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Introduction

These notes are intended to be a summary of the main ideas in
course MATH 214-2: Integral Calculus. I may keep working on this
document as the course goes on, so these notes will not be completely
finished until the end of the quarter.

The textbook for this course is Stewart: Calculus, Concepts and

Contexts (2th ed.), Brooks/Cole. With few exceptions I will follow the
notation in the book.

If you find any typos or errors, or you have any suggestions, please,
do not hesitate to let me know. You may email me, or use the web
form for feedback on the web pages for the course:

http://www.math.northwestern.edu/~mlerma/courses/math214-2-02f/

Miguel A. Lerma
mlerma@math.northwestern.edu
Northwestern University
Fall 2002
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CHAPTER 1

Integrals

1.1. Areas and Distances. The Definite Integral

1.1.1. The Area Problem. The Definite Integral. Here we
try to find the area of the region S under the curve y = f(x) from a to
b, where f is some continuous function.

baO

Y

X

y=f(x)

S

In order to estimate that area we begin by dividing the interval
[a, b] into n subintervals [x0, x1], [x1, x2], [x2, x3], . . . , [xn−1, xn], each
of length ∆x = (b − a)/n (so xi = a + i∆x).

baO

Y

X

6
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The area Si of the strip between xi−1 and xi can be approximated
as the area of the rectangle of width ∆x and height f(x∗

i ), where x∗
i

is a sample point in the interval [xi, xi+1]. So the total area under the
curve is approximately the sum

n∑

i=1

f(x∗
i ) ∆x = f(x∗

1) ∆x + f(x∗
2) ∆x + · · · + f(x∗

n) ∆x .

This expression is called a Riemann Sum.

The estimation is better the thiner the strips are, and we can iden-
tify the exact area under the graph of f with the limit:

A = lim
n→∞

n∑

i=1

f(x∗
i ) ∆x

As long as f is continuous the value of the limit is independent of the
sample points x∗

i used.

That limit is represented
∫ b

a
f(x) dx, and is called definite integral

of f from a to b:
∫ b

a

f(x) dx = lim
n→∞

n∑

i=1

f(x∗
i ) ∆x

The symbols at the left historically were intended to mean an infinite
sum, represented by a long “S” (the integral symbol

∫
), of infinitely

small amounts f(x) dx. The symbol dx was interpreted as the length of
an “infinitesimal” interval, sort of what ∆x becomes for infinite n. This
interpretation was later abandoned due to the difficulty of reasoning
with infinitesimals, but we keep the notation.

Remark : Note that in intervals where f(x) is negative the graph of
y = f(x) lies below the x-axis and the definite integral takes a negative
value. In general a definite integral gives the net area between the
graph of y = f(x) and the x-axis, i.e., the sum of the areas of the
regions where y = f(x) is above the x-axis minus the sum of the areas
of the regions where y = f(x) is below the x-axis.

1.1.2. Evaluating Integrals. We will soon study simple and ef-
ficient methods to evaluate integrals, but here we will look at how to
evaluate integrals directly from the definition.

Example: Find the value of the definite integral
∫ 1

0
x2 dx from its

definition in terms of Riemann sums.
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Answer : We divide the interval [0, 1] into n equal parts, so xi = i/n
and ∆x = 1/n. Next we must choose some point x∗

i in each subinterval
[xi−1, xi]. Here we will use the right endpoint of the interval x∗

i = i/n.
Hence the Riemann sum associated to this partition is:

n∑

i=1

(
i

n

)2

1/n =
1

n3

n∑

i=1

i2 =
1

n3

2n3 + 3n2 + n

6
=

2 + 3/n + 2/n2

6
.

So:
∫ 1

0

x2 dx = lim
n→∞

2 + 3/n + 2/n2

6
=

1

3
.

In order to check that the result does not depend on the sample
points used, let’s redo the computation using now the left endpoint of
each subinterval:

n∑

i=1

(
i − 1

n

)2

1/n =
1

n3

n∑

i=1

(i−1)2 =
1

n3

2n3 − 3n2 + n

6
=

2 − 3/n + 2/n2

6
.

So:
∫ 1

0

x2 dx = lim
n→∞

2 − 3/n + 2/n2

6
=

1

3
.

