

India Community Initiative

.NET Tutorial for Beginners

Special thanks to the following who have put in sincere efforts to write and

bring this tutorial together.

Akila Manian (MVP) | Ajay Varghese (MVP) | Amit Kukreja | Anand M (MVP)

| Aravind Corera (MVP) | Arvind Rangan | Balachandran | Bipin Joshi (MVP)
| C S Rajagopalan | G Gokulraj | G Arun Prakash | Gurneet Singh (MVP) |

Kunal Cheda (MVP) | Manish Mehta (MVP) | Narayana Rao Surapaneni

(MVP) | Pradeep | Saurabh Nandu (MVP) | Shankar N.S. | Swati Panhale |
Reshmi Nair

Content

1. Getting Ready .. 4
1.1 Tracing the .NET History..4

1.2 Flavors of .NET...5
1.3 Features of .NET...10

1.4 Installing the .NET Framework SDK...12

2. Introduction to the .NET Initiative and the .NET Platform...................... 15
2.1 Understanding the Existing Development Scenario..15

2.2 Challenges faced by developers..18
2.3 NET Philosophy / Where does .NET fit in? ..21

2.4 Understanding the .NET Platform and its layers ..25

2.5 Understanding the various components of the .NET Platform and the functions
performed by them ..30

2.6 Structure of a .NET Application...37

3. Code Management.. 43
3.1 Introduction...43
3.2 First VB.NET / C# program ..45

3.3 JIT (Just–in-Time Compiler) & Debugging..51

3.4 Managed Vs. Unmanaged Methods/Transitions ...56
3.5 Summary ..61

4. Language Features of C# ... 62
4.1 History of C# ...62

4.2 Language Fundamentals in C# ...63
4.3 Control Statements...74

4.4 Arrays...83

5. Language Features of VB.NET .. 88
5.1 History of VB.NET ...88

5.2 Language Fundamentals in VB.NET ...89
5.3 Features of VB.NET...99

5.4 Control Statements... 107

5.5 Arrays... 115

6. Object Oriented Programming Concepts .. 122
6.1 Concept of Procedural Programming.. 123

6.2 Object Oriented Programming .. 126

6.3 Classes.. 127
6.4 Encapsulation... 127

6.5 Inheritance .. 128

6.6 Polymorphism .. 129
6.7 Understanding CSharp and VB.NET as Object Oriented Programming languages

... 132

6.8 Polymorphism .. 149
6.9 Abstract Classes (Virtual Class) .. 157

6.10 Interfaces .. 161

6.11 Delegates and Events.. 163
6.12 Structures.. 168

6.13 Sample Application: OOPS ... 170

7. Error and Exception Handling... 172
7.1 Need for Error Handling... 172

7.2 Old-school unstructured exception handling in VB 6.0 and its disadvantages.. 173
7.3 Structured Exception Handling in C#/VB.NET ... 174

7.4 System.Exception: The mother of all exceptions... 177
7.5 Handling exceptions that are not System.Exception compliant...................... 190

Catch.. 191

7.6 Understanding Application exceptions (user-defined or custom exceptions).... 191
7.7 Nesting try/catch/finally blocks and re-throwing exceptions 198

7.8 Parting thoughts…... 211

8. Assemblies and Application Domains ... 212
8.1 Introduction... 212

8.2 Assembly Types.. 212
8.3 Private Assemblies.. 217

8.4 Shared Assemblies.. 217
8.5 Application Domains.. 218

8.6 Conclusion... 223

1. Getting Ready

Section Owner: Ajay Varghese (MVP)

Content Contributors: Bipin Joshi (MVP)

Welcome friends to the exciting journey of Microsoft .NET. If you are looking for

information about what .NET is all about, what it can do for you or how it can help you

and your customers, you have come to the right place. This section is intended to tell you

about these and many more things. After covering this section you will be ready to delve

into details of .NET.

The section is divided into following sub-sections:

1) Tracing the .NET History

2) Flavors of .NET

3) Features of .NET

4) Installing .NET Framework SDK

The first sub-section will introduce you with how .NET evolved and the path of .NET

since its Beta releases.

The second sub-section will introduce you with various flavors of...NET and their

respective SDKs. It also gives overview of Visual Studio.NET – an excellent IDE for

developing .NET applications.

It is necessary to understand the features of .NET that make it robust, programmer

friendly, powerful and flexible. The third sub-section is intended just for that. It gives

overview of technical features that make .NET shine over traditional programming

environments.

The final sub-section tells you how to install .NET framework SDK, what are the system

requirements and related topics.

1.1 Tracing the .NET History

Sometime in the July 2000, Microsoft announced a whole new software development

framework for Windows called .NET in the Professional Developer Conference (PDC).

Microsoft also released PDC version of the software for the developers to test. After

initial testing and feedback Beta 1 of .NET was announced. Beta 1 of the .NET itself got

lot of attention from the developer community. When Microsoft announced Beta 2, it

incorporated many changes suggested by the community and internals into the software.

The overall ‘Beta’ phase lasted for more than 1 ½ years. Finally, in March 2002

Microsoft released final version of the .NET framework.

One thing to be noted here is the change in approach of Microsoft while releasing this

new platform. Unlike other software where generally only a handful people are involved

in beta testing, .NET was thrown open to community for testing in it’s every pre-release

version. This is one of the reasons why it created so many waves of excitement within the

community and industry as well.

Microsoft has put in great efforts in this new platform. In fact Microsoft says that its

future depends on success of .NET. The development of .NET is such an important event

that Microsoft considers it equivalent to transition from DOS to Windows. All the future

development – including new and version upgrades of existing products – will revolve

around .NET. So, if you want to be at the forefront of Microsoft Technologies, you

should be knowing .NET!

Now, that we know about brief history of .NET let us see what .NET has to offer.

1.2 Flavors of .NET

Contrary to general belief .NET is not a single technology. Rather it is a set of

technologies that work together seamlessly to solve your business problems. The

following sections will give you insight into various flavors and tools of .NET and what

kind of applications you can develop.

• What type of applications can I develop?

When you hear the name .NET, it gives a feeling that it is something to do only

with internet or networked applications. Even though it is true that .NET provides

solid foundation for developing such applications it is possible to create many

other types of applications. Following list will give you an idea about various

types of application that we can develop on .NET.

1. ASP.NET Web applications: These include dynamic and data driven browser

based applications.

2. Windows Form based applications: These refer to traditional rich client

applications.

3. Console applications: These refer to traditional DOS kind of applications like

batch scripts.

4. Component Libraries: This refers to components that typically encapsulate

some business logic.

5. Windows Custom Controls: As with traditional ActiveX controls, you can

develop your own windows controls.

6. Web Custom Controls: The concept of custom controls can be extended to

web applications allowing code reuse and modularization.

7. Web services: They are “web callable” functionality available via industry

standards like HTTP, XML and SOAP.

8. Windows Services: They refer to applications that run as services in the

background. They can be configured to start automatically when the system

boots up.

As you can clearly see, .NET is not just for creating web application but for

almost all kinds of applications that you find under Windows.

• .NET Framework SDK

You can develop such varied types of applications. That’s fine. But how? As with

most of the programming languages, .NET has a complete Software Development

Kit (SDK) - more commonly referred to as .NET Framework SDK - that

provides classes, interfaces and language compilers necessary to program for

.NET. Additionally it contains excellent documentation and Quick Start tutorials

that help you learn .NET technologies with ease. Good news is that - .NET

Framework SDK is available FREE of cost. You can download it from the MSDN

web site. This means that if you have machine with .NET Framework installed

and a text editor such as Notepad then you can start developing for .NET right

now!

You can download entire .NET Framework SDK (approx 131 Mb) from MSDN

web site at

http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url

=/msdn-files/027/000/976/msdncompositedoc.xml

• Development Tools

If you are developing applications that require speedy delivery to your customers

and features like integration with some version control software then simple

Notepad may not serve your purpose. In such cases you require some Integrated

Development Environment (IDE) that allows for Rapid Action Development

(RAD). The new Visual Studio.NET is such an IDE. VS.NET is a powerful and

flexible IDE that makes developing .NET applications a breeze. Some of the

features of VS.NET that make you more productive are:

- Drag and Drop design

- IntelliSense features

- Syntax highlighting and auto-syntax checking

- Excellent debugging tools

- Integration with version control software such as Visual Source Safe (VSS)

- Easy project management

Note that when you install Visual Studio.NET, .NET Framework is automatically

installed on the machine.

• Visual Studio.NET Editions

Visual Studio.NET comes in different editions. You can select edition appropriate

for the kind of development you are doing. Following editions of VS.NET are

available:

- Professional

- Enterprise Developer

- Enterprise Architect

Visual Studio .NET Professional edition offers a development tool for

creating various types of applications mentioned previously. Developers can

use Professional edition to build Internet and Develop applications quickly

and create solutions that span any device and integrate with any platform.

Visual Studio .NET Enterprise Developer (VSED) edition contains all the

features of Professional edition plus has additional capabilities for enterprise

development. The features include things such as a collaborative team

development, Third party tool integration for building XML Web services and

built-in project templates with architectural guidelines and spanning

comprehensive project life-cycle.

Visual Studio .NET Enterprise Architect (VSEA) edition contains all the

features of Visual Studio .NET Enterprise Developer edition and additionally

includes capabilities for designing, specifying, and communicating application

architecture and functionality. The additional features include Visual designer

for XML Web services, Unified Modeling Language (UML) support and

enterprise templates for development guidelines and policies.

A complete comparison of these editions can be found at

http://msdn.microsoft.com/vstudio/howtobuy/choosing.asp

In addition to these editions, special language specific editions are available. They

are:

- Visual Basic.NET Standard Edition

- Visual C# Standard Edition

- Visual C++ .NET Standard (soon to be released)

These editions are primarily for hobbyist, student, or beginner who wants to

try their hands on basic language features.

A complete comparison of these standard editions with professional edition of

VS.NET can be found at:

http://msdn.microsoft.com/vcsharp/howtobuy/choosing.asp

http://msdn.microsoft.com/vbasic/howtobuy/choosing.asp

• .NET Redistributable

In order to run application developed using .NET Framework the machine must

have certain ‘runtime’ files installed. They are collectively called as .NET

redistributable. This is analogous to traditional Visual Basic applications that

required Visual Basic runtime installed on target computers. .NET redistributable

provides one redistributable installer that contains the common language runtime

(more on that later) and Microsoft .NET Framework components that are

necessary to run .NET Framework applications. The redistributable is available as

a stand-alone executable and can be installed manually or as a part of your

application setup.

You can download .NET redistributable at

http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url

=/msdn-files/027/001/829/msdncompositedoc.xml

More technical information about .NET redistributable can be found at

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnnetdep/html/dotnetfxref.asp

Note that if you have installed .NET Framework SDK, there is no need of

installing redistributable separately. Also, note that there is difference between

.NET Framework SDK and .NET redistributable in terms of purpose and tools

and documentation supplied. .NET Framework SDK is intended to ‘develop’

applications where as .NET redistributable is intended to ‘run’ .NET applications.

• .NET and mobile development

Now days the use of mobile and wireless devices is ever increasing. PDAs,

mobile phones, Smartphones, handheld PCs and HTML pagers are becoming

common. As compared to full blown desktop computers, Mobile devices are

generally resource-constrained. There are limitations on what they can display

and in which form. For example you can easily display graphical menus in

desktop applications but the same may not be possible for cell phones.

Today there are many vendors making CPUs and development tools for mobile

devices. However, their standards are much varying. For example devices running

Windows CE will have different tools and standards of development than Palm

OS. Also, programming model for such devices is an issue of debate. For

example, Wireless Application Protocol (WAP) was considered a ‘standard’ for

mobile devices but it introduced disadvantages of its own such as requirement of

continuous connectivity, lack in rich user interface and failure to utilize client –

side resources effectively.

Mobile devices can be broadly divided into two categories:

1) Mobile Devices that have certain client-side resources like PDAs,

Smartphones and Handheld PCs. They can run stand-alone application with

rich user interface.

2) Mobile Devices that lack even these client-side resources such as mobile

phones. They can not run stand alone applications having rich and more

interactive user interface.

In order to encompass all possible devices from above categories Microsoft has

developed two distinct technologies namely:

- Microsoft .NET Compact Framework (.NET CF)

- Microsoft Mobile Internet Toolkit (MMIT)

o Microsoft .NET Compact Framework

.NET compact framework is a sub set of entire .NET framework and is

targeted at mobile devices having some client side resources. It provides

support for managed code and XML Web services. Currently, .NET

Compact Framework is in Beta 1 and is available on devices running the

Windows CE or Windows CE .NET operating systems. However,

Microsoft has promised support for other platforms in the future. As of

now the framework supports Visual Basic.NET and C# as development

languages out of the box. Support for other languages is planned in near

future.

Microsoft is creating a set of extensions for Visual Studio .NET called

Smart Device Extensions that will allow Visual Studio .NET developers to

program for .NET Compact Framework. This means that developers

familiar with Visual Studio.NET can start developing for mobile devices

almost instantly.

More information about .NET Compact Framework can be obtained at

http://msdn.microsoft.com/vstudio/device/compact.asp

o Microsoft Mobile Internet Toolkit

Microsoft Mobile Internet Toolkit (MMIT) is designed to develop server

side applications for mobile devices such as cell phones, PDAs, and

pagers. It is different than .NET compact Framework in that it is a server

side technology. It is ideal for devices that can not run stand alone

applications.

MMIT mainly uses ASP.NET as a technology for delivering markup to a

wide variety of mobile devices. As we know that each mobile device has

its own set of underlying standards and markup. MMIT shields these

details from the developer and allows ‘uniform code’ for any target

device. Based on the capabilities of target device the output is rendered.

More information about MMIT can be obtained from

http://msdn.microsoft.com/vstudio/device/mitdefault.asp

1.3 Features of .NET

Now that we know some basics of .NET, let us see what makes .NET a wonderful

platform for developing modern applications.

• Rich Functionality out of the box

.NET framework provides a rich set of functionality out of the box. It contains

hundreds of classes that provide variety of functionality ready to use in your

applications. This means that as a developer you need not go into low level details

of many operations such as file IO, network communication and so on.

• Easy development of web applications

ASP.NET is a technology available on .NET platform for developing dynamic

and data driven web applications. ASP.NET provides an event driven

programming model (similar to Visual Basic 6 that simplify development of web

pages (now called as web forms) with complex user interface. ASP.NET server

controls provide advanced user interface elements (like calendar and grids) that

save lot of coding from programmer’s side.

• OOPs Support

The advantages of Object Oriented programming are well known. .NET provides

a fully object oriented environment. The philosophy of .NET is – “Object is

mother of all.” Languages like Visual Basic.NET now support many of the OO

features that were lacking traditionally. Even primitive types like integer and

characters can be treated as objects – something not available even in OO

languages like C++.

• Multi-Language Support

Generally enterprises have varying skill sets. For example, a company might have

people with skills in Visual Basic, C++, and Java etc. It is an experience that

whenever a new language or environment is invented existing skills are outdated.

This naturally increases cost of training and learning curve. .NET provides

something attractive in this area. It supports multiple languages. This means that

if you have skills in C++, you need not throw them but just mould them to suit

.NET environment. Currently four languages are available right out of the box

namely – Visual Basic.NET, C# (pronounced as C-sharp), Jscript.NET and

Managed C++ (a dialect of Visual C++). There are many vendors that are

working on developing language compilers for other languages (20+ language

compilers are already available). The beauty of multi language support lies in the

fact that even though the syntax of each language is different, the basic

capabilities of each language remain at par with one another.

• Multi-Device Support

Modern lift style is increasingly embracing mobile and wireless devices such as

PDAs, mobiles and handheld PCs. . . .NET provides promising platform for

programming such devices. .NET Compact Framework and Mobile Internet

Toolkit are step ahead in this direction.

• Automatic memory management

While developing applications developers had to develop an eye on system

resources like memory. Memory leaks were major reason in failure of

applications. .NET takes this worry away from developer by handling memory on

its own. The garbage collector takes care of freeing unused objects at appropriate

intervals.

• Compatibility with COM and COM+

Before the introduction of .NET, COM was the de-facto standard for

componentized software development. Companies have invested lot of money and

efforts in developing COM components and controls. The good news is – you can

still use COM components and ActiveX controls under .NET. This allows you to

use your existing investment in .NET applications. .NET still relies on COM+ for

features like transaction management and object pooling. In fact it provides

enhanced declarative support for configuring COM+ application right from your

source code. Your COM+ knowledge still remains as a valuable asset.

• No more DLL Hell

If you have worked with COM components, you probably are aware of “DLL

hell”. DLL conflicts are a common fact in COM world. The main reason behind

this was the philosophy of COM – “one version of component across machine”.

Also, COM components require registration in the system registry. .NET ends this

DLL hell by allowing applications to use their own copy of dependent DLLs.

Also, .NET components do not require any kind of registration in system registry.

• Strong XML support

Now days it is hard to find a programmer who is unaware of XML. XML has

gained such a strong industry support that almost all the vendors have released

some kind of upgrades or patches to their existing software to make it “XML

compatible”. Currently, .NET is the only platform that has built with XML right

into the core framework. .NET tries to harness power of XML in every possible

way. In addition to providing support for manipulating and transforming XML

documents, .NET provides XML web services that are based on standards like

HTTP, XML and SOAP.

• Ease of deployment and configuration

Deploying windows applications especially that used COM components were

always been a tedious task. Since .NET does not require any registration as such,

much of the deployment is simplified. This makes XCOPY deployment viable.

Configuration is another area where .NET – especially ASP.NET – shines over

traditional languages. The configuration is done via special files having special

XML vocabulary. Since, most of the configuration is done via configuration files,

there is no need to sit in front of actual machine and configure the application

manually. This is more important for web applications; simply FTPing new

configuration file makes necessary changes.

• Security

Windows platform was always criticized for poor security mechanisms. Microsoft

has taken great efforts to make .NET platform safe and secure for enterprise

applications. Features such as type safety, code access security and role based

authentication make overall application more robust and secure.

1.4 Installing the .NET Framework SDK

Now that you have fare idea of what .NET I and what it can do for you, it is time to

install .NET framework SDK on your machine. Following sections will tell you

everything you need to know for installing .NET framework.

• Hardware Requirements

In order to install .NET framework SDK following hardware is required:

- Computer/Processor : Intel Pentium class, 133 megahertz (MHz) or higher

- Minimum RAM Requirements : 128 megabytes (MB) (256 MB or higher

recommended)

- Hard Disk :

o Hard disk space required to install: 600 MB

o Hard disk space required: 370 MB

- Display : Video: 800x600, 256 colors

- Input Device : Microsoft mouse or compatible pointing device

• Software Requirements

- Microsoft Internet Explorer 5.01 or later is required

- Microsoft Data Access Components 2.6 is also required (Microsoft Data

Access Components 2.7 is recommended)

- Operating System :

o Microsoft Windows® 2000, with the latest Windows service pack and

critical updates available from the Microsoft Security Web page

o Microsoft Windows XP – (Microsoft Windows XP Professional if you

want to run ASP.NET)

o Microsoft Windows NT® 4.0

Note: If you want to simply run .NET applications then you can also run them on

Microsoft Windows XP Home edition, Windows Millennium Edition (Windows

ME) and Windows 98.

Here are some URLs that you will find handy in making your system up-to-date

for above software requirements.

Internet Explorer 6 can be downloaded from

http://www.microsoft.com/windows/ie/downloads/ie6/default.asp

Microsoft Data Access Components 2.7 can be downloaded from

http://www.microsoft.com/data/download_270RTM.htm

Various Windows service packs and patches can be obtained from

http://www.microsoft.com/downloads/search.asp

• Where to get .NET Framework SDK

As mentioned earlier .NET framework SDK is freely downloadable from MSDN

site. Visit

http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url

=/msdn-files/027/000/976/msdncompositedoc.xml and download it now.

The total download size is 137,363,456 bytes (approximately 131 Mb). For your

convenience Microsoft has provided multi-part version of the entire download. If

you are unable to download the SDK from MSDN web site, check out popular PC

magazines around. Many of them contain .NET Framework SDK on their

companion CD.

• Starting the installation

Note: If you already have a previous version of .NET installed on the machine
then it must first be uninstalled. Refer ReadMe files that ship with .NET

framework SDK. These files contain valuable information related to installation,
system requirements and trouble shooting.

In order to start the installation, you need to run the setup program that is

available with the download mentioned above. A wizard will guide you with

necessary process. It will also allow you to select various components of the

framework.

After the installation is complete it is a good idea to apply .NET framework

Service pack 1. The service pack fixes some of the bugs. It can be downloaded

from:

http://msdn.microsoft.com/netframework/downloads/sp1/default.asp

• Installing Samples and Quick Start Tutorials

.NET framework comes with an excellent set of tutorials that help you learn

various technologies such as ASP.NET and windows forms. In order to configure

the tutorials follow Start menu -> Program -> Microsoft .NET Framework SDK

-> Samples and Quick Start Tutorials. This will open up a HTML document that

will guide you through the process of configuring the samples and tutorials.

• Installing MSDE

.NET framework samples and quick start tutorials require a Microsoft SQL Server

Desktop Engine (MSDE). MSDE is scaled down version of SQL Server. The

samples use databases from the MSDE. In order to work with the samples make

sure you have started an instance of MSDE. You can use this MSDE for creating

your own databases for testing applications.

Coming Next…

By the time you must have got idea about what .NET is and what it can do for you. You

probably will have installed .NET on your machine waiting eagerly to try hands on it.

However, before you go into the code level details, it is essential that you firmly

understand certain fundamentals. In the next section we will demystify some intrinsic

concepts and features of .NET framework.

2. Introduction to the .NET Initiative and the .NET
Platform

Section Owner: Saurabh Nandu (MVP)

Content Contributors: Balachandran, Pradeep

The Microsoft .NET initiative is a very wide initiative and it spans multiple Microsoft

Products ranging from the Windows OS to the Developer Tools to the Enterprise Servers.

The definition of .NET differs from context to context, and it becomes very difficult for

you to interpret the .NET strategy. This section aims at demystifying the various

terminologies behind .NET from a developer’s perspective. It will also highlight the need

for using this new .NET Platform in your applications and how .NET improves over its

previous technologies.

2.1 Understanding the Existing Development Scenario

Windows DNA is a concept for building distributed applications using the Microsoft

Windows operating system and related software products.

First we will understand about the 2- tier, 3- tier and then move on to N- tier Windows

DNA.

Why to divide an application into logical layers?

Factoring an application into logical parts is useful. Breaking a large piece of software

into smaller pieces can make it easier to build, easier to reuse and easier to modify. It can

also be helpful in accommodating different technologies or different business

organizations.

2-Tier: Client Server

Presentation Layer

Data Source Layer

Win 32 Clients

(VB Forms)

Mail

Server

Sql

Server
File

System

 Fig Showing 2 – Tier Client Server Model

Through the appearance of Local-Area-Networks, PCs came out of their isolation, and

were soon not only being connected mutually but also to servers. Client/Server-

computing was born. A two-tiered application is an application whose functionality can
only be segmented into two logical tiers, presentation services and data services. The

presentation services of a two-tiered application are responsible for gathering information

from the user, interacting with the data services to perform the application's business

operations, and presenting the results of those operations to the user. The Presentation
services are also called the presentation layer because it presents information to the user.

Things you might find in a presentation layer include a Web browser, a terminal, a

custom-designed GUI, or even a character-based user interface. Client-Server

architecture was a major buzzword in the early 90's, taking initially dumb terminal

applications and giving them a fancy windows-like front end, using PCs with terminal

emulators which presented pretty GUIs (Graphical user interface) or later Visual Basic

etc front-ends. A web browser talking to a web server is an example of a client talking to

a server. Here there is presentation logic (presentation tier) happening at the client, and

data/file access (data access tier) and logic happening at the server. One reason why the

2-tier model is so widespread is because of the quality of the tools and middleware that

have been most commonly used since the 90’s: Remote-SQL, ODBC, relatively

inexpensive and well-integrated PC-tools (like Visual Basic, Power-Builder, MS Access,

4-GL-Tools by the DBMS manufactures). In comparison the server side uses relatively

expensive tools. In addition the PC-based tools show good Rapid-Application-

Development (RAD) qualities i.e. simpler applications can be produced in a

comparatively short time. The 2-tier model is the logical consequence of the RAD-tools’

popularity.

3 – Tier: Client Server

Browser based Interface

html /xml

J l

Win32 Client

Applications

(Vi l B i f)

Sql

Server

Oracle

RDBMS

Mail

Server

File

System

Business Layer

Data Service Layer

Presentation Layer

COM /

COM +

COM /

ASP

IIS / Apache

Business Rules and Process

HTTP

Fig Showing 3 – Tier or N- Tier Client Server Model

In a three-tiered application, the presentation services are responsible for gathering

information from the user, sending the user information to the business services for

processing, receiving the results of the business services processing, and presenting those

results to the user. The most popular architecture on the web currently, mostly taking the

form of web browser processing client side presentation in the form of HTML/DHTML,

etc, the web server using some scripting language (ASP) and the database server (SQL

Server for example) serving up the data.

The basic functionalities of 3 – Tier or N-Tier follows are

The presentation services tier is responsible for:

• Gathering information from the user

• Sending the user information to the business services for processing

• Receiving the results of the business services processing

• Presenting those results to the user

The business services tier is responsible for:

• Receiving input from the presentation tier.

• Interacting with the data services to perform the business operations.

• Sending the processed results to the presentation tier.

The data services tier is responsible for the:

• Storage of data.

• Retrieval of data.

• Maintenance of data.

• Integrity of data.

In Windows DNA applications commonly implement their business logic using one or

more of three implementation options.

• Asp Pages

• COM components

• Stored procedures running in the DBMS

Writing much business logic in ASP pages is a bad idea. Since simple languages are

used, such as Microsoft Visual Basic Script, and the code is interpreted each time it is

executed, which hurts the performance. Code in ASP pages is also hard to maintain,

largely because business logic is commonly intermixed with presentation code that

creates the user interface.

One recommended approach for writing middle-tier business logic is to implement that

logic as COM objects. This approach is a bit more complex than writing a pure ASP

application. Wrapping business logic in COM objects also cleanly separates this code

from the presentation code contained in ASP pages, making the application easier to

maintain.

The Third option for writing business logic is to create some of that code as stored

procedures running in the database management system (DBMS). Although a primary

reason for using stored procedures is to isolate the details of database schema from

business logic to simplify code management and security, having code in such a close

proximity to data can also help optimize performance.

2.2 Challenges faced by developers

In Windows DNA, there are two major choices of user interfaces - Win32 clients and

browser based clients. During the Internet revolution of the late 90s we saw the

emergence of the browser and the Web Server. With the introduction of Internet,

information started being available but with limited functionality. With the development

of the Windows Distributed Internet Architecture, we started to see Web sites that

allowed simple transactions to occur. Clients on browsers could access Web sites that had

COM components available to them that allowed them to retrieve information from the

database. So now we gained the capability to simulate the environment of the Win32

platform. The client software – the browser – can access information on a server. But as

with the Win32 environment, we are limited in the way in which the information is

presented to us. Customization is neither widespread nor broadly developed.

 Let us look into limitations of these technologies.

Limitations in Win32 Clients

In a client-server environment visual tool such as Visual Basic, are often used to create a

rich user interface. The drawbacks is that such client software is difficult to deploy and

maintain, requiring and install on every client and a change to every client when an

upgrade is needed.

DLL conflicts on the client are frequent because of variations in the version of the

operating system and other software installed on the client.

Visual Basic is the most common language used to write middle-tier components. This

requires high level of expertise in COM. Since these middle-tire components are

implemented using Microsoft Transaction Server on Windows NT or COM+ services on

Windows 2000. These components use stateless designs, which can look very different

from the stateful designs often used in client-based components.

COM components, in the middle tier must work together, Versioning all the components

properly so that they understand each other's interfaces can be a challenge. This requires

a highly sophisticated skill level and a well - controlled deployment process.

COM works well on Microsoft platforms. But it suffers from lack of interoperability with

other platforms. One of the most important ways functionality can be reused is for a

software component to inherit another component, But COM does not support

inheritance.

Visual Basic is the most popular language for developing applications with the DNA

model, this is used in two major roles - forms based VB Clients and COM components.

This VB6 language has its own limitations it doesn’t have the capability of

multithreading, lack of OOPS concepts, Poor error handling ability and poor integration

with other languages. Hence it makes it unsuitable for development of object-based

frameworks.

Today’s applications need to use the Win32 API for a variety of purposes like monitor

widows messages, manipulate controls, reading and writing to INI files and socket

programming etc. But these widows API are hard to program for variety of reasons, like

it is not object oriented and complex calls to the functions with long lists of arguments,

since Win32 API is written in C++ language, getting calling conventions right on data

types is messy.

Limitations in DNA-Based Internet Development or Browser based clients

 With DNA - based software development, creating software that is accessed by a

user locally is done very differently from development for the Internet. The Visual Basic

forms for client-server user interfaces versus the use of Active Server Pages for Internet

user interfaces. Even though both situations involve designing and implementing GUI

based user interfaces the tools and programming techniques used are quite different.

 ASP lacks in state management between post backs. Every time a page is

rendered, the programmer must make sure that all the visual controls like text boxes,

dropdowns have their information loaded. It is the programmer's responsibility to manage

the state in the user interface and to transfer state information between pages. This causes

developers to have to write a lot of code for the internet user interfaces that is not relevant

to business problem being solved.

 If the Internet application is going to run on a group of Web Servers, then

considerable additional work is necessary to design a state management system that is

independent of particular server.

 Browser based clients are somewhat more difficult to create, and offer a more

limited user interface with fewer controls and less control over layout of the screen and

handling of screen events. It is possible to create rich user interfaces using DHTML, but

it requires lot of coding and also browser compatibility issues rises, for which a separate

coding or two version of the same page have to be maintained, keeping in mind, the

browser we are targeting.

 The Internet has caused server-based applications to become much more popular

than ever before and has made the connectionless request/response programming model

common. But communicating between servers—especially among those running on

different platforms—is difficult, and because most substantial Internet applications are

Database-Centric, the ability to access a wide variety of data sources easily is more

important than ever.

 As we move on to handheld devices or wireless devices, kiosks or other type of

systems, many of which run a different processors and do not use standard operating

system. So sharing the data between these devices and communication varies which is not

uniform, becomes difficult.

2.3 NET Philosophy / Where does .NET fit in?

The driving force behind Microsoft® .NET is a shift in focus from individual Web sites

or devices to new constellations of computers, devices, and services that work together to

deliver broader, richer solutions.

The platform, technology that people use is changing. Since 1992, the client/server

environment has been in place, with people running the applications they need on the

Win32 platform, for example. Information is supplied by the databases on the servers,

and programs that are installed on the client machine determine how that information is

presented and processed.

One of the things people are looking for is a one-sentence definition of ".NET". What is

it? Why should I care? .NET is Microsoft's strategy for software that empowers people

any time, any place, and on any device.

Many of the goals Microsoft had in mind when designing .NET reflect the limitations we

previously discussed for development with previous tools and technologies.

Microsoft.NET solutions

• Single Programming Model A related goal is to have development for the internet

environment look very much like development for other types of software. Likewise,

developing user interfaces in Windows Forms is very similar to developing them in

Web Forms. There are commonly used controls, such as Labels and Text Boxes, in

both, with similar sets of properties and method. The amount of commonality makes

it easy to transition between the two types of development, and easier for traditional

VB developers to start using Web Forms.

• Distributed Systems The Vision of Microsoft.NET is globally distributed systems,

using XML as the universal glue to allow functions running on different computers

across an organization or across the world to come together in a single application. In

this vision, systems from servers to Wireless Palmtops, with everything in between,

will share the same general platform, with versions of .NET available for all of them,

and with each of them able to integrate transparently with the others.

• Richer User Interface Web Forms are a giant step towards much richer web-based

user interfaces. Their built-in intelligence allows rich, browser-independent screens to

be developed quickly, and to be easily integrated with compiled code. Microsoft has

announced an initiative for the future called the Universal Canvas which builds upon

the XML standards to transform the internet from a Read only environment into a

read/write platform, enabling users to interactively create, browse, edit and analyze

information. The universal canvas can bring together multiple sources of information

anywhere in the world to enable seamless data access and use.(The universal canvas

will log on to the Ms System of servers whenever the new device is turned on)

Centrally controlled OS, Office and Visual Studio.

• Easy Deployment Executable modules in .NET are self-describing. Once the

Common Language Runtime (CLR is explained in next sections) knows where a

module resides, it can find out everything else it needs to know to run the module,

such as the module’s object interface and security requirements, from the module

itself. That means a module can just be copied to a new environment and immediately

executed.

• Support for Multiple Languages The CLR executes binary code called MSIL

(Microsoft intermediate language), and that code looks the same regardless of the

original source language. All .NET –enabled languages use the same data types and

the same interfacing conventions. This makes possible for all .NET language to

interoperate transparently. One language can call another easily, and languages can

even inherit classes written in another language and extend them current platform has

anywhere near this level of language interoperability.

• Extendibility The completely object based approach of .NET is designed to allow

base functionality to be extended through inheritance (unlike COM) and the

platform’s functionality is appropriately partitioned to allow various parts(such as the

just-in-time compilers discussed in the next section) to be replaced as new versions

are needed. It is likely that, in the future, new ways of interfacing to the outside world

will be added to the current trio of windows Form, Web Forms, and Web Services

such as universal Canvas.

• Portability of compiled Applications .NET allows the future possibility of moving

software to other hardware and operating system platforms. The ultimate goal is that

compiled code produced on one implementation of .NET (such as Windows) could be

moved to another implementation of .NET on a different operating system merely by

copying the compiled code over and running it.

• Integrity with COM .NET integrates very will with COM-based software. Any COM

component can be treated as a .NET component by other .NET components. The

.NET Framework wraps COM components and exposes an interface that .NET

components can work with. This is absolutely essential to the quick acceptance of

.NET, because it makes .NET interoperable with a tremendous amount of older

COM-based software.

Other benefits of using .NET architecture

• The Microsoft .NET platform's reliance on XML for data exchange—an open

standard managed by the World Wide Web Consortium (W3C)—and modular XML

Web services removes barriers to data sharing and software integration.

• The .NET platform, through the .NET Framework's common language runtime,

enables XML Web services to interoperate whatever their source language.

Developers can build reusable XML Web services instead of monolithic applications.

By making it easy to offer your XML Web services to others.

• The ability to easily find available XML Web services means you can buy pieces of

your applications rather than build everything from scratch, focusing your time and

money where it makes the most sense.

• Easier to build sophisticated development tools – debuggers and profilers can target

the Common Language Runtime, and thus become accessible to all .NET-enabled

languages.

• Potentially better performance in system level code for memory management,

garbage collection, and the like have yielded an architecture that should meet or

exceed performance of typical COM-based applications today.

• Fewer bugs, as whole classes of bugs should be unknown in .NET. With the CLR

handling memory management, garbage collection.

• Faster development using development tool like visual studio.net

N-tier architecture with .NET

Applications developed in the .NET Framework will still, in, many cases, use a DNA

model to design the appropriate tiers. However, the tiers will be a lot easier to produce in

.NET. The presentation tier will benefit from the new interface technologies and

especially Web Forms for Internet development. The middle tier will require far less

COM-related headaches to develop and implement. And richer, more distributed middle

tier designs will be possible by using Web Services.

