

1.	 Introduction
2.	 A	Little	Under	the	Hood

i.	 From	indentation	...
ii.	 HTML	to	HAML
iii.	 Hampton	invents	HAML
iv.	 Good	'ol	CSS
v.	 HAML	for	CSS
vi.	 Force	the	hand
vii.	 Sass	<>	SCSS

3.	 A	Sass	Style	Guide
i.	 Declaration	listing
ii.	 Using	mixins
iii.	 Using	extended	selectors
iv.	 Style	and	Logic
v.	 Comments
vi.	 Naming	conventions
vii.	 Working	w/Partials

4.	 Rules	to	live	by
i.	 What	is	OOCSS?
ii.	 CSS	Object
iii.	 OOCSS	Guidlines
iv.	 Separation	of	content
v.	 Separation	of	structure

5.	 Semantic	vs	Presentational
i.	 Semantic
ii.	 Presentational
iii.	 Semantic	and	Presentational

6.	 File	management
i.	 Large	CSS	projects
ii.	 MVC	style
iii.	 Learning	from	mistakes
iv.	 Elements,	modules	and	layout
v.	 File	structure
vi.	 The	Manifest
vii.	 Theme	options
viii.	 Partials
ix.	 Modules	and	UI	Patterns
x.	 The	layout

7.	 Handy	tools
i.	 Core	Data	Types
ii.	 Number	operations
iii.	 Setting	variables
iv.	 Variable	scoping
v.	 !default	and	!global
vi.	 _config.scss

8.	 Mixins
i.	 Anatomy	of	a	mixin
ii.	 Default	values	for	mixins
iii.	 Global	defaults

Table	of	Contents

Sass	in	the	Real	World:	book	1	of	4

2

iv.	 The	Turducken	mixin

Sass	in	the	Real	World:	book	1	of	4

3

In	our	lives,	whenever	we	encounter	a	great	experience	whether	it	be	a	great	movie	or	a	great	vacation	location	or	a	great
technology	toolset,	our	desire	is	to	share	it	with	everyone	we	encounter.	That	is	how	we	feel	about	Sass	CSS	and	that	is
why	we	decided	to	write	a	book	about	it.	There	have	been	plenty	of	introductory	books	on	Sass,	however	we	felt	that	our
field	was	missing	a	more	advanced	book	on	Sass,	a	book	that	goes	beyond	the	basics	of	Sass	and	CSS	and	lays	the
proper	groundwork	for	starting	a	CSS	project	with	Sass.

We	are	very	excited	to	take	this	journey	and	hope	that	you	will	join	us	and	share	this	experience	with	us.

--	Kianosh	Pourian	and	Dale	Sande

Our	initial	goal	of	writing	this	book	was	to	fill	a	void	in	Sass	CSS	books	which	is	a	book	that	covered	beyond	the	basics	of
Sass	CSS	development.	To	fulfill	this	goal,	our	initial	approach	is	to	provide	a	single	book	that	covered	the	A	to	Z	of
professional	Sass	CSS	development.	While	this	goal	has	not	changed,	our	approach	has	made	a	small	"pivot"	(word	du
jour	in	today's	technology	world).

We	have	divided	our	single	book	approach	into	a	4	part	book	series.	This	was	done	to	achieve	several	goals:

Be	able	to	publish	a	book	quicker	and	bringing	it	into	the	market	faster
Allow	users	to	select	the	desired	part	of	the	series	without	having	to	purchase	the	entire	series.	This	was	a	very
important	part	of	our	approach,	as	we	have	seen	that	different	developers	are	at	different	levels	of	Sass	CSS	learning
and	development.	This	will	give	all	a	chance	to	fill	in	the	gaps	as	needed.

The	four	part	series	consist	of	the	following	parts:

Part	1:	Getting	Started	with	Sass.	This	part	of	the	series	concentrates	on	the	basics	of	Sass	development	however	with
a	deeper	context	and	history	behind	all	that	is	Sass.	Our	goal	for	this	part	of	the	series	was	to	not	only	review	the
basics	but	also	present	an	explanation	behind	all	the	decisions	that	was	made	and	decisions	that	a	developer	must
consider	and	make	when	developing	with	Sass
Part	2:	Deeper	Dive.	A	continuation	of	our	philosophy	on	not	only	understanding	why	certain	structure	has	been	built
but	also	the	deeper	underlying	structure	behind	it.	In	this	part	of	the	series,	we	have	taken	a	deper	dive	into	functions
(both	out-of-the-box	functions	and	custom	functions),	when	to	use	functions	vs.	mixins	and	other	tools	and	processes
that	accompany	Sass	CSS	development.
Part	3:	Getting	Really	Sass'y.	In	this	part	of	the	series,	we	continue	with	all	the	development	needs	by	talking	about
issues	like	responsive	design,	testing,	debugging,	and	working	with	frameworks	like	Zurb	Foundation	or	Twitter
Bootstrap.	We	will	also	talk	a	bit	about	Compass,	the	Sass	framework	that	can	be	accompnied	with	Sass	CSS
development.
Part	4:	Sass	in	the	Stack.	We	end	the	book	series	with	the	implementation	of	Sass	in	different	technology	stacks	like
NodeJS	implementation	or	the	Rails	asset	pipeline.	We	will	also	touch	upon	some	performance	issues	and	how	to
handle	these	issues.

We	hope	you	enjoy	these	books,	either	through	individual	series	or	the	entire	four	part	series,	and	this	will	help	you	further
in	your	Sass	CSS	development.

This	is	the	part	that	most	book	will	label	as	"Who	is	this	book	for?"	but	since	we	are	very	strict	in	our	grammar	and	refuse

Sass	in	the	Real	World:	Book	I	of	IV

About	the	book	and	series

Assumptions

Sass	in	the	Real	World:	book	1	of	4

4Introduction

to	end	a	sentence	in	a	preposition,	we	have	called	it	"Assumptions",	but	the	sentiment	is	the	same.	These	are	some	of	the

assumptions	that	we	are	making:

We	assume	that	the	reader	is	familiar	with	Sass	CSS	and	has	install	Sass	on	their	development	machine.	If	you	have
not	installed	Sass	CSS,	it	is	very	easy,	go	to	Sass-lang.com.
We	are	using	a	command	line	interface	to	run	all	of	our	Sass	development.	However	if	you	want	to	use	some
applications	like	Codekit,	Compass.app,	Scout,	or	any	other	development	application,	please	feel	free.
Although	we	are	very	opinionated	about	some	of	our	approaches	in	Sass	CSS	development,	we	are	agnostic	to	the
technology	stack	that	is	being	used	and	promote	the	usage	of	Sass	in	any	environment	that	is	suitable	and	will	meet
your	needs.

So	let's	start	learning	about	Sass	CSS	and	develop	CSS	with	its'	rightful	accompanying	tool.

Sass	in	the	Real	World:	book	1	of	4

5Introduction

http://sass-lang.com/install
http://incident57.com/codekit/
http://compass.handlino.com/
http://mhs.github.io/scout-app/

Sass:	Syntactically	Awesome	Style	Sheets.	A	stylesheet	language	initially	designed	by	Hampton	Catlin	and	developed	by
Nathan	Weizenbaum	and	Chris	Eppstein.	Sass	clearly	is	a	pioneer	in	it's	field.	Despite	it's	many	competitors,	Sass
continues	to	pave	the	way	not	only	for	preprocessors,	but	continues	to	gain	support	with	the	W3C	standards	group	and
influential	browser	manufactures.

One	of	Sass'	many	strengths	we	will	explore	is	it's	support	of	two	distinctly	different	syntaxes.	A	feature	that	has	lead	to
confusion	amongst	newcomers	and	controversy	with	the	more	seasoned	developers.	Be	it	the	the	original	Sass	.sass
syntax	or	the	newer	SCSS	.scss	syntax,	they	are	equally	committed	to	by	the	Sass	core	team	and	have	no	functional
differences.	In	this	chapter	we	will	go	into	where	Sass	came	from,	why	the	SCSS	syntax	was	created	and	what	the
differences	really	are.

Sass'	next	learning	curve	typically	falls	into	structural	and	architectural	disciplines.	It	is	not	that	developers	don't	know	how
to	write	code,	but	more	to	the	point	of	writing	well	structured,	readable,	manageable	and	scalable	code.	The	one	who	wrote
the	code	is	not	always	the	one	who	maintains	the	code.	Remember	the	campfire	rule,	"You	must	always	leave	the	code	as
good	or	in	a	better	state	than	you	found	it."

A	little	under	the	hood

Sass	in	the	Real	World:	book	1	of	4

6A	Little	Under	the	Hood

In	May	2006	Hampton	Catlin	introduced	us	to	HAML.	A	lightweight	markup	preprocessor	language	that	uses	indentation
(whitespace)	to	separate	blocks.	HAML	replaces	the	more	common	HTML	syntax		<tag>	...	</tag>		with	a	simpler,	more
lightweight	syntax		%tag	.	HAML's	true	strength	lies	within	it's	use	of	indentation	to	determine	selector	nesting	and	block
separation.

In	this	section	I	will	discuss	the	differences	between	HTML	and	HAML	and	how	these	ideas	inspired	Sass.

From	indentation	syntax	(whitespace)	Sass	to	Sassy	CSS
(SCSS)

Sass	in	the	Real	World:	book	1	of	4

7From	indentation	...

HTML	relies	on	open	and	closing	tags		<tag>	...	</tag>		to	separate	code	blocks.	Placement	of	HTML	selectors	within	a
pair	of	tags	designates	nesting.

In	the	following	example	you	will	see	that	all	the	content	for	this	block	is	nested	within	the		<article>	...	</article>		tags.
The	nested		<p>	...	</p>		tags	contain	the	nested		<a>	...			tags	stating	that	the		<a>		inline-block	element	will	be	inside
the		<p>		block	element.

<article>
		<h1>primary	header	title	for	paragraph	below</h1>
		<p>
				Example	of	body	text	link
		</p>
</article>

It's	interesting	to	note,	that	while	returns	and	tabbing	in	HTML	is	a	good	form	of	writing	clean	code	and	does	make	the	code
easier	to	read,	it	is	not	necessary	for	nesting	or	block	separation.	The	clear	advantage	here	is	with	HTML	minification	of
course.

It	isn't	until	we	begin	to	append	styles,	actions	and	other	attributes	to	the	markup,	that	reading	becomes	increasingly
difficult.	Notice	in	the	following	example	by	simply	adding	a	few	additional	attributes	to	the	HTML	that	it	becomes	more
difficult	to	visually	parse	out	the	content	from	the	functionality.

<article	class="primary-article"	id="main-author"	data-author-id="999">
		<h1>primary	header	title	for	paragraph	below</h1>
		<p>
				Example	of	body	text	link
		</p>
</article>

The	worst	part	is,	this	is	still	static	HTML.	Things	only	get	worse	as	we	begin	to	add	logic	and	insert	dynamic	content.

From	HTML	to	HAML

Sass	in	the	Real	World:	book	1	of	4

8HTML	to	HAML

In	the	previous	section	we	saw	when	traditional	HTML	increases	with	complexity,	it	decreases	in	readability.	It	was	from	this
perspective	that	Hampton	came	up	with	the	four	principals	to	good	programming	with	HAML.

Markup	should	be	beautiful
Markup	should	be	DRY	(Don't	Repeat	Yourself)
Markup	should	be	well-indented
XHTML	structure	should	be	clear

Where	HTML	requires	open	and	closing	tags,	HAML	does	not.	Where	HTML	does	not	require	indentation,	HAML	enforces
it.	The	beauty	of	HAML	is	in	it's	lack	of	repetition,	aka	Do	Not	Repeat	Yourself	(DRY).	HAML	removes	the	angle	brackets
(chevrons)		<	...	>		and	replaces	them	with	a	single		%		symbol.	To	reduce	repetition,	HAML	also	removes	of	the	need	for	a
closing	tag.	Notice	in	the	following	example	that	only	an	opening	tag	with	a		%		symbol	is	required	to	open	a	new	HTML
block.

%article
		...	content	...

Earlier	I	stated	that	HTML	requires	nested	tags	to	be	physically	nested	within	each	other	in	the	markup.	Following	the
principals	of	Markup	should	be	well-indented	and	XHTML	structure	should	be	clear,	HAML	takes	a	more	specific	approach.
Each	return	signifies	a	new	block	and	a	return	with	a	two-space	indent	signifies	a	nested	tag.

In	the	following	example	you	will	see	how	the		<article>	...	</article>		tags	are	simply	replaced	with		%article	.	You
should	also	notice	how	I	used	indentation	to	nest	the		%h1		and		%p		tags	within		%article	.	Last,	see	how	I	nested	the		%a		tag
within	the		%p		tag.

%article
		%h1	primary	header	title	for	paragraph	below
		%p
				%a{:href	=>	"#"}	Example	of	body	text	link

HAML	doesn't	stop	there.	In	the	previous	section	I	showed	how	simple	HTML	can	get	harder	to	read	by	adding	attributes	to
the	markup.	HAML	helps	this	by	removing	statements	like		class="..."		and		id="..."	.

The	following	example	illustrates	how	HAML	simply	refers	to	an	id	by	using	the	pound	#	symbol	and	a	class	is	simply
referred	to	with	a	period	.	symbol.	Using	this	method	I	can	take	a	HTML	statement	like		<article	class="primary-article"
id="main-author"	...		and	reduce	it	to	something	as	simple	as		%article#main-author.primary-article	.

%article#main-author.primary-article
		%h1	primary	header	title	for	paragraph	below
		%p
				%a{:href	=>	"#"}	Example	of	body	text	link

HTML	href	tags	aren't	exactly	reduced	in	HAML,	but	the	syntax	uses	a	Ruby		key:value		pair	style.	Notice	in	the	example
how	I	replaced				with		%a{:href	=>	"#"}	.

HAML	was	a	radical	new	way	of	looking	at	HTML.	HAML	embraces	standardized	HTML	and	makes	it	easier	to	write,	and
cleaner	to	read.

It	was	from	the	success	of	these	powerful	concepts	that	the	idea	of	Sass	was	born.

Hampton	invents	HAML

Sass	in	the	Real	World:	book	1	of	4

9Hampton	invents	HAML

Sass	in	the	Real	World:	book	1	of	4

10Hampton	invents	HAML

When	Hampton	Catlin	first	approached	Nathan	Weizenbaum,	his	idea	was	for	a	HAML	for	CSS.	Much	like	HTML,	standard
CSS	is	full	of	repetition	and	the	syntax	relies	on	characters	like	semi-colons	;	to	separate	declarations	and	curly-brackets		{
...	}		to	separate	blocks	of	style	rules.

The	following	example	illustrates	a	common	CSS	selector	with	CSS	rules.	However,	unlike	HTML,	nesting	requires
duplication	of	the	parent	selector(s).

header	{
		width:	100%;
		height:	100px;
}

header	.nav	{													/*	header	is	repeated	*/
		text-decoration:	none;
		background:	#fff;
		color:	#333;
		border-radius:	5px	5px	0	0;
}

header	.nav	p	{											/*	header	and	.nav	are	repeated	*/
		font-weight:	bold;
}

I	don't	know	about	you,	but	this	repetition	was	something	that	always	bothered	me.	Years	before	I	ever	encountered	Sass	I
would	beg	the	question,	"Why	can't	I	just	return+tab?"	As	it	turns	out,	others	were	thinking	the	same	thing.

It	should	be	noted,	in	the	same	way	returns	and	indentation	are	best	practice	for	formatting	HTML,	the	same	goes	for	block
and	declaration	separation	in	CSS.

In	the	following	example	I	illustrate	three	styles	of	CSS,	expanded,	nested	and	compact.

/*	Expanded	*/
header	{
width:	100%;
		height:	100px;
}
header	p	{
		font-size:	48px;
}

/*	Nested	*/
header	{
		width:	100%;
		height:	100px;	}
		header	p	{
				font-size:	48px;	}

/*	Compact	*/
header	{	width:	100%;	height:	100px;	}
header	p	{	font-size:	48px;	}

Since	CSS	formatting	relies	on	syntax	for	block	and	rule	separation,	CSS	authors	are	able	to	use	all	three	styles	at	the
same	time	in	the	same	document	if	desired.

In	many	cases	there	is	a	distinct	reason	why	multiple	styles	are	used	in	a	single	document.	There	are	also	a	lot	of	cases
where	the	code	was	simply	edited	by	multiple	developers	who	preferred	one	style	over	another.	Going	unchecked,	this	lack
of	style	enforcement	can	quickly	lead	to	chaos	in	the	code	and	makes	it	almost	impossible	to	maintain.	Remember	the
campfire	rule?

Good	'ol	CSS

Sass	in	the	Real	World:	book	1	of	4

11Good	'ol	CSS

Another	format	style	of	CSS	is		compressed	.	This	is	typically	used	for	file	compression	and	not	a	writing	style.

Sass	in	the	Real	World:	book	1	of	4

12Good	'ol	CSS

Like	it's	older	brother	HAML,	Sass	lacks	the	dependency	on	special	characters,	curly-brackets		{	...	}		and	semi-colons
	;	,	that	CSS	does.	Which	means,	Sass	requires	whitespace,	returns	to	designate	block	and	rule	separation,	and
indentation	for	nesting.

The	following	example	illustrates	a	CSS	declaration	that	is	associated	to	the	parent	selector	by	a		return		and	then	a		two-
space	tab	.	Each	following	declaration	is	separated	by	a		return	.	The	level	of	indentation	maintains	the	relationship	between
parent	and	siblings.

Notice	that	the	nested		.nav		and		p		selectors	are	not	duplicated	but	are	using	a		return		and	then	a		two-space	tab	.	Sass
understands	these	relationship	between	selectors.	The	ability	to	nest	without	duplication,	Sass'	most	fundamental	feature,
is	clearly	inherited	from	one	of	HAML's	core	principals.

header
		width:	100%
		height:	100px
		.nav
				text-decoration:	none
				background:	#fff
				color:	#333
				border-radius:	5px	5px	0	0
				p
						font-weight:	bold

It	was	this	un-CSS	looking	CSS	that	made	Sass	a	popular	choice	with	early	adopters	using	HAML.	Many	developers,
especially	those	in	the	Rails	community,	were	quickly	replacing	HTML	with	HAML	and	Sass	was	a	clear	choice	as	a
replacement	for	CSS.

Some	would	argue,	it	was	this	same	un-CSS	looking	CSS	that	kept	many	new	users	from	using	Sass.	This	new	way	of
writing	CSS,	this	new	syntax,	meant	that	your	current	code	had	to	be	either	converted	or	trashed.	To	new	users,	not	familiar
with	how	CSS	preprocessors	worked,	it	was	one	thing	to	use	Sass	and	it	was	another	thing	entirely	to	convert	a	project
over.

HAML	for	CSS	==	Sass

Sass	in	the	Real	World:	book	1	of	4

13HAML	for	CSS

As	Sass'	popularity	began	to	grow,	competing	CSS	preprocessors	began	to	emerge.	A	trend	that	clearly	showed	that	not
only	Rails	developers	were	interested	in	these	ideas.

New	languages,	specifically	LESS	and	xCSS,	showed	up	on	the	scene	and	share	many,	but	not	all,	of	the	same	features	of
Sass.	What	made	them	stand	out	from	Sass	was	their	adoption	of	the	standard	CSS	syntax.	Developers	using	languages
such	as	PHP	or	.NET	were	not	yet	used	to	the	idea	of	indentation	languages	like	HAML	and	Sass.	Adding	to	this,	UI
developers	who's	bread-n-butter	is	CSS,	were	not	to	excited	about	Sass'	syntactical	approach	either.

Sass	found	itself	at	the	crossroads.	CSS3	was	gaining	in	strength	and	popularity.	New	features	were	being	added	to	the
spec	at	lightening	speed.	Not	to	mention,	code	examples	that	could	quickly	be	executed	in	other	competing	languages
required	conversion	in	order	to	be	used	with	Sass.	Sure	there	was	a	quick	command	line	tool	to	convert	CSS	to	Sass,	but
those	who	were	bothered	by	the	syntax	typically	were	not	fans	of	the	command	line	either.	Use	of	the	standard	CSS	syntax
by	competing	languages	made	them	more	desirable	to	a	new	audience	of	preprocessor	users.	Frankly,	Sass'	original
syntax	was	being	viewed	by	some	as	a	barrier	to	the	language.

March	31,	2010,	Nathan	Weizenbaum	announced	Sass	3	beta	release	the	new	CSS-superset	syntax	to	be	known	as
"SCSS"	or	"Sassy	CSS".	It	was	becoming	clear	that	Sass	had	outgrown	it's	humble	beginnings	as	simply	an	aesthetic
alternative	to	CSS.	Sass	was	becoming	a	language	all	of	it's	own.	A	language	that	has	it's	own	path	and	requires	an
approach	that	is	not	exclusively	tied	to	HAML.	This	announcement,	and	the	work	that	followed	it,	was	in	direct	response	to
the	changing	world.	Whereas	HAML	and	the	whitespace	writing	style	was	leveraged	for	Sass	adoption	in	the	beginning,
SCSS	was	to	intended	to	bring	in	a	much	larger	community	of	CSS	developers	that	Sass	was	eager	to	have.

The	addition	of	the	SCSS	syntax	was	a	major	undertaking	by	the	core	team	and	one	that	was	fully	embraced.	Even	to	the
extent	that	the	Sass	reference	docs	were	rewritten	to	use	the	new	CSS	extension	syntax.	A	brief	summary	of	the	work	done
is	as	follows:

SCSS	was	built	from	the	ground	up	based	on	the	CSS3	spec,	and	is	100%	CSS3-compatible
SCSS	can	do	anything	Sass	can	do
SCSS	files	can	import	Sass	files,	and	vice	versa

It	is	important	to	note	that	the	inclusion	of	the	SCSS	syntax	did	not	mean	the	deprecation	of	the	original	whitespace	syntax.
Nathan	Weizenbaum	recognizes	the	indented	sass	syntax	is	here	to	stay	that	a	large	part	of	Sass'	initial	success	was	due
in	part	to	people	who	do	not	prefer	the	standard	CSS	syntax	and	he	was	not	about	to	alienate	a	large	portion	of	it's	users.

