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Preface

I start this preface with some ideas of my former Teacher and
Master, senior researcher I, corresponding member of the Romanian
Academy, Dr. Doc. Nicolae Popescu (Institute of Mathematics of the
Romanian Academy).

Question: What is Mathematics?
Answer: It is the art of reasoning, thinking or making judgements.

It is di¢cult to say more, because we are not able to exactly de�ne the
notion of a "table", not to say Math! In the greek language "mathema"
means "knowledge". Do you think that there is somebody who is able
to de�ne this last notion? And so on... Let us do Math, let us apply
or teach it and let us stop to search for a de�nition of it!

Q: Is Math like Music?
A: Since any human activity involves more or less need of reasoning,

Mathematics is more connected with our everyday life then all the other
arts. Moreover, any description of the natural or social phenomena use
mathematical tools.

Q: What kind of Mathematics is useful for an engineer?
A: Firstly, the basic Analysis, because this one is the best tool

for strengthening the ability of making correct judgements and of tak-
ing appropriate decisions. Formulas and notions of Analysis are at
the basis of the particular language used by the engineering topics
like Mechanics, Material Sciences, Elasticity, Concrete Sciences, etc.
Secondly, Linear Algebra and Geometry develop the ability to work
with vectors, with geometrical object, to understand some speci�c alge-
braic structures and to use them for applying some numerical methods.
Di¤erential Equations, Calculus of Variations and Probability Theory
have a direct impact in the scienti�c presentation of all the engineering
applications. Computer Science cannot be taught without the basic
knowledge of the above mathematical topics. Mathematics comes from
reality and returns to it.

Q: How can we learn Math such that this one not becomes abstract,
annoying, di¢cult, etc.?
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6 PREFACE

A: There is only one way. Try to clarify and understand everything,
step by step, from the simplest notions up to the more complicated
ones. Without gaps! Try to work with all the new notions, de�nitions,
theorems, by looking at appropriate simple examples and by doing
appropriate exercises. Do not learn by heart! This is the most useless
thing you can do in trying to become a scientist, an engineer or an
economist! Or anything else!

Math becomes nice and easy to you if it is presented in a lively way
and if you make some e¤orts to come closer and closer to it. If you
hate it from the beginning, don�t say that it is di¢cult!

The present course of Mathematical Analysis covers the Di¤erential
Calculus part only.

It is assumed that students have the basic skills to compute simple
limits, di¤erentials and the integrals of some elementary functions. My
teaching experience of almost 30 years at the Technical University of
Civil Engineering Bucharest made me clear that the Math syllabus
for engineering courses is not only a "part" from the syllabus of the
faculties of mathematics. Engineering teaching should have at its basis
very "concrete" facts. Mathematics for engineers should be very live.
Student should realize that such type of Math came from "practice",
returns to it and, what is most important, it helps a lot to make rational
"models" for some speci�c phenomena. Besides this point of view,
we have not to forget that the most important tool of an engineer,
economist, etc. is his (her) power of reasoning. And this power of
reasoning can be strengthened by mathematical training.

My opinion is that some motivations and drawings are always very
useful in the complicated process of making "easy" and "nice" the
mathematical teaching.

I consider that it is better to start with the notion of a real num-
ber, which re�ects a measurement. Then to consider sequences, series,
functions, etc.

In Chapter I tried to put together some notions and ideas which
have more features in common. We end every chapter with some prob-
lems and exercises. In some places you will �nd more detailed examples
and worked problems, in others you will �nd fewer. At any moment I
have in my mind a beginner student and not a moment a professional
in Math. My last goal in this was "the art of teaching Math for engi-
neers" and not "the art of solving sophisticated Math problems". We
should be very careful that a good Math teaching means "not multa,
sed multum" (C. F. Gauss, in Latin). Gauss wanted to say that the
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quality is more important then the quantity, "not much and super�-
cial, but fewer and deep". We have computers which are able to supply
us with formulas, with complicated and long computations but, up to
now, they are not able to learn us the deep and the original creative
work. They are useful for us, but the last decision is better to be ours.
The deep "feeling" of an experienced engineer is as important as some
long computations of a computer. If we consider a computer to be only
a "tool" is OK. But, how to obtain this "feeling"? The answer is: a
good background (including Math training) + practice + the capacity
of doing things better and better.

I tried to use as proofs for theorems, propositions, lemmas, etc. the
most direct, simple and natural proofs that I know, such that the stu-
dent be able to really understand what the statement wants to say. The
mathematical "tricks" and the simpli�cations by using more abstract
mathematical machinery are not so appropriate in teaching Math at
least for the non mathematical community. This is why we (teachers)
should think twice before accepting a new "shorter" way. My opinion
is that student should begin with a particular case, with an example,
in order to understand a more general situation. Even in the case of a
de�nition you should search for examples and "counterexamples", you
should work with them to become "a friend" of them... .

I am grateful to many people who helped me directly or indirectly.
The long discussions with some of my colleagues from the Department
of Mathematics and Computer Sciences of the Technical University of
Civil Engineering Bucharest enlightened me a lot. In particular, the
teaching skill, the knowledge and the enthusiasm of Prof. Dr. Gavriil
P¼altineanu impressed and encouraged me in writing this course. He is
always trying to really improve the way of Math Analysis teaching in
our university and he helped me with many useful advices after reading
this course.

Many thanks go to Prof. Dr. Octav Olteanu (University Politehnica
Bucharest) for many useful remarks on a previous version of this course.
To be clear and to try to prove "everything" I learned from Prof.

Dr. Mihai Voicu, who was previously teaching this course for many
years.

The friendly climate created around us by our departmental chiefs
(Prof. Dr. ing. Nicoleta R¼adulescu, Prof. Dr. Gavriil P¼altineanu,
Prof. Dr. Romic¼a Tranda�r, etc.) had a great contribution to the
natural development of this project.

I thank to my assistant professor Marilena Jianu for many correc-
tions made during the reading of this material.
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A special thought goes to the late Dr. Ion Petric¼a who (many years
ago) had the "feeling" that I could write a "popular" book of Math
Analysis with the title "Analysis is easy, isn�t it?".

The last, but not the least, I express my gratitude to my wife for
helping me with drawings and for a lot of patience she had during my
writing of this book.

I will be very grateful to all the readers who will send me their re-
marks on this course to the e-mail address: angel.popescu@gmail.com,
in order to improve everything in future editions.

Prof. Dr. Sever Angel Popescu
Bucharest, January, 2009.



CHAPTER 1

The real line.

1. The real line. Sequences of real numbers

To measure is a basic human activity. To measure time, tempera-
ture, velocity, etc., reduces to measure lengths of segments on a line.
For this, we need a �xed point O on a straight line (d) and a "wit-

ness" oriented segment [OA1] (A1 6= O), i.e. a unitary vector
�!
OA1 (see

Fig.1.1). Here, unitary means that always in our considerations the
length of the segment [OA1] will be considered to have 1 meter. The

pair (O;
�!
i ); where

�!
i =

�!
OA1 is called a Cartesian (from the French

mathematician R. Descartes, the father of the Analytical Geometry,
what shortly means to study �gures by means of numbers) coordinate
system (or a frame of reference). We assume that the reader has a
practical knowledge of the digits 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 which represent
(in Fig.1.1) the points O;A1; A2; :::; A9: Let us now consider the point

B on the line (d) such that the length
�����!A9B

��� of the vector ��!A9B is 1

meter and B 6= A8; i.e.
��!
A9B =

�!
OA1 as FREE vectors.

right orientation

Fig. 1.1

O         A1    A2    A3       A4                 An

An+1
(d)+_

A­n                 A­4      A­3      A­2      A­1

A[11]

A[12]

OA3 = 3 OA1
inverse
orientation

Our intention is to associate a sequence of digits to the point B:
Here appears a �rst great idea of an anonymous inventor who denoted

B by A10; this means one group of ten units (a unit is one
�!
OA1) and 0

(nothing) from the next similar group. For instance, A64 is the point
on (d) which is between the points A60 and A70 such that it marks 6
groups of ten units + 4 units from the 7-th group. Now A269 marks
2 groups of hundreds + 6 groups of tens + 9 units, ... and so on. In
this way we can represent on the real line (d) any quantity which is
a multiple of a unity (for instance 130 km/h if the unity is 1 km/h).
The idea of grouping in units, tens, hundreds, thousands, etc. supply

1



2 1. THE REAL LINE.

us with an addition law for the set of the so called "natural numbers":
0; 1; 2; :::9; 10; 11; :::; 99; 100; 101; :::. We denote this last set by N.

For instance, let us explain what happens in the following addition:

(1.1)

3 6 8 +
9 7

4 6 5

First of all let us see what do we mean by 368: Here one has 3 groups
of one hundred each + 6 groups of one ten each + 8 units (i.e. 8 times�!
OA1). We explain now the result 465 (= 368 + 97) : 8 units + 7 units
is equal to 15 units. This means 5 units and 1 group of ten units. This
last 1 must be added to 6 + 9 and we get 16 groups of ten units each.
Since 10 groups of 10 units means a group of 1 hundred, we must write
6 for tens and add to 3 this last 1: So one gets 4 for hundreds. We say
that a point A on the line (d) is "less" than the point B on the same
line if the point B is on the right of A and not equal to it. Assume now
that A is represented by the sequence of digits anan�1:::a0 (a0 units, a1
tens, etc.) and B by the sequence bmbm�1:::b0: Here we suppose that an
and bm are distinct of 0 and that n � m: Otherwise, we change A and
B between them. Think now at the way we de�ned these sequences!
If n � m; A must be on the right of B or identical to it. If n > m
then A is greater than B: If n = m; but an > bn; again A is greater
than B: If n = m; an = bn; but an�1 < bn�1; then B is greater than
A: If n = m; an = bn; an�1 = bn�1; we compare an�2 with bn�2 and
so on. If all the corresponding terms of the above sequences are equal
one to each other (and n = m) we have that A is identical with B: If
for instance, n = m; an = bn; an�1 = bn�1; ::::; ak = bk; but ak�1 > bk�1
we must have A > B (A is greater than B). Here in fact we described
what is called the "lexicographic order" in the set of �nite sequences
(de�ne it!). If A � B one can subtract B from A as it follows in this
example:

(1.2)

3 6 8 �
9 7

2 7 1

This operation is as natural as the addition. Namely, 8 units minus
7 units is 1 unit. Since we cannot subtract 9 tens from 6 tens, we
"borrow" 1 hundred = 10 tents from 3: So, now 10 tens + 6 tens
= 16 tens minus 9 tens is equal to 7 tens. It remains 2 hundreds from
which we subtract 0 hundreds and obtain 2 hundreds. Instead of 10
tens we write 10 � 10 = 102 units, etc. Thus, any natural number
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A = anan�1:::a0 (we identi�ed here the name of the point with its
corresponding sequence of digits) can be uniquely written as:

(1.3) A = a0 + 10a1 + 10
2a2 + :::+ 10nan

This is also called the representation of A in the base (of numeration)
10: If instead of grouping units, tens, hundreds, etc., in groups of 10;
we group them in groups of 2 for instance, we obtain the writing of
same point A in base 2; etc. Why our ancestors chose 10; ::: we do not
know! Maybe because we have 10 �ngers...!!
Hence, the subtraction is not de�ned for any pair A; B. This means

that A�B does not belong to N for any pair A; B: For instance, 3� 4
is not in N, but it is in Z! The algebraists say that N is a monoid
and Z is a group (see any advanced Algebra course), relative to the
addition. We can also introduce a multiplication in Z. First of all, if
n;m are in N and both are not zero (otherwise we put n �m = 0), we

de�ne n � m not
= nm by n + n + ::: + n; m times. For extending this

operation to Z, we put by de�nition (�n)m = n(�m) = �(nm); for
any pair n;m of N. The algebraists say that Z is a ring relative to the
addition and this last de�ned multiplication (see the Algebra course).
We use here freely the elementary basic properties of the addition and
multiplication. For instance, 5 � (7 � 9) = 5 � 7 � 5 � 9; because of the
distributive property.
We also have a dynamic interpretation of the set N. 0 is for O: 1

is for the extremity A1 of the vector
�!
OA1: 2 is for the extremity of the

vector
�!
OA2 which is twice the vector

�!
OA1; etc. We must remark that

we just have chosen "an orientation" on the line (d); namely, we started
our above construction "from O to the right", not "to the left". So,
on (d) one has two orientations: the direct one, "to the right" and the
inverse one, "to the left". If we construct everything again, "on the
left" (by symmetry) we get the set of negative integers: �1;�2;�3;...
. The whole set Z = f:::;�3;�2;�1; 0; 1; 2; 3; :::g is called the set of
integers.
By "Arithmetic" we mean all the properties of N (or Z) derived from

the "algebraic" operations of addition and multiplication. A prime
number p is a natural number distinct of 1; which cannot be written as
a product p = nm; where n andm are natural numbers, both distinct of
1 (or of p). For instance, 2; 3; 5; 7; 11; 13; 17; ::: are prime numbers. Any
natural number n greater than 1 is either a prime number or it can be
decomposed into a �nite product of prime numbers (Euclid). Indeed,
if n is not a prime number, there are n1; n2; natural numbers such that
n = n1n2; where n1; n2 < n: We go on with the same procedure for n1
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and n2 instead of n; etc., up to the moment when n = p1p2p3:::pk; where
all p1; p2; :::; pk are prime numbers. Maybe some of them are equal one
to the other so, we can write n = qm1

1 qm2
2 :::qmh

h ; where q1; q2; :::; qh are
distinct primes.

Theorem 1. (The Fundamental Theorem of Arithmetic) Any nat-
ural number n greater than 1 is either a prime number or it can be
uniquely written as n = qm1

1 qm2
2 :::qmh

h ; where q1; q2; :::; qh are distinct
prime numbers.

All the other basic results in number theory are directly or indi-
rectly connected with this main result. For instance, Euclid proved
that the set of all prime numbers is in�nite. Indeed, if it was not so,
let q1; q2; :::; qN be all the distinct primes. Then, let us consider the
natural number m = q1q2:::qN + 1: It is either a prime number or it
is divisible by a prime number p: Since q1; q2; :::; qN are all the prime
numbers, this p must be equal to a qj for a j 2 f1; 2; :::; Ng: Then 1 is
divisible by qj; a contradiction (Why?). Thus, our assumption is false,
i. e. the set of prime numbers is in�nite. The most delicate hypotheses
and results in Mathematics are connected with this set.
Recall that a function f : X ! Y; where X and Y are arbitrary

sets, is said to be injective (or one-to-one) if for any pair of distinct
elements a and b from X; their images f(a) and f(b) are distinct in Y:
f is surjective (or onto... Y ) if any element y of Y is the image of an
element x of X; i. e. y = f(x): Injective + surjective means bijective.
If f is bijective we simply say that it is "a bijection" between the sets
X and Y: Or that they have "the same cardinal". For instance, N and
Z have the same cardinal because f : N ! Z, f(0) = 0; f(2n) = �n
and f(2n� 1) = n; for n = 1; 2; ::: is a bijection (Why?).

Generally, if a set A has the same cardinal with N we say that it
is countable. If a set B has the same cardinal with a set of the form
f1; 2; :::; ng we say that it is �nite and that it has n elements, or that
its cardinal is n: Why a set A cannot be �nite and countable at the
same time?
Any countable set A can be represented like a sequence: a0 = f(0);

a1 = f(1); a2 = f(2); ::: where f : N! A is a bijection between N and
A (see the de�nition of countability!). Conversely, any set A which can
be represented like a sequence is countable, i.e. it is the image of the
natural number set N through a bijection f (prove this!). Hence, we
de�ne "a sequence" in a set A by a function g : N ! A: Usually we
denote g(n) by an and write the sequence g as a0; a1; a2; :::; an; ::: or
simply as fang; where an is said to be the general term of the sequence
g: Here, for instance, a5 is called the term of rank 5 of the sequence g:
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A sequence fbmg is called a "subsequence" of the sequence fang if there
is a sequence k1 < k2 < ::: < kn < ::: of natural numbers such that for
any m 2 N, bm is equal to akm : For instance fbk = 2kg; k = 0; 1; 2; :::
is a subsequence of N = f0; 1; 2; :::g: But the sequence f0; 1; 2; 2; 2; :::g
is NOT a subsequence of N (Why?). Yes, the set f0; 1; 2g IS a subset
of N, but not ...a subsequence! Can N be a subsequence of Z?
Now our question is: "How do we represent 2 kg and a quarter

on the line (d)?" More exactly, to the point C on (d) which is the

extremity of a vector
�!
OC, obtained by taking

�!
OA1 twice + a quarter

from the same vector
�!
OA1; what kind of sequence of digits 0; 1; 2; :::; 9

could we associate? Let us divide the segment [OA1] into 10 equal
parts and let us associate the symbol 0:1 to the extremity A[11] of

the vector
�!
OA[11] which is the 10-th part of

�!
OA1: In the same way

we construct A[12]; A[13]; :::; A[19] and their corresponding symbols 0:2;
0:3; :::; 0:9. We continue by dividing the segment [OA[11]] into 10 equal
parts and obtain the new symbols 0:01; 0:02; ::::; 0:09, etc. We say
that 0:1 = 1

10
; 0:01 = 1

100
; and so on. For instance, the sequence (or the

number) 23:0145 represents the point E on (d) obtained in the following

way. To the vector
�!
OA23 we add:

1
100

�!
OA1 +

4
1000

�!
OA1 +

5
10000

�!
OA1: The

resultant vector is
��!
OE; etc. If one works (by symmetry) on the left of

O; one gets the "negative" numbers of the form: �anan�1:::a0:b1b2:::bm,
where ai and bj are digits from the set f0; 1; 2; ::::9g: This last number
can be written as:

�(10nan + 10n�1an�1 + :::+ a0 +
b1
10
+

b2
102

+ :::+
bm
10m

)

(1.4) = �anan�1:::a0b1b2:::bm
10m

Here appeared fractions like a
b
; where a and b are natural numbers

and b 6= 0:We suppose that the reader is familiar with the operations of
addition, subtraction, multiplication and division with such fractions.
If a 2 Z and b = 10m; from this discussion, we have the geometrical
meaning of the fraction a

b
: We also call any fraction, a number. What

is the geometrical meaning of 4
7
? Take again the vector

�!
OA1 and di-

vide it into 7 equal parts. Let
�!
OG be the 7-th part of

�!
OA1: Then

4
�!
OG =

��!
OH and H will be the point which corresponds to the number

4
7
: The Greeks said that the number 4

7
is obtained when we want to

measure a segment [ON ] with another segment [OM ] and if we can �nd
a third segment [OP ] such that [ON ] = 4[OP ] and [OM ] = 7[OP ]; i.e.
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[ON ]
[OM ]

= 4
7
: A representation of a number (for instance a fraction) as �

anan�1:::a0:b1b2:::bm::: is called a decimal representation (or a decimal
fraction). Let us try to �nd a decimal representation for the fraction 4

7
:

The idea is to write 4
7
as 1

10
� 40
7
: Then, 40 = 5 � 7+5 implies 40

7
= 5+ 5

7
;

where 5
7
< 1: Hence 4

7
= 5

10
+ 1

10
� 5
7
: Now we do the same for 5

7
: Namely,

5
7
= 1

10
� 50
7
= 1

10
(7 + 1

7
); so

4

7
=
1

10
[5 +

1

10
(7 +

1

7
)] =

5

10
+

7

102
+

1

102
� 1
7
:

Write now
1

7
=
1

10
� 10
7
=
1

10
(1 +

3

7
):

So

4

7
=
5

10
+

7

102
+

1

103
(1 +

3

7
) =

5

10
+

7

102
+

1

103
+

1

103
� 3
7
:

Since the remainders obtained by dividing natural numbers by 7 can
be 0; 1; 2; 3; 4; 5; or 6; in the sequence 4

7
; 5
7
; 1
7
; 3
7
; ..., at least one of the

fraction must appear again after at most 7 steps. Thus, let us go on!
Write

3

7
=
1

10
� 30
7
=
1

10
(4 +

2

7
):

So
4

7
=
5

10
+

7

102
+

1

103
+

4

104
+

1

104
� 2
7
:

But

2

7
=
1

10
� 20
7
=
1

10
(2 +

6

7
) =

2

10
+

1

102
� 60
7
=
2

10
+

1

102
(8 +

4

7
):

So
4

7
=
5

10
+

7

102
+

1

103
+

4

104
+

2

105
+

8

106
+

1

106
� 4
7
:

But
4

7
=
1

10
� 40
7
=
1

10
(5 +

5

7
):

Hence

(1.5)
4

7
=
5

10
+

7

102
+

1

103
+

4

104
+

2

105
+

8

106
+

5

107
+ :::

Since the digit 5 appears again, we must have:

4

7
= 0:5714285714285:::

not
= 0:(571428):
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We say that 4
7
is a simple periodical decimal fraction. Here we meet

with an "in�nite" sum, i.e. with a series:

0:(571428) =
5

10
(1 +

1

106
+ :::) +

7

102
(1 +

1

106
+ :::) + :::

= (
5

10
+

7

102
+

1

103
+

4

104
+

2

105
+

8

106
)(1 +

1

106
+

1

1012
+ :::):

But 1 + 1
106
+ 1

1012
+ ::: is an in�nite geometrical progression with the

�rst term 1 and the ratio 1
106
: The actual mathematical meaning of this

in�nite sum will be explained later.
The next question is if always one can measure a segment a by

another segment b and obtain as a result a fraction m
n
: Even Greeks

discovered in Antiquity that this operation is not always possible. For
instance, if one wants to measure the diagonal d of a square with the

side a of the same square we obtain a new number d
a
such that

�
d
a

�2
= 2

(apply Pythagoras� Theorem). If d
a
was a fraction m

n
; where m;n 2 N,

n 6= 0 and m;n have no common divisor except 1; then m2 = 2n2

and 2 would be a divisor of m; i.e. m = 2m0: Thus, 2m02 = n2 and
then n would also have 2 as a divisor, a contradiction. Usually such
a number d

a
is denoted by

p
2 because its square is 2: Such numbers

were not accepted by Greeks as being "real" numbers ! But
p
2 can

be represented on the real line (d): It is the point U which denotes the

extremity of a vector
�!
OU such that its length is equal to the length of

the diagonal of a square of side 1 (= the length of
�!
OA1). Any fraction

is called a rational number and any other number (like
p
2) is called

an irrational number.
p
2 is an algebraic number because it is a root

of an equation with rational coe¢cients (X2 � 2 = 0). We say that
a number is a real number if it is the result of a measurement, i.e. it
can be associated with a point of the real line (d): Up to now we know
that NOT all real numbers can be represented by ordinary fractions
(like

p
2). We shall indicate below a natural way to associate to any

point of the line (d) a decimal fraction, usually in�nite. Recall that to

the point An (
�!
OAn = n

�!
OA1) we associated a natural number n (given

as a �nite sequence of digits). The symmetric point of An relative to
the origin O was denoted by A�n (see Fig.1.1). Our intuition says that
any pointM belongs to a segment of the type [An; An+1); where n here
can be positive or nonpositive (i.e. n 2 Z). We want to associate to
the point M its coordinate xM i.e. a decimal number in the interval
[n; n + 1) = the set of all the real numbers (known or unknown up to
now!) which are greater or equal to n and less than n + 1 (relative
to the above lexicographic order). So [

n2Z
[An; An+1) = all the points of
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(d): But this last assertion cannot be mathematically proved using only
previous simpler results! It is called the Archimedes� Axiom. In the
language of the real numbers it says that any such number r belongs to
an interval of the type [n; n+ 1): This n is called the integral part of r
and it is denoted by [r]: For instance, [3:445] = 3; but [�3:445] = �4;
because �3:445 2 [�4;�3): So, our point M belongs to an interval
of the type [An; An+1) for ONLY one n = �akak�1:::a0; where ai are
digits. Let us divide the segment [An; An+1) into 10 equal parts by 9
points B1; B2; :::; B9; such that:

[An; An+1) = [An
not
= B0; B1) [ [B1; B2) [ ::: [ [B9; An+1 not= B10):

To these points we obviously associate the following rational numbers:
B1 ! n+ 0:1;

B2 ! n+ 0:2; :::; B9 ! n+ 0:9:

Since M 2 [An; An+1); M belongs to one and only to one subsegment
[Bi; Bi+1); where i 2 f0; 1; :::; 9g: By de�nition we take as the �rst
decimal of xM to be this last digit b1 = i: If M is just Bi we have
xM = �akak�1:::a0:b1. If M is on the right of Bi the actual xM will
be greater then the rational number akak�1:::a0:b1 and we continue our
above division process. Namely, instead of [An; An+1) we take [Bi; Bi+1)
that M belongs to and divide this last interval into 10 equal parts by
the points C0 = Bi; C1; :::; C9 and C10 = Bi+1: There is only one j such
that M 2 [Cj; Cj+1): By de�nition, the second decimal of xM is b2 = j:
If M = Cj; then xM = �akak�1:::a0:b1b2 and xM would be a rational
number. If NOT, then we go on with the segment [Cj; Cj+1) instead of
[Bi; Bi+1); etc. If at a moment M will be the left edge of an interval
obtained like above, then xM will have a �nite decimal representation,
i.e. it will be a rational number. If M will never be in this situation,
then xM can or cannot be a rational number. For instance, the point
P which corresponds to the fraction 4

7
is in this last position but, ... it

is represented by a fraction, so xP is a rational number. The point V
which corresponds to

p
2 is in the same position as P; but xV is not a

rational number as we proved above. The segments constructed above,
are contained one into the other:

[An; An+1) � [Bi; Bi+1) � [Cj; Cj+1) � ::::

If M is not the left edge of no one of these segments, then their inter-
section is exactly M (Why?).

In general, the following question arises. If one has a tower of closed
segments

[T1; U1] � [T2; U2] � ::: � [Tn; Un] � :::



1. THE REAL LINE. SEQUENCES OF REAL NUMBERS 9

on the real line (d); their intersection is empty or not? Our intuition
says that it could not be empty for ever! But,... there is no mathemat-
ical proof for this! This is way this last assertion is an axiom, called
the Cantor�s Axiom. Now we can call a real number r any decimal
fraction (�nite or not) of the type:

(1.6) r = �akak�1:::a0:b1b2:::bm:::
We can write this "number" as a sum of some special type of fractions

(1.7) r = �
�
10kak + :::+ 10a1 + a0 +

b1
10
+

b2
102

+ :::+
bm
10m

+ :::

�

Using this last representation, it is not di¢cult to de�ne the usual
elementary operations of addition, subtraction, multiplication, and di-
vision for the set R of all the real numbers (do it and �nd a natural
explanation for the rules you learned in the high school!-You must also
use the fact that r = lim

m!1
rm; where

rm = �
�
10kak + :::+ 10a1 + a0 +

b1
10
+

b2
102

+ :::+
bm
10m

�

and the usual operations with convergent sequences). The algebraists
say that R together with the addition and multiplication is a �eld (see
the exact de�nition of a �eld in any Algebra course and verify this last
assertion!). Because of the fact that the real numbers are nothing else
than a representation of the points of the real line (together with a
Cartesian reference frame on it!), the Archimedes�s and the Cantor�s
axioms work on R. They can be expressed in the following way (in
language of numbers...):

Axiom 1. (Archimedes�s Axiom) For any real number r there is
one and only one integer number n such that n � r < n+ 1:

Axiom 2. (Cantor�s Axiom) Let a1 � a2 �; :::;� an �; ::: and
b1 � b2 �; :::;� bn �; ::: be two sequences of real numbers such that for
any n one has that an � bn: Then there is at least one real number r
between an and bn for any n 2 N. If in addition, the di¤erence bn� an
becomes smaller and smaller to zero, whenever n becomes larger and
larger, then this real number r is unique (in fact, this last assertion is
not an axiom !).

Hence, the real numbers can always be seen like points on a real
line (d): If we change the line and (or) the Cartesian reference frame we
clearly obtain di¤erent sets of real numbers. But,...all these �elds of real
numbers are isomorphic like ordered �elds. This means that for any
two such �elds R1 and R2 there is at least one bijection f : R1 ! R2
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such that f(x + y) = f(x) + f(y); f(xy) = f(x)f(y) (f preserves
the algebraic structure of �elds) and f(x) � f(y); whenever x � y
(f preserves the order introduced above). Here x; y 2 R1: In fact, it
is not di¢cult to construct such a bijection. If we take x 2 R1; it
is the decimal representation of a point X on the �rst real line (d1):
But always one can construct a natural bijection g between the points
of (d1) and the points of (d2) which carries the Cartesian coordinate
system of the �rst line into the coordinate system of the second line.
Now we take for f(x) the real number which corresponds to the point
g(X) of the second line (prove that this construction works).

From now on we �x a �eld R of real numbers and we assume that
the reader knows the usual elementary rules of operating in this R. It is
of a great bene�t if one always think of a real number as being a point
on a �xed real line (d): So, ... draw everything or almost everything!
This is why we say a point instead of a number and a number instead
of a point!

We realize that the "practical" representation of an irrational num-
ber on the real line (d) is impossible! This means that you will never
�nd a �nite algorithm to do this. Because the point on (d) which cor-
responds to such an irrational number is obtained as the intersection
of an in�nite number of closed intervals, each of them contained into
another one. Since the length of these intervals becomes smaller and
smaller up to zero, practically we can approximate the real position of
that point by one of the two ends of such a "very small" interval.
We must remark that the correspondence between the points of the

real line (d) and the decimal representations is not a bijection. For
instance, 0:999::: = 1: But,... the correspondence between the points
of the real line (d) and the real numbers is a bijection! (Descartes�
bijection).

Let us come back and recall that the set of natural numbers

N = f0; 1; :::; 9; 10; 11; :::; 20; 21; :::; n; :::g
can be naturally embedded in the ring of integers

Z = f0; 1;�1; 2;�2; :::; n;�n; :::g;
where n is a natural number. This embedding preserves the usual
operations of addition and multiplication. Both sets N and Z are clearly
countable because they are naturally represented like sequences. What
is the di¤erence between N and Z? The equation X � 3 = 0 has a
solution in N, x = 3; whereas the equation X + 3 = 0 has NO solution
in N, but it has the solution x = �3 in Z. The next step is to see that
the general linear equation of the form aX + b = 0; where a; b 2 Z,
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may have no solution in Z. For instance, 2X+1 = 0 has no solution in
Z, but its solution is the fraction �1

2
= �1

2
which is a rational number.

Let us denote by Q the �eld of rational numbers and see that any
integer number m can be represented as a rational number: m = m

1
:

So, N � Z � Q � R, since any rational number is a particular real
number by the de�nition of a real number.

Theorem 2. The rational number �eld Q is also a countable set.

Proof. It will be enough to represent the positive elements of Q as
a subsequence of a sequence (Why?-Use the same trick like in the case
of the countability of Z). Look now carefully to the following in�nite
table

1
1
! 1

2
1
3
! 1

4
1
5
! 1

6
1
7
! 1

8
: : : : :

. % . % . % .
2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

: : : : :
# % . % . % .
3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

: : : : :
. % . % .

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

: : : : :
# % . % .
5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

: : : : :
. % .

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

: : : : :
# % .
7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

: : : : :
.

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

: : : : :
#
: : : : : : : : : : : : : : : : : : : :

and to the arrows which indicate "the next term" in the sequence.
This sequence covers ALL the entries of this table and any positive
rational number is an element of this sequence, i.e. Q+ can be viewed
as a subsequence of this last sequence. Thus Q+ is countable. Since
Q = Q� [ f0g [Q+; Q is also countable. �

Recall that a real number r is a "disjoint union" of two sequences
of digits with + or � in front of it:

(1.8) r = �akak�1:::a0:b1b2:::bn:::
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The �rst sequence is always �nite: ak; ak�1; :::; a0: After its last digit
a0 (the units digit) we put a point ":" . Then we continue with the
digits of the second sequence: b1; b2; :::; bn; ::: . As we saw above, this
last sequence can be in�nite. If this last sequence is �nite, i.e. if from
a moment on bn+1 = bn+2 = ::: = 0; we say that r is a simple rational
number. Any simple rational number is a fraction of the form a

10n

where a 2 Z and n 2 N. If r is not a simple rational number, it can be
canonically approximated by the simple rational numbers

rn = �akak�1:::a0:b1b2:::bn;
for n = 1; 2; :::: This means that when n becomes larger and larger, the
absolute value
(1.9)

errorn = jr � rnj = 0: 00:::0| {z }
n�times

bn+1bn+2::: =
1

10n+1
(bn+1+

bn+2
10
+
bn+3
102

+:::)

becomes closer and closer to 0: Indeed,

1

10n+1
(bn+1 +

bn+2
10

+
bn+3
102

+ :::) � 1

10n+1
(9 +

9

10
+

9

102
+ :::) =

1

10n

and, since 1
10n

< 1
n
(prove it!), one gets that jr � rnj ! 0 (tends to 0);

when n!1 (the values of n become larger and larger).

Remark 1. Hence, in any interval (a; b); a 6= b; a; b real numbers,
one can �nd an in�nite numbers of simple rational numbers (prove it!).

But, what is the mathematical model for the fact that a sequence
fxng; n = 0; 1; ::: tends to 0 (i.e. jxnj becomes closer and closer to 0,
when n becomes larger and larger (n!1))?
Definition 1. We say that a sequence fxng; n = 0; 1; ::: is conver-

gent to 0 (or tends to 0); when n tends to 1 (n!1); if for any posi-
tive (small) real number " > 0; there is a natural number N" (depending
on ") such that jxnj < " for any n � N":We simply write this: xn ! 0;
or, more formally: lim

n!1
xn = 0; or, less formally: limxn = 0: We also

say that a sequence fxng; n = 1; 2; ::: is convergent to a real number
x (or that x is the limit of fxng; write lim

n!1
xn = x) if the di¤erence

sequence fxn � xg; n = 1; 2; ::: is convergent to 0; or, if the "distance"
jxn � xj between xn and x becomes smaller and smaller as n ! 1:
This is equivalent to saying that for any positive (small) real number ";
all the terms of the sequence fxng; n = 0; 1; :::; except a �nite number
of them, belong to the open interval (x � "; x + "): Such an interval,
centered at x and of "radius "", is called an "-neighborhood of x:
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Theorem 3. Let fxng be a convergent sequence. Then its limit is
a unique real number.

Proof. Let us assume that x and x0 are two distinct limits of the
sequence fxng and let " be a positive small real number such that
" < jx� x0j : Since both x and x0 are limits of the sequence fxng; for
n large enough, one must have jxn � xj < "

4
and jx0 � xnj < "

4
: Now

" < jx0 � xj = jx0 � xn + xn � xj � jx0 � xnj+ jxn � xj <
"

4
+
"

4
=
"

2
;

or " < "
2
; a contradiction! So, any two limits of the sequence fxng must

be equal! �

In (1.9) we have in fact that any real number r can be approximated
by its simple rational number components (or approximates) rn; i.e.
lim rn = r: We say that the set of simple rational numbers is dense in
R. In particular, Q is dense in R. Let m be a �xed nonzero natural
number and let Qm be the set of fractions of the form

a
mn , where a runs

in Z and n runs in N. Then any real number r is a limit of elements
from Qm; i.e. Qm is dense in R (prove it!-write r in the basism; instead
of 10).

We just used above that the sequence f 1
n
g; n = 1; 2; ::: is convergent

to 0: Our intuition says that if we divide the unity vector
�!
OA1 (see

Fig.1.1) into n equal parts, the length 1
n
of one of them becomes smaller

and smaller. But,...why? What is the mathematical explanation for
this?

Theorem 4. The sequence f 1
n
g is convergent to 0:

Proof. We apply De�nition 1. Let " > 0 be a small positive real
number and, by using the Archimedes�s Axiom, let N" be the unique
natural number such that 1

"
2 [N" � 1; N"): So, for any n � N"; one

has that 1
"
< N" � n; i.e. 1

n
< ": �

Remark 2. The absolute value or the modulus jrj of the real number
r from (1.8) is simply

akak�1:::a0:b1b2:::bn:::;

i.e. r without minus if it has one. For instance, j�3:14j = 3:14 =
j3:14j : Since the function dist; which associates to any pair of real
number (x; y) the nonnegative real number jx� yj ; i.e. dist(x; y) =
jx� yj ; has the following basic properties (prove them!):
i) dist(x; y) = 0; if and only if x = y;
ii) dist(x; y) = dist(y; x);
iii) dist(x; y) � dist(x; z) + dist(z; y) (the triangle inequality),
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for any x; y; z in R, we say that dist(x; y) = jx� yj is the distance
between x and y and that R together with this distance function dist is
a metric space.

Another example of a metric space is the Cartesian plane xOy
with the distance function between two pointsM1(x1; y1) andM2(x2; y2)
given by the formula:

dist(M1;M2) =
������!M1M2

��� =
p
(x2 � x1)2 + (y2 � y1)2;

i.e. the length of the segment [M1M2]: Here we can see why the property
iii) was called "the triangle property" (be conscious of this by drawing
a triangle in plane...!).

Now, what is the di¤erence between the rational number �eldQ and
the real number �eld R? The �rst one is that Q is countable and, as
the following result says, R is not countable, so the subset of irrational
numbers is "greater" than the subset of rational numbers.

Theorem 5. (Cantor�s Theorem). The set R is not countable,
i.e. one can NEVER represent the whole set of the real numbers as a
sequence.

Proof. Let r be like in (1.8). It is enough to prove that the set S
of all the sequences fb1; b2; :::; bn; :::g; where bn is a digit, is not count-
able. Suppose on the contrary, namely that S can be represented like
a sequence of ... sequences: S = fB1; B2; :::; Bn; :::g; where

Bn = fbn1; bn2; bn3; :::; bnn; :::g;
and bnj are digits. In order to obtain a contradiction, it is enough
to construct a new sequence of digits, which is distinct of any Bi for
i = 1; 2; ::: . Let C = fc1; c2; :::; cn; :::g with the following property:
cn = bnn+1; if bnn 6= 9 and cn = 0; if bnn = 9: Now, let us see that C is
not in S: Assume that C = Bk for a k 2 f1; 2; :::g: By the de�nition of
ck, this last one cannot be equal to bkk; thus the k-th term of C is not
equal to the k-th term of Bk and so, C 6= Bk; a contradiction! Hence
C =2 S: So S cannot be represented like a sequence. �

It is not di¢cult to prove that the subset of R which consists of all
the algebraic elements over Q (roots of polynomials with coe¢cients in
Q) is countable. So, R contains an uncountable subset of transcendental
numbers (numbers which are not algebraic). In fact we know very

few of them, e; �; e
p
2; etc. A real number which is not rational is

called an irrational number. Since any interval (a; b) is in a one-to-
one correspondence onto the interval (0; 1) (f : (0; 1) ! (a; b); f(t) =
a + (b � a)t is a bijection between (0; 1) and (a; b)) and since tan :
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(��
2
; �
2
)! R is a bijection between (��

2
; �
2
) and R, there is a bijection

between R and any nontrivial interval (a; b); does not matter as small
as this last interval is.

Remark 3. Hence, (a; b) with a 6= b is not countable. Thus, in
(a; b) one can �nd an in�nite number of irrational numbers and even
an in�nite number of transcendental numbers (why?-explain step by
step!).

Can we solve any equation in R ? The answer is no! Even the
simple equation X2 + 1 = 0; with the coe¢cients in Z has no real
solution. Why? Because x = 0 is not a solution and, if x 6= 0; then x2
is positive (see the multiplication rule of signs!). So, x2 + 1 is greater
than 1; thus it cannot be zero. In order to solve this last equation we
need to enlarge R up to another �eld C, the complex number �eld.
Its algebraic structure is the following. Take the 2-dimensional real
vector space V = R� R with the componentwise addition and the
componentwise scalar multiplication. Then we introduce a "strange"
multiplication:

(1.10) (a; b)(c; d)
def
= (ac� bd; ad+ bc):

It is not di¢cult to prove that V together with this multiplication
becomes a �eld in which (0; 1)2 = (�1; 0); identi�ed with the real
number �1; because a ! (a; 0) is a canonical embedding of R into
V: This new �eld is usually denoted by C. It is clear that �(0; 1) are
the solutions of the equation X2 + 1 = 0: What is amazing is that C.
F. Gauss proved that any polynomial with coe¢cients in C has all its
roots in C. The algebraists say that C is algebraically closed (it cannot
be enlarged by adding to it new roots of polynomials with coe¢cients
in it). Later, Frobenius proved that there is no other super�eld of R,
which has a �nite dimension over it, but C (which has dimension 2
over R). Here dimension means the dimension of C as a vector space
over R. Since any z = a + ib; where i = (0; 1) and a; b are unique real
numbers, f(1; 0); (0; 1)g is a basis in C. So the dimension of C over R
is 2:
Let us now come back to our problem relative to the di¤erences

between Q and R. Since Q is a sub�eld of R, the Archimedes Axiom
also works on Q. But, what about Cantor�s Axiom? We know thatp
2 is not in Q. Let us consider the (in�nite) decimal representation ofp
2 :

(1.11)
p
2 = 1:41b3b4:::bn:::
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and let us denote by xn = 1:41b3b4:::bn; the corresponding n-th simple
rational number of

p
2: It is clear that the sequence fxng is an increas-

ing sequence which converges to
p
2: Let us also consider the following

decreasing sequence fyng of simple rational numbers, convergent to
the same

p
2: y1 = 1:5; y2 = 1:42; :::; yn = 1:41b3b4:::bn�1cnbn+1bn+2:::;

where cn = bn + 1; if bn 6= 9 and cn = bn = 9; if bn = 9: It is easy to
see that the intersection of all the closed intervals [xn; yn]; n = 1; 2; :::;
in Q, is empty in Q (since the intersection in R is exactly

p
2; which is

not in Q). Hence the Cantor axiom does not work for the ordered �eld
Q.

In this last counterexample we needed some tricks, so it will be
desirable to have an equivalent statement to the Cantor�s Axiom. For
this we introduce two important new notions, namely the notion of the
least upper bound (LUB) and the notion of the greatest lower bound
(GLB) of a given subset of R. We do everything for the LUB and we
leave to the reader to translate all of these in the case of the GLB.

Let A be a nonempty subset in R. A real number z is called an
upper bound for A if any element a of A is less or equal to z: A least
upper bound (LUB) for A is (if it does exist!) the least possible z which
is an upper bound for A: For instance, the LUB of A = [0; 7) is 7 and
the GLB of A is 0: We cannot have two distinct LUB for the same
subset A (Why?). If A is (upper) unbounded (i.e. if for any natural
number n there is at least one element b of A such that b > n), then A
has no upper bound in R and as a logical consequence it has no LUB
in R. For instance, A = [0;1) has no upper bound in R, but 0 is the
GLB of A: R and Z have neither an LUB nor a GLB in R.

Usually, the LUB of a subset A is denoted by supA (the supremum
of A) and the GLB of a subset B is denoted by inf B (in�mum of B).

Theorem 6. (LUB test) Let A be a subset of R. Then c is the LUB
of A if and only if for any small positive real number " > 0; there are
an element a of A such that c� " < a � c and an upper bound z of A
with c � z < c+": This is equivalent to saying that any "-neighborhood
of c must simultaneously contain an element a of A and an upper bound
z of A (Why?).

Proof. Let us suppose that c = supA: Assume that we found an
" > 0 such that all the elements of A are less or equal to c � ": So
c� " is an upper bound of A less than c; a contradiction, because, by
de�nition, c is the least upper bound of A: Hence, there is at least one
a 2 A in the interval (c�"; c]: If all the upper bounds of A were greater
or equal to c+ "; then c would not be the least upper bound of A and
we would obtain again a contradiction.
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Conversely, let us assume that c is a real number with the property
described in the statement of the above theorem. If c were not supA;
we have two options: 1) c is not an upper bound of A; i.e. there is
at least one a greater than c: Taking now " = a � c and using our
hypothesis for this particular " > 0; we get an upper bound z of A in
the interval [c; c+ " = a); i.e. z is less than a: This is in contradiction
with the fact that z is an upper bound of A: Hence 1) cannot appear.
It remains only the second option: 2) c is an upper bound of A, but
it is not the least, namely there is another upper bound y which is
less than c: Take now " = c � y > 0 and use again the hypothesis of
the theorem for this new ": So, one can �nd an element b of A in the
interval (c�" = y; c]: Thus, b is greater than y; which was considered to
be an upper bound of A: Again a contradiction! Therefore, the second
option is also impossible and the proof is complete. �

The LUB test is very useful because it supply us with some impor-
tant results.

Theorem 7. The following statements are logically equivalent: i)
The Cantor Axiom (see Axiom 2) works in R, ii) Any upper bounded
subset A of R has a LUB in R and, iii) Any lower bounded subset B
of R has a GLB in R.

Proof. First of all let us see that ii) and iii) are equivalent. Let
us prove for instance that ii)) iii). For the lower bounded subset B
of R let us put �B = fx 2 R : �x 2 Bg; the symmetric subset of B
with respect to the origin O (on the real line (d)). It is not di¢cult to
see that the new subset �B is upper bounded in R and so, from ii) it
has a LUB b in R. We leave the reader (eventually using Theorem 6)
to prove that �b is the GLB of B in R.

We leave as an exercise for the reader to prove that iii)=) i).
Now we prove that i)=) ii). Let b0 be an upper bound of A and

let a0 be an element of A: It is clear that a0 � b0: If a0 = b0 we have
nothing more to prove because the LUB of A will be this common value
c = a0 = b0: Assume that a0 is less than b0 an let us divide the closed
interval [a0; b0] into two equal closed subintervals by the mid point c0:
By the "essential choice" we mean to choose the subinterval [a0; c0] if c0
is an upper bound for A; or to choose the subinterval [c0; b0] if there is
at least one element a01 2 A in the second subinterval, [c0; b0]: After we
have performed "the essential choice", let us denote by [a1; b1] either
the subinterval [a0; c0] in the �rst choice, or the subinterval [c0; b0] in
the case of the second choice. In both situations a1 2 A; b1 is an upper
bound of A and a0 � a1 � b1 � b0: Now we take the interval [a1; b1];
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divide it into two equal parts and repeat the "essential choice" for this
new interval [a1; b1], �nd a2 2 A and b2 an upper bound of A with

a0 � a1 � a2 � b2 � b1 � b0

and so on. We obtain two sequences: an increasing one and a decreasing
one in the following position:

a0 � a1 � ::: � an � ::: � bn � ::: � b1 � b0;

such that the distance dist(an; bn) =
dist(a0;b0)

2n
: In particular,

dist(an; bn)! 0;

whenever n ! 1: Now we can apply the Cantor Axiom and �nd a
unique point c belonging to all the intervals [an; bn] for any n = 1; 2; :::;
i. e. lim an = lim bn = c (Why?). We prove now that this c is exactly
supA: Let us now apply the LUB test (see Theorem 6). Take an " and
let us consider the "-neighborhood (c�"; c+"): Since lim an = lim bn =
c; there is an n 2 f1; 2; :::g such that [an; bn] � (c � "; c + "): But, by
the above construction, an 2 A and bn is an upper bound of A: So, by
the criterion of Theorem 6, we get that c = supA:

ii)=) i) Let fang and fbng be two sequences of real numbers such
that

a0 � a1 � ::: � an � ::: � bn � ::: � b1 � b0:

The subset A = fa0; a1; :::; an; :::g is upper bounded in R by any term of
the second sequence fbng: From ii) we have that A has a LUB c = supA
and c � bn for any n = 0; 1; ::: . Since c is in particular an upper bound
of A; one also has that an � c � bn for any n = 0; 1; ::: . Hence the
Cantor Axiom works on R. �

A sequence is said to be monotonous if it is either an increasing or
a decreasing sequence. For instance, xn =

1
n2+1

and yn = � 1
n2+1

are
monotonous sequences.

Remark 4. Let us now introduce two symbols: 1) 1, which is
considered to be greater than any real number r, r+1 =1; 1+1 =
1; and 2) �1; which is considered to be less then any real number r,
r+(�1) = �1; �1� (1) = �1, r �1 =1; if r > 0; r �1 = �1;
if r < 0: Moreover, r � (�1) = �1 if r > 0 and r � (�1) =1; if r is
negative. In the same logic,

1�1 = (�1)�(�1) =1; (�1)�1 = �1 =1�(�1); r

�1 = 0; etc:

The operations 0�(�1);1�1; 0
0
and 1

1 are not permitted. We denote

by R = f�1g [ R [ f1g and call it the accomplished (or completed)
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real line. By de�nition, a neighborhood of 1 is an open interval of
the form (M;1) and a neighborhood of �1 is an interval of the form
(�1; L); where M;L are real numbers. For instance, in R any subset
of real numbers is bounded (upper or lower) and an unbounded (in
R) increasing sequence is said to be "convergent to 1" (for example,
xn = n3 !1). But the sequence yn = (�1)nn is bounded in R but it is
not "convergent" there (Why?). Usually, if a sequence of real numbers
is "convergent to1" in R, we say that it is divergent in R. Sometimes,
by abuse, we write lim

n!1
xn = 1 when the sequence fxng is unbouded

and increasing. If fxng is a sequence in R and if L(fxng) is the set of
all the limits of all the convergent subsequences of fxng; we denote by
lim supfxng; the supL(fxng) and by lim inffxng; the inf L(fxng): For
instance, for the sequence xn = sin(2n+1

2
�) = (�1)n; lim sup xn = 1

and lim inf xn = �1 (prove this!).
Theorem 8. a) Let fxng be an increasing sequence in R. Then

lim sup xn exist in R and the sequence is convergent to lim sup xn in R.
If fxng is also upper bounded in R, then lim sup xn is its limit in R
too, i.e. limxn = lim sup xn. b) Let fyng be a decreasing sequence in
R. Then lim inf xn always exist in R and the sequence is convergent to
lim inf xn in R. If fxng is also lower bounded in R, then lim inf xn is
also in R and so limxn = lim sup xn:

Proof. We prove only a) and we think that b) is a good exercise
for the reader. If fxng is upper unbounded then, for any real number
M; there is at least one n with xn � M: Since fxng is an increasing
sequence, xn+p � xn for any p = 1; 2::: . So, outside the neighborhood
(M;1) of 1 we have only a �nite number of terms of our sequence,
i.e. xn ! 1; which is at the same time lim sup xn (Why?). If fxng is
upper bounded, then, using Theorem 7, we get that c = lim sup xn is a
real number. Take now an "-neighborhood (c� "; c+ ") of c: Since c is
the LUB of the set fxng; we can apply Theorem 6 and �nd an xm in the
interval (c � "; c]: Since the sequence is increasing, xm+1; xm+2; ::: are
in the same interval (Why?). So, outside this interval one has at most
a �nite number of terms of our sequence, i.e. xn ! c (see De�nition
1). �

Let us come back to the approximation of
p
2 = 1:41b3b4:::bn:::

(see (1.11)) by the increasing sequence xn = 1:41b3b4:::bn; n = 1; 2; :::
of simple rational numbers. This last sequence fxng is a sequence
in Q but its limit

p
2 is not in Q. However, this sequence has an

interesting property. If we �x an n 2 N, and if we consider the terms
xn; xn+1; xn+2; :::xn+p; we see that the distance between xn and xn+p
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goes to 0 independently of p 2 N, but dependently of n: This means
that from a rank N on the distance dist(xl; xm) becomes smaller and
smaller (l;m � N). Indeed,

dist(xn; xn+p) = 0: 00:::0| {z }
n�times

bn+1bn+2:::bn+p � 0: 00:::0| {z }
n�times

999::: =
1

10n
! 0

independently on p; i.e. for any small real number " > 0; there is a
rank N" such that whenever n � N" one has that dist(xn; xn+p) < ";
for any p = 1; 2; ::: .

Definition 2. Let fxng be a sequence of real numbers. We say
that fxng is a Cauchy sequence or a fundamental sequence if for any
small positive real number " > 0: there is a rank N" (depending on ")
such that jxn+p � xnj < " for any n � N" and for any p = 1; 2; :::: This
means that jxn+p � xnj ! 0; when n!1; independently on p:

For instance, the above sequence xn = 1:41b3b4:::bn; n = 1; 2; ::: is
a Cauchy sequence of rational numbers which is not convergent in Q,
but which is convergent in R, its limit being the real number

p
2: This

is why we say that Q is not "complete".

Definition 3. In general, a metric space X with its distance dist
(see Remark 2) is said to be complete if any Cauchy sequence fxng with
terms in X is convergent to a limit x of X:

Let us consider the following sequence

xn =
cos 1

2
+
cos 2

22
+
cos 3

23
+ :::+

cosn

2n
;

where the arcs are measured in radians. Let us prove that this last
sequence is a Cauchy sequence. For this, let us evaluate the distance

dist(xn; xn+p) = jxn+p � xnj =

=

����
cos(n+ 1)

2n+1
+
cos(n+ 2)

2n+2
+ :::+

cos(n+ p)

2n+p

���� <

<
1

2n+1
(1 +

1

2
+
1

22
+ :::) =

1

2n
:

This last equality comes from the de�nition of the in�nite geomet-
rical progression

1 +
1

2
+
1

22
+ :::

def
= lim

n!1

�
1 +

1

2
+
1

22
+ :::+

1

2n

�
= lim

n!1

1� 1
2n+1

1� 1
2

= 2
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So dist(xn; xn+p) tends to 0 independently of p; because
1
2n
goes to

0; whenever n!1; independently of p: Indeed, for a small " > 0; let
us �nd the �rst natural number N" such that

1
2N"

< ": Applying log2
we get N" > � log2 "; so N" = [� log2 "] + 1: Now, if n � N";

dist(xn; xn+p) <
1

2n
� 1

2N"
< ";

independently on p:

Theorem 9. Any convergent sequence fxng to x is also a Cauchy
sequence. Thus, the class of Cauchy sequences "appears" to be larger
then the class of convergent sequences.

Proof. We simply verify De�nition 2. Let " be a positive small real
number and let N" be a rank (dependent on ") such that jxn � xj < "

2

for any n � N" (see De�nition 1 with
"
2
instead of "). So,

jxn+p � xnj = jxn+p � x+ x� xnj � jxn+p � xj+ jxn � xj �
"

2
+
"

2
= "

for any n � N": Hence our convergent sequence is also a Cauchy se-
quence. �

A basic result in Mathematics was discovered by Cauchy: "Any
fundamental sequence of real numbers is convergent to a real number,
i.e. R is a "complete metric space".

To prove this important result we need some speci�c properties of
the Cauchy sequences.

Theorem 10. Any Cauchy sequence fxng is bounded, i.e. there is
a positive real number M such that jxnj � M for any n = 0; 1; ::: or,
equivalently, if there is an interval [A;B] in R such that all the terms
of the sequence fxng belong to this interval, i.e. xn 2 [A;B] for any
n = 0; 1; ::: (Why this equivalence?).

Proof. Take an arbitrary positive real number, for instance 2:
Since fxng is a Cauchy sequence, there is a rank N such that whenever
n � N; jxn+p � xnj < 2 for any p = 1; 2::: (see De�nition 2). In
particular, jxN+p � xN j < 2; or xN+p 2 (xN � 2; xN +2) for any p 2 N.
So, outside this last interval one may have at most x0; x1; :::; xN�1 as
terms of our sequence. Take now A = minfx0; x1; :::; xN�1; xN � 2g
and B = maxfx0; x1; :::; xN�1; xN + 2g: It is easy to see that all the
terms of the sequence fxng belong to the interval [A;B]: If one takes
now M = maxfjAj ; jBjg; then xn 2 [�M;M ]; or jxnj � M for any
n = 0; 1; ::: . �

Here is a strange property of the Cauchy sequences.
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Theorem 11. If a Cauchy sequence fxng contains at least one sub-
sequence fxkng; (k0 < k1 < k2 < ::: < kn < ::: ) which is convergent to
x; then the whole sequence fxng is convergent to the same x: Therefore,
all the other subsequences of fxng are convergent to x:
Proof. Let " be a small positive real number. Since fxkng is con-

vergent to to x whenever n ! 1; for n large enough, let us assume
that for n � N 0; one has

(1.12) jxkn � xj <
"

2
:

Since fxng is a Cauchy sequence, for n large enough, suppose n � N 00;
one has that

(1.13) jxn+p � xnj <
"

2
;

for any p = 1; 2; ::: . Let now N be a natural number greater than
N 0 and than N 00; at the same time. Let n be a �xed natural number
greater than N and let us choose km such that it is greater than this
�xed n and m itself is greater than N: So, km = n + p; for a natural
number p (= km � n). From (1.13) we get that

(1.14) jxkm � xnj <
"

2
;

because n > N > N 00: From (1.12) one has that

(1.15) jxkm � xj <
"

2
;

because m > N > N 0: Now,

jxn � xj = jxn � xkm + xkm � xj � jxkm � xnj+ jxkm � xj <
"

2
+
"

2
= ":

And this is true for any n > N: Hence, the sequence fxng is convergent
to x: We leave to the reader to convince himself (or herself) that if a
sequence fxng is convergent to a real number x; then any subsequence
of it is also convergent to the same x: �

We prove now a basic property of a bounded in�nite subset A of
real numbers. For this we give a de�nition.

Definition 4. We say that a subset A of real numbers has the
point (real number) x as a limit point if there is a sequence fang; with
distinct terms an from A; which is convergent to x:

For instance, 0 is a limit point of

A = f1; 1
2
;
1

3
; :::;

1

n
; :::g
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and of the interval [0; 1]: But 0 is NOT a limit point of the set B =
f0; 1; 2g (Why?). N and Z have no limit points in R! (Why?). Find
all the limit points of Q in R! (Hint: the whole R is the set of all the
limit points of Q, why?)

Theorem 12. (Cesaro-Bolzano-Weierstrass Theorem). Any in�-
nite and bounded subset A of R has at least one limit point in R, i.e.
there is an x 2 R and a nonconstant sequence fang with an 2 A for
any n = 0; 1; ::: , such that an ! x:

Proof. SinceA is bounded, there is a closed interval [a0; b0] (a0; b0 2
R) which contains A: Let us divide this last interval into two equal
closed subintervals and let denote by [a1; b1] that subinterval which con-
tains an in�nite number of elements of A: Let x1 be in [a1; b1] and in A,
i.e. x1 2 [a1; b1]\A: Let us divide now the interval [a1; b1] into two equal
closed subintervals and let us choose that one [a2; b2] which contains an
in�nite number of elements from A: Let x2 be in A\[a2; b2] and x2 6= x1:
We continue to construct subintervals [a3; b3]; [a4; b4]; :::; [an; bn]; ::: and
elements xn of A \ [an; bn]; such that xn =2 fx1; x2; :::; xn�1g for any
n = 3; 4; :::; n; ::: . Since the length of the interval [an; bn] is

l
2n
; where

l is b0� a0; the length of the initial interval, we can use Cantor Axiom
(Axiom 2) and �nd a unique real number x in the common intersection
1
\
n=0
[an; bn] of all the intervals [an; bn]: Since xn and x are in [an; bn];

dist(xn; x) � l
2n
so, xn ! x (see De�nition 1). Because xn; n = 1; 2; :::

are distinct elements of A; one has that x is a limit point of A and the
theorem is completely proved. �

Theorem 13. (Cauchy test 1). Any fundamental (Cauchy) se-
quence in R is convergent in R, i.e. R is a complete metric space.
This means that in R there is no di¤erence between the set of conver-
gent sequences and the set of Cauchy sequences (In Q there is!-Why?)