Let us look into how .Net fit into n – tier architecture. When you talk about a true

distributed n-tier type of application, you are talking about separating the components of

the different tiers on different machines as well as in separate components. Figure 1

shows a typical example of an n-tier application with multiple components on each

machine.

Figure 1. A distributed n-tier application has three physical tiers with one or more

logical tiers on each machine

There are many different ways you could configure an n-tier application. For example,

the business rules may go on a separate machine and you might use .NET Remoting to

talk from the client application to the business rule tier as shown in Figure 2.

We may also have a data input validation rule component on the client to check simple

rules such as required fields and formatting. These are rules that you do not want to make

a trip across the network just to check. You may then also add a business rule layer on the

same tier as the data layer component to check complicated business rules that compare

the data from one table to another.

These are just a few different configurations that you may utilize. Of course, you could

come up with something unique that fits your specific situation. Regardless of how you

structure the physical implementation of the components, make sure that the logical

structure of the program is broken up into components as shown in the above figures.

2.4 Understanding the .NET Platform and its layers

 Here in this section we will be covering what the .NET Platform is made up of
and we will define its layers. To start, .NET is a framework that covers all the layers

of software development above the Operating System. It provides the richest level of

integration among presentation technologies, component technologies, and data
technologies ever seen on Microsoft, or perhaps any, platform. Secondly, the entire

architecture has been created to make it easy to develop Internet applications, as it
is to develop for the desktop.

Constituents of .NET Platform

The .NET consists of the following three main parts

• .NET Framework – a completely re-engineered development environment.
• .NET Products – applications from MS based on the .NET platform, including

Office and Visual Studio.
• .NET Services – facilitates 3rd party developers to create services on the .NET

Platform.

.NET Platform Architecture

The above diagram gives you an overview of the .NET architecture. At the bottom of
the diagram is your Operating System above that sits the .NET framework that acts

as an interface to it. The .NET wraps the operating system, insulating software
developed with .NET from most operating system specifics such as file handling and

memory allocation.

The Common Language Runtime (CLR)

At the base is the CLR. It is considered as the heart of the .NET framework. .NET

applications are compiled to a common language known as Microsoft Intermediate

Language or “IL”. The CLR, then, handles the compiling the IL to machine language,
at which point the program is executed.

The CLR environment is also referred to as a managed environment, in which
common services, such as garbage collection and security, are automatically

provided.

More information on CLR is available at
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconthecommonlanguageruntime.asp

The .NET Class Framework

Remote user

over

Remote systems

over

Intranet/Internet

Operating System

Windows 2000/NT/98/Me – Others in

f

.NET

The next layer up in the framework is called the .NET Class Framework also referred

as .NET base class library. The .NET Class Framework consists of several thousand
type definitions, where each type exposes some functionality. All in all, the CLR and

the .NET Class Framework allow developers to build the following kinds of

applications:

• Web Services. Components that can be accessed over the Internet very easily.
• Web Forms. HTML based applications (Web Sites).

• Windows Forms. Rich Windows GUI applications. Windows form applications can

take advantage of controls, mouse and keyboard events and can talk directly to
the underlying OS.

• Windows Console Applications. Compilers, utilities and tools are typically

implemented as console applications.
• Windows Services. It is possible to build service applications controllable via the

Windows Service Control Manager (SCM) using the .NET Framework.

• Component Library. .NET Framework allows you to build stand-alone components
(types) that may be easily incorporated into any of the above mentioned

application types.

ADO.NET: Data and XML

ADO.NET is the next generation of Microsoft ActiveX Data Object (ADO) technology.

ADO.NET is heavily dependent on XML for representation of data. It also provides an
improved support for the disconnected programming model.

ADO.NET’s DataSet object, is the core component of the disconnected architecture of

ADO.NET. The DataSet can also be populated with data from an XML source, whether

it is a file or an XML stream.

For more details on ADO.NET, check out
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconaccessingdatawithadonet.asp

User Interface

The next layer consists of the user and programming interface that allows .NET to

interact with the outside world. The following are the types of interaction interfaces
that are supported by the .NET framework:

• Web Forms

• Windows Forms
• Web Services

Now let me tell you about Windows Forms and ASP.NET. WinForms (Windows Forms)

is simply the name used to describe the creation of a standard Win32 kind of GUI

applications.

The Active Server Pages web development framework has undergone extensive

changes in ASP.NET. The programming language of choice is now full-blown VB.NET
or C# (or any supported .NET language for that matter). Other changes include:

• New support for HTML Server Controls (session state supported on the server).
• It is now possible for the server to process client-side events.

• New control families including enhanced Intrinsics, Rich controls, List controls,

DataGrid control, Repeater control, Data list control, and validation controls.
• New support for developing Web Services—application logic programmatically

accessible via the Internet that can be integrated into .NET applications using the

Simple Object Access Protocol (SOAP).

Languages

The CLR allows objects created in one language be treated as equal citizens by code
written in a completely different language. To make this possible, Microsoft has

defined a Common Language Specification (CLS) that details for compiler vendors

the minimum set of features that their compilers must support if they are to target
the runtime.

Any language that conforms to the CLS can run on the CLR. In the .NET framework,
Microsoft provides Visual Basic, Visual C++, Visual C#, and JScript support.

.NET Products

Microsoft Visual Studio .NET
Microsoft Visual Studio .NET represents the best development environment for the

.NET platform.

Integrations is the key in the new VS.NET IDE, thus a single IDE can be used to

program in a variety of managed languages from VB.NET to Visual C++ with

Managed extensions. Advance features in VS.NET truly propel development in to the
highest gear.

.NET Services:

XML Web Services
XML is turning the way we build and use software inside out. The Web revolutionized

how users talk to applications. XML is revolutionizing how applications talk to other

applications—or more broadly, how computers talk to other computers—by providing
a universal data format that lets data be easily adapted or transformed:

• XML Web services allow applications to share data.
• XML Web services are discrete units of code; each handles a limited set of tasks.

• They are based on XML, the universal language of Internet data exchange, and

can be called across platforms and operating systems, regardless of
programming language.

• .NET is a set of Microsoft software technologies for connecting your world of
information, people, systems, and devices through the use of XML Web services.

For more details refer:
http://msdn.microsoft.com/nhp/default.asp?contentid=28000442

.NET Runtime:

Let’s now discuss about the .NET Runtime.

Source File

Compilers

Binaries

 Just-in-Time Compilation

Runtime

The .NET Framework provides a run-time environment called the Common Language

Runtime, which manages the execution of code and provides services that make the

development process easier. Compilers and tools expose the runtime's functionality
and enable you to write code that benefits from this managed execution

environment. Code developed with a language compiler that targets the runtime is
called managed code.

To enable the runtime to provide services to managed code, language compilers
must emit metadata, which the runtime uses to locate and load classes, lay out

instances in memory, resolve method invocations, generate native code, enforce

security, and set run-time context boundaries.
The runtime automatically handles objects, releasing them when they are no longer

being used. Objects whose lifetimes are managed in this way are called managed

data. Automatic memory management eliminates memory leaks as well as many
other common programming errors.

The CLR makes it easy to design components and applications whose objects interact

across languages. For example, you can define a class and then use a different

language to derive a class from your original class, or call a method on the original
class. You can also pass an instance of a class to a method on a class written in a

different language. This cross-language integration is possible because of the

common type system defined by the runtime, and they follow the runtime's rules for
defining new types, as well as for creating, using, persisting, and binding to types.

Language compilers and tools expose the runtime's functionality in ways that are

intended to be useful and intuitive to their developers. This means that some
features of the runtime might be more noticeable in one environment than in

another. How you experience the runtime depends on which language compilers or
tools you use. The following benefits of the runtime might be particularly interesting

to you:

• Performance improvements.

• The ability to easily use components developed in other languages.

• Extensible types provided by a class library.
• A broad set of language features.

C++ C# Visual Basic JScript

Compiler Compiler Compiler Compiler

Common Language Specification (CLI)

Common Language Runtime (CLR)

2.5 Understanding the various components of the .NET Platform
and the functions performed by them

Now we will go in detail about the various components that build the .NET framework

and its functionalities.

Common Language Runtime

At the core of the .NET platform is the Common Language Runtime (CLR). The CLR

simplifies application development, provides a robust and secure execution

environment, supports multiple languages and simplifies application deployment and
management.

The diagram below provides more details on the CLR's features:

In this section we will cover some of the more significant features provided to .NET

applications by the CLR. These include:

• Memory Management

• Common Type System

Before moving further let us discuss briefly about Common Language

Infrastructure(CLI) according to Standardizing Information and Communication

Systems(ECMA) specifications. The Microsoft Shared Source CLI Implementation is a
file archive containing working source code for the ECMA-334 (C#) and ECMA-335

(Common Language Infrastructure, or CLI) standards. In addition to the CLI
implementation and the C# compiler, the Shared Source CLI Implementation from

Microsoft called ROTOR contains tools, utilities, additional Framework classes, and

samples.

For the benefit of existing codebases, the CLI standard also takes pains to describe

in detail how unmanaged software can co-exist safely with managed components,
enabling seamless sharing of computing resources and responsibilities.

Like the C runtime, the CLI has been designed to exploit the power of diverse
platforms, as well as to complement existing tools, languages, and runtimes. Let's

look at a few of the likely ways that the Shared Source CLI Implementation might

interest you:

• There are significant differences in implementation between this code and the
code for Microsoft's commercial CLR implementation, both to facilitate portability

and to make the code base more approachable. If you are a developer who is

interested in knowing how JIT compilers and garbage collectors work, or of how
Microsoft Visual Studio works on your behalf under the covers, this distribution

will definitely hold your attention!

• The distribution will help you in creating courseware around interesting topics
that can be illustrated by this codebase.

• The distribution will help you in implementing your own version of the CLI and it

also helps you in understanding the way the compilers and tools target the CLI.

Automatic Memory Management

Now let us discuss about an important feature of the CLR called Automatic Memory

Management. A major feature of .NET framework CLR is that the runtime
automatically handles the allocation and release of an object’s memory resources.

Automatic memory management enhances code quality and developer productivity

without negatively impacting expressiveness or performance.

The Garbage Collector (GC) is responsible for collecting the objects no longer

referenced by the application. The GC may automatically be invoked by the CLR or
the application may explicitly invoke the GC by calling GC.Collect. Objects are not

released from memory until the GC is invoked and setting an object reference to

Nothing does not invoke the GC, a period of time often elapses between when the
object is no longer referenced by the application and when the GC collects it.

Common Type System

The Common Type System defines how data types are declared, used, and managed
in the runtime, and is also an important part of the runtime’s support for the Cross-

Language Integration. The common type system performs the following functions:

• Establishes a framework that enables cross-language integration, type safety,
and high performance code execution.

• Provides an object-oriented model that supports the complete implementation of

many programming languages.
• Defines rules that languages must follow, which helps ensure that objects written

in different languages can interact with each other.

The Common Type System can be divided into two general categories of types,

Reference type and Value type each of which is further divided into subcategories.

Common Type System Architecture

The .NET type system has two different kinds of types namely Value types and

Reference types.

Value types directly contain the data, and instances of value types are either

allocated on the stack or allocated inline in a structure. Value types can be built-in

(implemented by the runtime), user-defined, or enumerations.
The core value types supported by the .NET platform reside within the root of the

System namespace. There types are often referred to as the .NET “Primitive Types”.

They include:

• Boolean
• Byte

• Char

• DateTime
• Decimal

• Double

• Guid
• Int16

• Int32

• Int64
• SByte

• Single

• Timespan

Reference types store a reference to the value's memory address, and are
allocated on the heap. Reference types can be self-describing types, pointer types, or

interface types. The type of a reference type can be determined from values of self-

describing types. Self-describing types are further split into arrays and class types.

Value Type vs. Reference Type

The primary difference between reference and value types is how instances of the

two types are treated by the CLR. One difference is that the GC collects instances of
reference types that are no longer referenced by the application. Instances of value

types are automatically cleaned up when the variable goes out of scope. Let’s take a

look at an example in VB.NET:

Another difference is when one variable is set equal to another or passed as a
parameter to a method call. When a variable of a reference type (A) is set equal to

another variable of the same type (B), variable A is assigned a reference to B. Both
variables reference the same object. When a variable of value type (A) is set equal

to another variable of the same type (B), variable A receives a copy of the contents

of B. Each variable will have its own individual copy of the data.

Yet another difference between the behaviors of value types versus reference types

is how equality is determined. Two variables of a given reference type are
determined to be equal if both the variables refer to the same object. Two variables

of a given value type are determined to be equal if the state of the two variables are

equal.

The final difference between the two is the way the instances of a type are initialized.

In a reference type, the variable is initialized with a default value of Null. The
variable will not reference an object until explicitly done by the object. Whereas a

variable declared as a value type will always reference a valid object.

Custom Types

A Custom Type is a set of data and related behavior that is defined by the developer.

A developer can define both custom reference type and custom value types.

In vb.net we can define custom types by using the Structure keyword. Let’s look at

an example wherein we define a custom value type.

Sub Test()

 Dim myInteger as Integer

 Dim myObject as Object

End Sub

‘myInteger a Value type is automatically cleaned up when the Sub ends.

‘But myObject a Reference type is not cleaned up until the GC is run.

We declare a structure by name Test, it signals vb.net compiler to have Test
derive from System.ValueType and therefore a value type. In the Main() we initialize

x and then set y equal to x. Since x and y are both instances of value types, y is set

equal to the value of x. After changing the fields in y write the value of the fields in

both x and y to the Console. The output of the program is:

 x: myInt = 4 and myString = Test
 y: myInt = 1 and myString = Changed

Notice that even after changing the value of fields in y it did not affect x. This is

exactly the behavior required for primitive types.

Boxing and Unboxing Value Types

Sometimes it is required to treat an instance of a value type as if it were an instance

of a reference type. An example of this is when a value type is passed ByRef as a
parameter of a method. This is where the concept of Boxing becomes important.

Boxing occurs when an instance of a value type is converted to a reference type. An
instance of a value type can be converted either to a System.Object or to any other

interface type implemented by the value type.

Module Module1
 Public Structure Test

 Public myString as String
 Public myInteger as Integer
 End Structure

 Public Sub Main()
 ‘Notice that both declarations are equivalent

 ‘Both x and y are instance of type test

 Dim x as New Test()

 Dim y as Test

 x.myInteger = 4

 y.myString = “Test”

 ‘Reference to x is assigned to y

 y = x

 y.myInteger = 1

 y.myString = “Changed”

 Console.WriteKine(String.Format(“x : myInt = {0} and String = {1} ”, _
x.myInteger, x.myString))

Console.WriteKine(String.Format(“y : myInt = {0} and String = {1} ”, _
y.myInteger, y.myString))

 End Sub

Module Module1

 Public Function Add(ByVal x As Object, ByVal y As Object) As Object
 Add = x + y

 End Function

 Public Sub Main

 Dim x As Integer = 2
 Dim y As Integer = 3
 Dim sum As Integer

 Sum = Add(x , y)

 Console.WriteLine(“ {0) + {1} = {2} ”, x, y, sum)

 End Sub

End Module

In the above example both x and y are boxed before they are passed to Add.

Then x,y and Sum are boxed before they are passed to WriteLine.

Unboxing involves the conversion of an instance of a reference type back to its
original value type. In Vb.net it is done using the helper functions in the

Microsoft.VisualBasic.Helpers namespace. For example in the above example,
IntegerType.FromObject is called to unbox the return parameter of type object back

to Integer.

More information about Common Type System can be obtained from
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconcommontypesystemoverview.asp

The .NET Class Framework

We will now discuss about the .NET Class Framework. In conjunction with the CLR,

the Microsoft has developed a comprehensive set of framework classes, several of
which are shown below:

Since the .NET Class Framework contains literally thousands of types, a set of related

types is presented to the developer within a single namespace. For example, the
System namespace (which you should be most familiar with) contains the Object

base type, from which all other types ultimately derive. In addition the System

namespace contains types of integers, characters, strings, exception handling, and
console I/O’s as well as a bunch of utility types that convert safely between data

types, format data types, generate random numbers, and perform various math

functions. All applications use types from System namespace.

To access any platform feature, you need to know which namespace contains the
type that exposes the functionality you want. If you want to customize the behavior

of any type, you can simply derive your own type from the desired .NET framework

type. The .NET Framework relies on the object-oriented nature of the platform to
present a consistent programming paradigm to software developers. It also enables

you to create your own namespaces containing their own types, which merge

seamlessly into the programming paradigm. This greatly simplifies the Software
Development.

The table below lists some of the general namespaces, with a brief description of
what the classes in that namespace is used for:

Namespace Purpose of Class

System All the basic types used by every application.

System.Collections Managing collections of objects. Includes the

popular collection types such as Stacks, Queues,
HashTables etc.

System.Diagnostics Instrumenting and Debugging your application.

System.Drawing Manipulating 2D graphics. Typically used for
Windows Forms applications and for creating

Images that are to appear in a web form.

System.EnterpriseServices Managing Transactions, queued components,
object pooling, just-in-time activation, security

and other features to make use of managed code

more efficient on the server.

System.Globalization National Language Support(NLS), such as string

compares, formatting and calendars.

System.IO Doing Stream I/O, walking directories and files.

System.Management Managing other computers in the enterprise via
WMI.

System.Net Network Communications.

System.Reflection Inspecting metadata and late binding of types and
their members.

System.Resources Manipulating external data resources.

System.Runtime.InteropServices Enabling managed code to access unmanaged OS
platform facilities, such as COM components and

functions in Win32 DLLs.

System.Runtime.Remoting Accessing types remotely.

System.Runtime.Serilization Enabling instances of objects to be persisted and

regenerated from a stream.

System.Security Protecting data and resources.

System.Text Working with Text in different encodings, like

ASCII or Unicode.

System.Threading Performing asynchronous operations and
synchronizing access to resources.

System.Xml Processing XML Schemas and data.

In addition to the general namespace the .Net Class Framework offers namespaces
whose types are used for building specific application types. The table below lists

some of the application specific namespaces:

Namespace Purpose of Types

System.Web.Services Building web services

System.Web.UI Building web forms.

System.Windows.Forms Building Windows GUI applications.

System.ServiceProcess Building a windows service controllable by Service

Control Manager.

Refer the following link for .NET framework class library.
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconthenetframeworkclasslibrary.asp

Just-In-Time Compilation (JIT)

The MSIL is the language that all of the .NET languages compile down to. After they

are in this intermediate language, a process called Just-In-Time (JIT) compilation

occurs when resources are used from your application at runtime. JIT allows “parts”
of your application to execute when they are needed, which means that if something

is never needed, it will never compile down to the native code. By using the JIT, the
CLR can cache code that is used more than once and reuse it for subsequent calls,

without going through the compilation process again.

The figure below shows the JIT Process:

 .NET Assembly Class Loader

Intial Reference

 to type

 Assembly Resolver IL to PE Conversion

 Managed code Initial Method

 Call

 CPU

JIT Compilation Process

The JIT process enables a secure environment by making certain assumptions:

• Type references are compatible with the type being referenced.

• Operations are invoked on an object only if they are within the execution
parameters for that object.

• Identities within the application are accurate.

By following these rules, the managed execution can guarantee that code being

executed is type safe; the execution will only take place in memory that it is allowed

to access. This is possible by the verification process that occurs when the MSIL is
converted into CPU-specific code. During this verification, the code is examined to

ensure that it is not corrupt, it is type safe, and the code does not interfere with

existing security policies that are in place on the system.

2.6 Structure of a .NET Application

DLL Hell

DLLs gave developers the ability to create function libraries and programs that could
be shared with more than one application. Windows itself was based on DLLs. While

the advantages of shared code modules expanded developer opportunities, it also

introduced the problem of updates, revisions, and usage. If one program relied on a

specific version of a DLL, and another program upgraded that same DLL, the first
program quite often stopped working.

Microsoft added to the problem with upgrades of some system DLLs, like comctl.dll,
the library used to get file, font, color and printing dialog boxes. If things weren't

bad enough with version clashes, if you wanted to uninstall an application, you could
easily delete a DLL that was still being used by another program.

Recognizing the problem, Microsoft incorporated the ability to track usage of DLLs
with the Registry starting formally with Windows 95, and allowed only one version of

a DLL to run in memory at a time. Adding yet another complication, when a new

application was installed that used an existing DLL, it would increment a usage
counter. On uninstall, the counter would be decremented and if no application was

using the DLL, it could be deleted.

That was, in theory. Over the history of Windows, the method of tracking of DLL

usage was changed by Microsoft several times, as well as the problem of rogue
installations that didn't play by the rules--the result was called "DLL HELL", and the

user was the victim.

Solving DLL hell is one thing that the .NET Framework and the CLR targeted. Under

the .NET Framework, you can now have multiple versions of a DLL running

concurrently. This allows developers to ship a version that works with their program
and not worry about stepping on another program. The way .NET does this is to

discontinue using the registry to tie DLLs to applications and by introducing the

concept of an assembly.

On the .NET Platform, if you want to install an application in the clients place all you

have to do is use XCopy which copies all the necessary program files to a directory
on the client’s computer. And while uninstalling all you have to do is just delete the

directory containing the application and your application is uninstalled.

Metadata

An Assembly is a logical DLL and consists of one or more scripts, DLLs, or

executables, and a manifest (a collection of metadata in XML format describing how
assembly elements relate). Metadata stored within the Assembly, is Microsoft's

solution to the registry problem. On the .NET Platform programs are compiled into

.NET PE (Portable Executable) files. The header section of every .NET PE file contains
a special new section for Metadata (This means Metadata for every PE files is

contained within the PE file itself thus abolishing the need for any separate registry
entries). Metadata is nothing but a description of every namespace, class, method,

property etc. contained within the PE file. Through Metadata you can discover all the

classes and their members contained within the PE file.

Metadata describes every type and member defined in your code in a Multilanguage

form. Metadata stores the following information:
• Description of the assembly

o Identity (name, version, culture, public key).

o The types that are exported.
o Other assemblies that this assembly depends on.

o Security permissions needed to run

• Description of types

o Name, visibility, base class, and interfaces implemented.

o Members (methods, fields, properties, events, nested types)

• Attributes
o Additional descriptive elements that modify types and members

Advantages of Metadata:

Now let us see the advantages of Metadata:

Self describing files:

CLR modules and assemblies are self-describing. Module's metadata contains

everything needed to interact with another module. Metadata automatically provides
the functionality of Interface Definition Language (IDL) in COM, allowing you to use

one file for both definition and implementation. Runtime modules and assemblies do
not even require registration with the operating system. As a result, the descriptions

used by the runtime always reflect the actual code in your compiled file, which

increases application reliability.

Language Interoperability and easier component-based design:

Metadata provides all the information required about compiled code for you to inherit
a class from a PE file written in a different language. You can create an instance of

any class written in any managed language (any language that targets the Common

Language Runtime) without worrying about explicit marshaling or using custom
interoperability code.

Attributes:
The .NET Framework allows you to declare specific kinds of metadata, called

attributes, in your compiled file. Attributes can be found throughout the .NET
Framework and are used to control in more detail how your program behaves at run

time. Additionally, you can emit your own custom metadata into .NET Framework

files through user-defined custom attributes.

Assembly

Assemblies are the building blocks of .NET Framework applications; they form the

fundamental unit of deployment, version control, reuse, activation scoping, and
security permissions. An assembly is a collection of types and resources that are

built to work together and form a logical unit of functionality. An assembly provides
the common language runtime with the information it needs to be aware of type

implementations. To the runtime, a type does not exist outside the context of an

assembly.

An assembly does the following functions:

• It contains the code that the runtime executes.

• It forms a security boundary. An assembly is the unit at which permissions are

requested and granted.

• It forms a type boundary. Every type’s identity includes the name of the

assembly at which it resides.
• It forms a reference scope boundary. The assembly's manifest contains assembly

metadata that is used for resolving types and satisfying resource requests. It

specifies the types and resources that are exposed outside the assembly.
• It forms a version boundary. The assembly is the smallest version able unit in the

common language runtime; all types and resources in the same assembly are
versioned as a unit.

• It forms a deployment unit. When an application starts, only the assemblies the

application initially calls must be present. Other assemblies, such as localization
resources or assemblies containing utility classes, can be retrieved on demand.

This allows applications to be kept simple and thin when first downloaded.

• It is a unit where side-by-side execution is supported.

Contents of an Assembly

• Assembly Manifest

• Assembly Name
• Version Information

• Types

• Locale
• Cryptographic Hash

• Security Permissions

Assembly Manifest

Every assembly, whether static or dynamic, contains a collection of data that

describes how the elements in the assembly relate to each other. The assembly

manifest contains this assembly metadata. An assembly manifest contains the
following details:

• Identity. An assembly's identity consists of three parts: a name, a version

number, and an optional culture.

• File list. A manifest includes a list of all files that make up the assembly.
• Referenced assemblies. Dependencies between assemblies are stored in the

calling assembly's manifest. The dependency information includes a version

number, which is used at run time to ensure that the correct version of the
dependency is loaded.

• Exported types and resources. The visibility options available to types and

resources include "visible only within my assembly" and "visible to callers outside
my assembly."

• Permission requests. The permission requests for an assembly are grouped into
three sets: 1) those required for the assembly to run, 2) those that are desired

but the assembly will still have some functionality even if they aren't granted,

and 3) those that the author never wants the assembly to be granted.

In general, if you have an application comprising of an assembly named Assem.exe

and a module named Mod.dll. Then the assembly manifest stored within the PE
Assem.exe will not only contain metadata about the classes, methods etc. contained

within the Assem.exe file but it will also contain references to the classes, methods

etc, exported in the Mod.dll file. While the module Mod.dll will only contain metadata
describing itself.

The following diagram shows the different ways the manifest can be stored:

For an assembly with one associated file, the manifest is incorporated into the PE file

to form a single-file assembly. You can create a multifile assembly with a standalone
manifest file or with the manifest incorporated into one of the PE files in the

assembly.

The Assembly Manifest performs the following functions:

• Enumerates the files that make up the assembly.

• Governs how references to the assembly's types and resources map to the files

that contain their declarations and implementations.
• Enumerates other assemblies on which the assembly depends.

• Provides a level of indirection between consumers of the assembly and the

assembly's implementation details.
• Renders the assembly self-describing.

For more information on Assemblies refer:
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconassemblies.asp

Modules

Modules are also PE files (always with the extension .netmodule) which contain

Metadata but they do not contain the assembly manifest. And hence in order to use a

module, you have to create a PE file with the necessary assembly manifest.
In C#, you can create a module using the /t:module compiler switch.

There are a few ways to incorporate a module into an Assembly. You can either use

/addmodule switch to add module/s to your assembly, or you can directly use the

/t:exe, /t:winexe and /t:library switches to convert the module into an assembly.

Difference between Module and Assembly

A module is an .exe or .dll file. An assembly is a set of one or more modules that

together make up an application. If the application is fully contained in an .exe file,
fine—that's a one-module assembly. If the .exe is always deployed with two .dll files

and one thinks of all three files as comprising an inseparable unit, then the three

modules together form an assembly, but none of them does so by itself. If the
product is a class library that exists in a .dll file, then that single .dll file is an

assembly. To put it in Microsoft's terms, the assembly is the unit of deployment in

.NET.

An assembly is more than just an abstract way to think about sets of modules. When
an assembly is deployed, one (and only one) of the modules in the assembly must

contain the assembly manifest, which contains information about the assembly as a

whole, including the list of modules contained in the assembly, the version of the
assembly, its culture, etc.

Microsoft Intermediate Language (MSIL)

When compiling to managed code, the compiler translates your source code into
Microsoft intermediate language (MSIL), which is a CPU-independent set of

instructions that can be efficiently converted to native code. MSIL includes
instructions for loading, storing, initializing, and calling methods on objects, as well

as instructions for arithmetic and logical operations, control flow, direct memory

access, exception handling, and other operations. Before code can be executed, MSIL
must be converted to CPU-specific code by a just in time (JIT) compiler. Because the

runtime supplies one or more JIT compilers, for each computer architecture it

supports, the same set of MSIL can be JIT-compiled and executed on any supported
architecture.

When a compiler produces MSIL, it also produces metadata. The MSIL and metadata
are contained in a portable executable (PE file) that is based on and extends the

published Microsoft PE and Common Object File Format (COFF) used historically for

executable content. This file format, which accommodates MSIL or native code as
well as metadata, enables the operating system to recognize common language

runtime images. The presence of metadata in the file along with the MSIL enables
your code to describe itself, which means that there is no need for type libraries or

Interface Definition Language (IDL). The runtime locates and extracts the metadata

from the file as needed during execution.

3. Code Management

Section Owner: Gurneet Singh (MVP)

Content Contributors: Anand M (MVP), C S Rajagopalan, G Gokulraj, G Arun Prakash

3.1 Introduction

We all know that there have been disparities between different languages such as VB,

VC++ and developers, who code program through these languages. The disparity lies in

terms of language features, performance, and flexibility in developing any piece of

program. Well it’s a known fact that, at the end, what matters is how efficiently your

programs run on the client machine, no matter what language you use. Earlier this was

driven by compilers, which were used to compile the code written using these languages

to make it native code (processor specific).

With the release .NET framework Microsoft has driven out the disparities in such a way

that no matter whatever .NET language you use to develop .NET applications, still the

end result will be determined by .NET framework runtime and not by the language

compilers as it was happening earlier. In this tutorial we will identify some of the key

elements of the .NET framework through a simple program and concentrate on how

.NET framework Runtime addresses platform or processor specific code issues to

produce optimized code, which is native to the processor and to know how the

framework helps in managing code effectively.

Common Language Runtime (CLR)

The primary function of a runtime is to support and manage the execution of code

targeted for a language or a platform. For example, the Microsoft VC++ requires the

msvcrt60.dll that contains its core support functionality. Even languages like Java have a

run time, in the form of Java Virtual Machine.

The .Net platform also comes with a runtime that is officially called as the Common

Language Runtime or simply the CLR. The CLR is designed to support a variety of

different types of applications, from Web server applications to applications with

traditional rich Windows user interface. Though the role of the CLR is similar to its

counterparts in other languages or platforms, there are some key differences that make it

one of the major features of the .NET platform. Here are the key differences between the

.NET CLR and runtime of other languages:

• It is a common runtime for all languages targeting the .NET platform.

• It acts as an agent that manages code at execution time and also provides core

services such as memory management, thread management and remoting.

• It enforces strict type safety and other forms of code accuracy that ensure security and

robustness.

• It is responsible for enabling and facilitating the Common Type System. The

Common Type System allows classes that are written in any .NET language to

interoperate with—even inherit from, with overrides—classes written in any

language. So your COBOL.NET program can interoperate with your C#, VB.NET,

Eiffel.NET and with any other .NET language programs.

• It offers a mechanism for cross-language exception handling.

• It provides a more elegant way for resolving the versioning issues (also referred to as

the Dll Hell in our classic COM).

• It provides a simplified model for component interaction.

Code that targets the runtime is known as managed code, while code that does not target

the runtime is known as unmanaged code. Managed code requires a runtime host to start

it. The responsibility of the runtime host is to load the runtime into a process, create the

application domains (we’ll look at this in detail later) within the process, and loads the

user code into the application domains. While we can write our own runtime hosts using

the set of APIs provided by Microsoft, the .NET platform by default ships with runtime

hosts that include the following.

ASP.NET – Loads the runtime into the process that is to handle the Web request.

ASP.NET also creates an application domain for each Web application that will run on a

Web server.

Microsoft Internet Explorer – Creates application domains in which to run managed

controls. The .NET Framework supports the download and execution of browser-based

controls. The runtime interfaces with the extensibility mechanism of Microsoft Internet

Explorer through a mime filter to create application domains in which to run the managed

controls. By default, one application domain is created for each Web site.

Shell executables – Invokes runtime hosting code to transfer control to the runtime each

time an executable is launched from the shell.

Now that you have understood conceptually the key features of the CLR in .NET

framework, you can begin to look into the physical implementation and execution of code

in the CLR.

The following figure illustrates the flow of activities from the source code to its

execution.

3.2 First VB.NET / C# program

To start of with any language it’s always worth writing a simple program, which actually

does nothing but displays a “HelloWorld” string in the screen. Taking this simple

program we will try to figure out how .NET framework delivers a successful

HelloWorld.exe. Well to write such a complex program we will go for our favorite editor,

the choice is unanimous, it’s “Notepad”.

First VB.NET Program

Figure showing HelloWorld program written using VB.NET

'This is the famous HelloWorld Program written using VB.NET

Namespace HelloWorldSample

 'Definition of the Class

 Public Class HelloWorld

 'entry point method for the Class

 Public Shared Sub Main()

 System.Console.WriteLine("HelloWorld")

 End Sub

 'end of Class Declaration

 End Class

 'end of the Class Module

 'end of namespace

End Namespace

This is how it goes in your favorite editor ‘Notepad’

Now let us spend sometime in examining the HelloWorld program to find out what’s new

in writing code through any .NET language.

The lines in the program that starts with a ‘(single quote) are comment entries like in

other programming languages which are excluded in the compilation process. Like VB

the way in which comment entries are represented remains the same in VB.NET.

Namespace HelloWorldSample - The keyword “Namespace” is new to some

programmers who are not familiar with C++.

‘Namespace’ – a keyword in .NET is used to avoid name collisions i.e. For example, you

develop a library which has a class named “File” and you use some other library which

also has a class named “File”, in those cases there are chances of name collision. To

avoid this you can give a namespace name for your class, which should be meaningful. It

is always better to follow the syntax (MS Recommended) given below while giving

names for your namespaces

CompanyName.TechnologyName

However the hierarchy can be extended based on the implementation of the classes in the

library.

Public Class HelloWorld - This is the class declaration in VB.NET; the interesting thing

for VB developers is that VB.NET is a fully object-oriented language (so everything is a

Class here) . The class always ends with an “End Class”.

‘Public’ - is the modifier to determine the scope of the class (for other modifiers refer

.NET framework SDK documentation or later parts of this tutorial). HelloWorld is the

class name given for the class. Consumers of the class will be accessing through this

name only

Public Shared Sub Main () - This is called as the entry point function because the

runtime after loading your applications searches for an entry point from which the actual

execution starts. C/C++ programmers will find this method very familiar (VB

Programmers remember Sub Main). All Applications (exe) must have a definition for the

Main Method. Try removing the Main method from your application and the compiler

will complain that "No Start Point Defined". This means that the Main Method is the

starting point of any application, in other words When you execute your Application

"Main" method is called first automatically.

'Public' - This is the Access modifier for the Method. Since the Main method should be

accessible to everyone in order for the .NET Runtime to be able to call it automatically it

is always defined as public.

'Shared' - indicates that the method is a Class Method. Hence it can be called without

making an instance of the class first.

Now its time to compile and execute this complex program. To compile the above piece

of code you can use VB.NET compiler. To run the VB.NET compiler make sure you set

your path variable to point to the place where your VB.NET compiler is available. (To
set a new value in the path variable, go to control panel and double click System icon,

then choose advanced tab and click Environment Variables button to add or edit the
environmental variables)

Figure shows compilation of the HelloWorld program for VB.NET

The compiler used here is “vbc”, which is a visual basic .net compiler accepts the source

file “HelloWorld.vb” compiles the same to produce a program that’s not true executable,

instead it generates something called assembly. Here the VB.NET compiler produces a

Managed Code/Intermediate Language (MSIL) format that uses instructions which are

CPU-independent.

