returns true if n is prime; otherwise, returns false
*/

bool is_prime(int n) {
bool result = true; // Provisionally, n is prime
double r = n, root = sqrt(r);
// Try all possible factors from 2 to the square
// root of n
for (int trial_factor = 2;

result && trial_factor <= root; trial_factor++)
result = (n % trial_factor != 0);

return result;
}

/*
* main
* Tests for primality each integer from 2
* up to a value provided by the user.
* If an integer is prime, it prints it;
* otherwise, the number is not printed.
*/

int main() {
int max_value;
std::cout << "Display primes up to what value? ";
std::cin >> max_value;
for (int value = 2; value <= max_value; value++)

if (is_prime(value)) // See if value is prime
std::cout << value << " "; // Display the prime number

std::cout << '\n'; // Move cursor down to next line
}
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Listing 9.10 (primefunc.cpp) illustrates several important points about well-organized programs:

• The complete work of the program is no longer limited to the main function. The effort to test for

primality is delegated to a separate function. main is focused on a simpler task: generating all the

numbers to be considered and using another function (is_prime) to do the hard work of determin-

ing if a given number is prime. main is now simpler and more logically coherent. A function is

coherent when it is focused on a single task. Coherence is a desirable property of functions. If a

function becomes too complex by trying to do too many different things, it can be more difficult to

write correctly and debug when problems are detected. A complex function should be decomposed

into several, smaller, more coherent functions. The original function would then call these new sim-

pler functions to accomplish its task. Here, main is not concerned about how to determine if a given

number is prime; main simply delegates the work to is_prime and makes use of the is_prime
function’s findings.

• Each function is preceded by a thorough comment that describes the nature of the function. It explains

the meaning of each parameter, and it indicates what the function should return. The comment for

main may not be as thorough as for other functions; this is because main usually has no parameters,

and it always returns a code to the operating system upon the program’s termination.

• While the exterior comment indicates what the function is to do, comments within each function

explain in more detail how the function accomplishes its task.

The call to is_prime returns true or false depending on the value passed to it. This means we can

express a condition like

if (is_prime(value) == true) . . .

more compactly as

if (is_prime(value)) . . .

because if is_prime(value) is true, true == true is true, and if is_prime(value) is false,

false == true is false. The expression is_prime(value) suffices.

Just as it is better for a loop to have exactly one entry point and exactly one exit point, preferably a

function will have a single return statement. Simple functions with a small number of returns are

generally tolerable, however. Consider the following version of is_prime:

bool is_prime(int n) {
for (int trialFactor = 2;

trialFactor <= sqrt(static_cast<double>(n));
trialFactor++)

if (n % trialFactor == 0) // Is trialFactor a factor?
return false; // Yes, return right away

return true; // Tried them all, must be prime
}

This version uses two return statements, but eliminates the need for a local variable (result). Because

a return statement exits the function immediately, no break statement is necessary. The two return
statements are close enough textually in source code that the logic is fairly transparent.
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9.4.2 Command Interpreter

Some functions are useful even if they accept no information from the caller and return no result. List-

ing 9.11 (calculator.cpp) uses such a function.

Listing 9.11: calculator.cpp

#include <iostream>
#include <cmath>

/*
* help_screen
* Displays information about how the program works
* Accepts no parameters
* Returns nothing
*/

void help_screen() {
std::cout << "Add: Adds two numbers\n";
std::cout << " Example: a 2.5 8.0\n";
std::cout << "Subtract: Subtracts two numbers\n";
std::cout << " Example: s 10.5 8.0\n";
std::cout << "Print: Displays the result of the latest operation\n";
std::cout << " Example: p\n";
std::cout << "Help: Displays this help screen\n";
std::cout << " Example: h\n";
std::cout << "Quit: Exits the program\n";
std::cout << " Example: q\n";

}

/*
* menu
* Display a menu
* Accepts no parameters
* Returns the character entered by the user.
*/

char menu() {
// Display a menu
std::cout << "=== A)dd S)ubtract P)rint H)elp Q)uit ===\n";
// Return the char entered by user
char ch;
std::cin >> ch;
return ch;

}

/*
* main
* Runs a command loop that allows users to
* perform simple arithmetic.
*/

int main() {
double result = 0.0, arg1, arg2;
bool done = false; // Initially not done
do {

switch (menu()) {
case 'A': // Addition
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case 'a':
std::cin >> arg1 >> arg2;
result = arg1 + arg2;
std::cout << result << '\n';
break;

case 'S': // Subtraction
case 's':
std::cin >> arg1 >> arg2;
result = arg1 - arg2;
// Fall through, so it prints the result

case 'P': // Print result
case 'p':
std::cout << result << '\n';
break;

case 'H': // Display help screen
case 'h':
help_screen();
break;

case 'Q': // Quit the program
case 'q':
done = true;
break;

}
}
while (!done);

}

The help_screen function needs no information from main, nor does it return a result. It behaves

exactly the same way each time it is called. The menu function returns the character entered by the user.

9.4.3 Restricted Input

Listing 7.3 (betterinputonly.cpp) forces the user to enter a value within a specified range. We now can easily

adapt that concept to a function. Listing 9.12 (betterinputfunc.cpp) uses a function named get_int_range
that does not return until the user supplies a proper value.

Listing 9.12: betterinputfunc.cpp

#include <iostream>

/*
* get_int_range(first, last)
* Forces the user to enter an integer within a
* specified range
* first is either a minimum or maximum acceptable value
* last is the corresponding other end of the range,
* either a maximum or minimum * value
* Returns an acceptable value from the user
*/

int get_int_range(int first, int last) {
// If the larger number is provided first,
// switch the parameters
if (first > last) {

int temp = first;
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first = last;
last = temp;

}
// Insist on values in the range first...last
std::cout << "Please enter a value in the range "

<< first << "..." << last << ": ";
int in_value; // User input value
bool bad_entry;
do {

std::cin >> in_value;
bad_entry = (in_value < first || in_value > last);
if (bad_entry) {

std::cout << in_value << " is not in the range "
<< first << "..." << last << '\n';

std::cout << "Please try again: ";
}

}
while (bad_entry);
// in_value at this point is guaranteed to be within range
return in_value;

}

/*
* main
* Tests the get_int_range function
*/

int main() {
std::cout << get_int_range(10, 20) << '\n';
std::cout << get_int_range(20, 10) << '\n';
std::cout << get_int_range(5, 5) << '\n';
std::cout << get_int_range(-100, 100) << '\n';

}

Listing 9.12 (betterinputfunc.cpp) forces the user to enter a value within a specified range. This func-

tionality could be useful in many programs.

In Listing 9.12 (betterinputfunc.cpp)

• The high and low values are specified by parameters. This makes the function more flexible since

it could be used elsewhere in the program with a completely different range specified and still work

correctly.

• The function is supposed to be called with the lower number passed as the first parameter and the

higher number passed as the second parameter. The function will also accept the parameters out of

order and automatically swap them to work as expected; thus,

num = get_int_range(20, 50);

will work exactly like

num = get_int_range(50, 20);

• The Boolean variable bad_entry is used to avoid evaluating the Boolean expression twice (once

to see if the bad entry message should be printed and again to see if the loop should continue).
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9.4.4 Better Die Rolling Simulator

Listing 9.13: betterdie.cpp

#include <iostream>
#include <cstdlib>
#include <ctime>

/*
* initialize_die
* Initializes the randomness of the die
*/

void initialize_die() {
// Set the random seed value
srand(static_cast<unsigned>(time(0)));

}

/*
* show_die(spots)
* Draws a picture of a die with number of spots
* indicated
* spots is the number of spots on the top face
*/

void show_die(int spots) {
std::cout << "+-------+\n";
switch (spots) {

case 1:
std::cout << "| |\n";
std::cout << "| * |\n";
std::cout << "| |\n";
break;

case 2:
std::cout << "| * |\n";
std::cout << "| |\n";
std::cout << "| * |\n";
break;

case 3:
std::cout << "| * |\n";
std::cout << "| * |\n";
std::cout << "| * |\n";
break;

case 4:
std::cout << "| * * |\n";
std::cout << "| |\n";
std::cout << "| * * |\n";
break;

case 5:
std::cout << "| * * |\n";
std::cout << "| * |\n";
std::cout << "| * * |\n";
break;

case 6:
std::cout << "| * * * |\n";
std::cout << "| |\n";
std::cout << "| * * * |\n";
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break;
default:

std::cout << " *** Error: illegal die value ***\n";
break;

}
std::cout << "+-------+\n";

}

/*
* roll
* Returns a pseudorandom number in the range 1...6
*/

int roll() {
return rand() % 6 + 1;

}

/*
* main
* Simulates the roll of a die three times
*/

int main() {

// Initialize the die
initialize_die();

// Roll the die three times
for (int i = 0; i < 3; i++)

show_die(roll());
}

In Listing 9.13 (betterdie.cpp), main is no longer concerned with the details of pseudorandom number

generation, nor is it responsible for drawing the die. These important components of the program are now

in functions, so their details can be perfected independently from main.

Note how the result of the call to roll is passed directly as an argument to show_die.

9.4.5 Tree Drawing Function

Listing 9.14: treefunc.cpp

#include <iostream>

/*
* tree(height)
* Draws a tree of a given height
* height is the height of the displayed tree
*/

void tree(int height) {
int row = 0; // First row, from the top, to draw
while (row < height) { // Draw one row for every unit of height

// Print leading spaces
int count = 0;
while (count < height - row) {

std::cout << " ";
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count++;
}
// Print out stars, twice the current row plus one:
// 1. number of stars on left side of tree
// = current row value
// 2. exactly one star in the center of tree
// 3. number of stars on right side of tree
// = current row value
count = 0;
while (count < 2*row + 1) {

std::cout << "*";
count++;

}
// Move cursor down to next line
std::cout << '\n';
// Change to the next row
row++;

}

}

/*
* main
* Allows users to draw trees of various heights
*/

int main() {
int height; // Height of tree
std::cout << "Enter height of tree: ";
std::cin >> height; // Get height from user
tree(height);

}

Observe that the name height is being used as a local variable in main and as a formal parameter

name in tree. There is no conflict here, and the two heights represent two different locations in memory.

Furthermore, the fact that the statement

tree(height);

uses main’s height as an actual parameter and height happens to be the name as the formal parameter

is simply a coincidence. During the call, the value of main’s height variable is copied into to the formal

parameter in tree also named height. The compiler can keep track of which height is which based

on where each is declared.

9.4.6 Floating-point Equality

Recall from Listing 4.17 (imprecise5th.cpp) that floating-point numbers are not mathematical real numbers;

a floating-point number is finite, and is represented internally as a quantity with a binary mantissa and

exponent. Just as 1/3 cannot be represented finitely in the decimal (base 10) number system, 1/10 cannot be

represented exactly in the binary (base 2) number system with a fixed number of digits. Often, no problems

arise from this imprecision, and in fact many software applications have been written using floating-point

numbers that must perform precise calculations, such as directing a spacecraft to a distant planet. In such

cases even small errors can result in complete failures. Floating-point numbers can and are used safely and

effectively, but not without appropriate care.
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To build our confidence with floating-point numbers, consider Listing 9.15 (simplefloataddition.cpp),

which increments a double-precision floating-point number by a double-precision floating-point amount

and then checks it against a given value.

Listing 9.15: simplefloataddition.cpp

#include <iostream>

int main() {
double x = 0.9;
x += 0.1;
if (x == 1.0)

std::cout << "OK\n";
else

std::cout << "NOT OK\n";
}

All seems well judging by the output of Listing 9.15 (simplefloataddition.cpp):

OK

Next, consider Listing 9.16 (badfloatcheck.cpp) which attempts to control a loop with a double-precision

floating-point number.

Listing 9.16: badfloatcheck.cpp

#include <iostream>

int main() {
// Count to ten by tenths
for (double i = 0.0; i != 1.0; i += 0.1)

std::cout << "i = " << i << '\n';
}

When compiled and executed, Listing 9.16 (badfloatcheck.cpp) begins as expected, but it does not end

as expected:

i = 0
i = 0.1
i = 0.2
i = 0.3
i = 0.4
i = 0.5
i = 0.6
i = 0.7
i = 0.8
i = 0.9
i = 1
i = 1.1
i = 1.2
i = 1.3
i = 1.4
i = 1.5
i = 1.6
i = 1.7
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i = 1.8
i = 1.9
i = 2
i = 2.1

We expect it stop when the loop variable i equals 1, but the program continues executing until the user

types Ctrl-C. We are adding 0.1, just as in Listing 9.15 (simplefloataddition.cpp), but now there is a prob-

lem. Since 0.1 cannot be represented exactly within the constraints of the double-precision floating-point

representation, the repeated addition of 0.1 leads to round off errors that accumulate over time. Whereas

0.1 + 0.9 rounded off may equal 1, 0.1 added to itself 10 times may be 1.000001 or 0.999999, neither of

which is exactly 1.

Listing 9.16 (badfloatcheck.cpp) demonstrates that the == and != operators are of questionable worth

when comparing floating-point values. The better approach is to check to see if two floating-point values

are close enough, which means they differ by only a very small amount. When comparing two floating-

point numbers x and y, we essentially must determine if the absolute value of their difference is small; for

example, |x− y| < 0.00001. The C abs function was introduced in Section 8.2, and we can incorporate it

into an equals function, as shown in Listing 9.17 (floatequals.cpp).

Listing 9.17: floatequals.cpp

#include <iostream>
#include <cmath>

/*
* equals(a, b, tolerance)
* Returns true if a = b or |a - b| < tolerance.
* If a and b differ by only a small amount
* (specified by tolerance), a and b are considered
* "equal." Useful to account for floating-point
* round-off error.
* The == operator is checked first since some special
* floating-point values such as HUGE_VAL require an
* exact equality check.
*/

bool equals(double a, double b, double tolerance) {
return a == b || fabs(a - b) < tolerance;

}

int main() {
for (double i = 0.0; !equals(i, 1.0, 0.0001); i += 0.1)

std::cout << "i = " << i << '\n';
}

The third parameter, named tolerance, specifies how close the first two parameters must be in order

to be considered equal. The == operator must be used for some special floating-point values such as

HUGE_VAL, so the function checks for == equality as well. Since C++ uses short-circuit evaluation for

Boolean expressions involving logical OR (see Section 5.2), if the == operator indicates equality, the more

elaborate check is not performed.

You should use a function like equals when comparing two floating-point values for equality.
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9.4.7 Multiplication Table with Functions

When we last visited our multiplication table program in Listing 7.5 (bettertimestable.cpp), we used nested

for loops to display a user-specified size. We can decompose the code into functions as shown in List-

ing 9.18 (timestablefunction.cpp). Our goal is to have a collection of functions that each are very simple.

We also want the program’s overall structure to be logically organized.

Listing 9.18: timestablefunction.cpp

#include <iostream>
#include <iomanip>

// Print the column labels for an n x n multiplication table.
void col_numbers(int n) {

std::cout << " ";
for (int column = 1; column <= n; column++)

std::cout << std::setw(4) << column; // Print heading for this column.
std::cout << '\n';

}

// Print the table's horizontal line at the top of the table
// beneath the column labels.
void col_line(int n) {

std::cout << " +";
for (int column = 1; column <= n; column++)

std::cout << "----"; // Print separator for this row.
std::cout << '\n';

}

// Print the title of each column across the top of the table
// including the line separator.
void col_header(int n) {

// Print column titles
col_numbers(n);

// Print line separator
col_line(n);

}

// Print the title that appears before each row of the table's
// body.
void row_header(int n) {

std::cout << std::setw(4) << n << " |"; // Print row label.
}

// Print the line of text for row n
// This includes the row number and the
// contents of each row.
void print_row(int row, int columns) {

row_header(row);
for (int col = 1; col <= columns; col++)

std::cout << std::setw(4) << row*col; // Display product
std::cout << '\n'; // Move cursor to next row

}
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// Print the body of the n x n multiplication table
void print_contents(int n) {

for (int current_row = 1; current_row <= n; current_row++)
print_row(current_row, n);

}

// Print a multiplication table of size n x n.
void timestable(int n) {

// First, print column heading
col_header(n);

// Print table contents
print_contents(n);

}

// Forces the user to enter an integer within a
// specified range first is either a minimum or maximum
// acceptable value last is the corresponding other end
// of the range, either a maximum or minimum value
// Returns an acceptable value from the user
int get_int_range(int first, int last) {

// If the larger number is provided first,
// switch the parameters
if (first > last) {

int temp = first;
first = last;
last = temp;

}
// Insist on values in the range first...last
std::cout << "Please enter a value in the range "

<< first << "..." << last << ": ";
int in_value; // User input value
bool bad_entry;
do {

std::cin >> in_value;
bad_entry = (in_value < first || in_value > last);
if (bad_entry) {

std::cout << in_value << " is not in the range "
<< first << "..." << last << '\n';

std::cout << "Please try again: ";
}

}
while (bad_entry);
// in_value at this point is guaranteed to be within range
return in_value;

}

int main() {
// Get table size from user; allow values in the
// range 1...18.
int size = get_int_range(1, 18);

// Print a size x size multiplication table
timestable(size);

}
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Figure 9.5 A trace of the activation of the various functions in Listing 9.18 (timestablefunction.cpp) when

the user enters 3 for a 3× 3 multiplication table. Time flows from left to right. The horizontal bars show

the lifetimes of the various functions involved.
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In Listing 9.18 (timestablefunction.cpp), each function plays a very specific role; for example, row_header
prints the label for a particular row and then prints the vertical bar that separates the row label from the body

of the table. We reuse the get_int_range function from Listing 9.12 (betterinputfunc.cpp). Notice that

there no longer appear to be any nested loops in the program. The nested loop is not really gone, it now is

hidden by the program’s functional composition. Observe that the print_contents function contains a

loop. Each time through the loop it calls print_row, but print_row itself contains a loop. The nested

iteration, therefore, is still present.

Realistically, the functional decomposition within Listing 9.18 (timestablefunction.cpp) is extreme. The

relative simplicity of the program does not not really justify eight separate functions each with such a

narrow focus; however, more complex software systems are decomposed in this very manner. Not only

does Listing 9.18 (timestablefunction.cpp) give us insight into how we can take a complicated problem and

break it down into simpler, more manageable pieces, we can use the program to better understand how the

function invocation process works. To see how, consider the situation where a user wishes to print a 3×3

multiplication table using Listing 9.18 (timestablefunction.cpp).

In Figure 9.5 an arrow pointing down corresponds to a function call. The labels on the down arrows

represent parameters passed during the call. The up arrows indicate the return from a function. The label

on an up arrow is the function’s return value. Functions of type void have no labels on their return arrows.

Each horizontal bar in Figure 9.5 represents the duration of the program’s execution that the function

is active. The main function always is the first function executed in a C++ program, and in Listing 9.18

(timestablefunction.cpp) main immediately calls the get_int_range function. During the lifetime of

get_int_range’s execution notice that main is still active. This means any local variables it may

maintain are still stored in memory and have not lost their values. This means that main’s value variable
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exists for the effective life of the program. This is not true for the variables used in get_int_range:

temp, in_value, bad_entry, and the parameters first and last. These variables maintained by

get_int_range appear automatically when get_int_range begins executing (the left end of its

bar) and their space is released when get_int_range is finished (the right end of its bar)1. During

the printing of a 3× 3 table the program calls print_row three times, and for each call the function’s

parameters row and column and local variable col come to life and then disappear when the function

returns.

9.5 Organizing Functions

The code we have seen so far provides a function definition before its invocation. Listing 9.19 (organization1.cpp)

organizes its functions this way.

Listing 9.19: organization1.cpp

// Function definition precedes main where the function is called
#include <iostream>

int twice(int n) {
return 2 * n;

}

int main() {
std::cout << twice(5) << '\n';

}

When the compiler attempts to parse the following statement:

std::cout << twice(5) << '\n';

it needs to be able to determine if the expression twice(5) is valid in the given context; that is, it must

determine if the expression twice(5) evaluates to something that can be sent to the std::cout object

using the << operator. The following points are important in the parsing process:

• The earlier definition of the twice function declares the identifier twice to the compiler. Conse-

quently the compiler expects a caller to twice to pass a single argument that is compatible with the

int type. The compiler also knows that the call to twice will return an integer value.

• The parentheses after the name twice in the statement indicate the expression is a function call.

• Within the parentheses is the integer literal 5, which clearly is compatible with the int type.

• The expression twice(5) thus evaluates to an int, and the << operator can send integer values to

the std::cout output stream object.

The compiler thus can verify that the code within the main function is using the twice function correctly.

If we instead place twice’s definition after the main function’s definition, the compiler will report an

error where twice’s call appears within main. This is because the compiler parses C++ source code line

by line from top to bottom within the .cpp file. When the compiler sees the identifier twice first at its

1Technically, the run-time environment does not allocate the space for a local variable until after its point of declaration. For

variables declared within blocks, like temp with the if body, the variable is discarded at the end of the block’s execution.
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invocation within main, it is an undefined symbol. The compiler needs to know a function’s return type

and parameter types in order to verify that the caller is invoking the function correctly.

As it turns out, we can satisfy the compiler’s need to know about the twice function as used in main
without providing its full definition. Listing 9.20 (organization2.cpp) provides a alternate organization of

the source code in Listing 9.19 (organization1.cpp).

Listing 9.20: organization2.cpp

// Function declaration precedes main; function definition follows main
#include <iostream>

int twice(int); // Declare function named twice

int main() {
std::cout << twice(5) << '\n';

}

int twice(int n) { // Define function named twice
return 2 * n;

}

The statement

int twice(int);

is a prototype that serves as a function declaration. It essentially is a function definition without the func-

tion’s body. A semicolon terminates the declaration, and no curly braces appear in a function declaration.

We can provide a name the parameter, but that is not necessary. A function declaration provides all the

information the compiler needs to determine if a caller is invoking the function correctly. The function is

available to any callers that appear after the declaration within the source file.

Listing 9.21 (organization3.cpp) provides a slight variation of Listing 9.20 (organization2.cpp).

Listing 9.21: organization3.cpp

// Function declaration local to main; function definition follows main
#include <iostream>

int main() {
int twice(int); // twice function available anywhere in main
std::cout << twice(5) << '\n';

}

int twice(int n) { // Define function twice
return 2 * n;

}

In Listing 9.21 (organization3.cpp) we declare the twice function within the main function itself. The

makes twice’s declaration local to main. This means that any code within main that appears after

twice’s declaration can use twice, but code outside of main cannot (unless other functions themselves

independently provide their own declaration of twice. Listing 9.22 (localfuncdef1.cpp) and Listing 9.23

(localfuncdef2.cpp) provide a concrete example of the difference between a local and a global declaration.

Listing 9.22: localfuncdef1.cpp
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#include <iostream>

// Global declarations available to all functions that follow the declarations
int two_times(int);
int three_times(int);

int main() {
std::cout << two_times(5) << '\n';
std::cout << three_times(5) << '\n';

}

int three_times(int n) {
return two_times(n) + n; // 3n = 2n + n

}

int two_times(int n) {
return 2 * n;

}

The declaration of two_times appears above and outside of both main and three_times, and so both

main and three_times may legitimately call two_times.

Listing 9.23: localfuncdef2.cpp

// Local declaration in main
#include <iostream>

int main() {
// These function declarations are local to main
int two_times(int);
int three_times(int);
std::cout << two_times(5) << '\n';
std::cout << three_times(5) << '\n';

}

// The two_times function is not declared for three_times function!
int three_times(int n) {

return two_times(n) + n; // Compiler error
}

int two_times(int n) {
return 2 * n;

}

The declaration for the two_times function given in main in Listing 9.23 (localfuncdef2.cpp) is not

visible in the three_times function; thus, the program will not compile.

Note that while C++ allows us to declare a function within the body of another function, it does not

allow us to define a function inside the body of another function. C++ does not support nested function

definitions.

Some programmers prefer to declare all their functions before their use within the program (as in List-

ing 9.20 (organization2.cpp) or Listing 9.21 (organization3.cpp)) and define the functions after their use
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within main. They argue that this better represents the way the compiled code executes—the mainmethod

begins running first, and it calls the other functions. As we read the source code from top to bottom we see

the details of the main function before seeing the implementation details of the functions that main calls.

A more frequent way to organize functions within C++ source code is to separate function declarations,

function invocations, and function definitions into their own distinct files. The function declarations go

into one or more .h header files, the function definitions appear in one or more .cpp files, and the calling

code (including main) appear in a separate .cpp file. The compiler compiles all the .cpp files separately,

producing multiple machine language object files (.obj files in Visual C++). The linker then combines these

separate object files into a single executable file. Section 10.6 covers this technique is detail.

9.6 Commenting Functions

It is good practice to comment a function’s definition with information that aids programmers who may

need to use or extend the function. The essential information includes:

• The purpose of the function. The function’s purpose is not always evident merely from its name.

This is especially true for functions that perform complex tasks. A few sentences explaining what the

function does can be helpful.

• The role of each parameter. The parameter names and types are obvious from the definition, but the

purpose of a parameter may not be apparent merely from its name. It is helpful indicate the purpose

of each parameter, if any.

• The nature of the return value. While the function may do a number of interesting things as

indicated in the function’s purpose, what exactly does it return to the caller? It is helpful to clarify

exactly what value the function produces, if any.

Other information is often required in a commercial environment:

• Author of the function. Specify exactly who wrote the function. An email address can be included.

If questions about the function arise, this contact information can be invaluable.

• Date that the function’s implementation was last modified. An additional comment can be added

each time the function is updated. Each update should specify the exact changes that were made and

the person responsible for the update.

• References. If the code was adapted from another source, list the source. The reference may consist

of a Web URL.

The following fragment shows the beginning of a well-commented function definition:

/*
* distance(x1, y1, x2, y2)
* Computes the distance between two geometric points
* x1 is the x coordinate of the first point
* y1 is the y coordinate of the first point
* x2 is the x coordinate of the second point
* y2 is the y coordinate of the second point
* Returns the distance between (x1,y1) and (x2,y2)
* Author: Joe Algori (joe@eng-sys.net)
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* Last modified: 2010-01-06
* Adapted from a formula published at
* http://en.wikipedia.org/wiki/Distance
*/

double distance(double x1, double y1, double x2, double y2) {
...

From the information provided

• callers know what the function can do for them,

• callers know how to use the function,

• subsequent programmers can contact the original author if questions arise about its use or implemen-

tation,

• subsequent programmers can check the Wikipedia reference if questions arise about its implementa-

tion, and

• subsequent programmers can judge the quality of the algorithm based upon its source of inspiration

(in this case, Wikipedia).

9.7 Custom Functions vs. Standard Functions

Armed with our knowledge of function definitions, we can rewrite Listing 8.1 (computesquareroot.cpp) so

the program uses a custom square root function. Listing 9.24 (squarerootfunction.cpp) shows one possibil-

ity.

Listing 9.24: squarerootfunction.cpp

#include <iostream>

double square_root(double x) {
double diff;
// Compute a provisional square root
double root = 1.0;

do { // Loop until the provisional root
// is close enough to the actual root

root = (root + x/root) / 2.0;
std::cout << "root is " << root << '\n';
// How bad is the approximation?
diff = root * root - x;

}
while (diff > 0.0001 || diff < -0.0001);
return root;

}

int main() {
double input;

// Get value from the user
std::cout << "Enter number: ";
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std::cin >> input;
// Report square root
std::cout << "Square root of " << input << " = "

<< square_root(input) << '\n';
}

Is Listing 9.24 (squarerootfunction.cpp) better than Listing 8.2 (standardsquareroot.cpp) which uses the

standard sqrt function from the cmath library? Generally speaking, if you have the choice of using a

standard library function or writing your own custom function that provides the same functionality, choose

to use the standard library routine. The advantages of using the standard library routine include:

• Your effort to produce the custom code is eliminated entirely; you can devote more effort to other

parts of the application’s development.

• If you write your own custom code, you must thoroughly test it to ensure its correctness; standard

library code, while not immune to bugs, generally has been subjected to a complete test suite. Library

code is used by many developers, and thus any lurking errors are usually exposed early; your code is

exercised only by the programs you write, and errors may not become apparent immediately. If your

programs are not used by a wide audience, bugs may lie dormant for a long time. Standard library

routines are well known and trusted; custom code, due to its limited exposure, is suspect until it gains

wider exposure and adoption.

• Standard routines are typically tuned to be very efficient; it takes a great deal of effort to make custom

code efficient.

• Standard routines are well-documented; extra work is required to document custom code, and writing

good documentation is hard work.

Listing 9.25 (squarerootcomparison.cpp) tests our custom square root function over a range of 1,000,000,000

floating-point values.

Listing 9.25: squarerootcomparison.cpp

#include <iostream>
#include <cmath>

// Consider two floating-point numbers equal when
// the difference between them is very small.
bool equals(double a, double b, double tolerance) {

return a == b || fabs(a - b) < tolerance;
}

double square_root(double x) {
// Compute a provisional square root
double root = 1.0;

do { // Loop until the provisional root
// is close enough to the actual root

root = (root + x/root) / 2.0;
}
while (!equals(root*root, x, 0.0001));
return root;

}
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int main() {
for (double d = 0.0; d < 100000.0; d += 0.0001) {

if (!equals(square_root(d), sqrt(d), 0.001))
std::cout << d << ": Expected " << sqrt(d) << ", but computed "

<< square_root(d) << '\n';
}

}

Listing 9.25 (squarerootcomparison.cpp) uses our equals function from Listing 9.17 (floatequals.cpp).

The third parameter specifies a tolerance; if the difference between the first two parameters is less than

the specified tolerance, the first two parameters are considered equal. Our new custom square_root
function uses the equals function. The main function uses the equals function as well. Observe,

however, that the tolerance used within the square root computation is smaller than the tolerance main
uses to check the result. The main function, therefore, uses a less strict notion of equality.

The output of Listing 9.25 (squarerootcomparison.cpp):

0: Expected 0, but computed 0.0078125
0.0001: Expected 0.01, but computed 0.0116755
0.0008: Expected 0.0282843, but computed 0.0298389
0.0009: Expected 0.03, but computed 0.0313164
0.001: Expected 0.0316228, but computed 0.0327453

shows that our custom square root function produces results outside of main’s acceptable tolerance for five

values. Five wrong answers out of one billion tests represents a 0.0000005% error rate. While this error rate

is very small, indicates our square_root function is not perfect. One of values that causes the function

to fail may be very important to a particular application, so our function is not trustworthy.

9.8 Exercises

1. Is the following a legal C++ program?

int proc(int x) {
return x + 2;

}

int proc(int n) {
return 2*n + 1;

}

int main() {
int x = proc(5);

}

2. Is the following a legal C++ program?

int proc(int x) {
return x + 2;

}

int main() {
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int x = proc(5),
y = proc(4);

}

3. Is the following a legal C++ program?

#include <iostream>

void proc(int x) {
std::cout << x + 2 << '\n';

}

int main() {
int x = proc(5);

}

4. Is the following a legal C++ program?

#include <iostream>

void proc(int x) {
std::cout << x + 2 << '\n';

}

int main() {
proc(5);

}

5. Is the following a legal C++ program?

#include <iostream>

int proc(int x, int y) {
return 2*x + y*y;

}

int main() {
std::cout << proc(5, 4) << '\n';

}

6. Is the following a legal C++ program?

#include <iostream>

int proc(int x, int y) {
return 2*x + y*y;

}

int main() {
std::cout << proc(5) << '\n';

}
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7. Is the following a legal C++ program?

#include <iostream>

int proc(int x) {
return 2*x*x;

}

int main() {
std::cout << proc(5, 4) << '\n';

}

8. Is the following a legal C++ program?

#include <iostream>

proc(int x) {
std::cout << 2*x*x << '\n';

}

int main() {
proc(5);

}

9. The programmer was expecting the following program to print 200. What does it print instead? Why

does it print what it does?

#include <iostream>

void proc(int x) {
x = 2*x*x;

}

int main() {
int num = 10;
proc(num);
std::cout << num << '\n';

}

10. Is the following program legal since the variable x is used in two different places (proc and main)?

Why or why not?

#include <iostream>

int proc(int x) {
return 2*x*x;

}

int main() {
int x = 10;
std::cout << proc(x) << '\n';

}
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11. Is the following program legal since the actual parameter has a different name from the formal pa-

rameter (y vs. x)? Why or why not?

#include <iostream>

int proc(int x) {
return 2*x*x;

}

int main() {
int y = 10;
std::cout << proc(y) << '\n';

}

12. Complete the distance function started in Section 9.6. Test it with several point coordinates to

convince yourself that your implementation is correct.

13. What happens if a caller passes too many parameters to a function?

14. What happens if a caller passes too few parameters to a function?

15. What are the rules for naming a function in C++?

16. Consider the following function definitions:

#include <iostream>

int fun1(int n) {
int result = 0;
while (n) {

result += n;
n--;

}
return result;

}

void fun2(int stars) {
for (int i = 0; i < stars; i++)

std::cout << "*";
std::cout << '\n';

}

double fun3(double x, double y) {
return 2*x*x + 3*y;

}

bool fun4(char ch) {
return ch >='A' && ch <= 'Z';

}

bool fun5(int a, int b, int c) {
return (a <= b) ? (b <= c) : false;

}
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int fun6() {
return rand() % 2;

}

Examine each of the following print statements. If the statement is illegal, explain why it is illegal;

otherwise, indicate what the statement will print.

(a) std::cout << fun1(5) << '\n';

(b) std::cout << fun1() << '\n';

(c) std::cout << fun1(5, 2) << '\n';

(d) std::cout << fun2(5) << '\n';

(e) fun2(5);

(f) std::cout << fun3(5, 2) << '\n';

(g) std::cout << fun3(5.0, 2.0) << '\n';

(h) std::cout << fun3('A', 'B') << '\n';

(i) std::cout << fun3(5.0) << '\n';

(j) std::cout << fun3(5.0, 0.5, 1.2) << '\n';

(k) std::cout << fun4('T') << '\n';

(l) std::cout << fun4('t') << '\n';

(m) std::cout << fun4(5000) << '\n';

(n) fun4(5000);

(o) std::cout << fun5(2, 4, 6) << '\n';

(p) std::cout << fun5(4, 2, 6) << '\n';

(q) std::cout << fun5(2, 2, 6) << '\n';

(r) std::cout << fun5(2, 6) << '\n';

(s) if (fun5(2, 2, 6))
std::cout << "Yes\n";

else
std::cout << "No\n";

(t) std::cout << fun6() << '\n';

(u) std::cout << fun6(4) << '\n';

(v) std::cout << fun3(fun1(3), 3) << '\n';

(w) std::cout << fun3(3, fun1(3)) << '\n';

(x) std::cout << fun1(fun1(fun1(3))) << '\n';

(y) std::cout << fun6(fun6()) << '\n';
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Chapter 10

Managing Functions and Data

This chapter covers some additional aspects of functions in C++. Recursion, a key concept in computer

science is introduced.

10.1 Global Variables

All variables to this point have been local to functions or local to blocks within the bodies of conditional or

iterative statements. Local variables have some very desirable properties:

• A local variable occupies memory only when the variable is in scope. When the program execution

leaves the scope of a local variable, it frees up the memory for that variable. This freed up memory

is then available for use by the local variables in other functions during their invocations.

• We can use the same variable name in different functions without any conflict. The compiler derives

all of its information about a local variable used within a function from the declaration of that variable

in that function. The compiler will not look for the declaration of a local variable in the definition

of another function. Thus, there is no way a local variable in one function can interfere with a local

variable declared in another function.

A local variable is transitory, so its value is lost in between function invocations. Sometimes it is desirable

to have a variable that lives as long as the program is running; that is, until the main function completes.

In contrast to a local variable, a global variable is declared outside of all functions and is not local to any

particular function. In fact, any function that appears in the text of the source code after the point of the

global variable’s declaration may legally access and/or modify that global variable.

Listing 10.1 (globalcalculator.cpp) is a modification of Listing 9.11 (calculator.cpp) that uses a global

variable named result that is shared by several functions in the program.

Listing 10.1: globalcalculator.cpp

#include <iostream>
#include <cmath>

/*
* help_screen
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* Displays information about how the program works
* Accepts no parameters
* Returns nothing
*/

void help_screen() {
std::cout << "Add: Adds two numbers\n";
std::cout << " Example: a 2.5 8.0\n";
std::cout << "Subtract: Subtracts two numbers\n";
std::cout << " Example: s 10.5 8.0\n";
std::cout << "Print: Displays the result of the latest operation\n";
std::cout << " Example: p\n";
std::cout << "Help: Displays this help screen\n";
std::cout << " Example: h\n";
std::cout << "Quit: Exits the program\n";
std::cout << " Example: q\n";

}

/*
* menu
* Display a menu
* Accepts no parameters
* Returns the character entered by the user.
*/

char menu() {
// Display a menu
std::cout << "=== A)dd S)ubtract P)rint H)elp Q)uit ===\n";
// Return the char entered by user
char ch;
std::cin >> ch;
return ch;

}

/*
* Global variables used by several functions
*/

double result = 0.0, arg1, arg2;

/*
* get_input
* Assigns the globals arg1 and arg2 from user keyboard
* input
*/

void get_input() {
std::cin >> arg1 >> arg2;

}

/*
* report
* Reports the value of the global result
*/

void report() {
std::cout << result << '\n';

}

/*
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* add
* Assigns the sum of the globals arg1 and arg2

to the global variable result
*/

void add() {
result = arg1 + arg2;

}

/*
* subtract
* Assigns the difference of the globals arg1 and arg2
* to the global variable result
*/

void subtract() {
result = arg1 - arg2;

}

/*
* main
* Runs a command loop that allows users to
* perform simple arithmetic.
*/

int main() {
bool done = false; // Initially not done
do {

switch (menu()) {
case 'A': // Addition
case 'a':
get_input();
add();
report();
break;

case 'S': // Subtraction
case 's':
get_input();
subtract();
report();
break;

case 'P': // Print result
case 'p':
report();
break;

case 'H': // Display help screen
case 'h':
help_screen();
break;

case 'Q': // Quit the program
case 'q':
done = true;
break;

}
}
while (!done);
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}

Listing 10.1 (globalcalculator.cpp) uses global variables result, arg1, and arg2. These names no

longer appear in the main function. These global variables are accessed and/or modified in four different

functions: get_input, report, add, and subtract.

When in the course of translating the statements within a function to machine language, the compiler

resolves a variable it encounters as follows:

• If the variable has a local declaration (that is, it is a local variable or parameter), the compiler will

use the local variable or parameter, even if a global variable of the same name exists. Local vari-

ables, therefore, take precedence over global variables. We say the local declaration hides the global

declaration in the scope of the local variable.

• If the variable has no local declaration but is declared as a global variable, the compiler will use the

global variable.

• If the variable has neither a local declaration nor a global declaration, then the variable is undefined,

and its use is an error.

In the situation where a local variable hides a global variable of the same name, there is a way to access

both the local variable and like-named global variable within the local variable’s scope. Suppose a program

has a global variable named x and a function with a local variable named x. The statement

x = 10;

within the scope of the local variable will assign the local x. The following statement will assign the global

variable x in the scope of the local variable of the same name:

::x = 10;

The :: operator is called the scope resolution operator. This special syntax may be used whenever a global

variable is accessed within a function, but usually it only used when necessary to access a hidden global

variable.

If the value of a local variable is used by a statement before that variable has been given a value,

either through initialization or assignment, the compiler will issue a warning. For example, the Visual C++

compiler will issue a warning about code in the following function:

void uninitialized() {
int x; // Declare the variable
std::cout << x; // Then use it

}

The warning is

warning C4700: uninitialized local variable ’x’ used

(The only way to avoid this warning in Visual C++ is to turn off all warnings.) A local variable has an

undefined value after it is declared without being initialized. Its value should not be used until it has been

properly assigned. Global variables, however, do not need to be initialized before they are used. Numeric

global variables are automatically assigned the value zero. This means the initialization of result in List-

ing 10.1 (globalcalculator.cpp) is superfluous, since result will be assigned zero automatically. Boolean

global variables are automatically assigned zero as well, as zero represents false (see Section 5.1).
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When it is acceptable to use global variables, and when is it better to use local variables? In general,

local variables are preferred to global variables for several reasons:

• When a function uses local variables exclusively and performs no other input operations (like using

the std::cin object), its behavior is influenced only by the parameters passed to it. If a non-local

variable appears, the function’s behavior is affected by every other function that can modify that

non-local variable. As a simple example, consider the following trivial function that appears in a

program:

int increment(int n) {
return n + 1;

}

Can you predict what the following statement within that program will print?

std::cout << increment(12) << '\n';

If your guess is 13, you are correct. The increment function simply returns the result of adding

one to its argument. The increment function behaves the same way each time it is called with the

same argument.

Next, consider the following three functions that appear in some program:

int process(int n) {
return n + m; // m is a global integer variable

}

void assign_m() {
m = 5;

}

void inc_m() {
m++;

}

Can you predict the what the following statement within the program will print?

std::cout << process(12) << '\n';

We cannot predict what this statement in isolation will print. The following scenarios all produce

different results:

assign_m();
std::cout << process(12) << '\n';

prints 17,

m = 10;
std::cout << process(12) << '\n';

prints 22,

m = 0;
inc_m();
inc_m();
std::cout << process(12) << '\n';
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prints 14, and

assign_m();
inc_m();
inc_m();
std::cout << process(12) << '\n';

prints 19. The identical printing statements print different values depending on the cumulative effects

of the program’s execution up to that point.

It may be difficult to locate an error if that function fails because it may be the fault of another func-

tion that assigned an incorrect value to the global variable. The situation may be more complicated

than the simple examples above; consider:

assign_m();
.
. /* 30 statements in between, some of which may change a,
. b, and m */
.
if (a < 2 && b <= 10)

m = a + b - 100;
.
. /* 20 statements in between, some of which may change m */
.
std::cout << process(12) << '\n';

• A nontrivial program that uses non-local variables will be more difficult for a human reader to un-

derstand than one that does not. When examining the contents of a function, a non-local variable

requires the reader to look elsewhere (outside the function) for its meaning:

// Linear function
double f(double x) {

return m*x + b;
}

What are m and b? How, where, and when are they assigned or re-assigned?

• A function that uses only local variables can be tested for correctness in isolation from other func-

tions, since other functions do not affect the behavior of this function. This function’s behavior is

only influenced only by its parameters, if it has any.

The exclusion of global variables from a function leads to functional independence. A function that

depends on information outside of its scope to correctly perform its task is a dependent function. When

a function operates on a global variable it depends on that global variable being in the correct state for

the function to complete its task correctly. Nontrivial programs that contain many dependent functions are

more difficult to debug and extend. A truly independent function that uses no global variables and uses

no programmer-defined functions to help it out can be tested for correctness in isolation. Additionally, an

independent function can be copied from one program, pasted into another program, and work without

modification. Functional independence is a desirable quality.

Unlike global variables, global constants are generally safe to use. Code within functions that use

global constants are dependent on those constants, but since constants cannot be changed, developers need

not worry that other functions that have access to the global constants might disturb their values.
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The use of global constants within functions has drawbacks in terms of program maintenance. As a

program evolves, code is added and removed. If a global constant is removed or its meaning changes during

the course of the program’s development, the change will affect any function using the global constant.

Listing 10.2 (digitaltimer.cpp) uses global constants to assist the display of a digital timer.

Listing 10.2: digitaltimer.cpp

#include <iostream>
#include <iomanip>
#include <ctime>

// Some conversions from seconds
const clock_t SEC_PER_MIN = 60, // 60 sec = 1 min

SEC_PER_HOUR = 60 * SEC_PER_MIN, // 60 min = 1 hr
SEC_PER_DAY = 24 * SEC_PER_HOUR; // 24 hr = 24 hr

/*
* print_time
* Displays the time in hr:min:sec format
* seconds is the number of seconds to display
*/

void print_time(clock_t seconds) {
clock_t hours = 0, minutes = 0;

// Prepare to display time =============================
std::cout << '\n';
std::cout << " ";

// Compute and display hours ===========================
hours = seconds/SEC_PER_HOUR;
std::cout << std::setw(2) << std::setfill('0') << hours << ":";

// Remove the hours from seconds
seconds %= SEC_PER_HOUR;

// Compute and display minutes =========================
minutes = seconds/SEC_PER_MIN;
std::cout << std::setw(2) << std::setfill('0') << minutes << ":";
// Remove the minutes from seconds
seconds %= SEC_PER_MIN;

// Compute and display seconds =========================
std::cout << std::setw(2) << std::setfill('0') << seconds << '\n';

}

int main() {
clock_t start = clock(); // Record starting time
clock_t elapsed = (clock() - start)/CLOCKS_PER_SEC, // Elapsed time in sec.

previousElapsed = elapsed;
// Counts up to 24 hours (1 day), then stops
while (elapsed < SEC_PER_DAY) {

// Update the display only every second
if (elapsed - previousElapsed >= 1) {

// Remember when we last updated the display
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previousElapsed = elapsed;
print_time(elapsed);

}
// Update elapsed time
elapsed = (clock() - start)/CLOCKS_PER_SEC;

}
}

In Listing 10.2 (digitaltimer.cpp):

• The main function controls the time initialization and update and deals strictly in seconds. The logic

in main is kept relatively simple.

• The code that extracts the hours, minutes, and seconds from a given number of seconds is isolated in

print_time. The print_time function can now be used anytime a value in seconds needs to

be expressed in the hours : minutes : seconds format.

• The second conversion constants (SEC_PER_HOUR, SEC_PER_MIN, and SEC_PER_DAY) are

global constants so that both functions can access them if necessary. In this case the functions use

different constants , but it makes sense to place all the conversion factors in one place.

Since the two functions divide the responsibilities in a way that each can be developed independently,

the design is cleaner and the program is easier to develop and debug. The use of constants ensures that the

shared values cannot be corrupted by either function.

The exclusion from a function’s definition of global variables and global constants does not guarantee

that it will always produce the same results given the same parameter values; consider

int compute(int n) {
int favorite;
std::cout << "Please enter your favorite number: ";
std::cin >> favorite;
return n + favorite;

}

The compute function avoid globals, yet we cannot predict the value of the expression compute(12).

Recall the increment function from above:

int increment(int n) {
return n + 1;

}

Its behavior is totally predictable. Furthermore, increment does not modify any global variables, mean-

ing it cannot in any way influence the overall program’s behavior. We say that increment is a pure

function. A pure function cannot perform any input or output (for example, use the std::cout and

std::cin objects), nor may it use global variables. While increment is pure, the compute function

is impure. The following function is impure also, since it performs output:

int increment_and_report(int n) {
std::cout << "Incrementing " << n << '\n';
return n + 1;

}
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A pure function simply computes its return value and has no other observable side effects.

A function that uses only pure functions and otherwise would be considered pure is itself a pure func-

tion; for example:

int double_increment(int n) {
return increment(n) + 1;

}

double_increment is a pure function since increment is pure; however, double_increment_with_report:

int double_increment_with_report(int n) {
return increment_and_report(n) + 1;

}

is not a pure function since it calls increment_and_report which is impure.

10.2 Static Variables

Space in the computer’s memory for local variables and function parameters is allocated at run time when

the function begins executing. When the function is finished and returns, the memory used for the function’s

local variables and parameters is freed up for other purposes. If a function is never called, the variable’s

local variables and parameters will never occupy the computer’s memory.

Because a function’s locals are transitory, a function cannot ordinarily retain any information between

calls. C++ provides a way in which a variable local to a function can be retained in between calls. List-

ing 10.3 (counter.cpp) shows how declaring a local variable static allows it to remain in the computer’s

memory for the duration of the program’s execution.

Listing 10.3: counter.cpp

#include <iostream>
#include <iomanip>

/*
* count
* Keeps track of a count.
* Returns the current count.
*/

int count() {
// cnt's value is retained between calls because it
// is declared static
static int cnt = 0;
return ++cnt; // Increment and return current count

}

int main() {
// Count to ten
for (int i = 0; i < 10; i++)

std::cout << count() << ' ';
std::cout << '\n';

}
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In Listing 10.3 (counter.cpp), the count function is called 10 times. Each time it returns a tally of the

number of times it has been called:

1 2 3 4 5 6 7 8 9 10

By contrast, if you remove the word static from Listing 10.3 (counter.cpp), recompile it, and rerun it, it

prints:

1 1 1 1 1 1 1 1 1 1

because new memory is allocated for the cnt variable each time count is called.

The local declaration

static int cnt = 0;

allocates space for cnt and assigns zero to it once—at the beginning of the program’s execution. The space

set aside for cnt is not released until the program finishes executing.

Recall Listing 9.7 (evenbetterprompt.cpp) that included the following function:

int prompt(int n) {
int value;
std::cout << "Please enter integer #" << n << ": ";
std::cin >> value;
return value;

}

The caller, main, used prompt function as follows:

int value1, value2, sum;
std::cout << "This program adds together two integers.\n";
value1 = prompt(1); // Call the function
value2 = prompt(2); // Call the function again
sum = value1 + value2;

The first call to prompt prints the message

Please enter integer #1:

and awaits the user’s input. The second call prints the message

Please enter integer #2:

Another caller might use prompt within a loop like this:

int sum = 0;
for (int i = 1; i < 10; i++)

sum += prompt(i);

Notice that it is the caller’s responsibility to keep track of the proper number to pass to prompt. The caller

may make a mistake and pass the wrong number or may not want to manage such details. It would be better

to move the responsibility of tracking input count to prompt. static variables make that possible, as

Listing 10.4 (promptwithstatic.cpp)
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Listing 10.4: promptwithstatic.cpp

#include <iostream>

/*
* prompt requests an integer from the user and
* keeps track of the cumulative number of entries.
* Returns the value entered by the user.
*/

int prompt() {
static int count = 0;
int value;
std::cout << "Please enter integer #" << ++count << ": ";
std::cin >> value;
return value;

}

int main() {
int value1, value2, sum;
std::cout << "This program adds together two integers.\n";
value1 = prompt(); // Call the function
value2 = prompt(); // Call the function again
sum = value1 + value2;
std::cout << value1 << " + " << value2 << " = " << sum << '\n';

}

Listing 10.4 (promptwithstatic.cpp) behaves just like Listing 9.7 (evenbetterprompt.cpp) but in the new

version main does not have to keep track of the number of user entries.

Local static variables were inherited from the C programming language, but their need has dimin-

ished with the introduction of objects in C++ (see Chapter 14). Functions with static variables provide a

way to implement executable code with persistent state. Objects provide a more natural and more flexible

way to achieve the same effect.

10.3 Overloaded Functions

In C++, a program can have multiple functions with the same name. When two or more functions within

a program have the same name, the function is said to be overloaded. The functions must be different

somehow, or else the compiler would not know how to associate a call with a particular function definition.

The compiler identifies a function by more than its name; a function is uniquely identified by its signature.

A function signature consists of the function’s name and its parameter list. In the parameter list, only the

types of the formal parameters are important, not their names. If the parameter types do not match exactly,

both in number and position, then the function signatures are different. Consider the following overloaded

functions:

1. void f() { /* ... */ }

This version has no parameters, so its signature differs from all the others which each have at least

one parameter.

2. void f(int x) { /* ... */ }

©2018 Richard L. Halterman Draft date: December 2, 2018



10.4. DEFAULT ARGUMENTS 252

This version differs from Version 3, since its single parameter is an int, not a double.

3. void f(double x) { /* ... */ }

This version differs from Version 2, since its single parameter is a double, not an int.

4. void f(int x, double y) { /* ... */ }

This version differs from Version 5 because, even though Versions 4 and 5 have the same number of

parameters with the same types, the order of the types is different.

5. void f(double x, int y) { /* ... */ }

See the comments for Version 4.

Overloaded functions are a convenience for programmers. If overloaded functions were not allowed

(many programming languages do not support function overloading), new function names must be created

for different functions that perform basically the same task but accept different parameter types. It is better

for the programmer to choose the same name for the similar functions and let the compiler properly resolve

the differences. Overloading becomes a more important issue for constructors, special functions called

during object creation (Chapter 14).

10.4 Default Arguments

We can define functions that accept a varying number of parameters. Consider Listing 10.5 (countdown.cpp)

that specifies a function that counts down:

Listing 10.5: countdown.cpp

#include <iostream>

// Prints a count down from n to zero. The default
// starting value is 10.
void countdown(int n=10) {

while (n >= 0) // Count down from n to zero
std::cout << n-- << '\n';

}

int main() {
countdown(5);
std::cout << "----------" << '\n';
countdown();

}

The formal parameter to the countdown function expressed as n=10 represents a default parameter

or default argument. If the caller does not supply an actual parameter, the formal parameter n is assigned

10. The following call

countdown()

prints
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10
9
8
7
6
5
4
3
2
1
0

but the invocation

countdown(5)

displays

5
4
3
2
1
0

As we can see, when the caller does not supply a parameter specified by a function, and that parameter has

a default value, the default value is used during the caller’s call.

We may mix non-default and default parameters in the parameter lists of a function declaration, but all

default parameters within the parameter list must appear after all the non-default parameters. This means

the following definitions are acceptable:

int sum_range(int n, int m=100) { // OK, default follows non-default
int sum = 0;
for (int val = n; val <= m; val++)

sum += val;
return val;

}

and

int sum_range(int n=0, int m=100) { // OK, both default
int sum = 0;
for (int val = n; val <= m; val++)

sum += val;
return val;

}

but the following definition is illegal, since a default parameter precedes a non-default parameter in the

function’s parameter list:

int sum_range(int n=0, int m) { // Illegal, non-default follows default
int sum = 0;
for (int val = n; val <= m; val++)
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sum += val;
return val;

}

Default arguments allow programmers to provide a highly tunable function that offer a simpler interface

for its typical uses.

Overloading (see Section 10.3) enables programmers to write different function definitions for two

different functions that have the same name. Mixing overloading and default arguments can produce ambi-

guities that the compiler will not allow; for example, the following overloaded functions are acceptable:

void f() { /* .... */ }
void f(int n) { /* .... */ }

as this overloads function f. If a caller invokes f as f(), the compiler will generate machine language

code to call the first version of f. If instead we attempt to overload f as

void f() { /* .... */ }
void f(int n=0) { /* .... */ }

the compiler cannot determine if the call f() means the first overloaded version or the second with the

parameter defaulting to zero. Because of this ambiguity, the compiler will report an error for attempts to

call function f with no arguments. The other possible combination is illegal:

void f(int m) { /* .... */ }
void f(int n=0) { /* .... */ }

because these functions have the same signature, f(int). C++ does not allow a program to contain multi-

ple function definitions with the same signature.

10.5 Recursion

The factorial function is widely used in combinatorial analysis (counting theory in mathematics), proba-

bility theory, and statistics. The factorial of n is often expressed as n!. Factorial is defined for nonnegative

integers as

n! = n · (n−1) · (n−2) · (n−3) · · ·2 ·1
and 0! is defined to be 1. Thus 6! = 6 ·5 ·4 ·3 ·2 ·1 = 720. Mathematicians precisely define factorial in this

way:

n! =







1 if n = 0

n · (n−1)! otherwise.

This definition is recursive since the ! function is being defined, but ! is also used in the definition. A C++

function can be defined recursively as well. Listing 10.6 (factorialtest.cpp) includes a factorial function that

exactly models the mathematical definition.

Listing 10.6: factorialtest.cpp

#include <iostream>

/*
* factorial(n)

©2018 Richard L. Halterman Draft date: December 2, 2018



10.5. RECURSION 255

* Computes n!
* Returns the factorial of n.
*/

int factorial(int n) {
if (n == 0)

return 1;
else

return n * factorial(n - 1);
}

int main() {
// Try out the factorial function
std::cout << " 0! = " << factorial(0) << '\n';
std::cout << " 1! = " << factorial(1) << '\n';
std::cout << " 6! = " << factorial(6) << '\n';
std::cout << "10! = " << factorial(10) << '\n';

}

Observe that the factorial function in Listing 10.6 (factorialtest.cpp) uses no loop to compute its

result. The factorial function simply calls itself. The call factorial(6) is computed as follows:

factorial(6) = 6 * factorial(5)
= 6 * 5 * factorial(4)
= 6 * 5 * 4 * factorial(3)
= 6 * 5 * 4 * 3 * factorial(2)
= 6 * 5 * 4 * 3 * 2 * factorial(1)
= 6 * 5 * 4 * 3 * 2 * 1 * factorial(0)
= 6 * 5 * 4 * 3 * 2 * 1 * 1
= 6 * 5 * 4 * 3 * 2 * 1
= 6 * 5 * 4 * 3 * 2
= 6 * 5 * 4 * 6
= 6 * 5 * 24
= 6 * 120
= 720

Note that the factorial function can be slightly optimized by changing the if’s condition from

(n == 0) to (n < 2). This change results in a function execution trace that eliminates two function

calls at the end:

factorial(6) = 6 * factorial(5)
= 6 * 5 * factorial(4)
= 6 * 5 * 4 * factorial(3)
= 6 * 5 * 4 * 3 * factorial(2)
= 6 * 5 * 4 * 3 * 2 * 1
= 6 * 5 * 4 * 3 * 2
= 6 * 5 * 4 * 6
= 6 * 5 * 24
= 6 * 120
= 720

Figure 10.1 shows the call sequence for factorial(6) invoked from within a main function.

A correct simple recursive function definition is based on four key concepts:
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Figure 10.1 Traces the function activations of the recursive function factorial when called from main
with an argument of 6. The arrows into an activation bar indicates the argument passed by the caller; the

arrows out show the value passed back to the caller. The length of a bar represents the time during which

that invocation of the function is active.

factorial(6) function call sequence

(called from main) 

Program Execution Timeline

main

1 1

factorial

factorial

2 2

factorial

3 6

factorial

4

factorial

5

factorial

6 720

24

120
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1. The function must optionally call itself within its definition; this is the recursive case.

2. The function must optionally not call itself within its definition; this is the base case.

3. Some sort of conditional execution (such as an if/else statement) selects between the recursive

case and the base case based on one or more parameters passed to the function.

4. Each invocation that does not correspond to the base case must call itself with parameter(s) that move

the execution closer to the base case. The function’s recursive execution must converge to the base

case.

Each recursive invocation must bring the function’s execution closer to it base case. The factorial
function calls itself in the else clause of the if/else statement. Its base case is executed if the condition

of the if statement is true. Since the factorial is defined only for nonnegative integers, the initial invocation

of factorial must be passed a value of zero or greater. A zero parameter (the base case) results in no

recursive call. Any other positive parameter results in a recursive call with a parameter that is closer to zero

than the one before. The nature of the recursive process progresses towards the base case, upon which the

recursion terminates.

We can easily write a non-recursive factorial function, as Listing 10.7 (nonrecursfact.cpp) shows.

Listing 10.7: nonrecursfact.cpp

#include <iostream>

/*
* factorial(n)
* Computes n!
* Returns the factorial of n.
*/

int factorial(int n) {
int product = 1;
for (int i = n; i > 0; i--)

product *= i;
return product;

}

int main() {
// Try out the factorial function
std::cout << " 0! = " << factorial(0) << '\n';
std::cout << " 1! = " << factorial(1) << '\n';
std::cout << " 6! = " << factorial(6) << '\n';
std::cout << "10! = " << factorial(10) << '\n';

}

Which factorial function is better, the recursive or non-recursive version? Generally, if the same

basic algorithm is being used by both the recursive and non-recursive functions, then the non-recursive

function will be more efficient. A function call is a relatively expensive operation compared to a variable

assignment or comparison. The body of the non-recursive factorial function invokes no functions,

but the recursive version calls a function—it calls itself—during all but the last recursive invocation. The

iterative version of factorial is therefore more efficient than the recursive version.

Even though the iterative version of the factorial function is technically more efficient than the recursive

version, on most systems you could not tell the difference. The execution time difference between the two

versions is negligible. The reason is the factorial function “grows” fast, meaning it returns fairly large
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results for relatively small arguments. In particular, factorial(13) is the largest value that fits within a

32-bit integer. Neither the iterative nor recursive version of factorial can compute 14! using the 32-bit

int type.

Recall the gcd functions from Section 9.2. It computed he greatest common divisor (also known as

greatest common factor) of two integer values. It works, but it is not very efficient. A better algorithm is

used in Listing 10.8 (gcd.cpp). It is based on one of the oldest algorithms known, developed by the Greek

mathematician Euclid around 300 B.C.

Listing 10.8: gcd.cpp

#include <iostream>

/*
* gcd(m, n)
* Uses Euclid's method to compute the greatest common divisor
* (also called greatest common factor) of m and n.
* Returns the GCD of m and n.
*/

int gcd(int m, int n) {
if (n == 0)

return m;
else

return gcd(n, m % n);
}

int iterative_gcd(int num1, int num2) {
// Determine the smaller of num1 and num2
int min = (num1 < num2) ? num1 : num2;
// 1 is definitely a common factor to all ints
int largestFactor = 1;
for (int i = 1; i <= min; i++)

if (num1 % i == 0 && num2 % i == 0)
largestFactor = i; // Found larger factor

return largestFactor;
}

int main() {
// Try out the gcd functions
const int BEGIN = 1000000000,

END = 1000000003;
for (int num1 = BEGIN; num1 <= END; num1++)

for (int num2 = BEGIN; num2 <= END; num2++)
std::cout << "iterative_gcd(" << num1 << "," << num2

<< ") = " << iterative_gcd(num1, num2) << '\n';
for (int num1 = BEGIN; num1 <= END; num1++)

for (int num2 = BEGIN; num2 <= END; num2++)
std::cout << "gcd(" << num1 << "," << num2

<< ") = " << gcd(num1, num2) << '\n';
}

Running Listing 10.8 (gcd.cpp) you will see that the gcd and iterative_gcd functions compute the

same results given the same arguments. Listing 10.8 (gcd.cpp) showcases the difference in performance

between the two functions by computing the GCD of relatively large integers. The gcd function produces

its result much faster than iterative_gcd. Note that this gcd function is recursive. The algorithm it
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uses is much different from our original iterative version. Because of the difference in the algorithms, this

recursive version is actually much more efficient than our original iterative version. A recursive function,

therefore, cannot be dismissed as inefficient just because it is recursive.

While Listing 10.8 (gcd.cpp) expresses the gcd functions recursively, it is not hard to rewrite it so

that it still follows Euclid’s algorithm but uses a loop instead of recursion—this very task appears as an

exercise at the end of the chapter. Often the concept of an algorithm solving certain kinds of problems is

better understood when expressed recursively. Later, once the details of the recursive version are perfected,

developers may rewrite the algorithm in an iterative fashion.

Listing 10.9 (histobar.cpp) provides another example of a recursive function. The segments1 function

uses iteration to draw segments that make up a bar that could be part of a histogram. The segments2
function does that same thing, except it uses recursion.

Listing 10.9: histobar.cpp

#include <iostream>

// Draws a bar n segments long
// using iteration.
void segments1(int n) {

while (n > 0) {
std::cout << "*";
n--;

}
std::cout << '\n';

}

// Draws a bar n segments long
// using recursion.
void segments2(int n) {

if (n > 0) {
std::cout << "*";
segments2(n - 1);

}
else

std::cout << '\n';
}

int main() {
segments1(3);
segments1(10);
segments1(0);
segments1(5);
std::cout << "-------------\n";
segments2(3);
segments2(10);
segments2(0);
segments2(5);

}

The outout of Listing 10.9 (histobar.cpp) shows that the two functions produce the same results:

***
**********
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*****
-------------
***
**********

*****

A recursive function may call itself within its definition multiple times. Consider the following sequence

of integer values:

0,1,1,2,3,5,8,13,21,34,55,89,144, . . .

This is beginning of the infinite Fibonacci sequence (see https://en.wikipedia.org/wiki/Fibonacci_
number). It is a sequence of integers beginning with 0 followed by 1. Subsequent elements of the sequence

are the sum of their two immediately preceding elements; thus, the third number is 0+ 1 = 1, the fourth

number is 1+1 = 2, the fifth number is 1+2 = 3, etc. The numbers that comprise the Fibonacci sequence

are known as Fibonacci numbers. Note that 3 is a Fibonacci number but 4 is not.

The mathematical properties of Fibonacci numbers have bearing in such diverse fields as biology, eco-

nomics, and art.

A common problem is computing the nth Fibonacci number. Zero is the 0th, 1 is the 1st, 1 is also the

2nd, 2 is the 3rd, 3 is the 4th, 5 is the 5th, etc.

A recursive C++ function to compute the nth Fibonacci number follows easily from the definition of the

Fibonacci sequence:

// Returns the nth Fibonacci number
int fibonacci(int n) {

if (n <= 0)
return 0;

else if (n == 1)
return 1;

else
return fibonacci(n - 2) + fibonacci(n - 1);

}

Figure 10.2 illstrates the recursive computation of fibonacci(5) using this fibonacci function.

Note that the call fibonacci(5) invokes the fibonacci function a total of 15 times.

While this factorial function computes the correct result, this tendency to call itself so many times

makes it impractical for larger values. Section 21.8 introduces an algorithm design technique that greatly

improves the performance of this recursive function.

10.6 Making Functions Reusable

A function definition packages in one place functionality that we can exercise (call) from many different

places within a program. Thus far, however, we have not seen how we can reuse easily function definitions

in other programs. For example, our is_prime function in Listing 9.10 (primefunc.cpp) works well

within Listing 9.10 (primefunc.cpp), and we could put it to good use in other programs that need to test

primality (encryption software, for example, makes heavy use of prime numbers). We could use the copy-

and-paste feature of our favorite text editor to copy the is_prime function definition from Listing 9.10

(primefunc.cpp) into the new encryption program we are developing.
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Figure 10.2 The recursive computation of fibonacci(5). Each rectangle represents an invocation of the

fibonacci fuunction. The call at the top of the diagram represents the initial call of fibonacci(5). An

arrow pointing down indicates the argument being passed into an invocation of fibonacci, and an arrow

pointing up represents the value returned by that invocation. An invocation of fibonacci with no arrow

pointing down away from the invocation represents a base case; observe that any invocation receiving a 0

or 1 is a base case. We see that the recursive process for fibonacci(5) invokes the function a total of 15

times.

Caller

1 1 12

2 1 23

0 0 11

fibonacci(0)

fibonacci(2)

fibonacci(1)

fibonacci(1)

fibonacci(3)

fibonacci(4)

3 2 34

fibonacci(5)

5 5

0 0 11

fibonacci(0)

fibonacci(2)

fibonacci(1)

1 1 12

0 0 11

fibonacci(0)

fibonacci(2)

fibonacci(1)

fibonacci(1)

fibonacci(3)
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It is possible to reuse a function with this copy-and-paste technique only if the function definition

does not use any programmer-defined global variables, programmer-defined global constants, nor other

programmer-defined functions. If a function does use any of these programmer-defined external entities,

we must copy and paste all of this extra code in order for the function to compile. If the names of the

external variables or functions that we must copy into the new program conflict with existing names within

the program, the program will not compile as is, and we must rename the offending variables or functions to

resolve the conflicts. Changing code provides the opportunity to introduce bugs accidentally, so the process

requires absolute care.

We can avoid the issues introduced by copying and pasting if the function we wish to reuse in other

programs uses only local variables and parameters. Such a function is truly an independent function that

can be reused easily in multiple programs.

The notion of copying source code from one program to another is not ideal, however. It is too easy for

the copy to be incomplete or for some other error to be introduced during the copy. Furthermore, such code

duplication is wasteful. If 100 programs on a particular system all need to use the is_prime function,

under this scheme they must all include the is_prime code. This redundancy wastes space. Finally, in

perhaps the most compelling demonstration of the weakness of this copy-and-paste approach, what if we

discover a bug in the is_prime function that all 100 programs are built around? When we discover the

error and fix it in one program, the other 99 programs still will contain the bug. Their source code must

be updated, and they each then must be recompiled. The problem is even more complicated if the other

99 programs have 99 different authors. We then must contact multiple developers to tell them to fix their

is_prime function. The situation would be similar if we updated a correct is_prime function to make

it more efficient. The problem is this: all the programs using is_prime define their own is_prime
function; while the function definitions are meant to be identical, there is no mechanism tying all these

common definitions together. We really would like to reuse the function as is without copying it.

Fortunately, C++ provides a way to develop functions in separate files and combine the code from these

independently developed functions into one program. We can compile the source files separately, and the

linker can combine the compiled code into an executable. What we need is a way for the compiler to verify

that the calling code in one source file is correctly invoking the function defined in another source file.

Listing 10.10 (prime.h) provides the first step in making a reusable is_prime function.

Listing 10.10: prime.h

bool is_prime(int);

The simple one-line code in Listing 10.10 (prime.h) can be stored in a file called prime.h. In Visual Studio,

you simply add a new item to your project specified as a header file, name it prime.h, and you are ready to

type the one line of code into the newly created file. This file contains the prototype for our is_prime
function (see our earlier discussion of function prototypes in Section 8.1). Caller code that intends to use

our is_prime function must #include this file so that compiler can check to see if the caller is using

our is_prime function properly. An attempt, for example, to pass two arguments to is_prime would

result in a compiler error since the prototype specifies a single integer argument.

A second file, which could be named prime.cpp, appears in Listing 10.11 (prime.cpp).

Listing 10.11: prime.cpp

// prime.cpp
#include <cmath> // Needed for sqrt
#include "prime.h" // is_prime prototype

/*
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* is_prime(n)
* Determines the primality of a given value
* n an integer to test for primality
* Returns true if n is prime; otherwise, returns false
*/

bool is_prime(int n) {
bool result = true; // Provisionally, n is prime
double r = n, root = sqrt(r);
// Try all possible factors from 2 to the square
// root of n
for (int trial_factor = 2; result && trial_factor <= root; trial_factor++)

result = (n % trial_factor != 0);
return result;

}

The code in Listing 10.11 (prime.cpp) is placed in prime.cpp, a different file from prime.h. It provides an

implementation of the is_prime function. Notice the #include preprocessor directive in Listing 10.11

(prime.cpp) that references the file prime.h. While not required, this serves as a good check to see if the

implementation code in this file is faithful to the prototype specified in prime.h. This prime.cpp file is

compiled separately, and the compiler will report an error if the implementation of is_prime disagrees

with the information in the header file.

Note that the file prime.cpp does not contain a main function; main will appear in another file. Also

observe that we do not need to #include the iostream header, since the std::cout and std::cin
objects are not used anywhere in this file. The cmath header is #included since is_prime uses the

sqrt function.

The final piece of the program is the calling code. Suppose Listing 10.12 (primetester.cpp) is added to

the project in a file named primetester.cpp.

Listing 10.12: primetester.cpp

#include <iostream>
#include "prime.h"

/*
* main
* Tests for primality each integer from 2
* up to a value provided by the user.
* If an integer is prime, it prints it;
* otherwise, the number is not printed.
*/

int main() {
int max_value;
std::cout << "Display primes up to what value? ";
std::cin >> max_value;
for (int value = 2; value <= max_value; value++)

if (is_prime(value)) // See if value is prime
std::cout << value << " "; // Display the prime number

std::cout << '\n'; // Move cursor down to next line
}

Note that the file primetester.cpp uses a function named is_prime, but its definition is missing. The

definition for is_prime is found, of course, in prime.cpp.
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Visual Studio will automatically compile and link the .cpp files when it builds the project. Each .cpp
is compiled independently on its own merits.

If you are using the Visual Studio Command Line tool, in order to build the program you would type

cl /EHsc /Za /W3 primetester.cpp prime.cpp

The executable file’s name is determined by the name of the first source file listed, in this case primetester.

If you are using the GCC tools instead of Visual Studio, in order to make the executable program named

primetester (or primetester.exe under the Microsoft Windows version of the GCC tools), you would issue

the command

g++ -o primetester -Wall -O1 -std=c++11 prime.cpp primetester.cpp

The GNU C++ compiler will separately compile the two source files producing two machine language object

files. The linker will then use those object files to create the executable. When the linker has created the

executable, it automatically deletes the two object files.

The is_prime function is now more readily available to other programs. If it becomes an often used

function in many programs, it can be compiled and placed into a special file called a library. In this form

it need not be recompiled each time a new program is built that requires it. If our is_prime is placed in

a dynamic library, its code can be loaded and linked at run time and shared by many executing programs.

We do not cover library creation in this text.

In Listing 8.7 (timeit.cpp), Listing 8.8 (measureprimespeed.cpp), and Listing 10.2 (digitaltimer.cpp) we

used the clock function from the <ctime> library to measure the elapsed time of sections of various

executing programs. In each of these programs the programmer must be aware of the clock_t type and

CLOCKS_PER_SEC constant, both defined in the <ctime> header file. Furthermore, the programmer

must use the clock function properly and correctly perform some arithmetic and include a messy type

cast operation. Armed with our knowledge of global variables (Section 10.1) and separate compilation of

multiple source files, we can provide a better programming interface to the lower-level timing functions

provided to the C library.

Listing 10.13 (timermodule.h) specifies some convenient timing functions.

Listing 10.13: timermodule.h

// Header file timermodule.h

// Reset the timer so it reads 0 seconds
void reset_timer();

// Start the timer. The timer will begin measuring elapsed time.
void start_timer();

// Stop the timer. The timer will retain the current elapsed
// time, but it will not measure any time while it is stopped.
void stop_timer();

// Return the cummulative time (in seconds) kept by the timer since
// it last was reset
double elapsed_time();

Listing 10.14 (timermodule.cpp) implements the functions declared in Listing 10.13 (timermodule.h).
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Listing 10.14: timermodule.cpp

// File timermodule.h
// Implements the program timer module

#include <ctime>

// Global variable that keeps track of the elapsed time.
double elapsed;

// Global variable that counts the number of clock ticks since
// the most recent start time.
clock_t start_time;

// Global flag that indicates whether or not the
// timer is running.
bool running;

// Reset the timer so it reads 0 seconds
void reset_timer() {

elapsed = 0.0;
running = false; // Ensure timer is not running

}

// Start the timer. The timer will begin measuring elapsed time.
// Starting the timer if it already is running has no effect
void start_timer() {

// Starting an already running timer has no effect
if (!running) {

running = true; // Note that the timer is running
start_time = clock(); // Record start time

}
}

// Stop the timer. The timer will retain the current elapsed
// time, but it will not measure any time while it is stopped.
// Stopping the timer if it is not currently running has no effect.
void stop_timer() {

// Stopping a non-running timer has no effect
if (running) {

clock_t stop_time = clock(); // Record stop time
running = false; // Stop the clock
// Add to the elapsed time how long it has been since we last
// started the timer
elapsed += static_cast<double>((stop_time - start_time))

/ CLOCKS_PER_SEC;
}

}

// Return the cummulative running time (in seconds)
// kept by the timer since it last was reset
double elapsed_time() {

if (running) { // Compute time since last reset
clock_t current_time = clock(); // Record current time
return elapsed + static_cast<double>((current_time - start_time))
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/ CLOCKS_PER_SEC;
}
else // Timer stopped; elapsed already computed in stop_timer

return elapsed;
}

Observe that the code in Listing 10.14 (timermodule.cpp) allows client code to stop the timer and restart it

later without losing any previously accumulated time. The implementation uses three global variables—

elapsed, start_time, and running—to maintain the state of the timer. One or more of these global

variables is influenced by three functions—start_timer, stop_timer, reset_time. The fourth

function returns the value of the elapsed variable.

Listing 10.15 (bettertimeit.cpp) simplifies Listing 8.7 (timeit.cpp) with our new timer module.

Listing 10.15: bettertimeit.cpp

#include <iostream>
#include "timermodule.h" // Our timer module

int main() {
char letter;
std::cout << "Enter a character: ";
start_timer(); // Start timing
std::cin >> letter;
stop_timer(); // Stop timing
std::cout << elapsed_time() << " seconds" << '\n';

}

The code within Listing 10.15 (bettertimeit.cpp) is simpler and cleaner than the code in Listing 8.7 (timeit.cpp).

All traces of the clock_t type and the messy arithmetic and casting are gone. The timer module provides

a simple interface to callers that hides the details on how the timing actually happens.

Despite the ease of use of our timer module, it has a servere limitation. Suppose you wish to measure

how long it takes for a function to execute and also, during that function’s execution, separately time a

smaller section of code within that function. When the function is finished executing, you would like to

know how long it took the function to do its job and how long a portion of its code took to execute. We

essentially need two independent timers, but with our timer module it is not possible to conduct simul-

taneously more than one timing. We will see a far superior way to model a program execution timer in

Section 16.2. We will use objects to enable us to maintain as many simultaneous stopwatches as we need.

10.7 Pointers

Ordinarily we need not be concerned about where variables live in the computer’s memory during a pro-

gram’s execution. The compiler generates machine code that takes care of those details for us. Some

systems software like operating systems and device drivers need to access specific memory locations in

order to interoperate with hardware. Systems programmers, therefore, must be able to write code that

can access such lower-level detail. Developers of higher-level applications sometimes need to access the

address of variables to achieve specialized effects.

Each byte in a computer’s memory is numbered with a unique address. The first address is 0, and

the locations are numbered sequentially up to some maximum value allowed by the operating system and

hardware. A C++ variable is stored in memory, so each variable lives at a particular address.
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Figure 10.3 Pointer declaration and assignment

int x; ?

x

p
p = &x; 4

x

x = 4; 4

x

p
int *p; 4

x

?

If x is a variable of any type, the expression

&x

represents the address of x. The & operator is called the address of operator. Regardless of the type of x,

the expression

&x

is really just a number—the numeric address of the variable’s memory location, but except for some situa-

tions in systems programming, programmers rarely need to treat this value as a number.

While an address is really just a nonnegative integer value, C++ uses a special notation when dealing

with addresses. In the following declaration

int *p;

the variable p is not an int itself; the * symbol in the declaration signifies that p is a pointer to an int.

This means we can assign to p the address of an int. The following sequence of code

int x;
x = 4;
int *p;
p = &x;

assigns the address of x to p. We can visualize the execution of these four statements in Figure 10.3.
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Figure 10.4 Assignment via a pointer

int x; ?

x

p
p = &x; 4

x

x = 4; 4

x

p
int *p; 4

x

?

p
*p = 7; 7

x

The * symbol used as shown above during a variable declaration indicates that the variable is a pointer.

It will be used to refer to another variable or some other place in memory. In this case, the sequence of

assignments allows pointer p to refer to variable x.

In order to access memory via a pointer, we use the unary * operator. When not used in the context of a

declaration, the unary * operator is called the pointer dereferencing operator. Continuing the code sequence

above,

int x;
x = 4;
int *p;
p = &x;
*p = 7;

the statement

*p = 7;

copies the value 7 into the address referenced by the pointer p. Figure 10.4 illustrates the full sequence.

Notice that the assignment to *p modifies variable x’s value. The pointer p provides another way to
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access the memory allocated for x.

It is important to note that the statement

*p = 5;

is the first assignment statement we have seen that uses more than just a single variable name on the left of

the assignment operator. The statement is legal because the expression *p represents a memory location

that can store a value. Here, *p stands in the place of the variable x, and we easily can assign a value to x.

The unary * operator has two distinct meanings depending on the context:

1. At the pointer’s declaration, for example,

double *p;

the * indicates that p is a pointer to a double; it is not itself a double.

2. After the pointer’s declaration, for example,

*p = 0.08;

the expression *p represents the contents of memory at the address assigned

to p.

The * operator is the inverse of the & operator. & finds the address of a variable, and, when this address

is assigned to a pointer variable like p, the * operator accesses the memory referenced by the pointer:

int v; // v is a normal integer variable
int *p = &v; // Pointer variable p points to v
*p = 5; // Assigns 5 to variable v

We may declare a pointer and not assign it, as in

int *p;

We say p is an uninitialized pointer, sometimes called a wild pointer. If p is a local variable, its contents

are undetermined bits. Because of p’s declared type, we interpret these bits as an address, so the net effect

is that the uninitialized pointer p points to a random location in the computer’s memory. An attempt to

dereference p, as in

*p = 500;

is certainly asking for trouble. This statement attempts to write the value 500 at some unknown-to-the-

programmer memory location. Often the address is not part of the area of memory the operating system

has set aside for the executing program, so the operating system steps in and issues a run-time error. This

is the best possible result for misusing a wild pointer. It is possible, however, that the spurious address

is within the executing program’s domain. In this case the value 500 may overwrite another variable or

the compiled machine language instructions of the program itself! Such errors are difficult to track down

because the overwritten value of the variable cannot be detected until the program attempts to use the

variable. The statement that misuses the uninitialized pointer may be far away in the source code (even in a

different source file) from the code that attempts to use the clobbered variable. When the program fails, the

programmer naturally looks around in the code where the failure occurred—the code in the vicinity where

©2018 Richard L. Halterman Draft date: December 2, 2018



10.7. POINTERS 270

the clobbered variable appears. Unfortunately, the misbehaving code is fine, and the error lies elsewhere.

There often is no easy way to locate the true source of the error.

Suppose p is a variable that points in an int. The statement

*p = 5;

assigns the value 5 to the memory location to which p points. Compare this legal

C++ statement to the following illegal C++statement:

p = 5; // Illegal statement as is

This second statement attempts to make p refer to the memory address 5; it does

not assign the value 5 to the memory to which p refers. C++ is very strict about

disallowing the mixing of pointers and non-pointers across assignment.

Systems programmers sometimes need to assign a pointer to a particular address

in memory, and C++ permits the assignment with a special kind of type cast, the

reinterpret_cast:

p = reinterpret_cast<int *>(5); // Legal

The familiar static_cast (see Section 4.2) will not work. Why is C++ so strict

when it comes to assignments of pointers to non-pointers and vice versa? It is easy

to make a mistake such as omitting the * operator when it is needed, so the special

cast forces the programmer to pause and consider whether the mixed assignment

truly is necessary or whether attempting to do so would be a mistake.

Modern C++ compiler supports the reserved word nullptr to represent a pointer to “nothing.” It

stands for “null pointer.” The following statement

p = nullptr;

indicates that p is pointing nowhere. On most platforms, nullptr maps to address zero, which is out of

bounds for any running program. Dereferencing p thus would result in a run-time error. Adept programmers

can find the source of such a null pointer access problem quickly with a debugger.

C++ does not allow direct integer assignment to a pointer, as in

int *p = 5;

Here p must point to an integer; it is not an integer. If you wish to assign p to point to a particular memory

address, you must use a special type cast:

int *p = reinterpret_cast<int *>(5);

C++ does allow the literal value 0 to be used in place of nullptr. The statement

p = 0;

achieves the same result as assigning nullptr to p. This is how C++ programmers assigned a pointer

to point to nothing before the nullptr keyword was available. Since newer compilers support existing

C++ source code, the literal zero assignment still works. You should use the nullptr keyword because it

improves the source code readability. Since 0 can represent both an integer value and a pointer to any type,

both of the following statements are legal if p has been declared to be a pointer to an integer:
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p = 0;
*p = 0;

The first statement assigns null to p, while the second statement sets the data to which p points to zero.

Said another way, the first statement changes where p points; the second statement changes the memory

to which p p points. Superficially, the two statements look very similar and are easy to confuse. Next,

consider the statements

p = nullptr; // OK
*p = nullptr; // Error, will not compile

The second statement contains an error because it is illegal to assign the nullptr literal to anything other

than a pointer type.

The nullptr reserved word is part of the C++11 standard. The name nullptr
is simply an identifier (for example, a variable or function name) for older compil-

ers. Before the nullptr constant became available the literal 0 (zero) was con-

sidered the null pointer reference. For backwards compatibility with older code,

C++11 allows you to use 0 in place of nullptr, but if possible you should avoid

this practice when writing new code. The nullptr literal allows the complier to

perform better type checking. To see why, suppose the programmer believes the

variable p is a pointer to an integer, but p is instead a simple integer:

// Programmer believes p is a pointer to an integer
p = 0;

In this case the compiler is powerless to detect a problem because p is an integer,

and zero is a valid integer value. If p really is an integer rather a pointer, the

compiler will flag the following code:

// Programmer believes p is a pointer to an integer
p = nullptr;

because the nullptr may not be assigned to a non-pointer type.

The nullptr constant and the notion of a pointer pointing nowhere becomes more useful when build-

ing dynamic data structures (see, for example, Section 18.3).

10.8 Reference Variables

C++ supports another kind of variable that is many ways similar to a pointer. When the & symbol is used as

part of the type name during a variable declaration, as in

int x;
int& r = x;

we say r is a reference variable. This declaration creates a variable r that refers to the same memory

location as the variable x. We say that r aliases x. Unlike a pointer variable, we may treat r as if it were

an int variable—no dereferencing with * is necessary. Listing 10.16 (referencevar.cpp) demonstrates how

reference variables can alias other variables.
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Listing 10.16: referencevar.cpp

#include <iostream>

int main() {
int x = 5;
int y = x;
int& r = x;
std::cout << "x = " << x << '\n';
std::cout << "y = " << y << '\n';
std::cout << "r = " << r << '\n';
std::cout << "Assign 7 to x\n";
x = 7;
std::cout << "x = " << x << '\n';
std::cout << "y = " << y << '\n';
std::cout << "r = " << r << '\n';
std::cout << "Assign 8 to y\n";
y = 8;
std::cout << "x = " << x << '\n';
std::cout << "y = " << y << '\n';
std::cout << "r = " << r << '\n';
std::cout << "Assign 2 to r\n";
r = 2;
std::cout << "x = " << x << '\n';
std::cout << "y = " << y << '\n';
std::cout << "r = " << r << '\n';

}

The output Listing 10.16 (referencevar.cpp):

x = 5
y = 5
r = 5
Assign 7 to x
x = 7
y = 5
r = 7
Assign 8 to y
x = 7
y = 8
r = 7
Assign 2 to r
x = 2
y = 8
r = 2

clearly demonstrates that the variables x and r represent the same quantity. Reassigning x changes r in

exactly the same way, and reassigning r changes x in exactly the same way. The variable y, on the other

hand, is independent from both x and r. Reassigning either x or r does not affect y, and reassigning y
affects neither x nor r.

The space around the & symbol used to declare a reference variable is not significant; specifically, the

statement

int& r = x;
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is equivalent to

int &r = x;

Reference variables are similar to pointer variables, but there are some important differences. Reference

syntax is simpler than pointer syntax because it is not necessary to dereference a reference variable in order

to assign the memory location to which it refers. If num is an int, ptr is a pointer to an int, and ref is

a reference to an int, consider the following statements:

num = ref; // Assign num from ref, no need to deference
num = *ptr; // Assign num from ptr, must dereference with *

A reference variable has two big limitations over a pointer variable:

• A reference variable must be initialized with an actual variable when it is declared. A pointer variable

may be declared without an initial value and assigned later. Consider the following statements:

int *p; // Legal, we will assign p later
int& r; // Illegal, we must initialize r when declaring it

Attempting to compile this code under Visual C++ prompts the compiler to issue the error

error C2530: ’r’ : references must be initialized

• There is no way to bind a reference variable to a different variable during its lifetime. Consider the

following code fragemnt:

int x = 5, y = 7;
int *p = &x; // Binds p to point to x
int& r = x; // Binds r to x
p = &y; // Reassign p to point to y
r = y; // Assign y's value to x (via r)

The statement

r = y;

does not bind r to the y variable. The declaration of r binds r to the x variable for the life of r. This

statement simply assigns y’s value to x via the reference r. In contrast, we may freely bind pointer

variables to any variables we choose at any time.

A reference variable, therefore, in the examples provided here works like a pointer that must be bound to a

variable and may not be redirected to point anywhere else. Also, unlike with pointers, it is illegal to attempt

to assign nullptr to a reference variable. There are some other differences between references and

pointers that we will not explore here. Reference variables provide a simpler syntax than pointer variables

since we do not use the pointer dereferencing operator (*) when working with references.

There is one other major difference between pointers and references—C++ adopted pointers as is from

the C programming language, but C does not provide references. C++ programmers often use library func-

tions written in C, so it is important to not mix references with C code.

Section 10.9 reveals a very important practical application of pointers and references in their role of

enabling pass by reference to functions.
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10.9 Pass by Reference

The default technique for passing parameters to functions is pass by value (see Section 9.3). C++ also

supports pass by reference, also known as call by reference, which allows functions to alter the values of

formal parameters passed by callers.

Consider Listing 10.17 (faultyswap.cpp), which uses a function that attempts to interchange the values

of its two integer parameters.

Listing 10.17: faultyswap.cpp

#include <iostream>

/*
* swap(a, b)
* Attempts to interchange the values of
* its parameters a and b. That it does, but
* unfortunately it only affects the local
* copies.
*/

void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

/*
* main
* Attempts to interchange the values of
* two variables using a faulty swap function.
*/

int main() {
int var1 = 5, var2 = 19;
std::cout << "var1 = " << var1 << ", var2 = " << var2 << '\n';
swap(var1, var2);
std::cout << "var1 = " << var1 << ", var2 = " << var2 << '\n';

}

The output of Listing 10.17 (faultyswap.cpp) is

var1 = 5, var2 = 19
var1 = 5, var2 = 19

Unfortunately, the swap function simply interchanges copies of the actual parameters, not the actual pa-

rameters themselves. We really would like to write a function that interchanges the caller’s variables.

Pass by reference is necessary to achieve the desired effect. C++ can do pass by reference in two ways:

pointer parameters and reference parameters.

10.9.1 Pass by Reference via Pointers

Pointers (see Section 10.7) allow us to access the memory locations of variables. We can use this ca-

pability to allow a function to modify the values of variables that are owned by its caller. Listing 10.18

(swapwithpointers.cpp) provides a correct version of our variable interchange program.
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Listing 10.18: swapwithpointers.cpp

#include <iostream>

/*
* swap(a, b)
* Interchanges the values of memory
* referenced by its parameters a and b.
* It effectively interchanges the values
* of variables in the caller's context.
*/

void swap(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

/*
* main
* Interchanges the values of two variables
* using the swap function.
*/

int main() {
int var1 = 5, var2 = 19;
std::cout << "var1 = " << var1 << ", var2 = " << var2 << '\n';
swap(&var1, &var2);
std::cout << "var1 = " << var1 << ", var2 = " << var2 << '\n';

}

The output of Listing 10.18 (swapwithpointers.cpp) is

var1 = 5, var2 = 19
var1 = 19, var2 = 5

which is the result we were trying to achieve. The swap function can manipulate main’s variables directly

since we passed it pointers to those variables.

In Listing 10.18 (swapwithpointers.cpp):

• The formal parameters to swap, a and b, are pointers to integers; they are not integers themselves. In

order to access the integer to which the pointer named a refers, it must be dereferenced. That is why

any use of a in swap’s body is prefixed with the pointer dereferencing operator, *. The statement

int temp = *a;

assigns to the local variable temp the value of the variable to which a points. Since main passes

the address of var1 as the first parameter in its call to swap, in this case a points to var1, so *a is

effectively another way to access the memory location of var1 in main. The function thus assigns

the value of main’s var1 variable to temp.

• In swap’s statement

*a = *b;

since *a is effectively main’s var1 variable and *b is effectively main’s var2 variable, this

statement assigns the value of main’s var2 to its var1 variable.
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• The swap function’s

*b = temp;

statement assigns the local temp value to main’s var2 variable, since swap’s b parameter points

to main’s var2.

• Within main, the call

swap(&var1, &var2);

passes the addresses of its local variables to swap.

In reality, pass by reference with pointers is still using pass by value. Instead of passing copies of values,

we are passing copies of addresses. In Listing 10.18 (swapwithpointers.cpp), for example, the values of the

addresses of var1 and var2 are copied to the formal parameters a and b. The difference is we are not

attempting to reassign a or b; we are reassigning memory to which a and b point. Whether we use the

original address or a copy of the address, it is still the same address—the same numeric location in memory.

10.9.2 Pass by Reference via References

Both C and C++ support pass by reference with pointers (see Section 10.9.1). Since C++ programs often

use C libraries, C++ programmers must be familiar with the pointer technique for pass by reference. C++,

however, provides a simpler way of implementing pass by reference using reference parameters. (See Sec-

tion 10.8 for an introduction to reference variables.) Listing 10.19 (swapwithreferences.cpp) uses reference

parameters in our variable interchange program.

Listing 10.19: swapwithreferences.cpp

#include <iostream>

/*
* swap(a, b)
* Interchanges the values of memory
* referenced by its parameters a and b.
* It effectively interchanges the values
* of variables in the caller's context.
*/

void swap(int& a, int& b) {
int temp = a;
a = b;
b = temp;

}

/*
* main
* Interchanges the values of two variables
* using the swap function.
*/

int main() {
int var1 = 5, var2 = 19;
std::cout << "var1 = " << var1 << ", var2 = " << var2 << '\n';
swap(var1, var2);
std::cout << "var1 = " << var1 << ", var2 = " << var2 << '\n';

}
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The syntax of Listing 10.19 (swapwithreferences.cpp) is a bit cleaner than that of Listing 10.18 (swapwithpointers.cpp).

In Listing 10.19 (swapwithreferences.cpp):

• The formal parameters to swap, a and b, are references to integers; this is signified by the & symbol

following int in their declarations. Because a is a reference we use it exactly like an integer; there

is no need to dereference it with the * operator to change the value of the integer it aliases. Because

a is a reference, however, it is an alias to another variable or memory location elsewhere. This means

if we modify a, we also modify the variable it references, in this case var1 in main. The statement

int temp = a;

assigns to the local variable temp the value of a, but since a is another way to get to var1, this

statement ultimately assigns var1’s value to temp.

• Within main, the call

swap(var1, var2);

does not require any special decoration. It looks like a normal pass by value function invocation.

A programmer must be aware that swap uses reference parameters and that any function that uses

reference parameters can change the actual values passed to it.

Reference parameters were introduced into C++ so that some of the more advanced object-oriented

features could be implemented more cleanly. Some argue that for simpler situations like the swap function,

pointer pass by reference is more desirable than reference parameter pass by reference because with pointer

pass by reference, the caller is forced to pass addresses of the actual parameters that may be modified. In

this way there can be no doubt that pass by reference is going on. With reference parameters, pass by value

and pass by reference cannot be distinguished at the call site, since a call with reference parameters looks

exactly like a pass by value invocation.

In general, pure pass by value functions are preferred to pass by reference functions. Functions using

pass by reference cause side effects. This means they can change the state of the program in ways that

can be determined only by looking inside of the function and seeing how it works. Functions that access

global variables (see Section 10.1) can also cause side effects. Program development is much easier when

functions can be treated as black boxes that perform computations in isolation without the possibility of

affecting anything outside of their local context. The result of a function’s work can be assigned to a

variable thus changing the state of the program, but that change is the responsibility of the caller, not the

responsibility of the function itself. With pass by value, the function’s parameters and local variables come

into existence when the function executes, the parameters and local variables disappear when the function

is finished, and nothing else is affected by the function’s execution.

Side-effect-free functions can be developed and tested in isolation from the rest of the program. Once

programmers are satisfied with their correctness, they need not be touched again as the remainder of the

system is developed. Functions with side effects, however, have dependencies to other parts of the program,

and changes elsewhere in the system may require programmers to modify and re-evaluate existing functions.

10.10 Higher-order Functions

The functions we have seen so far have accepted only data as parameters. Since functions can contain

conditional statements and loops, they can do different things based on the data they receive. The code

within each function, however, is fixed at compile time. Consider the following function:
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int evaluate(int x, int y) {
return x + y;

}

The call

evaluate(10, 2)

evaluates to 12. Since the evaluate function returns the sum of its two parameters. The call

evaluate(-4, 6);

returns 2. The function returns a different result this time because we passed different parameters to it.

The evaluate function in a sense behaves differently depending on the arguments passed by its caller;

however, it always adds its two parameters. There is no way we can call evaluate and expect it to

multiply its two parameters instead. The evaluate function is hard-coded to perform addition.

What if we wanted the evaluate function to be able to perform different arithmetic operations at

different times during a program’s execution? Unfortunately, evaluate as it currently is written cannot

adapt to perform a different arithmetic operation. The good news is that we can rewrite evaluate so that

it can flexibly adapt to a caller’s changing arithmetic needs.

C++ allows programmers to pass functions as parameters to other functions. A function even may

return a function as a result. A function that accepts one or more functions as parameters or returns a

function as a result is known as a higher-order function. As we will see, higher-order functions open up

new programming possibilities enabling us to customize the behavior of a function by plugging into it

different functions to achieve different effects.

C++ achieves higher-order functions via function pointers. During a program’s execution, the compiled

machine language code for a function must reside in the computer’s memory for the program to be able

to invoke the function. That means every function has a memory address just as each variable has its own

specific memory address. A pointer to a function holds the starting address for the compiled code of a

particular function.

Listing 10.20 (arithmeticeval.cpp) provides an example of a higher-order function in action.

Listing 10.20: arithmeticeval.cpp

#include <iostream>

int add(int x, int y) {
return x + y;

}

int multiply(int x, int y) {
return x * y;

}

int evaluate(int (*f)(int, int), int x, int y) {
return f(x, y);

}

int main() {
std::cout << add(2, 3) << '\n';
std::cout << multiply(2, 3) << '\n';
std::cout << evaluate(&add, 2, 3) << '\n';
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std::cout << evaluate(&multiply, 2, 3) << '\n';
}

The first parameter of the evaluate function,

int (*f)(int, int)

represents a function pointer. The parameter’s name is f, and f is a pointer to a function that accepts two

integer parameters and returns an integer result. In Listing 10.20 (arithmeticeval.cpp), the first parameter

a caller must pass to evaluate is the address of a function with a prototype that matches the formal

parameter specified in evaluate’s definition. Both the add and multiply functions qualify because

they accept two integer parameters and return an integer result. The expression

evaluate(&add, 2, 3)

passes the address of the add function to evaluate. In the body of the evaluate function we see that

evaluate invokes the function specified by its first parameter (f), passing to this function its second (x)

and third (y) parameters as the two parameters that function expects. The net effect, therefore, of the call

evaluate(&add, 2, 3)

is the same as

add(2, 3)

C++ has a somewhat relaxed syntax for function pointers that cannot be applied to pointers to data.

When invoking evaluate in source code we may omit the ampersand in front of the function argument,

as is

std::cout << evaluate(add, 2, 3) << '\n';

Since the compiler knows that add is a function and since parentheses do not follow the word add, the

compiler deduces that this is not a call to add but rather the address of the add function.

When the name of a previously declared function appears by itself within C++

source code it represents a pointer to that function.

Function pointers are not restricted to function parameters. Given the definition of add above, the

following code fragment is legal C++:

// Declare func to be a pointer to a function that accepts
// two integer parameters and returns an integer result
int (*func)(int, int);

// Assign add to func
func = add;

// Call add through func
std::cout << func(7, 2) << '\n';

©2018 Richard L. Halterman Draft date: December 2, 2018



10.11. EXERCISES 280

This code fragment as part of a complete C++ program would print 9.

Higher-order functions via function pointers provide a powerful tool for developing flexible programs.

With functions as parameters we can dynamically customize the behavior of a function, essentially “plug-

ging in” new functionality by passing in different functions. We will put higher-order functions to good use

in Chapter 12.

10.11 Exercises

1. Consider the following C++ code:

#include <iostream>

int sum1(int n) {
int s = 0;
while (n > 0) {

s++;
n--;

}
return s;

}

int input;

int sum2() {
int s = 0;
while (input > 0) {

s++;
input--;

}
return s;

}

int sum3() {
int s = 0;
for (int i = input; i > 0; i--)

s++;
return s;

}

int main() {
// See each question below for details

}

(a) What is printed if main is written as follows?

int main() {
input = 5;
std::cout << sum1(input) << '\n';
std::cout << sum2() << '\n';
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std::cout << sum3() << '\n';
}

(b) What is printed if main is written as follows?

int main() {
input = 5;
std::cout << sum1(input) << '\n';
std::cout << sum3() << '\n';
std::cout << sum2() << '\n';

}

(c) What is printed if main is written as follows?

int main() {
input = 5;
std::cout << sum2() << '\n';
std::cout << sum1(input) << '\n';
std::cout << sum3() << '\n';

}

(d) Which of the functions sum1, sum2, and sum3 produce a side effect? What is the side effect?

(e) Which function may not use the input variable?

(f) What is the scope of the variable input? What is its lifetime?

(g) What is the scope of the variable i? What is its lifetime?

(h) Which of the functions sum1, sum2, and sum3manifest good functional independence? Why?

2. Consider the following C++ code:

#include <iostream>

int next_int1() {
static int cnt = 0;
cnt++;
return cnt;

}

int next_int2() {
int cnt = 0;
cnt++;
return cnt;

}

int global_count = 0;

int next_int3() {
global_count++;
return global_count;

}

int main() {
for (int i = 0; i < 5; i++)
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std::cout << next_int1() << " "
<< next_int2() << " "
<< next_int3() << '\n';

}

(a) What does the program print?

(b) Which of the functions next_int1, next_int2, and next_int3 is the best function for

the intended purpose? Why?

(c) What is a better name for the function named next_int2?

(d) The next_int3 function works in this context, but why is it not a good implementation of a

function that always returns the next largest integer?

3. The following C++ program is split up over three source files. The first file, counter.h, consists of

int read();
int increment();
int decrement();

The second file, counter.cpp, contains

static int count;

int read() {
return count;

}

int increment() {
if (count < 5)

count++;
}

int decrement() {
if (count > 0)

count--;
}

The third file, main.cpp, is incomplete:

#include <iostream>
#include "counter.h"

int main() {
// Add code here

}

(a) Add statements to main that enable it to produce the following output:

3
2
4
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The restriction is that the only ouput statement you are allowed to use (three times) is

std::cout << read() << '\n';

(b) Under the restriction of using the same output statement above, what code could you add to

main so that it would produce the following output?

6

4. Consider the following C++ code:

#include <iostream>

int max(int n) {
return n;

}

int max(int m, int n) {
return (m >= n)? m : n;

}

int max(int m, int n, int r) {
int x = m;
if (n > x)

x = n;
if (r > x)

x = r;
return x;

}

int main() {
std::cout << max(4) << '\n';
std::cout << max(4, 5) << '\n';
std::cout << max(5, 4) << '\n';
std::cout << max(1, 2, 3) << '\n';
std::cout << max(2, 1, 3) << '\n';
std::cout << max(2, 1, 2) << '\n';

}

(a) Is the program legal since there are three different functions named max?

(b) What does the program print?

5. Consider the following function:

int proc(int n) {
if (n < 1)

return 1;
else

return proc(n/2) + proc(n - 1);
}

Evaluate each of the following expressions:
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(a) proc(0)

(b) proc(1)

(c) proc(2)

(d) proc(3)

(e) proc(5)

(f) proc(10)

(g) proc(-10)

6. Rewrite the gcd function so that it implements Euclid’s method but uses iteration instead of recur-

sion.

7. If x is a variable, how would you determine its address in the computer’s memory?

8. What is printed by the following code fragment?

int x = 5, y = 3, *p = &x, *q = &y;
std::cout << "x = " << x << ", y = " << y << '\n';
x = y;
std::cout << "x = " << x << ", y = " << y << '\n';
x = 7;
std::cout << "x = " << x << ", y = " << y << '\n';
*p = 10;
std::cout << "x = " << x << ", y = " << y << '\n';
p = q;
*p = 20;
std::cout << "x = " << x << ", y = " << y << '\n';

9. Given the declarations:

int x, y, *p, *q;

indicate what each of the following code fragments will print.

(a) p = &x;
x = 5;
std::cout << *p << '\n';

(b) x = 5;
p = &x;
std::cout << *p << '\n';

(c) p = &x;
*p = 8;
std::cout << *p << '\n';

(d) p = &x;
q = &y;
x = 100;
y = 200;
*q = *p;
std::cout << x << ' ' << y << '\n';
std::cout << *p << ' ' << *q << '\n';
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(e) p = &x;
q = &y;
x = 100;
y = 200;
q = p;
std::cout << x << ' ' << y << '\n';
std::cout << *p << ' ' << *q << '\n';

(f) x = 5;
y = 10;
p = q = &y;
std::cout << *p << ' ' << *q << '\n';
*p = 100;
*q = 1;
std::cout << x << ' ' << y << '\n';

(g) x = 5;
y = 10;
p = q = &x;
*p = *q = y;
std::cout << x << ' ' << y << '\n';

10. The following function does not behave as expected:

/*
* (Faulty function)
*
* get_range
* Establishes a range of integers. The lower value must
* be greater than or equal to min, and the upper value
* must be less than or equal to max.
* min is the lowest acceptable lower value.
* max is the highest acceptable upper value.
* lower is assigned the lower limit of the range
* upper is assigned the upper limit of the range
*/

void get_range(int min, int max, int lower, int upper) {
std::cout << "Please enter a data range within the bounds "

<< min << "..." << max << ": ";
do { // Loop until acceptable values are provided

std::cin >> lower >> upper;
if (lower < min)

std::cout << lower << " is too low, please try again.\n";
if (upper > max)

std::cout << upper << " is too high, please try again.\n";
}
while (lower < min || upper > max);

}

(a) Modify the function so that it works using pass by reference with pointers.
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(b) Modify the function so that it works using pass by reference with reference parameters.

11. Classify the following functions as pure or impure. x is a global variable and LIMIT is a global

constant.

(a) int f1(int m, int n) {
return 2*m + 3*n;

}

(b) int f2(int n) {
return n - LIMIT;

}

(c) int f3(int n) {
return n - x;

}

(d) void f4(int n) {
std::cout << 2*n << '\n';

}

(e) int f5(int n) {
int m;
std::cin >> m;
return m * n;

}

(f) int f6(int n) {
int m = 2*n, p;
p = 2*m - 5;
return p - n;

}

12. Complete the following function that assigns to its mx and my reference parameters the components

of the midpoint of the points (x1,y1) and (x2,y2), represented by the parameters x1, y1, x2, and y2.

// Computes the midpoint of the points (x1, y1) and (x2, y2).
// The point (mx, my) represents the midoint.
void midpoint(double x1, double y1, double x2, double y2,

double& mx, double& my) {
// Add your code . . .

}

13. Complete the following function that assigns to its ix and iy reference parameters the components

of the point of intersection of two lines. The first line passes through the points (x1,y1) and (x2,y2);
the second line passes through the points (x3,y3) and (x4,y4). If the two lines do not intersect in a

single point (that is, they are parallel to each other), the function should assign INFINITY to both

ix and iy. INFINITY is a double-precision floating-point constant defined in the cmath header

file. It represents a very large number that you effectively can treat as infinity.
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// Computes the point of intersection of two lines.
// The first line passes through the points
// (x1, y1) and (x2, y2). The second line passes through the
// points (x3, y3) and (x4, y4). The function assigns
// (ix, iy) as the intersection point.
// If the two lines do not intersect in a singal point, the function
// computes (INFINITY, INFINITY).
void intersection(double x1, double y1, double x2, double y2,

double x3, double y3, double x4, double y4,
double& ix, double& iy) {

// Add your code . . .
}

14. Rewrite the recursive gcd function found in Listing 10.8 (gcd.cpp) so that it uses the same basic

algorithm of Euclid but uses iteration instead of recursion.

