

1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.5

1.6

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.9

1.10

1.11

1.12

1.13

1.14

1.14.1

1.14.2

1.14.3

1.14.4

1.15

1.15.1

1.15.2

1.16

1.17

1.18

Table	of	Contents
Introduction

Getting	Started

Code	Style	Guide

Debugging

Error	Logging

Handling	Errors

Tools

wp-config.php

Core

Data

Queries

Post	Queries

Taxonomy	and	Term	Queries

Comment	Queries

User	Queries

SQL

Routing

The	Main	Loop	&	Template	Loading

Where	Query	Variables	Come	From

Rewrite	Rules

Clashes,	Slugs,	&	Debugging

Templates

JavaScript

Widgets

I18n

Multisite

Testing

Unit	Testing

Behaviour	Testing

Test	Driven	Development

WP_UnitTestCase

Servers	And	Deployment

WP	CLI

Migrations

Security

Community

Credits

2

3

WordPress	The	Right	Way
This	book	is	a	condensed	resource	of	best	practices	for	and	by	WordPress	developers,	intended	to	fast	track	developers
past	common	mistakes	and	painful	problems.

This	is	a	living	document	and	will	continue	to	be	updated	with	more	helpful	information	and	examples	as	they	become
available.

How	to	Contribute
You	can	contribute	on	GitHub.	Changes	will	be	pushed	to	Gitbook.io	automatically	when	the	main	repository	changes.

Editing	the	book	can	be	done	either	by	updating	the	markdown	files	with	a	text	editor,	or	opening	the	repository	in	the
Gitbook	desktop	app.	The	desktop	app	will	give	you	a	live	preview	option.

License
Attribution-ShareAlike	4.0	International	(CC	BY-SA	4.0)	unless	otherwise	stated

Introduction

4

https://github.com/Tarendai/WordPress-The-Right-Way
https://www.gitbook.io/book/tarendai/wordpress-the-right-way/activity
https://github.com/Tarendai/WordPress-The-Right-Way
https://github.com/GitbookIO/editor/blob/master/README.md
http://creativecommons.org/licenses/by-sa/4.0/

Getting	Started

Basic	PHP
It's	assumed	that	you	have	a	basic	knowledge	of	PHP.	This	will	include	a	knowledge	of:

functions
arrays
variables
loops	and	conditionals
classes	and	objects
class	inheritance
polymorphism
POST	and	GET
variable	scope

If	you	don't	have	a	good	grasp	of	those	concepts,	you	should	make	sure	you	have	a	firm	understanding	before	continuing.

It's	also	assumed	you	have	a	code	editor	that	has	PHP	syntax	highlighting,	although	these	will	be	beneficial:

Auto	Indenting
Auto-completion
Brace	matching
Syntax	checking

Local	Development	Environments
It's	important	to	have	a	local	development	environment.	Gone	are	the	old	days	of	changing	a	PHP	file	then	updating	it	on
the	live	server	and	hoping	for	the	best.

With	a	local	environment,	you	can	work	faster,	no	more	uploading	and	downloading	files,	being	at	the	mercy	of	a	dodgy
internet	connection,	or	waiting	for	pages	to	load	from	the	open	web.	With	a	local	server	stack	you	can	work	on	a	train	in	a
tunnel	with	no	wifi	or	phone	signal,	and	test	your	work	before	deploying	it	to	the	live	server.

Here	are	a	few	options	for	setting	up	a	local	development	environment.	They	fall	into	two	categories:

Virtual	Machines
Native	Server	Stacks

The	first	type	of	environment	usually	involves	projects	such	as	Vagrant,	and	gives	you	a	standardised	consistent	virtual
machine	to	work	with.

The	second,	installs	the	server	software	directly	into	your	operating	system.	There	are	various	tools	that	make	this	easy,	but
your	environment	will	be	unique	and	more	difficult	to	debug.	These	are	sometimes	called	LAMP	stacks,	which	stands	for
Linux	Apache	MySQL	PHP.

IIS
Microsoft	Internet	Information	Services	is	the	server	software	that	powers	Windows	based	servers.	Variants	of	it	come	with
Windows	if	you	install	the	appropriate	components,	but	knowledge	of	IIS	setup	in	the	WordPress	community	is	rare.	Most
remote	servers	run	an	Apache	or	Nginx	setup,	and	developer	knowledge	is	geared	in	that	direction.

IIS	is	not	the	easiest	route	to	take.

Getting	Started

5

http://www.php.net/manual/en/language.functions.php
http://www.php.net/manual/en/language.types.array.php
http://www.php.net/manual/en/language.variables.php
http://www.php.net/manual/en/language.control-structures.php
http://www.php.net/manual/en/language.oop5.php
http://www.php.net/manual/en/language.oop5.inheritance.php
http://code.tutsplus.com/tutorials/understanding-and-applying-polymorphism-in-php--net-14362
http://www.php.net/manual/en/reserved.variables.post.php
http://www.php.net/manual/en/reserved.variables.get.php
http://www.php.net/manual/en/language.variables.scope.php

Version	Control
A	vital	part	of	working	in	teams	and	contributing	is	version	control.	Version	control	systems	track	changes	over	time	and
allow	developers	to	collaborate	and	undo	changes.

Git

Created	by	Linus	Torvalds	the	creator	of	Linux,	Git	is	a	popular	decentralised	system,	if	you've	ever	been	on	GitHub,	you've
encountered	git.

Subversion

Also	known	as	svn,	this	is	a	centralised	version	control	system,	used	for	the	plugin	and	theme	repositories	on
WordPress.org

Getting	Started

6

http://git-scm.com/

Code	Style	Guide

Clean	Code
It's	important	to	keep	code	readable	and	maintainable.	This	prevents	small	but	critical	errors	from	becoming	hidden	in	your
code,	while	making	whole	classes	of	bugs	incredibly	obvious	(missing	closing	braces	are	easy	to	spot	when	you	indent
consistently).

While	it's	best	to	use	the	same	standard	as	everybody	else,	if	you're	more	comfortable	using	a	PSR	standard,	then	use
that.	If	you	do	though,	do	it	consistently.

Indenting
Indenting	in	WordPress	is	done	using	tabs,	representing	4	spaces	visually.	Indenting	is	important	for	readable	code,	and
each	statement	should	be	on	its	own	line.	Without	indenting,	it	becomes	very	difficult	to	understand	what's	happening,	and
mistakes	are	easier	to	make.	This	also	makes	support	requests	on	the	forums	and	stack	exchange	difficult	to	answer.

A	good	editor	will	auto-indent	for	you,	most	can	re-indent	a	file	if	you've	older	code	that	needs	fixing.

A	good	way	to	ensure	that	all	members	on	a	team	are	using	the	same	styles	is	to	use	Editor	Config.	It	contains	plugins	for
different	editors,	so	everyone	can	use	their	favorite	editor.

For	instance,	the	following		.editorconfig		file	enforces	the	above	rule,	indentation	as	tabs	of	width	4	spaces.

[*.php]
indent_style	=	tabs
indent_size	=	4

PHP	Tag	Spam
The		<?php		and		?>		tags	should	be	used	sparingly.	For	example:

<?php	while(have_posts())	{	?>
				<?php	the_post();	?>
				<?php	the_title();	?>
				<?php	the_date();	?>
				<?php	the_content();	?>
<?php	}	?>

Would	be	easier	to	read	as:

<?php
while(have_posts())	{
				the_post();
				the_title();
				?>
				<?php	the_date();	?>
				<?php
				the_content();
}	?>

A	good	guideline	is	to	calculate	what	needs	to	be	displayed,	then	display	it	all	in	one	go	rather	than	mixing	the	two.

Linting

Code	Style	Guide

7

http://editorconfig.org

A	lot	of	editors	support	or	have	built	in	syntax	checkers.	These	are	called	Linters.	When	using	a	good	editor,	syntax	errors
are	highlighted	or	pointed	out.

For	example,	in	PHPStorm,	a	syntax	error	is	given	a	red	underline.

Coding	Standards
WordPress	follows	a	set	of	coding	standards.	These	differ	from	the	PSR	standards.	For	example,	WordPress	uses	tabs
rather	than	spaces,	and	places	the	opening	bracket	on	the	same	line.

The	WordPress	Contributor	Handbook	covers	the	coding	standards	in	more	details.	Click	below	to	read	more:

HTML	Coding	Standards

PHP	Coding	Standards

JavaScript	Coding	Standards

CSS	Coding	Standards

PHP	Code	Sniffer	&	PHP	CS	Fixer

PHP	Code	Sniffer	is	a	tool	that	finds	violations	of	the	coding	standard.	Many	editors	integrate	support,	including	support	for
a	second	tool	that	fixes	those	violations	automatically.

To	use	this,	you	will	need	the	WordPress	Coding	Standards	definition.

Code	Style	Guide

8

http://make.wordpress.org/core/handbook/coding-standards/html/
http://make.wordpress.org/core/handbook/coding-standards/php/
http://make.wordpress.org/core/handbook/coding-standards/javascript/
http://make.wordpress.org/core/handbook/coding-standards/css/
https://github.com/WordPress-Coding-Standards/WordPress-Coding-Standards

Debugging
When	developing	for	WordPress,	it's	important	that	your	code	works,	but	when	it	fails	it	can	be	like	a	needle	in	a	haystack.
It	doesn't	need	to	be	that	way.

This	chapter	covers:

How	to	find	out	what	errors	have	occurred
How	to	debug	the	issue
Plugins	and	tools	to	make	your	life	easier
Features	in	WordPress	that	make	debugging	easier
How	to	prevent	problems	from	occurring	to	begin	with	and	easy	automated	tools	to	catch	mistakes	for	you

But	before	you	continue,	a	word	on	White	Screens	of	Death

White	Screens	of	Death
A	common	issue	with	new	WordPress	developers	is	the	white	screen	of	death.	This	happens	when	a	fatal	error	occurs	in
PHP.	Many	new	developers	respond	to	this	by	making	changes	and	hoping	the	problem	goes	away,	but	there	are	better
ways	of	dealing	with	this.

When	an	error	occurs	in	PHP,	it	gets	logged	somewhere,	and	you	can	find	out	what	went	wrong	and	where.

A	good	starting	point	for	developers	is	to	enable		WP_DEBUG	.

Debugging

9

Error	Logging
There	are	several	kinds	of	error	logging,	but	the	most	basic	are:

Displaying	errors	on	the	frontend
Writing	errors	to	a	log	file
Not	displaying	anything	at	all

In	a	production/live	environment,	you	want	to	write	errors	to	a	log	file.

Warnings	vs	Errors
Depending	on	how	PHP	is	configured,	warnings	will	also	be	shown.	A	warning	is	something	that	does	not	stop	PHP	from
running	but	indicates	a	problem	might	have	occurred.	For	example:

$my_array	=	array(
				'alice'	=>	5,
				'bob'	=>	6
);
echo	$my_array['eve'];

Here,	I	am	echoing	the	'eve'	entry	in		$my_array	,	but	there	is	no	such	entry.	PHP	responds	by	creating	an	empty	value	and
logging	a	warning.	Warnings	are	indicators	of	bugs	and	mistakes.

