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Preface

I start this preface with some ideas of my former Teacher and
Master, senior researcher I, corresponding member of the Romanian
Academy, Dr. Doc. Nicolae Popescu (Institute of Mathematics of the
Romanian Academy).

Question: What is Mathematics?

Answer: It is the art of reasoning, thinking or making judgements.
It is difficult to say more, because we are not able to exactly define the
notion of a "table", not to say Math! In the greek language "mathema"
means "knowledge". Do you think that there is somebody who is able
to define this last notion? And so on... Let us do Math, let us apply
or teach it and let us stop to search for a definition of it!

Q: Is Math like Music?

A: Since any human activity involves more or less need of reasoning,
Mathematics is more connected with our everyday life then all the other
arts. Moreover, any description of the natural or social phenomena use
mathematical tools.

Q: What kind of Mathematics is useful for an engineer?

A: Firstly, the basic Analysis, because this one is the best tool
for strengthening the ability of making correct judgements and of tak-
ing appropriate decisions. Formulas and notions of Analysis are at
the basis of the particular language used by the engineering topics
like Mechanics, Material Sciences, Elasticity, Concrete Sciences, etc.
Secondly, Linear Algebra and Geometry develop the ability to work
with vectors, with geometrical object, to understand some specific alge-
braic structures and to use them for applying some numerical methods.
Differential Equations, Calculus of Variations and Probability Theory
have a direct impact in the scientific presentation of all the engineering
applications. Computer Science cannot be taught without the basic
knowledge of the above mathematical topics. Mathematics comes from
reality and returns to it.

Q: How can we learn Math such that this one not becomes abstract,
annoying, difficult, etc.?
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A: There is only one way. Try to clarify and understand everything,
step by step, from the simplest notions up to the more complicated
ones. Without gaps! Try to work with all the new notions, definitions,
theorems, by looking at appropriate simple examples and by doing
appropriate exercises. Do not learn by heart! This is the most useless
thing you can do in trying to become a scientist, an engineer or an
economist! Or anything else!

Math becomes nice and easy to you if it is presented in a lively way
and if you make some efforts to come closer and closer to it. If you
hate it from the beginning, don’t say that it is difficult!

The present course of Mathematical Analysis covers the Differential
Calculus part only.

It is assumed that students have the basic skills to compute simple
limits, differentials and the integrals of some elementary functions. My
teaching experience of almost 30 years at the Technical University of
Civil Engineering Bucharest made me clear that the Math syllabus
for engineering courses is not only a "part" from the syllabus of the
faculties of mathematics. Engineering teaching should have at its basis
very "concrete" facts. Mathematics for engineers should be very live.
Student should realize that such type of Math came from "practice",
returns to it and, what is most important, it helps a lot to make rational
"models" for some specific phenomena. Besides this point of view,
we have not to forget that the most important tool of an engineer,
economist, etc. is his (her) power of reasoning. And this power of
reasoning can be strengthened by mathematical training.

My opinion is that some motivations and drawings are always very
useful in the complicated process of making "easy" and "nice" the
mathematical teaching.

I consider that it is better to start with the notion of a real num-
ber, which reflects a measurement. Then to consider sequences, series,
functions, etc.

In Chapter I tried to put together some notions and ideas which
have more features in common. We end every chapter with some prob-
lems and exercises. In some places you will find more detailed examples
and worked problems, in others you will find fewer. At any moment I
have in my mind a beginner student and not a moment a professional
in Math. My last goal in this was "the art of teaching Math for engi-
neers" and not "the art of solving sophisticated Math problems". We
should be very careful that a good Math teaching means "not multa,
sed multum" (C. F. Gauss, in Latin). Gauss wanted to say that the
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quality is more important then the quantity, "not much and superfi-
cial, but fewer and deep". We have computers which are able to supply
us with formulas, with complicated and long computations but, up to
now, they are not able to learn us the deep and the original creative
work. They are useful for us, but the last decision is better to be ours.
The deep "feeling" of an experienced engineer is as important as some
long computations of a computer. If we consider a computer to be only
a "tool" is OK. But, how to obtain this "feeling"? The answer is: a
good background (including Math training) + practice + the capacity
of doing things better and better.

I tried to use as proofs for theorems, propositions, lemmas, etc. the
most direct, simple and natural proofs that I know, such that the stu-
dent be able to really understand what the statement wants to say. The
mathematical "tricks" and the simplifications by using more abstract
mathematical machinery are not so appropriate in teaching Math at
least for the non mathematical community. This is why we (teachers)
should think twice before accepting a new "shorter" way. My opinion
is that student should begin with a particular case, with an example,
in order to understand a more general situation. Even in the case of a
definition you should search for examples and "counterexamples", you
should work with them to become "a friend" of them... .

I am grateful to many people who helped me directly or indirectly.
The long discussions with some of my colleagues from the Department
of Mathematics and Computer Sciences of the Technical University of
Civil Engineering Bucharest enlightened me a lot. In particular, the
teaching skill, the knowledge and the enthusiasm of Prof. Dr. Gavriil
Paltineanu impressed and encouraged me in writing this course. He is
always trying to really improve the way of Math Analysis teaching in
our university and he helped me with many useful advices after reading
this course.

Many thanks go to Prof. Dr. Octav Olteanu (University Politehnica
Bucharest) for many useful remarks on a previous version of this course.

To be clear and to try to prove "everything" I learned from Prof.
Dr. Mihai Voicu, who was previously teaching this course for many
years.

The friendly climate created around us by our departmental chiefs
(Prof. Dr. ing. Nicoleta Radulescu, Prof. Dr. Gavriil Paltineanu,
Prof. Dr. Romica Trandafir, etc.) had a great contribution to the
natural development of this project.

I thank to my assistant professor Marilena Jianu for many correc-
tions made during the reading of this material.
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A special thought goes to the late Dr. Ion Petricd who (many years
ago) had the "feeling" that I could write a "popular" book of Math
Analysis with the title "Analysis is easy, isn’t it?".

The last, but not the least, I express my gratitude to my wife for
helping me with drawings and for a lot of patience she had during my
writing of this book.

I will be very grateful to all the readers who will send me their re-
marks on this course to the e-mail address: angel.popescu@gmail.com,
in order to improve everything in future editions.

Prof. Dr. Sever Angel Popescu
Bucharest, January, 2009.



CHAPTER 1

The real line.

1. The real line. Sequences of real numbers

To measure is a basic human activity. To measure time, tempera-
ture, velocity, etc., reduces to measure lengths of segments on a line.
For this, we need a fixed point O on a straight line (d) and a "wit-

ness" oriented segment [OA;] (4; # O), i.e. a unitary vector (741 (see
Fig.1.1). Here, unitary means that always in our considerations the
length of the segment [OA;] will be considered to have 1 meter. The

pair (O, 7), where i = O—1>41 is called a Cartesian (from the French
mathematician R. Descartes, the father of the Analytical Geometry,
what shortly means to study figures by means of numbers) coordinate
system (or a frame of reference). We assume that the reader has a
practical knowledge of the digits 0,1,2,3,4,5,6,7,8,9 which represent
(in Fig.1.1) the points O, Ay, As, ..., Ag. Let us now consider the point

—_— —
B on the line (d) such that the length ’AgB ) of the vector AgB is 1
—_— —
meter and B # Ag, i.e. AgB = OA; as FREE vectors.

inverse ORAg = 3 0A
orientation 2
A A
-00 12, \ ; A L00 (d)

'A[ﬁ]

‘ ‘ ‘ ‘
An As Az Az Ay CE Al A A3 Ay An

right orientation

Fig. 1.1

Our intention is to associate a sequence of digits to the point B.
Here appears a first great idea of an anonymous inventor who denoted
B by Ay, this means one group of ten units (a unit is one O_1>41) and 0
(nothing) from the next similar group. For instance, Ag4 is the point
on (d) which is between the points Agy and A7y such that it marks 6
groups of ten units + 4 units from the 7-th group. Now Asgy marks
2 groups of hundreds + 6 groups of tens + 9 units, ... and so on. In
this way we can represent on the real line (d) any quantity which is
a multiple of a unity (for instance 130 km/h if the unity is 1 km/h).
The idea of grouping in units, tens, hundreds, thousands, etc. supply

1
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us with an addition law for the set of the so called "natural numbers":
0,1,2,...9,10,11, ..., 99,100, 101, .... We denote this last set by N.
For instance, let us explain what happens in the following addition:

3 6 8 +
9 7
4 6 5
First of all let us see what do we mean by 368. Here one has 3 groups
of one hundred each + 6 groups of one ten each + 8 units (i.e. 8 times

O—/ll). We explain now the result 465 (= 368 + 97) : 8 units + 7 units
is equal to 15 units. This means 5 units and 1 group of ten units. This
last 1 must be added to 6 + 9 and we get 16 groups of ten units each.
Since 10 groups of 10 units means a group of 1 hundred, we must write
6 for tens and add to 3 this last 1. So one gets 4 for hundreds. We say
that a point A on the line (d) is "less" than the point B on the same
line if the point B is on the right of A and not equal to it. Assume now
that A is represented by the sequence of digits a,a,_1...ao (a¢ units, a;
tens, etc.) and B by the sequence b,,,b,,,_1...by. Here we suppose that a,,
and b, are distinct of 0 and that n > m. Otherwise, we change A and
B between them. Think now at the way we defined these sequences!
If n > m, A must be on the right of B or identical to it. If n > m
then A is greater than B. If n = m, but a, > b,, again A is greater
than B. If n = m, a,, = b,, but a,_; < b,_1, then B is greater than
A If n =m, a, = b,, a,_1 = b,_1, we compare a,,_ with b,_» and
so on. If all the corresponding terms of the above sequences are equal
one to each other (and n = m) we have that A is identical with B. If
for instance, n = m, a, = b,, Gp_1 = by_1,...., a5 = by, but ax_1 > br_1
we must have A > B (A is greater than B). Here in fact we described
what is called the "lexicographic order" in the set of finite sequences
(define it!). If A > B one can subtract B from A as it follows in this
example:

(1.1)

3 6 8
9 7
2 71
This operation is as natural as the addition. Namely, 8 units minus
7 units is 1 unit. Since we cannot subtract 9 tens from 6 tens, we
"borrow" 1 hundred = 10 tents from 3. So, now 10 tens + 6 tens
= 16 tens minus 9 tens is equal to 7 tens. It remains 2 hundreds from
which we subtract 0 hundreds and obtain 2 hundreds. Instead of 10
tens we write 10 x 10 = 10? units, etc. Thus, any natural number

(1.2)
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A = @,a,1.--ap (we identified here the name of the point with its
corresponding sequence of digits) can be uniquely written as:

(1.3) A = ag + 10a; + 10%ay + ... + 10"a,,

This is also called the representation of A in the base (of numeration)
10. If instead of grouping units, tens, hundreds, etc., in groups of 10,
we group them in groups of 2 for instance, we obtain the writing of
same point A in base 2, etc. Why our ancestors chose 10, ... we do not

Hence, the subtraction is not defined for any pair A, B. This means
that A — B does not belong to N for any pair A, B. For instance, 3 — 4
is not in N, but it is in Z! The algebraists say that N is a monoid
and Z is a group (see any advanced Algebra course), relative to the
addition. We can also introduce a multiplication in Z. First of all, if
n,m are in N and both are not zero (otherwise we put n - m = 0), we

define n - m "2 nm by n4+n+ ...+ n, m times. For extending this
operation to Z, we put by definition (—n)m = n(—m) = —(nm), for
any pair n, m of N. The algebraists say that Z is a ring relative to the
addition and this last defined multiplication (see the Algebra course).
We use here freely the elementary basic properties of the addition and
multiplication. For instance, 5- (7 —9) = 5-7 — 5 -9, because of the
distributive property.

We also have a dynamic interpretation of the set N. 0 is for O. 1
is for the extremity A; of the vector O—/ll. 2 is for the extremity of the

vector 0_1)42 which is twice the vector (ﬁil, etc. We must remark that
we just have chosen "an orientation" on the line (d), namely, we started
our above construction "from O to the right", not "to the left". So,
on (d) one has two orientations: the direct one, "to the right" and the
inverse one, "to the left". If we construct everything again, "on the
left" (by symmetry) we get the set of negative integers: —1,—2, —3,...
. The whole set Z = {...,—3,—-2,—1,0,1,2,3,...} is called the set of
mntegers.

By "Arithmetic" we mean all the properties of N (or Z) derived from
the "algebraic" operations of addition and multiplication. A prime
number p is a natural number distinct of 1, which cannot be written as
a product p = nm, where n and m are natural numbers, both distinct of
1 (or of p). For instance, 2,3,5,7,11, 13,17, ... are prime numbers. Any
natural number n greater than 1 is either a prime number or it can be
decomposed into a finite product of prime numbers (Euclid). Indeed,
if n is not a prime number, there are ny, 7o natural numbers such that
n = ning, where ny,ny < n. We go on with the same procedure for n,
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and ny instead of n, etc., up to the moment when n = ppaps...pr, where
all py, pa, ..., pr are prime numbers. Maybe some of them are equal one
to the other so, we can write n = ¢{""¢3"...q;"", where ¢1, ¢o, ..., g, are

distinct primes.

THEOREM 1. (The Fundamental Theorem of Arithmetic) Any nat-
ural number n greater than 1 is either a prime number or it can be
uniquely written as n = ¢ qy*...q, ", where qi,qz, ..., qn are distinct

prime numbers.

All the other basic results in number theory are directly or indi-
rectly connected with this main result. For instance, Euclid proved
that the set of all prime numbers is infinite. Indeed, if it was not so,
let q1,q2,...,qn be all the distinct primes. Then, let us consider the
natural number m = q1¢s...qn + 1. It is either a prime number or it
is divisible by a prime number p. Since q1, g2, ..., gy are all the prime
numbers, this p must be equal to a ¢; for a j € {1,2,..., N}. Then 1 is
divisible by ¢;, a contradiction (Why?). Thus, our assumption is false,
i. e. the set of prime numbers is infinite. The most delicate hypotheses
and results in Mathematics are connected with this set.

Recall that a function f : X — Y, where X and Y are arbitrary
sets, is said to be injective (or one-to-one) if for any pair of distinct
elements a and b from X, their images f(a) and f(b) are distinct in Y.
f is surjective (or onto... Y) if any element y of Y is the image of an
element = of X, i. e. y = f(x). Injective 4 surjective means bijective.
If f is bijective we simply say that it is "a bijection" between the sets
X and Y. Or that they have "the same cardinal". For instance, N and
Z have the same cardinal because f : N — Z, f(0) =0, f(2n) = —n
and f(2n — 1) =n, for n = 1,2,... is a bijection (Why?).

Generally, if a set A has the same cardinal with N we say that it
is countable. If a set B has the same cardinal with a set of the form
{1,2,...,n} we say that it is finite and that it has n elements, or that
its cardinal is n. Why a set A cannot be finite and countable at the
same time?

Any countable set A can be represented like a sequence: ay = f(0),
a; = f(1), az = f(2),... where f: N — A is a bijection between N and
A (see the definition of countability!). Conversely, any set A which can
be represented like a sequence is countable, i.e. it is the image of the
natural number set N through a bijection f (prove this!). Hence, we
define "a sequence” in a set A by a function g : N — A. Usually we
denote g(n) by a, and write the sequence g as ag,as,as, ..., ay,, ... or
simply as {a, }, where a,, is said to be the general term of the sequence
g. Here, for instance, as is called the term of rank 5 of the sequence g.



1. THE REAL LINE. SEQUENCES OF REAL NUMBERS 5

A sequence {b,,} is called a "subsequence” of the sequence {a,} if there
is a sequence ki < ko < ... < k,, < ... of natural numbers such that for
any m € N, b, is equal to ay,, . For instance {b;, = 2k}, k =0,1,2, ...
is a subsequence of N = {0,1,2,...}. But the sequence {0,1,2,2,2,...}
is NOT a subsequence of N (Why?). Yes, the set {0,1,2} IS a subset
of N, but not ...a subsequence! Can N be a subsequence of Z?

Now our question is: "How do we represent 2 kg and a quarter
on the line (d)?" More exactly, to the point C' on (d) which is the

extremity of a vector O—C>’ , obtained by taking O—f)ll twice + a quarter
from the same vector 0—1211, what kind of sequence of digits 0,1,2,...,9
could we associate? Let us divide the segment [OA;] into 10 equal
parts and let us associate the symbol 0.1 to the extremity Api of

the vector O—1>4[11} which is the 10-th part of O—1>41. In the same way
we construct Ao, Apg), ..., Apg) and their corresponding symbols 0.2,
0.3,...,0.9. We continue by dividing the segment [O A1y into 10 equal
parts and obtain the new symbols 0.01, 0.02,....,0.09, etc. We say
that 0.1 = %, 0.01 = ﬁ, and so on. For instance, the sequence (or the
number) 23.0145 represents the point E on (d) obtained in the following

To the vector OA dd: L0A, + L 0A, + 3 _0A,. Th
way. To the vector 23 We add: 155 1+ 500 1+ 15000 1- e

resultant vector is OF , etc. If one works (by symmetry) on the left of
O, one gets the "negative" numbers of the form: —a,a, _1...ag.b1bs...b,,,
where a; and b; are digits from the set {0, 1,2, ....9}. This last number
can be written as:

by b

bl m
—(10"a, + 10" a1 + ... — =4 ..+
(10"ay, + -1t Faot ot t +10m)

QG —1-..Qob1ba... Dy,
10m
Here appeared fractions like §, where a and b are natural numbers
and b # 0. We suppose that the reader is familiar with the operations of
addition, subtraction, multiplication and division with such fractions.
If a € Z and b = 10™, from this discussion, we have the geometrical
meaning of the fraction §. We also call any fraction, a number. What

(1.4) -

is the geometrical meaning of ‘—;? Take again the vector O—/ll and di-

vide it into 7 equal parts. Let OG be the 7-th part of OA;. Then
— —

40G = OH and H will be the point which corresponds to the number
%. The Greeks said that the number ‘—; is obtained when we want to

measure a segment [ON] with another segment [OM] and if we can find
a third segment [OP] such that [ON] = 4]OP] and [OM]| = 7[OP], i.e.
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% = 2. A representation of a number (for instance a fraction) as +
U Gp1---00.b1b2...by, ... is called a decimal representation (or a decimal

fraction). Let us try to find a decimal representation for the fraction %.
The idea is to write ‘—; as % . 4—70. Then, 40 = 5-7+ 5 implies % =5+ g,
where % < 1. Hence 2 = % + 1—10 . % Now we do the same for % Namely,

7
é:i@:%('?ﬁ-%)}so

7 10 7
4 1 1 1 5 7 1 1
—=—F+—(7T+)]=—+ —+ — - =,
7 10[+10(+7)] 10+102+102 7
Write now
1_1.10_1, 3,
7 10 7 10 7
So
4 5 7 1 3 5 7 1 1 3
—m=—t—+—(1+) ==t —t— +— =

710 ' 102 ' 103 7 10 102 103 10 7
Since the remainders obtained by dividing natural numbers by 7 can

be 0,1,2,3,4,5, or 6, in the sequence %, %, %, %, ..., at least one of the

fraction must appear again after at most 7 steps. Thus, let us go on!
Write

3 1 30 1 2
S
7 10 7 "ty

So
4 5 7 1 4 1 2
710102 108 10 T 10R T
But
2 1 20 1 6 2 1 60 2 1 4
TR A TG A TR TR A IS TZACR 2%
So
4 5 7 1 4 2 8 1 4
7710 102 108 10 105 105 108 7
but 4 1 40 1 5
TS0 7 100 7
Hence

M Ao T 142 8 5
' 7 10 102 103 10%*  10° 106 107 7

Since the digit 5 appears again, we must have:

4 no
- = 0.5714285714285... "% 0.(571428).
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We say that % is a simple periodical decimal fraction. Here we meet
with an "infinite" sum, i.e. with a series:

5 1 7 1
0.(571428) = 10(1+ T )+ 102(1+ T o) F
5 7 1 4 2 8 ] 1 1
_(E+1_02+1_03+1_04+1_05+1_06)( +1—06+W+...).
But 1+ 145 + 1o + - is an infinite geometrical progression with the
first term 1 and the ratio %. The actual mathematical meaning of this
infinite sum will be explained later.

The next question is if always one can measure a segment a by
another segment b and obtain as a result a fraction 7. Even Greeks
discovered in Antiquity that this operation is not always possible. For
instance, if one wants to measure the diagonal d of a square with the
side a of the same square we obtain a new number g such that (g)2 =2
(apply Pythagoras’ Theorem). If g was a fraction ™, where m,n € N,
n # 0 and m,n have no common divisor except 1, then m? = 2n?
and 2 would be a divisor of m, i.e. m = 2m/. Thus, 2m = n? and
then n would also have 2 as a divisor, a contradiction. Usually such
a number g is denoted by V2 because its square is 2. Such numbers

were not accepted by Greeks as being "real" numbers ! But v/2 can
be represented on the real line (d). It is the point U which denotes the
extremity of a vector OU such that its length is equ_al) to the length of
the diagonal of a square of side 1 (= the length of OA;). Any fraction
is called a rational number and any other number (like v/2) is called
an irrational number. /2 is an algebraic number because it is a root
of an equation with rational coefficients (X? — 2 = 0). We say that
a number is a real number if it is the result of a measurement, i.e. it
can be associated with a point of the real line (d). Up to now we know
that NOT all real numbers can be represented by ordinary fractions
(like \/5) We shall indicate below a natural way to associate to any
point of the line (d) a decimal fraction, usually infinite. Recall that to

the point A, (O—1>4n = nO—1)41) we associated a natural number n (given
as a finite sequence of digits). The symmetric point of A, relative to
the origin O was denoted by A_,, (see Fig.1.1). Our intuition says that
any point M belongs to a segment of the type [A,, A,.1), where n here
can be positive or nonpositive (i.e. n € Z). We want to associate to
the point M its coordinate x,; i.e. a decimal number in the interval
[n,m 4 1) = the set of all the real numbers (known or unknown up to
now!) which are greater or equal to n and less than n + 1 (relative
to the above lexicographic order). So LEJZ[An, A, +1) = all the points of
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(d). But this last assertion cannot be mathematically proved using only
previous simpler results! It is called the Archimedes’ Axiom. In the
language of the real numbers it says that any such number r belongs to
an interval of the type [n,n + 1). This n is called the integral part of r
and it is denoted by [r]. For instance, [3.445] = 3, but [—3.445] = —4,
because —3.445 € [—4,—3). So, our point M belongs to an interval
of the type [A,, A,.1) for ONLY one n = +apay,_1...ag, where a; are
digits. Let us divide the segment [A,, A,11) into 10 equal parts by 9
points Bj, B, ..., By, such that:

[An, Api1) = [Ay 2 By, By) U[By, Bs) U... U [By, Ays1 2 Big).

To these points we obviously associate the following rational numbers:
By —n+0.1,
BQ —n+ 027 couy Bg —n+ 09

Since M € [A,, Ant1), M belongs to one and only to one subsegment
[Bi, Bi11), where i € {0,1,...,9}. By definition we take as the first
decimal of z); to be this last digit b; = . If M is just B; we have
Ty = tapag_1..-ag.by. If M is on the right of B; the actual x,, will
be greater then the rational number @ia;_1...ag.b; and we continue our
above division process. Namely, instead of [A,,, A,,+1) we take [B;, Bi11)
that M belongs to and divide this last interval into 10 equal parts by
the points Cy = B;, (1, ...,Cy and C1g = B;,1. There is only one j such
that M € [C}, Cj+1). By definition, the second decimal of x/ is by = j.
It M = Cj, then x) = +a,a,_1...Go.b1b2 and xp; would be a rational
number. If NOT, then we go on with the segment [C;, Cj;1) instead of
[B;, Bi11), etc. If at a moment M will be the left edge of an interval
obtained like above, then x,; will have a finite decimal representation,
i.e. it will be a rational number. If M will never be in this situation,
then x,; can or cannot be a rational number. For instance, the point
P which corresponds to the fraction % is in this last position but, ... it
is represented by a fraction, so xp is a rational number. The point V'
which corresponds to v/2 is in the same position as P, but zy is not a
rational number as we proved above. The segments constructed above,
are contained one into the other:

[AnaAn—i-l) D) [BiaBi-i-l) D) [Cj,Cj_H) D ...

If M is not the left edge of no one of these segments, then their inter-
section is exactly M (Why?).

In general, the following question arises. If one has a tower of closed
segments

[T1,U1]) D [To,Us]) D ... D [Ty, Uy D ...
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on the real line (d), their intersection is empty or not? Our intuition
says that it could not be empty for ever! But,... there is no mathemat-
ical proof for this! This is way this last assertion is an axiom, called
the Cantor’s Aziom. Now we can call a real number r any decimal
fraction (finite or not) of the type:

(16) r = j:akak_l...ao.ble...bm...

We can write this "number" as a sum of some special type of fractions
by b b

1.7) r==+(10%a; + ...+ 10 St

(L7) r ( a+..+10a +ao+ ottt m t )

Using this last representation, it is not difficult to define the usual
elementary operations of addition, subtraction, multiplication, and di-
vision for the set R of all the real numbers (do it and find a natural
explanation for the rules you learned in the high school!-You must also
use the fact that » = lim r,,, where

m—00

by b bm
m = £ | 10% ..+ 10 — 4 =
r ( @+ o+ 1001 + a0+ 75+ 705 + +10m>

and the usual operations with convergent sequences). The algebraists
say that R together with the addition and multiplication is a field (see
the exact definition of a field in any Algebra course and verify this last
assertion!). Because of the fact that the real numbers are nothing else
than a representation of the points of the real line (together with a
Cartesian reference frame on it!), the Archimedes’s and the Cantor’s
axioms work on R. They can be expressed in the following way (in
language of numbers...):

AxioM 1. (Archimedes’s Axiom) For any real number r there is
one and only one integer number n such thatn < r <n + 1.

Axiom 2. (Cantor’s Aziom) Let a1 < as <,...< a, <,... and
by > by >,....,>b, >, ... be two sequences of real numbers such that for
any n one has that a,, < b,. Then there is at least one real number r
between a,, and b, for anyn € N. If in addition, the difference b, — a,
becomes smaller and smaller to zero, whenever n becomes larger and
larger, then this real number r is unique (in fact, this last assertion is
not an axiom !).

Hence, the real numbers can always be seen like points on a real
line (d). If we change the line and (or) the Cartesian reference frame we
clearly obtain different sets of real numbers. But,...all these fields of real
numbers are isomorphic like ordered fields. This means that for any
two such fields R; and R, there is at least one bijection f : Ry — Rs
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such that f(z +y) = f(z) + f(y), f(zy) = f(2)f(y) (f preserves
the algebraic structure of fields) and f(x) < f(y), whenever z < y

(f preserves the order introduced above). Here x,y € R;. In fact, it
is not difficult to construct such a bijection. If we take x € Ry, it
is the decimal representation of a point X on the first real line (d;).
But always one can construct a natural bijection g between the points
of (dy) and the points of (dy) which carries the Cartesian coordinate
system of the first line into the coordinate system of the second line.
Now we take for f(x) the real number which corresponds to the point
g(X) of the second line (prove that this construction works).

From now on we fix a field R of real numbers and we assume that
the reader knows the usual elementary rules of operating in this R. It is
of a great benefit if one always think of a real number as being a point
on a fixed real line (d). So, ... draw everything or almost everything!
This is why we say a point instead of a number and a number instead
of a point!

We realize that the "practical" representation of an irrational num-
ber on the real line (d) is impossible! This means that you will never
find a finite algorithm to do this. Because the point on (d) which cor-
responds to such an irrational number is obtained as the intersection
of an infinite number of closed intervals, each of them contained into
another one. Since the length of these intervals becomes smaller and
smaller up to zero, practically we can approximate the real position of
that point by one of the two ends of such a "very small" interval.

We must remark that the correspondence between the points of the
real line (d) and the decimal representations is not a bijection. For

instance, 0.999... = 1. But,... the correspondence between the points
of the real line (d) and the real numbers is a bijection! (Descartes’
bijection).

Let us come back and recall that the set of natural numbers

N={o0,1,...,9,10,11,...,20,21,...,n, ...}
can be naturally embedded in the ring of integers
Z=40,1,—-1,2,-2,....n,—n, ...},

where n is a natural number. This embedding preserves the usual
operations of addition and multiplication. Both sets N and Z are clearly
countable because they are naturally represented like sequences. What
is the difference between N and Z7 The equation X — 3 = 0 has a
solution in N, z = 3, whereas the equation X + 3 = 0 has NO solution
in N, but it has the solution x = —3 in Z. The next step is to see that
the general linear equation of the form aX + b = 0, where a,b € Z,
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may have no solution in Z. For instance, 2X +1 = 0 has no solution in
7, but its solution is the fraction _71 = —% which is a rational number.
Let us denote by Q the field of rational numbers and see that any
integer number m can be represented as a rational number: m = .
So, NCZ C Q C R, since any rational number is a particular real

number by the definition of a real number.
THEOREM 2. The rational number field Q is also a countable set.

Proor. It will be enough to represent the positive elements of QQ as
a subsequence of a sequence (Why?-Use the same trick like in the case
of the countability of Z). Look now carefully to the following infinite
table

1 1 1 1 1 1 1 1

i 2 3 % 5 6 7 T 8
/ / / / / / /

2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 8

I/ / / e /! e

3 3 3 3 3 3 3 3

1 2 3 4 5 6 7 8
/ / / /! /

4 4 4 4 4 4 4 4

1 2 3 4 5 6 7 8

I/ / / /

5 5 5 5 5 5 5 5

1 2 3 4 5 6 7 8
/ / /

6 6 6 6 6 6 6 6

1 2 3 4 5 6 7 8

l/ /

7 7 7 7 7 7 7 7

1 2 3 4 5 6 7 8
/

8 8 8 8 8 8 8 8

1 2 3 4 5 6 7 8

!

and to the arrows which indicate "the next term" in the sequence.
This sequence covers ALL the entries of this table and any positive
rational number is an element of this sequence, i.e. Q, can be viewed
as a subsequence of this last sequence. Thus Q. is countable. Since
Q=0Q_u{0}uQ,, Qis also countable. O

Recall that a real number r is a "disjoint union" of two sequences
of digits with + or — in front of it:

(1.8) r = +apar_1...09.01bs...b,...
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The first sequence is always finite: ay,a_1, ..., ao. After its last digit
ao (the units digit) we put a point ”.” . Then we continue with the

digits of the second sequence: by,bs,....b,, ... . As we saw above, this
last sequence can be infinite. If this last sequence is finite, i.e. if from
a moment on b, = b,1o = ... = 0, we say that r is a simple rational

number. Any simple rational number is a fraction of the form 5=
where a € Z and n € N. If r is not a simple rational number, it can be

canonically approximated by the simple rational numbers
Trp = iakak_l...ao.blbg...bm

for n = 1,2, .... This means that when n becomes larger and larger, the
absolute value

(1.9)
error, = |r —ry| = 0.00...0 bpy1by10... = L(b 1—|—bn+2—|—bn+3+ )
n n . 7t.'.. n+10n+2-.- 10n+1 n—+ 10 102
becomes closer and closer to 0. Indeed,
1 bnt2 | bngs 1 9 9 1
— (b, ) < 94+ —+—+..)= —
T TR T R T T R TR TR A D

and, since 5z < L (prove it!), one gets that |[r — 7,,| — 0 (tends to 0),

when n — oo (the values of n become larger and larger).

REMARK 1. Hence, in any interval (a,b), a # b, a,b real numbers,
one can find an infinite numbers of simple rational numbers (prove it!).

But, what is the mathematical model for the fact that a sequence
{z,}, n=0,1,... tends to 0 (i.e. |z,| becomes closer and closer to 0,
when n becomes larger and larger (n — o0))?

DEFINITION 1. We say that a sequence {x,},n = 0,1, ... is conver-
gent to 0 (or tends to 0), when n tends to oo (n — o0), if for any posi-
tive (small) real number ¢ > 0, there is a natural number N. (depending
on €) such that |x,| < € for any n > N.. We simply write this: x, — 0,
or, more formally: lim x,, = 0, or, less formally: limxz, = 0. We also

n—oo

say that a sequence {x,}, n = 1,2,... is convergent to a real number
x (or that x is the limit of {x,}; write lim z,, = x) if the difference

sequence {x, —x}, n =1,2, ... is convergent to 0, or, if the "distance"
|z, — x| between x, and x becomes smaller and smaller as n — oo.
This is equivalent to saying that for any positive (small) real number ¢,
all the terms of the sequence {x,},n = 0,1, ..., except a finite number
of them, belong to the open interval (x — e,x + €). Such an interval,
centered at x and of "radius €", is called an e-neighborhood of x.
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THEOREM 3. Let {z,} be a convergent sequence. Then its limit is
a unique real number.

PROOF. Let us assume that « and 2’ are two distinct limits of the
sequence {z,} and let £ be a positive small real number such that
e < |z — 2'|. Since both x and 2’ are limits of the sequence {z,}, for
n large enough, one must have |z, — 2| < § and |2’ — z,,| < §. Now

/ / / £ g g
or € < 5, a contradiction! So, any two limits of the sequence {z,,} must
be equal! O

In (1.9) we have in fact that any real number r can be approximated
by its simple rational number components (or approximates) r,, i.e.
limr, = r. We say that the set of simple rational numbers is dense in
R. In particular, Q is dense in R. Let m be a fixed nonzero natural
number and let (), be the set of fractions of the form --, where a runs
in Z and n runs in N. Then any real number r is a limit of elements
from @, i.e. @, is dense in R (prove it!-write r in the basis m, instead
of 10).

We just used above that the sequence {%}, n =1,2,... is convergent

to 0. Our intuition says that if we divide the unity vector 0—1211 (see
Fig.1.1) into n equal parts, the length % of one of them becomes smaller
and smaller. But,...why? What is the mathematical explanation for
this?

THEOREM 4. The sequence {X} is convergent to 0.

PrOOF. We apply Definition 1. Let € > 0 be a small positive real
number and, by using the Archimedes’s Axiom, let /N, be the unique
natural number such that % € [N: — 1, N.). So, for any n > N, one
has that % < N. <n,ie. % <E. O

REMARK 2. The absolute value or the modulus |r| of the real number
r from (1.8) is simply

akak_l...ao.blbg...bn...,

i.e. 1 without minus if it has one. For instance, |—3.14| = 3.14 =
13.14| . Since the function dist, which associates to any pair of real
number (x,y) the nonnegative real number |x —y|, i.e. dist(z,y) =
|z — yl|, has the following basic properties (prove them!):

i) dist(x,y) =0, if and only if v =y,

i) dist(x,y) = dist(y, x),

ii1) dist(x,y) < dist(x, z) + dist(z,y) (the triangle inequality),
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for any z,y,z in R, we say that dist(x,y) = |x — y| is the distance
between x and y and that R together with this distance function dist is
a metric space.

Another example of a metric space is the Cartesian plane xQOy
with the distance function between two points My (z1,y1) and Ma(x2, ys)
given by the formula:

—
dist(My, My) = ‘M1M2

= V(22— 21)* + (12 — 1),

i.e. the length of the segment [MyMs]. Here we can see why the property
iii) was called "the triangle property” (be conscious of this by drawing
a triangle in plane...!).

Now, what is the difference between the rational number field Q and
the real number field R? The first one is that Q is countable and, as
the following result says, R is not countable, so the subset of irrational
numbers is "greater" than the subset of rational numbers.

THEOREM 5. (Cantor’s Theorem). The set R is not countable,
i.e. one can NEVER represent the whole set of the real numbers as a
sequence.

PRrROOF. Let r be like in (1.8). It is enough to prove that the set S
of all the sequences {by, ba, ..., by, ...}, where b, is a digit, is not count-
able. Suppose on the contrary, namely that S can be represented like
a sequence of ... sequences: S = {By, By, ..., B,, ...}, where

Bn - {bnh bn27 bn37 sy bnnu }7

and b,; are digits. In order to obtain a contradiction, it is enough
to construct a new sequence of digits, which is distinct of any B; for
i =1,2,.... Let C = {e1,¢2, ..., Cp, ...} with the following property:
Cn = bpn+1,if by, # 9 and ¢, =0, if b, = 9. Now, let us see that C' is
not in S. Assume that C' = By, for a k € {1,2,...}. By the definition of
¢y, this last one cannot be equal to by, thus the k-th term of C' is not
equal to the k-th term of By and so, C' # By, a contradiction! Hence
C ¢ S. So S cannot be represented like a sequence. O

It is not difficult to prove that the subset of R which consists of all
the algebraic elements over QQ (roots of polynomials with coefficients in
Q) is countable. So, R contains an uncountable subset of transcendental
numbers (numbers which are not algebraic). In fact we know very
few of them, e, , eﬁ, etc. A real number which is not rational is
called an irrational number. Since any interval (a,b) is in a one-to-
one correspondence onto the interval (0,1) (f : (0,1) — (a,b), f(t) =
a + (b — a)t is a bijection between (0,1) and (a,bd)) and since tan :
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(=%, %) — R is a bijection between (-7, 7) and R, there is a bijection
between R and any nontrivial interval (a,b), does not matter as small
as this last interval is.

REMARK 3. Hence, (a,b) with a # b is not countable. Thus, in
(a,b) one can find an infinite number of irrational numbers and even
an infinite number of transcendental numbers (why?-explain step by

step!).

Can we solve any equation in R ? The answer is no! Even the
simple equation X2 + 1 = 0, with the coefficients in Z has no real
solution. Why? Because z = 0 is not a solution and, if z # 0, then x>
is positive (see the multiplication rule of signs!). So, 2 + 1 is greater
than 1, thus it cannot be zero. In order to solve this last equation we
need to enlarge R up to another field C, the complex number field.
Its algebraic structure is the following. Take the 2-dimensional real
vector space V' = R x R with the componentwise addition and the
componentwise scalar multiplication. Then we introduce a "strange"
multiplication:

(1.10) (a,b)(c,d) ¥ (ac — bd, ad + be).

It is not difficult to prove that V' together with this multiplication
becomes a field in which (0,1)*> = (—1,0), identified with the real
number —1, because a — (a,0) is a canonical embedding of R into
V. This new field is usually denoted by C. It is clear that £(0, 1) are
the solutions of the equation X2 + 1 = 0. What is amazing is that C.
F. Gauss proved that any polynomial with coefficients in C has all its
roots in C. The algebraists say that C is algebraically closed (it cannot
be enlarged by adding to it new roots of polynomials with coefficients
in it). Later, Frobenius proved that there is no other superfield of R,
which has a finite dimension over it, but C (which has dimension 2
over R). Here dimension means the dimension of C as a vector space
over R. Since any z = a + ib, where i = (0,1) and a, b are unique real
numbers, {(1,0), (0,1)} is a basis in C. So the dimension of C over R
is 2.

Let us now come back to our problem relative to the differences
between Q and R. Since Q is a subfield of R, the Archimedes Axiom
also works on Q. But, what about Cantor’s Axiom? We know that
v/2 is not in Q. Let us consider the (infinite) decimal representation of

V2
(1.11) V2 = 1.41b3by..b,...
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and let us denote by x,, = 1.41b3by...b,,, the corresponding n-th simple
rational number of /2. It is clear that the sequence {z,} is an increas-
ing sequence which converges to v/2. Let us also consider the following
decreasing sequence {y,} of simple rational numbers, convergent to
the same \/§ Y1 = ]_5, Y2 = 142, voey Yn = 1-41b3b4‘--bn—lcnbn+1bn+2---a
where ¢, = b, + 1, if b, #9 and ¢, = b, =9, if b, = 9. It is easy to
see that the intersection of all the closed intervals [z, y,|, n = 1,2, ...,
in Q, is empty in Q (since the intersection in R is exactly V2, which is
not in Q). Hence the Cantor axiom does not work for the ordered field
Q.

In this last counterexample we needed some tricks, so it will be
desirable to have an equivalent statement to the Cantor’s Axiom. For
this we introduce two important new notions, namely the notion of the
least upper bound (LUB) and the notion of the greatest lower bound
(GLB) of a given subset of R. We do everything for the LUB and we
leave to the reader to translate all of these in the case of the GLB.

Let A be a nonempty subset in R. A real number z is called an
upper bound for A if any element a of A is less or equal to z. A least
upper bound (LUB) for A is (if it does exist!) the least possible z which
is an upper bound for A. For instance, the LUB of A = [0,7) is 7 and
the GLB of A is 0. We cannot have two distinct LUB for the same
subset A (Why?). If A is (upper) unbounded (i.e. if for any natural
number n there is at least one element b of A such that b > n), then A
has no upper bound in R and as a logical consequence it has no LUB
in R. For instance, A = [0, 00) has no upper bound in R, but 0 is the
GLB of A. R and Z have neither an LUB nor a GLB in R.

Usually, the LUB of a subset A is denoted by sup A (the supremum
of A) and the GLB of a subset B is denoted by inf B (infimum of B).

THEOREM 6. (LUB test) Let A be a subset of R. Then c is the LUB
of A if and only if for any small positive real number ¢ > 0, there are
an element a of A such that c — e < a < ¢ and an upper bound z of A
with ¢ < z < c+¢. This is equivalent to saying that any e-neighborhood
of ¢ must simultaneously contain an element a of A and an upper bound

z of A (Why?).

PRrROOF. Let us suppose that ¢ = sup A. Assume that we found an
e > 0 such that all the elements of A are less or equal to ¢ — . So
¢ — ¢ is an upper bound of A less than ¢, a contradiction, because, by
definition, c is the least upper bound of A. Hence, there is at least one
a € A in the interval (c—eg, c|. If all the upper bounds of A were greater
or equal to ¢ + €, then ¢ would not be the least upper bound of A and
we would obtain again a contradiction.
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Conversely, let us assume that c is a real number with the property
described in the statement of the above theorem. If ¢ were not sup A,
we have two options: 1) ¢ is not an upper bound of A, i.e. there is
at least one a greater than c. Taking now € = a — ¢ and using our
hypothesis for this particular ¢ > 0, we get an upper bound z of A in
the interval [¢,c + ¢ = a), i.e. z is less than a. This is in contradiction
with the fact that z is an upper bound of A. Hence 1) cannot appear.
It remains only the second option: 2) ¢ is an upper bound of A, but
it is not the least, namely there is another upper bound y which is
less than c. Take now ¢ = ¢ — y > 0 and use again the hypothesis of
the theorem for this new . So, one can find an element b of A in the
interval (c—e = y, ¢]. Thus, b is greater than y, which was considered to
be an upper bound of A. Again a contradiction! Therefore, the second
option is also impossible and the proof is complete. O

The LUB test is very useful because it supply us with some impor-
tant results.

THEOREM 7. The following statements are logically equivalent: i)
The Cantor Aziom (see Axiom 2) works in R, ii) Any upper bounded
subset A of R has a LUB in R and, iii) Any lower bounded subset B
of R has a GLB in R.

PROOF. First of all let us see that ii) and iii) are equivalent. Let
us prove for instance that ii)=- iii). For the lower bounded subset B
of R let us put —B = {z € R: —z € B}, the symmetric subset of B
with respect to the origin O (on the real line (d)). It is not difficult to
see that the new subset —B is upper bounded in R and so, from ii) it
has a LUB b in R. We leave the reader (eventually using Theorem 6)
to prove that —b is the GLB of B in R.

We leave as an exercise for the reader to prove that iii)= i).

Now we prove that i)=—> ii). Let by be an upper bound of A and
let ag be an element of A. It is clear that ag < by. If a9 = by we have
nothing more to prove because the LUB of A will be this common value
¢ = ag = by. Assume that ag is less than by an let us divide the closed
interval [ag, by] into two equal closed subintervals by the mid point ¢q.
By the "essential choice" we mean to choose the subinterval |ao, o] if ¢
is an upper bound for A, or to choose the subinterval [y, by] if there is
at least one element a} € A in the second subinterval, [co, by]. After we
have performed "the essential choice", let us denote by [ay,b] either
the subinterval [ag, ¢o] in the first choice, or the subinterval [cg, bo] in
the case of the second choice. In both situations a; € A, by is an upper
bound of A and ag < a; < by < bg. Now we take the interval [aq, by],
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divide it into two equal parts and repeat the "essential choice" for this
new interval [aq, b1], find as € A and by an upper bound of A with

ap < ap <ag < by < by < by

and so on. We obtain two sequences: an increasing one and a decreasing
one in the following position:

a9 < ay < . <ap <o < by < < by < by,

such that the distance dist(ay, b,) = W In particular,

dist(an,b,) — 0,

whenever n — o0o. Now we can apply the Cantor Axiom and find a
unique point ¢ belonging to all the intervals [a,, b,] for any n = 1,2, ...,
i. e. lima, = limb, = ¢ (Why?). We prove now that this c is exactly
sup A. Let us now apply the LUB test (see Theorem 6). Take an ¢ and
let us consider the e-neighborhood (¢ —¢, ¢+¢). Since lim a,, = lim b,, =
¢, there is an n € {1,2,...} such that [a,,b,] C (¢ —e,c+ ¢). But, by
the above construction, a, € A and b, is an upper bound of A. So, by
the criterion of Theorem 6, we get that ¢ = sup A.

ii)== 1) Let {a,} and {b,} be two sequences of real numbers such
that

aosalgganggbnSS[tho

The subset A = {ag, ai, ..., ay, ...} is upper bounded in R by any term of
the second sequence {b,, }. From ii) we have that A has a LUB ¢ = sup A

and ¢ < b, for any n = 0,1, ... . Since c is in particular an upper bound
of A, one also has that a, < ¢ < b, for any n = 0,1, ... . Hence the
Cantor Axiom works on R. O

A sequence is said to be monotonous if it is either an increasing or
a decreasing sequence. For instance, z, = and y, = — are
monotonous sequences.

1 1
n2+1 n2+1
REMARK 4. Let us now introduce two symbols: 1) oo, which is
considered to be greater than any real number r, r+ 00 = 00, 00+ 00 =
00, and 2) —oo, which is considered to be less then any real number r,

r+(—00) = —00, —00 — (00) = —00, r-00 = 00, if r > 0,700 = —00,
if r < 0. Moreover, r - (—o0) = —oc0 if r > 0 and r - (—o0) = o0, if r is
negative. In the same logic,
r
. = (— o — = — . = — = o — —:O t
00:00 = (—00):(—00) = 00, (—00)-00 00 c>o(oo),i_OO ,ete

The operations 0-(£00), 00— 00, % and 22 are not permitted. We denote
by R = {—co} URU {oo} and call it the accomplished (or completed)
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real line. By definition, a neighborhood of oo is an open interval of
the form (M, 00) and a neighborhood of —oo is an interval of the form
(—o0, L), where M, L are real numbers. For instance, in R any subset
of real numbers is bounded (upper or lower) and an unbounded (in
R ) increasing sequence is said to be "convergent to oo” (for example,
T, =n® — 00). But the sequence y,, = (—1)"n is bounded in R but it is
not "convergent” there (Why?). Usually, if a sequence of real numbers
is "convergent to oo” in R, we say that it is divergent in R. Sometimes,

by abuse, we write lim x,, = oo when the sequence {x,} is unbouded
n—oo

and increasing. If {x,} is a sequence in R and if L({x,}) is the set of
all the limits of all the convergent subsequences of {x,}, we denote by

limsup{x,}, the sup L({x,}) and by liminf{x,}, the inf L({z,}). For
instance, for the sequence x, = sin(2Hr) = (=1)", limsupz, = 1

2
and liminf z,, = —1 (prove this!).

THEOREM 8. a) Let {x,} be an increasing sequence in R. Then
limsup z,, exist in R and the sequence is convergent to lim sup x,, in R.
If {z,} is also upper bounded in R, then limsupz, is its limit in R
too, i.e. limx, = limsupz,. b) Let {y,} be a decreasing sequence in
R. Then liminf z, always exist in R and the sequence is convergent to
liminf x,, in R. If {x,} is also lower bounded in R, then liminf x,, is
also in R and so lim x,, = lim sup z,,.

PrROOF. We prove only a) and we think that b) is a good exercise
for the reader. If {x,} is upper unbounded then, for any real number
M, there is at least one n with z,, > M. Since {x,} is an increasing
sequence, Ty, > T, for any p = 1,2... . So, outside the neighborhood
(M, 00) of oo we have only a finite number of terms of our sequence,
i.e. x, — oo, which is at the same time limsup x,, (Why?). If {x,} is
upper bounded, then, using Theorem 7, we get that ¢ = limsup z,, is a
real number. Take now an e-neighborhood (¢ — ¢, ¢+ ¢) of ¢. Since ¢ is
the LUB of the set {x,}, we can apply Theorem 6 and find an x,, in the
interval (¢ — €, ¢|. Since the sequence is increasing, ,, 11, Tpm2, ... are
in the same interval (Why?). So, outside this interval one has at most
a finite number of terms of our sequence, i.e. z,, — ¢ (see Definition

1). O

Let us come back to the approximation of V2 = 1.41bsby...b,...
(see (1.11)) by the increasing sequence x,, = 1.41b3by...b,, n = 1,2, ...
of simple rational numbers. This last sequence {z,} is a sequence
in Q but its limit v/2 is not in Q. However, this sequence has an
interesting property. If we fix an n € N, and if we consider the terms
T, Tt1, T2, ---Tnip, We see that the distance between z,, and z,4,
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goes to 0 independently of p € N, but dependently of n. This means
that from a rank N on the distance dist(x;, x,,) becomes smaller and
smaller (I, m > N). Indeed,

. 1
dzst($n,xn+p) =0.00...0 bn+1bn+2-'-bn+p S 0.00...0999... = W — 0
n—times n—times

independently on p, i.e. for any small real number £ > 0, there is a
rank N, such that whenever n > N, one has that dist(x,, z,4p) < €,
forany p=1,2,... .

DEFINITION 2. Let {x,} be a sequence of real numbers. We say
that {x,} is a Cauchy sequence or a fundamental sequence if for any
small positive real number € > 0. there is a rank N. (depending on )
such that |Ty4p — Tn| < € for any n > N, and for anyp = 1,2, .... This
means that |z, — x,| — 0, when n — oo, independently on p.

For instance, the above sequence z,, = 1.41b3b4...b,,, n = 1,2, ... is
a Cauchy sequence of rational numbers which is not convergent in Q,
but which is convergent in R, its limit being the real number v/2. This
is why we say that Q is not "complete".

DEFINITION 3. In general, a metric space X with its distance dist
(see Remark 2) is said to be complete if any Cauchy sequence {x,} with
terms in X is convergent to a limit x of X.

Let us consider the following sequence
cosl cos2 cos3 cosn
5 + 57 + 53 + ...+ on
where the arcs are measured in radians. Let us prove that this last
sequence is a Cauchy sequence. For this, let us evaluate the distance

Ty =

dist(Tn, Tpyp) = [Tnip — Tn| =

cos(n+1)  cos(n+2) N cos(n + p) ‘

on+1 on+2 on+p
< (1+ L1y ) = !
on+1 2 22 T 9n”

This last equality comes from the definition of the infinite geomet-
rical progression
1 1

def . 1 1 1 . 1— i



1. THE REAL LINE. SEQUENCES OF REAL NUMBERS 21

So dist(xy, Tnyp) tends to 0 independently of p, because 2% goes to
0, whenever n — oo, independently of p. Indeed, for a small € > 0, let
us find the first natural number N. such that 2%5 < e. Applying log,
we get N > —log, e, so N, = [—log, €] + 1. Now, if n > N,

. 1
d@St(l’n,ZE,H_p) < 2_" < QTE <g,

independently on p.

THEOREM 9. Any convergent sequence {x,} to z is also a Cauchy
sequence. Thus, the class of Cauchy sequences "appears” to be larger
then the class of convergent sequences.

PrROOF. We simply verify Definition 2. Let € be a positive small real
number and let N, be a rank (dependent on ¢) such that |z, — z| < §
for any n > N. (see Definition 1 with § instead of ). So,

€ €
’:Cn+p_xn| = |:Cn+p_$+x—ﬂfn| S ‘$n+p—$‘+|$n—l" S §+§ =&
for any n > N.. Hence our convergent sequence is also a Cauchy se-
quence. 0

A basic result in Mathematics was discovered by Cauchy: "Any
fundamental sequence of real numbers is convergent to a real number,
i.e. R is a "complete metric space".

To prove this important result we need some specific properties of
the Cauchy sequences.

THEOREM 10. Any Cauchy sequence {x,} is bounded, i.e. there is
a positive real number M such that |x,| < M for any n = 0,1, ... or,
equivalently, if there is an interval [A, B] in R such that all the terms
of the sequence {x,} belong to this interval, i.e. x, € [A, B] for any
n=0,1,... (Why this equivalence?).

Proor. Take an arbitrary positive real number, for instance 2.
Since {x,} is a Cauchy sequence, there is a rank N such that whenever
n > N, |Tp4p — 2| < 2 for any p = 1,2... (see Definition 2). In
particular, |xyi, — xn| <2, or Ty4p, € (xy — 2,25 +2) for any p € N.
So, outside this last interval one may have at most zq, z1,...,xny_1 as
terms of our sequence. Take now A = min{zg, z1,...,2n_1,ny — 2}
and B = max{xg, x1,...,xy_1,2n + 2}. It is easy to see that all the
terms of the sequence {z,} belong to the interval [A, B]. If one takes
now M = max{|A|,|B|}, then z,, € [-M,M], or |z,| < M for any
n=0,1,.... l

Here is a strange property of the Cauchy sequences.
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THEOREM 11. If a Cauchy sequence {z,} contains at least one sub-
sequence {zg, }, (ko < k1 < ko < ... < k, < ... ) which is convergent to
x, then the whole sequence {x,} is convergent to the same x. Therefore,
all the other subsequences of {x,} are convergent to x.

