

0

1

2

3

4

5

Table	of	Contents
Introduction

Creating	the	application

Coding	the	application

Testing

Deployment

Configuration

Heroku	+	Node.JS

2

Heroku	+	Node.js
Learn	how	to	build	and	deploy	applications	with	Heroku	and	Node.js.

About	Heroku

Heroku	is	a	cloud	platform	as	a	service	(PaaS)	supporting	several	programming	languages.

It's	an	easy	and	powerfull	way	to	deploy	applications	on	the	cloud	and	scale	it	easily.	Heroku
supports	many	programming	languages:	Python,	PHP,	Java,	Javascript	(Node.js),	Clojure
and	Scala.

In	this	book,	we'll	learn	how	to	deploy	Javascript/Node.JS	application	on	Heroku.

About	Node.JS

Node.js	is	a	software	platform	for	scalable	server-side	and	networking	applications.	Node.js
applications	are	written	in	JavaScript,	and	can	be	run	within	the	Node.js	runtime	on	Mac	OS
X,	Windows	and	Linux	with	no	changes.

In	this	book,	we'll	consider	that	you	now	the	basics	about	We	Applications	and	Javascript,
and	we'll	be	only	focus	on	the	heroku	and	deployment	part.

Heroku	+	Node.JS

3Introduction

https://heroku.com
http://nodejs.org/

Creating	the	Application
The	first	of	this	course	is	to	create	a	Node.js	application	that	can	run	on	Heroku	and	locally
(for	testing).

Creation	of	a	Git	Repository

Our	source	code	is	going	to	be	stored	in	a	Git	repository.	Heroku	uses	Git	for	deployment,
and	it's	also	a	better	habit	to	use	git.

To	create	a	new	empty	repository,	run	on	a	terminal:

$	mkdir	myapp
$	cd	myapp
$	git	init

We	are	now	going	to	work	on	this		myapp		folder.

You	can	also	host	this	repository	on	GitHub,	this	is	optional	but	advised:

1.	 Create	a	repository	on	GitHub
2.	 On	a	terminal	in	the		myapp		folder	run:		git	remote	set-url	upstream	<git	url	for	the

repository>	

The	url	for	the	repository	on	GitHub	is	in	the	format:
	https://github.com/<username>/<repository>.git	.

Creation	of	a	base	for	a	Node.js	application

Now	that	our	git	repository	is	ready,	we	can	start	working	on	writting	our	node.js	application.

In	a	terminal	in	the		myapp		folder,	run:

$	npm	init

It	will	ask	you	for	multiple	questions	and	generate	a		package.json		file.	This	file	will	contain
the	list	of	your	dependencies	(the	librairies	our	program	will	depend	on)	and	some	others
descriptives	informations.

Commit	our	base

It's	time	to	commit	our	first	commit	for	this	application:

Heroku	+	Node.JS

4Creating	the	application

https://github.com

$	git	add	package.json
$	git	commit	-m	"Base	package.json"

And	push	it	to	GitHub:

$	git	push

Heroku	+	Node.JS

5Creating	the	application

Coding	the	application
Now	that	the	git	repository	and	the	node	module	structure	are	setup,	we	are	ready	to	start
coding	the	application.

This	application	will	be	a	simple	hello	world.

Instaling	our	dependencies

In	node.js,	the	dependencies	are	listed	in	the	package.json	file.	All	dependencies	from	this
file	can	be	installed	using	the	command		npm	install	.	.

An	other	dependency	can	be	installed	and	added	to	the	package.json	using:		npm	install
name@version	--save	.

Our	application	will	depend	on:		express@4.3.1	.

So	install	it	using:

$	npm	install	express@4.3.1	--save

Hello	World

Express	is	web	application	framework	for	node,	it	makes	it	really	easy	to	write	web
application	using	node.