PHP	Error	Reporting
Depending	on	what	was	defined	in	your		php.ini	,	PHP	will	have	an	error	reporting	level.	Everything	below	that	level	will	be
ignored	or	considered	a	warning.	Everything	above	it	will	be	considered	an	error.	This	can	vary	from	server	to	server.

The		@		operator
Never	use	the		@		operator.	It's	used	to	hide	errors	and	warnings	in	code,	but	it	doesn't	do	what	people	expect	it	to	do.

	@		works	by	setting	the	error	reporting	level	on	a	command	so	that	no	error	is	logged.	It	doesn't	prevent	the	error	from
happening,	which	is	what	people	expect	it	to	do.	This	can	mean	fatal	errors	are	not	caught	or	logged.	Avoid	using	the		@	
operator,	and	treat	all	instances	of	it	with	suspicion.

Error	Logging

10

Handling	Errors
While	using	the	Core	APIs,	it's	a	good	idea	to	check	return	values.	For	example,	when	creating	a	post,	if	something	goes
wrong	you	should	be	able	to	handle	that	outcome.	Not	handling	errors	and	failures	can	lead	to	unstable	code	and
unpredictable	behavior.

Return	values
Many	functions	return	error	and	success	values.	You	should	always	check	these	values	after	making	a	call.	For	example
	get_post_meta		returns	a	custom	field	value,	but	if	that	custom	field/post	meta	does	not	exist,	it	returns	an	error	value.

Different	APIs	return	different	error	values,	and	can	include:

	null		values
false
	WP_Error		objects

WordPress	API	calls	at	the	time	of	writing	do	not	throw	exceptions.	However	if	you	hook	into	actions	such	as		save_post	
and	throw	an	exception,	it	may	not	be	caught	due	to	this	expectation,	so	do	not	throw	exceptions	unless	you're	sure	you
know	what	you're	doing.

	WP_Error	

The		WP_Error		object	is	a	catch	all	error	message	object	returned	by	some	APIs.	It	has	internal	storage	for	multiple	error
messages	and	error	codes.

	is_wp_error	

This	is	a	helpful	method	to	simplify	error	checking.	It	checks	if	a	returned	value	was	a		WP_Error		object,	and	also	checks	for
a	handful	of	other	error	values.	It	returns	a	true	or	false	value,	allowing	checks	such	as	these:

This	is	a	helpful	method	to	simplify	error	checking.	It	checks	if	a	returned	value	was	a		WP_Error		object,	but	does	not	check
for	other	error	values.	It's	shorthand	for		if	(get_class($variable)	==	'WP_Error')	.	For	example:

if	(!is_wp_error($value))	{
				//	do	things
}	else	{
				//	display	a	warning	to	the	user	and	abort
}

While	this	is	a	useful	function,	remember,	not	every	API	returns	the	same	error	value,	and	you	should	check	first.

Handling	Errors

11

Tools
Debugging	tools	fall	into	two	categories:

Tools	to	diagnose	issues	when	they	arise	and	reveal	problems
Tools	that	prevent	mistakes	and	errors	from	ever	happening	to	begin	with

The	age	old	adage	still	applies:	prevention	is	better	than	cure

Debugging	Tools	/	Plugins
Installing	the	plugin	Developer	from	the	WordPress	repository	will	give	you	quick	access	to	a	broad	range	of	debugging
tools.	The	following	debugging	plugins	are	quite	useful:

Log	Deprecated	Notices	Logs	usage	of	deprecated	functions.
Debug	Bar	Provides	an	interface	for	debugging	PHP	Notices/Warnings/Errors,	reviewing	SQL	Queries,	analysing
caching	behaviour	and	much	more.	It's	also	extendable	with	plugins.
Debug	Console	The	Debug	Console	for	example	is	really	useful.
Query	Monitor	View	debugging	and	performance	information	on	database	queries,	hooks,	conditionals,	HTTP
requests,	redirects	and	more.

Xdebug	and	Remote	Debugging

The	Xdebug	PHP	Extension	allows	for	enhanced	debugging,	function	and	method	tracing,	and	profiling	of	PHP
applications.	This	is	installed	with	VVV	and	can	be	turned	on/off.

With	PHPStorm,	you	can	install	a	browser	extension	to	access	Xdebug	(or	Zend	Debugger)	from	within	the	IDE.

Rather	than	manually	adding		var_dump		statements	and	reloading	the	page,	you	can	add	a	breakpoint	anywhere	in	your
PHP	code,	execution	will	stop	and	you	can	see	a	stack	trace,	inspect	(and	modify)	the	values	of	all	variables	and	objects	or
manually	evaluate	(test)	a	PHP	expression.

With	zero-configuration	debugging	(controlled	via	cookies	and	bookmarklets)	you	don't	need	to	add		?XDEBUG_SESSION_START	
to	your	URLs	and	you	can	also	debug	HTTP	post	requests.

PHP	Debuggers

DBG	-	PHP	Debugger	and	Profiler

Browser	Web	Inspectors
Chrome	DevTools	for	Google	Chrome
Firebug	for	Mozilla	Firefox
F12	developer	tools	for	Internet	Explorer
Opera	Dragonfly	for	Opera

Prevention
There	are	a	number	of	tools	dedicated	to	analysing	code	and	catching	semantic	mistakes,	or	pointing	out	problems	in	code.

PHP	Mess	Detector	for	example,	will	highlight	long	variable	names,	npath	and	cyclomatic	complexity,	classes	that	are	too
large,	unused	variables,	and	other	problems.	SCheck	is	a	tool	provided	by	Facebook,	and	performs	similar	checks,	such	as
finding	dead	statements	and	unused	classes.

Tools

12

https://wordpress.org/plugins/developer/
https://wordpress.org/plugins/log-deprecated-notices/
http://wordpress.org/plugins/debug-bar
https://wordpress.org/plugins/debug-bar-console/
https://wordpress.org/plugins/query-monitor/
http://xdebug.org/index.php
https://github.com/Varying-Vagrant-Vagrants/VVV/wiki/Code-Debugging#meet-xdebug
https://www.jetbrains.com/phpstorm/
http://files.zend.com/help/Zend-Studio/zend-studio.htm#debugging_php_in_zend_studio.htm
http://confluence.jetbrains.com/display/PhpStorm/Zero-configuration+Web+Application+Debugging+with+Xdebug+and+PhpStorm
http://www.php-debugger.com/
http://discover-devtools.codeschool.com/
http://getfirebug.com/
http://msdn.microsoft.com/library/ie/bg182326
http://www.opera.com/dragonfly/
http://phpmd.org/
https://github.com/facebook/pfff/wiki/Scheck

If	you	can't	type	hint,	you	can	make	use	of	a	tool	such	as	phantm	to	infer	types	and	find	clashes.	Many	others	exist	though,
and	integrate	with	your	editor/IDE,	so	look	around

Tools

13

https://github.com/colder/phantm/

Constants	of		wp-config.php	
Currently	there	are	several	PHP	constants	on	the		wp-config.php		that	will	allow	you	to	improve	you	WordPress	code	and
help	you	debug.

	WP_DEBUG	

This	is	an	Option	included	in	WordPress	version	2.3.1.

By	default	this	will	be	set	to		false		which	will	prevent	warnings	and	errors	from	been	shown,	but	all	WordPress
developers	should	have	this	option	active.

Activates	the	Logs

define('WP_DEBUG',	true);

Deactivates	the	Logs

define('WP_DEBUG',	false);

Check	that	the	values	must	be	bool	instead	of	string

A	minor	patch	later	the	on	Wordpress	version	2.3.2,	the	system	allowed	us	to	have	a	more	granular	control	over	the
Database	error	logs.

Later	on	in	the	version	2.5,	WordPress	raised	the	error	reporting	level	to	E_ALL,	that	will	allow	to	see	logs	for	Notices	and
Deprecation	messages.

Notes:

If	you	have	this	option	turned	on,	you	might	encounter	problems	with	AJAX	requests,	this	problem	is	related	to	Notices
been	printed	on	the	output	of	the	AJAX	response,	that	will	break	XML	and	JSON.

	WP_DEBUG_LOG	

When	you	use		WP_DEBUG		set	to		true		you	have	access	to	this	constant,	and	this	will	allow	you	to	log	your	notices	and
warnings	to	a	file.

	WP_DEBUG_DISPLAY	

When	you	use		WP_DEBUG		set	to		true		you	have	access	to	this	constant,	with	it	you	can	choose	to	display	or	not	the	notices
and	warnings	on	the	screen.

Note:

If	these	variables	don't	produce	the	output	you	are	expecting	check	out	the	Codex	Section	about	ways	to	setup	your
logging.

	SCRIPT_DEBUG	

wp-config.php

14

http://codex.wordpress.org/Version_2.3.1
http://codex.wordpress.org/Version_2.3.2
http://www.php.net/error-reporting
http://codex.wordpress.org/Editing_wp-config.php#Configure_Error_Logging

When	you	have	a	WordPress	plugin	or	theme	that	is	including	the	Minified	version	of	your	CSS	or	JavaScript	files	by
default	you	are	doing	it	wrong!

Following	the	WordPress	idea	of	creating	a	file	for	development	and	its	minified	version	is	very	good	and	you	should	have
both	files	in	your	plugin,	and	based	on	this	variable	you	will	enqueue	one	or	the	other.

By	default	this	constant	will	be	set	to		false	,	and	if	you	want	to	be	able	to	debug	CSS	or	JavaScript	files	from	WordPress
you	should	turn	it	to		true	.

Activates	the	Logs

define('SCRIPT_DEBUG',	true);

Check	that	the	values	must	be	bool	instead	of	string

WordPress	default	files		wp-includes		and		wp-admin		will	be	set	to	its	development	version	if	set	to		true	.

	CONCATENATE_SCRIPTS	

On	your	WordPress	administration	you	will	have	all	your	JavaScript	files	concatenated	in	to	one	single	request	based	on
the	dependencies	and	priority	of	enqueue.

To	remove	this	feature	all	around	you	can	set	this	constant	to		false	.

define('CONCATENATE_SCRIPTS',	false);

	SAVEQUERIES	

When	you	are	dealing	with	the	database	you	might	want	to	save	your	queries	so	that	you	can	debug	what	is	happening
inside	of	your	plugin	or	theme.

Make		$wpdb		save	Queries

define('SAVEQUERIES',	true);

Note:	this	will	slowdown	your	WordPress

wp-config.php

15

Core
WordPress	core	is	the	code	that	powers	WordPress	itself.	It	is	what	you	get	when	downloading	WordPress	from
wordpress.org,	minus	the	themes	and	plugins.

Load	Process
At	the	most	basic,	the	WordPress	core	loading	follows	this	pattern:

Load	MU	plugins
Load	Activated	plugins
load	theme	functions.php
Run	init	hook
Run	main	query
Load	template

Administration	and	AJAX	requests	follow	a	similar	but	lighter	process.	This	diagram	covers	the	specifics:

Core

16

Deregistering	jQuery
Many	plugin	and	theme	developers	attempt	to	unregister	the	jQuery	that	comes	with	core,	and	add	their	own	copy,	normally
the	jQuery	on	the	Google	CDN.	Do	not	do	this,	it	can	cause	compatability	issues.