Be	it	the	original	Sass	syntax	or	the	newer	SCSS	syntax,	the	good	news	is	that	you	don't	really	have	to	choose.	Positions,
personalities	and	preferences	will	vary	greatly	as	to	how	to	write	Sass.	Maybe	you	choose	to	only	write	Sass,	or	maybe	you
write	only	SCSS,	or	maybe	you	do	a	little	bit	of	both?	Due	to	the	complete	compatibility	of	the	two	syntax,		.sass		files	can
live	harmoniously	with		.scss		files	in	the	same	project.

I	should	note,	the	Sass	whitespace	syntax	and	the	SCSS	syntax	cannot	live	in	the	same	file.	That	is	it's	only	limitation.

Other	CSS	pre-processors	force	the	hand

Sass	in	the	Real	World:	book	1	of	4

14Force	the	hand

http://nex-3.com/posts/94-haml-sass-3-beta-released
http://nex-3.com/posts/102-the-indented-sass-syntax-is-here-to-stay

Sass	is	a	language	and	a	syntax.	SCSS	is	a	syntax	of	Sass.	Both	syntax	support	the	same	features	equally.	Throughout
the	book,	I	will	interchangeably	refer	to	Sass	as	the	language	and	the	syntax.	SCSS	will	only	refer	to	the	syntax	of	the
language.

The	easiest	way	to	identify	Sass,	of	course,	is	the	lack	of	semicolons	;	to	separate	declarations,	or	curly	brackets		{	...	}	
to	separate	selector	rules	or	blocks	as	shown	in	this	example.

.block		//	no	opening	curly-bracket
		font-size:	1em		//	no	semi-colons
		color:	$text-color
		border:	1px	solid	$border-color
		//	no	closing	curly-bracket

Advantage:	Less	characters	to	write.	Style	of	writing	that	enforces	code	standards.	Disadvantage:	Any	conventional	CSS
needs	to	be	converted	before	it	can	be	used.	Using	Sass	meant	learning	a	new	style	of	writing	for	CSS.

SCSS,	on	the	other	hand,	brings	back	the	more	familiar	CSS	appearance	with	the	use	of	semicolons		;		to	separate
declarations	and	curly	brackets		{	...	}		to	separate	rules	as	shown	in	the	following	example.

.block	{														//	opening	curly-bracket
		font-size:	1em;					//	semi-colons	separating	declarations
		color:	$text-color;
		border:	1px	solid	$border-color;
}																					//	closing	curly-bracket

Advantage:	No	conversion	required.	Any	correctly	formatted	CSS	can	be	imported.	Converting	whole	sites	to	SCSS	simply
means	updating		.css		to		.scss		.	If	you	are	already	comfortable	writing	CSS,	you	are	good	to	go	with	SCSS.	Disadvantage:
Curly	brackets		{	...	}		and	semicolons		;		are	back.	CSS	selectors	are	required	to	be	more	expressive.

I	should	also	mention	that	all	valid	forms	of	writing	CSS	is	now	acceptable	in	writing	SCSS.	Illustrated	in	the	following
example,	you	will	see	the	familiar	CSS	writing	styles	of		expanded	,		nested		and		compact	.	Without	a	doubt,	we	will	leave
	compressed		for	magnification	and	not	illustrate	that	as	an	acceptable	writing	style.

//	Expanded
header	{
		width:	$header-width;
		height:	$header-height;
}

//	Nested
header	.nav	{
		text-decoration:	none;
		background:	$background-color;
		color:	$text-color;
		border-radius:	$default-radius	$default-radius	0	0;	}

//	Compact
header	.nav	p	{	font-weight:	bold;	}

SCSS'	ability	to	combine	different	styles	of	writing	is	embraced	by	many	of	Sass'	power	users	as	illustrated	in	this	sample
CodePen	example	by	John	Long	where	he	is	creating	a	mixin	using	the		@content		directive.

@mixin	keyframes($name)	{

Sass	compared	to	SCSS

Sass	in	the	Real	World:	book	1	of	4

15Sass	<>	SCSS

		@-webkit-keyframes	$name	{	@content	}
		@-moz-keyframes	$name	{	@content	}
		@-o-keyframes	$name	{	@content	}
		@keyframes	$name	{	@content	}
}

Sass,	on	the	other	hand,	requires	this	code	to	be	written	in	the	following	way,	illustrating	the	necessity	of	whitespace.

=keyframes($name)
		@-webkit-keyframes	#{$name}
		@content
		@-moz-keyframes	#{$name}
				@content
		@-o-keyframes	#{$name}
				@content
		@keyframes	#{$name}
				@content

While	SCSS	supports	a	combination	of	writing	styles	that	authors	have	come	to	appreciate,	Sass'	streamlined	code	writing
style	has	a	few	shortcuts	that	are	desired	by	many	SCSS	authors.	A	common	feature,	mixins,	only	requires	a	+	symbol
followed	by	the	name	of	the	mixin	and	the	optional	argument(s)	as	shown	in	this	example.

block
		+buttons($button-color)

Whereas	SCSS	requires	you	to	be	more	expressive,	the	full		@include		statement	is	required	as	shown.

block	{
		@include	buttons($button-color);
}

Sass'	shorthand	style	of	writing	also	carries	forward	when	creating	a	new	mixin.	Notice	the	new	mixin	buttons	is	created	by
only	using	the	=	symbol.

=buttons($color)
		border-radius(3px)
		bacground-color:	$color
		line-height:	1.5em

Whereas	again,	SCSS'	expressiveness	requires	the	full		@mixin		directive	to	be	clearly	stated.

@mixin	buttons($color)	{
		border-radius:	3px;
		bacground-color:	$color;
		line-height:	1.5em;
}

Other	directives	like		@extend		and		@function		currently	do	not	have	a	shorthand	versions	in	either	the	Sass	or	SCSS	syntax.

Probably	one	of	the	more	interesting	uses	of	SCSS	is	to	import	vendor	styles	written	in	CSS.	As	a	matter	of	convention,	I
will	create	a	folder	in	my	Sass	directory	called	vendor	and	include	all	my	vendor	specific	CSS.	By	simply	updating	the	file
type	from		.css		to		.scss	,	these	styles	are	now	part	of	my	Sass	architecture.

Currently	there	is	a	debate	about	the	ability	to	directly	import	a	CSS	file.	While	this	can	be	accomplished	within	a	Rails
project	via	the	asset	pipeline,	this	is	not	a	feature	that	Sass	directly	supports.	I	feel	that	there	is	some	logic	to	this	decision.

Sass	in	the	Real	World:	book	1	of	4

16Sass	<>	SCSS

It	is	definitely	considered	best	practice	that	once	you	start	using	Sass	that	all	your	files	should	be	Sass	and	that	having	a
mix	of	Sass	and	CSS	can	only	create	more	problems	then	it	solves.

One	of	the	luxuries	of	working	with	a	preprocessor	is	that	at	any	time	you	can	toss	the	temporarily	processed	CSS	files	and
re-process	your	Sass.	But	if	you	have	a	mix	of	Sass	and	CSS	files	in	your	project,	this	increases	maintenance	complexity.	I
don't	like	things	to	be	unnecessarily	complex,	so	100%	of	my	processed	CSS	comes	from	either	Sass	or	SCSS	files.

This	is	not	to	say	that	this	solution	is	for	everyone.	If	you	are	a	user	that	requires	additional	CSS	resources	to	be	included
as	native	CSS,	Chris	Eppstein	released	a	Gem	that	will	do	this	for	you.	The	Sass	CSS	Importer	Plugin,	as	Chris	describes
it,	"The	Sass	CSS	Importer	allows	you	to	import	a	CSS	file	into	Sass."

In	this	section	I	took	us	on	a	short	journey	from	the	days	when	Sass	was	just	a	gleam	in	Hampton's	and	Nathan's	eye	all
the	way	to	present	day	when	Sass	has	matured	into	a	fully	featured	language	that	supports	to	distinctly	different	writing
styles.	Each	style	with	impassioned	users	on	either	side.	In	the	end,	one	is	not	better	then	the	other	and	these	different
syntax	types	were	created,	and	continually	maintained,	to	serve	different	purposes.

It	is	up	to	you,	the	user,	to	decide	what	is	best	for	you.	Myself,	I	have	taken	the	journey	360.	I	stated	with	the	original	Sass
syntax,	fully	converted	over	to	SCSS	and	now	find	myself	easily	writing	both.	Use	each	syntax	to	their	strengths.	Don't	be
overly	dogmatic	for	one	over	the	other,	I	hear	these	silly	arguments	all	the	time.	There	is	a	lot	to	be	gained	by	simply
understanding	why	someone	else	may	prefer	one	style	over	the	other.

Now	that	we	know	where	Sass	came	from,	in	the	next	section	I	will	discuss	best	practices	for	how	to	write	clean	Sass	that
will	keep	you	from	being	a	pain	in	the	Sass	to	your	team.

Sass	in	the	Real	World:	book	1	of	4

17Sass	<>	SCSS

https://github.com/chriseppstein/sass-css-importer

With	all	of	Sass'	new	found	powers,	the	responsibility	of	code	quality	is	even	more	paramount.	Leaving	code	littered	with
unclear	rule	separations,	randomly	imported	mixins	and	no	clear	use	of	extended	placeholders	will	quickly	decrease	the
readability,	scaleability	and	maintainability	of	your	code.	This	will	also	increase	the	sneering	and	aggravation	of	other
developers	on	your	team.	Guaranteed.

While	there	are	no	guarantees	that	following	a	few	simple	best	practices	will	make	your	code	better,	it	will	make	it	easer	to
read	and	maintain.

Earlier	we	discussed	a	core	strength	of	Sass,	this	being	it's	ability	to	remove	unnecessary	repetition	from	your	nested	CSS
selectors.	Whereas	CSS	requires	selectors	to	be	duplicated,	Sass	does	not.

In	the	following	CSS	example,	the	parent	selector		.block		is	repeated	each	time	as	the	author	nests	additional	selectors	for
specificity.	This	pattern	continues	to	repeat	itself	with	each	additionally	nested	selector.	The		div	,	the		ul		and	the		li		are
repeated	as	the	author	finally	reaches	the		p	.

.block	div	{	border:	1px	solid	black;	}

.block	div	ul	{	width:	100%;	float:	left;	}

.block	div	ul	li	{	float:	left;	width:	100%;	background:	orange;	}

.block	div	ul	li	p	{	font-weight:	bold;	line-height:	1.5em;	}

Sass'	indentation	syntax	allows	for	the	author	to	simply	indent	the	nested	child	selector	without	repeating	it's	parent.	As
shown	in	the	following	example,	each	additional	indentation	tells	Sass	to	inherit	the	previously	nested	selector.

.block	div
		border:	1px	solid	black
		ul
				width:	100%
				float:	left
				li
						float:	left
						width:	100%
						background:	orange
						p
								font-weight:	bold
								line-height:	1.5em

With	SCSS,	the	principal	is	the	same.	Indentation	is	used	to	assist	in	readability	of	the	code,	but	it's	the	semi-colons	;	that
are	required	to	separate	declarations.	Curly-brackets		{	...	}		are	required	for	block	separation	and	to	designate	selector
nesting.	Shown	in	the	following	example	each	newly	nested	selector	is	placed	within	a	new	set	of	curly-brackets		{	...	}	.

.block	{																/*	.block	opening	bracket	*/
		div	{																	/*	div	opening	bracket	*/
				border:	1px	solid	black;
				ul	{																/*	ul	opening	bracket	*/
						width:	100%;
						float:	left;
						li	{														/*	li	opening	bracket	*/
								float:	left;
								width:	100%;
								background:	orange;
								p	{													/*	p	opening	bracket	*/
										font-weight:	bold;

A	Sass	Style	Guide

Nesting:	don't	go	too	deep

Sass	in	the	Real	World:	book	1	of	4

18A	Sass	Style	Guide

										line-height:	1.5em;
								}															/*	p	closing	bracket	*/
						}																	/*	li	closing	bracket	*/
				}																			/*	ul	closing	bracket	*/
		}																					/*	div	closing	bracket	*/
}																							/*	.block	closing	bracket	*/

Nesting	is	a	powerful	feature,	but	be	mindful	of	the	inception	rule.	It	is	easy	to	fall	into	this	comfortable	trap	of	using	selector
inheritance	to	mimic	your	markup	structure	in	attempts	to	dominate	the	cascade	as	clearly	was	the	argument	in	this
37Signals	article.	Succumbing	to	the	pressures	of	specificity,	you	will	find	yourself	in	a	CSS	selector	nightmare.	Style	rules
will	be	extremely	difficult	to	reuse	and	very	fragile	to	edit.

A	common	rule	of	thumb,	if	you	are	thinking	of	nesting	a	fourth	time,	you	should	ask	yourself,	"Does	this	selector	really
requires	this	much	specification?"	Can	the	code	be	abstracted	so	it	can	be	used	more	universally?	In	CSS,	and	even	more-
so	in	Sass,	keeping	your	selectors	shallow	and	properly	extending	declarations	will	increase	portability	and	reusability	of
your	code.

Let's	take	an	opportunity	to	refactor	the	previous	example.	In	Sass	we	can	easily	reduce	the	level	of	specificity	by	simply
removing	some	of	the	indentation.

.block
		div
				border:	1px	solid	black
		ul
				width:	100%
				float:	left
		li
				float:	left
				width:	100%
				background:	orange
		p
				font-weight:	bold
				line-height:	1.5em

With	SCSS	we	can	accomplish	the	same,	but	SCSS	requires	you	redefine	your	nesting	by	moving	the	curly-brackets		{	...
}		as	shown	in	the	following	example.

.block	{
		div	{
				border:	1px	solid	black;
		}
		ul	{
				width:	100%;
				float:	left;
		}
		li	{
				float:	left;
				width:	100%;
				background:	orange;
		}
		p	{
				font-weight:	bold;
				line-height:	1.5em;
		}
}

Either	Sass	or	SCSS,	the	following	CSS	output	will	be	the	same.	The	result,	as	shown,	less	nesting	means	shallower	style
rule	definitions,	better	portability	and	faster	code.

.block	div	{	border:	1px	solid	black;	}

.block	ul	{	width:	100%;	float:	left;	}

.block	li	{	float:	left;	width:	100%;	background:	orange;	}

Sass	in	the	Real	World:	book	1	of	4

19A	Sass	Style	Guide

http://thesassway.com/beginner/the-inception-rule
http://37signals.com/svn/posts/3003-css-taking-control-of-the-cascade

.block	p	{	font-weight:	bold;	line-height:	1.5em;	}

Sass	in	the	Real	World:	book	1	of	4

20A	Sass	Style	Guide

How	you	write	out	your	selectors	has	a	direct	impact	on	the	readability	of	your	code.	Compounded	with	dynamic	features
like	injecting	code	with	mixins,	this	also	has	a	direct	impact	on	the	output	CSS	cascade.

Much	like	standard	CSS,	I	want	my	code	to	be	readable,	simple	to	follow	and	easy	to	update.	I	always	list	my	parent
specific	declarations	directly	under	it's	selector	and	then	list	the	indented	child	selectors	to	keep	readability	at	a	maximum.

See	how	I	listed	the	CSS	rules	specific	to		.foo		directly	after	declaring	the	selector.	At	the	end	of	the	parent	selector's	rules
is	when	I	declare	it's	nested,	or	child	selector		.nested-foo	.	Within	this	child	selector	I	will	continue	to	follow	the	same
pattern.

.foo	{
		font-size:	12px;
		padding:	10px;
		width:	50%;
		.nested-foo	{
				background-color:	green;
		}
}

Declaration	listing	best	practices

Sass	in	the	Real	World:	book	1	of	4

21Declaration	listing

Using	the		@mixin		directive	you	can	engineer	smart	and	reusable	code	to	be	used	throughout	your	application.

When	using	mixins	within	selectors,	the	placement	of	mixins	has	a	direct	impact	on	the	cascade	of	your	output	CSS.	The
role	of	a	mixin	is	to	physically	inject,	or	mix-in	code,	where	referenced.	When	a	mixin	is	randomly	placed	into	a	selector,
depending	on	what	is	in	the	mixin,	this	could	either	accidentally	over-write	a	preceding	CSS	rule	or	you	may	unknowingly
write	a	CSS	rule	that	is	duplicated	by	the	mixin.

Consistency	plays	a	huge	role	in	clean	code.	When	mixins	are	always	in	a	consistently	expected	location,	this	will	help
other	authors	be	able	to	quickly	scan	and	edit	code.

In	the	following	example	notice	how	I	included	the	mixin		transition		directly	after	declaring	the	selector.	By	doing	so,	we
have	a	clear	expectation	as	to	the	output	CSS.	After	the	included	mixin	is	when	I	list	the	rules	that	are	specific	to	this
selector.	Again,	this	pattern	would	follow	suit	with	the	nested		.nested-foo		selector.

.foo	{
		@include	transition(all,	0.6s,	ease);
		background-color:	orange;
		width:	50%;
		.nested-foo	{
				width:	25%;
				margin:	0	auto;
		}
}

When	using	mixins,	tt	is	considered	best	practice	to	only	create	mixins	that	use	keyword	arguments.	By	doing	so,	you	aren't
simply	repeating	code,	but	leveraging	a	pattern	of	attributes	whose	vales	are	being	dynamically	updated	with	each	use.

Using	mixins

Sass	in	the	Real	World:	book	1	of	4

22Using	mixins

If	you	are	a	follower	of	OOCSS,	extending	selectors	should	feel	very	natural	to	you.	Much	like	mixins,	Sass'		@extends	
directive	is	a	great	tool	for	creating	and	managing	repeated	code.	Unlike	mixins,	extends	do	not	accept	arguments	and	do
not	inject	code	where	called.	Instead,	an	extended	selector	will	be	modified	in	it's	place	of	origin	within	the	cascade	by
appending	the	extending	selector.

In	the	following	example	I	created	the	selector	of		.default_gray_border		.	In	the	following	selector		.promoters_box		I
extended		.default_gray_border		using	the		@extend		directive.

//	Style	class	object
.default_gray_border	{
		@include	border-radius(25px);
		border:	1px	solid	gray;
}
//	Semantically	named	class
.promoters_box	{
		@extend	.default_gray_border;
}

You	will	see	in	the	following	output	CSS	that	Sass	concatenated	the	two	selectors	together	as	these	selectors	share	the
exact	same	CSS	rules.

//	Output	CSS
.default_gray_border,	.promoters_box	{		//	notice	the	chained	selectors
		-webkit-border-radius:	25px;
		-moz-border-radius:	25px;
		border-radius:	25px;
		border:	1px	solid	gray;
}

When	working	with	extends,	I	follow	the	same	placement	rules	as	with	mixins	as	the	consistent	placement	of	extends	will
increase	readability	of	the	code.	In	the	following	example	the	extended	selector	is	listed	directly	after	the	declared	selector
and	then	parent	specific	styled	follow.

.foo	{
		@extend	.default-transition;
		background-color:	orange;
		width:	50%;
}

Using	extended	selectors

Sass	in	the	Real	World:	book	1	of	4

23Using	extended	selectors

Leveraging	the	fact	that	.sass	files	can	live	harmoniously	with		.scss		files,	some	developers	have	adopted	a	workflow	of,
using	SCSS	for	all	logic	(mixins,	extends	and	functions)	and	then	using	Sass	for	the	CSS	styling.

When	writing	style	rules	for	your	design,	Sass	is	quick	and	get's	the	job	done.	Less	key	strokes	and	a	quick	tab	in	for
nesting	are	all	great	things	when	writing	code.	An	added	benefit	of	Sass	is	the	ability	to	quickly	redefine	a	series	of
selectors	and/or	rules	by	simply	changing	the	level	of	indentation,	versus	having	to	redefine	nesting	by	moving	around
curly-brackets		{	...	}	.	Let's	face	it,	if	you	are	using	Sass,	writing	CSS	should	pretty	much	roll	off	your	fingertips.	Writing
out	selectors	and	rules	is	sans	logical	thought	process	and	you	are	simply	executing	output	at	this	time.

On	the	other	hand,	when	it	comes	to	complex	thought	processes,	the	use	of	curly	brackets		{	...	}		has	been	stated	to
assist	in	a	developer's	ability	to	see	the	logical	code	groupings	I	have	found	that	using	the	SCSS	syntax	when	writing
logical	code	helps	me	to	slow	down	and	really	take	a	hard	look	at	the	code	I	am	writing.

Good	code	habits	include	writing	comments	and	Sass	is	no	different.	SCSS	allows	for	comments	to	be	placed	inline	with
the	line	code	you	are	referencing.	Due	to	the	whitespace	specifications,	this	is	not	possible	in	Sass.	SCSS'	form	of
commenting	allows	developers	to	really	be	expressive	in	their	notes.

Sass	for	styles,	SCSS	for	logic

Sass	in	the	Real	World:	book	1	of	4

24Style	and	Logic

http://thesassway.com/editorial/sass-vs-scss-which-syntax-is-better#reason_1_scss_is_more_expressive

Sass	supports	both	invisible	and	visible	comments.	Using		//		before	any	Sass,	this	will	place	a	comment	in	your	code,	but
will	not	be	output	in	the	processed	CSS.	Using	the	standard		/*	*/		CSS	comments	in	your	Sass,	when	processed	this	will
be	output	in	your	CSS.

Leaving	comments	or	instructions	in	your	code	is	just	good	practice.	I	find	it	essential	to	leave	good	instructions	behind
about	my	code	using	the	invisible	technique	as	I	begin	to	engineer	increasingly	more	complicated	Sass.