First C#.NET Program

/* This is the famous helloworld program written using C#.NET */

/* Indicates that the code is referring System Namespace to access the
functionality’s of System.dll */

using System;

// Namespace name given for the class

namespace HelloWorldSample

{

 //Definition of the class

 public class HelloWorld

 {

 // Entry point method for the class

 public static void Main()

 {

 //Displaying helloworld in the screen

 System.Console.WriteLine("HelloWorld");

 }

 //end of the class declaration

 }

 //end of the namespace

}

Figure showing HelloWorld program written using C#.NET in Notepad

The lines in the program that starts with a // and /*….*/ (comment blocks) are comment

entries like in other programming languages which are excluded in the compilation

process. For C or C++ programmers the C# style of coding sounds great because it

almost follows the same style.

namespace HelloWorldSample - The keyword “namespace” is new to some

programmers who are not familiar with C++.

‘namespace’ – a keyword in .NET is used to avoid name collisions i.e. For example, you

develop a library which has a class named “File” and you use some other library which

also has a class named “File”, in those cases there are chances of name collision. To

avoid this you can give a namespace name for your class, which should be meaningful. It

is always better to follow the syntax (MS Recommended) given below while giving

names for your namespaces

CompanyName.TechnologyName

However the hierarchy can be extended based on the implementation of the classes in the

library.

public class HelloWorld - This is the class declaration in C#.NET; the interesting thing

for C++ or Java developers is that they can apply the OOPS concepts that are supported

by C#.NET . The class always ends with an “End Class”.

‘public’ - is the modifier to determine the scope of the class (for other modifiers refer

.NET framework SDK documentation or later parts of this tutorial). HelloWorld is the

class name given for the class. Consumers of the class will be accessing through this

name only.

public static void Main () - This is called as the entry point function because the runtime

after loading your applications searches for an entry point from which the actual

execution starts. C/C++ programmers will find this method very familiar (VB

Programmers remember Sub Main). All Applications (exe) must have a definition for the

Main Method. Try removing the Main method from your application and the compiler

will complain that "No Start Point Defined". This means that the Main Method is the

starting point of any application, in other words When you execute your Application

"Main" method is called first automatically.

'public' - This is the Access modifier for the Method. Since the Main method should be

accessible to everyone in order for the .NET Runtime to be able to call it automatically it

is always defined as public.

'static' - indicates that the method is a Class Method. Hence it can be called without

making an instance of the class first.

‘void’ – indicates the return type of the Main function, here in this case the Main function

returns nothing so it is mentioned as void, for functions that returns value should have

appropriate type such as long, string etc.,

Now its time to compile and execute this complex program. To compile the above piece

of code you can use C# compiler. To run the C# compiler make sure you set your path

variable to point to the place where your C# compiler is available. (To set a new value in
the path variable, go to control panel and double click System icon, then choose

advanced tab and click Environment Variables button to add or edit the environmental
variables)

Figure shows compilation of the HelloWorld program using C# compiler

The compiler used here is “csc”, which is a visual basic .net compiler accepts the source

file “HelloWorld.cs” compiles the same to produce a program that’s not true executable,

instead it generates something called assembly.

Assembly

An assembly is a grouping of files deployed as a single file. An assembly almost always

consists of at least two files: the executable and the manifest. The manifest is a list of all

the files that exist inside the assembly. The executable content inside the assembly is

referred to individually as a module. Conceptually, modules correspond to DLLs or

EXEs; each module contains metadata, in addition to the metadata of its parent assembly.

The assembly format is an enhanced version of the current Portable Executable (PE)

format (your normal Windows .EXE file format).

Manifest

Manifest is considered as the integral part of every assembly that renders the assembly

self-describing. The assembly manifest contains the assembly's metadata and it also

establishes the assembly identity, specifies the files that make up the assembly

implementation, specifies the types and resources that make up the assembly, itemizes the

compile-time dependencies on other assemblies, and specifies the set of permissions

required for the assembly to run properly.

Metadata

The standard PE header comes at the beginning of the file. Inside the file is the CLR

header, followed by the data required to load the code into its process space—referred to

as metadata. It describes to the execution engine how the module should be loaded, what

additional files it needs, how to load those additional files, and how to interact with COM

and the .NET runtime.

Metadata also describes the methods, interfaces, and classes contained in the module or

assembly. The information the metadata provides allows the JIT compiler to compile and

run the module. The metadata section exposes much of your application's internals and

eases the transition from disassembled IL to useful code.

3.3 JIT (Just–in-Time Compiler) & Debugging

The .NET Runtime ships with a Just-In-Time (JIT or JITter) compiler, which will convert

the MSIL code in to the native code (CPU Specific executable code). So whatever code

we write will be complied in to MSIL format and the JIT takes over when you run it.

The .NET runtime/Common Language Runtime (CLR) ships three different classes of

JITters. The Main JIT compiler converts the MSIL code it to native code with out any

optimizations. The JIT compiler takes the MSIL code and optimizes it. So this compiler

requires lot of resources like, time to compile, larger memory footprint, etc. The PreJIT

is based on the Main JIT and it works like the traditional compilers (compiles MSIL to

native code during compilation time rather than runtime). This compiler is usually used at

the time of installation.

No matter whatever language we used to develop the HelloWorld program, it’s a known

fact that compiler’s are going to generate a MSIL format, once our code has been

converted in to MSIL format, from MSIL format all the code that we write will be

converted to native code in the same way whether if it is a VB.NET source or C# source.

Intermediate Language (IL)

To support our discussion let us examine the IL code of HelloWorld program written

using VB.NET and C#. To visualize the IL code Microsoft provides a disassembler tool

through which you can easily see the IL code

To use the tool, choose command prompt and type ILDASM->ILDASM dialog is shown-

> choose file open dialog and select the assembly

(make sure you set your path variable to point to the place where your ILDASM is
available)

Figure showing disassembled HelloWorld program

The above window showing a tree displays the path of the assembly as the root node,

manifest information and namespace information as the child node (if you do not specify

the namespace for the class then class name will be shown instead of namespace).

Figure showing manifest information of helloworld program

The manifest information shows the dependent assemblies like mscorlib,

Microsoft.VisualBasic and their versions and it self describes the HelloWorld assembly.

Since we have a simple program, which does not contain any embedded resource, the

manifest does not include any information on those.

Figure showing list of information present in the namespace

The above figure shows the list of information present within the namespace. In general

the namespace contains the list of classes, structures, delegates, enums etc., In this case it

shows the HelloWorld class which in turn contains the methods present in the class. It

also shows the following information.

 .class public auto ansi

The above figure shows that HelloWorld is derived from System.Object, System.Object

is the base class in the .NET framework

 .ctor : void()

The above figure shows the IL code of the constructor of HelloWorld Class, you can see

that it in turn calls System.Object::.ctor(), which is the base class’s constructor

 Main : void()

The above figure shows the IL code of the Main function, which is the entry point for that

assembly. It also shows the method “System.Console::WriteLine” is called with the

string “HelloWorld “ within the Main function

Compiler Options

If you can recollect the statement we have used to compile the HelloWorld program is

vbc HelloWorld.vb for Vb.NET and csc HelloWorld.cs for C# , in this we have used the

default settings of the compiler. Let us spend sometime in compiling the same code with

some important options of the vbc /csc compiler.

In our program we have referred System.Dll assembly, in real life we would be

application-referring lot of assemblies, in those cases the compiler should be intimated

about the references. We can achieve this by the option mentioned below

/reference:<file-list> - needs to be used to indicate the list of references used by the

application, in short it can also be represented as “/r”. In our case it will be represented

like this statement given below

vbc /reference:”System.dll” HelloWorld.vb for Vb.NET

csc /reference:”System.dll” HelloWorld.cs for C#.NET

The compiler by default will produce a HelloWorld.exe, in case you want to create a

module or a library, then you have to specify the target in the compiler. It can be done

like this

vbc /target:library /reference:”System.dll” HelloWorld.vb => to generate a library

csc /target:library /reference:”System.dll” HelloWorld.cs => to generate a library

Executing the above line of statement in the command prompt will generate a

HelloWorld.dll, in the same manner a module can be generated by applying this

switch /target:module

In case if we would like to give a different name to the assembly file then the statement

given below can be applied

vbc /target:exe /out:”SampleHelloWorld.exe” /reference:”System.dll”

HelloWorld.vb

csc /target:exe /out:”SampleHelloWorld.exe” /reference:”System.dll”

HelloWorld.cs

In the above statement the switch /out:<filename> is used to give a different name to the

output assembly file.

The above compiler statements what we have seen is for simple applications, let us

assume we have an application which is a Win32 executable and it has got resources,

which could be embedded or linked (More on resource file later). An embedded resource

could be an image for the splash screen, in those cases the following compiler options

will be used

/target:winexe - used to create a Win32 executable file

/linkresource:<resource file(s)> - used to link a resource file to the assembly

/resource:<resource file(s)> - used to embed a resource file to the assembly

/imports:<import list> - used to include the list of namespaces used by the assembly

For other compiler options refer .Net framework SDK documentation.

.NET Debugging

Debugging is the most important feature of any programming language and Visual Studio

.NET IDE provides this feature in an effective manner (but you can still do pretty good

job with the .NET SDK alone). Application source code goes through two distinct steps

before a user can run it. First, the source code is compiled to Microsoft Intermediate

Language (MSIL) code using a .NET compiler. Then, at runtime, the MSIL code is

compiled to native code. When we debug a .NET application, this process works in

reverse. The debugger first maps the native code to the MSIL code. The MSIL code is

then mapped back to the source code using the programmer's database (PDB) file. In

order to debug an application, these two mappings must be available to the .NET runtime

environment.

To accomplish the mapping between the source code and the MSIL, use

the/debug:pdbonly compiler switch to create the PDB file (Note: When building

ASP.NET applications, specify the compilation setting debug="true" in the application’s

Web.config file). The second mapping between the MSIL code and native code is

accomplished by setting the JITTracking attribute in our assembly. By specifying the

/debug compiler switch, the PDB file is created and the JITTracking attribute is enabled.

When using this compiler switch, a debugger can be attached to an application loaded

outside of the debugger.

Once the required mappings exist, there are several means by which to debug our

applications. We can use the integrated debugger within Visual Studio .NET, or, if we

prefer, we can use DbgClr, a GUI-based debugger. There is also a command line

debugger, CorDBG that is included in the .NET Framework SDK.

 3.4 Managed Vs. Unmanaged Methods/Transitions

In .Net Framework CLR provides execution of instruction targeted for CLR and the

instructions that are not targeted for CLR. The instructions targeted for CLR are called as

managed code and other type of code is called unmanaged code. After going through this

topic you will know the following things mentioned below

Difference between Managed Method and Unmanaged Method.

Difference between Managed Type and Unmanaged Type.
How to call unmanaged methods in managed methods.

How to use unmanaged types.

When an application is launched for execution, first request is given to the Operating

System, the OS will load the executable file in memory and starts executing the

instruction from the entry point function in the executable file. Where in .NET executable

file contains four main components the CLR header, the Metadata, the MSIL Code, and

Native code.

CLR header will be used by the managed code in the module which will have the version

number of the CLR on which the module is built and entry point method of the module in

the executable.

Metadata describes the types used in the managed code, combination of CLR header and

MSIL Code is the compiled format of a .Net language on a .Net Compiler, which will not

have the instruction in targeted machine instruction format, which will again get

compiled by the JIT Compiler

Native Code contains the machine instruction, which will be directly executed by the OS.

Not all the .NET PE will have the Native code. PE of type EXE’s will be having a native

method like main() called as “unmanaged stub” which will be an entry point for the OS to

execute code, that function will jump to _CorExeMain function located in MSCoree.dll

which will be executed by the OS to initialize CLR and attach the running .NET module

to CLR. Once CLR is initialized and loaded CLR will start executing the assembly by

executing the managed entry point function specified in the CLR header of the file.

Managed Code

Machine instructions in MSIL format and located in Assemblies will be executed by the

CLR, will have the following intrinsic advantages,

Memory management to prevent memory leaks in the program code,

• Thread execution,

• Code safety verification,

• Compilation,

Executed on many platforms like Windows 95, Windows 98, Windows 2000,and other

system services.

Managed methods will be marked as “cil” in MSIL code. Methods marked with “cil” will

be compiled by mscorjit.dll before execution. C# and VB.NET will generate only

managed code. (Managed C++ can generate managed code by specifying “#pragma

managed”)

Unmanaged Code

Unmanaged codes are the instructions, which are targeted for specific platforms.

Unmanaged code will exist in any of the format,

A code instructions in managed C++ with “#pragma unmanaged”

COM/COM+ Components

Win32 Dlls/System Dlls

As these codes are in native format of OS, these instructions will be executed faster

compared with JIT compilation and execution of Managed code.

Managed and Unmanaged transitions

As we get more benefits from managed code, still we may need to use unmanaged code.

.Net provides many ways to access unmanaged code in managed code. Managed-

Unmanaged transitions are achieved in .Net by set of services called Platform Invocation

Services (P/Invoke) and IJW(It Just Works).

P/Invoke services are targeted for unmanaged code, which exists as COM/COM+

components and Win32 DLLs. COM/COM+ components will accessed by the concept

called COM Interop - is a mechanism in which existing COM components will be

accessed through a wrapper class called COM Callable Wrapper (CCW) in managed code

without modifying the existing COM components. Using P/Invoke mechanism we can

call Windows DLL functions in managed code.

IJW(It Just Works) targets code instructions built on C++ managed extensions, This

mechanism is only for the code in Managed C++. In this way we can call the unmanaged

methods directly by the managed code.

For example following code calls the MessageBox function in User32.dll(VB.NET)

Imports System.Runtime.InteropServices

Public Class Win32

Declare Auto Function MessageBox Lib "user32.dll" (ByVal

hWnd As Integer, _

ByVal txt As String, ByVal caption As String, ByVal Typ As

Integer) As Integer

End Class

Module Module1

Sub Main()

 Win32.MessageBox(0, "Hello world" , "Temp path

is", 0)

End Sub

End Module

Declare is the statement to state the Win32 API functions located in the Win32 DLLs.

And the respective arguments declared with CLR data type.

In C#, we need to use the extern keyword with the attribute DLL Import to specify the

Win32 DLL and the function should be declared as static function.

using System;

class PInvokeDemo

{

[dllimport("user32.dll")]

public static extern int MessageBox(int hwnd, string msg,

string caption, int type);

 public static int Main()

 {

 MessageBox(0, "Hello World!", "Tutorial", 1);

 return 0;

 }

}

In the above example MessageBox function is accessed from user32.dll by using the

attribute DLL Import, and declared as static function

Managed Types and Unmanaged Types

We have seen how to call an unmanaged code in a managed code, now the question is

how unmanaged code understands the managed data type and vice the versa. We will see

how string will be sent from managed code and returned back to managed code. When

passing a string value as an input argument to an unmanaged code CLR will take care of

converting that to a native string type.

When we try to call a function, which returns string then the managed code, has to

allocate memory and send to the function in unmanaged code. For example if we want to

retrieve the OS Temp path then we can call GetTempPath API function of “kernel32.dll”,

Following code snippet shows how to call the function with string as an out argument
with VB.NET.

Imports System.Runtime.InteropServices

Public Class Win32

 Declare Auto Function MessageBox Lib

"user32.dll" (ByVal hWnd As Integer, _

 ByVal txt As String, ByVal caption As

String, ByVal Typ As Integer) As Integer

 Declare Auto Function GetTempPath Lib "kernel32.dll"

(ByVal lenOfChar As Integer, ByVal strData As

System.Text.StringBuilder) As Integer

End Class

Module Module1

 Sub Main()

 Dim l As Integer

 Dim data As String

 Dim tempPath As System.Text.StringBuilder = New

System.Text.StringBuilder(255)

 l = 255

 Win32.GetTempPath(l, tempPath)

 Win32.MessageBox(0, tempPath.ToString(), "Temp path

is", 0)

 End Sub

End Module

Following code snippet shows how to call the function with string as an out

argument with C#.

using System;

using System.Text;

class PInvokeDemo

{

[dllimport("kernel32")]

public static extern int GetTempPath (int size,

StringBuilder buf);

 public static int Main()

 {

 const int size = 255;

 StringBuilder tempPath = new StringBuilder (size

);

 GetTempPath (size, tempPath);

 System.Console.WriteLine (tempPath);

 return 0;

 }

}

The above code uses StringBuilder class of System.Text namespace to allocate string

with 255 characters (Just think for this as a fixed string we used to have in VB).

Some of the functions in managed code will be accepting arguments as structures,

structures in unmanaged code will be having set of member fields located in memory as

the order in which it has been declared, that is the layout of member variable location is

fixed. But in .Net, structures will have fields of managed data type and these member

fields will automatically change the memory location of the structure. CLR will

automatically move the data members to improve memory usage and performance.

When an unmanaged method, which expects an argument as a structure, then managed

code has to declare the structure so that it can be accessed by the unmanaged code. But

.NET structures will have auto memory layout of data members, so to pass structures

from managed code to unmanaged code has to be declared with an attribute StructLayout
in System.Runtime.InteropServices namespace.

StructLayout is used with an enumerated value LayoutKind with following options given

below:

• Auto – default option which changes the member field memory layout.

• Sequential - specifies member variable should be placed in a sequential order as

specified while declaring the type.

• Explicit- specifies the exact location of the member variable in the structure.

3.5 Summary

Over the course of topics covered in this session you have seen how to create a simple

HelloWorld program, to know the internals of the .NET Framework Runtime. For further

understanding or clarification you can always use the .NET framework SDK help

documentation and MSDN online.

4. Language Features of C#

Section Owner: Gurneet Singh (MVP)

Content Contributors: Amit Kukreja, Arvind Rangan, Reshmi Nair

4.1 History of C#

.NET framework offers a myriad of languages which puts us programmers into a deep

thought process about which programming language best suits our needs.

Which language is the "best" language choice? If you are a VB wizard, should you take

the time to learn C# or continue to use VB.NET? Are C# ASP.NET pages "faster" than

VB .NET ASP.NET pages? These are questions that you may find yourself asking,

especially when you're just starting to delve into .NET. Fortunately the answer is simple:

there is no "best" language. All .NET languages use, at their root, functionality from the

set of classes provided by the .NET Framework. Therefore, everything you can do in

VB.NET you can do in C#, and vice-a-versa.

The differences occur in three main areas: syntax, object-oriented principles, and the

Visual Studio .NET IDE. Syntax concerns the statements and language elements. Object

Oriented differences are less obvious, and concern differences in implementation and

feature sets between the two languages. IDE differences include things like compiler

settings or attributes. There is also a fourth area of difference: language features that are

present in one language but have no equivalent in the other.

If you are more familiar with Java, JScript, or C/C++, you may find C#'s syntax more

familiar than VB.NET's.

A good question that has to be answered in order to keep you interested in learning C# is

Why should you learn another programming language when you already doing enterprise

development in C++ or Java. The very answer at the first go will be C# is intended to be

the premier language for writing NGWS (Next Generation of Windows Services)

applications in the enterprise computing world.

The programming language C# derives from C and C++; however apart from being

entirely object oriented it is type safe and simple too. If you are a C/C++ programmer

your learning curve should be flat. Many C# statements including expressions and

operators have been taken directly taken from your favourite language

An important point about C# is that it simplifies and modernizes C++ in the areas of

classes, namespaces and exception handling. Much of complex features have not been

included or in fact hidden in C# to make it easer to use and more importantly less error

prone for e.g. no more macros, templates and no multiple inheritances (Few of you might

not like it.)

C# provides you with convenient features like garbage collection, versioning and lot

more.

The only expense that I can think of is that your code operates in safe mode, where no

pointers are allowed. However if you want to use pointers you are not restricted from

using it via unsafe code- and no marshalling is involved when calling the unsafe code.

So you will learn a great deal of this new language in the coming Sections and see for

yourself that how C# resembles or not resembles your favorite language

4.2 Language Fundamentals in C#

Constants & Variables

A variable is a named memory location. They are programming elements that can change

during program execution. Data that needs to be stored in memory & accessed at a later

time are stored in variables. Instead of referring to the memory location by the actual

memory address you refer to it with a variable name.

Variables are declared as follows

int a;

They can also be initialized at the time of declaration as follows:

int a = 10;

Constants are very similar to variables. The main difference is that the value contained in

memory cannot be changed once the constant is declared. When you declare a constant

its value is also specified and this value cannot be changed during program execution.

Constants are used in situations where we need to keep the value in some memory

location constant. If you use hard-coded values, and the value is changed then it has to be

changed in all the locations in the code where it has been used. Instead if we are using

constants, all we will need to do is to change the value of the constant. This would

propagate the changes to our entire application.

Constants are declared as follows

 const int a;

Simple Types (Primitive Data types)

Simple or value type variables are those, which are assigned space in the stack instead of

the heap. All the primitive types such as int, double etc are value type variables. The

simple types basically consist of Boolean and Numeric types, where Numeric is further

divided into Integral and Floating Point.

The first rule of value types is that they cannot be null. Anytime you declare a variable of

value type, you have allocated the number of bytes associated with that type on the stack

and are working directly with that allocated array of bits. In addition, when you pass a

variable of value type, you are passing that variable’s value and not a reference to the

underlying object.

Object Type

Object type or reference type variables are those, which are allocated storage space in the

heap. Reference type objects can be null. When a reference type is allocated under the

covers a value is allocated on the heap and a reference to that value is returned. There are

basically four reference types: classes, interfaces, delegates and arrays.

Class Type

Custom data types are available in .NET framework in the form of classes or class type. It

is nothing but a set of data and related behavior that is defined by the developer.

Object type and class type are both reference type variables. The only difference comes

from the fact that object type consists of objects predefined and available with the .NET

framework such as string whereas class type consists of custom user defined data types

such as the class employee given below.

class employee

{

int empid;

string empname

public employee()

{

 empid = 10;

 empname = “Reshmi”;

}

}

Overloading and Overriding of the Class

Overloading provides the ability to create multiple methods or properties with the same

name, but with different parameters lists. This is a feature of polymorphism. A simple

example would be an addition function, which will add the numbers if two integer

parameters are passed to it and concatenate the strings if two strings are passed to it.

using System;

public class test

{

public int Add(int x , int y)

{

 return(x + y);

}

public string Add(String x, String y)

{

return (x + y);

}

public static void Main()

 {

 test a = new test ();

 int b;

 String c;

 b = a.Add(1, 2);

 c = a.Add("Reshmi", " Nair");

 Console.WriteLine(b);

 Console.WriteLine(c);

 }

}

O/P:

3

Reshmi Nair

Overriding

Class inheritance causes the methods and properties present in the base class also to be

derived into the derived class. A situation may arise wherein you would like to change

the functionality of an inherited method or property. In such cases we can override the

method or property of the base class. This is another feature of polymorphism.

public abstract class shapes

{

 public abstract void display()

 {

 Console.WriteLine("Shapes");

 }

}

public class square: shapes

{

 public override void display()

 {

 Console.WriteLine("This is a square");

 }

}

public class rectangle:shapes

{

public override void display()

{

 Console.WriteLine("This is a rectangle");

 }

}

The above example is just an indication to how overriding can be implemented in C#.

Properties

Properties are named members of classes, structs, and interfaces. They provide a flexible

mechanism to read, write, or compute the values of private fields through accessors.

Properties are an extension of fields and are accessed using the same syntax. Unlike

fields, properties do not designate storage locations. Instead, properties have accessors

that read, write, or compute their values.

Get accessor

The execution of the get accessor is equivalent to reading the value of the field.

The following is a get accessor that returns the value of a private field name:

private string name; // the name field

public string Name // the Name property

{

 get

 {

 return name;

 }

}

Set accessor

The set accessor is similar to a method that returns void. It uses an implicit parameter

called value, whose type is the type of the property. In the following example, a set

accessor is added to the Name property:

public string Name

{

 get

 {

 return name;

 }

 set

 {

 name = value;

 }

}

When you assign a value to the property, the set accessor is invoked with an argument

that provides the new value. For example:

e1.Name = "Reshmi"; // The set accessor is invoked here

It is an error to use the implicit parameter name (value) for a local variable declaration in

a set accessor.

How to make a Property Read Only/Write Only

There are times when we may want a property to be read-only – such that it can’t be

changed.

This is where read-only properties come into the picture. A Read Only property is one

which includes only the get accessor, no set accessor.

public read Only int empid

{

 get

 {

 return empid;

 }

}

Similar to read-only properties there are also situations where we would need
something known as write-only properties. In this case the value can be changed
but not retrieved. To create a write-only property, use the WriteOnly keyword and
only implement the set block in the code as shown in the example below.

public writeOnly int e

{

 set

 {

 e = value

 }

}

Structures

A structure allows you to create your own custom data types and it contains one or more

members that can be of different data types. It can contain fields, methods, etc.

Structures are very similar to classes but there are some restrictions present in the case of

structures that are absent in the case of classes. For example you cannot initialize

structure members. Also you cannot inherit a structure whereas classes can be inherited.

Another important feature of structures differentiating it from classes is that a structure

can't have a default parameter-less constructor or a destructor. A structure is created on

the stack and dies when you reach the closing brace in C# or the End structure in

VB.NET.

But one of the most important differences between structures and classes is that structures

are referenced by value and classes by reference. As a value type, allocated on the stack,

structs provide a significant opportunity to increase program efficiency. Objects on the

stack are faster to allocate and de-allocate. A struct is a good choice for data-bound

objects, which don’t require too much memory. The memory requirements should be

considered based on the fact that the size of memory available on the stack is limited than

the memory available on the heap.

Thus we must use classes in situations where large objects with lots of logic are required.

Struct – Code: Sample code showing the Class vs. Structures

using System;

class Test {

int classvar ;

int anothervar =20;

public Test ()

{

classvar = 28;

}

 public static void Main()

{

Test t = new Test();

ExampleStruct strct = new ExampleStruct(20);

System.Console.WriteLine(strct.i);

strct.i = 10;

System.Console.WriteLine(t.classvar);

System.Console.WriteLine(strct.i);

strct.trialMethod();

}

}

struct ExampleStruct {

 public int i;

 public ExampleStruct(int j)

{

 i = j;

 }

 public void trialMethod()

{

 System.Console.WriteLine("Inside Trial Method");

 }

}

 O/P:-

28

20

10
 Inside Trial Method

In the above example, I have declared and used a constructor with a single parameter for

a structure. Instead if I had tried to use a default parameter-less parameter I would have

got an error. But the same is possible in the case of classes as shown by the default

parameter-less constructor, which initializes the classvar variable to 28.

Another point to note is that a variable called anothervar has been declared and initialized

within the class whereas the same cannot be done for members of a structure.

Why Namespaces

Namespaces are used in .Net to organize class libraries into a hierarchical structure and

reduce conflicts between various identifiers in a program. By helping organize classes,

namespaces help programmers manage their projects efficiently and in a meaningful way

that is understood by consumers of the class library. Namespaces enables reusable

components from different companies to be used in the same program without the worry

of ambiguity caused by multiple instances of the same identifier.

Namespaces provide a logical organization for programs to exist. Starting with a top-

level namespace, sub-namespaces are created to further categorize code, based upon its

purpose.

In .Net, the base class library begins at the System namespace. There are several classes

at the System level such as Console, Exception etc. The namespace name gives a good

idea of the types of classes that are contained within the namespace. The fully qualified

name of a class is the class name prefixed with the namespace name. There are also

several nested namespaces within the System namespace such as System.Security,

System.IO, System.Data, System.Collections etc.

Reducing conflict is the greatest strength of namespaces. Class and method names often

collide when using multiple libraries. This risk increases as programs get larger and

include more third-party tools.

Boxing Conversions

Boxing is the implicit conversion of a value type to a reference type or to any interface

type implemented by this value type. This is possible due to the principle of type system

unification where everything is an object.

When boxing occurs, the contents of value type are copied from the stack into the

memory allocated on the managed heap. The new reference type created contains a copy

of the value type and can be used by other types that expect an object reference. The

value contained in the value type and the created reference types are not associated in any

way. If you change the original value type, the reference type is not affected. Boxing,

thus, enables everything to appear to be an object, thereby avoiding the overhead required

if everything actually were an object.

Example:

int n = 10;

Object obj;

obj = n;

Explanation:

In the above code segment, a value-type variable n is declared and is assigned the value

10. The next statement declares an object-type variable obj. The last statement implicitly

performs boxing operation on the variable n.

UnBoxing Conversions

UnBoxing is the explicit conversion from a reference type to a value type or from an

interface type to a value type that implements the interface.

When unboxing occurs, memory is copied from the managed heap to the stack. For an

unboxing conversion to a given value type to succeed at run time, the value of the source

argument must be a reference to an object that was previously created by boxing a value

of that value type otherwise an exception is thrown.

Example:

int n = 10;

int j;

Object obj;

obj = n;

j = (int)obj;

Explanation:

In the above code segment, another integer variable j is declared. The last statement

performs explicit conversion of object-type to value-type i.e. integer.

Boxing and UnBoxing have performance implications. Every time a value type is boxed,

a new reference type is created and the value type is copied onto the managed heap.

Depending on the size of the value type and the number of times value types are boxed

and unboxed, the CLR can spend a lot of CPU cycles just doing these conversions.

It is recommended to perform boxing and unboxing in a scenario where you have to pass

a value parameter multiple times to a method that accepts a reference parameter. In such

a case, it is advantageous to box the value parameter once before passing it multiple times

to methods that accept reference methods.

Enumerations

Enumerations are types that inherit from System.Enum. The elements of an enumeration

are expressed in words rather than numbers, which makes it convenient for understanding

the meaning of the value being used. Enumerations symbolically represent a set of values

of one of the primitive integral types.

The type of the elements of an enumeration can be byte, short, int or long. If no type is

specified explicitly, the default type is int.

Example:

enum month : byte

{Jan = 2, Feb = 5, Mar = 10};

Explanation:

In the above code segment, an enumeration type month is declared. The underlying type

of the elements has been specified as byte. It has three elements viz: Jan, Feb and Mar.

These three elements have been assigned specific values. In case of an enumeration, if no

values are specified, the value of the first element corresponds to 0 and so on.

Delegates

The runtime supports constructs called delegates, which enable late-bound operations

such as method invocation and callback procedures. With delegates, a program can

dynamically call different methods at runtime. They are type safe, secure, managed

objects that always point to a valid object and cannot corrupt the memory of another

object. The closest equivalent of a delegate in other languages is a function pointer, but

whereas a function pointer can only reference static functions, a delegate can reference

both static and instance methods. Delegates are Marshal by Value Objects.

The members of a delegate are the members inherited from class System.Delegate.

A delegate defines the signature and return type of a method. The resulting delegate can

reference any method with a matching signature. Each instance of a delegate can forward

a call to one or more methods that take those parameters and return the same type. Once a

method has been assigned to a delegate, it is called when the delegate is invoked.

Example:

public delegate int calculation(int a,int b);

class mainclass

{

 calculation calc_delegate;

 public int add(int num1,int num2)

 {

 return num1 + num2;

 }

 static void Main()

 {

 int result;

 mainclass obj = new mainclass();

 obj.calc_delegate = new calculation(obj.add);

 result = obj.calc_delegate(50,70);

 }

}

Explanation:

Four steps are required to implement delegates viz.

• Defining Delegates

The foremost step is to define the delegate. The definition of the delegate specifies

the method signature, return type of the method, access modifier and the delegate

name. The method signature specifies the order and type of each argument.

The definition of a delegate is indicated by the usage of the delegate keyword. As

shown in the above code segment, the delegate name is calculation, it's access

modifier is public, it receives two integer arguments and returns an integer value.

• Creating Delegate Method Handler(s)

The next step is to define the method(s) that will be associated with the delegate.

In the above code segment, a method named add is defined. This method must have

same method signature as that of the delegate, as shown in the above code segment.

• Hooking up Delegates and Method Handlers

For a delegate method handler to be invoked, it must be assigned to a delegate object.

In the above code, the delegate object is calc_delegate and is hooked up to the

method handler add.

• Invoking the method through the Delegate

The last step is to invoke the methods that are associated with the delegate. A

delegate method handler is invoked by making a method call on the delegate itself.

This causes the method handler to invoke with the assigned input parameters as if

they were invoked directly by the program, as shown in the above code.

4.3 Control Statements

C# has statements such as if ….. else ….. and switch…case which help you to

conditionally execute program.

C# provides you with various looping statements, such as do… while, while, for and

foreach….in.

1. The if ….else….. Statement

Consider a student marks and grade evaluation. For Marks above 75 the grade is ‘A’ and

for below 75 is ‘B’. In this situation when you need to execute some code based on some

condition, you can make use of, if …. else …...

The Cultural syntax normally used is as follows:

 if (condition)

 {

 Executable statements when the condition is True

 }

 else

 {

 Executable statements when the Condition is False

 }

OR using else if for Advanced Decision making

 if (condition)

 {

 Executable statements

 }

 else if (condition)

 {

Executable statements

 }

Single if can have multiple else if with conditions, as mentioned above in else if format.

Nesting if …else Constructs

if (condition)

{

 if (condition)

{

Executable statements when the condition2 is TRUE

 }

 else

 {

 Executable Statements

 }

else

{

 Executable statements

}

One important thing to keep in mind when nesting if…else constructs is that you must have remember to close the
brace ({ }) for every brace that you open.

2. The switch…case Statement.

The switch statement is a control statement that handles multiple selections by passing

control to one of the case statements within its body.

The switch…case Statement is similar to if…else. The only difference between two is

that if and else if can evaluate different expressions in each statement, but the switch

statement can evaluate only one expression.

The drawback of if...else construct is that it isn’t capable of handling a decision situation

without a lot of extra work. One such situation is when you have to perform different

actions based on numerous possible values of an expression, not just True or False. For

instance performing actions based on Students Grade.

if (Grade.Equals (“A”))

{

…….
}

else if (Grade.Equals (“B”))

{

……

}

else if (Grade.Equals (“C”))

{

……

}

else if (Grade.Equals (“D”))

{

……

}
else

{

.….

}

As you see the structure can be a bit hard to read and if the conditions increase you may

end up writing a confusing and an unreadable piece of Code

The switch uses the result of an expression to execute different set of statements.

The syntax for the select…case Statement is as follows:

switch (expression)

{

 case constant-expression:

 statement

 jump-statement

 default:
 statement

 jump-statement]

}

Notice that the jump-statement is required after each block, including the last block

whether it is a case statement or a default statement.

Note: default is used to define the code that executes only when the expression

doesn’t evaluate to any of the values in case Statements .Use of default case is

optional

Let’s see the same example as above but this time with switch case.

switch(grade)

{

 case “A”:

 Executable statements

 jump-statement

case “B”:

 Executable statements

 jump-statement

case “C”:

 Executable statements

 jump-statement

case “D”:

 Executable statements

 jump-statement

default :

 Executable statements

 jump-statement
}

Branching is performed using jump statements, which cause an immediate transfer of the

program control.(break, continue, default ,goto ,return)

Evaluating More than one possible Value in a case Statement is not possible in C#,

but VB.Net does allow evaluating more than one Value.

3. for Statements.

The for loop executes a statement or a block of statements repeatedly until a specified

expression evaluates to false.

for ([initializers]; [expression]; [iterators]) statement

where:

Initializers: A comma separated list of expressions or assignment statements to initialize

the loop counters.

Expression : expression is used to test the loop-termination criteria.

Iterators : Expression statement(s) to increment or decrement the loop counters.

Example print numbers from 1 To 100

for (int intctr =1; intctr <= 100; intctr++)

Debug.WriteLine(intctr);

This routine starts a loop with a for statement after a variable intctr is declared. This loop

initializes intctr to 1 and then prints 1 through 100 to the output window.

