
Introduction to ASP.NET Web Development
Instructor: Frank Stepanski

Overview

From this class, you will learn how to develop web applications using the Microsoft web

technology ASP.NET (version 4.0) using the free web development tool Visual Studio

2010 Express (if you do not already own Visual Studio 2010 Professional).

Visual Studio 2010 Express will allow you to create web pages (.aspx) and web sites

that use the .NET framework and the specific objects and controls of ASP.NET.

Free download: http://www.microsoft.com/express/Web/

The auto-install executable downloads everything you need to get started, but if you need

additional components, like the .NET 4.0 Framework, you can get it here:

http://msdn.microsoft.com/en-us/netframework/aa569263

Note: If you already have the 2008 version of the free or commercial tool, that is fine too.

ASP.NET File Extensions

.aspx

When you go to a web browser and the web page has this extension, you know it is an

ASP.NET page.

An additional extension would be .aspx.cs. This is the file extension where all your C#

code will be stored (“code-behind”). You never see this extension on the web because

this file gets compiled on the web server that contains the .NET Framework.

Introduction to ASP.NET Web Development 1 of 36 Author: Frank Stepanski

http://www.microsoft.com/express/Web/�
http://msdn.microsoft.com/en-us/netframework/aa569263�

Note: The .cs stands for C# (# is “sharp”).

If you use a different programming language for ASP.NET pages like VB.NET, it would

have an .aspx.vb extension instead.

Six Important Facts about ASP.NET

1. ASP.NET is integrated within the .NET Framework:

The .NET Framework is divided into an almost painstaking collection of functional parts,

with a staggering total of more than 8000 types (functions, classes, interfaces, etc.). The

.NET framework allows for the development of Windows and Web applications. This

means ASP.NET is only a part of the entire framework of .NET.

2. ASP.NET is Compiled, Not Interpreted:

ASP.NET applications actually go through two stages of compilation. In the first stage,

the C# code you write (or whatever .NET language it’s written in) is compiled into an

intermediate language called Microsoft Intermediate Language (MSIL). The second

level compilation happens just before the page is actually executed. At this point, the IL

code is compiled into low-level native machine code. This stage is known as just-in-time

(JIT) compilation and it takes place in the same way for all .NET applications (including

Windows applications).

3. ASP.NET is Multi-language:

Though you will probably choose one language over another, you can use any .NET

supported programming language to create your ASP.NET web pages. You can even use

a different programming language for each new ASP.NET web page, although you

probably don’t want to. The default supported and most popular languages for ASP.NET

are C# and VB.NET.

4. ASP.NET is Object-Oriented:

 Not only does your code have full access to all objects in the .NET Framework, but you

can also exploit all the conventions of OOP (object-oriented programming) environment,

such as encapsulation and inheritance. For example, you can create reusable classes,

standardize code with interfaces and bundle useful functionality in a distributable,

compiled component.

5. ASP.NET is Easy to Deploy and Configure:

Introduction to ASP.NET Web Development 2 of 36 Author: Frank Stepanski

http://en.wikipedia.org/wiki/.NET_Framework�

Every installation of the .NET Framework provides the same core classes. As a result,

deploying an ASP.NET application is relatively simple. In most cases, you simply need

to copy all the files to a directory on a web server (web host). There are configuration

settings that can be made in a web.config file.

6. ASP.NET is Multidevice and Multibrowser:

One of the greatest challenges web developers face is the wide variety of browsers they

need to support. Different browser brands, versions, and configurations differ in their

support of XHTML. ASP.NET server controls render their HTML adaptively by taking

the client’s capabilities into account.

Web Server for ASP.NET

To view your ASP.NET web pages, it needs to be requested through a web browser

running on a web server. The web server then dispatches the request to the ASP.NET

engine installed on the web server. The ASP.NET engine processes the page and returns

the resulting HTML markup to the browser.

ASP.NET web pages are normally developed and tested locally on your PC. You could

develop them locally and test them on your webhost (FTP-ing the files over each time).

Visual Web Developer includes a built-in web server. So anytime you want to test your

.aspx web pages that you’ve developed, all you have to do is launch a web browser from

Visual Web Developer and it will create a running instance of a temporary web server.