The	following	example	is	a	sample	of	code	from	the	Compass	library	illustrating	a	good	use	of	comments.

//		override	to	change	the	default
$default-background-size:	100%	auto	!default;
//	Set	the	size	of	background	images	using	px,
//	width	and	height,	or	percentages.
//	Currently	supported	in:	Opera,	Gecko,	Webkit.
//
//	*	percentages	are	relative	to	the	background-origin
//	(default	=	padding-box)
//	*	mixin	defaults	to:	`$default-background-size`
@mixin	background-size(
		$size-1:	$default-background-size,
		$size-2:	false,
		$size-3:	false,
		$size-4:	false,
...

Code	comments

Sass	in	the	Real	World:	book	1	of	4

25Comments

Sass'	naming	conventions	are	inherited	from	CSS.	Lowercase,	hyphen-separated	names,	like	the	following	function
examples,	are	considered	standard.

@mixin	text-format($size,	$family,	$color)	{
		font:	{
				size:	$size;
				family:	$family;
		};
		color:	$color;
}

.site-header	{
		@include	text-format(12px,	verdana,	red);
}

While	this	may	be	preferred,	you	will	see	many	examples	out	there	using	underscores		example_name		as	well	camel	case
	exampleName		or	Pascal	case		ExampleName	,	there	is	no	right	or	wrong	here.	As	long	as	you	are	consistent	in	your	naming
convention,	that's	what	really	matters.

A	word	of	caution.	When	naming	mixins,	but	sure	to	always	be	consistent	with	using	either	dashes		-	,	or	underscores		_	.	I
am	not	sure	if	this	is	a	bug	or	a	feature,	but	when	importing	mixins,	the	dash	and	underscore	can	be	used	interchangeably
with	the	same	name	and	it	will	work.

In	the	following	example	I	will	crate	a	mixin	and	name	it	using	a	dash		-	.	But	in	the	selector	below,	I	will	include	the	mixin
using	an	underscore		_	.	The	result	will	be	the	mixin	will	process	into	the	selector	without	issue.

=block-mixin
		background:	green
.block
		+block_mixin

The	resulting	CSS

.block	{
		background:	green;
}

Mixin,	selector,	function	naming	conventions

Sass	in	the	Real	World:	book	1	of	4

26Naming	conventions

https://groups.google.com/forum/#!msg/sass-lang/F9MnjqSCaPs/H6R7rGR7E-cJ

With	CSS,	all	of	your	code	is	contained	in	a	single	document	and	with	each	new	feature	this	document	increases	in
complexity	while	decreasing	in	readability	and	maintainability.	Sadly,	these	same	poor	development	practices	have	made
their	way	into	Sass	development	as	well.	To	add	insult	to	injury,	it	is	not	uncommon	to	see	files	with	large	blocks	of	code
that	include	functional	Sass	like	variables,	functions,	mixins	as	well	the	presentational	selector	specific	Sass.	While	this	will
work	in	a	pinch,	it	is	not	best	practice	to	have	all	your	code	in	one	place.

Sass	gives	us	the	power	to	break	our	code	into	smaller,	easier	to	manage	chunks	of	code	called	partials.	In	this	section	we
will	discuss	how	to	best	break	apart	our	Sass	and	how	to	stitch	it	back	together	via	techniques	like	manifests	and	globbing.

Breaking	code	down	to	smaller	chunks	can	be	a	difficult	process	if	you	do	not	have	a	good	convention	to	follow.	In	the	next
chapter	I	will	go	into	greater	detail	about	how	to	best	manage	resources	like	variables,	functions,	mixins	and	presentational
styles,	but	for	now,	let's	understand	that	it	is	a	better	management	technique	to	break	out	your	mixins,	functions,	variables
and	presentational	styles	into	different	partials.

A	partial	is	any	file	with	an	underscore		_		preceding	the	name.	When	Sass	sees	these	files,	it	will	not	process	them	into
CSS	files.	A	partial	requires	that	it	be	imported	into	another	file	that	will	inevitability	be	processed	into	CSS	in	order	for	it	to
be	output.

In	the	following	example,	you	will	see	a	simple	Sass	architecture	that	illustrates	this	principal.	Notice	how		application.sass	
is	the	only	file	that	does	not	contain	an	underscore		_		in	the	name	as	this	will	be	the	file	that	is	output	to	CSS.

stylesheets/
|--	application.sass				//	Sass	manifest	file
|
|--	_reset.sass									//	Partials
|--	_variables.scss													|
|--	_functions.scss													|
|--	_mixins.scss																|
|--	_base.sass																		|
|--	_layout.sass																|
|--	_module.sass																|
|--	_state.sass																	|
|--	_theme.sass									//	Partials

You	are	not	limited	by	the	number	of	CSS	files	you	need	to	output.	This	strategy	could	be	used	for	the	creation	of	browser
or	device	specific	styles	as	well.	As	illustrated	in	the	following	example,	I	have	added	more	files	for	browsers	like	Internet
Explorer	and	devices	like	mobile	and	tablets	that	I	intend	to	output	CSS.

stylesheets/
|--	application.sass								//	Core	manifest	file
|--	IE8.sass																//	Browser	manifest	file
|--	mobile.sass													//	Device	manifest	file
|--	tablet.sass													//	Device	manifest	file
|
|--	_reset.sass													//	Partials
|--	_variables.scss																	|
...
|--	_module.sass																				|
|--	_state.sass																					|
|--	_theme.sass													//	Partials

Working	with	partials,	manifests	and	globbing

Partials

Sass	in	the	Real	World:	book	1	of	4

27Working	w/Partials

When	using	a	Sass	file	architecture	made	up	mostly	of	partials,	except	for	the	ones	that	we	intend	to	output	as	CSS,	these
output	files	will	be	your	Sass	manifest	file(s).	A	manifest	will	manage	all	of	the	Sass	partials	to	be	imported,	as	well	import
any	Compass	extensions	or	additional	Sass	code	libraries	in	your	project.

Unlike	standard	CSS,	Sass'		@import		directive	is	part	of	the	preprocess	compile	of	your	code.	This	does	not	require
additional	HTTP	requests	when	sent	to	the	client	as	all	your	CSS	will	be	compiled,	and	minified	if	desired,	into	a	single
document.	As	your	project	scales,	you	are	encouraged	to	break	your	files	into	smaller	manageable	chunks	of	code	and
reassemble	via	a	manifest.

In	the	following	example	see	how	I	use	the		@import		directive	to	load	all	the	partials	into	a	single	document	and	output	as
CSS.	Another	thing	to	note	is	the	absence	of	a	file	type	extension.	Sass	or	SCSS,	just	like	Honey	Badger,		@import		doesn't
care.

@import	"variables";
@import	"functions";
@import	"mixins";
@import	"reset";
@import	"base";
@import	"layout";
@import	"module";
@import	"state";
@import	"theme";

The	order	in	which	you	list	your	imports	is	the	order	that	Sass	will	follow	when	processing	your	code.	If	the	selector	you
wrote	requires	a	mixin	to	be	loaded	before	it	is	used,	be	sure	to	list	the	file	containing	the	mixin	prior	to	the	file	that	uses	the
mixin.

It	is	common	place	in	architectures	like	this	that	all	logical	Sass	are	imported	first.	In	the	previous	example	you	can	see	that
I	loaded	all	the	site's	global	variables,	then	functions	followed	by	mixins.	Once	these	files	are	loaded	into	memory,	the
following	Sass	files,	who's	functions	are	to	create	CSS,	will	be	able	to	take	advantage	of	the	logical	Sass	code.	This	is	a
pattern	we	will	want	to	repeat	as	we	get	deeper	into	a	more	complex	file	architecture.

Take	note,	loading	logical	code	into	memory	for	remaining	Sass	files	to	take	advantage	of,	only	works	with	imported
partials.	Remember	that	any	file	without	a	preceding	underscore	will	be	processed	and	output	into	a	CSS	file.	If	this
requires	any	logic	to	be	present	in	order	to	process	rules,	those	files	must	be	imported	first.

In	the	following	example	I	will	illustrate	how	a	stand	alone	CSS	file	needs	to	import	Sass	logic	before	it	can	process	the
CSS	rules	contained	within.

@import	"variables";
@import	"functions";
@import	"mixins";

.foo	{
		background-color:	$default-color;
		...
}
...

When	loading	additional	Sass	code	libraries	such	as	Compass,	in	order	to	take	advantage	of	the	library's	power,	you	are
required	to	load	these	libraries	first.

On	the	other	hand,	when	loading	CSS	from	plug-in	apps,	is	most	likely	that	you	will	want	to	load	these	last	as	not	conflict
with	custom	selectors	you	have	written.

Manifests

Sass	in	the	Real	World:	book	1	of	4

28Working	w/Partials

As	well,	if	these	plug-in	styles	require	customization,	importing	them	last	will	allow	you	to	take	full	advantage	of	any	libraries
you	have	imported	and	custom	code	you	have	written.

The	following	example	notice	how	I	imported	Compass	first	so	that	my	project	specific	code	can	take	full	advantage	of	the
Compass	library.	At	the	end	of	the	manifest	I	then	import	my	plug-in		flipclock		library.

//	Included	libraries
@import	"compass/css3";

//	Project	specific	code
@import	"reset";
@import	"variables";
@import	"functions";
@import	"mixins";
@import	"base";
@import	"layout";
@import	"module";
@import	"state";
@import	"theme";

//	Imported	plug-in	libraries
@import	"flipclock";

While	using	a	Sass	manifest	file	is	a	great	solution,	there	are	some	additional	patterns	we	can	use	in	order	to	keep	this	file
from	becoming	a	giant	dumping	ground.

A	pattern	I	leverage	is	the	use	of	additional	manifests	within	sub-directories.	Let's	say	for	example	that	you	begin	to	create
a	large	resource	of	mixins	in	your	project.	As	this	file	grows	in	size,	it	becomes	increasingly	harder	to	mentally	parse.	The
suggested	pattern	is	to	break	this	file	into	smaller,	more	digestible	chunks	of	code	and	place	them	into	a	directory.	Using	a
manifest	file	within	that	directory,	you	import	a	single	reference	into	your	application	manifest	and	add	new	imports	to	your
more	specific	manifest.

The	following	example	illustrates	an	updated	file	structure	with	a		mixins		directory	containing	a	Sass	manifest	file.	Notice
the		_manifest		file	contained	within	the		mixins		sub-directory.

stylesheets/
|--	application.sass								//	Sass	manifest	file
|
|--	_reset.sass													//	Partials
|--	_variables.scss																	|
|--	_functions.scss																	|
|--	_base.sass																						|
|--	_layout.sass																				|
|--	_module.sass																				|
|--	_state.sass																					|
|--	_theme.sass													//	Partials
|
|--	_mixins/																//	Directory
|		|--	_manifest.scss
|		|--	_grid_calc.scss
|		|--	_arrow_tooltip.scss

This	update	requires	a	very	simple	update	to	my	site	manifest	file.	In	the	following	example	you	will	see	that	I	updated	from
a	simple	reference	to	a	mixin	Sass	file,		mixins.scss	,	to	a	manifest	file	contained	within	a	sub-directory,		mixins/manifest	.

The	naming	of	this	file		_manifest.scss		is	purely	convention.	Feel	free	to	name	this	file	anything	you	like,	as	long	as	it
makes	sense	to	you	and	your	team.

//	Included	libraries
@import	"compass/css3";

//	Project	specific	code

Sass	in	the	Real	World:	book	1	of	4

29Working	w/Partials

@import	"reset";
@import	"variables";
@import	"functions";
@import	"mixins/manifest";		//	import	sub-directory	manifest
@import	"base";
@import	"layout";
@import	"module";
@import	"state";
@import	"theme";

//	Imported	vender	libraries
@import	"flipclock";

Another	technique	available,	although	not	native	to	Sass,	is	file	globbing.	Globbing	refers	to	pattern	matching	based	on
wildcard	characters	that	allows	Sass	to	assemble	all	the	partials	within	a	directory	without	a	specific	manifest	file.	Whereas	I
stated	earlier,	the	order	in	which	files	are	imported	and	processed	is	dictated	by	the	order	in	which	they	are	listed,	this	is	not
the	case	with	globbing.	Without	a	specific	list	to	go	by,	Sass	will	assemble	the	files	in	alphabetical	order.

Globbing	is	not	the	answer	to	all	importing	cases.	For	example,	if	you	have	a	sub-directory	for	a	UI	pattern	or	module,	it	is
common	place	to	see	files	like		_variables.sass	,		_mixins.sass		and		_module.sass		within	the	directory.	By	order	of	the
alphabet,	the		_variables.sass		file	will	be	loaded	last.	This	will	break	the	Sass	processor	as	it	is	likely	that	the	mixin	or
module	will	require	a	value	for	a	variable	listed	in		_variables.sass	.	In	these	cases	I	am	left	with	coming	up	with	a	naming
convention	to	ensure	the	appropriate	alphabetical	order.	That	is	a	really	bad	idea.

I	strongly	recommend	that	in	the	cases	where	a	specific	order	of	importing	is	required,	globbing	is	not	the	answer	and	make
use	of	the	sub-directory	manifest	pattern.

On	the	other	hand,	if	you	have	a	library	of	code	where	it	doesn't	matter	at	all	what	the	order	of	import	is,	then	this	is	a	great
solution.	For	example,	a	sub-directory	of	animation	mixins	is	a	great	use	for	globbing.	A	directory	of	functions,	again,	a
great	use	for	globbing.

Globbing	is	used	by	a	lot	of	developers.	If	you	are	a	Rails	developer,	this	feature	is	made	available	to	you	via	the		sass-
rails		Gem.	If	you	are	not	using	Rails,	Chris	Eppstein	has	made	this	feature	available	to	all	users	via	a	plug-in	Gem.

In	the	following	example	I	will	illustrate	how	globbing	allows	me	to	do	away	with	sub-directory	partials.	See	how	all	the	files
contained	within		mixins		are	imported	via	the	wildcard	/*	expression.

...
@import	"functions";
@import	"mixins/*";			//	import	sub-directory	manifest
@import	"base";
...

The	wildcard	expression	/	is	optimal	if	there	are	no	sub-directories	contained	within	the	directory	you	are	globbing.	In	the
situation	I	am	using	additional	sub-directories,	the	expression	of	/**/	is	required.

...
@import	"functions";
@import	"mixins/**/*";			//	import	sub-directory	manifest
@import	"base";
...

Keeping	your	code	modular	and	managing	an	easy-to-follow	manifest	file	will	reap	great	rewards	as	your	project	scales.
This	process	also	will	assist	you	in	the	future	as	you	begin	to	engineer	smarter	and	smarter	code	that	you	would	like	to

Globbing

Sass	in	the	Real	World:	book	1	of	4

30Working	w/Partials

https://github.com/chriseppstein/sass-globbing

reuse	between	projects.

Sass	in	the	Real	World:	book	1	of	4

31Working	w/Partials

Starting	a	new	project,	as	a	developer	you	are	typically	given	a	design.	The	color	scheme	has	been	selected	and	the	action
buttons	have	been	outlined.	The	Header,	Footer,	and	most	of	the	content	is	documented	for	you.	Before	you	dive	into
writing	the	CSS,	it	is	prudent	to	look	at	the	design	as	a	whole	and	take	the	time	to	break	it	down	to	it's	individual
components	or	objects.	The	mistake	of	writing	the	CSS	before	these	points	are	considered	can	lead	to	a	great	deal	of	bloat
within	the	stylesheet.

If	you	are	familiar	with	the	concepts	of	Object	Orientated	Cascading	Stylesheets	(OOCSS)	and	semantic	HTML/CSS,	then
this	chapter	should	be	a	good	review.

For	those	of	you	who	are	new	to	OOCSS,	I	encourage	you	to	pay	close	attention.	Although	OOCSS	has	little	to	nothing	to
do	with	Sass,	learning	these	principals	is	a	solid	foundation	to	writing	scalable	and	maintainable	Sass.

Rules	to	live	by

Sass	in	the	Real	World:	book	1	of	4

32Rules	to	live	by

OOCSS	is	built	upon	two	main	principles:

Separation	of	structure	and	skin
Separation	of	container	and	content

To	better	understand	these	principles,	let's	take	a	look	at	what	OOCSS	is	and	what	it	is	trying	to	solve.

A	concept	established	by	Nicole	Sullivan	with	the	idea	being	very	simple;	write	CSS	that	is	scalable,	maintainable,	and
semantic.	In	a	nutshell	-	object	oriented.	OOCSS	by	itself	is	a	powerful	tool.	OOCSS	combined	with	Sass,	is	even	a	more
powerful	tool.

Repeating	patterns	in	your	stylesheets	lend	themselves	to	the	creation	of	objects	which	can	be	sub-typed	or	super-typed.
These	patterns	can	be	polymorphic,	thus	infinitely	reusable	through	inheritance.

Unruly	CSS	written	without	the	forethought	of	OOCSS	can	have	any	or	all	of	the	following	problems:

Writing	styles	based	on	the	view	or	the	components	as	a	whole	can	lead	to	bloated	CSS
Lack	of	global	defaults	will	lead	to	repeating	style	patterns,	adding	more	bloat
Incorrect	use	of	selector	inheritance	combined	with	heavy	bloat	can	lead	to	poor	CSS	performance	and	typically
exaggerated	use	of	the	!important	tag

In	this	section,	I	will	discuss	how	to	avoid	these	issues	by	properly	implementing	the	tenets	of	OOCSS.	This	will	allow	you
to	create	a	well	established	framework	that,	when	combined	with	Sass,	will	allow	you	to	further	enhance	the	scalability,
maintainability	and	re-use	of	the	CSS.

To	better	understand	OOCSS,	we	must	be	able	to	breakdown	our	design	into	small	re-usable	components.	In	order
accomplish	this	task,	we	must	understand	what	is	a	CSS	object.

Object	Oriented	Cascading	Stylesheet	(OOCSS)

What	is	OOCSS?

Sass	in	the	Real	World:	book	1	of	4

33What	is	OOCSS?

Think	of	your	CSS	as	a	bicycle	assembly	line	using	individual	objects	like	wheels,	handlebars,	brakes,	and	seats.	Our
assembly	will	produce	the	final	product,	a	bicycle.	There	will	be	slight	variations	on	some	of	the	objects,	for	example	size	of
the	wheels	or	color	of	the	frame,	which	are	issues	that	can	be	handled	along	the	assembly	line.

In	order	to	efficiently	assemble	the	bicycle,	the	original	prototype	is	broken	down	into	its	individual	pieces	and	the	assembly.
These	individual	parts	are	analyzed	and	the	assembly	line	is	created	in	order	to	efficiently	put	together	the	bicycle.	A	very
similar	concept	can	be	applied	to	CSS.	The	design	is	analyzed	and	broken	down	into	its	individual	working	pieces.	These
CSS	Objects	are	created	in	order	to	be	re-used	on	the	site,	or	our	assembly	line.	The	final	product,	the	implementation	of
the	design,	is	the	culmination	of	the	individual	CSS	objects.	The	OOCSS	wiki	further	explains	CSS	objects	as:

"A	CSS	object	consists	of	four	things:	HTML,	which	can	be	one	or	more	nodes	of	the	DOM,	CSS	declarations	about
the	style	of	those	nodes	all	of	which	begin	with	the	class	name	of	the	wrapper	node	Components	like	background
images	and	sprites	required	for	display,	and	JavaScript	behaviors,	listeners,	or	methods	associated	with	the	object."

This	can	be	confusing	because	each	CSS	class	is	not	necessarily	an	object	in	its	own	right,	but	can	be	a	property	of	a
wrapper	class.

Let's	take	a	closer	look	at	a	section	heading	example.	We	can	write	the	heading	CSS	like	this:

#container	h2	{	/*IDs	limit	use	of	rules*/
/*	Over-qualification	with	h2	tag	restricts	use	to	only	this	element	*/
		font-size:	2em;
		line-height:	1em;
		margin:	0.25em;
		color:	#CFC35D;
		font-family:	Verdana,	Arial,	sans-serif;
}

An	issue	with	the	above	code	is	that	it	is	an	over-qualified	selector	that	is	limited	to	a	h2	element	that	is	nested	within
#container.	When	the	same	or	slightly	similar	style	needs	to	be	applied	in	another	area,	the	footer	for	example,	I	will	have	to
duplicate	the	CSS	rules	as	such.

#footer	h2	{	/*	Only	difference	between	this	and	the	previous	style	is	the	font-size	and	extra	margins.	*/
		font-size:	1.5em;
		line-height:	1em;
		margin:	0.25em	0.5em;
		color:	#CFC35D;
		font-family:	Verdana,	Arial,	sans-serif;
}

The	following	is	an	example	of	a	repeating	pattern	that	can	be	abstracted	as	one	or	several	CSS	objects	to	be	used
individually	or	as	an	assembly	of	styles.	First	I	need	to	abstract	some	of	the	styles	to	the	default	globals	section.

The	following	selectors	will	create	CSS	rules	that	are	applied	to	base	elements	like	the	body	and	h2.	These	rules	are	no
longer	assigned	to	an	over-qualified	selector	as	before.	However,	more	minute	styling	needs	to	be	created	in	order	to
finalize	the	desired	display.

body	{
		font-family:	Verdana,	Arial,	sans-serif;
}
h2	{
		font-size:	2em;
		line-height:	1em;

CSS	Object

Sass	in	the	Real	World:	book	1	of	4

34CSS	Object

}

At	this	time,	it	is	prudent	to	have	an	understanding	of	what	the	style	is	supposed	to	be	used	for	and	what	it	will	represent.	In
this	case,	we	are	trying	to	create	a	header	style	for	a	section	on	the	site.	This	knowledge	will	help	us	not	only	create	the
style,	but	also	give	it	a	semantic	class	name.