PROOF. Let € be a small positive real number. Since {zy,} is con-
vergent to to x whenever n — oo, for n large enough, let us assume
that for n > N’, one has

£

(1.12) |2k, — x| < 3

Since {z,} is a Cauchy sequence, for n large enough, suppose n > N”|
one has that

€
(1.13) |Tpip — x| < 2
for any p = 1,2,... . Let now N be a natural number greater than

N’ and than N”, at the same time. Let n be a fixed natural number
greater than NV and let us choose k,, such that it is greater than this
fixed n and m itself is greater than N. So, k,, = n + p, for a natural
number p (= k,, —n). From (1.13) we get that

(1.14) | Tk, — T < g

because n > N > N”. From (1.12) one has that

(1.15) 2, — ol < 2,

because m > N > N’'. Now,

T — x| = |20 — T8, + TRy, — ] < TRy, — T| TR, — 1] < §+% =e.

And this is true for any n > N. Hence, the sequence {x,} is convergent
to . We leave to the reader to convince himself (or herself) that if a
sequence {z,} is convergent to a real number z, then any subsequence
of it is also convergent to the same x. U

We prove now a basic property of a bounded infinite subset A of
real numbers. For this we give a definition.

DEFINITION 4. We say that a subset A of real numbers has the
point (real number) x as a limit point if there is a sequence {a,}, with
distinct terms a,, from A, which is convergent to x.

For instance, 0 is a limit point of

11 1
A={1,2, 50 =
{72737 7n7 }
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and of the interval [0, 1]. But 0 is NOT a limit point of the set B =
{0,1,2} (Why?). N and Z have no limit points in R! (Why?). Find
all the limit points of Q in R! (Hint: the whole R is the set of all the
limit points of Q, why?)

THEOREM 12. (Cesaro-Bolzano-Weierstrass Theorem). Any infi-
nite and bounded subset A of R has at least one limit point in R, i.e.
there is an © € R and a nonconstant sequence {a,} with a, € A for
anyn =0,1,... , such that a, — x.

PROOF. Since A is bounded, there is a closed interval [ag, by (aq, by €
R) which contains A. Let us divide this last interval into two equal
closed subintervals and let denote by [a1, b;] that subinterval which con-
tains an infinite number of elements of A. Let x; be in [ay, b;] and in A,
i.e. x1 € a1, b1]NA. Let us divide now the interval [aq, b;] into two equal
closed subintervals and let us choose that one [as, bs] which contains an
infinite number of elements from A. Let x5 be in AN[ag, by] and x5 # 2.

We continue to construct subintervals [as, bs], (a4, b4l, ..., [an, by], ... and
elements z,, of AN [ay,b,], such that x, ¢ {x1,z9,...,2,-1} for any
n = 3,4,...,n,... . Since the length of the interval [a,, b,] is 2%, where

[ is by — ag, the length of the initial interval, we can use Cantor Axiom
(Axiom 2) and find a unique real number x in the common intersection

O(jo[an,bn] of all the intervals [a,,b,]. Since x,, and x are in [a,, b,],

dist(x,,r) < % so, T, — « (see Definition 1). Because z,,, n = 1,2, ...
are distinct elements of A, one has that x is a limit point of A and the

theorem is completely proved. O

THEOREM 13. (Cauchy test 1). Any fundamental (Cauchy) se-
quence in R is convergent in R, i.e. R is a complete metric space.
This means that in R there is no difference between the set of conver-
gent sequences and the set of Cauchy sequences (In Q there is!-Why?)

PRrROOF. Let {y,} be a fundamental sequence in R. If {y,} has
only a finite distinct terms then, from a rank on, the sequence becomes
a constant sequence, so it would be convergent to the value of the
constant terms. Let us assume that {y,} has an infinite number of
distinct terms, i.e. that the set A = {y,,} is infinite. Since A is bounded
(see Theorem 10) and infinite, it has a limit point y (see Theorem
12), i.e. there is a nonconstant subsequence {yx, }, n = 1,2, ... of the
sequence {y,}, which is convergent to y. We apply now Theorem 11
and find that the whole sequence {y,} is convergent to y. O
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This theorem has not only a great theoretical importance, but a
practical one too. For instance, take again the sequence

cosl cos2 cos3 cos

5 + 92 + 93 + .+ on
We proved that {z,} is a Cauchy sequence. Now, we know (see The-
orem 13) that it is also a convergent sequence to an unknown limit
(we cannot express this limit as a decimal fraction!) x. Knowing that
r, — x is a very good situation! For a large n we can approximate x
with z,,. But this last one can be easily computed with an usual com-
puter. So, we have a good idea about the limit. Moreover, the Cauchy

test 1 is useful to check if a sequence is convergent or not. For instance,
the sequence {a,} is recurrently defined: ag = 0, a,, = /2 + a,_; for

Ty =

n=1,2,.... Let us prove that it is a Cauchy sequence. Indeed,
(1.16) Up = Ap1 =2+ ap1 — /2 + Ay o=
Ap—1 — Ap—2 1

< (ap_1 — ay,_s).
\/24_0/“71 +\/2+an72 2(@ 1 a 2)

We can apply (1.16) (n — 1)-times and find
1 1 1

Ay — Ap_q1 < 5(%—1 —p_9) < ﬁ(an_g —p_3) <..< T
So,

(a1 — (10).

Qptp — Ap = Aptp — Qpyp-1 + Aptp—1 — Gp4p—2 + ..+ Ap+1 — Ap <

1 1 1
< (2n+p—1 + ontp—2 + ...+ 2—n)(a1 — CL()) <
1 1 1 1
< 2_n(1 + 5 + ? —+ ...)(al — CLo) = F(al — CLo).
Here we just used that
11 def . 1 1 L 1—y

Since {a,} is an increasing sequence (Why?), one has that

|an+p —an| < (a1 — ap),

on—1
S0, |@n4p — ay| can be made as small as we want when n — oo, inde-

pendently on p. Thus, {a,} is a Cauchy sequence (see Definition 2).
Hence {a,} is convergent to a limit [ (see Cauchy test 1). As we shall
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see in the following theorem (Theorem 14), we can apply the "oper-

ation" lim to the equality: a, = v/2+ a,_1 and find: [ = 2+, or
[ = 2. Therefore, lim a,, = 2.

n—oo

Now, we describe some compatibilities of the "operation" lim (which
associates to a convergent sequence its limit), with the algebraic op-

erations "+7,7 — 7 7 .7 7 =7 with the order relation "< ”, with the
functions =™, ¥/x, expx, Inz, a*, log,,a > 0, sinz, cosz, tanx, cot x
and with their compositions. This means, ... with all the elementary

functions. We recall a basic definition:

DEFINITION 5. Let (X, dy) and (Y, ds) be two metric spaces and let
f: X =Y be a mapping defined on X with values in'Y. We say that f
is continuous at v € X (with respect to these metric space structures) if
for any convergent sequence {x,} in X, {z,} — x, i.e. dy(x,,x) — 0
as n — 00, one has that the corresponding sequence of the images,
{f(zn)} is convergent to f(x) in Y, i.e. da(f(xy,), f(x)) — 0, when
n — oo. If f is continuous at any x of X, we say that f is continuous
mn X.

All the elementary functions (polynomials, rational functions, power
functions, exponential and logarithmic functions, trigonometric func-
tions and their compositions) are continuous on their definition do-
mains. To prove this, it is not always so easy. For instance, what
do we mean by 3V2? First of all, we define 3%, m = 1,2, ..., by the

unique positive real root of the equation X™ — 3 = 0. Then we define
n def

3m = (?ﬁ) . By 377 we understand 3%% Then, we approximate v/2
with an increasing sequence {r,} of rational numbers, i.e. r, — V2
and r, < r,41 for any n = 1,2,.... As we know, we simply take for r,
the rational number 1.b1bs...b,,, i.e. we get out all the decimals of V2
from the (n 4 1)-th decimal on. Now, by definition, 3V2 = lim 3. To

n—oo

prove the existence of this limit is not an easy task. It is sufficient to
prove that the sequence {3} is a Cauchy sequence. But,... even this
one is difficult! So, the proof of the continuity of the power function
x — 3" is not so easy at alll This is why we tacitly assume that all the
elementary functions are continuous.

THEOREM 14. Let {z,} and {y,} be two convergent sequences to x
and to y respectively. Then:

b) {znyn} — zy,

¢c) If yn and y are not zero for anyn =0,1, ..., then {{*} — {{}.

d) If x,, <y, foranyn=0,1,..., then z <y,
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e) {(z,)"} — x™ for any fixed natural number m,

f) ¥z, — X/x if m is odd and, for x, >0, x/x, — Y/x for any
natural number m,

g) {expz,} — expx and, if x, > 0, then {lnx,} — Inx,

h) {a**} — o* and, if x, > 0,{log,z,} — log,z for any fived
a> 0,

i) sinx, — sinzx, cosx, — cosz, tanz, — tanz, cotx, — cotx,

PROOF. (partially) a) Let us prove for instance that {z, + y,} —
x +y. For this, let us evaluate the difference:

Zn +yn — (@ +Y)| = [(2n —2) + (Yo — Y| < |20 — 2+ Y0 —yl-
But |z, — x| — 0 and |y, — y| — 0, so their sum tends to 0 too (Why?).
Thus, |z, + y» — (x + y)| also goes to 0.

d) Assume that x > y and take ¢ = “5¥. Let us consider the open
intervals: I = (y — ¢,y +¢) and J = (x — ¢,z + ¢). Since x, — = and
yn — v, for a large n one can find x,, € J and y,, € I. But any element
of I is less than any element of J. Hence y, < x, and we obtain a
contradiction, because, for any n, one has in the hypothesis of d) that
Tn < Yn-

i) Let us prove for instance that sinz, — sinz, whenever x,, — .
First of all we remark that |sina| = sin |a| for any o € (=%, 7). Since
v, — x, one can take n large enough such that z, —x € (-7, 7). If
« is measured in radians and o € (-7, %) then, an easy geometrical
construction (see Fig.1.2) tell us that sin |o| < |af.

Let us use now some trigonometry:

|sin x,, — sinz| = 2 |sin x";xcos xn;—x <2- mn2—:c = |z, — 2|,
so [sinz, — sinz| — 0, whenever x,, — z. O
B
1
] lBCI=SinIGI\< |BA|< lenght (arcBA) = ||
O . A
C
Fig. 1.2

COROLLARY 1. Let f: A— B andg: B— C (A, B,C are subsets
in R) be two functions with the following property: If f(x,) — f(x)
and g(yn) — g(y) for ANY convergent sequences {x,} to x and {y,}
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to y, then (go f)(z,) — (go f)(x). The functions f and g considered
here are continuous on their definition domains in the sense of Defini-
tion 5. So, the composition between two continuous functions is also a
continuous function. Moreover,the sum, the difference, the product and
the quotient of two continuous functions is also a continuous function.

PROOF. Since f and g are continuous (see the definition in the
statement of the theorem) then, z,, — x implies f(z,) — f(x) (con-
tinuity of f). Since g is continuous, g(f(x,)) — g(f(x)), i.e. (go
)(x,) — (go f)(z). Thus g o f is also continuous. The other state-
ments are easy consequences of some of the previous statements of the
above theorem (prove them!). 0

2. Sequences of complex numbers

Let C be the complex number field. Since any element z of C is a
pair z = (x,y) of two real numbers and since the element i = (0, 1) has
the property that i(y,0) = (0, y) (see the multiplication rule defined in
(1.10)), we can write z = x+1y, where we identify (z,0) and (y,0) with
x and y respectively. Let us fix a Cartesian coordinate system {O; i, j}
in a plane (P). Here i and j are orthogonal versors and they give the
directions and theo_ri}entations of the Ozx-axis and Oy-axis respectively.
Since any vector OM, where M is an arbitrary point in the plane (P),

can be uniquely written as: OM = zi + yj, where x,y € R, we call x
and y the coordinates of the point M. Write M (x,y). The association
z =z +1iy «—— M (z,y) give rise to a geometrical representation of the
complex number field C. This is way we always call C, the complex
plane. The distance d between two complex numbers z; = z; +1y; and
29 = X9 +1Y2 is simply the distance between their corresponding points
M (x1,y1) and Ms(xs,ye) respectively, i.e.

d(z1,22) € ws = 20 + (12 — 11)?
It is not difficult to check the three properties of a distance function
for this d.
A sequence {z,} of complex numbers is said to be convergent to z
if the numerical sequence of real numbers {d(z, — z)} is convergent to
0. For instance, z,, = % +(1+ %)”z is convergent to ei because

d(zy, 1) = \/(% —0)2+[(1+ %)" —e]2 — 0.

The sequence {z,} is said to be fundamental (or Cauchy) if for any ¢ >
0, there is a natural number N, (depending of €) such that d(2,,+p, 2n) <
¢ for any n > N, and for any p=1,2,... .
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The following result reduces the study of the convergence of a se-
quence z, = ¥, + iy, in C to the study of the convergence of the real
and imaginary part {z,} and {y,} respectively.

THEOREM 15. Let {z, = z, + yni} be a sequence of complex num-
bers (here x, and vy, are real numbers). Then the sequence {z,} is
convergent to the complex number z = x +yi if and only if x,, — = and
Yn — Y as sequences of real numbers.

PROOF. One has the following double implications:

tn— 2 d(20,2) = (0 — )2+ (Y —y)2 =0 2, — 2 — 0

and y, —y — 0 (simultaneously), i.e. if and only if z, — x and
Yn = Y- O

The sequence z, = 3 + (2nsin1)i tends to 3 + 2i because 3 — 3

n

in L
and 2nsin 1 =232 — 2,

THEOREM 16. Relative to the distance d, the complex number field
C is complete, i.e. any Cauchy sequence {z,} of C is convergent to a
complex number z.

Proo¥F. Let z, = x,+y,t, where x,, and y,, are real numbers. Since
{z.} is a Cauchy sequence if and only if d(2,4,, 2,,) is as small as we
want when n is large enough, independent on p = 1,2, ... and since

d(zn-i-pa Zn) = \/(xn—l—p —1,)? + (yn-i-p — Yn)?,

one sees that |x,1, — x,| and |y,+, — yn| are simultaneously small enough
whenever n is large enough, independent on p. But this is equivalent
to saying that {z,} and {y,} are both Cauchy sequences. Since R is
complete (see Theorem 13), {x,} is convergent to a real number x and
{yn} is convergent to another real number y. Let us put z = x + yi.
Applying now Theorem 15 we get that z, is convergent to z. U

We say that a subset A of C is bounded if there is a sufficiently
large ball B(0,7) = {z € C | |2| = d(0,2) < r}, with centre at 0 and
of radius r > 0, such that A C B(0,r). We also have for C a Bolzano-
Weierstrass type theorem. Namely, any infinite bounded sequence {z, }
of complex numbers has a convergent subsequence. If we add a symbol
oo to C with similar properties like the infinite oo for R, we get C =
CU{oo}, the Riemann sphere. It is easy to see that in C any sequence
has a convergent subsequence. Because of this last property, we say
that C and R are the "compactifications" of C and of R respectively.
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Generally, in a metric space (A,d) a subset M is said to be compact
if any sequence of M has at least a convergent subsequence with its
limit in M. For instance, any closed interval [a, b] is a compact subset
of R (because of Bolzano-Weierstrass Theorem). A subset C' of C is
said to be closed if for any sequence {z,} of elements in C, which is
convergent to z in C, its limit z is also in C'. Then, the compact subsets
of C are exactly the closed and bounded subsets of C (have you any
idea to prove this?-try a similar idea like that one from the real line
situation!)

3. Problems

1. Prove that the following subsets of R have the same cardinal:

a) A=(0,1)and B=R,b) A= (0,1] and B=R, ¢c) A= (—00,a)
and B=R,d) A= (0,1) and B = (a,b), e) A = (a,00) and B = (0, 1],
f) A=QnJ0,3] and B=QnN[-7,3].

2. Prove that sup(A + B) = sup A 4+ sup B and, if A, B C [0, 0),
then sup(A-B) =sup A-sup B, where A+ B={z+y|z€ A,y B}
and A-B = {zy | v € A, y € B}. Define inf A and prove the same
equalities for inf instead of sup.

3. Construct R = R U {—o00,00} and prove that any sequence
of elements in R has a convergent subsequence in R. Prove that if
a sequence {x,} is convergent in R, then it has only one limit point,
namely the limit of the sequence. Find the limit points for the sequence
a, = cosg, n = 0,1,2,... . Recall that z € M is a limit point of a
subset A of a metric space (M,d) if there is a nonconstant sequence
{z,,} of elements from A, which is convergent to z.

4. Prove that if “a—:l — [, where a, > 0 for any n, then /a, — I.

(2n)! 7, whenever

Apply this result to compute the limit: lim { T35 (antD)

n — oo.

5. Prove that the set R\ Q of irrational numbers is not countable.
Prove that it has the same cardinal as the cardinal of R (i.e. there is a
bijection between R\ Q and R).

6. Prove that the length of the diagonal of a square which has the
side a rational number, is not a rational number.

7. Are /5 and v/3 rational numbers? Are they algebraic numbers?

8. Prove that the metric space ([0,1),d), where d(z,y) = |z — y|,
is not a complete metric space, i.e. there is at least a Cauchy sequence
{z,}, x, € [0,1), which has no limit in [0, 1). Prove that this limit must
be 1.
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9. Define the notion of "boundedness" in a general metric space.
Is Cesaro’s Lemma (any infinite bounded sequence has at least a con-
vergent subsequence) true in a general metric space? Find a simple
counterexample.

10. Why a decreasing sequence always has a limit in R? If instead
of R you put Q = QU {—o00, 0}, is the last statement also true?

11. Prove that the Archimedes’ Axiom is equivalent to the fact that
lim X = 0. If instead of this last limit we put lim 243 — %, does our

n— o0 n—o0 3n—2

statement work too?




CHAPTER 2

Series of numbers

1. Series with nonnegative real numbers
We know to add a finite number of real numbers a;, as, ..., a, :
Sp=(...((a1 +az) +as)+..)+a,_1)+ay)
For instance,
s4=7+3+(-4)+5=10+(-4)+5=6+5=11.

However, we have just met infinite sums when we discussed about
the representation of a real number as a decimal fraction. For instance,

3 4 4
= 33444, =33(4) =3+ —+ — + — .=
s=3.3 334) =3+ s+t it
3 4 4 4
—lm (Bt e b b ) =
B e TR TR TR T T
33 4 1— = 301

S N
0 102 1- L 90

Generally, if m and n are digits, then
mn—m
0.m(n) = ———
(n) 30
(Prove it!).
Since such infinite sums (called series) appear in many applications
of Mathematics, we start here a systematic study of them.

DEFINITION 6. Let {a,} be a sequence of real numbers. The infinite
sum

(1.1) Zan:a0+a1+...+an+...
n=0

is by definition the value (if this one exists) of the limit s = lim s,

n—oo

where s, = ap+a,+...+a, is called the partial sum of order n. The new
mathematical object defined in (1.1) is said to be the series of general
term a, and of sum s (if the limit exists). If s exists we say that the

31
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series (1.1) is convergent. If the limit does not exist we say that the
series (1.1) is divergent.

For instance, the series

o0

= ! —hm(1+1+l+ 4 1) 2
n02 n—o0 2 22 2n

o
is convergent to 2, or its sum is 2, whereas the series )  n = oo, or

n=0
e

> (—1)™ are divergent. The last divergent series is said to be oscillatory
n=0
because its partial sums have the values 0 or 1, i.e. it oscillates between

the distinct values {0, 1}.

THEOREM 17. Let x be a real number. The geometrical series >, x™
n=0
is convergent (and its sum is - ) if and only if || is less then 1.

PrOOF. By Definition 6,

1_xn+1
Zx lim (1 +2+ 2%+ ... +2") = lim ——.

TL*?OO n—oo 1 — X

Since lim 2" exists and is finite if and only if |x| < 1 (when the limit

is 0), the series ) z" is convergent if and only if |z| < 1. In this last

n=0
n+1 . .
case, its sum is s = lim 11“5— = % For instance, if x = 1, then the
n— oo z -

series becomes 14+1+1+... = oo (in R). If # > 1, then lim 2" = oo.

If x < —1 then the sequence {z"™'} has no limit at all (why?) so

.’L'
lim 1 T

n—oo

' also does not exist. O

THEOREM 18. (The Cauchy general test) A series . a, is con-
n=0

vergent if and only if the sequence of partial sums {s,} is a Cauchy

sequence, i.e. for any small real number ¢ > 0, there is a natural

number N, such that
|1 + Gpyo + oo+ Ayl < €
for any n > N. and for anyp=1,2,....

PrOOF. We only use the fact that R is complete, i.e. that the
sequence {s,} is convergent if and only if it is a Cauchy sequence. [
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COROLLARY 2. (The zero test) If the sequence {a,} does not tend

to zero, then the series Z a, 1s diwergent. Or, if the series Z ap, 18
n=0 n=0
convergent, then a, — 0.

o0
PRrROOF. If the series > a, was convergent, then the sequence of
n=0
partial sums {s, } would be a Cauchy sequence (see Theorem 18). Thus,
for n large enough, a,, = s, — s,_1 becomes smaller and smaller, i.e.

a, — 0. In fact, we do not need the previous theorem. Indeed, let
o0

s = Y a, and write a, = s, — $,—1. Then, lima, = s —s=0. O
n=0

oo
For instance, > (”TH)n is divergent, because a,, = (”T“)n — e #0.
n=0

THEOREM 19. (The renouncement test) Let us consider the se-

o
ries: Y a, and Y, a, = ay + any1 + ... (we just got out the terms
n=0 n=N
ag, i, ...,an—1 in the previous series). Then these two series have the
same nature (i.e. they are convergent or divergent) at the same time.
Moreover, if they are convergent, then s = s’ + ag + ay + ... + ay_1,
o o
where s = Y a, and s’ = Y a,.
=N

n=0
PROOF. Let n be large enough (n > N) and let s, = ag+a;+ ... +
ay_1+ay+...+a,. If we denote s/, = ay+...+a,, then s/, is the partial
sum of order n of the series s'. It is clear that s, = s/, +ap+a1+...+ay_1
and that the sequences {s,, } and {s/,} are convergent or divergent at the
same time (prove it!). Now, in the last equality, let us make n — oo.
We get: s =5 +ag+ a; + ... + ay_1 and the proof is completed. [

o0
Let )" a, be a series with
n=0

1
an, =N, ifnﬁlOOandanzg—n, if n > 100.

The question is:"What is the nature of this series?" So we must decide if
our series is convergent or not. Let us renounce the terms ag, ay, ..., @100
in the initial series. We get a new series

1 L —(1+ = ! + ! +...).
= 3TL 3101 3 32
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Let us use now Theorem 17 and find that

o0

Zan:O+1+...+100—I—

n=0

1 1 100 - 101 1
31011_%: 9 +2,3100'

THEOREM 20. (The boundedness test) Let Y a, be a series with

n=0
nonnegative terms (a, > 0). Then the series is convergent if and only
if the partial sums sequence {s,}, s, = ao+ a1 + ... + an, is bounded.

o0
PROOF. Let us assume that the series > a, is convergent, i.e. the
n=0
sequence {s,} is convergent. Since any convergent sequence is bounded
(see also Theorem 10), one has that {s,} is bounded.
Conversely, we suppose that {s,} is bounded. Since a,, > 0, s, <
Sp+1, 1.e. the sequence {s,} is increasing. But Theorem 8 says that
an increasing and bounded sequence {s,} is convergent to its superior

oo

limit lim sup s,,. Thus the series > a, is convergent to this lim sup s,,
n=0

i.e. its sum s = lim sup s,,. U

THEOREM 21. (The integral test) Let ¢ be a fized real number and let
f:e,00) — [0,00) be a decreasing continuous function (see Definition
5). Let ng be a natural number greater or equal to c. For any n > ny
let a, = f(n) and let A, = frz) f(x)dx for n > ng. Then the series

o0
> a, is convergent if and only if the sequence {A,} is convergent (it
n=ng

is sufficient to be bounded-why?).

PROOF. Suppose that the series > a, = > f(n) is convergent.
n=ngp n=ng

Since in Fig.2.1 s, = f(ng)+...+ f(n) is exactly the sum of the hatched

and of the double hatched areas and since the integral A, = f7Z) f(z)

dx is equal to the area under the graphic of y = f(z) which corresponds

to the interval [ng,n|, then A, < s,. Since > a, is convergent, the
n=ng
sequence {s,} is bounded, thus the sequence {A,} is bounded.
Conversely, let us assume that the sequence {A,,} is bounded. Look
again at Fig.2.1! We see that the double hatched area is just equal to
Apyt1 + pgt2 + ... + Qpyp1 = Spt1 — Gp,- Since this double hatched area
is less then the area A, 1 = f:OH f(z) dx, one has that the sequence

{Sn+1 — an,} is bounded. Hence the sequence {s,} is also bounded
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o0

(why?). Now, Theorem 20 tells us that the series »_ a, is convergent.
n=ng
O

Why we say that if lim f(z) # 0, then the above series is divergent?

O 1 2 ¢ ng  No+l No+2 ceeeveeeeneee. n-1 n  n+l X

Fig. 2.1

The integral test is very useful in practice Suppose that somebody

is interested in the nature of the series Z Let us apply the

nln nin(n)"

integral test and consider the associated decreasmg continuous function

f+ [2,00) = [0,00), /() = —

xlnx
(we simply put x instead of n in a,, = m for n > 2). Since

|
A, = /2 xlnmdm = In(In(z))|5 = In(lnn) — In(In(2)) — oo,
A,, is unbounded, thus our series is divergent (see Theorem 21).

In the last 150 years one of the most interesting function in Mathe-
matics, which was highly considered, is the Zeta function of Riemann.
"Zeta" comes from the Greek letter (. The notation of this function
was firstly used by the great German mathematician B. Riemann. Its
analytic expression is:

(1.2) a)=3" %,a €R

This famous function is usually defined by a series. Thus, the maximal

domain of definition for this function is exactly the set of all @ € R
o

with the property that the numerical series ) ,%a is convergent. We

n=1
call this last set, the set of convergence of our series. In the following,

using the integral test, we find the convergence set for the Riemann

o0
(zeta) series Y &
n=1
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THEOREM 22. (Riemann zeta series) The Riemann zeta series is
convergent if and only if o > 1. This means that the real definition
domain of the function C is the interval (1,00).

PROOF. Let us take in Theorem 21 f(z) = = for # > 1. Since

- _ —a+1 :
/ ~dr = l—a[n 1ifa#1

and A, = Inn, if a = 1, then A,, is bounded if and only if a > 1(why?).

Now, Theorem 21 says that the Riemann series ) = is convergent if

n=1
and only if o > 1. O
The sum
1 1 =1
=14+ -+—-4+.. = — =((1) =
s=1+g+5+ ;n ¢(1) = oo,

(0.0

because the series > n% is divergent for @ = 1, thus the sequence of
n=1

partial sums

LTI S
Sp = —+ -+ ..+ —
2 3 n

is strictly increasing and unbounded. Hence s = lims,, = oo. The

Theorem 22 says that the series

1 1
((2)—1+§+32+
is convergent. So it can be approximated by
1 1
sy=1+ 52 + 2 + ...+ 2

for N large enough. We call the series Z % the harmonic series. It is
n=1
very important in Analysis. Sometimes the following test is useful.

THEOREM 23. (The Cauchy’s compression test) Let {a,} be a de-

creasing sequence of nonnegative real numbers. Then the series Y ay,
n=0

o0
and Y 2"asn have one and the same nature, i.e. they are simultaneous

n=0
convergent or divergent.

PROOF. Let s, = Z a, and S,, Z 2"ayn be the k-th and the

=0
m-th partial sums of the ﬁrst and of the second series respectively.
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Let us fix k& and let us take a m such that £ < 2™ — 1. Then,
Sk=ag+ a1+ ...+ar <ag+a+ ...+ am_1=ag+a + (az + az)+

+(ag+as+ag+ar) + ... + (agm-—1 + agm-1,1 + Gom-149 + ... + agm_1) <

< ag+ aj + 2as + 2%a92 + ... + 2" ragm-1 = ag + Sim_1,
So
(13) Sk S ag + Sm,1

Now, if the series > 2"agn is convergent, then the increasing sequence
n=0
{Sm} is bounded. The inequality (1.3) says that the sequence {s;} is

also bounded, thus the series > a,, is convergent (see Theorem 20). If
n=0

> ay, is divergent, then the sequence {s;} is unbounded. From (1.3)
n=0
we see that the sequence {S,,} is also unbounded, so the series S =

o0
> 2™agn is divergent.
n=0

Assume now that m is fixed and let us take k£ such that & > 2™.
Then

Sp=ap+ a1+ ..+ar>ag+ a1+ ...+ am =

= ap + ay + ag + (a3 + as) + (a5 + ag + ar + ag)+

1
ot (agm-14agm-1,1+...+agm) > a0+§a1 +as+2a4+2%ag+...4+2™ Lagm

1 1
2 5(0’1 + 2@2 + 22a22 4+ ...+ 2ma2m) = §Sm7
thus,
1

If the series Y a, is convergent, then the sequence {s;} is bounded
n=0
and, using (1.4), we get that the sequence {S,,} is also bounded (why?).
Hence, the series ) 2"agn is convergent (why?). If > 2"agn is diver-
=0

n=0 n—=
gent, then the sequence {S,,} tends to co (why?) so, from (1.4), we
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get that the sequence {s;} also goes to co and thus, the series > a,
n=0
is also divergent. Now the theorem is completely proved. U

We can use this test to find again the result on the Riemann zeta

function ((a) = > -& (see Theorem 22). Indeed, here a, = - and
n=0
Qgn = g = (2%)71 The series

27 (w) % ()

n=0 n=0

is obviously convergent if and only if & > 1 (see Theorem 17). Thus,
from the Cauchy compression test, we get that the Riemann series is
convergent if and only if o > 1.

Now, let us find all the values of @ € R such that the series

(&)

Z —n(logl o 18 convergent. If in we put instead of n, 2" and

1
— n(logy n)™
if We multiply the result by 2", we get the series

o o0

1 1 1
2" = —.
; 2"(log; 2")*  (log; 2)* Z n®

n=2

Thus, the nature of our series is the same like the nature of the Riemann
series. Therefore, our series is convergent if and only if o > 1.
Another useful convergence test is the following:

THEOREM 24. (The comparison test) Let Y a, and > b, be two
n=0 n=0
series with a, > 0, b, > 0 and a,, < b, forn = 0,1,2,... . a) If the

series Y b, is convergent, then the series Y a, is also convergent. b)

n=0 n=0

If the series > a, is divergent, then the series »_ b, is also divergent.
n=0 n=0

PrOOF. Since a, < b, forn =0,1,2,..., then

D= ao a4 ta, <bg+b 4. +b, L,

the partial n-th sum of the series Z by,. a) If the series Z by, is conver-

gent, the sequence {u,} is bounded Hence the sequence {sn} is also

bounded, and so the series Z a, is convergent (see Theorem 20). b)
n=0

If the series ) a, is divergent, then the sequence {s,} is unbounded
n=0
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(see Theorem 20). Hence the sequence {u,} is unbounded (why?), so

the series > b, is divergent. O
n=0

= _1 1 1

For instance, the series ) - is convergent because 7= < -3

n=0

and because the series Y. & = Z(2) is convergent (see Theorem 22).
n=0
The comparison test is also useful in proving the following basic
convergence test (see Theorem 25).
First of all we remark that the natural way to add two series is the
following

(1.5) ZanJer Z n + by).

It is easy to see that if the both series are convergent, then the
resulting series on the right is also convergent (prove it!). If a,, b, are
nonnegative then, if at least one series is divergent, the series on the
right in (1.5) is also divergent (prove it!). In general this is not true.
For instance, Y n+ Y (—n) = 0!

n=0 n=0
Now, if X is a real number, by definition,

)\ian:i)\an
n=0 n=0

If A = —1, we can define the subtraction:
N WS
n=0 n=0

For A # 0, the series Z a, and A Z a, have the same nature (prove

it!). Pay attention to the followmg wrong calculation:

o0 [e.9]

1 1 1
;n+1_§n—1:_22n2—1

n=0

The series on the right side is convergent, but on the left side we have
oo — 00, an undetermined operation, so it cannot be equal to a deter-
mined one!

o.) oo

THEOREM 25. (The limit comparison test) Let . a, and > b,
n=0 n=0

be two numerical series of real numbers such that a, > 0 and b, > 0
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for any n = 0,1,2,.... Suppose that the sequence {‘;—:} 18 convergent

tol € RU{oo}. Then, a) if I # 0,00, both series have the same

nature (they are convergent or not) at the same time, b) if L =0, > b,
n=0

convergent implies >, a,, convergent and, c) if | = oo, > b, divergent

n=0 n=0
implies Y a,, divergent. This is why the series Y, b, is called a witness
n=0 n=0

series.

PROOF. a) Since [ # 0,00, [ > 0, so there is an € > 0 such that

[ —¢e > 0. Since lim §= = [, there is a natural number N (depending

n—oo "

one)withl—e < ‘;—j < l+¢ for any n > N. Because of the last double
inequality and since b, > 0, one can write

(1.6) (Il —e)b, < an < (I+¢)by,

oo
for any n > N. Now, if for instance, »_ a, is convergent (this means
n=0

that the series ) a, is also convergent from Theorem 19) then, using
n=N
the inequality (I — ¢)b, < a, and the comparison test (Theorem 24)

we get that the series (I —¢) > b, is convergent. Since [ — ¢ # 0
n=N

we finally obtain that the series ) b, is convergent, i.e. the series

n=N
oo

b, is convergent (see the renouncement test). If this last series is
n=0
convergent, using the second inequality, a,, < (I + )b, from (1.6), one
oo

gets that the first series ) a,, is convergent (complete the reasoning!).
n=0

b) If [ = 0, take an € > 0 and take a natural number N; (depending

on ¢) such that for any n > N; we have 0 < ‘;—" <eora, <cb, If the

o o0
series Y b, is convergent, then the seriese ) b, is also convergent, so

n=0 n=N1
[e.e]
the series ) a, is convergent (see the comparison test). Using again
n=N1

o0
the renouncement test we get that the series > a, is convergent. c)

n=0
If | = oo, take a positive real number M > 0 and take a natural

number Ny (depending on M) such that for n > Ns, = > M, or
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a, > Mb,. Now, if the series Z b, is divergent, then the series E by,
n=>0 n=DNz

is also divergent (see Theorem 19). Use the inequality a, > Mb, to

obtain that the series ) a, is divergent (see the comparison test).
n=N2

oo
Using again the renouncement test we get that the series Y a, is

n=0
divergent. 0

Let us decide if the series Z is convergent or not. We intend

to use the limit comparison test with a,, = ni’@ and b, = n% We try

to find an « such that the limit [ = lim %= be finite and nonzero. If we

n—oo bn

can do this, such an « is unique. Its value is called the "Abel degree"

of the function f(z) = 3{4 So,

a, TLOH—%
l:hm— lim ———— # 0,00
o0
(= 1) if and only if o+ 5 = 2, i.e. 2 > 1. Since the series Z £ =2Z(3)
—_1n3
is convergent (see the Riemann Zeta series), from the hmlt comparison

test one has that the series Z

o = is convergent. Applying again the

N

P is convergent.

renouncement test we get that our initial series Z

Let us put in a systematic manner all the reasomngs in this last
example.

THEOREM 26. (The a-comparison test) Let Z a, be a series with
=0

nonnegative terms (a, > 0). We assume that there 15 a real number «,
such that the following limit does exist: lim n®a, =1 € RU{oc0}. a) If

n—oo

[ # 0,00 then, the series > a, is convergent if and only if o > 1. b)
n=0

If 1 =0 and « > 1, then our series Y a, is convergent. ¢) If | = oo
n=0

o0
and « < 1, then the series _ a, is divergent and equal to co.
n=0

PRrOOF. It is enough to take b, = n% in the Theorem 25 (do every-
thing slowly, step by step!). O
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Let us apply this last test to the following situation. For a large N
(> 100, for instance), can we use the approximation

i nd+Tn+ 1 %i P+l

:0\/n9+2n—|—2 0\/n9+2n—|—2

We can do this if and only if our series is convergent (why?). In order
to see if our series is convergent or not, let us consider the limit:

n=

. o, M+ Tn+1 . n B+ 5+5)  poets
lim n*———————— = lim = lim

n—oo  \/n9 + 2n + 2 n—oo 2 /1_'_ + n—00 n% '

But, thls last limit is neither 0 nor oo, if and only if o 4+ 3 = 2, or
a = 5 (why?). Since in this case @ > 1 and the limit [ is 1, we apply
the a-comparison test (Theorem 26) and find that our initial series is
convergent. Hence the above approximation works!

A very useful test is the ratio test or D’Alembert test.

<O

THEOREM 27. (the ratio test) Let Y a, be a series with positive
n=0
terms.

a) If there is a real number A such that 0 < A < 1 and 2= < X
for any n > N, where N is a fixed natural number, then the semes 18
convergent. This is equivalent to say that limsup “= < 1.

b) If ®L > 1 for any n > M, where M is a ﬁxed natural number,
then the semes 15 divergent.

¢) If limsup “** = 1, and if 2% is not equal to 1 from a rank on,
then, in general, we cannot decide if the series is convergent or not (in

this situation use more powerful tests, for instance the "Raabe-Duhamel
Test").

PROOF. a) Let us put n = N, N + 1, N + 2, ... in the inequality
@il <\ We find:

2 m
any1 S Aan,any2 < Aangr S ANan, . angm < Aay,

Hence,

any +any1 Fanso+ ... Fanim ..o <

<an(IT+A+FN+ .+ X"+ .) =ay
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(e.]
So any partial sum of the series > a, is bounded. Since a, > 0,
n=N

o0
the series > a, is convergent (Theorem 20). The renouncement test
n=N

(0.9}
says that the whole series »_ a,, is also convergent.
n=0
b) If 2L > 1 for any n > M, then

ay +ayy1 + oo Fayym + o = apy Fapy o+ ay + ..o = 00,

o
so the series > a, is divergent (explain everything slowly, step by
n=0

step!).

o
c¢) For instance, the harmonic series »
n=1

S|

is divergent, but

1
lim sup~5— nitl g,

— -
n—oo n

o0
This last property is also true for the series ) #, but this last series

n=1
is convergent! This is why we cannot say anything in general if one can
find numbers of the form 1 <1 as close as we want to 1. U

REMARK 5. The condition from a) of Theorem 27 is equivalent to
saying that lim sup ag—:l <1 (why?). If the sequence {ag—:l} 1§ conver-
gent to I, then the Theorem 27 is more exactly. Namely, in this last

case, the series Y a, is convergent if | < 1, it is divergent if | > 1 and
n=0
if | =1 we cannot say anything (prove it!).

For instance, the series Z is convergent because lim “ = ( <

n—=0 n—oo M
1 (see Remark 5).
Usually, if lim

n—oo

an+1

=1, we try to apply the following "more pow-
erful" test.
THEOREM 28. (The Raabe-Duhamel test) Let > a,, be a series with

n=0
positive terms.

a) If there is a real number X € (1,00) and a natural number N such

that n <a:11 - 1> > X for any n > N, then the series is convergent.
b) If n (aiﬁ — 1) < 1 forn > M, where M is a fixed natural

number, then the series is divergent.
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c) Assume that the following limit exists, lim n ( dn_ — 1) =le

n—o0 n+l

R U {oo}. Then, ifl > 1, the series is convergent, if | < 1, the series is
divergent and if | = 1, we cannot decide on the nature of this series.

One can find a proof of this result in [Nik], or in [Pal]. See also
Problem 11 of this chapter.
Let us find the nature of the series

i1~3~5-...-(2n+1) 1

2.4-6-..-2n  2n+3

n=1
Since
an41 _ (2n + 3)? 1
an (2n +2)(2n + 5) ’
let us apply Raabe-Duhamel test. Since

an 2n +n 1
n 1) =—— - =<1,
an+1 <2n+3)2 2

the series is divergent.

THEOREM 29. (The Cauchy root test) Let > a, be a series with
n=0
nonnegative terms.

a) If there is a real number X € (0,1) such that /a, < X forn > N,
where N is a fixed natural number, then the series is convergent.
b) If ¢/a, > 1 for all n > M, where M is a fized natural number,

then the series is divergent.
c) Assume that the following limit exists, lim /a, = | € R U
n—oo

{oo}.Then, if | < 1, the series is convergent, if | > 1, the series is
divergent and if | = 1, we cannot decide on the nature of this series.

PROOF. a) The condition /a, < A for n > N implies

an + ans1+ oo angm o <ay AL FAF LN ) =

)\N < an
= Qa s
MT-x 1
o0
so, the partial sums of the series Y a, are bounded. Hence the
~ n=N
series Y a,, is convergent (see Theorem 20). From the renouncement

n=N

o0
test we derive that the series > a,, is convergent.
n=0
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b) The condition Wa, > 1 forn > M, implies a,, > 1 for an infinite
number of terms, so {a,} does not tend to zero. Hence the series is
divergent (see Corollary 2).

c) Take € > 0 such that [+ ¢ < 1. Since /a, — [, there is a natural
number N such that if n > N, /a, < [+ . Apply now a) and find
that the series is convergent. If [ > 1, there is a rank M from which
on Ya, > 1 for n > M and so, the series is divergent (see b)). If

= 1, there are some cases in which the series is convergent and there

are other cases in which the series is divergent. For instance, the series
o0

>~ =5 is convergent and [ = lim {/=5 =1 (since {/n — 1; prove this!

n—=1 n—oo
Hint:

n n(n_l) 2
ap=Vn—1=n=(1+a,) :1+n04n+Tan+~-->
n(n—1) , 2
T e— — ap < R
g T n—1

n—oo

so, ay, — 0. But the series Z = is divergent and [ = lim ¢ % =1 U0

The series Z G +n)" is convergent because {/a, = 51— < % for any
n=01,.. (We JUSt applied the Cauchy Root Test, a)) e can also

apply the Comparlson Test: @i n—12 forany n=1,2,.

2+n)

REMARK 6. A natural question arises: what is the connection (if
there is one!) between the ratio test and the root test? To explain
this we need a powerful result from the calculus of the limits of se-
quences. This is the famous Cesaro-Stolz Theorem: Let {a,} be an ar-
bitrary sequence and let {b,} be an increasing and unbounded sequence

Anp4+1—0an
bnt1—bn

I € R =RU{—0c0,00}. Then w2 — 1. A direct consequence of this result
is the Cesaro Theorem: Let {c,} be a convergent to | sequence. Then
the "means" sequence {w} is also convergent to | (prove it as
an application of the Cesaro-Stolz Theorem). We prove now that for a
sequence {a,} of positive numbers, such that the limit of the sequence

{a;‘—:l} does exist in R, then {aZ—:l} — Lif and only if { {/an} — 1. Sup-

of positive numbers such that the sequence 18 convergent to

an+1 Inapt1—Inan

(n+1)—n
From the Cesaro—Stolz Theorem we get that M = In ¢/a,, — Inl, or

Wa, — 1. Conversely, assume that { {/a,} — l and that {a"“} — 1.

pose that — [, thenlna,y —Ina, — Inl, or — In/{.
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From the first implication, one has that | = ' and the statement is
completely proved.

o0
Suppose we have a series »_ a, with a,, > 0 for any n > N, such
n=0

that {M} — 1. We cannot decide on the nature of this series. Re-

an
mark 6 says that it is not a good idea to try to apply the Cauchy Root
Test because this one also cannot decide if the series is convergent or
not.

2. Series with arbitrary terms

Up to now we just considered (in principal) series with nonnegative
terms. If the number of positive or negative terms in a series are finite,
to decide the nature of this series, it is sufficient to get out those terms
and thus to obtain a new series with all its term positive or negative

[e.9]
(see the renouncement test). If a,, < 0 in a series ) a,, we consider

n=0
(0. 0] e.)
the new series > (—a,) = — Y. a, and apply the results obtained in
. . . s 1 & 1 -
the previous section. For instance, Zo —3 = — Zo ~3 is convergent,
n= n=|

o0
because Y =5 is convergent (it is the value of the Riemann series for
n=0

o0

a =3 >1). A numerical series ) a, is said to have arbitrary terms if
n=0

the sign of its terms a,, may be positive, negative or zero, but not all

(or a finite number of them) are of the same sign. We also call such a
series a general series. The Cauchy general test (see Theorem 18) and
the zero test are the only tests we know (up to now) on general series.
Here is another important one.

THEOREM 30. (The Abel-Dirichlet test) Let {a,} be a decreasing
to zero (a, — 0) sequence of nonnegative (a, > 0) real numbers. Let
> by, be a series with bounded partial sums (i.e. there is a real number
n=0
M > 0 such that for s, = by + by + ... + by, one has |s,| < M, where

n=0,1,...). Then the series Y anby, is convergent.
n=0

PrROOF. We intend to apply the Cauchy general test (Theorem 18).
Let us denote S,, = agby + a1b1 + ... + a,b, the n-th partial sum of the
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o0

series ) anb, and let us evaluate
n=0

[Sntp = Sl = |@ns1bni1 + oo+ Angpbnyp| =
= |@ns1(Snt1 — 5n) + Gni2(Sni2 — Sn1) + .o+ an+p(3n+p - Sner*l)’ =

| =ani18n + (Any1 = Any2)Sngr + .o + (an+p—1 - an+p>3n+p—1 + an+p3n+p|
(2.1)

< gt [Sn|F(nr1—an2) [Sna [+ A (@nip-1—Anp) [Snsp-1]Fanip [Snap| -
Let € > 0 be a small positive real number. In the last row of (2.1) we
put instead |s;|, j = n,n+ 1,...,n + p, the greater number M. So we
get

(2.2)

|Sntp — Snl < M(an+1+ani1—0nyotanio—ani3+...Fangp1—0nip+anip)

= 2Man+1

Since {a,, } tends to 0 as n — oo, there is a natural number N (which
depend on ¢) such that for any n > N, on has that 2Ma,, 1 < €. Since
|Sntp — Sn| < 2Man1q (see (2.2)), we get that |S,4, — S| < ¢ for any
n > N. This means that the sequence {S,} is a Cauchy sequence, i.e.

the series Y a,b, is convergent (see Theorem 18) and our theorem is
n=0

completely proved. l

The following test is a direct consequence of the Abel-Dirichlet test.

COROLLARY 3. (The Leibniz test) Let {a,} be a decreasing to zero
(a, — 0) sequence of nonnegative (a, > 0) real numbers. Then the

series
[ee]

Z(—l)”’lan =a; —ay+az— ..

n=1
18 convergent.

n+l
n24+3

For instance, applying this test, we get that the series > (—1)"

n=1

— > (1) & is convergent (do it!).
=1

n—=
A famous example is the standard alternate series

> 1 1 1 1

(2.3) ) CEILRE T T

n=1
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This series is a general series (why?) and it is convergent. Indeed,
{an = %} is a decreasing to zero sequence with nonnegative terms so,
we can apply the Leibniz test and find that the series is convergent.

oo
DEFINITION 7. (absolute convergence) A series Y a, is said to be

n=0

absolutely convergent if the series of moduli » |a,| is convergent.
n=0

o0
For instance, the series Y (—1)"-; is convergent (why?) and ab-
n=1
oo
solutely convergent, but the series Y (—1)"%

n=0

is convergent (why?) and

o0
it is not absolutely convergent, because the harmonic series % =
n=1
Z(1) = oo (see the Riemann series). A series which is convergent, but
not absolutely convergent, is called semiconvergent.
The following result says that the notion of absolutely convergence

is stronger then the notion of (simple) convergence.

o0

THEOREM 31. Any absolute convergence series »_ a, is also (sim-
n=0
ple) convergent.

PrROOF. We use again the Cauchy General Test (see Theorem 18).

Let s, = ap + a1 + ... + a,, be the n-th partial sum of the initial series

a, and let S,, = |ao| + |a1| + ... + |an| be the n-th partial sum of the

n=0

[e.9]
series Y |a,|. Let us evaluate
n=0

(2.4) |Sntp = Snl = |@ns1 + Anga + oo + angp| <

|@nsa] 4 lanyol + o+ lanip| = [Snip — Sl

Let € > 0 be a small positive real number and let N be a sufficiently
large natural number such that for any n > N one has |S,;, — S,| < ¢
for any p = 1,2, ... (since {5, } is a Cauchy sequence). From (2.4) we
have that [S,+p — sp| < |Snsp — Sl 80 [Sptp — sn| < € for any n > N
and for any p = 1,2,... . But this means that the sequence {s,} is a
Cauchy sequence. Hence the series ) a, is convergent (see Theorem

n=0

18). O
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For instance, the series Z M is convergent because it is ab-
n=1

sin(5n)
)

solutely convergent. Indeed, since < n—12 and since the series

> =5 = Z(2) is convergent (see the Riemann series), the Comparison
n=1

0 .
Test says that the series of moduli )’ blﬁg#” is convergent, i.e. the
n=1
0 .
initial series 5“‘75—2”) is convergent.
n=1

REMARK 7. (see [Nik] or [Pal]) We saw above that any absolutely
convergent series is convergent, but the converse is not true. Cauchy
proved that in any absolutely convergent series one can change the order
of the terms in the infinite sum (by any permutation) and the sum of

the series remains the same. On the contrary, Riemann proved that
[e.e]

for a semiconvergent series Y. a, and for any number A € R = RU
n=0

{—00, 0}, one can find a permutation of the terms of the series Y a,
n=0
such that its sum becomes exactly A. Two absolutely convergent series

can be multiplied by the usual polynomial multiplication rule

Z G + Zb ch, where ¢, = agb,, + a1b,_1 + ... + a,by,

n=0

and the resultzng product series is again absolutely convergent (Mer-
taens).

REMARK 8. If instead of series with real numbers we consider a
o0
series with complex numbers Y z,, where z, = x, +iy,, Tn, Yy, € R for

n=0
anyn = 0,1,2,..., we say that such a series is convergent to its sum

s =u+ 1, u,v € R if the sequence of partial sums
Sn=z20+214 . +2zn=(vo+z1+ . +2) +i(Yo+ 1+ - + Yn)
18 convergent to s, i.e.
|5 = sal = V[u— (wo+ a1+ .+ @) 2+ [0 = (o + 1+ + 52 — 0,

when n — oo. This is equivalent to saying that both series with real

numbers,» . x, (the real part) and > y, (the imaginary part) are con-
n=0 n=0

vergent to u and v respectively. Hence, Z Zn = Z Ty + 1 Z Yn and

the calculus with complex series reduces to the calculus with real series.
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Practically, in general, it is difficult to decide if both the "real part”
and the "imaginary part” are convergent. For instance, let us consider

the series
n
oo . [e’e) n [ _L ;1 ) T P ()
B (144" V2 (ﬁ‘”ﬁ) B V27 (cos T +isin %)
S_ZO n! _Zo n! _Z n!

n=0

Let us use now the Mowvre formula and find:

L V2rcosng o= V2'sinng
s=) iy ———+
— n! — n!
Since
\/2”cosn§ < \/ 21
n! - nl
and since
ol
) 1)
lim (n =
Jm e =0,
n!
\/ COSTL

the series Z

1s absolutely convergent, so it is convergent

(whyg—precwe the theorems that we used!). In the same way we prove
\/751nn4

———= s also convergent. An eas-

that the imaginary part series Z

n—=

ier way to prove the convergence of the complex series s = Y (0l
n=0
18 the followmg It is not dzjﬁ'cult to prove that an absolutely conver-

gent series E Zn (i.e. Z |zn| is convergent) is also convergent (see

the proof of Theorem 31) In our case,

14+ (1+i)~  v2r
n!  nl ol
So, the series > |z, = > ‘/ni,? is convergent (use the ratio test),
= n=0
00 n
i.e. the series s = Y % 18 absolutely convergent. Hence, it is
n=0

convergent. If a series Y z, is not absolutely convergent, the general
n=0
way to study it is to write it as:

oo oo 0
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and to study separately the real series Z Tn and Z Yn- If both of them
n=0 n=0
are convergent, the initial semes s also convergent. If at least one of

them is divergent, the series Z 2z is divergent (why?).
n=0

3. Approximate computations

Usually, whenever one cannot exactly compute the sum of a con-
[e.e]

vergent series s = > a,, one approximate s by its n-th partial sum
n=0
Sp = ag + ai + ... + ay,, for sufficiently large n. For instance,

1 11 1
$=2 A=ttt I

The difference ¢,, = |s — s,,| is called the (absolute) error of order n in
our process of approximation. It is clear enough why we are interested
in the evaluation of this error. Since the series is convergent, ¢, — 0,
when n becomes large enough. Given a small positive real number
e > 0, the problem is to find an n (very small if it is possible!) which
depend on ¢, such that the error ¢, < e. For instance, if ¢ = #, we
say that "s is approximated by s, with 3 exact decimals".

We study this problem in two cases.

Case 1 Let s = > 7 a, be a series with positive terms (a, > 0,
n=0,1,..) and let a € (0, 1) such that “2* < a for n > N (remember
yourself the Ratio Test). The series is convergent (see Theorem 27).
Let now k be a natural number greater or equal to N. Let us evaluate
the error ¢, = s — s:

a

(3.1) €k = Q1 + Qg + ... < aay, + Pay, + .. ay

1 —

We see that if € > 0 is an arbitrary small positive real number, always
one can find a least k € N such that *~a; < e. Since & < %-ay, for
this k£ one also has: ¢, < e. If we want a small k, we must ﬁnd a small
a € (0,1) such that for a small N (0 if it is possible) we have “ < o
for n > N.

Let us compute the value of > % (we shall see later that it is
n=0

exactly e, the base of the Neperianilogarithm) with 2 exact decimals.

an+1_ 1 l
Since = g Spforn>1,
11

€k:S—Sk§ — = .

[
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Let us find the least k such that % <e= #. By trials, £ = 1,2, ...,
we find k£ = 5. So

1 1 1 1 1
8%85:1+ﬁ+5+§+z+a:2.71666...,

i.e. we obtained the value of e with 2 exact decimals, e &~ 2.71.

Let s = ) a, be a series with nonnegative terms (a, > 0, n =
0,1,...) and let a € (0,1) such that /a, < a for n > N (remember
yourself the Cauchy Root Test). The series is convergent (see Theorem
29). Let now k be a natural number greater or equal to N. Let us

evaluate the error ¢, = s—s;. Prove that ¢, < % Use this estimation
to find the value of s = i n% with 3 exact decimals.