Note: you can declare variable in the Initialization part of the for loop separated by

comma.

Example : print even number from 1 to 100

for(int i=2; i <= 100; i = i + 2)

 Debug.WriteLine(i.ToString());

Example : To Sum the total of all number from 1 to 10

for(i =1 ; i < 11 ; i++)

 sum = sum + i ;

Example : The statement below can be used as an infinite loop.

for (; ;);

Example of use of for loop.

Let us see how to a write table of 2 using for loop.

for(int j = 1,i = 2; j <= 10; j++)

Debug.WriteLine("2 X " + j.ToString() + " = " + i*j);

Output:

2 X 1 = 2

..

..

..

..

..

…

2 X 10 = 20

An Example of Nested For loop.

Let us write a small code to display a structure of stars ‘*’ in triangle format.

*

* *

* * *

* * * *

* * * * *

* * * * * *

Let us have a label with name stars. Increase the height of the label to get a clear view of

the image.

string star="";

for(int i = 0; i < 5 ;i++) // First loop to count the rows

{

for (int j = 0; j <= i; j++) // Second loop to count

the columns

 {

star = star + " * ";

 }

Debug.WriteLine(star);

star = "";

}

Note: For better readability you must always indent your

Codes.

4. foreach…in Statement

The foreach…in Statement is used to repeat a set of statements for each element in an

array or collection.

The foreach…in statement is executed if there is at least one item in an array of

collection. The Loop repeats of each element in an array or collection.

The syntax for the foreach…in statement as follows:

 foreach (type Component in Set)

 {

 Executable statements

 }

Component is the variable used to refer to the elements of an array or a collection.

Set refers to an array or any collection object.

e.g.

string[] weeks = {"Monday", "Tuesday", "Wednesday",

"Thursday",

 "Friday", "Saturday", "Sunday"};

 foreach(string eachday in weeks)

 {

 MessageBox.Show(eachday);

 }

An example for using foreach element in a collection of string into a single string

element.

Each element of array which is of type string is read from the collection and stored into

the single string type object.

5. while…Statement

The while… Statement is used to repeat set of executable statements as long as the

condition is true.

The syntax for the while… statement is as follows:

 while (Condition)

 {

 Executable Statements

 }

In this if the condition is satisfied then the statements are executed. Else it will not enter

the while condition at all.

example of infinite loop is

while (true);

Example print numbers from 1 to 100

int i = 1;

while (i <= 100)

{

 Debug.WriteLine(i.ToString());

 i++;

}

Example print even numbers from 1 to 100

Int i = 2;

While(i <=100)

{

 Debug.WriteLine(i.ToString());

 i = i + 2;

}

6. do...while Statement

The do...while Statement is similar to while… Statement.

do

{

 Statements to Execute

}

while (condition)

example print numbers from 1 to 100

int i = 1;

do

{

 Debug.WriteLine(i.ToString());

 i++;

}while(i <= 100);

example print even numbers from 1 to 100

int i = 2;

do

{

 Debug.WriteLine(i.ToString());
 i = i + 2;

}while(i <= 100);

A Complete Example with set of control statements.

We will create a C# application, which will accept students name and its grade.

Depending upon the type of grade it will add remarks.

int value=0, ctr=0;

//Accept a number from the user

Console.Write("Enter the number of students : ");

value = Int32.Parse(Console.ReadLine());

string [] arrName= new string[value];

string sGrade ="";

string [] arrRemarks= new string[value];

while (ctr < value)

{

 //Accept the name of the students

Console.Write("Enter the name of the Student" + (ctr +

1) + " : ");

 arrName[ctr] = Console.ReadLine();

 //Accept the grade of the Student

 Console.Write("Enter the grade of the student

A/B/C/D/F : ");

 sGrade = Console.ReadLine();

 // Assign remarks to students

 switch (sGrade.ToUpper())

 {

 case "A":

 arrRemarks[ctr] = "Excellent";

 break;

 case "B":

 arrRemarks[ctr] = "Good";

 break;

 case "C":

 arrRemarks[ctr] = "Fair";

 break;

 case "D":

 arrRemarks[ctr] = "Poor";

 break;

 case "F":

 arrRemarks[ctr] = "Fail";

 break;

 default:

 Console.WriteLine("Incorrect value entered

");

 return; // To come out of the program

 }

ctr = ctr + 1;

}

// Display the summary on the Console

for (ctr = 0 ;ctr< value; ctr=ctr+1)

{

 if (arrRemarks[ctr].Equals("fail"))

 {

 Console.WriteLine(arrName[ctr] + " has failed in_

exams ");

 }

 else

 {

 Console.WriteLine(arrName[ctr] + "'s

performance is " + arrRemarks[ctr]);

}

}

Note use of ToUpper() and ToLower() used to Convert all alphabetic characters have

been converted to Upper Case / Lower Case .

4.4 Arrays

Till now we have been using variable to store values. We might come across a situation

when we might need to store multiple values of similar type. Such as names of 100

students in a school. One way to do it is to declare 100 variables and store all the names.

A much more simple and efficient way of storing these variable is using Arrays. An

Array is a memory location that is used to store multiple values.

All the values in an array are of the same type, such as int or string and are referenced by

their index or subscript number, which is the order in which these values are stored in the

array. These values are called the elements of the array.

The number of elements that an array contains is called the length of the array.

In C# all arrays are inherited from the System.Array Class.

Arrays can be single or multidimensional. You can determine the dimensions of an array

by the number of subscripts that are used to identify the position of any array element.

A single dimensional array is identified by only a single subscript and an element in a

two-dimensional array is identified by two subscripts.

Arrays in C# also support the concept of Jagged Arrays.

The dimension has to be declared before using them in a program. The array declaration

comprises the name of the array and the number of elements the array can contain.

The Syntax of single dimension array is as follows.

Datatype [] ArrayName = new DataType[number of elements];

e.g.

string [] studentname = new string [5];

You can assign the values at runtime or even at the design time.

Design time declaration:

Studentname [0]=”Rohan”

Studentname [1]=”Mohan”

…..

Studentname[10]=”Nitin”

All arrays starts with the index of 0 i.e. All arrays are Zero Based. This implies that above

array can store 10 elements. Here 0, is the starting index or the lower bound of the array

and 9 is the upper bound while the length of the array is 10.

Example 1.

We will create a C# Console Application that will accept the names of students in an

single dimension array and display it back.

int value = 0, cnt = 0;

//Accept how many students names to enter

Console.Write("Enter the number of students name to enter:

");

value = System.Int32.Parse(Console.ReadLine()) ;

string[] arrnames = new string [value];

for(cnt = 0; cnt<value;cnt++)

{

Console.Write("Enter the name of student " + (cnt + 1)

+ ":", "Student Name");

 arrnames[cnt] = Console.ReadLine();

}

Console.WriteLine("Pulling Values from the Array");

//Display the entered value to the text box

for(cnt = 0; cnt < value; cnt++)

{

 Console.WriteLine(arrnames[cnt]);

}

Above example will accept number of names to be entered and will add the names in a

loop and then redisplay it on the Console. Note that we have not written any error

handling code that is left to the reader as an exercise.

The Syntax for multi-dimension arrays is as follows:

Previously we saw how we can store multiple names of students. But, if we want to store

related data of students like first name, middle name, last name. In such situations you

can use multi dimension arrays, such as two-or-three dimension arrays.

Datatype [] ArrayName = new Datatype[number of 1st element,

number of 2nd element,….];

e.g.

string[,] studentdetails = new string [10,2];

Index positions of array elements.

0,0 0,1

1,0 1,1

2,0 2,1

3,0 3,1

…

10,0 10,1

studentdetails(0,0) = “Manoj”

studentdetails(0,1) = “Malik”

To display “Malik” we need to use the index position of the array and say ,

Studentdetails [0,1].

Example 2.

We will create a C# Console Application, which will accept Student Name, Address and

city name and display it on the Console.

string [,] arrsummary = new string[3, 3];

int i=0, j=0;

//As we wanted just 3 columns we have set it to 2, else if

u want to be two only then while declaring the array make

it (2,2) as the lower index is 0.

for(i = 0;i<=2;i++)

{

 for(j = 0;j<=2;j++)

 {

 Console.WriteLine("Enter the value for " + i + "

row and " + j + " column, Summary");

 arrsummary[i, j] = Console.ReadLine();

 }

}

Console.WriteLine();

//Display the values in the summary array.

for(i = 0;i<=2;i++)

{

 string s = "";
 for(j = 0;j<=2;j++)

 {

 if (s.Equals(""))

 {

 s = arrsummary[i, j];

 }

 else

 {

 s = s + " - " + arrsummary[i, j];

 }

 }

 Console.WriteLine(s);

}

Jagged Arrays

A jagged array is an array whose elements are arrays. The elements of a jagged array can

be of different dimensions and sizes. A jagged array is sometimes called an "array-of-

arrays."

//Decalaring a Jagged Array

int[][] myJaggedArray = new int[3][];

//Initialize the elements of the Jagged Array
myJaggedArray[0] = new int[5];

myJaggedArray[1] = new int[4];

myJaggedArray[2] = new int[2];

//Fill array elements with values.
myJaggedArray[0] = new int[] {1,3,5,7,9};

myJaggedArray[1] = new int[] {0,2,4,6};

myJaggedArray[2] = new int[] {11,22};

You can access individual array elements like these examples:

// Assign 33 to the second element of the first array:

myJaggedArray[0][1] = 33;

// get the value of second element of the third array:

int i = myJaggedArray[2][1];

Few Important methods in arrays.

GetUpperBound(), GetLowerBound() are the functions used to get the bound of a

array. These methods of the array class. You can use it with single dimension as well as

for multi-dimensional arrays.

GetLowerBound() is to get the upper limit of an array.

GetUpperBound is to get the lower limit of an array.

e.g.

string[] weeks = {"Monday", "Tuesday", "Wednesday", "Thursday",

 "Friday", "Saturday", "Sunday"};

MessageBox.Show(weeks.GetUpperBound(0).ToString());

//the above statement returns 6 as the upper bound for the array weeks.

Syntax : arrayname.GetUpperBound/GetLowerBound(dimension)

Dimension refers to the which upper/lower bound should be found, 0 for first, 1 for

second and so on.

e.g.

string [,,] student_details = new string[10,20,15];

int upperlimit = 0;

// This will return 10 for the 1st row element

upperlimit = student_details.GetUpperBound(0);

MessageBox.Show(upperlimit.ToString());

// This will return 20 for the 2nd row of element

upperlimit = student_details.GetUpperBound(1);

MessageBox.Show(upperlimit.ToString());

For all GetLowerBound(dimension) it will return 0 as the base lower bound is zero in

.NET

5. Language Features of VB.NET

Section Owner: Gurneet Singh (MVP)

Content Contributors: Amit Kukreja, Arvind Rangan, Reshmi Nair

5.1 History of VB.NET

.NET framework offers a myriad of languages which puts us programmers into a deep

thought process about which programming language best suits our needs.

Which language is the "best" language choice? If you are a VB wizard, should you take

the time to learn C# or continue to use VB.NET? Are C# ASP.NET pages "faster" than

VB.NET ASP.NET pages? These are questions that you may find yourself asking,

especially when you're just starting to delve into .NET. Fortunately the answer is simple:

there is no "best" language. All .NET languages use, at their root, functionality from the

set of classes provided by the .NET Framework. Therefore, everything you can do in

VB.NET you can do in C#, and vice-a-versa.

The differences occur in three main areas: syntax, object-oriented principles, and the

Visual Studio .NET IDE. Syntax concerns the statements and language elements. Object

Oriented differences are less obvious, and concern differences in implementation and

feature sets between the two languages. IDE differences include things like compiler

settings or attributes. There is also a fourth area of difference: language features that are

present in one language but have no equivalent in the other.

If you are more familiar with Java, JScript, or C/C++, you may find C#'s syntax more

familiar than VB.NET's.

If you've been doing VB for the past five years, there's no reason to think you have to

now switch to a new language (although you should always look to be learning new

things).

The fact is that VB.NET has all the facilities of VB such as not being case-sensitive,

having the option of using IntelliSense etc in addition to which you have an ocean of new

ideas & concepts thrown in for the benefit of programmers.

VB has matured as a language and if you do not know it already, its almost 11 years since

VB was born. It now provides all facilities for distributed computing and Internet

programming for which it was not useful earlier. With VB.NET, due to the .NET

framework all the classes and all the namespaces available with the other languages are

made available to VB also. This is in addition to the drag and drop facility of building

forms and web pages which was always the attraction in the use of VB. Thus it has the

dual advantage of ease of use and the availability of advanced features.

As already stated earlier both VB.NET and C# are equally powerful. So the primary

reason for which VB could not reach the zenith of popularity has been eradicated and

programmers who have been waiting for OOPs concepts to be incorporated into VB are

rewarded with this offering of Microsoft.

5.2 Language Fundamentals in VB.NET

Constants &Variables

A variable is a named memory location. They are programming elements that can change

during program execution. Data that needs to be stored in memory & accessed at a later

time are stored in variables. Instead of referring to the memory location by the actual

memory address you refer to it with a variable name.

Variables are declared as follows

Dim a as Integer

They can also be initialized at the time of declaration as follows:

Dim a as Integer = 10

Constants are very similar to variables. The main difference is that the value contained in

memory cannot be changed once the constant is declared. When you declare a constant

its value is also specified and this value cannot be changed during program execution.

Constants are used in situations where we need to keep the value in some memory

location constant. If you use hard-coded values, and the value is changed then it has to be

changed in all the locations in the code where it has been used. Instead if we are using

constants, all we will need to do is to change the value of the constant. This would

propagate the changes to our entire application.

Constants are declared as follows

Const x as Integer

VB.NET supports block-level scoping of variables. That is you can declare and use

variables as and when you need them. Thus, if a variable is required within a ‘for’ block

it can be declared within the block and its scope will be the end of the block.

Simple Types (Primitive Data types)

Simple or value type variables are those, which are assigned space in the stack instead of

the heap. All the primitive types such as int, double etc are value type variables. The

simple types basically consist of Boolean and Numeric types, where Numeric is further

divided into Integral and Floating Point.

The first rule of value types is that they cannot be null. Anytime you declare a variable of

value type, you have allocated the number of bytes associated with that type on the stack

and are working directly with that allocated array of bits. In addition, when you pass a

variable of value type, you are passing that variable’s value and not a reference to the

underlying object.

Object Type

Object type or reference type variables are those, which are allocated storage space in the

heap. Reference type objects can be null. When a reference type is allocated under the

covers a value is allocated on the heap and a reference to that value is returned. There are

basically four reference types: classes, interfaces, delegates and arrays.

Class Type

Custom data types are available in .NET framework in the form of classes or class type. It

is nothing but a set of data and related behavior that is defined by the developer.

Object type and class type are both reference type variables. The only difference comes

from the fact that object type consists of objects predefined and available with the .NET

framework such as string whereas class type consists of custom user defined data types

such as the Class Employee given below.

Class Employee

 Dim empid As Integer

 Dim empname As String

 Public Sub New()

 empid = 10

 empname = "Reshmi"

 End Sub

End Class

Overloading and Overriding of the Class

Overloading provides the ability to create multiple methods or properties with the same

name, but with different parameters lists. This is a feature of polymorphism. It is

accomplished by using the Overloads keyword in VB.NET. A simple example would be

an addition function, which will add the numbers if two integer parameters are passed to

it and concatenate the strings if two strings are passed to it.

Class test

 Public Overloads Function Add(ByVal x As Integer, ByVal y As

Integer)

 Return x + y

 End Function

 Public Overloads Function Add(ByVal x As String, ByVal y As

String)

 Return x & y

 End Function

 Shared Sub main()

 Dim a As new test

 Dim b As Integer

 Dim c As String

 b = a.Add(1, 2)

 c = a.Add("Reshmi", " Nair")

 System.Console.Writeline(b)

 System.Console.Writeline(c)

 End Sub

End Class

O/P:

3

Reshmi Nair

Overriding

Class inheritance causes the methods and properties present in the base class also to be

derived into the derived class. There might arise a situation wherein you would like to

change the functionality of an inherited method or property. In such cases we can

override the method or property of the base class. This is another feature of

polymorphism. You can accomplish this in VB.NET by using the Overridable keyword

with the base class method and the Overrides keyword with the derived class method.

Public Class shapes

 Public Overridable Sub display()

 Console.WriteLine("Shapes")

 End Sub

 End Class

 Public Class square

 Inherits shapes

 Public Overrides Sub display()

 Console.WriteLine("This is a square")

 End Sub

 End Class

 Public Class rectangle

 Inherits shapes

 Public Overrides Sub display()

 Console.WriteLine("This is a rectangle")

 End Sub

 End Class

The above example is just an indication to how overriding can be implemented in either

VB.NET.

Properties

Properties are named members of classes, structs, and interfaces. They provide a flexible

mechanism to read, write, or compute the values of private fields through accessors.

Properties are an extension of fields and are accessed using the same syntax. Unlike

fields, properties do not designate storage locations. Instead, properties have accessors

that read, write, or compute their values.

Get accessor

The execution of the get accessor is equivalent to reading the value of the field.

The following is a get accessor that returns the value of a private field name:

Dim name as String ’ the name field

Property Name() As String ’ the name property

 Get

 Return name

 End Get

End Property

Set accessor

The set accessor is similar to a method that returns void. It uses an implicit parameter

called value, whose type is the type of the property. In the following example, a set

accessor is added to the Name property:

Dim name as String ’ the name field

Property Name() As String ’ the name property

 Get

 Return name

 End Get

 Set(ByVal Value As String)

 Name = value

 End Set

End Property

When you assign a value to the property, the set accessor is invoked with an argument

that provides the new value. For example:

e1.Name = "Reshmi" // The set accessor is invoked here

It is an error to use the implicit parameter name (value) for a local variable declaration in

a set accessor.

How to make a Property Read Only/Write Only

There are times when we may want a property to be read-only – such that it can’t be

changed. This is where read-only properties come into the picture. A Read Only property

is one which includes only the get accessor, no set accessor.

For instance,

Public ReadOnly Property EmpID() as Integer

 Get

 Return empid

 End Get

End Property

Similar to read-only properties there are also situations where we would need something

known as write-only properties. In this case the value can be changed but not retrieved.

To create a write-only property, use the WriteOnly keyword and only implement the set

block in the code as shown in the example below.

Public WriteOnly Property e as string

 Set

 e = Value

 End Set

End Property

Structures :

A structure allows you to create your own custom data types and it contains one or more

members that can be of different data types. It can contain fields, methods, Etc.,

Structures are very similar to classes but there are some restrictions present in the case of

structures that are absent in the case of classes. For example you cannot initialize

structure members. Also you cannot inherit a structure whereas classes can be inherited.

Another important feature of structures differentiating it from classes is that a structure

can't have a default parameter-less constructor or a destructor. A structure is created on

the stack and dies when you reach the closing brace in C# or the End structure in

VB.NET.

But one of the most important differences between structures and classes is that structures

are referenced by value and classes by reference. As a value type, allocated on the stack,

structs provide a significant opportunity to increase program efficiency. Objects on the

stack are faster to allocate and de-allocate. A struct is a good choice for data-bound

objects, which don’t require too much memory. The memory requirements should be

considered based on the fact that the size of memory available on the stack is limited than

the memory available on the heap.

Thus we must use classes in situations where large objects with lots of logic are required.

Struct – Code: Sample code showing the Class vs. Structures

Imports System

Class Test

 Dim classvar As Integer

 Dim anothervar As Integer = 20

 Sub New()

 classvar = 28

 End Sub

 Structure ExampleStruct

 Dim i As Integer

 Sub New(ByVal j As Integer)

 i = j

 End Sub

 Sub trialMethod()

 Console.WriteLine("Inside Trial Method")

 End Sub

 End Structure

 Shared Sub main()

 Dim t As New Test()

 Dim strct As New ExampleStruct(20)

 Console.WriteLine(strct.i)

 strct.i = 10

 Console.WriteLine(t.classvar)

 Console.WriteLine(strct.i)

 strct.trialMethod()

 End Sub

End Class

O/P: -
28

20

10

 Inside Trial Method

In the above example, I have declared and used a constructor with a single parameter for

a structure. Instead if I had tried to use a default parameter-less parameter I would have

got an error. But the same is possible in the case of classes as shown by the default

parameter-less constructor, which initializes the classvar variable to 28.

Another point to note is that a variable called anothervar has been declared and initialized

within the class whereas the same cannot be done for members of a structure.

Why Namespaces

Namespaces are used in .Net to organize class libraries into a hierarchical structure and

reduce conflicts between various identifiers in a program. By helping organize classes,

namespaces help programmers manage their projects efficiently and in a meaningful way

that is understood by consumers of the class library. Namespaces enables reusable

components from different companies to be used in the same program without the worry

of ambiguity caused by multiple instances of the same identifier.

Namespaces provide a logical organization for programs to exist. Starting with a top-

level namespace, sub-namespaces are created to further categorize code, based upon its

purpose.

In .Net, the base class library begins at the System namespace. There are several classes

at the System level such as Console, Exception etc. The namespace name gives a good

idea of the types of classes that are contained within the namespace. The fully qualified

name of a class is the class name prefixed with the namespace name. There are also

several nested namespaces within the System namespace such as System.Security,

System.IO, System.Data, System.Collections etc.

Reducing conflict is the greatest strength of namespaces. Class and method names often

collide when using multiple libraries. This risk increases as programs get larger and

include more third-party tools.

Boxing Conversions

Boxing is the implicit conversion of a value type to a reference type or to any interface

type implemented by this value type. This is possible due to the principle of type system

unification where everything is an object.

When boxing occurs, the contents of value type are copied from the stack into the

memory allocated on the managed heap. The new reference type created contains a copy

of the value type and can be used by other types that expect an object reference. The

value contained in the value type and the created reference types are not associated in any

way. If you change the original value type, the reference type is not affected. Boxing,

thus, enables everything to appear to be an object, thereby avoiding the overhead required

if everything actually were an object.

Example:

VB.NET

Dim n as Integer = 10

Dim obj as Object

obj = n

Explanation:

In the above code segment, a value-type variable n is declared and is assigned the value

10. The next statement declares an object-type variable obj. The last statement implicitly

performs boxing operation on the variable n.

UnBoxing Conversions

UnBoxing is the explicit conversion from a reference type to a value type or from an

interface type to a value type that implements the interface.

When unboxing occurs, memory is copied from the managed heap to the stack. For an

unboxing conversion to a given value type to succeed at run time, the value of the source

argument must be a reference to an object that was previously created by boxing a value

of that value type otherwise an exception is thrown.

VB.Net does not support the ability to explicitly unbox values. It relies on the helper

functions in the Microsoft.VisualBasic.Helpers namespace to carry out unboxing. Since

these helper functions are considerably less efficient than C# support for explicit

unboxing. Thus it is recommended to avoid excessive use of variables of type Object.

Boxing and UnBoxing have performance implications. Every time a value type is boxed,

a new reference type is created and the value type is copied onto the managed heap.

Depending on the size of the value type and the number of times value types are boxed

and unboxed, the CLR can spend a lot of CPU cycles just doing these conversions.

It is recommended to perform boxing and unboxing in a scenario where you have to pass

a value parameter multiple times to a method that accepts a reference parameter. In such

a case, it is advantageous to box the value parameter once before passing it multiple times

to methods that accept reference methods.

Enumerations

Enumerations are types that inherit from System.Enum. The elements of an enumeration

are expressed in words rather than numbers, which makes it convenient for understanding

the meaning of the value being used. Enumerations symbolically represent a set of values

of one of the primitive integral types.

The type of the elements of an enumeration can be Byte, Short, Integer or Long. If no

type is specified explicitly, the default type is Integer.

Example:

Enum month As Byte

 Jan = 2

 Feb = 5

 Mar = 10

End Enum

Explanation:

In the above code segment, an enumeration type month is declared. The underlying type

of the elements has been specified as Byte. It has three elements viz: Jan, Feb and Mar.

These three elements have been assigned specific values. In case of an enumeration, if no

values are specified, the value of the first element corresponds to 0 and so on.

Delegates

The runtime supports constructs called delegates, which enable late-bound operations

such as method invocation and callback procedures. With delegates, a program can

dynamically call different methods at runtime. They are type safe, secure, managed

objects that always point to a valid object and cannot corrupt the memory of another

object. The closest equivalent of a delegate in other languages is a function pointer, but

whereas a function pointer can only reference Shared functions, a delegate can reference

both Shared and instance methods. Delegates are Marshal by Value Objects.

The members of a delegate are the members inherited from class System.Delegate.

A delegate defines the signature and return type of a method. The resulting delegate can

reference any method with a matching signature. Each instance of a delegate can forward

a call to one or more methods that take those parameters and return the same type. Once a

method has been assigned to a delegate, it is called when the delegate is invoked.

Example:

Module delegate_example

 Delegate Function calculation(ByVal a As Integer, ByVal b As Integer) As

Integer

 Public Function add(ByVal num1 As Integer, ByVal num2 As Integer) As Integer

 add = num1 + num2

 End Function

 Sub Main()

 Dim calc_delegate As New calculation(AddressOf add)

 Dim result As Integer

 result = calc_delegate(50, 70)

 End Sub

End Module

Explanation:

Four steps are required to implement delegates viz.

• Defining Delegates

The foremost step is to define the delegate. The definition of the delegate specifies

the method signature, return type of the method, access modifier and the delegate

name. The method signature specifies the order and type of each argument.

The definition of a delegate is indicated by the usage of the Delegate keyword. As

shown in the above code segment, the delegate name is calculation, it's access

modifier is public, it receives two integer arguments and returns an integer value.

• Creating Delegate Method Handler(s)

The next step is to define the method(s) that will be associated with the delegate.

In the above code segment, a method named add is defined. This method must have

same method signature as that of the delegate, as shown in the above code segment.

• Hooking up Delegates and Method Handlers

For a delegate method handler to be invoked, it must be assigned to a delegate object.

In the above code, the delegate object is calc_delegate and is hooked up to the

method handler add.

• Invoking the method through the Delegate

The last step is to invoke the methods that are associated with the delegate. A

delegate method handler is invoked by making a method call on the delegate itself.

This causes the method handler to invoke with the assigned input parameters as if

they were invoked directly by the program, as shown in the above code.

5.3 Features of VB.NET

Option Explicit and Option Strict

Option Explicit and Option Strict are compiler options that can be globally assigned to a

project and are interpreted at compile time. Setting these options enables programmers to

resolve some of the errors (e.g. typological errors) at compile time and thus prevent

runtime errors.

Option Explicit

Option Explicit was a feature of VB 6.0 and it has been made a part of .NET environment

too. This option can be used only at the module level. When this option is turned on, it

forces explicit declaration of variables in that module. This option can be turned "On" or

"Off". When it is not specified, by default, it is set to "Off".

Syntax: Option Explicit [On / Off]

When it is set to "On", it checks for any undeclared variables in the module at compile

time. If any undeclared variable is found, it generates a compile time error since the

compiler would not recognize the type of the undeclared variable. When it is set to "On",

variables can be declared using Dim, Public, Private or ReDim statements. Setting this

option to "On" helps programmers do away with any typological errors in the code.

When it is set to "Off", all undeclared variables are considered to be of type Object.

It is preferable to set this option to "On".

Option Strict

Visual Basic language in general does not require explicit syntax to be used when

performing operations that might not be optimally efficient (e.g. late binding) or that

might fail at run time (e.g. narrowing conversions). This permissive semantics often

prevents detection of coding errors and also affects the performance of the application.

VB.NET enables a programmer to enforce strict semantics by setting this option to "On".

When used, this option should appear before any other code. This option can be set to

"On" or "Off". If this statement is not specified, by default, it is set to "Off".

Syntax: Option Strict [On / Off]

When it is set to "On", it disallows any narrowing conversions to occur without an

explicit cast operator, late binding and does not let the programmer omit "As" clause in

the declaration statement. Since setting it to "On" requires explicit conversion, it also

requires that the compiler be able to determine the type of each variable. Thus it is

implied that Option Strict also means Option Explicit.

Visual Basic .NET allows implicit conversions of any data type to any other data type.

However, data loss can occur if the value of one data type is converted to a data type with

less precision or a smaller capacity. Setting this option to "On" ensures compile-time

notification of these types of conversions so they may be avoided.

Explicit conversions happen faster than the implicit conversions performed by the

system. In case of implicit conversions, the system has to identify the types involved in

the conversion and then obtain the correct handler to perform the conversion. In case of

explicit conversions, processing time gets reduced since the type of conversion is

explicitly mentioned.

From programmer point of view, explicit conversion may seem to be a burden since it

slows the development of a program by forcing the programmer to explicitly define each

conversion that needs to occur.

It is always recommended that you set Option Strict to "On" and use explicit conversions.

ByVal is Default

When implementing functions/procedures we often need to pass information. This

information can be passed to the called function/procedure through parameters.

Parameters can be passed by value or by reference.

When ByVal keyword is used, it causes the parameter to be passed by value. In this case,

a copy of the original parameter is passed to the called module. Thus any changes made

to the copy of the parameter do not affect the original value of the parameter.

When ByRef keyword is used, it sends a reference (pointer) to the original value to the

called module rather than its copy. Thus any changes made to the parameter in the

function/procedure will cause the original value to be modified.

With ByRef you are exposing a variable to modification which can lead to an unexpected

behavior. If that procedure calls another procedure and passes the same parameter ByRef,

the chances of unintentionally changing the original variable are increased.

In VB.NET, every parameter, by default, is passed by value if nothing is explicitly

specified. Thus it protects arguments against modification.

Example:

Public Class SampleClass

 Sub Proc(ByVal a As Integer, b As Integer, ByRef c As Integer)

 a = a + 2

 b = b + 3

 c = c + 4
 End Sub

End Class

Sub Main()

 Dim num1, num2, num3 As Integer

 Dim Obj As New SampleClass()

 num1 = 2

 num2 = 3

 num3 = 4

 Obj.Proc(num1, num2, num3)

 System.Console.WriteLine(num1)

 System.Console.WriteLine(num2)

 System.Console.WriteLine(num3)

End Sub

Explanation:

In the class SampleClass, there is one procedure Proc that takes three integers as

arguments. In Main(), a variable of type SampleClass is defined and three other integer

variables num1,num2,num3 are declared and given some initial values. The procedure is

then called passing these three variables as arguments. First variable num1 is passed by

value, second variable num2 is also passed by value since nothing is specified explicitly

and the last variable num3 is passed by reference since it is explicitly mentioned.

After calling the procedure, when the values of the three variables are checked, you will

notice that num1 and num2 retain their original values since they are passed by value

whereas the value of num3 changes to 8 since it was passed by reference.

Sub and Functions with Parenthesis

In VB.NET, both functions and procedures require parentheses around the parameter list,

even if it is empty.

Example:

Consider the following code that contains two functions and one procedure. The first

function named "HelloWorld" accepts no argument and returns "Hello World". The

second function named "HelloName" accepts an argument and appends that argument to

the string "Hello World" and finally returns the appended string. The procedure named

"Hello" displays the string "Hello World" on the console.

Public Class SampleClass

 Function HelloWorld() As String

 Helloworld = "Hello World"

 End Function

 Function HelloName(ByVal name As String) As String

 HelloName = "Hello " & name

 End Function

 Sub Hello()
 System.Console.WriteLine("Hello World")

 End Sub

End Class

Sub Main()

 Dim Obj As New SampleClass()

 Dim str1 As String

 Dim str2 As String

 str1 = Obj.HelloWorld()

 str2 = Obj.HelloName(" Everybody")

 Obj.Hello()

End Sub

Explanation:

As mentioned, while calling the procedure Hello, parentheses have to be used even

though it does not require any argument. Similar treatment has to done for functions.

Structures Replace User Defined Types

In VB.NET, structures can be defined using Structure keyword. Unlike user defined

types, structures share many features with classes. Explicit mention of access modifier for

each member is necessary in VB.NET. Access modifiers can be Public, Protected,

Friend, Protected Friend, or Private. You can also use the Dim statement, which

defaults to public access.

Let us take an example of a Person that will have some characteristics as Name, Address,

Tel, Age etc. Now if we were to use this number of times, it will be better to have a type

called Person. The example below shows how to handle this.

Structure Person

Structure Person

 Dim Name as String

 Private Address as String

 Dim Tel as String

 Public Age as Integer

End Structure

As shown in the above code, explicit mention of the access specifier for each member is a

must.

Structures, like classes, can contain data members as well as data methods. Structures are

value types and are hence allocated on the stack where as classes are reference types and

require heap allocation.

Block Level Scope

The scope of block level variables is restricted to the block in which they are defined.

This block can be a function, procedure, a loop structure etc. A block level variable is not

accessible anywhere, outside its block.

Example:

Consider the sample code segment.

Sub BlockScope()

 Dim a As Integer = 1

 Dim i As Integer = 1

 While (i <= 2)

 Dim j As Integer = 1

 j = j + 1

 i = i + 1

 End While

a = a + j

End Sub

Explanation:

The above code segment will give a compile-time error, since the scope of the variable ‘j’

is restricted to the while block and hence it is not accessible outside the while block.

Though block level variables cannot be accessed outside their block, their lifetime is still

that of the procedure containing them.

Early Vs Late Binding

In case of early binding, the compiler knows the object's data type at compile time and

hence can directly compile code to invoke the methods on the object. This enables the

compiler to discover the appropriate method and ensure that the referenced method does

exist and the parameters provided are in sync with that of the referenced method.

Since object types are known ahead of time, the IDE aids the programmer by providing

support for IntelliSense. This helps the programmer do away with any typological and

syntactical errors. If the method being referenced is not found, the programmer is notified

at compile time thus letting him rectify it rather than making him wait till the application

is run.

In case of late binding, the compiler cannot determine the object's data type and thus the

code interacts with the object dynamically at runtime. To make an object late-bound, it is

defined as a variable of type Object. This variable can reference any type of object and

allows programmers to attempt arbitrary method calls against the object even though the

Object datatype does not implement those methods. Since type of the object is not

known until runtime, neither compile-time syntax checking nor IntelliSense is possible.

The typological errors also go undetected until the application is run. However, there is

an unprecedented flexibility, since code that makes use of late binding can talk to any

object from any class as long as those objects implement the methods we require.

The discovery of the referenced method is done dynamically done at runtime and is then

invoked. This discovery takes time and the mechanism used to invoke a method through

late binding is not as efficient as that used to call a method that is known at compile time.

Thus, though late binding is flexible, it is error-prone and slower as compared to early

binding.

When Option Strict is "On", it does not support late binding since the datatype of the

object should be known at compile time.

Example:
Consider the below given code segment

Public Class SampleClass

 Public Sub Proc()

 MessageBox("This method is discovered dynamically at runtime")

 End Sub

End Class

Public Class MainClass

 Shared Sub Main()

 Dim Obj As Object

 Obj = New SampleClass()

 Obj.Proc()

 End Sub

End Class

Explanation:

The above code segment implements late-binding. There are two classes viz.

SampleClass and MainClass. The class SampleClass contains a procedure named Proc

that takes no arguments. This procedure displays an appropriate message in a message

box. The class MainClass declares a variable Obj of type Object. Thus at compile-time,

the actual data type of the variable is not known. At runtime, the system finds that it is

referencing a variable of type Sampleclass. This reference to the class is achieved using

new operator. The referenced method Proc is discovered at runtime and is finally

invoked.

