
© 2009 Marty Hall

JavaScript:
A Crash Course

Part I: Core Language SyntaxPart I: Core Language Syntax

Originals of Slides and Source Code for Examples:

http://courses.coreservlets.com/Course-Materials/ajax.html

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 1.x & JSF 2.0, Struts Classic & Struts 2, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

http://courses.coreservlets.com/Course Materials/ajax.html

© 2009 Marty Hall

For live Ajax & GWT training, see training
 t htt // l t /courses at http://courses.coreservlets.com/.

Taught by the author of Core Servlets and JSP, More

Servlets and JSP and this tutorial Available at public Servlets and JSP, and this tutorial. Available at public
venues, or customized versions can be held on-site at

your organization.
C d l d d t ht b M t H ll

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 1.x & JSF 2.0, Struts Classic & Struts 2, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

� Courses developed and taught by Marty Hall
– Java 6, intermediate/beginning servlets/JSP, advanced servlets/JSP, Struts, JSF 1.x & 2.0, Ajax, GWT, custom mix of topics

– Ajax courses can concentrate on one library (jQuery, Prototype/Scriptaculous, Ext-JS, Dojo) or survey several

� Courses developed and taught by coreservlets.com experts (edited by Marty)
– Spring, Hibernate/JPA, EJB3, Ruby/Rails

Contact hall@coreservlets.com for details

Topics in This Section

� Overview

� JavaScript references

� Embedding in browser

� Basic syntax

� Strings and regular expressions

� Functions

� Objects

5

© 2009 Marty Hall

Intro

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 1.x & JSF 2.0, Struts Classic & Struts 2, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Books

� JavaScript the Definitive Guide
By David Flanagan O’Reilly The only really complete reference– By David Flanagan, O Reilly. The only really complete reference
on the JavaScript language. Thorough and well-written.

� Makes the global variable blunder when covering Ajax.

� JavaScript: The Good PartsJavaScript: The Good Parts
– By Douglas Crockford (of JSON and YUI fame), O’Reilly
– Outstanding advanced guide to best practices in core JavaScript,

especially functions, objects, and regular expressions. Very short.p y , j , g p y
� Does not cover Ajax at all. No DOM scripting. “The K&R of JS”.

� Pro JavaScript Techniques
– By John Resig (of jQuery fame), APressy g (jQ y),
– Excellent guide to best practices; not a thorough reference

� Does not make the global variable blunder when covering Ajax.

� DOM Scriptingp g
– By Jeremy Keith, FriendsOf Press
– Focuses on manipulating DOM and CSS

� Makes the global variable blunder when briefly covering Ajax.7

Online References

� JavaScript tutorial (language syntax)
� http://www w3schools com/js/� http://www.w3schools.com/js/
� http://developer.mozilla.org/en/docs/

Core_JavaScript_1.5_Guide

� JavaScript API references (builtin objects)JavaScript API references (builtin objects)
� http://www.w3schools.com/jsref/
� http://www.devguru.com/technologies/ecmascript/

QuickRef/
� http://www.devguru.com/technologies/JavaScript/
� http://www.javascriptkit.com/jsref/
� http://developer.mozilla.org/en/docs/

Core_JavaScript_1.5_Reference

� HTML DOM reference (with JavaScript Examples)
� http://www.w3schools.com/htmldom/dom_reference.asp

� Official ECMAScript specification
� http://www.ecma-international.org/publications/standards/

Ecma-262.htm
8

Firebug

� Install Firebug in Firefox
– http://getfirebug.com/

� Use Firebug console for interactive testing
h // fi b / l h l– http://getfirebug.com/cl.html

� Can also use Firebug Lite in Internet
ExplorerExplorer
– Not great, but better than nothing

– http://getfirebug.com/lite.htmlp g g
� See especially “bookmarklet” link

� For more details on Firebug usage
– See section on Ajax development and debugging tools

9

© 2009 Marty Hall

Embedding JavaScriptEmbedding JavaScript
in HTML

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 1.x & JSF 2.0, Struts Classic & Struts 2, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Loading Scripts

� script with src
� <script src="my-script.js" type="text/javascript"></script>

– Purpose
� To define functions, objects, and variables.To define functions, objects, and variables.