1.1.3. The Midpoint Rule. The Midpoint Rule consists of com-
puting Riemann sums using xi = (xi−1 + xi)/2 = midpoint of each
interval as sample point. This yields the following approximation for
the value of a definite integral:

∫ b

a

f(x) dx ≈
n∑

i=1

f(xi) ∆x = ∆x [f(x1) + f(x2) + · · · + f(xn)] .

Example: Use the Midpoint Rule with n = 5 to approximate
∫ 1

0
x2 x.

Answer : The subintervals are [0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8],
[0.8, 1], the midpoints are 0.1, 0.3, 0.5, 0.7, 0.9, and ∆x = 1/5, so

∫ 1

0

x2 dx ≈ 1

5

[
0.12 + 0.32 + 0.52 + 0.72 + 0.92

]
= 1.65/5 = 0.33 ,

which agrees up to the second decimal place with the actual value 1/3.
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1.1.4. The Distance Problem. Here we show how the concept of
definite integral can be applied to more general problems. In particular
we study the problem of finding the distance traveled by an object with
variable velocity during a certain period of time.

If the velocity v were constant we could just multiply it by the time
t: distance = v × t. Otherwise we can approximate the total distance
traveled by dividing the total time interval into small intervals so that
in each of them the velocity varies very little and can can be considered
approximately constant. So, assume that the body starts moving at
time tstart and finishes at time tend, and the velocity is variable, i.e., is
a function of time v = f(t). We divide the time interval into n small
intervals [ti−1, ti] of length ∆t = (tend− tstart)/n, choose some instant t∗i
between ti−1 and ti, and take v = f(t∗i ) as the approximate velocity of
the body between ti−1 and ti. Then the distance traveled during that
time interval is approximately f(t∗i ) ∆t, and the total distance can be
approximated as the sum

n∑

i=1

f(t∗i ) ∆t

The result will be more accurate the larger the number of subintervals
is, and the exact distance traveled will be limit of the above expression
as n goes to infinity:

lim
n→∞

n∑

i=1

f(t∗i ) ∆t

That limit turns out to be the following definite integral:
∫ tend

tstart

f(t) dt

1.1.5. Properties of the Definite Integral.

(1) Integral of a constant:

∫ b

a

c dx = c (b − a).

(2) Linearity:

(a)

∫ b

a

[f(x) + g(x)] dx =

∫ b

a

f(x) dx +

∫ b

a

g(x) dx.

(b)

∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx.

(3) Interval Additivity
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(a)

∫ c

a

f(x) dx +

∫ b

c

f(x) dx =

∫ b

a

f(x) dx.

(b)

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx,

(c)

∫ a

a

f(x) dx = 0.

(4) Comparison:

(a) f(x) ≥ 0 ⇒
∫ b

a

f(x) dx ≥ 0.

(b) f(x) ≥ g(x) ⇒
∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx.

(c) m ≤ f(x) ≤ M ⇒ m (b − a) ≤
∫ b

a

f(x) dx ≤ M (b − a).
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1.2. The Evaluation Theorem

1.2.1. The Evaluation Theorem. If f is a continuous function
and F is an antiderivative of f , i.e., F ′(x) = f(x), then

∫ b

a

f(x) dx = F (b) − F (a) .

Example: Find
∫ 1

0
x2 dx using the evaluation theorem.

Answer : An antiderivative of x2 is x3/3, hence:
∫ 1

0

x2 dx =

[
x3

3

]1

0

=
13

3
− 03

3
=

1

3
.

1.2.2. Indefinite Integrals. If F is an antiderivative of a function
f , i.e., F ′(x) = f(x), then for any constant C, F (x) + C is another
antiderivative of f(x). The family of all antiderivatives of f is called
indefinite integral of f and represented:

∫

f(x) dx = F (x) + C .

Example:

∫

x2 dx =
x3

3
+ C.

1.2.3. Table of Indefinite Integrals. We can make an integral
table just by reversing a table of derivatives.

(1)

∫

xn dx =
xn+1

n + 1
+ C (n 6= −1).

(2)

∫
1

x
dx = ln |x| + C.

(3)

∫

ex dx = ex + C.