Note: If you have XP Professional, Vista Home Premium, Windows 7 Ultimate or

Professional then you have a Microsoft web server (IIS – Internet Information Services)

already. You can use this web server instead if you want.

Introduction to ASP.NET Web Development 3 of 36 Author: Frank Stepanski

http://en.wikipedia.org/wiki/Internet_Information_Services�

Brief Tour of Visual Studio 2010

Figure 1 – Visual Studio 2010

When you open Visual Studio 2010, the Start Page is initially shown (Figure 1).

This Start Page includes a list of Recent Projects in the upper-left corner, a Getting

Started section with some links for accomplishing common tasks in the bottom left-

corner, and a list of recent articles on Microsoft’s MSDN site in the right column.

On the left you’ll find the Toolbox. On the Start Page, the Toolbox is empty, but when

you’re working with an ASP.NET page, the Toolbox contains the plethora of ASP.NET

Web controls that can be added to the page.

To the right of the screen, you’ll find the Solution Explorer. Again, on the Start Page this

is empty, but when you load or create an ASP.NET website, the Solution Explorer will

list the website’s files. These files include database files, XHTML pages, ASP.NET

Introduction to ASP.NET Web Development 4 of 36 Author: Frank Stepanski

pages, image files, CSS files, configuration files, and so on. In addition to the Solution

Explorer, the right portion of the screen is also home to the Database Explorer.

Note: If you accidentally close the Solution Explorer, you can re-open it by going to

View->Solution Explorer from the menu.

Creating a New ASP.NET Website

To create and work with an ASP.NET page, we must first create an Empty ASP.NET

website.

Note: We are creating an ‘Empty’ ASP.NET website because in the 2010 version of VS,

it adds files to a vase website that I don’t you to worry about this early in the class.

You can go to the File menu and choose the New Web Site option and choose Empty

Web ASP.NET Website option (Figure 2b).

Make sure you choose the C# language (on the left) as the language for all the web pages

(Figure 2b). You can also specify the location of the folder where all your website files

will be stored at the bottom (web location – file system).

Normally, you will create a new folder location for each new website.

Introduction to ASP.NET Web Development 5 of 36 Author: Frank Stepanski

Figure 2a – Creating a New ASP.NET Website

Introduction to ASP.NET Web Development 6 of 36 Author: Frank Stepanski

Figure 2b – Creating a New ASP.NET Website: Empty Web Site (select Visual C#)

Introduction to ASP.NET Web Development 7 of 36 Author: Frank Stepanski

Figure 2c – Creating a New ASP.NET Website: Contents of ‘Empty’ Website in Solution Explorer

So this is the contents of your website. Pretty empty huh? 

All you have to start is a web.config, and that’s it. Let’s add a web form (ASP.NET page)

so we can start doing some stuff.

Right click on your web site location and select Add New Item (Figure 3a) and then

select Web Form (Figure 3b). You can leave it as Default.aspx or call it something else.

Introduction to ASP.NET Web Development 8 of 36 Author: Frank Stepanski

Figure 3a – Adding a Web Form

Introduction to ASP.NET Web Development 9 of 36 Author: Frank Stepanski

Figure 3b – Adding a Web Form to your Web Site

Introduction to ASP.NET Web Development 10 of 36 Author: Frank Stepanski

Figure 4 – Workspace of ASP.NET Website

AST.NET Website: Overview

A website (created in Visual Studio) is a collection of resources: static and dynamic web

pages, graphic files, style sheets, configuration files, and so on. In addition to various

files, a website may contain subdirectories, each of which may contain its own set of files

and further subdirectories. A website is akin to a folder on your personal computer: It’s a

repository for files and subfolders.

Now that we created an ASP.NET website, we have a web.config file along with a single

ASP.NET page, default.aspx (composed of two files: default.aspx and default.aspx.cs).

Note: Even though I have been talking about websites, files and stuff, a website can have

as few as one file or as many as a thousand files.

Introduction to ASP.NET Web Development 11 of 36 Author: Frank Stepanski

ASP.NET Website: Reviewing default.aspx

Figure 5 – Reviewing the source HTML of default.aspx

This is a screenshot (Figure 5) of what you will see when you open and view the

“Source” of default.aspx from the Solution Explorer. When you start adding web

controls; the HTML will look a little different.