� Functions will later be triggered by buttons, other user
events, inline script tags with body content, etc.

� script with body content� script with body content
� <script type="text/javascript">JavaScript code</script>

– Purposep
� To directly invoke code that will run as page loads

– E.g., to output HTML content built by JavaScript

� Don’t use this approach for defining functions or for doingDon t use this approach for defining functions or for doing
things that could be done in external files.

– Slower (no browser caching) and less reusable
11

Example (phish.js)

function getMessage() {

var amount = Math round(Math random() * 100000);var amount Math.round(Math.random() 100000);

var message =

"You won $" + amount + "!\n" +

"To collect your winnings, send your credit card\n" +y g , y

"and bank details to oil-minister@phisher.com.";

return(message);

}
“alert” pops up dialog box

function showWinnings1() {

alert(getMessage());

} “d t it ” i t t t i t t t l ti}

function showWinnings2() {

document write("<h1><blink>" + getMessage() +

“document.write” inserts text into page at current location

document.write(<h1><blink> + getMessage() +

"</blink></h1>");

}
12

Example (loading-scripts.html)

<!DOCTYPE ...><html xmlns="http://www.w3.org/1999/xhtml">

<head><title>Loading Scripts</title><head><title>Loading Scripts</title>

...

<script src="./scripts/phish.js"

type="text/javascript"></script>

Loads script from previous page

type="text/javascript"></script>

</head>

<body>
Calls showWinnings1 when user presses

...

<input type="button" value="How Much Did You Win?"

onclick='showWinnings1()'/>

button. Puts result in dialog box.

...

<script type="text/javascript">showWinnings2()</script>

...

/ /</body></html>

13

Calls showWinnings2 when page is loaded in

browser. Puts result at this location in page.

Example (Results)

14

Loading Scripts: Special Cases

� Internet Explorer bug

– Scripts with src fail to load if you use <script.../>.

� You must use <script src="..." ...></script>

� XHTML: Scripts with body content

– It is an error if the body of the script contains special

XML h t h & <XML characters such as & or <

– E.g. <script...>if (a<b) { this(); } else { that(); }</script>

So use CDATA section unless body content is simple– So, use CDATA section unless body content is simple

and clearly has no special characters

� <script type="text/javascript"><![CDATA[

JavaScript Code

]]></script>

15

© 2009 Marty Hall

Basic Syntax

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 1.x & JSF 2.0, Struts Classic & Struts 2, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Variables

� Introduce with “var”
– For global variables (!) and local variables.

– No “var” for function arguments

You do not declare types� You do not declare types
– Some people say JavaScript is “untyped” language, but

really it is “dynamically typed” languagey y y yp g g

– JavaScript is very liberal about converting types

� There are only two scopes
– Global scope

� Be very careful with this when using Ajax.

� Can cause race conditions� Can cause race conditions.

– Function (lexical) scope

– There is not block scope as in Java17

Operators and Statements

� Almost same set of operators as Java
+ (addition and String concatenation) * /– + (addition and String concatenation), -, *, /

– &&, ||, ++, --, etc
– The == comparison is more akin to Java's "equals"

The === operator (less used) is like Java's ==– The === operator (less used) is like Java s ==

� Statements
– Semicolons are technically optional

� But highly recommended� But highly recommended

– Consider
� return x
� returnreturn

x
� They are not identical! The second one returns, then evaluates

x. You should act as though semicolons are required as in Java.

Comments� Comments
– Same as in Java (/* ... */ and // ...)