(4)

∫

ax dx =
ax

ln a
+ C.

(5)

∫

sin x dx = − cos x + C.

(6)

∫

cos x dx = sin x + C.

(7)

∫

sec2 x dx = tanx + C.
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(8)

∫

csc2 x dx = − cot x + C.

(9)

∫

sec x tan x dx = sec x + C.

(10)

∫

csc x cot x dx = − csc x + C.

(11)

∫
dx

x2 + 1
= tan−1 x + C.

(12)

∫
dx√

1 − x2
= sin−1 x + C.

(13)

∫
dx

x
√

x2 − 1
dx = sec−1 |x| + C.

1.2.4. Total Change Theorem. The integral of a rate of change
is the total change:

∫ b

a

F ′(x) dx = F (b) − F (a) .

This is just a restatement of the evaluation theorem.

As an example of application we find the net distance or displace-

ment, and the total distance traveled by an object that moves along a
straight line with position function s(t). The velocity of the object is
v(t) = s′(t). The net distance or displacement is the difference between
the final and the initial positions of the object, and can be found with
the following integral

∫ t2

t1

v(t) dt = s(t2) − s(t1) .

In the computation of the displacement the distance traveled by the
object when it moves to the left (while v(t) ≤ 0) is subtracted from
the distance traveled to the right (while v(t) ≥ 0). If we want to find
the total distance traveled we need to add all distances with a positive
sign, and this is accomplished by integrating the absolute value of the
velocity:

∫ t2

t1

|v(t)| dt = total distance traveled .

Example: Find the displacement and the total distance traveled by
an object that moves with velocity v(t) = t2− t−6 from t = 1 to t = 4.
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Answer : The displacement is
∫ 4

1

(t2 − t − 6) dx =

[
t3

3
− t2

2
− 6t

]4

1

=

(
43

3
− 42

2
− 6 · 4

)

−
(

13

3
− 12

2
− 6

)

= −32

3
−

(

−37

6

)

= −9

2

In order to find the total distance traveled we need to separate the
intervals in which the velocity takes values of different signs. Those
intervals are separated by points at which v(t) = 0, i.e., t2−t−6 = 0 ⇒
t = −2 and t = 3. Since we are interested only in what happens in [1, 4]
we only need to look at the intervals [1, 3] and [3, 4]. Since v(1) = −6,
the velocity is negative in [1, 3], and since v(4) = 6, the velocity is
positive in [3, 4]. Hence:

∫ 4

1

|v(t)| dt =

∫ 3

1

[−v(t)] dt +

∫ 4

3

v(t) dt

=

∫ 3

1

(t2 − t − 6) dt +

∫ 4

3

(t2 − t − 6) dt

=

[

−t3

3
+

t2

2
+ 6t

]3

1

+

[
t3

3
− t2

2
− 6t

]4

3

=
22

3
+

17

6
=

61

6
.
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1.3. The Fundamental Theorem of Calculus

1.3.1. The Fundamental Theorem of Calculus. The Funda-
mental Theorem of Calculus (FTC) connects the two branches of cal-
culus: differential calculus and integral calculus. It says the following:

Suppose f is continuous on [a, b]. Then:

(1) The function

g(x) =

∫ x

a

f(t) dt

is an antiderivative of f , i.e., g′(x) = f(x).

(2) (Evaluation Theorem) If F is an antiderivative of f , i.e. F ′(x) =
f(x), then

∫ b

a

f(x) dx = F (b) − F (a) .

The two parts of the theorem can be rewritten like this:

(1)
d

dx

∫ x

a

f(t) dt = f(x).

(2)

∫ b

a

F ′(x) dx = F (b) − F (a).

So the theorem states that integration and differentiation are in-
verse operations, i.e., the derivative of an integral of a function yields
the original function, and the integral of a derivative also yields the
function originally differentiated (up to a constant).

Example: Find
d

dx

∫ x2

0

t3 dt.

Answer : We solve this problem in two ways. First directly:

g(x) =

∫ x2

0

t3 dt =

[
t4

4

]x2

0

=
(x2)4

4
=

x8

4
,

hence

g′(x) =
8x7

4
= 2x7 .
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Second, using the FTC:

h(u) =

∫ u

0

t3 dt ⇒ h′(u) = u3 .