Case 2 Suppose nov:;:tilat we want to approximate the value of an
alternate series, s = i (1)t
with nonnegative te;;lls and a, — 0. The Leibniz test (see Corollary

3) says that our series is convergent. Since

a,, where {a,} is a decreasing sequence

Son = Son—2 + (A2pn—1 — G2n) > S2n—2
and since
Sont+1 = San—1 — (A2p — G2n11) < S2p—1,
one has:
(3.2) $9<81<8< ... <89, < ... <5< <8901 <o <53 < 5.
So,

0 <5 — 59, < Sopg1 — Sap = Gap41

and

0 < Sont1 — 5 < Sopg1 — Sont2 = Aonga.
Hence
(3.3) en =15 — sp| < anp1

i.e. the absolute error is less or equal to the modulus of the first ne-
glected term. Here, in fact we have another proof of the Leibniz Test
(see Theorem 3). This one is independent of the Abel-Dirichlet Test
(Theorem 30). It uses only Cantor Axiom (Axiom 2) (where?).

Let us compute s = >_ (—1)"! (nl!)2 with 2 exact decimals. We use
n=1
the estimation (3.3) and force with

1 - 1
U1 = 77— < —
T+ D12 102
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for n > 3, so

1 1 1
s~53—1—4—1+%—0777 =0.(7)
4. Problems

1. Compute the sum of the following series:

2n-lygn NN 1 1y o 1 .
)Z ln( ) )Z s )HZ: n(n+2)’ d)nz::1 n(nt1)(nt2)’

OO n—1
)Z (n+2) n+4)’ f) Zl(—l)’”;? 7,

2. Dec1de if the following series are convergent or not:

o= 27, 1) on 147 (143n) 1 - 2"41_ n
a)>_ 1 b) 1mn70)2( DT )Zgn+1+1 y o >0

n=0 n= n=0
(discussion on «); e)?jln (22=2)" (discussion on a € R); f):o1 (152;,
g):o ;;ggigggjﬁ, h)ni0 (20,‘:23):, (discussion on a > 0); i)ni1 L(2X -
1)", (discussion on A € R); )§1 (4Z;i)n, a > 2 (discussion on «);
k)ni_ojo ﬁ (discussion on «); 1) i —%D(Qa 1), (discussion on
02 1im) S gty X 87 0) S Mk ) S (1480

[e.e]
)Z 33:1i1; s) Y. 2 an (discussion on a > 0).

BN Find the Abel’s degree of the expression £ = %W’
n € N.

4. Use the a-Comparison Test to decide if the series Z sin ( Tn +1>

is convergent or not.

5. Find all z € R such that the series Z s +1 x" to be convergent.

What about all x € C such that the same serles is convergent?
6. Find all z in C such that the following series are absolutely

convergent.
)3 )5 525 0% nas )3 (- 30+ 20
7. Draw the set M = {x eR| Y (1)L is convergent} on the
n=1

real line.
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8. Draw the set U = {z € C| Z( )" =2 s convergent} in the

complex plane.
o0

9. Compute Y (—1)"-5 with 2 exact decimals.

n= 1

10. Compute Z 2 with one exact decimal.

11. Prove the Raabe—Duhamel test. Hint:
a) Write:
NCI,N — (N + 1)aN+1 2 ()\ — 1)CLN+1
(N +1an1 — (N +2)ania > (A = 1)an2
(N +planiy — (N +p+ Daniprr = (A = Danip
Sum these inequalities on columns and get:
NaN—(N+p+1)aN+p+1 Z ()\—1) [aN—i-l + aAN+2 + aN4+3 + ...+ AN +p+1

So
NGN
P > ant1 tant2 +anys + o+ ANprr

for any p = 1,2,.... Hence, the partial sums of our initial series are
bounded. Thus the series is convergent.
b) Since na,, < (n+ 1)an41 for n > M, the limit lim na, is greater

than 0. So, using the a-comparison test for @« = 1, we get that our
initial series is divergent (why?).

c¢) Apply a) and b).

12. Compute >~ ﬁ with 3 exact decimals (use the approximate

computation with the Root Test).



CHAPTER 3

Sequences and series of functions

1. Continuous and differentiable functions

Recall that a metric space is a set X with a distance d on it. A
distance d on X is a function which associates to any pair (z,y) of X
a nonnegative real number d(z,y) with the following properties:

dl. d(z,y) = 0 if and only if x = y.

d2. d(x,y) = d(y,x) for any = and y in X.

d3. d(z,y) < d(z,z) + d(z,y) for any x,y and z in X.

See also the Remark 2. We usually denote by (X, d) a metric space
X with a distance d on it. The standard example of a metric space
is (R, d), where d(z,y) = |z —y|. We say that z, — x in (X,d) if
the numerical sequence {d(z,,x)} tends to zero, i.e. if the distance
between z,, and x becomes smaller and smaller to zero as n — oco. We
define again the basic notion of continuity.

DEFINITION 8. (continuity of a function at a point) Let (X,d),
(X', d') be two metric spaces, let f : X — X' be a function defined
on X with values in X' and let x be a fixed element in X. We say
that f is continuous at = if for any sequence {x,} which converges to
x, we have that f(x,) — f(x). For instance, if X = X' = R, with
the usual distance, f is continuous at a point x if the graphic of f is
not "broken (or interrupted)” at x (see Fig.3.1). All the elementary
functions (polynomials, rational functions, power functions, exponen-
tial functions, logarithmic functions, trigonometric functions) and their
compositions are continuous on their definition domains, i.e. in any
point of their definition domains (see also the Theorem 14). Hence, the
continuity is essentially a "local” property, i.e. its definition shows the
behavior of the function f at a given point x.

55
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¥ y =T(x) ¥ =Ta(x)

fi(x1) .

Q X9 X2 X
confinuous noncontinuous
(noninterrupted) {interrupted)
Fig. 3.1

For instance, a) f : R — R, f(z) = ﬁzﬁ is continuous on the whole
R. Indeed, let a be a fixed point in R and let {a,} be a sequence
convergent to a. Then, using the basic properties of the convergent
sequences relative to the elementary algebraic operations (4, —, -, :, see

the Theorem 14), we find that

ad+1 ad+1
—_— =

a2+1 a?+1

flan) = f(a),

i.e. the function f is continuous at a, for any a € R. Hence f is contin-
uous on R. Now, if we compose the function Inx (which is continuous
on (0,00)) with f(z) we get a new continuous function g(x) = In giﬁ
on (—1,00) (why?).

REMARK 9. We need in this chapter another basic "local” notion,
namely the notion of differentiability of a function f at a given point
a. Recall that a subset A of R is said to be open if for any point a
of A, there is a small positive real number ¢, such that the interval
(a—e,a+¢€) (the "ball" with centre at a and of radius €, usually called
the e-neighborhood of a) is completely included in A (define the notion
of an open subset in a metric space (X,d); instead of e-neighborhoods
use open balls B(a,e) = {x € X : d(z,a) < €}, etc.). A subset B of
R is said to be closed if its complementary R\ B is an open subset (B
is closed in an arbitrary metric space (X,d) if X \ B is open in X ).
For instance, (—o0,1) is open and [—3,7] is closed. If X = (—1,7),
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with the induced distance of R, then [0,7) is closed in X, but NOT
in R (why?). It is not difficult to prove that a subset B is closed if
and only if for any sequence {b,} — b, with all b, in B, one has that
b € B (prove it!). For instance, if f : X — R is a continuous function
defined on a metric space (X,d) and if \ is a real number, then the
set By = {z € X : f(x) > X (or < X\, or = X\) } is closed in X.
Indeed, let {b,} be a sequence of elements in B, which is convergent
to an element b in X. Since f is continuous, f(b,) — f(b). Because
b, € B, f(b,) > X\ for anyn = 0,1,.... Then f(b) > X (otherwise,
f(b) < X and, from a rank N on, f(b,) < A, for n > N (why?-see the
definition of the limit f(b,) — f(b)!)), a contradiction i.e. b itself is in
B and so B s a closed subset in X.

DEFINITION 9. Let A be an open subset of R (for instance an open
interval (¢,d) ), let f : A — R be a function defined on A with values real
numbers and let a be a fixed point in A. We say that [ is differentiable
at a if the following limit exists (and it is a real number):

(1.1) lim L8) = S (@) des #(a)

r—a T —a

The limit of a function g : A — R in a limit point b (it is the limit
of at least one sequence of elements from A) of A is a unique number
I € R such that for any nonconstant sequence {b,}, b, € A which is
convergent to b, one has that ¢(b,) — [. We shortly write iurll)g(x) =1.

Not always a function g has a limit at a given limit point b. For instance,
the function sign : R — {—1,0, 1},

-1, ifz <0
(1.2) sign(x) = 0, ifz=0
1, ifx>0

has the limit [ = —1 at any point a < 0, has the limit [ = 1 at any
point @ > 0 and at 0 it has no limit at all (prove this!).

We recall that the limit "on the left" of a function f : A — R,
A C R, A an open subset, at a point a of A is a number [; such that
for any sequence {x,}, x, < a, which is convergent to a, one has that
I} = lim f(z,). If we take z,, "on the right" of a, we get the notion of
the limit [, "on the right" of f at a. A function f has the limit [ at a
if and only if [, = [, = [ (prove it!).

It is clear enough that a continuous function f at a point a € A
has the limit [ = f(a) at a (why?). In fact, a function f : A — R is
continuous at a point a € A if and only if it has a limit [ at @ and if
that one is exactly | = f(a) (prove it!).
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We call the number f’(a) from (1.1) the derivative of f at a. The
linear function df(a) : R — R, df(a)(z) = f'(a) - x is called the (first)
differential of f at a. This is simply a dilation (or a homotety) of mod-
ulus f’(a) of the real line R. If the function f is differentiable at any
point a of A, we say that f is differentiable (or has a derivative) on A. In
this last case, the new function a ~ f’(a), where a runs on A, is called
the (first) derivative of f. It is denoted by f’. We know (see any elemen-
tary course in Calculus for the different rules in computing derivatives!)
that almost all the elementary functions (described above) and their
compositions (recall the chain rule: (f o g)'(a) = f'(g9(a)) - ¢'(a)) are
differentiable on their definition domains. "Almost" because of some

exceptions like f(z) = /z, f : [0, o0) — R. Since f'(z) = ﬁ%’ the
Vz—0

= oo! One
X

derivative of f does not exists at a = 0. Indeed, lgm .
x—0, >

can interpret the derivative of a function f at a point a, either as "the
velocity" of f at a or as the slope of the tangent line at a to the graphic
of f (why?). Not all the continuous functions at a given point a are also

differentiable at a (see Fig.3.2). But a differentiable function f at a
flen)—fla) _ f'(a)

Tp—a

given point a is continuous. Indeed, let x,, — a. lim
(see Definition 9 and what follows) says that only the nondeterministic
case 2 could give a finite number f'(a). Hence, f(z,) — f(a), i.e. fis

continuous at a.

A
y
I I
O f X4 X2 X
differentiable continuous but
in X not differentiable
in X2

Fig. 3.2



1. CONTINUOUS AND DIFFERENTIABLE FUNCTIONS 59

Let C be a set and let f : C'— R be a function defined on C' with
values in R. We say that f is bounded if its image f(C) = {f(z) : z €
C'} is a bounded subset in R. This means that there is a positive real
number M > 0 such that |f(z)] < M (i.e. =M < f(z) < M) for any
x € C. Equivalently, if C' C R, then f is bounded if the graphic of it
is contained into the band bounded by the horizontal lines: y = —M
and y = M

A fundamental property of continuous functions is the following:

THEOREM 32. (Weierstrass boundedness theorem) Let f : [a,b] —

R be a continuous function defined on the closed and bounded inter-

val [a,b]. Then f is bounded, M e/ sup f([a,b]) = f(c) and m =

inf f([a,b]) = f(d), where ¢,d € [a,b]. This means that the least up-
per bound (sup f([a,b]) and the greatest lower bound (inf f(|a,b]) of the
bounded set f([a,b]) are realized at ¢ and at d respectively.

PROOF. a) Let us prove that M = sup f([a,b]) < oco. Suppose
on the contrary, namely that M = oo. Then, there is at least one
sequence {z,} of elements from [a, b] such that f(x,) — oo. Since {z,}
is bounded, we can apply the Cesaro-Bolzano-Weierstrass Theorem (see
Theorem 12) and find a subsequence {xz,, } of {x,} which is convergent
to an x, € [a,b] (here we use the fact that [a, b] is closed, how?). Since
f is continuous, one has that f(z, ) — f(z.) when £ — oo. But
f(z,) — oo and the uniqueness of the limit implies that f(x,) = oo, a
contradiction (why?). Hence f is upper bounded. In the same way we
can prove that f is lower bounded (do it!).

b) Let us prove now that M = f(c) for a ¢ in [a, b]. Since M is the
least upper bound, for any natural number n we can find an element
Yn € [a,b] such that

(1.3) M~ < f(y) < M (why?)

The sequence {y,} is bounded and nonconstant (why?). Applying
again the Cesaro-Bolzano-Weierstrass Theorem, one can find a sub-
sequence {y,, } of {y,} which is convergent to an element ¢ € |a, b]
(because the interval is closed). Since f is continuous, f(yn,) — f(c),
when k£ — oo. Making & — oo in the inequality M — n—lk < f(yn,) <M
and using the definition of a subsequence (n; < ny < ... ), we get that
M = f(c). To prove that m = f(d), d € [a,b], we work in the same
manner (do it!). O

THEOREM 33. (Darbouz) Let f : [a,b] — R be a continuous func-
tion defined on the closed and bounded interval [a,b]. Let M = sup f([a, b])
and let m = inf f([a,b]). Then the image of the interval |a,b] through f
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is exactly the closed interval [m, M]. More general, a continuous func-
tion carries intervals into intervals.

PROOF. Let A be an element in [m, M|]. We want to find an element
z in [a, b] such that f(z) = A. If A is equal to m or to M, we can take
z = d or ¢ (from Theorem 32) respectively. So, we can assume that
A € (m, M) and that f is not a constant function (in this last case
the statement of the theorem is obvious). We define two subsets of the
interval [a, b]:

Ar={z €a,b]: f(z) = \}
and
Ay ={x € la,b]: f(z) < A}

If A; N Ay is not empty, take 2z in this intersection and the proof is
finished. Suppose on the contrary, namely that A; N Ay = &. Since
A cannot be either m or M, A; and Ay are not empty (why?). Now,
la,b] = AjUA, (why?) and, since f is continuous, A; and A are closed
in R (see Remark 9). In order to obtain a contradiction, we shall prove
that it is not possible to decompose (to write as a union, or to cover) an
interval [a, b] into two disjoint closed and nonempty subsets. Indeed,
let ¢o = sup A,. Since f is continuous, f(c2) < A (why?-remember the
definition of the least upper bound and of the continuity!) i.e. c; € As.
If ¢o # b, then the subset S; = {z € Ay : © > ¢2} is not empty (why?).
Take now ¢; = inf S;. Since A; is closed, ¢; € Ay (why?). If ¢; > ¢,
take h € (c2,c1). This h € [a,b] and it cannot be either in A; or in As
(why?). Since ¢; > c¢s, the unique possibility for ¢; is to be equal to cs.
But then, c = ¢; = c3 € A;N Ay = &, a contradiction! Hence, ¢, = sup
Ay = b. Take now dy = inf A,. Since A, is closed, one has that dy € As.
If dy # a, then the subset Sy = {z € A; : x < da} is not empty (why?).
Take now d; = sup Sy. Since A; is closed, d; € A; (why?). If d; < d,

take again g € (d;, dy) and this last one cannot be either in A; or in A,.

Hence d; = d» " 1 and this one must be in A1 N As, a contradiction!

So, dy = a, i.e. inf Ay = a and sup Ay = b, thus Ay = [a, b]. Since A,
is not empty and it is included in [a,b], A; C As, and we get again a
new and the last contradiction! Hence A; N A; cannot be empty and
the proof of the theorem is over. 0

We agree with the reader that the proof of this last theorem is too
long! But,...it is so clear and so elementary! Trying to understand and
to reproduce logically the above proof is a good exercise for strengthen
your power of concentration and not only!

THEOREM 34. Let I be an open interval on the real line and let
f I — R, be a continuous function defined on I with real values.
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1) Assume that there are two points b and d in I (b < d) such that
the values f(b) and f(d) are nonzero and have distinct signs. Then,
there is a point ¢ in the interval (b,d) at which the value of f is zero,
i.e. f(c) =0. 2) Now suppose that at a € I the value f(a) > 0 (or
f(a) < 0). Then there is an e-neighborhood (a — e,a +¢) C I, such
that f(z) >0 (or f(z) <0) for any x € (a —e,a +¢€).

PrROOF. 1) We can simply apply Theorem 33. Indeed, since f([)
is an interval (Theorem 33), the segment generated by f(b) and f(d)
is completely contained in f([b,d]). Since f(b) and f(d) have distinct
signs, 0 is between them, so, 0 € f([b,d]), or 0 = f(c) for a ¢ € [b,d].
2) Suppose that f(a) > 0. Let us assume contrary, i.e. for all small
possible ¢ we can find in (¢ — €,a + ¢) at least on number z. (an x
which depends on ¢) such that f(xz.) < 0. Take for such epsilons the
values

11 1
1= = =0,
23 n
and find z1 € (a — L,a+ 2) with f(z1) < 0,n = 1,2,... . Since

f is continuous at a and since the sequence {z1} tends to a (why?),
one has that f(z1) — f(a). But f(z1) are all Inionpositive, so f(a) is
nonpositive, a contradiction! Hence, there is at least one ¢ small enough
such that for any x in (a — e,a + ¢), f(x) > 0. The case f(a) < 0 can
be similarly manipulated (do it!). O

DEFINITION 10. Let (X, d) be a metric space and let I be an interval
on the real line R (a subset I of R is said to be an interval if for any
pair of numbers r1, ro € I and any real number r with r1 < r < 1o,
one has that r € I). Practically, we think of a curve in X as being the
image i X of an interval I through a continuous function h : I — X.
More ezactly, we denote the couple (I, h) by a small greek letter v and
say that v is a curve in X. If A and B are two "points" (elements)
in X, we say that a curve v = (I, h) connects A and B if there are
a,b € I such that A = h(a) and B = h(b). By an (closed) arc [AB]
in X we mean the image in X of a closed interval [a,b] of R through
a continuous function h : [a,b] — X, i.e. [A,B] = {x € X : there is
¢ € [a,b] with h(c) = x}.

EXAMPLE 1. a) Let {O;i,j,k} be a Cartesian coordinate system
in the vector space Vi of all free vectors in our 3-D space (identified
with R3).  Any point M in R® has 3 coordinates: M (z,y,z), where

OM = ri+yj+zk, x,y,z € R. Let A(aq,as,as) and B(by, be, b3) be two



62 3. SEQUENCES AND SERIES OF FUNCTIONS

points in R3. The usual segment [A, B] is a closed arc which connect the
points A and B. Indeed, let h : [0,1] — R3, h(t) = (a; +t(by — a1), as +
t(ba — ag), as + t(bs — as)), be the usual continuous parameterization of
the segment [A, B] :

I:a1+t(b1—a1)
y=as+t(by—az) ,tel0,1]
z:a3+t(b3—a3)

Here v = ([0,1],h) is a curve in R3. This function h describes a com-
position between the dilation of moduli by — ay,by — as, by — asz, along
the Ox, Oy, and Oz axes respectively, and the translation x — a + X,
of center a = (ay, as, as).

b) Let C = {(z,y) € R? : (x—a)*+ (y—0)? = r*} be the circle with
center at (a,b) and radius r. The parametrization of C

{ T =a-+rcost

y=>b-+rsint ¢ € [0, 2]

give rise to a curve v = ([0, 27|, h), where h(t) = (a+rcost,b+rsint).
In fact, h describes the continuous deformation process of the segment
0,27] C R i4nto the circle C' in the metric space R?.

DEFINITION 11. A subset A of a metric space (X, d) is said to be
connected if any pair of two points My and My of A can be connected
by a continuous curve v = (I, h), h: [ — X.

COROLLARY 4. The connected subsets in R are exactly the intervals
of R (for proof use the Darboux Theorem 33).

For instance, A = [0, 1] U [5, 8] is not connected because it is not an
interval (4 is between 0 and 8, but it is not in A!).

REMARK 10. A subset S of R3 is said to be convex if for any pair
of points A, B € S, the whole segment [A, B] is included in S. For
instance, the parallelepipeds, the spheres, the ellipsoids, etc., are convex
subsets of R®. The union between two tangent spheres is connected but
it is not convex! (why?). It is clear that any convex subset of R?® is also
a connected subset in R® (prove it!).

DEFINITION 12. Let f : A — R be a function defined on an open
subset A of R with values in R. A point a of A is a local mazimum
point of f if there is an e-neighborhood of a, (a—e,a+¢) C A, such that
f(z) < f(a) for any x € (a—¢,a+¢). The value f(a) of f at a is called
a local extremum (mazximum) for f. A point b of A is said to be a local
minimum point for [ if there is an n-neighborhood of b, (b—n, b+n) C A,
such that f(z) > f(b) for any x € (b—n,b+n). The value f(b) of f



1. CONTINUOUS AND DIFFERENTIABLE FUNCTIONS 63

at b is called a local extremum (minimum) for f. A local maximum
point or a local minimum point is called a local extremum point. The
local extrema of f on A are all the local maxima and the local minima
of f in A. The (global) maximum of f on A is max f(A) (€ R). The
(global) minimum of f on A is min f(A) (€ R) (see Fig.3.3).

|
yi ,
5 global ;
5 max. !
! local N
1 max. Py
— : : —H »
O _ x ‘ X2 _ X3 Xq A\ X
global
min.
local
min. not local
extremum

Fig. 3.3

A critical (or stationary) point ¢ € A for a differentiable function
f:A—Ron Ais aroot of the equation f'(z) =0, i.e. f'(c) =0. For
instance, ¢ = 2 is a stationary point for f(z) = (z —2)3, f : R — R,
but it is not an extremum point for f (why?). The next result clarifies
the converse situation.

THEOREM 35. (1-D Fermat’s Theorem) Let a be a local extremum
(local mazximum or local minimum) point for a function f : A — R
(A is open). Assume that f is differentiable at a. Then f'(a) =0, i.e.
a 1s a critical point of f. Practically, this statement says that for a
differentiable function f we must search for local extrema between the
critical points of f, i.e. between the solutions of the equation f'(x) =0,
x € A.

PROOF. Suppose that a is a local maximum point for f, i.e. there
is a small € > 0 such that (a —e,a+¢) C A and f(x) < f(a) for any
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xin (a —e,a +¢) (if a is a local minimum point, one proceeds in the
same way, do it!). Look now at the formula:

@@
(1.49) tim =IO _ g

If 2 € (a—¢€,a+¢)and = < a, since f(z) < f(a), one has that
f'(a) > 0 (why?). Now, if z € (a — &,a + €), but > a, again since
f(x) < f(a), one gets that f'(a) < 0. Both inequalities give us that
f'(a) = 0 and the Fermat’s theorem for a function of one variable is
proved. U

However, the Fermat’s Theorem works only at the points at which
our function is differentiable. For instance, f(x) = |z| has at x = 0
a local (even a global) minimum (why?), but it is not differentiable
at this point (why?). The moral is that we must consider separately
the points at which a function is not differentiable and see (using the
definition only!) if these points are or not local extremum points for
our function.

THEOREM 36. (Rolle Theorem) Let f : [a,b] — R (a < b) be
a continuous function. Assume that f is differentiable on the open
subinterval (a,b) and that f(a) = f(b). Then there is at least one point
c € (a,b) such that f'(c) = 0.

PROOF. Let us apply the Weierstrass boundedness theorem (The-
orem 32) and find m = inf f([a,b]) and M = sup f([a, b]) as real num-
bers. If m = M, then our function is a constant function and so,
f'(x) = 0 for any = in (a,b). Hence we assume that m # M. So the
number f(a) = f(b) cannot be simultaneously equal to m and M. Sup-
pose for instance that f(a) = f(b) # M. Thus, a ¢ with M = f(c),
c € la,b] (see the Weierstrass boundedness theorem) cannot be either
a or b, i.e. ¢ € (a,b). Therefore, this ¢ is a local maximum for f. Use
now Fermat’s Theorem and find that f'(c) = 0. O

For instance, if f(z) = 2* — 16, € [—1,1], then f(—1) = f(1) =
—15 and f’(z) = 0 supplies us with a unique solution ¢ = 0. The
continuity at the ends of the interval [a, b] is necessary, as we can see
in the following example. Let us take

e ={ "o 4 e e o

This function is defined on [0, 1], it is differentiable on (0, 1) and f(0) =
f(1), but its derivative f’(x) =1 has no zero on (0, 1).
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2. Sequences and series of functions

We know to measure the length |lal| = y/a? + a3 + a2 of a vector
a = a1i + asj + azk of V3, the 3-dimensional vector space of all free
vectors (here ay, as, a3 € R are the coordinates of a). The function a ~-
la]| , which associates to a vector a its length ||a|, has the following
basic properties:

nl.|la|| =0, if and only if a = 0,

n2.|la+bl|| < |la]| + |/b],
for any a,b €V,

(2.1) n3.|[Aal| = |Al ||a]| for any A € R and a €V5.

If instead of V3 we take any real vector space V together with a
mapping like above, x — ||z|| € [0,00), € V, which fulfils the analo-
gous requirements nl, n2 and n3 from (2.1), we get the general notion
of a normed space (V,||.||).

DEFINITION 13. Let V' be an arbitrary real vector space and let
f ~ |Ifll be a mapping which associates to any element f of V a
nonnegative real number ||f||. If this mapping satisfies the following
properties:

nsl. ||fll =0, if and only if f =0,f €V,
ns2. |[f + gl < IlF I+ llgll
for any f,g € V and,
ns3. | Afll =AM S|l for any A € R and f €V,

we say that the pair (V. ||.||) is a normed space and the mapping
x ~ ||z|| (the norm of x) is called a norm application (function) or
simply a norm on V.

For instance, the norm of a matrix A = (a;;), i = 1,2,...,n; j =
1,2,...,m, is
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The mapping A ~ ||A|| satisfies the properties of a norm (prove it!)
on the vector space of all n x m matrices. In addition, one can prove
(not so easy!) that

(2.2) nsd. |AB| < [[A]l |B]

for any two matrices n X m and m X p respectively.

REMARK 11. It is easy to see that a normed space (V,|.||) is also
a metric space with the induced distance d, where d(z,y) = ||z —y||
(prove this!). For instance, {xz,} — x if and only if ||z, — x| — 0 as
n — oo.

If we consider now a bounded function f : A — R defined on an
arbitrary set A with real values, we can define the norm ("length") of
f by the formula: || f|| = sup |f(A)|, where |f(A)| = {|f(a)| : a € A} is
the absolute value of the image of A through f, or simply the modulus
of the image of f. This norm is also called the sup-norm.

THEOREM 37. Let B(A) = {f : A — R, f bounded} be the vec-
tor space of all bounded functions defined on a fized set A. Then the
mapping f ~ || f]| is a norm on B(A) with the additional property:

nd.[[fgll < [Lf ] 1lgl]

for any f,g € B(A). Moreover, any Cauchy sequence { f,} with respect
to this norm is a convergent sequence in B(A).

PROOF. Let us prove for instance ns2. Since
[f(a) +g(a)| < [f(a)] + lg(a)] <

< supf[f(a)| : a € A} +sup{|g(a)] : a € A},
taking sup on the left side (it exists, because it is upper bounded by
a constant quantity), we get the property n2. : ||f + g|| < ||f]] + llg]| -
The property n4. can be proved in the same manner (do it!). The other
properties are obvious (prove them with all details!). Let us prove the
last statement. Since

[ frtp(2) = fu(2)] < sup{[frip(2) = ful2)] s w € A} = || fasp = full,

for a fixed x in A, the numerical sequence { f,,(x)} is a Cauchy sequence
in R. Since R is complete, i.e. any Cauchy sequence in R has a (unique)
limit in R, let us associate to « the limit lim f,(z), denoted by f(z),

i.e. a real number which depends on x. We shall prove that this new
function f : A — R :1) is bounded, i.e. belongs to B(A) and 2) it is
the limit of the sequence {f,} in B(A), relative to the sup-norm. For
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2) let us take a small € > 0 and let us find a rank N which depends on
¢ such that

(2.3) [frip = full <€

for any n > N and for any p = 1,2,.... Since f,(z) — f(x) for any
fixed x in A and since

| frtp(2) = (@) < N frip = full <€

for any n > N and any p, let us make p large enough, i.e. p — oo in
the last inequality. We get |f(z) — fu(z)| < e (why?) for n > N and
for any x in A. Take now sup on the left and get:

(2.4) If = fall <

for any n > N. Hence f,, Iy f . We make n = N in (2.4) and write

[f(@)] < [f(2) = In(@)| + [In@)] < I = Il + NIl < e+ (1w

Take now sup on the left and we get:

LA <e+I1fll

i.e. f is bounded and so, f, 1! fin B(A) . 0

DEFINITION 14. Let {f,} be a sequence of bounded functions on A
and let f be another bounded function on A. We say that the sequence
{f.} is uniformly convergent to f (write f, =5 f) if the sequence of
numbers {||f., — fll} is convergent to 0. If for any fized x € A the
sequence of numbers {f,(x)} is convergent to f(x), we say that the
sequence of functions {f,} is simply (or pointwise) convergent to f
(fn 55 f). Since |fo(x) — f(x)| < |fa — fI|, the uniform convergence
implies the simple convergence (why?-give details!).

The notion of uniform convergence is stronger then the notion of
simple convergence. For instance, let

folz) =2", x €0,1].
Here A = [0,1] and, for z € [0,1), lim f,(z) = 0 (why?). For z = 1,
lim f,(1) = 1. So, the pointwise limit function f(z) =0, if 0 < z <

1 and f(1) = 1. Hence, the sequence of functions {f,} is pointwise
convergent to this f. Let us evaluate now

1o = fII = sup{[fu(2) = f(2)| 2 € ]0,1]} = 1.

Hence || f, — f]| = 1 does not tend to 0! So, the sequence of functions
is not uniformly convergent.



68 3. SEQUENCES AND SERIES OF FUNCTIONS

REMARK 12. (Weierstrass) Not always we must compute exactly
the norm || f,, — fl| - In fact, for the uniform convergence to f of the se-
quence { f, }, it is sufficient to find a sequence of numbers {c,} such that
|fu(z) = f(z)] < ey, for any x € A and for any n > N (a fized natural
number) such that {a,} — 0 (why?). For instance, take f,(z) = 22,
Since for any fized x € R, }%| < 2. we have that f,(x) — 0, when
n — oo. But the right side of this last inequality is independent on x.
So we can take o, = % and apply the above remark of Weierstrass.
Hence f,(z) = % s uniformly convergent to 0 on R. If instead of
sinnx one takes any other bounded function g(x) on an arbitrary in-
terval I C R, we get that f,(x) = @ 18 uniformly convergent to 0 on

I (prove it!).

In order to test the uniform convergence of a sequence of continuous
functions we can use the following result.

THEOREM 38. Let (X,d) be a metric space and let {f,} be a uni-
formly convergent sequence of bounded continuous functions defined on
X with real or complex values. Let f be the limit function of {f,}.
Then the function f itself is a bounded and continuous function on X.

PRrROOF. Recall that ||f,|| = sup|f.(X)| < oo for any n = 1,2, ...
(fn is bounded). Let € > 0 be a small positive real number and let N
be a rank (a fixed natural number) such that

(2.5) |f — fnll < e for any n > N.

1) Let us prove that f is bounded on X. Take n = N in (2.5),
remember the basic property of the norm function (see Theorem 37)
and write

LA =10 = fv) + Il < 1f = Anll + InlE < e+ lfnll

Since fy is bounded (|| fn|| < o00), we get that f is also bounded.

2) In order to prove the continuity of f at a fixed point a of X, let
us take a sequence {ax} which is convergent to a, when k& — oo. Since
{fn} is uniformly convergent to f, there is a large number L such that
|lf — frll < 5. Since this f7 is continuous, there is a rank K such that
for any £ > K one has

fular) = fula)] < <.
Now,
(2.6) |f(ax) = f(a)| = |fa) — frlar) + frlar) — fla)] <
< |flaw) = frlaw)| + [ frlar) — fla)] <
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<sup{|f(z) — fo(x)| : x € X} + |fr(ar) — f(a)| =

= If = fell + 1 fr(ar) — f(a)]
But,

(2.7) [felar) = f(a)l = [frlaw) = f(a) + fr(a) = f(a)| <
< [felar) = fr(a@)l+]fe(a) = fla)| < %Jrsup{lfL(fﬁ) —f@)]:re X} =

3
=gt =1l
for any k > K (here we just used the continuity of f1). Combining the

inequalities (2.6) and (2.7), we find

[f(ar) = fla)] < [If = fLH+ +llfz - £l < = +3+§=

for any k > K. Hence f(ay) — f(a), so f is continuous at a. O

This last result is useful whenever we want to prove that a sequence
of continuous functions {f,} is NOT uniformly convergent. Namely,
we construct the limit function f(z) = lim f,(x) for any fixed x. If the

function f(x) is not continuous, then, because of Theorem 38, we must
conclude that {f,} cannot be uniformly convergent to f.

For instance, the sequence f,(x) = 2™, x € [0,1] is convergent to
f(z) = 0if 2 € [0,1) and f(1) = 1. Since this last function is not
continuous, our sequence cannot be uniformly convergent to f. It is
only simply convergent to f.

Sometimes it is useful to integrate term by term a sequence of func-
tions and see what happens with the limit function.

THEOREM 39. Let {f,} be a sequence of continuous functions,
which is uniformly convergent to a continuous (see Theorem 38) func-
tion f on the interval |a,b]. For any fixed x € [a,b] one defines F,(v) =
f fa(t)dt, n = 0,1,... and F(x f f(t)dt be the canonical primi-
tives of fn and of f respectwely on [a,b]. Then, the sequence {F,} is
uniformly convergent to F' on [a,b]. In particular, for v = b, we get a
very useful relation:

b b
(2.8) lim [ f.(t)dt —/ Jin;of”(t)dt

Proor. Let us evaluate
| 5 — F|| = sup{| F.(z) — F(z)|, 2 € [a,0]} <

< SUP{/xlfn(t) )tz € [a, b)) <
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29) <l lsupl [ dtsvelatly = b-a)lh— .

Now, since {f,} is uniformly convergent to f, the numerical se-
quence || f, — f|| tends to zero. Hence, since 2.9 says that

”Fn_FH San—fH(b—G),

we have that ||F, — F|| — 0, i.e. {F,} is uniformly convergent to F' on
a, b]. O

In the following we show how to use this result in practice.

Let us take the sequence of functions f,(z) = nze ", x € 0, 1].
It is clear that this sequence is simply convergent to the continuous
function f(x) = 0 for any x in [0, 1]. Since f is continuous we cannot
decide if our sequence is uniformly convergent or not, only by using
Theorem 38. If the sequence were uniformly convergent, then, using
the relation (2.8) we would get:

1 1
(2.10) lim [ nwe ™ dr = / lim nxe ™ dz = 0.
0 0

n—oo n—o0

But

1
—nr2 1 Cm,2 1 1 _ 1
nre " dr =—=e" ;= —=le" =1 — #0.
/ Sl |
Hence, our assumption cannot be true. So, our sequence is not uni-

formly convergent on [0, 1].

REMARK 13. In Theorem 39 we saw that a uniformly convergent
sequence of continuous functions can be "termwisely” integrated. But
what about their "termwise” derivatives? Can we "termwisely" differ-
entiate a uniformly convergent sequence of differentiable functions? In
general, we cannot, as the following example shows. Let f,(x) = %,
z € [0,1]. Since ||f, — 0| = sup{%: : = € [0,1]} = L — 0, when
n — oo, we find that {f,} is uniformly convergent to f(x) = 0 on
[0,1]. But f!(x) = 2" is not uniformly convergent on [0, 1] as we saw
above.

THEOREM 40. If we want to differentiate "termwisely” the sequence
{fu} of differentiable functions on [a,b], the following conditions are
sufficient: 1) {fn} is uniformly convergent to f on [a,b], 2) {f.} is
uniformly convergent to g on [a,b] and 3) f, € Cta,b] for any n =
0,1,... . Then f is also differentiable and f' = g (= f is also of class
Ct on [a,b]).
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PROOF. Indeed, using Theorem 39 for the sequence f’ 5 g, one
has that

T

@2.11) mmz/ﬂwwznm—nm% gty

a

Since f, = f one has that f = [T g(t)dt (why?). Let o be a
point in [a, b]. Since fxo g(t ( ) (x — x0) (mean formula), where
¢, 1s a point in the segment [xo, ],

tim TE =70 _ i ge) = g(ao).

T—T0 T — ,f[,‘o T—T0
So, f'(x¢) exists and it is equal to g(zo). Hence, f" = g on [a, b)]. O

DEFINITION 15. Let {f.} be a sequence of functions defined on a
subset A of R. For everyn = 0,1, ... we denote by

sn(x) = fo(z) + fi(z) + ... + fulx).

A series of functions f, is an "infinite" sum

2 fi
k=0
If the sequence of "partial sums" {s,} is simply convergent to the func-

tion s on A, we say that the series Y _ fy is simply (pointwise) conver-
k=0
gent to s (its sum) on A. If the sequence {s,} is uniformly convergent

to s on A, we say that the series Y, fx is uniformly convergent to s (its
k=0

o
sum) on A. In this last case, we simply write s = >, fx.
k=0

Let the series of functions

1 —gntt 1
Z:c lim (1 +2+2°+ ... +2") = lim SRR )

o

for any x € (—1,1). So, the (geometric) series > a* is simply (point-
k=0

wise) convergent to -~ on (—1,1). Let us see if it is uniformly conver-

gent on (—1,1). For this, let us evaluate

o — sl = | 1 - 2
S, — s|| = — =
11—z 11—z
n+1 n+1
= 1:6_ :sup{‘lx_—x':ase(—l,l)}:
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Hence, our series is not uniformly convergent on the whole interval
(—1, 1) but,...it is uniformly convergent on every closed subinterval |a, b]
of (—1,1). Indeed, in this case, if we denote by ¢ = max{|a|, |b|}, we

get
n+1

— 0, when n — oo,

c

i sl <

because ¢ € (0,1). Thus the series is uniformly convergent on [a, b].
Sometimes, it is very difficult to evaluate "the error function" s, —

s. This is why we need some other tools for deciding if a series is

o0
uniformly convergent or not. A series of functions »_ f; is said to

k=0
be absolutely uniformly convergent if the series of the moduli of these

functions Y | fx| is uniformly convergent. Recall that | f]| (x) ) |f(z)].
k=0
It is not difficult to see that an absolutely uniformly convergent series of
n

o0
functions ) f is also uniformly convergent. Indeed, let S, = > |fx|
k=0 k=0

and let S = > | fx| be the sum of the series of moduli. Then

k=0
|s(x) = sn(2)] = | frs1(2) + frsa(2) + | < |foir (@) + [fora(z)| + .
(why?)

= S(x) — Sp(x) <sup{|S(z) — Sp(x)| : x € A} = ||S — S,.|| -

Hence |s(z) — s,(z)| < ||S — S, for any x € A. Taking now sup on
x € A we get that ||s, — s|| < ||S — S,|| . Since our series is absolutely
uniformly convergent, then ||S — S,| — 0, when n — oo. Using now
the last inequality, we get that ||s, —s|| — 0, i.e. the initial series
is uniformly convergent. A powerful and useful test for the absolute
uniform convergence is the following test.

THEOREM 41. (Weierstrass Test for series of functions) Let A be a

subset of real numbers and let Y fi be a series of functions defined on

k=0
A. Assume that || f,|| can be upper bounded by «,, € [0,00) (|fn(x)] <
a, where x runs on A) for any n = 0,1,... and that the numerical

series Y oy, is convergent. Then the series Y fi is absolutely uniformly
k=0 k=0
convergent. In particular, it is also uniformly convergent.

PROOF. Let us fix a small positive real number e > 0 and an x € A.
Let

Sn = [fol + 1l + -+ [ n]
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o0
be the n-th partial sum of the series >’ |fx|. Since the numerical series
k=0

> ay, is convergent, there is a rank N such that
k=0
Opt1 + Qpyo + .o+ Qptp <e

for any n > N and for any natural number p.
Let us evaluate |S,4,(z) — Sp(2)] :

(2.12)  [Snip(2) = Su()] = [frsa (@) + [ fn2(@)] + o A+ [frip ()] <

Opt1 =+ Opt2 + ...+ Oén+p < E.

From (2.12) we obtain that the sequence {S,(z)} is a Cauchy se-
quence of real numbers (see Definition 2). Since on the real line any
Cauchy sequence is convergent (see Theorem 13) we get that the se-
quence {5, (z)} is convergent to a real number S(z) (this means that
this real number depends on z, i.e. it is changing if we change x, so it
is a function of z). Come back now in (2.12) and make p — oco. We
find that |S(x) — S, (z)| < € for any n > N and for any x € A. If here,
in the last inequality, we take sup on x, we finally get: ||S — S,| < ¢

o0
for any n > N. Hence, the series Y |fx| is uniformly convergent to
k=0

S (its sum). Thus, our initial series ) fi is uniformly and absolutely
k=0
convergent. O

The series of functions Z arcagine) (n2) is absolutely uniformly conver-

arctan(nz)

o0
T 1 s 1
gent because < § - -3 and the numerical series Z L=

gz 4 is convergent (why?) (see the Weierstrass Test, Theorem 41).

Another very useful test is the Abel-Dirichlet Test for series of func-
tions, a generalization of the test with the same name for numerical
series.

THEOREM 42. (Abel-Dirichlet Test for series of functions)

Let {a,(z)}, {bn(z)} be two sequences of functions defined on the
same interval I of R. We assume that ||a,|| is a decreasing to zero
sequence and that the partial sums s,(x) = > ,_,bu(x) of the series
of functions > - b, (x) are uniformly bounded, i.e. there is a positive
real number M > 0 such that ||s,|| < M for anyn =1,2, ....

Then the series of functions Y o a,(x)b,(z) is (absolutely) uni-
formly convergent on the interval I.
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PROOF. Let us come back to the Abel-Dirichlet’s Test for numerical
series and substitute the numbers a,,, b,, s,,, S, with the corresponding
functions a, (), b, (), sp(z) and S, (x) = Y _, ar(x)bg(z) respectively.
We obtain (do it step by step!) that the sequence of functions {S,(x)}
is uniformly Cauchy, i.e. for any € > 0, there is a rank N, such that if
n > N, one has that

(2.13) [Snip = Sull <

for any p = 1,2, .... In particular,
[Sntp(@) = Su(2)| <€

for any fixed = in I. So, the numerical sequence {5, (z)} is convergent
to a number S(z) which depend on z. Making p — oo in (2.13) we get

[S(x) = Sn(x)] <e
for any n > N, and for any z in I. Take now sup on x and find that
15 =Sl <e

for any n > N.. This means that {S,} is uniformly convergent to S,
i.e. our series of functions Y > a,(x)b,(x) is uniformly convergent on
the interval I. With some small changes in the proof, we find that this
last series is absolutely uniformly convergent on I (do them!). O

Let us take the series of functions >~ (712:_1 " forx € [—1+4-¢,1],
where 0 < ¢ < 2. Let us apply the Abel-Dirichlet Test for series of
functions by taking a,(z) = Z- and b,(z) = (—1)""'. We easily see
that ||a,(2)| = + and that the series >~ ; (—1)""! has bounded partial

sums. Hence our series y - ( 17)17Hx”, x € [—1+ ¢,1], is absolutely
and uniformly convergent.
The following question arises: can we integrate or differentiate term
o

by term (termwise) a series of function »_ fi 7 Since everything reduces

k=0
to the sequence of partial sums s, = fo + f1 + ... + f., we can apply
the results from Theorem 39 and Theorem 40 and find:

THEOREM 43. Let Z fn be a uniformly convergent series of contin-

=0
uous functions on the mtemal [a,b], let s be zts sum and let F,,(x) be the
canonical primitives of f,(t) on [a b : f fa(®)dt, n =10,1, ...

. Then the series of functions ZFn is umformly convergent on |a, b
n=0
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and S(x) = [ s(t)dt, is its sum. So,

(2.14) /x (an(t)> dt = Z/I fa(t)dt.

(this means that the integration symbol [ commutes with the symbol ",
of a series). In particular, for x = b, we get a very useful formula:

(2.15) / <an(t)> dt—Z/ Fa(t)dt.

If in addition, f, are functions of class C* on [a,b] (f, are dif-
ferentiable and their derivatives are continuous on [a,b], shortly write

fn € Cla, b)) and if the series of derivatives, u = Y. f! is uniformly
n=0

convergent on [a,b], then s is differentiable on [a,b]icmd s' = u. So,
we can differentiate "term by term" (or termwise) the initial series of
functions.

In the first statement s is a continuous function on [a, b] because of
the basic Theorem 38. In this last theorem there is a requirement: f,
must be bounded. This is true because f; are continuous and defined
on a bounded and closed interval (see Theorem 32).

Let us study the following series of functions > (—1)"2" on (—1,1).
n=0
For any fixed x, one has the formula

2.16 1-— 2_ .=
(2.16) T+ T2

the famous geometric series with ratio —x. Hence, our series is simply
convergent on (—1,1). It is not uniformly convergent on (—1, 1) but it is
absolutely and uniformly convergent on any closed subinterval [a, b] of
(—1,1) (apply the same reason as in the case of the infinite geometrical
series). Let us derive an interesting and useful formula from (2.16). Let
us fix an zo in (—1,1) and take a,b such that xy € [a,b], a or b is 0
(if zo < 0, take b = 0, if 2o > 0, take a = 0) and [a, b] is included in
(—1,1). Since all conditions in Theorem 43 are fulfilled, we integrate
term by term formula (2.16) and get

,x € (—1,1),

xo
/(1—t+t2—...+(—1)"t“+...)dt:
0

t2 t3 tn+1
=t——+—-—..+(-1)"

CEOZ
n+1 ) o
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+1

o n oo 1
— Z(—l)”_lx—o = / ——dt =In(1 + o).
— n o 1

Now, let us put instead of xy an arbitrary = in (—1, 1) and obtain

o . o n—lgii -
(2.17) In(1+z) =Y (-1) —, for any z € (=1,1).

n=1

The value of the alternate series - (—1)""'L is In2 but, to prove
this, one needs the continuity of the function on the right in the formula
2.17. And this is not so easy to be proved (see the Abel Theorem,
Theorem 46).

Let us compute the sum of the series of functions ) °  nz™ on
its maximal domain of definition. First of all, let us fix an x on the
real line and try to find conditions for the convergence of the series
> ona™. Let us see where the series (numerical series this time!) is
absolutely convergent. Applying the Ratio Test (Theorem 27) to the

an+1

series of moduli Y 7 jn|z|", we get lim “ = |z|. We know that if
n—oo

an
|z| < 1, the series is absolutely convergent, in particular it is convergent
on (—1,1). If || > 1, the series is divergent, because, in this case, the
sequence {nx"} is not bounded (why?) so, it cannot be convergent to
0. For x = 1 or x = —1, the series is divergent. Hence, the definition
domain of the function s(z) = > 2 na™ is exactly (—1,1). Let us
compute s(z).

s(z) = lo+202 +32° + ... 4 na"+... = o(1+20+32° + ... +nz" 1 4..)

!/
x x
=z(z+a’+..+a"+..) =z = :
x(r+x x )Y ==z (1_1:) e
Here we used Theorem 43 to differentiate term by term the series
v+ .+ = = (why the hypotheses of this theorem are

fulfilled?).

3. Problems

1. Find the convergence set and the limit for the following sequences
of functions: a) f,(z) = 2"; b) fu(z) = %5 ¢) fulr) = 1, v € (0,00);

d) fn(‘r) - 1+7:1x+z7 S [07 1]§ e) fn(x) - 1+2;L—§$27 S [1700); f) fn('r> =

;2%%;57:E S [17 OO)‘
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2. Say if the convergence of the above sequences (see Problem 1.)
is uniform or not. Study the absolute uniform convergence of the same
sequences.

3. Let fu(2) = =5, = € [0, 1]. Prove that {f,} is not uniformly

convergent but fo fo(x)dx — fo 1im fn( )da

4. Prove that f,(v) = 15z, @ 6 [—1 1] is uniformly convergent
to f(z) (find it!) but f is not uniformly convergent to f’. Do the same
for f,(z) =%, z € [0,1].

5. Prove that the series of functions Y oo (2" — 2™~ ') is uniformly
convergent on [0, 0.5], but not on [0, 1].

6. Is the series of functions Y > | (sin
vergent on R? But on [0, 1]? But on [a, b]?

7. Prove that the following series of functions are absolutely and

uniformly convergent on the indicated domain: a) > | %, € R;

X : x :
44 —sin ;) uniformly con-

b) Yooty S w € [0,00);0) oo B p € Ry d) 107 s @ €
R;e) Y > lj%,xeR.

8. Can we differentiate term by term the following series?

00 . o sin(2Vhz
a)y 1eXp( z)sinnz, x € [1,00); b) >, n(222ﬁ ) 2 eR;
c) > reR.

n= 1n2+:c2’

9. Find the image of the following functions:

a) f(z) = -3z +2, z € [-3,12];

b) f(x)—Qx +2 -5 2 eR;

) f(z) =2 =3z +2, x € [-120,120];

d) f(x) = 3sindx, x € [-5, 5]

e) f(z) = |sinz — cos2z|, x € [0, 7;

f) f(z)=|22+22—1] — 3,z € (—00,9].

10 Find the norm of the following functions: a) f(z) = 2x — 5,
€ [-

4,7); b) f(x) = 3cosbz, x € [mr,00); ¢) f(z) = In(22* + 3),
€[-2,2];d) f— g, where f(z) = 3z and g(z) = 42?%, x € [0,2].






CHAPTER 4

Taylor series

1. Taylor formula

Always the most elementary functions were considered to be poly-
nomial functions. A polynomial function of degree n is a function
defined on the whole real line by the formula:

Po(z) = ag + a17 + agx® + ... + a,a”,

where ag, ay, ..., a, are fixed real numbers and a,, # 0.

Many mathematicians tried and are trying to reduce the study of
more complicated functions to polynomials.

It is clear enough that not all functions can be represented by a
polynomial. For instance, the exponential function f(x) = exp(z) = €*
cannot be represented by a polynomial P,(z). Indeed, if

exp(z) = ag + a17 + asx® + ... + apa”

for z € (a,b), a # b, we differentiate n times and find: exp(z) = nla,,
a constant, which is not possible, because the exponential function is
strictly increasing. Here we proved in fact that the exponential function
cannot be represented by a polynomial in any small neighborhood of
any point on the real line. The following problem appears in many
applications. If x is very close to a fixed number a, i.e. if the difference
x — a is very small (is very close to zero!), can we represent a function
f as an "infinite" polynomial in the variable x — a? This means

(1.1) f(@) =ag+ai (z —a) + ay (x — a)® + ...

in a neighborhood (a—e¢, a+-¢) of a. This would imply that our function
is a function of class C'° | i.e. it has derivatives of any order. But this
is not true for all functions. So, what can we hope is to "approximate"
a function f in a small neighborhood of a point a with a polynomial of
a given degree n in the variable x — a :

(1.2) f(z) =ao+a1(x—a)+as(x—a)’ + ...+ an(z —a)" + Ry(2),

where R, (x) is a remainder which is a function of = (it also depends
on f and on a!). This remainder is the error committed when we

79
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approximate f(x) by the polynomial
ap+ a1 (x—a)+ay (x —a)’ + ... 4+ an(z — ).

This polynomial is called the Taylor polynomial of order n at a.
If f(x) is a polynomial of degree n, we can represent [ as in formula
(1.2) with the remainder zero. Indeed, the set of n + 1 binomials

{1,7 —a,(z—a) (z —a)’ .. (r—a)}

is linear independent in the vector space P,, of all polynomials of degree
at most n, which has dimension n + 1 over the real field (this comes
directly from the definition of a polynomial-why?). Hence,

1,7 —a,(z—a) (z —a)’, .. (r—a)}

is a basis in P,, and so, we always can uniquely find the constant ele-
ments ag, a1, as, ..., a, such that

(1.3) f(x)=ag+ar(x—a)+as(x—a)’ +...+ap(zr—a)

In this last case we can compute the coefficients ag, aq,...,a, by
using the values of f and of its derivatives f/, f”, ..., f at a. Indeed,
let us make x = a in the equality (1.3). We get f(a) = ag. If one
differentiates the same equality and makes x = a, one obtains f'(a) =
a1. Now, if we differentiate twice this equality (1.3), we get f”(a) = 2as,,
and so on. Take the k-th derivative in both sides in (1.3) and find
f®(a) = Klay, for any k = 1,2, ...,n. Thus (1.3) becomes:

(1.4)
"(a "(a (n) a
1@ = @)+ D oy DD ooy Ty
Generally, if the function f is not a polynomial of degree n, we
formally can write (it is clear that f must be n-times differentiable):
(1.5)

(a4 "(a ) ) (q
f(z) = f(a)—l—fl(! ) (x — a)—i—f2(! ) (x —a) +...—i—f n'( >(x—a)"+Rn(x),
where
"(a "(a ) (n) a
Ro(2) = f)f(0)- D o - ) D (o ap e LD

The problem is to estimate this remainder. The famous Taylor formula
gives a general estimation for this remainder.