18

Conditionals and Simple Loops

� if/else
– Almost identical to Java except test can be converted to

true/false instead of strict true/false
� “false”: false null undefined "" (empty string) 0 NaNfalse : false, null, undefined, (empty string), 0, NaN

� “true”: anything else (including the string “false”)

� Basic for loop
– Identical to Java except for variable declarations

� for(var i=0; i<someVal; i++) { doLoopBody(); }

� while loop� while loop
– Same as Java except test can be converted to boolean

� while(someTest) { doLoopBody(); }

� do/while loop
– Same as Java except test can be converted to boolean

19

Array Basics

� One-step array allocation
– var primes = [2, 3, 5, 7, 11, 13];

– var names = ["Joe", "Jane", "John", "Juan"];
� No trailing comma after last element (see later slide)� No trailing comma after last element (see later slide)

� Two-step array allocation
– var names = new Array(4);y();

names[0] = "Joe";
...
names[3] = "Juan";names[3] = Juan ;

� Indexed at 0 as in Java
– for(var i=0; i<names.length; i++) {o (va 0; a es. e gt ;) {

doSomethingWith(names[i]);
}

20

Other Conditionals and Loops

� switch
– Differs from Java in two ways

� The “case” can be an expression

� Values need not be ints (compared with ===)Values need not be ints (compared with)

� for/in loop
– On surface, looks similar to Java for/each loop, but

� For arrays, values are array indexes, not array values

– Use this loop for objects (to see property names), not arrays!
Fails with Prototype or other extended arrays

� For objects, values are the property names

– var names = ["Joe", "Jane", "John", "Juan"];
for(var i in names) {for(var i in names) {

doSomethingWith(names[i]);
}

21

More on Arrays

� Arrays can be sparse
A ()– var names = new Array();

names[0] = "Joe";
names[100000] = "Juan";

� Arrays can be resized
– Regardless of how arrays is created, you can do:

� myArray.length = someNewLength;myArray.length someNewLength;
� myArray[anyNumber] = someNewValue;
� myArray.push(someNewValue)

– These are legal regardless of which way myArray was madeg g y y y

� Arrays have methods
– push, pop, join, reverse, sort, concat, slice, splice, etc.

� See API reference� See API reference

� Regular objects can be treated like arrays
– You can use numbers (indexes) as properties 22

Arrays Example

function arrayLoops() {
var names =

["Joe", "Jane", "John"];
printArray1(names);
printArray2(names);
names.length = 6;
printArra 1(names)printArray1(names);
printArray2(names);

}

function printArray1(array) {
for(var i=0; i<array.length; i++) {

console.log("[printArray1] array[%o] is %o", i, array[i]);
}

}

function printArray2(array) {
for(var i in array) {

console.log is a printf-like way to print output in Firebug

Console window. For testing/debugging only.

console.log("[printArray2] array[%o] is %o", i, array[i]);
}

}
arrayLoops();

23

Direct call for interactive testing in Firebug console.

(Cut/paste all code into console command line.)

Array Performance

Time to create and sum array of 16 million random numbers

7

8

9

4

5

6

7

1

2

3

4

0

1

JavaScript: p
Firefox 3 JavaScript:

Google Chrome Java: 1.6_0_10

24

Note: Internet Explorer 7 was more than 10 times slower than Firefox, so times are not shown here.

Source code for benchmarks is in downloadable Eclipse project at coreservlets.com.

The Math Class

� Almost identical to Java
– Like Java, static methods (Math.cos, Math.random, etc.)