Proof. Let fyng be a fundamental sequence in R. If fyng has
only a �nite distinct terms then, from a rank on, the sequence becomes
a constant sequence, so it would be convergent to the value of the
constant terms. Let us assume that fyng has an in�nite number of
distinct terms, i.e. that the set A = fyng is in�nite. Since A is bounded
(see Theorem 10) and in�nite, it has a limit point y (see Theorem
12), i.e. there is a nonconstant subsequence fykng; n = 1; 2; ::: of the
sequence fyng; which is convergent to y: We apply now Theorem 11
and �nd that the whole sequence fyng is convergent to y: �
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This theorem has not only a great theoretical importance, but a
practical one too. For instance, take again the sequence

xn =
cos 1

2
+
cos 2

22
+
cos 3

23
+ :::+

cosn

2n
:

We proved that fxng is a Cauchy sequence. Now, we know (see The-
orem 13) that it is also a convergent sequence to an unknown limit
(we cannot express this limit as a decimal fraction!) x: Knowing that
xn ! x is a very good situation! For a large n we can approximate x
with xn: But this last one can be easily computed with an usual com-
puter. So, we have a good idea about the limit. Moreover, the Cauchy
test 1 is useful to check if a sequence is convergent or not. For instance,
the sequence fang is recurrently de�ned: a0 = 0; an =

p
2 + an�1 for

n = 1; 2; ::: . Let us prove that it is a Cauchy sequence. Indeed,

(1.16) an � an�1 =
p
2 + an�1 �

p
2 + an�2 =

an�1 � an�2p
2 + an�1 +

p
2 + an�2

<
1

2
(an�1 � an�2):

We can apply (1.16) (n� 1)-times and �nd

an � an�1 <
1

2
(an�1 � an�2) <

1

22
(an�2 � an�3) < ::: <

1

2n�1
(a1 � a0):

So,

an+p � an = an+p � an+p�1 + an+p�1 � an+p�2 + :::+ an+1 � an <

< (
1

2n+p�1
+

1

2n+p�2
+ :::+

1

2n
)(a1 � a0) <

<
1

2n
(1 +

1

2
+
1

22
+ :::)(a1 � a0) =

1

2n�1
(a1 � a0):

Here we just used that

1 +
1

2
+
1

22
+ :::

def
= lim

n!1
(1 +

1

2
+ :::+

1

2n
) = lim

1� 1
2n+1

1� 1
2

= 2:

Since fang is an increasing sequence (Why?), one has that

jan+p � anj <
1

2n�1
(a1 � a0);

so, jan+p � anj can be made as small as we want when n ! 1; inde-
pendently on p: Thus, fang is a Cauchy sequence (see De�nition 2).
Hence fang is convergent to a limit l (see Cauchy test 1). As we shall
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see in the following theorem (Theorem 14), we can apply the "oper-
ation" lim to the equality: an =

p
2 + an�1 and �nd: l =

p
2 + l; or

l = 2: Therefore, lim
n!1

an = 2:

Now, we describe some compatibilities of the "operation" lim (which
associates to a convergent sequence its limit), with the algebraic op-
erations "+"; " � "; " � "; " � "; with the order relation "� "; with the
functions xm; m

p
x; exp x; ln x; ax; loga; a > 0; sin x; cosx; tan x; cot x

and with their compositions. This means, ... with all the elementary
functions. We recall a basic de�nition:

Definition 5. Let (X; d1) and (Y; d2) be two metric spaces and let
f : X ! Y be a mapping de�ned on X with values in Y: We say that f
is continuous at x 2 X (with respect to these metric space structures) if
for any convergent sequence fxng in X; fxng ! x; i.e. d1(xn; x) ! 0
as n ! 1; one has that the corresponding sequence of the images,
ff(xn)g is convergent to f(x) in Y; i.e. d2(f(xn); f(x)) ! 0; when
n!1: If f is continuous at any x of X; we say that f is continuous
in X:

All the elementary functions (polynomials, rational functions, power
functions, exponential and logarithmic functions, trigonometric func-
tions and their compositions) are continuous on their de�nition do-
mains. To prove this, it is not always so easy. For instance, what

do we mean by 3
p
2? First of all, we de�ne 3

1
m , m = 1; 2; :::; by the

unique positive real root of the equation Xm � 3 = 0: Then we de�ne
3
n
m

def
=
�
3
1
m

�n
: By 3�

5
7 we understand 1

3
5
7
: Then, we approximate

p
2

with an increasing sequence frng of rational numbers, i.e. rn !
p
2

and rn < rn+1 for any n = 1; 2; :::: As we know, we simply take for rn
the rational number 1:b1b2:::bn; i.e. we get out all the decimals of

p
2

from the (n+ 1)-th decimal on. Now, by de�nition, 3
p
2 = lim

n!1
3rn : To

prove the existence of this limit is not an easy task. It is su¢cient to
prove that the sequence f3rng is a Cauchy sequence. But,... even this
one is di¢cult! So, the proof of the continuity of the power function
x! 3x is not so easy at all! This is why we tacitly assume that all the
elementary functions are continuous.

Theorem 14. Let fxng and fyng be two convergent sequences to x
and to y respectively. Then:

a) fxn � yng ! x� y;
b) fxnyng ! xy;
c) If yn and y are not zero for any n = 0; 1; ::: , then fxnyn g ! f

x
y
g:

d) If xn � yn for any n = 0; 1; ::: , then x � y;
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e) f(xn)mg ! xm for any �xed natural number m;
f) m
p
xn ! m

p
x if m is odd and, for xn � 0; m

p
xn ! m

p
x for any

natural number m;
g) fexp xng ! exp x and, if xn > 0; then fln xng ! ln x;
h) faxng ! ax and, if xn > 0; floga xng ! loga x for any �xed

a > 0;
i) sin xn ! sin x; cosxn ! cosx; tan xn ! tan x; cot xn ! cot x;

Proof. (partially) a) Let us prove for instance that fxn + yng !
x+ y: For this, let us evaluate the di¤erence:

jxn + yn � (x+ y)j = j(xn � x) + (yn � y)j � jxn � xj+ jyn � yj :
But jxn � xj ! 0 and jyn � yj ! 0; so their sum tends to 0 too (Why?).
Thus, jxn + yn � (x+ y)j also goes to 0:

d) Assume that x > y and take c = x�y
2
: Let us consider the open

intervals: I = (y � c; y + c) and J = (x � c; x + c): Since xn ! x and
yn ! y; for a large n one can �nd xn 2 J and yn 2 I: But any element
of I is less than any element of J: Hence yn < xn and we obtain a
contradiction, because, for any n; one has in the hypothesis of d) that
xn � yn:
i) Let us prove for instance that sin xn ! sin x; whenever xn ! x:

First of all we remark that jsin�j = sin j�j for any � 2 (��
2
; �
2
): Since

xn ! x; one can take n large enough such that xn � x 2 (��
2
; �
2
): If

� is measured in radians and � 2 (��
2
; �
2
) then, an easy geometrical

construction (see Fig.1.2) tell us that sin j�j � j�j :
Let us use now some trigonometry:

jsin xn � sin xj = 2
����sin

xn � x
2

cos
xn + x

2

���� � 2 �
����
xn � x
2

���� = jxn � xj ;

so jsin xn � sin xj ! 0; whenever xn ! x: �

O A

B

C

1

1
α BC = sin α < BA < lenght (arcBA) = α

Fig. 1.2

Corollary 1. Let f : A! B and g : B ! C (A;B;C are subsets
in R) be two functions with the following property: If f(xn) ! f(x)
and g(yn) ! g(y) for ANY convergent sequences fxng to x and fyng
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to y, then (g � f)(xn) ! (g � f)(x): The functions f and g considered
here are continuous on their de�nition domains in the sense of De�ni-
tion 5. So, the composition between two continuous functions is also a
continuous function. Moreover,the sum, the di¤erence, the product and
the quotient of two continuous functions is also a continuous function.

Proof. Since f and g are continuous (see the de�nition in the
statement of the theorem) then, xn ! x implies f(xn) ! f(x) (con-
tinuity of f). Since g is continuous, g(f(xn)) ! g(f(x)); i.e. (g �
f)(xn) ! (g � f) (x): Thus g � f is also continuous. The other state-
ments are easy consequences of some of the previous statements of the
above theorem (prove them!). �

2. Sequences of complex numbers

Let C be the complex number �eld. Since any element z of C is a
pair z = (x; y) of two real numbers and since the element i = (0; 1) has
the property that i(y; 0) = (0; y) (see the multiplication rule de�ned in
(1.10)), we can write z = x+iy; where we identify (x; 0) and (y; 0) with
x and y respectively. Let us �x a Cartesian coordinate system fO; i; jg
in a plane (P ): Here i and j are orthogonal versors and they give the
directions and the orientations of the Ox-axis and Oy-axis respectively.

Since any vector
��!
OM; where M is an arbitrary point in the plane (P );

can be uniquely written as:
��!
OM = xi + yj; where x; y 2 R, we call x

and y the coordinates of the point M: Write M(x; y): The association
z = x+ iy  !M(x; y) give rise to a geometrical representation of the
complex number �eld C. This is way we always call C, the complex
plane. The distance d between two complex numbers z1 = x1+ iy1 and
z2 = x2+ iy2 is simply the distance between their corresponding points
M1(x1; y1) and M2(x2; y2) respectively, i.e.

d(z1; z2)
def
=
p
(x2 � x1)2 + (y2 � y1)2

It is not di¢cult to check the three properties of a distance function
for this d:

A sequence fzng of complex numbers is said to be convergent to z
if the numerical sequence of real numbers fd(zn � z)g is convergent to
0: For instance, zn =

1
n
+ (1 + 1

n
)ni is convergent to ei because

d(zn; ei) =

r
(
1

n
� 0)2 + [(1 + 1

n
)n � e]2 ! 0:

The sequence fzng is said to be fundamental (or Cauchy) if for any " >
0; there is a natural numberN" (depending of ") such that d(zn+p; zn) <
" for any n � N" and for any p = 1; 2; ::: .
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The following result reduces the study of the convergence of a se-
quence zn = xn + iyn in C to the study of the convergence of the real
and imaginary part fxng and fyng respectively.
Theorem 15. Let fzn = xn + ynig be a sequence of complex num-

bers (here xn and yn are real numbers). Then the sequence fzng is
convergent to the complex number z = x+yi if and only if xn ! x and
yn ! y as sequences of real numbers.

Proof. One has the following double implications:

zn ! z , d(zn; z) =
p
(xn � x)2 + (yn � y)2 ! 0, xn � x! 0

and yn � y ! 0 (simultaneously), i.e. if and only if xn ! x and
yn ! y: �

The sequence zn = 3 + (2n sin 1
n
)i tends to 3 + 2i because 3 ! 3

and 2n sin 1
n
= 2

sin 1
n

1
n

! 2:

Theorem 16. Relative to the distance d; the complex number �eld
C is complete, i.e. any Cauchy sequence fzng of C is convergent to a
complex number z:

Proof. Let zn = xn+yni; where xn and yn are real numbers. Since
fzng is a Cauchy sequence if and only if d(zn+p; zn) is as small as we
want when n is large enough, independent on p = 1; 2; ::: and since

d(zn+p; zn) =
q
(xn+p � xn)2 + (yn+p � yn)2;

one sees that jxn+p � xnj and jyn+p � ynj are simultaneously small enough
whenever n is large enough, independent on p: But this is equivalent
to saying that fxng and fyng are both Cauchy sequences. Since R is
complete (see Theorem 13), fxng is convergent to a real number x and
fyng is convergent to another real number y: Let us put z = x + yi:
Applying now Theorem 15 we get that zn is convergent to z: �

We say that a subset A of C is bounded if there is a su¢ciently
large ball B(0; r) = fz 2 C j jzj = d(0; z) < rg; with centre at 0 and
of radius r > 0; such that A � B(0; r): We also have for C a Bolzano-
Weierstrass type theorem. Namely, any in�nite bounded sequence fzng
of complex numbers has a convergent subsequence. If we add a symbol
1 to C with similar properties like the in�nite 1 for R, we get C =
C[f1g; the Riemann sphere. It is easy to see that in C any sequence
has a convergent subsequence. Because of this last property, we say
that C and R are the "compacti�cations" of C and of R respectively.
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Generally, in a metric space (A; d) a subset M is said to be compact
if any sequence of M has at least a convergent subsequence with its
limit in M . For instance, any closed interval [a; b] is a compact subset
of R (because of Bolzano-Weierstrass Theorem). A subset C of C is
said to be closed if for any sequence fzng of elements in C; which is
convergent to z in C, its limit z is also in C: Then, the compact subsets
of C are exactly the closed and bounded subsets of C (have you any
idea to prove this?-try a similar idea like that one from the real line
situation!)

3. Problems

1. Prove that the following subsets of R have the same cardinal:
a) A = (0; 1) and B = R, b) A = (0; 1] and B = R, c) A = (�1; a)

and B = R, d) A = (0; 1) and B = (a; b); e) A = (a;1) and B = (0; 1];
f) A = Q \ [0; 3] and B = Q \ [�7; 3]:

2. Prove that sup(A + B) = supA + supB and, if A;B � [0;1);
then sup(A �B) = supA � supB; where A+B = fx+ y j x 2 A; y 2 Bg
and A � B = fxy j x 2 A; y 2 Bg: De�ne inf A and prove the same
equalities for inf instead of sup :
3. Construct R = R [ f�1;1g and prove that any sequence

of elements in R has a convergent subsequence in R. Prove that if
a sequence fxng is convergent in R; then it has only one limit point,
namely the limit of the sequence. Find the limit points for the sequence
an = cos n�

3
; n = 0; 1; 2; ::: . Recall that x 2 M is a limit point of a

subset A of a metric space (M;d) if there is a nonconstant sequence
fxng of elements from A; which is convergent to x:
4. Prove that if an+1

an
! l; where an > 0 for any n; then n

p
an ! l:

Apply this result to compute the limit: lim n

q
(2n)!

1�3�5�:::�(4n+1) ; whenever
n!1:
5. Prove that the set R nQ of irrational numbers is not countable.

Prove that it has the same cardinal as the cardinal of R (i.e. there is a
bijection between R nQ and R).
6. Prove that the length of the diagonal of a square which has the

side a rational number, is not a rational number.
7. Are 3

p
5 and 7

p
3 rational numbers? Are they algebraic numbers?

8. Prove that the metric space ([0; 1); d); where d(x; y) = jx� yj ;
is not a complete metric space, i.e. there is at least a Cauchy sequence
fxng; xn 2 [0; 1); which has no limit in [0; 1): Prove that this limit must
be 1:
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9. De�ne the notion of "boundedness" in a general metric space.
Is Cesaro�s Lemma (any in�nite bounded sequence has at least a con-
vergent subsequence) true in a general metric space? Find a simple
counterexample.

10. Why a decreasing sequence always has a limit in R? If instead
of R you put Q = Q [ f�1;1g; is the last statement also true?

11. Prove that the Archimedes� Axiom is equivalent to the fact that
lim
n!1

1
n
= 0: If instead of this last limit we put lim

n!1
2n+3
3n�2 =

2
3
; does our

statement work too?



CHAPTER 2

Series of numbers

1. Series with nonnegative real numbers

We know to add a �nite number of real numbers a1; a2; :::; an :

sn = (::: ((a1 + a2) + a3) + :::) + an�1) + an)

For instance,

s4 = 7 + 3 + (�4) + 5 = 10 + (�4) + 5 = 6 + 5 = 11:
However, we have just met in�nite sums when we discussed about

the representation of a real number as a decimal fraction. For instance,

s = 3:3444::: = 3:3(4) = 3 +
3

10
+

4

102
+

4

103
+ ::: =

= lim
n!1

(3 +
3

10
+

4

102
+

4

103
+ :::+

4

10n
) =

=
33

10
+

4

102
lim
n!1

1� 1
10n�1

1� 1
10

=
301

90
:

Generally, if m and n are digits, then

0:m(n) =
mn�m
90

(Prove it!).
Since such in�nite sums (called series) appear in many applications

of Mathematics, we start here a systematic study of them.

Definition 6. Let fang be a sequence of real numbers. The in�nite
sum

(1.1)

1X

n=0

an = a0 + a1 + :::+ an + :::

is by de�nition the value (if this one exists) of the limit s = lim
n!1

sn;

where sn = a0+a1+:::+an is called the partial sum of order n. The new
mathematical object de�ned in (1.1) is said to be the series of general
term an and of sum s (if the limit exists). If s exists we say that the

31
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series (1.1) is convergent. If the limit does not exist we say that the
series (1.1) is divergent.

For instance, the series
1X

n=0

1

2n
= lim

n!1
(1 +

1

2
+
1

22
+ :::+

1

2n
) = 2

is convergent to 2; or its sum is 2; whereas the series
1P
n=0

n = 1; or
1P
n=0

(�1)n are divergent. The last divergent series is said to be oscillatory
because its partial sums have the values 0 or 1; i.e. it oscillates between
the distinct values f0; 1g:

Theorem 17. Let x be a real number. The geometrical series
1P
n=0

xn

is convergent (and its sum is 1
1�x) if and only if jxj is less then 1:

Proof. By De�nition 6,
1X

n=0

xn = lim
n!1

(1 + x+ x2 + :::+ xn) = lim
n!1

1� xn+1
1� x :

Since lim
n!1

xn+1 exists and is �nite if and only if jxj < 1 (when the limit

is 0), the series
1P
n=0

xn is convergent if and only if jxj < 1: In this last

case, its sum is s = lim
n!1

1�xn+1
1�x = 1

1�x : For instance, if x = 1; then the

series becomes 1+1+1+ ::: =1 (in R). If x > 1; then lim
n!1

xn+1 =1:
If x � �1; then the sequence fxn+1g has no limit at all (why?) so
lim
n!1

1�xn+1
1�x also does not exist. �

Theorem 18. (The Cauchy general test) A series
1P
n=0

an is con-

vergent if and only if the sequence of partial sums fsng is a Cauchy
sequence, i.e. for any small real number " > 0; there is a natural
number N" such that

jan+1 + an+2 + :::+ an+pj < "

for any n � N" and for any p = 1; 2; :::.

Proof. We only use the fact that R is complete, i.e. that the
sequence fsng is convergent if and only if it is a Cauchy sequence. �
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Corollary 2. (The zero test) If the sequence fang does not tend
to zero, then the series

1P
n=0

an is divergent. Or, if the series
1P
n=0

an is

convergent, then an ! 0:

Proof. If the series
1P
n=0

an was convergent, then the sequence of

partial sums fsng would be a Cauchy sequence (see Theorem 18). Thus,
for n large enough, an = sn � sn�1 becomes smaller and smaller, i.e.
an ! 0: In fact, we do not need the previous theorem. Indeed, let

s =
1P
n=0

an and write an = sn � sn�1: Then, lim an = s� s = 0: �

For instance,
1P
n=0

�
n+1
n

�n
is divergent, because an =

�
n+1
n

�n ! e 6= 0:

Theorem 19. (The renouncement test) Let us consider the se-

ries:
1P
n=0

an and
1P
n=N

an = aN + aN+1 + ::: (we just got out the terms

a0; a1; :::; aN�1 in the previous series). Then these two series have the
same nature (i.e. they are convergent or divergent) at the same time.
Moreover, if they are convergent, then s = s0 + a0 + a1 + ::: + aN�1;

where s =
1P
n=0

an and s
0 =

1P
n=N

an:

Proof. Let n be large enough (n � N) and let sn = a0+ a1+ :::+
aN�1+aN+:::+an: If we denote s

0
n = aN+:::+an; then s

0
n is the partial

sum of order n of the series s0: It is clear that sn = s0n+a0+a1+:::+aN�1
and that the sequences fsng and fs0ng are convergent or divergent at the
same time (prove it!). Now, in the last equality, let us make n ! 1:
We get: s = s0 + a0 + a1 + :::+ aN�1 and the proof is completed. �

Let
1P
n=0

an be a series with

an = n; if n � 100 and an =
1

3n
; if n > 100:

The question is:"What is the nature of this series?" So we must decide if
our series is convergent or not. Let us renounce the terms a0; a1; :::; a100
in the initial series. We get a new series

1X

n=101

1

3n
=

1

3101
(1 +

1

3
+
1

32
+ :::):
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Let us use now Theorem 17 and �nd that

1X

n=0

an = 0 + 1 + :::+ 100 +
1

3101
1

1� 1
3

=
100 � 101

2
+

1

2 � 3100 :

Theorem 20. (The boundedness test) Let
1P
n=0

an be a series with

nonnegative terms (an � 0). Then the series is convergent if and only
if the partial sums sequence fsng; sn = a0 + a1 + :::+ an; is bounded.

Proof. Let us assume that the series
1P
n=0

an is convergent, i.e. the

sequence fsng is convergent. Since any convergent sequence is bounded
(see also Theorem 10), one has that fsng is bounded.
Conversely, we suppose that fsng is bounded. Since an � 0; sn �

sn+1; i.e. the sequence fsng is increasing. But Theorem 8 says that
an increasing and bounded sequence fsng is convergent to its superior
limit lim sup sn: Thus the series

1P
n=0

an is convergent to this lim sup sn;

i.e. its sum s = lim sup sn: �

Theorem 21. (The integral test) Let c be a �xed real number and let
f : [c;1)! [0;1) be a decreasing continuous function (see De�nition
5). Let n0 be a natural number greater or equal to c: For any n � n0
let an = f(n) and let An =

R n
n0
f(x)dx for n � n0: Then the series

1P
n=n0

an is convergent if and only if the sequence fAng is convergent (it

is su¢cient to be bounded-why?).

Proof. Suppose that the series
1P

n=n0

an =
1P

n=n0

f(n) is convergent.

Since in Fig.2.1 sn = f(n0)+:::+f(n) is exactly the sum of the hatched
and of the double hatched areas and since the integral An =

R n
n0
f(x)

dx is equal to the area under the graphic of y = f(x) which corresponds

to the interval [n0; n]; then An � sn: Since
1P

n=n0

an is convergent, the

sequence fsng is bounded, thus the sequence fAng is bounded.
Conversely, let us assume that the sequence fAng is bounded. Look

again at Fig.2.1! We see that the double hatched area is just equal to
ano+1 + an0+2 + :::+ an+1 = sn+1 � an0 : Since this double hatched area
is less then the area An+1 =

R n+1
n0

f(x) dx; one has that the sequence

fsn+1 � an0g is bounded. Hence the sequence fsng is also bounded



1. SERIES WITH NONNEGATIVE REAL NUMBERS 35

(why?). Now, Theorem 20 tells us that the series
1P

n=n0

an is convergent.

�

Why we say that if lim
n!1

f(x) 6= 0; then the above series is divergent?

O 1           2        c     n0     n0+1  n0+2 .................  n­1      n     n+1             x

y = f(x)

y

Fig. 2.1

The integral test is very useful in practice. Suppose that somebody

is interested in the nature of the series
1P
n=2

1
n ln(n)

: Let us apply the

integral test and consider the associated decreasing continuous function

f : [2;1)! [0;1); f(x) = 1

x ln x

(we simply put x instead of n in an =
1

n ln(n)
for n � 2). Since

An =

Z n

2

1

x ln x
dx = ln(ln(x))jn2 = ln(lnn)� ln(ln(2))!1;

An is unbounded, thus our series is divergent (see Theorem 21).
In the last 150 years one of the most interesting function in Mathe-

matics, which was highly considered, is the Zeta function of Riemann.
"Zeta" comes from the Greek letter �. The notation of this function
was �rstly used by the great German mathematician B. Riemann. Its
analytic expression is:

(1.2) �(�) =

1X

n=1

1

n�
; � 2 R

This famous function is usually de�ned by a series. Thus, the maximal
domain of de�nition for this function is exactly the set of all � 2 R
with the property that the numerical series

1P
n=1

1
n�
is convergent. We

call this last set, the set of convergence of our series. In the following,
using the integral test, we �nd the convergence set for the Riemann

(zeta) series
1P
n=1

1
n�
:
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Theorem 22. (Riemann zeta series) The Riemann zeta series is
convergent if and only if � > 1: This means that the real de�nition
domain of the function � is the interval (1;1):

Proof. Let us take in Theorem 21 f(x) = 1
x�
for x � 1: Since

An =

Z n

1

1

x�
dx =

1

1� � [n
��+1 � 1] if � 6= 1

and An = lnn; if � = 1; then An is bounded if and only if � > 1(why?).

Now, Theorem 21 says that the Riemann series
1P
n=1

1
n�
is convergent if

and only if � > 1: �

The sum

s = 1 +
1

2
+
1

3
+ ::: =

1X

n=1

1

n
= �(1) =1;

because the series
1P
n=1

1
n�
is divergent for � = 1; thus the sequence of

partial sums

sn = 1 +
1

2
+
1

3
+ :::+

1

n
is strictly increasing and unbounded. Hence s = lim sn = 1: The
Theorem 22 says that the series

�(2) = 1 +
1

22
+
1

32
+ :::

is convergent. So it can be approximated by

sN = 1 +
1

22
+
1

32
+ :::+

1

N2

for N large enough. We call the series
1P
n=1

1
n
the harmonic series. It is

very important in Analysis. Sometimes the following test is useful.

Theorem 23. (The Cauchy�s compression test) Let fang be a de-
creasing sequence of nonnegative real numbers. Then the series

1P
n=0

an

and
1P
n=0

2na2n have one and the same nature, i.e. they are simultaneous

convergent or divergent.

Proof. Let sk =
kP
n=0

an and Sm =
mP
n=0

2na2n be the k-th and the

m-th partial sums of the �rst and of the second series respectively.
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Let us �x k and let us take a m such that k � 2m � 1: Then,
sk = a0 + a1 + :::+ ak � a0 + a1 + :::+ a2m�1 = a0 + a1 + (a2 + a3)+

+(a4 + a5 + a6 + a7) + :::+ (a2m�1 + a2m�1+1 + a2m�1+2 + :::+ a2m�1) �

� a0 + a1 + 2a2 + 2
2a22 + :::+ 2m�1a2m�1 = a0 + Sm�1;

So

(1.3) sk � a0 + Sm�1

Now, if the series
1P
n=0

2na2n is convergent, then the increasing sequence

fSmg is bounded. The inequality (1.3) says that the sequence fskg is
also bounded, thus the series

1P
n=0

an is convergent (see Theorem 20). If

1P
n=0

an is divergent, then the sequence fskg is unbounded. From (1.3)

we see that the sequence fSmg is also unbounded, so the series S =
1P
n=0

2na2n is divergent.

Assume now that m is �xed and let us take k such that k � 2m:
Then

sk = a0 + a1 + :::+ ak � a0 + a1 + :::+ a2m =

= a0 + a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8)+

:::+(a2m�1+a2m�1+1+:::+a2m) � a0+
1

2
a1+a2+2a4+2

2a8+:::+2
m�1a2m

� 1
2
(a1 + 2a2 + 2

2a22 + :::+ 2ma2m) =
1

2
Sm;

thus,

(1.4) sk �
1

2
Sm

If the series
1P
n=0

an is convergent, then the sequence fskg is bounded
and, using (1.4), we get that the sequence fSmg is also bounded (why?).
Hence, the series

1P
n=0

2na2n is convergent (why?). If
1P
n=0

2na2n is diver-

gent, then the sequence fSmg tends to 1 (why?) so, from (1.4), we
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get that the sequence fskg also goes to 1 and thus, the series
1P
n=0

an

is also divergent. Now the theorem is completely proved. �

We can use this test to �nd again the result on the Riemann zeta

function �(�) =
1P
n=0

1
n�
(see Theorem 22). Indeed, here an =

1
n�
and

a2n =
1
2n�

=
�
1
2�

�n
: The series

1X

n=0

2n
�
1

2�

�n
=

1X

n=0

�
1

2��1

�n

is obviously convergent if and only if � > 1 (see Theorem 17). Thus,
from the Cauchy compression test, we get that the Riemann series is
convergent if and only if � > 1:

Now, let us �nd all the values of � 2 R such that the series
1P
n=2

1
n(log7 n)

� is convergent. If in
1

n(log7 n)
�we put instead of n; 2

n and

if we multiply the result by 2n; we get the series
1X

n=2

2n
1

2n(log7 2
n)�

=
1

(log7 2)
�

1X

n=2

1

n�
:

Thus, the nature of our series is the same like the nature of the Riemann
series. Therefore, our series is convergent if and only if � > 1:
Another useful convergence test is the following:

Theorem 24. (The comparison test) Let
1P
n=0

an and
1P
n=0

bn be two

series with an � 0; bn � 0 and an � bn for n = 0; 1; 2; ::: : a) If the

series
1P
n=0

bn is convergent, then the series
1P
n=0

an is also convergent. b)

If the series
1P
n=0

an is divergent, then the series
1P
n=0

bn is also divergent.

Proof. Since an � bn for n = 0; 1; 2; :::; then

sn = a0 + a1 + :::+ an � b0 + b1 + :::+ bn
def
= un;

the partial n-th sum of the series
1P
n=0

bn: a) If the series
1P
n=0

bn is conver-

gent, the sequence fung is bounded. Hence the sequence fsng is also
bounded, and so the series

1P
n=0

an is convergent (see Theorem 20). b)

If the series
1P
n=0

an is divergent, then the sequence fsng is unbounded
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(see Theorem 20). Hence the sequence fung is unbounded (why?), so
the series

1P
n=0

bn is divergent. �

For instance, the series
1P
n=0

1
n2+7

is convergent because 1
n2+7

< 1
n2

and because the series
1P
n=0

1
n2
= Z(2) is convergent (see Theorem 22).

The comparison test is also useful in proving the following basic
convergence test (see Theorem 25).

First of all we remark that the natural way to add two series is the
following

(1.5)

1X

n=0

an +

1X

n=0

bn =

1X

n=0

(an + bn):

It is easy to see that if the both series are convergent, then the
resulting series on the right is also convergent (prove it!). If an; bn are
nonnegative then, if at least one series is divergent, the series on the
right in (1.5) is also divergent (prove it!). In general this is not true.

For instance,
1P
n=0

n+
1P
n=0

(�n) = 0!
Now, if � is a real number, by de�nition,

�
1X

n=0

an =
1X

n=0

�an

If � = �1; we can de�ne the subtraction:
1X

n=0

an �
1X

n=0

bn =

1X

n=0

an +

1X

n=0

(�bn):

For � 6= 0; the series
1P
n=0

an and �
1P
n=0

an have the same nature (prove

it!). Pay attention to the following wrong calculation:
1X

n=2

1

n+ 1
�

1X

n=2

1

n� 1 = �2
1X

n=0

1

n2 � 1
The series on the right side is convergent, but on the left side we have
1�1; an undetermined operation, so it cannot be equal to a deter-
mined one!

Theorem 25. (The limit comparison test) Let
1P
n=0

an and
1P
n=0

bn

be two numerical series of real numbers such that an � 0 and bn > 0
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for any n = 0; 1; 2; :::: Suppose that the sequence
n
an
bn

o
is convergent

to l 2 R [ f1g: Then, a) if l 6= 0;1; both series have the same
nature (they are convergent or not) at the same time, b) if l = 0;

1P
n=0

bn

convergent implies
1P
n=0

an convergent and, c) if l =1;
1P
n=0

bn divergent

implies
1P
n=0

an divergent. This is why the series
1P
n=0

bn is called a witness

series.

Proof. a) Since l 6= 0;1; l > 0; so there is an " > 0 such that
l � " > 0: Since lim

n!1
an
bn
= l; there is a natural number N (depending

on ") with l� " < an
bn
< l+ " for any n � N: Because of the last double

inequality and since bn > 0; one can write

(1.6) (l � ")bn < an < (l + ")bn;

for any n � N: Now, if for instance,
1P
n=0

an is convergent (this means

that the series
1P
n=N

an is also convergent from Theorem 19) then, using

the inequality (l � ")bn < an and the comparison test (Theorem 24)

we get that the series (l � ")
1P
n=N

bn is convergent. Since l � " 6= 0

we �nally obtain that the series
1P
n=N

bn is convergent, i.e. the series

1P
n=0

bn is convergent (see the renouncement test). If this last series is

convergent, using the second inequality, an < (l+ ")bn; from (1.6), one

gets that the �rst series
1P
n=0

an is convergent (complete the reasoning!).

b) If l = 0; take an " > 0 and take a natural number N1 (depending
on ") such that for any n � N1 we have 0 � an

bn
< " or an < "bn: If the

series
1P
n=0

bn is convergent, then the series "
1P

n=N1

bn is also convergent, so

the series
1P

n=N1

an is convergent (see the comparison test). Using again

the renouncement test we get that the series
1P
n=0

an is convergent. c)

If l = 1; take a positive real number M > 0 and take a natural
number N2 (depending on M) such that for n � N2;

an
bn

> M; or
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an > Mbn: Now, if the series
1P
n=0

bn is divergent, then the series
1P

n=N2

bn

is also divergent (see Theorem 19). Use the inequality an > Mbn to

obtain that the series
1P

n=N2

an is divergent (see the comparison test).

Using again the renouncement test we get that the series
1P
n=0

an is

divergent. �

Let us decide if the series
1P
n=0

3pn
n2+4

is convergent or not. We intend

to use the limit comparison test with an =
3pn
n2+4

and bn =
1
n�
: We try

to �nd an � such that the limit l = lim
n!1

an
bn
be �nite and nonzero. If we

can do this, such an � is unique. Its value is called the "Abel degree"

of the function f(x) =
3px
x2+4

: So,

l = lim
n!1

an
bn
= lim

n!1

n�+
1
3

n2(1 + 4
n2
)
6= 0;1

(= 1) if and only if �+ 1
3
= 2; i.e. 5

3
> 1: Since the series

1P
n=1

1

n
5
3
= Z(5

3
)

is convergent (see the Riemann Zeta series), from the limit comparison

test one has that the series
1P
n=1

3pn
n2+4

is convergent. Applying again the

renouncement test we get that our initial series
1P
n=0

3pn
n2+4

is convergent.

Let us put in a systematic manner all the reasonings in this last
example.

Theorem 26. (The �-comparison test) Let
1P
n=0

an be a series with

nonnegative terms (an � 0). We assume that there is a real number �;
such that the following limit does exist: lim

n!1
n�an = l 2 R[f1g: a) If

l 6= 0;1 then, the series
1P
n=0

an is convergent if and only if � > 1: b)

If l = 0 and � > 1; then our series
1P
n=0

an is convergent. c) If l = 1

and � � 1; then the series
1P
n=0

an is divergent and equal to 1:

Proof. It is enough to take bn =
1
n�
in the Theorem 25 (do every-

thing slowly, step by step!). �
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Let us apply this last test to the following situation. For a large N
(> 100; for instance), can we use the approximation

1X

n=0

n3 + 7n+ 1p
n9 + 2n+ 2

�
NX

n=0

n3 + 7n+ 1p
n9 + 2n+ 2

?:

We can do this if and only if our series is convergent (why?). In order
to see if our series is convergent or not, let us consider the limit:

lim
n!1

n�
n3 + 7n+ 1p
n9 + 2n+ 2

= lim
n!1

n�+3(1 + 7
n2
+ 1

n3
)

n
9
2

q
1 + 2

n8
+ 2

n9

= lim
n!1

n�+3

n
9
2

:

But, this last limit is neither 0 nor 1; if and only if � + 3 = 9
2
; or

� = 3
2
(why?). Since in this case � > 1 and the limit l is 1; we apply

the �-comparison test (Theorem 26) and �nd that our initial series is
convergent. Hence the above approximation works!

A very useful test is the ratio test or D�Alembert test.

Theorem 27. (the ratio test) Let
1P
n=0

an be a series with positive

terms.
a) If there is a real number � such that 0 < � < 1 and an+1

an
� �

for any n � N; where N is a �xed natural number, then the series is
convergent. This is equivalent to say that lim sup an+1

an
< 1:

b) If an+1
an
� 1 for any n � M; where M is a �xed natural number,

then the series is divergent.
c) If lim sup an+1

an
= 1; and if an+1

an
is not equal to 1 from a rank on,

then, in general, we cannot decide if the series is convergent or not (in
this situation use more powerful tests, for instance the "Raabe-Duhamel
Test").

Proof. a) Let us put n = N;N + 1; N + 2; ::: in the inequality
an+1
an
� �: We �nd:

aN+1 � �aN ; aN+2 � �aN+1 � �2aN ; :::; aN+m � �maN ; ::::

Hence,

aN + aN+1 + aN+2 + :::+ aN+m + ::: �

� aN(1 + �+ �2 + :::+ �m + :::) = aN
1

1� �:
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So any partial sum of the series
1P
n=N

an is bounded. Since an � 0;

the series
1P
n=N

an is convergent (Theorem 20). The renouncement test

says that the whole series
1P
n=0

an is also convergent.

b) If an+1
an
� 1 for any n �M; then

aM + aM+1 + :::+ aM+m + ::: � aM + aM + :::+ aM + ::: =1;

so the series
1P
n=0

an is divergent (explain everything slowly, step by

step!).

c) For instance, the harmonic series
1P
n=1

1
n
is divergent, but

lim sup
n!1

1
n+1
1
n

= 1:

This last property is also true for the series
1P
n=1

1
n2
; but this last series

is convergent! This is why we cannot say anything in general if one can
�nd numbers of the form an+1

an
< 1 as close as we want to 1: �

Remark 5. The condition from a) of Theorem 27 is equivalent to

saying that lim sup an+1
an

< 1 (why?). If the sequence
n
an+1
an

o
is conver-

gent to l; then the Theorem 27 is more exactly. Namely, in this last

case, the series
1P
n=0

an is convergent if l < 1; it is divergent if l > 1 and

if l = 1 we cannot say anything (prove it!).

For instance, the series
1P
n=0

2n

n!
is convergent because lim

n!1
an+1
an

= 0 <

1 (see Remark 5).
Usually, if lim

n!1
an+1
an

= 1; we try to apply the following "more pow-

erful" test.

Theorem 28. (The Raabe-Duhamel test) Let
1P
n=0

an be a series with

positive terms.
a) If there is a real number � 2 (1;1) and a natural number N such

that n
�

an
an+1
� 1
�
� � for any n � N; then the series is convergent.

b) If n
�

an
an+1
� 1
�
< 1 for n � M; where M is a �xed natural

number, then the series is divergent.
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c) Assume that the following limit exists, lim
n!1

n
�

an
an+1
� 1
�
= l 2

R[f1g: Then, if l > 1; the series is convergent, if l < 1; the series is
divergent and if l = 1; we cannot decide on the nature of this series.

One can �nd a proof of this result in [Nik], or in [Pal]. See also
Problem 11 of this chapter.

Let us �nd the nature of the series
1X

n=1

1 � 3 � 5 � ::: � (2n+ 1)
2 � 4 � 6 � ::: � 2n � 1

2n+ 3
:

Since
an+1
an

=
(2n+ 3)2

(2n+ 2)(2n+ 5)
! 1;

let us apply Raabe-Duhamel test. Since

n

�
an
an+1

� 1
�
=
2n2 + n

(2n+ 3)2
! 1

2
< 1;

the series is divergent.

Theorem 29. (The Cauchy root test) Let
1P
n=0

an be a series with

nonnegative terms.
a) If there is a real number � 2 (0; 1) such that n

p
an � � for n � N;

where N is a �xed natural number, then the series is convergent.
b) If n

p
an � 1 for all n � M; where M is a �xed natural number,

then the series is divergent.
c) Assume that the following limit exists, lim

n!1
n
p
an = l 2 R [

f1g:Then, if l < 1; the series is convergent, if l > 1; the series is
divergent and if l = 1; we cannot decide on the nature of this series.

Proof. a) The condition n
p
an � � for n � N implies

aN + aN+1 + :::+ aN+m + ::: � aN�
N(1 + �+ :::+ �m + :::) =

= aN
�N

1� � <
aN
1� �;

so, the partial sums of the series
1P
n=N

an are bounded. Hence the

series
1P
n=N

an is convergent (see Theorem 20). From the renouncement

test we derive that the series
1P
n=0

an is convergent.
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b) The condition n
p
an � 1 for n �M; implies an � 1 for an in�nite

number of terms, so fang does not tend to zero. Hence the series is
divergent (see Corollary 2).

c) Take " > 0 such that l+" < 1: Since n
p
an ! l; there is a natural

number N such that if n � N; n
p
an < l + ": Apply now a) and �nd

that the series is convergent. If l > 1; there is a rank M from which
on n
p
an � 1 for n � M and so, the series is divergent (see b)). If

l = 1; there are some cases in which the series is convergent and there
are other cases in which the series is divergent. For instance, the series
1P
n=1

1
n2
is convergent and l = lim

n!1
n

q
1
n2
= 1 (since n

p
n ! 1; prove this!

Hint:

�n =
n
p
n� 1 =) n = (1 + �n)

n = 1 + n�n +
n(n� 1)

2
�2n + ::: >

>
n(n� 1)

2
�2n =) �n <

r
2

n� 1 ;

so, �n ! 0: But the series
1P
n=1

1
n
is divergent and l = lim

n!1
n

q
1
n
= 1: �

The series
1P
n=0

1
(2+n)n

is convergent because n
p
an =

1
2+n
� 1

2
for any

n = 0; 1; ::: (we just applied the Cauchy Root Test, a)). We can also
apply the Comparison Test: 1

(2+n)n
< 1

n2
for any n = 1; 2; ::: , etc.

Remark 6. A natural question arises: what is the connection (if
there is one!) between the ratio test and the root test? To explain
this we need a powerful result from the calculus of the limits of se-
quences. This is the famous Cesaro-Stolz Theorem: Let fang be an ar-
bitrary sequence and let fbng be an increasing and unbounded sequence
of positive numbers such that the sequence

n
an+1�an
bn+1�bn

o
is convergent to

l 2 R = R[f�1;1g: Then an
bn
! l: A direct consequence of this result

is the Cesaro Theorem: Let fcng be a convergent to l sequence. Then
the "means" sequence

�
c0+c1+:::cn�1

n

	
is also convergent to l (prove it as

an application of the Cesaro-Stolz Theorem). We prove now that for a
sequence fang of positive numbers, such that the limit of the sequencen
an+1
an

o
does exist in R; then

n
an+1
an

o
! l if and only if f n

p
ang ! l: Sup-

pose that
n
an+1
an

o
! l; then ln an+1� ln an ! ln l; or ln an+1�ln an

(n+1)�n ! ln l:

From the Cesaro-Stolz Theorem we get that ln an
n
= ln n

p
an ! ln l; or

n
p
an ! l: Conversely, assume that f n

p
ang ! l and that

n
an+1
an

o
! l0:
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From the �rst implication, one has that l = l0 and the statement is
completely proved.

Suppose we have a series
1P
n=0

an with an > 0 for any n > N; such

that
n
an+1
an

o
! 1: We cannot decide on the nature of this series. Re-

mark 6 says that it is not a good idea to try to apply the Cauchy Root
Test because this one also cannot decide if the series is convergent or
not.

2. Series with arbitrary terms

Up to now we just considered (in principal) series with nonnegative
terms. If the number of positive or negative terms in a series are �nite,
to decide the nature of this series, it is su¢cient to get out those terms
and thus to obtain a new series with all its term positive or negative

(see the renouncement test). If an � 0 in a series
1P
n=0

an; we consider

the new series
1P
n=0

(�an) = �
1P
n=0

an and apply the results obtained in

the previous section. For instance,
1P
n=0

� 1
n3
= �

1P
n=0

1
n3
is convergent,

because
1P
n=0

1
n3
is convergent (it is the value of the Riemann series for

� = 3 > 1). A numerical series
1P
n=0

an is said to have arbitrary terms if

the sign of its terms an may be positive, negative or zero, but not all
(or a �nite number of them) are of the same sign. We also call such a
series a general series. The Cauchy general test (see Theorem 18) and
the zero test are the only tests we know (up to now) on general series.
Here is another important one.

Theorem 30. (The Abel-Dirichlet test) Let fang be a decreasing
to zero (an ! 0) sequence of nonnegative (an � 0) real numbers. Let
1P
n=0

bn be a series with bounded partial sums (i.e. there is a real number

M > 0 such that for sn = b0 + b1 + ::: + bn; one has jsnj < M; where

n = 0; 1; :::). Then the series
1P
n=0

anbn is convergent.

Proof. We intend to apply the Cauchy general test (Theorem 18).
Let us denote Sn = a0b0 + a1b1 + :::+ anbn the n-th partial sum of the
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series
1P
n=0

anbn and let us evaluate

jSn+p � Snj = jan+1bn+1 + :::+ an+pbn+pj =

= jan+1(sn+1 � sn) + an+2(sn+2 � sn+1) + :::+ an+p(sn+p � sn+p�1)j =

j�an+1sn + (an+1 � an+2)sn+1 + ::: + (an+p�1 � an+p)sn+p�1 + an+psn+pj
(2.1)
� an+1 jsnj+(an+1�an+2) jsn+1j+:::+(an+p�1�an+p) jsn+p�1j+an+p jsn+pj :
Let " > 0 be a small positive real number. In the last row of (2.1) we
put instead jsjj ; j = n; n + 1; :::; n + p; the greater number M: So we
get
(2.2)
jSn+p � Snj �M(an+1+an+1�an+2+an+2�an+3+:::+an+p�1�an+p+an+p)

= 2Man+1

Since fang tends to 0 as n!1; there is a natural numberN (which
depend on ") such that for any n � N; on has that 2Man+1 < ": Since
jSn+p � Snj � 2Man+1 (see (2.2)), we get that jSn+p � Snj < " for any
n � N: This means that the sequence fSng is a Cauchy sequence, i.e.
the series

1P
n=0

anbn is convergent (see Theorem 18) and our theorem is

completely proved. �

The following test is a direct consequence of the Abel-Dirichlet test.

Corollary 3. (The Leibniz test) Let fang be a decreasing to zero
(an ! 0) sequence of nonnegative (an � 0) real numbers. Then the
series

1X

n=1

(�1)n�1an = a1 � a2 + a3 � :::

is convergent.

For instance, applying this test, we get that the series
1P
n=1

(�1)n n+1
n2+3

=

�
1P
n=1

(�1)n�1 n+1
n2+3

is convergent (do it!).

A famous example is the standard alternate series

(2.3)

1X

n=1

(�1)n�1 1
n
= 1� 1

2
+
1

3
� 1
4
+ ::::
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This series is a general series (why?) and it is convergent. Indeed,�
an =

1
n

	
is a decreasing to zero sequence with nonnegative terms so,

we can apply the Leibniz test and �nd that the series is convergent.

Definition 7. (absolute convergence) A series
1P
n=0

an is said to be

absolutely convergent if the series of moduli
1P
n=0

janj is convergent.

For instance, the series
1P
n=1

(�1)n 1
n2
is convergent (why?) and ab-

solutely convergent, but the series
1P
n=0

(�1)n 1
n
is convergent (why?) and

it is not absolutely convergent, because the harmonic series
1P
n=1

1
n
=

Z(1) =1 (see the Riemann series). A series which is convergent, but
not absolutely convergent, is called semiconvergent.
The following result says that the notion of absolutely convergence

is stronger then the notion of (simple) convergence.

Theorem 31. Any absolute convergence series
1P
n=0

an is also (sim-

ple) convergent.

Proof. We use again the Cauchy General Test (see Theorem 18).
Let sn = a0 + a1 + :::+ an be the n-th partial sum of the initial series
1P
n=0

an and let Sn = ja0j+ ja1j+ :::+ janj be the n-th partial sum of the

series
1P
n=0

janj : Let us evaluate

(2.4) jsn+p � snj = jan+1 + an+2 + :::+ an+pj �

jan+1j+ jan+2j+ :::+ jan+pj = jSn+p � Snj :
Let " > 0 be a small positive real number and let N be a su¢ciently

large natural number such that for any n � N one has jSn+p � Snj < "
for any p = 1; 2; ::: (since fSng is a Cauchy sequence). From (2.4) we
have that jsn+p � snj � jSn+p � Snj ; so jsn+p � snj � " for any n � N
and for any p = 1; 2; ::: . But this means that the sequence fsng is a
Cauchy sequence. Hence the series

1P
n=0

an is convergent (see Theorem

18). �
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For instance, the series
1P
n=1

sin(5n)
n2

is convergent because it is ab-

solutely convergent. Indeed, since
��� sin(5n)n2

��� � 1
n2
and since the series

1P
n=1

1
n2
= Z(2) is convergent (see the Riemann series), the Comparison

Test says that the series of moduli
1P
n=1

jsin(5n)j
n2

is convergent, i.e. the

initial series
1P
n=1

sin(5n)
n2

is convergent.

Remark 7. (see [Nik] or [Pal]) We saw above that any absolutely
convergent series is convergent, but the converse is not true. Cauchy
proved that in any absolutely convergent series one can change the order
of the terms in the in�nite sum (by any permutation) and the sum of
the series remains the same. On the contrary, Riemann proved that

for a semiconvergent series
1P
n=0

an and for any number A 2 R = R [

f�1;1g; one can �nd a permutation of the terms of the series
1P
n=0

an

such that its sum becomes exactly A: Two absolutely convergent series
can be multiplied by the usual polynomial multiplication rule

1X

n=0

an �
1X

n=0

bn =

1X

n=0

cn; where cn = a0bn + a1bn�1 + :::+ anb0;

and the resulting product series is again absolutely convergent (Mer-
taens).

Remark 8. If instead of series with real numbers we consider a

series with complex numbers
1P
n=0

zn; where zn = xn+ iyn; xn; yn 2 R for
any n = 0; 1; 2; :::, we say that such a series is convergent to its sum
s = u+ iv; u; v 2 R if the sequence of partial sums
sn = z0 + z1 + :::+ zn = (x0 + x1 + :::+ xn) + i(y0 + y1 + :::+ yn)

is convergent to s; i.e.

js� snj =
p
[u� (x0 + x1 + :::+ xn)]2 + [v � (y0 + y1 + :::+ yn)]2 ! 0;

when n ! 1: This is equivalent to saying that both series with real
numbers,

1P
n=0

xn (the real part) and
1P
n=0

yn (the imaginary part) are con-

vergent to u and v respectively. Hence,
1P
n=0

zn =
1P
n=0

xn + i
1P
n=0

yn and

the calculus with complex series reduces to the calculus with real series.
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Practically, in general, it is di¢cult to decide if both the "real part"
and the "imaginary part" are convergent. For instance, let us consider
the series

s =

1X

n=0

(1 + i)n

n!
=

1X

n=0

p
2n
�
1p
2
+ i 1p

2

�n

n!
=

1X

n=0

p
2n
�
cos �

4
+ i sin �

4

�n

n!

Let us use now the Moivre formula and �nd:

s =

1X

n=0

p
2n cosn�

4

n!
+ i

1X

n=0

p
2n sinn�

4

n!
:

Since �����

p
2n cosn�

4

n!

����� �
p
2n

n!

and since

lim
n!1

p
2n+1

(n+1)!
p
2n

n!

= 0;

the series
1P
n=0

p
2n cosn�

4

n!
is absolutely convergent, so it is convergent

(why?-precise the theorems that we used!). In the same way we prove

that the imaginary part series
1P
n=0

p
2n sinn�

4

n!
is also convergent. An eas-

ier way to prove the convergence of the complex series s =
1P
n=0

(1+i)n

n!

is the following. It is not di¢cult to prove that an absolutely conver-

gent series
1P
n=0

zn (i.e.
1P
n=0

jznj is convergent) is also convergent (see
the proof of Theorem 31). In our case,

����
(1 + i)n

n!

���� =
(j1 + ij)n

n!
=

p
2n

n!
:

So, the series
1P
n=0

jznj =
1P
n=0

p
2n

n!
is convergent (use the ratio test),

i.e. the series s =
1P
n=0

(1+i)n

n!
is absolutely convergent. Hence, it is

convergent. If a series
1P
n=0

zn is not absolutely convergent, the general

way to study it is to write it as:
1X

n=0

zn =

1X

n=0

xn + i

1X

n=0

yn
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and to study separately the real series
1P
n=0

xn and
1P
n=0

yn: If both of them

are convergent, the initial series is also convergent. If at least one of

them is divergent, the series
1P
n=0

zn is divergent (why?).

3. Approximate computations

Usually, whenever one cannot exactly compute the sum of a con-

vergent series s =
1P
n=0

an; one approximate s by its n-th partial sum

sn = a0 + a1 + :::+ an; for su¢ciently large n: For instance,

s =

1X

n=1

1

n2
� s1000 =

1

12
+
1

22
+ :::+

1

10002
:

The di¤erence "n = js� snj is called the (absolute) error of order n in
our process of approximation. It is clear enough why we are interested
in the evaluation of this error. Since the series is convergent, "n ! 0;
when n becomes large enough. Given a small positive real number
" > 0; the problem is to �nd an n (very small if it is possible!) which
depend on "; such that the error "n < ": For instance, if " = 1

103
; we

say that "s is approximated by sn with 3 exact decimals".
We study this problem in two cases.
Case 1 Let s =

P1
n=0 an be a series with positive terms (an > 0;

n = 0; 1; :::) and let � 2 (0; 1) such that an+1
an
� � for n � N (remember

yourself the Ratio Test). The series is convergent (see Theorem 27).
Let now k be a natural number greater or equal to N: Let us evaluate
the error "k = s� sk:

(3.1) "k = ak+1 + ak+2 + ::: � �ak + �2ak + ::: =
�

1� �ak

We see that if " > 0 is an arbitrary small positive real number, always
one can �nd a least k 2 N such that �

1��ak < ": Since "k � �
1��ak; for

this k one also has: "k < ": If we want a small k; we must �nd a small
� 2 (0; 1) such that for a small N (0 if it is possible), we have an+1

an
� �

for n � N:

Let us compute the value of
1P
n=0

1
n!
(we shall see later that it is

exactly e; the base of the Neperian logarithm) with 2 exact decimals.
Since an+1

an
= 1

n+1
� 1

2
for n � 1;

"k = s� sk �
1
2

1� 1
2

1

k!
=
1

k!
:
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Let us �nd the least k such that 1
k!
< " = 1

102
: By trials, k = 1; 2; :::;

we �nd k = 5: So

s � s5 = 1 +
1

1!
+
1

2!
+
1

3!
+
1

4!
+
1

5!
= 2:71666:::;

i.e. we obtained the value of e with 2 exact decimals, e � 2:71:
Let s =

P
an be a series with nonnegative terms (an � 0; n =

0; 1; :::) and let � 2 (0; 1) such that n
p
an � � for n � N (remember

yourself the Cauchy Root Test). The series is convergent (see Theorem
29). Let now k be a natural number greater or equal to N: Let us

evaluate the error "k = s�sk. Prove that "k � �k+1

1�� : Use this estimation

to �nd the value of s =
1P
n=1

1

nn
2 with 3 exact decimals.

Case 2 Suppose now that we want to approximate the value of an

alternate series, s =
1P
n=1

(�1)n�1an; where fang is a decreasing sequence
with nonnegative terms and an ! 0: The Leibniz test (see Corollary
3) says that our series is convergent. Since

s2n = s2n�2 + (a2n�1 � a2n) � s2n�2

and since
s2n+1 = s2n�1 � (a2n � a2n+1) � s2n�1;

one has:

(3.2) s2 � s4 � s6 � ::: � s2n � ::: � s � ::: � s2n+1 � ::: � s3 � s1:

So,
0 � s� s2n � s2n+1 � s2n = a2n+1

and
0 � s2n+1 � s � s2n+1 � s2n+2 = a2n+2:

Hence

(3.3) "n = js� snj � an+1

i.e. the absolute error is less or equal to the modulus of the �rst ne-
glected term. Here, in fact we have another proof of the Leibniz Test
(see Theorem 3). This one is independent of the Abel-Dirichlet Test
(Theorem 30). It uses only Cantor Axiom (Axiom 2) (where?).

Let us compute s =
1P
n=1

(�1)n�1 1
(n!)2

with 2 exact decimals. We use

the estimation (3.3) and force with

an+1 =
1

[(n+ 1)!]2
<

1

102
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for n � 3; so

s � s3 =
1

1
� 1
4
+
1

36
= 0:777::: = 0:(7)

4. Problems

1. Compute the sum of the following series:

a)
1P
n=2

ln
�
1� 1

n2

�
; b)

1P
n=1

2n�1+3n

5n+1
; c)

1P
n=1

1
n(n+2)

; d)
1P
n=1

1
n(n+1)(n+2)

;

e)
1P
n=1

1
(n+2)(n+4)

; f)
1P
n=1

(�1)n 1+2n�1
3n�2

;

2. Decide if the following series are convergent or not:

a)
1P
n=0

2n

n!
; b)

1P
n=1

1�4�7�:::�(1+3n)
1�5�9�:::�(1+4n)

1
n
; c)

1P
n=0

(�1)n 1
n!
; d)

1P
n=0

2n+1
2n+1+1

�n; � � 0

(discussion on �); e)
1P
n=1

n
�
2��1
2

�n
(discussion on � 2 R); f)

1P
n=1

(�1)n
10nn!

;

g)
1P
n=1

2�7�12�:::�[2+5(n�1)]
3�8�13�:::�[3+5(n�1)] ; h)

1P
n=0

(�+2)n

2n+3n
; (discussion on � � 0); i)

1P
n=1

1
n
(2��

1)n; (discussion on � 2 R); j)
1P
n=1

(4��5)n
n�5n ; � � 2 (discussion on �);

k)
1P
n=0

1
3pn�+2 (discussion on �); l)

1P
n=1

2n

1�3�5�:::�(2n�1)(2��1)n; (discussion on

� � 1); m)
1P
n=1

1
3p4n+1� 3p4n�1 ; n)

1P
n=1

3lnn; o)
1P
n=1

2(n!)
(2n)!

; p)
1P
n=0

(�1)n
n!
(1 + 3n);

r)
1P
n=0

2n�2

3n+1+1
; s)

1P
n=1

5n+1
6n�2�

n (discussion on � � 0).

3. Find the Abel�s degree of the expression E =
3p
n5+2

5p
n3+n+3p

n+2�pn ;

n 2 N.
4. Use the �-Comparison Test to decide if the series

1P
n=1

sin
�

1
3pn+1

�

is convergent or not.

5. Find all x 2 R such that the series
1P
n=0

p
n2+1p
n+1

xn to be convergent.

What about all x 2 C such that the same series is convergent?
6. Find all z in C such that the following series are absolutely

convergent.

a)
1P
n=0

zn

n!
; b)

1P
n=1

(z�i)n
n
; c)

1P
n=0

nzn; d)
1P
n=0

(z � 3i+ 2)n;

7. Draw the set M =

�
x 2 R j

1P
n=1

(�1)n xn

n3n
is convergent

�
on the

real line.
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8. Draw the set U =

�
z 2 C j

1P
n=1

(�1)n zn

n3n
is convergent

�
in the

complex plane.

9. Compute
1P
n=1

(�1)n 1
n2
with 2 exact decimals.

10. Compute
1P
n=1

2n

n!
with one exact decimal.