/*	The	font-family,	which	is	usually	applied	on	the	entire	site,	is	applied	at	the	body.	*/
body	{
		font-family:	Verdana,	Arial,	sans-serif;
}

/*	The	<h2>	element	has	CSS	rules	that	will	be	applied	anywhere	the	element	is	used.	*/
h2	{
		font-size:	2em;
		line-height:	1em;
}

/*	The	new	semantic	class	.section-header	reduces	the	font-size	and	increases	margin-left	and	margin-right.	This	new	selector	can	be	applied	anywhere,	including	the	footer,	which	will	override	the	<h2>	base	element	rules.	*/
.section-header	{
		font-size:	1.5em;
		margin:	0.25em	0.5em;
		color:	#CFC35D;
}

The	above	example	is	a	simple	implementation	of	OOCSS.	As	we	can	see,	the	design	of	a	section	header	has	been	broken
down	into	it's	individual	styles	and	CSS	objects	have	been	created	accordingly.	Continuing,	I	will	look	further	into	the
OOCSS	guidelines	and	how	to	properly	implement	them.

Sass	in	the	Real	World:	book	1	of	4

35CSS	Object

Now	that	we	are	familiar	with	the	building	blocks	of	CSS,	a	CSS	object,	we	will	dive	further	into	the	guidelines	of	OOCSS.
We	delve	deeper	into	the	two	main	principles	of	OOCSS:

Separation	of	content	from	container
Separation	of	structure	from	skin

Implementation	of	OOCSS	requires	not	only	to	follow	the	mentioned	principles	but	also	the	prudent	review	of	the	design
and	understanding	the	containers,	content,	structure	and	skin.	Let's	take	closer	look	at	these	guidelines	and	principles.

OOCSS	Guidelines

Sass	in	the	Real	World:	book	1	of	4

36OOCSS	Guidlines

The	main	culprit	that	violate	this	guideline	are	location	dependent	styles.	A	simple	example	of	location	dependent	style	is
something	like	this:

.footer	a	{
		color:	#ccc;
}

This	example	is	applying	a	gray	color	to	the	anchor	tag	in	the	footer	(or	the	anchor	tags	that	are	children	of	an	element	with
the	class	of	.footer).	This	will	limit	the	usage	of	this	style	(although	it	should	be	noted	that	this	style	can	be	used	outside	of
the	footer,	however	this	will	make	the	style	non-semantic	and	confusing).	The	correct	approach	is	to	allow	the	default	style
of	the	anchor	tag	be	applied	to	it	and	create	a	style	to	override	and	apply	the	needed	change.

a	{
		color:	blue;
}

.footer-link	{
		color:	#ccc;
}

Let's	take	a	look	at	a	more	complicated	(and	more	wrong)	example:

#content	#mainInfo	p	img.left	{
		float:	left;
		border:	0;
		padding:	2px;
		padding-right:	25px;
}

This	style	will	only	be	applied	to	the				element	with	a	class	of		.left		that	is	nested	in	a		<p>		element	which	in	turn	is
nested	in	an	element	with	the	id	of		#mainInfo		and	which	in	turn	is	nested	in	an	element	with	an	id	of		#content	.	If	we	want
to	apply	the	same	style	somewhere	else	we	will	have	to	re-created	this	style	all	over	and	apply	it	specifically	to	that
element.	So,	how	do	we	fix	this?	First	thing	is	to	examine	what	it	is	that	we	are	trying	to	accomplish.	What	we	are	trying	to
accomplish	is	to	float	the				element	to	the	left.	The	question	is,	do	we	only	want	to	float	an				element?	Most	likely
the	answer	is	no.	We	want	to	create	a	style	that	is	robust	enough	to	be	applied	to	any	element.	As	a	result	the	first	class	we
are	going	to	create	is	this:

.float-left	{
		float:	left;
}

The	style	of	setting	no	borders	on	the				element	is	something	that	maybe	we	want	to	set	for	all				elements	and
the	exception	would	be	to	add	border	to	the			.	As	a	result,	our	CSS	styles	would	be:

img	{
		border:	0;
}

.float-left	{
		float:	left;
}

Separation	of	content	from	container

Sass	in	the	Real	World:	book	1	of	4

37Separation	of	content

To	attack	the	padding,	we	must	consider	padding	for	the	element	on	the	entire	site.	If	we	think	that	all				elements
should	have	a	padding	of	2px	then	this	is	a	style	that	should	be	applied	at	the				element	level	and	then	the	exceptions
should	be	overridden.	The	same	logic	applies	to	all	other	elements	like		<div>	,		<section>	,			,	etc...	So	in	this	case,	I
would	amend	the	code	to	something	like	this:

img	{
		border:	0;
		padding:	2px;
}

.float-left	{
		float:	left;
}

This	style	also	needs	a	padding	on	the	right	hand	side	of	20px.	In	order	to	apply	this	desired	effect,	we	must	consider	the
two	options	that	we	have.	First	option	is	the	consider	what	we	are	creating	this	padding.	In	this	situation,	let's	say	that	these
images	are	thumbnails	for	an	image	gallery	that	we	will	be	lining	up	in	order	for	the	user	to	view	and	click	on	them	to	view	a
larger	view	of	the	image.	Therefore	in	this	case,	we	will	create	a	semantic	class	and	apply	the	padding	style	to	it.

.gallery-thumbnail	{
		padding-right:	20px;
}

Our	other	option	is	to	create	a	series	of	styles	that	will	allow	us	to	override	individual	paddings	(and	margins)	not	only	in	this
situation	but	also	in	all	others.	The	OOCSS	Github	site	has	the	following	padding	and	margin	CSS	code:

/**
	*	Spacing	classes
	*	Should	be	used	to	modify	the	default
	*	spacing	between	objects	(not	between	nodes	of	the	same
	*	object)
	*	Please	use	judiciously.	You	want	to	be
	*	using	defaults	most	of	the	time,	these	are
	*	exceptions!
	*	<type><location><size>
	*/
/*	spacing	helpers
p,m	=	padding,margin
a,t,r,b,l,h,v	=	all,top,right,bottom,left,
horizontal,vertical
s,m,l,n	=	small(5px),medium(10px),large(20px),none(0px)
*/
.ptn,.pvn,.pan{padding-top:0px	!important}
.pts,.pvs,.pas{padding-top:5px	!important}
.ptm,.pvm,.pam{padding-top:10px	!important}
.ptl,.pvl,.pal{padding-top:20px	!important}
.prn,.phn,.pan{padding-right:0px	!important}
.prs,.phs,.pas{padding-right:5px	!important}
.prm,.phm,.pam{padding-right:10px	!important}
.prl,.phl,.pal{padding-right:20px	!important}
.pbn,.pvn,.pan{padding-bottom:0px	!important}
.pbs,.pvs,.pas{padding-bottom:5px	!important}
.pbm,.pvm,.pam{padding-bottom:10px	!important}
.pbl,.pvl,.pal{padding-bottom:20px	!important}
.pln,.phn,.pan{padding-left:0px	!important}
.pls,.phs,.pas{padding-left:5px	!important}
.plm,.phm,.pam{padding-left:10px	!important}
.pll,.phl,.pal{padding-left:20px	!important}
.mtn,.mvn,.man{margin-top:0px	!important}
.mts,.mvs,.mas{margin-top:5px	!important}
.mtm,.mvm,.mam{margin-top:10px	!important}
.mtl,.mvl,.mal{margin-top:20px	!important}
.mrn,.mhn,.man{margin-right:0px	!important}
.mrs,.mhs,.mas{margin-right:5px	!important}

Sass	in	the	Real	World:	book	1	of	4

38Separation	of	content

.mrm,.mhm,.mam{margin-right:10px	!important}

.mrl,.mhl,.mal{margin-right:20px	!important}

.mbn,.mvn,.man{margin-bottom:0px	!important}

.mbs,.mvs,.mas{margin-bottom:5px	!important}

.mbm,.mvm,.mam{margin-bottom:10px	!important}

.mbl,.mvl,.mal{margin-bottom:20px	!important}

.mln,.mhn,.man{margin-left:0px	!important}

.mls,.mhs,.mas{margin-left:5px	!important}

.mlm,.mhm,.mam{margin-left:10px	!important}

.mll,.mhl,.mal{margin-left:20px	!important}

.mra,.mha{margin-right:auto	!important}

.mla,.mha{margin-left:auto	!important}

The	above	code	can	be	placed	in	a	separate	CSS	file	and	imported	into	any	CSS	file	as	desired.	It	is	ideal	that	the	styles
that	are	applied	to	an	element	tell	the	story	of	all	the	styles	being	applied.	So	I	don't	see	any	issue	with	substituting	the
class		.ptn		with		.padding-top-none		or		.pbl		with		.padding-bottom-large	.	So	in	order	apply	the	desired	original	style	to	the
			element,	the	HTML	will	look	something	like	this:

<img	src='path/to/the/image'
alt='appropriate	text'	class='float-left	padding-right-large'	/>

Or	to	apply	the		.gallery-thumbnail	,	it	will	look	something	like	this:

<img	src='path/to/the/image'
alt='appropriate	text'	class='float-left	gallery-thumbnail'	/>

Sass	in	the	Real	World:	book	1	of	4

39Separation	of	content

To	build	a	site	that	the	structure	or	the	markup	or	the	HTML	separated	from	the	skin	or	the	style	or	the	CSS,	requires	a	lot
of	dedication	and	forethought.	Prime	example	of	this	separation	is	the	example	of	CSS	Zen	Garden.	Zen	Garden	is	a	site
that	allows	designers	and	developers	to	create	new	websites	not	by	changing	the	HTML	but	by	creating	a	whole	new	CSS.

In	order	to	have	a	good	grasp	of	this	concept,	let's	create	some	individual	building	blocks	for	our	site.	Creating	individual
CSS	objects	that	can	be	assembled	to	create	the	desired	style	is	one	of	the	main	guidelines	of	OOCSS.	One	of	the	most
commonly	used	and	created	CSS	object	is	the	container	object	(which	also	sometimes	goes	by	the	name	of	block	object	or
panel	object).	A	starting	container	object	can	look	something	like	this:

.container	{
		background:	transparent;
		padding:	5px;
		box-sizing:	border-box;
		width:	100%;
		height:	auto;
		overflow:	auto;
}

However	there	will	subtle	variation	that	will	be	extended	or	created	to	compliment	or	assemble	other	styles.	For	example	in
our	online	resume	project,	we	have	a	container	on	the	left,	our	side	navigation	bar,	which	has	dark	background	and	light
colored	text.	As	a	result,	we	will	create	a	style	as	such:

.side-nav	{
		background:	black;
		color:	white
}

If	a	bordered	container	is	needed	then	create	a	selctor	like	the	following.

.bordered	{
		border:	1px	solid	#cecece;
}

.main-content-bordered	{
		border:	5px	solid	#b7d9a8;
}

It	is	the	assembly	of	the	individual	objects	that	will	allow	for	flexibility	in	creating	individual	components	and	that	is	part	of
the	OOCSS	process.	As	we	get	into	more	details,	we	can	see	that	more	assets	can	be	added	to	individual	areas.	For
example,	a	container	may	contain	individual	areas	of	header,	footer,	and	body	that	can	be	expressed	in	the	following	way.

.container	{
		background:	transparent;
		padding:	5px;
		box-sizing:	border-box;
		width:	100%;
		height:	auto;
		overflow:	auto;
}

.container	>	.head	{
		font-size:	14px;
		font-family:	'Share	Tech',	Arial,	sans-serif;
}

Separation	of	structure	from	skin

Sass	in	the	Real	World:	book	1	of	4

40Separation	of	structure

.container	>	.content	{
		font-size:	12px;
		line-height:	1.4;
}

.container	>	.foot	{
		font-size:	11px;
		font-family:	'Anaheim',	Arial,	sans-serif;
}

OOCSS	is	a	great	set	of	rules	that	will	allow	for	a	better	built	CSS	framework.	It	will	also	help	in	reducing	a	tremendous
amount	of	CSS	bloat	which	in	turn	will	help	quite	a	bit	in	CSS	and	site	performance.	For	further	information	on	OOCSS	visit
OOCSS	Github	site.

Sass	in	the	Real	World:	book	1	of	4

41Separation	of	structure

https://github.com/stubbornella/oocss/wiki

As	I	was	learning	to	style	web	pages	through	CSS	(a	while	back),	I	went	through	a	lot	of	books	and	articles	in	order	to	learn
the	best	practices.	Writing	semantic	HTML	and	CSS	was	on	top	of	the	list	of	best	practices.	However	the	recommendations
for	best	practices	varied.	Some	recommend	strict	adherence	to	semantic	nomenclature	yet	some	see	the	benefits	of	a
mixture	of	semantic	and	presentational	classes.	Before	we	dive	into	the	semantics	of	these	arguments,	lets	chat	a	bit	about
what	is	meant	by	semantic	and	presentational	classes.

Semantic	vs.	presentational	classes

Sass	in	the	Real	World:	book	1	of	4

42Semantic	vs	Presentational

The	definition	of	Semantic	classes	can	vary	among	different	developers.	Its	true	definition	is:

of	or	relating	to	meaning	in	language
of	or	relating	to	semantics

Here	are	what	some	people	in	the	CSS	and	development	community	discuss	Semantic	classes:

"Class	names	need	to	represent	the	object	structure	you	are	defining,	not	the	specific	visual	look	and	feel	of	this
particular	instance."

Nicole	Sullivan	June	12th	2010

"I'd	describe	semantics	as	it	relates	to	HTML	as	tags,	classes,	IDs,	and	attributes	describing	but	not	specifying	the
content	they	enclose."

Chris	Coyier	August	4th	2011

"A	semantic	CSS	selector	should	reflect	the	intended	structure	or	meaning	of	the	element	it	is	applied	to."

Rob	Dodson	June	9th	2012

"Semantics	concerns	itself	with	elements	and	not	the	names	assigned	to	them.	Using	the	correct	element	for	the
correct	job	is	as	far	as	semantics	goes.	Standards	concerning	naming	of	those	elements	is	all	about	sensibility."

Harry	Roberts	August	2010

When	it	comes	to	writing	semantic	code,	not	only	do	opinions	differ,	but	implementation	is	somewhat	subjective	and	slightly
elusive.	Some	follow	a	strict	adherence	to	semantic	naming	that	starts	from	the	HTML	tags	and	extends	into	the	selector
naming.	This	is	an	area	where	developers	are	opinionated.	What	makes	it	harder	is	that	there	is	no	framework	or	guideline
that	can	be	used	to	point	us	in	the	right	direction.

We	know	that	we	stand	on	murky	ground,	so	let	us	concentrate	on	what	we	know	that	is	stable	and	can	be	reliable.	As
stated,	a	semantically	named	selector	describes	the	object's	structure	and	the	content	which	will	give	us	an	idea	of	how	the
selector's	rule	can	be	applied.

Using		.article-title		for	example,	gives	us	an	insight	into	the	semantic	nature	of	the	style.	On	the	other	hand,	a	selector
named		.blue-header		in	not	only	un-semantic,	but	is	clearly	overly	descriptive	of	the	presentation.	What	happens	when	the
design	changes?	Do	you	change	the	rules	of		.blue-header		or	do	you	create	a	new	selector	and	then	update	the	HTML
elements	that	are	referring	to		.blue-header	?

A	selector	like		.article-title		is	more	descriptive	of	the	content	and	will	probably	remain	in	the	re-design	of	the	site.	This
does	beg	the	question,	is	it	acceptable	to	ever	use	presentational	styles?

Semantic	Classes

Sass	in	the	Real	World:	book	1	of	4

43Semantic

http://www.stubbornella.org/content/2010/06/12/visual-semantics-in-html-and-css/
http://css-tricks.com/semantic-class-names/
http://robdodson.me/blog/2012/06/09/css-semantics/
http://csswizardry.com/2010/08/semantics-and-sensibility/

Presentational	classes	are	selector	names	that	give	us	an	insight	into	the	presentation	that	is	being	applied.	Some	are	like
our	previous	example		.blue-header	,	when	applied	will	apply	the	style	that	is	reserved	headers	type	that	has	a	blue	color.
These	classes	are	considered	un-semantic	and	not	recommended	for	usage.	Even	in	the	W3C	specification	draft	states	the
following:

There	are	no	additional	restrictions	on	the	tokens	authors	can	use	in	the	class	attribute,	but	authors	are	encouraged	to	use
values	that	describe	the	nature	of	the	content,	rather	than	values	that	describe	the	desired	presentation	of	the	content.

An	exception	to	this	are	examples	of	presentation	styles	used	as	helper	or	utility	classes.	For	example,		.pull-left	,		.is-
hidden	,		.display-inline		or		.is-active	.	These	types	of	classes	are	created	to	be	used	as	modifiers	where,	for	example,	by
applying	the	selector	to	an	element	that	is	to	hidden	from	view,	pulled	to	the	left	or	is	showing	it's	active	state.

Presentational	Classes

Sass	in	the	Real	World:	book	1	of	4

44Presentational

When	it	comes	to	writing	CSS,	some	fall	under	the	camp	of	never	using	presentational	classes	and	always	being	semantic
vs.	some	that	have	the	lax	approach	of	not	applying	the	semantic	rules,	sometimes	to	a	fault.

The	reasons	behind	the	semantic	class	guideline	are:

Separation	of	content	from	presentation
Search	Engine	Optimization
Sensibility

While	I	do	not	disagree	with	the	semantic	approach,	I	do	however	do	not	adhere	to	the	strict	"all	semantic	all	the	time"
motto.	The	principle	of	"describe	the	nature	of	the	content,	rather	than	[...]	presentation	of	the	content"	is	the	major
guideline	that	should	be	followed.	In	that	same	line	of	ideology,	we	should	use	all	the	weapons	available	to	us	i.e.	class,
attributes,	id,	and	tags	to	tell	the	story	of	content.	For	example,	let's	examine	this	bit	of	code	for	a	blog	site.

<div>
		<div	id="article">
				<p	class="bold-font	14px-large-font">
						How	to	write	an	un-semantic	front	end
				</p>
				<p	class="regular-font">The	content	will	go	here</p>
				<div	id="comments"></div>
		</div>
</div>

In	comparison	to	the	story	teller's	version.

<section	id="main-content"	role="main">
		<article	class="blog-content">
				<h3>How	to	write	an	semantic	front	end</h3>
				<p>The	content	will	go	here</p>
				<section	class="comments"></section>
		</article>
</section>

The	latter	example	can	let	us	know	all	the	information	about	the	different	sections	of	site	without	exposing	the	individual
presentational	aspects	of	it.	However	I	do	not	think	that	the	total	avoidance	of	presentational	classes	are	necessary.	The
existence	of	some	utility/presentation	classes	like		.is-hidden	,		.pull-left	,	or		.image-replacement		is	necessary	only	to	be
used	in	exceptional	circumstances.	However	if	you	review	your	code	and	see	too	many	of	these	utility	classes,	it	is	time	to
refactor	your	solution	and	pull	them	into	the	semantic	frame	of	your	stylesheet.

Semantic	and	Presentational	Classes

Sass	in	the	Real	World:	book	1	of	4

45Semantic	and	Presentational

CSS	has	had	a	long	and	sordid	past.	A	developer	never	sets	out	with	the	goal	of	making	a	complete	and	total	mess	of
things.	Their	intention	is	not	to	build	something	that	is	practically	illegible,	impractical	to	maintain	and	is	limited	in	scale.	But
somehow,	this	is	where	many	inevitably	end	up.	Luckily,	all	is	not	lost.	With	some	simple	strategies,	organizational	methods
and	out-of-the	box	tools,	we	can	really	help	get	things	in	order.

For	many	getting	started	with	Sass,	at	one	time	or	another,	have	created	a	junk-drawer	of	files.	For	most,	this	was	a	rookie
mistake,	but	for	others,	this	is	a	continuing	issue	with	our	architecture	and	file	management	techniques.	Sass	doesn't	come
with	any	real	rules	for	file	management	so	developers	are	pretty	much	left	to	their	own	devices.

In	this	chapter	we	will	cover	an	array	of	file	management	practices	that	have	varying	levels	of	success	and	failure.	It	is	over
the	years	that	I	have	honed	in	on	one	particular	structure	that	continues	to	be	successful	in	multiple	development
environments.

File	management

Sass	in	the	Real	World:	book	1	of	4

46File	management

CSS	started	out	with	very	simple	intentions,	but	as	table-less	web	design	began	to	really	take	a	foothold,	our	stylesheets
quickly	began	to	grow	in	size.	Developers	tried	to	break	them	into	smaller	documents,	but	these	strategies	proved	to	have
serious	performance	issues.	Linking	to	multiple	style-sheets	meant	multiple	server	round-trips	adding	the	time	it	takes	for	a
page	to	acquire	it's	necessary	resources,	not	including	the	time	it	takes	to	transfer	the	data.

It's	not	entirely	uncommon	to	see	multiple	links	to	stylesheets	in	websites.

<link	rel="stylesheet"	href="stylesheets/reset.css">
<link	rel="stylesheet"	href="stylesheets/base.css">
<link	rel="stylesheet"	href="stylesheets/skeleton.css">
<link	rel="stylesheet"	href="stylesheets/font-awesome.css">
<link	rel="stylesheet"	href="stylesheets/buttons.css">
<link	rel="stylesheet"	href="stylesheets/layout.css">

The	practice	of	importing	stylesheets	into	the	one	stylesheet	linked	in	the	HTML	document	was	adopted	by	many	as	shown
in	this	example	from	the	MOZILLA	DEVELOPER	NETWORK.	This	technique	had	many	promisses.	It	not	only	supported
breaking	your	CSS	into	manageable	documents	but	it	also	supported	media	types.