– Like Java, logs are base e, trig functions are in radians

Functions� Functions
– Math.abs, Math.acos, Math.asin, Math.atan, Math.atan2,

Math.ceil, Math.cos, Math.exp, Math.floor, Math.log, , , p, , g,
Math.max, Math.min, Math.pow, Math.random,
Math.round, Math.sin, Math.sqrt, Math.tan

Constants� Constants
– Math.E, Math.LN10, Math.LN2, Math.LOG10E,

Math.PI, Math.SQRT1 2, Math.SQRT2Math.PI, Math.SQRT1_2, Math.SQRT2

25

© 2009 Marty Hall

Strings andStrings and
Regular Expressionsg p

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 1.x & JSF 2.0, Struts Classic & Struts 2, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

String Basics

� You can use double or single quotes
var names = ["Joe" 'Jane' "John" 'Juan'];– var names = [Joe , Jane , John , Juan];

� You can access length property
– E.g., "foobar".length returns 6

N b b t d t t i� Numbers can be converted to strings
– Automatic conversion during concatenations.

String need not be first as in Java
� var val = 3 + "abc" + 5; // Result is "3abc5"� var val = 3 + abc + 5; // Result is 3abc5

– Conversion with fixed precision
� var n = 123.4567;

var val = n.toFixed(2); // Result is 123.46 (not 123.45)(); ()

� Strings can be compared with ==
– "foo" == 'foo' returns true

� Strings can be converted to numbersStrings can be converted to numbers
– var i = parseInt("37 blah"); // Result is 37 – ignores blah
– var d = parseFloat("6.02 blah"); // Ignores blah

27

Core String Methods

� Simple methods similar to Java
– charAt, indexOf, lastIndexOf, substring, toLowerCase,

toUpperCase

� Methods that use regular expressions� Methods that use regular expressions
– match, replace, search, split

� HTML methodsHTML methods
– anchor, big, bold, fixed, fontcolor, fontsize, italics, link,

small, strike, sub, sup
� "test".bold().italics().fontcolor("red") returns

'<i>test</i>'

– These are technically nonstandard methods, but supported y pp
in all major browsers

� But I prefer to construct HTML strings explicitly anyhow
28

Regular Expressions

� You specify a regexp with /pattern/
N i h S i i J– Not with a String as in Java

� Most special characters same as in Java/Unix/Perl
– ^, $, . – beginning, end of string, any one char, , g g, g, y

– \ – escape what would otherwise be a special character

– *, +, ? – 0 or more, 1 or more, 0 or 1 occurrences

– {n} {n } – exactly n n or more occurrences{n}, {n,} exactly n, n or more occurrences

– [] – grouping

– \s, \S – whitespace, non-whitespace

\w \W word char (letter or number) non word char– \w, \W – word char (letter or number), non-word char

� Modifiers
– /pattern/g – do global matching (find all matches, not just first one)

– /pattern/i – do case-insensitive matching

– /pattern/m – do multiline matching
29

Regular Expression: Examples

30

More Information on Regular
ExpressionsExpressions

� Online API references given earlier
(S R E l)(See RegExp class)
– http://www.w3schools.com/jsref/jsref_obj_regexp.asp

http://www devguru com/technologies/ecmascript/– http://www.devguru.com/technologies/ecmascript/
QuickRef/regexp.html

� JavaScript Regular Expression Tutorialsp g p
– http://www.evolt.org/article/Regular_Expressions_in_

JavaScript/17/36435/

h // j i ki /j / h l– http://www.javascriptkit.com/javatutors/re.shtml

31

© 2009 Marty Hall

FunctionsFunctions
“It is Lisp in C’s clothing.”It is Lisp in C s clothing.

- JSON and YUI guru Douglas Crockford, describing

the JavaScript language in JavaScript: The Good Parts.

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 1.x & JSF 2.0, Struts Classic & Struts 2, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Overview

� Not similar to Java
J S i f i diff f J h d– JavaScript functions very different from Java methods

� Main differences from Java
– You can have global functionsYou can have global functions

� Not just methods (functions as part of objects)

– You don’t declare return types or argument types
Caller can supply any number of arguments– Caller can supply any number of arguments

� Regardless of how many arguments you defined

– Functions are first-class datatypes
Y f ti d t th i t� You can pass functions around, store them in arrays, etc.