Core

17

Instead	use	the	copy	of	jQuery	that	comes	with	WordPress	and	aim	for	the	version	used	in	the	latest	WordPress	when
testing.	This	ensures	maximum	compatability	across	plugins.

Modifying	Core
It's	tempting	to	modify	parts	of	Core	to	remove	or	add	things,	but	this	must	never	be	done.	When	WordPress	updates,	all
your	changes	will	be	lost.

Instead,	use	Hooks/Actions	and	Filters	to	modify	Core	behaviour.

Further	Reading
Making	Sense	of	Core	Load

Core

18

http://www.rarst.net/wordpress/wordpress-core-load/

Data
There	are	multiple	data	types	in	WordPress,	but	the	basic	data	types	stored	in	the	database	are:

Post
Comments
Terms
User
Blogs
Network
Links
Options
Site	Options

Some	of	these	data	types	can	have	additional	data	attached	to	them	in	the	form	of	meta	data,	some	of	them	have	types
and	statuses.

There	are	also	roles	and	capabilities,	which	are	not	considered	content	and	apply	exclusively	to	users.

Meta
Meta	data	is	data	with	a	key/name	and	a	value,	attached	to	another	piece	of	data.	Some	people	will	know	them	as	custom
fields.	Others	will	know	them	as	user	meta.

Post	Meta	(or	Custom	fields)	are	normally	shown	in	the	post	edit	screen,	but	if	the	post	meta's	key/name	begins	with	an
underscore,	that	field	is	hidden.	This	way	features	such	as	featured	images	can	be	built	with	their	own	user	interfaces.

Post	types
Posts,	pages,	attachments,	and	menus	are	all	different	kinds	of	posts.	You	can	also	register	your	own	post	types,	and	these
are	referred	to	as	custom	post	types.	Remember	to	flush	permalinks	(manually:	Dashboard	>	Settings	>	Permalinks	>	Save
Changes	or	programmatically	via	flush_rewrite_rules)	if	you	modify	or	add	a	post	type.	If	you	do	not	do	this,	some	links	will
generate	404	errors.

*Warning:	Developers	sometimes	attempt	to	work	around	the	rewrite	rules	by	flushing	rewrite	rules	on	the		init		action
using	the		flush_rewrite_rules	,	but	this	is	a	mistake.	It	can	lead	to	unexpected	behaviours,	and	has	a	large	negative
performance	impact.	Rewrite	rules	are	expensive	to	build.

Default	Post	Types

The	default	post	types	are	as	follows:

Post	(post)
Page	(page)
Attachment	(attachment)
Revision	(revision)
Navigation	menu	(nav_menu_item)

Menus
Menu	items	are	stored	as		nav_menu_item		posts,	however,	the	menu	itself	is	a	term	in	a	custom	taxonomy	that	contains
	nav_menu_item		posts.

Data

19

http://codex.wordpress.org/Function_Reference/flush_rewrite_rules

Revisions

A	post	of	type		revision	,	revisions	are	historical	copies	of	posts,	and	are	tied	to	their	original	post	via	the	post_parent	field.
To	get	a	posts	revisions,	grab	all	its	children	of	type		revision	.	If	a	database	is	growing	very	large	or	a	particular	post/page
is	frequently/automatically	edited,	you	can	limit	the	number	of	revisions	stored.

Uploaded	Files	&	Images

When	you	upload	a	file,	WordPress	does	not	reference	the	image	or	file	using	its	URL,	it	uses	an	attachment.	Attachments
are	posts	of	type		attachment	,	and	are	referred	to	by	their	post	ID.	For	example,	when	you	set	a	featured	image	on	a	post,
it	stores	your	chosen	image's	post	ID	in	that	post's	meta	(_thumbnail_id).

If	a	file	is	uploaded	whilst	editing	a	post	(rather	than	in	the	Media	Library	itself),	it's		post_parent		field	is	set	to	that	of	the
post.

WordPress	generates	and	saves	resized	versions	of	the	original	at	the	time	of	upload	for	better	performance.	They	can	be
cropped	and	manipulated	independently	and	the	dimensions	and	filenames	are	stored	in	the	attachment	postmeta.

The	default	image	sizes	are	configured	in	Dashboard	>	Settings	>	Media.	If	you	need	more,	you	can	use	add_image_size
and	also	control	cropping.	You	can	request	a	specific	size	of	image	using	the	attachment	ID	and	the	image	size	name	(e.g.
'medium',	'large'.)

The	Regenerate	Thumbnails	plugin	is	useful	if	you	change	sizes	at	a	later	date.

Comments
Comments	have	their	own	table,	and	are	attached	to	a	post.	Comments	are	not	a	type	of	post	however,	but	they	are
capable	of	storing	meta	data.	This	is	rarely	used	by	developers	but	allows	for	interesting	things.

Terms	and	Taxonomies
A	taxonomy	is	a	way	of	categorising	or	organising	things.	Items	are	organised	using	terms	in	that	taxonomy.

For	example,	yellow	is	a	term	in	the	colour	taxonomy.	Big	and	small	are	both	terms	in	the	size	taxonomy.

The	Tags	and	categories	that	come	with	WordPress	are	both	taxonomies.	Individual	tags	and	categories	are	called	terms.

You	can	register	your	own	taxonomies,	but	remember	to	flush	permalinks	(see	Post	Types	above)	if	you	make	changes.

Taxonomy	terms	are	tied	to	Object	IDs,	where	an	object	ID	can	be	any	kind	of	data.	This	includes	posts,	users,	or
comments.	These	IDs	are	normally	post	IDs,	but	this	is	purely	convention.	There	is	nothing	preventing	a	user	or	a	comment
taxonomy.	A	user	taxonomy	would	be	useful	for	grouping	users	into	locations	or	job	roles.

Options
Options	are	stored	as	key	value	pairs	in	their	own	table.	Some	options	have	an	autoload	flag	set	and	are	loaded	on	every
page	load	to	reduce	the	number	of	queries.

Transients
Transients	are	stored	as	options	and	are	used	to	cache	things	temporarily

Object	Cache

Data

20

http://codex.wordpress.org/Function_Reference/get_children
http://codex.wordpress.org/Revision_Management#Revision_Options
http://codex.wordpress.org/Function_Reference/add_image_size
https://wordpress.org/plugins/regenerate-thumbnails/
https://codex.wordpress.org/Taxonomies#Registering_a_taxonomy

By	default	WordPress	will	use	in	memory	caching	that	does	not	persist	between	page	loads.	There	are	plugins	available
that	extend	this	to	use	APC	or	Memcache	amongst	others.

Data	Overview
Here's	a	table	showing	the	full	spectrum	of	data	types	in	WordPress	that	are	stored	in	the	database:

Post Comments Term User Blogs

Description Content,	e.g.
articles

Commentary	on	a
post

A	type	of	objects,	for
classifying

Users	and
Authors A	website

Supported Yes Yes Yes Yes Yes

Meta Custom	fields Comment	meta Planned User	Meta Options

Meta
Access

	get_post_meta	 	get_comment_meta	 Planned get_user_meta get_option

Type Post	type Comment	type Taxonomy Roles	and
Capabilities No

Type
registration

	register_post_type	 defined	on	use 	register_taxonomy	 	add_role
add_cap	 n/a

Taxonomy
UI? Yes No Yes No No

Default
Types

post	page
attachment
nav_menu
nav_menu_item

none	pingback
trackback cat	tag

admin	editor
author
contributor
subscriber

n/a

Query
Class

	WP_Query	 	WP_Comment_Query	 	get_terms	 	WP_User_Query	 	wp_get_sites

Has
Archives Yes No Per	blog Yes No

Has
Widget Recent	Posts Recent

Comments Categories	and	Tags No No

Data
Availability Per	blog Per	blog Per	blog Per	install Per	network

Set	current 	setup_postdata	 n/a n/a n/a switch_to_blog

Database
Table 	wp_posts	 	wp_comments	

	wp_terms	
	wp_term_relationships	
	wp_term_taxonomy	

	wp_users	 	wp_blogs

Meta	Table 	wp_postmeta	 	wp_commentmeta	 Planned 	wp_usermeta	 	wp_options

Data

21

http://codex.wordpress.org/Class_Reference/WP_Object_Cache#Persistent_Cache_Plugins

Queries
This	chapter	talks	about	several	kinds	of	query.	Post	queries,	taxonomy	queries,	comment	queries,	user	queries,	and
general	SQL	queries.

Whenever	possible,	use	the	query	APIs	that	WordPress	provides,	rather	than	directly	calling	the	database.	This	allows	the
internal	cache	system	to	speed	up	your	queries,	and	for	caching	plugins	to	help	out.

Not	using	the	WordPress	APIs	to	perform	queries	means	that	3rd	party	plugins	are	unable	to	intercept	and	modify	requests,
leading	to	compatibility	issues,	and	broken	or	incomplete	functionality.

Query	Limits	and	Performance
Some	queries	are	more	expansive	than	others,	they	simply	do	more	work	and	don't	scale.	No	amount	of	MySQL
optimisation	will	fix	them.	For	example,	complex	meta	queries	are	more	expensive.

One	issue	that	most	developers	don't	realise	is	scale.	For	example,	you	are	listing	terms	in	a	custom	taxonomy	in	a
dropdown,	and	you	have	5	or	10	terms.	In	that	example	the	query	will	be	fast,	however,	if	10,000	terms	are	added	6	months
later,	that	dropdown	is	going	to	take	a	very	long	time	to	generate.

So	always	add	limits	to	your	queries,	even	if	you	don't	think	they're	needed.	Place	an	unrealistically	high	number	you	never
expect	to	hit	them,	e.g.	100	or	1000.

Queries

22

Post	Queries
Post	queries	retrieve	posts	from	the	database	so	that	they	can	be	processed	or	displayed	on	the	frontend.	This	section
covers	some	vital	concepts,	and	methods	of	generating	these	queries.

The	Main	Loop
Every	page	displayed	by	WordPress	has	a	main	query.	This	query	grabs	posts	from	the	database,	and	is	used	to	determine
what	template	should	be	loaded.

Once	that	template	is	loaded,	the	main	loop	begins,	allowing	the	theme	to	display	the	posts	found	by	the	main	query.	Here
is	an	example	main	loop:

if	(have_posts())	{
				while	(have_posts())	{
								the_post();
								//	display	post
				}
}	else	{
				//	no	posts	were	found
}

The	Main	Query	and	Query	Variables
The	main	query	is	created	using	the	URL,	and	is	represented	by	a		WP_Query		object.

This	object	is	told	what	to	fetch	using	Query	Variables.	These	values	are	passed	into	the	query	object	at	the	start,	and	must
be	part	of	a	list	of	valid	query	variables.

For	example,	the	query	variable	'p'	is	used	to	fetch	a	specific	post	type,	e.g.

$posts	=	get_posts('p=12');

Fetches	the	post	with	ID	12.	The	full	list	of	options	are	available	on	the		WP_Query		codex	entry.

Making	a	Query
To	retrieve	posts	from	the	Database,	you	need	to	make	a	post	query.	All	methods	of	getting	posts	are	layers	on	top	of	the
	WP_Query		object.