©2018 Richard L. Halterman Draft date: December 2, 2018



10.11. EXERCISES 288

©2018 Richard L. Halterman Draft date: December 2, 2018



289

Chapter 11

Sequences

The variables we have used to this point can assume only one value at a time. As we have seen, we can use

individual variables to create some interesting and useful programs; however, variables that can represent

only one value at a time do have their limitations. Consider Listing 11.1 (averagenumbers.cpp) which

averages five numbers entered by the user.

Listing 11.1: averagenumbers.cpp

#include <iostream>

int main() {
double n1, n2, n3, n4, n5;
std::cout << "Please enter five numbers: ";
// Allow the user to enter in the five values.
std::cin >> n1 >> n2 >> n3 >> n4 >> n5;
std::cout << "The average of " << n1 << ", " << n2 << ", "

<< n3 << ", " << n4 << ", " << n5 << " is "
<< (n1 + n2 + n3 + n4 + n5)/5 << '\n';

}

A sample run of Listing 11.1 (averagenumbers.cpp) looks like:

Please enter five numbers: 9 3.5 0.2 100 15.3
The average of 9.0, 3.5, 0.2, 100.0, 15.3 is 25.6

The program conveniently displays the values the user entered and then computes and displays their aver-

age.

Suppose the number of values to average must increase from five to 25. If we use Listing 11.1 (aver-

agenumbers.cpp) as a guide, we must introduce twenty additional variables, and the overall length of the

program will necessarily grow. Averaging 1,000 numbers using this approach is impractical.

Listing 11.2 (averagenumbers2.cpp) provides an alternative approach for averaging numbers.

Listing 11.2: averagenumbers2.cpp

#include <iostream>

int main() {
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double sum = 0.0, num;
const int NUMBER_OF_ENTRIES = 5;
std::cout << "Please enter " << NUMBER_OF_ENTRIES << " numbers: ";
for (int i = 0; i < NUMBER_OF_ENTRIES; i++) {

std::cin >> num;
sum += num;

}
std::cout << "The average of " << NUMBER_OF_ENTRIES << " values is "

<< sum/NUMBER_OF_ENTRIES << '\n';
}

Listing 11.2 (averagenumbers2.cpp) behaves slightly differently from Listing 11.1 (averagenumbers.cpp),

as the following sample run using the same data shows:

Please enter 5 numbers: 9 3.5 0.2 100 15.3
The average of the 5 values is 25.6

Listing 11.2 (averagenumbers2.cpp) can be modified to average 25 values much more easily than List-

ing 11.1 (averagenumbers.cpp) that must use 25 separate variables—just change the constant NUMBER_OF_ENTRIES.

In fact, the coding change to average 1,000 numbers is no more difficult. However, unlike the original aver-

age program, this new version does not display the numbers entered. This is a significant difference; it may

be necessary to retain all the values entered for various reasons:

• All the values can be redisplayed after entry so the user can visually verify their correct entry.

• The programmer may want to display the values in some more persistent way; for example, the user

may instead type the values in a graphical user interface component, like a visual grid (spreadsheet).

• A more sophisticated program may need to process the values in a different way; for example, we

may wish to display just the values entered above a certain value (like greater than zero), but the limit

is not determined until after the user finishes entering all the numbers.

In all of these situations we must retain the values of all the variables for future recall.

We need to combine the advantages of both of the above programs; specifically we want to be able to

• retain every individual value, and

• avoid defining separate variables to store all the individual values

These may seem like contradictory requirements, but C++ provides several standard data structures that

simultaneously provide both of these advantages. In this chapter we will examine the common sequence

types available in C++: vectors and arrays.

Vectors and arrays are sequence types because a sequence implies its elements are ordered. A nonempty

sequence has the following properties:

• Every nonempty sequence has a unique first element.

• Every nonempty sequence has a unique last element.

• Every element in a nonempty sequence except for the first element has a unique predecessor element.

• Every element in a nonempty sequence except for the last element has a unique successor element.
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We call this a linear ordering. In a linear ordering you can begin at the first element and repeatedly visit

successor elements until you reach the last element. There never is any ambiguity about which element

comes next in a sequence.

The data structures we examine in this chapter, std::vectors, primitive arrays, and std::arrays,

are all sequence types.

11.1 Vectors

A vector in C++ is an object that manages a block of memory that can hold multiple values simultaneously;

a vector, therefore, represents a collection of values. A vector has a name, and we may access the values it

contains via their position within the block of memory managed by the vector. A vector stores a sequence

of values, and the values must all be of the same type. A collection of values all of the same type is said to

be homogeneous.

11.1.1 Declaring and Using Vectors

In order to use a vector object within a C++ program, you must add the preprocessor directive

#include <vector>

The vector type is part of the standard (std) namespace, so its full name is std::vector, just like

the full name of cout is std::cout (see Section 2.1). If you include the directive

using std::vector;

in your source file, you can use the shorter name vector within your code.

We may declare a vector object that can hold integers as simply as

std::vector<int> vec_a;

The type within the angle brackets may be any valid C++ data type. When declared this way, the vector

vec_a initially is empty.

We can declare a vector with a particular initial size as follows:

std::vector<int> vec_b(10);

Here vec_b initially holds 10 integers. All 10 elements are zero by default. Note that the vector’s size

appears within parentheses following the vector’s name.

We may declare a vector object of a given size and specify the initial value of all of its elements:

std::vector<int> vec_c(10, 8);

In this example vec_c initially holds 10 integers, all having the value 8. Note that the first number within

the parentheses following the vector’s name indicates the number of elements, and the second argument

specifies the initial value of all the elements.

We may declare a vector and specify each and every element separately:

std::vector<int> vec_d{10, 20, 30, 40, 50};
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Figure 11.1 Four different vector declaration statements and conceptual illustrations of the resulting vectors

vector<int> vec_a;

vector<int> vec_b(10);

vector<int> vec_c(10, 8);

vector<int> vec_d{ 10, 20, 30, 40 };

0 0 0
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0 0 0

4 53
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8 8 8
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8 8 8
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vec_a

vec_b

vec_c

vec_d

Note that the elements appear within curly braces, not parentheses. The list of elements within the curly

braces constitutes a vector initializer list. This kind of declaration is practical only for relatively small

vectors. Figure 11.1 provides a conceptual illustration of the vectors vec_a, vec_b, vec_c, and vec_d.

Like any other variable, a vector can be local or global, and it must be declared before it is used.

The vector initializer list syntax:

std::vector<int> vec_d{10, 20, 30, 40, 50};

is a C++11 language feature and, therefore, is not be supported by older C++ com-

pilers; in particular, the C++ compilers available for Visual Studio editions prior to

Visual Studio 2013 do not support this initializer list syntax.

Once we have a non-empty vector object, we can access its elements using the vector’s name, the square

bracket operator, and a integer index:
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Figure 11.2 The numbers below the boxes represent indices, or positions, within the vector. Note that the

first element in a vector is found at index 0, not 1.

vector<int> list(3);

list[0] = 5;

list[1] = -3;

list[2] = 12;

5 –3 12

1 20

list

std::vector<int> list(3); // Declare list to be a vector of three ints
list[0] = 5 ; // Make the first element 5
list[1] = -3 ; // Make the second element -3
list[2] = 12 ; // Make the last element 12
std::cout << list[1] << '\n'; // Print the element at index 1

This code fragment shows how the square brackets allow us to access an individual element based on that

element’s position within the vector. The number within the square brackets indicates the distance from the

beginning of the vector. The expression list[0] therefore indicates the element at the very beginning

(a distance of zero from the beginning), and list[1] is the second element (a distance of one away

from the beginning). After executing these assignment statements, the list vector conceptually looks like

Figure 11.2.

C++ classifies the square brackets, [], as a binary operator, since it requires two operands: a vector’s

name and an index.

Vectors may hold any valid C++ data type. The following code fragment declares three vectors of

differing types:

std::vector<int> list;
std::vector<double> collection{ 1.0, 3.5, 0.5, 7.2 };
std::vector<char> letters{ 'a', 'b', 'c' };

Here list is empty but can contain integer values, collection is a vector of double-precision floating-

point numbers initially containing the values contained in the initializer list, and letters holds the low-

ercase versions of the first three letters of the English alphabet. Figure 11.3 illustrates these three vector

objects.

We can observe two key points from Figures 11.1–11.3:

• Vectors store their elements in a contiguous block of memory. This means, for example, the memory

occupied by the element at index 2 follows immediately after the memory occupied by the element

at index 1 and immediately before the element at index 3.

• Elements in a vector are located by a numeric index. The first element is at index zero, not one.

In an expression such as

list[3]
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Figure 11.3 Vectors containing different types of elements. Note that while two different vector objects

may contain different types of elements, all the elements within a particular vector object must all have the

same type.

vector<int> list;

vector<double> collection{ 1.0, 3.5, 0.5, 7.2 };

vector<char> letters{ 'a', 'b', 'c' };

1.0 3.5 0.5

1 20

7.2

3

'a' 'b' 'c'

1 20

list collection letters

the expression within the square brackets, in this case 3, is called an index or subscript. The subscript termi-

nology comes from mathematicians who use subscripts to reference elements in a mathematical sequence

(for example, V2 represents the second element in the mathematical sequence V). Unlike the convention

often used in mathematics, however, the first element in a vector is at position zero, not one. The expression

list[2] can be read aloud as “list sub two.” As a consequence of a zero beginning index, if vector a
holds n elements, the last element in a is a[n−1], not a[n].

An element of a vector accessed via its index behaves just like a variable of that type; for example,

suppose we declare nums as

std::vector<double> nums(10);

This declaration specifies a collection of 10 double-precision floating-point elements. The following code

fragment shows how we can manipulate some of those elements:

// Print the fourth element
std::cout << nums[3] << '\n';
// The third element is the average of the first and last elements
nums[2] = (nums[0] + nums[9])/2;
// Assign elements at indices 1 and 4 from user input
std::cin >> nums[1] >> nums[4];

Note that the << operator associated with the std::cout output stream object is not designed to work

with vector objects as a whole:

std::cout << nums << '\n'; // <--- Will not compile!

The expression within the [] operator must be compatible with an integer. Suppose a is a vector, x
is a numeric variable, max is a function that returns a numeric value, and b is a vector that holds numeric

values. The following examples illustrate the variety of expressions that qualify as legal vector indices:

• an numeric literal: a[34]

• an numeric variable: a[x]
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• an arithmetic expression: a[x + 3]

• an integer result of a function call that returns an numeric value: a[max(x, y)]

• an element of a vector that contains numeric values: a[b[3]]

A floating-point index is permissible but discouraged. The compiler will issue a warning about using a

floating-point index with good reason. A vector may have an element at index 2 or index 3, but it is not

possible to have an element located between indices 2 and 3; therefore, the executing program will truncate

a floating-point index to an integer in order to select the proper element within the vector.

11.1.2 Traversing a Vector

The action of moving through a vector visiting each element is known as traversal. for loops are ideal for

vector traversals. If a is an integer vector containing 10 elements, the following loop prints each element

in a:

for (int i = 0; i < 10; i++)
std::cout << a[i] << '\n';

The loop control variable, i, steps through each valid index of vector a. Variable i’s value starts at 0 and

ends at 9, the last valid position in vector a.

The following loop prints contents of vector a in reverse order:

for (int i = 9; i >= 0; i--)
std::cout << a[i] << '\n';

The following code produces a vector named set containing the integer sequence 0, 1, 2, 3, . . . , 999:

std::vector<int> set(1000);
for (int i = 0; i < 1000; i++)

set[i] = i;

We now have all the tools we need to build a program that flexibly averages numbers while retaining all

the values entered. Listing 11.3 (vectoraverage.cpp) uses a vector and a loop to achieve the generality of

Listing 11.2 (averagenumbers2.cpp) with the ability to retain all input for later redisplay.

Listing 11.3: vectoraverage.cpp

#include <iostream>
#include <vector>

int main() {
double sum = 0.0;
const int NUMBER_OF_ENTRIES = 5;
std::vector<double> numbers(NUMBER_OF_ENTRIES);

std::cout << "Please enter " << NUMBER_OF_ENTRIES << " numbers: ";
// Allow the user to enter in the values.
for (int i = 0; i < NUMBER_OF_ENTRIES; i++) {

std::cin >> numbers[i];
sum += numbers[i];

}
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std::cout << "The average of ";
for (int i = 0; i < NUMBER_OF_ENTRIES - 1; i++)

std::cout << numbers[i] << ", ";
// No comma following last element
std::cout << numbers[NUMBER_OF_ENTRIES - 1] << " is "

<< sum/NUMBER_OF_ENTRIES << '\n';
}

The output of Listing 11.3 (vectoraverage.cpp) is similar to the original Listing 11.1 (averagenumbers.cpp)

program:

Please enter 5 numbers: 9 3.5 0.2 100 15.3
The average of 9.0, 3.5, 0.2, 100.0, 15.3 is 25.6

Unlike the original program, however, we now conveniently can extend this program to handle as many

values as we wish. We need only change the definition of the NUMBER_OF_ENTRIES constant to allow

the program to handle any number of values. This centralization of the definition of the vector’s size

eliminates duplicating a hard-coded value and leads to a program that is more maintainable. Suppose every

occurrence of NUMBER_OF_ENTRIES were replaced with the literal value 5. The program would work

exactly the same way, but changing the size would require touching many places within the program. When

duplicate information is scattered throughout a program, it is a common error to update some but not all of

the information when a change is to be made. If all of the duplicate information is not updated to agree,

the inconsistencies result in errors within the program. By faithfully using the NUMBER_OF_ENTRIES
constant throughout the program instead of the literal numeric value, we eliminate the possibility of such

inconsistency.

The first loop in Listing 11.3 (vectoraverage.cpp) collects all five input values from the user. The second

loop only prints the first four because it also prints a trailing comma after each element. Since no comma

should be displayed after the last element, the program prints the last element after the loop is finished.

The compiler will insist that the programmer use a numeric value for an index, but the programmer

must ensure that the index used is within the bounds of the vector. Since the index may consist of an

arbitrary integer expression whose value cannot be determined until run time, the compiler cannot check

for out-of-bound vector accesses; for example, in the code

int x;
std::vector<int> v(10); // Make a vector with 10 spaces available
std::cin >> x; // User enters x at run time
v[x] = 1; // Is this okay? What is x?

the compiler cannot predict what number the user will enter. This means that misuse of a vector index can

lead to run-time errors. To illustrate the problem, consider Listing 11.4 (vectoroutofbounds.cpp).

Listing 11.4: vectoroutofbounds.cpp

#include <iostream>
#include <vector>

int main() {
const int SIZE = 3;
std::vector<int> a{5, 5, 5};
// Print the contents of the vector
std::cout << "a contains ";
for (int i = 0; i < SIZE; i++)
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Figure 11.4 Memory access error under Visual C++

std::cout << a[i] << " ";
std::cout << '\n';
// Change all the 5s in vector a to 8s
for (int i = 0; i <= SIZE; i++) // Bug: <= should be <

a[i] = 8;
// Reprint the contents of the vector
std::cout << "a contains ";
for (int i = 0; i < SIZE; i++)

std::cout << a[i] << " ";
std::cout << '\n';

}

Listing 11.4 (vectoroutofbounds.cpp) contains a logic error; the reassignment loop goes one past the

end of vector a. Attempting to access elements outside the bounds of a vector produces what is known

as undefined behavior. The C++ language standard uses this term to indicate a program’s behavior is not

specified, and complier writers are free to do whatever they want. Often, running programs that venture

into undefined behavior will crash, but sometimes they may continue executing with no indication of a

problem and appear to behave correctly most of the time. In other words, the actual program behavior is

system dependent and compiler dependent. Consider code that represents undefined behavior to be a logic

error, since its action is inconsistent across platforms and compilers. Simply said, the program’s behavior

is unpredictable. Unpredictable behavior is incorrect behavior.

In most cases, an out-of-bounds access simply accesses memory outside the vector. If this includes

memory that does not belong to the executing program, modern operating systems will terminate the pro-

gram and produce an error message. Under Visual C++ when the program is built as a debug version (the

default when using the IDE), the program prints the contents of the vector the first time but crashes before

it can print it out a second time. Microsoft Windows then displays the dialog box shown in Figure 11.4.

The program running under Linux or macOS may simply print in the console:

Segmentation fault
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If your program is using a vector, and it terminates with such a message, you should check its source code

carefully for places where out-of-bounds vector accesses are possible.

The following code fragment shows some proper and improper vector accesses:

std::vector<int> numbers(10); // Declare the vector
numbers[0] = 5; // Put value 5 first
numbers[9] = 2; // Put value 2 last
numbers[-1] = 5; // Out of bounds; first valid index is 0
numbers[10] = 5; // Out of bounds; last valid index is 9
numbers[1.3] = 5; // Compiler warning, 1.3 is not an int

In a vector traversal with a for loop such as

for (int i = 0; i < SIZE; i++)
std::cout << a[i] << '\n';

where you know SIZE is the number of elements in the vector, it is easy to ensure that i cannot fall outside

the bounds of vector a, but you should check an arbitrary index value before using it. In the following code:

int x;
std::vector<int> a(10); // Make a vector with 10 spaces available
std::cin >> x; // User enters x at run time
// Ensure x is within the bounds of the vector
if (0 <= x && x < 10)

a[x] = 1; // This is safe now
else

std::cout << "Index provided is out of range\n";

the if statement ensures the vector access is within the vector’s bounds.

C++11 supports a variation of the for statement that uses special syntax for objects like vectors that

support traversal. Commonly known as the range-based for or “foreach” statement, this version of the for
statement permits vector traversal without an index variable keeping track of the position. The following

code fragment uses a range-based for statement to print the contents of an integer vector named vec:

for (int n : vec)
std::cout << n << ' ';

You can read this statement as “for each int n in vec, std::cout << n << '',” The colon (:)

therefore is pronounced “in.” In the first interation of this range-based for loop the variable n represents

the first element in the vector vec. In the second iteration n represents the second element. The third time

through n is the third element, and so forth. The declared variable assumes the role of a different vector

element during each iteration of the loop. Note that the range-based for loop requires no control variable

to keep track of the current index within the vector; the loop itself takes care of that detail, freeing the

programmer from that task.

The general form of this range-based for statement is
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type element variablefor (                    :               )

statement

vector variable

If the element variable within the range-based for loop is declared to be a reference, the code within

the body of the loop may modify the vector’s elements. Listing 11.5 (foreachexample.cpp) allows a user to

populate a vector with 10 numbers and then prints the vector’s contents.

Listing 11.5: foreachexample.cpp

#include <iostream>
#include <vector>

int main() {
// Declare a vector of ten numbers
std::vector<double> vec(10);

// Allow the user to populate the vector
std::cout << "Please enter 10 numbers: ";
for (double& elem : vec)

std::cin >> elem;

// Print the vector's contents
for (double elem : vec)

std::cout << elem << '\n';
}

Note that the first range-based for statement in Listing 11.5 (foreachexample.cpp) uses a reference variable

to assign each element in the vector. The second range-based for statement does not need to use a reference

variable because it does not change any of the contents of vector vec.

It is not always possible to use the range-based for statement when traversing vectors. The range-

based for statement iterates forward through the vector elements and cannot move backwards. Also, the

range-based for statement is not convenient if you want to consider only a portion of the elements in the

vector. Examples include visiting every other element in the vector or considering only the first third of

the elements. In these specialized cases you can use a standard for loop with an integer control variable.

Section 20.5 explores some other options for traversing vectors in creative ways.

11.1.3 Vector Methods

A vector is an object, and objects differ from the simple types like int, double, and bool, in a number

of ways. Most objects have access to special functions called methods. C++ programmers often refer

to methods as member functions. A method is a function associated with a class of objects. A method

invocation involves a slightly different syntax than a function invocation; for example, if obj is an object

that supports a method named f that accepts no parameters, we can invoke f on behalf of obj with the

statement:

obj.f();
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The dot operator connects an object with a method to invoke. Other than this special invocation syntax,

methods work very much like the global functions introduced in Chapter 8. A method may accept parame-

ters and may return a value.

Vectors support a number of methods, but we will focus on seven of them:

• push_back—inserts a new element onto the back of a vector

• pop_back—removes the last element from a vector

• operator[]—provides access to the value stored at a given index within the vector

• at—provides bounds-checking access to the value stored at a given position within the vector

• size—returns the number of values currently stored in the vector

• empty—returns true if the vector contains no elements; returns false if the vector contains one or

more elements

• clear—makes the vector empty.

We have seen how to declare a vector of a particular size and use the space provided; however, we are

not limited by a vector’s initial size. In order to add an element to a vector, we use the push_back method

as follows:

std::vector<int> list; // Make an empty vector that can hold integers
list.push_back(5); // Add 5 to the end of list
list.push_back(-3); // Add -3 to the end of the list
list.push_back(12); // Add 12 to the end of list

After executing the three push_back calls above, the list vector conceptually looks just like Fig-

ure 11.2. The size of the vector adjusts automatically as new elements are inserted onto the back. Each

push_back method call increases the number of elements in a vector by one.

The pop_back method performs the opposite action of push_back. A call to pop_back removes

the last element from a vector, effectively reducing the number of elements in the vector by one. The

following code fragment produces a vector named list that contains only the element 5.

std::vector<int> list; // Declare list to be a vector
list.push_back(5); // Add 5 to the end of list
list.push_back(-3); // Add -3 to the end of the list
list.push_back(12); // Add 12 to the end of list
list.pop_back(); // Removes 12 from the list
list.pop_back(); // Removes -3 from the list

We have been using the operator[]method to access an element in the vector. The word operator
is reserved in C++, and that makes this method even more interesting. The expression

vec.operator[](2)

is the long way to write

vec[2]
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Programmers use the shorter syntax exclusively, but the longer expression better illustrates the fact that the

square bracket ([]) operator really is a method in the std::vector class of objects.

As we have seen, a programmer must be vigilant to avoid using an out-of-bounds index with the

operator[] method. The vector class provides an additional method, at, that provides index bounds

checking. The expression vec[x] in and of itself provides no bounds checking and so may represent

undefined behavior. The functionally equivalent expression vec.at(x) will check to ensure that the in-

dex x is within the bounds of the vector. If x is outside the acceptable range of indices, the method is

guaranteed to produce a run-time error. Listing 11.6 (vectoroutofbounds2.cpp) is a variation of Listing 11.4

(vectoroutofbounds.cpp) that uses the at method instead of the operator[] method.

Listing 11.6: vectoroutofbounds2.cpp

#include <iostream>
#include <vector>

int main() {
const int SIZE = 3;
std::vector<int> a{5, 5, 5};
// Print the contents of the vector
std::cout << "a contains ";
for (int i = 0; i < SIZE; i++)

std::cout << a.at(i) << " ";
std::cout << '\n';
// Change all the 5s in vector a to 8s
for (int i = 0; i <= SIZE; i++) // Bug: <= should be <

a.at(i) = 8;
// Reprint the contents of the vector
std::cout << "a contains ";
for (int i = 0; i < SIZE; i++)

std::cout << a.at(i) << " ";
std::cout << '\n';

}

When compiled and executed Listing 11.6 (vectoroutofbounds2.cpp) is guaranteed to produce a run-time er-

ror. Run-time errors are bad, but undefined behavior is worse because it can manifest itself as unpredictable

run-time errors and programs that behave differently across multiple platforms.

The size method returns the number of elements in a vector. The following code fragment prints the

contents of vector list:

int n = list.size();
for (int i = 0; i < n; i++)

std::cout << list[i] << " ";
std::cout << '\n';

The exact type that the size method returns here is a std::vector<int>::size_type. This type

is defined within the std::vector<int> class. It is compatible with the unsigned type and may be

assigned to an int variable as shown above. We can avoid the additional local variable n as follows:

for (unsigned i = 0; i < list.size(); i++)
std::cout << list[i] << " ";

std::cout << '\n';

Notice that i’s declared type is unsigned, not int. This prevents a warning when comparing i to

list.size(). A comparison between signed and unsigned integer types potentially is dangerous, and
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the compiler will alert us to that fact. To see why you should not take this warning lightly, consider the

following code that we would expect to print nothing:

unsigned u = 0;
int i = 0;
while (i < u - 1) {

std::cout << i << '\n';
i++;

}

but instead it prints as many unsigned values as the system supports! This is because even though 0 is not

less than −1, −1 is a signed value, not an unsigned value. The unsigned data type cannot represent signed

numbers. An attempt to compute unsigned 0 minus 1 on a 32-bit system produces 4,294,967,295, which

definitely is not less than zero. To be safe, assign the value of the size method to an int variable or use

unsigned variables to control loop iterations. Better yet, use the range-based for statement whenever

possible.

The empty method is a convenience method; if vec is a vector, the expression vec.empty() is

equivalent to the Boolean expression vec.size() != 0. Note that the empty method does not make

the vector empty; it simply returns true if the vector is empty and false if it is not.

The clear method removes all the elements from a vector leaving it empty. Invoking clear on an

initially empty vector has no effect. Immediately after clearing a vector, the vector’s size method will

return zero, its empty method will return true, and a call to its operator[] method with an index of any

value (including zero) will exhibit undefined behavior.

11.1.4 Vectors and Functions

A function can accept a vector as a parameter as shown in Listing 11.7 (vectortofunc.cpp)

Listing 11.7: vectortofunc.cpp

#include <iostream>
#include <vector>

/*
* print(v)
* Prints the contents of an int vector
* v is the vector to print
*/

void print(std::vector<int> v) {
for (int elem : v)

std::cout << elem << " ";
std::cout << '\n';

}

/*
* sum(v)
* Adds up the contents of an int vector
* v is the vector to sum
* Returns the sum of all the elements
* or zero if the vector is empty.
*/

int sum(std::vector<int> v) {
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int result = 0;
for (int elem : v)

result += elem;
return result;

}

int main() {
std::vector<int> list{ 2, 4, 6, 8, };
// Print the contents of the vector
print(list);
// Compute and display sum
std::cout << sum(list) << '\n';
// Zero out all the elements of list
int n = list.size();
for (int i = 0; i < n; i++)

list[i] = 0;
// Reprint the contents of the vector
print(list);
// Compute and display sum
std::cout << sum(list) << '\n';

}

Listing 11.7 (vectortofunc.cpp) produces

2 4 6 8
20
0 0 0 0
0

The print function’s definition:

void print(std::vector<int> v) {

shows that a vector formal parameter is declared just like a non-vector formal parameter. In this case, the

print function uses pass by value, so during the program’s execution an invocation of print will copy the

data in the actual parameter (list) to the formal parameter (v). Since a vector potentially can be quite

large, it generally is inefficient to pass a vector by value as shown above. Pass by value requires a function

invocation to create a new vector object for the formal parameter and copy all the elements of the actual

parameter into the new vector which is local to the function. A better approach uses pass by reference, with

a twist:

void print(const std::vector<int>& v) {
for (int elem : v)

std::cout << elem << " ";
std::cout << '\n';

}

The & symbol indicates that a caller invoking print will pass v by reference (see Section 10.9). This

copies the address of the actual parameter (owned by the caller) to the formal parameter v instead of

making a copy of all the data in the caller’s vector. Passing the address is much more efficient because on

most systems an address is the same size as a single int, whereas a vector could, for example, contain

1,000,000 ints. With pass by value a function invocation would have to copy all those 1,000,000 integers

from the caller’s actual parameter into the function’s formal parameter.
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Section 10.9 indicated that call-by-value parameter passing is preferred to call-by-reference parameter

passing. This is because a function using pass by value cannot modify the actual variable the caller passed to

it. Observe closely that our new print function declares its formal parameter v to be a const reference.

This means the function cannot modify the actual parameter passed by the caller. Passing a vector object

as a constant reference allows us to achieve the efficiency of pass by reference with the safety of pass by

value.

Passing by const reference is not the same as pass by value, though. The function receiving a parame-

ter passed by value can modify the parameter and return a modified copy. A function using pass by const
reference cannot modify the parameter passed to it.

Like the print function, the sum function in Listing 11.7 (vectortofunc.cpp) does not intend to modify

the contents of its vector parameter. Since the sum function needs only look at the vector’s contents, its

vector parameter should be declared as a const reference. In general, if a function’s purpose is to modify

a vector, the reference should not be const. Listing 11.8 (makerandomvector.cpp) uses a function named

make_random that fills a vector with pseudorandom integer values.

Listing 11.8: makerandomvector.cpp

#include <iostream>
#include <vector>
#include <cstdlib> // For rand

/*
* print(v)
* Prints the contents of an int vector
* v is the vector to print; v is not modified
*/

void print(const std::vector<int>& v) {
for (int elem : v)

std::cout << elem << " ";
std::cout << '\n';

}

/*
* make_random(v)
* Fills an int vector with pseudorandom numbers
* v is the vector to fill; v is modified
* size is the maximum size of the vector
*/

void make_random(std::vector<int>& v, int size) {
v.clear(); // Empties the contents of vector
int n = rand() % size + 1; // Random size for v
for (int i = 0; i < n; i++)

v.push_back(rand()); // Populate with random values
}

int main() {
srand(2); // Set pseudorandom number generator seed
std::vector<int> list;
// Print the contents of the vector
std::cout << "Vector initially: ";
print(list);
make_random(list, 20);
std::cout << "1st random vector: ";
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print(list);
make_random(list, 5);
std::cout << "2nd random vector: ";
print(list);
make_random(list, 10);
std::cout << "3rd random vector: ";
print(list);

}

The make_random function in Listing 11.8 (makerandomvector.cpp) calls the vector method clear
which makes a vector empty. We call clear first because we want to ensure the vector is empty before we

add more elements. The function then proceeds to add a random number of random integers to the empty

vector.

A function may return a vector object. Listing 11.9 (primelist.cpp) is a practical example of a function

that returns a vector.

Listing 11.9: primelist.cpp

#include <iostream>
#include <vector>
#include <cmath>

/*
* print(v)
* Prints the contents of an int vector
* v is the vector to print; v is not modified
*/

void print(const std::vector<int>& v) {
for (int elem : v)

std::cout << elem << " ";
std::cout << '\n';

}

/*
* is_prime(n)
* Determines the primality of a given value
* n an integer to test for primality
* Returns true if n is prime; otherwise, returns false
*/

bool is_prime(int n) {
if (n < 2)

return false;
else {

bool result = true; // Provisionally, n is prime
double r = n, root = sqrt(r);
// Try all possible factors from 2 to the square
// root of n
for (int trial_factor = 2; result && trial_factor <= root;

trial_factor++)
result = (n % trial_factor != 0);

return result;
}

}

/*
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* primes(begin, end)
* Returns a vector containing the prime
* numbers in the range begin...end.
* begin is the first number in the range
* end is the last number in the range
*/

std::vector<int> primes(int begin, int end) {
std::vector<int> result;
for (int i = begin; i <= end; i++)

if (is_prime(i))
result.push_back(i);

return result;
}

int main() {
int low, high;
std::cout << "Please enter lowest and highest values in "

<< "the range: ";
std::cin >> low >> high;
std::vector<int> prime_list = primes(low, high);
print(prime_list);

}

The primes function declares a local vector variable named result. The function examines every value

in the range begin. . .end, inclusive. The primes function uses is_prime as a helper function. If the

is_prime function classifies a value as a prime, code within the primes function adds the value to the

result vector. After primes has considered all the values in the provided range, result will contain

all the prime numbers in that range. In the end, primes returns the vector containing all the prime numbers

in the specified range.

When returning a local variable that is a built-in scalar type like int, double, char, etc., a C++

function normally makes a copy of the local variable to return to the caller. Making a copy is necessary

because local variables exist only while the function in which they are declared is actively executing. When

the function is finished executing and returns back its caller, the run-time environment reclaims the memory

held by the function’s local variables and parameters so their space can be used by other functions.

The return value in primes is not a simple scalar type—it is an object that can be quite large, especially

if the caller passes in a large range. Modern C++ compilers generate machine code that eliminates the need

to copy the local vector result. The technique is known as return value optimization, and it comes

into play when a function returns an object declared within the function. With return value optimization,

the compiler “knows” that the variable will disappear and that the variable is to be returned to the caller;

therefore, it generates machine language code that makes the space for the result in the caller’s memory

space, not the called function. Since the caller is maintaining the space for the object, it persists after the

function returns. Because of return value optimization you can return vectors by value in situations like this

one without fear of a time-consuming copy operation.
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Due to the fact that vectors may contain a large number of elements, you usually

should pass vectors to functions as reference parameters rather than value param-

eters:

• If the function is meant to modify the contents of the vector, declare the

vector as a non-const reference (that is, omit the const keyword when

declaring the parameter).

• If the function is not meant to modify the contents of the vector, declare the

vector as a const reference.

It generally is safe to return a vector by value from a function if that vector is

declared local to the function. Modern C++ compilers generate optimized code

that avoid the overhead of copying the result back to the caller.

11.1.5 Multidimensional Vectors

The vectors we have seen thus far have been one dimensional—simple sequences of values. C++ supports

higher-dimensional vectors. A two-dimensional vector is best visualized as a table with rows and columns.

The statement

std::vector<std::vector<int>> a(2, std::vector<int>(3));

effectively declares a to be a two-dimensional (2D) vector of integers. It literally creates a vector with two

elements, and each element is itself a vector containing three integers. Note that the type of a is a vector of

vector of integers. A 2D vector is sometimes called a matrix. In this case, the declaration specifies that 2D

vector a contains two rows and three columns. Figure 11.5 shows the logical structure of the vector created

by the following sequence of code:

std::vector<std::vector<int>> a(2, std::vector<int>(3));
a[0][0] = 5;
a[0][1] = 19;
a[0][2] = 3;
a[1][0] = 22;
a[1][1] = -8;
a[1][2] = 10;

The two-dimensional vector a is said to be a 2×3 vector, meaning it has two rows and three columns (as

shown in Figure 11.5). Rows are arranged horizontally, and the values in columns are arranged vertically.

In each of the assignment statements above, for example

a[1][0] = 22;

the first index (here 1) signifies the row and the second index (here 0) denotes the column of the element

within the vector. Literally, the expression a[1][0] means (a[1])[0]; that is, the element at index 0

of the vector at index 1 within a.

Using a syntax similar to the initialization lists of one-dimensional vectors, we can declare and initialize

the 2D vector a from above as:

std::vector<std::vector<int>> a{{ 5, 19, 3},
{22, -8, 10}};
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Figure 11.5 A 2×3 two-dimensional vector

22 -8 10

0 1 2

a

5 19 30

1

Note that each row appears within its own set of curly braces, and each row looks like 1D vector initializa-

tion list.

To access an element of a 2D vector, use two subscripts:

a[r][c] = 4; // Assign element at row r, column c
std::cout << a[m][n] << '\n'; // Display element at row m, column n

The following function prints the contents of a 2D vector of doubles:

void print(const std::vector<std::vector<double>>& m) {
for (unsigned row = 0; row < m.size(); row++) {

for (unsigned col = 0; col < m[row].size(); col++)
std::cout << std::setw(5) << m[row][col];

std::cout << '\n';
}

}

We can use range-based for statements to simplify the code:

void print(const std::vector<std::vector<double>>& m) {
for (const std::vector<double>& row : m) { // For each row

for (int elem : row) // For each element in a row
std::cout << std::setw(5) << elem;

std::cout << '\n';
}
return sum;

}

The declaration of the parameter m is somewhat complicated. We can simplify the syntax by using a

C++ type alias declaration. The statement

using Matrix = std::vector<std::vector<double>>;
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creates a new name Matrix for the existing type of a 2D vector containing doubles. Such type alias

statements usually appear near the top of a source file and most often have global scope. It is less common

to see a local type aliasing using statement within a function body.

You may encounter a type aliasing statement that uses the typedef keyword as

shown here:

typedef std::vector<std::vector<double>> Matrix;

In this case this typedef directive works identically to the using type alias.

C++ inherits the typedef keyword from the C programming language. The C++

using type alias is newer and supports type aliasing capabilities beyond those

provided by the more primitive typedef. For this reason, you should prefer the

using type aliasing to typedef when writing pure C++ code.

Given the using statement defining the new type name Matrix, we may express the parameter for

the print function more simply:

void print(const Matrix& m) {
for (const std::vector<double>& row : m) { // For each row

for (int elem : row) // For each element in a row
std::cout << std::setw(5) << elem;

std::cout << '\n';
}
return sum;

}

We can take advantage of the type inference capability of C++11 to simplify the print function even

further (see Section 3.10):

void print(const Matrix& m) {
for (auto row : m) { // For each row

for (int elem : row) // For each element in a row
std::cout << std::setw(5) << elem;

std::cout << '\n';
}
return sum;

}

Here we replaced the explicit type const std::vector<double>& with the word auto. The com-

piler is able to infer the type of the variable row from the context: m is a Matrix (that is, a

std::vector<std::vector<double>>), so row must be an element of the 2D vector (which itself

is a 1D vector).

Listing 11.10 (twodimvector.cpp) experiments with 2D vectors and takes advantage of the using type

alias statement to simplify the code.

Listing 11.10: twodimvector.cpp

#include <iostream>
#include <iomanip>
#include <vector>
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using Matrix = std::vector<std::vector<double>>;

// Allow the user to enter the elements of a matrix
void populate_matrix(Matrix& m) {

std::cout << "Enter the " << m.size() << " rows of the matrix.\n";
for (unsigned row = 0; row < m.size(); row++) {

std::cout << "Row #" << row << " (enter " << m[row].size()
<< " values):";

for (double& elem : m[row])
std::cin >> elem;

}
}

void print_matrix(const Matrix m) {
for (auto row : m) {

for (double elem : row)
std::cout << std::setw(5) << elem;

std::cout << '\n';
}

}

int main() {
int rows, columns;
std::cout << "How many rows? ";
std::cin >> rows;
std::cout << "How many columns? ";
std::cin >> columns;
// Declare the 2D vector
Matrix mat(rows, std::vector<double>(columns));
// Populate the vector
populate_matrix(mat);
// Print the vector
print_matrix(mat);

}

An expression that uses just one index with a 2D vector represents a single row within the 2D vector.

This row is itself a 1D vector. Thus, if a is a 2D vector and i is an integer, then the expression

a[i]

is a 1D vector representing row i.

We can build vectors with dimensions higher than two. Each “slice” of a 3D vector is simply a 2D

vector, a 4D vector is a vector of 3D vectors, etc. For example, the statement

matrix[x][y][z][t] = 1.0034;

assigns 1.0034 to an element in a 4D vector of doubles. In practice, vectors with more than two dimen-

sions are rare, but advanced scientific and engineering applications sometimes require higher-dimensional

vectors.

©2018 Richard L. Halterman Draft date: December 2, 2018



11.2. ARRAYS 311

11.2 Arrays

C++ is an object-oriented programming language, and a vector is an example of a software object. C++

began as an extension of the C programming language, but C does not directly support object-oriented

programming. Consequently, C does not have vectors available to represent sequence types. The C language

uses a more primitive construct called an array. True to its C roots, C++ supports arrays as well as vectors.

Some C++ libraries use arrays in instead of vectors. In addition, C++ programs can use any of the large

number of C libraries that have been built up over the past 40+ years, and many of these libraries process

arrays. While a more modern construct like std::vector may be better suited for may of the roles an

array has played in the past, it nonetheless is important for C++ programmers to be familiar with arrays.

An array is a variable that refers to a block of memory that, like a vector, can hold multiple values

simultaneously. An array has a name, and the values it contains are accessed via their position within the

block of memory designated for the array. Also like a vector, the elements within an array must all be of

the same type. Arrays may be local or global variables. Arrays are built into the core language of both C

and C++. This means you do not need to add any #include directives to use an array within a program.

11.2.1 Static Arrays

Arrays come in two varieties, static and dynamic. A programmer must supply the size of a static array when

declaring it; for example, the following statement:

// list is an array of 25 integers
int list[25];

declares list to be an array of 25 integers. The value within the square brackets specifies the number of

elements in the array, and the size is fixed for the life of the array. The value within the square brackets

must be a constant value determined at compile time. It can be a literal value or a symbolic constant, but

it cannot be a variable. This is in contrast to vector declarations in which the initial vector size may be

specified by a variable with a value determined at run time:

int x;
std::cin >> x; // Get x's value from the user at run time
int list_1[x]; // Illegal for a static array
std::vector<int> list_2(x); // OK for a vector

It is possible to declare an array and initialize it with a sequence of elements, with a syntax similar to

that of vectors:

double collection[] = { 1.0, 3.5, 0.5, 7.2 };

The compiler can count the elements in the initializer list, so you need not supply a number within the

square brackets. If you provide a number within the square brackets, it should be at least as large as the

number of elements in the initialization list. The equals symbol is required for array initialization. You

optionally can use the equals symbol as shown here when initializing vectors, but it is not required for

vectors.

If the declaration omits an initializer list, as in:

int arr[100];

the initial values of the elements of the array depend on the context of the declaration:
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Figure 11.6 A simple array with three elements

5 -3 12

0 1 2

list

list[2] = 12;
list[1] = -3;
list[0] = 5;
int list[3];

• An executing program does not initialize the contents of a local arrays.

• The run-time environment initializes the values of global numeric arrays to all zeros.

As with vectors, once we declare an array, we can access its elements using the square bracket operator:

int list[3]; // Declare list to be an array of three ints
list[0] = 5 ; // Make the first element 5
list[1] = -3 ; // Make the second element -3
list[2] = 12 ; // Make the last element 12

This code fragment shows that the square brackets used after the point of declaration allow us to access

an individual element based on that element’s position within the block of memory assigned to the array.

This syntax is identical to that used with vector objects. As with vectors, the very first element in an array

appears at index 0.

After executing these assignment statements, the list array conceptually looks like Figure 11.6.

©2018 Richard L. Halterman Draft date: December 2, 2018



11.2. ARRAYS 313

The array square brackets operator has two distinct meanings depending on the

context:

1. At the array’s declaration, for example,

double nums[10];

the number within the square brackets specifies the number of elements that

the array can hold. The compiler uses this number along with the type of

the array to determine how much memory to allocate for the array.

2. After the array’s declaration, for example,

nums[3] = 10.45;

the number within the square brackets represents an index locating a specific

element within the memory allocated to the array.

Unlike with vectors, the compiler will insist that the programmer use an integral value for an index; for

example, the following statement:

numbers[1.3] = 5;

is illegal if numbers is an array. Identically to vectors, the programmer must ensure that the array index

is within the bounds of the array. Accessing an element via an index outside the bounds of an array results

in undefined behavior.

We can pass an array to a function, as shown in Listing 11.11 (arraytofunc.cpp), the array-based version

of Listing 11.7 (vectortofunc.cpp).

Listing 11.11: arraytofunc.cpp

#include <iostream>

/*
* print(a, n)
* Prints the contents of an int array
* a is the array to print
* n is the size of the array
*/

void print(int a[], int n) {
for (int i = 0; i < n; i++)

std::cout << a[i] << " ";
std::cout << '\n';

}

/*
* sum(a, n)
* Adds up the contents of an int array
* a is the array to sum
* n is the size of the array
*/

int sum(int a[], int n) {
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int result = 0;
for (int i = 0; i < n; i++)

result += a[i];
return result;

}

int main() {
int list[] = { 2, 4, 6, 8 };
// Print the contents of the array
print(list, 4);
// Compute and display sum
std::cout << sum(list, 4) << '\n';
// Zero out all the elements of list
for (int i = 0; i < 4; i++)

list[i] = 0;
// Reprint the contents of the array
print(list, 4);
// Compute and display sum
std::cout << sum(list, 4) << '\n';

}

As shown in the print function’s definition:

void print(int a[], int n)

empty square brackets follow the name of an array formal parameter. The programmer can supply a number

within the square brackets, but the compiler will ignore it. When calling a function that accepts an array

parameter, as in

print(list, 4);

the programmer must pass the array’s size along with the array name. This is because an array simply

references a block of memory and has has no notion of its size.

An undecorated array name by itself in C++ source code behaves like a constant pointer to the beginning

element of the array. Consequently, when an array is passed as an actual parameter during a function call,

as in Listing 11.11 (arraytofunc.cpp):

print(list, 4);

the function is passed the address of the array—the array’s address is bound to the formal parameter. So,

while the function cannot affect the address of the array itself, the function has total access to the array’s

contents. In Listing 11.12 (cleararray.cpp), the function clear modifies the contents of any array sent to

it, making all the elements zero.

Listing 11.12: cleararray.cpp

#include <iostream>

/*
* print(a, n)
* Prints the contents of an int array
* a is the array to print
* n is the size of the array
*/

void print(int a[], int n) {
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for (int i = 0; i < n; i++)
std::cout << a[i] << " ";

std::cout << '\n';
}

/*
* clear(a, n)
* Makes all the elements of array a zero
* a is the array to zero out
* n is the size of the array
*/

void clear(int a[], int n) {
for (int i = 0; i < n; i++)

a[i] = 0;
}

int main() {
int list[] = { 2, 4, 6, 8 };
// Print the contents of the array
print(list, 4);
// Zero out the array
clear(list, 4);
// Reprint the contents of the array
print(list, 4);

}

The output of Listing 11.12 (cleararray.cpp) is

2 4 6 8
0 0 0 0

The clear function actually modifies the contents of main’s list array. The function works on the

array’s actual elements, not copies of its elements.

Arrays, therefore, by default are passed by reference with respect to the elements they contain. By

default, an array’s contents are open to corruption by errant functions. In order to protect an array so that a

function may read its contents but not modify its contents, the parameter must be declared const, as in

int sum(const int a[], int n)

In Listing 11.11 (arraytofunc.cpp) there is no reason why the print and sum functions should be able to to

modify the contents of their array parameters, so the const specifier should be added to their definitions.

As a general rule, all functions that accept array parameters should declare the array contents as const
unless they need to modify the elements of the array.
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As a general rule, all functions that accept array parameters should declare the

array contents as const unless they need to modify the elements of the array.

For example, use

int sum(const int a[], int n)

rather than

int sum(int a[], int n)

if the sum function must be able to examine the contents of the array but is not

intended to modify its contents.

C++ does not directly support empty arrays. A physical array must contain at least one element. Some-

times it is appropriate to consider an array that is conceptually empty; for example, what if we wish to

pass an “empty” array to the sum function? We can pass 0 as the second parameter since an empty array

contains no elements, but what should we pass as the first parameter? Any array will do, but there is no

need create an real array when none truly is needed. Instead, we may use nullptr:

quanitity = sum(nullptr, 0);

If you scrutinize the body of the sum function, you will see that this call will assign to quantity the

correct answer, namely zero.

11.2.2 Pointers and Arrays

An array name used in C++ source code references a location in memory, the address of the first element

(element at index 0) in the array. In this way an array name is similar to a constant pointer (see Section 10.7

for more information about C++ pointers). Because of this, we can treat in some ways an array identifier

like a pointer. Similarly, we can direct a pointer to point to an array, and then treat the pointer itself as if it

were an array.

Listing 11.13 (pointerprint.cpp) uses a pointer to traverse an array.

Listing 11.13: pointerprint.cpp

#include <iostream>

int main() {
int a[] = { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 },

*p;

p = &a[0]; // p points to first element of array a

// Print out the contents of the array
for (int i = 0; i < 10; i++) {

std::cout << *p << ' '; // Print the element p points to
p++; // Increment p so it points to the next element

}
std::cout << '\n';

}

The statement
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p = &a[0];

sets p to point to the first element of array a. A shorter way to accomplish the same thing is

p = a;

since a is itself a reference to the array’s location in memory. This assignment statement clearly demon-

strates the association between array variables and pointer variables. Note that the opposite assignment

(a = p) is impossible, because array a declared as above may not appear by itself on the left side of the

assignment operator.

Pointer variables can participate in addition and subtraction expressions. The statement

p++;

changes the address stored in p so subsequently the pointer will point to the next integer position in memory.

If p is assigned to array a, incrementing p redirects it to point to a’s next element. 1 In Figure 11.7, pointer

p is assigned to array a and then incremented to refer to various elements within a.

The expression

p[0]

is another way to write

*p

so the array indexing operator ([]) can be used with pointers. The expression

p[5]

represents the element at index 5 within the array pointed to by p.

Listing 11.14 (pointerprint2.cpp) uses pointers in a different way to traverse an array.

Listing 11.14: pointerprint2.cpp

#include <iostream>

int main() {
int a[] = { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 },

*begin, *end, *cursor;

begin = a; // begin points to the first element of array a
end = a + 10; // end points to just after the last element

// Print out the contents of the array
cursor = begin;
while (cursor != end) {

std::cout << *cursor << ' '; // Print the element
cursor++; // Increment cursor so it points to the next element

1 Each byte in memory has a unique numeric address. Since most C++ types require more than one byte of storage, incrementing

a pointer by 1 does not simply add 1 to the address it holds. The amount added depends on the type of the pointer; for example, on

systems using 32-bit (4 byte) integers, adding 1 to an integer pointer variable increments its address by 4, not 1. The compiler knows

the type of the pointer variable because programmers must declare all variables. The compiler, therefore, can automatically adjust

the arithmetic to work properly. If a pointer points to memory within an array and is of the same type as the array, incrementing the

pointer correctly repositions the pointer to point to the next element in the array.
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Figure 11.7 Incrementing a pointer to an array
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}
std::cout << '\n';

}

In Listing 11.14 (pointerprint2.cpp), the code

cursor = begin;
while (cursor != end) {

std::cout << *cursor << ' '; // Print the element
cursor++; // Increment cursor so it points to the next element

}

can be expressed more succinctly as a for loop:

for (cursor = begin; cursor != end; cursor++)
std::cout << *cursor << ' '; // Print the element

If pointer p points to an array, the element at index i can be accessed as either p[i] or *(p + i).

The expression *(p + i) dereferences the address that is i positions away from the address referenced

by p.

Sometimes pointer notation is used to represent an array parameter to a function. The array print

function that begins

void print(const int a[], int n)

could instead be written

void print(const int *a, int n)

where a is a pointer to an array. The compiler treats the two forms identically in the machine language it

produces.

Listing 11.15 (recursivearrayprint.cpp) uses two array printing functions, iterative_print and

recursive_print. Both use the pointer notation when declaring their array parameters.

Listing 11.15: recursivearrayprint.cpp

#include <iostream>

/*
* iterative_print(a,n)
* Prints the contents of array a
* a is the array to print; a is not modified
* n is number of elements in a
*/

void iterative_print(const int *a, int n) {
for (int i = 0; i < n; i++)

std::cout << a[i] << ' ';
}

/*
* recursive_print(a,n)
* Prints the contents of array a
* a is the array to print; a is not modified
* n is number of elements in a
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*/
void recursive_print(const int *a, int n) {

if (n > 0) {
std::cout << *a << ' '; // Print the first element of the array
recursive_print(a + 1, n - 1); // Print rest of the array

}
}

int main() {
int list[] = { 23, -3, 4, 215, 0, -3, 2, 23, 100, 88, -10 };
iterative_print(list, 11);
recursive_print(list, 11);

}

The function iterative_print uses a loop, while recursive_print uses recursion instead.

Inside the recursive_print function, the expression a + 1 points to the second element in array a.

a + 1 essentially represents the rest of the array—everything except for the first element. The statement

recursive_print(a + 1, n - 1);

calls the function recursively, passing the remainder of the array (a + 1) with a length that is one less

(n - 1) than before. The recursion terminates when the array’s length is zero.

Instead of passing a pointer to an array and the array’s size, we can pass two pointers. The first pointer

points to the beginning of the array and another pointer points just past the end of the array. The following

print function illustrates:

void print(int *begin, int *end) {
for (int *elem = begin; elem != end; elem++)

std::cout << *elem << ' ';
std::cout << '\n';

}

Notice that this code does not appear to be using arrays at all! This code takes advantage of pointer arith-

metic to move the elem pointer from the first element to each successive element in the array. Since the

memory devoted to an array is a continuous, contiguous block of memory addresses, pointer arithmetic

simply redirects a pointer from one element in an array to another element in that array. Listing 11.16

(pointerarithmetic.cpp) provides some more examples of pointer arithmetic in action.

Listing 11.16: pointerarithmetic.cpp

#include <iostream>

int main() {
// Make an array
int arr[] = {10, 20, 30, 40, 50};
int *p = arr; // p points to the first element
std::cout << *p << '\n'; // Prints 10, does not change p
std::cout << p[0] << '\n'; // Prints 10, does not change p
std::cout << p[1] << '\n'; // Prints 20, does not change p
std::cout << *p << '\n'; // Prints 10, does not change p
p++; // Advances p to the next element
std::cout << *p << '\n'; // Prints 20, does not change p
p += 2; // Advance p two places
std::cout << *p << '\n'; // Prints 40, does not change p
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Figure 11.8 Pointer arithmetic. Incrementing pointer p moves it to the next element in the array.
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int arr[] = {10, 20, 30, 40, 50};

int *p = arr;

p
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arr

p++;
p

std::cout << p[0] << '\n'; // Prints 40, does not change p
std::cout << p[1] << '\n'; // Prints 50, does not change p
p--; // Moves p back one place
std::cout << *p << '\n'; // Prints 30, does not change p

}

Listing 11.16 (pointerarithmetic.cpp) prints

10
10
20
10
20
40
40
50
30

Figure 11.8 illustrates how Listing 11.16 (pointerarithmetic.cpp) works.

Listing 11.16 (pointerarithmetic.cpp) also shows how we can use the square bracket array access op-

erator with a pointer. The expression p[i] refers to the element in memory i positions from the location

pointed to by p.
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Going back to the print function that uses pointers:

void print(int *begin, int *end) {
for (int *elem = begin; elem != end; elem++)

std::cout << *elem << ' ';
std::cout << '\n';

}

the pointer elem first points to the same element to which begin points (that is, the first element in the

array), and within the loop it moves to the next element repeatedly until it passes the last element. A caller

could invoke the function as

int list[25]; // Allocate a static array
for (int i = 0; i < 25; i++)

list[i] = rand() % 1000; // Fill with pseudorandom values
print(list, list + 25); // Print the elements of list

The advantage of the begin/end pointer approach is that it allows a programmer to pass a slice of the array

to the function; for example, if we wish to print the elements of the array from index 3 to index 7, we would

call the function as

print(list + 3, list + 8); // Print elements at indices 3, 4, 5, 6, 7

11.2.3 Dynamic Arrays

Programmers need not worry about managing the memory used by static arrays. The compiler and run-time

environment automatically ensure the array has enough space to hold all of its elements. The space held by

local arrays is freed up automatically when the local array goes out of the scope of its declaration. Global

arrays live for the lifetime of the executing program. Memory management for static arrays, therefore,

works just like scalar variables.

Static arrays have a significant limitation: The size of a static array is determined at compile time. The

programmer may change the size of the array in the source code and recompile the program, but once the

program is compiled into an executable program any static array’s size is fixed. For many applications

the circumstances of the executing program must determine the size of an array. Static arrays lack such

flexibility.

One approach to implement a flexibly-sized array defines the array to hold as many items as it conceiv-

ably will ever need. Listing 11.17 (largearrayaverage.cpp) uses this approach.

Listing 11.17: largearrayaverage.cpp

#include <iostream>

// Maximum number of expected values is 1,000,000
const int MAX_NUMBER_OF_ENTRIES = 1000000;
double numbers[MAX_NUMBER_OF_ENTRIES];

int main() {
double sum = 0.0;
int size; // Actual number of entries

// Get effective size of the array
std::cout << "Please enter number of values to process: ";
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std::cin >> size;

if (size > 0) { // Nothing to do with no entries
std::cout << "Please enter " << size << " numbers: ";
// Allow the user to enter in the values.
for (int i = 0; i < size; i++) {

std::cin >> numbers[i];
sum += numbers[i];

}
std::cout << "The average of ";
for (int i = 0; i < size - 1; i++)

std::cout << numbers[i] << ", ";
// No comma following last element
std::cout << numbers[size - 1] << " is "

<< sum/size << '\n';
}

}

Listing 11.17 (largearrayaverage.cpp) creates an array that can hold one million entries. The variable

size keeps track of the actual size needed by the user. While the array’s maximum size is one million, the

part of the array actually used during a given execution may be much smaller.

Notice that the array numbers is a global variable and is not local to main. This is because most

systems limit the amount of storage available to local variables within functions. Local variables reside in

an area of memory known as the stack. Local variables exist in memory only when the function that uses

them is invoked; therefore, the stack grows and shrinks as functions execute and return. Global variables,

on the other hand, exist in the computer’s memory for the life of the program’s execution. Global variables

are stored in what is known as static memory. There is a limit to the amount of static memory available for

global variables (the amount of memory in RAM or virtual memory on disk, if nothing else), but the global

limit usually is much higher then the local limit. One million double-precision floating-point numbers

consumes 8,000,000 bytes (8 megabytes) in Visual C++ and on many other systems. The default stack size

for local variables under Visual C++ is only one megabyte, although the stack size can be increased by

adjusting the compiler and linker build options.

While the approach taken in Listing 11.17 (largearrayaverage.cpp) works, it wastes memory resources.

In modern computing, a user may have multiple programs open at the same time. If each program is tying

up the maximum amount of memory it may ever need, there may not be enough real memory (RAM) to

go around, and the computer will be forced to use more virtual memory (shuttling portions of the running

program’s memory to and from the disk drive). Virtual memory access greatly degrades the speed of a

program, and so the user’s experience suffers. It is important that each program uses its resources wisely.

Statically allocating the largest array that might ever be needed is not a good approach.

Fortunately, there is a way for a programmer to create an array of the exact size needed, even if that size

is not known until run time. Listing 11.18 (flexiblearrayaverage.cpp) shows how.

Listing 11.18: flexiblearrayaverage.cpp

#include <iostream>

int main() {
double sum = 0.0;
double *numbers; // Note: numbers is a pointer, not an array
int size; // Actual number of entries

// Get effective size of the array
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std::cout << "Please enter number of values to process: ";
std::cin >> size;

if (size > 0) { // Nothing to do with no entries
std::cout << "Please enter " << size << " numbers: ";
// Allocate the exact size needed
numbers = new double[size]; // Dynamically allocated array
// Allow the user to enter in the values.
for (int i = 0; i < size; i++) {

std::cin >> numbers[i];
sum += numbers[i];

}
std::cout << "The average of ";
for (int i = 0; i < size - 1; i++)

std::cout << numbers[i] << ", ";
// No comma following last element
std::cout << numbers[size - 1] << " is "

<< sum/size << '\n';
delete [] numbers; // Free up the space held by numbers

}
}

Notice that numbers is not declared to be an array; it is a pointer:

double *numbers; // Note: numbers is a pointer, not an array

This statement makes space for a single pointer, merely four bytes on a 32-bit system or eight bytes on a

64-bit system. The expression

new double[size]

allocates at run time a block of memory for an array that can hold exactly size double-precision floating-

point elements. The value of this expression is the starting address of the newly allocated memory block.

The statement

numbers = new double[size]; // Dynamically allocated array

therefore assigns to numbers the address of the allocated memory. A dynamic array is simply a pointer

(see Section 10.7) that points to a dynamically allocated block of memory. As Listing 11.18 (flexiblearrayaverage.cpp)

shows, the value within the square brackets in a dynamic array allocation may be a variable determined at

run time. Figure 11.9 compares the conceptual differences among of static and and dynamic arrays and

vectors.

While we access a dynamic array via a pointer, a static array array behaves like a constant pointer; that

is, a pointer that we cannot reassign to point elsewhere.

The reserved word new allocates memory for the array’s elements. new technically is classified as an

operator. The area of memory used for dynamic allocation via new is different from both the area used for

local variables (the stack) and global variables (static memory). Dynamic memory comes from the heap.

Section 18.1 provides more details about the memory available to an executing C++ program, but here it is

sufficient to note that the heap has a capacity much larger than the stack.

The variable numbers is local to main, so it lives on the stack. It is a pointer, so it stores a memory

address. The new expression returns an address to memory in the heap. So, even though the numbers
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Figure 11.9 Comparing static arrays, dynamic arrays, and vectors
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variable itself is stored on the stack, the memory it references is located in the heap. We do not need to

worry about our array being too big to be local to main, since its contents do not consume stack space.

An executing program automatically allocates on the stack the local variables of a function when a

caller invokes the function. The executing program also automatically deallocates local variables when

the function returns. The programmer does not need to explicitly manage local variables. Dynamically

allocated memory, however, requires more attention on the part of the programmer. The statement

delete [] numbers; // Free up the space held by numbers

uses the delete operator to free up the memory held by the numbers array. The programmer is respon-

sible for deallocating memory that was allocated with new. Every use of the new operator should have a

corresponding use of delete somewhere later in the program’s execution. Notice that the square brackets

([]) are empty. The run-time environment keeps track of the amount of memory to free up.

You should develop the habit of ensuring that every use of the new operator has an associated call of

delete. If the delete statement is omitted from Listing 11.18 (flexiblearrayaverage.cpp), the program in

this case likely will behave no differently since most operating systems reclaim all the dynamic memory a

program holds when the program finishes executing. Serious problems arise in longer running programs that

must allocate and deallocate dynamic memory over time. Programs that run for extended periods of time,

like web servers and operating system kernels, can crash due to failures to properly deallocate memory. The

condition is known as a memory leak—the program overtime allocates more and more memory via new but

never releases the memory back with delete. Eventually the program uses up all of the available heap

space and crashes.

11.2.4 Copying an Array

It is important to remember that within C++ source code a static array variable behaves similarly to a constant

pointer. At first it may seem plausible to make a copy of an array as follows:

int a[10], b[10]; // Declare two arrays
for (int i = 0; i < 10; i++) // Populate one of them

a[i] = i; // a is filled with increasing values
b = a; // Make a copy of array a?

Since b behaves like a constant pointer, we cannot reassign it; that is, the name b cannot appear on the left

side of the assignment operator all by itself. Wherever b points, it must continue to point there during its

lifetime. The code above will not compile.

Perhaps the solution is to use a dynamic array (see Section 11.2.3 for information about dynamic arrays).

If b is not const, can we copy the array through simple assignment? The following code is legal:

int a[10], *b; // Declare two arrays, one dynamic
for (int i = 0; i < 10; i++) // Populate one of them

a[i] = i; // a is filled with increasing values
b = a; // Make a copy of array a?

but b is not a copy of a. b aliases a, so changing the contents of a will also change the contents of b
identically, since b refers to the exact memory to which a refers. Figure 11.10 illustrates the aliasing.

This illustrates another key difference between vectors and arrays: It is not possible to assign one array

variable to another through a simple assignment statement that copies all the elements from one array into

another. If the arrays are static arrays, the simple assignment is illegal. If the arrays are dynamic arrays, the
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Figure 11.10 Faulty array copy
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assignment simply makes the two pointers point to the same block of memory, which is not the same effect

as vector assignment.

The following code shows the proper way to make a copy of array a:

int a[10], *b; // Declare two arrays, one dynamic
for (int i = 0; i < 10; i++) // Populate one of them

a[i] = i; // a is filled with increasing values
// Really make a copy of array a
b = new int[10]; // Allocate b
for (int i = 0; i < 10; i++)

b[i] = a[i];

Separate space for the dynamic array must be allocated, and then each element from the original array must

be copied into the new array. Figure 11.11 shows how this process works.

It is important to note that since the code above allocates b dynamically with new, code elsewhere

within the program should eventually use delete to free up b’s space when it is no longer used. Failure

to properly deallocate b constitutes a memory leak.

Consider the following scenario:

int *a = new int[10],
*b = new int[10];

// Do somethings with arrays a and b, and then
b = a;

Here dynamic array b already was in use before the assignment. Not only does this simple assignment

create an alias, but it also creates a memory leak. If the reassigned array originally was pointing to a block

of memory allocated on its behalf, and no other pointers reference that block of memory, that block is

unreachable by the executing program.
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Figure 11.11 Correct array copy
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Listing 11.18 (flexiblearrayaverage.cpp) requires the user to enter up front the number of values to

average. This is inconvenient, and people are notoriously poor counters. One solution is to allocate a

minimal size array, and then resize it as necessary when it fills up. Listing 11.19 (resizearray.cpp) uses this

approach.

Listing 11.19: resizearray.cpp

#include <iostream>

int main() {
double sum = 0.0, // Sum of the elements in the list

*numbers, // Dynamic array of numbers
input; // Current user entry

// Initial size of array and amount to expand full array
const int CHUNK = 3;
int size = 0, // Current number of entries

capacity = CHUNK; // Initial size of array

// Allocate a modest-sized array to begin with
numbers = new double[capacity];

std::cout << "Please enter any number of nonnegative values "
<< "(negative value ends the list): ";

std::cin >> input;

while (input >= 0) { // Continue until negative number entered
if (size >= capacity) { // Room left to add an element?

capacity += CHUNK; // Expand array
double *temp = new double[capacity]; // Allocate space
for (int i = 0; i < size; i++)

temp[i] = numbers[i]; // Copy existing values
delete [] numbers; // Free up old space
numbers = temp; // Update numbers to new location
std::cout << "Expanding by " << CHUNK << '\n';

}
numbers[size] = input; // Add number to array at last position
size++; // Update last position
sum += input; // Add to running sum
std::cin >> input; // Get next number

}
if (size > 0) { // Can't average less than one number

std::cout << "The average of ";
for (int i = 0; i < size - 1; i++)

std::cout << numbers[i] << ", ";
// No comma following last element
std::cout << numbers[size - 1] << " is "

<< sum/size << '\n';
}
else

std::cout << "No numbers to average\n";
delete [] numbers; // Free up the space held by numbers

}
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Notice that the programmer of Listing 11.19 (resizearray.cpp) is expending a lot of effort to implement

the functionality provided by std::vector. Unlike vectors, an array has a fixed size. It is impossible to

change the size of a static array (short of editing the source code and recompiling). In order to change at

run time the size of a dynamic array, you must

1. allocate a different block of memory of the desired size,

2. copy all of the existing elements into the new memory,

3. use delete to deallocate the previous memory block to avoid a memory leak, and

4. reassign the original dynamic array pointer to point to new memory block.

Listing 11.19 (resizearray.cpp) contains the code to perform this array resizing. A vector object manages a

dynamic array, and its push_back method takes care these details for us.

11.2.5 Multidimensional Arrays

Just as C++ supports higher-dimensional vectors, it also supports multidimensional arrays. The following

statement:

int a[2][3];

declares a to be a two-dimensional (2D) array of integers. In this case, the declaration specifies that array

a contains two rows and three columns. Figure 11.12 shows the logical structure of the array created by the

following sequence of code:

int a[2][3]; // a is a 2D array
a[0][0] = 5;
a[0][1] = 19;
a[0][2] = 3;
a[1][0] = 22;
a[1][1] = -8;
a[1][2] = 10;

The two-dimensional array a is said to be a 2×3 array, meaning it has two rows and three columns (as

shown in Figure 11.12). Rows are arranged horizontally, and the values in columns are arranged vertically.

In each of the assignment statements above, for example

a[1][0] = 22;

the first index (here 1) signifies the row and the second index (here 0) denotes the column of the element

within the array.

Using a syntax similar to 2D vectors, we could have declared and created the 2D array above as:

int a[2][3] = { { 5, 19, 3 },
{ 22, -8, 10 } };

You may omit the first index, as shown here:

int a[][3] = { { 5, 19, 3 },
{ 22, -8, 10 } };
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Figure 11.12 A 2×3 two-dimensional array
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For 2D arrays initialized in this manner the first subscript is optional, but the second subscript (that is, the

size of each column) is required.

To access an element of a 2D array, use two subscripts:

a[r][c] = 4; // Assign element at row r, column c
std::cout << a[m][n] << '\n'; // Display element at row m, column n

The following function prints the contents of a ROWS × COLUMNS 2D array of doubles, where both

ROWS and COLUMNS are constants:

void print(const double m[ROWS][COLUMNS]) {
for (int row = 0; row < ROWS; row++) {

for (int col = 0; col < COLUMNS; col++)
std::cout << std::setw(5) << m[row][col];

std::cout << '\n';
}

}

We can omit the ROW size in the parameter declaration, but second set of square brackets must constant a

constant integral expression. The declaration of the parameter m is quite complicated, and, as we did for 2D

vectors, we can simplify the syntax by using a C++ type aliasing statement. statement

using Matrix = double[ROWS][COLUMNS];

defines a new type named Matrix.

Given the type alias using statement defining the new type name Matrix, we can express the param-

eter for the print function more simply:

void print(const Matrix m) {
for (int row = 0; row < ROWS; row++) {

for (int col = 0; col < COLUMNS; col++)
std::cout << std::setw(5) << m[row][col];

std::cout << '\n';
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}
}

Listing 11.20 (twodimarray.cpp) experiments with 2D arrays and takes advantage of the type alias statement

to simplify the code.

Listing 11.20: twodimarray.cpp

#include <iostream>
#include <iomanip>

const int ROWS = 3,
COLUMNS = 5;

// The name Matrix represents a new type
// that means a ROWS x COLUMNS
// two-dimensional array of double-precision
// floating-point numbers.
using Matrix = double[ROWS][COLUMNS];

// Allow the user to enter the elements of a matrix
void populate_matrix(Matrix m) {

std::cout << "Enter the " << ROWS << " rows of the matrix.\n";
for (int row = 0; row < ROWS; row++) {

std::cout << "Row #" << row << " (enter " << COLUMNS << " values):";
for (int col = 0; col < COLUMNS; col++)

std::cin >> m[row][col];
}

}

// We declare m constant because printing a matrix should not
// change it.
void print_matrix(const Matrix m) {

for (int row = 0; row < ROWS; row++) {
for (int col = 0; col < COLUMNS; col++)

std::cout << std::setw(5) << m[row][col];
std::cout << '\n';

}
}

int main() {
// Declare the 2D array
Matrix mat;
// Populate the array
populate_matrix(mat);
// Print the array
print_matrix(mat);

}

An expression that uses just one index with a 2D array represents a single row within the 2D array. This

row is itself a 1D array. Thus, if a is a 2D array and i is an integer, then the expression

a[i]

is a 1D array representing row i.
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Figure 11.13 Physical layout of a C string

As with vectors, C++ allows arrays with dimensions higher than two. Each “slice” of a 3D array is

simply a 2D array, a 4D array is an array of 3D arrays, etc. For example, the statement

matrix[x][y][z][t] = 1.0034;

assigns 1.0034 to an element in a 4D array of doubles. In practice, arrays with more than two dimensions

are rare, but advanced scientific and engineering applications sometimes require higher-dimensional arrays.

11.2.6 C Strings

A string is a sequence of characters. C and C++ implement strings as arrays of char. The C++ language

additionally supports string objects (see Section 13.1). In the C language, the only option is a char array.

We use the term C string to refer to an array of characters as used in the C language. In this section, any

mention of the term string refers to a C string.

A string is an array of characters. A string literal is a sequence of characters enclosed within quotation

marks, as in

std::cout << "Howdy!\n";

All proper C strings are null terminated. This means the last character in the array is ASCII zero, which C++

represents by the character literal '\0'. Figure 11.13 shows the physical layout of the string "Howdy!"
in memory.

Since strings are actually arrays, care must be taken when using string variables:

• Enough space must be reserved for number of characters in the string, including the null terminating

character.

• The array of characters must be properly null terminated.

The following code fragment is safe and acceptable:

char *word = "Howdy!";
std::cout << word << '\n';

The variable word is declared to be a pointer to a character, and it is initialized to point to a string literal.

The following code fragment is less safe:

char word[256];
std::cin >> word;
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The string word can hold 255 viable characters plus the null terminator. If the user types in relatively short

words (length less than 255 characters), there is no problem. If at any time the user types in more characters

than will fit in the word array, the executing program will have a problem. The problem is known as a

buffer overrun. In the best case, buffer overruns lead to buggy programs. In the worst case, clever users can

exploit buffer overruns to compromise software systems. Buffer overruns are always logic errors and you

should take great care to avoid them.

The following code provides a safe way to get user input:

char word[10];
fgets(word, 10, stdin);
std::cout << word << '\n';

The fgets function is a standard C function. The second parameter specifies the maximum length of the

string, including the terminating null character, that will be placed in the string word. The last argument,

stdin is a C construct related to the C++ object std::cin. In order to use fgets within a program you

must include the <cstdio> header.

The following code begs for disaster:

char *word;
std::cin >> word;

In this case word points to a random location in memory (it is uninitialized), and the code allocates no

buffer to receive the input characters from std::cin. The program’s behavior executing this code is

undefined, but it likely will lead to the program crashing. Insidiously, depending on how the operating

system manages memory, the program may run fine much of the time and crash only rarely. Regardless, the

program contains a serious bug.

When passing an array to a function a caller must provide the size of the array so that the function

may process the array properly. Since C strings are null terminated, such size information is not necessary.

The find_char function in Listing 11.21 (findchar.cpp) determines if a particular character is present in a

string.

Listing 11.21: findchar.cpp

#include <iostream>

bool find_char(const char *s, char ch) {
while (*s != '\0') { // Scan until we see the null character

if (*s == ch)
return true; // Found the matching character

s++; // Advance to the next position within the string
}
return false; // Not found

}

int main() {
const char *phrase = "this is a phrase";
// Try all the characters a through z
for (char ch = 'a'; ch <= 'z'; ch++) {

std::cout << '\'' << ch << '\''<< " is ";
if (!find_char(phrase, ch))

std::cout << "NOT ";
std::cout << "in " << '\"' << phrase << '\"' << '\n';

}
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}

The output of Listing 11.21 (findchar.cpp) is

'a' is in "this is a phrase"
'b' is NOT in "this is a phrase"
'c' is NOT in "this is a phrase"
'd' is NOT in "this is a phrase"
'e' is in "this is a phrase"
'f' is NOT in "this is a phrase"
'g' is NOT in "this is a phrase"
'h' is in "this is a phrase"
'i' is in "this is a phrase"
'j' is NOT in "this is a phrase"
'k' is NOT in "this is a phrase"
'l' is NOT in "this is a phrase"
'm' is NOT in "this is a phrase"
'n' is NOT in "this is a phrase"
'o' is NOT in "this is a phrase"
'p' is in "this is a phrase"
'q' is NOT in "this is a phrase"
'r' is in "this is a phrase"
's' is in "this is a phrase"
't' is in "this is a phrase"
'u' is NOT in "this is a phrase"
'v' is NOT in "this is a phrase"
'w' is NOT in "this is a phrase"
'x' is NOT in "this is a phrase"
'y' is NOT in "this is a phrase"
'z' is NOT in "this is a phrase"

The find_char function in Listing 11.21 (findchar.cpp) uses pointer notation to traverse the string. It

does not need to know in advance the number of characters in the string because it starts at the beginning

and keeps scanning each character in turn until it finds the character it is looking for or encounters the null

terminating character.

Recall from Section 5.1 that for Boolean conditions C++ treats a zero value as false and any non-zero

value as true. Because of such a loose interpretation of Boolean expressions, we can write the find_char
function from Listing 11.21 (findchar.cpp) more compactly as the following:

char find_char(const char *s, char ch) {
// Scan until we see the null character or the character
// we seek
while (*s != '\0' && *s != ch)

s++; // Advance to the next position within the string
return *s; // Null character = false, any other is true

}

The only way out of the loop is to scan the null terminating character or the character sought. Here, if the

loop encounters the null terminating character, it exits and returns that null character. The null character

is simply ASCII zero—Boolean false. If the loop locates the sought character, it exits and returns that

character which will not be ASCII zero. Any character except the null character has an ASCII value greater

than zero; therefore, the calling code interprets the returned character as Boolean true.

©2018 Richard L. Halterman Draft date: December 2, 2018



11.2. ARRAYS 336

Most routines that process strings depend on the strings to be null terminated in order to work properly.

Some standard C string functions include

• int strlen(const char *s) returns the number of characters in string s, not including the

null terminator.

• char *strcpy(char *s, const char *t) copies the contents of string t into string s up

to and including the null terminator; s must point to a buffer large enough to hold all the characters

of C string t.

• char *strncpy(char *s, const char *t, unsigned n)works like strcpy but copies

a maximum of n characters; s must point to a buffer that can hold at least n characters.

• int strcmp(const char *s, const char *t) compares two strings for lexicographic

(dictionary) ordering. The function returns an integer less than zero if s appears lexicographically

before t. The function returns an integer greater than zero if s appears lexicographically after t. The

function returns zero if the two strings are identical.

The following code fragment

std::cout << strcmp("ABC", "XYZ") << '\n';
std::cout << strcmp("XYZ", "ABC") << '\n';
std::cout << strcmp("ABC", "ABC") << '\n';

prints

-1
1
0

• int strncmp(const char *s, const char *t, int n) compares the first n charac-

ters of two strings for lexicographic (dictionary) ordering. The function returns an integer less than

zero if the first n characters of s appear lexicographically before the first n characters of t; that is, s
would appear before t is a dictionary. The function returns an integer greater than zero if the first n
characters of s appear lexicographically after the first n characters of t. The function returns zero if

the first n characters of the two strings are identical.

You should be familiar with C strings because C++ code can use C libraries, and C libraries often use C

strings. Since C strings tend to be problematic, however, in most cases you should use the newer string
objects (see Section 13.1) whenever possible.

11.2.7 Command-line Arguments

Some programs executed from the command line accept additional arguments. For example, in a Microsoft

Windows command prompt the command

copy count.cpp count2.cpp

makes a copy of a file. The macOS and Linux equivalent would be

cp count.cpp count2.cpp
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These filenames are called command-line arguments. They are provided in addition to the program’s name.

Command-line arguments allow the user to customize in some way the behavior of the program when

launching it. In the example above, the user specifies which file to copy and the name of its copy. C++

programs that process command-line arguments do so via an array.

Listing 11.22 (cmdlineargs.cpp) is a program meant to be executed from the command line with extra

arguments. It simply reports the extra information the user supplied.

Listing 11.22: cmdlineargs.cpp

#include <iostream>

int main(int argc, char *argv[]) {
for (int i = 0; i < argc; i++)

std::cout << '[' << argv[i] << "]\n";
}

The following shows one run of Listing 11.22 (cmdlineargs.cpp):

C:\Code>cmdlineargs -h 45 extra
[cmdlineargs]
[-h]
[45]
[extra]

The program did not print the first line shown in this program run. The command shell printed C:\Code>

awaiting the user’s command, and the user typed the remainder of the first line. In response, the program

printed the remaining four lines. The parameter argc contains the number (count) of arguments on the

command line typed by the user. The declaration char *argv[] indicates argv is an array of C strings.

Notice that argv[0] is simply the name of the file containing the program. argv[1] is the string "-h",

argv[2] is the string "45", and argv[3] is the string "extra".

In Listing 11.23 (sqrtcmdline.cpp), the user supplies a range of integers on the command line. The

program then prints all the integers in that range along with their square roots.

Listing 11.23: sqrtcmdline.cpp

#include <iostream>
#include <sstream>
#include <cmath>

int main(int argc, char *argv[]) {
if (argc < 3)

std::cout << "Supply range of values\n";
else {

int start, stop;
std::stringstream st(argv[1]),

sp(argv[2]);
st >> start;
sp >> stop;
for (int n = start; n <= stop; n++)

std::cout << n << " " << sqrt(n) << '\n';
}

}
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Feature Vectors Arrays

First element at index 0 Yes Yes

Keeps track of its own size Yes No

Capacity expands automatically as needed Yes No

May be empty Yes No

Table 11.1: Vectors compared to arrays

Since the command-line arguments are strings, not integers, Listing 11.23 (sqrtcmdline.cpp) must convert

the string parameters into their integer equivalents. The following shows some sample runs of Listing 11.23

(sqrtcmdline.cpp):

C:\Code>sqrtcmdline
Supply range of values

C:\Code>sqrtcmdline 2
Supply range of values

C:\Code>sqrtcmdline 2 10
2 1.41421
3 1.73205
4 2
5 2.23607
6 2.44949
7 2.64575
8 2.82843
9 3
10 3.16228

11.3 Vectors vs. Arrays

It is important to note is that arrays are not objects and, therefore, have no associated methods. The square

bracket notation when used with arrays does not represent a special operator method. The square bracket

array access notation is part of the core C++ language inherited from C. The creators of the C++ vector
library designed vectors to behave as much as possible like primitive C arrays. Arrays have been part of the

C language since its beginning, but vectors (added by C++) have adopted the syntactical features of arrays.

Both arrays and vectors use square brackets for element access, and both locate their first element at index

zero. Both provide access to a block of memory that can hold multiple elements. A vector object adds some

additional capabilities and conveniences that make vectors the better choice for C++ developers. Table 11.1

summarizes many of the differences between vectors and arrays.

Vectors have a close association with arrays—a vector object is a thin wrapper around a dynamic array.

A vector object simply manages several pointers that point to its dynamic array. Figure 11.14 provides a

more accurate picture of the vector-array relationship.

The figure shows that a vector essentially maintains three pointers:

• The pointer labeled _begin points to the beginning of the block of memory allocated for the array

that the vector manages. This corresponds to the location of the first element in the array.
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Figure 11.14 A vector and its associated array.
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• The pointer labeled _end points to the position in the array just past the last viable element in the

vector.

• The _capacity pointer points to the memory location just past the block of memory allocated for

the array.

The _capacity pointer is present because the array managed by a vector often will have more space

allocated than the vector currently needs. An algorithm determines the amount of extra space needed

to balance the demands of storage economy and fast push_back calls. When an executing program

attempts to push_back an element onto a vector that has not reached its capacity, the operation is very

fast; however, an attempt to push_back an element onto a vector that is at its capacity forces the run-time

memory manager to do the following:

• allocate a large enough space elsewhere in memory to store the contents of the larger array, plus some

extra room for future expansion,

• copy all the elements from the original array to the newly allocated array,

• add the new element onto the end of the newly allocated array,

• delete the memory held by the original array, and

• redirect the three pointers in the vector object to point to the appropriate places in the newly allocated

array.

Resizing and copying the array is a relatively time-consuming process, especially as the size of the vector

grows. The vector’s capacity is tuned so that the average time to perform push_back is fast without the

need to consume too much extra memory.

A vector adds value to a raw array by providing convenient methods for adding elements and resizing

the array it manages. A vector keeps track of its own size. Arrays provide none of the convenient methods

that vectors do. The overhead that a vector imposes over a raw dynamic array is negligible. You should

prefer vectors over arrays when writing C++ code.
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What if you are using vectors, but you need to use a C library that accepts only arrays? Fortunately it

is easy to “unwrap” the array that the vector manages. If vec is a vector, the expression &vec[0] is the

address of the first element within the vector. Given a function such as

void print(int a[], int n) {
for (int i = 0; i < n; i++)

std::cout << a[i] << ' ';
std::cout << '\n';

}

that expects an array and its size, you can invoke it with your vec vector object as

print(&vec[0], vec.size());

Note that the first parameter is the starting address of the wrapped array, and the second parameter is the

number of elements. Suppose instead you have a function that uses a pointer range, as in the following

example:

void print(int *begin, int *end) {
for (int *elem = begin; elem != end; elem++)

std::cout << *elem << ' ';
std::cout << '\n';

}

Here begin points to the beginning of an array, and end points to one position past the end of the array.

You can invoke this function with your vec vector object as

print(&vec[0], &vec[0] + vec.size());

Note that the first parameter is the starting address of the wrapped array, and the second parameter uses

pointer arithmetic to compute the memory address just past the end of the wrapped array.

Since the C++11 standard, the std::vector class has a method named data that returns a pointer

to the first element of the array the vector manages. We can rewrite the above statement as

print(vec.data(), vec.data() + vec.size());

or better yet as

auto p = vec.data();
print(p, p + vec.size());

which avoids calling the data method twice.

As these examples show, you may use vector objects instead of arrays without any danger of not being

able to use libraries that deal only with arrays.

If you happen to be using an array and need to use a function that expects a vector instead, it is easy to

make a vector out of an existing array. If arr is a raw integer array containing n elements, the statement

std::vector<int> vec(arr, arr + n);

creates a new vector object vecwith elements that are identical to arr. One disadvantage of this technique

is that it copies all the elements in arr to a new dynamic array managed by the vector. This is because a

vector object demands full control over the array it manages. A vector automatically frees up the memory

of its array when it goes out of scope. Forcing a vector to manage a preexisting array could lead to problems

in two ways:
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• The code that created the array could later delete the contents of the array out from under the

vector. Any attempted use of the vector after that point would be a problem.

• When the vector goes out of scope it automatically deallocates the array it manages. The code

that originally created the array could afterward attempt to access the deallocated array with similar

predictably disastrous results.

For these reasons the developers of the standard library designed the std::vector class to be in full

control of its managed array. We thus cannot create a vector object from array created elsewhere without

making a copy of the array.

We will see in Chapter 19 that it is relatively easy to write a function in a generic way so that it can

accept and process either a vector or an array with equal efficiency.

Vectors are convenient data structures for working with dynamically-allocated arrays. C++ provides an

object-oriented type equivalent to static C arrays. The std::array is the preferred way to represent

statically-allocated arrays in C++.

In order to use the std::array class you must use the following preprocessor directive:

#include <array>

Instead of declaring a static array as

int arr[100];

you can write

std::array<int, 100> arr;

The first expression in the angle brackets specifies the type of elements held by the array, and the second

expression specifies the array’s statically-allocated size. The compiler must be able to compute the size; this

means the size must be an integral literal or defined integral constant. Like a static C array, this size cannot

be specified at run time. Also unlike std::vectors, the size of a std::array object remains fixed

for the duration of the program’s execution. Like a std::vector, however, a std::array object

keeps track of its own size and supports reassignment. Listing 11.24 (stdarray.cpp) shows that we can

determine the number of elements in a std::array object via its size method, just as we would with a

std::vector object.

Listing 11.24: stdarray.cpp

#include <array>
#include <iostream>

int main() {
std::array<int, 10> arr;
std::cout << arr.size() << '\n';

}

Listing 11.24 (stdarray.cpp) prints

10

Because of the limitations of std::arrays compared to std::vectors, the std::array class

does not see as much use in C++ programs compared to the std::vector class.
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Programmers must manage primitive arrays and associated pointers very carefully because array and

pointer misuse is a common source of difficult to find and repair bugs within programs. Vectors effectively

take care of much of the memory management problems that plague raw arrays. Additionally, vectors

provide functionality and convenience that arrays cannot. As we have seen, it is easy to adapt a vector to a

context that requires an array.

11.4 Prime Generation with a Vector

Listing 11.25 (fasterprimes.cpp) uses an algorithm developed by the Greek mathematician Eratosthenes

who lived from 274 B.C. to 195 B.C. The principle behind the algorithm is simple: Make a list of all the

integers two and larger. Two is a prime number, but any multiple of two cannot be a prime number (since a

multiple of two has two as a factor). Go through the rest of the list and mark out all multiples of two (4, 6,

8, ...). Move to the next number in the list (in this case, three). If it is not marked out, it must be prime, so

go through the rest of the list and mark out all multiples of that number (6, 9, 12, ...). Continue this process

until you have listed all the primes you want.

Listing 11.25: fasterprimes.cpp

// File primesieve.cpp

#include <iostream>
#include <vector>
#include <ctime>

// Display the prime numbers between 2 and 500,000 and
// time how long it takes

// Largest potential prime considered
//const int MAX = 500000;
const int MAX = 500;

// Each position in the Boolean vector indicates
// if the number of that position is not prime:
// false means "prime," and true means "composite."
// Initially all numbers are prime until proven otherwise
std::vector<bool> nonprimes(MAX); // Global vector initialized to all false

int main() {
clock_t start_time = clock(); // Record start time

// First prime number is 2; 0 and 1 are not prime
nonprimes[0] = nonprimes[1] = true;

// Start at the first prime number, 2.
for (int i = 2; i < MAX; i++) {

// See if i is prime
if (!nonprimes[i]) {

std::cout << i << " ";
// It is prime, so eliminate all of its
// multiples that cannot be prime
for (int j = 2*i; j < MAX; j += i)

nonprimes[j] = true;
}
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}
std::cout << '\n'; // Move cursor down to next line
// Print the elapsed time
std::cout << "Elapsed time: "

<< static_cast<double>(clock() - start_time)/CLOCKS_PER_SEC
<< " seconds\n";

}

Listing 11.26: fasterprimes2.cpp

#include <iostream>
#include <vector>
#include <ctime>

// Display the prime numbers between 2 and 500,000 and
// time how long it takes

// Largest potential prime considered
const int MAX = 2000000;

// Each position in the Boolean vector indicates
// if the number of that position is not prime:
// false means "prime," and true means "composite."
// Initially all numbers are prime until proven otherwise
std::vector<bool> nonprimes(MAX); // Global vector initialized to all false

void count_primes1() {
int count = 0;
clock_t start_time = clock(); // Record start time
for (int value = 2; value <= MAX; value++) {

// See if value is prime
bool is_prime = true; // Provisionally, value is prime
// Try all possible factors from 2 to the value - 1
for (int trial_factor = 2;

is_prime && trial_factor < value; trial_factor++)
is_prime = (value % trial_factor != 0);

if (is_prime)
count++; // Count the prime number

}
// Print the elapsed time
std::cout << "Count = " << count << " ";
std::cout << "Elapsed time: "

<< static_cast<double>(clock() - start_time)/CLOCKS_PER_SEC
<< " seconds\n";

}

void count_primes2() {
int count = 0;
clock_t start_time = clock(); // Record start time
for (int value = 2; value <= MAX; value++) {

// See if value is prime
bool is_prime = true; // Provisionally, value is prime
double r = value, root = sqrt(r);
// Try all possible factors from 2 to the square
// root of value
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for (int trial_factor = 2;
is_prime && trial_factor <= root; trial_factor++)

is_prime = (value % trial_factor != 0);
if (is_prime)

count++; // Count the prime number
}
// Print the elapsed time
std::cout << "Count = " << count << " ";
std::cout << "Elapsed time: "

<< static_cast<double>(clock() - start_time)/CLOCKS_PER_SEC
<< " seconds\n";

}

void count_primes3() {
int count = 0;
clock_t start_time = clock(); // Record start time

// First prime number is 2; 0 and 1 are not prime
nonprimes[0] = nonprimes[1] = true;

// Start at the first prime number, 2.
for (int i = 2; i < MAX; i++) {

// See if i is prime
if (!nonprimes[i]) {

count++; // It's prime, so count it
// It is prime, so eliminate all of its
// multiples that cannot be prime
for (int j = 2*i; j < MAX; j += i)

nonprimes[j] = true;
}

}
// Print the elapsed time
std::cout << "Count = " << count << " ";
std::cout << "Elapsed time: "

<< static_cast<double>(clock() - start_time)/CLOCKS_PER_SEC
<< " seconds\n";

}

int main() {
count_primes1();
count_primes2();
count_primes3();

}

Recall Listing 8.8 (measureprimespeed.cpp), which also prints all the prime numbers up to 500,000.

Using redirection (see Section 8.4), Listing 8.8 (measureprimespeed.cpp) takes 77 seconds. In comparison,

Listing 11.25 (fasterprimes.cpp) takes about one second to perform the same task on the system. This is

comparable to the square root version, Listing 8.5 (moreefficientprimes.cpp), which takes two seconds to

run. If the goal is to print the prime numbers up to 1,000,000, the original version averages 271 seconds,

or about four and one-half minutes. The square root version averages 4.5 seconds. The new, vector-based

version averages 2 seconds. For 5,000,000 values the unoptimized original version takes a little over an

hour and 33 minutes, the square root version takes a respectable 39 seconds, but vector version averages

only 9 seconds to run.
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Both the vector and array types represent linear sequences of elements. Vectors and arrays are con-

venient for storing collections of data, but they have some limitations. In Section 21.1 we will consider

another kind of aggregate data structure called an associative container. Associative containers permit ele-

ment access via a key rather than an index. Unlike an index, a key is not restricted to an integer expression.

Associative containers are a better choice for some kinds of problems.

11.5 Exercises

1. Can you declare a vector to hold a mixture of ints and doubles?

2. What happens if you attempt to access an element of a vector using a negative index?

3. Given the declaration

std::vector<int> list(100);

(a) What expression represents the very first element of list?

(b) What expression represents the very last element of list?

(c) Write the code fragment that prints out the contents of list.

(d) Is the expression list[3.0] legal or illegal?

4. Given the declarations

std::vector<int> list{2, 3, 1, 14, 4};
int x = 2;

evaluate each of the following expressions:

(a) list[1]

(b) list[x]

(c) list.size()

(d) list.empty()

(e) list.at(3)

(f) list[x] + 1

(g) list[x + 1]

(h) list[list[x]]

(i) list[list.size() - 1]

5. Is the following code fragment legal or illegal?

std::vector<int> list1(5), list2{ 3, 3, 3, 3, 3 };
list1 = list2;

6. Provide a single declaration statement that declares an integer vector named list that contains the

values 45, −3, 16 and 8?

7. Does a vector keep track of the number of elements it contains?

8. Does an array keep track of the number of elements it contains?
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9. Does the std::array class have more in common with a static array or a dynamic array?

10. Complete the following function that adds up all the positive values in an integer vector. For example,

if vector vec contains the elements 3, -3, 5, 2, −1, and 2, the call sum_positive(vec) would

evaluate to 12, since 3 + 5 + 2 + 2 = 12. The function returns zero if the vector is empty. The function

does not affect the contents of the vector.

int sum_positive(const std::vector<int>& v) {
// Add your code...

}

11. Complete the following function that counts the even numbers in an integer vector. For example, if

vector vec contains the elements 3, 5, 4, −1, and 0, the call count_evens(vec) would evaluate

to 2, since the vector contains two even numbers: 4 and 0. The function returns zero if the vector is

empty. The function does not affect the contents of the vector.

int count_evens(const std::vector<int>& v) {
// Add your code...

}

12. Complete the following function that counts the even numbers in a 2D vector of integers.

int count_evens(const std::vector<std::vector<int>>& v) {
// Add your code...

}

13. Complete the following function that compares two integer vectors to see if they contain exactly

the same elements in exactly the same positions. The function returns true if the vectors are equal;

otherwise, it returns false. For example, if vector vec1 contains the elements 3, 5, 2, −1, and 2,

and vector vec2 contains the elements 3, 5, 2, −1, and 2, the call equals(vec1, vec2)
would evaluate to true. If instead vector vec2 contains the elements 3, 2, 5, −1, and 2, the call

equals(vec1, vec2) would evaluate to false (the second and third elements are not in the same

positions). Two vectors of unequal sizes cannot be equal. The function does not affect the contents

of the vectors.

bool equals(const std::vector<int>& v1, const std::vector<int>& v2) {
// Add your code...

}

14. Complete the following function that determines if all the elements in one vector also appear in

another. The function returns true if all the elements in the second vector also appear in the first;

otherwise, it returns false. For example, if vector vec1 contains the elements 3, 5, 2, −1, 7,

and 2, and vector vec2 contains the elements 5, 7, and 2, the call contains(vec1, vec2)
would evaluate to true. If instead vector vec2 contains the elements 3, 8, −1, and 2, the call

contains(vec1, vec2) would evaluate to false (8 does not appear in the first vector). Also

If vector vec2 contains the elements 5, 7, 2, and 5, the call contains(vec1, vec2) would

evaluate to false (5 appears twice in vec2 but only once in vec1, so vec1 does not contain all the

elements that appear in vec2). The function does not affect the contents of the vectors.

bool contains(const std::vector<int>& v1,
const std::vector<int>& v2) {

// Add your code...
}
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15. Suppose your task is to implement the function with the prototype

void proc(std::vector<int> v);

When you implement the body of proc, how can you determine the size of vector v?

16. Consider the declaration

std::vector<std::vector<int>> collection(100, std::vector<int>(200));

(a) What does the expression collection[15][29] represent?

(b) How many elements does collection hold?

(c) Write the C++ code that prints all the elements in collection. All the elements in the same

row should appear on the same line, and but each successive row should appear on its own line.

(d) What does the expression collection[15] represent?

17. Consider the declaration

std::vector<std::vector<std::vector<std::vector<int>>>>
mesh(100, std::vector<int>(200, std::vector<int>(100,

std::vector<int>(50))));

How many elements does mesh hold?

18. How is a C++ array different from a vector?

19. What advantages does a C++ vector provide over an array?

20. Provide the statement(s) that declare and create a static array named a that can hold 20 integers.

21. Provide the statement(s) that declare and ceate a dynamic array named a that can hold 20 integers.

22. What extra attention does a programmer need to give to a static array when its use within a program

is finished?

23. What extra attention does a programmer need to give to a dynamic array when its use within a

program is finished?

24. What extra attention does a programmer need to give to a vector array when its use within a program

is finished?

25. Consider the following function that processes the elements of an array using a range:

bool proc(const int *begin, const int *end) {
// Details omitted . . .

}

and an array and vector declared as shown here:

int a[10];
std::vector<int> v;

(a) Provide the statement that correctly calls proc with array a.

(b) Provide the statement that correctly calls proc with vector v.
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26. Can you declare an array to hold a mixture of ints and doubles?

27. What happens if you attempt to access an element of an array using a negative index?

28. Given the declaration

int list[100];

(a) What expression represents the very first element of list?

(b) What expression represents the very last element of list?

(c) Write the code fragment that prints out the contents of list.

(d) Is the expression list[3.0] legal or illegal?

29. Is the following code fragment legal or illegal?

int list1[5], list2[5] = { 3, 3, 3, 3, 3 };
list1 = list2;

30. Provide a single declaration statement that declares an integer array named list that contains the

values 45, −3, 16 and 8?

31. Does an array keep track of the number of elements it contains?

32. Complete the following function that adds up all the positive values in an array of integers. For

example, if array arr contains the elements 3, -3, 5, 2, −1, and 2, the call sum_positive(arr)
would evaluate to 12, since 3 + 5 + 2 + 2 = 12. The function returns zero if the array is empty (that

is, n < 1).

// Array a with length n
int sum_positive(const int *a, int n) {

// Add your code...
}

33. Complete the following function that sums the even numbers in an array of integers. For example, if

array arr contains the elements 3, 5, 2, −1, and 2, the call sum_evens(arr) would evaluate to

4, since 2 + 2 = 4. The function returns zero if the array is empty (that is, n < 1). The function does

not affect the contents of the array.

// Array a with length n
int sum_evens(const int *a, int n) {

// Add your code...
}

34. Suppose your task is to implement the function with the prototype

void proc(int a[]);

When you implement the body of proc, how can you determine the size of array a?

35. Consider the declaration

int collection[100][200];

What does the expression collection[15][29] represent?
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36. Consider the declaration

int collection[100][200];

How many elements does collection hold?

37. Consider the declaration

int collection[100][200];

Write the C++ code that prints all the elements in collection. All the elements in the same row

should appear on the same line, and but each successive row should appear on its own line.

38. Consider the declaration

int collection[100][200];

What does the expression collection[15] represent?

39. Consider the declaration

int mesh[100][200][100][50];

How many elements does mesh hold?

40. Rewrite the following expressions using pointer notation instead of array notation.

(a) a[4]

(b) a[1]

(c) a[0]

41. Rewrite the following expressions using array notation instead of pointer notation.

(a) *(a + 3)

(b) *a

(c) *(a + 0)

42. Rewrite the following code fragment using array notation instead of pointer notation:

void display(int *a, int n) {
while (n) {

std::cout << *a << " ";
a++;
n--;

}
std::cout << '\n';

}

43. Rewrite the following code fragment using pointer notation instead of array notation:

int sum(int *a, int n) {
int s = 0;
for (int i = 0; i < n; i++)

s += a[i];
return s;

}
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44. Consider the following declaration:

char *word = "abcde";

Evaluate each of the following expressions. If an expression indicates undefined behavior, write UB.

(a) word[1]

(b) *word

(c) word[5]

45. Suppose your task is to implement the function with the prototype

void proc(char *s);

where s is a C string. When you implement the body of proc, how can you determine the length of

string s?

46. Given the following declarations which appear in a function body:

double nums[100], *grid = new double[100];

(a) Where will the elements of the nums array live—static memory, the stack, or the heap?

(b) Where will the elements of the grid array live—static memory, the stack, or the heap?

47. What operator should eventually be used when the new operator is used to allocate memory? What

is the consequence of its omission?

48. List some common errors programmers make when dealing with dynamic memory.

49. Complete the following function that counts the number of negative values in a 10× 10 integer 2D

array.

int count_negatives(int a[10][10]) {
// Add your code...

}
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Chapter 12

Sorting and Searching

Chapters 11 introduced the fundamentals of making and using vectors. In this chapter we explore some

common algorithms for ordering elements within a vector and for locating elements by their value rather

than by their index.

12.1 Sorting

We will use the generic term sequence to refer to either a vector or an array. Sorting—arranging the elements

within a sequence into a particular order—is a common activity. For example, a sequence of integers may

be arranged in ascending order (that is, from smallest to largest). A sequence of words (strings) may

be arranged in lexicographical (commonly called alphabetic) order. Many sorting algorithms exist, and

some perform much better than others. We will consider one sorting algorithm that is relatively easy to

implement.

The selection sort algorithm is relatively easy to implement, and it performs acceptably for smaller

sequences. If A is a sequence, and i and j represent indices within the sequence, selection sort works as

follows:

1. Set i = 0.

2. Examine all the elements A[ j], where j > i. If any of these elements is less than A[i], then exchange

A[i] with the smallest of these elements. (This ensures that all elements after position i are greater

than or equal to A[i].)

3. If i is less than the length of A, increase i by 1 and goto Step 2.

If the condition in Step 3 is not met, the algorithm terminates with a sorted sequence. The command

to “goto Step 2” in Step 3 represents a loop. We can begin to translate the above description into C++ as

follows:

// n is A's length
for (int i = 0; i < n - 1; i++) {

// Examine all the elements
// A[j], where j > i.
// If any of these A[j] is less than A[i],
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// then exchange A[i] with the smallest of these elements.
}

The directive at Step 2 beginning with “Examine all the elements A[ j], where j > i” also requires a loop.

We continue refining our implementation with:

// n is A's length
for (int i = 0; i < n - 1; i++) {

for (int j = i + 1; j < n; j++) {
// Examine all the elements
// A[j], where j > i.

}
// If any A[j] is less than A[i],
// then exchange A[i] with the smallest of these elements.

}

In order to determine if any of the elements is less than A[i], we introduce a new variable named

small. The purpose of small is to keep track of the position of the smallest element found so far. We

will set small equal to i initially because we wish to locate any element less than the element found at

position i.

// n is A's length
for (int i = 0; i < n - 1; i++) {

// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less than A[i]
int small = i;
for (int j = i + 1; j < n; j++) {

if (A[j] < A[small])
small = j; // Found a smaller element, update small

}
// If small changed, we found an element smaller than A[i]
if (small != i)

// exchange A[small] and A[i]
}

Listing 12.1 (sortintegers.cpp) provides the complete C++ implementation of the selection_sort
function within a program that tests it out.

Listing 12.1: sortintegers.cpp

#include <iostream>
#include <vector>

/*
* swap(a, b)
* Interchanges the values of memory
* referenced by its parameters a and b.
* It effectively interchanges the values
* of variables in the caller's context.
*/

void swap(int& a, int& b) {
int temp = a;
a = b;
b = temp;
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}

/*
* selection_sort
* Arranges the elements of vector a into ascending order.
* a is a vector that contains integers.
*/

void selection_sort(std::vector<int>& a) {
int n = a.size();
for (int i = 0; i < n - 1; i++) {

// Note: i,small, and j represent positions within a
// a[i], a[small], and a[j] represents the elements at
// those positions.
// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less
// than a[i]
int small = i;
// See if a smaller value can be found later in the vector
for (int j = i + 1; j < n; j++)

if (a[j] < a[small])
small = j; // Found a smaller value

// Swap a[i] and a[small], if a smaller value was found
if (i != small)

swap(a[i], a[small]);
}

}

/*
* print
* Prints the contents of a vector of integers.
* a is the vector to print.
* a is not modified.
*/

void print(const std::vector<int>& a) {
int n = a.size();
std::cout << '{';
if (n > 0) {

std::cout << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
}
std::cout << '}';

}

int main() {
std::vector<int> list{23, -3, 4, 215, 0, -3, 2, 23, 100, 88, -10};
std::cout << "Before: ";
print(list);
std::cout << '\n';
selection_sort(list);
std::cout << "After: ";
print(list);
std::cout << '\n';

}
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Listing 12.1 (sortintegers.cpp) uses a fancier print routine, separating the vector’s elements with

commas. The program’s output is

Before: {23,-3,4,215,0,-3,2,23,100,88,-10}
After: {-10,-3,-3,0,2,4,23,23,88,100,215}

We really do not need to write our own function to interchange the values of two integers as shown

in Listing 12.1 (sortintegers.cpp). The C++ standard library includes std::swap that works just like the

swap function in Listing 12.1 (sortintegers.cpp); therefore, if you remove our custom swap definition in

Listing 12.1 (sortintegers.cpp) and replace the call to swap with a call to std::swap, the program will

work just as well.

12.2 Flexible Sorting

What if we want to change the behavior of the sorting function in Listing 12.1 (sortintegers.cpp) so that it

arranges the elements in descending order instead of ascending order? It is actually an easy modification;

simply change the line

if (a[j] < a[small])

to be

if (a[j] > a[small])

Suppose we want to change the sort so that it sorts the elements in ascending order except that all the even

numbers in the vector appear before all the odd numbers? This would take a little more effort, but it still is

possible to do.

The next question is more intriguing: How can we rewrite the selection_sort function so that, by

passing an additional parameter, it can sort the vector in any way we want?

We can make our sort function more flexible by making it higher-order function (see Section 10.10)

that accepts an ordering function as a parameter. Listing 12.2 (flexibleintsort.cpp) arranges the elements in

a vector two different ways using the same selection_sort function.

Listing 12.2: flexibleintsort.cpp

#include <iostream>
#include <vector>

/*
* less_than(a, b)
* Returns true if a < b; otherwise, returns
* false.
*/

bool less_than(int a, int b) {
return a < b;

}

/*
* greater_than(a, b)
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* Returns true if a > b; otherwise, returns
* false.
*/

bool greater_than(int a, int b) {
return a > b;

}

/*
* selection_sort(a, compare)
* Arranges the elements of a in an order determined
* by the compare function.
* a is a vector of integers.
* compare is a function that compares the ordering of
* two integers.
*/

void selection_sort(std::vector<int>& a, bool (*compare)(int, int)) {
int n = a.size();
for (int i = 0; i < n - 1; i++) {

// Note: i,small, and j represent positions within a
// a[i], a[small], and a[j] represents the elements at
// those positions.
// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less
// than a[i]
int small = i;
// See if a smaller value can be found later in the vector
for (int j = i + 1; j < n; j++)

if (compare(a[j], a[small]))
small = j; // Found a smaller value

// Swap a[i] and a[small], if a smaller value was found
if (i != small)

std::swap(a[i], a[small]); // Uses std::swap
}

}

/*
* print
* Prints the contents of an integer vector
* a is the vector to print.
* a is not modified.
*/

void print(const std::vector<int>& a) {
int n = a.size();
std::cout << '{';
if (n > 0) {

std::cout << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
}
std::cout << '}';

}

int main() {
std::vector<int> list{ 23, -3, 4, 215, 0, -3, 2, 23, 100, 88, -10 };
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std::cout << "Original: ";
print(list);
std::cout << '\n';
selection_sort(list, less_than);
std::cout << "Ascending: ";
print(list);
std::cout << '\n';
selection_sort(list, greater_than);
std::cout << "Descending: ";
print(list);
std::cout << '\n';

}

Listing 12.2 (flexibleintsort.cpp) takes advantage of the standard swap function (see Section 12.1).