11. Prove the Raabe-Duhamel test. Hint:
a) Write:

NaN � (N + 1)aN+1 � (�� 1)aN+1
(N + 1)aN+1 � (N + 2)aN+2 � (�� 1)aN+2

::::::::::::::::::::::::::::::::::::::::::::

(N + p)aN+p � (N + p+ 1)aN+p+1 � (�� 1)aN+p+1
Sum these inequalities on columns and get:

NaN�(N+p+1)aN+p+1 � (��1) [aN+1 + aN+2 + aN+3 + :::+ aN+p+1]

So
NaN
�� 1 � aN+1 + aN+2 + aN+3 + :::+ aN+p+1

for any p = 1; 2; :::: Hence, the partial sums of our initial series are
bounded. Thus the series is convergent.

b) Since nan < (n+ 1)an+1 for n �M; the limit lim
n!1

nan is greater

than 0: So, using the �-comparison test for � = 1; we get that our
initial series is divergent (why?).

c) Apply a) and b).
12. Compute

P1
n=1

1
nn
with 3 exact decimals (use the approximate

computation with the Root Test).



CHAPTER 3

Sequences and series of functions

1. Continuous and di¤erentiable functions

Recall that a metric space is a set X with a distance d on it. A
distance d on X is a function which associates to any pair (x; y) of X
a nonnegative real number d(x; y) with the following properties:

d1. d(x; y) = 0 if and only if x = y:
d2. d(x; y) = d(y; x) for any x and y in X:
d3. d(x; y) � d(x; z) + d(z; y) for any x; y and z in X:
See also the Remark 2. We usually denote by (X; d) a metric space

X with a distance d on it. The standard example of a metric space
is (R, d); where d(x; y) = jx� yj : We say that xn ! x in (X; d) if
the numerical sequence fd(xn; x)g tends to zero, i.e. if the distance
between xn and x becomes smaller and smaller to zero as n!1: We
de�ne again the basic notion of continuity.

Definition 8. (continuity of a function at a point) Let (X; d);
(X 0; d0) be two metric spaces, let f : X ! X 0 be a function de�ned
on X with values in X 0 and let x be a �xed element in X: We say
that f is continuous at x if for any sequence fxng which converges to
x; we have that f(xn) ! f(x): For instance, if X = X 0 = R, with
the usual distance, f is continuous at a point x if the graphic of f is
not "broken (or interrupted)" at x (see Fig.3.1). All the elementary
functions (polynomials, rational functions, power functions, exponen-
tial functions, logarithmic functions, trigonometric functions) and their
compositions are continuous on their de�nition domains, i.e. in any
point of their de�nition domains (see also the Theorem 14). Hence, the
continuity is essentially a "local" property, i.e. its de�nition shows the
behavior of the function f at a given point x:

55
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Fig. 3.1

For instance, a) f : R! R, f(x) = x3+1
x2+1

is continuous on the whole
R. Indeed, let a be a �xed point in R and let fang be a sequence
convergent to a: Then, using the basic properties of the convergent
sequences relative to the elementary algebraic operations (+;�; �; :; see
the Theorem 14), we �nd that

f(an) =
a3n + 1

a2n + 1
! a3 + 1

a2 + 1
= f(a);

i.e. the function f is continuous at a; for any a 2 R. Hence f is contin-
uous on R. Now, if we compose the function ln x (which is continuous

on (0;1)) with f(x) we get a new continuous function g(x) = ln x3+1
x2+1

on (�1;1) (why?).
Remark 9. We need in this chapter another basic "local" notion,

namely the notion of di¤erentiability of a function f at a given point
a: Recall that a subset A of R is said to be open if for any point a
of A; there is a small positive real number "; such that the interval
(a� "; a+ ") (the "ball" with centre at a and of radius "; usually called
the "-neighborhood of a) is completely included in A (de�ne the notion
of an open subset in a metric space (X; d); instead of "-neighborhoods
use open balls B(a; ") = fx 2 X : d(x; a) < "g; etc.). A subset B of
R is said to be closed if its complementary R nB is an open subset (B
is closed in an arbitrary metric space (X; d) if X n B is open in X).
For instance, (�1; 1) is open and [�3; 7] is closed. If X = (�1; 7);
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with the induced distance of R, then [0; 7) is closed in X; but NOT
in R (why?). It is not di¢cult to prove that a subset B is closed if
and only if for any sequence fbng ! b; with all bn in B; one has that
b 2 B (prove it!). For instance, if f : X ! R is a continuous function
de�ned on a metric space (X; d) and if � is a real number, then the
set B� = fx 2 X : f(x) � � (or � �; or = �) g is closed in X:
Indeed, let fbng be a sequence of elements in B; which is convergent
to an element b in X: Since f is continuous, f(bn) ! f(b): Because
bn 2 B; f(bn) � � for any n = 0; 1; :::. Then f(b) � � (otherwise,
f(b) < � and, from a rank N on, f(bn) < �; for n � N (why?-see the
de�nition of the limit f(bn)! f(b)!)), a contradiction i.e. b itself is in
B and so B is a closed subset in X:

Definition 9. Let A be an open subset of R (for instance an open
interval (c; d)), let f : A! R be a function de�ned on A with values real
numbers and let a be a �xed point in A: We say that f is di¤erentiable
at a if the following limit exists (and it is a real number):

(1.1) lim
x!a

f(x)� f(a)
x� a

def
= f 0(a)

The limit of a function g : A! R in a limit point b (it is the limit
of at least one sequence of elements from A) of A is a unique number
l 2 R such that for any nonconstant sequence fbng; bn 2 A which is
convergent to b; one has that g(bn)! l: We shortly write lim

x!b
g(x) = l:

Not always a function g has a limit at a given limit point b: For instance,
the function sign : R! f�1; 0; 1g;

(1.2) sign(x) =

8
<
:
�1; if x < 0
0; if x = 0
1; if x > 0

has the limit l = �1 at any point a < 0; has the limit l = 1 at any
point a > 0 and at 0 it has no limit at all (prove this!).
We recall that the limit "on the left" of a function f : A ! R,

A � R, A an open subset, at a point a of A is a number ll such that
for any sequence fxng; xn < a; which is convergent to a; one has that
ll = lim f(xn): If we take xn "on the right" of a; we get the notion of
the limit lr "on the right" of f at a. A function f has the limit l at a
if and only if ll = lr = l (prove it!).
It is clear enough that a continuous function f at a point a 2 A

has the limit l = f(a) at a (why?). In fact, a function f : A ! R is
continuous at a point a 2 A if and only if it has a limit l at a and if
that one is exactly l = f(a) (prove it!).
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We call the number f 0(a) from (1.1) the derivative of f at a: The
linear function df(a) : R ! R, df(a)(x) = f 0(a) � x is called the (�rst)
di¤erential of f at a: This is simply a dilation (or a homotety) of mod-
ulus f 0(a) of the real line R. If the function f is di¤erentiable at any
point a ofA; we say that f is di¤erentiable (or has a derivative) on A: In
this last case, the new function a f 0(a); where a runs on A; is called
the (�rst) derivative of f: It is denoted by f 0:We know (see any elemen-
tary course in Calculus for the di¤erent rules in computing derivatives!)
that almost all the elementary functions (described above) and their
compositions (recall the chain rule: (f � g)0(a) = f 0(g(a)) � g0(a)) are
di¤erentiable on their de�nition domains. "Almost" because of some
exceptions like f(x) =

p
x; f : [0; 1) ! R. Since f 0(x) = 1

2
p
x
; the

derivative of f does not exists at a = 0: Indeed, lim
x!0; x>0

p
x�0
x

=1! One
can interpret the derivative of a function f at a point a; either as "the
velocity" of f at a or as the slope of the tangent line at a to the graphic
of f (why?). Not all the continuous functions at a given point a are also
di¤erentiable at a (see Fig.3.2). But a di¤erentiable function f at a

given point a is continuous. Indeed, let xn ! a: lim
xn!a

f(xn)�f(a)
xn�a = f 0(a)

(see De�nition 9 and what follows) says that only the nondeterministic
case 0

0
could give a �nite number f 0(a): Hence, f(xn)! f(a); i.e. f is

continuous at a:

y

tg α = f'(x1)

α

O x1 x2

continuous but
not differentiable
         in x2

differentiable
       in x1

x

y = f(x)
y = g(x)

Fig. 3.2
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Let C be a set and let f : C ! R be a function de�ned on C with
values in R. We say that f is bounded if its image f(C) = ff(x) : x 2
Cg is a bounded subset in R. This means that there is a positive real
number M > 0 such that jf(x)j < M (i.e. �M < f(x) < M) for any
x 2 C: Equivalently, if C � R; then f is bounded if the graphic of it
is contained into the band bounded by the horizontal lines: y = �M
and y =M

A fundamental property of continuous functions is the following:

Theorem 32. (Weierstrass boundedness theorem) Let f : [a; b] !
R be a continuous function de�ned on the closed and bounded inter-

val [a; b]: Then f is bounded, M
def
= sup f([a; b]) = f(c) and m

def
=

inf f([a; b]) = f(d); where c; d 2 [a; b]: This means that the least up-
per bound (sup f([a; b]) and the greatest lower bound (inf f([a; b]) of the
bounded set f([a; b]) are realized at c and at d respectively.

Proof. a) Let us prove that M = sup f([a; b]) < 1: Suppose
on the contrary, namely that M = 1: Then, there is at least one
sequence fxng of elements from [a; b] such that f(xn)!1: Since fxng
is bounded, we can apply the Cesaro-Bolzano-Weierstrass Theorem (see
Theorem 12) and �nd a subsequence fxnkg of fxng which is convergent
to an x� 2 [a; b] (here we use the fact that [a; b] is closed, how?). Since
f is continuous, one has that f(xnk) ! f(x�) when k ! 1: But
f(xn)!1 and the uniqueness of the limit implies that f(x�) =1; a
contradiction (why?). Hence f is upper bounded. In the same way we
can prove that f is lower bounded (do it!).

b) Let us prove now that M = f(c) for a c in [a; b]: Since M is the
least upper bound, for any natural number n we can �nd an element
yn 2 [a; b] such that

(1.3) M � 1
n
� f(yn) �M (why?)

The sequence fyng is bounded and nonconstant (why?). Applying
again the Cesaro-Bolzano-Weierstrass Theorem, one can �nd a sub-
sequence fynkg of fyng which is convergent to an element c 2 [a; b]
(because the interval is closed). Since f is continuous, f(ynk) ! f(c);
when k !1: Making k !1 in the inequality M � 1

nk
� f(ynk) �M

and using the de�nition of a subsequence (n1 < n2 < ::: ), we get that
M = f(c): To prove that m = f(d); d 2 [a; b]; we work in the same
manner (do it!). �

Theorem 33. (Darboux) Let f : [a; b] ! R be a continuous func-
tion de�ned on the closed and bounded interval [a; b]: LetM = sup f([a; b])
and let m = inf f([a; b]): Then the image of the interval [a; b] through f



60 3. SEQUENCES AND SERIES OF FUNCTIONS

is exactly the closed interval [m;M ]: More general, a continuous func-
tion carries intervals into intervals.

Proof. Let � be an element in [m;M ]:We want to �nd an element
z in [a; b] such that f(z) = �: If � is equal to m or to M; we can take
z = d or c (from Theorem 32) respectively. So, we can assume that
� 2 (m;M) and that f is not a constant function (in this last case
the statement of the theorem is obvious). We de�ne two subsets of the
interval [a; b]:

A1 = fx 2 [a; b] : f(x) � �g
and

A2 = fx 2 [a; b] : f(x) � �g:
If A1 \ A2 is not empty, take z in this intersection and the proof is
�nished. Suppose on the contrary, namely that A1 \ A2 = ?: Since
� cannot be either m or M; A1 and A2 are not empty (why?). Now,
[a; b] = A1[A2 (why?) and, since f is continuous, A1 and A2 are closed
in R (see Remark 9). In order to obtain a contradiction, we shall prove
that it is not possible to decompose (to write as a union, or to cover) an
interval [a; b] into two disjoint closed and nonempty subsets. Indeed,
let c2 = supA2: Since f is continuous, f(c2) � � (why?-remember the
de�nition of the least upper bound and of the continuity!) i.e. c2 2 A2:
If c2 6= b; then the subset S1 = fx 2 A1 : x > c2g is not empty (why?).
Take now c1 = inf S1: Since A1 is closed, c1 2 A1 (why?). If c1 > c2;
take h 2 (c2; c1): This h 2 [a; b] and it cannot be either in A1 or in A2
(why?). Since c1 � c2; the unique possibility for c1 is to be equal to c2:
But then, c = c1 = c2 2 A1\A2 = ?; a contradiction! Hence, c2 = sup
A2 = b: Take now d2 = inf A2: Since A2 is closed, one has that d2 2 A2:
If d2 6= a; then the subset S2 = fx 2 A1 : x < d2g is not empty (why?).
Take now d1 = supS2: Since A1 is closed, d1 2 A1 (why?). If d1 < d2;
take again g 2 (d1; d2) and this last one cannot be either in A1 or in A2:
Hence d1 = d2

not
= d and this one must be in A1 \ A2; a contradiction!

So, d2 = a; i.e. inf A2 = a and supA2 = b; thus A2 = [a; b]: Since A1
is not empty and it is included in [a; b]; A1 � A2; and we get again a
new and the last contradiction! Hence A1 \ A2 cannot be empty and
the proof of the theorem is over. �

We agree with the reader that the proof of this last theorem is too
long! But,...it is so clear and so elementary! Trying to understand and
to reproduce logically the above proof is a good exercise for strengthen
your power of concentration and not only!

Theorem 34. Let I be an open interval on the real line and let
f : I ! R, be a continuous function de�ned on I with real values.
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1) Assume that there are two points b and d in I (b < d) such that
the values f(b) and f(d) are nonzero and have distinct signs. Then,
there is a point c in the interval (b; d) at which the value of f is zero,
i.e. f(c) = 0. 2) Now suppose that at a 2 I the value f(a) > 0 (or
f(a) < 0). Then there is an "-neighborhood (a � "; a + ") � I; such
that f(x) > 0 (or f(x) < 0) for any x 2 (a� "; a+ "):

Proof. 1) We can simply apply Theorem 33. Indeed, since f(I)
is an interval (Theorem 33), the segment generated by f(b) and f(d)
is completely contained in f([b; d]): Since f(b) and f(d) have distinct
signs, 0 is between them, so, 0 2 f([b; d]); or 0 = f(c) for a c 2 [b; d]:
2) Suppose that f(a) > 0: Let us assume contrary, i.e. for all small
possible " we can �nd in (a � "; a + ") at least on number x" (an x
which depends on ") such that f(x") � 0: Take for such epsilons the
values

1;
1

2
;
1

3
; :::;

1

n
; :::;

and �nd x 1
n
2 (a � 1

n
; a + 1

n
) with f(x 1

n
) � 0; n = 1; 2; ::: . Since

f is continuous at a and since the sequence fx 1
n
g tends to a (why?),

one has that f(x 1
n
) ! f(a): But f(x 1

n
) are all nonpositive, so f(a) is

nonpositive, a contradiction! Hence, there is at least one " small enough
such that for any x in (a� "; a + "); f(x) > 0: The case f(a) < 0 can
be similarly manipulated (do it!). �

Definition 10. Let (X; d) be a metric space and let I be an interval
on the real line R (a subset I of R is said to be an interval if for any
pair of numbers r1; r2 2 I and any real number r with r1 � r � r2;
one has that r 2 I). Practically, we think of a curve in X as being the
image in X of an interval I through a continuous function h : I ! X:
More exactly, we denote the couple (I; h) by a small greek letter 
 and
say that 
 is a curve in X: If A and B are two "points" (elements)
in X; we say that a curve 
 = (I; h) connects A and B if there are
a; b 2 I such that A = h(a) and B = h(b): By an (closed) arc [AB]
in X we mean the image in X of a closed interval [a; b] of R through
a continuous function h : [a; b] ! X; i.e. [A;B] = fx 2 X : there is
c 2 [a; b] with h(c) = xg:

Example 1. a) Let fO; i; j;kg be a Cartesian coordinate system
in the vector space V3 of all free vectors in our 3-D space (identi�ed
with R3). Any point M in R3 has 3 coordinates: M(x; y; z); where��!
OM = xi+yj+zk; x; y; z 2 R. Let A(a1; a2; a3) and B(b1; b2; b3) be two
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points in R3: The usual segment [A;B] is a closed arc which connect the
points A and B: Indeed, let h : [0; 1]! R3; h(t) = (a1+ t(b1�a1); a2+
t(b2 � a2); a3 + t(b3 � a3)); be the usual continuous parameterization of
the segment [A;B] :8

<
:

x = a1 + t(b1 � a1)
y = a2 + t(b2 � a2)
z = a3 + t(b3 � a3)

; t 2 [0; 1]

Here 
 = ([0; 1]; h) is a curve in R3: This function h describes a com-
position between the dilation of moduli b1 � a1; b2 � a2; b3 � a3; along
the Ox; Oy; and Oz axes respectively, and the translation x ! a + x;
of center a = (a1; a2; a3):

b) Let C = f(x; y) 2 R2 : (x�a)2+(y� b)2 = r2g be the circle with
center at (a; b) and radius r: The parametrization of C

�
x = a+ r cos t
y = b+ r sin t

; t 2 [0; 2�]

give rise to a curve 
 = ([0; 2�]; h); where h(t) = (a+r cos t; b+r sin t):
In fact, h describes the continuous deformation process of the segment
[0; 2�] � R into the circle C in the metric space R2:

Definition 11. A subset A of a metric space (X; d) is said to be
connected if any pair of two points M1 and M2 of A can be connected
by a continuous curve 
 = (I; h); h : I ! X:

Corollary 4. The connected subsets in R are exactly the intervals
of R (for proof use the Darboux Theorem 33).

For instance, A = [0; 1][ [5; 8] is not connected because it is not an
interval (4 is between 0 and 8; but it is not in A!).

Remark 10. A subset S of R3 is said to be convex if for any pair
of points A;B 2 S; the whole segment [A;B] is included in S: For
instance, the parallelepipeds, the spheres, the ellipsoids, etc., are convex
subsets of R3: The union between two tangent spheres is connected but
it is not convex! (why?). It is clear that any convex subset of R3 is also
a connected subset in R3 (prove it!).

Definition 12. Let f : A ! R be a function de�ned on an open
subset A of R with values in R. A point a of A is a local maximum
point of f if there is an "-neighborhood of a; (a�"; a+") � A; such that
f(x) � f(a) for any x 2 (a�"; a+"): The value f(a) of f at a is called
a local extremum (maximum) for f . A point b of A is said to be a local
minimum point for f if there is an �-neighborhood of b; (b��; b+�) � A;
such that f(x) � f(b) for any x 2 (b � �; b + �): The value f(b) of f
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at b is called a local extremum (minimum) for f . A local maximum
point or a local minimum point is called a local extremum point. The
local extrema of f on A are all the local maxima and the local minima
of f in A: The (global) maximum of f on A is max f(A) (2 R). The
(global) minimum of f on A is min f(A) (2 R) (see Fig.3.3).

y

O xx1 x2 x3 x4

global
  max.

global
 min.

 not local
extremum

local
min.

local
 max.

( )

Fig. 3.3

A critical (or stationary) point c 2 A for a di¤erentiable function
f : A! R on A is a root of the equation f 0(x) = 0; i.e. f 0(c) = 0: For
instance, c = 2 is a stationary point for f(x) = (x � 2)3; f : R ! R,
but it is not an extremum point for f (why?). The next result clari�es
the converse situation.

Theorem 35. (1-D Fermat�s Theorem) Let a be a local extremum
(local maximum or local minimum) point for a function f : A ! R

(A is open). Assume that f is di¤erentiable at a: Then f 0(a) = 0; i.e.
a is a critical point of f: Practically, this statement says that for a
di¤erentiable function f we must search for local extrema between the
critical points of f; i.e. between the solutions of the equation f 0(x) = 0;
x 2 A:
Proof. Suppose that a is a local maximum point for f; i.e. there

is a small " > 0 such that (a � "; a + ") � A and f(x) � f(a) for any
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x in (a � "; a + ") (if a is a local minimum point, one proceeds in the
same way, do it!). Look now at the formula:

(1.4) lim
x!a

f(x)� f(a)
x� a = f 0(a)!

If x 2 (a � "; a + ") and x < a; since f(x) � f(a); one has that
f 0(a) � 0 (why?). Now, if x 2 (a � "; a + "); but x > a; again since
f(x) � f(a); one gets that f 0(a) � 0. Both inequalities give us that
f 0(a) = 0 and the Fermat�s theorem for a function of one variable is
proved. �

However, the Fermat�s Theorem works only at the points at which
our function is di¤erentiable. For instance, f(x) = jxj has at x = 0
a local (even a global) minimum (why?), but it is not di¤erentiable
at this point (why?). The moral is that we must consider separately
the points at which a function is not di¤erentiable and see (using the
de�nition only!) if these points are or not local extremum points for
our function.

Theorem 36. (Rolle Theorem) Let f : [a; b] ! R (a < b) be
a continuous function. Assume that f is di¤erentiable on the open
subinterval (a; b) and that f(a) = f(b): Then there is at least one point
c 2 (a; b) such that f 0(c) = 0:

Proof. Let us apply the Weierstrass boundedness theorem (The-
orem 32) and �nd m = inf f([a; b]) and M = sup f([a; b]) as real num-
bers. If m = M; then our function is a constant function and so,
f 0(x) = 0 for any x in (a; b): Hence we assume that m 6= M: So the
number f(a) = f(b) cannot be simultaneously equal to m andM: Sup-
pose for instance that f(a) = f(b) 6= M: Thus, a c with M = f(c);
c 2 [a; b] (see the Weierstrass boundedness theorem) cannot be either
a or b; i.e. c 2 (a; b): Therefore, this c is a local maximum for f: Use
now Fermat�s Theorem and �nd that f 0(c) = 0: �

For instance, if f(x) = x4 � 16; x 2 [�1; 1]; then f(�1) = f(1) =
�15 and f 0(x) = 0 supplies us with a unique solution c = 0: The
continuity at the ends of the interval [a; b] is necessary, as we can see
in the following example. Let us take

f(x) =

�
x; if x 2 [0; 1)
0; if x = 1

; x 2 [0; 1]:

This function is de�ned on [0; 1]; it is di¤erentiable on (0; 1) and f(0) =
f(1), but its derivative f 0(x) = 1 has no zero on (0; 1):
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2. Sequences and series of functions

We know to measure the length kak =
p
a21 + a22 + a23 of a vector

a = a1i + a2j + a3k of V3; the 3-dimensional vector space of all free
vectors (here a1; a2; a3 2 R are the coordinates of a). The function a 
kak ; which associates to a vector a its length kak ; has the following
basic properties:

n1: kak = 0; if and only if a = 0;

n2: ka+ bk � kak+ kbk ;
for any a;b 2V3;

(2.1) n3: k�ak = j�j kak for any � 2 R and a 2V3:
If instead of V3 we take any real vector space V together with a

mapping like above, x ! kxk 2 [0;1); x 2 V; which ful�ls the analo-
gous requirements n1; n2 and n3 from (2.1), we get the general notion
of a normed space (V; k:k):

Definition 13. Let V be an arbitrary real vector space and let
f  kfk be a mapping which associates to any element f of V a
nonnegative real number kfk : If this mapping satis�es the following
properties:

ns1: kfk = 0; if and only if f = 0; f 2 V;

ns2: kf + gk � kfk+ kgk ;
for any f; g 2 V and,

ns3: k�fk = j�j kfk for any � 2 R and f 2 V;
we say that the pair (V; k:k) is a normed space and the mapping

x  kxk (the norm of x) is called a norm application (function) or
simply a norm on V:

For instance, the norm of a matrix A = (aij); i = 1; 2; :::; n; j =
1; 2; :::;m; is

kAk =

vuut
nX

i=1

mX

j=1

a2ij:
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The mapping A  kAk satis�es the properties of a norm (prove it!)
on the vector space of all n �m matrices. In addition, one can prove
(not so easy!) that

(2.2) ns4: kABk � kAk kBk
for any two matrices n�m and m� p respectively.

Remark 11. It is easy to see that a normed space (V; k:k) is also
a metric space with the induced distance d; where d(x; y) = kx� yk
(prove this!). For instance, fxng ! x if and only if kxn � xk ! 0 as
n!1:
If we consider now a bounded function f : A ! R de�ned on an

arbitrary set A with real values, we can de�ne the norm ("length") of
f by the formula: kfk = sup jf(A)j ; where jf(A)j = fjf(a)j : a 2 Ag is
the absolute value of the image of A through f; or simply the modulus
of the image of f: This norm is also called the sup-norm:

Theorem 37. Let B(A) = ff : A ! R, f boundedg be the vec-
tor space of all bounded functions de�ned on a �xed set A: Then the
mapping f  kfk is a norm on B(A) with the additional property:

n4: kfgk � kfk kgk
for any f; g 2 B(A): Moreover, any Cauchy sequence ffng with respect
to this norm is a convergent sequence in B(A):
Proof. Let us prove for instance ns2: Since

jf(a) + g(a)j � jf(a)j+ jg(a)j �
� supfjf(a)j : a 2 Ag+ supfjg(a)j : a 2 Ag;

taking sup on the left side (it exists, because it is upper bounded by
a constant quantity), we get the property n2: : kf + gk � kfk + kgk :
The property n4: can be proved in the same manner (do it!). The other
properties are obvious (prove them with all details!). Let us prove the
last statement. Since

jfn+p(x)� fn(x)j � supfjfn+p(x)� fn(x)j : x 2 Ag = kfn+p � fnk ;
for a �xed x in A; the numerical sequence ffn(x)g is a Cauchy sequence
in R. Since R is complete, i.e. any Cauchy sequence in R has a (unique)
limit in R, let us associate to x the limit lim

n!1
fn(x); denoted by f(x);

i.e. a real number which depends on x: We shall prove that this new
function f : A ! R :1) is bounded, i.e. belongs to B(A) and 2) it is
the limit of the sequence ffng in B(A); relative to the sup-norm. For
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2) let us take a small " > 0 and let us �nd a rank N which depends on
" such that

(2.3) kfn+p � fnk < "

for any n � N and for any p = 1; 2; :::: Since fn(x) ! f(x) for any
�xed x in A and since

jfn+p(x)� fn(x)j � kfn+p � fnk < "

for any n � N and any p; let us make p large enough, i.e. p ! 1 in
the last inequality. We get jf(x)� fn(x)j � " (why?) for n � N and
for any x in A: Take now sup on the left and get:

(2.4) kf � fnk � "

for any n � N: Hence fn
k:k! f : We make n = N in (2.4) and write

jf(x)j � jf(x)� fN(x)j+ jfN(x)j � kf � fNk+ kfNk � "+ kfNk :
Take now sup on the left and we get:

kfk � "+ kfNk ;

i.e. f is bounded and so, fn
k:k! f in B(A) . �

Definition 14. Let ffng be a sequence of bounded functions on A
and let f be another bounded function on A: We say that the sequence
ffng is uniformly convergent to f (write fn uc! f) if the sequence of
numbers fkfn � fkg is convergent to 0: If for any �xed x 2 A the
sequence of numbers ffn(x)g is convergent to f(x); we say that the
sequence of functions ffng is simply (or pointwise) convergent to f
(fn

sc! f). Since jfn(x)� f(x)j � kfn � fk ; the uniform convergence
implies the simple convergence (why?-give details!).

The notion of uniform convergence is stronger then the notion of
simple convergence. For instance, let

fn(x) = xn; x 2 [0; 1]:
Here A = [0; 1] and, for x 2 [0; 1); lim

n!1
fn(x) = 0 (why?). For x = 1;

lim
n!1

fn(1) = 1: So, the pointwise limit function f(x) = 0; if 0 � x <

1 and f(1) = 1: Hence, the sequence of functions ffng is pointwise
convergent to this f: Let us evaluate now

kfn � fk = supfjfn(x)� f(x)j : x 2 [0; 1]g = 1:
Hence kfn � fk = 1 does not tend to 0! So, the sequence of functions
is not uniformly convergent.



68 3. SEQUENCES AND SERIES OF FUNCTIONS

Remark 12. (Weierstrass) Not always we must compute exactly
the norm kfn � fk : In fact, for the uniform convergence to f of the se-
quence ffng; it is su¢cient to �nd a sequence of numbers f�ng such that
jfn(x)� f(x)j � �n for any x 2 A and for any n � N (a �xed natural
number) such that f�ng ! 0 (why?). For instance, take fn(x) =

sinnx
n
:

Since for any �xed x 2 R,
�� sinnx

n

�� � 1
n
; we have that fn(x) ! 0; when

n ! 1: But the right side of this last inequality is independent on x:
So we can take �n =

1
n
and apply the above remark of Weierstrass.

Hence fn(x) =
sinnx
n

is uniformly convergent to 0 on R. If instead of
sinnx one takes any other bounded function g(x) on an arbitrary in-

terval I � R, we get that fn(x) = g(x)
n
is uniformly convergent to 0 on

I (prove it!).

In order to test the uniform convergence of a sequence of continuous
functions we can use the following result.

Theorem 38. Let (X; d) be a metric space and let ffng be a uni-
formly convergent sequence of bounded continuous functions de�ned on
X with real or complex values. Let f be the limit function of ffng:
Then the function f itself is a bounded and continuous function on X:

Proof. Recall that kfnk = sup jfn(X)j < 1 for any n = 1; 2; :::
(fn is bounded). Let " > 0 be a small positive real number and let N
be a rank (a �xed natural number) such that

(2.5) kf � fnk < " for any n � N:

1) Let us prove that f is bounded on X: Take n = N in (2.5),
remember the basic property of the norm function (see Theorem 37)
and write

kfk = k(f � fN) + fNk � kf � fNk+ kfNk < "+ kfNk :
Since fN is bounded (kfNk <1), we get that f is also bounded.
2) In order to prove the continuity of f at a �xed point a of X; let

us take a sequence fakg which is convergent to a; when k !1: Since
ffng is uniformly convergent to f; there is a large number L such that
kf � fLk < "

3
: Since this fL is continuous, there is a rank K such that

for any k � K one has

jfL(ak)� fL(a)j <
"

3
:

Now,

(2.6) jf(ak)� f(a)j = jf(ak)� fL(ak) + fL(ak)� f(a)j �
� jf(ak)� fL(ak)j+ jfL(ak)� f(a)j �
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� supfjf(x)� fL(x)j : x 2 Xg+ jfL(ak)� f(a)j =
= kf � fLk+ jfL(ak)� f(a)j

But,

(2.7) jfL(ak)� f(a)j = jfL(ak)� fL(a) + fL(a)� f(a)j �

� jfL(ak)� fL(a)j+jfL(a)� f(a)j �
"

3
+supfjfL(x)� f(x)j : x 2 Xg =

=
"

3
+ kfL � fk ;

for any k � K (here we just used the continuity of fL). Combining the
inequalities (2.6) and (2.7), we �nd

jf(ak)� f(a)j � kf � fLk+
"

3
+ kfL � fk �

"

3
+
"

3
+
"

3
= ";

for any k � K: Hence f(ak)! f(a); so f is continuous at a: �

This last result is useful whenever we want to prove that a sequence
of continuous functions ffng is NOT uniformly convergent. Namely,
we construct the limit function f(x) = lim

n!1
fn(x) for any �xed x: If the

function f(x) is not continuous, then, because of Theorem 38, we must
conclude that ffng cannot be uniformly convergent to f .

For instance, the sequence fn(x) = xn; x 2 [0; 1] is convergent to
f(x) = 0 if x 2 [0; 1) and f(1) = 1: Since this last function is not
continuous, our sequence cannot be uniformly convergent to f: It is
only simply convergent to f:

Sometimes it is useful to integrate term by term a sequence of func-
tions and see what happens with the limit function.

Theorem 39. Let ffng be a sequence of continuous functions,
which is uniformly convergent to a continuous (see Theorem 38) func-
tion f on the interval [a; b]: For any �xed x 2 [a; b] one de�nes Fn(x) =R x
a
fn(t)dt; n = 0; 1; ::: and F (x) =

R x
a
f(t)dt be the canonical primi-

tives of fn and of f respectively on [a; b]: Then, the sequence fFng is
uniformly convergent to F on [a; b]: In particular, for x = b; we get a
very useful relation:

(2.8) lim
n!1

Z b

a

fn(t)dt =

Z b

a

lim
n!1

fn(t)dt:

Proof. Let us evaluate

kFn � Fk = supfjFn(x)� F (x)j ; x 2 [a; b]g �

� supf
Z x

a

jfn(t)� f(t)j dt : x 2 [a; b]g �
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(2.9) � kfn � fk supf
Z x

a

dt : x 2 [a; b]g = (b� a) kfn � fk :

Now, since ffng is uniformly convergent to f; the numerical se-
quence kfn � fk tends to zero. Hence, since 2.9 says that

kFn � Fk � kfn � fk (b� a);
we have that kFn � Fk ! 0; i.e. fFng is uniformly convergent to F on
[a; b]: �

In the following we show how to use this result in practice.
Let us take the sequence of functions fn(x) = nxe�nx

2
; x 2 [0; 1]:

It is clear that this sequence is simply convergent to the continuous
function f(x) = 0 for any x in [0; 1]: Since f is continuous we cannot
decide if our sequence is uniformly convergent or not, only by using
Theorem 38. If the sequence were uniformly convergent, then, using
the relation (2.8) we would get:

(2.10) lim
n!1

Z 1

0

nxe�nx
2

dx =

Z 1

0

lim
n!1

nxe�nx
2

dx = 0:

But Z 1

0

nxe�nx
2

dx = �1
2
e�nx

2 j10= �
1

2
[e�n � 1]! 1

2
6= 0:

Hence, our assumption cannot be true. So, our sequence is not uni-
formly convergent on [0; 1]:

Remark 13. In Theorem 39 we saw that a uniformly convergent
sequence of continuous functions can be "termwisely" integrated. But
what about their "termwise" derivatives? Can we "termwisely" di¤er-
entiate a uniformly convergent sequence of di¤erentiable functions? In
general, we cannot, as the following example shows. Let fn(x) =

xn

n
;

x 2 [0; 1]: Since kfn � 0k = supfxn
n
: x 2 [0; 1]g = 1

n
! 0; when

n ! 1; we �nd that ffng is uniformly convergent to f(x) = 0 on
[0; 1]: But f 0n(x) = xn�1 is not uniformly convergent on [0; 1] as we saw
above.

Theorem 40. If we want to di¤erentiate "termwisely" the sequence
ffng of di¤erentiable functions on [a; b]; the following conditions are
su¢cient: 1) ffng is uniformly convergent to f on [a; b]; 2) ff 0ng is
uniformly convergent to g on [a; b] and 3) fn 2 C1[a; b] for any n =
0; 1; ::: . Then f is also di¤erentiable and f 0 = g () f is also of class
C1 on [a; b]).
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Proof. Indeed, using Theorem 39 for the sequence f 0n
uc! g; one

has that

(2.11) Fn(x) =

Z x

a

f 0n(t)dt = fn(x)� fn(a) uc!
Z x

a

g(t)dt:

Since fn
uc! f one has that f(x)�f(a) =

R x
a
g(t)dt (why?). Let x0 be a

point in [a; b]: Since
R x
x0
g(t)dt = g(cx) � (x� x0) (mean formula), where

cx is a point in the segment [x0; x];

lim
x!x0

f(x)� f(x0)
x� x0

= lim
x!x0

g(cx) = g(x0):

So, f 0(x0) exists and it is equal to g(x0): Hence, f
0 = g on [a; b]. �

Definition 15. Let ffng be a sequence of functions de�ned on a
subset A of R. For every n = 0; 1; ::: we denote by

sn(x) = f0(x) + f1(x) + :::+ fn(x):

A series of functions fn is an "in�nite" sum
1X

k=0

fk:

If the sequence of "partial sums" fsng is simply convergent to the func-
tion s on A; we say that the series

1P
k=0

fk is simply (pointwise) conver-

gent to s (its sum) on A: If the sequence fsng is uniformly convergent
to s on A; we say that the series

1P
k=0

fk is uniformly convergent to s (its

sum) on A: In this last case, we simply write s =
1P
k=0

fk:

Let the series of functions
1X

k=0

xk = lim
n!1

(1 + x+ x2 + :::+ xn) = lim
n!1

1� xn+1
1� x =

1

1� x;

for any x 2 (�1; 1): So, the (geometric) series
1P
k=0

xk is simply (point-

wise) convergent to 1
1�x on (�1; 1): Let us see if it is uniformly conver-

gent on (�1; 1): For this, let us evaluate

ksn � sk =





1� xn+1
1� x � 1

1� x





 =

=






xn+1

1� x





 = supf
����
xn+1

1� x

���� : x 2 (�1; 1)g =1:
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Hence, our series is not uniformly convergent on the whole interval
(�1; 1) but,...it is uniformly convergent on every closed subinterval [a; b]
of (�1; 1): Indeed, in this case, if we denote by c = maxfjaj ; jbjg, we
get

ksn � sk �
cn+1

1� a ! 0; when n!1;
because c 2 (0; 1): Thus the series is uniformly convergent on [a; b]:

Sometimes, it is very di¢cult to evaluate "the error function" sn�
s: This is why we need some other tools for deciding if a series is

uniformly convergent or not. A series of functions
1P
k=0

fk is said to

be absolutely uniformly convergent if the series of the moduli of these

functions
1P
k=0

jfkj is uniformly convergent. Recall that jf j (x)
def
= jf(x)j :

It is not di¢cult to see that an absolutely uniformly convergent series of

functions
1P
k=0

fk is also uniformly convergent. Indeed, let Sn =
nP
k=0

jfkj

and let S =
1P
k=0

jfkj be the sum of the series of moduli. Then

js(x)� sn(x)j = jfn+1(x) + fn+2(x) + :::j � jfn+1(x)j+ jfn+2(x)j+ :::

(why?)

= S(x)� Sn(x) � supfjS(x)� Sn(x)j : x 2 Ag = kS � Snk :
Hence js(x)� sn(x)j � kS � Snk for any x 2 A: Taking now sup on

x 2 A we get that ksn � sk � kS � Snk : Since our series is absolutely
uniformly convergent, then kS � Snk ! 0; when n ! 1: Using now
the last inequality, we get that ksn � sk ! 0; i.e. the initial series
is uniformly convergent. A powerful and useful test for the absolute
uniform convergence is the following test.

Theorem 41. (Weierstrass Test for series of functions) Let A be a

subset of real numbers and let
1P
k=0

fk be a series of functions de�ned on

A: Assume that kfnk can be upper bounded by �n 2 [0;1) (jfn(x)j �
�n where x runs on A) for any n = 0; 1; ::: and that the numerical

series
1P
k=0

�k is convergent. Then the series
1P
k=0

fk is absolutely uniformly

convergent. In particular, it is also uniformly convergent.

Proof. Let us �x a small positive real number " > 0 and an x 2 A:
Let

Sn = jf0j+ jf1j+ :::+ jfnj
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be the n-th partial sum of the series
1P
k=0

jfkj. Since the numerical series
1P
k=0

�k is convergent, there is a rank N such that

�n+1 + �n+2 + :::+ �n+p < "

for any n � N and for any natural number p:
Let us evaluate jSn+p(x)� Sn(x)j :

(2.12) jSn+p(x)� Sn(x)j = jfn+1(x)j+ jfn+2(x)j+ :::+ jfn+p(x)j �
�n+1 + �n+2 + :::+ �n+p < ":

From (2.12) we obtain that the sequence fSn(x)g is a Cauchy se-
quence of real numbers (see De�nition 2). Since on the real line any
Cauchy sequence is convergent (see Theorem 13) we get that the se-
quence fSn(x)g is convergent to a real number S(x) (this means that
this real number depends on x; i.e. it is changing if we change x; so it
is a function of x). Come back now in (2.12) and make p ! 1: We
�nd that jS(x)� Sn(x)j � " for any n � N and for any x 2 A: If here,
in the last inequality, we take sup on x; we �nally get: kS � Snk � "

for any n � N: Hence, the series
1P
k=0

jfkj is uniformly convergent to

S (its sum). Thus, our initial series
1P
k=0

fk is uniformly and absolutely

convergent. �

The series of functions
1P
n=1

arctan(nx)
n2

is absolutely uniformly conver-

gent because
���arctan(nx)n2

��� � �
2
� 1
n2
and the numerical series

1P
n=1

�
2
� 1
n2
=

�
2

1P
n=1

1
n2
is convergent (why?) (see the Weierstrass Test, Theorem 41).

Another very useful test is the Abel-Dirichlet Test for series of func-
tions, a generalization of the test with the same name for numerical
series.

Theorem 42. (Abel-Dirichlet Test for series of functions)
Let fan(x)g; fbn(x)g be two sequences of functions de�ned on the

same interval I of R. We assume that kank is a decreasing to zero
sequence and that the partial sums sn(x) =

Pn

k=0 bn(x) of the series
of functions

P1
k=o bn(x) are uniformly bounded, i.e. there is a positive

real number M > 0 such that ksnk < M for any n = 1; 2; ::::
Then the series of functions

P1
n=0 an(x)bn(x) is (absolutely) uni-

formly convergent on the interval I:
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Proof. Let us come back to the Abel-Dirichlet�s Test for numerical
series and substitute the numbers an; bn; sn; Sn with the corresponding
functions an(x); bn(x); sn(x) and Sn(x) =

Pn

k=0 ak(x)bk(x) respectively.
We obtain (do it step by step!) that the sequence of functions fSn(x)g
is uniformly Cauchy, i.e. for any " > 0; there is a rank N" such that if
n � N" one has that

(2.13) kSn+p � Snk < "

for any p = 1; 2; :::: In particular,

jSn+p(x)� Sn(x)j < "

for any �xed x in I: So, the numerical sequence fSn(x)g is convergent
to a number S(x) which depend on x: Making p!1 in (2.13) we get

jS(x)� Sn(x)j � "

for any n � N" and for any x in I: Take now sup on x and �nd that

kS � Snk � "

for any n � N": This means that fSng is uniformly convergent to S;
i.e. our series of functions

P1
n=0 an(x)bn(x) is uniformly convergent on

the interval I:With some small changes in the proof, we �nd that this
last series is absolutely uniformly convergent on I (do them!). �

Let us take the series of functions
P1

n=1
(�1)n�1

n
xn for x 2 [�1+"; 1];

where 0 < " < 2: Let us apply the Abel-Dirichlet Test for series of
functions by taking an(x) =

xn

n
and bn(x) = (�1)n�1: We easily see

that kan(x)k = 1
n
and that the series

P1
n=1(�1)n�1 has bounded partial

sums. Hence our series
P1

n=1
(�1)n�1

n
xn; x 2 [�1 + "; 1]; is absolutely

and uniformly convergent.
The following question arises: can we integrate or di¤erentiate term

by term (termwise) a series of function
1P
k=0

fk ? Since everything reduces

to the sequence of partial sums sn = f0 + f1 + ::: + fn; we can apply
the results from Theorem 39 and Theorem 40 and �nd:

Theorem 43. Let
1P
n=0

fn be a uniformly convergent series of contin-

uous functions on the interval [a; b]; let s be its sum and let Fn(x) be the
canonical primitives of fn(t) on [a; b] : Fn(x) =

R x
a
fn(t)dt; n = 0; 1; :::

. Then the series of functions
1P
n=0

Fn is uniformly convergent on [a; b]
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and S(x) =
R x
a
s(t)dt; is its sum. So,

(2.14)

Z x

a

 1X

n=0

fn(t)

!
dt =

1X

n=0

Z x

a

fn(t)dt:

(this means that the integration symbol
R
commutes with the symbol

P

of a series). In particular, for x = b; we get a very useful formula:

(2.15)

Z b

a

 1X

n=0

fn(t)

!
dt =

1X

n=0

Z b

a

fn(t)dt:

If in addition, fn are functions of class C
1 on [a; b] (fn are dif-

ferentiable and their derivatives are continuous on [a; b]; shortly write

fn 2 C1[a; b]) and if the series of derivatives, u =
1P
n=0

f 0n is uniformly

convergent on [a; b]; then s is di¤erentiable on [a; b] and s0 = u: So,
we can di¤erentiate "term by term" (or termwise) the initial series of
functions.

In the �rst statement s is a continuous function on [a; b] because of
the basic Theorem 38. In this last theorem there is a requirement: fn
must be bounded. This is true because fk are continuous and de�ned
on a bounded and closed interval (see Theorem 32).

Let us study the following series of functions
1P
n=0

(�1)nxn on (�1; 1).
For any �xed x, one has the formula

(2.16) 1� x+ x2 � ::: = 1

1 + x
; x 2 (�1; 1);

the famous geometric series with ratio �x. Hence, our series is simply
convergent on (�1; 1): It is not uniformly convergent on (�1; 1) but it is
absolutely and uniformly convergent on any closed subinterval [a; b] of
(�1; 1) (apply the same reason as in the case of the in�nite geometrical
series). Let us derive an interesting and useful formula from (2.16). Let
us �x an x0 in (�1; 1) and take a; b such that x0 2 [a; b]; a or b is 0
(if x0 < 0; take b = 0; if x0 � 0; take a = 0) and [a; b] is included in
(�1; 1): Since all conditions in Theorem 43 are ful�lled, we integrate
term by term formula (2.16) and get

Z x0

0

(1� t+ t2 � :::+ (�1)ntn + :::)dt =

= (t� t2

2
+
t3

3
� :::+ (�1)n t

n+1

n+ 1
+ :::) jx00 =
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=

1X

n=1

(�1)n�1x
n
0

n
=

Z x0

0

1

1 + t
dt = ln(1 + x0):

Now, let us put instead of x0 an arbitrary x in (�1; 1) and obtain

(2.17) ln(1 + x) =

1X

n=1

(�1)n�1x
n

n
, for any x 2 (�1; 1):

The value of the alternate series
P1

n=1(�1)n�1 1n is ln 2 but, to prove
this, one needs the continuity of the function on the right in the formula
2.17. And this is not so easy to be proved (see the Abel Theorem,
Theorem 46).

Let us compute the sum of the series of functions
P1

n=0 nx
n on

its maximal domain of de�nition. First of all, let us �x an x on the
real line and try to �nd conditions for the convergence of the seriesP1

n=0 nx
n: Let us see where the series (numerical series this time!) is

absolutely convergent. Applying the Ratio Test (Theorem 27) to the
series of moduli

P1
n=0 n jxj

n ; we get lim
n!1

an+1
an

= jxj : We know that if
jxj < 1; the series is absolutely convergent, in particular it is convergent
on (�1; 1): If jxj > 1; the series is divergent, because, in this case, the
sequence fnxng is not bounded (why?) so, it cannot be convergent to
0: For x = 1 or x = �1; the series is divergent. Hence, the de�nition
domain of the function s(x) =

P1
n=0 nx

n is exactly (�1; 1): Let us
compute s(x):

s(x) = 1x+2x2+3x3+ ::::+nxn+ ::: = x(1+2x+3x2+ :::+nxn�1+ :::)

= x(x+ x2 + :::+ xn + :::)0 = x �
�

x

1� x

�0
=

x

(1� x)2 :

Here we used Theorem 43 to di¤erentiate term by term the series
x + x2 + ::: + xn + ::: = x

1�x (why the hypotheses of this theorem are
ful�lled?).

3. Problems

1. Find the convergence set and the limit for the following sequences
of functions: a) fn(x) = xn; b) fn(x) =

x
n
; c) fn(x) =

n
x+n

; x 2 (0;1);
d) fn(x) =

nx
1+n+x

; x 2 [0; 1]; e) fn(x) = 2nx
1+n2x2

; x 2 [1;1); f) fn(x) =
x2

x4+n2
; x 2 [1; 1):
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2. Say if the convergence of the above sequences (see Problem 1.)
is uniform or not. Study the absolute uniform convergence of the same
sequences.

3. Let fn(x) =
nx

1+n2x2
; x 2 [0; 1]: Prove that ffng is not uniformly

convergent but
R 1
0
fn(x)dx!

R 1
0
lim
n!1

fn(x)dx:

4. Prove that fn(x) =
x

1+n2x2
; x 2 [�1; 1] is uniformly convergent

to f(x) (�nd it!) but f 0n is not uniformly convergent to f
0: Do the same

for fn(x) =
xn

n
; x 2 [0; 1]:

5. Prove that the series of functions
P1

n=1(x
n � xn�1) is uniformly

convergent on [0; 0:5]; but not on [0; 1]:
6. Is the series of functions

P1
n=1

�
sin x

n+1
� sin x

n

�
uniformly con-

vergent on R? But on [0; 1]? But on [a; b]?
7. Prove that the following series of functions are absolutely and

uniformly convergent on the indicated domain: a)
P1

n=1
(�1)n+1
x2+n

p
n
; x 2 R;

b)
P1

n=1
(�1)n3�nx
x+2n

; x 2 [0;1); c)
P1

n=1
sinnx
n
p
n
; x 2 R; d)

P1
n=1

1
n2+x2

; x 2
R; e)

P1
n=1

sinnxp
x2+n4

; x 2 R.
8. Can we di¤erentiate term by term the following series?

a)
P1

n=1 exp(�nx) sinnx; x 2 [1;1); b)
P1

n=1
sin(2

p
nx)

n22
p
n ; x 2 R;

c)
P1

n=1
1

n2+x2
; x 2 R.

9. Find the image of the following functions:
a) f(x) = �3x+ 2; x 2 [�3; 12];
b) f(x) = 2x2 + x� 5; x 2 R;
c) f(x) = x3 � 3x+ 2; x 2 [�120; 120];
d) f(x) = 3 sin 4x; x 2 [��

2
; �
2
];

e) f(x) = jsin x� cos 2xj ; x 2 [0; �];
f) f(x) = jx2 + 2x� 1j � 3; x 2 (�1; 9]:
10. Find the norm of the following functions: a) f(x) = 2x � 5;

x 2 [�4; 7]; b) f(x) = 3 cos 5x; x 2 [�;1); c) f(x) = ln(2x2 + 3);
x 2 [�2; 2]; d) f � g , where f(x) = 3x and g(x) = 4x2; x 2 [0; 2]:





CHAPTER 4

Taylor series

1. Taylor formula

Always the most elementary functions were considered to be poly-
nomial functions. A polynomial function of degree n is a function
de�ned on the whole real line by the formula:

Pn(x) = a0 + a1x+ a2x
2 + :::+ anx

n;

where a0; a1; :::; an are �xed real numbers and an 6= 0.
Many mathematicians tried and are trying to reduce the study of

more complicated functions to polynomials.
It is clear enough that not all functions can be represented by a

polynomial. For instance, the exponential function f(x) = exp(x) = ex

cannot be represented by a polynomial Pn(x). Indeed, if

exp(x) = a0 + a1x+ a2x
2 + :::+ anx

n

for x 2 (a; b); a 6= b; we di¤erentiate n times and �nd: exp(x) = n!an,
a constant, which is not possible, because the exponential function is
strictly increasing. Here we proved in fact that the exponential function
cannot be represented by a polynomial in any small neighborhood of
any point on the real line. The following problem appears in many
applications. If x is very close to a �xed number a; i.e. if the di¤erence
x� a is very small (is very close to zero!), can we represent a function
f as an "in�nite" polynomial in the variable x� a? This means
(1.1) f(x) = a0 + a1 (x� a) + a2 (x� a)2 + :::

in a neighborhood (a�"; a+") of a: This would imply that our function
is a function of class C1 , i.e. it has derivatives of any order. But this
is not true for all functions. So, what can we hope is to "approximate"
a function f in a small neighborhood of a point a with a polynomial of
a given degree n in the variable x� a :
(1.2) f(x) = a0 + a1 (x� a) + a2 (x� a)2 + :::+ an(x� a)n +Rn(x);

where Rn(x) is a remainder which is a function of x (it also depends
on f and on a!). This remainder is the error committed when we

79
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approximate f(x) by the polynomial

a0 + a1 (x� a) + a2 (x� a)2 + :::+ an(x� a)n:
This polynomial is called the Taylor polynomial of order n at a:

If f(x) is a polynomial of degree n; we can represent f as in formula
(1.2) with the remainder zero. Indeed, the set of n+ 1 binomials

f1; x� a; (x� a)2; (x� a)3; :::; (x� a)ng
is linear independent in the vector space Pn of all polynomials of degree
at most n; which has dimension n + 1 over the real �eld (this comes
directly from the de�nition of a polynomial-why?). Hence,

f1; x� a; (x� a)2; (x� a)3; :::; (x� a)ng
is a basis in Pn and so, we always can uniquely �nd the constant ele-
ments a0; a1; a2; :::; an such that

(1.3) f(x) = a0 + a1 (x� a) + a2 (x� a)2 + :::+ an(x� a)n:
In this last case we can compute the coe¢cients a0; a1; :::; an by

using the values of f and of its derivatives f 0; f 00; :::; f (n) at a: Indeed,
let us make x = a in the equality (1.3). We get f(a) = a0: If one
di¤erentiates the same equality and makes x = a; one obtains f 0(a) =
a1: Now, if we di¤erentiate twice this equality (1.3), we get f

00(a) = 2a2;
and so on. Take the k-th derivative in both sides in (1.3) and �nd
f (k)(a) = k!ak for any k = 1; 2; :::; n: Thus (1.3) becomes:
(1.4)

f(x) = f(a) +
f 0(a)

1!
(x� a) + f 00(a)

2!
(x� a)2 + :::+

f (n)(a)

n!
(x� a)n:

Generally, if the function f is not a polynomial of degree n; we
formally can write (it is clear that f must be n-times di¤erentiable):
(1.5)

f(x) = f(a)+
f 0(a)

1!
(x� a)+f

00(a)

2!
(x� a)2+:::+f

(n)(a)

n!
(x�a)n+Rn(x);

where

Rn(x) = f(x)�f(a)�f
0(a)

1!
(x� a)�f

00(a)

2!
(x� a)2�:::�f

(n)(a)

n!
(x�a)n:

The problem is to estimate this remainder. The famous Taylor formula
gives a general estimation for this remainder.

Theorem 44. (Taylor formula) Let A be an open subset of R and
let f : A ! R be a function de�ned on A with values in R, which
is (n + 1)-times di¤erentiable on A: Let us �x a point a in A and a
natural number p 6= 0: Then, for any x 2 A such that the segment [a; x]
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is included in A; there is a point c 2 (a; x) with the following property:
the remainder Rn(x) from (1.5) has a representation of the form

(1.6) Rn(x) =

�
x� a
x� c

�p
(x� c)n+1

n!p
f (n+1)(c)

This general form of the remainder was discovered by Schömlich. If
p = n+ 1; we �nd the Lagrange form of the remainder

(1.7) Rn(x) =
f (n+1)(c)

(n+ 1)!
(x� a)n+1:

We see that this form is very similar to the general term form in (1.5).

In fact, it is "the next" term after the n-th term f (n)(a)
n!

(x�a)n in which
the value of f (n+1) is not computed at a; but at a close point c 2 [a; x]
(here we do not mean that a is less then x!). Usually, the error made
by approximating f(x) with its Taylor polynomial Tn(x) of order n;
(1.8)

Tn(x) = f(a) +
f 0(a)

1!
(x� a) + f 00(a)

2!
(x� a)2 + :::+

f (n)(a)

n!
(x� a)n;

is evaluated by the Lagrange form of the remainder Rn(x): Since we
have no supplementary information on the number c; we use the fol-
lowing upper bounded formula:

(1.9) jRn(x)j �
jx� ajn+1
(n+ 1)!

supf
��f (n+1)(z)

�� : z 2 [a; x]g

Since we frequently use Taylor formula with Lagrange remainder, we
write it here in a complete form (together with this last form of the
reminder)
(1.10)

f(x) = f(a) +
f 0(a)

1!
(x� a) + f 00(a)

2!
(x� a)2 + :::+

f (n)(a)

n!
(x� a)n

+
f (n+1)(c)

(n+ 1)!
(x� a)n+1:

Proof. The proof of this theorem is not so natural. Let us assume
that x > a: In this case, the segment [a; x] is exactly the closed interval
[a; x]: Let us denote in (1.5)

(1.11) Q(x) =
Rn(x)

(x� a)p :
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Thus, the formula (1.5) becomes:
(1.12)

f(x) = f(a) +
f 0(a)

1!
(x� a) + f 00(a)

2!
(x� a)2 + :::+

f (n)(a)

n!
(x� a)n

+(x� a)pQ(x):
In order to obtain a representation for Q(x); we consider an auxiliary
function:
(1.13)

g(t) = f(t)+
f 0(t)

1!
(x� t)+f

00(t)

2!
(x� t)2+:::+f

(n)(t)

n!
(x�t)n+(x�t)pQ(x)

We obtained the expression of g(t) by simply putting t instead of a;
in (1.12). We apply now the Rolle�s Theorem (Theorem 36) on the
interval [a; x]: The function g(t) is continuous and di¤erentiable on
[a; x], g(a) = f(x) (see 1.12) and g(x) = f(x) so, g(a) = g(x): Thus,
there is a point c 2 (a; x) such that g0(c) = 0: Let us compute g0(t) :

g0(t) = f 0(t) +
f 00(t)

1!
(x� t)� f 0(t)

1!
+
f 000(t)

2!
(x� t)2 � f 00(t)

1!
(x� t) + :::

+
f (n+1)(t)

n!
(x� t)n � f (n)(t)

(n� 1)!(x� t)
n�1 � p(x� t)p�1Q(x);

So we get

(1.14) g0(t) =
f (n+1)(t)

n!
(x� t)n � p(x� t)p�1Q(x):

Make now t = c in (1.14) and �nd

0 = g0(c) =
f (n+1)(c)

n!
(x� c)n � p(x� c)p�1Q(x):

If here, instead of Q(x) we put Rn(x)
(x�a)p (see (1.11)), we get

f (n+1)(c)

n!
(x� c)n = p(x� c)p�1 Rn(x)

(x� a)p ;

or

Rn(x) =
(x� a)p
(x� c)p�1

f (n+1)(c)

n!p
(x� c)n = (x� a)p

(x� c)p
f (n+1)(c)

n!p
(x� c)n+1;

i.e. formula (1.6). The other statements of the theorem are easily
deduced from this last formula. �

Remark 14. A function f(x) is a zero of another function g(x)

at a point a if lim
x!a

f(x)
g(x)

= 0: We write this as f(x) = 0(g(x)) at a:
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For instance, from (1.7) we see that the remainder Rn(x) is a zero of
(x� a)n at x = a; i.e. Rn(x) = 0((x� a)n) at x = a:

If a = 0, the formula (1.5) is called the Mac Laurin formula:

(1.15) f(x) = f(0) +
f 0(0)

1!
x+

f 00(0)

2!
x2 + :::+

f (n)(0)

n!
xn +Rn(x)

If we use the Lagrange form of the remainder (1.7), we get

(1.16) f(x) = f(0)+
f 0(0)

1!
x+

f 00(0)

2!
x2+:::+

f (n)(0)

n!
xn+

f (n+1)(c)

(n+ 1)!
xn+1;

where c is a real number between 0 and x: Since it is easier to ma-
nipulate Mac Laurin formulas for many functions which are de�ned on
an interval (a; b) with 0 2 (a; b) and since the translation x ! x � a
makes connections between Taylor formulas and Mac Laurin formu-
las, we prefer to deduce these last formulas for the basic elementary
functions.

Example 2. (exp(x)) Let f(x) = exp(x) = ex; x 2 R. Since the
derivatives of exp(x) is exp(x) itself, the Taylor formula at a = 0 (Mac
Laurin formula) for exp(x) becomes

(1.17) exp(x) = 1 +
x

1!
+
x2

2!
+ :::+

xn

n!
+ exp(c)

xn+1

(n+ 1)!
;

where c 2 (0; x); if x > 0; or c 2 (x; 0); if x < 0:

For instance, let us compute exp(0:03) with 2 exact decimals. Since
c 2 (0; 0:03); this means that

jRn(0:03)j =
����exp(c)

(0:03)n+1

(n+ 1)!