– You can create anonymous functions (closures)
� Critical for Ajax
� These are equivalent

– function foo(...) {...}

– var foo = function(...) {...}
33

Passing Functions: Example

function third(x) {
return(x / 3);

}

function triple(x) {
return(x * 3);()

}

function nineTimes(x) {
return(x * 9);etu ();

}

function operate(f) {

Function as argument.

function operate(f) {
var nums = [1, 2, 3];
for(var i=0; i<nums.length; i++) {
var num = nums[i];
console log("Operation on %o is %o "console.log(Operation on %o is %o. ,

num, f(num));
}

}
34

Anonymous Functions

� Anonymous functions (or closures) let you
capture local variables inside a functioncapture local variables inside a function
– You can't do Ajax without this!

� Basic anonymous functionBasic anonymous function
– operate(function(x) { return(x * 20); });

� Outputs 20, 40, 60
� The "operate" function defined on previous page

f� Anonymous function with captured data
– function someFunction(args) {

var val = someCalculation(args);
return(function(moreArgs) {return(function(moreArgs) {

doSomethingWith(val, moreArgs);
});

}
var f1 = someFunction(args1);var f1 = someFunction(args1);
var f2 = someFunction(args2);
f1(args3); // Uses one copy of "val"
f2(args3); // Uses a different copy of "val"

35

Anonymous Functions: Example

function multiplier(m) {
return(function(x)

{ return(x * m); });
}

function operate2() {
var nums = [1, 2, 3];
var functions =
[multiplier(1/3), multiplier(3), multiplier(9)];

for(var i=0; i<functions.length; i++) {
for(var j=0; j<nums.length; j++) {
var f = functions[i];
var num = nums[j];
console.log("Operation on %o is %o.", g p

num, f(num));
}

}
}36

Optional Args: Summary

� Fixed number of optional args
– Functions can always be called with any number of args

– Compare typeof args to "undefined"

See next page and upcoming convertString function– See next page and upcoming convertString function

� Arbitrary args
– Discover number of args with arguments lengthDiscover number of args with arguments.length

– Get arguments via arguments[i]

– See next page and upcoming longestString function

� Optional args via anonymous object
– Caller always supplies same number of arguments, but

f th t i (JSON) bj tone of the arguments is an anonymous (JSON) object
� This object has optional fields

– See later example in “Objects” section37

Optional Args: Details

� You can call any function with any number
fof arguments

– If called with fewer args, extra args equal "undefined"
� You can use typeof arg == "undefined" for this� You can use typeof arg == undefined for this

– You can also use boolean comparison if you are sure that no real
value could match (e.g., 0 and undefined both return true for !arg)

� Use comments to indicate optional argsUse comments to indicate optional args

– function foo(arg1, arg2, /* Optional */ arg3) {...}

– If called with extra args, you can use “arguments” array
R dl f d fi d i bl t l th t ll� Regardless of defined variables, arguments.length tells
you how many arguments were supplied, and arguments[i]
returns the designated argument

� Use comments to indicate extra args� Use comments to indicate extra args

– function bar(arg1, arg2 /* varargs */) { ... }

38

Optional Arguments

function convertString(numString, /* Optional */ base) {

if (typeof base == "undefined") {if (typeof base undefined) {

base = 10;

}

var num = parseInt(numString, base);

console.log("%s base %o equals %o base 10.",

numString, base, num);

}

39

Varargs

function longestString(/* varargs */) {

var longest = "";var longest = ;

for(var i=0; i<arguments.length; i++) {

var candidateString = arguments[i];

if (candidateString length > longest length) {if (candidateString.length > longest.length) {

longest = candidateString;

}

}}

return(longest);

}

longestString("a", "bb", "ccc", "dddd");

// Returns "dddd"

40

© 2009 Marty Hall

Objects

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 1.x & JSF 2.0, Struts Classic & Struts 2, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Basics

� Constructors
F i d f l Th “ ”– Functions named for class names. Then use “new”.