The output of Listing 12.2 (flexibleintsort.cpp) is

Original: {23,-3,4,215,0,-3,2,23,100,88,-10}
Ascending: {-10,-3,-3,0,2,4,23,23,88,100,215}
Descending: {215,100,88,23,23,4,2,0,-3,-3,-10}

The comparison function passed to the sort routine customizes the sort’s behavior. The basic structure of

the sorting algorithm does not change, but its notion of ordering is adjustable. If the second parameter to

selection_sort is less_than, the sort routine arranges the elements into ascending order. If the

caller passes greater_than instead, selection_sort rearranges vector’s elements into descending

order. More creative orderings are possible with more elaborate comparison functions.

Selection sort is a relatively efficient simple sort, but more advanced sorts are, on average, much faster

than selection sort, especially for large data sets. One such general purpose sort is Quicksort, devised by

C. A. R. Hoare in 1962. Quicksort is the fastest known general purpose sort. Since sorting is a common data

processing activity, the standard C library provides a function named qsort that implements Quicksort.

More information about Quicksort and qsort is available at http://en.wikipedia.org/wiki/
Quicksort.

12.3 Search

Searching a vector for a particular element is a common activity. We will consider the two most common

search strategies: linear search and binary search.

12.3.1 Linear Search

Listing 12.3 (linearsearch.cpp) uses a function named locate that returns the position of the first occur-

rence of a given element in a vector of integers; if the element is not present, the function returns −1.

Listing 12.3: linearsearch.cpp

#include <iostream>
#include <vector>
#include <iomanip>

/*
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* locate(a, seek)
* Returns the index of element seek in vector a.
* Returns -1 if seek is not an element of a.
* a is the vector to search.
* seek is the element to find.
*/

int locate(const std::vector<int>& a, int seek) {
int n = a.size();
for (int i = 0; i < n; i++)

if (a[i] == seek)
return i; // Return position immediately

return -1; // Element not found
}

/*
* format(i)
* Prints integer i right justified in a 4-space
* field. Prints "****" if i > 9,999.
*/

void format(int i) {
if (i > 9999)

std::cout << "****" << '\n'; // Too big!
else

std::cout << std::setw(4) << i;
}

/*
* print(v)
* Prints the contents of an int vector.
* v is the vector to print.
*/

void print(const std::vector<int>& v) {
for (int i : v)

format(i);
}

/*
* display(a, value)
* Draws an ASCII art arrow showing where
* the given value is within the vector.
* a is the vector.
* value is the element to locate.
*/

void display(const std::vector<int>& a, int value) {
int position = locate(a, value);
if (position >= 0) {

print(a); // Print contents of the vector
std::cout << '\n';
position = 4*position + 7; // Compute spacing for arrow
std::cout << std::setw(position);
std::cout << " ^ " << '\n';
std::cout << std::setw(position);
std::cout << " | " << '\n';
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std::cout << std::setw(position);
std::cout << " +-- " << value << '\n';

}
else {

std::cout << value << " not in ";
print(a);
std::cout << '\n';

}
std::cout << "======" << '\n';

}

int main() {
std::vector<int> list{ 100, 44, 2, 80, 5, 13, 11, 2, 110 };
display(list, 13);
display(list, 2);
display(list, 7);
display(list, 100);
display(list, 110);

}

The output of Listing 12.3 (linearsearch.cpp) is

100 44 2 80 5 13 11 2 110
^
|
+-- 13

======
100 44 2 80 5 13 11 2 110

^
|
+-- 2

======
7 not in 100 44 2 80 5 13 11 2 110
======
100 44 2 80 5 13 11 2 110

^
|
+-- 100

======
100 44 2 80 5 13 11 2 110

^
|
+-- 110

======

The key function in Listing 12.3 (linearsearch.cpp) is locate; all the other functions simply lead to a

more interesting display of locate’s results. If locate finds a match, it immediately returns the position

of the matching element; otherwise, if locate considers all the elements of the vector and finds no match,

it returns −1. −1 is a good indication of failure, since −1 is not a valid index in a C++ vector.

The other functions are

• format prints an integer right justified within a four-space field. Extra spaces pad the beginning of

the number if necessary.
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Figure 12.1 Linear search. The grayed out elements are not considered during the search process.

list

1 20 3 5 64 7

13 11 244

813?

5

int list[] = { 100, 44, 2, 80, 5, 13, 11, 2, 110 };

int x = locate(list, 9, 13);

100 2 80 5 110

• print prints out the elements in any vector using the format function to properly format the

values. This alignment simplifies the display function.

• display uses locate, print, and setw to provide a graphical display of the operation of the

locate function.

The kind of search performed by locate is known as linear search, since the process takes a straight

line path from the beginning to the end of the vector, and it considers each element in order. Figure 12.1

illustrates linear search.

12.3.2 Binary Search

Linear search is acceptable for relatively small vectors, but the process of examining each element in a large

vector is time consuming. An alternative to linear search is binary search. In order to perform binary search

a vector’s elements must be in sorted order. Binary search exploits this sorted structure of the vector using

a clever but simple strategy that quickly zeros in on the element to find:

1. If the vector is empty, return −1.

2. Check the element in the middle of the vector. If the element is what you are seeking, return its

position. If the middle element is larger than the element you are seeking, perform a binary search on

the first half of the vector. If the middle element is smaller than the element you are seeking, perform

a binary search on the second half of the vector.

This approach is analogous to looking for a telephone number in the phone book in this manner:

1. Open the book at its center. If the name of the person is on one of the two visible pages, look at the

phone number.

2. If not, and the person’s last name is alphabetically less the names on the visible pages, apply the

search to the left half of the open book; otherwise, apply the search to the right half of the open book.

3. Discontinue the search with failure if the person’s name should be on one of the two visible pages

but is not present.
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Listing 12.4 (binarysearch.cpp) contains a C++ function that implements the binary search algorithm.

Listing 12.4: binarysearch.cpp

#include <iostream>
#include <vector>
#include <iomanip>

/*
* binary_search(a, seek)
* Returns the index of element seek in vector a;
* returns -1 if seek is not an element of a
* a is the vector to search; a's contents must be
* sorted in ascending order.
* seek is the element to find.
*/

int binary_search(const std::vector<int>& a, int seek) {
int first = 0, // Initially the first position

last = a.size() - 1, // Initially the last position
mid; // The middle of the vector

while (first <= last) {
mid = first + (last - first + 1)/2;
if (a[mid] == seek)

return mid; // Found it
else if (a[mid] > seek)

last = mid - 1; // continue with 1st half
else // a[mid] < seek

first = mid + 1; // continue with 2nd half
}
return -1; // Not there

}

/*
* format(i)
* Prints integer i right justified in a 4-space
* field. Prints "****" if i > 9,999.
*/

void format(int i) {
if (i > 9999)

std::cout << "****\n"; // Too big!
else

std::cout << std::setw(4) << i;
}

/*
* print(v)
* Prints the contents of an int vector.
* v is the vector to print.
*/

void print(const std::vector<int>& v) {
for (int i : v)

format(i);
}
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/*
* display(a, value)
* Draws an ASCII art arrow showing where
* the given value is within the vector.
* a is the vector.
* value is the element to locate.
*/

void display(const std::vector<int>& a, int value) {
int position = binary_search(a, value);
if (position >= 0) {

print(a); // Print contents of the vector
std::cout << '\n';
position = 4*position + 7; // Compute spacing for arrow
std::cout << std::setw(position);
std::cout << " ^ " << '\n';
std::cout << std::setw(position);
std::cout << " | " << '\n';
std::cout << std::setw(position);
std::cout << " +-- " << value << '\n';

}
else {

std::cout << value << " not in ";
print(a);
std::cout << '\n';

}
std::cout << "======" << '\n';

}

int main() {
// Check binary search on even- and odd-length vectors and
// an empty vector
std::vector<int> even_list{ 1, 2, 3, 4, 5, 6, 7, 8 },

odd_list{ 1, 2, 3, 4, 5, 6, 7, 8, 9 },
empty_list;

for (int i = -1; i <= 10; i++)
display(even_list, i);

for (int i = -1; i <= 10; i++)
display(odd_list, i);

for (int i = -1; i <= 10; i++)
display(empty_list, i);

}

In the binary_search function:

• The initializations of first and last:

int first = 0, // Initially the first position
last = a.size() - 1, // Initially the last position

ensure that first is less than or equal to last for a nonempty vector. If the vector is empty,

first is zero, and last is equal to n − 1 which equals −1. So in the case of an empty vector

binary_search will skip the loop body and immediately return −1. This is correct behavior

because an empty vector cannot possibly contain any item we seek.
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Figure 12.2 Binary search. The grayed out elements are not considered during the search.

list

1 20 3 5 64 7 8

33?

5

std::vector<int> list = { 10, 14, 20, 28, 29, 33,

                          34, 45, 48 };

int x = binary_search(list, 33);

10 20 28 29 33 34 4514 48

• The variable mid represents the midpoint value between first and last, and it is computed in the

statement

mid = first + (last - first + 1)/2;

This arithmetic may look a bit complex. The more straightforward way to compute the average of

two values would be

mid = (first + last)/2; // Alternate calculation

The problem with this method of computing the midpoint is it fails to produce the correct results more

times than the version found in Listing 12.4 (binarysearch.cpp). The problem arises if the vector is

large, and first and last both have relatively large values. The expression first + last can

overflow the range of integers producing a meaningless result. The subsequent division by two is too

late to help. The result of the expression first + last would overflow the range of integers more

often than the expression first + (last - first + 1)/2 because (last - first + 1)/2
would be a much smaller value to add to first. If you are thinking “I would never have thought of

that problem,” don’t worry too much. A large number of competent, professional software engineers

have fallen prey to this oversight (see http://googleresearch.blogspot.com/2006/
06/extra-extra-read-all-about-it-nearly.html).

The calculation of mid ensures that first ≤ mid ≤ last.

• If mid is the location of the sought element (checked in the first if statement), the loop terminates,

and returns the correct position.

• The second if statement ensures that either last decreases or first increases each time through

the loop. Thus, if the loop does not terminate for other reasons, eventually first will be larger than

last, and the loop will terminate. If the loop terminates for this reason, the function returns −1.

This is the correct behavior.

• The second if statement excludes the irrelevant elements from further search. The number of ele-

ments remaining to consider is effectively cut in half.

Figure 12.2 illustrates how binary search works.
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The implementation of the binary search algorithm is more complicated than the simpler linear search

algorithm. Ordinarily simpler is better, but for algorithms that process data structures that potentially hold

large amounts of data, more complex algorithms employing clever tricks that exploit the structure of the

data (as binary search does) often dramatically outperform simpler, easier-to-code algorithms.

For a fair comparison of linear vs. binary search, suppose we want to locate an element in a sorted

vector. That the vector is ordered is essential for binary search, but it can be helpful for linear search as

well. The revised linear search algorithm is

// This version requires vector a to be sorted in
// ascending order.
int linear_search(const std::vector<int>& a, int seek) {

int n = a.size();
for (int i = 0; i < n && a[i] <= seek; i++)

if (a[i] == seek)
return i; // Return position immediately

return -1; // Element not found
}

Notice that, as in the original version of linear search, the loop will terminate when all the elements have

been examined, but it also will terminate early when it encounters an element larger than the sought element.

Since the vector is sorted, there is no need to continue the search once you have begun seeing elements larger

than your sought value; seek cannot appear after a larger element in a sorted vector.

Suppose a vector to search contains n elements. In the worst case—looking for an element larger than

any currently in the vector—the loop in linear search takes n iterations. In the best case—looking for an

element smaller than any currently in the vector—the function immediately returns without considering

any other elements. The number of loop iterations thus ranges from 1 to n, and so on average linear search

requires n
2 comparisons before the loop finishes and the function returns.

Now consider binary search of a vector that contains n elements. After each comparison the size of the

vector left to consider is one-half the original size. If the sought item is not found on the first probe, the

number of remaining elements to search is n
2 . After the next time through the loop, the number of elements

left to consider is one-half of n
2 , or n

4 . After the third iteration, search space in the vector drops to one-half

of n
4 , which is n

8 . This process of cutting the search space in half continues each time through the loop until

the process locates the sought element or runs out of elements to consider. The problem of determining

how many times a set of things can be divided in half until only one element remains can be solved with a

base-2 logarithm. For binary search, the worst case scenario of not finding the sought element requires the

loop to make log2 n iterations.

How does this analysis help us determine which search is better? The quality of an algorithm is judged

by two key characteristics:

• How much time (processor cycles) does it take to run?

• How much space (memory) does it take to run?

In our situation, both search algorithms process the sequence with only a few extra local variables, so for

large sequences they both require essentially the same space. The big difference here is speed. Binary

search performs more elaborate computations each time through the loop, and each operation takes time, so

perhaps binary search is slower. Linear search is simpler (fewer operations through the loop), but perhaps

its loop executes many more times than the loop in binary search, so overall it is slower.

We can deduce the faster algorithm in two ways: empirically and analytically. An empirical test is an

experiment; we carefully implement both algorithms and then measure their execution times. The analyt-
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ical approach analyzes the source code to determine how many operations the computer’s processor must

perform to run the program on a problem of a particular size.

Listing 12.5 (searchcompare.cpp) measures the running times of the two kinds of searches to compare

the two algorithms empirically.

Listing 12.5: searchcompare.cpp

#include <iostream>
#include <iomanip>
#include <vector>
#include <ctime>

/*
* binary_search(a, seek)
* Returns the index of element seek in vector a;
* returns -1 if seek is not an element of a
* a is the vector to search; a's contents must be
* sorted in ascending order.
* seek is the element to find.
*/

int binary_search(const std::vector<int>& a, int seek) {
int n = a.size();
int first = 0, // Initially the first element in vector

last = n - 1, // Initially the last element in vector
mid; // The middle of the vector

while (first <= last) {
mid = first + (last - first + 1)/2;
if (a[mid] == seek)

return mid; // Found it
else if (a[mid] > seek)

last = mid - 1; // continue with 1st half
else // a[mid] < seek

first = mid + 1; // continue with 2nd half
}
return -1; // Not there

}

/*
* linear_search(a, seek)
* Returns the index of element seek in vector a.
* Returns -1 if seek is not an element of a.
* a is the vector to search.
* seek is the element to find.
* This version requires vector a to be sorted in
* ascending order.
*/

int linear_search(const std::vector<int>& a, int seek) {
int n = a.size();
for (int i = 0; i < n && a[i] <= seek; i++)

if (a[i] == seek)
return i; // Return position immediately

return -1; // Element not found
}
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/*
* Tests the execution speed of a given search function on a
* vector.
* search - the search function to test
* v - the vector to search
* trials - the number of trial runs to average
* Returns the elapsed time in seconds
* The C++ chrono library defines the types
* system_clock::time_point and microseconds.
*/

double time_execution(int (*search)(const std::vector<int>&, int),
std::vector<int>& v, int trials) {

int n = v.size();
// Average the time over a specified number of trials
double elapsed = 0.0;
for (int iters = 0; iters < trials; iters++ ) {

clock_t start_time = clock(); // Start the timer
for (int i = 0; i < n; i++) // Search for all elements

search(v, i);
clock_t end_time = clock(); // Stop the timer
elapsed += static_cast<double>(end_time - start_time)/CLOCKS_PER_SEC;

}
return elapsed/trials; // Mean elapsed time per run

}

int main() {
std::cout << "---------------------------------------\n";
std::cout << " Vector Linear Binary\n";
std::cout << " Size Search Search\n";
std::cout << "---------------------------------------\n";

// Test the sorts on vectors with 1,000 elements up to
// 10,000 elements.
for (int size = 0; size <= 50000; size += 5000) {

std::vector<int> list(size); // Make a vector of the appropiate size

// Ensure the elements are ordered low to high
for (int i = 0; i < size; i++)

list[i] = i;

std::cout << std::setw(7) << size;
// Search for all the elements in list using linear search
// Compute running time averaged over five runs
std::cout << std::fixed << std::setprecision(3) << std::setw(12)

<< time_execution(linear_search, list, 5)
<< " sec";

// Search for all the elements in list binary search
// Compute running time averaged over 25 runs
std::cout << std::fixed << std::setprecision(3) << std::setw(12)

<< time_execution(binary_search, list, 25)
<< " sec\n";

}
}
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Listing 12.5 (searchcompare.cpp) applies linear search and binary search to vectors of various sizes and dis-

plays the results. The vector sizes range from 0 to 50,000. The program uses the function time_execution
to compute the average running times of linear search and binary search. The main function directs which

search time_execution should perform by passing as the first parameter a pointer to the appropriate

function. The second parameter to time_execution specifies the number of runs the function should

use to compute the average. Notice that in this program we average linear search over five runs and execute

binary search over 25 runs. We subject the binary search function to more runs since it executes so quickly,

and five runs is not an adequate sample size to evaluate its performance, especially for smaller vectors

where the binary search’s execution time is close to the resolution of the timer. Besides, since binary search

does execute so quickly, we easily can afford to let time_execution run more tests and compute a more

accurate average.

In Listing 12.5 (searchcompare.cpp) we use stream manipulators std::fixed and std::setprecision
to dress up the output. The std::fixed manipulator adjusts std::cout to use a fixed number of deci-

mal places, and the std::setprecision manipulator specifies the number of digits to display after the

decimal point. The two manipulators in tandem allow us to align the columns of numbers by their decimal

points.

A sample run of Listing 12.5 (searchcompare.cpp) displays

---------------------------------------
Vector Linear Binary
Size Search Search

---------------------------------------
0 0.000 sec 0.000 sec

5000 0.112 sec 0.001 sec
10000 0.444 sec 0.002 sec
15000 1.003 sec 0.003 sec
20000 2.172 sec 0.007 sec
25000 3.444 sec 0.005 sec
30000 5.254 sec 0.006 sec
35000 7.216 sec 0.008 sec
40000 9.701 sec 0.009 sec
45000 11.709 sec 0.018 sec
50000 12.287 sec 0.012 sec

With a vector of size 50,000 linear search takes on average about 12 seconds on one system, while binary

search requires a small fraction of a one second. The times for binary search are so small that the progression

of times wanders a bit from perfectly ascending order. This is because the operating system is performing

other tasks while our program is running. It gives each active program its own slice of processor time

to run. The operating system can interrupt executing programs to give other tasks time to run. For most

programs this processor time sharing is imperceptible, but it can make a significant difference in short-

running programs. We can see in the results that the operating system must have attending to some other

matters during the binary search of vectors of size 20,000 and 45,000, as these times are slightly higher than

we would expect from the pattern of values. Ideally we would perform the tests multiple times and average

the results to get a more accurate picture.

If we increase the vector’s size to 500,000, linear search runs in 830 seconds (13 minutes, 50 seconds),

while binary search still takes less than one second! Empirically, binary search performs dramatically better

than linear search.
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Action Operations Operation Cost Iterations Cost

n = a.size() =,a.size 2 1 2

i = 0 = 1 1 1

i < size && a[i] <= seek <=,&&,[],<= 4 n/2 2n

a[i] == seek [],== 2 n/2 n

return i or return -1 return 1 1 1

Total Cost 3n+4

Table 12.1: Analysis of Linear Search

One might wonder why a binary search on vector with 45,000 items is slightly

slower than one on a vector containing 50,000 elements. This particular execution

was performed on a computer running Microsoft Windows. Microsoft Windows’

timer resolution via the clock function is milliseconds, so the values for bi-

nary search are near that timer’s resolution. Windows is a multitasking operating

system, meaning it manages a number of tasks (programs) simultaneously. The

measurements above were performed on a “lightly loaded system,” which means

during the program’s execution the user was not downloading files, browsing the

web, or doing anything else in particular. Windows, as all modern multitasking

OSs, runs a lot of services (other programs) in the background that steal processor

time slices. It continually checks for network connections, tracks the users mouse

movement, etc. The binary search algorithm’s speed coupled with a multitasking

OS with millisecond timer resolution can lead to such minor timing anomalies.

In addition to using the empirical approach, we can judge which algorithm is better by analyzing the

source code for each function. Each arithmetic operation, assignment, logical comparison, and vector access

requires time to execute. We will assume each of these activities requires one unit of processor “time.” This

assumption is not strictly true, but it will give acceptable results for relative comparisons. Since we will

follow the same rules when analyzing both search algorithms, the relative results for comparison purposes

will be fairly accurate.

We first consider linear search:

int linear_search(const std::vector<int>& a, int seek) {
int n = a.size();
for (int i = 0; i < n && a[i] <= seek; i++)

if (a[i] == seek)
return i; // Return position immediately

return -1; // Element not found
}

We determined that, on average, the loop makes n
2 iterations for a vector of length n. The initialization of

i happens only one time during each call to linear_search. All other activity involved with the loop

except the return statements happens n
2 times. The function returns either i or −1, and only one return

is executed during each call. Table 12.1 shows the breakdown for linear search.

The running time of the linear_search function thus can be expressed as a simple linear function:

L(n) = 3n+4.
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Action Operations Operation Cost Iterations Cost

n = a.size() =,a.size 2 1 2

first = 0 = 1 1 1

last = n - 1 =,- 2 1 2

first <= last <= 1 log2 n log2 n

mid = first + (last - first + 1)/2 =,+,-,+,/ 5 log2 n 5log2 n

v[mid] == seek [],== 2 log2 n 2log2 n

v[mid] > seek [],> 2 log2 n 2log2 n

last = mid - 1 or first = mid + 1 =,± 2 log2 n 2log2 n

return mid or return -1 return 1 1 1

Total Cost 12log2 n+6

Table 12.2: Analysis of Binary Search

Next, we consider binary search:

int binary_search(const std::vector<int>& a, int seek) {
int n = a.size(), // Number of elements

first = 0, // Initially the first element in vector
last = n - 1, // Initially the last element in vector
mid; // The middle of the vector

while (first <= last) {
mid = first + (last - first + 1)/2;
if (a[mid] == seek)

return mid; // Found it
else if (a[mid] > seek)

last = mid - 1; // continue with 1st half
else // a[mid] < seek

first = mid + 1; // continue with 2nd half
}
return -1; // Not there

}

We determined that in the worst case the loop in binary_search iterates log2 n times if the vector

contains n elements. The two initializations before the loop are performed once per call. Most of the

actions within the loop occur log2 n times, except that only one return statement can be executed per

call, and in the if/else statement only one path can be chosen per loop iteration. Table 12.2 shows the

complete analysis of binary search.

We will call our binary search function B(n). Figure 12.3 shows the plot of the two functions L(n) =
3n+4 and B(n) = 12log2 n+6.

For n < 17, the linear function 3n+ 4 is less than the binary function 12log2 n+ 6. This means that

linear search should perform better than binary search for vector sizes less than 17. This is because the

code for linear search is less complicated, and it can complete its work on smaller vectors before the binary

search finishes its more sophisticated computations. At n= 17, however, the two algorithms should perform

about the same because

L(17) = 3(17)+4 = 51+4 = 55 ≈ 55.05 = 49.05+6 = 12(4.09)+6 = 12log2 17+6 = B(17)

Figure 12.3 shows that for all n > 17 binary search outperforms linear search, and the performance gap

increases rapidly as n grows. This wide performance discrepancy agrees with our empirical observations
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Figure 12.3 A graph of the functions derived from analyzing the linear and binary search routines
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we obtained from Listing 12.5 (searchcompare.cpp). Unfortunately we cannot empirically compare the

running times of the two searches for vectors small enough to demonstrate that linear search is faster for

very small vectors. As the output of Listing 12.5 (searchcompare.cpp) shows, both searches complete their

work in time less than the resolution of our timer for vectors with 1,000 elements. Both empirically and

analytically, we see that binary search is fast even for very large vectors, while linear search is impractical

for large vectors.

12.4 Vector Permutations

Sometimes it is useful to consider all the possible arrangements of the elements within a vector. A sorting

algorithm, for example, must work correctly on any initial arrangement of elements in a vector. To test

a sort function, a programmer could check to see if it produces the correct result for all arrangements

of a relatively small vector. A rearrangement of a collection of ordered items is called a permutation.

Listing 12.6 (vectorpermutations.cpp) prints all the permutations of the contents of a given vector.

Listing 12.6: vectorpermutations.cpp

#include <iostream>
#include <vector>

/*
* print
* Prints the contents of a vector of integers
* a is the vector to print; a is not modified
*/

void print(const std::vector<int>& a) {
int n = a.size();
std::cout << "{";
if (n > 0) {

std::cout << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
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}
std::cout << "}";

}

/*
* Prints all the permutations of vector a in the
* index range begin...end, inclusive. The function's
* behavior is undefined if begin or end
* represents an index outside of the bounds of vector a.
*/

void permute(std::vector<int>& a, int begin, int end) {
if (begin == end) {

print(a);
std::cout << '\n';

}
else {

for (int i = begin; i <= end; i++) {
// Interchange the element at the first position
// with the element at position i
std::swap(a[begin], a[i]);
// Recursively permute the rest of the vector
permute(a, begin + 1, end);
// Interchange the current element at the first position
// with the current element at position i
std::swap(a[begin], a[i]);

}
}

}

/*
* Tests the permutation functions
*/

int main() {
// Get number of values from the user
std::cout << "Please enter number of values to permute: ";
int number;
std::cin >> number;
// Create the vector to hold all the values
std::vector<int> list(number);
// Initialize the vector
for (int i = 0; i < number; i++)

list[i] = i;

// Print original list
print(list);
std::cout << "\n----------\n";
// Print all the permutations of list
permute(list, 0, number - 1);
std::cout << "\n----------\n";
// Print list after all the manipulations
print(list);

}

A sample run of Listing 12.6 (vectorpermutations.cpp) when the user enters 4 prints
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Please enter number of values to permute: 4
{0,1,2,3}
----------
{0,1,2,3}
{0,1,3,2}
{0,2,1,3}
{0,2,3,1}
{0,3,2,1}
{0,3,1,2}
{1,0,2,3}
{1,0,3,2}
{1,2,0,3}
{1,2,3,0}
{1,3,2,0}
{1,3,0,2}
{2,1,0,3}
{2,1,3,0}
{2,0,1,3}
{2,0,3,1}
{2,3,0,1}
{2,3,1,0}
{3,1,2,0}
{3,1,0,2}
{3,2,1,0}
{3,2,0,1}
{3,0,2,1}
{3,0,1,2}

----------
{0,1,2,3}

The permute function in Listing 12.6 (vectorpermutations.cpp) is a recursive function, as it calls

itself inside of its definition. We have seen how recursion can be an alternative to iteration; however, the

permute function here uses both iteration and recursion together to generate all the arrangements of a

vector. At first glance, the combination of these two algorithm design techniques as used here may be

difficult to follow, but we actually can understand the process better if we ignore some of the details of the

code.

First, notice that in the recursive call the argument begin is one larger, and end remains the same.

This means as the recursion progresses the ending index never changes, and the beginning index keeps

increasing until it reaches the ending index. The recursion terminates when begin becomes equal to end.

In its simplest form the function looks like this:

void permute(int *a, int begin, int end) {
if (begin == end)

// Print the whole vector
else

// Do the interesting part of the algorithm
}

Let us zoom in on the interesting part of the algorithm (less the comments):

for (int i = begin; i <= end; i++) {
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swap(a[begin], a[i]);
permute(a, begin + 1, end);
swap(a[begin], a[i]);

}

If the mixture of iteration and recursion is confusing, eliminate iteration!

If a loop iterates a fixed number of times, you may replace the loop with the statements in its body

duplicated that number times; for example, we can rewrite the code

for (int i = 0; i < 5; i++)
std::cout << i << '\n';

as

std::cout << 0 << '\n';
std::cout << 1 << '\n';
std::cout << 2 << '\n';
std::cout << 3 << '\n';
std::cout << 4 << '\n';

Notice that the loop is gone. This process of transforming a loop into the series of statements that the

loop would perform is known as loop unrolling. Compilers sometimes unroll loops to make the code’s

execution faster. After unrolling the loop the loop control variable (in this case i) is gone, so there is no

need to initialize it (done once) and, more importantly, no need to check its value and update it during each

iteration of the loop.

Our purpose for unrolling the loop in perform is not to optimize it. Instead we are trying to understand

better how the algorithm works. In order to unroll perform’s loop, we will consider the case for vectors

containing exactly three elements. In this case the for in the perform function would be hardcoded as

for (int i = 0; i <= 2; i++) {
swap(a[begin], a[i]);
permute(a, begin + 1, end);
swap(a[begin], a[i]);

}

and we can transform this code into

swap(a[begin], a[0]);
permute(a, begin + 1, end);
swap(a[begin], a[0]);

swap(a[begin], a[1]);
permute(a, begin + 1, end);
swap(a[begin], a[1]);

swap(a[begin], a[2]);
permute(a, begin + 1, end);
swap(a[begin], a[2]);

Once the loop is gone, we see we have simply a series of recursive calls of permute sandwiched by calls

to swap. The first call to swap interchanges an element in the vector with the first element. The second

call to swap reverses the effects of the first swap. This series of swap-permute-swap operations allows
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Figure 12.4 A tree mapping out the recursive process of the permute function operating on the vector
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each element in the vector to have its turn being the first element in the permuted vector. The permute
recursive call generates all the permutations of the rest of the list. Figure 12.4 traces the recursive process

of generating all the permutations of the vector {0,1,2}.

The leftmost third of Figure 12.4 shows the original contents of the vector and the initial call of

permute. The three branches represent the three iterations of the for loop: i varying from begin
(0) to end (2). The vectors indicate the state of the vector after the first swap but before the recursive call

to permute.

The middle third of Figure 12.4 shows the state of the vector during the first recursive call to permute.

The two branches represent the two iterations of the for loop: i varying from begin (1) to end (2). The

vectors indicate the state of the vector after the first swap but before the next recursive call to permute.

At this level of recursion the element at index zero is fixed, and the remainder of the processing during this

chain of recursion is restricted to indices greater than zero.

The rightmost third of Figure 12.4 shows the state of the vector during the second recursive call to

permute. At this level of recursion the elements at indices zero and one are fixed, and the remainder

of the processing during this chain of recursion is restricted to indices greater than one. This leaves the

©2018 Richard L. Halterman Draft date: December 2, 2018



12.4. VECTOR PERMUTATIONS 374

element at index two, but this represents the base case of the recursion because begin (2) equals end (2).

The function makes no more recursive calls to itself. The function merely prints the current contents of the

vector.

The arrows in Figure 12.4 represent a call to, or a return from, permute. They illustrate the recursive

call chain. The arrows pointing left to right represent a call, and the arrows pointing from right to left

represent a return from the function. The numbers associated with arrow indicate the order in which the

calls and returns occur during the execution of permute.

The second column from the left shows the original contents of the vector after the first swap call but

before the first recursive call to permute. The swapped elements appear in red. The third column shows

the contents of the vector at the second level of recursion. In the third column the elements at index zero

are fixed, as this recursion level is using begin with a value of one instead of zero. The for loop within

this recursive call swaps the elements highlighted in red. The rightmost column is the point where begin
equals end, and so the permute function does not call itself effectively terminating the recursion.

While Listing 12.6 (vectorpermutations.cpp) is a good exercise in vector manipulation and recursion,

the C++ standard library provides a function named next_permutation that rearranges the elements

of a vector. Listing 12.7 (stlpermutations.cpp) uses next_permutation within a loop to print all the

permutations of the vector’s elements.

Listing 12.7: stlpermutations.cpp

#include <iostream>
#include <vector>
#include <algorithm>

/*
* print
* Prints the contents of an int vector
* a is the vector to print; a is not modified
*/

void print(const std::vector<int>& a) {
int n = a.size();
std::cout << "{";
if (n > 0) {

std::cout << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
}
std::cout << "}";

}

int main() {
std::vector<int> nums { 0, 1, 2, 3 };
std::cout << "---------------\n";
do {

print(nums);
std::cout << '\n';

} // Compute the next ordering of elements
while (next_permutation(begin(nums), std::end(nums)));

}
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12.5 Randomly Permuting a Vector

Section 12.4 showed how we can generate all the permutations of a vector in an orderly fashion. More

often, however, we need to produce one of those permutations chosen at random. For example, we may

need to randomly rearrange the contents of an ordered vector so that we can test a sort function to see if

it will produce the original ordered sequence. We could generate all the permutations, put each one in a

vector of vectors, and select a permutation at random from that vector of vectors. This approach is very

inefficient, especially as the length of the vector to permute grows larger. Fortunately, we can randomly

permute the contents of a vector easily and quickly. Listing 12.8 (randompermute.cpp) contains a function

named permute that randomly permutes the elements of an vector.

Listing 12.8: randompermute.cpp

#include <iostream>
#include <vector>
#include <ctime>
#include <cstdlib>

/*
* print
* Prints the contents of an int vector
* a is the vector to print; a is not modified
*/

void print(const std::vector<int>& a) {
int n = a.size();
std::cout << "{";
if (n > 0) {

std::cout << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
}
std::cout << "}";

}

/*
* Returns a pseudorandom number in the range begin...end - 1,
* inclusive. Returns 0 if begin >= end.
*/

int random(int begin, int end) {
if (begin >= end)

return 0;
else {

int range = end - begin;
return begin + rand()%range;

}
}

/*
* Randomly permute a vector of integers.
* a is the vector to permute, and n is its length.
*/

void permute(std::vector<int>& a) {
int n = a.size();
for (int i = 0; i < n - 1; i++) {
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// Select a pseudorandom location from the current
// location to the end of the collection
std::swap(a[i], a[random(i, n)]);

}
}

// Tests the permute function that randomly permutes the
// contents of a vector
int main() {

// Initialize random generator seed
srand(static_cast<int>(time(0)));

// Make the vector {1,2,3,4,5,6,7,8}
std::vector<int> vec { 1, 2, 3, 4, 5, 6, 7, 8 };

// Print vector before
print(vec);
std::cout << '\n';

permute(vec);

// Print vector after
print(vec);
std::cout << '\n';

}

One run of Listing 12.8 (randompermute.cpp) produces

1 2 3 4 5 6 7 8
2 7 1 6 4 8 3 5

Notice that the permute function in Listing 12.8 (randompermute.cpp) uses a simple un-nested loop and

no recursion. The permute function varies the i index variable from 0 to the index of the next to last

element in the vector. Within the loop, the function obtains via rand (see Section 8.6) a pseudorandom

index greater than or equal to i. It then exchanges the elements at position i and the random position. At

this point all the elements at index i and smaller are fixed and will not change as the function’s execution

continues. The loop then increments index i, and the process continues until all the i values have been

considered.

To be correct, our permute function must be able to generate any valid permutation of the vector. It is

important that our permute function is able to produce all possible permutations with equal probability;

said another way, we do not want our permute function to generate some permutations more often than

others. The permute function in Listing 12.8 (randompermute.cpp) is fine, but consider a slight variation

of the algorithm:

// Randomly permute a vector?
void faulty_permute(std::vector<int>& a) {

int n = a.size()
for (int i = 0; i < n; i++) {

// Select a pseudorandom position somewhere in the vector
swap(a[i], a[random(0, n)]);

}
}
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Do you see the difference between faulty_permute and permute? The faulty_permute function

chooses the random index from all valid vector indices, whereas permute restricts the random index to

valid indices greater than or equal to i. This means that faulty_permute can exchange any element

within vector a with the element at position i during any loop iteration. While this approach superficially

may appear to be just as good as permute, it in fact produces an uneven distribution of permutations.

Listing 12.9 (comparepermutations.cpp) exercises each permutation function 1,000,000 times on the

vector {1, 2, 3} and tallies each permutation. There are exactly six possible permutations of this three-

element vector.

Listing 12.9: comparepermutations.cpp

#include <iostream>
#include <vector>
#include <ctime>
#include <cstdlib>

/*
* print
* Prints the contents of an int vector
* a is the vector to print; a is not modified
* n is the number of elements in the vector
*/

void print(const std::vector<int>& a) {
int n = a.size();
std::cout << "{";
if (n > 0) {

std::cout << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
}
std::cout << "}";

}

/*
* Returns a pseudorandom number in the range begin...end - 1,
* inclusive. Returns 0 if begin >= end.
*/

int random(int begin, int end) {
if (begin >= end)

return 0;
else {

int range = end - begin;
return begin + rand()%range;

}
}

/*
* Randomly permute a vector of integers.
* a is the vector to permute, and n is its length.
*/

void permute(std::vector<int>& a) {
int n = a.size();
for (int i = 0; i < n - 1; i++) {

// Select a pseudorandom location from the current
// location to the end of the collection
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std::swap(a[i], a[random(i, n)]);
}

}

/* Randomly permute a vector? */
void faulty_permute(std::vector<int>& a) {

int n = a.size();
for (int i = 0; i < n; i++) {

// Select a pseudorandom position somewhere in the collection
std::swap(a[i], a[random(0, n)]);

}
}

/* Classify a vector as one of the six permutations */
int classify(const std::vector<int>& a) {

switch (100*a[0] + 10*a[1] + a[2]) {
case 123: return 0;
case 132: return 1;
case 213: return 2;
case 231: return 3;
case 312: return 4;
case 321: return 5;

}
return -1;

}

/* Report the accumulated statistics */
void report(const std::vector<int>& a) {

std::cout << "1,2,3: " << a[0] << '\n';
std::cout << "1,3,2: " << a[1] << '\n';
std::cout << "2,1,3: " << a[2] << '\n';
std::cout << "2,3,1: " << a[3] << '\n';
std::cout << "3,1,2: " << a[4] << '\n';
std::cout << "3,2,1: " << a[5] << '\n';

}

/*
* Fill the given vector with zeros.
* a is the vector, and n is its length.
*/

void clear(std::vector<int>& a) {
int n = a.size();
for (int i = 0; i < n; i++)

a[i] = 0;
}

int main() {
// Initialize random generator seed
srand(static_cast<int>(time(0)));

// permutation_tally vector keeps track of each permutation pattern
// permutation_tally[0] counts {1,2,3}
// permutation_tally[1] counts {1,3,2}
// permutation_tally[2] counts {2,1,3}
// permutation_tally[3] counts {2,3,1}
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// permutation_tally[4] counts {3,1,2}
// permutation_tally[5] counts {3,2,1}
std::vector<int> permutation_tally { 0, 0, 0, 0, 0, 0 };

// original always holds the vector {1,2,3}
const std::vector<int> original { 1, 2, 3 };

// working holds a copy of original that gets permuted and tallied
std::vector<int> working;

// Run each permutation one million times
const int RUNS = 1000000;

std::cout << "--- Random permute #1 -----\n";
clear(permutation_tally);
for (int i = 0; i < RUNS; i++) { // Run 1,000,000 times

// Make a copy of the original vector
working = original;
// Permute the vector with the first algorithm
permute(working);
// Count this permutation
permutation_tally[classify(working)]++;

}
report(permutation_tally); // Report results

std::cout << "--- Random permute #2 -----\n";
clear(permutation_tally);
for (int i = 0; i < RUNS; i++) { // Run 1,000,000 times

// Make a copy of the original vector
working = original;
// Permute the vector with the second algorithm
faulty_permute(working);
// Count this permutation
permutation_tally[classify(working)]++;

}
report(permutation_tally); // Report results

}

In Listing 12.9 (comparepermutations.cpp)’s output, permute #1 corresponds to our original permute
function, and permute #2 is the faulty_permute function. The output of Listing 12.9 (comparepermutations.cpp)

reveals that the faulty permutation function favors some permutations over others:

--- Random permute #1 -----
1,2,3: 166608
1,3,2: 166820
2,1,3: 166350
2,3,1: 166702
3,1,2: 166489
3,2,1: 167031
--- Random permute #2 -----
1,2,3: 148317
1,3,2: 184756
2,1,3: 185246
2,3,1: 185225
3,1,2: 148476
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Figure 12.5 A tree mapping out the ways in which faulty_permute can transform the vector 1, 2, 3 at

each iteration of its for loop
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In one million runs, the permute function provides an even distribution of the six possible permutations of

{1, 2, 3}. The faulty_permute function generates the permutations {1, 3, 2}, {2, 1, 3},

and {2, 3, 1} more often than the permutations {1, 2, 3}, {3, 1, 2}, and {3, 2, 1}.

To see why faulty_permute misbehaves, we need to examine all the permutations it can produce

during one call. Figure 12.5 shows a hierarchical structure that maps out how faulty_permute trans-

forms the contents of its vector parameter each time through the for loop.

The top of the tree shows the original vector, {1, 2, 3}. The second row shows the three possible

resulting configurations after the first iteration of the for loop. The leftmost 3-tuple represents the element

at index zero swapped with the element at index zero (effectively no change). The second 3-tuple on the

second row represents the interchange of the elements at index 0 and index 1. The third 3-tuple on the

second row results from the interchange of the elements at positions 0 and 2. The underlined elements

represent the elements most recently swapped. If only one item in the 3-tuple is underlined, the function

merely swapped the item with itself. The bottom row of 3-tuples contains all the possible outcomes of the

faulty_permute function given the vector {1, 2, 3}.

As Figure 12.5 shows, the vector {1, 3, 2}, {2, 1, 3}, and {2, 3, 1} each appear five times

in the last row, while {1, 2, 3}, {3, 1, 2}, and {3, 2, 1} each appear only four times. There

are a total of 27 possible outcomes, so some permutations appear
4

27
= 14.815% of the time, while the

others appear
5

27
= 18.519% of the time. Notice that these percentages agree with our experimental results

from Listing 12.9 (comparepermutations.cpp).

Compare Figure 12.5 to Figure 12.6. The second row of the tree for permute is identical to the

second row of the tree for faulty_permute, but the third row is different. The second time through

its loop the permute function does not attempt to exchange the element at index zero with any other

elements. We see that none of the first elements in the 3-tuples in row three are underlined. The third row

contains exactly one instance of each of the possible permutations of {1, 2, 3}. This means that the

correct permute function is not biased towards any of the individual permutations, and so the function can

generate all the permutations with equal probability. The permute function has a
1

6
= 16.667% probability

of generating a particular permutation; this number agrees with our the experimental results of Listing 12.9

(comparepermutations.cpp).
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Figure 12.6 A tree mapping out the ways in which permute can transform the vector 1, 2, 3 at each

iteration of its for loop
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12.6 Exercises

1. Complete the following function that reorders the contents of a vector so they are reversed from

their original order. For example, a vector containing the elements 2, 6, 2, 5, 0, 1, 2, 3 would be

transformed into 3, 2, 1, 0, 5, 2, 6, 2. Note that your function must physically rearrange the elements

within the vector, not just print the elements in reverse order.

void reverse(std::vector<int>& v) {
// Add your code...

}

2. Complete the following function that reorders the contents of a vector so that all the even numbers

appear before any odd number. The even values are sorted in ascending order with respect to them-

selves, and the odd numbers that follow are also sorted in ascending order with respect to themselves.

For example, a vector containing the elements 2, 1, 10, 4, 3, 6, 7, 9, 8, 5 would be transformed into

2, 4, 6, 8, 10, 1, 3, 5, 7, 9 Note that your function must physically rearrange the elements within the

vector, not just print the elements in reverse order.

void special_sort(std::vector<int>& v) {
// Add your code...

}

3. Complete the following function that shifts all the elements of a vector backward one place. The

last element that gets shifted off the back end of the vector is copied into the first (0th) position. For

example, if a vector containing the elements 2, 1, 10, 4, 3, 6, 7, 9, 8, 5 is passed to the function,

it would be transformed into 5, 2, 1, 10, 4, 3, 6, 7, 9, 8 Note that your function must physically

rearrange the elements within the vector, not just print the elements in the shifted order.

void rotate(std::vector<int>& v) {
// Add your code...

}

4. Complete the following function that determines if the number of even and odd values in a vector is

the same. The function would return true if the vector contains 5, 1, 0, 2 (two evens and two odds),

but it would return false for the vector containing 5, 1, 0, 2, 11 (too many odds). The function should
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return true if the vector is empty, since an empty vector contains the same number of evens and odds

(0). The function does not affect the contents of the vector.

bool balanced(const std::vector<int>& v) {
// Add your code...

}

5. Complete the following function that returns true if vector a contains duplicate elements; it returns

false if all the elements in a are unique. For example, the vector 2, 3, 2, 1, 9 contains duplicates (2

appears more than once), but the vector 2, 1, 0, 3, 8, 4 does not (none of the elements appear more

than once).

An empty vector has no duplicates.

The function does not affect the contents of the vector.

bool has_duplicates(const std::vector<int>& v) {
// Add your code...

}

6. Can binary search be used on an unsorted vector? Why or why not?

7. Can linear search be used on an unsorted vector? Why or why not?

8. Complete the following function is_ascending that returns true if the elements in a vector of

integers appear in ascending order (more precisely, non-descending order, if the vector contains du-

plicates). For example, the following statement

std::cout << is_ascending({3, 6, 2, 1, 7}) << '\n';

would print false, but the statement

std::cout << is_ascending({3, 6, 7, 12, 27}) << '\n';

would print true. The nonexistent elements in an empty vector are considered to be in ascending

order because they cannot be out of order.

bool is_ascending(std::vector<int>& v) {
// Add your code...

}

9. Consider a sort function that uses the is_ascending function from the previous problem. It uses

a loop to test the permutations of a vector of integers. When it finds a permutation that contains all of

the vector’s elements in ascending order it exits the loop. Do you think this would be a good sorting

algorithm? Why or why not?
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Chapter 13

Standard C++ Classes

In the hardware arena, a desktop computer is built by assembling

• a motherboard (a circuit board containing sockets for a processor and assorted supporting cards),

• a processor,

• memory,

• a video card,

• an input/output card (USB ports, parallel port, and mouse port),

• a disk controller,

• a disk drive,

• a case,

• a keyboard,

• a mouse, and

• a monitor.

(Some of these components like the I/O, disk controller, and video may be integrated with the mother-

board.)

The video card is itself a sophisticated piece of hardware containing a video processor chip, memory,

and other electronic components. A technician does not need to assemble the card; the card is used as is

off the shelf. The video card provides a substantial amount of functionality in a standard package. One

video card can be replaced with another card from a different vendor or with another card with different

capabilities. The overall computer will work with either card (subject to availability of drivers for the

operating system) because standard interfaces allow the components to work together.

Software development today is increasingly component based. Software components are used like

hardware components. A software system can be built largely by assembling pre-existing software building

blocks. C++ supports various kinds of software building blocks. The simplest of these is the function that

we investigated in Chapter 8 and Chapter 9. A more powerful technique uses built-in and user designed

software objects.
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C++ is object-oriented. It was not the first OO programming language, but it was the first OO language

that gained widespread use in a variety of application areas. An OO programming language allows the

programmer to define, create, and manipulate objects. Variables representing objects can have considerable

functionality compared to the primitive numeric variables like ints and doubles. Like a normal variable,

every C++ object has a type. We say an object is an instance of a particular class, and class means the same

thing as type. An object’s type is its class. We have been using the std::cout and std::cin objects

for some time. std::cout is an instance of the std::ostream class—which is to say std::cout is

of type std::ostream. std::cin is an instance of the std::istream class.

Code that uses an object is a client of that object; for example, the following code fragment

std::cout << "Hello\n";

uses the std::cout object and, therefore, is a client of std::cout. Many of the functions we have

seen so far have been clients of the std::cout and/or std::cin objects. Objects provide services to

their clients.

13.1 String Objects

A string is a sequence of characters, most often used to represent words and names. The C++ standard

library provides the class string which specifies string objects. In order to use string objects, you must

provide the preprocessor directive

#include <string>

The string class is part of the standard namespace, which means its full type name is std::string.

If you use the

using namespace std;

or

using std::string;

statements in your code, you can use the abbreviated name string.

You declare a string object like any other variable:

string name;

You may assign a literal character sequence to a string object via the familiar string quotation syntax:

string name = "joe";
std::cout << name << '\n';
name = "jane";
std::cout << name << '\n';

You may assign one string object to another using the simple assignment operator:

string name1 = "joe", name2;
name2 = name1;
std::cout << name1 << " " << name2 << '\n';
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In this case, the assignment statement copies the characters making up name1 into name2. After the

assignment both name1 and name2 have their own copies of the characters that make up the string; they

do not share their contents. After the assignment, changing one string will not affect the other string. Code

within the string class defines how the assignment operator should work in the context of string
objects.

Like the vector class (Section 11.1.3), the string class provides a number of methods. Some

string methods include:

• operator[]—provides access to the value stored at a given index within the string

• operator=—assigns one string to another

• operator+=—appends a string or single character to the end of a string object

• at—provides bounds-checking access to the character stored at a given index

• length—returns the number of characters that make up the string

• size—returns the number of characters that make up the string (same as length)

• find—locates the index of a substring within a string object

• substr—returns a new string object made of a substring of an existing string object

• empty—returns true if the string contains no characters; returns false if the string contains one or

more characters

• clear—removes all the characters from a string

The following code fragment

string word = "computer";
std::cout << "\"" << word << "\" contains " << word.length()

<< " letters." << '\n';

prints

"computer" contains 8 letters.

The expression:

word.length()

invokes the length method on behalf of the word object. The string class provides a method named

size that behaves exactly like the length method.

The string class defines a method named operator[] that allows a programmer to access a char-

acter within a string, as in

std::cout << "The letter at index 3 is " << word.operator[](3) << '\n';

Here the operator[] method uses the same syntax as the length method, but the operator[]
method expects a single integer parameter. The above code fragment is better written as

std::cout << "The letter at index 3 is " << word[3] << '\n';
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The expression

word.operator[](3)

is equivalent to the expression

word[3]

We see that operator[] works exactly like its namesake in the std::vector class Section 11.1.3.

The following code fragment exercises some of the methods available to string objects:

Listing 13.1: stringoperations.cpp

#include <iostream>
#include <string>

int main() {
// Declare a string object and initialize it
std::string word = "fred";
// Prints 4, since word contains four characters
std::cout << word.length() << '\n';
// Prints "not empty", since word is not empty
if (word.empty())

std::cout << "empty\n";
else

std::cout << "not empty\n";
// Makes word empty
word.clear();
// Prints "empty", since word now is empty
if (word.empty())

std::cout << "empty\n";
else

std::cout << "not empty\n";
// Assign a string using operator= method
word = "good";
// Prints "good"
std::cout << word << '\n';
// Append another string using operator+= method
word += "-bye";
// Prints "good-bye"
std::cout << word << '\n';
// Print first character using operator[] method
std::cout << word[0] << '\n';
// Print last character
std::cout << word[word.length() - 1] << '\n';
// Prints "od-by", the substring starting at index 2 of length 5
std::cout << word.substr(2, 5);
std::string first = "ABC", last = "XYZ";
// Splice two strings with + operator
std::cout << first + last << '\n';
std::cout << "Compare " << first << " and ABC: ";
if (first == "ABC")

std::cout << "equal\n";
else

std::cout << "not equal\n";
std::cout << "Compare " << first << " and XYZ: ";
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Figure 13.1 Extracting the new string "od-by" from the string "Good-bye"

'G' 'o' 'o'

10

string word = "Good-bye";

string other = word.substr(2, 5);

'd' '-' 'b'

4 53

'y' 'e'

76

'o'

1 20

'd' '-' 'b'

43

'y'

5

2

word

other

if (first == "XYZ")
std::cout << "equal\n";

else
std::cout << "not equal\n";

}

The statement

word = "good";

is equivalent to

word.operator=("good");

Here we see the explicit use of the dot (.) operator to invoke the method. Similarly,

word += "-bye";

is the syntactally sweetened way to write

word.operator+=("-bye");

The + operator performs string concatenation, making a new string by appending one string to the back of

another.

With the substr method we can extract a new string from another, as shown in Figure 13.1.

In addition to string methods, the standard string library provides a number of global functions that

process strings. These functions use operator syntax and allow us to compare strings via <, ==, >=, etc.

A more complete list of string methods and functions can be found at http://www.cplusplus.
com/reference/string/.
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13.2 Input/Output Streams

We have used iostream objects from the very beginning. std::cout is the output stream object that

prints to the screen. std::cin is the input stream object that receives values from the keyboard. The

precise type of std::cout is std::ostream, and std::cin’s type is std::istream.

Like other objects, std::cout and std::cin have methods. The << and >> operators actually are

the methods operator<< and operator>>. (The operators << and >> normally are used on integers

to perform left and right bitwise shift operations; see Section 4.10 for more information.) The following

code fragment

std::cin >> x;
std::cout << x;

can be written in the explicit method call form as:

cin.operator>>(x);
cout.operator<<(x);

The first statement calls the operator>> method on behalf of the std::cin object passing in variable

x by reference. The second statement calls the operator<< method on behalf of the std::cout object

passing the value of variable x. A statement such as

std::cout << x << '\n';

is a more pleasant way of expressing

cout.operator<<(x).operator<<('\n');

Reading the statement left to right, the expression cout.operator<<(x) prints x’s value on the screen

and returns the std::cout object itself. The return value (simply std::cout) then is used to invoke

the operator<< method again with '\n' as its argument.

A statement such as

std::cin >> x >> y;

can be written

cin.operator>>(x).operator>>(y);

As is the case of operator<<with std::cout, reading left to right, the expression cin.operator>>(x)
calls the operator>> method passing variable x by reference. It reads a value from the keyboard and

assigns it to x. The method call returns std::cin itself, and the return value is used immediately to

invoke operator>> passing variable y by reference.

You probably have noticed that it is easy to cause a program to fail by providing input that the program

was not expecting. For example, compile and run Listing 13.2 (naiveinput.cpp).

Listing 13.2: naiveinput.cpp

#include <iostream>

int main() {
int x;
// I hope the user does the right thing!
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std::cout << "Please enter an integer: ";
std::cin >> x;
std::cout << "You entered " << x << '\n';

}

Listing 13.2 (naiveinput.cpp) works fine as long as the user enters an integer value. What if the user

enters the word “five,” which arguably is an integer? The program produces incorrect results. We can use

some additional methods available to the std::cin object to build a more robust program. Listing 13.3

(betterintinput.cpp) detects illegal input and continues to receive input until the user provides an acceptable

value.

Listing 13.3: betterintinput.cpp

#include <iostream>
#include <limits>

int main() {
int x;
// I hope the user does the right thing!
std::cout << "Please enter an integer: ";
// Enter and remain in the loop as long as the user provides
// bad input
while (!(std::cin >> x)) {

// Report error and re-prompt
std::cout << "Bad entry, please try again: ";
// Clean up the input stream
std::cin.clear(); // Clear the error state of the stream
// Empty the keyboard buffer
std::cin.ignore(std::numeric_limits<std::streamsize>::max(),'\n');

}
std::cout << "You entered " << x << '\n';

}

We learned in Section 6.1 that the expression

std::cin >> x

has a Boolean value that we may use within a conditional or iterative statement. If the user enters a value

with a type compatible with the declared type of the variable, the expression evaluates to true; otherwise, it

is interpreted as false. The negation

!(std::cin >> x)

is true if the input is bad, so the only way to execute the body of the loop is provide illegal input. As long

as the user provides bad input, the program’s execution stays inside the loop.

While determining whether of not a user’s entry is correct seems sufficient for the programmer to make

corrective measures, it is not. Two additional steps are necessary:

• The bad input characters the user provided cause the std::cin object to enter an error state. The

input stream object remains in an error state until the programmer manually resets it. The call

cin.clear();

resets the stream object so it can process more input.
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• Whatever characters the user typed in that cannot be assigned to the given variable remain in the

keyboard input buffer. Clearing the stream object does not remove the leftover keystrokes. Asking

the user to retry without clearing the bad characters entered from before results in the same problem—

the stream object re-enters the error state and the bad characters remain in the keyboard buffer. The

solution is to flush from the keyboard buffer all of the characters that the user entered since the last

valid data entry. The statement

cin.ignore(numeric_limits<streamsize>::max(),'\n');

removes from the buffer all the characters, up to and including the newline character ('\n'). The

function call

numeric_limits<streamsize>::max()

returns the maximum number of characters that the buffer can hold, so the ignore method reads

and discards characters until it reads the newline character ('\n') or reaches the end of the buffer,

whichever comes first.

Once the stream object has been reset from its error state and the keyboard buffer is empty, user input can

proceed as usual.

The ostream and istream classes have a number of other methods, but we will not consider them

here.

istream objects use whitespace (spaces and tabs) as delimiters when they get input from the user.

This means you cannot use the operator>> to assign a complete line of text from the keyboard if that

line contains embedded spaces. Listing 13.4 (faultyreadline.cpp) illustrates.

Listing 13.4: faultyreadline.cpp

#include <iostream>
#include <string>

int main() {
std::string line;
std::cout << "Please enter a line of text: ";
std::cin >> line;
std::cout << "You entered: \"" << line << "\"" << '\n';

}

A sample run of Listing 13.4 (faultyreadline.cpp) reveals:

Please enter a line of text: Mary had a little lamb.
You entered: "Mary"

As you can see, Listing 13.4 (faultyreadline.cpp) does not assign the complete line of text to the sting

variable line. The text is truncated at the first space in the input.

To read in a complete line of text from the keyboard, including any embedded spaces that may be

present, use the global getline function. As Listing 13.5 (readline.cpp) shows, the getline function

accepts an istream object and a string object to assign.

Listing 13.5: readline.cpp

#include <iostream>
#include <string>

©2018 Richard L. Halterman Draft date: December 2, 2018



13.3. FILE STREAMS 391

int main() {
std::string line;
std::cout << "Please enter a line of text: ";
getline(std::cin, line);
std::cout << "You entered: \"" << line << "\"" << '\n';

}

A sample run of Listing 13.5 (readline.cpp) produces:

Please enter a line of text: Mary has a little lamb.
You entered: "Mary has a little lamb."

13.3 File Streams

Many applications allow users to create and manipulate data. Truly useful applications allow users to store

their data to files; for example, word processors can save and load documents.

Vectors would be more useful it they were persistent. Data is persistent when it exists between program

executions. During one execution of a particular program the user may create and populate a vector. The

user then saves the contents of the vector to disk and quits the program. Later, the user can run the program

again and reload the vector from the disk and resume work.

C++ fstream objects allow programmers to build persistence into their applications. Listing 13.6

(numberlist.cpp) is a simple example of a program that allows the user to save the contents of a vector to a

text file and load a vector from a text file.

Listing 13.6: numberlist.cpp

// File file_io.cpp

#include <iostream>
#include <fstream>
#include <string>
#include <vector>

/*
* print_vector(v)
* Prints the contents of vector v.
* v is a vector holding integers.
*/

void print_vector(const std::vector<int>& vec) {
std::cout << "{";
int len = vec.size();
if (len > 0) {

for (int i = 0; i < len - 1; i++)
std::cout << vec[i] << ","; // Comma after elements

std::cout << vec[len - 1]; // No comma after last element
}
std::cout << "}\n";

}

/*
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* save_vector(filename, v)
* Writes the contents of vector v.
* filename is name of text file created. Any file
* by that name is overwritten.
* v is a vector holding integers. v is unchanged by the
* function.
*/

void save_vector(const std::string& filename, const std::vector<int>& vec) {
// Open a text file for writing
std::ofstream out(filename);
if (out.good()) { // Make sure the file was opened properly

int n = vec.size();
for (int i = 0; i < n; i++)

out << vec[i] << " "; // Space delimited
out << '\n';

}
else

std::cout << "Unable to save the file\n";
}

/*
* load_vector(filename, v)
* Reads the contents of vector v from text file
* filename. v's contents are replaced by the file's
* contents. If the file cannot be found, the vector v
* is empty.
* v is a vector holding integers.
*/

void load_vector(const std::string& filename, std::vector<int>& vec) {
// Open a text file for reading
std::ifstream in(filename);
if (in.good()) { // Make sure the file was opened properly

vec.clear(); // Start with empty vector
int value;
while (in >> value) // Read until end of file

vec.push_back(value);
}
else

std::cout << "Unable to load in the file\n";
}

int main() {
std::vector<int> list;
bool done = false;
char command;
while (!done) {

std::cout << "I)nsert <item> P)rint "
<< "S)ave <filename> L)oad <filename> "
<< "E)rase Q)uit: ";

std::cin >> command;
int value;
std::string filename;
switch (command) {

case 'I':
case 'i':
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std::cin >> value;
list.push_back(value);
break;

case 'P':
case 'p':
print_vector(list);
break;

case 'S':
case 's':
std::cin >> filename;
save_vector(filename, list);
break;

case 'L':
case 'l':
std::cin >> filename;
load_vector(filename, list);
break;

case 'E':
case 'e':
list.clear();
break;

case 'Q':
case 'q':
done = true;
break;

}
}

}

Listing 13.6 (numberlist.cpp) is command driven with a menu, and when the user types S data1.text the

program saves the current contents of the vector to a file named data1.text. The user can erase the contents

of the vector:

I)nsert <item> P)rint S)ave <filename> L)oad <filename> E)rase Q)uit: E

and then restore the contents with a load command:

I)nsert <item> P)rint S)ave <filename> L)oad <filename> E)rase Q)uit:
L data1.text

The user also may quit the program, and later re-run the program and load in the previously saved list of

numbers. The user can save different number lists to different files using different file names.

Notice that in the save_vector and load_vector functions we pass the std::string param-

eter as a const reference. We do this for the same reason we do so for std::vector objects (see

Section 11.1.4)—this technique avoids making a copy of the string to pass the functions. These functions

can “see” the caller’s actual string via the reference, rather than working with a copy of the string object.

The const specifier prevents the functions from modifying the string passed. It takes time to copy a string

(especially a long string), and the copy would occupy extra memory. In this case the copy really is not

necessary, so passing by const reference is the ideal approach.

An std::ofstream object writes data to files. The statement

std::ofstream out(filename);
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associates the object named out with the text file named filename. This opens the file as the point of

declaration. We also can declare a file output stream object separately from opening it as

std::ofstream out;
out.open(filename);

The save_vector function in Listing 13.6 (numberlist.cpp) passes a std::string object to open the

file, but file names can be string literals (quoted strings) as well. Consider the following code fragment:

std::ofstream fout("myfile.dat");
int x = 10;
if (fout.good()) // Make sure the file was opened properly

fout << "x = " << x << '\n';
else

std::cout << "Unable to write to the file \"myfile.dat\"\n";

After opening the file, programmers should verify that the method correctly opened the file by calling

the file stream object’s good method. An output file stream may fail for various reasons, including the disk

being full or insufficient permissions to create a file in a given folder.

Once we have its associated file open, we can use a std::ofstream object like the std::cout
output stream object, except the data is recorded in a text file instead of being printed on the screen. Just

like with std::cout, you can use the << operator and send a std::ofstream object stream manipu-

lators like std::setw. The std::cout object and objects of class std::ofstream are in the same

family of classes and related through a concept known as inheritance. We consider inheritance in more

detail in Chapter 17. For our purposes at this point, this relationship means anything we can do with the

std::cout object we can do a std:ofstream object. The difference, of course, is the effects appear

in the console window for std::cout and are written in a text file given a std::ofstream object.

After the executing program has written all the data to the file and the std::ofstream object goes

out of scope, the file object automatically will close the file ensuring that all data the program writes to

the file is saved completely on disk. The std::ofstream class provides also a close method that

allows programmers to manually close the file. This sometimes is useful when using the same file object to

recreate the same file, as in Listing 13.7 (endltest.cpp).

In Listing 13.6 (numberlist.cpp), a std::ifstream object reads data from files. The statement

std::ifstream in(filename);

associates the object named in with the text file named filename. This opens the file as the point of

declaration. We also can declare a file output stream object separately from opening it as

std::ifstream in;
in.open(filename);

As with std::ofstream objects, filename is a string file name identifying the file to read.

After opening the file the program should call good to ensure the file was successfully opened. An input

stream object often fails to open properly because the file does not exist; perhaps the file name is misspelled,

or the path to the file is incorrect. An input stream can also fail because of insufficient permissions or

because of bad sectors on the disk.

Once it opens its associated file, an input file stream object behaves like the std::cin object, except

its data comes from a text file instead the keyboard. This means the familiar >> operator and getline
function are completely compatible with std::ifstream objects. The std::cin object and std::ifstream
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objects are related through inheritance simmilar to the way the std::cout object and std::ofstream
objects are related.

As with an output stream object, a std::ifstream object automatically will close its associated file

when it goes out of scope.

Input and output streams use a technique known as buffering. Buffering relies on two facts:

• It is faster to write data to memory than to disk.

• It is faster to write one block of n bytes to disk in a single operation than it is to write n bytes of data

one byte at a time using n operations.

A buffer is a special place in memory that holds data to be written to disk. A program can write to the buffer

much faster than directly to the disk. When the buffer is full, the program (via the operating system) can

write the complete contents of the buffer to the disk.

To understand the concept of buffering, consider the task of building a wall with bricks. Estimates

indicate that the wall will require about 1,350 bricks. Once we are ready to start building the wall we can

drive to the building supply store and purchase a brick. We then can drive to the job site and place the brick

in its appropriate position using mortar as required. Now we are ready to place the next brick, so we must

drive back to the store to get the next brick. We then drive back to the job site and set the brick. We repeat

this process about 1,350 times.

If this seems very inefficient, it is. It would be better to put as many bricks as possible into the vehicle

on the first trip, and then make subsequent trips to the store for more loads of bricks as needed until the wall

is complete.

In this analogy, the transport vehicle is the buffer. The output stream object uses a special place in

memory called a buffer. Like the vehicle used to transport our bricks, the memory buffer has a fixed

capacity. A program can write to the buffer much more quickly than directly to the disk. The << operator

writes the individual values to save to the buffer, and when the buffer is full, the output stream sends all

the data in the buffer out to the disk with one request to the operating system. As with the bricks, this is

more efficient than sending just one character at a time to the display. This buffering process can speed up

significantly the input and output operations of programs.

After the std::ofstream object writes all its data to its buffer and its lifetime is over, it flushes the

remaining data from the buffer to disk, even if the buffer is not full. The buffer is a fixed size, so the last

part of the data likely will not completely fill the buffer. This is analogous to the last load of bricks needed

for our wall that may not make up a full load. We still need to get those remaining bricks to our almost

complete wall even though the vehicle is not fully loaded.

In some situations it is necessary to ensure the buffer is flushed before it is full and before closing the

file completely. With any output stream object writing text we can use the std::endl stream object

to flush the buffer without closing the file. We mentioned std::endl briefly in Section 3.1. We can

use std::endl interchangeably with '\n' to represent newlines for console printing. Because of the

performance advantage buffering provides to file input and output, the choice of std::endl and '\n'
can make a big difference for file processing. Listing 13.7 (endltest.cpp) compares the performance of

std::endl and '\n' in various situations.

Listing 13.7: endltest.cpp

#include <iostream>
#include <fstream>
#include <ctime>
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#include <vector>
#include <cstdlib>

// Make a convenient alias for the long type name
using Sequence = std::vector<int>;

Sequence make_random_sequence(int size, int max) {
Sequence result(size);
for (int i = 0; i < size; i++)

result[i] = rand() % max;
return result;

}

void print_with_endl(const Sequence& vs, std::ostream& out) {
for (auto elem : vs)

out << elem << std::endl;
}

void print_with_n(const Sequence& vs, std::ostream& out) {
for (auto elem : vs)

out << elem << '\n';
}

int main() {
// Sequence up to 100,000 elements, with each element < 100.
auto seq = make_random_sequence(100000, 100);

// Time writing the elements to the console with std::endl newlines
clock_t start_time = clock();
print_with_endl(seq, std::cout);
unsigned elapsed1 = clock() - start_time;

// Time writing the elements to the console with '\n' newlines
start_time = clock();
print_with_n(seq, std::cout);
unsigned elapsed2 = clock() - start_time;

// Time writing the elements to a text file with std::endl newlines
std::ofstream fout("temp.out");
start_time = clock();
print_with_endl(seq, fout);
fout.close();
unsigned elapsed3 = clock() - start_time;

// Reopen the file for writing
fout.open("temp.out");
// Time writing the elements to a text file with '\n' newlines
start_time = clock();
print_with_n(seq, fout);
fout.close();
unsigned elapsed4 = clock() - start_time;

std::cout << "With std::endl (console): " << elapsed1 << '\n';
std::cout << "With '\\n' (console): " << elapsed2 << '\n';
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std::cout << "With std::endl (file): " << elapsed3 << '\n';
std::cout << "With '\\n' (file): " << elapsed4 << '\n';

}

Listing 13.7 (endltest.cpp) writes a vector containing 100,000 integers to the console and a text file. Each

number appears on its own line. Since std::endl flushes the stream object’s buffer in addition to printing

a '\n', we would expect it to reduce the program’s performance since it would minimize the benefit of

buffering in this case. Multiple runs of Listing 13.7 (endltest.cpp) on one system revealed that using '\n'
to terminate lines generally was only slightly faster than std::endl (but not always) when writing to the

console window. The '\n' terminator was consistently about three times faster than std::endl when

writing to a text file.

Listing 13.7 (endltest.cpp) also exploits the special relationship between std:cout and any std::ofstream
object. The print_with_endl and print_with_n functions both accept a std::ostream object

as their second parameter. Note that the caller, main, passes both the std::cout object and the fout
object to these printing functions at various times, and the compiler does not complain. We defer an expla-

nation of how this works until Chapter 17.

13.4 Complex Numbers

C++ supports mathematical complex numbers via the std::complex class. Recall from mathematics

that a complex number has a real component and an imaginary component. Often written as a+bi, a is the

real part, an ordinary real number, and bi is the imaginary part where b is a real number and i2 =−1.

The std::complex class in C++ is a template class like vector. In the angle brackets you specify

the precision of the complex number’s components:

std::complex<float> fc;
std::complex<double> dc;
std::complex<long double> ldc;

Here, the real component and imaginary coefficient of fc are single-precision floating-point values. dc
and ldc have the indicated precisions. Listing 13.8 (complex.cpp) is a small example that computes the

product of complex conjugates (which should be real numbers).

Listing 13.8: complex.cpp

// File complex.cpp
#include <iostream>
#include <complex>

int main() {
// c1 = 2 + 3i, c2 = 2 - 3i; c1 and c2 are complex conjugates
std::complex<double> c1(2.0, 3.0), c2(2.0, -3.0);

// Compute product "by hand"
double real1 = c1.real(),

imag1 = c1.imag(),
real2 = c2.real(),
imag2 = c2.imag();

std::cout << c1 << " * " << c2 << " = "
<< real1*real2 + imag1*real2 + real1*imag2 - imag1*imag2
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<< '\n';

// Use complex arithmetic
std::cout << c1 << " * " << c2 << " = " << c1*c2 << '\n';

}

Listing 13.8 (complex.cpp) prints

(2,3) * (2,-3) = 13
(2,3) * (2,-3) = (13,0)

Observe that the program displays the complex number 2− 3i as the ordered pair (2,-3). The first

element of the pair is the real part, and the second element is the imaginary coefficient. If the imaginary

part is zero, the number is a real number (or, in this case, a double).

Imaginary numbers have scientific and engineering applications that exceed the scope of this book,

so this concludes our brief into C++’s complex class. If you need to solve problems that involve com-

plex numbers, more information can be found at http://www.cplusplus.com/reference/std/
complex/.

13.5 Better Pseudorandom Number Generation

Listing 12.9 (comparepermutations.cpp) showed that we must use care when randomly permuting the con-

tents of a vector. A naïve approach can introduce accidental bias into the result. It turns out that our simple

technique for generating pseudorandom numbers using rand and modulus has some issues itself.

Suppose we wish to generate pseudorandom numbers in the range 0 . . .9,999. This range spans 10,000

numbers. Under Visual C++ RAND_MAX is 32,767, which is large enough to handle a maximum value

of 9,999. The expression rand() % 10000 will evaluate to number in our desired range. A good

pseudorandom number generator should be just as likely to produce one number as another. In a program

that generates one billion pseudorandom values in the range 0 . . .9,999, we would expect any given number

to appear approximately
1,000,000,000

10,000
= 100,000 times. The actual value for a given number will vary

slightly from one run to the next, but the average over one billion runs should be very close to 100,000.

Listing 13.9 (badrand.cpp) evaluates the quality of the rand with modulus technique by generating

one billion pseudorandom numbers within a loop. It counts the number of times the pseudorandom number

generator produces 5 and also it counts the number of times 9,995 appears. Note that 5 is near the beginning

of the range 0 . . .9,999, and 9,995 is near the end of that range. To verify the consistency of its results, it

repeats this test 10 times. The program reports the results of each individual trial, and in the end it computes

the average of the 10 trials.

Listing 13.9: badrand.cpp

#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <ctime>

int main() {
// Initialize a random seed value
srand(static_cast<unsigned>(time(nullptr)));
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// Verify the largest number that rand can produce
std::cout << "RAND_MAX = " << RAND_MAX << '\n';

// Total counts over all the runs.
// Make these double-precision floating-point numbers
// so the average computation at the end will use floating-point
// arithmetic.
double total5 = 0.0, total9995 = 0.0;

// Accumulate the results of 10 trials, with each trial
// generating 1,000,000,000 pseudorandom numbers
const int NUMBER_OF_TRIALS = 10;

for (int trial = 1; trial <= NUMBER_OF_TRIALS; trial++) {
// Initialize counts for this run of a billion trials
int count5 = 0, count9995 = 0;
// Generate one billion pseudorandom numbers in the range
// 0...9,999 and count the number of times 5 and 9,995 appear
for (int i = 0; i < 1000000000; i++) {

// Generate a pseudorandom number in the range 0...9,999
int r = rand() % 10000;
if (r == 5)

count5++; // Number 5 generated, so count it
else if (r == 9995)

count9995++; // Number 9,995 generated, so count it
}
// Display the number of times the program generated 5 and 9,995
std::cout << "Trial #" << std::setw(2) << trial << " 5: " << count5

<< " 9995: " << count9995 << '\n';
total5 += count5; // Accumulate the counts to
total9995 += count9995; // average them at the end

}
std::cout << "-------------------\n";
std::cout << "Averages for " << NUMBER_OF_TRIALS << " trials: 5: "

<< total5 / NUMBER_OF_TRIALS << " 9995: "
<< total9995 / NUMBER_OF_TRIALS << '\n';

}

The output of Listing 13.9 (badrand.cpp) shows that our pseudorandom number generator favors 5 over

9,995:

RAND_MAX = 32767
Trial # 1 5: 122295 9995: 91255
Trial # 2 5: 121789 9995: 91862
Trial # 3 5: 122440 9995: 91228
Trial # 4 5: 121602 9995: 91877
Trial # 5 5: 122599 9995: 91378
Trial # 6 5: 121599 9995: 91830
Trial # 7 5: 122366 9995: 91598
Trial # 8 5: 121839 9995: 91387
Trial # 9 5: 122295 9995: 91608
Trial #10 5: 121898 9995: 91519
-------------------
Averages for 10 trials: 5: 122072 9995: 91554.2
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Figure 13.2 If shown in full, the table would contain 10,000 rows and 32,768 individual numbers. The

values in each row are equivalent modulus 10,000. All the columns except the rightmost column contain

10,000 entries.

        0        10,000        20,000        30,000

        1        10,001        20,001        30,001

        2        10,002        20,002        30,002

        3        10,003        20,003        30,003

      .                 .                  .                    .

      .                 .                  .                    .

      .                 .                  .                    .

2,766        12,766        22,766        32,766

2,767        12,767        22,767        32,767

2,768        12,768        22,768

      .                 .                  .

      .                 .                  .

      .                 .                  .

      .                 .                  .

      .                 .                  .

      .                 .                  .

9,997        19,997        29,997

9,998        19,998        29,998

9,999        19,999        29,999

Elements in each row are 

equivalent modulus 10,000 

Only three ways to 

obtain any value

in the range

2,768 … 9,999

Four ways to obtain 

any value in the 

range  0 … 2,767

10,000 rows

2,768 rows

7,232 rows

The first line verifies that the largest pseudorandom number that Visual C++ can produce through rand is

32,767. The next 10 lines that the program show the result of each trial, monitoring the activity of the one

billion number generations. Since we are dealing with pseudorandom numbers, the results for each trial

will not be exactly the same, but over one billion runs each they should be close. Note how consistent the

results are among the runs.

While we expected both 5 and 9,995 to appear about the same number of times—each approximately

100,000 times—in fact the number 5 appeared consistently more that 100,000 times, averaging 122,072

times. The number 9,995 appeared consistently less than 100,000 times, averaging 91,554.2. Note that
122,072

91,554.2
= 1.33; this means the value 5 appeared 1.33 times more often than 9,995. Looking at it another

way, 1.33 ≈
4

3
, so for every four times the program produced a 5 it produced 9,995 only three times. As

we soon will see, this ratio of 4:3 is not accidental.

Figure 13.2 shows why the expression rand() % 10000 does not produce an even distribution.

Figure 13.2 shows an abbreviated list of all the numbers the rand function can produce before applying

the modulus operation. If you add the missing rows that the ellipses represent, the table would contain

10,000 rows. All of the four values in each row are equivalent modulus 10,000; thus, for example,

2 = 10,002 = 20,002 = 30,002
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and

1,045 = 11,045 = 21,045 = 31,045

Since the rand function cannot produce any values in the range 32,678 . . .39,999, the rightmost column is

not complete. Because the leftmost three columns are complete, the modulus operator can produce values

in the range 0 . . .2,767 four different ways; for example, the following code fragment

std::cout << 5 % 10000 << ' ' << 10005 & 10000 << ' '
<< 20005 % 10000 << ' ' << 30005 % 10000 << '\n';

prints

5 5 5 5

The rand function cannot return a value greater than 32,767; specifically, in our program above, rand can-

not produce 39,995. Listing 13.9 (badrand.cpp), therefore, using rand and modulus we can produce 9,995

in only three different ways: 9,995, 19,995, and 29,995. Based on our analysis, Listing 13.9 (badrand.cpp)

can generate the number 5 four different ways and 9,995 three different ways. This 4:3 ratio agrees with

our empirical observations of the behavior of Listing 13.9 (badrand.cpp). The consequences of this bias

means that values in the relatively small range 0 . . .2,767 will appear disproportionately more frequently

than numbers in the larger range 2,768 . . .9,999. Such bias definitely is undesirable in a pseudorandom

number generator.

We must use more sophisticated means to produce better pseudorandom numbers. Fortunately C++11

provides several standard classes that provide high-quality pseudorandom generators worthy of advanced

scientific and mathematical applications.

The rand function itself has another weakness that makes it undesirable for serious scientific, engineer-

ing, and mathematical applications. rand uses a linear congruential generator algorithm (see http://
en.wikipedia.org/wiki/Linear_congruential_generator). rand has a relatively small

period. This means that the pattern of the sequence of numbers it generates will repeat itself exactly if you

call rand enough times. For Visual C++, rand’s period is 2,147,483,648. Listing 13.10 (randperiod.cpp)

verifies the period of rand.

Listing 13.10: randperiod.cpp

#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <ctime>

int main() {
// Set random number seed value
srand(42);

// Need to use numbers larger than regular integers; use long long ints
for (long long i = 1; i < 4294967400LL; i++) {

int r = rand();
if (1 <= i && i <= 10)

std::cout << std::setw(10) << i << ":" << std::setw(6) << r << '\n';
else if (2147483645 <= i && i <= 2147483658)

std::cout << std::setw(10) << i << ":" << std::setw(6) << r << '\n';
else if (4294967293LL <= i && i <= 4294967309LL)

std::cout << std::setw(10) << i << ":" << std::setw(6) << r << '\n';
}

}
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Listing 13.10 (randperiod.cpp) uses the C++ standard long long int integer data type because it needs

to count above the limit of the int type, 2,147,483,647. The short name for long long int is just

long long. Visual C++ uses four bytes to store both int and long types, so their range of values are

identical. Under Visual C++, the type long long occupies eight bytes which allows the long long
data type to span the range −9,223,372,036,854,775,808 . . .9,223,372,036,854,775,807. To represent

a literal long long within C++ source code, we append the LL suffix, as in 12LL. The expression 12
represents the int (4-byte version) of 12, but 12LL represents the long long (8-byte version) of 12.

Listing 13.10 (randperiod.cpp) prints the first 10 pseudorandom numbers it generates, then it prints

numbers 2,147,483,645 through 2,147,483,658. Finally the program prints its 4,294,96,729th through

4,294,967,309th pseudorandom numbers. Listing 13.10 (randperiod.cpp) displays

1: 175
2: 400
3: 17869
4: 30056
5: 16083
6: 12879
7: 8016
8: 7644
9: 15809

10: 1769
2147483645: 25484
2147483646: 21305
2147483647: 6359
2147483648: 0
2147483649: 175
2147483650: 400
2147483651: 17869
2147483652: 30056
2147483653: 16083
2147483654: 12879
2147483655: 8016
2147483656: 7644
2147483657: 15809
2147483658: 1769
4294967293: 25484
4294967294: 21305
4294967295: 6359
4294967296: 0
4294967297: 175
4294967298: 400
4294967299: 17869
4294967300: 30056
4294967301: 16083
4294967302: 12879
4294967303: 8016
4294967304: 7644
4294967305: 15809
4294967306: 1769
4294967307: 32409
4294967308: 29950
4294967309: 13471

Notice that after 2,147,483,648 iterations the program begins to print the same numbers in the same sequen-
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tial order as it began. 2,147,483,648 iterations later (after 4,294,967,296 total iterations) the sequence once

again repeats. A careful observer could detect this repetition and thus after some time be able to predict the

next pseudorandom value that the program would produce. A predictable pseudorandom number generator

is not a good random number generator. Such a generator used in a game of chance would render the game

perfectly predictable by clever (and patient!) players. A better pseudorandom number generator would

have a much longer period.

The Mersenne twister (see http://en.wikipedia.org/wiki/Mersenne_twister) is a widely-

used, high-quality pseudorandom number generator. It has a very long period, 219,937 − 1, which is ap-

proximately 4.3154 × 106,001. If an implementation of the Mersenne twister could generate 1,000,000,000

(one billion) pseudorandom numbers every second, a program that generated such pseudorandom numbers

exclusively and did nothing else would need to run about 1.3684 × 105,985 years before it began to repeat

itself. It is safe to assume that an observer will not be able to wait around long enough to be able to witness

a repeated pattern in the sequence.

The standard C++ library contains the mt19937 class from which programmers can instantiate objects

used to generate pseudorandom numbers using the Mersenne twister algorithm. Generating the pseudoran-

dom numbers is one thing, but ensuring that the numbers fall uniformly distributed within a specified range

of values is another concern. Fortunately, the standard C++ library provides a multitude of classes that allow

us to shape the production of an mt19937 object into a mathematically sound distribution.

Our better pseudorandom generator consists of three pieces:

• an object that produces a random seed value,

• a pseudorandom number generator object that we construct with the random seed object, and

• a distribution object that uses the pseudorandom number generator object to produce a sequence of

pseudorandom numbers that are uniformly distributed.

The C++ classes for these objects are

• The seed object is an instance of the random_device class.

• The pseudorandom number generator object is an instance of the mt19937 class.

• The distribution object is an instance of the uniform_int_distribution class.

We use the random_device object in place of srand. The mt19937 object performs the role of

the rand function, albeit with much better characteristics. The uniform_int_distribution object

constrains the pseudorandom values to a particular range, replacing the simple but problematic modulus op-

erator. Listing 13.11 (highqualityrandom.cpp) upgrades Listing 13.9 (badrand.cpp) with improved random

number generation is based on these classes.

Listing 13.11: highqualityrandom.cpp

#include <iostream>
#include <iomanip>
#include <random>

int main() {
std::random_device rdev; // Used to establish a seed value
// Create a Mersenne Twister random number generator with a seed
// value derived from rd
std::mt19937 mt(rdev());
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// Create a uniform distribution object. Given a random
// number generator, dist will produce a value in the range
// 0...9999.
std::uniform_int_distribution<int> dist(0, 9999);

// Total counts over all the runs.
// Make these double-precision floating-point numbers
// so the average computation at the end will use floating-point
// arithmetic.
double total5 = 0.0, total9995 = 0.0;

// Accumulate the results of 10 trials, with each trial
// generating 1,000,000,000 pseudorandom numbers
const int NUMBER_OF_TRIALS = 10;

for (int trial = 1; trial <= NUMBER_OF_TRIALS; trial++) {
// Initialize counts for this run of a billion trials
int count5 = 0, count9995 = 0;
// Generate one billion pseudorandom numbers in the range
// 0...9,999 and count the number of times 5 and 9,995 appear
for (int i = 0; i < 1000000000; i++) {

// Generate a pseudorandom number in the range 0...9,999
int r = dist(mt);
if (r == 5)

count5++; // Number 5 generated, so count it
else if (r == 9995)

count9995++; // Number 9,995 generated, so count it
}
// Display the number of times the program generated 5 and 9,995
std::cout << "Trial #" << std::setw(2) << trial

<< " 5: " << std::setw(6) << count5
<< " 9995: " << std::setw(6) << count9995 << '\n';

total5 += count5; // Accumulate the counts to
total9995 += count9995; // average them at the end

}
std::cout << "-------------------" << '\n';
std::cout << "Averages for " << NUMBER_OF_TRIALS << " trials: 5: "

<< std::setw(6) << total5 / NUMBER_OF_TRIALS << " 9995: "
<< std::setw(6) << total9995 / NUMBER_OF_TRIALS << '\n';

}

One run of Listing 13.11 (highqualityrandom.cpp) reports

Trial # 1 5: 99786 9995: 100031
Trial # 2 5: 99813 9995: 99721
Trial # 3 5: 99595 9995: 100144
Trial # 4 5: 100318 9995: 100243
Trial # 5 5: 99570 9995: 100169
Trial # 6 5: 99860 9995: 99724
Trial # 7 5: 99821 9995: 100263
Trial # 8 5: 99851 9995: 99887
Trial # 9 5: 100083 9995: 100204
Trial #10 5: 100202 9995: 99943
-------------------
Averages for 10 trials: 5: 99889.9 9995: 100033
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During this particular program run we see that in 1,000,000,000 attempts the program generates the value

5 on average 99,889.9 times and generates 9,995 on average 100,033 times. Both of these counts approx-

imately equal the expected 100,000 target. Examining the 10 trials individually, we see that neither the

count for 5 nor the count for 9,995 is predisposed to be greater than or less than the other. In some tri-

als the program generates 5 slightly less than 100,000 times, and in others it appears slightly greater than

100,000 times. The same is true for 9,995. These multiple trials show that in over 1,000,000,000 itera-

tions the program consistently generates 5 approximately 100,000 times and 9,995 approximately 100,000

times. Listing 13.11 (highqualityrandom.cpp) shows us that the pseudorandom numbers generated by the

Mersenne Twister object in conjunction with the distribution object are much better uniformly distributed

than those produced by rand with the modulus operation.

Notice in Listing 13.11 (highqualityrandom.cpp) how the three objects work together:

• The uniform_int_distribution object produces a pseudorandom number from the mt19937
generator object. The mt19937 object generates a pseudorandom number, and the uniform_int-

_distribution object constrains this pseudorandom number to the desired range.

• Programmers create an mt19937 object with a random_device object. The random_device
object provides the seed value, potentially from a hardware source, to the mt19937 generator object.

We also can pass a fixed integer value to mt19937’s constructor if we want the generator to produce

a perfectly reproducible sequence of values; for example, the following code fragment

mt19937 gen(20); // Use fixed seed instead of random_device
uniform_int_distribution<int> dist(0, 9999);
std::cout << dist(gen) << '\n';
std::cout << dist(gen) << '\n';
std::cout << dist(gen) << '\n';

always prints

7542
6067
6876

The use of random_device, mt19937, and uniform_int_distribution is a little more

complicated than using srand and rand with the modulus operator, but the extra effort is worth it for

many applications. This object-oriented approach is more modular because it allows us to substitute an

object of a different pseudorandom number generator class in place of mt19937 if we so choose. We also

may swap out the normal distribution for a different distribution. Those familiar with probability theory

may be familiar with a variety of different probability distributions, such as Bernoulli, Poisson, binomial,

chi-squared, etc. The C++ standard library contains distribution classes that model all of these probability

distributions and many more. Programmers can mix and match generator objects and distribution ob-

jects as needed to achieve specialized effects. While this flexibility is very useful and has its place, the

random_device, mt19937, and uniform_int_distribution classes as used in Listing 13.11

(highqualityrandom.cpp) suffice for most applications needing to simulate random processes.

13.6 Exercises

1. Suppose s is a std::string object.

(a) What expression represents the number of characters that make up s?
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(b) What expression represents the first character in s?

(c) What statement would insert the character 'x' onto the front of s?

(d) What statement would append the character 'x' onto the back of s?

2. Compared to C strings (see Section 11.2.6), what advantages does the C++ std::string type offer

to programmers?

3. A palindrome is a string of text that reads the same forwards and backwards. Examples include:

• “TENET”

• “STEP ON NO PETS”

• “RATS LIVE ON NO EVIL STAR”

All these strings are examples of strict palindromes where spacing and punctuation must reverse

exactly. Complete the following function that determines if a given string is a strict palindrome. It

should return true if the string is a strict palindrome and false otherwise.

The empty string reads the same forward and backward, so it is a palindrome. Your function should

ignore capitalization (that is, the string “Tenet” is regarded as a palindrome).

bool palindrome(const string& s) {
// Your code goes here . . .

}

4. What is the class of the std::cout object?

5. What is the class of the std::cin object?

6. Suppose the user types in a line of text and presses the enter key. For example, the user might type

the following:

The sky is blue

What C++ statement could you use to assign to a std::string variable named msg the complete

line of text, including spaces?

7. Consider the following C++ program:

#include <iostream>
#include <fstream>
#include <string>

int main() {
std::string w;
std::ifstream x("results");
while (x >> w)

std::cout << '[' << w << "]\n";
}

(a) Explain what the program accomplishes.

(b) What does the variable x represent?

(c) As it currently is written, what does the program expect that may not be true?

(d) What would cause the program to print nothing?

(e) How can you improve the program so that it always provides feedback to the user, even it the

expectation in part #7c?
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Chapter 14

Custom Objects

In earlier times programmers wrote software in the machine language of the computer system because com-

pilers had yet to be invented. The introduction of variables in association with higher-level programming

languages marked a great step forward in the late 1950s. No longer did programmers need to be concerned

with the lower-level details of the processor and absolute memory addresses. Named variables and func-

tions allow programmers to abstract away such machine-level details and concentrate on concepts such as

integers and characters that transcend computer electronics. Objects provide a level of abstraction above

that of simple variables. Objects allow programmers to go beyond simple values—developers can focus on

more complex things like geometric shapes, bank accounts, and aircraft wings. Programming objects that

represent these real-world things can possess capabilities that go far beyond the simple variables we have

studied to this point.

A C++ object typically consists of a collection of data and code. By bundling data and code together,

objects store information and provide services to other parts of the software system. An object forms a

computational unit that makes up part of the overall computer application. A programming object can

model a real-world object more naturally than can a collection of simple variables since it can encapsulate

considerable complexity. Objects make it easier for developers to build complex software systems.

C++ is classified as an object-oriented language. Most modern programming languages have some

degree of object orientation. This chapter shows how programmers can define, create, and use custom

objects.

14.1 Object Basics

Consider the task of dealing with geometric points. Mathematicians represent a single point as an ordered

pair of real numbers, usually expressed as (x,y). In C++, the double type serves to approximate a subset of

the mathematical real numbers. We can model a point with coordinates within the range of double-precision

floating-point numbers with two double variables. We may consider a point as one thing conceptually,

but we here we would be using two variables. As a consequence, a function that computes the distance

between two points requires four parameters—x1, y1, x2, and y2—rather than two points—(x1,y1) and

(x2,y2). Ideally, we should be able to use one variable to represent a point.

One approach to represent a point could use a two-element vector, for example:

std::vector<double> pt { 3.2, 0.0 };

©2018 Richard L. Halterman Draft date: December 2, 2018



14.1. OBJECT BASICS 408

This approach has several problems:

• We must use numeric indices instead of names to distinguish between the two components of a point

object. We may agree that pt[0] means the x coordinate of point pt and pt[1] means the y

coordinate of point pt, but the compiler is powerless to detect the error if a programmer uses an

expression like pt[19] or pt[-3].

• We cannot restrict the vector’s size to two. A programmer may accidentally push extra items onto the

back of a vector meant to represent a point object. The compiler could not defend against a program

treating an empty vector as a point object.

• We cannot use a vector to represent objects in general. Consider a bank account object. A bank

account object could include, among many other diverse things, an account number (an integer), a

customer name (a string), and an interest rate (a double-precision floating-point number). A vector

implementation of such an object is impossible because the elements in a vector must all be of the

same type.

In addition to storing data, we want our objects to be active agents that can do computational tasks. We

need to be able associate code with a class of objects. We need a fundamentally different programming

construct to represent objects.

Before examining how C++ specifically handles objects, we first will explore what capabilities are de-

sirable. Consider an automobile. An automobile user—the driver—uses the car for transportation. The

user’s interface to the car is fairly simple, considering an automobile’s overall complexity. A driver pro-

vides input to the car via its steering wheel, accelerator and brake pedals, turn signal control, shift lever, etc.

The automobile produces output to the driver with its speedometer, tachometer, various instrument lights

and gauges, etc. These standardized driver-automobile interfaces enable an experienced driver to drive any

modern car without the need for any special training for a particular make or model.

The typical driver can use a car very effectively without understanding the details of how it works. To

drive from point A to point B a driver does not need to know the number of cylinders in the engine, the

engine’s horsepower, or whether the vehicle is front-wheel drive or rear-wheel drive. A driver may look

under the hood at the engine, but the driver cannot confirm any details about what is inside the engine itself

without considerable effort or expense. Many details are of interest only to auto enthusiasts or mechanics.

There may be only a select few automotive engineers capable of understanding and appreciating other more

esoteric details about the vehicle’s design and implementation.

In some ways programming objects as used in object-oriented programming languages are analogous to

automobile components. An object may possess considerable capability, but a programmer using the object

needs to know only what the object can do without needing to know how it works. An object provides an

interface to any client code that wishes to use that object. A typical object selectively exposes some parts

of itself to clients and keeps other parts hidden from clients. The object’s designer, on the other hand, must

know the complete details of the object’s implementation and must be an expert on both the what the object

does and how it works.

Programmers define the structure of a new type of object using one of two keywords: struct or

class. The two constructs are very similar. We will use the class construct in this chapter, and we will

consider structs in Section 15.9.

A class serves as a pattern or template from which an executing program may produce objects. In this

chapter we will concentrate on four things facilitating object-oriented programming with C++ classes:

1. specifying the data that constitute an object’s state,
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2. defining the code to be executed on an object’s behalf that provides services to clients that use the

object,

3. defining code that automatically initializes a newly-created object ensuring that it begins its life in a

well-defined state, and

4. specifying which parts of objects are visible to clients and which parts are hidden from clients.

A class is a programmer-defined type. An object is an instance of a class. The terms object and instance

may be used interchangeably.

14.2 Instance Variables

The simplest kind of object stores only data. We can define a mathematical point type as follows:

class Point {
public:

double x;
double y;

};

Notice the semicolon that follows the close curly brace of the class definition. This semicolon is required,

but it is easy to forget. By convention class names begin with a capital letter, but class names are just

identifiers like variable names and function names. Here, our class name is Point. The body of the class

appears within the curly braces.

The elements declared within a class are known as members of the class. The Point class specifies two

double-precision floating-point data components named x and y. These components are known as instance

variables. The C++ community often refers to these as member data or data members. Other names for

instance variables include fields and attributes. The declarations for x and y appear within the class body

after the public label. We say that x and y are public members of the Point class; this means client

code using a Point object has full access to the object’s x and y fields. Any client may examine and

modify the x and y components of a Point object.

Once this Point class definition is available, a client can create and use Point objects as shown in

Listing 14.1 (mathpoints.cpp).

Listing 14.1: mathpoints.cpp

#include <iostream>

// The Point class defines the structure of software
// objects that model mathematical, geometric points
class Point {
public:

double x; // The point's x coordinate
double y; // The point's y coordinate

};

int main() {
// Declare some point objects
Point pt1, pt2;
// Assign their x and y fields
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Figure 14.1 Two Point objects with their individual data fields

8.5x

pt1

0.0y

-4.0x

pt2

2.5y

pt1.x = 8.5; // Use the dot notation to get to a part of the object
pt1.y = 0.0;
pt2.x = -4;
pt2.y = 2.5;
// Print them
std::cout << "pt1 = (" << pt1.x << "," << pt1.y << ")\n";
std::cout << "pt2 = (" << pt2.x << "," << pt2.y << ")\n";
// Reassign one point from the other
pt1 = pt2;
std::cout << "pt1 = (" << pt1.x << "," << pt1.y << ")\n";
std::cout << "pt2 = (" << pt2.x << "," << pt2.y << ")\n";
// Are pt1 and pt2 aliases? Change pt1's x coordinate and see.
pt1.x = 0;
std::cout << "pt1 = (" << pt1.x << "," << pt1.y << ")\n";
// Note that pt2 is unchanged
std::cout << "pt2 = (" << pt2.x << "," << pt2.y << ")\n";

}

Listing 14.1 (mathpoints.cpp) prints

pt1 = (8.5,0)
pt2 = (-4,2.5)
pt1 = (-4,2.5)
pt2 = (-4,2.5)
pt1 = (0,2.5)
pt2 = (-4,2.5)

It is important to note that Point is not an object. It represents a class of objects. It is a type. The variables

pt1 and pt2 are the objects, or instances, of the class Point. Each of the objects pt1 and pt2 has its

own copies of fields named x and y. Figure 14.1 provides a conceptual view of point objects pt1 and

pt2.

Double-precision floating-point numbers on most systems require eight bytes of memory. Since each

Point object stores two doubles, a Point object uses at least 16 bytes of memory. In practice, an object

may be slightly bigger than the sum its individual components because most computer architectures restrict
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how data can be arranged in memory. This means some objects include a few extra bytes for “padding.” We

can use the sizeof operator to determine the exact number of bytes an object occupies. Under Visual C++,

the expression sizeof pt1 evaluates to 16.

A client may use the dot (.) operator with an object to access one of the object’s members. The

expression pt1.x represents the x coordinate of object pt1. The dot operator is a binary operator; its

left operand is an expression representing a class instance (object), and its right operand is the name of a

member of the class.

The assignment statement in Listing 14.1 (mathpoints.cpp)

pt1 = pt2;

and the statements that follow demonstrate that we may assign one object to another directly without the

need to copy each individual member of the object. The above assignment statement accomplishes the

following:

pt1.x = pt2.x; // No need to assignment this way;
pt1.y = pt2.y; // direct object assignment does this

As another example, suppose we wish to implement a simple bank account object. We determine that

the necessary information for each account consists of a name, ID number, and a balance (amount of money

in the account). We can define our bank account class as

class Account {
public:

std::string name; // The name of the account's owner
int id; // The account number
double balance; // The current balance

};

The name, id, and balance fields constitute the Account class, and the fields represent three different

types.

We can define a vector that holds instances of our Account class as easily as

std::vector<Account> accounts(5000);

Here the accounts variable represents a sequence of 5,000 bank account objects.

Listing 14.2 (bankaccount.cpp) is a simple program that uses Account objects.

Listing 14.2: bankaccount.cpp

#include <iostream>
#include <string>
#include <vector>

class Account {
public:

// String representing the name of the account's owner
std::string name;
// The account number
int id;
// The current account balance
double balance;

};
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// Allows the user to enter via the keyboard information
// about an account and adds that account to the database.
void add_account(std::vector<Account>& accts) {

std::string name;
int number;
double amount;

std::cout << "Enter name, account number, and account balance: ";
std::cin >> name >> number >> amount;
Account acct;
acct.name = name;
acct.id = number;
acct.balance = amount;
accts.push_back(acct);

}

// Print all the accounts in the database
void print_accounts(const std::vector<Account>& accts) {

int n = accts.size();
for (int i = 0; i < n; i++)

std::cout << accts[i].name << "," << accts[i].id
<< "," << accts[i].balance << '\n';

}

void swap(Account& er1, Account& er2) {
Account temp = er1;
er1 = er2;
er2 = temp;

}

bool less_than_by_name(const Account& e1, const Account& e2) {
return e1.name < e2.name;

}

bool less_than_by_id(const Account& e1, const Account& e2) {
return e1.id < e2.id;

}

bool less_than_by_balance(const Account& e1, const Account& e2) {
return e1.balance < e2.balance;

}

// Sorts a bank account database into ascending order
// The comp parameter determines the ordering
void sort(std::vector<Account>& db,

bool (*comp)(const Account&, const Account&)) {
int size = db.size();
for (int i = 0; i < size - 1; i++) {

int smallest = i;
for (int j = i + 1; j < size; j++)

if (comp(db[j], db[smallest]))
smallest = j;

if (smallest != i)
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swap(db[i], db[smallest]);
}

}

// Allows a user interact with a bank account database.
int main() {

// The simple database of bank accounts
std::vector<Account> customers;

// User command
char cmd;

// Are we done yet?
bool done = false;

do {
std::cout << "[A]dd [N]ame [I]D [B]alance [Q]uit==> ";
std::cin >> cmd;
switch (cmd) {

case 'A':
case 'a':

// Add an account
add_account(customers);
break;

case 'P':
case 'p':

// Print customer database
print_accounts(customers);
break;

case 'N':
case 'n':

// Sort database by name
sort(customers, less_than_by_name);
print_accounts(customers);
break;

case 'I':
case 'i':

// Sort database by ID (account number)
sort(customers, less_than_by_id);
print_accounts(customers);
break;

case 'B':
case 'b':

// Sort database by account balance
sort(customers, less_than_by_balance);
print_accounts(customers);
break;

case 'Q':
case 'q':

done = true;
break;

}
}
while (!done);
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}

Listing 14.2 (bankaccount.cpp) stores bank account objects in a vector (see Section 11.1). Also, a bank

account object contains a std::string object as a field. This shows that objects can contain other

objects and implies that our objects can have arbitrarily complex structures.

A sample run of Listing 14.2 (bankaccount.cpp) prints

[A]dd [N]ame [I]D [B]alance [Q]uit==> a
Enter name, account number, and account balance: Sheri 34 100.34
[A]dd [N]ame [I]D [B]alance [Q]uit==> a
Enter name, account number, and account balance: Mary 10 1323.00
[A]dd [N]ame [I]D [B]alance [Q]uit==> a
Enter name, account number, and account balance: Larry 88 55.05
[A]dd [N]ame [I]D [B]alance [Q]uit==> a
Enter name, account number, and account balance: Terry 33 423.50
[A]dd [N]ame [I]D [B]alance [Q]uit==> a
Enter name, account number, and account balance: Gary 11 7.27
[A]dd [N]ame [I]D [B]alance [Q]uit==> n
Gary,11,7.27
Larry,88,55.05
Mary,10,1323
Sheri,34,100.34
Terry,33,423.5
[A]dd [N]ame [I]D [B]alance [Q]uit==> i
Mary,10,1323
Gary,11,7.27
Terry,33,423.5
Sheri,34,100.34
Larry,88,55.05
[A]dd [N]ame [I]D [B]alance [Q]uit==> b
Gary,11,7.27
Larry,88,55.05
Sheri,34,100.34
Terry,33,423.5
Mary,10,1323
[A]dd [N]ame [I]D [B]alance [Q]uit==> q

The program allows users to sort the bank account database in several different ways using different com-

parison functions. Notice that the less_than_by_name and similar comparison functions use const
reference parameters for efficiency (see Section 11.1.4).

Observe that the add_account function has a local variable named name. All Account objects

have a field named name. The add_account function uses the name identifier in both ways without a

problem. The compiler can distinguish between the two uses of the identifier because one is qualified with

an object variable before the dot (.) operator and the other is not; that is, acct.name refers to the data

member name in the acct object, while the variable name by itself is the local variable. Despite their

similar names, the data to which acct.name and name refer live in two completely different memory

locations.
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14.3 Member Functions

The classes we have developed so far, Point and Account, have been passive entities that have no built-

in functionality. In addition to defining the structure of the data for its objects, a class can define functions

that operate on behalf of its objects.

Recall the bank account class, Account, from Section 14.2:

class Account {
public:

// String representing the name of the account's owner
string name;
// The account number
int id;
// The current account balance
double balance;

};

Suppose this design is given to programmer Sam who must write a withdraw function. Sam is a careful

programmer, so his withdraw function checks for overdrafts:

/*******************************************************
* withdraw(acct, amt)
* Deducts amount amt from Account acct, if possible.
* Returns true if successful; otherwise, it returns false.
* A call can fail if the withdraw would
* cause the balance to fall below zero
*
* acct: a bank account object
* amt: funds to withdraw
*
* Author: Sam Coder
* Date: April 17, 2018
*******************************************************/
bool withdraw(Account& acct, double amt) {

bool result = false; // Unsuccessful by default
if (acct.balance - amt >= 0) {

acct.balance -= amt;
result = true; // Success

}
return result;

}

The following code fragment shows the expected code a client might write when withdrawing funds from

the bank:

// Good client code
// ----------------
// A simple database of bank customers
std::vector<Account> accountDB;

// Populate the database via some function
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accountDB = initialize_db();

// Get transaction information
int number;
double debit;
std::cout << "Please enter account number and amount to withdraw:";
std::cin >> number >> debit;

// Locate account index
int n = accountDB.size(), i = 0;
while (i < n) {

if (accountDB[i].id == number)
break; // Found the account

i++;
}

// Perform the transaction, if possible
if (i < n) {

if (withdraw(accountDB[i], debit))
std::cout << "Withdrawal successful\n";

else
std::cout << "Cannot perform the withdraw\n";

}
else

std::cout << "Account does not exist\n";

Unfortunately, nothing prevents a client from being sloppy:

// Bad client code
// ----------------
// A simple database of bank customers
std::vector<Account> accountDB;

// Populate the database via some function
accountDB = initialize_db();

// Get transaction information
int number;
double debit;
std::cout << "Please enter account number and amount to withdraw:";
std::cin >> number >> debit;

// Locate account index
int n = accountDB.size(), i = 0;
while (i < n) {

if (accountDB[i].id == number)
break; // Found the account

i++;
}
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// Perform the transaction
if (i < n)

accountDB[i] -= debit; // What if debit is too big?
else

std::cout << "Account does not exist\n";

Nothing in an Account object itself can prevent an overdraft or otherwise prevent clients from improperly

manipulating the balance of an account object.

We need to be able to protect the internal details of our bank account objects and yet permit clients to

interact with them in a well-defined, controlled manner.