���� < 3 �
(0:03)n+1

(n+ 1)!
<

1

100
;

or
3n+2

100n+1(n+ 1)!
<

1

100
, 3n+2 < 100n(n+ 1)!:

It is easy to prove this last inequality by mathematical induction for
n � 1. So, exp(x) �= 1+ 0:03

1!
= 1:03; with 2 exact decimals. This is the

method which computers use to (approximately) calculate exp(r) for a
given real number r: Formula (1.17) can also be written as

(1.18) exp(x) = 1 +
x

1!
+
x2

2!
+ :::+

xn

n!
+ 0(xn)



84 4. TAYLOR SERIES

We can use this formula to compute nondeterministic limits. For in-
stance, let us compute

lim
x!0

exp(x3)� 1� x3 � x6

2

exp(x2)� 1� x2 � x4

2

=
0

0
:

In formula (1.18) we put instead of x; x3 and n = 2 :

exp(x3) = 1 + x3 +
x6

2
+ 0(x6):

If we put now in (1.18) instead of x; x2 and n = 3; we get

exp(x2) = 1 + x2 +
x4

2
+
x6

6
+ 0(x6):

Hence, our limit becomes

lim
x!0

0(x6)
x6

6
+ 0(x6)

= lim
x!0

0(x6)
x6

1
6
+ 0(x6)

x6

=
lim
x!0

0(x6)
x6

1
6
+ lim
x!0

0(x6)
x6

=
0

1
6
+ 0

= 0:

In practice, we do not know in advance how many terms we must con-
sider in numerator and in denominator such that the nondeterministic
to be eliminated. So, it is a good idea to consider one or two terms
more than the degree of the polynomial queue which induces the non-
deterministic. In our example we write

lim
x!0

exp(x3)� 1� x3 � x6

2

exp(x2)� 1� x2 � x4

2

=

= lim
x!0

(1 + x3

1!
+ x6

2!
+ x9

3!
+ :::)� 1� x3 � x6

2

(1 + x2

1!
+ x4

2!
+ x6

3!
+ x8

4!
+ :::)� 1� x2 � x4

2

=

= lim
x!0

x9

3!
+ :::

x6

3!
+ x8

4!
+ :::

= lim
x!0

x3

3!
+ :::

1
3!
+ x2

4!
+ :::

=
0
1
3!

= 0:

Example 3. (sin(x)) Let f(x) = sin(x); x 2 R. Since [sin(x)]0 =
cos(x); [sin(x)]00 = � sin(x); [sin(x)]000 = � cos(x) and [sin(x)](4) =
sin(x); we obtain that [sin(x)](4k+1) = cos(x); [sin(x)](4k+2) = � sin(x);
[sin(x)](4k+3) = � cos(x) and [sin(x)](4k) = sin(x) for any k = 0; 1; ::: .
Now, sin 0 = 0; cos 0 = 1 and, applying formula (1.16), we get

(1.19) sin(x) =
x

1!
� x3

3!
+
x5

5!
� :::+ (�1)n x2n+1

(2n+ 1)!
+ 0(x2n+1):

It is more complicated to express the remainder in this case because the
(n + 1)-derivative of sin(x) is either � sin(x) or � cos(x): Let us use
the Mac Laurin formula for sin(x) in order to compute sin(0:2) with
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one exact decimal. Here 0:2 means 0:2 radians. Now, the modulus of
the remainder, jR2n+1(x)j is less or equal to 1

(2n+2)!
jxj2n+2 : So,

jR2n+1(0:2)j �
1

(2n+ 2)!
(0:2)2n+2;

and this last one must be less then 1
10
; i.e.

1

(2n+ 2)!
22n+2 < 102n+1

or

22n+2 < (2n+ 2)!102n+1:

But this last one is true for any n � 0: Hence, sin(0:2) ' 0:2 with one
exact decimal.

Example 4. (cos(x)) Let f(x) = cos(x); x 2 R. Like in Example
3 we easily deduce the following formula

(1.20) cos(x) = 1� x2

2!
+
x4

4!
� x6

6!
+ :::+ (�1)n x2n

(2n)!
+ 0(x2n):

Example 5. Let

f(x) = ln(1 + x); x 2 (�1;1):
Since

f 0(x) = (1 + x)�1; f 00(x) = �(1 + x)�2; f 000(x) = 2(1 + x)�3; :::

:::; f (n)(x) = (�1)n�1(n� 1)!(1 + x)�n; :::;
one has that f(0) = 0; f 0(0) = 1; f 00(0) = �1; f 000(0) = 2; :::; f (n)(0) =
(�1)n�1(n� 1)!; ::: . So, the formula (1.16) becomes
(1.21)

ln(1+x) = x� x
2

2
+
x3

3
� x

4

4
+ :::+(�1)n�1x

n

n
+(�1)n (1 + c)

�n�1

n+ 1
xn+1;

where c is a real number between 0 and x: Hence,

(1.22) ln(1 + x) = x� x2

2
+
x3

3
� x4

4
+ :::+ (�1)n�1x

n

n
+ 0(xn):

Let us compute ln(1:02) with 3 exact decimals. Since

ln(1:02) = ln(1 + 0:02) = 0:02� (0:02)
2

2
+
(0:02)3

3
+ :::

+(�1)n�1 (0:02)
n

n
+ (�1)n (1 + c)

�n�1

n+ 1
(0:02)n+1;
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where c is between 0 and 0:02; we must evaluate the modulus of the
remainder and force this last upper bound to be less then 1

1000
;

����(�1)
n (1 + c)

�n�1

n+ 1
0:02n+1

���� <
2n+1

(n+ 1)100n+1
<

1

1000
:

This last inequality is true for any n � 1: Thus, ln(1:02) ' 0:020 with
3 exact decimals. Pay attention! It is not sure that 020 are the �rst
three decimals of ln(1:02)! What is sure is that jln(1:02)� 0:02j is less
then 0:001 = 1

1000
(this means "with 3 exact decimals!").

Example 6. (Binomial formula) Let f(x) = (1 + x)�; where � is
a �xed real number and x > �1: Since

f 0(x) = �(1 + x)��1; f 00(x) = �(�� 1)(1 + x)��2; :::

:::; f (n)(x) = �(�� 1)(�� 2):::(�� n+ 1)(1 + x)��n; :::;
one has that

f(0) = 1; f 0(0) = �; f 00(0) = �(�� 1); :::
:::; f (n)(0) = �(�� 1)(�� 2):::(�� n+ 1); ::::

Now, formula (1.16) becomes

(1 + x)� = 1 +
�

1!
x+

�(�� 1)
2!

x2 + :::

:::+
�(�� 1)(�� 2):::(�� n+ 1)

n!
xn+

(1.23) +
�(�� 1)(�� 2):::(�� n)(1 + c)��n�1

(n+ 1)!
xn+1;

where c is a real number between 0 and x:
Formula (1.23) can also be written as

(1.24) (1 + x)� = 1 +
�

1!
x+

�(�� 1)
2!

x2 + :::+

+
�(�� 1)(�� 2):::(�� n+ 1)

n!
xn + 0(xn)

Let us use this formula to approximate the following expression
E = E(q) = 1p

a+bq2
, a; b > 0; by a polynomial of degree 2 (it is used

in Physics for q small). In order to apply (1.23) we need to put our
expression in the form (1 + x)�: So,

E = (a+ bq2)�
1
2 = a�

1
2 (1 +

b

a
q2)�

1
2 :



1. TAYLOR FORMULA 87

Let us take only (1 + b
a
q2)�

1
2 and use (1.23) up to x2; where x = b

a
q2

and � = �1
2
: We get

(1 +
b

a
q2)�

1
2 � 1 + (�1

2
)
b

a
q2 +

(�1
2
)(�3

2
)

2

b2

a2
q4;

Hence,
1p

a+ bq2
� 1p

a
� b

2a
p
a
q2 +

3b2

8a2
p
a
q4:

If � = n; a natural number, we obtain the famous binomial formula
of Newton:

(1.25) (1 + x)n = 1+
n

1!
x+

n(n� 1)
2!

x2 + :::+
n(n� 1)(n� 2):::1

n!
xn;

because the remainder in (1.23) is zero. If instead of x we put b
a
in

(1.25) we get

(a+ b)n

an
= 1 +

�
n

1

�
b

a
+

�
n

2

�
b2

a2
+

�
n

3

�
b3

a3
+ :::+

�
n

n

�
bn

an
:

Multiplying by an; we get:
(1.26)

(a+ b)n = an +

�
n

1

�
an�1b+

�
n

2

�
an�2b2 +

�
n

3

�
an�3b3 + :::+

�
n

n

�
bn:

Here,
�
n

k

�
= n(n�1)(n�2):::(n�k+1)

k!
= n!

k!(n�k)! means n objects taken k:

Example 7. The equilibrium position of a homogeneous weighted
string, �xed at the ends, has a form given by the plane curve y =

a � ch(x
b
); where ch(x) = exp(x)+exp(�x)

2
and a; b are real numbers. The

function f(x) = ch(x) is called the hyperbolic cosine of x:

The derivative of the function ch(x) is sh(x) = exp(x)�exp(�x)
2

; called
the hyperbolic sine of x: Since the derivative of each of them is the other
one, we easily get the formulas

(1.27) sh(x) =
x

1!
+
x3

3!
+
x5

5!
+ :::+

x2n+1

(2n+ 1)!
+ 0(x2n+1);

(1.28) ch(x) = 1 +
x2

2!
+
x4

4!
+
x6

6!
+ :::+

x2n

(2n)!
+ 0(x2n):

For instance, for x small enough, we can approximate ch(x) by the

polynomial T4(x) = 1+
x2

2!
+ x4

4!
: For x = 0:5; ch(0:5) � 1+ 0:25

2
+ 0:0025

24
:

Taylor�s and Mac Laurin�s formulas have many applications in the
local study of a function (or a curve).
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Corollary 5. (Lagrange formula) Let us write Taylor formula
(1.10) for n = 0 : f(x) = f(a) + f 0(c) � (x � a); where c is a number
between a and x: If x = b > a; we get the classical Lagrange formula:
f(b) = f(a) + f 0(c) � (b� a); where c 2 (a; b):
Remark 15. We can use Taylor formula (1.10) for study the shape

of a function in a neighborhood of a point a: Suppose that

f 0(a) = f 00(a) = ::: = f (n�1)(a) = 0

and f (n)(a) 6= 0: We also assume that f is of class Cn on an "-
neighborhood (a� "; a+ ") of a: Then

(1.29) f(x)� f(a) = f (n)(c)

n!
(x� a)n;

where c is between a and x: It is clear that the continuity of f (n)(x) at a
implies that the sign of this last function on maybe a smaller subinterval
(a � �; a + �) of (a � "; a + ") is constant and it is the same like the
sign of f (n)(a) (see Theorem 34). Suppose that f (n)(x) > 0 for any x 2
(a � �; a + �): Then, in (1.29), c 2 (a � �; a + �) and so, the sign of
the di¤erence f(x)� f(a) depends exclusively on n and on the sign of
f (n)(a): If n is even, and f (n)(a) > 0; the di¤erence f(x)�f(a) is > 0,
for any x 2 (a � �; a + �); thus a is a local minimum point for f: If
n is even, but f (n)(a) < 0; then the di¤erence f(x) � f(a) is < 0; for
any x 2 (a � �; a + �); so a is a local maximum point for f: If n is
odd, the point a is not an extremum point because the sign of (x� a)n
changes (it is positive if x > a and negative otherwise). For instance,
f(x) = (x� 2)5 has not an extremum at x = 2:

Let A be an open subset of R and let f : A ! R be a function
of class C1 on A: This means that f is di¤erentiable on A and its
derivative f 0 is continuous on A: One also says that f is smooth on A:
We say that f is convex at the point a of A if the graphic of f is above
the tangent line of this graphic at a; on a small open "-neighborhood
U of a which is contained in A: If here we substitute the word "above"
with the word "under", we get the de�nition of a concave function f
at a point a: Since the equation of the tangent line of the graphic of
the function f at a is:

Y = f(a) + f 0(a)(X � a);
f is a convex function at a if and only if

(1.30) f(x) � f(a) + f 0(a)(x� a);
for any x in U = (a� "; a+ ") � A:
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Corollary 6. Let the above f be a function of class C2 on U =
(a� "; a+ "). We assume that f 00(a) 6= 0: Then f is convex at a if and
only if f 00(a) > 0:

Proof. Let x be a point in U and let us write the Taylor formula
(1.10) for n = 1 at a on the segment [a; x] :

(1.31) f(x) = f(a) +
f 0(a)

1!
(x� a) + f 00(cx)

2!
(x� a)2 ;

where cx 2 [a; x]: If f is convex at a; then there is a small interval
U 0 = (a� "0; a+ "0) � U such that (1.30) works on U 0: Hence, for any
x in U 0 one has that f 00(cx) � 0 in (1.31). Since f 00 is continuous on U
(see the fact that f is of class C2 on U !) and since cx ! a whenever
x ! a; one fas that f 00(a) � 0: But we just assumed that f 00(a) 6= 0;
so f 00(a) > 0: Conversely, if f 00(a) > 0; then f 00(x) > 0 on a whole
neighborhood U 00 = (a � "00; a + "00) � U: Thus f 00(cx) > 0 in (1.31)
for any x in U 00: So, (1.30) works on this U 00: Therefore f is convex at
a: �

We leave the reader to state and to prove a similar result for a
concave function f at a:

2. Taylor series

Let us consider a function f of class C1 on an open subset A of
R. This means that f has derivatives of any arbitrary order on A: It
is clear that all of these derivatives are continuous on A: Look at the
formula (1.10) and push the remainder to 1: We obtain the series of
functions on the right side:

(2.1) f(a)+
f 0(a)

1!
(x� a)+ f 00(a)

2!
(x� a)2+ :::+ f (n)(a)

n!
(x� a)n+ :::

=
1X

n=0

f (n)(a)

n!
(x� a)n:

This series of functions is called the Taylor series associated to
the function f at the point a: If this series of functions is uniformly
convergent and its sum is f(x); we say that

(2.2) f(x) =

1X

n=0

f (n)(a)

n!
(x� a)n

is the Taylor�s expansion of f around the point a: If the series on the
right side is simple convergent and its sum is f on an "-neighborhood
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of a; we say that f is analytic at a: If f is analytic at any point of
A we say that f is analytic on A: The series on the right in (2.2) is
a particular case of a more general type of series of functions, namely,
the power series. A power series is a series of functions of the formP1

n=0 an(x� a)n; where fang is a sequence of real numbers and a is a
�xed arbitrary number.

Theorem 45. Let f : (c; d) ! R be an inde�nite di¤erentiable
function on an interval (c; d) (f 2 C1(c; d)) such that there is a positive
real number M which veri�es

��f (n)(x)
�� �M for any x 2 (c; d) and for

any n = 0; 1; ::: (we say that all the derivatives of f are uniformly

bounded on (c; d)). Then the series
P1

n=0
f (n)(a)
n!

(x � a)n is absolutely
and uniformly convergent on (c; d) for any �xed a in (c; d): Moreover,

f(x) =
1X

n=0

f (n)(a)

n!
(x� a)n

for any �xed a in (c; d): The series on the right is absolutely uniformly
convergent to f:

Proof. Let us denote L = d � c; the length of the interval (c; d):
We apply the Weierstrass Test (Theorem 41):

����
f (n)(a)

n!
(x� a)n

���� �
M

n!
Ln for any x 2 (c; d);

and the numerical series
P1

n=0
M
n!
Ln is convergent (use the Ratio Test:

an+1
an

= L
n+1
! 0 < 1). Hence, the series

P1
n=0

f (n)(a)
n!

(x � a)n is ab-
solutely and uniformly convergent. Let

sn(x) =

nX

k=0

f (k)(a)

k!
(x� a)k:

Formula (1.10) gives us:

jf(x)� sn(x)j =
����
f (n+1)(c)

(n+ 1)!
(x� a)n+1

���� �
M

(n+ 1)!
Ln+1:

Taking sup we obtain kf � snk � M
(n+1)!

Ln+1 and, since M
(n+1)!

Ln+1 ! 0

as n ! 1 (prove it by using a numerical series!), we get that fsng is
uniformly convergent to f: In particular

f(x) =

1X

n=0

f (n)(a)

n!
(x� a)n:
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�

Example 8. (Taylor series for the basic elementary functions)
a) We know that

exp(x) = 1 +
x

1!
+
x2

2!
+ :::+

xn

n!
+ exp(c)

xn+1

(n+ 1)!
:

Since all the derivatives of exp(x) are uniformly bounded on any bounded
interval (a; b) (why?) we can apply Theorem 45 and �nd that the se-
ries

P1
n=0

1
n!
xn is absolutely and uniformly convergent on any bounded

interval (a; b): In particular, we have the Taylor expansion

(2.3) exp(x) = 1 +
x

1!
+
x2

2!
+ :::+

xn

n!
+ ::: =

1X

n=0

1

n!
xn; x 2 R

b) We leave the reader to deduce the following Taylor expansions:

(2.4) sin(x) =
x

1!
� x3

3!
+
x5

5!
� :::+ (�1)n x2n+1

(2n+ 1)!
+ :::

=

1X

n=0

(�1)n
(2n+ 1)!

x2n+1; x 2 R

(2.5) cos(x) = 1 +
x2

2!
� x4

4!
+
x6

6!
� :::+ (�1)n x2n

(2n)!
+ :::

=
1X

n=0

(�1)n
(2n)!

x2n; x 2 R

Since all the derivatives of sin x and cosx are uniformly (indepen-
dent of x) bounded (by 1) on R, the series on the right side in the last
two formulas are absolutely and uniformly convergent on any bounded
interval of R (why not on the whole R?).

c)

(2.6) ln(1 + x) = x� x2

2
+
x3

3
� x4

4
+ :::+ (�1)n�1x

n

n
+ :::

=
1X

n=1

(�1)n�1
n

xn; x 2 (�1; 1):

Since the n-th derivative of f(x) = ln(1 + x) is

f (n)(x) = (�1)n�1(n� 1)!(1 + x)�n
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it is not uniformly bounded on the whole interval (�1; 1) (why? ...
because sup(1+x)�n =1 there!). Even on any other small subinterval
[a; b] of (�1; 1) the derivatives of ln(1 + x) are not uniformly bounded
(because of n; this time!). Hence, we cannot apply the above Theorem
45. Let us look directly to the absolute value of the remainder in (1.21)
when x 2 (�1; 1) :

����(�1)
n (1 + c)

�n�1

n+ 1
xn+1

���� ;

where c belongs to the segment [0; x]�; i.e. c 2 [0; x], or [x; 0] (for
x < 0). It is clear that if x ! �1; c may become closer and closer to
�1 and the remainder cannot uniformly go to 0: But, if we take any
subinterval [a; b] of (�1; 1); then

sup
x2[a;b]

����(�1)
n (1 + c)

�n�1

n+ 1
xn+1

���� �
1

n+ 1
� Mn+1

(1 +m)n+1
;

where M = maxfjaj ; jbjg and m = minfjaj ; jbjg: Thus, in this last
case,

kln(1 + x)� snk = sup
x2[a;b]

����(�1)
n (1 + c)

�n�1

n+ 1
xn+1

���� �

� 1

n+ 1
�
�

M

1 +m

�n+1
! 0;

because M
1+m

< 1: So, fsn(x)g is uniformly convergent to ln(1 + x);
relative to x, on [a; b] � (�1; 1):
d)

(1 + x)� = 1 +
�

1!
x+

�(�� 1)
2!

x2 + :::

:::+
�(�� 1)(�� 2):::(�� n+ 1)

n!
xn + :::

or

(2.7) (1+x)� = 1+

1X

n=1

�(�� 1)(�� 2):::(�� n+ 1)
n!

xn; x 2 (�1; 1):

For the series on the right side we shall prove later (Ch.5, Abel Theo-
rem, Theorem 46) that this one is absolutely and uniformly convergent
on any closed subinterval [a; b] of (�1; 1): We leave the reader to try
a direct proof for this last statement. For a �xed x in (�1; 1) the se-
ries in (2.7) is convergent (apply the Ratio Test). Thus, the series of
functions is simple convergent on (�1; 1):
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3. Problems

1. Find the Mac Laurin expansion for the following functions. In-
dicate the convergence (or uniformly convergence) domain for each of
them.

a) f(x) = 1
4
(exp(x) + exp(�x) + 2 cos x); Hint: Use formula (2.3)

for exp(x) and for exp(�x) (put �x instead x!) and formula (2.5) for
cos(x):
b) f(x) = 1

2
arctan(x) + 1

4
ln 1+x

1�x ; Hint: Compute

(arctan(x))0 =
1

1 + x2
= 1� x2 + x4 � :::

and then integrate term by term; write then

ln
1 + x

1� x = ln(1 + x)� ln(1� x)

and use formula (2.6) twice.
c) f(x) = x � arctan(x)� ln

p
1 + x2; Hint: Write

ln
p
1 + x2 =

1

2
ln(1 + x2) =

1

2
(x2 � x4

2
+
x6

3
� :::):

d) f(x) = 1
x2�3x+2 ; Hint: Write

1
x2�3x+2 =

A
x�1 +

B
x�2 ; then, for

instance

1

x� 2 = �
1

2

1

1� x
2

= �1
2

�
1 +

x

2
+
x2

22
+ :::+

xn

2n
+ :::

�
:

e) f(x) = 5�2x
6�5x+x2 ; f) f(x) = ln(2�3x+x2); Hint: ln(2�3x+x2) =

ln(1� x) + ln(2� x) and

ln(2� x) = ln 2 + ln(1� x

2
) = ln 2�

�
x

2
+

x2

22 � 2 +
x3

23 � 3 + :::

�
:

g) f(x) = x exp(�2x); Hint: in formula (2.3) put instead of x; �2x;
etc.

h) f(x) = sin(3x) + x cos(3x); i) f(x) = arcsin x; Hint: Compute

f 0(x) = (1�x2)� 1
2 and use the formula (2.7) with �x2 instead of x and

� = �1
2
:

j) f(x) = sin3 x; Hint: Write sin3 x = 3
4
sin x � 1

4
sin 3x and use

formula (2.4) twice.
2. Write as a series of the form

P1
n=0 an(x + 3)

n the following
functions (say where this representation is possible):
a) f(x) = sin(3x+2); Hint: Denote x+3 = z (a new variable) and

write f(x) as a new function of z :

g(z) = sin(3(z � 3) + 2) = sin(3z � 7) = [sin 3z] cos 7� [cos 3z] sin 7 =
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= [cos 7]

�
3z � (3z)

3

3!
+ :::

�
� [sin 7]

�
1� (3z)

2

2!
+ :::

�
;

now, come back to f(x) by the substitution z = x+ 3; etc.

b) f(x) = 3
p
(3 + 2x); c) f(x) = ln(5� 4x); d) f(x) = exp(2x+ 5);

e) f(x) = 1p
2�3x ; f) f(x) =

1
x2+3x+2

:

3. Using Mac Laurin formulas, compute the following limits:

a)lim
x!0

exp(x3)�1+ln(1+2x3)
x3

; b)lim
x!0

ln(1+2x)�sin 2x+2x2
x3

; c)lim
x!0

3p1+3x�x�1
1�4x�exp(�4x) ;

d)lim
x!0

cosx�exp(�x2

2
)

x4
;

e) lim
x!1

�
x� x2 ln

�
1 + 1

x

��
; Hint: Write y = 1

x
; now, x ! 1 if and

only if y > 0 and y ! 0; our limit becomes

lim
y!0

�
1

y
� 1

y2
ln(1 + y)

�
= lim

y!0

�
1

y
� 1

y2

�
y � y2

2
+
y3

3
� :::

��
=

= lim
y!0

�
1

2
� y

3
+ :::

�
=
1

2
:

4. Using Taylor formula approximately compute: a)
p
1:07 with 2

exact decimal digits; b)exp(0:25) with 3 exact decimals; c)ln(1:2) with
3 exact decimals; d)sin 1� with 5 exact decimals; Hint: 1� = �

180
radians;

so,

sin
�

180
� x

1!
� x3

3!
+
x5

5!
� :::+ (�1)n x2n+1

(2n+ 1)!
;

where x = �
180
and n is chosen such that jR2n+1(x)j ; which is less then

1
(2n+2)!

x2n+2; to be less than 1
105
: So, we force

1

(2n+ 2)!

� �

180

�2n+2
<

1

105

and �nd such a n:



CHAPTER 5

Power series

1. Power series on the real line

We saw that Mac Laurin series are special cases of some particular
series of functions

P1
n=0 anx

n; where fang is a �xed numerical sequence.
If one translates x into x�a; where a is a �xed real number, we obtain a
more general series of functions,

P1
n=0 an(x�a)n: These ones are called

power series (with centre at a) on the real line. If we put y = x� a in
this last series, we get

P1
n=0 any

n; i.e. a power series with centre at 0;
but in the variable y: Such translations reduce the study of a general
power series

P1
n=0 an(x� a)n to a power series

P1
n=0 anx

n with centre
at 0: The mapping x !

P1
n=0 anx

n give rise to a function S(x) =P1
n=0 anx

n: The maximal de�nition domain Mc = fx 2 R :
P1

n=0 anx
n

is convergentg of this function S is called the convergence set of the
series. At least x = 0 is an element of Mc (S(0) = a0). Sometimes Mc

reduces to the number 0: For instance, S(x) =
P1

n=0 n!x
n is convergent

only at 0: Indeed, let us consider the series
P1

n=0 n! jxj
nof moduli and

apply the Ratio Test: lim
n!1

an+1
an

= lim
n!1

(n+1) jxj =1; except x = 0: In
fact, if x 6= 0; fn!xng does not tend to 0 (why?). Sometimes Mc = R,
as in the case of the series S(x) =

P1
n=0

1
n!
xn = exp(x):

In the following, we want to describe the general form of the conver-
gence set of a power series

P1
n=0 anx

n: Since the convergence set is the
same if we get out a �nite number of terms, we can assume that an 6= 0
for any n = 0; 1; :::. If for an in�nite number of n the term an is 0;
we can de�ne the following number R by using the Cauchy-Hadamard
formula (see Remark (16)). Thus, �nally, we can suppose that an 6= 0
for any n = 0; 1; :::: The number

R =
1

lim supf
���an+1an

���g

in [0;1] (i.e. R can be also 1) is called the convergence radius of the
series

P1
n=0 anx

n: Recall that lim supfxng is obtained in the following
way. Take all the convergent subsequences (include the unbounded and
increasing subsequences, i.e. subsequences which are "convergent" to

95
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1 in R) of the sequence fxng and the greatest of all these limits of
them is called lim supfxng; the superior limit of the sequence fxng:

Theorem 46. (Abel Theorem) Let
P1

n=0 anx
n be a power series

with real coe¢cients a0; a1; :::; an; ::: and let R =
1

lim supfjan+1an
jg in [0;1]

be its convergence radius.
i) If R 6= 0; then the series S is absolutely convergent on the inter-

val (�R; R) and absolutely uniformly convergent on any closed interval
[�r; r], where 0 < r < R: Moreover, the series is absolutely and uni-
formly convergent on any closed subinterval [a; b] of (�R;R): If R 6=1;
the series S is divergent on (�1; �R) [ (R; 1); so,

(�R;R) �Mc � [�R;R];
i.e. the convergence set of the series contains the open interval (�R;R);
it is contained in [�R;R] and at x = �R; or at x = R we must decide
in each particular case if the series is convergent or not.

ii) If R = 0; then the series S is convergent only at x = 0; i.e.
Mc = f0g:
iii) If R 6= 0; then the function S : (�R;R) ! R is of class C1

on (�R;R); S 0(x) = P1
n=1 nanx

n�1 (termwise di¤erentiation) and a
primitive of S on (�R;R) is U(x) = P1

n=0
an
n+1

xn+1 (term by term

integration). All these power series U; S; S 0; S 00; S 000; :::; S(n); ::: and
any other power series obtained from them by a termwise integration
or di¤erentiation process have the same convergence radius. Moreover,
if the series

P1
n=0 anx

n is convergent at x = R; for instance, then
the function S : (�R;R] ! R, de�ned by S(x) =

P1
n=0 anx

n if x 6=
R and S(R) =

P1
n=0 anR

n is continuous on (�R;R]: With this last
hypotheses ful�led, we also have that the series

P1
n=0 anx

n is absolutely
and uniformly convergent on each closed subinterval of the type [�R+
"; R]; where " > 0 is a small (" < 2R) positive real number. The
same is true if we put �R instead of R and if the numerical series
S(�R) =

P1
n=0 an(�R)n is convergent.

Proof. The last statement will not be proved here. An elegant
proof can be found in [Pal], Theorem 2.4.6.
i) Let us consider x as a �xed parameter (for the moment) and let

us apply the Ratio Test to the series of moduli
P1

n=0 janj jxj
n : Let L

be the limit

L = lim sup

(
jan+1j jxjn+1
janj jxjn

)
=

�
lim sup

� jan+1j
janj

��
jxj = jxj

R
:

If R = 1; then L = 0 < 1; so the series is absolutely convergent for
any x 2 R. If R = 0; then L = 1; except maybe the case when
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x = 0: Hence, if R = 0; the series is convergent ONLY for x = 0; i.e.
the statement of ii). Suppose now that R 6= 0;1: Then, whenever
L = jxj

R
< 1; or x 2 (�R;R), the series is absolutely convergent, in

particular convergent (see Theorem 31). If x 2 (�1;�R)[ (R;1); or
jxj > R; then L > 1: Hence,

lim sup

(
jan+1j jxjn+1
janj jxjn

)
> 1:

This means that there is at least one subsequence

�
jank+1jjxjnk+1
jank jjxjnk

�
of

n
jan+1jjxjn+1
janjjxjn

o
such that

jank+1jjxjnk+1
jank jjxjnk > 1; i.e.

jank+1j jxj
nk+1 > jank j jxj

nk

for any k = 0; 1; ::: . Thus the sequence fanxng cannot tend to 0
and so, the series

P1
n=0 anx

n cannot be convergent for such an x: Let
now x 2 [�r; r]; where 0 < r < R: Since for x = r < R; the seriesP1

n=0 janj rn is convergent (r 2 (�R;R); so the series
P1

n=0 anx
n is

absolutely convergent, see i)). But, janxnj � janj rn for any n = 0; 1; :::
implies that the series

P1
n=0 anx

n is absolutely and uniformly conver-
gent (we apply here the Weierstrass Test Theorem 41) on [�r; r]: Since
any interval [a; b] � (�R;R) can be embedded in a symmetrical inter-
val of the form [�r; r] � (�R;R); we obtain that the seriesP1

n=0 anx
n

is absolutely and uniformly convergent on ANY closed subinterval [a; b]
of (�R;R):

iii) It is easy to see that all the power series U; S 0; S 00; ::: have the
same convergent radius R as the series S: Applying the Weierstrass test
to each of them on an interval of the form [�r; r] � (�R;R) and the
theorems 39 and 40, we can prove easily the �rst statement of iii). �

Let us consider the power series

1X

n=1

(�1)n�1
n

xn:

We know that this one is identical with ln(1 + x) on (�1; 1): Let us
�nd the convergence set Mc of it. The convergence radius is equal to

R =
1

lim supf
���an+1an

���g
=

1

lim supf
���

1
n+1
1
n

���g
= 1:
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At x = �1; the series becomes

�
1X

n=1

1

n
= �1;

so the series is divergent at x = �1: Now, S(1) =
P1

n=1
(�1)n�1

n
is

the alternate series, which was proved to be convergent. Since both
functions S(x) and ln(1+x) are continuous at x = 1 (prove it!-by using
iii) of the Abel Theorem), one has that S(1) = ln 2: FromAbel Theorem
we see that Mc is exactly (�1; 1]: On this interval it is ln(1 + x) but,
the series does not exist outside of (�1; 1]; while the function ln(1+x)
does exist, for instance at x = 2!

Let us now look at the binomial series

1 +

1X

n=1

�(�� 1)(�� 2):::(�� n+ 1)
n!

xn;

where � is a �xed real parameter. Let us �nd the convergence radius
of this series:

(1.1) R =
1

lim supf
���an+1an

���g
= lim

n!1;n>�

n� �
n+ 1

= 1

If x = �1; the series is not convergent for any �: For instance, if � =
�1; then P1

n=0(�1)n(�1)n = 1: At x = 1;
P1

n=0(�1)n is divergent.
If � is a natural number k; then the series becomes a polynomial,
so its convergence set is the whole R. But,...the formula (1.1) and
Abel Theorem say that... Mc = R �[�1; 1] !!! Somewhere must be
a mistake! Indeed, since ak+1 = ak+2 = ::: = 0; lim supf

���an+1an

���g is
nondeterministic, so the computation of R in (1.1) is wrong! We see
that the convergence setMc(�) of the binomial series strongly depends
on �:We do not give here a complete discussion ofMc(�) as a function
of �:

Let us �nd the convergence set for the following series of functions

S(x) =
1X

n=1

(�1)n
n2

�
1

2x+ 1

�n
:

This is not a power series but, making the substitution y = 1
2x+1

; we

obtain a power series
P1

n=1
(�1)n
n2

yn in the new variable y: The conver-
gence radius of this last series is

R =
1

lim supf
���an+1an

���g
=

1

lim
n!1

n2

(n+1)2

= 1:
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For y = �1; the series is convergent (why?). So, the convergence set
Mc;y for the power series

1X

n=1

(�1)n
n2

yn

isMc;y = [�1; 1]: Coming back to the variable x; we get that the initial
series of functions

1X

n=1

(�1)n
n2

�
1

2x+ 1

�n

is convergent if and only of �1 � 1
2x+1

� 1; i. e.
x 2 (�1;�1] [ [0;1):

Hence, the set of all x in R such that the series

1X

n=1

(�1)n
n2

�
1

2x+ 1

�n

is convergent, i.e. the convergence set of this last series, is

(�1;�1] [ [0;1):
Remark 16. (Cauchy-Hadamard) Another useful formula for com-

puting the convergence radius R of a power series
P1

n=0 anx
n is the

following Cauchy-Hadamard formula:

(1.2) R =
1

lim sup n
p
janj

This formula can be used even when an in�nite number of an are zero.
The proof of Abel�s Theorem by using this formula for R is completely
analogue to the proof of the same theorem given above. In this case one
must use the Root Test (Theorem 29) instead of the Ratio Test as we
did in proving Abel Theorem. If we start with the de�nition of R as it
appears in formula Cauchy-Hadamard (1.2), we get the same interval
of convergence (�R;R) for our series P1

n=0 anx
n (why?). Thus, the

both formulas give rise to one and the same number.

Let us �nd the convergence set and the sum of the series of functions

1X

n=0

1

2n+ 1
(3x+ 2)2n+1:

This one is not a power series but,...we can associate to it a power
series by the following substitution y = 3x + 2: Hence, we must study
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the power series in y :
1X

n=0

1

2n+ 1
y2n+1:

Here a2n+1 =
1

2n+1
and a2n = 0 for any n = 0; 1; ::: . In our case, it is

not a good idea to apply Abel formula R = 1

lim supfjan+1an
jg (why?). Let

us apply Cachy-Hadamard formula (1.2):

R =
1

lim sup n
p
janj

= 1;

because the sequence f n
p
janjg is the union between two convergent

subsequences:

f 2n+1
p
ja2n+1jg = f 2n+1

r
1

2n+ 1
g ! 1

(why?) and

ff 2n
p
ja2njg = f0g ! 0

and so, lim sup n
p
janj = 1: At y = �1 the series

1X

n=0

1

2n+ 1
y2n+1

becomes

�
1X

n=0

1

2n+ 1
= �1

(why?). At y = 1 the series is
1X

n=0

1

2n+ 1
=1:

Hence, the convergence set for the power series in y is (�1; 1) (see Abel
Theorem 46). Now, if T (y) =

P1
n=0

1
2n+1

y2n+1 for y 2 (�1; 1); one has:

T 0(y) =

1X

n=0

y2n =
1

1� y2 =
1

2
� 1

1� y +
1

2
� 1

1 + y
:

Thus,

T (y) =
1

2
ln
1 + y

1� y + C:

But C = 0 because T (0) = 0: Let us come back to the series in x: The
convergence set is

fx 2 R : �1 < 3x+ 2 < 1g = (�1;�1
3
):
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Its sum is

S(x) = T (3x+ 2) =
1

2
ln

�
�3x+ 3
3x+ 1

�

for any x 2 (�1;�1
3
):

Example 9. (arctan series) Let us �nd the Mac Laurin expansion
for f(x) = arctan x: For this let us consider

f 0(x) =
1

1 + x2
= 1� x2 + x4 � :::+ (�1)nx2n + :::;

where jxj < 1 (why?). Apply now Theorem 43 and termwisely integrate
this last equality:

(1.3) arctan x+ C = x� x3

3
+
x5

5
� x7

7
+ :::+ (�1)n x

2n+1

2n+ 1
+ :::;

where jxj < 1: For x = 0 we get C = 0: Since for x = 1 the series on
the right is convergent and since the function

S(x) = x� x3

3
+
x5

5
� x7

7
+ :::+ (�1)n x

2n+1

2n+ 1
+ :::

is continuous at x = 1 (see Abel�s Theorem, iii)), we get that

(1.4) arctan 1 =
�

4
= 1� 1

3
+
1

5
� 1
7
+ :::+ (�1)n 1

2n+ 1
+ :::

Let us �nd the convergence set and the sum for the power series

1X

n=1

n(n+ 1)xn:

The convergence radius is

R = lim
n!1

n(n+ 1)

(n+ 1)(n+ 2)
= 1

(why?). Since at x = �1 the series is divergent (n(n + 1) 9 0),
the convergence set is Mc = (�1; 1): Let us integrate termwise (see
Theorem 43) the above series for x 2 (�1; 1):
Z " 1X

n=1

n(n+ 1)xn

#
dx =

1X

n=1

nxn+1 =

1X

n=1

(n+ 2)xn+1 � 2
1X

n=1

xn+1:

But the series
1X

n=1

xn+1 = x2 + x3 + ::: =
x2

1� x
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(it is an in�nite geometrical progression). So we get
Z " 1X

n=1

n(n+ 1)xn

#
dx =

1X

n=1

(n+ 2)xn+1 � 2x2

1� x:

Let us integrate again this last equality
Z "Z " 1X

n=1

n(n+ 1)xn

#
dx

#
dx =

 1X

n=1

xn+2

!
+x2+2x+2 ln(1�x) =

=
x3

1� x + x2 + 2x+ 2 ln(1� x):
Coming back and di¤erentiating twice, we get:

1X

n=1

n(n+ 1)xn =
2x

(x� 1)3 ; for jxj < 1:

2. Complex power series and Euler formulas

In Chapter 2, Section 2, we introduced the metric space of complex
number �elds C. In fact, C is a normed spaced with the norm given by
the usual complex modulus jzj =

p
x2 + y2; where z = x+ iy; x; y 2 R

(prove the properties of the norm for this particular norm!). Since a
sequence fzn = xn + iyng is convergent to z = x + iy in C if and only
if both the real sequences fxng and fyng are convergent to x and to
y respectively (see Theorems 1 and 16), the study of the numerical
series with complex terms reduces to the study of the real numerical
series. But this way is not so easy to put in practice. The best way is
to use �rstly the absolute convergence notion like in the case of series
in a general normed space. Namely, let s =

P1
n=0 zn be a series with

complex numbers terms and let S =
P1

n=0 jznj be the real series of
moduli. The following result is very useful in practice.

Theorem 47. If the series of moduli S =
P1

n=0 jznj is convergent
(like a numerical real series with nonnegative terms), the initial series
with complex terms s =

P1
n=0 zn is convergent in C.

Proof. Let sn =
Pn

k=0 zk be the n-th partial sum of the series
s =

P1
n=0 zn and let Sn =

Pn

k=0 jzkj be the n-th partial sum of the
series of moduli S =

P1
n=0 jznj : Since

jsn+p � snj � jzn+1j+ jzn+2j+ :::+ jzn+pj = Sn+p � Sn;
and since the series S is convergent (i.e. the sequence fSng is a Cauchy
sequence), one obtains that the sequences fsng is a Cauchy sequence.
Thus, it is convergent to a complex number s (the sum of the series
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P1
n=0 zn) in C, because C is a complete metric space (see Theorem

16). �

The Cauchy Test and the zero Test also work in the case of a com-
plex series (why?-Hint: C is a complete metric space-why?). Series of
complex functions and power series are de�ned exactly in the same way
like the analogous real case. However, in the complex case, the study
of the convergence set of a series of function is more complicated than
in the real case.

Example 10. (Complex geometrical series). Let us �nd the con-
vergence set for the complex geometrical series

s(z) =

1X

n=0

zn = 1 + z + z2 + ::::

Let us consider the series of moduli

S(jzj) =
1X

n=0

jzjn = lim
n!1

1� jzjn+1
1� jzj :

This limit exists if jzj < 1: Hence, the series is absolutely convergent if
and only if jzj < 1: In particular, for jzj < 1; the series is convergent
(see Theorem 47). Is the series convergent for a z with jzj > 1? Let
us see ! If jzj > 1; the sequence fzng goes to 1 in C = C [ f1g; the
Riemann sphere (why?), so, the series is divergent (see the zero Test).
What happens if jzj = 1?; i.e. if z is a complex number on the circle
of radius 1 and with centre at origin. If z = 1; the series is divergent.
If z 6= 1; but jzj = 1; the sequence fzng is never convergent to zero!
(why?). Thus, the convergence set for the series s(z) =

P1
n=0 z

n is
exactly the open disc B(0; 1) = fz 2 C : jzj < 1g in the complex plane
C.

To de�ne the basic elementary complex functions one uses complex
power series. For instance, the exponential complex function is de�ned
by the formula

(2.1) exp(z) = 1 +
z

1!
+
z2

2!
+ :::+

zn

n!
+ ::: =

1X

n=0

zn

n!

It is easy to prove (do it!) that this series is absolutely convergent on
the whole complex plane C and absolutely uniformly convergent on any
bounded subset of C. One can prove that exp(z1+z2) = exp(z1) exp(z2)
for any z1; z2 in C (see [ST] for instance).
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The series on the right side of (2.1) is the natural extension of the
Mac Laurin expansion of the real function exp(x) to the whole com-
plex plane. Using this "trick" we can de�ne other elementary complex
functions:

(2.2) sin(z)
def
=

z

1!
� z3

3!
+
z5

5!
� :::+ (�1)n z2n+1

(2n+ 1)!
+ :::

=

1X

n=0

(�1)n
(2n+ 1)!

z2n+1; z 2 C

(2.3) cos(z)
def
= 1� z2

2!
+
z4

4!
� z6

6!
+ :::+ (�1)n z2n

(2n)!
+ :::

=
1X

n=0

(�1)n
(2n)!

z2n; z 2 C

(2.4) ln(1 + z)
def
= z � z2

2
+
z3

3
� z4

4
+ :::+ (�1)n�1 z

n

n
+ ::: =

=

1X

n=1

(�1)n�1
n

zn; jzj < 1:

(1 + z)�
def
= 1 +

�

1!
z +

�(�� 1)
2!

z2 + :::+

+
�(�� 1)(�� 2):::(�� n+ 1)

n!
zn + :::;

so,
(2.5)

(1 + z)� = 1 +
1X

n=1

�(�� 1)(�� 2):::(�� n+ 1)
n!

zn; jzj < 1; � 2 C

In the same way we can de�ne any other complex function f(z) if
we know a Taylor expansion for the real function f(x) (if this last one
has real values and if it can be extended beyond the real line!). For
instance, we know that

sh(x) = x+
x3

3!
+
x5

5!
+ :::+

x2n+1

(2n+ 1)!
+ :::; x 2 R:

We simply de�ne the complex hyperbolic sine as

(2.6) sh(z)
def
= z +

z3

3!
+
z5

5!
+ :::+

z2n+1

(2n+ 1)!
+ :::; z 2 C:
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and

(2.7) ch(z)
def
= 1 +

z2

2!
+
z4

4!
+ :::+

z2n

(2n)!
+ :::; z 2 C.

We always have to check if the series on the right side is convergent on
the extrapolated domain (for instance, we extrapolated R to C). The
restrictions of all these functions to their de�nition domains on the real
line give rise to the well known real functions. For instance, ln(1 + z);
jzj < 1; restricted to R give rise to ln(1 + x): This does not mean that
we de�ned the function ln(z) for any z 6= 0! To de�ne such a function,
i.e. the inverse of the complex exponential function, is not an easy
task, because it will be not an usual function, i.e. for a z we have more
than one value of ln(z): This is because exp(z) is not injective at all.
To see this we need some famous relations, the Euler formulas.

Theorem 48. (Euler relations) For any x a real number and for
i =
p
�1 we have

(2.8) exp(ix) = cos(x) + i sin(x);

(2.9) cos(x) =
exp(ix) + exp(�ix)

2

and

sin(x) =
exp(ix)� exp(�ix)

2i
:

Proof. We simply use formula (2.1) to compute exp(ix) :

exp(ix) = 1 +
ix

1!
� x2

2!
� ix3

3!
:::+

(ix)n

n!
+ ::: = cos(x) + i sin(x):

If now we put instead of x; �x in the formula (2.8), we get
(2.10) exp(�ix) = cos(x)� i sin(x);
because cosine is an even function and sine is an odd one. Adding
formulas (2.8) and (2.10), we get the relation exp(ix) + exp(�ix) =
2 cos(x): Now, subtract formula (2.10) from formula (2.8) and get the
formula exp(ix)� exp(�ix) = 2i sin(x); etc. �

Let us justify now that the complex function exp(z) is not invertible,
i.e. it cannot have like inverse an usual function. Using Euler formulas
from the theorem we get that

exp(2k�i) = cos(2k�) + i sin(2k�) = 1;
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for any integer k: Thus one has an in�nite number of complex numbers
f2n�ig; n = 0;�1;�2; :::; at which the exponential function has value
1!: This is why the inverse of exp(z) is the multivalued function

Ln(z) = ln jzj+ i(� + 2k�); k = 0;�1;�2; :::
and � is the argument of z; i.e. the unique real number in [0; 2�)
such that z = jzj [cos � + i sin �]; the trigonometric representation of z
(prove this last equality by drawing...). It has a double in�nite number
of "branches", i.e. Ln(z) is in fact the set

fln(k)(z) = ln jzj+ i(� + 2k�)g; k = 0;�1;�2; :::
of usual functions. All of these functions have the same real part ln jzj :
For k = 0 we get the principal branch, ln(z) = ln jzj + i arg z: Some-
times in books people work with this last expression for the complex
logarithmic function, without mention this. We leave as an exercise for
the reader to de�ne the radical complex multiform function n

p
z (it has

only n branches!-�nd them!). One can start with the fact that n
p
z is

the inverse of the power n function z  zn and with the equality:

zn = jzjn [cosn� + i sinn�];

etc.
Euler�s formulas from the above theorem are very useful in practice.

For instance, the famous de Moivre formula

[cosx+ i sin x]n = cosnx+ i sinnx

from trigonometry, can be immediately proved by using the basic prop-
erties of the complex exponential function : exp(z) exp(w) = exp(z+w)
(try to prove it!), (exp z)n = exp(nz); where z; w 2 C, and n is an in-
teger number. If one extends in a natural way (componentwise!) the
integral calculus from real functions to functions of real variables but
with complex values:

Z
[f(x) + ig(x)]dx =

Z
f(x)dx+ i

Z
g(x)dx;

one can compute in an easy way more complicated integrals. For in-
stance, let us �nd a primitive for a very known family of functions
f(x) = exp(ax) cos(bx); where a; b are two �xed real numbers (para-
meters). Let us denote by g(x) = exp(ax) sin(bx) (its partner!) and let
us �nd a primitive for f(x) + ig(x) :
Z
[exp(ax) cos(bx) + i exp(ax) sin(bx)]dx =

Z
exp(ax) exp(ibx)dx =
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=

Z
exp(ax+ ibx)dx =

exp(ax+ ibx)

a+ ib
=

=
exp(ax) � [cos(bx) + i sin(bx)](a� ib)

a2 + b2
=

= exp(ax)
a cos(bx) + b sin(bx)

a2 + b2
+ i exp(ax)

a sin(bx)� b cos(bx)
a2 + b2

:

Hence,
Z
exp(ax) cos(bx)dx = exp(ax)

a cos(bx) + b sin(bx)

a2 + b2

and Z
exp(ax) sin(bx)dx = exp(ax)

a sin(bx)� b cos(bx)
a2 + b2

(why?).
Another example of a nice application of Euler formulas is the fol-

lowing. Suppose we forgot the formula for sin 3x and of cos 3x in lan-
guage of sin x and cosx respectively. Let us �nd it by writing

cos 3x+ i sin 3x = exp(i3x) =

(Euler formula)

= [exp(ix)]3 = [cos x+ i sin x]3 =

= cos3 x� 3 cos x sin2 x+ i[3 cos2 x sin x� sin3 x]:
Since two complex numbers are equal if their real and imaginary

parts are equal, we get the formulas:

cos 3x = cos x[cos2 x� 3 sin2 x] = cosx[4 cos2 x� 3];

sin 3x = [3 cos2 x sin x� sin3 x] = sin x[3� 4 sin2 x]:

3. Problems

1. Find the convergence set and the sum for the following series of

functions:
a)
P1

n=0(3x+ 5)
n; b)

P1
n=0(�1)n(4x+ 1)n; c)

P1
n=1

xn

n
;

d)
P1

n=1(�1)n�1 x
n

n
; e)
P1

n=1 n(3x+ 5)
n; f)

P1
n=0

xn

(n+1)2n
;

2. Find the convergence set for the following series of functions:
a)
P1

n=1
1

(1+ 1
n)

n2
(x� 3)n; b)P1

n=1
xn

n2
; c)
P1

n=0 n!x
n; d)

P1
n=0

xn

n!
;
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e)
P1

n=1
xn

nn
; f)
P1

n=1
n5

5n
xn; g)

P1
n=0

xn

2n+3n
; h)
P1

n=1

�
n+1
n

�n2
xn;

i)
P1

n=0[1� (�2)n]xn; j)
P1

n=0(�1)n+13nxn; k)
P1

n=1
1

2n+1

�
1+x
1�x
�n
;

l)
P1

n=1(�1)n
2n(x�5)2n

n2
; m)

P1
n=1(�1)n�1

(x�5)2n
n3n

(�nd its sum);
3. Use the power series in order to compute the following sums:

a)
P1

n=1(�1)n�1 1n ; b)
P1

n=0
1

(n+1)2n
; c)
P1

n=1
n
2n
; (Hint: associate the power

series

S(x) =

1X

n=1

nxn = x(1+2x+3x2+:::) = x(x+x2+x3+:::)0 = x

�
x

1� x

�0
;

make then x = 1
2
).



CHAPTER 6

The normed space Rm:

1. Distance properties in Rm

Motivation Let fO; i; jg be a Cartesian coordinate system in a
plane (P): To any point M 2 (P) we associate the position vector��!
OM: We know that there is a unique pair (x; y) of real numbers such

that
��!
OM = xi + yj: Here i; j are two perpendicular versors with their

origin in O: Usually one calls (x; y) the coordinates ofM relative to the

"basis" fi; jg: But we can view (x; y) as an element in R�R not
= R2: If

M 0 is another point in the same plane (P) and if P is the unique point
in (P) such that ��!OM +

��!
OM 0 =

�!
OP; then the coordinates of P are

(x+x0; y+ y0); where (x0; y0) are the coordinates of M 0: Let � be a real

number (scalar) and let us denote by
���!
OM 00 the vector �

��!
OM: Then, the

coordinates of the point M 00 are (�x; �y) 2 R2: So, one can endow the
cartesian product R2 with a natural algebraic structure of a real vector
space with 2 dimensions (the number of the elements in any basis of
it, in particular in the "canonical" basis f(1; 0); (0; 1)g; where (1; 0)
are the coordinates of the versor i and (0; 1) are the coordinates of the
versor j). Hence, one can study the 2-dimensional dynamics only in the
"abstract" space R2 (this is the basic idea of R. Descartes; the word
"cartesian" comes from "Descartes", in Latin "Cartesius"; he invented
a very useful tool for Engineering, namely the Analytic Geometry; here
we work with numbers and equations instead of geometrical objects like
lines, circles, parabolas, etc.). We call R2 the 2-dimensional space (2-D
space). In the same way we can construct the 3-D space R3 or, more
generally, the m-D space

Rm = R� R� :::� R| {z }
n�times

= fx = (x1; x2; :::; xm) : xj 2 Rg:

We recall that if x = (x1; x2; :::; xm) and y = (y1; y2; :::; ym) are two
"vectors" in Rm; then

x+ y = (x1 + y1; x2 + y2; :::; xm + ym)

109
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:

and

�x = (�x1; �x2; :::; �xm)

for any "scalar" � 2 R (componentwise operations). For instance,
(�7; 3)+(6; 0) = (�1; 3) and

p
2(�1; 1) = (�

p
2;
p
2): To do analysis in

Rm means �rstly to introduce a distance in Rm: Rm has the "canonical
basis"

f(1; 0; :::; 0); (0; 1; 0; :::; 0); :::(0; 0; :::; 0; 1)g

like a real vector space, so it has the dimensionm overR: It is more prof-
itable to introduce �rst of all a "length" of a vector x = (x1; x2; :::; xm)
by the formula

(1.1) kxk def=
q
x21 + x22 + :::+ x2m:

The nonnegative real number kxk is called the norm or the length of x.
If m = 1; the norm of a real number x is its absolute value (modulus)

jxj. If m = 2 and if x = (x1; x2) the norm kxk =
p
x21 + x22 is exactly

the length of the diagonal of the rectangle [OA1MA2]; or the length of

the resultant vector
��!
OM =

�!
OA1 +

�!
OA2 (see Fig.6.1).

O x

y

A1

A2

x1

x2

M(x1,x2)

Fig. 6.1

In the 3-D space R3 the norm of x = (x1; x2; x3) is
p
x21 + x22 + x23

and it is exactly the length of the diagonal of the parallelepiped gener-

ated by
�!
OA1;

�!
OA2 and

�!
OA3 (see Fig.6.2).



1. DISTANCE PROPERTIES IN R
m 111

A1

A2

A3

x1

x2

x3

x

y

z

M(x1,x2,x3)

Fig. 6.2

Example 11. (the space-time representation) Let us consider the
vector x = (x1; x2; x3; t) 2 R4; where (x1; x2; x3) are the coordinates of
a point M(x1; x2; x3) in the 3-D space and t � 0 is the time when we
"observe" the point M: Then

kxk =
q
x21 + x22 + x23 + t2:

Example 12. (the space of dynamics) Let us consider a moving
point M on a trajectory (
) in the 3-D space. The position of M is
�xed by its coordinates x1; x2; x3: Its velocity v is given by another

3 coordinates
�
x1;

�
x2;

�
x3; the derivatives of the coordinates functions

x1(t); x2(t); x3(t) at M: Thus, the "dynamic" state of M is described
by the "vectors"

x = (x1; x2; x3;
�
x1;

�
x2;

�
x3) 2 R6

and

kxk =
q
x21 + x22 + x23 +

�
x
2

1 +
�
x
2

2 +
�
x
2

3:

Theorem 49. The norm mapping

x kxk =
q
x21 + x22 + :::+ x2m;

from Rm to R+; has the following main properties: 1) kxk = 0 if
and only if x = 0; 2) k�xk = j�j kxk for any � 2 R, x 2Rm; 3)
kx+ yk � kxk+ kyk ; for any x, y 2Rm:
Proof. 1) and 2) are obvious (prove them!). To be clearer, let us

prove 3) for m = 2 (for m > 2 one can use the Cauchy-Buniakovsky
inequality, which can be found in any course of Linear Algebra!). Both
sides in 3) are nonnegative, so the inequality is equivalent to

kx+ yk2 � kxk2 + kyk2 + 2 kxk kyk :
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If x = (x1; x2) and y = (y1; y2); one has

(x1 + y1)
2 + (x2 + y2)

2 � x21 + x22 + y21 + y22 + 2
q
(x21 + x22)(y

2
1 + y22);

or, x1y1 + x2y2 �
p
(x21 + x22)(y

2
1 + y22): By squaring both sides we get

2x1x2y1y2 � x22y
2
1 + x21y

2
2;

or 0 � (x2y1 � x1y2)2: This last inequality is obvious. Moreover, from
this last inequality, we can say that in 3) we have equality if and only
if x2y1�x1y2 = 0 or, if and only if (x1; x2) = �(y1; y2), i.e. x and y are
collinear. �

The couple (Rm; k:k) is called a normed space. We know that in
general, a normed space is a real vector space X with a norm mapping
k:k on it, which veri�es the properties 1), 2) and 3) from Theorem 49.
We recall that a normed space (X; k:k) is also a metric space w.r.t.
a canonically induced distance: d(x; y) = kx� yk for any x; y in X:
In the case of the normed space (Rm; k:k) the distance is given by the
formula

(1.2) d(x;y) = kx� yk =

vuut
mX

i=1

(xi � yi)2

This distance is a very special one because it comes from the "scalar
product"

(1.3) < x;y >=

mX

i=1

xiyi;

i.e. this last one induces the norm kxk =< x;x >=
pPm

i=1 xi
2 on Rm

and this norm gives rise exactly to our distance (1.2). As we know from
the Linear Algebra course, the scalar product (1.3) endows Rm with a

geometry. The length of a vector x is its norm kxk =
pPm

i=1 xi
2 and

the cosine of the angle � between two vectors x and y of Rm is de�ned
as

cos � =
< x;y >

kxk kyk :

The fact that the quantity <x;y>

kxkkyk is always between �1 and 1 is exactly
the famous Cauchy- Schwarz-Buniakowsky inequality

(1.4) j< x;y >j � kxk kyk :
It can be proved only by using the basic properties of a scalar product
(see any course in Linear Algebra).
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Since Rm is a metric space relative to the distance d de�ned in (1.2)
we can speak about the convergence of a sequence

fx(n) = (x(n)1 ; x
(n)
2 ; :::; x(n)m )g

from Rm to a vector x = (x1; x2; :::; xm) : we say that x
(n) ! x if and

only if d(x(n);x)! 0; i.e. if and only if
vuut

mX

i=1

(x
(n)
i � xi)2 ! 0;

when n ! 1: But, a sum of squares becomes smaller and smaller if
and only if any square in the sum becomes smaller and smaller. Thus,
we just obtained a part of the following basic result:

Theorem 50. (componentwise convergence). 1) A sequence

fx(n) = (x(n)1 ; x
(n)
2 ; :::; x(n)m )g

of vectors from Rm is convergent to a vector x = (x1; x2; :::; xm) if

and only if for any i = 1; 2; :::;m; the numerical sequence fx(n)i g is
convergent to xi, when n!1: 2) A sequence

fx(n) = (x(n)1 ; x
(n)
2 ; :::; x(n)m )g

is a Cauchy sequence in Rm if and only if any "component" "i"; fx(n)i g;
is a Cauchy sequence in R for any i = 1; 2; :::;m: Since R is a complete
metric space (see Theorem 13), we see that Rm is also a complete metric
space.

Proof. 1) was just proved before the statement of the theorem.