THEOREM 44. (Taylor formula) Let A be an open subset of R and
let f : A — R be a function defined on A with values in R, which
is (n + 1)-times differentiable on A. Let us fix a point a in A and a
natural number p # 0. Then, for any x € A such that the segment |a, x]
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is included in A, there is a point ¢ € (a,x) with the following property:
the remainder R, (x) from (1.5) has a representation of the form

(16) o) = (22 ) =" e

T —c nlp

This general form of the remainder was discovered by Schomlich. If
p=mn+ 1, we find the Lagrange form of the remainder

/ (nH)(C) 1
1.7 R,(z) = "—— (2 —a)"".
(17) v (n+1)! v—a)
We see that this form is very similar to the general term form in (1.5).
In fact, it is "the next" term after the n-th term %(w—a)” in which

the value of f*V) is not computed at a, but at a close point ¢ € la, ]
(here we do not mean that a is less then z!). Usually, the error made
by approximating f(x) with its Taylor polynomial T, (x) of order n,

(1.8)
T, () :f(a)+%(x—a)+f2—(!a)(x—a)2+...+

["(a)

n!

(I - a)n7

is evaluated by the Lagrange form of the remainder R,(z). Since we
have no supplementary information on the number c, we use the fol-
lowing upper bounded formula:

n+1

(1.9) |R,(2)| < %sup{‘f(nﬂ)(z)‘ 1z € |a,x]}

Since we frequently use Taylor formula with Lagrange remainder, we
write it here in a complete form (together with this last form of the

reminder)
(1.10) .
F(a) = fla) + fl(!“> (x —a) + fQ(!a) (r—a 4.+ n!(“ (x —a)"
f(nJrl)(C) n+1
+—(n+ ] —a)"th

PrOOF. The proof of this theorem is not so natural. Let us assume
that z > a. In this case, the segment [a, 2] is exactly the closed interval
la, z]. Let us denote in (1.5)

(L11) Qz) =~
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Thus, the formula (1.5) becomes:

(1.12)
f(a:):f(a)—l—%(m—(z)—l—fz—(?)(:c—a)%l—...—i—

+(r —a)’Q(x).
In order to obtain a representation for Q(z), we consider an auxiliary
function:
(1.13)

/ " (n)
g(t) = f(t)—i—fl—('t) (x — t)—i—f2—('t) (x — t)2—|—...+fn—'(t)(x—t)"—i—(a:—t)pQ(x)
We obtained the expression of g(t) by simply putting ¢ instead of a,
in (1.12). We apply now the Rolle’s Theorem (Theorem 36) on the
interval [a,z]. The function ¢(t) is continuous and differentiable on
[a, 2], g(a) = f(z) (see 1.12) and g(z) = f(z) so, g(a) = g(z). Thus,
there is a point ¢ € (a,x) such that ¢'(c) = 0. Let us compute ¢'(¢) :

gt)=f'(t)+ L(t)(:c — 1) — iU + L(t)(a: —t)? — L(t)(x —t)+...

1! 1! 2! 1!
(n+1) (n)
e (2 _(3! (2 =) —ple = 17 Q(a),

So we get

(n+1)
) 0=y o).

Make now ¢ = ¢ in (1.14) and find
f(n+1)(c)

n!

0=4¢(c) = (z — )" —p(z — )P~ Q(x).

If here, instead of Q(x) we put %

Fo ()

n!

(see (1.11)), we get

r—c)' = :E—cp_l—Rn(x)
(@ =pla = op
r—a)? fOH(c
PR i

(x —c)p~1  nlp

e —ap e
(x )_(x—c)P nlp (

)n+1

)

i.e. formula (1.6). The other statements of the theorem are easily
deduced from this last formula. O

REMARK 14. A function f(x) is a zero of another function g(x)

at a point a if lim% = 0. We write this as f(x) = 0(g(x)) at a.

r—a
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For instance, from (1.7) we see that the remainder R,(x) is a zero of
(x —a)" at x = a, i.e. Ry(x) =0((x —a)") at z = a.

If a = 0, the formula (1.5) is called the Mac Laurin formula:
f©O) . f"0) , f(0)

(1.15)  f(z) = f(0) + 1 r + 3] rT+ ...+ ol

If we use the Lagrange form of the remainder (1.7), we get

f'(0) - f(0) 0 L, [ ()
TR TR o +(n+1)!x+1,

z" 4+ Ry (x)

(1.16) f(z) = f(0)+

where c¢ is a real number between 0 and z. Since it is easier to ma-
nipulate Mac Laurin formulas for many functions which are defined on
an interval (a,b) with 0 € (a,b) and since the translation + — = —a
makes connections between Taylor formulas and Mac Laurin formu-
las, we prefer to deduce these last formulas for the basic elementary
functions.

EXAMPLE 2. (exp(z)) Let f(z) = exp(z) = e*,z € R. Since the
derivatives of exp(x) is exp(x) itself, the Taylor formula at a =0 (Mac
Laurin formula) for exp(z) becomes

2 n

r x
(1.17) exp(x) = 1+ﬁ—|—§+...+m+exp(c)

xn—i—l

(n+ 1)V

where ¢ € (0,z), if x > 0, or ¢ € (x,0), if < 0.

For instance, let us compute exp(0.03) with 2 exact decimals. Since
¢ € (0,0.03), this means that

(0.03)+1 (0.03)"+1 1
R.(0.03)] = Sl Clh Y T .
[ (0-03)] = |exple) 7 =35, (n+ 1)l = 100
or
3n+2 1

& 3" < 100" (n + 1)

100" 1(n + 1) ~ 100

It is easy to prove this last inequality by mathematical induction for
n > 1. So, exp(x) = 1+ % = 1.03, with 2 exact decimals. This is the
method which computers use to (approximately) calculate exp(r) for a
given real number r. Formula (1.17) can also be written as

2 n

T T T
——i———l—...—i—m—i—O(x")

(1.18) exp(z) =1+ TR
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We can use this formula to compute nondeterministic limits. For in-
stance, let us compute

exp(z3) — 1 — 2% — %

0
e=0exp(2?) — 1 — 22 — & )
In formula (1.18) we put instead of z, 333 and n =2:

exp(a®) = 1+a" + = 0.

If we put now in (1.18) instead of x, 2% and n = 3, we get

zt b
exp(z?) = 14+ 2* + — + — + 0(2").

2 6
Hence, our limit becomes
0(z") 0(9066) lim 0(56 ) 0
im — —~ = liml ’”O(xs) = =0 e = I = 0.
PO H0@) e+ T p+limTE 5+ 0

In practice, we do not know in advance how many terms we must con-
sider in numerator and in denominator such that the nondeterministic
to be eliminated. So, it is a good idea to consider one or two terms
more than the degree of the polynomial queue which induces the non-

deterministic. In our example we write
6

exp(®) =1 —a° =%
zt
2

lim

x3 2 z? T

— lim [l o =
w0u+%+§+§+§+m%4—ﬂ—§
9 3
&+ .. =+
z—0 L 5 _’_T—'— m—»O + T + .. 3
EXAMPLE 3. (sin(z)) Let f(z) = sin(x), € R. Since [sin(z)] =
cos(z), [sin(z)]” = —sin(z), [sin(z)]” = —cos(z) and [sin(z)]? =
sin(z), we obtain that [sin(z)]“*™ = cos(z), [sin(z)] "™ = —sin(x),
[sin(z)] ™) = — cos(z) and [sin(z)]*" = sin(z) for any k = 0,1, ... .
Now, sin0 =0, cos0 =1 and, applying formula (1.16), we get
P x5 2+
1.19 in(z) == — = G et 0(z™" ).

It 1s more complzcated to express the remainder in this case because the
(n + 1)-derivative of sin(z) is either +sin(x) or £ cos(z). Let us use
the Mac Laurin formula for sin(z) in order to compute sin(0.2) with
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one exact dectimal. Here 0.2 means 0.2 radians. Now, the modulus of
the remainder, |Rayi1(x)| is less or equal to @iy 2> . So,

1
2n+2
1 n
an 20

and this last one must be less then %, i.e.
1

(2n +2)!

‘R2n+1(02)| S

227’L+2 < 102n+1

or
222 < (2n + 2)110*" .

But this last one is true for any n > 0. Hence, sin(0.2) ~ 0.2 with one
exact decimal.

EXAMPLE 4. (cos(x)) Let f(x) = cos(x), x € R. Like in Example
3 we easily deduce the following formula

1‘2 .1:4 276 132”

(1.20) cos(x) =1— o1 + = - o + .+ (=) )l + 0(2™).

EXAMPLE 5. Let
f(z) =In(1 + ),z € (—1,00).
Since

fllo)y=0+2)" f(2) = —(1+2)% (@) =21+ )%, ..

o [ = (=)= D)1+ 2)", .,
one has that f(0) =0, f'(0) =1, f"(0) = —1, f”(0) = 2,..., f™(0) =

(=)™ *(n—1)!,... . So, the formula (1.16) becomes
(1.21)

2?2 2 a2t " (1+c) ™t
In(1 —r— - (D) ()
n(l+z)==x STy T +(-1) n—l—( ) i1 ,
where ¢ is a real number between 0 and x. Hence,

22 2 2t a"

1.22)  1In(1 =r——+= -4 .+ (=)= ).
(1.22) In(l+z)==x 2-|—3 4—1— +(-1) n+0(x)

Let us compute In(1.02) with 3 exact decimals. Since

(0.02)2  (0.02)?
2 + 3 +
1+4c¢) !

Ty

n n+1

In(1.02) = In(1 4 0.02) = 0.02 —

(0.02)"*1,
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where ¢ 1s between 0 and 0.02, we must evaluate the modulus of the
remainder and force this last upper bound to be less then ——

1000~
(1 +C)—n—l L 2n+1 1
—1)"——0.02""| < < )
(D" =7 (n+ 1)100"+1 ~ 1000

This last inequality is true for any n > 1. Thus, In(1.02) ~ 0.020 with
3 exact decimals. Pay attention! It is not sure that 020 are the first
three decimals of In(1.02)! What is sure is that |In(1.02) — 0.02] is less
then 0.001 = w5 (this means "with 3 exact decimals!").

EXAMPLE 6. (Binomial formula) Let f(z) = (1 + z)*, where « is
a fized real number and x > —1. Since

() =a(l+2)* " f(z) = ala — 1)(1 +2)* 2, ...
(@) =ala—D(a—2). (a—n+1)(1+z)*", ..,
one has that
f(0) =1, f(0) =, f(0) = e = 1), ..
s f(0) = (= 1)(a = 2)...(a —n+ 1), ...
Now, formula (1.16) becomes

a - al@—1) ,
(1+2) :1+ﬁx—|—Tx + ...
N a(a—l)(a—sl)...(a—n—i—l)xn
ala—1)(a—2)..(a—=n)(1+c)> "1
(1.23) + (1) "

where ¢ is a real number between 0 and x.
Formula (1.23) can also be written as

-1
(1.24) (1+z)*=1+ %x + Oé(az—'):ﬂ + .t
ala—1)(a—2)...(a—n+1
pole=Dia =2 ) + 0(a
Let us use this formula to approximate the following expression
E =E(q) = ib —, a,b > 0, by a polynomial of degree 2 (it is used
a+bq

in Physics for ¢ small). In order to apply (1.23) we need to put our
expression in the form (1 + z)®. So,

1 1 b
E=(a+bd*)2=a2(1+ aq2)

1
2 .
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Let us take only (1 + 2¢?)73 and use (1.23) up to 22, where z = 2¢?

and o = —%. We get
b o 1 1.b (—3)(=3) v?
14+ 2?2 ~1 )2y 2/ 277 4
At+-a) 214 (—5) @ + 554,
Hence,
1 1 T
_— x — — ¢+ 5 —q -
Va+bg2 Ve o 2aa 8a%\/a
If & = n, a natural number, we obtain the famous binomial formula
of Newton:

-1 —1)(n—-2)...1
(1.25) (1+2)" =1+ —z+ M:1:2 + .ot nn=n=2) z",
1! 2! n!
because the remainder in (1.23) is zero. If instead of  we put 2 in
(1.25) we get
(a+b)"_1+ n b+ n b2+ n b3+ (" bn
ar 1)a 2/ a? 3)a* 7 \nj)a
Multiplying by a™, we get:
(1.26)
(a+b)" =a™ + (?) a" b+ (Z) a2 (g) a" 3 4+ (Z) b
Here, (}) = "("_1)(”_13!)"'("_"3“) = k!(:ik)! means n objects taken k.

EXAMPLE 7. The equilibrium position of a homogeneous weighted
string, fixed at the ends, has a form given by the plane curve y =
a - ch(§), where ch(x) = F"Xp(m)gw and a,b are real numbers. The
function f(x) = ch(z) is called the hyperbolic cosine of x.

The derivative of the function ch(x) is sh(x) = w, called
the hyperbolic sine of x. Since the derivative of each of them is the other
one, we easily get the formulas

T 33‘3 335 x2n+1

1.27 h(r) = =+ >+ =+ ..+ —— + 0z

(1.27) M) =gt gttt gy PO,
132 x4 136 x2n on

(1.28) ch(z) =1+ gt tatt )l +0(z™").

For instance, for x small enough, we can approximate ch(x) by the

polynomial Ty(z) = 1+ 2—? + "Z—T. For x = 0.5, ch(0.5) ~ 1+ %25 4 00025

Taylor’s and Mac Laurin’s formulas have many applications in the
local study of a function (or a curve).
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COROLLARY 5. (Lagrange formula) Let us write Taylor formula
(1.10) forn =0 : f(z) = f(a) + f'(c) - (x — a), where ¢ is a number
between a and x. If x = b > a, we get the classical Lagrange formula:
fb) = fa)+ f'(c) - (b—a), where c € (a,b).

REMARK 15. We can use Taylor formula (1.10) for study the shape
of a function in a neighborhood of a point a. Suppose that

fl@)=f"(a)= .= " V(a) =0
and f™(a) # 0. We also assume that f is of class C™ on an e-
neighborhood (a — €,a + €) of a. Then

() (,
(1.29) 1)~ 1@ =0 —ay

where c is between a and . It is clear that the continuity of f™(z) at a
implies that the sign of this last function on maybe a smaller subinterval
(@ —9d,a+9) of (a —e,a + €) is constant and it is the same like the
sign of f™ (a) (see Theorem 34). Suppose that f™(z) > 0 for any x €
(@ —0d,a+9). Then, in (1.29), c € (a — d,a+ ) and so, the sign of
the difference f(x) — f(a) depends exclusively on n and on the sign of
f™(a). If n is even, and f™(a) > 0, the difference f(x) — f(a) is > 0,
for any x € (a — 0,a+ 0), thus a is a local minimum point for f. If
n is even, but f™(a) < 0, then the difference f(z) — f(a) is < 0, for
any x € (a — d,a + 9), so a is a local mazimum point for f. If n is
odd, the point a is not an extremum point because the sign of (x — a)"
changes (it is positive if x > a and negative otherwise). For instance,
f(z) = (z — 2)° has not an extremum at v = 2.

Let A be an open subset of R and let f : A — R be a function
of class C' on A. This means that f is differentiable on A and its
derivative f’ is continuous on A. One also says that f is smooth on A.
We say that f is convex at the point a of A if the graphic of f is above
the tangent line of this graphic at a, on a small open e-neighborhood
U of a which is contained in A. If here we substitute the word "above"
with the word "under", we get the definition of a concave function f
at a point a. Since the equation of the tangent line of the graphic of
the function f at a is:

Y = f(a) + F(a)(X — a),

f is a convex function at a if and only if

(1.30) f(x) = f(a) + f'(a)(z - a),

forany zin U = (a —e,a+¢) C A.
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COROLLARY 6. Let the above f be a function of class C? on U =
(a—e,a+¢). We assume that f"(a) # 0. Then f is convex at a if and

only if f"(a) > 0.

PROOF. Let x be a point in U and let us write the Taylor formula

(1.10) for n =1 at a on the segment |[a, 2] :
!/ "

sy s = s+ D @y T o ap,
where ¢, € [a,z]. If f is convex at a, then there is a small interval
U' =(a—¢€,a+¢€") C U such that (1.30) works on U’. Hence, for any
x in U’ one has that f”(¢,) > 0in (1.31). Since f” is continuous on U
(see the fact that f is of class C? on U!) and since ¢, — a whenever
x — a, one fas that f”(a) > 0. But we just assumed that f”(a) # 0,
so f"(a) > 0. Conversely, if f”(a) > 0, then f”(xz) > 0 on a whole
neighborhood U” = (a — €",a + ") C U. Thus f"(c,;) > 0 in (1.31)
for any x in U”. So, (1.30) works on this U”. Therefore f is convex at
a. U

We leave the reader to state and to prove a similar result for a
concave function f at a.

2. Taylor series

Let us consider a function f of class C'"° on an open subset A of
R. This means that f has derivatives of any arbitrary order on A. It
is clear that all of these derivatives are continuous on A. Look at the
formula (1.10) and push the remainder to co. We obtain the series of
functions on the right side:

f'(a
1(!)(35—@)+

f"(a)

(2.1) f(a)+ o]

% ),
:Zf (>(x—a)".

This series of functions is called the Taylor series associated to
the function f at the point a. If this series of functions is uniformly
convergent and its sum is f(z), we say that

2 4(n)(g
(2.2) fo) =S LW gy

is the Taylor’s expansion of f around the point a. If the series on the
right side is simple convergent and its sum is f on an e-neighborhood
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of a, we say that f is analytic at a. If f is analytic at any point of
A we say that f is analytic on A. The series on the right in (2.2) is
a particular case of a more general type of series of functions, namely,
the power series. A power series is a series of functions of the form
Yoo gan(z —a)”, where {a,} is a sequence of real numbers and a is a
fixed arbitrary number.

THEOREM 45. Let f : (c,d) — R be an indefinite differentiable
function on an interval (¢, d) (f € C*(c,d)) such that there is a positive
real number M which verifies !f(")(x)} < M for any x € (c,d) and for
any n = 0,1,... (we say that all the derivatives of f are uniformly
bounded on (c,d)). Then the series Y -, f(n 2@ (1 — a)™ is absolutely
and uniformly convergent on (c,d) for any ﬁxed a in (¢,d). Moreover,

for any fized a in (c,d). The series on the right is absolutely uniformly
convergent to f.

PROOF. Let us denote L = d — ¢, the length of the interval (c, d).
We apply the Weierstrass Test (Theorem 41):

() (4
1) ]

n!
and the numerical series Y/ 2 L™ is convergent (use the Ratio Test:

il — Lo — 0 < 1). Hence, the series Y ° f(ij(a) (x —a)" is ab-
solutely and uniformly convergent. Let

M
— L™ for any z € (¢, d),
n!

Formula (1.10) gives us:
M
SACES)]

n+1 M
L and, since sy

f(nJrl) (C) a)n+1

SR "

|[f(z) = sn(2)] =

Taking sup we obtain ||f — s,|| <

0 1), Ll 0
n-+ !

as n — oo (prove it by using a numerical series!), we get that {s,} is
uniformly convergent to f. In particular
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EXAMPLE 8. (Taylor series for the basic elementary functions)
a) We know that

2 " Q?n+1
Since all the derivatives of exp(:v) are umformly bounded on any bounded
interval (a,b) (why?) we can apply Theorem 45 and find that the se-
ries Yy o g #x” is absolutely and uniformly convergent on any bounded
interval (a,b). In particular, we have the Taylor expansion

exp(z )—1+1

2 oo

1 n
(2.3) exp()—1+1,+5+ +—+ ;mx,xeﬂ%
b) We leave the reader to deduce the following Taylor expansions:
T x3 $5 :L.QTH-I
2.4 i =— =4+ —=— ...+ (-1)"—+ ..
(24 sinfe) =g =gt g e D gy
o0 _1 n
:Z (=1) ' 2+ 4 e R
“—~ (2n+1)
22 gt 4 P
(2.5) cos(z) —1—1—5—5—1—5—...4—(—1) @) + ..
00 _1)"
— ( ) $2n7x ceR
(2n)!
n=0

Since all the derivatives of sinz and cosx are uniformly (indepen-
dent of x) bounded (by 1) on R, the series on the right side in the last
two formulas are absolutely and uniformly convergent on any bounded
interval of R (why not on the whole R?).

c)

R

_ o -7 - nfl‘r_n
(2.6) In(l+2)==x 5 T3 4+...+(1) —

OO —1)r1
= ng”,x €(—1,1).
n=1 n

Since the n-th derivative of f(z) = In(1+ z) is
fO@) = ()" =L +a)™"
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it is nmot uniformly bounded on the whole interval (—1,1) (why?
because sup(1+x)~" = oo there!). Even on any other small subinterval
[a,b] of (—1,1) the derivatives of In(1 + x) are not uniformly bounded
(because of n, this time!). Hence, we cannot apply the above Theorem
45. Let us look directly to the absolute value of the remainder in (1.21)
when x € (—=1,1) :

n (1 + C)inilxn—l—l
n+1

)

-1

where ¢ belongs to the segment [0,z)%, i.e. ¢ € [0,z], or [z,0] (for
x < 0). It is clear that if © — —1, ¢ may become closer and closer to
—1 and the remainder cannot uniformly go to 0. But, if we take any
subinterval [a,b] of (—1,1), then

(_1)n(1 + c>—7‘b—1 n+1
n+1

1 Mn—H
“n+1 (14+m)™0

sup
z€[a,b]

where M = max{|a|,|b|} and m = min{|a|, |b|}. Thus, in this last
case,

—n—1

In(1 — 5|l = —1)"
(L +2) = safl = sup (=1)"——"

z€[a,b]

1 M n+1
. 0
“n+1 L—l—m} o

because Him < 1. So, {s,(x)} is uniformly convergent to In(1 + x),

relative to x, on [a,b] C (—1,1).

d)
N o' ala—1) ,

(1+2) :1+ﬁx+Tm + ...

ala—1)(a—2)..(a—n+1)

"+ ..
n!

.+

or
“ala—1)(a—=2)..(a—n+1
(27) (I+2)* =1+ (a=Dla=2)..( )
n=1

For the series on the right side we shall prove later (Ch.5, Abel Theo-
rem, Theorem 406) that this one is absolutely and uniformly convergent
on any closed subinterval [a,b] of (—1,1). We leave the reader to try
a direct proof for this last statement. For a fived x in (—1,1) the se-
ries in (2.7) is convergent (apply the Ratio Test). Thus, the series of
functions is simple convergent on (—1,1).

' 2", r e (—1,1).
n!
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3. Problems

1. Find the Mac Laurin expansion for the following functions. In-
dicate the convergence (or uniformly convergence) domain for each of
them.

a) f(z) = 1(exp(x) 4+ exp(—xz) + 2cosz); Hint: Use formula (2.3)
for exp(x) and for exp(—x) (put —z instead z!) and formula (2.5) for
cos(x).

b) f(z) = Larctan(z) + ; In £=2; Hint: Compute

1-z?
1
r_ _ 2, .4
(arctan(x)) = o2 1—z+2" — ..
and then integrate term by term; write then
1
ln1+x =In(l+z)—In(1l —x)
-

and use formula (2.6) twice.
c¢) f(x) = x - arctan(z) — In /1 + 22; Hint: Write

1 9 1, , zt 2°
Invi4+z?2=-In(l+2°)==(a"— —+ = —..).
2 2 2 3
d) f(z) = m; Hint: Write m = A+ £ then, for
instance
11 1 1+x+x2+ +a:”+
r—2  21-%2 2 2 22 o )Y

e) f(2) = 55257 f) f(2) = In(2—3z+2?); Hint: In(2—3z+27) =

In(1 —z) 4+ In(2 — z) and

2 22.2 23.3
g) f(z) = xexp(—2z); Hint: in formula (2.3) put instead of z, —2x,

2 3
1n(2—x):ln2+ln(1—g):1n2—<£—|— I —|—)

h) f(z) = sin(3x) 4+ xcos(3z); i) f(z) = arcsinz; Hint: Compute

F(z) = (1—2%)"2 and use the formula (2.7) with —z? instead of z and
1
o = —35-
j) f(z) = sin®z; Hint: Write sin®2z = 2sinz — {sin3z and use

formula (2.4) twice.

2. Write as a series of the form > a,(z + 3)" the following
functions (say where this representation is possible):

a) f(z) = sin(3z + 2); Hint: Denote x + 3 = z (a new variable) and
write f(z) as a new function of z :

g(z) =sin(3(z — 3) +2) =sin(3z — 7) = [sin3z] cos 7 — [cos 3z]sin 7 =



94 4. TAYLOR SERIES

= [cos 7] (32 = (3;)3 + ) — [sin7] (1 - (3;!>2 + ) :

now, come back to f(z) by the substitution z = = + 3, etc.
b) f(z) = /(3 +2x); ¢) f(x) =In(5—4x); d) f(z) = exp(2z + b);

e) f(x) = =i 1) f(2) = mirs.
3. Using Mac Laurm formulas compute the following limits:

. 23)—14In(1+2 In(1+2 2742 ¥
a hmexp( )— +n( +223 b)lm n(142z)— zln z+222 )l1m 1+3z—z—1 .
20 20 T —pl—4z—exp(—4z)’
cosx—exp(—ﬁ)
z—0 z

e) lim [1: —2%In (l + %)] ; Hint: Write y = %; now, r — oo if and

only if y > 0 and y — 0; our limit becomes

1 1 1 1 2 3
lim |- — —In(l +y)| =lim |- - — y—y——l—y——... =
T T y—0 |y y? 2 3
1y 1
:1 - — = S e
0 l2 37" l 2

4. Using Taylor formula approximately compute: a)y/1.07 with 2
exact decimal digits; b)exp(0.25) with 3 exact decimals; c)ln(l 2) with

3 exact decimals; d)sin 1° with 5 exact decimals; Hint: 1° = £ radians;
S0,
7r r 2 2P R
sm@ TR +§ — .+ (-1 2n s
Where T = g5 and n is chosen such that |Ra,41(x)|, which is less then

== 2?"*2 to be less than So, we force

(2n+2) 105

1 TN 2042 1
- R < R
(2n + 2)! (180) 105
and find such a n.



CHAPTER 5

Power series

1. Power series on the real line

We saw that Mac Laurin series are special cases of some particular
series of functions )", a,z", where {a, } is a fixed numerical sequence.
If one translates x into = —a, where «a is a fixed real number, we obtain a
more general series of functions, Y - a,(z —a)™. These ones are called
power series (with centre at a) on the real line. If we put y = x — a in
this last series, we get > a,y", i.e. a power series with centre at 0,
but in the variable y. Such translations reduce the study of a general
power series Y > a,(z —a)" to a power series Y - a,z" with centre
at 0. The mapping z — Y .~ a,z" give rise to a function S(z) =
> o g anx”. The maximal definition domain M. = {z e R : Y >°  a,z"
is convergent} of this function S is called the convergence set of the
series. At least x = 0 is an element of M. (S(0) = ap). Sometimes M,
reduces to the number 0. For instance, S(z) = >~ nlz™ is convergent
only at 0. Indeed, let us consider the series >~ n!|z|"of moduli and
apply the Ratio Test: lim <2 = T}Lrgo(n+ 1) |z| = oo, except x = 0. In

n—oo

fact, if x # 0, {nlz"} does not tend to 0 (why?). Sometimes M, = R,
as in the case of the series S(z) = Y07 La™ = exp(z).

In the following, we want to describe the general form of the conver-
gence set of a power series >~ a,z". Since the convergence set is the
same if we get out a finite number of terms, we can assume that a,, # 0
for any n = 0,1,.... If for an infinite number of n the term a, is 0,
we can define the following number R by using the Cauchy-Hadamard
formula (see Remark (16)). Thus, finally, we can suppose that a,, # 0

for any n = 0,1, .... The number

1

R =
an+1
an

}

in [0, 00] (i.e. R can be also c0) is called the convergence radius of the
series >~ a,z". Recall that limsup{z,} is obtained in the following
way. Take all the convergent subsequences (include the unbounded and
increasing subsequences, i.e. subsequences which are "convergent" to

lim sup{

95
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oo in R) of the sequence {z,} and the greatest of all these limits of
them is called lim sup{z, }, the superior limit of the sequence {z,}.

THEOREM 46. (Abel Theorem) Let Y~ a,z" be a power series
with real coefficients ag, ai, ..., ap, ... and let R = m in [0, 0]
be its convergence radius. "

i) If R # 0, then the series S is absolutely convergent on the inter-
val (—R, R) and absolutely uniformly convergent on any closed interval
[—r, 7], where 0 < r < R. Moreover, the series is absolutely and uni-
formly convergent on any closed subinterval [a,b] of (—R, R). If R # oo,
the series S is divergent on (—oo, —R) U (R, o0), so,

(-R,R) C M. C [-R,R],

i.e. the convergence set of the series contains the open interval (—R, R),
it is contained in [—R, R| and at x = —R, or at x = R we must decide
in each particular case if the series is convergent or not.

it) If R = 0, then the series S is convergent only at x = 0, i.e.
M. ={0}.

iii) If R # 0, then the function S : (=R, R) — R is of class C*
on (=R, R), S'(xz) = Y .07 na,a™ ! (termwise differentiation) and a
primitive of S on (=R, R) is U(x) = > )7 2a™ (term by term
integration). All these power series U, S, S', 8", S", ..,S™ .. and
any other power series obtained from them by a termwise integration
or differentiation process have the same convergence radius. Moreover,
if the series Y " an,x™ is convergent at x = R, for instance, then
the function S : (=R, R] — R, defined by S(z) = Y " a,a™ if © #
R and S(R) = Y " ya,R" is continuous on (—R, R]. With this last
hypotheses fulfiled, we also have that the series Y -, a,x™ is absolutely
and uniformly convergent on each closed subinterval of the type [—R +
e, R], where € > 0 is a small (¢ < 2R) positive real number. The
same is true if we put —R instead of R and if the numerical series
S(—=R) = > yan(—R)™ is convergent.

PROOF. The last statement will not be proved here. An elegant
proof can be found in [Pal], Theorem 2.4.6.

i) Let us consider z as a fixed parameter (for the moment) and let
us apply the Ratio Test to the series of moduli ) > |a,| |z|". Let L
be the limit

n+1
L = lim sup M — |lim sup |an+1| |I| _ m
|an] |2] || R

If R =00, then L = 0 < 1, so the series is absolutely convergent for
any v+ € R. If R = 0, then L = oo, except maybe the case when
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x = 0. Hence, if R = 0, the series is convergent ONLY for z = 0, i.e.

the statement of ii). Suppose now that R # 0,00. Then, whenever
L = liR‘ < 1, or x € (=R, R), the series is absolutely convergent, in
particular convergent (see Theorem 31). If x € (—o0, —R) U (R, 00), or

|z| > R, then L > 1. Hence,

n+1
lim sup {M} > 1.

janl |z]"

. . ang+1 [J| "
This means that there is at least one subsequence {% of
an, ||z

n+1 Uy 11 || T i
{M} such that % > 1, ie.
k

|an||2|"

ng+1

|| 2™ > Jan, | [2]™

for any & = 0,1,... . Thus the sequence {a,z"} cannot tend to 0
and so, the series ) °  a,z" cannot be convergent for such an . Let
now x € [—7r,7], where 0 < r < R. Since for z = r < R, the series
> o lag| ™ is convergent (r € (—R,R), so the series Y >°  a,x™ is
absolutely convergent, see i)). But, |a,2"| < |a,|r™ for any n = 0,1, ...
implies that the series Y - a,z™ is absolutely and uniformly conver-
gent (we apply here the Weierstrass Test Theorem 41) on [—7, 7]. Since
any interval [a,b] C (—R, R) can be embedded in a symmetrical inter-
val of the form [—r,r] C (—R, R), we obtain that the series ) j a,z"
is absolutely and uniformly convergent on ANY closed subinterval [a, b]
of (—R, R).

iii) It is easy to see that all the power series U, S’, S”, ... have the
same convergent radius R as the series S. Applying the Weierstrass test
to each of them on an interval of the form [—r,r] C (=R, R) and the
theorems 39 and 40, we can prove easily the first statement of iii). [

Let us consider the power series
o -1 n—1
n
n=1

We know that this one is identical with In(1 + z) on (—1,1). Let us
find the convergence set M, of it. The convergence radius is equal to

1 1
pr— L pr— 1‘
b timsup{ |52}

n

R_

lim sup{

QAn 41
an

S
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At x = —1, the series becomes
=1
D
n=1 n
so the series is divergent at + = —1. Now, S(1) = > >, (_11):—1 i

the alternate series, which was proved to be convergent. Since both
functions S(z) and In(1+x) are continuous at x = 1 (prove it!-by using
iii) of the Abel Theorem), one has that S(1) = In 2. From Abel Theorem
we see that M, is exactly (—1,1]. On this interval it is In(1 + x) but,
the series does not exist outside of (—1, 1], while the function In(1 + z)
does exist, for instance at z = 2!

Let us now look at the binomial series

" io: ala—1)(a —2!)...(04 —n+1)

x",

where « is a fixed real parameter. Let us find the convergence radius
of this series:

1 _
(1.1) R= = lim 2

lim sup{|“2 |}

If x = —1, the series is not convergent for any «. For instance, if o =
—1, then Y > (—=1)"(=1)" = o0. At z = 1, Y2 ,(—=1)" is divergent.
If a is a natural number &, then the series becomes a polynomial,
so its convergence set is the whole R. But,...the formula (1.1) and
Abel Theorem say that... M. = R C[—1,1] !I! Somewhere must be
}is
nondeterministic, so the computation of R in (1.1) is wrong! We see
that the convergence set M.(«) of the binomial series strongly depends
on a. We do not give here a complete discussion of M.(«) as a function
of a.

Let us find the convergence set for the following series of functions

S(@) :i (_7112)71 (2xl+1)n'

n=1

=1

lim — =
n—oo,n>a N, + 1

a mistake! Indeed, since api1 = agio = ... = 0, limsup{’aZ—“

This is not a power series but, making the substitution y = Tlﬂ,
obtain a power series » %y" in the new variable y. The conver-
gence radius of this last series is

1 1

we

R = =1.

a

}_ lim

n2
n—oo (n+1)2

lim sup{ |*==
n
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For y = £1, the series is convergent (why?). So, the convergence set
M., for the power series

WE
T
3

@3

n=1
is M., = [—1,1]. Coming back to the variable x, we get that the initial
series of functions
i (=" ( 1 )n
—~ n? 2z +1

is convergent if and only of —1 < ;-5 <1, i. e,
x € (—o0,—1] U [0, 00).
Hence, the set of all x in R such that the series

> ()

n=1

is convergent, i.e. the convergence set of this last series, is
(_007 _1} U [07 OO)

REMARK 16. (Cauchy-Hadamard) Another useful formula for com-
puting the convergence radius R of a power series Y -, a,x™ is the
following Cauchy-Hadamard formula:

1

(1.2) . lim sup {/|a,|

This formula can be used even when an infinite number of a,, are zero.
The proof of Abel’s Theorem by using this formula for R is completely
analogue to the proof of the same theorem given above. In this case one
must use the Root Test (Theorem 29) instead of the Ratio Test as we
did in proving Abel Theorem. If we start with the definition of R as it
appears in formula Cauchy-Hadamard (1.2), we get the same interval
of convergence (—R, R) for our series > - a,z" (why?). Thus, the
both formulas give rise to one and the same number.

Let us find the convergence set and the sum of the series of functions

1
:02n+1

o0

(31, + 2)2n+1‘

n

This one is not a power series but,...we can associate to it a power
series by the following substitution y = 3z + 2. Hence, we must study
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the power series in y :
o0
Z 1 y2n+1
2n+1
n=0

and as, = 0 for any n = 0,1, ... . In our case, it is
(why?). Let

Here Aon+1 = ﬁ
not a good idea to apply Abel formula R =

1
1imsup{|a2#|}

us apply Cachy-Hadamard formula (1.2):

1
lim sup {/|a,| B
because the sequence {{/|a,|} is the union between two convergent
subsequences:

R = 1,

n 1
(Yl = O g =

2n+1
(why?) and
{{ Vlaza|} = {0} =0
and so, limsup {/|a,| = 1. At y = —1 the series

1
Z 2 y2n+1
—n +1

becomes
oo

1
_;2n+1:_°°

(why?). At y = 1 the series is

o0

1
Z2n+1:°O

n=0

Hence, the convergence set for the power series in y is (—1,1) (see Abel

Theorem 46). Now, if T'(y) => "7, 2n1+1y2"+1 for y € (—1,1), one has:
S 1 11 11
T/ — 2n — - .- .
(v) 2 T T T e —y T2 11y
Thus,
1. 1+y
T(y)==1 C.
(v) o, T

But C' = 0 because T'(0) = 0. Let us come back to the series in z. The
convergence set is

1
{xeR:—1<3x+2<1}:(—1,—§).
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Its sum is

1 3 3
S(x)=TBx+2)= 5111 (—3211)

for any z € (=1, —3).

EXAMPLE 9. (arctan series) Let us find the Mac Laurin expansion
for f(x) = arctanx. For this let us consider

1
fllr)= ——=1—2+2* — ..+ (=1)"2* + ..,

where |z| < 1 (why?). Apply now Theorem 43 and termwisely integrate
this last equality:

3 135 J37 x2n+1

1.3 t C=z——+———+...+(-1)"
(1.3) arctanz + Tt ot + (=1)
where |x| < 1. For x = 0 we get C = 0. Since for x = 1 the series on

the right is convergent and since the function

°)

2n—|—1+"

PR N 2+
Sr)=2——=+———=+...+(-1)"
W=e-gtg gttt
is continuous at x = 1 (see Abel’s Theorem, iii)), we get that
T 1 1 1 1
1.4 tanl=—=1—-4+-—=-+ ...+ (-1)"
(1.4) arctan 1 str—=t + ( )2n+1+

Let us find the convergence set and the sum for the power series

Z n(n+1)z".

n=1
The convergence radius is

R= fim 0D
AL D+ 2)

(why?). Since at x = +1 the series is divergent (n(n + 1) - 0),
the convergence set is M, = (—1,1). Let us integrate termwise (see
Theorem 43) the above series for x € (—1,1):

/ [i n(n+ 1)z"| dov = i na"t! = i(n +2)a" T — 2 ix”“.
n=1 n=1 n=1 n=1

But the series
2

> T

E A"t =2 =
1—z

n=1
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(it is an infinite geometrical progression). So we get

Dz"| dx = ) F A p—
/[;n(rm— )T T ;(n—l— ) T

Let us integrate again this last equality

/ [/ [in(nnLl)x" dx = (ix"“) 2?20 2In(l 1) =

n=1 n=1

dx

3

T 12
Coming back and differentiating twice, we get:

i n(n+1)z" =
n=1

+ 22+ 22+ 2In(1 — 7).

2z
5, for [z < 1.

(z—1)
2. Complex power series and Euler formulas

In Chapter 2, Section 2, we introduced the metric space of complex
number fields C. In fact, C is a normed spaced with the norm given by
the usual complex modulus |z| = \/2? + 32, where z = x +iy, z,y € R
(prove the properties of the norm for this particular norm!). Since a
sequence {z, = =, + iy, } is convergent to z = x + iy in C if and only
if both the real sequences {z,} and {y,} are convergent to x and to
y respectively (see Theorems 1 and 16), the study of the numerical
series with complex terms reduces to the study of the real numerical
series. But this way is not so easy to put in practice. The best way is
to use firstly the absolute convergence notion like in the case of series
in a general normed space. Namely, let s = > ° =z, be a series with
complex numbers terms and let S = > 7 |z,| be the real series of
moduli. The following result is very useful in practice.

THEOREM 47. If the series of moduli S = Y7 |z,| is convergent
(like a numerical real series with nonnegative terms), the initial series
with complex terms s =Y~ z, is convergent in C.

PROOF. Let s, = > _, 2 be the n-th partial sum of the series
s =y % and let S, = >} |2k be the n-th partial sum of the
series of moduli S = "> |z,|. Since

Sntp — Sl < |zn41] + [2nt2| + o + [201p] = Sntp — Sh,

and since the series S is convergent (i.e. the sequence {S,} is a Cauchy
sequence), one obtains that the sequences {s,} is a Cauchy sequence.
Thus, it is convergent to a complex number s (the sum of the series
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> o #n) in C, because C is a complete metric space (see Theorem
16). O

The Cauchy Test and the zero Test also work in the case of a com-
plex series (why?-Hint: C is a complete metric space-why?). Series of
complex functions and power series are defined exactly in the same way
like the analogous real case. However, in the complex case, the study
of the convergence set of a series of function is more complicated than
in the real case.

EXAMPLE 10. (Complex geometrical series). Let us find the con-
vergence set for the complex geometrical series

oo
:Zz”:1—|—z+22+....

n=0

Let us consider the series of moduli

1 — n+1
Z| " = hm%.

This limit exists if |z| < 1. Hence, the series is absolutely convergent if
and only if |z| < 1. In particular, for |z| < 1, the series is convergent
(see Theorem 47). Is the series convergent for a z with |z| > 17 Let
us see ! If |z| > 1, the sequence {z"} goes to oo in C = CU {oc}, the
Riemann sphere (why?), so, the series is divergent (see the zero Test).
What happens if |z| = 17, i.e. if z is a complex number on the circle
of radius 1 and with centre at origin. If z = 1, the series is divergent.
If z # 1, but |z| = 1, the sequence {z"} is never convergent to zero!
(why?). Thus, the convergence set for the series s(z) = Y o0 2" is
exactly the open disc B(0;1) = {z € C: |z| < 1} in the complex plane
C.

To define the basic elementary complex functions one uses complex
power series. For instance, the exponential complex function is defined
by the formula

o n

z
'+§+ +—+ Zom

(2.1) exp(z) =1+ ]

It is easy to prove (do it!) that this series is absolutely convergent on
the whole complex plane C and absolutely uniformly convergent on any
bounded subset of C. One can prove that exp(z;+22) = exp(z1) exp(22)
for any 21, z9 in C (see [ST] for instance).
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The series on the right side of (2.1) is the natural extension of the
Mac Laurin expansion of the real function exp(z) to the whole com-
plex plane. Using this "trick" we can define other elementary complex
functions:

3 5 2n+1
: def 2 20 % z
2.2 S (1)
(22) s = -5ty - Y g )
=S (=D" w1, o
“—~ (2n+1)!
2 4 6 2n
defp 2 2 % 2
(2.3) cos(z) = 1 5 + TR + ...+ (-1 @)l + ..
[e.9] _1 n
= Z (=1) 22" 2 e C
“— (2n)!
2 .3 4 n
def 22 2z n1?
24 In(1 = 2 — =4+ = —— -1 -
(2.4) n(l+z) = z st 4t + (—=1) —
o —1)n1
= Z (=1 2" |z] <1
n=1 n
e -1
1+22 14 2 ala >22+ +
1! 2!
ala—1)(a—2)..(a —n+1) ,
n! : ’
S0,
(2.5)
C —1)(a—2)..(a—n+1
(1+z)°‘:1+za(a Ja=2).(a=n+ )z",|z|<1,a€(C
n!

n=1
In the same way we can define any other complex function f(z) if
we know a Taylor expansion for the real function f(z) (if this last one
has real values and if it can be extended beyond the real line!). For
instance, we know that

3 $5 l.2n+1

h(z) = —+ =4+ —+.. R.
shiw) = ot gr g et gy T €
We simply define the complex hyperbolic sine as
3 5 2n+1
(2.6) sh(z) T S L,z €C.

T @n+ 1)l
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and

def 22 2t 22

(2.7) ch(z) = 1+ 5 + 1 + ..+ n)] +..,z€C.

We always have to check if the series on the right side is convergent on
the extrapolated domain (for instance, we extrapolated R to C). The
restrictions of all these functions to their definition domains on the real
line give rise to the well known real functions. For instance, In(1 + z),
|z| < 1, restricted to R give rise to In(1 + z). This does not mean that
we defined the function In(z) for any z # 0! To define such a function,
i.e. the inverse of the complex exponential function, is not an easy
task, because it will be not an usual function, i.e. for a z we have more
than one value of In(z). This is because exp(z) is not injective at all.
To see this we need some famous relations, the Euler formulas.

THEOREM 48. (Euler relations) For any x a real number and for

1 = +/—1 we have

(2.8) exp(iz) = cos(x) + isin(x),
exp(ix) + exp(—ix)
(2.9) cos(x) = 5
and
sin(z) = exp(iz) — exp(—z'as)'

21
ProOOF. We simply use formula (2.1) to compute exp(iz) :

iv  r?  ixd (iz)"
S+
1 2! 3! n!

If now we put instead of z, —z in the formula (2.8), we get

exp(iz) =1+ + ... = cos(z) + isin(z).

(2.10) exp(—iz) = cos(z) — isin(x),

because cosine is an even function and sine is an odd one. Adding
formulas (2.8) and (2.10), we get the relation exp(ix) + exp(—iz) =
2 cos(z). Now, subtract formula (2.10) from formula (2.8) and get the
formula exp(iz) — exp(—iz) = 2isin(z), etc. O

Let us justify now that the complex function exp(z) is not invertible,
i.e. it cannot have like inverse an usual function. Using FEuler formulas
from the theorem we get that

exp(2kmi) = cos(2km) + isin(2km) = 1,
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for any integer k. Thus one has an infinite number of complex numbers
{2nmi}, n = 0,£1,4+2, ..., at which the exponential function has value
1!. This is why the inverse of exp(z) is the multivalued function

Ln(z) =In|z| + (0 + 2km), k = 0,£1,£2, ...

and 6 is the argument of z, i.e. the unique real number in [0, 27)
such that z = |z|[cos @ + isin §], the trigonometric representation of z
(prove this last equality by drawing...). It has a double infinite number
of "branches", i.e. Ln(z) is in fact the set

{ln(k)(z) =In|z| +i(0 + 2km)}, k =0,£1,£2, ...

of usual functions. All of these functions have the same real part In |z|.
For k = 0 we get the principal branch, In(z) = In |z| + ¢ arg z. Some-
times in books people work with this last expression for the complex
logarithmic function, without mention this. We leave as an exercise for
the reader to define the radical complex multiform function {/z (it has
only n branches!-find them!). One can start with the fact that /z is
the inverse of the power n function z ~~ 2" and with the equality:

2" = |z|" [cos nf + i sin nb],
etc.

Euler’s formulas from the above theorem are very useful in practice.
For instance, the famous de Moivre formula

[cosx + isinz|" = cosnx + isinnx

from trigonometry, can be immediately proved by using the basic prop-
erties of the complex exponential function : exp(z) exp(w) = exp(z+w)
(try to prove it!), (exp z)" = exp(nz), where z,w € C, and n is an in-
teger number. If one extends in a natural way (componentwise!) the
integral calculus from real functions to functions of real variables but
with complex values:

Ju@) +ig@is = [ syda+i [ gy

one can compute in an easy way more complicated integrals. For in-
stance, let us find a primitive for a very known family of functions
f(x) = exp(az) cos(bx), where a, b are two fixed real numbers (para-
meters). Let us denote by g(x) = exp(ax) sin(bx) (its partner!) and let
us find a primitive for f(x) + ig(z) :

/[exp(cwc) cos(bx) + iexp(ax) sin(bz)|dx = /exp(a:c) exp(ibx)dx =
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B , _exp(ax +ibx)
= /exp(aw + ibx)dxr = S
exp(ax) - [cos(bx) 4 isin(bx)](a — ib)
- e -
acos(bx) + bsin(bx) asin(bx) — bcos(bx)
= exp(ax) R + iexp(ax) R
Hence,

a cos(bx) + bsin(bx)

/exp(am) cos(bz)dz = exp(ax)

a? + b?
" in(bz) — beos(b)
_ asin(bx) — bcos(bx
/exp(aaj) sin(bx)dx = exp(ax) pER
(why?).

Another example of a nice application of Euler formulas is the fol-
lowing. Suppose we forgot the formula for sin 3z and of cos 3z in lan-
guage of sinz and cos z respectively. Let us find it by writing

cos 3z + isin 3z = exp(idz) =

(Euler formula)

= [exp(iz)]® = [cosx + isinz]® =

= cos® x — 3cos xsin? ¥ + i[3 cos® ¥ sin x — sin® 1.
Since two complex numbers are equal if their real and imaginary

parts are equal, we get the formulas:

2

cos 3x = cos z[cos® & — 3sin® x| = cos x4 cos® v — 3],

sin 37 = [3 cos® zsinx — sin® 7] = sin x[3 — 4sin® z].
3. Problems

1. Find the convergence set and the sum for the following series of

functions:
a))_,—o(3z + 5)”; b)> o (=1)"(dx + 1) ¢) >0, j??
)Y (—1)" 12 0 m(Ba + 5)" )Yy s
2. Find the convergence set for the following series of functions:

W (= 3 DT B O gl O 2
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&)X B D)0, B )50 i I ()"

> nsoll = (=2)"z J)Zn: (- 1)”“3"56” k)30l s (55)5
DYooy (1) FEE )30 (<1)" R (find dts sum);

3. Use the power series in order to compute the following sums:

a) 3% (—1)" 1L )y m, ¢)> noi 35 (Hint: associate the power

series

!
an 2(14+22+32%+...) = w(a+a+a’+..) =z (11:) :

make then z = 1).



CHAPTER 6

The normed space R™.

1. Distance properties in R™

Motivation Let {O;1i,j} be a Cartesian coordinate system in a
plane (P). To any point M € (P) we associate the position vector
—

OM. We know that there is a unique pair (x,y) of real numbers such

—
that OM = zi + yj. Here i, j are two perpendicular versors with their
origin in O. Usually one calls (x, y) the coordinates of M relative to the

"basis" {i,j}. But we can view (z,y) as an element in R x R " R2. If
M’ is another point in the same plane (P) and if P is the unique point
—

in (P) such that OM + OM' = O_fD, then the coordinates of P are
(x+2',y+7vy'), where (2/,y') are the coordinates of M'. Let « be a real

—_— —

number (scalar) and let us denote by OM" the vector «OM. Then, the
coordinates of the point M” are (ax, ay) € R2. So, one can endow the
cartesian product R? with a natural algebraic structure of a real vector
space with 2 dimensions (the number of the elements in any basis of
it, in particular in the "canonical" basis {(1,0),(0,1)}, where (1,0)
are the coordinates of the versor i and (0, 1) are the coordinates of the
versor j). Hence, one can study the 2-dimensional dynamics only in the
"abstract" space R? (this is the basic idea of R. Descartes; the word
"cartesian" comes from "Descartes", in Latin "Cartesius"; he invented
a very useful tool for Engineering, namely the Analytic Geometry; here
we work with numbers and equations instead of geometrical objects like
lines, circles, parabolas, etc.). We call R? the 2-dimensional space (2-D
space). In the same way we can construct the 3-D space R? or, more
generally, the m-D space

R"=RxRx..xR={x=(r1,22,..,2m) : ¥; € R}.

n—times

We recall that if x = (21,22,...,2,) and ¥y = (Y1, Y2, ..., Ym) are two
"vectors" in R™, then

X+y=(x1+y1, T2+ Y2, T + Ym)
109
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and
ax = (axy, axs, ..., ry,)

for any "scalar" o € R (componentwise operations). For instance,
(=7,3)+(6,0) = (—1,3) and v2(—1,1) = (—v/2,+/2). To do analysis in
R™ means firstly to introduce a distance in R™. R™ has the "canonical
basis"

{(1,0,...,0),(0,1,0,...,0),...(0,0,...,0,1)}

like a real vector space, so it has the dimension m over R. It is more prof-
itable to introduce first of all a "length" of a vector x = (x1, za, ..., z,)
by the formula

(1.1) Il % \fa3 4 Bt a2,

The nonnegative real number ||x|| is called the norm or the length of x.

If m = 1, the norm of a real number z is its absolute value (modulus)

|z|. If m = 2 and if x = (z1,79) the norm ||x|| = /22 + 23 is exactly

the length of the diagonal of the rectangle [OA; M A,], or the length of
— — —

the resultant vector OM = OA; + O A, (see Fig.6.1).

X1

Fig. 6.1

In the 3-D space R? the norm of x = (x1, 19, x3) is \/2? + 23 + 22
and it is exactly the length of the diagonal of the parallelepiped gener-

— EoRY
ated by OA;, OA; and OA; (see Fig.6.2).
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z
As
| M(x1,X2,X3)
B
X1 |
)\-/\
< sz— Ao Yy
A1
X Fig. 6.2

EXAMPLE 11. (the space-time representation) Let us consider the
vector x = (1, T, 13,t) € RY where (x1, 12, 23) are the coordinates of
a point M(xq,xe,23) in the 3-D space and t > 0 is the time when we
"observe” the point M. Then

Il = /o2 + 23 + aF + 22

EXAMPLE 12. (the space of dynamics) Let us consider a moving
point M on a trajectory () in the 3-D space. The position of M is
fixed by its coordinates x1,x9,x3. Its velocity v is given by another

3 coordinates xi1,%s,xs, the derivatives of the coordinates functions
x1(t), xo(t), z3(t) at M. Thus, the "dynamic" state of M is described
by the "vectors”

L 6
X = (21,22, T3, T1, T2, x3) € R

and

.2 .2 .2
Il = Va2 + a3 4 a2 4 & + o+ 2

THEOREM 49. The norm mapping

x s [xl| = \fa? + a3+ .+ a2,

from R™ to R, has the following main properties: 1) ||x|| = 0 if
and only if x =0; 2) |lax| = |af|||x]|| for any a € R, x €R™; 3)
[x +yll < [Ix[| + [ly[l, for any x, y €R™.

PROOF. 1) and 2) are obvious (prove them!). To be clearer, let us
prove 3) for m = 2 (for m > 2 one can use the Cauchy-Buniakovsky

inequality, which can be found in any course of Linear Algebra!). Both
sides in 3) are nonnegative, so the inequality is equivalent to

2 2 2
I+ yII7 < [l + lly I + 2 [y]]
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If x = (21,22) and y = (y1,y2), one has

(0 + )+ (22 +90)” < %+ 23+ 43+ 93+ 2/ (o +a3) (4 + 43,

or, T1y1 + oy < /(22 + 22)(y? + y2). By squaring both sides we get
2x1Ta1y2 < T35 + 1393,

or 0 < (zay; — T192)?. This last inequality is obvious. Moreover, from

this last inequality, we can say that in 3) we have equality if and only

if xoy; — 2192 = 0 or, if and only if (z1,72) = A(y1,¥2), i.e. x and y are

collinear. O

The couple (R™,||.||) is called a normed space. We know that in
general, a normed space is a real vector space X with a norm mapping
||.|| on it, which verifies the properties 1), 2) and 3) from Theorem 49.
We recall that a normed space (X, |.||) is also a metric space w.r.t.
a canonically induced distance: d(z,y) = || — y|| for any z,y in X.
In the case of the normed space (R™, ||.||) the distance is given by the
formula

(1.2) dx,y) =z -yl =

This distance is a very special one because it comes from the "scalar
product"

(1.3) <Xy >=) T
i=1

i.e. this last one induces the norm [|x| =< x,x >=4/> " ;> on R™
and this norm gives rise exactly to our distance (1.2). As we know from
the Linear Algebra course, the scalar product (1.3) endows R™ with a
geometry. The length of a vector x is its norm ||x|| = /Y .-, z;%> and
the cosine of the angle 6 between two vectors x and y of R is defined
as

<X,y >
cosf) = ————.
1[Iy
The fact that the quantity m is always between —1 and 1 is exactly

the famous Cauchy- Schwarz-Buniakowsky inequality
(1.4) [<xy > < [Ix[lyll.