Consider a non-programming example. If I deposit $1,000.00 dollars into a bank, the bank then has

custody of my money. It is still my money, so I theoretically can reclaim it at any time. The bank stores

money in its safe, and my money is in the safe as well. Suppose I wish to withdraw $100 dollars from my

account. Since I have $1,000 total in my account, the transaction should be no problem. What is wrong

with the following scenario:

1. Enter the bank.

2. Walk past the teller into a back room that provides access to the safe.

3. The door to the safe is open, so enter the safe and remove $100 from a stack of $20 bills.

4. Exit the safe and inform a teller that you got $100 out of your account.

5. Leave the bank.

This is not the process a normal bank uses to handle withdrawals. In a perfect world where everyone is

honest and makes no mistakes, all is well. In reality, many customers might be dishonest and intentionally

take more money than they report. Even though I faithfully counted out my funds, perhaps some of the bills

were stuck to each other and I made an honest mistake by picking up six $20 bills instead of five. If I place

the bills in my wallet with other money already there, I may never detect the error. Clearly a bank needs a

more controlled procedure for handling customer withdrawals.

When working with programming objects, in many situations it is better to restrict client access to the

internals of an object. Client code should not be able to change directly bank account objects for various

reasons, including:

• A withdrawal should not exceed the account balance.

• Federal laws dictate that deposits above a certain amount should be reported to certain government

agencies, so a bank would not want customers to be able to add funds to an account in a way to

circumvent this process.

• An account number should never change for a given account for the life of that account.

How do we protect the internal details of our bank account objects and yet permit clients to interact with

them in a well-defined, controlled manner? The trick is to hide completely from clients the object’s fields

and provide special functions called member functions or methods that have access to the hidden fields.

These methods provide the only means available to clients of changing the object’s internal state.

In the following revised Account class:
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class Account {
// String representing the name of the account's owner
string name;
// The account number
int id;
// The current account balance
double balance;

public:
// Methods will be added here . . .

};

all the fields no longer reside in the public section of the class definition. This makes the following client

code impossible:

Account acct;
// Set the account's balance
acct.balance = 100; // Illegal, compiler reports an error
// Withdraw some funds
acct.balance -= 20; // Illegal, compiler reports an error

The balance field is in the private area of the class.

You may use the literal private label, as in

class Account {
private:

// String representing the name of the account's owner
string name;
// The account number
int id;
// The current account balance
double balance;

public:
// Methods will be added here . . .

};

Because any parts of a class not explicitly labeled are implicitly private, the private label is not necessary

if you place all the private members in the first unlabeled section of the class. Said another way, all members

of a class are automatically private unless otherwise labeled. Some programmers like to put the public

members before the private members within a class definition, as in

class Account {
public:

// Methods will be added here . . .
private:

// String representing the name of the account's owner
string name;
// The account number
int id;
// The current account balance
double balance;

};
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In this case the private label is necessary.

In order to enforce the spirit of the withdraw function, we will make it a method, and add a deposit
method to put funds into an account. Listing 14.3 (newaccount.cpp) enhances the Account class with

methods.

Listing 14.3: newaccount.cpp

class Account {
// String representing the name of the account's owner
string name;
// The account number
int id;
// The current account balance
double balance;

public:
/*******************************************************
* deposit(amt)
* Adds amount amt to the account's balance.
*
* Author: Sam Coder
* Date: April 17, 2018
*******************************************************/

void deposit(double amt) {
balance += amt;

}

/*******************************************************
* withdraw(amt)
* Deducts amount amt from the account's balance,
* if possible.
* Returns true if successful; otherwise, it returns false.
* A call can fail if the withdraw would
* cause the balance to fall below zero
*
* amt: funds to withdraw
*
* Author: Sam Coder
* Date: April 17, 2018
*******************************************************/

bool withdraw(double amt) {
bool result = false; // Unsuccessful by default
if (balance - amt >= 0) {

balance -= amt;
result = true; // Success

}
return result;

}
};

In this new definition of Account, the members named deposit and withdraw are not fields; they

are method definitions. A method definition looks like a function definition, but it appears within a class

definition. Because of this, a method is also known as a member function.

A client accesses a method with the dot (.) operator:
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// Withdraw money from the Account object named acct
acct.withdraw(100.00);

The withdraw method definition uses three variables: amt, result, and balance. The variables amt
and result are local to withdraw—amt is the method’s parameter, and result is declared within

the body of withdraw. Where is balance declared? It is the field declared in the private section of the

class. The withdraw method affects the balance field of the object upon which it is called:

// Affects the balance field of acct1 object
acct1.withdraw(100.00);
// Affects the balance field of acct2 object
acct2.withdraw(25.00);

When you see a variable used within the code of a method definition, it can be one of several kinds of

variables. The compiler establishes the exact nature of the variable in the following order:

1. Method parameter—If the variable is declared in the method’s parameter list, it is a parameter to the

method. As in the case of free functions, a method parameter is a variable local to that method.

2. Local variable—If the variable is declared in the body of the method, the variable is local to the

method. Do anything you please with the local variable, and it will not affect any variables outside

of that function.

3. Instance variable—If the variable is not a parameter to the method, is not declared within the method

body, but is declared as an instance variable within the class, it is an instance variable of the object

the client used to invoke the method.

4. Global variable—If the variable is not a parameter to the method, is not declared within the method

body, and is not declared as an instance variable within the class, it must be a global variable. If no

such global variable exists, the variable is undeclared, and the compiler will report the error.

It is important to note that the compiler checks in this order. That means it is legal to give a parameter to a

method or a local variable the same name as an instance variable within the class. In this case the method’s

code cannot access the instance variable or global variable by using its simple name. We say the local

variables hide the instance or global variables from view. Section 15.3 shows how we can gain access to

these hidden variables.

Methods may be overloaded just like global functions (see Section 10.3). This means multiple methods

in the same class may have the same names, but their signatures must be different. Recall that a function’s

signature consists of its name and parameter types; a method’s signature too consists of its name and

parameter types.

We saw in Section 14.2 that each object provides storage space for its own data fields. An object

does not require any space for its methods. This means the only things about an individual object that an

executing program must maintain are the object’s fields. While the exact organization of memory varies

among operating systems, all the data processed by a program appears in one of three sections: stack, heap,

or static memory. As with simple data types like ints, the fields of an object declared local to a function

or method reside in the segment of memory known as the stack. Also like simple data types, the fields of an

object allocated with the new operator appear on the heap. The fields in global and static local objects

reside in the static section of the executing program’s memory.

Consider the following simple class:

class Counter {
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int count;
public:

// Allow clients to reset the counter to zero
void clear() {

count = 0;
}

// Allow clients to increment the counter
void inc() {

count++;
}

// Return a copy of the counter's current value
int get() {

return count;
}

};

For this code we see that each Counter object will store a single integer value (its count field). Under

Visual C++ sizeof Counter is the same as sizeof int—that is, four. A local Counter object

consumes four bytes of stack space, a global Counter object uses four bytes of static memory, and a

dynamically-allocated Counter object uses four bytes of heap space.

In addition to static, stack, and heap memory used for data, executing programs reserve a section of

memory known as the code segment which stores the machine language for all the program’s functions

and methods. The compiler translates methods into machine language as it does regular functions. Inter-

nally, the method inc in the Counter class is identified by a longer name, Counter::inc. Although

Counter::inc is a method, in the compiled code it works exactly like a normal function unrelated to

any class. In the client code

Counter ctr1, ctr2; // Declare a couple of Counter objects
ctr1.clear(); // Reset the counters to zero
ctr2.clear();
ctr1.inc(); // Increment the first counter

the statement

ctr1.clear();

sets the private count field of ctr1 to zero, while the statement

ctr2.clear();

sets ctr2’s count field to zero. Since all Counter objects share the same reset method, how does

each call to Counter::clear reset the field of the proper Counter object? The trick is this: While it

appears that the reset method of the Counter class accepts no parameters, it actually receives a secret

parameter that corresponds to the address of the object on left side of the dot. The C++ source code statement

ctr1.clear(); // Actual C++ code

internally is treated like

Counter::clear(&ctr1); // <-- Not real C++ code! Do not write this!
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in the compiled code. The code within the method can influence the field of the correct object via the

pointer it receives from the caller. The clear method contains the single statement

count = 0;

Since the count variable is not declared locally within the clear method and it is not a global variable,

it must be the field named count of the object pointed to by the secret parameter passed to clear. This

means the call

ctr1.clear(); // Actual C++ code

thus modifies the count instance variable of the ctr1 counter object.

Section 15.3 shows how programmers can access this secret pointer passed to methods.

14.4 Constructors

One crucial piece still is missing. How can we make sure the fields of an object have reasonable initial

values before a client begins using the object? A class may define a constructor that ensures an object

will begin in a well-defined sate. A constructor definition looks similar to a method definition. The code

within a constructor executes on behalf of an object when a client creates the object. For some classes, the

client can provide information for the constructor to use when initializing the object. As with functions

and methods, class constructors may be overloaded. Listing 14.4 (bankaccountmethods.cpp) exercises an

enhanced Account class that offers deposit and withdraw methods, as well as a constructor.

Listing 14.4: bankaccountmethods.cpp

#include <iostream>
#include <iomanip>
#include <string>

class Account {
// String representing the name of the account's owner
std::string name;
// The account number
int id;
// The current account balance
double balance;

public:
// Initializes a bank account object
Account(const std::string& customer_name, int account_number,

double amount):
name(customer_name), id(account_number), balance(amount) {

if (amount < 0) {
std::cout << "Warning: negative account balance\n";
balance = 0.0;

}
}

// Adds amount amt to the account's balance.
void deposit(double amt) {

balance += amt;
}

©2018 Richard L. Halterman Draft date: December 2, 2018



14.4. CONSTRUCTORS 423

// Deducts amount amt from the account's balance,
// if possible.
// Returns true if successful; otherwise, it returns false.
// A call can fail if the withdraw would
// cause the balance to fall below zero
bool withdraw(double amt) {

bool result = false; // Unsuccessful by default
if (balance - amt >= 0) {

balance -= amt;
result = true; // Success

}
return result;

}

// Displays information about the account object
void display() {

std::cout << "Name: " << name << ", ID: " << id
<< ", Balance: " << balance << '\n';

}
};

int main() {
Account acct1("Joe", 2312, 1000.00);
Account acct2("Moe", 2313, 500.29);
acct1.display();
acct2.display();
std::cout << "---------------------" << '\n';
acct1.withdraw(800.00);
acct2.deposit(22.00);
acct1.display();
acct2.display();

}

Listing 14.4 (bankaccountmethods.cpp) produces

Name: Joe, ID: 2312, Balance: 1000
Name: Moe, ID: 2313, Balance: 500.29
---------------------
Name: Joe, ID: 2312, Balance: 200
Name: Moe, ID: 2313, Balance: 522.29

The following characteristics differentiate a constructor definition from a regular method definition:

• A constructor has the same name as the class.

• A constructor has no return type, not even void.

The constructor in Listing 14.4 (bankaccountmethods.cpp) initializes all the fields with values supplied by

the client. The comma-separated list between the colon and the curly brace that begins the body of the

constructor is called the constructor initialization list. An initialization list contains the name of each field

with its initial value in parentheses. All of the fields that make up an object must be initialized before the

body of the constructor executes. In this case the code within the constructor adjusts the balance to zero and

issues a warning if a client attempts to create an account with an initial negative balance. The constructor
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thus ensures an account object’s balance can never begin with a negative value. The withdraw method

ensures that, once created, an Account object’s balance will never be negative. Notice that the client

provides the required constructor parameters at the point of the object’s declaration:

// Client creating two Account objects
Account acct1("Joe", 2312, 1000.00);
Account acct2("Moe", 2313, 500.29);

Since the Account class contains a constructor definition which requires arguments, it now is impossible

for a client to declare an Account object like

Account acct3; // Illegal, must supply arguments for constructor

With constructors, unlike with normal methods, we can use curly braces in place of parentheses, as in

// Client creating two Account objects
Account acct1{"Joe", 2312, 1000.00};
Account acct2{"Moe", 2313, 500.29};

If acct is a Account object defined as in Listing 14.4 (bankaccountmethods.cpp), the following code

is illegal:

acct.balance -= 100; // Illegal, balance is private

Clients do not have direct access to the balance field since it is private. Clients instead should use the

appropriate method call to adjust the balance of an Account object:

Account acct("Joe", 1033, 50.00); // New bank account object
acct.deposit(1000.00); // Add some funds
acct.withdraw(2000.00); // Method should disallow this operation

The details of depositing and withdrawing funds are the responsibility of the object itself, not the client

code. The attempt to withdraw the $2,000 dollars above would not change the account’s balance, and the

client can check the return value of withdraw to provide appropriate feedback to the user about the error.

The program then could take steps to correct the situation.

A constructor that specifies no parameters is called a default constructor. If the programmer does not

specify any constructor for a class, the compiler will provide a default constructor that does nothing. If the

programmer defines any constructor for a class, the compiler will not generate a default constructor. See

Section 15.2 for the consequences of this constructor policy.

If you do not define a constructor for your class, the compiler automatically

will create one for you—a default constructor that accepts no parameters. The

compiler-generated constructor does not do anything to affect the state of newly

created instances.

If you define any constructor for your class, the compiler will not provide a default

constructor.
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14.5 Defining a New Numeric Type

C++’s class feature allows us to define our own complete types. We will define a new numeric type that

models mathematical rational numbers. In mathematics, a rational number is defined as the ratio of two

integers, where the second integer must be nonzero. Commonly called a fraction, a rational number’s two

integer components are called numerator and denominator. Rational numbers possess certain properties;

for example, two fractions can have different numerators and denominators but still be considered equal

( 1
2 = 2

4 ). Listing 14.5 (simplerational.cpp) shows how we can define and use rational numbers.

Listing 14.5: simplerational.cpp

#include <iostream>
#include <cstdlib>

// Models a mathematical rational number
class SimpleRational {

int numerator;
int denominator;

public:
// Initializes the components of a Rational object
SimpleRational(int n, int d): numerator(n), denominator(d) {

if (d == 0) {
// Display error message
std::cout << "Zero denominator error\n";
exit(1); // Exit the program

}
}

// The default constructor makes a zero rational number
// 0/1
SimpleRational(): numerator(0), denominator(1) {}

// Allows a client to reassign the numerator
void set_numerator(int n) {

numerator = n;
}

// Allows a client to reassign the denominator.
// Disallows an illegal fraction (zero denominator).
void set_denominator(int d) {

if (d != 0)
denominator = d;

else {
// Display error message
std::cout << "Zero denominator error\n";
exit(1); // Exit the program

}
}

// Allows a client to see the numerator's value.
int get_numerator() {

return numerator;
}
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// Allows a client to see the denominator's value.
int get_denominator() {

return denominator;
}

};

// Returns the product of two rational numbers
SimpleRational multiply(SimpleRational f1, SimpleRational f2) {

return {f1.get_numerator() * f2.get_numerator(),
f1.get_denominator() * f2.get_denominator()};

}

void print_fraction(SimpleRational f) {
std::cout << f.get_numerator() << "/" << f.get_denominator();

}

int main() {
SimpleRational fract(1, 2); // The fraction 1/2
std::cout << "The fraction is ";
print_fraction(fract);
std::cout << '\n';
fract.set_numerator(19);
fract.set_denominator(4);
std::cout << "The fraction now is ";
print_fraction(fract);
std::cout << '\n';

// Alternate syntax uses {} with constructor instead of ()
SimpleRational fract1{1, 2}, fract2{2, 3};
auto prod = multiply(fract1, fract2);
std::cout << "The product of ";
print_fraction(fract1);
std::cout << " and ";
print_fraction(fract2);
std::cout << " is ";
print_fraction(prod);
std::cout << '\n';

}

Listing 14.5 (simplerational.cpp) prints the following:

The fraction is 1/2
The fraction now is 19/4
The product of 1/2 and 2/3 is 2/6

The SimpleRational class defines a new numeric type that C++ does not natively provide—the

rational number type. (It is named SimpleRational because it is our first cut at a rational number

class; a better version is to come in Listing 16.1 (rational.cpp).) This SimpleRational class defines two

overloaded constructors. One constructor accepts the numerator and denominator values from the client.

The other constructor allows a client to declare a SimpleRational object as

SimpleRational frac;

without supplying the initial numerator and denominator values. This default constructor assigns 0
1 to the

object. Both constructors ensure that a SimpleRational object’s denominator will not be zero.
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The function multiply:

SimpleRational multiply(SimpleRational f1, SimpleRational f2) {
return {f1.get_numerator() * f2.get_numerator(),

f1.get_denominator() * f2.get_denominator()};
}

accepts two SimpleRational objects as arguments and returns a SimpleRational result. It is a

free function, not a method (or member function) of the SimpleRational class. The function’s return

statement requires special attention. Because of the function’s declaration the compiler knows the function

returns a SimpleRational object. The expression within curly braces after the return keyword:

{f1.get_numerator() * f2.get_numerator(),
f1.get_denominator() * f2.get_denominator()}

is exactly the expression we can pass to the compiler to create a SimpleRational object. The return
statement therefore creates a fraction object with a numerator that is the product of the numerators of

the objects supplied by the caller. Similarly, the denominator of the returned object is the product of the

denominators of the function’s parameters.

We can use this curly brace initialization syntax when passing parameters to functions; for example, we

can simplify the following statements:

SimpleRational fract{2, 3};
print_fraction(fract);

into a single statement:

print_fraction({2, 3});

The compiler knows that print_fraction accepts a single SimpleRational object as a parameter.

The compiler generates code that uses the caller’s curly brace initialization list to create a SimpleRational
object to pass to the function.

Our new numeric type certainly leaves a lot to be desired. We cannot display one of our rational number

objects with std::cout very conveniently. We cannot use the standard arithmetic operators like + or *,

and we cannot compare two rational numbers using == or <. In Section 16.1 we address these shortcomings.

14.6 Encapsulation

When developing complex systems, allowing indiscriminate access to an object’s internals can be disas-

trous. It is all too easy for a careless, confused, or inept programmer to change an object’s state in such a

way as to corrupt the behavior of the entire system. A malicious programmer may intentionally tweak one

or more objects to sabotage the system. In either case, if the software system controls a medical device or

military missile system, the results can be deadly.

C++ provides several ways to protect the internals of an object from the outside world, but the simplest

strategy is the one we have been using: We can qualify fields and methods, generically referred to as class

members, as either public or private.

The compiler enforces the inaccessibility of private members. In Listing 14.5 (simplerational.cpp), for

example, client code cannot directly modify the denominator instance variable of a SimpleRational
object making it zero. A client may influence the values of numerator and denominator only via

methods provided by the class designer.
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Accessibility rules, also called visibility rules or permissions, determine what parts of a class and/or

object are accessible to the outside world. C++ provides a great deal of flexibility in assigning access

permissions, but some general principles exist that, if followed, foster programs that are easier to build and

extend.

• In general, fields should be private. Clients should not be able to arbitrarily change the state of an

object. Allowing such might allow client code to put an object into an undefined state (for example,

changing the denominator of a fraction to zero). An object’s state should only change as a result of

calling the object’s methods.

The built-in primitive types like int and double offer no protection from client access. One ex-

ception to the private fields rule applies to simple objects that programmers naturally would treat as

primitive types. Recall the geometric Point class found in Listing 14.1 (mathpoints.cpp). The x

and y fields of a point object safely may assume any legitimate floating-point value, and it may be

reasonable in some applications for clients to treat a Point object as a primitive type. In this case it

is appropriate to make the x and y fields public.

• Methods that provide a service to client code should be part of the public section of the class. The

author of the class must ensure that the public methods cannot place the object into an illegal state.

For example, consider the following method:

void set_denominator(int d) {
denominator = d;

}

If this method were part of the SimpleRational class, it would permit client code to sabotage a

valid fraction with a simple statement:

fract.set_denominator(0);

• Methods that assist the service methods but that are not meant to be used by the outside world should

be in the private section of the class. This allows a public method to be decomposed into sim-

pler, perhaps more coherent activities without the threat of client code accessing these more primitive

methods. These private methods are sometimes called helper methods or auxiliary methods.

Why would a programmer intentionally choose to limit access to parts of an object? Restricting access

obviously limits the client’s control over the objects it creates. While this may appear to be a disadvantage

at first glance, this access restriction actually provides a number of advantages:

• Flexibility in implementation. A class conceptually consists of two parts:

– The class interface—the visible part. Clients see and can use the public parts of an object.

The public methods and public variables of a class constitute the interface of the class. A class’s

interface specifies what it does.

– The class implementation—the hidden part. Clients cannot see any private methods or pri-

vate variables. Since this private information is invisible to clients, class developers are free to

do whatever they want with the private parts of the class. A class’s implementation specifies

how it accomplishes what it needs to do.

We would like our objects to be black boxes: clients shouldn’t need to know how the objects work

but merely rely on what objects can do.
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A good rule of thumb in class design is this: make data private, and make

methods that provide a service to clients public.

Many real-world objects follow this design philosophy. Consider a digital wristwatch. Its display

gives its user the current time and date. It can produce different output in different modes; for

examples, elapsed time in stopwatch mode or wake up time in alarm mode. It presents to its user

only a few buttons for changing modes, starting and stopping stopwatches, and setting the time. How

it does what is does is irrelevant to most users; most users are concerned with what it does. Its user

risks great peril by opening the watch and looking at its intricate internal details. The user is meant

to interact with the watch only through its interface—the display and buttons.

Similarly, an automobile presents an accelerator pedal to its user. The user knows that pushing the

pedal makes the car go faster. That the pedal is connected to the fuel injection system (and possibly

other systems, like cruise control) through a cable, wire, or other type of linkage is of concern only

to the automotive designer or mechanic. Most drivers prefer to be oblivious to the under-the-hood

details.

Changing the interface of a class can disturb client code that already has been written to use ob-

jects of that class. For example, what if the maintainers of the SimpleRational class decide that

SimpleRational objects should be immutable; that is, after a client creates a SimpleRational
object the client cannot adjust the numerator or denominator values. The set_numerator
and set_denominator, therefore, would have to disappear. Unfortunately, both of these methods

are public and thus part of SimpleRational’s interface to client. Existing client code may be

using these methods, and removing them, making them private, altering the types of their parameters

or any other changes to the interface would render existing client code incompatible. Client code

that has been written to use set_numerator according to its original interface no longer will be

correct. We say the change in SimpleRational’s interface breaks the client code.

Class authors have no flexibility to alter the interface of a class once the class has been released

for clients to use; any changes risk breaking existing client code. On the other hand, altering the

private information in a class will not break existing client code that uses that class, since private

class information is invisible to clients. When the private parts of a class change, clients need only

recompile their code; client programmers do not need to modify their source code. A class, therefore,

becomes less resilient to change as more of its components become exposed to clients. To make

classes as flexible as possible, which means maximizing the ability to make improvements to the

class in the future, hide as much information as possible from clients.

• Reducing programming errors. Client code cannot misuse the parts of a class that are private

since the client cannot see the private parts of a class. Properly restricting client access can make it

impossible for client code to put an object into an ill-defined state. In fact, if a client can coax an

object into an illegal state via the class interface, then the design and/or implementation of the class

is faulty. As an example, if a client can somehow make a SimpleRational object’s denominator

zero, then one of the methods or a constructor must contain a logic error. Clients should never be

able to place an object into an illegal state.

• Hiding complexity. Objects can provide a great deal of functionality. Even though a class may

provide a fairly simple interface to clients, the services it provides may require a significant amount

of complex code to accomplish their tasks. One of the challenges of software development is dealing

with the often overwhelming complexity of the task.

©2018 Richard L. Halterman Draft date: December 2, 2018



14.7. EXERCISES 430

It is difficult, if not impossible, for one programmer to be able to comprehend at one time all the de-

tails of a large software system. Classes with well-designed interfaces and hidden implementations

provide a means to reduce this complexity. Since private components of a class are hidden, their de-

tails cannot contribute to the complexity the client programmer must manage. The client programmer

needs not be concerned with exactly how an object works, but the details that make the object work

are present nonetheless. The trick is exposing details only when necessary:

– Class designer. The class designer must be concerned with the hidden implementation details

of the class. Since objects of the class may be used in many different contexts, the class designer

usually does not have to worry about the context in which the class will be used. From the

perspective of the class designer, the complexity of the client code that may use the class is

therefore eliminated.

– Applications developer using a class. The developer of the client code must be concerned with

the details of the application code being developed. The application code will use objects. The

hidden details of the class these objects represent are of no concern to the client developers.

From the perspective of the client code designer, therefore, the complexity of the code that

makes the objects work is eliminated.

This concept of information hiding is called encapsulation. Details are exposed to particular parties

only when appropriate. In sum, the proper use of encapsulation results in

• software that is more flexible and resilient to change,

• software that is more robust and reliable, and

• a software development process that programmers can more easily comprehend and manage.

Finally, the C++ encapsulation model has its limits. It is not possible to protect an object from code

within itself. Any method within a class has full access to any member defined within that class. If you

believe that parts of a class should be protected from some of its methods, you should split up the class into

multiple classes with suitable restrictions among the resulting component classes.

14.7 Exercises

1. Given the definition of the SimpleRational number class in Listing 14.5 (simplerational.cpp),

complete the function named add:

SimpleRational add(SimpleRational r1, SimpleRational r2) {
// Details go here

}

that returns the rational number representing the sum of its two parameters. Recall that adding frac-

tions is more involved than multiplying them; you must find a common denominator, adjust the

fractions so they both have the same denominator, and then add just the numerators.

2. Given the definition of the geometric Point class in Listing 15.6 (point.cpp), complete the function

named distance:

double distance(Point r1, Point r2) {
// Details go here

}
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that returns the distance between the two points passed as parameters.

3. What is the purpose of a class constructor?

4. May a class constructor be overloaded?

5. Given the definition of the SimpleRational number class in Section 14.3, complete the following

method named reduce:

class SimpleRational {
// Other details omitted here ...

// Returns an object of the same value reduced
// to lowest terms
SimpleRational reduce() {

// Details go here
}

};

that returns the rational number that represents the object reduced to lowest terms; for example, the

fraction 10/20 would be reduced to 1/2.

6. Given the definition of the SimpleRational number class in Section 14.3, complete the following

free function named reduce:

// Returns a fraction to lowest terms
SimpleRational reduce(SimpleRational f) {

// Details go here
}

that returns the rational number that represents the object reduced to lowest terms; for example, the

fraction 10/20 would be reduced to 1/2.

7. Given the definition of the geometric Point class in Section 14.2 add a method named distance:

class Point {
// Other details omitted

// Returns the distance from this point to the
// parameter p
double distance(Point p) {

// Details go here
}

};

that returns the distance between the point on whose behalf the method is called and the parameter p.

8. Consider the following C++ code:

#include <iostream>

class IntPoint {
public:

int x;
int y;
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IntPoint(int x, int y): x(x), y(y) {}
};

class Rectangle {
IntPoint corner; // Location of the rectangle's lower-left corner
int width; // The rectangle's width
int height; // The rectangle's width

public:
Rectangle(IntPoint pt, int w, int h):

corner((pt.x < -100) ? -100 : (pt.x > 100 ? 100 : pt.x),
(pt.y < -100) ? -100 : (pt.y > 100 ? 100 : pt.y)),

width((w < 0) ? 0 : w), height((h < 0) ? 0 : h) {}

int perimeter() {
return 2*width + 2*height;

}

int area() {
return width * height;

}

int get_width() {
return width;

}

int get_height() {
return height;

}

// Returns true if rectangle r overlaps this
// rectangle object.
bool intersect(Rectangle r) {

// Details omitted
}

// Returns the length of a diagonal rounded to the nearest
// integer.
int diagonal() {

// Details omitted
}

// Returns the geometric center of the rectangle with
// the (x,y) coordinates rounded to the nearest integer.
IntPoint center() {

// Details omitted
}

bool is_inside(IntPoint pt) {
// Details omitted

}
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};

int main() {
Rectangle rect1(IntPoint(2, 3), 5, 7),

rect2(IntPoint(2, 3), 1, 3),
rect3(IntPoint(2, 3), 15, 3),
rect4(IntPoint(2, 3), 5, 3);

std::cout << rect1.get_width() << '\n';
std::cout << rect1.get_height() << '\n';
std::cout << rect2.get_width() << '\n';
std::cout << rect2.get_height() << '\n';
std::cout << rect3.get_width() << '\n';
std::cout << rect3.get_height() << '\n';
std::cout << rect4.get_width() << '\n';
std::cout << rect4.get_height() << '\n';
std::cout << rect1.get_perimeter() << '\n';
std::cout << rect1.get_area() << '\n';
std::cout << rect2.get_perimeter() << '\n';
std::cout << rect2.get_area() << '\n';
std::cout << rect3.get_perimeter() << '\n';
std::cout << rect3.get_area() << '\n';
std::cout << rect4.get_perimeter() << '\n';
std::cout << rect4.get_area() << '\n';

}

(a) What does the program print?

(b) With regard to a Rectangle object’s lower-left corner, what are the minimum and maximum

values allowed for the x coordinate? What are the minimum and maximum values allowed for

the y coordinate?

(c) What is a Rectangle object’s minimum and maximum width?

(d) What is a Rectangle object’s minimum and maximum height?

(e) What happens when a client attempts to create a Rectangle object with parameters that are

outside the acceptable ranges?

(f) Implement the diagonal method.

(g) Implement the center method.

(h) Implement the intersect method.

(i) Implement the is_inside method.

(j) Complete the following function named corner:

IntPoint corner(Rectangle r) {
// Details go here

};

that returns the lower-left corner of the Rectangle object r passed to it. You may not modify

the Rectangle class.

(k)
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9. Develop a Circle class that, like the Rectangle class above, provides methods to compute

perimeter and area. The Rectangle instance variables are not appropriate for circles; specifi-

cally, circles do have corners, and there is no need to specify a width and height. A center point and

a radius more naturally describe a circle. Build your Circle class appropriately.

10. Given the Rectangle and Circle classes from questions above, write an encloses function:

// Returns true if rectangle rect is large enough to
// completely enclose circle circ
bool encloses(Rectangle rect, Circle circ) {

// Details omitted
}

so that it returns true if circle circ’s dimensions would allow it to fit completely within rectangle

rect. If circ is too big, the function returns false. The positions of rect and circ do not

influence the result.

11. Consider the following C++ code:

class Widget {
int value;

public:
Widget();
Widget(int v);
int get();
void bump();

};

Widget::Widget() {
value = 40;

}

Widget::Widget(int v) {
if (v >= 40)

value = v;
else

value = 0;
}

int Widget::get() const {
return value;

}

void Widget::bump() {
if (value < 50)

value++;
}

int main() {
Widget w1, w2(5);
std::cout << w1.get() << '\n';
std::cout << w2.get() << '\n';
w1.bump(); w2.bump();
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std::cout << w1.get() << '\n';
std::cout << w2.get() << '\n';
for (int i = 0; i < 20; i++) {

w1.bump();
w2.bump();

}
std::cout << w1.get() << '\n';
std::cout << w2.get() << '\n';

}

(a) What does the program print?

(b) If wid is a Widget object, what is the minimum value the expression wid.get() can return?

(c) If wid is a Widget object, what is the maximum value the expression wid.get() can return?
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Chapter 15

Fine Tuning Objects

In Chapter 14 we introduced the basics of object-oriented programming: private data, public methods, and

automatic initialization. In this chapter examine some details that enable C++ programmers to fine tune

class design.

15.1 Passing Object Parameters

Recall the print_fraction function from Listing 14.5 (simplerational.cpp):

void print_fraction(SimpleRational f) {
std::cout << f.get_numerator() << "/" << f.get_denominator();

}

Observe that the function accepts its parameter f using the call by value protocol. This means that during

the execution of the following client code:

SimpleRational my_rational{3, 4};
print_fraction(my_rational);

the program makes a new SimpleRational object (the formal parameter f in print_fraction’s

definition) and copies the member data from the actual parameter my_rational into f. At this point the

program has two copies of the fraction 3/4; the client has a 3/4 rational object in its variable my_rational,

and the executing print_function has a 3/4 rational object in its formal parameter f. When the

print_fraction function finishes executing, the formal parameter f goes out of scope and its memory

is freed. The function returns back to the caller, leaving the caller’s 3/4 rational object as the sole remaining

one.

Even though SimpleRational objects are relatively small (four bytes under Visual C++), this pro-

cess of creating a new object serving as the formal parameter, copying the contents from the actual param-

eter into the formal parameter, and finally cleaning up the formal parameter is all unnecessary work on the

part of the executing program.

We noted in Section 11.1.4 that declaring std::vector objects as const reference parameters to

functions provides the efficiency of pass by reference with the safety of pass by value:

• Efficiency of pass by reference: The function has access to the caller’s object via its location in
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memory. Pass by reference sends a single memory address to the function. There is no need to copy

the object’s data into the function.

• Safety of pass by value: The function cannot modify the caller’s actual parameter since the formal

parameter is declared const.

We revisited this concept of pass by const reference for std::string objects in Section 13.3.

It turns out that it is a good idea to prefer passing objects by const reference instead of pass by value.

This means the following function should replace the original print_fraction function:

void print_fraction(const SimpleRational& f) {
std::cout << f.get_numerator() << "/" << f.get_denominator();

}

Rewriting multiply also is in order. The following provides the new implementation:

// Returns the product of two rational numbers
SimpleRational multiply(const SimpleRational& f1,

const SimpleRational& f2) {
return {f1.get_numerator() * f2.get_numerator(),

f1.get_denominator() * f2.get_denominator()};
}

In this new version of multiply the const reference parameters avoid the construction, member data

copying, and memory clean up of two SimpleRational objects for each call to multiply.

If passing object types by const reference for object types is the better approach why does C++ not do

this automatically for us? C++ defaults to pass by value as the default. This guarantees safety for all types

at the expense of reduced efficiency for some types.

When is pass by value warranted for object types? A caller may make an object and then pass a copy

of the object to a function that would modify that object and return the modified version back to the caller.

The caller then could have both the original object plus the modified object returned by the function. Doing

this via passing by const reference is possible, but requires a little more code. The following sample code

illustrates:

SimpleRational zero1(const SimpleRational& f) {
SimpleRational result{f}; // Make a copy of parameter f
result.set_numerator(0);
return result;

}

SimpleRational zero2(SimpleRational f) {
// Just use f; it is a copy of the caller's actual parameter
f.set_numerator(0);
return f;

}

Here zero1 must explicitly copy its formal parameter to a new local variable it eventually will return. The

zero2 function does not need to copy its formal parameter; its formal parameter already is a copy of the

caller’s actual parameter.

A caller could use the zero1 and zero2 functions as shown here:
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SimpleRational one_third{1, 3};
auto other = zero1(one_third);
// Caller owns two objects: one_third (1/3) and other (0/3).

15.2 Pointers to Objects and Object Arrays

Given the Point class from Section 14.2, the statement

Point pt;

declares the variable pt to be a Point object. As with primitive data, we can declare pointers to objects:

Point pt;
Point *p_pt;

Here, p_pt is a pointer to a Point object. Before we use the pointer we must initialize it to point to a

valid object. We can assign the pointer to refer to an existing object, as in

p_pt = &pt;

or use the new operator to dynamically allocate an object from the heap:

p_pt = new Point;

If the class has a constructor that accepts parameters, we need to provide the appropriate arguments when

using new. Recall the Account class from Section 14.4. Given the declarations

Account acct("Joe", 3143, 90.00);
Account *acct_ptr;

before we use acct_ptr it must point to a valid object. As in the Point class example, we can assign

the pointer to refer to an existing object, as in

acct_ptr = &acct;

or use the new operator to dynamically allocate an object from the heap:

acct_ptr = new Account("Moe", 400, 1300.00);

Note that we include the arguments expected by the Account class constructor. This statement allocates

memory for one Account object and executes the constructor’s code to initialize the newly created object.

Figure 15.1 illustrates a pointer to an account object.

As with any dynamically allocated entity, a programmer must be careful to use the delete operator to

deallocate any objects created via new.

The dot operator syntax to access a field of a object through a pointer is a bit awkward:

Point *p = new Point;
(*p).x = 253.7;
(*p).y = -00.5;

The parentheses are required since the dot (.) has higher precedence than the pointer dereferencing operator

(*). Without the parentheses, the statement would be evaluated as if the parentheses were placed as shown

here

©2018 Richard L. Halterman Draft date: December 2, 2018



15.2. POINTERS TO OBJECTS AND OBJECT ARRAYS 440

Figure 15.1 A pointer to an Account object

'J' 'o' 'e' '\n'

0 1 2 3

name

acct_ptr

400id

balance 1300.00

*(p.x) = 253.7; // Error

The variable p is not a Point object, but a pointer to a Point object, so it must be dereferenced with

the * operator before applying the . operator. C++ provides a simpler syntax to access fields of an object

through a pointer. The pointer operator eliminates the need for the parentheses:

Point *p = new Point;
p->x = 253.7;
p->y = -00.5;

The pair of symbols -> constitute one operator (no space in between is allowed), and the operator is meant

to look like an arrow pointing right. There is no associated left pointing arrow in C++.

You can use the -> operator to access the methods of an object referenced by a pointer:

Account *acct_ptr = new Account("Joe", 400, 1300.00);
if (acct_ptr->withdraw(10.00))

std::cout << "Withdrawal successful\n";
else

std::cout << "*** Insufficient funds ***\n";

An executing program will not automatically deallocate the memory allocated via new; It is the pro-

grammer’s responsibility to manually deallocate the memory when the object is no longer needed. The

delete operator with no [] decoration frees up a single dynamically allocated object:

// acct_ptr points to an Account object previously allocated
// via new
delete acct_ptr;

The following function has a logic error because it fails to free up memory allocated with new:

void faulty_func() {
Account *acct_ptr = new Account("Joe", 400, 1300.00);
if (acct_ptr->withdraw(10.00))

std::cout << "Withdrawal successful\n";
else
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std::cout << "*** Insufficient funds ***\n";
acct_ptr->display();

}

Here, acct_ptr is a local variable, so it occupies space on the stack. It represents a simple address, essen-

tially a number. The space for the acct_ptr variable is automatically deallocated when faulty_func
completes. The problem is acct_ptr points to memory that was allocated with new, and this memory is

not freed up within the function. The pointer acct_ptr is the only way to get to that memory, so when

the function is finished, that memory is lost for the life of the program. The condition is known as a memory

leak. If the program runs to completion quickly, the leak may go undetected. In a longer running program

such as a web server, memory leaks can cause the program to crash after a period of time. The problem

arises when code that leaks memory is executed repeatedly and eventually all of available memory becomes

used up.

The corrected function would be written

void corrected_func() {
Account *acct_ptr = new Account("Joe", 400, 1300.00);
if (acct_ptr->withdraw(10.00))

std::cout << "Withdrawal successful\n";
else

std::cout << "*** Insufficient funds ***\n";
acct_ptr->display();
delete acct_ptr;

}

If we step back and take an honest look at this corrected_func function, we will see that there really

is no reason for using pointers and dynamic memory at all. This corrected_func offers no advantage

over the following function:

void even_better_func() {
Account acct("Joe", 400, 1300.00);
if (acct.withdraw(10.00))

std::cout << "Withdrawal successful\n";
else

std::cout << "*** Insufficient funds ***\n";
acct.display();

}

So why consider pointers to objects at all? Programmers commonly use pointers to objects to build elaborate

linked data structures. Section 18.3 describes one such data structure.

C++ supports vectors and arrays of objects, but they present special challenges. First, consider a simple

situation. The Point class defines no constructor, so the following code is valid:

std::vector<Point> pts(100); // Okay

The compiler happily generates code that at run time will allocate enough space for 100 Point objects.

No special initializations are needed since Point has no constructor. What if a class defines a constructor

that accepts arguments and does not supply also a constructor that requires no arguments? Consider the

Account class. The following statement is illegal:

std::vector<Account> accts(100); // Illegal, the Account class has
// no default constructor
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When creating the space for the accts elements, C++ expects a default constructor to properly initialize

all of the vector’s elements. The only constructor in the Account class requires arguments, and so the

compiler refuses to accept the declaration of accts. The compiler has no means by which it can produce

the code needed to initialize the vector’s elements before the programmer begins using the vector.

One solution uses a vector of pointers, as in

std::vector<Account *> accts(100); // A vector of account pointers

Note that this does not create any Account objects. The programmer subsequently must iterate through

the vector and use new to create individually each account element. An example of this would be

std::vector<Account *> accts(100); // A vector of account pointers
for (int i = 0; i < 100; i++) {

// Get information from the user
std::cin >> name >> id >> amount;
// Create the new account object
accts[i] = new Account(name, id, amount);

}

In this case, when the program no longer needs the accts vector, it must execute code like

for (int i = 0; i < 100; i++) {
delete accts[i];

to reclaim the dynamic memory held by each of the Account objects.

An alternative approach that avoids pointers uses the vector push_back method to add objects one at

a time, as shown here:

std::vector<Account> accts; // Vector initially empty
for (int i = 0; i < 100; i++) {

std::string name;
int id;
double amount;
// Get information from the user
std::cin >> name >> id >> amount;
// Create the new account object
accts.push_back({name, id, amount});

}

In this case there is no need to use delete later.

Recall (see 10.7) that in C++ there is one literal value to which a pointer of any type may be assigned—

nullptr:

Account *p_rec = nullptr; // p_rec is null

A pointer with the value nullptr is interpreted to mean a pointer that is pointing to nothing. An attempt

to delete a null pointer is legal and does nothing.

15.3 The this Pointer

Recall our Counter class from Section 14.3, reproduced here:
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class Counter {
int count;

public:
// Allow clients to reset the counter to zero
void clear() {

count = 0;
}

// Allow clients to increment the counter
void inc() {

count++;
}

// Return a copy of the counter's current value
int get() {

return count;
}

};

In Section 14.3 we saw that an expression such as ctr1.clear() passes the address of ctr1 as a secret

parameter during the call to the clear method. This is how the method determines which count field to

reset—ctr1.clear() resets ctr1’s count field, and ctr2.clear() would reset ctr2’s count
field.

Within a method definition a programmer may access this secret parameter via the reserved word this.

Within a method body the this expression represents a pointer to the object upon which the method was

called. We can rewrite the Counter class to make the this pointer explicit, as shown here:

// Uses this directly
class Counter {

int count;
public:

// Allow clients to reset the counter to zero
void clear() {

this->count = 0;
}

// Allow clients to increment the counter
void inc() {

this->count++;
}

// Return a copy of the counter's current value
int get() {

return this->count;
}

};

Within a method of the Counter class, this->count is an alternate way of writing just count. Some

programmers always use the this pointer as shown here to better communicate to human readers that the

count variable has to be a field, and it cannot be a local or global variable.
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The this pointer is handy when a method parameter has the same name as a field:

class Point {
double x;
double y;

public:
void set_x(double x) {

// Assign the parameter's value to the field
this->x = x;

}
// Other details omitted . . .

};

In the set_x method the parameter x has the same name as field x. This is legal in C++; a method

parameter or local variable of a method may have the same name as a field within that class. The problem

is that the local variable or parameter hides the access to the field. Any unqualified use of the name x refers

to the parameter x, not the field x. One solution would be to name the parameter something else: perhaps

_x or x_param. A strong argument can be made, though, that x is the best name for the field, and x is

also the best name for the parameter to the set_x method. To get access to the field in this case, use the

this pointer. Since this is a reserved word, the expression this->x cannot be mistaken for anything

other than the x field of the object upon which the method was invoked.

Another use of the this pointer involves passing the current object off to another function or method.

Suppose a global function named log exists that accepts a Counter object as shown here:

void log(Counter c) {
// Details omitted . . .

}

If within the clear method we wish to call the log function passing it the object on whose behalf the

clear method was executing, we could write

class Counter {
// . . .

public:
void clear() {

count = 0;
// Pass this object off to the log function
log(*this);

}
// . . .

};

We pass the expression *this as the actual parameter to log because the log function expects an object,

not a pointer to an object. Remember the syntax of pointers: If this is a pointer, *this is the object to

which this points.

Since this serves as an implicit parameter passed to methods, it is illegal to use the this expression

outside of the body of a method.
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15.4 const Methods

Given the SimpleRational class in Listing 14.5 (simplerational.cpp), the following code produces a

compiler error:

const SimpleRational fract(1, 2); // Constant fraction 1/2
fract.set_numerator(2); // Error, cannot change a constant

This behavior is desirable, since the set_numeratormethod can change the state of a SimpleRational
object, and our fract object is supposed to be constant. Unfortunately, this correct behavior is accidental.

The compiler does not analyze our methods to determine exactly what they do. Consider the following code

that also will not compile:

const SimpleRational fract(1, 2); // Constant fraction 1/2
std::cout << fract.get_numerator(); // Error!

Since the get_numerator method does not modify a SimpleRational object, we would expect that

invoking it on a constant object should be acceptable, but the compiler rejects it. Again, the compiler

cannot understand what get_numerator is supposed to do; specifically, it is not designed to be able

to determine that a method will not change the state of an object. The programmer must supply some

additional information to help the compiler.

If a method is not supposed to change the state of an object, that method should be declared const. In

the SimpleRational class, the methods get_numerator and get_denominator simply return,

respectively, copies of the fraction’s numerator and denominator. Neither method is intended to modify any

instance variables. If we look at the code for those methods, we see that indeed neither method changes

anything about a SimpleRational object. What if the programmer made a mistake—perhaps a spurious

copy and paste error—and the statement

numerator = 0;

made its way into the get_numerator method? Unfortunately, the way things stand now, the compiler

cannot detect this error, and get_numerator will contain a serious logic error.

We can remove the possibility of such an error by declaring get_numerator (and get_denominator)

const:

class SimpleRational {
public:

/* ... stuff omitted ... */
int get_numerator() const {

return numerator;
}
int get_denominator() const {

return denominator;
}
/* ... other stuff omitted ... */

};

The const keyword goes after the closing parenthesis of the parameter list and before the opening curly

brace of the method’s body. If we accidentally attempt to reassign an instance variable in a const method,

the compiler will report an error.
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Declaring a method const is not merely a good defensive programming strategy used by a class

developer. Methods declared to be const can be called with const objects, while it is illegal to in-

voke a non-const method with a const object. With the new const version of SimpleRational’s

get_numerator method, the following code

const Rational fract(1, 2); // Constant fraction 1/2
fract.set_numerator(2); // Error, cannot change a constant

is still illegal, since Rational::set_numerator is not const, but

const Rational fract(1, 2); // Constant fraction 1/2
std::cout << fract.get_numerator(); // Okay with const get_numerator

now is legal.

You should declare const any method that has no need to change any field within the object. Similarly,

do not declare const any method that is supposed to change a field in an object. A const method can

be used with both const and non-const objects, but a non-const method cannot be used with const
objects. For maximum flexibility, always declare a method to be const unless doing so would prevent the

method from doing what it is supposed to do.

You can invoke a const method from both const and non-const objects, but

you cannot invoke a non-const method from a const object. For maximum

flexibility, always declare a method to be const unless doing so would prevent

the method from doing what it is supposed to do.

15.5 Separating Method Declarations and Definitions

It is common in larger C++ projects to separate a method implementation from its declaration. A simple

example illustrates how to do this; consider the class MyClass:

class MyClass {
public:

void my_method() const {
std::cout << "Executing \"my_method\"\n";

}
};

This version of MyClass uses what is known as an inline method definition; that is, the method my_method
is defined completely with a body in the same place as it is declared. Compare the inline version to the fol-

lowing equivalent representation split across two files: myclass.h and myclass.cpp. The code in myclass.h

is shown in Listing 15.1 (myclass.h).

Listing 15.1: myclass.h

// File myclass.h

class MyClass {
public:

void my_method() const; // Method declaration
};
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No body for my_method appears in the declaration of the class MyClass in myclass.h; instead, the

method implementation appears elsewhere, in myclass.cpp. Listing 15.2 (myclass.cpp).

Listing 15.2: myclass.cpp

// File myclass.cpp

// Include the class declaration
#include "myclass.h"
#include <iostream>

// Method definition
void MyClass::my_method() const {

std::cout << "Executing \"my_method\"\n";
}

Without the prefix MyClass:: the definition of my_method in myclass.cpp simply would be global

function definition like all the ones we have seen since Chapter 9. The class name and scope resolution

operator (::) binds the definition of the method to the class to which is belongs.

We would #include the .h header file in all source files that need to use MyClass objects; the

myclass.cpp file is compiled separately and linked into the rest of the project’s .cpp files.

Listing 15.3 (pointinline.h) shows a point class written inline.

Listing 15.3: pointinline.h

class Point {
double x;
double y;

public:
Point(double x, double y): x(x), y(y) {}
double get_x() const { return x; }
double get_y() const { return y; }
void set_x(double x) { this->x = x; }
void set_y(double y) { this->y = y; }

};

Listing 15.4 (pointsplit.h) and Listing 15.5 (pointsplit.cpp) show how we can separate the method declara-

tions from their implementations.

Listing 15.4: pointsplit.h

class Point {
double x;
double y;

public:
Point(double x, double y); // No constructor implementation
double get_x() const; // and no method
double get_y() const; // implementations
void set_x(double x);
void set_y(double y);

};

Listing 15.5: pointsplit.cpp
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// Point constructor
Point::Point(double x, double y): x(x), y(y) {}

// Get the x value
double Point::get_x() const {

return x;
}

// Get the y value
double Point::get_y() const {

return y;
}

// Set the x value
void Point::set_x(double x) {

this->x = x;
}

// Set the y value
void Point::set_y(double v) {

this->y = y;
}

The class name prefix such as Point:: is necessary not only so the compiler can distinguish a method

definition such as get_x from a global function definition, but also to distinguish the method from a

method with the same name and parameter types that might appear in a different class. A method signature

for a method is just like a global function signature, except a method signature includes the class name as

well. Each of the following represent distinct signatures:

• get_x() is the signature for a global function named get_x that accepts no parameters.

• Point::get_x() is the signature for a method of the Point class named get_x() that accepts

no parameters.

• LinearEquation::get_x() is the signature for a method of the LinearEquation class

named get_x() that accepts no parameters.

Recall from Section 10.3 that the return type is not part of a function’s signature. The same is true for

methods.

Many C++ programmers avoid the inline style of class declarations and use the separate class declaration

and method definition files for several reasons:

• If the class is meant to be used in multiple programs, the compiler must recompile the methods each

time the header file is #included by some C++ source file. When the method declarations and

definitions are separate, the compiler can compile the code for the definitions once, and the linker can

combine this compiled code with the client code that uses it.

• Client programmers can look at the contents of header files. If method definitions are inlined, client

programmers can see exactly how the methods work. This can be a disadvantage; for example, a

client programmer may make assumptions about how fast a method takes to execute or the particular

order in which a method processes data in a vector. These assumptions can influence how the client

code calls the method. If the class maintainer changes the implementation of the method, the client
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programmer’s previous assumptions may be invalid. A certain ordering of the data that before the

change resulted in faster processing may now be slower. An improvement in a graphics processing

algorithm may cause an animation to run too quickly when the method is rewritten. For the class

designer’s maximum flexibility, client programmers should not be able to see the details of a method’s

implementation because then they cannot form such assumptions.

Client programmers need to know what the method does, not how it accomplishes it.

To enforce this hidden method implementation:

1. Separate the method declarations from their definitions. Put the class declaration in the header

file and the method definitions in a .cpp file.

2. Compile the .cpp file into an object file.

3. Provide the client the .h file and the compiled object file but not the source file containing the

method definitions.

4. The client code can now be compiled by including the .h file and linked with the object file,

but the client programmer has no access to the source code of the method definitions.

• Some programmers find the inline style difficult since it provides too much detail. It complicates

determining what objects of the class are supposed to do because the how is sprinkled throughout the

class declaration.

Despite the disadvantages mentioned above, inline methods are sometimes appropriate. For simple

classes defined in the same file that uses them, the inline style is handy, as Listing 15.6 (point.cpp) shows.

Listing 15.6: point.cpp

#include <iostream>

class Point {
double x;
double y;

public:
Point(double x, double y): x(x), y(y) {}
double get_x() const { return x; }
double get_y() const { return y; }
void set_x(double x) { this->x = x; }
void set_y(double y) { this->y = y; }

};

double dist(const Point& pt1, const Point& pt2) {
// Compute distance between pt1 and pt2 and return it
// This is a function stub; add the actual code later
return 0.0; // Just return zero for now

}

int main() {
Point p1(2.5, 6), p2(0.0, 0.0);
std::cout << dist(p1, p2) << '\n';

}

Here the Point class is very simple, and the constructor and method implementations are obvious. The

inline structure makes more sense in this situation.

©2018 Richard L. Halterman Draft date: December 2, 2018



15.5. SEPARATING METHOD DECLARATIONS AND DEFINITIONS 450

Listing 15.7 (trafficlight.h) contains the interface for a class used to create objects that simulate stop-

caution-go traffic signals.

Listing 15.7: trafficlight.h

enum class SignalColor { Red, Green, Yellow };

class Trafficlight {
private:

SignalColor color; // The light's current color: Red, Green, or Yellow
public:

Trafficlight(SignalColor initial_color);
void change();
SignalColor get_color() const;

};

SignalColor is an enumerated type that clients may use. (Section 3.9 introduced enumerated types.) By

using an enumerated type, we restrict a traffic light object’s color to the three specified by SignalColor.

The traffic signal implementation code in Listing 15.8 (trafficlight.cpp) defines the Trafficlight
methods.

Listing 15.8: trafficlight.cpp

#include "trafficlight.h"

// Ensures a traffic light object is in the state of
// red, green, or yellow. A rogue value makes the
// traffic light red
Trafficlight::Trafficlight(SignalColor initial_color) {

switch (initial_color) {
case SignalColor::Red:
case SignalColor::Green:
case SignalColor::Yellow:

color = initial_color;
break;

default:
color = SignalColor::Red; // Red by default, just in case

}
}

// Ensures the traffic light's signal sequence
void Trafficlight::change() {

// Red --> green, green --> yellow, yellow --> red
if (color == SignalColor::Red)

color = SignalColor::Green;
else if (color == SignalColor::Green)

color = SignalColor::Yellow;
else if (color == SignalColor::Yellow)

color = SignalColor::Red;
}

// Returns the light's current color so a client can
// act accordingly
SignalColor Trafficlight::get_color() const {
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return color;
}

The code within Listing 15.8 (trafficlight.cpp) must #include the trafficlight.h header so the compiler is

exposed to the Trafficlight class declaration; otherwise, when compiling trafficlight.cpp the compiler

would not know if the method implementations faithfully agreed with declarations. If the method definition

of TrafficLight::change in trafficlight.cpp specified parameters but its declaration within trafficlight.h

did not, that would be a problem. Furthermore, without including trafficlight.h, the type SignalColor
would be an undefined type within trafficlight.cpp.

Notice that outside the class declaration in Listing 15.7 (trafficlight.h) we must prefix the method names

with TrafficLight::. Without this prefix the compiler would treat the identifiers as globals. It would

interpret them as free functions, not methods. SignalColor is declared outside of the TrafficLight
class, so it does not need the TrafficLight:: prefix. SignalColor is a global type available to any

code that #includes trafficlight.h.

Listing 15.9 (trafficmain.cpp) shows how a client could use the Trafficlight class.

Listing 15.9: trafficmain.cpp

#include <iostream>
#include "trafficlight.h"

void print(Trafficlight lt) {
SignalColor color = lt.get_color();
std::cout << "+-----+\n";
std::cout << "| |\n";
if (color == SignalColor::Red)

std::cout << "| (R) |\n";
else

std::cout << "| ( ) |\n";
std::cout << "| |\n";
if (color == SignalColor::Yellow)

std::cout << "| (Y) |\n";
else

std::cout << "| ( ) |\n";
std::cout << "| |\n";
if (color == SignalColor::Green)

std::cout << "| (G) |\n";
else

std::cout << "| ( ) |\n";
std::cout << "| |\n";
std::cout << "+-----+\n";

}

int main() {
Trafficlight light(SignalColor::Green);
while (true) {

print(light);
light.change();
std::cin.get();

}
}

Listing 15.9 (trafficmain.cpp) first prints
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+-----+
| |
| ( ) |
| |
| ( ) |
| |
| (G) |
| |
+-----+

When the user presses the Enter key the program prints

+-----+
| |
| ( ) |
| |
| (Y) |
| |
| ( ) |
| |
+-----+

a second Enter press prints

+-----+
| |
| (R) |
| |
| ( ) |
| |
| ( ) |
| |
+-----+

A third Enter press completes the cycle:

+-----+
| |
| ( ) |
| |
| ( ) |
| |
| (G) |
| |
+-----+

The program’s execution continues in this manner within its infinite loop until the user presses Ctrl C .

Observe that the color variable within the Trafficlight class is private. That means that once the

client creates a traffic light object the only way a client can influence the value of color is via the change
method. This makes it impossible for a client to force a traffic light object to cycle incorrectly; for example,

a client cannot make a traffic light change directly from yellow to green (it would have to pass through red

on the way from yellow to green).
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15.6 Preventing Multiple Inclusion

C++ follows the one definition rule, or ODR, which means a variable, function, class, instance variable, or

method may not have more than one definition in the same context. The code within the following function

definition violates the one definition rule:

int sum_and_display(const std::vector<int>& list) {
int s = 0, size = list.size();
// Add up the values in the list
int i = 0;
while (i < size) {

s += list[i];
i++;

}
// Print the contents of the list
int i = 0; // Illegal, variable i already defined above
while (i < size) {

std::cout << std::setw(5) << list[i] << '\n';
i++;

}
std::cout << "--------\n";
std::cout << std::setw(5) << s << '\n';

}

The line

int s = 0, size = list.size();

is not a problem even though the identifier size appears twice. The first appearance denotes the local

variable named size, and the second use is a call to the size method of the std::vector class. This

statement defines (declares) only the variable size; the size method already has been defined in the

std::vector class (and the compiler processed its definition from the <vector> header file).

The variable i has two distinct definitions in the same context, so its redeclaration right before the

display code is an error.

Like a variable, a class may have only one definition. When we build general purpose classes meant to

be used widely in our programs we must take care that we do not violate the one definition rule. In fact, we

can violate the one definition rule accidentally even if we define a class only once!

To see how we can accidentally violate the one definition rule, consider the following simple example.

Suppose we have a simple counter class declared in count.h:

class Counter {
int count;

public:
// Allow clients to reset the counter to zero
void clear();

// Allow clients to increment the counter
void inc();

// Return a copy of the counter's current value
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int get() const;
};

with its implementation in count.cpp:

// Allow clients to reset the counter to zero
void Counter::clear() {

count = 0;
}

// Allow clients to increment the counter
void Counter::inc() {

count++;
}

// Return a copy of the counter's current value
int Counter::get() const {

return count;
}

Next, consider the following two header files defining objects that themselves use Counter objects, wid-

get.h:

// File widget.h

#include "count.h"

class Widget {
Counter meter;

public:
// Other stuff omitted

};

and gadget.h:

// File gadget.h

#include "count.h"

class Gadget {
Counter ticker;

public:
// Other stuff omitted

};

The preprocessor directive

#include "count.h"

is required in the file widget.h, because the compiler must be acquainted with the type Counter to properly

handle the instance variable meter. Similarly, the count.h header must be included in gadget.h in order

for the compiler to accept Gadget’s declaration of its ticker field.

Client code that wishes to use Widget objects must use the appropriate #include statement:
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#include "widget.h"

int main() {
Widget myWidget;
// Use the myWidget object

}

Similarly, client code that uses Gadget objects must include at the top of its file:

#include "gadget.h"

int main() {
Gadget myGadget;
// Use the myGadget object

}

Both of these client programs will build without any problems. Sometimes, however, a program may need

to use both Widget objects and Gadget objects. Since the widget.h header file does not know anything

about the Gadget class and the gadget.h header file has no information about Widgets, we must include

both header files in code that uses both classes. The appropriate include directives would be

#include "widget.h"
#include "gadget.h"

int main() {
Widget myWidget;
Gadget myGadget;
// Use the myWidget and myGadget objects

}

Including one of the header files without the other is insufficient since the compiler must be able to check if

the client is using both types correctly. This client code, however, will not compile. In this case the problem

is with count.h. Including both widget.h and gadget.h includes the definition of the Counter class twice,

so the compiler sees two definitions of Counter. Even though the two definitions are identical, this

violates the one definition rule and so results in a compiler error.

The issue here is known as multiple inclusion, and it can arise when header files #include other

header files. Multiple inclusion is a problem, but it often is necessary because the programmer may have a

legitimate need for both types of objects within the same program. Fortunately, the solution is simple. The

standard way to prevent multiple inclusion is to wrap a class definition as follows:

#ifndef COUNT_H_
#define COUNT_H_

class Counter {
int count;

public:
// Allow clients to reset the counter to zero
void clear();

// Allow clients to increment the counter
void inc();
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// Return a copy of the counter's current value
int get() const;

};

#endif

Do not use semicolons at the end of the lines beginning with #ifndef, #define, and #endif because

these are preprocessor directives, not C++ statements. The word following the #ifndef and #define
preprocessor directives can be any valid identifier, but best practice produces a unique word tied to the

name of the header file in which it appears. The convention is to use all capital letters and underscores as

shown above (an identifier cannot contain a dot). Putting an underscore after the header file name further

makes it less likely that name will be used elsewhere within the program. If the header file is named

myheader.h, the preprocessor wrapper would be

#ifndef MYHEADER_H_
#define MYHEADER_H_

/* Declare your classes here */

#endif

Like a C++ program, the preprocessor can maintain a collection of variables. These preprocessor-defined

variables can influence the compilation process. Preprocessor-defined variables are merely an artifact of

compilation and are unavailable to an executing C++ program. The preprocessor directive #ifndef eval-

uates to true if the preprocessor has not seen the definition of a given preprocessor variable; #ifndef
returns false if it has seen the definition of the preprocessor variable. The #define directive defines a pre-

processor variable. The net effect of the #ifndef/#define/#endif directives is that the preprocessor

will not include the header file more than once when it is processing a C++ source file. This means the

compiler will see the class definition exactly once, thus satisfying the one definition rule.

The #ifndef...#define...#endif preprocessor directives should be used to wrap the class declara-

tion in the header file and do not appear in the .cpp file containing the method definitions. Since you

cannot always predict how widespread the use of a class will become, it is good practice to use this prepro-

cessor trick for all general purpose classes you create. By doing so you will avoid the problem of multiple

inclusion.

15.7 Overloaded Operators

We can overload many of the C++ operators to work with programmer-defined types. Table 15.1 shows

some operators that have been defined to work with several of the standard object classes.

We can define how specific operators work for the types we devise. We may express operators for

classes either global functions or member functions.

15.7.1 Operator Functions

Consider a simple mathematical point class:

class Point {
public:
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Operator Class Function Example Chapter

operator<< std::ostream Right-hand operand is sent to the stream specified
by the left-hand operand

std::cout << x; Chapter 2

operator>> std::istream Right-hand operand is extracted from the stream
specified by the left-hand operand

std::cin >> x; Chapter 4

operator[] std::vector Right-hand operand (the integer within the square
brackets) is used to locate an element within the left-
hand operand (a vector)

x = v[2]; Section 11.1

operator== std::string Right-hand operand (a string) is compared with
the left-hand operator (also a string) to determine
if they contain exactly the same characters in exactly
the same order

if (word == "Please") proceed(); Chapter 13

Table 15.1: Some Overloaded Operators for Objects

double x;
double y;

};

Suppose we wish to define the operation of addition on points as follows:

(x1, y1) + (x2, y2) = (x1 + y1, x2 + y2)

Thus, the x coordinate of the sum of two points is the sum of the x coordinates, and the y coordinate is the

sum of the y coordinates.

We can overload the addition operator to work on Point objects with the following global function:

Point operator+(const Point& p1, const Point& p2) {
Point result;
result.x = p1.x + p2.x;
result.y = p1.y + p2.y;
return result;

}

With a slightly more sophisticated Point definition:

class Point {
double x; // Fields are now private
double y;

public:
// Add a constructor
Point(double x, double y);
// Add some methods to access the private data members
double get_x() const;
double get_y() const;

};

with the expected constructor and method implementations:

// Initialize fields
Point::Point(double x, double y): x(x), y(y) {}

double Point::get_x() const {
return x; // Return a copy of the x member

}
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double Point::get_y() const {
return y; // Return a copy of the y member

}

we can write the operator function in one line:

Point operator+(const Point& p1, const Point& p2) {
return {p1.get_x() + p2.get_x(), p1.get_y() + p2.get_y()};

}

It often is convenient to overload the output stream << operator for custom classes. The std::cout
object (and, therefore, the std::ostream class) has overloaded methods named operator<< that

allow us to print the primitive types like integers and floating-point numbers. If we create a new type,

such as Point or Rational, the std::ostream class has no operator<<method built in to handle

objects of our new type. In order to use std::cout’s << operator with programmer-defined objects we

must define a global operator function of the form:

std::ostream& operator<<(std::ostream& os, const X& x)

where X represents a programmer-defined type. Notice that the function returns type std::ostream&.

This is because the first parameter is also an std::ostream&, and the function returns the same object

that was passed into it. If x is a programmer-defined type, the expression

operator<<(std::cout, x)

thus evaluates to a reference to std::cout. This process of returning the object that was passed allows

us to chain together the << operator, as in

std::cout << x << y << '\n';

This is the beautified syntax for

operator<<(operator<<(operator<<(std::cout, x), y), '\n');

If you examine this expression carefully, you will see that the first argument to all the calls of operator<<
is simply std::cout.

For our enhanced Point class, operator<< could look like:

std::ostream& operator<<(std::ostream& os, const Point& pt) {
os << '(' << pt.get_x() << ',' << pt.get_y() << ')';
return os;

}

The function simply returns the same std::ostream object reference that was passed into it via the first

parameter.

Given the above definitions of operator+ and operator<<, clients can write code such as

Point my_point(1, 2), your_point(0.45, 0);
std::cout << "Point 1: " << my_point << '\n';
std::cout << "Point 2: " << my_point << '\n';
std::cout << my_point << " + " << your_point

<< " = " << my_point + your_point << '\n';
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which displays

Point 1: (1.0, 2.0)
Point 2: (0.45, 0.0)
(1.0, 2.0) + (0.45, 0.0) = (1.45, 2.0)

When class developers provide such an operator<< function, clients can print out objects just as easily

as printing the basic data types.

The << operator is not overloaded for the std::vector class, but we now easily can do it ourselves

as needed. For a vector of integers, the following function

ostream& operator<<(ostream& os, const std::vector<int>& vec) {
os << '{';
int n = vec.size();
if (n != 0) {

os << vec[0]
for (int i = 1; i < n; i++)

os << ',' << vec[i];
}
os << '}';
return os;

}

provides the necessary functionality. Given this operator<< function, clients can display vectors as they

would a built in type:

std::vector<int> list(10, 5);
std::cout << list << '\n';

This code fragment prints

{5,5,5,5,5,5,5,5,5,5}

15.7.2 Operator Methods

A class may define operator methods. A method for a unary operator accepts no parameters, and a method

for a binary operator accepts only one parameter. The “missing” parameter is the object upon which the

operator is applied; that is, the this pointer. To see how operator methods work, consider an enhanced

rational class:

class EnhancedRational {
int numerator;
int denominator;

public:
/* Other details omitted */

// Unary plus returns the double-precision floating-point
// equivalent of the rational number.
double operator+() const {

return static_cast<double>(numerator)/denominator;
}
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// Binary plus returns the rational number that results
// from adding another rational number (the parameter) to
// this object.
Rational operator+(const Rational& other) const {

int den = denominator * other.denominator,
num = numerator * other.denominator

+ other.numerator * denominator;
return {num, den};

}
};

The following code fragment shows how clients can use these operator methods:

Rational fract1(1, 2), fract2(1, 3), fract3;
double value = +fract1; // Assigns 0.5
fract3 = fract1 + fract2; // fract3 is 5/6

The statement

fract3 = fract1 + fract2;

is syntactic sugar for the equivalent statement

fract3 = fract1.operator+(fract2);

Here we see how the righthand operand of the plus operator, fract2, becomes the single parameter to the

binary operator+ method of EnhancedRational.

The statement

double value = +fract1;

is the syntactically sugared version of

double value = fract1.operator+();

While programmers may change the meaning of many C++ operators in the context of objects, the

precedence and associativity of all C++ operators are fixed. In the Rational class, for example, it is

impossible to enable the binary + operator to have a higher precedence than the binary * in the context of

Rational objects or any other classes of objects.

15.8 static Members

Variables declared in a class declaration are known as instance variables because each instance (object) of

that class maintains its own copy of the variables. This means, for example, that changing the numerator of

one Rational object will not affect the numerator of any other Rational object.

Sometimes it is convenient to have variables or constants that all objects of a class share. Global

variables and constants certainly will work, but globals are not tied to any particular class. C++ uses the

static keyword within a class to specify that all objects of that class share a field; for example,
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class Widget {
int value;
static int quantity;

};

Each individual Widget object has its own value variable, but only one quantity variable exists and

is shared by all Widget objects.

One unusual thing about static fields is that must be defined outside of the class declaration. For the

Widget class above, we must supply the statement

int Widget::quantity;

somewhere in the source code outside of the class declaration.

Consider a widget factory in which each widget object must have a unique serial number. Serial numbers

are sequential, and a new widget object’s serial number is one larger than the widget produced immediately

before. Important for warranty claims, a client should not be able to alter a serial number of a widget object.

The Widget class in Listing 15.10 (serialnumber.cpp) shows how to use a static variable to manage

serial numbers for widget objects.

Listing 15.10: serialnumber.cpp

#include <iostream>

class Widget {
// All Widget objects share serial_number_source
static int serial_number_source;
// Each Widget object is supposed to have its own
// unique serial_number
int serial_number;

public:
// A Widget object's serial number is initialized from
// the shared serial_number_source variable which is
// incremented each time a Widget object is created
Widget(): serial_number(serial_number_source++) {}
// Client's can look at the serial number but not touch
int get_serial_number() const {

return serial_number;
}

};

// Initialize the initial serial number; the first
// Widget made will have serial number 1
int Widget::serial_number_source = 1;

// Make some widgets and check their serial numbers
int main() {

Widget w1, w2, w3, w4;
std::cout << "w1 serial number = " << w1.get_serial_number() << '\n';
std::cout << "w2 serial number = " << w2.get_serial_number() << '\n';
std::cout << "w3 serial number = " << w3.get_serial_number() << '\n';
std::cout << "w4 serial number = " << w4.get_serial_number() << '\n';

}

The output of Listing 15.10 (serialnumber.cpp) is
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w1 serial number = 1
w2 serial number = 2
w3 serial number = 3
w4 serial number = 4

Each Widget object has its own serial_number variable, but all Widget objects have access to the

shared serial_number_source variable. The executing program initializes serial_number_source
one time at the beginning of the program’s execution before it calls the main function. This means

serial_number_source is properly initialized to 1 before the program creates any Widget objects.

Each time the client creates a new Widget object, the constructor assigns the individual object’s serial

number from the static variable. The constructor also increments serial_number_source’s value,

so the next object created will have a serial number one higher than the previous Widget.

C++ programmers often use class static fields to provide public constants available to clients. Con-

sider Listing 15.11 (trafficsignal.h) that models a simple traffic light a little differently from Listing 15.7

(trafficlight.h). It uses symbolic integer constants instead of enumeration types.

Listing 15.11: trafficsignal.h

#ifndef TRAFFICSIGNAL_H_
#define TRAFFICSIGNAL_H_

class TrafficSignal {
int color; // The light's current color: RED, GREEN, or YELLOW

public:
// Class constants available to clients
static const int RED = 0;
static const int GREEN = 1;
static const int YELLOW = 2;

TrafficSignal(int initial_color);
void change();
int get_color() const;

};

#endif

The state of a traffic light object—which of its lamps is illuminated—is determined by an integer value:

0 represents red, 1 stands for green, and 2 means yellow. It is much more convenient for clients to use

the symbolic constants RED, GREEN, and YELLOW than to try to remember which integer values stand for

which colors. These constants are public, so clients can freely access them, but, since they are constants,

clients cannot alter their values. An additional benefit to being const is this: You may initialize a static
const field within the class body itself. You do not need to re-define a static const field outside the

class body as you do for a non-const static field.

Listing 15.12 (trafficsignal.cpp) provides the implementation of the methods of TrafficSignal class.

Listing 15.12: trafficsignal.cpp

#include "trafficsignal.h"

// Ensures a traffic light object is in the state of
// red, green, or yellow. A rogue integer value makes the
// traffic light red
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TrafficSignal::TrafficSignal(int initial_color) {
switch (initial_color) {
case RED:
case GREEN:
case YELLOW:

color = initial_color;
break;

default:
color = RED; // Red by default

}
}

// Ensures the traffic light's signal sequence
void TrafficSignal::change() {

// Red --> green, green --> yellow, yellow --> red
color = (color + 1) % 3;

}

// Returns the light's current color so a client can
// act accordingly
int TrafficSignal::get_color() const {

return color;
}

Within the methods of the TrafficSignal class we can use the simple names RED, GREEN, and YELLOW.

Code outside of the TrafficSignal class can access the color constants because they are public but must

use the fully-qualified names TrafficSignal::RED, TrafficSignal::GREEN, and

TrafficSignal::YELLOW.

A client can create a traffic light object as

TrafficSignal light(TrafficSignal::YELLOW);

Since the client code is outside the TrafficSignal class it must must use the full TrafficSignal::YELLOW
name. This statement makes an initially yellow traffic light. Since the RED, GREEN, and YELLOW public

fields are constants, clients cannot modify them to subvert the behavior of a traffic light object.

It may not be obvious, but the color constants in the TrafficSignal class must be declared static.

To see why, consider a minor change to TrafficSignal in the class we will call TrafficSignalAlt:

class TrafficSignalAlt {
int color; // The light's current color: RED, GREEN, or YELLOW

public:
// Constant instance fields available to clients
const int RED; // Note: NOT static
const int GREEN;
const int YELLOW;

TrafficSignalAlt(int initial_color);
void change();
int get_color() const;

};

The TrafficSignalAlt class is identical to TrafficSignal, except that the color constants are con-

stant instance fields instead of constant class (static) fields. Observe that just like the TrafficSignal
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class, the TrafficSignalAlt class has no default constructor. Recall from Section 14.4 that a default

constructor accepts no arguments, and that if a programmer provides any constructor for a class, the com-

piler will not automatically provide a default constructor. This means the client cannot write code such

as

TrafficSignal light;

or

TrafficSignalAlt light2;

During the object’s creation the client must provide an integer argument representing a traffic light color.

If RED, GREEN, and YELLOW are constant instance variables (that is, constant non-static fields), every

TrafficSignalAlt object has its own copy of the fields, and the RED, GREEN, and YELLOW fields

cannot exist outside of any traffic light object. This leads to a chicken-and-egg problem—how can we

create the first TrafficSignalAlt object using the symbolic constants RED, GREEN, or YELLOW? These

constants do not exist unless we have a traffic light object, yet we need a traffic light object to have any of

these constants!

An executing program initializes static class fields before it invokes the main function. This means

any data pertaining to a class that must exist before any object of that class is created must be declared

static. A static class variable exists outside of any instance of its class.

C++ allows methods to be declared static. A static method executes on behalf of the class, not

an instance of the class. This means that a static method may not access any instance variables (that is

non-static fields) of the class, nor may they call other non-static methods. Since a static method

executes on behalf of the class, it has no access to the fields of any particular instance of that class. That

explains the restriction against static methods accessing non-static data members. Since a non-

static method may access instance variables of an object upon which it is called, a static method

may not call a non-static method and thus indirectly have access to instance variables. The restriction

goes only one way—any class method, static or non-static, may access a static data member or

call a static method.

Looking at it from a different perspective, all non-static methods have the this implicit parameter

(Section 15.3). No static method has the this parameter. This means it is a compile-time error to use

this within a static method.

15.9 Classes vs. structs

All members of a C++ class are private by default. The class

class Point {
public:

double x;
double y;

};

must use the public label so clients can access a Point object’s fields. The struct keyword is exactly

like the class keyword, except that the default access to members is public:

struct Point {
double x; // These fields now are public
double y;
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};

The C language supports the struct feature, but not the class keyword. C structs do not support

methods and constructors. In C++ (unlike in C), a struct can contain methods and constructors. By

default, members in structs are public, but you can apply the private and public labels as in a class

to fine tune client access.

Despite their similarities, C++ programmers favor classes over structs for programmer-defined

types with methods. The struct construct is useful for declaring simple composite data types that are

meant to be treated like primitive types. Consider the int type, for example. We can manipulate directly

integers, and integers do not have methods or any hidden parts. Likewise, a geometric point object consists

of two coordinates that can assume any valid floating-point values. It makes sense to allow client code to

manipulate directly the coordinates, rather than forcing clients to use methods like set_x and set_y. On

the other hand, it is unwise to allow clients to modify directly the denominator of a Rational object,

since a fraction with a zero denominator is undefined.

In C++, by default everything in an object defined by a struct is accessible

to clients that use that object. In contrast, clients have no default access to the

internals of an object that is an instance of a class. The default member access

for struct instances is public, and the default member access for class
instances is private.

The struct feature is, in some sense, redundant. It is a carryover from the C programming language.

By retaining the struct keyword, however, C++ programs can use C libraries that use C structs. Any

C++ program that expects to utilize a C library using a struct must restrict its struct definitions to the

limited form supported by C. Such struct definitions may not contain non-public members, methods,

constructors, etc.

15.10 Friends

The private members of a class by default are inaccessible to code outside of that class. Ordinarily only

methods within the class itself have permission to see and modify the private instance variables and invoke

the private methods within that class. This access protection allows programmers to modify the implemen-

tation of the hidden internals of a class without affecting existing client code that uses the class.

For some class designs this all-or-nothing access dictated by the public and private labels within

a class or struct is too limiting. At times it can be advantageous to design a class that grants special

access to some precisely specified functions or classes of objects outside of the class.

As an example, consider a variation of the SimpleRational class from Listing 14.5 (simplerational.cpp).

Our new class, named OpaqueRational is shown here:

// Models a mathematical rational number
class OpaqueRational {

int numerator;
int denominator;

public:
// Initializes the components of an OpaqueRational object
OpaqueRational(int n, int d): numerator(n), denominator(d) {
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if (d == 0) {
// Display error message
std::cout << "Zero denominator error\n";
exit(1); // Exit the program

}
}

// The default constructor makes a zero rational number
// 0/1
OpaqueRational(): OpaqueRational(0, 1) {}

};

Note that clients can make an OpaqueRational object, but after its creation clients can neither see nor

change the internals of the object. Gone are the set_numerator, set_denominator, get_numerator,

and get_denominator methods of the SimpleRational class.

We would like to able to print an OpaqueRational object as easily as the following:

OpaqueRational frac{1, 2}; // Make the fraction 1/2
std::cout << frac << '\n';

We would like the std::cout statement to print the text

1/2

This would require an operator<< function overloaded to accept a OpaqueRational object, and this

operator<< function would need to be able to access the private instance variables of the OpaqueRational
object.

A class can grant access to an outside function or another class via the friend reserved word. In

Listing 15.13 (printonlyrational.cpp) we specify a friend function that allows clients to display in human-

readable form an opaque rational number object via operator<< with an output stream object.

Listing 15.13: printonlyrational.cpp

#include <iostream>
#include <cstdlib>

// Models a mathematical rational number
class PrintOnlyRational {

int numerator;
int denominator;

public:
// Initializes the components of an PrintOnlyRational object
PrintOnlyRational(int n, int d): numerator(n), denominator(d) {

if (d == 0) {
// Display error message
std::cout << "Zero denominator error\n";
exit(1); // Exit the program

}
}

// The default constructor makes a zero rational number
// 0/1
PrintOnlyRational(): PrintOnlyRational(0, 1) {}
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// This operator can access the internal details of an
// object of this class.
friend std::ostream& operator<<(std::ostream& os,

const PrintOnlyRational& f);
};

std::ostream& operator<<(std::ostream& os, const PrintOnlyRational& f) {
os << f.numerator << '/' << f.denominator;
return os;

}

int main() {
PrintOnlyRational fract{1, 2}; // The fraction 1/2
std::cout << "The fraction is " << fract << '\n';
PrintOnlyRational fract2{2, 3}; // The fraction 2/3
std::cout << "The fraction is " << fract2 << '\n';

}

Listing 15.13 (printonlyrational.cpp) prints the following:

The fraction is 1/2
The fraction is 2/3

Observe that the operator<< function is not a member function of the PrintOnlyRational class.

Ordinarily operator<< would be unable to access the numerator and denominator fields of a

PrintOnlyRational object. We can see, however, that the compiler allows the operator<< function

to access the private instance variables of its f parameter.

We chose in Listing 15.13 (printonlyrational.cpp) to implement the operator<< function outside of

the PrintOnlyRational class; however, we just as well could have implemented it inline within the

body of the class, as shown here:

class PrintOnlyRational {
// Other details about the private members of the class omitted here . . .

public:
// Other details about the public members of the class omitted here . . .
friend std::ostream& operator<<(std::ostream& os,

const PrintOnlyRational& f) {

os << f.numerator << '/' << f.denominator;
return os;

}
};

Implementing operator<< inline in this way makes it look very much like an inline method implemen-

tation, but it is not a member function. The reserved word friend at the front indicates to the compiler

that is it indeed a free function; C++ does not allow member functions to be declared as friends.

Listing 15.14 (friendclass.cpp) provides an example of a friend class.

Listing 15.14: friendclass.cpp

#include <iostream>
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class Widget {
int data;

public:
Widget(int d): data(d) {}
friend class Gadget;

};

class Gadget {
int value;

public:
// A Gadget objects copies the private data from a Widget object
Gadget(const Widget& w): value(w.data) {}
int get() const {

return value;
}
bool compare(const Widget& w) const {

return value == w.data;
}

};

int main() {
Widget wid{45};
Gadget gad{wid};
std::cout << gad.get() << '\n';
if (gad.compare(wid))

std::cout << "They are the same" << '\n';
}

In Listing 15.14 (friendclass.cpp) the Gadget constructor accesses the private data element of a Widget
object to initialize a Gadget object. The Gadget::compare method accesses the data of a Widget
parameter passed to it. Neither of these accesses would be possible if the Widget class did not declare

Gadget to be a friend. Note that while a Gadget object may freely access the private members of any

Widget object, no Widget object has special access to any Gadget object. Friendship is not automati-

cally symmetric; that is, the friend declaration is one directional. For the relationship to be mutual, the

programmer would have to declare the Widget class to be a friend within the Gadget class; then objects

of both classes could freely access the internal details of each other.

Note that a class grants friendship unilaterally to an outside class or function; there is no way for an

outside class or function to become a friend of a class that has not specified it as a friend. This gives the

class designer full control over the code that accesses the private members of the class.

Suppose A, B, and C are classes. Further suppose that class B is a friend of class A and that class C is a

friend of class B. The friendship is not transitive; this means that C being a friend of B and B being a friend

of A does not automatically make C a friend of A. C++ is very strict about the friendship relationship. The

designer of class A would need to declare C as an additional friend of A. A class may have as many friend

functions and classes as needed.

Good object-oriented design avoids friends as much as possible. Ideally, if class A grants friendship

to class B, the design of classes A and B should be under the control of the same developers. Otherwise,

friendship weakens encapsulation (see Section 14.6). If class A grants friendship to class B and class B is

not under the control of the developer of class A, one or more of the methods in class B could manipulate

the internals of an object of type A and potentially place it in an ill-defined state.

Some would argue that the Listing 15.13 (printonlyrational.cpp) example could be better written as
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shown in Listing 15.15 (readonlyrational.cpp).

Listing 15.15: readonlyrational.cpp

#include <iostream>
#include <cstdlib>

// Models a mathematical rational number
class ReadOnlyRational {

int numerator;
int denominator;

public:
// Initializes the components of a ReadOnlyRational object
ReadOnlyRational(int n, int d): numerator(n), denominator(d) {

if (d == 0) {
// Display error message
std::cout << "Zero denominator error\n";
exit(1); // Exit the program

}
}

// The default constructor makes a zero rational number
// 0/1
ReadOnlyRational(): ReadOnlyRational(0, 1) {}

// Allows a client to see the numerator's value.
int get_numerator() const {

return numerator;
}

// Allows a client to see the denominator's value.
int get_denominator() const {

return denominator;
}

};

// This operator sends a fraction object to the output stream in
// a human-readable form.
std::ostream& operator<<(std::ostream& os, const ReadOnlyRational& f) {

os << f.get_numerator() << '/' << f.get_denominator();
return os;

}

int main() {
ReadOnlyRational fract{1, 2}; // The fraction 1/2
std::cout << "The fraction is " << fract << '\n';
ReadOnlyRational fract2{2, 3}; // The fraction 2/3
std::cout << "The fraction is " << fract2 << '\n';

}

The get_numerator and get_denominator methods eliminate the need for a friend function. Note

that a ReadOnlyRational object is subtly different from an PrintOnlyRational object. Clients

can see the numerator and denominator fields of a ReadOnlyRational object as desired, but

PrintOnlyRational objects are “print only;” clients readily can print an PrintOnlyRational
object but cannot easily discern the individual numerator and denominator values.
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Both the PrintOnlyRational and ReadOnlyRational classes represent read-only fraction

objects—once a client creates one these objects the client cannot change its value. In truth, the ReadOnlyRational
class is more versatile, as programmers could incorporate ReadOnlyRational objects into an applica-

tion that displays its output via a graphical interface. PrintOnlyRational objects limit their access

to output streams. The PrintOnlyRational class may better serve applications that need such limited

access.

15.11 Exercises

1. Suppose Widget is a class of objects, and function proc accepts a single Widget object as a

parameter. Without knowing anything about class Widget, which of the following definitions of

function proc is considered better, and why?

Option #1:

void proc(Widget obj) { /* Details omitted . . . */ }

Option #2:

void proc(const Widget& obj) { /* Details omitted . . . */ }

2. Suppose you have the following definition for class Assembly:

class Assembly {
public:

int value;
};

and the variable ptr_a declared and initialized as so:

Assembly *ptr_a = new Assembly;

(a) What statement using the dot operator (.) could you use to assign 5 to the value field of the

object to which ptr_a points?

(b) What statement using the arrow operator (->) could you use to assign 5 to the value field of

the object to which ptr_a points?

3. Suppose you have the following definition for class Gadget:

class Gadget {
int value;

public:
Gadget(int v): value(v) {}
int get() const {

return value;
}

};

Consider the following code fragment:

Gadget x(5);
int y = x.get();
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(a) What value does the second statement assign to y?

(b) Rewrite Gadget::get so it explicitly uses the this pointer.

(c) During the execution of Gadget::get on the second line, what is the value of the method’s

this pointer?

(d) What can a client do to alter the value field of a Gadget object after the object’s creation?

4. What are the consequences of declaring a method to be const?

5. Why are const methods necessary in C++?

6. Given the following Counter class declaration:

class Counter {
int value;

public:
Counter(): value(0) {}
void increment() {

value++;
}
int get() const {

return value;
}

};

and Counter objects declared as shown here:

Counter c1;
const Counter c2;

determine if each of the following statements is legal.

(a) c1.increment();

c2.increment();

(b)(c) int x = c1.get();

int y = c2.get();

(d)7. Given the following Counter class declaration:

class Counter {
int value;

public:
Counter(): value(0) {}
void increment() {

value++;
}
int get() {

return value;
}

};
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and Counter objects declared as shown here:

Counter c1;
const Counter c2;

determine if each of the following statements is legal.

(a) c1.increment();

c2.increment();

(b)(c) int x = c1.get();

int y = c2.get();

(d)8. Consider the following class declaration:

class Counter {
int value;

public:
Counter(): value(0) {}
void increment() {

value++;
}
int decrement() {

value--;
}
int get() const {

return value;
}

};

(a) Show how you would properly separate the code of the Counter class into two source files:

its declaration in a counter.h file and its method implementations in a counter.cpp file.

(b) Would client code ordinarily #include both the counter.h and counter.cpp files in its source

code?

(c) How can you protect your counter.h file to prevent clients from accidentally #include-ing

the contents of the header file more than once?

(d) What advantages does separating the class declaration and method implementations provide?

9. What are the consequences of declaring a method to be static?

10. Consider the following class declaration:

class ValType {
public:

int value1;
static int value2;

};

(a) If a client creates 100 ValType objects, how many value1 fields will exist in memory?
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(b) If a client creates 100 ValType objects, how many value2 fields will exist in memory?

11. How is a C++ struct similar to a class?

12. How does a C++ struct differ from a class?

13. Given the following custom type declarations:

class X {
int value1;

public:
static int value2;
int value3;
X(): value1(5) {}
void f() {

value1 = 0;
}
static void g() {

value2 = 0;
}

};
int X::value2 = 3;

struct Y {
int quantity1;
Y(): quantity1(5) {}
void f() {

quantity1 = 0;
}

private:
int quantity2;

};

and the following variable declarations:

X x_obj;
Y y_obj;

determine if each of the following statements is legal.

(a) x_obj.value1 = 0;

(b) x_obj.value2 = 0;

(c) x_obj.value3 = 0;

(d) X::value1 = 0;

(e) X::value2 = 0;

(f) X::value3 = 0;

(g) y_obj.quantity1 = 0;

(h) y_obj.quantity2 = 0;

(i) Y::quantity1 = 0;

(j) Y::quantity2 = 0;
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(k) x_obj.f();

(l) x_obj.g();

(m) X::f();

(n) X::g();

14. What privileges does function f have with respect to the class that declares f to be its friend?

15. Consider the following class declaration:

class ValType {
int value;

public:
ValType(): value(0) {}
void set(int v1) {

value = v1;
}
void show() const {

std::cout << value << '\n';
}
friend int f(const ValType& x);

};

and determine the legality of each of the following function definitions:

(a) int f(const ValType& x) {
return 2 * x.value;

}

(b) int g(const ValType& x) {
return 2 * x.value;

}

(c) int f(const ValType& x) {
x.show();
return 0;

}

(d) int g(const ValType& x) {
x.show();
return 0;

}

(e) int f(const ValType& x, int n) {
return n * x.value;

}

16. What are the risks associated with using the friend construct?
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Chapter 16

Building some Useful Classes

This chapter uses the concepts from the past few chapters to build some complete, practical classes.

16.1 A Better Rational Number Class

Listing 16.1 (rational.cpp) enhances the SimpleRational class (Listing 14.5 (simplerational.cpp)) pro-

viding a more complete type.

Listing 16.1: rational.cpp

#include <iostream>

class Rational {
int numerator;
int denominator;

// Compute the greatest common divisor (GCD) of two integers
static int gcd(int m, int n) {

if (n == 0)
return m;

else
return gcd(n, m % n);

}
// Compute the least common multiple (LCM) of two integers
static int lcm(int m, int n) {

return m * n / gcd(m, n);
}

public:
Rational(int n, int d): numerator(n), denominator(d) {

if (d == 0) { // Disallow an undefined fraction
std::cout << "*****Warning---Illegal Rational\n";
numerator = 0; // Make up a reasonable default fraction
denominator = 1;

}
}
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// Default fraction is 0/1
Rational(): numerator(0), denominator(1) {}

int get_numerator() const {
return numerator;

}

int get_denominator() const {
return denominator;

}

Rational reduce() const {
// Find the factor that numerator and denominator have in common...
int factor = gcd(numerator, denominator);
// ...then divide it out in the new fraction
//return Rational(numerator/factor, denominator/factor);
return {numerator/factor, denominator/factor};

}

// Equal fractions have identical numerators and denominators
bool operator==(const Rational& fract) const {

// First, find the reduced form of this fraction and the parameter...
Rational f1 = reduce(),

f2 = fract.reduce();
// ...then see if their components match.
return (f1.numerator == f2.numerator)

&& (f1.denominator == f2.denominator);
}

// Unequal fractions are not equal
bool operator!=(const Rational& other) {

return !(*this == other);
}

// Compute the sum of fract and the current rational number
Rational operator+(const Rational& fract) const {

// Find common denominator
int commonDenominator = lcm(denominator, fract.denominator);
// Add the adjusted numerators
int newNumerator = numerator * commonDenominator/denominator

+ fract.numerator * commonDenominator/fract.denominator;
return {newNumerator, commonDenominator};

}

// Compute the product of fract and the current rational number
Rational operator*(const Rational& fract) const {

return Rational(numerator * fract.numerator,
denominator * fract.denominator).reduce();

}
};

// Allow a Rational object to be displayed in a nice
// human-readable form.
std::ostream& operator<<(std::ostream& os, const Rational& r) {
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os << r.get_numerator() << "/" << r.get_denominator();
return os;

}

int main() {
Rational f1(1, 2), f2(1, 3);
std::cout << f1 << " + " << f2 << " = " << (f1 + f2) << '\n';
std::cout << f1 << " * " << f2 << " = " << (f1 * f2) << '\n';

}

Listing 16.1 (rational.cpp) produces

1/2 + 1/3 = 5/6
1/2 * 1/3 = 1/6

This rational number type has some notable features:

• Constructors. The overloaded constructors permit convenient initialization and make it impossible

to create an undefined fraction.

• Private static methods. Rational provides two private static methods: gcd and lcm.

The algorithm for the recursive gcd (greatest common divisor) method was introduced in Sec-

tion 10.5. The lcm (least common multiple) method is derived from the mathematical relationship:

gcd(m,n)× lcm(m,n) = m×n

These two methods are declared private because they are not meant to be used directly by client

code. Greatest common divisor and least common multiple are concepts from number theory of which

Rational clients have no direct need. Client code expects functionality typical of rational num-

bers, such as addition and reduction; these two private methods are used by other, public, methods

that provide functionality more closely related to rational numbers. These two private methods are

static methods because they do not use instance variables. An object is not required to compute

the greatest common divisor of two integers. It is legal for gcd and lcm to be instance methods, but

instance methods should be used only where necessary, since they have the power to alter the state

of an object. Faulty coding that accidentally modifies an instance variable can be difficult to track

down. If a class method is used, however, the compiler can spot any attempt to access an instance

variable immediately.

• Public instance methods. None of the instance methods (operator==, reduce, operator+,

and operator*) modify the state of the object upon which they are invoked. Thus, the Rational
class still produces immutable objects. The methods operator+, operator*, and reduce use

the private helper methods to accomplish their respective tasks.

• Global « operator. operator<< is a global function that allows a Rational object to be sent to

the std::cout object to be displayed as conveniently as a built-in type.

16.2 Stopwatch

The linear search vs. binary search comparison program (Listing 12.5 (searchcompare.cpp)) accessed the

system clock in order to time the execution of a section of code. The program used the clock function

from the standard C library and an additional variable to compute the elapsed time. The following skeleton

code fragment:
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clock_t seconds = clock(); // Record starting time

/*
* Do something here that you wish to time
*/

clock_t other = clock(); // Record ending time
std::cout << static_cast<double>(other - seconds)/CLOCKS_PER_SEC

<< " seconds\n";

certainly works and can be adapted to any program, but it has several drawbacks:

• A programmer must take care to implement the timing code correctly for each section of code to be

timed. This process is error prone:

– clock_t is a specialized type that is used infrequently. It is not obvious from its name that

clock_t is equivalent to an unsigned integer, so a programmer may need to consult a library

reference to ensure its proper use.

– The programmer must specify the correct arithmetic:

(other - seconds)/CLOCKS_PER_SEC

– The type cast to double of the time difference is necessary but easily forgotten or applied

incorrectly. If a programmer incorrectly applies parentheses as so

static_cast<double>((other - seconds)/CLOCKS_PER_SEC)

the result will lose precision. Worse yet, the following parenthetical grouping

static_cast<double>(other) - seconds/CLOCKS_PER_SEC

will result in an incorrect value, since division has precedence over subtraction.

• The timing code is supplemental to the actual code that is being profiled, but it may not be imme-

diately obvious by looking at the complete code which statements are part of the timing code and

which statements are part of the code to be timed.

Section 10.6 offered a solution to the above shortcomings of using the raw types, constants, and func-

tions available from the C time library. Listing 10.14 (timermodule.cpp) hides the details of the C time li-

brary and provides a convenient functional interface to callers. Unfortunately, as mentioned in Section 10.6,

the functional approach has a serious limitation. The code in Listing 10.14 (timermodule.cpp) uses global

variables to maintain the state of the timer. There is only one copy of each global variable. This means pro-

grammers using the timer functions cannot independently measure the elapsed time of overlapping events;

for example, you cannot measure how long it takes for a function to execute and simultaneously measure

how long a section of code within that function takes to execute.

A programmer could time multiple, simultaneous activites by using the raw C library clock function

directly, but then we are back to where we began: messy, potentially error-prone code.

Objects provide a solution. Consider the following client code that uses a stopwatch object to keep track

of the time:

Stopwatch timer; // Declare a stopwatch object

timer.start(); // Start timing
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/*
* Do something here that you wish to time
*/

timer.stop(); // Stop the clock
std::cout << timer.elapsed() << " seconds\n";

This code using a Stopwatch object is as simple as the code that uses the timer functions from List-

ing 10.14 (timermodule.cpp). As an added benefit, a developer can think of a Stopwatch object as if it is

a real physical stopwatch object: push a button to start the clock (call the start method), push a button

to stop the clock (call the stop method), and then read the elapsed time (use the result of the elapsed
method). What do you do if you need to time two different things at once? You use two stopwatches, of

course, so a programmer would declare and use two Stopwatch objects. Since each object maintains its

own instance variables, each Stopwatch object can keep track of its own elapsed time independently of

all other active Stopwatch objects.

Programmers using a Stopwatch object in their code are much less likely to make a mistake be-

cause the details that make it work are hidden and inaccessible. With objects we can wrap all the messy

details of the timing code into a convenient package. Given our experience designing our own types

though C++ classes, we now are adequately equipped to implement such a Stopwatch class. Listing 16.2

(stopwatch.h) provides the header file defining the structure and capabilities of our Stopwatch objects.

Listing 16.2: stopwatch.h

#ifndef STOPWATCH_H_DEFINED_
#define STOPWATCH_H_DEFINED_

#include <ctime>

class Stopwatch {
clock_t start_time;
bool running;
double elapsed_time;

public:
Stopwatch();
void start(); // Start the timer
void stop(); // Stop the timer
void reset(); // Reset the timer
double elapsed() const; // Reveal the elapsed time
bool is_running() const; // Is the stopwatch currently running?

};

#endif

From this class declaration we see that when clients create a Stopwatch object a constructor is available

to take care of any initialization details. Four methods are available to clients: start, stop, reset, and

elapsed. The reset method is included to set the clock back to zero to begin a new timing. Note that

the “messy” detail of the clock_t variable is private and, therefore, clients cannot see or directly affect

its value within a Stopwatch object.

This Stopwatch class (Listing 16.2 (stopwatch.h)) addresses the weaknesses of the non-object-oriented

approach noted above:
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• The timing code can be implemented in methods of the Stopwatch class. Once the methods are

correct, a programmer can use Stopwatch objects for timing the execution of sections of code

without worrying about the details of how the timing is actually done. Client code cannot introduce

errors in the timing code if the timing code is hidden within the Stopwatch class.

• The details of the timing code no longer intertwine with the code to be timed, since the timing code

is located in the Stopwatch class. This makes it easier for programmers to maintain the code they

are timing.

• The Stopwatch class provides a convenient interface for the programmer that replaces the lower-

level details of calling system time functions.

Listing 16.3 (stopwatch.cpp) provides the Stopwatch implementation.

Listing 16.3: stopwatch.cpp

#include <iostream>
#include "Stopwatch.h"

// Creates a Stopwatch object
// A newly minted object is not running and is in a "reset" state
Stopwatch::Stopwatch(): start_time(0), running(false), elapsed_time(0.0) {}

// Starts the stopwatch to begin measuring elapsed time.
// Starting a stopwatch that already is running has no effect.
void Stopwatch::start() {

if (!running) {
running = true; // Set the clock running
start_time = clock(); // Record start time

}
}

// Stops the stopwatch. The stopwatch will retain the
// current elapsed time, but it will not measure any time
// while it is stopped.
// If the stopwatch is already stopped, the method has
// no effect.
void Stopwatch::stop() {

if (running) {
clock_t stop_time = clock(); // Record stop time
running = false;
// Accumulate elapsed time since start
elapsed_time += static_cast<double>((stop_time - start_time))

/CLOCKS_PER_SEC;
}

}

// Reports the cummulative time in seconds since the
// stopwatch was last reset.
// This method does not affect the state of the stopwatch.
double Stopwatch::elapsed() const {

if (running) { // Compute time since last reset
clock_t current_time = clock(); // Record current time
// Add time from previous elapsed to the current elapsed
// since the latest call to the start method.
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return elapsed_time
+ static_cast<double>((current_time - start_time))

/CLOCKS_PER_SEC;
}
else // Timer stopped; elapsed already computed in the stop method

return elapsed_time;
}

// Returns the stopwatch's status (running or not) to the client.
// This method does not affect the state of the stopwatch.
bool Stopwatch::is_running() const {

return running;
}

// Resets the stopwatch so a subsequent start begins recording
// a new time. Stops the stopwatch if it currently is running.
void Stopwatch::reset() {

running = false;
elapsed_time = 0.0;

}

Note that our design allows a client to see the running time of a Stopwatch object without needing to

stop it. An alternate design might print an error message and perhaps exit the program’s execution if a client

attempts to see the elapsed time of a running stopwatch.

Some aspects of the Stopwatch class are notable:

• Stopwatch objects use three instance variables:

– The start_time instance variable records the time when the client last called the start
method.

– The elapsed_time instance variable keeps track of the time since the latest call to the

reset method.

– The running Boolean instance variable indicates whether or not the clock is running.

• The constructor sets the initial values of the instance variables start_time, elapsed_time,

and running.

• The start method notes the system time after the assignment to running. If these two statements

were reversed, the elapsed time would include the time to do the assignment to running. The

elapsed time should as closely as possible just include the statements in the client code between the

start and stop method calls.

Notice that start_time is not assigned if the stopwatch is running.

• In the stop method, the system time is noted before the assignment to running so the elapsed

time does not include the assignment to running. This provides a more accurate accounting of the

client code execution time.

The stop method computes the accumulated elapsed time. This design allows a client to stop the

stopwatch and restart it later without losing an earlier segment of time.

• The elapsed method either returns the elapsed time computed by the stop method or computes

the current running time without altering the elapsed_time variable. Clients should avoid calling

elapsed when a Stopwatch object is running since doing so would interfere with the accurate

timing of client code execution.
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Compare the main function of Listing 12.5 (searchcompare.cpp) to that of Listing 16.4 (bettersearchcompare.cpp):

Listing 16.4: bettersearchcompare.cpp

#include <iostream>
#include <iomanip>
#include <ctime>
#include <vector>
#include "Stopwatch.h"

/*
* binary_search(v, seek)
* Returns the index of element seek in vector v;
* returns -1 if seek is not an element of v
* v is the vector to search; v's contents must be
* sorted in ascending order.
* seek is the element to find
*/

int binary_search(const std::vector<int>& v, int seek) {
int first = 0, // Initially the first element in vector

last = v.size() - 1, // Initially the last element in vector
mid; // The middle of the vector

while (first <= last) {
mid = first + (last - first + 1)/2;
if (v[mid] == seek)

return mid; // Found it
else if (v[mid] > seek)

last = mid - 1; // continue with 1st half
else // v[mid] < seek

first = mid + 1; // continue with 2nd half
}
return -1; // Not there

}

// This version requires vector v to be sorted in
// ascending order.
/*
* linear_search(v, seek)
* Returns the index of element seek in vector v;
* returns -1 if seek is not an element of a
* v is the vector to search; v's contents must be
* sorted in ascending order.
* seek is the element to find
*/

int linear_search(const std::vector<int>& v, int seek) {
size_t n = v.size();
for (size_t i = 0; i < n && v[i] <= seek; i++)

if (v[i] == seek)
return i; // Return position immediately

return -1; // Element not found
}

int main() {
const size_t SIZE = 30000;
std::vector<int> list(SIZE);
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Stopwatch timer;

// Ensure the elements are ordered low to high
for (size_t i = 0; i < SIZE; i++)

list[i] = i;
// Search for all the elements in list using linear search
timer.start();
for (size_t i = 0; i < SIZE; i++)

linear_search(list, i);
// Print the elapsed time
timer.stop();
std::cout << "Linear elapsed: " << timer.elapsed() << " seconds\n";
// Prepare for a new timing
timer.reset();
// Search for all the elements in list using binary search
timer.start();
for (size_t i = 0; i < SIZE; i++)

binary_search(list, i);
// Print the elapsed time
timer.stop();
std::cout << "Binary elapsed: " << timer.elapsed() << " seconds\n";

}

This new, object-oriented version is simpler and more readable.

The design of the Stopwatch class allows clients to create multiple Stopwatch instances, and each

instance will keep track of its own time. In practice when profiling executing programs, such generality

usually is unnecessary. Rarely do developers need to time overlapping code, so one timer object per program

usually is enough. Multiple sections of code can be checked with the same Stopwatch object; simply

start it, stop it, check the time, and then reset it and start it again when another section of code is to be

timed.

16.3 Sorting with Logging

Section 12.2 shows how to use function pointers to customize the ordering that selection sort performs

on a vector of integers. The selection_sort function in Listing 12.2 (flexibleintsort.cpp) accepts a

function pointer parameter in addition to the vector. The function pointer points to a function that accepts

two integer parameters and returns true or false. The function is supposed to use some kind of ordering rule

to determine if its first integer parameter precedes its second integer parameter.

Suppose we wish to analyze the number of comparisons and the number of swaps the sort function

performs on a given vector with a particular ordering strategy. One way to do this is have the sort function

itself keep track of the number of times it calls the comparison function and swap function and return this

information when it finishes. To do so we would have to define an object to hold the two pieces of data

(comparisons and swaps) since a function can return only one value, not two. Also if we do this, we must

significantly alter the code of the sort algorithm itself. We would prefer to keep the sort algorithm focused

on its task of sorting and remain uncluttered from this additional logging code.

If instead of passing a function pointer to our sort function we pass a specially crafted object. We can

design our object to do whatever we want; specifically, we can design our special object to perform the

necessary comparisons and keep track of how many comparisons it performs. We could let the object do

the swap, and it could log the swaps it performs.
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Listing 16.5 (loggingflexiblesort.cpp) is a variation of Listing 12.2 (flexibleintsort.cpp) that uses a com-

parison object instead of a comparison function.

