


1.1

1.2

1.2.1

1.2.1.1

1.2.1.2

1.2.1.3

1.2.2

1.2.2.1

1.2.2.2

1.2.2.3

1.2.2.4

1.2.2.5

1.2.2.6

1.2.2.7

1.2.2.8

1.2.2.9

1.2.2.10

1.2.2.11

1.2.2.12

1.2.2.13

1.2.2.14

1.2.2.15

1.2.2.16

1.2.3

1.2.3.1

1.2.3.2

1.2.3.3

1.2.3.4

1.2.3.5

1.2.4

1.2.4.1

1.2.4.2

1.2.4.3

1.2.4.4

1.2.4.5

1.2.5

1.2.5.1

Table	of	Contents
Introduction

Guides

About	Feathers

Features

Philosophy

Feathers	vs.	X

The	Basics

Introduction

What	not	to	worry	about

Installing	the	Examples

Basic	Feathers

A	database	connector

A	REST	API	server

A	Feathers	REST	client

A	Feathers	WebSocket	client

The	"a-ha!"	moment

Hooks	middleware

All	about	hooks

Hooks,	part	1

Hooks,	part	2

Writing	your	own	hooks

Testing	hooks

Real-time

The	Generator	(CLI)

Generate	the	application

Add	authentication

Add	the	teams	service

Add	the	populate	hook

Run	the	application

A	Chat	Application

Creating	the	application

Generating	a	service

Building	a	frontend

Adding	authentication

Processing	data

Frameworks

React	and	React	Native

2



1.2.5.2

1.2.5.3

1.2.5.4

1.2.6

1.2.6.1

1.2.6.2

1.2.6.3

1.2.6.4

1.2.6.5

1.2.6.6

1.2.6.7

1.2.7

1.2.7.1

1.2.7.2

1.2.7.3

1.2.7.4

1.2.7.5

1.2.7.6

1.2.7.7

1.2.7.8

1.2.7.9

1.2.7.10

1.2.7.11

1.2.7.12

1.2.7.13

1.2.7.14

1.2.8

1.2.8.1

1.2.8.2

1.2.8.3

1.2.8.4

1.2.8.5

1.2.8.6

1.2.8.7

1.3

1.3.1

1.3.1.1

1.3.1.2

1.3.1.3

1.3.1.4

VueJS

Angular

Others

Authentication

How	JWT	works

What's	New	(external	link)

Migration	Guide	(external	link)

Recipe:	Custom	Login	Response

Recipe:	Custom	JWT	Payload

Recipe:	Mixed	Auth	Endpoints

Recipe:	Basic	OAuth

Offline	first

Strategies

Snapshot

Realtime

Optimistic	mutation

Own-data,	own-net

Sync-data,	sync-net

Configure	snapshot

Configure	realtime

Configure	publication

Example	snapshot

Example	realtime	&	publication

Example	optimistic	mutation

Tests	as	examples

More	examples

Advanced	topics

Debugging

Configuration

File	uploads

Creating	a	Feathers	plugin

Seeding	services

Using	a	view	engine

Scaling

API

Core

Application

Services

Hooks

Common	Hooks

3

https://github.com/feathersjs/feathers-authentication/blob/master/docs/new-1.0-features.md
https://github.com/feathersjs/feathers-authentication/blob/master/docs/migrating.md


1.3.1.5

1.3.1.6

1.3.1.7

1.3.2

1.3.2.1

1.3.2.2

1.3.2.3

1.3.2.4

1.3.3

1.3.3.1

1.3.3.2

1.3.3.3

1.3.3.4

1.3.3.5

1.3.3.6

1.3.3.7

1.3.3.8

1.3.4

1.3.4.1

1.3.4.2

1.3.4.3

1.3.4.4

1.3.4.5

1.3.4.6

1.3.4.7

1.3.4.8

1.3.4.9

1.3.4.10

1.3.4.11

1.4

1.5

1.6

1.7

1.8

1.9

Client

Events

Errors

Transports

REST

Express

Socket.io

Primus

Authentication

Server

Client

Local

Local	management

JWT

OAuth1

OAuth2

Hooks

Databases

Common	API

Querying

Memory

NeDb

LocalStorage

MongoDB

Mongoose

Sequelize

Knex

RethinkDB

Elasticsearch

Security

Ecosystem

Help

FAQ

Contributing

License

4



An	open	source	REST	and	realtime	API	layer	for	modern	applications.

With	Feathers	it's	easy	to	create	scalable,	real-time	applications.	Make	creating	web	and	mobile	apps	fun	with
Feathers.

This	documentation	is	also	available	as	a	PDF.

Guides
Get	familiar	with	Feathers	by	building	your	first	apps.	Learn	topics	from	beginner	to	more	advanced-levels.

API
Learn	more	about	Feathers'	Universal	API,	and	plugins	for	Authentication	and	handling	data.

Security
Understand	our	commitment	to	security	and	how	it	affects	your	applications.

Ecosystem
See	what	amazing	things	the	Feathers	Core	Team	and	Community	have	built.

Help
Learn	how	to	plug	in	to	the	active	and	helpful	FeathersJS	Community.

FAQ
A	collection	of	Frequently	Asked	Questions.

Contributing
Learn	how	you	can	contribute	to	this	documentation.

License

Introduction

5

https://docs.feathersjs.com/feathersjs.pdf


Guides

Official	guides

About	Feathers

Learn	about	Feathers	features,	philosophy	and	how	it	compares	with	some	other	frameworks.

The	Basics	-	A	Step-by-Step	Intro	to	Feathers

The	goal	of	this	guide	is	to	get	you	to	the	"A-ha!"	moment	as	efficiently	as	possible.	You	will	learn	how	the	primary
parts	of	the	core	work	together.	You'll	also	learn	how	to	start	new	applications	with	the	generator.

The	Generator	(CLI)

An	overview	of	the		feathers-cli		and	the	application	it	generates.

A	Chat	Application

Learn	how	to	create	a	chat	REST	and	real-time	API	complete	with	authentication	and	data	processing	and	how	to	use
Feathers	on	the	client	in	a	simple	browser	app.

Authentication

Learn	how	to	add	local	(username	&	password),	OAuth1,	and	OAuth2	authentication	to	your	Feathers	Applications.

Advanced	topics

Guides	for	more	advanced	Feathers	topics	like	debugging,	configuration,	file	uploads	and	more.

Video	tutorials

The	FeathersJS	Youtube	playlist

Guides

6

https://www.youtube.com/playlist?list=PLwSdIiqnDlf_lb5y1liQK2OW5daXYgKOe


A	growing	collection	of	Feathers	related	talks,	tutorials	and	discussions.

FeathersJS	Real-Time	Chat	App	-	Tutorial

Mad	♥�	to	Chris	Pena	for	putting	together	the	video.

Fullstack	Feathersjs	and	React	Web	App

Guides

7

https://www.youtube.com/playlist?list=PLwSdIiqnDlf_lb5y1liQK2OW5daXYgKOe
https://www.youtube.com/watch?v=CuM4vLkBaik
https://www.youtube.com/watch?v=CuM4vLkBaik
https://twitter.com/dev_coffee
https://www.youtube.com/playlist?list=PLN3n1USn4xlnulnnBGD2RMid_p7xVj9xU


Mad	♥�	to	Ben	Awad	for	putting	together	an	entire	video	series.

Guides

8

https://www.youtube.com/playlist?list=PLN3n1USn4xlnulnnBGD2RMid_p7xVj9xU
https://www.youtube.com/channel/UC-8QAzbLcRglXeN_MY9blyw


Why	Feathers
Using	Feathers	is	a	great	way	to	build	scalable,	real-time	web	and	mobile	applications.	You	can	literally	build
prototypes	in	minutes	and	production	ready	applications	in	days.	Feathers	achieves	this	by	being	a	thin	wrapper	over
top	of	some	amazing	battle	tested	open	source	technologies	and	adding	a	few	core	pieces	like	Hooks	and	Services.

If	you've	decided	that	Feathers	might	be	for	you	and	you	haven't	tried	the	tutorial,	feel	free	to	dive	right	in	and	learn
about	the	basics.	If	you're	still	unsure	about	what	Feathers	does	and	where	it	comes	from	see	what	Feathers	offers,
learn	more	about	the	Feathers	philosophy	or	check	out	how	Feathers	compares	to	others.

About	Feathers

9



Features
Feathers	provides	a	lot	of	the	things	that	you	need	for	building	modern	web	and	mobile	applications.	Here	are	some	of
the	things	that	you	get	out	of	the	box	with	Feathers.	All	of	them	are	optional	so	you	can	choose	exactly	what	you
need.	No	more,	no	less.

We	like	to	think	of	Feathers	as	a	"batteries	included	but	easily	swappable"	framework.

Instant	REST	APIs
Feathers	automatically	provides	REST	APIs	for	all	your	services.	This
industry	best	practice	makes	it	easy	for	mobile	applications,	a	web	front-end
and	other	developers	to	communicate	with	your	application.

Unparalleled	Database
Support

With	Feathers	service	adapters	you	can	connect	to	all	of	the	most	popular
databases,	and	query	them	with	a	unified	interface	no	matter	which	one	you
use.	This	makes	it	easy	to	swap	databases	and	use	entirely	different	DBs	in
the	same	app	without	changing	your	application	code.

Real	Time

Feathers	services	can	notify	clients	when	something	has	been	created,
updated	or	removed.	To	get	even	better	performance,	you	can	communicate
with	your	services	through	websockets,	by	sending	and	receiving	data
directly.

Cross-Cutting	Concerns

Using	"hooks"	you	have	an	extremely	flexible	way	to	share	common
functionality	or	concerns.	Keeping	with	the	Unix	philosophy,	these	hooks	are
small	functions	that	do	one	thing	and	are	easily	tested	but	can	be	chained	to
create	complex	processes.

Universal	Usage

Services	and	hooks	are	a	powerful	and	flexible	way	to	build	full	stack
applications.	In	addition	to	the	server,	these	constructs	also	work	incredibly
well	on	the	client.	That's	why	Feathers	works	the	same	in	NodeJS,	the
browser	and	React	Native.

Authentication Almost	every	app	needs	authentication	so	Feathers	comes	with	support	for
email/password,	OAuth	and	Token	(JWT)	authentication	out	of	the	box.

Pagination
Today's	applications	are	very	data	rich	so	most	of	the	time	you	cannot	load
all	the	data	for	a	resource	all	at	once.	Therefore,	Feathers	gives	you
pagination	for	every	service	from	the	start.

Error	Handling
Feathers	removes	the	pain	of	defining	errors	and	handling	them.	Feathers
services	automatically	return	appropriate	errors,	including	validation	errors,
and	return	them	to	the	client	in	a	easily	consumable	format.

Features

10

https://en.wikipedia.org/wiki/Cross-cutting_concern


The	Feathers	Philosophy
We	know!	You're	probably	screaming	"Not	another	JavaScript	framework!".	We've	also	become	frustrated	with	all	the
Rails	clones	and	MVC	frameworks	that	don't	do	anything	different.	Instead,	a	few	years	ago	we	started	to	explore	a
different	approach	to	building	web	applications	using	services	and	cross	cutting	concerns	while	also	being	careful	not
to	reinvent	the	wheel.

With	this	experimentation	Feathers	has	grown	into	what	it	is	today.	Our	core	philosophy	that	guides	Feathers	is	still
the	same	as	it	was	years	ago:

"Monolithic	apps	tend	to	fall	apart	at	scale,	either	because	of	performance	or	because	there	are	too	many
people	in	the	code.	What	if	we	could	make	it	easy	to	build	applications	that	can	naturally	become	service
oriented	from	day	one,	rather	than	having	to	start	with	a	large	application	and	painfully	tease	it	apart?

What	if	we	could	make	a	framework	that	grows	with	you	and	your	business	and	makes	it	easy	for	you	to
transition	to	a	series	of	microservices,	or	easily	change	databases	without	ripping	our	code	apart?

What	if	we	could	make	real-time	less	intimidating	rather	than	a	hacky,	complex	after	thought?	What	if	we	could
remove	the	boilerplate	needed	for	building	REST	APIs?	Could	we	build	a	framework	that	provides	enough
structure	to	get	going	easily	and	add	all	the	common	pieces	that	modern	apps	need,	but	still	keep	everything
flexible	and	optional?

A	framework	itself	should	not	be	opinionated.	It	should	be	made	up	of	small,	reusable,	optional	components	that
do	one	thing	well	but	are	combined	in	an	opinionated	way.	By	keeping	the	components	of	your	application
small,	flexible	and	optional	you	eliminate	much	of	the	engineering	obstacles	that	prevent	moving	fast	and
scaling."

We	strongly	believe	that	your	UI,	data	and	business	logic	are	the	core	of	any	web	or	mobile	application	and	your
framework	should	take	care	of	the	rest	so	you	can	focus	on	the	things	that	matter.

Services
Many	web	frameworks	focus	on	things	like	rendering	views,	defining	routes	and	handling	HTTP	requests	and
responses	without	providing	a	structure	for	implementing	application	logic	separate	from	those	secondary	concerns.
The	result	-	even	when	using	the	MVC	pattern	-	are	monolithic	applications	with	messy	controllers	or	fat	models.	Your
actual	application	logic	and	how	your	data	is	accessed	are	all	mixed	up	together.

Feathers	brings	3	important	concepts	together	that	help	to	separate	those	concerns	from	how	your	application	works
and	give	you	incredible	flexibility	while	still	keeping	things	DRY.

A	service	layer	which	helps	to	decouple	your	application	logic	from	how	it	is	being	accessed	and	represented.	Besides
also	making	things	a	lot	easier	to	test	-	you	just	call	your	service	methods	instead	of	having	to	make	fake	HTTP
requests	-	this	is	what	allows	Feathers	to	provide	the	same	API	through	both	HTTP	REST	and	websockets.	It	can
even	be	extended	to	use	any	other	RPC	protocol	and	you	won't	have	to	change	any	of	your	services.

Uniform	Interfaces

Every	Feathers	service	exposes	a	uniform	interface	modeled	after	REST.	Where,	just	like	one	of	the	key	constraints
of	REST,	your	action	context	is	immediately	apparent	due	to	the	naming	convention.	With	REST	you	have	the	HTTP
verbs	(GET,	POST,	PUT,	PATCH	and	DELETE).	This	translates	naturally	to	a	Feathers	service	object	interface:

const	myService	=	{
		//	GET	/path

Philosophy

11

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


		find(params,	callback)	{},
		//	GET	/path/<id>
		get(id,	params,	callback)	{},
		//	POST	/path
		create(data,	params,	callback)	{},
		//	PUT	/path/<id>
		update(id,	data,	params,	callback)	{},
		//	PATCH	/path/<id>
		patch(id,	data,	params,	callback)	{},
		//	DELETE	/path/<id>
		remove(id,	params,	callback)	{}
}

This	interface	also	makes	it	easier	to	"hook"	into	the	execution	of	those	methods	and	emit	events	when	they	return
which	can	naturally	be	used	to	provide	real-time	functionality.

Hooks
Cross	cutting	concerns	are	an	extremely	powerful	part	of	aspect	oriented	programming.	They	are	a	very	good	fit	for
web	and	mobile	applications	since	the	majority	are	primarily	CRUD	applications	with	lots	of	shared	functionality.
Keeping	with	the	Unix	philosophy	we	believe	that	small	modules	that	do	one	thing	are	better	than	large	complex	ones.
That's	why	you	can	create		before		and		after		hooks	and	chain	them	together	to	create	very	complex	processes
while	still	maintaining	modularity	and	flexibility.

Built	on	the	Shoulders	of	Giants
Because	we	utilize	some	already	proven	modules,	we	spend	less	time	re-inventing	the	wheel,	are	able	to	move
incredibly	fast,	and	have	small	well-tested,	stable	modules.

Here's	how	we	use	some	of	the	tech	under	the	hood:

Feathers	extends	Express	4,	the	most	popular	web	framework	for	NodeJS.
Our	CLI	tool	uses	commander	and	its	generators	are	built	with	Yeoman.
We	wrap	Socket.io	or	Primus	as	your	websocket	transport.
Our	service	adapters	typically	wrap	mature	ORMs	like	mongoose,	sequelize	or	knex.
npm	for	package	management.
passport	for	much	of	the	feathers-authentication	work.

Philosophy

12

https://en.wikipedia.org/wiki/Cross-cutting_concern
http://expressjs.com
http://nodejs.org/
https://www.npmjs.com/package/commander
http://yeoman.io/
http://socket.io/
https://github.com/primus/primus
http://mongoosejs.com/
http://docs.sequelizejs.com/
http://knexjs.org/
http://npmjs.org
http://passportjs.org/
https://github.com/feathersjs/feathers-authentication


Feathers	vs	X
The	following	sections	compare	Feathers	to	other	software	choices	that	seem	similar	or	may	overlap	with	the	use
cases	of	Feathers.

Due	to	the	bias	of	these	comparisons	being	on	the	Feathers	website,	we	attempt	to	only	use	facts.	Below	you	can	find
a	feature	comparison	table	and	in	each	section	you	can	get	more	detailed	comparisons.

If	you	find	something	invalid	or	out	of	date	in	the	comparisons,	please	create	an	issue	(or	better	yet,	a	pull	request)
and	we'll	address	it	as	soon	as	possible.

Feature	Comparison
Due	to	the	fact	that	ease	of	implementation	is	subjective	and	primarily	related	to	a	developer's	skill-set	and
experience	we	only	consider	a	feature	supported	if	it	is	officially	supported	by	the	framework	or	platform,
regardless	of	how	easy	it	is	to	implement	(aka.	are	there	official	plugins,	guides	or	SDKs?).

Legend

✅ 	:	Officially	supported	with	a	guide	or	core	module

❌ 	:	Not	supported

ߦ 	:	Community	supported	or	left	to	developer

Feature Feathers Express Meteor Sails Firebase

REST	API ✅ ✅ ✅ ✅ ✅

Real	Time	From
Server ✅ ❌ ߦ	 ✅ ✅ ✅

Real	Time	From
Client ✅ ❌ ߦ	 ✅ 	(DDP) ❌ ߦ	 ✅

Universal
JavaScript ✅ ❌

✅ 	(sort
of) ❌ ❌

React	Native
Support ✅ ❌ ❌ ߦ	 ❌ ❌

Client	Agnostic ✅ ✅ ❌ ߦ	 ✅
✅ ߦ	
(SDKs)

Email/Password
Auth ✅ ❌ ߦ	 ✅ ❌ ߦ	 ✅

Token	Auth ✅ ❌ ߦ	 ✅ ❌ ߦ	 ✅

OAuth ✅ ❌ ߦ	 ✅ ❌ ߦ	 ✅

Self	Hosted ✅ ✅ ✅ ✅ ❌

Hosting	Support ❌ ❌ ✅ ❌ ✅

Pagination ✅ ❌ ߦ	 ❌ ߦ	 ✅ ✅

Databases 10+	databases.	Multiple
ORMs ❌ ߦ	 MongoDB 10+	databases.

1	ORM Unknown

Feathers	vs.	X

13

https://github.com/feathersjs/feathers-docs/issues/new
https://github.com/feathersjs/feathers-docs/compare


Analytics ❌ ߦ	 ❌ ߦ	 ❌ ߦ	 ❌ ߦ	 ✅

Admin
Dashboard ❌ ߦ	 ❌ ߦ	 ❌ ߦ	 ❌ ߦ	 ✅

Push
Notifications ❌ ߦ	 ❌ ߦ	 ❌ ߦ	 ❌ ߦ	 ❌

Offline	Mode ❌ ߦ	 ❌ ߦ	 ✅ ❌ ߦ	 ✅

Hot	Code	Push ❌ ߦ	 ❌ ߦ	 ✅ ❌ ߦ	 ❌

Feathers	vs	Firebase
Firebase	is	a	hosted	platform	for	mobile	or	web	applications.	Just	like	Feathers,	Firebase	provides	REST	and	real-
time	APIs	but	also	includes	CDN	support.	Feathers	on	the	other	hand	leaves	setting	up	a	CDN	and	hosting	your
Feathers	app	up	to	the	developer.

Firebase	is	a	closed-source,	paid	hosted	service	starting	at	5$/month	with	the	next	plan	level	starting	at	49$/month.
Feathers	is	open	source	and	can	run	on	any	hosting	platform	like	Heroku,	Modulus	or	on	your	own	servers	like
Amazon	AWS,	Microsoft	Azure,	Digital	Ocean	and	your	local	machine.	Because	Firebase	can't	be	run	locally	you
typically	need	to	pay	for	both	a	shared	development	environment	on	top	of	any	production	and	testing	environment.

Firebase	has	JavaScript	and	mobile	clients	and	also	provides	framework	specific	bindings.	Feathers	currently	focuses
on	universal	usage	in	JavaScript	environments	and	does	not	have	any	framework	specific	bindings.	Mobile
applications	can	use	Feathers	REST	and	websocket	endpoints	directly	but	at	the	moment	there	are	no	Feathers
specific	iOS	and	Android	SDKs.

Firebase	currently	supports	offline	mode	whereas	that	is	currently	left	up	to	the	developer	with	Feathers.	We	do
however	have	a	proposal	for	this	feature.

Both	Firebase	and	Feathers	support	email/password,	token,	and	OAuth	authentication.	Firebase	has	not	publicly
disclosed	the	database	technology	they	use	to	store	your	data	behind	their	API	but	it	seems	to	be	an	SQL	variant.
Feathers	supports	multiple	databases,	NoSQL	and	SQL	alike.

For	more	technical	details	on	the	difference	and	how	to	potentially	migrate	an	application	you	can	read	how	to	use
Feathers	as	an	open	source	alternative	to	Firebase.

Feathers	vs	Meteor
Both	Feathers	and	Meteor	are	open	source	real-time	JavaScript	platforms	that	provide	front	end	and	back	end
support.	They	both	allow	clients	to	send	and	receive	messages	over	websockets.	Feathers	lets	you	choose	which
real-time	transport(s)	you	want	to	use	via	socket.io	or	Primus,	while	Meteor	relies	on	SockJS.

Feathers	is	community	supported,	whereas	Meteor	is	venture	backed	and	has	raised	31.2	million	dollars	to	date.

Meteor	only	has	official	support	for	MongoDB	but	there	are	some	community	modules	of	various	levels	of	quality	that
support	other	databases.	Meteor	has	it's	own	package	manager	and	package	ecosystem.	They	have	their	own
template	engine	called	Blaze	which	is	based	off	of	Mustache	along	with	their	own	build	system,	but	also	have	guides
for	Angular	and	React.

Feathers	has	official	support	for	many	more	databases	and	supports	any	front-end	framework	or	view	engine	that	you
want	by	working	seamlessly	on	the	client.

Feathers	vs.	X

14

https://github.com/feathersjs/feathers-client/issues/29
https://medium.com/all-about-feathersjs/using-feathersjs-as-an-open-source-alternative-to-firebase-b5d93c200cee#.olu25brld


Feathers	uses	the	defacto	JavaScript	package	manager	npm.	As	a	result	you	can	utilize	the	hundreds	of	thousands	of
modules	published	to	npm.	Feathers	lets	you	decide	whether	you	want	to	use	Gulp,	Grunt,	Browserify,	Webpack	or
any	other	build	tool.

Meteor	has	optimistic	UI	rendering	and	oplog	tailing	whereas	currently	Feathers	leaves	that	up	to	the	developer.
However,	we've	found	that	being	universal	and	utilizing	websockets	for	both	sending	and	receiving	data	alleviates	the
need	for	optimistic	UI	rendering	and	complex	data	diffing	in	most	cases.

Both	Meteor	and	Feathers	provide	support	for	email/password	and	OAuth	authentication.	Once	authenticated	Meteor
uses	sessions	to	maintain	a	logged	in	state,	whereas	Feathers	keeps	things	stateless	and	uses	JSON	Web	Tokens
(JWT)	to	assess	authentication	state.

One	big	distinction	is	how	Feathers	and	Meteor	provide	real-time	across	a	cluster	of	apps.	Feathers	does	it	at	the
service	layer	or	using	another	pub-sub	service	like	Redis	whereas	Meteor	relies	on	having	access	to	and	monitoring
MongoDB	operation	logs	as	the	central	hub	for	real-time	communication.

Feathers	vs	Sails
From	a	feature	standpoint,	Feathers	and	Sails	are	probably	the	most	similar	of	the	comparisons	offered	here.	Both
provide	real-time	REST	API's,	multiple	DB	support,	and	are	client-agnostic.	Sails	is	bound	to	the	server	whereas
Feathers	can	also	be	used	in	the	browser	and	in	React	Native	apps.	Both	frameworks	use	Express,	with	Feathers
supporting	the	latest	Express	4,	while	Sails	supports	Express	3.

Sails	follows	the	MVC	pattern	while	Feathers	provides	lightweight	services	to	define	your	resources.	Feathers	uses
hooks	to	define	your	business	logic	including	validations,	security	policies,	and	serialization	in	reusable,	chainable
modules,	whereas	with	Sails,	these	reside	in	more	of	a	configuration	file	format.

Feathers	supports	multiple	ORMs	while	Sails	only	supports	its	own	Waterline	ORM.

Sails	allows	you	to	receive	messages	via	websockets	on	the	client,	but,	unlike	Feathers,	does	not	directly	support
data	being	sent	from	the	client	to	the	server	over	websockets.	Additionally,	Sails	uses	Socket.io	for	its	websocket
transport.	Feathers	also	supports	Socket.io	but	also	many	other	socket	implementations	via	Primus.

Even	though	the	features	are	very	similar,	Feathers	achieves	this	with	much	less	code.	Feathers	also	doesn't	assume
how	you	want	to	manage	your	assets	or	that	you	even	have	any	(because	you	might	be	making	a	JSON	API).	Instead
of	coming	bundled	with	Grunt,	Feathers	lets	you	use	your	build	tool	of	choice.

Sails	doesn't	come	with	any	built-in	authentication	support.	Instead,	it	offers	guides	on	how	to	configure	Passport.	By
contrast,	Feathers	supports	an	official	authentication	plugin	that	is	a	drop-in,	minimal	configuration,	module	that
provides	email/password,	token,	and	OAuth	authentication	much	more	like	Meteor.	Using	this	you	can	authenticate
using	those	providers	over	REST	and/or	sockets	interchangeably.

Scaling	a	Sails	app	is	as	simple	as	deploying	your	large	app	multiple	times	behind	a	load	balancer	with	some	pub-sub
mechanism	like	Redis.	With	Feathers	you	can	do	the	same	but	you	also	have	the	option	to	mount	sub-apps	more	like
Express,	spin	up	additional	services	in	the	same	app,	or	split	your	services	into	small	standalone	microservice
applications.

Feathers	vs.	X

15

http://npmjs.org
https://jwt.io/
https://github.com/feathersjs/feathers-authentication


Step	by	Step	Intro	to	Basic	Feathers
Feathers	is	a	REST	and	realtime	API	layer	for	modern	applications.

[FeathersJS']	signature	feature	[is]	that	it’s	super	lightweight.	It	contains	a	simple	and	logical	workflow	that	streamlines
building	apis	and	can	make	an	api	that	would	have	taken	hours	and	builds	it	in	minutes.	It	hits	the	perfect	balance	of
magic	and	control	where	you	still	have	full	control	over	how	your	api	behaves	but	the	tools	provided	make	your	life	so
much	easier.	--	Medium	-	"FeathersJS — A	framework	that	will	spoil	you"

Warning:	Feathers	is	addictive.

Services
Services	are	the	heart	of	Feathers,	as	this	is	what	all	clients	will	interact	with.	They	are	middlemen	and	can	be	used	to
perform	operations	of	any	kind.

interact	with	a	database
interact	with	a	microservice/API
interact	with	the	filesystem
interact	with	other	resources

send	an	email,
process	a	payment,
return	the	current	weather	for	a	location,	etc.

Hooks
Hooks	are	functions	that	run	automatically	before	or	after	a	service	is	called	upon.	They	can	be	service	gatekeepers
and	make	sure	that	all	operations	are	allowed	and	have	the	required	information.	They	can	also	make	sure	that	only
data	that	should	be	returned	to	a	client	is	returned.

before	hooks:	validate/cleanse/check	permissions.
after	hooks:	add	additional	data	or	remove	unneeded	data	before	it's	sent	to	the	client.

Events
Events	are	sent	to	clients	(or	other	servers	if	the	feathers-sync	package	is	used)	when	a	service	method	completes.
The		created	,		updated	,		patched	,	and		removed		events	provide	real-time	functionality

Event	Filtering	determines	which	users	should	receive	an	event.	This	is	the	Feathers	alternative	to	Socket.io's	rooms
and	it's	an	extremely	intelligent	approach	that	enables	reactive	applications	to	scale	well.

Authentication
Feathers	provides	local,	JSON	Web	Token,	OAuth1	and	OAuth2	authentication	(using	PassportJS)	over	REST	and
WebSockets.

Providers

The	Basics

16

https://medium.com/@codingfriend/feathersjs-a-framework-that-will-spoil-you-109525dfd35e#.8kf707x3k
https://github.com/jaredhanson/passport
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/websocket


Choose	which	providers	to	use	in	your	application.

REST
Socket.io
Primus	(supporting	engine.io,	uWebSockets	a.k.a.	uws,	SockJS,	Faye)

Middleware
Express	middleware	handles	the	extra	fluff	that	isn't	exactly	necessary,	but	can	be	nice	for	optimization/logging.

before	service	methods:	compression,	CORS,	etc.
after	service	methods:	logs,	error	handlers,	etc.

This	guide's	purpose
This	guide	covers

Services	used	with	a	database.
Hooks.
Events.
Providers.

It	does	not	assume	any	prior	knowledge	of	Feathers.

By	the	time	you	finish	this	guide,	you	will

have	a	solid	understanding	of	Feathers	basics.
understand	how	Feathers	permits	your	code	to	be	database	agnostic.
understand	how	a	Feathers	server	simultaneously	and	transparently	supports	a	HTTP	REST	API,	Feathers	REST
clients,	and	Feathers	WebSocket	clients.
understand	that	you	can	access	your	database	from	the	client	as	if	that	client	code	was	running	on	the	server.
understand	that	the	Feathers	generators	will	structure	your	application	for	you,	and	you	will	understand	the
boilerplate	they	produce.

By	the	time	you	finish	this	guide,	you	will	be	ready	to	write	your	first	app.

The	Basics

17

https://en.wikipedia.org/wiki/Representational_state_transfer
https://socket.io/
https://github.com/primus/primus
https://github.com/socketio/engine.io
https://github.com/uWebSockets/uWebSockets
https://github.com/sockjs/sockjs-node
https://faye.jcoglan.com/
https://expressjs.com/en/guide/using-middleware.html


Introduction
We	will	start	with	writing	snippets	of	Feathers	code	by	hand.	We'll	take	a	step	by	step	approach,	introducing	a	few	new
concepts	each	time.

Each	step	is	backed	by	a	working	example	in	the		examples/step/		folder	of	the	docs.	The	code	samples	in	this	guide
are	extracts	from	those	examples.	Code	snippets	may	be	ambiguous,	misleading	or	confusing.	Working	examples
reduce	these	problems,	and	let	you	learn	more	by	modifying	them	yourself.

One	example	may	continue	with	changes	from	a	previous	example.	In	such	cases,	a	summary	of	the	differences
between	the	two	examples	may	be	shown	to	help	you	understand	the	changes.

Warning.	The	clients	in	the	examples	log	results	to	the	browser	console.	So	open	the	console	log	before
pointing	the	browser	at	an	example	URL.

Feathers	has	a	definite	a-ha!	moment,	that	moment	when	you	realize	how	much	it	accomplishes	and	how	simply.	We
want	to	get	to	that	moment	quickly,	while	fully	understanding	what	is	happening.

We'll	develop	a	solid	enough	understanding	of	Feathers	basics	that,	by	the	time	we	get	to	Feathers'	generators,	we'll
be	mostly	interested	in	how	they	structure	projects	rather	than	in	the	code	they	produce.

Our	intended	audience
Readers	should	have	reasonable	JavaScript	experience,	some	experience	with	Node,	the	concept	of	HTTP	REST,
and	an	idea	of	what	WebSockets	are.	Having	some	experience	with	ExpressJS	is	an	asset.	We	assume	everyone	has
worked	with	database	tables.

This	guide	should	be	a	comfortable	introduction	to	Feathers	for	people	learning	new	technologies,	such	as	those
coming	from	PHP,	Ruby,	or	Meteor.

It	may	be	productive	for	seasoned	developers,	experienced	in	Node,	REST	and	WebSockets,	to	skim	the	text,	paying
more	attention	to	the	code	extracts.

They	should	however	make	sure	to	absorb	fully	the	Generators	section.	That	should	save	them	some	time	compared
to	putting	together	their	own	understanding	of	how	projects	are	structured.

Introduction

18

https://nodejs.org/en/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.html5rocks.com/en/tutorials/websockets/basics/
http://expressjs.com/


What	not	to	worry	about	at	this	time

How	do	I	structure	my	app?
The	generators	will	do	it	for	you.

How	do	I	use	my	preferred	database?
Feathers	supports	over	20	different	databases.	Feathers	apps	are	database	agnostic	for	the	most	part.	At	worst,	it
shouldn't	take	more	than	30	minutes	to	switch	your	app	from	one	database	to	another.

Authentication.
Feathers	authentication	wraps	PassportJS	so	Feathers	can	do	anything	Passport	does.

How	do	I	use	Feathers	with	React,	Angular,	Vue?
These	are	covered	in	the	companion	guides.

Is	Feathers	production	ready?	Is	it	scalable?
Yes,	and	yes.	There's	detailed	information	in	this	post.

Javascript	Promises.
Feathers	works	with	both	callbacks	or	Promises.	This	guide	uses	Promises	as	they	are	prioritized	by	the	Feathers
team.	We'll	be	explaining	what	you	need	to	know	about	Promises,	when	you	need	to	know	it.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

What	not	to	worry	about

19

http://passportjs.org/
https://www.quora.com/Is-FeathersJS-production-ready
http://dreamerslab.com/blog/en/javascript-callbacks/
https://davidwalsh.name/promises
https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Intro-Not-worry&body=Comment:Step-Intro-Not-worry


Installing	the	examples
You	can	install	the	code	for	the	examples	used	in	this	guide,	which	would	allow	you	to	run	those	examples.

This	however	is	not	a	requirement	and	we	suggest	you	first	just	read	through	the	guide.	You	can	always	install	the
examples	later	if	you	want	to	work	with	them.

Install	Node
Node	is	a	server	platform	which	runs	JavaScript.	It's	lightweight	and	efficient.	It	has	the	largest	ecosystem	of	open
source	libraries	in	the	world.

Default	install.
Specific	versions.

Install	git
git	is	the	version	control	system	most	frequently	used	in	open	source.	There	are	many	resources	available	for
installing	it.

Linux.
macOS.
Windows.

Install	the	examples
From	your	terminal:

cd	the/folder/above/which/you/want/the/guide/to/reside
git	clone	https://github.com/feathersjs/feathers-docs

Alternative	install.	If	you	don't	already	have	git	installed	on	your	machine,	you	may	prefer	to	download	the
repository	as	a	zip	file.	Point	your	browser	at		https://github.com/feathersjs/feathers-docs/archive/master.zip	
to	start	the	download.

Install	dependencies	used	by	the	examples

cd	path/to/feathers-docs/examples/step/01
npm	install

This	will	install	the	dependencies	needed	by	the	Basics	examples	into		/examples/step/01/node_modules	.

Recreating	the	examples	used	in	the	guides
Each	guide	is	divided	into	sections,	each	section	backed	by	working	examples	in		examples/	.	The	code	samples	in
the	guides	are	extracts	from	those	examples.	Code	snippets	may	be	ambiguous,	misleading,	or	confusing.	Working
examples	reduce	these	problems,	as	well	as	let	you	learn	more	by	modifying	them	yourself.

Installing	the	Examples

20

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/download/
https://git-scm.com/
https://www.atlassian.com/git/tutorials/install-git#linux
https://www.atlassian.com/git/tutorials/install-git#mac-os-x
https://www.atlassian.com/git/tutorials/install-git#windows


One	example	may	continue	with	changes	from	a	previous	example.	In	such	cases,	a	recap	of	the	differences	between
the	two	examples	may	be	shown	to	help	in	understanding	the	changes.

The	guides	go	into	details	about	how	each	example	was	created.	You	can	recreate	the	process	yourself	if	that	helps
your	learning	process.	Create	a	folder	called,	say,		copy-an-introduction		with	a	subfolder		examples/	.	You	can	run
the	same	commands	as	mentioned	in	the	guide	and	(hopefully!)	get	the	same	results.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Installing	the	Examples

21

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Readme&body=Comment:Readme


Basic	Feathers
|	Getting	you	to	Feathers'	a-ha!	moment	as	quickly	as	possible.

Let's	write	some	Feathers	code	because,	once	we	understand	that,	Feathers	generators	will	be	straight	forward.	We'll
start	by	using	a	database	connector	in	the	next	section.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Basic	Feathers

22

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Readme&body=Comment:Step-Basic-Readme


A	Database	Connector
Our	first	Feathers	example	resides	on	the	server	only.	We'll	see	how	easy	it	is	to	use	a	database	table.

This	example	adds	some	user	items	to	a	NeDB	database	table,	reads	them	back	and	displays	them.

Databases.	We're	using	the	NeDB	database	because	it	won't	distract	us	from	concentrating	on	Feathers.
NeDB	resembles	the	popular	MongoDB	database	but	requires	neither	installation	nor	configuration.

Feathers	supports	over	20	different	databases.	Everything	we	mention	in	this	guide	is	applicable	to	all	of	them.

Working	example
Source	code:	examples/step/01/db-connector/1.js
Run	it:		node	./examples/step/01/db-connector/1.js	

The	source	code	contains	lines	like		///	[dependencies]		and		//!	[dependencies]	.	Ignore	them.	They	are	for
automatic	display	of	code	snippets	in	this	guide.

Feathers	is	modular
Feathers	embodies	the	same	spirit	as	the	popular	HTTP	server	framework	Express.	Feathers	is	comprised	of	small
modules	that	are	all	completely	optional,	and	the	core	weighs	in	at	just	a	few	hundred	lines	of	code.	How's	that	for
light	weight!	Now	you	can	see	where	Feathers	got	its	name.

We	require	our	dependencies.

const	feathers	=	require('feathers');
const	NeDB	=	require('nedb');
const	path	=	require('path');
const	service	=	require('feathers-nedb');

We	start	an	instance	of	Feathers	and	define	its	services.

const	app	=	feathers()
		.configure(services);

users	is	the	only	service	we	need	and	it's	a	database	table	located	at	examples/step/data/users.db.

function	services()	{
		this.use('/users',	service({	Model:	userModel()	}));
}

function	userModel()	{
		return	new	NeDB({
				filename:	path.join('examples',	'step',	'data',	'users.db'),
				autoload:	true
		});

A	database	connector

23

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/db-connector/1.js
http://expressjs.com/


}

Create	3	users	using	Promises.

const	users	=	app.service('/users');

Promise.all([
		users.create({	email:	'jane.doe@gmail.com',	password:	'11111',	role:	'admin'	}),
		users.create({	email:	'john.doe@gmail.com',	password:	'22222',	role:	'user'	}),
		users.create({	email:	'judy.doe@gmail.com',	password:	'33333',	role:	'user'	})
])

Each	create	returns	a	promise	which	resolves	into	the	item	added	into	the	database.	NeDB	will	always	add	a	unique
	_id		property	to	the	user	item	and	the	returned	item	will	contain	it.

Callbacks	and	Promises.		users.create({	...	},	{},	(err,	data)	=>	{	...	})		would	create	a	user	item	using
a	callback	signature.	We	however	will	use	Promises	in	this	guide	because	the	Feathers	team	prioritizes	them.

Promise	Refresher.		Promise.all([	...	]).then(results	=>	{	...	});		Promise.all	takes	an	array	whose
elements	are	JavaScript	values	or	Promises.	It	returns	a	single	Promise	that	will	resolve	if	every	promise	in	the
array	is	resolved	or	reject	if	any	promise	in	the	array	is	rejected.	The	elements	are	resolved	in	parallel,	not
sequentially,	so	Promise.all	is	a	great	pattern	with	which	to	start	independent	actions.	The		then		portion	is
called	once	all	elements	are	resolved.	It	receives	an	array	as	a	parameter.	The	n-th	element	of	the	array	is	the
resolved	value	of	the	n-th	element	in	Promise.all.

The	3	user	items	are	now	in	the	database,	their	values	are	returned	in		results	.	We	issue	a	find	for	the	entire	table
and	print	the	results.

		.then(results	=>	{
				console.log('created	Jane	Doe	item\n',	results[0]);
				console.log('created	John	Doe	item\n',	results[1]);
				console.log('created	Judy	Doe	item\n',	results[2]);

				return	users.find()
						.then(results	=>	console.log('find	all	items\n',	results));
		})
		.catch(err	=>	console.log('Error	occurred:',	err));

Promise	Refresher.		user.find().then(results	=>	...);			user.find()		returns	a	Promise.		.then(results	=>
...)		waits	for	the	Promise	to	resolve,	i.e.	for	the	find	to	finish.	The	zero,	one	or	more	items	found	in	the	table
are	returned	in	the		results		param.

|	View	the	completed	file	db-connector/1.js.

Service	methods
Feathers	provides	the	following	service	methods:

find(params)
get(id,	params)
create(data,	params)
update(id,	data,	params)
patch(id,	data,	params)
remove(id,	params)

A	database	connector

24

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/db-connector/1.js


Feathers	supports	a	common	way	for	querying,	sorting,	limiting	and	selecting	find	method	calls	as	part	of		params	,
e.g.		{	query:	{	...	},	...	}	.	Querying	also	applies	to	update,	patch	and	remove	method	calls	if	the		id		is	set	to
	null	.

ProTip:	The	find	method	does	not	guarantee	an	order	for	the	returned	items.

Results
Run	the	program	with		node	./examples/step/01/db-connector/1.js	.	The	console	displays:

feathers-guide$	node	./examples/step/01/db-connector/1.js
created	Jane	Doe	item
	{	email:	'jane.doe@gmail.com',
		password:	'X2y6',
		role:	'admin',
		_id:	'6Rq7O4RPYEO2TdAn'	}
created	John	Doe	item
	{	email:	'john.doe@gmail.com',
		password:	'i6He',
		role:	'user',
		_id:	'Q2bnsBRfO1ScqoqY'	}
created	Judy	Doe	item
	{	email:	'judy.doe@gmail.com',
		password:	'7jHw',
		role:	'user',
		_id:	'Tymf6Nailusd5MZD'	}
find	all	items
	[	{	email:	'jane.doe@gmail.com',
				password:	'X2y6',
				role:	'admin',
				_id:	'6Rq7O4RPYEO2TdAn'	},
		{	email:	'john.doe@gmail.com',
				password:	'i6He',
				role:	'user',
				_id:	'Q2bnsBRfO1ScqoqY'	},
		{	email:	'judy.doe@gmail.com',
				password:	'7jHw',
				role:	'user',
				_id:	'Tymf6Nailusd5MZD'	}	]

Boilerplate.	Feathers	requires	little	boilerplate.	It	took	only	15	lines	of	code	to	connect	to	a	database.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

A	database	connector

25

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Db-connector&body=Comment:Step-Basic-Db-connector


A	REST	API	server
Our	database	connector	will	now	function	as	a	full	fledged	REST	API	server.	We	need	only	add	a	HTTP	server	to	it.

HTTP	servers.	Feathers	is	currently	tied	into	the	popular	HTTP	server	framework	Express.	Future	versions	will
support	multiple	frameworks,	starting	with	koa.

Working	example
Source	code:	examples/step/01/rest/1.js.	and	common/
Run	it:		node	./examples/step/01/rest/1.js	
Compare	with	last	page's	examples/step/01/db-connector/1.js:	Unified	|	Split

Implementing	a	REST	API	server
This	is	our	previous	example	with	the	database	method	calls	removed,	and	with	an	Express	server	added.

//	Example	-	Create	REST	API

const	expressServerConfig	=	require('../common/expressServerConfig');
const	expressMiddleware	=	require('../common/expressMiddleware');
const	rest	=	require('feathers-rest');
const	NeDB	=	require('nedb');
const	path	=	require('path');
const	service	=	require('feathers-nedb');

const	app	=	expressServerConfig()
		.configure(rest())
		.configure(services)
		.configure(expressMiddleware);

const	server	=	app.listen(3030);
server.on('listening',	()	=>	console.log(`Feathers	application	started	on	port	3030`));

function	services()	{
		this.use('/users',	service({	Model:	userModel()	}));
}

function	userModel()	{
		return	new	NeDB({
				filename:	path.join('examples',	'step',	'data',	'users.db'),
				autoload:	true
		});
}

See	what	changed:	Unified	|	Split

The	Express	server	common/expressServerConfig.js	is	configured	as	follows.

const	bodyParser	=	require('body-parser');
const	compress	=	require('compression');
const	cors	=	require('cors');
const	path	=	require('path');
const	feathers	=	require('feathers');

A	REST	API	server

26

http://expressjs.com/
http://koajs.com/
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/rest/1.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/db-connector/1.js
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-rest-1-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-rest-1-side.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-rest-1-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-rest-1-side.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/expressServerConfig.js


module.exports	=	()	=>	{
		const	app	=	feathers()
				.use(compress())
				.options('*',	cors())
				.use(cors())
				.use('/',	feathers.static(path.join(__dirname,	'public')))
				.use(bodyParser.json())
				.use(bodyParser.urlencoded({	extended:	true	}));

		return	app;
};

The	Express	middleware	common/expressMiddleware/index.js	handles	logging,	pages	not	found,	and	general	errors.

'use	strict';

const	handler	=	require('feathers-errors/handler');
const	notFound	=	require('./not-found-handler');
const	logger	=	require('./logger');

module.exports	=	function()	{
		const	app	=	this;

		app.use(notFound());
		app.use(logger(app));
		app.use(handler());
};

Boilerplate.	The	server	configuration	and	middleware	are	standard	Express.	They	have	little	to	do	with
Feathers	other	than	to	feed	REST	requests	to	it.

Running	the	server
We	can	now	make	REST	API	calls	to	the	server.

In	the	previous	example	we	created	3	user	items	and	then	printed	the	user	file.	We	can	now	do	the	same	thing,	but
using	REST,	with	curl	commands:

printf	"\nPOST	Jane	Doe\n"
curl	-H	"Content-Type:	application/json"	-X	POST	-d	'{"email":"jane.doe@gmail.com","password":"X2y6","role":"ad
min"}'	http://localhost:3030/users
printf	"\nPOST	John	Doe\n"
curl	-H	"Content-Type:	application/json"	-X	POST	-d	'{"email":"john.doe@gmail.com","password":"i6He","role":"us
er"}'	http://localhost:3030/users
printf	"\nPOST	Judy	Doe\n"
curl	-H	"Content-Type:	application/json"	-X	POST	-d	'{"email":"judy.doe@gmail.com","password":"7jHw","role":"us
er"}'	http://localhost:3030/users
printf	"\nGET	all	users\n"
curl	-X	GET	http://localhost:3030/users

First,	start	the	server	by	running		node	./examples/step/01/rest/1.js		on	one	terminal.

Then	run	the	curl	commands	with		./examples/step/01/rest/curl-requests.sh		on	another	terminal.

Results
That	console	displays:

feathers-guide$	./examples/step/01/rest/curl-requests.sh

A	REST	API	server

27

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/expressMiddleware/index.js
https://en.wikipedia.org/wiki/CURL


POST	Jane	Doe
{"email":"jane.doe@gmail.com","password":"X2y6","role":"admin","_id":"sbkXV7LVkMhx1NyY"}
POST	John	Doe
{"email":"john.doe@gmail.com","password":"i6He","role":"user","_id":"uKhqOp4R4hABw9oO"}
POST	Judy	Doe
{"email":"judy.doe@gmail.com","password":"7jHw","role":"user","_id":"pvcmh9X2i9VZgqWJ"}
GET	all	users
[
	{"email":"judy.doe@gmail.com","password":"7jHw","role":"user","_id":"pvcmh9X2i9VZgqWJ"},
	{"email":"jane.doe@gmail.com","password":"X2y6","role":"admin","_id":"sbkXV7LVkMhx1NyY"},
	{"email":"john.doe@gmail.com","password":"i6He","role":"user","_id":"uKhqOp4R4hABw9oO"}
]

Feathers.	REST	API	calls	are	automatically	converted	into	Feathers	database	method	calls	like	the
	users.create()		and		users.find()		methods	we	used	in	the	previous	example.	How's	that	for	convenience?

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

A	REST	API	server

28

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Rest-api-server&body=Comment:Step-Basic-Rest-api-server


A	Feathers	REST	Client
We	already	have	a	Feathers	REST	API	server	from	the	previous	example.	Let's	write	a	JavaScript	frontend	for	it.

Working	example
Server	code:	examples/step/01/rest/2.js
Client	code:	common/public/rest.html	and	feathers-app.js
Start	the	server:		node	./examples/step/01/rest/2	
Point	the	browser	at:		localhost:3030/rest.html	
Compare	with	last	page's	server	examples/step/01/rest/1.js:	Unified	|	Split

Writing	a	server	for	Feathers	client	REST	calls
rest/2.js	,	our	server	for	Feathers	REST	clients,	is	exactly	the	same	as	rest/1.js.	,	our	previous	server	for	HTTP	REST
API	calls.	No	new	server	code	is	required	to	handle	Feathers	REST	clients.

Compare	the	two:	Unified	|	Split.

Writing	the	frontend	HTML
We'll	soon	see	most	of	the	frontend	doesn't	care	if	we're	communicating	with	the	server	using	REST	or	WebSockets.
To	keep	things	DRY,	we	are	isolating	code	unique	to	REST	in	common/public/rest.html.

<html>
<head>
		<title>Feathers	REST	client</title>
		<style>
				body	{
						font-family:	'Helvetica	Neue',	'Helvetica',	'Arial',	'sans-serif';
						font-weight:	400;
						font-size:	16px;
						color:	#333;
				}
		</style>
</head>
<body>
<h1>Feathers	guide</h1>
<h2>Feathers	REST	client</h2>
<br	/>
Open	console	to	see	results	of	<strong>feathers-rest</strong>	calls.
<script	type="text/javascript"	src="http://cdnjs.cloudflare.com/ajax/libs/core-js/2.1.4/core.min.js"></script>
<script	src="https://unpkg.com/feathers-client@^2.0.0/dist/feathers.js"></script>
<script	src="/serverUrl.js"></script>
<script>
		const	feathersClient	=	feathers()
						.configure(feathers.rest(serverUrl).fetch(fetch))
</script>
<script	src="/feathers-app.js"></script>
</body>
</html>

	https://cdnjs.cloudflare.com/ajax/libs/core-js/2.1.4/core.min.js		loads	a	polyfill	for	fetch	if	required.
	src="https://unpkg.com/feathers-client@^2.0.0/dist/feathers.js"		loads	the	Feathers	client	code.

A	Feathers	REST	client

29

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/rest/2.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/rest.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/feathers-app.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/rest/1.js
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-rest-2-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-rest-2-side.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/rest/2.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/rest/1.js
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-rest-2-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-rest-2-side.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/rest.html
https://davidwalsh.name/fetch


	src="/serverUrl.js"		loads	the	URL	of	the	server.	The	default	is		var	serverUrl	=	'http://localhost:3030';	.
Change	the	value	if	you	need	to.
	const	feathersClient	=	feathers()		instantiates	a	Feathers	client.
	.configure(feathers.rest(serverUrl).fetch(fetch))		configures	the	client	to	use	REST	when	communicating	with
the	server.	It	points	to	the	server,	and	passes	the		fetch		instruction	as	the	interface	for	fetching	resources.
	src="/feathers-app.js"		loads	the	main	application.

Writing	the	Feathers	frontend
Writing	the	HTML	was	actually	the	hard	part.	The	frontend	common/public/feathers-app.js	is	essentially	the	same	as
the	server	code	we	used	in	Writing	a	Database	Connector!

const	users	=	feathersClient.service('/users');

Promise.all([
		users.create({	email:	'jane.doe@gmail.com',	password:	'111111111',	role:	'admin'	}),
		users.create({	email:	'john.doe@gmail.com',	password:	'222222222',	role:	'user'	}),
		users.create({	email:	'judy.doe@gmail.com',	password:	'333333333',	role:	'user'	})
])
		.then(results	=>	{
				console.log('created	Jane	Doe	item\n',	results[0]);
				console.log('created	John	Doe	item\n',	results[1]);
				console.log('created	Judy	Doe	item\n',	results[2]);

				return	users.find()
						.then(results	=>	console.log('find	all	items\n',	results));
		})
		.catch(err	=>	console.log('Error	occurred:',	err));

See	what	changed:	Unified	|	Split.

Feathers	"a-ha!"	moment.	We	can	run	exactly	the	same	code	on	the	frontend	as	on	the	server.	We	can	code
the	frontend	as	if	the	database	was	sitting	on	it.	That's	part	of	the	magic	of	Feathers,	and	it	makes	frontend
development	significantly	simpler.

Results
The	results	in	the	console	window	of	the	browser	are	the	same	as	they	were	running	Writing	a	Database	Connector.

created	Jane	Doe	item
	Object	{email:	"jane.doe@gmail.com",	password:	"11111",	role:	"admin",	_id:	"8zQ7mXay3XqiqP35"}
created	John	Doe	item
	Object	{email:	"john.doe@gmail.com",	password:	"22222",	role:	"user",	_id:	"l9dOTxh0xk1h94gh"}
created	Judy	Doe	item
	Object	{email:	"judy.doe@gmail.com",	password:	"33333",	role:	"user",	_id:	"3BeFPGkduhM6mlwM"}
find	all	items
	[Object,	Object,	Object]
			0:	Object
					_id:	"3BeFPGkduhM6mlwM"
					email:	"judy.doe@gmail.com"
					password:	"33333"
					role:	"user"
			1:	Object
					_id:	"8zQ7mXay3XqiqP35"
					email:	"jane.doe@gmail.com"
					password:	"11111"
					role:	"admin"
			2:	Object

A	Feathers	REST	client

30

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/feathers-app.js
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-rest-2-client-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-rest-2-client-side.html


					_id:	"l9dOTxh0xk1h94gh"
					email:	"john.doe@gmail.com"
					password:	"22222"
					role:	"user"
		length:	3

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

A	Feathers	REST	client

31

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Rest-client&body=Comment:Step-Basic-Rest-client


A	Feathers	WebSocket	Client
We	already	have	a	Feathers	REST	frontend.	Its	simple	to	convert	that	to	one	using	WebSockets.

WebSockets.	Feathers	can	use	eight	of	the	most	popular	WebSocket	libraries.	We	will	use	the	popular
Socket.io	in	this	guide.

Working	example
Server	code:	examples/step/01/websocket/1.js
Client	code:	common/public/socketio.html	and	feathers-app.js
Start	the	server:		node	./examples/step/01/websocket/1	
Point	the	browser	at:		localhost:3030/socketio.html	
Compare	with	last	page's	server	examples/step/01/rest/2.js:	Unified	|	Split
Compare	with	last	page's	HTML	common/public/socketio.html	Unified	|	Split

Change	the	server	to	support	clients	using	either	Feathers
REST	or	WebSocket	calls
Add	2	lines	to	the	server	code	so	it	supports	either	REST	or	WebSocket	calls	from	the	Feathers	client.

const	rest	=	require('feathers-rest');
const	socketio	=	require('feathers-socketio');	//	new

const	app	=	expressServerConfig()
		.configure(rest())
		.configure(socketio())	//	new
		.configure(services)
		.configure(middleware);

See	what	changed:	Unified	|	Split

Changing	the	HTML	for	Feathers	client	WebSocket	calls
We	replace	the	REST	code	we	had	in	the	HTML	with	the	equivalent	WebSocket	code.

<script	type="text/javascript"	src="http://cdnjs.cloudflare.com/ajax/libs/core-js/2.1.4/core.min.js"></script>
<script	src="https://unpkg.com/feathers-client@^2.0.0/dist/feathers.js"></script>
<script	src="/socket.io.min.js"></script>
<script	src="/serverUrl.js"></script>
<script>
		const	socket	=	io(serverUrl);
		const	feathersClient	=	feathers()
						.configure(feathers.socketio(socket))
</script>
<script	src="/feathers-app.js"></script>

See	what	changed:	Unified	|	Split
	src="/socket.io.min.js"		load	the	Socket.io	client	code.
	const	socket	=	io(serverUrl);		create	a	WebSocket.
	.configure(feathers.socketio(socket))		configure	Feathers	client	to	use	the	WebSocket.

A	Feathers	WebSocket	client

32

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/websocket/1.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/socketio.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/feathers-app.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/rest/2.js
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-websocket-1-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-websocket-1-side.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/socketio.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-websocket-socketio-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-websocket-socketio-side.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-websocket-1-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-websocket-1-side.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-websocket-socketio-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-websocket-socketio-side.html


Changing	the	frontend	code
We've	already	said	that	most	of	the	Feathers	frontend	doesn't	care	if	it's	communicating	with	the	server	using	REST	or
WebSockets.	No	more	changes	are	necessary.

REST	vs	WebSockets.	There	is	a	huge	technical	difference	involved	in	communicating	via	REST	or
WebSockets.	Feathers	hides	this	so	you	can	get	on	with	what's	important	rather	than	handling	such	details.

Results
And	that's	all	there	is	to	it.	The	results	are	identical	to	that	for	A	Feathers	REST	Client

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

A	Feathers	WebSocket	client

33

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Socket-client&body=Comment:Step-Basic-Socket-client


The	Feathers	"a-ha!"	moment

Feathers	is	transport	agnostic
A	Feathers	server	automatically	handles	requests	from

HTTP	REST	clients,
Feathers	REST	clients,	or
Feathers	WebSocket	clients.

Feathers	resource	management	is	platform	agnostic
Identical	database	calls	may	be	made	on	the	server	and	on	the	frontend	without	you	needing	to	do	anything.

This	makes	frontend	development	significantly	easier.
It	allows	you	to	share	code	between	the	server	and	the	frontend.

The	"a-ha!"	moment
The	"a-ha!"	moment	comes	when	you	start	to	realize	the	significance	of	these	features.	Enormous	amounts	of
boilerplate	simply	disappear.

You	might	now	start	to	appreciate	why	people	are	enthusiastic	about	Feathers.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

The	"a-ha!"	moment

34

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Ahha&body=Comment:Step-Basic-Ahha


Hooks	middleware

Linux	pipes
One	of	the	more	powerful	features	of	Linux	is	pipes,	which	has	shaped	its	toolbox	philosophy.	A	pipeline	is	a
sequence	of	processes	chained	together,	so	that	the	output	of	each	process	feeds	directly	as	input	to	the	next	one.

For	example,	to	list	files	in	the	current	directory	(ls),	retain	only	the	lines	of	ls	output	containing	the	string	"key"	(grep),
and	view	the	result	in	a	scrolling	page	(less),	a	user	types	the	following	into	the	command	line	of	a	terminal:

ls	-l	|	grep	key	|	less

Express	middleware
At	the	heart	of	pipes	lies	a	design	pattern:	Chain	of	Responsibility	(CoR).	The	CoR	pattern	uses	a	chain	of	objects	to
handle	a	request.	Objects	in	the	chain	forward	the	request	along	the	chain.	Processing	stops	after	an	event	is
handled.

Express	middleware	uses	the	CoR	pattern.	You	should	be	familiar	with	the	following	code	if	you've	ever	used	Express.
A	HTTP	request	is	handled	by	each	of	these	Express	functions	in	sequence.

app.use(cors());
app.use(helmet());
app.use(compress());
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({	extended:	true	}));
app.use(favicon(path.join(app.get('public'),	'favicon.ico')));
app.use('/',	feathers.static(app.get('public')));

The	CoR	pattern	promotes	the	idea	of	loose	coupling	and	it	lets	us	combine	simple	functions	to	build	solutions	for
specific	needs.

Feathers	hooks
Applications	are	about	more	than	the	reading	and	writing	of	raw	database	items.	Application-specific	logic	often	needs
to	run	before	and	after	service	calls.

You	will	implement	most	of	your	business	requirements	with	service	hooks,	which	are	middleware	functions	that	run
for	each	service	method.	Feathers	calls	the	data	passed	between	these	hooks	the		context		object	(in	order	not	to
confused	them	with	the	HTTP		request		object).

Hook	middleware	is	organized	like	this:

Hooks	middleware

35

https://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
https://expressjs.com/
https://expressjs.com/en/guide/using-middleware.html
https://en.wikipedia.org/wiki/Loose_coupling


and	the	corresponding	Feathers	code	would	be:

const	messagesHooks	=	{
		before:	{
				create:	[	hook31(),	hook32()	]
		},
		after:	{
				create:	hook35()
		}
};
const	messages	=	app.service('messages');
messages.hooks(messagesHooks);

You	can	see	that	a	series	of	hooks	are	run	between	the	service	call	and	the	actual	call	to	the	database.	These	hooks
may,	for	example:

Ensure	the	user	is	authenticated,
Ensure	the	user	is	allowed	to	perform	this	operation,
Validate	the	data	for	the	service	call.	i.e.	the	data	in	the		context		object,
Update	the	record's		updatedAt		value,	thus	modifying	the		context		object,
Perhaps	not	allow	the	service	call	to	proceed,	or	return	a	specified	response	for	it.

ProTip	Hooks	may	be	synchronous	or	async	(using	promises	or	async/await).	The	next	hook	will	run	only	when
the	current	one	finishes	(sync)	or	resolves	(async),	so	hooks	are	always	run	sequentially.

A	series	of	hooks	is	also	run	after	the	actual	call	to	the	database,	if	that	call	was	successful.	These	hooks	may:

Populate	the	response	with	related	information,	e.g.	information	about	the	user	who	created	the	returned	record,
Remove	information	for	security	reasons,	e.g.	the	user	password.

You	can	implement	all	your	business	logic	related	to	service	calls	with	hooks.

ProTip	The	DB	call	is	middleware	too!	It	uses	the	information	in	the		context		object	to	call	the	database,	and
then	updates		context		with	the	result.

ProTip	Services	are	usually	database	adapters,	but	they	need	not	be.	You	can	create	a	service	which	writes	to
the	server	log	for	example.	A	client	could	post	logs	using	this	service.	Hooks	may	be	defined	for	all	services,
regardless	of	their	type.

ProTip	Some	people	may	call	the		context		object	the		hook		object.	The	two	terms	are	interchangeable.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Hooks	middleware

36

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Middleware&body=Comment:Step-Basic-Middleware


All	About	Hooks

Method	hooks
Each	service	method	may	have	its	own	hooks.	After	all,	you'll	likely	need	to	do	something	different	for		create		than
for	a		find	.

The	Feathers	code	would	be:

const	messagesHooks	=	{
		before:	{
				find:	hook11(),
				get:	hook21(),
				create:	[	hook31(),	hook32()	],
				update:	hook41(),
				patch:	hook51(),
				remove:	hook61(),
		},
		after:	{
				find:	[	hook15(),	hook16()	],
				create:	hook35(),
				update:	hook45(),
				patch:	hook55(),
				remove:	hook65(),
		}
};
const	messages	=	app.service('messages');
messages.hooks(messagesHooks);

ProTip:	The	Feathers	service	call	handler	expects	the	functions	it	calls	to	have	the	signature		context	=>	{}	.
So	if	you	have	such	a	hook	you	would	code		{	before:	{	all:	myHook	}	}	.	You	however	commonly	want	to
pass	params	to	the	hook,	such	as	which	field	in	the	record	to	delete.	So	you	need	to	use	a	signature	like		params
=>	context	=>	{	/*	use	params	*/	}		and	code		all:	myHook(params)	.	The	common	hooks	and	the	Feathers
community	tend	to	use	the	latter	signature	for	consistency.	So	it	would	be	best	to	set	up	your	hooks	to	use
	myHook()	.

Service	hooks
Some	hooks,	such	as	authentication,	may	need	to	be	run	for	every	method.	You	can	specify	them	once	rather	than
repeating	them	for	every	method.

All	about	hooks

37



Your	Feathers	code	would	additionally	include:

const	messagesHooks	=	{
		before:	{
				all:	hook01(),
		},
		after:	{
				all:	hook05(),
		}
};

App	hooks
You	may	want	to	run	some	hooks	for	every	service.	The	Feathers	profiler,	for	example,	adds	before	and	after	hooks	to
time	each	service	call.

The	Feathers	code	for	these	application	level	hooks	would	be:

app.hooks({
		before:	{
				create:	hook30a()

All	about	hooks

38

https://github.com/feathersjs/feathers-profiler


		},
		after:	{
				create:	hook39a()
		},
});

Errors	and	error	hooks
Errors	may	be	thrown	inside	hooks	-	by	JavaScript,	by	the	Feathers	database	adapter,	or	by	your	own	code.

Your	hook	can,	for	example,	return	a	formatted	message	as	follows:

//	On	server
const	errors	=	require('feathers-errors');
throw	new	errors.BadRequest('Invalid	request',	{errors:	{email:	'Invalid	Email'}	});	//	inside	hook

//	On	client
messages.create(...)
		.then(data	=>	...)
		.catch(err	=>	{
				console.log(err.messages);	//	Invalid	request
				console.log(err.errors.email);	//	Invalid	Email
		});

You	can	optionally	deal	with	thrown	errors	in	the	service:

Your	Feathers	code	would	additionally	include:

All	about	hooks

39



app.hooks({
		error:	{
				all:	hook00e(),
				create:	hook30e()
		}
});

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

All	about	hooks

40

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-About-Hooks-2&body=Comment:Step-Basic-About-Hooks-2


Hooks,	part	1

Common	hooks
Hooks	allows	us	to	combine	simple	functions	to	build	complicated	solutions.	Most	hooks	will	be	general	in	nature	and
they	may	be	used	with	multiple	services.

Feathers	comes	with	a	set	of	commonly	useful	hooks.	Let's	work	with	some	of	them.

Working	example
Server	code:	examples/step/01/hooks/1.js
Client	code:	common/public/rest.html	and	feathers-app.js
Start	the	server:		node	./examples/step/01/hooks/1	
Point	the	browser	at:		localhost:3030/rest.html	
Compare	with	last	page's	server	examples/step/01/hooks/1.js:	Unified	|	Split

Writing	hooks
Let's	add	some	hooks	to	the	server	we've	used	with	the	Feathers	REST	and	WebSocket	clients.

const	authHooks	=	require('feathers-authentication-local').hooks;
const	hooks	=	require('feathers-hooks');
const	commonHooks	=	require('feathers-hooks-common');

const	app	=	httpServerConfig()
		.configure(hooks())

function	services()	{
		this.configure(user);
}

function	user()	{
		const	app	=	this;

		app.use('/users',	service({	Model:	userModel()	}));
		const	userService	=	app.service('users');

		const	{	validateSchema,	setCreatedAt,	setUpdatedAt,	unless,	remove	}	=	commonHooks;

		userService.before({
				create:	[
						validateSchema(userSchema(),	Ajv),	authHooks.hashPassword(),	setCreatedAt(),	setUpdatedAt()
				]});
		userService.after({
				all:	unless(hook	=>	hook.method	===	'find',	remove('password')),
		});
}

function	userSchema()	{
		return	{
				title:	'User	Schema',
				$schema:	'http://json-schema.org/draft-04/schema#',
				type:	'object',
				required:	[	'email',	'password',	'role'	],
				additionalProperties:	false,

Hooks,	part	1

41

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/hooks/1.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/rest.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/feathers-app.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/hooks/1.js
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-hooks-1-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-hooks-1-side.html


				properties:	{
						email:	{	type:	'string',	maxLength:	100,	minLength:	6	},
						password:	{	type:	'string',	maxLength:	30,	minLength:	8	},
						role:	{	type:	'string'	}
				}
		};
}

See	what	changed:	Unified	|	Split

-	.configure(hooks())

We	include	support	for	hooks	in	the	configuration.

-	this.configure(user);

The	user	service	is	now	more	complex,	so	we	configure	it	on	its	own.

-	const	{	validateSchema,	setCreatedAt,	setUpdatedAt,	unless,	remove	}	=
commonHooks;

Feathers	comes	with	a	library	of	useful	hooks.	Here	we	get	some	common	hooks	from		feathers-hooks-common	.	More
specialized	hooks	come	bundled	with	their	specialized	packages.

-	userService.before({	...	});

These	hooks	will	be	run	before	the	operation	on	the	database.

-	create:	[	...	]

These	hooks	will	be	run	before	all		create		operations	on	the	database.		all		(all	service	methods),		get	,		update	',
	patch	,		remove	,		find		may	also	be	included.

-	validateSchema(userSchema(),	Ajv)

Validate	the	data	we	are	to	add	using	ajv.	The	service's	JSON	schema	is	provided	by		function	userSchema	.

There	are	good	tutorials	on	validating	data	with	JSON	schema.

-	authHooks.hashPassword()

The	data	has	a		password		field.	This	specialized	authentication	hook	will	replace	it	with	a	hashed	version	so	the
password	may	be	stored	safely.

bcrypt.	Feathers	hashes	passwords	using	bcrypt.	bcrypt	has	the	best	kind	of	repute	that	can	be	achieved	for	a
cryptographic	algorithm:	it	has	been	around	for	quite	some	time,	used	quite	widely,	"attracted	attention",	and	yet
remains	unbroken	to	date.	(Reference.)

JSON	webtoken.	Feathers	Authentication	uses	JSON	webtoken	(JWT)	for	secure	authentication	between	a
client	and	server	as	opposed	to	cookies	and	sessions.	The	cookies	vs	token	debate	favors	token-based
authentication.	The	avoidance	of	sessions	makes	Feathers	apps	more	easily	scalable.

-	setCreatedAt(),	setUpdatedAt()

These	hooks	add		createdAt		and		updatedAt		properties	to	the	data.

Hooks,	part	1

42

http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-hooks-1-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-hooks-1-side.html
https://github.com/epoberezkin/ajv
https://github.com/json-schema-org/json-schema-spec
https://code.tutsplus.com/tutorials/validating-data-with-json-schema-part-1--cms-25343
https://www.npmjs.com/package/bcryptjs
http://security.stackexchange.com/questions/4781/do-any-security-experts-recommend-bcrypt-for-password-storage
https://auth0.com/blog/cookies-vs-tokens-definitive-guide/


-	userService.after({	...	});

These	hooks	are	run	after	the	operation	on	the	database.	They	act	on	all	the	results	returned	by	the	operation.

-	unless(hook	=>	hook.method	===	'find',	remove('password'))

	hook	=>	hook.method	===	'find'		returns	true	if	the	database	operation	was	a		find	.	All	hooks	are	passed	a	hook
object	which	contains	information	about	the	operation.

	remove('password')		removes	the		password		property	from	the	results.

	unless(predicate,	...hooks)		runs	the	hooks	if	the	predicate	is	false.

Its	not	secure	to	return	the	encoded	password	to	the	client,	so	this	hook	removes	it.	We	have	made	an	exception	for
the	find	operation	because	we	want	you	to	see	something	in	the	results.

Hooks.	We	are	now	doing	some	processing	typical	of	apps.	Before	we	add	a	new	user,	we	verify	the	data,
encode	the	password,	and	add	createdAt	plus	updatedAt	properties.	We	remove	the	password	field	before	we
return	the	results	to	the	client.

Hooks
Many	of	your	common	needs	are	already	handled	by	hooks	in	the	common	hooks	library.	This	may	significantly
reduce	the	code	you	need	to	write.

Hooks	are	just	small	middleware	functions	that	get	applied	before	and	after	a	service	method	executes.

Hooks	are	transport	independent.	It	does	not	matter	if	the	service	request	come	through	HTTP	REST,	Feathers
REST,	Feathers	WebSockets,	or	any	other	transport	Feathers	may	support	in	the	future.

Most	hooks	can	be	used	with	any	service.	This	allows	you	to	easily	decouple	the	actual	service	logic	from	things	like
authorization,	data	pre-processing	(sanitizing	and	validating),	data	post	processing	(serialization),	or	sending
notifications	like	emails	or	text	messages	after	something	happened.

You	can	swap	databases	with	minimal	application	code	changes.	You	can	also	share	validations	for	multiple
databases	in	the	same	app,	across	multiple	apps,	and	with	your	client.

Results
The	browser	console	displays

created	Jane	Doe	item
		Object	{email:	"jane.doe@gmail.com",	role:	"admin",	createdAt:	"2017-05-31T08:33:07.642Z",	updatedAt:	"2017-0
5-31T08:33:07.643Z",	_id:	"VNSm7SxZnMeVxN6Z"}
created	John	Doe	item
		Object	{email:	"john.doe@gmail.com",	role:	"user",	createdAt:	"2017-05-31T08:33:07.643Z",	updatedAt:	"2017-05
-31T08:33:07.643Z",	_id:	"SHyBbGehbEiZGpQS"}
created	Judy	Doe	item
		Object	{email:	"judy.doe@gmail.com",	role:	"user",	createdAt:	"2017-05-31T08:33:07.645Z",	updatedAt:	"2017-05
-31T08:33:07.645Z",	_id:	"2zFj0CoGjczuQP5B"}
find	all	items
		[Object,	Object,	Object]
				0:	Object
						email:	"judy.doe@gmail.com"
						password:	"$2a$10$TnuSw.O9Jfss61BUFB0TteT9dDOdtSX00C.19vX484eICygo7xXMe"
						role:	"user"
						createdAt:	"2017-05-31T08:33:07.645Z"
						updatedAt:	"2017-05-31T08:33:07.645Z"

Hooks,	part	1

43



						_id:	"2zFj0CoGjczuQP5B"
				1:	Object
						email:	"john.doe@gmail.com"
						password:	"$2a$10$jI7lypIIiImLw7Kf9mN.NOfaRkdP0sM0CeR1anH0J/f6p3fI9s2nu"
						role:	"user"
						createdAt:	"2017-05-31T08:33:07.643Z"
						updatedAt:	"2017-05-31T08:33:07.643Z"
						_id:	"SHyBbGehbEiZGpQS"
				2:	Object
						email:	"jane.doe@gmail.com"
						password:	"$2a$10$Dx3e/3vSn4Eq2MRvKAUGYeUMWMUeuTG6PCJpxx9/Uyov5IZRb1B.6"
						role:	"admin"
						createdAt:	"2017-05-31T08:33:07.642Z"
						updatedAt:	"2017-05-31T08:33:07.643Z"
						_id:	"VNSm7SxZnMeVxN6Z"
				length:	3

	createdAt		and		updatedAt		have	been	added	to	the	items.
	password		is	not	included	in	the	data	returned	for	the	create	and	delete	operations.
An	encoded		password		is	included	for	the	find	operation,	because	of	the	special	coding	we	included	in	the
example.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Hooks,	part	1

44

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Hooks-1&body=Comment:Step-Basic-Hooks-1


Hooks,	part	2
If	you	have	an	archive	of	stock	movements,	you	cannot	simply	delete	a	stock	item	you	no	longer	want	to	keep.	You
would	not	be	able	to	properly	present	historical	data	if	you	did	so.

The	solution	is	to	keep	the	data	but	mark	it	as	deleted.	We	can	ignore	the		deleted		flag	when	we	know	we	are
accessing	historical,	and	possibly	deleted,	items.	Otherwise	we	want	the	application	to	act	as	if	the	item	didn't	exist.

It	would	be	fairly	complex	to	implement	soft	delete	support	yourself,	however	its	easy	to	do	using	the		softDelete	
hook.

Working	example
Server	code:	examples/step/01/hooks/2.js
Client	code:	common/public/rest-del.html	and	common/public/feathers-app-del.js
Start	the	server:		node	./examples/step/01/hooks/2	
Point	the	browser	at:		localhost:3030/rest-del.html	
Compare	with	last	page's	server	hooks/1.js.:	Unified	|	Split

Using	softDelete
We	need	to	make	just	one	change	to	our	previous	server	example.	We	use	the	when	hook	to	run	the	softDelete	hook
if	the	service	method	is	not	find.

const	{
		softDelete,	when,	//	new
		setCreatedAt,	setUpdatedAt,	unless,	remove
}	=	commonHooks;
//	...
userService.before({
				all:	when(hook	=>	hook.method	!==	'find',	softDelete()),	//	new
				create:	[	/*	...	*/	]
});

See	what	changed:	Unified	|	Split

The	results
The	browser	console	displays

created	Jane	Doe	item
		Object	{email:	"jane.doe@gmail.com",	role:	"admin",	createdAt:	"2017-05-31T08:41:48.640Z",	updatedAt:	"2017-0
5-31T08:41:48.640Z",	_id:	"CfLheOpJ3rve1IPh"}
created	John	Doe	item
		Object	{email:	"john.doe@gmail.com",	role:	"user",	createdAt:	"2017-05-31T08:41:48.623Z",	updatedAt:	"2017-05
-31T08:41:48.623Z",	_id:	"sQy34FUrDC8gJOUR"}
created	Judy	Doe	item
		Object	{email:	"judy.doe@gmail.com",	role:	"user",	createdAt:	"2017-05-31T08:41:48.641Z",	updatedAt:	"2017-05
-31T08:41:48.641Z",	_id:	"eKNolHDBO6qXH2MU"}
created	Jack	Doe	item
		Object	{email:	"jack.doe@gmail.com",	role:	"user",	createdAt:	"2017-05-31T08:41:48.641Z",	updatedAt:	"2017-05
-31T08:41:48.641Z",	_id:	"5iQCl2oDLbVXMfHo"}
deleted	Jack	Doe	item

Hooks,	part	2

45

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/hooks/2.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/rest.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/feathers-app-del.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/hooks/1.js
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-hooks-2-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-hooks-2-side.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-hooks-2-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/01-hooks-2-side.html


		Object
				email:	"jack.doe@gmail.com",
				role:	"user",
				deleted:	true
				createdAt:	"2017-05-31T08:41:48.641Z",
				updatedAt:	"2017-05-31T08:41:48.641Z",
				_id:	"5iQCl2oDLbVXMfHo"
find	all	items
		[Object,	Object,	Object,	Object]
				0:	Object
						email:	"jack.doe@gmail.com"
						role:	"user"
						password:	"$2a$10$So9MhiVGW.P31CZnUefXXOcuacwKMm7nTgCAPSBZB9rO10how.X.G"
						deleted:	true
						createdAt:	"2017-05-31T08:41:48.641Z"
						updatedAt:	"2017-05-31T08:41:48.641Z"
						_id:	"5iQCl2oDLbVXMfHo"
				1:	Object
						email:	"jane.doe@gmail.com"
						password:	"$2a$10$TAz6SD6WxEostxvCNMOubuEY68pS8Jv9pLvrrgCiWTIOjIs3yIlO."
						role:	"admin"
						createdAt:	"2017-05-31T08:41:48.640Z"
						updatedAt:	"2017-05-31T08:41:48.640Z"
						_id:	"CfLheOpJ3rve1IPh"
				2:	Object
						email:	"judy.doe@gmail.com"
						password:	"$2a$10$GvUEJfPTQLGY8JKTuH8yeeML9auVLo1IGDVyGFOOImZ0Nuxtd7uji"
						role:	"user"
						createdAt:	"2017-05-31T08:41:48.641Z"
						updatedAt:	"2017-05-31T08:41:48.641Z"
						_id:	"eKNolHDBO6qXH2MU"
				3:	Object
						email:	"john.doe@gmail.com"
						password:	"$2a$10$MX0LJerCfLoGx31mGh2x0eR7CyE2t2STeHhpcV9vYbpD3m8i8OZ.S"
						role:	"user"
						createdAt:	"2017-05-31T08:41:48.623Z"
						updatedAt:	"2017-05-31T08:41:48.623Z"
						_id:	"sQy34FUrDC8gJOUR"
				length:	4

The	result	returned	when	the	Jack	Doe	item	was	deleted	contains		deleted:	true	.
The	results	returned	for	find	also	contain		deleted:	true		for	Jack	Doe	because	of	how	we	conditioned	the
softDelete	hook.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Hooks,	part	2

46

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Hooks-2&body=Comment:Step-Basic-Hooks-2


Writing	Your	Own	Hooks

Hook	function	template
Hook	functions	should	be	written	like	this:

//	Outer	function	initializes	the	hook	function
function	myHook(options)	{
		//	The	hook	function	itself	is	returned.
		return	context	=>	{
				//	You	can	use	the	options	param	to	condition	behavior	within	the	hook.
		};
}

Feathers	calls	the	inner	function	with	the	context	object.

	context.result		is	an	object	or	array	for	all	method	calls	other	than		find	.	It	is	an	object	if	the		find		is	paginated.
Otherwise	it	is	an	array.

The	hook	function	may	either	return	synchronously	or	it	may	return	a	Promise.	The	return	value	(sync)	or	resolved
value	from	the	Promise	(async)	may	be	either	a	new	context	object,	or		undefined	.

ProTip	The	context	object	is	not	changed	if		undefined		is	returned.

ProTip	Mutating	the		context		param	inside	a	hook	function	without	returning	it	does	not	change	the	context
object	passed	to	the	next	hook.