� No separate class definition! No “real” OOP in JavaScript!

– Can define properties with “this”
� You must use “this” for properties used in constructors
function MyClass(n1) { this.foo = n1; }
var m = new MyClass(10);

P ti (i t i bl)� Properties (instance variables)
– You don’t define them separately

� Whenever you refer to one, JavaScript just creates ite e e you e e to o e, Ja aSc pt just c eates t
m.bar = 20; // Now m.foo is 10 and m.bar is 20

� Usually better to avoid introducing new properties in
outside code and instead do entire definition in constructor

� Methods
– Properties whose values are functions

42

Objects: Example
(Circle Class)(Circle Class)

function Circle(radius) {

this radius = radius;this.radius = radius;

this.getArea =

function() {function() {

return(Math.PI * this.radius * this.radius);

};

}}

var c = new Circle(10);

() // 31 1 92c.getArea(); // Returns 314.1592...

43

The prototype Property

� In previous example
E Ci l i f di– Every new Circle got its own copy of radius

� Fine, since radius has per-Circle data

– Every new Circle got its own copy of getArea function
� Wasteful since function definition never changes

� Class-level properties
– Classname prototype propertyName = value;Classname.prototype.propertyName value;

� Methods
– Classname.prototype.methodName = function() {...};

� Just a special case of class-level properties

– This is legal anywhere, but it is best to do it in constructor

� Pseudo-InheritancePseudo Inheritance
– The prototype property can be used for inheritance
– But complex. See later section on Prototype library

44

Objects: Example
(Updated Circle Class)(Updated Circle Class)

function Circle(radius) {

this radius = radius;this.radius = radius;

Circle.prototype.getArea =

function() {function() {

return(Math.PI * this.radius * this.radius);

};

}}

var c = new Circle(10);

() // 31 1 92c.getArea(); // Returns 314.1592...

45

Rolling Your Own Namespace

� Idea
H l d f i h d bj i– Have related functions that do not use object properties

– You want to group them together and call them with
Utils.func1, Utils.func2, etc.

� Grouping is a syntactic convenience. Not real methods.
� Helps to avoid name conflicts when mixing JS libraries

– Similar to static methods in Java

� Syntax
– Assign functions to properties of an object, but do not

define a constructor E gdefine a constructor. E.g.,

� var Utils = {}; // Or "new Object()", or make function Utils

Utils.foo = function(a, b) { … };

Util b f ti () { }Utils.bar = function(c) { … };

var x = Utils.foo(val1, val2);

var y = Utils.bar(val3);
46

Static Methods: Example (Code)

var MathUtils = {};

MathUtils.fact = function(n) {
if (n <= 1) {

return(1);
} else {

return(n * MathUtils.fact(n-1));
}

};};

MathUtils.log10 = function(x) {
return(Math.log(x)/Math.log(10));(g() g())

};

47

Namespaces in Real
ApplicationsApplications

� Best practices in large projects
– In many (most?) large projects, all global variables

(including functions!) are forbidden due to the possibility
of name collisions from pieces made by different authors.of name collisions from pieces made by different authors.

– So, these primitive namespaces play the role of Java’s
packages. Much weaker, but still very valuable.

� Fancy variation: repeat the name
� var MyApp = {};

� MyApp foo = function foo() { };MyApp.foo function foo(…) { … };

� MyApp.bar = function bar(…) { … };

– The name on the right does not become a global name.
Th l d t i f d b iThe only advantage is for debugging

� Firebug and other environments will show the name when
you print the function object.