Listing 16.5: loggingflexiblesort.cpp

#include <iostream>
#include <vector>

/*
* Comparer objects manage the comparisons and element
* interchanges on the selection sort function below.
*/

class Comparer {
// Keeps track of the number of comparisons
// performed
int compare_count;
// Keeps track of the number of swaps performed
int swap_count;
// Function pointer directed to the function to
// perform the comparison
bool (*comp)(int, int);

public:
// The client must initialize a Comparer object with a
// suitable comparison function.
Comparer(bool (*f)(int, int)):

compare_count(0), swap_count(0), comp(f) {}

// Resets the counters to make ready for a new sort
void reset() {

compare_count = swap_count = 0;
}

// Method that performs the comparison. It delegates
// the actual work to the function pointed to by comp.
// This method logs each invocation.
bool compare(int m, int n) {

compare_count++;
return comp(m, n);

}

// Method that performs the swap.
// Interchange the values of
// its parameters a and b which are
// passed by reference.
// This method logs each invocation.
void swap(int& m, int& n) {

swap_count++;
int temp = m;
m = n;
n = temp;

}

// Returns the number of comparisons this object has
// performed since it was created.
int comparisons() const {
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return compare_count;
}

// Returns the number of swaps this object has
// performed since it was created.
int swaps() const {

return swap_count;
}

};

/*
* selection_sort(a, compare)
* Arranges the elements of vector a in an order determined
* by the compare object.
* a is a vector of ints.
* compare is a function that compares the ordering of
* two integers.
* The contents of a are physically rearranged.
*/

void selection_sort(std::vector<int>& a, Comparer& compare) {
int n = a.size();
for (int i = 0; i < n - 1; i++) {

// Note: i,small, and j represent positions within a
// a[i], a[small], and a[j] represents the elements at
// those positions.
// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less
// than a[i]
int small = i;
// See if a smaller value can be found later in the array
for (int j = i + 1; j < n; j++)

if (compare.compare(a[j], a[small]))
small = j; // Found a smaller value

// Swap a[i] and a[small], if a smaller value was found
if (i != small)

compare.swap(a[i], a[small]);
}

}

/*
* print
* Prints the contents of an integer vector
* a is the vector to print.
* a is not modified.
*/

void print(const std::vector<int>& a) {
int n = a.size();
std::cout << '{';
if (n > 0) {

std::cout << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
}
std::cout << '}';

}
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/*
* less_than(a, b)
* Returns true if a < b; otherwise, returns
* false.
*/

bool less_than(int a, int b) {
return a < b;

}

/*
* greater_than(a, b)
* Returns true if a > b; otherwise, returns
* false.
*/

bool greater_than(int a, int b) {
return a > b;

}

int main() {
// Make a vector of integers from an array
std::vector<int> original { 23, -3, 4, 215, 0, -3, 2, 23, 100, 88, -10 };

// Make a working copy of the original vector
std::vector<int> working = original;
std::cout << "Before: ";
print(working);
std::cout << '\n';
Comparer lt(less_than), gt(greater_than);
selection_sort(working, lt);
std::cout << "Ascending: ";
print(working);
std::cout << " (" << lt.comparisons() << " comparisons, "

<< lt.swaps() << " swaps)\n";
std::cout << "----------------------------\n";
// Make another copy of the original vector
working = original;
std::cout << "Before: ";
print(working);
std::cout << '\n';
selection_sort(working, gt);
std::cout << "Descending: ";
print(working);
std::cout << " (" << gt.comparisons() << " comparisons, "

<< gt.swaps() << " swaps)\n";
std::cout << "----------------------------\n";
// Sort a sorted vector
std::cout << "Before: ";
print(working);
std::cout << '\n';
// Reset the greater than comparer so we start counting at
// zero
gt.reset();
selection_sort(working, gt);
std::cout << "Descending: ";
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print(working);
std::cout << " (" << gt.comparisons() << " comparisons, "

<< gt.swaps() << " swaps)\n";
}

Notice that a Comparison object wraps a comparison function pointer, contains a swap method, and

maintains two integer counters. The comparison object passed to the sort routine customizes the sort’s

behavior (via its function pointer) and keeps track of the number of comparisons and swaps it performs

(via its integer counters). As in Listing 12.2 (flexibleintsort.cpp), the basic structure of the sorting algorithm

remains the same regardless of the ordering determined by the comparison object.

The output of Listing 16.5 (loggingflexiblesort.cpp) is

Before: {23,-3,4,215,0,-3,2,23,100,88,-10}
Ascending: {-10,-3,-3,0,2,4,23,23,88,100,215} (55 comparisons, 7 swaps)
----------------------------
Before: {23,-3,4,215,0,-3,2,23,100,88,-10}
Descending: {215,100,88,23,23,4,2,0,-3,-3,-10} (55 comparisons, 5 swaps)
----------------------------
Before: {215,100,88,23,23,4,2,0,-3,-3,-10}
Descending: {215,100,88,23,23,4,2,0,-3,-3,-10} (55 comparisons, 0 swaps)

We see from the results that the number of comparisons is dictated by the algorithm itself, but the number of

element swaps depends on the ordering of the elements and the nature of the comparison. Sorting an already

sorted array with selection sort does not reduce the number of comparisons the function must perform, but,

as we can see, it requires no swaps.

16.4 Automating Testing

We know that a clean compile does not imply that a program will work correctly. We can detect errors

in our code as we interact with the executing program. The process of exercising code to reveal errors

or demonstrate the lack thereof is called testing. The informal testing that we have done up to this point

has been adequate, but serious software development demands a more formal approach. As you gain more

experience developing software you will realize that good testing requires the same skills and creativity as

programming itself.

Until recently testing was often an afterthought. Testing was not seen to be as glamorous as designing

and coding. Poor testing led to buggy programs that frustrated users. Also, tests were written largely after

the program’s design and coding were complete. The problem with this approach is major design flaws may

not be revealed until late in the development cycle. Changes late in the development process are invariably

more expensive and difficult to deal with than changes earlier in the process.

Weaknesses in the standard approach to testing led to a new strategy: test-driven development. In test-

driven development the testing is automated, and the design and implementation of good tests is just as

important as the design and development of the actual program. In pure TDD, developers write the tests

before writing any application code and immediately test all application code they write.

Listing 16.6 (tester.h) defines the structure of a rudimentary test object.

Listing 16.6: tester.h

#ifndef TESTER_H_
#define TESTER_H_
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#include <vector>
#include <string>

class Tester {
int error_count; // Number of errors detected
int total_count; // Number of tests executed

// Determines if double-precision floating-point
// values d1 and d2 are "equal."
// Returns true if their difference is less than tolerance.
bool equals(double d1, double d2, double tolerance) const;

// Displays vector a in human-readable form
void print_vector(const std::vector<int>& a);

public:
// Initializes a Tester object
Tester();

// Determines if an expected integer result (expected)
// matches the actual result (actual). msg is the message
// that describes the test.
void check_equals(const std::string& msg, int expected, int actual);

// Determines if an expected double result (expected)
// matches the actual result (actual) or they differ by at
// most tolerance. msg is the message that describes the test.
void check_equals(const std::string& msg, double expected,

double actual, double tolerance);

// Determines if an expected string result (expected)
// matches the actual result (actual). msg is the message
// that describes the test.
void check_equals(const std::string& msg,

const std::vector<int>& expected,
const std::vector<int>& actual);

// Reports the final results: number of tests passed and
// failed and the total number of tests run.
void report_results() const;

};

#endif

A simple test object keeps track of the number of tests performed and the number of failures. The client

uses the test object to check the results of a computation against a predicted result. Notice that the equals
method, which checks for the equality of two double-precision floating-point numbers is private, as it is

meant to be used internally by the other methods within the class. The equals method works the same

way as the equals function we examined in Listing 9.17 (floatequals.cpp).

Listing 16.7 (tester.cpp) implements the Tester methods.

Listing 16.7: tester.cpp

#include <iostream>
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#include <cmath>
#include "tester.h"

Tester::Tester(): error_count(0), total_count(0) {
std::cout << "+---------------------------------------\n";
std::cout << "| Testing \n";
std::cout << "+---------------------------------------\n";

}

// d1 and d2 are "equal" if their difference is less than
// a specified tolerance
bool Tester::equals(double d1, double d2, double tolerance) const {

return d1 == d2 || abs(d1 - d2) < tolerance;
}

// Prints the contents of a vector of integers.
void Tester::print_vector(const std::vector<int>& a) {

int n = a.size();
std::cout << '{';
if (n > 0) {

std::cout << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
}
std::cout << '}';

}

// Compare integer outcomes
void Tester::check_equals(const std::string& msg, int expected,

int actual) {
std::cout << "[" << msg << "] ";
total_count++; // Count this test
if (expected == actual)

std::cout << "OK\n";
else {

error_count++; // Count this failed test
std::cout << "*** Failed! Expected: " << expected

<< ", actual: " << actual << '\n';
}

}

// Compare double-precision floating-point outcomes
void Tester::check_equals(const std::string& msg, double expected,

double actual, double tolerance) {
std::cout << "[" << msg << "] ";
total_count++; // Count this test
if (equals(expected, actual, tolerance))

std::cout << "OK\n";
else {

error_count++; // Count this failed test
std::cout << "*** Failed! Expected: " << expected

<< ", actual: " << actual << '\n';
}

}
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// Compare vector outcomes
void Tester::check_equals(const std::string& msg,

const std::vector<int>& expected,
const std::vector<int>& actual) {

std::cout << "[" << msg << "] ";
total_count++; // Count this test
if (expected == actual)

std::cout << "OK\n";
else {

error_count++; // Count this failed test
std::cout << "*** Failed! Expected: ";
print_vector(expected);
std::cout << " Actual: ";
print_vector(actual);
std::cout << '\n';

}
}

// Display final test statistics
void Tester::report_results() const {

std::cout << "+--------------------------------------\n";
std::cout << "| " << total_count << " tests run, "

<< total_count - error_count << " passed, "
<< error_count << " failed\n";

std::cout << "+--------------------------------------\n";

}

Listing 16.8: testvectorstuff.cpp

#include <iostream>
#include <vector>
#include "tester.h"

// sort has a bug (it does not do anyting)
void sort(std::vector<int>& vec) {

// Not yet implemented
}

// sum has a bug (misses first element)
int sum(const std::vector<int>& vec) {

int total = 0;
for (size_t i = 1; i < vec.size(); i++)

total += vec[i];
return total;

}

int main() {
Tester t; // Declare a test object
// Some test cases to test sort
std::vector<int> vec { 4, 2, 3 };
sort(vec);
t.check_equals("Sort test #1", {2, 3, 4}, vec);
vec = {2, 3, 4};
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sort(vec);
t.check_equals("Sort test #2", {2, 3, 4}, vec);
// Some test cases to test sum
t.check_equals("Sum test #1", sum({0, 3, 4}), 7);
t.check_equals("Sum test #2", sum({-3, 0, 5}), 2);

}

The program’s output is

+---------------------------------------
| Testing
+---------------------------------------
[Sort test #1] *** Failed! Expected: {2,3,4} Actual: {4,2,3}
[Sort test #2] OK
[Sum test #1] OK
[Sum test #2] *** Failed! Expected: 5, actual: 2

Notice that the sort function has yet to be implemented, but we can test it anyway. The first test is

bound to fail. The second test checks to see if our sort function will not disturb an already sorted vector,

and we pass this test with no problem. This is an example of coincidental correctness.

In the sum function, the programmer was careless and used 1 as the beginning index for the vector.

Notice that the first test does not catch the error, since the element in the zeroth position (zero) does not

affect the outcome. A tester must be creative and devious to try and force the code under test to demonstrate

its errors.

16.5 Convenient High-quality Pseudorandom Numbers

In Section 13.5 we used some classes from the standard C++ library to generate high-quality pseudoran-

dom numbers. Listing 13.11 (highqualityrandom.cpp) used three kinds of objects—random_device,

mt19937, and uniform_int_distribution—to produce good pseudorandom sequences.

The C++ class construct allows us to creatively combine multiple sources of functionality into one

convenient package. Listing 16.9 (uniformrandom.h) contains a custom UniformRandomGenerator
class.

Listing 16.9: uniformrandom.h

#ifndef UNIFORM_RANDOM_DEFINED_
#define UNIFORM_RANDOM_DEFINED_

#include <random>

class UniformRandomGenerator {

// A uniform distribution object
std::uniform_int_distribution<int> dist;
// A Mersenne Twister random number generator with a seed
// obtained from a random_device object
std::mt19937 mt;

public:
// The smallest pseudorandom number this generator can produce
const int MIN;
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// The largest pseudorandom number this generator can produce
const int MAX;

// Create a pseudorandom number generator that produces values in
// the range low...high
UniformRandomGenerator(int low, int high) : dist(low, high),

mt(std::random_device()()),
MIN(low), MAX(high) {}

// Return a pseudorandom number in the range MIN...MAX
int operator()() {

return dist(mt);
}

};
#endif

The UniformRandomGenerator class provides a simplified interface to programmers who need ac-

cess to high-quality pseudorandom numbers. Behind the scenes, every UniformRandomGenerator
object contains its own uniform_int_distribution object and mt19937 object. The constructor

accepts the minimum and maximum values in the range of pseudorandom numbers desired. The con-

structor uses this range to construct the appropriate uniform_int_distribution object for this

range. The constructor also initializes the mt19937 object field. The UniformRandomGenerator
constructor passes to the constructor of the mt19937 class a temporary random_device object. Since

a UniformRandomGenerator object uses the random_device only for creating its mt19937 field

and does not need it later, UniformRandomGenerator objects do not contain a random_device
field.

To create a UniformRandomGenerator object that produces pseudorandom integers in the range

−100 . . .100, a client need only write

UniformRandomGenerator gen(-100, 100);

The UniformRandomGenerator class also provides an operator() method. This allows a

client to “call” an object as if it were a function. Given a UniformRandomGenerator object named

gen, we can assign a pseudorandom number to an integer variable x, with the statement

int x = gen();

This statement may appear to be calling a global function named gen; in fact, it is calling the operator()
method of the UniformRandomGenerator class on behalf of object gen. The expression gen() is

syntactic sugar for gen.operator()(). The expression gen.operator()() may look unusual,

but it simply is invoking the UniformRandomGenerator::operator() method on behalf of gen
passing no arguments in the empty last pair of parentheses.

Listing 16.10 (testuniformrandom.cpp) is a simplified remake of Listing 13.11 (highqualityrandom.cpp).

In Listing 16.10 (testuniformrandom.cpp) we see that with our UniformRandomGenerator class we

can generate high-quality pseudorandom numbers with a single object that is simple to use.

Listing 16.10: testuniformrandom.cpp

#include <iostream>
#include <iomanip>
#include "uniformrandom.h"
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int main() {
// Pseudorandom number generator with range 0...9,999
UniformRandomGenerator rand(0, 9999);

// Total counts over all the runs.
// Make these double-precision floating-point numbers
// so the average computation at the end will use floating-point
// arithmetic.
double total5 = 0.0, total9995 = 0.0;

// Accumulate the results of 10 trials, with each trial
// generating 1,000,000,000 pseudorandom numbers
const int NUMBER_OF_TRIALS = 10;

for (int trial = 1; trial <= NUMBER_OF_TRIALS; trial++) {
// Initialize counts for this run of a billion trials
int count5 = 0, count9995 = 0;
// Generate one billion pseudorandom numbers in the range
// 0...9,999 and count the number of times 5 and 9,995 appear
for (int i = 0; i < 1000000000; i++) {

// Generate a pseudorandom number in the range 0...9,999
int r = rand();
if (r == 5)

count5++; // Number 5 generated, so count it
else if (r == 9995)

count9995++; // Number 9,995 generated, so count it
}
// Display the number of times the program generated 5 and 9,995
std::cout << "Trial #" << std::setw(2) << trial << " 5: "

<< std::setw(6) << count5
<< " 9995: " << std::setw(6) << count9995 << '\n';

total5 += count5; // Accumulate the counts to
total9995 += count9995; // average them at the end

}
std::cout << "-------------------\n";
std::cout << "Averages for " << NUMBER_OF_TRIALS << " trials: 5: "

<< std::setw(6) << total5 / NUMBER_OF_TRIALS << " 9995: "
<< std::setw(6) << total9995 / NUMBER_OF_TRIALS << '\n';

}

Note that in Listing 16.10 (testuniformrandom.cpp), the statement

int r = rand();

is not a call to our familiar std::rand function; rather, rand here is a UniformRandomGenerator
object, and the statement is invoking its operator() method.

16.6 Exercises

1. Create a large unsigned integer type named BigUnsigned. BigUnsigned objects represent un-

signed integers with arbitrary precision; that is, unlike the standard C++ unsigned integer primitive

types, a BigUnsigned object can represent an unsigned integer as large as necessary. Unlike the

floating-point types, a BigUnsigned value retains all its digits of precision.

©2018 Richard L. Halterman Draft date: December 2, 2018



16.6. EXERCISES 494

Internally, the BigUnsigned class should hold a std::vector of integers. Each integer in the

vector is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Each element in the vector represents a digit in a place

value within the integer; for example, if the internal vector contains the following elements in the

following order:

4,9,1,1,4,3,0,5

we would interpret the associated BigUnsigned object as the mathematical nonnegative integer

49,114,305.

Your BigUnsigned class implementation should provide the following features:

• The class should provide a constructor that accepts no arguments that initializes the BigUnsigned
object’s vector to contain a single element equal to zero.

• The class should provide a constructor that accepts a single unsigned integer. This constructor

should populate its internal vector with the appropriate elements to correspond to the value of

its parameter.

• The class should provide a constructor that accepts a BigUnsigned argument. Clients use

this constructor to create a new BigUnsigned object from an exiting BigUnsigned object.

• The class should provide a constructor that accepts a std::string object representing an in-

teger. Clients use this constructor when they need to create a large integer whose value exceeds

the range of unsigned long long. The string argument should contain only digits.

• The class should provide access to a friend function named operator+ that adds two

BigUnsigned objects and returns the BigUnsigned result.

• The class should provide access to a friend function named operator<< that allows clients

to print a BigUnsigned value as easily as a built-in integer type.
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Chapter 17

Inheritance and Polymorphism

In Chapter 16 we saw how it is possible to design classes from which clients can produce objects that exhibit

somewhat sophisticated behavior. We built each of the classes from scratch. C++ provides a way to create a

class from an existing class by a process known as inheritance. Through this process the new class inherits

all the characteristics of the existing class, and the class developer can extend and customize the inherited

functionality as well as add new features.

17.1 I/O Stream Inheritance

Recall from Section 13.3 that writing data to a file is almost as easy as printing it on the screen. Once

a std::ofstream object is set up, we can use the << operator in the same way we use it with the

std::cout object:

std::ofstream fout("myfile.dat");
int x = 10;
if (fout.good()) { // Make sure the file was opened properly

fout << "x = " << x << '\n';
}
else

std::cout << "Unable to write to the file \"myfile.dat\"\n";

Section 15.7 showed how operator<< may be overloaded for a programmer-defined type. For a

vector of integers we can write the function

ostream& operator<<(ostream& os, const std::vector<int>& vec) {
os << '{';
int n = vec.size();
if (n > 0) { // Is the vector non-empty?

os << vec[0]; // Send first element to the strean
for (int i = 1; i < n; i++)

os << ',' << vec[i]; // Send remaining elements
}
os << '}';
return os;

}
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Can we easily adapt our << operator so that we can use it with std::ofstream objects as well?

The answer, perhaps surprisingly, is we do not have to adapt our operator<< function; it works as is

with std::ofstream objects. How can this be, since the std::cout object has type std::ostream
which is not the same class as std::ofstream?

C++ allows some automatic conversions among the built in numeric types; for example, an int is

widened to a double, and a double is truncated to an int. bools and ints are freely interconvertible.

These types are built into the language, so standard conversions apply. When it comes to programmer-

defined types, however, the compiler is unable to generate automatically code to convert from one type to

another. Most of the time it would make no sense to do so—imagine attempting to convert an object of type

Stopwatch (Listing 16.2 (stopwatch.h)) to an object of type Tester (Listing 16.6 (tester.h)).

So, how is it that an object of type std::ofstream can be converted automatically to an object

of type ostream? You might think that it is because they are both part of the standard library, so the

conversion has been programmed into them. The fact is, no conversion takes place! Any object of type

std::ofstream object is automatically treated as if it were an ostream object because the ostream
and std::ofstream classes are related in a special way. The std::ofstream class is derived from

the ostream class. We say that ostream is the base class and std::ofstream is the derived class.

Sometimes the term superclass is used for the base class, in which case the derived class is called the

subclass. The base/derived class terminology is used interchangeably with super/subclass, although the

C++ community tends to prefer the terms base/derived class to super/subclass. The process is known as

inheritance because the derived class inherits all the characteristics of its base class. The terms derivation,

subclassing and specialization are sometimes used in place of the term inheritance.

As a consequence of the derivation process, an instance of the derived class can be treated as if it were

an instance of the base class. Listing 17.1 (printstreams.cpp) shows how a function can process instances

of two different classes related by inheritance.

Listing 17.1: printstreams.cpp

#include <fstream>

void print(std::ostream& os, int n) {
os.width(10); // Right justified in 10 spaces
os.fill('*'); // Fill character is *
os << n << '\n';

}

int main() {
// Pretty print to screen
print(std::cout, 35);

// Pretty print to text file
std::ofstream fout("temp.data");
if (fout.good()) {

print(fout, 36);
}

}

Observe that the print function in Listing 17.1 (printstreams.cpp) expects a client to pass an ostream
reference as the first parameter, but the main function can send it both ostream and std::ofstream
object references with equal ease.
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This ability to allow a subclass object to be used in any context that expects a superclass object is known

as the Liskov Substitution Principle, after computer scientist Barbara Liskov.

The term is a has a special meaning in the context of inheritance. Suppose we have class B and class D
derived from B. B is the base class and D is the derived class. Since we can treat an instance of a derived

class as if it were an instance of its base class, if we declared a D object as

D d; // d is a D object

we can say d is a D (as it is declared), and we also can say d is a B.

17.2 Inheritance Mechanics

The developers of the std::ofstream class did not begin with a blank slate. The ostream class existed

first, and the developers specified the std::ofstream class in such a way so any std::ofstream
object would be treated as a specific kind of ostream. In this section we will examine a very simple

example that illustrates the mechanics of class inheritance in C++.

Suppose we have class B defined as shown here:

class B {
// Details omitted

};

To derive a new class D from B we use the following syntax:

class D: public B {
// Details omitted

};

Here B is the base class and D is the derived class. B is the pre-existing class, and D is the new class based

on B.

To see how inheritance works, consider classes B and D with additional detail:

class B {
// Other details omitted

public:
void f();

};

void B::f() {
std::cout << "In function 'f'\n";

}

class D: public B {
// Other details omitted

public:
void g();

};

void D::g() {
std::cout << "In function 'g'\n";
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}

The client code

B myB;
D myD;
myB.f();
myD.f();
myD.g();

prints

In function 'f'
In function 'f'
In function 'g'

Even though the source code for class D does not explicitly show the definition of a method named f, it has

such a method that it inherits from class B.

Note that inheritiance works in one direction only. Class D inherits method f from class B, but class B
cannot inherit D’s g method. Given the definitions of classes B and D above, the following code is illegal:

B myB;
myB.g(); // Illegal, a B object is NOT a D object

If we omit the word public from class D’s definition, as in

class D: B {
// Details omitted

};

all the public members of B inherited by D objects will be private by default; for

example, if base class B looks like the following:

class B {
public:

void f();
};

void B::f() {
std::cout << "In function 'f'\n";

}

the following code is not legal:

D myD;
myD.f(); // Illegal, method f now is private!

This means a client may not treat a D object exacty as if it were a B object. This

violates the Liskov Substitution Principle, and the is a relationship does not exist.

While this private inheritance is useful in rare situations, the majority of object-

oriented software design uses public inheritance. C++ is one of the few object-

oriented languages that supports private inheritance.
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There is no limit to the number of classes a developer may derive from a single base class. In the

following code:

class D1: public B { /* Details omitted */ };
class D2: public B { /* Details omitted */ };
class D3: public B { /* Details omitted */ };

the classes D1, D2, and D3 are all derived from class B.

A developer may derive a class from more than one base class in a process known as multiple inheri-

tance. In the following code:

class B1 { /* Details omitted */ };
class B2 { /* Details omitted */ };

class D: public B1, public B2 { /* Details omitted */ };

Here class D has two base classes, B1 and B2. If a particular function or method expects a B1 object as

an argument, the caller may pass a D object; similarly, any context that requires a B2 object will accept a

D object. In object-oriented design, multiple inheritance is not as common as single inheritance (one base

class).

The next section provides a simple example that shows how inheritance works.

17.3 Uses of Inheritance

Inheritance is a design tool that allows developers to take an existing class and produce a new class that

provides enhanced behavior or different behavior. The enhanced or new behavior does not come at the

expense of existing code; that is, when using inheritance programmers do not touch any source code in

the base class. Also, developers can leverage existing code (in the base class) without duplicating it in the

derived classes.

We can demonstrate the use of inheritance to enhance the behavior of a simple class. Listing 17.2

(text.h) contains the declaration of a class named Text.

Listing 17.2: text.h

#ifndef TEXT_H_INCLUDED
#define TEXT_H_INCLUDED

#include <string>

// Base class for all Text derived classes
class Text {

std::string text;
public:

// Create a Text object from a client-supplied string
Text(const std::string& t);

// Allow clients to see the text field
virtual std::string get() const;

// Concatenate another string onto the
// back of the existing text
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virtual void append(const std::string& extra);
};

#endif

A Text object wraps a std::string object, and, since the string object is private to the Text class,

clients cannot get to the string object directly. The clients may see the string via the get method, and can

modify the wrapped string only in a limited way via the append method. Notice that the two methods,

get and append, are marked virtual. The virtual keyword indicates that the designer of this

Text class intends that classes derived from Text will be able to customize the behavior of their get and

append methods.

The implementation of the Text methods as shown in Listing 17.3 (text.cpp) contains nothing unusual.

Listing 17.3: text.cpp

#include "text.h"

// Create a Text object from a client-supplied string
Text::Text(const std::string& t): text(t) {}

// Allow clients to see the text field
std::string Text::get() const {

return text;
}

// Concatenate another string onto the
// back of the existing text
void Text::append(const std::string& extra) {

text += extra;
}

Next we introduce a new class, FancyText, derived from the Text class. Its interface appears in

Listing 17.4 (fancytext.h)

Listing 17.4: fancytext.h

#ifndef FANCYTEXT_H_INCLUDED
#define FANCYTEXT_H_INCLUDED

// Compiler needs to know specifics of the Text class in order to
// derive a new class from it
#include "text.h"

// Provides minimal decoration for the text
class FancyText: public Text {

std::string left_bracket;
std::string right_bracket;
std::string connector;

public:
// Client supplies the string to wrap plus some extra
// decorations
FancyText(const std::string& t, const std::string& left,

const std::string& right, const std::string& conn);
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// Allow clients to see the decorated text field
std::string get() const override;

// Concatenate another string onto the
// back of the existing text, inserting the connector
// string
void append(const std::string& extra) override;

};

#endif

Observe that the declarations of the get and append methods include the override specifier. This

keyword indicates that the FancyText class overrides, or provides custom behavior for, the methods

declared virtual in its base class.

Listing 17.5 (fancytext.cpp) provides the implementation for the FancyText methods.

Listing 17.5: fancytext.cpp

#include "fancytext.h"

// Client supplies the string to wrap plus some extra
// decorations
FancyText::FancyText(const std::string& t, const std::string& left,

const std::string& right, const std::string& conn):
Text(t), left_bracket(left),
right_bracket(right), connector(conn) {}

// Allow clients to see the decorated text field
std::string FancyText::get() const {

return left_bracket + Text::get() + right_bracket;
}

// Concatenate another string onto the
// back of the existing text, inserting the connector
// string
void FancyText::append(const std::string& extra) {

Text::append(connector + extra);
}

While the constructor for the Text class requires a single std::string parameter, the constructor for FancyText
requires four string arguments:

FancyText::FancyText(const std::string& t, const std::string& left,
const std::string& right, const std::string& conn):

Text(t), left_bracket(left),
right_bracket(right), connector(conn) {}

The body of the constructor is empty, so all initialization happens in the constructor initialization list. We

want to assign the constructor’s first parameter, t, to the inherited member text, but text is private in

the base class. This means the FancyText constructor cannot initialize it directly. Since the constructor

of its base class knows what to do with this parameter, the first expression in the constructor initialization

list (the part between the : and the ):

... Text(t) ...
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explicitly calls the base class constructor, passing it t. This base class initialization expression must be the

first thing in the initialization list because C++ requires that the parts of an object inherited from its base

class must be initialized before any new parts (added by the derived class) are initialized. The next three

expressions in the initialization list:

... left_bracket(left), right_bracket(right), connector(conn) ...

initialize the left_bracket, right_bracket, and connector fields of the FancyText object

under construction. The body of the constructor is empty as no other initialization work is necessary.

The FancyText class alters the way get works. We say the FancyText class overrides its in-

herited get method. The keyword override emphasizes the fact that the code in the get method in

FancyText intends to do something differently from the code in Text’s get method. In this case the

FancyText::get method builds a string result by concatenating three other strings: the first string is a

front bracketing string, the second is the wrapped string, and the third string is a trailing bracketing string.

Notice that the second string is obtained with the expression

Text::get()

This calls the base class version of the get method. We say that the FancyText::get method delegates

some of its work to the base class version, Text::get. Notice that the statement

return left_bracket + text + right_bracket; // Illegal

would be illegal because text is private to the base class. The member specifier private means inacces-

sible outside of the class, period. Derived classes have no special privilege in this regard. In order to perform

the delegation we must use Text::get() and not simply get(); the unqualified expression get() is

equivalent to this->get, which calls FancyText::get. This means invoking the unqualified get
within the definition of FancyText::get is a recursive call, which is not what we want.

A method declared virtual in a base class is automatically virtual in its derived classes. You may

repeat the virtual specifier in derived classes, but the use of override makes this redundant.

The override keyword was added to the language in C++11. Prior to C++11

when a method in a derived class had the same signature as a virtual method in

its base class, the method implicitly overrode its base class version. The problem

was that a programmer could intend to override a method in the derived class but

get the signature wrong. The resulting method overloaded the original method

rather than overriding it. If a programmer uses the override specifier and uses

a signature that does not match the base class version, the compiler will report

an error. The override specifier provides a way for programmers to explicitly

communicate their intentions.

For backwards compatibility the override keyword is optional. Its presence

enables the compiler to verify that the method is actually overriding a virtual
method in the base class. Without it, the programmer must take care to faithfully

reproduce the signature of the method to override.

The override keyword is a context-sensitive keyword, meaning it is a keyword

only when appearing as it does here in the declaration of a method header. In other

contexts it behaves like an identifier.
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The FancyText::append method overrides the inherited append method by inserting a special

separator string in between the existing wrapped text string and the string to append. Like FancyText::get,

the FancyText::append method delegates the actual concatenation operation to its base class by call-

ing Text::append. Again, this is because code within the FancyText class cannot directly influence

its text field.

The class FixedText, declared and defined in Listing 17.6 (fixedtext.h) and Listing 17.7 (fixedtext.cpp),

is another class derived from Text.

Listing 17.6: fixedtext.h

#ifndef FIXEDTEXT_H_INCLUDED
#define FIXEDTEXT_H_INCLUDED

// Compiler needs to know specifics of the Text class in order to
// derive a new class from it
#include "text.h"

// The text is always the word FIXED
class FixedText: public Text {
public:

// Client does not provide a string argument; the
// wrapped text is always "FIXED"
FixedText();

// Nothing may be appended to a FixedText object
void append(const std::string&) override;

};

#endif

The FixedText class is somewhat simpler than the FancyText class. It adds no fields and does not

override the get method. Its constructor accepts no parameters because clients are not permitted to deter-

mine the contents of the wrapped string—the text field is always the word FIXED. It inherits the text field

and get method (as is) from the Text class.

Listing 17.7: fixedtext.cpp

#include "fixedtext.h"

// Client does not provide a string argument; the
// wrapped text is always "FIXED"
FixedText::FixedText(): Text("FIXED") {}

// Nothing may be appended to a FixedText object
void FixedText::append(const std::string&) {

// Disallow concatenation
}

The FixedText constructor implementation invokes the base class constructor to assign the string "FIXED"
to its inherited text field. The get method needs no customization. The custom append method does

nothing, as clients are not allowed to add any extra text.

Listing 17.8 (testtext.cpp) exercises these classes.
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Listing 17.8: testtext.cpp

#include <iostream>
#include "text.h"
#include "fancytext.h"
#include "fixedtext.h"

int main() {
Text t1("plain");
FancyText t2("fancy", "<<", ">>", "***");
FixedText t3;
std::cout << t1.get() << '\n';
std::cout << t2.get() << '\n';
std::cout << t3.get() << '\n';
std::cout << "-------------------------\n";
t1.append("A");
t2.append("A");
t3.append("A");
std::cout << t1.get() << '\n';
std::cout << t2.get() << '\n';
std::cout << t3.get() << '\n';
std::cout << "-------------------------\n";
t1.append("B");
t2.append("B");
t3.append("B");
std::cout << t1.get() << '\n';
std::cout << t2.get() << '\n';
std::cout << t3.get() << '\n';

}

The output of Listing 17.8 (testtext.cpp) is

plain
<<fancy>>
FIXED
-------------------------
plainA
<<fancy***A>>
FIXED
-------------------------
plainAB
<<fancy***A***B>>
FIXED

Given the Text and FancyText classes as declared in Listing 17.2 (text.h) and Listing 17.5 (fancytext.cpp),

the following client code is legal:

Text t1("ABC");
FancyText t2("XYZ", "[", "]", ":");
std::cout << t1.get() << " " << t2.get() << '\n';
t1 = t2;
std::cout << t1.get() << " " << t2.get() << '\n';

Since t2’s declared type is FancyText, by virtue of inheritiance, t2 is a Text object as well. The above

code fragment prints
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Figure 17.1 Object slicing during assignment of a derived class instance to a base class variable
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Notice that the assignment

t1 = t2;

copied into object t1 only the fields that FancyText objects have in common with Text objects; that is,

the text field. Since t1 is a plain Text object, it does not have the left_bracket, right_bracket,

and connector fields capable of storing the additional data contained in a FancyText object. This pro-

cess of losing derived class data when assigning to a base class instance is known as object slicing. The

parts that will not fit into the base class instance are “sliced” off. Figure 17.1 illustrates object slicing.

Note that the assignment in the other direction:

t2 = t1; // Illegal

is not possible; even though any FancyText object is a Text object, we cannot say any Text object

is a FancyText object (it could be a FixedText object or just a Text object without any special

decoration). Figure 17.2 shows how such an attempted assignment would be meaningless because the base

class instance has missing information needed by the derived class instance. Failure to properly assign all
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Figure 17.2 Assigning a base class instance to a derived class variable is not possible and is illegal in C++
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the fields in the derived class instance would produce an object that is not well defined, so C++ does not

allow the assignment.

FixedText class instances do not contain any additional data that plain Text instances do not have,

but the assignment rules remain the same:

Text t1("ABC");
FixedText t3;
std::cout << t1.get() << " " << t3.get() << '\n';
t1 = t3;
std::cout << t1.get() << " " << t3.get() << '\n';

is legal and produces

ABC FIXED
FIXED FIXED

but the statement

t3 = t1; // Illegal

is illegal and will not compile.
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Figure 17.3 The Unified Modeling Language class hierarchy diagram for the family of text classes

Text

FancyText FixedText

It always is legal to assign a derived class instance to a variable of a base type.

This is because a derived class instance is a specific kind of base class instance.

In contrast, it is not legal to assign a base class instance to a variable of a derived

type. This is because the is a relationship is only one directional, from a derived

class to its base class.

The Text, FancyText, and FixedText classes form a small class hierarchy. We can represent

the relationships in this class hierarchy in a graphical form using the Unified Modeling Language (UML).

Figure 17.3 shows the UML diagram for our simple Text class hierarchy.

A rectangle represents a class. Text, the base class, appears at the top of the Figure 17.3. The two

derived classes appear below Text. The inheritance arrow points from the derived classes to the base

class. The arrow represents the is a relationship which flows upward. This visual layout and level of detail

provided by the UML diagram more succinctly communicates the relationships amongst the classes than

does the C++ source code.

The UML is a large, complex graphical language that may be used to model many facets of the software

development process. More information about the UML is available at http://www.uml.org.

17.4 Polymorphism

Recall the Text class hierarchy from Listing 17.2 (text.h), Listing 17.4 (fancytext.h), and Listing 17.6

(fixedtext.h) illustrated in Figure 17.3. Consider the following client code fragment:

Text t1("ABC");
FancyText t2("XYZ", "[", "]", ":");
std::cout << t1.get() << " " << t2.get() << '\n';

©2018 Richard L. Halterman Draft date: December 2, 2018



17.4. POLYMORPHISM 508

What is the nature of the machine code generated by the expression t1.get()? The compiler translates

this higher-level expression into the machine language instruction that causes the program’s execution to

jump to another part of the compiled code. Where does the program’s execution jump to? The variable

t1’s declared type is Text, the program’s execution jumps to the compiled Text::get method (also the

address of t1 is passed as the implicit this parameter to the method so the compiled code can access t1’s

text field).

For the expression t2.get(), the program’s execution jumps to FancyText’s compiled getmethod,

passing the address of object t2 as the implicit this parameter.

When the compiler can determine which method to execute based on the declared type of an object,

the process is known as static binding or early binding. Static binding is used in all cases for non-virtual

methods and in the cases we have seen so far for virtual methods.

The situation is different if we use pointers to objects instead of the objects themselves. Consider the

following code:

Text t1("ABC");
FancyText t2("XYZ", "[", "]", ":");
std::cout << t1.get() << " " << t2.get() << '\n';
Text *p1, *p2;
p1 = &t1;
p2 = &t2;

The variables p1 and p2 are declared to be pointers to Text objects. The variable t1 is a Text object, so

the assignment

p1 = &t1;

makes perfect sense. The variable t2 has a declared type of FancyText, but a FancyText object is a

Text object, so the assignment

p2 = &t2;

is legal since p2 is indeed pointing to a special kind of Text object.

What does the following code fragment print?

Text t1("ABC");
FancyText t2("XYZ", "[", "]", ":");
std::cout << t1.get() << " " << t2.get() << '\n';
Text *p1, *p2;
p1 = &t1;
p2 = &t2;
std::cout << p1->get() << " " << p2->get() << '\n';

This code displays

ABC <<XYZ>>
ABC <<XYZ>>

Even though p2’s declared type is “pointer to a Text object” not “pointer to a FancyText object,” the

expression p2->get() calls FancyText::get, not Text::get. How does the compiler determine

which method to call in this case? The answer may be surprising: The compiler does not determine which

method to call!
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In the case of a virtual method invoked via a pointer, the running program, not the compiler, determines

exactly which code to execute. The process is known as dynamic binding or late binding. Static binding

is relatively easy to understand: the method to execute depends on the declared type of the variable upon

which the method is invoked. The compiler keeps track of the declared type of every variable, so the choice

is easy. Inheritance and the is a relationship make things more complicated. In the example above, p2’s

declared type is ”pointer to Text.” If the compiler were given the authority to select the method to call for

the expression p2->get(), its only choice would be Text::get; however, p2 actually is pointing to a

FancyText object. How does the executing program know which code to execute?

We know that every instance of a class contains its own copy of the fields declared within the class. In

the code

Text word1("Wow"), word2("Wee");

the word1 object’s text field is the std::string object representing the string "Wow", and word2’s

text field is "Wee". In reality, if a class contains at least one virtual method, all instances of that class

will contain one extra “hidden” field, a pointer to an array of virtual method pointers. This array of method

pointers commonly is called the vtable. One vtable exists for each class, but all instances of that class must

store a pointer to that shared vtable. The compiler assigns an index to each virtual method in a class. In our

example, the Text class contains two virtual methods, so the index of get might be 0, and the index of

append might be 1.

Figure 17.4 illustrates a typical scenario with vtables. In this case the compiler translates the expression

p1->get() into the machine language equivalent of p1->vtable[0](), which invokes the correct get
method for the instance pointed to by p1. Similarly for the append method, p1->append("suffix")
internally becomes p1->vtable[1]("suffix"). If p1 points to a Text instance, p1->vtable points to

the vtable array for the Text class. If p1 points instead to a FancyText instance, p1->vtable points to

the vtable array of the FancyText class. In either case the correct method is selected during the program’s

execution.

You may argue that perhaps the compiler could be made to be able to determine in all situations which

virtual method to call. In the code from above:

Text t1("ABC");
FancyText t2("XYZ", "[", "]", ":");
std::cout << t1.get() << " " << t2.get() << '\n';
Text *p1, *p2;
p1 = &t1;
p2 = &t2;
std::cout << p1->get() << " " << p2->get() << '\n';

cannot the compiler deduce p2’s exact type since p2 is assigned to point to t2, and it knows t2’s type is

FancyText?

Such extended analysis capabilities would further complicate the compiler, and C++ compilers are al-

ready very complicated pieces of software. Attempting to add this ability would prove futile anyway be-

cause the compiler cannot in general always determine which method to invoke. To see why, consider the

following code fragment:

Text *p;
if (std::rand() % 2 == 0)

p = new Text("ABC");
else

p = new FancyText("XYZ", "[", "]", ":");
std::cout << p->get() << '\n';
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Figure 17.4 Several objects and their associated vtables. You will not find any evidence in the C++ source

code of the dashed pointers and vtables shown in this diagram. When virtual methods are involved the

compiler produces executable code that builds these hidden data structures behind the scenes. When a

client calls a virtual method via a pointer to an object, the run-time environment locates the exact method

to execute by following the vtable pointer stored in the object itself. Observe that since the FixedText class

does not override the inherited get method, its vtable references the same get code as that of Text’s vtable.
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This code generates a pseudorandom number at run time. If it generates an even number, it directs p to

point to a plain Text object; otherwise, it directs p to point to a FancyText object. Which method will

this code call, Text::get or FancyText::get? Since the code generates the pseudorandom number

at run time, the compiler is powerless to determine the exact type of the object to which p points; thus,

the compiler cannot determine which get method to call. The compiler can, however, generate code that

jumps to the method found at the address stored in p’s associated vtable at the index corresponding to the

get method.

Listing 17.9 (vtablesize.cpp) demonstrates that the vtable pointer does occupy space within an object

that contains a virtual method.

Listing 17.9: vtablesize.cpp

#include <iostream>

// A class with no virtual methods
class NoVTable {

int data;
public:

void set(int d) { data = d; }
int get() { return data; }

};

// A class with virtual methods
class HasVTable {

int data;
public:

virtual void set(int d) { data = d; }
virtual int get() { return data; }

};

int main() {
NoVTable no_vtable;
HasVTable has_vtable;
no_vtable.set(10);
has_vtable.set(10);
std::cout << "no_vtable size = " << sizeof no_vtable << '\n';
std::cout << "has_vtable size = " << sizeof has_vtable << '\n';

}

The output of Listing 17.9 (vtablesize.cpp) is

no_vtable size = 4
has_vtable size = 8

A NoVTable object requires four bytes for its integer field, but a HasVTable object occupies eight

bytes—four bytes for its integer field and four bytes for its secret vtable pointer.

Dynamic binding enables a powerful technique in object-oriented programming called polymorphism.

A polymorphic method behaves differently depending on the actual type of object upon which it is invoked.

Consider Listing 17.10 (polymorphicvector.cpp).

Listing 17.10: polymorphicvector.cpp

#include <string>
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#include <vector>
#include <iostream>
#include "fancytext.h"
#include "fixedtext.h"

int main() {
std::vector<Text *> texts { new Text("Wow"),

new FancyText("Wee", "[", "]", "-"),
new FixedText,
new FancyText("Whoa", ":", ":", ":") };

for (auto t : texts)
std::cout << t->get() << '\n';

for (auto t : texts) {
t->append("A");
t->append("B");
t->append("C");

}
for (auto t : texts)

std::cout << t->get() << '\n';
for (auto t : texts)

delete t;
}

We know from Section 11.1 that a vector is a collection of homogeneous elements. Homogeneous means

the elements in a vector must all be of the same type. Homogeneity takes on a deeper meaning when

inheritance and the is a relationship is involved. In Listing 17.10 (polymorphicvector.cpp) the declared type

of the texts vector is std::vector<Text *>. With inheritance, not only can the texts vector hold

pointers to simple Text objects, it also simultaneously can hold pointers to FixedText and FancyText
objects. Listing 17.10 (polymorphicvector.cpp) prints

Wow
[Wee]
FIXED
:Whoa:
WowABC
[Wee-A-B-C]
FIXED
:Whoa:A:B:C:

As we can see, the expression t->get() in the main function is polymorphic; the actual get method

invoked—Text::get, FancyText::get, or FixedText::get—depends on the exact type of the

object to which t points. The append method is polymorphic as well. As t assumes the value of each

element in the vector during the loop’s execution, the exact type of object that t points to varies. Even

though all the elements of the texts vector are pointers to Text objects, only one of the elements points

to a pure Text object; the rest of the elements point to FancyText or FixedText objects.

Why must we use pointers to objects rather than the objects themselves to achieve polymorphism?

Remember that a pointer stores a memory address (see Section 10.7). All pointers, no matter what type

they point to, are all the same size (4 bytes on 32-bit systems and 8 bytes on 64-bit systems). Text objects

and FancyText objects are not the same size (see Figure 17.1 for a conceptual picture); FancyText
objects are bigger, containing three extra string fields. All the elements of a vector must be the same size.

If we made texts a vector of Text objects rather than a vector of pointers to Text objects, when we

assign a FancyText object to an element in the texts vector, the assignment would slice the extra fields

in the FancyText object. Pointer assignment avoids the slicing problem.
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The main reason for using pointers is that C++ uses static binding for all methods (virtual and non-

virtual) invoked on behalf of an object; the compiler chooses the method based on the declared type of the

object. In contrast, C++ uses dynamic binding for virtual method calls made via pointers to objects; the

exact type of the object determines the method selection.

A polymorphic method in C++ requires four key ingredients:

1. The method must appear in a class that is part of an inheritance hierarchy.

2. The method must declared virtual in the base class at the top of the

hierarchy.

3. Derived classes override the behavior of the inherited virtual methods as

needed.

4. Clients must invoke the method via a pointer (or reference) to an object, not

directly through the object itself.

In summary, polymorphism requires inheritance and the is a relationship. The base class defines the

method signature, and the derived classes override the method with their own custom behavior.

17.5 Alternative to Inheritance and Polymorphism

Consider would life would be like without inheritance and polymorphism. Listing 17.11 (alttext.h) provides

an alternative to the Text class hierarchy.

Listing 17.11: alttext.h

#ifndef ALT_TEXT_H_INCLUDED
#define ALT_TEXT_H_INCLUDED

#include <string>

// The kinds of text objects supported
enum class TextType { Plain, Fancy, Fixed };

class AltText {
TextType type;
std::string text;
std::string left_bracket;
std::string right_bracket;
std::string connector;

public:
AltText(TextType type, const std::string& t);
AltText(TextType type, const std::string& t, const std::string& left,

const std::string& right, const std::string& conn);
AltText(TextType type);
std::string get() const;
void append(const std::string& extra);

};
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#endif

Listing 17.12 (alttext.cpp) provides the method implementations for the AltText class.

Listing 17.12: alttext.cpp

#include "alttext.h"

AltText::AltText(TextType type, const std::string& t): type(type), text(t) {}

AltText::AltText(TextType type, const std::string& t, const std::string& left,
const std::string& right, const std::string& conn):

type(type), text(t), left_bracket(left), right_bracket(right),
connector(conn) {}

AltText::AltText(TextType type): type(type), text("FIXED") {}

std::string AltText::get() const {
switch (type) {

case TextType::Plain:
case TextType::Fixed:

return text;
case TextType::Fancy:

return left_bracket + text + right_bracket;
default:

return "UNKNOWN TYPE";
}

}

void AltText::append(const std::string& extra) {
switch (type) {

case TextType::Plain:
text += extra; // Just concatenate
break;

case TextType::Fancy:
text += connector + extra; // Join with connector
break;

case TextType::Fixed:
break; // Ignore attempt to append

}
}

Listing 17.13 (testalttext.cpp) tests the new AltText class.

Listing 17.13: testalttext.cpp

#include <string>
#include <vector>
#include <iostream>

#include "alttext.h"

int main() {
std::vector<AltText> texts { {TextType::Plain, "Wow"},
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{TextType::Fancy, "Wee", "[", "]", "-"},
{TextType::Fixed},
{TextType::Fancy, "Whoa", ":", ":", ":"} };

for (auto t : texts)
std::cout << t.get() << '\n';

for (auto& t : texts) {
t.append("A");
t.append("B");
t.append("C");

}
for (auto t : texts)

std::cout << t.get() << '\n';
}

From the user’s perspective Listing 17.13 (testalttext.cpp) works exactly like Listing 17.10 (polymorphicvector.cpp).

From the programmer’s perspective, however, the two programs are very different. Listing 17.13 (testalttext.cpp)

packages within a single class all the functionality for the three different classes in Listing 17.10 (polymorphicvector.cpp).

This non-polymorphic code differentiates among text objects with the TextType custom enumeration

type. Note that each of the methods that were polymorphic in our earlier example now use conditional logic

(a switch statement) to execute the code appropriate for actual kind of text object we wish to model.

This approach that avoids inheritance and polymorphism has several different issues:

1. Every Text object carries the burdens of every possible kind of text object. A plain text object

holds the left bracket, right bracket and separator strings that fancy text objects require. The amount

of memory a string occupies depends on its length (number of characters it holds), but even an

empty std:string object requires some memory. An application managing many mainly plain

text objects could be consuming much more memory than it otherwise needs.

2. With inheritance, a developer can introduce a new text type without touching the code in existing text

classes. A programmer wishing to introduce a new kind of text object in this example that avoids

inheritance must make considerable changes to the code, involving the following:

• augmenting the enumeration type with a new element identifying the new kind of text object,

• adding new fields as may be needed by the new kind of text object, and

• augmenting the switch statement in every method that“ was polymorphic in the inheritance

version, adding a case label that matches the new kind of text object.

This is not a small point. Modifying existing code can introduce errors. This can cause existing

applications that depend on the Text class to fail. With inheritance, programmers add new classes

without touching existing code. Pre-existing applications will continue to function as usual because

they do not use the new code introduced via inheritance.

3. Without inheritance we need access to the original source code in order to augment the data type. If

it is part of a pre-compiled library, we cannot make the necessary modifications. With inheritance,

however, we can derive a new class from an existing class even if we do not have access to, or control

over, the source code of its implementation.

To illustrate these issues, suppose we wish to add a new kind of text object that bounds the length of the

text. Listing ?? (alttext2.h) augments the non-polymorphic Text class.

Listing 17.14: alttext2.cpp
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#ifndef ALT_TEXT2_H_INCLUDED
#define ALT_TEXT2_H_INCLUDED

#include <string>

// The kinds of text objects supported (added Bounded)
enum class TextType { Plain, Fancy, Fixed, Bounded };

class AltText2 {
TextType type;
std::string text;
std::string left_bracket;
std::string right_bracket;
std::string connector;
size_t length_limit; // Maximum number of characters in the text

public:
AltText2(TextType type, const std::string& t);
AltText2(TextType type, const std::string& t, const std::string& left,

const std::string& right, const std::string& conn);
AltText2(TextType type);
// Constructor for a length-bounded text object
AltText2(TextType type, const std::string& t, size_t limit);
std::string get() const;
void append(const std::string& extra);

};

#endif

We extended the enumeration to include TextType::Bounded. We added one more field (limit) to

the Text class, which means every Text object will have a limit field whether they need it or not. We

also added one more constructor overload to properly initialize a bounded text object.

Listing 17.14 (alttext2.cpp) implements the methods in the new Text class.

Listing 17.15: name.cpp

#include "alttext2.h"

AltText2::AltText2(TextType type, const std::string& t): type(type), text(t) {}

AltText2::AltText2(TextType type, const std::string& t, const std::string& left,
const std::string& right, const std::string& conn):

type(type), text(t), left_bracket(left), right_bracket(right),
connector(conn) {}

AltText2::AltText2(TextType type): type(type), text("FIXED") {}

AltText2::AltText2(TextType type, const std::string& t, size_t limit):
type(type),
text(t.substr(0, limit)), // Ensure text initially does not exceed bound
length_limit(limit) {}

std::string AltText2::get() const {
switch (type) {

case TextType::Plain:
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case TextType::Fixed:
case TextType::Bounded:

return text;
case TextType::Fancy:

return left_bracket + text + right_bracket;
default:

return "UNKNOWN TYPE";
}

}

void AltText2::append(const std::string& extra) {
switch (type) {

case TextType::Plain:
text += extra; // Just concatenate
break;

case TextType::Fancy:
text += connector + extra; // Join with connector
break;

case TextType::Fixed:
break; // Ignore attempt to append

case TextType::Bounded:
// Ensure the length does not exceed the established limit
int avail = length_limit - text.length();
text += extra.substr(0, avail);
break;

}
}

Listing 17.16 (testalttext2.cpp) demonstrates that our new bounded text object does indeed limit the length

of its enclosed string field.

Listing 17.16: testalttext2.cpp

#include <string>
#include <vector>
#include <iostream>

#include "alttext2.h"

int main() {
std::vector<AltText2> texts { {TextType::Plain, "Wow"},

{TextType::Fancy, "Wee", "[", "]", "-"},
{TextType::Fixed},
{TextType::Bounded, "XYZ", 5},
{TextType::Fancy, "Whoa", ":", ":", ":"} };

for (auto t : texts)
std::cout << t.get() << '\n';

for (auto& t : texts) {
t.append("A");
t.append("B");
t.append("C");
t.append("D");
t.append("E");
t.append("F");

}
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for (auto t : texts)
std::cout << t.get() << '\n';

}

Listing 17.16 (testalttext2.cpp) displays

Wow
[Wee]
FIXED
XYZ
:Whoa:
WowABCDEF
[Wee-A-B-C-D-E-F]
FIXED
XYZAB
:Whoa:A:B:C:D:E:F:

Note that even though our new bounded text objects require no special get method, we still must add

the case label to match the TextType::Bounded type. Failure to add this case label would mean

every bounded text object would respond with the "UNKNOWN TYPE" string. We definitely must add new

code to the append to ensure the concatenation operation does not make bounded text objects too long.

Even if the get and append methods were known to work flawlessly before we introduced this new

kind of text object, they now are suspect. Our act of modifying them could have introduced a subtle bug,

and so they must be thoroughly retested.

Our non-polymorphic Text class is relatively small, containing only two methods. Consider a more

substantial class that provides many more methods. The introduction of a variation of that type could

require significant code modification.

Now suppose we do not have access the source code within Listing 17.14 (alttext2.cpp). It may be

compiled and part of a library. In this case we cannot modify the Text class to introduce the custom

behavior we need.

In contrast to these challenges, consider added a bounded text type to our polymorphic Text class

hierarchy. Listing 17.17 (boundedtext.h) provides the interface for our new class.

Listing 17.17: boundedtext.h

#ifndef BOUNDEDTEXT_H_INCLUDED
#define BOUNDEDTEXT_H_INCLUDED

// Compiler needs to know specifics of the Text class in order to
// derive a new class from it
#include "text.h"

// Provides minimal decoration for the text
class BoundedText: public Text {

size_t length_limit;
public:

// Client supplies the string to wrap plus the limit on
// how many characters it can hold
BoundedText(const std::string& t, size_t limit);

// Concatenate another string onto the back of the existing text,
// but do not exceed the predetermined limit on the text's length
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void append(const std::string& extra) override;
};

#endif

Listing 17.18 (boundedtext.cpp) implements the BoundedText constructor and append method.

Listing 17.18: boundedtext.cpp

#include "boundedtext.h"

BoundedText::BoundedText(const std::string& t, size_t limit):
Text(t.substr(0, limit)), // Ensure text initially does not exceed bound
length_limit(limit) {}

void BoundedText::append(const std::string& extra) {
// Ensure the length does not exceed the established limit
int avail = length_limit - get().length();
Text::append(extra.substr(0, avail));

}

Listing 17.19 (testbounded.cpp) contains client code to exercise the new BoundedText class.

Listing 17.19: testbounded.cpp

#include <iostream>
#include <vector>
#include "text.h"
#include "fancytext.h"
#include "fixedtext.h"
#include "boundedtext.h"

int main() {
std::vector<Text *> texts { new Text("Wow"),

new FancyText("Wee", "[", "]", "-"),
new FixedText,
new BoundedText("XYZ", 5),
new FancyText("Whoa", ":", ":", ":") };

for (auto t : texts)
std::cout << t->get() << '\n';

for (auto t : texts) {
t->append("A");
t->append("B");
t->append("C");
t->append("D");
t->append("E");
t->append("F");

}
for (auto t : texts)

std::cout << t->get() << '\n';
// Clean up memory
for (auto t : texts)

delete t;
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}

This BoundedText class addresses all the concerns we have about the non-polymorphic Text class:

1. A pure Text object will have a string field, period. A Fixed text object as well contains only a

single string field. A FancyText object will contain four string fields, and each BoundedText
object will maintain a string and integer value. Each particular type of text object will contain only

the data it requires, not all the data that may be required for any possible kind of text object.

2. This derived class leaves the original code in the base class untouched. We can do nothing in our

BoundedText class code to damage the Text, FancyText, or FixedText classes.

3. We can compile the code within Listing 17.17 (boundedtext.h) and Listing 17.18 (boundedtext.cpp)

and build an executable program using BoundedText objects without access to the source code in

Listing 17.3 (text.cpp). All we need is the header file Listing 17.2 (text.h) that specifies the interface

of the Text class. This header must be available to any clients that wish to use a Text object, but

the source code for the implementation of the Text class is not needed to compile client code that

uses Text objects. The linker would need the compiled Listing 17.3 (text.cpp) in order to link and

produce an executable program, but at no point in the build process is the source code in Listing 17.3

(text.cpp) necessary if its compiled code is available.

The inheritance with polymorphism approach is more modular; that is, if our BoundedText code does

not work or is not as efficient as it could be, we or someone else easily can supply a different version to

compile and link into an application. This modularity enables multiple programmers to work independently

implementing separate classes without interfering with each other.

17.6 Adapter Design Pattern

Suppose a third-party library provides a class named Message that is similar to the classes in our Text
hierarchy in Listing 17.10 (polymorphicvector.cpp). A Message object contains a private piece of text

and a method named text that reveals the text that it holds. The following code fragment:

Message msg("My message");
std::cout << msg.text() << '\n';

would print

My message

In addition to revealing its contained text, each time a client calls a Message object’s text method the

object records the access. A Message object thus keeps track of the number of times clients have called its

text method. The Message class provides a method named access_count that returns the number

of text calls. The following code:

Message msg("My message");
std::cout << msg.text() << '\n';
std::cout << msg.text() << '\n';
std::cout << msg.text() << '\n';
std::cout << msg.access_count() << '\n';

would print
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My message
My message
My message
3

We cannot modify the class Message, either because we do not have the source code to this library, or

its license prohibits modifying or reverse engineering its code. This means we have no control over the

Message class or how it works.

What if would like to maintain a collection of Text and Message objects, storing them all in a single

vector? Is this possible? All of the elements in a particular C++ vector must all be of the same type. The

Message class is not part of the Text class hierarchy, so no is a relationship exists between the two

classes. Let us experiment with two possible solutions to this problem.

Make a copy of a Message object. We could try to simply copy the contents of a Message object

to a Text object and put this new Text object into the vector. The following code illustrates:

// get_message is a function that provides a Message object
Message msg = get_message();
// Put the text inside msg into a new Text object
Text txt(msg.text());
// Insert a pointer to the text object into vector
std::vector<Text *> texts;
texts.push_back(&txt);
std::cout << texts[0]->get() << '\n';
std::cout << texts[0]->get() << '\n';
std::cout << msg.access_count() << '\n';

The last line this code fragment prints is

1

We would rather it printed

2

because Text::get is analogous to Message::text, and the code calls the text method twice.

Unfortunately as you may have noticed, the code calls text only once, when creating the txt object from

the msg object. It is this single call that makes the access count become one. The subsequent calls to get
are on a Text object, not a Message object. This means we really do not have a Message object in

our vector, so none of the objects in our vector can take advantage of the services that a Message object

provides.

Use inheritance and polymorphism to encapsulate Message objects within Text objects. We can

derive a new Text class in a clever way to allow us to place Message objects into a vector of Text
objects. Consider the following new class:

class MessageText: public Text {
Message *msg;

public:
MessageText(Message *m): Text(""), msg(m) {}
std::string get() const override {

return msg->text();
}
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};

Instances of this MessageText class wrap a pointer to a Message object. The constructor does not call

the wrapped Message object’s text method, so making a MessageText object from a Message ob-

ject does not artificially elevate the access count for the Message object. Further, any call to a MessageText
object’s get method actually calls the text method of the Message object it is managing. The following

code:

// get_message is a function that provides a Message object
Message msg = get_message();
// Put the text inside msg into a new Text object
//Text txt(msg.text());
MessageText txt(&msg);
// Insert a pointer to the text object into vector
std::vector<Text *> texts;
texts.push_back(&txt);
std::cout << texts[0]->get() << '\n';
std::cout << texts[0]->get() << '\n';
std::cout << msg.access_count() << '\n';

behaves exactly as desired, reporting

2

as the last line of its output. This proves that we really did sneak a Message object into our vector of

Text objects.

This technique of adapting the interface of one class to that of another class has a name: the adapter

design pattern. The adapter design pattern is useful when you have a class with properties similar to another

class but with incompatible interfaces. You can use this technique of inheritance and polymorphism to

derive a new class with the desired interface

Suppose you have class X and class Y that describe objects with similar function-

ality but different interfaces (different methods), and you need to treat a Y object

as if it were an X object. You may be able to use the adapter design pattern as

follows:

1. Derive a new class, Z, from X.

2. Store a pointer to the Y object in an instance of class Z.

3. Override methods in class Z to invoke the corresponding Y methods on the

enclosed Y object.

17.7 Protected Members

As a more practical, yet still relatively simple example, suppose we need to model two-dimensional shape

objects, such as rectangles, squares, triangles, ellipses, and circles. Our application will determine how to
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Figure 17.5 Packing Two-dimensional Shapes into a Two-dimensional Container

pack parts into a containing area, so it is important to be able to determine an individual shape object’s area.

Figure 17.5 illustrates packing some two-dimensional shapes into a two-dimensional container.

We thus want to determine the minimum area of the container that can hold a given collection of parts.

A real-world application could be computing the size of the smallest circuit board that can hold a collection

of electronic components. Our program will be much simpler and give us only a rough approximation; it

does not take into account the geometry and orientation of the individual shapes but merely computes the

total area of the components. The actual answer generally will be larger than the result computed by our

program.

An interesting problem arises if a method in a derived class needs to use an inherited variable. If the

variable is declared private in the base class, a derived class method cannot access it. The private
specifier means “not available outside the class, period.” We know it is unwise in general to make instance

variables public, since that breaks encapsulation. Since encapsulation is a desirable property, C++ provides

a third level of access protection within a class—protected. A protected member, whether it be data

or a method, is inaccessible to all code outside the class, except for code within a derived class. The use of

protected is illustrated in the shapes code.

We begin by defining the base class for all shape objects: Shape. Listing 17.20 (shape.h) provides the

code for Shape.
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Listing 17.20: shape.h

#ifndef SHAPE_H_
#define SHAPE_H_

/*
* Shape is the base class for all shapes
*/

class Shape {
public:

// Longest distance across the shape
virtual double span() const = 0;
// The shape's area
virtual double area() const = 0;

};

#endif

The “assignment to zero” of the two virtual methods in the Shape class make them special; they are called

pure virtual methods or pure virtual functions. This special syntax signifies that these methods have no

implementations. It is not possible to provide a body for these methods. A class that contains at least one

pure virtual method is an abstract class. It is not possible to create an instance of an abstract class. The

compiler enforces this restriction; the following statement;

Shape myShape; // Illegal

is illegal. A non-abstract class is called a concrete class. All the classes we have seen to this point except

for Shape have been concrete classes.

An abstract class represents an abstract concept. Shape is an abstract concept. We can have circles,

rectangles, and lots of other kinds of shapes, but can we have something that is “just a shape” without being

a particular kind of shape? Even though we cannot create instances of abstract classes, abstract classes are

useful for organizing a class hierarchy.

We can derive a concrete class from our Shape class as shown in Listing 17.21 (rectangle.h).

Listing 17.21: rectangle.h

#ifndef RECTANGLE_H_
#define RECTANGLE_H_

#include "shape.h"

class Rectangle: public Shape {
protected:

double length;
double width;

public:
Rectangle(double len, double wid);
// Length of the longer side
double span() const override;
double area() const override;

};
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#endif

Note the appearance of the protected access specifier. The methods in any class derived directly or

indirectly from Rectangle will be able to access the length and width fields. These fields will be

inaccessible to code outside these classes. Listing 17.22 (rectangle.cpp) provides the implementation of

Rectangle’s methods.

Listing 17.22: rectangle.cpp

// File rectangle.cpp

#include "rectangle.h"
#include <algorithm> // For max function

// Generally for rectangles length >= width, but the
// constructor does not enforce this.
Rectangle::Rectangle(double len, double wid): length(len), width(wid) {}

// Length of the longer side--determine which is longer
double Rectangle::span() const {

return std::max(length, width);
}

double Rectangle::area() const {
return length * width;

}

From mathematics we know that a square is a special kind of rectangle, so Listing 17.23 (square.h) and

Listing 17.24 (square.cpp) specify a Square class.

Listing 17.23: square.h

#ifndef SQUARE_H_
#define SQUARE_H_

#include "rectangle.h"

// A square is a special case of a rectangle

class Square: public Rectangle {
public:

// Length and width are equal in a square, so specify the
// length of only one side
Square(double side);
// The inherited methods work as is; no need to
// change their behavior.

};

#endif

Listing 17.24: square.cpp

// File square.cpp
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#include "square.h"

// Defer the work of initialization to the base class constructor
Square::Square(double side): Rectangle(side, side) {}

Next, we add a triangle shape (Listing 17.25 (triangle.h) and Listing 17.26 (triangle.cpp)).

Listing 17.25: triangle.h

#ifndef TRIANGLE_H_
#define TRIANGLE_H_

#include "shape.h"

class Triangle: public Shape {
protected:

double side1; // Triangles have three sides
double side2;
double side3;

public:
Triangle(double s1, double s2, double s3);
double span() const override;
double area() const override;

};

#endif

Listing 17.26: triangle.cpp

// File triangle.cpp

#include "triangle.h"
#include <algorithm> // For max function

Triangle::Triangle(double s1, double s2, double s3):
side1(s1), side2(s2), side3(s3) {}

// The span of a triangle is the length of the longest side
double Triangle::span() const {

return std::max(side1, std::max(side2, side3));
}

// Not having the base and height of the triangle explicitly, we
// use Heron's formula to compute the area
double Triangle::area() const {

// Compute semiperimeter
double s = (side1 + side2 + side3)/2;
// Compute area using Heron's formula
return s*(s - side1)*(s - side2)*(s - side3);

}

An ellipse is a simple curved shape that we can add to our class hierarchy. Listing 17.27 (ellipse.h) and

Listing 17.28 (ellipse.cpp) define the ellipse class.
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Listing 17.27: ellipse.h

#ifndef ELLIPSE_H_
#define ELLIPSE_H_

#include "shape.h"

class Ellipse: public Shape {
protected:

double major_radius; // The longer radius of the ellipse
double minor_radius; // The shorter radius of the ellipse

public:
Ellipse(double major, double minor);
double span() const override;
double area() const override;

};

#endif

Listing 17.28: ellipse.cpp

// File ellipse.cpp

#include "ellipse.h"
#include <algorithm> // For max function

// PI is local to this file
static const double PI = 3.14159;

// Note: This constructor does not enforce
// major_axis >= minor_axis
Ellipse::Ellipse(double major, double minor):

major_radius(major), minor_radius(minor) {}

// Greatest distance across is the length of the longer radius
double Ellipse::span() const {

return std::max(major_radius, minor_radius);
}

double Ellipse::area() const {
return PI * major_radius * minor_radius;

}

A circle is just an ellipse with equal major and minor radii. Listing 17.29 (circle.h) and Listing 17.30

(circle.cpp) define the Circle class.

Listing 17.29: circle.h

#ifndef CIRCLE_H_
#define CIRCLE_H_

#include "ellipse.h"
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Figure 17.6 Inheritance hierarchy of shape classes

Shape

Rectangle Triangle Ellipse

Square Circle

// A circle is a special case of an ellipse

class Circle: public Ellipse {
public:

// In a circle the major and minor radii are the same, so
// we need specify only one value when creating a circle.
Circle(double radius);
// Inherited methods work as is, no need to change their
// behavior.

};

#endif

Listing 17.30: circle.cpp

// File circle.cpp

#include "circle.h"

// PI is local to this file
static const double PI = 3.14159;

Circle::Circle(double radius): Ellipse(radius, radius) {}

These shape classes form the class hierachy shown in Figure 17.6.

Listing 17.31: testshapes.cpp

// File testshapes.cpp

©2018 Richard L. Halterman Draft date: December 2, 2018



17.7. PROTECTED MEMBERS 529

#include <iostream>
#include <vector>

#include "rectangle.h"
#include "triangle.h"
#include "circle.h"
#include "ellipse.h"

int main() {
Rectangle rect(3, 4);
Circle circ(4.5);
Triangle tri(3, 4, 5);
Ellipse elli(3, 4);
std::vector<Shape *> shape_list;

shape_list.push_back(&circ);
shape_list.push_back(&tri);
shape_list.push_back(&rect);
shape_list.push_back(&elli);

int n = shape_list.size();
double area_total = 0.0, max_span = 0.0;

for (int i = 0; i < n; i++) {
// Examine the area each shape
std::cout << "Area = " << shape_list[i]->area() << '\n';
// Accumulate the areas of all the shapes
area_total += shape_list[i]->area();
// Account for the longest object
if (max_span < shape_list[i]->span())

max_span = shape_list[i]->span();
}
// Report the total area of all the shapes combined
std::cout << "Total shape area is " << area_total << '\n';
// Report the minimum length of the container
std::cout << "Longest shape is " << max_span << '\n';

}

Observe that neither Square nor Circle needed access to the protected fields of their base classes.

Consider Listing 17.32 (drawablerectangle.cpp) that derives a new class from Rectangle to allow clients

to draw rectangle objects in a console window using text graphics.

Listing 17.32: drawablerectangle.cpp

#include <iostream>
#include "rectangle.h"

class DrawableRectangle: public Rectangle {
public:

// Delegate construction to the base class
DrawableRectangle(double length, double width):

Rectangle(length, width) {}
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// Draw a rectangle using text graphics
void draw() const {

// Access the inherited protected fields
int rows = static_cast<int>(length + 0.5),

columns = static_cast<int>(width + 0.5);
// Draw the rectangle
for (int r = 0; r < rows; r++) {

for (int c = 0; c < columns; c++)
std::cout << '#';

std::cout << '\n';
}

}
};

int main() {
DrawableRectangle rec1(3, 2),

rec2(10, 5),
rec3(4, 8);

rec1.draw();
std::cout << "----------------\n";
rec2.draw();
std::cout << "----------------\n";
rec3.draw();

}

Listing 17.32 (drawablerectangle.cpp) displays

##
##
##
----------------
#####
#####
#####
#####
#####
#####
#####
#####
#####
#####
----------------
########
########
########
########

The DrawableRectangle::draw method needs access to the fields length and width to be able to

draw the rectangle. It is important to remember that every DrawableRectangle object contains these

fields because it inherits them from Rectangle; however, if the length and width fields were declared

private instead of protected in Rectangle, DrawableRectangle::draw would not be able to access

these fields.

©2018 Richard L. Halterman Draft date: December 2, 2018



17.8. FINE TUNING INHERITANCE 531

A class supports three levels of protection for its members:

1. private: This is the default. Private members are accessible to any code

within the class itself but are inaccessible to code outside of the class.

2. protected: Protected members are accessible to code within the class it-

self and to code within derived classes that use public inheritance. Protected

members are inaccessible to other (non-derived) classes.

3. public: Public members are accessible to code anywhere.

In sum, private means not accessible outside the class, period. Public means open

to everyone. Protected means “public” to subclasses and “private” to all other

classes.

17.8 Fine Tuning Inheritance

Recall the flexible sorting code found in Listing 16.5 (loggingflexiblesort.cpp). It uses objects to enable the

following functionality:

• The ordering imposed by a selection sort function can be varied by using custom comparison func-

tions.

• The object used to determine the sort’s ordering collects data about the number of comparisons and

element interchanges the sort function performs.

Listing 17.35 (polymorphicsort.cpp) provides a slight variation of Listing 16.5 (loggingflexiblesort.cpp).

Besides splitting the code up into multiple source files, it adds two virtual methods that enable future

developers to customize the compare and swap methods in derived classes.

Listing 17.33 (comparer.h) contains the declaration of the Comparer class.

Listing 17.33: comparer.h

#ifndef COMPARER_H_
#define COMPARER_H_
/*
* Comparer objects manage the comparisons and element
* interchanges on the selection sort function below.
*/

class Comparer {
// The object's data is private, so it is inaccessible to
// clients and derived classes

// Keeps track of the number of comparisons
// performed
int compare_count;

// Keeps track of the number of swaps performed
int swap_count;
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// Function pointer directed to the function to
// perform the comparison
bool (*comp)(int, int);

protected:
// Method that actually performs the comparison
// Derived classes may customize this method
virtual bool compare_impl(int m, int n);

// Method that actually performs the swap
// Derived classes may customize this method
virtual void swap_impl(int& m, int& n);

public:
// The client must initialize a Comparer object with a
// suitable comparison function.
Comparer(bool (*f)(int, int));

// Resets the counters to make ready for a new sort
void reset();

// Method that performs the comparison. It delegates
// the actual work to the function pointed to by comp.
// This method logs each invocation.
bool compare(int m, int n);

// Method that performs the swap.
// Interchange the values of
// its parameters a and b which are
// passed by reference.
// This method logs each invocation.
void swap(int& m, int& n);

// Returns the number of comparisons this object has
// performed since it was created.
int comparisons() const;

// Returns the number of swaps this object has
// performed since it was created.
int swaps() const;

};
#endif

Listing 17.34 (comparer.cpp) provides the implementation of the Comparer class methods.

Listing 17.34: comparer.cpp

#include "comparer.h"

// Method that actually performs the comparison
// Derived classes may customize this method
bool Comparer::compare_impl(int m, int n) {

return comp(m, n);
}

©2018 Richard L. Halterman Draft date: December 2, 2018



17.8. FINE TUNING INHERITANCE 533

// Method that actually performs the swap
// Derived classes may customize this method
void Comparer::swap_impl(int& m, int& n) {

int temp = m;
m = n;
n = temp;

}

// The client must initialize a Comparer object with a
// suitable comparison function.
Comparer::Comparer(bool (*f)(int, int)):

compare_count(0), swap_count(0), comp(f) {}

// Resets the counters to make ready for a new sort
void Comparer::reset() {

compare_count = swap_count = 0;
}

// Method that performs the comparison. It delegates
// the actual work to the function pointed to by comp.
// This method logs each invocation.
bool Comparer::compare(int m, int n) {

compare_count++;
return compare_impl(m, n);

}

// Method that performs the swap.
// Interchange the values of
// its parameters a and b which are
// passed by reference.
// This method logs each invocation.
void Comparer::swap(int& m, int& n) {

swap_count++;
swap_impl(m, n);

}

// Returns the number of comparisons this object has
// performed since it was created.
int Comparer::comparisons() const {

return compare_count;
}

// Returns the number of swaps this object has
// performed since it was created.
int Comparer::swaps() const {

return swap_count;
}

Notice that even though the virtual keyword appears before the method declarations in comparer.h, it

does not appear before the method implementations in comparer.cpp.

Listing 17.35 (polymorphicsort.cpp) provides the client code that tests the new Comparer class.

Listing 17.35: polymorphicsort.cpp
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#include <iostream>
#include <vector>
#include "comparer.h"

/*
* selection_sort(a, compare)
* Arranges the elements of vector a in an order determined
* by the compare object.
* a is a vector of ints.
* compare is a function that compares the ordering of
* two integers.
* The contents of a are physically rearranged.
*/

void selection_sort(std::vector<int>& a, Comparer& compare) {
int n = a.size();
for (int i = 0; i < n - 1; i++) {

// Note: i,small, and j represent positions within a
// a[i], a[small], and a[j] represents the elements at
// those positions.
// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less
// than a[i]
int small = i;
// See if a smaller value can be found later in the array
for (int j = i + 1; j < n; j++)

if (compare.compare(a[j], a[small]))
small = j; // Found a smaller value

// Swap a[i] and a[small], if a smaller value was found
if (i != small)

compare.swap(a[i], a[small]);
}

}

/*
* print
* Prints the contents of an integer vector
* a is the vector to print.
* a is not modified.
*/

void print(const std::vector<int>& a) {
int n = a.size();
std::cout << '{';
if (n > 0) {

std::cout << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
}
std::cout << '}';

}

/*
* less_than(a, b)
* Returns true if a < b; otherwise, returns
* false.
*/
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bool less_than(int a, int b) {
return a < b;

}

/*
* greater_than(a, b)
* Returns true if a > b; otherwise, returns
* false.
*/

bool greater_than(int a, int b) {
return a > b;

}

int main() {
// Make a vector of integers
std::vector<int> original { 23, -3, 4, 215, 0, -3, 2, 23, 100, 88, -10 };

// Make a working copy of the original vector
std::vector<int> working = original;
std::cout << "Before: ";
print(working);
std::cout << '\n';
Comparer lt(less_than), gt(greater_than);
selection_sort(working, lt);
std::cout << "Ascending: ";
print(working);
std::cout << " (" << lt.comparisons() << " comparisons, "

<< lt.swaps() << " swaps)\n";
std::cout << "----------------------------\n";
// Make another copy of the original vector
working = original;
std::cout << "Before: ";
print(working);
std::cout << '\n';
selection_sort(working, gt);
std::cout << "Descending: ";
print(working);
std::cout << " (" << gt.comparisons() << " comparisons, "

<< gt.swaps() << " swaps)\n";
std::cout << "----------------------------\n";
// Sort a sorted vector
std::cout << "Before: ";
print(working);
std::cout << '\n';
// Reset the greater than comparer so we start counting at
// zero
gt.reset();
selection_sort(working, gt);
std::cout << "Descending: ";
print(working);
std::cout << " (" << gt.comparisons() << " comparisons, "

<< gt.swaps() << " swaps)\n";
}
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The functions in Listing 17.35 (polymorphicsort.cpp) are identical to the functions in Listing 16.5 (loggingflexiblesort.cpp),

and, not surprisingly, the output of Listing 17.35 (polymorphicsort.cpp) is identical to the output of List-

ing 16.5 (loggingflexiblesort.cpp):

Before: {23,-3,4,215,0,-3,2,23,100,88,-10}
Ascending: {-10,-3,-3,0,2,4,23,23,88,100,215} (55 comparisons, 7 swaps)
----------------------------
Before: {23,-3,4,215,0,-3,2,23,100,88,-10}
Descending: {215,100,88,23,23,4,2,0,-3,-3,-10} (55 comparisons, 5 swaps)
----------------------------
Before: {215,100,88,23,23,4,2,0,-3,-3,-10}
Descending: {215,100,88,23,23,4,2,0,-3,-3,-10} (55 comparisons, 0 swaps)

The question arises: What advantage does the new Comparer class have over the original one?

The design of this new Comparer class is interesting:

• Since its counter fields are private, only methods in the Comparer class itself can access a Comparer
object’s data.

• The two virtual methods, compare_impl and swap_impl, are protected, so clients cannot access

them directly. Derived classes, however, can see them and override them. The suffix _impl stands

for “implementation,” so compare_impl represents the implementation details of the compare

method and swap_impl represents the implementation details of the swap method.

• The public compare and swapmethods both delegate part of their work to the protected compare_impl
and swap_impl methods.

• The compare and swap methods are not declared virtual, so derived classes cannot override

them.

• The compare and swapmethods manage the compare_count and swap_count counter fields.

Since derived classes cannot see these fields, there is nothing that a designer of a derived class can do

when overriding compare_impl or swap_impl to disturb the correct accounting of the number

of times a client calls compare or swap.

• The comparisons and swaps methods that report the results to the client are non-virtual, so

derived classes may not override their behavior.

Observe that the designer of the Comparer class allows the nature of the comparisons and swaps in derived

classes to be flexible, but it is rigid on the enforcement of how the accounting is performed and reported.

The proper use of protected and private specifiers in a base class as shown in Comparer affords

class designers a great deal of control over exactly what derived class designers can do. Derived classes

may adapt some behaviors, but other behaviors are non-negotiable.

What kind of customization would a programmer want to do to the Comparer class beyond chang-

ing how the comparison is performed? Consider the LogComparer class declared in Listing 17.36

(logcomparer.h).

Listing 17.36: logcomparer.h

#ifndef LOGCOMPARER_H_
#define LOGCOMPARER_H_

#include <fstream>

©2018 Richard L. Halterman Draft date: December 2, 2018



17.8. FINE TUNING INHERITANCE 537

#include <string>
#include "comparer.h"

/*
* Comparer objects manage the comparisons and element
* interchanges on the selection sort function below.
*/

class LogComparer: public Comparer {
// Output stream to which logging messages are directed
std::ofstream fout;

protected:
// Method that actually performs the comparison
bool compare_impl(int m, int n) override;

// Method that actually performs the swap
void swap_impl(int& m, int& n) override;

public:
// The client must initialize a LogComparer object with a
// suitable comparison function and the file name of a text
// file to which the object will direct logging messages
LogComparer(bool (*f)(int, int), const std::string& filename);

// The destructor must close the log file
∼LogComparer();

};

#endif

The LogComparer class overrides the compare_impl and swap_impl methods. Instances of the

LogComparer class use a std::ofstream object to record logging information to a text file.

The implementation of the LogComparer methods can be found in Listing 17.37 (logcomparer.cpp).

Listing 17.37: logcomparer.cpp

#include "logcomparer.h"
#include <cstdlib>
#include <iostream>

// Method that actually performs the comparison
// Derived classes may override this method
bool LogComparer::compare_impl(int m, int n) {

fout << "Comparing " << m << " to " << n << '\n';
// Base class method does the comparision
return Comparer::compare_impl(m, n);

}

// Method that actually performs the swap
// Derived classes may override this method
void LogComparer::swap_impl(int& m, int& n) {

fout << "Swapping " << m << " and " << n << '\n';
int temp = m;
m = n;
n = temp;

©2018 Richard L. Halterman Draft date: December 2, 2018



17.8. FINE TUNING INHERITANCE 538

}

// The client must initialize a LogComparer object with a
// suitable comparison function and the file name of the
// text file to receive logging messages.
LogComparer::LogComparer(bool (*f)(int, int), const std::string& filename):

Comparer(f) {
fout.open(filename);
if (!fout.good()) {

std::cout << "Could not open log file " << filename
<< " for writing\n";

exit(1); // Terminate the program
}
// fout is an instance variable, not a local variable,
// so the file stays open when the constructor finishes

}

The constructor attempts to open a file output stream to write logging information to a text file. If the

constructor cannot for any reason open the text file for writing, it terminates the program’s execution. The

destructor closes the file stream object when the LogComparer object’s life is over.

The two overridden methods, compare_impl and swap_impl, write text to the log file. Both

methods use the LogComparer object’s fout field rather than the std::cout console output stream

object.

Notice that even though the override keyword appears after the method declarations in logcom-

parer.h, it does not appear after the method implementations in logcomparer.cpp.

The client code in Listing 17.38 (loggingsort.cpp) uses a LogComparer object to create a text file

named sort.log.

Listing 17.38: loggingsort.cpp

#include <iostream>
#include <vector>
#include "logcomparer.h"

/*
* selection_sort(a, compare)
* Arranges the elements of vector a in an order determined
* by the compare object.
* a is a vector of ints.
* compare is a function that compares the ordering of
* two integers.
* The contents of a are physically rearranged.
*/

void selection_sort(std::vector<int>& a, Comparer& compare) {
int n = a.size();
for (int i = 0; i < n - 1; i++) {

// Note: i,small, and j represent positions within a
// a[i], a[small], and a[j] represents the elements at
// those positions.
// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less
// than a[i]
int small = i;
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// See if a smaller value can be found later in the array
for (int j = i + 1; j < n; j++)

if (compare.compare(a[j], a[small]))
small = j; // Found a smaller value

// Swap a[i] and a[small], if a smaller value was found
if (i != small)

compare.swap(a[i], a[small]);
}

}

/*
* print
* Prints the contents of an integer vector
* a is the vector to print.
* a is not modified.
*/

void print(const std::vector<int>& a) {
int n = a.size();
std::cout << '{';
if (n > 0) {

std::cout << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
}
std::cout << '}';

}

/*
* less_than(a, b)
* Returns true if a < b; otherwise, returns
* false.
*/

bool less_than(int a, int b) {
return a < b;

}

int main() {
// Make a vector of integers from an array
int a[] = { 23, -3, 4, 215, 0, -3, 2 };
int len = (sizeof a)/(sizeof a[0]);
std::vector<int> vec(a, a + len);

// Make a working copy of the original vector
std::cout << "Before: ";
print(vec);
std::cout << '\n';
LogComparer lt(less_than, "sort.log");
selection_sort(vec, lt);
std::cout << "Ascending: ";
print(vec);
std::cout << " (" << lt.comparisons() << " comparisons, "

<< lt.swaps() << " swaps)\n";
}
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Listing 17.38 (loggingsort.cpp) prints to the console

Before: {23,-3,4,215,0,-3,2}
Ascending: {-3,-3,0,2,4,23,215} (21 comparisons, 4 swaps)

and writes the file sort.log the text

Comparing -3 to 23
Comparing 4 to -3
Comparing 215 to -3
Comparing 0 to -3
Comparing -3 to -3
Comparing 2 to -3
Swapping 23 and -3
Comparing 4 to 23
Comparing 215 to 4
Comparing 0 to 4
Comparing -3 to 0
Comparing 2 to -3
Swapping 23 and -3
Comparing 215 to 4
Comparing 0 to 4
Comparing 23 to 0
Comparing 2 to 0
Swapping 4 and 0
Comparing 4 to 215
Comparing 23 to 4
Comparing 2 to 4
Swapping 215 and 2
Comparing 23 to 4
Comparing 215 to 4
Comparing 215 to 23

If during development the selection sort function has a problem, the programmer can review the contents

of the log file to examine how the sort progresses and perhaps determine where the problem lies.

The design of the Comparer class provides a overall structure that allows inheriting classes to fine tune

the details without disturbing the overarching framework. Inheritance and polymorphism allow us to add

functionality to an existing code base. Virtual methods provide extension points by which derived classes

can add custom behavior.

17.9 Exercises

1. Consider the following C++ code:

class Widget {
public:

virtual int f() { return 1; }
};
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class Gadget: public Widget {
public:

virtual int f() { return 2; }
};

class Gizmo: public Widget {
public:

virtual int f() { return 3; }
};

void do_it(Widget *w) {
std::cout << w->f() << " ";

}

int main() {
std::vector<Widget *> widgets;
Widget wid;
Gadget gad;
Gizmo giz;
widgets.push_back(&wid);
widgets.push_back(&gad);
widgets.push_back(&giz);
for (size_t i = 0; i < widgets.size(); i++)

do_it(widgets[i]);
}

(a) What does the program print?

(b) Would the program still compile and run if the f method within the Widget class were a pure

virtual function?

(c) How would the program run differently if the virtual keyword were removed from all the

code?

(d) Would the program behave the same if the virtual keyword were removed from all the

classes except for Widget?
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Chapter 18

Memory Management

CAUTION!      CHAPTER UNDER CONSTRUCTION

The C++ programming language provides many options to programmers when it comes to managing the

memory used by an executing program. This chapter explores some of these frequently used options and

introduces modern techniques aimed at reducing the memory management problems that have plagued C++

projects in the past.

18.1 Memory Available to C++ Programs

A modern operating system reserves a section of memory for an executing program. This allows the operat-

ing system to manage multiple program executions simultaneously. Different operating systems layout the

memory of executing programs in different ways, but the layout will include the following four sections:

• Code. The code section of memory holds the program’s compiled executable instructions. The

contents of the code section should never change while the program executes, and the size of the

code segment does not change during the program’s execution.

• Data. The data section of memory contains global variables (see Section 10.1) and persistent local

variables (static locals, see Section 10.2). The variables in the data section exist for the life of

the executing program, but, unless they are constants (see Section 3.6), the executing program may

freely change their values. Even though the values stored in the variables found in the data segment

may change during the program’s execution, the size of the data segment does not change while the

program executes. This is because the program’s source code precisely defines the number of global

and static local variables. The compiler can compute the exact size of the data segment.

• Heap. The heap is where an executing program obtains dynamic memory. The new operator gets

its memory from the heap, and delete returns previously allocated memory back to the heap. The

size of the heap grows and shrinks during the program’s execution as the program allocates and

deallocates dynamic memory using new and delete.

• Stack. The stack is where local variables and function parameters live. Space for local variables and

parameters appears when a function is called and disappears when the function returns. The size of

the stack grows and shrinks during the program’s execution as various functions execute.
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Operating systems generally limit the size of the stack. Deep recursion can consume a considerable

amount of stack space. An improperly written recursive function, for example one that omits the base case

and thus exhibits “infinite” recursion, will consume all the space available on the stack. Such a situation

is known as a stack overflow. Modern operating systems will terminate a process that consumes all of its

stack space, but on some embedded systems this stack overflow may go undetected. Heap space typically is

much more plentiful, and operating systems can use virtual memory to provide a executing program more

space than is available in real memory. The extra space for virtual memory comes from a disk drive, and

the operating system shuttles data from disk to real memory as needed by the executing program. Programs

that use a lot of virtual memory run much slower than programs that use little virtual memory. Virtual

memory is not unlimited, however, so a program with memory leaks eventually can run out of memory.

Because of the way function and method calls and their subsequent returns work, the stack grows and

shrinks in a very regular fashion. It expands during a function call to make room for the executing function’s

local variables and parameters (and it expands even more if that function calls other functions), and when

the function returns, the stack contracts back to the original size it had before the function invocation.

Variables are removed from the stack in the reverse order of their creation on the stack. The stack always

consists of one contiguous chunk of memory with no areas of unused space within that chunk.

The heap grows and shrinks as the program executes new and delete, but its expansion and con-

traction is not regular. One function may allocate an object or dynamic array with new, and a different

function may much later in the program’s execution deallocate the object or array with delete. An exe-

cuting program may delete dynamically allocated memory in a very different order from its allocation.

This means that memory allocated on the heap is not contiguous; that is, space for deallocated objects can

be interspersed with space for allocated objects. The the available memory on the heap thus can become

fragmented during the program’s execution.

Global variables and static local variables in the data segment live for the life of the executing

program. The run-time environment initializes globals before main begins executing and cleans them up

when main returns. The run-time environment initializes static locals during the function’s or method’s

first invocation. Non-static local variables on the stack exist only when a function is executing. If

a program calls and returns from the same function 20 times, that function’s local variables appear and

disappear 20 times. An executing program can create dynamic memory as needed, hold onto it as long as

necessary, and finally release it when it is no longer needed.

The quantity of global data is fixed when the program begins executing, and stack data is not persistent

for the life of the executing program. This means an executing program that must manage a varying amount

of data for an arbitrary amount of time must use the heap as a source of memory for that data. The run-

time environment automatically manages global and local memory. Unfortunately, programmers must write

code that manually manages heap data. The problem is this: Manual memory management in all but very

simple systems turns out to be a difficult task. Development of large software systems with C++ in the early

days often was a frustrating experience.

18.2 Manual Memory Management

Memory management issues with new and delete frequently are the source of difficult to find and fix

logic errors. Programmers must adhere strictly to the following tenets:

• Every call to new should have an associated call to delete when the allocated memory is no

longer needed. It sounds simple enough, but it is not always clear when delete should be used.

The following function exhibits a memory leak:

void calc(int n) {
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Figure 18.1 Memory leak

10 14 20 28 17

0 1 2 3 4

1. Before the call to calc, variable p does not exist

p

2. During the execution of calc, variable p is alive

    and points to dynamically allocated memory

3. After calc returns, variable p goes away, but

    the memory allocated on its behalf remains

10 14 20 28 17

0 1 2 3 4

p

// ...
// Do some stuff
// ...
int *p = new int[n];
// ...
// Do some stuff with p
// ...
// Exit function without deleting p's memory

}

If a program calls function calc enough times, the program will eventually run out of memory.

Figure 18.1 shows how memory is stranded when local pointers go out of scope at the end of a

function’s execution.

In the calc function p is a local variable. As such, p lives on the stack. When a particular call to

calc completes, the function’s clean up code automatically releases the space help by the variable

p. This is because all functions automatically manage the memory for their parameters and local

variables. The problem is p is assigned via new to point to memory allocated from the heap, not the

stack. Function executions manage the stack memory only. When the function’s execution completes,

p is gone, and the memory to which p pointed is not deallocated automatically. Worse yet, the heap

memory formerly referenced by the local variable p now is unreachable because no other variables

that remain viable know anything about it.

A correctly written calc function has three options in this case:

1. free up p’s allocated memory with delete before returning,

2. assign a global or static local pointer to the allocated memory, or
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3. return p to the function’s caller and let the caller call delete when finished with the object

calc created.

Option 1 is the easiest solution. The calc function needs a dynamically allocated array, creates

it, uses it, and then deallocates it before returning. Within this single function definition we can

see a new and later its corresponding delete—a perfect matched pair. Unfortunately, this is not

a common case. If calc needs local working space, it is best handled on the stack through local

variables. That way memory clean up is automatic.

Option 2 is possible only if callers invoke the calc function exactly once and, additionally in the

case of a global pointer, invoke calc before attempting to use the global pointer.

Option 3 is the more common occurrence. The heap enables an executing program to add extra data

at run time that persists across function calls. In theory the process is simple:

1. call calc to obtain a dynamically allocated object and

2. delete the object when finished with it.

The problem here is we cannot see the new paired with the delete. The new is hidden in calc,

and the caller must exercise delete.

• The delete operator never should be used to free up memory that was not allocated by a

previous call to new. This code fragment illustrates one such example:

int list[10], *p = list; // p points to list
// ...
// Do some stuff
// ...
delete [] p; // Logic error, attempt to deallocate p's memory

The space referenced by pointer p was not allocated by new, so delete should not be used to

attempt to free up its memory.

Attempting to delete memory not allocated with new results in undefined behavior and represents

a logic error.

• delete must not be used to deallocate the same memory more than once. This can happen

when two pointers refer to the same memory. Such pointers are called aliases. The following code

fragment illustrates the situation:

int *p = new int[10], *q = p; // q aliases p
// ...
// Do some stuff with p and/or q
// ...
delete [] p; // Free up p's memory
// ...
// Do some other stuff
// ...
delete [] q; // Logic error, q's memory already freed!

Since pointer p and pointer q point to the same memory, they are aliases of each other. Deallocate

the memory referenced by one of them, and the other’s memory is also deallocated, since it is the

same memory.

Multiple deletes of the same memory results in undefined behavior and represents a logic error.
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• Memory previously deallocated via delete should never be accessed. Attempting to access

deleted memory results in undefined behavior and represents a logic error. The code fragment

int *list = new int[10];
// ...
// Use list, then
// ...
delete [] list; // Deallocate list's memory
// ...
// Sometime later
// ...
int x = list[2]; // Logic error, but sometimes works!

illustrates how such a situation can arise. For efficiency reasons the delete operator generally

marks heap space as “available” without modifying the contents of that memory. Careless program-

mers can accidentally use the memory of a deleted pointer obliviously as if it were still live. The

problem manifests itself when the freed up memory eventually gets reallocated elsewhere via a call

to new. The result is that programs seem to “work” for a while and mysteriously fail at unpre-

dictable times. Debugging such situations can be very difficult. The problem often happens because

of aliasing:

int *list = new int[10];
// ...
int *arr = list; // arr aliases list
// ...
delete [] list; // Deallocate list's memory
// ...
// Sometime later
// ...
int x = arr[2]; // Same problem!

We deleted list’s memory, not arr’s memory, didn’t we? No, since arr is an alias for list,

arr references memory previously deallocated with delete.

Aliasing is a problem because of our concept of variables. When we have two variables with different

names it is natural to assume they represent two different objects. This is known as value semantics. Point-

ers and references introduce the possibility of aliasing; they use reference semantics. Reference semantics

enable useful techniques such as call-by-reference and the traversal of dynamic data structures like linked

lists, but reasoning about the identity of objects using reference semantics requires extra caution.

It seems simple enough to make sure every new has exactly one corresponding delete, but in practice

it can be very difficult to determine exactly when to use delete. Suppose, for example, you obtain a

dynamically allocated object from a function call, as in the following:

Widget *p = get_widget();

Quite possibly the get_widget function allocates a Widget object via new and simply returns a pointer

to the object. In this case we can use

delete p;

when we are finished using the object to which p points. What if, however, the get_widget function is

managing shared resources; that is, if get_widget already has created a Widget object with a particular
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value, it does not create a new Widget object. Instead it returns a pointer to the existing object it previously

created. Listing 18.1 (howtodelete.cpp) provides a rudimentary example.

Listing 18.1: howtodelete.cpp

#include <iostream>
#include <vector>

struct Widget {
int value;
Widget(int value): value(value) {

std::cout << "Creating widget " << value << '\n';
}
∼Widget() {

std::cout << "Destroying widget " << value << '\n';
}

};

Widget *get_widget() {
static int pos = 0;
static std::vector<Widget *> widget_pool {new Widget(23), new Widget(45),

new Widget(16), new Widget(12),
new Widget(3), new Widget(20),
new Widget(10)};

pos = (pos + 1) % widget_pool.size();
return widget_pool[pos];

}

void process(int n) {
std::vector<Widget *> vec;
while (n-- > 0)

vec.push_back(get_widget());
// Clean up vector?
for (auto& elem : vec)

delete elem;
}

int main() {
std::cout << "Entering main\n";
process(10);
std::cout << "Leaving main\n";

}

Listing 18.1 (howtodelete.cpp) prints

Entering main
Creating node 23
Creating node 45
Creating node 16
Creating node 12
Creating node 3
Creating node 20
Creating node 10
Destroying node 45
Destroying node 16
Destroying node 12
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Destroying node 3
Destroying node 20
Destroying node 10
Destroying node 23
Destroying node 45
Destroying node 16
Destroying node 12
Leaving main

Observe widgets 45, 16, and 12 being destroyed twice. On some systems the program crashes before

printing Leaving main. Double deletion is classified as undefined behavior, so it represents a bug in our

program.

Before returning from process, how can you traverse the vector releasing the dynamically allocated

memory and ensuring that you do not delete the same object more than once? The answer is that

you cannot easily do so. Even if you are careful and account for each allocation of Widget objects of

a particular value, you really do not know if the program elsewhere earlier called get_widget() and

stored the result in a global variable that outlives this call to process. You would need to implement

within your code a complex global accounting infrastructure that keeps track of all memory allocations.

18.3 Linked Lists

An object in C++ can hold just about any type of data, but there are some limitations. Consider the following

struct definition:

struct Node {
int data;
Node next; // Error, illegal self reference

};

(Here we use a struct instead of a class since we will consider a Node object a primitive data type

that requires no special protection from clients.) How much space should the compiler set aside for a Node
object? A Node contains an integer and a Node, but this contained Node field itself would contain an

integer and a Node, and the nested containment would go on forever. Such a structure understandably is

illegal in C++, and the compiler will issue an error. You are not allowed to have a class or struct field

of the same type within the class or struct being defined.

Another object definition looks similar, but it is a legal structure:

struct Node {
int data;
Node *next; // Self reference via pointer is legal

};

The reason this second version is legal is because the compiler now can compute the size of a Node object.

A pointer is simply a memory address under the hood, so all pointer variables are the same size regardless

of their declared type. The pointer solves the infinitely nested containment problem.

This ability of a object to refer to an object like itself is not merely an interesting curiosity; it has

practical applications. Suppose we wish to implement a sequence structure like a vector. We can use

the self-referential structure defined above to build a list of Node objects linked together via pointers.

Listing 18.2 (manuallinkedlist.cpp) builds a small linked list “by hand.”
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Figure 18.2 A null-terminated linked list
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Listing 18.2: manuallinkedlist.cpp

#include <iostream>

using namespace std;

struct Node {
int data; // The element of interest
Node *next; // Link to successor node in the link
// Constructor
Node(int data, Node *next): data(data), next(next) {}

};

int main() {
// Node objects
Node n4(3, nullptr), // Make the last node

n3(0, &n4), // Make the next to last node and link to last node
n2(10, &n3), // Make the second node and link to third node
n1(23, &n2); // Make the first node and link to second node

// Print the linked list built from the Node objects
for (Node *cursor = &n1; cursor != nullptr; cursor = cursor->next)

std::cout << cursor->data << ' ';
std::cout << '\n';

}

Listing 18.2 (manuallinkedlist.cpp) creates the null-terminated linked list illustrated in Figure 18.2. The

program prints

23 10 0 3

In Figure 18.2 the line in the next field of node n4 represents the null pointer.

Listing 18.2 (manuallinkedlist.cpp) augments the simple Node struct by adding a constructor. The

program uses no dynamic memory (no calls to new); this is possible only because we know the nodes that

are in the list ahead of time. The for loop uses a pointer named cursor to visit each node in the list. The

cursor variable first points to node n1. The statement cursor = cursor->next reassigns cursor
to point to the node that follows the current node. This enables cursor to visit nodes n1, n2, n3, and

finally cursor will point to n4, the last node in the list. The next field of n4 is nullptr, so when the

loop reassigns cursor to n4’s next field, cursor will be nullptr, and the loop will terminate.

The value nullptr in a Boolean context is considered false, so we can simplify the Boolean ex-

pression cursor != nullptr to just cursor; this allows us to simplify the loop somewhat, as
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// Print the linked list built from the Node objects
for (Node *cursor = &n1; cursor; cursor = cursor->next)

std::cout << cursor->data << ' ';

Since we hard-coded the four list nodes into the program’s source, the loop really is not necessary. The

following statement:

std::cout << n1.data << ' ' << n2.data << ' ' << n3.data
<< n4.data << '\n';

is simpler, but why stop there? Since we know the nodes and their values ahead of time, the following

statement is even simpler:

std::cout << "23 10 0 3\n";

The hard-coded list in Figure 18.2 and Listing 18.2 (manuallinkedlist.cpp) does not demonstrate the

utility possible due to the dynamic nature of linked lists. It makes sense to use a linked list only when

its elements are unknown ahead of time. We then can dynamically allocate space for the elements as they

become available.

Armed with our knowledge of C++ classes, encapsulation, and methods, we can build a client-friendly,

dynamic linked list type. The code found in Listing 18.3 (intlist1.h), Listing 18.4 (intlist1.cpp), and List-

ing 18.5 (listmain.cpp) demonstrates the power of linked lists. Listing 18.3 (intlist1.h) is the header file for

a simple integer linked list class.

Listing 18.3: intlist1.h

class IntList1 {
/*
* An object that holds an element in a linked list.
* This type is local to the IntList1 class and inaccessible
* to outside this class.
*/

struct Node {
int data; // A data element of the list
Node *next; // The node that follows this one in the list
Node(int d); // Constructor

};

Node *head; // Points to the first item in the list
Node *tail; // Points to the last item in the list

/*
* Returns the length of the linked list pointed to by p.
*/

int length(Node *p) const;

/*
* dispose(p)
* Deallocate the memory held by the list pointed to by p.
*/

void dispose(Node *p);

public:
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/*
* The constructor makes an initially empty list
*/

IntList1();

/*
* insert(n)
* Inserts n onto the back of the list.
* n is the element to insert.
*/

void insert(int n);

/*
* print()
* Prints the contents of the linked list of integers.
*/

void print() const;

/*
* Returns the length of the linked list.
*/

int length() const;

/*
* clear()
* Removes all the elements in the linked list.
*/

void clear();
};

The Node struct is declared within the IntList1 class. We say that Node is a nested struct. Since

the declaration of Node appears in the private section of IntList1, Node is a type known only to code

within the IntList1 class. Because its declaration is nested within the IntList1 class, the complete

name of the Node type is IntList1::Node. Recall that a struct is equivalent to a class, except the

default access to its members is public. We can define nested a class in same manner as we defined our

nested struct.

Notice that the IntList1 class has several private methods in addition to its public methods. Code

outside the class cannot execute these private methods directly. These private methods are helper methods

that several of the public methods invoke to accomplish their tasks. We say that a public method delegates

the work to its private helper methods. Why is this delegation necessary here? The private methods use

recursion that requires a parameter of type IntList1::Node which is unknown outside the IntList1
class. A client is therefore unable to use the private methods directly, even it they were made public. The

public methods do not expose to the client any details about the class’s implementation; specifically they

keep the IntList1::Node type and the head and tail instance variables hidden from clients.

Observe that the overloaded length methods (both private and public) and print method of the

IntList1 class are declared const. Neither printing a list nor requesting its length should modify

an IntList1 object. Clients can, therefore, use the print and length methods with a constant

IntList1 object. An attempt to use insert or clear on a constant IntList1 object will yield

a compiler error. The error here makes sense because insert definitely will modify a list object, and

clear potentially will modify a list object (we say potentially here because clear will not modify an

empty list).
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Listing 18.4 (intlist1.cpp) implements the methods declared in Listing 18.3 (intlist1.h).

Listing 18.4: intlist1.cpp

// intlist1.cpp

#include "intlist1.h"
#include <iostream>

// Private IntList1 operations

/*
* Node constructor
*/

IntList1::Node::Node(int n): data(n), next(nullptr) {}

/*
* Returns the length of the linked list pointed to by p.
*/

int IntList1::length(IntList1::Node *p) const {
if (p)

return 1 + length(p->next); // 1 + length of rest of list
else

return 0; // Empty list has length zero
}

/*
* dispose(p)
* Deallocate the memory held by the list pointed to by p.
*/

void IntList1::dispose(IntList1::Node *p) {
if (p) {

dispose(p->next); // Free up the rest of the list
delete p; // Deallocate this node

}
}

// Public IntList1 operations

/*
* The constructor makes an initially empty list.
* The list is empty when head and tail are null.
*/

IntList1::IntList1(): head(nullptr), tail(nullptr) {}

/*
* insert(n)
* Inserts n onto the back of the list.
* n is the element to insert.
*/

void IntList1::insert(int n) {
// Make a node for the new element n
IntList1::Node *new_node = new Node(n);
if (tail) { // Is tail non-null?

tail->next = new_node; // Link the new node onto the back
tail = new_node; // The new node is the new tail of the list
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}
else // List is empty, so make head and tail point to new node

head = tail = new_node;
}

/*
* print()
* Prints the contents of the linked list of integers.
*/

void IntList1::print() const {
for (auto cursor = head; cursor; cursor = cursor->next)

std::cout << cursor->data << ' ';
std::cout << '\n';

}

/*
* Returns the length of the linked list.
*/

int IntList1::length() const {
return length(head); // Delegate work to private helper method

}

/*
* clear()
* Removes all the elements in the linked list.
*/

void IntList1::clear() {
dispose(head); // Deallocate space for all the nodes
head = tail = nullptr; // Null head signifies list is empty

}

Since the code in Listing 18.4 (intlist1.cpp) appears outside of the class declaration, any use of the Node
type requires its full name: IntList1::Node. Note the :: use in the Node constructor:

IntList1::Node::Node(int n): data(n), next(nullptr) {}

The two private methods in Listing 18.4 (intlist1.cpp) (length and dispose) are recursive. The

insert method of the IntList1 class uses new to dynamically allocate Node objects when adding

elements to the collection. The clear method is responsible for deallocating the list nodes, effectively

cleaning up the memory held by the list.