@import	url("fineprint.css")	print;
@import	url("bluish.css")	projection,	tv;
@import	'custom.css';
@import	url("chrome://communicator/skin/");
@import	"common.css"	screen,	projection;
@import	url('landscape.css')	screen	and	(orientation:landscape);

It's	ultimate	failure	was	that	this	feature	has	such	a	negative	impact	on	web	page	performance,	as	pointed	out	by	Steve
Sounders	back	in	2009,	it's	practice	was	quickly	abandoned.	Using	the	link	method,	the	stylesheets	are	loaded	parallel
(faster	and	better).	The		@import		method	loads	any	extra	css	files	one-by-one	(slower),	and	potentially	gives	you	flash	of
un-styled	content.

Looking	for	new	solutions,	developers	began	to	adopt	the	use	of	CSS	preprocessors	to	manage	growing	CSS	code	bases,
but	sadly	didn't	change	old	habits.	Still	clinging	to	the	practice	of	creating	large	documents,	many	placed	mixins	and
variables	at	the	head	of	the	doc	and	simply	hashed	out	a	bunch	of	CSS	rules	in	the	body.	To	make	matters	worse,	as	the
documents	began	to	grow	in	size,	mixins	and	variables	began	to	show	up	at	random	places	within	the	stylesheet.

Realizing	the	need	for	better	management	techniques,	many	began	to	break	these	large	stylesheets	into	smaller
documents	based	on	common	principles	like	variables	and	mixins.	Typography,	forms	and	global	design	soon	followed.
Sure	this	reduced	file	size	and	increased	readability,	but	without	a	real	strategy	this	process	was	easily	doomed.	As	files
grew	in	number,	sub-directories	quickly	gave	way	to	junk-drawers	of	haphazardly	daisy-chained	files,	filterable	only	my
failed	attempts	at	naming	conventions.

Large	CSS	files	and	increased	complexity

Sass	in	the	Real	World:	book	1	of	4

47Large	CSS	projects

Inspired	by	Model-View-Controller(MVC)	frameworks,	mainly	Rails,	developers	began	to	adopt	these	file	structure	solutions
to	help	solve	their	issues.	While	there	is	some	merit	to	this	in	regards	to	template/layout	styles,	this	practice	inevitably	lends
itself	to	creating	styles	that	are	too	specific	to	each	individual	view	and	not	easily	reused	throughout	the	rest	of	the
application.

As	a	site's	design	progressed,	duplicated	code	began	to	reveal	itself	between	views.	Attempts	at	abstraction,	following
another	MVC	pattern,	typically	resulted	in	the	creation	of	a		/partials		directory.	Basically,	a	simple	repository	for	custom
built	mixins,	variables	and	other	reusable	code.	In	essence,	a	Sass	junk-drawer.

Following	another	Rails	MVC	patterns,	developers	attempted	abstract	away	from	the	view	and	organize	their	files	based	on
actions.	If	the	visual	elements	are	part	of	an	action,	making	directories	based	on	these	actions	makes	sense,	right?	Sadly,
this	quickly	falls	apart	as	not	all	UI	elements	can	be	easily	categorized	this	way.	Random	files	again	populate	the	directory,
universal	widgets,	plug-ins,	and	custom	mixins	begin	to	collect.	Once	again	we	find	ourselves	suffering	from	the	Sass	junk-
drawer	effect.

Controller/action	based	styles

Sass	in	the	Real	World:	book	1	of	4

48MVC	style

Life	is	about	journeys.	It	was	during	my	journey	of	'doing	it	wrong'	that	I	began	to	see	clearly.	Ironically,	I	had	the	right
solution	all	along,	but	didn't	realize	it.	While	part	of	a	team	developing	an	enterprise	CMS,	our	process	was	to	decompose	a
site's	UI	to	it's	lowest	common	elements.	From	those	elements	we	could	then	build	modules	and	then	finally	assemble	the
view	templates.	Each	step	building	on	the	previous.	Although	my	stylesheet	management	techniques	weren't	perfect,	my
concept	of	UI	abstraction	was	solid.

In	2009,	I	began	working	with	a	new	team,	sans	a	CMS	and	my	first	encounter	with	Sass.	I	approached	the	project	with	the
same	conceptual	understanding,	but	the	outcome	was	drastically	different.	The	code	became	increasingly	harder	to	reuse
and	making	simple	edits	resulted	in	the	re-engineering	of	HTML	as	well	as	CSS.	Post	launch,	I	sat	down	and	analyzed	the
code	I	wrote.	I	came	to	the	realization	that,	as	a	team,	we	were	engineering	our	UI	(CSS	and	HTML)	from	entirely	the
wrong	perspective.	We	were	approaching	our	development	from	the	full	page	perspective.	Engineering	all	our	visual
elements	from	the	outside-in	and	scoped	to	a	specific	view.

I	started	thinking	back	to	the	processes	I	pioneered	with	the	CMS.	Patterns	established	in	the	framework	dictated	we	start
from	the	elemental	perspective;	type,	colors,	forms,	basic	UI	chrome	(borders,	shadows,	icons,	etc)	all	coded	first.	Once
those	base	element	styles	were	completed,	it	was	a	matter	of	applying	the	skin	to	the	individual	CMS	modules.	The
modules	then	in-turn	were	used	to	assemble	the	view	within	the	various	automated	templates.	It	worked	quickly	and
seamlessly.	Building	the	UIs	from	the	inside-out	was	clearly	the	right	solution.

Learning	from	our	mistakes

Sass	in	the	Real	World:	book	1	of	4

49Learning	from	mistakes

Applying	these	principals	to	new	projects	was	the	next	challenge.	First	we	need	to	be	better	at	decomposing	our	designs.
The	inside-out	approach	is	key	to	this	process,	the	goal	of	the	file	structure,	and	necessary	for	a	scalable	architecture.
Simply	put,	code	the	element,	create	the	module	and	assemble	the	layout.

At	this	point	you	may	be	drawing	parallels	with	Jonathan	Snook's	SMACSS	approach,	as	you	should.	The	approach	I
adopted	shares	many	similarities	that	were	later	outlined	in	Jonathan's	book.	But	alas,	there	are	differences	due	to	the	vary
nature	of	Sass	and	the	additional	features	that	it	supports	over	vanilla	CSS.

Base
Layout
Module
State
Theme

While	many	of	these	concepts	are	solid	ways	to	architect	a	scalable	CSS	structure,	they	are	somewhat	constrained	by	the
limitations	of	vanilla	CSS.	But	this	is	a	book	about	Sass	and	we	are	not	as	easily	constrained	by	these	limitations.

In	SMCASS,	there	are	five	types	of	style	categories:

Core	styles	that	will	make	up	your	site	or	application.	Base	rules	are	commonly	applied	to	an	element	using	the	element
selector	itself.	Thrown	into	this	bucket	would	be	the	CSS	reset,	typography,	forms	and	buttons.	These	base	styles	will	each
have	their	own	Sass	file	for	easy	management,	here	is	an	example	from	a		_typography.scss		Sass	file.

html	{
		font:	em($font_size,	16)	$primary_font_family;
		line-height:	baseline($font_size);
		color:	$primary_text
}

//	Heading	CSS	rules
//	--
h1,	h2,	h3,	h4,	h5,	h6	{
		@include	heading();
}

//	Standard	body	text	support
//	---
p	{
		margin-bottom:	baseline-margin($font_size);
		text-indent:	0;
}

a	{
		color:	$href_color;
		text-decoration:	none;
		&:hover,	&:active	{
				text-decoration:	underline;
		}
		&:visited	{
				color:	$href_color;
		}
}

Elements,	modules	and	layouts

Base

Modules

Sass	in	the	Real	World:	book	1	of	4

50Elements,	modules	and	layout

SMACSS	and	I	share	a	similar	point	of	view.	Consider	modules	as	'nouns'	in	your	code.	These	are	the	'things'	that	you	will
be	making	the	most	use	of.	Leveraging	the	styles	created	in	base,	I	can	begin	to	create	small	and	large	modules	that	can
be	infinitely	reused.

Where	Sass	begins	to	add	super	powers	is	it's	ability	to	break	down	modules	even	further	into	infinitely	more	reusable
code.	The	use	of	mixins	and	placeholder	selectors	strike	an	even	more	amazing	balance	between	presentational	selectors
in	your	CSS	and	semantic	selectors	in	your	markup.

State	is	a	powerful	concept	and	again	fully	supported.	State	typically	is	an	over-ride	to	the	default	style	placed	on	an
element	or	module.	If	the	module	is	a	noun,	then	the	state	is	the	module's	verb.	Common	concepts	are		.is-hidden		or		.is-
error	.

Where	I	slightly	differ	with	Sass	is	I	feel	that	state	rules	are	better	managed	within	the	parent	selector	versus	always	having
completely	separate	rules.	This	is	not	a	fundamental	change	in	the	state	concept,	but	an	area	where	Sass	shines	a	light	on
the	limitations	of	vanilla	CSS.

SMACSS	emphasizes	using	the		!important		tag	when	creating	stand	alone	selectors.	I	find	this	approach	to	be	somewhat
problematic.	Instead,	I	advocate	for	not	only	creating	a	standalone	default	rule	for	the	management	of	state,	but	in	the
cases	where	specificity	is	needed,	nesting	the	state	rule	in	the	module	it	is	designed	to	augment	is	preferred.

In	regards	to	layout,	I	take	a	different	approach	all	together.	SMACSS	considers	layout	as	slightly	different	representation	of
the	module,	conceptualizing	them	as	major	page	components.	Examples	would	be		.site-header	,		.site-footer		and		.main-
nav	.

I	on	the	other	hand,	as	discussed	further	in	this	chapter,	consider	layout	to	be	a	more	holistic	assembly	of	a	view	or
template	for	modules	to	be	inserted.	I	consider	the	layout	to	be	the	structural	CSS	that	comprises	the	grid	in	various	states
depending	on	user	input	and	environment.	To	me,	the	layout	is	the	key	to	easily	manage	responsive	web	designs	as	so
may	of	the	UI	decisions	are	based	on	the	layout,	not	the	module	themselves.

Much	like	layout,	I	take	a	completely	different	approach	all	together.	Sass'	ability	to	create	UI	variables,	mixins	and
placeholder	selectors	allows	me	to	re-write	the	concept	of	CSS	theming.	In	SMACSS	theme	is	not	considered	part	of	the
core	types,	where	I	see	it	as	an	essential	player	on	the	construction	of	the	site	design.

A	good	example	of	a	theming	solution	would	be	with	a	tool-tip	bubble.	For	example	the	tool-tip	module	would	consist	of
inheriting	typography,	applying	some	shape	and	aesthetics	such	as	a	carrot.	The	theme	of	the	tool-tip	would	be	it's	padding,
color,	border	and	possibly	a	shadow	effect.	With	vanilla	CSS,	it	is	recommended	that	you	engineer	the	module	itself,	then
later	in	a	"theme"	section	of	your	CSS	you	again	reference	the	selector	to	add	it's	theme	rules.

With	Sass	we	can	take	this	to	a	whole	new	level	by	engineering	the	tool-tip	as	a	self	contained	module	either	as	a	mixin
that	accepts	arguments	or	a	placeholder	selector	with	variables.	Selectively	enhancing	the	module	at	the	time	of	placement
and	coupled	with	the	concept	of	a		_config.scss		file,	I	can	list	out	all	the	configurable	"theming"	parts	of	the	site's	design.

State

Layout

Theme

Sass	in	the	Real	World:	book	1	of	4

51Elements,	modules	and	layout

Here	I	propose	the	following	file	structure	that	embodies	this	point	of	view.	In	the	root	there	are	individual	Sass	partials	to
address	the	elemental	parts,	directories	for	more	complex	concepts	and	last	is	a	manifest	file	to	aggregate	all	the
awesome.

|-	sass/
|---	buttons/
|---	color/
|---	forms/
|---	layouts/
|---	modules/
|---	typography/
|---	ui_patterns/
|---	vendors/
|---	_buttons.scss
|---	_config.scss
|---	_forms.scss
|---	_reset.scss
|---	_typography.scss
|---	application.scss		//	the	aggregate	manifest	file

File	structure

Sass	in	the	Real	World:	book	1	of	4

52File	structure

As	discussed	up	to	this	point,	it	is	the	desire	of	many	developers	to	break	down	their	CSS	into	smaller,	more	manageable
resource	files.	Even	SMACSS	clearly	advocates	for	breaking	down	all	of	it's	core	types	and	modules	into	separate		.css	
files.	There	is	a	huge	flaw	in	this	since	vanilla	CSS	does	not	support	the	aggregation	of	these	resources.	You	are	either	left
with	linking	multiple	CSS	resources,	using	the	non-performant		@import		native	CSS	feature	or	looking	to	more	complex
solutions.

Sass'	solution	to	the	problem	is	to	natively	support	partials.	Sass	can	be	broken	into	smaller,	more	manageable	resource
files	and	by	default	any		.sass		or		.scss		fill	will	be	processed	into	CSS.

|-	sass/
|---	buttons.scss
|---	forms.scss
|---	reset.scss
|---	typography.scss

Will	output	the	following:

|-	stylesheets/
|---	buttons.css
|---	forms.css
|---	reset.css
|---	typography.css

Frameworks	like	Rails	will	take	all	these	individual	CSS	files	and	compress	them	into	a	single	CSS	file	for	production,	but
we	are	not	all	Rails	developers.	Not	to	mention	that	the	Rails	documentation	states	that	this	solution	was	not	designed	for
multiple	Sass	files	and	you	should	use	Sass'	native		@import		rule	instead	of	Rails'	Sprockets	directives.

Partials	are	a	powerful	weapon	in	the	Sass	arsenal.	Simply	put,	any	file	that	has	an	underscore	before	the	name,
	_partialName.scss	,	will	not	be	processed	into	a		.css		file	by	itself.	It	is	required	to	be	imported	into	a	file	that	will	be
processed	into	CSS.	Editing	the	previous	example,	we	will	make	each	Sass	file	a	partial	and	use	a	manifest	file	to
aggregate	the	partials	using	the		@import		rule.

|-	sass/
|---	_buttons.scss
|---	_forms.scss
|---	_reset.scss
|---	_typography.scss
|---	application.scss

Will	output	the	following:

|-	stylesheets/
|---	application.css

At	this	level	of	the	file	structure	example,	the	only	file	that	is	processed	into	CSS	is	the		application.css		manifest.	It's	here
where	all	your	custom	add-ons,	configs,	elements,	modules,	views,	mixins,	extends,	etc.,	are	all	imported	and	processed
into	a	production	style-sheet.	It	is	important	that	this	file	be	kept	devoid	of	any	presentational	CSS	rules.

Sass	partials	and	the	manifest

Manifest	files

Sass	in	the	Real	World:	book	1	of	4

53The	Manifest

An	example	manifest	file	would	only	contain	instructions	and	the	imported	Sass	files	as	illustrated	in	the	following.

//	App	Config	-	this	is	where	most	of	your	magic	will	happen
//	--
@import	"config";		//	The	config	file	sets	the	theme	for	the	project

//	Import	core	Sass	libraries
//	--
@import	"lib/bourbon/bourbon";
@import	"lib/colors/manifest";
@import	"lib/typography/manifest";

//	Standard	CSS	reset	stuff	here
//	--
@import	"reset";

This	is	not	to	say	that	application.scss	is	the	only	Sass	manifest	file.	Manifests	can	import	other	manifests.	A	pattern	that
helps	to	keep	the	application.scss	manifest	easy	to	read	while	keeping	sub-directory	files	nicely	organized.

Manual	manifests	are	just	that,	manual	management	of	imported	Sass	files	from	sub-directories.	This	is	a	good	practice	to
follow	when	you	need	specific	control	over	the	inheritance	of	files.	Example,	rule	A	needs	to	come	before	rule	B	in	the
output	cascade.

Glob-imports	on	the	other	hand	is	a	way	for	you	to	simply	point	to	a	directory	in	your	manifest,		@import	"directory/*"	;	and
Sass	will	import	all	the	files	in	alphabetical	order.	This	is	great	for	a	directory	of	mixins	or	functions	that	simply	need	to	be
loaded	in	memory	for	Sass	to	process	the	CSS.	If	you	want	to	use	the	glob	function	but	require	a	specific	order,	a	naming
convention	like		_01-mixin.scss		could	work	as	well.

If	you	are	a	Rails	developer,	this	feature	is	made	available	to	you	via	the	sass-rails	Gem.	If	you	are	not	using	Rails,	Chris
Eppstein	has	made	this	feature	available	to	all	users	via	a	plug-in	Ruby	Gem,	Sass	globbing.

Manual	manifest	files	or	glob-imports

Sass	in	the	Real	World:	book	1	of	4

54The	Manifest

https://github.com/chriseppstein/sass-globbing

An	advanced	concept	of	using	a	Sass	structure	like	this	is	using	a		_config.scss		file	to	manage	the	smart	defaults	for	your
UI.	Using	this	technique	will	help	to	keep	all	your	UI	configuration	options	easily	accessible	and	manageable,	especially
when	you	are	using	extended	Sass	libraries	like	Zurb's	Foundation	or	Toadstool	w/Stipe.

//	We	use	these	as	default	colors	throughout
$primary-color:	#008CBA;
$secondary-color:	#e7e7e7;
$alert-color:	#f04124;
$success-color:	#43AC6A;
$warning-color:	#f08a24;
$info-color:	#a0d3e8;

//	We	use	these	to	make	sure	border	radius	matches.
$global-radius:	3px;
$global-rounded:	1000px;

//	We	use	these	to	control	inset	shadow	shiny	edges	and	depressions.
$shiny-edge-size:	0	1px	0;
$shiny-edge-color:	rgba(#fff,	.5);
$shiny-edge-active-color:	rgba(#000,	.2);

It	is	important	that	there	are	no	presentational	CSS	rules	in	the		_config.scss		file.	Typically	you	will	include	it	at	the	head	of
your	primary	Sass	manifest	file,	such	as		application.scss	.	Depending	on	how	your	architecture	progresses,	there	may	be
times	when	you	need	to	import	your		_config.scss		file	again	in	another	module.	As	long	as	you	keep	any	CSS	rules	out	of
this	document,	there	is	nothing	wrong	with	this	practice.

Configurable	theme	option

Sass	in	the	Real	World:	book	1	of	4

55Theme	options

Module	partials	is	where	we	get	to	work.	Here	we	write	Sass	rules	that	will	create	your	UI	foundational	layer.	_buttons.scss	,
	_forms.scss	,		_global-design.scss	,		_reset.scs	s	and		_typography.scss		all	contain	Sass	rules	that	will	process	into	CSS.
While	they	will	import	other	partials,	mixins	and	placeholder	selector	rules,	it	is	important	to	remember	that	these	files	are
engineered	only	to	output	CSS.

Taking	buttons	as	an	example;	between	gradients,		:hover		and		:active		states,	one	could	go	a	little	mad	over	the
complexities	in	styling.	It	is	important	to	keep	your	Sass	logic	out	of	these	files	and	focus	purely	on	the	rules	that	will
produce	CSS	for	your	selector.

Using	a	Compass	Extension	to	quickly	engineer	a	button	is	a	great	example.	In	our		_buttons.scss		partial	we	would	only
have	code	like	so:

button,	a.button	{
		@include	button($button-color);
}

Keeping	functional	Sass	separate	from	presentational	Sass	is	important	in	order	to	maintain	readability,	search-ability	and
scalability	of	your	code.	Patterns	like	placing	mixins	in	the	same	file	as	presentational	Sass	leads	to	overly	complex	files	to
scan	and	opportunities	for	accidental	pollution	of	your	processed	CSS.

Custom	code	for	a	project	is	the	one	area	where	I	see	the	most	issues	with	file	management.	Polarizing	concepts,	like
keeping	things	global	or	local,	paralyze	many	developers.	They	want	to	keep	the	code	as	accessible	as	possible,	but
inevitably	end	up	creating	functional	Sass	that	is	specific	to	a	type	of	UI	or	module.	So	instead	of	ignoring	these	issues,	I
recommend	embracing	the	concepts	that	allow	developers	to	create	abstract	concepts	while	maintaining	a	code
organization	that	makes	sense.

Using	our	button	example	again,	let's	say	that	you	need	to	roll	your	own	from	scratch.	In	the	file	structure	there	is	a
corresponding		buttons/		directory	where	you	will	keep	your		_mixin.scss	,		_extend.scss		and	custom	function	files.	This
solution	will	keep	your	presentational	Sass	clean	and	readable,	while	placing	your	functional	Sass	in	a	directory	that	is
modular	and	is	easy	to	find.

Module	partials

Custom	mixins,	placeholder	selectors	and	custom	function
organization

Sass	in	the	Real	World:	book	1	of	4

56Partials

Now	that	we	have	established	the	architecture	for	our	UI	foundation,	it	is	time	to	start	assembling	some	modules.	In
essence,	modular	Sass	is	an	assembly	of	foundational	elements	with	only	enough	additional	presentational	Sass	to	hold	it
together.	The	use	of	elemental	styles	to	build	a	module	is	strongly	encouraged;	while	defining	new	elements	in	the	scope	of
building	a	module	is	strongly	discouraged.

A	module's	Sass	is	exclusive	to	a	particular	interaction	of	the	application.	Modules	will	come	in	all	shapes	and	sizes,	while
larger	modules	may	also	consist	of	smaller	modules	or	UI	patterns.

UI	patterns	are	subject	to	personal	interpretation.	In	practice	when	engineering	modules,	from	one	to	the	next,	UI	patterns
will	emerge.	It	is	practical	to	try	and	encapsulate	these	smaller	patterns	for	reuse,	but	I	don't	lose	sleep	over	them.

A	module	is	a	singular	functional	deliverable	and	will	be	unchanged	in	form,	functionality	and	content.	Examples	are	site
header,	main	navigation	and	footer.