48

JSON (JavaScript Object Notation)

� Idea
– A simple textual representation of JavaScript objects

– Main applications
� One time use objects (rather than reusable classes)� One-time-use objects (rather than reusable classes)

� Objects received via strings

� Directly in JavaScript
– var someObject =

{ property1: value1,
property2: value2,
... };

� In a string (e.g., when coming in on network)
Surround object representation in parens– Surround object representation in parens

– Pass to the builtin “eval” function

49

JSON: Example

var person =
{ firstName: 'Brendan',{ ,
lastName: 'Eich',
bestFriend: { firstName: 'Chris',

lastName: 'Wilson' },
greeting: function() {greeting: function() {

return("Hi, I am " + this.firstName +
" " + this.lastName + ".");

}
};

50

Using JSON for Optional
ArgumentsArguments

� Idea
– Caller always supplies same number of arguments, but

one of the arguments is an anonymous (JSON) object
� This object has optional fieldsThis object has optional fields

– This approach is widely used in Prototype, Scriptaculous,
and other JavaScript libraries

� Example (a/b: required, c/d/e/f: optional)
– someFunction(1.2, 3.4, {c: 4.5, f: 6.7});

someFunction(1 2 3 4 {c: 4 5 d: 6 7 e: 7 8});– someFunction(1.2, 3.4, {c: 4.5, d: 6.7, e: 7.8});

– someFunction(1.2, 3.4, {c: 9.9, d: 4.5, e: 6.7, f: 7.8});

– someFunction(1.2, 3.4);(,);

51

Using JSON for Optional
Arguments: Example CodeArguments: Example Code

function sumNumbers(x, y, extraParams) {

var result = x + y;y;

if (isDefined(extraParams)) {

if (isTrue(extraParams.logInput)) {

console.log("Input: x=%s, y=%s", x, y);

}}

if (isDefined(extraParams.extraOperation)) {

result = extraParams.extraOperation(result);

}

}

return(result)

}

function isDefined(value) {

return(typeof value != "undefined");

}

function isTrue(value) {

return(isDefined(value) && (value == true))

}52

Using JSON for Optional
Arguments: Example ResultsArguments: Example Results

53

Internet Explorer and Extra
CommasCommas

� Firefox tolerates trailing commas in both
d JSONarrays and JSON

� var nums = [1, 2, 3,];

� var obj = { firstName: "Joe", lastName: "Hacker", };var obj { firstName: Joe , lastName: Hacker , };

� IE will crash in both cases.
– And, since it is not technically legal anyway, you should

write it without commas after the final element:
� var nums = [1, 2, 3];

� var obj = { firstName: "Joe", lastName: "Hacker"};var obj { firstName: Joe , lastName: Hacker };

– This issue comes up moderately often, especially when
building JavaScript data on the server, as we will do in

i l tupcoming lectures.

54

Other Object Tricks

� The instanceof operator
D i if lh i b f l h– Determines if lhs is a member of class on rhs

� if (blah instanceof Array) {
doSomethingWith(blah.length);

}}

� The typeof operator
– Returns direct type of operand, as a String

� "number", "string", "boolean", "object", "function", or "undefined".
– Arrays and null both return "object"

� Adding methods to builtin classesg
String.prototype.describeLength =

function() { return("My length is " + this.length); };
"Any Random String".describeLength();

� eval� eval
– Takes a String representing any JavaScript and runs it

� eval("3 * 4 + Math.PI"); // Returns 15.141592
55

© 2009 Marty Hall

Wrap-up

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 1.x & JSF 2.0, Struts Classic & Struts 2, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Summary

� Use Firebug for testing and debugging
B k k f� Bookmark references
– http://www.w3schools.com/js/

� Embedding in browserEmbedding in browser
– <script src="blah.js" type="test/javascript"></script>

� Basic syntax
– Mostly similar to Java

� Functions
Totally different from Java Passing functions around and– Totally different from Java. Passing functions around and
making anonymous functions very important.

� Objects
– Constructor also defines class. Use “this”.
– Totally different from Java. Not like classical OOP at all.

57

© 2009 Marty Hall

Questions?

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, JSF 1.x & JSF 2.0, Struts Classic & Struts 2, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