Now we have g(x) = h(x2), hence (using the chain rule):

g′(x) = h′(x2) · 2x = (x2)3 · 2x = 2x7 .
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1.4. The Substitution Rule

1.4.1. The Substitution Rule. The substitution rule is a trick
for evaluating integrals. It is based on the following identity between
differentials (where u is a function of x):

du = u′ dx .

Hence we can write:

∫

f(u) u′ dx =

∫

f(u) du

or using a slightly different notation:

∫

f(g(x)) g′(x) dx =

∫

f(u) du

where u = g(x).

Example: Find

∫ √
1 + x2 2x dx.

Answer : Using the substitution u = 1 + x2 we get

∫ √
1 + x2 2x dx =

∫ √
u u′ dx

=

∫ √
u du = 2

3
u3/2 + C

= 2
3
(1 + x2)3/2 + C .

Most of the time the only problem in using this method of integra-
tion is finding the right substitution.

Example: Find

∫

cos 2x dx.

Answer : We want to write the integral as
∫

cos u du, so cos u =
cos 2x ⇒ u = 2x, u′ = 2. Since we do not see any factor 2 inside the
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integral we write it, taking care of dividing by 2 outside the integral:

∫

cos 2x dx =
1

2

∫

cos 2x 2 dx

=
1

2

∫

cos uu′ dx

=
1

2

∫

cos u du

=
1

2
sin u + C

(always remember to undo the substitution)

=
1

2
sin 2x + C .

In general we need to look at the integrand as a function of some
expression (which we will later identify with u) multiplied by the de-
rivative of that expression.

Example: Find

∫

e−x2

x dx.

Answer : We see that x is “almost”, the derivative of −x2, so we use
the substitution u = −x2, u′ = −2x, hence in order to get u′ inside the
integral we do the following:

∫

e−x2

x dx = −1

2

∫

e−x2

︸︷︷︸

eu

(−2x) dx
︸ ︷︷ ︸

du

= −1

2

∫

eu du = −1
2
eu + C = −1

2
e−x2

+ C .

Sometimes the substitution is hard to see until we make some in-
genious transformation in the integrand.

Example: Find

∫

tanx dx.
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Answer : Here the idea is to write tanx =
sin x

cos x
and use that

(cosx)′ = − sin x, so we make the substitution u = cosx, u′ = − sin x:
∫

tanx dx =

∫
sin x

cos x
dx = −

∫
u′

u
dx = −

∫
1

u
du

= − ln |u| + C = − ln | cos x| + C .

In general we need to identify inside the integral some expression of
the form f(u) u′, where f is some function with a known antiderivative.

Example: Find

∫
ex

e2x + 1
dx.

Answer : Let’s write
∫

ex

e2x + 1
dx = k

∫

f(u) u′ dx

(where k is some constant to be determined later) and try to identify
the function f , the argument u and its derivative u′. Since (ex)′ = ex

it seems natural to chose u = ex, u′ = ex, so e2x = u2 and
∫

ex

e2x + 1
dx =

∫
u′

u2 + 1
dx =

∫
1

u2 + 1
du

= tan−1 u + C = tan−1 (ex) + C .

There is no much more that can be said in general, the way to learn
more is just to practice.

1.4.2. Other Changes of Variable. Sometimes rather than mak-
ing a substitution of the form u = function of x, we may try a change
of variable of the form x = function of some other variable such as t,
and write dx = x′(t) dt, where x′ = derivative of x respect to t.

Example: Find

∫ √
1 − x2 dx.

Answer : Here we write x = sin t, so dx = cos t dt, 1 − x2 = 1 −
sin2 t = cos2 t, and

∫ √
1 − x2 dx =

∫

cos t
︸︷︷︸

x

cos t dt
︸ ︷︷ ︸

dx

=

∫

cos2 t dt .
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Since we do not know yet how to integrate cos2 t we leave it like this
and will be back to it later (after we study integrals of trigonometric
functions).

1.4.3. The Substitution Rule for Definite Integrals. When
computing a definite integral using the substitution rule there are two
possibilities:

(1) Compute the definite integral first, then use the evaluation
theorem:

∫

f(u) u′ dx = F (x) ;

∫ b

a

f(u) u′ dx = F (b) − F (a) .