Let's	review	the	source	of	some	of	the	common	hooks	to	learn	how	to	write	our	own.

debug	source
	debug		logs	the	context	to	the	console.

export	default	function	(msg)	{
		return	context	=>	{
				console.log(`*	${msg	||	''}\ntype:${context.type},	method:	${context.method}`);
				if	(context.data)	{	console.log('data:',	context.data);	}
				if	(context.params	&&	context.params.query)	{	console.log('query:',	context.params.query);	}
				if	(context.result)	{	console.log('result:',	context.result);	}
				if	(context.error)	{	console.log('error',	context.error);	}
		};
}

This	hook	is	straightforward,	simply	displaying	some	of	the		context		object	properties.	The	context	object	does	not
change	as	the	inner	hook	function	returns		undefined		by	default.

	debug		is	great	for	debugging	other	hooks.	Once	you	place	this	hook	before	and	after	the	hook	under	test,	you'll	see
the	context	object	the	test	hook	received,	and	what	it	returned.

This	example

Shows	several	context	properties.
Leaves	the	context	object	unchanged	with	a	sync		return	.

Writing	your	own	hooks

47

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/debug.js


disableMultiItemChange	source
	disableMultiItemChange		disables	update,	patch	and	remove	methods	from	using		null		as	an	id,	e.g.		remove(null)	.
A		null		id	affects	all	the	items	in	the	DB,	so	accidentally	using	it	may	have	undesirable	results.

import	errors	from	'feathers-errors';
import	checkContext	from	'./check-context';

export	default	function	()	{
		return	function	(context)	{
				checkContext(context,	'before',	['update',	'patch',	'remove'],	'disableMultiItemChange');

				if	(context.id	===	null)	{
						throw	new	errors.BadRequest(
								`Multi-record	changes	not	allowed	for	${context.path}	${context.method}.	(disableMultiItemChange)`
						);
				}
		};
}

Some	hooks	may	only	be	used		before		or		after	;	some	may	be	used	only	with	certain	methods.	The		checkContext	
utility	checks	the	hook	function	is	being	used	properly.

This	hook	throws	an	error	that	will	be	properly	returned	to	the	client.

service.patch(null,	data,	{	query:	{	dept:	'acct'	}	})
		.then(data	=>	...)
		.catch(err	=>	{
				console.log(err.message);	//	Multi-record	changes	not	allowed	for	...
		});

This	example

Introduces		checkContext	.
Shows	how	to	throw	an	error	in	hooks.

pluckQuery	source
	pluckQuery		discards	all	fields	from	the	query	params	except	for	the	specified	ones.	This	helps	sanitize	the	query.

import	_pluck	from	'../common/_pluck';
import	checkContext	from	'./check-context';

export	default	function	(...fieldNames)	{
		return	context	=>	{
				checkContext(context,	'before',	null,	'pluckQuery');

				const	query	=	(context.params	||	{}).query	||	{};
				context.params.query	=	_pluck(query,	fieldNames);

				return	context;
		};
}

The		_pluck		utility,	given	an	object	and	an	array	of	property	name,	returns	an	object	consisting	of	just	those
properties.	The	property	names	may	be	in	dot	notation,	e.g.		destination.address.city	.

The	context	object	is	modified	and	returned,	thus	modifying	what	context	is	passed	to	the	next	hook.

Writing	your	own	hooks

48

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/disable-multi-item-change.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/pluck-query.js


This	example

Modifies	and	synchronously	returns	the	context	object.
Introduces		_pluck	.

pluck	source
	pluck		discards	all	fields	except	for	the	specified	ones,	either	from	the	data	submitted	or	from	the	result.	If	the	data	is
an	array	or	a	paginated	find	result	the	hook	will	remove	the	field(s)	for	every	item.

import	_pluck	from	'../common/_pluck';
import	checkContextIf	from	'./check-context-if';
import	getItems	from	'./get-items';
import	replaceItems	from	'./replace-items';

export	default	function	(...fieldNames)	{
		return	context	=>	{
				checkContextIf(context,	'before',	['create',	'update',	'patch'],	'pluck');

				if	(context.params.provider)	{
						replaceItems(context,	_pluck(getItems(context),	fieldNames));
				}

				return	context;
		};
}

The		getItems		utility	returns	the	items	in	either		hook.data		or		hook.result		depending	on	whether	the	hook	is	being
used	as	a	before	or	after	hook.		hook.result.data		or		hook.result		is	returned	for	a		find		method.

The	returned	items	are	always	an	array	to	simplify	further	processing.

The		replaceItems		utility	is	the	reverse	of		getItems	,	returning	the	items	where	they	came	from.

This	example

Introduces	the	convenient		getItems		and		replaceItems		utilities.

Throwing	an	error	-	disableMultiItemChange	source
You	will,	sooner	or	later,	want	to	return	an	error	to	the	caller,	skipping	the	DB	call.	You	can	do	this	by	throwing	a
Feathers	error.

	disableMultiItemChange		disables	update,	patch	and	remove	methods	from	using	null	as	an	id.

import	errors	from	'feathers-errors';
import	checkContext	from	'./check-context';

export	default	function	()	{
		return	function	(context)	{
				checkContext(context,	'before',	['update',	'patch',	'remove'],	'disableMultiItemChange');

				if	(context.id	===	null)	{
						throw	new	errors.BadRequest(
								`Multi-record	changes	not	allowed	for	${context.path}	${context.method}.	(disableMultiItemChange)`
						);
				}
		};
}

Writing	your	own	hooks

49

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/pluck.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/disable-multi-item-change.js


Feathers	errors	are	flexible,	containing	useful	fields.	Of	particular	note	are:

	className		returns	the	type	of	error,	e.g.		not-found	.	Your	code	can	check	this	field	rather	than	the	text	of	the
error	message.
	errors		can	return	error	messages	for	individual	fields.	You	can	customize	the	format	to	that	expected	by	your
client-side	forms	handler.

throw	new	errors.BadRequest('Bad	request.',	{	errors:	{
username:	'Already	in	use',	password:	'Must	be	at	least	8	characters	long'
}});

This	example

Shows	how	to	stop	a	method	call	by	throwing	an	error.

Returning	a	result
Assume	that	for	a	service	with	static	data	the	record	is	added	to		cache		whenever	a		get		call	has	completed.	We	can
then	potentially	improve	performance	for	future		get		calls	by	checking	if	we	already	have	the	record.

import	{	checkContext	}	from	'feathers-hooks-common';

export	default	function	(cache)	{
		return	context	=>	{
				checkContext(context,	'before',	['get'],	'memoize');

				if	(context.id	in	cache)	{
						context.result	=	cache[context.id];
						return	context;
				}
		};
};

Feathers	will	not	make	the	database	call	if		hook.result		is	set.	Any	remaining	before	and	after	hooks	are	still	run.

Should	this	hook	find	a	cached	record,	placing	it	in		hook.result		is	the	same	as	if	the	database	had	returned	the
record.

This	example

Shows	how		before		hooks	can	determine	the	result	for	the	call.

Simple	async	hook
Now	that	we've	covered	synchronous	hooks,	let's	look	at	async	ones.

Here	is	a	simple	before	hook	which	calls	an	async	function.	That	function	is	supposed	to	determine	if	the	values	in
	context.data		are	valid.

import	errors	from	'feathers-errors';

export	default	function	(validator)	{
		return	context	=>	{
				return	validator(context.data)
						.then(()	=>	context)
						.catch(errs	=>	{
								throw	new	errors.BadRequest('Validation	error',	{	errors:	errs	});
						});
		};

Writing	your	own	hooks

50



}

The	hook	either	returns	a	Promise	which	resolves	to	the	existing	context	object,	or	it	throws	with	an	error	object
contains	the	errors	found.

The	hook	after	this	one	will	not	run	until	this	Promise	resolves	and	the	hook	logically	ends.

ProTip	Perhaps	the	most	common	error	made	when	writing	async	hooks	is	to	not	return	the	Promise.	The	hook
will	not	work	as	expected	with		validator(context.data)	.	It	must	be		return	validator(context.data)	.

This	example

Shows	how	to	code	async	hooks.

Calling	a	service
Here	is	an	after	hook	which	attaches	user	info	to	one	record	(for	simplicity).

export	default	function	()	{
				return	context	=>	{
						const	service	=	context.app.service('users');
						const	item	=	getItems(context)[0];

						if	(item.userId	!==	null	&&	item.userId	!==	undefined)	{
								return	service.get(item.userId,	context.params)
										.then(data	=>	{
												item.user	=	data;
												return	context;
										})
										.catch(()	=>	context);
						}
				};
};

	context.app		is	the	Feathers	app,	so		context.app.service(path/to/service)		returns	that	service.
The	hook	returns	a	Promise	which	resolves	to	a	mutated	context,	or
the	hook	returns	synchronously	without	modifying	the	context	if	there	is	no		userId	.

Its	important	that		context.params		is	used	in	the		get	.	You	always	need	to	consider		params		when	calling	a	service
within	a	hook.	If	you	don't	assign	a	value,	the		get		will	run	as	being	called	on	the	server	(it	is	being	called	by	the
server	after	all)	even	if	the	method	call	causing	the	hook	to	be	run	originated	on	a	client.

This	may	not	be	OK.	The	user	password	may	be	returned	when	a	user	record	is	read	by	the	server,	but	you	would	not
want	a	client	to	have	access	to	it.

This	hook	has	taken	a	simple	approach,	passing	along	the		context.params		of	the	method	call.	Thus	the		get		is	run
with	the	same		context.provider		(e.g.	"socketio",	"rest",	undefined),		context.authenticated	,	etc.	as	the	method	call.

This	is	often	satisfactory	and,	if	not,	the	next	example	contains	something	more	comprehensive.

ProTip	Always	consider		params		when	doing	service	calls	within	a	hook.

An	interesting	detail	is	shown	here:		replaceItems		is	never	called.	The	array	returned	by		getItems		contains	the	same
objects	as	those	in	the	context.	So	changing	an	object	in	the	array	changes	that	object	in	the	context.	This	is	similar
to:

const	foo	=	{	name:	'John'	};
const	bar	=	[	foo	];
bar[0].project	=	'Feathers';

Writing	your	own	hooks

51



console.log(foo);	//	{	name:	'John',	project:	'Feathers'	}

This	example

Shows	how	to	call	a	service.
Shows	how	to	deal	with		params		in	such	calls.
Talks	about	using		getItems		with	mutations.

stashBefore	source
	stashBefore		saves	the	current	value	of	record	before	mutating	it.

import	errors	from	'feathers-errors';
import	checkContext	from	'./check-context';

export	default	function	(prop)	{
		const	beforeField	=	prop	||	'before';

		return	context	=>	{
				checkContext(context,	'before',	['get',	'update',	'patch',	'remove'],	'stashBefore');

				if	(context.id	===	null	||	context.id	===	undefined)	{
						throw	new	errors.BadRequest('Id	is	required.	(stashBefore)');
				}

				if	(context.params.query	&&	context.params.query.$disableStashBefore)	{
						delete	context.params.query.$disableStashBefore;
						return	context;
				}

				const	params	=	(context.method	===	'get')	?	context.params	:	{
						provider:	context.params.provider,
						authenticated:	context.params.authenticated,
						user:	context.params.user
				};

				params.query	=	params.query	||	{};
				params.query.$disableStashBefore	=	true;

				return	context.service.get(context.id,	params)
						.then(data	=>	{
								delete	params.query.$disableStashBefore;

								context.params[beforeField]	=	data;
								return	context;
						})
						.catch(()	=>	context);
		};
}

Its	more	complicated	to	call	the	hook's	current	service	than	to	call	another	service.	Let's	look	at	some	of	the	code	in
this	hook.

This	is	what	the	hook	returns.

return	context.service.get(context.id,	params)
		.then(data	=>	{
				delete	params.query.$disableStashBefore;

				context.params[beforeField]	=	data;
				return	context;
		})

Writing	your	own	hooks

52

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/stash-before.js


		.catch(()	=>	context);

	context.service		is	always	the	current	service.
	context.service.get()		is	an	async	call,	and	it	returns	a	Promise.
The	hook	returns	that	Promise,	so	its	an	async	hook.	The	next	hook	will	only	run	once	this	Promise	resolves.
The	data	obtained	by	the		get		is	placed	into		context.params	.
We	can	see	the	Promise	will	always	resolve	to		context	.

In	summary,	the	hook	will		get		the	record	being	mutated	by	the	call,	will	place	that	record	in		context.params	,	and	will
return	the	possibly	modified		context	.	The	method	call	will	continue	as	if	nothing	has	happened.

	stashBefore		does	not	use		context.params		in	the		get		call	as		context.params		may	be	inappropriate	if,	for	example,
you	are	using	Sequelize	and	the	method	call	includes	parameters	that	are	passed	through	to	Sequelize.	What	may	be
appropriate	for	an		update		may	not	be	acceptable	for	a		get	.

const	params	=	context.method	===	'get'	?	context.params	:	{
		provider:	context.params.provider,
		authenticated:	context.params.authenticated,
		user:	context.params.user
};

On	a		get		call	we	will	use	the	same		params		for	our	inner		get	.
On	other	calls,	we	use	something	"safe".

We	copy	over		provider		so	our	inner		get		acts	like	it	has	the	same	transport.
We	copy	standard	authentication	values	for	auth	hooks.

Will	this	satisfy	every	use	case?	No,	but	it	will	satisfy	most.	You	can	always	fork	the	hook	and	customize	it.

There	is	one	more	thing	to	consider.	The		stashBefore		hook	will	run	again	when	we	call	the	inner		get	.	This	will
cause	a	recursion	of	inner		get		calls	unless	we	do	something.

if	(context.params.query	&&	context.params.query.$disableStashBefore)	{
		delete	context.params.query.$disableStashBefore;
		return	context;
}
//
params.query	=	params.query	||	{};
params.query.$disableStashBefore	=	true;
//
delete	params.query.$disableStashBefore;

We	set	a	flag	to	show	we	are	calling	the	inner		get	.		stashBefore		will	see	the	flag	when	it	runs	for	that	inner		get		and
exit,	preventing	recursion.

ProTip	Its	not	uncommon	to	indicate	what	state	operations	are	in	by	setting	flags	in		params	.

This	example

Shows	how	to	call	the	current	service.
Discusses	how	to	handle		params		for	service	calls.
Shows	how	to	prevent	recursion.

iff,	when,	else
Conditional	hooks	like		iff(predicate,	hook1,	hook2).else(hook3,	hook4)		can	be	very	useful.

Writing	your	own	hooks

53



Its	easy	to	write	your	own	predicates.	They	are	functions	with	a	signature	of		context	=>	boolean	,	which	receive	the
context	as	a	parameter	and	return	either	a	boolean	(synchronous)	or	a	Promise	which	resolves	to	a	boolean.

You	can	combine	predicates	provided	with	the	common	hooks,	such	as		isProvider		(source).	You	can	write	your
own,	or	mix	and	match.

iff	(hook	=>	!isProvider('service')(hook)	&&	hook.params.user.security	>=	3,	...)

The		isNot		conditional	utility	(source)	is	useful	because	it	will	negate	either	a	boolean	or	a	Promise	resolving	to	a
boolean.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Writing	your	own	hooks

54

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/is-provider.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/is-not.js
https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Writing-Hooks&body=Comment:Step-Basic-Writing-Hooks


Testing	Hooks

Self	contained	hooks
Testing	hooks	that	do	not	depend	on	services	or	other	hooks	is	straight	forward.	Create	a		context		object,	call	the
inner	hook	function,	and	check	the	returned		context	.

Here	is	part	of	the	mocha	test	for		disableMultiItemChange	.

import	{	assert	}	from	'chai';
import	{	disableMultiItemChange	}	from	'../../src/services';

var	hookBefore;

['update',	'patch',	'remove'].forEach(method	=>	{
		describe(`services	disableMultiItemChange	-	${method}`,	()	=>	{
				beforeEach(()	=>	{
						hookBefore	=	{
								type:	'before',
								method,
								params:	{	provider:	'rest'	},
								data:	{	first:	'John',	last:	'Doe'	},
								id:	null
						};
				});

				it('allows	non	null	id',	()	=>	{
						hookBefore.id	=	1;

						const	result	=	disableMultiItemChange()(hookBefore);
						assert.equal(result,	undefined);
				});

				it('throws	on	null	id',	()	=>	{
						hookBefore.id	=	null;

						assert.throws(()	=>	{	disableMultiItemChange()(hookBefore);	});
				});

				it('throws	if	after	hook',	()	=>	{
						hookBefore.id	=	1;
						hookBefore.type	=	'after';

						assert.throws(()	=>	{	disableMultiItemChange()(hookBefore);	});
				});
		});
});

Here	is	part	of	the	mocha	test	for		pluck	.

import	{	assert	}	from	'chai';
import	hooks	from	'../../src/services';

var	hookBefore;
var	hookAfter;
var	hookFindPaginate;
var	hookFind;

describe('services	pluck',	()	=>	{
		describe('plucks	fields',	()	=>	{
				beforeEach(()	=>	{

Testing	hooks

55



						hookBefore	=	{
								type:	'before',
								method:	'create',
								params:	{	provider:	'rest'	},
								data:	{	first:	'John',	last:	'Doe'	}	};
						hookAfter	=	{
								type:	'after',
								method:	'create',
								params:	{	provider:	'rest'	},
								result:	{	first:	'Jane',	last:	'Doe'	}	};
						hookFindPaginate	=	{
								type:	'after',
								method:	'find',
								params:	{	provider:	'rest'	},
								result:	{
										total:	2,
										data:	[
												{	first:	'John',	last:	'Doe'	},
												{	first:	'Jane',	last:	'Doe'	}
										]
								}	};
						hookFind	=	{
								type:	'after',
								method:	'find',
								params:	{	provider:	'rest'	},
								result:	[
										{	first:	'John',	last:	'Doe'	},
										{	first:	'Jane',	last:	'Doe'	}
								]
						};
				});

				it('updates	hook	before::create',	()	=>	{
						hooks.pluck('last')(hookBefore);
						assert.deepEqual(hookBefore.data,	{	last:	'Doe'	});
				});

				it('updates	hook	after::find	with	pagination',	()	=>	{
						hooks.pluck('first')(hookFindPaginate);
						assert.deepEqual(hookFindPaginate.result.data,	[
								{	first:	'John'	},
								{	first:	'Jane'	}
						]);
				});

				it('updates	hook	after::find	with	no	pagination',	()	=>	{
						hooks.pluck('first')(hookFind);
						assert.deepEqual(hookFind.result,	[
								{	first:	'John'	},
								{	first:	'Jane'	}
						]);
				});

				it('updates	hook	after',	()	=>	{
						hooks.pluck('first')(hookAfter);
						assert.deepEqual(hookAfter.result,	{	first:	'Jane'	});
				});

				it('does	not	update	when	called	internally	on	server',	()	=>	{
						hookAfter.params.provider	=	'';
						hooks.pluck('last')(hookAfter);
						assert.deepEqual(hookAfter.result,	{	first:	'Jane',	last:	'Doe'	});
				});

				it('does	not	throw	if	field	is	missing',	()	=>	{
						const	hook	=	{
								type:	'before',
								method:	'create',
								params:	{	provider:	'rest'	},

Testing	hooks

56



								data:	{	first:	'John',	last:	'Doe'	}	};
						hooks.pluck('last',	'xx')(hook);
						assert.deepEqual(hook.data,	{	last:	'Doe'	});
				});

				it('does	not	throw	if	field	is	undefined',	()	=>	{
						const	hook	=	{
								type:	'before',
								method:	'create',
								params:	{	provider:	'rest'	},
								data:	{	first:	undefined,	last:	undefined	}	};
						hooks.pluck('first')(hook);
						assert.deepEqual(hook.data,	{});	//	todo	note	this
				});

				it('does	not	throw	if	field	is	null',	()	=>	{
						const	hook	=	{
								type:	'before',
								method:	'create',
								params:	{	provider:	'rest'	},
								data:	{	first:	null,	last:	null	}	};
						hooks.pluck('last')(hook);
						assert.deepEqual(hook.data,	{	last:	null	});
				});
		});
});

Hooks	requiring	a	Feathers	app
Some	hooks	call	services,	or	they	depend	on	other	hooks	running.	Its	much	simpler	to	create	a	Feathers	app	plus	a
memory-backed	service	than	to	try	to	mock	them	out.

Here	is	part	of	the	mocha	test	for		stashBefore	.

const	assert	=	require('chai').assert;
const	feathers	=	require('feathers');
const	memory	=	require('feathers-memory');
const	feathersHooks	=	require('feathers-hooks');
const	{	stashBefore	}	=	require('../../src/services');

const	startId	=	6;
const	storeInit	=	{
		'0':	{	name:	'Jane	Doe',	key:	'a',	id:	0	},
		'1':	{	name:	'Jack	Doe',	key:	'a',	id:	1	},
		'2':	{	name:	'John	Doe',	key:	'a',	id:	2	},
		'3':	{	name:	'Rick	Doe',	key:	'b',	id:	3	},
		'4':	{	name:	'Dick	Doe',	key:	'b',	id:	4	},
		'5':	{	name:	'Dork	Doe',	key:	'b',	id:	5	}
};
let	store;
let	finalParams;

function	services	()	{
		const	app	=	this;
		app.configure(users);
}

function	users	()	{
		const	app	=	this;
		store	=	clone(storeInit);

		app.use('users',	memory({
				store,
				startId
		}));

Testing	hooks

57



		app.service('users').before({
				all:	[
						stashBefore(),
						context	=>	{
								finalParams	=	context.params;
						}
				]
		});
}

describe('services	stash-before',	()	=>	{
		let	app;
		let	users;

		beforeEach(()	=>	{
				finalParams	=	null;

				app	=	feathers()
						.configure(feathersHooks())
						.configure(services);

				users	=	app.service('users');
		});

		['get',	'update',	'patch',	'remove'].forEach(method	=>	{
				it(`stashes	on	${method}`,	()	=>	{
						return	users[method](0,	{})
								.then(()	=>	{
										assert.deepEqual(finalParams.before,	storeInit[0]);
								});
				});
		});

		['create',	'find'].forEach(method	=>	{
				it(`throws	on	${method}`,	done	=>	{
						users[method]({})
								.then(()	=>	{
										assert(false,	'unexpectedly	successful');
										done();
								})
								.catch(()	=>	{
										done();
								});
				});
		});
});

function	clone	(obj)	{
		return	JSON.parse(JSON.stringify(obj));
}

You	might	not	want	to	use	the	Feathers	NeDB	adapter	as	it	may	not	be	opened	more	than	once	in	a	process.	You	can
work	around	this	with	mocha's		--require		option,	opening	it	once	and	attaching	it	to	Nodejs'		global		object	to	the
tests.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Testing	hooks

58

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Testing-Hooks&body=Comment:Step-Basic-Testing-Hooks


Testing	hooks

59



Real-time
In	Feathers,	real-time	means	that	services	automatically	send	created,	updated,	patched	and	removed	events	when	a
create,	update,	patch	or	remove	service	method	is	complete.	Clients	can	listen	for	these	events	and	then	react
accordingly.

The	client	in	a	chat	room	app,	for	example,	could	automatically	receive	all	messages	posted	by	any	of	the
participants,	and	then	display	them.	This	is	much	simpler	than	the	traditional	design	pattern	which	requires	long-
polling	of	the	server.

As	another	example,	the	client	could	maintain	a	local	copy	of	part	of	a	database	table.	It	can	keep	it	up	to	date	by
listening	to	events	for	that	table.

Real-time.	Real-time	events	are	sent	only	to	Feathers	WebSocket	clients.	They	are	not	sent	to	Feathers	REST
nor	HTTP	REST	clients.	These	would	have	to	implement	a	traditional	long-polling	design.	Conclusion:	Use
Feathers	WebSocket	clients.

Let's	create	an	event	listener	for	the	Feathers	Websocket	Client	we	already	have.

Working	example
Server	code:	examples/step/01/websocket/1.js
Listener	code:	common/public/listener.html	and	listener-app.js
Client	code:	common/public/socketio.html	and	feathers-app.js
Start	the	server:		node	./examples/step/01/websocket/1.js	
Start	the	listener	by	pointing	a	browser	tab	at		localhost:3030/listener.html	
Start	making	changes	by	pointing	a	browser	tab	at:		localhost:3030/socketio.html	

Implementing	a	listener
Implementing	the	listener	common/public/listener-app.js	is	straight	forward.

Real-time

60

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/websocket/1.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/listener.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/listener-app.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/socketio.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/feathers-app.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/01/common/public/listener-app.js


const	users	=	feathersClient.service('/users');

users.on('created',	user	=>	console.log('created',	user));
users.on('removed',	user	=>	console.log('removed',	user));

console.log('Listening	for	user	events.');

Filtering
Our	listener's	console	displays:

Listening	for	user	events.
created
{email:	"jane.doe@gmail.com",	password:	"11111",	role:	"admin",	_id:	"qyRMR6abq8RHV29R"}
created
{email:	"john.doe@gmail.com",	password:	"22222",	role:	"user",	_id:	"XI6e3bZcoupb6Hyr"}
created
{email:	"judy.doe@gmail.com",	password:	"33333",	role:	"user",	_id:	"qeYSi2KrkwIUMoaE"}

You	usually	wouldn't	want	to	send	passwords	to	clients.

In	many	cases	you	probably	want	to	be	able	to	send	certain	events	to	certain	clients,	say	maybe	only	ones	that	are
authenticated.

The	server	can	control	what	data	is	sent	to	which	clients	with	event	filters.

For	example,	we	could	send		users		events	only	to	authenticated	users	and	remove		password		from	the	payload	by
adding	this	to	the	server	code:

const	users	=	app.service('users');
users.filter((data,	connection)	=>	{
		delete	data.password;
		return	connection.user	?	data	:	false;
});

Real-time

61



Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Real-time

62

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Basic-Real-time&body=Comment:Step-Basic-Real-time


Generators
We've	been	writing	code	"by	hand"	in	order	to	understand	how	basic	Feathers	works.	We	will	now	start	using	Feathers
generators	since	we	have	the	background	to	understand	what	they	produce.

Generators	help	eliminate	boilerplate.
We've	seen	that	Feathers,	even	when	coded	"by	hand",	eliminates	the	majority	of	the	boilerplate	typically	in	a	CRUD
project.	Generators	will	eliminate	even	more.

Generators.	Feathers	generators	produce	very	little	code	because	Feathers	is	so	succinct.	You	can	easily
understand	the	generated	code	because	its	no	different	from	what	we've	been	coding	"by	hand"	so	far.	Some
other	frameworks	make	things	“seem”	easy	by	generating	thousands	of	lines	of	code	for	you	and,	in	the
process,	making	it	almost	impossible	to	implement	anything	not	supported	out	of	the	box	by	their	generators.

Generators	structure	your	app.

The	generated	modules	are	structured	as	recommended	by	the	Feathers	team.

Generators	handle	database	specifics.

The	generators	will	generate	code	for	different	databases	so	you	don't	have	to	investigate	how	to	do	so.

Install	the	generators
You	can	install	the	Feathers	generators	with

	npm	install	-g	feathers-cli	

What's	next?
Now	that	we	installed	the	Feathers	command	line	tool	we	can	generate	the	application.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

The	Generator	(CLI)

63

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Generators-Readme&body=Comment:Step-Generators-Readme


Generating	an	app
Now	let's	write	a	new	project	using	the	Feathers	generators.

This	project	will	have	users	who	may	be	members	of	one	or	more	teams.	We	want	to	display	teams	with	all	their
members.

Create	the	app
The	first	thing	we	do	is	generate	the	basic	app.	For	that,	we	will	first	have	to	create	and	move	into	a	new	folder:

mkdir	feathers-app
cd	feathers-app

Then	we	can	run:

feathers	generate	app

You	can	start	the	generated	base	application	using

npm	start

And	then	go	to	localhost:3030	to	see	a	standard	welcome	page.

The	generator	creates	some	modules	reflecting	your	choices.	The	modules	are	properly	wired	together	and	structured
as	recommended	by	the	Feathers	team.

They	are	mostly	boilerplate	and	organized	as	follows:

Generate	the	application

64

http://localhost:3030
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/
https://en.wikipedia.org/wiki/Boilerplate_code


config/
Contains	the	configuration	files	for	the	app.	production.json	values	override	default.json	ones	when	in	production
mode,	i.e.	when	you	run		NODE_ENV=production	node	path/to/your/server.js	.

node_modules/
The	generator	installs	the	project	dependencies	here	using	either	npm,	or	yarn	if	that's	installed.	The	dependencies
are	enumerated	in		package.json	.

public/
Contains	the	resources	to	be	served.	A	sample	favicon	and	HTML	file	are	included.

src/
Contains	the	Feathers	server.

hooks/	contains	your	custom	hooks,	usually	those	general	enough	to	be	used	with	multiple	services.	A	simple	but
useful	logger	is	provided	as	an	example.

Generate	the	application

65

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/config/production.json
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/config/default.json
https://docs.npmjs.com/
https://yarnpkg.com/en/
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/public/index.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/src/hooks/logger.js


middleware/	contains	your	Express	middleware.

services/	will	contain	the	services.

index.js	is	used	by	node	to	start	the	app.

app.js	configures	Feathers	and	Express.

app.hooks.js	contains	hooks	which	have	to	run	for	all	services.	We	have	not	covered	this	capability	before.
You	can	configure	such	hooks	like	this.

test/
Contains	the	tests	for	the	app.	app.test.js	tests	that	the	index	page	appears,	as	well	as	404	errors	for	HTML	pages
and	JSON.

.editorconfig
is	compatible	with	the	EditorConfig	project	and	helps	developers	define	and	maintain	consistent	coding	styles	among
different	editors	and	IDEs.

.eslintrc.json
contains	defaults	for	liniting	your	code	with	ESLint.

.gitignore
specifies	intentionally	untracked	files	which	git,	GitHub	and	other	similar	projects	ignore.

.npmignore
specifies	files	which	are	not	to	be	published	for	distribution.

LICENSE
contains	the	license	so	that	people	know	how	they	are	permitted	to	use	it,	and	any	restrictions	you're	placing	on	it.

It	defaults	to	the	Feathers	license.

package.json
contains	information	which	npm,	yarn	and	other	package	managers	need	to	install	and	use	your	package.

What's	next?
The	generated	code	will	look	familiar.	It	contains	nothing	more	than	what	we	have	covered	previously.	The	main
advantages	of	the	Feathers	generators	are

Generate	the	application

66

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/src/index.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/src/app.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/src/app.hooks.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/src/app.js#L43
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/test/app.test.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/.editorconfig
http://editorconfig.org/
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/.eslintrc.json
http://eslint.org/docs/user-guide/getting-started
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/.gitignore
https://git-scm.com/docs/gitignore
https://git-scm.com/
https://github.com/
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/.npmignore
https://docs.npmjs.com/misc/developers#keeping-files-out-of-your-package
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/LICENSE
https://docs.npmjs.com/files/package.json#license
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen1/package.json
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/
https://yarnpkg.com/en/


Generators	structure	your	app.	The	generated	modules	are	structured	as	recommended	by	the	Feathers	team.

Generators	write	the	repetitive	boilerplate	so	you	don't	have	to.

Generators	handle	database	specifics.	The	generators	will	generate	code	for	different	databases	so	you	don't
have	to	investigate	how	to	do	so.

Next	we	will	add	authentication	to	the	application	we	just	generated.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Generate	the	application

67

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Generators-App&body=Comment:Step-Generators-App


Add	authentication
We	can	now	use	the	generator	to	add	some	local	authentication	to	the	app	by	running

feathers	generate	authentication

The	generator	will	add	some	new	modules	and	modify	some	existing	ones.	You	can	see	all	the	changes	here:	Unified
|	Split

New	modules
The	directory	has	changed:

Add	authentication

68

http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-side.html


The	users	service
The	generator	has	added	a		users		service	to	the	app	because	local	authentication	requires	we	keep	a	database	of
users.

This	caused	the	following	modules	to	be	added:

src/models/users.model.js	describes	how		users		is	indexed.		NeDB		is	a	NoSQL	database	that's	simple	to
configure.

src/services/users	contains	the	rest	of	the		users		service.

Add	authentication

69

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen2/src/models/users.model.js
https://en.wikipedia.org/wiki/NoSQL


users.service.js	configures	the	service.

users.hooks.js	configures	the	hooks	for	the	service.	The		authenticate('jwt')		hooks	ensure	only
authenticated	users	can	perform	method	calls.	The		hashPassword()		hook	encrypts	the	password	when	a
new	user	is	added.

users.filters.js	will	allow	you	to	control	which	clients	are	notified	when	a	user	is	mutated.

test/services/users.test.js	tests	that	the	service	gets	configured.

The	service	has	to	be	wired	into	the	app,	so	the	generator	made	the	following	changes:

config/default.json	now	(Unified	|	Split)	keeps	the	path	of	the	NeDB	tables.

src/services/index.js	now	(Unified	|	Split)	configures	the		users		service.

The	authentication	service
The	generator	also	added	an		authentication		service	to	the	app.	Its	responsible	for	authenticating	clients	against	the
	users		service,	generating	JWT	tokens	and	verifying	them.

The		authentication		service	is	a	custom	service,	not	a	database	service.	It	has	no	model,	no	database	table,	no
hooks	to	run	when	one	of	its	methods	is	called.

So	instead	of	creating	a	set	of	folders	as	was	done	for		users	,	the	generator	creates	the	only	module
	authentication		needs	as	src/authentication.js

This	service	also	has	to	be	wired	into	the	app,	so	the	generator	made	the	following	change:

src/config/default.json	now	(Unified	|	Split)	retains	authentication	information.

src/app.js	now	(Unified	|	Split)	configures	the		authentication		service.

Other	changes
The	changes	to	our	app	have	introduced	new	dependencies	and	they	need	to	be	defined.

package.json	now	(Unified	|	Split)	records	them.

What's	next?
We	have	not	previously	covered	Feathers	authentication,	so	the	authentication	service	written	for	that	is	brand	new	to
us.	You	can	refer	to	the	authentication	API	and	guides	for	more	details.

A		users		service	was	created	as	its	needed	for	the	local	authentication.	That	generated	code	contains	no	surprises
for	us	as	we	have	covered	it	before.

Next,	we	will	generate	a	new	service.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Add	authentication

70

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen2/src/services/users/users.service.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen2/src/services/users/users.hooks.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen2/src/services/users/users.filters.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen2/test/services/users.test.js
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-default-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-default-side.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-service-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-service-side.html
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen2/src/authentication.js
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-default-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-default-side.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-app-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-app-side.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-package-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen2-package-side.html
https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Generators-Auth&body=Comment:Step-Generators-Auth


Add	authentication

71



Add	the	teams	service
We	now	generate	the	teams	service	using

feathers	generate	service

The	generator	will	add	some	new	modules	and	modify	some	existing	ones.	You	can	see	all	the	changes	here:	Unified
|	Split

New	modules
The	directory	has	changed:

Add	the	teams	service

72

http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen3-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen3-side.html


The	teams	service
We	saw	the		users		service	being	added	previously.	The		teams		service	has	been	added	in	exactly	the	same	way.
There	is	nothing	new.	The	boilerplate	differs	only	in	the	names	of	the	services.

Add	the	teams	service

73



Generators.	The	Feathers	generators	are	great	for	roughing	out	a	project,	creating	something	in	its
approximate,	but	not	finished,	form.	The	generators	will	write	most	of	the	boilerplate	you	need,	while	you
concentrate	on	the	unique	needs	of	the	project.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Add	the	teams	service

74

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Generators-Service&body=Comment:Step-Generators-Service


Add	the	populate	hook
When	we	obtain	a	teams	record,	we	want	to	add	the	team's	users	to	the	team	record.	This	requires	a	hook	and
therefore	we	generate	the	scaffolding	for	a	hook	using:

feathers	generate	hook

The	generator	will	add	some	new	modules	and	modify	some	existing	ones.	You	can	see	all	the	changes	here:	Unified
|	Split

New	modules
The	directory	has	changed:

Add	the	populate	hook

75

http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen4-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen4-side.html


The	populateTeams	hook

Add	the	populate	hook

76



The	generator	has	roughed	out	an	after	hook	for	the		teams		service.	This	hook	doesn't	do	anything	so	far,	but	its	been
placed	in	the	structure	and	wired	into	the	app.

This	caused	the	following	modules	to	be	added:

src/hooks/populate-teams.js	contains	code	for	a	hook	that	presently	does	nothing.

test/hooks/populate-teams.test.js	tests	that	the	hook	is	configured.

The	hook	had	to	be	wired	into	the	app,	so	the	generator	made	the	following	changes:

src/services/teams/teams.hooks.js	now	(Unified	|	Split)	uses	the		populateTeams	.	We	told	the	generator	to
create	an		after		hook	for	the		find		method,	and	that	is	when	it	is	being	run.

ProTip:	What	you	put	in	populate-teams.js	is	up	to	you.	You'd	likely	use	the		populate		hook	for	DB	adapters
other	than	Sequelize.	You	may	decide	to	use	the	more	performant	internal	populate	features	for	Sequelize.	The
generator	creates	a	hook	which	does	nothing.

What's	next?
The	generated	code,	once	again,	contains	no	surprises	for	us	as	we	have	covered	it	before.	Now	we	can	run	our
application.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Add	the	populate	hook

77

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen4/src/hooks/populate-teams.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen4/test/hooks/populate-teams.test.js
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen4-hooks-line.html
http://htmlpreview.github.io/?https://github.com/feathersjs/feathers-docs/blob/master/examples/step/_diff/02-gen4-hooks-side.html
https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Generators-Hook&body=Comment:Step-Generators-Hook


Run	the	generated	application
Now	we	are	good	to	run	the	automated	tests	for	our	application	and	start	the	server.

Run	the	tests
The	generator	wrote	some	basic	tests	for	what	it	generated.	Let's	run	them.

	npm	run	test		runs	the		test		script	in	package.json.

"scripts":	{
				"test":	"npm	run	eslint	&&	npm	run	mocha",
				"eslint":	"eslint	src/.	test/.	--config	.eslintrc.json",
				"start":	"node	src/",
				"mocha":	"mocha	test/	--recursive"
}

First	ESLint	runs,	using	the	options	in	.eslintrc.json.

ESLint	checks	the	syntax	and	basic	coding	patterns	of	the	modules	in		src/		and		test/	.	Any	informatory	messages
would	be	logged	to	the	console	and	the	processing	terminated.

Next	the	tests	themselves	are	run.	They	were	written	in	Mocha	and	use	Mocha's	default	options.	Each	test	logs	to	the
console	as	it	runs.	The	summary	shows	that	6	tests	were	successful	and	there	were	no	failures.

Run	the	application

78

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen4/test/
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen4/package.json#L23-L28
http://eslint.org/docs/user-guide/getting-started
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen4/.eslintrc.json
https://mochajs.org/


So	we	can	now	be	sure	that:

The	generated	code	follows	established	best-practices	for	syntax	and	basic	coding	patterns.
The	generated	code	is	wired	together	properly.

Start	the	server
Since	everything	looks	OK,	let's	start	the	server.

The		info		line	indicates	the	server	for	our	roughed	out	app	started	properly.

The		You	are	using	the	default	filter	for	...		lines	are	interesting.	They	are	logged	from	here	and	here.

Feathers	real-time	events	will	notify	all	WebSocket	clients	of	mutations	occurring	in	Feathers	DB	services.	You	may
want	to	filter	who	gets	to	see	which	events.

These	messages	are	logged	just	to	remind	you	to	do	so.

About	the	config	files
We	changed	to	the	generated	app's	directory	(	gen4	)	to	start	the	server.	Its	nice	to	use		npm	run	start		as	then	we
don't	need	to	know	where	the	server	starting	code	resides.	However	we	could	just	as	easily	have	run		node	./src	.

One	thing	the	generated	code	assumes	is	that	the		config		directory	is	located	in	the	current	directory.	So	we	wouldn't
be	able	to	start	the	server	with		node	path/to/app/src		because	the	config	files	wouldn't	be	found.

You	can	get	around	this	by	explicitly	providing	the	direct	or	relative	path	of	the	configuration	directory:

#	Linux,	Mac
NODE_CONFIG_DIR=path/to/app/config	node	path/to/app/src
#	Windows
SET	NODE_CONFIG_DIR=path/to/app/config
node	path/to/app/src

What's	next?
The	Feathers	generators	are	great	for	roughing	out	a	project,	creating	something	in	its	approximate,	but	not	finished,
form.

Generators.	You	can	also	use	them	later	on	to	add	additional	services	and	hooks	as	your	app	evolves.

We	now	have	the	boilerplate	for	our	app,	and	we	start	adding	the	custom	code	it	requires.

We've	learned	how	the	generator	works,	and	we	understand	the	code	it	produces.	Let's	now	use	this	knowledge	to
build	a	Chat	Application.

Run	the	application

79

https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen4/src/services/users/users.filters.js#L2
https://github.com/feathersjs/feathers-docs/blob/master/examples/step/02/gen4/src/services/teams/teams.filters.js#L2
https://github.com/feathersjs/feathers-docs/tree/master/examples/step/02/gen4/config


Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Run	the	application

80

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Step-Generators-Run&body=Comment:Step-Generators-Run


Creating	a	Chat	Application
Well	alright!	Let's	build	our	first	Feathers	app!	We're	going	to	build	a	real-time	chat	app	with	NeDB	as	the	database.
It's	a	great	way	to	cover	all	the	things	that	you'd	need	to	do	in	a	real	world	application	and	how	Feathers	can	help.	It
also	makes	a	lot	more	sense	to	have	a	real-time	component	than	a	Todo	list.	ۃ

In	this	tutorial	you	go	from	nothing	to	a	real-time	chat	app	complete	with	signup,	login,	token	based	authentication	and
authorization	all	with	a	RESTful	and	real-time	API.

You	can	find	a	complete	working	example	here.

Creating	the	application

Create	a	new	application	using	the	generator.

Generating	a	service

Add	an	API	endpoint	to	store	messages.

Building	a	frontend

Learn	how	to	use	Feathers	in	the	browser	by	creating	a	small	real-time	chat	frontend.

Adding	Authentication

Add	user	registration	and	login.

Processing	data

Add	and	sanitize	data.

A	Chat	Application

81

https://github.com/louischatriot/nedb
https://github.com/feathersjs/feathers-chat


Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

A	Chat	Application

82

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Chat-Introduction


Creating	the	application
In	this	part	we	are	going	to	create	a	new	Feathers	application	using	the	generator.

Generating	the	application
With	everything	set	up	let's	create	a	directory	for	our	new	app:

$	mkdir	feathers-chat
$	cd	feathers-chat/

Now	we	can	generate	the	application:

$	feathers	generate	app

When	presented	with	the	project	name	just	hit	enter,	or	enter	a	name	(no	spaces).

Next,	enter	in	a	short	description	of	your	app.

The	next	prompt	asking	for	the	source	folder	can	be	answered	by	just	hitting	enter.	This	will	put	all	source	files	into	the
	src/		folder.

The	next	prompt	will	ask	for	the	package	manager	you	want	to	use.	The	default	is	the	standard	npm.

Note:	Choosing	Yarn	will	make	for	faster	installation	times	but	requires	Yarn	installed	globally	via		npm	install
yarn	-g		first.

You're	now	presented	with	the	option	to	choose	which	transport	you	want	to	support.	Since	we're	setting	up	a	real-
time	and	REST	API	we'll	go	with	the	default	REST	and	Socket.io	options.	So	just	hit	enter.

Once	you	confirm	the	final	prompt	you	will	see	something	like	this:

The	structure	and	purpose	of	all	those	files	that	have	just	been	created	are	covered	in	the	generator	chapter.

Running	the	server	and	tests

Creating	the	application

83

https://www.npmjs.com/
https://yarnpkg.com/en/


The	server	can	now	be	started	by	running

npm	start

After	that,	you	can	see	a	welcome	page	at	localhost:3030.	When	making	modifications,	remember	to	stop	(CTRL	+	C)
and	start	the	server	again.

The	app	also	comes	with	a	set	of	basic	tests	which	can	be	run	with

npm	test

What's	next?
We	scaffolded	a	new	Feathers	application.	The	next	step	is	to	create	a	service	for	messages.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Creating	the	application

84

http://localhost:3030
https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Chat-Creating


Creating	a	service
Now	that	we	have	a	our	Feathers	application	generated	we	can	create	a	new	API	endpoint	to	store	messages.

Generating	a	service
In	Feathers	any	API	endpoint	is	represented	as	a	service	which	we	already	learned	about	in	the	basics	guide.	To
generate	a	new	service	we	can	run

feathers	generate	service

First	we	have	to	choose	what	kind	of	service	we	would	like	to	create.	You	can	choose	between	many	databases	and
ORMs	but	for	this	guide	we	will	just	go	with	the	default	NeDB.	NeDB	is	a	database	that	stores	its	data	locally	in	a	file
and	requires	no	additional	configuration	or	a	database	server	running.

Next	we	are	asked	for	the	name	of	the	service	which	we	can	answer	with		messages		and	then	can	answer	the	next
question	for	the	path	with	the	default	(	/messages	)	by	pressing	enter.

The	database	connection	string	(in	the	case	of	NeDB	the	name	of	the	path	where	it	should	store	its	database	files)
can	also	be	answered	with	the	default.

Confirming	the	last	prompt	will	create	a	couple	of	files	and	wire	our	service	up:

Et	voilà!	We	have	a	fully	functional	REST	and	real-time	API	for	our	messages.

Testing	the	API
If	we	now	start	our	API	with

npm	start

We	can	go	to	localhost:3030/messages	and	will	see	an	(empty)	response	from	our	new	messages	service.

We	can	also		POST		new	messages	and		PUT	,		PATCH		and		DELETE		existing	messages	(via		/messages/<_id>	),	for
example	from	the	command	line	using	CURL:

curl	'http://localhost:3030/messages/'	-H	'Content-Type:	application/json'	--data-binary	'{	"name":	"Curler",	"
text":	"Hello	from	the	command	line!"	}'

Generating	a	service

85

https://github.com/louischatriot/nedb
http://localhost:3030/messages
https://curl.haxx.se/


Or	with	a	REST	client,	e.g.	Postman	using	this	button:

If	we	now	go	to	localhost:3030/messages	again	we	will	see	the	newly	created	message(s).

What's	next?
With	just	one	command,	we	created	a	fully	functional	REST	and	real-time	API	endpoint.	Before	we	dive	into
authentication	and	processing	data,	let's	create	a	simple	web	application	that	uses	our	new	chat	message	endpoint.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Generating	a	service

86

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://app.getpostman.com/run-collection/9668636a9596d1e4a496
http://localhost:3030/messages
https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Chat-Service


Building	a	frontend
In	this	chapter	we	will	create	a	very	simple	web	application	for	the	messages	service	that	we	just	created.	We	won't	be
using	a	framework	like	jQuery,	Angular,	React	or	VueJS	(for	more	information	about	those,	see	the	frameworks
section).	Instead	we	will	go	with	plain	old	JavaScript	that	will	work	in	any	modern	browser	(latest	Chrome,	Firefox	and
the	Edge	Internet	Explorer).

Using	Feathers	on	the	client
We	could	use	a	REST	client	(making	AJAX	request)	or	websockets	messages	directly	(both	of	which	are	totally
possible	with	Feathers),	but	instead	we	will	leverage	one	of	the	best	features	of	Feathers,	namely	that	it	works	just	the
same	as	a	client	in	the	browser,	with	React	Native	or	on	other	NodeJS	servers.

Our		public/		folder	already	has	an		index.html		page	that	currently	shows	a	generated	homepage	if	you	go	to
localhost:3030	in	the	browser.	We	will	modify	that	page	to	show	our	chat	messages	and	a	form	to	send	new	ones.

First,	let's	add	the	browser	version	of	Feathers	to	the	page.	We	can	do	so	by	linking	to	a	CDN	that	has	the	client
browser	build	of	Feathers.	Update		public/index.html		to	look	like	this:

<html>
		<head>
				<meta	http-equiv="content-type"	content="text/html;	charset=utf-8">
				<meta	name="viewport"
						content="width=device-width,	initial-scale=1.0,	maximum-scale=1,	user-scalable=0"	/>
				<title>Feathers	Chat</title>
				<link	rel="shortcut	icon"	href="favicon.ico">
		</head>
		<body>
				<div	id="app"	class="flex	flex-column"></div>
				<script	src="//unpkg.com/feathers-client@^2.0.0-pre.1/dist/feathers.js">
				</script>
				<script	src="/socket.io/socket.io.js"></script>
				<script	src="app.js"></script>
		</body>
</html>

Connecting	to	the	API
Now	we	can	create		public/app.js		with	the	following	Feathers	client	setup:

const	socket	=	io();
const	client	=	feathers();
client.configure(feathers.hooks());

//	Create	the	Feathers	application	with	a	`socketio`	connection
client.configure(feathers.socketio(socket));

//	Get	the	service	for	our	`messages`	endpoint
const	messages	=	client.service('messages');

//	Log	when	anyone	creates	a	new	message	in	real-time!
messages.on('created',	message	=>
		alert(`New	message	from	${message.name}:	${message.text}`)
);

//	Create	a	test	message
messages.create({

Building	a	frontend

87

http://localhost:3030


		name:	'Test	user',
		text:	'Hello	world!'
});

messages.find().then(page	=>	console.log('Current	messages	are',	page));

This	will	connect	to	our	API	server	using	Socket.io,	send	a	test	message	and	also	listen	to	any	new	message	in	real-
time	showing	it	in	an	alert	window	when	going	to	the	page	at	localhost:3030.	Once	you	have	created	the	message	you
can	also	see	that	it	showed	up	in	the	localhost:3030/messages	endpoint.

Note:	The		feathers		namespace	is	added	by	the	browser	build	and		io		is	available	through	the
	socket.io/socket.io.js		script.	For	more	information	on	using	Feathers	in	the	browser	and	with	a	module
loader	like	Webpack	or	Browserify	see	the	client	chapter.

Sending	and	displaying	messages
Alright.	We	can	create	and	listen	to	new	messages	and	also	list	all	messages.	All	that	is	left	to	do	now	is	create	some
HTML	from	the	message	list	and	a	form	to	create	new	messages.	Let's	update		public/index.html		with	some	HTML
for	our	chat	to	look	like	this:

<html>
		<head>
				<meta	http-equiv="content-type"	content="text/html;	charset=utf-8">
				<meta	name="viewport"
						content="width=device-width,	initial-scale=1.0,	maximum-scale=1,	user-scalable=0"	/>
				<title>Feathers	Chat</title>
				<link	rel="shortcut	icon"	href="favicon.ico">
				<link	rel="stylesheet"	href="//cdn.rawgit.com/feathersjs/feathers-chat/v0.2.0/public/base.css">
				<link	rel="stylesheet"	href="//cdn.rawgit.com/feathersjs/feathers-chat/v0.2.0/public/chat.css">
		</head>
		<body>
				<div	id="app"	class="flex	flex-column">
						<main	class="flex	flex-column">
								<header	class="title-bar	flex	flex-row	flex-center">
										<div	class="title-wrapper	block	center-element">
												<img	class="logo"	src="http://feathersjs.com/img/feathers-logo-wide.png"
														alt="Feathers	Logo">
												<span	class="title">Chat</span>
										</div>
								</header>

								<div	class="flex	flex-row	flex-1	clear">
										<div	class="flex	flex-column	col	col-12">
												<main	class="chat	flex	flex-column	flex-1	clear"></main>

												<form	class="flex	flex-row	flex-space-between"	id="send-message">
														<input	type="text"	placeholder="Your	name"	name="name"	class="col	col-3">
														<input	type="text"	placeholder="Enter	your	message"	name="text"	class="col	col-7">
														<button	class="button-primary	col	col-2"	type="submit">Send</button>
												</form>
										</div>
								</div>
						</main>
				</div>
				<script	src="//unpkg.com/feathers-client@^2.0.0-pre.1/dist/feathers.js">
				</script>
				<script	src="/socket.io/socket.io.js"></script>
				<script	src="app.js"></script>
		</body>
</html>

Then	we	can	update		public/app.js		with	the	functionality	to	get,	show	and	send	messages	like	this:

Building	a	frontend

88

http://localhost:3030
http://localhost:3030/messages


const	socket	=	io();
const	client	=	feathers();

//	Create	the	Feathers	application	with	a	`socketio`	connection
client.configure(feathers.socketio(socket));

//	Get	the	service	for	our	`messages`	endpoint
const	messages	=	client.service('messages');

//	Add	a	new	message	to	the	list
function	addMessage(message)	{
		const	chat	=	document.querySelector('.chat');

		chat.insertAdjacentHTML('beforeend',	`<div	class="message	flex	flex-row">
				<img	src="https://placeimg.com/64/64/any"	alt="${message.name}"	class="avatar">
				<div	class="message-wrapper">
						<p	class="message-header">
								<span	class="username	font-600">${message.name}</span>
						</p>
						<p	class="message-content	font-300">${message.text}</p>
				</div>
		</div>`);

		chat.scrollTop	=	chat.scrollHeight	-	chat.clientHeight;
}

messages.find().then(page	=>	page.data.forEach(addMessage));
messages.on('created',	addMessage);

document.getElementById('send-message').addEventListener('submit',	function(ev)	{
		const	nameInput	=	document.querySelector('[name="name"]');
		//	This	is	the	message	text	input	field
		const	textInput	=	document.querySelector('[name="text"]');

		//	Create	a	new	message	and	then	clear	the	input	field
		client.service('messages').create({
				text:	textInput.value,
				name:	nameInput.value
		}).then(()	=>	{
				textInput.value	=	'';
		});
		ev.preventDefault();
});

If	you	now	open	localhost:3030	you	can	see	an	input	field	for	your	name	and	the	message	which	will	show	up	in	other
browsers	in	real-time.

What's	next?
In	this	chapter	we	looked	at	how	to	use	Feathers	on	the	client	and	created	a	simple	real-time	chat	application	frontend
to	show	and	send	messages.	In	the	next	chapters	we	will	move	back	to	the	server	and	add	authentication	and	learn
about	processing	data.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Building	a	frontend

89

http://localhost:3030
https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Chat-Frontend


Building	a	frontend

90



Adding	authentication
In	the	previous	chapters	we	created	our	Feathers	chat	application	and	initialized	a	service	for	storing	messages.	We
also	build	a	simple	real-time	frontend	for	the	browser.	However,	for	a	proper	chat	application	we	need	to	be	able	to
register	and	authenticate	users.

Generating	authentication
To	add	authentication	to	our	application	we	can	run

feathers	generate	authentication

This	will	first	ask	us	which	authentication	providers	we	would	like	to	use.	In	this	guide	we	will	only	cover	local
authentication	which	is	already	selected	so	we	can	just	confirm	by	pressing	enter.

Next	we	have	to	define	the	service	we	would	like	to	use	to	store	user	information.	Here	we	can	just	confirm	the	default
	users		and	the	database	with	the	default	NeDB:

Creating	a	user	and	logging	in
We	just	created	a		users		service	and	enabled	local	authentication.	When	restarting	the	application	we	can	now	create
a	new	user	with		email		and		password		similar	to	what	we	did	with	messages	and	then	use	the	login	information	to	get
a	JWT	(for	more	information	see	the	How	JWT	works	guide).

Creating	the	user

We	will	create	a	new	user	with	the	following	data:

{
		"email":	"feathers@example.com",
		"password":	"secret"
}

The	generated	user	service	will	automatically	securely	hash	the	password	in	the	database	for	us	and	also	exclude	it
from	the	response	(passwords	should	never	be	transmitted).	There	are	several	ways	to	create	a	new	user,	for
example	via	CURL	like	this:

curl	'http://localhost:3030/users/'	-H	'Content-Type:	application/json'	--data-binary	'{	"email":	"feathers@exa
mple.com",	"password":	"secret"	}'

Adding	authentication

91



With	a	REST	client,	e.g.	Postman	using	this	button:

Or	via	the	client	we	used	in	the	frontend	chapter	by	adding	the	following	to		public/app.js	:

//	Create	a	test	new	user
client.service('users').create({
		email:	'feathers@example.com',
		password:	'secret'
});

Note:	Creating	a	user	with	the	same	email	address	will	only	work	once	and	fail	when	it	already	exists	in	the
database.

Getting	a	token

To	create	a	JWT	we	can	now	post	the	login	information	with	the	strategy	we	want	to	use	(	local	)	to	the
	authentication		service:

{
		"strategy":	"local",
		"email":	"feathers@example.com",
		"password":	"secret"
}

Via	CURL:

curl	'http://localhost:3030/authentication/'	-H	'Content-Type:	application/json'	--data-binary	'{	"strategy":	"
local",	"email":	"feathers@example.com",	"password":	"secret"	}'

With	a	REST	client,	e.g.	Postman:

The	returned	token	can	now	be	used	to	authenticate	the	user	it	was	created	for	by	adding	it	to	the		Authorization	
header	of	new	HTTP	requests.

The	Feathers	client	from	the	frontend	chapter	already	has	authentication	(and	storing	the	generated	token	in
LocalStorage)	built	in	and	can	be	used	by	adding	this	to		public/app.js	:

client.configure(feathers.authentication({
		storage:	window.localStorage
}));

client.authenticate({
		strategy:	'local',
		email:	'feathers@example.com',
		password:	'secret'
}).then(token	=>	{
		console.log('User	is	logged	in');
});

Then	we	can	update		public/app.js		to	look	like	this:

const	socket	=	io();
const	client	=	feathers();

Adding	authentication

92

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://app.getpostman.com/run-collection/9668636a9596d1e4a496
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://app.getpostman.com/run-collection/9668636a9596d1e4a496


//	Create	the	Feathers	application	with	a	`socketio`	connection
client.configure(feathers.socketio(socket));

//	Get	the	service	for	our	`messages`	endpoint
const	messages	=	client.service('messages');

//	Configure	authentication
client.configure(feathers.authentication({
		storage:	window.localStorage
}));

client.authenticate({
		strategy:	'local',
		email:	'feathers@example.com',
		password:	'secret'
}).then((token)	=>	{
		console.log('User	is	logged	in',	token);

		//	At	this	point	we	have	a	valid	token,	so	we	can	fetch	restricted	data.
		messages.find().then(page	=>	page.data.forEach(addMessage));
		messages.on('created',	addMessage);
});

//	Add	a	new	message	to	the	list
function	addMessage(message)	{
		const	chat	=	document.querySelector('.chat');

		chat.insertAdjacentHTML('beforeend',	`<div	class="message	flex	flex-row">
				<img	src="https://placeimg.com/64/64/any"	alt="${message.name}"	class="avatar">
				<div	class="message-wrapper">
						<p	class="message-header">
								<span	class="username	font-600">${message.name}</span>
						</p>
						<p	class="message-content	font-300">${message.text}</p>
				</div>
		</div>`);

		chat.scrollTop	=	chat.scrollHeight	-	chat.clientHeight;
}

document.getElementById('send-message').addEventListener('submit',	function(ev)	{
		const	nameInput	=	document.querySelector('[name="name"]');
		//	This	is	the	message	text	input	field
		const	textInput	=	document.querySelector('[name="text"]');

		//	Create	a	new	message	and	then	clear	the	input	field
		client.service('messages').create({
				text:	textInput.value,
				name:	nameInput.value
		}).then(()	=>	{
				textInput.value	=	'';
		});
		ev.preventDefault();
});

Securing	the	messages	service
Now	we	have	to	restrict	our	messages	service	to	authenticated	users.	If	we	run		feathers	generate	authentication	
before	generating	other	services	it	will	ask	if	the	service	should	be	restricted	to	authenticated	users.	Because	we
created	the	messages	service	first,	however	we	have	to	update		src/services/messages/messages.hooks.js		manually	to
look	like	this:

const	{	authenticate	}	=	require('feathers-authentication').hooks;

Adding	authentication

93



module.exports	=	{
		before:	{
				all:	[	authenticate('jwt')	],
				find:	[],
				get:	[],
				create:	[],
				update:	[],
				patch:	[],
				remove:	[]
		},

		after:	{
				all:	[],
				find:	[],
				get:	[],
				create:	[],
				update:	[],
				patch:	[],
				remove:	[]
		},

		error:	{
				all:	[],
				find:	[],
				get:	[],
				create:	[],
				update:	[],
				patch:	[],
				remove:	[]
		}
};

This	will	now	only	allow	users	with	a	valid	JWT	to	access	the	service.

What's	next?
In	this	chapter	we	initialized	authentication	and	created	a	user	and	JWT.	We	can	now	use	that	user	information	to
process	new	message	data.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Adding	authentication

94

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Chat-Authentication


Processing	data
Now	that	we	can	create	and	authenticate	users,	we	are	going	to	process	data,	sanitize	the	input	we	get	from	the	client
and	add	additional	information.

Sanitizing	new	message
When	creating	a	new	message,	we	automatically	want	to	sanitize	HTML	input,	add	the	user	that	sent	it	and	include
the	date	the	message	has	been	created	before	saving	it	in	the	database.	This	is	where	hooks	come	into	play,	in	our
case	specifically	a	before	hook.	To	create	a	new	hook	we	can	run:

feathers	generate	hook

The	hook	we	want	to	create	will	be	called		process-message	.	Since	we	want	to	pre-process	our	data,	the	next	prompt
asking	for	what	kind	of	hook,	we	will	choose		before		from	the	list.

Next	we	will	see	a	list	of	all	our	services	we	can	add	this	hook	to.	For	this	hook	we	will	only	choose	the		messages	
service	(navigate	to	the	entry	with	the	arrow	keys	and	select	it	with	the	space	key).

A	hook	can	run	before	any	number	of	service	methods,	for	this	one	we	will	only	select		create	.	After	confirming	the
last	prompt	we	will	see	something	like	this:

This	will	create	our	hook	and	wire	it	up	to	the	service	we	selected.	Now	it	is	time	to	add	some	code.	Update
	src/hooks/process-message.js		to	look	like	this:

'use	strict';

//	Use	this	hook	to	manipulate	incoming	or	outgoing	data.
//	For	more	information	on	hooks	see:	http://docs.feathersjs.com/api/hooks.html

module.exports	=	function()	{
		return	function(hook)	{
				//	The	authenticated	user
				const	user	=	hook.params.user;
				//	The	actual	message	text
				const	text	=	hook.data.text
						//	Messages	can't	be	longer	than	400	characters
						.substring(0,	400)
						//	Do	some	basic	HTML	escaping
						.replace(/&/g,'&amp;').replace(/</g,'&lt;').replace(/>/g,'&gt;');

				//	Override	the	original	data
				hook.data	=	{
						text,
						//	Set	the	user	id
						userId:	user._id,
						//	Add	the	current	time	via	`getTime`
						createdAt:	new	Date().getTime()

Processing	data

95



				};

				//	Hooks	can	either	return	nothing	or	a	promise
				//	that	resolves	with	the	`hook`	object	for	asynchronous	operations
				return	Promise.resolve(hook);
		};
};

This	will	do	several	things:

1.	 Truncate	the	messages		text		property	to	400	characters	and	do	some	basic	HTML	escaping.
2.	 Update	the	data	submitted	to	the	database	to	contain

The	new	truncated	and	sanitized	text
The	currently	authenticated	user	(so	we	always	know	who	sent	it)
The	current	(creation)	date

3.	 Return	a	Promise	that	resolves	with	the	hook	object	(this	is	what	any	hook	should	return)

Adding	a	user	avatar
Let's	create	one	more	hook	that	adds	a	link	to	the	Gravatar	image	of	the	users	email	address	so	we	can	show	an
avatar.	After	running

feathers	generate	hook

The	selections	are	almost	the	same	as	our	previous	hook:

The	hook	will	be	called		gravatar	
It	will	be	a		before		hook
On	the		users		service
For	the		create		method

Then	we	update		src/hooks/gravatar.js		with	the	following	code:

'use	strict';

//	Use	this	hook	to	manipulate	incoming	or	outgoing	data.
//	For	more	information	on	hooks	see:	http://docs.feathersjs.com/api/hooks.html

//	We	need	this	to	create	the	MD5	hash
const	crypto	=	require('crypto');

//	The	Gravatar	image	service
const	gravatarUrl	=	'https://s.gravatar.com/avatar';
//	The	size	query.	Our	chat	needs	60px	images
const	query	=	's=60';

module.exports	=	function()	{
		return	function(hook)	{
				//	The	user	email
				const	{	email	}	=	hook.data;

Processing	data

96

http://en.gravatar.com/


				//	Gravatar	uses	MD5	hashes	from	an	email	address	to	get	the	image
				const	hash	=	crypto.createHash('md5').update(email).digest('hex');

				hook.data.avatar	=	`${gravatarUrl}/${hash}?${query}`;

				//	Hooks	can	either	return	nothing	or	a	promise
				//	that	resolves	with	the	`hook`	object	for	asynchronous	operations
				return	Promise.resolve(hook);
		};
};

Here	we	use	Node's	crypto	library	to	create	an	MD5	hash	of	the	users	email	address.	This	is	what	Gravatar	uses	as
the	URL	for	the	avatar	of	an	email	address.	If	we	now	create	a	new	user	it	will	add	the	link	to	the	image	in	the
	gravatar		property.

Populating	the	message	sender
In	the		process-message		hook	we	are	currently	just	storing	the	users		_id		in	the	message.	We	want	to	show	more
than	the		_id		in	the	UI,	so	we'll	need	to	populate	more	data	in	the	message	response.	In	order	to	show	the	right	user
information	we	want	to	include	that	information	in	our	messages.

We	could	do	this	by	creating	our	own	hook	but	adding	related	entities	is	quite	common	and	already	implement	in	the
populate	common	hook.	In	order	to	use	the	hook	we	have	to	update	the		src/services/messages/messages.hooks.js		file
to	look	like	this:

'use	strict';

const	{	authenticate	}	=	require('feathers-authentication').hooks;
const	{	populate	}	=	require('feathers-hooks-common');
const	processMessage	=	require('../../hooks/process-message');

module.exports	=	{
		before:	{
				all:	[	authenticate('jwt')	],
				find:	[],
				get:	[],
				create:	[	processMessage()	],
				update:	[	processMessage()	],
				patch:	[	processMessage()	],
				remove:	[]
		},

		after:	{
				all:	[
						populate({
								schema:	{
										include:	[{
												service:	'users',
												nameAs:	'user',
												parentField:	'userId',
												childField:	'_id'
										}]
								}
						})
				],
				find:	[],
				get:	[],
				create:	[],
				update:	[],
				patch:	[],
				remove:	[]
		},

Processing	data

97

https://nodejs.org/api/crypto.html


		error:	{
				all:	[],
				find:	[],
				get:	[],
				create:	[],
				update:	[],
				patch:	[],
				remove:	[]
		}
};

This	will	include	the		user		property	using	the		userId	,	retrieving	it	from	the		users		service	to	all	messages.

You	can	learn	more	about	how	the		populate		hook	works	by	checking	out	the	API	docs	for		feathers-hooks-common	.

What's	next?
In	this	section	we	added	three	hooks	to	pre-	and	postprocess	our	message	and	user	data.	We	now	have	a	complete
API	to	send	and	retrieve	messages	including	authentication.

See	the	frameworks	section	for	more	resources	on	specific	frameworks	like	React,	React	Native,	Angular	or	VueJS.
You'll	find	guides	for	creating	a	complete	chat	frontend	with	signup,	logging,	user	listing	and	messages.	There	are	also
links	to	full	example	chat	applications	built	with	some	popular	frontend	frameworks.

You	can	also	browse	the	API	which	has	a	lot	of	information	on	the	usage	of	Feathers	and	its	database	adaptors.

Is	anything	wrong,	unclear,	missing?

Leave	a	comment.

Processing	data

98

https://github.com/feathersjs/feathers-docs/issues/new?title=Comment:Chat-Processing


Integrating	with	Frontend	Frameworks

Feathers	Chat	Applications
These	guides	show	how	to	integrate	the	Feathers	Chat	application	with	various	frontend	frameworks.

Full	Feathers	Chat	Examples
While	we're	working	on	the	guides,	you	can	check	out	example	applications	in	the	feathers-chat	and	feathers-chat-
vuex	repos.

Feathers	Chat	-	React
Guide	not	yet	published	on	the	blog.	See	the	full	example	app	here

Feathers	Chat	-	Vue.js	2
Guide	not	yet	published	on	the	blog.

Feathers	Chat	-	Vue.js	2	with		feathers-vuex	
Guide	not	yet	published	on	the	blog.	See	the	full	example	app	here

Vue.js
Integrating	Nuxt	into	your	Feathers	Application
Learn	how	to	integrate	the	Nuxt	server-side	rendering	framework	for	Vue.js	into	your	Feathers	application.

Frameworks

99

https://github.com/feathersjs/feathers-chat
https://github.com/feathersjs/feathers-chat-vuex
https://github.com/feathersjs/feathers-chat-react
https://github.com/feathersjs/feathers-chat-vuex
https://blog.feathersjs.com/ssr-vuejs-app-with-feathers-and-nuxt-bb7dfd3e6397


Authentication	Guides	&	Recipes
How	JWT	Works
Learn	more	about	JWT	and	how	it	might	differ	from	authentication	methods	you've	used,	previously.	(This	guide	is	a
work	in	progress.)

What's	new	in		feathers-authentication@1.x	
The	new		feathers-authentication		introduces	a	lot	of	changes.	See	what's	new.

Migrating	to		feathers-authentication@1.x	
See	what	needs	to	change	to	upgrade	your	existing	Feathers	application	from		feathers-authentication@0.7.x	.

Auth	Recipe:	Customize	the	JWT	Payload
You	can	customize	the	JWT	payload.	Learn	important	security	implications	before	you	decide	to	do	it.

Auth	Recipe:	Customize	the	Login	Response
Learn	how	you	can	customize	the	response	after	a	user	has	attempted	to	login.

Auth	Recipe:	Create	Endpoints	with	Mixed	Auth
Learn	how	to	setup	an	endpoint	so	that	it	handles	unauthenticated	and	authenticated	users	with	different	responses
for	each.

Auth	Recipe:	Basic	OAuth
Learn	how	OAuth	(Facebook,	Google,	GitHub)	login	works,	and	how	you	can	use	it	in	your	application.

Authentication

100

https://github.com/feathersjs/feathers-authentication/blob/master/docs/new-1.0-features.md
https://github.com/feathersjs/feathers-authentication/blob/master/docs/migrating.md


How	JSON	Web	Tokens	Work
This	guide	is	a	work	in	progress.	There's	some	useful	information	here	while	we	make	it	more	user	friendly	in	the
context	of	Feathers.	In	the	meantime,	here	are	a	couple	of	resources	on	JWT	to	get	more	familiar	with	how	it	works,	in
general:

The	Auth0	JWT	Documentation	-	If	you	want	a	good	high-level	overview.
The	IETF	JWT	Specification	-	If	you	want	to	get	really	technical.

Customizing	the	JWT	Claims
	feathers-authentication@1.x		allows	you	to	customize	the	data	stored	inside	the	JWT.	We	refer	to	the	data	in	the	JWT
as	the		payload	.	There	are	a	few	reserved	attributes,	which	in	the	Official	JWT	Spec	are	called		claims	.	You	can
customize	some	of	these	claims	in	the	JWT	config	options	on	the	server.	To	get	more	familiar	with	the	purpose	of
each		claim	,	please	refer	to	Section	4	of	the	Official	JWT	Specification.

How	JWT	works

101

https://auth0.com/docs/jwt
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519#section-4


FeathersJS	Auth	Recipe:	Customizing	the	Login
Response
The	Auk	release	of	FeathersJS	includes	a	powerful	new	authentication	suite	built	on	top	of	PassportJS.	The	new
plugins	are	very	flexible,	allowing	you	to	customize	nearly	everything.	This	flexibility	required	making	some	changes.
In	this	guide,	we'll	look	at	the	changes	to	the	login	response	and	how	you	can	customize	it.

Changes	to	the	Login	Response
The	previous	version	of		feathers-authentication		always	returned	the	same	response.	It	looked	something	like	this:

{
		token:	'<the	jwt	token>',
		user:	{
				id:	1,
				email:	'my@email.com'
		}
}

The	JWT	also	contained	a	payload	which	held	an		id		property	representing	the	user		id	.	We	found	that	this	was	too
restrictive	for	some	of	our	more	technical	apps.	For	instance,	what	if	you	wanted	to	authenticate	a	device	instead	of	a
user?	Or	what	if	you	want	to	authenticate	both	a	device	and	a	user?	The	old	plugin	couldn't	handle	those	situations.
The	new	one	does.	To	make	it	work,	we	started	by	simplifying	the	response.	The	default	response	now	looks	like	this:

{
		accessToken:	'<the	jwt	token>'
}

The	JWT	also	contains	a	payload	which	has	a		userId		property.

Based	on	the	above,	you	can	see	that	we	still	authenticate	a		user		by	default.	In	this	case,	the		user		is	what	we	call
the		entity	.	It's	the	generic	name	of	what	is	being	authenticated.	It's	customizable,	but	that's	not	covered	in	this
guide.	Instead,	let's	focus	on	what	it	takes	to	add	the	user	in	the	login	response.

Customizing	the	Login	Response
The		/authentication		endpoint	is	now	a	Feathers	service.	It	uses	the		create		method	for	login	and	the		remove	
method	for	logout.	Just	like	with	all	Feathers	services,	you	can	customize	the	response	with	the		hook		API.	For	what
we	want	to	do,	the	important	part	is	the		hook.result	,	which	becomes	the	response	body.	We	can	use	an		after	
hook	to	customize	the		hook.result		to	return	anything	that	we	want:

app.service('/authentication').hooks({
		after:	{
				create:	[
						hook	=>	{
								hook.result.foo	=	'bar';
						}
				]
		}
});

Recipe:	Custom	Login	Response

102

http://www.passportjs.org/


After	a	successful	login,	the		hook.result		already	contains	the		accessToken	.	The	above	example	modified	the
response	to	look	like	this:

{
		accessToken:	'<the	jwt	token>',
		foo:	'bar'
}

Accessing	the	User	Entity
Let's	see	how	to	include	the		user		in	the	response,	as	was	done	in	previous	versions.	The		/authentication		service
modifies	the		hook.params		object	to	contain	the	entity	object	(in	this	case,	the		user	).	With	that	information,	you	might
have	already	figured	out	how	to	get	the	user	into	the	response.	It	just	has	to	be	copied	from		hook.params.user		to	the
	hook.result.user	:

app.service('/authentication').hooks({
		after:	{
				create:	[
						hook	=>	{
								hook.result.user	=	hook.params.user;

								//	Don't	expose	sensitive	information.
								delete	hook.result.user.password;
						}
				]
		}
});

At	this	point,	the	response	now	includes	the		accessToken		and	the		user	.	Now	the	client	won't	have	to	make	an
additional	request	for	the		user		data.	As	is	shown	in	the	above	example,	be	sure	to	not	expose	any	sensitive
information.

Wrapping	Up
You've	now	learned	some	of	the	differences	in	the	new		feathers-authentication		plugin.	Instead	of	using	two
endpoints,	it's	using	a	single	service.	It	also	has	a	simplified	response,	compared	to	before.	Now,	you	can	customize
the	response	to	include	whatever	information	you	need.

Recipe:	Custom	Login	Response

103



FeathersJS	Auth	Recipe:	Customizing	the	JWT
Payload
The	Auk	release	of	FeathersJS	includes	a	powerful	new	authentication	suite	built	on	top	of	PassportJS.	The	new
plugins	are	very	flexible,	allowing	you	to	customize	nearly	everything.	One	feature	added	in	the	latest	release	is	the
ability	to	customize	the	JWT	payload	using	hooks.	Let's	take	a	look	at	what	this	means,	how	to	make	it	work,	and
learn	about	the	potential	pitfalls	you	may	encounter	by	using	it.

The	JWT	Payload
If	you	read	the	resources	on	how	JWT	works,	you'll	know	that	a	JWT	is	an	encoded	string	that	can	contain	a	payload.
For	a	quick	example,	check	out	the	Debugger	on	jwt.io.	The	purple	section	on	jwt.io	is	the	payload.	You'll	also	notice
that	you	can	put	arbitrary	data	in	the	payload.	The	payload	data	gets	encoded	as	the	section	section	of	the	JWT
string.

The	default	JWT	payload	contains	the	following	claims:

const	decode	=	require('jwt-decode')
//	Retrieve	the	token	from	wherever	you've	stored	it.
const	jwt	=	window.localStorage.getItem('feathers-jwt')
const	payload	=	decode(jwt)

payload	===	{
		aud:	'https://yourdomain.com',	//	audience
		exp:	23852348347,	//	expires	at	time
		iat:	23852132232,	//	issued	at	time
		iss:	'feathers',	//	issuer
		sub:	'anonymous',	//	subject
		userId:	1	//	the	user's	id
}

Notice	that	the	payload	is	encoded	and	IS	NOT	ENCRYPTED.	It's	an	important	difference.	It	means	that	you	want	to
be	careful	what	you	store	in	the	JWT	payload.

Customizing	the	Payload	with	Hooks
The	authentication	services	uses	the		params.payload		object	in	the	hook	context	for	the	JWT	payload.	This	means	you
can	customize	the	JWT	by	adding	a	before	hook	after	the		authenticate		hook.

app.service('authentication').hooks({
		before:	{
				create:	[
						authentication.hooks.authenticate(config.strategies),

						//	This	hook	adds	the	`test`	attribute	to	the	JWT	payload	by
						//	modifying	params.payload.
						hook	=>	{
								//	make	sure	params.payload	exists
								hook.params.payload	=	hook.params.payload	||	{}
								//	merge	in	a	`test`	property
								Object.assign(hook.params.payload,	{test:	'test'})
						}
				],
				remove:	[
						authentication.hooks.authenticate('jwt')

Recipe:	Custom	JWT	Payload

104

http://www.passportjs.org/
https://jwt.io/
https://jwt.io/


				]
		}
})

Now	the	payload	will	contain	the		test		attribute:

const	decode	=	require('jwt-decode')
//	Retrieve	the	token	from	wherever	you've	stored	it.
const	jwt	=	window.localStorage.getItem('feathers-jwt')
const	payload	=	decode(jwt)

payload	===	{
		aud:	'https://yourdomain.com',
		exp:	23852348347,
		iat:	23852132232,
		iss:	'feathers',
		sub:	'anonymous',
		userId:	1
		test:	true	//	Here's	the	new	claim	we	just	added
}

Important	Security	Information
As	you	add	data	to	the	JWT	payload	the	token	size	gets	larger.	Try	it	out	on	jwt.io	to	see	for	yourself.	There	is	an
important	security	issue	to	keep	in	mind	when	customizing	the	payload.	This	issue	involves	the	default		HS256	
algorithm	used	to	sign	the	token.

With		HS256	,	there	is	a	relationship	between	the	length	of	the	secret	(which	must	be	a	minimum	of	256-bits)	and	the
length	of	the	encoded	token	(which	varies	with	the	payload).	A	larger	secret-to-payload	ratio	(so	the	secret	is	larger
than	the	JWT)	will	result	in	a	more	secure	JWT.	This	also	means	that	keeping	the	secret	size	the	same	and	increasing
the	payload	size	will	actually	make	your	JWT	comparatively	less	secure.

The	Feathers	generator	creates	a	2048-bit	secret,	by	default,	so	there	is	a	small	amount	of	allowable	space	for	putting
additional	attributes	in	the	JWT	payload.	It's	very	important	to	keep	the	secret-to-payload	length	ratio	as	high	as
possible	to	avoid	brute	force	attacks.	In	a	brute	force	attack,	the	attacker	attempts	to	retrieve	the	secret	by	guessing
the	secret	over	and	over	until	getting	it	right.	If	your	secret	is	compromised,	they	will	be	able	to	create	signed	JWT	with
whatever	payload	they	wish.	In	short,	be	cautious	about	what	you	put	in	your	JWT	payload.

Finally,	remember	that	the	secret	created	by	the	generator	is	meant	for	development	purposes,	only.	You	never	want
to	check	your	production	secret	into	your	version	control	system	(Git,	etc.).	It	is	best	to	put	your	production	secret	in
an	environment	variable	and	reference	it	in	the	app	configuration.

Recipe:	Custom	JWT	Payload

105

https://jwt.io/


FeathersJS	Auth	Recipe:	Create	Endpoints	with	Mixed
Auth
The	Auk	release	of	FeathersJS	includes	a	powerful	new	authentication	suite	built	on	top	of	PassportJS.	It	can	be
customized	to	handle	almost	any	app’s	authentication	requirements.	In	this	guide,	we’ll	look	at	how	to	handle	a	fairly
common	auth	scenario:	Sometimes	an	endpoint	needs	to	serve	different	information	depending	on	whether	the	user	is
authenticated.	An	unauthenticated	user	might	only	see	public	records.	An	authenticated	user	might	be	able	to	see
additional	records.

Setup	the	Authentication	Endpoint
To	get	started,	we	need	a	working	authentication	setup.	Below	is	a	default	configuration	and		authentication.js	.	They
contain	the	same	code	generated	by	the	feathers-cli.	You	can	create	the	below	setup	using	the	following	terminal
commands:

1.	 	npm	install	-g	feathers-cli@latest	
or	
	yarn	global	feathers-cli@latest	

2.	 	mkdir	feathers-demo-local;	cd	feathers-demo-local	
or	a	folder	name	you	prefer.

3.	 	feathers	generate	app	
use	the	default	prompts.