When reviewing the HTML, it basically looks like any regular HTML page with a few

differences.

The top line is a declaration to the ASP.NET engine installed on the web server that it’s

an ASP.NET page. Then the rest is normal HTML apart from that runat=”server” tag

and attribute.

Introduction to ASP.NET Web Development 12 of 36 Author: Frank Stepanski

All server controls must be placed within this tag and it tells the ASP.NET engine to

execute the code behind it on web server.

Note: When you add server controls to your page, it automatically gets placed with the

<form runat=”server”> tags. But if for some reason it does not, just copy and paste the

code.

ASP.NET Website: Reviewing default.aspx.cs

As I mentioned earlier, all your C# code you write will be stored in an .aspx.cs file.

Figure 6 – Reviewing the C# for default.aspx.cs

Introduction to ASP.NET Web Development 13 of 36 Author: Frank Stepanski

This page will contain all our C# code that will respond to the different page events as

well as any custom methods you create.

The top declarations allow the page to use many of the libraries that are part of the .NET

Framework. The code in lines 10 – 13 declares the event for the Page loading

(Page_Load).

Note: To add line numbers to your code, just go to Tools->Options, General and select

the checkbox for Line numbers.

The cool thing about ASP.NET pages is that the .NET Framework is used for all types of

application development including Windows applications. This means you can create

web pages that can behave like a desktop application on the web.

ASP.NET Website: Adding Some Controls to default.aspx

Figure 7 – Toolbox

Introduction to ASP.NET Web Development 14 of 36 Author: Frank Stepanski

This screenshot (Figure 7) shows some of the many web controls you can add to an

ASP.NET page. The ones we will be using for this example are Label, TextBox and

Button.

Note: If you accidentally close the Properties Window, you can re-open it by going to

View->Properties Window from the menu.

Drag each one of these controls on the page and try to make it look like the example

(Figure 8). The source of the example is in the next screenshot (Figure 9).

Note: The default.aspx page needs to be opened in “Design” mode to see how the

controls will look on your page. You can be in “Source” mode as well, but it’s harder to

arrange the controls unless you’re very familiar with HTML.

Figure 9– Drag Controls from Toolbox to default.aspx

Figure 10 – Source of default.aspx after dragging controls

Every time you add a control to your ASP.NET page, once it’s compiled on the server, it

will create the code for it to render correctly on a web browser.

Introduction to ASP.NET Web Development 15 of 36 Author: Frank Stepanski

What that means in English is that the code that you see in your default.aspx in Visual

Studio, will not be the same code that is sent to the web browser after the ASP.NET

engine on the web server renders it.

The ASP.NET engine creates the necessary HTML for the web browser that is requesting

the page and sends back what it should look like based upon what controls are on your

ASP.NET page.

ASP.NET Website: Adding Some C#

Figure 11 – C# in default.aspx.cs

OK, here are some quick steps to replicate this with the least amount of fuss:

1. In the “Design” view of default.aspx, double-click on the Button control

2. This will put you in the default.aspx.cs page and within the Button1_Click code

(magically created for you).

3. Type in Label1.Text = TextBox1.Text

That’s it.

What you did was….

You told Visual Studio that you want code in the Click event of the Button. The line of

code you typed in says, “When the Button is clicked, whatever is typed in TextBox1 put

it in Label1”. The Text property of the TextBox and Label are what is visually displayed

on the page.

Note: C# is case-sensitive.

Introduction to ASP.NET Web Development 16 of 36 Author: Frank Stepanski

ASP.NET Website: Changing Control’s Properties

Figure 12 – Properties Window of Label1 control

Every control has properties. A property is like an adjective of something and is usually

visual: color, size, text, width, height and style.

In this example, I want to remove the default text of Label1.

I selected my label control on default.aspx and the Properties Window displayed the

specific properties for the web control. Every time you select a control on your page, the

Properties Window automatically changes to display that controls specific properties.

Introduction to ASP.NET Web Development 17 of 36 Author: Frank Stepanski

The Text property for a label control is what gets displayed on the page when it is visible

(you can toggle the Visible property too). I want the label to display nothing until the

Button is clicked (Button1) and then that one line of code will get executed.

Note: By default, a Label control’s Text property is the name itself, so I just removed it.