There	are	3	ways	to	do	this:

	WP_Query	

	get_posts	

	query_posts	

This	diagram	explains	what	happens	in	each	method:

Post	Queries

23

	WP_Query	

$query	=	new	WP_Query($arguments);

Post	Queries

24

All	post	queries	are	wrappers	around		WP_Query		objects.	A		WP_Query		object	represents	a	query,	e.g.	the	main	query,	and
has	helpful	methods	such	as:

$query->have_posts();
$query->the_post();

etc.	The	functions		have_posts();		and		the_post();		found	in	most	themes	are	wrappers	around	the	main	query	object:

function	have_posts()	{
				global	$wp_query;

				return	$wp_query->have_posts();
}

	get_posts	

$posts	=	get_posts($arguments);

	get_posts		is	similar	to		WP_Query	,	and	takes	the	same	arguments,	but	it	returns	an	array	containing	the	requested	posts	in
full.	You	shouldn't	use		get_posts		if	you're	intending	to	create	a	post	loop.

While		get_posts		is	conceptually	simpler	than		WP_Query		for	novice	programmers	to	understand,	it	does	have	a	downside.
	get_posts		doesn't	make	extensive	use	of	the	object	cache	in	the	way	that		WP_Query		does,	and	may	not	be	as	performant.

Don't	use		query_posts	

	query_posts		is	an	overly	simplistic	and	problematic	way	to	modify	the	main	query	of	a	page	by	replacing	it	with	new
instance	of	the	query.

It	is	inefficient	(re-runs	SQL	queries)	and	will	outright	fail	in	some	circumstances	(especially	often	when	dealing	with	posts
pagination).	Any	modern	WordPress	code	should	use	more	reliable	methods,	such	as	making	use	of	the		pre_get_posts	
hook,	for	this	purpose.	Do	not	use		query_posts()	.

Meta	Queries	and	Performance
When	performing	a	query	involving	meta	keys,	there	can	be	performance	issues.	This	is	because	there	is	no	index	on	the
post	meta	tables.	As	a	result	post	meta	queries	have	the	potential	to	be	very	expensive.	Queries	involving	both	post	meta
keys	and	post	meta	values	can	be	even	more	expensive.

	NOT	IN		Queries

Queries	looking	for	posts	that	are	not	in	a	category	or	don't	have	a	post	meta	key	can	be	very	expensive,	and	should	be
avoided.	The	nature	of	the	query	means	that	they	are	expensive,	as	the	database	has	to	figure	out	which	posts	do	have	the
term/meta	key,	then	subtract	those	results	from	the	full	list	of	posts.	These	queries	don't	scale	and	are	resource	intensive.

Cleaning	up	after	Queries

	wp_reset_postdata	

When	using		WP_Query		or		get_posts	,	you	may	set	the	current	post	object,	using		the_post		or		setup_postdata	.	If	you	do,
you	need	to	clean	up	after	yourself	when	you	finish	your	while	loop.	Do	this	by	calling		wp_reset_postdata	.

A	common	mistake	is	to	call		wp_reset_postdata		after	the	if	statement.	This	is	incorrect,	as	the	post	hasn't	changed	if	the	if
statement	is	false,	leading	to	potentially	unexpected	behavior.	Always	call	the	function	before	the	closing	brace,	not	after,
e.g.

Post	Queries

25

if	($q->have_posts())	{
				while($q->have_posts())	{
								$q->the_post();
				}
				wp_reset_postdata();
}

	wp_reset_query	

When	you	call		query_posts	,	you	will	need	to	restore	the	main	query	after	you've	done	your	work.	Failure	to	do	so	can	lead
to	a	large	number	of	issues	and	unexpected	behavior.	You	can	do	this	with		wp_reset_query	.	Always	do	this	after	calling
	query_posts	,	and	only	do	it	when	necessary.

The		pre_get_posts		Filter
If	you	need	to	change	the	main	query	and	display	something	else	on	the	page,	you	should	use	the		pre_get_posts		filter.

Many	people	will	want	to	use	this	for	things	such	as	removing	posts	from	an	archive,	changing	the	post	types	for	search,
excluding	categories,	and	others

Here	is	the	Codex	example	for	searching	only	for	posts:

function	search_filter($query)	{
				if	(!is_admin()	&&	$query->is_main_query())	{
								if	($query->is_search)	{
												$query->set('post_type',	'post');
								}
				}
}

add_action('pre_get_posts',	'search_filter');

These	filters	can	go	in	a	themes		functions.php	,	or	in	a	plugin.

Further	Reading
You	don't	know	query,	a	talk	by	Andrew	Nacin
When	you	should	use	WP_Query	vs	query_posts,	Andrei	Savchenko/Rarst

Post	Queries

26

http://www.slideshare.net/andrewnacin/you-dont-know-query-wordcamp-netherlands-2012
http://wordpress.stackexchange.com/a/1755/736

Taxonomy	and	Term	Queries
When	dealing	with	taxonomies	(including	post	categories	and	tags),	it's	safer	to	rely	on	the	generic	APIs	rather	than	the
legacy	helper	APIs.	These	include:

	get_taxonomies	

	get_terms	

	get_term_by	

	get_taxonomy	

	wp_get_object_terms	

	wp_set_object_terms	

It's	easier	to	learn	one	set	of	APIs,	and	think	of	categories	and	tags	as	just	another	taxonomy,	rather	than	mixing	and
matching	older	functions	such	as		get_category		etc.

Taxonomy	and	Term	Queries

27

Comment	Queries
You	can	retrieve	comments	using	the		WP_Comment_Query		class.	When	WordPress	tries	to	load	a	single	post,	it	constructs
one	of	these	objects	in	order	to	retrieve	the	number	of	comments	it	has,	ready	for	when	it's	displayed	later	on.

This	is	a	basic	comment	query:

$args	=	array(
			//	args	here
);

//	The	Query
$comments_query	=	new	WP_Comment_Query();
$comments	=	$comments_query->query($args);

//	Comment	Loop
if	($comments)	{
				foreach	($comments	as	$comment)	{
								echo	'<p>'	.	$comment->comment_content	.	'</p>';
				}
}	else	{
				echo	'No	comments	found.';
}

Comment	queries	can	find	comments	of	different	types	across	multiple	or	single	posts.	Using	a	comment	query	can	be
faster	than	a	raw	SQL	command	thanks	to	the	built	cache	system.

Comment	Queries

28

User	Queries
Similar	to	comment	queries,	user	queries	can	be	used	to	find	individual	users,	users	with	specific	roles,	and	other
parameters.

Here	is	a	basic	User	query:

$args	=	array(
				//
);

//	The	Query
$user_query	=	new	WP_User_Query($args);

//	User	Loop
if	(!	empty($user_query->results))	{
				foreach	($user_query->results	as	$user)	{
								echo	'<p>'	.	$user->display_name	.	'</p>';
				}
}	else	{
				echo	'No	users	found.';
}

Note	that	the	user	query	class	may	not	be	available	yet	if	your	code	runs	very	early.

User	Queries

29

SQL

WPDB
It	can	be	tempting	for	the	uninformed	to	resort	to	a	raw	SQL	query	to	grab	posts.	Only	do	this	as	a	last	resort.

But	if	you	have	to	make	an	SQL	query,	use		WPDB		objects.

dbDelta	and	Table	Creation
The		dbDelta		function	examines	the	current	table	structure,	compares	it	to	the	desired	table	structure,	and	either	adds	or
modifies	the	table	as	necessary,	so	it	can	be	very	handy	for	updates.

The		dbDelta		function	is	rather	picky,	however.	For	instance:

You	must	put	each	field	on	its	own	line	in	your	SQL	statement.
You	must	have	two	spaces	between	the	words		PRIMARY	KEY		and	the	definition	of	your	primary	key.
You	must	use	the	key	word		KEY		rather	than	its	synonym		INDEX		and	you	must	include	at	least	one	KEY.
You	must	not	use	any	apostrophes	or	backticks	around	field	names.
	CREATE	TABLE		must	be	capitalised.

With	those	caveats,	here	are	the	next	lines	in	our	function,	which	will	actually	create	or	update	the	table.	You'll	need	to
substitute	your	own	table	structure	in	the	$sql	variable.

Further	Reading
Creating	Tables	With	Plugins	-	Codex

SQL

30

http://codex.wordpress.org/Creating_Tables_with_Plugins#Creating_or_Updating_the_Table

Routing
Common	questions	asked	by	new	developers	revolve	around	a	misconception.	They	believe	that	single.php	is	what	made
WordPress	load	a	single	post,	and	talk	about	making	WordPress	load	archive.php	instead	so	that	they	can	view	multiple
posts	rather	than	an	individual	post.

That	viewpoint	is	confusing,	the	truth	is	that	such	a	viewpoint	is	completely	upside	down.	The	template	does	not	determine
the	content.	The	content	determines	the	template	used.

This	chapter	will	go	into	more	depth	regarding	how	WordPress	breaks	down	a	URL,	creates	a	query,	then	figures	out	which
template	to	load.

An	explanation	of	how	rewrite	rules	generate	a	query,	which	loads	a	template,	which	displays	a	page
Custom	Query	variables	&	routing
Adding	a	rewrite	rule
Flushing	rewrite	rules
Debugging	rewrite	rules
Clashes	&	slugs

Routing

31

The	Main	Loop	&	Template	Loading
The	main	query	is	a	WP_Query	object
The	main	loop	is	using	that	main	query
The	main	query	is	done	before	the	template	is	even	loaded
The	template	is	loaded	based	on	what	the	main	query	is
The	main	query	is	determined	by	parameters	called	query	variables
Which	template	is	loaded	when	is	shown	on	the	template	hierarchy	diagram
All	templates	are	just	custom	ways	of	showing	the	main	post	loop

The	Main	Loop	&	Template	Loading

32

Where	Query	Variables	Come	From
Mention	that	query	variables	come	from	the	URL
URLs	are	broken	down	using	rewrite	rules	into	query	vars
extra	query	vars	can	be	added	to	any	WordPress	URL	which	is	how	searches	work
Query	vars	have	a	whitelist,	and	they're	the	same	as	the	parameters	passed	into	WP_Query

Where	Query	Variables	Come	From

33

Rewrite	Rules
Rewrite	rules	are	based	on	regular	expressions
Regular	expressions	map	nice	URLs	on	to	uglier	query	var	based	URLs	that	can	be	parsed
Rewrite	rules	have	priority/order
Rewrite	rules	are	generated	then	stored	in	the	database
Rebuilding	rewrite	rules	is	expensive

Rewrite	Rules

34

Clashes,	Slugs,	&	Debugging
Slugs	must	be	unique
1	URL	can't	be	2	things,	there	must	be	no	ambiguity
Showing	different	things	depending	on	where	the	user	has	been	before	is	terrible	for	caching
Monkey	rewrite	tools	plugin	for	debugging

Clashes,	Slugs,	&	Debugging

35

Templates

Loading	templates	via		get_template_part	
When	including	templates	in	your	theme,	it's	tempting	to	use	code	such	as	this:

include('customloop.php');

However,	doing	this	breaks	support	for	child	themes.	Instead	using		get_template_part		will	do	the	job	better,	while	giving
extra	flexibility.	For	example:

get_template_part('custom',	'loop');

This	way	WordPress	will	attempt	to	load		custom-loop.php	.	If	the	file	does	not	exist,	it	will	load		custom.php	,	and	if	a	child
theme	exists,	it	will	load	the	child	theme	version	of	the	file.