It can be proved only by using the basic properties of a scalar product
(see any course in Linear Algebra).
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Since R™ is a metric space relative to the distance d defined in (1.2)
we can speak about the convergence of a sequence

{x = (@, 2y, a0}
from R™ to a vector X = (21, o, ..., Tp,) : We say that x(™ — x if and
only if d(x(™,x) — 0, i.e. if and only if

Z($§n) —z;)* = 0,

=1

when n — oo. But, a sum of squares becomes smaller and smaller if
and only if any square in the sum becomes smaller and smaller. Thus,
we just obtained a part of the following basic result:

THEOREM 50. (componentwise convergence). 1) A sequence
{x" = @, 25", )
of vectors from R™ is convergent to a vector x = (x1,Z9,...,Tm) if
and only if for any i = 1,2,...,m, the numerical sequence {xl(")} 18
convergent to x;, when n — co. 2) A sequence

{x™ = (@ 28V, ... 2l

° m

1s a Cauchy sequence in R™ if and only if any "component” ”i” {:Bl(-n)},
s a Cauchy sequence in R for anyi =1,2,...,m. Since R is a complete
metric space (see Theorem 13), we see that R™ is also a complete metric
space.

PROOF. 1) was just proved before the statement of the theorem.
For 2) let us consider a sequence {x(™ = (xg ),xg"), ,xg{))} It is a
Cauchy sequence if for any ¢ > 0 we can find a rank N, such that if
n > N. one has that d(x™*?) x™) < ¢ for any p = 1,2,... . This
means that whenever n is large enough the distance d(x*?) x(™) is
small enough, independent on p. But

(1.5) d(x™ ) x™) = |3 (@ — a2,

=1

So, |z _

; xl(")‘ becomes small enough, independent on p whenever

n is large enough. And this is true for any fixed i = 1,2... . But
this last remark says that the sequence {xz(”)} is a Cauchy sequence

for any fixed i = 1,2,... . Conversely, if all the sequences {xl(")} are
Cauchy sequences for i = 1,2, ..., then, in (1.5), all the differences
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wgnﬂ) ) xl(-n) become smaller and smaller, independent of p, whenever

n becomes large enough. Hence, the whole sum ", (z; x,

becomes smaller and smaller, independent of p, whenever n — oo, i.e.
the sequence {x(™} is a Cauchy sequence in R™. The last statement
becomes very easy now (why?). O

(nt+p) _  (n) )2

1 n+1

For instance, the sequence {(2, ™)} is convergent to (0,1) in R?

because the first component {%} goes to 0 and the second component
"TH goes to 1.

A normed vector space, which is a complete metric space w.r.t. the
distance defined by its norm, is called a Banach space. Such spaces are
very useful in many engineering models.

We recall now, in our particular case of the metric space (R™,d),

where d is defined in (1.2), the following basic notion.

DEFINITION 16. Let a =(aq, as, ...,a,,) be a fized point in R™ and
let ¥ > 0 be a positive real number. The set B(a,r) = {x € R™ :
|lx —al| = d(x,a) < r} is called the open ball with centre at a and of
radius . The set

Blayr] ={x € R™: ||x — a|]| = d(x,a) < r}
is said to be the closed ball with centre at a and of radius r (> 0).

For instance, if m = 1, a =a € R then B(a,r) = (a — r,a + r), the
usual open interval with centre at a and of length 2r (prove this!). In
the same case, Bla,r] = [a — r,a +r|. If m = 2, B(a,r) is the usual
open (without boundary!) disc, with centre at the point a = (ay, as)
and of radius r. If m = 3, B(a,r) is the common 3-D open (without
boundary) ball (a full sphere!) with centre at a = (ay, az, a3) and of
radius 7. The closed ball Bla,r] is exactly the full sphere of radius r
and with centre at a, which contains its boundary

S={(z,y,2): (x —a1)> + (y — az2)* + (z — a3)* = r*}.

This last surface S is usually called the sphere of centre a and of radius
T.

Let D be an arbitrary subset of R™. A point d of D is said to be
interior in D, if there is a small ball B(d, ), r > 0 centered at d such
that B(d,r) C D. All the interior points of D is a subset of D denoted
by IntD, the interior of D. It can be empty. For instance, any finite
set of points has an empty interior.

DEFINITION 17. A subset D of R™ is said to be an open subset if
for any a in D there is a small r > 0 such that the open ball B(a,r)
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with centre at a and of radius r is completely contained in D, i.e.
B(a,r) C D. A subset E of R™ is said to be closed if its complementary

YR EY (xR x ¢E)}

in R™ is an open subset of R™.

For instance, any point or any finite set of points are closed subsets
of R™. If m = 1, the closed intervals are closed subsets of R. Moreover,
an open ball is an open set and a closed ball is a closed set (prove it
for m = 1,2,3!). It is not difficult to prove that a subset D of R™ is
open if and only if it is equal to its interior. The boundary B(D) of
a subset D of R™ is by definition the collection of all the points b of
R™ such that any ball B(b,r), centered at b and of radius r > 0 has
common points with D and with the complementary R™ \ D of D. For
instance, the boundary of the disc {(z,y) : 2% + y? < 1} is the circle
{(x,y) : * + y* = 1} (prove it!). It is easy to see that D is closed if
and only if it contains its boundary. The set DU B(D) is called the
closure of D. It is exactly the union of all the limits of all convergent
sequences which have their terms in D.

REMARK 17. The set O of all the open subsets of R™ has the fol-
lowing basic properties:

1) @, the empty set, and the whole set R™ are considered to be in
0.

k
2) If Dy, Do, ..., Dy are in O, then their intersection DlD" 18 also
i O.
3) If {D,} is any family of open subsets in O, then their union
UD, s also in O, i.e. it is also open. We propose to the reader

to prove all of these properties and to state and prove the analogous
properties for the set C of all the closed subsets of R™. Mathematicians
say that a collection O of subsets of an arbitrary set M, which fulfil
the properties 1), 2) and 3) from above, gives rise to a topology on M.
For instance, in a metric space (X, d), the collection O of all the open
subsets (the definition is the same like that for R™!) gives rise to the
natural topology of a metric space of X. A set M with a topology O on
it (a collection of subsets with the properties 1), 2) and 3)) is called
a topological space and we write it as (M, Q). This notion is the most
general notion which can describe a "distance” between two objects in
M. For instance, if (M, Q) is a topological space and if a is a "point”
(an element) of M, then an element b is said to be "closer” to a then
the element c, if there are two "open" subsets D and F' of M such that
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a,b € D, a,c € F and D C F. Meditate on this fact in a metric space
X, for instance in the usual case X = R.

Now, if (X, d) is a metric space, the definition of an open ball B(a, r)
with centre at an element a of X and of radius r > 0 is similar to the
definition of the same notion in R™. Namely,

B(a,r) ={x € X : d(z,a) < r}.

In the same way, a subset D of X is said to be open in X if for any
a € D there is an open ball B(a,r) = {z € X : d(z,a) < r}, with
centre at a and of radius r > 0, such that B(a,r) C D. A subset E of
X is called a closed set if its complementary D = X ~ F in X is an
open set of X.

THEOREM 51. (a closeness criterion) A subset E of a metric space
(X,d) (in particular of X = R™) is closed if and only if any sequence
{z,} of elements in E, which is convergent to an element x of X, has
its limit x also in E.

PROOF. Let us assume that E is closed and let {z,} be a sequence
of elements in F which is convergent to an element x of X. If z were
not in £ then, since D = X \ F is open, we could find a ball B(z,r)
with r > 0, such that B(x,r) C D, i.e. B(z,r)NE = &, the empty set.
But, since z,, — z, i.e. d(z,,x) — 0, for n large enough, d(z,,z) < r,
or x, € B(z,r). Since all the terms z,, are in E, we succeeded to find
at least one element z,, € B(x,r) N E = &, which is a contradiction.
So, x itself must be in F.

Conversely, we suppose now that any sequence of elements of F
which is convergent to an element x of X has its limit z in E. If £
were not closed, D = X ~ E were not open. This means that there
is at least one element y of D such that any small ball B(y, %) cannot
be contained in D. Hence, for any natural number n > 0, one can
find at least one element y,, € B(y,+) N E (why?). This means that
d(yn,y) < + and that y, € E for any n = 1,2, ... . Since y, — y (why?)
and since E has the above property, we see that y must be also in E.
But,... y was chosen to be in D = X ~\ F, so it cannot be in E! We
have a new contradiction! So, we cannot suppose that D is not open,
i.e. we are forced to say that F is closed and the theorem is completely
proved. [l

DEFINITION 18. Let A be a nonempty subset of R™ (or of an arbi-
trary metric space (X,d)). By the closure A of A in R™ (or in X ) we
mean the set of the limits of all the convergent sequences with terms in

A.
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In particular, any element a of A is in A (take the constant sequence
a,a,a,... etc.). We can easily see that A is the least closed subset of
X (in particular of R™) which contains A (use Theorem 51).

REMARK 18. A is closed if and only if A = A. The closure of
the open ball B(a,r) in a metric space (X, d) is exactly the closed ball
Bla,r]. The operation A ~ A has the following main properties: 1)
ANBCANB, 2 AUB=AUB, 38) AUB(A) = A, where B(A) =
{re X :B(x,r)NA# @ and B(z,r) N (X N A) # @ for any r > 0}
is the boundary of A in X (prove all these statements!).

We naturally extend the definition of a limit point for a subset A
of R (see Definition 4) to a subset of an arbitrary metric space (X, d).

Let A be a nonempty subset of a metric space (X, d) (in particular
of R™). An element x of X is said to be a limit point for A if there is a
nonconstant sequence {x,} with terms in A which is convergent to z.

For instance, (0, 0) is a limit point for the half-plane {(z,y) : y > 0}.
But (0,—0.0001) is not a limit point for the same subset in X = R
The subset {(n,m) : n,m € N} of R? has no limit points. The set of
all the limit points of a subset A of a metric space (X, d) together the
subset A itself is exactly the closure A of A (why?). The set of all the
limit points of the closed cube C' = [0,1] x [0, 1] x [0, 1] is the cube C'
itself. But,...the set of all the limit points of an arbitrary closed subset
is not always the set itself. For instance, the set of all limit points of
a point a of X is the empty set (which is distinct of {a}). A sequence
{z,} has exactly only one limit point z, if and only if the sequence has
an infinite distinct values and it is convergent to z.

DEFINITION 19. A nonempty subset A in a metric space (X,d) is
said to be bounded if there is a "reference” element ¢ € X and a positive
real number M such that d(c,x) < M for any element x of A.

REMARK 19. It appears that the definition depends on the choice
of the "reference” element c, i.e. that the boundedness of A is a c-
boundedness. In fact, the definition does not depend on the element
c. Namely, if a subset A is bounded relative to an element ¢ of X,
it is bounded relative to any other element b of X. Indeed, d(b,z) <
d(b,c) + d(c,x) < d(b,c) + M, which is a fized positive number w.r.t.
the variable element x of A. Hence, A is also b-bounded. In a normed
space (see Definition 13) we take as a "reference” element c the element
¢ = 0. Thus, A is bounded in a normed space (X, ||.||) if and only if
there is a positive real number M such that ||z|| < M for any x of A.

Cesaro-Bolzano-Weierstrass Theorem (see Theorem 12) has an ex-
tension to R™ for any m = 2,3, ... .
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THEOREM 52. (Bolzano-Weierstrass Theorem). Let A be a bounded
and infinite subset of R™. Then A has at least one limit point in R™. In
particular, any bounded sequence in R™ has a convergent subsequence.

PrOOF. To understand easier the idea behind the formal proof of
this theorem, we shall take the particular case m = 2 (the case m =1
was considered in Theorem 12). So, A is an infinite (contains an infinite
number of distinct elements) and bounded subset of R?. Any element of
A is a couple (z,y), where z,y € R. Since A is bounded by a positive
real number M, we can write ||(z,y)|| < M, for any pair (z,y) of
A, or \/x?2 +y? < M. Thus, the projections of A on the coordinates
axes, A1 = {a; € R : there is an ay € R with (aj,as) € A} and
As = {by € R : there is a by € R with (by,b2) € A} are bounded in
R (prove it and make a drawing!). Since A is infinite, at least one of
Ay or A, is infinite (why?). We suppose that A; is infinite. Let us
apply now Cesaro-Bolzano-Weierstrass Theorem (Theorem 12) for the
subset A; of R. Hence, there is a limit point x; for A;, i.e. there is a
sequence {x&n)} of elements in A;, which is convergent to z;. Let us

look now at the definition of A;! For any xﬁ”), n=1,2,..., we can find

an element z{"” in R such that the couple (2™, 2{") is in A. In fact,

the sequence {:Cg”)} is bounded and its terms belong to Ay (why?). If
As is also infinite, applying again Cesaro-Bolzano-Weierstrass theorem

to the subset {xg")}, we get a limit point x5 of this last sequence. This

means that we can find a subsequence {xgk”)} of {xg”)} (k1 < ko < ...
) which is convergent to z,. For any k,, n = 1,2, ..., we consider the
term 2" of the sequence {xgn)} just found above. We obtain a new
sequence {(xgk"), mgk”))} of elements from A, which is convergent to the
pair (z1,zs) (why?...because it is componentwise convergent!). Thus
(1, 9) is a limit point of A. What happens if As is finite? Then, at

least one term xél) repeats itself of an infinite number of times. We

suppose that for hy < hs < ... one has that a:gh”) = xg), for any
n = 1,2,... . So, the sequence {(:cgh”),:vgh”))}, with terms in A, is
convergent to (wl,:vg)), which becomes in this way a limit point for
A. A question can arise here: why can we choose all the elements of
the sequence {(xgh"), xéh"))} to be distinct one to each other? Because
the sequence {x&")} can be chosen from the beginning to contain only
distinct elements (A; is infinite!). Hence, in both cases A has a limit
point and the proof is completed. [l
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We shall see in future the fundamental importance of this theoreti-
cal result. A limit point is also called in the literature an accumulation
point.

Since the bounded and closed subsets in a space of the form R™
are very useful in many applications, we shall call them compact sets.
For instance, [a,b], {(z,y) : 2* + y* < r?} and, generally, any closed
balls, are all compact sets in their corresponding arithmetical spaces
of the type R™. A finite union and any intersection of compact sets is
again a compact set (prove it!). An infinite union of compact sets is not
always a compact set (find a counterexample!). For instance D = {%}
is bounded but it is not closed because % — 0 and 0 is not in D. So,

D is not a compact set but,...its closure D = {0} U {2} is a compact
subset in R (prove this!). Any finite set of points in R™ is a compact
set (why?).

Now we give a useful characterization of compact sets in R™.

THEOREM 53. A subset C' of R™ is a compact set if and only if any
sequence of C' contains a convergent subsequence with its limit in C.

PROOF. We suppose that C' is a compact set in R™ and let {x(™} be
a sequence with terms in C. If {x(™} has an infinite number of distinct
elements, A = {x(™} being bounded (A C C and C is bounded), we
can apply Theorem 52 and find that there is a convergent subsequence
{x*)} of {x(™}. Since C is closed, the limit of {x*")} belongs to C
(see Theorem 51). If {x(™} has only a finite number of distinct terms,
one of them appears in an infinite number of places. So, we take the
constant subsequence generated by it.

Conversely, we assume that C' has the property indicated in the
statement of the theorem. Let us prove firstly that C' is bounded. If
it were not bounded, for any n = 1,2, ... one can find a vector a,, in C'
such that ||a,|| > n. The hypothesis says that the sequence {a,} has
a convergent subsequence {aj, }. Let a = lim a;, be the limit of the

sequence {ay, }. Then
kn < lla,[| < llax, —all + |-

Taking limits in the extreme sides of these inequalities, we get: oo <
llal|, a contradiction. Hence, C' must be bounded. Let us prove now
that C'is closed by using again Theorem 51. For this, let {y,} — y be
a convergent to y sequence with elements in C' and its limit y in R™.
By the hypothesis on C, the sequence {y,} has a subsequence {yx, }
which is convergent to an element z of C. Since {y, } is convergent to y,
any subsequence of {y,} is also convergent to y. Indeed, let us prove
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for instance that z = y. For this, let us evaluate d(z,y), the distance
between z and y :

(1.6) d(z,y) <d(z,y,,) + AV, Yn) + AYn,¥),

where m and n are arbitrary chosen. If we make m,n — oo in this
last inequality, we get that d(z,y) =0, i.e. z =y (why?). Here we just
used the fact that a convergent sequence is also a Cauchy sequence, i.e.
for m,n large enough, the distance d(y,,,y.) goes to zero. Now, since
z is in C' we get that y is also in (), i.e. (' is closed and the theorem is
proved. O

The above characterization of compact subsets of R™ leads us to the
introduction of the notion of a compact subset in an arbitrary metric
space (X, d). We say that a subset C' of X is compact if any sequence of
elements from C' has a subsequence which is convergent to an element
of C.

For instance, any convergent sequence {z,} in a metric space X,
together with its limit x is a compact subset of X (prove it!). Thus,
C ={x,} U{zx} is a compact subset of X.

2. Continuous functions of several variables

Let A be a nonempty subset of R”, the "arithmetical" n-dimensional
vector space and let f : A — R, be a function defined on A with values
in R. Since the variable x = (x1, 2, ..., z,) is a vector determined by
n free scalar quantities, xi,xs,...,z,, we say that our function is a
function of n wvartables. If n > 2, we say that f is a function of
"several" variables. Since the values of f are scalars (real numbers),
we say that f is a scalar function of n variables. A map f: A — R™ is
called a vector function of n variables. This time, the values of f are
m-~dimensional vectors. Hence f(x) = (y1,¥2, ..., ym) and we see that
the numbers vy, ys, ..., Y, are themselves functions fi, fs,..., fn of x:
y1 = [1(X), sy Ym = fm(x). These scalar functions fi, fa, ..., fm, defined
on A with values in R this time, are called the components of f. We
write this as: £ =(f1, fo, ..., f,) and interpret it as a "vector" of m-
components (coordinates) fi, fa ..., fm. In applications f is also called
a vector field of n variables. "Field" comes from "field of forces". For
instance,

f:R* - R? f(x,9) = (2y,z — y)
is a vector field in plane (R?) of 2 variables. Its components are
fi(z,y) = zy and fo(x,y) = x—y. We can give its image in some points.
For instance, we can translate the vector f(2,3) = (2-3,2—3) = (6, —1)
at the point (2,3) and so we get "the image" of f at (2, 3). In this way
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we can fill the whole plane R? with vectors (forces), i.e. we get a
"field" of forces on the whole plane. If n = 1, the image of a vec-
tor field f : A — R™ (A C R) is a "curve" in R™. For instance,
f(t) = (Rcost, Rsint), t € [0,27) has as image in the plane R? the
usual circle of radius R and with centre at the origin (0,0). We say
that the two components of f, fi(t) = Rcost and f5(t) = Rsint are the
parametric equations of this circle. One also write this as: © = Rcost,
y = Rsint, t € [0,27). We can also interpret the image of a vector field
f:[0,7] = R™ (m = 2 or m = 3) as the trajectory of a moving point

M(f1(8), f2(B), -, fn(2))

where ¢ measures the "time" between the starting moment (usually
t = 0) and the ending moment ¢ = T. For instance, f(t) = (t,?),
t € A =10,10], is a parabolic trajectory, along the arc of the parabola
y =12% z € [0,10]. The new vector field

£'(t) = (f1(), f3(8), -, S (1))

(the componentwise derivative), associated to the vector field

f(t) = (fl(t)7f2(t)7 '“7fm(t))>t € [OvT]a

is called the welocities field of the field f.

In order to describe the "breaking" phenomena at a given point
a=(ay,as,...,a,) of R", we need to see what happens with the values
of a vector function (which describes our phenomenon) f : A — R™,
whenever we becomes closer and closer to a. For this, a must be a limit
point of the definition domain A. We have to study the convergence of
the sequence of vectors {f(x(™)} in R™, whenever the sequence {x(™},
with terms in A, converges to a in the metric space R”. The most
convenient situation is that when all the values {f(x(™)}, for all the
sequences {x™}, which are convergent to a, become closer and closer
to one and the same vector L from R™. This is why we give now the
following definition.

DEFINITION 20. Let A be a subset of R™ and let a =(aq, ay, ..., a,)
be a limit point of A. We say that L € R™ 1is the limit of a vector
function £ : A — R™ at the point a (write L =limf(x)), if for every

sequence {x™M}, x( £ a, x(™ € A, which is convergent to the vector
a, one has that the sequence of images {£(x™)} of {x(™} through f is
convergent to L. If such an L exists, independently on the choice of the
sequence {x™}, we say that £ has limit L at a. This limit L depends
only on f and on a.
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If there is such a common limit L, this is unique, because the limit
of a sequence in a metric space is unique (if it exists!).
For instance, let us compute ( )hI%l ) f(z,y), where
x?y — (- b
f(z,y) = 2y + 2 + In(z? + ?).

Let us take a sequence {(x,,y,)} which is convergent to (—1,2). This
means that =, — —1 and y, — 2 (see Theorem 50). But we know
that the "taking limit" operation is compatible with the multiplication,
addition and with the logarithm function (we say that In is continuous!)
(see also Theorem 14). Hence,

will be convergent to

(=1)-24 (=1)> +In((=1)* +2%) = =1 + In5.
We see that this limit is independent on the starting sequence (z,, y,)
which tends to (—1,2). Thus, for any sequence (z,,y,) which is con-
vergent to (—1,2),

lim Tn,Yn) = —1+1nb.
(I’ﬂvyn)g’(flg)f( y )

In fact, we see that for any sequence (x,,y,) which is convergent to
(_17 2)7
lim o) = F(-1,2).

(@nyn)—(-1,2)
This happens, because any elementary function of several variables is
"continuous" (see the bellow definition) on its definition domain.

DEFINITION 21. Let A be a subset of R™ and let a =(ay, as, ..., a,) be
a point of A. We say that the vector function f : A — R™ is continuous
at the point a, if for every sequence {x™Y} of A, x") # a and which
is convergent to the vector a, one has that the sequence of the images
{£(x(M™)} of {xM} through f is convergent to f(a), the value of f at a.
We say that £ is continuous on the set A if £ is continuous at any point

of A.

We see that f is continuous at a point a if and only if it has a
limit L at a and this L is equal to f(a), the value of f at the point a.
The above definition is in accordance with the engineers perception of
approximation processes. Let us suppose that f describes a physical
phenomenon P and we are interested in the variation of this phenome-
non around a fixed "point" (vector) a. Let us take a neighboring point
z of a and let us approximate z by a. In this case, can we approximate
f(z) by f(a)? Or, can we consider that P is "almost the same" at z like
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at a?. We can do this if f is continuous at a. Otherwise, we cannot do
such approximations. We must be very careful for instance, in the case
of earthquake models around the so called "singular" points (see the
example bellow). Now we think that the reader is convinced that the
continuity notion is important in modelling the physical phenomena.
It is not difficult to prove that all the elementary functions and their
compositions are continuous functions. In the following we supply with
an example in which we shall see that the case of vector fields of several
variables (for n > 1) is more complicated then the case of one variable.
Let us see now if the following nonelementary (why?) function

s ifx#£0, ory#0
_ Zig2 | ) )
f@y) { 0, ifx=0and y =0,

[ : R? = R, is continuous or not on the whole R%. If (a,b) # (0,0),
then f(z,y) = z"%5 on a small disc (not containing (0,0)) with centre
at (a,b) (and a small radius). Since the restriction of f to this last disc
is an elementary function, f is continuous at (a,b). What happens at
(0,0)? If the function f were continuous at (0, 0) then, for any sequence
(%, yn) which tends to (0,0) (i.e. z, — 0 and y,, — 0), we should have
that f(zn,y,) — f(0,0) = 0. Let us take a nonzero real number r and
let {z,} be an arbitrary sequence of nonzero real numbers which is
convergent to 0. Take now vy, = rz, for any n = 1,2,.... This means
that all the pairs (z,,y,) are on the line y = rx (its slope is r) and
that the sequence {(z,,y,)} is convergent to (0,0). But

ra? r

f(@n,yn) = 5 = 7 0.

2 | 22 2
xi +riv: 147

So the function f is not continuous at (0,0). Moreover, since the limit

r
lim Ty Yn) =
(Inyyn)g’(oro)f( y ) ]- + T2
is dependent on the slope r of the line y = rx, on which we have

chosen our sequence (x,,¥,), we see that the function f has no limit
at (0,0). Hence, we cannot extend f "by continuity" at (0,0) with no
real value. Such a point (0,0) is called an essential singular point for
f. This means that if we become closer and closer to (0,0) on different
sequences {(zn,y,)}, we obtain an infinite number of distinct values

for the limit ( li)m( )f(a:n, yn) (as we just saw above!).
Tn,Yn)—(0,0

The following criterion reduces the study of the limit or of the
continuity of a vector function f : A — R™ at a point a €A, where A is
an open subset of R™ and f = (fi, fs, ..., fim), to the study of the same

properties for the scalar functions fi, fa, ..., fin-



124 6. THE NORMED SPACE R™.

THEOREM b54. With these last notation, 1) £ = (f1, fa, ..., fm) has
the limit L = (Ly, Lo, ..., Ly,) at the point a if and only if every com-
ponent function f; has the limit L; at the same point a, for j = 1,2, ...
and 2) £ is continuous at the point a if and only if every component
function f; is continuous at a.

PrROOF. Everything comes from the fact that the convergence in
the normed spaces R™ is a componentwise convergence (see Theo-
rem 50). Indeed, let us assume that f = (f1, fa, ..., fin) has the limit
L = (L, Ly, ..., L,,) at a. Hence, for any sequence {(x™)} which is
convergent to a, one gets that lim f(x(”)) = L, i.e. lim f;(x™) = L;
for j = 1,2,... (we just applied the "componentwise" principle). The
existence is included here! (why?). Conversely, if for any j = 1,2, ...,
the limit lim f;(x(™) = L; exists, then the limit lim f(x(")) = L exists
and L = (Lq, Lo, ..., L,). We add the fact that £ = (fy, fa, ..., fin) i
continuous at a if and only if

L = (L1, Ly, ..., L,) = f(a) = (f1(a), f2(a), ..., fm(a)),

or if and only if f;(a) =L; for any j = 1,2, ... . But this means exactly
the continuity of every f; at afor j =1,2,... . O

Using this last continuity test, we can easily decide if a vector func-
tion is continuous or not. For instance,

f(xa Y, Z) = (l‘, 2z + Y, 2z + 3y - 22)
is continuous on R? because all the scalar component functions

fl(xay>z) = fL‘,fg(ﬂf,y,Z) = 2[L‘—|—y

and f3(x,y, z) = 2x + 3y — 2z are polynomial functions so, they are all
continuous on R3.

REMARK 20. The existence of a limit at a point and the continuity
at a point are "local” properties. They are defined "around” a given
point a. If we fix a n-D continuous curve v : [a,b] — A C R" and
if a=y(ty) is a point "on v" (it is in the image of ), we say that
a vector function £ = (f1, fa, ..., fm), defined on A with values in R™
is continuous at a along the curve v if the composed function foy :
[a,b] — R™ (a new curve in R™) is continuous at tg. This means
that if we take any sequence of points {x™} in A (is considered to be
opened!) on v (x™ = ~(t,)), which becomes closer and closer to a,

then lim f(x"™) = f(a). For instance,

ws o #0, ory#0
_ 224427 ) )
f(@.y) { 0, ifr=0 andy =0,
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[ :R?* = R, is not continuous at a = (0,0), but it is continuous at (0,0)
along the both axes of coordinates. It has limits along any other fixed
line y = rx which is passing through (0,0), but the limits are not the
same! (see the above commentaries on this example). It is possible to
construct a function of two variables which is continuous on R? except
the origin, where it has limit 0 along any line which passes through
(0,0), but it has no limit at (0,0) (find such a function!).

THEOREM 55. The composition between two continuous functions
s also a continuous function.

PROOF. Let A be an open subset of R?, let B be another open sub-
set of R" and let f : A — B, g : B — R™ be two continuous functions
on their definition domains. The theorem says that the composed func-
tionh: A—R™ h=gof, ie h(x)=g(f(x)) for any x € A, is also
a continuous function on A. For proving this, let us take a point a € A
and an arbitrary sequence {x(™} in A which is convergent to a w.r.t.
the distance of RP. Since f is continuous on A, in particular, it is also
continuous at a. So, the sequence {f (X("))} is convergent to f(a). Now,
since g is continuous on B, in particular, it is continuous at the point
f(a) of B. Hence, the sequence {g(f(x™))} tends to g(f(a)) = h(a)
and so, h(x™)= g(f(x™)) is convergent to h(a). This means that the
composed function h is continuous at a. Since a was arbitrary chosen
in A, we have that h is continuous on the whole A. O

This theorem is very useful, because almost all the functions com-
monly used in applications are compositions of elementary functions
and these last ones are continuous on their definitions domains. For
instance,

F(.y) = cos [ x + sinzy }

1+ In(22 + y?)
is defined on R?\, where 7 is the circle: #?+y? = 1, where e = 2.71... .
Here f is the composition between the following continuous functions:

x ~> cosx, (x,y) ~ g,y#o,(l’,y) ~ T4y, (T,y) ~ 2y,
Yy

x~sinz and x ~» Inz, £ >0

(prove everything slowly!). The same theorem is used to prove that the
set of all continuous functions defined on the same set A (open, closed,
etc.) is a real infinite dimensional (contains polynomials!) vector space
(prove it!).
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3. Continuous functions on compact sets

Let A be an arbitrary nonempty subset of R” and let f : A — R™
be a continuous function (on the whole A). Let D be an open subset of
R"™ which is contained in A. Here is a question: "Is always the image
f(D) of D through f open in R™? We shall see by simple examples that
the answer is no! Let us take, for instance, D = (0,1) and f(z) = 3
for any z in (0,1). Since the set {3} is closed in R (why?), f(D) is not
open. Let now E be an open subset of R™ and f~}(F) = {x € A :
f(x) € A}, the preimage of £ in A. We say that a subset B of A is
open in A if it is the intersection between A and an open subset D of
R™ i.e. B= AN D. For instance, B = (0, 1] is not open in R (why?),
but it is open in A = [—1, 1] because, D = (0, 3), which is open in R,
intersected with A is exactly B.

THEOREM 56. With the definitions and notation given above, f :
A — R™ is continuous if and only if £71(E) is open in A for any open
subset of R™, w.e. if £ carries back the open subsets of R™ into open
subsets of A.

PrROOF. a) We assume that f : A — R™ is continuous and that
E is an open subset of R™. To prove that f~'(F) is open in A it is
equivalent to prove that C' = A\f~!(E) is closed in A, i.e. for any
convergent sequence {x(™} of elements in C, convergent to an element
x of A (pay attention!), one has that x is also in C. If it were not in
C, f(x) € E. Since E is open in R™, there is a small ball B(f(x),r),
with center at f(x) and of radius > 0, which is contained in E. Since

x(™ — x, and since f is continuous, one has that f (X(n)) is convergent

to £(x). So, there is at least one x(™) with £(x"*) in B(f(x),r), i.e. in
E. So, x(™) is in f~1(F), a contradiction, because we have chosen the
sequence {x(™} to have all its terms in C, i.e. not in f~(E).

b) We suppose now that f carries back the open subsets of R™ into
open subsets of A. Let us prove that f is continuous at an arbitrary fixed
point z. For this, let {z(™} be a sequence in A which is convergent to
z € A. We assume that {f(z™)} is not convergent to f(z). Then, there
is a small ball B(f(z),r) in R™ such that an infinite number {f(z*"))}

,n = 1,2,..., of the terms of the sequence {f(z(n))} are outside of
B(f(z),r). Since B(f(z),r) is an open subset in R™, following the last
hypothesis, we get that the set D = f~1(B(f(z),r)) is an open subset
of A which contains z (why?). Let B(z,7’), v’ > 0 be a small ball with
centre in z such that G = B(z,7)N A C D (since D is open in A). All
the terms of the subsequence {z*»)} are not in G, in particular they
are not in B(z,r’). But this last conclusion contradicts the fact that
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z(™ — z. Thus, our assumption that {f(z"™)} is not convergent to f(z)
is false and so, f is continuous at z. Since this z was arbitrary chosen,
we get that f is continuous at all the points of A. 0

The following result is very useful in many situations of this course.
It appears as a direct consequence of the above theorem.

THEOREM 57. Let A be an open subset of R™, let a be a fized point
of A and let f : A — R be a continuous function on A such that
f(a) > 0. Then there is an open ball B(a,r) C A, r > 0, with the
property that f(x) > 0 for every x in B(a,r).

ProOF. Take ¢ > 0 such that f(a)—e > 0 and take the open subset
Y = (f(a) — ¢, f(a) +¢) of R. Since f is continuous, X = f~1(Y) is
an open subset of A which contains a. So, there is a small ball B(a, )
such that B(a,r) C X, ie. f(x) € Y for any x in B(a,r). But, for
such x we have that f(x) > f(a) — e > 0 and the proof is done. O

REMARK 21. In the same way one can prove that f : A — R™ is
continuous if and only if £ carries back the closed subsets of R™ into
closed subsets of A (define this notion by analogy!). To prove this, one
can use the last theorem 56.

Not always a continuous function f : R" — R™ carries a closed set
of R™ in a closed set of R™. For instance, f : R — R, f(z) = ﬁ,
carries the closed set [0, co) into (0, 1], which is not closed more. It
is interesting to see that the closed set [0, o0) in unbounded. If one
tries to substitute it with a closed and bounded interval, for the same
function, we shall not succeed at all to find like an image a non closed
set! Why? Because of the following basic result:

THEOREM 58. Let C' be a compact (closed and bounded) subset of
R"™ and let f : C' — R™ be a continuous function. Then, the image
f(C) of C, in R™, is also a compact subset there (in R™ ). Moreover, if
m =1, supf(C) = f(z,,) and inf f(C) = f(z,)), where z, z,, are in
C.

PROOF. We need to prove that: a) £f(C) is bounded and, b) £(C')
is closed. The ideas used for proving this theorem are exactly the same
like those used in the particular case (m = 1,n = 1) of Theorem 32.
We take them again here.

a) We assume that f(C) is not bounded. This means that for every

)>n

n = 1,2,..., one can find a point x™ in C such that Hf(x(”))

(why?). Since C' is a compact subset in R", we can find a conver-
gent subsequence {x*")} to the point x of C' (see Theorem 53). Since
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f: C — R™ is continuous, the sequence {f(x*")} is convergent to

f(x). But Hf (x(k”))H > k, and k, — oo, so, the numerical sequence

{Hf (X(k"))H} is unbounded (goes to oo!). We shall see that this is a
contradiction. Indeed,

| eex®)| < (e — £0)|| + EGoON.

If we take limits in this last inequality, we get: co < 0+ ||f(x)]|| , which
is not possible! The contradiction appeared because we supposed that
f(C) is unbounded. Hence, it is bounded, i.e. we just proved a).

b) We use now the closeness test (Theorem 51) for proving that f(C')
is closed. Let us take for this a convergent sequence {f (y("))}, with
terms in £(C') and with its limit ¢ in R™. We have to prove that this ¢
is also in f(C'). Since C' is a compact subset of R", there is a subsequence
{y")} of the sequence {y™} such that y"») is convergent to y € C.
Since f is continuous, the sequence {f(y"™))} is convergent to f(y). But
any subsequence of a convergent sequence is also convergent to the same
limit of the whole sequence. Thus, ¢ = f(y) and so, ¢ € £f(C), what we
wanted to prove. The other statements can be proved exactly in the
same manner (see also Theorem 32). U

Let us give a nice application to this last result. We can assume
that the surface of the Earth is closed and bounded in the 3-D space R3
(why?-you can take it for easy to be S = {(z,y, 2) : 2*> +y*+ 2% = R?},
...a sphere of radius R, etc.; prove that S is closed and bounded!). At a
fixed moment, to any point M (z,y, z) from the Earth we associate its
temperature 7'(z,y, z) at that moment. Thus, we obtain a continuous
function 7" defined on the compact surface of the Earth, with values in
R. Applying the above theorem, we always can find two points on the
Earth in which the temperatures are extreme.

Let C' be a compact (closed and bounded) subset of R" and let
f : C — R™ be a continuous function. Then, the norm ||f(C)|| of the
image f(C') of C, in R, is also a compact subset there (in R). Moreover,
sup |If(C)]| = ||f(z)|| and inf [|[£(C)|| = ||f(y)||, where z and y are in
C. Firstly, the function

g:R" =R gx) =|x|,
is a continuous function. Indeed, let {x(™} be a sequence in R™, which
is convergent to x. Since |||x™|| — ||x||| < ||x™ — x||, we see that the

sequence {g(x™) = {|[x™ ||} is convergent to ||x|| , i.e. g is continuous.
Secondly, let us consider the composition gof : €' — R between the
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continuous functions f and g. It is a continuous function (see Theorem
55) and we can apply the last theorem (do it slowly!).

REMARK 22. The condition on the closeness of C' in the above
theorem (Theorem 58) is necessary as one can see in the example:
f:(0,1] = R, f(x) = %; this function is continuous (prove it!), the in-
terval (0,1] is bounded, nonclosed and the image f((0,1]) = [1,00)
s not bounded, so mot a compact subset of R. If C 1is closed but
not bounded, its image through a continuous function f may be non-
closed and nonbounded at the same time. For instance, C' = [1,00),
f(x) = =55, so, f(C) = (0,00), which is neither closed (it is open
in R), nor bounded. This theorem above is not true in general metric
spaces. Because a compact subset C' in a general metric space (X, d) is
defined "by sequences". Namely, C is a compact subset of (X, d) if any
sequence in C' has a convergent subsequence with its limit also in C.
This is not generally equivalent to "bounded and closed”. The exam-
ples are two "exotic" and we do not give them here. In a metric space
(X,d) we can introduce the "distance" between two compact subsets A
and B of X. Namely,

dist(A, B) = inf{d(a,b) : a € A,b € B}.

Since d is a continuous function this number dist(A, B) is always fi-
nite and it is realized, i.e. there are ag in A and by in B such that
dist(A, B) = d(ag, bo). For instance, the distance between the full square
A=1[0,1] % [1,2] and the disc B = {(z,y) : (x —2)*+¢*> < 1isvV2—1
and it is realized at ag = (1,1) € A and at by = (2 — \%2, \%2) (why?).
It is easy to prove that the distance between two compact subsets A and
B is realized on their boundaries (which are also compact subsets), i.e.

dist(A, B) = dist(B(A), B(B)).

Can you organize the set of all compact subsets of X as a metric space
(with the distance function defined above)?

In practice, the above Theorem 58 can be applied to optimization
problems. For instance, let us find the maximal and the minimal values
of the function f : [0,1] x [0,2] — R, f(x,y) = z* + y*. Since C' =
0,1] x [0,2] is a compact subset in R? (prove it!), Theorem 58 implies
that its image is a compact subset of R. So, sup f(C) = f(a) and
inf f(C') = f(b). It is easy to see that a = (1,2) and b = (0,0) (the
function is increasing relative to x and y, separately).

An useful notion in the integral computation (and not only!-see the
bellow application) is the notion of "uniform continuity".
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DEFINITION 22. Let A be a nonempty subset of R™ and let f : A —
R™ be a function defined on A with values in R™. We say that f is
uniformly continuous on A if for any small quantity ¢ > 0, there is
another small quantity 6. > 0 (depending on ) such that whenever we
have two points x' and X" in A with the distance ||x' — x"|| between
them less then d., the distance Hf(x’) — f(x”)H between their images is
less then ¢.

The word "uniform" reefers to the fact that here the continuity is
not defined at a point, but on the whole A. Moreover, the variation
|£(x) — £(x")|| of £(x) is uniform relative to the variation ||x" — x"||
of x. Thus, if we want that the variation of f(x) to be less than 0.001
(J[f(x') = £(x")|| < 0.001) in the case of an uniform continuous func-
tion f, we can find a constant 6 = dg01 > 0 such that anywhere
a’ and a” would be in A, with the distance between them less than
this last constant §, we are sure that the corresponding variation of f,
|£(a") — £(a”)]| is less then 0.001.

REMARK 23. The notion of uniform continuity is stronger then the
"simple" continuity. Indeed, let f : A — R™ be a uniformly continuous
function on A and let a be a fixed point in A. We shall prove that f is
continuous at a. For this, let {a™} be a convergent sequence to a in A.
We want to prove that the sequence {f(a™)} is convergent to f(a) by
using only the definition of the convergence. In fact, we want to prove
that the numerical sequence {d(f(a'™),f(a))} tends to zero. Now we
use the usually Definition 1. For this, let € > 0 be a small positive real
number. Since f is uniformly continuous, there is a 6. > 0 such that
whenever ||x' — x"|| < J., one has that

|£(x) — £(x")]| <e.

Let us take now x" to be a and x' = a™, with n > N, this last N
chosen such that Ha(") — aH < 0.. Thus,

Hf(a<”>) ~ f(a)

<=

whenevern > N and so, we have just proved that the sequence {f(a™)}
is convergent to f(a), i.e. f is continuous at an arbitrary chosen point
a.

But continuity does not always imply uniform continuity. For in-
stance, f(x) =Inz, x € (0,1], is a continuous function and not a uni-
formly continuous one. Indeed, let the sequences 2/, = L and z/, = 5-.
It is clear that |2}, —2}| = 5= — 0, but [Inz}, —Inz| = In2 - 0.

nl =
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Thus, if we take € < In2 in Definition 22, we can NEVER find a small
d. > 0 such that for all pairs (2/,2”) with |2/ — 2”| < §. one has

Inz’ —Inz"| <e <In2.

To see this, let us take ng large enough such that

— < O,

r //}7
2710

‘ Lng nol|

For the pair (x] _,z" ),

Ly
/ "ol
|1nxn0 — lnxm’ =1In2,

which is greater than ¢, so the definition of the uniform continuity does
not work for this function.

The next result says that for the functions defined on compact sets,
continuity and uniform continuity coincide. Pay attention, in our case
above (0, 1] in not compact! This is way we could prove that f(z) = lnx
is not uniformly continuous.

THEOREM 59. Let C be a compact subset of R™ and let f : C' — R™
be a continuous function defined on C. Then f is uniformly continuous

on C.

PROOF. We suppose on contrary, namely that f is not uniformly
continuous on C. We must carefully negate the statement of Definition
22. Thus, there is an £y > 0 such that for any small enough § > 0 there
is at least one pair (x§,x}) with elements in C' such that ||x§ — x| < ¢
and

66 — £ > e
In particular, let us take for these 5, 0 = E for k = 1,2,... . Like
above, for such 8z, k = 1,2, ..., one can find two sequences {x'*} and

{x"®} with [|x'®) — x"®)|| < 1 and
Hf(x'(k)) _f(x"®) H > ¢ > 0.

Since C' is a compact set, we can find two subsequences: {x'(*)} of
{x'®} and {x"*)} of {x"®} (why can we take the same k, for both
subsequences?) such that these both subsequences are convergent to
the same limit y € C' because

) — x| < - 0
t

Since f is continuous, one has that the both sequences {f(x'*”)} and

{£(x"*))} are convergent to the same limit f(y). So the distance be-
tween the corresponding terms becomes smaller and smaller as n — oo,
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1.e.

‘ ‘ f(X/(kt) ) N f(X//(kt) )

o

a contradiction, because ‘ £(x'*)) — £(x"*)) H is always greater or equal
to g9. Thus, our assumption on the nonuniform continuity of f is false.

Hence, f is uniformly continuous. 0

This result is very useful in practice. For instance, the function
f(z) = Inz is uniform continuous on any closed interval [a, b] C (0, c0).
Indeed, [a,b] is a compact subset in the definition domain (0, c0) of f,
f is continuous on [a, b] and so we can apply the above Theorem 59.

EXAMPLE 13. Let C' be a 3D-object (C C R?), bounded and con-
taining its boundary OC, like usually in practice. We know that C' is
closed if and only if it contains its boundary OC. Let us assume that at
any point M (x,y, z) of C' we have a density f(x,y, z). It is commonly to
suppose that the density function f : C — R is a continuous function.
The above theorem and our hypotheses on C' say that [ is uniformly
continuous. We cannot practically work with this function because no-
body gives it us in advance. But we can perform some measurements.
How do we perform such measurements f(x;,y;, 2z;), i = 1,2,...,n, such
that if we chose a point M(x,y,z) in C, we can find iy with

|f(xvy7 Z) - f(xioayioa Zio)‘ <é
(this is a small positive real number which controls the error, for in-
stance ¢ = 1/1000). Since our function is uniformly continuous, there
is a small & > 0 such that whenever the distance between two points
x' = (2/,y,2) and X" = (2",y",2") of C is less than this ¢, we have
that

\f(x',y',z') _ f(xll’y//7zll)’ <e
It remains to us to divide the body C' into subbodies C;, i = 1,2, ..., n,

such that C' = @TCZ and the diameters

w; = sup{||x’' — x"|| : X', x" € C;}

of C; are less then §. Let us choose now a fized point M;(x;,y;, z;) in
each C; fori=1,2,....,n. Then the approximation

flxy, 2) = f(xi, yi, 2i)
is a good one if M(x,y,z) € C;. This means that
|f($7ya Z) - f(xzayhzlﬂ < €.

Thus, we can perform measurements of the density function values only
at some arbitrarily chosen points M; in each Cj.
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We give here a very useful result, in a more general setting (define
and prove things slowly!).

THEOREM 60. Let X and Y be two compact metric spaces (recall
that a metric space is compact if any sequence of it has at least one
convergent subsequence) and let f : X — Y be a continuous bijection
from X onY. Let g : Y — X be its inverse. Then g is also continuous.

PRrROOF. Let us prove that g carries back closed subsets of X into
closed subsets of Y (see Remark 21). Let C' be a closed subset of X
and let £ = ¢71(C) = f(C). Since X is compact, C' is also compact
(prove it!). Since f is continuous, F = f(C') is compact, so E itself is
closed in Y (prove it!). Hence, g is continuous. O

COROLLARY 7. Let f be a strictly monotone continuous function
which carries the interval [a,b] onto the interval [c,d] (see also the next
section, Darbouzx’ theorem). Then f is inversable and its inverse g is
also continuous.

PROOF. Since f is strictly monotone it is one-to-one (injective).
Since both intervals are compact metric spaces, we simply apply the
previous result. Here, "onto" means surjectivity!. O

4. Continuous functions on connected sets

Let A be a subset of R™. A continuous curve in A is a vector con-
tinuous function v : I — A, defined on an interval I, finite or not,
opened or not, closed or not. In fact, we think of the image ~(I) of
the interval I through ~. Let M(x1, 23, ...,x,) be a point in A. We say
that « passes through M if there is ¢y in I such that v(ty) = M.

DEFINITION 23. We say that the subset A of R™ is connected if any
two points My and My of A can be connected by a continuous curve,
i.e. if there is a continuous function vy : I — A and t1,ts € I such that
~(t1) = My and ~(ty) = Ms. This means that v passes through My and
Ms.

REMARK 24. An interval I of R is a subset of R with the following
property: if a,b € I and x is between a and b (a < x < b), then
x is also in I. In R, the connected subsets are exactly the intervals
of R. Indeed, let I be a connected subset of R, let a,b € I and let x
with a < x < b. Since I is connected, let v : J — I be a continuous
curve which connect a and b. This means that there are t; and ty in J
such that v(t1) = a and v(t2) = b. We can restrict v to the interval
[t1,ts] C J and apply Darbouz property for the continuous function
(see Theorem 33). Hence v = ~(t3), where t3 € [t1,t2]. So x € I



134 6. THE NORMED SPACE R™.

thus I is an interval. Conversely, let I be an interval in R and let x1,
xo € I. Let 7y : [x1,22] — I be the identity mapping. This is obviously
a continuous curve which connect x1 and xs.

THEOREM 61. Let A be a connected subset of R™ and letf : A — R™
be a continuous mapping defined on A with values in R™. Then the
image £(A) of f in R™ is also a connected subset of R™.

ProOF. Let f(x) and f(y) be two points in f(A), x,y € A. Since
A is connected, there is a continuous curve v : I — A and two points
a,b € I (an interval in R) such that y(a) = x and ~(b) = y. Now, the
composition fo~y : I — R™ is a continuous curve with (fovy)(a) = f(x)
and (f o~)(b) = f(y). Thus f(A) is a connected subset of R™. O

This is a fundamental result in different practical exercises. For
instance, let

S:{(xa%Z) €R31x2+y2+22 SRZ}

be the 3D-ball of radius R with centre at origin. Let f : S — R be
the functions which associates to any point M (z,y, z) the sum of these
coordinates, namely

flz,y,2) =+ y+ 2.

Let us find the image of S through f. Since S is connected (in fact S is
a convex subset of R?, i.e. for any pair of points L, P of S, the segment
[L, P] is contained in S) and since f is continuous, its image in R is a
connected subset (see Theorem 61), i.e. it is an interval (see Remark
24). In fact, this image is a closed and bounded interval because S
is a compact set (way?) and f is continuous. So it is of the form
[m, M| where m = inf f(S) and M = sup f(5). To find m and M is
not an easy task. We only remark that the points where it is realized
the greatest and the smallest values must be on the boundary 95 of
S, namely where 2% + y? + 22 = R? (otherwise, if a point H(a,b,c) of
extremum, say a maximum, was inside the ball, not on the boundary
0S, then we can gently increase (or decrease) one of the values a, b, or
¢, such that the new point L obtained in this way belongs to the ball
and, in it the function f has a greater value then the value of f in H).
In a later section (Conditional extremum points) we shall see how to
compute m and M.

The above theorem is helpful in proving the following useful result
(this result provides the basis of for different algorithms for solving
algebraic equations).

THEOREM 62. Let f : [a,b] — R be a continuous function such that
f(a) - f(b) < 0. Then, there is a point ¢ in (a,b) such that f(c) = 0.
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This means that the equation f(x) =0 has at least one solution in the
interval [a, b].

PrOOF. Theset f([a, b)) is an interval (see Theorem 61 and Remark
24) which contains f(a) and f(b). Since f(a) - f(b) < 0, the numbers
f(a) and f(b) have distinct signs. Since f([a, b]) is an interval and since
0 is between f(a) and f(b), 0 must be also in f([a, b]). This means that
there is a ¢ in [a, b] such that f(c¢) = 0. Since f(a) - f(b) < 0, this ¢
cannot be neither a nor b, so ¢ € (a,b). O

REMARK 25. In fact, the statement of this last theorem is equiv-
alent with the statement of Darbour Theorem 33. Let us prove for
instance that the above last theorem implies Darboux Theorem 33. Let
m = iel[lfb]f(l’) = f(x1) (see Weierstrass Theorem 32) and M =

sup f(z) = f(xz). Let choose a number X € (m, M) and let consider
z€la,b]

the auziliary continuous function g(z) = f(x) — A. Let us take now the
interval [x1, 25)F (here & means that [x1, x9]* = |21, 25] if 71 < 29 and
(21, 22)F = [w2, 1] if 12 < @1; if 21 = 29 our function is constant and
one has nothing to prove). Since g(x1)-g(z2) < 0 (if one of the factors
is equal to 0 we also have nothing to prove more!), Theorem 62 says
that there exists a number ¢ € (a,b) such that g(c) =0, i.e. f(c) = A
and Darbouz Theorem is proved. Conversely is very easy (prove it!).

We can use Theorem 62 in order to find approximative solutions for
an equation f(z) = 0 in an interval [a, b], on which the function f is
continuous (find a counterexample to this theorem in the case when f is
not continuous). We also assume that f(a)- f(b) < 0. Let us divide the
segment [a, b] into two equal parts and chose that one [ay, b;] for which
flay) - f(by) <0 (if f(a;) =0 or f(by) =0, ¢ = a; or ¢ = by and we
stop the process). Let us repeat the same with the subinterval [a;, b;]
instead of [a,b], and so on. If we cannot find a, or b,, n = 1,2, ....,
such that f(a,) = 0 or f(b,) = 0, the solution ¢ is (the unique point)

in the intersection Oﬁl[an, b,] (why?). So, for a small error indicator
n—=

e > 0, if we take ng such that I;Tg < g, then the approximation ¢ ~ a,,
(or ¢ = by,) lead us to an error less then ¢ (why?). This is in fact
the description of a very known algorithm in Computer Science for

constructing approximative solutions for a large class of equations.
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5. The Riemann’s sphere

In Fig.6.3 we have a sphere S of radius R > 0 and with center at
the origin 0(0,0,0). Its equation is

(5.1) Pyl =R

Fig. 6.3

We know that the subset
S =A{(z,y,2) : a* +y* + 2* = R*}

is a compact subset of R? (it is closed and bounded, why?). Since B.
Riemann used this model for explaining the "compactification" of the
usual complex plane C (identified here with the coordinate plane z0y),
we call S the Riemann sphere.We call the point N (0,0, R), the north
pole of S (see Fig.6.3). Let us associate to any point M (z,y, z) of the
sphere S, the point M’(a,b,0) in the plane xOy (= C), obtained by
intersecting the line NM with the plane xOy (see Fig.6.3). Since for
N we cannot associate in this way a point in xOy, we say that there is
a one to one correspondence between S~ {N} and C. Let us denote by
f:S~{N} — C, the mapping M ~» M’ or f(M) = M'. It is not so
easy to express a and b as functions of z,y, z. If we think of a sequence
{M,} of points on S, which is convergent in R* to M, it is easy to see
that the sequence { M/} is convergent to M’ in C. So f is a continuous
function on S . {N}. As in the case of the "compactification" of R
by adding of the symbols {400} (since in R= RU{400} any sequence
has at least one convergent subsequence-why?-it is a compact metric
spacel)) we take a symbol "oo" outside C and consider C = CU {0}
with some obvious algebraic operations: z + 00 =00+ = 00, z € C,
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loo| = oo (this is the symbol +oc from R), etc. If we extend now the
function f to the whole sphere S by putting f(N) =oco, we obtain a
bijection/\between the Riemann sphere and C. We say that a sequence
{z,} of C is convergent to oo if |z,| — oo € R. So this f is invertible
and f~!is also continuous. In particular Cisa compact metric space,
the least compact metric space which contains C (why?). This is why
one can also call C the Riemann sphere. For instance, a "ball" with
centre at oo is the exterior of an usual closed ball with centre at O
and of radius r > 0 : {(z,y,2) : 22 + y* + 2> > r?}. The notion
of Riemann sphere is very important when we work with functions of
complex variable. Intuitively, oo can be realized as the circumference
of a "circle" with center at O € C and of an infinite radius. So, the
fundamental "e-neighborhoods" of 0o are of the form {z € C: |z| > R},
where R is any positive (usually large) real number. We finally remark
that the metric structure on S is that one induced from R3.