What happens when you remove it???

Now the Label control on the page has its name in brackets [Label1]. That means its Text

property is empty.

Although it does makes sense if you think about it….

The only way to visually see a label control on an ASP.NET page (in “Design” mode) is

by its Text property, so how else would you see it?

Visual Studio puts it in brackets so you know its empty, but you can still see it to re-

select it and change its properties if needed. Wow, those Microsoft people are pretty

smart, huh?

Let’s test out our finished example….

ASP.NET Website: Testing our Website

To test our website, you can just right-click the default.aspx page in the Solution

Explorer and select “View in Browser” (Figure 13).

Introduction to ASP.NET Web Development 18 of 36 Author: Frank Stepanski

Figure 13 – Testing default.aspx in a web browser

This will open your default web browser and allow you to view your web page through a

web server the Visual Studio provides. This temporary web server will show an icon in

the taskbar.

Once you close the web browser, after you’re done testing, you can let the web server

continue to run or close it each time you test a new ASP.NET page.

Introduction to ASP.NET Web Development 19 of 36 Author: Frank Stepanski

Figure 14 – Viewing default.aspx in a web browser

You can test your first ASP.NET locally and see how it works.

My version (with a few little additions):

http://www.dotnet-tutorials.org/Intro/Lesson1/Default.aspx

ASP.NET Application: Definition

It’s sometimes difficult to define exactly what a web application is. Unlike traditional

desktop programs (which users start by running a stand-alone EXE file), ASP.NET

applications are almost always divided into multiple web pages. This division means a

user can enter an ASP.NET application at different points or follow a link from the

application to another part of the website or another web server.

So, does it make sense to consider a website as an application?

In ASP.NET, the answer is yes. Every ASP.NET application shares a common set of

resources and configuration settings. Web pages from other ASP.NET applications don’t

share these resources, even if they’re on the same web server.

Technically speaking, every ASP.NET application is executed inside an application

domain. Application domains are isolated areas in memory; they ensure that even if one

Introduction to ASP.NET Web Development 20 of 36 Author: Frank Stepanski

http://www.dotnet-tutorials.org/Intro/Lesson1/Default.aspx�
http://en.wikipedia.org/wiki/Application_Domain�

web application causes a fatal error, it’s unlikely to affect any other application that is

currently running on the same computer.

The standard definition for an ASP.NET application is: a combination of files, pages,

handlers, modules, and executable code that can be invoked from a virtual directory on a

web server.

ASP.NET Basics: Server Controls

As I talked about in the first lesson, ASP.NET has server controls that you can program

on the server. There are two types of server controls: HTML and Web controls.

HTML server controls: These are server-based equivalents for standard HTML elements.

These are probably not used that much but are good if you need to migrate existing ASP

pages to ASP.NET.

Web controls: These are similar to HTML server controls, but they provide a richer

object model with a variety of properties for style and formatting details. They also

provide more events and more closely resemble the controls used for Windows

development. Web controls also feature some user interface elements that have no direct

HTML equivalent, such as the GridView, Calendar, and validation controls.

ASP.NET Basics: GradeCalc Application

Here’s a simple application to start you off building a simple ASP.NET application.

http://www.dotnet-tutorials.org/Intro/Lesson1/GradeCalc.aspx

Introduction to ASP.NET Web Development 21 of 36 Author: Frank Stepanski

http://www.dotnet-tutorials.org/Intro/Lesson1/GradeCalc.aspx�

public partial class Default : System.Web.UI.Page

{

 int[] testScores = new int[3];

 protected void Page_Load(object sender, EventArgs e)

 {

 initGrades();

 displayGrade(calcGrades());

 }

 void initGrades()

 {

 testScores[0] = 90;

 testScores[1] = 85;

 testScores[2] = 78;

 }

 float calcGrades()

 {

 float grade;

 grade = (float)(testScores[0] + testScores[1] + testScores[2]) / 3;

 return grade;

 }

 void displayGrade(float grade)

 {

 if (grade > 90) {

 Response.Write("Score: " + grade + "
 Well done!");

 }

 else if (grade > 80)

 {

 Response.Write("Score: " + grade + "
 Nice one.");

 }

 else

 {

 Response.Write("Score: " + grade);

 }

 }

}

Introduction to ASP.NET Web Development 22 of 36 Author: Frank Stepanski

When you look at the GradeCalc.aspx page in “Design” view with Visual Studio, what

do you see?