Ctype Function

Ctype is a general cast keyword that coerces an expression into any type. It returns the

result of explicitly converting an expression to a specified data type, object, structure,

class, or interface. If no conversion exists from the type of the expression to the specified

type, a compile-time error occurs. When Ctype is used to perform explicit conversion,

execution is faster since it is compiled inline and hence no call to a procedure is involved

to perform the conversion.

Syntax: Ctype (expression, type name)

Example:
Consider the below given code segment

Public Class TrialClass

 Sub Proc (obj as Object)

 Dim Obj1 As OtherClass()

 Obj1 = Ctype (obj, OtherClass)

 Obj1.OtherProc()

 End Sub

End Class

Explanation:

The variable Obj1 is of type OtherClass. This class has a procedure named OtherProc.

In the above code segment, the procedure Proc takes one parameter of type Object. The

Ctype statement gains an early bound reference to the object of type OtherClass. Thus

performance benefits of early binding can be achieved.

Changes to Boolean Operators

In Visual Basic.NET, And, Or, Xor, and Not are the boolean operators and BitAnd,

BitOr, BitXor, and BitNot are used for bitwise operations.

VB.NET has introduced the concept of short-circuiting. According to this concept, if the

first operand of an And operator evaluates to False, the remainder of the logical

expression is not evaluated. Similarly, if the first operand of an Or operator evaluates to

True, the remainder of the logical expression is not evaluated.

To perform the above mentioned functionality, VB.NET has introduced two new

operators viz. AndAlso and OrElse. AndAlso performs short-circuiting logical

conjunction on two expressions whereas OrElse performs short-circuiting logical

disjunction on two expressions

Syntax : expression1 AndAlso expression2

 expression1 OrElse expression2

Structured Error Handling

The whole idea behind error handling is to accurately trap the error. VB.NET has

introduced a structured approach for handling errors, in order to keep in sync with the

features offered by all Object Oriented languages viz. C#, Java etc. This structured

approach is implemented using a Try…Catch…Finally block structure and is known as

Exception Handling.

Try statement comes before the block of code that needs to tested for errors, Catch

statement handles specific errors and hence surrounds the block of code that handles

those errors and Finally block of code is always executed and contains cleanup routines

for exception situations. Since Catch block is specific to the type of error that needs to be

caught, a single Try statement can have multiple Catch blocks associated with it.

Example:
Consider the below given code segment

Dim num1 As Integer

Dim num2 As Integer

Dim num3 As Integer

Dim str As String

num1 = CType(System.Console.ReadLine(), Integer)

num2 = CType(System.Console.ReadLine(), Integer)

str = System.Console.ReadLine()

Try

 num3 = num1 / num2

 num1 = CType(str, Integer)

Catch e1 As System.InvalidCastException

 System.Console.WriteLine("There is a casting error")

Catch e2 As System.OverflowException

 System.Console.WriteLine("There is an overflow error")

Finally

 System.Console.Writeline("Please enter valid input")

End Try

Explanation:

The above code segment has been written with an intention of creating an error to explain

the structured way of trapping errors. As shown, it accepts two integers and one string

from the user and tries to divide first number by the second number and also tries to

convert the entered string to an integer. Since the statements that divide the numbers and

perform casting are critical, they are put in the Try…Catch…Finally block structure.

The code segment has two Catch statements viz. first statement handles the casting

(wrong format) error while the second one handles the overflow (division) error.

If the user will enter zero as the second number, then the code will throw an overflow

exception which will be handled by displaying the error message on the Console.

Similarly, if the user will enter a string say "Hello" as the third argument, the code will

throw an invalidcast exception which will be handled by displaying the error message on

the Console. In both the cases, the Finally block of code is always executed. Finally

block is even executed, when there is no error in the program. Thus it is the right place to

perform cleanup routines.

This structured approach provided by VB.NET lets the programmer track the precise

location of the error in the code.

Data Type Changes

Integer

Integer Type VB.NET CLR Type

8-bit Integer Byte System.Byte

16-bit Integer Short System.Int16
32-bit Integer Integer System.Int32

64-bit Integer Long System.Int64

Boolean

A Boolean variable can be assigned one of the two states viz. True or False.

In VB.NET, when numeric types are converted to Boolean values, 0 becomes False and

all other values become True.

When Boolean values are converted to Integer values, True maps to -1 and False maps

to 0.

String

To be inline with other .NET languages, VB.NET has updated string length declaration.

In VB.NET, you cannot declare a string to have a fixed length. You must declare the

string without a length. When a value gets assigned to the string, the length of the value

determines the length of the string.

5.4 Control Statements

VB.Net has statements such as If .. Then ..else and Select …. Case, which help you to

conditionally execute program.

VB.Net provides you with various looping statements, such as Do… Loop, While…. End

While, and For… Next.

1. The If….Then….Else…End if Statement

Consider a student marks and grade evaluation. For Marks above 75 the grade is ‘A’ and

for below 75 is ‘B’. In this situation when you need to execute some code based on some

condition, you can make use of, If…then…else…end if.

The Cultural syntax normally used is as follows:

 If condition Then

 Executable statements when the condition is True

 Else

 Executable statements when the Condition is False

 End If

OR using Elseif for Advanced Decision making

 If condition Then

 Executable statements

 ElseIf condition Then

 Executable statements

 End If

Single if can have multiple else with conditions, as mentioned above in elseif format and

finally a single End If for the main If condition.

Nesting IF…Then Constructs

If condition Then

 If condition2 Then

 Executable statements when the condition2 is TRUE

 Else

 Executable Statements

 End if

Else

 Executable statements

End If

One important thing to keep in mind when nesting IF…Then constructs is that you must have corresponding End If statement for

every IF ..Then statement, unless the If then statement executes only one statement and that statement appears on the same line as

If…Then

2. The Select…Case Statement(Evaluating an Expression for Multiple Values)

The Select…Case Statement is similar to If…Else…End if. The only difference between

two is that If and elseif can evaluate different expressions in each statement, but the

Select statement can evaluate only one expression.

The drawback of IF...Then construct is that it isn’t capable of handling a decision

situation without a lot of extra work. One such situation is when you have to perform

different actions based on numerous possible values of an expression, not just True or

False. For instance performing actions based on Students Marks.

If intmarks >35 Then

…….
Elseif intmarks >50 then

……

Elseif intmarks>65 then
…..

Elseif intmarks>75 then
…

Else
….

End If

As you see the structure can be a bit hard to read and if the conditions increase you may

end up writing a confusing and an unreadable piece of Code

The Select uses the result of an expression to execute different set of statements.

The syntax for the Select…Case Statement is as follows:

 Select Case [expression]

 Case [expression list]

 Executable statements.

 Case Else

 Executable statements.

 Exit Select - to exit from the select

 End Select

Note: Case Else is used to define the code that executes only when the expression doesn’t

evaluate to any of the values in Case Statements .Use of Case Else is optional

Lets see the same example as above but this time with Select Case

Select Case intmarks

Case Is >35

 Executable statements

Case Is >50

 Executable statements

Case Is>65

 Executable statements

Case Is >75

 Executable statements

Case Else

 Executable statements

End Select

Evaluating More than one possible Value in a Case Statement

Select Case helps you to use some more advanced expression comparisons. Like,you can

specify multiple comparisons in a Single Case statement by just using comma. Lets see

how it does

Select Case strColor

Case Is=”Red”,”Blue”,”Magenta”
 ‘Color is a Dark Shade

Case Is =”Cream”,”white”

 ‘Color is a Cool Shade

End Select

Another comparison expression used is keyword To, Visual Basic.NET evaluates the

expression and finds out whether it is in the range mentioned and if yes the Statement is

executed. Please note that when using To, you can’t include Is = as you can with the

simple expression

Select Case intmarks

Case 1 to 35

 ‘Executable statements

Case 36 to 50

 ‘Executable Statements

End Select

3. For…Next Statement

The For…Next Statements are used repeat a set of statements for specific number of

times.

 The syntax for the For…Next Statements is as follows:

 For counter = <start value> to <end value> [Step Value]

 Executable Statements

 Exit For
 Next [counter]

Counter is any numeric value.

Start value is the initial value of the counter.

End value is the final value of the counter.

Step Value is the value by which the counter is incremented. It can be positive or

negative. The default value is 1.

Exit For is used to exit the For…Next loop at any time. When Exit for is encountered

,the execution jumps to the statement following Next

Next is the statement the marks the end of the For statement. As soon as the program

encounters the Next statement, the step value is added to the counter and the next

iteration of the loop takes place.

Dim intctr as Integer

For intctr=1 to 100
Debug.WriteLine(intctr)

Next intctr

This routine starts a loop with a For statement after a variable intctr is declared. This loop

initializes intctr to 1 and then prints 1 through 100 to the output window. It prints in steps

of 1 as Step has been omitted here, so the default is 1

Example of use of STEP in For....Loop.

Let us write a table of 2 using step in for loop.

Add a label with name it as lbtables and make it bit bigger on the screen.

Dim j = 1

For i = 2 To 20 Step 2

Me.lbtables.Text = Me.lbtables.Text & "2 X " & j.ToString & " = " &

 i.ToString & vbCrLf

j = j + 1

Next

Output:

2 X 1 = 2

..

..

..

..

..

…

2 X 10 = 20

An Example of Nested For loop.

Let us write a small code to display a structure of stars ‘*’ in triangle format.

*

* *

* * *

* * * *

* * * * *

* * * * * *

Let us have a label with name stars. Increase the height of the label to get a clear view of

the image.

Dim star As String

Dim i, j As Integer

For i = 0 To 5 ' First loop to count the rows

 For j = 0 To i ' Second loop to count the columns
 star = star & " * "

 Next

Me.stars.Text = Me.stars.Text & star & vbCrLf ' To print *

star = ""

Next

4. For Each…Next Statement

The For Each…Next Statement is used to repeat a set of statements for each element in

an array or collection.

The For Each…Next statement is executed if there is at least one item in an array of

collection.

The Loop repeats of each element in an array or collection.

The syntax for the For Each…Next statement as follows:

 For Each Component In Set

 Executable statements

 Next

Component is the variable used to refer to the elements of an array or a collection.

Set refers to an array or any collection object. e.g.

Dim weeks() As String = {"Monday", "Tuesday", "Wednesday", "Thursday",_

 "Friday", "Saturday", "Sunday"}

 Dim eachday As String

 For Each eachday In weeks

 MsgBox(eachday)

 Next

An example for using for each element in a collection of string into a single string

element.

Each element of array which is of type string is read from the collection and stored into

the single string type object.

5. While…End Statement

The While…End Statement is used to repeat set of executable statements as long as the

condition is true.

 The syntax for the While…End statement is as follows:

 While Condition
 Executable Statements

 End While

 In this if the condition is satisfied then the statements are executed. Else it will not

enter the While condition at all.

6. Do...Loop Statement

The Do…Loop Statement is similar to While…End. Here we have two types of

formatting the loop.

a) Do While / Until Condition Executable Statements Loop

b) Do Executable Statements Loop While/Until Condition

The Difference is in a) The loop will be executed if the condition is satisfied, but in b)

The Loop will be executed at least once even if the condition does not satisfy.

Do While Expression

 [Statements]

Loop

Do Until Expression

[Statements]

Loop

Note: For VB programmers While Wend is not supported it is While… End now

A Complete Example with set of control statements.

We will create a VB.Net application, which will accept students name and its grade.
Depending up the type of grade it will add remarks.

 txtsummary.Text = ""

 Dim value, ctr As Integer

 'Accept a number from the user

 value = CInt(InputBox("Enter the number of students"))

 'Check if the validity of the number

 If value <= 0 Then

 MsgBox("Enter details of at least one student", "Error")

 End If

 Dim arrName(value) As String

 Dim sGrade As String

 Dim arrRemarks(value) As String

 While ctr < value

 'Accept the name of the students

 arrName(ctr) = InputBox("Enter the name of the Student"_

& ctr + 1, "Enter Details")

 'Accept the grade of the Student

 sGrade = InputBox("Enter the grade of the student" &

"(_A/B/C/D/F)", "Grade Details")

 ' Assign remarks to students

 Select Case UCase(sGrade)

 Case "A"

 arrRemarks(ctr) = "Excellent"

 Case "B"

 arrRemarks(ctr) = "Good"

 Case "C"

 arrRemarks(ctr) = "Fair"

 Case "D"

 arrRemarks(ctr) = "Poor"

 Case "F"

 arrRemarks(ctr) = "Fail"

 Case Else

 MsgBox("Incorrect value entered ", _

MsgBoxStyle.Critical)

 Exit Sub ' To come out of the program

 End Select

 ctr = ctr + 1

 End While

 ' Display the summary in the text box

 For ctr = 0 To value - 1

 If txtsummary.Text = "" Then

 If LCase(arrRemarks(ctr)) = "fail" Then

 txtsummary.Text = arrName(ctr) & " has failed _

 in exams" & vbCrLf

 Else

 txtsummary.Text = arrName(ctr) & "'s performance is_

" & arrRemarks(ctr) & vbCrLf

 End If

 Else

 If LCase(arrRemarks(ctr)) = "fail" Then

 txtsummary.Text = txtsummary.Text & arrName(ctr) &_

" has failed in exams" & vbCrLf

 Else

 txtsummary.Text = txtsummary.Text & arrName(ctr) &_

"'s performance is " & arrRemarks(ctr) &_ vbCrLf

 End If

 End If

 Next

5.5 Arrays

Till now we have been using variable to store values. We might come across a situation

when we might need to store multiple values of similar type. Such as names of 100

students in a school. One way to do it is to declare 100 variables and store all the names.

A much more simple and efficient way of storing these variable is using Arrays. An

Array is a memory location that is used to store multiple values.

All the values in an array are of the same type, such as Integer or String and are

referenced by their index or subscript number, which is the order in which these values

are stored in the array. These values are called the elements of the array.

The number of elements that an array contains is called the length of the array.

In VB.Net all arrays are inherited from the System.Array Class.

Arrays can be single or multidimensional. You can determine the dimensions of an array

by the number of subscripts that are used to identify the position of any array element.

A single dimensional array is identified by only a single subscript and an element in a

two-dimensional array is identified by two subscripts.

The dimension has to be declared before using them in a program. The array declaration

comprises the name of the array and the number of elements the array can contain.

The Syntax of single dimension array is as follows.

Dim ArrayName (number of elements) as Element Data type.

e.g.

Dim studentname(10) as string

Or

Dim studentname() as string = new string(10)

You can assign the values at runtime or even at the design time.

Design time declaration:

Studentname(0)=”Rohan”

Studentname(1)=”Mohan”

…..

Studentname(10)=”Nitin”

All arrays starts with the index of 0 i.e. All arrays are Zero Based and there is no

provision of an option Base Statement where in you can specify the Lower Bound . This

implies that above array can store 11 elements. Here 0, is the starting index or the lower

bound of the array. The lower bound is fixed for all the arrays.

Example 1.

We will create a VB.Net application that will accept the names of students in an single

dimension array and display it back.

Add a textbox and set the name property to txtnames. Set the multilane property of the

text box to true.

Put a button and write the following in the onclick event.

txtnames.Text = ""

Dim value, count As Integer

'Accept how many students names to enter

value = CInt(InputBox("Enter the number of students name to enter:"))

Dim arrnames(value) As String

Dim cnt As Integer

For cnt = 0 To value

arrnames(cnt) = InputBox("Enter the name of student " & cnt + 1 & ":",

"Student Name")
Next

'Display the entered value to the text box

For cnt = 0 To value

 If txtnames.Text = "" Then

 txtnames.Text = arrnames(cnt) & vbCrLf ' for carriage returns

 Else

 txtnames.Text = txtnames.Text & arrnames(cnt) & vbCrLf

 End If

Next

Above example will accept number of names to be entered and will add the names in a

loop and then redisplay it in a text box.

The Syntax for multi-dimension arrays is as follows:

Previously we saw how we can store multiple names of students. But, if we want to store

related data of students like first name, middle name, last name. In such situations you

can use multi dimension arrays, such as two-or-three dimension arrays.

Dim ArrayName (number of 1
st
 element, number of 2

nd
 element,….) as element data

type.

Or

Simpler form would be

Dim ArrayName(number of rows, number of columns) as element data type of two

dimension.

e.g.

Dim studentdetails(10,2) as string

Index positions of array elements.

0,0 0,1

1,0 1,1

2,0 2,1

3,0 3,1

…

10,0 10,1

studentdetails(0,0) = “Manoj”

studentdetails(0,1) = “Malik”

To display “Malik” we need to use the index position of the array and say ,

Studentdetails(0,1).

Example 2.

We will create a VB.Net application, which will accept Student Name, Address and city

name and display it in the text box in a formatted way.

As in the earlier example we will create a text box , change its name and its multi line

property to true.

Change the text box to txtsummary.

Add a button and write the below code in that.

Dim arrsummary(3, 3) As String

Dim i, j As Integer

'As we wanted just 3 columns we have set it to 2, else if u want to be

two only then while declaring the array make it (2,2) as the lower

index is 0.

For i = 0 To 2

 For j = 0 To 2

 arrsummary(i, j) = InputBox("Enter the value for " & i & " row _

 and " & j & " column ", "Summary")

 Next

Next

'Display the values in the summary array.

 For i = 0 To 2

 For j = 0 To 2

 If txtsummary.Text = "" Then

 txtsummary.Text = arrsummary(i, j)

 Else

 txtsummary.Text = txtsummary.Text & "-" & arrsummary(i, j)

 End If

 Next

 txtsummary.Text = txtsummary.Text & vbCrLf

 Next

Mohan #2/b,4
th
 lane Kanpur

Mike 8
th
 block csd NY

Lim Chou Lane Hong Kong

Dynamic Arrays.

Till now what we read were about fixed arrays. Let us see how we can manipulate the

size of an array at run time.

Many times we feel that the size of array in not enough or too much then required. As we

know that array will allocate memory location when its declared, so to release or add

more we need to change the dimension of the array which has been pre-declared.

We can create a dynamic array by not specifying the size of the array at the time of array

declaration.

Syntax:

Dim student_names() as string

In the above syntax you will see that number of elements are not mentioned. Now to re-

declare the elements we make use of ReDim for an array to change its dimension.

e.g.

Dim student_names() as string

ReDim student_names(10)

ReDim can also change the size of multi-dimensional arrays.

You can change the number of dimensions in an array, but you cannot make a multi-

dimensional array to a single dimension or lesser than the original dimension.

e.g.

Dim student_details(10,15) as string 'Declaring the array

ReDim student_details(10,25) 'Resizing the array

This statement does not change the data type of the array element or initialize the new

values for the array elements.

This statement can be used at the procedure level only not at the class level or module

level.

ReDim statements reinitializes the value of arrays with the respective data type declared

by the array.

If u have initialized the array to a some values it will be lost during the time of resizing

and the default values will be restored in those elements.

E.g.

'Declaring the array and initializing the value for the array

dim students_names() as string = {“Rahul”}

'This will display the value Rahul

msgbox(students_names(0))

Now resizing the array.

ReDim students_names(10)
'This will give a fixed size to 10 elements

msgbox(students_names(0))

This will display a blank value, as during the resizing the values of the array are

reinitialized to default value of string which is blank.

Now to avoid such problems we will make use of a keyword called Preserve while

resizing the array to new value.

Using the above example , we will make changes in the declaration.

ReDim students_names(10) 'The old declaration

ReDim Preserve students_names(10)

Students_names(1) = “Alex”

Students_names(2) = “Michael”

Msgbox(students_names(0))

This will display the value as ‘Rahul’ which we had initialized before resizing it. So

Preserve will restore all the initialized value of elements declared in an array.

If the array is an two or more dimensional array , you can only change the size of the last

dimension by using preserve keyword.

Dim student_details(10,20) as string

ReDim preserve student_details(15,25)

This will raise error because we are trying to change the first dimension also. So u can

only change the last dimension in case of multi-dimensional array.

Few Important methods in arrays.

Ubound() and Lbound().

Ubound is to get the upper limit of an array.

Lbound is to get the lower limit of an array by default lower limit is 0.

e.g.

Dim weeks() As String = {"Monday", "Tuesday", "Wednesday", "Thursday",

 "Friday", "Saturday", "Sunday"}

Dim upper As Integer

Dim lower As Integer

upper = UBound(weeks)

lower = LBound(weeks)

MsgBox(upper.ToString & " - " & lower.ToString)

You will get 6 – 0 as the answer.

If you count the number of elements initialized elements its seven, but all arrays starts

with lower bound as 0. So from 0 – 6 is equal to 7 elements.

This works for single dimension , but for multi-dimensions,

We make use of the following:

Getupperbound(), getlowerbound() these functions are methods of the array class.

You can use it with single dimension also but best for multi-dimensional arrays.

Syntax : arrayname.getupperbound/getlowerbound(dimension)

Dimension refers to the which upper/lower bound should be found, 0 for first, 1 for

second and so on.

example.

Dim student_details(10,20,15)

Dim upperlimit as integer

upperlimit = student_details.getupperbound(0)

' This will return 10 for the 1st row element

upperlimit = student_details.getupperbound(1)

' This will return 20 for the 2nd row of element

For all getlowerbound(dimension) it will return 0 as the base lower bound is zero in .NET

6. Object Oriented Programming Concepts

Section Owner: Akila Manian (MVP)

Content Contributors: Shankar N.S., Swati Panhale

There are various approaches to solve a problem. Moreover, these approaches
are to a great extent dependant upon how each one of us tries to analyze and
solve the problem.

We have a very simple assignment:

Lets say we want to calculate a distance formula for traveling from one place to
another. The distance formula has to include all the attributes of the journey. So
let us see what data do we have-

Variables:

Location: Have to go from one city to another (both the cities can be anywhere
in the world).
Modes of travel: Car/Bus/Train
Date constraints: Departure/Arrival Date.
Time Preference: Morning/Afternoon /Evening
Distance: Break Journey
Travel Cost. Etc

Now, we have termed these data items as “variables” because their value would
be changing based upon the various choices made.

Even for such a trivial problem, there are being so many options/constraints,
there are so many approaches to arrive at a decision. On similar lines, given a
problem and basic resources (which also act as constraints), various
algorithms can do the task programmatically. An algorithm is nothing but the
thought process/approach involved.

A good approach should

• Be generic so that it works well with all possible combinations of inputs.

• Flexible / adaptable to absorb new inputs. (New destination, routes, rates,
timings or even new mode of travel - say space travel)

• Give solutions in the desired timeframe.

• Make best use of resources available. (Optimize the solution)

• Cost effective.

• Simple enough.

Primitively, there was a very straightforward manner to write applications.
Straightforward in the sense that the various tasks in the application would be
identified and would be automated. This approach did work for many scenarios
but when it came to the robustness or maintenance of the application, this
approach proved to be insufficient.

In this section we will first discuss what was the procedural approach and how
the design of an application be made using this approach. By trying to figure out
the negative points in the approach we will then appreciate the advantages of
object oriented programming by discussing it as a solution to overcome the
shortcomings of procedural programming.

6.1 Concept of Procedural Programming

The whole core of procedural programming lies in deriving a straightforward
sequential step-by-step guide to do a particular task. Let us understand this by
analyzing a case study.

Lets take up a classic Payroll application that deals with various types of
specifications for different employees. Lets say that this application is developed
in one of the best procedural languages – C.

So, the “Employee” in the application will be represented by a structure, which
will contain all the Employee attributes as data members of the structure.
Assume that the application deals with three types of employees – Clerk,
Manager and Marketing executive. All the employees do have some common
attributes and certain specific allowances (lets not talk of deductions!). The clerk
gets medical allowance, the executive gets the traveling allowance and the
manager gets house rent allowance and dearness allowance. Our Employee
structure might look something like this:

The application would have functions, which would act upon the data, and do the
necessary functionalities. So there would be at least following functions apart
from others:

This also could have been done having three different structures one for each
Employee type but this would increase the overhead in programming in the
functions and there would be a requirement of declaring three different arrays;
one to store all clerk variables, one for manager variables and one for executive.
So let us have a common structure, which would suite all the employee types.

If we try to figure out the central algorithm of every function it would be quite
monotonous wherein every function would have a strict type inspection routine to

struct Employee
{
 int Id;
 char Name[25];
 char *Address;
 char Designation[20];
 double Basic;

 float Med_Allow;
 float Tra_Allow;
 float HRA;
 float DA;

}

void AddDetails() ; // To add details of the
 // employee to the structure
void PrintDetails() ; // To print the details of a
 // particular Employee

double CalcSalary(); // To calculate the salary of a

 // employee

check the type of Employee every time. Because the functionalities differ for
every type of Employee.

This kind of type inspection will be featuring in every function, which would be
dependant upon the type of the Employee.

Now, if we have to add a new Employee type to this application, which has its
own specification about, the allowances received try to figure out the changes
that we will have to do in the current case study. Not only will the Employee
structure have to be modified but also even the functions have to be changed in
order to accommodate the new Employee type. So just as we are currently
having a case statement to correspond to one employee type, we will have to
introduce one more case statement corresponding to the new employee type. In
addition, while calculating the salary we might introduce some local variables in
the function to do the necessary calculations. There is a probability that the new
additions may lead to certain bugs being introduced in the current “working”
code. So let us list down the various problems we would face in this application:

Maintenance: -- If the application has to support some change in the existing
business logic for a particular employee type there might be more problems
introduced since it is the same function that would be called for the different
employee types.

Enhancement: -- When the application has to be enhanced further to add a new
type of employee there would be changes made in all the functions, which
depend upon the type of employee. Hence enhancing an application further

void CalcSalary ()

{

 switch(EMP_TYPE)

 {

 case CLERK:

 // All the CLERK specific calculations

 case MANAGER:

 // All the MANAGER specific calculations

 case EXECUTIVE:

 // All the EXECUTIVE specific calculations

}

}

would be quite hectic. Why only new type of employee? Even if have to add a
little more functionality to an existing function it would prove quite cryptic.

Extensibility: -- The current design of the application does not allow us to have
extensibility easily. Therefore, if we have to add more functions, which would do
certain tasks for all the employee types or maybe for some of the type of
employees; the new function also will have a strict type inspection routine to
check for the type of employee.

Storage: -- A small but significant problem. Whenever we have the data saved in
a persistent storage i.e. having the data into files on the hard disk we will have to
take care of saving the data along with the appropriate type of the employee.
Also, while reading the data from the file its necessary to read the type first and
then accordingly initialize the members in the structure.

If we try to look for the core problem in the application design which can be
qualified as a cause for all the problems discussed above it definitely would be
an attempt to design a common algorithm to suit all the types of employees. It
would definitely prove helpful if rather than concentrating on the procedures we
concentrate more upon the entities in the application.

6.2 Object Oriented Programming

Now with the major shortcomings of procedural programming let us look at how a
different approach would help us. As mentioned earlier it is necessary to
concentrate more upon the entities in the application and not only upon the tasks
done by the application.

Based upon this bottom line we have a certain set of rules defined as object-
oriented paradigm. If a programming language satisfies these rules i.e. provides
certain features or keywords to implement these rules it would be qualified as an
object oriented programming language.

Lets discuss the major conventions for object-oriented programming.

6.3 Classes

One of the major problems in the earlier approach was also the data and the
functions working upon the data being separate. This leads to the necessity of
checking the type of data before operating upon the data. The first rule of the
object-oriented paradigm says that if the data and the functions acting upon the
data can go together let them be together. We can define this unit, which
contains the data and its functions together as a class. A class can also be
defined as a programmatic representation of an entity and the behavior of that
entity can be represented by the functions in the class. In our earlier case study
the employee, can be represented as a class. A class will contain its data into
various variables, which would be termed as data members and the behavior of
the class, which will be encapsulated, as functions will be termed as member
functions.

6.4 Encapsulation

Many a times when we use certain tools, we hardly pay attention to the details
about the functionality of the tool. We hardly pay attention to the various other
units, which make up the tool. This behavior to ignore unwanted details of an
entity is termed as abstraction.

Now if the details are unwanted why show them to the user? Therefore, the
creator might attempt to hide these unwanted details. This behavior is termed as
encapsulation. So we can say that encapsulation is an implementation of
abstraction. Encapsulation directly leads to two main advantages:

Data Hiding: -- The user of the class does not come to know about the internals
of the class. Hence, the user never comes to know about the exact data
members in the class. The user interacts with the data members only through the
various member functions provided by the class.

Data Security: - Since the data, members are not directly available to the user

directly but are available only through the member functions a validity check can
always be imposed to ensure that only valid data is been inserted into the class.
So a Date class, which contains individual data members for storing date, month
and year, will have it ensured the month is never 13 or the date is never
exceeding 31.

6.5 Inheritance

What is common between a father and a son? At least one thing would be
common – their assets!

In real life, inheritance allows us to reuse things that belong to a particular entity.
Also, in object oriented world a class can inherit the properties and functionalities
defined in some another class so that they can be reused. Then we have to be a
bit careful in designing these classes because reusability cannot be done unless
the classes are of the same type. So the class which would be reusing the
functionalities of the other class in object oriented terms we would say that the
class is “deriving” from the former class and is termed as the derived class. The
class that is being “derived from” is termed as the base class. Inheritance
directly results in the following benefits: --

Reusability: -- Inheritance results in functionalities defined in one class being
reused in the derived classes. So the efforts of rewriting the same functionality
for every derived class is being saved. This definitely saves a lot of development
time.

Enhancement and Specification: -- Due to the characteristic of inheritance, we
can club the common functionalities in the base class and have the specific
functionalities in the derived class. This feature can be used to have a
functionality defined in the base class to be further modified for betterment or
specification by the derived class. This mechanism of redefining the functionality
of the base class in the derived class is termed as “overriding”

Avoiding type inspection:-- In the case study that we discussed to understand
procedural approach we had a strict type inspection routine at the library end
wherein in every function in the library we had to check for the type of the
employee for whom the work has to be done. With inheritance, we would have a
common base class called as “Employee” which would have all the common
functionalities defined where as the specific routines do be done for various types
of employees would go in the respective derived classes. So there would be
class defined for every type of employee and the class would all the
specifications for that type of employee and would be derived from the base
class Employee to inherit the common functionalities. Therefore, in the functions
now we wont have to check for the type of employee every time because every
employee type has its own specific routines defined within it.

6.6 Polymorphism

The word “polymorphism” means “different forms”. Applied in object-oriented
paradigm it means the ability of an entity to exhibit different forms at runtime.
However, why would such a kind of feature be required? One major reason to
have this is to eliminate the type inspection. As we can see in the earlier case
study that we discussed there would also be a type inspection checking at the
client application level where in the employee entities would be used. So just as
in every functionality, we had checked for the type of employee we will also have
to check in the main function about the type of employee we are handling. With
polymorphism, we can have this level of type inspection also being eradicated
totally.

Mapping the procedural approach to an object oriented scenario

How does .NET support object oriented programming?

As we have discussed in the earlier sections .NET happens a to be a “complete
framework”. The basic approach adopted by the framework is object-oriented
and the framework would support only object-oriented code. So no more C and
COBOL applications! Although C++ and OO-COBOL would work perfectly fine.

// Common functionality for all types

of

// Employees

switch (EMPLOYEE TYPE)

{

 case CLERK:

 // specific functionalities

 // for a clerk

 case MANAGER:

 // specific functionalities for

 // a manager

case EXECUTIVE:

 // specific functionalities for

 // a executive

}

Class Employee

{

 // Common

 // Functionalities

}

Class Clerk {

}

Class

Manager {

}

Class

Executive {

}

Base Members

Derived Classes

Base Class

Overrided Members

Since the framework is inherently object-oriented everything i.e. every data type
in the framework will be a class. Unlike C++, even the primitive data types will be
given by the framework as a set of classes.

The framework also provides us with a rich set of classes which can be used by
instantiating them or writing new classes by deriving from the framework classes.
The framework does have a systematic organization of classes wherein the
Object class from the System namespace (we will discuss namespaces in details
later) tops the chart. All the other classes are derived from the Object class.

Component Oriented Programming

However, is it really enough just to have an object oriented approach? Well, now
with the increasing influence of the web and code reusability getting extended
across the language barriers its very much essential to even extend “Object
Oriented approach “ itself.

We need to extend the definition of the “class” which happens to be the basic
element of object oriented programming. We know that the class serves as an
abstraction or simulation of a real life entity. However, in order to have a total
encapsulation the internals of the class has to be totally hidden. Secondly, the
class should be instantiable across various programming languages to have a
more range of reusability. The class should ideally support properties (will be
discussed a little later) to offer more user friendliness and overcoming the
incompatibilities.

Therefore, a class must have the following extra abilities in addition to what it
serves in object-oriented scenario:

• Encapsulated data and implementations

• Properties

• Language Interoperable

We can term instance of such a class as a “component”. VB.NET and CSharp
happen to be component- oriented languages in a way that every class created
in any of these languages when instantiated results in a component.

6.7 Understanding CSharp and VB.NET as Object Oriented
Programming languages

After knowing the object-oriented concepts let us examine how these concepts
can be implemented in CSharp (C#) or VB.NET. These two languages are been
introduced along with the .NET framework and are totally .NET compliant. So
VB.NET will be a natural upgrade for VB programmers and CSharp for C++
programmers. We will be looking at the various syntaxes of both these languages
to implement object oriented programming.

Classes

As we have discussed earlier classes are going to be an integrated unit
consisting of the data and the functions that would act upon the data.

The Employee class would be something like this:

VB.Net

Public Class Employee
 Dim Empid As Integer
 Dim EmpName As String
 Dim EmpAddress As String
 Dim Basic As Double

 Public Sub AddDetails ()

 End Sub

Public Sub PrintDetails ()

 End Sub

Public Sub CalcSalary ()

 End Sub

End Class

 C#

The attributes in our employee entity are defined as data members and the
functionalities would be the member functions. So our classes happen to be
independent entities in our application. Dependant upon the application the
number of classes in the application might vary. We need to be a bit careful
about the design of our classes specifically when we decide the data members
and the member functions. We will have to ensure complete atomicity and that
no class would be allowed to access the data of any other class unless it’s a
strict constraint in the design of the classes.

Then just by declaring he class we have laid down a specification. The class
would be actually in form or will be allocated memory only when we create an
instance of that class i.e. creating an “object” of the class. Therefore, a class is
just a blue print of an entity, which just tells what does the entity have, and how
does the entity behave.

public class Employee
{

 int Empid;
 string EmpName;
 string EmpAddress;
 double Basic;

 public void AddDetails ()
 {

 }

public void PrintDetails ()
{

}
public void CalcSalary ()
{

 }
}

Based upon the program requirement we can have this object created either at
compilation time (stack segment of the process memory) or at runtime (on the
heap). But if the object is created at runtime it will also be necessary to de-
allocate the object to avoid a memory leak. .NET framework provides us with an
automatic memory management system. In addition, for this system to monitor
our memory its mandatory to have all our objects created at runtime. Hence, in
.NET scenario we are going to have only heap-based objects, which would get
created at runtime.

At times we might in our application require multiple instances of the same class.
The multiple objects of the class are going to have only their set of data members
and they would share the copy of member functions. Then how would the data of
the appropriate object get modified. As like any other programming language, the
.NET languages also support the “this” reference, which would be an implicit
argument of every function (non static function). This reference contains the
address of the object through which the function was called.

Just as an application would require multiple instances of a same class an
application also might require objects of different classes. These classes might
be from different libraries. There are high chances that two different libraries
might have a class of the same name. These naming clashes are solved in .NET
by grouping classes logically in namespaces. So we can group different classes
of a library into one or more namespaces. Whenever we use a library, we can
specify to the compiler about the namespace we are referring.