6. Problems

1. Say if the following sets are open, closed, bounded, compact or
connected. In each case, compute their closure and their boundaries.
Draw them carefully!

a)
{(z,y) : 2* +y* <9}
{(z,y) : 2 +y* > 9};
{(z,y) : 2* +y* =5}
{(z,9) ;2 €[0,1);y € (1,2]};

{(z,y) :z+y =3}
0)- cq € Qb g{0,2) :n=12..}%h{(zy) :y? =222 ¢

{(l, l) n=12,..}

n n
{(z,y,2) rx+y+2<3;z,y,2 € [0,00)}

{(z,y,2) :x € [-1,1],y € (0,4], 2z € (-3,5]}
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N{z€C:|z—2i|<3};m){zeC:|22+3]| <6};n)
{z€C:|z+3—2i] > 4};

0)
{zeC:z=x+iy,x =2,y < 3};
p)
{zeC:2<|z—-2| <4}
q)
{zeC:|z—3+2i] >2}
1
{f € C0,2]: lf] < 2}
5)
{fecio2n]:|fl =3}
u)
{feClo,2n]: | f —sinz| <0.3}
v)

1 1
—33]:9g——=< —
{feCl=33lig—s=f <9+t
where g(x) = z, g(z) = —z, or g(x) = 2%}; )
[fec.):2<|f—gl <4}
where g(z) = z;y)D = {(z,y) : In(z?+y*—4)/(x+2y) is well defined}.
2. Compute the limits of the following sequences:

a)
1 2n—1 4
x" = ( — 1+ —)2"> :
n

2n+1"3n+4’
b)
x(”)—( Vn—1 nsin%).
In—m—1 14+n)’
c)
34 2in .
= n+2i’22\/__1’

n

d) z, = (1—1—%) ;e) zn:exp(z’n—i-%);

3. Starting with the definition of continuity and of uniform con-
tinuity, determine what of the following functions are continuous and
what are uniformly continuous.

a) f(z) =sinz, x € [0, 7[;

b)

f(r.y) = <x+y7$>,m € [1,2],y € [3.4]
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¢) f(x,y,2) = & —y, where 22 +y* + 2> = 4; d) f(z) = L, = € (0,2].

4. Some of the following limits exist, some do not exist. Say (and
prove!) which of them exist and compute them in the affirmative situ-
ation.

a) lim S b) lim Ly
)(x,y)—>(0 0) 2az3+3y3+27 )(w,y)—>(0 O) Vry+1-1
c)(x yl)ig%o 0)x2+ 7 (Hint: 2+ 5 < %, etc.);
d)
% 4 y2

lim —— 7
(@)~ 0.0) 2| + |y]

' ik T 1 exp(—|z))—1.
(Hint: e Iw\+|y| < 1, etc.); e)(x,yl)lg(lo,o) e b) hm ;' g) hH(l) o
h) lim
e o)
i)
zy?

lim ———
(@.y)—(0,0) 22 + y*
(Hint: use (+,0) and (75, 2));
5. Compute, if you can, the following directional limits:

:b)  lim 22

. Ty
a lim %5
) a?+y?? x—>0,y:mx16+y2 ’

z—0,y=mz
c)

lim  Zexp(—(z +y));

T—00,y=mx L
d)

hm TUY €X l'2+ 2 .
(z,y)—(1,0),22+y2=1 y exp( y°)

6. Compute:
lim _
(z,y,2)—0 2 + y2 +1
and explain everything you did, step by step (small steps!).
7. Study the continuity of the following functions:

a)

.1+ zyz, cos(x +y + z))

fiR R, f(z) =
ifx € Qand f(z) =0, if x ¢ Q (Dirichlet’s function);
b)
fRSR, f(z) =

if 1 € Q, and f(v) = —m, if v ¢ Q;

c)
[ R =R, f(x) = exp(—z),
if x <0 and f(z) =sinz, if x > 0;
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[R* = R? f(x,y) = (x,0);
I R? — R, f(a:,y) = d((may), (070)) =V r? + 923

f:Rz _)R27f(x7y) = (%,xy),

224y
i (2,) # (0,0) and £(0,0) = (0,0);
g) .
. T2 Y
[iR* =R, f(z,y) —IE?JW,
if (z,y) # (0,0) and f(0,0) = 0;

h)

9  sin(2® + %)
if (z,y) # (0,0) and f(0,0) = 0.

8. Prove that f(x) = z? is uniformly continuous on [0, 1], but
it is not on the whole R (Hint: use x, = /n, T,41 — x, — 0, but
F(ne) — F(za) = 1 0),

9. Prove that f(z) = 2 is uniformly continuous on [1,2], but not
on R.

10. Let (X, d) be a metric space. Prove that, for any fixed a in X,
the mapping f,(x) = d(x, a) is a uniformly continuous function defined
on X with values in R.

11. Let f: A—=R, f(z,y,2) = x + y + z, where

A={(z,y,2) eR*: 1 <2+ + 2% <4}

Prove that f(A) is a closed interval in R. Find it.
12. Do the same for

fle,y) =2 +y,xe(l,2,ycl,2.

Y



CHAPTER 7

Partial derivatives. Differentiability.

1. Partial derivatives. Differentiability.

Let A be an open subset in R, a a fixed pointin Aandlet f: A — R
be a function defined on A with values in R. Let B(a,r) = (a—r,a+r),
r > 0, be a small ball (an open interval in our particular case) of radius
r and with centre a, which is contained in A. Let h be a small quantity
such that a+h € B(a,r). We call this h an "increment" of a in B(a,r)
(or in A if one takes h with a +h € A). The difference f(a+h) — f(a)
is called the increment of f at a, corresponding to the increment A of
a. So, here appears a new function ¢, ((h) = f(a+h)— f(a). This new
function depends on a and on f. It is defined in a small ball, (—¢,¢),
which contains 0 as its centre and of radius ¢, (at most r (why?)). The
description of this last function is important in the case we want to
evaluate the variation of a phenomenon around a given point a. For
instance, if a worker has his salary a and if his salary increases with h,
what is the increment f(a+h)— f(a) of his family educational level? We
say that the increment f(a + h) — f(a) is approzimately linear around
a, if
(1.1) fla+h) = fla) = Ma, f) - h+h-waes(h),
where w, s is a function of h defined on (—¢,¢), w,(0) = 0 and
Wq,r(h) — 0, when h — 0 (i.e. wq s is continuous at 0). Here A(a, f) is

a real number which depend on f and on a.
The birth of differential calculus began with the following result.

THEOREM 63. With the above notation and hypotheses, the incre-

ment of f is approximately linear around a if and only if f is differen-
tiable at a and, in this case f'(a) = A(a, f). Thus,

(1.2) fla+h) = f(a) = f'(a) - h+h-wey(h).
Hence,
fla+h) = fla) = f'(a) - R
and the error h - w, ¢(h) is a zero O(h) of h, i.e.
. hwg (R
I
141

=0.
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PROOF. Let us divide by h the equality (1.1) and make h — 0. We
obtain that the limit

limf<a i h})L — fla) = Aa, f).

h—0

So, if the increment f(a + h) — f(a) is approximately linear around a,
f is differentiable at a and f’(a) = A(a, f). Conversely, let us assume
that f is differentiable at a. Then, if one construct

(1) () = T =IO )

it is easy to verify that this function w, ; is continuous at 0 and it is
zero at h = 0 (do it!). If we take now for A(a, f) the number f’(a), and
for w,, s the function constructed in (1.3), we obtain the formula (1.1),
i.e. the increment of f is approximately linear around a. U

Let us evaluate the increment of f(z) = —22+ 3z — 7 at a = 10 if
the increment h of a is 0.5. We simply apply formula (1.2) and find

F(1040.5) — £(10) = f/(10) - 0.5 + 0.5 - wy.10(0.5) ~ —8.5.

DEFINITION 24. With the above notation, the linear mapping df (a) :
R — R, defined by
df(a)(h) = f'(a) - h,
is called the first differential of f at a. This one exists if and only if
the first derivative f'(a) of f at a exists (why?).

Thus,
df(a)(h) = f(a+h) = f(a),
i.e. the value df(a)(h) of the first differential of f at a, computed
in the increment h of a, is approximative equal to the corresponding
increment
fla+h)—f(a)

of f at a.

Before extending the notion of a differential to a vector function we
need some other simpler notion.

Let A be an open subset of R”, f : A — R™, a vector function of
n variables, defined on A with values in the normed (or metric) space
R™ and a = (a1, as, ..., a,) a point in A. We write £ = (f1, f2, ..., fim),
where fi, fo, ..., fm are the m scalar component functions of f. For the
moment we take m = 1 and write f = f, like a scalar function (with
values in R). Let us fix a variable z; (j = 1,2,...,n) of the variable
vector

X = (Il, X2y ooy Lj—13 L5y Ljqly eeny [En)
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For this fixed j, let us define a "partial function" ¢, of f at a. For this
we fix all the other variables z1, za, ..., %j_1, Tjt1, ..., T, (€xcept x;) by
putting

T1 =01,T2 = A2, ...;Tj—1 = Aj—1,LTj41 = Aj41, ..., Ty = Ap
and let us leave free the variable x; in
f(X) :f(l‘l, L2y eiey Tj—1, L5, Ljq1yeeny l’n),
i.e. we define
(14) QDJ(t) = f(al, a2, ..., Aj5-1, t, Qjt1y ey an),
where ¢ runs over the projection pr;j(A) of A along the O j-axis, where
pT‘j(fL’l, L2y ooy Tj—15, L5y Ljqdy eeny ]In) =Ty

DEFINITION 25. With the above notation, if the function ¢; is dif-
ferentiable att = a;, one says that f has a partial derivative ¢;(a;) with
respect to the variable x; at a and we denote this last one by %(a).

J
The mapping x ~ a‘%f(x), x € A, is called the partial derivative of f
J

with respect to x;.

Practically, if we want to compute the partial derivative of a scalar
function f of n variables

L1, X2y 00y Ljm1, Ljy Ljtly o5 Ty
with respect to x;, we think of the other variables

X1, X2y 00y Tj—1,Tj41y oy T

like being constants (parameters, or "inactivated" variables) and we
perform the usual differential laws on the "active" variable z;. If n = 1,
we usually denote x; by x. If n = 2, we usually denote x; by x and x-
by y. If n = 3, we usually denote x; by x, x5 by y and x3 by 2. For
instance, let
f(@,y) = sin*(z* + y°)
be defined on R* and let a = (0, {/5) be the fixed point at which we
want to compute the partial derivatives of f (with respect to x and
to y respectively). Let us use the definition to compute %(a). In our
case,
) 7r
or(1) = sin* (s + 7)
and

oL (t) = 2sin(t® + g) - cos(t® + g) . 3¢2
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(we just used the chain rule for computing the derivative of a composed
function of one variable). Now,
af s
——((0,¢/ =)) = ¢1(0) = 0.
Li0if3n =0
Let us compute now
of

(1.5) a—((x, y)) = 2sin(z® + y?) - cos(2® +4°) - 3y
Y

Here, we simply considered that the initial function depended only

on y and we looked at z like to a constant. If we want to compute

%((0’ ¢/5)), we simply make x = 0 and y = {’/g in the general expres-

sion (1.5) of g—;((a:,y)). Thus, g—i((o, ¢/%)) is also 0. Since both partial

derivatives of f at (0, ¢/%) are zero, we say that this last point is a
stationary (or critical) point.

If f is a function defined on an open subset A of R” which has
partial derivatives with respect to all its variables at a point a, we

define the gradient vector of f at a by the formula:

grad f(a) = <§—§1(a), g—i(a),..., aaxfn(a)) .

We say that a is a critical (stationary) point for f if grad f(a) = 0.
The gradient is the direct generalization of the notion of "velocity".

We know from any course of "Linear Algebra" that a mapping T :
R™ — R™ is said to be a linear mapping if T(x +y) = T(x) + T(y)
and T(ax) =aT(x) for any x,y in R” and « in R. For instance, if
T : R — R is linear, then T'(z) = 27(1) for any x € R. Hence,
T(x) =Ax (A=T(1)!) for any z in R. If 7' : R — R is linear then,
by taking

2

X = (21, Tg, ..., Tp) = T1€1 + T2€2 + ... + Tp€,,

where e; = (1,0,0,...,0), e = (0,1,0,...,0), ...,e, = (0,0,0,...,0,1),
we get that

T(x) = x1T(e1) + z2T(e2) + ... + x,T(€,) = M1 + Aowg + ... + A2y,

where \; = T(e;) for any i = 1,2,...,n. It is easy to see that if
Ty,T5, ..., T,, are the component functions of T, then T is a linear
mapping if and only if all the component functions 74,75, ..., T, of T
are linear (prove it!).

THEOREM 64. Any linear mapping T : R" — R™ is a continuous
vector function of n variables.
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Proor. It is sufficient to prove that any component function 7;,
i=1,2,...,n of T is continuous (see Theorem 54). This means that we
can reduce ourselves to the case of m = 1, i.e. to the case of a scalar
function 7 : R™ — R. Let

{e1 = (1,0,0,...,0),e5 = (0,1,0, ...,0), ..., en = (0,0,0,...,0,1)}

be the canonical basis of R™. This means that any vector x = (21, xa, ..., )
can be uniquely represented as:

X =1x1€1 + T9€s + ... + T,€y,.
Let us denote
ay =T(ey), a0 =T(es),...,a, = T(e,).
These are fixed real numbers. Hence,
T(x) =T((x1, T2, ... Tp)) = T101 + ... + Tpauy,.

If

(m) _(m)

m = (2\™, 2™, 2™ = x = (2, 20, ..., T),

X
when m — oo, then,
mgm) — ml,xgm) — Ty, ..., ™
when m — oo (componentwise convergence). Thus
T(x™) = :L"gm)al + :Ugm)ag + o+ 2™, — o + o+ TR0
which is just T'(x). Hence, T' is a continuous mapping. O
REMARK 26. Let us define the associated matrixz of
T=(T,Ts,..,T,)

by a;; = Ti(ej) fori = 1,2,..,m and j = 1,2,....n. So the matriz
A = (a;j) is a m x n matriz with entries in R. If we compute now

IT)|? = T0(%)? + To(x)? + . + Tin(x)? =

n 2 n 2 n 2
(Z x,-au) + (Z Iiagi) + ...+ (Z xiami> S
i=1 i=1 i=1

n n n n n n
<Y oaf) af+ )y af) ah 4.+ i) ab=|lx|*]A)7,
i=1 =1 =1 i=1 i=1 =1

where we recall that




146 7. PARTIAL DERIVATIVES. DIFFERENTIABILITY.

Thus,
(1.6) ITEN < (AL -
From here we can easily directly prove the continuity of T (do it!).

Now, we come back to the definition of the linear approximation of
the increment f(x + h) — f(z) of a function f around a point a, in a
general situation.

DEFINITION 26. (Frechet) Let D be an open subset of R™ and let

a be a fived point in D. Let f : D — R be a function defined on D

with values in R. We say that f is differentiable at a if there is a linear

mapping Ta = T : R™ — R and a continuous scalar function p(h)

which is continuous at 0 =(0,0, ...,0), defined on a small ball B(0,r) C
——

n—times
R™ r>0,¢(0) =0 with hm thl) = 0, such that
(1.7) f(a+h)—f(a) =T'(h) + ¢(h).

This means that the increment f(a+h)—f(a) can be linearly approx-
imated by the linear mapping T (which depend on a and on f) around
the point a up to a function p(h) which is a zero of h (0(h)) of order

1 ( hrn thh) =0). The linear mapping T is called the (first) differential

off at a. We write it as df (a). Hence, formula (1.7) becomes
(1.8) f(a+h)—f(a) =df (a)(h) + ¢(h).

REMARK 27. It is clear that f is differentiable at a if and only if
there is a linear function T : R™ — R such that the following limit
exists and it 1s zero:

flath)—f(a)-T(h)
(19) n Thl

Indeed, if (1.9) is true, then o(h) = f(a+h)—f(a)—T'(h) is continu-
ous at 0 and its value at 0 s 0. If it were not continuous at 0, there
would be an € > 0 such that

|f(a+h)—f(a)=T(h)| >«
for any small values of h — 0. So,

|f(a+h)—f(a)—T<h)|> e
[h [h

=0.

when h — 0. Hence (1.9) could not be true, a contradiction!
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!

Shortly saying, f is differentiable at a if it can be "well" approx-
imated on a small neighborhood of a by a formula of the following

type:
(1.10) f(a+h)~f(a)+T(h),

where T is a linear mapping and h is a small increment of a. This
last interpretation is very useful in Physics and in Engineering when a
phenomenon is "linearized".

The next big problem is how to compute this 7" in language of f and
a. But, first of all, let us use only the definition and the remark above
to "guess" the differentials for some simple functions. For instance, if
f has only one variable, we find again Definition 24. If f is a constant
function, then df(a) is the zero linear mapping (prove this!). The first
differential of a linear mapping 7" : R” — R is T itself (why?). In
particular, the i-th projection pr; : R" — R,

pri(hl, hg, ceey hi, ey hn) = hi,

is differentiable and its differential pr; is denoted by dz;, or dx, dy, dz
in the 3D-case. So

dy(1,2,-3)(3,1, —7) = 1,dz2(a1, as, as)(—2,3,5) = 5
for any a = (a1, as, as).

THEOREM 65. If f is differentiable at a € D, where D is an open
subset of R™, then f is continuous at a. This means that the property
of differentiability is stronger then the property of continuity.

PrOOF. Let {a™} be a sequence of vectors in R™ which is conver-
gent to a and let h(™ = a®™ — a (— 0). Then

fla+ h") = f(a) + df (a)(h") + p(h™)

(see (1.8)). Since df (a) is a linear mapping, it is continuous (see The-
orem 64), so

lim df (a)(h™) =0.

Since }{irr(l) ﬁ = 0, one has that lim p(h™) = 0 (why?). Hence,
fla+ht) = f(a),
when n — oo. O

THEOREM 66. The linear mapping T = df(a) is uniquely deter-
mined by f and a.
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PRrROOF. The proof of this result is implicitely included in the state-
ment of the next theorem (see Theorem (67). However, we give here
another proof.

If there was another one U such that
(1.11) f(a+h) = f(a) =U(h) + ¢, (h),
where ¢, (0) = 0, ¢, is continuous at 0 and 11111% IIhH) = (0, we can write
that

T(h) + ¢(h) = U(h) + ¢, (h)

for all h in a small ball centered at origin. Moreover,

. (T =U)h) . ¢(h) —p(h)
(1.12) lim ————= = lim———————=

h—o | h—o |h]

We want to prove that for any x in R” one has 7'(x) = U(x). We assume
contrary, namely that there is a xq such that (T—U)(xo) # 0. If £ > 0is
small, then txq is small, i.e. it is close to 0, because ||tXo|| = t ||xo|| — O,
when ¢ — 0, ¢t > 0. Let us come back to (1.12) and write

L (T U)(Ex0) e (T = U)(xo)

=0 [[txol| =0t x|

=0.

=0.

So, (T'—U)(x0) = 0 and we just obtained a contradiction. Hence, there

is no xo with (7" — U)(xo) # 0 and so T' = U. O

Thus, if we find a method to compute 7' = df (a), this T is unique.
It depends only on f and on a.

THEOREM 67. If f is differentiable at a, then all the partial deriv-

atives aag’ 59_22 e % exists at a and
of of of
(1.13) df(a)(hy, ha, ..., h,) = 8$1< )h1+8_m2( a)hy + ... + axn( a)hy,,

or, using the projection pr; = dx; notation (see Remark 27), we get
af af af

1.14 d a)d ——(a)d

(L1 df(@) = g (@)do + 5@+t

Moreover, if f is of class C' on a ball B(a,r), for a smallr > 0, i.e. if
f € CY(B(a,r)) (this means that f has partial derivatives with respect
to all variables 1, x, ..., T, and all of these are continuous on B(a,r)),
then f is differentiable at a and formula (1.14) works.

PrOOF. We suppose that f is differentiable at a and let T' = df (a)
be its differential at a. We know from Linear Algebra or from the proof
of Theorem 64 that

T(hi, hay oo hy) = Ahy + Aoha + oo + Anhi,

(a)dz,.
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where Aj, Ao, ..., \, are fixed real numbers (recall that \; = T'(e;),
where e; is the i-th vector of the canonical basis of R", etc.). Let us
chose now a j in {1,2,...,n}, let us take v > 0, close to 0 and let us
also take

in formula (1.9). We get

limf(ala A2y ..., 51, Qj + Yy A1y ey an)_f(a)_,}/)\]
v—0 ol

=0.

Since this limit exists, the partial derivative with respect to j exists and,
from this last formula we get that a%(a) = \;, for any j € {1,2,...,n}.
Hence,

af

_of
= 0, (a)h1 + O (a)h2 +...+ or,, (a)hn

and the first part of the statement is completely proved.
Let us now assume that f is of class C! on a ball B(a,r),r > 0.
Let us take the following linear mapping 7" : R” — R:
_of of

0
T(hl,hQ, ,hn) = 8—1:1(8.)}74 + a—m(a)hg + ...+ ag;f

Let us prove that this 7" is indeed the differential of f at a. To be easier,
let us also assume that n = 2. Then, we want to prove that

15) g Lt Pt hy) = flarap) = T(h, o)
B a

T(hy, hay ..., hy)

(a)hy,.

=0.

Let us write:

flar + hy, a0 + he) — f(a1,a2) = f(ar + hi,a2 + ha) — f(ay, as + he)

(1.16) +f(a1,az + he) — f(a1,a2).
Now, let us consider the function
@1(t) = f(t, a2 + ha),t € [a1,a1 + My]T

and let us apply to it Lagrange’s formula:

0
(1.17)  f(ay + hi,a9 + ha) — f(ar,as + ha) = an(Cl;GQ + hs) - hy,
1

where ¢; € [ay, a;+hi]E. Let us do the same for f(ay, as+ha)— f(as, as)
by considering the function

©y(t) = fla1,t),t € [az, az + ho] ™.
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We get

(1.18) flar, a2 + hy) — f(ay,a2) = %(ala c2) - ho,

where ¢y € [ag, ag+hs)*. Let us come back in (1.16) with the expressions
of (1.17) and (1.18). So,

f(a1 + hl, Q9 + hg) — f((ll, ag) — T(hl, hz)

(1.19)
- R O I

Since the function f is of class C* in a small neighborhood of a =
(a1, as), one has that:

— 0,

0 0
‘a—wfl(cb% + hy) — 8—51(@1,012)

when h — 0ie. h; — 0 and hy — 0 and
of

a_xZ(abCZ) - 8—332(@1,@2)

— 0,

when h — 0. Since
[hal  |hal

[T Y
one has that the limit in (1.15) is zero (do this slowly, step by step!).
Hence, f is differentiable at a and its differential has the usual form:

0 0
df (a) = a—i(a)dxl + 8—52(51)(11’2.
For an arbitrary n the proof is similar, but the writing is more compli-
cated. 0

This last theorem is very useful in computations. For instance, let
f : R® — R be defined by

f(z,y,2) =In(1 + 2% +y* + 2%).
All the partial derivatives

of 2x of 493
Or 14224944280y 14 a2+ yt4 26

and

of 62°
0z 14+ a2+yt+4 26
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exist and are continuous on the whole R3, in particular around the
point (1,—1,2). Applying the last theorem (see Theorem 67) we see
that f is differentiable at (1, —1,2) and

df(1,-1,2) = %(1, —1,2)dz + g—i(l, —1,2)dy + g—]zc(l, —1,2)dz =
= de — idy @dz

Recall a basic fact: df (1, —1,2) is NOT a number, but a linear mapping
from R3 to R. For instance,

df(1,—-1,2)(3,—4,0) =

2 4 192
2 4 192 22
= — 3 —_ — —4 _ = —.
67 67 (=4 + 67 67

This last one is a real number because df (1, —1,2) : R® — R is a linear
mapping.

We want now to extend the notion of differentiability from scalar
functions of n variables to vector functions.

DEFINITION 27. Let f: D — R™ be a vector function with its com-
ponents (f1, fa, ..., fm), defined on an open subset D of R™ with values
in R™. We say that f is differentiable at a € D if all its components
f1, fo, oy fm are differentiable at a like scalar functions. Moreover, if
h = (hy, ha, ..., hy) is a vector in R"™ and if

dfz(a) (h) :ailhl + aighg + ...+ CLmhn,
where

0 Oh o Of
ay = p (a),a; = a@(a),...,am— axn(a)’

then the matrix

Ja,f = (aij = g_a{;(a))a

with m rows and n columns is called the Jacobi (or jacobian) matriz of
f ata. The linear mapping T : R™ — R™ defined by the jacobian matrix
Jat (with respect to the canonical bases of R" and R™ respectively) is
called the differential of £ at a. We write T = df(a). The determinant
| Jag| of Jag, in the particular case n = m, is said to be the jacobian of
f at a.
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For instance,

f:D—-R*D={(r,y,2) €ER*:2>0,y>0,2> 0},

defined by
1
f(z,y,2) = (—,a:yz)
Tyz

is differentiable at any point a =(a, b, ¢) of D because its components
1
filz,y,2) = o
and
f2($7 Y, Z) = TYz
have this last property (why?). Since
1 1 1
d = ———dr — —dy — ——d
f1(a) 2be " abe T a2’
and
dfz(a) = bc - dz + ac- dy + ab - dz,

the jacobian matrix of f at a is the 2 x 3 matrix
1 1 1
" a%bc ab?c  abc? |
be ac ab
For instance, if a = 1,0 = 1 and ¢ = —2, we get the numerical matrix
1 1 1
2 2 T4
-2 -2 1)

Now, if we want to compute the value of df (1,1, —2) : R® — R? at the
point (3,4, —5), from Linear Algebra or from the remark 26, we get

3
2 o3 )[4 )o(2reti) (%
-2 =2 1 )|, 685 ~19)"

S0 df(L 17 2)(3747 _5) = (%7 _19>

AN

REMARK 28. One can prove that f : D — R™ is differentiable at a
point a €D C R™ if and only if there is a linear mapping T : R* — R™
which depends on a such that the following limit exists and is equal to
zero:

. |f(a+h) —f(a) - T(h)]

(1.20) lim

=0.
h—0 [l
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We recall that

m

If(a+h) —f(a) - TW)| =, | > [fila+h) - fi(a) - T(a)]"

i=1
and everything reduces to the scalar component functions, for which we

know this result.
This above statement is equivalent to say that the increment

f(a+h)—f(a)

of our vector function f at a, corresponding to the increment h of a,
can be "well" approximated by the value of the liner function T at h (do
this slowly, step by step!). The uniqueness of the above T is obvious
because its components are uniquely defined, being the differentials of
some scalar functions, the components of f.

EXERCISE 1. Let f,g: D — R™, be two differentiable functions on
D (at any point of D), where D is an open subset in R™ and let \ be
a real number. Then: f+g, f—g, fg (only for m = 1) é (only for
m =1 and g(a) # 0), XM, are also differentiable on D and
a)
d(f + g)(a) =df (a)+dg(a);
b)
d(f — g)(a) =df(a)—dg(a);

d(fg)(a) = g(a)-df (a)+f(a)-dg(a);
d)
d<[) _ g(a)-df(a)—fQ(a)'dg(a);
9 9(a)
e) d(Af) = X\ - df for A € R.

In ¢) and d) f, g are only scalar functions!

2. Chain rules

Let A, B be two open subsets of R and let a be a point in A. Let
f A — B be a function defined on A with values in B such that f is
differentiable at a. Let g : B — R be a differentiable function at f(a).
Then the composed function go f : A — R is differentiable at a and

(9o f)(a) =g'(f(a)) - f'(a)
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(the simplest chain rule!). Indeed,

i 9 @) =~ g(f (@) _

r—a Tr— a

_ 9(f(x) —g(f(a) . f@)=fla) _ 0o o
= ole fo)=flo) amT a—a =g (f(a)) - f(a).

So (gof)'(a) exists and is exactly ¢'(f(a))- f'(a). In particular, if f is
invertible and f~! is differentiable at b = f(a) then, from f~!(f(z)) =
v, we got fY(B)- f/(a) = 1, ie. V() = whr, or (F 1Y (f(a) = 7.

We want now to generalize this simple chain rule to vector functions.
Let us start with a simpler case, namely, let us take a "curve" f : A —
B, f = (f1, f2y .-, fn), where A is an open subset in R and B is an open
subset in R"™. Let ¢ : B — R be a differential function at b = f(a)
and let us assume that f is differentiable at a. Let h = gof: A — R
be the composition between ¢ and f, i.e. the restriction of g to the
n-D "curve" f (to the image of f in the common language!). Then, the
following result is fundamental in applications.

THEOREM 68. (differentiation along a curve) With the above nota-
tion and hypotheses,

@1 (900 (0) = g0 - fil@) + 5 (E) - fia) +

0
At g E@) - Fi()
For n =1 we find again the above formula (go f)'(a) = ¢'(f(a)) -
f'(a).

PrRoOOF. To be easier we take the particular case n = 2 and we
assume that f and g are functions of class C!' on A and B respectively.
Whenever we write limit of something or the derivative of a function,
be sure that we implicitly prove that this limit or this derivative exists
(prove this slowly in what follows!).

In this case, h(x) = g(f1(z), fo(z)) for any x € A. So,

h’(a) = hmw — hmg(fl(l’)?fQ(l’)) — g(fl(a), f2(a)) _
(2.2) i 2U1@), (@) = 9(fi(a), o))
hmg(ﬁ(a), fo()) — g(fl(a),fg(a))‘

r—a Tr—a
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Let us consider the first limit in (2.2) and let us apply Lagrange’s
formula (see Corollary 5) for the mapping t — ¢(fi(t), fo(z)) on the
interval [a, x] (or [z,a] if x < a). We get

SR, () = g 0), o)) = 5RO ala)) - () (@ = a),

where ¢ is between a and x. Here we used our chain formula for n = 1
(where?-explain!). Coming back to the first limit in (2.2) and using the
fact that g—gfl , f1 and f, are continuous, we get:

gUi(a), fola)) = glfi0), (@) _ g o
lim ot = im 2 (f1(0). fa(e) - Fi(€) =

dg /
= 3, 1(@), f2(@) - fi(a).

We take now the second limit in (2.2) and apply Lagrange’s formula
for the mapping ¢t — ¢g(fi(a), f2(t)) on the same interval [a, z]. We get

9(f1(a), fa(2)) — 9(fi(a), f2(a)) = g—i(fl(a), fa(s)) - f5(9)) - (z — a),

where s is a number between a and x. Since ;ngv fo and f} are con-

tinuous (by our restrictive hypothesis in the present proof!), we obtain
that

9(f1(a), f2(x)) — g(f1(a), fo(a)) 99

lm ) = tim 22 (@), (o) - 4(5)
0 /
= 2L (f(a). fo(@) - fila).
2
thus our formula (2.1) is completely proved for n = 2. O

The statement of the theorem is true without these restrictions
made here, but the proof is more sophisticated.

If the curve f : R — R? is a line which passes through the point
Mo(z0, Yo, 20) and having the direction of the versor

u = (cos a, cos 3, cos )

(these cosines are usually called the directional cosines of the line), i.e.
f(t) = (xo +tcosa,yo+tcosf, 2o+ tcosy), then, the above derivative
dg

/ 0
(gof)(0) = a—xl(xm?/o, 2p) cos v + 6_52(%’ Yo, 20)) cos S+

99
+87<$0,y0720) cosy = (grad g(Mo), u)
3
(a scalar product!) is called the directional derivative of g at the
point My along the versor u.
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For instance, if u = (1,0,0), we get the partial derivative of g at
My with respect to xq, etc.

We can now immediately extend the formula (2.1) for the case of
a vector function g : B — R™, g = (g1, 92, .-, gm). Thus, for any fixed
j €{1,2,...,m}, one has
(2.3)

(9796 (@) = S2(E(0) - F1(0) + 52 8(0) fia)+ .+ 52 (8(@)-f1(a)

If we use now the matrix language, formula (2.3) becomes

(g10f)(a)

(920f)’(a)
(2.4) =
(g © £)'(a)
D9 (£(a)) 22 (f(a)) 29 (£(a)\  /fl(a)
82 (f(a)) 52 (f(a)) 22 (f(a)) | [ fila)
Qo (f(q)) 2o (f(a) . . . 2m(f(a)) f1(a)

Up to now our function f was a function of one variable ¢. Let us make
the last generalization and consider a vectorial function f of p variables
t1,t2, ..., t, defined on an open subset A of RP. So we have the following
composition: A L, B & R™. We denote by h=gof: A — R™ and
preserve the notation x = (x1, s, ..., z,) for a point (vector!) in R™.
Thus,

f(tlatQa '-'7tp) = (fl(tlat27 "'7tp)7f2(t17t27 "'atp)7 tery fn(t17t27 7tp))

and

g(xy, xa, ..., xp) = (g1(x1, T2y ooy Tp)y oony G (X1, T2y oy ).

Let now a be a fixed point of A, a = (a4, as,...,a,) and b = f(a). We
assume that f and g are differentiable at a and at b respectively.

THEOREM 69. (chain rule theorem) With these notation and hy-
potheses, the composed function h = gof s differentiable at a and
one has the following relation between the corresponding jacobian ma-
trices :

(25) Ja,gof = Jb,g : Ja,f~
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This is the most sophisticated chain rule. Moreover, in this case, Linear
Algebra says that

(2.6) d(g o f)(a) =dg(b)odf(a),

this last composition being the composition between the corresponding
linear mappings.

PrOOF. Formula (2.6) is a direct consequence of formula (2.5) and
the basic result of Linear Algebra which says that there is an isomorphic
bijection between the m x n matrices and the linear mapping 7" : R” —
R™. This bijection carries the product between two matrices into the
composition of the corresponding linear mappings. Hence, it remains
us to prove formula (2.5). We shall see that this formula is a pure
generalization of formula (2.4). Indeed, let us fix i € {1,2,...,p} and
let us consider the mapping

W A — B,p® = (o1, o . o)
defined by
t ~ flay, a9, ..., ai-1,t, a1, .., Gp).
It is defined on the i-th projection A; = pr;(A) of A (which is again

open-why?). Let us denote h®) = g o o and let us write formula (2.4)
for it:

(910 0") (a:)

(920 0" (a:)
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[@gi)} / (a;)
[SDS)} / (a;)

We now see that oh
(57097 (@) = 57 @)
for any j = 1,2,...,m and i = 1,2,...,p. Here h = (hq, ho, ..., h,,) are
the components of the composed function h = go f.
Another remark is that

22 (0(a)) = 52 (8(a)

N7/
and [goy)} (a;) = g—g(a). But, if we substitute all of these in formula

(2.7), we get exactly formula (2.5) from the statement of the theorem.
Ul

REMARK 29. It is possible to prove the chain rule theorem, namely
the formula (2.6), in a not so long "upgrading” way. But that proof (see
[Nik]|, or [Pal]) is more abstract, more elaborated and not so natural.
Our proof here is not so general, but it follows the natural historical
way, from a "simpler” to a "more complicated” case.

Let us take an usual situation and let us apply formula (2.5) to it.
Let A and B be two open subsets of R? and let (z,y) ~ (u(x,y),v(z,y))
be a differentiable (at any point of A) vector function defined on A
with values in B. Let f(u,v) be a differentiable function defined on
B with values in R. Here we also use u and v for the coordinates of
a free vector in B C R% The only connection between u,v and the
functions of two variables u(x,y) and v(x,y) respectively, is that the
variable u and v are substituted with two functions u(z,y) and v(zx,y)
respectively, in variables z and y. For instance, u = x + y, v = xy and
f(z +y,xy). This is a new function in x and y. Here, u(z,y) =z +y
and v(z,y) = zy. This abuse of notation is still working for more then
200 years and it did not caused any damage in science. Let h(z,y) =
f(u(z,y),v(z,y)) be the composition between f and the first function
(x,y) — (u(z,y),v(x,y)). This new function is also denoted by f, i.e.
the notation f(x,y) = f(u(z,y),v(x,y)) produce no confusion for an
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working mathematician (another abuse, which is not indicated to be
used by a beginner!). The function A is also differentiable on A and

(5:(a:0) 5y(a,b)) =

ou
of ula a of a via . 9z
(5u(u(a,b), v(a,0)) - 5y (ula,b),v(a; 1)) (%w) % (a,b)

0y
Let us normally write this formula:
(2.8)
oh of du of v
(a,) = S (u(a,b),v(e,8) S (@, D) + S (ula,b), o0, ) 5 (@, D),
oh af ou af v

Gy (@:0) = G (ula.).v(a.0) 5 (0.0) + 5 (ula.b). o(0.5) 5 (0.0)

v )

How do we recall these useful formulas? For this, write again
hMz,y) = f(u(z,y),v(z,y)). To find 8h, we look at the variables u
and v of f and observe where x is. If x appears in u = u(x,y), we take
the partial derivative of f w.r.t. w and multiply it by the partial deriv-
ative of u w.r.t. x. Here is a "chain": f — u — x. So we get 8£ g’;
If x also appears in v = v(z,y), we consider the chain f — v — z and
obtain % . %. Since x appears both (if it is the case!) in u and in v,

we must superpose both "effects" (add them!) and finally obtain:

oh Of Ou af v
(2.9) B = A T A A

The corresponding points at which we compute these partial derivatives
are easy to be find. If we change x with y in (2.9) we get the second
essential formula of (2.8):

oh Of Ou Of Ov
2.1 =L L
(2.10) Oy Ou Oy + ov Oy

EXAMPLE 14. In the Cartesian plane {O;1,j}, we consider a heat-
ing source in the origin O(0,0). The temperature f(x,y) at the point
M (z,y) verifies the following equation (a partial differential equation
of order 1— a PDE-1):

af 90f
8:6 8y
It says that at any point M (x,

= 0.

y) the "gradient" vector
_(9f of

gradf = (895 (z,y), o (aﬁ,y))



160 7. PARTIAL DERIVATIVES. DIFFERENTIABILITY.

of the temperature is perpendicular to the normal vector of the position
vector OM = xi+yj, at the point M(x,y). Hence, gradf is colinear to

OM. Let us change the variables x and y with v = x and v = 2 + 9>
The new function h(u,v) is connected to f by the rule:

flz,y) = bz, 2 + 7).

So,
of _0hou_ ohov _oh _, oh
or  Oudr Ovdr Ou xav
and
df Ohou 0OhOv oh
— =+ —= =2y—.
Jdy Oudy 0Ovdy ov
Hence,

C_Of of _ oh ok oh_ oh
~Yor x@y_y(?u o “You T Vou

Hence, whenever y # 0, % = 0 is the equation in the new function
h. So h is a function of v = x* + y*, the square of the distance up to
origin. Thus, the temperature is constant at all the points which are of
the same circle of radius r > 0. We say that the level curves (f(z,y) =
constant) of the temperature are all the concentric circles with center

at O.

We must apply the "spirit" of the formulas (2.5) or (2.10), not the
formulas themselves. For instance, let

f(z,y,2) = (sin(a? + ¢?), cos(22%), 2% + y* + 27).

Then,
of of
5, = (2w cos(a® +47),0,22), oy~ (% cos(z® +4°),0,2y)
and
of
5 = (0, —4zsin(22?), 22).
If we want to compute %(1, —1,7) we simply put z = 1,y = —1 and
z = 7 in the expression of %. So,
of

%(1, —1,7) = (2c0s2,0,2).

Here cos 2 means the cosinus of two radians.
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EXAMPLE 15. Let M (x(t),y(t), 2(t)), t is time, t € (a,b), a > 0, be
a moving point of mass m = 5K g on the curve
I':z= x<t)7y = y(t)vz = Z(t)
Let

and
w(t) = (2"(1),y"(t), 2" (1))

be the wvelocity and the acceleration respectively. We assume that the
kinetic energy

does not depend on time, i.e. T'(t) = 0. Let us use the chain rule to
make the computation in this last equality:

T'(t) = 5{[«' O] [=" ()] + [y O] [y" (O] + 'O " (0]} = 0,

i.e. the scalar (inner) product between v and w is equal to zero. In this
case, the acceleration is perpendicular on the velocity. This restriction
is very useful in physical considerations.

DEFINITION 28. A subset K of R" is said to be a conic subset if
for any x in K and any t € R, one has that tx € K (see Fig.7.1).

o
K is the whole IR if n =1

n=2 a conic body, n=3
Fig. 7.1

For instance,
K=R" K ={(z,y) € R*: y = ma},
where m is a fixed parameter (real number)},
K ={(z,y,2) € R®: 2% +¢* = 2%}

are conic subsets (prove it!).
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DEFINITION 29. Let f : K — R, be a function defined on a conic
subset K C R™ with values in R and let o be a fixed real number. We
say that f is homogeneous of degree o if

(2.11) ftxy, tag, ... txy,) =t f(x1, Ta, ..., Tp),

for any x = (1,29, ...,x,) in K and for any t in R,.

For instance, the distance to origin function

d(z,y,z) = /2?2 +y>+ 22

is a homogeneous function of degree 1. Indeed,

d(tz, ty, tz) = /(t2)? + (ty)? + (t2)2 = t\/22 + 92 + 22 = td(7, 9, 2).

L. Euler introduced these functions when he studied the mechanics
of a moving point in plane. For a = 0, we simply call these functions
homogeneous. Euler discovered a very useful property for homogeneous
functions. In the following we consider a generalization of the Euler’s
result.

THEOREM 70. (Euler formula for homogeneous functions) Let K
be a conic open subset in R™ and let f be a function of class C* on K,
which is homogeneous of degree o. Then,

(2.12) xlg—xfl(x) + o= (x) + ... + x,

PRrROOF. By the definition of a homogeneous function (Definition
29), we may look at the formula (2.11) and differentiate everything
w.r.t. t (here we use the chain rule...explain slowly this...)

0 0 0 _
a:la—jl(tx) + l’ga—l'i(tX) + ...+ xna—xj;(tx) — at* ! f(x).
We now make ¢t = 1 in this last formula and obtain Euler formula
(2.12). O

If « = 0, i.e. if our function is homogeneous, Euler formula can be
written as

(2.13) (x, grad f(x)) = 0.

Here (,) is the (inner) scalar product in R”. This last formula (2.13)
says that at any point x of the trajectory of a moving point in R",
the gradient (a generalization of the velocity for n variables!) of f is
perpendicular on the position vector x. For instance, we know that the
temperature T'(x,y) in any point (z,y) of the plane R? is the same for
all the points of an arbitrary line y = max, where m runs freely on R.
This means (in mathematical language) that T'(tz,ty) = T(x,y) for



3. PROBLEMS 163

any (r,y) € R* and any ¢ in R, (why?). So, the temperature is a
homogeneous function and we can write the Euler’s formula for oo = 0,
ie. (x,gradT(x)) =0, where x = (z,y) and
oT aT
med (o) = (G000, 5 (o)
Finally we get the following PDE of order 1 :
aT or
el il -0
25— (2,9) v, (z,y) =0,

i.e. in any point the gradient of the temperature is perpendicular on
the position vector (z,y).

In exercises, one usually asks to verify Euler’s formula for a given
homogeneous function f. For instance, let us verify Euler’s formula for
flz,y,2) = xyz + 323 + y*. We do not know yet if the function f
is homogeneous and, if it is so, we also do not know the homogeneity
degree of it. Let us put instead of z, y and z, tx, ty, and tz respectively:

f(tx, ty, tz) = t3(xyz + 32 + y3) = t3f(x, Y, 2).

Thus, our function is homogeneous of degree 3. So we have to verify
the following formula:

0 0 0
(2.14) a—f+ya—f+za—£ = 3f.

Indeed, af = yz + 9% 8f = 7z + 3y? and af = zy. Substituting in
(2.14), we get

r(yz + 92%) + y(xz + 3y?) + zoy = 3(zyz + 32° + y*) = 3f.

Hence, we just verified Euler’s formula for our particular function.

3. Problems

1. Compute the following partial derivatives:

)
2
Flo) = Va1, 0, 2 L),

Fla.y) = yfsin® o+ sinty; 2L (7 o), a—§<g,g>.

o) =Inte+ 97 - D 0. 520,

b)
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d)
92
_ f OO
) = wexplay)s 5= (1,0), 551.0), ZE01.0)
e)
of af 0 f
— Iny I —J
f('r’y) Y (x>07y>0)78x(6’6)7ay(€7€)7axay(e7€)'
f)
fl@,y,2) =2 (x >0,y > 0), grad f(1,1,1).
g)
B Pf D f ?f
f(z,y) —arctanmy,a p 5(1,1), 81:83;2(1’1) e 3(1 1).
h)
x, O0*f
flz,y) = arcsm( ), ayax(l 2).
2. Prove that the following functlons verify the indicated equations:
a)
50 0
2(x,y) = zy®(a® — y*); 2y 8—Z+ yaz (2% +y%)2.
b)
9 182 19z _ _Z
c)
_ arctan ¥ A e Pu | 0% _
u(z,y) = arctanx,Au = o + o 0.
d)

Pu 0%

u(z,t) = ®(x — at) + Y(z + at); 2 Y e =0
(the wave equation).
e)
5072 0z 5022

z(x,y):xCI)( )—i—\If( );x 82+2 yaa +y8y = 0.

f)
1 o O 2 2
w(z,y, 2) = Aud:f8“+a“+a“:o.

Vit 4 2 + 22 ox?  0y* 072

Hint: Let us denote r = /22 + y% + z2. Then, —“ = —r—2 . %, etc.
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3. Show that the Euler’s formula is true for the following homoge-
neous functions:

a) f(x,y) == %;

b)
f(@,9,2) = VT + i+ V7
f,9,2) = Va2 + 4 27,

d) f(z,y,2) = Jexp(%).
4. Prove that the following function

Y for (z, 0,0
Flx,y) = e (z,y) # (0,0)
0, ifr=0andy=0

c)

is continuous, has partial derivatives, but it is not differentiable at (0, 0)
(Hint: —2_ < Jy|, so

N

xﬂl(i)glﬂo\/% —0, %(0,0) - %(0,0) ~0.
If it was differentiable at (0,0) one has that
(B1) (o)~ F(0,0) = 22 (0,0} + g—i(o, 0)hs + w(hy, ha),
where w(0,0) = 0, w is continuous at (0,0) and
fm 8y

z—0,y—0 /.TQ + y2_ =
But, from (3.1), one has that w(z,y) = \/% and so one would have
@24y

that
. xry
lim
2—0,y—0x2 + 12
However, this last limit does not exist at allll).

=0.







CHAPTER 8

Taylor’s formula for several variables.

1. Higher partial derivatives. Differentials of order k.

Let % be the partial derivative with respect to = of a function
f: A — R, where A is an open subset in R%. (z,y) ~ %(z,y) is
a new function of two variables x and y. If this new function has a

partial derivative %(gf )(a,b) w.r.t. x, at a point (a,b), we denote it

by 3 e f(a b) and say " d two f over d = two at (a, b)". If the same
functlon (z,y) ~ %(m,y) has a partie;l derivative %(%)(a,b) w.r.t.
y, at a point (a,b), we write it as ;y—a];(a,b) and call it the mixed
derivative of f at (a,b). What do we mean by %BJ;Q (say "d three f

over d x d y two"; pay attention to the fact that 3 from 9? is equal to
the sum between 1 and 2, from dz and dy? respectively). In general,
let f: A — R, f(x1,29,...,7,) be a function of n variables, defined
on an open subset A of R”, such that it is k,-times differentiable with
M—Zf exists on A. If this new function

n

respect to z,, i.e.

o f

X = (X1, T2, ..., Tp) ~> ke (x)

is k,,_1-times differentiable with respect to z,_1, the new obtained func-

tion
aknfl akn f
X ~w—— | — | (X
dxkn (39353") (%)
ak:n+k:

—nalf And so on. We finally obtain the function

n—1 n

is denoted by
olnthn 1+ +ky g
oxk1 . ozt oxlkn
tor can be changed, but then we may obtain another new function.
For instance, if f(z,y,2) = z%y32°, then % can be successively
computed. First of all we compute

. The order of variables x1, xo, ..., x, in the denomina-
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Then we compute

dg 0 f
g2 = 8_901 i 20233 22,
Now we compute
- 092 o (73f _ 2 3.4
B= s © 8x28z—60x‘y2'
Then we consider
dg3 o'f 2,2 4
= — =—"7"7-—=180 .
g4 dy  O0yodx20z vy
Finally,
5
991 O _ 56002y

95 = dy - 0y20x20z
And this last one is our final result.
oFnthn_1t 4k . . .
is said to be the partial k = k, + k,—1 + ... + k1

azlfl 3:1:]::1711 dxkn

derivative of f, k,-times w.r.t. x,, k,_i-times w.r.t. z,_1,..., and k-

times w.r.t. ;. The mapping f ~~ % is also denoted by D, f. This
J

D, is called the partial differential operator w.r.t. the variable x;.

So, f ~~ 8:225;]_ is the composition D, o D, applied to f. In general, a
mapping defined on a set of functions is called not a function more, but
an operator. We also put D,,., instead of D, o D,,. Such an operator is
called a differential operator. In general, the operators D,, and D,; do

not commute if ¢ # j. This means that there are examples of functions

f and points a for which a:??afm -(a) af%afm (a). Following [Pal], p. 145,

we consider
ryl, if (2,y) # (0,0)
(1.1) flz,y) =
0, ifx=0,y=0.
It is not difficult to that 2L =— 2 =
prove that 7-5-(0,0) 1, but 575-(0,0) =1 (do

it step by step and explain everything!). Hence, in this case we cannot
commute the order of derivation!

Let A be an open subset of R™ and let f : A — R be a function of
n variable defined on A. We say that f is of class C? on A if all the
partial derivatives of order two, %(a), exist and are continuous, at
any point a of A. The following theorem gives us a sufficient condition
under which the change of order of derivation has no influence on the
final result.
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THEOREM T71. (Schwarz’ Theorem) Let f : A — R be a function of
class C? on A. Then

)= L qa)
3@0% n 81’38.731
for any point a of A and for any pair (i,j). This means that for such
a function (of class C? on A) we can commute the order of derivation.

PROOF. One can reduce everything to the two variables case (why?).
Moreover, we can take an open ball (disc) B(a,r),r > 0, a =(ay, az), in-
cluded in A and consider f defined on this ball B(a,r). Let {(x,,y,)}
be a sequence of points in B(a,r) which converges to a. For a fixed
natural number n let us consider the segments [ay,x,] and [az,y,] in
B(a,r). Let
(1.2) R(xn,yn) = f(@n,yn) — [, a2) — flar,yn) + flar, a2)
and let g(t) = f(t,yn) — f(t,a2), t € [a1,x,]. Let us apply Lagrange’s
theorem (see Corollary 5) to function g on [ay, x| :

9(an) = glar) = g'(cn) - (20 — a1),
where ¢, € [a1, z,]|. But

9(xn) — gla1) = R(wn, yn)

0 0
g'(cn) = a_i(cmyn) - 8_J;(Cm az).

and

So,

0 0
R(In, yn) = a_:J;(Cna yn) - a_£<cna CL2) (xn - al)‘

Now we apply again Lagrange’s theorem to the function

of

u— —=—(cp, u),

ox

where u € [ag, y,]. Hence,

82
13 Rlww) =50

where d,, € [az,y,]. Now we take a new function

h<t> - f(xn)t) - f(aht)a
t € [az,y,) and observe that

R(zpn, yn) = h(yn) — h(as).
Let us apply Lagrange’s theorem to h on [as, y,] :

(1.4) R(zn,yn) = N (en) - (yn — az),

(Cnsdp) - (20 — a1)(yn — az2),
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where e,, € [az,y,]. But h'(e,) = gf(xn,en) gi(al,en) so, applying

again Lagrange’s theorem to the functlon

v — g(@ €n)
ay ) njls
where v € [ay, z,], we get:
/ *f
h (en) — M(sna en) ' (xn - @1>7
where s, € [a1,x,]. Hence,
82
(15) R(fL‘na yn) 8$g ( Sny en) ’ (mn - al)(yn - a2)'
Comparing the formulas (1.3) and (1.5), we get:
0 f 0 f

(1.6) g0 (cn,dy) = 920y (Sn, €n)

o2 0%f 02 f . .
Since the functions g and 77 are continuous on A, since {c, }, {sn} —

a; and since {d,}, {en} — ay (why?), from formula (1.6), we get:

0*f o*f
Dy ———(a1,az) = D0y ~—— (a1, az).
Hence, the proof of the theorem is complete. U
In (1.1)
5’2f 2f
0,0) =—-1 =1
because 3‘9 8f is not continuous at (0,0). Indeed,
82 z°—y°—9x“y* —15x :
8y8fx (n,9) = { = i (2,) #(0,0)

-1, ifx =0,y =0.
and this last function has no limit at (0, 0). This is because, if we take
an arbitrary m and consider (z,y) with y = mx, we get that
lim 2% — % — 922yt — 15242 _1- 25mS
o0, y=ma (22 + y2)3 (1+m2)?
which is dependent on m. So, the limit at (0, 0) is not a unique number.