Nothing.

That’s because it uses no server controls and the results are being displayed in the

Page_Load event of the page with a simple Response.Write command.

Let’s first document the changes we will make:

UI (User Interface) Controls:

• Four TextBoxes controls; three for each score and one for name.

• One Label control; this will display the score.

• One Button control; this will execute the function(s) that will retrieve the scores,

calculate the score and display the score.

Process:

1. The user will enter their three scores in the three TextBoxes.

2. The user will then click the Button.

3. The Button will execute the function(s).

4. A score (average) will be displayed.

Introduction to ASP.NET Web Development 23 of 36 Author: Frank Stepanski

Step 1: Setup our web controls

This step will involve grabbing our web controls from the Toolbox (View->Toolbox) and

dragging them to the page (“Design” view). We will also change a few properties of the

controls to make them a little more descriptive.

Figure 15 – Designing our new UI – “Design” view

Introduction to ASP.NET Web Development 24 of 36 Author: Frank Stepanski

Figure 16 – Designing our new UI – “Source” view

As you look over the both screenshots, it seems to be pretty straightforward from the

explanation of what we want our UI to look like.

Introduction to ASP.NET Web Development 25 of 36 Author: Frank Stepanski

Figure 17 – Changing properties of a web control

Control Property Original New

TextBox ID TextBox1 txtScore1

 ID TextBox2 txtScore2

 ID TextBox3 txtScore3

Label ID Label1 lblAverage

 Text Label [blank]

Button ID Button1 btnCalculate

 Text Button1 Calculate Average

Figure 18 – Control Properties that were changed

Introduction to ASP.NET Web Development 26 of 36 Author: Frank Stepanski

Changing properties is pretty straightforward:

By first selecting the web control and then going to the Properties Window (View ->

Properties Window) you can change any property you want. The table above (Figure 19)

shows you every property I changed and what the original property was as well.

By default, Label controls have a Text property of “Label”. I want the value of that

property to be dynamically displayed in code not as a static text value.

Note: I didn’t use a Label control to display the descriptions for the TextBoxes.

Personally, it’s not really necessary to use a server control unless it’s going to be

manipulated dynamically in code.

Step 2: Move Methods out of the Page_Load event

Now that we have our web controls ready to go, let’s look at our code.

Where is all our code implemented (executed) from? Page_Load event

This needs to be changed because now we want everything to happen AFTER we click

the Button that says “Calculate Average”. This would require the code to be placed in the

Click event of the button (Figure 19). So just a little cut and paste into the Click event of

btnCalculate.

Figure 19 – Executing our methods from the Click event of the Button

Introduction to ASP.NET Web Development 27 of 36 Author: Frank Stepanski

To get to the Click event of the Button (btnCalculate), just double-click on it in the

“Design” view and Visual Web Developer will automatically take you to the “code-

behind” file and create the C# code for that event. If the code has already been created,

Visual Web Developer will just take you to the event.

Note: When you double-click any web control, you will create an event declaration in

the “code-behind” file of your web page. The event will be the default event for the

particular control selected. Usually, it will be the Click event, but it sometimes is a

different one.

Step 3: Modify the initGrades() method

Originally, we “hard-coded” the three scores and put them into the array. Now we have to

get them from the three textboxes the visitor will enter. Plus, we also have to convert

them to integers first because values stored in textboxes are strings by default.

Since the array is an array of integer values, we need to do a little conversion first.

Figure 20 – Changing initGrades() to grab data from textboxes

I used the Text property of the textboxes and used the int.Parse() method to convert the

value entered to an integer.

Introduction to ASP.NET Web Development 28 of 36 Author: Frank Stepanski

Step 4: Modify the displayGrade(float) method

The only other change is to display our message in our Label control (lblAverage). This

just needs a little change to set the value to the Text property (Figure 22).

Figure 21 – Modifying to display message in label control

Step 5: Finished Version: GradeCalc-Controls.aspx

http://www.dotnet-tutorials.org/Intro/Lesson1/GradeCalcControls.aspx

This should be a good starting point on how to use some basic web controls and

incorporate some simple C# code within an event.