Listing 18.5 (listmain.cpp) provides some sample client code that exercises a linked list.

Listing 18.5: listmain.cpp

// list_main.cpp

#include "intlist1.h"
#include <iostream>

int main() {
bool done = false;
char command;
int value;
IntList1 list;
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while (!done) {
std::cout << "I)nsert <item> P)rint L)ength E)rase Q)uit >>";
std::cin >> command;
switch (command) {
case 'I': // Insert a new element into the list
case 'i':
if (std::cin >> value)

list.insert(value);
else

done = true;
break;

case 'P': // Print the contents of the list
case 'p':
list.print();
break;

case 'L': // Print the list's length
case 'l':
std::cout << "Number of elements: " << list.length() << '\n';
break;

case 'E': // Erase the list
case 'e':
list.clear();
break;

case 'Q': // Exit the loop (and the program)
case 'q':
done = true;
break;

}
}
list.clear(); // Free up the space held by the linked list

}

The client code in Listing 18.5 (listmain.cpp) allows a user to interactively add items to a list, print the list,

determine the list’s size, and clear the list. The following shows a sample run:

I)nsert <item> P)rint L)ength E)rase Q)uit >>p

I)nsert <item> P)rint L)ength E)rase Q)uit >>i 90
I)nsert <item> P)rint L)ength E)rase Q)uit >>i 23
I)nsert <item> P)rint L)ength E)rase Q)uit >>i 10
I)nsert <item> P)rint L)ength E)rase Q)uit >>i -4
I)nsert <item> P)rint L)ength E)rase Q)uit >>p
90 23 10 -4
I)nsert <item> P)rint L)ength E)rase Q)uit >>i 22
I)nsert <item> P)rint L)ength E)rase Q)uit >>p
90 23 10 -4 22
I)nsert <item> P)rint L)ength E)rase Q)uit >>l
Number of elements: 5
I)nsert <item> P)rint L)ength E)rase Q)uit >>e
I)nsert <item> P)rint L)ength E)rase Q)uit >>p

I)nsert <item> P)rint L)ength E)rase Q)uit >>q

Figure 18.3 visualizes the conceptual state of the linked list midway throught this sample run.
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Figure 18.3 Conceptual view of a typical IntList1 object. The linked list object here is named list.
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Observe that the client code does not use pointers at all. All the pointer manipulations are hidden within

the IntList1 class. Pointer programming can be tricky, and it is easy to introduce subtle, hard to find

bugs; thus, encapsulation once again results in easier and more robust application development. The Node
struct itself is private within IntList1, out of the reach of programmers who use these linked lists.

As shown in the IntList::dispose method, a pointer variable by itself can be used as a condition

within a conditional statement or loop. A null pointer is interpreted as false, and any non-null pointer is

true. This means if p is a pointer, the statement

if (p)
/* Do something */

is a shorthand for

if (p != nullptr)
/* Do something */

and the statement

if (!p)
/* Do something */

is a shorthand for

if (p == nullptr)
/* Do something */

Most C++ programmers use the shorter syntax.

In order to better understand how the recursive methods work, think about the structure of a Node
object with this interpretation: A Node object holds a data item and a pointer to rest of the list that follows.

A pointer to a Node is either null or non-null. A null pointer represents the empty list. A non-null pointer

represents a non-empty list consisting of two parts: the first element in the list and the rest of the list. If the

next field of a Node object is null, the rest of the list is empty.

Armed with this view of lists we can now examine the behavior of the recursive linked list methods in

more detail:

• length— Lists are either empty or non-empty. The length of the empty list is zero. The length of

a non-empty list is at least one because a non-empty list contains at least one element. Symbolically
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(not in C++), we can let ∅ stand for the empty list and x → ∅ stand for the list containing just the

element x.

Writing a recursive list length method is as simple as this:

– If the list is empty, its length is zero. Symbolically, we can write length(∅) = 0.

– If the list is non-empty, its length is one (counting its first element) plus the length of the rest

of the list.

Symbolically, we can write length(x→rest) = 1 + length(rest).

We can visualize the recursion process for determining the length of 2→10→7→∅ as:

length(2→10→7→∅) = 1 + length(10→7→∅)

= 1 + 1 + length(7→∅)

= 1 + 1 + 1 + length(∅)

= 1 + 1 + 1 + 0

= 3

• dispose— The dispose method behaves similarly to length. Notice, however, that it makes

the recursive call deleting the nodes in the rest of the list before it deletes the current node. An attempt

to access data via a pointer after using delete to deallocate that data results in undefined behavior;

therefore, it is a logic error to attempt to do so. This means the code in dispose should not be

written as

if (p) { // Logic error! Do not do it this way!
delete p; // Deallocate this node first
dispose(p->next); // Then free up the rest of the list

}

Here we are attempting to use p->next, which itself uses p, after deleting p’s memory.

While the recursive methods provided a good review of recursion, recursion is not strictly necessary for

these functions. We could instead express the public length and clear functions as shown in the

following code snippets:

// Iterative versions of length and clear

int IntList1::length() const {
int len = 0;
for (auto cursor = head; cursor; cursor = cursor->next)

len++;
return len;

}

void IntList1::clear() {
auto cursor = head;
while (cursor) {

auto temp = cursor;
cursor = cursor->next;
delete temp;

}
head = tail = nullptr; // Null head signifies list is empty

}
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As mentioned in Section 10.5, given the same basic algorithm implemented recursively or iteratively, the

iterative version will be more efficient. This is because each recursive call requires additional space on the

stack to store fresh local variables (if any) and parameters. Not only does a recursive method or function

require more memory, it takes more time to complete because the executing program must perform extra

work to set up the new space needed by a recursive invocation and restore the context when a recursive

invocation returns. If we build a very large linked list, a call to our recursive length or clear method

could consume considerable space on the stack and impose a significant performance overhead. For future

versions of our linked list code we will use the iterative version of the clear method.

To optimize the length method, we will choose a different route. If you have an application that man-

ages rather large lists and makes frequent calls to the length method, even iteration can take considerable

time. We can add an integer instance variable to the IntList1 class that keeps track of the number of

elements in the list. This new instance instance variable affects the rest of the class members as follows:

• The constructor would initialize this variable to zero.

• The insert method would increment this variable by one each time the client adds an element to

the list.

• The clear method would reset this variable to zero.

• The length method would avoid the loop completely and simply return the value of this variable.

The time spent looping over all the elements in a list counting them can be considerable for large lists,

so the additional space required by a single extra integer is a good trade off for speeding up the length
method.

The IntList1 class code as defined in Listing 18.3 (intlist1.h) and Listing 18.4 (intlist1.cpp) is useful

for introducing the concepts of implementing linked data structures. Our IntList1 class is, however,

fundamentally different from all the earlier custom classes we examined in Section 16. With the optimiza-

tions to length and clear mentioned above, it may appear to be ready for clients to use as an alternative

to std::vector, but it has some servere limitations and pitfalls that make it practically useless for most

applications. Section 18.4 exposes its weaknesses and introduces the modifications required to make it a

viable, high-quality class worthy for use in any applications requiring a dynamic linked list data structure.

18.4 Resource Management

Section 18.3 provided our first attempt at a dynamic linked list class, IntList1, defined in Listing 18.3

(intlist1.h) and Listing 18.4 (intlist1.cpp). The IntList1::insert method dynamically allocates mem-

ory for list elements from the heap. It is essential that the programmer intentionally call clear when

finished with a linked list object. Consider the following function definition:

void f() {
IntList1 my_list; // Constructor called here
// Add some numbers to the list
my_list.insert(22);
my_list.insert(5);
my_list.insert(-44);
// Print the list
my_list.print();

} // Oops! Forgot to call my_list.clear!
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The variable my_list is local to function f. When function f finishes executing the variable my_list
goes out of scope. At this point the space on the stack allocated for the local IntList1 variable named

my_list is reclaimed; however, the space for the list’s heap-allocated elements remains. The only access

the program could have to that memory is via my_list.head (or my_list.tail to the last element

in the list), but my_list no longer exists. This presents a classic memory leak.

Observe that none of the classes we have designed thus far except for IntList1 have this potential

problem.

Fortunately C++ provides a way for class designers to specify actions that must occur at the end of an

object’s lifetime. Analogous to a constructor that executes code at the beginning of an object’s existence,

a destructor is a special method that executes immediately before an object ceases to exist. A destructor

has the same name as its class, with a tilde ∼ prefix. A destructor accepts no arguments. Listing 18.6

(intlist2.h) adds a destructor to Listing 18.3 (intlist1.h) and also adds the previously suggested optimizations

of the length and clear methods.

Listing 18.6: intlist2.h

// intlist2.h

class IntList2 {
// The nested private Node class from before
struct Node {

int data; // A data element of the list
Node *next; // The node that follows this one in the list
Node(int d); // Constructor

};

Node *head; // Points to the first item in the list
Node *tail; // Points to the last item in the list

int len; // The number of elements in the list

public:
// The constructor makes an initially empty list
IntList2();

// The destructor that reclaims the list's memory
∼IntList2();

// Inserts n onto the back of the list.
void insert(int n);

// Prints the contents of the linked list of integers.
void print() const;

// Returns the length of the linked list.
int length() const;

// Removes all the elements in the linked list.
void clear();

};

Listing 18.7 (intlist2.cpp) provides the implementation of the IntList2 class.
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Listing 18.7: intlist2.cpp

// intlist2.cpp

#include "intlist2.h"
#include <iostream>

// Private IntList2 operations

// Node constructor
IntList2::Node::Node(int n): data(n), next(nullptr) {}

// The constructor makes an initially empty list.
// The list is empty when head and tail are null.
// The list's length initially is zero.
IntList2::IntList2(): head(nullptr), tail(nullptr), len(0) {}

// The destructor deallocates the memory held by the list
IntList2::∼IntList2() {

clear();
}

// Inserts n onto the back of the list.
// n is the element to insert.
void IntList2::insert(int n) {

// Make a node for the new element n
IntList2::Node *new_node = new Node(n);
if (tail) { // Is tail non-null?

tail->next = new_node; // Link the new node onto the back
tail = new_node; // The new node is the new tail of the list

}
else // List is empty, so make head and tail point to new node

head = tail = new_node;
len++; // List now has one more element

}

// Prints the contents of the linked list of integers.
void IntList2::print() const {

for (auto cursor = head; cursor; cursor = cursor->next)
std::cout << cursor->data << ' ';

std::cout << '\n';
}

// Returns the length of the linked list.
int IntList2::length() const {

return len;
}

// Removes all the elements in the linked list.
void IntList2::clear() {

auto cursor = head;
while (cursor) {

auto temp = cursor;
cursor = cursor->next;
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delete temp;
}
head = tail = nullptr; // Null head signifies list is empty
len = 0;

}

The destructor implementation:

IntList2::∼IntList2() {
clear(); // Free up the space held by the nodes in the list

}

simply invokes the services of the clear method to deallocate the space held by the list.

When do constructors and destructors execute? A local or global object definition calls the class con-

structor to properly initialize the object; for example,

IntList2 seq;

defines the object seq. This definition invokes the IntList2 constructor to set both seq.head and

seq.tail to nullptr. If seq is a local variable, its destructor executes at the end of the function’s

execution. If seq is global, its destructor executes when the program finishes.

A pointer is not an object; it points to an object. This means the definition

IntList2 *p;

does not invoke IntList2’s constructor. Given this definition of p, the statement

p = new IntList2;

actually creates an IntList2 object and therefore calls the IntList2 constructor for the newly created

object. The object to which p points is not destroyed until the programmer uses delete, as in

delete p;

It is at this point IntList2’s destructor executes for p’s object.

The addition of the destructor to IntList2 removes the memory leak from the f function we saw

earlier. Listing 18.8 (testf.cpp) is a complete program that uses IntList2 in function f.

Listing 18.8: testf.cpp

#include <iostream>
#include "intlist2.h"

void f() {
IntList2 my_list; // Constructor called here
// Add some numbers to the list
my_list.insert(22);
my_list.insert(5);
my_list.insert(-44);
// Print the list
my_list.print();

} // my_list goes out of scope; destructor automatically frees its memory

int main() {
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f();
}

We can verify that our revised linked list class properly frees up its dynamic memory by augmenting

the internal Node struct with a destructor, as shown here:

// This is the modified nested, private Node class
struct Node {

int data; // A data element of the list
Node *next; // The node that follows this one in the list
Node(int d); // Constructor
∼Node(); // Destructor

};

We also modify the constructor implementation and add the destructor implementation as shown here:

// Node constructor
IntList2::Node::Node(int n): data(n), next(nullptr) {

std::cout << "Creating node " << data
<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";

}

// Node destructor
IntList2::Node::∼Node() {

std::cout << "Destroying node " << data
<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";

}

Listing 18.9 (intlist3.h) provides the header file updated with this modified Node nested class, and List-

ing 18.10 (intlist3.cpp) contains the implementation.

Listing 18.9: intlist3.h

// intlist3.h

class IntList3 {
// The nested private Node class from before
struct Node {

int data; // A data element of the list
Node *next; // The node that follows this one in the list
Node(int d); // Constructor
∼Node(); // Destructor

};

Node *head; // Points to the first item in the list
Node *tail; // Points to the last item in the list

int len; // Number of elements in the list

public:
// The constructor makes an initially empty list
IntList3();

// The destructor that reclaims the list's memory
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∼IntList3();

// Inserts n onto the back of the list.
void insert(int n);

// Prints the contents of the linked list of integers.
void print() const;

// Returns the length of the linked list.
int length() const;

// Removes all the elements in the linked list.
void clear();

};

Listing 18.10: intlist3.cpp

// intlist3.cpp

#include "intlist3.h"
#include <iostream>

// Private IntList3 operations

// Node constructor
IntList3::Node::Node(int n): data(n), next(nullptr) {

std::cout << "Creating node " << data
<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";

}

IntList3::Node::∼Node() {
std::cout << "Destroying node " << data

<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";
}

// The constructor makes an initially empty list.
// The list is empty when head and tail are null.
// The list's length initially is zero.
IntList3::IntList3(): head(nullptr), tail(nullptr), len(0) {}

// The destructor deallocates the memory held by the list
IntList3::∼IntList3() {

clear();
}

// Inserts n onto the back of the list.
// n is the element to insert.
void IntList3::insert(int n) {

// Make a node for the new element n
IntList3::Node *new_node = new Node(n);
if (tail) { // Is tail non-null?

tail->next = new_node; // Link the new node onto the back
tail = new_node; // The new node is the new tail of the list

}
else // List is empty, so make head and tail point to new node
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head = tail = new_node;
len++; // List now has one more element

}

// Prints the contents of the linked list of integers.
void IntList3::print() const {

for (auto cursor = head; cursor; cursor = cursor->next)
std::cout << cursor->data << ' ';

std::cout << '\n';
}

// Returns the length of the linked list.
int IntList3::length() const {

return len;
}

// Removes all the elements in the linked list.
void IntList3::clear() {

auto cursor = head;
while (cursor) {

auto temp = cursor;
cursor = cursor->next;
delete temp;

}
head = tail = nullptr; // Null head signifies list is empty
len = 0;

}

Here we have the Node constructor identify which element it is creating by printing its data field

and the address of where it resides in memory. C++ is very strict about conversions between pointer and

non-pointer types—it is easy to do by mistake and almost never intended—so a simple static_cast
will not work here. The reinterpret_cast removes the safeguard and treats the bits that make up the

pointer as a uintptr_t, an integer type guaranteed to represent the same range of values as a pointer.

The destructor indicates when a Node object is destroyed. Listing 18.11 (testf2.cpp) is same program as

Listing 18.8 (testf.cpp), except it uses an IntList3 object instead of an IntList2 object.

Listing 18.11: testf2.cpp

#include <iostream>
#include "intlist3.h"

void f() {
IntList3 my_list; // Constructor called here
// Add some numbers to the list
my_list.insert(22);
my_list.insert(5);
my_list.insert(-44);
// Print the list
my_list.print();

} // my_list goes out of scope; destructor automatically frees its memory

int main() {
f();

}
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If we remove the destructor from the IntList3 class, effectively making it the IntList1 class without

the enhanced Node struct, Listing 18.11 (testf2.cpp) will print the following:

Creating node 22 (16846704)
Creating node 5 (16823408)
Creating node -44 (16822992)
22 5 -44

(The actual memory addresses will vary from run to run, but the Node data values will be the same.)

The function creates three nodes but deletes none of them. When this function returns, my_list no

longer exists, so we no longer can access the nodes it allocated. If we leave IntList3 as is, Listing 18.8

(testf.cpp) prints the following:

Creating node 22 (19337072)
Creating node 5 (19313328)
Creating node -44 (19313696)
22 5 -44
Destroying node -44 (19313696)
Destroying node 5 (19313328)
Destroying node 22 (19337072)

This shows that the IntList3 destructor properly deallocates the dynamic memory held by the linked

list object. The Node constructor executes when declaring a Node object or when using new to create a

Node object to assign to a Node pointer. The insert method uses new to create a Node object, so this

invokes the constructor. The Node destructor executes when an object goes out of scope or when delete
deallocates a dynamically-allocated object. The IntList2 destructor uses delete to free up each node

in the list.

Consider the case of dynamically allocating the linked list itself, not just its nodes:

void f2() {
IntList3 *lptr; // Pointer, constructor NOT called yet
lptr = new IntList3; // Constructor called here
// Add some numbers to the list
lptr->insert(22);
lptr->insert(5);
lptr->insert(-44);
// Print the list
lptr->print();
delete lptr; // Destructor called here

}

In this f2 function lptr is not an object; it is a pointer to an object. Declaring lptr does not create an

object, and, therefore, the IntList3 constructor does not execute. The statement

lptr = new IntList3;

does create an object, and so the IntList3 constructor executes on behalf of the object to which lptr
points. When lptr goes out of scope at the end of function f2’s execution, the stack variable lptr goes

away, but since it is a pointer, not an object, no destructor code executes. The client must explicitly free up

memory with delete:

delete lptr; // Destructor called here
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unless the programmer intends for the function to return the pointer to the client (in which case the client is

responsible for calling delete when finished with the object).

As you can see, dynamically allocating the list itself (apart from the nodes that store its elements) brings

us back to the situation we were in before: We must remember to do something when we are finished with

the object. In this case we must remember to delete the list itself. A destructor cannot help us here. This

is a good example that demonstrates that while dynamic memory enables us to do many interesting things,

it is best to avoid it unless absolutely necessary to achieve the behavior we need.

A destructor performs the reverse role of a constructor: A constructor ensures that a new object begins its

life in a well-defined state, while a destructor is responsible for performing actions required when an object’s

life is over. A destructor is unnecessary for most classes. For a linked list object, however, a destructor is

essential because the nodes that comprise the linked list are dynamically allocated with the new operator.

Any memory allocated with new needs a corresponding call to delete when the memory no longer

will be used. The clear method will take care of the memory deallocation, but, without a destructor,

a programmer must remember to intentionally call clear when finished with a linked list object. The

destructor relieves the programmer of this responsibility and removes the possibility of a memory leak. The

destructor simply calls clear to clean up the resources held by the list.

Listing 18.12 (testdestructors.cpp) demonstrates that executing program destroys local and global ob-

jects in the reverse order of their creation. For objects allocated via the new operator, as in the function

test_widget_pointers, destructors execute only when applying delete to the associated pointers.

Listing 18.12: testdestructors.cpp

#include <iostream>

class Widget {
int data;

public:
Widget(int n): data(n) {

std::cout << "Creating widget " << data
<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";

}
∼Widget() {

std::cout << "Destroying widget " << data
<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";

}
};

// Global widgets
Widget global1(100);
Widget global2(200);

void test_widget_objects() {
std::cout << "Entering test_widget_objects" << '\n';
Widget w1(1);
Widget w2(2);
Widget w3(3);
Widget w4(4);
std::cout << "Leaving test_widget_objects" << '\n';

}

void test_widget_pointers() {
std::cout << "Entering test_widget_pointers" << '\n';
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Widget *p1 = new Widget(10);
Widget *p2 = new Widget(20);
Widget *p3 = new Widget(30);
Widget *p4 = new Widget(40);
delete p2;
delete p1;
delete p4;
// Not deleting p3, introducing a memory leak
std::cout << "Leaving test_widget_pointers" << '\n';

}

int main() {
std::cout << "Entering main" << '\n';
test_widget_objects();
test_widget_pointers();
std::cout << "Leaving main" << '\n';

}

Listing 18.12 (testdestructors.cpp) prints the following:

Creating widget 100 (2707068)
Creating widget 200 (2707064)
Entering main
Entering test_widget_objects
Creating widget 1 (14024180)
Creating widget 2 (14024184)
Creating widget 3 (14024188)
Creating widget 4 (14024192)
Leaving test_widget_objects
Destroying widget 4 (14024192)
Destroying widget 3 (14024188)
Destroying widget 2 (14024184)
Destroying widget 1 (14024180)
Entering test_widget_pointers
Creating widget 10 (14790752)
Creating widget 20 (14790816)
Creating widget 30 (14790832)
Creating widget 40 (14791760)
Destroying widget 20 (14790816)
Destroying widget 10 (14790752)
Destroying widget 40 (14791760)
Leaving test_widget_pointers
Leaving main
Destroying widget 200 (2707064)
Destroying widget 100 (2707068)

Adding a destructor to the IntList1 class is a significant step in correcting its deficiencies, but its

successors, IntList2 and IntList3, still are not ready for general release. Consider Listing 18.13

(listassign.cpp) that uses the IntList3 class that properly automatically cleans up its memory.

Listing 18.13: listassign.cpp

#include "intlist3.h"
#include <iostream>
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void f() {
IntList3 seq1, seq2; // Create two empty integer linked lists

seq1.insert(10); // Build the list [10]-->[-2]-->[8]
seq1.insert(-2);
seq1.insert(8);
seq1.print();

seq2.insert(5); // Build the list [5]-->[4]
seq2.insert(4);
seq2.print();

std::cout << "--------------\n";

seq1 = seq2; // What does this do?

seq1.print();
}

int main() {
f();
std::cout << "All done\n";

}

Listing 18.13 (listassign.cpp) builds two separate linked lists and then assigns one list to the other. On one

system the program prints

Creating node 10 (14457304)
Creating node -2 (14457592)
Creating node 8 (14456152)
10 -2 8
Creating node 5 (14456200)
Creating node 4 (14456248)
5 4
--------------
5 4
Destroying node 4 (14456248)
Destroying node 5 (14456200)
Destroying node 4 (14456248)
Destroying node 5 (14456200)
All done

During this particular run the program ran to completion; however, sometimes the program will crash before

printing All done. On some systems the program crashes before printing the last three lines of output.

During this run of Listing 18.13 (listassign.cpp) the output shows that the program never destroys the

nodes containing 10, −2, and 8. Further, the program destroys the nodes containing 4 and 5 twice! We can

see the program deletes the same memory twice by comparing the memory addresses in parentheses.

This undefined behavior of double deletion is what causes the program to crash at times.

The problem is in this statement:

seq1 = seq2;

What exactly does this statement do?
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Figure 18.4 Conceptual view of IntList3 assignment. After the assignment the two linked list objects

alias the same list of nodes, and seq1’s original list becomes unreachable.
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With no additional guidance from the programmer, the assignment operator for a programmer-defined

type simply copies the bits in memory that make up the object to right of the assignment operator into the

memory reserved for the object on the left side of the assignment operator. Under Visual C++producing

a 32-bit executable, for example, an IntList3 object occupies 12 bytes of memory—four bytes for its

head pointer plus four bytes for its tail pointer plus four bytes for len. The actual size of an IntList3
object will vary from system to system and will be larger on 64-bit computers. You can verify the actual size

of an IntList3 object on your system by adding the following statement to Listing 18.13 (listassign.cpp):

std::cout << sizeof seq1 << '\n'; // Prints 8 or 16 under Visual C++

The assignment

seq1 = seq2;

simply copies seq2.head to seq1.head and copies seq2.tail to seq1.tail and copies seq2.len
to seq1.len. This produces three undesirable results:

• Aliasing. After the assignment the objects seq1 and seq2 refer to the same list of nodes. See

Figure 18.4 for an illustration of the assignment process.

This means any actions to modify the list managed by seq1 will modify seq2 identically. The

assignment operator does not make a copy of the contents of seq2. This means that our linked list

objects behave differently than std::vector objects with respect to assignment; assigning one

vector to another makes a copy of the contained elements. Clients will expect our linked list objects

to behave similarly. This aliasing problem, however, is the least of our problems.
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• Memory leak. Simply redirecting seq1’s head and tail pointers to seq2’s list renders the nodes

in seq1’s original list unreachable from any variables within the program. The program has no way

to delete the nodes in seq1’s original list. This constitutes a memory leak.

• Memory corruption. Both seq1 and seq2 are objects local to the main function. Based on their

declaration order, seq1’s constructor executes before seq2’s constructor. This means when main
is finished executing seq2’s destructor will execute before seq1’s destructor, as object destruction

occurs in the reverse order of object construction for local objects. The destructor for seq2 will

free up all the nodes in seq2’s list. Next, seq1’s destructor will attempt to delete the memory

occupied by its list. Unfortunately this involves referencing and deleting dynamic memory previously

deleted by seq2. Any attempts to delete already deleted memory results in undefined behavior

that usually results in memory corruption. That is why Listing 18.13 (listassign.cpp) crashes during

some runs.

Fortunately C++ provides a way for programmers to customize how assignment works for a custom type.

Before we tackle assignment itself, we must distinguish between initialization and assignment. Consider

the following statement:

int x = 3;

This statement defines and initializes the variable x to 3. This statement is fundamentally different from the

following two statements:

int x;
x = 3;

For simple types like integers, floating-point numbers, and characters, this pair of statements on the surface

behave identically to the single statement above. In fact, these two statements involve a declaration followed

by assignment. Initialization and assignment are not the same thing. Recall from Section 3.2 the alternate

syntax for initialization:

int x{3};

To the compiler, this statement is equivalent to the initialization statement above. Note, however, that the

following code sequence is not legal:

int x;
x{3}; // Illegal

C++ gives programmers full control over initialization and assignment of custom types. We have seen

how we can specify initialization via a constructor. In order to legitimize our linked list class and make it

safe for clients to use, we need to provide an additional constructor, called the copy constructor, and define

an assignment operator for the class.

The copy constructor for a class named X has the following form:

class X {
// Other stuff for class X

X::X(const X& other);
};

The parameter is a reference to an object of the same type.

To specify assignment, we supply an operator= method of the form
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class X {
// Other stuff for class X

X& operator=(const X& other);
};

Note that the assignment operator accepts a constant reference parameter of the type of the class and returns

a reference to the type of the class.

Listing 18.14 (intlist4.h) extends Listing 18.9 (intlist3.h) providing copy construction and assignment.

Listing 18.14: intlist4.h

// intlist4.h

class IntList4 {
// The nested private Node class from before
struct Node {

int data; // A data element of the list
Node *next; // The node that follows this one in the list
Node(int d); // Constructor
∼Node(); // Destructor

};

Node *head; // Points to the first item in the list
Node *tail; // Points to the last item in the list

int len; // Number of elements in the list

public:
// The constructor makes an initially empty list
IntList4();

// The destructor that reclaims the list's memory
∼IntList4();

// Copy constructor
IntList4(const IntList4& other);

// Assignment operator
IntList4& operator=(const IntList4& other);

// Inserts n onto the back of the list.
void insert(int n);

// Prints the contents of the linked list of integers.
void print() const;

// Returns the length of the linked list.
int length() const;

// Removes all the elements in the linked list.
void clear();

};
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The implementation of the copy constructor is straightforward:

IntList4::IntList4(const IntList4& other): IntList4() {
// Walk through other's list inserting each of its elements
// into this list
for (auto cursor = other.head; cursor; cursor = cursor->next)

insert(cursor->data);
}

The expression IntList4() in the constructor initialization list following the colon is calling the

overloaded version of the constructor that accepts no arguments. This is known as constructor delegation.

The no-argument constructor simply initializes head and tail to nullptr. We could have done the

same thing here without calling the other constructor, but, in general, delegation is a good idea. Delegation

can avoid code duplication, and while there currently is not much code in the no-argument constructor, we

may decide to add more functionality in the future. By delegating, we can add the extra activity to the

no-argument constructor without having to add it also to this copy constructor.

Constructors always begin with a brand new, non-preexisting object. In the case of our linked list

objects, that means our constructor does not have to worry about cleaning up any preexisting list of nodes.

All our copy constructor needs to do is ensure that head and tail instance variables initially are null (the

constructor delegation takes care of that) and then visit each node in the other list, inserting that node’s data

value into its own list as it goes.

Next we will consider assignment. Suppose lst1 and lst2 are two linked list objects. In the assign-

ment

lst1 = lst2;

we will refer to lst1 as the assigned-to object and lst2 as the assigned-from object. Note that the

syntactically desugared equivalent of this statement is

lst1.operator=(lst2); // Same as lst1 = lst2;

Unlike the copy constructor, the assignment operator works with a preexisting object. This means the

assignment operator in the course of its operation must deallocate the original list of nodes, if any, managed

by the assigned-to list. Failure to do so would introduce a memory leak. Also, the assignment operator

must make a copy of all the values in the assigned-from list to avoid aliasing.

There are various ways we can implement the assignment operator to ensure it works correctly, but since

assignment of this nature is such a common operation, C++ programmers have developed a standard idiom

that guarantees the correctness of assignment. Best practices dictates that we implement our assignment as

a process. This entails making a local temporary copy of the assigned-from list and swapping the list of

nodes from the temporary list with list of nodes from the assigned-to list. Note that swapping the list of

nodes simply requires swapping the head and tail pointers between the two objects. This copy-and-swap

process depends on a correctly implemented copy constructor and a correctly implemented destructor.

The following code provides the necessary assignment operator:

IntList4& IntList4::operator=(const IntList4& other) {
// Make a local, temporary copy of other
IntList4 temp{other};
// Exchange the head and tail pointers and len from this list
// with those of the new, temporary list
std::swap(head, temp.head);
std::swap(tail, temp.tail);
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std::swap(len, temp.len);
// The temporary list now points to this list's original contents,
// and this list now points to the copy of other's list
// The temporary list will be destroyed when this constructor returns
return *this;

}

Surprising, perhaps, is what we do not see in this assignment operator:

• Missing is a loop or any indication of visiting each node in the assign-from list (other).

• Missing is any calls to delete to free up any preexisting list nodes in the assign-to list.

How does this assignment operator magically meet our requirements for a correct assignment? This is how

it works:

• The first executable line:

IntList4 temp{other};

invokes the copy constructor to make a copy of the assign-from list (other) to a temporary list object

(temp). Recall that the copy constructor uses a loop to traverse the assign-from list, making a copy

of each node in that list. This solves the aliasing issue and explains how this assignment operator

does actually visit every node in other’s list.

• The next two statements:

std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);

exchange the head and tail pointers and len between the assign-to list object and the temporary

list object. This means the assign-to list object now holds the copy of the assign-from list, and

the temporary list object holds the list originally managed by the assign-to list object.

• Since it is a local variable the temporary list object (temp) goes out of scope at the end of the

function’s execution. The temp object’s destructor executes at this time. This temporary object now

holds the assign-to object’s original list, so the destructor properly deallocates all the nodes in

the assign-to object’s original list. The calls to delete to prevent the memory leak are found

in the linked list class destructor.

Figure 18.5 illustrates the copy-and-swap process of the assignment operator.

Our assignment operator leverages the code already written in the copy constructor and destructor. Any

other implementation of assignment that correctly addresses the aliasing and memory management issues

necessarily would duplicate the functionality of either the copy constructor or the destructor.

Note that the IntList4::operator= method’s declaration indicates it returns a reference to an

IntList4 object, and we see in the last line of IntList4::operator=’s body that the method ac-

tually returns a reference to the object that appears on the left side of the assignment operator during its

invocation. Recall that the this keyword represents a pointer to the object upon which the caller invoked

the method (in this case the assign-to list object). If lst1 and lst2 are list objects, when executing the

statement

©2018 Richard L. Halterman Draft date: December 2, 2018



18.4. RESOURCE MANAGEMENT 574

Figure 18.5 The copy-and-swap process performed by the assignment operator

5data

next

4data

next

seq2

head

tail

Before assignment

5data

next

4data

next

temp

head

tail

seq1

10data

next

–2 data

next

8data

next

head

tail

temp copy 

constructs from 

seq2

temp and seq1 

swap lists 

temp destruction at 

end of assignment

len 3

len 2

len 2

5data

next

4data

next

seq2

head

tail

seq1

10data

next

–2 data

next

8data

next

head

tail

len 3 len 2

5data

next

4data

next

seq2

head

tail

5data

next

4data

next

temp

head

tail

seq1

10data

next

–2 data

next

8data

next

head

tail

len 2

len 3

len 2

5data

next

4data

next

seq2

head

tail

5data

next

4data

next

temp

head

tail

seq1

10data

next

–2 data

next

8data

next

head

tail

len 2

len 3

len 2

©2018 Richard L. Halterman Draft date: December 2, 2018



18.4. RESOURCE MANAGEMENT 575

lst1 = lst2; // Syntactic sugar for lst1.operator=(lst2);

the this pointer in points to lst1 (and lst2 is the parameter named other).. The method must return

an object reference, not a pointer to the object, so we must dereference it as *this. This is the typical C++

idiom used when defining operator= for programmer-defined types.

We could instead define the operator= method to return nothing (that is, declare its return type to be

void). Instead we could define the method to return some type of object other than IntList4. If we do

so, however, our IntList4 objects will not behavior properly with chained assignment (see Section 4.3).

To illustrate, suppose lst1, lst2, and lst3 are all properly declared IntList4 objects. If we define

the IntList4::operator= method to return void, the following statement:

lst1 = lst2;

is perfectly acceptible and behaves as intended, but the compiler will not accept the following statement:

lst1 = lst2 = lst3;

This is because the assignment operator associates right-to-left; the compiler interprets the chained assign-

ment statement above as if we had parentheses placed as shown in the following statement:

lst1 = (lst2 = lst3);

If our assignment operator returns void, this statement produces a compile-time error because the subex-

pression (lst2 = lst3) would evaluate to void, and void is a degenerate type that we cannot assign

to lst1.

If we use the original definition above of the IntList4::operator= method that returns a refer-

ence to the IntList4 object on the left side of the assignment operator (*this), the compiler does not

complain and the chained assignment works flawlessly in the same manner as chained assignment involving

the built-in numeric types; that is, after executing the chained assignment statement above, lst1 and lst2
each will contain exact copies of the elements in lst3.

Listing 18.15 (intlist4.cpp) provides the complete implementation of our IntList4 class.

Listing 18.15: intlist4.cpp

// intlist4.cpp

#include "intlist4.h"
#include <iostream>
#include <utility> // For std::swap

// Private IntList4 operations

// Node constructor
IntList4::Node::Node(int n): data(n), next(nullptr) {

std::cout << "Creating node " << data
<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";

}

IntList4::Node::∼Node() {
std::cout << "Destroying node " << data

<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";
}
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// The constructor makes an initially empty list.
// The list is empty when head and tail are null.
// The list's size initially is zero.
IntList4::IntList4(): head(nullptr), tail(nullptr), len(0) {}

// Copy constructor makes a copy of the other object's list
IntList4::IntList4(const IntList4& other): IntList4() {

// Walk through other's list inserting each of its elements
// into this list
for (auto cursor = other.head; cursor; cursor = cursor->next)

insert(cursor->data);
}

// Assignment operator
IntList4& IntList4::operator=(const IntList4& other) {

// Make a local, temporary copy of other
IntList4 temp{other};
// Exchange the head and tail pointers and len from this list
// with those of the new, temporary list
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);
// The temporary list now points to this list's original contents,
// and this list now points to the copy of other's list
// The temporary list will be destroyed when this constructor returns
return *this;

}

// The destructor deallocates the memory held by the list
IntList4::∼IntList4() { clear(); }

// Inserts n onto the back of the list.
// n is the element to insert.
void IntList4::insert(int n) {

// Make a node for the new element n
IntList4::Node *new_node = new Node(n);
if (tail) { // Is tail non-null?

tail->next = new_node; // Link the new node onto the back
tail = new_node; // The new node is the new tail of the list

}
else // List is empty, so make head and tail point to new node

head = tail = new_node;
len++; // List now has one more element

}

// Prints the contents of the linked list of integers.
void IntList4::print() const {

for (auto cursor = head; cursor; cursor = cursor->next)
std::cout << cursor->data << ' ';

std::cout << '\n';
}

// Returns the length of the linked list.
int IntList4::length() const {

return len;
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Figure 18.6 An annotated output of Listing 18.13 (listassign.cpp) updated to use our IntList4 class. Ex-

amine carefully the node memory addresses (in parentheses) to convince yourself that the implementation

of correct copy constructor, assignment operator, and destructor for the class solved the aliasing, memory

leak, and undefined behavior problems.

Creating seq1's original list

Creating seq2's list

Creating a copy of seq2's list for seq1

Destroying seq1's original list

Destroying seq2's list

Destroying seq1's list (the copy of seq2's list)

}

// Removes all the elements in the linked list.
void IntList4::clear() {

auto cursor = head;
while (cursor) {

auto temp = cursor;
cursor = cursor->next;
delete temp;

}
head = tail = nullptr; // Null head signifies list is empty
len = 0;

}

See Figure 18.6 provides an annotated output of Listing 18.13 (listassign.cpp) updated to use our

IntList4 class.

The output demonstrates that assignment now works correctly for our linked list objects. Correctly

implementing the copy constructor, assignment operator, and destructor for the IntList4 class solved

the aliasing, memory leak, and undefined behavior concerns.

The copy constructor, assignment operator, and destructor have a special relationship in C++. These

three methods are involved in the Rule of Three. The Rule of Three is this: If a class designer feels the need

to add a copy constructor, assignment operator, and/or destructor to a class, the class should have all three
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methods. Said another way, it almost always is a mistake to have just one or two of these special methods

defined for a class without including all three.

The Rule of Three is a design guideline; it is not requirement of the C++ language that the compiler

enforces. Consider why the rule exists. If an object must be guaranteed to perform some action at the end

of its existence and failure to do so would result in undesirable consequences as the program continues to

execute, the object’s class must contain a destructor. This essential action usually involves some releasing

some resource it owns. If the destructor is responsible for releasing a resource, the copy constructor must

somehow acquire a resource that is in some way related to the resource of an existing object. The assignment

operator must both release an owned resource and acquire a resource related to the resource of an existing

object. What if you leave out one of the three?

• If you omit the destructor, the default destructor does no resource clean up. Objects can acquire

resources through copy construction and assignment but cannot release them. Most resources (like

memory) are finite, so lack of an appropriate destructor will limit the number objects available to the

executing application.

• If you omit the copy constructor, the default copy constructor will copy the bits of the existing object

into the new object. This means the copy-constructed object will have the exact resources managed

by another object. The destruction of exactly one of the objects will release the resources held by the

other object. The non-destroyed object then will not have access to the resources it needs to function.

• If you omit the assignment operator, the default assignment will copy the bits of one existing object

into another existing object. This means the assigned object will have the exact resources managed by

another object. It also means that the resources the assigned object originally held are not reclaimed.

The destruction of exactly one of the objects will release the resources held by the other object. The

non-destroyed object then will not have access to the resources it needs to function.

In sum, you should have a very good reason for designing a class that violates the Rule of Three.

18.5 Rvalue References

Consider the following code fragment:

int x = 5, y;
y = x + 2;

In the assignment statement

y = x + 2;

The variable y is known as an lvalue. The l in lvalue stands for left, as y can appear all by itself on the left

side or right side of the assignment operator. The expression x + 2 is classified as an rvalue, since it can

appear only on the right side of the assignment operator but cannot appear on the left side; for example, the

following statement is illegal:

x + 2 = y; // Illegal!

The expression x + 2 represents a temporary value, as it has meaning and existence only during the

execution of the statement in which it appears. The executing program stores the result of the computation of

x + 2 temporarily in memory, but the program ordinarily cannot reference that memory after the statement
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finishes. The term temporary is appropriate, as the program may reuse that same memory for other purposes

after the statement executes.

Consider the following variable declarations:

int x = 5;
int& r = x + 3; // Illegal!

The second declaration is illegal; C++ does not allow us to assign a temporary to a reference variable. In

this case the variable r would be an alias for a quantity that ceases to exist immediately after the statement

executes. The variable r, however, would continue to exist, but it would not be aliasing any valid quantity.

C++ does permit us to make a const reference to a temporary. The following code fragment is legal:

int x = 5;
const int& cr = x + 3; // Legal

The const reference places the value of the temporary into a memory location referenced via cr. The

temporary’s value persists until cr goes out of scope. In this case cr behaves as if it were simply a

const int.

Next, consider the following function definition:

int f(int n) {
return 10 * n;

}

In the following statement:

std::cout << f(x + 2) << '\n';

the actual parameter is a temporary value passed to the function f. Everything works as expected because

the executing program copies the temporary’s value to the formal parameter n in this pass by value example.

Now consider a similar but slightly different function definition:

int g(int& n) {
return 10 * n;

}

The following statement is illegal:

std::cout << g(x + 2) << '\n';

The function g accepts a reference to a variable, but the caller is attempting to pass a temporary. Once

function g begins executing, the memory reserved for the original temporary is invalid, so the compiler

rightly does not permit this.

As with the simple declarations we saw above, given function h:

int h(const int& n) {
return 10 * n;

}

the following statement is perfectly acceptable:

std::cout << h(x + 2) << '\n';
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Since n is a const int reference in h, the executing program will make a copy of the temporary’s value

to send to h.

While these examples may seem a bit esoteric, we are paving the way for a more efficient linked list

custom type. Consider Listing 18.16 (templist.cpp) which uses our IntList4 type from Listing 18.15

(intlist4.cpp) and Listing 18.15 (intlist4.cpp).

Listing 18.16: templist.cpp

#include <iostream>
#include "intlist4.h"

IntList4 make_list(int n) {
IntList4 result;
for (int i = 0; i < n; i++)

result.insert(i);
return result;

}

int main() {
auto my_list = make_list(4);
my_list.print();

}

The output of Listing 18.16 (templist.cpp) indicates the creation and destruction of two IntList4 objects

when we would expect only one. Figure 18.7 annotates the output of Listing 18.16 (templist.cpp) to explain

the program’s behavior.

The statement

auto my_list = make_list(4);

invokes the IntList4 copy constructor. This statement is equivalent to

auto my_list{make_list(4)};

Either way, the make_list(4) expression represents the IntList4 object returned by the make_list
function when passed the actual parameter 4. The expression make_list(4) is an rvalue, a temporary,

because it cannot appear on the left side of the assignment operator. Since the IntList4 copy constructor

accepts a const IntList4& parameter, it will accept the temporary object, but it makes a copy of the

temporary to send to the copy constructor.

If is wasteful to make a copy of this transient object. If the list object contained millions of nodes, this

additional construction and destruction could be time consuming.

C++ does permit a special kind of reference for rvalues known as an rvalue reference. An rvalue refer-

ence enables programmers to alias a temporary without making a copy.

In the following code:

int x = 5;
int&& r = x + 3; // Legal, note the two ampersands
std::cout << "x = " << x << " r = " << r << '\n';

we see that variable r provides access to the temporary’s value.

We can use rvalue references as function parameters, as the following function demonstrates:
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Figure 18.7 An annotated output of Listing 18.16 (templist.cpp). Examine carefully the node memory

addresses (in parentheses). The executing program first creates the temporary IntList4 object returned

by make_list. It the copy constructs the my_list object from the temporary and then destroys the

temporary. After printing the linked list, the program finally destroys the my_list object.

Creating the temporary make_list(5)

Copy constructing my_list from the temporary

Destroying the temporary

Destroying my_list
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int h(int&& n) {
return 10 * n;

}

Given the definition of function h, the following invocation is legal:

std::cout << h(x + 3) << '\n';

We can overload functions and methods to accept both normal references and rvalue references. The

compiler can determine which overloaded function to invoke based on the actual parameters that the caller

passes. Consider Listing 18.17 (rvalueparams.cpp).

Listing 18.17: rvalueparams.cpp

#include <iostream>

int twice(const int& n) {
std::cout << "Calling with reference parameter, result is ==> ";
return 2 * n;

}

int twice(int&& n) {
std::cout << "Calling with rvalue reference parameter, result is ==> ";
return 2 * n;

}

int main() {
int x = 6;
std::cout << twice(x) << '\n';
std::cout << twice(x + 2) << '\n';
std::cout << twice(6) << '\n';

}

Listing 18.17 (rvalueparams.cpp) prints

Calling with reference parameter, result is ==> 12
Calling with rvalue reference parameter, result is ==> 16
Calling with rvalue reference parameter, result is ==> 12

The expression twice(x) calls the twice function with an lvalue, so it calls the first version of twice.

The expressions x + 2 and 2 are rvalues—neither can appear by itself on the left side of the assignment

operator—so both twice(x + 2) and twice(2) invoke the second version of the twice function.

These examples with integers we have seen so far help us better understand the mechanics of rvalue

references, but, honestly, rvalue references offer little value to the simple types like integers. The C++ lan-

guage designers introduced rvalue references into C++ for the specific purpose of making copy construction

and assignment from temporaries more efficient. Rvalue references are exactly what we need to make our

linked list of integers more efficient when dealing with temporary lists.

Listing 18.18 (intlist5.h) declares the fifth generation of our integer linked list class. It contains a new

constructor overload and adds an assignment operator overload, both of which accept rvalue references.

Listing 18.18: intlist5.h

// intlist5.h
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class IntList5 {
// The nested private Node class from before
struct Node {

int data; // A data element of the list
Node *next; // The node that follows this one in the list
Node(int d); // Constructor
∼Node(); // Destructor

};

Node *head; // Points to the first item in the list
Node *tail; // Points to the last item in the list

int len; // Number the elements in the list

public:
// The constructor makes an initially empty list
IntList5();

// The destructor that reclaims the list's memory
∼IntList5();

// Copy constructor
IntList5(const IntList5& other);

// Move constructor
IntList5(IntList5&& other);

// Assignment operator
IntList5& operator=(const IntList5& other);

// Move assignment operator
IntList5& operator=(IntList5&& other);

// Inserts n onto the back of the list.
void insert(int n);

// Prints the contents of the linked list of integers.
void print() const;

// Returns the length of the linked list.
int length() const;

// Removes all the elements in the linked list.
void clear();

};

The additional constructor is known as a move constructor, and the additional assignment operator is known

as the move assignment operator. To make the discourse clearer, we will refer to the original assignment

operator as copy assignment. The compiler can disambiguate between the overloaded methods by virtue of

the actual parameters passed by the caller:

• If the caller passes an lvalue, the compiler generates code that invokes the copy constructor or copy

assignment operator.
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• If the caller passes an rvalue, the compiler generates code that invokes the move constructor or move

assignment operator.

The purpose of move construction is to efficiently move the resources held by the temporary object into

the new object being created. We want to avoid making a copy of the temporary. Similarly, the purpose of

move assignment is to efficiently move the resources held by the temporary object into an existing object

without creating a new object. The copy constructor and copy assignment operator are designed to make

copies.

It is safe to “steal” the resources of the temporary object because a temporary object is transient and

cannot be used later within the program. Even though temporary objects are transient, they nonetheless are

real, nameless objects. If the class of the temporary has a destructor, the object’s destructor will execute

when the temporary’s ephemeral life is over. This means that even though the move constructor and move

assignment operator may move a temporary’s resources into another object, they must leave the temporary

in a well-defined state so that the temporary’s destructor can do its job.

The following implements the move constructor for the IntList5 class:

// Move constructor takes possession of the temporary's list
IntList5::IntList5(IntList5&& temp): IntList5() {

// Swap contents with the temporary
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);

}

This move constructor delegates to the constructor that accepts no arguments. This initializes the head
and tail pointers of this new object to nullptr. Note that this represents an empty, but valid linked

list object. The move constructor then exchanges the head and tail pointers of the object it is creating

with those of the temporary. This effectively moves the temporary’s list of nodes to this object and moves

the this object’s empty, but valid, list of nodes to the temporary. When this copy constructor finishes, the

temporary’s life is over. Since the temporary still contains a valid list of nodes, its destructor can execute

successfully. Observe that no where in this copy constructor did we traverse a list of nodes copying each

element individually. This means move construction of a list with 1,000,000 nodes requires no more time

than move constructing an empty list.

Note that the parameter to the move constructor is not declared const. If it were declared const, it

would not be possible to swap its contents with new object being created.

The move assignment operator is similar to the move constructor, except assignment, of course, does

not begin with an initially empty object. We must ensure our move assignment operator does not leak

memory from any preexisting list of nodes the object may contain.

The implementation of the move constructor for the IntList5 class looks very similar to the move

constructor:

// Move assignment operator
IntList5& IntList5::operator=(IntList5&& temp) {

// Exchange the head and tail pointers and len from this list
// with those of the new, temporary list
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);
// The temporary list now points to this list's original contents,
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// and this list now points to the temporary's list
// The temporary list will be destroyed since it is a temporary
return *this;

}

The only difference is the move constructor always will given the empty list to the temporary. The move

assignment operator exchange the object’s list for the temporary’s list. The object’s list could be empty, but

in general it will not be empty. When the move assignment operator returns, the temporary passed to it will

cease to exist. The temporary’s destructor then will properly dispose of the object’s original list of nodes.

Listing 18.19 (intlist5.cpp) contains the complete implementation of the IntList5 class.

Listing 18.19: intlist5.cpp

// intlist5.cpp

#include "intlist5.h"
#include <iostream>
#include <utility>

// Private IntList5 operations

// Node constructor
IntList5::Node::Node(int n): data(n), next(nullptr) {

std::cout << "Creating node " << data
<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";

}

IntList5::Node::∼Node() {
std::cout << "Destroying node " << data

<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";
}

// The constructor makes an initially empty list.
// The list is empty when head and tail are null.
// The list's size initially is zero.
IntList5::IntList5(): head(nullptr), tail(nullptr), len(0) {}

// Copy constructor makes a copy of the other object's list
IntList5::IntList5(const IntList5& other): IntList5() {

// Walk through other's list inserting each of its elements
// into this list
for (auto cursor = other.head; cursor; cursor = cursor->next)

insert(cursor->data);
}

// Move constructor takes possession of the temporary's list
IntList5::IntList5(IntList5&& temp): IntList5() {

// Swap contents with the temporary
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);

}

// Assignment operator
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IntList5& IntList5::operator=(const IntList5& other) {
// Make a local, temporary copy of other
IntList5 temp{other};
// Exchange the head and tail pointers and len from this list
// with those of the new, temporary list
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);
// The temporary list now points to this list's original contents,
// and this list now points to the copy of other's list
// The temporary list will be destroyed since it is a temporary
return *this;

}

// Move assignment operator
IntList5& IntList5::operator=(IntList5&& temp) {

// Exchange the head and tail pointers and len from this list
// with those of the new, temporary list
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);
// The temporary list now points to this list's original contents,
// and this list now points to the temporary's list
// The temporary list will be destroyed since it is a temporary
return *this;

}

// The destructor deallocates the memory held by the list
IntList5::∼IntList5() { clear(); }

// Inserts n onto the back of the list.
// n is the element to insert.
void IntList5::insert(int n) {

// Make a node for the new element n
IntList5::Node *new_node = new Node(n);
if (tail) { // Is tail non-null?

tail->next = new_node; // Link the new node onto the back
tail = new_node; // The new node is the new tail of the list

}
else // List is empty, so make head and tail point to new node

head = tail = new_node;
len++; // List now contains one more element

}

// Prints the contents of the linked list of integers.
void IntList5::print() const {

for (auto cursor = head; cursor; cursor = cursor->next)
std::cout << cursor->data << ' ';

std::cout << '\n';
}

// Returns the length of the linked list.
int IntList5::length() const {

return len;
}
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// Removes all the elements in the linked list.
void IntList5::clear() {

auto cursor = head;
while (cursor) {

auto temp = cursor;
cursor = cursor->next;
delete temp;

}
head = tail = nullptr; // Null head signifies list is empty
len = 0;

}

Listing 18.20 (templist2.cpp) is the same code as Listing 18.16 (templist.cpp), except it uses the newest

iteration of our integer linked list class.

Listing 18.20: templist2.cpp

#include <iostream>
#include "intlist5.h"

IntList5 make_list(int n) {
IntList5 result;
for (int i = 0; i < n; i++)

result.insert(i);
return result;

}

int main() {
auto my_list = make_list(5);
my_list.print();

}

The output of Listing 18.20 (templist2.cpp) confirms that our added move constructor avoids creating an

extra linked list object just to pass the temporary.

Creating node 0 (21169512)
Creating node 1 (21214272)
Creating node 2 (21214512)
Creating node 3 (21214304)
Creating node 4 (21214208)
0 1 2 3 4
Destroying node 4 (21214208)
Destroying node 3 (21214304)
Destroying node 2 (21214512)
Destroying node 1 (21214272)
Destroying node 0 (21169512)

The make_list function creates the temporary object; this accounts for all statements that begin with

Creating node. . . . The move constructor exchanges the temporary object’s list of nodes with the empty list

found in the newly created my_list object. At this point my_list contains the temporary’s original

list and the temporary contains the empty list. The temporary’s destructor executes but finds no nodes to

destroy (head is null). At the end of the main function my_list’s destructor delete’s all the nodes in

my_list.
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As an aside, note that the compiler can detect that the make_list function creates a local object

(result) but merely returns it to the caller. The compiler can use return value optimization (see Sec-

tion 11.1.4) to avoid creating an extra object within the function to return to the caller. Instead, the compiler

generates code that enables the make_list function to create the linked list object directly in the envi-

ronment of the caller.

The addition of move construction and move assignment brings us to C++’s Rule of Five. The Rule of

Five involves copy construction, move construction, destruction, copy assignment, and move assignment.

If a programmer defines none of these special methods for a class, the compiler automatically will provide

its own versions of each of them that work properly for classes that support value semantics; for example,

all the classes in Chapter 16 support value semantics. Classes that use value semantics avoid the memory

management and aliasing issues we encountered with our linked list classes.

If the programmer defines one or more of a copy constructor, destructor, or copy assignment operator,

the compiler will not automatically supply a move constructor or move assignment operator. This is not

a problem as far as program correctness is concerned; move construction and move assignment merely

provide an optimization that avoids the unnecessary creation of an extra object when constructing or as-

signing from a rvalue (temporary). A missing move constructor means a temporary is copied by the copy

constructor, and a missing move assignment operator means a temporary is copied by the copy assignment

operator.

The programmer can precisely control which of these special methods the compiler supplies by explic-

itly marking these methods with a default or delete label. We will not go into the details here, but

merely provide a few examples.

Consider class X1:

class X1 {
public:

int data;
};

Class X1 has no explicit constructor; therefore, the compiler will supply one that allows callers to create an

X1 object:

X1 my_x1; // Okay; default constructed
std::cout << my_x1.data << '\n'; // Prints some random integer value

In this case a client needs to reassign my_x1.data for the object to be remotely useful.

Next, consider class X2:

class X2 {
public:

int data;
X2(int n): data(n) {}

};

Here the programmer provides an explicit constructor, so the compiler will not generate a default construc-

tor. This mean the following statement is illegal:

X2 my_x2; // Illegal; the client must provide an integer

If we really want a client to be able to create an object both with or without an integer argument, we can

overload the constructor (provide our own default constructor) or force the compiler to generate one for us

using the default label, as shown here:
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class X3 {
public:

int data;
X3() = default; // Allow compiler to generate default constructor
X3(int n): data(n) {} // and provide our own

};

This makes both of the following statements possible:

X3 my_x3a;
X3 my_x3b{4};

We can prevent the compiler from generating its default constructor by marking the default constructor it

ordinarily would provide with the delete label, as in the following:

class X4 {
public:

int data;
X4() = delete;

};

Did you notice that we violated the Rule of Three in our Node nested struct that we used in our linked

list examples? We added a destructor but did not supply a copy constructor and did not define a copy

assignment operator. How can we justify this decision?

In reality, the Node struct does not need a destructor. The linked list class will operate flawlessly with a

Node inner struct that has no destructor. No code within the Node struct allocates any resources. The outer

linked list class is responsible for allocating and deallocating memory resources. The linked list methods

manipulate Node objects as passive data. We added the destructor only so we could see exactly when the

program destroyed a Node object. This enabled us to detect memory leaks and multiple deletions and refine

our linked list class into a robust useful type. The Node destructor cleans up no resources nor does anything

else that would impact the work the compiler-generated copy constructor or the compiler-generated copy

assignment operator would do. Remember, you should follow the Rule of Three unless you have a very

good reason not to do so. In our case, our good reason is our destructor does nothing that would prompt us

to write our own copy constructor and copy assignment operator to properly coordinate with destructor.

In order to emphasize our intentional decision to violate the Rule of Three, we can rewrite the Node
struct as

struct Node {
int data; // A data element of the list
Node *next; // The node that follows this one
Node(int d); // Constructor
Node(const Node&) = default; // Copy constructor
Node(Node&&) = default; // Move constructor
∼Node(); // Destructor
Node& operator=(const Node&) = default; // Copy assignment
Node& operator=(Node&&) = default; // Move assignment

};

By explicitly defaulting the copy constructor and copy assignment operator, we indicate that we did not

omit them by accident. The inclusion of the destructor prevents the compiler from automatically generating

a move constructor and move assignment operator. By declaring these two methods as default, the

compiler will generate them for us.
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Since our Node object contains only simple types (an int and a pointer) we can omit all the explicit

defaulted methods in the declaration above, and nothing will be different. This is because C++ “moves”

an integer merely by copying it. A simple integer has no resources we need to steal from a temporary; a

simple assignment is all that is needed. Similarly, a pointer may refer to an elaborate object of some sort,

but the pointer itself in simply an address. Copy and move construction is the same, and and copy and move

assignment is handled the same as well.

18.6 Smart Pointers

C++ programmers that manually manage dynamic memory with new and delete follow a style inherited

directly from the C programming language. Many modern programming languages like Python, Java, and

C# manage dynamic memory through a technique called garbage collection. Garbage collection takes care

of the accounting necessary to avoid multiple deletes and memory leaks. In garbage collected languages

programmers need only call the equivalent of new; the garbage collector takes care of freeing up the space

later when the executing program no longer uses the dynamically-allocated object. Garbage collection

works well, but it does add some overhead to an executing program. This overhead consumes some extra

memory and can affect a program’s run-time efficiency. C++ strives to be as efficient as possible, so it does

not provide an automatic garbage collector. Garbage collected languages typically allocate all objects on the

heap, thereby managing objects in a uniform manner. C++ supports statically-allocated and stack-allocated

objects, as well as heap-allocated objects. Heap allocation is sightly slower, and heap fragmentation can

further degrade program performance. C++ follows the mantra you only pay for what you use, meaning

programs that do not need the heap do not incur the run-time cost of using the heap.

C++ provides the efficiency benefits of a non-garbage-collected language with the convenience of garbage

collection when desired. C++ achieves this in various ways. One way we have seen and have been enjoying

its benefits for some time. The std::vector class manages a dynamic array, using new and delete
behind the scenes. Software engineers implemented std::vector carefully to do the right thing, avoid-

ing aliasing, memory leaks, and multiple deletions.

Modern C++ makes it possible to write programs that manage dynamic memory using neither new nor

delete directly. Such a style uses smart pointers; that is, pointers that “know” exactly when to deallocate

the memory they reference.

C++ smart pointers eliminate the need for such manual intervention on the part of the programmer. A

smart pointer automatically deletes its associated memory at the proper time. The std::shared_ptr
type is one example of a standard C++ smart pointer.

Suppose we have the following Widget type:

struct Widget {
int data;
Widget(int n): data(n) {}

};

The following code creates a Widget object on the heap and assigns it to a std::shared_ptr object

named p:

std::shared_ptr<Widget> p(new Widget(12));

The generic std::make_shared function provides a more convenient way to make a std::shared_ptr
object:

std::shared_ptr<Widget> p = std::make_shared<Widget>(12);
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The std::make_shared function eliminates the need of the new operator. It uses new behind the

scenes to allocate the necessary memory for the object it creates, but the programmer does not see the new.

On the other end of the object’s lifetime, programmers never call deletewhen using smart pointers; smart

pointers automatically call delete at the proper time. The use of the std::make_shared function

enables programmers to work with dynamically-allocated memory without ever using new and delete
directly. This removes the possibility of memory leaks and multiple deletions that haunt manual memory

management.

We can use the type inference capabilities of auto to express smart pointer creation even more simply:

auto p = std::make_shared<Widget>(12);

In the expression std::make_shared<Widget>(12) the name inside the angle brackets is the type

of the object to create, and the value in the parentheses is the argument to pass to that type’s constructor.

The compiler knows that the function will return type std::shared_ptr<Widget>, so there is no

need to spell out the exact type of p on the left side.

Once we have p defined in one of these ways we can treat it syntactically as if it were a raw pointer; for

example:

// Make p point to a dynamically created a Widget object
auto p = std::make_shared<Widget>(12);
std::cout << p->data << '\n'; // Prints 12
p->data = 5;
std::cout << p->data << '\n'; // Prints 5

Listing 18.21 (simplesharedptrtest.cpp) provides a program that performs some simple tests with std::shared_ptr
objects.

Listing 18.21: simplesharedptrtest.cpp

#include <iostream>
#include <string>
#include <memory>

struct Widget {
static unsigned id_source; // Source of unique IDs
unsigned id;
Widget(): id(id_source++) {

std::cout << "Creating a widget #" << id << " ("
<< reinterpret_cast<uintptr_t>(this)
<< ")\n";

}
∼Widget() {

std::cout << "Destroying a widget #" << id << " ("
<< reinterpret_cast<uintptr_t>(this)
<< ")\n";

}
};

unsigned Widget::id_source = 0;

// Global shared pointer
auto global_ptr = std::make_shared<Widget>();

std::shared_ptr<Widget> make_widget() {
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std::cout << "---- Entering make_widget ----\n";
std::cout << "---- Leaving make_widget ----\n";
return std::make_shared<Widget>();

}

void test1() {
std::cout << "---- Entering Test 1 ----\n";
// Make p point to a dynamically created a widget object
auto p = std::make_shared<Widget>();
std::cout << p->id << '\n';
p->id = 25;
std::cout << p->id << '\n';
std::cout << "---- Leaving Test 1 ----\n";

}

void test2() {
std::cout << "---- Entering Test 2 ----\n";
// Make q point to a dynamically created a widget object
auto q = std::make_shared<Widget>();
std::cout << q->id << '\n';
q = nullptr; // Make q point to nothing
std::cout << "---- Leaving Test 2 ----\n";

}

void test3() {
std::cout << "---- Entering Test 3 ----\n";
// Make p point to a dynamically created integer
auto p = std::make_shared<int>(55);
std::cout << *p << '\n'; // Prints 55
*p = -4; // Reassign
std::cout << *p << '\n'; // Prints -4
std::cout << "---- Leaving Test 3 ----\n";

}

void test4() {
std::cout << "---- Entering Test 4 ----\n";
static auto p = make_widget();
std::cout << p->id << '\n';
std::cout << "---- Leaving Test 4 ----\n";

}

void test5() {
std::cout << "---- Entering Test 5 ----\n";
auto p = make_widget();
std::cout << p->id << '\n';
std::cout << "---- Leaving Test 5 ----\n";

}

void test6() {
std::cout << "---- Entering Test 6 ----\n";
// Aliasing
auto q = std::make_shared<Widget>();
auto r = q; // r aliases q, no new memory allocated
auto s = q; // s aliases q, no new memory allocated
std::cout << q->id << ' '
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<< r->id << ' '
<< s->id << '\n';

q = nullptr;
std::cout << r->id << ' '

<< s->id << '\n';
r = nullptr;
std::cout << s->id << '\n';
s = nullptr; // Deallocates the widget object
std::cout << "---- Leaving Test 6 ----\n";

}

int main() {
std::cout << "---- Entering main ----\n";
test1();
test2();
test3();
test4();
test5();
test6();
std::cout << "---- Leaving main ----\n";

}

The output of Listing 18.21 (simplesharedptrtest.cpp) shows chronologically when the program creates and

destroys Widget objects:

Creating a widget #0 (18566044)
---- Entering main ----
---- Entering Test 1 ----
Creating a widget #1 (18566092)
1
25
---- Leaving Test 1 ----
Destroying a widget #25 (18566092)
---- Entering Test 2 ----
Creating a widget #2 (18566380)
2
Destroying a widget #2 (18566380)
---- Leaving Test 2 ----
---- Entering Test 3 ----
55
-4
---- Leaving Test 3 ----
---- Entering Test 4 ----
---- Entering make_widget ----
---- Leaving make_widget ----
Creating a widget #3 (18566404)
3
---- Leaving Test 4 ----
---- Entering Test 5 ----
---- Entering make_widget ----
---- Leaving make_widget ----
Creating a widget #4 (18566092)
4
---- Leaving Test 5 ----
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Destroying a widget #4 (18566092)
---- Entering Test 6 ----
Creating a widget #5 (18566092)
5 5 5
5 5
5
Destroying a widget #5 (18566092)
---- Leaving Test 6 ----
---- Leaving main ----
Destroying a widget #3 (18566404)
Destroying a widget #0 (18566044)

The Widget constructor in Listing 18.21 (simplesharedptrtest.cpp) ensures that each widget object it

creates has a unique id number. The first widget will have id 0, the second has id 1, etc.

The executing program initializes global objects before calling the main function. The first two lines

of the program’s output:

Creating a widget #0 (18566044)
---- Entering main ----

shows the creation of the global object global_ptr. The next few lines:

---- Entering Test 1 ----
Creating a widget #1 (18566092)
1
25
---- Leaving Test 1 ----
Destroying a widget #25 (18566092)

show the creation of the local widget #1 in the test1 function. The code in test1 modifies the id
value of the Widget object. (Recall that clients can freely modify fields of a struct.) At the end of

the function’s execution the std::shared_ptr object automatically destroys widget #1, now known as

widget #25, as we can see the destructor’s output.

It is important to note that p is a local variable in test1, so the space for std::shared_ptr p
itself appears on the stack. The call to std::make_shared creates via new a widget object on the heap.

When p goes out of scope at the end of test1’s execution, p’s desructor automatically calls delete to

deallocate the widget from the heap. The usual function return mechanism automatically removes p from

the stack.

The next few lines of output:

---- Entering Test 2 ----
Creating a widget #2 (18566380)
2
Destroying a widget #2 (18566380)
---- Leaving Test 2 ----

shows that when a std::shared_ptr previously assigned to a widget is reassigned, in this case to

nullptr, the space for the original widget object is freed up (its destructor called) immediately; the

object is cleaned up before reaching the end of the function.

In the next few lines of output:
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---- Entering Test 3 ----
55
-4
---- Leaving Test 3 ----

the test3 function does not reveal any clues about the automatic memory management of std:shared_ptr,

as the int type has no constructors or destructor that indicate the lifetime of the dynamically allocated int
value. The program includes the test3 function simply to demonstrate that std::shared_ptr objects

can manage the dynamic memory of simple types just as well as fancier types. The simple int type does

not report its destruction when its memory is freed, but rest assured that the std::shared_ptr object

will deallocate its memory correctly.

In the next few lines of output:

---- Entering Test 4 ----
---- Entering make_widget ----
---- Leaving make_widget ----
Creating a widget #3 (18566404)
3
---- Leaving Test 4 ----

we see the creation of widget #3, but we do not see its destruction. This is because it is the first invocation

of test4. The first call initializes the static local p, hence the construction of a std::shared_ptr
and its associated Widget object. Since p is a static local variable it must survive between calls to

test4; therefore, p cannot be deallocated until the program finishes executing (see below).

In the next few lines of output:

---- Entering Test 5 ----
---- Entering make_widget ----
---- Leaving make_widget ----
Creating a widget #4 (18566092)
4
---- Leaving Test 5 ----
Destroying a widget #4 (18566092)

we see the exact situation as in test4, except that p is not static. This means p destroys its widget

object when the function returns.

In the output of the final test function, test6, we see

---- Entering Test 6 ----
Creating a widget #5 (18566092)
5 5 5
5 5
5
Destroying a widget #5 (18566092)
---- Leaving Test 6 ----

The test6 function allocates just one Widget object. It assigns three std::shared_ptr objects to

the same widget object. This provides a clear justification for the name shared_ptr—all three pointers share

access to the same object. If p and q are std::shared_ptrs of the same type, the statement

q = p;

©2018 Richard L. Halterman Draft date: December 2, 2018



18.6. SMART POINTERS 596

make p and q aliases to the same object. Regardless of the aliasing, the code within test6 allocates

exactly one Widget object and deallocates that same Widget object when the function completes its

execution.

The final lines in the program’s output:

---- Leaving main ----
Destroying a widget #3 (18566404)
Destroying a widget #0 (18566044)

show the destruction of test4’s static local std::shared_ptr (widget #3) and global_ptr
(widget #0).

If you analyze the output of Listing 18.21 (simplesharedptrtest.cpp) carefully, you will see that every

constructor call has an associated destructor call for the same object (remember test1 renamed widget #1

to #25, so compare widget #1’s creation address with widget #25’s destruction address, and you will see they

match). The heap provided all the space for Widget objects in Listing 18.21 (simplesharedptrtest.cpp),

yet we see neither new nor delete anywhere in the code.

This ability to deallocate its referenced memory at the proper time is what makes a std::shared_ptr
object a smart pointer.

Recall Listing 18.1 (howtodelete.cpp) that demonstrated the difficulty of managing dynamic memory

manually. Listing 18.22 (smartdelete.cpp) converts all the raw pointers of Listing 18.1 (howtodelete.cpp)

into std::shared_ptrs. The result? We no longer need to worry about who “owns” the memory of the

heap allocated objects; std::shared_ptr objects manage all those details.

Listing 18.22: smartdelete.cpp

#include <iostream>
#include <vector>
#include <memory>

struct Widget {
int value;
Widget(int value): value(value) {

std::cout << "Creating widget " << value << '\n';
}
∼Widget() {

std::cout << "Destroying widget " << value << '\n';
}

};

std::shared_ptr<Widget> get_widget() {
static int pos = 0;
static std::vector<std::shared_ptr<Widget>> widget_pool {

std::make_shared<Widget>(23), std::make_shared<Widget>(45),
std::make_shared<Widget>(16), std::make_shared<Widget>(12),
std::make_shared<Widget>(3), std::make_shared<Widget>(20),
std::make_shared<Widget>(10)};

pos = (pos + 1) % widget_pool.size();
return widget_pool[pos];

}

void process(int n) {
std::vector<std::shared_ptr<Widget>> vec;
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while (n-- > 0)
vec.push_back(get_widget());

// No need to clean up vector; smart pointers do it for us
}

int main() {
std::cout << "Entering main\n";
process(10);
std::cout << "Leaving main\n";

}

The output of Listing 18.22 (smartdelete.cpp) shows that the program destroys each Widget object it

creates exactly once.

Entering main
Creating widget 23
Creating widget 45
Creating widget 16
Creating widget 12
Creating widget 3
Creating widget 20
Creating widget 10
Leaving main
Destroying widget 23
Destroying widget 45
Destroying widget 16
Destroying widget 12
Destroying widget 3
Destroying widget 20
Destroying widget 10

How does a std::shared_ptr smart pointer “know” when to call delete to free up its object?

memory it manages by reference counting.

Given the following Widget type:

struct Widget {
int value;
Widget(int value): value(value) {}

};

the following statement:

auto p = std::make_shared<Widget>(3);

creates a smart pointer referencing a Widget object containing the value 3. What happens to the object

associated with p when we reassign the variable p? The following statement:

// p is the Widget object created above
p = nullptr;

redirects p to point to nothing. At this point no variable references the Widget object created earlier. This

means the object effectively is cut off from the remainder of the program’s execution. This abandoned object

is classified as garbage. The term garbage is a technical term used in computer science that refers to mem-

ory allocated by an executing program that the program no longer can access. The std::shared_ptr
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type uses a technique known as reference counting to automatically reclaim the space occupied by aban-

doned objects.

Reference counting garbage collection works as follows. All objects dynamically created via the

std::shared_ptr constructor or the std::make_shared convenience function have an associated

reference count. When the executing program creates a new object managed by a std::shared_ptr
object, it sets the shared pointer object’s reference count to 1. After executing the following statement:

auto p = std::make_shared<Widget>(3);

the reference count of p is 1. A reference count of 1 means that exactly one shared pointer object (in this

case p) is assigned to the object. Making an alias, as in

q = p;

increments p’s reference count by one. Both p and q share the same object and share the same reference

count. If we make another alias, as in

r = p;

the assignment statement increases the object’s reference count to 3. If reassign p, q, or r, as in

q = std::make_shared<Widget>(22);

the reference count of the widget containing 3 decreases by one, and the reference count of the new widget

object containing 22 becomes 1. If we then reassign p, for example:

p = nullptr;

this leaves only variable r referencing the widget containing 3, its reference count is 1. If we finally reassign

r:

r = nullptr;

the reference count of the widget containing 3 drops to zero. The std::shared_ptr class has a custom

assignment operator. The process of assignment alters the reference count for objects managed via these

smart pointers. When an assignment would cause a shared pointer’s reference count for an object to be-

come zero, the shared pointer can delete that object before attaching to the object being assigned. The

assignment would increase the reference count of the object being assigned by one.

The std::shared_ptr class has a method named use_count that returns the reference count for

the current object managed by the shared pointer. Listing 18.23 (refcount.cpp) exploits this use_count
method to demonstrate how reference counting garbage collection works.

Listing 18.23: refcount.cpp

#include <iostream>
#include <memory>

class Widget {
public:

Widget() {
std::cout << "Creating a widget ("

<< reinterpret_cast<uintptr_t>(this)
<< ")\n";

}
∼Widget() {
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std::cout << "Destroying a widget ("
<< reinterpret_cast<uintptr_t>(this)
<< ")\n";

}
};

int main() {
auto p = std::make_shared<Widget>();
std::cout << p.use_count() << '\n'; // Prints 1
auto q = p;
std::cout << p.use_count() << '\n'; // Prints 2
auto r = p;
std::cout << p.use_count() << '\n'; // Prints 3
r = nullptr;
std::cout << p.use_count() << '\n'; // Prints 2
q = nullptr;
std::cout << p.use_count() << '\n'; // Prints 1
p = nullptr;
std::cout << p.use_count() << '\n'; // Prints 0

}

Listing 18.23 (refcount.cpp) prints

Creating a widget (20338980)
1
2
3
2
1
Destroying a widget (20338980)
0

Observe how the object’s transition from a reference count of one to a reference count of zero automatically

deletes the widget object, invoking its destructor.

In Listing 18.24 (intlist6.h) we retool our linked list class from Listing 18.18 (intlist5.h) to use std::shared_ptr
objects instead of raw pointers.

Listing 18.24: intlist6.h

// intlist6.h

#include <memory> // For std::shared_ptr

class IntList6 {
// The nested private Node class from before
struct Node {

int data; // A data element of the list
std::shared_ptr<Node> next; // The node that follows this one
Node(int d); // Constructor
Node(const Node&) = default; // Copy constructor
Node(Node&&) = default; // Move constructor
∼Node(); // Destructor
Node& operator=(const Node&) = default; // Copy assignment
Node& operator=(Node&&) = default; // Move assignment
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};

std::shared_ptr<Node> head; // Points to the first item in the list
std::shared_ptr<Node> tail; // Points to the last item in the list

int len; // Number of elements in the list

public:
// The constructor makes an initially empty list
IntList6();

// The destructor that reclaims the list's memory
∼IntList6();

// Copy constructor
IntList6(const IntList6& other);

// Move constructor
IntList6(IntList6&& other);

// Assignment operator
IntList6& operator=(const IntList6& other);

// Move assignment operator
IntList6& operator=(IntList6&& other);

// Inserts n onto the back of the list.
void insert(int n);

// Prints the contents of the linked list of integers.
void print() const;

// Returns the length of the linked list.
int length() const;

// Removes all the elements in the linked list.
void clear();

};

Listing 18.25 (intlist6.cpp) implements methods declared in Listing 18.24 (intlist6.h).

Listing 18.25: intlist6.cpp

// intlist6.cpp

#include "intlist6.h"
#include <iostream>
#include <utility>

// Private IntList6 operations

// Node constructor
IntList6::Node::Node(int n): data(n), next(nullptr) {

std::cout << "Creating node " << data
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<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";
}

IntList6::Node::∼Node() {
std::cout << "Destroying node " << data

<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";
}

// The constructor makes an initially empty list.
// The list is empty when head and tail are null.
IntList6::IntList6(): head(nullptr), tail(nullptr), len(0) {}

// Copy constructor makes a copy of the other object's list
IntList6::IntList6(const IntList6& other): IntList6() {

// Walk through other's list inserting each of its elements
// into this list
for (auto cursor = other.head; cursor; cursor = cursor->next)

insert(cursor->data);
}

// Move constructor takes possession of the temporary's list
IntList6::IntList6(IntList6&& temp): IntList6() {

// Swap contents with the temporary
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);

}

// Assignment operator
IntList6& IntList6::operator=(const IntList6& other) {

// Make a local, temporary copy of other
IntList6 temp{other};
// Exchange the head and tail pointers and len from this list
// with those of the new, temporary list
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);
// The temporary list now points to this list's original contents,
// and this list now points to the copy of other's list
// The temporary list will be destroyed since it is a temporary
return *this;

}

// Move assignment operator
IntList6& IntList6::operator=(IntList6&& temp) {

// Exchange the head and tail pointers and len from this list
// with those of the new, temporary list
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);
// The temporary list now points to this list's original contents,
// and this list now points to the temporary's list
// The temporary list will be destroyed since it is a temporary
return *this;

}
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// The destructor deallocates the memory held by the list
IntList6::∼IntList6() { clear(); }

// Inserts n onto the back of the list.
// n is the element to insert.
void IntList6::insert(int n) {

// Make a node for the new element n
std::shared_ptr<IntList6::Node> new_node = std::make_shared<Node>(n);
if (tail) { // Is tail non-null?

tail->next = new_node; // Link the new node onto the back
tail = new_node; // The new node is the new tail of the list

}
else // List is empty, so make head and tail point to new node

head = tail = new_node;
len++;

}

// Prints the contents of the linked list of integers.
void IntList6::print() const {

for (auto cursor = head; cursor; cursor = cursor->next)
std::cout << cursor->data << ' ';

std::cout << '\n';
}

// Returns the length of the linked list.
int IntList6::length() const {

return len;
}

// Removes all the elements in the linked list.
void IntList6::clear() {

auto cursor = head;
while (cursor) {

auto temp = cursor; // Remember where we are
cursor = cursor->next; // Move next node
temp->next = nullptr; // Sever link from previous node

}
head = tail = nullptr; // Null head signifies list is empty
len = 0;

}

Nowhere in the IntList6 class can we see the new or delete operators. The std::make_shared
function and std::shared_ptr class hides those details from us.

We could have expressed the code within the clear method as simply as the following:

void IntList6::clear() {
head = tail = nullptr; // Null head signifies list is empty
len = 0;

}

Note that it uses no loop to iterate over the nodes of the list. When we set head, which points to the first

element in the list, to nullptr, the reassignment automatically will destroy the first node on the list. This

is because no other smart pointers currently point to that node. The destruction of the first node will destroy
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its next pointer that points to the second node on the list. This results in the destruction of the second

node. The destruction of the second node destroys its next pointer which leads to the distruction of the

third node, followed by the fourth node, etc. This cascading process ultimately destroys all the nodes in the

list to which head points.

If this simple implementation of clear achieves the same result as the more involved clear method

in Listing 18.25 (intlist6.cpp) that uses a loop, why even consider the more complicated code? As it turns

out, the simpler method has a problem with very long lists. To see how, suppose we have a long linked

list. When the clear method sets the std::shared_ptr head to null, no other smart pointers will be

pointing to the first node. The smart pointer reassignment in this case calls a method behind the scenes to

destroy the object to which it points (the object to which head points; that is, the first node in the list). This

clean-up method does not return until the process is complete, and, for long lists, this process can be quite

lengthy. The destruction of the first node requires the destruction of its next pointer, head->next. This

head->next pointer points to the second node in the list. The destruction of this head->next pointer

triggers the destruction of the second node because no other std::shared_ptr objects point to it. This

means that before head’s clean-up method returns, the chain of events it sets off must invoke the clean-up

method of head->next which leads to the destruction of the second node. The destruction of the second

node necessarily must destroy the next smart pointer of the second node (head->next->next). This

in turn leads to the destruction of the object to which head->next->next points (that is, the third node

in the list). By this same process, the destruction of the third node in the list leads to the destruction of the

fourth node, and then the fifth node, etc. This cascade of method calls continue until it reaches the last node

in the list. Two smart pointers point to the last node: the next pointer of the next-to-the-last node in the

list and the tail pointer of the LinkedList object itself. The destruction of the next-to-the-last node

removes one of the smart pointers but not the other. This means the clean-up method of the next-to-the-last

node cannot destroy the last node. This turns out not to be a memory leak, however, as the clear method

also sets tail to nullptr, so eventually the last node will be destroyed properly.

Everything appears to work perfectly—automatic resource management as advertised—so what is the

problem for very long lists? We left the activity of the LinkedList::clear method as the destruction

of the next-to-the-next-to-last smart pointer’s clean-up method was destroying the next-to-the-last node in

the list. The problem is this: The destruction of the first node of the list is not complete until the destruction

of the second node is complete. The destruction of the second node is not complete until the destruction of

the third node is complete, and so forth. This means the clean-up method destroying the first node does not

do its job, return, and then clean up the node’s next pointer; it does not return until the second completes its

clean up, which, of course, does not complete until the third node’s clean up is finished, etc. Theoretically,

this chain of function calls eventually returns back to the action that initiated it—the reassignment of head
to nullptr, and for lists that are not too long, this is the case. Each method invocation consumes some

stack space, and for very long lists this call chain can be so deep so as to overflow the stack, causing the

program to crash. The scenario is similar to a recursive function that recurses too deeply. On one system

the program crashed when attempting to destroy a linked list containing 10,000 nodes.

The version of clear in Listing 18.25 (intlist6.cpp) iterates through the list setting the next pointers

of the nodes it most recently visited to nullptr. On the very next iteration the temporary pointer temp
destroys the node during its reassignment from cursor. This means it must destroy temp’s next smart

pointer, but the previous iteration set this to null. This eliminates the chaining problem and allows the

previous node to be destroyed with a single function call that returns immediately. This version deallocates

the list through a series of separate, isolated function calls that return immediately rather than a chain of

function invocations that potentially can overflow the stack.

Listing 18.26 (smartlist.cpp) exercises our IntList6 class, verifying that the smart pointers properly

manage the dynamic memory.

©2018 Richard L. Halterman Draft date: December 2, 2018



18.6. SMART POINTERS 604

Listing 18.26: smartlist.cpp

// smartlist.cpp

#include <iostream>
#include "intlist6.h"

void test() {
IntList6 list;
for (int i = 0; i < 10; i++)

list.insert(i);
list.print();

}

int main() {
for (int i = 0; i < 10; i++)

test();
}

When you run Listing 18.26 (smartlist.cpp) you will see that all Node object creations have corresponding

destructions. The std::shared_ptr objects take care of all the heap management.

Our linked list class has an insert method that allows clients to add elements to the list, but it has

no method that enables a client to remove a single element. In our most recent non-smart-pointer class,

IntList5, we could add the following method:

// Removes the first occurrence of n from the list.
// Returns true if successful (found n and removed it).
// Returns false if n is not originally present in the list.
bool IntList5::remove(int n) {

Node *cursor = head, // Start at head of list
*prev = head; // Keep track of previous node seen

// Loop until we run off the end of the list or find n,
// whichever comes first
while (cursor && cursor->data != n) {

prev = cursor; // Remember previous node
cursor = cursor->next; // Move to next node

}
if (!cursor) // Did we run off the end of the list?

return false; // Indicate we did not find n

// Found n; cursor is pointing at the node containing n
if (head == tail) // n was the only element in the list

head = tail = nullptr; // cursor still points to node with n
else if (cursor == head) // Is n the first element in the list?

head = head->next; // Redirect head around n
else // n is not the first element

prev->next = cursor->next; // Redirect previous node around n
if (cursor == tail) // Was n the last element in the list?

tail = prev; // Update tail to new last element

delete cursor; // Delete n's node
len--; // List size decreases by 1
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return true; // We found n and deleted its node
}

The remove method is more complicated than the insert method because the insert method always

adds new elements to the back end of the list. The remove method must be able to remove elements from

anywhere in the list—front, back, and anywhere in between.

The remove method for our IntList6 smart list class would look like the following:

// Removes the first occurrence of n from the list.
// Returns true if successful (found n and removed it).
// Returns false if n is not originally present in the list.
bool IntList6::remove(int n) {

auto cursor = head, // Start at head of list
prev = head; // Keep track of previous node seen

// Loop until we run off the end of the list or find n,
// whichever comes first
while (cursor && cursor->data != n) {

prev = cursor; // Remember previous node
cursor = cursor->next; // Move to next node

}
if (!cursor) // Did we run off the end of the list?

return false; // Indicate we did not find n

// Found n; cursor is pointing at the node containing n
if (head == tail) // n was the only element in the list

head = tail = nullptr; // cursor still points to node with n
else if (cursor == head) // Is n the first element in the list?

head = head->next; // Redirect head around n
else // n is not the first element

prev->next = cursor->next; // Redirect previous node around n
if (cursor == tail) // Was n the last element in the list?

tail = prev; // Update tail to new last element

// No delete is necessary
len--; // List size decreases by 1
return true; // We found n and deleted its node

}

The IntList6::remove method still needs to perform all the checks and properly redirect the pointers

within the list, but it no longer needs to call delete explicitly.
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Chapter 19

Generic Programming

CAUTION!      CHAPTER UNDER CONSTRUCTION

The flexible sorting examples in Listing 12.2 (flexibleintsort.cpp), Listing 16.5 (loggingflexiblesort.cpp),

and Listing 17.35 (polymorphicsort.cpp) allow us to arrange the elements in integer vectors in creative ways

and perform other interesting activities such as logging. Those examples demonstrate the power of function

pointers, inheritance, and polymorphism. As flexible and powerful as these techniques are, they all contain

one major limitation: they deal with vectors of integers only. Consider the Comparer class from List-

ing 17.33 (comparer.h) and Listing 17.34 (comparer.cpp), and the “flexible” selection_sort function

from Listing 17.38 (loggingsort.cpp). The selection_sort function accepts a vector of integers and

a Comparer reference. What if we need to sort a vector of double-precision floating-point numbers or a

vector of std::string objects? Unfortunately, all of this “flexible” code cannot handle this seemingly

minor variation.

In this chapter we look at C++’s template mechanism that enables programmers to develop truly generic

algorithms and data structures. We will see how the standard C++ library has embraced the template tech-

nology to provide a wealth of generic algorithms and data structures that greatly assist developers in the

construction of quality software.

19.1 Function Templates

Consider the following comparison function found in Listings Listing 12.2 (flexibleintsort.cpp), Listing 16.5

(loggingflexiblesort.cpp), and Listing 17.38 (loggingsort.cpp):

/*
* less_than(a, b)
* Returns true if a < b; otherwise, returns
* false.
*/
bool less_than(int a, int b) {

return a < b;
}

Listing 19.1 (testlessthan.cpp) tests the less_than function with various arguments.
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Listing 19.1: testlessthan.cpp

#include <iostream>

/*
* less_than(a, b)
* Returns true if a < b; otherwise, returns
* false.
*/

bool less_than(int a, int b) {
return a < b;

}

int main() {
std::cout << less_than(2, 3) << '\n';
std::cout << less_than(2.2, 2.7) << '\n';
std::cout << less_than(2.7, 2.2) << '\n';

}

The compiler generates warnings for the last two statements. The less_than function expects two in-

teger arguments, but the calling code sends two double-precision floating-point values. The automatic

conversion from double to int can lose information, hence the warnings. The output of Listing 19.1

(testlessthan.cpp) shows that we should take these warnings seriously:

1
0
0

Obviously 2 < 3 and 2.7 ≮ 2.2, but 2.2 ≮ 2.7? The automatic double to int conversion truncates, so

the less_than function treats both 2.2 and 2.7 as 2, and clearly 2 ≮ 2.

The situation is even worse for the following code:

std::string word1 = "ABC", word2 = "XYZ";
std::cout << (word1 < word2) << '\n';
std::cout << (word2 < word1) << '\n';
// The next statement will not compile
//std::cout << less_than(word1, word2) << '\n';

The C++ standard library provides a global operator< function that compares two std::string ob-

jects lexicographically. The first two std::cout statements produce the expected output:

1
0

but the last line that is commented out will not compile if we remove the commenting symbols. This

is because the C++ library does not provide a standard conversion from std::string to int, and

less_than requires two int parameters.

As another example, consider the following function that computes the sum of the elements in a vector

of integers:

int sum(const std::vector<int>& v) {
int result = 0;
for (int elem : v)
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result += elem;
return result;

}

The following client code works well:

std::vector<int> v {10, 20, 30};
std::cout << sum(v) << '\n';

It prints 60. The following code does not compile:

std::vector<double> v {10, 20, 30};
std::cout << sum(v) << '\n';

The second code fragment attempts to pass a vector of double-precision floating-point values to the sum
function. Unfortunately, the sum function accepts only vectors that contain integers. More precisely, sum
accepts only arguments of type std::vector<int>, and a std::vector<double> object is not a

std::vector<int>. The solution is easy; just copy and paste the original sum function and change all

the occurrences of “int” to “double,” creating an overloaded sum function:

double sum(const std::vector<double>& v) {
double result = 0;
for (double elem : v)

result += elem;
return result;

}

This works, but the duplicated effort is unsatisfying. These two overloaded sum functions are identical

except for the types involved. The actions of the two functions—the initialization, vector traversal and

arithmetic—are essentially the same. In general, code duplication is undesirable. A programmer that

discovers and repairs an error in one of the functions must remember to apply the corresponding correction

to the function’s overloaded counterpart.

Both the less_than and sum functions share a common shortcoming: they are tied in some way to a

particular data type. It would be convenient to be able to specify the common pattern and let the compiler

fill in the types as required. In the case of less_than we would like to be able to write a function that

can use the < operator on parameters of any type for which < is compatible. For sum, we would like to

create a generic function that works for vectors containing any numeric type.

C++ enables programmers to write such generic functions via templates. A function template specifies a

pattern of code, and either the programmer or the compiler supplies the exact type as needed. Listing 19.2

(templatelessthan.cpp) uses C++’s template mechanism to create a generic less_than function.

Listing 19.2: templatelessthan.cpp

#include <iostream>
#include <string>

/*
* less_than(a, b)
* Returns true if a < b; otherwise, returns
* false.
*/

template <typename T>
bool less_than(T a, T b) {
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return a < b;
}

int main() {
std::cout << less_than(2, 3) << '\n';
std::cout << less_than(2.2, 2.7) << '\n';
std::cout << less_than(2.7, 2.2) << '\n';

std::string word1 = "ABC", word2 = "XYZ";
std::cout << less_than(word1, word2) << '\n';
std::cout << less_than(word2, word1) << '\n';

}

The output of Listing 19.2 (templatelessthan.cpp) is

1
1
0
1
0

In the less_than function definition:

template <typename T>
bool less_than(T a, T b) {

return a < b;
}

template and typename are reserved words, and T is a type parameter. The template keyword

indicates that the function definition that follows is not a normal function definition but rather is a pattern

or template from which the compiler can attempt to produce the correct function definition. A function

template is also known as a generic function. The typename keyword indicates that the identifier that

follows (in this case T) is a placeholder for a C++ type name. The type parameter T stands for an actual type

to be determined elsewhere. T is an identifier and so can have any name legal for a variable, function, or

class; some programmers prefer more descriptive names such as CompareType or TypeParam. Single

capital letters such as T, S, U, and V are popular type parameter names among C++ programmers. Just as a

regular parameter of a function or method represents a value, a template parameter represents a type.

You may use the reserved word class interchangeably with the keyword typename in this context:

template <class T>
bool less_than(T a, T b) {

return a < b;
}

In Listing 19.2 (templatelessthan.cpp) the compiler generates three different less_than functions:

one that accepts two integers, one that accepts two double-precision floating-point values, and one the

accepts two string objects. Although the programmer cannot see them in the source code, the compiler in

effect creates the following literal function definitions:

bool less_than(int a, int b) {
return a < b;

}
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bool less_than(double a, double b) {
return a < b;

}

bool less_than(std::string a, std::string b) {
return a < b;

}

When the compiler generates an actual function definition from a template function, the process is called

template instantiation, not to be confused with an object instantiation from a class.

The compiler instantiates functions only as needed. If Listing 19.2 (templatelessthan.cpp) did not

contain the std::string objects, when processing the source code the compiler would not instantiate

the version of less_than that accepts two std::string objects.

For efficiency purposes, the better way to write less_than is

template <typename T>
bool less_than(const T& a, const T& b) {

return a < b;
}

Notice that parameters a and b are passed by reference, not by value. This means the caller passes only the

addresses of objects a and b and does not need to make copies to send to the function. This can make a big

difference if T represents large objects. Since the parameters are const references, the function cannot

change the state of the caller’s actual parameters; therefore, the function offers call-by-value safety without

the overhead of copying the parameters.

If a caller attempts a statement such as

std::cout << less_than(2, 2.2) << '\n';

the compiler generates an error. This is because the template definition specifies that its two type parameters

are identical. The literal 2 is an int, and the literal 2.2. is a double. The compiler can automatically

instantiate less_than functions that accept two ints or two doubles but not mixed types. In the

expression

less_than(2, 2.2)

the compiler cannot know which instantiated version of the template to call.

One solution requires the programmer to explicitly instantiate the function a shown here:

std::cout << less_than<int>(2, 2.2) << '\n';

This forces the compiler to instantiate and call the integer version. The compiler will issue a warning about

truncating the 2.2. The statement

std::cout << less_than<double>(2, 2.2) << '\n';

would use the double-precision floating-point version of less_than, and it compiles cleanly with no

warnings since widening the int 2 to a double is automatic.

We can rewrite the less_than template function to avoid the need for explicit instantiation. For the

most flexibility, we can express the less_than template function as
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template <typename T, typename V>
bool less_than(const T& a, const V& b) {

return a < b;
}

This version uses two type parameters, T and V, and they can represent different types. With this new

definition all of the following statements are acceptable:

std::cout << less_than(2, 3) << '\n';
std::cout << less_than(2.2, 2.7) << '\n';
std::cout << less_than(2, 2.2) << '\n';
std::cout << less_than(2.2, 2) << '\n';

No explicit template instantiation is necessary. Given this calling code, the compiler will automatically

instantiate four overloaded less_than functions:

• less_than(2, 3) instantiates bool less_than(const int& a, const int& b)

• less_than(2.2, 2.7) instantiates bool less_than(const double& a, const double& b)

• less_than(2, 2.2) instantiates bool less_than(const int& a, const double& b)

• less_than(2.2, 2) instantiates bool less_than(const double& a, const int& b)

While this more flexible less_than template function allows us to compare mixed numeric expressions,

in general it makes more sense to expect the two parameters to be the same type.

Returning to our vector summation function, we can express sum generically as

template <typename T>
T sum(const std::vector<T>& v) {

T result = 0;
for (T elem : v)

result += elem;
return result;

}

As in the case of the generic less_than function, the keyword template introduces a template def-

inition. The angle brackets (<>) that follow the template keyword contain declarations of template

parameters.

When the compiler sees calling code like

std::vector<int> v {10, 20, 30};
std::cout << sum(v) << '\n';

it knows v’s declared type is std::vector<int>; therefore, it uses the pattern in the template to in-

stantiate an actual function that looks like the following:

// The compiler automatically generates this from the template:
int sum(const std::vector<int>& v) {

int result = 0;
for (int elem : v)

result += elem;
return result;

}
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Notice how the compiler simply substitutes int for every occurrence of the type parameter T. If the

compiler sees code like

std::vector<double> v {10, 20, 30};
std::cout << sum(v) << '\n';

it again uses the template to instantiate the following function:

// The compiler automatically generates this:
double sum(const std::vector<double>& v) {

double result = 0;
for (double elem : v)

result += elem;
return result;

}

In a program that has code like

std::vector<double> v {10, 20, 30};
std::vector<int> w {10, 20, 30};
std::cout << sum(v) << '\n';
std::cout << sum(w) << '\n';

the compiler will instantiate both versions of the sum function. The compiler generates these automatically

and secretly. The programmer never sees these instantiated template functions because they do not appear

in any source code. Unlike the preprocessor that sends a modified version of the source code to the compiler

(see Section 1.2 to review the preprocessor’s role in the program’s build process), a modern C++ compiler

generates the machine language versions of these instantiated functions directly from the programmer’s

source code.

Recall our swap function from Listing 10.19 (swapwithreferences.cpp). Callers can use it to inter-

change the values of two integer variables. With our knowledge of C++ templates, we now can write a

generic version that interchanges the values of two variables of any type:

/*
* swap(a, b)
* Interchanges the values of memory
* referenced by its parameters a and b.
* It effectively interchanges the values
* of variables in the caller's context.
*/
template <typename ElemType>
void swap(ElemType& a, ElemType& b) {

ElemType temp = a;
a = b;
b = temp;

}

The only restriction is the two parameters must be the same type. Here the type parameter’s name is

ElemType. This swap function works fine, but we do not need to write such a function ourselves; the C++

standard library includes a std::swap template function that does the same thing as our swap function

shown above.

The following function will print the contents of a vector of any type:
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/*
* print
* Prints the contents of a vector
* a is the vector to print.
* a is not modified.
*/
template <typename T>
void print(const std::vector<T>& a) {

int n = a.size();
std::cout << '{';
if (n > 0) {

std::cout << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
}
std::cout << '}';

}

The restriction here is that the elements in the vector must be printable to the std::cout object using <<.

Listing 19.3 (templateflexsort.cpp) uses our new generic functions to increase the flexibility of our

flexible sorting program from Listing 12.2 (flexibleintsort.cpp).

Listing 19.3: templateflexsort.cpp

#include <iostream>
#include <string>
#include <vector>
#include <utility> // For generic swap function

/*
* less_than(a, b)
* Returns true if a < b; otherwise, returns
* false.
*/

template <typename T>
bool less_than(const T& a, const T& b) {

return a < b;
}

/*
* greater_than(a, b)
* Returns true if a > b; otherwise, returns
* false.
*/

template <typename T>
bool greater_than(const T& a, const T& b) {

return a > b;
}

/*
* selection_sort(a, n, compare)
* Arranges the elements of vector vec in an order determined
* by the compare function.
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* vec is a vector.
* compare is a function that compares the ordering of
* two types that support the < operator.
* The contents of vec are physically rearranged.
*/

template <typename T>
void selection_sort(std::vector<T>& vec,

bool (*compare)(const T&, const T&)) {
int n = vec.size();
for (int i = 0; i < n - 1; i++) {

// Note: i,small, and j represent positions within vec.
// vec[i], vec[small], and a[j] represents the elements at
// those positions.
// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less
// than vec[i]
int small = i;
// See if a smaller value can be found later in the vector
for (int j = i + 1; j < n; j++)

if (compare(vec[j], vec[small]))
small = j; // Found a smaller value

// Swap vec[i] and vec[small], if a smaller value was found
if (i != small)

std::swap(vec[i], vec[small]); // Uses swap from <utility>
}

}

/*
* print
* Prints the contents of a vector
* vec is the vector to print.
* The function does not modify vec.
*/

template <typename T>
void print(const std::vector<T>& vec) {

int n = vec.size();
std::cout << '{';
if (n > 0) {

std::cout << vec[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << vec[i]; // Print the rest
}
std::cout << '}';

}

int main() {
std::vector<int> list{23, -3, 4, 215, 0, -3, 2, 23, 100, 88, -10};
std::cout << "Original: ";
print(list);
std::cout << '\n';
selection_sort(list, less_than<int>);
std::cout << "Ascending: ";
print(list);
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std::cout << '\n';
selection_sort(list, greater_than<int>);
std::cout << "Descending: ";
print(list);
std::cout << '\n';
std::cout << "-------------------------------\n";
std::vector<std::string> words { "tree", "girl", "boy", "apple",

"dog", "cat", "bird" };
std::cout << "Original: ";
print(words);
std::cout << '\n';
selection_sort(words, less_than<std::string>);
std::cout << "Ascending: ";
print(words);
std::cout << '\n';
selection_sort(words, greater_than<std::string>);
std::cout << "Descending: ";
print(words);
std::cout << '\n';

}

Notice that all the functions except for main are generic functions. The selection_sort function is the

most interesting one. It accepts a generic array and a function pointer that accepts two generic parameters

of the same type. In one of its invocations in main:

selection_sort(list, greater_than<int>);

the expression greater_than<int> is an explicit template instantiation, and it tells the compiler we

want to send to the selection_sort function a pointer to the greater_than function instantiated

with integer parameters. This explicit instantiation is required because the compiler cannot automatically

instantiate the greater_than function without an actual call to the function passing real parameters,

and a pointer to a function is not a function invocation. At this point in the program we are not calling

the greater_than function but only passing a pointer to it. Calling it would provide the necessary type

information to the compiler via the actual parameters used, but a pointer to a function does not contain

parameter information. The compiler needs the assistance of this explicit template instantiation.

The call to swap within selection_sort is actually invoking the std::swap function from the

standard library. The #include <utility> directive brings in the declaration for std::swap, which

itself is a template function.

The compiler can instantiate an actual function from a template function only if the type substituted for

the template parameter supports its use within the function. Consider the following code:

// Make two ofstream objects
std::ofstream fout1("file1.data"), fout2("file2.data");
// Compare them
if (less_than(fout1, fout2) // <-- Error!

std::cout << "fout1 is less than fout2\n";

The expression less_than(fout1, fout2) is illegal because no operator< exists to compare

two std::ofstream objects; thus, the compiler cannot produce the machine language that represents

the expression a < b when a and b are std::ofstreams. Ultimately, therefore, the compiler cannot

instantiate an actual less_than function that accepts two std::ofstream objects.
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When programmers use templates incorrectly or construct incorrect template functions or classes, the

compiler can detect and report the problems. All current C++ compilers share one weakness with template

processing: poor human-readable error messages. The error messages the compiler produces in these

situations tend to be lengthy and difficult to decipher even for experienced C++ programmers. This is

because the compiler bases its error messages on its processing of the instantiated code, not the original

un-instantiated code. Since programmers see only the un-instantiated source, deciphering the compiler’s

template error messages tends to be more challenging than usual.

As Listing 19.4 (templatescale.cpp) shows, a template can accept non-type parameters.

Listing 19.4: templatescale.cpp

#include <iostream>

template <int N>
int scale(int value) {

return value * N;
}

int main() {
std::cout << scale<3>(5) << '\n';
std::cout << scale<4>(10) << '\n';

}

Note that in Listing 19.4 (templatescale.cpp) the typename keyword is missing, and in its place is the

actual type int. This means parameter N is a non-type template parameter. The program prints

15
40

Listing 19.5 (templatescale2.cpp) uses both a type-parameter and a non-type parameter.

Listing 19.5: templatescale2.cpp

#include <iostream>

template <typename T, int N>
T scale(const T& value) {

return value * N;
}

int main() {
std::cout << scale<double, 3>(5.3) << '\n';
std::cout << scale<int, 4>(10) << '\n';

}

Listing 19.5 (templatescale2.cpp) displays the following during its execution:

15.9
40

The compiler will instantiate two scale functions:

// Instantiated by the compiler due to scale<double, 3>:
double scale(const double& value) {
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return value * 3;
}

and

// Instantiated by the compiler due to scale<int, 4>:
int scale(const int& value) {

return value * 4;
}

The types of non-type template parameters permitted by C++ are very limited. Integral types (int,

unsigned, long, etc.) are acceptable, as are pointers and references. Other types such as floating-point

and programmer-defined types may not be non-type template parameters.

The C++ Standard Library contains many generic functions, some of which we have seen already:

• std::max—computes the maximum of two values

• std::min—computes the maximum of two values

• std::swap—interchanges the values of two variables

19.2 Class Templates

Function templates (Section 19.1) enable us to build generic functions. C++ supports class templates as

well. With class templates we can specify the pattern or structure of a class of objects in a type-independent

way. The class template mechanism is a key tool for creating generic types.

As a simple example, consider a basic Point class that represents two-dimensional point objects.

Mathematical point objects should have real-valued coordinates that we can approximate with double-

precision floating-point values. A point on a graphical display, on the other hand, better uses integer coor-

dinates because screen pixels have discrete, whole number locations.

Rather than providing two separate classes, we can write one class template let the compiler instantiate

the coordinates as the particular program requires. Listing 19.6 (genericpoint.h) contains the generic class.

Listing 19.6: genericpoint.h

#ifndef GENERICPOINT_H_
#define GENERICPOINT_H_

template <typename T>
class Point {
public:
T x;
T y;
Point(T x, T y): x(x), y(y) {}

};

#endif

If a client declares a Point object as

Point<int> pixel(10, 10);
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the compiler will instantiate a Point<int> class that looks like

class Point {
public:

int x;
int y;
Point(int x, int y): x(x), y(y) {}

};

If a client instead declares a Point object as

Point<double> pixel(10.0, 20.0);

the compiler will instantiate a Point<double> class that looks like

class Point {
public:

double x;
double y;
Point(double x, double y): x(x), y(y) {}

};

Neither of these instantiations appear in any source code, so a programmer will not see them. The compiler

substitutes actual types (int or double) for the parameterized type (T).

As a more significant example, Listing 19.7 (genericcomparer.h) contains the declaration of a Comparer
class that is the generic equivalent to Listing 17.33 (comparer.h).