This	allows	fallback	templates	and	specialised	templates	based	on	post	meta	and	other	data	such	as	post	type.	For
example:

get_template_part('loop',	get_post_type());

This	will	load		loop.php	,	but	if	a	custom	version	of	the	template	exists	for	that	post	type,	it	will	load	that	instead.	e.g.		loop-
page.php	

Internally,		get_template_part		uses	the		locate_template		function.	This	function	finds	the	appropriate	file,	and	returns	its
name.	This	is	useful	for	finding	a	template,	without	loading	it.

`locate_template	is	also	useful	for	plugin	theming.	For	example:

//	if	the	theme	has	a	custom	template	for	my	plugin
if	(locate_template('mycustomplugin.php')	!=	'')	{
				//	load	the	custom	template	for	my	plugin	from	the	theme
				get_template_part('mycustomplugin.php');
}	else	{
				//	fallback	to	the	plugins	default	theme
				include('defaulttemplates/mycustomplugin.php');
}

If	you	wish	to	provide	such	a	system	in	your	plugin	though,	it's	advised	you	use	the		template_include		filter.	Scroll	down	for
a	more	in	depth	look	at	the		template_include		filter.

How	Templates	are	Chosen,	and	The	Template	Hierarchy
Notes	on	how	a	template	is	chosen	using	the	main	query.	How	templates	are	chosen	and	loaded,	how	child	themes
are	involved.	Show	the	template	hierarchy	diagram

Functions.php	and	Plugins
	functions.php		is	a	file	in	your	theme	that	gets	loaded	prior	to	any	templates.	If	your	theme	has	non-template	functionality,
such	as	changing	the	length	of	excerpts,	adding	stylesheets	and	scripts,	etc,	this	is	where	that	code	would	go.

Because	of	the	way	functions.php	is	loaded,	it	can	be	considered	a	plugin,	as	there	is	no	difference	between
	functions.php		and	plugin	development.	However,	there	is	a	difference	in	how	it's	loaded.

Templates

36

If	your	theme	registers	post	types	and	taxonomies,	shortcodes,	or	widgets,	this	data	is	no	longer	available	to	the	user	when
they	change	theme.	This	is	a	large	problem	for	data	portability,	and	can	cause	a	persons	site	to	become	non-functional	or
broken.

Post	types,	taxonomies,	shortcodes,	and	widgets,	should	be	implemented	in	a	separate	plugin	so	that	the	users	data
remains	portable,	and	their	site	is	not	broken	when	themes	change.	To	do	otherwise	is	irresponsible.

Loading	Stylesheets
enquing	stylesheets	properly

Templates	and	Plugins
	template_include		filter

Forms
Forms	that	submit	to	a	separate	standalone	PHP	file	in	your	theme	are	bad.	An	example	of	how	to	handle	a	basic	form
submission	on	a	page	template

Virtual	Pages
For	when	you	need	a	page/URL	that	doesn't	have	an	associated	post	or	archive,	e.g.	a	shopping	cart	or	an	API
endpoint.

Further	Reading
link	to	template	diagram
interactive	template	diagram

Templates

37

JavaScript
Javascript	is	the	future	of	WordPress,	but	there	are	a	number	of	things	to	keep	in	mind.

While	there's	a	lot	of	things	that	should	always	be	done,	there	are	three	approaches	to	using	WordPress	javascript	the	right
way.

The	Wrong	Way	-	Sending	AJAX	requests	to	files	in	your	theme	or	page	templates,	then	including	them	in	your
header	with	a	manually	coded	tag
The	Old	Way	-	Using	the	WP	AJAX	API	for	requests
The	Best	Way	-	Building	your	admin	UI	in	Javascript	instead	of	PHP,	and	powering	it	with	the	REST	API.

At	the	time	of	writing,	the	REST	API	and	the	content	endpoints	are	the	future,	and	admin	UIs	need	to	prepare	for	a	fully	JS
powered	admin	UI.	This	means:

Clean,	portable,	cachable	Data	APIs
Enforced,	and	simplified	built	in	security	in	your	endpoints
A	standardised	system	to	work	in
More	secure	interfaces	by	avoiding	the	need	for	escaping	with	Javascript	templating	and	reactive	libraries
Faster	admin	screens	whose	sole	job	is	to	bootstrap	the	JS	UI

While	information	on	these	are	compiled,	information	is	preserved	below.

Registering	and	Enqueueing
WordPress	comes	with	dependency	management	and	enqueueing	for	JavaScript	files.	Don't	use	raw		<script>		tags	to
embed	JavaScript.

JavaScript	files	should	be	registered.	Registering	makes	the	dependency	manager	aware	of	the	script.	To	embed	a	script
onto	a	page,	it	must	be	enqueued.

Let's	register	and	enqueue	a	script.

//	Use	the	wp_enqueue_scripts	function	for	registering	and	enqueueing	scripts	on	the	front	end.
add_action('wp_enqueue_scripts',	'register_and_enqueue_a_script');
function	register_and_enqueue_a_script()	{
				//	Register	a	script	with	a	handle	of	`my-script`
				//		+	that	lives	inside	the	theme	folder,
				//		+	which	has	a	dependency	on	jQuery,
				//		+	where	the	UNIX	timestamp	of	the	last	file	change	gets	used	as	version	number
				//				to	prevent	hardcore	caching	in	browsers	-	helps	with	updates	and	during	dev
				//		+	which	gets	loaded	in	the	footer
				wp_register_script(
								'my-script',
								get_template_directory_uri().'/js/functions.js',
								array('jquery'),
								filemtime(get_template_directory().'/js/functions.js',
								true
);
				//	Enqueue	the	script.
				wp_enqueue_script('my-script');
}

Scripts	should	only	be	enqueued	when	necessary;	wrap	conditionals	around		wp_enqueue_script()		calls	appropriately.

When	enqueueing	javascript	in	the	admin	interface,	use	the		admin_enqueue_scripts		hook.

When	adding	scripts	to	the	login	screen,	use	the		login_enqueue_scripts		hook.

JavaScript

38

Localizing
Localizing	a	script	allows	you	to	pass	variables	from	PHP	into	JS.	This	is	typically	used	for	internationalization	of	strings
(hence	localization),	but	there	are	plenty	of	other	uses	for	this	technique.

From	a	technical	side,	localizing	a	script	means	that	there	will	be	a	new		<script>		tag	added	right	before	your	registered
script,	that	contains	a	global	JavaScript	object	with	the	name	you	specified	during	localizing	(the	2nd	argument).	This	also
means	that	if	you	add	another	script	later	on,	that	has	this	script	as	dependency,	then	you	will	be	able	to	use	the	global
object	there	as	well.	WordPress	resolves	chained	dependencies	just	fine.

Let's	localize	a	script.

add_action('wp_enqueue_scripts',	'register_localize_and_enqueue_a_script');
function	register_localize_and_enqueue_a_script()	{
				wp_register_script(
								'my-script',
								get_template_directory_uri().'/js/functions.js',
								array('jquery'),
								filemtime(get_template_directory().'/js/functions.js'),
								true
);
				wp_localize_script(
								'my-script',
								'scriptData',
								//	This	is	the	data,	which	gets	sent	in	localized	data	to	the	script.
								array(
												'alertText'	=>	'Are	you	sure	you	want	to	do	this?',
)
);
				wp_enqueue_script('my-script');
}

In	the	javascript	file,	the	data	is	available	in	the	object	name	specified	while	localizing.

(function($,	plugin)	{
				alert(plugin.alertText);
})(jQuery,	scriptData	||	{});

Deregister	/	Dequeueing
Scripts	can	be	deregistered	and	dequeued	via		wp_deregister_script()		and		wp_dequeue_script()	.

AJAX
WordPress	offers	an	easy	server-side	endpoint	for	AJAX	calls,	located	in		wp-admin/admin-ajax.php	.

Let's	set	up	a	server-side	AJAX	handler.

JavaScript

39

//	Triggered	for	users	that	are	logged	in.
add_action('wp_ajax_create_new_post',	'wp_ajax_create_new_post_handler');
//	Triggered	for	users	that	are	not	logged	in.
add_action('wp_ajax_nopriv_create_new_post',	'wp_ajax_create_new_post_handler');

function	wp_ajax_create_new_post_handler()	{
				//	This	is	unfiltered,	not	validated	and	non-sanitized	data.
				//	Prepare	everything	and	trust	no	input
				$data	=	$_POST['data'];

				//	Do	things	here.
				//	For	example:	Insert	or	update	a	post
				$post_id	=	wp_insert_post(array(
								'post_title'	=>	$data['title'],
));

				//	If	everything	worked	out,	pass	in	any	data	required	for	your	JS	callback.
				//	In	this	example,	wp_insert_post()	returned	the	ID	of	the	newly	created	post
				//	This	adds	an	`exit`/`die`	by	itself,	so	no	need	to	call	it.
				if	(!	is_wp_error($post_id))	{
								wp_send_json_success(array(
												'post_id'	=>	$post_id,
));
				}

				//	If	something	went	wrong,	the	last	part	will	be	bypassed	and	this	part	can	execute:
				wp_send_json_error(array(
								'post_id'	=>	$post_id,
));
}

add_action('wp_enqueue_scripts',	'register_localize_and_enqueue_a_script');
function	register_localize_and_enqueue_a_script()	{
				wp_register_script(
								'my-script',
								get_template_directory_uri().'/js/functions.js',
								array('jquery'),
								filemtime(get_template_directory().'/js/functions.js'),
								true
);
				//	Send	in	localized	data	to	the	script.
				wp_localize_script(
								'my-script',
								'scriptData',
								array(
												'ajax_url'	=>	admin_url('admin-ajax.php'),
)
);
				wp_enqueue_script('my-script');
}

And	the	accompanying	JavaScript:

JavaScript

40

(function($,	plugin)	{
				$(document).ready(function()	{
								$.post(
												//	Localized	variable,	see	example	below.
												plugin.ajax_url,
												{
																//	The	action	name	specified	here	triggers
																//	the	corresponding	wp_ajax_*	and	wp_ajax_nopriv_*	hooks	server-side.
																action	:	'create_new_post',
																//	Wrap	up	any	data	required	server-side	in	an	object.
																data			:	{
																				title	:	'Hello	World'
																}
												},
												function(response)	{
																//	wp_send_json_success()	sets	the	success	property	to	true.
																if	(response.success)	{
																				//	Any	data	that	passed	to	wp_send_json_success()	is	available	in	the	data	property
																				alert('A	post	was	created	with	an	ID	of	'	+	response.data.post_id);

																//	wp_send_json_error()	sets	the	success	property	to	false.
																}	else	{
																				alert('There	was	a	problem	creating	a	new	post.');
																}
												}
);
				});
})(jQuery,	scriptData	||	{});

	ajax_url		represents	the	admin	AJAX	endpoint,	which	is	automatically	defined	in	admin	interface	page	loads,	but	not	on
the	front-end.