Note: If you notice that if you click the submit button without entering the proper values

in the text boxes (numbers), you will get an error message. Don’t worry, I will talk about

this and what you can do to prevent certain type of errors.

Introduction to ASP.NET Web Development 29 of 36 Author: Frank Stepanski

http://www.dotnet-tutorials.org/Intro/Lesson1/GradeCalcControls.aspx�

Debugging with Visual Studio

When creating web sites/applications you are bound to have something happen you didn’t

want happen or you want to have something happen but it didn’t.

This is the case for any kind of web development no matter what the technology or tool

you are using. You are never going to get it right the first time. There will always be a

little (or a lot) of trial and error no matter how much you plan.

So Visual Studio has something called single-step debugging which allows you to test

your assumptions about how your code works and see what’s really happening under the

hood of you application.

All you do is add a breakpoint to a line of code and a red circle (breakpoint) will appear

(Figure 22).

Figure 22 – Setting a breakpoint

This breakpoint will stop execution of your code (when you’re debugging your web

page) and switch to the code view of Visual Studio and pause at the break point awaiting

Introduction to ASP.NET Web Development 30 of 36 Author: Frank Stepanski

instructions. At this point you have several options. You can execute the current line by

pressing F11. The following line in your code will be highlighted with a yellow arrow,

indicating that this is the next line that will be executed (Figure 23).

Figure 23 – Execution paused at breakpoint

Notice that while the execution is paused you can

place your cursor over the variable, properties, etc

and see their current value at that point in time.

You can continue like this through your program;

running one line at a time by pressing F11 and

following the code’s path of execution.

You can use the commands in Figure 24 while in

“break” mode.

Figure 24 – Execution paused at breakpoint

Introduction to ASP.NET Web Development 31 of 36 Author: Frank Stepanski

Step Over (F10) - The same as Step Into, except it runs methods as though they are a

single line. If you selected Step Over while in a method call is highlighted, the entire

method will be executed. Execution will be paused at the next executable statement in the

current method.

Continue (F5) – Resumes the program and continues to run it normally, without pausing

until another breakpoint is reached.

When debugging a large website, you might place a breakpoint in different places of your

code and in multiple web pages.

Exception Handling

Most .NET languages support structures exception handling. Essentially, when an error

occurs in your application, the .NET Framework creates an exception object that

represents the problem. You can catch this object using an exception handler. If you fail

to use an exception handler, your code will be aborted, and the user will see an ugly error

page, which is something you should try and avoid.

The Exception Class

Every exception class derives from the base class System.Exception. The .NET

Framework is full of predefined exception classes, such as NullReferenceException,

IOException, SqlException, and so on. The Exception class includes the essential

functionality for identifying any type of error.

When you catch an exception in an ASP.NET page, it won’t be an instance of the generic

System.Exception class. Instead, it will be an object that represents a specific type of

error. This object will be based on one of the many classes that inherit from

System.Exception.

These include diverse classes such as DivideByZeroException, ArithmeticException,

IOException, SecurityException, and many more. Some of these classes provide

additional details about the error in additional properties.

Introduction to ASP.NET Web Development 32 of 36 Author: Frank Stepanski

http://msdn.microsoft.com/en-us/library/system.exception.aspx�
http://msdn.microsoft.com/en-us/library/system.nullreferenceexception.aspx�
http://msdn.microsoft.com/en-us/library/system.io.ioexception.aspx�
http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlexception.aspx�
http://msdn.microsoft.com/en-us/library/system.dividebyzeroexception.aspx�
http://msdn.microsoft.com/en-us/library/system.arithmeticexception.aspx�
http://msdn.microsoft.com/en-us/library/system.io.ioexception.aspx�
http://msdn.microsoft.com/en-us/library/system.security.securityexception.aspx�

Structured Error Handling: Exceptions

 To use structured exception handling, you wrap potentially problematic codes in the

special block structure shown here:

try

{

 // Risky code goes here

}

catch

{

 // An error has been detected. You can deal with it here.

}

finally

{

 // Time to clean up, regardless of whether or not there was an error.