(2) Use the substitution rule for definite integrals:

∫ b

a

f(u) u′ dx =

∫ u(b)

u(a)

f(u) du .

The advantage of the second method is that we do not need to undo
the substitution.

Example: Find

∫ 4

0

√
2x + 1 dx.

Answer : Using the first method first we compute the indefinite in-
tegral:

∫ √
2x + 1 dx =

1

2

∫ √
2x + 1 2x dx (u = 2x + 1)

=
1

2

∫ √
u du

=
1

3
u3/2 + C

=
1

3
(2x + 1)3/2 + C .

Then we use it for computing the definite integral:

∫ 4

0

√
2x + 1 dx =

[
1

3
(2x + 1)3/2

]4

0

=
1

3
93/2 − 1

3
13/2 =

27

3
− 1

3
=

26

3
.
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In the second method we compute the definite integral directly ad-
justing the limits of integration after the substitution:

∫ 4

0

√
2x + 1 dx =

1

2

∫ 4

0

√
2x + 1 2x dx (u = 2x + 1; u′ = 2)

=
1

2

∫ 9

1

√
u du

(note the change in the limits of integration to u(0) = 1 and u(4) = 9)

=

[
1

3
u3/2

]9

1

=
1

3
93/2 − 1

3
13/2

=
27

3
− 1

3
=

26

3
.
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1.5. Integration by Parts

The method of integration by parts is based on the product rule for
differentiation:

[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x) ,

which we can write like this:

f(x)g′(x) = [f(x)g(x)]′ − f ′(x)g(x) .

Integrating we get:
∫

f(x) g′(x) dx =

∫

[f(x)g(x)]′ dx −
∫

g(x)f ′(x) dx ,

i.e.:
∫

f(x)g′(x) dx = f(x)g(x) −
∫

g(x)f ′(x) dx .

Writing u = f(x), v = g(x), we have du = f ′(x) dx, dv = g′(x) dx,
hence:

∫

u dv = uv −
∫

v du .

Example: Integrate
∫

xex dx by parts.

Answer : In integration by parts the key thing is to choose u and
dv correctly. In this case the “right” choice is u = x, dv = ex dx, so
du = dx, v = ex. We see that the choice is right because the new
integral that we obtain after applying the formula of integration by
parts is simpler than the original one:

∫

x
︸︷︷︸

u

ex dx
︸ ︷︷ ︸

dv

= x
︸︷︷︸

u

ex

︸︷︷︸

v

−
∫

ex

︸︷︷︸

v

dx
︸︷︷︸

du

= xex − ex + C .

Usually it is a good idea to check the answer by differentiating it:

(xex − ex + C)′ = ex + xex − ex = xex .

A couple of additional typical examples:

Example:

∫

x sin x dx = · · ·
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u = x, dv = sin x dx, so du = dx, v = − cos x:

· · · =

∫

x
︸︷︷︸

u

sin x dx
︸ ︷︷ ︸

dv

= x
︸︷︷︸

u

(− cos x)
︸ ︷︷ ︸

v

−
∫

(− cos x)
︸ ︷︷ ︸

v

dx
︸︷︷︸

du

= −x cos x + sin x + C .

Example:

∫

ln x dx = · · ·

u = ln x, dv = dx, so du = 1
x
dx, v = x:

· · · =

∫

ln x
︸︷︷︸

u

dx
︸︷︷︸

dv

= ln x
︸︷︷︸

u

x
︸︷︷︸

v

−
∫

x
︸︷︷︸

v

1

x
dx

︸︷︷︸

du

= x ln x −
∫

dx

= x ln x − x + C .

Sometimes we need to use the formula more than once.

Example:

∫

x2ex dx = . . .

u = x2, dv = ex dx, so du = 2x dx, v = ex:

· · · =

∫

x2

︸︷︷︸

u

ex dx
︸ ︷︷ ︸

dv

= x2ex −
∫

ex2x dx = . . .

u = 2x, dv = ex dx, so du = 2dx, v = ex:

· · · = x2ex −
∫

2x
︸︷︷︸

u

ex dx
︸ ︷︷ ︸

dv

= x2ex − 2xex +

∫

2ex dx

= x2ex − 2xex + 2ex + C .