4.	 	feathers	generate	authentication	
Select		Username	+	Password	(Local)		when	prompted	for	a	provider.
Select	the	defaults	for	the	remaining	prompts.

config/default.json:

{
		"host":	"localhost",
		"port":	3030,
		"public":	"../public/",
		"paginate":	{
				"default":	10,
				"max":	50
		},
		"authentication":	{
				"secret":	"99294186737032fedad37dc2e847912e1b9393f44a28101c986f6ba8b8bc0eaab48b5b4c5178f55164973c76f8f98f25
23b860674f01c16a23239a2e7d7790ae9fa00b6de5cc0565e335c6f05f2e17fbee2e8ea0e82402959f1d58b2b2dc5272d09e0c1edf1d364
e9911ecad8172bdc2d41381c9ab319de4979c243925c49165a9914471be0aa647896e981da5aec6801a6dccd1511da11b696d4f6cce3a45
34dab9368661458a466661b1e12170ad21a4045ce1358138caf099fbc19e05532336b5626aa376bc158cf84c6a7e0e3dbbb3af666267c08
de12217c9b55aea501e5c36011779ee9dd2e061d0523ddf71cb1d68f83ea5bb1299ca06003b77f0fc69",
				"strategies":	[
						"jwt",
						"local"
				],
				"path":	"/authentication",
				"service":	"users",
				"jwt":	{
						"header":	{
								"type":	"access"
						},
						"audience":	"https://yourdomain.com",
						"subject":	"anonymous",
						"issuer":	"feathers",
						"algorithm":	"HS256",

Recipe:	Mixed	Auth	Endpoints

106

http://www.passportjs.org/
https://github.com/feathersjs/feathers-cli


						"expiresIn":	"1d"
				},
				"local":	{
						"entity":	"user",
						"service":	"users",
						"usernameField":	"email",
						"passwordField":	"password"
				}
		},
		"nedb":	"../data"
}

src/authentication.js:

'use	strict';

const	authentication	=	require('feathers-authentication');
const	jwt	=	require('feathers-authentication-jwt');
const	local	=	require('feathers-authentication-local');

module.exports	=	function	()	{
		const	app	=	this;
		const	config	=	app.get('authentication');

		app.configure(authentication(config));
		app.configure(jwt());
		app.configure(local(config.local));

		app.service('authentication').hooks({
				before:	{
						create:	[
								authentication.hooks.authenticate(config.strategies)
						],
						remove:	[
								authentication.hooks.authenticate('jwt')
						]
				}
		});
};

Set	up	a	“Mixed	Auth”	Endpoint
Now	we	need	to	setup	an	endpoint	to	handle	both	unauthenticated	and	authenticated	users.	For	this	example,	we’ll
use	the		/users		service	that	was	already	created	by	the	authentication	generator.	Let’s	suppose	that	our	application
requires	that	each		user		record	will	contain	a		public		boolean	property.	Each	record	will	look	something	like	this:

{
		id:	1,
		email:	'my@email.com'
		password:	"password",
		public:	true
}

If	a		user		record	contains		public:	true	,	then	unauthenticated	users	should	be	able	to	access	it.	Let’s	see	how	to
use	the		iff		and		else		conditional	hooks	from		feathers-hooks-common		to	make	this	happen.	Be	sure	to	read	the		iff
hook	API	docs		and		else	hook	API	docs		if	you	haven’t,	yet.

We’re	going	to	use	the		iff		hook	to	authenticate	users	only	if	a	token	is	in	the	request.	The		feathers-authentication-
jwt		plugin,	which	we	used	in		src/authentication.js	,	includes	a	token	extractor.	If	a	request	includes	a	token,	it	will
automatically	be	available	inside	the		hook		object	at		hook.params.token	.

Recipe:	Mixed	Auth	Endpoints

107



src/services/users/users.hooks.js
(This	example	only	shows	the		find		method's		before		hooks.)

'use	strict';

const	{	authenticate	}	=	require('feathers-authentication').hooks;
const	commonHooks	=	require('feathers-hooks-common');

module.exports	=	{
		before:	{
				find:	[
						//	If	a	token	was	included,	authenticate	it	with	the	`jwt`	strategy.
						commonHooks.iff(
								hook	=>	hook.params.token,
								authenticate('jwt')
						//	No	token	was	found,	so	limit	the	query	to	include	`public:	true`
						).else(	hook	=>	Object.assign(hook.params.query,	{	public:	true	})	)
				]
		}
};

Let’s	break	down	the	above	example.	We	setup	the		find		method	of	the		/users		service	with	an		iff		conditional
before	hook:

iff(
		hook	=>	hook.params.token,
		authenticate(‘jwt’)
)

For	this	application,	the	above	snippet	is	equivalent	to	the	snippet,	below.

hook	=>	{
		if	(hook.params.token)	{
				return	authenticate(‘jwt’)
		}	else	{
				return	Promise.resolve(hook)
		}
}

The		iff		hook	is	actually	more	capable	than	the	simple	demonstration,	above.	It	can	handle	an	async	predicate
expression.	This	would	be	equivalent	to	being	able	to	pass	a		promise		inside	the		if		statement's	parentheses.	It	also
allows	us	to	chain	an		.else()		statement,	which	will	run	if	the	predicate	evaluates	to	false.

.else(	hook	=>	Object.assign(hook.params.query,	{	public:	true	})	)

The	above	statement	simply	adds		public:	true		to	the	query	parameters.	This	limits	the	query	to	only	find		user	
records	that	have	the		public		property	set	to		true	.

Wrapping	Up
With	the	above	code,	we’ve	successfully	setup	a		/users		service	that	responds	differently	to	unauthenticated	and
authenticated	users.	We	used	the		hook.params.token		attribute	to	either	authenticate	a	user	or	to	limit	the	search
query	to	only	public	users.	If	you	become	familiar	with	the	Common	Hooks	API,	you’ll	be	able	to	solve	almost	any
authentication	puzzle.

Recipe:	Mixed	Auth	Endpoints

108



Recipe:	Mixed	Auth	Endpoints

109



FeathersJS	Auth	Recipe:	Set	up	Basic	OAuth	Login
The	Auk	release	of	FeathersJS	includes	a	powerful	new	authentication	suite	built	on	top	of	PassportJS.	This	now
gives	the	Feathers	community	access	to	hundreds	of	authentication	strategies	from	the	Passport	community.	Since
many	of	the	Passport	strategies	are	for	OAuth,	we've	created	two	auth	plugins,		feathers-authentication-oauth1		and
	feathers-authentication-oauth2	.	These	new	plugins	use	a	Passport	strategy	to	allow	OAuth	logins	into	your	app.

Adding	OAuth	authentication	to	your	app	is	a	great	way	to	quickly	allow	users	to	login.	It	allows	the	user	to	use	an
existing	Internet	account	with	another	service	to	login	to	your	app.	Among	lots	of	good	reasons,	it	often	eliminates	the
need	for	the	email	address	verification	dance.	This	is	even	more	likely	for	very	common	OAuth	providers,	like	GitHub,
Google,	and	Facebook.

Simplified	login	is	almost	always	a	good	idea,	but	for	many	developers	implementing	OAuth	can	be	difficult.	Let's	take
a	look	at	how	it	works,	in	general.	After	that,	we'll	see	how	the	new		feathers-authentication		server	plugin	makes	it
easy	to	get	up	and	running.

How	OAuth	Works
There	are	a	couple	of	different	methods	you	can	use	to	implement	OAuth.	Here	are	the	basic	steps	of	the	flow	that	the
	feathers-authentication-oauth1		and		feathers-authentication-oauth2		plugins	use.

1.	 You	register	your	application	with	the	OAuth	Provider.	This	includes	giving	the	provider	a	callback	URL	(more	on
this	later).	The	provider	will	give	you	an	app	identifier	and	an	app	secret.	The	secret	is	basically	a	special
password	for	your	app.

2.	 You	direct	the	user's	browser	to	the	OAuth	provider's	site,	providing	the	app	identifier	in	the	query	string.
3.	 The	content	provider	uses	the	app	identifier	to	retrieve	information	about	your	app.	That	information	is	then

presented	to	the	user	with	a	login	form.	The	user	can	grant	or	deny	access	to	your	application.
4.	 Upon	making	a	decision,	the	provider	redirects	the	user's	browser	to	the	callback	URL	you	setup	in	the	first	step.

It	includes	a	short-lived	authorization	code	in	the	querystring.
5.	 Your	server	sends	a	request	to	the	OAuth	provider's	server.	It	includes	the	authorization	code	and	the	secret.	If

the	authorization	code	and	secret	are	valid,	the	provider	returns	an	OAuth	access	token	to	your	server.	Some
user	data	can	also	be	sent.

6.	 Your	server	can	save	the	user	information	into	the		/users		table.	It	can	also	use	this	access	token	to	make
requests	to	the	provider's	API.	This	same	information	can	also	be	sent	to	the	browser	for	use.

7.	 With	Feathers,	there	is	an	additional	step.	After	logging	in,	a	JWT	access	token	is	stored	in	a	cookie	and	sent	to
the	browser.	The	client	uses	the	JWT	to	authenticate	with	the	server	on	subsequent	requests.

Implementing	OAuth	with	Feathers
The		Feathers-cli		allows	you	to	easily	setup	a	new	application	with	OAuth.	Here	are	the	steps	to	generate	an
application:

1.	 	npm	install	-g	feathers-cli	
or	
	yarn	global	feathers-cli	

2.	 	mkdir	feathers-demo-oauth;	cd	feathers-demo-oauth	
or	a	folder	name	you	prefer.

3.	 	feathers	generate	app	
use	the	default	prompts.

Recipe:	Basic	OAuth

110

http://www.passportjs.org/
https://github.com/feathersjs/feathers-cli


4.	 	feathers	generate	authentication	
Select		Facebook	,		GitHub	,	or		Google		when	prompted	for	a	provider.
This	guide	will	show	how	to	use	GitHub.
Select	the	defaults	for	the	remaining	prompts.

Setting	up	the	OAuth	Provider
To	setup	the	provider,	you	use	each	provider's	website.	Here	are	links	to	common	providers:

Facebook
GitHub
Google

Once	your	app	is	setup,	the	OAuth	provider	will	give	you	a		Client	ID		and		Client	Secret	.

Configuring	Your	Application
Once	you	have	your	app's		Client	ID		and		Client	Secret	,	it's	time	to	setup	the	app	to	communicate	with	the
provider.	Open	the		default.json		configuration	file.	The	generator	added	a	key	to	the	config	for	the	provider	you
selected.	The	below	configuration	example	has	a		github		config.	Copy	over	and	replace	the	placeholders	with	the
	clientID		and		clientSecret	.

config/default.json

{
		"host":	"localhost",
		"port":	3030,
		"public":	"../public/",
		"paginate":	{
				"default":	10,
				"max":	50
		},
		"authentication":	{
				"secret":	"cc71e4f97a80c878491197399aabf74e9c0b115c9f8071e75b306c99c891a54b7171852f8c5508e1fe4dcfaedbb60317
8b0935261928592e487e628f2f669f3a752f2beb3661b29d521b36c8a39e1be6823c0362df5ef1e212d7f2daae789df1065293b98ec9b43
309ffe24dba3a2ec2362c5ce5c9155c6438ec380bc7c56d6a169988c0f6754077c5129e8a0ee5fd85b2182d87f84312387e1bbefebe49ad
1bf2dcf783e7d8cbee40272b141358b8e23150eee5ea8fc04b2a0f3d824e7fa9d46c025c619c3281af91b7a19fd760bccedae379b735c85
024b25a9c91749935b2f29d5b69b2c1ff29368b4aa9cf426d9960302e5e7b903d53e18ccbe2325cf3b6",
				"strategies":	[
						"jwt"
				],
				"path":	"/authentication",
				"service":	"users",
				"jwt":	{
						"header":	{
								"type":	"access"
						},
						"audience":	"https://yourdomain.com",
						"subject":	"anonymous",
						"issuer":	"feathers",
						"algorithm":	"HS256",
						"expiresIn":	"1d"
				},
				"github":	{
						"clientID":	"your	github	client	id",	//	Replace	this	with	your	app's	Client	ID
						"clientSecret":	"your	github	client	secret",	//	Replace	this	with	your	app's	Client	Secret
						"successRedirect":	"/"
				},
				"cookie":	{
						"enabled":	true,

Recipe:	Basic	OAuth

111

https://developers.facebook.com/docs/apps/register
https://github.com/settings/developers
https://developers.google.com/identity/protocols/OAuth2


						"name":	"feathers-jwt",
						"httpOnly":	false,
						"secure":	false
				}
		},
		"nedb":	"../data"
}

Test	Login	with	OAuth
Your	app	is	ready	for	OAuth	logins.	We've	made	it	that	simple!	Let's	try	it	out.	Open	the	file		public/index.html		and
scroll	to	the	bottom.	Add	the	following	code	just	under	the		h2	:

<p	class="center-text"><br/>
		<a	href="/auth/github">Login	With	GitHub</a>
</p>

Now	add	the	following	code	to	the	same	page.	The	first	script	tag	loads	Feathers	Client	from	a	CDN.	The	second
script	loads	Socket.io.	The	third	script	creates	a	Feathers	Client	instance	and	attempts	to	authenticate	with	the	JWT
strategy	upon	page	load.	The	authentication	client	plugin	has	been	configured	with	a		cookie		value	of		feathers-jwt	.

Note:	This	code	loads	the		feathers-client		package	from	a	CDN.	This	is	not	the	recommended	usage	for	most
apps,	but	is	good	for	demonstration	purposes.	We	recommend	using	a	bundler	as	described	in	the	Feathers
Client	API	docs.

<script	src="//unpkg.com/feathers-client@2.0.0/dist/feathers.js"></script>
<script	src="//unpkg.com/socket.io-client@1.7.3/dist/socket.io.js"></script>
<script>
		//	Socket.io	is	exposed	as	the	`io`	global.
		var	socket	=	io('http://localhost:3030',	{transports:	['websocket']});
		//	feathers-client	is	exposed	as	the	`feathers`	global.
		var	feathersClient	=	feathers()
				.configure(feathers.hooks())
				.configure(feathers.socketio(socket))
				.configure(feathers.authentication({
						cookie:	'feathers-jwt'
				}));

		feathersClient.authenticate()
				.then(response	=>	{
						console.info('Feathers	Client	has	Authenticated	with	the	JWT	access	token!');
						console.log(response);
				})
				.catch(error	=>	{
						console.info('We	have	not	logged	in	with	OAuth,	yet.		This	means	there\'s	no	cookie	storing	the	accessTok
en.		As	a	result,	feathersClient.authenticate()	failed.');
						console.log(error);
				});
</script>

Now,	run	the	server,	open		http://localhost:3030	.	Before	you	click	the	"Login	with	GitHub"	link,	open	the	console.	If
you	refresh	you'll	see	the	message	in	the	catch	block.	Since	we	haven't	logged	in,	yet,	we	don't	have	a	stored	JWT
access	token.	Now,	click	the		Login	with	GitHub		button.	Assuming	you	haven't	logged	in	to	Github	with	this
application,	before,	you'll	see	a	GitHub	login	page.	Once	you	login	to	GitHub,	you'll	be	redirected	back	to
	http://localhost:3030	.	Now,	if	you	look	at	your	console,	you	should	see	a	success	message.

What	just	happened?	When	you	clicked	on	that	link,	it	opened	the		/auth/github		link,	which	is	just	a	shortcut	for
redirecting	to	GitHub	with	your		Client	ID	.	The	entire	OAuth	process	that	we	described	earlier	took	place.	The
browser	received	a		feathers-jwt		cookie	from	the	server.	Finally	the	script	that	we	added	in	the	last	step	used	the

Recipe:	Basic	OAuth

112



	feathers-authentication-client		to	authenticate	using	the	JWT	returned	from	the	server.	There	were	a	lot	of	steps
that	happened	in	a	very	short	time.	The	best	news	is	that	you're	authenticated	with	OAuth.

Wrapping	Up
You've	now	seen	how	OAuth	login	is	greatly	simplified	with	the	new	Feathers	Authentication	plugins.	Having	plugins
built	on	top	of	PassportJS	allows	for	a	lot	of	flexibility.	You	can	now	build	nearly	any	authentication	experience
imaginable.	In	the	final	part	of	this	guide,	you	were	able	to	authenticate	the	Feathers	client.	Hopefully	this	will	get	you
started	integrating	OAuth	into	your	application.

Recipe:	Basic	OAuth

113



Offline-first

The	Landscape
Customers	are	increasingly	purchasing	goods	and	services	using	smartphones,	either	through	native	or	web
applications.	And,	they	want	to	make	these	purchases	wherever	they	may	be,	whether	it’s	inside	trains,	in	the
countryside	or	roaming	in	foreign	countries.

However,	mobile	networks	are	still	known	to	be	unreliable.	Even	in	highly	covered	areas	and	with	modern	networks,
you	still	encounter	high	latency	and	network	failure	rates.	But	it’s	not	just	the	network	at	fault	here:	the	customer
experience	for	failure	rates	also	depends	on	how	a	given	application	deals	with	being	offline.

In	one	extreme	end	of	the	quality	spectrum,	you	have	an	application	that,	when	a	network	error	occurs,	the	application
presents	the	user	with	a	crude	error	message	and	no	clue	of	how	to	recover.

On	the	opposite	end	of	the	spectrum	are	applications	that	automatically	deal	with	network	failures	—	this	is	the	good
end	of	the	spectrum.

Offline	first

114



(*)

What	is	Offline-first?
Offline-first	is	a	way	of	building	applications	where	having	network	connectivity	is	an	enhancement,	not	a	necessity.
Instead	of	building	applications	with	the	always-on	desktop	mindset,	when	you	build	applications	in	which	the	default
mode	is	offline,	you’re	prone	to	deliver	a	better	overall	customer	experience.

Offline-first	techniques	and	technologies	exist	to	prepare	an	application	to	deliver	a	good	experience	to	customers
while	it’s	offline.

(*)

Client	has	Local	Data
The	only	way	that	an	application	can	access	data	while	it’s	offline	is,	of	course,	to	store	that	data	locally.

Your	application	prefers	reading	from	the	local	source,	while	that	local	data	is	updated	from	remote	sources.

Offline	first

115



The	First	Generation	of	Offline-first	(*)
Some	database	technologies	exist	that	work	on	the	client	side.	SQLite	is	the	reference	of	embeddable	databases	and
it’s	often	used	on	native	applications.	In	the	web	realm,	PouchDB	offers	a	document	store	on	top	of	the	storage	the
browser	offers.	PouchDB	also	has	some	nice	features	—	it	can	sync	with	a	back-end	CouchDB	server,	Cloudant,	a
PouchDB	Node.js	server	or	any	other	database	that	implements	the	CouchDB	replication	protocol.

In	this	architecture,	each	client	has	its	own	dedicated	database,	which	is	then	replicated	to	a	dedicated	database	on
the	back-end.	Each	database	may	then	contain	the	customer	documents.	(A	document	is	a	JSON	object	that	may
contain	any	arbitrary	data).

One	database	per	customer	may	sound	strange	to	people	who	are	used	to	relational	databases,	but	it’s	a	usual
pattern	when	using	CouchDB	and	variants.	It’s	also	a	way	to	clearly	and	naturally	separate	and	enforce	which	data	a
user	has	access	to.

When	a	change	happens	on	the	client	or	on	the	server,	the	sync	protocol	kicks	in	and	tries	to	replicate	that	change	to
the	other	side.	If	no	network	connection	is	possible	at	that	time,	the	client	will	try	to	reconnect.	Once	a	connection	is
possible,	both	databases	will	be	able	to	talk	to	each	other	and	synchronize.

In	this	architecture,	both	the	client	and	the	server	can	make	changes	to	the	data	concurrently.	If	a	conflict	arises	for	a
given	document,	the	replication	protocol	makes	sure	that	both	databases	converge	to	the	same	version	of	that
document.	When	a	conflict	happens,	Pouch	and	CouchDB	keep	all	the	conflict	data	around.	If	the	programmer	so
wishes,	they	can	solve	that	conflict	with	any	strategy	they	deem	correct	and	that	minimizes	data	loss.

(*)

Issues
One	database	per	customer	is	logically	reasonable	for	many	mobile	applications	as	customers	don't	interact	in	such
applications.	However	a	successful	application	may	end	up	having	thousands	of	databases,	one	for	each	of	its
thousands	of	customers.	You	can	use	tools,	such	as	those	provided	by	IBM,	which	maintain	only	one	database	but
makes	it	look	like	many	individual	CouchDB	databases.

A	second	issue	is	that	the	remote	and	local	databases	synchronize	by	replication.	The	only	way	to	make	replication
realtime	is	to	start	a	synchronization	cycle	every	time	any	data	changes	on	either	the	remote	of	the	local	database.

This	is	overhead	to	consider	even	when	you	have	one	database	per	client.	When	the	same	data	is	shared	by	clients,
providing	realtime	updates	to	all	of	them	is	problematic,	as	a	replication	cycle	is	needed	for	each	client.

Feathers	Offline-first
Feathers	has	unique	foundational	features	which	are	useful	for	implementing	offline-first.

First,	local	applications	can	easily	mutate	remote	databases.	This	means	we	can	add	a	hook	to	a	local	database	so
that,	whenever	it	is	locally	mutated,	the	hook	can	optimistically	mutate	the	remote	database.

Offline	first

116



Second,	local	applications	know	when	a	remote	database	is	mutated	as	that	mutation	emits	a	Feathers	realtime	event
on	the	client.

Feathers	offline-first	therefore	reacts	in	realtime	when	connected,	employing	a	replication	strategy	only	when
disconnected.	This	makes	applications	using	it	less	sluggish.

Importantly,	Feathers	offline-first	allows	a	client	database	to	reflect	only	a	portion	of	the	remote	database.	So
information	for	all	customers	can	reside	in	one	database,	with	each	client	seeing	only	those	items	its	allowed	to.

No	universal	solution
There	is	no	one	universal	solution	to	implementing	offline-first.	The	end.

For	each	application,	you	have	to:

assess	the	problem

Offline	first

117



determine	the	correct	solution
implement	the	right	code

In	this	order	please!

Many	mobile	applications	only	need	a	read-only	local	database	which	is	infrequently	refreshed.	Why	would	you
implement	a	complex	replication	strategy	in	such	cases?

Feathers	offline-first	provides	several	strategies	for	implementing	offline-first.	Determine	your	application's	needs	and
then	choose	the	simplest	strategy	which	satisfies	them.

Sources:

(*)	Pedro	Teixeira

Offline	first

118

https://thenewstack.io/build-better-customer-experience-applications-using-offline-first-principles/


Strategies
Comparison	of	Strategies

Feathers	offline-first	provides	several	increasingly	sophisticated	strategies.	Its	generally	straightforward	to	change
your	application	to	use	a	more	sophisticated	one	(except	for	snapshot).

ProTip:	The	snapshot	and	realtime	(with	optimistic	mutation	while	connected)	strategies	are	available	at	this
time.

The	features	for	each	strategy	are	shown	below.

Feature................... snap
shot

real
time

optimistic
mutation

own-data
own-net

sync-data
sync-net

time-
travel

Replicate	partial
table

-	using	query	syntax Y Y Y Y Y

-	using	JS	functions - Y Y Y Y

Snapshot	data	on
connect Y Y Y Y Y

Is	a	uuid(1)	field
required? - - Y Y Y

Remote	changes
mutate	client - Y Y Y Y

-	minimal	service
events - Y Y Y Y

Client	can	mutate
remote	data

-	with	remote	service
calls - Y Y Y Y

-	optimistic	client
mutation - Y Y Y

Keep	queue	while
disconnected

-	Keep	every	call - - - own-data sync-data

-	Only	record	net
change - - - own-net sync-net

Process	queue	on
reconnection - - - Y Y

-	Conflict	resolution
handling - - - - Y

Snapshot	data	on
reconnect

- Y Y Y Y

Repository (2) (3) (4) tba tba tba tba

Strategies

119



ProTip:	Note	that	the	realtime	strategy	supports	optimistic	mutation	only	while	connected.

ProTip:	It	is	also	your	responsibility	to	inform	the	replicator	when	a	connection	is	(re)established	or	lost	using
	replicator.connect()		and		replicator.disconnect()	.	A	repo	handling	this	for	both	browser	and	react	native	is
planned	but	not	yet	avalilable.

(1)	Universally	unique	identifier	(uuid)
(2)	feathers-offline-snapshot
(3)	feathers-offline-realtime
(4)	feathers-offline-realtime	with	/optimistic-mutator

Strategies

120

https://en.wikipedia.org/wiki/Universally_unique_identifier


Snapshot

What	is	the	Snapshot	strategy?
Snapshot	distributes	data	exactly	as	it	appears	at	a	specific	moment	in	time	and	does	not	monitor	for	updates	to	the
data.	When	synchronization	occurs,	the	entire	snapshot	is	generated	and	sent	to	client	service.

Snapshot	can	be	used	by	itself,	but	the	snapshot	process	is	also	commonly	used	to	provide	the	initial	set	of
data	for	all	the	other	strategies.

Using	Snapshot	by	itself	is	most	appropriate	when	one	or	more	of	the	following	is	true:

Data	changes	infrequently.
It	is	acceptable	to	have	copies	of	data	that	are	out	of	date	with	respect	to	the	remote	service	for	a	period	of	time.
Replicating	small	or	medium	volumes	of	data.
A	large	volume	of	changes	occurs	over	a	short	period	of	time.
Keep	the	current	values	after	having	lost	connection	for	some	time.

Snapshot	replication	is	most	appropriate	when	data	changes	are	substantial	but	infrequent.	For	example,	if	a	sales
organization	maintains	a	product	price	list	and	the	prices	are	all	updated	at	the	same	time	once	or	twice	each	year,
replicating	the	entire	snapshot	of	data	after	it	has	changed	is	recommended.	Given	certain	types	of	data,	more
frequent	snapshots	may	also	be	appropriate.	For	example,	if	a	relatively	small	table	is	updated	on	a	remote	service
during	the	day,	but	some	latency	is	acceptable,	changes	can	be	delivered	nightly	as	a	snapshot.

Snapshot	has	a	lower	continuous	overhead	on	both	the	client	and	the	remote	than	the	other	strategies,	because
incremental	changes	are	not	tracked.	However,	if	the	dataset	set	is	very	large,	it	will	require	substantial	resources	to
generate	and	apply	the	snapshot.	Consider	the	size	of	the	entire	data	set	and	the	frequency	of	changes	to	the	data
when	evaluating	whether	to	utilize	snapshot	replication.

(*)

Snapshot	Case	Study
Let's	consider	a	mobile	application	for	movie	cinemas,	which	lists	show	times.

Snapshot

121



Let's	assess	the	data	problem.

Cinemas	change	once	a	year.
The	schedule	changes	every	Thursday.
The	static	information	rarely	changes.
We	need	to	support	ticket	reservations.
We	don't	need	past	data.

Let's	look	at	the	data.	We	need:

12	cimema	photos	+	their	names	+	coordinates
25	film	posters	+	film	names
30	movie	times	for	each	cinemas

This	is	about	7k	of	files	and	2M	of	photos,	which	takes	less	space	than	1	Facebook	photo.

The	problem	definition	contains	the	solution:

Snapshot

122



The	snapshot	strategy	is	the	simplest	one	to	satisfy	the	needs.

How	about	ticket	reservations?	You	got	to	do	some	things	online!	However,	you	can	still	give	a	telephone	number.

(**)

Sources:

(*)	Microsoft
(**)	MarinTodorov

Snapshot

123

https://docs.microsoft.com/en-us/sql/relational-databases/replication/snapshot-replication
https://www.slideshare.net/MarinTodorov/overcome-your-fear-of-implementing-offline-mode-in-your-apps?next_slideshow=1


Realtime

What	is	the	Realtime	strategy?
Realtime	is	also	commonly	called	transactional	replication.

Realtime	typically	starts	with	a	snapshot	of	the	remote	database	data.	As	soon	as	the	initial	snapshot	is	taken,
subsequent	data	changes	made	at	the	remote	are	delivered	to	the	client	as	they	occur	(in	near	real	time).	The	data
changes	are	applied	at	the	client	in	the	same	order	as	they	occurred	at	the	remote.

Realtime	is	appropriate	in	each	of	the	following	cases:

You	want	incremental	changes	to	be	propagated	to	clients	as	they	occur.
The	application	requires	low	latency	between	the	time	changes	are	made	at	the	remote	and	the	changes	arrive	at
the	client.
The	application	requires	access	to	intermediate	data	states.	For	example,	if	a	row	changes	five	times,	realtime
allows	an	application	to	respond	to	each	change	(such	as	running	hooks),	not	simply	to	the	net	data	change	to
the	row.
The	remote	has	a	very	high	volume	of	create,	update,	patch,	and	remove	activity.

Realtime	Case	Study
Let's	consider	an	application	which	shows	historical	stock	prices.

The	realtime	strategy	would	snapshot	the	initial	historical	data.	It	would	then	update	the	local	data	with	every	addition
or	other	mutation	made	on	the	remote.

ProTip:	You	should	check	that		replicator.connected	===	true		before	doing	a	mutation	either	by	calling	the
remote	service	directly	or	using	the	optimistic	mutator.	You	could	display	an	app-wide	status	message	on	the	UI
while	disconnected,	for	example	"There	is	no	connection	to	the	server.	Only	inquiries	are	allowed	at	the
moment."

Realtime

124



Sources:

(*)	Microsoft
(**)	MarinTodorov

Realtime

125

https://docs.microsoft.com/en-us/sql/relational-databases/replication/snapshot-replication
https://www.slideshare.net/MarinTodorov/overcome-your-fear-of-implementing-offline-mode-in-your-apps?next_slideshow=1


Realtime	with	Optimistic	Mutation
Realtime	replication	only	replicates	when	the	client	has	a	connection	to	the	server.	It	also	requires	the	client	be
connected	to	the	server	with	WebSockets.

Using	the	remote	service
You	can	start	a	realtime	replication	and	mutate	the	records	on	the	remote	service.

import	Realtime	from	'feathers-offline-realtime';
const	messages	=	app.service('/messages');

const	messagesRealtime	=	new	Realtime(messages,	{	...	});

messagesRealtime.connect()
		.then(()	=>	messages.create(...)
		.then(data	=>	...	);

The	remote	service	mutates	the	data;	its	service	filter	sends	the	event;	the	realtime	replicator	receives	that	service
event	and	updates	the	client	replica.

ProTip:	This	is	a	straight	forward,	effective	and	simple	approach.

In	this	scenario,	the	replicator	would	emit	the	following	event:

action eventName record records source description

mutated created yes yes 0 remote	service	event

Mutation	delays
There	is	a	delay	between	the	client	running		messages.create(...)		and	the	client	replica	containing	the	new	record.
The	service	call	must	be	transmitted	to	the	server	via	a	WebSocket.	The	remote	service	must	make	the	database	call.
The	database	must	schedule	and	perform	it.	The	service	filters	on	the	server	must	transmits	the	event	to	the	client.
The	replicator	process	the	service	event,	and	then	finally	updates	the	client	replica.

Much	of	the	time	this	delay	is	acceptable.	However	sometimes	it	may	not	be,	particularly	on	mobile	devices	with	their
relatively	slow	connections.

The	realtime	replicator's	optimistic	mutation	may	be	used	to	produce	a	snappier	response	at	the	client.

Optimistic	mutation
Using	optimistic	mutation	is	similar	to	using	the	remote	service	directly.

import	Realtime	from	'feathers-offline-realtime';
import	optimisticMutator	from	'feathers-offline-realtime/optimistic-mutator';
const	messages	=	app.service('/messages');

const	messagesRealtime	=	new	Realtime(messages,	{	uuid:	true	});

app.use('clientMessages',	optimisticMutator({	replicator:	messagesRealtime	}));
const	clientMessages	=	app.service('clientMessages');

Optimistic	mutation

126

https://docs.feathersjs.com/guides/offline-first/configure-realtime.html#event-information


messagesRealtime.connect()
		.then(()	=>	clientMessages.create({	...	}))
		.then(data	=>	...	);

However	what	ensues	is	rather	different.	The	optimistic-mutator	service	immediately	updates	the	client	replica	to	what
it	optimistically	expects	the	final	result	will	be,	and	the	user	can	see	the	change	right	away.	The	replicator	then
emits	an	event.

Next,	the	same	processing	occurs	as	for	a	remote	service	call:	the	call	to	the	server,	the	database	processing,	the
filter,	the	service	event	on	the	client.	Finally	the	replicator	replaces	the	optimistic	copy	of	the	record	with	the	one
provided	by	the	server.	The	replicator	emits	another	event	once	this	happens.

But	what	happens	if	the	remote	service	rejects	the	mutation	with	an	error?	The	replicator	has	kept	a	copy	of	the	record
from	before	the	mutation	and,	once	it	detects	the	error	response,	it	replaces	the	optimistic	copy	of	the	record	with	the
prior	version.	The	replicator	emits	a	different	event	when	this	happen.

In	a	successful	optimistic	mutation,	the	replicator	emits	these	events:

action eventName record records source description

mutated created yes yes 1 optimistic	update

mutated created yes yes 0 remote	service	event

When	the	remote	service	returns	an	error,	the	replicator	emits:

action eventName record records source description

mutated created yes yes 1 optimistic	update

remove removed yes yes 2 remote	service	error

Using	data	in	the	client	replica
The	optimistic	mutator	adapter	has		find		and		get		methods	which	support	the	same	feature	set	as		feathers-
memory	.	This	makes	it	a	great	way	to	retrieve	data	from	the	client	replica.

clientServices.find({	query:	{	username:	'john',	$sort:	{	...	}	}	})
		.then(data	=>	...	);

You	can	also	access	the	client	replica	directly.

Hooks
The	remote	service	may	run	before	and	after	hooks,	and	these	may	affect	the	data	returned.	The	optimistic	value	of
the	record	in	the	client	replica	may	end	up	being	replaced	with	something	different.

ProTip:	This	may	not	make	a	difference	in	many	use	cases.

If	this	is	problematic,	hooks	can	be	defined	on	the	client	for	the	optimistic-mutation	service	to	reflect	what	the	remote
service	does.

If	this	is	still	unsatisfactory,	you	can	always	make	direct	remote	service	calls	and	live	with	the	latency.

Optimistic	mutation

127

https://docs.feathersjs.com/guides/offline-first/configure-realtime.html#event-information
https://docs.feathersjs.com/guides/offline-first/configure-realtime.html#example-using-periodic-inspection


uuid
Optimistic	mutation	requires	that	the	records	contain	a	uuid	property.	()Its	the	only	way	the	replicator	can	match	an
optimistic	create	to	the	created	service	event.)

ProTip:	The		id		value	for	optimistic	mutation	service	calls	must	be	the	value	of	the		uuid		property	in	the	data.

The	optimistic	mutation	service's		create		method	will	automatically	add	a		uuid		property	if	it	does	not	find	one.	You
can	configure	whether	an	industry	standard	32-char	uuid	is	used,	or	if	a	shorter	uuid-like	value	is	used.

ProTip:	There	is	virtually	no	chance	of	collision	with	the	shorter	value	unless	you	work	at	high	scale.

You	can	configure	use	of	the	32-char	uuid,	instead	of	the	default	shorter	value,	with:

const	messagesRealtime	=	new	Realtime(messages,	{	...	});
messagesRealtime.useShortUuid(false);

ProTip:	The	replicator	can	provide	you	with	uuid's	for	other	purposes	with		messagesRealtime.getUuid()	.

Optimistic	mutation

128

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://github.com/dylang/shortid/issues/81#issuecomment-259812835


Own-data	and	Own-net

What	are	the	own-data	and	own-net	strategies?
The	core	data	for	many	mobile	applications	is	unique	to	the	user	using	the	application.	Since	no	one	other	than	the
user	can	change	that	user's	data,	the	client	can	safely	mutate	the	remote	data	without	concern	that	anyone	is	doing
the	same	at	that	same	time.

While	the	client	is	disconnected,	both	strategies	queue	mutation	events	for	later	processing	when	reconnected.	The
difference	between	them	is	what	they	queue.

Own-data	queues	every	mutation	event	on	the	client	service,	and	it	will	later	process	each	mutation	in	order	on	the
remote	service.	The	remote	service	can	react	to	every	mutation.	It	may,	for	example,	run	hooks	which	send	emails	on
certain	mutations.

Own-net	queues	the	net	change	for	each	record.	If	a	record	is	patched	5	times,	own-net	queues	the	record	contents
after	the	last	of	the	changes.	If	a	record	is	created,	patched	and	finally	removed,	the	remote	service	will	not	see	the
mutations	at	all.

Own-net	uses	less	storage	on	the	client,	and	it	reduces	the	load	on	the	remote	service	upon	reconnection.

Once	the	queue	is	processed,	a	snapshot	refreshes	the	client's	replica,	bringing	it	up	to	date.

Own-data	Case	Study
The	realtime	case	study	involved	displaying	historical	stock	prices.	Let's	now	allow	the	user	to	buy	shares	for	his	own
portfolio.

The	user	will	be	disconnected	if	he	takes	a	plane	trip,	and	he	will	no	longer	receive	stock	price	updates.

Own-data,	own-net

129



However	he	can	still	make	stock	purchases.	They	will	be	sent	to	the	server	when	he	reconnects	after	landing.

Sources:

(**)	MarinTodorov

Own-data,	own-net

130

https://www.slideshare.net/MarinTodorov/overcome-your-fear-of-implementing-offline-mode-in-your-apps?next_slideshow=1


Own-data,	own-net

131



Sync-data	and	Sync-net

What	are	the	sync-data	and	sync-net	strategies?
More	complex	applications	may	allow	multiple	users	to	mutate	the	same	data	on	the	remote	service.	sync-data	and
sync-net	are	similar	to	own-data	and	own-net,	however	they	detect	mutation	conflicts	and	help	the	server	resolve
them.

Each	queue	entry	contains	the	contents	of	the	record	before	the	mutation.	So	each	queue-entry	for	sync-data	contains
what	the	record	contained	on	the	client	before	each	mutation.	Each	entry	for	sync-net	contains	what	the	record
contained	before	the	series	of	mutations.

The	remote	service,	when	processing	the	queued	entries,	compares	what	the	client	service	record	contained	before
the	mutation	to	what	the	remote	service's	record	currently	contains.

If	the	two	are	the	same,	then	the	client	changed	a	record	identical	to	what	the	remote	currently	has.	There	is	no
conflict	and	the	mutation	may	be	performed	on	the	remote.

Let's	say	the	user	of	one	client	device	went	on	a	plane	trip	and	was	offline	for	some	time.	During	that	time	the	user
changed	the	addresses	of	several	branch	offices,	in	particular	the	NYC	one	from		100	Lexington		to		123	Fifth
Avenue	.	In	the	meantime	another	user	changed	the	address	to		123	5-th	Ave.	.

The	queued	mutations	will	be	processed	once	the	user	reconnects	after	his	flight.	The	only	conflict	to	occur	will	be	for
the	NYC	office.	The	mutation	from		100	Lexington		to		123	Fifth	Avenue		conflicts	with	the	record	now	being		123	5-th
Ave.		on	the	remote	service.

The	remote	service's		conflict	resolver	function		will	be	called	with:

the	remote	service's	current	record.
the	client	service's	method	call,	e.g.	'create',	'update',	...
the	client	service's	query	object.
the	client	service's	before	record.
the	record	the	client	service	wants	to	mutate	to.

The	resolver	may	indicate:

the	current	remote	service's	record	is	to	be	retained.

Sync-data,	sync-net

132



the	remote	service's	record	should	be	mutated	to	the	client	service's	record.
what	the	contents	of	the	record	should	now	be.

This	allows	the	remote	service	great	control	over	conflicts.	However,	in	your	particular	use	case,	it	may	be	appropriate
to	adapt	a	last-mutation-wins	strategy	and	also	use	the	client	service's	mutation.

Other	use	cases	may	require	analyzing	the	contents	of	the	two	records	and	applying	business	rules.

Sometimes	own-data	is	sufficient
Let's	say	a	portion	of	your	Neighborhood	Watch	app	allows	residents	to	report	the	location	of	a	suspect	in	realtime,
while	the	neighborhood	waits	for	law	enforcement	to	arrive.	Your	app	may	allow	residents	to	update	the	suspect's
location	by	using	the	mobile's	geolocation.

You	may	decide,	after	assessing	the	application	needs	and	legal	requirements,	to	maintain	only	one	record	which
contains	only	the	suspect's	latest	location.	All	the	residents	will	be	updating	this	one	record.

Sync-data,	sync-net

133

https://en.wikipedia.org/wiki/Neighborhood_watch


In	this	use	case,	although	many	clients	are	updating	the	same	record,	you	might	not	care	about	detecting	mutation
conflicts	among	the	various	clients.	The	app	just	cares	about	the	latest	sighting.

You	have	two	choices.

You	could	use	the	sync-data	strategy	with	the	conflict	resolver	always	choosing	the	client	services's	latest	record,
or
You	could	use	the	own-data	strategy	and	let	the	client	mutations	update	over	one	another	based	solely	on	when
the	clients	do	the	mutation.

Whenever	you	decide	to	always	use	the	client	mutation	in	the	conflict	resolver,	consider	switching	from	the	sync-
strategy	to	a	own-	one,	as	in	such	cases	the	results	are	the	same.

Keep	things	simple
You	don't	always	have	to	choose	the	most	sophisticated	strategy.	Its	harder	to	reason	about	designs	which	are	more
sophisticated.	There	is	a	greater	possibility	of	introducing	errors.	It	requires	a	software	maintainer	understand	more
things	before	working	with	the	code.	Finally,	in	this	case,	it	increases	the	processing	load	on	both	the	server	and	the
client.

Often	the	best	course	is	to	choose	the	simplest	strategy	which	addresses	the	needs.

Sync-data,	sync-net

134



Configure	Snapshot

Installation

npm	install	feathers-offline-snapshot	--save

Documentation

import	snapshot	from	'feathers-offline-snapshot';
snapshot(service,	query).then(records	=>	...);

	service		(required)	-	The	service	to	read.
	query		(optional,	default:		{}	)	-	The	Feathers	query	object	selecting	the	records	to	read.	Some	of	the	props	it
may	include	are:

	$limit		(optional,	default:	200)	-	Records	to	read	at	a	time.	The	service's	configuration	may	limit	the	actual
number	read.
	$skip		(optional,	default:	0)	will	initially	skip	this	number	of	records.
	$sort		(optional,	default:		{}	)	will	sort	the	records.	You	can	sort	on	multiple	props,	for	example		{	field1:
1,	field2:	-1	}	.

Example

const	snapshot	=	require('feathers-offline-snapshot');

const	app	=	...	//	Configure	Feathers,	including	the	`/messages`	service.
const	username	=	...	//	The	username	authenticated	on	this	client
const	messages	=	app.service('/messages');

snapshot(messages,	{	username,	$sort:	{	channel:	1	}	})
		.then(records	=>	{
				console.log(records);
		});

Configure	snapshot

135

https://docs.feathersjs.com/api/databases/querying.html


Configure	Realtime,	with	optimistic	mutation
You	can	keep	on	the	client	a	near	realtime	replica	of	(some	of)	the	records	in	a	service	configured	on	the	server.

You	can	optimistically	create,	modify	and	remove	records	in	the	client	replica	using	standard	Feathers	service	calls.
These	mutations	are	also	asynchronously	performed	on	the	server,	and	those	delayed	results	may	themselves	mutate
the	client	replica.	Any	errors	on	the	server	will	revert	the	data	in	the	client	replica.

These	features	may	make	your	client	more	performant,	so	it	appears	"snappier."

You	can	replicate	just	a	subset	of	the	records	in	the	service	by	providing	an	optional	"publication"	function	which,
given	a	record,	determines	if	the	record	belongs	in	the	publication.	The	publication	function	may	be	as	complicated	as
you	need	though	it	must	be	synchronous.

You	or	some	other	party	may	update	a	record	so	that	it	no	longer	belongs	to	the	publication,	or	so	that	it	newly
belongs.	The	replicator	handles	these	situations.

Many	apps	have	unique	data	for	every	user.	With	publications,	you	can	keep	the	records	for	all	users	in	one	table,
using	the	publication	feature	to	replicate	to	the	client	only	those	records	belonging	to	the	client's	user.

A	snapshot	replication	is	used	to	initially	obtain	the	records.

The	realtime	replicator	can	notify	you	of	data	mutations	by	emitting	an	event	and/or	calling	a	subscription	function	for
every	notification.	You	can	in	addition	periodically	poll	the	replicator	to	obtain	the	current	realtime	records.

ProTip:	By	default,	the	client	will	receive	every	service	event.	You	may	however	use		feathers-offline-
publication	,	as	mentioned	below	for		new	Realtime(service,	options)	,	to	reduce	the	number	of	service	events
received	by	the	client	to	a	minimum.	This	may	noticeable	improve	performance,	especially	on	mobile	devices,
as	the	client	will	consume	less	bandwidth.

ProTip:	You	can	also	filter	these	events	manually.

You	can	control	the	order	of	the	realtime	records	in	the	client	replica	by	providing	a	sorting	function	compatible	with
	array.sort(...)	.	Two	sorting	functions	are	included	in	this	repo	for	your	convenience:

	Realtime.sort(fieldName)		sorts	on	the		fieldName		in	ascending	order.
	Realtime.multiSort({	fieldName1:	1,	fieldName2:	-1	})		sorts	on	multiple	fields	in	either	ascending	or	descending
order.

You	can	dynamically	change	the	sort	order	as	your	needs	change.	This	can	be	useful	for	your	UI.

Snapshot	performance

By	default,	the	publication	function	will	be	run	against	every	record	in	the	service	during	a	snapshot.	This	may	lead	to
inefficiencies	should,	for	example,	a	service	contain	records	for	1,000	users	and	you	want	to	replicate	just	the	records
for	just	one	of	them.

To	avoid	such	situations,	you	may	provide	a	Feathers	query	object,	suitable	for	use	in	a		.find({	query	})		call,	to
reduce	the	number	of	records	read	initially.	The	publication	function	will	still	be	run	against	the	returned	records.

ProTip:	A	publication	function	is	required	whenever	you	provide	the	query	object,	and	the	publication	must	be
at	least	as	restrictive	as	the	query.

ProTip:	You	may	find	it	convenient	to	use	publication	functions	with	the	same	query	object	as	their	input.	For
example		publication:	require('sift').sift({	username:	'John'	)	.

Configure	realtime

136

https://github.com/feathersjs/feathers-offline-snapshot
https://docs.feathersjs.com/api/events.html#event-filtering
https://docs.feathersjs.com/api/databases/querying.html


Installation

npm	install	feathers-offline-realtime	--save

Documentation
Realtime	read-only	replication:

import	Realtime	from	'feathers-offline-realtime';
const	messages	=	app.service('/messages');

const	messagesRealtime	=	new	Realtime(messages,	options);

messagesRealtime.connect()
		.then(()	=>	{
				console.log(messagesRealtime.connected);
				messagesRealtime.changeSort(Realtime.multiSort(...));
		});

Realtime	replication	with	optimistic	mutation:

import	Realtime	from	'feathers-offline-realtime';
import	optimisticMutator	from	'feathers-offline-realtime/optimistic-mutator';
const	messages	=	app.service('/messages');

const	messagesRealtime	=	new	Realtime(messages,	Object.assign({},	options,	{	uuid:	true	}));

const	app	=	feathers()	...
app.use('clientMessages',	optimisticMutator({	replicator:	messagesRealtime	}));
const	clientMessages	=	app.service('clientMessages');

messagesRealtime.connect()
		.then(()	=>	clientMessages.create({	...	}))
		.then(record	=>	{
				console.log(messagesRealtime.connected,	record);
				messagesRealtime.changeSort(Realtime.multiSort(...));
		});

Options:	new	Realtime(service,	options)	-	Create	a	realtime	replicator.

	service		(required)	-	The	service	to	read.
	options		(optional)	-	The	configuration	object.

	publication		(optional	but	required	if		query		is	specified.	Function	with	signature		record	=>	boolean	.)	-
Function	to	determine	if	a	record	belongs	to	the	publication.
	query		(optional)	-	The	Feathers	query	object	to	reduce	the	number	of	records	read	during	the	snapshot.	The
props	$limit,	$skip,	$sort	and	$select	are	not	allowed.
	sort		(required	Function	with	signature		(a,	b)	=>	1	||	-1	||	0	)	-	A	function	compatible	with
	array.sort(...)	.
	subscriber		(optional	Function	with	signature		(records,	{	action,	eventName,	source,	record	})	=>	...	)	-
Function	to	call	on	mutation	events.	See	example	below.
	uuid		(optional	boolean)	-	The	records	contain	a		uuid		field	and	it	should	be	used	as	the	key	rather	than
	id		or		_id	.		uuid:	true		is	required	when	optimistic	mutation	is	being	used.

ProTip:	You	may	want	to	use	some	of	the	common	publications	available	in		feathers-offline-publication	.

Configure	realtime

137

https://docs.feathersjs.com/api/databases/querying.html
https://github.com/feathersjs/feathers-offline-publication/blob/master/src/common-publications.js


ProTip:	You	can	use		clientPublications.addPublication(clientApp,	serviceName,	options)		from		feathers-
offline-publication	.	That	will	not	only	return	a	suitable	function	for		production	,	but	it	will	also	minimize	the
number	of	service	events	received	by	the	client.	This	may	noticeable	improve	performance,	especially	on
mobile	devices,	as	the	client	will	consume	less	bandwidth.

Options:	connect()	-	Create	a	new	snapshot	and	start	listening	to	events.

Options:	disconnect()	-	Stop	listening	to	events.	The	current	realtime	records	remain.

Options:	connected	-	Is	the	replicator	listening	to	Feathers	service	events?

Options:	changeSort(sorter)	-	Change	the	sort	used	for	the	records.

	sorter		(required)	-	Same	as		options.sort	.

Options:	Realtime.sort(name)	-	Suitable	for	use	with		array.sort(...)	.	Sort	on	a	field	in	ascending	order.

	name		(required)	-	The	name	of	the	field	to	sort	on.

Options:	Realtime.multiSort(sortDefn)	-	Suitable	for	use	with		array.sort(...)	.	Sort	on	multiple	fields,	in	ascending
or	descending	order.

	sortDfn		(required)	-	Has	the	format		{	fieldName:	order,	...	}	.
	fieldName		(*required)	-	The	name	of	the	field	to	sort	on.
	order		(required)	-	Use	1	for	ascending	order,	-1	for	descending.

Options:	app.use(path,	optimisticMutator({	replicator	}));	-	Configure	a	service	to	optimistically	mutate	the	client
replica	while	asynchronously	mutating	on	the	server.

	replicator		(required)	-	The	handle	returned	by	the	replicator.
	paginate		(optional)	-	A	pagination	object	containing	a	default	and	max	page	size.

ProTip:	The		id		value	for	these	service	calls	must	be	the	value	of	the		uuid		property	in	the	data.

The		create		method	adds	a		uuid		property	to	the	data	if	none	is	provided.	By	default	this	will	be	a	short,	but	variable-
length,	random	string.	There	is	virtually	no	chance	of	collision	unless	you	work	at	high	scale.

You	can	change	the	default	to	use	the	standard	32-char	uuid	values	by	running

const	messagesRealtime	=	new	Realtime(messages,	{	...	});
messagesRealtime.useShortUuid(false);

ProTip:	Two	events	are	emitted	for	each	optimistic	mutation	of	the	client	replica.	The	first	occurs	when	the
client	replica	is	mutated.	It	is	identified	by		source	=	1		(see	Event	information	below).	A	successful	server
mutation	produces	another	event	having		source	=	0	.	A	failed	server	mutation	reverts	the	record	in	the	client
replica	back	to	its	original	value.	That	produces	an	event	having		source	=	2	.

Example	using	event	emitters

const	Realtime	=	require('feathers-offline-realtime');

const	app	=	...	//	Configure	Feathers,	including	the	`/messages`	service.
const	username	=	...	//	The	username	authenticated	on	this	client
const	messages	=	app.service('/messages');

const	messagesRealtime	=	new	Realtime(messages,	{
		query:	{	username	},
		publication:	record	=>	record.username	===	username	&&	record.inappropriate	===	false,
		sort:	Realtime.multiSort({	channel:	1,	topic:	1	}),

Configure	realtime

138

https://docs.feathersjs.com/api/databases/common.html#pagination
https://github.com/dylang/shortid/issues/81#issuecomment-259812835


});

messagesRealtime.on('events',	(records,	{	action,	eventName,	record	})	=>	{
		console.log('last	mutation:',	action,	eventName,	record);
		console.log('realtime	records:',	records);
		console.log('event	listeners	active:',	messagesRealtime.connected);
});

messagesRealtime.connect()
		.then(()	=>	...);

Example	using	a	subscriber

const	messagesRealtime	=	new	Realtime(messages,	{
		query:	{	username	},
		publication:	record	=>	record.username	===	username	&&	record.inappropriate	===	false,
		sort:	Realtime.multiSort({	channel:	1,	topic:	1	}),
		subscriber
});

messagesRealtime.connect()
		.then(()	=>	...);

function	subscriber(records,	({	action,	eventName,	record	})	=>	{
		console.log('last	mutation:',	action,	eventName,	record);
		console.log('realtime	records:',	records);
		console.log('event	listeners	active:',	messagesRealtime.connected);
}

Example	using	periodic	inspection

const	messagesRealtime	=	new	Realtime(messages,	{
		query:	{	username	},
		publication:	record	=>	record.username	===	username	&&	record.inappropriate	===	false,
		sort:	Realtime.multiSort({	channel:	1,	topic:	1	}),
});

setTimeout(()	=>	{
		const	{	records,	last:	{	action,	eventName,	record	}}	=	messagesRealtime.store;
		console.log('last	mutation:',	action,	eventName,	record);
		console.log('realtime	records:',	records);
		console.log('event	listeners	active:',	messagesRealtime.connected);
},	5	*	60	*	1000);

Example	using	a	publication	with	a	query	object

const	Realtime	=	require('feathers-offline-realtime');
const	sift	=	require('sift');

const	app	=	...	//	Configure	Feathers,	including	the	`/messages`	service.
const	username	=	...	//	The	username	authenticated	on	this	client
const	messages	=	app.service('/messages');
const	query	=	{	username	};

const	messagesRealtime	=	new	Realtime(messages,	{
		query,
		publication:	sift(query),
		sort:	Realtime.multiSort({	channel:	1,	topic:	1	}),

Configure	realtime

139



});

messagesRealtime.on('events',	(records,	{	action,	eventName,	record	})	=>	{
		console.log('last	mutation:',	action,	eventName,	record);
		console.log('realtime	records:',	records);
		console.log('event	listeners	active:',	messagesRealtime.connected);
});

messagesRealtime.connect()
		.then(()	=>	...);

Event	information
All	handlers	receive	the	following	information:

	action		-	The	latest	replication	action.
	eventName		-	The	Feathers	realtime	service	event.
	source		-	Cause	of	mutation:

0	=	service	event.
1	=	optimistic	mutation.
2	=	revert	to	original	record	when	an	optimistic	mutation	results	in	an	error	on	the	server.

	record		-	The	record	associated	with		eventName	.
	records		-	The	realtime,	sorted	records.

action eventName record records source description

snapshot - - yes - snapshot	performed

add-listeners - - yes - started	listening	to	service	events

mutated see	below yes yes yes record	added	to	or	mutated	within
publication

left-pub see	below yes yes yes mutated	record	is	no	longer	within
publication

remove see	below yes yes yes record	within	publication	has	been
deleted

change-sort - - yes - records	resorted	using	the	new	sort
criteria

remove-
listeners - - yes - stopped	listening	to	service	events

|		eventName		may	be		created	,		updated	,		patched		or		removed	.

ProTip:	Two	events	are	emitted	for	each	optimistic	mutation	of	the	client	replica.	The	first	occurs	when	the
client	replica	is	mutated.	It	is	identified	by		source	=	1		(see	Event	information	below).	A	successful	server
mutation	produces	another	event	having		source	=	0	.	A	failed	server	mutation	reverts	the	record	in	the	client
replica	back	to	its	original	value.	That	produces	an	event	having		source	=	2	.

Configure	realtime

140



Configure	Publication

Publications
	publications		are	objects	containing	multiple		publication		functions.	These	functions	determine	if	a	record	belongs
in	the	publication	or	not.	A	sample	publications	is:

const	publications	=	{
		username:	username	=>	data	=>	data.username	===	username,
		active:	()	=>	data	=>	!data.deleted,
};

The	publication		publications.username('john')		selects	all	records	whose		username		is		john	;		publications.active()	
selects	all	logically	active	records.

You	can	use	the	builtin		query		publication	to	selects	records	based	on	the	query	syntax	used	by	MongoDB.	For
example:

import	commonPublications	from	'feathers-offline-publication/lib/common-publications';
commonPublications.query({	username:	'john'	})
`

Minimize	service	events
Once	a	client	associates	a	Feathers	service	with

a	publications	object,	like	the	one	above	or	commonPublications,
a	publication	function	name,	and
params	for	that	function,

then	that	client	will	only	be	sent	service	events	relevant	to	that	publication.	This	may	improve	performance,	especially
for	mobile	devices,	as	the	bandwidth	consumed	by	the	client	is	reduced.

The	server-side	filtering	for	offline-first	generally	needs	to	look	at	both	the	previous	and	the	new	contents	of	the
record,	to	see	if	it	used	to	belong	or	if	it	now	belongs	to	the	publication.

You	can	stash	the	current	value	of	a	record	inside	the	hook	object,	before	mutating	it,	with:

module.exports	=	{
		before:	{
				update:	stashBefore(),
				patch:	stashBefore(),
				remove:	stashBefore(),
		},
};

The	client	will	receive	a	service	event	if	either	the	previous	(stashed)	value	of	the	record,	or	the	new	value	is	within	the
publication.	This	double	check	informs	the	client	of	records	which	previously	belonged	to	the	publication,	but	no	longer
do	so	after	the	mutation.

When	records	remain	in	the	same	publication

Configure	publication

141

https://docs.mongodb.com/manual/reference/operator/query/


Its	not	uncommon,	for	example,	for	mobile	apps	to	have	unique	data	per	user.	Each	service	model	has	a		username	
field	and,	once	that	field	is	set	on		create	,	it	never	changes.

The	client	would	use	a	publication	such	as	the		publications.username('john')		from	above	to	select	only	the	records
for	its	user.

There	is	no	need	in	this	case	to	check	the	previous	(stashed)	value	of	the	record,	and	you	can	eliminate	doing	so	by
not	running	the		stashBefore		hook.	This	would	also	marginally	improve	performance	since		stashBefore		makes	a
	get		call.

Example
On	server:

const	serverPublication	=	require('feathers-offline-publication/lib/server');
const	commonPublications	=	require('feathers-offline-publication/lib/common-publications');
const	app	=	feathers()...

const	port	=	app.get('port');
const	server	=	app.listen(port);

//	Configure	service	event	filters	for	2	services
serverPublication(app,	commonPublications,	['messages',	'channels']);

ProTip:		serverPublication		must	be	called	after	the	server	starts	listening.

On	client:

const	Realtime	=	require('feathers-offline-realtime');
const	clientPublication	=	require('feathers-offline-publication/lib/client');
const	commonPublications	=	require('feathers-offline-publication/lib/common-publications');
const	feathersClient	=	feathers()...

const	messages	=	feathersClient.service('messages');
const	username	=	'john';

//	The	only	service	events	to	arrive	will	be	those	relevant	to	the	publication
messages.on('created',	data	=>	...);
messages.on('updated',	data	=>	...);
messages.on('patched',	data	=>	...);
messages.on('remove',	data	=>	...);

//	Configure	the	publication
const	messagesPublication	=	clientPublication.addPublication(feathersClient,	'messages',	{
		module:	commonPublications,
		name:	'query',
		params:	{	username	},
});

//	The	publication's	filter	function	is	also	available	on	the	client
console.log(messagesPublication({	username:	'john'	}));	//	true
console.log(messagesPublication({	username:	'jack'	}));	//	false

//	Configure	the	replicator
const	messagesRealtime	=	new	Realtime(messages,	{	publication:	messagesPublication	});

Note	that	the	same		publications		object	must	be	provided	both	on	the	server	and	the	client.	Also	note	the	client	may
use	the	resultant	function	for	any	of	its	own	filtering.

Configure	publication

142



Security
An	attacker	may	modify	the		clientPublication.addPublication		call	on	the	client	or	issue	one	of	their	own.

Feathers	supports	multiple	service	events	filters	for	a	method,	and	a	mutation	must	satisfy	them	all	before	being
emitted	to	the	client.	You	can	therefore	add	filters	both	before	and	after	the		serverPublication		call	to	establish	any
additional	security	you	need.

Installation

npm	install	feathers-offline-publication	--save

Documentation

	serverPublication(app,	publications,	...serviceNames)	

Configures	services	on	the	server	which	may	have	publications.	This	also	configures	the	service	event	filters	for	you.

Options:

	app		(required)	-	The	Feathers	server	app.
	publications		(required,	object)	-	The	publications	object.	The	same	object	must	be	used	in
	clientPublication.addPublication	.
	serviceNames		(required,	string	or	array	of	strings)	-	The	service	name	or	names	to	configure	for	publications.

	clientPublication.addPublication(clientApp,	serviceName,
options)	

Configures	a	publication	on	the	client	for	a	remote	service.

Options:

	clientApp		(required)	-	The	Feathers	client	app.
	serviceName		(required,	string)	-	The	service	name	for	which	a	publication	is	being	configured.
	options		(required,	objects)	-	Contains

	module		(required,	object)	-	The	publications	object.	The	same	object	must	be	used	in		serverPublication	.
	name		(required,	string)	-	The	prop	name	of	the	publication	in		module	.
	params		(optional,	any	or	array	of	any)	-	The	parameters	to	call		name		with.
	ifServer		(optional,	boolean,	default	true)	-	If	false,	no	server	publication	is	created,	but	the	selector	function
is	still	returned	to	the	client.

	clientPublication.removePublication(clientApp,	serviceName)	

Removes	the	publication	for	a	remote	service,	and	stops	filtering	on	the	server.

ProTip:	The	client	will	receive	service	events	for	all	mutations.

Options:

	clientApp		(required)	-	The	Feathers	client	app.
	serviceName		(required,	string)	-	The	service	name	whose	publication	is	being	removed.

Configure	publication

143



	commonPublications.query(selection)	

A	publication	which	selects	records	based	on	the	query	syntax	used	by	MongoDB.

Options:

	selection		(required)	-	The	query	object.
Supported	operators:	$in,	$nin,	$exists,	$gte,	$gt,	$lte,	$lt,	$eq,	$ne,	$mod,	$all,	$and,	$or,	$nor,	$not,	$size,
$type,	$regex,	$where,	$elemMatch
Regexp	searches
Function	filtering
sub	object	searching
dot	notation	searching
Custom	Expressions
filtering	of	immutable	data	structures

ProTip:	You	can	merge	these	common	publications	with	your	own	ones	using		Object.assign({},
commonPublications,	myCustomPublications)	.

Configure	publication

144

https://docs.mongodb.com/manual/reference/operator/query/
https://github.com/crcn/sift.js


Examples	of	snapshot	replication
Let's	look	at	some	snapshot	replications.

Example
You	can	run	this	example	with

cd	path/to/feathers-docs/examples/offline
npm	install
cd	./snapshot
npm	run	build
npm	start

Then	point	a	browser	at		localhost:3030		and	look	at	the	log	on	the	browser	console.

You	can	see	the	client	source	here,	here	and	here.

Snapshot	the	entire	collection
The	remote	service	data	is

=====	Read	stockRemote	service	directly
{dept:	"a",	stock:	"a1",	_id:	"LANJQx24cg9Jy2Hr"}
{dept:	"a",	stock:	"a2",	_id:	"rTk5oK6gLupjbsyP"}
{dept:	"a",	stock:	"a3",	_id:	"nOxWx97QKzp89qA9"}
{dept:	"a",	stock:	"a4",	_id:	"xzOwo8g671sdejg5"}
{dept:	"a",	stock:	"a5",	_id:	"nEYr6D9YcQ0Ln9nW"}
{dept:	"b",	stock:	"b1",	_id:	"qY8LhzTKLw4G2ld6"}
{dept:	"b",	stock:	"b2",	_id:	"DBQ93zzWPNiFq6wd"}
{dept:	"b",	stock:	"b3",	_id:	"xyVeDj7BRXJlPo9F"}
{dept:	"b",	stock:	"b4",	_id:	"mZddKB7THrbv8dHV"}
{dept:	"b",	stock:	"b5",	_id:	"4RQ5BL8PHER5DEGX"}

Snapshot	all	of	it.

const	snapshot	=	require('feathers-offline-snapshot');
const	stockRemote	=	app.service('/stock');

snapshot(stockRemote)
		.then(records	=>	console.log(records));

=====	snapshot,	all	records
{dept:	"a",	stock:	"a1",	_id:	"LANJQx24cg9Jy2Hr"}
{dept:	"a",	stock:	"a2",	_id:	"rTk5oK6gLupjbsyP"}
{dept:	"a",	stock:	"a3",	_id:	"nOxWx97QKzp89qA9"}
{dept:	"a",	stock:	"a4",	_id:	"xzOwo8g671sdejg5"}
{dept:	"a",	stock:	"a5",	_id:	"nEYr6D9YcQ0Ln9nW"}
{dept:	"b",	stock:	"b1",	_id:	"qY8LhzTKLw4G2ld6"}
{dept:	"b",	stock:	"b2",	_id:	"DBQ93zzWPNiFq6wd"}
{dept:	"b",	stock:	"b3",	_id:	"xyVeDj7BRXJlPo9F"}
{dept:	"b",	stock:	"b4",	_id:	"mZddKB7THrbv8dHV"}
{dept:	"b",	stock:	"b5",	_id:	"4RQ5BL8PHER5DEGX"}

Example	snapshot

145

https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/snapshot/client/index.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/snapshot/client/1-read-remote-service.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/snapshot/client/2-snapshot-service.js


Snapshot	part	of	the	collection

const	snapshot	=	require('feathers-offline-snapshot');
const	stockRemote	=	app.service('/stock');

snapshot(stockRemote,	{	dept:	'a',	$sort:	{	stock:	1	}	})
		.then(records	=>	console.log(records));

=====	snapshot,	dept:	'a'
{dept:	"a",	stock:	"a1",	_id:	"LANJQx24cg9Jy2Hr"}
{dept:	"a",	stock:	"a2",	_id:	"rTk5oK6gLupjbsyP"}
{dept:	"a",	stock:	"a3",	_id:	"nOxWx97QKzp89qA9"}
{dept:	"a",	stock:	"a4",	_id:	"xzOwo8g671sdejg5"}
{dept:	"a",	stock:	"a5",	_id:	"nEYr6D9YcQ0Ln9nW"}
=====	Example	finished.

Example	snapshot

146



Examples	of	realtime	replication
Realtime	starts	with	a	snapshot	of	the	remote	service	data.	Subsequent	data	changes	made	at	the	remote	are
delivered	to	the	client	as	they	occur	in	near	real	time.	The	data	changes	are	applied	at	the	client	in	the	same	order	as
they	occurred	at	the	remote.

Replication	stops	when	communication	is	lost	with	the	server.	It	can	be	restarted	on	reconnection.

Example	1	-	All	the	remote	service	data

Running	the	example

Let's	see	how	mutations	made	on	the	server	are	handled	by	realtime	replication,	along	with	disconnections	and
reconnections.

You	can	run	this	example	with:

cd	path/to/feathers-mobile/examples
npm	install
cd	./realtime-1
npm	run	build
npm	start

Then	point	a	browser	at		localhost:3030		and	look	at	the	log	on	the	browser	console.

You	can	see	the	client	source	here,	here	and	here.

Looking	at	the	log

Configure	the	replication	and	start	it:

import	Realtime	from	'feathers-offline-realtime';
const	stockRemote	=	feathersApp.service('/stock');

const	stockRealtime	=	new	Realtime(stockRemote);

stockRealtime.connect().then(	...	);

A	snapshot	of	the	remote	service	data	is	sent	to	the	client	when	replication	starts.

=====	stockRemote,	before	mutations
{dept:	"a",	stock:	"a1",	_id:	"fY6ezNH9Rlw2WVzX"}
{dept:	"a",	stock:	"a2",	_id:	"7a0b00diX18WO3Gm"}
{dept:	"a",	stock:	"a3",	_id:	"b2wVdYJeiCNTGLc6"}
{dept:	"a",	stock:	"a4",	_id:	"wtTVYE15plCOb2vW"}
{dept:	"a",	stock:	"a5",	_id:	"cnWD1Yzr8WJruOfi"}

stockRealtime.store.records.forEach(record	=>	console.log(record))

=====	client	replica,	before	mutations
{dept:	"a",	stock:	"a2",	_id:	"7a0b00diX18WO3Gm"}
{dept:	"a",	stock:	"a3",	_id:	"b2wVdYJeiCNTGLc6"}
{dept:	"a",	stock:	"a5",	_id:	"cnWD1Yzr8WJruOfi"}

Example	realtime	&	publication

147

https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/realtime-1/client/index.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/realtime-1/client/1-third-party.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/realtime-1/client/2-reconnect.js


{dept:	"a",	stock:	"a1",	_id:	"fY6ezNH9Rlw2WVzX"}
{dept:	"a",	stock:	"a4",	_id:	"wtTVYE15plCOb2vW"}

We	can	simulate	other	people	changing	data	on	the	remote	service.

=====	mutate	stockRemote
stockRemote.patch	stock:	a1
stockRemote.create	stock:	a99
stockRemote.remove	stock:	a2

The	mutations	are	replicated	to	the	client.

=====	stockRemote,	after	mutations
{dept:	"a",	stock:	"a1",	_id:	"fY6ezNH9Rlw2WVzX",	foo:	1}
{dept:	"a",	stock:	"a3",	_id:	"b2wVdYJeiCNTGLc6"}
{dept:	"a",	stock:	"a4",	_id:	"wtTVYE15plCOb2vW"}
{dept:	"a",	stock:	"a5",	_id:	"cnWD1Yzr8WJruOfi"}
{dept:	"a",	stock:	"a99",	_id:	"Yiu8R0fHQkEaGjPz"}
=====	client	replica,	after	mutations
{dept:	"a",	stock:	"a3",	_id:	"b2wVdYJeiCNTGLc6"}
{dept:	"a",	stock:	"a5",	_id:	"cnWD1Yzr8WJruOfi"}
{dept:	"a",	stock:	"a4",	_id:	"wtTVYE15plCOb2vW"}
{dept:	"a",	stock:	"a1",	_id:	"fY6ezNH9Rlw2WVzX",	foo:	1}
{dept:	"a",	stock:	"a99",	_id:	"Yiu8R0fHQkEaGjPz"}

We	can	inform	the	replicator	of	a	lost	connection,	after	which	other	people	mutate	more	data.

stockRealtime.disconnect();

>>>>>	disconnection	from	server
=====	mutate	stockRemote
stockRemote.patch	stock:	a3
stockRemote.create	stock:	a98
stockRemote.remove	stock:	a5

After	we	inform	the	replicator	of	a	reconnection,	the	client	replica	is	brought	up	to	data	with	a	new	snapshot.

stockRealtime.connect();

<<<<<	reconnected	to	server
=====	stockRemote,	after	reconnection
{dept:	"a",	stock:	"a1",	_id:	"fY6ezNH9Rlw2WVzX",	foo:	1}
{dept:	"a",	stock:	"a3",	_id:	"b2wVdYJeiCNTGLc6",	foo:	1}
{dept:	"a",	stock:	"a4",	_id:	"wtTVYE15plCOb2vW"}
{dept:	"a",	stock:	"a98",	_id:	"XCZorVYjeHBlwz93"}
{dept:	"a",	stock:	"a99",	_id:	"Yiu8R0fHQkEaGjPz"}
=====	client	replica,	after	reconnection
{dept:	"a",	stock:	"a98",	_id:	"XCZorVYjeHBlwz93"}
{dept:	"a",	stock:	"a99",	_id:	"Yiu8R0fHQkEaGjPz"}
{dept:	"a",	stock:	"a3",	_id:	"b2wVdYJeiCNTGLc6",	foo:	1}
{dept:	"a",	stock:	"a1",	_id:	"fY6ezNH9Rlw2WVzX",	foo:	1}
{dept:	"a",	stock:	"a4",	_id:	"wtTVYE15plCOb2vW"}
=====	Example	finished.

Example	2	-	Selected	remote	service	data

Example	realtime	&	publication

148



Running	the	example

Let's	see	how	a	filter	function	(not	a	"publication")	allows	you	to	replicate	a	selection	of	the	remote	service	data.

All	service	events	are	sent	to	the	client	as	no	"publication"	is	used

You	can	run	this	example	with:

cd	path/to/feathers-mobile/examples
npm	install
cd	./realtime-2
npm	run	build
npm	start

Then	point	a	browser	at		localhost:3030		and	look	at	the	log	on	the	browser	console.

You	can	see	the	client	source	here,	and	here.

Looking	at	the	log

The	client	replica	will	contain	those	records	with		record.dept	===	'a'	.	All	service	events	are	sent	to	the	client
because	a	filter	function	is	used,	not	a	"publication".	Filter	functions	run	on	the	client	only,	while	a	"publication"	runs
both	on	the	server	(to	minimize	the	service	events	sent	the	client)	and	on	the	client.

Configure	the	replication	and	start	it:

import	Realtime	from	'feathers-offline-realtime';

const	stockRemote	=	feathersApp.service('/stock');
stockRemote.on('patched',	record	=>	console.log(`.service	event.	patched`,	record));

const	stockRealtime	=	new	Realtime(stockRemote,	{
		publication:	record	=>	record.dept	===	'a',	//	this	is	a	filter	func,	not	a	"publication"
		sort:	Realtime.sort('stock'),	//	sort	the	client	replica
		query:	{	dept:	'a'	},									//	makes	snapshots	more	efficient
		subscriber																				//	logs	replicator	events
});

stockRealtime.connect().then(	...	);

function	subscriber(records,	{	action,	eventName,	source	})	{
		console.log(`.replicator	event.	action=${action}	eventName=${eventName}	source=${source}`);
}

A	snapshot	of	part	of	the	remote	service	data	is	sent	to	the	client	when	replication	starts.

.replicator	event.	action=snapshot	eventName=undefined	source=undefined	undefined

.replicator	event.	action=add-listeners	eventName=undefined	source=undefined	undefined
=====	stockRemote,	before	mutations
{dept:	"a",	stock:	"a1",	_id:	"lwKU5HpWnumm51wK"}
{dept:	"a",	stock:	"a2",	_id:	"xC2ZVq6xaUpJOBgb"}
{dept:	"a",	stock:	"a3",	_id:	"Z0Y16Pn8d3RA7rXU"}
{dept:	"a",	stock:	"a4",	_id:	"kfWCtTo1p2cpN9oN"}
{dept:	"a",	stock:	"a5",	_id:	"JxlD78JV6S5uZHvD"}
{dept:	"b",	stock:	"b1",	_id:	"meldJsoQSM80mSJM"}
{dept:	"b",	stock:	"b2",	_id:	"iujwY33XVFIjLm0U"}
{dept:	"b",	stock:	"b3",	_id:	"Pws5I5A8a3dC7yyJ"}
{dept:	"b",	stock:	"b4",	_id:	"n4R9UxQQxR4HMbFi"}
{dept:	"b",	stock:	"b5",	_id:	"lpFPGhIInYba698P"}

stockRealtime.store.records.forEach(record	=>	console.log(record))

Example	realtime	&	publication

149

https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/realtime-2/client/index.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/realtime-2/client/1-third-party.js


=====	client	replica	of	dept:	a,	before	mutations
{dept:	"a",	stock:	"a1",	_id:	"lwKU5HpWnumm51wK"}
{dept:	"a",	stock:	"a2",	_id:	"xC2ZVq6xaUpJOBgb"}
{dept:	"a",	stock:	"a3",	_id:	"Z0Y16Pn8d3RA7rXU"}
{dept:	"a",	stock:	"a4",	_id:	"kfWCtTo1p2cpN9oN"}
{dept:	"a",	stock:	"a5",	_id:	"JxlD78JV6S5uZHvD"}

We	can	simulate	other	people	changing	data	on	the	remote	service.

=====	mutate	stockRemote
stockRemote.patch	stock:	a1	move	to	dept:	b
stockRemote.patch	stock:	b1	move	to	dept:	a
.service	event.	patched
				{dept:	"b",	stock:	"a1",	_id:	"raBDpgjM4ilKa0PX"}
.replicator	event.	action=left-pub	eventName=patched	source=0
				{dept:	"b",	stock:	"a1",	_id:	"raBDpgjM4ilKa0PX"}
.service	event.	patched
				{dept:	"a",	stock:	"b1",	_id:	"RKbbo7EgaAeWqqnu"}
.replicator	event.	action=mutated	eventName=patched	source=0
				{dept:	"a",	stock:	"b1",	_id:	"RKbbo7EgaAeWqqnu"}
=====	patch	some	stockRemote	records	without	changing	their	contents
.service	event.	patched
				{dept:	"a",	stock:	"a2",	_id:	"r9VPWIdwZsYNEAvI"}
.replicator	event.	action=mutated	eventName=patched	source=0
				{dept:	"a",	stock:	"a2",	_id:	"r9VPWIdwZsYNEAvI"}
.service	event.	patched
				{dept:	"a",	stock:	"a3",	_id:	"n66vXg1lBuh3XX4O"}
.replicator	event.	action=mutated	eventName=patched	source=0
				{dept:	"a",	stock:	"a3",	_id:	"n66vXg1lBuh3XX4O"}
.service	event.	patched
				{dept:	"b",	stock:	"b2",	_id:	"77rLKbncUcxOFHJM"}
.service	event.	patched
				{dept:	"b",	stock:	"b3",	_id:	"1IIQqVn8TYcopdzl"}
.service	event.	patched
				{dept:	"b",	stock:	"b4",	_id:	"rSfCl9WXfTi7oa6N"}
.service	event.	patched
				{dept:	"b",	stock:	"b5",	_id:	"LqXhzpPLidkIVGuG"}

Notice	that	the	last	4	service	events	were	not	relevant	to	our	publication	filter	and	so	no	replication	events	occurred	for
them.	There	was	no	need	to	send	these	4	service	events	to	the	client.

The	mutations	are	replicated	to	the	client.

=====	stockRemote,	after	mutations
{dept:	"b",	stock:	"a1",	_id:	"lwKU5HpWnumm51wK"}
{dept:	"a",	stock:	"a2",	_id:	"xC2ZVq6xaUpJOBgb"}
{dept:	"a",	stock:	"a3",	_id:	"Z0Y16Pn8d3RA7rXU"}
{dept:	"a",	stock:	"a4",	_id:	"kfWCtTo1p2cpN9oN"}
{dept:	"a",	stock:	"a5",	_id:	"JxlD78JV6S5uZHvD"}
{dept:	"a",	stock:	"b1",	_id:	"meldJsoQSM80mSJM"}
{dept:	"b",	stock:	"b2",	_id:	"iujwY33XVFIjLm0U"}
{dept:	"b",	stock:	"b3",	_id:	"Pws5I5A8a3dC7yyJ"}
{dept:	"b",	stock:	"b4",	_id:	"n4R9UxQQxR4HMbFi"}
{dept:	"b",	stock:	"b5",	_id:	"lpFPGhIInYba698P"}
=====	client	replica	of	dept	a,	after	mutations
{dept:	"a",	stock:	"a2",	_id:	"xC2ZVq6xaUpJOBgb"}
{dept:	"a",	stock:	"a3",	_id:	"Z0Y16Pn8d3RA7rXU"}
{dept:	"a",	stock:	"a4",	_id:	"kfWCtTo1p2cpN9oN"}
{dept:	"a",	stock:	"a5",	_id:	"JxlD78JV6S5uZHvD"}
{dept:	"a",	stock:	"b1",	_id:	"meldJsoQSM80mSJM"}
=====	Example	finished.

Example	realtime	&	publication

150



The		stock:	'a1'		record	was	removed	from	the	client	replica	because	it	no	longer	satisfied	the	publication	filter	after
mutation.	The		stock:	'b1'		record	was	added	as	its	mutation	caused	it	to	now	satisfied	the	publication	filter.

Example	3	-	Using	a	publication
Let's	redo	Example	2	using	a	"publication"	rather	than	a	filter	function.	We	expect	the	"publication"	to	minimize
the	number	of	service	events	sent	to	the	client.

Running	the	example

You	can	run	this	example	with:

cd	path/to/feathers-mobile/examples
npm	install
cd	./realtime-3
npm	run	build
npm	start

Then	point	a	browser	at		localhost:3030		and	look	at	the	log	on	the	browser	console.

You	can	see	the	key	server	source	here.

You	can	see	the	client	source	here,	and	here.

The	key	server	code

const	serverPublication	=	require('feathers-offline-publication/lib/server');
const	commonPublications	=	require('feathers-offline-publication/lib/common-publications');
const	{	stashBefore	}	=	require('feathers-hooks-common');

const	port	=	app.get('port');
const	server	=	app.listen(port);

const	stockRemote	=	app.service('stock');
stockRemote.hooks({
		before:	{
				update:	stashBefore(),
				patch:	stashBefore(),
				remove:	stashBefore(),
		},
});

serverPublication(app,	commonPublications,	'stock');

The		stashBefore		hooks	will	stash	the	current	value	of	the	record	into		context.params		before	the	record	is	mutated.
The	service	filter	will	use	the	stashed	value	to	check	if	the	record	used	to	belong	to	the	publication.

The		serverPublication		call	configures	the	service	filters,	in	this	case	for	the	stock	service.	You	can	use	syntax	like
	['messages',	'comments']		to	configure	multiple	services	at	once.

ProTip:		serverPublication		must	be	run	only	after	the	server	has	started	listening.