}

The try statement enables error handling. Any exceptions that occur in the following lines

can be “caught” automatically. The code in the catch block will be executed when an

error is detected. Either way, whether a bug occurs or not, the final section of the code

will be executed last. This can allow for some basic cleanup such as closing a database

connection, though we can omit that section from this class.

The act of catching an exception neutralizes it. If all you want to do is render a specific

error harmless, you don’t ever need to add any code in the catch block of your error

handler. Usually, this portion of the code will be used to report the error to the user or log

it for future references.

Exception blocks work a little like conditional code. As soon as a matching exception

handler is found, the appropriate catch code is invoked. Therefore, you must organize

your catch statements from most specific to least specific:

Ending with a catch statement for the base Exception class is often a good idea to make

sure no errors slip through.

Introduction to ASP.NET Web Development 33 of 36 Author: Frank Stepanski

Exception Handling in Action

Look at this example:

http://www.dotnet-tutorials.org/Intro/Lesson1/NoExceptionHandling.aspx

It’s using a simple arithmetic of multiplying two integers together:

int a = Convert.ToInt16(txtNumber1.Text);

int b = Convert.ToInt16(txtNumber2.Text);

int c = a * b;

lblAnswer.Text = Convert.ToString(c);

Works fine as long as you enter integer values in the text boxes, right? But what if you

enter a string value or nothing or a decimal?

You’ll get something like this:

Introduction to ASP.NET Web Development 34 of 36 Author: Frank Stepanski

http://www.dotnet-tutorials.org/Intro/Lesson1/NoExceptionHandling.aspx�

You at least need to handle the general exception which would cover any type of

exception:

try

{

int a = Convert.ToInt16(txtNumber1.Text);

 int b = Convert.ToInt16(txtNumber2.Text);

 int c = a * b;

 lblAnswer.Text = Convert.ToString(c);

}

catch (Exception err)

{

 lblAnswer.Text = "0";

 lblError.Text = "Error: " + err.Message;

}

So the results will look a little bit nicer to the user.

http://www.dotnet-tutorials.org/Intro/Lesson1/ExceptionHandling.aspx

Of course you could check for other types of exceptions and/or give the user more

information on how to correct the error next time, etc.

Nevertheless, you should at the very minimum have basic exception handling in your

code whenever you think you could get an unexpected error. More advanced techniques

would be logging every error that has occurred in your web application to a log file of

some sort so developers can review.

Introduction to ASP.NET Web Development 35 of 36 Author: Frank Stepanski

http://www.dotnet-tutorials.org/Intro/Lesson1/ExceptionHandling.aspx�

Additional Resources

1. http://www.asp.net/get-started/

2. http://forums.asp.net/

3. http://msdn.microsoft.com/en-us/aa336522.aspx

4. http://visualstudiomagazine.com/Home.aspx

5. http://aspnetresources.com/

6. http://www.4guysfromrolla.com/

Assignment for Lesson 1

1. Install Visual Studio 2010 (if you have 2008 version it’s not required)

2. Setup your web hosting account.

Note: I use GoDaddy (Windows Economy package). They are very reasonable

and include everything you need for this class and the intermediate class

(ASP.NET 4.0, AJAX, SQL Server 2008, etc.).

3. Take the GradeCalc-Controls application and add error handling code so it will not

display an error message when non-numeric numbers are used.

My version:

http://www.dotnet-tutorials.org/Intro/Lesson1/assignment/Lesson1Solution.aspx

4. Post a link to your assignment in the forum for that week.

Copyrighted 2011 © Frank Stepanski

Used with Permission:: eClasses.org

Lessons, files and content of these classes cannot be reproduced and/or published

without the express written consent of the author.

Introduction to ASP.NET Web Development 36 of 36 Author: Frank Stepanski

http://www.asp.net/get-started/�
http://forums.asp.net/�
http://msdn.microsoft.com/en-us/aa336522.aspx�
http://visualstudiomagazine.com/Home.aspx�
http://aspnetresources.com/�
http://www.4guysfromrolla.com/�
http://www.godaddy.com/Hosting/web-hosting3.aspx?ci=9009&isc=gdbb146315�
http://www.dotnet-tutorials.org/Intro/Lesson1/assignment/Lesson1Solution.aspx�

	Introduction to ASP.NET Web Development
	Instructor: Frank Stepanski