Encapsulation

Encapsulation is all about hiding the data and ensuring its security. The data
should not be accessible to any external entity unless the data is not that crucial.

C# and VB.NET support various access specifiers to encapsulate the data and
the functions. The specifiers allow us to define the levels of access for the data
members. Every member that we declare in a class has to have to its access
specifiers as a part of the declaration statement itself. Unlike C++ , both C# and
VB.NET do not support access grouping.

C# Access Specifiers

Access Non static members

Do not require an object instance Require an object instance

Are termed as class level members
Are termed as object level
members

Static functions do not receive the
“this” pointer as an implicit argument

Non static functions do receive
the “this” pointer as an implicit
member

Can access only other static and not
the non static members

Can access both static as well as
non static members

Constructors

Constructors are special member functions, which are used for initializing the
class data members. In the earlier object oriented programming languages
constructors were quite important since initialization of the data members was
not allowed at the time of declaration. C# however allows us to have the member
variables to be initialized along with declarations. Then why are constructors
required? Well, the variables may not always be initialized to some constants but
can also be initialized with the values specified by the user. There can also be
certain kind of processing to be done while a class is instantiated. So a
constructor happens to be quite important member function in the class as far as
initialization is concerned.

C# supports following types of constructors

• Default Constructors

• Parameterized constructors

• Private constructors

• Static constructors

Destructors

C# also supports automatic memory cleanup by having a garbage collector
element. So no more botheration for de-allocating memory from the heap and no
more nightmares about dangling pointers. Then if there is a memory
management mechanism why would we require destructors?

Static Members

Let us consider a scenario wherein we have two different MS WORD windows
opened with some documents opened. We select some text from one of the
windows, copy it and try to paste it another window. Now we know that both
these windows happen to be two separate entities. So lets imagine two objects of
the same kind to have similar kind of interaction. Definitely we would a common
memory are which both the objects would be able to access. This memory area
also has to restricted to the objects of that class only. The key point over here is
the common area available to the objects.

In a second scenario, let us consider a requirement of generating ids
automatically. Again, there has to be some variable, which would be common to
all objects of that class and would keep on incrementing.

Difference in static and non-static members

Static

variable

Object #1 Object #2 Object #3

Note:-- All the object are instances of the same class and the static variable also
belongs to the same class

Static members Non static members

Do not require an object instance Require an object instance

Are termed as class level
members

Are termed as object level
members

Static functions do not receive
the “this” pointer as an implicit
argument

Non static functions do receive
the “this” pointer as an implicit
member

Can access only other static and
not the non static members

Can access both static as well as
non static members

Properties

Classes were proposed in object oriented programming paradigm for one of the
reasons of having data security. As we know, the members of a structure in C
happen to be public and can be accessed freely outside the structure. As a
result, there is not any check as to what data is been inserted into the structure
members. Hence, in classes we have the “private” specifier by which we can
avoid the direct access of the data members of the class. Then we lose the user
friendliness of accessing a variable rather than calling a function.

Properties happen to be a fantastic blend of both the things. A property
constitutes of a private level member to store the data and accessor and mutator
methods to interact with the variable. Now what is new in that? The beauty is that
the property would be accessed by the user as a local variable but internally the
compiler will convert the access statements into appropriate function calls. So the

user application always is under the impression that a variable is been accessed
where as the validity of the data is been checked with the methods associated.
The data stored in the variable is termed as value of the property.

Inheritence

It is one of the commonly used features in OOPS to avoid the code duplication. It
implements code reutilization in class declaration. Let us take an example and
discuss how the code reutilization is achieved with inheritence. Normally we
create a singe class to represent an entity and its operations. Look at the
following example

��

Class Employee
 Public EmpId As Integer
 Private Sal As Double = 0
 Public Basic As Double
 Public Allowance As Double
 Public Deducions As Double
 Public FirstName As String
 Public LastName As String
 Public Address As String
 Public Pincode As String
 Public Sub DisplayInfo()
 Dim msg As String
 msg = FirstName & " " & LastName & vbCrLf
 msg = msg & Address & vbCrLf
 msg = msg & "PIN – " & Pincode
 Msgbox(msg)
 End Sub
 Public ReadOnly Property Salary() As Double
 Get
 Return Sal
 End Get
 End Property
 Public Sub ProcessSalary()
 Sal = Basic + Allowance - Deductions
 End Sub
End Class

Employee Class

class Employee
{
 public int EmpId;
 private double Sal = 0;
 public double Basic;
 public double Allowance;
 public double Deducions;
 public string FirstName;
 public string LastName;
 public string Address;
 public string Pincode;
 public void DisplayInfo()
 {
 string msg;
 msg = FirstName + " " + LastName + vbCrLf;
 msg = msg + Address + vbCrLf;
 msg = msg + "PIN – " + Pincode;
 MesssgeBox.Show(msg);
 }
 public double Salary
 {
 get
 {
 return Sal;
 }
 }
 public void ProcessSalary()
 {
 Sal = Basic + Allowance – Deductions;
 }
}

In the above example, employee class contains methods and properties defined
in its structure. Employee object is an instance.

�
�
�

Customer

Class
Customer

Object

Class Customer
 Public CustId As Integer
 Public DebitBalance As Double
 Public FirstName As String
 Public LastName As String
 Public Address As String
 Public Pincode As String
 Public Sub DisplayInfo()
 Dim msg As String
 msg = FirstName & " " & LastName & vbCrLf
 msg = msg & Address & vbCrLf
 msg = msg & "PIN – " & Pincode
 End Sub
 Public ReadOnly Property Debit() As Double
 Get
 Return DebitBalance
 End Get
 End Property
End Class

class Customer
{
 public int CustId;
 public double DebitBalance;
 public string FirstName;
 public string LastName;
 public string Address;
 public string Pincode;
 public void DisplayInfo()
 {
 string msg;
 msg = FirstName + " " + LastName ;
 msg = msg + Address ;
 msg = msg + "PIN – " ;
 }
 public double Debit()
 {
 get
 {
 return DebitBalance;
 }
 }
}

Customer class contains methods and properties defined in its structure.
Customer object is an instance.

In these two classes, you might have observed the person identification is same
in both Employee and Customer class. it means firstname, lastname, address
and pincode variable members and displayInfo method is same in both the
classes.

So this common information can be isolated and written in separate class and
inherited into the respective employee and customer class. it is shown in the
following example.

Base Class:-

Class Person
 Public FirstName As String
 Public LastName As String
 Public Address As String
 Public Pincode As String
 Public Sub DisplayInfo()
 Dim msg As String
 msg = FirstName & " " & LastName & vbCrLf
 msg = msg & Address & vbCrLf
 msg = msg & "PIN – " & Pincode
 Msgbox(msg)
 End Sub
End Class

class Person
{
 public string FirstName;
 public string LastName;
 public string Address;
 public string Pincode;
 public void DisplayInfo()
 {
 string msg;
 msg = FirstName + " " + LastName;
 msg = msg + Address ;
 msg = msg + "PIN – " + Pincode;
 MessageBox.Show(msg);
 }
}

��
��
�

Derived Class:-

Customer

Class

Customer

Object

Person

Class
+

Class Customer
 Inherits Person
 Public CustId As Integer
 Public DebitBalance As Double
 Public ReadOnly Property Debit() As Double
 Get
 Return DebitBalance
 End Get
 End Property
End Class

class Customer:Person
{
 public int CustId ;
 public double DebitBalance;
 public double Debit()
 {
 get
 {
 return DebitBalance;
 }
 }
}

����
�

Derived Class:-

Class Employee
 Inherits Person
 Public EmpId As Integer
 Private Sal As Double = 0
 Public Basic As Double
 Public Allowance As Double
 Public Deductions As Double
 Public ReadOnly Property Salary() As Double
 Get
 Return Sal
 End Get
 End Property
 Public Sub ProcessSalary()
 Sal = Basic + Allowance - Deductions
 End Sub
End Class

Employee Class Employee Object Person

Class
+

class Employee: Person
{
 public int EmpId ;
 private double Sal = 0;
 public double Basic ;
 public double Allowance;
 public double Deductions;
 public double Salary
 {
 get
 {
 return Sal;
 }
 }
 public void ProcessSalary()
 {
 Sal = Basic + Allowance – Deductions;
 }
}

In the above mentioned example Person class holds the common data
(Firstname, Lastname… etc) and method displayInfo(). It has been inherited in
both employee and customer class. So these two achieves the same functionality
of what we have seen before inheritance. By this point we conclude inheritance
implements reuse of the same code with multiple classes.

One more advantage with inheritance is extensibility of the of the derived class
code. It means the employee and customer class be extended by including its
own methods and properties with the person (Inherited) class. Here the extended
members in Employee class are EmpId, Allowance, ProcessSalary method and
Salary property. The same thing follows in customer class with CustId,
DebitBalance and Debit property.

You might have observed the keywords Base class and Derived class in the
above session. Let us see what it means.

Base class:- A class which contains common properties and methods that can

shared with other classes by inheritance is called Base class. Ex:- Person class

Derived class:- A class which inherits the base class is knows as Derived class.

ex:- Employee class and Customer class.

Implementation:- A derived class can inherit only one base class. its shown in
the above examples, ie., employee class inherits person class and customer
class inherits person class.

You can inherit the base class into derived class using Inherits keyword.

ex:-

Class Employee
 Inherits Person
 :
 :
End Class

class Employee:Person
{
 :
 :
}

Protected Keyword:- We have already seen the usage of Public and Private

keyword.

As we know, all the Public keyword declarations in the class will be accessed by

the object users and the derived class (the class which inherits the base class).
Private keyword declarations can be accessed only within the class (it means

the class in which the declaration is done).

You may think why this Protected keyword declaration is required.

Its functionality is a hybrid of public and protected keyword. So, its very important
in class inheritance, because in the situation where the data is to be
communicated only between the base and derived classes irrespective of the
external object user (means the end user) the protected keyword is used

Let us take an example and see how it will be used

Base Class:-

Class Person
 Public FirstName As String
 Public LastName As String
 Public Address As String
 Public Pincode As String
 Protected DateOFBirth As DateTime
 Public Sub DisplayInfo()
 Dim msg As String
 msg = FirstName & " " & LastName & vbCrLf
 msg = msg & Address & vbCrLf
 msg = msg & "PIN – " & Pincode
 msg = msg & "Date of Birth : " & DateOFBirth.ToString
 End Sub
End Class

class Person
{
 public string FirstName ;
 public string LastName ;
 public string Address;
 public string Pincode;
 protected DateTime DateOFBirth ;
 public void DisplayInfo()
 {
 string msg;
 msg = FirstName + " " + LastName;
 msg = msg + Address ;
 msg = msg + "PIN – " + Pincode;
 msg = msg + "Date of Birth : " + DateOFBirth.toString;
 }
}

The Protected variable dateofbirth is accessed in the displayinfo method of the

base class itself.

Derived Class:-

Class Employee
 Inherits Person
 Public EmpId As Integer
 Private Sal As Double = 0
 Public Basic As Double
 Public Allowance As Double
 Public Deducions As Double
 Public ReadOnly Property Salary() As Double
 Get
 Return Sal
 End Get
 End Property
 Public Sub ProcessSalary()
 Sal = Basic + Allowance – Deductions
 End Sub
 Public ReadOnly Property Age() As Integer
 Get
 Dim personAge As Integer
 personAge = Date.Now.Subtract(DateofBirth).Days
 Return personAge
 End Get
 End Property
End Class

class Employee: Person
{
 public int EmpId ;
 private double Sal = 0;
 public double Basic;
 public double Allowance;
 public double Deducions;
 public double Salary
 {
 get
 {
 return Sal;

 }
 }
 public void ProcessSalary()
 {
 Sal = Basic + Allowance – Deductions;
 }
 public int Age
 {
 get
 {
 int personage;
 personAge = Date.Now.Subtract(DateofBirth).Days;
 return personage;

 }
 }
}

As in the same way of base class the protected variable dateofbirth of the base
class is accessed in the derived class. So the protected variable in the base
class looks like a private variable for the derived class and cannot be accessed
by its object users (means outside the class environment).

Instantiation of the Derived Class :- After declaration of the derived class we
can create the object instance of the derived class and use it for the specific task.
This is called Object Instantiation. With the instance of the derived class you can
access all the public properties and methods of both the base and derived
classes.

Let us take an employee class example.

 Dim objEmployee1 As New Employee() 'Create an Instance of the
 'Employee class
 objEmployee1.EmpId = 100 'Derived Class member
 objEmployee1.firstname = "Rama" 'Base Class member
 objEmployee1.lastname = "S" 'Base Class member
 objEmployee1.Address = "#8, Kalidasa road, Mysore"
 'Base Class member
 objEmployee1.pin = "570002" 'Base Class member
 objEmployee1.Basic = 5000 'Derived Class member
 objEmployee1.allowances = 4000 'Derived Class member
 objEmployee1.Deductions = 1000 'Derived Class member
 objEmployee1.ProcessSalary() 'Derived Class member
 objEmployee1.DisplayInfo() 'Base Class member

 Employee objEmployee1 = new Employee(); 'Create an Instance of the 'Employee
class
 objEmployee1.EmpId = 100; 'Derived Class member
 objEmployee1.firstname = "Rama"; 'Base Class member
 objEmployee1.lastname = "S"; 'Base Class member
 objEmployee1.Address = "#8, Kalidasa road, Mysore";
 'Base Class member
 objEmployee1.pin = "570002"; 'Base Class member
 objEmployee1.Basic = 5000; 'Derived Class member
 objEmployee1.allowances = 4000; 'Derived Class member
 objEmployee1.Deductions = 1000 ; 'Derived Class member
 objEmployee1.ProcessSalary(); 'Derived Class member
 objEmployee1.DisplayInfo(); 'Base Class member

In the above code, object instance objEmployee of Employee class is created.
And then all the public members of both base and derived class are accessed
and manipulated.

System.Object:- This is the root class for all the objects in the .NET framework,
from which all the other classes are derived. It contains some basic methods and
properties, which can be accessed from all the object instances of the .NET
framework.

Look into the code which calls system.object methods.

Dim Obj As New System.Object()
 Obj.ToString()
 Obj.GetHashCode()
 Obj.GetType()
Dim objEmployee As New Employee()
 objEmployee.ToString()
 objEmployee.GetHashCode()
 objEmployee.GetType()

System.Object Obj = new System.Object();
 Obj.ToString();
 Obj.GetHashCode();
 Obj.GetType();
Employee objEmployee = New Employee();
 objEmployee.ToString();
 objEmployee.GetHashCode();
 objEmployee.GetType();

 The above code shows some of the methods that can be accessed
directly with the instance of the system.object ie., Obj and also the same
methods can be accessed from objEmployee too. So, objEmployee is inherited
from System.Object class.

6.8 Polymorphism

It is the capability to have methods and properties in multiple classes that have
the same name can be used interchangeably, even though each class
implements the same properties or methods in different ways.

Let us understand what is polymorphism with the following example.

Now we will consider the maintenance of company information which includes
employee and customer details. A person (base class) is defined to hold the
common information of the individual. The base class maintains contact
information of the person and manipulates the data. It contains save method to
update the contact information of the person.

Two derived classes, Employee and Customer are used to process the employee
and customer details. These two derived classes inherits person class to
manipulate identity of the person instead of rewriting the same code again in the
derived classes. Since each derived class needs to use the displayinfo method to
display the additional information with the contact details, the displayinfo method
of the base class will be overwritten in the respective derived class using
overrides keyword. The overriding member signature in the derived class must
be as the base class signature.

Signature includes the member type, member name, parameters datatype and
return datatype.

Look into the following example and see the implementation of base class
(Person) and the derived class (Employee), observe the changes in the
displayInfo method in both the classes.

Ex:-

Class Person
 Private Name As String
 Private Address As String
 Public ReadOnly Property PName() As String
 Get
 Return Name
 End Get
 End Property
 Public ReadOnly Property PAddress() As String
 Get
 Return Address
 End Get
 End Property
 Public Overridable Function DisplayInfo() As String
 Dim msg As String
 msg = "Name : " & Name & vbCrLf
 msg = msg & "Address : " & Address & vbCrLf
 Return msg
 End Function
 Public Sub Save(ByVal parName As String, ByVal parAddress As String)
 Name = parName
 Address = parAddress
 End Sub
End Class

class Person
{
 private string Name;
 pPrivate string Address;
 public string PName()
 {
 get
 {
 return Name;
 }
 }
 public string Paddress
 {
 get
 {
 return Address;
 }
 }
 public virtual string DisplayInfo()
 {
 string msg;
 msg = "Name : " + Name;
 msg = msg + "Address : " + Address;
 return msg;
 }
 public void Save(string parName, string parAddress)
 {
 Name = parName;
 Address = parAddress;

 }
}

Derived Class:-

Class Employee
 Inherits Person
 Public EmpId As Integer
 Private Sal As Double = 0
 Public Basic As Double
 Public Allowance As Double
 Public Deductions As Double
 Public Overrides Function DisplayInfo() As String
 Dim msg As String
 msg = MyBase.DispalyInfo()
 msg = msg & "ID : " & EmpId.ToString & vbCrLf
 msg = msg & "Basic : " & Basic.ToString & vbCrLf
 msg = msg & "Allowances : " & Allowance.ToString & vbCrLf
 msg = msg & "Deductions : " & Deductions.ToString & vbCrLf
 msg = msg & "Net Salary : " & Sal.ToString & vbCrLf
 return(msg)
 End Function
 Public ReadOnly Property Salary() As Double
 Get
 Return Sal
 End Get
 End Property
 Public Sub ProcessSalary()
 Sal = Basic + Allowance - Deductions
 End Sub
End Class

class Employee: Person
{
 public int EmpId;
 private double Sal = 0;
 public double Basic;
 public double Allowance;
 public double Deductions;
 public override string DisplayInfo()
 {
 string msg ;
 msg = base.DispalyInfo();
 msg = msg + "ID : " + EmpId.ToString;
 msg = msg + "Basic : " + Basic.ToString;
 msg = msg + "Allowances : " + Allowance.ToString;
 msg = msg + "Deductions : " + Deductions.ToString;
 msg = msg + "Net Salary : " + Sal.ToString ;
 return(msg)
 }
 public double Salary
 {
 get
 {
 return Sal;
 }
 }
 public void ProcessSalary()
 {
 Sal = Basic + Allowance – Deductions;
 }
}

The following keywords are used in achieving polymorphism.

• Overridable:- A method or property defined in the base class can be
overwritten in the derived class.

• Overrides:- Indicates the method or property is being overwritten in the
derived class.

• Mustoverrides:- A method or property defined in the base class must be
overwritten in the derived class

• Notoverridable:- A method or property defined in the base class must not
be overwritten in the derived class.

 Virtual Members :-Virtual members are those that can be overridden and

replaced by the derived classes. They are declared with Overridable keyword.
The methods or properties which doesn’t contain overridable keyword are called
Non-Virtual members.

For ex:- DisplayInfo method is an virtual method of Person base class, because it
has been overwritten in the Employee derived class with new DisplayInfo method
with same signature.

Restricting Polymorphism :-

 We have already seen polymorphism is implemented with Overridable and
Overrides keyword. Some situation arises where we need to break the
polymorphism effect of the base class method. It means changing the signature
of the base class member while overriding it in the derived class violates the
polymorhism rule “signatures must be same”. Restriction is required to
completely change the implementation of the member in the derived class. So it
restricts the polymorphism of the base class member with new implementation in
the derived class. The Shadow keyword used to implement this concept.

Take an example shown below which contains two classes 1) Person Class 2)
Employee class.

Person class is a base class contains method to be overwritten from the derived
class. The signature of the overridable method is

Public Overridable Function DisplayInfo() as String

Employee class is a derived class which inherits person class and restricts the
implementation of the polymorphism method displayinfo of the base class with
shadows keyword.

From the above explanation, we can observe that the signature of the DisplayInfo
member is changed from function in the base class to the subroutine in the
derived class with complete change in the implementation.

Ex:-

Base Class:-

Public Shadows Sub DisplayInfo()

Class Person
 Public Name As String
 Public Address As String
 Public Overridable Function DisplayInfo() As String
 Dim msg As String
 msg = Name & vbCrLf
 msg = msg & Address & vbCrLf
 Return msg
 End Function
 Public Sub Save(ByVal parName As String, ByVal parAddress As String)
 name = parName
 address = parAddress
 End Sub
End Class

class Person
{
 public string Name;
 public string Address ;
 public virtual string DisplayInfo()
 {
 string msg;
 msg = Name ;
 msg = msg + Address;
 return msg;
 }
 public void Save(string parName, string parAddress)
 {
 name = parName;
 address = parAddress;
 }
}

Derived Class:-

Class Employee
 Inherits Person
 Public EmpId As Integer
 Private Sal As Double = 0
 Public Basic As Double
 Public Allowance As Double
 Public Deductions As Double
 Public Shadows Sub DisplayInfo()
 Dim msg As String
 msg = MyBase.DisplayInfo("")
 msg = msg & "ID : " & EmpId.ToString & vbCrLf
 msg = msg & "Basic : " & Basic.ToString & vbCrLf
 msg = msg & "Allowances : " & Allowance.ToString & vbCrLf
 msg = msg & "Deductions : " & Deductions.ToString & vbCrLf
 msg = msg & "Net Salary : " & Basic.ToString & vbCrLf
 MsgBox(msg)
 End Sub
 Public ReadOnly Property Salary() As Double
 Get
 Return Sal
 End Get
 End Property
 Public Sub ProcessSalary()
 Sal = Basic + Allowance - Deductions
 End Sub
End Class

class Employee: Person
{
 public int EmpId ;
 private double Sal = 0;
 public double Basic;
 public double Allowance;
 public double Deductions;
 public new void DisplayInfo
 {
 string msg;
 msg = Base.DisplayInfo("");
 msg = msg + "ID : " + EmpId.ToString;
 msg = msg + "Basic : " + Basic.ToString;
 msg = msg + "Allowances : " + Allowance.ToString;
 msg = msg + "Deductions : " + Deductions.ToString;
 msg = msg + "Net Salary : " + Basic.ToString;
 MessageBox.Show(msg);
 }
 public double Salary
 {
 get
 {
 return Sal;
 }
 }
 public void ProcessSalary()
 {
 Sal = Basic + Allowance – Deductions;
 }
}

6.9 Abstract Classes (Virtual Class)

So far, we have seen how to inherit the class, how to overload and override
methods. In the examples shown in inheritance topic, parent class has been
useful in both inheritance and create an instance also.

Actually in some situation the classes are required only for inheritance, such type
of classes are called Abstract classes. This concept is very useful when
creating a framework for the applications where there will not be any
implementation for the methods and properties in the abstract class. It just
defines the structure.

Abstract classes are declared using MustInherit and MustOverride keyword.

Syntax:-

Public MustInherit Class AbstractBaseClass
 Public MustOverride Sub DoSomething()
 Public MustOverride Sub DoOtherStuff()
End Class

public abstract class AbstractBaseClass
{
 public abstract void DoSomething();
 public abstract void DoOtherStuff();
}

MustInherit keyword is used with the class name, where as MustOverride
keyword is used with the members of the class.

Implementaion:-

Public Class DerivedClass
 Inherits AbstractBaseClass
 Public Overrides Sub DoSomething()
 MsgBox("This method is overrides the Base class DoSomething to implement the
method functionality”)
 End Sub
 Public Overrides Sub DoOtherStuff()
 MsgBox(“This method is overrides the Base class DoOtherStuff to implement the
method functionality”)
 End Sub
End Class

public class DerivedClass : AbstractBaseClass
{

 public Override void DoSomething()
 {
 MessagegBox.Show("This method is overrides the Base class DoSomething to
implement the method functionality”);
 }
 public Override void DoOtherStuff()
 {
 MessaggeBox.Show(“This method is overrides the Base class DoOtherStuff to
implement the method functionality”);
 }
}

MustInherit forces the classes to be inherited from the derived class and write
an implementation code for the methods and properties in the derived class
before using it.

As in the above example, any class that inherits AbstractBaseClass must
implement the Dosomething and DoOtherStuff methods.

We cannot create an instance of the AbstractBaseClass as shown below.

Dim obj as New AbstractBaseClass()
‘Error in Decleration

AbstractBaseClass obj = new AbstractBaseClass()
‘Error in Decleration

Restricting Inheritence

 If we want to prevent a class being used as a Base class we can use
NotInheritable keyword with the class declaration.

Public NotInheritable Class NormalClass
 'Decleration of Class members

End Class

public sealed class NormalClass
{
 'Decleration of Class members

}

For example when we want an employee class need not to be used as a Base
class, we can declare the employee class structure with NotInheritable keyword.
So that it can be used only for instantiation.

VB.NET

Class NotInheritable Employee
 Inherits Person
 Public EmpId As Integer
 Private Sal As Double = 0
 Public Basic As Double
 Public Allowance As Double
 Public Deductions As Double
 Public Shadows Sub DisplayInfo()
 Dim msg As String
 msg = MyBase.DisplayInfo("")
 msg = msg & "ID : " & EmpId.ToString & vbCrLf
 msg = msg & "Basic : " & Basic.ToString & vbCrLf
 msg = msg & "Allowances : " & Allowance.ToString & vbCrLf
 msg = msg & "Deductions : " & Deductions.ToString & vbCrLf
 msg = msg & "Net Salary : " & Basic.ToString & vbCrLf
 MsgBox(msg)
 End Sub
 Public ReadOnly Property Salary() As Double
 Get
 Return Sal
 End Get
 End Property
 Public Sub ProcessSalary()
 Sal = Basic + Allowance - Deductions
 End Sub
End Class

Following decleration is not posssible, .NET generates error!!!!

Public Class Staff
Inherits Employee
End Class

C#

class sealed Employee: Person
{
 public int EmpId ;
 private double Sal = 0;
 public double Basic;
 public double Allowance;
 public double Deductions;
 public new void DisplayInfo
 {
 string msg;
 msg = Base.DisplayInfo("");
 msg = msg + "ID : " + EmpId.ToString;
 msg = msg + "Basic : " + Basic.ToString;
 msg = msg + "Allowances : " + Allowance.ToString;
 msg = msg + "Deductions : " + Deductions.ToString;
 msg = msg + "Net Salary : " + Basic.ToString;
 MessageBox.Show(msg);
 }
 public double Salary
 {
 get
 {
 return Sal;
 }
 }
 public void ProcessSalary()
 {
 Sal = Basic + Allowance – Deductions;
 }
}

Following decleration is not posssible, .NET generates error!!!!

Public Class Staff: Employee
{

}

6.10 Interfaces

An interface is like an abstract class which allows the derived class to inherit
more than one interfaces into it.

We have already seen an abstract class can have methods with or without
implementation. But an interface can only have members without
implementation. So it provides only structure of the objects like abstract class.

To implement an interface in VB.NET, we use the keyword Implements and we
must provide implementations for all the methods of the interface we implements.

Defining an Interface:- Interfaces are declared with the following structure

Public Interface <Name of the interface>

 :

 <decleration of memebrs of the interface, means methods and properties

structure>

:

End Interface

Let us take up a example and see how the declaration been done

Interface IShape
 Sub Draw(ByVal coord() As ArrayList)
End Interface

interface IShape
{
 void Draw(ArrayList coord);
}

Implementation of Interface:- Interfaces are implemented using Implements keyword. All the

members of the interface are implemented with Implements keyword.

 “To implement a interface, we must implement all the methods and properties defined by the

interface”

If more than one interface is to be implemented, then interfaces names should separated by
commas with the implements keyword while defining a class.

Lets us take an example of implementation:-

Public Class Drawing
 Implements Ishape
 Public Sub Draw(ByVal parCoord() As ArrayList) Console.Write("Draw a Circle")
 End Sub
End Class

Public Class Drawing: Ishape
{

 Public void Draw (ArrayList parCoord)
 {
 Console.Write("Draw a Circle");
 }
}

In the example, we are implementing Isahpe interface, which contains Draw method into the
Drawing Class.

Difference between Abstract class and Interfaces

Abstract Class Interface

Only one Abstract class can be

inherited into the derived class.

Interfaces enable multiple inheritance

to the object

Members of the abstract class can or

cannot have implemention

Interfaces contains only the definitions

for the menbers without implementation

When to use the interfaces in programming?

Solution:- The situation at which we need to implement the functionalities of two
or more objects into one derived object. So it makes the derived object to refer to
the interface methods and properties for syntax verification.

6.11 Delegates and Events

Delegates:-

The Delegate class is one of the most important classes to know how to use
when programming .NET. Delegates are often described as the 'backbone of the
event model' in VB.NET. In this we are going to introduce you to delegates
(Sytem.Delegate class) and show you how powerful of an event mechanism
through delegates.

Delegates are implemented using the delegate class found in the System
namespace. A delegate is nothing more than a class that derives from
System.MulticastDelegate. A delegate is defined as a data structure that refers to
a static method or to a class instance and an instance method of that class. In
other words, a delegate can be used like a type safe pointer. You can use a
delegate to point to a method, much like a callback or the 'AddressOf' operator in
VB.NET. Delegates are often used for asynchronous programming and are the
ideal method for generically defining events.

Before you get into the actual delegate class let us see some code which
simulates the delegate functionality through simple class code for the sake of
understanding. We have a simple class called 'VBDelegate' with two static
methods named 'CallDelegate' and 'DisplayMessage' as shown below. When the
CallDelegate method is called,(when the program is run) to display the message.
Now normally, if we had a class called 'VBDelegate' with a method named
'DisplayMessage'

VB.NET
Public Class VBDelegate
 'Static method to call displaymessage function
 Public Shared Sub CallDelegate()
 DisplayMessage("Some Text")
 End Sub

 'Static Function to display the message
 Private Shared Function DisplayMessage(ByVal strTextOutput As String)
 MsgBox(strTextOutput)
 End Function

End Class

C#

Public Class CSDelegate
{
 'Static method to call displaymessage function

 Public static void CallDelegate()
 {
 DisplayMessage("Some Text")
 }

 'Static Function to display the message

 Private static void DisplayMessage(String strTextOutput)

 {
 MessageBox.Show(strTextOutput)
 }

}

There is nothing wrong with this approach at all. In fact, it is probably more
commonly used than delegates. However, it does not provide much in terms of
flexibility or a dynamic event model. With delegates, you can pass a method
along to something else, and let it execute the method instead. Perhaps you do
not know which method you want to call until runtime, in which case, delegates
also come in handy.

Now we will implement the same functionality as before, using a actual delegate
class of .NET.

Delegates in VB.NET are declared like:
Delegate [Function/Sub] methodname(arg1,arg2..argN)

The declared delegate methodname will have the same method signature as the
methods they want to be a delegate for. This example is calling a shared
method..

VB.NET

Class VBDelegate
 'Declaration of delegate variable with arguments
 Delegate Function MyDelegate(ByVal strOutput As String)
 'Function to call the delegates
 Public Shared Sub CallDelegates()
 'Declare variables of type Mydelegate points to the
 'function MessageDisplay with AddressOf operator
 Dim d1 As New MyDelegate(AddressOf MesssageDisplay)
 Dim d2 As New MyDelegate(AddressOf MesssageDisplay)
 'Pass the arguments to the function through delegates
 d1("First Delegation ")
 d2("Second Delegation ")
 End Sub
 'Function to display the message
 Private Shared Function MesssageDisplay(ByVal strTextOutput As String)
 MsgBox(strTextOutput)
 End Function
End Class

 C#

Class CSDelegate
{
 'Declaration of delegate variable with arguments
 delegate void MyDelegate(String strOutput);
 'Function to call the delegates
 Public static void CallDelegates()
 {
 'Declare variables of type Mydelegate points to the
 'function MessageDisplay
 MyDelegate d1 = New MyDelegate(MesssageDisplay);
 MyDelegate d2 = New MyDelegate(MesssageDisplay);
 'Pass the arguments to the function through delegates
 d1("First Delegation ");
 d2("Second Delegation ");
 }
 'Function to display the message
 Private static void MesssageDisplay(String strTextOutput)
 {
 MessgeBox.Show(strTextOutput);
 }
}

The Output to the display window is:

First Delegation in one message window

And

Second Delegation in the second message window

What has happened in the above code? Let's take a look

First, we defined a delegate. Remember, when defining a delegate it is very
similar to stating the signature of a method. We have said we want a delegate
that can accept a string as an argument so basically, this delegate can work with
any method that takes the same argument(s).

In our CallDelagates method, we create two instances of our 'MyDelegate'. Then,
we pass into MyDelegate's constructor the address of our 'DisplayMessage'
method. This means that the method we pass into the delegate's constructor (in
this case it's 'DisplayMessage' method) must have a method signature that
accepts a string object as an input argument, just like our delegate does. Now,
you might be thinking, "why are we passing in the address of a method when we
defined our delegate to accept a string object as it's input argument?" In the code
above, we are telling the delegate which method to call, not which string we're
passing in. Carefully understand this concept.

Then finally we have our 'DisplayMessage' method, which takes the string
passed in by the delegate and tells it what string is to be displayed.

The same approach is used while handling the events in the .NET. This topic is
just to understand how delegates works in .NET.

Events:-

Events are nothing but situations at which the message is sent to an object to
signal the occurrence of the action. These actions can be caused by the user
interaction or within the object itself.

For example the class designer can create an event and raise the same through
its methods and properties. These events will be captured by the object user and
perform his/her required operation.

Let us take a simple example of VB.NET Button class. Button is a class defined
in System.Controls.FormsControls nameplace. The users create an instance of
the Button class and select the onclick event related to the button object and
write an action to be performed on click of the button.

Actually this event is already defined in button class and will be raised when the
user clicks the button. The following example shows how the event can be
defined, raised in the class and used by the object user.

Declaration:- The event member will be declared with Event keyword. Basically

the event member should always be public. Because these are the members will
be used by the external users.

'Declare a class which operates on the Employee collection database
'This class is used to find some summarised operation on the Employee
'collction database, which means finding the relavent employee ‘information, 'getting the
total no. of employees in the collection and ‘others - Its just 'an example to explain how
event works
Public Class EmployeeCollection
 'Declare an event which will be raised after finding the data
 'Keyword ‘Event’ is used the declare the events
 Public Event FindResult(ByVal blnFound As Boolean)
'This method is to find the data from employee colletion database and 'raise the findresult
event to return the result
 Public Sub FindData(ByVal Name As String)
 'find the Employee with name and return the result as boolean, if
 'the data is found then raise FindResult with True else with
 'False
 Dim found As Boolean
 found = FineEmployee(Name)
 If found Then
 'Raise the event with parameter
 RaiseEvent FindResult(True)
 Else
 'Raise the event with parameter
 RaiseEvent FindResult(False)
 End If
 End Sub
End Class

Usage:- In order to access the events of the objects, the object should be
declared with withevents clause. This is shown in the following example with form
load event.

'Declare the object with WithEvents clause to create an instance
Dim WithEvents objEmpColl As EmployeeCollection = New EmployeeCollection()
Public Sub load()
 'Find the Employee with name Rama in the Employee collection
 objEmpColl.FindData("Rama")
End Sub
'The following event will be raised after the search operation
Private Sub objObject_FindResult(ByValue blnFound as Boolean) Handles
objObject.FindResult
 If blnFound Then
 MsgBox("The given Employee is Found in the collection")
 Else
 MsgBox("The given Employee is not Found")
 End If
End Sub

6.12 Structures

Structures are used to create a variable set of different datatypes in VB.NET (In
earlier versions of VB we use TYPE and END TYPE to define it). Here it is
defined with STRUCTURE and END STRUCTURE keyword.