The	key	client	code

const	clientPublication	=	require('feathers-offline-publication/lib/client');
const	commonPublications	=	require('feathers-offline-publication/lib/common-publications');

Example	realtime	&	publication

151

https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/realtime-3/src/index.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/realtime-3/client/index.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/realtime-3/client/1-third-party.js


const	Realtime	=	require('feathers-offline-realtime');

const	stockRemote	=	feathersApp.service('/stock');

const	stockRealtime	=	new	Realtime(stockRemote,	{
		publication:	clientPublication.addPublication(feathersApp,	'stock',	{
				module:	commonPublications,
				name:	'query',
				params:	{	dept:	'a'	},
		}),
});

stockRealtime.connect().then(	...	);

The		publication		option	is	now	a	"publication"	rather	than	a	filter	function.	The		addPublication		emits	the		name		and
	params		values	to	the	server,	while	returning	a	filter	function	as	the	actual	value	for		publication	.	The	server	will	start
using		name		and		params		in	the	server-side	service	filters.

Looking	at	the	log

The	previous	example	#2	log	contained

=====	mutate	stockRemote
stockRemote.patch	stock:	a1	move	to	dept:	b
stockRemote.patch	stock:	b1	move	to	dept:	a
.service	event.	patched
				{dept:	"b",	stock:	"a1",	_id:	"raBDpgjM4ilKa0PX"}
.replicator	event.	action=left-pub	eventName=patched	source=0
				{dept:	"b",	stock:	"a1",	_id:	"raBDpgjM4ilKa0PX"}
.service	event.	patched
				{dept:	"a",	stock:	"b1",	_id:	"RKbbo7EgaAeWqqnu"}
.replicator	event.	action=mutated	eventName=patched	source=0
				{dept:	"a",	stock:	"b1",	_id:	"RKbbo7EgaAeWqqnu"}
=====	patch	some	stockRemote	records	without	changing	their	contents
.service	event.	patched
				{dept:	"a",	stock:	"a2",	_id:	"r9VPWIdwZsYNEAvI"}
.replicator	event.	action=mutated	eventName=patched	source=0
				{dept:	"a",	stock:	"a2",	_id:	"r9VPWIdwZsYNEAvI"}
.service	event.	patched
				{dept:	"a",	stock:	"a3",	_id:	"n66vXg1lBuh3XX4O"}
.replicator	event.	action=mutated	eventName=patched	source=0
				{dept:	"a",	stock:	"a3",	_id:	"n66vXg1lBuh3XX4O"}
.service	event.	patched
				{dept:	"b",	stock:	"b2",	_id:	"77rLKbncUcxOFHJM"}
.service	event.	patched
				{dept:	"b",	stock:	"b3",	_id:	"1IIQqVn8TYcopdzl"}
.service	event.	patched
				{dept:	"b",	stock:	"b4",	_id:	"rSfCl9WXfTi7oa6N"}
.service	event.	patched
				{dept:	"b",	stock:	"b5",	_id:	"LqXhzpPLidkIVGuG"}

We	pointed	out	that	the	last	4	service	events	were	not	relevant	to	example	#2's	publication	filter	and	so	no	replication
events	occurred	for	them.	We	also	pointed	out	that	there	was	no	need	to	send	these	4	service	events	to	the
client.

Our	example	#3	log	contains

=====	mutate	stockRemote
stockRemote.patch	stock:	a1	move	to	dept:	b
stockRemote.patch	stock:	b1	move	to	dept:	a
.service	event.	patched
				{dept:	"b",	stock:	"a1",	_id:	"qR5KkXAP0TAdCXBm"}
.replicator	event.	action=left-pub	eventName=patched	source=0

Example	realtime	&	publication

152



				{dept:	"b",	stock:	"a1",	_id:	"qR5KkXAP0TAdCXBm"}
.service	event.	patched
				{dept:	"a",	stock:	"b1",	_id:	"LDtB9YvbJTHpOau2"}
.replicator	event.	action=mutated	eventName=patched	source=0
				{dept:	"a",	stock:	"b1",	_id:	"LDtB9YvbJTHpOau2"}
=====	patch	some	stockRemote	records	without	changing	their	contents
.service	event.	patched
				{dept:	"a",	stock:	"a2",	_id:	"fmMfWefDVeu9qrRt"}
.replicator	event.	action=mutated	eventName=patched	source=0
				{dept:	"a",	stock:	"a2",	_id:	"fmMfWefDVeu9qrRt"}
.service	event.	patched
				{dept:	"a",	stock:	"a3",	_id:	"WULt4o6N69G9x0Vf"}
.replicator	event.	action=mutated	eventName=patched	source=0
				{dept:	"a",	stock:	"a3",	_id:	"WULt4o6N69G9x0Vf"}

The	example	#3	does	not	contain	the	last	4		.service	event		entries.	The	server-side	service	filters	recognized
those	mutations	were	not	relevant	to	our	publication	and	did	not	emit	them	to	the	client.

Job	done!

Example	realtime	&	publication

153



Example	using	optimistic	mutation
The	realtime	replicator's	optimistic	mutation	may	be	used	to	produce	a	snappier	response	at	the	client.

Its	also	an	important	step	towards	allowing	the	client	to	continue	working	while	its	offline.

The	optimistic-mutator	service	immediately	updates	the	client	replica	to	what	it	optimistically	expects	the	final	result
will	be,	and	the	user	can	see	the	change	right	away.	The	replicator	then	emits	a	replication	event	because	the	client
replica	data	has	changed.

Next,	the	same	processing	occurs	as	for	a	remote	service	call:	the	call	to	the	server,	the	database	processing,	the
filter,	the	service	event	on	the	client.	Finally	the	replicator	replaces	the	optimistic	copy	of	the	record	with	the	one
provided	by	the	server.	Then	replicator	emits	another	event	because	the	client	replica	(may	have)	changed.

But	what	happens	if	the	remote	service	rejects	the	mutation	with	an	error?	The	replicator	has	kept	a	copy	of	the	record
from	before	the	mutation	and,	once	it	detects	the	error	response,	it	replaces	the	optimistic	copy	of	the	record	with	the
prior	version.	The	replicator	emits	a	different	event	when	this	happen.

Let's	take	the	realtime	example	#1	and	refactor	it	for	optimistic	mutation.

Realtime	example	#1	mutated	data	by	calling	methods	on	the	remote	service	located	on	the	server.	The	client	had	to
wait	until	the	server	finished	the	call	and	until	it	received	the	service	event.	Only	then	could	it	mutate	the	client	replica.

Let's	refactor	the	client	so	that	it	instead	makes	those	same	mutations	by	calling	the	optimistic-mutator	at	the	client.
The	optimistic-mutator	will	immediately	mutate	the	client	replica.	It	will	then	call	the	server	and,	after	some	delay,
process	the	service	event.

Running	the	example

You	can	run	this	example	with:

cd	path/to/feathers-mobile/examples
npm	install
cd	./optimistic
npm	run	build
npm	start

Then	point	a	browser	at		localhost:3030		and	look	at	the	log	on	the	browser	console.

You	can	see	the	client	source	here,	and	here.

Looking	at	the	log

We	configure	the	replication	on	the	client	and	start	it:

import	Realtime	from	'feathers-offline-realtime';

const	stockRemote	=	feathersApp.service('/stock');
stockRemote.on('created',	record	=>	console.log(`.service	event.	created`,	record));
stockRemote.on('updated',	record	=>	console.log(`.service	event.	updated`,	record));
stockRemote.on('patched',	record	=>	console.log(`.service	event.	patched`,	record));
stockRemote.on('removed',	record	=>	console.log(`.service	event.	removed`,	record));

const	stockRealtime	=	new	Realtime(stockRemote,	{	uuid:	true,	subscriber	});

feathersApp.use('stockClient',	optimisticMutator({	replicator:	stockRealtime	}));
const	stockClient	=	feathersApp.service('stockClient');

Example	optimistic	mutation

154

https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/optimistic/client/index.js
https://github.com/feathersjs/feathers-docs/blob/master/examples/offline/optimistic/client/1-third-party.js


stockRealtime.connect().then(	...	);

function	subscriber(records,	{	action,	eventName,	source,	record	})	{
		console.log(`.replicator	event.	action=${action}	eventName=${eventName}	source=${source}`,	record);
}

A	snapshot	of	the	remote	service	data	is	sent	to	the	client	when	replication	starts.

.replicator	event.	action=snapshot	eventName=undefined	source=undefined	undefined

.replicator	event.	action=add-listeners	eventName=undefined	source=undefined	undefined
=====	stockRemote,	before	mutations
{dept:	"a",	stock:	"a1",	uuid:	"a1",	_id:	"AHjkPclOKcf25xy2"}
{dept:	"a",	stock:	"a2",	uuid:	"a2",	_id:	"XhnvXIvFWegBRH3G"}
{dept:	"a",	stock:	"a3",	uuid:	"a3",	_id:	"WcaLplDzLmQYdX1E"}
{dept:	"a",	stock:	"a4",	uuid:	"a4",	_id:	"xEVdEXBlTOzJ9HB8"}
{dept:	"a",	stock:	"a5",	uuid:	"a5",	_id:	"oDMhPbWCfQAglHbz"}

stockClient.find()
		.then(result	=>	console.log(result.data	||	result);

ProTip:	The		find(data,	params)		and		get(uuid,	params)		methods	of	the	optimistic	mutator	are	the	preferred
ways	to	obtain	data	from	the	client	replica.

=====	client	replica,	before	mutations
{dept:	"a",	stock:	"a1",	uuid:	"a1",	_id:	"AHjkPclOKcf25xy2"}
{dept:	"a",	stock:	"a2",	uuid:	"a2",	_id:	"XhnvXIvFWegBRH3G"}
{dept:	"a",	stock:	"a3",	uuid:	"a3",	_id:	"WcaLplDzLmQYdX1E"}
{dept:	"a",	stock:	"a4",	uuid:	"a4",	_id:	"xEVdEXBlTOzJ9HB8"}
{dept:	"a",	stock:	"a5",	uuid:	"a5",	_id:	"oDMhPbWCfQAglHbz"}

We	mutate	the	data	with	the	optimistic-mutator

console.log('=====	mutate	stockRemote')
console.log('stockRemote.patch	stock:	a1')
stockClient.patch('a1',	{	foo:	1	})
		.then(()	=>	console.log('stockRemote.create	stock:	a99'))
		.then(()	=>	stockClient.create({	dept:	'a',	stock:	'a99',	uuid:	'a99'	}))
		.then(()	=>	console.log('stockRemote.remove	stock:	a2'))
		.then(()	=>	stockClient.remove('a2'))

=====	mutate	stockRemote
stockRemote.patch	stock:	a1
.replicator	event.	action=mutated	eventName=patched	source=1
				{dept:	"a",	stock:	"a1",	uuid:	"a1",	_id:	"AHjkPclOKcf25xy2",	foo:	1}
stockRemote.create	stock:	a99
.replicator	event.	action=mutated	eventName=created	source=1
				{dept:	"a",	stock:	"a99",	uuid:	"a99"}
stockRemote.remove	stock:	a2
.replicator	event.	action=remove	eventName=removed	source=1
				{dept:	"a",	stock:	"a2",	uuid:	"a2",	_id:	"XhnvXIvFWegBRH3G"}
.service	event.	patched
				{dept:	"a",	stock:	"a1",	uuid:	"a1",	_id:	"AHjkPclOKcf25xy2",	foo:	1}
.replicator	event.	action=mutated	eventName=patched	source=0
				{dept:	"a",	stock:	"a1",	uuid:	"a1",	_id:	"AHjkPclOKcf25xy2",	foo:	1}
.service	event.	created
				{dept:	"a",	stock:	"a99",	uuid:	"a99",	_id:	"tlFJB9f6mPZS2lK5"}
.replicator	event.	action=mutated	eventName=created	source=0
				{dept:	"a",	stock:	"a99",	uuid:	"a99",	_id:	"tlFJB9f6mPZS2lK5"}
.service	event.	removed
				{dept:	"a",	stock:	"a2",	uuid:	"a2",	_id:	"XhnvXIvFWegBRH3G"}

Example	optimistic	mutation

155



.replicator	event.	action=remove	eventName=removed	source=0
				{dept:	"a",	stock:	"a2",	uuid:	"a2",	_id:	"XhnvXIvFWegBRH3G"}

You	can	see	the	replicator's	optimistic	mutate	events		.replicator	event	...	source=1		occur	right	after	the	service
call.	That's	because	the	client	replica	is	being	mutated	immediately.

You	then	see	the	service	events		.service	event.	patched		as	the	server	responds	to	the	calls	made	to	it.	This	is
followed	by	the	replicator's		.replicator	event	...	source=0		as	it	processes	the	service	event.

The	client	replica	is	immediately	mutated.	The	matching	service	event	was	handled	when	it	arrived	later.

The	client	replica	remain	synchronised	with	the	server	data.

=====	stockRemote,	after	mutations
{dept:	"a",	stock:	"a1",	uuid:	"a1",	_id:	"AHjkPclOKcf25xy2",	foo:	1}
{dept:	"a",	stock:	"a3",	uuid:	"a3",	_id:	"WcaLplDzLmQYdX1E"}
{dept:	"a",	stock:	"a4",	uuid:	"a4",	_id:	"xEVdEXBlTOzJ9HB8"}
{dept:	"a",	stock:	"a5",	uuid:	"a5",	_id:	"oDMhPbWCfQAglHbz"}
{dept:	"a",	stock:	"a99",	uuid:	"a99",	_id:	"tlFJB9f6mPZS2lK5"}
=====	client	replica,	after	mutations
{dept:	"a",	stock:	"a3",	uuid:	"a3",	_id:	"WcaLplDzLmQYdX1E"}
{dept:	"a",	stock:	"a5",	uuid:	"a5",	_id:	"oDMhPbWCfQAglHbz"}
{dept:	"a",	stock:	"a4",	uuid:	"a4",	_id:	"xEVdEXBlTOzJ9HB8"}
{dept:	"a",	stock:	"a99",	uuid:	"a99"}
{dept:	"a",	stock:	"a1",	uuid:	"a1",	_id:	"AHjkPclOKcf25xy2",	foo:	1}
{dept:	"a",	stock:	"a99",	uuid:	"a99",	_id:	"tlFJB9f6mPZS2lK5"}
=====	Example	finished.

It	works!

Example	optimistic	mutation

156



Tests	as	Examples
The	tests	in	each	repo	can,	unsurprisingly,	be	a	valuable	source	of	information,	especially	about	details.

I	find	it	frankly	amazing	that	one	Mocha	test	module	can	act	as	both	the	server	and	the	client.	You	configure	a
Feathers	server	the	normal	way	and	have	it	listen	to,	say,		localhost:3030	.	You	then	configure	a	Feathers
WebSockets	client	the	normal	way	and	have	it	connect	to	that	same	url.	Because	of	Feathers'	design,	the	code	runs	in
exactly	the	same	way	as	if	the	server	and	client	were	on	separate	platforms.	Very	elegant.

This	capability	allows	us	to	code	integration	tests,	testing	end	to	end,	within	one	module.	You	will	see	this	design
being	used	in	the	more	complicated	tests,	e.g.	feathers-offline-publication.

Snapshot

non-paginated	service
paginated	service
selection

Realtime

Snapshot
query
publication	function	(not	using	feathers-offline-publication)
sort
change	sort	order

Service	events
no	publication
mutations	remaining	within	publication
mutations	remaining	outside	publication
mutations	moving	in/out	of	publication

Optimistic	mutation
throws	when	not	connected
no	publication
no	publication,		id		is	null
no	publication,	remote	service	returns	error

Publication

adds,	removes	publication
filtering

Tests	as	examples

157

https://github.com/feathersjs/feathers-offline-snapshot/blob/master/test/snapshot.test.js
https://github.com/feathersjs/feathers-offline-realtime/blob/master/test/commons/helpers/snapshot.test.js
https://github.com/feathersjs/feathers-offline-realtime/blob/master/test/commons/helpers/service-events.test.js
https://github.com/feathersjs/feathers-offline-realtime/blob/master/test/commons/helpers/optimistic-mutator-online.test.js
https://github.com/feathersjs/feathers-offline-publication/blob/master/test/integration.test.js
https://github.com/feathersjs/feathers-offline-publication/blob/master/test/filter.test.js


More	example
More	examples	will	soon	be	available.

More	examples

158



Advanced	guides
In	this	section	you	can	find	some	guides	for	advanced	topics	once	you	learned	the	basics	and	created	your	first	app.

Debugging
Configuration
File	uploads
Creating	a	Feathers	plugin
Seeding	services
Using	a	view	engine
Scaling

Advanced	topics

159



Debugging	your	Feathers	app
You	can	debug	your	Feathers	app	the	same	as	you	would	any	other	Node	app.	There	are	a	few	different	options	you
can	resort	to.	NodeJS	has	a	built	in	debugger	that	works	really	well	by	simply	running:

node	debug	src/

Debugging	with	Visual	Studio	Code
Debugging	Feathers	with	Visual	Studio	Code
Learn	how	to	setup	an	excellent,	free	debugger	for	your	Feathers	application.	This	guide	also	covers	some	basics	for
those	who	are	new	to	debugging	and/or	Feathers.

Moar	Logs!
In	addition	to	setting	breakpoints	we	also	use	the	fabulous	debug	module	throughout	Feathers	core	and	many	of	the
plug-ins.	This	allows	you	to	get	visibility	into	what	is	happening	inside	all	of	Feathers	by	simply	setting	a		DEBUG	
environmental	variable	to	the	scope	of	modules	that	you	want	visibility	into.

Debug	logs	for	all	the	things

		DEBUG=*	npm	start

Debug	logs	for	all	Feathers	modules

		DEBUG=feathers*	npm	start

Debug	logs	for	a	specific	module

		DEBUG=feathers-authentication*	npm	start

Debug	logs	for	a	specific	part	of	a	module

		DEBUG=feathers-authentication:middleware	npm	start

Using	Hooks
Since	hooks	can	be	registered	dynamically	anywhere	in	your	app,	using	them	to	debug	your	state	at	any	point	in	the
hook	chain	(either	before	or	after	a	service	call)	is	really	handy.	For	example,

const	hooks	=	require('feathers-authentication').hooks;

const	myDebugHook	=	function(hook)	{
		//	check	to	see	what	is	in	my	hook	object	after
		//	the	token	was	verified.
		console.log(hook);
};

//	Must	be	logged	in	do	anything	with	messages.

Debugging

160

https://spin.atomicobject.com/2015/09/25/debug-node-js/
https://nodejs.org/api/debugger.html
https://blog.feathersjs.com/debugging-feathers-with-visual-studio-code-406e6adf2882
https://github.com/visionmedia/debug


app.service('messages').before({
		all:	[
				hooks.verifyToken(),
				myDebugHook,
				hooks.populateUser(),
				hooks.restrictToAuthenticated()
		]
});

You	can	then	move	that	hook	around	the	hook	chain	and	inspect	what	your		hook		object	looks	like.

Debugging

161



App	Configuration
	feathers-configuration		allows	you	to	load	default	and	environment	specific	JSON	and/or	JS	configuration	files	and
environment	variables	and	set	them	on	your	application.	In	a	generated	application	the		config/default.json		and
	config/production.json		files	are	set	up	with	feathers-configuration	automatically.

Here	is	what	it	does:

Given	a		NODE_CONFIG_DIR		environment	variable	it	will	load	a		default.json		in	that	path,	the	default	here	is
	./config	.
When	the		NODE_ENV		is	not		development	,	also	try	to	load		<NODE_ENV>.json		in	that	path	and	merge	both
configurations	(with		<NODE_ENV>.json		taking	precedence)
Go	through	each	configuration	value	and	sets	it	on	the	application	(via		app.set(name,	value)	).

If	the	value	is	a	valid	environment	variable	(e.v.		NODE_ENV	),	use	its	value	instead
If	the	value	start	with		./		or		../		turn	it	to	an	absolute	path	relative	to	the	configuration	file	path
If	the	value	starts	with	a		\	,	do	none	of	the	above	two

Usage
The		feathers-configuration		module	is	an	app	configuration	function	that	takes	a	root	directory	(usually	something
like		__dirname		in	your	application)	and	the	configuration	folder	(set	to		config		by	default):

const	feathers	=	require('feathers');
const	configuration	=	require('feathers-configuration')

//	Use	the	current	folder	as	the	root	and	look	configuration	up	in	`settings`
const	app	=	feathers().configure(configuration(__dirname,	'settings'))

Example
In		config/default.json		we	want	to	use	the	local	development	environment	and	default	MongoDB	connection	string:

{
		"frontend":	"../public",
		"host":	"localhost",
		"port":	3030,
		"mongodb":	"mongodb://localhost:27017/myapp",
		"templates":	"../templates"
}

In		config/production.js		we	are	going	to	use	environment	variables	(e.g.	set	by	Heroku)	and	use		public/dist		to
load	the	frontend	production	build:

module.exports	=	{
		"frontend":	"./public/dist",
		"host":	"myapp.com",
		"port":	"PORT",
		"mongodb":	"MONGOHQ_URL"
}

Now	it	can	be	used	in	our		app.js		like	this:

Configuration

162



const	feathers	=	require('feathers');
const	configuration	=	require('feathers-configuration')

const	app	=	feathers()
		.configure(configuration(__dirname));

console.log(app.get('frontend'));
console.log(app.get('host'));
console.log(app.get('port'));
console.log(app.get('mongodb'));
console.log(app.get('templates'));

If	you	now	run

node	app
//	->	path/to/app/public
//	->	localhost
//	->	3030
//	->	mongodb://localhost:27017/myapp
//	->	path/to/templates

Or	via	custom	environment	variables	by	setting	them	in		config/custom-environment-variables.json	:

{
		"port":	"PORT",
		"mongodb":	"MONGOHQ_URL"
}

PORT=8080	MONGOHQ_URL=mongodb://localhost:27017/production	NODE_ENV=production	node	app
//	->	path/to/app/public/dist
//	->	myapp.com
//	->	8080
//	->	mongodb://localhost:27017/production
//	->	path/to/templates

You	can	prevent	interpolation	of	environment	variables	by	prefacing	the	value	with	\

"authentication":	{
		"local":	{
				"entity":	"\\USER",
				"usernameField":	"\\USERNAME",
			}
	}

You	can	also	override	these	variables	with	arguments.	Read	more	about	how	with	node-config

Configuration

163

https://github.com/lorenwest/node-config


File	uploads	in	FeathersJS
Over	the	last	months	we	at	ciancoders.com	have	been	working	in	a	new	SPA	project	using	Feathers	and	React,	the
combination	of	those	two	turns	out	to	be	just	amazing.

Recently	we	were	struggling	to	find	a	way	to	upload	files	without	having	to	write	a	separate	Express	middleware	or
having	to	(re)write	a	complex	Feathers	service.

Our	Goals
We	want	to	implement	an	upload	service	to	accomplish	a	few	important	things:

1.	 It	has	to	handle	large	files	(+10MB).
2.	 It	needs	to	work	with	the	app's	authentication	and	authorization.
3.	 The	files	need	to	be	validated.
4.	 At	the	moment	there	is	no	third	party	storage	service	involved,	but	this	will	change	in	the	near	future,	so	it	has	to

be	prepared.
5.	 It	has	to	show	the	upload	progress.

The	plan	is	to	upload	the	files	to	a	feathers	service	so	we	can	take	advantage	of	hooks	for	authentication,
authorization	and	validation,	and	for	service	events.

Fortunately,	there	exists	a	file	storage	service:	feathers-blob.	With	it	we	can	meet	our	goals,	but	(spoiler	alert)	it	isn't
an	ideal	solution.	We	discuss	some	of	its	problems	below.

Basic	upload	with	feathers-blob	and	feathers-client
For	the	sake	of	simplicity,	we	will	be	working	over	a	very	basic	feathers	server,	with	just	the	upload	service.

Lets	look	at	the	server	code:

/*	---	server.js	---	*/

const	feathers	=	require('feathers');
const	rest	=	require('feathers-rest');
const	socketio	=	require('feathers-socketio');
const	hooks	=	require('feathers-hooks');
const	bodyParser	=	require('body-parser');
const	handler	=	require('feathers-errors/handler');

//	feathers-blob	service
const	blobService	=	require('feathers-blob');
//	Here	we	initialize	a	FileSystem	storage,
//	but	you	can	use	feathers-blob	with	any	other
//	storage	service	like	AWS	or	Google	Drive.
const	fs	=	require('fs-blob-store');
const	blobStorage	=	fs(__dirname	+	'/uploads');

//	Feathers	app
const	app	=	feathers();

//	Parse	HTTP	JSON	bodies
app.use(bodyParser.json());
//	Parse	URL-encoded	params
app.use(bodyParser.urlencoded({	extended:	true	}));

File	uploads

164

https://ciancoders.com/
https://github.com/feathersjs/feathers-blob


//	Register	hooks	module
app.configure(hooks());
//	Add	REST	API	support
app.configure(rest());
//	Configure	Socket.io	real-time	APIs
app.configure(socketio());

//	Upload	Service
app.use('/uploads',	blobService({Model:	blobStorage}));

//	Register	a	nicer	error	handler	than	the	default	Express	one
app.use(handler());

//	Start	the	server
app.listen(3030,	function(){
				console.log('Feathers	app	started	at	localhost:3030')
});

	feathers-blob		works	over	abstract-blob-store,	which	is	an	abstract	interface	to	various	storage	backends,	such	as
filesystem,	AWS,	or	Google	Drive.	It	only	accepts	and	retrieves	files	encoded	as	dataURI	strings.

Just	like	that	we	have	our	backend	ready,	go	ahead	and	POST	something	to	localhost:3030/uploads`,	for	example
with	postman:

{
				"uri":	"
vrvYvntYvnvY/ruZPrwZPfsZPjsZfjtZvfsZvHmY/zxavftaPrvavjuafzxbfnua/jta/ftbP3yb/zzcPvwb/zzcfvxcfzxc/3zdf3zdv70efvw
d/rwd/vwefftd/3yfPvxfP70f/zzfvnwffvzf/rxf/rxgPjvgPjvgfnwhPvzhvjvhv71jfz0kPrykvz0mv72nvblTPnnUPjoUPrpUvnnUfnpUvX
lUfnpU/npVPnqVPfnU/3uVvvsWPfpVvnqWfrrXPLiW/nrX/vtYv7xavrta/Hlcvnuf/Pphvbsif3zk/zzlPzylfjuk/z0o/LqnvbhSPbhSfjiS/
jlS/jjTPfhTfjlTubUU+/iiPPokfrvl/Dll/ftovLWPfHXPvHZP/PbQ/bcRuDJP/PaRvjgSffdSe3ddu7fge7fi+zkuO7NMvPTOt2/Nu7SO+3OO
/PWQdnGbOneqeneqvDqyu3JMuvJMu7KNfHNON7GZdnEbejanObXnOW8JOa9KOvCLOnBK9+4Ku3FL9ayKuzEMcenK9e+XODOiePSkODOkOW3Itis
I9yxL+a9NtGiHr+VH5h5JsSfNM2bGN6rMJt4JMOYL5h4JZl5Jph3Jpl4J5h5J5h3KJl4KZp5Ks+sUN7Gi96lLL+PKMmbMZt2Jpp3Jpt3KZl4K7q
FFdyiKdufKsedRdm7feOpQN2QKMKENrpvJbFfIrNjJL1mLMBpLr9oLrFhK69bJFkpE1kpFYNeTqFEIlsoFbmlnlsmFFwpGFkoF/////7+/v///w
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH5BAEAANAALAAAAAATABMAAAj/AKEJHCgo
kKJKlhThGciQYSIva7r8SHPFzqGGAwPd4bKlh5YsPKy0qFLnT0NAaHTcsIHDho0aKkaAwGCGEkM1NmSkIjWLBosVJT6cOjUrzsBKPl54KmYsACo
TMmk1WwaA1CRoeM7siJEqmTIAsjp40ICK2bEApfZcsoQlxwxRzgI8W8XhgoVYA+Kq6sMK0QEYKVCUkoVqQwQJFTwFEAAAFZ9PlFy4OEEiRIYJD5
5EodDA1ClTbPp0okRFxBQDBRgskAKhiRMlc+Sw4SNpFCIoBBwkUMBkCBIiY8qAgcPG0KBHrBTFQbCEV5EjQYQACfNFjp5CgxpxagVtUhIjwzaJY
SHzhQ4cP3ryQHLEqJbASnu+6EIW6o2b2X0ISXK0CFSugazs0YYmwQhziyuE2PLLIv3h0hArkRhiCCzAENOLL7tgAoqDGLXSSSaPMLIIJpmAUst/
GA3UCiuv1PIKLtw1FBAAOw=="
}

The	service	will	respond	with	something	like	this:

{
		"id":	"6454364d8facd7a88e627e4c4b11b032d2f83af8f7f9329ffc2b7a5c879dc838.gif",
		"uri":	"the-same-uri-we-uploaded",
		"size":	1156
}

Or	we	can	implement	a	very	basic	frontend	with		feathers-client		and		jQuery	:

<!doctype	html>
<html>
				<head>
								<title>Feathersjs	File	Upload</title>
								<script			src="https://code.jquery.com/jquery-2.2.3.min.js"			integrity="sha256-a23g1Nt4dtEYOj7bR+vTu7+
T8VP13humZFBJNIYoEJo="			crossorigin="anonymous"></script>
								<script	type="text/javascript"	src="//cdnjs.cloudflare.com/ajax/libs/core-js/2.1.4/core.min.js"></script
>
								<script	type="text/javascript"	src="//unpkg.com/feathers-client@^2.0.0/dist/feathers.js"></script>
								<script	type="text/javascript">

File	uploads

165



												//	feathers	client	initialization
												const	rest	=	feathers.rest('http://localhost:3030');
												const	app	=	feathers()
												.configure(feathers.hooks())
												.configure(rest.jquery($));

												//	setup	jQuery	to	watch	the	ajax	progress
												$.ajaxSetup({
																xhr:	function	()	{
																				var	xhr	=	new	window.XMLHttpRequest();
																				//	upload	progress
																				xhr.addEventListener("progress",	function	(evt)	{
																								if	(evt.lengthComputable)	{
																												var	percentComplete	=	evt.loaded	/	evt.total;
																												console.log('upload	progress:	',	Math.round(percentComplete	*	100)	+	"%");
																								}
																				},	false);
																				return	xhr;
																}
												});

												const	uploadService	=	app.service('uploads');
												const	reader		=	new	FileReader();

												//	encode	selected	files
												$(document).ready(function(){
																$('input#file').change(function(){
																				var	file	=	this.files[0];
																				//	encode	dataURI
																				reader.readAsDataURL(file);	
																})
												});

												//	when	encoded,	upload
												reader.addEventListener("load",	function	()	{
																console.log('encoded	file:	',	reader.result);
																var	upload	=	uploadService
																				.create({uri:	reader.result})
																				.then(function(response){
																								//	success
																								alert('UPLOADED!!	');
																								console.log('Server	responded	with:	',	response);
																				});
												},	false);
								</script>
				</head>
				<body>
								<h1>Let's	upload	some	files!</h1>
								<input	type="file"	id="file"/>
				</body>
</html>

This	code	watches	for	file	selection,	then	encodes	it	and	does	an	ajax	post	to	upload	it,	watching	the	upload	progress
via	the	xhr	object.	Everything	works	as	expected.

Every	file	we	select	gets	uploaded	and	saved	to	the		./uploads		directory.

Work	done!,	let's	call	it	a	day,	shall	we?

...	But	hey,	there	is	something	that	doesn't	feels	quite	right	...right?

DataURI	upload	problems

File	uploads

166



It	doesn't	feels	right	because	it	is	not.	Let's	imagine	what	would	happen	if	we	try	to	upload	a	large	file,	say	25MB	or
more:	The	entire	file	(plus	some	extra	MB	due	to	the	encoding)	has	to	be	kept	in	memory	for	the	entire	upload
process,	this	could	look	like	nothing	for	a	normal	computer	but	for	mobile	devices	it's	a	big	deal.

We	have	a	big	RAM	consumption	problem.	Not	to	mention	we	have	to	encode	the	file	before	sending	it...

The	solution	would	be	to	modify	the	service,	adding	support	for	splitting	the	dataURI	into	small	chunks,	then	uploading
one	at	a	time,	collecting	and	reassembling	everything	on	the	server.	But	hey,	it's	not	that	the	same	thing	browsers	and
web	servers	has	been	doing	since	maybe	the	very	early	days	of	the	web?	maybe	since	Netscape	Navigator?

Well,	actually	it	is,	and	doing	a		multipart/form-data		post	is	still	the	easiest	way	to	upload	a	file.

Feathers-blob	with	multipart	support.
Back	with	the	backend,	in	order	to	accept	multipart	uploads,	we	need	a	way	to	handle	the		multipart/form-data	
received	by	the	web	server.	Given	that	Feathers	behaves	like	Express,	let's	just	use		multer		and	a	custom
middleware	to	handle	that.

/*	---	server.js	---	*/
const	multer	=	require('multer');
const	multipartMiddleware	=	multer();

//	Upload	Service	with	multipart	support
app.use('/uploads',

				//	multer	parses	the	file	named	'uri'.
				//	Without	extra	params	the	data	is	
				//	temporarely	kept	in	memory
				multipartMiddleware.single('uri'),

				//	another	middleware,	this	time	to	
				//	transfer	the	received	file	to	feathers	
				function(req,res,next){
								req.feathers.file	=	req.file;
								next();
				},
				blobService({Model:	blobStorage})
);

Notice	we	kept	the	file	field	name	as	uri	just	to	maintain	uniformity,	as	the	service	will	always	work	with	that	name
anyways.	But	you	can	change	it	if	you	prefer.

Feathers-blob	only	understands	files	encoded	as	dataURI,	so	we	need	to	convert	them	first.	Let's	make	a	Hook	for
that:

/*	---	server.js	---	*/
const	dauria	=	require('dauria');

//	before-create	Hook	to	get	the	file	(if	there	is	any)
//	and	turn	it	into	a	datauri,
//	transparently	getting	feathers-blob	to	work	
//	with	multipart	file	uploads
app.service('/uploads').before({
				create:	[
								function(hook)	{
												if	(!hook.data.uri	&&	hook.params.file){
																const	file	=	hook.params.file;
																const	uri	=	dauria.getBase64DataURI(file.buffer,	file.mimetype);
																hook.data	=	{uri:	uri};
												}
								}

File	uploads

167



				]
});

Et	voilà!.	Now	we	have	a	FeathersJS	file	storage	service	working,	with	support	for	traditional	multipart	uploads,	and	a
variety	of	storage	options	to	choose.

Simply	awesome.

Further	improvements
The	service	always	return	the	dataURI	back	to	us,	which	may	not	be	necessary	as	we'd	just	uploaded	the	file,	also	we
need	to	validate	the	file	and	check	for	authorization.

All	those	things	can	be	easily	done	with	more	Hooks,	and	that's	the	benefit	of	keeping	all	inside	FeathersJS	services.	I
left	that	to	you.

For	the	frontend,	there	is	a	problem	with	the	client:	in	order	to	show	the	upload	progress	it's	stuck	with	only	REST
functionality	and	not	real-time	with	socket.io.

The	solution	is	to	switch		feathers-client		from	REST	to		socket.io	,	and	just	use	wherever	you	like	for	uploading	the
files,	that's	an	easy	task	now	that	we	are	able	to	do	a	traditional		form-multipart		upload.

Here	is	an	example	using	dropzone:

<!doctype	html>
<html>
				<head>
								<title>Feathersjs	File	Upload</title>

								<link	rel="stylesheet"	href="assets/dropzone.css">
								<script	src="assets/dropzone.js"></script>

								<script	type="text/javascript"	src="socket.io/socket.io.js"></script>
								<script	type="text/javascript"	src="//cdnjs.cloudflare.com/ajax/libs/core-js/2.1.4/core.min.js"></script
>
								<script	type="text/javascript"	src="//unpkg.com/feathers-client@^2.0.0/dist/feathers.js"></script>
								<script	type="text/javascript">
												//	feathers	client	initialization
												var	socket	=	io('http://localhost:3030');
												const	app	=	feathers()
												.configure(feathers.hooks())
												.configure(feathers.socketio(socket));
												const	uploadService	=	app.service('uploads');

												//	Now	with	Real-Time	Support!
												uploadService.on('created',	function(file){
																alert('Received	file	created	event!',	file);
												});

												//	Let's	use	DropZone!
												Dropzone.options.myAwesomeDropzone	=	{
																paramName:	"uri",
																uploadMultiple:	false,
																init:	function(){
																				this.on('uploadprogress',	function(file,	progress){
																								console.log('progresss',	progress);
																				});
																}
												};
								</script>
				</head>
				<body>

File	uploads

168



								<h1>Let's	upload	some	files!</h1>
								<form	action="/uploads"
										class="dropzone"
										id="my-awesome-dropzone"></form>
				</body>
</html>

All	the	code	is	available	via	github	here:	https://github.com/CianCoders/feathers-example-fileupload

Hope	you	have	learned	something	today,	as	I	learned	a	lot	writing	this.

Cheers!

File	uploads

169

https://github.com/CianCoders/feathers-example-fileupload


Creating	a	Feathers	Plugin
The	easiest	way	to	create	a	plugin	is	with	the	Yeoman	generator.

First	install	the	generator

$	npm	install	-g	generator-feathers-plugin

Then	in	a	new	directory	run:

$	yo	feathers-plugin

This	will	scaffold	out	everything	that	is	needed	to	start	writing	your	plugin.

Output	files	from	generator:

			create	package.json
			create	.babelrc
			create	.editorconfig
			create	.jshintrc
			create	.travis.yml
			create	src/index.js
			create	test/index.test.js
			create	README.md
			create	LICENSE
			create	.gitignore
			create	.npmignore

Simple	right?	We	technically	could	call	it	a	day	as	we	have	created	a	Plugin.	However,	we	probably	want	to	do	just	a
bit	more.	Generally	speaking	a	Plugin	is	a	Service.	The	fun	part	is	that	a	Plugin	can	contain	multiple	Services	which
we	will	create	below.	This	example	is	going	to	build	out	2	services.	The	first	will	allow	us	to	find	members	of	the
Feathers	Core	Team	&	the	second	will	allow	us	to	find	the	best	state	in	the	United	States.

Verifying	our	Service
Before	we	start	writing	more	code	we	need	to	see	that	things	are	working.

$	cd	example	&&	node	app.js

Error:	Cannot	find	module	'../lib/index'

Dang!	Running	the	example	app	resulted	in	an	error	and	you	said	to	yourself,	"The	generator	must	be	broken	and	we
should	head	over	to	the	friendly	Slack	community	to	start	our	debugging	journey".	Well,	as	nice	as	they	may	be	we
can	get	through	this.	Let's	take	a	look	at	the	package.json	that	came	with	our	generator.	Most	notably	the	scripts
section.

"scripts":	{
				"prepublish":	"npm	run	compile",
				"publish":	"git	push	origin	&&	git	push	origin	--tags",
				"release:patch":	"npm	version	patch	&&	npm	publish",
				"release:minor":	"npm	version	minor	&&	npm	publish",
				"release:major":	"npm	version	major	&&	npm	publish",
				"compile":	"rimraf	lib/	&&	babel	-d	lib/	src/",
				"watch":	"babel	--watch	-d	lib/	src/",

Creating	a	Feathers	plugin

170

https://github.com/feathersjs/generator-feathers-plugin


				"jshint":	"jshint	src/.	test/.	--config",
				"mocha":	"mocha	--recursive	test/	--compilers	js:babel-core/register",
				"test":	"npm	run	compile	&&	npm	run	jshint	&&	npm	run	mocha",
				"start":	"npm	run	compile	&&	node	example/app"
		}

Back	in	business.	That	error	message	was	telling	us	that	we	need	to	build	our	project.	In	this	case	it	means	babel
needs	to	do	it's	thing.	For	development	you	can	run	watch

$	npm	run	watch

>	creatingPlugin@0.0.0	watch	/Users/ajones/git/training/creatingPlugin
>	babel	--watch	-d	lib/	src/

src/index.js	->	lib/index.js

After	that	you	can	run	the	example	app	and	everything	should	be	good	to	go.

$	node	app.js
Feathers	app	started	on	127.0.0.1:3030

Expanding	our	Plugin
Now	that	we	did	our	verification	we	can	safely	change	things.	For	this	example	we	want	2	services	to	be	exposed	from
our	Plugin.	Let's	create	a	services	directory	within	the	src	folder.

//	From	the	src	directory	
$	mkdir	services
$	ls	
index.js	services

Now	let's	create	our	two	services.	We	will	just	copy	the	index.js	file.

$	cp	index.js	services/core-team.js
$	cp	index.js	services/best-state.js
$	cd	services	&&	ls
best-state.js	core-team.js

$	cat	best-state.js

if	(!global._babelPolyfill)	{	require('babel-polyfill');	}

import	errors	from	'feathers-errors';
import	makeDebug	from	'debug';

const	debug	=	makeDebug('creatingPlugin');

class	Service	{
		constructor(options	=	{})	{
				this.options	=	options;
		}

		find(params)	{
				return	new	Promise((resolve,	reject)	=>	{
						//	Put	some	async	code	here.
						if	(!params.query)	{
								return	reject(new	errors.BadRequest());
						}

						resolve([]);

Creating	a	Feathers	plugin

171



				});
		}
}

export	default	function	init(options)	{
		debug('Initializing	creatingPlugin	plugin');
		return	new	Service(options);
}

init.Service	=	Service;

At	this	point	we	have	index.js,	best-state.js	and	core-team.js	with	identical	content.	The	next	step	will	be	to	change
index.js	so	that	it	is	our	main	file.

Our	new	index.js

if	(!global._babelPolyfill)	{	require('babel-polyfill');	}

import	coreTeam	from	'./services/core-team';
import	bestState	from	'./services/best-state';

export	default	{	coreTeam,	bestState	};

Now	we	need	to	actually	write	the	services.	We	will	only	be	implementing	the	find	action	as	you	can	reference	the
service	docs	to	learn	more.	Starting	with	core-team.js	we	want	to	find	out	the	names	of	the	members	listed	in	the
feathers.js	org	on	github.

//core-team.js
if	(!global._babelPolyfill)	{	require('babel-polyfill');	}

import	errors	from	'feathers-errors';
import	makeDebug	from	'debug';

const	debug	=	makeDebug('creatingPlugin');

class	Service	{
		constructor(options	=	{})	{
				this.options	=	options;
		}

		//We	are	only	changing	the	find...
		find(params)	{
				return	Promise.resolve(['Mikey',	'Cory	Smith',	'David	Luecke',	'Emmanuel	Bourmalo',	'Eric	Kryski',	
						'Glavin	Wiechert',	'Jack	Guy',	'Anton	Kulakov',	'Marshall	Thompson'])
		}
}

export	default	function	init(options)	{
		debug('Initializing	creatingPlugin	plugin');
		return	new	Service(options);
}

init.Service	=	Service;

That	will	now	return	an	array	of	names	when	service.find	is	called.	Moving	on	to	the	best-state	service	we	can	follow
the	same	pattern

if	(!global._babelPolyfill)	{	require('babel-polyfill');	}

import	errors	from	'feathers-errors';
import	makeDebug	from	'debug';

const	debug	=	makeDebug('creatingPlugin');

Creating	a	Feathers	plugin

172



class	Service	{
		constructor(options	=	{})	{
				this.options	=	options;
		}

		find(params)	{
				return	Promise.resolve(['Alaska']);
		}
}

export	default	function	init(options)	{
		debug('Initializing	creatingPlugin	plugin');
		return	new	Service(options);
}

init.Service	=	Service;

Notice	in	the	above	service	it	return	a	single	item	array	with	the	best	state	listed.

Usage
The	easiest	way	to	use	our	plugin	will	be	within	the	same	app.js	file	that	we	were	using	earlier.	Let's	write	out	some
basic	usage	in	that	file.

//app.js
const	feathers	=	require('feathers');
const	rest	=	require('feathers-rest');
const	hooks	=	require('feathers-hooks');
const	bodyParser	=	require('body-parser');
const	errorHandler	=	require('feathers-errors/handler');
const	plugin	=	require('../lib/index');

//	Initialize	the	application
const	app	=	feathers()
		.configure(rest())
		.configure(hooks())
		//	Needed	for	parsing	bodies	(login)
		.use(bodyParser.json())
		.use(bodyParser.urlencoded({	extended:	true	}))
		//	Initialize	your	feathers	plugin
		.use('/plugin/coreTeam',	plugin.coreTeam())
		.use('/plugin/bestState',	plugin.bestState())
		.use(errorHandler());

var	bestStateService	=	app.service('/plugin/bestState')
var	coreTeamService	=	app.service('/plugin/coreTeam')

bestStateService.find().then(	(result)	=>	{
		console.log(result)
}).catch(	error	=>	{
		console.log('Error	finding	the	best	state	',	error)
})

coreTeamService.find().then(	(result)	=>	{
		console.log(result)
}).catch(	error	=>	{
		console.log('Error	finding	the	core	team	',	error)
})

app.listen(3030);

console.log('Feathers	app	started	on	127.0.0.1:3030');

Creating	a	Feathers	plugin

173



$	node	app.js

Feathers	app	started	on	127.0.0.1:3030
[	'Alaska'	]
[	'Mikey',
		'Cory	Smith',
		'David	Luecke',
		'Emmanuel	Bourmalo',
		'Eric	Kryski',
		'Glavin	Wiechert',
		'Jack	Guy',
		'Anton	Kulakov',
		'Marshall	Thompson'	]

Testing
Our	generator	stubbed	out	some	basic	tests.	We	will	remove	everything	and	replace	it	with	the	following.

import	{	expect	}	from	'chai';
import	plugin	from	'../src';

const	bestStateService	=	plugin.bestState()

describe('bestState',	()	=>	{
		it('is	Alaska',	()	=>	{
				bestStateService.find().then(result	=>	{
						console.log(result)
						expect(result).to.eql(['Alaska']);
						done();
				});
		});
});

$	npm	run	test

Because	this	is	just	a	quick	sample	jshint	might	fail.	You	can	either	fix	the	syntax	or	change	the	test	command.

$	npm	run	compile	&&	npm	run	mocha

This	should	give	you	the	basic	idea	of	creating	a	Plugin	for	Feathers.

Creating	a	Feathers	plugin

174



Seeding	Services
It	is	common	to	populate	the	database	with	mock	data	while	developing	and	testing	applications.	This	process	is
known	as	seeding,	and	the		feathers-seeder		plugin	makes	this	easy.		feathers-seeder		seeds	your	services,	so	you
can	seed	any	database	in	the	exact	same	way.

Installing	feathers-seeder
First,	install	the	plugin.

$	npm	install	--save	feathers-seeder

Next,	modify	your		src/app.js		to	look	somewhat	like	this:

const	feathers	=	require('feathers');
const	seeder	=	require('feathers-seeder');
const	seederConfig	=	require('./seeder-config');

const	app	=	feathers();

app
		.configure(seeder(seederConfig));

module.exports	=	app;

Create	a		src/seeder-config.js		file:

module.exports	=	{
		services:	[
				{
						path:	'users',
						template:	{
								name:	'{{name.firstName}}	{{name.lastName}}',
								password:	'{{internet.password}}'
						}
				}
		]
};

Lastly,	in	your		src/server.js	:

app.seed().then(()	=>	{
		const	server	=	app.listen(app.get('port'));
		//	...
}).catch(err	=>	{
		//	...
});

	feathers-seeder		expects	your	configuration	object	to	have	a		services		array,	where	you	can	provide	a	template
(which	will	be	filled	by	@marak/Faker.js)	that	will	be	inserted	into	your	service.

The	configuration	options	are	described	in	depth	here.

Seeding	Nested	Services

Seeding	services

175

https://github.com/thosakwe/feathers-seeder
https://github.com/marak/Faker.js/
https://github.com/thosakwe/feathers-seeder#configuration


A	common	scenario	is	having	a	service	that	relies	directly	on	another	service.		feathers-seeder		allows	you	to	include
a		callback		function	inside	your	configuration,	so	that	you	can	interact	with	the	instances	you	create.

For	example,	if	you	had	a	service	called		apartments	,	and	another	called		apartments/:apartmentId/tenants	:

export	default	const	seederConfig	=	{
		services:	[
				{
						count:	25,	//	Create	25	apartments
						path:	'apartments',
						template:	{
								city:	'{{address.city}}',
								zip:	'{{address.zipCode}}'
						},

						callback(apartment,	seed)	{
								//	Create	10	tenants	for	each	apartment
								return	seed({
										count:	10,
										path:	'apartments/:apartmentId/tenants',
										template:	{
												name:	'{{name.firstName}}	{{name.lastName}}',
												email:	'{{internet.email}}'
										},
										params:	{
												apartmentId:	apartment._id
										}
								});
						}

				}
		]
};

Keep	in	mind,	your	callback	function	must	return	a		Promise	.

Again,	all	configuration	options	are	listed	here.	Happy	seeding!

Seeding	services

176

https://github.com/thosakwe/feathers-seeder#configuration


Using	A	View	Engine
Since	Feathers	is	just	an	extension	of	Express	it's	really	simple	to	render	templated	views	on	the	server	with	data	from
your	Feathers	services.	There	are	a	few	different	ways	that	you	can	structure	your	app	so	this	guide	will	show	you	3
typical	ways	you	might	have	your	Feathers	app	organized.

A	Single	"Monolithic"	App
You	probably	already	know	that	when	you	register	a	Feathers	service,	Feathers	creates	RESTful	endpoints	for	that
service	automatically.	Well,	really	those	are	just	Express	routes,	so	you	can	define	your	own	as	well.

ProTip:	Your	own	defined	REST	endpoints	won't	work	with	hooks	and	won't	emit	socket	events.	If	you	find	you
need	that	functionality	it's	probably	better	for	you	to	turn	your	endpoints	into	a	minimal	Feathers	service.

Let's	say	you	want	to	render	a	list	of	messages	from	most	recent	to	oldest	using	the	Jade	template	engine.

//	You've	set	up	your	main	Feathers	app	already

//	Register	your	view	engine
app.set('view	engine',	'jade');

//	Register	your	message	service
app.use('/api/messages',	memory());

//	Inside	your	main	Feathers	app
app.get('/messages',	function(req,	res,	next){
		//	You	namespace	your	feathers	service	routes	so	that
		//	don't	get	route	conflicts	and	have	nice	URLs.
		app.service('api/messages')
				.find({	query:	{$sort:	{	updatedAt:	-1	}	}	})
				.then(result	=>	res.render('message-list',	result.data))
				.catch(next);
});

Simple	right?	We've	now	rendered	a	list	of	messages.	All	your	hooks	will	get	triggered	just	like	they	would	normally	so
you	can	use	hooks	to	pre-filter	your	data	and	keep	your	template	rendering	routes	super	tight.

ProTip:	If	you	call	a	Feathers	service	"internally"	(ie.	not	over	sockets	or	REST)	you	won't	have	a
	hook.params.provider		attribute.	This	allows	you	to	have	hooks	only	execute	when	services	are	called	externally
vs.	from	your	own	code.	See	bundled	hooks	for	an	example.

Feathers	As	A	Sub-App
Sometimes	a	better	way	to	break	up	your	Feathers	app	is	to	put	your	services	into	an	API	and	mount	your	API	as	a
sub-app.	This	is	just	like	you	would	do	with	Express.	If	you	do	this,	it's	only	a	slight	change	to	get	data	from	your
services.

//	You've	set	up	your	main	Feathers	app	already

//	Register	your	view	engine
app.set('view	engine',	'jade');

//	Require	your	configured	API	sub-app
const	api	=	require('./api');

Using	a	view	engine

177



//	Register	your	API	sub	app
app.use('/api',	api);

app.get('/messages',	function(req,	res,	next){
		api.service('messages')
				.find({	query:	{$sort:	{	updatedAt:	-1	}	}	})
				.then(result	=>	res.render('message-list',	result.data))
				.catch(next);
});

Not	a	whole	lot	different.	Your	API	sub	app	is	pretty	much	the	same	as	your	single	app	in	the	previous	example,	and
your	main	Feathers	app	is	just	a	really	small	wrapper	that	does	little	more	than	render	templates.

Feathers	As	A	Separate	App
If	your	app	starts	to	get	a	bit	busier	you	might	decide	to	move	your	API	to	a	completely	separate	standalone	Feathers
app,	maybe	even	on	a	different	server.	In	order	for	both	apps	to	talk	to	each	other	they'll	need	some	way	to	make
remote	requests.	Well,	Feathers	just	so	happens	to	have	a	client	side	piece	that	can	be	used	on	the	server.	This	is
how	it	works.

//	You've	set	up	your	feathers	app	already

//	Register	your	view	engine
app.set('view	engine',	'jade');

//	Include	the	Feathers	client	modules
const	client	=	require('feathers/client');
const	socketio	=	require('feathers-socketio/client');
const	io	=	require('socket.io-client');

//	Set	up	a	socket	connection	to	our	remote	API
const	socket	=	io('http://api.feathersjs.com');
const	api	=	client().configure(socketio(socket));

app.get('/messages',	function(req,	res,	next){
		api.service('messages')
				.find({	query:	{$sort:	{	updatedAt:	-1	}	}	})
				.then(result	=>	res.render('message-list',	result.data))
				.catch(next);
});

ProTip:	In	the	above	example	we	set	up	sockets.	Alternatively	you	could	use	a	Feathers	client	REST	provider.

And	with	that,	we've	shown	3	different	ways	that	you	use	a	template	engine	with	Feathers	to	render	service	data.	If
you	see	any	issues	in	this	guide	feel	free	to	submit	a	pull	request.

Using	a	view	engine

178

https://github.com/feathersjs/feathers-docs/edit/master/guides/advanced/using-a-view-engine.md


Scaling
Depending	on	your	requirements,	your	feathers	application	may	need	to	provide	high	availability.	Feathers	is	designed
to	scale.

The	types	of	transports	used	in	a	feathers	application	will	impact	the	scaling	configuration.	For	example,	a	feathers
app	that	uses	the		feathers-rest		adapter	exclusively	will	require	less	scaling	configuration	because	HTTP	is	a
stateless	protocol.	If	using	websockets	(a	stateful	protocol)	through	the		feathers-socketio		or		feathers-primus	
adapters,	configuration	may	be	more	complex	to	ensure	websockets	work	properly.

Horizontal	Scaling
Scaling	horizontally	refers	to	either:

setting	up	a	cluster,	or
adding	more	machines	to	support	your	application

To	achieve	high	availability,	varying	combinations	of	both	strategies	may	be	used.

Cluster	configuration
Cluster	support	is	built	into	core	NodeJS.	Since	NodeJS	is	single	threaded,	clustering	allows	you	to	easily	distribute
application	requests	among	multiple	child	processes	(and	multiple	threads).	Clustering	is	a	good	choice	when	running
feathers	in	a	multi-core	environment.

Below	is	an	example	of	adding	clustering	to	feathers	with	the		feathers-socketio		provider.	By	default,	websocket
connections	begin	via	a	handshake	of	multiple	HTTP	requests	and	are	upgraded	to	the	websocket	protocol.	However,
when	clustering	is	enabled,	the	same	worker	will	not	process	all	HTTP	requests	for	a	handshake,	leading	to	HTTP
400	errors.	To	ensure	a	successful	handshake,	force	a	single	worker	to	process	the	handshake	by	disabling	the	http
transport	and	exclusively	using	the		websocket		transport.

There	are	notable	side	effects	to	be	aware	of	when	disabling	the	HTTP	transport	for	websockets.	While	all	modern
browsers	support	websocket	connections,	there	is	no	websocket	support	for	IE	<=9	and	Android	Browser	<=4.3.	If	you
must	support	these	browsers,	use	alternative	scaling	strategies.

import	cluster	from	'cluster';
import	feathers	from	'feathers';
import	socketio	from	'feathers-socketio';

const	CLUSTER_COUNT	=	4;

if	(cluster.isMaster)	{
		for	(let	i	=	0;	i	<	CLUSTER_COUNT;	i++)	{
				cluster.fork();
		}
}	else	{
		const	app	=	feathers();
		//	ensure	the	same	worker	handles	websocket	connections
		app.configure(socketio({
				transports:	['websocket']
		}));
		app.listen(4000);
}

Scaling

179

https://nodejs.org/api/cluster.html
https://nodejs.org/api/cluster.html
http://caniuse.com/#feat=websockets


In	your	feathers	client	code,	limit	the	socket.io-client	to	the		websocket		transport	and	disable		upgrade	.

import	hooks	from	'feathers-hooks';
import	feathers	from	'feathers/client';
import	io	from	'socket.io-client';
import	socketio	from	'feathers-socketio/client';

const	app	=	feathers()
		.configure(hooks())
		.configure(socketio(
				io('http://api.feathersjs.com',	{
						transports:	['websocket'],
						upgrade:	false
				})
		));

Scaling

180



API
Core

Application
Services
Hooks
Common	Hooks
Client
Events
Errors

Transports
REST
Express
Socket.io
Primus

Authentication
Server
Client
Local
JWT
OAuth1
OAuth2
Hooks

Databases
Common	API
Querying
Memory
NeDb
LocalStorage
MongoDB
Mongoose
Sequelize
Knex
RethinkDB

API

181



Application

	 	

$	npm	install	feathers	--save

The	core		feathers		module	provides	the	ability	to	initialize	new	Feathers	application	instances.	Each	instance	allows
for	registration	and	retrieval	of	services,	plugin	configuration,	and	getting	and	setting	global	configuration	options.	An
initialized	Feathers	application	is	referred	to	as	the	app	object.	The	API	documented	on	this	page	works	both,	on	the
server	and	the	client.

//	To	create	a	Feathers	server	application
const	feathers	=	require('feathers');

//	To	create	a	client	side	application
const	feathers	=	require('feathers/client');

const	app	=	feathers();

Important:	In	addition	to	the	API	outlined	below,	a	Feathers	server	application	also	provides	the	exact	same
functionality	as	an	Express	4	application.	For	more	advanced	use	of	Feathers,	familiarity	with	Express	is	highly
recommended.	For	the	interaction	between	Express	and	Feathers,	also	see	the	REST	and	Express	chapters.

.use(path,	service)
	app.use(path,	service)	->	app		allows	registering	a	service	object	on	the		path	.

//	Add	a	service.
app.use('/messages',	{
		get(id)	{
				return	Promise.resolve({
						id,
						text:	`This	is	the	${name}	message!`
				});
		}
});

On	the	server		.use		also	provides	the	same	functionality	as	Express	app.use	if	passed	something	other	than	a
service	object	(e.g.	an	Express	middleware	or	other	app	object).

Important:	REST	services	are	registered	in	the	same	order	as	any	other	middleware.	For	additional	information
on	how	services	and	middleware	interact	see	the	Express	chapter.

.service(path)
	app.service(path)	->	service		returns	the	wrapped	service	object	for	the	given	path.	Feathers	internally	creates	a
new	object	from	each	registered	service.	This	means	that	the	object	returned	by		app.service(path)		will	provide	the
same	methods	and	functionality	as	your	original	service	object	but	also	functionality	added	by	Feathers	and	its	plugins
like	service	events	and	additional	methods.		path		can	be	the	service	name	with	or	without	leading	and	trailing
slashes.

Application

182

https://github.com/feathersjs/feathers/
https://www.npmjs.com/package/feathers
https://github.com/feathersjs/feathers/blob/master/CHANGELOG.md
http://expressjs.com/en/4x/api.html
http://expressjs.com/en/4x/api.html#app.use


const	messageService	=	app.service('messages');

messageService.get('test').then(message	=>	console.log(message));

app.use('/my/todos',	{
		create(data)	{
				return	Promise.resolve(data);
		}
});

const	todoService	=	app.service('my/todos');
//	todoService	is	an	event	emitter
todoService.on('created',	todo	=>	
		console.log('Created	todo',	todo)
);

.configure(callback)
	app.configure(callback)	->	app		runs	a		callback		function	with	the	application	as	the	context	(	this	).	It	can	be	used
to	initialize	plugins	or	services.

function	setupService()	{
		this.use('/todos',	todoService);
}

app.configure(setupService);

.listen(port)
	app.listen([port])	->	HTTPServer		starts	the	application	on	the	given	port.	It	will	first	call	the	original	Express
app.listen([port]),	then	run		app.setup(server)		(see	below)	with	the	server	object	and	then	return	the	server	object.

	listen		does	nothing	on	the	Feathers	Client.

.setup(server)
	app.setup(server)	->	app		is	used	to	initialize	all	services	by	calling	each	services	.setup(app,	path)	method	(if
available).	It	will	also	use	the		server		instance	passed	(e.g.	through		http.createServer	)	to	set	up	SocketIO	(if
enabled)	and	any	other	provider	that	might	require	the	server	instance.

Normally		app.setup		will	be	called	automatically	when	starting	the	application	via		app.listen([port])		but	there	are
cases	when	it	needs	to	be	called	explicitly.	For	more	information	see	the	Express	chapter.

.set(name,	value)
	app.set(name,	value)	->	app		assigns	setting		name		to		value	.

.get(name)
	app.get(name)	->	value		retrieves	the	setting		name	.	For	more	information	on	server	side	Express	settings	see	the
Express	documentation.

Application

183

http://expressjs.com/api.html#app.listen
http://expressjs.com/en/4x/api.html#app.set


app.set('port',	3030);

app.listen(app.get('port'));

.hooks(hooks)
	app.hooks(hooks)	->	app		allows	registration	of	application-level	hooks.	For	more	information	see	the	application
hooks	section.

.on(eventname,	listener)
Provided	by	the	core	NodeJS	EventEmitter	.on.	Registers	a		listener		method	(	function(data)	{}	)	for	the	given
	eventname	.

app.on('login',	user	=>	console.log('Logged	in',	user));

.emit(eventname,	data)
Provided	by	the	core	NodeJS	EventEmitter	.emit.	Emits	the	event		eventname		to	all	event	listeners.

app.emit('myevent',	{
		message:	'Something	happened'
});

app.on('myevent',	data	=>	console.log('myevent	happened',	data));

.removeListener(eventname,	[	listener	])
Provided	by	the	core	NodeJS	EventEmitter	.removeListener.	Removes	all	or	the	given	listener	for		eventname	.

Application

184

https://nodejs.org/api/events.html#events_emitter_on_eventname_listener
https://nodejs.org/api/events.html#events_emitter_emit_eventname_args
https://nodejs.org/api/events.html#events_emitter_removelistener_eventname_listener


Services
Services	are	the	heart	of	every	Feathers	application	and	JavaScript	objects	(or	instances	of	ES6	classes)	that
implements	certain	methods.	Feathers	itself	will	also	add	some	additional	methods	and	functionality	to	its	services.

Service	methods
Service	methods	are	pre-defined	CRUD	methods	that	your	service	object	can	implement	(or	that	has	already	been
implemented	by	one	of	the	database	adapters).	Below	is	a	complete	example	of	the	Feathers	service	interface:

const	myService	=	{
		find(params)	{},
		get(id,	params)	{},
		create(data,	params)	{},
		update(id,	data,	params)	{},
		patch(id,	data,	params)	{},
		remove(id,	params)	{},
		setup(app,	path)	{}
}

app.use('/my-service',	myService);

Or	as	an	ES6	class:

'use	strict';

class	MyService	{
		find(params)	{}
		get(id,	params)	{}
		create(data,	params)	{}
		update(id,	data,	params)	{}
		patch(id,	data,	params)	{}
		remove(id,	params)	{}
		setup(app,	path)	{}
}

app.use('/my-service',	new	MyService());

ProTip:	Methods	are	optional,	and	if	a	method	is	not	implemented	Feathers	will	automatically	emit	a
	NotImplemented		error.

Service	methods	have	to	return	a	Promise	and	have	the	following	parameters:

	id		-	the	identifier	for	the	resource.	A	resource	is	the	data	identified	by	a	unique	id.
	data		-	the	resource	data.
	params		-	can	contain	any	extra	parameters,	for	example	the	authenticated	user.

Important:		params.query		contains	the	query	parameters	from	the	client,	either	passed	as	URL	query
paramters	(see	the	REST	chapter)	or	through	websockets	(see	Socket.io	or	Primus).

Once	registered	the	service	can	be	retrieved	and	used	via	app.service():

const	myService	=	app.service('my-service');

myService.find().then(items	=>	console.log('.find()',	items));
myService.get(1).then(item	=>	console.log('.get(1)',	items));

Services

185

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise


Keep	in	mind	that	services	don't	have	to	use	databases.	You	could	easily	replace	the	database	in	the	example	with	a
package	that	uses	some	API,	like	pulling	in	GitHub	stars	or	stock	ticker	data.

Important:	This	section	describes	the	general	use	of	service	methods	and	how	to	implement	them.	They	are
already	implemented	by	Feathers	official	database	adapters.	For	specifics	on	how	to	use	the	database	adapters
see	the	database	adapters	common	API.

.find(params)
	find(params)	->	Promise		-	retrieves	a	list	of	all	resources	from	the	service.	Provider	parameters	will	be	passed	as
	params.query	.

app.use('/messages',	{
		find(params)	{
				return	Promise.resolve([
						{
								id:	1,
								text:	'Message	1'
						},	{
								id:	2,
								text:	'Message	2'
						}
				]);
		}
});

Note:		find		does	not	have	to	return	an	array	it	can	also	return	an	object.	The	database	adapters	already	do
this	for	pagination.

.get(id,	params)
	get(id,	params)	->	Promise		-	retrieves	a	single	resource	with	the	given		id		from	the	service.

app.use('/messages',	{
		get(id,	params)	{
				return	Promise.resolve({
						id,
						text:	`You	have	to	do	${id}!`
				});
		}
});

.create(data,	params)
	create(data,	params)	->	Promise		-	creates	a	new	resource	with		data	.	The	method	should	return	a	Promise	with	the
newly	created	data.		data		may	also	be	an	array.

app.use('/messages',	{
		messages:	[],

		create(data,	params)	{
				this.messages.push(data);

				return	Promise.resolve(data);
		}
});

Services

186



Important:	A	successful		create		method	call	emits	the		created		service	event.

.update(id,	data,	params)
	update(id,	data,	params)	->	Promise		-	replaces	the	resource	identified	by		id		with		data	.	The	method	should	return
a	Promise	with	the	complete	updated	resource	data.		id		can	also	be		null		when	updating	multiple	records	with
	params.query		containing	the	query	criteria.

Important:	A	successful		update		method	call	emits	the		updated		service	event.

.patch(id,	data,	params)
	patch(id,	data,	params)	->	Promise		-	merges	the	existing	data	of	the	resource	identified	by		id		with	the	new		data	.
	id		can	also	be		null		indicating	that	multiple	resources	should	be	patched	with		params.query		containing	the	query
criteria.

The	method	should	return	with	the	complete	updated	resource	data.	Implement		patch		additionally	(or	instead	of)
	update		if	you	want	to	separate	between	partial	and	full	updates	and	support	the		PATCH		HTTP	method.

Important:	A	successful		patch		method	call	emits	the		patched		service	event.

.remove(id,	params)
	remove(id,	params)	->	Promise		-	removes	the	resource	with		id	.	The	method	should	return	a	Promise	with	the
removed	resource.		id		can	also	be		null		indicating	to	delete	multiple	resources	with		params.query		containing	the
query	criteria.

Important:	A	successful		remove		method	call	emits	the		removed		service	event.

.setup(app,	path)
	setup(app,	path)	->	Promise		is	a	special	method	that	initializes	the	service,	passing	an	instance	of	the	Feathers
application	and	the	path	it	has	been	registered	on.

For	services	registered	before		app.listen		is	invoked,	the		setup		function	of	each	registered	service	is	called	upon
invoking		app.listen	.	For	services	registered	after		app.listen		is	invoked,		setup		is	called	automatically	by	Feathers
when	a	service	is	registered.

	setup		is	a	great	place	to	initialize	your	service	with	any	special	configuration	or	if	connecting	services	that	are	very
tightly	coupled	(see	below),	as	opposed	to	using	hooks.

//	app.js
'use	strict';

const	feathers	=	require('feathers');
const	rest	=	require('feathers-rest');

class	MessageService	{
		get(id,	params)	{
				return	Promise.resolve({
						id,
						read:	false,
						text:	`Feathers	is	great!`,

Services

187



						createdAt:	new	Date.getTime()
				});
		}
}

class	MyService	{
		setup(app)	{
				this.app	=	app;
		}

		get(name,	params)	{
				const	messages	=	this.app.service('messages');

				return	messages.get(1)
						.then(message	=>	{
								return	{	name,	message	};
						});
		}
}

const	app	=	feathers()
		.configure(rest())
		.use('/messages',	new	MessageService())
		.use('/my-service',	new	MyService())

app.listen(3030);

Feathers	functionality
When	registering	a	service,	Feathers	(or	its	plugins)	can	also	add	its	own	methods	to	a	service.	Most	notably,	every
service	will	automatically	become	an	instance	of	a	NodeJS	EventEmitter.

.hooks(hooks)
Register	hooks	for	this	service.

.filter(filters)
Register	a	set	of	event	filters	to	filter	Feathers	real-time	events	to	specific	clients.

.on(eventname,	listener)
Provided	by	the	core	NodeJS	EventEmitter	.on.	Registers	a		listener		method	(	function(data)	{}	)	for	the	given
	eventname	.

Important:	For	more	information	about	service	event	see	the	Events	chapter.

.emit(eventname,	data)
Provided	by	the	core	NodeJS	EventEmitter	.emit.	Emits	the	event		eventname		to	all	event	listeners.

Important:	For	more	information	about	service	event	see	the	Events	chapter.

.removeListener(eventname,	[	listener	])

Services

188

https://nodejs.org/api/events.html#events_class_eventemitter
https://nodejs.org/api/events.html#events_emitter_on_eventname_listener
https://nodejs.org/api/events.html#events_emitter_emit_eventname_args


Provided	by	the	core	NodeJS	EventEmitter	.removeListener.	Removes	all	or	the	given	listener	for		eventname	.

Important:	For	more	information	about	service	event	see	the	Events	chapter.

Services

189

https://nodejs.org/api/events.html#events_emitter_removelistener_eventname_listener


Hooks

	 	

$	npm	install	feathers-hooks	--save

Hooks	are	pluggable	middleware	functions	that	can	be	registered	before,	after	or	on	errors	of	a	service	method.	You
can	register	a	single	hook	function	or	create	a	chain	of	them	to	create	complex	work-flows.	Most	of	the	time	multiple
hooks	are	registered	so	the	examples	show	the	"hook	chain"	array	style	registration.

A	hook	is	transport	independent,	which	means	it	does	not	matter	if	it	has	been	called	through	HTTP(S)	(REST),
Socket.io,	Primus	or	any	other	transport	Feathers	may	support	in	the	future.	They	are	also	service	agnostic,	meaning
they	can	be	used	with	​any​	service	regardless	of	whether	they	have	a	model	or	not.

Hooks	are	commonly	used	to	handle	things	like	validation,	logging,	populating	related	entities,	sending	notifications
and	more.	This	pattern	keeps	your	application	logic	flexible,	composable,	and	much	easier	to	trace	through	and
debug.	For	more	information	about	the	design	patterns	behind	hooks	see	this	blog	post.

The	following	example	adds	a		createdAt		and		updatedAt		property	before	sending	the	data	to	the	database.

const	feathers	=	require('feathers');
const	hooks	=	require('feathers-hooks');

const	app	=	feathers();

app.configure(hooks());

app.service('messages').hooks({
		before:	{
				create(hook)	{
						hook.data.createdAt	=	new	Date();
				},

				update(hook)	{
						hook.data.updatedAt	=	new	Date();
				},

				patch(hook)	{
						hook.data.updatedAt	=	new	Date();
				}
		}
});

Hook	objects
The		hook		object	is	passed	to	a	hook	function	and	contains	information	about	the	service	method	call.	Hook	objects
have	read	only	properties	that	should	not	be	modified	and	writeable	properties	that	can	be	changed	for	subsequent
hooks.

Read	Only:
	app		-	The	app	object	(used	to	e.g.	retrieve	other	services)
	service		-	The	service	this	hook	currently	runs	on
	path		-	The	path	(name)	of	the	service
	method		-	The	service	method	name
	type		-	The	hook	type	(	before	,		after		or		error	)

Hooks

190

https://github.com/feathersjs/feathers-hooks/
https://www.npmjs.com/package/feathers-hooks
https://github.com/feathersjs/feathers-hooks/blob/master/CHANGELOG.md
https://blog.feathersjs.com/api-service-composition-with-hooks-47af13aa6c01


Writeable:
	params		-	The	service	method	parameters	(including		params.query	)
	id		-	The	id	(for		get	,		remove	,		update		and		patch	)
	data		-	The	request	data	(for		create	,		update		and		patch	)
	error		-	The	error	that	was	thrown	(only	in		error		hooks)
	result		-	The	result	of	the	successful	method	call	(only	in		after		hooks).

Pro	Tip:		hook.result		Can	also	be	set	in	a		before		hook	which	will	skip	the	service	method	call	(but	run	all
other	hooks).

Pro	Tip:		hook.id		can	also	be		null		for		update	,		patch		and		remove	.	See	the	service	methods	for	more
information.

Pro	Tip:	The		hook		object	is	the	same	throughout	a	service	method	call	so	it	is	possible	to	add	properties	and
use	them	in	other	hooks	at	a	later	time.

Hook	functions
A	hook	function	(or	just	hook)	takes	a	hook	object	as	the	parameter	(	function(hook)	{}		or		hook	=>	{}	)	and	can

return	nothing	(	undefined	)
return	the		hook		object
	throw		an	error
for	asynchronous	operations	return	a	Promise	that

resolves	with	a		hook		object
resolves	with		undefined	
rejects	with	an	error

When	an	error	is	thrown	(or	the	promise	is	rejected),	all	subsequent	hooks	-	and	the	service	method	call	if	it	didn't	run
already	-	will	be	skipped	and	only	the	error	hooks	will	run.

The	following	example	throws	an	error	when	the	text	for	creating	a	new	message	is	empty.	You	can	also	create	very
similar	hooks	to	use	your	Node	validation	library	of	choice.

app.service('messages').hooks({
		before:	{
				create:	[
						function(hook)	{
								if(hook.data.text.trim()	===	'')	{
										throw	new	Error('Message	text	can	not	be	empty');
								}
						}
				]
		}
});

Asynchronous	hooks
When	a	Promise	is	returned	the	hook	will	wait	until	it	resolves	or	rejects	before	continuing.

Important:	As	stated	in	the	hook	functions	section	the	promise	has	to	either	resolve	with	the		hook		object
(usually	done	with		.then(()	=>	hook)		at	the	end	of	the	promise	chain)	or	with		undefined	.

The	following	example	shows	an	asynchronous	hook	that	uses	another	service	to	retrieve	and	populate	the	messages
	user		when	getting	a	single	message.

Hooks

191

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise


app.service('messages').hooks({
		after:	{
				get:	[
						function(hook)	{
								const	userId	=	hook.result.userId;

								//	hook.app.service('users').get	returns	a	Promise	already
								return	hook.app.service('users').get(userId).then(user	=>	{
										//	Update	the	result	(the	message)
										hook.result.user	=	user;

										//	Returning	will	resolve	the	promise	with	the	`hook`	object
										return	hook;
								});
						}
				]
		}
});

When	the	asynchronous	operation	is	using	a	callback	instead	of	returning	a	promise	you	have	to	create	and	return	a
new	Promise	(	new	Promise((resolve,	reject)	=>	{})	).

The	following	example	reads	a	JSON	file	with	fs.readFile	and	adds	it	to	the	message:

app.service('messages').hooks({
		after:	{
				get:	[
						function(hook)	{
								return	new	Promise((resolve,	reject)	=>	{
										require('fs').readFile('./myfile.json',	(error,	data)	=>	{
												//	Check	if	the	callback	got	an	error,	if	so	reject	the	promise	and	return
												if(error)	{
														return	reject(error);
												}

												hook.result.myFile	=	JSON.parse(data.toString());

												//	Resolve	the	promise	with	the	`hook`	object
												resolve(hook);
										});
								});
						}
				]
		}
});

Pro	Tip:	Tools	like	Bluebird	make	converting	between	callbacks	and	promises	easier.

Important:	Most	Feathers	service	calls	and	newer	Node	packages	already	return	Promises.	They	can	be
returned	and	chained	directly.	There	is	no	need	to	instantiate	your	own		new		Promise	instance	in	those	cases.

Registering	hooks
Hook	functions	are	registered	on	a	service	through	the		app.service(<servicename>).hooks(hooks)		method.	There	are
several	options	for	what	can	be	passed	as		hooks	:

//	The	standard	all	at	once	way	(also	used	by	the	generator)
//	an	array	of	functions	per	service	method	name	(and	for	`all`	methods)
app.service('servicename').hooks({
		before:	{
				all:	[
						//	Use	normal	functions

Hooks

192

https://nodejs.org/api/fs.html#fs_fs_readfile_file_options_callback
https://github.com/petkaantonov/bluebird


						function(hook)	{	console.log('before	all	hook	ran');	}
				],
				find:	[
						//	Use	ES6	arrow	functions
						hook	=>	console.log('before	find	hook	1	ran'),
						hook	=>	console.log('before	find	hook	2	ran')
				],
				get:	[	/*	other	hook	functions	here	*/	],
				create:	[],
				update:	[],
				patch:	[],
				remove:	[]
		},
		after:	{
				all:	[],
				find:	[],
				get:	[],
				create:	[],
				update:	[],
				patch:	[],
				remove:	[]
		},
		error:	{
				all:	[],
				find:	[],
				get:	[],
				create:	[],
				update:	[],
				patch:	[],
				remove:	[]
		}
});

//	Register	a	single	hook	before,	after	and	on	error	for	all	methods
app.service('servicename').hooks({
		before(hook)	{
				console.log('before	all	hook	ran');
		},
		after(hook)	{
				console.log('after	all	hook	ran');
		},
		error(hook)	{
				console.log('error	all	hook	ran');
		}
});

Pro	Tip:	When	using	the	full	object,		all		is	a	special	keyword	meaning	this	hook	will	run	for	all	methods.		all	
hooks	will	be	registered	before	other	method	specific	hooks.

Pro	Tip:		app.service(<servicename>).hooks(hooks)		can	be	called	multiple	times	and	the	hooks	will	be	registered
in	that	order.	Normally	all	hooks	should	be	registered	at	once	however	to	see	at	a	glance	what	what	the	service
is	going	to	do.

Application	hooks
To	add	hooks	to	every	service		app.hooks(hooks)		can	be	used.	Application	hooks	are	registered	in	the	same	format	as
service	hooks	and	also	work	exactly	the	same.	Note	when	application	hooks	will	be	executed	however:

	before		application	hooks	will	always	run	before	all	service		before		hooks
	after		application	hooks	will	always	run	after	all	service		after		hooks
	error		application	hooks	will	always	run	after	all	service		error		hooks

Hooks

193



Here	is	an	example	for	a	very	useful	application	hook	that	logs	every	service	method	error	with	the	service	and
method	name	as	well	as	the	error	stack.

app.hooks({
		error(hook)	{
				console.error(`Error	in	'${hook.path}'	service	method	'${hook.method}`,	hook.error.stack);
		}
});

Hooks

194



Common	Hooks

	 	

$	npm	install	feathers-hooks-common	--save

	feathers-hooks-common		is	a	collection	of	common	hooks	and	utilities.

Authentication	hooks	are	documented	separately.

Note:	Many	hooks	are	just	a	few	lines	of	code	to	implement	from	scratch.	If	you	can't	find	a	hook	here	but	are
unsure	how	to	implement	it	or	have	an	idea	for	a	generally	useful	hook	create	a	new	issue	here.

client

	client(...	whitelist)		source

A	hook	for	passing	params	from	the	client	to	the	server.

Used	as	a		before		hook.

ProTip	Use	the		paramsFromClient		hook	instead.	It	does	exactly	the	same	thing	as		client		but	is	less	likely	to
be	deprecated.

Only	the		hook.params.query		object	is	transferred	to	the	server	from	a	Feathers	client,	for	security	among	other
reasons.	However	if	you	can	include	a		hook.params.query.$client		object,	e.g.

service.find({
		query:	{
				dept:	'a',
				$client:	{
						populate:	'po-1',
						serialize:	'po-mgr'
				}
		}
});

the		client		hook	will	move	that	data	to		hook.params		on	the	server.

service.before({	all:	[	client('populate',	'serialize',	'otherProp'),	myHook	]});
//	myHook's	hook.params	will	be
//	{	query:	{	dept:	'a'	},	populate:	'po-1',	serialize:	'po-mgr'	}	}

Options:

	whitelist		(optional)	Names	of	the	potential	props	to	transfer	from		query.client	.	Other	props	are	ignored.	This
is	a	security	feature.

ProTip	You	can	use	the	same	technique	for	service	calls	made	on	the	server.

See		Util:	paramsForServer		and		paramsFromClient	.

combine

Common	Hooks

195

https://github.com/feathersjs/feathers-hooks-common/
https://www.npmjs.com/package/feathers-hooks-common
https://github.com/feathersjs/feathers-hooks-common/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-hooks-common/issues/new
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/client.js


	combine(...	hookFuncs)		source

Sequentially	execute	multiple	hooks	within	a	custom	hook	function.

function	(hook)	{	//	an	arrow	func	cannot	be	used	because	we	need	'this'
		//	...
		hooks.combine(hook1,	hook2,	hook3).call(this,	hook)
				.then(hook	=>	{});
}

Options:

	hooks		(optional)	-	The	hooks	to	run.