One	could	argue	that	a	module	is	engineered	as	a	'plug-n-play'	element.	Taking	the	main	navigation	for	example,	there
would	be	no	good	reason	why	you	would	want	to	re-purpose	this	UI	element	and	functionality	in	another	module?	That
would	be	very	confusing	to	your	users.	Your	functional	code,	your	Sass	and	your	application	should	represent	this	as	a
singular	modular	object.

UI	Patterns,	on	the	other	hand,	are	representations	of	assembled	UI	elements.	Dialog	boxes	are	a	great	example.	These
patterns	consist	of	design	elements	such	as,	typography,	arrangement,	color,	border	and	spacing.	These	patterns	can	be
re-purposed	again	and	again	throughout	the	application/site.	But	the	content	and	functionality	of	this	pattern	are	subject	to
redefinition	based	on	use.

Module	and	UI	patterns	are	directories	unto	themselves.	An	exploded	module	directory	may	look	like	the	following:

|-	sass/
|---	modules/
|-----	registration/
|-------	_extends.scss
|-------	_functions.scss
|-------	_mixin.scss
|-------	_module_registration.scss
|-------	_module_personal-info.scss
|-----	purchase/
|-------	_extends.scss
|-------	_functions.scss
|-------	_mixin.scss
|-------	_module_summary.scss
|-------	_module_purchase.scss

The	idea	here	is	that	while	engineering	modules	you	may	need	to	create	complex	functional	Sass	that	is	exclusive	to	a
module.	While	I	strongly	encourage	making	UI	logic	as	abstract	as	possible	and	available	to	the	whole	app,	this	process
discourages	the	practice	of	creating	junk-drawers.

Modules	and	UI	patterns

Module

UI	Patterns

The	module	file	structure

Sass	in	the	Real	World:	book	1	of	4

57Modules	and	UI	Patterns

Keeping	these	logic	files	close	to	the	actual	use-case	helps	maintain	clean	organization	of	your	code.	As	shown	in	the
example	above,	a	primary	module	may	consist	of	smaller	modules.	As	a	naming	convention,	I	will	name	the	primary
module	Sass	file	after	the	name	of	the	directory	prefixed	with		module_	.	For	example:		_module_registration.scss	.	Any	sub-
modules	in	this	directory	will	simply	be	named	by	the	purpose	in	which	it	serves,		_module_personal-info.scss		for	example.

Sub-modules	of	a	UI	in	many	cases	will	contain	similar	characteristics.	This	close	relationship	between	a	module's
functional	Sass	and	it's	presentational	Sass	also	serves	code	reuse	and	management	purposes.	Take	for	example	the	use
of	a	silent	placeholder.	In	the	extends.scss	file	you	may	engineer	a	reusable	UI	module	that	utilizes	several	variables.	In	the
corresponding	presentational	Sass	module	file	you	can	@extend	this	UI	while	resetting	some	of	the	default	variables.

All	modules	should	be	name-spaced	by	the	semantic	name	of	the	module	itself.		.registration	{}		or		.purchase	{}		for
example.	If	the	sub-module	is	exclusive	to	the	primary	module	then	it	would	extend	the	name	like	so,		.purchase_summary	{}	.

Keep	in	mind	that	at	the	level	we	are	working	at	it	is	scoped	to	the	module	itself.	Keeping	the	selectors	shallow	will
encourage	reuse	throughout	the	application	without	causing	additional	engineering.	If	you	find	yourself	engineering
complex	UIs	within	the	module,	this	may	be	an	opportunity	to	abstract	into	a	mixin	or	silent	placeholder	selector.

Sass	in	the	Real	World:	book	1	of	4

58Modules	and	UI	Patterns

Prior	to	this	process,	I	started	developing	at	the	layout	level.	Abstracting	concepts	like	modules	and	elements	were
extremely	difficult	to	do	and	typically	overlooked.	By	completing	my	UI	development	journey	with	the	layout,	we	get	to	take
advantage	of	all	of	the	hard	work	done	so	far.	Our	layout	Sass	files	should	contain	no	more	information	then	is	needed	to
assemble	a	series	of	modules	and	elements.	Imagine	a	sketch	with	gray	boxes	in	the	view,	this	is	the	document	that
creates	that	structure.	Elements	are	never	defined	and	modules	are	never	engineered	here.

I	never	advocate	for	sub-directories	per	layout,	as	things	should	never	get	that	complex.	At	this	level,	assembling	the	layout
should	be	taking	100%	advantage	of	the	elements	and	modules	already	engineered.	If	you	find	yourself	involved	in	more
complex	development	at	this	phase,	I	would	argue	that	you	need	to	review	your	work	before	engaging	in	more	complex
levels	of	code.	An	ideal	file	structure	would	look	similar	to	the	following.

|-	sass/
|---	layouts/
|-----	_home-layout.scss
|-----	_marketing-layout.scss
|-----	_search-results-layout.scss
|-----	_order-summary-layout.scss
...

Typically	I	will	name	a	layout	Sass	file	after	the	semantic	meaning	of	the	view.	In	an	MVC	app,	a	great	convention	is	either
use	the	name	of	the		controller		or	the		layout		template	file	and	append	the	word		-container		or		-layout	.	An	example
would	be		_sessions-container.scss		or		_sessions-layout.scss	.

To	keep	things	simple,	I	would	then	scope	all	the	presentational	Sass	in	a	document	by	the	same	name,		.sessions-layout
{}		for	example.	Using	this	class	name	can	be	achieved	by	dynamically	adding	the	class	to	the		<body>		tag	when	the	view
renders	or	creating	multiple	layout	templates	with	a	static	class	applied.	Use	whatever	works	for	you.

Our	#1	goal	with	layout	Sass	files	is	to	place	control	of	the	template	UI	into	the	hands	of	the	CSS	itself	rather	then
depending	on	presentational	classes	in	our	markup.	This	becomes	even	more	important	when	considering	mobile/content
first	and	responsive	web	design	strategies.

Assemble	the	layout

Sass	in	the	Real	World:	book	1	of	4

59The	layout

So	far	we	have	learned	about	the	history	behind	Sass,		.sass		files	vs.		.scss		files,	and	a	bit	of	a	refresher	on	OOCSS.	Now
you	are	ready	to	get	your	hands	dirty	and	writing	some	sass	code.	The	code	you'll	see	in	this	chapter	is	not	too	different
from	writing	any	CSS	project	you	have	seen;	we	have	to	evaluate	the	design,	all	the	elements	involved,	and	the	modules	to
be	created.	We	will	continue	with	our	sample	project,	incorporating	the	design	elements	using	Sass.	We	will	also	look	at
some	of	the	existing	code	and	evaluate	how	we	will	optimize	it	further	using	Sass.

In	this	chapter,	while	continuing	our	project,	we	will	learn	about	variables,	scoping,		!default		flag,	and	how	to	setup	a
	_config.scss		file.	We	will	also	cover	an	introductory	example	of	mixins	and	some	of	the	guidelines	for	creating	a	mixin.
These	are	some	of	the	infrastructure	that	we	need	to	setup	in	order	to	further	expand	on	the	design	and	build	our
stylesheet,	so	let's	get	started	by	looking	at	the	needed	variables.

Handy	tools

Sass	in	the	Real	World:	book	1	of	4

60Handy	tools

Sass,	like	many	languages,	consist	of	a	series	of	core	types.	A	data	type,	or	simply	type,	is	a	classification	for	identifying
one	of	various	types	of	data	from	which	a	language	can	operate	with.	Data	types	typically	consist	of	real,	integer	or	Boolean
values	that	determine	the	possible	outputs	for	that	type.	Sass'	data	types	are:

numbers	(e.g.	1.2,	13,	10px)
strings	of	text,	with	and	without	quotes	(e.g.	"foo",	'bar',	baz)
colors	(e.g.	blue,	#04a3f9,	rgba(255,	0,	0,	0.5))
booleans	(e.g.	true,	false)
nulls	(e.g.	null)
lists	of	values,	separated	by	spaces	or	commas	(e.g.	1.5em	1em	0	2em,	Helvetica,	Arial,	sans-serif)
maps	from	one	value	to	another	(e.g.	(key1:	value1,	key2:	value2))

Sass	numbers	consist	of	floating	point	values,	integers,	and	values	with	units.	In	the	following	example	the	parentheses	are
being	used	as	a	separator	to	maintain	the	order	of	operations	so	that	the	floating	point	value	is	divided	by	integer	and	then
multiplied	by	the	value	with	the	unit.

By	the	way,	multiplying	a	floating	point	or	integer	by	a	value	of		1		with	a	unit	is	a	very	common	pattern	for	adding	a	unit	to	a
unit-less	number.

SCSS

block	{
		width:	(9.9	/	3)	*	1em;
}

CSS

block	{
		width:	3.3em;
}

CSS	specifies	two	kinds	of	strings:	those	with	quotes,	such	as	double	quotes		"Lucida	Grande"		or	single	quotes
	'http://sass-lang.com'	,	and	those	without	quotes,	such	as		sans-serif		or		bold	.	SassScript	recognizes	all	kinds.	In
general	if	one	kind	of	string	is	used	in	the	Sass	document,	that	kind	of	string	will	be	used	in	the	resulting	CSS.

String	operations	allow	you	to	build	phrases	on	the	fly	by	concatenating	a	series	of	variables	that	consist	of	strings.

SCSS

$foo:	'foo';
$bar:	bar;

Core	data	types

Numbers

Strings

String	operations

Sass	in	the	Real	World:	book	1	of	4

61Core	Data	Types

block	{
		content:	$foo	+	$bar;
}

CSS

block	{
		content:	"foobar";
}

Consider	interpolation	as	a	'replacement'	method.	In	some	cases	the	value	of	a	variable	cannot	be	used	when	creating
different	types	of	strings	in	the	processed	CSS.	A	very	common	use	case	is	when	you	are	using	the	value	of	a	variable	to
create	a	CSS	attribute	as	illustrated	in	the	following.

SCSS

@mixin	firefox-message($selector,	$value)	{
		body.firefox	#{$selector}:before	{
				content:	"Hi,	Firefox	users!";
				content:	"I	ate	#{5	+	$value}	pies!";
		}
}

@include	firefox-message(".header",	10);

CSS

body.firefox	.header:before	{
		content:	"Hi,	Firefox	users!";
		content:	"I	ate	15	pies!";
}

If	it	can	be	written	in	CSS,	it	will	work	in	Sass.	In	addition,	Sass	supports	a	wide	range	of	Color	Operators.	All	arithmetic
operations	are	supported	for	color	values,	where	they	work	piecewise.	Meaning	operation	are	performed	on	the	red,	green,
and	blue	components	in	turn.	For	example:

SCSS

div	{
		color:	#010203	+	#040506;
		background:	#010203	*	2;
		border:	rgba(255,	0,	0,	0.75)	+	rgba(0,	255,	0,	0.75);
		background-color:	blue	+	red;
}

CSS

div	{
		color:	#050709;

Interpolation

Colors

Sass	in	the	Real	World:	book	1	of	4

62Core	Data	Types

		background:	#020406;
		border:	rgba(255,	255,	0,	0.75);
		background-color:	magenta;
}

Sass	also	has	support	for	a	large	range	of	names	colors	that	are	indistinguishable	from	typical	strings.	See	the	full	list	of
colors	as	written	in	the	code-base	itself.

SassScript	supports		and	,		or	,	and		not		operators	for	boolean	values.	When	using	either		and		or		or		evaluators	you	are
required	to	wrap	the	evaluation	in	parentheses		()		as	illustrated	in	the	examples	below.

SCSS

$alpha:	red;
$beta:	green;
$charlie:	yellow;
$delta:	red;

.block	{
		@if	$alpha	!=	$beta	{
				content:	'winner!';
		}	@else	{
				content:	'loser!';
		}
}

.block	{
		@if	$alpha	==	($beta	or	$charlie)	{
				content:	'winner!';
		}	@else	{
				content:	'loser!';
		}
}

.block	{
		@if	$alpha	==	($beta	and	$delta)	{
				content:	'winner!';
		}	@else	{
				content:	'loser!';
		}
}

Null	values	are	treated	as	empty	strings	for	string	interpolation.	The	best	use	case	for		null		is	when	you	need	to	define	a
value,	but	don't	have	a	specific	value	to	be	used.	When	Sass	encounters	an	empty	string,	it's	default	functionality	is	to	NOT
print	out	the	CSS.	In	this	example,	if	we	have	an	empty	selector,	Sass	will	not	output	any	CSS.

.selector	{

}

But	you	can't	set	an	empty	string	to	a	variable.	In	this	example,	a	common	practice	of	using	empty	quotes,	Sass	will	output
that	as	a	value.

$color:	'	';

Boolean

Null

Sass	in	the	Real	World:	book	1	of	4

63Core	Data	Types

https://github.com/sass/sass/blob/stable/lib/sass/script/value/color.rb#L28-L180

.block	{
		color:	$color;
}

The	output	CSS	will	be:

.block	{
		color:	"	";
}

But	if	we	use	a		null		value:

$color:	null;

.block	{
		border:	1px	solid	$color;
		color:	$color;
}

We	would	expect	the	following:

.block	{
		border:	1px	solid;
}

Lists	are	how	Sass	represents	the	values	of	CSS	declarations	like		margin:	10px	15px	0	0		or		font-face:	Helvetica,	Arial,
sans-serif	.	Lists	are	just	a	series	of	other	values,	separated	by	either	spaces,	commas		,	,	quotes		"	"		or	parentheses		()	.
In	fact,	individual	values	count	as	lists,	too:	they're	just	lists	with	one	item.

There	are	some	rules	you	need	to	be	aware	of	when	building	a	list.	Due	to	all	the	operator	types,	you	can	actually	build	out
a	list	in	the	following	way,	this	will	actually	create	10	individual	strings	in	the	list.

SCSS

$string:	this	is	a	string	of	words	"more	words"	then	even	'more	words';

While	it	is	common	to	see	lists	separated	with	commas,	e.g.		$var:	red,	blue,	yellow	,	since	spaces	are	an	operator,	this	is
pretty	redundant.	The	following	examples	produce	the	exact	same	number	of	items	in	the	list.

$string:	this	is	a	string	of	words	more	words	then	even	more	words;

$string:	this,	is,	a,	string,	of,	words,	more,	words,	then,	even,	more,	words;

Parentheses		()		on	the	other	had,	you	can	use	as	separators,	but	these	are	most	commonly	used	when	you	want	to	group
different	styles	of	values	within	a	given	list	item.	Keep	in	mind	that	strings	within	parentheses	need	to	be	in	quotes.	The
following	example	will	represent	3	items	within	the	list.

$string:	(12	"foo"	8em)	(9	"bar"	1px)	(66	"baz"	100%);

Lists

Sass	in	the	Real	World:	book	1	of	4

64Core	Data	Types

Again,	you	will	commonly	see	examples	where	there	are	commas	between	the	parentheses	as	illustrated	below.

$string:	(12	"foo"	8em),	(9	"bar"	1px),	(66	"baz"	100%);

While	this	works,	it	is	unnecessary	in	this	example	because	of	the	spaces.	And	to	even	point	out,	since	we	are	using
parentheses	to	group	the	items	in	the	list,	we	don't	even	need	the	spaces,	but	it	does	help	for	readability.

Alone,	lists	don't	provide	any	output	for	CSS.	In	most	cases	you	will	see	lists	used	in	conjunction	with	loops	or	cherry
picking	values	using	the		nth()		function.	The		nth()		function	provides	a	method	to	seperate	a	list	into	its	assembled	values.
The	following	is	an	example	of		nth()		functiona	usage:

SCSS

//	Browser	prefixes
//	-------------------------
$browser:	-moz-	-webkit-	-o-	-ms-;

.border-image	{
		#{nth($browser,	2)}border-image:	url("/files/4127/border.png")	30	30	repeat;
		#{nth($browser,	3)}border-image:	url("/files/4127/border.png")	30	30	repeat;
		border-image:	url("/files/4127/border.png")	30	30	repeat;
}

CSS

.border-image	{
		-webkit-border-image:	url("/files/4127/border.png")	30	30	repeat;
		-o-border-image:	url("/files/4127/border.png")	30	30	repeat;
		border-image:	url("/files/4127/border.png")	30	30	repeat;
}

Maps	represent	an	association	between	keys	and	values,	where	keys	are	used	to	look	up	values.	They	make	it	easy	to
collect	values	into	named	groups	and	access	those	groups	dynamically.

Note	the	syntax,	in	SCSS	there	is	a	semi-colon	that	follows	the	declaration	as	this	is	a	single	Sass	statement.	List-maps
have	no	direct	parallel	in	CSS,	although	they're	syntactically	similar	to	media	query	expressions.

$name-space:	(key:	value,	key:	value);

Making	use	of	List-Maps	typically	is	done	with	the		map-get		function.	When	using	List-Maps,	the	variable	is	commonly
referred	to	as	the	name-space.	In	this	example	I	will	create	the		$input		name-space	and	nest	some		key:value		pairs	within
it.

$input-disabled-color:	#333	!default;

$input:	(
		disabled-background	lighten($input-disabled-color,	75%),
		disabled-border	lighten($input-disabled-color,	50%),
		disabled-text	lighten($input-disabled-color,	50%)
);

Maps

Sass	in	the	Real	World:	book	1	of	4

65Core	Data	Types

To	extract	these	values	we	will	use		map-get		function	and	pass	in	the	name-space	and	the	key	from	which	we	intend	to	get
it's	value.

input[disabled]	{
		background-color:	map-get($input,	disabled-background);
		border-color:	map-get($input,	disabled-border);
		color:	map-get($input,	disabled-text);
}

In	our	output	CSS	I	would	expect	something	like	the	following:

input[disabled]	{
		background-color:	#f2f2f2;
		border-color:	#b3b3b3;
		color:	#b3b3b3;
}

As	you	can	see,	using	list-maps	can	drastically	change	how	you	manage	and	maintain	a	series	of	related	variables	and
their	values.

Sass	in	the	Real	World:	book	1	of	4

66Core	Data	Types

SassScript	supports	the	standard	arithmetic	operations	on	numbers	(addition		+	,	subtraction		-	,	multiplication		*	,	division
	/	,	and	modulo		%).	Sass	math	functions	preserve	units	during	arithmetic	operations.

SCSS

p	{
		$width:	1000px;

		font:	10px/8px;													//	Plain	CSS,	no	division
		width:	$width/2;												//	Uses	a	variable,	does	division
		width:	round(1.5)/2;								//	Uses	a	function,	does	division
		height:	(500px/2);										//	Uses	parentheses,	does	division
		margin-left:	5px	+	8px/2px;	//	Uses	+,	does	division
}

CSS

p	{
		font:	10px/8px;
		width:	500px;
		width:	1;
		height:	250px;
		margin-left:	9px;
}

Number	Operations

Sass	in	the	Real	World:	book	1	of	4

67Number	operations

When	writing	any	CSS,	look	at	some	of	the	common	values	like	the	colors,	fonts,	font	sizes,	and	the	grid	layout.	These
basic	design	elements	need	to	be	incorporated	in	your	styelsheet.	One	of	the	ways	Sass	can	greatly	help	is	with	variables.
With	Sass	these	common	values	can	be	abstracted	and	placed	in	associated	variables	which	can	be	referenced	when
needed.

Variables	allow	you	to	name	CSS	values	that	you	use	repeatedly	and	then	refer	to	them	by	name	rather	than
repeating	the	value	over	and	over.	You	can	also	name	values	you	only	use	once	in	order	to	make	it	more	clear	what
they're	for.

Sass	and	Compass	in	Action	page	32

The	major	advantage	of	using	variables	in	Sass	is	that	now	you	have	a	single	point	of	reference	which	allows	for	better
maintainability	and	code	extensibility.	If	there	is	any	change	to	the	CSS	style,	in	theory	changing	the	variable	should	handle
the	change	(I	mention	in	theory	because	sometimes	practical	issues	provide	exceptions	to	this	rule).	Let's	look	at	the
following	variable	declarations:

//	Create	primary	color	palette	for	the	site

//Primary	colors	palette
//	-------------------------
$blue:											#3481CF	!default;
$white:										#FFFFFF	!default;
$black:										#000000	!default;
$gray:											#7F7F7F	!default;

//	Create		derivative	color	palette	from	the	primary	color	palette

//Derivative	colors
//	-------------------------
$dark-gray:						darken($gray,	23.14%)	!default;	//#444
$darker-gray:				darken($dark-gray,	6.6667%)	!default;	//#333
$darkest-gray:			darken($dark-gray,	17.25%)	!default;	//#181818

//	Set	a	semantic	alias	to	the	color	variable	based	on	the	dark	gray	color	that	was	instantiated	from	the	derivative	colors

//Font	information
//	-------------------------
$font-color:				$darker-gray;
$anchor-color:		$darker-gray;

//	Additionally,	primary,	secondary,	tertiary,	and	any	number	of	colors	can	be	created

//Color	use	palette
//	-------------------------
$primary-color:	$blue;
$secondary-color:	$black;
$tertiary-color:	$white;

//	When	creating	the	base	CSS,	I	will	assign	the	font	color	alias	variable	that	was	instantiated	earlier

p	{
		color:	$font-color;
}

a	{
		color:	$anchor-color;
		&:hover	{
				color:	darken($anchor-color,	20%);
		}
}

Setting	Variables

Sass	in	the	Real	World:	book	1	of	4

68Setting	variables

As	illustrated	in	this	this	example,	we	are	able	to	instantiate	variables	using	values	which,	in	this	case,	are	hexadecimal
colors.	We	can	also	instantiate	additional	variables	using	existing	variables,	this	is	referred	to	as	aliasing.	The	functions
used	for	the		$dark-gray		variable	are	existing	color	functions	provided	by	Sass.	We	will	cover	functions	in	more	detail	in
chapter	6,	however	in	the	meantime	lets	surmise	that	this	function	will	take	the	existing	gray	color	and	darken	it	by	23.14%.