In the following example the formula of integration by parts does
not yield a final answer, but an equation verified by the integral from
which its value can be derived.

Example:

∫

sin x ex dx = . . .
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u = sin x, dv = ex dx, so du = cos x dx, v = ex:

· · · =

∫

sin x
︸︷︷︸

u

ex dx
︸ ︷︷ ︸

dv

= sin x · ex −
∫

ex cos x dx = . . .

u = cos x, dv = ex dx, so du = − sin x dx, v = ex:

. . . = sin x · ex −
∫

cos x
︸︷︷︸

u

ex dx
︸ ︷︷ ︸

dv

= sin x · ex − cos x · ex −
∫

ex sin x dx

Hence the integral I =
∫

sin x ex dx verifies

I = sin x · ex − cos x · ex − I ,

i.e.,
2I = sin x · ex − cos x · ex ,

hence
I = 1

2
ex(sin x − cos x) + C .

1.5.1. Integration by parts for Definite Integrals. Combin-
ing the formula of integration by parts with the Evaluation Theorem
we get:

∫ b

a

f(x)g′(x) dx = [f(x)g(x)]ba −
∫ b

a

g(x)f ′(x) dx .

Example:

∫ 1

0

tan−1 x dx = · · ·

u = tan−1 x, dv = dx, so du =
1

1 + x2
dx, v = x:

· · · =

∫ 1

0

tan−1 x
︸ ︷︷ ︸

u

dx
︸︷︷︸

dv

= [ tan−1 x
︸ ︷︷ ︸

u

· x
︸︷︷︸

v

]10 −
∫ 1

0

x
︸︷︷︸

v

1

1 + x2
dx

︸ ︷︷ ︸

du

=
[
tan−1 1 · 1 − tan−1 0 · 0

]
−

∫ 1

0

x

1 + x2
dx

=
π

4
−

∫ 1

0

x

1 + x2
dx
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The last integral can be computed with the substitution t = 1 + x2,
dt = 2x dx:

∫ 1

0

x

1 + x2
dx =

1

2

∫ 2

1

1

t
dt =

1

2
[ln t]21 =

ln 2

2
.

Hence the original integral is:

∫ 1

0

tan−1 x dx =
π

4
− ln 2

2
.

1.5.2. Reduction Formulas. Assume that we want to find the
following integral for a given value of n > 0:

∫

xnex dx .

Using integration by parts with u = xn and dv = ex dx, so v = ex and
du = nxn−1 dx, we get:

∫

xnex dx = xnex − n

∫

xn−1ex dx .

On the right hand side we get an integral similar to the original one
but with x raised to n−1 instead of n. This kind of expression is called
a reduction formula. Using this same formula several times, and taking
into account that for n = 0 the integral becomes

∫
ex dx = ex + C, we

can evaluate the original integral for any n. For instance:

∫

x3ex dx = x3ex − 3

∫

x2ex dx

= x3ex − 3(x2ex − 2

∫

xex dx)

= x3ex − 3(x2ex − 2(xex −
∫

ex dx))

= x3ex − 3(x2ex − 2(xex − ex)) + C

= x3ex − 3x2ex + 6xex − 6ex + C .
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Another example:
∫

sinn x dx =

∫

sinn−1 x
︸ ︷︷ ︸

u

sin x dx
︸ ︷︷ ︸

dv

= − sinn−1 x cos x + (n − 1)

∫

cos2 x
︸ ︷︷ ︸

1−sin2 x

sinn−2 dx

= − sinn−1 x cos x + (n − 1)

∫

sinn−2 dx

− (n − 1)

∫

sinn x dx

Adding the last term to both sides and dividing by n we get the fol-
lowing reduction formula:

∫

sinn x dx = −sinn−1 x cos x

n
+

n − 1

n

∫

sinn−2 x dx .
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1.6. Trigonometric Integrals and Trigonometric
Substitutions

1.6.1. Trigonometric Integrals. Here we discuss integrals of pow-
ers of trigonometric functions. To that end the following half-angle

identities will be useful:

sin2 x =
1

2
(1 − cos 2x) ,

cos2 x =
1

2
(1 + cos 2x) .