ProTip:		combine		is	primarily	intended	to	be	used	within	your	custom	hooks,	not	when	registering	hooks..	Its
more	convenient	to	use	the	following	when	registering	hooks:

const	workflow	=	[hook1(),	hook2(),	...];
app.service(...).hooks({
		before:	{
				update:	[...workflow],
				patch:	[...workflow],
		},
});

debug

	debug(label)		source

Display	current	info	about	the	hook	to	console.

Used	as	a		before		or		after		hook.

const	{	debug	}	=	require('feathers-hooks-common');

debug('step	1')
//	*	step	1
//	type:	before,	method:	create
//	data:	{	name:	'Joe	Doe'	}
//	query:	{	sex:	'm'	}
//	result:	{	assigned:	true	}

Options:

	label		(optional)	-	Label	to	identify	the	debug	listing.

dePopulate

	dePopulate()		source

Removes	joined	and	computed	properties,	as	well	any	profile	information.	Populated	and	serialized	items	may,	after
dePopulate,	be	used	in		service.patch(id,	items)		calls.

Used	as	a	before	or	after	hook	on	any	service	method.
Supports	multiple	result	items,	including	paginated		find	.
Supports	an	array	of	keys	in		field	.

Common	Hooks

196

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/combine.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/debug.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/de-populate.js


See	also	populate,	serialize.

disallow

	disallow(...providers)		source

Disallows	access	to	a	service	method	completely	or	for	specific	providers.	All	providers	(REST,	Socket.io	and	Primus)
set	the	hook.params.provider	property,	and	disallow	checks	this.

Used	as	a		before		hook.

app.service('users').before({
		//	Users	can	not	be	created	by	external	access
		create:	hooks.disallow('external'),
		//	A	user	can	not	be	deleted	through	the	REST	provider
		remove:	hooks.disallow('rest'),
		//	disallow	calling	`update`	completely	(e.g.	to	allow	only	`patch`)
		update:	hooks.disallow(),
		//	disallow	the	remove	hook	if	the	user	is	not	an	admin
		remove:	hooks.when(hook	=>	!hook.params.user.isAdmin,	hooks.disallow())
});

ProTip	Service	methods	that	are	not	implemented	do	not	need	to	be	disallowed.

Options:

	providers		(optional,	default:	disallows	everything)	-	The	transports	that	you	want	to	disallow	this	service	method
for.	Options	are:

	socketio		-	will	disallow	the	method	for	the	Socket.IO	provider
	primus		-	will	disallow	the	method	for	the	Primus	provider
	rest		-	will	disallow	the	method	for	the	REST	provider
	external		-	will	disallow	access	from	all	providers	other	than	the	server.
	server		-	will	disallow	access	for	the	server

disableMultiItemChange

	disableMultiItemChange()		source

Disables	update,	patch	and	remove	methods	from	using	null	as	an	id,	e.g.	remove(null).	A	null	id	affects	all	the	items
in	the	DB,	so	accidentally	using	it	may	have	undesirable	results.

Used	as	a		before		hook.

app.service('users').before({
		update:	hooks.disableMultiItemChange(),
});

discard

	discard(...	fieldNames)		source

Delete	the	given	fields	either	from	the	data	submitted	or	from	the	result.	If	the	data	is	an	array	or	a	paginated		find	
result	the	hook	will	Delete	the	field(s)	for	every	item.

Common	Hooks

197

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/disallow.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/disable-multi-item-change.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/discard.js


Used	as	a		before		hook	for		create	,		update		or		patch	.
Used	as	an		after		hook.
Field	names	support	dot	notation	e.g.		name.address.city	.
Supports	multiple	data	items,	including	paginated		find	.

const	{	discard	}	=	require('feathers-hooks-common');

//	Delete	the	hashed	`password`	and	`salt`	field	after	all	method	calls
app.service('users').after(discard('password',	'salt'));

//	Delete	_id	for	`create`,	`update`	and	`patch`
app.service('users').before({
		create:	discard('_id',	'password'),
		update:	discard('_id'),
		patch:	discard('_id')
})

ProTip:	This	hook	will	always	delete	the	fields,	unlike	the		remove		hook	which	only	deletes	the	fields	if	the
service	call	was	made	by	a	client.

ProTip:	You	can	replace		remove('name')		with		iff(isProvider('external'),	discard('name))	.	The	latter	does
not	contains	any	hidden	"magic".

Options:

	fieldNames		(required)	-	One	or	more	fields	you	want	to	remove	from	the	object(s).

See	also	remove.

else

	iff(...).else(...hookFuncs)		source

	iff().else()		is	similar	to		iff		and		iffElse	.	Its	syntax	is	more	suitable	for	writing	nested	conditional	hooks.	If	the
predicate	in	the		iff()		is	falsey,	run	the	hooks	in		else()		sequentially.

Used	as	a		before		or		after		hook.
Hooks	to	run	may	be	sync,	Promises	or	callbacks.
	feathers-hooks		catches	any	errors	thrown	in	the	predicate	or	hook.

service.before({
		create:
				hooks.iff(isProvider('server'),
						hookA,
						hooks.iff(isProvider('rest'),	hook1,	hook2,	hook3)
								.else(hook4,	hook5),
						hookB
				)
						.else(
								hooks.iff(hook	=>	hook.path	===	'users',	hook6,	hook7)
						)
});

or:

service.before({
		create:

Common	Hooks

198

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/iff.js#L10


				hooks.iff(isServer,	[
						hookA,
						hooks.iff(isProvider('rest'),	[hook1,	hook2,	hook3])
								.else([hook4,	hook5]),
						hookB
				])
						.else([
								hooks.iff(hook	=>	hook.path	===	'users',	[hook6,	hook7])
						])
});

Options:

	hookFuncs		(optional)	-	Zero	or	more	hook	functions.	They	may	include	other	conditional	hooks.	Or	you	can	use
an	array	of	hook	functions	as	the	second	parameter.

See	also	iff,	iffElse,	when,	unless,	isNot,	isProvider.

This	The	predicate	and	hook	functions	in	the	if,	else	and	iffElse	hooks	will	not	be	called	with		this		set	to	the
service.	Use		hook.service		instead.

every

	every(...	hookFuncs)		source

Run	hook	functions	in	parallel.	Return		true		if	every	hook	function	returned	a	truthy	value.

Used	as	a	predicate	function	with	conditional	hooks.
The	current		hook		is	passed	to	all	the	hook	functions,	and	they	are	run	in	parallel.
Hooks	to	run	may	be	sync	or	Promises	only.
	feathers-hooks		catches	any	errors	thrown	in	the	predicate.

service.before({
		create:	hooks.iff(hooks.every(hook1,	hook2,	...),	hookA,	hookB,	...)
});

hooks.every(hook1,	hook2,	...).call(this,	currentHook)
		.then(bool	=>	{	...	});

Options:

	hookFuncs		(required)	Functions	which	take	the	current	hook	as	a	param	and	return	a	boolean	result.

See	also	some.

iff

	iff(predicate:	boolean|Promise|function,	...hookFuncs:
HookFunc[]):	HookFunc		source

Resolve	the	predicate	to	a	boolean.	Run	the	hooks	sequentially	if	the	result	is	truthy.

Used	as	a		before		or		after		hook.
Predicate	may	be	a	sync	or	async	function.
Hooks	to	run	may	be	sync,	Promises	or	callbacks.

Common	Hooks

199

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/every.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/iff.js


	feathers-hooks		catches	any	errors	thrown	in	the	predicate	or	hook.

const	{	iff,	populate	}	=	require('feathers-hooks-common');
const	isNotAdmin	=	adminRole	=>	hook	=>	hook.params.user.roles.indexOf(adminRole	||	'admin')	===	-1;

app.service('workOrders').after({
		//	async	predicate	and	hook
		create:	iff(
				()	=>	new	Promise((resolve,	reject)	=>	{	...	}),
				populate('user',	{	field:	'authorisedByUserId',	service:	'users'	})
		)
});

app.service('workOrders').after({
		//	sync	predicate	and	hook
		find:	[	iff(isNotAdmin(),	hooks.remove('budget'))	]
});

or	with	the	array	syntax:

app.service('workOrders').after({
		find:	[	iff(isNotAdmin(),	[hooks.remove('budget'),	hooks.remove('password')]
});

Options:

	predicate		(required)	-	Determines	if	hookFuncs	should	be	run	or	not.	If	a	function,		predicate		is	called	with	the
hook	as	its	param.	It	returns	either	a	boolean	or	a	Promise	that	evaluates	to	a	boolean
	hookFuncs		(optional)	-	Zero	or	more	hook	functions.	They	may	include	other	conditional	hooks.	Or	you	can	use
an	array	of	hook	functions	as	the	second	parameter.

See	also	iffElse,	else,	when,	unless,	isNot,	isProvider.

This	The	predicate	and	hook	functions	in	the	if,	else	and	iffElse	hooks	will	not	be	called	with		this		set	to	the
service.	Use		hook.service		instead.

iffElse

	iffElse(predicate,	trueHooks,	falseHooks)		source

Resolve	the	predicate	to	a	boolean.	Run	the	first	set	of	hooks	sequentially	if	the	result	is	truthy,	the	second	set
otherwise.

Used	as	a		before		or		after		hook.
Predicate	may	be	a	sync	or	async	function.
Hooks	to	run	may	be	sync,	Promises	or	callbacks.
	feathers-hooks		catches	any	errors	thrown	in	the	predicate	or	hook.

const	{	iffElse,	populate,	serialize	}	=	require('feathers-hooks-common');
app.service('purchaseOrders').after({
		create:	iffElse(()	=>	{	...	},
				[populate(poAccting),	serialize(	...	)],
				[populate(poReceiving),	serialize(	...	)]
		)
});

Options:

Common	Hooks

200

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/iff-else.js


	predicate		(required)	-	Determines	if	hookFuncs	should	be	run	or	not.	If	a	function,		predicate		is	called	with	the
hook	as	its	param.	It	returns	either	a	boolean	or	a	Promise	that	evaluates	to	a	boolean
	trueHooks		(optional)	-	Zero	or	more	hook	functions	run	when		predicate		is	truthy.
	falseHooks		(optional)	-	Zero	or	more	hook	functions	run	when		predicate		is	false.

See	also	iff,	else,	when,	unless,	isNot,	isProvider.

This	The	predicate	and	hook	functions	in	the	if,	else	and	iffElse	hooks	will	not	be	called	with		this		set	to	the
service.	Use		hook.service		instead.

isNot

	isNot(predicate)		source

Negate	the		predicate	.

Used	as	a	predicate	with	conditional	hooks.
Predicate	may	be	a	sync	or	async	function.
	feathers-hooks		catches	any	errors	thrown	in	the	predicate.

import	hooks,	{	iff,	isNot,	isProvider	}	from	'feathers-hooks-common';
const	isRequestor	=	()	=>	hook	=>	new	Promise(resolve,	reject)	=>	...	);

app.service('workOrders').after({
		iff(isNot(isRequestor()),	hooks.remove(	...	))
});

Options:

	predicate		(required)	-	A	function	which	returns	either	a	boolean	or	a	Promise	that	resolves	to	a	boolean.

See	also	iff,	iffElse,	else,	when,	unless,	isProvider.

isProvider

	isProvider(provider)		source

Check	which	transport	called	the	service	method.	All	providers	(REST,	Socket.io	and	Primus)	set	the
	params.provider		property	which	is	what		isProvider		checks	for.

Used	as	a	predicate	function	with	conditional	hooks.

import	{	iff,	isProvider,	remove	}	from	'feathers-hooks-common';

app.service('users').after({
		iff(isProvider('external'),	remove(	...	))
});

Options:

	provider		(required)	-	The	transport	that	you	want	this	hook	to	run	for.	Options	are:
	server		-	Run	the	hook	if	the	server	called	the	service	method.
	external		-	Run	the	hook	if	any	transport	other	than	the	server	called	the	service	method.
	socketio		-	Run	the	hook	if	the	Socket.IO	provider	called	the	service	method.
	primus		-	If	the	Primus	provider.

Common	Hooks

201

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/is-not.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/is-provider.js


	rest		-	If	the	REST	provider.
	providers		(optional)	-	Other	transports	that	you	want	this	hook	to	run	for.

See	also	iff,	iffElse,	else,	when,	unless,	isNot,	isProvider.

lowerCase

	lowerCase(...	fieldNames)		source

Lower	cases	the	given	fields	either	in	the	data	submitted	or	in	the	result.	If	the	data	is	an	array	or	a	paginated		find	
result	the	hook	will	lowercase	the	field(s)	for	every	item.

Used	as	a		before		hook	for		create	,		update		or		patch	.
Used	as	an		after		hook.
Field	names	support	dot	notation.
Supports	multiple	data	items,	including	paginated		find	.

const	{	lowerCase	}	=	require('feathers-hooks-common');

//	lowercase	the	`email`	and	`password`	field	before	a	user	is	created
app.service('users').before({
		create:	lowerCase('email',	'username')
});

Options:

	fieldNames		(required)	-	One	or	more	fields	that	you	want	to	lowercase	from	the	retrieved	object(s).

See	also	upperCase.

paramsFromClient

	paramsFromClient(...	whitelist)		source

A	hook,	on	the	server,	for	passing		params		from	the	client	to	the	server.

Used	as	a		before		hook.
Companion	to	the	client	utility	function		paramsForServer	.

By	default,	only	the		hook.params.query		object	is	transferred	to	the	server	from	a	Feathers	client,	for	security	among
other	reasons.	However	you	can	explicitly	transfer	other		params		props	with	the	client	utility	function		paramsForServer	
in	conjunction	with	the	hook	function		paramsFromClient		on	the	server.

//	client
import	{	paramsForServer	}	from	'feathers-hooks-common';
service.patch(null,	data,	paramsForServer({
		query:	{	dept:	'a'	},	populate:	'po-1',	serialize:	'po-mgr'
}));

//	server
const	{	paramsFromClient	}	=	require('feathers-hooks-common');
service.before({	all:	[
		paramsFromClient('populate',	'serialize',	'otherProp'),	myHook
]});

//	hook.params	will	now	be
//	{	query:	{	dept:	'a'	},	populate:	'po-1',	serialize:	'po-mgr'	}	}

Common	Hooks

202

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/lower-case.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/params-from-client.js


Options:

	whitelist		(optional)	Names	of	the	permitted	props;	other	props	are	ignored.	This	is	a	security	feature.

ProTip	You	can	use	the	same	technique	for	service	calls	made	on	the	server.

See		util:	paramsForServer	.

pluck

	pluck(...	fieldNames)		source

Discard	all	other	fields	except	for	the	provided	fields	either	from	the	data	submitted	or	from	the	result.	If	the	data	is	an
array	or	a	paginated		find		result	the	hook	will	remove	the	field(s)	for	every	item.

Used	as	a		before		hook	for		create	,		update		or		patch	.
Used	as	an		after		hook.
Field	names	support	dot	notation.
Supports	multiple	data	items,	including	paginated		find	.

const	{	pluck	}	=	require('feathers-hooks-common');

//	Only	retain	the	hashed	`password`	and	`salt`	field	after	all	method	calls
app.service('users').after(pluck('password',	'salt'));

//	Only	keep	the	_id	for	`create`,	`update`	and	`patch`
app.service('users').before({
		create:	pluck('_id'),
		update:	pluck('_id'),
		patch:	pluck('_id')
})

ProTip:	This	hook	will	only	fire	when		params.provider		has	a	value,	i.e.	when	it	is	an	external	request	over
REST	or	Sockets.

Options:

	fieldNames		(required)	-	One	or	more	fields	that	you	want	to	retain	from	the	object(s).

All	other	fields	will	be	discarded.

pluckQuery
	pluckQuery(...	fieldNames)		source

Discard	all	other	fields	except	for	the	given	fields	from	the	query	params.

Used	as	a		before		hook.
Field	names	support	dot	notation.
Supports	multiple	data	items,	including	paginated		find	.

const	{	pluckQuery	}	=	require('feathers-hooks-common');

//	Discard	all	other	fields	except	for	_id	from	the	query
//	for	all	service	methods
app.service('users').before({
		all:	pluckQuery('_id')
});

Common	Hooks

203

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/pluck.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/pluck-query.js


ProTip:	This	hook	will	only	fire	when		params.provider		has	a	value,	i.e.	when	it	is	an	external	request	over
REST	or	Sockets.

Options:

	fieldNames		(optional)	-	The	fields	that	you	want	to	retain	from	the	query	object.	All	other	fields	will	be	discarded.

populate

	populate(options:	Object):	HookFunc		source

Populates	items	recursively	to	any	depth.	Supports	1:1,	1:n	and	n:1	relationships.

Used	as	a	before	or	after	hook	on	any	service	method.
Supports	multiple	result	items,	including	paginated		find	.
Permissions	control	what	a	user	may	see.
Provides	performance	profile	information.
Backward	compatible	with	the	old	FeathersJS		populate		hook.

Examples

1:1	relationship

//	users	like	{	_id:	'111',	name:	'John',	roleId:	'555'	}
//	roles	like	{	_id:	'555',	permissions:	['foo',	bar']	}
import	{	populate	}	from	'feathers-hooks-common';

const	userRoleSchema	=	{
		include:	{
				service:	'roles',
				nameAs:	'role',
				parentField:	'roleId',
				childField:	'_id'
		}
};

app.service('users').hooks({
		after:	{
				all:	populate({	schema:	userRoleSchema	})
		}
});

//	result	like
//	{	_id:	'111',	name:	'John',	roleId:	'555',
//			role:	{	_id:	'555',	permissions:	['foo',	bar']	}	}

1:n	relationship

//	users	like	{	_id:	'111',	name:	'John',	roleIds:	['555',	'666']	}
//	roles	like	{	_id:	'555',	permissions:	['foo',	'bar']	}
const	userRolesSchema	=	{
		include:	{
				service:	'roles',
				nameAs:	'roles',
				parentField:	'roleIds',
				childField:	'_id'
		}
};

usersService.hooks({

Common	Hooks

204

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/populate.js


		after:	{
				all:	populate({	schema:	userRolesSchema	})
		}
});

//	result	like
//	{	_id:	'111',	name:	'John',	roleIds:	['555',	'666'],	roles:	[
//			{	_id:	'555',	permissions:	['foo',	'bar']	}
//			{	_id:	'666',	permissions:	['fiz',	'buz']	}
//	]}

n:1	relationship

//	posts	like	{	_id:	'111',	body:	'...'	}
//	comments	like	{	_id:	'555',	text:	'...',	postId:	'111'	}
const	postCommentsSchema	=	{
		include:	{
				service:	'comments',
				nameAs:	'comments',
				parentField:	'_id',
				childField:	'postId'
		}
};

postService.hooks({
		after:	{
				all:	populate({	schema:	postCommentsSchema	})
		}
});

//	result	like
//	{	_id:	'111',	body:	'...'	},	comments:	[
//			{	_id:	'555',	text:	'...',	postId:	'111'	}
//			{	_id:	'666',	text:	'...',	postId:	'111'	}
//	]}

Multiple	and	recursive	includes

const	schema	=	{
		service:	'...',
		permissions:	'...',
		include:	[
				{
						service:	'users',
						nameAs:	'authorItem',
						parentField:	'author',
						childField:	'id',
						include:	[	...	],
				},
				{
						service:	'comments',
						parentField:	'id',
						childField:	'postId',
						query:	{
								$limit:	5,
								$select:	['title',	'content',	'postId'],
								$sort:	{createdAt:	-1}
						},
						select:	(hook,	parent,	depth)	=>	({	$limit:	6	}),
						asArray:	true,
						provider:	undefined,
				},
				{
						service:	'users',
						permissions:	'...',
						nameAs:	'readers',

Common	Hooks

205



						parentField:	'readers',
						childField:	'id'
				}
		],
};

module.exports.after	=	{
		all:	populate({	schema,	checkPermissions,	profile:	true	})
};

Flexible	relationship,	similar	to	the	n:1	relationship	example	above

//	posts	like	{	_id:	'111',	body:	'...'	}
//	comments	like	{	_id:	'555',	text:	'...',	postId:	'111'	}
const	postCommentsSchema	=	{
		include:	{
				service:	'comments',
				nameAs:	'comments',
				select:	(hook,	parentItem)	=>	({	postId:	parentItem._id	}),
		}
};

postService.hooks({
		after:	{
				all:	populate({	schema:	postCommentsSchema	})
		}
});

//	result	like
//	{	_id:	'111',	body:	'...'	},	comments:	[
//			{	_id:	'555',	text:	'...',	postId:	'111'	}
//			{	_id:	'666',	text:	'...',	postId:	'111'	}
//	]}

Options

	schema		(required,	object	or	function)	How	to	populate	the	items.	Details	are	below.
Function	signature		(hook:	Hook,	options:	Object):	Object	
	hook		The	hook.
	options		The		options		passed	to	the	populate	hook.

	checkPermissions		[optional,	default	()	=>	true]	Function	to	check	if	the	user	is	allowed	to	perform	this	populate,	or
include	this	type	of	item.	Called	whenever	a		permissions		property	is	found.

Function	signature		(hook:	Hook,	service:	string,	permissions:	any,	depth:	number):	boolean	
	hook		The	hook.
	service		The	name	of	the	service	being	included,	e.g.	users,	messages.
	permissions		The	value	of	the	permissions	property.
	depth		How	deep	the	include	is	in	the	schema.	Top	of	schema	is	0.
Return	truesy	to	allow	the	include.

	profile		[optional,	default	false]	If		true	,	the	populated	result	is	to	contain	a	performance	profile.	Must	be		true	,
truesy	is	insufficient.

Schema

The	data	currently	in	the	hook	will	be	populated	according	to	the	schema.	The	schema	starts	with:

const	schema	=	{
		service:	'...',
		permissions:	'...',
		include:	[	...	]

Common	Hooks

206



};

	service		(optional)	The	name	of	the	service	this	schema	is	to	be	used	with.	This	can	be	used	to	prevent	a
schema	designed	to	populate	'blog'	items	from	being	incorrectly	used	with		comment		items.
	permissions		(optional,	any	type	of	value)	Who	is	allowed	to	perform	this	populate.	See		checkPermissions		above.
	include		(optional)	Which	services	to	join	to	the	data.

Include

The		include		array	has	an	element	for	each	service	to	join.	They	each	may	have:

{	service:	'comments',
		nameAs:	'commentItems',
		permissions:	'...',
		parentField:	'id',
		childField:	'postId',
		query:	{
				$limit:	5,
				$select:	['title',	'content',	'postId'],
				$sort:	{createdAt:	-1}
		},
		select:	(hook,	parent,	depth)	=>	({	$limit:	6	}),
		asArray:	true,
		paginate:	false,
		provider:	undefined,
		useInnerPopulate:	false,
		include:	[	...	]
}

ProTip	Instead	of	setting		include		to	a	1-element	array,	you	can	set	it	to	the	include	object	itself,	e.g.		include:
{	service:	...,	nameAs:	...,	...	}	.

	service		[required,	string]	The	name	of	the	service	providing	the	items.
	nameAs		[optional,	string,	default	is	service]	Where	to	place	the	items	from	the	join.	Dot	notation	is	allowed.
	permissions		[optional,	any	type	of	value]	Who	is	allowed	to	perform	this	join.	See		checkPermissions		above.
	parentField		[required	if	neither	query	nor	select,	string]	The	name	of	the	field	in	the	parent	item	for	the	relation.
Dot	notation	is	allowed.
	childField		[required	if	neither	query	nor	select,	string]	The	name	of	the	field	in	the	child	item	for	the	relation.	Dot
notation	is	allowed	and	will	result	in	a	query	like		{	'name.first':	'John'	}		which	is	not	suitable	for	all	DBs.	You
may	use		query		or		select		to	create	a	query	suitable	for	your	DB.
	query		[optional,	object]	An	object	to	inject	into	the	query	in		service.find({	query:	{	...	}	})	.
	select		[optional,	function]	A	function	whose	result	is	injected	into	the	query.

Function	signature		(hook:	Hook,	parentItem:	Object,	depth:	number):	Object	
	hook		The	hook.
	parentItem		The	parent	item	to	which	we	are	joining.
	depth		How	deep	the	include	is	in	the	schema.	Top	of	schema	is	0.

	asArray		[optional,	boolean,	default	false]	Force	a	single	joined	item	to	be	stored	as	an	array.
	paginate		{optional,	boolean	or	number,	default	false]	Controls	pagination	for	this	service.

	false		No	pagination.	The	default.
	true		Use	the	configuration	provided	when	the	service	was	configured/
A	number.	The	maximum	number	of	items	to	include.

	provider		[optional]		find		calls	are	made	to	obtain	the	items	to	be	joined.	These,	by	default,	are	initialized	to
look	like	they	were	made	by	the	same	provider	as	that	getting	the	base	record.	So	when	populating	the	result	of	a
call	made	via		socketio	,	all	the	join	calls	will	look	like	they	were	made	via		socketio	.	Alternative	you	can	set
	provider:	undefined		and	the	calls	for	that	join	will	look	like	they	were	made	by	the	server.	The	hooks	on	the
service	may	behave	differently	in	different	situations.

Common	Hooks

207



	useInnerPopulate		[optional]	Populate,	when	including	records	from	a	child	service,	ignores	any	populate	hooks
defined	for	that	child	service.	The	useInnerPopulate	option	will	run	those	populate	hooks.	This	allows	the
populate	for	a	base	record	to	include	child	records	containing	their	own	immediate	child	records,	without	the
populate	for	the	base	record	knowing	what	those	grandchildren	populates	are.
	include		[optional]	The	new	items	may	themselves	include	other	items.	The	includes	are	recursive.

Populate	forms	the	query		[childField]:	parentItem[parentField]		when	the	parent	value	is	not	an	array.	This	will
include	all	child	items	having	that	value.

Populate	forms	the	query		[childField]:	{	$in:	parentItem[parentField]	}		when	the	parent	value	is	an	array.	This	will
include	all	child	items	having	any	of	those	values.

A	populate	hook	for,	say,		posts		may	include	items	from		users	.	Should	the		users		hooks	also	include	a	populate,
that		users		populate	hook	will	not	be	run	for	includes	arising	from		posts	.

ProTip	The	populate	interface	only	allows	you	to	directly	manipulate		hook.params.query	.	You	can	manipulate
the	rest	of		hook.params		by	using	the		client		hook,	along	with	something	like		query:	{	...,	$client:	{
paramsProp1:	...,	paramsProp2:	...	}	}	.

Added	properties

Some	additional	properties	are	added	to	populated	items.	The	result	may	look	like:

{	...
		_include:	[	'post'	],
		_elapsed:	{	post:	487947,	total:	527118	},
		post:
				{	...
						_include:	[	'authorItem',	'commentsInfo',	'readersInfo'	],
						_elapsed:	{	authorItem:	321973,	commentsInfo:	469375,	readersInfo:	479874,	total:	487947	},
						_computed:	[	'averageStars',	'views'	],
						authorItem:	{	...	},
						commentsInfo:	[	{	...	},	{	...	}	],
						readersInfo:	[	{	...	},	{	...	}	]
}	}

	_include		The	property	names	containing	joined	items.
	_elapsed		The	elapsed	time	in	nano-seconds	(where	1,000,000	ns	===	1	ms)	taken	to	perform	each	include,	as
well	as	the	total	taken	for	them	all.	This	delay	is	mostly	attributed	to	your	DB.
	_computed		The	property	names	containing	values	computed	by	the		serialize		hook.

The	depopulate	hook	uses	these	fields	to	remove	all	joined	and	computed	values.	This	allows	you	to	then
	service.patch()		the	item	in	the	hook.

Joining	without	using	related	fields

Populate	can	join	child	records	to	a	parent	record	using	the	related	columns		parentField		and		childField	.	However
populate's		query		and		select		options	may	be	used	to	related	the	records	without	needing	to	use	the	related
columns.	This	is	a	more	flexible,	non-SQL-like	way	of	relating	records.	It	easily	supports	dynamic,	run-time	schemas
since	the		select		option	may	be	a	function.

Populate	examples

Selecting	schema	based	on	UI	needs

Consider	a	Purchase	Order	item.	An	Accounting	oriented	UI	will	likely	want	to	populate	the	PO	with	Invoice	items.	A
Receiving	oriented	UI	will	likely	want	to	populate	with	Receiving	Slips.

Common	Hooks

208

https://docs.feathersjs.com/v/auk/hooks/common/utils.html#client


Using	a	function	for		schema		allows	you	to	select	an	appropriate	schema	based	on	the	need.	The	following	example
shows	how	the	client	can	ask	for	the	type	of	schema	it	needs.

//	on	client
import	{	paramsForServer	}	from	'feathers-hooks-common';
purchaseOrders.get(id,	paramsForServer({	schema:	'po-acct'	}));	//	pass	schema	name	to	server
//	or
purchaseOrders.get(id,	paramsForServer({	schema:	'po-rec'	}));

//	on	server
import	{	paramsFromClient	}	from	'feathers-hooks-common';
const	poSchemas	=	{
		'po-acct':	/*	populate	schema	for	Accounting	oriented	PO	e.g.	{	include:	...	}	*/,
		'po-rec':	/*	populate	schema	for	Receiving	oriented	PO	*/
};

purchaseOrders.before({
		all:	paramsfromClient('schema')
});

purchaseOrders.after({
		all:	populate({	schema:	hook	=>	poSchemas[hook.params.schema]	}),
});

Using	permissions

For	a	simplistic	example,	assume		hook.params.users.permissions		is	an	array	of	the	service	names	the	user	may	use,
e.g.		['invoices',	'billings']	.	These	can	be	used	to	control	which	types	of	items	the	user	can	see.

The	following	populate	will	only	be	performed	for	users	whose		user.permissions		contains		'invoices'	.

const	schema	=	{
		include:	[
				{
						service:	'invoices',
						permissions:	'invoices',
						...
				}
		]
};

purchaseOrders.after({
		all:	populate(schema,	(hook,	service,	permissions)	=>	hook.params.user.permissions.includes(service))
});

See	also	dePopulate,	serialize.

preventChanges

	preventChanges(...	fieldNames)		source

Prevents	the	specified	fields	from	being	patched.

Used	as	a		before		hook	for		patch	.
Field	names	support	dot	notation	e.g.		name.address.city	.

const	{	preventChanges	}	=	require('feathers-hooks-common');

app.service('users').before({

Common	Hooks

209

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/prevent-changes.js


		patch:	preventChanges('security.badge')
})

Options:

	fieldNames		(required)	-	One	or	more	fields	which	may	not	be	patched.

Consider	using		validateSchema		if	you	would	rather	specify	which	fields	are	allowed	to	change.

remove

	remove(...	fieldNames)		source

Remove	the	given	fields	either	from	the	data	submitted	or	from	the	result.	If	the	data	is	an	array	or	a	paginated		find	
result	the	hook	will	remove	the	field(s)	for	every	item.

Used	as	a		before		hook	for		create	,		update		or		patch	.
Used	as	an		after		hook.
Field	names	support	dot	notation	e.g.		name.address.city	.
Supports	multiple	data	items,	including	paginated		find	.

const	{	remove	}	=	require('feathers-hooks-common');

//	Remove	the	hashed	`password`	and	`salt`	field	after	all	method	calls
app.service('users').after(remove('password',	'salt'));

//	Remove	_id	for	`create`,	`update`	and	`patch`
app.service('users').before({
		create:	remove('_id',	'password'),
		update:	remove('_id'),
		patch:	remove('_id')
})

ProTip:	This	hook	will	only	fire	when		params.provider		has	a	value,	i.e.	when	it	is	an	external	request	over
REST	or	Sockets.

Options:

	fieldNames		(required)	-	One	or	more	fields	you	want	to	remove	from	the	object(s).

See	also	discard.

removeQuery
	removeQuery(...	fieldNames)		source

Remove	the	given	fields	from	the	query	params.

Used	as	a		before		hook.
Field	names	support	dot	notation
Supports	multiple	data	items,	including	paginated		find	.

const	{	removeQuery	}	=	require('feathers-hooks-common');

//	Remove	_id	from	the	query	for	all	service	methods
app.service('users').before({
		all:	removeQuery('_id')
});

Common	Hooks

210

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/remove.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/remove-query.js


ProTip:	This	hook	will	only	fire	when		params.provider		has	a	value,	i.e.	when	it	is	an	external	request	over
REST	or	Sockets.

Options:

	fieldNames		(optional)	-	The	fields	that	you	want	to	remove	from	the	query	object.

serialize

	serialize(schema:	Object|Function):	HookFunc		source

Remove	selected	information	from	populated	items.	Add	new	computed	information.	Intended	for	use	with	the
	populate		hook.

const	schema	=	{
		only:	'updatedAt',
		computed:	{
				commentsCount:	(recommendation,	hook)	=>	recommendation.post.commentsInfo.length,
		},
		post:	{
				exclude:	['id',	'createdAt',	'author',	'readers'],
				authorItem:	{
						exclude:	['id',	'password',	'age'],
						computed:	{
								isUnder18:	(authorItem,	hook)	=>	authorItem.age	<	18,
						},
				},
				readersInfo:	{
						exclude:	'id',
				},
				commentsInfo:	{
						only:	['title',	'content'],
						exclude:	'content',
				},
		},
};
purchaseOrders.after({
		all:	[	populate(	...	),	serialize(schema)	]
});

Options

	schema		[required,	object	or	function]	How	to	serialize	the	items.
Function	signature		(hook:	Hook):	Object	
	hook		The	hook.

The	schema	reflects	the	structure	of	the	populated	items.	The	base	items	for	the	example	above	have	included		post	
items,	which	themselves	have	included		authorItem	,		readersInfo		and		commentsInfo		items.

The	schema	for	each	set	of	items	may	have

	only		[optional,	string	or	array	of	strings]	The	names	of	the	fields	to	keep	in	each	item.	The	names	for	included
sets	of	items	plus		_include		and		_elapsed		are	not	removed	by		only	.
	exclude		[optional,	string	or	array	of	strings]	The	names	of	fields	to	drop	in	each	item.	You	may	drop,	at	your	own
risk,	names	of	included	sets	of	items,		_include		and		_elapsed	.
	computed		[optional,	object	with	functions]	The	new	names	you	want	added	and	how	to	compute	their	values.

Object	is	like		{	name:	func,	...}	
	name		The	name	of	the	field	to	add	to	the	items.

Common	Hooks

211

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/serialize.js


	func		Function	with	signature		(item,	hook)	.
	item		The	item	with	all	its	initial	values,	plus	all	of	its	included	items.	The	function	can	still	reference
values	which	will	be	later	removed	by		only		and		exclude	.
	hook		The	hook	passed	to	serialize.

Serialize	examples

A	simple	serialize

The	populate	example	above	produced	the	result

{	id:	9,	title:	'The	unbearable	ligthness	of	FeathersJS',	author:	5,	yearBorn:	1990,
		authorItem:	{	id:	5,	email:	'john.doe@gmail.com',	name:	'John	Doe'	},
		_include:	['authorItem']
}

We	could	tailor	the	result	more	to	what	we	need	with:

const	serializeSchema	=	{
		only:	['title'],
		authorItem:	{
				only:	['name']
				computed:	{
						isOver18:	(authorItem,	hook)	=>	new	Date().getFullYear()	-	authorItem.yearBorn	>=	18,
				},
		}
};
app.service('posts').before({
		get:	[	hooks.populate({	schema	}),	serialize(serializeSchema)	],
		find:	[	hooks.populate({	schema	}),	serialize(serializeSchema)	]
});

The	result	would	now	be

{	title:	'The	unbearable	ligthness	of	FeathersJS',
		authorItem:	{	name:	'John	Doe',	isOver18:	true,	_computed:	['isOver18']	},
		_include:	['authorItem'],
}

Using	permissions

Consider	an	Employee	item.	The	Payroll	Manager	would	be	permitted	to	see	the	salaries	of	other	department	heads.
No	other	person	would	be	allowed	to	see	them.

Using	a	function	for		schema		allows	you	to	select	an	appropriate	schema	based	on	the	need.

Assume		hook.params.user.roles		contains	an	array	of	roles	which	the	user	performs.	The	Employee	item	can	be
serialized	differently	for	the	Payroll	Manager	than	for	anyone	else.

const	payrollSerialize	=	{
		'payrollMgr':	{	/*	serialization	schema	for	Payroll	Manager	*/},
		'payroll':	{	/*	serialization	schema	for	others	*/}
};

employees.after({
		all:	[
				populate(	...	),
				serialize(hook	=>	payrollSerialize[
						hook.params.user.roles.contains('payrollMgr')	?	'payrollMgr'	:	'payroll'
				])				

Common	Hooks

212



		]
});

setCreatedAt

	setCreatedAt(fieldName	=	'createdAt',	...	fieldNames)		source

Add	the	fields	with	the	current	date-time.

Used	as	a		before		hook	for		create	,		update		or		patch	.
Used	as	an		after		hook.
Field	names	support	dot	notation.
Supports	multiple	data	items,	including	paginated		find	.

ProTip		setCreatedAt		will	be	deprecated,	so	use		setNow		instead.

const	{	setCreatedAt	}	=	require('feathers-hooks-common');

//	set	the	`createdAt`	field	before	a	user	is	created
app.service('users').before({
		create:	[	setCreatedAt()	]
});

Options:

	fieldName		(optional,	default:		createdAt	)	-	The	field	that	you	want	to	add	with	the	current	date-time	to	the
retrieved	object(s).
	fieldNames		(optional)	-	Other	fields	to	add	with	the	current	date-time.

See	also	setUpdatedAt.

setNow

	setNow(...	fieldNames)		source

Add	the	fields	with	the	current	date-time.

Used	as	a		before		hook	for		create	,		update		or		patch	.
Used	as	an		after		hook.
Field	names	support	dot	notation.
Supports	multiple	data	items,	including	paginated		find	.

const	{	setNow	}	=	require('feathers-hooks-common');

app.service('users').before({
		create:	setNow('createdAt',	'updatedAt')
});

Options:

	fieldNames		(required,	at	least	one)	-	The	fields	that	you	want	to	add	with	the	current	date-time	to	the	retrieved
object(s).

ProTip	Use		setNow		rather	than		setCreatedAt		or		setUpdatedAt	.

Common	Hooks

213

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/set-created-at.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/set-now.js


setSlug

	setSlug(slug,	fieldName	=	'query.'	+	slug)		source

A	service	may	have	a	slug	in	its	URL,	e.g.		storeId		in		app.use('/stores/:storeId/candies',	new	Service());	.	The
service	gets	slightly	different	values	depending	on	the	transport	used	by	the	client.

transport 	hook.data.storeId	 	hook.params.query	 code	run	on	client

socketio 	undefined	 	{	size:	'large',
storeId:	'123'	}	

	candies.create({	name:	'Gummi',	qty:	100	},	{
query:	{	size:	'large',	storeId:	'123'	}	})	

rest 	:storeId	 ...	same	as	above ...	same	as	above

raw
HTTP

	123	 	{	size:	'large'	}	 	fetch('/stores/123/candies?size=large',	..	

This	hook	normalizes	the	difference	between	the	transports.	A	hook	of		all:	[	hooks.setSlug('storeId')	]		provides	a
normalized		hook.params.query		of		{	size:	'large',	storeId:	'123'	}		for	the	above	cases.

Used	as	a		before		hook.
Field	names	support	dot	notation.

const	{	setSlug	}	=	require('feathers-hooks-common');

app.service('stores').before({
		create:	[	setSlug('storeId')	]
});

Options:

	slug		(required)	-	The	slug	as	it	appears	in	the	route,	e.g.		storeId		for		/stores/:storeId/candies		.
	fieldName		(optional,	default:		query[slugId]	)	-	The	field	to	contain	the	slug	value.

setUpdatedAt

	setUpdatedAt(fieldName	=	'updatedAt',	...fieldNames)		source

Add	or	update	the	fields	with	the	current	date-time.

Used	as	a		before		hook	for		create	,		update		or		patch	.
Used	as	an		after		hook.
Field	names	support	dot	notation.
Supports	multiple	data	items,	including	paginated		find	.

ProTip		setUpdatedAt		will	be	deprecated,	so	use		setNow		instead.

const	{	setUpdatedAt	}	=	require('feathers-hooks-common');

//	set	the	`updatedAt`	field	before	a	user	is	created
app.service('users').before({
		create:	[	setUpdatedAt()	]
});

Options:

	fieldName		(optional,	default:		updatedAt	)	-	The	fields	that	you	want	to	add	or	update	in	the	retrieved	object(s).
	fieldNames		(optional)	-	Other	fields	to	add	or	update	with	the	current	date-time.

Common	Hooks

214

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/set-slug.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/set-updated-at.js


See	also	setCreatedAt.

sifter

	sifter(mongoQueryFunc))		source

All	official	Feathers	database	adapters	support	a	common	way	for	querying,	sorting,	limiting	and	selecting	find	method
calls.	These	are	limited	to	what	is	commonly	supported	by	all	the	databases.

The		sifter		hook	provides	an	extensive	MongoDB-like	selection	capabilities,	and	it	may	be	used	to	more	extensively
select	records.

Used	as	an		after		hook	for		find	.
SProvides	extensive	MongoDB-like	selection	capabilities.

ProTip		sifter		filters	the	result	of	a		find		call.	Therefore	more	records	will	be	physically	read	than	needed.
You	can	use	the	Feathers	database	adapters		query		to	reduce	this	number.

const	sift	=	require('sift');
const	{	sifter	}	=	require('feathers-hooks-common');

const	selectCountry	=	hook	=>	sift({	'address.country':	hook.params.country	});

app.service('stores').after({
		find:	sifter(selectCountry),
});

const	sift	=	require('sift');
const	{	sifter	}	=	require('feathers-hooks-common');

const	selectCountry	=	country	=>	()	=>	sift({	address	:	{	country:	country	}	});

app.service('stores').after({
		find:	sifter(selectCountry('Canada')),
});

Options:

	mongoQueryFunc		(required)	-	Function	similar	to		hook	=>	sift(mongoQueryObj)	.	Information	about	the
	mongoQueryObj		syntax	is	available	at	sift.

softDelete

	softDelete(fieldName	=	'deleted')		source

Marks	items	as		{	deleted:	true	}		instead	of	physically	removing	them.	This	is	useful	when	you	want	to	discontinue
use	of,	say,	a	department,	but	you	have	historical	information	which	continues	to	refer	to	the	discontinued	department.

Used	as	a		before.all		hook	to	handle	all	service	methods.
Supports	multiple	data	items,	including	paginated		find	.

const	{	softDelete	}	=	require('feathers-hooks-common');
const	dept	=	app.service('departments');

dept.before({
		all:	softDelete(),

Common	Hooks

215

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/sifter.js
https://github.com/crcn/sift.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/soft-delete.js


});

//	will	throw	if	item	is	marked	deleted.
dept.get(0).then()

//	methods	can	be	run	avoiding	softDelete	handling
dept.get(0,	{	query:	{	$disableSoftDelete:	true	}}).then()

Options:

	fieldName		(optional,	default:		deleted	)	-	The	name	of	the	field	holding	the	deleted	flag.

some

	some(...	hookFuncs)		source

Run	hook	functions	in	parallel.	Return		true		if	any	hook	function	returned	a	truthy	value.

Used	as	a	predicate	function	with	conditional	hooks.
The	current		hook		is	passed	to	all	the	hook	functions,	and	they	are	run	in	parallel.
Hooks	to	run	may	be	sync	or	Promises	only.
	feathers-hooks		catches	any	errors	thrown	in	the	predicate.

service.before({
		create:	hooks.iff(hooks.some(hook1,	hook2,	...),	hookA,	hookB,	...)
});

hooks.some(hook1,	hook2,	...).call(this,	currentHook)
		.then(bool	=>	{	...	});

Options:

	hookFuncs		(required)	Functions	which	take	the	current	hook	as	a	param	and	return	a	boolean	result.

See	also	every.

stashBefore

	stashBefore(name)		source

Stash	current	value	of	record	before	mutating	it.

Used	as	a		before		hook	for		get	,		update	,		patch		or		remove	.
An		id		is	required	in	the	method	call.

service.before({
		patch:	stashBefore()
});

Options:

	name		(optional	defaults	to	'before')	The	name	of	the	params	property	to	contain	the	current	record	value.

traverse

Common	Hooks

216

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/some.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/stash-before.js


	traverse(transformer,	getObject)		source

Traverse	and	transform	objects	in	place	by	visiting	every	node	on	a	recursive	walk.

Used	as	a		before		or		after		hook.
Supports	multiple	data	items,	including	paginated		find	.
Any	object	in	the	hook	may	be	traversed,	including	the	query	object.
	transformer		has	access	to	powerful	methods	and	context.

//	Trim	strings
const	trimmer	=	function	(node)	{
		if	(typeof	node	===	'string')	{	this.update(node.trim());	}
};
service.before({	create:	traverse(trimmer)	});

//	REST	HTTP	request	may	use	the	string	'null'	in	its	query	string.
//	Replace	these	strings	with	the	value	null.
const	nuller	=	function	(node)	{
		if	(node	===	'null')	{	this.update(null);	}
};
service.before({	find:	traverse(nuller,	hook	=>	hook.params.query)	});

ProTip:	GitHub's	substack/js-traverse	documents	the	extensive	methods	and	context	available	to	the
transformer	function.

Options:

	transformer		(required)	-	Called	for	every	node	and	may	change	it	in	place.
	getObject		(optional,	defaults	to		hook.data		or		hook.result	)	-	Function	with	signature	(hook)	which	returns	the
object	to	traverse.

unless

	unless(predicate,	...hookFuncs)		source

Resolve	the	predicate	to	a	boolean.	Run	the	hooks	sequentially	if	the	result	is	falsey.

Used	as	a		before		or		after		hook.
Predicate	may	be	a	sync	or	async	function.
Hooks	to	run	may	be	sync,	Promises	or	callbacks.
	feathers-hooks		catches	any	errors	thrown	in	the	predicate	or	hook.

service.before({
		create:
				unless(isProvider('server'),
						hookA,
						unless(isProvider('rest'),	hook1,	hook2,	hook3),
						hookB
				)
});

Options:

	predicate		(required)	-	Determines	if	hookFuncs	should	be	run	or	not.	If	a	function,		predicate		is	called	with	the
hook	as	its	param.	It	returns	either	a	boolean	or	a	Promise	that	evaluates	to	a	boolean.
	hookFuncs		(optional)	-	Zero	or	more	hook	functions.	They	may	include	other	conditional	hook	functions.

Common	Hooks

217

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/traverse.js
https://github.com/substack/js-traverse
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/unless.js


See	also	iff,	iffElse,	else,	when,	isNot,	isProvider.

validate

	validate(validator)		source

Call	a	validation	function	from	a		before		hook.	The	function	may	be	sync	or	return	a	Promise.

Used	as	a		before		hook	for		create	,		update		or		patch	.

ProTip:	If	you	have	a	different	signature	for	the	validator	then	pass	a	wrapper	as	the	validator	e.g.		(values)	=>
myValidator(...,	values,	...)	.

ProTip:	Wrap	your	validator	in		callbackToPromise		if	it	uses	a	callback.

const	{	callbackToPromise,	validate	}	=	require('feathers-hooks-common');

//	function	myCallbackValidator(values,	cb)	{	...	}
const	myValidator	=	callbackToPromise(myCallbackValidator,	1);	//	function	requires	1	param
app.service('users').before({	create:	validate(myValidator)	});

Options:

	validator		(required)	-	Validation	function	with	signature		function	validator(formValues,	hook)	.

Sync	functions	return	either	an	error	object	like		{	fieldName1:	'message',	...	}		or	null.	Validate	will	throw	on	an	error
object	with		throw	new	errors.BadRequest({	errors:	errorObject	});	.

Promise	functions	should	throw	on	an	error	or	reject	with		new	errors.BadRequest('Error	message',	{	errors:	{
fieldName1:	'message',	...	}	});		Their		.then		returns	either	sanitized	values	to	replace		hook.data	,	or	null.

Example

Comprehensive	validation	may	include	the	following:

Object	schema	validation.	Checking	the	item	object	contains	the	expected	properties	with	values	in	the	expected
format.	The	values	might	get	sanitized.	Knowing	the	item	is	well	formed	makes	further	validation	simpler.
Re-running	any	validation	supposedly	already	done	on	the	front-end.	It	would	an	asset	if	the	server	can	re-run	the
same	code	the	front-end	used.
Performing	any	validation	and	sanitization	unique	to	the	server.

A	full	featured	example	of	such	a	process	appears	below.	It	validates	and	sanitizes	a	new	user	before	adding	the	user
to	the	database.

The	form	expects	to	be	notified	of	errors	in	the	format		{	email:	'Invalid	email.',	password:	'Password	must	be	at
least	8	characters.'	}	.
The	form	calls	the	server	for	async	checking	of	selected	fields	when	control	leaves	those	fields.	This	for	example
could	check	that	an	email	address	is	not	already	used	by	another	user.
The	form	does	local	sync	validation	when	the	form	is	submitted.
The	code	performing	the	validations	on	the	front-end	is	also	used	by	the	server.
The	server	performs	schema	validation	using	Walmart's	Joi.
The	server	does	further	validation	and	sanitization.

Validation	using	Validate

Common	Hooks

218

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/validate.js
https://github.com/hapijs/joi


//	file	/server/services/users/hooks/index.js
const	auth	=	require('feathers-authentication').hooks;
const	{	callbackToPromise,	remove,	validate	}	=	require('feathers-hooks-common');
const	validateSchema	=	require('feathers-hooks-validate-joi');

const	clientValidations	=	require('/common/usersClientValidations');
const	serverValidations	=	require('/server/validations/usersServerValidations');
const	schemas	=	require('/server/validations/schemas');

const	serverValidationsSignup	=	callbackToPromise(serverValidations.signup,	1);

exports.before	=	{
		create:	[
				validateSchema.form(schemas.signup,	schemas.options),	//	schema	validation
				validate(clientValidations.signup),	//	re-run	form	sync	validation
				validate(values	=>	clientValidations.signupAsync(values,	'someMoreParams')),	//	re-run	form	async
				validate(serverValidationsSignup),	//	run	server	validation
				remove('confirmPassword'),
				auth.hashPassword()
		]
};

Validation	routines	for	front	and	back-end.

Validations	used	on	front-end.	They	are	re-run	by	the	server.

//	file	/common/usersClientValidations
//	Validations	for	front-end.	Also	re-run	on	server.
const	clientValidations	=	{};

//	sync	validation	of	signup	form	on	form	submit
clientValidations.signup	=	values	=>	{
		const	errors	=	{};

		checkName(values.name,	errors);
		checkUsername(values.username,	errors);
		checkEmail(values.email,	errors);
		checkPassword(values.password,	errors);
		checkConfirmPassword(values.password,	values.confirmPassword,	errors);

		return	errors;
};

//	async	validation	on	exit	from	some	fields	on	form
clientValidations.signupAsync	=	values	=>
		new	Promise((resolve,	reject)	=>	{
				const	errs	=	{};

				//	set	a	dummy	error
				errs.email	=	'Already	taken.';

				if	(!Object.keys(errs).length)	{
						resolve(null);	//	'null'	as	we	did	not	sanitize	'values'
				}
				reject(new	errors.BadRequest('Values	already	taken.',	{	errors:	errs	}));
		});

module.exports	=	clientValidations;

function	checkName(name,	errors,	fieldName	=	'name')	{
		if	(!/^[\\sa-zA-Z]{8,30}$/.test((name	||	'').trim()))	{
				errors[fieldName]	=	'Name	must	be	8	or	more	letters	or	spaces.';
		}
}

Common	Hooks

219



Schema	definitions	used	by	the	server.

//	file	/server/validations/schemas
const	Joi	=	require('joi');

const	username	=	Joi.string().trim().alphanum().min(5).max(30).required();
const	password	=	Joi.string().trim().regex(/^[\sa-zA-Z0-9]+$/,	'letters,	numbers,	spaces')
		.min(8).max(30).required();
const	email	=	Joi.string().trim().email().required();

module.exports	=	{
		options:	{	abortEarly:	false,	convert:	true,	allowUnknown:	false,	stripUnknown:	true	},
		signup:	Joi.object().keys({
				name:	Joi.string().trim().min(8).max(30).required(),
				username,
				password,
				confirmPassword:	password.label('Confirm	password'),
				email
		})
};

Validations	run	by	the	server.

//	file	/server/validations/usersServerValidations
//	Validations	on	server.	A	callback	function	is	used	to	show	how	the	hook	handles	it.
module.exports	=	{
		signup:	(data,	cb)	=>	{
				const	formErrors	=	{};
				const	sanitized	=	{};

				Object.keys(data).forEach(key	=>	{
						sanitized[key]	=	(data[key]	||	'').trim();
				});

				cb(Object.keys(formErrors).length	>	0	?	formErrors	:	null,	sanitized);
		}
};

See	also	validateSchema.

validateSchema

	validateSchema(schema,	ajv,	options)		source

Validate	an	object	using	JSON-Schema	through	AJV

ProTip	There	are	some	good	tutorials	on	using	JSON-Schema	with	ajv.

Used	as	a		before		or		after		hook.
The	hook	will	throw	if	the	data	does	not	match	the	JSON-Schema.		error.errors		will,	by	default,	contain	an	array
of	error	messages.

ProTip	You	may	customize	the	error	message	format	with	a	custom	formatting	function.	You	could,	for
example,	return		{	name1:	message,	name2:	message	}		which	could	be	more	suitable	for	a	UI.

ProTip	If	you	need	to	customize		ajv		with	new	keywords,	formats	or	schemas,	then	instead	of	passing	the
	Ajv		constructor,	you	may	pass	in	an	instance	of		Ajv		as	the	second	parameter.	In	this	case	you	need	to	pass
	ajv		options	to	the		ajv		instance	when		new	ing,	rather	than	passing	them	in	the	third	parameter	of
	validateSchema	.	See	the	second	example	below.

Common	Hooks

220

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/validate-schema.js
http://json-schema.org/
https://github.com/epoberezkin/ajv
https://code.tutsplus.com/tutorials/validating-data-with-json-schema-part-1--cms-25343
https://github.com/epoberezkin/ajv


const	Ajv	=	require('ajv');
const	createSchema	=	{	/*	JSON-Schema	*/	};
module.before({
		create:	validateSchema(createSchema,	Ajv)
});

const	Ajv	=	require('ajv');
const	ajv	=	new	Ajv({	allErrors:	true,	$data:	true	});
ajv.addFormat('allNumbers',	'^\d+$');
const	createSchema	=	{	/*	JSON-Schema	*/	};
module.before({
		create:	validateSchema(createSchema,	ajv)
});

Options:

	schema		(required)	-	The	JSON-Schema.
	ajv		(required)	-	The		ajv		validator.	Could	be	either	the		Ajv		constructor	or	an	instance	of	it.
	options		(optional)	-	Options.

Any		ajv		options.	Only	effective	when	the	second	parameter	is	the		Ajv		constructor.
	addNewError		(optional)	-	Custom	message	formatter.	Its	a	reducing	function	which	works	similarly	to
	Array.reduce()	.	Its	signature	is		{	currentFormattedMessages:	any,	ajvError:	AjvError,	itemsLen:	number,
index:	number	}:	newFormattedMessages	

	currentFormattedMessages		-	Formatted	messages	so	far.	Initially		null	.
	ajvError		-	ajv	error.
	itemsLen		-	How	many	data	items	there	are.	1-based.
	index		-	Which	item	this	is.	0-based.
	newFormattedMessages		-	The	function	returns	the	updated	formatted	messages.

ProTip:	You	can	consider	using	ajv-i18n,	together	with	the	messages	option,	to	internationalize	your	error
messages.

when
An	alias	for	iff	source

Util:	callbackToPromise

	callbackToPromise(callbackFunc,	paramsCount)		source

Wrap	a	function	calling	a	callback	into	one	that	returns	a	Promise.

Promise	is	rejected	if	the	function	throws.

const	{	callbackToPromise	}	=	require('feathers-hooks-common');

function	tester(data,	a,	b,	cb)	{
		if	(data	===	3)	{	throw	new	Error('error	thrown');	}
		cb(data	===	1	?	null	:	'bad',	data);
}	
const	wrappedTester	=	callbackToPromise(tester,	3);	//	because	func	call	requires	3	params

wrappedTester(1,	2,	3);	//	tester(1,	2,	3,	wrapperCb)
wrappedTester(1,	2);	//	tester(1,	2,	undefined,	wrapperCb)
wrappedTester();	//	tester(undefined,	undefined	undefined,	wrapperCb)
wrappedTester(1,	2,	3,	4,	5);	//	tester(1,	2,	3,	wrapperCb)

Common	Hooks

221

https://github.com/epoberezkin/ajv#error-objects
https://github.com/epoberezkin/ajv-i18n
https://github.com/epoberezkin/ajv#advanced-options
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/iff.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/callback-to-promise.js


wrappedTester(1,	2,	3).then(	...	)
		.catch(err	=>	{	console.log(err	instanceof	Error	?	err.message	:	err);	});

Options:

	callbackFunc		(required)	-	A	function	which	uses	a	callback	as	its	last	param.
	paramsCount		(required)	-	The	number	of	parameters		callbackFunc		expects.	This	count	does	not	include	the
callback	param	itself.

The	wrapped	function	will	always	be	called	with	that	many	params,	preventing	potential	bugs.

See	also	promiseToCallback.

Util:	checkContext

	checkContext(hook,	type,	methods,	label)		source

Restrict	the	hook	to	a	hook	type	(before,	after)	and	a	set	of	hook	methods	(find,	get,	create,	update,	patch,	remove).

const	{	checkContext	}	=	require('feathers-hooks-common');

function	myHook(hook)	{
		checkContext(hook,	'before',	['create',	'remove']);
		...
}

app.service('users').after({
		create:	[	myHook	]	//	throws
});

//	checkContext(hook,	'before',	['update',	'patch'],	'hookName');
//	checkContext(hook,	null,	['update',	'patch']);
//	checkContext(hook,	'before',	null,	'hookName');
//	checkContext(hook,	'before');

Options:

	hook		(required)	-	The	hook	provided	to	the	hook	function.
	type		(optional)	-	The	hook	may	be	run	in		before		or		after	.		null		allows	the	hook	to	be	run	in	either.
	methods		(optional)	-	The	hook	may	be	run	for	these	methods.
	label		(optional)	-	The	label	to	identify	the	hook	in	error	messages,	e.g.	its	name.

Util:	deleteByDot

	deleteByDot(obj,	path)		source

	deleteByDot		deletes	a	property	from	an	object	using	dot	notation,	e.g.		employee.address.city	.

import	{	deleteByDot	}	from	'feathers-hooks-common';

const	discardPasscode	=	()	=>	(hook)	=>	{
		deleteByDot(hook.data,	'security.passcode');
}

app.service('directories').before	=	{
		find:	discardPasscode()
};

Common	Hooks

222

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/check-context.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/delete-by-dot.js


Options:

	obj		(required)	-	The	object	containing	the	property	we	want	to	delete.
	path		(required)	-	The	path	to	the	data,	e.g.		security.passcode	.	Array	notion	is	not	supported,	e.g.
	order.lineItems[1].quantity	.

See	also	existsByDot,	getByDot,	setByDot.

Util:	existsByDot

	existsByDot(obj,	path)		source

	existsByDot		checks	if	a	property	exists	in	an	object	using	dot	notation,	e.g.		employee.address.city	.	Properties	with	a
value	of		undefined		are	considered	to	exist.

import	{	discard,	existsByDot,	iff	}	from	'feathers-hooks-common';

const	discardBadge	=	()	=>	iff(!existsByDot('security.passcode'),	discard('security.badge'));

app.service('directories').before	=	{
		find:	discardBadge()
};

Options:

	obj		(required)	-	The	object	containing	the	property.
	path		(required)	-	The	path	to	the	property,	e.g.		security.passcode	.	Array	notion	is	not	supported,	e.g.
	order.lineItems[1].quantity	.

See	also	existsByDot,	getByDot,	setByDot.

Util:	getByDot,	setByDot

	getByDot(obj,	path)		source

	setByDot(obj,	path,	value,	ifDelete)		source

	getByDot		gets	a	value	from	an	object	using	dot	notation,	e.g.		employee.address.city	.	It	does	not	differentiate
between	non-existent	paths	and	a	value	of		undefined	.

	setByDot		is	the	companion	to		getByDot	.	It	sets	a	value	in	an	object	using	dot	notation.

import	{	getByDot,	setByDot	}	from	'feathers-hooks-common';

const	setHomeCity	=	()	=>	(hook)	=>	{
		const	city	=	getByDot(hook.data,	'person.address.city');
		setByDot(hook,	'data.person.home.city',	city);
}

app.service('directories').before	=	{
		create:	setHomeCity()
};

Options:

Common	Hooks

223

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/exists-by-dot.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/get-by-dot.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/common/set-by-dot.js


	obj		(required)	-	The	object	we	get	data	from	or	set	data	in.
	path		(required)	-	The	path	to	the	data,	e.g.		person.address.city	.	Array	notion	is	not	supported,	e.g.
	order.lineItems[1].quantity	.
	value		(required)	-	The	value	to	set	the	data	to.

See	also	existsByDot,	deleteByDot.

Util:	getItems,	replaceItems

	getItems(hook)		source

	replaceItems(hook,	items)		source

	getItems		gets	the	data	items	in	a	hook.	The	items	may	be		hook.data	,		hook.result		or		hook.result.data		depending
on	where	the	hook	is	used,	the	method	its	used	with	and	if	pagination	is	used.		undefined	,	an	object	or	an	array	of
objects	may	be	returned.

	replaceItems		is	the	companion	to		getItems	.	It	updates	the	data	items	in	the	hook.

Handles	before	and	after	hooks.
Handles	paginated	and	non-paginated	results	from		find	.

import	{	getItems,	replaceItems	}	from	'feathers-hooks-common';

const	insertCode	=	(code)	=>	(hook)	{
				const	items	=	getItems(hook);
				!Array.isArray(items)	?	items.code	=	code	:	(items.forEach(item	=>	{	item.code	=	code;	}));
				replaceItems(hook,	items);
		}

app.service('messages').before	=	{	
		create:	insertCode('a')
};

The	common	hooks	usually	mutate	the	items	in	place,	so	a		replaceItems		is	not	required.

const	items	=	getItems(hook);
(Array.isArray(items)	?	items	:	[items]).forEach(item	=>	{	item.setCreateAt	=	new	Date();	});

Options:

	hook		(required)	-	The	hook	provided	to	the	hook	function.
	items		(required)	-	The	updated	item	or	array	of	items.

Util:	paramsForServer

	paramsForServer(params,	...	whitelist)		source

A	client	utility	to	pass	selected		params		properties	to	the	server.

Companion	to	the	server-side	hook		paramsFromClient	.

By	default,	only	the		hook.params.query		object	is	transferred	to	the	server	from	a	Feathers	client,	for	security	among
other	reasons.	However	you	can	explicitly	transfer	other		params		props	with	the	client	utility	function		paramsForServer	
in	conjunction	with	the	hook	function		paramsFromClient		on	the	server.

Common	Hooks

224

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/get-items.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/replace-items.js
https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/params-to-server.js


//	client
import	{	paramsForServer	}	from	'feathers-hooks-common';
service.patch(null,	data,	paramsForServer({
		query:	{	dept:	'a'	},	populate:	'po-1',	serialize:	'po-mgr'
}));

//	server
const	{	paramsFromClient	}	=	require('feathers-hooks-common');
service.before({	all:	[
		paramsFromClient('populate',	'serialize',	'otherProp'),
		myHook
]});

//	myHook's	`hook.params`	will	now	be
//	{	query:	{	dept:	'a'	},	populate:	'po-1',	serialize:	'po-mgr'	}	}

Options:

	params		(optional)	The		params		object	to	pass	to	the	server,	including	any		query		prop.
	whitelist		(optional)	Names	of	the	props	in		params		to	transfer	to	the	server.	This	is	a	security	feature.	All	props
are	transferred	if	no	whitelist	is	specified.

See		paramsFromClient	.

Util:	promiseToCallback

	promiseToCallback(promise)(callbackFunc)		source

Wrap	a	Promise	into	a	function	that	calls	a	callback.

The	callback	does	not	run	in	the	Promise's	scope.	The	Promise's		catch		chain	is	not	invoked	if	the	callback
throws.

import	{	promiseToCallback	}	from	'feathers-hooks-common'

function	(cb)	{
		const	promise	=	new	Promise(	...).then(	...	).catch(	...	);
		...
		promiseToCallback(promise)(cb);
		promise.then(	...	);	//	this	is	still	possible
}

Options:

	promise		(required)	-	A	function	returning	a	promise.

See	also	callbackToPromise.

FAQ:	Coerce	data	types
A	common	need	is	converting	fields	coming	in	from	query	params.	These	fields	are	provided	as	string	values	by
default	and	you	may	need	them	as	numbers,	boolenas,	etc.

The		validateSchema		does	a	wide	selection	of	type	coercions,	as	well	as	checking	for	missing	and	unexpected	fields.

Common	Hooks

225

https://github.com/feathersjs/feathers-hooks-common/blob/master/src/services/promise-to-callback.js
https://github.com/epoberezkin/ajv/blob/master/COERCION.md


Common	Hooks

226



Client
One	of	the	most	notable	features	of	Feathers	is	that	it	can	also	be	used	as	the	client.	The	difference	to	many	other
frameworks	and	services	is	that	it	isn't	a	separate	library,	you	instead	get	the	exact	same	functionality	as	on	the
server.	This	means	you	can	use	services	and	hooks	and	configure	plugins.	By	default	a	Feathers	client	automatically
creates	services	that	talk	to	a	Feathers	server.	How	to	initialize	a	connection	can	be	found	in

The	REST	transport	client	chapter
The	Socket.io	transport	client	chapter	(real-time)
The	Primus	transport	client	chapter	(real-time)

This	chapter	describes	how	to	use	Feathers	as	the	client	in	Node,	React	Native	and	in	the	browser	with	a	module
loader	like	Webpack,	Browserify,	StealJS	or	through	a		<script>		tag.

Important:	The	Feathers	client	libraries	come	transpiled	to	ES5	but	require	ES6	shims	either	through	the
babel-polyfill	module	or	by	including	core.js	in	older	browsers	e.g.	via		<script	type="text/javascript"
src="//cdnjs.cloudflare.com/ajax/libs/core-js/2.1.4/core.min.js"></script>	

Important:	If	you	are	not	using	a	module	loader	you	can	load	the	feathers-client	directly	through	a	script	tag	in
the	browser.

Server	package Client	package API	page

	feathers	 	feathers/client	 Application	API

	feathers-hooks	 	feathers-hooks	 Hooks	API

	feathers-errors	 	feathers-errors	 Errors	API

	feathers-rest	 	feathers-rest/client	 REST	Transport	API

	feathers-socketio	 	feathers-socketio/client	 Socket.io	Transport	API

	feathers-primus	 	feathers-primus/client	 Primus	Transport	API

	feathers-authentication	 	feathers-authentication-client	 Feathers	Authentication	Client	API

Universal	(Isomorphic)	API
The	Feathers	Client	uses	the	same	Application	API	as	is	available	on	the	server.	It	is	extremely	lightweight,	however,
with	Express	having	been	replaced	by	a	thin	wrapper.	There	are	differences	between	the	client	and	server	APIs.
Learn	more	under	each	method	on	the	Application	API	page.

Node	and	npm	loaders
The	client	utilities	can	be	used	directly	on	the	server.	Just		require		each	individual	package	or	the		feathers-client	
and	use	it	the	same	way	as	shown	for	in	the	browser	examples,	below.	Node.js	natively	supports	the	CommonJS
module	syntax.	Here's	an	example	of	setting	up	the	client	in	Node:

const	feathers	=	require('feathers/client');
const	socketio	=	require('feathers-socketio/client');
const	hooks	=	require('feathers-hooks');
const	errors	=	require('feathers-errors');	//	An	object	with	all	of	the	custom	error	types.
const	auth	=	require('feathers-authentication-client');
const	io	=	require('socket.io-client/dist/socket.io');

Client

227

https://www.npmjs.com/package/babel-polyfill
https://github.com/zloirock/core-js
https://github.com/feathersjs/feathers/blob/master/src/client/express.js


const	socket	=	io('http://localhost:3030',	{
		transports:	['websocket']
});

const	feathersClient	=	feathers()
		.configure(socketio(socket))
		.configure(hooks())
		.configure(auth())

module.exports	=	feathersClient;

Browserify,	StealJS,	and	Webpack
Both,	Browserify	and	StealJS	support	npm	modules	and	require	no	additional	configuration.	The	client	modules	are	all
JavaScript,	and	should	also	work	with	any	Webpack	configuration.	Here's	the	same	example	from	above,	rewritten	in
ES	Module	syntax:

import	feathers	from	'feathers/client';
import	socketio	from	'feathers-socketio/client';
import	hooks	from	'feathers-hooks';
import	errors	from	'feathers-errors';	//	An	object	with	all	of	the	custom	error	types.
import	auth	from	'feathers-authentication-client';
import	io	from	'socket.io-client/dist/socket.io';

const	socket	=	io('http://localhost:3030',	{
		transports:	['websocket']
});

const	feathersClient	=	feathers()
		.configure(socketio(socket))
		.configure(hooks())
		.configure(auth())

export	default	feathersClient;

React	Native
Install	the	required	packages	into	your	React	Native	project.

$	npm	install	feathers	feathers-socketio	feathers-hooks	socket.io-client	babel-polyfill

Then	in	the	main	application	file:

import	'babel-polyfill';
import	io	from	'socket.io-client';
import	feathers	from	'feathers/client';
import	socketio	from	'feathers-socketio/client';
import	hooks	from	'feathers-hooks';

const	socket	=	io('http://api.my-feathers-server.com',	{
		transports:	['websocket'],
		forceNew:	true
});
const	app	=	feathers()
		.configure(hooks())
		.configure(socketio(socket));

const	messageService	=	app.service('messages');

Client

228

https://facebook.github.io/react-native/


messageService.on('created',	message	=>	console.log('Created	a	message',	message));

//	Use	the	messages	service	from	the	server
messageService.create({
		text:	'Message	from	client'
});

feathers-client

	 	

$	npm	install	feathers-client	--save

	feathers-client		is	a	module	that	bundles	the	separate	Feathers	client	side	modules	into	one.	It	also	provides	a
distributable	file	with	everything	you	need	to	use	Feathers	in	the	browser	through	a		<script>		tag.	Here	is	a	table	of
which	Feathers	client	module	is	included	in		feathers-client	:

Feathers	module feathers-client

feathers/client feathers	(default)

feathers-hooks feathers.hooks

feathers-errors feathers.errors

feathers-rest/client feathers.rest

feathers-socketio/client feathers.socketio

feathers-primus/client feathers.primus

feathers-authentication/client feathers.authentication

Load	from	CDN	with		<script>	

Below	is	an	example	of	the	scripts	you	would	use	to	load		feathers-client		from		unpkg.com	.	It's	possible	to	use	it	with
a	module	loader,	but	using	individual	client	packages	will	allow	you	to	take	advantage	of	Feathers'	modularity.

<script	src="//unpkg.com/feathers-client@^2.0.0/dist/feathers.js"></script>
<script	src="//unpkg.com/socket.io-client@1.7.3/dist/socket.io.js"></script>
<script>
		//	Socket.io	is	exposed	as	the	`io`	global.
		var	socket	=	io('http://localhost:3030',	{transports:	['websocket']});
		//	feathers-client	is	exposed	as	the	`feathers`	global.
		var	feathersClient	=	feathers()
				.configure(feathers.hooks())
				.configure(feathers.socketio(socket))
				.configure(feathers.authentication())

		//	feathers.errors	is	an	object	with	all	of	the	custom	error	types.
</script>

When	to	use		feathers-client	

If	you	want	to	use	Feathers	in	the	browser	with	a		<script>		tag
With	a	module	loader	that	does	not	support	npm	packages	(like	RequireJS)

Client

229

https://github.com/feathersjs/feathers-client/
https://www.npmjs.com/package/feathers-client
https://github.com/feathersjs/feathers-client/blob/master/CHANGELOG.md


You	can	use		feathers-client		in	NodeJS	or	with	a	browser	module	loader/bundler	but	it	will	include	packages	you
may	not	use.	It	is	also	important	to	note	that	-	except	for	this	section	-	all	other	Feathers	client	examples	assume	you
are	using	Node	or	a	module	loader.

RequireJS

Here's	an	example	of	loading	feathers-client	using	RequireJS	Syntax:

define(function	(require)	{
		const	feathers	=	require('feathers-client');
		const	socketio	=	feathers.socketio;
		const	hooks	=	feathers.hooks;
		const	errors	=	feathers.errors;	//	An	object	with	all	of	the	custom	error	types.
		const	auth	=	feathers.auth;
		const	io	=	require('socket.io-client');

		const	socket	=	io('http://localhost:3030',	{
				transports:	['websocket']
		});

		const	feathersClient	=	feathers()
				.configure(socketio(socket))
				.configure(hooks())
				.configure(auth())

		return	feathersClient;
});

Client

230



Events
Events	are	the	key	part	of	Feathers	real-time	functionality.	All	events	in	Feathers	are	provided	through	the	NodeJS
EventEmitter	interface.	This	section	describes

A	quick	overview	of	the	NodeJS	EventEmitter	interface
The	standard	service	events
How	to	filter	events	so	that	only	allowed	clients	receive	them
How	to	allow	sending	custom	events	from	the	server	to	the	client

Very	important:	Event	filters	are	critical	for	properly	securing	a	Feathers	real-time	application.

EventEmitters
Once	registered,	any	service	gets	turned	into	a	standard	NodeJS	EventEmitter	and	can	be	used	accordingly.

const	messages	=	app.service('messages');

//	Listen	to	a	normal	service	event
messages.on('patched',	message	=>	console.log('message	patched',	message));

//	Only	listen	to	an	event	once
messsages.once('removed',	message	=>
		console.log('First	time	a	message	has	been	removed',	message)
);

//	A	reference	to	a	handler
const	onCreatedListener	=	message	=>	console.log('New	message	created',	message);

//	Listen	`created`	with	a	handler	reference
messages.on('created',	onCreatedListener);

//	Unbind	the	`created`	event	listener
messages.removeListener('created',	onCreatedListener);

//	Send	a	custom	event
messages.emit('customEvent',	{
		type:	'customEvent',
		data:	'can	be	anything'
});

Service	Events
Any	service	automaticaly	emits		created	,		updated	,		patched		and		removed		events	when	the	respective	service
method	returns	successfully.	This	works	on	the	client	as	well	as	on	the	server.	When	the	client	is	using	Socket.io	or
Primus,	events	will	be	pushed	automatically	from	the	server	to	all	connected	client.	This	is	essentially	how	Feathers
does	real-time.

ProTip:	Events	are	not	fired	until	all	of	your	hooks	have	executed.

created

The		created		event	will	fire	with	the	result	data	when	a	service		create		returns	successfully.

const	feathers	=	require('feathers');

Events

231

https://nodejs.org/api/events.html
https://nodejs.org/api/events.html


const	app	=	feathers();

app.use('/messages',	{
		create(data,	params)	{
				return	Promise.resolve(data);
		}
});

//	Retrieve	the	wrapped	service	object	which	will	be	an	event	emitter
const	messages	=	app.service('messages');

messages.on('created',	message	=>	console.log('created',	message));

messages.create({
		text:	'We	have	to	do	something!'
});

updated,	patched

The		updated		and		patched		events	will	fire	with	the	callback	data	when	a	service		update		or		patch		method	calls
back	successfully.

const	feathers	=	require('feathers');
const	app	=	feathers();

app.use('/my/messages/',	{
		update(id,	data)	{
				return	Promise.resolve(data);
		},

		patch(id,	data)	{
				return	Promise.resolve(data);
		}
});

const	messages	=	app.service('my/messages');

messages.on('updated',	message	=>	console.log('updated',	message));
messages.on('patched',	message	=>	console.log('patched',	message));

messages.update(0,	{
		text:	'updated	message'
});

messages.patch(0,	{
		text:	'patched	message'
});

removed

The		removed		event	will	fire	with	the	callback	data	when	a	service		remove		calls	back	successfully.

const	feathers	=	require('feathers');
const	app	=	feathers();

app.use('/messages',	{
		remove(id,	params)	{
				return	Promise.resolve({	id	});
		}
});

const	messages	=	app.service('messages');

messages.on('removed',	message	=>	console.log('removed',	message));

Events

232



messages.remove(1);

Event	Filtering
By	default	all	service	events	will	be	sent	to	all	connected	clients.	In	many	cases	you	probably	want	to	be	able	to	only
send	events	to	certain	clients,	say	maybe	only	ones	that	are	authenticated	or	only	users	that	belong	to	the	same
company.	The	Socket.io	and	Primus	provider	add	a		.filter()		service	method	which	can	be	used	to	filter	events.	A
filter	is	a		function(data,	connection,	hook)		that	runs	for	every	connected	client	and	gets	passed

	data		-	the	data	to	dispatch.
	connection		-	the	connected	socket	for	which	the	data	is	being	filtered.	This	is	the		feathers		property	from	the
Socket.io	and	Primus	middleware	and	usually	contains	information	like	the	connected	user.
	hook		-	the	hook	object	from	the	original	method	call.

It	either	returns	the	data	to	dispatch	or		false		if	the	event	should	not	be	dispatched	to	this	client.	Returning	a	Promise
that	resolves	accordingly	is	also	supported.

ProTip:	Filter	functions	run	for	every	connected	client	on	every	event	and	should	be	optimized	for	speed	and
chained	by	granularity.	That	means	that	general	and	quick	filters	should	run	first	to	narrow	down	the	connected
clients	to	then	run	more	involved	checks	if	necessary.

Registering	filters

There	are	several	ways	filter	functions	can	be	registered,	very	similar	to	how	hooks	can	be	registered.

const	todos	=	app.service('todos');

//	Register	a	filter	for	all	events
todos.filter(function(data,	connection,	hook)	{});

//	Register	a	filter	for	the	`created`	event
todos.filter('created',	function(data,	connection,	hook)	{});

//	Register	a	filter	for	the	`created`	and	`updated`	event
todos.filter({
		created(data,	connection,	hook)	{},
		updated(data,	connection,	hook)	{}
});

//	Register	a	filter	chain	the	`created`	and	`removed`	event
todos.filter({
		created:	[	filterA,	filterB	],
		removed:	[	filterA,	filterB	]
});

Filter	examples

The	following	example	filters	all	events	on	the		messages		service	if	the	connection	does	not	have	an	authenticated
user:

const	messages	=	app.service('messages');

messages.filter(function(data,	connection)	{
		if(!connection.user)	{
				return	false;
		}

		return	data;

Events

233



});

As	mentioned,	filters	can	be	chained.	So	once	the	previous	filter	passes	(the	connection	has	an	authenticated	user)
we	can	now	filter	all	connections	where	the	data	and	the	user	do	not	belong	to	the	same	company:

//	Blanket	filter	out	all	connections	that	don't	belong	to	the	same	company
messages.filter(function(data,	connection)	{
		if(data.company_id	!==	connection.user.company_id)	{
				return	false;
		}

		return	data;
});

Now	that	we	know	the	connection	has	an	authenticated	user	and	the	data	and	the	user	belong	to	the	same	company,
we	can	filter	the		created		event	to	only	be	sent	if	the	connections	user	and	the	user	that	created	the	Message	are
friends	with	each	other:

//	After	that,	filter	messages,	if	the	user	that	created	it
//	and	the	connected	user	aren't	friends
messages.filter('created',	function(data,	connection,	hook)	{
		//	The	id	of	the	user	that	created	the	todo
		const	messageUserId	=	hook.params.user._id;
		//	The	a	list	of	ids	of	the	connection's	user	friends
		const	currentUserFriends	=	connection.user.friends;

		if(currentUserFriends.indexOf(messageUserId)	===	-1)	{
				return	false;
		}

		return	data;
});

Filtering	Custom	Events

Custom	events	can	be	filtered	the	same	way:

app.service('payments').filter('status',	function(data,	connection,	hook)	{

});

Custom	events
By	default,	real-time	clients	will	only	receive	the	standard	events.	However,	it	is	possible	to	define	a	list	of	custom
events	on	a	service	as		service.events		that	should	also	be	passed.

Important:	The	database	adapters	also	take	a	list	of	custom	events	as	an	initialization	option.

Important:	Custom	events	can	only	be	sent	from	the	server	to	the	client,	not	the	other	way	(client	to	server).
Learn	more

For	example,	a	payment	service	that	sends	status	events	to	the	client	while	processing	a	payment	could	look	like	this:

class	PaymentService	{
		constructor()	{
				this.events	=	['status'];
		},

Events

234



		create(data,	params)	{
				createStripeCustomer(params.user).then(customer	=>	{
						this.emit('status',	{	status:	'created'	});
						return	createPayment(data).then(result	=>	{
								this.emit('status',	{	status:	'completed'	});
						});
				});
		}
}

Now	clients	can	listen	to	the		<servicepath>	status		event.	Custom	events	can	be	filtered	just	like	standard	events.

Events

235



Errors

	 	

$	npm	install	feathers-errors	--save

The		feathers-errors		module	contains	a	set	of	standard	error	classes	used	by	all	other	Feathers	modules	as	well	as
an	Express	error	handler	to	format	those	-	and	other	-	errors	and	setting	the	correct	HTTP	status	codes	for	REST
calls.