For 2) let us consider a sequence fx(n) = (x
(n)
1 ; x

(n)
2 ; :::; x

(n)
m )g: It is a

Cauchy sequence if for any " > 0 we can �nd a rank N" such that if
n � N" one has that d(x

(n+p);x(n)) < " for any p = 1; 2; ::: . This
means that whenever n is large enough the distance d(x(n+p);x(n)) is
small enough, independent on p: But

(1.5) d(x(n+p);x(n)) =

vuut
mX

i=1

(x
(n+p)
i � x(n)i )2:

So,
���x(n+p)i � x(n)i

��� becomes small enough, independent on p whenever
n is large enough. And this is true for any �xed i = 1; 2::: . But

this last remark says that the sequence fx(n)i g is a Cauchy sequence
for any �xed i = 1; 2; ::: . Conversely, if all the sequences fx(n)i g are
Cauchy sequences for i = 1; 2; :::; then, in (1.5), all the di¤erences
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���x(n+p)i � x(n)i
��� become smaller and smaller, independent of p; whenever

n becomes large enough. Hence, the whole sum
Pm

i=1(x
(n+p)
i � x(n)i )2

becomes smaller and smaller, independent of p; whenever n!1; i.e.
the sequence fx(n)g is a Cauchy sequence in Rm: The last statement
becomes very easy now (why?). �

For instance, the sequence f( 1
n
; n+1
n
)g is convergent to (0; 1) in R2

because the �rst component f 1
n
g goes to 0 and the second component

n+1
n
goes to 1:
A normed vector space, which is a complete metric space w.r.t. the

distance de�ned by its norm, is called a Banach space. Such spaces are
very useful in many engineering models.

We recall now, in our particular case of the metric space (Rm; d);
where d is de�ned in (1.2), the following basic notion.

Definition 16. Let a =(a1; a2; :::; am) be a �xed point in R
m and

let r > 0 be a positive real number. The set B(a;r) = fx 2 Rm :
kx� ak = d(x; a) < rg is called the open ball with centre at a and of
radius r: The set

B[a;r] = fx 2 Rm : kx� ak = d(x; a) � rg
is said to be the closed ball with centre at a and of radius r (� 0):

For instance, if m = 1; a =a 2 R then B(a;r) = (a� r; a + r); the
usual open interval with centre at a and of length 2r (prove this!). In
the same case, B[a;r] = [a � r; a + r]: If m = 2; B(a;r) is the usual
open (without boundary!) disc, with centre at the point a = (a1; a2)
and of radius r: If m = 3; B(a;r) is the common 3-D open (without
boundary) ball (a full sphere!) with centre at a = (a1; a2; a3) and of
radius r: The closed ball B[a;r] is exactly the full sphere of radius r
and with centre at a; which contains its boundary

S = f(x; y; z) : (x� a1)2 + (y � a2)2 + (z � a3)2 = r2g:
This last surface S is usually called the sphere of centre a and of radius
r:

Let D be an arbitrary subset of Rm: A point d of D is said to be
interior in D; if there is a small ball B(d; r); r > 0 centered at d such
that B(d; r) � D: All the interior points of D is a subset of D denoted
by IntD; the interior of D: It can be empty. For instance, any �nite
set of points has an empty interior.

Definition 17. A subset D of Rm is said to be an open subset if
for any a in D there is a small r > 0 such that the open ball B(a;r)
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with centre at a and of radius r is completely contained in D; i.e.
B(a;r) � D: A subset E of Rm is said to be closed if its complementary

Ec
def
= Rm r E

def
= fx 2Rm : x =2Eg

in Rm is an open subset of Rm:

For instance, any point or any �nite set of points are closed subsets
of Rm: If m = 1; the closed intervals are closed subsets of R: Moreover,
an open ball is an open set and a closed ball is a closed set (prove it
for m = 1; 2; 3!). It is not di¢cult to prove that a subset D of Rm is
open if and only if it is equal to its interior. The boundary B(D) of
a subset D of Rm is by de�nition the collection of all the points b of
Rm such that any ball B(b; r); centered at b and of radius r > 0 has
common points with D and with the complementary Rm nD of D: For
instance, the boundary of the disc f(x; y) : x2 + y2 � 1g is the circle
f(x; y) : x2 + y2 = 1g (prove it!). It is easy to see that D is closed if
and only if it contains its boundary. The set D[ B(D) is called the
closure of D: It is exactly the union of all the limits of all convergent
sequences which have their terms in D:

Remark 17. The set O of all the open subsets of Rm has the fol-
lowing basic properties:
1) ?; the empty set, and the whole set Rm are considered to be in

O.
2) If D1; D2; :::; Dk are in O, then their intersection

k
\
i=1
Di is also

in O.
3) If fD�g is any family of open subsets in O, then their union

[
�
D� is also in O, i.e. it is also open. We propose to the reader

to prove all of these properties and to state and prove the analogous
properties for the set C of all the closed subsets of Rm: Mathematicians
say that a collection O of subsets of an arbitrary set M; which ful�l
the properties 1), 2) and 3) from above, gives rise to a topology on M:
For instance, in a metric space (X; d); the collection O of all the open
subsets (the de�nition is the same like that for Rm!) gives rise to the
natural topology of a metric space of X: A set M with a topology O on
it (a collection of subsets with the properties 1), 2) and 3)) is called
a topological space and we write it as (M;O): This notion is the most
general notion which can describe a "distance" between two objects in
M: For instance, if (M;O) is a topological space and if a is a "point"
(an element) of M; then an element b is said to be "closer" to a then
the element c; if there are two "open" subsets D and F of M such that
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a; b 2 D; a; c 2 F and D � F: Meditate on this fact in a metric space
X; for instance in the usual case X = R:

Now, if (X; d) is a metric space, the de�nition of an open ballB(a; r)
with centre at an element a of X and of radius r > 0 is similar to the
de�nition of the same notion in Rm: Namely,

B(a; r) = fx 2 X : d(x; a) < rg:
In the same way, a subset D of X is said to be open in X if for any
a 2 D there is an open ball B(a; r) = fx 2 X : d(x; a) < rg; with
centre at a and of radius r > 0; such that B(a; r) � D. A subset E of
X is called a closed set if its complementary D = X r E in X is an
open set of X.

Theorem 51. (a closeness criterion) A subset E of a metric space
(X; d) (in particular of X = Rm) is closed if and only if any sequence
fxng of elements in E; which is convergent to an element x of X; has
its limit x also in E:

Proof. Let us assume that E is closed and let fxng be a sequence
of elements in E which is convergent to an element x of X: If x were
not in E then, since D = X r E is open, we could �nd a ball B(x; r)
with r > 0; such that B(x; r) � D; i.e. B(x; r)\E = ?; the empty set.
But, since xn ! x; i.e. d(xn; x) ! 0; for n large enough, d(xn; x) < r;
or xn 2 B(x; r): Since all the terms xn are in E; we succeeded to �nd
at least one element xn 2 B(x; r) \ E = ?; which is a contradiction.
So, x itself must be in E:
Conversely, we suppose now that any sequence of elements of E

which is convergent to an element x of X has its limit x in E: If E
were not closed, D = X r E were not open. This means that there
is at least one element y of D such that any small ball B(y; 1

n
) cannot

be contained in D: Hence, for any natural number n > 0; one can
�nd at least one element yn 2 B(y; 1n) \ E (why?). This means that

d(yn; y) <
1
n
and that yn 2 E for any n = 1; 2; ::: . Since yn ! y (why?)

and since E has the above property, we see that y must be also in E:
But,... y was chosen to be in D = X r E; so it cannot be in E! We
have a new contradiction! So, we cannot suppose that D is not open,
i.e. we are forced to say that E is closed and the theorem is completely
proved. �

Definition 18. Let A be a nonempty subset of Rm (or of an arbi-
trary metric space (X; d)). By the closure A of A in Rm (or in X) we
mean the set of the limits of all the convergent sequences with terms in
A:
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In particular, any element a of A is in A (take the constant sequence
a; a; a; ::: ,etc.). We can easily see that A is the least closed subset of
X (in particular of Rm) which contains A (use Theorem 51).

Remark 18. A is closed if and only if A = A: The closure of
the open ball B(a; r) in a metric space (X; d) is exactly the closed ball
B[a; r]: The operation A  A has the following main properties: 1)
A \B � A \ B, 2) A [B = A [ B; 3) A [ B(A) = A; where B(A) =
fx 2 X : B(x; r) \ A 6= ? and B(x; r) \ (X r A) 6= ? for any r > 0g
is the boundary of A in X (prove all these statements!).

We naturally extend the de�nition of a limit point for a subset A
of R (see De�nition 4) to a subset of an arbitrary metric space (X; d):
Let A be a nonempty subset of a metric space (X; d) (in particular

of Rm). An element x of X is said to be a limit point for A if there is a
nonconstant sequence fxng with terms in A which is convergent to x:
For instance, (0; 0) is a limit point for the half-plane f(x; y) : y > 0g:

But (0;�0:0001) is not a limit point for the same subset in X = R2:
The subset f(n;m) : n;m 2 Ng of R2 has no limit points. The set of
all the limit points of a subset A of a metric space (X; d) together the
subset A itself is exactly the closure A of A (why?). The set of all the
limit points of the closed cube C = [0; 1]� [0; 1]� [0; 1] is the cube C
itself. But,...the set of all the limit points of an arbitrary closed subset
is not always the set itself. For instance, the set of all limit points of
a point a of X is the empty set (which is distinct of fag). A sequence
fxng has exactly only one limit point x; if and only if the sequence has
an in�nite distinct values and it is convergent to x:

Definition 19. A nonempty subset A in a metric space (X; d) is
said to be bounded if there is a "reference" element c 2 X and a positive
real number M such that d(c; x) < M for any element x of A:

Remark 19. It appears that the de�nition depends on the choice
of the "reference" element c; i.e. that the boundedness of A is a c-
boundedness. In fact, the de�nition does not depend on the element
c: Namely, if a subset A is bounded relative to an element c of X;
it is bounded relative to any other element b of X: Indeed, d(b; x) �
d(b; c) + d(c; x) < d(b; c) +M; which is a �xed positive number w.r.t.
the variable element x of A: Hence, A is also b-bounded. In a normed
space (see De�nition 13) we take as a "reference" element c the element
c = 0: Thus, A is bounded in a normed space (X; k:k) if and only if
there is a positive real number M such that kxk < M for any x of A:

Cesaro-Bolzano-Weierstrass Theorem (see Theorem 12) has an ex-
tension to Rm for any m = 2; 3; ::: .
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Theorem 52. (Bolzano-Weierstrass Theorem). Let A be a bounded
and in�nite subset of Rm: Then A has at least one limit point in Rm: In
particular, any bounded sequence in Rm has a convergent subsequence.

Proof. To understand easier the idea behind the formal proof of
this theorem, we shall take the particular case m = 2 (the case m = 1
was considered in Theorem 12). So, A is an in�nite (contains an in�nite
number of distinct elements) and bounded subset of R2: Any element of
A is a couple (x; y); where x; y 2 R: Since A is bounded by a positive
real number M; we can write k(x; y)k � M; for any pair (x; y) of

A; or
p
x2 + y2 � M: Thus, the projections of A on the coordinates

axes, A1 = fa1 2 R : there is an a2 2 R with (a1; a2) 2 Ag and
A2 = fb2 2 R : there is a b1 2 R with (b1; b2) 2 Ag are bounded in
R (prove it and make a drawing!). Since A is in�nite, at least one of
A1 or A2 is in�nite (why?). We suppose that A1 is in�nite. Let us
apply now Cesaro-Bolzano-Weierstrass Theorem (Theorem 12) for the
subset A1 of R: Hence, there is a limit point x1 for A1; i.e. there is a

sequence fx(n)1 g of elements in A1; which is convergent to x1: Let us
look now at the de�nition of A1! For any x

(n)
1 ; n = 1; 2; :::; we can �nd

an element x
(n)
2 in R such that the couple (x

(n)
1 ; x

(n)
2 ) is in A: In fact,

the sequence fx(n)2 g is bounded and its terms belong to A2 (why?). If
A2 is also in�nite, applying again Cesaro-Bolzano-Weierstrass theorem

to the subset fx(n)2 g; we get a limit point x2 of this last sequence. This
means that we can �nd a subsequence fx(kn)2 g of fx(n)2 g (k1 < k2 < :::
) which is convergent to x2: For any kn; n = 1; 2; :::; we consider the

term x
(kn)
1 of the sequence fx(n)1 g just found above. We obtain a new

sequence f(x(kn)1 ; x
(kn)
2 )g of elements from A; which is convergent to the

pair (x1; x2) (why?...because it is componentwise convergent!). Thus
(x1; x2) is a limit point of A: What happens if A2 is �nite? Then, at

least one term x
(l)
2 repeats itself of an in�nite number of times. We

suppose that for h1 < h2 < ::: one has that x
(hn)
2 = x

(l)
2 ; for any

n = 1; 2; ::: . So, the sequence f(x(hn)1 ; x
(hn)
2 )g; with terms in A; is

convergent to (x1; x
(l)
2 ); which becomes in this way a limit point for

A: A question can arise here: why can we choose all the elements of

the sequence f(x(hn)1 ; x
(hn)
2 )g to be distinct one to each other? Because

the sequence fx(n)1 g can be chosen from the beginning to contain only
distinct elements (A1 is in�nite!). Hence, in both cases A has a limit
point and the proof is completed. �
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We shall see in future the fundamental importance of this theoreti-
cal result. A limit point is also called in the literature an accumulation
point.

Since the bounded and closed subsets in a space of the form Rm

are very useful in many applications, we shall call them compact sets.
For instance, [a; b]; f(x; y) : x2 + y2 � r2g and, generally, any closed
balls, are all compact sets in their corresponding arithmetical spaces
of the type Rm. A �nite union and any intersection of compact sets is
again a compact set (prove it!). An in�nite union of compact sets is not
always a compact set (�nd a counterexample!). For instance D = f 1

n
g

is bounded but it is not closed because 1
n
! 0 and 0 is not in D: So,

D is not a compact set but,...its closure D = f0g [ f 1
n
g is a compact

subset in R (prove this!). Any �nite set of points in Rm is a compact
set (why?).

Now we give a useful characterization of compact sets in Rm:

Theorem 53. A subset C of Rm is a compact set if and only if any
sequence of C contains a convergent subsequence with its limit in C:

Proof. We suppose that C is a compact set inRm and let fx(n)g be
a sequence with terms in C: If fx(n)g has an in�nite number of distinct
elements, A = fx(n)g being bounded (A � C and C is bounded), we
can apply Theorem 52 and �nd that there is a convergent subsequence
fx(kn)g of fx(n)g: Since C is closed, the limit of fx(kn)g belongs to C
(see Theorem 51). If fx(n)g has only a �nite number of distinct terms,
one of them appears in an in�nite number of places. So, we take the
constant subsequence generated by it.

Conversely, we assume that C has the property indicated in the
statement of the theorem. Let us prove �rstly that C is bounded. If
it were not bounded, for any n = 1; 2; ::: one can �nd a vector an in C
such that kank > n: The hypothesis says that the sequence fang has
a convergent subsequence fakng: Let a = lim

n!1
akn be the limit of the

sequence fakng: Then
kn < kaknk � kakn � ak+ kak :

Taking limits in the extreme sides of these inequalities, we get: 1 �
kak ; a contradiction. Hence, C must be bounded. Let us prove now
that C is closed by using again Theorem 51. For this, let fyng ! y be
a convergent to y sequence with elements in C and its limit y in Rm:
By the hypothesis on C; the sequence fyng has a subsequence fykng
which is convergent to an element z of C: Since fyng is convergent to y,
any subsequence of fyng is also convergent to y. Indeed, let us prove
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for instance that z = y: For this, let us evaluate d(z;y), the distance
between z and y :

(1.6) d(z;y) �d(z;ykm) + d(ykm ;yn) + d(yn;y);

where m and n are arbitrary chosen. If we make m;n ! 1 in this
last inequality, we get that d(z;y) =0; i.e. z = y (why?). Here we just
used the fact that a convergent sequence is also a Cauchy sequence, i.e.
for m;n large enough, the distance d(ym;yn) goes to zero. Now, since
z is in C we get that y is also in C; i.e. C is closed and the theorem is
proved. �

The above characterization of compact subsets of Rm leads us to the
introduction of the notion of a compact subset in an arbitrary metric
space (X; d):We say that a subset C of X is compact if any sequence of
elements from C has a subsequence which is convergent to an element
of C:
For instance, any convergent sequence fxng in a metric space X;

together with its limit x is a compact subset of X (prove it!). Thus,
C = fxng [ fxg is a compact subset of X:

2. Continuous functions of several variables

LetA be a nonempty subset ofRn; the "arithmetical" n-dimensional
vector space and let f : A! R; be a function de�ned on A with values
in R: Since the variable x = (x1; x2; :::; xn) is a vector determined by
n free scalar quantities, x1; x2; :::; xn; we say that our function is a
function of n variables. If n � 2; we say that f is a function of
"several" variables. Since the values of f are scalars (real numbers),
we say that f is a scalar function of n variables. A map f : A! Rm is
called a vector function of n variables. This time, the values of f are
m-dimensional vectors. Hence f(x) = (y1; y2; :::; ym) and we see that
the numbers y1; y2; :::; ym are themselves functions f1; f2;..., fm of x:
y1 = f1(x); :::; ym = fm(x): These scalar functions f1; f2; :::; fm; de�ned
on A with values in R this time, are called the components of f . We
write this as: f =(f1; f2; :::; fm) and interpret it as a "vector" of m-
components (coordinates) f1; f2;:::; fm: In applications f is also called
a vector �eld of n variables. "Field" comes from "�eld of forces". For
instance,

f :R2 ! R2; f(x; y) = (xy; x� y)
is a vector �eld in plane (R2) of 2 variables. Its components are
f1(x; y) = xy and f2(x; y) = x�y:We can give its image in some points.
For instance, we can translate the vector f(2; 3) = (2�3; 2�3) = (6;�1)
at the point (2; 3) and so we get "the image" of f at (2; 3): In this way
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we can �ll the whole plane R2 with vectors (forces), i.e. we get a
"�eld" of forces on the whole plane. If n = 1, the image of a vec-
tor �eld f : A ! Rm (A � R) is a "curve" in Rm: For instance,
f(t) = (R cos t; R sin t); t 2 [0; 2�) has as image in the plane R2 the
usual circle of radius R and with centre at the origin (0; 0): We say
that the two components of f , f1(t) = R cos t and f2(t) = R sin t are the
parametric equations of this circle. One also write this as: x = R cos t;
y = R sin t; t 2 [0; 2�):We can also interpret the image of a vector �eld
f : [0; T ]! Rm (m = 2 or m = 3) as the trajectory of a moving point

M(f1(t); f2(t); :::; fm(t))

where t measures the "time" between the starting moment (usually
t = 0) and the ending moment t = T: For instance, f(t) = (t; t2);
t 2 A = [0; 10]; is a parabolic trajectory, along the arc of the parabola
y = x2; x 2 [0; 10]: The new vector �eld

f 0(t) = (f 01(t); f
0
2(t); :::; f

0
m(t))

(the componentwise derivative), associated to the vector �eld

f(t) = (f1(t); f2(t); :::; fm(t)); t 2 [0; T ];

is called the velocities �eld of the �eld f :
In order to describe the "breaking" phenomena at a given point

a =(a1; a2; :::; an) of R
n; we need to see what happens with the values

of a vector function (which describes our phenomenon) f : A ! Rm;
whenever we becomes closer and closer to a: For this, a must be a limit
point of the de�nition domain A:We have to study the convergence of
the sequence of vectors ff(x(n))g in Rm, whenever the sequence fx(n)g,
with terms in A; converges to a in the metric space Rn. The most
convenient situation is that when all the values ff(x(n))g; for all the
sequences fx(n)g; which are convergent to a; become closer and closer
to one and the same vector L from Rm: This is why we give now the
following de�nition.

Definition 20. Let A be a subset of Rn and let a =(a1; a2; :::; an)
be a limit point of A. We say that L 2 Rm is the limit of a vector
function f : A ! Rm at the point a (write L =lim

x!a
f(x)), if for every

sequence fx(n)g; x(n) 6= a; x(n) 2 A; which is convergent to the vector
a; one has that the sequence of images ff(x(n))g of fx(n)g through f is
convergent to L: If such an L exists, independently on the choice of the
sequence fx(n)g, we say that f has limit L at a: This limit L depends
only on f and on a:
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If there is such a common limit L; this is unique, because the limit
of a sequence in a metric space is unique (if it exists!).

For instance, let us compute lim
(x;y)!(�1;2)

f(x; y); where

f(x; y) = xy + x2 + ln(x2 + y2):

Let us take a sequence f(xn; yn)g which is convergent to (�1; 2): This
means that xn ! �1 and yn ! 2 (see Theorem 50). But we know
that the "taking limit" operation is compatible with the multiplication,
addition and with the logarithm function (we say that ln is continuous!)
(see also Theorem 14). Hence,

f(xn; yn) = xnyn + x2n + ln(x
2
n + y2n)

will be convergent to

(�1) � 2 + (�1)2 + ln((�1)2 + 22) = �1 + ln 5:
We see that this limit is independent on the starting sequence (xn; yn)
which tends to (�1; 2): Thus, for any sequence (xn; yn) which is con-
vergent to (�1; 2);

lim
(xn;yn)!(�1;2)

f(xn; yn) = �1 + ln 5:

In fact, we see that for any sequence (xn; yn) which is convergent to
(�1; 2),

lim
(xn;yn)!(�1;2)

f(xn; yn) = f(�1; 2):

This happens, because any elementary function of several variables is
"continuous" (see the bellow de�nition) on its de�nition domain.

Definition 21. Let A be a subset of Rn and let a =(a1; a2; :::; an) be
a point of A. We say that the vector function f : A! Rm is continuous
at the point a, if for every sequence fx(n)g of A; x(n) 6= a and which
is convergent to the vector a; one has that the sequence of the images
ff(x(n))g of fx(n)g through f is convergent to f(a); the value of f at a:
We say that f is continuous on the set A if f is continuous at any point
of A:

We see that f is continuous at a point a if and only if it has a
limit L at a and this L is equal to f(a); the value of f at the point a:
The above de�nition is in accordance with the engineers perception of
approximation processes. Let us suppose that f describes a physical
phenomenon P and we are interested in the variation of this phenome-
non around a �xed "point" (vector) a: Let us take a neighboring point
z of a and let us approximate z by a: In this case, can we approximate
f(z) by f(a)? Or, can we consider that P is "almost the same" at z like
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at a?. We can do this if f is continuous at a: Otherwise, we cannot do
such approximations. We must be very careful for instance, in the case
of earthquake models around the so called "singular" points (see the
example bellow). Now we think that the reader is convinced that the
continuity notion is important in modelling the physical phenomena.
It is not di¢cult to prove that all the elementary functions and their
compositions are continuous functions. In the following we supply with
an example in which we shall see that the case of vector �elds of several
variables (for n > 1) is more complicated then the case of one variable.
Let us see now if the following nonelementary (why?) function

f(x; y) =

� xy

x2+y2
; if x 6= 0; or y 6= 0;

0; if x = 0 and y = 0;

f : R2 ! R, is continuous or not on the whole R2. If (a; b) 6= (0; 0);
then f(x; y) = xy

x2+y2
on a small disc (not containing (0; 0)) with centre

at (a; b) (and a small radius). Since the restriction of f to this last disc
is an elementary function, f is continuous at (a; b): What happens at
(0; 0)? If the function f were continuous at (0; 0) then, for any sequence
(xn; yn) which tends to (0; 0) (i.e. xn ! 0 and yn ! 0), we should have
that f(xn; yn)! f(0; 0) = 0: Let us take a nonzero real number r and
let fxng be an arbitrary sequence of nonzero real numbers which is
convergent to 0: Take now yn = rxn for any n = 1; 2; :::. This means
that all the pairs (xn; yn) are on the line y = rx (its slope is r) and
that the sequence f(xn; yn)g is convergent to (0; 0): But

f(xn; yn) =
rx2n

x2n + r2x2n
=

r

1 + r2
6= 0:

So the function f is not continuous at (0; 0): Moreover, since the limit

lim
(xn;yn)!(0;0)

f(xn; yn) =
r

1 + r2

is dependent on the slope r of the line y = rx; on which we have
chosen our sequence (xn; yn); we see that the function f has no limit
at (0; 0): Hence, we cannot extend f "by continuity" at (0; 0) with no
real value. Such a point (0; 0) is called an essential singular point for
f: This means that if we become closer and closer to (0; 0) on di¤erent
sequences f(xn; yn)g; we obtain an in�nite number of distinct values
for the limit lim

(xn;yn)!(0;0)
f(xn; yn) (as we just saw above!).

The following criterion reduces the study of the limit or of the
continuity of a vector function f : A! Rm at a point a 2A; where A is
an open subset of Rm and f = (f1; f2; :::; fm); to the study of the same
properties for the scalar functions f1; f2; :::; fm:
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Theorem 54. With these last notation, 1) f = (f1; f2; :::; fm) has
the limit L = (L1; L2; :::; Lm) at the point a if and only if every com-
ponent function fj has the limit Lj at the same point a; for j = 1; 2; :::
and 2) f is continuous at the point a if and only if every component
function fj is continuous at a:

Proof. Everything comes from the fact that the convergence in
the normed spaces Rm is a componentwise convergence (see Theo-
rem 50). Indeed, let us assume that f = (f1; f2; :::; fm) has the limit
L = (L1; L2; :::; Lm) at a: Hence, for any sequence f(x(n))g which is
convergent to a; one gets that lim f(x(n)) = L; i.e. lim fj(x

(n)) = Lj
for j = 1; 2; ::: (we just applied the "componentwise" principle). The
existence is included here! (why?). Conversely, if for any j = 1; 2; :::;

the limit lim fj(x
(n)) = Lj exists, then the limit lim f(x

(n)) = L exists
and L = (L1; L2; :::; Lm): We add the fact that f = (f1; f2; :::; fm) is
continuous at a if and only if

L = (L1; L2; :::; Lm) = f(a) = (f1(a); f2(a); :::; fm(a));

or if and only if fj(a) =Lj for any j = 1; 2; ::: . But this means exactly
the continuity of every fj at a for j = 1; 2; ::: . �

Using this last continuity test, we can easily decide if a vector func-
tion is continuous or not. For instance,

f(x; y; z) = (x; 2x+ y; 2x+ 3y � 2z)
is continuous on R3 because all the scalar component functions

f1(x; y; z) = x; f2(x; y; z) = 2x+ y

and f3(x; y; z) = 2x+3y� 2z are polynomial functions so, they are all
continuous on R3:

Remark 20. The existence of a limit at a point and the continuity
at a point are "local" properties. They are de�ned "around" a given
point a: If we �x a n-D continuous curve 
 : [a; b] ! A � Rn and
if a =
(t0) is a point "on 
" (it is in the image of 
), we say that
a vector function f = (f1; f2; :::; fm); de�ned on A with values in Rm

is continuous at a along the curve 
 if the composed function f�
 :
[a; b] ! Rm (a new curve in Rm) is continuous at t0: This means
that if we take any sequence of points fx(n)g in A (is considered to be
opened!) on 
 (x(n) = 
(tn)), which becomes closer and closer to a;

then lim f(x(n)) = f(a): For instance,

f(x; y) =

� xy

x2+y2
; if x 6= 0; or y 6= 0;

0; if x = 0 and y = 0;



2. CONTINUOUS FUNCTIONS OF SEVERAL VARIABLES 125

f : R2 ! R; is not continuous at a = (0; 0); but it is continuous at (0; 0)
along the both axes of coordinates. It has limits along any other �xed
line y = rx which is passing through (0; 0); but the limits are not the
same! (see the above commentaries on this example). It is possible to
construct a function of two variables which is continuous on R2 except
the origin, where it has limit 0 along any line which passes through
(0; 0); but it has no limit at (0; 0) (�nd such a function!).

Theorem 55. The composition between two continuous functions
is also a continuous function.

Proof. Let A be an open subset of Rp; let B be another open sub-
set of Rn and let f : A! B; g : B ! Rm be two continuous functions
on their de�nition domains. The theorem says that the composed func-
tion h : A! Rm; h = g � f ; i.e. h(x) = g(f(x)) for any x 2 A; is also
a continuous function on A: For proving this, let us take a point a 2 A
and an arbitrary sequence fx(n)g in A which is convergent to a w.r.t.
the distance of Rp: Since f is continuous on A; in particular, it is also

continuous at a: So, the sequence ff(x(n))g is convergent to f(a): Now,
since g is continuous on B; in particular, it is continuous at the point

f(a) of B: Hence, the sequence fg(f(x(n)))g tends to g(f(a)) = h(a)
and so, h(x(n))= g(f(xn))) is convergent to h(a): This means that the
composed function h is continuous at a: Since a was arbitrary chosen
in A, we have that h is continuous on the whole A: �

This theorem is very useful, because almost all the functions com-
monly used in applications are compositions of elementary functions
and these last ones are continuous on their de�nitions domains. For
instance,

f(x; y) = cos

�
x+ sin xy

1 + ln(x2 + y2)

�

is de�ned on R2n
; where 
 is the circle: x2+y2 = 1
e
; where e = 2:71::: .

Here f is the composition between the following continuous functions:

x cosx; (x; y) 
x

y
; y 6= 0; (x; y) x+ y; (x; y) xy;

x sin x and x ln x; x > 0

(prove everything slowly!). The same theorem is used to prove that the
set of all continuous functions de�ned on the same set A (open, closed,
etc.) is a real in�nite dimensional (contains polynomials!) vector space
(prove it!).



126 6. THE NORMED SPACE R
m
:

3. Continuous functions on compact sets

Let A be an arbitrary nonempty subset of Rn and let f : A ! Rm

be a continuous function (on the whole A): Let D be an open subset of
Rn which is contained in A: Here is a question: "Is always the image
f(D) of D through f open in Rm? We shall see by simple examples that
the answer is no! Let us take, for instance, D = (0; 1) and f(x) = 3
for any x in (0; 1): Since the set f3g is closed in R (why?), f(D) is not
open. Let now E be an open subset of Rm and f�1(E) = fx 2 A :
f(x) 2 Ag; the preimage of E in A: We say that a subset B of A is
open in A if it is the intersection between A and an open subset D of
Rn; i.e. B = A \D: For instance, B = (0; 1] is not open in R (why?),
but it is open in A = [�1; 1] because, D = (0; 3); which is open in R,
intersected with A is exactly B:

Theorem 56. With the de�nitions and notation given above, f :
A! Rm is continuous if and only if f�1(E) is open in A for any open
subset of Rm; i.e. if f carries back the open subsets of Rm into open
subsets of A:

Proof. a) We assume that f : A ! Rm is continuous and that
E is an open subset of Rm: To prove that f�1(E) is open in A it is
equivalent to prove that C = Anf�1(E) is closed in A; i.e. for any
convergent sequence fx(n)g of elements in C; convergent to an element
x of A (pay attention!), one has that x is also in C: If it were not in
C; f(x) 2 E: Since E is open in Rm; there is a small ball B(f(x);r);
with center at f(x) and of radius r > 0, which is contained in E: Since

x(n) ! x, and since f is continuous, one has that f(x(n)) is convergent

to f(x): So, there is at least one x(n0) with f(x(n0)) in B(f(x);r); i.e. in
E: So, x(n0) is in f�1(E); a contradiction, because we have chosen the
sequence fx(n)g to have all its terms in C; i.e. not in f�1(E):

b) We suppose now that f carries back the open subsets of Rm into
open subsets of A: Let us prove that f is continuous at an arbitrary �xed
point z. For this, let fz(n)g be a sequence in A which is convergent to
z 2 A:We assume that ff(z(n))g is not convergent to f(z): Then, there
is a small ball B(f(z);r) in Rm such that an in�nite number ff(z(kn))g
, n = 1; 2; :::; of the terms of the sequence ff(z(n))g are outside of
B(f(z);r): Since B(f(z);r) is an open subset in Rm; following the last
hypothesis, we get that the set D = f�1(B(f(z);r)) is an open subset
of A which contains z (why?). Let B(z; r0); r0 > 0 be a small ball with
centre in z such that G = B(z; r0)\A � D (since D is open in A). All
the terms of the subsequence fz(kn)g are not in G; in particular they
are not in B(z; r0): But this last conclusion contradicts the fact that
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z(n) ! z: Thus, our assumption that ff(z(n))g is not convergent to f(z)
is false and so, f is continuous at z: Since this z was arbitrary chosen,
we get that f is continuous at all the points of A: �

The following result is very useful in many situations of this course.
It appears as a direct consequence of the above theorem.

Theorem 57. Let A be an open subset of Rn; let a be a �xed point
of A and let f : A ! R be a continuous function on A such that
f(a) > 0: Then there is an open ball B(a; r) � A; r > 0; with the
property that f(x) > 0 for every x in B(a; r):

Proof. Take " > 0 such that f(a)�" > 0 and take the open subset
Y = (f(a) � "; f(a) + ") of R. Since f is continuous, X = f�1(Y ) is
an open subset of A which contains a: So, there is a small ball B(a; r)
such that B(a; r) � X; i.e. f(x) 2 Y for any x in B(a; r): But, for
such x we have that f(x) > f(a)� " > 0 and the proof is done. �

Remark 21. In the same way one can prove that f : A ! Rm is
continuous if and only if f carries back the closed subsets of Rm into
closed subsets of A (de�ne this notion by analogy!). To prove this, one
can use the last theorem 56.

Not always a continuous function f : Rn ! Rm carries a closed set
of Rn in a closed set of Rm: For instance, f : R ! R; f(x) = 1

1+x2
;

carries the closed set [0; 1) into (0; 1]; which is not closed more. It
is interesting to see that the closed set [0; 1) in unbounded. If one
tries to substitute it with a closed and bounded interval, for the same
function, we shall not succeed at all to �nd like an image a non closed
set! Why? Because of the following basic result:

Theorem 58. Let C be a compact (closed and bounded) subset of
Rn and let f : C ! Rm be a continuous function. Then, the image
f(C) of C; in Rm; is also a compact subset there (in Rm). Moreover, if
m = 1; sup f(C) = f(zM) and inf f(C) = f(zm); where zM , zm are in
C:

Proof. We need to prove that: a) f(C) is bounded and, b) f(C)
is closed. The ideas used for proving this theorem are exactly the same
like those used in the particular case (m = 1; n = 1) of Theorem 32.
We take them again here.
a) We assume that f(C) is not bounded. This means that for every

n = 1; 2; :::; one can �nd a point x(n) in C such that



f(x(n))




 > n

(why?). Since C is a compact subset in Rn; we can �nd a conver-
gent subsequence fx(kn)g to the point x of C (see Theorem 53). Since
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f : C ! Rm is continuous, the sequence ff(x(kn))g is convergent to
f(x): But




f(x(kn))



 > kn and kn ! 1; so, the numerical sequence

f



f(x(kn))




g is unbounded (goes to 1!): We shall see that this is a
contradiction. Indeed,




f(x(kn))



 �




f(x(kn))� f(x)



+ kf(x)k :

If we take limits in this last inequality, we get: 1 � 0+ kf(x)k ; which
is not possible! The contradiction appeared because we supposed that
f(C) is unbounded. Hence, it is bounded, i.e. we just proved a).

b) We use now the closeness test (Theorem 51) for proving that f(C)

is closed. Let us take for this a convergent sequence ff(y(n))g, with
terms in f(C) and with its limit c in Rm: We have to prove that this c
is also in f(C): Since C is a compact subset of Rn; there is a subsequence
fy(hn)g of the sequence fy(n)g such that y(hn) is convergent to y 2 C:
Since f is continuous, the sequence ff(y(hn))g is convergent to f(y): But
any subsequence of a convergent sequence is also convergent to the same
limit of the whole sequence. Thus, c = f(y) and so, c 2 f(C); what we
wanted to prove. The other statements can be proved exactly in the
same manner (see also Theorem 32). �

Let us give a nice application to this last result. We can assume
that the surface of the Earth is closed and bounded in the 3-D space R3

(why?-you can take it for easy to be S = f(x; y; z) : x2+y2+z2 = R2g;
...a sphere of radius R; etc.; prove that S is closed and bounded!). At a
�xed moment, to any point M(x; y; z) from the Earth we associate its
temperature T (x; y; z) at that moment. Thus, we obtain a continuous
function T de�ned on the compact surface of the Earth, with values in
R: Applying the above theorem, we always can �nd two points on the
Earth in which the temperatures are extreme.

Let C be a compact (closed and bounded) subset of Rn and let
f : C ! Rm be a continuous function. Then, the norm kf(C)k of the
image f(C) of C; in R; is also a compact subset there (in R). Moreover,
sup kf(C)k = kf(z)k and inf kf(C)k = kf(y)k ; where z and y are in
C: Firstly, the function

g : Rm ! R;g(x) = kxk ;
is a continuous function. Indeed, let fx(n)g be a sequence in Rm; which
is convergent to x: Since

��

x(n)


� kxk

�� �


x(n) � x



 ; we see that the
sequence fg(x(n)) = f



x(n)


g is convergent to kxk ; i.e. g is continuous.

Secondly, let us consider the composition g � f : C ! R between the
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continuous functions f and g: It is a continuous function (see Theorem
55) and we can apply the last theorem (do it slowly!).

Remark 22. The condition on the closeness of C in the above
theorem (Theorem 58) is necessary as one can see in the example:
f : (0; 1]! R, f(x) = 1

x
; this function is continuous (prove it!), the in-

terval (0; 1] is bounded, nonclosed and the image f((0; 1]) = [1;1)
is not bounded, so not a compact subset of R. If C is closed but
not bounded, its image through a continuous function f may be non-
closed and nonbounded at the same time. For instance, C = [1;1);
f(x) = 1

x�1 , so, f(C) = (0;1); which is neither closed (it is open
in R), nor bounded. This theorem above is not true in general metric
spaces. Because a compact subset C in a general metric space (X; d) is
de�ned "by sequences". Namely, C is a compact subset of (X; d) if any
sequence in C has a convergent subsequence with its limit also in C:
This is not generally equivalent to "bounded and closed". The exam-
ples are two "exotic" and we do not give them here. In a metric space
(X; d) we can introduce the "distance" between two compact subsets A
and B of X: Namely,

dist(A;B) = inffd(a; b) : a 2 A; b 2 Bg:

Since d is a continuous function this number dist(A;B) is always �-
nite and it is realized, i.e. there are a0 in A and b0 in B such that
dist(A;B) = d(a0; b0): For instance, the distance between the full square
A = [0; 1]� [1; 2] and the disc B = f(x; y) : (x� 2)2+ y2 � 1 is

p
2� 1

and it is realized at a0 = (1; 1) 2 A and at b0 = (2 � 1p
2
; 1p

2
) (why?).

It is easy to prove that the distance between two compact subsets A and
B is realized on their boundaries (which are also compact subsets), i.e.

dist(A;B) = dist(B(A);B(B)):

Can you organize the set of all compact subsets of X as a metric space
(with the distance function de�ned above)?

In practice, the above Theorem 58 can be applied to optimization
problems. For instance, let us �nd the maximal and the minimal values
of the function f : [0; 1] � [0; 2] ! R, f(x; y) = x4 + y4: Since C =
[0; 1]� [0; 2] is a compact subset in R2 (prove it!), Theorem 58 implies
that its image is a compact subset of R: So, sup f(C) = f(a) and
inf f(C) = f(b): It is easy to see that a = (1; 2) and b = (0; 0) (the
function is increasing relative to x and y, separately).

An useful notion in the integral computation (and not only!-see the
bellow application) is the notion of "uniform continuity".
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Definition 22. Let A be a nonempty subset of Rn and let f : A!
Rm be a function de�ned on A with values in Rm: We say that f is
uniformly continuous on A if for any small quantity " > 0; there is
another small quantity �" > 0 (depending on ") such that whenever we
have two points x0 and x00 in A with the distance kx0 � x00k between
them less then �", the distance



f(x0)� f(x00)


 between their images is

less then ":

The word "uniform" reefers to the fact that here the continuity is
not de�ned at a point, but on the whole A: Moreover, the variation

f(x0)� f(x00)



 of f(x) is uniform relative to the variation kx0 � x00k
of x: Thus, if we want that the variation of f(x) to be less than 0:001
(


f(x0)� f(x00)



 < 0:001) in the case of an uniform continuous func-
tion f ; we can �nd a constant � = �0:001 > 0 such that anywhere
a0 and a00 would be in A; with the distance between them less than
this last constant �; we are sure that the corresponding variation of f ;

f(a0)� f(a00)



 is less then 0:001:
Remark 23. The notion of uniform continuity is stronger then the

"simple" continuity. Indeed, let f : A! Rm be a uniformly continuous
function on A and let a be a �xed point in A: We shall prove that f is
continuous at a: For this, let fa(n)g be a convergent sequence to a in A:
We want to prove that the sequence ff(a(n))g is convergent to f(a) by
using only the de�nition of the convergence. In fact, we want to prove

that the numerical sequence fd(f(a(n)); f(a))g tends to zero. Now we
use the usually De�nition 1. For this, let " > 0 be a small positive real
number. Since f is uniformly continuous, there is a �" > 0 such that
whenever kx0 � x00k < �"; one has that



f(x0)� f(x00)


 < ":

Let us take now x00 to be a and x0 = a(n); with n � N; this last N
chosen such that



a(n) � a


 < �": Thus,



f(a(n))� f(a)




 < ";

whenever n � N and so, we have just proved that the sequence ff(a(n))g
is convergent to f(a); i.e. f is continuous at an arbitrary chosen point
a.

But continuity does not always imply uniform continuity. For in-
stance, f(x) = ln x; x 2 (0; 1]; is a continuous function and not a uni-
formly continuous one. Indeed, let the sequences x0n =

1
n
and x00n =

1
2n
:

It is clear that jx0n � x00nj = 1
2n
! 0, but jln x0n � ln x00nj = ln 2 9 0:
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Thus, if we take " < ln 2 in De�nition 22, we can NEVER �nd a small
�" > 0 such that for all pairs (x

0; x00) with jx0 � x00j < �" one has

jln x0 � ln x00j < " < ln 2:

To see this, let us take n0 large enough such that
��x0n0 � x

00
n0

�� = 1

2n0
< �":

For the pair (x0n0 ; x
00
n0
);
��ln x0n0 � ln x

00
n0

�� = ln 2;
which is greater than "; so the de�nition of the uniform continuity does
not work for this function.

The next result says that for the functions de�ned on compact sets,
continuity and uniform continuity coincide. Pay attention, in our case
above (0; 1] in not compact! This is way we could prove that f(x) = ln x
is not uniformly continuous.

Theorem 59. Let C be a compact subset of Rn and let f : C ! Rm

be a continuous function de�ned on C: Then f is uniformly continuous
on C:

Proof. We suppose on contrary, namely that f is not uniformly
continuous on C:We must carefully negate the statement of De�nition
22. Thus, there is an "0 > 0 such that for any small enough � > 0 there
is at least one pair (x0�;x

00
�) with elements in C such that kx0� � x00�k < �

and 

f(x0�)� f(x
00
�)


 � "0:

In particular, let us take for these �; �k =
1
k
for k = 1; 2; ::: . Like

above, for such �k; k = 1; 2; :::; one can �nd two sequences fx0(k)g and
fx00(k)g with



x0(k) � x00(k)


 < 1

k
and




f(x0(k))� f(x00(k))



 � "0 > 0:

Since C is a compact set, we can �nd two subsequences: fx0(kt)g of
fx0(k)g and fx00(kt)g of fx00(k)g (why can we take the same kt for both
subsequences?) such that these both subsequences are convergent to
the same limit y 2 C because



x0(kt) � x00(kt)


 < 1

kt
! 0:

Since f is continuous, one has that the both sequences ff(x0(kt))g and
ff(x00(kt))g are convergent to the same limit f(y): So the distance be-
tween the corresponding terms becomes smaller and smaller as n!1;
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i.e. 


f(x0(kt))� f(x00(kt))



! 0;

a contradiction, because



f(x0(kt))� f(x00(kt))




 is always greater or equal
to "0: Thus, our assumption on the nonuniform continuity of f is false.
Hence, f is uniformly continuous. �

This result is very useful in practice. For instance, the function
f(x) = ln x is uniform continuous on any closed interval [a; b] � (0;1):
Indeed, [a; b] is a compact subset in the de�nition domain (0;1) of f;
f is continuous on [a; b] and so we can apply the above Theorem 59.

Example 13. Let C be a 3D-object (C � R3), bounded and con-
taining its boundary @C; like usually in practice. We know that C is
closed if and only if it contains its boundary @C: Let us assume that at
any pointM(x; y; z) of C we have a density f(x; y; z): It is commonly to
suppose that the density function f : C ! R is a continuous function.
The above theorem and our hypotheses on C say that f is uniformly
continuous. We cannot practically work with this function because no-
body gives it us in advance. But we can perform some measurements.
How do we perform such measurements f(xi; yi; zi); i = 1; 2; :::; n; such
that if we chose a point M(x; y; z) in C; we can �nd i0 with

jf(x; y; z)� f(xi0 ; yi0 ; zi0)j < "

(this is a small positive real number which controls the error, for in-
stance " = 1=1000). Since our function is uniformly continuous, there
is a small � > 0 such that whenever the distance between two points
x0 = (x0; y0; z0) and x00 = (x00; y00; z00) of C is less than this �; we have
that

jf(x0; y0; z0)� f(x00; y00; z00)j < ":

It remains to us to divide the body C into subbodies Ci; i = 1; 2; :::; n;

such that C =
i=n
[
i=1
Ci and the diameters

!i = supfkx0 � x00k : x0;x00 2 Cig
of Ci are less then �: Let us choose now a �xed point Mi(xi; yi; zi) in
each Ci for i = 1; 2; :::; n: Then the approximation

f(x; y; z) t f(xi; yi; zi)

is a good one if M(x; y; z) 2 Ci: This means that
jf(x; y; z)� f(xi; yi; zi)j < ":

Thus, we can perform measurements of the density function values only
at some arbitrarily chosen points Mi in each Ci:
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We give here a very useful result, in a more general setting (de�ne
and prove things slowly!).

Theorem 60. Let X and Y be two compact metric spaces (recall
that a metric space is compact if any sequence of it has at least one
convergent subsequence) and let f : X ! Y be a continuous bijection
from X on Y: Let g : Y ! X be its inverse. Then g is also continuous.

Proof. Let us prove that g carries back closed subsets of X into
closed subsets of Y (see Remark 21). Let C be a closed subset of X
and let E = g�1(C) = f(C): Since X is compact, C is also compact
(prove it!). Since f is continuous, E = f(C) is compact, so E itself is
closed in Y (prove it!). Hence, g is continuous. �

Corollary 7. Let f be a strictly monotone continuous function
which carries the interval [a; b] onto the interval [c; d] (see also the next
section, Darboux� theorem). Then f is inversable and its inverse g is
also continuous.

Proof. Since f is strictly monotone it is one-to-one (injective).
Since both intervals are compact metric spaces, we simply apply the
previous result. Here, "onto" means surjectivity!. �

4. Continuous functions on connected sets

Let A be a subset of Rn: A continuous curve in A is a vector con-
tinuous function 
 : I ! A; de�ned on an interval I; �nite or not,
opened or not, closed or not. In fact, we think of the image 
(I) of
the interval I through 
: Let M(x1; x2; :::; xn) be a point in A: We say
that 
 passes through M if there is t0 in I such that 
(t0) =M:

Definition 23. We say that the subset A of Rn is connected if any
two points M1 and M2 of A can be connected by a continuous curve,
i.e. if there is a continuous function 
 : I ! A and t1; t2 2 I such that

(t1) =M1 and 
(t2) = M2: This means that 
 passes through M1 and
M2:

Remark 24. An interval I of R is a subset of R with the following
property: if a; b 2 I and x is between a and b (a � x � b), then
x is also in I: In R, the connected subsets are exactly the intervals
of R: Indeed, let I be a connected subset of R, let a; b 2 I and let x
with a � x � b: Since I is connected, let 
 : J ! I be a continuous
curve which connect a and b: This means that there are t1 and t2 in J
such that 
(t1) = a and 
(t2) = b: We can restrict 
 to the interval
[t1; t2] � J and apply Darboux property for the continuous function 

(see Theorem 33). Hence x = 
(t3); where t3 2 [t1; t2]: So x 2 I;
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thus I is an interval. Conversely, let I be an interval in R and let x1;
x2 2 I: Let 
 : [x1; x2] ! I be the identity mapping. This is obviously
a continuous curve which connect x1 and x2:

Theorem 61. Let A be a connected subset of Rn and let f : A! Rm

be a continuous mapping de�ned on A with values in Rm: Then the
image f(A) of f in Rm is also a connected subset of Rm:

Proof. Let f(x) and f(y) be two points in f(A); x;y 2 A: Since
A is connected, there is a continuous curve 
 : I ! A and two points
a; b 2 I (an interval in R) such that 
(a) = x and 
(b) = y: Now, the
composition f �
 : I ! Rm is a continuous curve with (f �
)(a) = f(x)
and (f � 
)(b) = f(y): Thus f(A) is a connected subset of Rm: �

This is a fundamental result in di¤erent practical exercises. For
instance, let

S = f(x; y; z) 2 R3 : x2 + y2 + z2 � R2g
be the 3D-ball of radius R with centre at origin. Let f : S ! R be
the functions which associates to any pointM(x; y; z) the sum of these
coordinates, namely

f(x; y; z) = x+ y + z:

Let us �nd the image of S through f: Since S is connected (in fact S is
a convex subset of R3; i.e. for any pair of points L; P of S; the segment
[L; P ] is contained in S) and since f is continuous, its image in R is a
connected subset (see Theorem 61), i.e. it is an interval (see Remark
24). In fact, this image is a closed and bounded interval because S
is a compact set (way?) and f is continuous. So it is of the form
[m;M ] where m = inf f(S) and M = sup f(S): To �nd m and M is
not an easy task. We only remark that the points where it is realized
the greatest and the smallest values must be on the boundary @S of
S; namely where x2 + y2 + z2 = R2 (otherwise, if a point H(a; b; c) of
extremum, say a maximum, was inside the ball, not on the boundary
@S; then we can gently increase (or decrease) one of the values a; b; or
c; such that the new point L obtained in this way belongs to the ball
and, in it the function f has a greater value then the value of f in H).
In a later section (Conditional extremum points) we shall see how to
compute m and M:

The above theorem is helpful in proving the following useful result
(this result provides the basis of for di¤erent algorithms for solving
algebraic equations).

Theorem 62. Let f : [a; b] ! R be a continuous function such that
f(a) � f(b) < 0: Then, there is a point c in (a; b) such that f(c) = 0:
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This means that the equation f(x) = 0 has at least one solution in the
interval [a; b]:

Proof. The set f([a; b]) is an interval (see Theorem 61 and Remark
24) which contains f(a) and f(b): Since f(a) � f(b) < 0; the numbers
f(a) and f(b) have distinct signs. Since f([a; b]) is an interval and since
0 is between f(a) and f(b); 0 must be also in f([a; b]): This means that
there is a c in [a; b] such that f(c) = 0: Since f(a) � f(b) < 0; this c
cannot be neither a nor b; so c 2 (a; b): �

Remark 25. In fact, the statement of this last theorem is equiv-
alent with the statement of Darboux Theorem 33. Let us prove for
instance that the above last theorem implies Darboux Theorem 33. Let
m = inf

x2[a;b]
f(x) = f(x1) (see Weierstrass Theorem 32) and M =

sup
x2[a;b]

f(x) = f(x2): Let choose a number � 2 (m;M) and let consider

the auxiliary continuous function g(x) = f(x)� �: Let us take now the
interval [x1; x2]

� (here � means that [x1; x2]� = [x1; x2] if x1 < x2 and
[x1; x2]

� = [x2; x1] if x2 < x1; if x1 = x2 our function is constant and
one has nothing to prove). Since g(x1) � g(x2) < 0 (if one of the factors
is equal to 0 we also have nothing to prove more!), Theorem 62 says
that there exists a number c 2 (a; b) such that g(c) = 0; i.e. f(c) = �
and Darboux Theorem is proved. Conversely is very easy (prove it!).

We can use Theorem 62 in order to �nd approximative solutions for
an equation f(x) = 0 in an interval [a; b]; on which the function f is
continuous (�nd a counterexample to this theorem in the case when f is
not continuous). We also assume that f(a) �f(b) < 0: Let us divide the
segment [a; b] into two equal parts and chose that one [a1; b1] for which
f(a1) � f(b1) < 0 (if f(a1) = 0 or f(b1) = 0; c = a1 or c = b1 and we
stop the process). Let us repeat the same with the subinterval [a1; b1]
instead of [a; b]; and so on. If we cannot �nd an or bn, n = 1; 2; ::::;
such that f(an) = 0 or f(bn) = 0; the solution c is (the unique point)

in the intersection
1
\
n=1
[an; bn] (why?). So, for a small error indicator

" > 0; if we take n0 such that
b�a
2n0

< "; then the approximation c � an0
(or c � bn0) lead us to an error less then " (why?). This is in fact
the description of a very known algorithm in Computer Science for
constructing approximative solutions for a large class of equations.
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5. The Riemann�s sphere

In Fig.6.3 we have a sphere S of radius R > 0 and with center at
the origin O(0; 0; 0): Its equation is

(5.1) x2 + y2 + z2 = R2

M'(a,b)
x

z

y

M(x,y,z)

N(0,0,R)

(C)

(C')

O

Fig. 6.3

We know that the subset

S = f(x; y; z) : x2 + y2 + z2 = R2g
is a compact subset of R3 (it is closed and bounded, why?). Since B.
Riemann used this model for explaining the "compacti�cation" of the
usual complex plane C (identi�ed here with the coordinate plane xOy),
we call S the Riemann sphere.We call the point N(0; 0; R); the north
pole of S (see Fig.6.3). Let us associate to any point M(x; y; z) of the
sphere S, the point M 0(a; b; 0) in the plane xOy (= C); obtained by
intersecting the line NM with the plane xOy (see Fig.6.3). Since for
N we cannot associate in this way a point in xOy; we say that there is
a one to one correspondence between SrfNg and C. Let us denote by
f : S r fNg ! C, the mapping M  M 0; or f(M) = M 0: It is not so
easy to express a and b as functions of x; y; z: If we think of a sequence
fMng of points on S; which is convergent in R3 to M; it is easy to see
that the sequence fM 0

ng is convergent toM 0 in C. So f is a continuous
function on S r fNg: As in the case of the "compacti�cation" of R
by adding of the symbols f�1g (since in R= R[f�1g any sequence
has at least one convergent subsequence-why?-it is a compact metric

space!)) we take a symbol "1" outside C and consider bC = C [ f1g
with some obvious algebraic operations: x+1 =1+ x =1; x 2 C,
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j1j = 1 (this is the symbol +1 from R), etc. If we extend now the
function f to the whole sphere S by putting f(N) =1, we obtain a
bijection between the Riemann sphere and bC. We say that a sequence
fzng of bC is convergent to 1 if jznj ! 1 2 R. So this f is invertible
and f�1 is also continuous. In particular bC is a compact metric space,
the least compact metric space which contains C (why?). This is why

one can also call bC the Riemann sphere. For instance, a "ball" with
centre at 1 is the exterior of an usual closed ball with centre at O
and of radius r > 0 : f(x; y; z) : x2 + y2 + z2 > r2g: The notion
of Riemann sphere is very important when we work with functions of
complex variable. Intuitively, 1 can be realized as the circumference
of a "circle" with center at O 2 C and of an in�nite radius. So, the
fundamental ""-neighborhoods" of1 are of the form fz 2 C : jzj > Rg;
where R is any positive (usually large) real number. We �nally remark
that the metric structure on S is that one induced from R3:

6. Problems

1. Say if the following sets are open, closed, bounded, compact or
connected. In each case, compute their closure and their boundaries.
Draw them carefully!

a)

f(x; y) : x2 + y2 < 9g;
b)

f(x; y) : x2 + y2 > 9g;
c)

f(x; y) : x2 + y2 = 5g;
d)

f(x; y) : x 2 [0; 1); y 2 (1; 2]g;
e)

f(x; y) : x+ y = 3g;
f)f(q; 0) : q 2 Qg; g)f(0; 1

n
) : n = 1; 2; ::: g; h)f(x; y) : y2 = 2x; x 2

[0; 1)g; i)
f( 1
n
;
1

n
) : n = 1; 2; :::g;

j)

f(x; y; z) : x+ y + z � 3;x; y; z 2 [0;1)g
k)

f(x; y; z) : x 2 [�1; 1]; y 2 (0; 4]; z 2 (�3; 5]g
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l) fz 2 C : jz � 2ij < 3g; m)fz 2 C : j2z + 3j � 6g; n)
fz 2 C : jz + 3� 2ij > 4g;

o)
fz 2 C : z = x+ iy; x = 2; y � 3g;

p)
fz 2 C : 2 < jz � 2j � 4g;

q)
fz 2 C : jz � 3 + 2ij > 2g;

r)
ff 2 C[0; 2] : kfk < 2g;

s)
ff 2 C[0; 2�] : kfk � 3g;

u)
ff 2 C[0; 2�] : kf � sin xk < 0:3g

v)

ff 2 C[�3:3] : g � 1

10
� f < g +

1

10
;

where g(x) = x; g(x) = �x; or g(x) = x2g; w)
ff 2 C[0; 1] : 2 < kf � gk < 4g;

where g(x) = x; y)D = f(x; y) : ln(x2+y2�4)=(x+2y) is well de�nedg:
2. Compute the limits of the following sequences:
a)

x(n) =

�
1

2n+ 1
;
2n� 1
3n+ 4

; (1 +
4

n
)2n
�
;

b)

x(n) =

� p
n� 1

3
p
n� 3
p
n� 1

;
n sin 1

n

1 + n

�
;

c)

zn =
3 + 2in

n+ 2i
; i =

p
�1;

d) zn =
�
1 + i+1

n

�n
; e) zn = exp

�
in+ i

n

�
;

3. Starting with the de�nition of continuity and of uniform con-
tinuity, determine what of the following functions are continuous and
what are uniformly continuous.

a) f(x) = sin x; x 2 [0; �];
b)

f(x; y) = (x+ y;
1

xy
); x 2 [1; 2]; y 2 [3; 4];
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c) f(x; y; z) = x� y; where x2 + y2 + z2 = 4; d) f(x) = 1
x
; x 2 (0; 2]:

4. Some of the following limits exist, some do not exist. Say (and
prove!) which of them exist and compute them in the a¢rmative situ-
ation.

a) lim
(x;y)!(0;0)

x3+y3+1
2x3+3y3+2

; b) lim
(x;y)!(0;0)

xyp
xy+1�1 ;

c) lim
(x;y)!(0;0)

xy2

x2+y2
(Hint: xy

x2+y2
� 1

2
; etc.);

d)

lim
(x;y)!(0;0)

x2 + y2

jxj+ jyj
(Hint: x

jxj+jyj ;
y

jxj+jyj � 1; etc.); e) lim
(x;y)!(0;0)

x3+y3

x2+y2
; f) lim

x!0
jxj
x
; g) lim

x!0
exp(�jxj)�1

x
;

h) lim
(x;y)!(0;0)

xy

x2+y2
;

i)

lim
(x;y)!(0;0)

xy2

x2 + y4

(Hint: use ( 1
n
; 0) and ( 1

n2
; 1
n
));

5. Compute, if you can, the following directional limits:

a) lim
x!0;y=mx

xy

x2+y2
; b) lim

x!0;y=mx
2x3y
x6+y2

;

c)

lim
x!1;y=mx

y

x
exp(�(x+ y));

d)
lim

(x;y)!(1;0);x2+y2=1
xy exp(x2 + y2):

6. Compute:

lim
(x;y;z)!0

�
1

x2 + y2 + 1
; 1 + xyz; cos(x+ y + z)

�

and explain everything you did, step by step (small steps!).
7. Study the continuity of the following functions:
a)

f : R! R; f(x) = 1;

if x 2 Q and f(x) = 0; if x =2 Q (Dirichlet�s function);
b)

f : R! R; f(x) = x;

if x 2 Q; and f(x) = �x; if x =2 Q;
c)

f : R! R; f(x) = exp(�x);
if x � 0 and f(x) = sin x; if x > 0;
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d)
f : R2 ! R2; f(x; y) = (x; 0);

e)

f : R2 ! R; f(x; y) = d((x; y); (0; 0)) =
p
x2 + y2;

f)

f : R2 ! R2; f(x; y) =

�
xy

x2 + y2
; xy

�
;

if (x; y) 6= (0; 0) and f(0; 0) = (0; 0);
g)

f : R2 ! R; f(x; y) = xy
x2 � y2
x2 + y2

;

if (x; y) 6= (0; 0) and f(0; 0) = 0;
h)

f : R2 ! R; f(x; y) =
sin(x3 + y3)

x2 + y2
;

if (x; y) 6= (0; 0) and f(0; 0) = 0:
8. Prove that f(x) = x2 is uniformly continuous on [0; 1]; but

it is not on the whole R (Hint: use xn =
p
n; xn+1 � xn ! 0; but

f(xn+1)� f(xn) = 19 0).
9. Prove that f(x) = 1

x2
is uniformly continuous on [1; 2]; but not

on R.
10. Let (X; d) be a metric space. Prove that, for any �xed a in X;

the mapping fa(x) = d(x; a) is a uniformly continuous function de�ned
on X with values in R.