Write	in	a	file	named	main.js:

var	express	=	require("express");
var	app	=	express();

app.get('/',	function(req,	res)	{
		res.send('Hello	World!');
});

var	port	=	Number(process.env.PORT	||	5000);
app.listen(port,	function()	{
		console.log("Listening	on	"	+	port);
});

This	code	will	simply	create	an	application	using	Express.	Define	an	handling	method	for	a
get	request	on	the	root	path.	And	start	the	web	server	on	the	port	defined	by	the
environment	variable		PORT		or		5000	.

Heroku	+	Node.JS

6Coding	the	application

http://expressjs.com/

Run	Script

Heroku	convention	needs	a		Procfile		file	that	defines	how	to	start	the	application.	You	can
learn	more	about	Procfile	in	the	Heroku	documentation.

Write	in	a	file	named	Procfile:

web:	node	main.js

This	file	simply	tell	Heroku	that	for	starting	this	application,	it	needs	to	start	a	web	dyno	by
running	the	command		node	main.js	.

Heroku	+	Node.JS

7Coding	the	application

https://devcenter.heroku.com/articles/procfile

Testing
Now	that	our	application	is	coded,	we	need	to	run	it	locally	for	testing.	To	follow	Heroku
convention,	we	are	not	going	to	run		node	main.js		directly	but	we	are	going	to	use
Foreman.

Foreman	is	tool	to	run	and	manage	procfile	based	applications.

Installation	of	Foreman

If	you	have... Install	with...

Ruby	(MRI,	JRuby,	Windows) $	gem	install	foreman

Mac	OS	X Download	and	install:	foreman.pkg

Running	the	application

Starting	our	applciation	locally	using	foreman	is	really	simple,	run	the	command:

$	foreman	start

You	can	now	open	a	browser	and	take	a	look	at	http://localhost:5000.

Heroku	+	Node.JS

8Testing

https://github.com/ddollar/foreman
http://assets.foreman.io/foreman/foreman.pkg
http://localhost:5000

Deployment	on	Heroku
We	just	test	our	application,	and	it's	working	fine.	Now	it's	time	to	deploy	it	on	Heroku	to
make	it	available	for	everybody.

Create	an	application	on	Heroku

If	you	haven't	already,	sign	up	on	Heroku.	It's	free	and	easy!

Click	on	the	button	"Create	a	new	app"	and	enter	a	name	for	your	application.	You	can
select	the	region	that	you	want,	it	doesn't	change	anything	for	the	deployment.

Install	the	Heroku	Command	Line	Tool

First,	install	the	Heroku	Toolbelt	on	your	local	workstation.	You	can	find	it	at
toolbelt.heroku.com.

Commit	your	changes

The	first	is	to	commit	your	changes	(main.js	and	Procfile):

List	all	the	changes	that	needs	using:

$	git	status

You	can	see	that	the	folder		node_modules		is	contained	in	the	list.	This	folder	contains	all	the
dependencies,	we	installed	using	NPM.	We	need	to	add	this	folder	to	a		.gitignore		file:

Copy	and	paste	the	content	of	GitHub	Node	.gitignore	to	a	file	named		.gitignore	.

If	you	run		git	status		again,	you	can	see	that		node_modules/		is	no	longer	present	in	the
list.

You	can	now	commit	the	other	changes	using:

$	git	add	.
$	git	commit	-m	"Base	code"

Pushing	to	Heroku

Heroku	+	Node.JS

9Deployment

https://heroku.com
https://toolbelt.heroku.com/
https://github.com/github/gitignore/blob/master/Node.gitignore

It	is	now	time	to	push	to	Heroku.	In	the	configuration	or	homepage	of	your	Heroku
application,	you	can	see	a	GIT	url	with	the	following	format:

git@heroku.com:{{	application	name	}}.git

To	deploy	a	new	release	of	your	application,	simply	run:

$	git	push	heroku	master

Heroku	will	log	the	installation	of	the	node	dependencies	and	the	launch	of	your	application.

Once	it's	done	you	can	open	your	application	using:

$	heroku	open

Heroku	+	Node.JS

10Deployment

Configuration
In	this	chapter,	we'll	learn	how	to	manage	different	configurations	for	our	applications	(locally
and	in	production).