Let's	localize	our	script	to	include	the	admin	URL:

add_action('wp_enqueue_scripts',	'register_localize_and_enqueue_a_script');
function	register_localize_and_enqueue_a_script()	{
				wp_register_script('my-script',	get_template_directory_uri()	.	'/js/functions.js',	array('jquery'));
				//	Send	in	localized	data	to	the	script.
				$data_for_script	=	array('ajax_url'	=>	admin_url('admin-ajax.php'));
				wp_localize_script('my-script',	'scriptData',	$data_for_script);
				wp_enqueue_script('my-script');
}

The	JavaScript	side	of	WP	AJAX
There	are	several	ways	to	go	on	this.	The	most	common	is	to	use		$.ajax()	.	Of	course,	there	are	shortcuts	available	like
	$.post()		and		$.getJSON()	.

Here's	the	default	example.

JavaScript

41

/*globals	jQuery,	$,	scriptData	*/
(function($,	plugin)	{
				"use	strict";

				//	Alternate	solution:	jQuery.ajax()
				//	One	can	use	$.post(),	$.getJSON()	as	well
				//	I	prefer	defered	loading	&	promises	as	shown	above
				$.ajax({
									url		:	plugin.ajaxurl,
									data	:	{
												action						:	plugin.action,
												_ajax_nonce	:	plugin._ajax_nonce,
												//	WordPress	JS-global
												//	Only	set	in	admin
												postType					:	typenow,
									},
									beforeSend	:	function(d)	{
													console.log('Before	send',	d);
									}
				})
								.done(function(response,	textStatus,	jqXHR)	{
												console.log('AJAX	done',	textStatus,	jqXHR,	jqXHR.getAllResponseHeaders());
								})
								.fail(function(jqXHR,	textStatus,	errorThrown)	{
												console.log('AJAX	failed',	jqXHR.getAllResponseHeaders(),	textStatus,	errorThrown);
								})
								.then(function(jqXHR,	textStatus,	errorThrown)	{
												console.log('AJAX	after	finished',	jqXHR,	textStatus,	errorThrown);
								});
})(jQuery,	scriptData	||	{});

Note	that	above	example	uses		_ajax_nonce		to	verify	the	NONCE	value,	which	you	will	have	to	set	by	yourself	when
localizing	the	script.	Just	add		'_ajax_nonce'	=>	wp_create_nonce("some_value"),		to	your	data	array.	You	can	then	add	a
referrer	check	to	your	PHP	callback	that	looks	like		check_ajax_referer("some_value")	.

AJAX	on	click
Actually	it's	pretty	simple	to	execute	an	AJAX	request	when	some	clicks	(or	does	some	other	user	interaction)	on	some
element.	Just	wrap	up	your		$.ajax()		(or	similar)	call.	You	can	even	add	a	delay	like	you	might	be	used	to.

$('#'	+	plugin.element_name).on('keyup',	function(event)	{
				$.ajax({	...	etc	...	})
								.done(function(...)	{	etc	}
								.fail(function(...)	{	etc	}

})
				.delay(500);

Multiple	callbacks	for	a	single	AJAX	request
You	might	come	into	a	situation	where	multiple	things	have	to	happen	after	an	AJAX	request	finished.	Gladly	jQuery	returns
an	object,	where	you	can	attach	all	of	your	callbacks.

JavaScript

42

/*globals	jQuery,	$,	scriptData	*/
(function($,	plugin)	{
				"use	strict";

				//	Alternate	solution:	jQuery.ajax()
				//	One	can	use	$.post(),	$.getJSON()	as	well
				//	I	prefer	defered	loading	&	promises	as	shown	above
				var	request	=	$.ajax({
									url		:	plugin.ajaxurl,
									data	:	{
												action						:	plugin.action,
												_ajax_nonce	:	plugin._ajax_nonce,
												//	WordPress	JS-global
												//	Only	set	in	admin
												postType					:	typenow,
									},
									beforeSend	:	function(d)	{
													console.log('Before	send',	d);
									}
				});

				request.done(function(response,	textStatus,	jqXHR)	{
								console.log('AJAX	callback	#1	executed');
				});

				request.done(function(response,	textStatus,	jqXHR)	{
								console.log('AJAX	callback	#2	executed');
				});

				request.done(function(response,	textStatus,	jqXHR)	{
								console.log('AJAX	callback	#3	executed');
				})
})(jQuery,	scriptData	||	{});

Chaining	callbacks
A	common	scenario	(regarding	how	often	it	is	needed	and	how	easy	it	then	is	to	hit	the	mine	trap),	is	chaining	callbacks
when	an	AJAX	request	finished.

About	the	problem	first:

AJAX	callback	(A)	executes	AJAX	Callback	(B)	doesn't	know	that	it	has	to	wait	for	(A)	You	can't	see	the	problem	in
your	local	install	as	(A)	is	finished	too	fast.

The	interesting	question	is	how	to	wait	until	A	is	finished	to	then	start	B	and	its	processing.

The	answer	is	"deferred"	loading	and	"promises",	also	known	as	"futures".

Here's	an	example:

JavaScript

43

http://en.wikipedia.org/wiki/Futures_and_promises

(function($,	plugin)	{
				"use	strict";

				$.when(
								$.ajax({
												url	:		pluginURl,
												data	:	{	/*	...	*/	}
								})
											.done(function(data)	{
																//	2nd	call	finished
											})
											.fail(function(reason)	{
															console.info(reason);
											});
)
				//	Again,	you	could	leverage	.done()	as	well.	See	jQuery	docs.
				.then(
								//	Success
								function(response)	{
												//	Has	been	successful
												//	In	case	of	more	then	one	request,	both	have	to	be	successful
								},
								//	Fail
								function(resons)	{
												//	Has	thrown	an	error
												//	in	case	of	multiple	errors,	it	throws	the	first	one
								},
);
				//.then(/*	and	so	on	*/);
})(jQuery,	scriptData	||	{});

Source:	WordPress.StackExchange	/	Kaiser

JavaScript

44

http://wordpress.stackexchange.com/a/118796/385

JavaScript

Enqueing	a	script

For	the	widget	form	in	the	admin	area
A	quick	note	on	how	to	do	it,	and	a	note	on	running	the	JS,	so	that	it	doesn't	get	ran	on	the	html	used	to	create	new	widget
forms,	only	those	in	the	sidebars	on	the	right.

For	the	frontend
How	to	enqueue	a	widgets	scripts	and	styles,	but	only	if	the	widget	is	on	the	page

Events
Running	code	when:

A	New	Widget	is	Added,	or	Re-ordered
Make	use	of	the	ajaxStop	event	to	process	javascript	when	a	widget	is	added	or	re-ordered

jQuery(document).ready(function($)	{
				function	doWidgetStuff()	{
								var	found	=	$('#widgets-right	.mywidgetelement');
								found.each(function(index,	value)	{
										//	process	elements
								});
				}

				window.counter	=	1;

				doWidgetStuff();

				$(document).ajaxStop(function()	{
								doWidgetStuff();
				});
});

The	widget	form	opens

Some	js	to	show	how	to	do	things	when	the	form	opens	and	closes

Further	Reading
Executing	javascript	when	a	widget	is	added

Widgets

45

http://wordpress.stackexchange.com/questions/130084/executing-javascript-when-a-widget-is-added-in-the-backend

I18n
When	talking	about	I18n	here,	we're	going	to	talk	about	translation	strings	in	user	interfaces	and	on	the	frontend.	For
content	in	multiple	languages	or	language	pickers	for	users,	you	will	need	to	install	a	plugin	to	provide	the	editing	tools	for
posts	and	other	content	types.

At	any	point,	you	can	manually	set	the	language	WordPress	uses	by	user	or	overriding	the		WPLANG		option.	Older	tutorials
will	recommend	the		WP_LANG		constant,	but	this	has	been	deprecated

However	you	will	need	to	make	sure	the	necessary	language	files	are	in	place	in	your		wp-content/languages		folder	before
the	change	takes	full	effect.

Translation	work	falls	under	the	Polyglots	group	at	contributor	days.	If	you're	interested	in	translating	WordPress	Core,	you
should	read	the	official	translators	handbook	to	find	out	how

Securing	Language	Files
Language	files	have	2	major	attack	vectors:

Unescaped	translation	strings	containing	javascript	tags
n-plurals

Embedded	Security	Risks
It's	important	to	use	the	escaping	functions	with	the	translation	API	to	verify	that	dangerous	content	isn't	inserted.	It's
possible	to	do	by	placing	language	files	for	a	particular	translation	domain	inside	a	WordPress	install

You	can	save	typing	out		echo	esc_html(__('',''))		by	using	the	helper	functions:

	esc_html__		instead	of		__	
	esc_attr__		instead	of		__	
etc

There	are	also	an	extended	set	of	functions	that	simplify	this	further	by	adding		e		to	the	function	name:

	esc_html_e	

	esc_attr_e	

These	will	output	on	their	own,	so	an		echo		statement	isn't	needed.

Translation	API	Abuse
The		esc_html_e		helper	functions	are	sometimes	misused	as	a	susbtitute	for		echo	esc_html	.	Always	use	the	second
parameter	that	sets	the	translation	domain.	If	you	don't	it	could	have	unanticipated	side	effects	as	your	strings	are
mistranslated:

//	Good:
echo	esc_html('date');
//	Great:
esc_html_e('date',	'mytheme');
//	Bad:
esc_html_e('date');

n-plurals

I18n

46

https://make.wordpress.org/polyglots/handbook/

A	relatively	unknown	part	of	the	translation	format	is	the		n-plurals		field.	This	determines	the	way	plural	forms	work	in	a
language	for	a	particular	file.

Because	of	its	complexity,	and	for	performance	reasons,	WordPress	loads	this	field	as	a	string,	wraps	it	in	a	function,	and
passes	the	result	to		eval	.	Because	of	this,	it's	very	easy	to	craft	a	language	file	with	a	primitive	PHP	shell.

The	only	way	to	mitigate	this	is	code	review/manual	inspection.

Setting	the	Admin	language
On	installation	WordPress	asks	you	to	select	a	language,	but	you	may	want	to	set	different	languages	for	the	front	end	back
end.	For	example	a	German	website	ran	by	an	English	speaker	may	want	the	admin	area	to	be	in	their	native	language.

In	order	to	do	this,	set	your	sites	language	to	German	using	the		WP_LANG		constant	mentioned	earlier,	and	add	this	code	to
set	the	admin	area	language	to	english:

add_filter('locale',	'wpse27056_setLocale');
function	wpse27056_setLocale($locale)	{
				if	(is_admin())	{
								return	'en_US';
				}

				return	$locale;
}

Foreign	Twitter	Embeds
Sometimes	oembeds	come	back	in	an	unexpected	foreign	language,	this	is	because	the	service	being	used	is	looking	at
your	servers	request	and	tracing	it	back	to	its	origin	to	determine	it's	country.	For	example,	an	English	website	hosted	on	a
German	server	may	result	in	German	twitter	embeds.