It supports allmost all the features of OOPS, like

• Implementing interfaces

• Constructors, methods, properties, fields, constants and events

• Shared constructors

Ex: -

Defining the structure:-

VB.NET

Structure Person
 Public FirstName As String
 Public LastName As String
 Public Address As String
 Public Pincode As String
 Public DateOFBirth As DateTime
 Public Sub DisplayInfo()
 Dim msg As String
 msg = FirstName & " " & LastName & vbCrLf
 msg = msg & Address & vbCrLf
 msg = msg & "PIN – " & Pincode
 msg = msg & "Date of Birth : " & DateOFBirth.ToString
 End Sub
End Structure

C#
struct Person
{
 Public String FirstName;
 Public String LastName ;
 Public String Address ;
 Public String Pincode ;
 Public DateTime DateOFBirth;
 Public void DisplayInfo()
 {
 String msg=new String();
 msg = FirstName + " " + LastName ;
 msg = msg + Address ;
 msg = msg + "PIN – " + Pincode;
 msg = msg + "Date of Birth : " + DateOFBirth.ToString;
 }
}

In the example a Person structure is declared to hold the a person’s details like
name, address, pincode etc., we have already seen this person details in terms
of a class object. Basically the structures are used to hold the set of values like

array. Theoritically arrays holds a set of single datatype values, but structures
holds a set of different datatype values. Due to the OOPS feature of .NET we can
implement the methods and properties in the structures too. This is shown in the
person structure. Here the Firstname,Lastname,Address,Pincode,Dateofbirth are
all the variables of person structure with different datatype declarations, where
DisplayInfo is a method to disputably the information.

Variables holds the data and methods operates on the data stored in it as in the
normal class object.

Usage of the structure:-

VB.Net

'Creating an instance of the structure like a normal class variable

Dim varPerson As Person = New Person()
'Setting the structure variables with the values
varPerson.firstname = “Rama”
varPerson.lastname = “Lakan”
varPerson.address = “Mysore”
varPerson.pincode = “570002”
varPerson.dateofbirth = “25/06/1977”
'Calling the strcuture method to manipulate and display the person address
varPerson.displayinfo()

C#

Person varPerson =New Person();
'Setting the structure variables with the values
varPerson.firstname = “Rama”;
varPerson.lastname = “Lakan”;
varPerson.address = “Mysore”;
varPerson.pincode = “570002”;
varPerson.dateofbirth = “25/06/1977”;
'Calling the strcuture method to manipulate and display the person address
varPerson.displayinfo();

6.13 Sample Application: OOPS

Heres a small application created to demonstrate Object Oriented / Component Oriented

features in .NET using C#.

Accounts are created & managed by the application for a Bank. There are 2 types of

account that can be created

1. Savings

2. Current

• The opening balance for Saving account is 1000, & for Current is 5000

• The minimum balance for Saving Account is 1000 & that for Current should not be

less than the ODA.

• Account ID should be auto generated, Name can be modified & Balance can be

updated only through transactions.

Based on the above requirement, Account component library has been built & a sample

test application

Note: This is a simple application to demonstrate OOPS/Component oriented features.

1. Bank project is a Class Library. Click here.

2. BankClient is a Windows Application. Click here.

7. Error and Exception Handling

Sect i on Owner: S aurabh Nandu (MVP)

C ontent C ontr ibut o r s : Aravind C o rera (MVP)

7.1 Need for Error Handling

Picture this: You’re doing a demo of your application for a client and then all of a sudden

as if proving Murphy’s Law, the inevitable happens. Boom! … Your client gets to see a

dialog with cryptic messages indicating that your application has crashed. You certainly

wish that such a thing should never ever happen, but that wish would hold true only in an

ideal world. The truth however is that unforeseen errors are bound to happen, one way or

another in spite of careful coding accompanied with fairly rigorous testing. Keeping this

in mind, we as developers need to adopt defensive coding strategies with effective error

handling techniques to trap and handle errors and exceptions, and to provide the user with

adequate information on the nature and cause of the error before exiting from the

application when an unexpected error occurs.

An Exception is an abnormal/exceptional/unexpected condition that disrupts the normal

execution of an application. A distinction needs to be made between expected conditions

and unexpected conditions. Say for example you are writing a very large file to the

hard-disk, it’s imperative that you should first check the disk space first, since there could

be an expected condition that the hard-disk might be low on space, such conditions are

not ideal candidates that warrant exceptions to be thrown. But on the contrary, what if an

unexpected hard-disk hardware failure occurred while writing to the file - This is an ideal

candidate that warrants exceptions to be thrown. Always remember that though exception

handling is very important, judicious use of this feature should be made since there is a

performance cost when you use it.

Error and exception handling are a part and parcel of every good language, framework

class library, or application and should form a part of your applications too right from the

planning stages. The .NET Framework Class Library (FCL) and Common Language

Runtime (CLR) provide a rich infrastructure to catch and handle exceptions. The CLR

infrastructure is also designed for cross-language exception handling - What this means is

that if a VB.NET component throws back an exception to a C# application that’s

consuming the component, the C# application will be able to catch the error and obtain

rich error information on the error that has occurred. Through the rest of the tutorial,

we’ll see how to catch and handle exceptions in the .NET framework using C# and

VB.NET.

7.2 Old-school unstructured exception handling in VB 6.0 and its
disadvantages

You are well aware that the exception-handling model in VB 6.0 required you to jump

through hoops in order to handle errors and gracefully exit from a procedure or function.

The exception-handling model that VB 6.0 supported was unstructured and required you

to make jumps to a label or a line number that contained the error-handling code to

handle the error. Further more, you had to take precautions to exit the procedure in a

normal execution flow (when no error occurs) by not allowing it to fall through to the

error-handling block. If you had clean up code that was supposed to execute both when

an error occurred as well as during a normal execution flow, then you had to make yet

another jump to a label or line number that contains the block of cleanup code. The whole

approach was unstructured and often got very messy. To see what we mean, and why this

method of exception handling can be best termed as unstructured, recollect fond nostalgic

memories at how you typically handled exceptions in VB 6.0 using the code snippet

shown below, and be prepared to bid goodbye to this pattern of exception handling:

Private Sub BookTicketsForMovie()

 On Error GoTo BookTickets_ErrHandler

 ' Perform business logic to book tickets.

 ' Possibility that exceptions could be raised here, say when all

 ' tickets are sold out.

BookTickets_Exit:

 ' Ignore any errors here since this is just a resource clean up block

 On Error Resume Next

 ' Resource clean up occurs here

 ' Maybe close up the DB Connection to the movie ticket database and so on

 'Exit the procedure

 Exit Sub

BookTickets_ErrHandler:

 ' Handle the error based on the error type.

 ' Need to pick up the value of Err.Number and then decide accordingly

 ' how to handle the error.

 MsgBox "Error encountered is: " & Err.Number

 MsgBox "Error message is: " & Err.Description

 ' Go through the usual cleanup procedure before exiting the procedure

 Resume BookTickets_Exit

End Sub

As seen above, you typically use an On Error GoTo … statement to redirect any errors to

error-handling code marked by a label or line number, such as the BookTickets_ErrHandler

handler in our example. The VB 6.0 runtime populates the Err object that contains all the

details about the error that occurred, whose properties can be examined for the error type

that occurred and then a decision can be taken as to how to handle that error. This is a

really cumbersome task if your program is capable of generating a lot of error types,

since we need through the rigmarole of determining the exact type of error that occurred

using decision statements such as Select…Case or If…Then…Else before actually handling

it. If you had cleanup code that needs to be executed before exit from the procedure, such

as the one under the BookTickets_Exit label in our example, then you had to make an

additional jump to the cleanup code or call a common cleanup procedure. As a result, the

code becomes very unstructured and difficult to maintain, thus allowing occasional bugs

to creep in silently. VB.NET supports this form of unstructured exception handling too.

But it’s generally not recommended that you use unstructured exception handling in

VB.NET because of performance constraints and code maintenance nightmares.

It is recommended that use VB.NET’s structured approach to handling errors, which is

the topic of our next section. So be prepared to say a tearful goodbye to unstructured

exception handling and say a big hello to the über powerful world of structured exception

handling.

7.3 Structured Exception Handling in C#/VB.NET

Structured Exception Handling (SEH) allows you enclose code that can possibly

encounter errors or raise exceptions within a protected block. You can define exception

handler filters that can catch specific exception types thrown by the code within the

protected block. Lastly, you can create a block of cleanup code that guarantees to execute

always – both when an exception is thrown as well as on a normal execution path.

C# and VB.NET supports the following SEH keywords to raise and handle exceptions:

 try

 throw

 catch

 finally

To facilitate structured exception handling in C#/VB.NET, you typically enclose a block

of code that has the potential of throwing exceptions within a try block. A catch handler

associated with the exception that is thrown catches the exception. There can be one or

more catch handlers and each catch handler can be associated with a specific exception

type that it can handle. The catch blocks are generally used to gracefully inform the user

of the error and to possibly log the error to a log file or to the system event log. You can

optionally have a finally block that contains code that will execute both when an

execution is thrown as well as on a normal execution flow. In other words, code within

the finally block is guaranteed to always execute and usually contains cleanup code. So

how can you raise an exception? . To do that your code needs to throw an exception using

the throw keyword. The exception that is thrown is an object that is derived from the

System.Exception class. We’ll examine this class in detail in the next section.

Now let’s consider a normal execution flow in a program where no error occurs within

the try block.

Explanation in C#

Explanation in VB.NET

In this case, the code within the try block does not throw an exception and therefore, the

code within the catch block never executes. Once the code within the try block completes,

the execution path resumes by executing the code in the finally block. As mentioned

earlier, the code within the finally block executes whether or not an error had occurred.

Let’s turn our attention to a scenario where the code within the try block raises an

exception.

Explanation in C#

Explanation in VB.NET

When the exception is thrown, execution flow is transferred to the catch block that is

capable of handling the exception thus skipping the rest of the code below the line that

threw the exception in the try block. The code in the catch block handles the exception

appropriately and then execution flow moves to the code in the finally block.

7.4 System.Exception: The mother of all exceptions

Let’s take some time to look at the parent exception class in the .NET framework – the

System.Exception class. All exception classes are directly or indirectly derived from this

class.

To see how to put this class to use, let’s quickly dive into a simple example where we can

see all the exception handling constructs (try, catch, throw, and finally) in action. To start

with fire up your favorite text editor (my personal favorite is Notepad) and type in the

following code:

Code listing in C#

using System;

class HelloWorld

{

 static void Main(string[] args)

 {

 try

 {

 Console.WriteLine("Here we go...");

 // Throw an exception

 throw new Exception("Oops !. Your computer is on fire !!");

 // This line should never execute

 Console.WriteLine("How on earth did I get called ?");

 }

 catch(System.Exception ex)

 {

 // Display the error message

 Console.WriteLine("Caught exception : {0}", ex.Message);

 }

 finally

 {

 // This should always get called

 Console.WriteLine("In finally");

 }

 }

}

Code listing in VB.NET

Imports System

Module HelloWorld

 ' The Main entry point of the application

 Sub Main()

 Try

 Console.WriteLine("Here we go...")

 ' Throw an exception

 Throw New Exception("Oops !. Your computer is on fire !!")

 ' This line should never execute

 Console.WriteLine("How on earth did I get called ?")

 Catch ex As Exception

 Console.WriteLine("Caught exception : {0}", ex.Message)

 Finally

 ' This should always get called

 Console.WriteLine("In finally")

 End Try

 End Sub

End Module

So what we have here is a try block that throws an exception by creating an instance of

the System.Exception class with a descriptive error message. There’s a catch block to

handle exceptions of type System.Exception. The code in the catch block just displays the

error message. Finally, the finally block (no pun intended) logs a message that confirms

that it did execute even though an error was thrown.

So let’s save this program to a file named HelloWorld (with the appropriate extension

depending on the language you are using - .cs or .vb), the Hello World of Exception

handling if you will.

To compile the C# program, type in the following command from the DOS command

line:

csc /target:exe HelloWorld.cs

To compile the VB.NET program, type in the following command from the DOS

command line:

vbc /target:exe HelloWorld.vb

This will generate an executable named HelloWorld.exe. Run the program and here’s the

output that you get:

Here we go...
Caught exception : Oops !. Your computer is on fire !!
In finally

You’ll notice that the exception that was thrown is caught by the catch block and that any

statements that occur in the try block below the line that threw the exception are not

executed. Notice that when you compiled the program in C#, the compiler generated the

following warning:

Warning in C#

HelloWorld.cs(16,4): warning CS0162: Unreachable code detected

This goes to show that the C# compiler detected that the statement that follows the throw

statement in the try block would never get executed because of the exception that was

thrown, and thus warned us of unreachable code.

We saw how the Message property of the System.Exception class can be used to get a

descriptive error message for the exception. Similarly, let’s examine the some of the

other important properties of the System.Exception class. Let’s start by modifying the catch

block in example that we just saw with the following code:

Code listing in C#

// Replace the catch block in our previous example with the following code

catch(System.Exception ex)

{

 Console.WriteLine("Caught exception : {0}", ex.Message);

 Console.WriteLine("Source of the exception is : {0}", ex.Source);

 Console.WriteLine("Method that threw the exception is : {0}",

 ex.TargetSite.Name);

 Console.WriteLine("Info on this exception is available at : {0}",

 ex.HelpLink);

 Console.WriteLine("Stack trace of this exception: {0}", ex.StackTrace);

}

Code listing in VB.NET

' Replace the catch block in our previous example with the following code

Catch ex As Exception

 Console.WriteLine("Caught exception : {0}", ex.Message)

 Console.WriteLine("Source of the exception is : {0}", ex.Source)

 Console.WriteLine("Method that threw the exception is : {0}", _

 ex.TargetSite.Name)

 Console.WriteLine("Info on this exception is available at: {0}",ex.HelpLink)

 Console.WriteLine("Stack trace of this exception: {0}",ex.StackTrace)

Finally

 ' Rest of the code goes here . . .

Compile and run the application and observe the output that you get:

Output in C#

Here we go...
Caught exception : Oops !. Your computer is on fire !!
Source of the exception is : HelloWorld

Method that threw the exception is : Main
Info on this exception is available at:
Stack trace of this exception: at HelloWorld.Main(String[] args)
In finally

Output in VB.NET

Here we go...
Caught exception : Oops !. Your computer is on fire !!
Source of the exception is : HelloWorld
Method that threw the exception is : Main
Info on this exception is available at:
Stack trace of this exception: at HelloWorld.Main()
In finally

You’ll notice that you can get rich information on the exception that occurred including

details on the application and the method that threw the exception (through the Source and

TargetSite properties respectively) and a complete stack trace of the exception in a string

representation (using the StackTrace property). Note that if you compile your code in

debug mode i.e. using the /debug+ compiler option, the Source and StackTrace properties

will show you the actual line numbers in the source code which raised the exception.

You’ll notice that the HelpLink property, which is supposed to provide a link to help file

or a URL that contains information on the exception that occurred, does not seem to

return anything. This is because we did not set this property when throwing the

exception. To do that you simply need to set the HelpLink property before raising the

exception. Here’s a snippet of code that shows how you can do that:

Code listing in C#

// Create an Exception

Exception exception = new Exception("Oops !. Your computer is on fire !!");

// Set the help file details

exception.HelpLink = "http://www.someurl.com/help/ComputerOnFireHelp.html";

// Throw the exception

throw exception;

Code listing in VB.NET

' Create an Exception

Dim excep as Exception = New Exception("Oops !. Your computer is on fire !!")

' Set the help file details

excep.HelpLink = "http://www.someurl.com/help/ComputerOnFireHelp.html"

' Throw the exception

Throw excep

Replacing the statement that throws the exception with the above 3 statements in our

example application, compiling it, and running it will now yield the following results:

Output in C#

Here we go...
Caught exception : Oops !. Your computer is on fire !!
Source of the exception is : HelloWorld
Method that threw the exception is : Main
Info on this exception is available at: http://www.someurl.com/help/ComputerOnFireHelp.html
Stack trace of this exception: at HelloWorld.Main(String[] args)
In finally

Output in VB.NET

Here we go...
Caught exception : Oops !. Your computer is on fire !!
Source of the exception is : HelloWorld
Method that threw the exception is : Main
Info on this exception is available at: http://www.someurl.com/help/ComputerOnFireHelp.html
Stack trace of this exception: at HelloWorld.Main()
In finally

There’s one other thing that you need to be aware of - The notion of an inner exception,

that you can access using the InnerException property of the main exception. So what

exactly is an inner exception? . Assume that you have a nice cool stock portal that allows

customers to manage their stocks and investments. The stock portal uses a database to

store data on customers and their portfolio. Now, let’s say that you encounter a database

specific error in your application. The last thing that you want to do is to display some

cryptic ADO or OLEDB messages in your web pages that your customers don’t care a

hang about. In such cases, you might have a catch handler to catch database specific

exceptions. What this catch handler would essentially do is to create a more generic

exception that is application specific (maybe an exception that tells the user that the site

encountered an internal error) and would assign the database specific exception to the

application-specific exception’s InnerException property. The catch handler then re-throws

this application-specific exception expecting that one of the outer catch blocks will handle

the generic exception. We’ll see how to re-throw exceptions in the section, Nesting

try/catch/finally blocks and re-throwing exceptions. Inner exceptions are very useful when

you are dealing with exceptions that occur in multiple tiers of typical enterprise

applications. This allows you to envelope specific exceptions that actually caused the

error into more application-specific exception types, and at the same time allows clients

to determine the specific exception type (InnerException) that caused the

application-specific exception to be thrown.

Now since we know more about the System.Exception class, let’s take a look at the types

of exceptions and how they can be classified. Broadly, there are two types of exceptions:

 System exceptions (Exception classes derived from System.SystemException)

 Application exceptions (Exception classes derived from

System.ApplicationException)

Understanding system exceptions:

System exceptions are pre-defined exceptions that ship with the .NET framework class

library. For example, the System.IO.IOException class, which is predefined exception in the

framework class library for handling input/output related errors on files, streams etc., is

derived from the System.SystemException class.

There are tons of other similar predefined system exception classes that are defined and

used in the FCL and which can be used in our applications as well. Let’s take a look at a

quick example on how to handle system exceptions in your application. We’ll use the

System.DivideByZeroException as our guinea pig here and simulate a situation where the

FCL throws this exception. We’ll handle this error and report the error to the user. Fire up

Notepad, and type in the following code:

Code listing in C#

using System;

class MyDecimalDivider

{

 static void Main(string[] args)

 {

 try

 {

 // Trigger a divide by zero exception

 Decimal dResult = Decimal.Divide(5,0);

 // We should never get here

 Console.WriteLine("Result is : {0}", dResult);

 }

 catch(DivideByZeroException exDivByZero)

 {

 Console.WriteLine("Caught Divide By Zero exception: {0}",

 exDivByZero.Message);

 }

 catch(Exception ex)

 {

 Console.WriteLine("Caught exception: {0}",ex.Message);

 }

 finally

 {

 // Should always execute

 Console.WriteLine("In finally");

 }

 }

}

Code listing in VB.NET

Imports System

Module MyDecimalDivider

 Sub Main()

 Try

 ' Trigger a divide by zero exception

 Dim dResult as Decimal = Decimal.Divide(5,0)

 ' We should never get here

 Console.WriteLine("Result is : {0}", dResult)

 Catch exDivByZero As DivideByZeroException

 Console.WriteLine("Caught Divide By Zero exception: {0}", _

 exDivByZero.Message)

 Catch ex As Exception

 Console.WriteLine("Caught exception: {0}", ex.Message)

 Finally

 ' Should always execute

 Console.WriteLine("In finally")

 End Try

 End Sub

End Module

So essentially, what we’re doing here is simulating a DivideByZeroException by calling the

Divide() static method of the System.Decimal class and passing in a value of 0 for the

divisor. A quick look at the documentation for the Divide() method will tell you that the

method throws a DivideByZeroException when attempting to divide by 0. So we’re setting

up a catch block to handle exceptions of type System.DivideByZeroException.

Save the file to MyDecimalDivider (with the appropriate extension .cs or .vb depending on the

language that you are using). Let’s get down to compiling the application. Type the

following command from the DOS command prompt:

Compiling in C#

csc /target:exe MyDecimalDivider.cs

Compiling in VB.NET

vbc /target:exe MyDecimalDivider.vb

That takes care of generating an executable file named MyDecimalDivider.exe. Run the

program and observe the output:

Caught Divide By Zero exception: Attempted to divide by zero.
In finally

There we go. As seen above, the catch handler for the DivideByZeroException took care of

catching the exception that was raised when we attempted to divide 5 by 0. The

System.DivideByZeroException is just one of the many predefined system exception classes

in the FCL. For a complete list of the other system exception classes, swing by to:

http://msdn.microsoft.com/library/en-

us/cpref/html/frlrfsystemsystemexceptionclasshierarchy.asp

Ordering catch handlers to filter exceptions:

Notice that we also have another catch block that handles the generic System.Exception. If

none of the other catch handlers can handle an exception raised, the System.Exception catch

handler will always lend a helping hand in catching and handling the exception, since the

rest of the exception types are derived from this class. So that brings us to another thing

that you need to remember - If you do not have a catch handler to handle a specific

exception type, say SomeException, but do have a catch hander that can handle a type that

is a super class of SomeException, then the catch handler associated with that super class

will be asked to handle the exception. In our example, even if we did not have the catch

handler for the System.DivideByZeroException, the catch handler for the System.Exception

would have been able to handle the exception, since System.DivideByZeroException inherits

from System.ArithmeticException, which in turn derives from System.SystemException and

hence System.Exception.

Keeping this in mind, it is important to understand that the order in which you place your

catch handlers plays a key role in determining the catch handler that will eventually

handle your exceptions. As a general rule, always place exception types of more derived

classes in an exception class hierarchy higher up in the chain and place base class (super

class) exception types lower down in the chain. To illustrate this, let’s slightly modify the

earlier divide by zero example and note down a few observations:

Modify the MyDecimalDivider.cs code sample as shown below to introduce a catch handler

for the System.ArithmeticException, which is the immediate base class of the

System.DivideByZeroException and place that catch handler above the catch handler that

handles the DivideByZeroException:

Code listing in C#

using System;

class MyDecimalDivider

{

 static void Main(string[] args)

 {

 try

 {

 // Trigger a divide by zero exception

 Decimal dResult = Decimal.Divide(5,0);

 // We should never get here

 Console.WriteLine("Result is : {0}", dResult);

 }

 catch(ArithmeticException exArithmetic)

 {

 Console.WriteLine("Caught Arithmetic exception: {0}",

 exArithmetic.Message);

 }

 catch(DivideByZeroException exDivByZero)

 {

 Console.WriteLine("Caught Divide By Zero exception: {0}",

 exDivByZero.Message);

 }

 catch(Exception ex)

 {

 Console.WriteLine("Caught exception: {0}", ex.Message);

 }

 finally

 {

 // Should always execute

 Console.WriteLine("In finally");

 }

 }

}

Code listing in VB.NET

Imports System

Module MyDecimalDivider

 Sub Main()

 Try

 ' Trigger a divide by zero exception

 Dim dResult as Decimal = Decimal.Divide(5,0)

 ' We should never get here

 Console.WriteLine("Result is : {0}", dResult)

 Catch exArithmetic As ArithmeticException

 Console.WriteLine("Caught Arithmetic exception: {0}", _

 exArithmetic.Message)

 Catch exDivByZero As DivideByZeroException

 Console.WriteLine("Caught Divide By Zero exception: {0}", _

 exDivByZero.Message)

 Catch ex As Exception

 Console.WriteLine("Caught exception: {0}", ex.Message)

 Finally

 ' Should always execute

 Console.WriteLine("In finally")

 End Try

 End Sub

End Module

Now save the file and compile the modified MyDecimalDivider.cs/ MyDecimalDivider.vb in

the DOS command line using:

Compiling in C#

csc /target:exe MyDecimalDivider.cs

Compiling in VB.NET

vbc /target:exe MyDecimalDivider.vb

Run the application MyDecimalDivider.exe and observe the output:

Output in C#

MyDecimalDivider.cs(21,9): error CS0160: A previous catch clause already catches all exceptions of this or a super type

('System.ArithmeticException')

The error says it all. The ArithmeticException catch handler has been placed above the

catch handler that handles exception types of its subclass DivideByZeroException, which

effectively hides the catch handler for the DivideByZeroException.

Output in VB.NET

Caught Arithmetic exception: Attempted to divide by zero.

In finally

Since ArithmeticException‘s Catch handler has been placed above the Catch handler for its

subclass exception type DivideByZeroException, the Catch handler for the ArithmeticException

is asked to handle the error even though the actual exception type that was raised was

DivideByZeroException.

You’ll observe the same behavior if you place the System.Exception Catch handler above

any of the other catch handlers. In order to give DivideByZeroException’s Catch handler the

opportunity to handle the error, place it above the Catch handler that handles

ArithmeticException exceptions (DivideByZeroException’s super class). To summarize, place

Catch handler filters for specific exception types (sub classes) higher than the handlers for

the more generic exception types (base classes).

Code listing in C#

// Rest of the code omitted for brevity . . .

catch(DivideByZeroException exDivByZero)

{

 Console.WriteLine("Caught Divide By Zero exception: {0}",

 exDivByZero.Message);

}

catch(ArithmeticException exArithmetic)

{

 Console.WriteLine("Caught Arithmetic exception: {0}", exArithmetic.Message);

}

catch(Exception ex)

{

 Console.WriteLine("Caught exception: {0}", ex.Message);

}

Code listing in VB.NET

Try

// Rest of the code omitted for brevity . . .

Catch exDivByZero As DivideByZeroException

 Console.WriteLine("Caught Divide By Zero exception: {0}", _

 exDivByZero.Message)

Catch exArithmetic As ArithmeticException

 Console.WriteLine("Caught Arithmetic exception: {0}", exArithmetic.Message)

Catch ex As Exception

 Console.WriteLine("Caught exception: {0}", ex.Message)

Finally

 ' Should always execute

 Console.WriteLine("In finally")

End Try

Now let’s try one more thing. We’ll remove the catch handler for the

DivideByZeroException, just leaving behind the catch handlers for the

System.ArithmeticException and the System.Exception classes.

Go ahead and modify the MyDecimalDivider code by commenting out the catch handler for

the DivideByZeroException. Compile and run the application. What output do you see this

time?

Caught Arithmetic exception: Attempted to divide by zero.

In finally

As shown above, though there was no catch handler for the DivideByZeroException that

was raised, the catch handler for ArithemeticException was able to catch the exception since

the ArithemeticException class happens to be a base class of the DivideByZeroException

class. Similarly, even if we didn’t have the catch handler for the ArithmeticException class,

the System.Exception catch handler would have still caught the exception (since it’s the

parent class for all exception types). So what happens if a DivideByZeroException is raised

and you don’t have any of the catch handlers (not even the System.Exception catch

handler)? . You guessed right – the exception would turn into an unhandled exception

crashing your application. Try this by removing the try block and all the catch-finally

handlers and call Decimal.Divide() by passing a value of 0 for the divisor and notice what

happens:

Output in C#

Unhandled Exception: System.DivideByZeroException: Attempted to divide by zero.
 at System.Decimal.Divide(Decimal d1, Decimal d2)
 at MyDecimalDivider.Main(String[] args)

Output in VB.NET

Unhandled Exception: System.DivideByZeroException: Attempted to divide by zero.
 at System.Decimal.Divide(Decimal d1, Decimal d2)
 at MyDecimalDivider.Main()

7.5 Handling exceptions that are not System.Exception
compliant

What happens when your managed .NET code interacts with legacy libraries that are

.NET agnostic. In general cases, when you interact with unmanaged code using the

Platform Invoke (P/Invoke) or COM Interoperability mechanisms provided by the .NET

framework, an exception raised from unmanaged code would be mapped back by the

CLR into an appropriate .NET exception type. However, there are cases where legacy

unmanaged libraries could possibly raise exceptions that are not System.Exception

compliant, which cannot be mapped to a corresponding .NET exception type. In such

cases, you can use a generic exception handler that can catch errors that are not .NET

aware and not compliant with System.Exception. The generic catch handler contains only

the catch keyword and does not specify an exception type filter. Here’s an example code

snippet with a generic catch handler:

Code listing in C#

try

{

 // This is the try block

}

catch(Exception ex)

{

 // This is the catch block to handle System.Exception errors

}

catch

{
 // This is a generic catch block to handle calls to libraries that raise
 // exceptions which are not compliant with System.Exception. Can catch

 // any error that the other catch handlers cannot handle.
}

finally

{

 // This is the finally block

}

Code listing in VB.NET

Try

 ' This is the Try block

Catch ex As Exception

 ' This is the catch block to handle System.Exception errors

Catch

 ' This is a generic catch block to handle calls to libraries that raise

 ' exceptions which are not compliant with System.Exception. Can catch
 ' any error that the other catch handlers cannot handle.

Finally

 ' This is the finally block

End Try

7.6 Understanding Application exceptions (user-defined or
custom exceptions)

Though the FCL supports a great deal of predefined system exception classes (as seen in

the earlier section) that can be used to represent a large gamut of errors, there is always a

need to model custom errors that represent failed run-of-the-mill business logic as well as

other application specific error scenarios. In these situations, you need to turn to defining

your own custom exceptions that are application specific. When defining application

specific custom exceptions, you need to typically create a class that is derived from the

System.ApplicationException class.

It is good practice and generally recommended that the application exception class be

suffixed with Exception. For example, if you need to define an exception that indicates

that a specific ticket to a movie is not available, you’d probably want to name it

something like TicketNotAvailableException.

So let’s put this in practice and see how to define and use a custom application exception.

The example we’ll take up is a class that simulates a television channel changer, which

allows the user to surf television channels. We’ll assume that one of our business logic

constraints is that we support only 80 channels and that the class is expected to flip

channels only if the user enters a channel number between 1 and 80. If the user enters an

invalid channel number, the class is expected throw an application exception, which

indicates that the channel number entered is invalid. So let’s put together this

application-specific exception class.

We’ll call the exception class ChannelNotAvailableException and derive this class from the

System.ApplicationException class to indicate that this is an application specific exception.

Next, we’ll have to create some constructors for this class. The best practice guidelines

for exception handling recommend that we have two constructors in addition to the

default no-argument constructor - One constructor that accepts the error message as a

parameter and the other one that accepts both an error message and an inner exception as

a parameter. Let’s take a look at the ChannelNotAvailableException class.

Code listing in C#

class ChannelNotAvailableException : System.ApplicationException

{

 public ChannelNotAvailableException()

 {

 }

 public ChannelNotAvailableException(String errorMessage) :

 base(errorMessage)

 {

 }

 public ChannelNotAvailableException(String errorMessage,

 Exception innerException) : base(errorMessage, innerException)

 {

 }

}

Code listing in VB.NET

Public Class ChannelNotAvailableException

 Inherits ApplicationException

 ' Default Constructor

 Public Sub New()

 ' Call the base class constructor

 MyBase.New()

 End Sub

 ' Constructor that takes message string

 Public Sub New(ByVal errorMessage As String)

 ' Call the base class constructor

 MyBase.New(errorMessage)

 End Sub

 ' Constructor that takes message string and inner exception

 Public Sub New(ByVal errorMessage As String, _

 ByVal innerException As Exception)

 ' Call the base class constructor

 MyBase.New(errorMessage, innerException)

 End Sub

End Class

The ChannelNotAvailableException class shown above is fairly trivial and you’ll notice that

the non-default constructors do nothing more than initializing their corresponding base

class counter parts through the base class argument-list initializer. That’s it – we’re done

setting up our custom exception class. We’ll see how to put this to use in our TV channel

surfer application. Let’s put together some code for the channel surfer class.

Code listing in C#

class ChannelSurfer

{

 private const int MAX_CHANNELS = 80;

 private int m_nCurrentChannel;

 ChannelSurfer()

 {

 // Set channel 1 as the default

 m_nCurrentChannel = 1;

 }

 public int CurrentChannel

 {

 get

 {

 // Return the current channel

 return m_nCurrentChannel;

 }

 }

 // Rest of the class implementation goes here . . .

}

Code listing in VB.NET

Public Class ChannelSurfer

 Private Const MAX_CHANNELS As Integer = 80

 Private m_nCurrentChannel As Integer

 Public Sub New()

 MyBase.New()

 ' Set channel 1 as the default

 Me.m_nCurrentChannel = 1

 End Sub

 ReadOnly Property CurrentChannel() As Integer

 Get

 ' Return the current channel

 Return Me.m_nCurrentChannel

 End Get

 End Property

 ' Rest of the class implementation goes here . . .

End Class

The channel surfer class supports a read-only property named CurrentChannel that keeps

track of the current channel being viewed. The viewer can move between channels by

calling the FlipToChannel() method shown below:

Code listing in C#

class ChannelSurfer

{

 // Rest of the class implementation goes here . . .

 void FlipToChannel(int nChannelNumber)

 {

 if((nChannelNumber < 1) || (nChannelNumber > MAX_CHANNELS))

 {

 throw new ChannelNotAvailableException("We support only 80 channels."

 + "Please enter a number between 1 and 80");

 }

 else

 {

 // Set the value of the current channel

 m_nCurrentChannel = nChannelNumber;

 }

 }

}

Code listing in VB.NET

Public Class ChannelSurfer

 ' Rest of the class implementation goes here . . .

 Sub FlipToChannel(ByVal nChannel As Integer)

 If ((nChannel < 1) Or (nChannel > MAX_CHANNELS)) Then

 ' Raise an exception

 Throw New ChannelNotAvailableException("We support only 80 channels." _

 + "Please enter a number between 1 and 80")

 Else

 ' Set the current channel

 Me.m_nCurrentChannel = nChannel

 End If

 End Sub

End Class

As seen above the FlipToChannel() method checks to see if the channel number that the

user is requesting is between 1 and 80 and if so, sets the value of the CurrentChannel

property to the requested channel. If the values are not within the specified range, the

class throws the user-defined ChannelNotAvailableException exception. Let’s use the

application’s Main() entry point as a test harness for the ChannelSurfer class. Take a look

at the code below:

Code listing in C#

class ChannelSurfer

{

 // Rest of the class implementation goes here . . .

 static void Main(string[] args)

 {

 ChannelSurfer channelZapper = new ChannelSurfer();

 // Display a message

 Console.WriteLine("Press 'Q' or 'q' to quit zapping channels");

 // Set up an infinite loop

 for(;;)

 {

 try

 {

 // It's channel surfing time folks!

 Console.Write("Please enter a channel number and press 'Enter'");

 // Get the channel number from the user

 String strChannel = Console.ReadLine();

 // Check if the user wants to quit

 if(strChannel.Equals("Q") || strChannel.Equals("q")) break;

 // Convert the channel number to an integer

 int nChannel = Int32.Parse(strChannel);

 // Flip away to the requested channel

 channelZapper.FlipToChannel(nChannel);

 }

 catch(ChannelNotAvailableException exChannel)

 {

 Console.WriteLine("Channel not supported: {0}", exChannel.Message);

 }

 catch(FormatException exFormat)

 {

 Console.WriteLine("Caught a format exception: {0}",

 exFormat.Message);

 }

 catch(Exception ex)

 {

 Console.WriteLine("Caught a exception: {0}", ex.Message);

 }

 finally

 {

 // What channel are we watching?