Feathers	errors
The	following	error	types,	all	of	which	are	instances	of		FeathersError		are	available:

ProTip:	All	of	the	Feathers	plugins	will	automatically	emit	the	appropriate	Feathers	errors	for	you.	For	example,
most	of	the	database	adapters	will	already	send		Conflict		or		Unprocessable		errors	with	the	validation	errors
from	the	ORM.

	BadRequest	:	400
	NotAuthenticated	:	401
	PaymentError	:	402
	Forbidden	:	403
	NotFound	:	404
	MethodNotAllowed	:	405
	NotAcceptable	:	406
	Timeout	:	408
	Conflict	:	409
	Unprocessable	:	422
	GeneralError	:	500
	NotImplemented	:	501
	Unavailable	:	503

Feathers	errors	are	pretty	flexible.	They	contain	the	following	fields:

	type		-		FeathersError	
	name		-	The	error	name	(ie.	"BadRequest",	"ValidationError",	etc.)
	message		-	The	error	message	string
	code		-	The	HTTP	status	code
	className		-	A	CSS	class	name	that	can	be	handy	for	styling	errors	based	on	the	error	type.	(ie.	"bad-request"	,
etc.)
	data		-	An	object	containing	anything	you	passed	to	a	Feathers	error	except	for	the		errors		object.
	errors		-	An	object	containing	whatever	was	passed	to	a	Feathers	error	inside		errors	.	This	is	typically
validation	errors	or	if	you	want	to	group	multiple	errors	together.

ProTip:	To	convert	a	Feathers	error	back	to	an	object	call		error.toJSON()	.	A	normal		console.log		of	a
JavaScript	Error	object	will	not	automatically	show	those	additional	properties	described	above	(even	though
they	can	be	accessed	directly).

Here	are	a	few	ways	that	you	can	use	them:

const	errors	=	require('feathers-errors');

Errors

236

https://github.com/feathersjs/feathers-errors/
https://www.npmjs.com/package/feathers-errors
https://github.com/feathersjs/feathers-errors/blob/master/CHANGELOG.md
https://expressjs.com/en/guide/error-handling.html


//	If	you	were	to	create	an	error	yourself.
const	notFound	=	new	errors.NotFound('User	does	not	exist');

//	You	can	wrap	existing	errors
const	existing	=	new	errors.GeneralError(new	Error('I	exist'));

//	You	can	also	pass	additional	data
const	data	=	new	errors.BadRequest('Invalid	email',	{
		email:	'sergey@google.com'
});

//	You	can	also	pass	additional	data	without	a	message
const	dataWithoutMessage	=	new	errors.BadRequest({
		email:	'sergey@google.com'
});

//	If	you	need	to	pass	multiple	errors
const	validationErrors	=	new	errors.BadRequest('Invalid	Parameters',	{
		errors:	{	email:	'Email	already	taken'	}
});

//	You	can	also	omit	the	error	message	and	we'll	put	in	a	default	one	for	you
const	validationErrors	=	new	errors.BadRequest({
		errors:	{
				email:	'Invalid	Email'
		}
});

Server	Side	Errors
Promises	swallow	errors	if	you	forget	to	add	a		catch()		statement.	Therefore,	you	should	make	sure	that	you	always
call		.catch()		on	your	promises.	To	catch	uncaught	errors	at	a	global	level	you	can	add	the	code	below	to	your	top-
most	file.

process.on('unhandledRejection',	(reason,	p)	=>	{
		console.log('Unhandled	Rejection	at:	Promise	',	p,	'	reason:	',	reason);
});

REST	(Express)	errors
The	separate		feathers-errors/handler		module	is	an	Express	error	handler	middleware	that	formats	any	error
response	to	a	REST	call	as	JSON	(or	HTML	if	e.g.	someone	hits	our	API	directly	in	the	browser)	and	sets	the
appropriate	error	code.

ProTip:	Because	Feathers	extends	Express	you	can	use	any	Express	compatible	error	middleware	with
Feathers.	In	fact,	the	error	handler	bundled	with		feathers-errors		is	just	a	slightly	customized	one.

Very	Important:	Just	as	in	Express,	the	error	handler	has	to	be	registered	after	all	middleware	and	services.

	app.use(handler())	

Set	up	the	error	handler	with	the	default	configuration.

const	errorHandler	=	require('feathers-errors/handler');
const	app	=	feathers();

//	before	starting	the	app
app.use(errorHandler())

Errors

237

https://expressjs.com/en/guide/error-handling.html
http://expressjs.com/en/guide/error-handling.html


	app.use(handler(options))	

const	error	=	require('feathers-errors/handler');
const	app	=	feathers();

//	Just	like	Express	your	error	middleware	needs	to	be
//	set	up	last	in	your	middleware	chain.
app.use(error({
				html:	function(error,	req,	res,	next)	{
						//	render	your	error	view	with	the	error	object
						res.render('error',	error);
				}
}))

ProTip:	If	you	want	to	have	the	response	in	json	format	be	sure	to	set	the		Accept		header	in	your	request	to
	application/json		otherwise	the	default	error	handler	will	return	HTML.

The	following	options	can	be	passed	when	creating	a	new	localstorage	service:

	html		(Function|Object)	[optional]	-	A	custom	formatter	function	or	an	object	that	contains	the	path	to	your	custom
html	error	pages.

ProTip:		html		can	also	be	set	to		false		to	disable	html	error	pages	altogether	so	that	only	JSON	is	returned.

Errors

238



REST

	 	

$	npm	install	feathers-rest	--save

The	feathers-rest	module	allows	you	to	expose	and	consume	services	through	a	RESTful	API.	This	means	that	you
can	call	a	service	method	through	the		GET	,		POST	,		PUT	,		PATCH		and		DELETE		HTTP	methods:

Service	method HTTP	method Path

.find() GET /messages

.get() GET /messages/1

.create() POST /messages

.update() PUT /messages/1

.patch() PATCH /messages/1

.remove() DELETE /messages/1

Server
To	expose	services	through	a	RESTful	API	we	will	have	to	configure	the	feathers-rest	plugin	and	provide	our	own
body	parser	middleware	(usually	the	standard	Express	4	body-parser)	to	make	REST		.create	,		.update		and
	.patch		calls	parse	the	data	in	the	HTTP	body.	If	you	would	like	to	add	other	middleware	before	the	REST	handler,
call		app.use(middleware)		before	registering	any	services.

$	npm	install	body-parser	--save

Important:	For	additional	information	about	middleware,	routing	and	how	the	REST	module	works	with	Express
middleware	see	the	Express	chapter.

ProTip:	The	body-parser	middleware	has	to	be	registered	before	any	service.	Otherwise	the	service	method
will	throw	a		No	data	provided		or		First	parameter	for	'create'	must	be	an	object		error.

	app.configure(rest())	

Configures	the	transport	provider	with	a	standard	formatter	sending	JSON	response	via	res.json.

const	feathers	=	require('feathers');
const	bodyParser	=	require('body-parser');
const	rest	=	require('feathers-rest');
const	app	=	feathers();

//	Turn	on	JSON	parser	for	REST	services
app.use(bodyParser.json())
//	Turn	on	URL-encoded	parser	for	REST	services
app.use(bodyParser.urlencoded({	extended:	true	}));
//	Set	up	REST	transport
app.configure(rest())

REST

239

https://github.com/feathersjs/feathers-rest/
https://www.npmjs.com/package/feathers-rest
https://github.com/feathersjs/feathers-rest/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-rest
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://github.com/expressjs/body-parser
http://expressjs.com/en/4x/api.html#res.json


	app.configure(rest(formatter))	

The	default	REST	response	formatter	is	a	middleware	that	formats	the	data	retrieved	by	the	service	as	JSON.	If	you
would	like	to	configure	your	own		formatter		middleware	pass	a		formatter(req,	res)		function.	This	middleware	will
have	access	to		res.data		which	is	the	data	returned	by	the	service.	res.format	can	be	used	for	content	negotiation.

const	app	=	feathers();
const	bodyParser	=	require('body-parser');
const	rest	=	require('feathers-rest');

//	Turn	on	JSON	parser	for	REST	services
app.use(bodyParser.json())
//	Turn	on	URL-encoded	parser	for	REST	services
app.use(bodyParser.urlencoded({	extended:	true	}));
//	Set	up	REST	transport
app.configure(rest(function(req,	res)	{
		//	Format	the	message	as	text/plain
		res.format({
				'text/plain':	function()	{
						res.end(`The	Message	is:	"${res.data.text}"`);
				}
		});		
}))

	params.query	

	params.query		will	contain	the	URL	query	parameters	sent	from	the	client.	For	the	REST	transport	the	query	string	is
parsed	using	the	qs	module.	For	some	query	string	examples	see	the	database	querying	chapter.

Important:	Only		params.query		is	passed	between	the	server	and	the	client,	other	parts	of		params		are	not.
This	is	for	security	reasons	so	that	a	client	can't	set	things	like		params.user		or	the	database	options.	You	can
always	map	from		params.query		to	other		params		properties	in	a	before	hook.

	params.provider	

For	any	service	method	call	made	through	REST		params.provider		will	be	set	to		rest	.	In	a	hook	this	can	for	example
be	used	to	prevent	external	users	from	making	a	service	method	call:

app.service('users').hooks({
		before:	{
				remove(hook)	{
						//	check	for	if(hook.params.provider)	to	prevent	any	external	call
						if(hook.params.provider	===	'rest')	{
								throw	new	Error('You	can	not	delete	a	user	via	REST');
						}
				}
		}
});

Client
The		client		module	in		feathers-rest		(	require('feathers-rest/client')	)	allows	to	connect	to	a	service	exposed
through	the	REST	server	using	jQuery,	request,	Superagent,	Axios	or	Fetch	as	the	AJAX	library.

Very	important:	The	examples	below	assume	you	are	using	Feathers	either	in	Node	or	in	the	browser	with	a
module	loader	like	Webpack	or	Browserify.	For	using	Feathers	with	a		<script>		tag,	AMD	modules	or	with
React	Native	see	the	client	chapter.

REST

240

http://expressjs.com/en/4x/api.html#res.format
https://github.com/ljharb/qs
https://jquery.com/
https://github.com/request/request
http://visionmedia.github.io/superagent/
https://github.com/mzabriskie/axios
https://facebook.github.io/react-native/docs/network.html


ProTip:	REST	client	services	do	emit		created	,		updated	,		patched		and		removed		events	but	only	locally	for
their	own	instance.	Real-time	events	from	other	clients	can	only	be	received	by	using	a	websocket	connection.

Note:	A	client	application	can	only	use	a	single	transport	(either	REST,	Socket.io	or	Primus).	Using	two
transports	in	the	same	client	application	is	normally	not	necessary.

	rest([baseUrl])	

REST	client	services	can	be	initialized	by	loading		feathers-rest/client		and	initializing	a	client	object	with	a	base
URL:

const	feathers	=	require('feathers/client');
const	rest	=	require('feathers-rest/client');

//	Connect	to	REST	endpoints
const	restClient	=	rest();
//	Connect	to	a	different	URL
const	restClient	=	rest('http://feathers-api.com');

ProTip:	The	base	URL	is	relative	from	where	services	are	registered.	That	means	that	a	service	at
	http://api.feathersjs.com/api/v1/messages		with	a	base	URL	of		http://api.feathersjs.com		would	be	available
as		app.service('api/v1/messages')	.	With	a	base	URL	of		http://api.feathersjs.com/api/v1		it	would	be
	app.service('messages')	.

REST	client	wrappers	are	always	initialized	using	a	base	URL:

app.configure(restClient.superagent(superagent	[,	options]));

Default	headers	can	be	set	for	all	libaries	(except	request	which	has	its	own	defaults	mechanism)	in	the	options	like
this:

app.configure(restClient.superagent(superagent,	{
		headers:	{	'X-Requested-With':	'FeathersJS'	}
}));

Then	services	that	automatically	connect	to	that	remote	URL	can	be	retrieved	as	usual	via	app.service:

app.service('messages').create({
		text:	'A	message	from	a	REST	client'
});

Request	specific	headers	can	be	through		params.headers		in	a	service	call:

app.service('messages').create({
		text:	'A	message	from	a	REST	client'
},	{
		headers:	{	'X-Requested-With':	'FeathersJS'	}
});

The	supported	AJAX	libraries	can	be	initialized	as	follows.

jQuery

Pass	the	instance	of	jQuery	(	$	)	to		restClient.jquery	:

REST

241



app.configure(restClient.jquery(window.jQuery));

Or	with	a	module	loader:

import	$	from	'jquery';

app.configure(restClient.jquery($));

Request

The	request	object	needs	to	be	passed	explicitly	to		feathers.request	.	Using	request.defaults	-	which	creates	a	new
request	object	-	is	a	great	way	to	set	things	like	default	headers	or	authentication	information:

const	request	=	require('request');
const	client	=	request.defaults({
		'auth':	{
				'user':	'username',
				'pass':	'password',
				'sendImmediately':	false
		}
});

app.configure(restClient.request(client));

Superagent

Superagent	currently	works	with	a	default	configuration:

const	superagent	=	require('superagent');

app.configure(restClient.superagent(superagent));

Axios

Axios	currently	works	with	a	default	configuration:

const	axios	=	require('axios');

app.configure(restClient.axios(axios));

Fetch

Fetch	also	uses	a	default	configuration:

const	fetch	=	require('node-fetch');

app.configure(restClient.fetch(fetch));

Direct	connection
You	can	communicate	with	a	Feathers	server	using	any	HTTP	REST	client.	The	following	section	describes	what
HTTP	method,	body	and	query	parameters	belong	to	which	service	method	call.

REST

242

https://github.com/request/request
https://github.com/request/request#convenience-methods
http://visionmedia.github.io/superagent/
http://github.com/mzabriskie/axios


All	query	parameters	in	a	URL	will	be	set	as		params.query		on	the	server.	Other	service	parameters	can	be	set
through	hooks	and	Express	middleware.	URL	query	parameter	values	will	always	be	strings.	Conversion	(e.g.	the
string		'true'		to	boolean		true	)	can	be	done	in	a	hook	as	well.

The	body	type	for		POST	,		PUT		and		PATCH		requests	is	determined	by	the	Express	body-parser	middleware	which	has
to	be	registered	before	any	service.	You	should	also	make	sure	you	are	setting	your		Accept		header	to
	application/json	.

find

Retrieves	a	list	of	all	matching	resources	from	the	service

GET	/messages?status=read&user=10

Will	call		messages.find({	query:	{	status:	'read',	user:	'10'	}	})		on	the	server.

If	you	want	to	use	any	of	the	built-in	find	operands	($le,	$lt,	$ne,	$eq,	$in,	etc.)	the	general	format	is	as	follows:

GET	/messages?field[$operand]=value&field[$operand]=value2

For	example,	to	find	the	records	where	field	status	is	not	equal	to	active	you	could	do

GET	/messages?status[$ne]=active

More	information	about	the	possible	parameters	for	official	database	adapters	can	be	found	in	the	database	querying
section.

get

Retrieve	a	single	resource	from	the	service.

GET	/messages/1

Will	call		messages.get(1,	{})		on	the	server.

GET	/messages/1?fetch=all

Will	call		messages.get(1,	{	query:	{	fetch:	'all'	}	})		on	the	server.

create

Create	a	new	resource	with		data		which	may	also	be	an	array.

POST	/messages
{	"text":	"I	really	have	to	iron"	}

Will	call		messages.create({	"text":	"I	really	have	to	iron"	},	{})		on	the	server.

POST	/messages
[
		{	"text":	"I	really	have	to	iron"	},
		{	"text":	"Do	laundry"	}
]

REST

243

https://github.com/expressjs/body-parser


update

Completely	replace	a	single	or	multiple	resources.

PUT	/messages/2
{	"text":	"I	really	have	to	do	laundry"	}

Will	call		messages.update(2,	{	"text":	"I	really	have	to	do	laundry"	},	{})		on	the	server.	When	no		id		is	given	by
sending	the	request	directly	to	the	endpoint	something	like:

PUT	/messages?complete=false
{	"complete":	true	}

Will	call		messages.update(null,	{	"complete":	true	},	{	query:	{	complete:	'false'	}	})		on	the	server.

ProTip:		update		is	normally	expected	to	replace	an	entire	resource	which	is	why	the	database	adapters	only
support		patch		for	multiple	records.

patch

Merge	the	existing	data	of	a	single	or	multiple	resources	with	the	new		data	.

PATCH	/messages/2
{	"read":	true	}

Will	call		messages.patch(2,	{	"read":	true	},	{})		on	the	server.	When	no		id		is	given	by	sending	the	request
directly	to	the	endpoint	something	like:

PATCH	/messages?complete=false
{	"complete":	true	}

Will	call		messages.patch(null,	{	complete:	true	},	{	query:	{	complete:	'false'	}	})		on	the	server	to	change	the
status	for	all	read	messages.

This	is	supported	out	of	the	box	by	the	Feathers	database	adapters

remove

Remove	a	single	or	multiple	resources:

DELETE	/messages/2?cascade=true

Will	call		messages.remove(2,	{	query:	{	cascade:	'true'	}	})	.

When	no		id		is	given	by	sending	the	request	directly	to	the	endpoint	something	like:

DELETE	/messages?read=true

Will	call		messages.remove(null,	{	query:	{	read:	'true'	}	})		to	delete	all	read	messages.

REST

244



REST

245



Express
On	the	server,	a	Feathers	application	acts	as	a	drop-in	replacement	for	any	Express	application.	This	chapter
describes	how	services	and	the	REST	transport	interact	with	Express	middleware.

Important:	This	chapter	assumes	that	you	are	familiar	with	Express.

Setting	service		params	
All	middleware	registered	after	the	REST	transport	will	have	access	to	the		req.feathers		object	to	set	properties	on
the	service	method		params	:

const	app	=	require('feathers')();
const	rest	=	require('feathers-rest');
const	bodyParser	=	require('body-parser');

app.configure(rest())
		.use(bodyParser.json())
		.use(bodyParser.urlencoded({extended:	true}))
		.use(function(req,	res,	next)	{
				req.feathers.fromMiddleware	=	'Hello	world';
				next();
		});

app.use('/todos',	{
		get(id,	params)	{
				console.log(params.provider);	//	->	'rest'
				console.log(params.fromMiddleware);	//	->	'Hello	world'

				return	Promise.resolve({
						id,	params,
						description:	`You	have	to	do	${id}!`
				});
		}
});

app.listen(3030);

You	can	see	the	parameters	set	by	running	the	example	and	visiting		http://localhost:3030/todos/test	.

Avoid	setting		req.feathers	=	something		directly	since	it	may	already	contain	information	that	other	Feathers	plugins
rely	on.	Adding	individual	properties	or	using		Object.assign(req.feathers,	something)		is	the	more	reliable	option.

Very	important:	Since	the	order	of	Express	middleware	matters,	any	middleware	that	sets	service	parameters
has	to	be	registered	before	your	services	(in	a	generated	application	before		app.configure(services)		or	in
	middleware/index.js	).

ProTip:	Although	it	may	be	convenient	to	set		req.feathers.req	=	req;		to	have	access	to	the	request	object	in
the	service,	we	recommend	keeping	your	services	as	provider	independent	as	possible.	There	usually	is	a	way
to	pre-process	your	data	in	a	middleware	so	that	the	service	does	not	need	to	know	about	the	HTTP	request	or
response.

Query	parameters

Express

246

http://expressjs.com
http://expressjs.com/en/guide/routing.html


The	query	string	is	parsed	using	the	qs	module.	URL	query	parameters	will	be	parsed	and	passed	to	the	service	as
	params.query	.	For	example:

GET	/messages?read=true&$sort[createdAt]=-1

Will	set		params.query		to

{
		"read":	"true",
		"$sort":	{	"createdAt":	"-1"	}
}

For	additional	query	string	examples	see	the	database	querying	chapter.

ProTip:	Since	the	URL	is	just	a	string,	there	will	be	no	type	conversion.	This	can	be	done	manually	in	a	hook.

ProTip:	If	an	array	in	your	request	consists	of	more	than	20	items,	the	qs	parser	implicitly	converts	it	to	an
object	with	indices	as	keys.	To	extend	this	limit,	you	can	set	a	custom	query	parser:		app.set('query	parser',
str	=>	qs.parse(str,	{arrayLimit:	1000}))	

Route	parameters
Express	route	placeholder	parameters	in	a	service	URL	will	be	added	to	the	service		params	:

const	feathers	=	require('feathers');
const	rest	=	require('feathers-rest');

const	app	=	feathers();

app.configure(rest())
		.use(function(req,	res,	next)	{
				req.feathers.fromMiddleware	=	'Hello	world';
				next();
		});

app.use('/users/:userId/messages',	{
		get(id,	params)	{
				console.log(params.query);	//	->	?query
				console.log(params.provider);	//	->	'rest'
				console.log(params.fromMiddleware);	//	->	'Hello	world'
				console.log(params.userId);	//	will	be	`1`	for	GET	/users/1/messages

				return	Promise.resolve({
						id,
						params,
						read:	false,
						text:	`Feathers	is	great!`,
						createdAt:	new	Date().getTime()
				});
		}
});

app.listen(3030);

You	can	see	all	the	passed	parameters	by	going	to	something	like		localhost:3030/users/213/messages/23?
read=false&$sort[createdAt]=-1]	.

Custom	service	middleware

Express

247

https://github.com/ljharb/qs
https://www.npmjs.com/package/qs
https://github.com/ljharb/qs#parsing-arrays


Custom	Express	middleware	that	only	should	run	before	or	after	a	specific	service	can	be	passed	to		app.use		in	the
order	it	should	run:

const	todoService	=	{
		get(id)	{
				return	Promise.resolve({
						id,
						description:	`You	have	to	do	${id}!`
				});
		}
};

app.use('/todos',	ensureAuthenticated,	logRequest,	todoService,	updateData);

Middleware	that	runs	after	the	service	will	have		res.data		available	which	is	the	data	returned	by	the	service.	For
example		updateData		could	look	like	this:

function	updateData(req,	res,	next)	{
		res.data.updateData	=	true;
		next();
}

Information	about	how	to	use	a	custom	formatter	(e.g.	to	send	something	other	than	JSON)	can	be	found	in	the	REST
transport	chapter.

Sub-Apps
Sub-apps	allow	to	provide	different	versions	for	an	API.	Currently,	when	using	the	Socket.io	and	Primus	real-time
providers	providers,		app.setup		will	be	called	automatically,	however,	with	only	the	REST	provider	or	when	using	plain
Express	in	the	parent	application	you	will	have	to	call	the	sub-apps		setup		yourself:

const	express	=	require('express');
const	feathers	=	require('feathers');
const	api	=	feathers().use('/service',	myService);

const	mainApp	=	express().use('/api/v1',	api);

const	server	=	mainApp.listen(3030);

//	Now	call	setup	on	the	Feathers	app	with	the	server
api.setup(server);

ProTip:	We	recommend	avoiding	complex	sub-app	setups	because	websockets	and	Feathers	built	in
authentication	are	not	fully	sub-app	aware.

HTTPS
With	your	Feathers	application	initialized	it	is	easy	to	set	up	an	HTTPS	REST	and	SocketIO	server:

const	fs	=	require('fs');
const	https		=	require('https');

app.configure(socketio()).use('/todos',	todoService);

const	server	=	https.createServer({
		key:	fs.readFileSync('privatekey.pem'),
		cert:	fs.readFileSync('certificate.pem')

Express

248



},	app).listen(443);

//	Call	app.setup	to	initialize	all	services	and	SocketIO
app.setup(server);

Virtual	Hosts
You	can	use	the	vhost	middleware	to	run	your	Feathers	app	on	a	virtual	host:

const	vhost	=	require('vhost');

app.use('/todos',	todoService);

const	host	=	feathers().use(vhost('foo.com',	app));
const	server	=	host.listen(8080);

//	Here	we	need	to	call	app.setup	because	.listen	on	our	virtal	hosted
//	app	is	never	called
app.setup(server);

Express

249

https://github.com/expressjs/vhost


Socket.io

	 	

$	npm	install	feathers-socketio	--save

The	feathers-socketio	module	allows	to	call	service	methods	and	receive	real-time	events	via	Socket.io,	a	NodeJS
library	which	enables	real-time	bi-directional,	event-based	communication.

Service	method Method	event	name Real-time	event

.find() 	messages::find	 -

.get() 	messages::get	 -

.create() 	messages::create	 	messages	created	

.update() 	messages::update	 	messages	updated	

.patch() 	messages::patch	 	messages	patched	

.remove() 	messages::removed	 	messages	removed	

Important:	Socket.io	is	also	used	to	call	service	methods.	Using	sockets	for	both,	calling	methods	and
receiving	real-time	events	is	generally	faster	than	using	REST	and	there	is	usually	no	need	to	use	both,	REST
and	Socket.io	in	the	same	client	application	at	the	same	time.

Server

	app.configure(socketio())	

Sets	up	the	Socket.io	transport	with	the	default	configuration	using	either	the	server	provided	by	app.listen	or	passed
in	app.setup(server).

const	feathers	=	require('feathers');
const	socketio	=	require('feathers-socketio');

const	app	=	feathers();

app.configure(socketio());

app.listen(3030);

Pro	tip:	Once	the	server	has	been	started	with		app.listen()		or		app.setup(server)		the	Socket.io	object	is
available	as		app.io	.

	app.configure(socketio(callback))	

Sets	up	the	Socket.io	transport	with	the	default	configuration	and	call		callback		with	the	Socket.io	server	object.	This
is	a	good	place	to	listen	to	custom	events	or	add	authorization:

const	feathers	=	require('feathers');
const	socketio	=	require('feathers-socketio');

Socket.io

250

https://github.com/feathersjs/feathers-socketio/
https://www.npmjs.com/package/feathers-socketio
https://github.com/feathersjs/feathers-socketio/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-socketio
http://socket.io/
http://socket.io/docs/server-api/
https://github.com/LearnBoost/socket.io/wiki/Authorizing


const	app	=	feathers();

app.configure(socketio(function(io)	{
		io.on('connection',	function(socket)	{
				socket.emit('news',	{	text:	'A	client	connected!'	});
				socket.on('my	other	event',	function	(data)	{
						console.log(data);
				});
		});

		//	Registering	Socket.io	middleware
		io.use(function	(socket,	next)	{
				//	Exposing	a	request	property	to	services	and	hooks
				socket.feathers.referrer	=	socket.request.referrer;
				next();
		});
}));

app.listen(3030);

	app.configure(socketio(options	[,	callback]))	

Sets	up	the	Socket.io	transport	with	the	given	Socket.io	options	object	and	optionally	calls	the	callback	described
above.

This	can	be	used	to	e.g.	configure	the	path	where	Socket.io	is	initialize	(	socket.io/		by	default).	The	following
changes	the	path	to		ws/	:

const	feathers	=	require('feathers');
const	socketio	=	require('feathers-socketio');

const	app	=	feathers()
		.configure(socketio({
				path:	'/ws/'
		},	function(io)	{
				//	Do	something	here
				//	This	function	is	optional
		}));

app.listen(3030);

	app.configure(socketio(port,	[options],	[callback]))	

Creates	a	new	Socket.io	server	on	a	separate	port.	Options	and	a	callback	are	optional	and	work	as	described	above.

const	feathers	=	require('feathers');
const	socketio	=	require('feathers-socketio');

const	app	=	feathers()
		.configure(socketio(3031));

app.listen(3030);

	params.provider	

For	any	service	method	call	made	through	Socket.io		params.provider		will	be	set	to		socketio	.	In	a	hook	this	can	for
example	be	used	to	prevent	external	users	from	making	a	service	method	call:

app.service('users').hooks({
		before:	{
				remove(hook)	{

Socket.io

251

https://github.com/socketio/engine.io#methods-1


						//	check	for	if(hook.params.provider)	to	prevent	any	external	call
						if(hook.params.provider	===	'socketio')	{
								throw	new	Error('You	can	not	delete	a	user	via	Socket.io');
						}
				}
		}
});

	params.query	

	params.query		will	contain	the	query	parameters	sent	from	the	client.

Important:	Only		params.query		is	passed	between	the	server	and	the	client,	other	parts	of		params		are	not.
This	is	for	security	reasons	so	that	a	client	can't	set	things	like		params.user		or	the	database	options.	You	can
always	map	from		params.query		to		params		in	a	before	hook.

uWebSocket

The	options	can	also	be	used	to	initialize	uWebSocket	which	is	a	WebSocket	server	implementation	that	provides
better	performace	and	reduced	latency.

$	npm	install	uws	--save

const	feathers	=	require('feathers');
const	socketio	=	require('feathers-socketio');

const	app	=	feathers();

app.configure(socketio({
		wsEngine:	'uws'
}));

app.listen(3030);

Middleware	and	service	parameters

Socket.io	middleware	can	modify	the		feathers		property	on	the		socket		which	will	then	be	used	as	the	service
parameters:

app.configure(socketio(function(io)	{
		io.use(function	(socket,	next)	{
				socket.feathers.user	=	{	name:	'David'	};
				next();
		});
}));

app.use('messages',	{
		create(data,	params,	callback)	{
				//	When	called	via	SocketIO:
				params.provider	//	->	socketio
				params.user	//	->	{	name:	'David'	}
		}
});

Client

Socket.io

252

https://github.com/uwebsockets/uwebsockets
https://socket.io/docs/server-api/#namespace-use-fn


The		client		module	in		feathers-socketio		(	require('feathers-socketio/client')	)	allows	to	connect	to	services
exposed	through	the	Socket.io	server	via	a	Socket.io	socket.

Very	important:	The	examples	below	assume	you	are	using	Feathers	either	in	Node	or	in	the	browser	with	a
module	loader	like	Webpack	or	Browserify.	For	using	Feathers	with	a		<script>		tag,	AMD	modules	or	with
React	Native	see	the	client	chapter.

Note:	A	client	application	can	only	use	a	single	transport	(either	REST,	Socket.io	or	Primus).	Using	two
transports	in	the	same	client	application	is	normally	not	necessary.

	socketio(socket)	

Initialize	the	Socket.io	client	using	a	given	socket	and	the	default	options.

const	feathers	=	require('feathers/client');
const	socketio	=	require('feathers-socketio/client');
const	io	=	require('socket.io-client');

const	socket	=	io('http://api.feathersjs.com');
const	app	=	feathers();

//	Set	up	Socket.io	client	with	the	socket
app.configure(socketio(socket));

//	Receive	real-time	events	through	Socket.io
app.service('messages')
		.on('created',	message	=>	console.log('New	message	created',	message));

//	Call	the	`messages`	service
app.service('messages').create({
		text:	'A	message	from	a	REST	client'
});

	socketio(socket,	options)	

Initialize	the	Socket.io	client	using	a	given	socket	and	the	given	options.

Options	can	be:

	timeout		(default:	5000ms)	-	The	time	after	which	a	method	call	fails	and	times	out.	This	usually	happens	when
calling	a	service	or	service	method	that	does	not	exist.

const	feathers	=	require('feathers/client');
const	socketio	=	require('feathers-socketio/client');
const	io	=	require('socket.io-client');

const	socket	=	io('http://api.feathersjs.com');
const	app	=	feathers();

//	Set	up	Socket.io	client	with	the	socket
//	And	a	timeout	of	2	seconds
app.configure(socketio(socket,	{
		timeout:	2000
}));

Changing	the	socket	client	timeout

Currently,	the	only	way	for	clients	to	determine	if	a	service	or	service	method	exists	is	through	a	timeout.	You	can	set
the	timeout	either	through	the	option	above	or	on	a	per-service	level	by	setting	the		timeout		property:

Socket.io

253



app.service('messages').timeout	=	3000;

Direct	connection
Feathers	sets	up	a	normal	Socket.io	server	that	you	can	connect	to	with	any	Socket.io	compatible	client,	usually	the
Socket.io	client	either	by	loading	the		socket.io-client		module	or		/socket.io/socket.io.js		from	the	server.	Unlike
HTTP	calls,	websockets	do	not	have	an	inherent	cross-origin	restriction	in	the	browser	so	it	is	possible	to	connect	to
any	Feathers	server.

ProTip:	The	socket	connection	URL	has	to	point	to	the	server	root	which	is	where	Feathers	will	set	up
Socket.io.

<!--	Connecting	to	the	same	URL	-->
<script	src="/socket.io/socket.io.js">
<script>
		var	socket	=	io();
</script>

<!--	Connecting	to	a	different	server	-->
<script	src="http://localhost:3030/socket.io/socket.io.js">
<script>
		var	socket	=	io('http://localhost:3030/');
</script>

Calling	service	methods

Service	methods	can	be	called	by	emitting	a		<servicepath>::<methodname>		event	with	the	method	parameters.
	servicepath		is	the	name	the	service	has	been	registered	with	(in		app.use	)	without	leading	or	trailing	slashes.	An
optional	callback	following	the		function(error,	data)		Node	convention	will	be	called	with	the	result	of	the	method	call
or	any	errors	that	might	have	occurred.

	params		will	be	set	as		params.query		in	the	service	method	call.	Other	service	parameters	can	be	set	through	a
Socket.io	middleware.

	find	

Retrieves	a	list	of	all	matching	resources	from	the	service

socket.emit('messages::find',	{	status:	'read',	user:	10	},	(error,	data)	=>	{
		console.log('Found	all	messages',	data);
});

Will	call		messages.find({	query:	{	status:	'read',	user:	10	}	})		on	the	server.

	get	

Retrieve	a	single	resource	from	the	service.

socket.emit('messages::get',	1,	(error,	message)	=>	{
		console.log('Found	message',	message);
});

Will	call		messages.get(1,	{})		on	the	server.

Socket.io

254

http://socket.io/docs/client-api/


socket.emit('messages::get',	1,	{	fetch:	'all'	},	(error,	message)	=>	{
		console.log('Found	message',	message);
});

Will	call		messages.get(1,	{	query:	{	fetch:	'all'	}	})		on	the	server.

	create	

Create	a	new	resource	with		data		which	may	also	be	an	array.

socket.emit('messages::create',	{
		"text":	"I	really	have	to	iron"
},	(error,	message)	=>	{
		console.log('Todo	created',	message);
});

Will	call		messages.create({	"text":	"I	really	have	to	iron"	},	{})		on	the	server.

socket.emit('messages::create',	[
		{	"text":	"I	really	have	to	iron"	},
		{	"text":	"Do	laundry"	}
]);

Will	call		messages.create		with	the	array.

	update	

Completely	replace	a	single	or	multiple	resources.

socket.emit('messages::update',	2,	{
		"text":	"I	really	have	to	do	laundry"
},	(error,	message)	=>	{
		console.log('Todo	updated',	message);
});

Will	call		messages.update(2,	{	"text":	"I	really	have	to	do	laundry"	},	{})		on	the	server.	The		id		can	also	be
	null		to	update	multiple	resources:

socket.emit('messages::update',	null,	{
		complete:	true
},	{	complete:	false	});

Will	call		messages.update(null,	{	"complete":	true	},	{	query:	{	complete:	'false'	}	})		on	the	server.

ProTip:		update		is	normally	expected	to	replace	an	entire	resource	which	is	why	the	database	adapters	only
support		patch		for	multiple	records.

	patch	

Merge	the	existing	data	of	a	single	or	multiple	resources	with	the	new		data	.

socket.emit('messages::patch',	2,	{
		read:	true
},	(error,	message)	=>	{
		console.log('Patched	message',	message);
});

Socket.io

255



Will	call		messages.patch(2,	{	"read":	true	},	{})		on	the	server.	The		id		can	also	be		null		to	update	multiple
resources:

socket.emit('messages::patch',	null,	{
		complete:	true
},	{
		complete:	false
},	(error,	message)	=>	{
		console.log('Patched	message',	message);
});

Will	call		messages.patch(null,	{	complete:	true	},	{	query:	{	complete:	false	}	})		on	the	server	to	change	the
status	for	all	read	messages.

This	is	supported	out	of	the	box	by	the	Feathers	database	adapters

	remove	

Remove	a	single	or	multiple	resources:

socket.emit('messages::remove',	2,	{	cascade:	true	},	(error,	message)	=>	{
		console.log('Removed	a	message',	message);
});

Will	call		messages.remove(2,	{	query:	{	cascade:	true	}	})		on	the	server.	The		id		can	also	be		null		to	remove
multiple	resources:

socket.emit('messages::remove',	null,	{	read:	true	});

Will	call		messages.remove(null,	{	query:	{	read:	'true'	}	})		on	the	server	to	delete	all	read	messages.

Listening	to	events

Listening	to	service	events	allows	real-time	behaviour	in	an	application.	Service	events	are	sent	to	the	socket	in	the
form	of		servicepath	eventname	.

created

The		created		event	will	be	published	with	the	callback	data	when	a	service		create		returns	successfully.

var	socket	=	io('http://localhost:3030/');

socket.on('messages	created',	function(message)	{
		console.log('Got	a	new	Todo!',	message);
});

updated,	patched

The		updated		and		patched		events	will	be	published	with	the	callback	data	when	a	service		update		or		patch		method
calls	back	successfully.

var	socket	=	io('http://localhost:3030/');

socket.on('my/messages	updated',	function(message)	{
		console.log('Got	an	updated	Todo!',	message);
});

Socket.io

256



socket.emit('my/messages::update',	1,	{
		text:	'Updated	text'
},	{},	function(error,	callback)	{
	//	Do	something	here
});

removed

The		removed		event	will	be	published	with	the	callback	data	when	a	service		remove		calls	back	successfully.

var	socket	=	io('http://localhost:3030/');

socket.on('messages	removed',	function(message)	{
		//	Remove	element	showing	the	Todo	from	the	page
		$('#message-'	+	message.id).remove();
});

Socket.io

257



Primus

	 	

$	npm	install	feathers-primus	--save

The	feathers-primus	module	allows	to	call	service	methods	and	receive	real-time	events	via	Primus,	a	universal
wrapper	for	real-time	frameworks	that	supports	Engine.IO,	WebSockets,	Faye,	BrowserChannel,	SockJS	and
Socket.IO.

Service	method Method	event	name Real-time	event

.find() 	messages::find	 -

.get() 	messages::get	 -

.create() 	messages::create	 	messages	created	

.update() 	messages::update	 	messages	updated	

.patch() 	messages::patch	 	messages	patched	

.remove() 	messages::removed	 	messages	removed	

Important:	Primus	is	also	used	to	call	service	methods.	Using	sockets	for	both,	calling	methods	and	receiving
real-time	events	is	generally	faster	than	using	REST	and	there	is	usually	no	need	to	use	both,	REST	and
Socket.io	in	the	same	client	application	at	the	same	time.

Server
Additionally	to		feathers-primus		your	websocket	library	of	choice	also	has	to	be	installed.

$	npm	install	ws	--save

	app.configure(primus(options	[,	callback]))	

Sets	up	the	Primus	transport	with	the	given	Primus	options	and	optionally	calls	the	callback	with	the	Primus	server
instance.

Pro	tip:	Once	the	server	has	been	started	with		app.listen()		or		app.setup(server)		the	Primus	server	object	is
available	as		app.primus	.

const	feathers	=	require('feathers');
const	primus	=	require('feathers-primus');

const	app	=	feathers();

//	Set	up	Primus	with	SockJS
app.configure(feathers.primus({
		transformer:	'sockjs'
},	function(primus)	{
		//	Do	something	with	primus	object
}));

Primus

258

https://github.com/feathersjs/feathers-primus/
https://www.npmjs.com/package/feathers-primus
https://github.com/feathersjs/feathers-primus/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-primus
https://github.com/primus/primus
https://github.com/primus/primus


	params.provider	

For	any	service	method	call	made	through		params.provider		will	be	set	to		primus	.	In	a	hook	this	can	for	example	be
used	to	prevent	external	users	from	making	a	service	method	call:

app.service('users').hooks({
		before:	{
				remove(hook)	{
						//	check	for	if(hook.params.provider)	to	prevent	any	external	call
						if(hook.params.provider	===	'primus')	{
								throw	new	Error('You	can	not	delete	a	user	via	Primus');
						}
				}
		}
});

	params.query	

	params.query		will	contain	the	query	parameters	sent	from	the	client.

Important:	Only		params.query		is	passed	between	the	server	and	the	client,	other	parts	of		params		are	not.
This	is	for	security	reasons	so	that	a	client	can't	set	things	like		params.user		or	the	database	options.	You	can
always	map	from		params.query		to		params		in	a	before	hook.

Middleware	and	service	parameters

The	Primus	request	object	has	a		feathers		property	that	can	be	extended	with	additional	service		params		during
authorization:

app.configure(primus({
		transformer:	'sockjs'
},	function(primus)	{
		//	Do	something	with	primus
		primus.use('todos::create',	function(socket,	done){
				//	Exposing	a	request	property	to	services	and	hooks
				socket.request.feathers.referrer	=	socket.request.referrer;
				done();
		});
}));

app.use('messages',	{
		create(data,	params,	callback)	{
				//	When	called	via	Primus:
				params.provider	//	->	primus
				params.user	//	->	{	name:	'David'	}
		}
});

Client
The		client		module	in		feathers-primus		(	require('feathers-primus/client')	)	allows	to	connect	to	services	exposed
through	the	Primus	server	via	a	client	socket.

Very	important:	The	examples	below	assume	you	are	using	Feathers	either	in	Node	or	in	the	browser	with	a
module	loader	like	Webpack	or	Browserify.	For	using	Feathers	with	a		<script>		tag,	AMD	modules	or	with
React	Native	see	the	client	chapter.

Primus

259



Note:	A	client	application	can	only	use	a	single	transport	(either	REST,	Socket.io	or	Primus).	Using	two
transports	in	the	same	client	application	is	normally	not	necessary.

Loading	the	Primus	client	library

In	the	browser	the	Primus	client	library	(usually	at		primus/primus.js	)	always	has	to	be	loaded	using	a		<script>		tag:

<script	type="text/javascript"	src="primus/primus.js"></script>

Important:	This	will	make	the		Primus		object	globally	available.	Module	loader	options	are	currently	not
available.

Client	use	in	NodeJS

In	NodeJS	a	Primus	client	can	be	initialized	as	follows:

const	Primus	=	require('primus');
const	Emitter	=	require('primus-emitter');
const	Socket	=	Primus.createSocket({
		transformer:	'websockets',
		plugin:	{
				'emitter':	Emitter
		}
});
const	socket	=	new	Socket('http://api.feathersjs.com');

	primus(socket)	

Initialize	the	Socket.io	client	using	a	given	socket	and	the	default	options.

const	feathers	=	require('feathers');
const	primus	=	require('feathers-primus/client');
const	socket	=	new	Primus('http://api.my-feathers-server.com');

const	app	=	feathers();

app.configure(primus(socket));

//	Receive	real-time	events	through	Socket.io
app.service('messages')
		.on('created',	message	=>	console.log('New	message	created',	message));

//	Call	the	`messages`	service
app.service('messages').create({
		text:	'A	message	from	a	REST	client'
});

	primus(socket,	options)	

Initialize	the	Socket.io	client	using	a	given	socket	and	the	given	options.

Options	can	be:

	timeout		(default:	5000ms)	-	The	time	after	which	a	method	call	fails	and	times	out.	This	usually	happens	when
calling	a	service	or	service	method	that	does	not	exist.

const	feathers	=	require('feathers');
const	primus	=	require('feathers-primus/client');

Primus

260



const	socket	=	new	Primus('http://api.my-feathers-server.com');

const	app	=	feathers();

app.configure(primus(socket,	{	timeout:	2000	}));

Changing	the	socket	client	timeout

Currently,	the	only	way	for	clients	to	determine	if	a	service	or	service	method	exists	is	through	a	timeout.	You	can	set
the	timeout	either	through	the	option	above	or	on	a	per-service	level	by	setting	the		timeout		property:

app.service('messages').timeout	=	3000;

Direct	connection
In	the	browser,	the	connection	can	be	established	by	loading	the	client	from		primus/primus.js		and	instantiating	a	new
	Primus		instance.	Unlike	HTTP	calls,	websockets	do	not	have	a	cross-origin	restriction	in	the	browser	so	it	is	possible
to	connect	to	any	Feathers	server.

See	the	Primus	docs	for	more	details.

ProTip:	The	socket	connection	URL	has	to	point	to	the	server	root	which	is	where	Feathers	will	set	up	Primus.

<script	src="primus/primus.js">
<script>
		var	socket	=	new	Primus('http://api.my-feathers-server.com');
</script>

Calling	service	methods

Service	methods	can	be	called	by	emitting	a		<servicepath>::<methodname>		event	with	the	method	parameters.
	servicepath		is	the	name	the	service	has	been	registered	with	(in		app.use	)	without	leading	or	trailing	slashes.	An
optional	callback	following	the		function(error,	data)		Node	convention	will	be	called	with	the	result	of	the	method	call
or	any	errors	that	might	have	occurred.

	params		will	be	set	as		params.query		in	the	service	method	call.	Other	service	parameters	can	be	set	through	a
Primus	middleware.

	find	

Retrieves	a	list	of	all	matching	resources	from	the	service

primus.send('messages::find',	{	status:	'read',	user:	10	},	(error,	data)	=>	{
		console.log('Found	all	messages',	data);
});

Will	call		messages.find({	query:	{	status:	'read',	user:	10	}	})		on	the	server.

	get	

Retrieve	a	single	resource	from	the	service.

primus.send('messages::get',	1,	(error,	message)	=>	{
		console.log('Found	message',	message);
});

Primus

261

https://github.com/primus/primus#connecting-from-the-browser


Will	call		messages.get(1,	{})		on	the	server.

primus.send('messages::get',	1,	{	fetch:	'all'	},	(error,	message)	=>	{
		console.log('Found	message',	message);
});

Will	call		messages.get(1,	{	query:	{	fetch:	'all'	}	})		on	the	server.

	create	

Create	a	new	resource	with		data		which	may	also	be	an	array.

primus.send('messages::create',	{
		"text":	"I	really	have	to	iron"
},	(error,	message)	=>	{
		console.log('Message	created',	message);
});

Will	call		messages.create({	"text":	"I	really	have	to	iron"	},	{})		on	the	server.

primus.send('messages::create',	[
		{	"text":	"I	really	have	to	iron"	},
		{	"text":	"Do	laundry"	}
]);

Will	call		messages.create		on	the	server	with	the	array.

	update	

Completely	replace	a	single	or	multiple	resources.

primus.send('messages::update',	2,	{
		"text":	"I	really	have	to	do	laundry"
},	(error,	message)	=>	{
		console.log('Message	updated',	message);
});

Will	call		messages.update(2,	{	"text":	"I	really	have	to	do	laundry"	},	{})		on	the	server.	The		id		can	also	be
	null		to	update	multiple	resources:

primus.send('messages::update',	null,	{
		complete:	true
},	{	complete:	false	});

Will	call		messages.update(null,	{	"complete":	true	},	{	query:	{	complete:	'false'	}	})		on	the	server.

ProTip:		update		is	normally	expected	to	replace	an	entire	resource	which	is	why	the	database	adapters	only
support		patch		for	multiple	records.

	patch	

Merge	the	existing	data	of	a	single	or	multiple	resources	with	the	new		data	.

primus.send('messages::patch',	2,	{
		read:	true

Primus

262



},	(error,	message)	=>	{
		console.log('Patched	message',	message);
});

Will	call		messages.patch(2,	{	"read":	true	},	{})		on	the	server.	The		id		can	also	be		null		to	update	multiple
resources:

primus.send('messages::patch',	null,	{
		complete:	true
},	{
		complete:	false
},	(error,	message)	=>	{
		console.log('Patched	message',	message);
});

Will	call		messages.patch(null,	{	complete:	true	},	{	query:	{	complete:	false	}	})		on	the	server	to	change	the
status	for	all	read	messages.

This	is	supported	out	of	the	box	by	the	Feathers	database	adapters

	remove	

Remove	a	single	or	multiple	resources:

primus.send('messages::remove',	2,	{	cascade:	true	},	(error,	message)	=>	{
		console.log('Removed	a	message',	message);
});

Will	call		messages.remove(2,	{	query:	{	cascade:	true	}	})		on	the	server.	The		id		can	also	be		null		to	remove
multiple	resources:

primus.send('messages::remove',	null,	{	read:	true	});

Will	call		messages.remove(null,	{	query:	{	read:	'true'	}	})		on	the	server	to	delete	all	read	messages.

Listening	to	events

Listening	to	service	events	allows	real-time	behaviour	in	an	application.	Service	events	are	sent	to	the	socket	in	the
form	of		servicepath	eventname	.

created

The		created		event	will	be	published	with	the	callback	data	when	a	service		create		returns	successfully.

primus.on('messages	created',	function(message)	{
		console.log('Got	a	new	Message!',	message);
});

updated,	patched

The		updated		and		patched		events	will	be	published	with	the	callback	data	when	a	service		update		or		patch		method
calls	back	successfully.

primus.on('my/messages	updated',	function(message)	{
		console.log('Got	an	updated	Message!',	message);

Primus

263



});

primus.send('my/messages::update',	1,	{
		text:	'Updated	text'
},	{},	function(error,	callback)	{
	//	Do	something	here
});

removed

The		removed		event	will	be	published	with	the	callback	data	when	a	service		remove		calls	back	successfully.

primus.on('messages	removed',	function(message)	{
		//	Remove	element	showing	the	Message	from	the	page
		$('#message-'	+	message.id).remove();
});

Primus

264



Authentication

	 	

$	npm	install	feathers-authentication	--save

The	feathers-authentication	module	assists	in	using	JWT	for	authentication.	It	has	three	primary	purposes:

1.	 Setup	an		/authentication		endpoint	to	create	JSON	Web	Tokens	(JWT).	JWT	are	used	as	access	tokens.	(learn
more	about	JWT	at	jwt.io)

2.	 Provide	a	consistent	authentication	API	for	all	of	the	Feathers	transports:	feathers-rest,	feathers-socketio,	and
feathers-primus.

3.	 Provide	a	framework	for	authentication	plugins	that	use	Passport	strategies	to	protect	endpoints.

Complementary	Plugins
The	following	plugins	are	complementary,	but	entirely	optional:

feathers-authentication-client
feathers-authentication-local
feathers-authentication-jwt
feathers-authentication-oauth1
feathers-authentication-oauth2

For	the	auth	middleware	to	work	as	expected,	the	plugins	must	be	configured	before	creating	any	services.

API
This	module	contains:

1.	 The	main	entry	function
2.	 The		/authentication		service
3.	 The		authenticate		hook
4.	 Authentication	Events
5.	 Express	middleware
6.	 A	Passport	adapter	for	Feathers

Configuration

	app.configure(auth(options))	

Setup	is	done	the	same	as	all	Feathers	plugins,	using	the		configure		method:

const	auth	=	require('feathers-authentication');

//	Available	options	are	listed	in	the	"Default	Options"	section
app.configure(auth(options))

Server

265

https://github.com/feathersjs/feathers-authentication/
https://www.npmjs.com/package/feathers-authentication
https://github.com/feathersjs/feathers-authentication/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-authentication
https://jwt.io
http://passportjs.org/
http://passportjs.org/


Default		options	
The	following	default	options	will	be	mixed	in	with	your	global		auth		object	from	your	config	file.	It	will	set	the	mixed
options	back	on	to	the	app	so	that	they	are	available	at	any	time	by	calling		app.get('auth')	.	They	can	all	be
overridden	and	are	required	by	some	of	the	authentication	plugins.

{
		path:	'/authentication',	//	the	authentication	service	path
		header:	'Authorization',	//	the	header	to	use	when	using	JWT	auth
		entity:	'user',	//	the	entity	that	will	be	added	to	the	request,	socket,	and	hook.params.	(ie.	req.user,	sock
et.user,	hook.params.user)
		service:	'users',	//	the	service	to	look	up	the	entity
		passReqToCallback:	true,	//	whether	the	request	object	should	be	passed	to	the	strategies	`verify`	function
		session:	false,	//	whether	to	use	sessions
		cookie:	{
				enabled:	false,	//	whether	cookie	creation	is	enabled
				name:	'feathers-jwt',	//	the	cookie	name
				httpOnly:	false,	//	when	enabled,	prevents	the	client	from	reading	the	cookie.
				secure:	true	//	whether	cookies	should	only	be	available	over	HTTPS
		},
		jwt:	{
				header:	{	type:	'access'	},	//	by	default	is	an	access	token	but	can	be	any	type
				audience:	'https://yourdomain.com',	//	The	resource	server	where	the	token	is	processed
				subject:	'anonymous',	//	Typically	the	entity	id	associated	with	the	JWT
				issuer:	'feathers',	//	The	issuing	server,	application	or	resource
				algorithm:	'HS256',	//	the	algorithm	to	use
				expiresIn:	'1d'	//	the	access	token	expiry
		}
}

Additional		app		methods
The	Feathers		app		will	contain	two	useful	methods	once	you've	configured	the	auth	plugin:

app.passport.createJWT
app.passport.verifyJWT

	app.passport.createJWT(payload,	options)	=>	promise		source

This	is	the	method	used	by	the		/authentication		service	to	generate	JSON	Web	Tokens.

	payload	{Object}		-	becomes	the	JWT	payload.	Will	also	include	an		exp		property	denoting	the	expiry
timestamp.
	options	{Object}		-	the	options	passed	to	jsonwebtoken		sign()	

	secret	{String	|	Buffer}		-	either	the	secret	for	HMAC	algorithms,	or	the	PEM	encoded	private	key	for	RSA
and	ECDSA.
	jwt		-	See	the		jsonwebtoken		package	docs	for	other	available	options.	The	authenticate	method	uses	the
default		jwt		options.	When	using	this	package,	directly,	they	will	have	to	be	passed	in	manually.

The	returned		promise		resolves	with	the	JWT	or	fails	with	an	error.

	app.passport.verifyJWT(token,	options)		source

Verifies	the	signature	and	payload	of	the	passed	in	JWT		token		using	the		options	.

	token	{JWT}		-	the	JWT	to	be	verified.
	options	{Object}		the	options	passed	to	jsonwebtoken		verify()	

Server

266

https://github.com/feathersjs/feathers-authentication/blob/master/src/utils.js#L8
https://www.npmjs.com/package/jsonwebtoken#jwtsignpayload-secretorprivatekey-options-callback
https://www.npmjs.com/package/jsonwebtoken#jwtsignpayload-secretorprivatekey-options-callback
https://github.com/feathersjs/feathers-authentication/blob/master/src/utils.js#L48
https://www.npmjs.com/package/jsonwebtoken#jwtverifytoken-secretorpublickey-options-callback


	secret	{String	|	Buffer}		-	-	either	the	secret	for	HMAC	algorithms,	or	the	PEM	encoded	private	key	for
RSA	and	ECDSA.
See	the		jsonwebtoken		package	docs	for	other	available	options.

The		authentication		service
The	heart	of	this	plugin	is	simply	a	service	for	creating	JWT.	It's	a	normal	Feathers	service	that	implements	only	the
	create		and		remove		methods.	The		/authentication		service	provides	all	of	the	functionality	that	the		/auth/local	
and		/auth/token		endpoints	did.	To	choose	a	strategy,	the	client	must	pass	the		strategy		name	in	the	request	body.
This	will	be	different	based	on	the	plugin	used.	See	the	documentation	for	the	plugins	listed	at	the	top	of	this	page	for
more	information.

	app.service('/authentication').create(data,	params)	

The		create		method	will	be	used	in	nearly	every	Feathers	application.	It	creates	a	JWT	based	on	the		jwt		options
configured	on	the	plugin.	The	API	of	this	method	utilizes	the		hook		object:

	before		hook	API:

These	properties	can	be	modified	to	change	the	behavior	of	the		/authentication		service.

	hook.data.payload	{Object}		-	determines	the	payload	of	the	JWT
	hook.params.payload	{Object}		-	also	determines	the	payload	of	the	JWT.	Any	matching	attributes	in	the
	hook.data.payload		will	be	overwritten	by	these.	Persists	into	after	hooks.
	hook.params.authenticated	{Boolean}		-	After	successful	authentication,	will	be	set	to		true	,	unless	it's	set	to
	false		in	a	before	hook.	If	you	set	it	to		false		in	a	before	hook,	it	will	prevent	the	websocket	from	being	flagged
as	authenticated.	Persists	into	after	hooks.

	after		hook	API:

	hook.params[entity]	{Object}		-	After	successful	authentication,	the		entity		looked	up	from	the	database	will	be
populated	here.	(The	default	option	is		user	.)

	app.service('/authentication').remove(data)	

The		remove		method	will	be	used	less	often.	It	mostly	exists	to	allow	for	adding	hooks	the	the	"logout"	process.	For
example,	in	services	that	require	high	control	over	security,	a	developer	could	register	hooks	on	the		remove		method
that	perform	token	blacklisting.

	after		hook	API:

	hook.result	{Object}		-	After	logout,	useful	information	regarding	the	previous	session	will	be	populated	here.

Below	is	the	example	of	the	hook	usage:

				after:	{
						remove:	[
								function	(hook)	{
										return	app.passport.verifyJWT(hook.result.accessToken,	{	secret:	app.passport.options('jwt').secret	}
)
														.then((data)	=>	{
																//	removing	the	user	who	decided	to	logout
																app.service('users').remove(data.userId).then(()	=>	{
																		return	hook;

Server

267

https://www.npmjs.com/package/jsonwebtoken#jwtsignpayload-secretorprivatekey-options-callback


																});
														});
								}
						]
				}

The		authenticate		hook
	auth.hooks.authenticate(strategies)	,	where		strategies		is	an	array	of	passport	strategy	names.

	feathers-authentication		only	includes	a	single	hook.	This	bundled		authenticate		hook	is	used	to	register	an	array	of
authentication	strategies	on	a	service	method.	When	authenticating,	the	client	must	send	the		strategy		as	part	of	the
payload.

Note:	This	should	usually	be	used	on	your		/authentication		service.	Without	it	you	can	hit	the		authentication	
service	and	generate	a	JWT		accessToken		without	authentication	(ie.	anonymous	authentication).

app.service('authentication').hooks({
		before:	{
				create:	[
						//	You	can	chain	multiple	strategies
						auth.hooks.authenticate(['jwt',	'local']),
				],
				remove:	[
						auth.hooks.authenticate('jwt')
				]
		}
});

The	hooks	that	were	once	bundled	with	this	module	are	now	located	at	feathers-authentication-hooks.

Authentication	Events
The		login		and		logout		events	are	emitted	on	the		app		object	whenever	a	client	successfully	authenticates	or	"logs
out".	(With	JWT,	logging	out	doesn't	invalidate	the	JWT.	Read	the	section	about	how	JWT	work	for	more	information.)
These	events	are	only	emitted	on	the	server.

	app.on('login',	callback))		and		app.on('logout',	callback))	

These	two	events	use	a	callback	with	the	same	signature.

	callback		{Function}	-	a	function	in	the	format		function	(result,	meta)	{}	.

	result		{Object}	-	The	final		hook.result		from	the		authentication		service.	Unless	you	customize	the
	hook.response		in	an	after	hook,	this	will	only	contain	the		accessToken	,	which	is	the	JWT.
	meta		{Object}	-	information	about	the	request.	The		meta		data	varies	per	transport	/	provider	as	follows.

Using		feathers-rest	
	provider		{String}	-	will	always	be		"rest"	
	req		{Object}	-	the	Express	request	object.
	res		{Object}	-	the	Express	response	object.

Using		feathers-socketio		and		feathers-primus	:
	provider		{String}	-	the	transport	name:		socketio		or		primus	
	connection		{Object}	-	the	same	as		params		in	the	hook	context
	socket		{SocketObject}	-	the	current	user's	WebSocket	object.	It	also	contains	the		feathers	
attribute,	which	is	the	same	as		params		in	the	hook	context.

Server

268

https://github.com/feathersjs/feathers-authentication-hooks


Express	Middleware
There	is	an		authenticate		middleware.	It	is	used	the	exact	same	way	you	would	the	regular	Passport	express
middleware:

app.post('/login',	auth.express.authenticate('local',	{	successRedirect:	'/app',	failureRedirect:	'/login'	}));

Additional	middleware	are	included	and	exposed	but	typically	you	don't	need	to	worry	about	them:

	emitEvents		source	-	emit		login		and		logout		events
	exposeCookies		source	-	expose	cookies	to	Feathers	so	they	are	available	to	hooks	and	services.	This	is	NOT
used	by	default	as	its	use	exposes	your	API	to	CSRF	vulnerabilities.	Only	use	it	if	you	really	know	what
you're	doing.
	exposeHeaders		source	-	expose	headers	to	Feathers	so	they	are	available	to	hooks	and	services.	This	is	NOT
used	by	default	as	its	use	exposes	your	API	to	CSRF	vulnerabilities.	Only	use	it	if	you	really	know	what
you're	doing.
	failureRedirect		source	-	support	redirecting	on	auth	failure.	Only	triggered	if		hook.redirect		is	set.
	successRedirect		source	-	support	redirecting	on	auth	success.	Only	triggered	if		hook.redirect		is	set.
	setCookie		source	-	support	setting	the	JWT	access	token	in	a	cookie.	Only	enabled	if	cookies	are	enabled.
Note:	Feathers	will	NOT	read	an	access	token	from	a	cookie.	This	would	expose	the	API	to	CSRF	attacks.
This		setCookie		feature	is	available	primarily	for	helping	with	Server	Side	Rendering.

Migrating	to	1.x
Refer	to	the	migration	guide.

Complete	Example
Here's	an	example	of	a	Feathers	server	that	uses		feathers-authentication		for	local	auth.	You	can	try	it	out	on	your
own	machine	by	running	the	example

For	the	auth	middleware	to	work	as	expected,	the	plugins	must	be	configured	before	creating	any	services.

const	feathers	=	require('feathers');
const	rest	=	require('feathers-rest');
const	socketio	=	require('feathers-socketio');
const	hooks	=	require('feathers-hooks');
const	memory	=	require('feathers-memory');
const	bodyParser	=	require('body-parser');
const	errors	=	require('feathers-errors');
const	errorHandler	=	require('feathers-errors/handler');
const	local	=	require('feathers-authentication-local');
const	jwt	=	require('feathers-authentication-jwt');
const	auth	=	require('feathers-authentication');

const	app	=	feathers();
app.configure(rest())
		.configure(socketio())
		.configure(hooks())
		.use(bodyParser.json())
		.use(bodyParser.urlencoded({	extended:	true	}))
		.configure(auth({	secret:	'supersecret'	}))
		.configure(local())
		.configure(jwt())
		.use('/users',	memory())
		.use('/',	feathers.static(__dirname	+	'/public'))

Server

269

https://github.com/feathersjs/feathers-authentication/blob/master/src/express/emit-events.js
https://github.com/feathersjs/feathers-authentication/blob/master/src/express/expose-cookies.js
https://github.com/feathersjs/feathers-authentication/blob/master/src/express/expose-headers.js
https://github.com/feathersjs/feathers-authentication/blob/master/src/express/failure-redirect.js
https://github.com/feathersjs/feathers-authentication/blob/master/src/express/success-redirect.js
https://github.com/feathersjs/feathers-authentication/blob/master/src/express/set-cookie.js
https://github.com/feathersjs/feathers-authentication/blob/master/docs/migrating.md
https://github.com/feathersjs/feathers-authentication/tree/master/example


		.use(errorHandler());

app.service('authentication').hooks({
		before:	{
				create:	[
						//	You	can	chain	multiple	strategies
						auth.hooks.authenticate(['jwt',	'local'])
				],
				remove:	[
						auth.hooks.authenticate('jwt')
				]
		}
});

//	Add	a	hook	to	the	user	service	that	automatically	replaces
//	the	password	with	a	hash	of	the	password	before	saving	it.
app.service('users').hooks({
		before:	{
				find:	[
						auth.hooks.authenticate('jwt')
				],
				create:	[
						local.hooks.hashPassword({	passwordField:	'password'	})
				]
		}
});

const	port	=	3030;
let	server	=	app.listen(port);
server.on('listening',	function()	{
		console.log(`Feathers	application	started	on	localhost:${port}`);
});

Server

270



Authentication	Client

	 	

npm	install	feathers-authentication-client	--save

Note:	This	is	only	compatibile	with		feathers-authentication@1.x		and	above.

The	feathers-authentication-client	module	allows	you	to	easily	authenticate	against	a	Feathers	server.	It	is	not
required.	It	simply	makes	it	easier	to	implement	authentication	in	your	client	by	automatically	storing	and	sending	the
JWT	access	token	and	handling	re-authenticating	when	a	websocket	disconnects.

API
This	module	contains:

The	main	entry	function
Additional	feathersClient	methods
Some	helpful	hooks

Configuration

	feathersClient.configure(auth(options))	

Setup	is	done	the	same	as	all	Feathers	plugins,	using	the		configure		method:

import	auth	from	'feathers-authentication-client';

//	Available	options	are	listed	in	the	"Default	Options"	section
feathersClient.configure(auth(options))

The	transports	plugins	must	have	been	initialized	previously	to	the	authentication	plugin	on	the	client	side

Default		options	

The	following	default	options	will	be	mixed	in	with	the	settings	you	pass	in	when	configuring	authentication.	It	will	set
the	mixed	options	back	to	to	the	app	so	that	they	are	available	at	any	time	by		app.get('auth')	.	They	can	all	be
overridden.

{
		header:	'Authorization',	//	the	default	authorization	header	for	REST
		path:	'/authentication',	//	the	server-side	authentication	service	path
		jwtStrategy:	'jwt',	//	the	name	of	the	JWT	authentication	strategy	
		entity:	'user',	//	the	entity	you	are	authenticating	(ie.	a	users)
		service:	'users',	//	the	service	to	look	up	the	entity
		cookie:	'feathers-jwt',	//	the	name	of	the	cookie	to	parse	the	JWT	from	when	cookies	are	enabled	server	side
		storageKey:	'feathers-jwt',	//	the	key	to	store	the	accessToken	in	localstorage	or	AsyncStorage	on	React	Nati
ve
		storage:	undefined	//	Passing	a	WebStorage-compatible	object	to	enable	automatic	storage	on	the	client.
}

Client

271

https://github.com/feathersjs/feathers-authentication-client/
https://www.npmjs.com/package/feathers-authentication-client
https://github.com/feathersjs/feathers-authentication-client/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-authentication-client


To	enable		localStorage		on	the	client,	be	sure	to	set		storage:	window.localStorage		in	the	client	options.	You	can	also
provide	other	WebStorage-compatible	objects.	Here	are	a	couple	of	useful	storage	packages:

localForage	helps	deal	with	older	browsers	and	browsers	in	Incognito	/	Private	Browsing	mode.
cookie-storage	uses	cookies.	It	can	be	useful	devices	that	don't	support		localStorage	.

Additional	feathersClient	methods
After	configuring	this	plugin,	the	Feathers	client	will	have	a	few	additional	methods:

	feathersClient.authenticate(options)		source

Authenticate	with	a	Feathers	server	by	passing	a		strategy		and	other	properties	as	credentials.	It	will	use	whichever
transport	has	been	setup	on	the	client	(feathers-rest,	feathers-socketio,	or	feathers-primus).	Returns	a	Promise.

feathersClient.authenticate({
		strategy:	'jwt',	
		accessToken:	'<the.jwt.token.string>'
})

	data	{Object}		-	of	the	format		{strategy	[,	...otherProps]}	
	strategy	{String}		-	the	name	of	the	strategy	to	be	used	to	authenticate.	Required.
	...otherProps	{Properties}		vary	depending	on	the	chosen	strategy.	Above	is	an	example	of	using	the		jwt	
strategy.	Below	is	one	for	the		local		strategy.

feathersClient.authenticate({
		strategy:	'local',
		email:	'my@email.com',
		password:	'my-password'
})

When	using		feathers-socketio		or		feathers-primus	,	the	WebSocket	connection	has	to	be	authenticated	by	calling
	app.authenticate()		in	order	to	make	requests	using	a	stored		accessToken	.

app.authenticate().then(response	=>	{
		/*	make	authenticated	requests	here	*/
		return	response
})

	feathersClient.logout()		source

Removes	the	JWT	accessToken	from	storage	on	the	client.	It	also	calls	the		remove		method	of	the		/authentication	
service	on	the	Feathers	server.

	feathersClient.passport.getJWT()		source

Pull	the	JWT	from	localstorage	or	the	cookie.	Returns	a	Promise.

	feathersClient.passport.verifyJWT(token)		source

Verify	that	a	JWT	is	not	expired	and	decode	it	to	get	the	payload.	Returns	a	Promise.

	feathersClient.passport.payloadIsValid(token)		source

Client

272

https://www.npmjs.com/package/localforage
https://www.npmjs.com/package/cookie-storage
https://github.com/feathersjs/feathers-authentication-client/blob/master/src/passport.js#L136
https://github.com/feathersjs/feathers-authentication-client/blob/master/src/passport.js#L212
https://github.com/feathersjs/feathers-authentication-client/blob/master/src/passport.js#L245
https://github.com/feathersjs/feathers-authentication-client/blob/master/src/passport.js#L268
https://github.com/feathersjs/feathers-authentication-client/blob/master/src/utils.js#L21


Synchronously	verify	that	a	token	has	not	expired.	Returns	a	Boolean.

Hooks
There	are	3	hooks.	They	are	really	meant	for	internal	use	and	you	shouldn't	need	to	worry	about	them	very	often.

	populateAccessToken		-	Takes	the	token	and	puts	in	on		hooks.params.accessToken		in	case	you	need	it	in	one	of
your	client	side	services	or	hooks
	populateHeader		-	Add	the	accessToken	to	the	authorization	header
	populateEntity		-	Experimental.	Populate	an	entity	based	on	the	JWT	payload.

Complete	Example
Here's	an	example	of	a	Feathers	server	that	uses		feathers-authentication-client	.

const	feathers	=	require('feathers/client');
const	rest	=	require('feathers-rest/client');
const	superagent	=	require('superagent');
const	hooks	=	require('feathers-hooks');
const	localStorage	=	require('localstorage-memory');
const	auth	=	require('feathers-authentication-client');

const	feathersClient	=	feathers();

feathersClient.configure(hooks())
		.configure(rest('http://localhost:3030').superagent(superagent))
		.configure(auth({	storage:	localStorage	}));

feathersClient.authenticate({
		strategy:	'local',
		email:	'admin@feathersjs.com',
		password:	'admin'
})
.then(response	=>	{
		console.log('Authenticated!',	response);
		return	feathersClient.passport.verifyJWT(response.accessToken);
})
.then(payload	=>	{
		console.log('JWT	Payload',	payload);
		return	feathersClient.service('users').get(payload.userId);
})
.then(user	=>	{
		feathersClient.set('user',	user);
		console.log('User',	feathersClient.get('user'));
})
.catch(function(error){
		console.error('Error	authenticating!',	error);
});

Handling	the	special	re-authentication	errors

In	the	event	that	your	server	goes	down	or	the	client	loses	connectivity,	it	will	automatically	handle	attempting	to	re-
authenticate	the	socket	when	the	client	regains	connectivity	with	the	server.	In	order	to	handle	an	authentication
failure	during	automatic	re-authentication	you	need	to	implement	the	following	event	listener:

const	errorHandler	=	error	=>	{
		app.authenticate({
				strategy:	'local',
				email:	'admin@feathersjs.com',

Client

273



				password:	'admin'
		}).then(response	=>	{
				//	You	are	now	authenticated	again
		});
};

//	Handle	when	auth	fails	during	a	reconnect	or	a	transport	upgrade
app.on('reauthentication-error',	errorHandler)

Client

274



Local	Authentication

	 	

$	npm	install	feathers-authentication-local	--save

feathers-authentication-local	is	a	server	side	module	that	wraps	the	passport-local	authentication	strategy,	which	lets
you	authenticate	with	your	Feathers	application	using	a	username	and	password.

This	module	contains	3	core	pieces:

1.	 The	main	initialization	function
2.	 The		hashPassword		hook
3.	 The		Verifier		class

Configuration
In	most	cases	initializing	the	module	is	as	simple	as	doing	this:

const	feathers	=	require('feathers');
const	authentication	=	require('feathers-authentication');
const	local	=	require('feathers-authentication-local');
const	app	=	feathers();

//	Setup	authentication
app.configure(authentication(settings));
app.configure(local());

//	Setup	a	hook	to	only	allow	valid	JWTs	or	successful	
//	local	auth	to	authenticate	and	get	new	JWT	access	tokens
app.service('authentication').hooks({
		before:	{
				create:	[
						authentication.hooks.authenticate(['local',	'jwt'])
				]
		}
});

This	will	pull	from	your	global	authentication	object	in	your	config	file.	It	will	also	mix	in	the	following	defaults,	which
can	be	customized.

Default	Options

{
				name:	'local',	//	the	name	to	use	when	invoking	the	authentication	Strategy
				entity:	'user',	//	the	entity	that	you're	comparing	username/password	against
				service:	'users',	//	the	service	to	look	up	the	entity
				usernameField:	'email',	//	key	name	of	username	field
				passwordField:	'password',	//	key	name	of	password	field
				passReqToCallback:	true,	//	whether	the	request	object	should	be	passed	to	`verify`
				session:	false	//	whether	to	use	sessions,
				Verifier:	Verifier	//	A	Verifier	class.	Defaults	to	the	built-in	one	but	can	be	a	custom	one.	See	below	for
	details.
}

Local

275

https://github.com/feathersjs/feathers-authentication-local/
https://www.npmjs.com/package/feathers-authentication-local
https://github.com/feathersjs/feathers-authentication-local/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-authentication-local
https://github.com/jaredhanson/passport-local


hashPassword	hook
This	hook	is	used	to	hash	plain	text	passwords	before	they	are	saved	to	the	database.	It	uses	the	bcrypt	algorithm	by
default	but	can	be	customized	by	passing	your	own		options.hash		function.

const	local	=	require('feathers-authentication-local');

app.service('users').hooks({
		before:	{
				create:	[
						local.hooks.hashPassword()
				]
		}
});

Default	Options

{
		passwordField:	'password',	//	key	name	of	password	field	to	look	on	hook.data
		hash:	customHashFunction	//	default	is	the	bcrypt	hash	function.	Takes	in	a	password	and	returns	a	hash.
}

Verifier
This	is	the	verification	class	that	does	the	actual	username	and	password	verification	by	looking	up	the	entity
(normally	a		user	)	on	a	given	service	by	the		usernameField		and	compares	the	hashed	password	using	bcrypt.	It	has
the	following	methods	that	can	all	be	overridden.	All	methods	return	a	promise	except		verify	,	which	has	the	exact
same	signature	as	passport-local.

{
				constructor(app,	options)	//	the	class	constructor
				_comparePassword(entity,	password)	//	compares	password	using	bcrypt
				_normalizeResult(result)	//	normalizes	result	from	service	to	account	for	pagination
				verify(req,	username,	password,	done)	//	queries	the	service	and	calls	the	other	internal	functions.
}

Customizing	the	Verifier

The		Verifier		class	can	be	extended	so	that	you	customize	it's	behavior	without	having	to	rewrite	and	test	a	totally
custom	local	Passport	implementation.	Although	that	is	always	an	option	if	you	don't	want	use	this	plugin.

An	example	of	customizing	the	Verifier:

import	local,	{	Verifier	}	from	'feathers-authentication-local';

class	CustomVerifier	extends	Verifier	{
		//	The	verify	function	has	the	exact	same	inputs	and	
		//	return	values	as	a	vanilla	passport	strategy
		verify(req,	username,	password,	done)	{
				//	do	your	custom	stuff.	You	can	call	internal	Verifier	methods
				//	and	reference	this.app	and	this.options.	This	method	must	be	implemented.

				//	the	'user'	variable	can	be	any	truthy	value
				//	the	'payload'	is	the	payload	for	the	JWT	access	token	that	is	generated	after	successful	authentication
				done(null,	user,	payload);
		}
}

Local

276

https://github.com/jaredhanson/passport-local


app.configure(local({	Verifier:	CustomVerifier	}));

Client	Usage
When	this	module	is	registered	server	side,	using	the	default	config	values	this	is	how	you	can	authenticate	using
	feathers-authentication-client	:

app.authenticate({
		strategy:	'local',
		email:	'your	email',
		password:	'your	password'
}).then(response	=>	{
		//	You	are	now	authenticated
});

Direct	Usage

Using	a	HTTP	Request

If	you	are	not	using	the		feathers-authentication-client		and	you	have	registered	this	module	server	side	then	you
can	simply	make	a		POST		request	to		/authentication		with	the	following	payload:

//	POST	/authentication	the	Content-Type	header	set	to	application/json
{
		"strategy":	"local",
		"email":	"your	email",
		"password":	"your	password"
}

Here	is	what	that	looks	like	with	curl:

curl	-H	"Content-Type:	application/json"	-X	POST	-d	'{"strategy":"local","email":"your	email","password":"your	
password"}'	http://localhost:3030/authentication

Using	Sockets

Authenticating	using	a	local	strategy	via	sockets	is	done	by	emitting	the	following	message:

const	io	=	require('socket.io-client');
const	socket	=	io('http://localhost:3030');

socket.emit('authenticate',	{
		strategy:	'local',
		email:	'your	email',
		password:	'your	password'
},	function(message,	data)	{
		console.log(message);	//	message	will	be	null
		console.log(data);	//	data	will	be	{"accessToken":	"your	token"}
		//	You	can	now	send	authenticated	messages	to	the	server
});

Local

277



Local

278



Local	Authentication	Management

$	npm	install	feathers-authentication-management	--save

Sign	up	verification,	forgotten	password	reset,	and	other	capabilities	for	local	authentication.

Multiple	communication	channels:

Traditionally	users	have	been	authenticated	using	their		username		or		email	.	However	that	landscape	is	changing.

Teens	are	more	involved	with	cellphone	SMS,	whatsapp,	facebook,	QQ	and	wechat	than	they	are	with	email.	Seniors
may	not	know	how	to	create	an	email	account	or	check	email,	but	they	have	smart	phones	and	perhaps	whatsapp	or
wechat	accounts.

A	more	flexible	design	would	maintain	multiple	communication	channels	for	a	user	--	username,	email	address,	phone
number,	handles	for	whatsapp,	facebook,	QQ,	wechat	--	which	each	uniquely	identify	the	user.	The	user	could	then
sign	in	using	any	of	their	unique	identifiers.	The	user	could	also	indicate	how	they	prefer	to	be	contacted.	Some	may
prefer	to	get	password	resets	via	long	tokens	sent	by	email;	others	may	prefer	short	numeric	tokens	sent	by	SMS	or
wechat.

	feathers-authentication		and		feathers-authentication-management		provide	much	of	the	infrastructure	necessary	to
implement	such	a	scenario.

Capabilities:

Checking	that	values	for	fields	like	username,	email,	cellphone	are	unique	within		users		items.
Hooks	for	adding	a	new	user.
Send	another	sign	up	verification	notification,	routing	through	user's	selected	transport.
Process	a	sign	up	or	identity	change	verification	from	a	URL	response.
Process	a	sign	up	or	identity	change	verification	using	a	short	token.
Send	a	forgotten	password	reset	notification,	routing	through	user's	preferred	communication	transport.
Process	a	forgotten	password	reset	from	a	URL	response.
Process	a	forgotten	password	reset	using	a	short	token.
Process	password	change.
Process	an	identity	change	such	as	a	new	email	addr,	or	cellphone.

User	notifications	may	be	sent	for:

Sign	up	verification	when	a	new	user	is	created.
Resending	a	signup	verification,	e.g.	previous	verification	was	lost	or	is	expired.
Successful	user	verification.
Resetting	the	password	when	the	password	is	forgotten.
Successful	password	reset	for	a	forgotten	password.
Manual	change	of	a	password.
Change	of	identity.	Notify	both	the	current	and	new	e.g.	old	email	addr	may	be	notified	when	the	email	addr
changes.

May	be	used	with

	feathers-client		service	calls	over	websockets	or	HTTP.

Local	management

279



Client	side	wrappers	for		feathers-client		service	calls.
HTTP	POST	calls.
React's	Redux.
Vue	(docs	to	do)

Various-sized	tokens	can	be	used	during	the	verify/reset	processes:

A	30-char	token	is	generated	suitable	for	URL	responses.	(Configurable	length.)	This	may	be	embedded	in	URL	links
sent	by	email,	SMS	or	social	media	so	that	clicking	the	link	starts	the	sign	up	verification	or	the	password	reset.

A	6-digit	token	is	also	generated	suitable	for	notification	by	SMS	or	social	media.	(Configurable	length,	may	be	alpha-
numeric	instead.)	This	may	be	manually	entered	in	a	UI	to	start	the	sign	up	verification	or	the	password	reset.

The	email	verification	token	has	a	5-day	expiry	(configurable),	while	the	password	reset	has	a	2	hour	expiry
(configurable).

Typically	your	notifier	routine	refers	to	a	property	like		user.preferredComm:	'email'		to	determine	which	transport	to
use	for	user	notification.	However	the	API	allows	the	UI	to	be	set	up	to	ask	the	user	which	transport	they	prefer	for	that
time.

The	server	does	not	handle	any	interactions	with	the	user.	Leaving	it	a	pure	API	server,	lets	it	be	used	with	both	native
and	browser	clients.