11. Let f : A! R; f(x; y; z) = x+ y + z; where

A = f(x; y; z) 2 R3 : 1 � x2 + y2 + z2 � 4g:
Prove that f(A) is a closed interval in R. Find it.
12. Do the same for

f(x; y) = x+ y; x 2 [1; 2]; y 2 [1; 2]:



CHAPTER 7

Partial derivatives. Di¤erentiability.

1. Partial derivatives. Di¤erentiability.

Let A be an open subset in R, a a �xed point in A and let f : A! R

be a function de�ned on A with values in R. Let B(a; r) = (a�r; a+r),
r > 0; be a small ball (an open interval in our particular case) of radius
r and with centre a; which is contained in A: Let h be a small quantity
such that a+h 2 B(a; r):We call this h an "increment" of a in B(a; r)
(or in A if one takes h with a+ h 2 A). The di¤erence f(a+ h)� f(a)
is called the increment of f at a; corresponding to the increment h of
a: So, here appears a new function 'a;f (h) = f(a+h)�f(a): This new
function depends on a and on f: It is de�ned in a small ball, (�"; ");
which contains 0 as its centre and of radius "; (at most r (why?)). The
description of this last function is important in the case we want to
evaluate the variation of a phenomenon around a given point a: For
instance, if a worker has his salary a and if his salary increases with h;
what is the increment f(a+h)�f(a) of his family educational level? We
say that the increment f(a+ h)� f(a) is approximately linear around
a; if

(1.1) f(a+ h)� f(a) = �(a; f) � h+ h � !a;f (h);
where !a;f is a function of h de�ned on (�"; "); !a;f (0) = 0 and
!a;f (h)! 0; when h! 0 (i.e. !a;f is continuous at 0). Here �(a; f) is
a real number which depend on f and on a:

The birth of di¤erential calculus began with the following result.

Theorem 63. With the above notation and hypotheses, the incre-
ment of f is approximately linear around a if and only if f is di¤eren-
tiable at a and, in this case f 0(a) = �(a; f): Thus,

(1.2) f(a+ h)� f(a) = f 0(a) � h+ h � !a;f (h):
Hence,

f(a+ h)� f(a) � f 0(a) � h
and the error h � !a;f (h) is a zero 0(h) of h; i.e.

lim
h!0

h � !a;f (h)
h

= 0:

141
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Proof. Let us divide by h the equality (1.1) and make h! 0:We
obtain that the limit

lim
h!0

f(a+ h)� f(a)
h

= �(a; f):

So, if the increment f(a+ h)� f(a) is approximately linear around a;
f is di¤erentiable at a and f 0(a) = �(a; f): Conversely, let us assume
that f is di¤erentiable at a: Then, if one construct

(1.3) !a;f (h) =
f(a+ h)� f(a)

h
� f 0(a);

it is easy to verify that this function !a;f is continuous at 0 and it is
zero at h = 0 (do it!). If we take now for �(a; f) the number f 0(a); and
for !a;f the function constructed in (1.3), we obtain the formula (1.1),
i.e. the increment of f is approximately linear around a: �

Let us evaluate the increment of f(x) = �x2 + 3x� 7 at a = 10 if
the increment h of a is 0:5: We simply apply formula (1.2) and �nd

f(10 + 0:5)� f(10) = f 0(10) � 0:5 + 0:5 � !f;10(0:5) � �8:5:

Definition 24. With the above notation, the linear mapping df(a) :
R! R, de�ned by

df(a)(h) = f 0(a) � h;
is called the �rst di¤erential of f at a: This one exists if and only if
the �rst derivative f 0(a) of f at a exists (why?).

Thus,
df(a)(h) � f(a+ h)� f(a);

i.e. the value df(a)(h) of the �rst di¤erential of f at a; computed
in the increment h of a; is approximative equal to the corresponding
increment

f(a+ h)� f(a)
of f at a:
Before extending the notion of a di¤erential to a vector function we

need some other simpler notion.
Let A be an open subset of Rn; f : A ! Rm, a vector function of

n variables, de�ned on A with values in the normed (or metric) space
Rm and a = (a1; a2; :::; an) a point in A: We write f = (f1; f2; :::; fm);
where f1; f2; :::; fm are the m scalar component functions of f : For the
moment we take m = 1 and write f = f; like a scalar function (with
values in R). Let us �x a variable xj (j = 1; 2; :::; n) of the variable
vector

x = (x1; x2; :::; xj�1; xj; xj+1; :::; xn):
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For this �xed j; let us de�ne a "partial function" 'j of f at a: For this
we �x all the other variables x1; x2; :::; xj�1; xj+1; :::; xn (except xj) by
putting

x1 = a1; x2 = a2; :::; xj�1 = aj�1; xj+1 = aj+1; :::; xn = an

and let us leave free the variable xj in

f(x) =f(x1; x2; :::; xj�1; xj; xj+1; :::; xn);

i.e. we de�ne

(1.4) 'j(t) = f(a1; a2; :::; aj�1; t; aj+1; :::; an);

where t runs over the projection prj(A) of A along the Oj-axis, where

prj(x1; x2; :::; xj�1; xj; xj+1; :::; xn) = xj

Definition 25. With the above notation, if the function 'j is dif-
ferentiable at t = aj; one says that f has a partial derivative '

0
j(aj) with

respect to the variable xj at a and we denote this last one by
@f

@xj
(a):

The mapping x  @f

@xj
(x); x 2 A; is called the partial derivative of f

with respect to xj:

Practically, if we want to compute the partial derivative of a scalar
function f of n variables

x1; x2; :::; xj�1; xj; xj+1; :::; xn;

with respect to xj; we think of the other variables

x1; x2; :::; xj�1; xj+1; :::; xn

like being constants (parameters, or "inactivated" variables) and we
perform the usual di¤erential laws on the "active" variable xj: If n = 1;
we usually denote x1 by x: If n = 2; we usually denote x1 by x and x2
by y: If n = 3; we usually denote x1 by x; x2 by y and x3 by z: For
instance, let

f(x; y) = sin2(x3 + y3)

be de�ned on R2 and let a = (0; 3
p

�
2
) be the �xed point at which we

want to compute the partial derivatives of f (with respect to x and
to y respectively). Let us use the de�nition to compute @f

@x
(a): In our

case,

'1(t) = sin
2(t3 +

�

2
)

and

'01(t) = 2 sin(t
3 +

�

2
) � cos(t3 + �

2
) � 3t2
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(we just used the chain rule for computing the derivative of a composed
function of one variable). Now,

@f

@x
((0; 3
r
�

2
)) = '01(0) = 0:

Let us compute now

(1.5)
@f

@y
((x; y)) = 2 sin(x3 + y3) � cos(x3 + y3) � 3y2

Here, we simply considered that the initial function depended only
on y and we looked at x like to a constant. If we want to compute
@f

@y
((0; 3

p
�
2
)); we simply make x = 0 and y = 3

p
�
2
in the general expres-

sion (1.5) of @f
@y
((x; y)): Thus, @f

@y
((0; 3

p
�
2
)) is also 0: Since both partial

derivatives of f at (0; 3
p

�
2
) are zero, we say that this last point is a

stationary (or critical) point.
If f is a function de�ned on an open subset A of Rn which has

partial derivatives with respect to all its variables at a point a; we
de�ne the gradient vector of f at a by the formula:

grad f(a) =

�
@f

@x1
(a);

@f

@x2
(a); :::;

@f

@xn
(a)

�
:

We say that a is a critical (stationary) point for f if grad f(a) = 0:
The gradient is the direct generalization of the notion of "velocity".

We know from any course of "Linear Algebra" that a mapping T :
Rn ! Rm is said to be a linear mapping if T(x+ y) = T(x) +T(y)
and T(�x) =�T(x) for any x;y in Rn and � in R. For instance, if
T : R ! R is linear, then T (x) = xT (1) for any x 2 R. Hence,
T (x) = �x (� = T (1)!) for any x in R. If T : Rn ! R is linear then,
by taking

x = (x1; x2; :::; xn) = x1e1 + x2e2 + :::+ xnen;

where e1 = (1; 0; 0; :::; 0); e2 = (0; 1; 0; :::; 0); :::; en = (0; 0; 0; :::; 0; 1);
we get that

T (x) = x1T (e1) + x2T (e2) + :::+ xnT (en) = �1x1 + �2x2 + :::+ �nxn;

where �i = T (ei) for any i = 1; 2; :::; n: It is easy to see that if
T1; T2; :::; Tm are the component functions of T; then T is a linear
mapping if and only if all the component functions T1; T2; :::; Tm of T
are linear (prove it!).

Theorem 64. Any linear mapping T : Rn ! Rm is a continuous
vector function of n variables.



1. PARTIAL DERIVATIVES. DIFFERENTIABILITY. 145

Proof. It is su¢cient to prove that any component function Ti;
i = 1; 2; :::; n of T is continuous (see Theorem 54). This means that we
can reduce ourselves to the case of m = 1; i.e. to the case of a scalar
function T : Rn ! R. Let

fe1 = (1; 0; 0; :::; 0); e2 = (0; 1; 0; :::; 0); :::; en = (0; 0; 0; :::; 0; 1)g
be the canonical basis ofRn: This means that any vector x = (x1; x2; :::; xn)
can be uniquely represented as:

x = x1e1 + x2e2 + :::+ xnen:

Let us denote

�1 = T (e1); �2 = T (e2); :::; �n = T (en):

These are �xed real numbers. Hence,

T (x) = T ((x1; x2; :::; xn)) = x1�1 + :::+ xn�n:

If
x(m) = (x

(m)
1 ; x

(m)
2 ; :::; x(m)n )! x = (x1; x2; :::; xn);

when m!1; then,
x
(m)
1 ! x1; x

(m)
2 ! x2; :::; x

(m)
n ! xn;

when m!1 (componentwise convergence). Thus,

T (x(m)) = x
(m)
1 �1 + x

(m)
2 �2 + :::+ x(m)n �n ! x1�1 + :::+ xn�n

which is just T (x): Hence, T is a continuous mapping. �

Remark 26. Let us de�ne the associated matrix of

T = (T1; T2; :::; Tm)

by aij = Ti(ej) for i = 1; 2; :::;m and j = 1; 2; :::; n: So the matrix
A = (aij) is a m� n matrix with entries in R. If we compute now

kT(x)k2 = T1(x)
2 + T2(x)

2 + :::+ Tm(x)
2 =

 
nX

i=1

xia1i

!2
+

 
nX

i=1

xia2i

!2
+ :::+

 
nX

i=1

xiami

!2
�

�
nX

i=1

x2i

nX

i=1

a21i +

nX

i=1

x2i

nX

i=1

a22i + :::+

nX

i=1

x2i

nX

i=1

a2mi = kxk2 kAk2 ;

where we recall that

kAk =

vuut
mX

j=1

nX

i=1

a2ji:



146 7. PARTIAL DERIVATIVES. DIFFERENTIABILITY.

Thus,

(1.6) kT(x)k � kAk kxk :
From here we can easily directly prove the continuity of T (do it!).

Now, we come back to the de�nition of the linear approximation of
the increment f(x + h) � f(x) of a function f around a point a; in a
general situation.

Definition 26. (Frechet) Let D be an open subset of Rn and let
a be a �xed point in D: Let f : D ! R be a function de�ned on D
with values in R: We say that f is di¤erentiable at a if there is a linear
mapping Ta = T : Rn ! R and a continuous scalar function '(h)
which is continuous at 0 =(0; 0; :::; 0| {z }

n�times

); de�ned on a small ball B(0;r) �

Rn; r > 0; '(0) = 0 with lim
h!0

'(h)
khk = 0, such that

(1.7) f(a+ h)�f(a) =T (h) + '(h):

This means that the increment f(a+ h)�f(a) can be linearly approx-
imated by the linear mapping T (which depend on a and on f) around
the point a up to a function '(h) which is a zero of h (0(h)) of order

1 ( lim
h!0

'(h)
khk = 0). The linear mapping T is called the (�rst) di¤erential

of f at a: We write it as df(a): Hence, formula (1.7) becomes

(1.8) f(a+ h)�f(a) =df(a)(h) + '(h):

Remark 27. It is clear that f is di¤erentiable at a if and only if
there is a linear function T : Rn ! R such that the following limit
exists and it is zero:

(1.9) lim
h!0

f(a+ h)�f(a)�T (h)
khk = 0:

Indeed, if (1.9) is true, then '(h) = f(a+ h)�f(a)�T (h) is continu-
ous at 0 and its value at 0 is 0: If it were not continuous at 0, there
would be an " > 0 such that

jf(a+ h)�f(a)�T (h)j > "

for any small values of h! 0: So,

jf(a+ h)�f(a)�T (h)j
khk >

"

khk ! 1;

when h! 0: Hence (1.9) could not be true, a contradiction!
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Shortly saying, f is di¤erentiable at a if it can be "well" approx-
imated on a small neighborhood of a by a formula of the following
type:

(1.10) f(a+ h) �f(a)+T (h);
where T is a linear mapping and h is a small increment of a: This
last interpretation is very useful in Physics and in Engineering when a
phenomenon is "linearized".

The next big problem is how to compute this T in language of f and
a: But, �rst of all, let us use only the de�nition and the remark above
to "guess" the di¤erentials for some simple functions. For instance, if
f has only one variable, we �nd again De�nition 24. If f is a constant
function, then df(a) is the zero linear mapping (prove this!). The �rst
di¤erential of a linear mapping T : Rn ! R is T itself (why?). In
particular, the i-th projection pri : R

n ! R,

pri(h1; h2; :::; hi; :::; hn) = hi;

is di¤erentiable and its di¤erential pri is denoted by dxi; or dx; dy; dz
in the 3D-case. So

dy(1; 2;�3)(3; 1;�7) = 1; dz(a1; a2; a3)(�2; 3; 5) = 5
for any a = (a1; a2; a3):

Theorem 65. If f is di¤erentiable at a 2 D; where D is an open
subset of Rn; then f is continuous at a: This means that the property
of di¤erentiability is stronger then the property of continuity.

Proof. Let fa(n)g be a sequence of vectors in Rn which is conver-
gent to a and let h(n) = a(n) � a (! 0). Then

f(a+ h(n)) = f(a) + df(a)(h(n)) + '(h(n))

(see (1.8)). Since df(a) is a linear mapping, it is continuous (see The-
orem 64), so

lim
n!1

df(a)(h(n)) =0:

Since lim
h!0

'(h)
khk = 0; one has that limn!1

'(h(n)) = 0 (why?). Hence,

f(a+ h(n))! f(a);

when n!1: �

Theorem 66. The linear mapping T = df(a) is uniquely deter-
mined by f and a:



148 7. PARTIAL DERIVATIVES. DIFFERENTIABILITY.

Proof. The proof of this result is implicitely included in the state-
ment of the next theorem (see Theorem (67). However, we give here
another proof.

If there was another one U such that

(1.11) f(a+ h)� f(a) =U(h) + '1(h);

where '1(0) = 0; '1 is continuous at 0 and lim
h!0

'1(h)
khk = 0; we can write

that
T (h) + '(h) = U(h) + '1(h)

for all h in a small ball centered at origin. Moreover,

(1.12) lim
h!0

(T � U)(h)
khk = lim

h!0

'1(h)� '(h)
khk = 0:

We want to prove that for any x in Rn one has T (x) = U(x):We assume
contrary, namely that there is a x0 such that (T�U)(x0) 6= 0: If t > 0 is
small, then tx0 is small, i.e. it is close to 0; because ktx0k = t kx0k ! 0;
when t! 0; t > 0: Let us come back to (1.12) and write

lim
t!0

(T � U)(tx0)
ktx0k

= lim
t!0

t � (T � U)(x0)
t � kx0k

= 0:

So, (T�U)(x0) = 0 and we just obtained a contradiction. Hence, there
is no x0 with (T � U)(x0) 6= 0 and so T � U: �

Thus, if we �nd a method to compute T = df(a); this T is unique.
It depends only on f and on a:

Theorem 67. If f is di¤erentiable at a; then all the partial deriv-
atives @f

@x1
; @f

@x2
; :::; @f

@xn
exists at a and

(1.13) df(a)(h1; h2; :::; hn) =
@f

@x1
(a)h1 +

@f

@x2
(a)h2 + :::+

@f

@xn
(a)hn;

or, using the projection prj = dxj notation (see Remark 27), we get

(1.14) df(a) =
@f

@x1
(a)dx1 +

@f

@x2
(a)dx2 + :::+

@f

@xn
(a)dxn:

Moreover, if f is of class C1 on a ball B(a;r); for a small r > 0; i.e. if
f 2 C1(B(a;r)) (this means that f has partial derivatives with respect
to all variables x1; x2; :::; xn and all of these are continuous on B(a;r)),
then f is di¤erentiable at a and formula (1.14) works.

Proof. We suppose that f is di¤erentiable at a and let T = df(a)
be its di¤erential at a:We know from Linear Algebra or from the proof
of Theorem 64 that

T (h1; h2; :::; hn) = �1h1 + �2h2 + :::+ �nhn;
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where �1; �2; :::; �n are �xed real numbers (recall that �i = T (ei);
where ei is the i-th vector of the canonical basis of R

n; etc.). Let us
chose now a j in f1; 2; :::; ng, let us take 
 > 0; close to 0 and let us
also take

h = (0; 0; :::; 0; 
|{z}
j

; 0; :::; 0)

in formula (1.9). We get

lim

!0

f(a1; a2; :::; aj�1; aj + 
; aj+1; :::; an)�f(a)�
�j



= 0:

Since this limit exists, the partial derivative with respect to j exists and,
from this last formula we get that @f

@xj
(a) = �j; for any j 2 f1; 2; :::; ng:

Hence,

T (h1; h2; :::; hn) =
@f

@x1
(a)h1 +

@f

@x2
(a)h2 + :::+

@f

@xn
(a)hn

and the �rst part of the statement is completely proved.
Let us now assume that f is of class C1 on a ball B(a; r); r > 0:

Let us take the following linear mapping T : Rn ! R:

T (h1; h2; :::; hn) =
@f

@x1
(a)h1 +

@f

@x2
(a)h2 + :::+

@f

@xn
(a)hn:

Let us prove that this T is indeed the di¤erential of f at a: To be easier,
let us also assume that n = 2: Then, we want to prove that

(1.15) lim
h1;h2!0

f(a1 + h1; a2 + h2)� f(a1; a2)� T (h1; h2)
khk = 0:

Let us write:

f(a1 + h1; a2 + h2)� f(a1; a2) = f(a1 + h1; a2 + h2)� f(a1; a2 + h2)

(1.16) +f(a1; a2 + h2)� f(a1; a2):
Now, let us consider the function

'1(t) = f(t; a2 + h2); t 2 [a1; a1 + h1]
�

and let us apply to it Lagrange�s formula:

(1.17) f(a1 + h1; a2 + h2)� f(a1; a2 + h2) =
@f

@x1
(c1; a2 + h2) � h1;

where c1 2 [a1; a1+h1]�: Let us do the same for f(a1; a2+h2)�f(a1; a2)
by considering the function

'2(t) = f(a1; t); t 2 [a2; a2 + h2]
�:
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We get

(1.18) f(a1; a2 + h2)� f(a1; a2) =
@f

@x2
(a1; c2) � h2;

where c2 2 [a2; a2+h2]�: Let us come back in (1.16) with the expressions
of (1.17) and (1.18). So,

f(a1 + h1; a2 + h2)� f(a1; a2)� T (h1; h2)
(1.19)

=

�
@f

@x1
(c1; a2 + h2)�

@f

@x1
(a1; a2)

�
h1+

�
@f

@x2
(a1; c2)�

@f

@x2
(a1; a2)

�
h2:

Since the function f is of class C1 in a small neighborhood of a =
(a1; a2); one has that:

����
@f

@x1
(c1; a2 + h2)�

@f

@x1
(a1; a2)

����! 0;

when h! 0 i.e. h1 ! 0 and h2 ! 0 and
����
@f

@x2
(a1; c2)�

@f

@x2
(a1; a2)

����! 0;

when h! 0: Since
jh1j
khk ;

jh2j
khk � 1;

one has that the limit in (1.15) is zero (do this slowly, step by step!).
Hence, f is di¤erentiable at a and its di¤erential has the usual form:

df(a) =
@f

@x1
(a)dx1 +

@f

@x2
(a)dx2:

For an arbitrary n the proof is similar, but the writing is more compli-
cated. �

This last theorem is very useful in computations. For instance, let
f : R3 ! R be de�ned by

f(x; y; z) = ln(1 + x2 + y4 + z6):

All the partial derivatives

@f

@x
=

2x

1 + x2 + y4 + z6
;
@f

@y
=

4y3

1 + x2 + y4 + z6

and
@f

@z
=

6z5

1 + x2 + y4 + z6
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exist and are continuous on the whole R3; in particular around the
point (1;�1; 2): Applying the last theorem (see Theorem 67) we see
that f is di¤erentiable at (1;�1; 2) and

df(1;�1; 2) = @f

@x
(1;�1; 2)dx+ @f

@y
(1;�1; 2)dy + @f

@z
(1;�1; 2)dz =

=
2

67
dx� 4

67
dy +

192

67
dz:

Recall a basic fact: df(1;�1; 2) is NOT a number, but a linear mapping
from R3 to R: For instance,

df(1;�1; 2)(3;�4; 0) =

=
2

67
dx(3;�4; 0)� 4

67
dy(3;�4; 0) + 192

67
dz(3;�4; 0) =

=
2

67
� 3� 4

67
� (�4) + 192

67
� 0 = 22

67
:

This last one is a real number because df(1;�1; 2) : R3 ! R is a linear
mapping.
We want now to extend the notion of di¤erentiability from scalar

functions of n variables to vector functions.

Definition 27. Let f : D ! Rm be a vector function with its com-
ponents (f1; f2; :::; fm); de�ned on an open subset D of Rn with values
in Rm: We say that f is di¤erentiable at a 2 D if all its components
f1; f2; :::; fm are di¤erentiable at a like scalar functions. Moreover, if
h = (h1; h2; :::; hn) is a vector in R

n and if

dfi(a)(h) =ai1h1 + ai2h2 + :::+ ainhn;

where

ai1 =
@fi
@x1

(a); ai2 =
@fi
@x2

(a); :::; ain =
@fi
@xn

(a);

then the matrix

Ja;f = (aij =
@fi
@xj

(a));

with m rows and n columns is called the Jacobi (or jacobian) matrix of
f at a: The linear mapping T : Rn ! Rm de�ned by the jacobian matrix
Ja;f (with respect to the canonical bases of R

n and Rm respectively) is
called the di¤erential of f at a: We write T = df(a): The determinant
jJa;f j of Ja;f ; in the particular case n = m; is said to be the jacobian of
f at a:
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For instance,

f : D ! R2; D = f(x; y; z) 2 R3 : x > 0; y > 0; z > 0g;
de�ned by

f(x; y; z) =

�
1

xyz
; xyz

�

is di¤erentiable at any point a =(a; b; c) of D because its components

f1(x; y; z) =
1

xyz

and

f2(x; y; z) = xyz

have this last property (why?). Since

df1(a) = �
1

a2bc
dx� 1

ab2c
dy � 1

abc2
dz

and

df2(a) = bc � dx+ ac � dy + ab � dz;
the jacobian matrix of f at a is the 2� 3 matrix

�
� 1
a2bc

� 1
ab2c

� 1
abc2

bc ac ab

�
:

For instance, if a = 1; b = 1 and c = �2; we get the numerical matrix
�

1
2

1
2
�1
4

�2 �2 1

�
:

Now, if we want to compute the value of df(1; 1;�2) : R3 ! R2 at the
point (3; 4;�5); from Linear Algebra or from the remark 26, we get

�
1
2

1
2
�1
4

�2 �2 1

�0
@
3
4
�5

1
A =

�
3
2
+ 4

2
+ 5

4
�6� 8� 5

�
=

�
19
4
�19

�
;

so df(1; 1; 2)(3; 4;�5) = (19
4
;�19):

Remark 28. One can prove that f : D ! Rm is di¤erentiable at a
point a 2D � Rn if and only if there is a linear mapping T : Rn ! Rm

which depends on a such that the following limit exists and is equal to
zero:

(1.20) lim
h!0

kf(a+ h)� f(a)�T(h)k
khk = 0:
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We recall that

kf(a+ h)� f(a)�T(h)k =

vuut
mX

i=1

[fi(a+ h)� fi(a)� Ti(a)]2

and everything reduces to the scalar component functions, for which we
know this result.

This above statement is equivalent to say that the increment

f(a+ h)� f(a)
of our vector function f at a; corresponding to the increment h of a;
can be "well" approximated by the value of the liner function T at h (do
this slowly, step by step!). The uniqueness of the above T is obvious
because its components are uniquely de�ned, being the di¤erentials of
some scalar functions, the components of f :

Exercise 1. Let f ;g : D ! Rm; be two di¤erentiable functions on
D (at any point of D), where D is an open subset in Rn and let � be
a real number. Then: f + g; f � g; fg (only for m = 1) f

g
(only for

m = 1 and g(a) 6= 0), �f ; are also di¤erentiable on D and
a)

d(f + g)(a) =df(a)+dg(a);

b)

d(f � g)(a) =df(a)�dg(a);
c)

d(fg)(a) = g(a)�df(a)+f(a)�dg(a);
d)

d(
f

g
) =

g(a)�df(a)�f(a)�dg(a)
g(a)2

;

e) d(�f) = � � df for � 2 R.

In c) and d) f , g are only scalar functions!

2. Chain rules

Let A, B be two open subsets of R and let a be a point in A. Let
f : A! B be a function de�ned on A with values in B such that f is
di¤erentiable at a: Let g : B ! R be a di¤erentiable function at f(a):
Then the composed function g � f : A! R is di¤erentiable at a and

(g � f)0(a) = g0(f(a)) � f 0(a)
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(the simplest chain rule!). Indeed,

lim
x!a

g(f(x))� g(f(a))
x� a =

= lim
f(x)!f(a)

g(f(x))� g(f(a))
f(x)� f(a) � lim

x!a

f(x)� f(a)
x� a = g0(f(a)) � f 0(a):

So (g�f)0(a) exists and is exactly g0(f(a))�f 0(a): In particular, if f is
invertible and f�1 is di¤erentiable at b = f(a) then, from f�1(f(x)) =
x; we get f�10(b) � f 0(a) = 1; i.e. f�10(b) = 1

f 0(a)
; or (f�1)0(f(a)) = 1

f 0(a)
:

Wewant now to generalize this simple chain rule to vector functions.
Let us start with a simpler case, namely, let us take a "curve" f : A!
B; f = (f1; f2; :::; fn); where A is an open subset in R and B is an open
subset in Rn: Let g : B ! R be a di¤erential function at b = f(a)
and let us assume that f is di¤erentiable at a: Let h = g � f : A ! R

be the composition between g and f ; i.e. the restriction of g to the
n-D "curve" f (to the image of f in the common language!). Then, the
following result is fundamental in applications.

Theorem 68. (di¤erentiation along a curve) With the above nota-
tion and hypotheses,

(2.1) (g � f)0(a) = @g

@x1
(f(a)) � f 01(a) +

@g

@x2
(f(a)) � f 02(a) + :::

:::+
@g

@xn
(f(a)) � f 0n(a):

For n = 1 we �nd again the above formula (g � f)0(a) = g0(f(a)) �
f 0(a):

Proof. To be easier we take the particular case n = 2 and we
assume that f and g are functions of class C1 on A and B respectively.
Whenever we write limit of something or the derivative of a function,
be sure that we implicitly prove that this limit or this derivative exists
(prove this slowly in what follows!).

In this case, h(x) = g(f1(x); f2(x)) for any x 2 A: So,

h0(a) = lim
x!a

h(x)� h(a)
x� a = lim

x!a

g(f1(x); f2(x))� g(f1(a); f2(a))
x� a =

(2.2) = lim
x!a

g(f1(x); f2(x))� g(f1(a); f2(x))
x� a +

lim
x!a

g(f1(a); f2(x))� g(f1(a); f2(a))
x� a :
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Let us consider the �rst limit in (2.2) and let us apply Lagrange�s
formula (see Corollary 5) for the mapping t ! g(f1(t); f2(x)) on the
interval [a; x] (or [x; a] if x < a). We get

g(f1(x); f2(x))� g(f1(a); f2(x)) =
@g

@x1
(f1(c); f2(x)) � f 01(c) � (x� a);

where c is between a and x: Here we used our chain formula for n = 1
(where?-explain!). Coming back to the �rst limit in (2.2) and using the
fact that @g

@x1
, f 01 and f2 are continuous, we get:

lim
x!a

g(f1(x); f2(x))� g(f1(a); f2(x))
x� a = lim

x!a

@g

@x1
(f1(c); f2(x)) � f 01(c) =

=
@g

@x1
(f1(a); f2(a)) � f 01(a):

We take now the second limit in (2.2) and apply Lagrange�s formula
for the mapping t! g(f1(a); f2(t)) on the same interval [a; x]: We get

g(f1(a); f2(x))� g(f1(a); f2(a)) =
@g

@x2
(f1(a); f2(s)) � f 02(s)) � (x� a);

where s is a number between a and x: Since @g

@x2
; f2 and f

0
2 are con-

tinuous (by our restrictive hypothesis in the present proof!), we obtain
that

lim
x!a

g(f1(a); f2(x))� g(f1(a); f2(a))
x� a = lim

x!a

@g

@x2
(f1(a); f2(s)) � f 02(s))

=
@g

@x2
(f1(a); f2(a)) � f 02(a));

thus our formula (2.1) is completely proved for n = 2: �

The statement of the theorem is true without these restrictions
made here, but the proof is more sophisticated.

If the curve f : R! R3 is a line which passes through the point
M0(x0; y0; z0) and having the direction of the versor

u = (cos�; cos �; cos 
)

(these cosines are usually called the directional cosines of the line), i.e.
f(t) = (x0+ t cos�; y0+ t cos �; z0+ t cos 
); then, the above derivative

(g � f)0(0) = @g

@x1
(x0; y0; z0) cos� +

@g

@x2
(x0; y0; z0)) cos �+

+
@g

@x3
(x0; y0; z0) cos 
 = hgrad g(M0);ui ;

(a scalar product!) is called the directional derivative of g at the
point M0 along the versor u:
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For instance, if u = (1; 0; 0); we get the partial derivative of g at
M0 with respect to x1; etc.

We can now immediately extend the formula (2.1) for the case of
a vector function g : B ! Rm; g = (g1; g2; :::; gm): Thus, for any �xed
j 2 f1; 2; :::;mg; one has
(2.3)

(gj �f)0(a) =
@gj
@x1

(f(a)) �f 01(a)+
@gj
@x2

(f(a)) �f 02(a)+ :::+
@gj
@xn

(f(a)) �f 0n(a):

If we use now the matrix language, formula (2.3) becomes

(2.4)

0
BBBBB@

(g1 � f)0(a)
(g2 � f)0(a)

:
:
:

(gm � f)0(a)

1
CCCCCA
=

0
BBBBBB@

@g1
@x1
(f(a)) @g1

@x2
(f(a)) : : : @g1

@xn
(f(a))

@g2
@x1
(f(a)) @g2

@x2
(f(a)) : : : @g2

@xn
(f(a))

: : : : : :
: : : : : :
: : : : : :

@gm
@x1
(f(a)) @gm

@x2
(f(a)) : : : @gm

@xn
(f(a))

1
CCCCCCA
�

0
BBBBB@

f 01(a)
f 02(a)
:
:
:

f 0n(a)

1
CCCCCA
:

Up to now our function f was a function of one variable t: Let us make
the last generalization and consider a vectorial function f of p variables
t1; t2; :::; tp de�ned on an open subset A of R

p: So we have the following

composition: A
f! B

g! Rm: We denote by h = g � f : A ! Rm and
preserve the notation x = (x1; x2; :::; xn) for a point (vector!) in R

n:
Thus,

f(t1; t2; :::; tp) = (f1(t1; t2; :::; tp); f2(t1; t2; :::; tp); :::; fn(t1; t2; :::; tp))

and

g(x1; x2; :::; xn) = (g1(x1; x2; :::; xn); :::; gm(x1; x2; :::; xn)):

Let now a be a �xed point of A; a = (a1; a2; :::; ap) and b = f(a): We
assume that f and g are di¤erentiable at a and at b respectively.

Theorem 69. (chain rule theorem) With these notation and hy-
potheses, the composed function h = g � f is di¤erentiable at a and
one has the following relation between the corresponding jacobian ma-
trices :

(2.5) Ja;g�f = Jb;g � Ja;f :
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This is the most sophisticated chain rule. Moreover, in this case, Linear
Algebra says that

(2.6) d(g � f)(a) =dg(b)�df(a);

this last composition being the composition between the corresponding
linear mappings.

Proof. Formula (2.6) is a direct consequence of formula (2.5) and
the basic result of Linear Algebra which says that there is an isomorphic
bijection between the m�n matrices and the linear mapping T : Rn !
Rm: This bijection carries the product between two matrices into the
composition of the corresponding linear mappings. Hence, it remains
us to prove formula (2.5). We shall see that this formula is a pure
generalization of formula (2.4). Indeed, let us �x i 2 f1; 2; :::; pg and
let us consider the mapping

'(i) : Ai ! B;'(i) = ('
(i)
1 ; '

(i)
2 ; :::; '

(i)
n )

de�ned by

t f(a1; a2; :::; ai�1; t; ai+1; :::; ap):

It is de�ned on the i-th projection Ai = pri(A) of A (which is again
open-why?). Let us denote h(i) = g �'(i) and let us write formula (2.4)
for it:

0
BBBBBB@

(g1 �'(i))0(ai)
(g2 �'(i))0(ai)

:
:
:

(gm �'(i))0(ai)

1
CCCCCCA
=

0
BBBBBB@

@g1
@x1
('(i)(ai))

@g1
@x2
('(i)(ai)) : : : @g1

@xn
('(i)(ai))

@g2
@x1
('(i)(ai))

@g2
@x2
('(i)(ai)) : : : @g2

@xn
('(i)(ai))

: : : : : :
: : : : : :
: : : : : :

@gm
@x1
('(i)(ai))

@gm
@x2
('(i)(ai)) : : : @gm

@xn
('(i)(ai))

1
CCCCCCA
�
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(2.7) �

0
BBBBBBBBB@

h
'
(i)
1

i0
(ai)h

'
(i)
2

i0
(ai)

:
:
:h

'
(i)
n

i0
(ai)

1
CCCCCCCCCA

:

We now see that

(gj �'(i))0(ai) =
@hj
@ti
(a)

for any j = 1; 2; :::;m and i = 1; 2; :::; p: Here h = (h1; h2; :::; hm) are
the components of the composed function h = g � f :

Another remark is that
@gj
@xk

('(i)(ai)) =
@gj
@xk

(f(a))

and
h
'
(i)
j

i0
(ai) =

@fj
@ti
(a): But, if we substitute all of these in formula

(2.7), we get exactly formula (2.5) from the statement of the theorem.
�

Remark 29. It is possible to prove the chain rule theorem, namely
the formula (2.6), in a not so long "upgrading" way. But that proof (see
[Nik], or [Pal]) is more abstract, more elaborated and not so natural.
Our proof here is not so general, but it follows the natural historical
way, from a "simpler" to a "more complicated" case.

Let us take an usual situation and let us apply formula (2.5) to it.
LetA andB be two open subsets ofR2 and let (x; y) (u(x; y); v(x; y))
be a di¤erentiable (at any point of A) vector function de�ned on A
with values in B: Let f(u; v) be a di¤erentiable function de�ned on
B with values in R. Here we also use u and v for the coordinates of
a free vector in B � R2: The only connection between u; v and the
functions of two variables u(x; y) and v(x; y) respectively, is that the
variable u and v are substituted with two functions u(x; y) and v(x; y)
respectively, in variables x and y: For instance, u = x+ y, v = xy and
f(x + y; xy): This is a new function in x and y: Here, u(x; y) = x + y
and v(x; y) = xy: This abuse of notation is still working for more then
200 years and it did not caused any damage in science. Let h(x; y) =
f(u(x; y); v(x; y)) be the composition between f and the �rst function
(x; y) ! (u(x; y); v(x; y)). This new function is also denoted by f; i.e.
the notation f(x; y) = f(u(x; y); v(x; y)) produce no confusion for an
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working mathematician (another abuse, which is not indicated to be
used by a beginner!). The function h is also di¤erentiable on A and

�
@h
@x
(a; b) @h

@y
(a; b)

�
=

�
@f

@u
(u(a; b); v(a; b)) @f

@v
(u(a; b); v(a; b))

�
�
�@u
@x
(a; b) @u

@y
(a; b)

@v
@x
(a; b) @v

@y
(a; b)

�
:

Let us normally write this formula:
(2.8)
@h

@x
(a; b) =

@f

@u
(u(a; b); v(a; b))

@u

@x
(a; b) +

@f

@v
(u(a; b); v(a; b))

@v

@x
(a; b);

@h

@y
(a; b) =

@f

@u
(u(a; b); v(a; b))

@u

@y
(a; b) +

@f

@v
(u(a; b); v(a; b))

@v

@y
(a; b);

How do we recall these useful formulas? For this, write again
h(x; y) = f(u(x; y); v(x; y)): To �nd @h

@x
; we look at the variables u

and v of f and observe where x is. If x appears in u = u(x; y); we take
the partial derivative of f w.r.t. u and multiply it by the partial deriv-
ative of u w.r.t. x: Here is a "chain": f ! u ! x: So we get @f

@u
� @u
@x
:

If x also appears in v = v(x; y), we consider the chain f ! v ! x and
obtain @f

@v
� @v
@x
: Since x appears both (if it is the case!) in u and in v;

we must superpose both "e¤ects" (add them!) and �nally obtain:

(2.9)
@h

@x
=
@f

@u
� @u
@x
+
@f

@v
� @v
@x
:

The corresponding points at which we compute these partial derivatives
are easy to be �nd. If we change x with y in (2.9) we get the second
essential formula of (2.8):

(2.10)
@h

@y
=
@f

@u
� @u
@y
+
@f

@v
� @v
@y
:

Example 14. In the Cartesian plane fO; i; jg; we consider a heat-
ing source in the origin O(0; 0): The temperature f(x; y) at the point
M(x; y) veri�es the following equation (a partial di¤erential equation
of order 1� a PDE-1):

y
@f

@x
� x@f

@y
= 0:

It says that at any point M(x; y) the "gradient" vector

gradf =

�
@f

@x
(x; y);

@f

@y
(x; y)

�
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of the temperature is perpendicular to the normal vector of the position

vector
��!
OM = xi+ yj; at the point M(x; y): Hence, gradf is colinear to��!

OM: Let us change the variables x and y with u = x and v = x2 + y2:
The new function h(u; v) is connected to f by the rule:

f(x; y) = h(x; x2 + y2):

So,

@f

@x
=
@h

@u

@u

@x
+
@h

@v

@v

@x
=
@h

@u
+ 2x

@h

@v

and
@f

@y
=
@h

@u

@u

@y
+
@h

@v

@v

@y
= 2y

@h

@v
:

Hence,

0 = y
@f

@x
� x@f

@y
= y

@h

@u
+ 2xy

@h

@v
� 2xy@h

@v
= y

@h

@u
:

Hence, whenever y 6= 0; @h
@u
= 0 is the equation in the new function

h: So h is a function of v = x2 + y2; the square of the distance up to
origin. Thus, the temperature is constant at all the points which are of
the same circle of radius r > 0: We say that the level curves (f(x; y) =
constant) of the temperature are all the concentric circles with center
at O:

We must apply the "spirit" of the formulas (2.5) or (2.10), not the
formulas themselves. For instance, let

f(x; y; z) = (sin(x2 + y2); cos(2z2); x2 + y2 + z2):

Then,

@f

@x
= (2x cos(x2 + y2); 0; 2x);

@f

@y
= (2y cos(x2 + y2); 0; 2y)

and
@f

@z
= (0;�4z sin(2z2); 2z):

If we want to compute @f
@x
(1;�1; 7) we simply put x = 1; y = �1 and

z = 7 in the expression of @f
@x
: So,

@f

@x
(1;�1; 7) = (2 cos 2; 0; 2):

Here cos 2 means the cosinus of two radians.
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Example 15. Let M(x(t); y(t); z(t)), t is time, t 2 (a; b); a � 0; be
a moving point of mass m = 5Kg on the curve

� : x = x(t); y = y(t); z = z(t):

Let

v(t) = (x0(t); y0(t); z0(t))

and

w(t) = (x00(t); y00(t); z00(t))

be the velocity and the acceleration respectively. We assume that the
kinetic energy

T =
5

2

n
[x0(t)]

2
+ [y0(t)]

2
+ [z0(t)]

2
o

does not depend on time, i.e. T 0(t) � 0: Let us use the chain rule to
make the computation in this last equality:

T 0(t) = 5 f[x0(t)] [x00(t)] + [y0(t)] [y00(t)] + [z0(t)] [z00(t)]g = 0;
i.e. the scalar (inner) product between v and w is equal to zero. In this
case, the acceleration is perpendicular on the velocity. This restriction
is very useful in physical considerations.

Definition 28. A subset K of Rn is said to be a conic subset if
for any x in K and any t 2 R; one has that tx 2 K (see Fig.7.1).

O

K is the whole  R if n = 1

KK

K
K

O

y

n = 2 a conic body, n = 3

x

Fig. 7.1

For instance,

K = Rn; K = f(x; y) 2 R2 : y = mxg;
where m is a �xed parameter (real number)g;

K = f(x; y; z) 2 R3 : x2 + y2 = z2g
are conic subsets (prove it!).



162 7. PARTIAL DERIVATIVES. DIFFERENTIABILITY.

Definition 29. Let f : K ! R, be a function de�ned on a conic
subset K � Rn with values in R and let � be a �xed real number. We
say that f is homogeneous of degree � if

(2.11) f(tx1; tx2; :::; txn) = t�f(x1; x2; :::; xn);

for any x = (x1; x2; :::; xn) in K and for any t in R+:

For instance, the distance to origin function

d(x; y; z) =
p
x2 + y2 + z2

is a homogeneous function of degree 1: Indeed,

d(tx; ty; tz) =
p
(tx)2 + (ty)2 + (tz)2 = t

p
x2 + y2 + z2 = td(x; y; z):

L. Euler introduced these functions when he studied the mechanics
of a moving point in plane. For � = 0; we simply call these functions
homogeneous. Euler discovered a very useful property for homogeneous
functions. In the following we consider a generalization of the Euler�s
result.

Theorem 70. (Euler formula for homogeneous functions) Let K
be a conic open subset in Rn and let f be a function of class C1 on K;
which is homogeneous of degree �: Then,

(2.12) x1
@f

@x1
(x) + x2

@f

@x2
(x) + :::+ xn

@f

@xn
(x) = � � f(x):

Proof. By the de�nition of a homogeneous function (De�nition
29), we may look at the formula (2.11) and di¤erentiate everything
w.r.t. t (here we use the chain rule...explain slowly this...)

x1
@f

@x1
(tx) + x2

@f

@x2
(tx) + :::+ xn

@f

@xn
(tx) = �t��1 � f(x):

We now make t = 1 in this last formula and obtain Euler formula
(2.12). �

If � = 0; i.e. if our function is homogeneous, Euler formula can be
written as

(2.13) hx; grad f(x)i = 0:
Here h; i is the (inner) scalar product in Rn: This last formula (2.13)
says that at any point x of the trajectory of a moving point in Rn;
the gradient (a generalization of the velocity for n variables!) of f is
perpendicular on the position vector x: For instance, we know that the
temperature T (x; y) in any point (x; y) of the plane R2 is the same for
all the points of an arbitrary line y = mx; where m runs freely on R:
This means (in mathematical language) that T (tx; ty) = T (x; y) for
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any (x; y) 2 R2 and any t in R+ (why?). So, the temperature is a
homogeneous function and we can write the Euler�s formula for � = 0;
i.e. hx; gradT (x)i = 0; where x = (x; y) and

gradT (x; y) =

�
@T

@x
(x; y);

@T

@y
(x; y)

�
:

Finally we get the following PDE of order 1 :

x
@T

@x
(x; y) + y

@T

@y
(x; y) = 0;

i.e. in any point the gradient of the temperature is perpendicular on
the position vector (x; y):

In exercises, one usually asks to verify Euler�s formula for a given
homogeneous function f: For instance, let us verify Euler�s formula for
f(x; y; z) = xyz + 3x3 + y3: We do not know yet if the function f
is homogeneous and, if it is so, we also do not know the homogeneity
degree of it. Let us put instead of x; y and z; tx; ty; and tz respectively:

f(tx; ty; tz) = t3(xyz + 3x3 + y3) = t3f(x; y; z):

Thus, our function is homogeneous of degree 3: So we have to verify
the following formula:

(2.14) x
@f

@x
+ y

@f

@y
+ z

@f

@z
= 3f:

Indeed, @f
@x
= yz + 9x2; @f

@y
= xz + 3y2 and @f

@z
= xy: Substituting in

(2.14), we get:

x(yz + 9x2) + y(xz + 3y2) + zxy = 3(xyz + 3x3 + y3) = 3f:

Hence, we just veri�ed Euler�s formula for our particular function.

3. Problems

1. Compute the following partial derivatives:
a)

f(x; y) =
p
x2 + y2;

@f

@x
(1; 1);

@2f

@x@y
(1; 1):

b)

f(x; y) =

q
sin2 x+ sin2 y;

@f

@x
(
�

4
; 0);

@f

@y
(
�

4
;
�

4
):

c)

f(x; y) = ln(x+ y2 � 1); @f
@x
(1; 1);

@2f

@y2
(1; 1):
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d)

f(x; y) = x exp(xy);
@2f

@x@y
(1; 0);

@2f

@x2
(1; 0);

@2f

@y2
(1; 0):

e)

f(x; y) = xln y(x > 0; y > 0);
@f

@x
(e; e);

@f

@y
(e; e);

@2f

@x@y
(e; e):

f)

f(x; y; z) = xy
z

(x > 0; y > 0); grad f(1; 1; 1):

g)

f(x; y) = arctan xy;
@3f

@y@x2
(1; 1);

@3f

@x@y2
(1; 1);

@3f

@x3
(1; 1):

h)

f(x; y) = arcsin(
x

y
);
@2f

@y@x
(1; 2):

2. Prove that the following functions verify the indicated equations:
a)

z(x; y) = xy�(x2 � y2);xy2 @z
@x
+ x2y

@z

@y
= (x2 + y2)z:

b)

z(x; y) = x�(x2 � y2); 1
x

@z

@x
+
1

y

@z

@y
=

z

y2
:

c)

u(x; y) = arctan
y

x
; �u

def
=

@2u

@x2
+
@2u

@y2
= 0:

d)

u(x; t) = �(x� at) + 	(x+ at);
@2u

@t2
� a2@

2u

@x2
= 0

(the wave equation).
e)

z(x; y) = x�(
y

x
) + 	(

y

x
);x2

@2z

@x2
+ 2xy

@2z

@x@y
+ y2

@2z

@y2
= 0:

f)

u(x; y; z) =
1p

x2 + y2 + z2
; �u

def
=

@2u

@x2
+
@2u

@y2
+
@2u

@z2
= 0:

Hint: Let us denote r =
p
x2 + y2 + z2: Then, @u

@x
= � 1

r2
� @r
@x
; etc.
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3. Show that the Euler�s formula is true for the following homoge-
neous functions:

a) f(x; y) = x+y
x�y ;

b)
f(x; y; z) =

p
x+
p
y +
p
z;

c)

f(x; y; z) =
p
x2 + y2 + z2;

d) f(x; y; z) = x
y
exp(x

z
):

4. Prove that the following function

f(x; y) =

(
xyp
x2+y2

; for (x; y) 6= (0; 0)
0; if x = 0 and y = 0

is continuous, has partial derivatives, but it is not di¤erentiable at (0; 0)

(Hint: jxyjp
x2+y2

� jyj ; so

lim
x!0;y!0

xyp
x2 + y2

= 0;
@f

@x
(0; 0) =

@f

@y
(0; 0) = 0:

If it was di¤erentiable at (0; 0) one has that

(3.1) f(h1; h2)� f(0; 0) =
@f

@x
(0; 0)h1 +

@f

@y
(0; 0)h2 + !(h1; h2);

where !(0; 0) = 0; ! is continuous at (0; 0) and

lim
x!0;y!0

!(x; y)p
x2 + y2

= 0:

But, from (3.1), one has that !(x; y) = xyp
x2+y2

and so one would have

that
lim

x!0;y!0

xy

x2 + y2
= 0:

However, this last limit does not exist at all!!).





CHAPTER 8

Taylor�s formula for several variables.

1. Higher partial derivatives. Di¤erentials of order k:

Let @f

@x
be the partial derivative with respect to x of a function

f : A ! R, where A is an open subset in R2: (x; y)  @f

@x
(x; y) is

a new function of two variables x and y: If this new function has a
partial derivative @

@x
(@f
@x
)(a; b) w.r.t. x; at a point (a; b); we denote it

by @2f

@x2
(a; b) and say " d two f over d x two at (a; b)". If the same

function (x; y)  @f

@x
(x; y) has a partial derivative @

@y
(@f
@x
)(a; b) w.r.t.

y; at a point (a; b); we write it as @2f

@y@x
(a; b) and call it the mixed

derivative of f at (a; b): What do we mean by @3f

@x@y2
(say "d three f

over d x d y two"; pay attention to the fact that 3 from @3 is equal to
the sum between 1 and 2; from @x and @y2 respectively). In general,
let f : A ! R, f(x1; x2; :::; xn) be a function of n variables, de�ned
on an open subset A of Rn; such that it is kn-times di¤erentiable with

respect to xn; i.e.
@knf

@x
kn
n

exists on A: If this new function

x = (x1; x2; :::; xn) 
@knf

@xknn
(x)

is kn�1-times di¤erentiable with respect to xn�1; the new obtained func-
tion

x 
@kn�1

@x
kn�1
n�1

�
@knf

@xknn

�
(x)

is denoted by @kn+kn�1f

@x
kn�1
n�1 @x

kn
n

: And so on. We �nally obtain the function

@kn+kn�1+:::+k1f

@x
k1
1 :::@x

kn�1
n�1 @x

kn
n

: The order of variables x1; x2; :::; xn in the denomina-

tor can be changed, but then we may obtain another new function.

For instance, if f(x; y; z) = x4y3z5; then @5f

@y2@x2@z
can be successively

computed. First of all we compute

g1 =
@f

@z
= 5x4y3z4:

167
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Then we compute

g2 =
@g1
@x

=
@2f

@x@z
= 20x3y3z4:

Now we compute

g3 =
@g2
@x

=
@3f

@x2@z
= 60x2y3z4:

Then we consider

g4 =
@g3
@y

=
@4f

@y@x2@z
= 180x2y2z4:

Finally,

g5 =
@g4
@y

=
@5f

@y2@x2@z
= 360x2yz4:

And this last one is our �nal result.
@kn+kn�1+:::+k1f

@x
k1
1 :::@x

kn�1
n�1 @x

kn
n

is said to be the partial k = kn + kn�1 + ::: + k1

derivative of f; kn-times w.r.t. xn; kn�1-times w.r.t. xn�1; :::; and k1-
times w.r.t. x1: The mapping f  

@f

@xj
is also denoted by Dxjf: This

Dxj is called the partial di¤erential operator w.r.t. the variable xj:

So, f  @2f

@xi@xj
is the composition Dxi �Dxj applied to f: In general, a

mapping de�ned on a set of functions is called not a function more, but
an operator. We also put Dxixj instead of Dxi �Dxj : Such an operator is
called a di¤erential operator. In general, the operators Dxi and Dxj do
not commute if i 6= j: This means that there are examples of functions

f and points a for which @2f

@xi@xj
(a) 6= @2f

@xj@xi
(a): Following [Pal], p. 145,

we consider

(1.1) f(x; y) =

8
<
:

xy x
2�y2
x2+y2

; if (x; y) 6= (0; 0)

0; if x = 0; y = 0:

It is not di¢cult to prove that @2f

@y@x
(0; 0) = �1; but @2f

@x@y
(0; 0) = 1 (do

it step by step and explain everything!). Hence, in this case we cannot
commute the order of derivation!

Let A be an open subset of Rn and let f : A! R be a function of
n variable de�ned on A: We say that f is of class C2 on A if all the

partial derivatives of order two, @2f

@xi@xj
(a); exist and are continuous, at

any point a of A: The following theorem gives us a su¢cient condition
under which the change of order of derivation has no in�uence on the
�nal result.
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Theorem 71. (Schwarz� Theorem) Let f : A! R be a function of
class C2 on A. Then

@2f

@xi@xj
(a) =

@2f

@xj@xi
(a)

for any point a of A and for any pair (i; j). This means that for such
a function (of class C2 on A) we can commute the order of derivation.

Proof. One can reduce everything to the two variables case (why?).
Moreover, we can take an open ball (disc)B(a; r); r > 0; a =(a1; a2); in-
cluded in A and consider f de�ned on this ball B(a; r): Let f(xn; yn)g
be a sequence of points in B(a; r) which converges to a: For a �xed
natural number n let us consider the segments [a1; xn] and [a2; yn] in
B(a; r): Let

(1.2) R(xn; yn) = f(xn; yn)� f(xn; a2)� f(a1; yn) + f(a1; a2)

and let g(t) = f(t; yn) � f(t; a2); t 2 [a1; xn]: Let us apply Lagrange�s
theorem (see Corollary 5) to function g on [a1; xn] :

g(xn)� g(a1) = g0(cn) � (xn � a1);
where cn 2 [a1; xn]: But

g(xn)� g(a1) = R(xn; yn)

and

g0(cn) =
@f

@x
(cn; yn)�

@f

@x
(cn; a2):

So,

R(xn; yn) =

�
@f

@x
(cn; yn)�

@f

@x
(cn; a2)

�
(xn � a1):

Now we apply again Lagrange�s theorem to the function

u! @f

@x
(cn; u);

where u 2 [a2; yn]: Hence,

(1.3) R(xn; yn) =
@2f

@y@x
(cn; dn) � (xn � a1)(yn � a2);

where dn 2 [a2; yn]: Now we take a new function
h(t) = f(xn; t)� f(a1; t);

t 2 [a2; yn] and observe that
R(xn; yn) = h(yn)� h(a2):

Let us apply Lagrange�s theorem to h on [a2; yn] :

(1.4) R(xn; yn) = h0(en) � (yn � a2);
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where en 2 [a2; yn]: But h0(en) = @f

@y
(xn; en) � @f

@y
(a1; en) so, applying

again Lagrange�s theorem to the function:

v ! @f

@y
(v; en);

where v 2 [a1; xn]; we get:

h0(en) =
@2f

@x@y
(sn; en) � (xn � a1);

where sn 2 [a1; xn]: Hence,

(1.5) R(xn; yn) =
@2f

@x@y
(sn; en) � (xn � a1)(yn � a2):

Comparing the formulas (1.3) and (1.5), we get:

(1.6)
@2f

@y@x
(cn; dn) =

@2f

@x@y
(sn; en):

Since the functions @2f

@y@x
and @2f

@x@y
are continuous onA, since fcng; fsng !

a1 and since fdng; feng ! a2 (why?), from formula (1.6), we get:

@2f

@y@x
(a1; a2) =

@2f

@x@y
(a1; a2):

Hence, the proof of the theorem is complete. �

In (1.1)
@2f

@y@x
(0; 0) = �1 6= @2f

@x@y
(0; 0) = 1;

because @2f

@y@x
is not continuous at (0; 0): Indeed,

@2f

@y@x
(x; y) =

8
<
:

x6�y6�9x2y4�15x4y2
(x2+y2)3

; if (x; y) 6= (0; 0)
�1; if x = 0; y = 0:

;

and this last function has no limit at (0; 0): This is because, if we take
an arbitrary m and consider (x; y) with y = mx; we get that

lim
x!0;y=mx

x6 � y6 � 9x2y4 � 15x4y2
(x2 + y2)3

=
1� 25m6

(1 +m2)3
;

which is dependent onm: So, the limit at (0; 0) is not a unique number.
It depends on the direction on which we come to (0; 0): All of these
happen because the function

x6 � y6 � 9x2y4 � 15x4y2
(x2 + y2)3
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is homogeneous of degree 0 (make clear this for yourself!)
In engineering, the case of functions of class C2 is mostly frequent,

thus we assume in the following that the order of derivation does not
matter. For instance, f(x; y) = 4x3y2 + 2x2y is of class C1 on R2

(why?). In particular, it is of class C2 because C1 means that f has
partial derivatives of any order (so these derivatives are continuous-
why?). Schwarz� theorem says that

@2f

@x@y
(a; b) =

@2f

@y@x
(a; b)

for any point (a; b) in R2: Indeed,

@2f

@x@y
(a; b) =

@

@x
(
@f

@y
)(a; b) =

@

@x
(8x3y + 2x2) j(a;b)=

= 24x2y + 4x j(a;b)= 24a2b+ 4a
and

@2f

@y@x
(a; b) =

@

@y
(
@f

@x
)(a; b) =

@

@y
(12x2y2 + 4xy) j(a;b)=

= 24x2y + 4x j(a;b)= 24a2b+ 4a:
Sometimes is more convenient to change the order of derivation.

For instance, f(x; y) = y ln(x2 + y2 + 1) is of class C1 on R2 (why?).