Environment	variables

The	best	way	to	configure	an	application	on	Heroku	is	to	use	environment	variables.	It's	a
key	value	storage	managed	by	the	system	that	can	affect	the	way	running	processes	will
behave	on	a	computer.

Exemple	of	an	env	variable:

MESSAGE=Hello	World

You	can	list	all	current	environment	variables	using	the	command		env	.

Heroku	defines	by	default	2	environement	variables:

	PORT		which	equals	the	port	our	application	should	be	running	on.
	DYNO		which	gives	you	a	id/name	for	the	current	process	dyno.

With	Node.js

In	Node.js,	it's	really	easy	to	read	environment	variable,	the	varibale		process.env		is	an
object	containing	all	current	env	variables.

We	already	used	it	to	start	our	application	on	the	right	port:		var	port	=
Number(process.env.PORT	||	5000);	.

Notice	that	environment	variables	are	always	string.

Modifying	our	application

We	are	going	to	change	our	application	to	show	a	message	instead	of	"Hello	World"	that	will
be	stored	in	a	en	environment	variables.

Edit	the	main.js	file	to	change	the		app.get		to:

Heroku	+	Node.JS

11Configuration

app.get('/',	function(req,	res)	{
		res.send(process.env.MESSAGE	||	'Default	message!');
});

If	you	run	the	application	using		foreman	start		and	access		http://localhost:5000	,	you'll
see	:		Default	message!	.

But	you	can	test	changing	the	value	of	MESSAGE	in	your	terminal	and	running	the
application	with:

$	export	MESSAGE=Hello
$	foreman	start

Storing	a	fixed	configuration	for	foreman

You	don't	want	to	define	using		export		our	all	configuration	each	time	you	want	to	start
working	on	your	application!

So	we	need	to	store	our	configuration	in	a	file.	By	default	foreman	use	a	file	named		.env	
but	we	are	going	to	use	this	file	for	your	production	configuration.

So	we'll	store	our	configuration	in	a	file	named		.env.local	:

MESSAGE=Hello	from	the	local	version

And	we	need	to	update	foreman	configuration	by	writting	the	file		.foreman	:

port:	5000
env:	.env.local

You	can	then	test	using		foreman	start		and	see	teh	output:		Hello	from	the	local	version	.

Deployment	of	a	production	configuration

We	are	going	to	store	our	production	configuration	in	a	file	named		.env	:

MESSAGE=Hello	from	the	production	version

Then	we	need	to	commit	all	these	changes	and	deploy	the	last	update	of	our	code	to
Heroku:

Heroku	+	Node.JS

12Configuration

#	Commit	changes
$	git	add	.
$	git	commit	-m	"Use	environment	variables	as	configuration"

#	Deploy	to	heroku
$	git	push	heroku	master

But	if	you	take	a	look	at	your	application	(using		heroku	open),	you	can	see	that	the
message	is	still	"Default	message!".	It's	because	we	didn't	pushed	your	configuration	to
heroku	yet.

For	this	we	are	going	to	use	the	plugin	heroku-config,	install	it	using:

$	heroku	plugins:install	git://github.com/ddollar/heroku-config.git

And	then	we	can	push	our	all	configuration	using:

$	heroku	config:push

Now	take	a	look	at	your	application	and	you'll	see	"Hello	from	the	production	version".

Managing	Heroku	configuration	by	hand

I	want	to... Command

List	all	my	configuraton 	heroku	config	

Get	a	variable	value 	heroku	config:get	MESSAGE	

Set	a	variable	value 	heroku	config:set	MESSAGE=Test	

Delete	a	variable 	heroku	config:unset	MESSAGE	

And	with	the	plugin	heroku-config:

I	want	to... Command

Push	my	.env	to	heroku 	heroku	config:push	

Update	my	.env	with	my	heroku	config 	heroku	config:pull	

Rewrite	my	.env	with	my	heroku	config 	heroku	config:pull	--overwrite	

Heroku	+	Node.JS

13Configuration

https://github.com/ddollar/heroku-config

	Introduction
	Creating the application
	Coding the application
	Testing
	Deployment
	Configuration