 Console.WriteLine("You are watching Channel : {0}",

 channelZapper.CurrentChannel);

 }

 }

 }

}

Code listing in VB.NET

Module SurfChannelTestHarness

 Sub Main()

 Dim channelZapper As ChannelSurfer = New ChannelSurfer()

 ' Display a message

 Console.WriteLine("Press 'Q' or 'q' to Quit zapping Channels")

 ' Setup an infinite loop to ask the user for channel input

 Do

 Try

 ' It's channel surfing time folks !

 Console.Write("Please enter a channel number and press 'Enter' ")

 ' Get the channel number from the user

 Dim strChannel As String = Console.ReadLine()

 ' Check if the user wants to quit

 If (strChannel.Equals("Q") Or strChannel.Equals("q")) Then

 Exit Do

 End If

 ' Convert the channel number to an integer

 Dim nChannel As Integer = Int32.Parse(strChannel)

 ' Flip away to the requested channel

 channelZapper.FlipToChannel(nChannel)

 Catch exChannel As ChannelNotAvailableException

 Console.WriteLine("Channel not supported: {0}", _

 exChannel.Message)

 Catch exFormat As FormatException

 Console.WriteLine("Caught a format exception: {0}", _

 exFormat.Message)

 Catch ex As Exception

 Console.WriteLine("Caught a exception: {0}", ex.Message)

 Finally

 ' What channel are we watching ?

 Console.WriteLine("You are watching Channel: {0}", _

 channelZapper.CurrentChannel)

 End Try

 Loop While True

 End Sub

End Module

The Main() entry point creates an instance of the ChannelSurfer class and sets up a loop

that requests channel numbers from the user until the user presses the ‘Q’ or ‘q’ key to

quit the application. When the channel number input is received, it calls the

FlipToChannel() method of the ChannelSurfer object. The FlipToChannel() method call is

enclosed within a try block and an appropriate catch handler for the

ChannelNotAvailableException will catch the exception if an invalid channel number is

passed to the FlipToChannel() method. Also, if the user enters non-numeric input, the

Int32.Parse() method will throw a System.FormatException that will be caught by the catch

handler that we’ve setup to handle FormatException exceptions.

Compile the file using the following command from the DOS command line:

Compiling in C#

csc /target:exe ChannelSurfer.cs

Compiling in VB.NET

vbc /target:exe ChannelSurfer.vb

That generates the executable file ChannelSurfer.exe. Run the application and feed it with

input containing both valid and invalid input values. Here’s a sample interaction with the

ChannelSurfer application.

Press 'Q' or 'q' to quit zapping channels
Please enter a channel number and press 'Enter' 62
You are watching Channel : 62
Please enter a channel number and press 'Enter' 56
You are watching Channel : 56
Please enter a channel number and press 'Enter' 104
Channel not supported: We support only 80 channels. Please enter a number between 1
and 80

You are watching Channel : 56
Please enter a channel number and press 'Enter' abcd
Caught a format exception : Input string was not in a correct format.
You are watching Channel : 56
Please enter a channel number and press 'Enter' 15
You are watching Channel : 15
Please enter a channel number and press 'Enter' q
You are watching Channel : 15

You will notice from the output above that when the user enters 104 for the channel

number, the ChannelNotAvailableException is thrown from the FlipToChannel() method,

which is then handled by the catch handler. Similarly, when the user keys in a

non-numeric value such as abcd, a System.FormatException is raised by the Int32.Parse()

method, which then gets caught by the catch handler that filters the FormatException

exceptions. Using application specific exceptions like ChannelNotAvailableException

allows you to build exception-handling classes around your business-logic and

application specific scenarios. Be sure to check if the framework provides a predefined

exception class that suits the exception type that you want to handle. If so, reuse FCL

provided system exceptions. Otherwise, feel free to model custom exception classes that

are modeled around application specific exception scenarios.

7.7 Nesting try/catch/finally blocks and re-throwing exceptions

It should be noted that structured exception handling allows you to nest try/catch/finally

blocks within one another. This allows multiple levels of nesting and if the inner catch

blocks cannot handle a specific exception type, the runtime will look for a matching catch

handler in one of the outer try blocks. This repeats until a matching catch handler is found

in one of the enclosing blocks. If the outermost try block is reached and no such matching

catch handler is found, the runtime forces an unhandled exception to be raised. Let’s take

a look at a quick example of how to nest try/catch/finally blocks within one another.

Code listing in C#

using System;

class HelloNested

{

 static void Main(string[] args)

 {

 try

 {

 try

 {

 throw new Exception("It's just too warm in here !");

 }

 catch(Exception exInner)

 {

 // Display the exception message

 Console.WriteLine("Inner catch caught an exception: {0}",

 exInner.Message);

 }

 finally

 {

 // The inner finally block that executes always

 Console.WriteLine("Inner finally");

 }

 // Continue execution in the Outer try block

 Console.WriteLine("Continue executing in Outer ...");

 }

 catch(Exception exOuter)

 {

 // Display the exception message

 Console.WriteLine("Outer catch caught an exception: {0}",

 exOuter.Message);

 }

 finally

 {

 // The outer finally block that executes always

 Console.WriteLine("Outer finally");

 }

 }

}

Code listing in VB.NET

Imports System

Module HelloNested

 Sub Main()

 ' This is the beginning of the Outer Try block

 Try

 ' This is the beginning of the Inner Try block

 Try

 Throw New Exception("It's just too warm in here !")

 Catch exInner As Exception

 ' Display the exception message

 Console.WriteLine("Inner catch caught an exception: {0}", _

 exInner.Message)

 Finally

 ' The inner finally clause that executes always

 Console.WriteLine("Inner finally")

 ' The Inner Try/Catch/Finally blocks ends here

 End Try

 ' Continue execution in the Outer try block

 Console.WriteLine("Continue executing in Outer ...")

 Catch exOuter As Exception

 ' Display the exception message

 Console.WriteLine("Outer catch caught an exception: {0}", _

 exOuter.Message)

 Finally

 ' The outer finally clause that executes always

 Console.WriteLine("Outer finally")

 ' The Outer Try/Catch/Finally blocks ends here

 End Try

 End Sub

End Module

As shown in the example above, we have an inner try/catch/finally triad nested within an

outer try block. The code within the inner try block raises an exception, so the runtime

will check to see if one of the inner catch handlers will be able to handle the exception.

Only when none of the inner catch handlers can handle that exception type, will the catch

handlers of the outer try block be examined if they’ll be able to handle the error.

Save the example shown above in a file named HelloNested.cs/HelloNested.vb. Compile the

application by running the following command from the DOS command line:

Compiling in C#

csc /target:exe HelloNested.cs

Compiling in VB.NET

vbc /target:exe HelloNested.vb

Run the program HelloNested.exe and observe the output:

Inner catch caught an exception : It's just too warm in here !

Inner finally
Continue executing in Outer ...
Outer finally

As seen from the output above, the inner catch handler catches an exception raised by the

code in the inner try block since it can handle System.Exception exceptions. Now replace

the inner catch block in the above example to handle only System.OverflowException

exceptions.

Code listing in C#

catch(OverflowException exInner)

{

 // Display the exception message

 Console.WriteLine("Inner catch caught an exception: {0}", exInner.Message);

}

Code listing in VB.NET

Catch exOverflow As OverflowException

 ' Display the exception message

 Console.WriteLine("Inner catch caught an overflow exception: {0}", _

 exOverflow.Message)

Compile and run the modified program HelloNested.exe and observe the output:

Inner finally
Outer catch caught an exception : It's just too warm in here !
Outer finally

Notice that since the inner catch block can handle only System.OverflowException

exceptions the runtime looks for a matching catch handler in the outer blocks and locates

the outer catch handler, which subsequently handles the System.Exception exception.

Until now, we’ve seen how exceptions are raised by code enclosed within the try block.

But also take note that you can throw exceptions from within catch and finally blocks too.

There are times when a catch handler catches an exception and examines it only to find

that it cannot handle the exception. In such cases, the catch handler can re-throw the

exception hoping that one of the outer catch handlers will be able to catch the exception

and handle it appropriately. In this case, the runtime checks for a matching catch handler

in one of the enclosing outer catch blocks to handle the re-thrown exception. Let’s modify

the earlier example to re-throw the exception that we caught in the inner catch block.

Modify the inner catch block in the HelloNested code as shown below:

Code listing in C#

// Rest of the code omitted for brevity . . .

try

{

 try

 {

 throw new Exception("It's just too warm in here !");

 }

 catch(Exception exInner)

 {

 // Display the exception message

 Console.WriteLine("Inner catch caught an exception: {0}",

 exInner.Message);

 // Rethrow the exception
 throw exInner;

 }

 finally

 {

 // The inner finally block that executes always

 Console.WriteLine("Inner finally");

 }

 // Continue execution in the Outer try block

 Console.WriteLine("Continue executing in Outer ...");

}

// Rest of the code omitted for brevity . . .

Code listing in VB.NET

' Rest of the code omitted for brevity . . .

' This is the beginning of the Inner Try block

Try

 Throw New Exception("It's just too warm in here !")

Catch exInner As Exception

 ' Display the exception message

 Console.WriteLine("Inner catch caught an exception: {0}", exInner.Message)

 ' Rethrow the exception
 Throw exOverflow

Finally

 ' The inner finally clause that executes always

 Console.WriteLine("Inner finally")

 ' The Inner Try/Catch/Finally blocks ends here

End Try

' Rest of the code omitted for brevity . . .

You will notice that the inner catch block re-throws the exception that it catches and

hopes that one of the outer catch handlers will be able to handle it. Compile and run the

application. Observe the output:

Inner catch caught an exception : It's just too warm in here !
Inner finally
Outer catch caught an exception : It's just too warm in here !
Outer finally

You’ll notice that both the inner and the outer catch handlers have a go at handling the

exception. The inner catch block catches the exception and re-throws it. The re-thrown

exception is then subsequently caught and handled by the outer catch handler. Take note

that you can throw exceptions from finally blocks too.

How the CLR uses the call-stack to locate a matching catch handler:

When an exception occurs, the CLR tries to locate an appropriate catch handler

(associated with the current try block), which is capable of handling the exception. If it

cannot find an appropriate catch handler, then the next outer try-catch block is examined

for appropriate catch handlers. This search continues until it finds a matching catch

handler within the scope of the currently executing method (in C#) / procedure (in

VB.NET). If it still cannot find a matching catch handler within the scope of the currently

executing method/procedure, it pops the current method/procedure out of the call-stack

thus causing the current method to lose scope, and then searches for matching catch

handlers in the next method (the method that had originally called the current

method/procedure) in the call-stack. If it cannot find a matching catch handler there too, it

pops this method/procedure out and examines the next one in the call-stack. This stack

unwinding continues until a matching catch handler is found for the exception that was

thrown. If no such matching catch handler is found when the stack is completely

unwound, then the exception becomes an unhandled exception.

Code listing in C#

using System;

// Rest of the code omitted for brevity...

class Diver

{

 static void Main(string[] args)

 {

 try

 {

 Console.WriteLine("Get Set Go...");

 // Call the DiveIn() static method

 Diver.DiveIn();

 }

 catch(SharkAttackException ex)

 {

 Console.WriteLine(ex.Message);

 }

 finally

 {

 // This should always get called

 Console.WriteLine("In Main finally");

 }

 }

 static void DiveIn()

 {

 try

 {

 // Call the DiveDeeper static method

 Diver.DiveDeeper();

 }

 catch(WaterTooColdException ex)

 {

 Console.WriteLine(ex.Message);

 }

 finally

 {

 // This should always get called

 Console.WriteLine("In DiveIn finally");

 }

 }

 static void DiveDeeper()

 {

 try

 {

 throw new SharkAttackException("Two hungry Great-White sharks " +

 "on the prowl");

 }

 catch(OutOfOxygenException ex)

 {

 Console.WriteLine(ex.Message);

 }

 finally

 {

 // This should always get called

 Console.WriteLine("In DiveDeeper finally");

 }

 }

}

Code listing in VB.NET

Imports System

' Rest of the code omitted for brevity...

Module Diver

 Sub Main()

 Try

 Console.WriteLine("Get Set Go...")

 ' Call the DiveIn() subroutine

 Call DiveIn

 Catch ex As SharkAttackException

 Console.WriteLine(ex.Message)

 Finally

 ' This should always get called

 Console.WriteLine("In Main finally")

 End Try

 End Sub

 Sub DiveIn()

 Try

 ' Call the DiveDeeper() subroutine

 Call DiveDeeper

 Catch ex As WaterTooColdException

 Console.WriteLine(ex.Message)

 Finally

 ' This should always get called

 Console.WriteLine("In DiveIn finally")

 End Try

 End Sub

 Sub DiveDeeper()

 Try

 Throw New SharkAttackException("Two hungry Great-White sharks " + _

 "on the prowl")

 Catch ex As OutOfOxygenException

 Console.WriteLine(ex.Message)

 Finally

 ' This should always get called

 Console.WriteLine("In DiveDeeper finally")

 End Try

 End Sub

End Module

Compile the application by running the following command from the DOS command

line:

Compiling in C#

csc /target:exe Diver.cs

Compiling in VB.NET

vbc /target:exe Diver.vb

Run the program Diver.exe and observe the output:

Get Set Go...
In DiveDeeper finally
In DiveIn finally
Two hungry Great-White sharks on the prowl
In Main finally

In the above code fragment, the Main() entry point in the program calls the DiveIn()

method (in C#) / Subroutine (in VB.NET), which in turn calls the DiveDeeper()

method/subroutine. Notice that the DiveDeeper() method throws a custom

application-defined exception called SharkAttackException.

Explanation using C#

Explanation using VB.NET

When the SharkAttackException exception is thrown the CLR checks to see if the catch

handlers associated with the try block in DiveDeeper() can handle the exception Since the

only exception type handled by the catch handler in DiveDeeper() happens to be

OutOfOxygenException, the CLR will pop the DiveDeeper() method out of the stack after

executing the finally block in DiveDeeper(). It will then go on to search for a suitable catch

handler in the next method/procedure in the call-stack, which happens to be the DiveIn()

method/subroutine. Since the try-catch block in the DiveIn() method also happens to have

a catch handler that handles only WaterTooColdException exceptions, this method/procedure

is also popped out of the call-stack after executing its finally block. The Main()

method/subroutine, which is the next in the call-stack is then examined for matching

catch handler within the try-catch block. As you can see, the try-catch block within the

Main() method/subroutine does have a catch handler that can handle the

SharkAttackException and so control is eventually passed over to this catch handler after

which the corresponding finally block is executed. Assuming that the Main() entry-point

method/subroutine did not have an appropriate catch handler too, then the next pop

operation would have completely unwound the call-stack thereby making the

SharkAttackException an unhandled exception

Catching arithmetic overflow exceptions with C#’s checked keyword:

Never ever discount the destructive effects that arithmetic overflow exceptions bring to

the stability of your software. For starters, recollect the tragic crash of the $7 billion

Ariane 5 rocket – A crash that resulted because its software system attempted to convert

a 64-bit floating-point number to a signed 16-bit integer, which subsequently caused an

overflow exception, and worse yet, there was no exception handler to handle this

exception. Sadly enough, the backup systems were also running on the same copy of the

software, without the exception handler. Read an account of the Ariane 5 crash at:

http://www.cs.ucsd.edu/users/goguen/courses/230/ariane5nyt.pdf

Let’s face it – How many times have we been in situations where we’ve stared in

disbelief at our program spewing some insanely odd numerical output on arithmetic

operations when it’s fairly obvious that the output is in not even slightly connected to

what was expected of the program. Let’s quickly see what we mean here with an

example. Consider the following C# program:

using System;

class ByteBites

{

 static void Main(string[] args)

 {

 byte b1 = 57;

 byte b2 = 200;

 byte bResult = (byte)(b1 + b2);

 Console.WriteLine("{0} + {1} = {2}", b1, b2, bResult);

 }

}

Save this program to a file called ByteBites.cs. Compile the program using the following

command from the DOS command line:

csc /target:exe ByteBites.cs

Run ByteBites.exe and observe the output:

57 + 200 = 1

Many of us know what went wrong here. It’s fairly obvious here that a byte data type can

hold only values from 0 to 255. Yet we are trying to add two bytes whose result over

shoots the range of values that the resultant byte can hold, resulting in an overflow, and

hence the absurd result 1. This is what the less wary among us (at least I do) run into

when choosing data types to work with, paying little attention to the range of data that the

program expects these data types to store and handle. A subtle arithmetic addition

operation that has the potential to generate an overflow operation is enough to send your

application to the tomb. Most often, good testing practices catch these bugs during the

testing phase. But it certainly might get past the QA team if the test data being fed to the

program is not very exhaustive and if every possible test case is not being taken into

account – The Ariane 5 crash of 1996 is a testimony to that. So as developers, we need to

code defensively to catch such arithmetic overflow errors and handle them appropriately

in the execution flow of the program as our application logic dictates, thus leaving no

room for inconsistent or incorrect results to bring down the application to a grinding halt.

So let’s see where C# can help us here. C# provides the checked keyword to trap and

handle such arithmetic overflows. When an arithmetic operation that is enclosed within a

checked block (or checked expression) results in an overflow, the runtime generates a

System.OverflowException. Compare this to our previous example where the overflow

result was silently assigned to the resulting byte. So let’s modify the previous example to

enclose the arithmetic addition of the two bytes within a checked block. The modified

code is shown below:

using System;

class ByteBites

{

 static void Main(string[] args)

 {

 try

 {

 checked

 {

 byte b1 = 57;

 byte b2 = 200;

 byte bResult = (byte)(b1 + b2);

 Console.WriteLine("{0} + {1} = {2}", b1, b2, bResult);

 }

 }

 catch(OverflowException exOverflow)

 {

 Console.WriteLine("Caught overflow exception: {0}",

 exOverflow.Message);

 }

 }

}

You’ll notice that we now have a checked block that encloses the arithmetic operation,

which in turn is enclosed within a try block. Compile and run the application. Notice the

output:

Caught overflow exception: Arithmetic operation resulted in an overflow.

You’ll notice that the addition operation generated a System.OverflowException because it

was enclosed within a checked block. Remove the checked block and you’ll notice that

you’ll again get back the cryptic 1 as the result. But then, wouldn’t it be asking too much

if we had to put each and every arithmetic operation that had the potential to generate an

overflow within a checked block. Thankfully, there’s an easier way to turn on arithmetic

overflow checking for the entire application by using the /checked compiler option when

compiling your application. To test this, go ahead and remove the checked block that is

enclosing the addition operation. This time compile the program with the /checked switch

turned on, by typing the following command in the DOS command line:

csc /target:exe /checked ByteBites.cs

Run the program and observe the output that the program spews out:

Caught overflow exception: Arithmetic operation resulted in an overflow.

Notice that the /checked option has the same effect as using the checked block around your

arithmetic operations. This option thereby allows you to enforce arithmetic overflow

checks and to catch such exceptions throughout your application. So what if you’ve

turned on the /checked option and want to selectively prevent certain parts in your

application from generating an overflow exception when an overflow occurs. For

example, assume you have a scenario where you need the check the value of the

overflowed result to determine what action to take and so on. In such cases, you can use

the unchecked keyword and enclose those arithmetic operations within an unchecked

block so that an OverflowException is not generated for those operations. This is shown in

the snippet of code below:

unchecked

{

 byte b1 = 57;

 byte b2 = 200;

 byte bResult = (byte)(b1 + b2);

 Console.WriteLine("{0} + {1} = {2}", b1, b2, bResult);

}

Of course, the above code fragment gives you yet another opportunity to see the

infamous 1 as the result.

Using the checked keyword and /checked compiler option judiciously in your C#

applications can help you catch arithmetic overflow exceptions and to ensure that your

application stays sane.

7.8 Parting thoughts…

It has always been our tendency to put together our application’s functional capabilities

in leaps and bounds paying little attention to analyzing where those functional

capabilities could possibly go wrong during execution and to handle those error

conditions appropriately. Today’s software systems are increasingly expected to meet

high levels of fault tolerance and reliability. To meet that objective, we need to adopt

effective exception and error handling strategies in our applications to trap errors and to

recover from them gracefully. The C#/VB.NET language supports powerful constructs to

handle exceptions in our applications. Hopefully, this tutorial gave you an introduction on

how to use those constructs in your applications to handle errors and exceptions. Put

them to good use and you’ll be well on your way to writing robust, fault tolerant, and

reliable applications.

8. Assemblies and Application Domains

Sect i on Owner: Akila Manian (MVP)

C ontent C ontr ibut o r s : Narayana Ra o Surapaneni (MVP)

8.1 Introduction

In Microsoft .NET, when an application is compiled, the output of the compilation

produces what is known as an Assembly. Two types of assemblies can be produced by the

compilation procedure. One is the executable file (*.exe) and the other is a dynamic link

library file (*.dll). Basically the assembly is the unit of deployment in Microsoft .NET

and it can be thought of as a collection of types and resources that form a logical unit of

functionality.

An assembly is a self-describing entity. It contains all information about the types

(classes) contained in the assembly, all external references needed for executing the

assembly and so on. This is possible with an assembly manifest. The manifest contains

assembly’s identity and version information, a file table containing all files that make up

the assembly and the assembly reference list for all external dependencies. Thus

assemblies do not need to depend on the registry values for compilation or execution.

An assembly contains manifest data and one or more modules. Manifest data contains

information about the assembly and other list of assemblies that it depends on. It also

contains all the publicly exposed types and resources. An assembly contains various

modules. Each module contains metadata and IL.

Assemblies can be viewed by application developers with the help of a tool called ildasm

(IL Disassembler) provided by the .NET Framework.

8.2 Assembly Types

Assemblies can be single file assemblies or multi file assemblies. In multi file assemblies

one of the files must contain the assembly’s manifest data. Multi file assemblies can have

only one entry point even though the assembly can contain multiple code modules. A

multi file assembly is created primarily for combining modules written in different

programming languages. Once the assembly is created, the file that contains the

assembly manifest (and hence the assembly) can be signed, or one can give the file (and

the assembly) a strong name and put it in the global assembly cache.

Main uses of multi file assembly are for combining modules written in different

programming languages. They enable optimization of downloading an application by

putting seldom-used types in a module that is downloaded only when needed. The .NET

Framework downloads a file only when it is referenced; keeping infrequently referenced

code in a separate file from the application optimizes code download.

Let us look at an example of how to create multi file assembly.

AddModule.cs

Copy and Paste the following code into Notepad and save it as or AddModule.vb,

depending on the language that you are using

Code Listing in C#

using System;

public class AddClass

{

 public int Add(int Operand1, int Operand2)

 {

 return Operand1 + Operand2;

 }

}

Compiling in C#

/Compilation csc /r:System.dll /t:Module AddModule.cs

Code Listing in VB.NET

Imports System

Public Module AddModule

 Public Class AddClass

 Function Add(ByVal Operand1 As Integer, ByVal Operand2 As Integer) As Integer

 Add = Operand1 + Operand2

 End Function

 End Class

End Module

Compiling in VB.NET

vbc /r:System.dll /t:Module AddModule.vb

This file is compiled with the target option as module. Hence an assembly is not created.

The output is a file with an extension of .netmodule.

Similarly create SubtractModule.cs/ as shown below

SubtractModule.vb

Code Listing in C#

using System;

 public class SubtractClass

 {

 public int Subtract(int Operand1 , int Operand2)

 {

 return Operand1 - Operand2;

 }

 }

Compiling in C#

csc /r:System.dll /t:Module SubtractModule.cs

Code Listing in VB.NET

Imports System

Public Module SubtractModule

 Public Class SubtractClass

 Function Subtract(ByVal Operand1 As Integer, ByVal Operand2 As Integer) As

Integer

 Subtract = Operand1 - Operand2

 End Function

 End Class

End Module

Compiling in VB.NET

vbc /r:System.dll /t:Module SubtractModule.vb

Now create the main module, which references the above modules. The code is as shown

below for MainModule.cs/MainModule.vb

MainModule.cs

Code Listing in C#

using System;

public class MainModule

{

 public static void Main()

 {

 int iOperand1, iOperand2, iResult ;

 iOperand1 = 22;

 iOperand2 = 11;

 iResult = 0;

 AddClass objAddClass = New AddClass();

 SubtractClass objSubtractClass = New SubtractClass();

 iResult = objAddClass.Add(iOperand1, iOperand2);

 Console.WriteLine(iResult.ToString());

 iResult = objSubtractClass.Subtract(iOperand1, iOperand2);

 Console.WriteLine(iResult.ToString());

 Console.ReadLine();

 }

}

Compiling in C#

Compilation csc /r:System.dll MainModule.cs

Code Listing in VB.NET

Imports System

Public Module MainModule

 Sub Main()

 Dim iOperand1, iOperand2, iResult As Integer

 iOperand1 = 22

 iOperand2 = 11

 iResult = 0

 Dim objAddClass As New AddClass

 Dim objSubtractClass As New SubtractClass

 iResult = objAddClass.Add(iOperand1, iOperand2)

 Console.WriteLine(iResult.ToString)

 iResult = objSubtractClass.Subtract(iOperand1, iOperand2)

 Console.WriteLine(iResult.ToString)

 Console.ReadLine()

 End Sub

End Module

Compiling in VB.NET

vbc /r:System.dll MainModule.vb

The code is compiled as follows

To create a multi file assemble, which contains the two modules created previously

namely AddModule and SubtractModule, compile using the following command at the

command prompt

Compiling in C#

csc /System.dll /addModule:AddModule.netmodule

/addModule:SubtractModule.netmodule MainModule.cs

Compiling in VB.NET

Vbc /System.dll /addModule:AddModule.netmodule

/addModule:SubtractModule.netmodule MainModule.vb

This process creates a multi file assembly. This assembly contains the two modules

created previously namely AddModule and SubtractModule. Thus this assembly contains

multiple modules. If ildasm utility is executed on the MainModule assembly, it shows

that the manifest information in the MainModule contains references to the AddModule

and the SubtractModule modules. That is the modules are linked to the main assembly by

the information contained in the main assembly’s manifest information.

8.3 Private Assemblies

A private assembly is an assembly that is deployed with an application and is available

only for that application. That is, other applications do not share the private assembly.

Private assemblies are installed in a folder of the application's directory structure.

Typically, this is the folder containing the application's executable file.

For most .NET Framework applications, you keep the assemblies that make up an

application in the application's directory, in a subdirectory of the application's directory.

You can override where the CLR looks for an assembly by using the <codeBase>

element in a configuration file.

8.4 Shared Assemblies

A shared assembly is an assembly available for use by multiple applications on the

computer. To make the assembly global, it has to be put into the Global Assembly Cache.

Each computer where the common language runtime is installed has a machine-wide

code cache called the global assembly cache. The global assembly cache stores

assemblies specifically for sharing by several applications on the computer.

You should share assemblies by installing them into the global assembly cache only

when you need to. As a general guideline, keep assembly dependencies private and locate

assemblies in the application directory unless sharing an assembly is explicitly required.

This is achieved with the help of a global assembly cache tool (gacutil.exe) provided by

the .NET Framework. One can also drag & drop the assemblies into the Global Assembly

Cache directory.

However, when an assembly has to be put into the Global Assembly Cache it needs to be

signed with a strong name. A strong name contains the assembly's identity i.e. it’s text

name, version number, and culture information strengthened by a public key and a digital

signature generated over the assembly. This is because the CLR verifies the strong name

signature when the assembly is placed in the Global Assembly Cache.

8.5 Application Domains

Introduction

Traditionally when many applications are executed on the same machine, they are

isolated by something known as process. Ideally each application is loaded in its own

process also known as address space. This isolation is need so that these applications do

not tamper with other applications either intentionally or accidentally. Isolating

applications is also important for application security. For example, one can run controls

from several Web applications in a single browser process in such a way that the controls

cannot access each other's data and resources.

There are however many instances in which one would like an application to have the

ability to communicate with other applications. Since these applications are loaded into

different address spaces, there must be some form of context switching needed to allow

one application to communicate with another. Inter process communication has to rely on

operating systems support to manage this context switching and it is generally an

expensive operation. Context switching means saving a process's context, it could also

mean swapping the process out to virtual memory (to the page file stored on disk). If a

single machine has a large number of active processes, the CPU is often reduced to

swapping processes in and out of memory continuously, a phenomenon known as

thrashing.

Application Domains

There should be a method by which the different applications can be executed in isolation

from each other and which would also allow these applications to communicate with each

other in a better way than offered by context switching. Microsoft .NET has introduced

the Application Domain concept for precisely this reason. Application domains provide a

secure and versatile unit of processing that the CLR can use to provide isolation between

applications. Further, one can specify custom security policies on an Application Domain

to ensure that codes run in an extremely strict and controlled app domain. One can run

several application domains in a single process with the same level of isolation that

would exist in separate processes, but without incurring the additional overhead of

context switching between the processes. In Microsoft .NET, code normally passes a

verification process before it can be executed. This code is considered as type-safe code

and this allows CLR to provide a great level of isolation at the process level. Type-safe

codes have less chances of causing memory faults.

Code running in one application should not directly access code or resources from

another application. The CLR enforces this isolation by preventing direct calls between

objects in different application domains. Objects that pass between domains are either

copied or accessed by proxy. If the object is copied, the call to the object is local. That is,

both the caller and the object being referenced are in the same application domain. If the

object is accessed through a proxy, the call to the object is remote. In this case, the caller

and the object being referenced are in different application domains. As such, the

metadata for the object being referenced must be available to both application domains to

allow the method call to be JIT-compiled properly.

Application Domains And Assemblies

Before an assembly can be executed, it must be loaded into an application domain. By

default, the CLR loads an assembly into an application domain containing the code that

references it. In this way the assembly’s data and code are isolated to the application

using it. In case, multiple application domains reference an assembly, the assembly’s

code is shared amongst the different application domains. Such an assembly is said to be

domain-neutral. An assembly is not shared between domains when it is granted a

different set of permissions in each domain. This can occur if the runtime host sets an

application domain-level security policy. Assemblies should not be loaded as domain-

neutral if the set of permissions granted to the assembly is to be different in each domain.

Programming with Application Domains

Application domains are normally automatically created and managed by runtime hosts.

However, Microsoft .NET also provides control to application developers to create and

manage their own application domains. This would allow the developers to have control

over loading and unloading the assemblies in different domains for performance reasons

and maintain a high degree of isolation. Note that individual assemblies cannot be

unloaded, the entire app domain has to be unloaded.

If development is being carried out with some code or components downloaded from the

Internet, running it in its own application domain provides an excellent way to isolate the

rest of the applications from this code.

The System namespace contains the class AppDomain. This class contains methods to

create an application domain, to load and unload assemblies in the application domain.

An example will be useful to illustrate how application domains can be created and

assemblies loaded and unloaded into the application domains. Note that only those

assemblies that have been declared as Public can be loaded at runtime.

Copy and paste the following code into Notepad and save it as Display.cs/Display.vb,

depending on the programming language used.

Display.vb

Code Listing in C#

using System;

public class Display

{

 public static void Main()

 {

 Console.WriteLine("This is written by assembly 1");

 Console.ReadLine();

 }

}

Compiling in C#

Compilation csc /r:System.dll Display.cs

Code Listing in VB.NET

Imports System

Public Module Display

 Sub Main()

 Console.WriteLine("This is written by assembly 1")

 Console.ReadLine()

 End Sub

End Module

Compiling in VB.NET

vbc /r:System.dll Display.vb

Similarly, copy and paste the following code into Notepad and save it as

Display2.cs/Display2.vb, depending on the programming language used.

Display2.cs

Code Listing in C#

Imports System

Public Module Display

 Sub Main()

 Console.WriteLine("This is written by assembly 2")

 Console.ReadLine()

 End Sub

End Module

Compiling in C#

Compilation csc /r:System.dll Display2.cs

Code Listing in VB.NET

Imports System

Public Module Display

 Sub Main()

 Console.WriteLine("This is written by assembly 2")

 Console.ReadLine()

 End Sub

End Module

Compiling in VB.NET

'Compilation vbc /r:System.dll Display2.vb

The following code - CreateAppDomain.cs/CreateAppDomain.vb contains the following

code that shows how to create an application domain programmatically and how to load

assemblies during runtime.

Code Listing in C#

using System;

using System.Reflection;

public class CreateAppDomain

{

 AppDomain m_objAppDomain;

 public static void Main()

 {

 String strAppDomainName1 ;

 String strAppDomainName2 ;

 String strAssemblyToBeExecuted ;

 strAppDomainName1 = "TestAppDomain1";

 strAppDomainName2 = "TestAppDomain2";

 strAssemblyToBeExecuted = "Display.exe";

 CreateApplicationDomain(strAppDomainName1, strAssemblyToBeExecuted);

 AppDomain.Unload(m_objAppDomain);

 strAssemblyToBeExecuted = "Display2.exe" ;

 CreateApplicationDomain(strAppDomainName2, strAssemblyToBeExecuted);

 AppDomain.Unload(m_objAppDomain);

 }

 private void CreateApplicationDomain(String p_strAppDomainName , String

p_strAssemblyToBeExecuted)

{

 try

 {

 m_objAppDomain = AppDomain.CreateDomain(p_strAppDomainName);

 m_objAppDomain.ExecuteAssembly(p_strAssemblyToBeExecuted);

 }

 catch(AppDomainUnloadedException objException)

 {

 Console.WriteLine("Unable to create application domain");

 Console.WriteLine("Exception is " + objException.toString());

 }

 }

}

Compiling in C#

Compilation csc /r:System.dll CreateAppDomain.cs

Code Listing in VB.NET

Imports System

Imports System.Reflection

Module CreateAppDomain

 Dim m_objAppDomain As AppDomain

 Sub Main()

 Dim strAppDomainName1 As String

 Dim strAppDomainName2 As String

 Dim strAssemblyToBeExecuted As String

 strAppDomainName1 = "TestAppDomain1"

 strAppDomainName2 = "TestAppDomain2"

 strAssemblyToBeExecuted = "Display.exe"

 CreateApplicationDomain(strAppDomainName1, strAssemblyToBeExecuted)

 AppDomain.Unload(m_objAppDomain)

 strAssemblyToBeExecuted = "Display2.exe"

 CreateApplicationDomain(strAppDomainName2, strAssemblyToBeExecuted)

 AppDomain.Unload(m_objAppDomain)

 End Sub

 Private Sub CreateApplicationDomain(p_strAppDomainName As String,

p_strAssemblyToBeExecuted As String)

 Try

 m_objAppDomain = AppDomain.CreateDomain(p_strAppDomainName)

 m_objAppDomain.ExecuteAssembly(p_strAssemblyToBeExecuted)

 Catch objException As AppDomainUnloadedException

 Console.WriteLine("Unable to create application domain")

 Console.WriteLine("Exception is " & objException.toString())

 End Try

 End Sub

End Module

Compiling in VB.NET

Compilation vbc /r:System.dll CreateAppDomain.vb

8.6 Conclusion

Thus in this article we have seen what assemblies are in Microsoft .NET. We have seen

single file and multi file assemblies. We have also seen private and public assemblies.

We have also taken a look at application domains and how they are supported in .NET.

Application domains offer all the benefits of process isolation, but are much more

efficient than processes. The Microsoft .NET runtime host automatically manages the

loading / unloading of the assemblies into the appropriate application domains. However,

Microsoft .NET Framework class library also offers application developers with various

classes that can be used to programmatically create application domains and ensure that

the various applications can be isolated from each other. Also the inter-application

communication is not that expensive because context switching is not involved in

application communication using application domains in Microsoft .NET.