In order to compute @2f

@x@y
it is easier to compute @2f

@y@x
i.e. to compute

�rstly @f

@x
= 2xy

x2+y2+1
; and secondly

@

@y

�
2xy

x2 + y2 + 1

�
=
2x(x2 + y2 + 1)� 2y � 2xy

(x2 + y2 + 1)2
=
2x3 � 2xy2 + 2x
(x2 + y2 + 1)2

;

then to compute �rstly

@f

@y
= ln(x2 + y2 + 1) +

2y2

x2 + y2 + 1

and secondly

@

@x

�
ln(x2 + y2 + 1) +

2y2

x2 + y2 + 1

�

(why?-count the number of operations and their di¢culties in each
case!).

The following notion will be very helpful in the applications of the
di¤erential calculus.
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Definition 30. Let A be an open subset in Rn and let
a = (a1; a2; :::; an) be a �xed point (vector) in A: Let f be a function

of class C2 on A; f : A! R: The symmetric matrix

Hf;a = (sij) =

�
@2f

@xi@xj
(a)

�
; i = 1; 2; :::; n; j = 1; 2; :::; n

is called the Hessian matrix of f at a: The quadratic form d2f(a) de-
�ned on Rn; relative to its canonical basis

fe1 = (1; 0; 0; :::; 0); e2 = (0; 1; 0; :::; 0); :::; en = (0; 0; 0; :::0; 1)g
(see a Linear Algebra course!) with values in R,

(1.7) d2f(a)(h1; h2; :::; hn) =

nX

i=1

nX

j=1

@2f

@xi@xj
(a)hihj:

is called the second di¤erential of f at a: Its matrix is exactly the
Hessian matrix of f at a: For instance, if f is a function of 2 vari-
ables, x1 = x; x2 = y and a = (a; b); then formula (1.7) becomes

(1.8) d2f(a; b)(h1; h2) =
@2f

@x2
(a; b)h21+2

@2f

@x@y
(a; b)h1h2+

@2f

@y2
(a; b)h22:

If we introduce the projection functions dxi(h1; h2; :::; hn) = hi for i =
1; 2; :::; n; we get a more compact formula for (1.7)

(1.9) d2f(a) =

nX

i=1

nX

j=1

@2f

@xi@xj
(a)dxidxj:

Here, dxidxj is the product between the two linear mappings dxi; dxj :
Rn ! R; i.e.

dxidxj(h) = dxi(h) � dxj(h) = hihj;

where h = (h1; h2; :::; hn): For two variables we get

(1.10) d2f(a; b) =
@2f

@x2
(a; b)dx2 + 2

@2f

@x@y
(a; b)dxdy +

@2f

@y2
(a; b)dy2;

where dx2 is dx � dx and not d(x2) which is equal to 2xdx (why?). The
same for dy2::: . The analogous formula for a function of 3 variables
f(x; y; z) is

d2f(a; b; c) =
@2f

@x2
(a; b; c)dx2 +

@2f

@y2
(a; b; c)dy2 +

@2f

@z2
(a; b; c)dz2+

(1.11) +2
@2f

@x@y
(a; b; c)dxdy+2

@2f

@x@z
(a; b; c)dxdz+2

@2f

@y@z
(a; b; c)dydz:
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For instance, let us compute the second di¤erential for

f(x; y; z) = 2x3 + 3xy2z + z3

at the point (�1; 2; 3): First of all we compute
@2f

@x2
(x; y; z) =

@

@x
(
@f

@x
)(x; y; z) =

@

@x
(6x2 + 3y2z) = 12x:

So, @
2f

@x2
(�1; 2; 3) = �12: It is easy to �nd

@2f

@y2
(�1; 2; 3) = �18; @

2f

@z2
(�1; 2; 3) = 18;

@2f

@x@y
(�1; 2; 3) = 36; @

2f

@x@z
(�1; 2; 3) = 12; @

2f

@y@z
(�1; 2; 3) = �12:

Now we use (1.11) and �nd
(1.12)
d2f(�1; 2; 3) = �12dx2 � 18dy2 + 18dz2 + 72dxdy + 24dxdz � 24dydz;
i.e. we have a quadratic form in 3 variables dx; dy; dz: Clearer, this last
quadratic form is

g(X; Y; Z) = �12X2 � 18Y 2 + 18Z2 + 72XY + 24XZ � 24Y Z:
Now, if we substitute X with dx; Y with dy and Z with dz; we get
(1.12).
Let us compute the value of this last function

d2f(�1; 2; 3) : R3 ! R

at the point (2;�3;�4): Since
dx2(2;�3;�4) = 22 = 4; dy2(2;�3;�4) = (�3)2 = 9;

dz2(2;�3;�4) = (�4)2 = 16; dxdy(2;�3;�4) = 2 � (�3) = �6;
dxdz(2;�3;�4) = 2 � (�4) = �8; dydz(2;�3;�4) = (�3)(�4) = 12;
we �nally obtain

d2f(�1; 2; 3)(2;�3;�4) = �12 � 4� 18 � 9 + 18 � 16 + 72 � (�6)+

+24 � (�8)� 24 � 12 = �12 � 4 + 7 � 18 + 24(�18� 8� 12)

= �12 �4+7 �18+24 � (�38) = �12(4+76)+7 �18 = 6(�139) = �834:
Now, let us look carefully at the formulas (1.13), (1.7) and (1.9).

We introduce some symbolic operations in order to �nd a unitary and
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general formula. We called @
@xj

a di¤erential operator. By de�nition,

we multiply two such operators @
@xj

and @
@xi

by a simple composition:

@

@xj
� @
@xi

def
=

@2

@xj@xi
=

@

@xj
� @

@xi
:

For instance,
�
@

@x
� @
@y

�
(3x2 + 5xy3) =

@

@x
(
@

@y
(3x2 + 5xy3)) =

@

@x
(15xy2) = 15y2:

Moreover,

df(a; b) =
@f

@x
(a; b)dx+

@f

@y
(a; b)dy

can be written as an operator "on f" at an arbitrary point (which will
not appear)

d =
@

@x
dx+

@

@y
dy;

This is also called a di¤erential operator. How do we multiply two such
operators? �

@

@x
dx+

@

@y
dy

��
@

@z
dz +

@

@w
dw

�
=

def
=

@2

@x@z
dxdz +

@2

@y@z
dydz +

@2

@x@w
dxdw +

@2

@y@w
dydw:

This means that whenever we multiply operators we just compose
them and whenever we multiply linear mappings we just multiply them
as functions. These last are always coe¢cients of di¤erential operators.
For instance

(1.13)

�
@

@x
dx+

@

@y
dy

�2
=

@2

@x2
dx2 + 2

@2

@x@y
dxdy +

@2

@y2
dy2:

Hence,

d2f(a; b) =

�
@

@x
dx+

@

@y
dy

�2
(f)(a; b);

with this last notation. We observe that in (1.13) one has a binomial
formula of the type (a+ b)2 = a2 + 2ab+ b2 (with the above indicated
multiplication between di¤erential operators). If we multiply again by
@
@x
dx+ @

@y
dy the both sides in (1.13) we easily get

�
@

@x
dx+

@

@y
dy

�3
=

@3

@x3
dx3+3

@3

@x2@y
dx2dy+3

@3

@x@y2
dxdy2+

@3

@y3
dy3;

i.e. the analogous formula of (a+ b)3 = a3 + 3a2b+ 3ab3 + b3:
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Definition 31. (the di¤erential of order k) In general, if a func-
tion f of n variables, f : A ! R, is of class Ck on A; i.e. it has all
partial di¤erentials of the type

@kf

@xk11 @x
k2
2 :::@x

kn
n

(a)

(where k is a �xed natural number, k > 0 and k1; k2; :::; kn are natural
numbers such that k = k1 + k2 + :::+ kn and 0 � k1; k2; :::; kn � n); at
any point a of A; the k-th di¤erential of f at a is by de�nition

(1.14) dkf(a) =

�
@

@x1
dx1 +

@

@x2
dx2 + :::+

@

@xn
dxn

�k
(f)(a):

For instance, if n = 2; x1 = x, x2 = y and a =(a; b); then this last
formula becomes
(1.15)

dkf(a; b) =

�
@

@x
dx+

@

@y
dy

�k
(f)(a; b) =

kX

i=0

�
k

i

�
@kf

@xk�i@yi
(a; b)dxk�idyi;

where
�
k

i

�
= k!

i!(k�i)! is the combination of k objects taken i: The analogy

with the binomial formula

(a+ b)k =

kX

i=0

�
k

i

�
ak�ibi

is now clear.
Let us compute

d4f(1;�1) =
�
@

@x
dx+

@

@y
dy

�4
(f)(1;�1)

for f(x; y) = x5 + xy4: For k = 4 formula (1.15) becomes
�
@

@x
dx+

@

@y
dy

�4
(f)(1;�1) =

�
4

0

�
@4f

@x4
(1;�1)dx4+

�
4

1

�
@4f

@x3@y
(1;�1)dx3dy +

�
4

2

�
@4f

@x2@y2
(1;�1)dx2dy2+

�
4

3

�
@4f

@x@y3
(1;�1)dxdy3 +

�
4

4

�
@4f

@y4
(1;�1)dy4:

Now, everything reduces to the computation of the mixed partial
derivatives.

@4f

@x4
(1;�1) = 120; @4f

@x3@y
(1;�1) = 0; @4f

@x2@y2
(1;�1) = 0;



176 8. TAYLOR�S FORMULA FOR SEVERAL VARIABLES.

@4f

@x@y3
(1;�1) = �24; @4f

@x@y3
(1;�1) = �24; @

4f

@y4
(1;�1) = 24:

Hence,
�
@

@x
dx+

@

@y
dy

�4
(f)(1;�1) = 120dx4 � 96dxdy3 + 24dy4:

If we want to compute the value of this last di¤erential at (2; 3) for
instance, we obtain

120 � 24 � 96 � 2 � 33 + 24 � 34 = �1320:
Let us now compute

d2f(1; 1; 0) =

�
@

@x
dx+

@

@y
dy +

@

@z
dz

�2
(f)(1; 1; 0)

for f(x; y; z) = x2+y2+xz+yz: To be easier, let us recall the elementary
algebraic formula:

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc:

Using the above multiplicity between operators, etc., we get

d2f(1; 1; 0) =
@2f

@x2
(1; 1; 0)dx2 +

@2f

@y2
(1; 1; 0)dy2+

@2f

@z2
(1; 1; 0)dz2 + 2

@2f

@x@y
(1; 1; 0)dxdy + 2

@2f

@x@z
(1; 1; 0)dxdz+

2
@2f

@y@z
(1; 1; 0)dydz = 2dx2 + 2dy2 + 2dxdz + 2dydz:

If one wants to compute d2f(1; 1; 0)(3; 4; 5) we get

d2f(1; 1; 0)(3; 4; 5) = 2 � 32 + 2 � 42 + 2 � 3 � 5 + 2 � 4 � 5 = 120:

Since

(a1 + a2 + :::+ an)
m =

X

k1+k2+:::+kn=m;ki2N

m!

k1!k2!:::kn!
ak11 a

k2
2 :::a

kn
n ;

one has the following de�nition of the m-th di¤erential of f at a point
a 2 A :

dmf(a) =

�
@

@x1
dx1 +

@

@x2
dx2 + :::+

@

@xn
dxn

�m

=
X

k1+k2+:::+kn=m;ki2N

m!

k1!k2!:::kn!

@mf

@xk11 @x
k2
2 :::@x

kn
n

dxk11 x
k2
2 :::dx

kn
n ;
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where in these last two sums k1; k2; :::; kn take all the natural values
under the restriction k1 + k2 + :::+ kn = m:

2. Chain rules in two variables

During the mathematical modeling process of the physical phenom-
ena, usually one must �nd functions z = z(x; y) which verify an equality
of the following form (a partial di¤erential equation of order 2; i.e. a
PDE):

A(x; y)
@2z

@x2
(x; y) + 2B(x; y)

@2z

@x@y
(x; y) + C(x; y)

@2z

@y2
(x; y)

(2.1) +E

�
x; y; z(x; y);

@z

@x
(x; y);

@z

@y
(x; y)

�
= 0;

where A; B; C; E are continuous functions of the indicated free vari-
ables. Relative to E we must add that it is a continuous function
E(X; Y; Z; U; V ) of 5 free variables, where instead of X; Y; Z; U; V; we
put x; y; z(x; y); @z

@x
(x; y) and @z

@y
(x; y) respectively. In order to �nd all

the functions z(x; y) of class C2 on a �xed plane domain D; which ver-
i�es (2.1) we change the "old" variables x, y with new ones u = u(x; y)
and v = v(x; y) respectively (functions of the �rsts) such that some
of the new "coe¢cients" A;B; or C to become zero. How do we �nd
these new functions u = u(x; y) and v = v(x; y) is a problem which will
be considered in another course. Our problem here is how to write the
partial derivatives;

@2z

@x2
(x; y);

@2z

@x@y
(x; y);

@2z

@y2
(x; y);

@z

@x
(x; y);

@z

@y
(x; y)

as functions of u and v: The transition from the "old" variables to the
"new" ones u and v are realised by a "change of variables" function
F(x; y) = (u(x; y); v(x; y)) such that F is invertible and of class C1 on
its de�nition domain. Moreover, its inverse G = F�1 is also a function
(in variables u and v) of class C1 (see also the section "Change of
variables"). Let z be the composed function z �G: Hence, z = z � F;
or

z(u(x; y); v(x; y)) = z(x; y):

The chain rules formulas (2.9) and (2.10) supply us with formulas for
@z
@x
(x; y) and @z

@y
(x; y) :

(2.2)
@z

@x
(x; y) =

@z

@u
(u(x; y); v(x; y))

@u

@x
(x; y) +

@z

@v
(u(x; y); v(x; y))

@v

@x
(x; y);
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and
(2.3)
@z

@y
(x; y) =

@z

@u
(u(x; y); v(x; y))

@u

@y
(x; y) +

@z

@v
(u(x; y); v(x; y))

@v

@y
(x; y):

Let us use these formulas to �nd a similar formula for @2z
@x@y

(x; y): For

this, let us denote by g(x; y) and by h(x; y) the new functions of x and
y obtained in (2.3)

g(x; y)
def
=

@z

@u
(u(x; y); v(x; y))

and
@z

@v
(u(x; y); v(x; y))

def
= h(x; y):

Let us compute @g

@x
(x; y) and @h

@x
(x; y) by using the formula (2.2) with g

instead of z and h instead of z respectively:

@g

@x
(x; y) =

@

@u

�
@z

@u
(u(x; y); v(x; y))

�
@u

@x
(x; y)+

(2.4)
@

@v

�
@z

@u
(u(x; y); v(x; y))

�
@v

@x
(x; y) =

@2z

@u2
(u(x; y); v(x; y))

@u

@x
(x; y)+

@2z

@v@u
(u(x; y); v(x; y))

@v

@x
(x; y):

and
@h

@x
(x; y) =

@

@u

�
@z

@v
(u(x; y); v(x; y))

�
@u

@x
(x; y)+

(2.5)
@

@v

�
@z

@v
(u(x; y); v(x; y))

�
@v

@x
(x; y) =

@2z

@u@v
(u(x; y); v(x; y))

@u

@x
(x; y)+

@2z

@v2
(u(x; y); v(x; y))

@v

@x
(x; y):

Let us come back to formula (2.3) and let us di¤erentiate it (both sides)
with respect to x: We get:

@2z

@x@y
(x; y) =

@g

@x
(x; y)

@u

@y
(x; y) + g

@2u

@x@y
(x; y)+

@h

@x
(x; y)

@v

@y
(x; y) + h

@2v

@x@y
(x; y):

If we take count of the formulas (2.4) and (2.5) we �nally obtain:

(2.6)
@2z

@x@y
(x; y) =

@2z

@u2
(u(x; y); v(x; y))

@u

@x
(x; y)

@u

@y
(x; y)+
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+
@2z

@u@v
(u(x; y); v(x; y))

�
@u

@x
(x; y)

@v

@y
(x; y) +

@u

@y
(x; y)

@v

@x
(x; y)

�
+

+
@2z

@v2
(u(x; y); v(x; y))

@v

@x
(x; y)

@v

@y
(x; y)+

+
@z

@u
(u(x; y); v(x; y))

@2u

@x@y
(x; y) +

@z

@v
(u(x; y); v(x; y))

@2v

@x@y
(x; y):

We can simply rewrite this formula as:

@2z

@x@y
=
@2z

@u2
@u

@x

@u

@y
+

@2z

@u@v

�
@u

@x

@v

@y
+
@u

@y

@v

@x

�
+

+
@2z

@v2
@v

@x

@v

@y
+
@z

@u

@2u

@x@y
+
@z

@v

@2v

@x@y
:

If in this formula, we formally put x instead of y we get another useful
formula:

(2.7)
@2z

@x2
=
@2z

@u2

�
@u

@x

�2
+ 2

@2z

@u@v

@u

@x

@v

@x
+
@2z

@v2

�
@v

@x

�2
+

@z

@u

@2u

@x2
+
@z

@v

@2v

@x2
:

If here, in this last formula, we put y instead of x; we get the last useful
chain rule formula:

(2.8)
@2z

@y2
=
@2z

@u2

�
@u

@y

�2
+ 2

@2z

@u@v

@u

@y

@v

@y
+
@2z

@v2

�
@v

@y

�2
+

@z

@u

@2u

@y2
+
@z

@v

@2v

@y2
:

Example 16. (vibrating string equation) Let S be a one-dimensional
elastic wire (in�nite, homogeneous and perfect elastic) which vibrates
freely, without an exterior perturbing force. It is considered to lay on
the real line Ox: Let y � 0 be time and let z(x; y) be the de�ection of
the string at the point M of coordinate x and at the moment y: If one
write the D�Alembert equality, which makes equal the dynamic New-
tonian force and the Hook elasticity force, we get a PDE of order 2
(the vibrating string equation):

(2.9)
@2z

@y2
= a2

@2z

@x2
;

where a > 0 is a constant depending on the density and on the elasticity
modulus. In order to �nd all the functions z = z(x; y) which verify the
equality (2.9), i.e. to solve that equation, we must change the variables
x and y with new ones u = x� ay and v = x+ ay (see the Di¤erential
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Equations course). Let us use chain formulas (2.7) and (2.8) in order
to change the variables in the equation (2.9):

@2z

@x2
=
@2z

@u2
+ 2

@2z

@u@v
+
@2z

@v2
;

and
@2z

@y2
=
@2z

@u2
a2 � 2 @

2z

@u@v
a2 +

@2z

@v2
a2:

If we substitute these expressions in (2.9) we �nally get

(2.10)
@2z

@u@v
= 0:

But this last PDE of order 2 can easily be solved. From 2.10 we obtain:
@
@u

�
@z
@v

�
= 0; i.e. @z

@v
is only a function h(v): Hence,

z(u; v) =

Z
h(v)dv = f(v) + g(u)

(why?), where f and g are two arbitrary functions of class C2 on some
open real subsets. Coming back to x and y we �nally get the "general
solution" of the vibrating string equation:

z(x; y) = f(x+ ay) + g(x� ay):
Other examples in which we use higher chain rules (here "higher"
means 2 > 1!) will appear in the section "Change of variables".

3. Taylor�s formula for several variables

In Theorem 44 we obtained an approximation of a function of one
variable, of class Cm+1 on an "-neighborhood (a � "; a + ") of a �xed
point a; with a polynomial (the Taylor�s polynomial) of degree m (m is
a �xed natural number). We also estimated the error in this approxi-
mative process. We write again this classical and fundamental formula
and try to generalize it to the case of a function of n variables.

(3.1) f(x) = f(a)+
f 0(a)

1!
(x� a)+f

00(a)

2!
(x� a)2+:::+f

(n)(a)

n!
(x�a)n

+
f (n+1)(c)

(n+ 1)!
(x� a)n+1

where c is a number between x and a: Let us write again formula (3.1)
by putting h = x � a; or x = a + h and c = a + t�h; where t� 2 (0; 1)
(t� =

c�a
x�a ; why?):

(3.2)

f(a+h) = f(a)+
f 0(a)

1!
h+

f 00(a)

2!
h2+:::+

f (n)(a)

n!
hn+

f (n+1)(a+ t�h)

(n+ 1)!
hn+1:
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It is enough to generalize this formula for a scalar function of n variables
because, if f = (f1; f2; :::; fk) is a vector function with k components,
we simply write the Taylor formula for any component, separately, i.e.
we approximate componentwisely.

Let A be an open subset of Rn and let f : A! R be a function of
class Cm+1 on A: Let a = (a1; a2; :::; an) be a �xed point of A and let
V = B(a; r) be an n-dimensional open ball (see its de�nition in Chapter
6, Section 1) with centre at a and of radius r > 0 which is contained
in A (why such thing is possible?). If a point x = (x1; x2; :::; xn) is in
the ball V; the whole segment

[a;x] = fz = a+t(x� a) : t 2 [0; 1]g
is contained in V (why?-in general, a ball is a convex subset...prove
it!). A subset C of Rn is said to be convex if whenever a and b are in
C; the whole segment [a;b] is contained in C:

Theorem 72. (Taylor�s formula for n variables) With the above
notation and hypotheses, for any h = (h1; h2; :::; hn) small enough, such
that x = a+ h 2 V (khk < r), one has the following Taylor�s formula:

(3.3) f(a+ h) = f(a)+
1

1!
df(a)(h)+

1

2!
d2f(a)(h)+ :::+

1

m!
dmf(a)(h)

+
1

(m+ 1)!
dm+1f(c)(h);

where c 2 (a; a+ h); i.e. c = a+t�h for a t� 2 (0; 1):

Proof. (n = 2) Let

a = (a1; a2);x = (x1; x2);h = (h1; h2); h1 = x1 � a1; h2 = x2 � a2:
The segment [a;x] is the usual segment with ends a and x in the plane
xOy (see Fig. 8.1). Let us restrict f to the segment [a;x]: This means
that to any point a+th; t 2 [0; 1] we assign the number f(a+th): One
obtains a mapping t f(a+th); denoted here by g : [0; 1]! R,

g(t) = f(a+th) =f(a1 + th1; a2 + th2):

Let us denote by u1 and u2 the functions u1(t) = a1 + th1 and respec-
tively u2(t) = a2 + th2: So, if

u(t) = (a1 + th1; a2 + th2);

i.e. if u = (u1; u2); one has that g = f � u: Here u is a continuous one-
to-one mapping from [0; 1] onto [a;x]: Since u is of class C1 on [0; 1]
(why?), we see that g is of class Cm+1 on [0; 1]: Let us apply Mac
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Laurin�s formula (1.16) (or the general Taylor formula (3.1) with a = 0
and x = 1) for the function g :
(3.4)

g(1) = g(0) +
1

1!
g0(0) +

1

2!
g00(0) + :::+

1

m!
g(m)(0) +

1

(m+ 1)!
g(m+1)(t�);

where t� 2 (0; 1): Since g(1) = f(a+ h) and g(0) = f(a); one has only
to prove that g(k)(0) = dkf(a)(h) for any k = 1; 2; :::;m + 1: We can
use mathematical induction to prove this. Here, we prove only that
g0(0) = df(a)(h) and that g00(0) = d2f(a)(h): For this purpose we use
the chain rules formulas and the de�nition of the di¤erential of order
k: Indeed,

(3.5) g0(t) =
@f

@x1
[u1(t); u2(t)] � u01(t) +

@f

@x2
[u1(t); u2(t)] � u02(t):

Hence,

g0(0) =
@f

@x1
(a1; a2) � h1 +

@f

@x2
(a1; a2) � h2 = df(a)(h):

Let us use the formula (3.5) to compute g00(t) :

g00(t) =
@2f

@x21
[u1(t); u2(t)] � [u01(t)]2 +

@2f

@x1@x2
[u1(t); u2(t)] � u01(t) � u02(t)+

@f

@x1
[u1(t); u2(t)] � u001(t) +

@2f

@x1@x2
[u1(t); u2(t)] � u01(t) � u02(t)+

@2f

@x22
[u1(t); u2(t)] � [u02(t)]2 +

@f

@x2
[u1(t); u2(t)] � u002(t):

Since u001(t) = 0 and u
00
2(t) = 0; one has:

g00(0) =
@2f

@x21
(a) � h21 + 2

@2f

@x1@x2
(a) � h1 � h2 +

@2f

@x22
(a) � h22 = d2f(a)(h):

If we take c = a+t�h; one gets the formula (3.3) for n = 2: �
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a

c

x

g(t)

f(x)

O

O

x

t0 1

A

R

x

x

Fig 8.1

y

Let
P (x; y) = 2x2y + 3xy2 + x+ y

be a polynomial of two variables x and y: Let us write P (x; y) as a
polynomial Q(x� 1; y + 2); i.e.
P (x; y) = a00+a10(x�1)+a01(y+2)+a20(x�1)2+a11(x�1)(y+2)+

a02(y + 2)
2 + a30(x� 1)3 + a21(x� 1)2(y + 2)+

a12(x� 1)(y + 2)2 + a03(y + 2)
3:

We stop here because the "total" degree of P (x; y) is 3 = 2 + 1: We
could �nd the coe¢cients aij by elementary tricks (do it!). However,
let us use Taylor formula (3.3) with

a = (1;�2);x = (x; y); h1 = x� 1; h2 = y + 2;

etc. We have only to compute dP (a); d2P (a) and d3P (a) (why not
d4P (a)?). So,

dP (a) =
@P

@x
(a)dx+

@P

@y
(a)dy = (4xy + 3y2 + 1) j(1;�2) dx

+(2x2 + 6xy + 1) j(1;�2) dy = 5dx� 9dy
Thus,

dP (a)(h) = 5(x� 1)� 9(y + 2):
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Hence,
a00 = P (1;�2) = 7; a10 = 5; a01 = �9:

The coe¢cients a20; a11 and a02 can be computed from the expression
of 1

2!
d2P (a)(h): Namely,

@2P

@x2
(a) = (4y) j(1;�2)= �8;

@2P

@x@y
(a) = (4x+ 6y) j(1;�2)= �8

and @2P
@y2
(a) = 6x j(1;�2)= 6; i.e.
1

2!
d2P (a)(h) = �4(x� 1)2 � 8(x� 1)(y + 2) + 3(y + 2)2

and so, a20 = �4; a11 = �8 and a02 = 3: In order to �nd a30; a21; a12
and a03 one must compute

1

3!
d3f(a)(h) =

1

6

�
@3P

@x3
(a)(x� 1)3 + 3 @3P

@x2@y
(a)(x� 1)2(y + 2)

+3
@3P

@x@y2
(a)(x� 1)(y + 2)2 + @3P

@y3
(a)(y + 2)3

�

= 2(x� 1)2(y + 2) + 3(x� 1)(y + 2)2:
Thus, a30 = 0; a21 = 2; a12 = 3 and a03 = 0: Finally one has:

P (x; y) = 7 + 5(x� 1)� 9(y + 2)� 4(x� 1)2 � 8(x� 1)(y + 2)+
+3(y + 2)2 + 2(x� 1)2(y + 2) + 3(x� 1)(y + 2)2:

Theorem 73. (Lagrange�s Theorem for many variables, or the
Mean Value Theorem) Let A � Rn be an open subset of Rn; let a
be a point in A and let V = B(a; r) � A; r > 0 be a ball with centre at
a and of radius r: Let f : A! R; be a function of class C1 de�ned on
A: Then, for any x in X; there is a point c in [a;x] such that:
(3.6)

f(x)�f(a) = @f

@x1
(c)(x1�a1)+ :::+

@f

@xn
(c)(xn�an) = hgrad f(c);hi ;

i.e. the "increasing" f(x)� f(a) of f on the interval [a;x] is equal to
the scalar product between the gradient vector grad f(c) of f at a point
c of the segment [a;x]; and the the vector x� a. If x is very close to
a; then we have an "a¢ne" approximation of f(x) :

(3.7) f(x) � f(a) +
@f

@x1
(a)(x1 � a1) + :::+

@f

@xn
(a)(xn � an);

or a linear approximation of f(x)� f(a) :
(3.8)

f(x)�f(a) � @f

@x1
(a)(x1�a1)+ :::+

@f

@xn
(a)(xn�an) = hgrad f(a);hi :
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Proof. It is su¢cient to take m = 0 in the formula (3.3). �

From formula (3.7) we see that it is su¢cient to know the gradient
vector grad f(a) of a function f at a point a and the value f(a) of the
same function at a; in order to approximate the values of this functions
in a neighborhood of a: For instance, let us compute approximately
sin 46� cos 1�: For this, let us consider the function of two variables
f(x; y) = sin x cos y; the point a = (�

4
; 0) and the point x = (�

4
+

�
180
; �
180
): Then, formula (3.7) says that: sin 46� cos 1� �

p
2
2
+

p
2
2
� �
180
.

4. Problems

1. Compute df and d2f for:
a)

f(x; y) = sin(x2 + y2);

b)

f(x; y; z) =
p
x2 + y2 + z2;

c)
f(x; y) = exp(xy)

at (1; 1); �nd also df(1; 1)(0; 1) and d2f(1; 1)(0; 1):
2. Approximate �f = f(x; y) � f(x0; y0) by df(x0; y0)(�x;�y);

where �x = x� x0; �u = y � y0 and then compute:
a)

f(x; y) = xln y

at the point A(e+ 0:1; 1 + 0:2);
b)

f(x; y) =
p
x2 + y2

at A(4:001; 3:002);
c)

f(x; y) = xy

at A(1:02; 3:01):
3. Use Taylor�s formula to approximate f by the Taylor polynomial

Tn with Lagrange�s remainder:
a)

f(x; y) = ln(1 + x) + ln(1 + y)

at (0; 0); with T4;
b)

f(x; y) = xy

at (1; 1); with T3 and compute approximately (1:1)
1:2;

c)
f(x; y) = (exp x) sin y
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at (0; 0) with T2;
d)

f(x; y; z) = x3 + y3 + z3 � 3xyz
at (1; 1; 1); with T2:

4. Write

P (x; y) = 2x3 � 3x2y + 2y3 + 9x2 � 3y + 6x+ 3
as Q(x+ 1; y � 1):

5. Compute approximately (0:95)2:01; Hint: take

g(x; y) = yx

around A(2; 1) and use T2:
6. Compute d2f(0; 0; 0) for

f(x; y; z) = x2 + y3 + z4 � 2xy2 + 3yz � 5x2z2:
7. Compute d3f(0; 0)(0; 0) for

f(x; y) = cos(3x+ 2y):

8. Prove that

u(x; t) =
1

2a
p
�t
exp

�
�(x� b)

2

4a2t

�

verify the "heat equation": @u
@t
(x; t) = a2 @

2u
@x2
(x; t):

9. Use Taylor�s formula to justify the following approximations:
a)

cosx

cos y
� 1� x2 � y2

2
around (0; 0);

b)

arctan
x+ y

1 + xy
� x+ y;

around (0; 0);
c)

ln(1 + x) � ln(1 + y) � xy;

around (0; 0):
10. Find df(1;�2)(2; 3); d2f(1;�2)(2; 3) and d3f(1;�2)(2; 3) for

f(x; y) = x3 + 2x2y:



CHAPTER 9

Contractions and �xed points

1. Banach�s �xed point theorem

Let (X; d) be a metric space, i.e. a set X with a distance function
d on it. This function d associates to any pair (x; y) of elements of X
a nonnegative real number d(x; y) with the following properties:
i) d(x; y) = 0 if and only if x = y:
ii) d(x; y) = d(y; x) for any x; y in X and
iii) d(x; z) � d(x; y) + d(y; z) for any x; y; z in X (the triangle

inequality).
This triangle inequality can be generalized and one obtains the

polygon inequality:

(1.1) d(x0; xn) � d(x0; x1) + d(x1; x2) + d(x2; x3) + :::+ d(xn�1; xn):

for any �nite sequence fx0; x1; x2; :::; xng of X: It can be easily proved
if we use mathematical induction on n: For n = 1; or 2; it is clear.
Suppose n > 2 and assume that the polygon inequality is true for any
sequence of k � n elements of X: Let us prove it for a sequence of n+1
elements fx0; x1; x2; :::; xng: Thus,
(1.2) d(x0; xn�1) � d(x0; x1)+d(x1; x2)+d(x2; x3)+:::+d(xn�2; xn�1):

Now,

d(x0; xn) � d(x0; xn�1) + d(xn�1; xn) �
[d(x0; x1) + d(x1; x2) + d(x2; x3) + :::+ d(xn�2; xn�1)] + d(xn�1; xn):

and the proof of (1.1) is done.
We just met many examples of metric spaces: (R; d(x; y) = jx� yj);

(C; d(z; w) = jz � wj); (Rn; d(x;y) = kx� yk); C[a; b] = ff : [a; b] !
R; f continuousg with

d(f; g) = kf � gk = supfjf(x)� g(x)j : x 2 [a; b]g;
etc. All of these metric spaces are complete metric spaces, i.e. metric
spaces (X; d) with the property that any Cauchy sequence has a limit
in X: Not all metric spaces are complete. For instance, X = (0; 1] with
the same distance like that of R is not complete, because the sequence

187
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f 1
n
g is a Cauchy sequence in X but it has no limit in X (why?). It is

easy to see that a subset Y of a metric space (X; d) is complete relative
to the same distance like that of X if and only if it is closed in X (prove
it!).

Definition 32. (contraction) Let (X; d) be a metric space. A func-
tion f : X ! X is said to be a contraction on X if there is a number
� 2 (0; 1) such that
(1.3) d(f(x); f(y)) � �d(x; y)

for any x; y in X: This number � is called the (contraction) coe¢cient
of f:

For instance, f : [0; 1] ! [0; 1]; f(x) = 0:5x is a contraction of co-
e¢cient 0:5 (prove it!). But g : R! R, g(x) = 2x; is not a contraction
on R but,...it is a contraction on [0; 0:44] (prove it!).

Any contraction on X is a uniformly continuous function on X
(why?). The same result is true even � is an arbitrary positive real
number. In this more general case we say that f is a Lipschitzian
function on X:

Theorem 74. Let A be a convex subset of Rn (if a and b are in A;
then the whole segment [a;b] is in A). Let f : A! A be a function of
class C1 on A such that all the partial derivatives of f are bounded by
a number of the form �=n: where � 2 (0; 1): Then f is a contraction of
coe¢cient � on A:

Proof. Let us take a;b in A and let us write Taylor�s formula for
m = 0 (b = a+ h):
(1.4)

f(b)� f(a) = @f

@x1
(c) � (b1�a1)+

@f

@x2
(c) � (b2�a2)+:::+

@f

@xn
(c) � (bn�an);

where c is a point on the segment [a;b] and a = (a1; a2; :::; an); b =
(b1; b2; :::; bn):
So,

d(f(a);f(b)) = kf(b)� f(a)k �
�����

nX

i=1

@f

@xi
(c)

����� ka� bk

�
"

nX

i=1

����
@f

@xi
(c)

����

#
ka� bk � �d(a;b):

Thus, our function is a contraction. �

For instance, f(x) = 1
5
x3 is a contraction on [0; 1]; because jf 0(x)j =

3
5
jx2j � 3

5
on [0; 1]:
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Theorem 75. (Banach�s �xed point theorem) Let (X; d) be a com-
plete metric space and let f : X ! X be a contraction of coe¢cient
� 2 (0; 1): Then there is a unique element x in X such that f(x) = x
(a �xed point for f). This unique �xed point x of f on X can be ob-
tained by the following method (the successive approximates method).
Start with an arbitrary element x0 of X and recurrently construct:
x1 = f(x0); x2 = f(x1); :::; xn = f(xn�1); :::: Then, the sequence fxng
is convergent to this �xed point x: Moreover, if we approximate x by
xn; the error d(x; xn) can be evaluated by the following formula

(1.5) d(x; xn) � d(x1; x0) �
�n

1� �:

Proof. It is su¢cient to prove that fxng is a Cauchy sequence
(why?-remember thatX is complete so, xn ! x; then use the continuity
of f in the recurrence relation-take limits and �nd x = f(x)). Let us
evaluate the distance between the terms of the sequence fxng by using
the contraction formula (1.3).

d(x2; x1) = d(f(x1); f(x0)) � �d(x1; x0);

d(x3; x2) = d(f(x2); f(x1)) � �d(x2; x1) � �2d(x1; x0);

and so on, up to a general relation (use mathematical induction if you
want!):

(1.6) d(xn+1; xn) � �nd(x1; x0):

Now,
(1.7)
d(xn+p; xn) � d(xn+p; xn+p�1) + d(xn+p�1; xn+p�2) + :::+ d(xn+1; xn)

comes from applying of the polygon inequality (1.1). If in (1.7) we
introduce the formula from (1.6), we get:

d(xn+p; xn) � (�n+p�1 + �n+p�2 + :::+ �n)d(x1; x0)

(1.8) � �n(1 + �+ �2 + :::)d(x1; x0) =
�n

1� �d(x1; x0):

Since �n

1�� ! 0; independently on p; the sequence fxng is a Cauchy
sequence. Since (X; d) is complete, this sequence has a limit x = lim xn:
Making p!1 in (1.8) we get the desired estimation of the error:

d(x; xn) �
�n

1� �d(x1; x0):
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(why d(xn+p; xn)! d(x; xn) if p!1? Prove it!). Since xn = f(xn�1)
and since f is continuous, one has that x = f(x): This �xed point x is
unique. Indeed, if x = f(x) and y = f(y); then

d(x; y) = d(f(x); f(y)) � �d(x; y);

or
d(x; y) � [�� 1] � 0:

Since � 2 (0; 1) and since d(x; y) � 0; the unique possibility is that
d(x; y) = 0; i.e. x = y: �

The Banach�s �xed point theorem has many applications. For in-
stance, it can be used to �nd approximate solutions for equations and
system of equations (linear or not!).
Take for example the polynomial

P (x) = x3 � x2 + 2x� 1
and let us search for a solution of the equation P (x) = 0 in the interval
X = [0; 1]: The equation x3 � x2 + 2x� 1 = 0 can also be written as:

(1.9)
x2 + 1

x2 + 2
= x:

Let us prove that f(x) = x2+1
x2+2

is a contraction on [0; 1]: Indeed, f 0(x) =
2x

(x2+2)2
and ����

2x

(x2 + 2)2

���� �
1

2

(why?) on [0; 1]: Applying Theorem 74
we get that f is a contraction of coe¢cient � = 1

2
: So, the equation

(1.9) has a unique solution a in [0; 1]: Let us �nd it approximately with
"two exact decimals". Formula (1.5) says that:

ja� xnj �
�
1

2

�n
� 2
1
jx1 � x0j =

�
1

2

�n�1
jx1 � x0j :

Let us take x0 = 0: Then x1 = f(x0) =
1
2
: Thus,

ja� xnj �
1

2n
:

If we force with 1
2n
� 1

102
; we get n = 7: Hence, the true solution a is

approximately equal to

x7 = (f � f � f � f � f � f � f)(0) = f(f(f(f(f(f(f(0))))))):

This last number can be easily �nd by using a cyclic instruction in a
computer language, like Pascal or C++. The committed error is less
then 0:01:
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2. Problems

1. Using the Banach�s Fixed Point Theorem, �nd approximate
solutions with the error " = 10�2 for the following equations:

a) x3 + x� 5 = 0; b) x3 � sin x = 3; c) x = �

3
p
3
cosx:

2. Which of the following mappings are contractions? Study the
�xed points of them.

a) f : R!R, f(x) = x; b) f : R! R, f(x) = x7; c) f : C! C,
f(z) = z4;

d) f : C! C, f(z) = z2 + z + 1; e) f : R! R, f(x) = 1
5
x+ 3;

f) f : R! R, f(x) = 1
5
arctan x; g) f : R! R, f(x; y) = (1

7
x; 1

8
y):

3. Try to �nd approximate solutions with 2 exact decimals for the
following linear system of algebraic equations:�

100x+ 2y = 1
4x+ 200y = 5

:

Hint: Write this system as:�
0:01� 0:02y = x
0:025� 0:02x = y

:

Prove that the vector function f : R2 ! R2; de�ned by the formula,
f(x; y) = (0:01 � 0:02y; 0:025 � 0:02x) is a contraction of coe¢cient
0:02�

p
2 < 1: Then apply the Banach�s Fixed Point Theorem. At the

end, compare the approximate result with the exact one!
4. What is the particularity of the system from Problem 3? Can

we apply the Banach�s Fixed Point Theorem to all the linear systems?





CHAPTER 10

Local extremum points

1. Local extremum points for many variables

Let A be an open subset of Rn and let f : A! R be a scalar func-
tion de�ned on A: We say that a = (a1; a2; :::; an) is a local maximum
(minimum) point of f if there is a small open ball B(a; r) � A; r > 0;
such that f(x) �f(a) (f(x) �f(a)) for any x in B(a; r): Local maxima
and local minima are referred to as local extrema. A local maximum
point or a local minimum point is called an extremum point.

Remark 30. Let A be an open subset of Rn and let i be a �xed
natural number in the set f1; 2; :::; ng: Then the i-th projection pri(A)
of A is the set of all t 2 R such that there is an

x = (x1; x2; :::; xi�1; t; xi+1; :::; xn)

in A with t at the i-th position. It is also an open subset of R. Indeed,
take t0 2 pri(A) and take a in A such that a = (a1; :::; ai�1; t0; ai+1; :::; an):
Since A is open, there is a ball B(a; r) � A with r > 0: We prove that
the 1-D ball (t0 � r; t0 + r) is contained in pri(A): It is in fact the i-th
projection of B(a; r): For this, let u 2 (t0 � r; t0 + r); i.e. ju� t0j < r:
It is easy to see that

v = (a1; a2; :::; ai�1; u; ai+1; :::; an) 2 B(a; r) � A:

Thus

u = pri(v) 2 pri(A):
So pri(A) is also open in R.

Theorem 76. (Fermat�s theorem for many variables) Let A be an
open subset of Rn and let a 2A be an extremum point of a function
f : A! R, de�ned on A with values in R. If f has partial derivatives
@f

@xj
(a); j = 1; 2; :::; n at a; then all of these are zero, i.e. any extremum

point a of f is a stationary (critical) point for f: This means that a
is a root of the vector equation: grad f(x) = 0, i.e. grad f(a) = 0, or
df(a) = 0; if this last one exists.

193
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Proof. Let us �x an i in f1; 2; :::; ng and let us de�ne a function
of one variable gi : (ai � r; ai + r)! R by the formula:

gi(t) = f(a1; :::; ai�1; t; ai+1; :::; an):

Here r > 0 is the radius of a small ball B(a; r) which is contained in
A (see the above discussion). Assume that a is a local maximum point
for f:We can take r to be small enough such that f(x) � f(a) for any
x in the ball B(a;r) (why?). If u 2 (ai � r; ai + r); then

v = (a1; a2; :::; ai�1; u; ai+1; :::; an) 2 B(a; r)
so,

gi(u) = f(a1; :::; ai�1; u; ai+1; :::; an) �
� f(a1; :::; ai�1; ai; ai+1; :::; an) = gi(ai):

This means that ai is a local maximum for the function gi:We use now
Fermat�s theorem 35 for the one variable function gi at the point ai:
Thus, g0i(ai) = 0: But

g0i(t) =
@f

@xi
(a1; :::; ai�1; t; ai+1; :::; an):

Hence, g0i(ai) =
@f

@xi
(a) = 0; for any i = 1; 2; :::; n and the proof of the

theorem is complete. �

The Fermat�s theorem says that for the class of di¤erential functions
f de�ned on an open subset A of Rn; the local extremum points must
be searched between the critical points, i.e. between the points a which
are zeros for the gradient of f: For instance, for f(x; y) = x4 + y4; the
gradient of f is grad f = (4x3; 4y3): So, one has only one point (0; 0)
which makes zero this gradient. Since 0 = f(0; 0) � x4 + y4; for any
x; y 2 R, the point (0; 0) is a "global" minimum point for f: It is easy
to see that for the function h(x; y) = x2�y2; the point (0; 0) is a critical
point, but it is neither a local minimum, nor a local maximum point for
f; because, in any neighborhood of (0; 0) the function h(x; y) has pos-
itive and negative values (why?). So we need a criterion to distinguish
the local extremum points between the critical points. We recall that
a quadratic form in n variables X1; X2; :::; Xn is a homogeneous poly-
nomial function g(X1; X2; :::; Xn) of degree two of these n independent
variables,

g(X1; X2; :::; Xn) =

nX

i=1

nX

j=1

aijXiXj;

where aij = aji for all i; j 2 f1; 2; :::; ng; i.e. if its associated n � n
matrix (aij) is symmetric. Here this last matrix is considered with
entries in R. We say that the quadratic form g is positive de�nite if
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g(x1; x2; :::; xn) � 0 for any real numbers x1; x2; :::; xn and, it is zero if
and only if all of these numbers are zero. For instance,

g(X; Y ) = X2 +XY + Y 2

is positive de�nite. Assume contrary, namely we could �nd (x; y) 6=
(0; 0); say y 6= 0; such that

g(x; y) = x2 + xy + y2 < 0:

Let us divide by y2 and put t = x=y: We get t2 + t + 1 < 0; which is
false because

t2 + t+ 1 = (t+ 1=2)2 + 3=4

cannot be negative for ever (why?). Moreover, if x2 + xy + y2 = 0 and
if (x; y) 6= (0; 0); then we obtain t2 + t+ 1 = 0 for t = x=y or t = y=x:
But the equation Z2 + Z + 1 = 0 has no real root!

We say that the quadratic form g is negative de�nite if

g(x1; x2; :::; xn) � 0
for any real numbers x1; x2; :::; xn and, it is zero if and only if all of
these numbers are zero. For instance,

g(X; Y ) = �X2 �XY � Y 2

is negative de�nite (prove it!). If a quadratic form is negative de�nite
or positive de�nite, we say that it is de�nite. If it is neither positive
de�nite, nor negative de�nite, we say that it is nonde�nite. For in-
stance, g(X; Y ) = X2 is a quadratic form which is nonde�nite because,
for x = 0 and any y 6= 0; it is zero! A basic result in the theory of
quadratic forms (see any serious course in Linear Algebra!) gives us a
criterion which says when a quadratic form is positive de�nite, negative
de�nite, or nonde�nite. The point is to consider the principal minors

�1 = a11;�2 =

����
a11 a12
a21 a22

���� ; :::;�n =

����������

a11 a12 : : a1n
a21 a22 : : a2n
: :
: :
an1 an2 : : ann

����������

;

of the matrix (aij):

Theorem 77. (Sylvester�s criterion) A quadratic form

g(X1; X2; :::; Xn) =
nX

i=1

nX

j=1

aijXiXj

is positive de�nite if and only if

�1 > 0;�2 > 0;�3 > 0; :::;�n > 0:
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It is negative de�nite if and only if

�1 < 0;�2 > 0;�3 < 0;�4 > 0; :::; (�1)n�n > 0:

If none of these both conditions are ful�lled, the quadratic form g is
nonde�nite.

For instance,

g(x; y; z) = x2 + y2 � z2

is nonde�nite because �1 = 1 > 0; �2 = 1 > 0 and �3 = �1 < 0:
Now, we are ready to prove our above announced criterion for dis-

tinguishing the local extremum points between all the critical points.

Theorem 78. (The Decision Theorem) Let f : A ! R be a func-
tion of class C2 (it has continuous partial derivatives of second order
on A) de�ned on an open subset A of Rn: Let a 2 A be a critical point
of f and let

g(h1; h2; :::; hn) = d2f(a)(h1; h2; :::; hn)

be the second di¤erential of f at the point a: It is in fact the quadratic
form

g(h1; h2; :::; hn) =

nX

i=1

nX

j=1

@2f

@xi@xj
(a)hihj:

i) Assume that d2f(a) is not identical to zero and that d2f(a) is a
negative de�nite quadratic form. Then a is a local maximum point for
f:

ii) Assume that d2f(a) is not identical to zero and that d2f(a) is a
positive de�nite quadratic form. Then a is a local minimum point for
f:

Let k be the �rst natural number such that f is of class Ck on A
and dkf(a) is not identical to zero.

iii) If k is even and if

dkf(a)(h1; h2; :::; hn) < 0

for any h1; h2; :::; hn not all zero, then a is local maximum point for f:
iv) If k is even and if

dkf(a)(h1; h2; :::; hn) > 0

for any h1; h2; :::; hn not all zero, then a is local minimum point for f:
If k is odd and dkf(a) 6= 0; then a is not a local extremum point.
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Proof. Let us denote by h the variable vector (h1; h2; :::; hn) and
let us write Taylor�s formula (3.3) for m = 1. We get:

(1.1) f(a+ h)�f(a) =1
2
d2f(ch)(h);

where ch is a point on the segment [a; a+ h] and khk < r; with r > 0; a
su¢ciently small real number such that B(a; r) � A and: Here df(a) =
0 because a was considered to be a critical point. Since d2f(x) is

continuous as a function of x (d2f(x)(h) =
Pn

i=1

Pn

j=1
@2f

@xi@xj
(x)hihj)

and the second order derivatives are continuous by our hypothesis!),
eventually in a smaller ball B(a; r0) with centre at a and of radius
r0 � r; one has that the sign of d2f(x)(h); x 2 B(a; r0); is the same
like the sign of d2f(a)(h) (why?). Hence, the sign of the di¤erence
f(a+ h)�f(a) is the same with the sign of d2f(a)(h) for khk < r0:
Now, the statements of the theorem becomes very clear. Indeed, let
us consider for instance that the quadratic form d2f(a) is negative
de�nite, i.e. d2f(a)(h) < 0 for any h 6= 0: Then d2f(x)(h) <0 for any
x in a small ball B(a; r0) like above and for any h 6= 0: So, in (1.1), if
we take h such that khk < r0; i.e. x = a+ h 2 B(a; r0); we get that
f(x) � f(a) for any x in B(a; r0); i.e. a is a local maximum point for
f: To prove ii) we proceed in the same way (do it!).

To prove iii) and iv) we use the Taylor formula:

f(a+ h)�f(a) = 1
k!
dkf(ch)(h)

and the fact that a homogenous polynomial P (X1; X2; :::; Xn) of odd
degree k can NEVER have a constant sign in a neighborhood of 0: If k
is even and if dkf(a)(h) < 0 for any nonzero h; there is a whole small
ball B(a; ") on which dkf(x)(h) < 0 for any nonzero h: So, on such a
ball, f(a+ h)�f(a) < 0; i.e. a is a local maximum point for f; etc. �
Let us apply this theorem to the following problem. Let

f(x; y) = x4 + y4 � 4xy; f : R2 ! R:

Let us �nd all the local extrema for f: First of all we �nd the critical
points: @f

@x
= 4x3�4y = 0 and @f

@y
= 4y3�4x = 0 imply x9�x = 0: So we

�nd the following critical points: M1(0; 0); M2(1; 1) and M3(�1;�1):
In order to apply Theorem 78 we need to compute the Hessian matrix
of f; i.e. the matrix of the quadratic form d2f; at every of the three
critical points.

A =

 
@2f

@x2
@2f

@x@y
@2f

@x@y

@2f

@y2

!
=

�
12x2 �4
�4 12y2

�
:
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At M1 the matrix is �
0 �4
�4 0

�
:

Since �1 = 0; from Theorem 78 we obtain that M1 is not a local
extremum for f: At M2 and M3 the Hessian matrix is�

12 �4
�4 12

�
:

So, �1 = 12 > 0 and �2 = 144 � 16 = 128 > 0: Thus, both M2 and
M3 are local minimum points.

Example 17. (regression line) In the Cartesian xOy plane we con-
sider n distinct points M1(x1; y1); M2(x2; y2); :::;Mn(xn; yn):We search
for the "closest" line y = ax + b (the regression line) with respect to
this set of points. Here, the "distance" from the set fMig up to the line
y = ax+ b is the "square" distance distance:

(1.2) SD(a; b) =

vuut
nX

i=1

[yi � (axi + b)]2:

The "closest" line y = ax + b is that one for which the nonnegative
function SD(a; b) is minimum. Thus, we must �nd the local minimum
points for the two variable function SD(a; b): Let us �nd the critical
points by solving the 2� 2 system:

(1.3)

�
@SD
@a

= 2
Pn

i=1�xi(yi � axi � b) = 0
@SD
@b
= 2

Pn

i=1�(yi � axi � b) = 0
:

Let us write this system in the canonical way

(1.4)

�
(
P
x2i ) a+ (

P
xi) b =

P
xiyi

(
P
xi) a+ nb =

P
yi

:

If not all the points fMig are on the same line (in this last case
the regression line is obvious the line on which these points are!), the
determinant of this system cannot be zero (use the Cauchy-Schwarz
inequality from Linear Algebra, the equality special case!). So we have
a unique solution (a0; b0) of this system. Let us prove that this point
realize a minimum for the square distance function SD(a; b): Indeed,
the Hessian matrix of f is

�
2
P
x2i 2

P
xi

2
P
xi 2n

�
:

In this case, �1 = 2
P
x2i > 0 (otherwise all the points Mi would be

on the Oy-axis) and �2 = 4
�
n
P
x2i � (

P
xi)

2� : In order to prove that
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�2 is greater than zero we consider in R
n the vectors 1 = (1; 1; :::; 1),

x = (x1; x2; :::; xn) and write the inequality Cauchy-Schwarz for them:
jh1;xij � k1k � kxk or (by squaring) (Pxi)

2 � n
P
x2i : We know that

equality appears if and only if the two vectors are collinear, i.e. if and
only if x1 = x2 = ::: = xn: But this last case appears only if the points
fMig are on a vertical line and we just assumed that fMig are not
collinear. Hence, �2 > 0 and the point (a0; b0) is a local (in fact a
global-why?) minimum for the square distance function SD:

The method described above is said to be the least squares method
(LSM). It can be generalized to other classes of curves or surfaces.

Let us apply the LSM for the set of points M1(�1; 1); M2(0; 0);
M3(1; 2) and M4(2; 3): To solve the system (1.4) we must computeP
x2i = 6;

P
xi = 2;

P
xiyi = 7 and

P
yi = 6: Then the system

becomes: �
6a+ 2b = 7
2a+ 4b = 6

:

We get a = 4=5 and b = 11=10: Hence, the regression line is y = 4
5
x+ 11

10
:

2. Problems

1. Find the local extrema for:
a)

f(x; y; z) = x2 + y2 + z2 � xy + x� 2z;
b)

f(x; y) = x3y2(6� x� y); x > 0; y > 0;
c)

f(x; y) = (x� 2)2 + (y + 7)2

(try directly, without the above algorithm!);
d)

f(x; y) = xy(2� x� y);
e)

f(x; y) = ln(1� x2 � y2);
f)

f(x; y) = x3 + y3 � 3xy;
g)

f(x; y) = x4 + y4 � 2x2 + 4xy � 2y2;
h)

f(x; y; z) = xyz(4a� x� y � z);
a; x; y and z are not zero.
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2. Find �; �; 
 such that

f(x; y) = 2x2 + 2y2 � 3xy + �x+ �y + 


has a minimum equal to zero in A(2;�1):
3. A price function is of the form

f(x; y) = x2 + xy + y2 � 3ax� 3by;
where a; b are constant numbers. Find a and b such that the minimum
of f be the biggest possible.

4. Study the local extrema for f(x; y) = x4 + y4 � x2:



CHAPTER 11

Implicitly de�ned functions

1. Local Inversion Theorem

Let a be a point in Rn: By a (open) neighborhood A of a we mean
any open subset A of Rn which contains the point a: So, if A is a
neighborhood of a, then there is an open ball B(a;r); centered at a
and of radius r > 0 which is contained in A:

Definition 33. Let A and B be two open subsets of Rn: A vector
function f : A! B is said to be a di¤eomorphism between A and B if:
i) f is a bijection; ii) f is of class C1 on A and iii) f�1 : B ! A is of
class C1 on B:

For instance, fa : R! R, fa(x) = x+a is a di¤eomorphism because
its inverse g(x) = x�a is of class C1 on R: But the mapping f : R! R,
f(x) = x5 is not a di¤eomorphism because its inverse g(x) = 5

p
x is not

di¤erentiable at x = 0 (why?).

Remark 31. It is easy to see that the composition between two
di¤eomorphisms is also a di¤eomorphism (prove it!).

Theorem 79. Let f : A ! B be a di¤eomorphism and let a be a
point in A: Then the linear mapping df(a) : Rn ! Rn is an isomor-
phism of real vector spaces. In particular, the Jacobi matrix Ja;f of f at
a is invertible and its determinant has a constant sign in a neighborhood
of a: This means that there is an open ball B(a;r); r > 0; contained in
A; such that det Jx;f > 0 (or det Jx;f < 0) for any x 2 B(a;r): In fact,
the sign of det Jx;f is the same with the sign of det Ja;f for any x in
B(a;r):

Proof. Let g : B ! A be the inverse of f and let b = f(a): Then
g � f = 1A; the identity mapping de�ned on A: Now, Theorem 69 says
that Jb;g �Ja;f = 1n�n, the n�n identity matrix. Hence, the Jacobi ma-
trix Ja;f is invertible, i.e. df(a) is an isomorphism of real vector spaces
(see the connections between the linear mappings and their correspond-
ing matrices, w.r.t. a �xed basis in Rn). Moreover, det Ja;f cannot be
zero (why?), say positive, for instance. Since f is a function of class C1

on A; all the partial derivatives which appear as entries in the matrix

201
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of Jx;f are continuous. Thus, the mapping x det Jx;f (denoted here
by T ) is a continuous mapping on A; particularly at a: Since T (a) > 0;
we state that there is at least one small positive real number r > 0
such that for any x in B(a; r) we have T (x) > 0: Indeed, otherwise, we
could construct a sequence fxmg of elements in A which is convergent
to a and for which T (xm) � 0, m = 1; 2; :::: The continuity of T would
imply that T (a) � 0; a contradiction! Hence, there is such a small ball
B(a; r); r > 0 on which T (x) is positive and the proof is complete. �

Thus, locally, around a �xed point a; the di¤erential df(x) is in-
vertible. We know that the increment f(x)� f(a) of the function f at
a can be well approximated by df(a)(x� a) (see Taylor�s formula for
many variables). A natural question arises: " Is f itself invertible in a
neighborhood of a?" If the function f describes a physical phenomenon,
this means that this phenomenon can be reversible whenever we be-
come closer and closer to the point a and, this is very important to be
known in the engineering practice. The following result is fundamental
in all pure and applied mathematics. It is a reverse result relative to
the above theorem

Theorem 80. (Local Inversion Theorem) Let A be an open subset
of Rn and let f : A ! Rn be a function of class C1 on A: Let a be a
point in A such that det Ja;f 6= 0: Then there is a neighborhood U of a,
U � A; such that the restriction of f to U; f jU : U ! V = f(U); is
a di¤eomorphism. In particular, det Jx;f 6= 0 on U and if g : V ! U

is the local inverse of f (g =(f jU)
�1), then det Jf(x);g =

1
det Jx;f

and

Jf(x);g = (Jx;f )
�1 :

Proof. (only for n = 1: See a complete proof in Section 7 of this
chapter) Let f = f and a = a 2 A � R be the usual notation in this
restricted case. Now det Ja;f = f 0(a) (why?) and the hypotheses says
that f 0(a) is not zero, say that f 0(a) > 0: Since f 0 is continuous (f is of
class C1 on A), like in the proof of the above theorem, we can conclude
that there is an open ball U = B(a; r) = (a� r; a+ r); r > 0; on which
f 0 is positive, i.e. f 0(x) > 0 for any x in U: This means that on this U
our function f is strictly increasing. So, the restriction of f to U has an
inverse g : V = f(U)! U: Since f is continuous and strictly increasing,
one can easily prove that f�1 = g is continuous on V (prove it! or �nd
by yourself a previous result from which this statement immediately
comes!). We now prove that this function g(y) = x; where y = f(x);
is di¤erentiable on V: Indeed, let b = f(a) be a point in V and let
fyn = f(xn)g be a convergent sequence to b: Then fxn = g(yn)g tends
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to a (because of the continuity of g) and

lim
yn!b

g(yn)� g(b)
yn � b

= lim
xn!a

xn � a
f(xn)� f(a)

=
1

f 0(a)
:

Thus, g is di¤erentiable at b and g0(b) = 1
f 0(a)

: �

Example 18. (Polar coordinates) Let M(x; y) be a point in the

Cartesian plane fO; i; jg and let � =
p
x2 + y2be the distance from

M up to the origin O: Let � be the unique angle in [0; 2�] such that
x = � cos � and y = � sin � (prove that such an angle exists and that
it is unique!-see Fig.10.1). Let us consider A = (0;1) � (0; 2�) � R2
and B = R2 n f[0;1)� f0gg in the same R2: Let f : A! B; f(�; �) =
(� cos �; � sin �): It is easy to see that det J(�;�);f = � 6= 0: It it easy
to prove that this f is a di¤eomorphism. The analytical expression of
its inverse f�1 is not so simple (why?-�nd it!). The new "coordinates"
(�; �) are called the polar coordinates of M: For instance, the Cartesian
equation of the circle x2 + y2 = R2 may be simply written in polar
coordinates like � = R!

y

O
x

y

x

O

M(x,y)

ρ

Fig. 10.1

Definition 34. (regular transformations) Let A be an open subset
of Rn and let f : A! Rn be a mapping de�ned on A with values in Rn:
We say that f is a regular transformation at the point a of A if there
is a neighborhood U of a, U � A; such that the restriction of f to U
give rise to a di¤eomorphism f jU : U ! V = f(U): If f is regular at
any point of A; we say that f is a regular transformation on A or that
f is a local di¤eomorphism on A:

In particular, for a local di¤eomorphism f ; one has that det Ja;f 6= 0
on A and, if in addition A is connected, then det Ja;f has a constant sign
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on A (why?). For instance, the polar coordinates transformation (see
Example 18) is a regular transformation (prove it!). The composition
between two regular transformations is again a regular transformation.
Such transformations are "good" for engineers. They are locally su¢-
ciently "smooth". This means that they do not produce "breaking" or
"noncontinuous (broken) velocities", or "corners".