Contents
The	Service
Client

Using	Feathers'	method	calls
Provided	service	wrappers
React's	redux

Dispatching	services
Dispatching	authentication

Hooks
Multiple	services
Database
Routing
Security
Configurable

Service

import	authManagement	from	'feathers-authentication-management';
app.configure(authentication)
		.configure(authManagement({	options	}))
		.configure(user);

	options		are:

service:	The	path	of	the	service	for	user	items,	e.g.		/users		(default)	or		/organization	.
path:	The	path	to	associate	with	this	service.	Default		authManagement	.	See	Multiple	services	for	more	information.
notifier:		function(type,	user,	notifierOptions)		returns	a	Promise.

type:	type	of	notification
'resendVerifySignup'	From	resendVerifySignup	API	call

Local	management

280



'verifySignup'	From	verifySignupLong	and	verifySignupShort	API	calls
'sendResetPwd'	From	sendResetPwd	API	call
'resetPwd'	From	resetPwdLong	and	resetPwdShort	API	calls
'passwordChange'	From	passwordChange	API	call
'identityChange'	From	identityChange	API	call

user:	user's	item,	minus	password.
notifierOptions:	notifierOptions	option	from	resendVerifySignup	and	sendResetPwd	API	calls

longTokenLen:	Half	the	length	of	the	long	token.	Default	is	15,	giving	30-char	tokens.
shortTokenLen:	Length	of	short	token.	Default	is	6.
shortTokenDigits:	Short	token	is	digits	if	true,	else	alphanumeric.	Default	is	true.
delay:	Duration	for	sign	up	email	verification	token	in	ms.	Default	is	5	days.
resetDelay:	Duration	for	password	reset	token	in	ms.	Default	is	2	hours.
skipIsVerifiedCheck:	Allow	'sendResetPwd'	and	'resetPwd'	for	unverified	users.	Default	is	false.
identifyUserProps:	Prop	names	in		user		item	which	uniquely	identify	the	user,	e.g.		['username',	'email',
'cellphone']	.	The	default	is		['email']	.	The	prop	values	must	be	strings.	Only	these	props	may	be	changed	with
verification	by	the	service.	At	least	one	of	these	props	must	be	provided	whenever	a	short	token	is	used,	as	the
short	token	alone	is	too	susceptible	to	brute	force	attack.

The	service	creates	and	maintains	the	following	properties	in	the		user		item:

isVerified:	If	the	user's	email	addr	has	been	verified	(boolean)
verifyToken:	The	30-char	token	generated	for	email	addr	verification	(string)
verifyShortToken:	The	6-digit	token	generated	for	cellphone	addr	verification	(string)
verifyExpires:	When	the	email	addr	token	expire	(Date)
verifyChanges	New	values	to	apply	on	verification	to	some	identifyUserProps	(string	array)
resetToken:	The	30-char	token	generated	for	forgotten	password	reset	(string)
resetShortToken:	The	6-digit	token	generated	for	forgotten	password	reset	(string)
resetExpires:	When	the	forgotten	password	token	expire	(Date)

The	following		user		item	might	also	contain	the	following	props:

preferredComm	The	preferred	way	to	notify	the	user.	One	of	identifyUserProps.

The		users		service	is	expected	to	be	already	configured.	Its		patch		method	is	used	to	update	the	password	when
needed,	and	this	module	hashes	the	password	before	it	is	passed	to		patch	,	therefore		patch		may	not	have	a
	auth.hashPassword()		hook.

The	user	must	be	signed	in	before	being	allowed	to	change	their	password	or	communication	values.	The	service,	for
feathers-authenticate	v1.x,	requires	hooks	similar	to:

				const	isAction	=	(...args)	=>	hook	=>	args.includes(hook.data.action);
				app.service('authManagement').before({
						create:	[
								hooks.iff(isAction('passwordChange',	'identityChange'),	auth.hooks.authenticate('jwt')),
						],
				});

Client
The	service	may	be	called	on	the	client	using

Using	Feathers	method	calls
Provided	service	wrappers
HTTP	fetch

Local	management

281



React's	Redux
Vue	2.0	(docs	todo)

Using	Feathers	method	calls

Method	calls	return	a	Promise.

import	authManagementService	from	'feathers-authentication-management';
app.configure(authManagementService(options))
const	authManagement	=	app.service('authManagement');

//	check	props	are	unique	in	the	users	items
authManagement.create({	action:	'checkUnique',
		value:	identifyUser,	//	e.g.	{email,	username}.	Props	with	null	or	undefined	are	ignored.
		ownId,	//	excludes	your	current	user	from	the	search
		meta:	{	noErrMsg	},	//	if	return	an	error.message	if	not	unique
})
//	ownId	allows	the	"current"	item	to	be	ignored	when	checking	if	a	field	value	is	unique	amoung	users.
//	noErrMsg	determines	if	the	returned	error.message	contains	text.	This	may	simplify	your	client	side	validati
on.

//	resend	sign	up	verification	notification
authManagement.create({	action:	'resendVerifySignup',
		value:	identifyUser,	//	{email},	{token:	verifyToken}
		notifierOptions:	{},	//	options	passed	to	options.notifier,	e.g.	{preferredComm:	'cellphone'}
})

//	sign	up	or	identityChange	verification	with	long	token
authManagement.create({	action:	'verifySignupLong',
		value:	verifyToken,	//	compares	to	.verifyToken
})

//	sign	up	or	identityChange	verification	with	short	token
authManagement.create({	action:	'verifySignupShort',
		value:	{
				user,	//	identify	user,	e.g.	{email:	'a@a.com'}.	See	options.identifyUserProps.
				token,	//	compares	to	.verifyShortToken
		}
})

//	send	forgotten	password	notification
authManagement.create({	action:	'sendResetPwd',
		value:	identifyUser,	//	{email},	{token:	verifyToken}
		notifierOptions,	//	options	passed	to	options.notifier,	e.g.	{preferredComm:	'email'}
})

//	forgotten	password	verification	with	long	token
authManagement.create({	action:	'resetPwdLong',
		value:	{
				token,	//	compares	to	.resetToken
				password,	//	new	password
		},
})

//	forgotten	password	verification	with	short	token
authManagement.create({	action:	'resetPwdShort',
		value:	{
				user:	identifyUser,	//	identify	user,	e.g.	{email:	'a@a.com'}.	See	options.identifyUserProps.
				token,	//	compares	to	.resetShortToken
				password,	//	new	password
		},
})

//	change	password
authManagement.create({	action:	'passwordChange',
		value:	{
				user:	identifyUser,	//	identify	user,	e.g.	{email:	'a@a.com'}.	See	options.identifyUserProps.

Local	management

282



				oldPassword,	//	old	password	for	verification
				password,	//	new	password
		},
})

//	change	communications
authManagement.create({	action:	'identityChange',
		value:	{
				user:	identifyUser,	//	identify	user,	e.g.	{email:	'a@a.com'}.	See	options.identifyUserProps.
				password,	//	current	password	for	verification
				changes,	//	{email:	'a@a.com'}	or	{email:	'a@a.com',	cellphone:	'+1-800-555-1212'}
		},
})

//	Authenticate	user	and	log	on	if	user	is	verified.
var	cbCalled	=	false;
app.authenticate({	type:	'local',	email,	password	})
		.then((result)	=>	{
				const	user	=	result.data;
				if	(!user	||	!user.isVerified)	{
						app.logout();
						cb(new	Error(user	?	'User\'s	email	is	not	verified.'	:	'No	user	returned.'));
						return;
				}
				cbCalled	=	true;
				cb(null,	user);
		})
		.catch((err)	=>	{
				if	(!cbCalled)	{	cb(err);	}	//	ignore	throws	from	.then(	cb(null,	user)	)
		});
`

Provided	service	wrappers

The	wrappers	return	a	Promise.

<script	src=".../feathers-authentication-management/lib/client.js"></script>
		or
import	AuthManagement	from	'feathers-authentication-management/lib/client';
const	app	=	feathers()	...
const	authManagement	=	new	AuthManagement(app);

//	check	props	are	unique	in	the	users	items
authManagement.checkUnique(identifyUser,	ownId,	ifErrMsg)

//	resend	sign	up	verification	notification
authManagement.resendVerifySignup(identifyUser,	notifierOptions)

//	sign	up	or	identityChange	verification	with	long	token
authManagement.verifySignupLong(verifyToken)

//	sign	up	or	identityChange	verification	with	short	token
authManagement.verifySignupShort(verifyShortToken,	identifyUser)

//	send	forgotten	password	notification
authManagement.sendResetPwd(identifyUser,	notifierOptions)

//	forgotten	password	verification	with	long	token
authManagement.resetPwdLong(resetToken,	password)

//	forgotten	password	verification	with	short	token
authManagement.resetPwdShort(resetShortToken,	identifyUser,	password)

//	change	password
authManagement.passwordChange(oldPassword,	password,	identifyUser)

//	change	identity

Local	management

283



authManagement.identityChange(password,	changesIdentifyUser,	identifyUser)

//	Authenticate	user	and	log	on	if	user	is	verified.	v0.x	only.
authManagement.authenticate(email,	password)

React	Redux

See		feathers-redux		for	information	about	state,	etc.

Dispatching	services

import	feathers	from	'feathers-client';
import	reduxifyServices	from	'feathers-reduxify-services';
const	app	=	feathers().configure(feathers.socketio(socket)).configure(feathers.hooks());
const	services	=	reduxifyServices(app,	['users',	'authManagement',	...]);
...
//	hook	up	Redux	reducers
export	default	combineReducers({
		users:	services.users.reducer,
		authManagement:	services.authManagement.reducer,
});
...

//	email	addr	verification	with	long	token
//	Feathers	is	now	100%	compatible	with	Redux.	Use	just	like	[Feathers	method	calls.](#methods)
store.dispatch(services.authManagement.create({	action:	'verifySignupLong',
				value:	verifyToken,
		},	{})
);

Dispatching	authentication

User	must	be	verified	to	sign	in.	v0.x	only.

const	reduxifyAuthentication	=	require('feathers-reduxify-authentication');
const	signin	=	reduxifyAuthentication(app,	{	isUserAuthorized:	(user)	=>	user.isVerified	});

//	Sign	in	with	the	JWT	currently	in	localStorage
if	(localStorage['feathers-jwt'])	{
		store.dispatch(signin.authenticate()).catch(err	=>	{	...	});
}

//	Sign	in	with	credentials
store.dispatch(signin.authenticate({	type:	'local',	email,	password	}))
		.then(()	=>	{	...	)
		.catch(err	=>	{	...	});

Hooks
The	service	does	not	itself	handle	creation	of	a	new	user	account	nor	the	sending	of	the	initial	sign	up	verification
request.	Instead	hooks	are	provided	for	you	to	use	with	the		users		service		create		method.	If	you	set	a	service	path
other	than	the	default	of		'authManagement'	,	the	custom	path	name	must	be	passed	into	the	hook.

	verifyHooks.addVerification(	path	=	'authManagement'	)	

const	verifyHooks	=	require('feathers-authentication-management').hooks;
//	users	service
module.exports.before	=	{

Local	management

284



		create:	[
				auth.hashPassword(),
				verifyHooks.addVerification()	//	adds	.isVerified,	.verifyExpires,	.verifyToken,	.verifyChanges	to	the	inco
ming	data
		]
};
module.exports.after	=	{
		create:	[
				hooks.remove('password'),
				aHookToEmailYourVerification(),
				verifyHooks.removeVerification()	//	removes	verification/reset	fields	other	than	.isVerified	from	the	outgo
ing	response
		]
};

	verifyHooks.isVerified()	

A	hook	is	provided	to	ensure	the	user's	email	addr	is	verified:

const	auth	=	require('feathers-authentication').hooks;
const	verifyHooks	=	require('feathers-authentication-management').hooks;
export.before	=	{
		create:	[
				auth.authenticate('jwt'),
				verifyHooks.isVerified(),
		]
};

Multiple	services
We	have	considered	until	now	situations	where	authentication	was	based	on	a	user	item.		feathers-authorization	
however	allows	users	to	sign	in	with	group	and	organization	credentials	as	well	as	user	ones.

You	can	easily	configure		feathers-authentication-management		to	handle	such	situations.	Please	refer	to
	test/multiInstances.test.js	.

Database
The	service	adds	the	following	optional	properties	to	the	user	item.	You	should	add	them	to	your	user	model	if	your
database	uses	models.

{
		isVerified:	{	type:	Boolean	},
		verifyToken:	{	type:	String	},
		verifyShortToken:	{	type:	String	},
		verifyExpires:	{	type:	Date	},	//	or	a	long	integer
		verifyChanges:	//	an	object	(key-value	map),	e.g.	{	field:	"value"	}
		resetToken:	{	type:	String	},
		resetShortToken:	{	type:	String	},
		resetExpires:	{	type:	Date	},	//	or	a	long	integer
}

Routing
The	client	handles	all	interactions	with	the	user.	Therefore	the	server	must	serve	the	client	app	when,	for	example,	a
URL	link	is	followed	for	email	addr	verification.	The	client	must	do	some	routing	based	on	the	path	in	the	link.

Local	management

285



Assume	you	have	sent	the	email	link:		http://localhost:3030/socket/verify/12b827994bb59cacce47978567989e	

The	server	serves	the	client	app	on		/socket	:

//	Express-like	middleware	provided	by	Feathersjs.
app.use('/',	serveStatic(app.get('public')))
			.use('/socket',	(req,	res)	=>	{
				res.sendFile(path.resolve(__dirname,	'..',	'public',	'socket.html'));	//	serve	the	client
		})

The	client	then	routes	itself	based	on	the	URL.	You	will	likely	use	you	favorite	client-side	router,	but	a	primitive	routing
would	be:

const	[leader,	provider,	action,	slug]	=	window.location.pathname.split('/');

switch	(action)	{
		case	'verify':
				verifySignUp(slug);
				break;
		case	'reset':
				resetPassword(slug);
				break;
		default:
				//	normal	app	startup
}

Security
The	user	must	be	identified	when	the	short	token	is	used,	making	the	short	token	less	appealing	as	an	attack
vector.
The	long	and	short	tokens	are	erased	on	successful	verification	and	password	reset	attempts.	New	tokens	must
be	acquired	for	another	attempt.
API	params	are	verified	to	be	strings.	If	the	param	is	an	object,	the	values	of	its	props	are	verified	to	be	strings.
options.identifyUserProps	restricts	the	prop	names	allowed	in	param	objects.
In	order	to	protect	sensitive	data,	you	should	set	a	hook	that	prevent		PATCH		or		PUT		calls	on	authentication-
management	related	properties:

//	in	user	service	hook
before:	{
update:	[
		iff(isProvider('external'),	preventChanges(
				'isVerified',
				'verifyToken',
				'verifyShortToken',
				'verifyExpires',
				'verifyChanges',
				'resetToken',
				'resetShortToken',
				'resetExpires'
		)),
],
patch:	[
		iff(isProvider('external'),	preventChanges(
				'isVerified',
				'verifyToken',
				'verifyShortToken',
				'verifyExpires',
				'verifyChanges',
				'resetToken',
				'resetShortToken',
				'resetExpires'

Local	management

286



		)),
],
},

Configurable
The	length	of	the	"30-char"	token	is	configurable.	The	length	of	the	"6-digit"	token	is	configurable.	It	may	also	be
configured	as	alphanumeric.

Local	management

287



JWT	Authentication

	 	

$	npm	install	feathers-authentication-jwt	--save

feathers-authentication-jwt	is	a	server	side	module	that	wraps	the	passport-jwt	authentication	strategy,	which	lets	you
authenticate	with	your	Feathers	application	using	a	JSON	Web	Token	(JWT)	access	token.

This	module	contains	3	core	pieces:

1.	 The	main	initialization	function
2.	 The		Verifier		class
3.	 The		ExtractJwt		object	from	passport-jwt.

Configuration
In	most	cases	initializing	the	module	is	as	simple	as	doing	this:

const	feathers	=	require('feathers');
const	authentication	=	require('feathers-authentication');
const	jwt	=	require('feathers-authentication-jwt');
const	app	=	feathers();

//	Setup	authentication
app.configure(authentication(settings));
app.configure(jwt());

//	Setup	a	hook	to	only	allow	valid	JWTs	to	authenticate
//	and	get	new	JWT	access	tokens
app.service('authentication').hooks({
		before:	{
				create:	[
						authentication.hooks.authenticate(['jwt'])
				]
		}
});

This	will	pull	from	your	global	authentication	object	in	your	config	file.	It	will	also	mix	in	the	following	defaults,	which
can	be	customized.

Default	Options

{
				name:	'jwt',	//	the	name	to	use	when	invoking	the	authentication	Strategy
				entity:	'user',	//	the	entity	that	you	pull	from	if	an	'id'	is	present	in	the	payload
				service:	'users',	//	the	service	to	look	up	the	entity
				passReqToCallback:	true,	//	whether	the	request	object	should	be	passed	to	`verify`
				jwtFromRequest:	[	//	a	passport-jwt	option	determining	where	to	parse	the	JWT
						ExtractJwt.fromHeader,	//	From	"Authorization"	header
						ExtractJwt.fromAuthHeaderWithScheme('Bearer'),	//	Allowing	"Bearer"	prefix
						ExtractJwt.fromBodyField('body')	//	from	request	body
				],
				secretOrKey:	auth.secret,	//	Your	main	secret	provided	to	passport-jwt
				session:	false	//	whether	to	use	sessions,
				Verifier:	Verifier	//	A	Verifier	class.	Defaults	to	the	built-in	one	but	can	be	a	custom	one.	See	below	for

JWT

288

https://github.com/feathersjs/feathers-authentication-jwt/
https://www.npmjs.com/package/feathers-authentication-jwt
https://github.com/feathersjs/feathers-authentication-jwt/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-authentication-jwt
https://github.com/themikenicholson/passport-jwt
https://jwt.io/
https://github.com/themikenicholson/passport-jwt#extracting-the-jwt-from-the-request


	details.
}

Additional	passport-jwt	options	can	be	provided.

Verifier
This	is	the	verification	class	that	receives	the	JWT	payload	(if	verification	is	successful)	and	either	returns	the	payload
or,	if	an		id		is	present	in	the	payload,	populates	the	entity	(normally	a		user	)	and	returns	both	the	entity	and	the
payload.	It	has	the	following	methods	that	can	all	be	overridden.	The		verify		function	has	the	exact	same	signature
as	passport-jwt.

{
				constructor(app,	options)	//	the	class	constructor
				verify(req,	payload,	done)	//	queries	the	configured	service
}

Customizing	the	Verifier

The		Verifier		class	can	be	extended	so	that	you	customize	it's	behavior	without	having	to	rewrite	and	test	a	totally
custom	local	Passport	implementation.	Although	that	is	always	an	option	if	you	don't	want	use	this	plugin.

An	example	of	customizing	the	Verifier:

import	jwt,	{	Verifier	}	from	'feathers-authentication-jwt';

class	CustomVerifier	extends	Verifier	{
		//	The	verify	function	has	the	exact	same	inputs	and	
		//	return	values	as	a	vanilla	passport	strategy
		verify(req,	payload,	done)	{
				//	do	your	custom	stuff.	You	can	call	internal	Verifier	methods
				//	and	reference	this.app	and	this.options.	This	method	must	be	implemented.

				//	the	'user'	variable	can	be	any	truthy	value
				//	the	'payload'	is	the	payload	for	the	JWT	access	token	that	is	generated	after	successful	authentication
				done(null,	user,	payload);
		}
}

app.configure(jwt({	Verifier:	CustomVerifier	}));

Client	Usage
When	this	module	is	registered	server	side,	using	the	default	config	values	this	is	how	you	can	authenticate	using
	feathers-authentication-client	:

app.authenticate({
		strategy:	'jwt',
		accessToken:	'your	access	token'
}).then(response	=>	{
		//	You	are	now	authenticated
});

Direct	Usage

JWT

289

https://github.com/themikenicholson/passport-jwt
https://github.com/themikenicholson/passport-jwt


Using	a	HTTP	Request

If	you	are	not	using	the		feathers-authentication-client		and	you	have	registered	this	module	server	side	then	you
can	simply	include	the	access	token	in	an		Authorization		header.

Here	is	what	that	looks	like	with	curl:

curl	-H	"Content-Type:	application/json"	-H	"Authorization:	<your	access	token>"	-X	POST	http://localhost:3030/
authentication

Using	Sockets

Authenticating	using	an	access	token	via	sockets	is	done	by	emitting	the	following	message:

const	io	=	require('socket.io-client');
const	socket	=	io('http://localhost:3030');

socket.emit('authenticate',	{
		strategy:	'jwt',
		accessToken:	'your	token'
},	function(message,	data)	{
		console.log(message);	//	message	will	be	null
		console.log(data);	//	data	will	be	{"accessToken":	"your	token"}
		//	You	can	now	send	authenticated	messages	to	the	server
});

JWT

290



OAuth1	Authentication

	 	

$	npm	install	feathers-authentication-oauth1	--save

feathers-authentication-oauth1	is	a	server	side	module	that	allows	you	to	use	any	Passport	OAuth1	authentication
strategy	within	your	Feathers	application,	most	notably	Twitter.

This	module	contains	2	core	pieces:

1.	 The	main	initialization	function
2.	 The		Verifier		class

Configuration
In	most	cases	initializing	the	module	is	as	simple	as	doing	this:

const	feathers	=	require('feathers');
const	authentication	=	require('feathers-authentication');
const	jwt	=	require('feathers-authentication-jwt');
const	oauth1	=	require('feathers-authentication-oauth1');
const	session	=	require('express-session');
const	TwitterStrategy	=	require('passport-twitter').Strategy;
const	app	=	feathers();

//	Setup	in	memory	session
app.use(session({
		secret:	'super	secret',
		resave:	true,
		saveUninitialized:	true
}));

//	Setup	authentication
app.configure(authentication(settings));
app.configure(jwt());
app.configure(oauth1({
		name:	'twitter',
		Strategy:	TwitterStrategy,
		consumerKey:	'<your	consumer	key>',
		consumerSecret:	'<your	consumer	secret>'
}));

//	Setup	a	hook	to	only	allow	valid	JWTs	to	authenticate
//	and	get	new	JWT	access	tokens
app.service('authentication').hooks({
		before:	{
				create:	[
						authentication.hooks.authenticate(['jwt'])
				]
		}
});

This	will	pull	from	your	global	authentication	object	in	your	config	file.	It	will	also	mix	in	the	following	defaults,	which
can	be	customized.

Registering	the	OAuth1	plugin	will	automatically	set	up	routes	to	handle	the	OAuth	redirects	and	authorization.

OAuth1

291

https://github.com/feathersjs/feathers-authentication-oauth1/
https://www.npmjs.com/package/feathers-authentication-oauth1
https://github.com/feathersjs/feathers-authentication-oauth1/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-authentication-oauth1
http://passportjs.org/
https://github.com/jaredhanson/passport-twitter


Default	Options

{
				idField:	'<provider>Id',	//	The	field	to	look	up	the	entity	by	when	logging	in	with	the	provider.	Defaults	
to	'<provider>Id'	(ie.	'twitterId').
				path:	'/auth/<provider>',	//	The	route	to	register	the	middleware
				callbackURL:	'http(s)://hostame[:port]/auth/<provider>/callback',	//	The	callback	url.	Will	automatically	t
ake	into	account	your	host	and	port	and	whether	you	are	in	production	based	on	your	app	environment	to	construc
t	the	url.	(ie.	in	development	http://localhost:3030/auth/twitter/callback)
				entity:	'user',	//	the	entity	that	you	are	looking	up
				service:	'users',	//	the	service	to	look	up	the	entity
				passReqToCallback:	true,	//	whether	the	request	object	should	be	passed	to	`verify`
				session:	true,	//	whether	to	use	sessions,
				handler:	function,	//	Express	middleware	for	handling	the	oauth	callback.	Defaults	to	the	built	in	middlewa
re.
				formatter:	function,	//	The	response	formatter.	Defaults	the	the	built	in	feathers-rest	formatter,	which	re
turns	JSON.
				Verifier:	Verifier	//	A	Verifier	class.	Defaults	to	the	built-in	one	but	can	be	a	custom	one.	See	below	for	
details.
}

Additional	passport	strategy	options	can	be	provided	based	on	the	OAuth1	strategy	you	are	configuring.

Verifier
This	is	the	verification	class	that	handles	the	OAuth1	verification	by	looking	up	the	entity	(normally	a		user	)	on	a	given
service	and	either	creates	or	updates	the	entity	and	returns	them.	It	has	the	following	methods	that	can	all	be
overridden.	All	methods	return	a	promise	except		verify	,	which	has	the	exact	same	signature	as	passport-oauth1.

{
				constructor(app,	options)	//	the	class	constructor
				_updateEntity(entity)	//	updates	an	existing	entity
				_createEntity(entity)	//	creates	an	entity	if	they	didn't	exist	already
				_normalizeResult(result)	//	normalizes	result	from	service	to	account	for	pagination
				verify(req,	accessToken,	refreshToken,	profile,	done)	//	queries	the	service	and	calls	the	other	internal	f
unctions.
}

Customizing	the	Verifier

The		Verifier		class	can	be	extended	so	that	you	customize	it's	behavior	without	having	to	rewrite	and	test	a	totally
custom	local	Passport	implementation.	Although	that	is	always	an	option	if	you	don't	want	use	this	plugin.

An	example	of	customizing	the	Verifier:

import	oauth1,	{	Verifier	}	from	'feathers-authentication-oauth1';

class	CustomVerifier	extends	Verifier	{
		//	The	verify	function	has	the	exact	same	inputs	and	
		//	return	values	as	a	vanilla	passport	strategy
		verify(req,	accessToken,	refreshToken,	profile,	done)	{
				//	do	your	custom	stuff.	You	can	call	internal	Verifier	methods
				//	and	reference	this.app	and	this.options.	This	method	must	be	implemented.

				//	the	'user'	variable	can	be	any	truthy	value
				//	the	'payload'	is	the	payload	for	the	JWT	access	token	that	is	generated	after	successful	authentication
				done(null,	user,	payload);
		}
}

OAuth1

292

https://github.com/jaredhanson/passport-oauth1


app.configure(oauth1({
		name:	'twitter'
		Strategy:	TwitterStrategy,
		consumerKey:	'<your	consumer	key>',
		consumerSecret:	'<your	consumer	secret>',
		Verifier:	CustomVerifier
}));

Customizing	The	OAuth	Response
Whenever	you	authenticate	with	an	OAuth1	provider	such	as	Twitter,	the	provider	sends	back	an		accessToken	,
	refreshToken	,	and	a		profile		that	contains	the	authenticated	entity's	information	based	on	the	OAuth1		scopes		you
have	requested	and	been	granted.

By	default	the		Verifier		takes	everything	returned	by	the	provider	and	attaches	it	to	the		entity		(ie.	the	user	object)
under	the	provider	name.	You	will	likely	want	to	customize	the	data	that	is	returned.	This	can	be	done	by	adding	a
	before		hook	to	both	the		update		and		create		service	methods	on	your		entity	's	service.

app.configure(oauth1({
		name:	'twitter',
		entity:	'user',
		service:	'users',
		Strategy,
		consumerKey:	'<your	consumer	key>',
		consumerSecret:	'<your	consumer	secret>'
}));

function	customizeTwitterProfile()	{
		return	function(hook)	{
				console.log('Customizing	Twitter	Profile');
				//	If	there	is	a	twitter	field	they	signed	up	or
				//	signed	in	with	twitter	so	let's	pull	the	email.	If
				if	(hook.data.twitter)	{
						hook.data.email	=	hook.data.twitter.email;	
				}

				//	If	you	want	to	do	something	whenever	any	OAuth
				//	provider	authentication	occurs	you	can	do	this.
				if	(hook.params.oauth)	{
						//	do	something	for	all	OAuth	providers
				}

				if	(hook.params.oauth.provider	===	'twitter')	{
						//	do	something	specific	to	the	twitter	provider
				}

				return	Promise.resolve(hook);
		};
}

app.service('users').hooks({
		before:	{
				create:	[customizeTwitterProfile()],
				update:	[customizeTwitterProfile()]
		}
});

Client	Usage

OAuth1

293



When	this	module	is	registered	server	side,	whether	you	are	using		feathers-authentication-client		or	not	you	simply
get	the	user	to	navigate	to	the	authentication	strategy	url.	This	could	be	by	setting		window.location		or	through	a	link
in	your	app.

For	example	you	might	have	a	login	button	for	Twitter:

<a	href="/auth/twitter"	class="button">Login	With	Twitter</a>

OAuth1

294



OAuth2	Authentication

	 	

$	npm	install	feathers-authentication-oauth2	--save

feathers-authentication-oauth2	is	a	server	side	module	that	allows	you	to	use	any	Passport	OAuth2	authentication
strategy	within	your	Feathers	application.	There	are	hundreds	of	them!	Some	commonly	used	ones	are:

Facebook
Instagram
Github
Google
Spotify

This	module	contains	2	core	pieces:

1.	 The	main	initialization	function
2.	 The		Verifier		class

Configuration
In	most	cases	initializing	the	module	is	as	simple	as	doing	this:

const	feathers	=	require('feathers');
const	authentication	=	require('feathers-authentication');
const	jwt	=	require('feathers-authentication-jwt');
const	oauth2	=	require('feathers-authentication-oauth2');
const	FacebookStrategy	=	require('passport-facebook').Strategy;
const	app	=	feathers();

//	Setup	authentication
app.configure(authentication(settings));
app.configure(jwt());
app.configure(oauth2({
		name:	'facebook',
		Strategy:	FacebookStrategy,
		clientID:	'<your	client	id>',
		clientSecret:	'<your	client	secret>',
		scope:	['public_profile',	'email']
}));

//	Setup	a	hook	to	only	allow	valid	JWTs	to	authenticate
//	and	get	new	JWT	access	tokens
app.service('authentication').hooks({
		before:	{
				create:	[
						authentication.hooks.authenticate(['jwt'])
				]
		}
});

This	will	pull	from	your	global	authentication	object	in	your	config	file.	It	will	also	mix	in	the	following	defaults,	which
can	be	customized.

Registering	the	OAuth2	plugin	will	automatically	set	up	routes	to	handle	the	OAuth	redirects	and	authorization.

OAuth2

295

https://github.com/feathersjs/feathers-authentication-oauth2/
https://www.npmjs.com/package/feathers-authentication-oauth2
https://github.com/feathersjs/feathers-authentication-oauth2/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-authentication-oauth2
http://passportjs.org/
https://github.com/jaredhanson/passport-facebook
https://github.com/jaredhanson/passport-instagram
https://github.com/jaredhanson/passport-github
https://github.com/jaredhanson/passport-google-oauth2
https://github.com/JMPerez/passport-spotify


Default	Options

{
				idField:	'<provider>Id',	//	The	field	to	look	up	the	entity	by	when	logging	in	with	the	provider.	Defaults	
to	'<provider>Id'	(ie.	'facebookId').
				path:	'/auth/<provider>',	//	The	route	to	register	the	middleware
				callbackURL:	'http(s)://hostname[:port]/auth/<provider>/callback',	//	The	callback	url.	Will	automatically	
take	into	account	your	host	and	port	and	whether	you	are	in	production	based	on	your	app	environment	to	constru
ct	the	url.	(ie.	in	development	http://localhost:3030/auth/facebook/callback)
				successRedirect:	undefined,
				failureRedirect:	undefined,
				entity:	'user',	//	the	entity	that	you	are	looking	up
				service:	'users',	//	the	service	to	look	up	the	entity
				passReqToCallback:	true,	//	whether	the	request	object	should	be	passed	to	`verify`
				session:	false,	//	whether	to	use	sessions,
				handler:	function,	//	Express	middleware	for	handling	the	oauth	callback.	Defaults	to	the	built	in	middlewa
re.
				formatter:	function,	//	The	response	formatter.	Defaults	the	the	built	in	feathers-rest	formatter,	which	re
turns	JSON.
				Verifier:	Verifier	//	A	Verifier	class.	Defaults	to	the	built-in	one	but	can	be	a	custom	one.	See	below	for	
details.
}

Additional	passport	strategy	options	can	be	provided	based	on	the	OAuth1	strategy	you	are	configuring.

Verifier
This	is	the	verification	class	that	handles	the	OAuth2	verification	by	looking	up	the	entity	(normally	a		user	)	on	a	given
service	and	either	creates	or	updates	the	entity	and	returns	them.	It	has	the	following	methods	that	can	all	be
overridden.	All	methods	return	a	promise	except		verify	,	which	has	the	exact	same	signature	as	passport-oauth2.

{
				constructor(app,	options)	//	the	class	constructor
				_updateEntity(entity)	//	updates	an	existing	entity
				_createEntity(entity)	//	creates	an	entity	if	they	didn't	exist	already
				_normalizeResult(result)	//	normalizes	result	from	service	to	account	for	pagination
				verify(req,	accessToken,	refreshToken,	profile,	done)	//	queries	the	service	and	calls	the	other	internal	f
unctions.
}

Customizing	the	Verifier

The		Verifier		class	can	be	extended	so	that	you	customize	it's	behavior	without	having	to	rewrite	and	test	a	totally
custom	local	Passport	implementation.	Although	that	is	always	an	option	if	you	don't	want	use	this	plugin.

An	example	of	customizing	the	Verifier:

import	oauth2,	{	Verifier	}	from	'feathers-authentication-oauth2';

class	CustomVerifier	extends	Verifier	{
		//	The	verify	function	has	the	exact	same	inputs	and	
		//	return	values	as	a	vanilla	passport	strategy
		verify(req,	accessToken,	refreshToken,	profile,	done)	{
				//	do	your	custom	stuff.	You	can	call	internal	Verifier	methods
				//	and	reference	this.app	and	this.options.	This	method	must	be	implemented.

				//	the	'user'	variable	can	be	any	truthy	value
				//	the	'payload'	is	the	payload	for	the	JWT	access	token	that	is	generated	after	successful	authentication
				done(null,	user,	payload);

OAuth2

296

https://github.com/jaredhanson/passport-oauth2


		}
}

app.configure(oauth2({
		name:	'facebook'
		Strategy:	FacebookStrategy,
		clientID:	'<your	client	id>',
		clientSecret:	'<your	client	secret>',
		scope:	['public_profile',	'email'],
		Verifier:	CustomVerifier
}));

Customizing	The	OAuth	Response
Whenever	you	authenticate	with	an	OAuth2	provider	such	as	Facebook,	the	provider	sends	back	an		accessToken	,
	refreshToken	,	and	a		profile		that	contains	the	authenticated	entity's	information	based	on	the	OAuth2		scopes		you
have	requested	and	been	granted.

By	default	the		Verifier		takes	everything	returned	by	the	provider	and	attaches	it	to	the		entity		(ie.	the	user	object)
under	the	provider	name.	You	will	likely	want	to	customize	the	data	that	is	returned.	This	can	be	done	by	adding	a
	before		hook	to	both	the		update		and		create		service	methods	on	your		entity	's	service.

app.configure(oauth2({
		name:	'github',
		entity:	'user',
		service:	'users',
		Strategy,
		clientID:	'your	client	id',
		clientSecret:	'your	client	secret'
}));

function	customizeGithubProfile()	{
		return	function(hook)	{
				console.log('Customizing	Github	Profile');
				//	If	there	is	a	github	field	they	signed	up	or
				//	signed	in	with	github	so	let's	pull	the	email.	If
				if	(hook.data.github)	{
						hook.data.email	=	hook.data.github.email;	
				}

				//	If	you	want	to	do	something	whenever	any	OAuth
				//	provider	authentication	occurs	you	can	do	this.
				if	(hook.params.oauth)	{
						//	do	something	for	all	OAuth	providers
				}

				if	(hook.params.oauth.provider	===	'github')	{
						//	do	something	specific	to	the	github	provider
				}

				return	Promise.resolve(hook);
		};
}

app.service('users').hooks({
		before:	{
				create:	[customizeGithubProfile()],
				update:	[customizeGithubProfile()]
		}
});

OAuth2

297



Client	Usage
When	this	module	is	registered	server	side,	whether	you	are	using		feathers-authentication-client		or	not	you	simply
get	the	user	to	navigate	to	the	authentication	strategy	url.	This	could	be	by	setting		window.location		or	through	a	link
in	your	app.

For	example	you	might	have	a	login	button	for	Facebook:

<a	href="/auth/facebook"	class="button">Login	With	Facebook</a>

OAuth2

298



Authentication	hooks

	 	

$	npm	install	feathers-authentication-hooks	--save

	feathers-authentication-hooks		is	a	package	containing	some	useful	hooks	for	authentication	and	authorization.	For
more	information	about	hooks,	refer	to	the	chapter	on	hooks.

Note:	Restricting	authentication	hooks	will	only	run	when		params.provider		is	set	(as	in	when	the	method	is
accessed	externally	through	a	transport	like	REST	or	Socketio).

queryWithCurrentUser
The		queryWithCurrentUser		before	hook	will	automatically	add	the	user's		id		as	a	parameter	in	the	query.	This	is
useful	when	you	want	to	only	return	data,	for	example	"messages",	that	were	sent	by	the	current	user.

const	hooks	=	require('feathers-authentication-hooks');

app.service('messages').before({
		find:	[
				hooks.queryWithCurrentUser({	idField:	'id',	as:	'sentBy'	})
		]
});

Options

	idField		(default:	'_id')	[optional]	-	The	id	field	on	your	user	object.
	as		(default:	'userId')	[optional]	-	The	id	field	for	a	user	on	the	resource	you	are	requesting.

When	using	this	hook	with	the	default	options	the		User._id		will	be	copied	into		hook.params.query.userId	.

restrictToOwner
	restrictToOwner		is	meant	to	be	used	as	a	before	hook.	It	only	allows	the	user	to	retrieve	or	modify	resources	that	are
owned	by	them.	It	will	return	a	Forbidden	error	without	the	proper	permissions.	It	can	be	used	on	any	method.

For		find		method	calls	and		patch	,		update		and		remove		of	many	(with		id		set	to		null	),	the	queryWithCurrentUser
hook	will	be	called	to	limit	the	query	to	the	current	user.	For	all	other	cases	it	will	retrieve	the	record	and	verify	the
owner	before	continuing.

const	hooks	=	require('feathers-authentication-hooks');

app.service('messages').before({
		remove:	[
				hooks.restrictToOwner({	idField:	'id',	ownerField:	'sentBy'	})
		]
});

Options

Hooks

299

https://github.com/feathersjs/feathers-authentication-hooks/
https://www.npmjs.com/package/feathers-authentication-hooks
https://github.com/feathersjs/feathers-authentication-hooks/blob/master/CHANGELOG.md


	idField		(default:	'_id')	[optional]	-	The	id	field	on	your	user	object.
	ownerField		(default:	'userId')	[optional]	-	The	id	field	for	a	user	on	your	resource.

restrictToAuthenticated
The		restrictToAuthenticated		hook	throws	an	error	if	there	isn't	a	logged-in	user	by	checking	for	the
	hook.params.user		object.	It	can	be	used	on	any	service	method	and	is	intended	to	be	used	as	a	before	hook.	It
doesn't	take	any	arguments.

const	hooks	=	require('feathers-authentication-hooks');

app.service('user').before({
		get:	[
				hooks.restrictToAuthenticated()
		]
});

Options

	entity		(default:	'user')	[optional]	-	The	property	name	on		hook.params		to	check	for

associateCurrentUser
The		associateCurrentUser		before	hook	is	similar	to	the		queryWithCurrentUser	,	but	works	on	the	incoming	data
instead	of	the	query	params.	It's	useful	for	automatically	adding	the	userId	to	any	resource	being	created.	It	can	be
used	on		create	,		update	,	or		patch		methods.

const	hooks	=	require('feathers-authentication-hooks');

app.service('messages').before({
		create:	[
				hooks.associateCurrentUser({	idField:	'id',	as:	'sentBy'	})
		]
});

Options

	idField		(default:	'_id')	[optional]	-	The	id	field	on	your	user	object.
	as		(default:	'userId')	[optional]	-	The	id	field	for	a	user	that	you	want	to	set	on	your	resource.

restrictToRoles
	restrictToRoles		is	meant	to	be	used	as	a	before	hook.	It	only	allows	the	user	to	retrieve	resources	that	are	owned
by	them	or	protected	by	certain	roles.	It	will	return	a	Forbidden	error	without	the	proper	permissions.	It	can	be	used	on
	all		methods	when	the	owner	option	is	set	to	'false'.	When	the	owner	option	is	set	to		true		the	hook	can	only	be
used	on		get	,		update	,		patch	,	and		remove		service	methods.

const	hooks	=	require('feathers-authentication-hooks');

app.service('messages').before({
		remove:	[
				hooks.restrictToRoles({
								roles:	['admin',	'super-admin'],

Hooks

300



								fieldName:	'permissions',
								idField:	'id',
								ownerField:	'sentBy',
								owner:	true
				})
		]
});

Options

	roles		(required)	-	An	array	of	roles	that	a	user	must	have	at	least	one	of	in	order	to	access	the	resource.
	fieldName		(default:	'roles')	[optional]	-	The	field	on	your	user	object	that	denotes	their	roles.
	idField		(default:	'_id')	[optional]	-	The	id	field	on	your	user	object.
	ownerField		(default:	'userId')	[optional]	-	The	id	field	for	a	user	on	your	resource.
	owner		(default:	'false')	[optional]	-	Denotes	whether	it	should	also	allow	owners	regardless	of	their	role	(ie.	the
user	has	the	role	or	is	an	owner).

hasRoleOrRestrict
	hasRoleOrRestrict		is	meant	to	be	used	as	a	before	hook	for	any	service	on	the	find	or	get	methods.	Unless	the	user
has	one	of	the	roles	provided,	it	will	add	a	restriction	onto	the	query	to	limit	what	resources	return.

const	hooks	=	require('feathers-authentication-hooks');

app.service('messages').before({
		find:	[
				hooks.hasRoleOrRestrict({
								roles:	['admin',	'super-admin'],
								fieldName:	'permissions',
								restrict:	{	approved:	true	}
				})
		]
});

Options

	roles		(required)	-	An	array	of	roles	that	a	user	must	have	at	least	one	of	in	order	to	access	the	resource.
	fieldName		(default:	'roles')	[optional]	-	The	field	on	your	user	object	that	denotes	their	roles.
	restrict		(default:	undefined)	-	The	query	to	merge	into	the	client	query	to	limit	what	resources	are	accessed

Hooks

301



Common	API
All	database	adapters	implement	a	common	interface	for	initialization,	pagination,	extending	and	querying.	This
chapter	describes	the	common	adapter	initialization	and	options,	how	to	enable	and	use	pagination,	the	details	on
how	specific	service	methods	behave	and	how	to	extend	an	adapter	with	custom	functionality.

Important:	Every	database	adapter	is	an	implementation	of	the	Feathers	service	interface.	We	recommend
being	familiar	with	services,	service	events	and	hooks	before	using	a	database	adapter.

Initialization

	service([options])	

Returns	a	new	service	instance	initialized	with	the	given	options.

const	service	=	require('feathers-<adaptername>');

app.use('/messages',	service());
app.use('/messages',	service({	id,	events,	paginate	}));

Options:

	id		(optional)	-	The	name	of	the	id	field	property	(usually	set	by	default	to		id		or		_id	).
	events		(optional)	-	A	list	of	custom	service	events	sent	by	this	service
	paginate		(optional)	-	A	pagination	object	containing	a		default		and		max		page	size

Pagination
When	initializing	an	adapter	you	can	set	the	following	pagination	options	in	the		paginate		object:

	default		-	Sets	the	default	number	of	items	when		$limit		is	not	set
	max		-	Sets	the	maximum	allowed	number	of	items	per	page	(even	if	the		$limit		query	parameter	is	set	higher)

When		paginate.default		is	set,		find		will	return	an	page	object	(instead	of	the	normal	array)	in	the	following	form:

{
		"total":	"<total	number	of	records>",
		"limit":	"<max	number	of	items	per	page>",
		"skip":	"<number	of	skipped	items	(offset)>",
		"data":	[/*	data	*/]
}

The	pagination	options	can	be	set	as	follows:

const	service	=	require('feathers-<db-name>');

//	Set	the	`paginate`	option	during	initialization
app.use('/todos',	service({
		paginate:	{
				default:	5,
				max:	25
		}
}));

Common	API

302



//	override	pagination	in	`params.paginate`	for	this	call
app.service('todos').find({
		paginate:	{
				default:	100,
				max:	200
		}
});

//	disable	pagination	for	this	call
app.service('todos').find({
		paginate:	false
});

Note:	Disabling	or	changing	the	default	pagination	is	not	available	in	the	client.	Only		params.query		is	passed	to
the	server	(also	see	a	workaround	here)

Pro	tip:	To	just	get	the	number	of	available	records	set		$limit		to		0	.	This	will	only	run	a	(fast)	counting	query
against	the	database.

Service	methods
This	section	describes	specifics	on	how	the	service	methods	are	implemented	for	all	adapters.

	adapter.find(params)	->	Promise	

Returns	a	list	of	all	records	matching	the	query	in		params.query		using	the	common	querying	mechanism.	Will	either
return	an	array	with	the	results	or	a	page	object	if	pagination	is	enabled.

Important:	When	used	via	REST	URLs	all	query	values	are	strings.	Depending	on	the	database	the	values	in
	params.query		might	have	to	be	converted	to	the	right	type	in	a	before	hook.

//	Find	all	messages	for	user	with	id	1
app.service('messages').find({
		query:	{
				userId:	1
		}
}).then(messages	=>	console.log(messages));

//	Find	all	messages	belonging	to	room	1	or	3
app.service('messages').find({
		query:	{
				roomId:	{
						$in:	[	1,	3	]
				}
		}
}).then(messages	=>	console.log(messages));

Find	all	messages	for	user	with	id	1

GET	/messages?userId=1

Find	all	messages	belonging	to	room	1	or	3

GET	/messages?roomId[$in]=1&roomId[$in]=3

	adapter.get(id,	params)	->	Promise	

Retrieve	a	single	record	by	its	unique	identifier	(the	field	set	in	the		id		option	during	initialization).

Common	API

303

https://github.com/feathersjs/feathers/issues/382#issuecomment-238407741


app.service('messages').get(1)
		.then(message	=>	console.log(message));

GET	/messages/1

	adapter.create(data,	params)	->	Promise	

Create	a	new	record	with		data	.		data		can	also	be	an	array	to	create	multiple	records.

app.service('messages').create({
				text:	'A	test	message'
		})
		.then(message	=>	console.log(message));

app.service('messages').create([{
				text:	'Hi'
		},	{
				text:	'How	are	you'
		}])
		.then(messages	=>	console.log(messages));

POST	/messages
{
		"text":	"A	test	message"
}

	adapter.update(id,	data,	params)	->	Promise	

Completely	replaces	a	single	record	identified	by		id		with		data	.	Does	not	allow	replacing	multiple	records	(	id		can't
be		null	).		id		can	not	be	changed.

app.service('messages').update(1,	{
				text:	'Updates	message'
		})
		.then(message	=>	console.log(message));

PUT	/messages/1
{	"text":	"Updated	message"	}

	adapter.patch(id,	data,	params)	->	Promise	

Merges	a	record	identified	by		id		with		data	.		id		can	be		null		to	allow	replacing	multiple	records	(all	records	that
match		params.query		the	same	as	in		.find	).		id		can	not	be	changed.

app.service('messages').update(1,	{
				text:	'A	patched	message'
		})
		.then(message	=>	console.log(message));

const	params	=	{
		query:	{	read:	false	}
};

//	Mark	all	unread	messages	as	read
app.service('messages').patch(null,	{
		read:	true
},	params);

Common	API

304



PATCH	/messages/1
{	"text":	"A	patched	message"	}

Mark	all	unread	messages	as	read

PATCH	/messages?read=false
{	"read":	true	}

	adapter.remove(id,	params)	->	Promise	

Removes	a	record	identified	by		id	.		id		can	be		null		to	allow	removing	multiple	records	(all	records	that	match
	params.query		the	same	as	in		.find	).

app.service('messages').remove(1)
		.then(message	=>	console.log(message));

const	params	=	{
		query:	{	read:	true	}
};

//	Remove	all	read	messages
app.service('messages').remove(null,	params);

DELETE	/messages/1

Remove	all	read	messages

DELETE	/messages?read=true

Extending	Adapters
There	are	two	ways	to	extend	existing	database	adapters.	Either	by	extending	the	ES6	base	class	or	by	adding
functionality	through	hooks.

ProTip:	Keep	in	mind	that	calling	the	original	service	methods	will	return	a	Promise	that	resolves	with	the	value.

Hooks

The	most	flexible	option	is	weaving	in	functionality	through	hooks.	For	example,		createdAt		and		updatedAt	
timestamps	could	be	added	like	this:

const	feathers	=	require('feathers');
const	hooks	=	require('feathers-hooks');

//	Import	the	database	adapter	of	choice
const	service	=	require('feathers-<adapter>');

const	app	=	feathers()
		.configure(hooks())
		.use('/todos',	service({
				paginate:	{
						default:	2,
						max:	4
				}

Common	API

305



		}));

app.service('todos').hooks({
		before:	{
				create:	[
						(hook)	=>	hook.data.createdAt	=	new	Date()
				],

				update:	[
						(hook)	=>	hook.data.updatedAt	=	new	Date()
				]
		}
});

app.listen(3030);

Classes	(ES6)

All	modules	also	export	an	ES6	class	as		Service		that	can	be	directly	extended	like	this:

'use	strict';

const	Service	=	require(	'feathers-<database>').Service;

class	MyService	extends	Service	{
		create(data,	params)	{
				data.created_at	=	new	Date();

				return	super.create(data,	params);
		}

		update(id,	data,	params)	{
				data.updated_at	=	new	Date();

				return	super.update(id,	data,	params);
		}
}

app.use('/todos',	new	MyService({
		paginate:	{
				default:	2,
				max:	4
		}
}));

Common	API

306

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes


Querying
All	official	database	adapters	support	a	common	way	for	querying,	sorting,	limiting	and	selecting		find		method	calls
as	part	of		params.query	.	Querying	also	applies		update	,		patch		and		remove		method	calls	if	the		id		is	set	to		null	.

Important:	When	used	via	REST	URLs	all	query	values	are	strings.	Depending	on	the	service	the	values	in
	params.query		might	have	to	be	converted	to	the	right	type	in	a	before	hook.

Equality
All	fields	that	do	not	contain	special	query	parameters	are	compared	directly	for	equality.

//	Find	all	unread	messages	in	room	#2
app.service('messages').find({
		query:	{
				read:	false,
				roomId:	2
		}
});

GET	/messages?read=false&roomId=2

	$limit	

	$limit		will	return	only	the	number	of	results	you	specify:

//	Retrieves	the	first	two	unread	messages
app.service('messages').find({
		query:	{
				$limit:	2,
				read:	false
		}
});

GET	/messages?$limit=2&read=false

Pro	tip:	With	pagination	enabled,	to	just	get	the	number	of	available	records	set		$limit		to		0	.	This	will	only
run	a	(fast)	counting	query	against	the	database	and	return	a	page	object	with	the		total		and	an	empty		data	
array.

	$skip	

	$skip		will	skip	the	specified	number	of	results:

//	Retrieves	the	next	two	unread	messages
app.service('messages').find({
		query:	{
				$limit:	2,
				$skip:	2,
				read:	false
		}

Querying

307



});

GET	/messages?$limit=2&$skip=2&read=false

	$sort	

	$sort		will	sort	based	on	the	object	you	provide.	It	can	contain	a	list	of	properties	by	which	to	sort	mapped	to	the
order	(	1		ascending,		-1		descending).

//	Find	the	10	newest	messages
app.service('messages').find({
		query:	{
				$limit:	10,
				$sort:	{
						createdAt:	-1
				}
		}
});

/messages?$limit=10&$sort[createdAt]=-1

	$select	

	$select		allows	to	pick	which	fields	to	include	in	the	result.	This	will	work	for	any	service	method.

//	Only	return	the	`text`	and	`userId`	field	in	a	message
app.service('messages').find({
		query:	{
				$select:	[	'text',	'userId'	]
		}
});

app.service('messages').get(1,	{
		query:	{
				$select:	[	'text'	]
		}
});

GET	/messages?$select=text&$select=userId
GET	/messages/1?$select=text

To	exclude	fields	from	a	result	the	remove	hook	can	be	used.

	$in	,		$nin	
Find	all	records	where	the	property	does	(	$in	)	or	does	not	(	$nin	)	match	any	of	the	given	values.

//	Find	all	messages	in	room	2	or	5
app.service('messages').find({
		query:	{
				roomId:	{
						$in:	[	2,	5	]
				}
		}

Querying

308



});

GET	/messages?roomId[$in]=2&roomId[$in]=5

	$lt	,		$lte	
Find	all	records	where	the	value	is	less	(	$lt	)	or	less	and	equal	(	$lte	)	to	a	given	value.

//	Find	all	messages	older	than	a	day
const	DAY_MS	=	24	*	60	*	60	*	1000;

app.service('messages').find({
		query:	{
				createdAt:	{
						$lt:	new	Date().getTime()	-	DAY_MS
				}
		}
});

GET	/messages?createdAt[$lt]=1479664146607

	$gt	,		$gte	
Find	all	records	where	the	value	is	more	(	$gt	)	or	more	and	equal	(	$gte	)	to	a	given	value.

//	Find	all	messages	within	the	last	day
const	DAY_MS	=	24	*	60	*	60	*	1000;

app.service('messages').find({
		query:	{
				createdAt:	{
						$gt:	new	Date().getTime()	-	DAY_MS
				}
		}
});

GET	/messages?createdAt[$gt]=1479664146607

	$ne	

Find	all	records	that	do	not	equal	the	given	property	value.

//	Find	all	messages	that	are	not	marked	as	archived
app.service('messages').find({
		query:	{
				archived:	{
						$ne:	true
				}
		}
});

GET	/messages?archived[$ne]=true

Querying

309



	$or	

Find	all	records	that	match	any	of	the	given	criteria.

//	Find	all	messages	that	are	not	marked	as	archived
//	or	any	message	from	room	2
app.service('messages').find({
		query:	{
				$or:	[
						{	archived:	{	$ne:	true	}	},
						{	roomId:	2	}
				]
		}
});

GET	/messages?$or[0][archived][$ne]=true&$or[1][roomId]=2

	$search	

	$search		is	not	a	public	API,	but	may	be	added	through	hooks.	For	example,	hooks	exists	for	NeDB	and	MongoDB:

feathers-nedb-fuzzy-search
feathers-mongodb-fuzzy-search
feathers-solr

Example	usage:

//	Find	all	messages	that	contains	the	text	'hello'
app.service('messages').find({
		query:	{
				$search:	'hello'
		}
});

GET	/messages?$search=hello

Querying

310

https://www.npmjs.com/package/feathers-nedb-fuzzy-search
https://www.npmjs.com/package/feathers-mongodb-fuzzy-search
https://www.npmjs.com/package/feathers-solr


In	Memory

	 	

feathers-memory	is	a	database	service	adapter	for	in-memory	data	storage	that	works	on	all	platforms.

$	npm	install	--save	feathers-memory

Important:	To	use	this	adapter	you	also	want	to	be	familiar	with	the	database	adapter	common	API	and
querying	mechanism.

API

	service([options])	

Returns	a	new	service	instance	initialized	with	the	given	options.

const	service	=	require('feathers-memory');

app.use('/messages',	service());
app.use('/messages',	service({	id,	startId,	store,	events,	paginate	}));

Options:

	id		(optional,	default:		'id'	)	-	The	name	of	the	id	field	property.
	startId		(optional,	default:		0	)	-	An	id	number	to	start	with	that	will	be	incremented	for	every	new	record	(unless
it	is	already	set).
	store		(optional)	-	An	object	with	id	to	item	assignments	to	pre-initialize	the	data	store
	events		(optional)	-	A	list	of	custom	service	events	sent	by	this	service
	paginate		(optional)	-	A	pagination	object	containing	a		default		and		max		page	size

Example
Here	is	an	example	of	a	Feathers	server	with	a		messages		in-memory	service	that	supports	pagination:

$	npm	install	feathers	body-parser	feathers-rest	feathers-socketio	feathers-memory	feathers-errors

In		app.js	:

const	feathers	=	require('feathers');
const	bodyParser	=	require('body-parser');
const	rest	=	require('feathers-rest');
const	socketio	=	require('feathers-socketio');
const	memory	=	require('feathers-memory');
const	errorHandler	=	require('feathers-errors/handler');

//	Create	a	feathers	instance.
const	app	=	feathers()
		//	Enable	REST	services
		.configure(rest())
		//	Enable	REST	services
		.configure(socketio())

Memory

311

https://github.com/feathersjs/feathers-memory/
https://www.npmjs.com/package/feathers-memory
https://github.com/feathersjs/feathers-memory/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-memory/


		//	Turn	on	JSON	parser	for	REST	services
		.use(bodyParser.json())
		//	Turn	on	URL-encoded	parser	for	REST	services
		.use(bodyParser.urlencoded({	extended:	true	}))
		//	Create	an	in-memory	Feathers	service	with	a	default	page	size	of	2	items
		//	and	a	maximum	size	of	4
		.use('/messages',	memory({
				paginate:	{
						default:	2,
						max:	4
				}
		}))
		//	Set	up	default	error	handler
		.use(errorHandler());

//	Create	a	dummy	Message
app.service('messages').create({
		text:	'Message	created	on	server'
}).then(message	=>	console.log('Created	message',	message));

//	Start	the	server.
const	port	=	3030;

app.listen(port,	()	=>	{
		console.log(`Feathers	server	listening	on	port	${port}`)
});

Run	the	example	with		node	app		and	go	to	localhost:3030/messages.

Memory

312

http://localhost:3030/messages


NeDB

	 	

feathers-nedb	is	a	database	service	adapter	for	NeDB,	an	embedded	datastore	with	a	MongoDB	like	API.	NeDB	can
store	data	in-memory	or	on	the	filesystem	which	makes	it	useful	as	a	persistent	storage	without	a	separate	database
server.

$	npm	install	--save	nedb	feathers-nedb

Important:	To	use	this	adapter	you	also	want	to	be	familiar	with	the	database	adapter	common	API	and
querying	mechanism.

API

	service(options)	

Returns	a	new	service	instance	initialized	with	the	given	options.		Model		has	to	be	an	NeDB	database	instance.

const	NeDB	=	require('nedb');
const	service	=	require('feathers-nedb');

//	Create	a	NeDB	instance
const	Model	=	new	NeDB({
		filename:	'./data/messages.db',
		autoload:	true
});

app.use('/messages',	service({	Model	}));
app.use('/messages',	service({	Model,	id,	events,	paginate	}));

Options:

	Model		(required)	-	The	NeDB	database	instance.	See	the	NeDB	API	for	more	information.
	id		(optional,	default:		'_id'	)	-	The	name	of	the	id	field	property.	By	design,	NeDB	will	always	add	an		_id	
property.
	events		(optional)	-	A	list	of	custom	service	events	sent	by	this	service
	paginate		(optional)	-	A	pagination	object	containing	a		default		and		max		page	size

params.nedb

When	making	a	service	method	call,		params		can	contain	an		nedb		property	which	allows	to	pass	additional	NeDB
options,	for	example	to	allow		upsert	:

app.service('messages').update('someid',	{
		text:	'This	message	will	be	either	created	or	updated'
},	{
		nedb:	{	upsert:	true	}
});

Example

NeDb

313

https://github.com/feathersjs/feathers-nedb/
https://www.npmjs.com/package/feathers-nedb
https://github.com/feathersjs/feathers-nedb/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-nedb/
https://github.com/louischatriot/nedb
https://www.mongodb.org/
https://github.com/louischatriot/nedb#api
https://github.com/louischatriot/nedb#updating-documents


Here	is	an	example	of	a	Feathers	server	with	a		messages		NeDB	service	that	supports	pagination	and	persists	to		db-
data/messages	:

$	npm	install	feathers	feathers-errors	feathers-rest	feathers-socketio	feathers-nedb	nedb	body-parser

In		app.js	:

const	NeDB	=	require('nedb');
const	feathers	=	require('feathers');
const	errorHandler	=	require('feathers-errors/handler');
const	rest	=	require('feathers-rest');
const	socketio	=	require('feathers-socketio');
const	bodyParser	=	require('body-parser');
const	service	=	require('feathers-nedb');

const	db	=	new	NeDB({
		filename:	'./db-data/messages',
		autoload:	true
});

//	Create	a	feathers	instance.
const	app	=	feathers()
		//	Enable	REST	services
		.configure(rest())
		//	Enable	Socket.io	services
		.configure(socketio())
		//	Turn	on	JSON	parser	for	REST	services
		.use(bodyParser.json())
		//	Turn	on	URL-encoded	parser	for	REST	services
		.use(bodyParser.urlencoded({extended:	true}))
		//	Connect	to	the	db,	create	and	register	a	Feathers	service.
		.use('/messages',	service({
				Model:	db,
				paginate:	{
						default:	2,
						max:	4
				}
		}))
		//	Set	up	default	error	handler
		.use(errorHandler());

//	Create	a	dummy	Message
app.service('messages').create({
		text:	'Message	created	on	server'
}).then(message	=>	console.log('Created	message',	message));

//	Start	the	server.
const	port	=	3030;

app.listen(port,	()	=>	{
		console.log(`Feathers	server	listening	on	port	${port}`);
});

Run	the	example	with		node	app		and	go	to	localhost:3030/messages.

NeDb

314

http://localhost:3030/messages


LocalStorage	and	AsyncStorage

	 	

feathers-localstorage	is	a	database	service	adapter	that	extends	feathers-memory	and	stores	data	in	localStorage	in
the	browser	or	AsyncStorage	in	React	Native.

$	npm	install	--save	feathers-localstorage

Important:	To	use	this	adapter	you	also	want	to	be	familiar	with	the	database	adapter	common	API	and
querying	mechanism.

API

	service(options)	

Returns	a	new	service	instance	initialized	with	the	given	options.

const	service	=	require('feathers-localstorage');

app.use('/messages',	service({
		storage:	window.localStorage	||	AsyncStorage
}));
app.use('/messages',	service({	storage,	id,	startId,	name,	store,	paginate	}));

Options:

	storage		(required)	-	The	local	storage	engine.	You	can	pass	in	the	browsers		window.localStorage	,	React
Native's		AsyncStorage		or	a	NodeJS	localstorage	module.
	id		(optional,	default:		'id'	)	-	The	name	of	the	id	field	property.
	startId		(optional,	default:		0	)	-	An	id	number	to	start	with	that	will	be	incremented	for	new	record.
	name		(optional,	default:		'feathers'	)	-	The	key	to	store	data	under	in	local	or	async	storage.
	store		(optional)	-	An	object	with	id	to	item	assignments	to	pre-initialize	the	data	store
	paginate		(optional)	-	A	pagination	object	containing	a		default		and		max		page	size

Example
See	the	clients	chapter	for	more	information	about	using	Feathers	in	the	browser	and	React	Native.

Browser

<script	type="text/javascript"	src="socket.io/socket.io.js"></script>
<script	type="text/javascript"	src="//unpkg.com/feathers-client@^2.0.0/dist/feathers.js"></script>
<script	type="text/javascript"	src="//unpkg.com/feathers-localstorage@^1.0.0/dist/localstorage.js"></script>
<script	type="text/javascript">
		var	service	=	feathers.localstorage({
				storage:	window.localStorage
		});
		var	app	=	feathers().use('/messages',	service);

		var	messages	=	app.service('messages');

LocalStorage

315

https://github.com/feathersjs/feathers-localstorage/
https://www.npmjs.com/package/feathers-localstorage
https://github.com/feathersjs/feathers-localstorage/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-localstorage/
https://developer.mozilla.org/en/docs/Web/API/Window/localStorage
https://facebook.github.io/react-native/docs/asyncstorage.html


		messages.on('created',	function(message)	{
				console.log('Someone	created	a	message',	message);
		});

		messages.create({
				text:	'Message	created	in	browser'
		});
</script>

React	Native

$	npm	install	feathers	feathers-localstorage	--save

import	React	from	'react-native';
import	localstorage	from	'feathers-localstorage';
import	feathers	from	'feathers';

const	{	AsyncStorage	}	=	React;

const	app	=	feathers()
		.use('/messages',	localstorage({	storage:	AsyncStorage	}));

const	messages	=	app.service('messages');

messages.on('created',	function(message)	{
		console.log('Someone	created	a	message',	message);
});

messages.create({
		text:	'Message	from	React	Native'
});

LocalStorage

316



MongoDB

	 	

feathers-mongodb	is	a	database	adapter	for	MongoDB.	It	uses	the	official	NodeJS	driver	for	MongoDB.

$	npm	install	--save	mongodb	feathers-mongodb

Important:	To	use	this	adapter	you	also	want	to	be	familiar	with	the	database	adapter	common	API	and
querying	mechanism.

This	adapter	also	requires	a	running	MongoDB	database	server.

API

	service(options)	

Returns	a	new	service	instance	initialized	with	the	given	options.		Model		has	to	be	a	MongoDB	collection.

const	MongoClient	=	require('mongodb').MongoClient;
const	service	=	require('feathers-mongodb');

MongoClient.connect('mongodb://localhost:27017/feathers').then(db	=>	{
		app.use('/messages',	service({
				Model:	db.collection('messages')
		}));
		app.use('/messages',	service({	Model,	id,	events,	paginate	}));
});

Options:

	Model		(required)	-	The	MongoDB	collection	instance
	id		(optional,	default:		'_id'	)	-	The	name	of	the	id	field	property.	By	design,	MongoDB	will	always	add	an		_id	
property.
	events		(optional)	-	A	list	of	custom	service	events	sent	by	this	service
	paginate		(optional)	-	A	pagination	object	containing	a		default		and		max		page	size

params.mongodb

When	making	a	service	method	call,		params		can	contain	an		mongodb		property	(for	exmaple,		{upsert:	true}	)	which
allows	to	modify	the	options	used	to	run	the	MongoDB	query.

Example
Here	is	an	example	of	a	Feathers	server	with	a		messages		endpoint	that	writes	to	the		feathers		database	and	the
	messages		collection.

$	npm	install	feathers	feathers-errors	feathers-rest	feathers-socketio	feathers-mongodb	mongodb	body-parser

In		app.js	:

MongoDB

317

https://github.com/feathersjs/feathers-mongodb/
https://www.npmjs.com/package/feathers-mongodb
https://github.com/feathersjs/feathers-mongodb/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-mongodb
https://www.mongodb.org/
https://www.npmjs.com/package/mongodb
https://docs.mongodb.com/getting-started/shell/


const	feathers	=	require('feathers');
const	errorHandler	=	require('feathers-errors/handler');
const	rest	=	require('feathers-rest');
const	socketio	=	require('feathers-socketio');
const	bodyParser	=	require('body-parser');
const	MongoClient	=	require('mongodb').MongoClient;
const	service	=	require('feathers-mongodb');

//	Create	a	feathers	instance.
const	app	=	feathers()
		//	Enable	Socket.io
		.configure(socketio())
		//	Enable	REST	services
		.configure(rest())
		//	Turn	on	JSON	parser	for	REST	services
		.use(bodyParser.json())
		//	Turn	on	URL-encoded	parser	for	REST	services
		.use(bodyParser.urlencoded({extended:	true}));

//	Connect	to	your	MongoDB	instance(s)
MongoClient.connect('mongodb://localhost:27017/feathers').then(function(db){
		//	Connect	to	the	db,	create	and	register	a	Feathers	service.
		app.use('/messages',	service({
				Model:	db.collection('messages'),
				paginate:	{
						default:	2,
						max:	4
				}
		}));

		//	A	basic	error	handler,	just	like	Express
		app.use(errorHandler());

		//	Create	a	dummy	Message
		app.service('messages').create({
				text:	'Message	created	on	server'
		}).then(message	=>	console.log('Created	message',	message));

		//	Start	the	server.
		const	port	=	3030;

		app.listen(port,	()	=>	{
				console.log(`Feathers	server	listening	on	port	${port}`);
		});
}).catch(error	=>	console.error(error));

Run	the	example	with		node	app		and	go	to	localhost:3030/messages.

Querying
Additionally	to	the	common	querying	mechanism	this	adapter	also	supports	MongoDB's	query	syntax	and	the		update	
method	also	supports	MongoDB	update	operators.

Important:	External	query	values	(especially	through	URLs)	may	have	to	be	converted	to	the	same	type	stored	in
MongoDB	in	a	before	hook	otherwise	no	matches	will	be	found.

For	example,	a		find		call	for		_id		(which	is	a	MongoDB	object	id)	and		age		(which	is	a	number)	a	hook	like	this	can
be	used:

const	ObjectID	=	require('mongodb').ObjectID;

app.service('users').hooks({
		before:	{
				find(hook)	{

MongoDB

318

http://localhost:3030/messages
https://docs.mongodb.com/v3.2/tutorial/query-documents/
https://docs.mongodb.com/v3.2/reference/operator/update/


						const	{	query	=	{}	}	=	hook.params;

						if(query._id)	{
								query._id		=	new	ObjectID(query._id);
						}

						if(query.age	!==	undefined)	{
								query.age	=	parseInt(query.age,	10);
						}

						hook.params.query	=	query;

						return	Promise.resolve(hook);
				}
		}
});

Which	will	allows	queries	like		/users?_id=507f1f77bcf86cd799439011&age=25	.

Collation	Support
This	adapter	includes	support	for	collation	and	case	insensitive	indexes	available	in	MongoDB	v3.4.	Collation
parameters	may	be	passed	using	the	special		collation		parameter	to	the		find()	,		remove()		and		patch()		methods.

Example:	Patch	records	with	case-insensitive	alphabetical	ordering.

The	example	below	would	patch	all	student	records	with	grades	of		'c'		or		'C'		and	above	(a	natural	language
ordering).	Without	collations	this	would	not	be	as	simple,	since	the	comparison		{	$gt:	'c'	}		would	not	include
uppercase	grades	of		'C'		because	the	code	point	of		'C'		is	less	than	that	of		'c'	.

const	patch	=	{	shouldStudyMore:	true	};
const	query	=	{	grade:	{	$gte:	'c'	}	};
const	collation	=	{	locale:	'en',	strength:	1	};
students.patch(null,	patch,	{	query,	collation	}).then(	...	);

Example:	Find	records	with	a	case-insensitive	search.

Similar	to	the	above	example,	this	would	find	students	with	a	grade	of		'c'		or	greater,	in	a	case-insensitive	manner.

const	query	=	{	grade:	{	$gte:	'c'	}	};
const	collation	=	{	locale:	'en',	strength:	1	};
students.find({	query,	collation	}).then(	...	);

For	more	information	on	MongoDB's	collation	feature,	visit	the	collation	reference	page.

MongoDB

319

https://docs.mongodb.com/manual/release-notes/3.4/#collation-and-case-insensitive-indexes
https://docs.mongodb.com/manual/reference/collation/


Mongoose

	 	

feathers-mongoose	is	a	database	adapter	for	Mongoose,	an	object	modeling	tool	for	MongoDB.

$	npm	install	--save	mongoose	feathers-mongoose

Important:	To	use	this	adapter	you	also	want	to	be	familiar	with	the	database	adapter	common	API	and
querying	mechanism.

This	adapter	also	requires	a	running	MongoDB	database	server.

API

	service(options)	

Returns	a	new	service	instance	initialized	with	the	given	options.		Model		has	to	be	a	Mongoose	model.	See	the
Mongoose	Guide	for	more	information	on	defining	your	model.

const	mongoose	=	require('mongoose');
const	service	=	require('feathers-mongoose');

//	A	module	that	exports	your	Mongoose	model
const	Model	=	require('./models/message');

//	Make	Mongoose	use	the	ES6	promise
mongoose.Promise	=	global.Promise;

//	Connect	to	a	local	database	called	`feathers`
mongoose.connect('mongodb://localhost:27017/feathers');

app.use('/messages',	service({	Model	}));
app.use('/messages',	service({	Model,	lean,	id,	events,	paginate	}));

Options:

	Model		(required)	-	The	Mongoose	model	definition
	lean		(optional,	default:		true	)	-	Runs	queries	faster	by	returning	plain	objects	instead	of	Mongoose	models.
	id		(optional,	default:		'_id'	)	-	The	name	of	the	id	field	property.
	events		(optional)	-	A	list	of	custom	service	events	sent	by	this	service
	paginate		(optional)	-	A	pagination	object	containing	a		default		and		max		page	size
	discriminators		(optional)	-	A	list	of	mongoose	models	that	inherit	from		Model	.

Important:	To	avoid	odd	error	handling	behaviour,	always	set		mongoose.Promise	=	global.Promise	.	If	not
available	already,	Feathers	comes	with	a	polyfill	for	native	Promises.

Important:	When	setting		lean		to		false	,	Mongoose	models	will	be	returned	which	can	not	be	modified	unless
they	are	converted	to	a	regular	JavaScript	object	via		toObject	.

Note:	You	can	get	access	to	the	Mongoose	model	via		this.Model		inside	a	hook	and	use	it	as	usual.	See	the
Mongoose	Guide	for	more	information	on	defining	your	model.

params.mongoose

Mongoose

320

https://github.com/feathersjs/feathers-mongoose/
https://www.npmjs.com/package/feathers-mongoose
https://github.com/feathersjs/feathers-mongoose/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-mongoose
http://mongoosejs.com/
https://www.mongodb.org/
https://docs.mongodb.com/getting-started/shell/
http://mongoosejs.com/docs/guide.html
http://mongoosejs.com/docs/guide.html


When	making	a	service	method	call,		params		can	contain	a		mongoose		property	which	allows	you	to	modify	the	options
used	to	run	the	Mongoose	query.	Normally,	this	will	be	set	in	a	before	hook:

app.service('messages').hooks({
		before:	{
				patch(hook)	{
						//	Set	some	additional	Mongoose	options
						//	The	adapter	tries	to	use	sane	defaults
						//	but	they	can	always	be	changed	here
						hook.params.mongoose	=	{
								runValidators:	true,
								setDefaultsOnInsert:	true
						}
				}
		}
});

The		mongoose		property	is	also	useful	for	performing	upserts	on	a		patch		request.	"Upserts"	do	an	update	if	a
matching	record	is	found,	or	insert	a	record	if	there's	no	existing	match.	The	following	example	will	create	a	document
that	matches	the		data	,	or	if	there's	already	a	record	that	matches	the		params.query	,	that	record	will	be	updated.

const	data	=	{	address:	'123',	identifier:	'my-identifier'	}
const	params	=	{
		query:	{	address:	'123'	},
		mongoose:	{	upsert:	true	}
}
app.service('address-meta').patch(null,	data,	params)

Example
Here's	a	complete	example	of	a	Feathers	server	with	a		messages		Mongoose	service.

$	npm	install	feathers	feathers-errors	feathers-rest	body-parser	mongoose	feathers-mongoose

In		message-model.js	:

const	mongoose	=	require('mongoose');

const	Schema	=	mongoose.Schema;
const	MessageSchema	=	new	Schema({
		text:	{
				type:	String,
				required:	true
		}
});
const	Model	=	mongoose.model('Message',	MessageSchema);

module.exports	=	Model;

Then	in		app.js	:

const	feathers	=	require('feathers');
const	errorHandler	=	require('feathers-errors/handler');
const	rest	=	require('feathers-rest');
const	bodyParser	=	require('body-parser');
const	mongoose	=	require('mongoose');
const	service	=	require('feathers-mongoose');

const	Model	=	require('./message-model');

Mongoose

321



//	Tell	mongoose	to	use	native	promises
//	See	http://mongoosejs.com/docs/promises.html
mongoose.Promise	=	global.Promise;

//	Connect	to	your	MongoDB	instance(s)
mongoose.connect('mongodb://localhost:27017/feathers');

//	Create	a	feathers	instance.
const	app	=	feathers()
		//	Enable	REST	services
		.configure(rest())
		//	Turn	on	JSON	parser	for	REST	services
		.use(bodyParser.json())
		//	Turn	on	URL-encoded	parser	for	REST	services
		.use(bodyParser.urlencoded({extended:	true}))
		//	Connect	to	the	db,	create	and	register	a	Feathers	service.
		.use('/messages',	service({
				Model,
				lean:	true,	//	set	to	false	if	you	want	Mongoose	documents	returned
				paginate:	{
						default:	2,
						max:	4
				}
		}))
		.use(errorHandler());

//	Create	a	dummy	Message
app.service('messages').create({
		text:	'Message	created	on	server'
}).then(function(message)	{
		console.log('Created	message',	message);
});

//	Start	the	server.
const	port	=	3030;
app.listen(port,	()	=>	{
				console.log(`Feathers	server	listening	on	port	${port}`);
});

You	can	run	this	example	by	using		node	app		and	go	to	localhost:3030/messages.

Querying,	Validation
Mongoose	by	default	gives	you	the	ability	to	add	validations	at	the	model	level.	Using	an	error	handler	like	the	one
that	comes	with	Feathers	your	validation	errors	will	be	formatted	nicely	right	out	of	the	box!

For	more	information	on	querying	and	validation	refer	to	the	Mongoose	documentation.

$populate

For	Mongoose,	the	special		$populate		query	parameter	can	be	used	to	allow	Mongoose	query	population.

app.service('posts').find({
		query:	{	$populate:	'user'	}
});

Discriminators	(Inheritance)

Mongoose

322

http://localhost:3030/messages
http://mongoosejs.com/docs/validation.html
https://github.com/feathersjs/feathers-errors/blob/master/src/error-handler.js
http://mongoosejs.com/docs/guide.html
http://mongoosejs.com/docs/populate.html


Instead	of	strict	inheritance,	Mongoose	uses	discriminators	as	their	schema	inheritance	model.	To	use	them,	pass	in	a
	discriminatorKey		option	to	your	schema	object	and	use		Model.discriminator('modelName',	schema)		instead	of
	mongoose.model()	

Feathers	comes	with	full	support	for	mongoose	discriminators,	allowing	for	automatic	fetching	of	inherited	types.	A
typical	use	case	might	look	like:

var	mongoose	=	require('mongoose');
var	Schema	=	mongoose.Schema;
var	Post	=	require('./post');
var	feathers	=	require('feathers');
var	app	=	feathers();
var	service	=	require('feathers-mongoose');

//	Discriminator	key,	we'll	use	this	later	to	refer	to	all	text	posts
var	options	=	{
		discriminatorKey:	'_type'
};

var	TextPostSchema	=	new	Schema({
		text:	{	type:	String,	default:	null	}
},	options);

TextPostSchema.index({'updatedAt':	-1,	background:	true});

//	Note	the	use	of	`Post.discriminator`	rather	than	`mongoose.discriminator`.
var	TextPost	=	Post.discriminator('text',	TextPostSchema);

//	Using	the	discriminators	option,	let	feathers	know	about	any	inherited	models	you	may	have
//	for	that	service
app.use('/posts',	service({
		Model:	Post,
		discriminators:	[TextPost]
}))

Without	support	for	discriminators,	when	you	perform	a		.get		on	the	posts	service,	you'd	only	get	back		Post		models,
not		TextPost		models.	Now	in	your	query,	you	can	specify	a	value	for	your	discriminatorKey:

{
		_type:	'text'
}

and	Feathers	will	automatically	swap	in	the	correct	model	and	execute	the	query	it	instead	of	its	parent	model.

Mongoose

323

http://mongoosejs.com/docs/discriminators.html


Sequelize

	 	

feathers-sequelize	is	a	database	adapter	for	Sequelize,	an	ORM	for	Node.js.	It	supports	PostgreSQL,	MySQL,
MariaDB,	SQLite	and	MSSQL	and	features	transaction	support,	relations,	read	replication	and	more.

npm	install	--save	feathers-sequelize

And	one	of	the	following:

npm	install	--save	pg	pg-hstore
npm	install	--save	mysql	//	For	both	mysql	and	mariadb	dialects
npm	install	--save	sqlite3
npm	install	--save	tedious	//	MSSQL

Important:	To	use	this	adapter	you	also	want	to	be	familiar	with	the	database	adapter	common	API	and
querying	mechanism.

For	more	information	about	models	and	general	Sequelize	usage,	follow	up	in	the	Sequelize	documentation.

A	quick	note	about		raw		queries
By	default,	all		feathers-sequelize		operations	will	return		raw		data	(using		raw:	true		when	querying	the	database).
This	results	in	faster	execution	and	allows	feathers-sequelize	to	interoperate	with	feathers-common	hooks	and	other
3rd	party	integrations.	However,	this	will	bypass	some	of	the	"goodness"	you	get	when	using	Sequelize	as	an	ORM:

custom	getters/setters	will	be	bypassed
model-level	validations	are	bypassed
associated	data	loads	a	bit	differently
...and	several	other	issues	that	one	might	not	expect

Don't	worry!	The	solution	is	easy.	Please	read	the	guides	about	working	with	model	instances.

API

	service(options)	

Returns	a	new	service	instance	initialized	with	the	given	options.

const	Model	=	require('./models/mymodel');
const	service	=	require('feathers-sequelize');

app.use('/messages',	service({	Model	}));
app.use('/messages',	service({	Model,	id,	events,	paginate	}));

Options:

	Model		(required)	-	The	Sequelize	model	definition
	id		(optional,	default:		'_id'	)	-	The	name	of	the	id	field	property.
	raw		(optional,	default:		true	)	-	Runs	queries	faster	by	returning	plain	objects	instead	of	Sequelize	models.