It depends on the direction on which we come to (0,0). All of these
happen because the function

1’6 _ y6 _ 9x2y4 _ 1533'42/2
(IQ + y2)3
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is homogeneous of degree 0 (make clear this for yourself!)

In engineering, the case of functions of class C? is mostly frequent,
thus we assume in the following that the order of derivation does not
matter. For instance, f(z,y) = 423y* + 222y is of class C*° on R?
(why?). In particular, it is of class C? because C* means that f has
partial derivatives of any order (so these derivatives are continuous-
why?). Schwarz’ theorem says that

92 f 9 f
(aa b) =
0x 0y Oyox
for any point (a,b) in R2. Indeed,

0 f 0 of 0 5 9 B
axay(a,b) = %(a—y)(a, b) = %(81' Yy + 2x ) ’(a,b)*

(a,b)

= 242%y + 4z |(a,p)= 24a%b + 4a
and
o0 f o ,0f

0
)(a,b) = a—y(129172y2 + 4zY) |(ap)=
= 2427y + 42 |(ap)= 240°b + 4a.

Sometimes is more convenient to change the order of derivation.
For instance, f(x,y) = yln(z? + y? + 1) is of class C*™ on R? (why?).

In order to compute % it is easier to compute % i.e. to compute
firstly % = xzizg —» and secondly
0 ( 21y ) C2e(? 4yt 4 1) -2y - 22y 22 — 2y’ 4 20
Oy \2* +y* +1 (22 +y% +1)? (z2+y2+1)*
then to compute firstly
of 2y°
— =In@*+y*+1)+ —F—
dy ( vl 2?2+ y?2+1
and secondly
0 29/
— |1In(z2 241 -9
Oz {n@ YUt
(why?-count the number of operations and their difficulties in each

casel).
The following notion will be very helpful in the applications of the
differential calculus.
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DEFINITION 30. Let A be an open subset in R™ and let
a = (ay,as, ...,a,) be a fived point (vector) in A. Let f be a function
of class C? on A, f: A — R. The symmetric matric

O*f . .
Hio = (si5) = 8m-8x-(a) i=1,2,...n;7=12....n
iO%;j

is called the Hessian matriz of f at a. The quadratic form d?f(a) de-
fined on R™, relative to its canonical basis

{e; =(1,0,0,...,0),eo = (0,1,0,...,0),...,e, = (0,0,0,...0,1) }

(see a Linear Algebra course!) with values in R,

(1.7) d?f(a)(hi, ha, ..., hy) = ZZax o) (a)hsh;.

1s called the second differential of f at a. Its matrix is exactly the
Hessian matriz of f at a. For instance, if f is a function of 2 vari-
ables, ©1 = x, ©o =y and a = (a,b), then formula (1.7) becomes

>f 0% f o*f
Ox? 0x0y oy?
If we introduce the projection functions dz;(hy, hs, ..., h,) = h; for i =
1,2, ...,n, we get a more compact formula for (1.7)

n n 82
(1.9) d*f(a) = ZZ o, 8ij (a)da,dz;.

(1.8) d*f(a,b)(hi, hy) = —>(a,b)hi +2 (a,b)hihy + == (a, b)h3.

Here, dx;dx; is the product between the two linear mappings dx;, dx;
R" — R, z.e.

where h = (hy, ha, ..., hy,). For two variables we get

0% f 0*f 0% f

1.1 2 = — 2 2 2
(1.10) d*f(a,b) 9 (a,b)dz” + 900y (a,b)dzdy + 3y 5 (a,b)dy”,
where dx? is dx - dx and not d(z*) which is equal to 2xdx (why?). The
same for dy?... . The analogous formula for a function of 3 variables
f@,y,2) is

2 0*f o f *f

d*f(a,b,c) = o —(a,b,c)dx® +W(a b, ¢)dy® +a—(a b, c)dz*+

o0 f 0*f 0 f

1.11) +2——(a, b, ¢)dxdy+2——=(a, b, c)drdz+2 b, ¢)dydz.
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For instance, let us compute the second differential for
f(z,y, 2) = 22° + 3w’z + 2°
at the point (—1,2,3). First of all we compute

0? 0 0
a—];(a:,y, z) = ax(af)(x,y, z) = %(ze + 3y%2) = 12u.

So, 2 o 2( 1,2,3) = —12. It is easy to find
o f o f
8y(123) 1882(123)—18,
0*f 2f 2f
—-1,2,3) = —-1,2,3) =12, —-1,2,3) = —12.
Now we use (1.11) and ﬁnd
(1.12)

d?f(—1,2,3) = —12da* — 18dy* + 18d2* + T2dxdy + 24dxdz — 24dydz,

i.e. we have a quadratic form in 3 variables dx, dy, dz. Clearer, this last
quadratic form is

g(X,Y,Z) = —12X* — 18Y? + 1822 + T2XY + 24X 7 — 24Y 7.

Now, if we substitute X with dz, Y with dy and Z with dz, we get
(1.12).
Let us compute the value of this last function

d?f(—-1,2,3): R* = R
at the point (2, —3, —4). Since
dr*(2, -3, —4) = 22 = 4,dy*(2, -3, —4) = (-3)* =9,
dz*(2,—3,—4) = (—4)? = 16, dzdy(2, =3, —4) = 2- (=3) = —6,
drdz(2,-3,—4) =2 (—4) = =8,dydz(2,—-3,—4) = (—3)(—4) = 12,
we finally obtain

d?f(—1,2,3)(2,-3,—4) = —12-4 - 18 -9+ 18-16 + 72 (—6)+
+24-(—8)—24-12=—12-4+7-18 +24(—18 — 8 — 12)

= —12-447-18424-(—38) = —12(4+76)+7-18 = 6(—139) = —834.

Now, let us look carefully at the formulas (1.13), (1.7) and (1.9).
We introduce some symbolic operations in order to find a unitary and
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general formula. We called % a differential operator. By definition,

we multiply two such operators 6— and 5 - by a simple composition:

o 0 ay O (9 0

8_5173‘ . 8%1 - 8%81:2 - 8xj ° 8371

For instance,

o 0 0, 0 9 3 0 9 9
- + = —(1 =1 .
<8x 8y> (33: 5xy )= ax(ay (32 52y°)) 8a:< 5zy°) %Y

Moreover,

0 0
dfta.b) = 5 @by + 5

can be written as an operator "on f" at an arbitrary point (which will
not appear)

a,b)dr + ==(a,b)dy

0 )
d = 5g0o + 5.4,

This is also called a differential operator. How do we multiply two such

operators?
0 0 0 0
<a—$da: + 8_ydy) (azdz + 8_wdw> =
dgf 82 2 82 2
= 52da drdz + G99 dydz + ——— 20w ——dxdw + By dydw.

This means that whenever we multiply operators we just compose
them and whenever we multiply linear mappings we just multiply them
as functions. These last are always coefficients of differential operators.
For instance

0 0?

(1.13) 2d:}c—f——d 2——d:v +2 ”
' ar " T ay™) T ox? 910y

8dy

dxdy + By?

Hence,
2
£50,0) = (grde+ 5 dy) (e

with this last notation. We observe that in (1.13) one has a binomial
formula of the type (a + b)? = a® + 2ab + b* (with the above indicated
multiplication between differential operators). If we multiply again by
8 sodr + o dy the both sides in (1.13) we easily get

o o \* o # o, o , O
(%d$+8_ydy) mdm +3a 2aydx dy+3axay2dxdy +8 de ,

i.e. the analogous formula of (a + b)* = a® + 3a*b + 3ab® + °.
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DEFINITION 31. (the differential of order k) In general, if a func-
tion f of n variables, f : A — R, is of class C* on A, i.e. it has all
partial differentials of the type

o f
) k1 9,.k2 k <a>
27 0xy?...0xkn
(where k is a fixed natural number, k > 0 and kq, ko, ..., k,, are natural

numbers such that k = ki + ko + ... + k, and 0 < ky, ks, ...k, <n), at
any point a of A, the k-th differential of f at a is by definition

0 0 am&amw

1.14 d =(=—d d

( ) f(a) (81$1+a2$2+ +8In
For instance, if n = 2, 1 = z, x5 = y and a =(a,b), then this last

formula becomes

(1.15)

0 o \" LNV .
d* f(a,b) = <%dx+a—ydy) (f)(a,b) = Z( )axk fa ————(a,b)da""dy’,

1=0

where (’f) = % is the combination of k£ objects taken i. The analogy

with the binomial formula

k
k o
k k—i11
(a+0b)" = Z(i)a b
=0
is now clear.
Let us compute

20,0 = (e dy) (10

for f(x,y) = 2° + zy*. For k = 4 formula (1.15) becomes
9 ! o' f
(8_x x+—dy) (f)(1,-1) = ( )8 (1, —1)dz"+
4 54f 3 4 a4f 2 7 2

(4) ai;fsa —1)dzdy® + ( );{:(1 —1)dy".

Now, everything reduces to the computation of the mixed partial
derivatives.

a'f
a 4

o*f
" 9230y

o' f

7 1,-1)=0 (1,-1) =0,
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o*f
0x0y3

Hence,

o*f
0x0y3

orf
" Oyt

1) =, (1,-1) = -24, 27 (1,-1) = 24.

4
(agdx + agdy> (f)(1,—1) = 120dx* — 96dxdy® + 24dy*.

If we want to compute the value of this last differential at (2,3) for
instance, we obtain
12024 —96-2-3%+24 - 3* = —1320.
Let us now compute
) ) o \?
d’f(1,1,0) = | =—dz + =—dy + —d 1,1,0

for f(x,y, 2) = 22 +y*+x2+yz. To be easier, let us recall the elementary
algebraic formula:

(a+b+c)* =a®+ b+ ¢ + 2ab + 2ac + 2be.
Using the above multiplicity between operators, etc., we get
*f *f
e 2(1,1,O)d +W(1 1,0)dy*+
*f >*f
0x0y 0x0z

d*f(1,1,0) =

0*f
52 (1 1,0)d=" 42
0*f
0y0z
If one wants to compute d?f(1,1,0)(3,4,5) we get

d?£(1,1,0)(3,4,5) =2-3%+2-44+2-3-5+2-4-5 = 120.

(1,1,0)dzdy + 2—=—(1,1,0)dzdz+

2—2(1,1,0)dydz = 2dz® + 2dy* + 2dxdz + 2dydz.

Since

m!
(al + (05} + ...+ G/n)m = Z malfla’;Q...aﬁn,

ki1i+ko+...+kn :m,ki eN

one has the following definition of the m-th differential of f at a point
acA:

0 0 0 "

= E ! rf dah ke | dghn
- 1 %2 - n
kilks!.. k! OxF1 92k2 k
bt byt ey e L2 Oy Oy? . O
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where in these last two sums ki, ko, ..., k,, take all the natural values
under the restriction k1 + ko + ... + k, = m

2. Chain rules in two variables

During the mathematical modeling process of the physical phenom-
ena, usually one must find functions z = z(x, y) which verify an equality
of the following form (a partial differential equation of order 2, i.e. a
PDE):

A1) 5 0) + 2B )5 (09) + Clag) 5 (0,0)
@) B (s, ). 5w =0

where A, B, C, E are continuous functions of the indicated free vari-
ables. Relative to £ we must add that it is a continuous function
E(X,)Y,Z UV) of 5 free Variables where instead of XY, Z,U,V, we
put z,y, 2(z,y), Z(z,y) and & 5z, y) respectively. In order to find all
the functions z(x,y) of class 02 on a fixed plane domain D, which ver-
ifies (2.1) we change the "old" variables x, y with new ones v = u(z, y)
and v = v(z,y) respectively (functions of the firsts) such that some
of the new "coefficients" A, B, or C' to become zero. How do we find
these new functions u = u(z,y) and v = v(z,y) is a problem which will
be considered in another course. Our problem here is how to write the
partial derivatives,

0%z 0%z 0%z 0z 0z
@(xvy)a ax—ay(xvy)a a_y2<x>y)7 %Cp’y)’ a_y<x?y)

as functions of u and v. The transition from the "old" variables to the
"new" ones u and v are realised by a "change of variables" function
F(z,y) = (u(z,y),v(z,y)) such that F is invertible and of class C' on
its definition domain. Moreover, its inverse G = F~! is also a function
(in variables u and v) of class C' (see also the section "Change of
variables"). Let Z be the composed function z o G. Hence, z = Zo F,
or

Z(u(z,y),v(z,y)) = 2(2,y).
The chain rules formulas (2.9) and (2.10) supply us with formulas for
o (z,y) and 52(z,y) :
(2.2)

22 (00) = 5wl v( ) o)+ o (), ) 5 (),
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and
(2.3) ) )
o) = ol vl ) 5 o) + 5 ) () 5 o)

662§y(x,y). For
this, let us denote by g(x,y) and by h(z,y) the new functions of x and
y obtained in (2.3)

def 0z

g($7y) = %(u(a:,y),v(x,y))
and .
z def
Let us compute 32 ( ,y) and 2 (m y) by using the formula (2.2) with ¢
instead of z and h instead of z respectively:

Dwn) = e (Gotute o)) G+

(2.4)
% (%(U(%y)’v(x’y))) %(x’y) g FIEAGRE (w))%(ﬂf,yﬂ
a?;;u(“(x’y)w(fﬂ»y))g—Z@,y).

and
%(a:,y) 8(1 (gz( (. ), (g:,y))) %(fca?JH
2.5
(8 ) 0z v - 923 ou
o (G vt ) ) Ge0) = Gt e ) G )+

0*z ov

5 o (ule,y), v, y))8 (z,9).

Let us come back to formula (2.3) and let us differentiate it (both sides)
with respect to x. We get:

0%z dg ou 0%u
axay<$’y> o == (, y)ay(x y)+ga o (z,y)+

oh ov 0%v
%(I,y)ay(f y)+ha o (z,9).

If we take count of the formulas (2.4) and (2.5) we finally obtain:

26) ) = G ulr ) (r ) e 0) )
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0%z ou ov ou ov
0%z ov ov
+w(u(m,y),v(x,y))%(x,y)a—y(w,y)-l”
0z 0*u 0z 0*v

+%(U(]), y)? U(Ia y))al,—ay<x7 y) + %<U(ZE, y)7 U(ﬂ?, y))ax—ay(‘r? y)
We can simply rewrite this formula as:
P _ Zoudu | #3 [oudn  oud

Oxdy  Ou20xdy Oudv |0xdy Oy oz

Pzovov 0z 0*u 0z 0™
+802 Ox Oy * Ou Oxdy + Ov 0x0y’
If in this formula, we formally put z instead of y we get another useful
formula:

@) Pz _ 0%z (0u\* ) 0% Oudv L0 (o 2
’ 0x?  Ou? \ Ox Oudv Ox dxr ~ Ov? \ Oz
0z 0%u N 0z 0%v
Oudx?  Ovdx?
If here, in this last formula, we put y instead of x, we get the last useful
chain rule formula:
%z 0°7 (Ou 2+ 0z Quov 0%z (Ov 2+
oy2  Ou? \ Oy Oudv dy Oy~ dv? \ y
0z O*u N 0z 0*v
oudy?  Ovoy?

EXAMPLE 16. (vibrating string equation) Let S be a one-dimensional
elastic wire (infinite, homogeneous and perfect elastic) which vibrates
freely, without an exterior perturbing force. It is considered to lay on
the real line Ox. Let y > 0 be time and let z(x,y) be the deflection of
the string at the point M of coordinate x and at the moment y. If one
write the D’Alembert equality, which makes equal the dynamic New-
tonian force and the Hook elasticity force, we get a PDE of order 2
(the vibrating string equation):

Pz 0%
—_— = q —
0y? ox?’
where a > 0 is a constant depending on the density and on the elasticity
modulus. In order to find all the functions z = z(x,y) which verify the
equality (2.9), i.e. to solve that equation, we must change the variables
x and y with new ones u = x — ay and v = x + ay (see the Differential

(2.8)

(2.9)
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Equations course). Let us use chain formulas (2.7) and (2.8) in order
to change the variables in the equation (2.9):

9’z 0*z Lo 9%z N 0%z

0x?2  Ou? " Oudv  Ov?’

and 2 25 2 2
%: aza2—2 aZ a2+%a2'
oy?  Ou? Oudv ov?
If we substitute these expressions in (2.9) we finally get
O’z
oudv
But this last PDE of order 2 can easily be solved. From 2.10 we obtain:
2 (%) =0, i.e. & is only a function h(v). Hence,

Z(u,v) = /h(v)dv = f(v) + g(u)

(why?), where f and g are two arbitrary functions of class C* on some
open real subsets. Coming back to x and y we finally get the "general
solution” of the vibrating string equation:

2(z,y) = flz+ay) + g(z — ay).
Other examples in which we use higher chain rules (here "higher”
means 2 > 1) will appear in the section "Change of variables”.

(2.10)

3. Taylor’s formula for several variables

In Theorem 44 we obtained an approximation of a function of one
variable, of class C™*! on an e-neighborhood (a — ¢,a + ¢) of a fixed
point a, with a polynomial (the Taylor’s polynomial) of degree m (m is
a fixed natural number). We also estimated the error in this approxi-
mative process. We write again this classical and fundamental formula
and try to generalize it to the case of a function of n variables.

"(a "(a ) (n) a
(3.1) f(z) = f(a)+f1(! ) (x —a)—i—fz(! ) (x —a) +...+f n'( )(x—a)”
f(nH)(C) n+1
- (n+1)! (z—a)

where ¢ is a number between x and a. Let us write again formula (3.1)
by putting h = x —a, or x = a + h and ¢ = a + t,h, where t, € (0,1)
(t. = &%, why?):
(3.2)

f'(a)

f"(a) f™a),, , f" T (a+t.h)

hn—i—l
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It is enough to generalize this formula for a scalar function of n variables
because, if f = (f1, fa, ..., fr) is a vector function with & components,
we simply write the Taylor formula for any component, separately, i.e.
we approximate componentwisely.

Let A be an open subset of R™ and let f : A — R be a function of
class C™! on A. Let a = (ay,as, ..., a,) be a fixed point of A and let
V' = B(a,r) be an n-dimensional open ball (see its definition in Chapter
6, Section 1) with centre at a and of radius » > 0 which is contained
in A (why such thing is possible?). If a point x = (21, %2, ..., x,) is in
the ball V| the whole segment

la,x] ={z=a+t(x—a):tec[0,1]}

is contained in V' (why?-in general, a ball is a convex subset...prove
it!). A subset C' of R™ is said to be convex if whenever a and b are in
C, the whole segment [a, b] is contained in C.

THEOREM 72. (Taylor’s formula for n variables) With the above
notation and hypotheses, for anyh = (hy, hs, ..., hy,) small enough, such
thatx =a+h €V (|h|| <), one has the following Taylor’s formula:

1 1 1
(3.3) f(a+h)= f(a)+ﬁdf(a)(h)+Edzf(a)(h)—i—...—i—%dmf(a)(h)
1
—qmt! h
o ),
where ¢ € (a,a+ h), i.e. ¢ =a+t,h forat, € (0,1).

PRrROOF. (n =2) Let
a = (a17a2)7x = <x17x2>7h = (h17h2>7h1 =T — a’lahQ = T2 — Aa.

The segment [a, x] is the usual segment with ends a and x in the plane
xOy (see Fig. 8.1). Let us restrict f to the segment [a, x]. This means
that to any point a+th, ¢ € [0, 1] we assign the number f(a+th). One
obtains a mapping ¢t ~» f(a+th), denoted here by ¢ : [0,1] — R,

g(t) = f(a+th) =f(ay + thy, as + ths).

Let us denote by u; and uy the functions wu(t) = a; + thy and respec-
tively uq(t) = ag + ths. So, if

u(t) = (CLl + thl, a9 + thg),

i.e. if u = (u1, uz), one has that g = f o u. Here u is a continuous one-
to-one mapping from [0, 1] onto [a,x]. Since u is of class C*° on [0, 1]
(why?), we see that g is of class C"™! on [0,1]. Let us apply Mac
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Laurin’s formula (1.16) (or the general Taylor formula (3.1) with a = 0
and z = 1) for the function ¢ :
(3.4)

B 1, 1, 1 1
g9(1) —9(0)+ﬂg (0)+§g (0)+~-+@9 (0) +

(m+1)! ()

I

where t, € (0,1). Since ¢g(1) = f(a+ h) and ¢g(0) = f(a), one has only
to prove that ¢¥)(0) = d*f(a)(h) for any k = 1,2,...,m + 1. We can
use mathematical induction to prove this. Here, we prove only that
¢ (0) = df(a)(h) and that ¢”(0) = d?f(a)(h). For this purpose we use
the chain rules formulas and the definition of the differential of order
k. Indeed,

35) g = L pua(t), us®)] - o4 (1) + 2L fun (), wa(t)] ().

Hence,

0 0
g/(O) = a—i(al, CLQ) : hl + a—a{;(al, GQ) . h2 = df(a)(h)

Let us use the formula (3.5) to compute ¢”(¢) :

10 = 3 T, s8] DGO + 500wt - 6) -0+

1

af " 62f / /

a—xl[ul(t)a up(t)] - uy(t) + m[“l(t)a up(t)] - uy (t) - uh(t)+
an / 2 af "
om0, - 40P + 2 un0) (o) 50,

Since uf(t) = 0 and u5(t) = 0, one has:

o2 f
(93718.%@

<wwrm+%§ww%wv@m)

" o an 2
g"(0) = 8_x%<a)'hl+2

If we take ¢ = a+t.h, one gets the formula (3.3) for n = 2. O
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, /J

;—4/8 Xr

0 t1 Fig 8.1

Let
P(z,y) = 22%y + 3zy* + v+ y
be a polynomial of two variables x and y. Let us write P(z,y) as a
polynomial Q(x — 1,y + 2), i.e.

P(z,y) = 000+G10($—1)+6101(y+2)+a20($—1)2+a11($—1)(y+2)+

aog(y + 2)2 + ago(flf - 1)3 + (121(33 — 1)2(y + 2)—|—
aa(z = 1)(y +2)* + aos(y +2)°,
We stop here because the "total" degree of P(z,y) is 3 =2+ 1. We

could find the coefficients a;; by elementary tricks (do it!). However,
let us use Taylor formula (3.3) with

a=(1,-2),x=(z,y),hi =2 —1,hs =y + 2,

etc. We have only to compute dP(a), d>P(a) and d*P(a) (why not
d*P(a)?). So,
P P
dP(a) = g—x(a)da: + g—y(a)dy = (4zy +3y° + 1) |12 dz

+(22% + 62y + 1) |(1,—2) dy = 5dx — 9dy

dP(a)(h) = 5(z — 1) — 9(y + 2).
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Hence,
app = P(l, —2) = 7, ajp = 5, apr = —9.
The coefficients aqg, a1; and age can be computed from the expression

of 2:d*P(a)(h). Namely,
2P 0?P
W(a) = (4y) |1,-2= =8, m(a) = (4z + 6y) [(1,—2= —8

and £ (a) = 61 |(,—2)= 6, i.c.

%dzP(a)(h) = 4@ -1 =8 -1y +2) +3(y+2)°

and so, asg = —4, a;; = —8 and age = 3. In order to find asg, as1, ais
and ag3 one must compute
1 . 1[o3P 3 03P 9
@) = 5 | G @) 1"+ 35 @)~ 1+ 2)
PP PP

355 - D+ + G @)+ 2)°

=2z —1)*(y+2)+3(x—1)(y +2)°
Thus, azy = 0; as; = 2; a2 = 3 and ag3 = 0. Finally one has:
Plz,y) =7+5@x—1)—-9(y+2) —4(x —1)* - 8(z — 1)(y +2)+
+3(y+2)* 4+ 2(x — 1)*(y +2) + 3(z — 1)(y + 2)*.

THEOREM 73. (Lagrange’s Theorem for many variables, or the
Mean Value Theorem) Let A C R™ be an open subset of R™, let a
be a point in A and let V = B(a,r) C A, r > 0 be a ball with centre at
a and of radius r. Let f : A — R, be a function of class C' defined on
A. Then, for any x in X, there is a point c in [a,x] such that:
(3.6)

of

f(x)—f(a) = %(C)(% —a)+ ot g (e) (T —an) = (grad f(c), by,

i.e. the "increasing” f(x) — f(a) of f on the interval [a,x] is equal to
the scalar product between the gradient vector grad f(c) of f at a point
c of the segment |a, x|, and the the vector x — a. If x is very close to
a, then we have an "affine" approzimation of f(x) :

9, 0
BD) S0~ f(@)+ 5@ —a) + oot 5 (@) — )
or a linear approzimation of f(x) — f(a):

(3.8)
af

J0) = f(@) = 5 (@) (=) +t of

oz,

(a)(zn —an) = (grad f(a),h) .
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PrOOF. It is sufficient to take m = 0 in the formula (3.3). O

From formula (3.7) we see that it is sufficient to know the gradient
vector grad f(a) of a function f at a point a and the value f(a) of the
same function at a, in order to approximate the values of this functions
in a neighborhood of a. For instance, let us compute approximately
sin46° cos 1°. For this, let us consider the function of two variables
f(x,y) = sinzcosy, the point a = (F,0) and the point x = (§ +

%5 18g)- Then, formula (3.7) says that: sin46° cos1° ~ ‘/7§+ */75 55"

4. Problems
1. Compute df and d?f for:

f(z,y) = sin(z® + 3?);
fl@y,2) = Va? 4y + 2

f(z,y) = exp(zy)

at (1,1); find also df(1,1)(0,1) and d?f(1,1)(0,1).

2. Approximate Af = f(z,y) — f(zo,0) by df (w0, %0)(Az, Ay),
where Az = x — xg9, Au = y — yo and then compute:

a

)
flw,y) =™

at the point A(e +0.1,1+ 0.2);

b)
fla,y) = Va +y?
at A(4.001,3.002);
c)

at A(1.02;3.01).
3. Use Taylor’s formula to approximate f by the Taylor polynomial
T, with Lagrange’s remainder:

a)

at (0,0), with Ty;
b)

f(z,y) =¥

f(z,y) =In(1+ ) +1n(1 + y)

f(z,y) =¥
at (1,1), with T3 and compute approximately (1.1)%%;
c)

f(z,y) = (expx)siny
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at (0,0) with T;
d)
fla,y,2) =2 +y° + 2° — Buyz
at (1,1,1), with Tb.
4. Write
P(z,y) = 22° — 32y +2y° + 92> — 3y + 62 + 3
as Q(x + 1,y — 1).
5. Compute approximately (0.95)%%!; Hint: take
9(@,y) =y"
around A(2,1) and use T5.
6. Compute d*f(0,0,0) for
f(z,y,2) = 2% +9* + 2* — 209 + 3yz — 5a?22
7. Compute d3f(0,0)(0,0) for
f(x,y) = cos(3z + 2y).
8. Prove that

u(r,t) = 2@\1% exp <_ (;,;4;2?2)

verify the "heat equation": 2%(xz,t) = aQ%(x, t).

9. Use Taylor’s formula to justify the following approximations:
a)
cosT 2?2 — 92

cos ¥y 2

around (0, 0);
b)

arctan 1x—:_xyy T+,
around (0, 0);
c)
around (0, 0).
10. Find df (1, —2)(2,3); d2f(1,-2)(2,3) and d®f(1, —2)(2,3) for
F(o,y) = * + 2%y,

In(1+z) In(l+y) =~ zy,



CHAPTER 9

Contractions and fixed points

1. Banach’s fixed point theorem

Let (X, d) be a metric space, i.e. a set X with a distance function
d on it. This function d associates to any pair (x,y) of elements of X
a nonnegative real number d(z,y) with the following properties:

i) d(z,y) = 0 if and only if z = y.

ii) d(x,y) = d(y,x) for any z, y in X and

i) d(z,2) < d(z,y) + d(y, z) for any z,y,z in X (the triangle
inequality).

This triangle inequality can be generalized and one obtains the
polygon inequality:

(1.1) d(xg,xn) < d(zo, 1) + d(x1, 22) + d(x2, 23) + ... + d(Tp_1,Tp).
for any finite sequence {xg, x1, 2, ..., x,} of X. It can be easily proved
if we use mathematical induction on n. For n = 1, or 2, it is clear.
Suppose n > 2 and assume that the polygon inequality is true for any
sequence of £ < n elements of X. Let us prove it for a sequence of n+ 1
elements {zg, z1, xa, ..., x, }. Thus,

(1.2) d(zo, zp_1) < d(xo,z1)+d(x1, x2)+d(22, 23)+...+d(Tp_2, Tpn_1).
Now,
d($07 xn) S d(l’o, xnfl) + d<xnfla xn) S

[d(zg, 1) + d(x1,22) + d(x2, 23) + ... + d(Tp_2, Tpn_1)] + d(Tp_1, Tp).

and the proof of (1.1) is done.
We just met many examples of metric spaces: (R, d(z,y) = |z — y|),

(C,d(z,w) = [z —wl|), (R*,d(x,y) =[x —yl), Cla,b] = {f : [a,b] —
R, f continuous} with

d(f,9) = Ilf = gl = sup{[f(x) — g(2)| : = € [a, 0]},

etc. All of these metric spaces are complete metric spaces, i.e. metric
spaces (X, d) with the property that any Cauchy sequence has a limit
in X. Not all metric spaces are complete. For instance, X = (0, 1] with
the same distance like that of R is not complete, because the sequence
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{1} is a Cauchy sequence in X but it has no limit in X (why?). It is
easy to see that a subset Y of a metric space (X, d) is complete relative
to the same distance like that of X if and only if it is closed in X (prove
it!).

DEFINITION 32. (contraction) Let (X, d) be a metric space. A func-

tion f : X — X is said to be a contraction on X if there is a number
A € (0,1) such that

(1.3) d(f(x), f(y)) < Ad(z,y)
for any x,y in X. This number X is called the (contraction) coefficient
of f.

For instance, f : [0,1] — [0,1], f(z) = 0.5z is a contraction of co-
efficient 0.5 (prove it!). But g : R — R, g(x) = 2z, is not a contraction
on R but,...it is a contraction on [0, 0.44] (prove it!).

Any contraction on X is a uniformly continuous function on X
(why?). The same result is true even A is an arbitrary positive real
number. In this more general case we say that f is a Lipschitzian
function on X.

THEOREM T74. Let A be a convex subset of R™ (if a and b are in A,
then the whole segment [a,b] is in A). Let f: A — A be a function of
class C* on A such that all the partial derivatives of f are bounded by
a number of the form A/n. where X\ € (0,1). Then f is a contraction of
coefficient A\ on A.

PROOF. Let us take a,b in A and let us write Taylor’s formula for
m=0 (b=a+h):

(1.4)
0 0 0
fb) — £(a) =€) (—ar) 45 () (ba—a)+b 5 (€) - (i),
where ¢ is a point on the segment [a,b] and a = (ay,as,...,a,), b =
(b1, b2, ...y by).
So,
d(f(a),f(b)) = f(b) = fa)]| < |> 5. (©)| la = bl
i=1 v
< [Zl 3o, (c) ] la— b < Ad(a,b).
Thus, our function is a contraction. [l

For instance, f(x) = L3 is a contraction on [0, 1], because | f'(z)| =

5
g]ﬁ] < % on [0, 1].
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THEOREM 75. (Banach’s fixed point theorem) Let (X, d) be a com-
plete metric space and let f : X — X be a contraction of coefficient
A € (0,1). Then there is a unique element x in X such that f(x) = x
(a fized point for f). This unique fixed point x of f on X can be ob-
tained by the following method (the successive approximates method).
Start with an arbitrary element xq of X and recurrently construct:
x1 = f(xo), 22 = f(x1), ..., @ = f(Tn_1),.... Then, the sequence {z,}
18 convergent to this fized point x. Moreover, if we approximate x by
T, the error d(x,x,) can be evaluated by the following formula

A"
1=\

(1.5) d(x,z,) < d(z1,x0) -

PrOOF. It is sufficient to prove that {z,} is a Cauchy sequence
(why?-remember that X is complete so, x,, — x, then use the continuity
of f in the recurrence relation-take limits and find = = f(x)). Let us
evaluate the distance between the terms of the sequence {z,} by using
the contraction formula (1.3).

d(w2,21) = d(f(x1), f(w0)) < Ad(21, 70),

(3, 32) = d(f(x2), f(21)) < Ad(22, 21) < Nd(21,20),
and so on, up to a general relation (use mathematical induction if you
want!):
(1.6) d(xpi1, ) < A"d(21, 20).

Now,
(1.7)
d(xnﬂn Tn) < d($n+P7 xn—&-P—l) + d(xnﬂ?—h xn+p—2) + o+ d(Tpi1, Tn)

comes from applying of the polygon inequality (1.1). If in (1.7) we
introduce the formula from (1.6), we get:

A(Tpyp, Tn) < AP NP2 A (2, 20)

)\n

(1.8) SN A4+ AN+ X+ )d(wy, 1) = T

d(x1, ).

Since % — 0, independently on p, the sequence {z,} is a Cauchy
sequence. Since (X, d) is complete, this sequence has a limit x = lim x,,.

Making p — oo in (1.8) we get the desired estimation of the error:

n

1—A

d(.%',l’n) < d(-%'l,.ilﬁo)-
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(why d(xp4p, xn) — d(x,x,) if p — 007 Prove it!). Since x, = f(z,-1)
and since f is continuous, one has that © = f(z). This fixed point x is
unique. Indeed, if x = f(x) and y = f(y), then

d(z,y) = d(f(z), f(y)) < Ad(z,y),
or
d(xz,y)-[A—1] > 0.
Since A € (0,1) and since d(x,y) > 0, the unique possibility is that
d(z,y) =0, ie z=uy. O

The Banach’s fixed point theorem has many applications. For in-
stance, it can be used to find approximate solutions for equations and
system of equations (linear or not!).

Take for example the polynomial

Px)=2"—2*+2z -1
and let us search for a solution of the equation P(x) = 0 in the interval
X = [0,1]. The equation 2* — 22 + 2z — 1 = 0 can also be written as:
2?2+ 1
=x
x?+2

Let us prove that f(x) = iii; is a contraction on [0, 1]. Indeed, f'(x) =

(1.9)

(3622%)2 and

2z
(22 + 2)2
(why?) on [0, 1]. Applying Theorem 74

we get that f is a contraction of coefficient A = % So, the equation
(1.9) has a unique solution a in [0, 1]. Let us find it approximately with
"two exact decimals". Formula (1.5) says that:

1\" 2 1\"*
la — x,| < (5) -I|:v1—x0|: (5) |x1 — o] -

Let us take xg = 0. Then x; = f(x¢) = 5. Thus,

1
< =
-2

S| 1
If we force with 5 < 15,

approximately equal to

zr=(fofofofofofof)0)=rfff(ff(f(0))))):
This last number can be easily find by using a cyclic instruction in a

computer language, like Pascal or C++. The committed error is less
then 0.01.

we get n = 7. Hence, the true solution a is
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2. Problems

1. Using the Banach’s Fixed Point Theorem, find approximate
solutions with the error e = 1072 for the following equations:

a) 2’ +2—5=0;b) 2’ —sinz = 3; ¢) 2 = ;7= cos .

2. Which of the following mappings are contractions? Study the
fixed points of them.

a) f:R—R, f(r) =a;b) f: R—R, f(z) =aTic) f: C—C,
fz) = 2%

d) f:C—C, f(z)=2"+z+1e) f:R—=R, f(x) = g2 +3

f) f:R—->R, f(x) = %arctan:z:; g) [ R—=R, f(z,y) = (%x, %y)

3. Try to find approximate solutions with 2 exact decimals for the
following linear system of algebraic equations:

100z + 2y =1
4o 4+ 200y =5 °

Hint: Write this system as:

0.01 —0.02y ==z
0.025 - 0.02z =y

Prove that the vector function f : R? — R2, defined by the formula,
f(x,y) = (0.01 — 0.02y,0.025 — 0.02z) is a contraction of coefficient
0.02 x v/2 < 1. Then apply the Banach’s Fixed Point Theorem. At the
end, compare the approximate result with the exact one!

4. What is the particularity of the system from Problem 37 Can
we apply the Banach’s Fixed Point Theorem to all the linear systems?






CHAPTER 10

Local extremum points

1. Local extremum points for many variables

Let A be an open subset of R” and let f : A — R be a scalar func-
tion defined on A. We say that a = (aq, as, ..., a,) is a local mazimum
(minimum) point of f if there is a small open ball B(a,r) C A, r > 0,
such that f(x) <f(a) (f(x) >f(a)) for any x in B(a,r). Local maxima
and local minima are referred to as local extrema. A local maximum
point or a local minimum point is called an extremum point.

REMARK 30. Let A be an open subset of R" and let i be a fixed
natural number in the set {1,2,...,n}. Then the i-th projection pr;(A)
of A is the set of allt € R such that there is an

X = (33173727 "'7331'717757 Tit1, 7xn)

in A with t at the i-th position. It is also an open subset of R. Indeed,
take ty € pri(A) and take a in A such thata = (a1, ..., a;—1,t0, Qiy1, .., Ap).
Since A is open, there is a ball B(a,r) C A with r > 0. We prove that
the 1-D ball (tog — r,to + 1) is contained in pr;(A). It is in fact the i-th
projection of B(a,r). For this, let u € (tg — 1, to + 1), i.e. |[u—to| <.
It is easy to see that

v = (ay,ag, ..., a;_1,U, ai11, ..., a,) € B(a,r) C A.
Thus
u=pri(v) € pri(A).
So pri(A) is also open in R.
THEOREM 76. (Fermat’s theorem for many variables) Let A be an

open subset of R" and let a €A be an extremum point of a function

f:A—R, defined on A with values in R. If f has partial derivatives

a87’;(51), j=1,2,...,n at a, then all of these are zero, i.e. any extremum

point a of [ is a stationary (critical) point for f. This means that a
is a root of the vector equation: grad f(x) = 0, i.e. grad f(a) = 0, or
df (a) = 0, if this last one exists.

193
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PROOF. Let us fix an ¢ in {1,2,...,n} and let us define a function
of one variable g; : (a; — r,a; + r) — R by the formula:

gz(t) = f(ala ey Qi 1yt Qg gy ey an)-
Here r > 0 is the radius of a small ball B(a,r) which is contained in
A (see the above discussion). Assume that a is a local maximum point
for f. We can take r to be small enough such that f(x) < f(a) for any
x in the ball B(a,r) (why?). If u € (a; —r,a; + ), then
v = (ay,ag, ..., a;_1,U, a1, ..., a,) € B(a,r)

S0,

gz(u) = f(ala ey Q15 Uy Qg 15 -0ey an) S

< flag, oo Gim1, G5y Qi ey @n) = gi(as).
This means that a; is a local maximum for the function g;. We use now

Fermat’s theorem 35 for the one variable function g; at the point a;.
Thus, ¢i(a;) = 0. But

of
g9i(t) = a—xi(ala ey Wi, Qg1 ey ).
Hence, g.(a;) = %(a) =0, for any ¢ = 1,2, ...,n and the proof of the
theorem is complete. O

The Fermat’s theorem says that for the class of differential functions
f defined on an open subset A of R”, the local extremum points must
be searched between the critical points, i.e. between the points a which
are zeros for the gradient of f. For instance, for f(z,y) = z* + 3, the
gradient of f is grad f = (423, 4y3). So, one has only one point (0, 0)
which makes zero this gradient. Since 0 = f(0,0) < z* + y?, for any
x,y € R, the point (0,0) is a "global" minimum point for f. It is easy
to see that for the function h(z,y) = z*>—y?, the point (0,0) is a critical
point, but it is neither a local minimum, nor a local maximum point for
f, because, in any neighborhood of (0,0) the function h(x,y) has pos-
itive and negative values (why?). So we need a criterion to distinguish
the local extremum points between the critical points. We recall that
a quadratic form in n variables X, Xs, ..., X, is a homogeneous poly-
nomial function g(X;, Xs, ..., X,,) of degree two of these n independent
variables,

n n
g(Xh X27 S Xn) = Z Z a/inina
i=1 j=1
where a;; = aj; for all 4,5 € {1,2,...,n}, ie. if its associated n x n
matrix (a;;) is symmetric. Here this last matrix is considered with
entries in R. We say that the quadratic form g is positive definite if
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g(x1, Ta, ..., xy) > 0 for any real numbers xy, 23, ..., ¥, and, it is zero if
and only if all of these numbers are zero. For instance,

g(X,Y) =X+ XY +Y?

is positive definite. Assume contrary, namely we could find (z,y) #
(0,0), say y # 0, such that

g(x,y) =2* +ay + 1> <0,
Let us divide by 3? and put t = z/y. We get t> +¢ + 1 < 0, which is
false because

2 rt+1=(t+1/2)°+3/4
cannot be negative for ever (why?). Moreover, if 2% + zy + y* = 0 and
if (z,y) # (0,0), then we obtain t* +t+1=0for t = z/y or t = y/x.
But the equation Z2? + Z + 1 = 0 has no real root!

We say that the quadratic form g is negative definite if

g(x1, T2, .oy xy) <0

for any real numbers xi, xs,...,z, and, it is zero if and only if all of
these numbers are zero. For instance,

g(X,Y)=-X>— XY —Y?

is negative definite (prove it!). If a quadratic form is negative definite
or positive definite, we say that it is definite. If it is neither positive
definite, nor negative definite, we say that it is nondefinite. For in-
stance, g(X,Y) = X? is a quadratic form which is nondefinite because,
for x = 0 and any y # 0, it is zero! A basic result in the theory of
quadratic forms (see any serious course in Linear Algebral) gives us a
criterion which says when a quadratic form is positive definite, negative
definite, or nondefinite. The point is to consider the principal minors

ailx a2 . . QAip
a21 Q22 . . QA2
ailz Az
AIZCL117A2: a"'7An: . o
a21 A22
Ap1 Ap2 . . QGpp

of the matrix (a;;).
THEOREM 77. (Sylvester’s criterion) A quadratic form
g(Xb XQ, ceey Xn) = Z Z a’LjX’LX]
i=1 j=1
18 positive definite if and only if
Ay > O,AQ > O,Ag > 0,...,An > 0.
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It is negative definite if and only if
Ay <0, >0,A3 <0,A4>0,....,(=1)"A, > 0.

If none of these both conditions are fulfilled, the quadratic form g is
nondefinite.

For instance,
g(:v,y,z) = :U2 +y2 - 32
is nondefinite because Ay =1>0, A, =1>0and A3 =—-1<0.

Now, we are ready to prove our above announced criterion for dis-
tinguishing the local extremum points between all the critical points.

THEOREM 78. (The Decision Theorem) Let f : A — R be a func-

tion of class C* (it has continuous partial derivatives of second order
on A) defined on an open subset A of R". Let a € A be a critical point
of f and let

g(h1, by, ..., hy) = d?f(a)(hi, ha, ..., hy)

be the second differential of f at the point a. It is in fact the quadratic
form

g(hy, ha, oo hy) =Y 55— (@)hih;.
. 7 J

i=1 j=1

i) Assume that d?f(a) is not identical to zero and that d*f(a) is a
negative definite quadratic form. Then a is a local maximum point for

f.
ii) Assume that df(a) is not identical to zero and that d*f(a) is a

positive definite quadratic form. Then a is a local minimum point for
f

Let k be the first natural number such that f is of class C* on A
and d* f(a) is not identical to zero.

iii) If k is even and if

d* f(a)(h1, ha, ..., hn) < 0

for any hq, ha, ..., hy, not all zero, then a is local maximum point for f.
i) If k is even and if

dkf(a)(hla h27 7hn) >0

for any hy, ha, ..., h, not all zero, then a is local minimum point for f.
If k is odd and d* f(a) # 0, then a is not a local extremum point.
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PROOF. Let us denote by h the variable vector (hq, hs, ..., h,) and
let us write Taylor’s formula (3.3) for m = 1. We get:

(11) fla+ 1)~ f(a) =5 (cn) (h),

where cy, is a point on the segment [a,a + h] and ||h|| < r, withr > 0, a
sufficiently small real number such that B(a,r) C A and. Here df (a) =
0 because a was considered to be a critical point. Since d?f(x) is

continuous as a function of x (d*f(x)(h) =", > %(x)hihj)
and the second order derivatives are continuous by our hypothesis!),
eventually in a smaller ball B(a,r’) with centre at a and of radius
r" < r, one has that the sign of d*f(x)(h), x € B(a,r’), is the same
like the sign of d*f(a)(h) (why?). Hence, the sign of the difference
f(a+h)—f(a) is the same with the sign of d?f(a)(h) for ||h| < r'.
Now, the statements of the theorem becomes very clear. Indeed, let
us consider for instance that the quadratic form d?f(a) is negative
definite, i.e. d?f(a)(h) < 0 for any h # 0. Then d?f(x)(h) <0 for any
x in a small ball B(a,r’) like above and for any h # 0. So, in (1.1), if
we take h such that ||h|| < 7/, i.e. x=a+h € B(a,r’), we get that
f(x) < f(a) for any x in B(a,r’), i.e. a is a local maximum point for
f. To prove ii) we proceed in the same way (do it!).

To prove iii) and iv) we use the Taylor formula:

1

fa+h)—f(a) —k!d’“f(ch)(h)

and the fact that a homogenous polynomial P(X7, X5, ..., X,,) of odd
degree k can NEVER have a constant sign in a neighborhood of 0. If k£
is even and if d* f(a)(h) < 0 for any nonzero h, there is a whole small
ball B(a,¢) on which d*f(x)(h) < 0 for any nonzero h. So, on such a
ball, f(a+h)—f(a) < 0,i.e. ais alocal maximum point for f, etc. O

Let us apply this theorem to the following problem. Let
fla,y) =2 +y* —day, f: R* = R
Let us find all the local extrema for f. First of all we find the critical
points: 9L = 42°—4y = 0 and % = 493 —4x = 0 imply 2°—z = 0. So we
find the following critical points: M;(0,0), Ms(1,1) and M3(—1,—1).
In order to apply Theorem 78 we need to compute the Hessian matrix
of f,i.e. the matrix of the quadratic form d?f, at every of the three

critical points.
9f  92f
A= dx? oxdy | _ 12.1'2 —4
=2 @) =24 o192)
0xdy  Oy?
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0 —4

-4 0 )
Since A; = 0, from Theorem 78 we obtain that M; is not a local
extremum for f. At M, and M3 the Hessian matrix is

12 —4
-4 12 )"
So, Ay =12 > 0 and Ay = 144 — 16 = 128 > 0. Thus, both M, and

M3 are local minimum points.

At M, the matrix is

EXAMPLE 17. (regression line) In the Cartesian xOy plane we con-
sider n distinct points My(x1,y1), Ma(x2,y2), ... My (20, yn). We search
for the "closest" line y = ax + b (the regression line) with respect to
this set of points. Here, the "distance" from the set {M;} up to the line
y = ax + b is the "square" distance distance:

n

(1.2) SD(a,b) = | > [ — (az; + ).

i=1

The "closest” line y = ax + b is that one for which the nonnegative
function SD(a,b) is minimum. Thus, we must find the local minimum
points for the two variable function SD(a,b). Let us find the critical
points by solving the 2 x 2 system:

0D — 2% —wi(yi — aw; — b) = 0
1.3 1711 1\J? % .
3 { %g_szzzz'ﬂ_(%‘—Cmi—b):O

Let us write this system in the canonical way

Oz a+ O xi)b=>zy
(1.4) { SoyaTob=sa

If not all the points {M;} are on the same line (in this last case
the regression line is obvious the line on which these points are!), the
determinant of this system cannot be zero (use the Cauchy-Schwarz
inequality from Linear Algebra, the equality special case!). So we have
a unique solution (ag,by) of this system. Let us prove that this point
realize a minimum for the square distance function SD(a,b). Indeed,
the Hessian matrix of f is

In this case, Ay = 2% 27 > 0 (otherwise all the points M; would be
on the Oy-azis) and Ny =4 [n >z — (Y ml)ﬂ . In order to prove that
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Ay is greater than zero we consider in R™ the vectors 1 = (1,1,...,1),
X = (21, g, ...,x,) and write the inequality Cauchy-Schwarz for them:
(1, %) < 11| - ]| or (by squaring) (3" x;)> < n> 22 We know that
equality appears if and only if the two vectors are collinear, i.e. if and
only if 11 = x9 = ... = x,,. But this last case appears only if the points
{M;} are on a vertical line and we just assumed that {M;} are not
collinear. Hence, Ay > 0 and the point (ag,by) is a local (in fact a
global-why?) minimum for the square distance function SD.

The method described above is said to be the least squares method
(LSM). It can be generalized to other classes of curves or surfaces.

Let us apply the LSM for the set of points M;(—1,1), M5(0,0),
M;5(1,2) and My(2,3). To solve the system (1.4) we must compute
Sa2 =6, > 2 =2 Y xy = 7and > y; = 6. Then the system
becomes:

6a +2b =17
{ 20+4b=6 -~

We get a = 4/5 and b = 11/10. Hence, the regression lineis y = 22+ 1.

2. Problems

1. Find the local extrema for:
a)
flr,y,2) =2 +y* + 22 —ay + 7 — 22
b)
fla,y) = 2°y*(6 —x —y), 2 > 0,y > 0;
c)
fla,y) = (2 =2)" + (y+7)°
(try directly, without the above algorithm!);
d)
fzy) =ay(2 -z —y);

flz,y) =In(1 — 2® — );

f)
flzy) =2° +y° = 3ay;
g)
flz,y) = at + oyt — 222 + day — 2%
h)

flx oy, 2) = wyz(da —x —y — 2),
a, r, y and z are not zero.
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2. Find «, 3,~ such that
f(z,y) =20 +2y* — 3wy +az + By + 7

has a minimum equal to zero in A(2, —1).
3. A price function is of the form

flz,y) = 22 4+ a2y + y? — 3ax — 3by,

where a, b are constant numbers. Find a and b such that the minimum
of f be the biggest possible.
4. Study the local extrema for f(z,y) = 2* + y* — 22.



CHAPTER 11

Implicitly defined functions

1. Local Inversion Theorem

Let a be a point in R"™. By a (open) neighborhood A of a we mean
any open subset A of R" which contains the point a. So, if A is a
neighborhood of a, then there is an open ball B(a,r), centered at a
and of radius r > 0 which is contained in A.

DEFINITION 33. Let A and B be two open subsets of R". A wvector
function f : A — B is said to be a diffeomorphism between A and B if:
i) £ is a bijection; ii) £ is of class C* on A and #i) £7': B — A is of
class C* on B.

For instance, f, : R — R, f,(z) = x+a is a diffeomorphism because
its inverse g(x) = x—a is of class C' on R. But the mapping f : R — R,
f(x) = z° is not a diffeomorphism because its inverse g(x) = /z is not
differentiable at = = 0 (why?).

REMARK 31. It is easy to see that the composition between two
diffeomorphisms is also a diffeomorphism (prove it!).

THEOREM T79. Let f : A — B be a diffeomorphism and let a be a
point in A. Then the linear mapping df(a) : R™ — R" is an isomor-
phism of real vector spaces. In particular, the Jacobi matriz Ja¢ of £ at
a s invertible and its determinant has a constant sign in a neighborhood
of a. This means that there is an open ball B(a,r), r > 0, contained in
A, such that det Jx¢ > 0 (or det Jy¢ < 0) for any x € B(a,r). In fact,
the sign of det Jx¢ is the same with the sign of det Jos for any x in
B(a,r).

PRrROOF. Let g: B — A be the inverse of f and let b = f(a). Then
gof =1,, the identity mapping defined on A. Now, Theorem 69 says
that Jy g Jaf = 1nxn, the n xn identity matrix. Hence, the Jacobi ma-
trix Ja ¢ is invertible, i.e. df(a) is an isomorphism of real vector spaces
(see the connections between the linear mappings and their correspond-
ing matrices, w.r.t. a fixed basis in R™). Moreover, det J,¢ cannot be
zero (why?), say positive, for instance. Since f is a function of class C*
on A, all the partial derivatives which appear as entries in the matrix

201
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of Jx¢ are continuous. Thus, the mapping x ~» det Jx¢ (denoted here
by T') is a continuous mapping on A, particularly at a. Since 7'(a) > 0,
we state that there is at least one small positive real number r > 0
such that for any x in B(a,r) we have T'(x) > 0. Indeed, otherwise, we
could construct a sequence {x™} of elements in A which is convergent
to a and for which T'(x™) < 0, m = 1,2, .... The continuity of 7" would
imply that T'(a) < 0, a contradiction! Hence, there is such a small ball
B(a,r), r > 0 on which T'(x) is positive and the proof is complete. [

Thus, locally, around a fixed point a, the differential df (x) is in-
vertible. We know that the increment f(x) — f(a) of the function f at
a can be well approximated by df(a)(x — a) (see Taylor’s formula for
many variables). A natural question arises: " Is f itself invertible in a
neighborhood of a?” If the function f describes a physical phenomenon,
this means that this phenomenon can be reversible whenever we be-
come closer and closer to the point a and, this is very important to be
known in the engineering practice. The following result is fundamental
in all pure and applied mathematics. It is a reverse result relative to
the above theorem

THEOREM 80. (Local Inversion Theorem) Let A be an open subset
of R® and let f : A — R™ be a function of class C' on A. Let a be a
point in A such that det Jo¢ # 0. Then there is a neighborhood U of a,
U C A, such that the restriction of £ to U, f |, : U — V = £(U), is
a diffeomorphism. In particular, det Jx¢ # 0 on U and ifg: V — U
is the local inverse of £ (g =(f|,)""), then det Jr)g = o and

det Jx7f
-1
Je.g = (Jxf) -

PROOF. (only for n = 1. See a complete proof in Section 7 of this
chapter) Let f = f and a = a € A C R be the usual notation in this
restricted case. Now det Jo¢ = f'(a) (why?) and the hypotheses says
that f'(a) is not zero, say that f'(a) > 0. Since f’ is continuous (f is of
class C' on A), like in the proof of the above theorem, we can conclude
that there is an open ball U = B(a,r) = (a —r,a+7), r > 0, on which
f' is positive, i.e. f'(x) > 0 for any = in U. This means that on this U
our function f is strictly increasing. So, the restriction of f to U has an
inverse g : V = f(U) — U. Since f is continuous and strictly increasing,
one can easily prove that f~! = g is continuous on V' (prove it! or find
by yourself a previous result from which this statement immediately
comes!). We now prove that this function g(y) = z, where y = f(z),
is differentiable on V. Indeed, let b = f(a) be a point in V' and let
{yn = f(x,)} be a convergent sequence to b. Then {z, = g(y,)} tends
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to a (because of the continuity of ¢) and

lim M - lip —m @ — 1 )
Yn—b yn - b x”*}af(mn) - f(a> fl(a)
Thus, ¢ is differentiable at b and ¢'(b) = % O

EXAMPLE 18. (Polar coordinates) Let M(x,y) be a point in the
Cartesian plane {O,1,j} and let p = \/x® + y?be the distance from
M up to the origin O. Let 0 be the unique angle in [0,27] such that
x = pecosf and y = psind (prove that such an angle exists and that
it is uniquel-see Fig.10.1). Let us consider A = (0,00) x (0,27) C R?
and B = R?\ {[0,00) x {0}} in the same R%. Let f: A — B, f(p,0) =
(pcos, psinf). It is easy to see that det J,p ¢ = p # 0. It it easy
to prove that this f is a diffeomorphism. The analytical expression of
its inverse f~1 is not so simple (why?-find it!). The new "coordinates”
(p,0) are called the polar coordinates of M. For instance, the Cartesian
equation of the circle 2% + y*> = R? may be simply written in polar
coordinates like p = R!