Listing 19.7: genericcomparer.h

#ifndef GENERICCOMPARER_H_
#define GENERICCOMPARER_H_
/*
* Comparer objects manage the comparisons and element
* interchanges on the selection sort function below.
*/

template <typename T>
class Comparer {

// The object's data is private, so it is inaccessible to
// clients and derived classes

// Keeps track of the number of comparisons
// performed
int compare_count;

// Keeps track of the number of swaps performed
int swap_count;

// Function pointer directed to the function to
// perform the comparison
bool (*comp)(const T&, const T&);

protected:
// Method that actually performs the comparison
// Derived classes may customize this method
virtual bool compare_impl(const T& m, const T& n) {
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return comp(m, n);
}

// Method that actually performs the swap
// Derived classes may customize this method
virtual void swap_impl(T& m, T& n) {

T temp = m;
m = n;
n = temp;

}

public:
// The client must initialize a Comparer object with a
// suitable comparison function.
Comparer(bool (*f)(const T&, const T&)):

compare_count(0), swap_count(0), comp(f) {}

// Resets the counters to make ready for a new sort
void reset() {

compare_count = swap_count = 0;
}

// Method that performs the comparison. It delegates
// the actual work to the function pointed to by comp.
// This method logs each invocation.
bool compare(const T& m, const T& n) {

compare_count++;
return compare_impl(m, n);

}

// Method that performs the swap.
// Interchange the values of
// its parameters a and b which are
// passed by reference.
// This method logs each invocation.
void swap(T& m, T& n) {

swap_count++;
swap_impl(m, n);

}

// Returns the number of comparisons this object has
// performed since it was created.
int comparisons() const {

return compare_count;
}

// Returns the number of swaps this object has
// performed since it was created.
int swaps() const {

return swap_count;
}

};

#endif
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As with Listing 17.33 (comparer.h), the Comparer objects specified in Listing 19.7 (genericcomparer.h)

compare and swap any types of values and are meant to be used in a vector or array sorting program. Given

the function

bool less_than(int m, int n) {
return m < n;

}

the following code fragment instantiates a Comparer template that works with integers:

Comparer comp(less_than); // Make an integer comparer object

Listing 19.8 (genericstatisticssort.cpp) provides the client code that tests the new Comparer class.

Listing 19.8: genericstatisticssort.cpp

#include <iostream>
#include <vector>
#include <string>
#include "genericcomparer.h"

/*
* selection_sort(a, compare)
* Arranges the elements of vector a in an order determined
* by the compare object.
* a is a vector.
* compare is a function that compares the ordering of
* two integers.
* The contents of a are physically rearranged.
*/

template <typename T>
void selection_sort(std::vector<T>& a, Comparer<T>& compare) {

int n = a.size();
for (int i = 0; i < n - 1; i++) {

// Note: i,small, and j represent positions within a
// a[i], a[small], and a[j] represents the elements at
// those positions.
// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less
// than a[i]
int small = i;
// See if a smaller value can be found later in the array
for (int j = i + 1; j < n; j++)

if (compare.compare(a[j], a[small]))
small = j; // Found a smaller value

// Swap a[i] and a[small], if a smaller value was found
if (i != small)

compare.swap(a[i], a[small]);
}

}

/*
* Prints the contents of a vector
* a is the vector to print.
* a is not modified.
*/
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template <typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& a) {

int n = a.size();
os << '{';
if (n > 0) {

os << a[0]; // Print the first element
for (int i = 1; i < n; i++)

std::cout << ',' << a[i]; // Print the rest
}
os << '}';
return os;

}

/*
* less_than(a, b)
* Returns true if a < b; otherwise, returns
* false.
*/

template <typename T>
bool less_than(const T& a, const T& b) {

return a < b;
}

/*
* greater_than(a, b)
* Returns true if a > b; otherwise, returns
* false.
*/

template <typename T>
bool greater_than(const T& a, const T& b) {

return a > b;
}

int main() {
// Make a vector of integers
std::vector<int> original { 23, -3, 4, 215, 0, -3, 2, 23, 100, 88, -10 };

// Make a working copy of the original vector
std::vector<int> working = original;
std::cout << "Before: ";
std::cout << working << '\n';
Comparer<int> lt(less_than<int>), gt(greater_than<int>);
selection_sort(working, lt);
std::cout << "Ascending: ";
std::cout << working << '\n';
std::cout << " (" << lt.comparisons() << " comparisons, "

<< lt.swaps() << " swaps)\n";
std::cout << "----------------------------\n";
// Make another copy of the original vector
working = original;
std::cout << "Before: ";
std::cout << working << '\n';
selection_sort(working, gt);
std::cout << "Descending: ";
std::cout << working << '\n';
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std::cout << " (" << gt.comparisons() << " comparisons, "
<< gt.swaps() << " swaps)\n";

std::cout << "----------------------------\n";

// Make a vector of strings
std::vector<std::string> str_original { "tree", "boy", "apple",

"girl", "dog", "cat" };

// Make a working copy of the original vector
std::vector<std::string> str_working = str_original;
std::cout << "Before: ";
std::cout << str_working << '\n';
Comparer<std::string> str_lt(less_than<std::string>),

str_gt(greater_than<std::string>);
selection_sort(str_working, str_lt);
std::cout << "Ascending: ";
std::cout << str_working << '\n';
std::cout << " (" << str_lt.comparisons() << " comparisons, "

<< str_lt.swaps() << " swaps)\n";
std::cout << "----------------------------\n";
// Make another copy of the original vector
str_working = str_original;
std::cout << "Before: ";
std::cout << str_working << '\n';
selection_sort(str_working, str_gt);
std::cout << "Descending: ";
std::cout << str_working << '\n';
std::cout << " (" << str_gt.comparisons() << " comparisons, "

<< str_gt.swaps() << " swaps)\n";
std::cout << "----------------------------\n";

}

Listing 19.8 (genericstatisticssort.cpp) demonstrates that the generic Comparer class works equally as

well with integers and strings; the program’s output is

Before: {23,-3,4,215,0,-3,2,23,100,88,-10}
Ascending: {-10,-3,-3,0,2,4,23,23,88,100,215}
(55 comparisons, 7 swaps)

----------------------------
Before: {23,-3,4,215,0,-3,2,23,100,88,-10}
Descending: {215,100,88,23,23,4,2,0,-3,-3,-10}
(55 comparisons, 5 swaps)

----------------------------
Before: {tree,boy,apple,girl,dog,cat}
Ascending: {apple,boy,cat,dog,girl,tree}
(15 comparisons, 3 swaps)

----------------------------
Before: {tree,boy,apple,girl,dog,cat}
Descending: {tree,girl,dog,cat,boy,apple}
(15 comparisons, 4 swaps)

----------------------------

Recall the IntList5 linked list class from Listings Listing 18.18 (intlist5.h) and Listing 18.19 (intlist5.cpp).

It implemented a linked list of integer elements. Suppose we instead want to make a linked list of std::string
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objects. Without C++ templates, we would have to copy the IntList code and modify it so it works with

string objects instead of integers. We could call this class StringList. Note that the code in the

IntList and StringList classes would be almost identical; the only major difference would be the

type of elements the list can hold. C++’s class template feature is ideal for designing generic container

classes.

Listing 19.9 (linkedlist.h) defines a such a generic linked list in its LinkedList class.

Listing 19.9: linkedlist.h

// linkedlist.h

#include <iostream>
#include <utility> // For std::swap
#include <memory> // For std::shared_ptr

template <typename T>
class LinkedList {

// The nested private Node class from before
struct Node {

T data; // A data element of the list
std::shared_ptr<Node> next; // The node that follows this one
// Constructor
Node(const T& item): data(item), next(nullptr) {

std::cout << "Creating node " << data
<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";

}
// Destructor
∼Node() {

std::cout << "Destroying node " << data
<< " (" << reinterpret_cast<uintptr_t>(this) << ")\n";

}
Node(const Node&) = default; // Copy constructor
Node(Node&&) = default; // Move constructor
Node& operator=(const Node&) = default; // Copy assignment
Node& operator=(Node&&) = default; // Move assignment

};

std::shared_ptr<Node> head; // Points to the first item in the list
std::shared_ptr<Node> tail; // Points to the last item in the list

int len; // Number of elements in the list

public:
// The constructor makes an initially empty list.
// The list is empty when head and tail are null.
LinkedList(): head(nullptr), tail(nullptr), len(0) {}

// Copy constructor makes a copy of the other object's list
LinkedList(const LinkedList& other): LinkedList() {

// Walk through other's list inserting each of its elements
// into this list
for (auto cursor = other.head; cursor; cursor = cursor->next)

insert(cursor->data);
}
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// Move constructor takes possession of the temporary's list
LinkedList(LinkedList&& temp): LinkedList() {

// Swap contents with the temporary
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);

}

// Assignment operator
LinkedList& operator=(const LinkedList& other) {

// Make a local, temporary copy of other
LinkedList temp{other};
// Exchange the head and tail pointers and len from this list
// with those of the new, temporary list
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);
// The other list now points to this list's original contents,
// and this list now points to the copy of other's list
return *this;

}

// Move assignment operator
LinkedList& operator=(LinkedList&& temp) {

// Exchange the head and tail pointers and len from this list
// with those of the new, temporary list
std::swap(head, temp.head);
std::swap(tail, temp.tail);
std::swap(len, temp.len);
// The temporary list now points to this list's original contents,
// and this list now points to the temporary's list
// The temporary list will be destroyed since it is a temporary
return *this;

}

// The destructor deallocates the memory held by the list
∼LinkedList() {

clear();
}

// Inserts item onto the back of the list.
// item is the element to insert.
void insert(const T& item) {

// Make a node for the new element n
auto new_node = std::make_shared<LinkedList::Node>(item);
if (tail) { // Is tail non-null?

tail->next = new_node; // Link the new node onto the back
tail = new_node; // The new node is the new tail of the list

}
else // List is empty, so make head and tail point to new node

head = tail = new_node;
len++;

}
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// Removes the first occurrence of item from the list.
// Returns true if successful (found item and removed it).
// Returns false if item is not originally present in the list.
bool remove(const T& item) {

auto cursor = head, // Start at head of list
prev = head; // Keep track of previous node seen

// Loop until we run off the end of the list or find n,
// whichever comes first
while (cursor && cursor->data != item) {

prev = cursor; // Remember previous node
cursor = cursor->next; // Move to next node

}
if (!cursor) // Did we run off the end of the list?

return false; // Indicate we did not find n

// Found n; cursor is pointing at the node containing n
if (head == tail) // n was the only element in the list

head = tail = nullptr; // cursor still points to node with n
else if (cursor == head) // Is n the first element in the list?

head = head->next; // Redirect head around n
else // n is not the first element

prev->next = cursor->next; // Redirect previous node around n
if (cursor == tail) // Was n the last element in the list?

tail = prev; // Update tail to new last element

// No need to delete node; shared_ptr takes care of it
len--; // List size decreases by 1
return true; // We found n and deleted its node

}

// Prints the contents of the linked list of integers.
void print() const {

for (auto cursor = head; cursor; cursor = cursor->next)
std::cout << cursor->data << ' ';

std::cout << '\n';
}

// Returns the length of the linked list.
int length() const {

return len;
}

// Removes all the elements in the linked list.
void clear() {

auto cursor = head;
while (cursor) {

auto temp = cursor; // Remember where we are
cursor = cursor->next; // Move next node
temp->next = nullptr; // Sever link from previous node

}
head = tail = nullptr; // Null head signifies list is empty
len = 0;

}

// Provide a convenient way to print a linked list
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template <typename V>
friend std::ostream& operator<<(std::ostream& os,

const LinkedList<V>& list);
};

// Prints a linked list object to an output stream
template <typename T>
std::ostream& operator<<(std::ostream& os, const LinkedList<T>& list) {

os << '{';
if (list.length() > 0) {

auto cursor = list.head;
os << cursor->data;
cursor = cursor->next;
while (cursor) {

os << ", " << cursor->data;
cursor = cursor->next;

}
}
os << '}';
return os;

}

Notice that in Listing 19.9 (linkedlist.h) the linked list elements have the generic type T. Observe

carefully where the T type parameter appears in the code.

Listing 19.10 (intlistmain.cpp) shows how a client can instantiate the LinkedList template for integer

elements.

Listing 19.10: intlistmain.cpp

// intlistmain.cpp

#include <iostream>
#include "linkedlist.h"

int main() {
bool done = false;
char command;
int value;
LinkedList<int> list; // Instantiated for integers

while (!done) {
std::cout << "I)nsert <item> D)elete <item> P)rint L)ength E)rase Q)uit >>";
std::cin >> command;
switch (command) {
case 'I': // Insert a new element into the list
case 'i':
if (std::cin >> value)

list.insert(value);
else

done = true;
break;

case 'D': // Insert a new element into the list
case 'd':
if (std::cin >> value)

if (list.remove(value))
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std::cout << value << " removed\n";
else

std::cout << value << " not found\n";
else

done = true;
break;

case 'P': // Print the contents of the list
case 'p':
list.print();
break;

case 'L': // Print the list's length
case 'l':
std::cout << "Number of elements: " << list.length() << '\n';
break;

case 'E': // Erase the list
case 'e':
list.clear();
break;

case 'Q': // Exit the loop (and the program)
case 'q':
done = true;
break;

}
}

}

The statement

LinkedList<int> list;

instantiates an actual class where all the occurrences of T become int. It also declares list to be an

object of this instantiated class.

The following shows a sample run of Listing 19.10 (intlistmain.cpp).

I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>p

I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>i 44
Creating node 44 (16085084)
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>i 23
Creating node 23 (16084476)
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>i 88
Creating node 88 (16084380)
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>i 99
Creating node 99 (16084668)
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>p
44 23 88 99
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>l
Number of elements: 4
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>d 44
Destroying node 44 (16085084)
44 removed
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>l
Number of elements: 3
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>p
23 88 99
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I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>d 99
Destroying node 99 (16084668)
99 removed
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>p
23 88
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>l
Number of elements: 2
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>i 9
Creating node 9 (16085084)
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>p
23 88 9
I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>q
Destroying node 23 (16084476)
Destroying node 88 (16084380)
Destroying node 9 (16085084)

Listing 19.11 (stringlistmain.cpp) shows how a client can instantiate the LinkedList template for

std::string elements.

Listing 19.11: stringlistmain.cpp

// stringlistmain.cpp

#include <iostream>
#include <string>
#include "linkedlist.h"

int main() {
bool done = false;
char command;
std::string value;
LinkedList<std::string> list; // Instantiated for strings

while (!done) {
std::cout << "I)nsert <item> P)rint L)ength D)elete <item> E)rase Q)uit >>";
std::cin >> command;
switch (command) {
case 'I': // Insert a new element into the list
case 'i':
if (std::cin >> value)

list.insert(value);
else

done = true;
break;

case 'D': // Insert a new element into the list
case 'd':
if (std::cin >> value)

if (list.remove(value))
std::cout << value << " removed\n";

else
std::cout << value << " not found\n";

else
done = true;

break;
case 'P': // Print the contents of the list
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case 'p':
list.print();
break;

case 'L': // Print the list's length
case 'l':
std::cout << "Number of elements: " << list.length() << '\n';
break;

case 'E': // Erase the list
case 'e':
list.clear();
break;

case 'Q': // Exit the loop (and the program)
case 'q':
done = true;
break;

}
}

}

Listing 19.11 (stringlistmain.cpp) adds the extra #include directive for the string library, but observe that

the only executable statements that differ from Listing 19.10 (intlistmain.cpp) are

std::string value;
LinkedList<std::string> list; // Instantiated for strings

vs.

int value;
LinkedList<int> list; // Instantiated for integers

All the other code in both programs is identical.

Just as we may instantiate function templates with multiple different types within the same program, we

can do the same for class templates. The class template LinkedList in Listing 19.9 (linkedlist.h) makes

the following client code possible:

LinkedList<int> intlist;
LinkedList<std::string> strlist;
intlist.insert(5);
strlist.insert("Wow");
intlist.print();
strlist.print();

This code fragment simultaneously manages lists of integers and lists of string objects.

Listing 19.12 (listoflists.cpp) shows how we can use our generic list to build a list of lists.

Listing 19.12: listoflists.cpp

#include <iostream>
#include "linkedlist.h"

int main() {
// First build some lists that contain integers
LinkedList<int> intlist1, intlist2, intlist3;
for (int i = 10; i < 50; i += 10)
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intlist1.insert(i);
for (int i = 100; i < 500; i += 100)

intlist2.insert(i);
for (int i = 5; i < 25; i += 5)

intlist3.insert(i);

// Next build a list that contains lists of integers
LinkedList<LinkedList<int>> listoflists;
listoflists.insert(intlist1);
listoflists.insert(intlist2);
listoflists.insert(intlist3);
std::cout << "--------------------\n";
std::cout << listoflists << '\n';
std::cout << "--------------------\n";

}

By now you probably have a deduced the fact that std::vector is a class template. The std::vector
class template is much more sophisticated than our simple LinkedList template, but the basic mecha-

nism for its ability to store different types of elements, a class template, is the same.

19.3 Exercises

CAUTION!      SECTION UNDER CONSTRUCTION

1. Write a generic function named is_ascending that accepts a std::vector containing any

elements comparable by operator<. The function should return true if the elements in the vector

appear in non-decreasing (or ascending) order; otherwise, the function should return false.

2. Write a generic function named is_member that accepts a argument of any type comparable by

operator== and a second argument consisting of a std::vector containing elements of same

type as the first argument. The function should return true if the first argument is a member of the

second argument; otherwise, the function should return false.

3. Augment Listing 19.9 (linkedlist.h) by adding a method named prepend that adds an element to the

front of a generic linked list.

4. Augment Listing 19.9 (linkedlist.h) by adding an operator== method that returns true if two

generic linked list contain exactly the same elements in exactly the same order; otherwise, the method

returns false. Also provide a one-line operator!= method that utilizes your operator==
method.

5. Augment Listing 19.9 (linkedlist.h) by adding an

©2018 Richard L. Halterman Draft date: December 2, 2018



19.3. EXERCISES 632

©2018 Richard L. Halterman Draft date: December 2, 2018



633

Chapter 20

The Standard Template Library

CAUTION!      CHAPTER UNDER CONSTRUCTION

Chapter 19 introduced the mechanics of generic programming with templates. The C++ standard library

leverages templates to provide a rich collection of standard generic containers and algorithms to manipulate

the containers and process the elements they contain. This part of the standard library commonly is known

as the standard template library, or STL for short. As its name implies, the STL contains a number of

generic functions and classes built with templates. We have seen the std::vector class (Chapter 11)

and std::swap function Section 12.1.

The STL consists of four majors components:

• generic (that is, templated) containers for storing data, such as std::vector,

• iterators for traversing containers,

• algorithms for processing the data within containers, and

• miscellaneous utility classes and functions, such as std::swap and std::max.

The design of the containers and their iterators make the STL’s generic algorithms possible. The algorithms

provided by the STL are powerful and flexible, but they also are somewhat arcane and can be difficult to

use for casual C++ programmers.

In this chapter we explore some of the features of the STL, providing examples that illustrate its capa-

bilities.

20.1 Containers

We are familiar with one STL container: std::vector. A vector object manages a primitive C array.

C arrays come in two varieties: static and dynamic (see Section 11.2). Vectors manage dynamically-

allocated arrays. A vector object can expand as needed the storage space for its low-level array. The STL

provides an equivalent to a static array in its std::array class. A programmer must specify the size of

a std::array object when declaring it. The following code creates a std::array that can hold 10

integer values:
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std::array<int, 10> arr;

Note that the second template parameter is a non-type parameter (see Section 19.1) specifying the size

of the array. Besides not being able to modify the array’s size through methods such as push_back,

std::array objects work very much like std::vectors. Array objects keep track of their size,

unlike primitive C arrays.

In Listing 19.9 (linkedlist.h) we developed a generic linked list class named LinkedList. That was

good practice dealing with generic types, but our work really was re-inventing the wheel because the STL

provides the generic std::list class. The STL implements a linked list with pointers connecting a

node to both its successor node and predecessor node. A list with both forward and backward pointers

is known as doubly linked list. Listing 20.1 (stdlistmain.cpp) is the third and final variation of our list

programs. Listing 18.5 (listmain.cpp) used a custom class to implement a singly linked list of integers

(forward pointers only). We used C++ś template feature to build a type generic list class in Listing 19.10

(intlistmain.cpp). Listing 20.1 (stdlistmain.cpp) uses the std::list class provided by the STL.

Listing 20.1: stdlistmain.cpp

// stdlistmain.cpp

#include <iostream>
#include <list> // Use the standard doubly linked list class

int main() {
bool done = false;
char command;
int value;
std::list<int> mylist; // Initially empty

while (!done) {
std::cout << "I)nsert <item> P)rint L)ength E)rase Q)uit >>";
std::cin >> command;
switch (command) {

case 'I': // Insert a new element into the list
case 'i':
if (std::cin >> value)

mylist.push_back(value);
else

done = true;
break;

case 'P': // Print the contents of the list
case 'p':
for (const auto& elem : mylist)

std::cout << elem << ' ';
std::cout << '\n';
break;

case 'L': // Print the list's length
case 'l':
std::cout << "Number of elements: " << mylist.size() << '\n';
break;

case 'E': // Erase the list
case 'e':
mylist.clear();
break;

case 'Q': // Exit the loop (and the program)
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case 'q':
done = true;
break;

}
}

}

Listing 20.1 (stdlistmain.cpp) contains all the code we need to write. The STL provides all of the linked list

implementation code. Note that the differences between Listing 20.1 (stdlistmain.cpp) and Listing 19.10

(intlistmain.cpp) are minimal.

A priority queue is a data structure that allows clients to store objects with various priorities or rankings.

Clients can insert the objects in any order, and the priority queue always will serve (remove) higher priority

objects before lower priority objects. A properly designed priority queue supports very fast insertion and

removal operations.

The C++ standard library provides the std::priority_queue class. Listing 20.2 (priorityqueuesimple.cpp)

provides a simple example using a std::priority_queue.

Listing 20.2: priorityqueuesimple.cpp

#include <iostream>
#include <queue>

int main() {
std::priority_queue<int> queue;
// Insert some integers into the priority queue
queue.push(11);
queue.push(2);
queue.push(4);
queue.push(15);
queue.push(15);
queue.push(4);
queue.push(7);
// Serve items from the queue until it is empty
while (!queue.empty()) {

std::cout << queue.top() << ' '; // See what's on top
queue.pop(); // Remove highest priority element

}
std::cout << '\n';

}

Listing 20.2 (priorityqueuesimple.cpp) displays the following:

15 15 11 7 4 4 2

Note that the priority queue serves larger values before smaller values regardless of their insertion order. It

equates larger-valued numbers with a higher priority.

If we want to change the notion of priority so that lower-valued numbers are considered higher priority

than larger numbers, the std::priority_queue class provides the flexibility for us to do so. We must

define a special class or struct that provides a public method named operator(). This method must

return a Boolean result and accept two arguments of the same type as the elements held by the priority

queue.

Consider the following Cmp type:
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struct Cmp {
bool operator()(int i1, int i2) {

return i2 < i1;
}

};

This special method is the function invocation operator, or function call operator. It enables any instance

of the Cmp class to be used like a function. To see how this works, consider Listing 20.3 (calloperator.cpp).

Listing 20.3: calloperator.cpp

#include <iostream>

struct Cmp {
bool operator()(int i1, int i2) {

return i2 < i1;
}

};

int main() {
Cmp op;
std::cout << std::boolalpha << op(2, 3) << '\n';
std::cout << std::boolalpha << op(3, 2) << '\n';
std::cout << std::boolalpha << op(3, 3) << '\n';

}

Listing 20.3 (calloperator.cpp) prints the following:

false
true
false

The first output line indicates it is false that 3 < 2. The second line reveals that it is true that 2 < 3, and in

the last line we see that it is false that 3 < 3.

The expression op(2, 3) looks like a call to the function named op, but it really is just syntactic sugar

for op.operator()(2, 3). We see that we really are invoking the method nameed operator() on

behalf of the op object.

Listing 20.4 (reversepriority.cpp) provides the complete code for a priority queue that holds integers and

recognizes lower-valued integers as higher priority than high-valued integers.

Listing 20.4: reversepriority.cpp

#include <iostream>
#include <queue>
#include <vector>

struct Cmp {
bool operator()(int i1, int i2) {

return i2 < i1;
}

};

int main() {

©2018 Richard L. Halterman Draft date: December 2, 2018



20.1. CONTAINERS 637

std::priority_queue<int, std::vector<int>, Cmp> queue;
//std::priority_queue<int> queue;
// Insert some integers into the priority queue
queue.push(3);
queue.push(12);
queue.push(55);
queue.push(11);
queue.push(2);
queue.push(4);
// Serve items from the queue until it is empty
while (!queue.empty()) {

std::cout << queue.top() << ' '; // See what's on top
queue.pop(); // Remove highest priority element

}
std::cout << '\n';

}

Listing 20.4 (reversepriority.cpp) prints

2 3 4 11 12 55

Since we are providing a custom comparer class to modify the default priority queue ordering, the

declaration of the std::priority_queue object is a little more complicated:

std::priority_queue<int, std::vector<int>, Cmp> queue;

The template instantiation requires three type parameters:

• int is the type of items the priority queue holds.

• std::vector<int> is the type of container that holds the items in the priority queue; program-

mers can specify a different type of container. The std::priority_queue class serves as a

wrapper around an exiting container type.

• Cmp is the type of comparer object that the priority queue will use to order its items.

Armed with the ability to precisely specify how the priority queue defines priorities, we can store any

type of objects in a priority queue. By default, the std::priority_queue class can store any type of

objects that can be compared using the < operator. This includes the basic numeric types (int, double,

unsigned, etc.) and std::string objects. The std::complex class (see Section 13.4) models

mathematical complex numbers. The relational operators <, ≤, >, and ≥ have no practical mathematical

meaning in the context of complex numbers; therefore, C++ does not automatically support operator <
comparison between two std::complex objects. We can define our own ordering, however. Let a+bi

and c+di be two complex numbers. We will define a+bi to have higher priority that c+di if the distance

between a+ bi and 0 on the complex plane is less than the distance between c+ di and 0. The distance

between a+bi and 0 is
√

a2 +b2, and the distance between c+di and 0 is
√

c2 +d2. The following custom

comparer class implements this notion of complex number priorities:

// Define priorities for complex numbers.
// If c1's distance to zero on the complex plain is less
// than c2's distance to zero, c1 has higher priority than c2.
struct ComplexCompare {

bool operator()(Complex c1, Complex c2) {
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double a = c1.real(), b = c1.imag(),
c = c2.real(), d = c2.imag();

return sqrt((a*a + b*b) < (c*c + d*d));
}

};

With this our definition of complex number less than we overload operator< for complex numbers,

as shown in Listing 20.5 (complexdiff.cpp).

Listing 20.5: complexdiff.cpp

#include <iostream>
#include <queue>
#include <complex>

using Complex = std::complex<double>;

// Define priorities for complex numbers.
// If c1's distance to zero on the complex plain is less
// than c2's distance to zero, c1 has higher priority than c2.
struct ComplexCompare {

bool operator()(Complex c1, Complex c2) {
double a = c1.real(), b = c1.imag(),

c = c2.real(), d = c2.imag();
return sqrt((a*a + b*b) < (c*c + d*d));

}
};

int main() {
std::priority_queue<Complex, std::vector<Complex>,

ComplexCompare> queue;
// Insert some complex numbers into the priority queue
queue.push({3, 2});
queue.push({12, 3});
queue.push({5, 45});
queue.push({11, 5});
queue.push({2, 1});
queue.push({2.5, 5.4});
// Serve items from the queue until it is empty
while (!queue.empty()) {

std::cout << queue.top() << ' '; // See what's on top
queue.pop(); // Remove highest priority element

}
std::cout << '\n';

}

If we want to prioritize complex numbers in a different way, we need only provide a different custom

comparer type.

Custom comparer objects allow us to place items in a priority queue that inherently are not numerical

themselves. Suppose we are writing part of a messaging system that processes text messages. In addition to

the text in the message, each message has a integer priority in the range 1 . . .10. Lower numbered messages

have priority over messages with higher numbers. Instances of the following struct model our simple

messages:
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struct Message {
int rank; // Lower number = higher priority
std::string text;
// Constructor
Message(const std::string& t, int rank): text(t), priority(rank) {}

};

The following shows how we can compare two message objects to give lower-numbered messages higher

priority:

// Custom comparer object to properly prioritize Message objects
struct Cmp {

bool operator()(Message m1, Message m2) {
return m2.rank < m1.rank;

}
};

Listing 20.6 (messagepriority.cpp) provides the complete simple messaging example.

Listing 20.6: messagepriority.cpp

#include <iostream>
#include <queue>
#include <string>

struct Message {
int rank; // Lower number = higher priority
std::string text;
// Constructor
Message(const std::string& t, int rank): text(t), rank(rank) {}

};

// Custom comparer object to properly prioritize Message objects
struct Cmp {

bool operator()(Message m1, Message m2) {
return m2.rank < m1.rank;

}
};

int main() {
std::priority_queue<Message, std::vector<Message>, Cmp> queue;
// Insert some messages into the priority queue
queue.push({"Be there soon", 2});
queue.push({"Gimme a few minutes", 3});
queue.push({"Will be late!", 1});
queue.push({"Have to work next week", 7});
queue.push({"I bought a new computer", 5});
queue.push({"The project deadline is the first", 3});
// Serve items from the queue until it is empty
while (!queue.empty()) {

// See what's on top
Message msg = queue.top();
std::cout << msg.text << ": " << msg.rank << '\n';
queue.pop(); // Remove highest priority element

}
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std::cout << '\n';
}

Listing 20.6 (messagepriority.cpp) prints

Will be late!: 1
Be there soon: 2
The project deadline is the first: 3
Gimme a few minutes: 3
I bought a new computer: 5
Have to work next week: 7

Vectors, arrays, lists, and priority queues are all sequence containers. This means their elements appear

in a linear ordering from the beginning of the data structure to its end. The STL provides other kinds of

containers that we will explore in Chapter 21.

20.2 Iterators

Section 11.2 demonstrates how we can use a pointer to access the elements within an array. A vector is

an object that manages a primitive array, and the developers of the vector class designed vectors to look

and feel as much as possible as arrays. They adopted the square bracket ([]) operator to access elements.

They also devised a way for programmers to use pointer-like objects to access the elements within a vector.

These pointer-like objects are called iterators.

An iterator is an object that allows a client to traverse and access elements of a data structure in an

implementation independent way. C++ defines two global functions, std::begin and std::end, that

produce iterators to the front and back, respectively, of a data structure like a vector or static array. Con-

tainers defined int the STL provide begin and end methods that serve the same purpose; for example, if

v is a std::vector, std::begin(v) returns the same iterator as the call v.begin(). Functions in

the standard library that accept iterators as arguments rather than arrays or vectors work equally well with

both vectors and arrays. Since they accept iterator arguments, these standard functions additionally are able

to work with other, more sophisticated data structures. We will examine some of these standard functions

later in this chapter.

In order to behave like a pointer, an iterator object provides the following methods:

• operator*: used to access the element at the itertator’s current position. The syntax is exactly like

pointer dereferencing (see Section 10.7).

• operator++: used to move the iterator to the next element within the data structure. The syntax is

exactly like pointer arithmetic (see Section 11.2).

• operator!=: used to determine whether two iterator objects currently refer to different elements

within the data structure.

Listing 20.7 (simpleiterator.cpp) shows how to use these methods to manipulate an iterator object.

Listing 20.7: simpleiterator.cpp

#include <iostream>
#include <vector>
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int main() {
// Make a simple integer vector
std::vector<int> vec {10, 20, 30, 40, 50};
// Direct an iterator to the vector's first element
std::vector<int>::iterator iter = std::begin(vec);
// Print the element referenced by the iterator
std::cout << *iter << '\n';
// Advance the iterator
iter++;
// See where the iterator is now
std::cout << *iter << '\n';

}

Listing 20.7 (simpleiterator.cpp) prints

10
20

The statement

std::vector<int>::iterator iter = std::begin(vec);

declares and initializes an iterator object, iter. The type of iter is std::vector<int>::iterator.

This complicated expression indicates that iterator is a type defined within the std::vector<int>
type. A shorter way to express this statement takes advantage of the compiler’s ability to infer the variable’s

type from its context:

auto iter = std::begin(vec);

(Section 3.10 introduced C++’s type inference capabilities.) The compiler can deduce the type of iter
based on the return type of the std::begin function.

While the std::begin function returns an iterator pointing to the first element in a data structure,

the std::end function returns an iterator pointing to the element just past the last element in the data

structure. In the code fragment

std::vector<int> vec {10, 20, 30, 40, 50};
auto iter = std::end(vec);

the iterator object iter does not reference a viable element in the vector. As such, we never attempt

to dereference the iterator; the expression *iter in this case is undefined. We normally use the iterator

returned by the std::end function to test to see if we are past the end of our data structure, Listing 20.8

(iteratorloop.cpp) demonstrates.

Listing 20.8: iteratorloop.cpp

#include <iostream>
#include <vector>

int main() {
// Make a simple integer vector
std::vector<int> vec {10, 20, 30, 40, 50};
// Print the contents of the vector
for (auto iter = std::begin(vec); iter != std::end(vec); iter++)

std::cout << *iter << ' ';
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std::cout << '\n';
}

Listing 20.8 (iteratorloop.cpp) prints

10 20 30 40 50

The expression

iter != std::end(vec)

checks each time through the loop to ensure the iterator object has not run off the back end of the vector.

We can use the vector methods begin and end instead of the std::begin and std::end func-

tions. Listing 20.9 (iteratorloopmethods.cpp) is a modified version of Listing 20.8 (iteratorloop.cpp) that

uses the iterator methods.

Listing 20.9: iteratorloopmethods.cpp

#include <iostream>
#include <vector>

int main() {
// Make a simple integer vector
std::vector<int> vec {10, 20, 30, 40, 50};
// Print the contents of the vector
for (auto iter = vec.begin(); iter != vec.end(); iter++)

std::cout << *iter << ' ';
std::cout << '\n';

}

The std::begin and std::end functions are overloaded to work with vector objects, arrays, and

other container classes found in the standard library. Listing 20.10 (iteratorlooparray.cpp) is the array version

of Listing 20.8 (iteratorloop.cpp).

Listing 20.10: iteratorlooparray.cpp

#include <iostream>
#include <vector>

int main() {
// Make a static integer array
int arr[] = {10, 20, 30, 40, 50};
// Print the contents of the array
for (auto iter = std::begin(arr); iter != std::end(arr); iter++)

std::cout << *iter << ' ';
std::cout << '\n';

}

The output of Listing 20.10 (iteratorlooparray.cpp) is identical to Listing 20.8 (iteratorloop.cpp):

10 20 30 40 50

Any type for which the std::begin and std::end functions have been overloaded may participate

in a range-based for statement. In fact, the compiler internally transforms a range-based for construct

into its equivalent std::begin/std::end form during the compilation process. The following code
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for (auto i : vec)
std::cout << i << ' ';

is short for (one possible internal compiler representation)

for (auto _i = std::begin(vec); _i != std::end(vec); _i++)
std::cout << *_i << ' ';

The STL supports various kinds of iterators. The kind of iterator available to std::vector objects

is known as a random access itertator. Random access iterators behave exactly like a pointers. Recall from

Section 11.2 that we can manipulate pointers with pointer arithmetic. If p points to the first element of an

array, p + 5 points to the sixth element in the array (because p + 0 is the same as p). The expression

p++ makes the p point to the next element in the array, while p-- moves p backwards one position. We

can use similar arithmetic with iterators as Listing 20.11 (iterarith.cpp) illustrates.

Listing 20.11: iterarith.cpp

#include <iostream>
#include <vector>

// Print the contents of vector v, traversing with a
// caller supplied increment value (inc)
void print(const std::vector<int>& v, int inc) {

for (auto p = std::begin(v); p != std::end(v); p += inc)
std::cout << *p << ' ';

std::cout << '\n';
}

// Print the contents of the vector v backwards,
// traversing with a caller supplied decrement value (dec)
void print_reverse(const std::vector<int>& v, int dec) {

auto p = std::end(v);
while (p != std::begin(v)) {

p -= dec;
std::cout << *p << ' ';

}
std::cout << '\n';

}

int main() {
std::vector<int> vec(20);
for (int i = 0; i < 20; i++)

vec[i] = i;

print(vec, 1);
print(vec, 2);
print(vec, 4);
print(vec, 5);
print(vec, 10);

std::cout << '\n';

print_reverse(vec, 1);
print_reverse(vec, 2);
print_reverse(vec, 4);
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print_reverse(vec, 5);
print_reverse(vec, 10);

}

Listing 20.11 (iterarith.cpp) prints

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 2 4 6 8 10 12 14 16 18
0 4 8 12 16
0 5 10 15
0 10

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
18 16 14 12 10 8 6 4 2 0
16 12 8 4 0
15 10 5 0
10 0

Some specialized data structures in the C++ standard library support specialized iterators that have some

limits on the kinds of arithmetic they support; for example, some container types support forward but not

backward traversal. Subtraction is not an option for these kinds of iterators.

20.3 Iterator Ranges

Iterators are valuable for specifying ranges over sequences (vectors and arrays). We can specify a range

with a pair of iterators: one iterator points to the first element in the sequence, and the other iterator points

to the position just past the end of the sequence. The global functions std::begin and std::end fit

well into this definition of range.

Suppose vec is a vector. The two iterators std::begin(vec) and std::end(vec) span the

complete range of values in vec. In the following statement:

auto b = std::begin(vec), e = b + 1;

the range of two iterators b and e includes just the first element in vec. Compare this range to the one

represented by the following statement:

auto b = std::begin(vec), e = b + 10;

Here the range of two iterators b and e spans the first 10 elements of vec. The range of the iterators b and

e defined by the statement

auto e = std::end(vec), b = e - 5;

encompasses the last five elements of vec.

Section 11.2 introduced a technique for traversing an array via a pointer range. Rather than passing an

array (literally the address of the first element) and its size (number of elements) to a traversal function, the

range-based approach passes the array (again, literally a pointer to the first element) and a pointer to the

position just past the end of the array. Notice how the pointers in range-based array technique correspond

directly to the iterator objects returned by the std::begin and std::end functions. Since iterator

objects behave like pointers, we can write truly generic code that can process both arrays and vectors.

The following function uses iterators to count the number of times a value appears within a vector:
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int count_value(std::vector<int>::iterator iter_begin,
std::vector<int>::iterator iter_end, int seek) {

int cnt = 0;
for (std::vector<int>::iterator cursor = iter_begin;

cursor != iter_end; iter++)
if (*cursor == seek)

cnt++;
return cnt;

}

We can streamline its appearance using type aliasing:

using Iter = std::vector<int>::iterator;

int count_value(Iter iter_begin, Iter iter_end, int seek) {
int cnt = 0;
for (Iter iter_begin; cursor != iter_end; iter++)

if (*cursor == seek)
cnt++;

return cnt;
}

Listing 20.12 (countitems.cpp) exercises the count function.

Listing 20.12: countitems.cpp

#include <iostream>
#include <vector>

using Iter = std::vector<int>::iterator;

// Count the elements in a vector of integers that match seek
int count_value(Iter iter_begin, Iter iter_end, int seek) {

int cnt = 0;
for (Iter cursor = iter_begin; cursor != iter_end; cursor++)

if (*cursor == seek)
cnt++;

return cnt;
}

int main() {
std::vector<int> a {34, 5, 12, 5, 8, 5, 11, 2};
// Count multiple elements
std::cout << count_value(std::begin(a), std::end(a), 5) << '\n';
// Count single element
std::cout << count_value(std::begin(a), std::end(a), 12) << '\n';
// Count missing element
std::cout << count_value(std::begin(a), std::end(a), 13) << '\n';
a = {}; // Try an empty vector
std::cout << count_value(std::begin(a), std::end(a), 5) << '\n';

}

Listing 20.12 (countitems.cpp) prints
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3
1
0
0

This is its expected output.

The program works as expected, but we can expand its capability greatly by making it generic, as

Listing 20.13 (genericcount.cpp) shows.

Listing 20.13: genericcount.cpp

#include <iostream>
#include <vector>
#include <array>
#include <list>
#include <string>

// Count the elements in a range that match seek.
// Type Iter is an iterator type working with a container that
// contains elements of type T. Type T elements must be
// comparable with operator==.
template <typename Iter, typename T>
int count_value(Iter iter_begin, Iter iter_end, const T& seek) {

int cnt = 0;
for (auto cursor = iter_begin; cursor != iter_end; cursor++)

if (*cursor == seek)
cnt++;

return cnt;
}

int main() {
// Test with a vector of integers
std::cout << "---Vector of integers--------------\n";
std::vector<int> a {34, 5, 12, 5, 8, 5, 11, 2};
std::cout << count_value(std::begin(a), std::end(a), 5) << '\n';
a = {}; // Try an empty vector
std::cout << count_value(std::begin(a), std::end(a), 5) << '\n';
std::cout << count_value(std::begin(a), std::end(a), 8) << '\n';

std::cout << "---STL array of integers-----------\n";
// Test with a std::array of integers
std::array<int, 8> arr {34, 5, 12, 5, 8, 5, 11, 2};
std::cout << count_value(std::begin(arr), std::end(arr), 5) << '\n';
arr = {}; // Try an empty array
std::cout << count_value(std::begin(arr), std::end(arr), 5) << '\n';
std::cout << count_value(std::begin(arr), std::end(arr), 8) << '\n';

std::cout << "---Primitive C array of integers-----\n";
// Test with a primitive C array of integers
int carr[] = {34, 5, 12, 5, 8, 5, 11, 2};
std::cout << count_value(std::begin(carr), std::end(carr), 5) << '\n';
std::cout << count_value(std::begin(carr), std::end(carr), 8) << '\n';

std::cout << "---Vector of strings---------------\n";
// Test with a vector of strings
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std::vector<std::string> b {"mae", "al", "pat", "mel", "al",
"ray", "al"};

std::cout << count_value(std::begin(b), std::end(b), "al") << '\n';
b = {};
std::cout << count_value(std::begin(b), std::end(b), "al") << '\n';
std::cout << count_value(std::begin(b), std::end(b), "pat") << '\n';

std::cout << "---Linked list of strings----------\n";
// Test with a linked list of strings
std::list<std::string> lst {"mae", "al", "pat", "mel", "al",

"ray", "al"};
std::cout << count_value(std::begin(lst), std::end(lst), "al") << '\n';
lst = {};
std::cout << count_value(std::begin(lst), std::end(lst), "al") << '\n';
std::cout << count_value(std::begin(lst), std::end(lst), "pat") << '\n';

std::cout << "---Primitive C array of Points-----\n";
struct Point {

int x;
int y;
bool operator==(const Point& other) {

return x == other.x && y == other.y;
}

};
// Test with a primitive array of Point objects
Point pts[] = {{5, 3}, {0, 0}, {5, 3}, {3, 5}, {2, 1}};
std::cout << count_value(std::begin(pts), std::end(pts), Point{5, 3})

<< '\n';
std::cout << count_value(std::begin(pts), std::end(pts), Point{3, 5})

<< '\n';
std::cout << count_value(std::begin(pts), std::end(pts), Point{2, 3})

<< '\n';
}

Listing 20.13 (genericcount.cpp) prints

---Vector of integers--------------
3
0
0
---STL array of integers-----------
3
0
0
---Primitive C array of integers-----
3
1
---Vector of strings---------------
3
0
0
---Linked list of strings----------
3
0
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0
---Primitive C array of Points-----
2
1
0

As we can see, Listing 20.13 (genericcount.cpp) can count the number of occurrences of any type that

supports testing for equality using the == operator in a container that supports iterators.

Listing 20.14 (genericloggingflexiblesort.cpp) uses template functions and template classes to make our

logging flexible sort code truly generic. It also uses inheritance to derive a class from a template class.

Listing 20.14: genericloggingflexiblesort.cpp

#include <iostream>
#include <vector>
#include <cstdlib>
#include <fstream>
#include <string>

/*
* Comparer objects manage the comparisons and element
* interchanges on the selection sort function below.
*/

template <typename T>
class Comparer {

// The object's data is private, so it is inaccessible to
// clients and derived classes

// Keeps track of the number of comparisons
// performed
int compare_count;

// Keeps track of the number of swaps performed
int swap_count;

// Function pointer directed to the function to
// perform the comparison
bool (*comp)(const T&, const T&);

protected:
// Method that actually performs the comparison
// Derived classes may override this method
virtual bool compare_impl(const T& m, const T& n);

// Method that actually performs the swap
// Derived classes may override this method
virtual void swap_impl(T& m, T& n);

public:
// The client must initialize a Comparer object with a
// suitable comparison function.
Comparer(bool (*f)(const T&, const T&));

// Resets the counters to make ready for a new sort
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void reset();

// Method that performs the comparison. It delegates
// the actual work to the function pointed to by comp.
// This method logs each invocation.
bool compare(const T& m, const T& n);

// Method that performs the swap.
// Interchange the values of
// its parameters a and b which are
// passed by reference.
// This method logs each invocation.
void swap(T& m, T& n);

// Returns the number of comparisons this object has
// performed since it was created.
int comparisons() const;

// Returns the number of swaps this object has
// performed since it was created.
int swaps() const;

};

// Method that actually performs the comparison
// Derived classes may override this method
template <typename T>
bool Comparer<T>::compare_impl(const T& m, const T& n) {

return comp(m, n);
}

// Method that actually performs the swap
// Derived classes may override this method
template <typename T>
void Comparer<T>::swap_impl(T& m, T& n) {

T temp = m;
m = n;
n = temp;

}

// The client must initialize a Comparer object with a
// suitable comparison function.
template <typename T>
Comparer<T>::Comparer(bool (*f)(const T&, const T&)):

compare_count(0), swap_count(0), comp(f) {}

// Resets the counters to make ready for a new sort
template <typename T>
void Comparer<T>::reset() {

compare_count = swap_count = 0;
}

// Method that performs the comparison. It delegates
// the actual work to the function pointed to by comp.
// This method logs each invocation.
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template <typename T>
bool Comparer<T>::compare(const T& m, const T& n) {

compare_count++;
return compare_impl(m, n);

}

// Method that performs the swap.
// Interchange the values of
// its parameters a and b which are
// passed by reference.
// This method logs each invocation, so
// we do not use std::swap here.
template <typename T>
void Comparer<T>::swap(T& m, T& n) {

swap_count++;
swap_impl(m, n);

}

// Returns the number of comparisons this object has
// performed since it was created.
template <typename T>
int Comparer<T>::comparisons() const {

return compare_count;
}

// Returns the number of swaps this object has
// performed since it was created.
template <typename T>
int Comparer<T>::swaps() const {

return swap_count;
}

/*
* selection_sort(a, compare)
* Arranges the elements of a sequence in an order determined
* by the compare object.
* begin points to the beginning of the sequence.
* end points to the imaginary element just past the last
* element of the sequence.
* compare is an object that compares the ordering of two
* elements and records the actions it performs.
* The function physically rearranges the contents of the
* sequence.
*/

template <typename T, typename V>
void selection_sort(const T begin, const T end, Comparer<V>& compare) {

for (auto i = begin; i != end - 1; i++) {
// Note: i, small, and j represent positions within the
// sequence.
// a[i], a[small], and a[j] represents the elements at
// those positions.
// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less
// than a[i]
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auto small = i;
// See if a smaller value can be found later in the sequence
for (auto j = i + 1; j != end; j++)

if (compare.compare(*j, *small))
small = j; // Found a smaller value

// Swap a[i] and a[small], if a smaller value was found
if (i != small)

compare.swap(*i, *small);
}

}

/*
* print
* Prints the contents of a sequence
* begin points to the beginning of the sequence.
* end points to the imaginary element just past the last.
* The function does not modify the sequence.
*/

template <typename T>
void print(const T begin, const T end) {

std::cout << '{';
if (begin != end) {

T iter = begin;
std::cout << *iter; // Print the first element
iter++; // Move to next element
while (iter != end) { // Print the rest

std::cout << ',' << *iter;
iter++; // Move to next element

}
}
std::cout << '}';

}

/*
* less_than(a, b)
* Returns true if a < b; otherwise, returns
* false.
*/

template <typename T>
bool less_than(const T& a, const T& b) {

return a < b;
}

/*
* greater_than(a, b)
* Returns true if a > b; otherwise, returns
* false.
*/

template <typename T>
bool greater_than(const T& a, const T& b) {

return a > b;
}

/*
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* Comparer objects manage the comparisons and element
* interchanges on the selection sort function below.
*/

template <typename T>
class LogComparer: public Comparer<T> {

// Output stream to which logging messages are directed
std::ofstream fout;

protected:
// Method that actually performs the comparison
bool compare_impl(const T& m, const T& n) override;

// Method that actually performs the swap
void swap_impl(T& m, T& n) override;

public:
// The client must initialize a LogComparer object with a
// suitable comparison function and the file name of a text
// file to which the object will direct logging messages
LogComparer(bool (*f)(const T&, const T&),

const std::string& filename);

// The destructor must close the log file
∼LogComparer();

};

// Method that actually performs the comparison
// Derived classes may override this method
template <typename T>
bool LogComparer<T>::compare_impl(const T& m, const T& n) {

fout << "Comparing " << m << " to " << n << '\n';
// Base class method does the comparision
return Comparer<T>::compare_impl(m, n);

}

// Method that actually performs the swap
// Derived classes may override this method
template <typename T>
void LogComparer<T>::swap_impl(T& m, T& n) {

fout << "Swapping " << m << " and " << n << '\n';
//T temp = m;
//m = n;
//n = temp;
// Base class method does the swap
Comparer<T>::swap_impl(m, n);

}

// The client must initialize a LogComparer object with a
// suitable comparison function and the file name of the
// text file to receive logging messages.
template <typename T>
LogComparer<T>::LogComparer(bool (*f)(const T&, const T&),

const std::string& filename): Comparer<T>(f) {
fout.open(filename);
if (!fout.good()) {
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std::cout << "Could not open log file " << filename
<< " for writing\n";

exit(1); // Terminate the program
}
// fout is an instance variable, not a local variable,
// so the file stays open when the constructor finishes

}

int main() {
// Make a vector of integers
std::vector<int> vec = { 23, -3, 10, 4, 215, 0, -3, 2 };

std::cout << "Before: ";
print(std::begin(vec), std::end(vec));
std::cout << '\n';
LogComparer<int> lt(less_than<int>, "upsort.log");
selection_sort(std::begin(vec), std::end(vec), lt);
std::cout << "Ascending: ";
print(std::begin(vec), std::end(vec));
std::cout << " (" << lt.comparisons() << " comparisons, "

<< lt.swaps() << " swaps)\n";
LogComparer<int> gt(greater_than<int>, "downsort.log");
selection_sort(std::begin(vec), std::end(vec), gt);
std::cout << "Descending: ";
print(std::begin(vec), std::end(vec));
std::cout << " (" << gt.comparisons() << " comparisons, "

<< gt.swaps() << " swaps)\n";

std::cout << "--------------------------------------\n";

// Make a vector of string objects
std::vector<std::string> words{"tree", "girl", "boy", "dog",

"cat", "girl", "bird"};

// Make a working copy of the original vector
std::cout << "Before: ";
print(std::begin(words), std::end(words));
std::cout << '\n';
LogComparer<std::string> wlt(less_than<std::string>, "upwords.log");
selection_sort(std::begin(words), std::end(words), wlt);
std::cout << "Ascending: ";
print(std::begin(words), std::end(words));
std::cout << " (" << wlt.comparisons() << " comparisons, "

<< wlt.swaps() << " swaps)\n";
LogComparer<std::string> wgt(greater_than<std::string>, "downwords.log");
selection_sort(std::begin(words), std::end(words), wgt);
std::cout << "Descending: ";
print(std::begin(words), std::end(words));
std::cout << " (" << wgt.comparisons() << " comparisons, "

<< wgt.swaps() << " swaps)\n";

std::cout << "--------------------------------------\n";

// Make an array of integers
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int arr[] = { 23, -3, 10, 4, 215, 0, -3, 2 };

std::cout << "Before: ";
print(arr, arr + 8);
std::cout << '\n';
LogComparer<int> lt2(less_than<int>, "upsort2.log");
selection_sort(arr, arr + 8, lt2);
std::cout << "Ascending: ";
print(arr, arr + 8);
std::cout << " (" << lt2.comparisons() << " comparisons, "

<< lt.swaps() << " swaps)\n";
LogComparer<int> gt2(greater_than<int>, "downsort2.log");
selection_sort(arr, arr + 8, gt2);
std::cout << "Descending: ";
print(arr, arr + 8);
std::cout << " (" << gt2.comparisons() << " comparisons, "

<< gt.swaps() << " swaps)\n";
}

Observe that the selection_sort function in Listing 20.14 (genericloggingflexiblesort.cpp) does not re-

strict the sequence it can process to be a vector or an array. The first two parameters of selection_sort
are generic, and the code within the function treats these two parameters as if they are pointers. Since iter-

ator objects behave exactly like pointers to the extent exercised within selection_sort, the compiler

can instantiate the template to accept pointer or iterator arguments. Similarly, the print function works

equally well with both pointer ranges for arrays and iterators for vectors. The main function demonstrates

the flexibility of print and selection_sort functions by sending them both array pointer ranges

and vector iterators. Behind the scenes the compiler will automatically instantiate two overloaded print
functions and two overloaded selection_sort functions.

During its execution Listing 20.14 (genericloggingflexiblesort.cpp) produces the following output:

Before: {23,-3,10,4,215,0,-3,2}
Ascending: {-3,-3,0,2,4,10,23,215} (28 comparisons, 5 swaps)
Descending: {215,23,10,4,2,0,-3,-3} (28 comparisons, 4 swaps)
--------------------------------------
Before: {tree,girl,boy,dog,cat,girl,bird}
Ascending: {bird,boy,cat,dog,girl,girl,tree} (21 comparisons, 3 swaps)
Descending: {tree,girl,girl,dog,cat,boy,bird} (21 comparisons, 4 swaps)
--------------------------------------
Before: {23,-3,10,4,215,0,-3,2}
Ascending: {-3,-3,0,2,4,10,23,215} (28 comparisons, 5 swaps)
Descending: {215,23,10,4,2,0,-3,-3} (28 comparisons, 4 swaps)

The code in Listing 20.14 (genericloggingflexiblesort.cpp) truly is generic:

• Clients may use vectors, arrays, and any sequence type that overloads the begin and end functions.

• Clients may work with sequences that contain elements of any type that supports the < and = opera-

tors.

• Clients may customize the element ordering.

• Clients may customize the behavior of the comparison and swapping procedures.
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20.4 Lambda Functions

CAUTION!      SECTION UNDER CONSTRUCTION

One of the primary benefits of functions is that we can write a function’s code once and invoke it from

many different places within the program (and even invoke it from other programs). Ordinarily, in order

to call a function, we must know its name. Almost all the examples we have seen have invoked a function

via its name. Listing 10.20 (arithmeticeval.cpp) in Section 10.10 provided examples of invoking functions

without using their names directly. There we saw a function named evaluate that accepts a function as

a parameter:

int evaluate(int (*f)(int, int), int x, int y) {
return f(x, y);

}

The evaluate function calls f. The question is, what function does evaluate call? The name f refers

to one of evaluate’s parameters; there is no separate function named f defined within Listing 10.20

(arithmeticeval.cpp). The answer, of course, is that evaluate invokes the function passed in from the

caller. The function main in Listing 10.20 (arithmeticeval.cpp) calls evaluate passing the add function

on one occasion and the multiply function on another.

The code in the evaluate function demands that callers send a function as the first parameter. Does

this mean we have to write a separate function with a name in order to call evaluate? Once we create

a function with a name it is available to be called from anywhere within the program after its definition

or declaration. What if we want to ensure that our function will execute exactly one time and only when

invoked by evaluate?

C++ supports the definition of anonymous functions via lambda expressions. The general form of a

lambda expression is

parameter list[ statementscapture list return type]( )-> { }

where:

• capture list specifies the calling context to which the function has access (more on this follows)

• parameter list is a comma-separated list of parameters as you would find in any function definition

• return type is the type of the result the function returns

• statements are the statements as you would find in any function definition.

The term lambda comes from lambda calculus (see http://en.wikipedia.org/wiki/Lambda_
calculus), a function-based mathematical system developed by Alonzo Church in the 1930s. Concepts

from lambda calculus led to the development of the modern computer. The lambda calculus is the basis for

modern functional languages like Haskell and F#.

We can use a lambda function in a call to the evaluate function:

int val = evaluate([](int x, int y)->int { return x * y; }, 2, 3);
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The [ . . .]( . . .){ . . .} construct identifies a lambda function; thus, the first argument being passed to

evaluate is indeed a function that takes two integer parameters. Notice that result of passing the lambda

function here is the same as passing the multiply function from Listing 10.20 (arithmeticeval.cpp)—both

compute the product of the two parameters.

When the compiler can deduce the type of the result of a lambda function, we can omit the return type:

int val = evaluate([](int x, int y) { return x * y; }, 2, 3);

Here the compiler can deduce that an integer times an integer is an integer.

Given the evaluate function as before, the expression

evaluate([](int x, int y) { return 3*x + y; }, 10, 2);

evaluates to 32. The statement

[](int x, int y) { std::cout << x << " " << y << '\n'; } (10, 20);

prints

10 20

Observe that this statement defines the lambda function and explicitly invokes it.

The following two statements:

auto f = [](int x) { return 5*x; };
std::cout << f(10) << '\n';

show how we can assign a lambda function to a variable and invoke it through that variable at a later time.

One interesting aspect of lambda functions is that they can be used to create closures. A closure is a unit

of code (in this case a function-like object) that can capture variables from its surrounding context. These

captured variables then can be used outside of their original context. In order to demonstrate closure, we

first must explore function objects.

A std::function object works like a function pointer (see Section 10.10). The std::function
class is a generic class parameterized by a function’s type specifications. A function object representing a

function that accepts two integer parameters and returns an integer result can be declared as

std::function<int(int, int)> f;

Note the type parameter int(int, int) inside the angle brackets. The first int represents the func-

tion’s return type. The two ints inside the parentheses specify the function’s parameters. Function objects

take the place of function pointers. Function pointers are available in C as well as C++, but C does not

provide function objects. Function objects provide capabilities above simple function pointers, including

the ability to manage closures.

Listing 20.15 (closurein.cpp) demonstrates a simple closure.

Listing 20.15: closurein.cpp

#include <iostream>
#include <functional>

int evaluate2(std::function<int(int, int)> f, int x, int y) {
return f(x, y);
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}

int main() {
int a;
std::cout << "Enter an integer: ";
std::cin >> a;
std::cout << evaluate2([a](int x, int y) {

if (x == a)
x = 0;

else
y++;

return x + y;
}, 2, 3) << '\n';

}

Note that main creates a function via the lambda expression that it passes to evaluate2. The variable

a appears within the capture square brackets. This makes a’s value available to whatever code invokes the

lambda function. In this case the evaluate2 function can see a’s value even though a is local to main
and is not passed to evaluate2 as an explicit parameter.

We say the lambda function captures the variable a. When evaluate2 invokes the function sent by

the caller, evaluate2 has no access to a variable named a. The a involved in the conditional expression

is captured from main. This is an example of a closure transporting a captured variable into a function call.

For an example of a closure transporting a captured local variable out of a function, consider List-

ing 20.16 (makeadder.cpp) which includes a function that returns a lambda function to its caller.

Listing 20.16: makeadder.cpp

#include <iostream>
#include <functional>

std::function<int(int)> make_adder() {
int loc_val = 2; // Local variable definition
return [loc_val](int x){ return x + loc_val; }; // Returns a function

}

int main() {
auto f = make_adder();
std::cout << f(10) << '\n';
std::cout << f(2) << '\n';

}

Ordinarily when a function returns, all of its local variables disappear. This means that after the following

statement in the main function executes:

auto f = make_adder();

make_adder’s loc_var local variable should no longer exist. The function that make_adder re-

turns, however, uses loc_var in its computation. This means the function that make_adder returns

forms a closure that captures make_adder’s local variable loc_var. In the output of Listing 20.16

(makeadder.cpp) we can see that function f still has knowledge of loc_val’s value:

12
4
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C++’s lambda capture mechanism provides capabilities that go beyond the examples shown here; for

example, the expression &a within the square brackets would capture variable a by reference, allowing

an external context to modify the variable. Note that when a closure captures a variable by reference,

that variable must exist in its original context as long as the closure is viable. This means you should not

attempt to capture a local non-static variable of a function by reference by a closure to be returned by

that function. The local variables disappear when the function returns, and so the references will refer to

garbage values.

We can assign a variable to a lambda function; the following code fragment:

auto f = [](int x) { return 2*x; };
std::cout << f(10) << '\n';

will print 20. This gives the function a name, so the statement

auto f = [](int x) { return 2*x; };

is roughly equivalent to the function definition

int f(int x) {
return 2*x;

}

While not a particularly useful application of lambda function, to demonstrate the regularity of the C++

language, we can define an anonymous function and invoke it immediately; for example, the statement

std::cout << [](int x, int y) { return x * y; }(2, 3);

prints 6. In this case the statement

std::cout << 2*3 << '\n';

or, even better,

std::cout << 6 << '\n';

produces the same result much more simply.

As a more practical example using a lambda function and a closure, consider the calculation of a deriva-

tive. Those familiar with basic calculus will recall the derivative of a function f at a is defined to be

f ′(a) = lim
h→0

f (a+h)− f (a)

h

If you are unfamiliar with calculus, all you need to know is that the derivative of a function is itself a

function; the above formula shows how to transform a function into its derivative. The process of computing

a derivative is known as differentiation. The limh→0 notation indicates that the answer becomes more

precise as the value h gets closer to zero. Letting h be exactly zero would result in division by zero, which

is undefined. The trick is to make h as small as possible, keeping in mind that the computer’s floating-point

values have limitations.

Based on the mathematical definition we can define a C++ function that computes the derivative of

another function, as shown here:

std::function<double(double)> derivative(std::function<double(double)> f,
double h) {
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// Capture function f and h value and return the function's derivative
return [f, h] (double x) { return (f(x + h) - f(x)) / h; };

}

Note that the derivative function returns a function, as a lambda expression is a simple function

definition. The function that derivative returns is a closure because it captures the function parameters

f and h.

Our derivative function allows us to compute the derivative of a function at a given value. This

is known as numerical differentiation. Another approach (the one emphasized in calculus courses) uses

symbolic differentiation. Symbolic differentiation transforms the formula for a function into a different

formula. The details of symbolic differentiation are beyond the scope of this text, but we will use one of its

results for a particular function to check our computed numerical results.

A particular function f is defined as follows:

f (x) = 3x2 +5

If you have studied calculus, you can confirm that f ’s derivative, f ′, is:

f ′(x) = 6x

Without a knowledge of calculus, simply just accept this as the correct answer so we can test our derivative
function.

Listing 20.17 (derivative.cpp) uses the derivative function on f (x) = 3x2 + 5 and compares its

results with the known solution, f ′(x) = 6x.

Listing 20.17: derivative.cpp

#include <iostream>
#include <iomanip>
#include <functional>

// Approximates the derivative of function f given an h value.
// The closer h is to zero, the better the estimate.
std::function<double(double)> derivative(std::function<double(double)> f,

double h) {
// Capture function f and h value
return [f, h] (double x) { return (f(x + h) - f(x)) / h; };

}

double fun(double x) { // The function we wish to differentiate
return 3*x*x + 5;

}

double ans(double x) { // The known derivative of function fun
return 6*x;

}

int main() {
// Difference: Approximation better as h -> 0
double h = 0.0000001;

// Compute the function representing an approximation
// of the derivative of function fun
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auto der = derivative(fun, h);

// Compare the computed derivative to the exact derivative
// derived symbolically
double x = 5.0;
std::cout << "------------------------------------------------------\n";
std::cout << " Approx. Actual \n";
std::cout << " x f(x) h f\'(x) f\'(x)\n";
std::cout << "------------------------------------------------------\n";
while (x < 5.1) {

std::cout << std::fixed << std::showpoint << std::setprecision(5);
std::cout << x << " " << fun(x) << " " << h << " " << der(x)

<< " " << ans(x) << '\n';
x += 0.01;

}
}

With h = 0.0000001, Listing 20.17 (derivative.cpp) produces good results to the fifth decimal place:

------------------------------------------------------
Approx. Actual

x f(x) h f'(x) f'(x)
------------------------------------------------------
5.00000 80.00000 0.00000 30.00000 30.00000
5.01000 80.30030 0.00000 30.06000 30.06000
5.02000 80.60120 0.00000 30.12000 30.12000
5.03000 80.90270 0.00000 30.18000 30.18000
5.04000 81.20480 0.00000 30.24000 30.24000
5.05000 81.50750 0.00000 30.30000 30.30000
5.06000 81.81080 0.00000 30.36000 30.36000
5.07000 82.11470 0.00000 30.42000 30.42000
5.08000 82.41920 0.00000 30.48000 30.48000
5.09000 82.72430 0.00000 30.54000 30.54000
5.10000 83.03000 0.00000 30.60000 30.60000

Even with h as large as 0.01, the results are not too bad:

------------------------------------------------------
Approx. Actual

x f(x) h f'(x) f'(x)
------------------------------------------------------
5.00000 80.00000 0.01000 30.03000 30.00000
5.01000 80.30030 0.01000 30.09000 30.06000
5.02000 80.60120 0.01000 30.15000 30.12000
5.03000 80.90270 0.01000 30.21000 30.18000
5.04000 81.20480 0.01000 30.27000 30.24000
5.05000 81.50750 0.01000 30.33000 30.30000
5.06000 81.81080 0.01000 30.39000 30.36000
5.07000 82.11470 0.01000 30.45000 30.42000
5.08000 82.41920 0.01000 30.51000 30.48000
5.09000 82.72430 0.01000 30.57000 30.54000
5.10000 83.03000 0.01000 30.63000 30.60000

In Listing 20.17 (derivative.cpp), the statement
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auto der = derivative(fun, h);

assigns der to the function returned by derivative; thus, der(x) returns the value of the derivative

of fun at x. In order for der to compute its answer, it must have access to function fun. It has this access

because der is a lambda function that captured fun and h during the call to derivative.

20.5 Algorithms in the Standard Library

CAUTION!      SECTION UNDER CONSTRUCTION

The flexible design of the STL containers and their iterators make possible the STL’s generic algorithms.

The algorithms provided by the STL are powerful and flexible, but they also are somewhat arcane and can

be difficult to use for casual C++ programmers. The STL algorithms are best viewed as the building blocks

for more specific tasks required by applications.

In order to use the STL algorithms you must include the following preprocessor directive:

#include <algorithm>

One relatively simple algorithm is std::for_each. The for_each function applies a unary function

to each element in the container. Like the other algorithms we will see, for_each uses an iterator to drive

a loop behind the scenes. The following statement prints out each element in a std::list object called

seq holding integers:

std::for_each(std::begin(seq), std::end(seq),
[](int x) { std::cout << x << ' '; });

If sec were instead a std::vector of integers, this statement will work equally well with no changes.

That is the beauty of the STL algorithms: many of them work seamlessly on a variety of the different

containers provided by the STL.

Listing 20.18 (incelements.cpp) increases by one the value of every element in a list.

Listing 20.18: incelements.cpp

#include <iostream>
#include <list>
#include <algorithm>

int main() {
// Make a list of integers
std::list<int> seq{5, 22, 6, -3, 8, 4};
// Display the vector
std::for_each(std::begin(seq), std::end(seq),

[](int x) { std::cout << x << ' '; });
std::cout << '\n';
// Increase each element in the vector by 1
std::for_each(std::begin(seq), std::end(seq),

[](int& x) { x++; });
// Redisplay the vector
std::for_each(std::begin(seq), std::end(seq),

[](int x) { std::cout << x << ' '; });
std::cout << '\n';
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}

Listing 20.18 (incelements.cpp) prints the following:

5 22 6 -3 8 4
6 23 7 -2 9 5

In the statement

std::for_each(std::begin(seq), std::end(seq), [](int& x) { x++; });

note that the lambda function passes the parameter x by reference; this allows the function to modify each

element in the sequence.

We can use lambda capture to compute the sum of the elements in a sequence, as shown in Listing 20.19

(sumvec.cpp).

Listing 20.19: sumvec.cpp

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
int sum = 0;
std::vector<int> vec{5, 22, 6, -3, 8, 4};
for_each(std::begin(vec), std::end(vec), [&sum](int x) { sum += x; });
std::cout << "The sum is " << sum << '\n';

}

Listing 20.19 (sumvec.cpp) prints

The sum is 42

The lambda capture of sum by reference allows the for_each function to modify sum as it iterates over

the vector vec.

The std::iota function, delared in the <numerics> header, is a simple but handy function that

fills a container with ascending numbers. The std::iota function allows us to replace the following

code:

// Make a vector to hold 1,000 elements
std::vector<int> seq(1000);
// Populate the vector with 0, 1, 2, 3, ..., 999
int count = 0;
for (auto& elem : seq)

elem = count++;

with

// Make a vector to hold 1,000 elements
std::vector<int> seq(1000);
// Populate the vector with 0, 1, 2, 3, ..., 999
std::iota(std::begin(seq), std::end(seq), 0);
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(The function’s non-descriptive name comes from the Greek letter ι, a function from the APL programming

language that fills a vector with ascending numbers.)

The std::find algorithm locates an element within a container. Given a range within a container

specified with iterators, the find function returns an iterator to the sought object. If the object is not present

in the container, the function returns the iterator object just past the end of the container. Listing 20.20

(testfind.cpp) tests the find function.

Listing 20.20: testfind.cpp

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>

int main() {
// Make a vector of 1,000 integers
std::vector<int> seq(1000, 0);
// Populate the vector with 0, 1, 2, 3, ..., 999
std::iota(std::begin(seq), std::end(seq), 0);

// Look for 678
auto iter = std::find(std::begin(seq), std::end(seq), 678);
// Do we find it?
if (iter != std::end(seq))

std::cout << *iter << " is present" << '\n';
else

std::cout << "678 is NOT present" << '\n';

// Look for -200
iter = std::find(std::begin(seq), std::end(seq), -200);
// Do we find it?
if (iter != std::end(seq))

std::cout << *iter << " is present" << '\n';
else

std::cout << "-200 is NOT present" << '\n';
}

Listing 20.20 (testfind.cpp) prints

678 is present
-200 is NOT present

The std::copy function copies the elements from one container to another. The std::transform
function works like std::copy except it expects a function that that can modify the copied elements. Both

functions require the begin and end iterators from the source container and the begin iterator of the destina-

tion container. Listing 20.21 (testtransform.cpp) illustrates the use of std:copy and std::transform.

Listing 20.21: testtransform.cpp

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
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int main() {
const int SIZE = 20;

// Make a vector of SIZE integers
std::vector<int> seq(SIZE);
// Populate the vector with 0, 1, 2, 3, ..., SIZE - 1
std::iota(std::begin(seq), std::end(seq), 0);

// Display the vector
std::for_each(std::begin(seq), std::end(seq),

[](int x) { std::cout << x << ' '; });
std::cout << '\n';

// Make a vector large enough to hold the copied values
std::vector<int> seq2(SIZE);

// Copy the seq to seq2
std::copy(std::begin(seq), std::end(seq), std::begin(seq2));

// Display seq2
std::for_each(std::begin(seq2), std::end(seq2),

[](int x) { std::cout << x << ' '; });
std::cout << '\n';

// Make a vector large enough to hold the transformed values
std::vector<int> seq3(SIZE);

// Copy the seq to seq3
std::transform(std::begin(seq), std::end(seq), std::begin(seq3),

[](int n) { return 2*n; });

// Display seq3
std::for_each(std::begin(seq3), std::end(seq3),

[](int x) { std::cout << x << ' '; });
std::cout << '\n';

}

Listing 20.21 (testtransform.cpp) prints

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

The std::copy function may seem superfluous since operator= for vectors also performs a vector

copy. With direct assignment there is no need to ensure the receiving vector has enough space; the assign-

ment operator takes care of this detail. The std::copy function, however, is much more flexible than

operator=, as Listing 20.22 (trimvector.cpp) illustrates.

Listing 20.22: trimvector.cpp

#include <iostream>
#include <vector>
#include <algorithm>

int main() {
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// Make a vector of SIZE integers
std::vector<int> seq { 2, 3, 4, 5, 6 };

// Display seq
std::for_each(std::begin(seq), std::end(seq),

[](int x) { std::cout << x << ' '; });
std::cout << '\n';

// Make a copy of vec with the first and last element trimmed off
if (seq.size() >= 2) {

// Make a vector large enough to hold trimmed values
std::vector<int> seq2(seq.size() - 2);
std::copy(std::begin(seq) + 1, std::end(seq) - 1,

std::begin(seq2));
// Display seq2
std::for_each(std::begin(seq2), std::end(seq2),

[](int x) { std::cout << x << ' '; });
std::cout << '\n';

}
}

Listing 20.22 (trimvector.cpp) makes a copy of a vector with the first and last elements trimmed off, as

shown in its output:

2 3 4 5 6
3 4 5

Note how Listing 20.22 (trimvector.cpp) advances the begin iterator of the source vector and decreases the

end iterator to restrict the range of values it copies.

The std::transform function is handy for capitalizing all the letters in a std::string. List-

ing 20.23 (uppercasestring.cpp) applies the C function toupper to all the characters in a string.

Listing 20.23: uppercasestring.cpp

#include <iostream>
#include <string>
#include <algorithm>
#include <cctype>

int main() {
std::string name = "Fred",

str = "abcDEF-GHIjkl345qw";

std::cout << "Before: " << name << " " << str << '\n';
// Uppercase the strings
std::transform(std::begin(name), std::end(name),

std::begin(name), std::toupper);
std::transform(std::begin(str), std::end(str),

std::begin(str), std::toupper);
std::cout << "After : " << name << " " << str << '\n';

}

Listing 20.23 (uppercasestring.cpp) prints
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Before: Fred abcDEF-GHIjkl345qw
After : FRED ABCDEF-GHIJKL345QW

The standard library provides an special iterator, std::ostream_iterator, that enables the std::copy
function to copy the contents of a container to an output stream instead of another container. Listing 20.24

(copytostream.cpp) shows how this special iterator works.

Listing 20.24: copytostream.cpp

#include <iostream>
#include <vector>
#include <iterator>

int main() {
std::vector<int> vec { 10, 20, 30, 35, 40, 45, 50, 55 };

// Copy the contents of the container to std::cout, separating
// elements with a single space
auto strm = std::ostream_iterator<int>(std::cout, " ");

std::copy(std::begin(vec), std::end(vec), strm);
std::cout << '\n';

}

Listing 20.24 (copytostream.cpp) prints the following to the console:

10 20 30 35 40 45 50 55

Note that std::ostream_iterator is a generic class parameterized by the type of object the output

stream is to receive.

Listing 20.25 (copytofile.cpp) shows how we can use std::copy to just as easily save the contents of

a container to a text file.

Listing 20.25: copytofile.cpp

#include <fstream>
#include <vector>
#include <iterator>

int main() {
std::vector<int> vec { 10, 20, 30, 35, 40, 45, 50, 55 };

// Open a text file for writing
std::ofstream fout("output.txt");

if (fout.good()) { // Confirm the file is ready to receive output
// Copy the contents of the container to a text file,
// separating elements with a single space
auto strm = std::ostream_iterator<int>(fout, " ");
std::copy(std::begin(vec), std::end(vec), strm);
fout << '\n';

}
}
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Note that the two statements

auto strm = std::ostream_iterator<int>(fout, " ");
std::copy(std::begin(vec), std::end(vec), strm);

may be colapsed into a single statement, as

std::copy(std::begin(vec), std::end(vec),
std::ostream_iterator<int>(fout, " "));

thus avoiding the extra variable.

The std::count serves the role of our count_value function from Listing 20.13 (genericcount.cpp).

A similar function, std::count_if, counts the number of elements in a container that possess a certain

property; for example, the following code will print the number of values in vec that are even:

// vec is a vector of integers
std::cout << std::count_if(std::begin(vec), std::end(vec),

[](int n) { return n % 2 == 0; });

The last argument to std::count_if is a function that accepts a single value of the type the container is

declared to hold. The function returns true or false. A function that returns a Boolean result is known

as a predicate. Some STL algorithms, like std::count_if, expect a predicate to allow them to process

only elements that satisfy the predicate. As another example, the std::copy_if function copies only

elements from one container to another that satisfy a given predicate. Listing 20.26 (copyevens.cpp) uses

std::count_if and std::copy_if to copy relevant portions of vectors.

Listing 20.26: copyevens.cpp

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>

int main() {
// Make a vector of SIZE integers
std::vector<int> seq { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };

auto output = std::ostream_iterator<int>(std::cout, " ");

// Display seq
std::copy(std::begin(seq), std::end(seq), output);
std::cout << '\n';

// A function to test for evenness
auto is_even = [](int n) { return n % 2 == 0; };

// Count the number of even integers in seq
int even_count = count_if(std::begin(seq), std::end(seq), is_even);

// Make a copy of vec omitting all the odd numbers
std::vector<int> seq2(even_count);
std::copy_if(std::begin(seq), std::end(seq), std::begin(seq2), is_even);
// Display seq2
copy(std::begin(seq2), std::end(seq2), output);
std::cout << '\n';
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}

Listing 20.26 (copyevens.cpp) prints

2 3 4 5 6 7 8 9 10 11 12
2 4 6 8 10 12

Observe that in Listing 20.26 (copyevens.cpp) we assigned the lambda functions to the variables print
and is_even. This is so we did not have to write the same lambda expressions twice, for printing seq
and seq2 and for testing evenness in for count_if and copy_if. Predicates do not have to be lambda

functions—they can be global named functions as well, but lambda function often are more convenient.

In Section 12.4 we wrote a function to randomly permute a vector. The STL provides a function that

does the work for us. Listing 20.27 (testshuffle.cpp) shows how to permute a vector using std::shuffle.

Listing 20.27: testshuffle.cpp

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <iterator>
#include <random>

int main() {
std::vector<int> vec(20);

auto output = std::ostream_iterator<int>(std::cout, " ");

// Sequence is 0, 1, 2, ..., 19
std::iota(std::begin(vec), std::end(vec), 0);

// Confirm original order
std::copy(std::begin(vec), std::end(vec), output);
std::cout << '\n';

std::random_device dev;
std::mt19937 generator(dev());

// Permute the vector
std::shuffle(std::begin(vec), std::end(vec), generator);

// Confirm the permutation
std::copy(std::begin(vec), std::end(vec), output);
std::cout << '\n';

}

Listing 20.27 (testshuffle.cpp) prints the vector before and after its permutation. The following shows the

output of one run of Listing 20.27 (testshuffle.cpp):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
5 18 8 13 10 16 14 0 15 2 6 11 19 9 12 3 1 17 4 7

Note that the std::shuffle function applies only to containers that support random access. The std::list
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class, for example, has no operator[] method and does not support random access. This means you

cannot permute the elements in a std::list object using std::shuffle.

We can use the std::generate function to populate a container based on a generating function. A

generating function typically returns a different value each time it is called. Listing 20.28 (testgenerate.cpp)

uses std::generate to

1. fill a container with identical values,

2. fill a container with a sequence produced from a formula, and

3. fill a container with pseudorandom values.

Listing 20.28: testgenerate.cpp

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include <random>

// Uniform pseudorandom number generator from an earlier chapter
#include "uniformrandom.h"

int main() {
std::vector<int> nums(20);

UniformRandomGenerator gen(0, 100);

auto output = std::ostream_iterator<int>(std::cout, " ");

// First, populate the vector with the value 2
std::generate(std::begin(nums), std::end(nums), [](){ return 2;});
std::copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';

// Next, populate the vector with a formulaic sequence
int i = 10;
std::generate(std::begin(nums), std::end(nums),

[&i](){
int result = i;
if (i % 10 == 0)

i += 5;
else

i++;
return result;

});
std::copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';

// Finally, populate the vector with pseudorandom
// integers in the range 0, 1, ..., 100
std::generate(std::begin(nums), std::end(nums), gen);
std::copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';
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}

One run of Listing 20.28 (testgenerate.cpp) produces the following output:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10 15 16 17 18 19 20 25 26 27 28 29 30 35 36 37 38 39 40 45
59 55 55 40 53 1 48 91 10 13 65 78 52 28 17 23 30 12 0 20

The first two lines of the output will always be the same, but the last line will vary from one run to the next.

The std::accumulate function applies a binary operation to all the elements of a container to

produce a single value. (A binary operation is an operator or function that expects two arguments.) One

example of its use is adding up the elements in a numeric list. Listing 20.29 (testaccumulate.cpp) shows

the std::accumulate function in action.

Listing 20.29: testaccumulate.cpp

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <numeric>
#include <iterator>
#include <random>

// Uniform pseudorandom number generator from an earlier chapter
#include "uniformrandom.h"

int main() {
std::vector<int> nums(6);

UniformRandomGenerator gen(1, 5);

auto output = std::ostream_iterator<int>(std::cout, " ");

// Populate the vector with pseudorandom
// integers in the range 0, 1, ..., 10
std::generate(std::begin(nums), std::end(nums), gen);
std::copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';

// Add up the elements
std::cout << std::accumulate(std::begin(nums), std::end(nums), 0,

[](int a, int b) { return a + b; })
<< '\n';

// Multiply the elements
std::cout << std::accumulate(std::begin(nums), std::end(nums), 1,

[](int a, int b) { return a * b; })
<< '\n';

}

One run of Listing 20.29 (testaccumulate.cpp) produces the following output:

2 1 3 4 1 2
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13
48

This is the expected output, since 2+1+3+4+1+2 = 13, and 2×1×3×4×1×2 = 48.

It is possible to use std::accumulate on containers holding nonnumeric values; for example, the

following code

std::vector<std::string> words { "fred", "ella", "jo", "sam", "pat" };
std::copy(std::begin(words), std::end(words),

std::ostream_iterator<std::string>(std::cout, " "));
std::cout << '\n';
// Concatenate the elements
std::cout << std::accumulate(std::begin(words), std::end(words),

std::string(""),
[](std::string a, std::string b) { return a + b; })

<< '\n';

will concatenate all the strings in the vector to produce the following output:

fred ella jo sam pat
fredellajosampat

While it may seem good in theory, this approach is not efficient and should be avoided. Each applica-

tion of the operator+ concatenation operator creates a new std::string object from two existing

std::string objects. Especially for longer lists, this repeated string creation process unnecessarily

wastes time and space. For a container that contains n strings, the std::accumulate function will cre-

ate n− 1 new string objects on its way to produce the final accumulated string result. Numeric arithmetic

does not create new objects, and so std::accumulate is best used on containers holding numbers.

(That is why its declaration appears in the <numeric> header.)

It you need to concatenate the strings in a container to make one big string, you should use operator+=.

This operator appends characters onto the end of an existing string object, thus avoiding the creation of new

string objects. In this case a simple familiar for loop is preferable to a sophisticated STL algorithm. The

following code illustrates a more efficient solution:

std::vector<std::string> words { "fred", "ella", "jo", "sam", "pat" };
std::copy(std::begin(words), std::end(words),

std::ostream_iterator<std::string>(std::cout, " "));
std::cout << '\n';
// Concatenate the elements
std::string joined = "";
for (const std::string& word : words)

joined += word;
std::cout << joined << '\n';

This version produces the same results, but it executes faster and uses less memory. If the number of

strings is small, it does not make much difference. It is only when the collection of strings to concatenate

becomes large that we will detect a performance difference. Listing 20.30 (teststrconcat.cpp) tests the two

algorithms.

Listing 20.30: teststrconcat.cpp

#include <iostream>
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#include <vector>
#include <string>
#include <algorithm>
#include <numeric>
#include <iterator>
#include <random>
#include <ctime>

// Uniform pseudorandom number generator from an earlier chapter
#include "uniformrandom.h"

// Some global resources

// Valid characters in our words
const std::string character_set = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

// Our words will contain 1-8 letters
UniformRandomGenerator word_len_gen(1, 8);
// We will select from a random index in character_set
UniformRandomGenerator char_chooser_gen(0, 25);

std::string make_random_string() {
std::string result = "";
int size = word_len_gen(); // Length of this word
for (int i = 0; i < size; i++)

result += character_set[char_chooser_gen()];
return result;

}

std::vector<std::string> make_random_string_vector(int size) {
std::vector<std::string> result(size);
for (auto& elem : result)

elem = make_random_string();
return result;

}

std::string concat1(const std::vector<std::string>& words) {
return std::accumulate(std::begin(words), std::end(words),

std::string(""),
[](std::string a, std::string b) { return a + b; });

}

std::string concat2(const std::vector<std::string>& words) {
std::string joined = "";
for (const std::string& word : words)

joined += word;
return joined;

}

int main() {
auto words = make_random_string_vector(25);

copy(std::begin(words), std::end(words),
std::ostream_iterator<std::string>(std::cout, " "));

std::cout << '\n';
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std::cout << "========================\n";
clock_t start_time, stop_time;
start_time = clock();
auto s = concat1(words);
std::cout << s << '\n';
stop_time = clock();
std::cout << "Accumulate: " << stop_time - start_time << " msec\n";
std::cout << "------------------------\n";
start_time = clock();
s = concat2(words);
std::cout << s << '\n';
stop_time = clock();
std::cout << "for loop: " << stop_time - start_time << " msec\n";

}

Listing 20.30 (teststrconcat.cpp) compares the two algorithms on a vector containing 25 strings generated

at random with lengths ranging from 1 to 8 letters. Its output on one run is

IQW WOP V WVAQZGNG M BJMBBIM T GS HBIPVLUU ZAIN NODPNQDR TO SUHV QY K M O LAYDOP KQ HDWOAEV FZGB
========================
IQWWOPVWVAQZGNGMBJMBBIMTGSHBIPVLUUZAINNODPNQDRTOSUHVQYKMOLAYDOPKQHDWOAEVFZGBGNVYMDSISYDTBOVEWTGGFWT
Accumulate: 2 msec
------------------------
IQWWOPVWVAQZGNGMBJMBBIMTGSHBIPVLUUZAINNODPNQDRTOSUHVQYKMOLAYDOPKQHDWOAEVFZGBGNVYMDSISYDTBOVEWTGGFWT
for loop: 1 msec

Some runs show std::accumulate to be faster, but the differences are usually single-digit milliseconds.

If crank up the size of the vector to 200,000 and comment out the statements that print the strings, we see a

more significant difference:

========================
Accumulate: 55805 msec
------------------------
for loop: 34 msec

Here std::accumulate requires almost one minute to build the string, while the for loop with operator+=
takes less than one-tenth of a second.

The std::partition function reorders the elements in a container so that all the elements that

satisfy a predicate will appear before the elements that do not meet satisfy the predicate. Listing 20.31

(testpartition.cpp) rearranges the elements in a vector of integers so that all the even numbers appear before

any odd number. It also partitions a list of strings so that words that contain more than three letters appear

before any word with three or fewer letters.

Listing 20.31: testpartition.cpp

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <iterator>
#include <random>

// Uniform pseudorandom number generator from an earlier chapter
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#include "uniformrandom.h"

int main() {
std::vector<int> nums(25);

UniformRandomGenerator gen(0, 100);

auto int_output = std::ostream_iterator<int>(std::cout, " ");

// Populate the vector with pseudorandom
// integers in the range 0, 1, ..., 100
std::generate(std::begin(nums), std::end(nums), gen);

std::cout << "Original sequence\n";
std::copy(std::begin(nums), std::end(nums), int_output);
std::cout << '\n';
std::cout << "-----------------\n";
std::cout << "Partitioned sequence\n";
std::partition(std::begin(nums), std::end(nums),

[](int n) { return n % 2 == 0; });
std::copy(std::begin(nums), std::end(nums), int_output);
std::cout << '\n';
std::cout << "=================\n\n";

auto string_output = std::ostream_iterator<std::string>(std::cout, " ");
std::vector<std::string> words { "fred", "ella", "adam", "jo",

"pat", "mel", "anna", "ed",
"oscar", "will", "tom", "ingrid" };

std::cout << "Original sequence\n";
std::copy(std::begin(words), std::end(words), string_output);
std::cout << '\n';
std::cout << "-----------------\n";
std::cout << "Partitioned sequence" << '\n';
std::partition(std::begin(words), std::end(words),

[](const std::string& w ) { return w.length() > 3; });
std::copy(std::begin(words), std::end(words), string_output);
std::cout << '\n';

}

Listing 20.31 (testpartition.cpp) prints

Original sequence
81 80 2 63 13 25 12 7 8 16 84 91 56 91 56 7 59 94 18 68 68 71 78 66 60
-----------------
Partitioned sequence
60 80 2 66 78 68 12 68 8 16 84 18 56 94 56 7 59 91 91 7 25 71 13 63 81
=================

Original sequence
fred ella adam jo pat mel anna ed oscar will tom ingrid
-----------------
Partitioned sequence
fred ella adam ingrid will oscar anna ed mel pat tom jo

Note that std::partition does not attempt to preserve the original relative order of elements within a
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partition. Also, std::partition does not make any new string objects. It simply moves existing string

around within the container. This makes it as efficient for strings as for simple numbers.

The std::merge function merges two ordered containers into a third container. The resulting con-

tainer will be ordered. Listing 20.32 (testmerge.cpp) shows an example of testmerge.cpp.

Listing 20.32: testmerge.cpp

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include <random>

// Uniform pseudorandom number generator from an earlier chapter
#include "uniformrandom.h"

int main() {
std::vector<int> nums1(15),

nums2(13);

UniformRandomGenerator gen1(0, 40),
gen2(0, 40);

auto output = std::ostream_iterator<int>(std::cout, " ");

// Populate the vectors with pseudorandom
// integers in the range 0, 1, ..., 50
std::generate(std::begin(nums1), std::end(nums1), gen1);
std::generate(std::begin(nums2), std::end(nums2), gen2);

std::cout << "Original sequences\n";
std::copy(std::begin(nums1), std::end(nums1), output);
std::cout << '\n';
std::cout << "-----------------\n";
std::copy(std::begin(nums2), std::end(nums2), output);
std::cout << '\n';
std::cout << "=================\n\n";

std::sort(std::begin(nums1), std::end(nums1));
std::sort(std::begin(nums2), std::end(nums2));
std::cout << "Sorted sequences\n";
std::copy(std::begin(nums1), std::end(nums1), output);
std::cout << '\n';
std::cout << "-----------------\n";
std::copy(std::begin(nums2), std::end(nums2), output);
std::cout << '\n';
std::cout << "=================\n\n";

// Merge the sequences
std::vector<int> merged(nums1.size() + nums2.size());
std::merge(std::begin(nums1), std::end(nums1),

std::begin(nums2), std::end(nums2),
std::begin(merged));

std::cout << "Merged sequence\n";
std::copy(std::begin(merged), std::end(merged), output);
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std::cout << '\n';
}

One run of Listing 20.32 (testmerge.cpp) prints the following:

Original sequences
8 26 8 17 26 23 31 7 16 30 5 21 37 20 4
-----------------
29 0 22 32 18 4 36 26 38 21 14 34 32
=================

Sorted sequences
4 5 7 8 8 16 17 20 21 23 26 26 30 31 37
-----------------
0 4 14 18 21 22 26 29 32 32 34 36 38
=================

Merged sequence
0 4 4 5 7 8 8 14 16 17 18 20 21 21 22 23 26 26 26 29 30 31 32 32 34 36 37 38

We can use the std::remove and std::remove_if functions to remove elements from a con-

tainer. Unlike the other algorithms we have seen so far, these functions work in an unexpected way given

their names. Neither remove nor remove_if by themselves achieve the results we generally desire.

Listing 20.33 (removeonly.cpp) shows what happens when we attempt to use remove or remove_if
in isolation.

Listing 20.33: removeonly.cpp

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <iterator>

bool is_even(int n) {
return n % 2 == 0;

}

int main() {
std::vector<int> nums(20);
auto output = std::ostream_iterator<int>(std::cout, " ");

// Fill the vector with 0, 1, ..., 19
std::iota(std::begin(nums), std::end(nums), 0);
std::copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';

// Remove 10
std::remove(std::begin(nums), std::end(nums), 10);
std::copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';

// Remove remaining even numbers
std::remove_if(std::begin(nums), std::end(nums), is_even);
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copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';

}

The output of Listing 20.33 (removeonly.cpp) is surprising to those unfamiliar with std::remove and

std::remove_if:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 19
1 3 5 7 9 11 13 15 17 19 19 12 13 14 15 16 17 18 19 19

The first line shows the contents of the original vector. The second line shows the modified vector with 10

removed. Element 10 definitely is gone, but the vector contains the same number of elements as before!

A closer inspection reveals that all the elements that followed 10 in the original vector have been shifted

forward one position. It is as if the removal of 10 left a hole in the vector that the following elements had to

shift forward to fill. That would be fine, but the last element, 19, was copied forward and remains the last

element in the vector.

In the last line we see that all the evens are missing in the front of the vector, but, again, some unusual

shifting and copying occurred to keep the vector the same size.

In order to actually remove the elements and make the resulting container smaller, we must couple

remove or remove_if with the container’s erase method. The erase method accepts two iterators

establishing a range of elements to delete from the container. Listing 20.34 (vectorerase.cpp) shows how

to remove a section of a vector using the std::vector<T>::erase method.

Listing 20.34: vectorerase.cpp

#include <iostream>
#include <vector>
#include <iterator>

int main() {
std::vector<int> nums {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};
auto output = std::ostream_iterator<int>(std::cout, " ");

// Print the vector
copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';

// Delete elements from index 3 to index 7
nums.erase(std::begin(nums) + 3, std::begin(nums) + 8);
std::copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';

}

Listing 20.34 (vectorerase.cpp) prints

10 20 30 40 50 60 70 80 90 100
10 20 30 90 100

The remove and remove_if functions return an iterator that points to the first element in the con-

tainer that was not removed. Recall the output of Listing 20.33 (removeonly.cpp), reproduced here:
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 19
1 3 5 7 9 11 13 15 17 19 19 12 13 14 15 16 17 18 19 19

The return value of the call to remove returns an iterator pointing to the second occurrence of 19 in

the second line of output. In the third line of output the call to remove_if returns a pointer to second

occurrence of 19 as well. Note that in both cases the iterators point to the first element in the remaining

values that ought to be erased from the vector.

Listing 20.35 (testremove.cpp) combines the vector’s erase method and the remove function to

achieve the desired results.

Listing 20.35: testremove.cpp

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <numeric>
#include <iterator>

bool is_even(int n) {
return n % 2 == 0;

}

int main() {
std::vector<int> nums(20);
std::string letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

auto output = std::ostream_iterator<int>(std::cout, " ");

// Fill the vector with 0, 1, ..., 19
std::iota(std::begin(nums), std::end(nums), 0);
std::copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';

// Remove 10
nums.erase(std::remove(std::begin(nums), std::end(nums), 10),

std::end(nums));
std::copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';

// Remove remaining even numbers
nums.erase(std::remove_if(std::begin(nums), std::end(nums), is_even),

std::end(nums));
std::copy(std::begin(nums), std::end(nums), output);
std::cout << '\n';

}

Listing 20.35 (testremove.cpp) prints the expected results:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19
1 3 5 7 9 11 13 15 17 19
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The combination of std::vector<T>::erase and std::remove is known in the C++ community

as the erase-remove idiom.

The STL contains a number of other algorithms to process generic containers. Some examples include

• std::reverse reverses the elements of a container,

• std::all_of returns true if all the elements in a container satisfy a predicate,

• std::any_of returns true if at least one of the elements in a container satisfy a predicate,

• std::none_of returns true if none of the elements in a container satisfy a predicate,

• std::find_if returns an iterator to the first element in a container that satisfies a predicate,

20.6 Namespaces

In Section 2.3 we reviewed the various approaches for using names from the std namespace. We have

been avoiding the blanket using directive:

using namespace std;

claiming that its disadvantages outweight its occasional convenience.

We now are creating our own names for functions and types within the programs we write. Using the

blanket using directive can present problems at times because the std namespace contains hundreds of

type and function names, and it is too easy for a programmer to accidentally reuse for another purpose

a name already claimed by the std namespace. Such name conflicts lead to problems during software

development, and since the development process generally has enough other challenges to address, it is

best practice to avoid the blanket using directive.

Listing 20.36 (maxvector.cpp) defines a max function that computes the number of times the maximum

value appears in a vector of integers. The is_sorted function determines if all the elements in a vector

appear in nondecreasing order. The main function tries out the function on a sample vector.

Listing 20.36: maxvector.cpp

#include <iostream>
#include <vector>

using namespace std;

// Counts the number of occurrences of the maximum value in
// a nonempty vector vec
int max(const vector<int>& vec) {

auto p = std::begin(vec); // p points to the first element
// Determine maximum value
int m = *p++; // Set m to the first element and move p
while (p != std::end(vec)) {

if (*p > m)
m = *p; // Found a reason to update m

p++;
}
// Count the number of times the maximum appears
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int count = 0;
for (auto elem : vec)

if (elem == m)
count++;

return count;
}

// Returns true if all the elements in vector vec appear
// in nondecreasing order; otherwise, returns false.
bool is_sorted(const vector<int>& vec) {

for (unsigned i = 0; i < vec.size() - 1; i++)
if (vec[i] > vec[i + 1])

return false; // Found elements out of order
return true;

}

int main() {
cout << boolalpha << is_sorted({1, 2, 3, 4, 5}) << '\n';
cout << boolalpha << is_sorted({5, 4, 3, 2, 1}) << '\n';
cout << boolalpha << is_sorted({5, 5, 5, 5, 5}) << '\n';
cout << "-----------------------\n";
cout << max({1, 2, 3, 4, 5}) << '\n';
cout << max({5, 4, 3, 2, 1}) << '\n';
cout << max({3, 4, 5, 2, 1}) << '\n';
cout << max({5, 2, 3, 4, 5}) << '\n';
cout << max({5, 4, 5, 2, 5}) << '\n';
cout << max({5}) << '\n';
cout << max({5, 5, 5, 5, 5}) << '\n';

}

Notice the blanket using namespace std directive that makes all the function and type names in the

std namespace available to this program. This has not been our common practice so far, but you frequently

will encounter this approach in published C++ code. This program works correctly, however, as it prints the

following:

true
false
true
-----------------------
1
1
1
2
3
1
5

The C++ standard library contains a function named is_sorted, declared in the <algorithm> header.

The standard is_sorted performs the same task as this is_sorted, except that the standard function,

striving to be as generic as possible, accepts two iterators instead of the container itself. In preparation to

replace our is_sorted function with the standard is_sorted function, we add the following directive

to the top of the code with the other #includes:

#include <algorithm>
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If we compile and run our program with this addition, we get no errors or warnings, and the program prints

the following:

true
false
true
-----------------------
5
5
5
5
5
5
5

Observe that our max function behaves very differently after this slight change. In fact, the code that exe-

cutes for the max invocations is not the code in Listing 20.36 (maxvector.cpp) but rather the max function

in the standard library! This is because a call such as

max({1, 2, 3, 4, 5})

passes an initializer list to max, not an actual vector object. Before the inclusion of <algorithm>, the

only max the compiler knew of was the one defined in Listing 20.36 (maxvector.cpp). This max function

expects a reference to a std::vector object. The std::vector class contains a constructor that

accepts an initializer list. The compiler, therefore, automatically can create a vector from an initializer list.

The compiler automatically uses the initializer list to create a vector object and sends it off the max function

for processing.

The inclusion of the <algorithm> header provides the declaration of std::max that accepts,

among other arguments, an initializer list. When the compiler matches a function call to its correspond-

ing definition, it always seeks the best match for the arguments passed. Since the std::max accepts an

initializer list, it better matches the calls in the main function.

Remember, our purpose for including the <algorithm> header was to gain access to is_sorted,

and we had no intention of changing our max implementation. Unfortunately, the compiler, following a

well-established and sensible algorithm, silently (no warnings or errors) substituted a different function to

change the behavior of our program. This is prime example of why the blanket using namespace std
directive can be dangerous.

To avoid the danger, avoid the using directive, as shown in Listing 20.37 (bettermaxvector.cpp)

Listing 20.37: bettermaxvector.cpp

#include <iostream>
#include <algorithm>
#include <vector>

// Counts the number of occurrences of the maximum value in
// a nonempty vector vec
int max(const std::vector<int>& vec) {

auto p = std::begin(vec); // p points to the first element
// Determine maximum value
int m = *p++; // Set m to the first element and move p
while (p != std::end(vec)) {

if (*p > m)
m = *p; // Found a reason to update m
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p++;
}
// Count the number of times the maximum appears
int count = 0;
for (auto elem : vec)

if (elem == m)
count++;

return count;
}

// Returns true if all the elements in vector vec appear
// in nondecreasing order; otherwise, returns false.
bool is_sorted(const std::vector<int>& vec) {

for (unsigned i = 0; i < vec.size() - 1; i++)
if (vec[i] > vec[i + 1])

return false; // Found elements out of order
return true;

}

int main() {
std::cout << std::boolalpha << is_sorted({1, 2, 3, 4, 5}) << '\n';
std::cout << std::boolalpha << is_sorted({5, 4, 3, 2, 1}) << '\n';
std::cout << std::boolalpha << is_sorted({5, 5, 5, 5, 5}) << '\n';
std::cout << "-----------------------\n";
std::cout << max({1, 2, 3, 4, 5}) << '\n';
std::cout << max({5, 4, 3, 2, 1}) << '\n';
std::cout << max({3, 4, 5, 2, 1}) << '\n';
std::cout << max({5, 2, 3, 4, 5}) << '\n';
std::cout << max({5, 4, 5, 2, 5}) << '\n';
std::cout << max({5}) << '\n';
std::cout << max({5, 5, 5, 5, 5}) << '\n';

}

In Listing 20.37 (bettermaxvector.cpp) because of the missing std:: prefixes the compiler knows that the

calls to max cannot be the calls to std::max.

Identifiers (variable names, function names, and type names) should be meaningful, clearly commu-

nicating their intent. Well-chosen English words or simple variations of common words are ideal. This

means it is quite likely that a library developed by a team of developers would contain function names

and type names that also appear in a different library developed by a different team of programmers. Each

library used separately is not a problem, but issues can arise when building a software system atop multiple

libraries; for example, consider the task of building a program that models and visualizes the spread of an

infectious agent. Such a system could make good use of the following libraries:

• a 3-D graphics library that defines a mathematical vector class, used for a number computer graphics

rendering processes, such as scene orientation and light intensities,

• an epidemiology modeling library with a vector type that represents the means of transmission of a

disease, such as a mosquito or tick, and

• the C++ standard library which includes a vector generic class used to store sequences of any type.

The name vector has a different meaning in each of these contexts. C++ namespaces allow us to manage

simultaneously and effectively all of these vector types within a single software system.
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Ideally, any code meant for widespread use should be part of a namespace. A company developing

libraries for internal use could place them in a namespace based on the company name. Components

intended for public consumption could be placed in a namespace with a different name.

In C++ it is easy to put the functions and types we develop into custom namespaces. Suppose we

wish to make the functions from Listing 20.37 (bettermaxvector.cpp) available to a wider audience. List-

ing 20.38 (vectutils.h) and Listing 20.39 (vectutils.cpp) package the two functions into a namespace named

vectutils. Listing 20.38 (vectutils.h) provides the function declarations, and Listing 20.39 (vectutils.cpp)

contains the function definitions.

Listing 20.38: vectutils.h

#include <vector>

namespace vecutils {

// Counts the number of occurrences of the maximum value in
// a nonempty vector vec
int max(const std::vector<int>& vec);

// Returns true if all the elements in vector vec appear
// in nondecreasing order; otherwise, returns false.
bool is_sorted(const std::vector<int>& vec);

} // End vecutils namespace

Listing 20.39: vectutils.cpp

#include "vectutils.h"

namespace vecutils {
// Counts the number of occurrences of the maximum value in
// a nonempty vector vec
int max(const std::vector<int>& vec) {

auto p = std::begin(vec); // p points to the first element
// Determine maximum value
int m = *p++; // Set m to the first element and move p
while (p != std::end(vec)) {

if (*p > m)
m = *p; // Found a reason to update m

p++;
}
// Count the number of times the maximum appears
int count = 0;
for (auto elem : vec)

if (elem == m)
count++;

return count;
}

// Returns true if all the elements in vector vec appear
// in nondecreasing order; otherwise, returns false.
bool is_sorted(const std::vector<int>& vec) {

for (unsigned i = 0; i < vec.size() - 1; i++)
if (vec[i] > vec[i + 1])
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return false; // Found elements out of order
return true;

}

} // End vecutils namespace

The general form of a namespace declaration is

declarations

namespace        {

}

name

The name of a namespace is an identifier; therefore, the same rules governing variable names, function

names, and type names apply equally to namespace names.

Listing 20.38 (vectutils.h) and Listing 20.39 (vectutils.cpp) demonstrate that namespace declarations can

span multiple files. The components of the std namespace are scattered over many different files.

Listing 20.40 (testns.cpp) tests the functions in our new namespace.

Listing 20.40: testns.cpp

#include <iostream>
#include "vectutils.h"

int main() {
std::cout << std::boolalpha << vecutils::is_sorted({1, 2, 3, 4, 5}) << '\n';
std::cout << std::boolalpha << vecutils::is_sorted({5, 4, 3, 2, 1}) << '\n';
std::cout << std::boolalpha << vecutils::is_sorted({5, 5, 5, 5, 5}) << '\n';
std::cout << "-----------------------\n";
std::cout << vecutils::max({1, 2, 3, 4, 5}) << '\n';
std::cout << vecutils::max({5, 4, 3, 2, 1}) << '\n';
std::cout << vecutils::max({3, 4, 5, 2, 1}) << '\n';
std::cout << vecutils::max({5, 2, 3, 4, 5}) << '\n';
std::cout << vecutils::max({5, 4, 5, 2, 5}) << '\n';
std::cout << vecutils::max({5}) << '\n';
std::cout << vecutils::max({5, 5, 5, 5, 5}) << '\n';

}

Note that instead of using the long names for vecutils::is_sorted and vecutils::max, we

could have used the focused using declarations:

using vecutils::is_sorted;
using vecutils::max;

We also could us the blanket using directive

using namespace vecutils;
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but this introduces the possibility of name clashes, especially with the similar-named functions from the

std namespace declared in the <algorithm> header. Just as with the std namespace, it is best to avoid

blanket using directives for custom namespaces.

C++ permits namespaces to be nested, as in

namespace utils {
namespace graphics {

namespace math {
double f(double v) { /* Details omitted . . . */ }

}
}

}

Absent of any using directives, we would call function f as

std::cout << utils::graphics::math::f(9.4) << '\n';

Since nested namespace names can become quite lengthy, C++ supports namespace aliases, as in

namespace ugm = utils::graphics::math;

This namespace alias makes it possible for us to call f with the more compact statement

std::cout << ugm::f(9.4) << '\n';

Nesting allows developers to organize better the components within libraries; for example, a company may

have an outer namespace derived from the company’s name and nested namespaces that correspond to

departments or divisions within the company.
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Chapter 21

Associative Containers

21.1 Associative Containers

Chapter 11 introduced the vector and array data types. Both of these data structures represent linear se-

quences of elements. Vectors and arrays are convenient for storing collections of data, but they have some

limitations. For one, we locate an element within a vector or array based on its position (index). To retrieve

a specific element we must supply its index. While this approach is fine for many applications, in other

situations this access-by-index approach is awkward or inefficient.

In contrast, an associative container permits access based on a key, rather than an index. Unlike an

index, a key is not restricted to an integer expression. The C++ standard library supports three kinds of

associative containers: set, map, and unordered_map. Here we will examine each of these types in

some detail.