Sequelize

324

https://github.com/feathersjs/feathers-sequelize/
https://www.npmjs.com/package/feathers-sequelize
https://github.com/feathersjs/feathers-sequelize/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-sequelize
http://sequelizejs.com
http://docs.sequelizejs.com/en/latest/docs/getting-started/
http://docs.sequelizejs.com/en/latest/


	events		(optional)	-	A	list	of	custom	service	events	sent	by	this	service
	paginate		(optional)	-	A	pagination	object	containing	a		default		and		max		page	size

params.sequelize

When	making	a	service	method	call,		params		can	contain	an		sequelize		property	which	allows	to	pass	additional
Sequelize	options.	This	can	e.g.	be	used	to	retrieve	associations.	Normally	this	wil	be	set	in	a	before	hook:

app.service('messages').hooks({
		before:	{
				find(hook)	{
						//	Get	the	Sequelize	instance.	In	the	generated	application	via:
						const	sequelize	=	hook.app.get('sequelizeClient');

						hook.params.sequelize	=	{
								include:	[	User	]
						}
				}
		}
});

Example
Here	is	an	example	of	a	Feathers	server	with	a		messages		SQLite	Sequelize	Model:

$	npm	install	feathers	feathers-errors	feathers-rest	feathers-socketio	body-parser	sequelize	feathers-sequelize
	sqlite3

In		app.js	:

const	path	=	require('path');
const	feathers	=	require('feathers');
const	errorHandler	=	require('feathers-errors/handler')
const	rest	=	require('feathers-rest');
const	socketio	=	require('feathers-socketio');
const	bodyParser	=	require('body-parser');
const	Sequelize	=	require('sequelize');
const	service	=	require('feathers-sequelize');

const	sequelize	=	new	Sequelize('sequelize',	'',	'',	{
		dialect:	'sqlite',
		storage:	path.join(__dirname,	'db.sqlite'),
		logging:	false
});
const	Message	=	sequelize.define('message',	{
		text:	{
				type:	Sequelize.STRING,
				allowNull:	false
		}
},	{
		freezeTableName:	true
});

//	Create	a	feathers	instance.
const	app	=	feathers()
		//	Enable	REST	services
		.configure(rest())
		//	Enable	Socket.io	services
		.configure(socketio())
		//	Turn	on	JSON	parser	for	REST	services
		.use(bodyParser.json())

Sequelize

325



		//	Turn	on	URL-encoded	parser	for	REST	services
		.use(bodyParser.urlencoded({	extended:	true	}))
		//	Create	an	in-memory	Feathers	service	with	a	default	page	size	of	2	items
		//	and	a	maximum	size	of	4
		.use('/messages',	service({
				Model:	Message,
				paginate:	{
						default:	2,
						max:	4
				}
		}))
		.use(errorHandler());

Message.sync({	force:	true	}).then(()	=>	{
		//	Create	a	dummy	Message
		app.service('messages').create({
				text:	'Message	created	on	server'
		}).then(message	=>	console.log('Created	message',	message.toJSON()));
});

//	Start	the	server
const	port	=	3030;

app.listen(port,	()	=>	{
		console.log(`Feathers	server	listening	on	port	${port}`);
});

Run	the	example	with		node	app		and	go	to	localhost:3030/messages.

Querying
Additionally	to	the	common	querying	mechanism	this	adapter	also	supports	all	Sequelize	query	operators.

Associations	and	relations
Follow	up	in	the	Sequelize	documentation	for	associations,	this	issue	and	this	Stackoverflow	answer.

Working	with	Sequelize	Model	instances
It	is	highly	recommended	to	use		raw		queries,	which	is	the	default.	However,	there	are	times	when	you	will	want	to
take	advantage	of	Sequelize	Instance	methods.	There	are	two	ways	to	tell	feathers	to	return	Sequelize	instances:

1.	 Set		{	raw:	false	}		in	a	"before"	hook:

	function	rawFalse(hook)	{
					if	(!hook.params.sequelize)	hook.params.sequelize	=	{};
					Object.assign(hook.params.sequelize,	{	raw:	false	});
					return	hook;
	}
	hooks.before.find	=	[rawFalse];

2.	 Use	the	new		hydrate		hook	in	the	"after"	phase:

	const	hydrate	=	require('feathers-sequelize/hooks/hydrate');
	hooks.after.find	=	[hydrate()];

	//	Or,	if	you	need	to	include	associated	models,	you	can	do	the	following:
		function	includeAssociated	(hook)	{
						return	hydrate({

Sequelize

326

http://localhost:3030/messages
http://docs.sequelizejs.com/manual/tutorial/querying.html
http://docs.sequelizejs.com/manual/tutorial/associations.html
https://github.com/feathersjs/feathers-sequelize/issues/20
https://stackoverflow.com/questions/42841810/feathers-js-sequelize-service-with-relations-between-two-models/42846215#42846215
http://docs.sequelizejs.com/en/latest/api/instance/


									include:	[{	model:	hook.app.services.fooservice.Model	}]
						}).call(this,	hook);
		}
		hooks.after.find	=	[includeAssociated];

For	a	more	complete	example	see	this	gist.

Important:	When	working	with	Sequelize	Instances,	most	of	the	feathers-hooks-common	will	no	longer	work.	If
you	need	to	use	a	common	hook	or	other	3rd	party	hooks,	you	should	use	the	"dehydrate"	hook	to	convert	data
back	to	a	plain	object:

const	hydrate	=	require('feathers-sequelize/hooks/hydrate');
const	dehydrate	=	require('feathers-sequelize/hooks/dehydrate');
const	{	populate	}	=	require('feathers-hooks-common');

hooks.after.find	=	[hydrate(),	doSomethingCustom(),	dehydrate(),	populate()];

Validation
Sequelize	by	default	gives	you	the	ability	to	add	validations	at	the	model	level.	Using	an	error	handler	like	the	one	that
comes	with	Feathers	your	validation	errors	will	be	formatted	nicely	right	out	of	the	box!

Migrations
Migrations	with	feathers	and	sequelize	are	quite	simple.	This	guide	will	walk	you	through	creating	the	recommended
file	structure,	but	you	are	free	to	rearrange	things	as	you	see	fit.	The	following	assumes	you	have	a		migrations		folder
in	the	root	of	your	app.

Initial	Setup:	one-time	tasks

Install	the	sequelize	CLI:

npm	install	sequelize-cli	--save	-g

Create	a		.sequelizerc		file	in	your	project	root	with	the	following	content:

const	path	=	require('path');

module.exports	=	{
		'config':	path.resolve('migrations/config/config.js'),
		'migrations-path':	path.resolve('migrations'),
		'seeders-path':	path.resolve('migrations/seeders'),
		'models-path':	path.resolve('migrations/models')
};

Create	the	migrations	config	in		migrations/config/config.js	:

const	app	=	require('../../src/app');
const	env	=	process.env.NODE_ENV	||	'development';
const	dialect	=	'mysql'|'sqlite'|'postgres'|'mssql';

module.exports	=	{
		[env]:	{
				dialect,
				url:	app.get(dialect),

Sequelize

327

https://gist.github.com/sicruse/bfaa17008990bab2fd1d76a670c3923f
http://docs.sequelizejs.com/en/latest/docs/models-definition/#validations
https://github.com/feathersjs/feathers-errors/blob/master/src/error-handler.js
https://github.com/sequelize/cli


				migrationStorageTableName:	'_migrations'
		}
};

Define	your	models	config	in		migrations/models/index.js	:

const	Sequelize	=	require('sequelize');
const	app	=	require('../../src/app');
const	sequelize	=	app.get('sequelizeClient');
const	models	=	sequelize.models;

//	The	export	object	must	be	a	dictionary	of	model	names	->	models
//	It	must	also	include	sequelize	(instance)	and	Sequelize	(constructor)	properties
module.exports	=	Object.assign({
		Sequelize,
		sequelize
},	models);

Migrations	workflow

The	migration	commands	will	load	your	application	and	it	is	therefore	required	that	you	define	the	same	environment
variables	as	when	running	you	application.	For	example,	many	applications	will	define	the	database	connection	string
in	the	startup	command:

DATABASE_URL=postgres://user:pass@host:port/dbname	npm	start

All	of	the	following	commands	assume	that	you	have	defined	the	same	environment	variables	used	by	your
application.

ProTip:	To	save	typing,	you	can	export	environment	variables	for	your	current	bash/terminal	session:

export	DATABASE_URL=postgres://user:pass@host:port/db

Create	a	new	migration

To	create	a	new	migration	file,	run	the	following	command	and	provide	a	meaningful	name:

sequelize	migration:create	--name="meaningful-name"

This	will	create	a	new	file	in	the	migrations	folder.	All	migration	file	names	will	be	prefixed	with	a	sortable	data/time
string:		20160421135254-meaninful-name.js	.	This	prefix	is	crucial	for	making	sure	your	migrations	are	executed	in	the
proper	order.

NOTE:	The	order	of	your	migrations	is	determined	by	the	alphabetical	order	of	the	migration	scripts	in	the	file
system.	The	file	names	generated	by	the	CLI	tools	will	always	ensure	that	the	most	recent	migration	comes
last.

Add	the	up/down	scripts:

Open	the	newly	created	migration	file	and	write	the	code	to	both	apply	and	undo	the	migration.	Please	refer	to	the
sequelize	migration	functions	for	available	operations.	Do	not	be	lazy	-	write	the	down	script	too	and	test!	Here	is
an	example	of	converting	a		NOT	NULL		column	accept	null	values:

Sequelize

328

http://docs.sequelizejs.com/en/latest/docs/migrations/#functions


'use	strict';

module.exports	=	{
		up:	function	(queryInterface,	Sequelize)	{
				return	queryInterface.changeColumn('tableName',	'columnName',	{
						type:	Sequelize.STRING,
						allowNull:	true
				});
		},

		down:	function	(queryInterface,	Sequelize)	{
				return	queryInterface.changeColumn('tableName',	'columnName',	{
						type:	Sequelize.STRING,
						allowNull:	false
				});
		}
};

ProTip:	As	of	this	writing,	if	you	use	the		changeColumn		method	you	must	always	specify	the		type	,	even	if	the
type	is	not	changing.

ProTip:	Down	scripts	are	typically	easy	to	create	and	should	be	nearly	identical	to	the	up	script	except	with
inverted	logic	and	inverse	method	calls.

Keeping	your	app	code	in	sync	with	migrations

The	application	code	should	always	be	up	to	date	with	the	migrations.	This	allows	the	app	to	be	freshly	installed	with
everything	up-to-date	without	running	the	migration	scripts.	Your	migrations	should	also	never	break	a	freshly	installed
app.	This	often	times	requires	that	you	perform	any	necessary	checks	before	executing	a	task.	For	example,	if	you
update	a	model	to	include	a	new	field,	your	migration	should	first	check	to	make	sure	that	new	field	does	not	exist:

'use	strict';

module.exports	=	{
		up:	function	(queryInterface,	Sequelize)	{
				return	queryInterface.describeTable('tableName').then(attributes	=>	{
						if	(	!attributes.columnName	)	{
								return	queryInterface.addColumn('tableName',	'columnName',	{
										type:	Sequelize.INTEGER,
										defaultValue:	0
								});
						}
				})
		},

		down:	function	(queryInterface,	Sequelize)	{
				return	queryInterface.describeTable('tableName').then(attributes	=>	{
						if	(	attributes.columnName	)	{
								return	queryInterface.removeColumn('tableName',	'columnName');
						}
				});
		}
};

Apply	a	migration

The	CLI	tools	will	always	run	your	migrations	in	the	correct	order	and	will	keep	track	of	which	migrations	have	been
applied	and	which	have	not.	This	data	is	stored	in	the	database	under	the		_migrations		table.	To	ensure	you	are	up	to
date,	simply	run	the	following:

Sequelize

329



sequelize	db:migrate

ProTip:	You	can	add	the	migrations	script	to	your	application	startup	command	to	ensure	that	all	migrations
have	run	every	time	your	app	is	started.	Try	updating	your	package.json		scripts		attribute	and	run		npm	start	:

scripts:	{
				start:	"sequelize	db:migrate	&&	node	src/"
}

Undo	the	previous	migration

To	undo	the	last	migration,	run	the	following	command:

sequelize	db:migrate:undo

Continue	running	the	command	to	undo	each	migration	one	at	a	time	-	the	migrations	will	be	undone	in	the	proper
order.

Note:	-	You	shouldn't	really	have	to	undo	a	migration	unless	you	are	the	one	developing	a	new	migration	and
you	want	to	test	that	it	works.	Applications	rarely	have	to	revert	to	a	previous	state,	but	when	they	do	you	will	be
glad	you	took	the	time	to	write	and	test	your		down		scripts!

Reverting	your	app	to	a	previous	state

In	the	unfortunate	case	where	you	must	revert	your	app	to	a	previous	state,	it	is	important	to	take	your	time	and	plan
your	method	of	attack.	Every	application	is	different	and	there	is	no	one-size-fits-all	strategy	for	rewinding	an
application.	However,	most	applications	should	be	able	to	follow	these	steps	(order	is	important):

1.	 Stop	your	application	(kill	the	process)
2.	 Find	the	last	stable	version	of	your	app
3.	 Count	the	number	of	migrations	which	have	been	added	since	that	version
4.	 Undo	your	migrations	one	at	a	time	until	the	db	is	in	the	correct	state
5.	 Revert	your	code	back	to	the	previous	state
6.	 Start	your	app

Sequelize

330



KnexJS

	 	

feathers-knex	is	a	database	adapter	for	KnexJS,	an	SQL	query	builder	for	Postgres,	MSSQL,	MySQL,	MariaDB,
SQLite3,	and	Oracle.

npm	install	--save	mysql	knex	feathers-knex

Important:	To	use	this	adapter	you	also	want	to	be	familiar	with	the	database	adapter	common	API	and
querying	mechanism.

Note:	You	also	need	to	install	the	database	driver	for	the	DB	you	want	to	use.

API

	service(options)	

Returns	a	new	service	instance	initialized	with	the	given	options.

const	knex	=	require('knex');
const	service	=	require('feathers-knex');

const	db	=	knex({
		client:	'sqlite3',
		connection:	{
				filename:	'./db.sqlite'
		}
});

//	Create	the	schema
db.schema.createTable('messages',	table	=>	{
		table.increments('id');
		table.string('text');
});

app.use('/messages',	service({
		Model:	db,
		name:	'messages'
}));
app.use('/messages',	service({	Model,	name,	id,	events,	paginate	}));

Options:

	Model		(required)	-	The	KnexJS	database	instance
	name		(required)	-	The	name	of	the	table
	id		(optional,	default:		'id'	)	-	The	name	of	the	id	field	property.
	events		(optional)	-	A	list	of	custom	service	events	sent	by	this	service
	paginate		(optional)	-	A	pagination	object	containing	a		default		and		max		page	size

	adapter.createQuery(query)	

Returns	a	KnexJS	query	with	the	common	filter	criteria	(without	pagination)	applied.

Knex

331

https://github.com/feathersjs/feathers-knex/
https://www.npmjs.com/package/feathers-knex
https://github.com/feathersjs/feathers-knex/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-knex
http://knexjs.org/
http://knexjs.org/#Installation-node


params.knex

When	making	a	service	method	call,		params		can	contain	an		knex		property	which	allows	to	modify	the	options	used
to	run	the	KnexJS	query.	See	customizing	the	query	for	an	example.

Example
Here's	a	complete	example	of	a	Feathers	server	with	a		messages		SQLite	service.	We	are	using	the	Knex	schema
builder	and	SQLite	as	the	database.

$	npm	install	feathers	feathers-errors	feathers-rest	feathers-socketio	body-parser	feathers-knex	knex	sqlite3

In		app.js	:

const	feathers	=	require('feathers');
const	errorHandler	=	require('feathers-errors/handler');
const	rest	=	require('feathers-rest');
const	socketio	=	require('feathers-socketio');
const	bodyParser	=	require('body-parser');
const	service	=	require('feathers-knex');
const	knex	=	require('knex');

const	db	=	knex({
		client:	'sqlite3',
		connection:	{
				filename:	'./db.sqlite'
		}
});

//	Create	a	feathers	instance.
const	app	=	feathers()
		//	Enable	REST	services
		.configure(rest())
		//	Enable	Socket.io	services
		.configure(socketio())
		//	Turn	on	JSON	parser	for	REST	services
		.use(bodyParser.json())
		//	Turn	on	URL-encoded	parser	for	REST	services
		.use(bodyParser.urlencoded({	extended:	true	}))
		//	Create	Knex	Feathers	service	with	a	default	page	size	of	2	items
		//	and	a	maximum	size	of	4
		.use('/messages',	service({
				Model:	db,
				name:	'messages',
				paginate:	{
						default:	2,
						max:	4
				}
		}))
		.use(errorHandler());

//	Clean	up	our	data.	This	is	optional	and	is	here
//	because	of	our	integration	tests
db.schema.dropTableIfExists('messages').then(()	=>	{
		console.log('Dropped	messages	table');

		//	Initialize	your	table
		return	db.schema.createTable('messages',	table	=>	{
				console.log('Creating	messages	table');
				table.increments('id');
				table.string('text');
		});
}).then(()	=>	{

Knex

332

http://knexjs.org/#Schema
https://sqlite.org/


		//	Create	a	dummy	Message
		app.service('messages').create({
				text:	'Message	created	on	server'
		}).then(message	=>	console.log('Created	message',	message));
});

//	Start	the	server.
const	port	=	3030;

app.listen(port,	()	=>	{
		console.log(`Feathers	server	listening	on	port	${port}`);
});

Run	the	example	with		node	app		and	go	to	localhost:3030/messages.

Querying
In	addition	to	the	common	querying	mechanism,	this	adapter	also	supports:

$like

Find	all	records	where	the	value	matches	the	given	string	pattern.	The	following	query	retrieves	all	messages	that
start	with		Hello	:

app.service('messages').find({
		query:	{
				text:	{
						$like:	'Hello%'
				}
		}
});

Through	the	REST	API:

/messages?text[$like]=Hello%

Transaction	Support
The	Knex	adapter	comes	with	three	hooks	that	allows	to	run	service	method	calls	in	a	transaction.	They	can	be	used
as	application	wide	(	app.hooks.js	)	hooks	or	per	service	like	this:

//	A	common	hooks	file
const	{	hooks	}	=	require('feathers-knex');

const	{	transaction	}	=	hooks;

module.exports	=	{
		before:	{
				all:	[	transaction.start()	],
				find:	[],
				get:	[],
				create:	[],
				update:	[],
				patch:	[],
				remove:	[]
		},

		after:	{

Knex

333

http://localhost:3030/messages


				all:	[	transaction.end()	],
				find:	[],
				get:	[],
				create:	[],
				update:	[],
				patch:	[],
				remove:	[]
		},

		error:	{
				all:	[	transaction.rollback()	],
				find:	[],
				get:	[],
				create:	[],
				update:	[],
				patch:	[],
				remove:	[]
		}
};

To	use	the	transactions	feature,	you	must	ensure	that	the	three	hooks	(start,	commit	and	rollback)	are	being	used.

At	the	start	of	any	request,	a	new	transaction	will	be	started.	All	the	changes	made	during	the	request	to	the	services
that	are	using	the		feathers-knex		will	use	the	transaction.	At	the	end	of	the	request,	if	sucessful,	the	changes	will	be
commited.	If	an	error	occurs,	the	changes	will	be	forfeit,	all	the		creates	,		patches	,		updates		and		deletes		are	not
going	to	be	commited.

The	object	that	contains		transaction		is	stored	in	the		params.transaction		of	each	request.

Important:	If	you	call	another	Knex	service	within	a	hook	and	want	to	share	the	transaction	you	will	have	to
pass		hook.params.transaction		in	the	parameters	of	the	service	call.

Customizing	the	query
In	a		find		call,		params.knex		can	be	passed	a	KnexJS	query	(without	pagination)	to	customize	the	find	results.

Combined	with		.createQuery({	query:	{...}	})	,	which	returns	a	new	KnexJS	query	with	the	common	filter	criteria
applied,	this	can	be	used	to	create	more	complex	queries.	The	best	way	to	customize	the	query	is	in	a	before	hook	for
	find	.

app.service('mesages').hooks({
		before:	{
				find(hook)	{
						const	query	=	this.createQuery({	query:	hook.params.query	});

						//	do	something	with	query	here
						query.orderBy('name',	'desc');

						hook.params.knex	=	query;
				}
		}
});

Knex

334



RethinkDB

	 	

feathers-rethinkdb	is	a	database	adapter	for	RethinkDB,	a	real-time	database.

$	npm	install	--save	rethinkdbdash	feathers-rethinkdb

Important:	To	use	this	adapter	you	also	want	to	be	familiar	with	the	database	adapter	common	API	and
querying	mechanism.

This	adapter	requires	a	running	RethinkDB	server.

API

	service(options)	

Returns	a	new	service	instance	initialized	with	the	given	options.	For	more	information	on	initializing	the	driver	see	the
RehinktDBdash	documentation.

const	r	=	require('rethinkdbdash')({
		db:	'feathers'
});
const	service	=	require('feathers-rethinkdb');

app.use('/messages',	service({
		Model:	r,
		db:	'someotherdb',	//must	be	on	the	same	connection	as	rethinkdbdash
		name:	'messages',
		//	Enable	pagination
		paginate:	{
				default:	2,
				max:	4
		}
}));

Note:	By	default,		watch		is	set	to		true		which	means	this	adapter	monitors	the	database	for	changes	and
automatically	sends	real-time	events.	This	means	that,	unlike	other	databases	and	services,	you	will	also	get
events	if	the	database	is	changed	directly.

Options:

	Model		(required)	-	The		rethinkdbdash		instance,	already	initialized	with	a	configuration	object.	see	options	here
	name		(required)	-	The	name	of	the	table
	watch		(options,	default:		true	)	-	Listen	to	table	changefeeds	and	send	according	real-time	events	on	the
adapter.
	db		(optional,	default:		none	)	-	Specify	and	alternate	rethink	database	for	the	service	to	use.	Must	be	on	the
same	server/connection	used	by	rethinkdbdash.	It	will	be	auto	created	if	you	call	init()	on	the	service	and	it	does
not	yet	exist.
	id		(optional,	default:		'id'	)	-	The	name	of	the	id	field	property.	Needs	to	be	set	as	the	primary	key	when
creating	the	table.
	events		(optional)	-	A	list	of	custom	service	events	sent	by	this	service
	paginate		(optional)	-	A	pagination	object	containing	a		default		and		max		page	size

RethinkDB

335

https://github.com/feathersjs/feathers-rethinkdb/
https://www.npmjs.com/package/feathers-rethinkdb
https://github.com/feathersjs/feathers-rethinkdb/blob/master/CHANGELOG.md
https://github.com/feathersjs/feathers-rethinkdb
https://rethinkdb.com
https://www.rethinkdb.com/
https://github.com/neumino/rethinkdbdash
https://github.com/neumino/rethinkdbdash#importing-the-driver


	adapter.init([options])	

Create	the	database	and	table	if	it	does	not	exists.		options		can	be	the	RethinkDB	tableCreate	options.

//	Initialize	the	`messages`	table	with	`messageId`	as	the	primary	key
app.service('messages').init({
		primaryKey:	'messageId'
}).then(()	=>	{
		//	Use	service	here
});

	adapter.createQuery(query)	

Returns	a	RethinkDB	query	with	the	common	filter	criteria	(without	pagination)	applied.

params.rethinkdb

When	making	a	service	method	call,		params		can	contain	an		rethinkdb		property	which	allows	to	pass	additional
RethinkDB	options.	See	customizing	the	query	for	an	example.

Example
To	run	the	complete	RethinkDB	example	we	need	to	install

$	npm	install	feathers	feathers-errors	feathers-rest	feathers-socketio	feathers-rethinkdb	rethinkdbdash	body-pa
rser

We	also	need	access	to	a	RethinkDB	server.	You	can	install	a	local	server	on	your	local	development	machine	by
downloading	one	of	the	packages	from	the	RethinkDB	website.	It	might	also	be	helpful	to	review	their	docs	on	starting
a	RethinkDB	server.

Then	add	the	following	into		app.js	:

const	rethink	=	require('rethinkdbdash');
const	feathers	=	require('feathers');
const	errorHandler	=	require('feathers-errors/handler');
const	rest	=	require('feathers-rest');
const	socketio	=	require('feathers-socketio');
const	bodyParser	=	require('body-parser');
const	service	=	require('feathers-rethinkdb');

//	Connect	to	a	local	RethinkDB	server.
const	r	=	rethink({
		db:	'feathers'
});

//	Create	a	feathers	instance.
var	app	=	feathers()
		//	Enable	the	REST	provider	for	services.
		.configure(rest())
		//	Enable	the	socketio	provider	for	services.
		.configure(socketio())
		//	Turn	on	JSON	parser	for	REST	services
		.use(bodyParser.json())
		//	Turn	on	URL-encoded	parser	for	REST	services
		.use(bodyParser.urlencoded({extended:	true}))
		//	Register	the	service
		.use('messages',	service({
				Model:	r,

RethinkDB

336

https://rethinkdb.com/api/javascript/table_create/
https://rethinkdb.com/docs/install/
http://rethinkdb.com/docs/start-a-server/


				name:	'messages',
				paginate:	{
						default:	10,
						max:	50
				}
		}))
		.use(errorHandler());

//	Initialize	database	and	messages	table	if	it	does	not	exists	yet
app.service('messages').init().then(()	=>	{
		//	Create	a	message	on	the	server
		app.service('messages').create({
				text:	'Message	created	on	server'
		}).then(message	=>	console.log('Created	message',	message));

		const	port	=	3030;
		app.listen(port,	function()	{
				console.log(`Feathers	server	listening	on	port	${port}`);
		});
});

Run	the	example	with		node	app		and	go	to	localhost:3030/messages.

Querying
In	addition	to	the	common	querying	mechanism,	this	adapter	also	supports:

	$search	

Return	all	matches	for	a	property	using	the	RethinkDB	match	syntax.

//	Find	all	messages	starting	with	Hello
app.service('messages').find({
		query:	{
				text:	{
						$search:	'^Hello'
				}
		}
});

//	Find	all	messages	ending	with	!
app.service('messages').find({
		query:	{
				text:	{
						$search:	'!$'
				}
		}
});

GET	/messages?text[$search]=^Hello
GET	/messages?text[$search]=!$

	$contains	

Matches	if	the	property	is	an	array	that	contains	the	given	entry.

//	Find	all	messages	tagged	with	`nodejs`
app.service('messages').find({
		query:	{
				tags:	{

RethinkDB

337

http://localhost:3030/messages
https://www.rethinkdb.com/api/javascript/match/


						$contains:	'nodejs'
				}
		}
});

GET	/messages?tags[$contains]=nodejs

Customizing	the	query
In	a		find		call,		params.rethinkdb		can	be	passed	a	RethinkDB	query	(without	pagination)	to	customize	the	find
results.

Combined	with		.createQuery(query)	,	which	returns	a	new	RethinkDB	query	with	the	common	filter	criteria	applied,
this	can	be	used	to	create	more	complex	queries.	The	best	way	to	customize	the	query	is	in	a	before	hook	for		find	.
The	following	example	adds	a		getNearest		condition	for	RethinkDB	geospatial	queries.

app.service('mesages').hooks({
		before:	{
				find(hook)	{
						const	query	=	this.createQuery(hook.params.query);
						const	r	=	this.options.r;

						const	point	=	r.point(-122.422876,	37.777128);		//	San	Francisco

						//	Update	the	query	with	an	additional	`getNearest`	condition
						hook.params.rethinkdb	=	query.getNearest(point,	{	index:	'location'	});
				}
		}
});

Changefeeds
	.createQuery(query)		can	also	be	used	to	listen	to	changefeeds	and	then	send	custom	events.

Since	the	service	already	sends	real-time	events	for	all	changes	the	recommended	way	to	listen	to	changes	is	with
feathers-reactive	however.

RethinkDB

338

https://www.rethinkdb.com/docs/geo-support/javascript/
https://github.com/feathersjs/feathers-reactive


Elasticsearch
feathers-elasticsearch	is	a	database	adapter	for	Elasticsearch.	This	adapter	is	not	using	any	ORM,	it	is	dealing	with
the	database	directly	through	the	elasticsearch.js	Client.

$	npm	install	--save	elasticsearch	feathers-elasticsearch

Getting	Started
The	following	bare-bones	example	will	create	a		messages		endpoint	and	connect	to	a	local		messages		type	in	the
	test		index	in	your	Elasticsearch	database:

const	elasticsearch	=	require('elasticsearch');
const	feathers	=	require('feathers');
const	service	=	require('feathers-elasticsearch');

app.use('/messages',	service({
		Model:	new	elasticsearch.Client({
				host:	'localhost:9200',
				apiVersion:	'5.0'
		}),
		elasticsearch:	{
				index:	'test',
				type:	'messages'
		}
}));

Options
The	following	options	can	be	passed	when	creating	a	new	Elasticsearch	service:

	Model		(required)	-	The	Elasticsearch	client	instance.
	elasticsearch		(required)	-	Configuration	object	for	elasticsearch	requests.	The	required	properties	are		index	
and		type	.	Apart	from	that	you	can	specify	anything	that	can	be	passed	to	all	requests	going	to	Elasticsearch.
Another	recognised	property	is		refresh		which	is	set	to		false		by	default.	Anything	else	use	at	your	own	risk.
	id		(default:	'_id')	[optional]	-	The	id	property	of	your	documents	in	this	service.
	meta		(default:	'_meta')	[optional]	-	The	meta	property	of	your	documents	in	this	service.	The	meta	field	is	an
object	containing	elasticsearch	specific	information,	e.g.	_score,	_type,	_index,	and	so	forth.
	paginate		[optional]	-	A	pagination	object	containing	a		default		and		max		page	size	(see	the	Pagination
chapter).

Complete	Example
Here's	an	example	of	a	Feathers	server	that	uses		feathers-elasticsearch	.

const	feathers	=	require('feathers');
const	rest	=	require('feathers-rest');
const	hooks	=	require('feathers-hooks');
const	bodyParser	=	require('body-parser');
const	errorHandler	=	require('feathers-errors/handler');
const	service	=	require('feathers-elasticsearch');
const	elasticsearch	=	require('elasticsearch');

Elasticsearch

339

https://github.com/feathersjs/feathers-elasticsearch/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/quick-start.html
https://www.elastic.co/guide/en/elasticsearch/guide/2.x/near-real-time.html#refresh-api


const	messageService	=	service({
		Model:	new	elasticsearch.Client({
				host:	'localhost:9200',
				apiVersion:	'5.0'
		}),
		paginate:	{
				default:	10,
				max:	50
		},
		elasticsearch:	{
				index:	'test',
				type:	'messages'
		}
});

//	Initialize	the	application
const	app	=	feathers()
		.configure(rest())
		.configure(hooks())
		//	Needed	for	parsing	bodies	(login)
		.use(bodyParser.json())
		.use(bodyParser.urlencoded({	extended:	true	}))
		//	Initialize	your	feathers	plugin
		.use('/messages',	messageService)
		.use(errorHandler());

app.listen(3030);

console.log('Feathers	app	started	on	127.0.0.1:3030');

You	can	run	this	example	by	using		npm	start		and	going	to	localhost:3030/messages.	You	should	see	an	empty
array.	That's	because	you	don't	have	any	messages	yet	but	you	now	have	full	CRUD	for	your	new	message	service!

Supported	Elasticsearch	specific	queries
On	top	of	the	standard,	cross-adapter	queries,	feathers-elasticsearch	also	supports	Elasticsearch	specific	queries.

$all

The	simplest	query		match_all	.	Find	all	documents.

query:	{
		$all:	true
}

$prefix

Term	level	query		prefix	.	Find	all	documents	which	have	given	field	containing	terms	with	a	specified	prefix	(not
analyzed).

query:	{
		user:	{
				$prefix:	'bo'
		}
}

$match

Elasticsearch

340

http://localhost:3030/messages
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-all-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-prefix-query.html


Full	text	query		match	.	Find	all	documents	which	have	given	given	fields	matching	the	specified	value	(analysed).

query:	{
		bio:	{
				$match:	'javascript'
		}
}

$phrase

Full	text	query		match_phrase	.	Find	all	documents	which	have	given	given	fields	matching	the	specified	phrase
(analysed).

query:	{
		bio:	{
				$phrase:	'I	like	JavaScript'
		}
}

$phrase_prefix

Full	text	query		match_phrase_prefix	.	Find	all	documents	which	have	given	given	fields	matching	the	specified	phrase
prefix	(analysed).

query:	{
		bio:	{
				$phrase_prefix:	'I	like	JavaS'
		}
}

$child

Joining	query		has_child	.	Find	all	documents	which	have	children	matching	the	query.	The		$child		query	is
essentially	a	full-blown	query	of	its	own.	The		$child		query	requires		$type		property.

query:	{
		$child:	{
				$type:	'blog_tag',
				tag:	'something'
		}
}

$parent

Joining	query		has_parent	.	Find	all	documents	which	have	parent	matching	the	query.	The		$parent		query	is
essentially	a	full-blown	query	of	its	own.	The		$parent		query	requires		$type		property.

query:	{
		$parent:	{
				$type:	'blog',
				title:	{
						$match:	'javascript'
				}
		}
}

Elasticsearch

341

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query-phrase.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query-phrase-prefix.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-has-child-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-has-parent-query.html


$and

This	operator	does	not	translate	directly	to	any	Elasticsearch	query,	but	it	provides	support	for	Elasticsearch	array
datatype.	Find	all	documents	which	match	all	of	the	given	criteria.	As	any	field	in	Elasticsearch	can	contain	an	array,
therefore	sometimes	it	is	important	to	match	more	than	one	value	per	field.

query:	{
		$and:	[
				{	notes:	{	$match:	'javascript'	}	},
				{	notes:	{	$match:	'project'	}	}
		]
}

There	is	also	a	shorthand	version	of		$and		for	equality.	For	instance:

query:	{
		$and:	[
				{	tags:	'javascript'	},
				{	tags:	'react'	}
		]
}

Can	be	also	expressed	as:

query:	{
		tags:	['javascript',	'react']
}

$sqs

simple_query_string.	A	query	that	uses	the	SimpleQueryParser	to	parse	its	context.	Optional		$operator		which	is	set
to		or		by	default	but	can	be	set	to		and		if	required.

query:	{
		$sqs:	{
				$fields:	[
						'title^5',
						'description'
				],
				$query:	'+like	+javascript',
				$operator:	'and'
		}
}

This	can	also	be	expressed	in	an	URL	as	the	following:

http://localhost:3030/users?$sqs[$fields][]=title^5&$sqs[$fields][]=description&$sqs[$query]=+like	+javascript&
$sqs[$operator]=and

Parent-child	relationship
Elasticsearch	supports	parent-child	relationship,	however	it	is	not	exactly	the	same	as	in	relational	databases.
feathers-elasticsearch	supports	all	CRUD	operations	for	Elasticsearch	types	with	parent	mapping,	and	does	that	with
the	Elasticsearch	constrains.	Therefore:

each	operation	concering	a	single	document	(create,	get,	patch,	update,	remove)	is	required	to	provide	parent	id

Elasticsearch

342

https://www.elastic.co/guide/en/elasticsearch/reference/current/array.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-simple-query-string-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-parent-field.html


creating	documents	in	bulk	(providing	a	list	of	documents)	is	the	same	as	many	single	document	operations,	so
parent	id	is	required	as	well
to	avoid	any	doubts,	each	query	based	operation	(find,	bulk	patch,	bulk	remove)	cannot	have	the	parent	id

How	to	specify	parent	id

Parent	id	should	be	provided	as	part	of	the	data	for	the	create	operations	(single	and	bulk):

parentService.create({
		_id:	123,
		title:	'JavaScript:	The	Good	Parts'
});

childService.create({
		_id:	1000
		tag:	'javascript',
		_parent:	123
})

Please	note,	that	name	of	the	parent	property	(	_parent		by	default)	is	configurable	through	the	service	options,	so
that	you	can	set	it	to	whatever	suits	you.

For	all	other	operations	(get,	patch,	update,	remove),	the	parent	id	should	be	provided	as	part	of	the	query:

childService.remove(
		1000,
		{	query:	{	_parent:	123	}	}
);

Supported	Elasticsearch	versions
feathers-elasticsearch	is	currently	tested	on	Elasticsearch	2.4,	5.0,	5.1,	5.2,	5.3,	5.4	and	5.5	Please	note,	event
though	the	lowest	version	supported	is	2.4,	that	does	not	mean	it	wouldn't	work	fine	on	anything	lower	than	2.4.

Quirks

Updating	and	deleting	by	query

Elasticsearch	is	special	in	many	ways.	For	example,	the	"update	by	query"	API	is	still	considered	experimental	and	so
is	the	"delete	by	query"	API	introduced	in	Elasticsearch	5.0.

Just	to	clarify	-	update	in	Elasticsearch	is	an	equivalent	to		patch		in	feathers.	I	will	use		patch		from	now	on,	to	set
focus	on	the	feathers	side	of	the	fence.

Considering	the	above,	our	implementation	of	path	/	remove	by	query	uses	combo	of	find	and	bulk	patch	/	remove,
which	in	turn	means	for	you:

Standard	pagination	is	taken	into	account	for	patching	/	removing	by	query,	so	you	have	no	guarantee	that	all
existing	documents	matching	your	query	will	be	patched	/	removed.
The	operation	is	a	bit	slower	than	it	could	potentially	be,	because	of	the	two-step	process	involved.

Considering,	however	that	elasticsearch	is	mainly	used	to	dump	data	in	it	and	search	through	it,	I	presume	that	should
not	be	a	great	problem.

Search	visibility

Elasticsearch

343

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-update-by-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-delete-by-query.html


Please	be	aware	that	search	visibility	of	the	changes	(creates,	updates,	patches,	removals)	is	going	to	be	delayed	due
to	Elasticsearch		index.refresh_interval		setting.	You	may	force	refresh	after	each	operation	by	setting	the	service
option		elasticsearch.refresh		as	decribed	above	but	it	is	highly	discouraged	due	to	Elasticsearch	performance
implications.

Full-text	search

Currently	feathers-elasticsearch	supports	most	important	full-text	queries	in	their	default	form.	Elasticsearch	search
allows	additional	parameters	to	be	passed	to	each	of	those	queries	for	fine-tuning.	Those	parameters	can	change
behaviour	and	affect	peformance	of	the	queries	therefore	I	believe	they	should	not	be	exposed	to	the	client.	I	am
considering	ways	of	adding	them	safely	to	the	queries	while	retaining	flexibility.

Performance	considerations

None	of	the	data	mutating	operations	in	Elasticsearch	v2.4	(create,	update,	patch,	remove)	returns	the	full	resulting
document,	therefore	I	had	to	resolve	to	using	get	as	well	in	order	to	return	complete	data.	This	solution	is	of	course
adding	a	bit	of	an	overhead,	although	it	is	also	compliant	with	the	standard	behaviour	expected	of	a	feathers	database
adapter.

The	conceptual	solution	for	that	is	quite	simple.	This	behaviour	will	be	configurable	through	a		lean		switch	allowing	to
get	rid	of	those	additional	gets	should	they	be	not	needed	for	your	application.	This	feature	will	be	added	soon	as	well.

Elasticsearch

344

https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html


Feathers	Security
We	take	security	very	seriously	at	Feathers.	We	welcome	any	peer	review	of	our	100%	open	source	code	to	ensure
nobody's	Feathers	app	is	ever	compromised	or	hacked.	As	a	web	application	developer	you	are	responsible	for	any
security	breaches.	We	do	our	very	best	to	make	sure	Feathers	is	as	secure	as	possible.

Where	should	I	report	security	issues?
In	order	to	give	the	community	time	to	respond	and	upgrade	we	strongly	urge	you	report	all	security	issues	to	us.
Send	us	a	PM	in	Slack	or	email	us	at	hello@feathersjs.com	with	details	and	we	will	respond	ASAP.	Security	issues
always	take	precedence	over	bug	fixes	and	feature	work	so	we'll	work	with	you	to	come	up	with	a	resolution	and	plan
and	document	the	issue	on	Github	in	the	appropriate	repo.

Issuing	releases	is	typically	very	quick.	Once	an	issue	is	resolved	it	is	usually	released	immediately	with	the
appropriate	semantic	version.

Security	Considerations
Here	are	some	things	that	you	should	be	aware	of	when	writing	your	app	to	make	sure	it	is	secure.

Escape	any	HTML	and	JavaScript	to	avoid	XSS	attacks.
Escape	any	SQL	(typically	done	by	the	SQL	library)	to	avoid	SQL	injection.
Events	are	sent	by	default	to	any	client	listening	for	that	event.	Lock	down	any	private	events	that	should	not	be
broadcast	by	adding	filters.	Feathers	authentication	does	this	for	all	auth	services	by	default.
JSON	Web	Tokens	(JWT's)	are	only	signed,	they	are	not	encrypted.	Therefore,	the	payload	can	be	examined	on
the	client.	This	is	by	design.	DO	NOT	put	anything	that	should	be	private	in	the	JWT		payload		unless	you	encrypt
it	first.
Don't	use	a	weak		secret		for	you	token	service.	The	generator	creates	a	strong	one	for	you	automatically.	No
need	to	change	it.
Use	hooks	to	check	security	roles	to	make	sure	users	can	only	access	data	they	should	be	permitted	to.	We've
provided	some	built	in	authorization	hooks	to	make	this	process	easier	(many	of	which	are	added	by	default	to	a
generated	app).

Some	of	the	technologies	we	employ
Password	storage	inside		feathers-authentication		uses	bcrypt.	We	don't	store	the	salts	separately	since	they	are
included	in	the	bcrypt	hashes.
JWT	is	used	instead	of	cookies	to	avoid	CSRF	attacks.	We	use	the		HS512		algorithm	by	default	(HMAC	using
SHA-512	hash	algorithm).
We	run	nsp	as	part	of	our	CI.	This	notifies	us	if	we	are	susceptible	to	any	vulnerabilites	that	have	been	reported	to
the	Node	Security	Project.

XSS	Attacks
As	with	any	web	application	you	need	to	guard	against	XSS	attacks.	Since	Feathers	persists	the	JWT	in	localstorage
in	the	browser,	if	your	app	falls	victim	to	a	XSS	attack	your	JWT	could	be	used	by	an	attacker	to	make	malicious
requests	on	your	behalf.	This	is	far	from	ideal.	Therefore	you	need	to	take	extra	care	in	preventing	XSS	attacks.	Our

Security

345

http://slack.feathersjs.com
mailto:hello@feathersjs.com
http://docs.feathersjs.com/real-time/filtering.html
http://docs.feathersjs.com/authorization/bundled-hooks.html
https://github.com/dcodeIO/bcrypt.js
https://jwt.io/
https://github.com/nodesecurity/nsp
https://nodesecurity.io/


stance	on	this	particular	attack	vector	is	that	if	you	are	susceptible	to	XSS	attacks	then	a	compromised	JWT	is	the
least	of	your	worries	because	keystrokes	could	be	logged	and	attackers	can	just	steal	passwords,	credit	card
numbers,	or	anything	else	your	users	type	directly.

For	more	information	see:

this	issue
and	this	Auth0	forum	thread.

Security

346

https://github.com/feathersjs/feathers-authentication/issues/132
https://ask.auth0.com/t/stealing-jwt-from-authenticated-user/352/3


Feathers	Ecosystem
Below	are	some	of	the	amazing	things	built	with	Feathers	or	for	the	Feathers	ecosystem.

We	also	have	a	very	helpful	community	in	Slack.

Production	Applications
BeachfrontDigital
ContactImpact
Equibit	Group
Foxflow
GenerousTickets
Gratify
Headstart
HaulHound
J.A.B.	Property	Investments
Koola
Shakepay
Sleeker
Simpla
Stoplight
Taxfyle
Work	ID

Video	tutorials
The	FeathersJS	Youtube	playlist
FeathersJS	Real-Time	Chat	App	-	Tutorial
Fullstack	Feathersjs	and	React	Web	App

Starter	stacks,	Examples	and	Tutorials
Submit	yours	by	creating	a	pull	request.

Feathers	Chat	

Feathers	React	Native	Chat	

Feathers-Vuex	(Vue.js)	Chat	
Best	Buy	API	Playground
Feathers	+	Quasar
Feathers	+	Apollo
Feathers	2	+	Vue	2	+	SSR	+	Email	Verification
Feathers	2	+	Vue	2	+	Email	Verification	+	Cordova	+	Framework	7
Feathers	+	React	+	Mobx
Feathers	+	React	+	Webpack

Ecosystem

347

http://slack.feathersjs.com
https://beachfront.digital
https://www.contactimpact.de
https://equibitgroup.com/
https://www.foxflow.com/
https://generoustickets.com/
https://gratifyhq.com
http://www.headstartapp.com/
https://haulhound.com/
https://jabpi.com
http://koola.io/
https://shakepay.co
https://sleeker.co
https://www.simpla.io/
https://stoplight.io/
https://www.taxfyle.com/
http://work.id/
https://www.youtube.com/playlist?list=PLwSdIiqnDlf_lb5y1liQK2OW5daXYgKOe
https://www.youtube.com/watch?v=CuM4vLkBaik
https://www.youtube.com/playlist?list=PLN3n1USn4xlnulnnBGD2RMid_p7xVj9xU
https://github.com/feathersjs/feathers-chat
https://github.com/feathersjs/feathers-react-native-chat
https://github.com/feathersjs/feathers-chat-vuex
https://github.com/BestBuy/api-playground
https://github.com/claustres/quasar-feathers-tutorial
https://github.com/swarthout/feathers-apollo
https://github.com/codingfriend1/Feathers-Vue
https://github.com/codingfriend1/Feathers-Vue/tree/cordova
https://github.com/foxhound87/rfx-stack
https://github.com/sscaff1/feathers-webpack-react


Observables	with	Angular2	and	FeathersJS
Feathers	+	React	+	Redux	+	Webpack	+	local	auth.	Production	quality.
Live	query.	Mirror	part	of	a	DB	on	the	client.
Feathers	+	React	+	Redux	+	Webpack	+	complete	auth	+	offline	mode	(ideal	for	production)
Build	a	CRUD	App	Using	React,	Redux	and	FeathersJS
feathers-nuxt	-	A	sample/starter	for	server-side	rendered	Vue.js	+	Feathers	applications	that	supports	user
authentication
Passwordless	Auth	Example	Using	feathers-authentication-management

Authentication	&	Authorization
feathers-accounts	-	Token-Based	User	Account	System	for	FeathersJS	(configure).

feathers-authentication	

feathers-authentication-client	

feathers-authentication-local	

feathers-authentication-oauth1	

feathers-authentication-oauth2	

feathers-authentication-popups	
feathers-authentication-keystone

feathers-permissions	

feathers-authentication-management	 	-	User	email	verification	and	password	reset	capabilities	to	local
feathers-authentication	(service)
feathers-authentication-compatibility	-	Keep		v0.x		clients	compatible	with		v1.0+		authentication

Communications

feathers-batch	 	-	Batch	multiple	Feathers	service	calls	into	one	(service)

Database
amity-mongodb	-	Use	various	FeatherJS	services	to	manage	a	MongoDB	server	with	Amity.

feathers-blob	 	-	Feathers	abstract	blob	store	service	(service)
feathers-blueprints	-	Add	some	of	the	Sails.js	blueprints	functionality	to	Feathers.	(configure)
feathers-bookshelf	-	A	bookshelf	ORM	service	adapter.	(service)
feathers-couchdb
feathers-dynamodb	-	Work	in	progress	-	help	wanted!

feathers-elasticsearch	
feathers-filemaker	-	Filemaker	adapter	for	feathers.js

feathers-knex	
feathers-levelup
feathers-linvodb	-	Create	an	LinvoDB	Service	for	FeatherJS.	(service)

feathers-localstorage	

feathers-memory	
feathers-mongo-collections	-	MongoDB	collections	service	for	FeathersJS.	(service)
feathers-mongo-databases	-	Create	a	MongoDB	database	service	for	FeathersJS.	(service)

Ecosystem

348

https://berndsgn.ch/angular2-and-feathersjs
https://github.com/eddyystop/feathers-starter-react-redux-login-roles
https://github.com/eddyystop/feathers-live-query
https://github.com/bertho-zero/react-redux-universal-hot-example
https://www.sitepoint.com/crud-app-react-redux-feathersjs/
https://github.com/silvestreh/feathers-nuxt
https://github.com/rhythnic/feathers-passwordless-auth-example
https://www.npmjs.com/package/feathers-accounts
https://github.com/feathersjs/feathers-authentication-popups
https://github.com/virtuozzo/feathers-authentication-keystone
https://github.com/feathersjs/feathers-permissions
https://github.com/feathersjs/feathers-authentication-management
https://www.npmjs.com/package/feathers-authentication-compatibility
https://github.com/feathersjs/feathers-batch/
https://www.npmjs.com/package/amity-mongodb
https://www.npmjs.com/package/feathers-blob
https://www.npmjs.com/package/feathers-blueprints
https://www.npmjs.com/package/feathers-bookshelf
https://github.com/lontongcorp/feathers-couchdb
https://github.com/jus101/feathers-dynamodb
https://github.com/feathersjs/feathers-elasticsearch
https://www.npmjs.com/package/feathers-filemaker
https://www.npmjs.com/package/feathers-levelup
https://www.npmjs.com/package/feathers-linvodb
https://www.npmjs.com/package/feathers-mongo-collections
https://www.npmjs.com/package/feathers-mongo-databases


feathers-mongodb	
feathers-mongodb-revisions	-	This	Feathers	database	adapter	extends	the	basic	MongoDB	adapter,	adding
revision	support.	(service)

feathers-mongoose	

feathers-nedb	
feathers-nedb-dump	-	Middleware	for	Feathers.js	-	dumps	and	restores	NeDB	database	for	a	given	service
(middleware)
feathers-objection	-	A	service	adapter	for	Objection.js	-	A	minimal	SQL	ORM	built	on	top	of	Knex.
feathers-orm-service	-	Easily	create	a	Object	Relational	Mapping	Service	for	Featherjs.

feathers-rethinkdb	
feathers-rethinky	-	Thinky.js	RethinkDB	Adaptor	for	Feathers	JS
feathers-seeder	-	Straightforward	data	seeder	for	FeathersJS	services.

feathers-sequelize	
feathers-skypager	-	A	skypager	ORM	service	adapter	(service)
feathers-solr	-	Solr	Adapter	for	Feathersjs
feathers-waterline
nextql-feathers	-	Featherjs	plugin	for	NextQL-Yet	Another	Data	Query	Language.	Equivalent	GraphQL	but	much
more	simple

Caching
feathers-hooks-rediscache	-	API	endpoint	caching	with	Redis.

Documentation

feathers-swagger	 	-	Add	documentation	to	your	Feathers	services	and	feed	them	to	Swagger	UI.	(configure)

Email	&	SMS

feathers-mailer	 	-	Feathers	mailer	service	using	nodemailer	(service)

feathers-mailgun	 	-	A	Mailgun	Service	for	FeatherJS.	(service)

feathers-sendgrid	 	-	A	SendGrid	Service	for	FeatherJS.	(service)

Microservices
mostly-feathers	-	Convert	your	Feathers	APIs	into	microservices
mostly-feathers-rest	-	Expose	your	microservice	as	a	RESTful	API

Multiple	instances
feathers-cluster	-	Easily	take	advantage	of	multi-core	systems	for	Feathers.	(configure)

feathers-sync	 	-	Synchronize	service	events	between	application	instances	using	MongoDB	publish/subscribe
(configure)

Ecosystem

349

https://www.npmjs.com/package/feathers-mongodb-revisions
https://www.npmjs.com/package/feathers-nedb-dump
https://github.com/mcchrish/feathers-objection
https://vincit.github.io/objection.js
https://www.npmjs.com/package/feathers-orm-service
https://www.npmjs.com/package/feathers-rethinky
https://www.npmjs.com/package/feathers-seeder
https://www.npmjs.com/package/feathers-skypager
https://www.npmjs.com/package/feathers-solr
https://www.npmjs.com/package/feathers-waterline
https://github.com/giapnguyen74/nextql-feathers
https://github.com/idealley/feathers-hooks-rediscache
https://www.npmjs.com/package/feathers-swagger
https://www.npmjs.com/package/feathers-mailer
https://www.npmjs.com/package/feathers-mailgun
https://www.npmjs.com/package/feathers-sendgrid
https://github.com/MostlyJS/mostly-feathers
https://github.com/MostlyJS/mostly-feathers-rest
https://www.npmjs.com/package/feathers-cluster
https://www.npmjs.com/package/feathers-sync


Mobile
The	Feathers	client	works	with	React	Native	but	here	is	a	collection	of	native	libraries/SDKs.

FeathersjsClientSwift	-	An	iOS	client	written	in	Swift.
Feathers	-	Feathers	compliant	SDK	written	in	Swift	3.	Supports	rest	and	socket	providers.

Payments

feathers-stripe	

Social	media
feathers-services-instagram-feed	-	A	service	that	allows	to	fetch	a	given	user's	Instagram	feed	via	its	public
endpoints.

Testing
feathers-tests-fake-app-users	-	Fake	some	feathers	dependencies	in	service	unit	tests.	Starter	for	your
customized	fakes	(service)

Transformation
feathers-hooks-csvtoarray	-	Feathers	hook	for	converting	a	comma-delimited	list	to	an	Array	of	strings.
feathers-hooks-jsonapify	-	Feathers	hook	for	outputting	data	in	a	JSON-API-compliant	way.
feathers-populate-hook	-	Feathers	hook	to	populate	multiple	fields	with	n:m,	n:1	or	1:m	relations.	(hook)
feathers-transform-hook	-	Feathers	hook	for	transform	hook.data	parameters	(hook)
feathers-virtual-attribute-hook	-	Feathers	hook	for	add	virtual	attributes	to	your	service	response	(hook)

Transports

feathers-primus	

feathers-rest	

feathers-socketio	
feathers-batch	-	Batch	multiple	Feathers	service	calls	into	one	(service)
feathers-socketcluster	-	Use	SocketCluster	for	client/server	communication.	Not	published.

Utilities

feathers-bootstrap	

feathers-cli	

feathers-client	

feathers-commons	

feathers-configuration	

Ecosystem

350

https://github.com/truebucha/FeathersjsClientSwift
https://github.com/startupthekid/feathers-ios
https://github.com/feathersjs/feathers-stripe
https://www.npmjs.com/package/feathers-services-instagram-feed
https://www.npmjs.com/package/feathers-tests-fake-app-users
https://www.npmjs.com/package/feathers-hooks-csvtoarray
https://www.npmjs.com/package/feathers-hooks-jsonapify
https://www.npmjs.com/package/feathers-populate-hook
https://www.npmjs.com/package/feathers-transform-hook
https://www.npmjs.com/package/feathers-virtual-attribute-hook
https://www.npmjs.com/package/feathers-batch
https://github.com/polst/feathers-socketcluster
https://github.com/feathersjs/feathers-bootstrap
https://github.com/feathersjs/feathers-cli
https://github.com/feathersjs/feathers-cli


feathers-errors	

feathers-fs	 	-	Use	the	FeathersJS	service	interface	to	read	and	write	data	in	the	file	system.

feathers-generator	

feathers-hooks	

feathers-hooks-common	 	-	Useful	hooks	for	use	with	Feathersjs	services.	(hooks)
feathers-hooks-utils	-	Utility	library	for	writing	Feathersjs	hooks.	(hooks)

feathers-logger	

feathers-query-filters	

feathers-profiler	

feathers-socket-commons	

generator-feathers	

generator-feathers-plugin	
feathers-versionate	-	Utility	for	creating	and	working	with	nested	service	paths.

Validation
feathers-hooks-validate-joi	-	Feathers	hook	utility	for	schema	validation,	sanitization	and	client	notification	using
Joi.	(hook)
feathers-hook-validation-jsonschema	-	Validate	Feathers	resources	using	JSON	Schema.	(hook)
feathers-tcomb	-	validate	feathers	services	using	tcomb	(app.service)
feathers-validate-hook	-	Feathers	hook	for	validate	json-schema	with	is-my-json-valid	(hook)
feathers-validator	-	A	validator	for	Feathers	services.	(service)

Client	&	Framework	Integration

feathers-client	 	-	All	of	the	main	client	packages	rolled	into	one.
feathers-mithril	-	Connect	feathers.js	to	mithril.js	(connector)

feathers-reactive	 	-	Turns	a	Feathers	service	call	into	an	RxJS	observables	that	automatically	updates	on	real-
time	events.	(configure)
feathers-polymer
ng-feathers	-	Feathers	client	for	AngularJS.	FeatherJS	for	plain	old	AngularJS	(1.X)
aurelia-feathersjs-socket-demo	-	Aurelia	app	(built	with	Aurelia-CLI)	connected	to	Feathers	server	application	via
websockets	(socket.io)

DoneJS
can-connect-feathers	-	Feathers	client	library	for	DoneJS	(feathers-client)
canjs-feathers	-	CanJS	model	implementation	that	connects	to	Feathers	services	through	feathers-client.
(feathers-client)
donejs-feathers	-	A	generator	to	quickly	add	FeathersJS	to	your	DoneJS	project.	Includes	Auth!	(generator)

React,	Redux
feathers-action	-	use	feathers	services	with	redux	(connector)

Ecosystem

351

https://github.com/feathersjs/feathers-fs
https://github.com/feathersjs/feathers-generator
https://www.npmjs.com/package/feathers-hooks-utils
https://github.com/feathersjs/feathers-logger
https://github.com/feathersjs/feathers-query-filters
https://github.com/feathersjs/feathers-profiler
https://github.com/feathersjs/feathers-socket-commons
https://github.com/feathersjs/generator-feathers
https://github.com/feathersjs/generator-feathers-plugin
https://github.com/luke3butler/feathers-versionate
https://www.npmjs.com/package/feathers-hooks-validate-joi
https://www.npmjs.com/package/feathers-hook-validation-jsonschema
https://www.npmjs.com/package/feathers-tcomb
https://www.npmjs.com/package/feathers-validate-hook
https://www.npmjs.com/package/feathers-validator
https://www.npmjs.com/package/feathers-client
https://www.npmjs.com/package/feathers-mithril
https://www.npmjs.com/package/feathers-reactive
https://github.com/thosakwe/polymer-feathers
https://www.npmjs.com/package/ng-feathers
https://bitbucket.org/praveengandhi/aurelia-feathersjs-socket-demo
https://www.npmjs.com/package/can-connect-feathers
https://www.npmjs.com/package/canjs-feathers
https://www.npmjs.com/package/donejs-feathers
https://www.npmjs.com/package/feathers-action


feathers-action-creators	-	redux	action	creators	for	feathers	services
feathers-action-reducer	-	redux	reducer	for	feathers	service	actions
feathers-action-types	-	flux	action	types	for	feathers	services	(connector)
feathers-react-redux	-	Unofficial	Feathers	bindings	for	React-Redux.
feathers-reduxify-services	-	Wrap	Feathers	services	so	they	work	transparently	and	perfectly	with	Redux.
feathers-reduxify-authentication	-	Wrap	Feathers.authentication	so	it	works	with	Redux,	and	with	auth	packages
for	React-Router.

Vue.js

feathers-vuex	 	-	Integration	of	Feathers	services	with	your	Vuex	store.
vue-syncers-feathers	-	Synchronises	feathers	services	with	vue	objects,	updated	in	real	time	(connector)
vue-feathers	-	A	plugin	for	Vuejs	1.x	&	2.x	to	easily	access	your	feathers	services.

Ecosystem

352

https://www.npmjs.com/package/feathers-action-creators
https://www.npmjs.com/package/feathers-action-reducer
https://www.npmjs.com/package/feathers-action-types
https://www.npmjs.com/package/feathers-react-redux
https://github.com/eddyystop/feathers-reduxify-services
https://github.com/eddyystop/feathers-reduxify-authentication
https://github.com/feathersjs/feathers-vuex
https://www.npmjs.com/package/vue-syncers-feathers
https://github.com/sunabozu/vue-feathers


Help!
There	are	many	ways	that	you	can	get	help	but	before	you	explore	them	please	check	the	other	parts	of	these	docs,
the	FAQ,	Stackoverflow,	Github	Issues	and	our	Medium	publication.

If	none	of	those	work	it's	a	very	real	possibility	that	we	screwed	something	up	or	it's	just	not	clear.	We're	sorry	۟ .	We
want	to	hear	about	it	and	are	very	friendly	so	feel	free	to	come	talk	to	us	in	Slack,	submit	your	issue	on	Github	or	ask
on	StackOverflow	using	the	feathersjs	tag.

Help

353

http://stackoverflow.com/questions/tagged/feathersjs
https://github.com/issues?utf8=%E2%9C%93&q=is%3Aopen+is%3Aissue+user%3Afeathersjs+
https://blog.feathersjs.com/
http://slack.feathersjs.com/
https://github.com/feathersjs/feathers/issues/new
http://stackoverflow.com
http://stackoverflow.com/questions/tagged/feathersjs


FAQ
We've	been	collecting	some	commonly	asked	questions	here.	We'll	either	be	updating	the	guide	directly,	providing
answers	here,	or	both.

How	do	I	create	custom	methods?
One	important	thing	to	know	about	Feathers	is	that	it	only	exposes	the	official	service	methods	to	clients.	While	you
can	add	and	use	any	service	method	on	the	server,	it	is	not	possible	to	expose	those	custom	methods	to	clients.

In	the	Why	Feathers	chapter	we	discussed	how	the	uniform	interface	of	services	naturally	translates	into	a	REST	API
and	also	makes	it	easy	to	hook	into	the	execution	of	known	methods	and	emit	events	when	they	return.	Adding
support	for	custom	methods	would	add	a	new	level	of	complexity	defining	how	to	describe,	expose	and	secure	custom
methods.	This	does	not	go	well	with	Feathers	approach	of	adding	services	as	a	small	and	well	defined	concept.

In	general,	almost	anything	that	may	require	custom	methods	can	also	be	done	either	by	creating	a	custom	service	or
through	hooks.	For	example,	a		userService.resetPassword		method	can	also	be	implemented	as	a	password	service
that	resets	the	password	in	the		create		method:

const	crypto	=	require('crypto');

class	PasswordService	{
		create(data)	{
				const	userId	=	data.user_id;
				const	userService	=	this.app.service('user');

				return	userService.patch(userId,	{
						passwordToken:	crypto.randomBytes(48)
				}).then(user	=>	sendEmail(user))
		}

		setup(app)	{
				this.app	=	app;
		}
}

For	more	examples	also	see	this	issue	comment.

How	do	I	do	nested	or	custom	routes?
Normally	we	find	that	they	actually	aren't	needed	and	that	it	is	much	better	to	keep	your	routes	as	flat	as	possible.	For
example	something	like		users/:userId/posts		is	-	although	nice	to	read	for	humans	-	actually	not	as	easy	to	parse	and
process	as	the	equivalent		/posts?userId=<userid>		that	is	already	supported	by	Feathers	out	of	the	box.	Additionaly,
this	will	also	work	much	better	when	using	Feathers	through	websocket	connections	which	do	not	have	a	concept	of
routes	at	all.

However,	nested	routes	for	services	can	still	be	created	by	registering	an	existing	service	on	the	nested	route	and
mapping	the	route	parameter	to	a	query	parameter	like	this:

app.use('/posts',	postService);
app.use('/users',	userService);

//	re-export	the	posts	service	on	the	/users/:userId/posts	route
app.use('/users/:userId/posts',	app.service('posts'));

FAQ

354

https://github.com/feathersjs/feathers/issues/488#issuecomment-269687714


//	A	hook	that	updates	`data`	with	the	route	parameter
function	mapUserIdToData(hook)	{
		if(hook.data	&&	hook.params.userId)	{
				hook.data.userId	=	hook.params.userId;
		}
}

//	For	the	new	route,	map	the	`:userId`	route	parameter	to	the	query	in	a	hook
app.service('users/:userId/posts').hooks({
		before:	{
				find(hook)	{
						hook.params.query.userId	=	hook.params.userId;
				},
				create:	mapUserIdToData,
				update:	mapUserIdToData,
				patch:	mapUserIdToData
		}		
})

Now	going	to		/users/123/posts		will	call		postService.find({	query:	{	userId:	123	}	})		and	return	all	posts	for	that
user.

For	more	information	about	URL	routing	and	parameters,	refer	to	the	Express	chapter.

Note:	URLs	should	never	contain	actions	that	change	data	(like		post/publish		or		post/delete	).	This	has
always	been	an	important	part	of	the	HTTP	protocol	and	Feathers	enforces	this	more	strictly	than	most	other
frameworks.	For	example	to	publish	a	post	you	would	call		.patch(id,	{	published:	true	})	.

How	do	I	do	search?
This	depends	on	the	database	adapter	you	are	using.	Many	databases	already	support	their	own	search	syntax:

Regular	expressions	(converted	in	a	a	hook)	for	Mongoose,	MongoDB	and	NeDB,	see	this	comment
$like	for	Sequelize	which	can	be	set	in	params.sequelize
Some	database	adapters	like	KnexJS,	RethinkDB	and	Elasticsearch	also	support	non-standard	query	parameters
which	are	described	in	their	documentation	pages.

For	further	discussions	see	this	issue.

Why	am	I	not	getting	JSON	errors?
If	you	get	a	plain	text	error	and	a	500	status	code	for	errors	that	should	return	different	status	codes,	make	sure	you
have	the		feathers-errors/handler		configured	as	described	in	the	Express	errors	chapter.

Why	am	I	not	getting	the	correct	HTTP	error	code
See	the	above	answer.

How	can	I	do	custom	methods	like		findOrCreate	?
Custom	functionality	can	almost	always	be	mapped	to	an	existing	service	method	using	hooks.	For	example,
	findOrCreate		can	be	implemented	as	a	before-hook	on	the	service's		get		method.	See	this	gist	for	an	example	of
how	to	implement	this	in	a	before-hook.

FAQ

355

https://github.com/feathersjs/feathers/issues/334#issuecomment-234432108
http://docs.sequelizejs.com/en/latest/docs/querying/
https://github.com/feathersjs/feathers/issues/334
https://gist.github.com/marshallswain/9fa3b1e855633af00998


How	do	I	render	templates?
Feathers	works	just	like	Express	so	it's	the	exact	same.	We've	created	a	helpful	little	guide	right	here.

How	do	I	create	channels	or	rooms
Although	Socket.io	has	a	concept	of	rooms	that	you	can	always	fall	back	to,	other	websocket	libraries	that	Feathers
supports	do	not.	The	Feathers	way	of	letting	a	user	listen	to	e.g.	messages	on	a	room	is	through	event	filtering.	There
are	two	ways:

1.	 Update	the	user	object	with	the	rooms	they	are	subscribed	to	and	filter	based	on	those

//	On	the	client
function	joinRoom(roomId)	{
		const	user	=	app.get('user');

		return	app.service('users').patch(user.id,	{	rooms:	user.rooms.concat(roomId)	});
}

//	On	the	server
app.service('messages').filter(function(message,	connection)	{
		return	connection.user.rooms.indexOf(message.room_id)	!==	-1;
});

The	advantage	of	this	method	is	that	you	can	show	offline/online	users	that	are	subscribed	to	a	room.

1.	 Create	a	custom		join		event	with	a	room	id	and	then	filter	based	on	it

app.use(socketio(function(io)	{
		io.on('connection',	function(socket)	{
				socket.on('join',	function(roomId)	{
						socket.feathers.rooms.push(roomId);
				});
		});
}));

app.service('messages').filter(function(message,	connection)	{
		return	connection.rooms.indexOf(message.room_id)	!==	-1;
});

The	room	assignment	will	persist	only	for	the	duration	of	the	socket	connection.

How	do	I	do	validation?
If	your	database/ORM	supports	a	model	or	schema	(ie.	Mongoose	or	Sequelize)	then	you	have	2	options.

The	preferred	way

You	perform	validation	at	the	service	level	using	hooks.	This	is	better	because	it	keeps	your	app	database	agnostic	so
you	can	easily	swap	databases	without	having	to	change	your	validations	much.

If	you	write	a	bunch	of	small	hooks	that	validate	specific	things	it	is	easier	to	test	and	also	slightly	more	performant
because	you	can	exit	out	of	the	validation	chain	early	instead	of	having	to	go	all	the	way	to	the	point	of	inserting	data
into	the	database	to	find	out	if	that	data	is	invalid.

FAQ

356

http://socket.io/docs/rooms-and-namespaces/


If	you	don't	have	a	model	or	schema	then	validating	with	hooks	is	currently	your	only	option.	If	you	come	up	with
something	different	feel	free	to	submit	a	PR!

The	ORM	way

With	ORM	adapters	you	can	perform	validation	at	the	model	level:

Using	Mongoose
Using	Sequelize

The	nice	thing	about	the	model	level	validations	is	Feathers	will	return	the	validation	errors	to	the	client	in	a	nice
consistent	format	for	you.

How	do	I	do	associations?
Similar	to	validation,	it	depends	on	if	your	database/ORM	supports	models	or	not.

The	preferred	way

For	any	of	the	feathers	database/ORM	adapters	you	can	just	use	hooks	to	fetch	data	from	other	services.

This	is	a	better	approach	because	it	keeps	your	application	database	agnostic	and	service	oriented.	By	referencing
the	services	(using		app.service().find()	,	etc.)	you	can	still	decouple	your	app	and	have	these	services	live	on
entirely	separate	machines	or	use	entirely	different	databases	without	having	to	change	any	of	your	fetching	code.

This	has	been	implemented	in	the	populate	common	hook.

The	ORM	way

With	mongoose	you	can	use	the		$populate		query	param	to	populate	nested	documents.

//	Find	Hulk	Hogan	and	include	all	the	messages	he	sent
app.service('user').find({
		query:	{
				name:	'hulk@hogan.net',
				$populate:	['sentMessages']
		}
});

With	Sequelize	you	can	do	this:

//	Find	Hulk	Hogan	and	include	all	the	messages	he	sent
app.service('user').find({
		name:	'hulk@hogan.net',
		sequelize:	{
				include:	[{
						model:	Message,
						where:	{	sender:	Sequelize.col('user.id')	}
				}]
		}
});

Or	set	it	in	a	hook	as	described	here.

Sequelize	models	and	associations

FAQ

357

http://docs.sequelizejs.com/en/latest/docs/models-definition/#validations


If	you	are	using	the	Sequelize	adapter,	understanding	SQL	and	Sequelize	first	is	very	important.	For	further
information	see	this	documentation	chapter	and	this	answer	on	Stackoverflow.

What	about	Koa/Hapi/X?
There	are	many	other	Node	server	frameworks	out	there	like	Koa,	a	"next	generation	web	framework	for	Node.JS"
using	ES6	generator	functions	instead	of	Express	middleware	or	HapiJS	etc.	Because	Feathers	2	is	already
universally	usable	we	are	planning	the	ability	for	it	to	hook	into	other	frameworks	on	the	server	as	well.	More
information	can	be	found	in	this	issue.

How	do	I	filter	emitted	service	events?
See	this	section.

How	do	I	access	the	request	object	in	hooks	or	services?
In	short,	you	shouldn't	need	to.	If	you	look	at	the	hooks	chapter	you'll	see	all	the	params	that	are	available	on	a	hook.

If	you	still	need	something	from	the	request	object	(for	example,	the	requesting	IP	address)	you	can	simply	tack	it	on
to	the		req.feathers		object	as	described	here.

How	do	I	mount	sub	apps?
It's	pretty	much	exactly	the	same	as	Express.	More	information	can	be	found	here.

How	do	I	do	some	processing	after	sending	the	response	to
the	user?
The	hooks	workflow	allows	you	to	handle	these	situations	quite	gracefully.	It	depends	on	the	promise	that	you	return
in	your	hook.	Here's	an	example	of	a	hook	that	sends	an	email,	but	doesn't	wait	for	a	success	message.

function	(hook)	{

		//	Send	an	email	by	calling	to	the	email	service.
		hook.app.service('emails').create({
				to:	'user@email.com',
				body:	'You	are	so	great!'
		});

		//	Send	a	message	to	some	logging	service.
		hook.app.service('logging').create(hook.data);

		//	Return	a	resolved	promise	to	immediately	move	to	the	next	hook
		//	and	not	wait	for	the	two	previous	promises	to	resolve.
		return	Promise.resolve(hook);
}

How	do	I	debug	my	app

FAQ

358

http://docs.sequelizejs.com/
https://docs.feathersjs.com/api/databases/sequelize.html#associations-and-relations
https://stackoverflow.com/questions/42841810/feathers-js-sequelize-service-with-relations-between-two-models/42846215#42846215
https://github.com/feathersjs/feathers/issues/258


It's	really	no	different	than	debugging	any	other	NodeJS	app	but	you	can	refer	to	the	Debugging	section	of	the	guide
for	more	Feathers	specific	tips	and	tricks.

	possible	EventEmitter	memory	leak	detected		warning
This	warning	is	not	as	bad	as	it	sounds.	If	you	got	it	from	Feathers	you	most	likely	registered	more	than	64	services
and/or	event	listeners	on	a	Socket.	If	you	don't	think	there	are	that	many	services	or	event	listeners	you	may	have	a
memory	leak.	Otherwise	you	can	increase	the	number	in	the	Socket.io	configuration	via
	io.sockets.setMaxListeners(number)		and	with	Primus	via		primus.setMaxListeners(number)	.		number		can	be		0		for
unlimited	listeners	or	any	other	number	of	how	many	listeners	you'd	expect	in	the	worst	case.

Why	can't	I	pass		params		from	the	client?
When	you	make	a	call	like:

const	params	=	{	foo:	'bar'	};
client.service('users').patch(1,	{	admin:	true	},	params).then(result	=>	{
		//	handle	response
});

on	the	client	the		hook.params		object	will	only	be	available	in	your	client	side	hooks.	It	will	not	be	provided	to	the
server.	The	reason	for	this	is	because		hook.params		on	the	server	usually	contains	information	that	should	be	server-
side	only.	This	can	be	database	options,	whether	a	request	is	authenticated,	etc.	If	we	passed	those	directly	from	the
client	to	the	server	this	would	be	a	big	security	risk.	Only	the	client	side		hook.params.query		and		hook.params.headers	
objects	are	provided	to	the	server.

If	you	need	to	pass	info	from	the	client	to	the	server	that	is	not	part	of	the	query	you	need	to	add	it	to
	hook.params.query		on	the	client	side	and	explicitly	pull	it	out	of		hook.params.query		on	the	server	side.	This	can	be
achieved	like	so:

//	client	side
client.hooks({
		before:	{
				all:	[
						hook	=>	{
								hook.params.query.$client	=	{
										platform:	'ios',
										version:	'1.0'
								};

								return	hook;
						}
				]
		}
});

//	server	side,	inside	app.hooks.js
const	hooks	=	require('feathers-hooks-common');

module.exports	=	{
		before:	{
				all:	[
						//	remove	values	from	hook.params.query.$client	and	move	them	to	hook.params
						//	so	hook.params.query.$client.version	->	hook.params.version
						//	and	hook.params.query.$client	is	removed.
						hooks.client('version',	'platform')
				]
		}

FAQ

359



}

Why	are	queries	with	arrays	failing?
If	you	are	using	REST	and	queries	with	larger	arrays	(more	than	21	items	to	be	exact)	are	failing	you	are	probably
running	into	an	issue	with	the	querystring	module	which	limits	the	size	of	arrays	to	21	items	by	default.	The
recommended	solution	is	to	implement	a	custom	query	string	parser	function	via		app.set('query	parser',
parserFunction)		with	the		arrayLimit		option	set	to	a	higher	value.	For	more	information	see	the	Express	application
settings	feathers-rest#88	and	feathers-mongoose#205.

I	always	get	a	404	for	my	custom	middleware
Just	like	in	Express	itself,	the	order	of	middleware	matters.	If	you	registered	a	custom	middleware	outside	of	the
generator,	you	have	to	make	sure	that	it	runs	before	the		notFound()		error	midlleware.

How	do	I	get	OAuth	working	across	different	domains
The	standard	Feathers	oAuth	setup	sets	the	JWT	in	a	cookie	which	can	only	be	passed	between	the	same	domain.	If
your	frontend	is	running	on	a	different	domain	you	will	have	to	use	query	string	redirects	as	outlined	in	this	Gist.

How	do	I	set	up	HTTPS?
Check	out	the	Feathers	Express	HTTPS	docs.

Is	Feathers	production	ready?
Yes!	It's	being	used	in	production	by	a	bunch	of	companies	from	startups	to	fortune	500s.	For	some	more	details	see
this	answer	on	Quora.

FAQ

360

https://github.com/ljharb/qs
https://github.com/ljharb/qs#parsing-arrays
http://expressjs.com/en/4x/api.html#app.set
https://github.com/feathersjs/feathers-rest/issues/88
https://github.com/feathersjs/feathers-mongoose/issues/205
https://gist.github.com/marshallswain/3c9e5b3b177b977468b5b711b6254f67
https://www.quora.com/Is-FeathersJS-production-ready


Contributing
Just	like	Feathers	itself,	all	of	the	documentation	is	open	source	and	available	to	edit	on	GitHub.	If	you	see	something
that	you	can	contribute,	we	would	LOVE	a	pull	request	with	your	edits!	To	make	this	easy	you	can	click	the	"Edit	this
page"	link	at	the	top	of	the	web	docs.

The	docs	are	all	written	in	GitHub	Flavored	Markdown.	If	you've	used	GitHub,	it's	pretty	likely	you've	encountered	it
before.	You	can	become	a	pro	in	a	few	minutes	by	reading	their	GFM	Documentation	page.

Organizing	Files

You'll	notice	that	the	GitHub	Repo	is	organized	in	a	nice	logical	folder	structure.	The	first	file	in	each	chapter	is	named
as	a	description	of	the	entire	chapter's	topic.	For	example,	the	content	related	to	databases	is	located	in
	api/databases/	.

Some	of	the	chapters	are	split	into	multiple	sections	to	help	break	up	the	content	and	make	it	easier	to	digest.	You	can
easily	see	how	chapters	are	laid	out	by	looking	at	the		SUMMARY.md		file.	This	convention	helps	keep	chapters	together
in	the	file	system	and	easy	to	view	either	directly	on	github	or	gitbook.

Table	of	Contents

You'll	find	the	table	of	contents	in	the	SUMMARY.md	file.	It's	a	nested	list	of	markdown	links.	You	can	link	to	a	file
simply	by	putting	the	filename	(including	the	extension)	inside	the	link	target.

Introduction	Page

This	is	the	root	README.md	file.	It's	intent	is	to	give	the	reader	an	elevator	pitch	of	what	Feathers	is	and	why	we	think
it	is	useful.

Send	a	Pull	Request

So	that's	it.	You	make	your	edits,	keep	your	files	and	the	Table	of	Contents	organized,	and	send	us	a	pull	request.

Enjoy	the	Offline	Docs

Moments	after	your	edits	are	merged,	they	will	be	automatically	published	to	the	web,	as	a	downloadable	PDF,	.mobi
file	(Kindle	compatible),	and	ePub	file	(iBooks	compatible).

Share

We	take	pride	in	having	great	documentation	and	we	are	very	appreciative	of	any	help	we	can	get.	Please,	let	the
world	know	you've	contributed	to	the	Feathers	Book	or	give	@FeathersJS	a	shout	out	on	Twitter	to	let	others	know
about	your	changes.

Contributing

361

https://github.com/feathersjs/feathers-docs
https://help.github.com/articles/github-flavored-markdown/
https://help.github.com/articles/github-flavored-markdown/
https://github.com/feathersjs/feathers-docs
https://github.com/feathersjs/feathers-docs/blob/master/SUMMARY.md
https://github.com/feathersjs/feathers-docs/blob/master/README.md
https://twitter.com/feathersjs


MIT	license
Copyright	(C)	2017	Feathers	contributors

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this	software	and	associated
documentation	files	(the	"Software"),	to	deal	in	the	Software	without	restriction,	including	without	limitation	the	rights	to
use,	copy,	modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to
whom	the	Software	is	furnished	to	do	so,	subject	to	the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or	substantial	portions	of	the
Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE
LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT
OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR
OTHER	DEALINGS	IN	THE	SOFTWARE.

License

362

https://github.com/feathersjs/feathers/graphs/contributors

	Introduction
	Guides
	About Feathers
	Features
	Philosophy
	Feathers vs. X

	The Basics
	Introduction
	What not to worry about
	Installing the Examples
	Basic Feathers
	A database connector
	A REST API server
	A Feathers REST client
	A Feathers WebSocket client
	The "a-ha!" moment
	Hooks middleware
	All about hooks
	Hooks, part 1
	Hooks, part 2
	Writing your own hooks
	Testing hooks
	Real-time

	The Generator (CLI)
	Generate the application
	Add authentication
	Add the teams service
	Add the populate hook
	Run the application

	A Chat Application
	Creating the application
	Generating a service
	Building a frontend
	Adding authentication
	Processing data

	Frameworks
	Authentication
	How JWT works
	Recipe: Custom Login Response
	Recipe: Custom JWT Payload
	Recipe: Mixed Auth Endpoints
	Recipe: Basic OAuth

	Offline first
	Strategies
	Snapshot
	Realtime
	Optimistic mutation
	Own-data, own-net
	Sync-data, sync-net
	Configure snapshot
	Configure realtime
	Configure publication
	Example snapshot
	Example realtime & publication
	Example optimistic mutation
	Tests as examples
	More examples

	Advanced topics
	Debugging
	Configuration
	File uploads
	Creating a Feathers plugin
	Seeding services
	Using a view engine
	Scaling
	Application
	Services
	Hooks
	Common Hooks
	Client
	Events
	Errors
	REST
	Express
	Socket.io
	Primus
	Server
	Client
	Local
	Local management
	JWT
	OAuth1
	OAuth2
	Hooks
	Common API
	Querying
	Memory
	NeDb
	LocalStorage
	MongoDB
	Mongoose
	Sequelize
	Knex
	RethinkDB
	Elasticsearch


	API
	Security
	Ecosystem
	Help
	FAQ
	Contributing
	License