It	is	important	to	keep	in	mind	that	we	now	have	created	a	maintainable	and	easily	scaleable	color	scheme	for	our	site.	We
will	be	referencing	this	set	of	colors	throughout	our	Sass	stylesheets.	In	the	future,	if	there	is	a	requirement	for	the	color
scheme	to	be	changed,	the	change	can	be	done	at	the	point	of	instantiation	in	the		_config.scss		file.	For	example,	if	the
requirement	is	that	the	the	grays	should	be	a	shade	darker	for	example	instead	of		#7f7f7f		we	want		#7b7b7b	,	we	can
change	the		$gray		variable	which	will	trickle	down	to	all	referenced	variables	in	the	stylesheet.

We	have	now	created	a	file	that	will	contain	the	basic	variables	for	our	site.	A	maintainable	and	scalable	file	for	the
stylesheet	and	site	design.	We	will	discuss	this	in	more	detail	in	using	a		_config		file	section.

When	discussing	variables	in	any	programming	language,	it's	important	to	understand	how	variables	are	scoped.	Let's	take
a	look	at	how	Sass	handles	the	scoping	of	variables.

Sass	in	the	Real	World:	book	1	of	4

69Setting	variables

In	any	programming	language,	scoping	should	be	considered	when	setting	variables.	In	Sass,	all	variables	declared	outside
of	a	mixin	or	function	will	have	a	global	scope	and	can	be	referenced	in	any	Sass	selector	that	uses	the	variable.

$text-color:	blue;

html	{
		font-family:	Arial,	sans-serfi;
		font-size:	1em;
		color:	$text-color;
}

Keeping	true	to	the	Cascading	part	of	CSS,	currently	if	the	value	of	the	variable	is	changed,	all	further	reference	to	the
variable	will	be	updated	to	the	new	value.	This	sounds	logical	but	consider	the	following	example:

//	I	instantiated	the	$text-color	variable	to	Blue
$text-color:	blue;

//	Here,	the	intent	was	to	change	the	color	for	the	.error	style
.error	{
		$text-color:	red;
		color:	$text-color;
}

//	Following	the	cascade,	in	.normal-text,	I	want	Blue,	but	get	Red.
.normal-text	{
		color:	$text-color;
}

The	above	Sass	will	compile	to	the	following	CSS:

.error	{
		color:	red;
}

.normal-text	{
		color:	red;
}

As	you	can	see,	the	variable		$text-color		has	a	global	scope	and	it	is	set	to		blue	.	However	when	I	changed	the		$text-
color		variable	to		red	,	you	will	see	that	all	further	instances	of		$text-color		variable	will	be		red	.	This	is	common	pitfall
among	novice	Sass	users.	The	best	way	to	prevent	this	pitfall	is	to	follow	these	guidelines:

Always	set	global	variables	and	do	not	reset	them	throughout	the	stylesheet
Make	use	of		!default		flag

When	setting	variables	in	mixins	or	functions,	keep	the	above	scoping	scenario	in	mind.	If	there	is	a	variable	that	needs	to
be	scoped	within	a	mixin	or	function,	declare	it	within	the	required	scope.	Consider	the	following:

@mixin	add-border($border-position:	all,	$border-size:	1px,
		$border-pattern:	solid,	$border-color:	black)	{

Variable	Scoping

Arguments	within	Mixins	and	Functions

Sass	in	the	Real	World:	book	1	of	4

70Variable	scoping

		$border-position-all:	all;

		@if	$border-position	==	$border-position-all	{
				border:	$border-size	$border-pattern	$border-color;
		}
		@else	{
				border-#{$border-position}:	$border-size
				$border-pattern	$border-color;
		}
}

block	{
		@include	add-border();
}

In	this	example,	we	set	a	local	variable		border-position-all:	all	.	We	could	also	write	the	mixin	as	such:

$border-position-all:	all	!default;

@mixin	add-border(
		$border-position:	$border-position-all,	$border-size:	1px,
		$border-pattern:	solid,	$border-color:	black)	{

		@if	$border-position	==	$border-position-all	{
				border:	$border-size	$border-pattern	$border-color;
		}
		@else	{
				border-#{$border-position}:	$border-size
				$border-pattern	$border-color;
		}
}

Setting	the		border-position-all		as	a	global	variable,	it	can	now	be	referenced	throughout	the	application.	The	other
difference	here	is	that	the		$border-position-all		variable	uses	the		!default		flag.

As	you	can	looking	at	our		$border-postion		variable	declaration,	we	have	used	a	flag	called		!default	.	There	are	two	flags
that	can	be	set	when	declaring	a	variable:

	!default	

	!global	

In	the	next	section,	we	will	take	a	closer	look	at	how	these	flags	work	and	how	we	can	take	advantage	of	them.

Sass	in	the	Real	World:	book	1	of	4

71Variable	scoping

In	Sass	using	variables	is	a	keystone	in	the	language.	In	fact	it	was	one	of	the	first	selling	points	when	I	was	introduced,
"Did	you	know	you	could	set	variables	for	colors?"	Little	did	I	know	what	that	statement	really	meant.

A	few	years	later,	variables	in	Sass	continue	to	be	as	powerful	if	not	more	powerful.	Thus	is	the	case	of	using		!default		and
	!global		flags	when	setting	variable	precedence	and	scope.

In	this	section	we	will	discuss	best	practices	for	using	these	flags	and	how	to	maintain	scope	with	variables.

Placing		!default		at	the	end	of	a	variable	declaration	will	have	the	following	effect:

If	the	variable	already	has	an	assignment,	it	will	not	be	re-assigned
Variables	with	null	value	will	be	considered	unassigned	and	will	be	assigned	with		!default	

The		!default		flag	is	extremely	useful	when	creating	plug-in	type	code	and	with	mixins.	Let's	look	at	this		text-color	
example	mixin:

//	Variable	for	$text-color	is	set	to	Blue

$text-color:	blue;

@mixin	text-color	{
//	Variable	is	only	set	to	Red	if	it	has	not	been	set	beforehand
		$text-color:	red	!default;
		color:	$text-color;
}

.error	{
		//	Include	mixin	with	!default	color	set
		@include	text-color;
}

.normal-text	{
		@include	text-color;
}

Notice	the		!default		flag	at	the	end	of	the		text-color		variable	inside	the	mixin?	This	allows	the	global	variable	of		blue		to
override	the	value	of		red	.	Therefore	the	Sass	will	compile	to	the	following:

.error	{
		color:	blue;
}

.normal-text	{
		color:	blue;
}

If	we	remove	the	global		$text-color		variable,	Sass	will	make	use	of	the		!default		set	variable	inside	the	mixin.

.error	{
		color:	red;
}

.normal-text	{

The	!default	and	!global	flags

The	!default	flag

Sass	in	the	Real	World:	book	1	of	4

72!default	and	!global

		color:	red;
}

It	is	important	to	remember	that	if	the		$text-color		variable	inside	the	mixin	DID	NOT	have	the		!default		flag,	this	variable's
value	will	currently	override	any	previously	set	value	due	to	the	cascade.	I	say	currently	because	this	is	a	deprecated
concept.

As	illustrated,	a	more	practical	use	of	the		!default		flag	is	within	mixins	along	with	implementing	a	modular	Sass
architecture.	Let's	move	our	mixin,		add-border	,	to	a	module	file	which	I	will	call		_decoration-mixins.scss	:

$border-position-all:	all	!default;
$border-default-size:	1px	!default;
$border-default-pattern:	solid	!default;
$border-default-color:	$black	!default;

@mixin	add-border($border-position:	$border-position-all,
		$border-size:	$border-default-size,
		$border-pattern:	$border-default-pattern,
		$border-color:	$border-default-color)	{

		@if	$border-position	==	$border-position-all	{
				border:	$border-size	$border-pattern	$border-color;
		}
		@else	{
				border-#{$border-position}:	$border-size
				$border-pattern	$border-color;
		}
}

To	make	use	of	this	new	tool,	we	will	use	Sass'		@import		rule	to	import	into	the	website's	stylesheet.	Once	imported,	in	the
	_config.scss		file	we	can	override	any	of	the	values	set	in	this	mixin,	if	necessary:

$border-default-pattern:	dotted;
$border-default-color:	lighten($gray,	25%);

@import	"border";

.block-border	{
		@include	add-border($border-size:	2px);
}

This	Sass	will	compile	to:

.block-radius	{
		border:	2px	dotted	#bfbfbf;
}

As	you	can	see	from	these	examples,	a	variable	with	the		!default		flag	will	only	be	set	if	the	said	variable	has	not	been
instantiated	beforehand	(or	it	is	null).	This	is	a	very	useful	feature	for	modular	(or	OOCSS)	design	of	our	CSS.	It	is	best
practice	to	place	the	majority	of	the	variables	in	a	file	for	better	maintenance	and	accessibility.	The	exception	to	this	practice
is	when	the	variable	is	used	only	within	a	modular	segment	of	the	architecture.

In	the	above	mixin,	the	variable		$border-position-all:	all	!default;		is	instantiated	in	the	mixin	file.	All	other	variables	can
be	instantiated	in	a	single	file	as	in	the		_config.scss		shown	in	furhter	detail	in	the	_config.scss	section.

The	!global	flag

Sass	in	the	Real	World:	book	1	of	4

73!default	and	!global

Sass	version	3.3	included	several	important	additions,	one	them	being	the		!global		flag.	According	to	the	release	notes,
the	purpose	of	the		!global		flag	is:

"As	part	of	a	migration	to	cleaner	variable	semantics,	assigning	to	global	variables	in	a	local	context	by	default	is
deprecated.	If	there’s	a	global	variable	named		$color		and	you	write		color:	blue		within	a	CSS	rule,	Sass	will	now
print	a	warning;	in	the	future,	it	will	create	a	new	local	variable	named		$color	.	You	may	now	explicitly	assign	to
global	variables	using	the		!global		flag;	for	example,		color:	blue	!global		will	always	assign	to	the	global		color	
variable."

Let's	expand	on	this	a	bit	more.	As	discussed	on	the	section	on	variable	scoping,	all	variables	declared	outside	of	a	mixin	or
a	function	will	have	a	global	scope	and	can	be	referenced	in	any	Sass	selector	that	uses	the	variable.

For	example,	Let's	look	at	our	original	example	from	the	variable	scoping	section:

//	I	instantiated	the	$text-color	variable	to	Blue
$text-color:	blue;

//	Here,	the	intent	was	to	change	the	color	for	the	.error	style
.error	{
		$text-color:	red;
		color:	$text-color;
}

//	Following	the	cascade,	in	.normal-text,	I	want	Blue,	but	get	Red.
.normal-text	{
		color:	$text-color;
}

Currently,	using	variables	in	Sass	where	there	is	a	value	set	in	the	global	space	and	then	one	set	within	the	context	of	a
selector,	the	value	of	the	variable	set	within	the	selector	will	bleed	into	the	global	name	space.	Running	the	above	Sass	in
the	terminal	we	can	see	that	this	concept	is	deprecated.

DEPRECATION	WARNING	on	line	6	of	style.scss:
Assigning	to	global	variable	"$text-color"	by	default	is	deprecated.
In	future	versions	of	Sass,	this	will	create	a	new	local	variable.
If	you	want	to	assign	to	the	global	variable,	use	"$text-color:	red	!global"	instead.
Note	that	this	will	be	incompatible	with	Sass	3.2.

.error	{
		color:	red;	}

.normal-text	{
		color:	red;	}

The	intention	of	this	warning	is	to	state	that	changes	will	be	coming	in	future	versions	of	Sass.	Sass	will	know	that	there	is	a
global		$text-color		and	a	scoped		$text-color		within	a	selector.	The	scoped		$text-color		will	NOT	bleed	into	the	global
space	and	alter	the	value	of	any	variables	that	follow	unless	you	add	the		!global		flag.

The	following	example	is	in	speculation	of	future	functionality.

$text-color:	blue;

.error	{
		$text-color:	red;	//	This	is	now	a	new	local	scoped	variable
		color:	$text-color;
}

.normal-text	{
		color:	$text-color;
}

Sass	in	the	Real	World:	book	1	of	4

74!default	and	!global

http://sass-lang.com/documentation/file.SASS_CHANGELOG.html#330_7_march_2014

It	is	assumed	that	the	above	Sass	will	output	the	following	CSS.	This	is	not	yet	implemented,	that	is	why	there	is	a
DPERECATION	warning.

.error	{
		color:	red;
}

.normal-text	{
		color:	blue;
}

If	you	do	want	to	modify	a	global	variable	within	a	local	scope,	use	the		!global		flag.	The	above	example	can	be	re-written
as	such	so	that	we	can	modify	the	global		$text-color		value:

$text-color:	blue;

.error	{
		$text-color:	red;
		color:	$text-color;
		$text-color:	green	!global;
}

.normal-text	{
		color:	$text-color;
}

Which	will	compile	to	the	following	(WITHOUT	the	deprecation	warning):

.error	{
		color:	red;
}

.normal-text	{
		color:	green;
}

To	see	the	true	implementation	of		!global	,	let's	examine	how	local	and	scoped	variables	work	within	mixins	and	functions.

For	clarification,	variables	used	within	mixins	or	functions	are	NEVER	global.	For	example,	if	we	declare	a	global	variable
	$var		with	a	value	and	then	include	local	variable	with	tha	same	name		$var		into	a	mixin,	the	value	will	not	follow:

$var:	yellow;

@mixin	foo($var)	{
		color:	$var;
}

.block	{
		@include	foo;
}

The	above	Sass	will	throw	an	error	during	compilation:

Syntax	error:	Mixin	foo	is	missing	argument	$var.
								on	line	8	of	test.scss,	in	`foo'
								from	line	8	of	test.scss

!global	flag	+	variables/arguments	in	mixins	and	functions

Sass	in	the	Real	World:	book	1	of	4

75!default	and	!global

In	order	to	get	this	value	to	pass	from	the	global	var	to	the	mixin	we	need	to	do	this:

$default-var:	yellow;

@mixin	foo($var:	$default-var)	{
		color:	$var;
}

.block	{
		@include	foo;
}

//or	it	can	written	as	such
$default-var:	yellow;

@mixin	foo($var)	{
		color:	$var;
}

.block	{
		@include	foo($default-var);
}

The	above	Sass	will	compile	to:

.block	{
		color:	yellow;
}

As	mentioned	before,	all	variables	declared	within	a	mixin	or	function	have	a	local	scope	and	will	not	affect	the	global
variables.	So	if	within	the	mixin	we	redefine	the	value	of		$var	,	this	will	effect	the	value	of	the	following		$var	,	but	this	will
not	bleed	out	into	the	global	space	because	all	the	variables	in	a	mixin	or	function	are	scoped	locally.	If	I	add		$var		with	a
new	value	within	a	selector	with		!global		flag,	this	WILL	bleed	into	the	global	space.

$var:	yellow;

@mixin	foo($var:	$var)	{
		global-color:	$var;
		$var:	purple;	//	this	is	trapped	within	the	mixin	and	has	a	local	scope
		scoped-color:	$var;
}

.block	{
		@include	foo;
		$var:	lime	!global;	//	added	to	global	scope
}

block	{
		global-color:	$var;
}

Running	this	in	the	command	line,	we	will	get	the	following	css:

.block	{
		global-color:	yellow;
		scoped-color:	purple;
}

block	{
		global-color:	lime;
}

Sass	in	the	Real	World:	book	1	of	4

76!default	and	!global

If	I	wanted	to	get	PURPLE	to	be	in	the	global	space	when	the	mixin	is	used,	we	can	do	that	by	adding	the		!global		flag

$var:	yellow;

@mixin	foo($var:	$var)	{
		global-color:	$var;	//	local	variable	color	coming	from	global	variable	passed	into	the	mixin
		$var:	purple	!global;	//changing	the	global	variable	within	the	local	context	of	a	mixin
		scoped-color:	$var;
}

.block	{
		@include	foo;
}

.block	{
		global-color:	$var;
}

Doing	so	also	changes	the	way	the	variable's	value	is	used,	notice	how	the		scoped-color		is	not	effected	by	the	global
setting	as	illustrated	in	this	output	CSS.

.block	{
		global-color:	yellow;
		scoped-color:	yellow;
}

.block	{
		global-color:	purple;
}

This	is	another	powerful	aspect	of	Sass	which	will	allow	us	to	change	a	global	variable	based	on	the	processes	ran	within	a
function	or	variables	set	within	a	mixin.

Sass	in	the	Real	World:	book	1	of	4

77!default	and	!global

When	working	with	variables,	creating		_config.scss		files	are	definitely	considered	best	practice.	Typically	in	projects	I	will
have	a		_config.scss		file	at	the	root	of	the	Sass	directory	and	it's	not	entirely	uncommon	to	have	one	in	close	relation	to	a
module	UI	if	the	complexity	requires	such	a	tool.

Looking	back	at	File	Management,	specifically	the	Configurable	theme	option	section,	we	talk	about	this	in	the	context	of	a
project	for	use	with	theming,	but		_config.scss		files	go	way	past	simple	theming.	Consider		_config.scss		files	as	the
operations	center	of	your	UI	architecture.

The	following	is	an	example		_config.scss		file	that	would	appear	at	the	root	of	the	Sass	directory.	A	collection	of	variables
that	are	made	available	to	the	Sass	at	the	time	of	processing.

//	URL	variable
//-----------------------------
$base-img-url:	'/images';

//	Primary	colors
//-----------------------------
$blue:																		#3481CF;
$white:																	#FFFFFF;
$black:																	#000000;
$gray:																		#7F7F7F;

//	Derivative	colors
//-----------------------------
$dark-gray:													darken($gray,	23.14%);	//#444
$darker-gray:											darken($dark-gray,	6.6667%);	//#333
$darkest-gray:										darken($dark-gray,	17.25%);	//#181818

//	Color	palette
//-----------------------------
$primary-color:	$blue;
$secondary-color:	$black;
$tertiary-color:	$white;

//	Font	information
//-----------------------------
$header-font-family:	"Georgia",	"Times	New	Roman",	serif;
$default-font-family:	"HelveticaNeue",	"Helvetica	Neue",	Helvetica,
Arial,	sans-serif;
$default-browser-size:	16;
$default-font-size:	14px;
$font-color:				$darker-gray;
$anchor-color:	$darker-gray;

//	Z-index	variable
//-----------------------------
$starting-zindex:	1000;
$zindex-modal-backdrop:	$starting-zindex	*	3;
$zindex-modal:	$zindex-modal-backdrop	+	1;

//	Responsive
//-----------------------------
$small-screen-min-width:	320px;
$small-screen-max-width:	568px;
$medium-screen-min-width:	768px;
$medium-screen-max-width:	1024px;
$large-screen-min-width:	1824px;

Using	a	_config.scss	file

Root	_config.scss	file

Local	_config.scss	file

Sass	in	the	Real	World:	book	1	of	4

78_config.scss

Another	example	would	be	a		_config.scss		file	that	would	be	local	to	a	module,	as	in	this	example,	a	Button	mixin.

//	Default	values	-	edit	in	`_config.scss`	file
//	---
$button-color:		$button-color	!default;
$button-text-color:	$white	!default;
$button-line-height:	32	!default;
$button-border-radius:	3	!default;
$button-padding:	20	!default;
$button-font-size:	18	!default;
$button-weight:	bold	!default;
$button-text-shadow:	true	!default;
$button-box-shadow:	true	!default;

Notice	the	use	of	the		!default		flag.	This	process	of	defining	defaults	in	a		_config.scss		that	would	probably	appear	in	the
same	directory	as	the	button	mixins	themselves	allows	for	defaults	to	be	set,	but	are	easily	over-written	in	the	primary	root
	_config.scss		file.

For	more	about		!default		functionality,	please	read	The	!default	and	!global	flags.

Sass	in	the	Real	World:	book	1	of	4

79_config.scss

So	far	we	have	covered	detailed	information	about	variables.	One	of	the	major	consumers	of	variables	are	mixins.	Let's	a
quick	introductory	but	detailed	view	of	mixins.

While	engineering	your	project	you	will	begin	to	discover	a	number	of	repeated	CSS	patterns	in	your	code.	This	is	where
mixins	become	very	handy.	While	variables	allow	you	to	re-use	values,	mixins	allow	you	to	re-use	blocks	of	CSS	and	Sass.
Mixins	can	be	an	assortment	of	CSS	rules	and	Sass	logic	that	can	be	used	repeated	throughout	the	site.	It	is	a	complex
and	dynamic	set	of	styles,	similar	to	variables,	that	will	allow	for	a	single	point	of	change	which	will	reverberate	through	all
the	inclusion	points.	As	the	repeated	patterns	become	apparent	to	you,	writing	the	mixin	can	become	self	evident.	While
some	of	these	patterns	may	be	a	direct	1:1	copy	of	the	code,	for	example:

@mixin	hand-cursor	{
				cursor:	hand;
				cursor:	pointer;
}

The	above	mixin	is	an	example	of	a	direct	mixin	and	when	used	will	change	the	cursor	to	a	hand	or	pointer	on	the	desired
element.	As	you	can	see,	this	mixin	does	not	have	any	variables	and	is	a	very	simple	example	of	a	mixin.

While	other	mixins	deal	with	similar	patterns	with	subtle	differences	that	will	be	handled	by	the	parameters	and	the	dynamic
structure	of	a	mixin.	Let's	start	looking	into	mixins	in	more	detail.