21.2 The std::set Data Type

C++ provides a data structure that models to some extent a mathematical set. Unlike C++ vectors, arrays,

and lists, mathematical sets are unordered and may contain no duplicate elements. The C++ std::set
container, like mathematical sets, ignores any attempts to include duplicate elements; however, std::set
objects do order their elements internally in a particular way. This ordering permits very fast access to

elements. Listing 21.1 (settest.cpp) demonstrates these properties.

Listing 21.1: settest.cpp

#include <iostream>
#include <set>

// A custom type
struct MyClass {

int data;
MyClass(int d): data(d) {}

};

// We need this operator so we can insert our MyClass into a set
bool operator<(const MyClass& a, const MyClass& b) {
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return a.data < b.data;
}

// Define this operator so output streams can print
// instances of our custom type.
std::ostream& operator<<(std::ostream& os, const MyClass& obj) {

os << obj.data;
return os;

}

int main() {
// Attempt to add duplicates
std::set<int> S {10, 3, 7, 2, 7, 11, 3};
for (auto elem : S)

std::cout << elem << ' ';
std::cout << '\n';

std::set<int> T {5, 4, 5, 2, 4, 9};
for (auto elem : T)

std::cout << elem << ' ';
std::cout << '\n';

// Make a set of our custom types
std::set<MyClass> U {MyClass(10), MyClass(3), MyClass(7), MyClass(2)};
for (auto& elem : U)

std::cout << elem << ' ';
std::cout << '\n';

}

The output of Listing 21.1 (settest.cpp) is

2 3 7 10 11
2 4 5 9
2 3 7 10

Note the element ordering in the initializer list for the set constructor is different from the order of the

printed elements when traversed via a for loop. The order actually is ascending order in all of our tests

in Listing 21.1 (settest.cpp), and this is not a coincidence. Also observe that sets do not admit duplicate

elements.

The implementation of the std::set class on all the major C++ libraries use a red-black tree (see

https://en.wikipedia.org/wiki/RedŰblack_tree) as the internal data structure. The or-

dering imposed by this internal data structure enables very fast access to the set’s elements. A red-black

tree permits binary search (see Section 12.3.2). A set determines the order of its elements via operator<.

The < operator works with all the primitive numeric types (int, double, float, unsigned, etc.). The

operator< is defined for std::string class instances to compare two string objects lexicographi-

cally. Instances of any type we wish to store in a std::set must support the < operator.

In Listing 21.1 (settest.cpp) we define a new custom type, MyClass. We must ensure that it is possible

to compare two MyClass instances using the < operator in order to put MyClass objects in a set. To

achieve this, we define operator< as a global function that compares two MyClass objects. This

allows us to create a set of MyClass objects.

We can make a set out of a vector using the set constructor that accepts a pair of iterators to another

container:

©2018 Richard L. Halterman Draft date: December 2, 2018



21.2. THE STD::SET DATA TYPE 689

std::vector<int> vec {40, 10, 20, 50, 10, 30};
set<int> my_set(std::begin(vec), std::end(vec));
for (auto elem : my_set)

std::cout << elem << ' ';
std::cout << '\n';

As with an initializer list, this construction from a vector will not preserve the original ordering found in

the vector. Also, any duplicate elements in the vector will appear only once in the set object.

Unlike in mathematics, all sets in C++ must be finite.

Listing 21.2 (setoutput.h) provides a convenient function that prints a std::set in familiar human-

readable form.

Listing 21.2: setoutput.h

#ifndef SETOUTPUT_H_DEFINED
#define SETOUTPUT_H_DEFINED

#include <iostream>
#include <set>

// Print out a set in a familiar form
template <typename T>
std::ostream& operator<<(std::ostream& os, const std::set<T>& s) {

os << '{';
auto iter = std::begin(s);
auto done = std::end(s);
if (iter != done) {

os << *iter++;
while (iter != done)

os << ", " << *iter++;
}
os << '}';
return os;

}

#endif

Listing 21.2 (setoutput.h) enables us to write code such as

std::set<int> S = {20, 40, 60, 80};
std::cout << S << '\n';

which prints

{20, 40, 60, 80}

just like the set would appear in a mathematics book. We will include this header file in subsequent pro-

grams that use std::set so we easily can display a set’s contents.

C++ supports the standard mathematical set operations of intersection, union, set difference, and sym-

metric difference. These functions are part of the algorithms library, and thus they are designed to work

with as wide an array of containers as possible. The downside of this flexibility is they are somewhat arcane

and awkward to use, as Listing 21.3 (setopsbuiltin.cpp) shows.
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Listing 21.3: setopsbuiltin.cpp

#include <iostream>
#include <set>
#include <vector>
#include <algorithm>
#include <iterator>

#include "setoutput.h"

int main() {
// Compute the intersection and union of two sets
std::set<int> s1{1, 2, 3, 4, 5, 6};
std::set<int> s2{2, 5, 7, 9, 10};
std::set<int> s1_inter_s2;

std::set_intersection(std::begin(s1), std::end(s1),
std::begin(s2), std::end(s2),
std::inserter(s1_inter_s2, std::end(s1_inter_s2)));

std::cout << "Intersection of " << s1 << " and " << s2
<< " = " << s1_inter_s2 << '\n';

std::cout << "\n-------------\n";

std::set<int> s1_union_s2;
std::set_union(std::begin(s1), std::end(s1),

std::begin(s2), std::end(s2),
std::inserter(s1_union_s2, std::end(s1_union_s2)));

std::cout << "Union of " << s1 << " and " << s2
<< " = " << s1_union_s2 << '\n';

std::cout << "\n-------------\n";

std::vector<int> v1{1, 2, 3, 4, 5, 6};
std::vector<int> v2{2, 5, 7, 9, 10};
// Note: v1 and v2 both must be sorted for this to work
// Since we created them sorted the next two statements are not
// technically necessary, but we include them here to emphasize
// the fact that the vectors must be sorted to compute their
// intersection and union in this manner. Sets are inherently
// sorted, and so need no such preprocessing.
sort(std::begin(v1), std::end(v1));
sort(std::begin(v2), std::end(v2));
std::vector<int> v1_intersection_v2;
std::vector<int> v1_union_v2;
std::set_intersection(std::begin(v1), std::end(v1),

std::begin(v2), std::end(v2),
std::back_inserter(v1_intersection_v2));

std::set_union(std::begin(v1), std::end(v1),
std::begin(v2), std::end(v2),
std::back_inserter(v1_union_v2));

for (auto elem : v1_intersection_v2)
std::cout << elem << ' ';

std::cout << '\n';
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for (auto elem : v1_union_v2)
std::cout << elem << ' ';

std::cout << '\n';
}

Listing 21.3 (setopsbuiltin.cpp) shows how the intersection and union functions work for vectors as well as

sets. The catch is that the elements in the containers must be ordered for these functions to work properly.

We saw that std::set objects are ordered automatically. Since std::vector objects do not impose

an order on their elements, we must first sort any vectors we wish to send to the standard intersection and

union functions.

Listing 21.4 (setops.cpp) implements operator& and operator| to work with set objects to pro-

vide a more convenient interface to programmers. The & operator represents set intersection, and | repre-

sents set union.

Listing 21.4: setops.cpp

#include <iostream>
#include <set>
#include <algorithm>
#include <iterator>

#include "setoutput.h"

// Computes the intersection of sets s1 and s2
template<typename T>
std::set<T> operator&(const std::set<T>& s1, const std::set<T>& s2) {

std::set<T> result;
std::set_intersection(std::begin(s1), std::end(s1),

std::begin(s2), std::end(s2),
std::inserter(result, std::end(result)));

return result;
}

// Computes the union of sets s1 and s2
template<typename T>
std::set<T> operator|(const std::set<T>& s1, const std::set<T>& s2) {

std::set<T> result;
std::set_union(std::begin(s1), std::end(s1), std::begin(s2), std::end(s2),

std::inserter(result, std::end(result)));
return result;

}

int main() {
std::set<int> s1 {1, 2, 3, 4, 5, 6, 7, 8};
std::set<int> s2 {2, 5, 7, 9, 10};

std::cout << s1 << " & " << s2 << " = " << (s1 & s2) << '\n';
std::cout << s1 << " | " << s2 << " = " << (s1 | s2) << '\n';

}

If we did a lot of programming with mathematical sets, we probably would add these two functions to our

header file that overloads operator<< to print set objects.
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The real value of the set class comes from the speed of access it provides to its elements. As an

associative container, we do not access an element via an index as we do with a vector or array. In fact,

std::set does not even provide operator[]. We want to place an item into a set and retrieve it later

without regard to its location within its internal data structure.

Recall the std::find algorithm provided by the STL (see Section 20.5). Given an iterator to the

beginning of the container, an iterator just past the end of the container, and an item to find, std::find
returns an iterator that points to the sought element within the container. If the container does not contain

the sought element, std::find returns the iterator that equals the just-past-the-end iterator.

The std::find function works with a std::set object just as it does with other containers, but the

std::set class provides its own find method that exploits the structure of the data within the set object

to locate elements very quickly. Listing 21.5 (setvsvector.cpp) illustrates the use the std::set::find
method, comparing the time to locate an element in a vector versus the time to locate the same element in

a set containing the exact elements contained in the vector.

Listing 21.5: setvsvector.cpp

#include <iostream>
#include <set>
#include <vector>
#include <algorithm>
#include <iterator>
#include <ctime>

#include "uniformrandom.h"

int main() {
const int SIZE = 250000;
// Make a vector and set
std::vector<int> v;
std::set<int> s;

// Populate the vector and set with the first SIZE integers
for (int i = 0; i < SIZE; i++)

v.push_back(i);
for (int i = 0; i < SIZE; i++)

s.insert(i);

// Make a vector that contains random numbers in the range
// stored within the vector and set
UniformRandomGenerator gen(0, SIZE - 1);
std::vector<int> search_values;
for (int i = 0; i < SIZE; i++)

search_values.push_back(gen());

clock_t start_time, stop_time;

// Search each data structure for the integers 0 to 1,000,000
start_time = clock();
for (int i = 0; i < SIZE; i++) {

int seek = search_values[i];
std::find(std::begin(v), std::end(v), seek);

}
stop_time = clock();
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std::cout << "Vector time: " << stop_time - start_time << '\n';

start_time = clock();
for (int i = 0; i < SIZE; i++) {

int seek = search_values[i];
s.find(seek);

}
stop_time = clock();
std::cout << "Set time: " << stop_time - start_time << '\n';

}

The vector and set objects within Listing 21.5 (setvsvector.cpp) each contain the integers 0,1, . . . ,249,000.

Note that the vector contains the elements in ascending order. We then create a vector containing pseudo-

random values in the range 0,1, . . . ,249,000. The program will search for these random values within each

container. The program measures the time it takes to complete the searches.

The output Listing 21.5 (setvsvector.cpp) reveals the dramatic difference in performance between the

std::find function on a vector and the std::set::find method with a set:

Vector time: 84044 msec
Set time: 234 msec

We see on this particular run that the vector search required almost one and a half minutes to complete,

while the set search took only about a quarter of a second. While the exact numbers will vary from run to

run and be higher or lower depending on the host machine, the disparity of times will be consistent. The

two data structure contain exactly the same elements, and program uses the exact same search values. The

std::set’s search is so much quicker because std::set::find performs binary search on its internal

data structure, while std::find uses linear search (see Section 12.3.2).

21.3 Tuples

In C++ a function can return only one thing. That one thing might be an integer or a single object like a

vector or an instance of some other class, but it must be just one thing. What if we need a function to return

more than one thing? We could put the desired return values into a vector and return the vector. The caller

then would extract the components from the vector upon the function’s return. Unfortunately, this will not

work if the multiple elements to return have different types. The container types we have examined thus

far—vectors, arrays, lists, and sets—have been homogeneous; that is, their elements all have the same type.

We could define a struct or class that has fields of different types, but this creates a new, named,

custom type. In a large program we may need many different structs to cover all the combinations of

multiple-valued return types we need. Providing a named struct or class introduces a new type into

the system, thereby increasing the system’s complexity.

All we want is to be able to package multiple elements together for some simple purpose, without

needing to create a new custom type. Fortunately, C++ provides the std::tuple generic class in its

standard library. Listing 21.6 (simpletuples.cpp) shows how to use tuples in a C++ program.

Listing 21.6: simpletuples.cpp

#include <iostream>
#include <string>
#include <tuple>
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#include <cmath> // For sqrt

int main() {
// Declare some local variables
std::string word;
int number;
double quantity;

// Construct a tuple directly with some literal values
std::tuple<std::string, int, double> t1 {"Bob", 4, 9.5};
// Unpack the tuple's components
std::tie(word, number, quantity) = t1;
// Print the results
std::cout << "word = " << word << ", number = " << number

<< ", quantity = " << quantity << '\n';

// Use std::make_tuple convenience function
auto t2 = std::make_tuple("Eve", 22, 8.3);
// Unpack the tuple's components
std::tie(word, number, quantity) = t2;
// Print the results
std::cout << "word = " << word << ", number = " << number

<< ", quantity = " << quantity << '\n';

// Declare some variables
std::string name = "Jan";
int age = 12;
double amount = 50.2;
// Build a tuple from more general expressions
auto t3 = std::make_tuple(name, age * 2, std::sqrt(amount));
// Unpack the tuple's components one at a time
word = std::get<0>(t3); // 1st component is at index 0
number = std::get<1>(t3); // 2nd component is at index 1
quantity = std::get<2>(t3); // 3rd component is at index 2
// Print the results
std::cout << "word = " << word << ", number = " << number

<< ", quantity = " << quantity << '\n';
}

When compiled and executed, Listing 21.6 (simpletuples.cpp) prints

word = Bob, number = 4, quantity = 9.5
word = Eve, number = 22, quantity = 8.3
word = Jan, number = 24, quantity = 7.0852

As the program shows, we can construct a std::tuple directly, as in the case of t1, but the std::make_tuple
function results in simpler code. The arguments used when making a tuple can consist of literals, variables,

and other more complex expressions.

Extracting the components of a tuple is known as unpacking. Listing 21.6 (simpletuples.cpp) shows how

to use the std::tie function to assign the components of a tuple to individual variables in one statement.

The std::tie function is a generic function that works with any types storable within a tuple. If we

wish to extract just one element from a tuple, we can use the std::get generic function. The generic

std::get function is parameterized by an integer that serves as an index into the tuple. As with vectors,
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the first element of the tuple is found at index zero.

C++ supports another way of unpacking tuples. Structured binding is similar to std::tie but can be

used only when declaring the variables used to represent the components of a tuple. With structured binding

we can rewrite the following code:

std::string word, name = "Jan";
int number, age = 25;
double quantity, amount = 50.2;
auto t = std::make_tuple(name, age, amount);
// Unpack the tuple's components
std::tie(word, number, quantity) = t1;

as

std::string name = "Jan";
int age = 25;
double amount = 50.2;
auto t = std::make_tuple(name, age, amount);
// Unpack the tuple's components
auto [word, number, quantity] = t;

The statement

auto [word, number, quantity] = t;

constitutes the structured binding. Note that we can use this special syntax only when declaring the variables

to be bound to the components of the tuple. This copies the components of the tuple into the newly declared

variables. Specifically, the following statement:

[word, number, quantity] = t; // Illegal, not a declaration

is illegal, even if the variables word, number, and quantity are properly declared before the this

statement.

We can specify that the structured binding be done by reference, as in the following:

auto& [word, number, quantity] = t;

In this case each name within the binding becomes an alias to a component of the tuple. In the previous

code fragment above, reassigning number will similarly modify the second component of tuple t.

Structured binding is especially convenient when processing tuples within loops. Listing 21.7 (tupleloop.cpp)

uses structured bindings by reference to reassign the elements in a vector of tuples. The program then uses

structured bindings to extract the components of each tuple to print them out.

Listing 21.7: tupleloop.cpp

#include <iostream>
#include <string>
#include <vector>
#include <tuple>

int main() {
// Create a vector than can hold ten tuples
std::vector<std::tuple<std::string, int, double>> vec(10);
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int count = 1;
double quant = 10.0;
// Populate the vector
for (auto& [s, i, d] : vec) {

s = "Item #" + std::to_string(count);
i = count++;
d = quant;
quant += 10;

}
// Print the contents of the vector
for (auto [s, i, d] : vec)

std::cout << "[" << s << ", " << i << ", " << d << "]\n";
}

Listing 21.7 (tupleloop.cpp) prints the following:

[Item #1, 1, 10]
[Item #2, 2, 20]
[Item #3, 3, 30]
[Item #4, 4, 40]
[Item #5, 5, 50]
[Item #6, 6, 60]
[Item #7, 7, 70]
[Item #8, 8, 80]
[Item #9, 9, 90]
[Item #10, 10, 100]

The C++ standard library supports a special case of std::tuple called std::pair. While a

std::tuple supports zero or more components, each std::pair object must contain exactly two

components. Listing 21.8 (pairtest.cpp) shows std::pair in action.

Listing 21.8: pairtest.cpp

#include <iostream>
#include <string>
#include <tuple>

int main() {
// Declare some local variables
std::string word;
int number;
double quantity;

// Construct a pair directly with some literal values
std::pair<std::string, double> t1 {"Bob", 9.5};
// Unpack the pair using std::tie
std::tie(word, quantity) = t1;
// Print the results
std::cout << "word = " << word << ", quantity = " << quantity << '\n';

// Use std::make_pair convenience function
auto t2 = std::make_pair("Eve", 22);
// Unpack the pair using std::get
word = std::get<0>(t2); // 1st component
number = std::get<1>(t2); // 2nd component
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// Print the results
std::cout << "word = " << word << ", number = " << number << '\n';

// Declare some variables
std::string name = "Jo";
int age = 12;
// Build a pair from more general expressions
auto t3 = std::make_pair(name + "-ann", 2* age);
// Unpack the tuple's using first and second fields
word = t3.first; // 1st component
number = t3.second; // 2nd component
// Print the results
std::cout << "word = " << word << ", number = " << number << '\n';
// Use structured binding to extract compoents
auto [wrd, nbr] = t3;
// Print the results
std::cout << "word = " << wrd << ", number = " << nbr << '\n';

}

As Listing 21.8 (pairtest.cpp) shows, we can use std::tie, std::get, and structured binding with

a std::pair object, and they work exactly as they do with std::tuple. Since pair objects always

contain exactly two elements the std::pair class provides the public fields first and second through

which we can unpack a pair using simpler syntax.

Neither std::tuple nor std::pair are associative containers. The std::pair class is used by

the two associative containers we will consider next: std::map and std::unordered_map.

21.4 The std::map Data Type

The std::map data structure is another example of a C++ associative container. In order to use a std::map
object within a program we must use the appropriate #include directive:

#include <map>

The std::map class is a template class, so when declaring an instance we must supply type parameters

within angle brackets as shown in the following example:

std::map<std::string, int> my_map;

Here the my_map variable refers to an associative container that holds std::pair objects, each of which

consist of a string key and an integer value. We say each integer in the map object has an associated

string key. In the expression std::map<std::string, int> the first template argument (here

std::string) indicates the map’s key type, and the second template argument indicates the type of

values stored in the map (here int). Listing 21.9 (simplemap.cpp) provides a simple example that uses a

C++ map object.

Listing 21.9: simplemap.cpp

#include <map>
#include <string>
#include <iostream>

int main() {
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std::map<std::string, int> container;

container["Fred"] = 22;
container["Ella"] = 21;
container["Owen"] = 34;
container["Zoe"] = 29;

std::cout << container["Ella"] << '\n';
std::cout << container["Zoe"] << '\n';

}

Note that in this case we access an element in a map object via operator[] with a string “index” rather

than a nonnegative integer index as we would in a vector. In Listing 21.9 (simplemap.cpp) the statement

container["Fred"] = 22;

associates the value 22 with the key "Fred". Keys must be unique; that is, no two values in an unordered

map can have the same key. Duplicate values are allowed; that is, two different keys can have the same

value, but two different values cannot have the same key. This is similar to a vector or array, in that the

same value may be stored at different indices, but only one value may be associated with a particular index.

One big difference between a map and vector is a vector of size n allows any index in the range

0 . . . n − 1, while a map contains a key only when the programmer specifically uses it with the unordered

map. Consider the statement

container["Fred"] = 22;

if the key within the square brackets ("Fred") does not exist in the map before this statement executes,

the statement adds the key to the map and pairs it with the value on the right of the assignment operator. If

the key already exists in the map, the statement replaces the value previously associated with the key with

the new value on the right of the assignment operator.

Consider accessing a value with a given key rather than assigning the value; the statement

std::cout << container["Fred"] << '\n';

prints the value associated with the key "Fred". If "Fred" is not currently a key in the map, this

statement will add the key "Fred" with the default value for the type of value declared for the map. For

integers, the default value is 0. As other examples, the default floating-point value is 0.0, the default string

value is the empty string, "", and the default bool value is false.

You should use a map object when you need fast and convenient access to an element of a collection

based on a search key rather than an index. Consider the problem of implementing a simple telephone

contact list. Most people are very familiar with the names of their friends, family, and business contacts

but can remember only a handful of telephone numbers. A contact list associates a name with a telephone

number.

It would be inappropriate to place the names in a vector, for example, and locate a name using the

associated phone number as an index into the vector. This look-up method is backwards—we do not want

to find a name given a phone number; we want to look up a number based on a name. Besides, each phone

number contains many digits, and we would not need or want to have a vector with indices that large—most

of the space in the data structure would be unused.

In our situation a person or company’s name is a unique identifier for that contact. In this case the name

is a key to that contact. A map is an ideal data structure for mapping keys to values. It allows for the fast
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retrieval of a value given its associated key. Listing 21.10 (phonelist.cpp) uses a C++ map to implement a

simple telephone contact database with a rudimentary command line interface.

Listing 21.10: phonelist.cpp

#include <iostream>
#include <string>
#include <map>
#include <algorithm>

int main() {
std::map<std::string, int> contacts; // Telephone contact list
bool running = true;

while (running) {
std::string name;
int number;
char command;
std::cout << "A)dd L)ook up Q)uit: ";
std::cin >> command;
switch (command) {

case 'A':
case 'a':

//std::cout << "Enter new name: " << '\n';
std::cin >> name;
std::transform(std::begin(name), std::end(name),

std::begin(name), toupper);
//std::cout << "Enter phone number for " << name << ": ";
std::cin >> number;
contacts[name] = number;
break;

case 'L':
case 'l':

std::cin >> name;
transform(std::begin(name), std::end(name), std::begin(name),

::toupper);
std::cout << name << " " << contacts[name] << '\n';
break;

case 'Q':
case 'q':

running = false;
break;

case 'D': // Secret command
case 'd':

for (auto& elem : contacts)
std::cout << elem.first << " " << elem.second << '\n';

break;
default:

std::cout << command << "is not a valid command" << '\n';
}

}
}

The following shows a sample run of Listing 21.10 (phonelist.cpp):
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A)dd L)ook up Q)uit: a Fred 5550134
A)dd L)ook up Q)uit: d
FRED 5550134
A)dd L)ook up Q)uit: a Ella 5559921
A)dd L)ook up Q)uit: l Ella
ELLA 5559921
A)dd L)ook up Q)uit: l Fred
FRED 5550134
A)dd L)ook up Q)uit: d
ELLA 5559921
FRED 5550134
A)dd L)ook up Q)uit: q

Listing 21.10 (phonelist.cpp) contains a secret “dump” command that prints out the contents of the map

object. This command executes the following loop:

for (auto& elem : contacts)
std::cout << elem.first << " " << elem.second << '\n';

This code reveals the fact that std::map objects store their elements as std::pair objects.

Note that we are storing a phone number as an integer, but values within a map object are not limited to

integers.

To further motivate maps, consider Listing 21.11 (translateif.cpp) which uses conditional logic to trans-

late some Spanish words into English.

Listing 21.11: translateif.cpp

#include <iostream>
#include <string>

int main() {
std::string word = ""; // Initial word to ensure loop entry
while (word != "quit") { // Loop until user presses return by itself

// Obtain word from the user
std::cout << "Enter Spanish word: ";
std::cin >> word;
if (word == "uno")

std::cout << "one\n";
else if (word == "dos")

std::cout << "two\n";
else if (word == "tres")

std::cout << "three\n";
else if (word == "cuatro")

std::cout << "four\n";
else if (word == "cinco")

std::cout << "five\n";
else if (word == "seis")

std::cout << "six\n";
else if (word == "siete")

std::cout << "seven\n";
else if (word == "ocho")

std::cout << "eight\n";
else // Unknown word

std::cout << "???\n";
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}
}

Listing 21.11 (translateif.cpp) can successfully translate eight Spanish words into English. If we wish to

increase the program’s vocabulary, we must modify the program’s logic by adding another else if block

for each new word. Listing 21.12 (translatemap.cpp) provides a better approach; it uses a map to assist the

translation.

Listing 21.12: translatemap.cpp

#include <iostream>
#include <fstream>
#include <string>
#include <map>
#include <algorithm>

// Convenient type name alias
using Dictionary = std::map<std::string, std::string>;

// English-Spanish word list
Dictionary word_map;

// Load the list of words from a file
void load_words(std::string filename, Dictionary& words) {

std::ifstream in(filename);
if (in.good()) { // Make sure the file was opened properly

std::string english_word, spanish_word;
while (in >> spanish_word >> english_word) // Read until end of file

words[spanish_word] = english_word;
}
else

std::cout << "Unable to load in the file\n";
}

int main() {
// Load words from file
load_words("engspanwords.txt", word_map);

std::string word = "";
while (word != "quit") { // Loop until user presses return by itself

// Obtain word from the user
std::cout << "Enter Spanish word: ";
std::cin >> word;
std::cout << word << ": " << word_map[word] << '\n';

}
}

Note that Listing 21.12 (translatemap.cpp) uses a map in which both the keys and values are strings. List-

ing 21.12 (translatemap.cpp) in conjunction with the text file engspanwords.txt containing the following

data:

uno one
dos two
tres three
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cuatro four
cinco five
seis six
siete seven
ocho eight

translates the same words as Listing 21.11 (translateif.cpp), but we do not need to touch the program’s logic

at all to expand the program’s vocabulary; all we need do is add the appropriate words to our text file.

The words will become the key and value items in our map when the program runs. This is a significant

difference if wish to include enough words to make the program practical.

Like std::set, the major C++ platforms use a red-black tree (see https://en.wikipedia.
org/wiki/Red-black_tree) as the underlying data structure for the std::map class. The nature

of this data structure makes key lookup within a map object very fast.

21.5 The std::unordered_map Data Type

The std::unordered_map type is another example of a C++ associative container. A std::unordered_map
object works like a std::map object, but they each use a different underlying data structure. Most

std::map implementations use a red-black tree (see https://en.wikipedia.org/wiki/Red-black_
tree) to store the map’s elements, while an unordered map uses a hash table (see https://en.
wikipedia.org/wiki/Hash_table). This difference makes an unordered map faster in general

than a map for accessing an element via its key. Map objects trade raw speed for the ability to access effi-

ciently elements in order based on their keys. Unordered map objects truly are unordered; they provide no

efficient way for clients to traverse their key-value pairs by order of their keys.

In order to use a std::unordered_map object within a program we must use the appropriate

#include directive:

#include <unordered_map>

Like the std::map class, the std::unordered_map class is a template class, so when declaring an

instance we must supply type parameters within angle brackets as shown in the following example:

std::unordered_map<std::string, int> my_map;

Here each integer in the map object has an associated string key.

Listing 21.13 (ordvsunord.cpp) adds in the same order equal strings to both a map object and an un-

ordered map object. It then iterates over each container, printing each element as visited by the iterator.

Listing 21.13: ordvsunord.cpp

#include <iostream>
#include <string>
#include <map>
#include <unordered_map>

int main() {
std::map<std::string, int> m;
std::unordered_map<std::string, int> um;
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// Add some names in random order
m["fred"] = um["fred"] = 23;
m["adam"] = um["adam"] = 99;
m["cathy"] = um["cathy"] = 2;
m["wilma"] = um["wilma"] = 50;
m["betty"] = um["betty"] = 19;
m["roger"] = um["roger"] = 44;
m["kim"] = um["kim"] = 7;
m["doug"] = um["doug"] = 10;
m["zach"] = um["zach"] = 5;
m["tom"] = um["tom"] = 34;

// Print the names in each container
for (auto& p : m)

std::cout << p.first << ":" << p.second << " ";
std::cout << '\n';
std::cout << "-------------------\n";
for (auto& p : um)

std::cout << p.first << ":" << p.second << " ";
std::cout << '\n';
std::cout << "===================\n";

// Add some more names to each container
m["tammy"] = um["tammy"] = 80;
m["joey"] = um["joey"] = 80;
m["abby"] = um["abby"] = 80;

// Again, print the names in each container
for (auto& p : m)

std::cout << p.first << ":" << p.second << " ";
std::cout << '\n';
std::cout << "-------------------\n";
for (auto& p : um)

std::cout << p.first << ":" << p.second << " ";
std::cout << '\n';

}

A run of Listing 21.13 (ordvsunord.cpp) on one system prints

adam:99 betty:19 cathy:2 doug:10 fred:23 kim:7 roger:44
tom:34 wilma:50 zach:5
-------------------
fred:23 roger:44 adam:99 kim:7 doug:10 cathy:2 wilma:50
betty:19 zach:5 tom:34
===================
abby:80 adam:99 betty:19 cathy:2 doug:10 fred:23 joey:80
kim:7 roger:44 tammy:80 tom:34 wilma:50 zach:5
-------------------
fred:23 roger:44 adam:99 kim:7 doug:10 cathy:2 wilma:50
abby:80 betty:19 zach:5 tom:34 tammy:80 joey:80

The output shows that we can iterate over the elements of a map object in the order of their keys. String

keys are ordered lexicographically. The ordering of the unordered map appears random.

Listing 21.13 (ordvsunord.cpp) adds a few additional elements to both map objects. The insertions do
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not disturb the lexicographical key order of the map object, but note that the insertions appear in seemingly

random locations in the unordered map.

The ordering of the elements in an unordered map is not really random; a special function known as a

hash function determines their position within the unordered map at the time of their insertion. This hashing

process makes unordered maps slightly faster than regular map objects. If the speed of access is critical and

accessing the elements in order is not necessary, a C++ std::unordered_map is the better choice.

21.6 Counting with Associative Containers

Associative containers are useful for counting things. We have experience using variables to count; recall

Listing 6.3 (countup.cpp) and Listing 6.21 (startree.cpp). These programs counted one thing at a time,

so they each use just one counter variable. In general, we need to use a separate variable for each count

we manage. Listing 21.14 (countnegnonneg.cpp) uses a function to count the number of negative and

nonnegative numbers in a vector of integers and returns a std::pair with the results:

Listing 21.14: countnegnonneg.cpp

#include <iostream>
#include <vector>
#include <tuple>

std::pair<int, int> count_neg_nonneg(const std::vector<int>& nums) {
// Initialize counters
int neg_count = 0, nonneg_count = 0;
for (int num : nums)

if (num < 0)
neg_count++;

else
nonneg_count++;

return std::make_pair(neg_count, nonneg_count);
}

int main() {
auto counts = count_neg_nonneg({8, -3, -1, 7, 7, -2, 0, 3});
std::cout << counts.first << " " << counts.second << '\n';

}

Since we needed to count two different kinds of things, we had to use two separate counters. In this case

we used neg_count and nonneg_count to serve the role of counter variables.

As an aside, consider a variation of Listing 21.14 (countnegnonneg.cpp), shown in Listing 21.15

(countnegnonneg2.cpp).

Listing 21.15: countnegnonneg2.cpp

#include <iostream>
#include <vector>
#include <tuple>

// Make an alias for a more complicated type name
using IntPair = std::pair<int, int>;
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IntPair count_neg_nonneg(const std::vector<int>& nums) {
// Initialize counters
int neg_count = 0, nonneg_count = 0;
for (int num : nums)

if (num < 0)
neg_count++;

else
nonneg_count++;

return {neg_count, nonneg_count}; //std::make_pair(neg_count, nonneg_count);
}

int main() {
auto counts = count_neg_nonneg({8, -3, -1, 7, 7, -2, 0, 3});
std::cout << counts.first << " " << counts.second << '\n';

}

Note that we created a type alias (IntPair) for the more complicated type (std::pair<int, int>).

This is not particularly helpful in this simple program (we only use the type in one place), but it illustrates

that we can use the using statement for type aliasing std::pair as easily as with std::vector
or any other more complicated looking type name. We also simplified the return statement at the end

of the count_neg_nonneg function. The compiler knows the return type of the function (declared as

IntPair—a pair of integers), so it must return a pair object. The curly brace notation without any other

verbiage indicates the arguments to the std::pair<int, int> class constructor that it should use

when creating the object to return. The compiler automatically generates the machine code to call the pair

constructor with the arguments within the curly braces.

Suppose we wish to keep track of the quantity of each letter that appears in a text file. There are 26

letters in the alphabet, so we would need 26 counter variables. Managing 26 different counter variables

is inconvenient, so we could use a vector containing 26 integers. The element at index 0 could store the

number of As, the element at index 1 could keep track of the number of Bs, etc. An associative container

may be useful but is not necessary to solve our problem. Listing 21.16 (lettercount.cpp) provides one

implementation.

Listing 21.16: lettercount.cpp

// Counts the number of occurrences of each
// letter in a text file.

#include <iostream>
#include <fstream>
#include <string>
#include <vector> // To store the counters
#include <cctype> // For toupper and isalpha

int main(int argc, char *argv[]) {
if (argc < 2) {

std::cout << "Usage: lettercount <filename>\n";
std::cout << " where <filename> is the name of a text file.\n";

}
else { // User provided file name

std::string filename = argv[1];
// Make counter vector 26 big, all filled with zeros
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std::vector<int> counters(26, 0);
std::ifstream fin(filename);
if (fin.good()) { // Open the file for reading

char ch;
while (fin >> ch) {

// Capitalize the letter
ch = static_cast<char>(toupper(ch));
if (isalpha(ch)) // Only count alphabetic characters

// Compute offset into counter vector
counters[ch - 'A']++;

}
// Report the counts for each letter
ch = 'A';
for (auto count : counters)

std::cout << ch++ << ": " << count << '\n';
}
else

std::cout << "Cannot open file for reading\n";
}

}

The following paragraph appears in the Declaration of Independence of the United States (for simplicity

all punctuation has been removed):

When in the Course of human events it becomes necessary for one people to dissolve the political bands which have connected them with another and to assume among the powers of the

earth the separate and equal station to which the Laws of Nature and of Nature’s God entitle them a decent respect to the opinions of mankind requires that they should declare the causes

which impel them to the separation

When Listing 21.16 (lettercount.cpp) processes this file it reports:

A: 26
B: 2
C: 13
D: 11
E: 50
F: 6
G: 2
H: 27
I: 17
J: 0
K: 1
L: 10
M: 9
N: 24
O: 27
P: 9
Q: 2
R: 14
S: 22
T: 37
U: 9
V: 3
W: 7
X: 0
Y: 2
Z: 0
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In this case we knew we needed to count 26 different things (letters), so we were prepared with 26 counters

(26 vector elements). The number of letters in the English alphabet does not change, so this approach works

well.

So far so good, but what if we face a situation in which we must count multiple kinds of things, and we

cannot know ahead of time how many kinds of things there will be to count? How can we determine how

many counter variables to use in a program that attempts to solve such a problem?

The answer is this: We cannot know how many counter variables we will need, so we must use a

different approach. With an associative container we can use the items we wish to count as the keys.

The value associated with a key will be the count of that item. As a concrete example, Listing 21.17

(wordcount.cpp) reads the content of a text file containing words. After reading the file the program prints

a count of each word. To simplify things, the text file contains only words with no punctuation. The user

supplies the file name on the command line when launching the program (see Section 11.2.7).

Listing 21.17: wordcount.cpp

// Uses a map to count the number of occurrences of each
// word in a text file.

#include <iostream>
#include <fstream>
#include <string>
#include <map>
#include <algorithm>
#include <cctype>

int main(int argc, char *argv[]) {
if (argc < 2) {

std::cout << "Usage: wordcount <filename>\n";
std::cout << " where <filename> is the name of a text file.\n";

}
else { // User provided file name

std::string filename = argv[1];
std::map<std::string, int> counters; // Make a counting dictionary
std::ifstream fin(filename);
if (fin.good()) { // Open the file for reading

std::string word;
while (fin >> word) {

// Capitalize all the letters in the word
transform(std::begin(word), std::end(word),

std::begin(word), toupper);
counters[word]++; // Increment counter for word

}
// Report the counts for each word
for (auto item : counters)

std::cout << item.first << ":" << item.second << '\n';
}
else

std::cout << "Cannot open file for reading\n";
}

}

If we send to Listing 21.17 (wordcount.cpp) the same excerpt as before from the Declaration of Indepen-

dence of the United States it prints the following:
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A:1
AMONG:1
AND:3
ANOTHER:1
ASSUME:1
BANDS:1
BECOMES:1
CAUSES:1
CONNECTED:1
COURSE:1
DECENT:1
DECLARE:1
DISSOLVE:1
EARTH:1
ENTITLE:1
EQUAL:1
EVENTS:1
FOR:1
GOD:1
HAVE:1
HUMAN:1
IMPEL:1
IN:1
IT:1
LAWS:1
MANKIND:1
NATURE:1
NATURE'S:1
NECESSARY:1
OF:5
ONE:1
OPINIONS:1
PEOPLE:1
POLITICAL:1
POWERS:1
REQUIRES:1
RESPECT:1
SEPARATE:1
SEPARATION:1
SHOULD:1
STATION:1
THAT:1
THE:9
THEM:3
THEY:1
TO:5
WHEN:1
WHICH:3
WITH:1

In Listing 21.17 (wordcount.cpp), since we cannot predict what words will appear in a document, we cannot

use a separate variable for each counter. Instead, we use the document’s words as keys in a map object. For

each key in the map we associate an integer value that keeps track of the number of times the word appears

in the file. We use a map instead of an unordered_map so that we can list the words and their counts in
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lexicographical order.

In Listing 21.17 (wordcount.cpp) the statement

counters[word]++;

increments the integer mapped to the string word. If the map currently holds the string word, the expres-

sion simply adds one to the integer value; it the string word does not appear in the counters map object,

the statement first inserts the string word with an associated value of 0 and then immediately increments it

to 1. This is the exact behavior we need for our word counting program.

21.7 Grouping with Associative Containers

Associative containers are useful for grouping items. Like Listing 21.17 (wordcount.cpp), Listing 21.18

(groupwords.cpp) reads in the contents of a text file. Instead of counting the words, Listing 21.18 (groupwords.cpp)

groups the words into sets based on the number of letters in the word. All the words containing only one

letter are in one set, all the words containing two letters are in another set, etc.

Listing 21.18: groupwords.cpp

// Uses a map to group words in a document by their length.

#include <iostream>
#include <fstream>
#include <string>
#include <map>
#include <set>
#include <algorithm>
#include <cctype> // For toupper

// Conveniently send to an output stream a set of any printable type
template<typename T>
std::ostream& operator<<(std::ostream& os, const std::set<T>& s) {

os << '{';
auto iter = std::begin(s); // iter points to first element initially
const auto iend = std::end(s); // iend always points just past the end
if (iter != iend) // Set empty?

os << *iter++; // No? Print first element
while (iter != iend) // More left?

os << ", " << *iter++; // Print element, comma, move to next element
os << '}';
return os;

}

int main(int argc, char *argv[]) {
if (argc < 2) {

std::cout << "Usage: wordgroup <filename>\n";
std::cout << " where <filename> is the name of a text file.\n";

}
else { // User provided file name

std::string filename = argv[1];
// Make a grouping map of sets
std::map<int, std::set<std::string>> groups;
std::ifstream fin(filename);
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if (fin.good()) { // Open the file for reading
std::string word;
while (fin >> word) {

// Capitalize all the letters in the word
transform(std::begin(word), std::end(word),

std::begin(word), toupper);
// Add word to appropriate set based on the word's length
groups[word.length()].insert(word);

}
// Report the counts for each word
for (auto item : groups)

std::cout << item.first << ":" << item.second << '\n';
}
else

std::cout << "Cannot open file for reading\n";
}

}

The following shows a sample run of Listing 21.18 (groupwords.cpp) on our snippet from the Declaration

of Independence:

1:{A}
2:{IN, IT, OF, TO}
3:{AND, FOR, GOD, ONE, THE}
4:{HAVE, LAWS, THAT, THEM, THEY, WHEN, WITH}
5:{AMONG, BANDS, EARTH, EQUAL, HUMAN, IMPEL, WHICH}
6:{ASSUME, CAUSES, COURSE, DECENT, EVENTS, NATURE, PEOPLE, POWERS, SHOULD}
7:{ANOTHER, BECOMES, DECLARE, ENTITLE, MANKIND, RESPECT, STATION}
8:{DISSOLVE, NATURE'S, OPINIONS, REQUIRES, SEPARATE}
9:{CONNECTED, NECESSARY, POLITICAL}
10:{SEPARATION}

Each integer key represents the length of all the strings in the set it oversees.

In this example the need for a map object is not as compelling as in Listing 21.17 (wordcount.cpp),

because in practice the length of English words is limited. We could instead use a vector of 50 sets.

Only rarely used, highly technical words exceed 50 letters. We could handle these “too-long” words in

a special way, perhaps storing them in the set in the last position in the vector with other words of more

than 49 letters. Our program could use special processing for this set of long words if it ever becomes

nonempty. This approach under typical circumstances would result in a number of empty sets at higher

indices because most English text contains words of at most about 20 letters. The advantage of a map is that

it stores only what it needs. Listing 21.19 (groupwordsvector.cpp) is close transliteration of Listing 21.18

(groupwords.cpp) that uses a vector in place of a map.

Listing 21.19: groupwordsvector.cpp

// Uses a vector to group words in a document by their length.

#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <set>
#include <algorithm>
#include <cctype>
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// Conveniently send to an output stream a set of any printable type
template<typename T>
std::ostream& operator<<(std::ostream& os, const std::set<T>& s) {

os << '{';
auto iter = std::begin(s); // iter points to first element initially
const auto iend = std::end(s); // iend always points just past the end
if (iter != iend) // Set empty?

os << *iter++; // No? Print first element
while (iter != iend) // More left?

os << ", " << *iter++; // Print element, comma, move to next element
os << '}';
return os;

}

const size_t MAX_WORD_LENGTH = 20;

int main(int argc, char *argv[]) {
if (argc < 2) {

std::cout << "Usage: wordgroup <filename>\n";
std::cout << " where <filename> is the name of a text file.\n";

}
else { // User provided file name

std::string filename = argv[1];
// Make a grouping map of sets
std::vector<std::set<std::string>> groups(MAX_WORD_LENGTH);
std::ifstream fin(filename);
if (fin.good()) { // Open the file for reading

std::string word;
while (fin >> word) {

// Capitalize all the letters in the word
std::transform(std::begin(word), std::end(word),

std::begin(word), toupper);
// Add word to appropriate et based on the word's length
if (word.length() > MAX_WORD_LENGTH)

std::cout << "Ignoring word, too long\n";
groups[word.length()].insert(word);

}
// Report the counts for each word
for (size_t i = 1; i < groups.size(); i++)

std::cout << i << ":" << groups[i] << '\n';
}
else

std::cout << "Cannot open file for reading\n";
}

}

We can see the unused space in the output of Listing 21.19 (groupwordsvector.cpp):

1:{A}
2:{IN, IT, OF, TO}
3:{AND, FOR, GOD, ONE, THE}
4:{HAVE, LAWS, THAT, THEM, THEY, WHEN, WITH}
5:{AMONG, BANDS, EARTH, EQUAL, HUMAN, IMPEL, WHICH}
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6:{ASSUME, CAUSES, COURSE, DECENT, EVENTS, NATURE, PEOPLE, POWERS, SHOULD}
7:{ANOTHER, BECOMES, DECLARE, ENTITLE, MANKIND, RESPECT, STATION}
8:{DISSOLVE, NATURE'S, OPINIONS, REQUIRES, SEPARATE}
9:{CONNECTED, NECESSARY, POLITICAL}
10:{SEPARATION}
11:{}
12:{}
13:{}
14:{}
15:{}
16:{}
17:{}
18:{}
19:{}

In a different document there could be empty sets in the groups representing the words with fewer than 11

letters.

21.8 Memoization

We know a program can use variables to remember values as it executes. A programmer must be able

to predict the number of values the program must manage in order to write enough variables in the code.

An associative container provides an opportunity to create an arbitrary amount of new storage during a

program’s execution. We will consider a simple problem that demonstrates the value of the dynamic storage

provided by unordered_map objects.

Section 10.5 introduced the Fibonacci number sequence. That section provided a function to compute

the nth Fibonacci number, reproduced here:

// Returns the nth Fibonacci number
int fibonacci(int n) {

if (n <= 0)
return 0;

else if (n == 1)
return 1;

else
return fibonacci(n - 2) + fibonacci(n - 1);

}

This fibonacci function is correct, but it does not scale well—its execution time grows significantly as its

parameter, n, increases. The problem is this: when computing a solution for a particular Fibonacci number

the function can repeat exactly the same work multiple times. Figure 10.2 illustrates the repetitive work

performed by the call fibonacci(5). As we can see from the figure, the function’s recursive execution

calls fibonacci(1) five times during the computation of fibonacci(5). We can verify the results

shown in Figure 10.2 by augmenting our fibonacci function with a global map that counts function calls.

Listing 21.20 (fibonacciinstrumented.cpp).

Listing 21.20: fibonacciinstrumented.cpp

#include <iostream>
#include <map>

©2018 Richard L. Halterman Draft date: December 2, 2018



21.8. MEMOIZATION 713

// This associative container will keep track of the number of
// calls to the fibonacci function.
std::map<int, int> call_counter;

// Returns the nth Fibonacci number
int fibonacci(int n) {

// Count the call
call_counter[n]++;

if (n <= 0)
return 0;

else if (n == 1)
return 1;

else
return fibonacci(n - 2) + fibonacci(n - 1);

}

int main() {
// Call fibonacci(5)
std::cout << "fibonacci(5) = " << fibonacci(5) << "\n\n";

// Report the total number of calls to the fibonacci function
std::cout << "Argument Calls" << '\n';
std::cout << "-----------------\n";
for (auto& counts: call_counter)

std::cout << " " << counts.first << " "
<< counts.second << '\n';

}

Listing 21.20 (fibonacciinstrumented.cpp) prints

fibonacci(5) = 5

Argument Calls
-----------------

0 3
1 5
2 3
3 2
4 1
5 1

Note the results that Listing 21.20 (fibonacciinstrumented.cpp) prints agree exactly with the call count

shown in Figure 10.2. As we compute larger Fibonacci numbers, the amount of repeated work worsens

quickly; for example, the call fibonacci(20) recursively calls fibonacci(1) 6,765 times! For addi-

tional emphasis, the call fibonacci(35) recursively calls fibonacci(1), fibonacci(2), fibonacci(3),

fibonacci(4), and fibonacci(5) over one million times each! We may be tempted to care less about

the program’s repeated work—after all, it is the computer doing the work, not us. Unfortunately, the com-

puter, even though it is very fast, requires some amount of time to perform any task. As we multiply the

number of tasks a program must do to solve a problem, the time to compute the solution increases, and, in

the case of the fibonacci function, the time increases dramatically.

We can improve the performance of our fibonacci function using a technique known as memoization
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(not to be confused with the word memorization which means to commit something to memory). Memo-

ization is an algorithm design technique that records the result of a specific computation so that result can

be used as needed at a later time during the algorithm’s execution. It is as if the executing program “makes

a note to itself” or “stores the result in a memo.” When the program needs the result of an identical com-

putation in the future, if simply reads the memo with the answer it stored earlier. In this way the program

avoids repeating the work. Memoization is especially useful for problems that consist of subproblems that

overlap and appear to require multiple computations with identical input.

The following function uses an unordered map object to cache previously computed Fibonacci numbers:

// Returns the nth Fibonacci number. Caches a
// recursively computed result to be used when needed
// in the future. Provides a huge performance improvement
// over the recursive version.
int fibonacci2(int n) {

// Map for caching the results of the fib function
// ans is declared static so it retains its value between
// calls to fibonacci2.
// Precomputes the results for 0 and 1.
static unordered_map<int, int> ans {{0, 0}, {1, 1}};
if (n > 1 && ans[n] == 0) // Need to compute?

ans[n] = fibonacci2(n - 2) + fibonacci2(n - 1);
return ans[n];

}

The fibonacci2 function uses an unordered map as a cache of stored values that persist for the duration

of the program’s execution. Since the ans local variable is static, the run-time environment creates and

initializes it with keys 0 and 1 before executing the main function. When a caller invokes fibonacci2,

if the answer is not in ans, it computes the result and stores the result in ans for future use. This not

only helps future calls to the function from the outside, but it also speeds up recursive invocations that must

perform the same work.

Listing 21.21 (fibonacci.h) declares the interfaces for fibonacci and fibonacci2, two functions that

compute the nth Fibonacci number.

Listing 21.21: fibonacci.h

#ifndef FIBONACCI_H_DEFINED
#define FIBONACCI_H_DEFINED

// Values in the range 0...18,446,744,073,709,551,615 on Windows
using Integer = unsigned long long;

// Returns the nth Fibonacci number using
// recursion without memoization
Integer fibonacci(unsigned n);

// Returns the nth Fibonacci number using recursion
// with memoization. Provides a huge performance improvement
// over the pure recursive version.
Integer fibonacci2(unsigned n);

#endif
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The Fibonacci numbers grow very quickly, so the functions in Listing 21.21 (fibonacci.h) return unsigned long long
values. For convenience it introduces the type alias Integer for unsigned long long to simplify

the code. Under Visual C++, for example, this type supports values in the range 0 . . .18,446,744,073,709,551,615,

inclusive. Listing 21.22 (fibonacci.cpp) provides the implementations for the two functions.

Listing 21.22: fibonacci.cpp

#include <unordered_map>
#include "fibonacci.h"

// Returns the nth Fibonacci number
Integer fibonacci(unsigned n) {

if (n <= 0)
return 0;

else if (n == 1)
return 1;

else
return fibonacci(n - 2) + fibonacci(n - 1);

}

// Returns the nth Fibonacci number. Caches a
// recursively computed result to be used when needed
// in the future. Provides a huge performance improvement
// over the recursive version.
Integer fibonacci2(unsigned n) {

// ans is a map for caching the results of the fibonacci2 function.
// Declared static so it persists between function calls.
// Precomputes the results for 0 and 1.
static std::unordered_map<unsigned, Integer> ans {{0, 0}, {1, 1}};
if (n > 1 && ans[n] == 0)

ans[n] = fibonacci2(n - 2) + fibonacci2(n - 1);
return ans[n];

}

When compiled and linked with the code in Listing 21.22 (fibonacci.cpp), Listing 21.23 (testfib.cpp) verifies

that the fibonacci2 function produces the same results as the fibonacci function when given the same

arguments. It tests unsigned values up to 50. You will observe that as the arguments become larger, the

program takes longer to print the results.

Listing 21.23: testfib.cpp

#include <iostream>
#include "fibonacci.h"

// Compares the behaviors of the fibonacci and fibonacci2 functions.
int main() {

// Print the first 50 Fibonacci numbers
for (unsigned i = 0; i <= 50; i++)

std::cout << i << ": " << fibonacci(i) << " "
<< fibonacci2(i) << '\n';

}

The following shows the first 20 lines of the output of Listing 21.23 (testfib.cpp):
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0: 0 0
1: 1 1
2: 1 1
3: 2 2
4: 3 3
5: 5 5
6: 8 8
7: 13 13
8: 21 21
9: 34 34
10: 55 55
11: 89 89
12: 144 144
13: 233 233
14: 377 377
15: 610 610
16: 987 987
17: 1597 1597
18: 2584 2584
19: 4181 4181
20: 6765 6765

In total, all 50 lines match, and that gives us confidence that our memoized version is correct.

Listing 21.24 (timefib.cpp) reveals just much faster the memoized function executes compared to the

non-memoized version.

Listing 21.24: timefib.cpp

#include <iostream>
#include <ctime>
#include <functional>

#include "fibonacci.h"

// f is a function that accepts a single parameter, n is a number
// to pass to the function.
// Measures the time for function f to execute given parameter n.
// Returns the cumulative elapsed time in milliseconds.
unsigned time_it(const std::function<Integer(unsigned)>& f, unsigned n) {

clock_t start_time = clock();
f(n);
clock_t end_time = clock();
return static_cast<unsigned>(end_time - start_time); // Return elapsed time

}

// Tests the performance of the fibonacci and fibonacci2 functions.
int main() {

auto t1 = time_it(fibonacci, 50);
auto t2 = time_it(fibonacci2, 50);
std::cout << "Time: " << "fibonacci = "<< t1 << " msec, fibonacci2 = "

<< t2 << " msec\n";
}

One run of Listing 21.24 (timefib.cpp) prints
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Figure 21.1 The hierarchy of recursive function calls that result from the call fibonacci2(5). Note that

the calls of fibonacci(2) and fibonacci(3) on the right side of the tree need no recursive calls; this

is because their earlier calls on the left side of the tree stored their results in the map for instant retrieval.

Caller

2 1 23

fibonacci2(3)

fibonacci2(4)

3 2 34

fibonacci2(5)

5 5

fibonacci2(2)

1 1 12

0 0 11

fibonacci2(0)

fibonacci2(2)

fibonacci2(1)

fibonacci2(1)

fibonacci2(3)

0 0 11

fibonacci2(0) fibonacci2(1)

1 1 12

0 0 11

fibonacci2(0)

fibonacci2(2)

fibonacci2(1)

fibonacci2(1)

B

A

Use value 

cached at A

Use value 

cached at B

Time: fibonacci = 111430 msec, fibonacci2 = 1 msec

The original recursive version requires over 111 seconds (almost two minutes), while the memoized recur-

sive version takes only 1 millisecond. During this run the memoized version was over 100,000 times faster.

The fibonacci2 function is so fast because it avoids all the redundant recursive calls the fibonacci
function must compute.

Listing 21.24 (timefib.cpp) provides an honest test, as it forces fibonacci2 to compute the 50th

Fibonacci number right away with no previous fibonacci2 invocations. Once completing a call of

fibonacci2(n), all of the Fibonacci numbers from 0 . . .n will be present in the function’s unordered_map
cache of precomputed values. This means future invocations involving any values in that range will be very

fast. Any program that must compute Fibonacci numbers multiple times during their execution will espe-

cially benefit from the memoized version.

Figure 21.1 shows the recursion tree for our memoized Fibonacci function computing the fifth Fibonacci

number. The figure shows only nine invocations of fibonacci2, compared to 15 invocations of the non-

memoized fibonacci function. If you add the function call counting instrumentation used in Listing 21.20

(fibonacciinstrumented.cpp) to fibonacci2, you will find the numbers it reports agrees with Figure 21.1.
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Chapter 22

Handling Exceptions

CAUTION!      CHAPTER UNDER CONSTRUCTION

In our programming experience so far we have encountered several kinds of run-time errors. To this

point, all of our run-time errors have resulted in the executing program’s termination. C++ provides an ex-

ception handling framework that allows programmers to deal with certain kinds of run-time errors. Rather

than always terminating the program’s execution, the exception handling infrastructure enables program-

mers to detect a problem and execute code to correct the issue or manage it in other ways. This chapter

explores C++’s exception handling mechanism.

22.1 Motivation

Algorithm design can be tricky because the details are crucial. It may be straightforward to write an algo-

rithm to solve a problem in the general case, but there may be a number of special cases that must all be

addressed within the algorithm for the algorithm to be correct. Some of these special cases might occur

rarely under the most extraordinary circumstances. For the code implementing the algorithm to be robust,

these exceptional cases must be handled properly; however, adding the necessary details to the algorithm

may render it overly complex and difficult to construct correctly. Such an overly complex algorithm would

be difficult for others to read and understand, and it would be harder to debug and extend.

Ideally, a developer would express the algorithm in its general form including any common special

cases. Exceptional situations that should arise rarely, along with a strategy to handle them, could appear

elsewhere, perhaps as an annotation to the algorithm. Thus, the algorithm is kept focused on solving the

problem at hand, and measures to deal with exceptional cases are handled elsewhere.

C++’s exception handling infrastructure allows programmers to cleanly separate the code that imple-

ments the focused algorithm from the code that deals with exceptional situations that the algorithm may

face. This approach is more modular and encourages the development of code that is cleaner and easier to

maintain and debug.

An exception is an exceptional event that occurs during a program’s execution. An exception always is

possible, but it should be a relatively rare event. If it were not rare, it would be a customary or expected

event, and the program should handle it as part of its normal processing.

An exception almost always represents a problem, usually some sort of run-time error. Suppose we have
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a vector named v and an integer i. Unless 0 ≤ i < v.size(), the expression v[i] attempts to access

an element outside the vector’s bounds. The operator[] method performs no bounds checking; thus, an

executing program using the expression v[i] would represent undefined behavior. Consider instead the

expression v.at(i). The at method works just like operator[], except at does check the vector’s

bounds. If i ≥ v.size() or i < 0, the expression v.at(i) represents an exceptional situation, and we

say the vector’s at method throws, or raises, an exception.

Without taking advantage of C++’s exception handling infrastructure, the following statement:

v.at(i) = 4;

could terminate the program with an error message. While this is better than undefined behavior, it is

not ideal. The program crashes. When a real application crashes the user may lose unsaved data. Badly

behaving programs terminate unexpectedly. It would be better to defend against the out-of-bounds index

and keep the program alive.

An algorithm could handle many potential problems itself. For example, a programmer can use an if
statement to test to see if a vector’s index is within the proper bounds:

if (0 <= i && i < v.size()) // Ensure i is in range
v.at(i) = 4;

However, if the programmer accesses a vector in several different locations within a given function or

method and the index variable can vary from place to place, the number of if statements necessary to

ensure safe vector access might obscure the overall logic of the function or method.

22.2 Exception Examples

Consider Listing 22.1 (vectorboundscrash.cpp). The program crashes whenever the user enters a value

equal to an index outside the range of vector nums.

Listing 22.1: vectorboundscrash.cpp

#include <iostream>
#include <vector>

int main() {
std::vector<double> nums { 1.0, 2.0, 3.0 };
int input;
std::cout << "Enter an index: ";
std::cin >> input;
std::cout << nums.at(input) << '\n';

}

The at method guarantees that an illegal access will not go undetected. To intercept the problem at run

time and prevent the program from terminating due to an error, we use a try/catch block, which consists

of two parts: a try block and a catch block. To form a try/catch block we

1. wrap the code that has the potential to throw an exception in a try block, and

2. provide code to execute only in the event of an exception in a catch block.

Listing 22.2 (vectorboundsexcept.cpp) adds the exception handling code to Listing 22.1 (vectorboundscrash.cpp).
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Listing 22.2: vectorboundsexcept.cpp

#include <iostream>
#include <vector>

int main() {
std::vector<double> nums { 1.0, 2.0, 3.0 };
int input;
std::cout << "Enter an index: ";
std::cin >> input;
try {

std::cout << nums.at(input) << '\n';
}
catch (std::exception& e) {

std::cout << e.what() << '\n';
}

}

If a user enters a value less than zero or greater than two when executing Listing 22.2 (vectorboundsexcept.cpp),

the program will print an error message and technically terminate successfully instead of crashing.

Both try and catch are keywords in C++. Unlike the bodies of the structured statements such as if
and while, the statements within a try block and statements within a catch block must appear within

curly braces, even if only one statement appears in the section.

Every try block or catch block must surround its statements with curly

braces—even if it contains just one statement.

The variable e within the catch block of Listing 22.2 (vectorboundsexcept.cpp) is a reference to

an exception object. The exception class is part of the standard C++ library and is the base class

for all the standard exceptions. The exception class provides a what method that returns a string.

The exception::what method’s string is a message containing information about the exception. The

C++ standard does not specify the exact message, but at the very least the exception::what method

indicates the kind of exception caught. The following shows what the program reports under Visual C++

when the user enters the value 3:

Enter an index: 3
invalid std::vector<T> subscript

While Listing 22.2 (vectorboundsexcept.cpp) does not technically crash, its behavior is not much differ-

ent from an actual abnormal program termination. Listing 22.3 (betterboundsexcept.cpp) provides a more

practical example. This improved version uses a loop to continuously request integer values until the user

supplies one that does not throw an exception.

Listing 22.3: betterboundsexcept.cpp

#include <iostream>
#include <vector>
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int main() {
std::vector<double> nums { 1.0, 2.0, 3.0 };
int input;
while (true) {

std::cout << "Enter an index: ";
std::cin >> input;
try {

std::cout << nums.at(input) << '\n';
break; // Printed successfully, so break out of loop

}
catch (std::exception&) {

std::cout << "Index is out of range. Please try again.\n";
}

}
}

What makes the exception code

try {
std::cout << nums.at(input) << '\n';

}
catch (std::exception& e) {

std::cout << e.what() << '\n';
}

better than the conditional code

if (0 <= input && input < nums.size()) {
std::cout << nums.at(input) << '\n';

}
else {

std::cout << "Vector out of bounds exception\n";
}

is not immediately obvious from this simple example. To see the real capability of exceptions, consider

Listing 22.4 (callchainexception.cpp).

Listing 22.4: callchainexception.cpp

#include <iostream>
#include <vector>
#include <string>

// Used to keep track of object creation and destruction
class Tracker {

std::string name;
public:
Tracker(const std::string& s): name(s) {

std::cout << "Creating Tracker (" << name << ")\n";
}
∼Tracker() {

std::cout << "Destroying Tracker (" << name << ")\n";
}

};
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bool find(const std::vector<int>& v, int lower, int upper) {
std::cout << "------[Entering find]------\n";
Tracker obj("find"); // Local tracking object
bool result = false; // Not there by default
int seek; // What to look for
std::cout << "Enter item to locate: ";
std::cin >> seek;
for (int i = lower; i < upper; i++)

if (v.at(i) == seek) {
result = true; // Found it
break;

}
std::cout << "------[Leaving find]------\n";
return result;

}

void process(const std::vector<int>& v) {
std::cout << "------[Entering process]------\n";
Tracker obj("process"); // Local tracking object
int low, high;
std::cout << "Enter a range: ";
std::cin >> low >> high;
if (find(v, low, high))

std::cout << "Found it\n";
else

std::cout << "Not there\n";
std::cout << "------[Leaving process]------\n";

}

// Global tracking object
Tracker obj("global");

int main() {
std::cout << "------[Entering main]------\n";
Tracker obj("main"); // Local tracking object
std::vector<int> nums { 11, 42, 23 };
try {

process(nums);
}
catch (std::exception& e) {

std::cout << "nums vector bounds exceeded\n";
}
std::cout << "------[Leaving main]------\n";

}

Listing 22.4 (callchainexception.cpp) is specially crafted to provide insight into the program’s exact execu-

tion path. Each function prints a message at its beginning and end so we can see when the code within a

function is active. Each function also declares a local Tracker object which is identified by the name of

that function. An executing function constructs a local object at its point of declaration and automatically

destroys the object when the function returns to its caller. These local objects, therefore, have a lifetime

that mirrors the lifetime of the function that manages them. Finally, Listing 22.4 (callchainexception.cpp)

declares a global Tracker object. An executing program creates global objects before it calls main and
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automatically destroys them after main completes.

In Listing 22.4 (callchainexception.cpp) the vector nums, declared in main, holds three elements. The

main function passes its nums vector to process. During its call to process, the main function

has no control over the process function’s attempts to access an element outside the range of nums.

The process function, however, does not itself attempt to access any elements within the vector that

main supplies. Instead, process passes the vector on to the find function. It is in find where prob-

lems may arise because find calls the vector’s at method. If the find function calls the vector’s at
method with an out-of-bounds index, at will throw an exception. Observe that unlike in Listing 22.2

(vectorboundsexcept.cpp), the method that calls std::vector<int>::at does not do so within a

try/catch block. This means find cannot catch any exceptions that std::vector<int>::atmight

throw.

The following shows a sample run of Listing 22.4 (callchainexception.cpp):

Creating Tracker (global)
------[Entering main]------
Creating Tracker (main)
------[Entering process]------
Creating Tracker (process)
Enter a range: 0 2
------[Entering find]------
Creating Tracker (find)
Enter item to locate: 4
------[Leaving find]------
Destroying Tracker (find)
Not there
------[Leaving process]------
Destroying Tracker (process)
------[Leaving main]------
Destroying Tracker (main)
Destroying Tracker (global)

In this output of Listing 22.4 (callchainexception.cpp) we see the following sequence of events:

1. The program creates the global Tracker object.
2. The program calls main.
3. The main function creates its Tracker object.
4. main calls process.
5. The process function creates its Tracker object.
6. The process function obtains the user’s input for range values. Here the users entered the range

0. . . 2.
7. The process function calls find.
8. The find function creates its Tracker object.
9. The find function obtains the user’s input for the element to seek. Here the user enters 4 (which is

not present in the vector).
10. The find function executes its last statement.
11. When find returns to process, the program destroys find’s local Tracker object.
12. process uses find’s result to print the message that the element sought is not present in the vector.
13. The process function executes its last statement.
14. When process returns to main, the program destroys process’s local Tracker object.
15. The main function executes its last statement.
16. When main returns, the program destroys main’s local Tracker object.
17. When the program terminates it destroys the global Tracker object.
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Figure 22.1 Function call chain without an exception. The std::vector<int>::at method, the find
function, and the process function all complete their work and return as usual to their callers.

Program Execution Timeline

main

find

process

nums

0, 2
fals

e

vector<int>::at

v,i v.at(i)

Figure 22.1 provides a more graphical representation of this process.

In this case the user did not enter a range in the process function that would cause a problem in

find, so no exceptions arise. Since the program’s execution produced no exceptions, it did not execute the

printing statement in the catch block.

To see what happens during an exception consider the following sample run of Listing 22.4 (callchainexception.cpp):

Creating Tracker (global)
------[Entering main]------
Creating Tracker (main)
------[Entering process]------
Creating Tracker (process)
Enter a range: 10 20
------[Entering find]------
Creating Tracker (find)
Enter item to locate: 4
Destroying Tracker (find)
Destroying Tracker (process)
nums vector bounds exceeded
------[Leaving main]------
Destroying Tracker (main)
Destroying Tracker (global)

The user supplied range of 10. . . 20 definitely is outside the bounds of main’s nums vector. Because the

program does not print find’s exit message we know the find function does not complete its execution

as usual. This is because the std::vector<int>::at method called by find throws an exception.

Furthermore, it does not appear that find returns normally to process, since process does not print

its exit message either. We do see, though, that the program does properly destroy the the local Tracker
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Figure 22.2 Function call chain interrupted by an exception. Neither the std::vector<int>::at
method, the find function, nor the process function completes its work and returns as usual to its caller.

Control passes back to the catch block associated with the nearest try block in the call chain.
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objects owned by find and process. The program’s execution path lands immediately back in main,

which we see does exit normally after executing the statement in its catch block. The program finishes

by destroying main’s Tracker object followed by destroying the global Tracker object. Figure 22.2

better illustrates the program’s execution.

Listing 22.4 (callchainexception.cpp) demonstrates that exceptions have the potential to radically alter

the normal function call and return pathways. In one sense an exception works like a “super goto” state-

ment. The program’s execution jumps back to a previous point in its execution sequence, bypassing all

functions in the call chain in between. Recall Section 6.3.2 discouraged the use of the goto statement

except for it use to exit from within a nested loop. This is because the logic in code that uses indiscriminate

gotos instead of the structured branching and looping constructs such as if/else, switch, while,

and for tends to be obscure and difficult to extend and maintain. C++’s exception mechanism is different

than a “super goto” in several important ways:

• A goto statement cannot jump to code outside of the function in which it appears. Exceptions have

no such limitation.

• The programmer must specify a destination (label) for a goto statement. In the case of Listing 22.4

(callchainexception.cpp), the std::vector<int>::at method throws the exception. We can

call at from many different functions within a single program and use at in many different pro-

grams. The code within the at method cannot possibly know where to go if it encounters an

exceptional situation. An exception simply redirects the program’s execution to the most recent

try/catch block in the call chain that can handle the exception.

Listing 22.5 (badinput.cpp) follows.
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Listing 22.5: badinput.cpp

#include <iostream>
#include <fstream>

// Sum the values the user enters
int main() {

int input = 0, sum = 0;
// Enable exceptions in the cin object
std::cin.exceptions(std::ifstream::badbit | std::ifstream::failbit);
std::cout << "Please enter integers to sum, 999 ends list: ";
while (input != 999) {

try {
std::cin >> input; // Watch for faulty (non-integer) input
if (input != 999)

sum += input; // Do not not include the terminating 999
}
catch (std::exception& e) {

std::cout << "****Non-integer input detected\n";
//cin.exceptions(std::ifstream::badbit | std::ifstream::failbit);
std::cin.clear(); // Clear I/O error
std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
//std::cout << e.what() << '\n';

}
}
std::cout << "Sum = " << sum << '\n';

}

Listing 22.6 (strboundsexcept.cpp) follows.

Listing 22.6: strboundsexcept.cpp

#include <iostream>
#include <string>

int main() {
std::string s = "Wow";
std::cout << s[3] << '\n';
try {

std::cout << s.at(3) << '\n';
}
catch (std::exception& e) {

std::cout << e.what() << '\n';
}

}

Listing 22.7 (filereadexcept.cpp) follows.

Listing 22.7: filereadexcept.cpp

#include <iostream>
#include <fstream>
#include <vector>

int main() {
try {
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std::ifstream fin("data.dat");
if (fin.good()) {

int n;
fin >> n; // Size of dataset
std::vector<int> data(n); // Allocate vector
for (int i = 0; i <= n; i++ ) { // Error: should be <

int value;
fin >> value;
data.at(i) = value;

}
// Print the values
for (auto value : data)

std::cout << value << ' ';
std::cout << '\n';

}
else

std::cout << "File does not exist\n";
}
catch (std::exception& e) {

std::cout << e.what() << '\n';
}

}

22.3 Custom Exceptions

The standard C++ library has a limited number of standard exceptions. We can create our own custom excep-

tions for specialized error handling that our applications may require. Listing 22.8 (customfilereadexcept.cpp)

defines a custom exception class, FileNotFoundException, derived from the standard std::exception
class.

Listing 22.8: customfilereadexcept.cpp

#include <iostream>
#include <fstream>
#include <vector>
#include <string>

// Exception object to thrown when a client attempts to
// open a text file via a name that does correspond to a
// file in the current working directory.
class FileNotFoundException : public std::exception {

std::string message; // Identifies the exception and filename
public:
// Constructor establishes the exception object's message
FileNotFoundException(const std::string& fname):

message("File \"" + fname + "\" not found") {}

// Reveal message to clients
const char *what() const {

return message.c_str();
}

};
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// Creates and returns a vector of integers from data stored
// in a text file.
// filename: the name of the text file containing the data
// Returns a vector containing the data in the file, if possible
std::vector<int> load_vector(const std::string& filename) {

std::ifstream fin(filename); // Open the text file for reading
if (fin.good()) { // Did the file open successfully?

std::vector<int> result; // Initially empty vector
int n;
fin >> n; // Size of data set
for (int i = 0; i < n; i++ ) {

int value;
fin >> value; // Read in a data value
result.push_back(value); // Append it to the vector

}
return result; // Return the populated vector

}
else // Could not open the text file

throw FileNotFoundException(filename);

}

int main() {
try {

std::vector<int> numbers = load_vector("values.data");
for (int value : numbers)

std::cout << value << ' ';
std::cout << '\n';

}
catch (std::exception& e) {

std::cout << e.what() << '\n';
}

}

If we execute Listing 22.8 (customfilereadexcept.cpp) in a directory that does not contain a text file named

values.data, it displays

File "values.data" not found

Since we derived the FileNotFoundException class from std::exception, any FileNot-

FoundException object also is a std::exception object (see Section 17.1). This enables the main
function to catch a FileNotFoundException object in its catch body even though it is declared to

catch std::exception objects.

The C++ standard library provides a number of exception classes, all derived from std::exception.

The vector out-of-bounds exception objects thrown by the atmethod are instances of the standard std::out_of_range
class. The std::out_of_range class is derived from the standard logic_error class which itself

is derived from the standard std::exception class. Figure 22.3 shows the relationship among these

exception classes.
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Figure 22.3 The relationship among the exception classes involved in Listing 22.8

(customfilereadexcept.cpp). The classes exception, logic_error, and out_of_range are

standard exception classes, FileNotFoundException is our custom exception class.

exception

logic_error FileNotFoundException

out_of_range

22.4 Catching Multiple Exceptions

Listing 22.9 (filereadmultiexcept1.cpp) has the potential to throw more than one type of exception.

Listing 22.9: filereadmultiexcept1.cpp

#include <iostream>
#include <fstream>
#include <vector>
#include <string>

// Exception object to thrown when a client attempts to
// open a text file via a name that does correspond to a
// file in the current working directory.
class FileNotFoundException : public std::exception {

std::string message; // Identifies the exception and filename
public:
// Constructor establishes the exception object's message
FileNotFoundException(const std::string& fname):

message("File \"" + fname + "\" not found") {}

// Reveal message to clients
const char *what() const {

return message.c_str();
}

};

// Creates and returns a vector of integers from data stored
// in a text file.
// filename: the name of the text file containing the data
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// Returns a vector containing the data in the file, if possible
std::vector<int> load_vector(const std::string& filename) {

std::ifstream fin(filename); // Open the text file for reading
if (fin.good()) { // Did the file open successfully?

int n;
fin >> n; // Size of data set
std::vector<int> result(n); // Allocate space for the vector
int value, i = 0;
while (fin >> value)

result.at(i++) = value; // Insert it into the vector
return result; // Return the populated vector

}
else // Could not open the text file

throw FileNotFoundException(filename);

}

int main() {
try {

std::vector<int> numbers = load_vector("values.data");
for (int value : numbers)

std::cout << value << ' ';
std::cout << '\n';

}
catch (std::exception& e) {

std::cout << e.what() << '\n';
}

}

The text file containing the integers to load into the vector has a specific format. The first integer read from

the file is not a data element; instead, it specifies the number of integers that follow. This gives us two

options for creating and populating the vector:

1. Create the vector with sufficient size up front and then use a loop to place to individual elements in

their proper places.

2. Create an empty vector and then use a loop to push_back the individual elements.

Option 1 is more efficient than Option 2. Successive calls to std::vector<int>::push_back must

reallocate and copy elements multiple times. Option 2 is safer than Option 1 because the number of elements

specified at the start may not agree with the actual number of data elements in the file. If the specified

number is too small, the function will attempt to overrun the bounds of the vector.

Listing 22.9 (filereadmultiexcept1.cpp) opts for efficiency at the expense of safety. This means it depends

on a correctly created data file. If the file does not exist, load_vector will throw our FileNotFound-

Exception custom exception:

File "values.data" not found

If the file exists and contains

3
10
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20
30
40
50

the load_vector function will throw the standard std::out_of_range exception.

Listing 22.10 (filereadmultiexcept2.cpp) uses two catch blocks to print different messages depending

on the exact type of exception object thrown by a load_vector.

Listing 22.10: filereadmultiexcept2.cpp

#include <iostream>
#include <fstream>
#include <vector>
#include <string>

// Exception object to thrown when a client attempts to
// open a text file via a name that does correspond to a
// file in the current working directory.
class FileNotFoundException : public std::exception {

std::string message; // Identifies the exception and filename
public:
// Constructor establishes the exception object's message
FileNotFoundException(const std::string& fname):

message("File \"" + fname + "\" not found") {}

// Reveal message to clients
const char *what() const {

return message.c_str();
}

};

// Creates and returns a vector of integers from data stored
// in a text file.
// filename: the name of the text file containing the data
// Returns a vector containing the data in the file, if possible
std::vector<int> load_vector(const std::string& filename) {

std::ifstream fin(filename); // Open the text file for reading
if (fin.good()) { // Did the file open successfully?

int n;
fin >> n; // Size of data set
std::vector<int> result(n); // Allocate space for the vector
int value, i = 0;
while (fin >> value)

result.at(i++) = value; // Append it to the vector
return result; // Return the populated vector

}
else // Could not open the text file

throw FileNotFoundException(filename);

}

int main() {
try {

std::vector<int> numbers = load_vector("values.data");
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for (int value : numbers)
std::cout << value << ' ';

std::cout << '\n';
}
catch (std::out_of_range& e) {

std::cout << "Error: vector bounds exceeded\n";
std::cout << e.what() << '\n';

}
catch (FileNotFoundException& e) {

std::cout << "Error: cannot open file\n";
std::cout << e.what() << '\n';

}
}

22.5 Exception Mechanics

An exception handler within a catch block may take a few steps to handle the exception and then re-throw

the exception or throw a completely different exception.

Listing 22.11: rethrow.cpp

#include <iostream>
#include <fstream>
#include <vector>

void filter(std::vector<int>& v, int i) {
v.at(i)++;

}

void compute(std::vector<int>& a) {
for (int i = 0; i < 6; i++) {

try {
filter(a, i);

}
catch (std::exception& ex) {

std::cout << "********************************\n";
std::cout << "* For loop terminated prematurely\n";
std::cout << "* when i = " << i << '\n';
std::cout << "********************************\n";
throw ex; // Rethrow the same exception

}
}

}

int main() {
std::vector<int> list { 10, 20, 30, 40, 50 };
try {

compute(list);
}
catch (std::exception& e) {

std::cout << "Caught an exception: " << e.what() << '\n';
}
std::cout << "Program finished\n";
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}

Listing 22.11 (rethrow.cpp) produces the following output:

********************************
* For loop terminated prematurely
* when i = 5
********************************
Caught an exception: invalid std::vector<T> subscript
Program finished

Notice that in Listing 22.11 (rethrow.cpp) the compute function does not create a new exception object; it

simply re-throws the same exception object that it caught. This concept of intermediate exception handlers

is important since a function invocation has complete knowledge of it own local context such as its local

variables. This means that an intermediate function (or method) in the call chain has access to information

that may be unavailable to all other functions (or methods) within that call chain. The catch block in the

compute function of Listing 22.11 (rethrow.cpp) involves only local variables. The catch block within

the main function cannot know the subscript that caused compute’s failure since i is local to compute.

Some general exception guidelines include:

• Handle exceptions as close (up the call chain) as possible to the code that throws the exception.

• Use local information where applicable to correct as much of the problem as possible within that

local context:

– Local information which may be important for recovering from the exceptional situation is

available; this local information is unavailable to functions or methods up the call chain.

– The lower-level functions/methods that are prone to exceptions may be called by many different

higher-level functions/methods. If the lower-level functions/methods are responsible for their

own exception handling, then the higher-level functions/methods may be able to dispense with

exception handling altogether making the lower-level methods more robust units of reuse.

– The lower-level functions/methods may handle many different kinds of exceptions, do any lo-

cal clean up they can based on the type of exception thrown, and then throw a different type of

exception up to the higher-level methods. The higher-level method may just need to know there

was a problem without needing to know exactly what the problem was. For example, in List-

ing 22.11 (rethrow.cpp), the compute function could throw a custom ComputeException
object whenever filter throws its std::out_of_range instead of just passing up the call

chain the std::out_of_range object it receives.

If total recovery is not possible or desirable at the lower levels of the call chain, re-throw the exception

so an exception handler up the call chain can take steps to recover from the problem in a manner that

makes sense in its context.

When a section of code throws an exception, the catch blocks within the nearest exception handler

are checked in the order they appear in the C++ source code. The first catch block that matches the type

of the exception thrown is the one executed. For example, Listing 22.12 (multipleexceptions.cpp) expects

two types of exceptions, and it uses the catch-all exception in case any unexpected exceptions arise.

Listing 22.12: multipleexceptions.cpp

#include <iostream>
#include <fstream>
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#include <vector>
#include <string>

// Get an integer from the user. Note that std::stoi can
// throw a std::invalid_argument exception if the user's
// input is not an integer, and it can throw std::out_of_range
// if the string is a valid integer but outside the range of
// a C++ int on this platform.
int get_int() {

std::string input;
std::cin >> input;
int result = stoi(input);
return result;

}

int main() {
std::vector<int> a { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };
try { // What possibly could go wrong?

int n = a.size();
std::cout << "Enter index in the range 0..." << n - 1 << ": ";
// Will user enter a valid integer value?
int i = get_int();
std::cout << "Index entered: " << i << '\n';
// Will the user's index be in the range of valid indices?
std::cout << "a[" << i << "] = " << a.at(i) << '\n';

}
catch (std::out_of_range&) {

std::cout << "Index provided is out of range\n";
}
catch (std::invalid_argument&) {

std::cout << "Index provided is not an integer\n";
}
catch (...) { // What have we forgotten?

std::cout << "Unknown error\n";
}

}

When an exception is caught, its type is first compared to std::out_of_range. If it matches, the

std::out_of_range catch block is executed. If not, the exception’s type is then compared to

invalid_argument. The invalid_argument catch block is executed in the case of a match.

If neither of the two types match, the catch-all code is executed.

When inheritance is involved, the situation becomes more interesting. The comparison performed in

each catch block is a test for assignment compatibility. A reference or a pointer to an instance of a

derived class can be assigned to a variable declared to be a reference a pointer to a base class. This up-

casting operation is always legal because of the is a relationship between a derived class and its base

class. This means an exception object of type std::out_of_range is assignment compatible with

both std::out_of_range variables and std::exception variables. Since the catch blocks are

checked in the order they appear in the source code, the following code would have a problem:

try {
// Execute some code that can throw an
// out_of_range exception
. . .
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}
catch (std::exception& e) {

// Do something here
}
catch (std::out_of_range& e) { // Error, this can never be reached

// Do something else here
}

The std::out_of_range catch block will never execute since a std::out_of_range object is an

exception instance also. For this reason it is illegal for a more specific type to follow a more general

type in a sequence of catch blocks. The above code fragment will not compile in any context. Thus, in a

sequence of catch blocks, list the more specific exceptions first followed by the more general exceptions.

All C++ standard exception classes have std::exception as their direct or indirect base class. C++

does not require exception objects to be derived from exception; in fact, primitive types such as int
and char can be thrown and caught as well. Because of this, the “catch all” exception clause is

catch (...) {
// Catches any exceptions not caught by more specific
// catch blocks in this try/catch block

}

The ellipses (...) stand for an exception of any type.

Any function or method can throw an exception object. Given an exception of type E, the statement to

do so is:

throw E();

22.6 Using Exceptions

Exceptions should be reserved for uncommon errors. For example, the following code adds up all the

elements in an integer vector named vec:

int sum = 0, n = vec.size();
for (int i = 0; i < n; i++) {

sum += vec[i];
}
std::cout << "Sum = " << sum << '\n';

This loop is fairly typical. Another approach uses exceptions:

sum = 0;
int i = 0;
try {

while (true)
sum += vec.at(i++);

}
catch (std::out_of_range&) {}
std::cout << "Sum = " << sum << '\n';

Both approaches compute the same result. The second approach terminates the loop when the array access

is out of bounds. It interrupts the statement

©2018 Richard L. Halterman Draft date: December 2, 2018



22.6. USING EXCEPTIONS 737

sum += vec.at(i++);

in midstream, so it does not incorrectly modify sum’s value. The second approach, however, always throws

and catches an exception. The exception definitely is not an uncommon occurrence.

You should not use exceptions to dictate normal logical flow. While very useful for its intended pur-

pose, the exception mechanism adds some overhead to program execution, especially when an exception

is thrown. This overhead is reasonable when exceptions are rare but not when exceptions are part of the

program’s normal execution.

Sometimes it is not clear when an exception is appropriate. Consider a function that returns the position

of an element within a vector. The straightforward approach that does not use exceptions could be written:

int find(const std::vector<int>& a, int elem) {
int n = a.size();
for (int i = 0; i < n; i++)

if (list[i] == elem)
return i; // Found it at position i

return -1; // Element not present
}

Here a return value of −1 indicates that the element sought is not present in the array. Should an exception

be thrown if the element is not present? The following code illustrates:

int find(const std::vector<int>& a, int elem) {
int n = a.size();
for (int i = 0; i < n; i++)

if (list[i] == elem)
return i; // Found it at position i

// Element not there; throw an exception
throw ElementNotPresentException();

}

In the first approach, an unwary programmer may not check the result and blindly use −1 as a valid position.

The exception code would not allow this to happen. However, the first approach is useful for determining

if an element is present in the vector. If find(x) returns −1, then x is not in the vector; otherwise, it is in

the vector. If the exception approach is used, a client programmer cannot determine if an element is present

without the risk of throwing an exception. Since exceptions should be rare, the second approach appears to

be less than ideal. In sum,

• The first approach is more useful, but clients need to remember to properly check the result.

• The second approach provides an exception safety net, but an exception always will be thrown when

searching for missing elements.

Which approach is ultimately better? The first version uses a common programming idiom and is the

better approach for most programming situations. The exception version is a poorer choice since it is not

uncommon to attempt to look for an element missing from a vector; exceptions should be reserved for

uncommon error situations.
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Appendix A

Using Visual Studio 2015 to Develop C++

Programs

This appendix describes the task of C++ software development under Visual Studio:

• To begin creating a C++ program, you must first launch Visual Studio 2015 from the Windows start

screen or other relevant shortcut. Figure A.1 shows the appropriate application tile to activate.

You soon should see a splash screen similar to the one shown in Figure A.2.

If you have never before used the Visual Studio application, you must wait a few moments while it

configures the development environment for you. At this point you will indicate that Visual C++ is

your preferred development language. You also may select a color scheme. The figures shown here

reflect the blue color scheme.

Figure A.3 shows what Visual Studio looks like when it is fully loaded and ready to use.

• After Visual Studio has started, you begin the process of developing a C++ program by creating a

new project. As Figure A.4 shows, you can create a new project by following the menu sequence:

File→New→Project

• In the dialog that results, shown on the right of Figure A.4, you should choose the project type to be

Visual C++ in the left pane, and use the Win32 Console Application option in the center pane. In the

name field near the bottom of the dialog, enter a name for the project; we will use the name simple.

You may change the location to a different folder if you like, or even a different drive (such as a USB

pen drive). In this example, we chose to not change the default location provided by Visual Studio.

• When you select OK on the project creation dialog, a Win32 Application Wizard as shown on the

left of Figure A.5 appears. At this point, the instructions in the dialog say “Click Finish from any

window to accept the current settings.” Do not select Finish; instead, select Next to continue. We

have one more key step to complete so our project is set up correctly.

Figure A.1 Visual Studio application tile
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Figure A.2 Visual Studio Splashscreen

Figure A.3 Visual Studio Ready for Use
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Figure A.4 Creating a New Project

Figure A.5 Configuring the New Project

• In the subsequent Applications Settings dialog (see the right image in Figure A.5), select the Empty

project checkbox. The dialog should look like the right image in Figure A.5 before you proceed.

Choose Finish when you are ready to continue.

• At this point, the Solution Explorer panel shows the structure of the newly created, albeit empty,

project. The left image in Figure A.6 shows the newly populated Solution Explorer pane.

• Right click on the simple element in the Solution Explorer. As shown on the right of in Figure A.6,

select Add and New Item from the resulting pop-up menu.

• In the Add New Item dialog box, shown on the left in Figure A.7, select C++F̃ile (.cpp) and enter a

name for the C++ file in the text field at the bottom. You need not add .cpp to the end of the name,

as Visual Studio will do that for you. The file here will be named simple.cpp. Press Add when done.

• As shown on the right in Figure A.7, the Solution Explorer pane now shows the file simple.cpp,

and the large editor pane is ready for you to type in the source code for the program. The new source

file is initially empty.

• In the editor pane with the simple.cpp tab at the top, type in the source code for our simple C++

program. Figure A.8 shows the completed code.

• You may save the source file at this point by selecting Save from the File menu or by pressing pressing

at the same time the Ctrl S keys. If you do not save your program, Visual Studio will prompt

you to do so before it builds and runs your program.

To run the program, select Debug→Start Without Debugging, as shown on the left of Figure A.9.

(You also may use the Ctrl F5 key sequence to build and run the program.) Visual Studio will

attempt to build the executable program. It will prompt you to save your file if you have not saved it
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Figure A.6 Adding a C++ Source File

Figure A.7 Ready to Edit the C++ Source File

or have made changes since the last time you saved it. The progress of the build process is displayed

is in the Output panel in the bottom window. One of the lines has

1>Compiling. . .

and another later has

1>Linking. . .

The last few lines are very important:

1>Build succeeded.
1>
1>Time Elapsed 00:00:02.98
========= Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

These lines indicate the build was successful.

• A console window appears with the output of your program. The right image in Figure A.9 shows

this text window. You can press any key on the keyboard to close the window. If the console window

does not appear, you have typographical errors in your program; return to the editor, fix the errors,

and try to run the program again.
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Figure A.8 Editor Pane

Figure A.9 Building and Running the Program

• When you are finished with Visual Studio, select the File→Exit menu items as shown in Figure A.10.

These are the steps for writing a basic C++ program in Visual Studio 2015. While the steps initially may

seem complex and tedious, they will become natural after you have written a few C++ programs.

When the program was run, the Visual Studio environment created a console window in which to run

the program.

This is a simple C++ program!
Press any key to continue . . .

The first line of the output was printed by the program. The second line prompting the user to press any

key to continue is added by the Visual C++ run-time environment so the console window stays visible long

enough for the user to see the output. If you run the program from a the standard Windows command shell

(CMD.EXE, usually found in the Start menu under Accessories and named Command Prompt), only the

program’s output will appear and the “Press any key to continue . . .” message will not appear.

The following summarizes the steps you should follow when writing a C++ program using the Visual

Studio IDE:

1. In the main menu:

File→New→Project (or Ctrl Shift N )

2. Select “Win32 Console Project” and click “Next” to set the “Empty Project” option
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Figure A.10 Exiting Visual Studio

3. In the Solution Explorer pane right click on “Source Files” and select

Add→New Item...

4. Select C++ File (.cpp) and enter the name of your file

5. Type in the source code for your program in the editor panel

6. Save your file:

File→Save filename (or Ctrl S )

7. In the main menu:

Debug→Start Without Debugging (or Ctrl F5 )

It is possible to develop C++ programs without using Visual Studio’s integrated development environ-

ment. Visual Studio comes with some additional tools for command-line development. Appendix B de-

scribes how you can edit the C++ source code with a standalone text editor and compile and run the program

from the Windows command prompt (CMD.EXE). Command-line development under Linux and macOS is

covered in B. Some programmers prefer the freedom of using their favorite editor, a standalone compiler,

and scripts to automate the build process.
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Appendix B

Command Line Development

An integrated development environment (IDE) like Visual Studio combines all the tools a developer needs

into one comprehensive application. While this approach works well for most programmers, some de-

velopers prefer a less centralized approach, using instead command line tools to manage the development

process. Command line tools are focused and fast, and each tool itself is fairly simple compared to a full-

featured IDE. A developers may prefer a different editor to one provided by the IDE. Developers can build

scripts to around command line tools to automate the building and testing process.

There are a few commands that are essential for working within the command-line environment. These

center around manipulating and using files and folders. Our discussion assumes the Windows CMD.EXE

shell, and we will note differences with macOS and Linux as needed. Linux and macOS are both Unix-like

operating systems.

When you run CMD.EXE in Windows, the Terminal application on a Mac, or a bash terminal in Linux,

the operating system presents a text-based console window. You type commands into this window and

receive text feedback. Most of the commands are programs that you launch by typing their name. The

following lists common commands useful for using the command-line;

• dir

When the command line interface starts it locates you in a particular folder, or directory, in the file

system managed by the operating system. Your location is known as the current working directory.

The command dir prints a list of the files in your current working directory. On Unix-like machine

the ls -l command performs similar work. The command dir /w displays a wide listing of the

files with fewer details; the ls command is the equivalent on Unix-like systems.

• mkdir name

Creates a new subdirectory (subfolder) named name in the current directory. Subdirectories allow

you to better organize your files.

• cd name

Changes you current directory to be that specified by name. Some examples of its use include

– cd Code

Changes the current working directory to be the subdirectory named Code. Here the name is

relative to the current directory. It is an error to provide a name that does not correspond to a

subdirectory of the current directory.
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– cd ..

Changes the current working directory to its parent directory. Said another way, the current

working directory is itself a subdirectory of some other directory. This command makes this

other (parent) directory the current working directory. The .. means “parent directory” or

“parent folder.”

– cd C:\Users\rick\Documents\Code
Changes the current working directory to the completely specified one. The name here is known

as a full-path name. The name is an absolute location; it is not relative to the current working

directory. Unix-like systems do not have a drive letter (C:), and the backslashes (\) would be

forward slashes (/).

– cd .

Changes the current working directory to itself, which effectively does nothing! This command

does no useful work. The dot (.) in this context means “current working directory.”

• del name

Deletes the file named name. Use this command carefully. Unix-like systems use the rm command

in its place.

• ren name1 name2

Renames the file name1 to name2. The move command does the same thing, and Unix-like systems

use the mv command to rename files.

In preparation for our programming, we can create a new directory for our code and make that new

directory our current working directory with the commands:

mkdir Code

cd Code

We can edit our source code with a simple text editor such as Notepad or Wordpad for Windows, TextEdit

on the Mac, or gEdit on Linux systems. More powerful programming editors such as Notepad++ (http://
notepad-plus.sourceforge.net) (Windows) and Vim (http://www.vim.org) (Windows,

Mac, and Linux) make editing source code more convenient.

B.0.1 Visual Studio Command Line Tools

Visual Studio provides a number of command line tools as an alternative to its integrated development

environment.

To use the command line tools, select the Visual Studio Command Prompt from the Start menu. A

command console appears similar to the console that the IDE provides when executing a program (see

Section 2.2). Instead of selecting menu items and interacting with dialog boxes, you type commands

into the console window to build and run your program. To edit your program you can use the editor

from the IDE, or you can use a standalone editor such as Notepad++ (http://www.notepad-plus.
sourceforge.net) or Vim (http://www.vim.org). Both Notepad++ and Vim provide color syn-

tax highlighting and folding like the built-in Visual Studio editor.

In order to use the command prompt version of Visual Studio, it is convenient to first create a folder in

which you will place all your development files; for example, you could create a folder named Code under

your Documents folder. Suppose the full path to this folder is
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C:\Users\rick\Documents\Code

Once your development folder is created, you can launch the Visual Studio Command Prompt.

The first command you should issue in the console window is

C:

to ensure you are working on the correct drive. Next issue

cd \Users\rick\Documents\Code

The cd command means “change directory.” This command sets the console’s working directory to the

development folder you previously created. If you are working in another folder, you can adjust the path

given in the cd command to your work area.

You are ready to edit your code. If your environment is set up so that your editor program is in the

system path, you can type

notepad++ simple.cpp

If you are using Vim, type

gvim simple.cpp

If the file simple.cpp already exists, you can type

devenv simple.cpp

to launch the Visual Studio editor.

Within the editor type in your program and then save it to a file.

When you have finished creating the source file, we will need to build the executable program. Switch

back to the Visual Studio Command Prompt window. and issue the command

cl /W3 /EHsc simple.cpp

The cl (“cee elle”, not “cee one”) command, which stands for compile and link, preprocesses, compiles,

and links the program. The /W3 switch uses the Level 3 warning level. Level 3 warnings provide more

thorough analysis of your source code and can detect more programming mistakes. If you omit the /W3
switch, by default the compiler operates at warning level 1. Warning level 1 is insufficient for catching

many mistakes made by both beginning and experienced C++ programmers. By default the IDE compiler

uses warning level 3, and the warning level can be changed by adjusting the project’s properties. On the

command line, specifying /W4 (the highest warning level) is just as easy as specifying /W3. It is better to

use /W4 so the compiler can do a more thorough check for potential programmer mistakes. The /EHsc is

required for all the C++ programs we write.

If want to reduce the level of detail in the output produced by the compiler and linker, you can add the

additional switch /nologo:

cl /W4 /EHsc /nologo simple.cpp

Notice that we used the enhanced warning level (/W4) here. To see the complete list of compiler options,

many more than you probably will ever need, type
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cl /?

In C++ programs consisting of a single source file, the compiler produces an executable file with the

same base name as the source file (simple, in our example), with an exe extension.

Once the program has been compiled successfully, you can run the program by entering the name of the

executable produced. In our example, we would issue the command

simple

The program runs in the same window; no new console window is produced. When the program is finished

executing, no “Press any key to continue” message is printed; you get simply a command prompt ready for

you to enter your next command.

If you modify your source code in your editor, you must remember to recompile your code before you

run it again. In the IDE, if you modify your code, the environment will suggest that you rebuild the project

before running the program.

If the program consists of multiple source files, list all the required files on the command line. The exe

file will be named after the first file listed; for example, the command

cl /W4 /EHsc /nologo app.cpp list.cpp util.cpp

compiles the three C++ sources files and links the compiled code together to produce app.exe.

In the Visual Studio command prompt program you can enter the Visual Studio IDE at any time with

the command

devenv

(devenv stands for “development environment.”) If you started Visual Studio in the IDE, not the command

prompt, you can open a command prompt console window at any time by selecting the Command Prompt

item under the Tools menu.

B.0.2 Developing C++ Programs with the GNU Tools

The tools provided in the GNU Compiler Collection (http://gcc.gnu.org), or GCC for short, include

one of the most up-to-date standards compliant C++ compilers available. The GNU tools are free and are

available for the major computing platforms:

• Microsoft Windows XP–Windows 10

Windows-based GCC tools can be found at the MinGW website http://www.mingw.org. The

Nuwen site (www.nuwen.org) offers an easy to install custom distribution of MinGW with a num-

ber of additional useful C++ libraries.

• Apple macOS

The Homebrew (http://brew.sh) and MacPorts (http://www.macports.org/) projects

bring the GCC toolset to Mac developers. Mac users also may use the clang++ compiler that comes

with Xcode.

• Linux
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Linux-based GCC tools are readily available for all the major Linux distributions. To get them,

simply install the g++ development packages.

The name of the GNU C++ compiler is g++. It is a command-line tool, which means it is launched from

a command shell—CMD.EXE in Windows or bash in the Mac and Linux environments.

To see how the GNU C++ buld system works, we will consider Listing 2.1 (simple.cpp) from Chapter 2.

Use an editor to create a text file containing the code for Listing 2.1 (simple.cpp), and save the file with the

name simple.cpp. In Windows, if notepad++ is installed and set up properly, in the command shell you can

type

notepad++ simple.cpp

This command brings up a separate window with an editor. We can type the source code for Listing 2.1

(simple.cpp) and save the file.

To create the executable program with GNU C++, back in our command-line window we issue the

command

g++ -Wall -std=c++14 -o simple simple.cpp

This command has five parts:

• g++ -Wall -std=c++11 -o simple simple.cpp

g++ invokes the GCC C++ build process. This one command runs the preprocessor, followed by the

compiler, and finally the linker to produce the executable program. Even though the preprocessor and

linker are also involved here, we generally simply say we are "compiling the program."

• g++ -Wall -std=c++11 -o simple simple.cpp

-Wall stands for “warn all” and directs the compiler to be very strict when it is compiling the

source code. It goes beyond checking that the program is well-formed C++ it also warns about code

constructs that many programmers consider questionable because code of that nature often contains

errors. The -Wall component can be interpreted to mean "warn about as many possible problems

as possible." You should compile all C++ programs with this directive because it enables the compiler

to catch many careless programmer mistakes that otherwise might go unnoticed. Use of the -Wall
directive is desirable for all C++ programmers from novice to expert.

The C++ standards committee is responsible for defining the C++ language. The

committee refines the language specification over time. In addition to adding new

features to the language, the committee also addresses shortcomings in existing

language features. As a result of the committee’s work newer compilers can check

more thoroughly the validity of C++ programs. Modern compilers do a better job

of catching common programming errors.

The -Wall directive is optional because sometimes developers must work with

older C++ source code. The code was written originally under more relaxed C++

language rules, but it may not be worthwhile to rewrite the code to bring it up to

modern standards. If this older code has proven to be reliable, it may be compiled

without the more stringent checks. All new code, however, should take advantage

of the newer, better checking capabilities of the most up-to-date C++ compiler;

therefore, always use -Wall on the compiler command line for code that you

write.
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• g++ -Wall -std=c++14 -o simple simple.cpp

The -std=c++14 option directs the compiler to process the C++ source code according to the rules

of the C++14 standard which the International Standards Organization (ISO) adopted in 2014. Since

this standard is relatively new, if you omit this part of the command, g++ assumes the programmer

is writing the source code under the rules of the older, 1998 ISO C++ standard, usually referred to as

C++98.

The code in this book is based on the C++11 standard.

• g++ -Wall -std=c++14 -o simple simple.cpp

The -o simple part of the command specifies the name of the executable program. The desired

name appears after the -o part, so our executable program will be named simple.exe on Microsoft

Windows systems. On Mac and Linux platforms the name of the executable file produced will be just

simple (no exe name extension). If the C++ source code code contains no errors, the compiler will

produce the executable file named simple.exe (or simple). On a Windows Machine we can run the

compiled program from the command line by typing the command

simple

(We also can use the full name, simple.exe.) On a Unix-ike system (macOS or Linux), we instead

would type

./simple

to execute the program.

• g++ -Wall -std=c++14 -o simple simple.cpp

simple.cpp specifies the name of the C++ source file we wish to compile. Here the file simple.cpp

must reside in our current working directory for the compiler to process it.

The general form of the command to compile a C++ source file, therefore, is

g++ -Wall -std=c++14 -o executable source

where source is the name of the file containing the C++ source code, and executable is the name of the

executable program the build process generates.

When you are finished with the executable file simple.exe, you can delete it with the following com-

mand:

del simple.exe

We can reconstruct the executable file whenever we like by simply recompiling the source file. Be careful

not to delete accidentally the source file, or you have no choice but to type it in again.
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abstract class, 524

actual parameter, 208

adapter design pattern, 522

alias, 326

aliasing, pointer, 546

and, bitwise, 72

and, logical, 97

argument, 182

array, 311

array slice, 322

assignment, 19

associative container, 687

associativity, operator, 44

attributes, 409

auxiliary methods, 428

bias in pseudorandom number generation, 401

binary search, 359, 688

bitwise and, 72

bitwise exclusive or, 73

bitwise left shift, 74

bitwise negation, 73

bitwise operators, 72

bitwise or, 73

bitwise right shift, 74

bitwise shift operators, 74

bitwise xor, 73

block, 92

bottom-checking loop, 165

break statement, 140

buffer overrun, 334

buffering, 395

C string, 333

call by reference, 274

call by value, 215

caller, 182

carriage return, 17

case label in a switch statement, 162

catch block, 720

class derivation, 496

class specialization, 496

class templates, 618

client, 384

closure, 656

coincidental correctness, 491

command line, 9

command-line arguments, 336

compiler, 2

concrete class, 524

constructor, 422

constructor delegation, 572

constructor initialization list, 423

copy assignment, 583

copy constructor, 570

copy-and-swap, 572

CR, 17

current working directory, 747

data members, 409

default argument, 252

default constructor, 424

default parameter, 252

delegation, method, 502

delimit, 11

derivation, class, 496

derivative, 658

destructor, 559

differentiation, 658

dot operator (.), 411

doubly linked list, 634

dynamic binding, 509

early binding, 508

encapsulation, 430

enumerated type, 31

enumeration classes, 31

enumeration type, 31

erase-remove idiom, 678

escape sequence, 10

evaluation, 38

exception, 719

exception handling, 719

exclusive or, bitwise, 73
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explicit template instantiation, 611, 616

expressions, 37

Fibonacci sequence, 260

fields, 409

for statment, 167

foreach, 298

fragmentation, memory, 544

friend, 466

full-path name, 748

function call, 182

function call operator, 636

function declaration, 231

function definition, 203

function invocation, 182

function invocation operator, 636

function objects, 656

function overloading, 251

function pointers, 278

garbage, 597

garbage collection, 590

generating function, 669

generic function, 610

goto statement, 141

hash function, 704

hash table, 702

heap fragmentation, 544

helper methods, 428

hiding variables, 420

higher-order function, 278

homogeneous, 291

if statement, 88

inheritance, 496

initialization, 20, 570

initializer list, 681

instance, 409

instance variables, 409

is-a relationship, 497

iteration, 123

iterators, 640

key, 687

lambda calculus, 655

lambda expressions, 655

late binding, 509

left shift, 74

LF, 17

line feed, 17

linear ordering, 291

linear search, 359

linker, 5

Liskov Substitution Principle, 497

logical and, 97

logical negation, 97

logical not, 97

logical or, 97

loop, 123

loop unrolling, 372

lvalue, 578

mask, 75

matrix, 307

member data, 409

member function, 419

member functions, 299, 417

members, 409

memoization, 713

memory fragmentation, 544

memory leak, 326, 441

Mersenne Twister pseudorandom number generator,

403

method delegation, 502

methods, 299, 417

move assignment, 583

move constructor, 583

multiple inheritance, 499

negation, bitwise, 73

negation, logical, 97

nested loop, 133

newline, 10

non-type parameters, template, 617

non-type template parameters, 617

not, logical, 97

numerical differentiation, 659

object slicing, 505

operator associativity, 44

operator precedence, 44

or, logical, 97

overflow, 64

overloaded function, 251

override, 502

parameter, 182

parameter, actual, 208

pass by reference, 274

pass by value, 215

period of a pseudorandom number generator, 401
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pointer, 267

pointer aliasing, 546

polymorphism, 511

precedence, operator, 44

predicate, 667

pretty printer, 50

priority queue, 635

private inheritance, 498

private members, 418

profiler, 5

protected member, 523

pure virtual methods, 524

random access itertator, 643

range-based for, 298

ranges, 644

rational number, 425

re-throw, 733

re-throwing an exception, 734

real number, 64

red-black tree, 688, 702

reference counting, 597, 598

reference semantics, 547

reference variable, 271

relational operators, 86

return statement, 207

return value optimization, 306, 588

right shift, 74

Rule of Five, 588

Rule of Three, 577

rvalue reference, 580

scoped enumerations, 31

sequence, 290

shift, bitwise, 74

short-circuit evaluation, 99

slice, array, 322

smart pointer, 590

source code formatting, 47

specialization, class, 496

stack overflow, 544

standard namespace, 9

standard template library, 633

static binding, 508

steam manipulator, 129

STL, 633

string concatenation, 387

string objects, 384

struct, 465

structured binding, 695

subclassing, 496

switch statement, 159

symbolic differentiation, 659

symmetric, 468

template instantiation, 611

template type parameter, 610

template value parameters, 617

templates, 609

temporary, 579

this, 442

throws, 720

transitive, 468

try block, 720

try/catch block, 720

tuple unpacking, 694

two’s complement, 74

two-dimensional array, 330

two-dimensional vector, 307

type alias, 308

type parameter, 610

typedef, 309

undefined behavior, 297

underflow, 64

unordered_map, 702

unpacking tuples, 694

unscoped enumeration, 31

unsigned, 24

using type alias, 308

value parameters, template, 617

value semantics, 547

variable aliasing with references, 271

variable hiding, 420

vector, 291

vector initializer list, 292

virtual memory, 544

vtable, 509

while statement, 124

xor, bitwise, 73
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