Further	Reading
Different	languages	for	front	and	back	ends

I18n

47

https://wordpress.stackexchange.com/questions/27056/different-language-for-frontend-and-backend

Multisite

Grabbing	Data	From	Another	Blog	in	a	Network
Getting	data	from	another	blog	on	the	same	multisite	install	can	be	done.	Some	people	use	SQL	commands	to	do	this,	but
this	can	be	slow,	and	error	prone.

Although	it's	an	inherently	expensive	operation,	you	can	make	use	of		switch_to_blog		and		restore_current_blog		to	make
it	easier,	while	using	the	standard	WordPress	APIs.

switch_to_blog($blog_id);
//	Do	something
restore_current_blog();

	restore_current_blog		undos	the	last	call	to		switch_to_blog	,	but	only	by	one	step,	the	calls	are	not	nestable,	so	always
call		restore_current_blog		before	calling		switch_to_blog		again.

Listing	Blogs	in	a	Network
Listing	blogs	in	a	network	is	possible,	but	it's	an	expensive	thing	to	do.

It	can	be	done	using	the		wp_get_sites($args)		function,	available	since	version	3.7	of	WordPress.	The	function	accepts
an	array	of	arguments	specifying	the	kind	of	sites	you	are	looking	for.

The	function	checks	your	install	and	if	it	finds	you	have	a	large	network,	it	stops	and	returns	an	empty	result.	Before	using,
check	if		wp_is_large_network()		returns		true	.	WordPress	considers	an	install	of	10,000	or	more	sites	to	be	a	large
network,	but	this	can	be	filtered	using	the		wp_is_large_network		filter.

See	the	codex	entry	for		wp_get_sites		for	more	details.

Domain	Mapping
Domain	mapping	allows	a	blog	on	a	multisite	install	to	serve	from	any	domain	name.	This	way	a	blog	does	not	have	to	be	a
subdirectory	of	the	main	install,	or	a	subdomain.	The	WordPress	Default	supports	Domain	Mapping	without	Alias.	Add	the
Domain	in	the	blog-settings	to	the	blog	of	the	Network	administration	area.

Often	is	it	helpful	-	but	not	necessary,	to	set	the		COOKIE_DOMAIN		constant	to	an	empty	string	in	your		wp-config.php	:

	define('COOKIE_DOMAIN',	'');	

Otherwise	WordPress	will	always	set	it	to	your	network’s		$current_site->domain	,	which	could	cause	issues	in	some
situations.

WordPress	Core	hopes	to	provide	Domain	Alias	Mapping	in	the	future,	but	until	then	you	can	make	use	of	one	of	the
following	plugins:

Mercator	-	WordPress	multisite	domain	mapping	for	the	modern	era.
WordPress	MU	Domain	Mapping	-	Map	any	blog/site	on	a	WordPressMU	or	WordPress	3.X	network	to	an	external
domain.

Multisite

48

http://codex.wordpress.org/Function_Reference/wp_get_sites
https://github.com/humanmade/Mercator
https://wordpress.org/plugins/wordpress-mu-domain-mapping/

Testing
It's	important	that	you	test	your	code	and	your	themes,	but	that	takes	time.	Luckily	there	are	tools	and	methods	of
simplifying	and	automating	these	things.	This	chapter	is	going	to	cover	basic	preventative	testing,	and	tools	to	help	catch
bugs	and	things	you	may	have	missed.

WP	Test	&	Theme	Test	Data
Good	for	testing	content
It's	a	content	export	file
Contains	lots	of	posts	and	categories	of	varying	types	to	test	as	many	possible	combinations	as	possible
Useful	for	testing	themes	and	unhandled	scenarios	such	as	posts	without	titles,	giant	nav	menus,	or	very	long	tag
names.

Theme	review	tester	plugin
Good	for	testing	theme	completion
A	plugin	that	runs	several	automated	tests	on	the	current	theme
Checks	for	things	the	theme	review	team	checks	for	when	submitting	themes	to	wordpress.org
Includes	things	such	as	comment	forms,	showing	tags	and	categories,	displaying	author	names,	etc

Integration	vs	unit	vs	behavioural	testing
Good	for	testing	code	and	as	a	development	methodology
Automated	testing
Explain	the	difference	between	the	three
Mention	they're	covered	in	more	depth	in	sub-chapters

Testing

49

Unit	Testing
Unit	testing	tests	individual	components.	Each	test	runs	in	isolation,	and	tests	only	a	single	item,	such	as	a	function	or
method.	If	a	unit	test	involves	multiple	interacting	objects,	then	you	have	written	an	integration	test.

For	example,	if	I	have	this	function:

function	add($a,	$b)	{
		return	$a	+	$b;
}

A	unit	test	might	check:

If	5+5	=	10
That	2+3	is	not	7
That	0+0	does	not	fail

Tools	for	Unit	Testing
PHPUnit
PHPSpec

Helpful	Projects	and	Further	Reading
John	P	Blochs	WP	Unit	Test	Starter	project
WP	Mock
Writing	Unit	Tests	for	WordPress

Unit	Testing

50

https://phpunit.de/
http://phpspec.net/
https://github.com/johnpbloch/wp-unit-test-project
https://github.com/10up/wp_mock
http://greg.harmsboone.org/blog/2014/01/01/writing-unit-tests-for-wordpress

Behaviour	Testing
Also	known	as	Behaviour	Driven	Development,	this	kind	of	testing	tests	the	entire	stack.	For	example	a	behavioral	test	may
start	by	visiting	a	webpage,	clicking	a	button,	and	checking	that	an	expected	string	was	found.

BDD	is	good	for	testing	business	requirements.	It	generally	falls	into	2	types,	story	based	testing,	and	code-based	testing.
An	example	of	story	based	testing	would	be	Behat,	which	uses	a	human	readable	format	so	that	clients	can	read	the	tests
in	plain	English	(with	support	for	other	languages	included).

A	major	benefit	of	these	types	of	tests	is	that	the	tests	themselves	do	not	need	to	load	the	WordPress	PHP	environment.	A
test	site	can	be	put	up	on	a	server,	and	the	tests	can	be	pointed	at	the	test	site.	Tools	such	as	Behat	then	run	as	if	they
were	a	user	controlling	a	browser	(which	is	exactly	how	most	Behat	Mink	tests	work).	This	makes	it	one	of	the	easiest
ways	to	introduce	testing,	and	the	easiest	to	learn	first

Tools	for	Behaviour	Testing
http://behat.org/Behat
SpecBDD

Behaviour	Testing

51

http://behat.org/
http://www.phpspec.net/docs/introduction.html

Test	Driven	Development
Explain	theory	and	idea	behind	TDD

Test	Driven	Development

52

WP_UnitTestCase
Explain	the	WP_UnitTestCase

Further	Reading
http://taylorlovett.com/2014/07/04/wp_unittestcase-the-hidden-api/

WP_UnitTestCase

53

http://taylorlovett.com/2014/07/04/wp_unittestcase-the-hidden-api/

Servers	And	Deployment

Test	Your	Changes
Always	test	changes	on	a	local	environment	before	copying	them	to	your	production	server	(see	Getting	Started	>	Local
Development	Environment.)

Make	sure	the	development	server	has	error-reporting	turned	on	so	you	catch	anything	that	would	be	invisible	on	the	live
site.

Make	sure	your	local	environment	is	as	similar	to	your	production	server	as	possible	(see	also	Migrations.)

are	you	running	the	same	PHP	version?
do	you	have	the	same	PHP.ini	settings?
do	you	have	the	same	version	of	MySQL?
do	you	have	the	same	Apache	or	Nginx	version	&	configuration?
do	you	have	the	same	version	of	WordPress	with	the	same	plugins	enabled?

Consider	using	a	staging	server	to	help	with	this.

If	you're	copying	a	database	from	development	to	production	(or	vice-versa),	you'll	need	to	change	the	URLs.	See	the
Migrations	section	in	this	chapter.

Use	Version	Control
If	you	use	a	version	control	or	source	code	management	system	such	as	Git,	you'll	be	able	to	roll	back	your	changes	when
(not	if)	you	make	a	mistake.	You	can	'push'	your	changes	with	a	single	command	and	updated	files	will	first	be	copied	to	a
temporary	area	before	being	deployed	simultaneously.	This	avoids	the	site	ever	being	left	in	a	broken	state	if	you	have	a
slow	connection.

A	good	server	host	provides	SSH	access,	but	if	your	hosting	provider	only	allows	SFTP	access,	consider	using	git-ftp,	so
you	can	minimise	the	time	it	takes	to	update	the	site	and	the	chance	of	forgetting	to	upload	any	new	files.	You'll	still	benefit
from	version	control	locally	or	if	you're	working	with	other	developers.

Avoid	using	file	editors	on	control	panels	like	CPanel.

Built-in	Editors
WordPress	has	theme	and	plugin	editors	built	into	the	admin	area.

Avoid	using	them.

The	editor	is	a	simple	HTML	textarea	-	you	get	none	of	the	code	highlighting,	formatting	or	syntax	checking	of	an	IDE
or	basic	text	editor,	it	might	seem	quicker	but	it's	also	much	easier	to	make	mistakes.
there's	no	version	control,	you	don't	get	a	list	of	what	you	changed	and	the	only	protection	is	your	own	backups	(if	you
remembered	to	make	any).
A	significant	error	might	break	WordPress	in	such	a	way	that	you	can	no	longer	access	the	editor	itself.

The	theme/plugin	editor	is	also	a	potential	security	risk:	if	someone	gains	access	to	an	administrator	account	they	can	edit
sensitive	files	on	the	server.

You	can	turn	off	file	editing	completely	by	adding	this	line	to	wp-config.php

define('DISALLOW_FILE_EDIT',	true);

Servers	And	Deployment

54

https://en.wikipedia.org/wiki/Staging_site
https://github.com/Tarendai/WordPress-The-Right-Way/blob/master/en/servers_and_deployment/migrations.md
http://git-scm.com/
https://github.com/git-ftp/git-ftp
http://codex.wordpress.org/Editing_Files

Servers	And	Deployment

55

WP	CLI
WP	CLI	is	a	command	line	tool	maintained	by	numerous	experienced	WordPress	developers	and	core	contributors.	It's
similar	to	Drupals	Drush.

Deploying	a	New	Install
To	download	WordPress	into	a	folder	on	the	command	line,	use	this	command:

wp	core	download

This	will	download	the	latest	version	of	WordPress	into	the	current	directory.	Next	you'll	need	to	create	your		wp-config.php	:

wp	core	config	--dbname=testing	--dbuser=wp	--dbpass=securepswd

Finally,	run	the	install	command	to	set	up	the	database:

wp	core	install	--url="example.com"	--title="Example	Site"	--admin_user="exampleadmin"	--admin_password="changeme"	--
admin_email="example@example.com"

You	should	now	have	a	fresh	new	WordPress	install	ready	to	log	in	to.

Multisite

If	you	want	to	create	a	multisite	install,	use	the		wp	core	multisite-convert		command:

wp	core	multisite-convert	--title="My	New	Network"	--base="example.com"

Importing	Content
You	may	have	content	you	want	to	pre-add	or	migrate	to	your	new	install.	For	this	WP	CLI	provides	the	content	import	and
export	commands.	These	commands	accept	or	create	standard	wxr	files,	the	same	format	used	by	the	WordPress	export
and	import	plugin	in	the	admin	interface.