Remark 32. The local inversion theorem applied to the regular
transformations gives rise to some basic properties of these last ones.
For instance, a regular transformation f : Rn ! Rn carries an open
subset A of Rn into the open subset f(A) (why?). If A is a domain,
i.e. if A is an open and a connected subset of Rn; then f(A) is also
a domain of Rn (why?). Moreover, the Jacobian det Jx;f has the same
sign on A; if A is a domain (try to prove it!).

2. Implicit functions

What is the di¤erence between the curves: 1) C1 = f(x; y) 2 R2 :
y =
p
1� x2g and 2) C2 = f(x; y) : x2+y2 = 1; y � 0g? They represent

the same object, the half of the circle of radius 1; with centre at O;
which is above the Ox-axis, but... the representations are distinct. In
the �rst case we have an "explicit" representation, i.e. we can write
y = f(x); this means that we can write one variable as a known function
of the other one. In the second case we have to compute y as a function
of x from the "implicit" relation x2 + y2 = 1: In our case this can be
done, but in other cases such an explicit computation cannot be done.
For instance, it is very di¢cult to express y as a function of x if

(�) x3 + 2y3 � 3xy = 0:

But, if we knew that such an expression y = f(x) exists (theoretically)
in a neighborhood of a point on the curve, say (1; 1); we can compute
the "velocity" f 0(1); the "acceleration" f 00(1); f 000(1); etc. Practically,
we proceed as follows. Let us write again the implicit relation (�) with
f(x) instead of y :

x3 + 2f(x)3 � 3xf(x) = 0

and let us di¤erentiate it with respect to x :

(��) 3x2 + 6f(x)2f 0(x)� 3f(x)� 3xf 0(x) = 0:

We see that always (does not matter the implicit relation is!) the �rst
derivative f 0(x) appears to power 1; i.e. it can be "linearly" computed
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from (��) :

(2.1) f 0(x) =
f(x)� x2
2f(x)2 � x:

If one put x = 1 in (2.1) one obtains f 0(1) = 0: If we di¤erentiate
again formula (2.1) with respect to x; we get

f 00(x) =
�2f(x)2f 0(x)� 4xf(x)2 � xf 0(x) + 4x2f(x)f 0(x) + f(x) + x2

[2f(x)2 � x]2
:

If here we substitute f 0(x) with its expression from (2.1), we get the
expression of f 00(x) only as an explicit function of x and of f(x): Let
us put now x = 1 and we obtain f 00(1); etc.

In our above discussion we supposed that our equation can be
uniquely solved with respect to y: But this is not always true. For
instance, if x2 + y2 = 1; then y(x) = �

p
1� x2; so that in any neigh-

borhood of (1; 0) we cannot �nd a UNIQUE function y = y(x) such
that x2 + y(x)2 = 1: Hence, we cannot compute y0(1); y00(1); etc. This
is why we need a mathematical result to precisely say when we have or
not such a unique "implicit" function.

Theorem 81. ( (1 $ 1) Implicit Function Theorem) Let A be an
open subset of R2 and let F : A ! R be a function of two variables
which veri�es the following properties at a �xed point (a; b) of A :
i) F is a function of class C1 on A:
ii) F (a; b) = 0; i.e. (a; b) is a solution of the equation F (x; y) = 0:
iii) @F

@y
(a; b) 6= 0:

Then there is a neighborhood U of a; a neighborhood V of b with
U � V � A and a unique function f : U ! V such that:

1) F (x; f(x)) = 0 for all x in U:
2) f(a) = b:
3) f is of class C1 on U and

f 0(x) = �
@F
@x
(x; f(x))

@F
@y
(x; f(x))

for all x in U:

Proof. We construct an auxiliary function

� =('1; '2) : A! R2;�(x; y) = (x; F (x; y))

for all (x; y) in A: Thus, '1(x; y) = x and '2(x; y) = F (x; y):We are to
apply the Local Inversion Theorem to this function �: Let us compute
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the Jacobi matrix of � at (a; b) :

J(a;b);� =

�
1 0

@F
@x
(a; b) @F

@y
(a; b)

�
:

Since �(a; b) = (a; 0) and since det J(a;b);� =
@F
@y
(a; b) 6= 0; Local In-

version Theorem 80 says that there is an open neighborhood U � V of
(a; b) and an open neighborhood U �W of (a; 0) (why can we take the
same U?) such that the restriction � jU�V : U � V ! U �W of � to
U � V is a di¤eomorphism. Let 	 = ( 1;  2) : U �W ! U � V the
inverse of this di¤eomorphism. Let us de�ne f(x) =  2(x; 0) for any x
in U: It is clear that f : U ! V is of class C1 on U; f(a) = b and for
any x of U we have

(x; 0) = �[	(x; 0)] = �[ 1(x; 0);  2(x; 0)]

= �[x; f(x)] = (x; F (x; f(x)));

i.e. F (x; f(x)) = 0; for any x in U: The function f : U ! V is of
class C1 on U because  2(X;Y ) has continuous partial derivative with
respect to X at any point of the form (x; 0) for any x in U: Let us
di¤erentiate totally with respect to x (this means that x is considered
not only like "the �rst" partial free variable of F (x; y); but even as an
implicit hidden variable in y = f(x)) the relation F (x; f(x)) = 0 :

0 =
@F

@x
(x; f(x)) +

@F

@y
(x; f(x)) � f 0(x);

thus

f 0(x) = �
@F
@x
(x; f(x))

@F
@y
(x; f(x))

;

for any x in U: Since det J(x;y);� 6= 0 on U � V (why?) we get from

J(x;y);� =

�
1 0

@F
@x
(x; y) @F

@y
(x; y)

�

that @F
@y
(x; f(x)) 6= 0 for any x in U:

If g was another function de�ned on an open neighborhood U1 of a;
which veri�es the conditions 1), 2) and 3) then, on the neighborhood
U2 = U \ U1 we would have

 2(x; F (x; g(x)) = g(x)

for any x in U2; or  2(x; 0) = g(x) = f(x) for any x in U2: Hence, the
uniqueness reefers to another smaller neighborhood of U on which f
and g are equal. In some conditions, this uniqueness can be extended
to the whole initial U or even to the whole prx(A); the projection of A
on the Ox-axis. �
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Let us consider again the implicit equation

x3 + 2y3 � 3xy = 0
and let us study it around the solution (1; 1): Since @F

@y
(1; 1) = 3 6= 0;

the (1-1) Implicit Function Theorem says that there is a neighborhood
U of x = 1, a neighborhood V of y = 1 and a function f : U ! V;
of class C1 on U; such that the points f(x; f(x)) : x 2 Ug are on the
plane curve x3 + 2y3 � 3xy = 0; i.e. x3 + 2f(x)3 � 3xf(x) = 0 for
any x in U: Now, if we are sure on the existence of such a f; we can
use di¤erent approximation methods to compute it (approximately!).
The worst situation is when the conditions of the Implicit Function
Theorem fail and we try to compute y = f(x) approximately! Usually,
in this last case one has more then one function y = f(x) which ver-
ify our equation and during our approximate process we "jump" from
one "branch" to another one, the obtained values for "f(x)" having
a chaotic behavior. For instance, around the point (1; 0); the implicit
solution of the equation x2+y2 = 1 with respect to y has two branches:
y =
p
1� x2 and y = �

p
1� x2: This is because @F

@y
(1; 0) = 0 and the

Implicit Function Theorem fails around the point (1; 0):
There are two directions for generalizations of this basic theorem.

One reefers to increase the number of variables and the other to consider
vector �elds relations, i.e. a system of implicit equations. We do not
prove these generalizations because these proofs do not contain new
ideas and the "many" variables notation are too sophisticated.

Theorem 82. ((n $ 1) Implicit Function Theorem) Let A be an
open subset of Rn+1; let (a; b) = (a1; a2; :::; an; b) be a point of A and let
F : A ! R, F (x1; x2; :::; xn; y ) be a function of n + 1 variables which
veri�es the following conditions:

i) F is of class C1 on A; i.e. it has continuous partial derivatives
with respect to each of its n+ 1 variable.
ii) F (a; b) = 0:
iii) @F

@y
(a; b) 6= 0:

Then there is a neighborhood U of a, a neighborhood V of b such
that U � V � A and a unique function f : U ! V such that:
1) F [x;f(x)] = 0 for all x in U:
2) f(a) = b:
3) f is of class C1 on U and

@f

@xi
(x) = �

@F
@xi
(x; f(x))

@F
@y
(x; f(x))

;

for any x in U:
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For a proof see [FS]. Let us take the following equation:

2x3 + y3 + 2z3 � 5xyz = 0

and its solution M(1; 1; 1) (prove this!). Since @F
@z
(1; 1; 1) = 1 6= 0;

one can apply the last theorem and can write z = z(x; y) around the

point (1; 1): Let us compute @2z
@x@y

(1; 1): The most practical way is to

put z = z(x; y) into our equation:

2x3 + y3 + 2z(x; y)3 � 5xyz(x; y) = 0

and let us di¤erentiate this with respect to x and to y :

6x2 + 6z(x; y)2
@z

@x
(x; y)� 5yz(x; y)� 5xy @z

@x
(x; y) = 0;

3y2 + 6z(x; y)2
@z

@y
(x; y)� 5xz(x; y)� 5xy@z

@y
(x; y) = 0:

From these equations we compute

(2.2)
@z

@x
(x; y) =

6x2 � 5yz
5xy � 6z2 ;

@z

@y
(x; y) =

3y2 � 5xz
5xy � 6z2 :

Now,

(2.3)
@2z

@x@y
=

@

@x

�
3y2 � 5xz(x; y)
5xy � 6z(x; y)2

�
=

(�5z � 5x @z
@x
)(5xy � 6z2)� (3y2 � 5xz)(5y � 12z @z

@x
)

(5xy � 6z2)2 :

We need to compute @z
@x
(1; 1); so we must use formula (2.2) and �nd

@z
@x
(1; 1) = �1 (because z(1; 1) = 1): Come back to formula (2.3) and

�nd @2z
@x@y

(1; 1) = 34:
We consider now many relations, i.e. instead of the scalar function

F we take a vector function F = (F1; F2; :::; Fm) : A! Rm; where A is
an open subset in Rn+m:

Theorem 83. Let A be an open subset of Rn+m and let

(a;b) =(a1; a2; :::; an; b1; b2; :::; bm)

be a point in A: Let F = (F1; F2; :::; Fm) : A! Rm be a function which
veri�es the following conditions:

i) F is a function of class C1 on A:
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ii) F(a;b) = 0; i.e.
8
>>>><
>>>>:

F1(a1; a2; :::an; b1; b2; :::; bm) = 0
:
:
:

Fm(a1; a2; :::an; b1; b2; :::; bm) = 0

:

iii) For F(x;y) = F(x1; x2; :::; xn; y1; y2; :::; ym); we de�ne the Jaco-
bian matrix relative to y = (y1; y2; :::; ym) only, as follows:

Jy;F(x;y) =

0
BBBB@

@F1
@y1
(x;y) : : : @F1

@ym
(x;y)

: : : : :
: : : : :
: : : : :

@Fm
@y1
(x;y) : : : @Fm

@ym
(x;y)

1
CCCCA

The condition is that det Jy;F(a;b) 6=0: This last determinant can be
suggestively denoted by

det Jy;F(a;b) =
D(F1; F2; :::; Fm)

D(y1; y2; :::; ym)
(a;b):

Then there is a neighborhood U = U1 � U2 � ::: � Un of a =
(a1; a2; :::; an); a neighborhood V = V1�V2�:::�Vm of b = (b1; b2; :::; bm),
such that U � V � A and a unique function f = (f1; f2; :::; fm);
fi : U ! Vi; i = 1; 2; :::;m; with the following properties:

1) F(x; f(x)) = 0 for any x in U:
2) f(a) = b:
3) f is of class C1 on U and

(2.4)
@fi
@xj

(x) = �
D(F1;F2;:::;Fm)

D(y1;y2;:::;yj�1;xj ;yj+1;:::;ym)
(x; f(x))

D(F1;F2;:::;Fm)
D(y1;y2;:::;ym)

(x; f(x))
:

It is not necessarily to memorize this last cumbersome formula as
we can see in the following example.

Let (C) : x2 + y2 � z2 = 0 be a conic surface and let (E) : x2 +
2y2+3z2�4 = 0 be an ellipsoid. Let 
 = (C)\ (E) be the intersection
curve of them. We see that the point M(1; 0; 1) is on this curve. The
question is if we can �nd a parametrization of the form


 :

8
<
:

x = x(y)
y

z = z(y)
;

i.e. if we can use y as a parameter for this curve in a neighborhood
of M: This is equivalent to see if the following system of the implicit



210 11. IMPLICITLY DEFINED FUNCTIONS

functions x = x(y) and z = z(y) can be solved around M :

(2.5)

�
F1(y;x; z) = x2 + y2 � z2 = 0;

F2(y;x; z) = x2 + 2y2 + 3z2 � 4 = 0:

Since all our functions are elementary ones, we need only to check the
condition iii) of the theorem:

D(F1; F2)

D(x; z)
(1; 0; 1) =

����
@F1
@x
(1; 0; 1) @F1

@z
(1; 0; 1)

@F2
@x
(1; 0; 1) @F2

@z
(1; 0; 1)

���� = 16 6= 0:

So, x and z can be seen like functions of y in a neighborhood of M:
Let us compute the "velocity" and the "acceleration" at M , along the
curve 
: For this, it is not necessarily to use the formula (2.4). Namely,
let us put in (2.5) instead of x; x(y) and instead of z, z(y) :

�
x(y)2 + y2 � z(y)2 = 0;

x(y)2 + 2y2 + 3z(y)2 � 4 = 0:

Let us di¤erentiate both equations with respect to the ONLY free vari-
able y : �

2x(y)x0(y) + 2y � 2z(y)z0(y) = 0;
2x(y)x0(y) + 4y + 6z(y)z0(y) = 0:

This is an algebraic linear system in the variables x0(y) and z0(y): Solv-
ing it, we get

(2.6) x0(y) = � 5y

4x(y)
; z0(y) = � y

4z(y)
:

To �nd x00(y) and z00(y) we di¤erentiate again in the formulas (2.6) and
get:

(2.7) x00(y) = �5
4

x(y)� yx0(y)
x(y)2

; z00(y) = �1
4

z(y)� yz0(y)
z(y)2

Now, it is easy to �nd x0(0) = 0; z0(0) = 0; x00(0) = �5
4
and z00(0) = �1

4
:

Here is an example when the velocity is zero at a point M but the
acceleration is not zero at the same point. Thus, one has a nonzero
force at a stationary point!

3. Functional dependence

Let A be an open subset of Rn and let f1; f2; :::; fm be m functions
de�ned on A with real values. We assume that each fi is of class C

1

on A:
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Definition 35. We say that ff1; f2; :::; fmg are functional depen-
dent on A if one of them, say fm is "a function" of the others

f1; f2; :::; fm�1;

i.e. there is a function �(y1; y2; :::; ym�1) of m � 1 variables, of class
C1 on Rm�1; such that

fm(x) = �[f1(x); f2(x); :::; fm�1(x)];

for any x in A:

For instance,

(3.1) f1(x1; x2; x3) = x1+x2+x3; f2(x1; x2; x3) = x1x2+x1x3+x2x3;

f3(x1; x2; x3) = x21 + x22 + x23
are functional dependent because f3 = f 21 � 2f2: Thus, �(y1; y2) =
y21 � 2y2:

We know from Linear Algebra that f1; f2; :::; fm are linear depen-
dent if there are �1; �2; :::; �m scalars, not all zero, such that

(3.2) �1f1 + �2f2 + :::+ �mfm = 0;

i.e. �1f1(x)+�2f2(x)+ :::+�mfm(x) = 0 for any x in A: Assume that
�m 6= 0, divide the equality (3.2) by �m and compute fm:

fm = �
�1
�m

f1 �
�2
�m

f2 � :::�
�m�1
�m

fm�1:

Hence, f1; f2; :::; fm are also functional dependent. Conversely it is not
true. For instance, the functions f1; f2; f3 from (3.1) are functional
dependent but they are not linear dependent (prove it!). This shows
that the notion of functional dependence from Analysis is more general
then the notion of linear dependence from Linear Algebra.

Theorem 84. Let A be an open subset of Rn and let f1; f2; :::; fm :
A ! R be m function of class C1 on A: If ff1; f2; :::; fmg are func-
tional dependent on A; then the rank of the Jacobian matrix of f =
(f1; f2; :::; fm) : A! Rm is less than m:

Proof. Suppose that fm(x) = �[f1(x); f2(x); :::; fm�1(x)] for all x
in A: Then,

@fm
@xj

=
@�

@y1

@f1
@xj

+
@�

@y2

@f2
@xj

+ :::+
@�

@ym�1

@fm�1
@xj

for all j = 1; 2; :::; n: This means that the m-th row of the matrix Jx;f is
a linear combination of the �rstm�1 rows, so the rank of the Jacobian
matrix Jx;f is less than m (why?-see any Linear Algebra course). �
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We say that f1; f2; :::; fm are dependent at a; a point in A; if there
is a neighborhood U of a; U � A; such that f1; f2; :::; fm are dependent
on U: If f1; f2; :::; fm are not dependent at a; we say that they are
independent at a: If f1; f2; :::; fm are independent at any point of A; we
say that f1; f2; :::; fm are independent on A:

Theorem 85. If the rank of Jx;f is equal to m for any x in A; then
f1; f2; :::; fm are independent on A:

Proof. Suppose contrary, namely that there is a point a in A and
a small neighborhood U of a; such that f1; f2; :::; fm are dependent on
U: Applying Theorem 84 we get that the rank of Ja;f is less than m: A
contradiction! Thus, f1; f2; :::; fm are independent on A: �

We also have a reverse of the last two theorems.

Theorem 86. With the above notation and hypotheses, if m � n; if
f = (f1; f2; :::; fm) is of class C

1 on A and if for a �xed point a of A one
has that the rank of Ja;f is less thanm; then there is a neighborhood U of
a; U � A; and s functions from ff1; f2; :::; fmg; say f1; f2; :::; fs; which
are independent on U; such that the other functions ffs+1; fs+2; :::; fmg
are functional dependent on f1; f2; :::; fs on U: This means that there
are m� s functions �1; �2; :::; �m�s of class C1 on Rs such that

fs+1(x) = �1(f1(x); :::; fs(x)); :::; fm(x) = �m�s(f1(x); :::; fs(x))

for all x in U:

The proof involves some more sophisticated tools and we send the
interested reader to [Pal] or [FS]. Let us apply this last theorem in a
more complicated example. Let8

>><
>>:

f1 = x1x3 + x2x4
f2 = x1x4 � x2x3

f3 = x21 + x22 � x23 � x24
f4 = x21 + x22 + x23 + x24

be four functions of variables x1; x2; x3; x4: The Jacobian matrix of
f = (f1; f2; f3; f4) at a = (1; 1; 0; 0) is

Ja;f =

0
BB@

0 0 1 1
0 0 �1 1
2 2 0 0
2 2 0 0

1
CCA :

Since the rank of this matrix is 3 and a nonzero 3 � 3 determinant
involves the �rst 3 rows, one sees that f1; f2; f3 are functional inde-
pendent at a and f4 is a function of the others in a neighborhood of a:
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If we look carefully, we see that f 24 = 4(f
2
1 + f 22 ) + f 23 ; so f1; f2; f3; f4

are functional dependent on the whole R4:

4. Conditional extremum points

Sometimes we have to �nd the extremum points for a function f
de�ned on a compact subset C of Rn: For instance, let C be the closed
ball

B[0; 3] = f(x; y; z) : x2 + y2 + z2 � 9g;
centered at 0 = (0; 0; 0) and of radius 3: The problem of �nding the
extremum points of the function f(x; y; z) = x+ 2y + 3z de�ned on C
can be divided into two parts. First of all we �nd the local extrema
points of f de�ned only on the open set

B(0; 3) = f(x; y; z) : x2 + y2 + z2 < 9g
by using Fermat�s theorem, then we consider only the points on the
sphere x2+ y2+ z2 = 9 and try to �nd the extremum points M(x; y; z)
of f , which verify this last supplementary condition (a constraint). This
last problem is an example of a conditional extremum points problem.
The general method for solving such problems is the "method of

Lagrange�s multipliers". In the following we shall describe this method.
Let A be an open subset of Rn and let f; g1; g2; :::; gm (m < n) be

functions of class C1 on A:We assume that g1; g2; :::; gm are functional
independent on A; particularly, if g = (g1; g2; :::; gm); its Jacobian
matrix Jx;g has the rank m at any point x of A: Let S � A be the set
of all solutions (in A) of the following system of equations:

(4.1)

8
>>>><
>>>>:

g1(x1; x2; :::; xn) = 0
:
:
:

gm(x1; x2; :::; xn) = 0

;

These equations are called constraints or supplementary conditions for
the variables x1; x2; :::; xn:

Definition 36. We say that a point a = (a1; a2; :::; an) of S is
a local conditional maximum point for f with the constraints (4.1) if
there is a neighborhood U of a; U � A; such that f(x) � f(a) for any
x in U \ S: The notion of a local conditional minimum point with the
same constraints, for the same function f , can be de�ned in the same
manner.

For instance, (0; 0) is a local conditional minimum for f(x; y) =
x2 + y de�ned on R with the constraint y � x2 = 0: Indeed, f(x; x2) =
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2x2 � 0 = f(0; 0) for any x 2 R. But (0; 0) is not a local extremum
point for f:

Let � = (�1; �2; :::; �m) be a variable vector in R
m: These new

auxiliary variables �1; �2; :::; �m are called Lagrange�s multipliers and
the new auxiliary function

(4.2) �(x1; x2; :::; xn;�1; �2; :::; �m) = �(x;�) = f(x) +

mX

j=1

�jgj(x)

is called Lagrange�s associated function.

Theorem 87. (Lagrange�s Theorem) Let us preserve all the above
notation and hypotheses. Assume that a is a local conditional extremum
point for f; with the constraints (4.1). Then there is a vector �� =
(��1; �

�
2; :::; �

�
m) in R

m such that the point

(a;��) = (a1; a2; :::; an;�
�
1; �

�
2; :::; �

�
m)

is a critical (stationary) point for Lagrange�s function �; i.e.
grad�(a;��) = 0:

Proof. (for n = 2 andm = 1) Suppose that a is a local conditional
maximum point for f: Since g = g1 is functional independent, it cannot
be a constant function, say @g

@x2
(a) 6= 0: We can apply the Implicit

Function Theorem and �nd a function h : U1 ! U2 of class C
1 on U1;

an appropriate neighborhood of a1 (U2 is a neighborhood of a2), such
that h(a1) = a2; g(x1; h(x1)) = 0 for all x1 in U1 and

(4.3) h0(x1) = �
@g

@x1
(x1; h(x1))

@g

@x2
(x1; h(x1))

for all x1 in U1:We can assume that the neighborhood of a; U = U1�U2
is su¢ciently small such that f(x) � f(a) for any x in U: We de�ne
now a new function D : U1 ! R, D(x1) = f(x1; h(x1)) for any x1 in
U1: Since D(x1) � D(a1); for all x1 in U1, we see that a1 is a local
maximum point for the function D: Use now Fermat�s Theorem and
�nd that D0(a1) = 0; or that

@f

@x1
(a) +

@f

@x2
(a) � h0(a1) = 0:

Thus,

(4.4) h0(a1) = �
@f

@x1
(a)

@f

@x2
(a)

:
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But the same h0(a1) can also be computed from the formula (4.3)

h0(a1) = �
@g

@x1
(a1; a2)

@g

@x2
(a1; a2)

:

If we equals the both expression of h0(a1) we get

@f

@x1
(a)

@g

@x2
(a)� @f

@x2
(a)

@g

@x1
(a) = 0:

Let us put

(4.5) ��
def
= �

@f

@x1
(a)

@g

@x1
(a)

= �
@f

@x2
(a)

@g

@x2
(a)

and let us write the Lagrange�s auxiliary function for this "multiplier"
�� :

�(x;��) = f(x) + ��g(x):`

Let us compute the grad�(a;��) by taking count of the value of �� from
(4.5): 8

<
:

@�
@x1
(a;��) = @f

@x1
(a) + �� @g

@x1
(a) = 0

@�
@x2
(a;��) = @f

@x2
(a) + �� @g

@x2
(a) = 0

@�
@�1
(a;��) = g(a) = 0; because a 2 S:

Hence grad�(a;��) = 0 and the proof is complete. �

Look now at the function

�(x;��) = f(x) +
mX

j=1

��jgj(x);

where �� = (��1; �
�
2; :::; �

�
m) is the vector just constructed in Theorem

87. It is easy to see that a is a local conditional maximum (for instance!)
for f if and only if a is an usual local maximum for the function T (x) =
�(x;��): Thus, if we want do decide if a stationary point (a;��) of the
Lagrange function is a conditional extremum point, we must consider
the second di¤erential of T at a: But, in the expression of d2T (a) we
must take count of the connections between dx1; dx2; :::; dxn: These
connections can be found by di¤erentiating the equations 4.1:

8
>>>><
>>>>:

@g1
@x1
(a)dx1 + :::+ @g1

@xn
(a)dxn = 0

:
:
:

@gm
@x1
(a)dx1 + :::+ @gm

@xn
(a)dxn = 0

:
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Since the rank of the Jacobi matrix Ja;g is m < n; this linear system
in the unknown quantities dx1; dx2; :::; dxn has an in�nite number of
solutions. Namely, say that the last n � m unknowns dxm+1; :::; dxn
remain free and the others dx1; dx2; :::; dxm can be linearly expressed
as functions of the last n�m: Thus, the di¤erential d2�(a;��) becomes
a quadratic form in n�m free variables. The sign of this last one must
be considered in any discussion about the nature of the point a:
Let us �nd the points of the compact x2 + y2 � 1 in which the

function f(x; y) = (x�1)2+(y�2)2 has the maximum and the minimum
values. Let us �nd �rstly the local extrema inside the disc: x2+y2 � 1:

@f

@x
= 2(x� 1) = 0; @f

@y
= 2(y � 2) = 0:

So the critical point is M(1; 2): But this point is outside the disk, thus
M(1; 2) is not a local extremum point of f:

Let us consider now the local conditional problem:

max(min)f

with the restriction

g(x; y) = x2 + y2 � 1 = 0
The auxiliary Lagrange�s function is

�(x; y; �) = f(x; y) + �(x2 + y2 � 1):
Let us �nd its critical points:

8
<
:

@�
@x
= 2(x� 1) + 2�x = 0

@�
@y
= 2(y � 2) + 2�y = 0

@�
@�
= x2 + y2 � 1 = 0

:

Solve this system and �nd x = 1
�+1

and y = 2
�+1

(why � cannot be

�1?); �1 =
p
5 � 1; x1 = 1p

5
, y1 =

2p
5
and �2 = �

p
5 � 1; x2 = � 1p

5

, y1 = � 2p
5
: Let us denote M1(

1p
5
; 2p

5
) and M2(� 1p

5
;� 2p

5
): In order to

see the nature of these critical points, let us �nd the expression of the
second di¤erential of �(x; y; �) for a constant parameter �: We �nd

d2�(x; y; �) = (2 + 2�)dx2 + (2 + 2�)dy2:

Since xdx+ ydy = 0; then dy = �x
y
dx; so,

d2�(x; y; �) = (2 + 2�)(1 +
x2

y2
)dx2:

For �1 =
p
5� 1; we get that M1 is a local conditional minimum. For

�2 = �
p
5 � 1; we obtain that M2 is a local conditional maximum.
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Hence, the global maximum of f on the compact subset f(x; y) : x2 +
y2 � 1g is f

�
� 1p

2
;� 1p

2

�
= 6 + 3

p
2: Its global minimum is 6� 3

p
2:

Let us consider now a practical problem of conditional extremum.
Let us �nd the distance between the line x � y = 5 and the parabola
y = x2: Let L(x1; y1) be a running point on the line and let P (x2; y2)
be a running point on the parabola. The square f(x1; x2; y1; y2) =
(x1 � x2)2 + (y1 � y2)2 of the distance between two such points must
be minimum and the constraints are

g1(x1; x2; y1; y2) = x1 � y1 � 5 = 0

and

g2(x1; x2; y1; y2) = x22 � y2 = 0:

The Lagrange�s function is

�(x1; x2; y1; y2;�1; �2) = (x1 � x2)2 + (y1 � y2)2 +
+�1(x1 � y1 � 5) + �2(x22 � y2):

If we solve the 4 � 4 algebraic system grad� = 0; we get x1 =
23
8
;

y1 = �17
8
; x2 =

1
2
; y2 =

1
4
and the corresponding distance is 19

4
p
2
:

5. Change of variables

What is the plane curve xy = 2? We know that an equation of the

form x2

a2
� y2

b2
= 1 is a hyperbola. If we introduce two new variables X

and Y such that x = 1p
2
X� 1p

2
Y and y = 1p

2
X+ 1p

2
Y; we introduce in

fact a new cartesian coordinate system XOY which is obtained from
xOy by a rotation of 45� in the direct sense (see Fig.10.2).
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2

2

45o

O

X
Y

x

y

Fig. 10.2

Our initial curve xy = 2 becomes X2 � Y 2 = 4; i.e. we have an
usual hyperbola with a = b = 2 relative to the new cartesian coordinate
system XOY:

The moral is that sometimes is better to change the old cartesian
coordinate system i.e. to change the old variables x1; x2; :::; xn with
another new ones y1; y2; :::; yn which are functions of the �rst ones:

(5.1)

8
>>>><
>>>>:

y1 = y1(x1; x2; :::; xn)
:
:
:

yn = yn(x1; x2; :::; xn)

:

Here we forced the notation. The function of n variables which de�nes
the new variable y1 is also denoted by y1; etc.

Definition 37. Let D;
 be two open subsets of Rn and let f : D !

 be a di¤eomorphism of class Ck on D; i.e. f is a bijection, it is of
class Ck on D and its inverse f�1 is also of class Ck on 
: Usually,
k = 1 or 2: We call such a f a change of variables of class Ck.

If we write

f(x1; x2; :::; xn) = (y1(x1; x2; :::; xn); :::; yn(x1; x2; :::; xn));

we have a representation like (5.1) for the vector function f . We also call
such a representation a change of variables. We represent the inverse
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of f by:

(5.2)

8
>>>><
>>>>:

x1 = x1(y1; y2; :::; yn)
:
:
:

xn = xn(y1; y2; :::; yn)

:

In fact, we solved the system (5.1) and we computed x1; x2; :::; xn as
functions of y1; y2; :::; yn: For instance, if y1 = x1+x2 and y2 = 2x1�x2;
then x1 =

1
3
(y1 + y2) and x2 =

1
3
(2y1 � y2):

If one considers an expression like

E(x1; x2; :::; xn; g(x1; x2; :::; xn);
@g

@xj
;
@2g

@xj@xi
; :::);

the problem is to �nd an appropriate change of variables of the form
(5.2) such that the new expression in the new variables y1; y2; :::; yn has
a simpler form. Thus, the "old" function g(x1; x2; :::; xn) becomes a
"new" function g(y1; y2; :::; yn): The relations between these two func-
tions are

(5.3) g(y1; y2; :::; yn) = g(x1(y1; y2; :::; yn); :::; xn(y1; y2; :::; yn))

and

(5.4) g(x1; x2; :::; xn) = g(y1(x1; x2; :::; xn); :::; yn(x1; x2; :::; xn)):

Now, the problem is to express the partial derivatives

@g

@xj
(x1; x2; :::; xn);

@2g

@xj@xi
(x1; x2; :::; xn); :::

only in language of the partial derivatives of the new function
g(y1; y2; :::; yn): This is an easy job if we know to manipulate the

chain rules. For instance, if x = (x1; x2; :::; xn) and y = (y1; y2; :::; yn);
from (5.4) one has:

@g

@xi
(x) =

@g

@y1
(y) � @y1

@xi
(x) + :::+

@g

@yn
(y) � @yn

@xi
(x);

i = 1; 2; :::; n: To have "everything" in y1; y2; :::; yn we �nally put in-
stead of x1; x1(y1; y2; :::; yn); :::; instead of xn; xn(y1; y2; :::; yn):

For instance, let us make the substitution (change of variables)
x = exp(t) in the following Euler�s equation:

x2
d2y

dx2
+ x

dy

dx
= 0; x > 0:
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First of all recall the di¤erential notation: y = y(x); y0(x) = dy

dx
(since

dy = y0(x)dx) and y00(x) = d2y

dx2
(since d2y = y00(x)dx2-see the formula

for the second di¤erential!). Let us denote by y(t) = y(exp(t)): Since
y(x) = y(ln x); one has that

dy

dx
=
dy

dt
� dt
dx
=
dy

dt
� 1
x
; i:e:

d

dx
=

d

dt
� exp(�t):

Let us compute

d2y

dx2
=

d

dx

�
dy

dx

�
=

d

dx

�
dy

dt
� exp(�t)

�
=

d

dt

�
dy

dt
� exp(�t)

�
�exp(�t):

Applying the rule of the di¤erential of a product, we get:

d2

dx2
=

�
d2

dt2
� d

dt

�
� exp(�2t):

Substituting in the initial equation, we get d2y

dt2
= 0; i.e. y = C1t+ C2;

where C1; C2 are arbitrary constants. Thus, y(x) = C1 ln x + C2 and
we just found the general solution of the initial di¤erential equation.

6. The Laplacian in polar coordinates

The polar coordinates �; � were introduced in Example 18. The
"linear operator" �; the Laplacian, carries functions u(x; y) of class
C2; de�ned on a �xed domain D � R2 into continuous functions:

�u =
@2u

@x2
+
@2u

@y2
; i:e:� =

@2

@x2
+

@2

@y2
:

For instance, in order to solve the famous Laplace equation, �u = 0,
which appears in many applications, we sometimes need to write the
operator � in polar coordinates � and �: We know that

�
x = � cos �
y = � sin �

;

where � 2 (0;1) and � 2 [0; 2�): The Jacobian of this transformation
is det J(�;�);g = � 6= 0; where g(�; �) = (� cos �; � sin �): Let us denote
by u(�; �) = u(� cos �; � sin �); the new function in the new variables �
and �: Let us denote by � = �(x; y) and by � = �(x; y) the coordinates
of the inverse function g�1: Thus,

u(x; y) = u(�(x; y); �(x; y)):

Hence,

(6.1)

(
@u
@x
= @u

@�

@�

@x
+ @u

@�
@�
@x

@u
@y
= @u

@�

@�

@y
+ @u

@�
@�
@y
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These last relations can be represented in a matrix form

(6.2)

�
@u
@x
@u
@y

�
=

� @�

@x
@�
@x

@�

@y
@�
@y

��
@u
@�
@u
@�

�
:

Since g � g�1 = the identity mapping, we have that
� @�

@x
@�
@x

@�

@y
@�
@y

�trans
=
�
J(�;�);g

��1
=

�
cos � �� sin �
sin � � cos �

��1
=

�
cos � sin �
� sin �

�
cos �
�

�
:

Let us come back to formula 6.2 and �nd:�
@u
@x
@u
@y

�
=

�
cos � � sin �

�

sin � cos �
�

��
@u
@�
@u
@�

�
:

Let us write this formula in a nonmatriceal form:

(6.3)

� @u
@x
= @u

@�
cos � � @u

@�
sin �
�

@u
@y
= @u

@�
sin � + @u

@�
cos �
�

:

Let us use now these formulas and the chain rules formulas 2.7, 2.8 to
compute �u = @2u

@x2
+ @2u

@y2
:

@2u

@x2
=
@2u

@�2
cos2 ��2 @

2u

@�@�

sin � cos �

�
+
@2u

@�2
sin2 �

�2
+
@u

@�

sin2 �

�
+2

@u

@�

sin � cos �

�2
;

@2u

@y2
=
@2u

@�2
sin2 �+2

@2u

@�@�

sin � cos �

�
+
@2u

@�2
cos2 �

�2
+
@u

@�

cos2 �

�
�2@u

@�

sin � cos �

�2
:

Hence, the formula for the Laplacian in polar coordinates is:

�u =
@2u

@�2
+
1

�2
@2u

@�2
+
1

�

@u

@�
:

This formula will be used later in the course of partial di¤erential equa-
tions with direct applications in Engineering.

7. A proof for the Local Inversion Theorem

Here we present a complete proof for the Local Inversion Theorem
(see Theorem 80). We prefer an elementary longer proof then a shorter
sophisticated one. Let us state again this basic result.

Theorem 88. Let A be an open subset of Rn and let f : A ! Rn

be a function of class C1 on A: Let a be a point in A such that the
Jacobian determinant det Ja;f 6= 0: Then there are two open sets X � A
and Y � f(A) and a uniquely determined function g with the following
properties:

i) a 2 A and f(a) 2 Y;
ii) Y = f(X);
iii) g : Y ! X; g(Y ) = X and g(f(x)) = x for any x in X;
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iv) g is of class C1 on Y and the restriction of f to X; f jX : X ! Y
is a di¤eomorphism with g = (f jX)�1: Particularly,

Jf(x);g = (Jx;f )
�1

and

det Jf(x);g =
1

det Jx;f
:

Proof. STEP 1. First of all let us remark that if (hij(x)); i; j =
1; 2; :::; n are n2 continuous functions de�ned on A; such that

det[hij(a)] 6= 0; then there is a small closed ball B[a; r] with centre
at a and of radius r > 0; B[a; r] � A with the property that whenever
we take n2 points fxijg in B[a; r], one has that det[hij(xij)] 6= 0: In-
deed, let us de�ne a continuous function of n2 variables on the product
A� A� :::� A| {z }

n2�times

:

D(X11;X12; :::;X1n; :::;Xn1;Xn2; :::;Xnn) = det[hij(Xij)]:

Since D(a; a; :::; a) = det(hij(a)) is not zero, say D(a; a; :::; a) > 0; one
can �nd a small ball B(a; r0) � A; r0 > 0; on which

D(x11;x12; :::;xnn) = det(hij(xij)) > 0

for every xij inB(a; r
0) (see Theorem 57). If one takes any r, 0 < r < r0;

then det(hij(xij)) > 0 for any arbitrary n
2 elements fxijg in B[a; r]: In

our case, det Ja;f =
�
det @fi

@xj
(a)
�
6= 0; where f = (f1; f2; :::; fn): Hence,

we can �nd a small closed ball W = B[a; r] � A; r > 0; on which�
det @fi

@xj
(xij)

�
6= 0 for any n2 elements xij in W:

STEP 2. Let us prove now that the restriction of f to W is one-to-
one. Suppose that x and z are inW such that f(x) = f(z): This means
that for every i = 1; 2; :::; n one has that fi(x) = fi(z): Let us apply
the Lagrange theorem (see Theorem 73) on the segment [x; z] :

(7.1) 0 = fi(x)� fi(z) =
nX

j=1

@fi
@xj

(c(i)) � (xj � zj);

where c(i) is a point on the segment [x; z] and x =(x1; x2; :::; xn); z =
(z1; z2; :::; zn): Since the segment [x; z] is contained in W (why?), all

c(i); i = 1; 2; :::; n; are contained in W and so, det
�
@fi
@xj
(c(i))

�
6= 0:

Hence, the homogeneous linear system

0 =

nX

j=1

@fi
@xj

(c(i)) � (xj � zj);
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i = 1; 2; :::; n; in the unknowns x1� z1; x2� z2; :::; xn� zn; has only the
trivial solution, i.e. x1 = z1; :::; xn = zn or x = z: Thus, f is one-to-one
on W = B[a; r]:

STEP 3. Let us prove now that the image f(Z) of Z = B(a; r);
the interior of W; is an open subset of Rn: Indeed, let us de�ne the
continuous function g : @Z ! R (here @Z = W rZ is the boundary of
Z):

g(x) = kf(x)� f(a)k ;
for x 2 @Z: Since @Z is a compact subset of Rn (prove it!) and since
f is one-to-one (see STEP 2), the minimum value m of g on @Z is > 0
(why?). Let us denote by T = B(f(a);m

2
) and let us prove that this

open ball T is contained in f(Z): For this, let y be a �xed element in
T and let us de�ne the following continuous function:

h(x) = kf(x)� yk
for any x in W: Let us see that the absolute minimum of h cannot be
attained on the boundary @Z: Indeed, since

h(a) = kf(a)� yk < m

2
;

one has that minh(x) < m
2
: But, if x 2 @Z; we have

h(x) = kf(x)� yk � kf(x)� f(a)k � kf(a)� yk
> g(x)� m

2
� m

2
;

i.e. h(x) > m
2
for any x in @Z: Hence, let c be in Z such that

h(c) = minfh(x) : x 2 Wg:
This c also realizes the absolute minimum for

h2(x) = kf(x)� yk2 =
nX

r=1

[fr(x)� yr]2:

Then Fermat�s theorem says that:

@

@xk

(
nX

r=1

[fr(x)� yr]2
)
= 2

nX

r=1

[fr(x)� yr] �
@fr
@xk

(x)

is zero at c; i.e.
nX

r=1

@fr
@xk

(c) � [fr(c)� yr] = 0

for every k = 1; 2; :::; n: This is again a homogenous linear system in
the unknowns ffr(c) � yrgr with a nonzero determinant. Hence, we
have only the trivial solution, i.e. fr(c) = yr for every r = 1; 2; :::; n:
Thus, f(c) = y and so y 2 f(Z): But, the same type of reasoning can
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be done for any other b = f(e); where e 2 Z and b 2 f(Z): Namely,
we take a su¢ciently small open ball B(e; r00) � B(a; r) and we repeat
the above reasoning for B(e; r00) instead of B(a; r): We �nd that

T 0 = B(b;
m0

2
) � f(B(e; r00)) � f(Z)

for the minimum m0 of the function

x!kf(x)� f(e)k ;
de�ned on @B(e; r00): Hence, f(Z) is open in Rn: Moreover, f carries an
open subset X of Z into an open subset f(X) of Rn (why?).

STEP 4. Let now Y = B(f(a); r0) be an open ball centered at
f(a) such that its closure B[f(a); r0] is included in f(Z) and let X =
f�1(Y )\Z: It is clear that the restriction f jX : X ! Y is a continuous
bijection between X and Y: Let g : Y ! X; g(y) = x be its inverse.
Let X and Y be the topological closure of X and Y respectively. They
both are compact subsets of Rn and f jX : X ! Y is also a bijection,
because X � W and f is one-to-one on W (see STEP 1). Its inverse
(f jX)�1 : Y ! X is continuous (because f is continuous and X and
Y are compact sets...it reverses closed subsets into closed subsets!).
Since the restriction of (f jX)�1 to Y is exactly g (why?), g is also a
continuous mapping and g(f(x)) = x for any x in X:

STEP 5. It remains us to prove that g = (g1; g2; :::; gn) is of class

C1 on Y: We �x an r = 1; 2; :::; n and we shall prove that
@gj
@yr

exists
at any �xed point y in Y and that they are continuous. Let er =
(0; 0; :::; 0; 1; 0; :::; 0) be the r-th unit vector in Rn (with 1 at the r-th
position!) and let us consider the di¤erence quotient:

(7.2)
gj(y + ter)� gj(y)

t
;

where t is a small real number such that y+ ter 2 Y (Y is open). Let
x = g(y) and x0 = g(y+ter): Thus,

f(x0)� f(x) = ter

implies that

(7.3) fi(x
0)� fi(x) =

�
0; if i 6= r;
t; if i = r:

Let us apply Lagrange�s theorem (see Theorem 73) for fi on the segment
[x;x0] � Z: We get:

(7.4) 0 or 1 =
fi(x

0)� fi(x)
t

=

nX

j=1

@fi
@xj

(d(i)) �
x0j � xj

t
;
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i = 1; 2; :::; n; where d(i) is a point on the segment [x;x0] � Z: Since

det
h
@fi
@xj
(d(i))

i
6= 0; the linear system (7.4), in variables

n
x0j�xj
t

o
j
has

a unique solution (Cramer�s rule):

x0j � xj
t

=
�j

�
;

j = 1; 2; :::; n; where � and �j are determinants with entries of the

form @fi
@xj
(d(i)); 0; or 1: When t ! 0; the determinant � ! Jx;f 6= 0

(why?), so
�
�1

�
;
�2

�
; :::;

�n

�

�
!
�
@g1
@yr

(y);
@g2
@yr

(y); :::;
@gn
@yr

(y)

�
;

i.e all the partial derivatives
@gj
@yr
(y) exist. Since their expressions in-

volve only partial derivatives of the type @fi
@xj
(x) which are continuous,

the function g is of class C1 on Y and the proof of the Local Inversion
Theorem is now complete. �

The proof is long, but elementary and very natural. Trying to
understand this proof one remembers many basic things from previous
chapters. Moreover, the proof itself re�ects some of the indescribable
Beauty of Mathematical Analysis.

8. The derivative of a function of a complex variable

Let A be an open subset of the complex plane C. If we associate
to any complex number z = x + iy of A; where x; y are real numbers
and i =

p
�1 is a �xed root of the equation x2 + 1 = 0; another

complex number w = f(z); we say that the mapping z ! f(z) is
a function of a complex variable de�ned on A: Like in the case of a
function of a real variable, we say that f has the limit L at the point
z0 = x0 + iy0 of A if for any sequence fzng; n = 1; 2; :::; of complex
numbers zn = xn + iyn; xn; yn 2 R, which tends to a; one has that
f(zn) ! L: If L = f(z0) we say that f is continuous at z0: Let us
assume that f(x + iy) = u(x; y) + iv(x; y); where u and v are two
real functions of two variables. One calls u = Re f; the real part of f
and v = Im f; the imaginary part of f: It is not di¢cult to see that
f is continuous at z0 = x0 + iy0 if and only if u and v are continuous
at (x0; y0): Let us de�ne the derivative of a function f of a complex
variable z at a �xed point z0: We say that f is di¤erentiable at z0 if
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the following limit exists and is �nite:

(8.1) lim
z!z0

f(z)� f(z0)
z � z0

= f 0(z0):

We denoted its value by f 0(z0) and we call it the derivative of f at z0:
For instance, (z2)

0
= 2z; because

lim
z!z0

z2 � z20
z � z0

= lim
z!z0

(z + z0) = 2z0:

Generally speaking, the usual di¤erential rules of the functions of a real
variable also works for functions of a complex variable. For instance,

(f + g)0 = f 0 + g0; (�f)0 = �f 0; (fg)0 = f 0g + fg0;
�
f

g

�0
= f 0g�fg0

g2
;

(f � g)0(z) = f 0(g(z)) � g0(z); (sin z)0 = cos z; (exp(z))0 = exp(z); etc.
Many formulas in complex function theory (the theory of functions
of a complex variable) can be easily proved by using the following
fundamental result.

Theorem 89. (Identity Theorem) Let A be a subset of complex
numbers with at least one limit point and let f and g be two di¤er-
entiable complex functions de�ned on a complex domain B (it is open
and connected) which contains A: Assume that f and g are equal at any
point of A: Then f and g are identical, this means that f(z) = g(z) for
all z of B:

For a proof of this basic result see any book of complex function
theory (see for instance [ST]). Let us use this result to compute the
derivative of exp(z) =

P1
n=0

zn

n!
; z 2 C. Let us denote by g(z) the

derivative of exp(z): Since for any real number x one has that exp(x)0 =
exp(x); we have that g(x) = exp(x) for any x in R. But all the point
of R are limit points so, g(z) = exp(z): Here we tacitly used another
basic result of complex function theory.

Theorem 90. If a complex function f : A ! C, where A is a
complex domain, is di¤erentiable on A; then it has derivatives of any
order on A; i.e. it is of class C1 on A:

Following an analogous theory like the Weierstrass theory for the
real series of functions, we can prove that exp(z) is a di¤erential func-
tion. Hence, its derivative g(z) is also di¤erentiable on C. This is why
we could apply Theorem 89 for the complex function exp(z):
What can we say about the two variables real functions u = Re f

and v = Im f if f is di¤erentiable at a point z0?

Theorem 91. (Cauchy-Riemann relations) If the function f(x +
iy) = u(x; y)+iv(x; y) is di¤erentiable at a point z0 = x0+iy0; then the
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two variables real functions u and v have partial derivatives at (x0; y0)
and between them we have the following relations (the Cauchy-Riemann
relations):

(8.2)
@u

@x
(x0; y0) =

@v

@y
(x0; y0);

@u

@y
(x0; y0) = �

@v

@x
(x0; y0)

Moreover, f 0(z0) =
@u
@x
(x0; y0) + i @v

@x
(x0; y0) =

@v
@y
(x0; y0)� i@u@y (x0; y0):

Proof. If f is di¤erentiable at the point z0 the following limit
exists:

lim
z!z0

f(z)� f(z0)
z � z0

= f 0(z0):

This means that for any sequence (xn; yn) which converges to (x0; y0)
(in R2) one has that
(8.3)

lim
xn!x0;yn!y0

u(xn; yn)� u(x0; y0) + i[v(xn; yn)� v(x0; y0)]
xn � x0 + i(yn � y0)

= f 0(z0):

Firstly take here yn = y0 for any n = 1; 2; :::: We get

(8.4)
@u

@x
(x0; y0) + i

@v

@x
(x0; y0) = f 0(z0):

Secondly, let us consider in (8.3) xn = x0 for any n = 1; 2; :::: We �nd

(8.5)
1

i

�
@u

@y
(x0; y0) + i

@v

@y
(x0; y0)

�
= f 0(z0)

Comparing (8.3) and (8.5) we get the Cauchy-Riemann relations (8.2).
�

The Cauchy-Riemann relations imply that the real and the imagi-
nary part of a di¤erentiable complex function are harmonic functions,
i.e. they are solutions of the Laplace equation:

(8.6) �u =
@2u

@x2
+
@2u

@y2
= 0

and

�v =
@2v

@x2
+
@2v

@y2
= 0

(prove it!).
Let f = u + iv be a complex function di¤erentiable on a complex

open subset A and let F(x; y) = (v(x; y); u(x; y)) be its associated �eld
of plane forces. By de�nition, the curl (the rotational) of F is the 3-D
vector �eld curlF =(0; 0; @u

@x
� @v

@y
): Since @u

@x
= @v

@y
on A; one sees that

curlF = 0 i.e. the vector �eld F is irrotational. By de�nition, the
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divergence of F is divF = @v
@x
+ @u

@y
: But this last one is 0 because of the

second Cauchy-Riemann relation.
Moreover, if one know one of the two functions u or v; one can

determine the other up to a complex constant, such that the couple
(u; v) be the real and the imaginary part respectively of a di¤erentiable
complex function f: Indeed, suppose we know u and we want to �nd v
from the Cauchy-Riemann relations:

(8.7)
@v

@x
(x; y) = �@u

@y
(x; y)

and

(8.8)
@v

@y
(x; y) =

@u

@x
(x; y)

From (8.7) we can write

v(x; y) = �
Z
@u

@y
(x; y)dx+ C(y):

We prove that we can determine the unknown function C(y) up to a
constant term. Let us come to the relation (8.8) with this last expres-
sion of v: Here we use the famous Leibniz formula on the di¤erential
of an integral with a parameter (see the Integral calculus in any course
of Analysis):

@u

@x
(x; y) = �

Z
@2u

@y2
(x; y)dx+ C 0(y):

From (8.6) we �nd

(8.9)
@u

@x
(x; y) =

Z
@2u

@x2
(x; y)dx+ C 0(y) =

@u

@x
(x; y) +K(y) + C 0(y);

where C(y) and K(y) are functions of y: From (8.9) we get

C 0(y) = �K(y):
Therefore, always one can �nd the function C(y); and so the function
v(x; y) up to a real constant c. Hence, we can determine the function
f = u+ iv up to a purely imaginary constant ic:
For instance, let us consider u(x; y) = x2 � y2 and let us �nd f (if

it is possible! It is, because u is a harmonic function!-this is the only
thing we used above!). The Cauchy-Riemann relations become:

@v

@x
(x; y) = 2y

and
@v

@y
(x; y) = 2x
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Let us integrate the �rst equality with respect to x

v(x; y) = 2xy + C(y);

where C(y) is a constant function with respect to x but,...it can depend
on y! Come now to the second relation and �nd

2x = 2x+ C 0(y);

so, C 0(y) = 0; i.e. C(y) does not depend on y: It is a pure constant c:
Hence, v(x; y) = 2xy+c and f(z) = x2�y2+i(2xy+c) = (x+iy)2+ic;
where c is a real arbitrary constant.
Let us now come back to formula (8.1) and consider an arbitrary

smooth curve 
 which passes through z0: Let us take z very close to z0
but on the curve 
: So, we can approximate:

(8.10)
f(z)� f(z0)

z � z0
� f 0(z0)

Hence,
jf(z)� f(z0)j � jz � z0j jf 0(z0)j =

jz � z0j

s�
@u

@x
(x0; y0)

�2
+

�
@v

@x
(x0; y0)

�2
:

So, the length of the segment [f(z0); f(z)] is proportional to the length
of the segment [z0; z]: The "dilation" coe¢cient

� =

s�
@u

@x
(x0; y0)

�2
+

�
@v

@x
(x0; y0)

�2

does not depend on the curve on which z becomes closer and closer to
z0:

Let us recall that any complex number z can be uniquely written as:
z = r exp(i�); where � 2 [0; 2�): This angle � is called the argument
of z: From the formula (8.10) we get

(8.11) arg [f(z)� f(z0)] � arg(z � z0) + arg f 0(z0):
Here we assume that f 0(z0) 6= 0: Formula (8.11) says that in a small
neighborhood of z0 our di¤erentiable function preserve the angle be-
tween two curves which pass through z0 (why?). So, we can locally
approximate the action of a di¤erentiable function by a rotation of
angle arg f 0(z0), followed by a "dilation"(or a "contraction") of coe¢-
cient jf 0(z0)j. We assume that f 0(z0) 6= 0: Otherwise, the transforma-
tion z ! f(z) is almost constant around z0: A transformation of the
complex plane into itself with this last two properties is called a con-
formal transformation. These are very important in some engineering
applications (hydraulics, �uid mechanics, electricity, etc.).
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If we write the plane transformation z ! f(z) as

(x; y)! (u(x; y); v(x; y));

where f(z) = u+ iv; the Jacobian determinant of this at (x0; y0) is
����
@u
@x
(x0; y0)

@u
@y
(x0; y0)

@v
@x
(x0; y0)

@v
@y
(x0; y0)

���� =
�
@u

@x
(x0; y0)

�2
+

�
@v

@x
(x0; y0)

�2
= jf 0(z0)j2 :

Here we used again the Cauchy-Riemann relations. If we want that our
transformation z ! f(z) to be locally invertible around the point z0;
we must assume that f 0(z0) 6= 0 (see the Local Inversion Theorem). In
this last case, this transformation is locally a conformal transformation,
i.e. it preserves the angles (with their directions) and it changes the
lengthens with the same "velocity" around the point z0:

9. Problems

1. Find y0(x) if y = 1+yx:Why we cannot perform this computation
for the points on the curve xyx�1 = 1; y > 0?

2. Compute dy

dx
and d2y

dx2
; if y = x+ ln y; y 6= 1:

3. If z = z(x; y) and

x3 + 2y3 + z3 � 3xyz � 2y + 3 = 0;
�nd dz and d2z:
4. Find inf f and sup f for:
a)

f(x; y) = x3 + 3xy2 � 15x� 12y;
b)

f(x; y) = xy

with x+ y � 1 = 0;
c)

f(x; y; z) = x2 + y2 + z2

with ax+ by + cz � 1 = 0 (What this means?);
5. Find the distance from M(0; 0; 1) to the curve fy = x2g \ fz =

x2g:
6. Find the distance between the line 3x+ y�9 = 0 and the ellipse

x2

4
+ y2

9
� 1 = 0:

7. Compute the velocity and the acceleration on the circle

fx2 + y2 + z2 = a2g \ fx+ y + z = ag
by using a parametrization of the type: x = x; y = y(x); z = z(x):
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8. Are the functions

u = (x+ y + z)2; v = 3x� y + 3z; w = x2 + xy + yz + zx

independent at (0; 0; 0)?
9. Change the variables in the following expressions:
a)

(1� x2)d
2y

dx2
� xdy

dx
+ !y = 0;

x = cos t;
b)

x2
@2z

@x2
� y2@

2z

@y2
= 0; u = xy; v =

x

y
;

c)
�
@u
@x

�2
+
�
@u
@y

�2
; x = � cos �; y = � sin �;

10. Find all � such that u = �(x + y) and v = �(x)�(y) be
dependent on R2:

11. Prove that the following complex functions are di¤erentiable
and �nd their derivatives. Take a point z0 and study the geometrical
behavior of the transformation z ! f(z) around this point z0:

a) f(z) = 3z + 2; b) f(z) = 2iz + 3; c) f(z) = 1
z
; jzj > 1;

d) f(z) = exp(iz); e) f(z) = z3 + 2; z 6= 0; g) f(z) = z sin z;
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