Fig. 10.1

DEFINITION 34. (regular transformations) Let A be an open subset
of R" and let f : A — R" be a mapping defined on A with values in R".
We say that £ is a regular transformation at the point a of A if there
is a neighborhood U of a, U C A, such that the restriction of £ to U
give rise to a diffeomorphism £ |y: U — V = £(U). If f is reqular at
any point of A, we say that f is a regular transformation on A or that
f is a local diffeomorphism on A.

In particular, for a local diffecomorphism f, one has that det J, ¢ # 0
on A and, if in addition A is connected, then det J, f has a constant sign
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on A (why?). For instance, the polar coordinates transformation (see
Example 18) is a regular transformation (prove it!). The composition
between two regular transformations is again a regular transformation.
Such transformations are "good" for engineers. They are locally suffi-
ciently "smooth". This means that they do not produce "breaking" or
"noncontinuous (broken) velocities", or "corners".

REMARK 32. The local inversion theorem applied to the reqular
transformations gives rise to some basic properties of these last ones.
For instance, a reqular transformation £ : R™ — R™ carries an open
subset A of R™ into the open subset £(A) (why?). If A is a domain,
i.e. if A is an open and a connected subset of R"™, then £(A) is also
a domain of R™ (why?). Moreover, the Jacobian det Jx¢ has the same
sign on A, if A is a domain (try to prove it!).

2. Implicit functions

What is the difference between the curves: 1) C} = {(z,y) € R? :
y=+1—22}and 2) Cy = {(z,y) : 2*+y* = 1,y > 0}7 They represent
the same object, the half of the circle of radius 1, with centre at O,
which is above the Oz-axis, but... the representations are distinct. In
the first case we have an "explicit" representation, i.e. we can write
y = f(x), this means that we can write one variable as a known function
of the other one. In the second case we have to compute y as a function
of x from the "implicit" relation z? + y? = 1. In our case this can be
done, but in other cases such an explicit computation cannot be done.
For instance, it is very difficult to express y as a function of x if

(%) 2* + 2¢° — 32y = 0.

But, if we knew that such an expression y = f(x) exists (theoretically)
in a neighborhood of a point on the curve, say (1,1), we can compute
the "velocity" f’(1), the "acceleration" f”(1), f”’(1), etc. Practically,
we proceed as follows. Let us write again the implicit relation (x) with
f(z) instead of y :

2+ 2f(x)* — 3xf(x) =0
and let us differentiate it with respect to x :
(+5) 32 + 6£()2f'(x) — 3f (x) — 32 f'(x) = 0.

We see that always (does not matter the implicit relation is!) the first
derivative f'(z) appears to power 1, i.e. it can be "linearly" computed
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from () :

@) -2
2f(x)2 —a

If one put x = 1 in (2.1) one obtains f'(1) = 0. If we differentiate
again formula (2.1) with respect to z, we get

_ 2/ (@) () —daf(2)® — af'(z) + 422 f (2) f'(x) + f(2) + 2%
[2f(2)? - a]”

If here we substitute f'(x) with its expression from (2.1), we get the
expression of f”(x) only as an explicit function of x and of f(z). Let
us put now = = 1 and we obtain f”(1), etc.

In our above discussion we supposed that our equation can be
uniquely solved with respect to y. But this is not always true. For
instance, if 2% + y* = 1, then y(z) = £v/1 — 22, so that in any neigh-
borhood of (1,0) we cannot find a UNIQUE function y = y(x) such
that z? + y(z)? = 1. Hence, we cannot compute y'(1), y”(1), etc. This
is why we need a mathematical result to precisely say when we have or
not such a unique "implicit" function.

(2.1) f'(x)

/()

THEOREM 81. ( (1 <> 1) Implicit Function Theorem) Let A be an
open subset of R? and let F : A — R be a function of two variables
which verifies the following properties at a fized point (a,b) of A :

i) F is a function of class C' on A.

ii) F(a,b) =0, i.e. (a,b) is a solution of the equation F(x,y) = 0.

iii) G-(a,b) # 0.

Then there is a neighborhood U of a, a neighborhood V of b with
UxV C A and a unique function f : U — V' such that:

1) F(z, f(x)) =0 for all z in U.

2) fa) =b.
3) f is of class C* on U and
oF
v el fl
T == @)

for all x in U.
PrOOF. We construct an auxiliary function
¢ :(9017()02) P A— R27 i’(w,y) = (:U,F(l',y))

for all (z,y) in A. Thus, ¢, (z,y) = x and p,(z,y) = F(z,y). We are to
apply the Local Inversion Theorem to this function ®. Let us compute
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the Jacobi matrix of ® at (a,b) :

7 _( 1 0 )
e =\ G (ab) Gr(ab))

Since ®(a,b) = (a,0) and since det J,p) 6 = %—5(@,[)) # 0, Local In-
version Theorem 80 says that there is an open neighborhood U x V' of
(a,b) and an open neighborhood U x W of (a,0) (why can we take the
same U?) such that the restriction @ |\, : U XV — U x W of ® to
U x V is a diffeomorphism. Let ¥ = (¢1,1,) : U x W — U x V the
inverse of this diffecomorphism. Let us define f(x) = ¢,(z,0) for any x
in U. It is clear that f : U — V is of class C' on U, f(a) = b and for
any x of U we have

(LL‘,O) = @[‘I’(l’,())] = ¢[¢1(x70)’¢2(x70)]

= @z, f(2)] = (z, F(z, f(x))),
ie. F(z,f(z)) = 0, for any x in U. The function f : U — V is of
class C! on U because 15(X,Y") has continuous partial derivative with
respect to X at any point of the form (z,0) for any = in U. Let us
differentiate totally with respect to x (this means that x is considered
not only like "the first" partial free variable of F'(x,y), but even as an
implicit hidden variable in y = f(x)) the relation F(z, f(z)) =0:

_OF OF

0 ax(fmf(w))Jra—y(ﬂf,f(x))-f'(ﬂﬁ),

thus

o @)
T )

for any « in U. Since det J(, )8 # 0 on U x V (why?) we get from

7 _( 1 0 )
Cw® =\ G (@) G (2y)

that %—i(m,f(x)) # 0 for any z in U.

If ¢ was another function defined on an open neighborhood U; of a,
which verifies the conditions 1), 2) and 3) then, on the neighborhood
Uy, = U N U; we would have

Uy(z, F(z, g(x)) = g(x)
for any = in Us, or 1y(x,0) = g(z) = f(x) for any x in Us. Hence, the
uniqueness reefers to another smaller neighborhood of U on which f
and ¢ are equal. In some conditions, this uniqueness can be extended
to the whole initial U or even to the whole pr,(A), the projection of A
on the Oz-axis. 0
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Let us consider again the implicit equation
23 4+ 2y° — 3wy =0

and let us study it around the solution (1,1). Since %—5(1, 1) =3#0,
the (1-1) Implicit Function Theorem says that there is a neighborhood
U of x = 1, a neighborhood V of y = 1 and a function f : U — V,
of class C! on U, such that the points {(z, f(x)) : € U} are on the
plane curve 23 + 2y3 — 3zy = 0, i.e. 2% + 2f(x)® — 3xf(z) = 0 for
any x in U. Now, if we are sure on the existence of such a f, we can
use different approximation methods to compute it (approximately!).
The worst situation is when the conditions of the Implicit Function
Theorem fail and we try to compute y = f(z) approximately! Usually,
in this last case one has more then one function y = f(x) which ver-
ify our equation and during our approximate process we "jump" from
one "branch" to another one, the obtained values for ” f(x)” having
a chaotic behavior. For instance, around the point (1,0), the implicit
solution of the equation x? 412 = 1 with respect to y has two branches:
y=+1—2a%and y = —/1 — 22. This is because 88—1;(1,0) = 0 and the
Implicit Function Theorem fails around the point (1,0).

There are two directions for generalizations of this basic theorem.
One reefers to increase the number of variables and the other to consider
vector fields relations, i.e. a system of implicit equations. We do not
prove these generalizations because these proofs do not contain new
ideas and the "many" variables notation are too sophisticated.

THEOREM 82. ((n < 1) Implicit Function Theorem) Let A be an
open subset of R"™1 let (a,b) = (a1, as, ..., a,, b) be a point of A and let
F:A—>R, F(z1,29,...,2,,y ) be a function of n + 1 variables which
verifies the following conditions:

i) F is of class C' on A, i.e. it has continuous partial derivatives
with respect to each of its n + 1 variable.

ii) F(a,b) = 0.

Mi%@@#&

Then there is a neighborhood U of a, a neighborhood V' of b such
that U x V C A and a unique function f : U — V such that:

1) Fix,f(x)] =0 for all x in U.

2) f(a) =0.

3) f is of class C* on U and
mk)__ﬁﬁjﬁh
O (% f(x))

for any x in U.
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For a proof see [FS]. Let us take the following equation:
22% + 2 + 223 — Bayz =0

and its solution M (1,1,1) (prove this!). Since 25(1,1,1) = 1 # 0,
one can apply the last theorem and can write z = z(x,y) around the
point (1,1). Let us compute ggy(l, 1). The most practical way is to

put z = z(x,y) into our equation:

22° + 3 + 22(x,y)® — bayz(z,y) =0
and let us differentiate this with respect to z and to y :

0z 0z
2 2 _ _ _ —
62" + 62(7,y) —ax(x,y) 5yz(z,y) Sy o (z,y) =0,

0z 0z
2 2 _ _ - =

From these equations we compute

0z 622 — byz Oz 3y? — bz
2.2 OF () = QX7 7 0YZ 02y OY T 0%
Now,
(2.3) Pz 0 (3y*—baz(z,y)\
’ 0xdy  Ox \ 5wy — 6z(z,y)2 )
(=52 — 5z 22)(5ey — 622) — (3y® — buz)(5y — 12222)
(bay — 622)2 '
We need to compute 2(1,1), so we must use formula (2.2) and find
9(1,1) = —1 (because z(1,1) = 1). Come back to formula (2.3) and

find 2% (1,1) = 34.
We consider now many relations, i.e. instead of the scalar function
F we take a vector function F = (Fy, Fy, ..., F};,) : A — R™, where A is

an open subset in R,

THEOREM 83. Let A be an open subset of R"™™ and let
(a,b) =(ay, a9, ..., ay; b1, b2, ..., byy)

be a point in A. Let F = (Fy, Fs, ..., Fy,) : A — R™ be a function which
verifies the following conditions:
i) F is a function of class C* on A.
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ii) F(a,b) = 0, i.c.
Fl(al, ag, ...0p, bl, bQ, ceey bm) =0

Fm(al, ag, ...Qp, bl, bg, ceey bm) =0

iii) For F(x,y) = F(x1, T2, ..., Tp; Y1, Y2, -y Ym), We define the Jaco-
bian matriz relative to' y = (y1, Y2, ---, Ym) only, as follows:

SLxy) - e (xy)
Jy,F(X7Y):
Ge(xy) . Gm(xy)

The condition is that det J, p(a,b) #0. This last determinant can be
suggestively denoted by

D(Fy, Fs, ..., F) (ab).
D(y1, 92, -+, Ym)

Then there is a meighborhood U = U; x Uy X ... x U, of a =
(a1, az, ..., a,), a neighborhood V.= Vi xVox...xV,, of b = (b1, ba, ..., by),
such that U x V. C A and a unique function £ = (f1, fa, - fin),
fi: U=V, i=1,2,...,m, with the following properties:

1) F(x,f(x)) =0 for any x in U.

det Jy r(a,b) =

2) f(a) = b.
3) £ is of class C* on U and
D(F1,Fs,....Fy)
(2 4) 8fz (X) __ DOyz,yi—1,%5 Y41, Ym) (X’ f(X))
: al' - D(Fl,FQ ..... Fm)< f( )) :
J D(y1,Y2,-,ym) X, HX

It is not necessarily to memorize this last cumbersome formula as
we can see in the following example.

Let (C) : 2* + y* — 22 = 0 be a conic surface and let (E) : 22 +
2y? + 322 —4 = 0 be an ellipsoid. Let v = (C')N(E) be the intersection
curve of them. We see that the point M(1,0,1) is on this curve. The
question is if we can find a parametrization of the form

z = z(y)
v Y ,
z=z(y)

i.e. if we can use y as a parameter for this curve in a neighborhood
of M. This is equivalent to see if the following system of the implicit
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functions x = x(y) and z = z(y) can be solved around M :

(25) Fl(y;a:,z):a:2+y2—z2:0,
’ Fy(y;m,2) = 2?4+ 22 + 322 —4 = 0.

Since all our functions are elementary ones, we need only to check the
condition i) of the theorem:

D<F17F2)

aFl(l 0,1) 81““1(1 0, 1)
D(z, z) ,0,

So, x and z can be seen like functions of y in a neighborhood of M.
Let us compute the "velocity" and the "acceleration" at M, along the
curve . For this, it is not necessarily to use the formula (2.4). Namely,
let us put in (2.5) instead of x, 2(y) and instead of z, z(y) :

{ z(y)? +y —z(y)* =
z(y)? + 2y% + 32(y )2—4—0

Let us differentiate both equations with respect to the ONLY free vari-
able y :
22(y)2' (y) + 4y + 62(y)2'(y) = 0.

This is an algebraic linear system in the variables x'(y) and 2/(y). Solv-
ing it, we get

{ 22(y)a'(y) + 2y — 22(y) 2 (y) = 0,

(2.6 V) =~ o /) =~

To find 2" (y) and 2”(y) we differentiate again in the formulas (2.6) and
get:

5x(y) —ya'(y 1z(y) —y2'(y

(2.7) x"(y):—— () 2()72//():__ () 2()
4 x(y) 4 2(y)

Now, it is easy to find 2/(0) = 0, 2/(0) = 0, 2"(0) = —;51 and 2”(0) = —i.

Here is an example when the velocity is zero at a point M but the

acceleration is not zero at the same point. Thus, one has a nonzero
force at a stationary point!

3. Functional dependence

Let A be an open subset of R” and let fi, fs, ..., f,, be m functions
defined on A with real values. We assume that each f; is of class C*
on A.
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DEFINITION 35. We say that {fi, fo,..., fm} are functional depen-
dent on A if one of them, say f,, is "a function” of the others

f1,f27 -‘-7fm—17

i.e. there is a function ¢(y1,Y2, ..., Ym—1) of m — 1 variables, of class
C' on R™L, such that

fm(%) = 0[f1(x), fa(X), - frna(x)],

for any x in A.
For instance,
(3.1) fi(w1, w2, 13) = 21 + 22 + 13, fo(1, T2, T3) = T12T9 + 2173 + ToT3,

f3($1, T, 7)3) = 7)% + I’g + .7}%
are functional dependent because f3 = fZ — 2fy. Thus, ¢(y1,v2) =
yi — 240
We know from Linear Algebra that fi, fo, ..., f, are linear depen-
dent if there are A{, Ao, ..., \,,, scalars, not all zero, such that

(3.2) MA+Xfo+ ..+ A\ufin =0,

Le. Aifi(x) + Aafa(x) + ... + A fim(x) = 0 for any x in A. Assume that
Am # 0, divide the equality (3.2) by A\, and compute f,,:

- )\1 )\2 )\m,1
fn= =it fi= b= = e

Hence, f1, fo, ..., fm are also functional dependent. Conversely it is not
true. For instance, the functions fi, fa, f3 from (3.1) are functional
dependent but they are not linear dependent (prove it!). This shows
that the notion of functional dependence from Analysis is more general
then the notion of linear dependence from Linear Algebra.

THEOREM 84. Let A be an open subset of R" and let f1, fo, ..., fm :
A — R be m function of class C* on A. If {f1, f2, ..., fm} are func-
tional dependent on A, then the rank of the Jacobian matriz of £ =

(f1, f2y oo fn) + A — R™ is less than m.

PROOF. Suppose that f,,(x) = ¢[f1(x), fo(x), ..., frm_1(x)] for all x
in A. Then,
Ofm _ 00 0fy N 99 0f; n ¢ Ofm-

e T Tt
(%j 8y1 aZL'j 8y2 (%j 8ym_1 (%j
for all j = 1,2, ...,n. This means that the m-th row of the matrix Jx ¢ is
a linear combination of the first m — 1 rows, so the rank of the Jacobian
matrix Jx g is less than m (why?-see any Linear Algebra course). [
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We say that fi, fo, ..., f, are dependent at a, a point in A, if there
is a neighborhood U of a, U C A, such that fi, fo, ..., f,n are dependent
on U. If fi, fs,..., fiu are not dependent at a, we say that they are
independent at a. If fy, fo, ..., f,, are independent at any point of A, we
say that f1, fa, ..., fn are independent on A.

THEOREM 85. If the rank of Jx¢ is equal to m for any x in A, then
f1, fa, ..., fm are independent on A.

PROOF. Suppose contrary, namely that there is a point a in A and
a small neighborhood U of a, such that fi, fs, ..., f,, are dependent on
U. Applying Theorem 84 we get that the rank of .J, ¢ is less than m. A
contradiction! Thus, fi, fs, ..., f;» are independent on A. O

We also have a reverse of the last two theorems.

THEOREM 86. With the above notation and hypotheses, if m < n, if
£ = (f1, fa, ., fm) 18 of class C* on A and if for a fized point a of A one
has that the rank of Ja ¢ is less than m, then there is a neighborhood U of
a, U C A, and s functions from {f1, fo, ..., fm}, say f1, fa, ..., fs, which
are independent on U, such that the other functions { fsi1, fs+2, -, fim}
are functional dependent on fi, fo, ..., fs on U. This means that there
are m — s functions ¢y, ¢, ..., d, . of class C* on R® such that

for1(x) = 1 (f1(x), s f5(X)), s fin (%) = & (f1(x), -, f(x))
for all x in U.

The proof involves some more sophisticated tools and we send the
interested reader to [Pal] or [F'S]. Let us apply this last theorem in a
more complicated example. Let

fi = 2123 + 2274
f2 = X1T4 — T2X3
fu=a? 4ot —a— a2

_ .2 2 2 2
Ji=x1+ x5+ 25+ 1]

be four functions of variables xy,xs,x3,24. The Jacobian matrix of

f= (f17f27.f3af4) at a = (17 1’0’0) is

00 1 1
00 —1 1
Javf_2200
22 0 0

Since the rank of this matrix is 3 and a nonzero 3 x 3 determinant
involves the first 3 rows, one sees that fi, fo, f3 are functional inde-
pendent at a and f; is a function of the others in a neighborhood of a.
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If we look carefully, we see that f7 = 4(f2 + f2)+ f2, 50 f1, f2, f3, fa
are functional dependent on the whole R*.

4. Conditional extremum points

Sometimes we have to find the extremum points for a function f
defined on a compact subset C' of R™. For instance, let C' be the closed
ball

B[0,3] = {(2,y,2) : 2* +y* + 2* <9},
centered at 0 = (0,0,0) and of radius 3. The problem of finding the
extremum points of the function f(x,y, z) = = + 2y + 3z defined on C
can be divided into two parts. First of all we find the local extrema
points of f defined only on the open set

B(0,3) = {(z,y,2) : 2* + y* + 2* < 9}
by using Fermat’s theorem, then we consider only the points on the
sphere 2%+ y? + 22 = 9 and try to find the extremum points M (x,y, 2)
of f, which verify this last supplementary condition (a constraint). This
last problem is an example of a conditional extremum points problem.

The general method for solving such problems is the "method of
Lagrange’s multipliers". In the following we shall describe this method.

Let A be an open subset of R” and let f, g1, g2, ..., gm (m < n) be
functions of class C* on A. We assume that ¢, go, ..., g,, are functional
independent on A, particularly, if g = (g1, g2,...,9m), its Jacobian
matrix Jx g has the rank m at any point x of A. Let S C A be the set
of all solutions (in A) of the following system of equations:

g1(x1, T, ..., x,) =0

(4.1)

gm(T1, 29, .., x,) =0

These equations are called constraints or supplementary conditions for
the variables 1, za, ..., x,,.

DEFINITION 36. We say that a point a = (aq,aq,...,a,) of S is
a local conditional mazximum point for f with the constraints (4.1) if
there is a neighborhood U of a, U C A, such that f(x) < f(a) for any
x tn U NS. The notion of a local conditional minimum point with the
same constraints, for the same function f, can be defined in the same
manner.

For instance, (0,0) is a local conditional minimum for f(z,y) =
2?2 + y defined on R with the constraint y — 22 = 0. Indeed, f(z,z?) =



214 11. IMPLICITLY DEFINED FUNCTIONS

222 > 0 = f(0,0) for any # € R. But (0,0) is not a local extremum
point for f.

Let A = (A1, A2, ..., \y) be a variable vector in R™. These new
auxiliary variables A\, Ao, ..., A, are called Lagrange’s multipliers and
the new auxiliary function

(42) (I)(l'l,l'g, vy Tns )\1a )\27 seey )\m) = (I)(X, A) = f(X) + Z Ajg](x)
j=1

is called Lagrange’s associated function.

THEOREM 87. (Lagrange’s Theorem) Let us preserve all the above
notation and hypotheses. Assume that a is a local conditional extremum
point for f, with the constraints (4.1). Then there is a vector X* =
(AT, A5, oy A ) in R™ such that the point

(a,A") = (a1, az, ..., an; AT, Ay ooy A)

is a critical (stationary) point for Lagrange’s function ®, i.e.
grad®(a, \*) = 0.

PRrOOF. (for n =2 and m = 1) Suppose that a is a local conditional
maximum point for f. Since g = ¢; is functional independent, it cannot
be a constant function, say %(a) # 0. We can apply the Implicit
Function Theorem and find a function h : U; — U, of class C! on Uy,
an appropriate neighborhood of a; (U is a neighborhood of as), such
that h(ai) = ag, g(x1, h(x1)) = 0 for all z; in U; and

99 (31, h(xy
(4.3) h'(a:l):——a_“”l( i)

L (a1, h(x1))

for all z; in U;. We can assume that the neighborhood of a, U = U; x Us
is sufficiently small such that f(x) < f(a) for any x in U. We define
now a new function D : U; — R, D(z1) = f(x1,h(xq)) for any x; in
Uy. Since D(z1) < D(aq), for all x; in U;, we see that a; is a local
maximum point for the function D. Use now Fermat’s Theorem and
find that D’(a;) = 0, or that

of of

6_x1(a) + 8_x2(a) -h'(a1) = 0.

Thus,

(4.4) W (ay) = — 22
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But the same A/(a;) can also be computed from the formula (4.3)

aa—xgl(al, az)

2 (ay,a)

W(ay) =

If we equals the both expression of h'(a;) we get

6)fa a—a—fa—g(a):O.
8x1 81'2 61‘2 81'1
Let us put
) B #
(@) 55(a)

and let us write the Lagrange’s auxiliary function for this "multiplier"
A"

O(x,\") = f(x) + Ag(x).
Let us compute the grad®(a,\*) by taking count of the value of \* from
(4.5):
Sr(aN) = gh(a) + A gL(a) =0

or1 )
o) = gxf:( )+ A 22 () = 0
a,\1< a,\") = g(a) =0, because a € S.
Hence grad®(a,\") = 0 and the proof is complete. O
Look now at the function
D(x, A*) = f(x) + Z Xig;j(x

where A* = (A], A5, ..., A7) is the vector just constructed in Theorem
87. It is easy to see that a is a local conditional maximum (for instance!)
for f if and only if a is an usual local maximum for the function T'(x) =
®(x, A"). Thus, if we want do decide if a stationary point (a, A*) of the
Lagrange function is a conditional extremum point, we must consider
the second differential of 7' at a. But, in the expression of d*T'(a) we
must take count of the connections between dzi, dxo,...,dx,. These
connections can be found by differentiating the equations 4.1:

29 (a)dry + ... + 92 (a)da, = 0

ggcm( Ydzy + ... + 8gm( )da, =0
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Since the rank of the Jacobi matrix J, g is m < n, this linear system
in the unknown quantities dx, dxs, ..., dz, has an infinite number of
solutions. Namely, say that the last n — m unknowns dx,, 1, ..., dx,
remain free and the others dxy, dxs, ..., dx,, can be linearly expressed
as functions of the last n—m. Thus, the differential d>®(a, A*) becomes
a quadratic form in n — m free variables. The sign of this last one must
be considered in any discussion about the nature of the point a.

Let us find the points of the compact 22 + y?> < 1 in which the
function f(z,y) = (z—1)?>+(y—2)? has the maximum and the minimum
values. Let us find firstly the local extrema inside the disc: 22 +3? < 1.

0 0
8_£:2(x_1):0’8_§:2(y_2)20'
So the critical point is M(1,2). But this point is outside the disk, thus
M (1,2) is not a local extremum point of f.
Let us consider now the local conditional problem:

max(min) f

with the restriction

g(z,y) =2 +y* —=1=0
The auxiliary Lagrange’s function is

O(z,y,\) = f(o,y) + Ma* +y* = 1).

Let us find its critical points:

% =2(x—1)+2\x =0

a—yaq): 2(y2— 2)2+ 20y =0
S =v"+y*—1=0

oA

Solve this system and find z = )\LH and y = /\LH (why A cannot be

1), M=Vl =g = Fand o = —VE -1, 1 = —
y Y1 = —\%. Let us denote Ml(\/i57 \/lg) and Mg(—\/ig, —\%) In order to
see the nature of these critical points, let us find the expression of the
second differential of ®(z,y, A) for a constant parameter A\. We find

O (x,y,\) = (2 + 2)\)da® + (2 + 2\)dy>.
Since zdx + ydy = 0, then dy = —%dw, S0,
2

T
d*®(x,y,\) = (2+2)\)(1 + ?)dﬁ.

For \y = /5 — 1, we get that M is a local conditional minimum. For
Ay = —/5 — 1, we obtain that M, is a local conditional maximum.
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Hence, the global maximum of f on the compact subset {(z,y) : 22 +
y?<1}is f (—\%, —\%) = 6 + 3v/2. Tts global minimum is 6 — 3v/2.

Let us consider now a practical problem of conditional extremum.
Let us find the distance between the line x — y = 5 and the parabola
y = z%. Let L(zy,y;) be a running point on the line and let P(z2,ys)
be a running point on the parabola. The square f(x1,22,91,y2) =
(11 — 22)% + (y1 — y2)? of the distance between two such points must
be minimum and the constraints are

g1(21, 02, 91,y2) =21 — 1 — 5 =0
and
92(1’17952791;3/2) = x% — Y2 =

The Lagrange’s function is

Q(x1, 2, y1,Y2; A1, A2) = (21 — 962)2 + (y1 — y2)2 +
+)\1<I1 — Y1 — 5) + )\2(%% — yg).

If we solve the 4 x 4 algebraic system grad® = 0, we get 7; = 2

87
y1 = —X, x5 = 3, y» = 7 and the corresponding distance is —4%.

5. Change of variables

What is the plane curve zy = 27 We know that an equation of the

2
form z—j — ¥y = 1 is a hyperbola. If we introduce two new variables X
and Y such that x = \%X — \%Y and y = \%X + \%Y, we introduce in
fact a new cartesian coordinate system XOY which is obtained from

xOy by a rotation of 45° in the direct sense (see Fig.10.2).



218 11. IMPLICITLY DEFINED FUNCTIONS

¥

Fig. 10.2

Our initial curve 2y = 2 becomes X? — Y? = 4, i.e. we have an
usual hyperbola with a = b = 2 relative to the new cartesian coordinate
system XOY.

The moral is that sometimes is better to change the old cartesian
coordinate system i.e. to change the old variables z, xs, ..., x, with
another new ones y1, ¥s, ..., ¥, Which are functions of the first ones:

Y = yl(ajla Loy eeey xn)

(5.1)

Un = Yn(T1, T2, ..., 2p)

Here we forced the notation. The function of n variables which defines
the new variable y; is also denoted by y;, etc.

DEFINITION 37. Let D, ) be two open subsets of R™ and letf : D —
Q be a diffeomorphism of class C* on D, i.e. f is a bijection, it is of
class C* on D and its inverse £=' is also of class C* on €. Usually,
k=1 or2. We call such a f a change of variables of class C*.

If we write

f(z1, 29, ...y xn) = (y1(x1, T2, ooy Tn)y ooey Yn (X1, T2y ooy ),

we have a representation like (5.1) for the vector function f. We also call
such a representation a change of variables. We represent the inverse



5. CHANGE OF VARIABLES 219
of f by:
T = xl(ylny; 7yn)

(5.2)

Tp = xn(yhy% 7yn)

In fact, we solved the system (5.1) and we computed z1, xs, ..., ,, as
functions of vy, ys, ..., y,. For instance, if y; = 1+ x5 and y, = 221 — 9,
then x; = %(yl + y2) and x5 = %(Zyl — Ya).

If one considers an expression like

99 O )
’ 5’%’ 81’]'8%2" o

the problem is to find an appropriate change of variables of the form
(5.2) such that the new expression in the new variables y1, yo, ..., ¥, has
a simpler form. Thus, the "old" function g(xi,zs,...,z,) becomes a
"new" function g(y1, y2, ..., Yn). The relations between these two func-
tions are

E(x1,x9, ..., Tn, g(T1, Ta, ..., Tp)

(5.3) (Y1, Y2, - Yn) = 9(@1(Y1, Y2, s Un),s ooy T (Y1, Y2, - Yn))

and

(5.4) gz, 29, ..., x0) = GV (T1, oy ooy T)y ooy Yn (21, T2y ooy ).
Now, the problem is to express the partial derivatives

dg 0?g
o, (T1, T, ..., Tp), 9,0, (T1, T2, oty Tp)s o
only in language of the partial derivatives of the new function
9(y1, Y2, .-, Yn). This is an easy job if we know to manipulate the
chain rules. For instance, if x = (z1, %2, ..., x,) and y = (y1, Y2, -, Yn),
from (5.4) one has:

g . _ 99 Oy g OYn
52 ) = 5y ) 3, X ¥ 5, ), )

1 = 1,2,...,n. To have "everything" in y1,ys, ..., ¥, we finally put in-
stead of =1, x1(y1, Y2, .-, Yn), - .-, instead of x,, T, (Y1, Y2, -, Yn)-

For instance, let us make the substitution (change of variables)
x = exp(t) in the following Euler’s equation:

(x

d? d
xzd—;;—l—:vd—:yc =0,z > 0.
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First of all recall the differential notation: y = y(z), ¥/'(z) = % (since
dy = y'(r)dx) and y"(z) = 32712/ (since d*y = y"(x)dx?-see the formula

for the second differential!). Let us denote by %(t) = y(exp(t)). Since
y(x) = y(Inz), one has that

dy _dy dt_dy 1, od o d

de —dt de dt @ Cdw @ TPV

Let us compute

Ry d (dy\ d (dy d (dy
R (%) = (% : exp(—t)) == <% . exp(—t)) -exp(—t).

Applying the rule of the differential of a product, we get:

d? d? d

Substituting in the initial equation, we get flig =0, ie 5= Cit+ (s,
where C, Cy are arbitrary constants. Thus, y(z) = Cjlnz + Cy and
we just found the general solution of the initial differential equation.

6. The Laplacian in polar coordinates

The polar coordinates p,# were introduced in Example 18. The
"linear operator" A, the Laplacian, carries functions u(z,y) of class
(2, defined on a fixed domain D C R? into continuous functions:

(‘92u+82u A 0? N 0?
=—4+ —,i.e.A=—+ —.

ox?  Oy? ox?  Oy?

For instance, in order to solve the famous Laplace equation, Au = 0,
which appears in many applications, we sometimes need to write the
operator A in polar coordinates p and 6. We know that

{ x = pcosb

Au

y = psinf "’

where p € (0,00) and 6 € [0,27). The Jacobian of this transformation
is det Ji, 0 = p # 0, where g(p,0) = (pcost, psind). Let us denote
by @(p,0) = u(pcosf, psinf), the new function in the new variables p
and 6. Let us denote by p = p(x,y) and by 6 = 0(z,y) the coordinates
of the inverse function g~—!. Thus,

u(z,y) = u(p(z,y),0(x,y)).

Hence,
bu _ omop | om0
(6 1) Ox ~ 0OpOx 00 oz
: ou _ 0n0p | ouob
Oy = 9Op oy 0 Oy
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These last relations can be represented in a matrix form

u 9p 90 ou
W B-EDE
oy dy Oy 26
Since g o g~! = the identity mapping, we have that
(% %)tmns [ ]71 (cos@ —psin 0) - (0080 sin 9)
00 = 0), = 1 = __sind cosd .
55 5y (r0).& sinf  pcosf ; ;
Let us come back to formula 6.2 and find:

Qu cosf —sinl Ju

g'ﬁ = COSpe gB

ou ) 5 -

By sin 6 > o0
Let us write this formula in a nonmatriceal form:

Ou __ Ou _ Ousind
9 = op cos 0 p
Ou __ Ou sin 6 + Ou cos 6

(6.3)

9y — 9p
Let us use now these formulas and the chain rules formulas 2.7, 2.8 to
compute Au = % + ?)273 :

Pu_ 0*u o §9 0*u sin 6 cos 0+82E sin? 9+(‘9_ﬂ sin? 9+ Jusinf cos 0
ox2  Op? dpdd  p 20> p2 Op p a0  pr
Pu_ 0*u <in? 042 0*u sin 6 cos 6 N 0% cos? 0 +@ cos’# _dusinf cosd
o2 0p? 0p0b p a0* p2  dp p 00  p?

Hence, the formula for the Laplacian in polar coordinates is:

Pu 10w 10u

o ol pop

This formula will be used later in the course of partial differential equa-
tions with direct applications in Engineering.

Au =

7. A proof for the Local Inversion Theorem

Here we present a complete proof for the Local Inversion Theorem
(see Theorem 80). We prefer an elementary longer proof then a shorter
sophisticated one. Let us state again this basic result.

THEOREM 88. Let A be an open subset of R™ and let f : A — R"
be a function of class C' on A. Let a be a point in A such that the
Jacobian determinant det Jo¢ # 0. Then there are two open sets X C A
andY C f(A) and a uniquely determined function g with the following
properties:

i)ac Aandf(a) €Y,

i) Y =£(X),

ii)g:Y — X, g(Y) =X and g(f(x)) = x for any x in X,
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w) g is of class C* on'Y and the restriction of f to X, f |x: X =Y
is a diffeomorphism with g = (f |x)~'. Particularly,

Jeg = (Jxg)

and
1

" det Jog

Proor. STEP 1. First of all let us remark that if (h;;(x)),4,j =
1,2,...,n are n? continuous functions defined on A, such that

det[h;;(a)] # 0, then there is a small closed ball Bla, r| with centre
at a and of radius r > 0, Bla,r] C A with the property that whenever
we take n? points {x;;} in Bla,r], one has that det[h;;(x;;)] # 0. In-
deed, let us define a continuous function of n? variables on the product
AxAx .. xA:

n2—times

det Jf(x)yg

D(Xll, X127 vy Xlna ceey an, Xn27 ceey Xnn) = det[h”(X”)]

Since D(a, a, ...,a) = det(h;j(a)) is not zero, say D(a,a,...,a) > 0, one
can find a small ball B(a,r") C A, 7’ > 0, on which
D(x11, X9, -y Xy ) = det(hij(x55)) > 0

for every x;; in B(a, r’) (see Theorem 57). If one takes any r, 0 < r < 1/,
then det(h;;(x;;)) > O for any arbitrary n? elements {x;;} in Bla,r]. In
our case, det Jo¢ = (det %(a)) # 0, where f = (f1, fo, ..., fn). Hence,
we can find a small closed ball W = Bla,r] C A, r > 0, on which
(det ng;(xij)) # 0 for any n? elements x;; in W.

STEP 2. Let us prove now that the restriction of f to W is one-to-
one. Suppose that x and z are in W such that f(x) = f(z). This means

that for every i = 1,2,...,n one has that f;(x) = fi(z). Let us apply
the Lagrange theorem (see Theorem 73) on the segment [x,z] :

—~ Jf;

a—xj(c(i)) (x5 — ),
j=1

where ¢ is a point on the segment [x,z] and x =(z1, 73, ...,7,), Z =

(21, 22, ..., 2n). Since the segment [x,z] is contained in W (why?), all

c®, i = 1,2,...,n, are contained in W and so, det (%(c(i))) £ 0.
J

Hence, the homogeneous linear system

_-on

0 o, (D) - (z; — 2)),

j=1
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1t =1,2,...,n, in the unknowns z; — 21, T2 — 29, ..., T, — 2, has only the
trivial solution, i.e. 1 = 21, ..., 2, = 2, or X = z. Thus, f is one-to-one
on W = Bla,r].

STEP 3. Let us prove now that the image f(Z) of Z = B(a,r),
the interior of W, is an open subset of R". Indeed, let us define the
continuous function g : 9Z — R (here 0Z = W \ Z is the boundary of

Z):

9(x) = [[f(x) — f(a)][,
for x € 0Z. Since 0Z is a compact subset of R" (prove it!) and since
f is one-to-one (see STEP 2), the minimum value m of g on 97 is > 0

(why?). Let us denote by 7" = B(f(a),7) and let us prove that this

open ball 7" is contained in f(Z). For this, let y be a fixed element in
T and let us define the following continuous function:

h(x) = [If(x) -yl
for any x in W. Let us see that the absolute minimum of A cannot be
attained on the boundary 9Z. Indeed, since

ha) = [|f(@) ~yl < 3.

one has that min h(x) < . But, if x € 0Z, we have
h(x) = [[f(x) — y|| = [[f(x) — f(a)|| — [[f(a) — ¥
> g(x) >
X _—— —_—
g 5 = 9
i.e. h(x) > % for any x in 0Z. Hence, let ¢ be in Z such that
h(c) = min{h(x) : x € W}.
This c also realizes the absolute minimum for
(%) = [If(0) — yII* = Y [ (x) — ]
r=1
Then Fermat’s theorem says that:

a 8 '
awk {Z[fr( Yr } = 22 f?“ 7" a£k<x>

r=1

is zero at c, i.e.

§jaﬁ () =] = 0

8xk

for every k = 1,2, ...,n. This is again a homogenous linear system in
the unknowns {f,(c) — v}, with a nonzero determinant. Hence, we
have only the trivial solution, i.e. f.(c) = y, for every r = 1,2,...,n
Thus, f(c) =y and so y € f(Z). But, the same type of reasoning can
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be done for any other b = f(e), where e € Z and b € f(Z). Namely,
we take a sufficiently small open ball B(e,r"”) C B(a,r) and we repeat
the above reasoning for B(e,r”) instead of B(a,r). We find that

/!

T' = B(b, %) C £(B(e,r")) C £(2)

for the minimum m’ of the function
x — [|If(x) — f(e)]]

defined on 0B(e,r”). Hence, f(Z) is open in R". Moreover, f carries an
open subset X of Z into an open subset f(X) of R™ (why?).

STEP 4. Let now Y = B(f(a),r’) be an open ball centered at
f(a) such that its closure B[f(a),r'] is included in f(Z) and let X =
f~1(Y)N Z. It is clear that the restriction f |, : X — Y is a continuous
bijection between X and Y. Let g : Y — X, g(y) = x be its inverse.
Let X and Y be the topological closure of X and Y respectively. They
both are compact subsets of R" and f |¢: X — Y is also a bijection,
because X C W and f is one-to-one on W (see STEP 1). Its inverse
(flx)™' : Y — X is continuous (because f is continuous and X and
Y are compact sets...it reverses closed subsets into closed subsets!).
Since the restriction of (f |x)™" to YV is exactly g (why?), g is also a
continuous mapping and g(f(x)) = x for any x in X.

STEP 5. It remains us to prove that g = (g1, 92, ..., gn) is of class
C'onY. We fix an r = 1,2,...,n and we shall prove that g—gi exists
at any fixed point y in Y and that they are continuous. Let e, =
(0,0,...,0,1,0,...,0) be the r-th unit vector in R” (with 1 at the r-th
position!) and let us consider the difference quotient:

9;(y + ter) — g;(y)

t Y
where t is a small real number such that y +te, € Y (Y is open). Let
x = g(y) and x' = g(y+te,). Thus,

f(x') — f(x) = te,

(7.2)

implies that

(73 ) = () = {

Let us apply Lagrange’s theorem (see Theorem 73) for f; on the segment
(x,x'] C Z. We get:

) - A Ofi iy %5~ T
(7.4) Oorl= ; = 2. oz, (d") P

0, ifi #r,

t, ifi=r.
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i =1,2,...,n, where d? is a point on the segment [x,x’] C Z. Since

det [%(d(i))] # 0, the linear system (7.4), in variables {@}] has
a unique solution (Cramer’s rule):

ri—xy A
t A’
J = 1,2,..,n, where A and A; are determinants with entries of the
form ng;(d(i)), 0, or 1. When ¢t — 0, the determinant A — Jy¢ # 0
(why?), so

S % L0 o (Py), Py, Py
A? A AR A ayr y 7ayT y PR ayT y Y

i.e all the partial derivatives %(y) exist. Since their expressions in-

volve only partial derivatives of the type %(x) which are continuous,
J

the function g is of class C! on Y and the proof of the Local Inversion
Theorem is now complete. O

The proof is long, but elementary and very natural. Trying to
understand this proof one remembers many basic things from previous
chapters. Moreover, the proof itself reflects some of the indescribable
Beauty of Mathematical Analysis.

8. The derivative of a function of a complex variable

Let A be an open subset of the complex plane C. If we associate
to any complex number z = x + iy of A, where z,y are real numbers
and i = /—1 is a fixed root of the equation 22 + 1 = 0, another
complex number w = f(z), we say that the mapping z — f(z) is
a function of a complex variable defined on A. Like in the case of a
function of a real variable, we say that f has the limit L at the point
20 = xo + iy of A if for any sequence {z,}, n = 1,2, ..., of complex
numbers z, = T, + W, Tn, Y, € R, which tends to a, one has that
f(zn) — L. If L = f(20) we say that f is continuous at zy. Let us
assume that f(x + 1) = wu(z,y) + iv(x,y), where u and v are two
real functions of two variables. One calls u = Re f, the real part of f
and v = Im f, the imaginary part of f. It is not difficult to see that
f is continuous at zy = ¢ + iy if and only if u and v are continuous
at (zo,yo). Let us define the derivative of a function f of a complex
variable z at a fixed point z,. We say that f is differentiable at zy if
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the following limit exists and is finite:

(81) ti A= = )

We denoted its value by f’(z9) and we call it the derivative of f at z.
For instance, (22)" = 2z, because

22— 22
lim 0 = lim (2 + 20) = 220.
Z—20 2 — 20 220

Generally speaking, the usual differential rules of the functions of a real
variable also works for functions of a complex variable. For instance,

! /P
(f+9) = f'+g. (@f) =af, (f9) = Fa+ g, (£) = L5
(fog)(z) = f'(g(2) - ¢'(2), (sinz) = cosz, (exp(z)) = exp(z), etc.
Many formulas in complex function theory (the theory of functions

of a complex variable) can be easily proved by using the following
fundamental result.

THEOREM 89. (Identity Theorem) Let A be a subset of complex
numbers with at least one limit point and let f and g be two differ-
entiable complex functions defined on a complex domain B (it is open
and connected) which contains A. Assume that f and g are equal at any
point of A. Then f and g are identical, this means that f(z) = g(z) for
all z of B.

For a proof of this basic result see any book of complex function
theory (see for instance [ST|). Let us use this result to compute the
derivative of exp(z) = > o %, z € C. Let us denote by g(z) the
derivative of exp(z). Since for any real number x one has that exp(z)’ =
exp(x), we have that g(x) = exp(z) for any x in R. But all the point
of R are limit points so, g(z) = exp(z). Here we tacitly used another

basic result of complex function theory.

THEOREM 90. If a complex function f : A — C, where A is a
complex domain, is differentiable on A, then it has derivatives of any
order on A, i.e. it is of class C'*° on A.

Following an analogous theory like the Weierstrass theory for the
real series of functions, we can prove that exp(z) is a differential func-
tion. Hence, its derivative g(z) is also differentiable on C. This is why
we could apply Theorem 89 for the complex function exp(z).

What can we say about the two variables real functions u = Re f
and v = Im f if f is differentiable at a point 2,7

THEOREM 91. (Cauchy-Riemann relations) If the function f(x +
iy) = u(x,y)+iv(z,y) is differentiable at a point zy = xo+1iyo, then the
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two variables real functions v and v have partial derivatives at (o, yo)
and between them we have the following relations (the Cauchy-Riemann
relations):

0 0 0 0
(8-2) 8_z($0’y0) = 8_:(m0’y0)’ 8—5(1’07%) = _a_z,(l’myo)

Moreover, f'(z) = %(xo,yo) + i%(anyO) = g_;(l“o;yo) - ig—Z(ﬁo,yo)-
Proor. If f is differentiable at the point zy the following limit
exists:
lim f(Z) B f(ZO) _ f,(ZO)'
Z—20 Z — ZO

This means that for any sequence (z,,y,) which converges to (o, o)
(in R?) one has that
(8.3)
lim 'Uz(.an, yn) — U(.CCU’ Z/O) + ?[’U(‘Tn7 yn) B U(x07 Z/O)] _ f,<ZO)'
Tn—T0,Yn—Y0 Tp, — 2o + 1 (Yn — Yo)

Firstly take here y, = yo for any n = 1,2, .... We get

ou Ov
(8.4) %(9607 Yo) + Z(’?_a:<x0’ Yo) = f'(20).
Secondly, let us consider in (8.3) z,, = 2 for any n = 1,2, .... We find
1 [Ou Ov
(8.5) A a—y(foa Yo) + Za—y(an o) | = f'(20)

Comparing (8.3) and (8.5) we get the Cauchy-Riemann relations (8.2).
U

The Cauchy-Riemann relations imply that the real and the imagi-
nary part of a differentiable complex function are harmonic functions,
i.e. they are solutions of the Laplace equation:

Pu  O%u
and , ,
0“v  0%v
AU = @ + 8_342 - 0
(prove it!).

Let f = u + iv be a complex function differentiable on a complex
open subset A and let F(z,y) = (v(z,y), u(x,y)) be its associated field
of plane forces. By definition, the curl (the rotational) of F is the 3-D
vector field curl F =(0, 0, g—z — g—Z). Since g—z = g—z on A, one sees that
curl F = 0 i.e. the vector field F is irrotational. By definition, the
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divergence of F is divF :% + Z—Z. But this last one is 0 because of the
second Cauchy-Riemann relation.

Moreover, if one know one of the two functions u or v, one can
determine the other up to a complex constant, such that the couple
(u,v) be the real and the imaginary part respectively of a differentiable
complex function f. Indeed, suppose we know u and we want to find v
from the Cauchy-Riemann relations:

87) Gwy) =~ (w)
and
88) o) = 5w

From (8.7) we can write

v@wz—/%@wm+c@.

We prove that we can determine the unknown function C'(y) up to a
constant term. Let us come to the relation (8.8) with this last expres-
sion of v. Here we use the famous Leibniz formula on the differential
of an integral with a parameter (see the Integral calculus in any course
of Analysis):

ou 0%u ,
e == [ S+ C').

From (8.6) we find

89) Gre) = [ S5@)de+ ') = So) + K) +C),

where C'(y) and K (y) are functions of y. From (8.9) we get

C'(y) = —K(y).
Therefore, always one can find the function C(y), and so the function
v(x,y) up to a real constant c¢. Hence, we can determine the function
f =wu+iv up to a purely imaginary constant ic.
For instance, let us consider u(z,y) = 2% — y* and let us find f (if
it is possible! It is, because u is a harmonic function!-this is the only
thing we used above!). The Cauchy-Riemann relations become:

ov
%(w,y) =2y

and

ov
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Let us integrate the first equality with respect to x
v(x,y) = 2zy + C(y),

where C(y) is a constant function with respect to  but,...it can depend
on y! Come now to the second relation and find

2z = 2z + C'(y),

so, C'(y) =0, i.e. C(y) does not depend on y. It is a pure constant c.
Hence, v(z,y) = 2zy+cand f(z) = 22 —y*+i(2zy+c) = (z+1iy)* +ic,
where ¢ is a real arbitrary constant.

Let us now come back to formula (8.1) and consider an arbitrary
smooth curve vy which passes through zy. Let us take z very close to zg
but on the curve v. So, we can approximate:

f(z)_f(zo) ~ !
(8.10) . f'(=0)
Hence,
f(20) = |2 = 20| | f'(20)| =

2 81} 2
|z — o] Io,yo + |:%($0790):| .

So, the length of the segment (20), f(2)] is proportional to the length
of the segment [z, z|. The "dilation" coefficient

A= \/{%(:Uo,yo)r + B—Z(?ﬁo,yo)r

does not depend on the curve on which z becomes closer and closer to
20

Let us recall that any complex number z can be uniquely written as:
z = rexp(ia), where o € [0,27). This angle « is called the argument
of z. From the formula (8.10) we get

(8.11) arg [f(z) — f(20)] = arg(z — 2) + arg f'(z0).

Here we assume that f/(zp) # 0. Formula (8.11) says that in a small
neighborhood of zy our differentiable function preserve the angle be-
tween two curves which pass through zy (why?). So, we can locally
approximate the action of a differentiable function by a rotation of
angle arg f'(zp), followed by a "dilation"(or a "contraction") of coeffi-
cient |f’(z9)|. We assume that f’(z9) # 0. Otherwise, the transforma-
tion z — f(z) is almost constant around zp. A transformation of the
complex plane into itself with this last two properties is called a con-
formal transformation. These are very important in some engineering
applications (hydraulics, fluid mechanics, electricity, etc.).
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If we write the plane transformation z — f(z) as
(2, y) = (u(z,9),v(z,y)),
where f(z) = u + v, the Jacobian determinant of this at (xg, yp) is
%(xmyo) %(Io,yo) _
52 (0, Yo) a_Z(ﬂUO, Yo)

ou 2 ov 2 , 2
{%(%, yo)] + la—x(%,yo)} = [f"(20)|"-
Here we used again the Cauchy-Riemann relations. If we want that our
transformation z — f(z) to be locally invertible around the point zy,
we must assume that f'(zp) # 0 (see the Local Inversion Theorem). In
this last case, this transformation is locally a conformal transformation,

i.e. it preserves the angles (with their directions) and it changes the
lengthens with the same "velocity" around the point z.

9. Problems

1. Find ¢/(z) if y = 1+y”. Why we cannot perform this computation
for the points on the curve zy* ! =1,y > 0?
d 4%y

2. Compute 3 and 4, if y = v +Iny, y # 1.

3. If z = z(x,y) and
234+ 23 4+ 2% — 3ayz — 2y +3 =0,

find dz and d?z.

4. Find inf f and sup f for:

a)

f(z,y) = 2* + 329* — 152 — 12y;
b)
flz,y) =y

withx +y—1=0;

c)

flz,y,2) =" +y* + 2

with ax 4+ by + cz — 1 = 0 (What this means?);

5. Find the distance from M (0,0, 1) to the curve {y = 2?} N {z =
z?}.

6. Find the distance between the line 3z 4y —9 = 0 and the ellipse
248 _1=0,

7. Compute the velocity and the acceleration on the circle

P+ +2=a*In{z+y+z=a}

by using a parametrization of the type: = =z, y = y(x), z = z(z).
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8. Are the functions
u=(r+y+2)?>v=3x—y+3z,w=2+ry+yz+zx

independent at (0,0,0)7
9. Change the variables in the following expressions:

d2
(1-a%)=5 — ol +wy =0,
T = cost;
b)
, 0%z ,0%2

x
g TV 8—y2:0,u:9§y,v:§;
2

c) (%)2 + <‘3—Z> , v = pcosl, y= psinb;

10. Find all ® such that v = ®(z + y) and v = ®(z)P(y) be
dependent on R2.

11. Prove that the following complex functions are differentiable
and find their derivatives. Take a point z; and study the geometrical
behavior of the transformation z — f(z) around this point 2.

a) f(2) = 32+ 2 b) f(2) = 2iz+3; ¢) f(z) = L, |2 >

d) f(z) =exp(iz); e) f(2) = 2° +2, 2 # 0; g) f(z) = zsinz;
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