Use	this	command	to	import:

wp	import	content.wxr

Use	this	command	to	export:

wp	export

WP	CLI

56

Migrations
There	are	a	number	of	things	to	take	note	of	when	moving	sites	from	server	to	server,	and	when	changing	their	URLs.

Since	server	moves	and	domain	changes	are	a	large	topic,	we're	going	to	cover	only	the	most	important	things.

Imports	and	Exports
When	performing	imports	and	exports,	there	are	a	lot	of	pitfalls	as	your	site	increases	in	size.	To	avoid	problems,	do	the
following:

Use	WP	CLI	to	run	imports	and	exports.	The	admin	UI	is	limited	by	the	PHP	time	limits,	if	your	import	or	export	doesn't
finish	within	the	available	time,	it	can	fail.	Running	in	a	terminal	using	WP	CLI	gives	you	unlimited	time	to	do	it
Ask	the	exporter	to	generate	in	5MB	chunks.	This	reduces	the	memory	requirements	of	each	individual	import,	and
gives	a	lot	more	flexibility
Disable	image	resizing.	This	speeds	up	importing	of	images,	letting	you	manually	resize	in	bulk	once	the	content	is
imported.

Server	Moves
On	a	new	server,	the	environment	may	not	match	the	old	environment,	and	so	you	should	look	out	for:

Older	PHP	versions.	Using	newer	PHP	features	on	a	server,	then	moving	to	an	older	version	could	cause	your	code	to
Fatal	error.	Check	before	hand	what	version	of	PHP	is	used	and	make	sure	it's	the	same	or	greater.

Run		php	-v		or	use	the		phpversion()		command	if	you	don't	have	access	to	the	server.
PHPStorm	uses:	use	the	PHP	Language	Level	setting	to	check	for	errors	automatically.

File	system	changes.	Not	every	server	puts	your	site	at	/srv/www,	some	use	/var/www,	and	you	should	make	sure	that
any	hardcoded	paths	are	changed	to	match.	You	can	normally	substitute		$_SERVER['DOCUMENT_ROOT']		instead.

URL	changes
If	you're	changing	your	sites	URL,	you	may	or	may	not	be	moving	server.	If	you	do	change	URL	however,	it's	not	enough	to
change	the	DNS	and	expect	things	to	work.	WordPress	stores	data	in	the	database	that	contains	your	sites	URL.

A	new	user	may	decide	to	use	a	small	SQL	command	to	search	for	all	instances	of	the	old	URL,	and	replace	them	with	the
new	URL.	This	will	not	work.

The	reason	for	this	is	that	some	data	is	stored	in	serialised	PHP	data	structures.	These	serialised	strings	contain	the	length
of	the	URL,	and	if	your	URLs	length	changes,	the	data	structures	are	no	longer	valid.	This	causes	issues	when	you	attempt
to	load	your	site.

To	get	around	this,	a	number	of	tools	are	available	that	can	look	inside	the	data	structures	and	modify	them	correctly.	We
recommend	using	WP-CLI's	search-replace	command,	but	other	solutions	exist.

Migrations

57

http://wp-cli.org/commands/search-replace/

Security

Salts
Your	passwords	and	cookies	are	stored	with	salts	applied.	Salts	are	strings	of	data	that	are	kept	secret,	and	hashed
together	with	important	data	so	that	it's	harder	to	guess.	This	way	a	hacker	can't	just	run	through	every	password	and
generate	a	rainbow	table	of	all	possible	results	and	brute	force	every	website.	Instead	they	need	to	generate	a	new	table
for	every	site	they	target	after	acquiring	the	secret	salts	used.	There	is	an	API	to	provide	salts	and	secret	keys	at
wordpress.org,	which	you	can	then	copy	paste	into	your		wp-config.php	.

Escaping
When	outputting	data,	you	should	escape	it.	For	example,	if	you	output	a	css	class,	you	should	use		esc_attr	,	otherwise,
an	attacker	could	sneak	in	the	value		classname"><script>alert('hello');</script><span		and	run	arbitrary	code	on	your	site.

An	important	part	of	escaping	however,	is	to	escape	as	late	as	possible.	If	you	escape	a	variable	once,	then	use	it	5	times,
that	variable	may	be	modified	at	any	point	between	escaping	and	output,	so	always	escape	at	the	moment	of	output.

Sanitise	early
Escape	Late
Escape	Often

Nonces
In	the	days	of	MySpace,	a	user	could	add	an	image	to	their	profile,	and	set	the		src		tag	as		/logout.php	.	Any	user	who
visited	their	profile	would	be	immediatley	logged	out.	This	is	an	example	of	a	CSRF	attack	or	Cross	Site	Reference	attack.

In	order	to	get	around	this,	we	use	nonces.	Nonces	are	small	tokens	that	can	be	passed	around	to	validate	an	action.	For
example,	a	form	may	contain	a	nonce,	which	is	then	checked	for	when	processed.	This	makes	sure	that	all	form
submissions	came	from	the	form,	and	not	a	malicious	or	unintended	script.

@todo:	Add	notes	on	how	to	use	nonces	effectively

Note:	In	the	United	Kingdom,	a	nonce	is	a	name	for	a	child	sex	offender,	be	careful	of	using	the	word	out	of	context

The	Location	of		wp-config	
You	can	move	it	one	level	up	so	it's	not	in	a	web	accessible	location

Table	prefixes
Don't	use	the	default	wp_
Notes	on	automated	attacks

User	ID	1
Don't	call	it	'admin'
Don't	give	it	administrator	priviledges

Security

58

Roles	and	Capabilities
What	they	are

Removing	vs	Hiding	Settings	Pages
Hiding	things	with	CSS	doesn't	make	it	secure
People	have	dev	tools	too
Automated	tools	ignore	CSS
how	to	remove	admin	menus	and	change	the	capabilities	needed	to	do	things

Custom	Password	Reset	Code
Some	people	write	their	own	password	reset	facilities.	This	is	bad
If	you	really	must,	make	it	a	forgotten	password	link,	don't	make	it	actually	show	your	password

timthumb.php
Don't	use	it
There's	an	image	API	for	that
timthumb	was	disowned	by	its	creators	and	is	officially	no	longer	supported
Banned	on	a	number	of	managed	WordPress	hosts

SSL
All	big	clients	deserve	an	SSL	certificate.	If	you're	running	an	e-commerce	site,	this	is	especially	true,	and	your	entire	site
should	be	using	SSL	for	all	logged	in	users.

A	note	on	public	wifi,	unsecured	wifi,	and	snooping
Maybe	mention	firesheep?

Admin	Only	SSL
If	your	site	isn't	an	ecommerce	site,	but	you	have	users	who	visit	the	backend,	their	logged	in	sessions	should	be	sent
over	an	https	connection.
Explain	how

Myths
There	are	a	lot	of	feel	good	security	fixes	that	float	around,	that	do	nothing	to	help	your	security,	waste	your	time,	and
sometimes	increase	the	risk.	Here	are	a	few:

Hiding	the	Admin	and	Login	URLs

Some	people	try	to	change	the	admin	and	login	URLs	in	hopes	it	will	fool	attackers	and	automated	tools
WordPress	adds	in	/admin/	and	/login/	rewrite	rules	in	the	newer	versions	so	moving	the	files	is	pointless
It	can	break	some	functionality	in	code	without	necessary	care
Trying	to	go	to	the	admin	URLs	will	redirect	you	to	the	changed	login	URL	anyway,	and	if	you	fix	that	then	the	modal
box	that	shows	in	the	admin	screen	when	your	session	expires	will	be	broken	too

Security

59

Deactivated	Plugins	&	Themes

Because	of	how	PHP	works,	deactivated	plugins	can	still	be	hit	from	a	users	web	browser
Badly	written	plugins	might	do	things	if	the	right	URL	is	loaded,	even	if	they're	not	activated.	This	is	especially	true	of
plugins	with	their	own	AJAX	endpoints	that	don't	use	the	WP	AJAX	API.

Recovering	From	Attacks
Take	and	use	regular	backups
Download	a	fresh	copy	of	WordPress	and	extract	it	over	the	top	of	your	existing	install	to	make	sure	that	WP	Core	is
unmodified
Check	your	plugins	and	code	against	version	control

Security

60

Community

WordCamps
WordCamps	are	short,	1-2	day	conferences	that	focus	on	everything	WordPress.	They	are	designed	to	have	both	a	general
focus	(on	blogging,	writing	content,	marketing	websites	and	the	business	surrounding	WordPress)	and	a	technical	focus
(aimed	at	developers	writing	plugins	and	themes).

There	are	over	50	WordCamps	every	year	held	all	over	the	world	in	over	40	countries,	and	are	a	great	way	to	explore	the
community.	Many	WordCamp	sessions	are	placed	onto	WordPress.tv,	and	is	a	great	opportunity	to	help	the	WordPress
community,	either	by	speaking,	volunteering,	or	sponsoring.

You	can	find	out	all	upcoming	WordCamps	at	WordCamp	Central.

Contributor	Days
Contributor	days,	usually	held	after	WordCamps	(but	can	be	independent),	are	events	that	are	set	up	to	help	you	contribute
to	WordPress.	The	benefits	to	contributing	to	WordPress	are	numerous,	both	for	a	business	looking	to	get	more	exposure
in	and	amongst	the	WordPress	community,	to	lone	developers	looking	to	grow	their	skills	working	in	a	team	on	a	massive
project.

You	do	not	need	to	be	code	proficient	to	contribute	to	WordPress.	They	are	looking	for	a	wide	range	of	skills,	like	support,
theme	review,	as	well	as	accessibility.

Look	at	your	local	WordCamp	if	they	are	holding	a	Contributor	day.	Alternatively,	if	you're	based	in	the	United	Kingdom,	you
can	find	the	latest	WordPress	Contributor	day	at	http://www.wpcontributorday.com/.

Local	User	Groups
.org	Support	Forums
IRC	Channels
WordPress	Stack	Exchange
WordPress	Slack

Community

61

http://wordpress.tv/
http://central.wordcamp.org/
http://www.wpcontributorday.com/

Credits
Many	people	have	contributed	to	WordPress	The	Right	Way,	and	they've	done	so	using	GitHub.	You	can	view	the	full	list	of
contributors	here,	and	you	can	fork	and	submit	your	own	Pull	Request	to	join	them!

Credits

62

https://github.com/Tarendai/WordPress-The-Right-Way/graphs/contributors

	Introduction
	Getting Started
	Code Style Guide
	Debugging
	Error Logging
	Handling Errors
	Tools
	wp-config.php

	Core
	Data
	Queries
	Post Queries
	Taxonomy and Term Queries
	Comment Queries
	User Queries
	SQL

	Routing
	The Main Loop & Template Loading
	Where Query Variables Come From
	Rewrite Rules
	Clashes, Slugs, & Debugging

	Templates
	JavaScript
	Widgets
	I18n
	Multisite
	Testing
	Unit Testing
	Behaviour Testing
	Test Driven Development
	WP_UnitTestCase

	Servers And Deployment
	WP CLI
	Migrations

	Security
	Community
	Credits