Mixins

Sass	in	the	Real	World:	book	1	of	4

80Mixins

A	mixin	is	composed	of	the	following	structure:

//	A	mixin	always	begins	with	@mixin	keyword.	Parameter(s)	for	the	mixin	is	not	required	but	it	will	make	the	mixin	more	dynamic	if	added.
@mixin	[mixin-name]	([mixin-parameters...])	{
				//	Logic	along	with	different	functions	and	evaluations	can	also	add	a	more	dynamic	dimension	to	the	mixin.	It	can	take	advantage	of	@if	@else,	@for,	@each,	or	@while.
				[Mixin	logic/Sass	functions/CSS	rules]
				//	The	end	result	of	the	mixin	is	a	return	of	property	and	value	that	will	output	to	the	stylesheet
				[property]:[value];
}

The	purpose	of	a	mixin	is	to	create	a	series	of	functions	that	will	allow	the	user	to	create	a	robust	style	based	on	different
circumstances	or	criteria.	Let's	examine	the		add-border		mixin.

@mixin	add-border(
				$border-position:	all,
				$border-size:	1px,
				$border-pattern:	solid,
				$border-color:	$black)	{

		@if	$border-position	==	$border-position-all	{
				border:	$border-size	$border-pattern	$border-color;
		}
		@else	{
				border-#{$border-position}:	$border-size
				$border-pattern	$border-color;
		}
}

In	the	case	of	this	mixin,	we	are	trying	to	add	a	border	to	any	element	that	requires	it.	Our	default	border	is	one	that	will	add
a	1	pixel	solid	black	border	in	all	directions	(top,	right,	bottom,	and	left)	to	an	element.	However	there	are	times	that	we	will
desire	a	border	only	in	a	certain	direction/position	or	a	different	border	style	or	border	color	and	this	is	where	a	mixin	can
help	us,	in	particular	the		add-border		mixin.

To	include	a	mixin	within	a	style	or	element,	using	the		@include		keyword	and	adding	it	to	an	element	is	the	only	step
needed.

.block	{
				width:	100%;
				padding:	5px;
				display:	block;
				background-color:	transparent;
				overflow:	hidden;
				height:	auto;
}

.block-border	{
				@include	add-border;
}

The	above	code	will	add	the	default	border,	a	1	pixel	solid	black	border	in	all	directions	(top,	right,	bottom,	and	left),	to	the
	block-border		style.

One	thing	to	keep	in	mind,	When	placing	your	@include	into	a	CSS	selector,	it	is	considered	best	practice	to	include	the
mixin	directly	after	the	parent	selector	as	seen	in	the	following	example.

Anatomy	of	a	mixin

Sass	in	the	Real	World:	book	1	of	4

81Anatomy	of	a	mixin

Placing	the	mixin	first	serves	a	couple	of	purposes:

Its	consistent	placement	makes	your	code	easier	to	scan.
It	takes	advantage	of	the	cascade.

Lets'	look	at	how	to	use	the	arguments	within	a	mixin	to	give	us	the	most	advantage	and	robustness.

Sass	in	the	Real	World:	book	1	of	4

82Anatomy	of	a	mixin

When	using	mixins	that	require	arguments,	it	is	a	best	practice	to	always	specify	a	default	value	for	each	argument.	There
are	a	number	of	good	reasons	as	to	why	you	should	do	this.	The	leading	reason	is	to	reduce	duplication	when	including	this
mixin	into	a	selector.

It	is	quite	probable	that	the	mixin	you	are	using	will	reuse	the	same	values	a	number	of	times	with	slight	variations.	Having
to	always	search	through	previous	code	to	remember	what	common	values	you	applied	last	is	time	consuming	and	prone
to	mistakes.	Using	a	good	default	strategy	will	reduce	time	and	code	error.	This	is	why	I	have	written	the		add-border		mixin
as	such:

@mixin	add-border(
				$border-position:	all,
				$border-size:	1px,
				$border-pattern:	solid,
				$border-color:	$black)	{

		@if	$border-position	==	$border-position-all	{
				border:	$border-size	$border-pattern	$border-color;
		}
		@else	{
				border-#{$border-position}:	$border-size
				$border-pattern	$border-color;
		}
}

When	we	include	the	mixin	into	our	CSS	as	such:

.block	{
				width:	100%;
				padding:	5px;
				display:	block;
				background-color:	transparent;
				overflow:	hidden;
				height:	auto;
}

.block-border	{
				@include	add-border;
}

The	above	example	includes	the	mixin	using	the	default	values	but	what	if	we	wanted	a	border	that	was	2	pixels	dotted	and
gray	in	all	directions?	How	would	we	include	our	mixin	to	incorporate	the	different	parameters?	Here	is	an	example:

.block	{
				width:	100%;
				padding:	5px;
				display:	block;
				background-color:	transparent;
				overflow:	hidden;
				height:	auto;
}

.block-border	{
				//	This	will	list	all	the	parameters	and	pass	them	to	the	mixin
				@include	add-border(all,	2px,	dotted,	$gray);
}

//	or

.block-border	{
				//	Although	this	is	a	more	verbose	example,	it	does	allow	for	other	developers	to	be	able	to	better	understand	the	information	that	is	being	passed	to	mixin

Set	default	values	for	mixins

Sass	in	the	Real	World:	book	1	of	4

83Default	values	for	mixins

				@include	add-border(
								$border-position:	all,
								$border-size:	2px,
								$border-pattern:	dotted,
								$border-color:	$gray);
}

Another	scenario	is	when	we	only	require	a	change	to	some	of	the	parameters	and	not	all	of	them.	For	example,	if	we	need
a	top	border	that	is	a	light	gray	color,	this	is	how	we	would	implement	it:

.block	{
				width:	100%;
				padding:	5px;
				display:	block;
				background-color:	transparent;
				overflow:	hidden;
				height:	auto;
}

.block-border	{
				@include	add-border(all,	2px,	dotted,	$gray);
}

.non-semantic-class-name-top-border-light-gray	{
				@include	add-border($border-position:	top,
																								$border-color:	lighten($gray,	30%));
}

As	you	can	see,	we	only	pass	the	parameters	that	we	want	changed	and	all	the	other	parameters	are	driven	from	the
default	parameters	in	the	mixin.	The	above	sass	file	will	compile	to	css	as	such:

.block	{
				width:	100%;
				padding:	5px;
				display:	block;
				background-color:	transparent;
				overflow:	hidden;
				height:	auto;
}

.block-border	{
				border:	2px	dotted	#7F7F7F;
}

.top-border-light-gray	{
				border-top:	1px	solid	#CCCCCC;
}

Sass	in	the	Real	World:	book	1	of	4

84Default	values	for	mixins

Setting	default	argument	values	within	the	mixin	is	a	good	idea,	but	in	our	example	the	arguments	themselves	are	non-
variable	values,	and	any	changes	to	them	down	the	road	would	require	searching	through	our	Sass	to	update	the	argument
values.	Suddenly	we	feel	like	we	are	back	to	the	old	days	of	CSS	again.

A	preferred	method	of	managing	argument	default	values	is	to	set	a	global	default	variable.	Leveraging	Sass'		!default		flag
will	allow	you	to	set	a	default	value	to	a	variable	associated	to	an	argument	within	a	mixin	that	can	be	over-ridden	at	a
global	level.

Let's	refactor	our	previous	example,	except	this	time	I	will	replace	all	the	hard	coded	default	argument	values	with	more
flexible	variable	names.	It	is	important	to	note	that	setting	default	values	to	an	argument	always	require	a	key:value	pair.
Variables	are	scoped	within	a	mixin,	so	setting	a	global	variable	of		$padding		will	not	work.	While	we	could	set	a	key:value
pair	like		$padding:	$padding		this	is	considered	a	poor	practice,	especially	with	something	named	as	generic	as		$padding	.

In	the	following	example,	you	will	see	how	I	set	a	simpler	named	argument	to	a	mixin	as	this	will	be	scoped,	but	we	are
assigning	a	global	variable	that	is	using	a	more	specific	naming	convention	to	declare	use.

$border-position-all:	all	!default;
$border-default-size:	1px	!default;
$border-default-pattern:	solid	!default;
$border-default-color:	$black	!default;

@mixin	add-border(
				$border-position:	$border-position-all,
				$border-size:	$border-default-size,
				$border-pattern:	$border-default-pattern,
				$border-color:	$border-default-color)	{

		@if	$border-position	==	$border-position-all	{
				border:	$border-size	$border-pattern	$border-color;
		}
		@else	{
				border-#{$border-position}:	$border-size
				$border-pattern	$border-color;
		}
}

To	set	the	default	values	to	these	newly	created	variables,	typically	in	close	relation	to	the	mixin	itself,	we	will	set	the	values
using	the		!default		flag	as	illustrated	in	the	following	example.

Remember	that	global	variables	follow	the	rules	of	the	cascade?	Meaning,	as	a	value	is	reset	to	a	global	variable	within	the
document,	each	time	that	variable	is	referenced	again	thereafter,	that	new	value	will	be	used.	This	is	not	true	for	global
variables	that	are	using	the		!default		flag.

In	the	following	example	we	will	see	that	by	setting	a	global	value	to	the	variable		$border-default-color		higher	up	in	the
document,	the		!default		value	will	be	over-ridden,	essentially	breaking	the	pattern	of	the	cascade.

//	Global	variable
$border-default-color:	$dark-gray;

//	!default	values	assigned	mixin	specified	variables
$border-position-all:	all	!default;
$border-default-size:	1px	!default;
$border-default-pattern:	solid	!default;
$border-default-color:	$black	!default;

//	Mixin	arguments	set	to	specified	variables	as	defaults
@mixin	add-border(

Setting	global	default	argument	variables

Sass	in	the	Real	World:	book	1	of	4

85Global	defaults

				$border-position:	$border-position-all,
				$border-size:	$border-default-size,
				$border-pattern:	$border-default-pattern,
				$border-color:	$border-default-color)	{

		@if	$border-position	==	$border-position-all	{
				border:	$border-size	$border-pattern	$border-color;
		}
		@else	{
				border-#{$border-position}:	$border-size
				$border-pattern	$border-color;
		}
}

//	Selector	using	the	mixin	w/o	passing	in	arguments
.block	{
				width:	100%;
				padding:	5px;
				display:	block;
				background-color:	transparent;
				overflow:	hidden;
				height:	auto;
}

.block-border	{
				@include	add-border;
}

Notice	in	the	output	CSS	how	the		$border-default-color		is	set	to		$dark-gray		which	in	this	example	is	equal	to		#444	.

.block	{
				width:	100%;
				padding:	5px;
				display:	block;
				background-color:	transparent;
				overflow:	hidden;
				height:	auto;
}

.block-border	{
				border:	1px	solid	#444;
}

Following	this	pattern	will	allows	you	to	use	a	more	module	style	of	creating	mixins	with	default	values	that	are	easily	over-
ridden	either	by	a	global	scope	or	local	keyword	value	assignment.

Sass	in	the	Real	World:	book	1	of	4

86Global	defaults

The	power	of	mixins	is	not	limited	to	inclusion	in	the	CSS.	Just	like	a	variable	can	be	assigned	to	another	variable,	a	mixin
can	be	included	in	another	mixin	allowing	for	another	level	of	modularity	in	your	stylesheet.	As	we	build	a	module,	for
example	a	button,	we	are	not	only	building	a	modular	component	that	can	be	used	as	a	variety	of	buttons	are	created	but
also	we	are	breaking	down	our	component	into	smaller	components	like	gradient	color,	border,	padding,	and	etc...

Let's	take	a	closer	look	at	the	assembly	of	a	button.	Here	are	the	rules	for	our		.primary-button		selector:

.primary-button	{
				font-family:	'merriweather_sanslight',	sans-serif;
				-moz-box-shadow:inset	0px	1px	0px	0px	#ebf5ff;
				-webkit-box-shadow:inset	0px	1px	0px	0px	#ebf5ff;
				box-shadow:inset	0px	1px	0px	0px	#ebf5ff;
				background:-webkit-gradient(linear,
								left	top,
								left	bottom,
								color-stop(0.05,	#70d9ff),
								color-stop(1,	#3481cf));
				background:-moz-linear-gradient(center	top,
																				#70d9ff	5%,
																				#3481cf	100%);
				background-color:	#70d9ff;
				border-radius:	0;
				text-indent:	0;
				border:	1px	solid	#9cceff;
				display:	inline-block;
				color:	#ffffff;
				font-size:	28px;
				font-weight:	normal;
				font-style:	normal;
				line-height:	48px;
				padding-left:	30px;
				padding-right:	30px;
				text-decoration:	none;
				text-align:	center;
}

I	have	created	some	mixins	in	order	to	handle	some	of	the	rules	that	we	use	often:

$border-position-all:	all	!default;
$border-default-size:	1px	!default;
$border-default-pattern:	solid	!default;
$border-default-color:	$black	!default;

//	Mixin	arguments	set	to	specified	variables	as	defaults
//	This	is	a	mixin	that	will	allow	the	user	to	add	border	to	an	element.
//	It	is	robust	enough	to	allow	the	user	to	select	a	certain	side	where	the	border
//	should	be	applied	or	it	can	applied	on	all	sides.
@mixin	add-border(
				$border-position:	$border-position-all,
				$border-size:	$border-default-size,
				$border-pattern:	$border-default-pattern,
				$border-color:	$border-default-color)	{

		@if	$border-position	==	$border-position-all	{
				border:	$border-size	$border-pattern	$border-color;
		}
		@else	{
				border-#{$border-position}:	$border-size
				$border-pattern	$border-color;
		}
}

//	This	function	was	created	in	order	to	be	able	to	take	a	variable	argument,	in	this	case	the	number
//	of	color	stops	for	the	gradient,	and	return	a	comma	separated	list.

The	Turducken	mixin:	using	mixins	within	a	mixin

Sass	in	the	Real	World:	book	1	of	4

87The	Turducken	mixin

@function	linearGradientColors($stop-colors...)	{
				$full:	false;
				@each	$stop-color	in	$stop-colors{
								@if	$full	{
												$full:	$full	+	','	+	$stop-color;
								}	@else	{
												$full:	$stop-color;
								}
				}

				$full:	unquote($full);

				@return	$full;
}

//	When	creating	a	function,	we	place	the	functional	name	however	for	expediency	sake,	an	overloaded
//	function	is	created	with	a	smaller	name	(usually	an	acronym	of	the	functions	name)	so	that	re-use	of	the	function	would	be	easier.
@function	lgc($stop-colors...)	{
				@return	linearGradientColors($stop-colors...);
}

//	This	mixin	will	create	a	linear	gradient	using	a	variable	argument	for	any	number	of	color	stops	desired.
//	The	$pos	variable	allows	use	to	set	the	gradient	line.
@mixin	linear-gradient($pos,	$stop-colors...)	{

		//	Detect	what	type	of	value	exists	in	$pos
		$pos-type:	type-of(nth($pos,	1));

		//	If	$pos	is	missing	from	mixin,	reassign	vars
		//	and	add	default	position
		@if	($pos-type	==	color)	or	(nth($pos,	1)	==	"transparent")		{
				$pos:	top;	//	Default	position
				}

		$pos:	unquote($pos);

		$full:	lgc($stop-colors...);

		//	Set	the	first	stop-color	as	the	default	fallback	color
		$fallback-color:	nth(nth($stop-colors,	1),	1);

		background:	$fallback-color;
		background:	linear-gradient($pos,	$full);
}

//	This	mixin	allows	us	to	add	box	shadows	to	an	element	handling	the	option	for	an	inset	box	shadow.
@mixin	box-shadow	($isInset:	false,
																				$hOffset:	0,
																				$vOffset:	0,
																				$blur:	0,
																				$spread:	0,
																				$color:	#ccc)	{
				@if	$isInset	{
								box-shadow:	inset	$hOffset	$vOffset	$blur	$spread	$color;
				}	@else	{
								box-shadow:	$hOffset	$vOffset	$blur	$spread	$color;
				}
}

These	mixins	are	useful	for	not	only	the	CSS	stylesheets	but	also	can	be	used	anywhere	within	our	Sass	environment.	It
can	be	used	in	mixins	or	functions	(although	the	use	in	functions	is	uncommon).	Let's	take	a	look	at	our		.primary-button	
selector	and	see	how	I	can	improve	it	using	some	of	the	above	mixins.

While	examine	the		primary-button		style,	I	found	the	following	aspects:

The	button	has	four	different	shades	of	blue	associated	to	it	(#ebf5ff,	#70d9ff,	#3481cf,	#9cceff)
The	button	has	a	linear	gradient
The	button	has	a	border
The	button	has	a	inset	box	shadow

Sass	in	the	Real	World:	book	1	of	4

88The	Turducken	mixin

Let's	optimize	the		.primary-button		selector	using	Sass.	First	I	will	add	the	colors	of	the	button	to	our		_config.scss		file.
However,	I	will	add	the	primary	blue	color	of	the	button	and	all	other	shades/variations	of	the	color	will	be	used.	For
example,	I	could	write	the	colors	in	the		_config.scss		file	as	such:

...	//some	config	variables	here
//	Primary	colors
//	-------------------------
$blue:																		#3481CF	!default;
$white:																	#FFFFFF	!default;
$black:																	#000000	!default;
$gray:																		#7F7F7F	!default;

//button	colors
//	-------------------------
$primary-button-primary-color:	$blue	!default;
$primary-button-secondary-color:	#70D9FF	!default;
$primary-button-tertiary-color:	#9cceff	!default;
$primary-button-quaternary-color:	#ebf5ff	!default;

Although	this	is	not	wrong,	it	is	inefficient	and	a	common	mistake	many	developers	new	Sass	will	make.	The	better
approach	is	to	use	the	color	functions	that	come	with	Sass	to	your	advantage	which	will	also	extend	the	color	scheme	so
that	if	the	color	of	the	button	changes	from	blue	to	green,	for	example,	there	is	only	one	color	to	change.

I	get	the	exact	colors	using	Sass'	color	functions.	However,	this	is	also	a	good	time	to	sit	with	the	designer	(if	it	is	not	you)
and	reign	in	the	number	of	colors	used	on	the	site.	It's	helpful	to	make	the	different	shades	of	a	color,	in	this	example	the
blue	color	of		#3481CF	,	an	easy	off	shoot	of	the	primary	color	being	used.	In	this	manner,	I	can	re-write	the	above	as	such:

...	//some	config	variables	here
//	Primary	colors
//	-------------------------
$blue:																		#3481CF	!default;
$white:																	#FFFFFF	!default;
$black:																	#000000	!default;
$gray:																		#7F7F7F	!default;

//button	colors
//	-------------------------
$primary-button-primary-color:	$blue	!default;
$primary-button-secondary-color:
				adjust-hue(lighten($blue,	11%),	-14deg)	!default;
$primary-button-tertiary-color:	lighten($blue,	36%)	!default;
$primary-button-quaternary-color:	lighten($blue,	44%)	!default;

This	approach	is	advantageous	in	the	following	manner:

Reduced	the	number	of	color	used	on	the	site
Single	point	of	change	when	any	change	would	be	necessary

Now	that	I	the	colors	set,	I	can	start	re-writing	some	of	the	elements	of	the		.primary-button		selector.	First	step,	incorporate
our	linear	gradient	mixin.

.primary-button	{
				@include	linear-gradient(center	top,
								$primary-button-secondary-color	5%,
								$primary-button-primary-color	100%);
				//...	remaining	styles
}

Let's	add	the	box	shadow	styling:

Sass	in	the	Real	World:	book	1	of	4

89The	Turducken	mixin

.primary-button	{
				@include	linear-gradient(center	top,
								$primary-button-secondary-color	5%,
								$primary-button-primary-color	100%);
				@include	box-shadow	(@isInset:	true,
																								$vOffset:	1px,
																								$color:	$primary-button-quaternary-color);
				//...	remaining	styles
}

Let's	add	the	borders:

.primary-button	{
				@include	linear-gradient(center	top,
								$primary-button-secondary-color	5%,
								$primary-button-primary-color	100%);
				@include	box-shadow	(@isInset:	true,
																								$vOffset:	1px,
																								$color:	$primary-button-quaternary-color);
				//...	remaining	styles
}

Here	is	the	final	style	as	the	mixins	are	incorporated:

.primary-button	{
				@include	linear-gradient(center	top,
								$primary-button-secondary-color	5%,
								$primary-button-primary-color	100%);
				@include	box-shadow	(@isInset:	true,
																								$vOffset:	1px,
																								$color:	$primary-button-quaternary-color);
				@include	add-border($border-color:	$primary-button-tertiary-color);
				border-radius:	0;
				display:	inline-block;
				color:	#ffffff;
				font:	{
								size:	28px;
								weight:	normal;
								style:	normal;
								family:	'merriweather_sanslight',	sans-serif;
				}
				line-height:	48px;
				padding-left:	30px;
				padding-right:	30px;
				text-indent:	0;
				text-decoration:	none;
				text-align:	center;
}

By	incorporating	the	mixins,	I	have	not	only	re-used	code,	but	also	in	further	implementations	of	this	button,	whether	it	be	a
different	type	of	button	or	the	implementation	of	pseudo	classes	like		:hover	,	I	can	further	use	and	extend	this	code	base.

Sass	in	the	Real	World:	book	1	of	4

90The	Turducken	mixin

	Introduction
	A Little Under the Hood
	From indentation ...
	HTML to HAML
	Hampton invents HAML
	Good 'ol CSS
	HAML for CSS
	Force the hand
	Sass <> SCSS

	A Sass Style Guide
	Declaration listing
	Using mixins
	Using extended selectors
	Style and Logic
	Comments
	Naming conventions
	Working w/Partials

	Rules to live by
	What is OOCSS?
	CSS Object
	OOCSS Guidlines
	Separation of content
	Separation of structure

	Semantic vs Presentational
	Semantic
	Presentational
	Semantic and Presentational

	File management
	Large CSS projects
	MVC style
	Learning from mistakes
	Elements, modules and layout
	File structure
	The Manifest
	Theme options
	Partials
	Modules and UI Patterns
	The layout

	Handy tools
	Core Data Types
	Number operations
	Setting variables
	Variable scoping
	!default and !global
	_config.scss

	Mixins
	Anatomy of a mixin
	Default values for mixins
	Global defaults
	The Turducken mixin