Remember also the identities:

sin2 x + cos2 x = 1 ,

sec2 x = 1 + tan2 x .

1.6.1.1. Integrals of Products of Sines and Cosines. We will study
now integrals of the form

∫

sinm x cosn x dx ,

including cases in which m = 0 or n = 0, i.e.:
∫

cosn x dx ;

∫

sinm x dx .

The simplest case is when either n = 1 or m = 1, in which case the
substitution u = sin x or u = cosx respectively will work.

Example:

∫

sin4 x cos x dx = · · ·

(u = sin x, du = cos x dx)

· · · =

∫

u4 du =
u5

5
+ C =

sin5 x

5
+ C .

More generally if at least one exponent is odd then we can use the
identity sin2 x+cos2 x = 1 to transform the integrand into an expression
containing only one sine or one cosine.
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Example:
∫

sin2 x cos3 x dx =

∫

sin2 x cos2 x cos x dx

=

∫

sin2 x (1 − sin2 x) cos x dx = · · ·

(u = sin x, du = cos x dx)

· · · =

∫

u2 (1 − u2) du =

∫

(u2 − u4) du

=
u3

3
− u5

5
+ C

=
sin3 x

3
− sin5 x

5
+ C .

If all the exponents are even then we use the half-angle identities.

Example:
∫

sin2 x cos2 x dx =

∫

1
2
(1 − cos 2x)1

2
(1 + cos 2x) dx

=
1

4

∫

(1 − cos2 2x) dx

=
1

4

∫

(1 − 1
2
(1 + cos 4x)) dx

=
1

8

∫

(1 − cos 4x) dx

=
x

8
− sin 4x

32
+ C .

1.6.1.2. Integrals of Secants and Tangents. The integral of tanx
can be computed in the following way:
∫

tan x dx =

∫
sin x

cos x
dx = −

∫
du

u
= − ln |u| + C = − ln | cos x| + C ,

where u = cos x. Analogously
∫

cot x dx =

∫
cos x

sin x
dx =

∫
du

u
= ln |u| + C = ln | sin x| + C ,

where u = sin x.
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The integral of sec x is a little tricky:

∫

sec x dx =

∫
sec x (tanx + sec x)

sec x + tanx
dx =

∫
sec x tanx + sec2 x

sec x + tanx
dx =

∫
du

u
= ln |u| + C = ln | sec x + tanx| + C ,

where u = sec x + tanx, du = (sec x tan x + sec2 x) dx.

Analogously:
∫

csc x dx = − ln | csc x + cot x| + C .

More generally an integral of the form
∫

tanm x secn x dx

can be computed in the following way:

(1) If m is odd, use u = sec x, du = sec x tanx dx.
(2) If n is even, use u = tan x, du = sec2 x dx.

Example:

∫

tan3 x sec2 x dx = · · ·

Since in this case m is odd and n is even it does not matter which
method we use, so let’s use the first one:

(u = sec x, du = sec x tanx dx)

· · · =

∫

tan2 x
︸ ︷︷ ︸

u2−1

sec x
︸ ︷︷ ︸

u

tan x sec x dx
︸ ︷︷ ︸

du

=

∫

(u2 − 1)u du

=

∫

(u3 − u) du

=
u4

4
− u2

2
+ C

= 1
4
sec4 x − 1

2
sec2 x + C .

Next let’s solve the same problem using the second method:
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(u = tanx, du = sec2 x dx)
∫

tan3 x
︸ ︷︷ ︸

u3

sec2 x dx
︸ ︷︷ ︸

du

=

∫

u3 du =
u4

4
+ C = 1

4
tan4 x + C .

Although this answer looks different from the one obtained using the
first method it is in fact equivalent to it because they differ in a con-
stant:

1
4
tan4 x = 1

4
(sec2 x − 1)2 = 1

4
sec4 x − 1

2
sec2 x

︸ ︷︷ ︸

previous answer

+1
4
.

1.6.2. Trigonometric Substitutions. Here we study substitu-
tions of the form x = some trigonometric function.

Example: Find

∫ √
1 − x2 dx.

Answer : We make x = sin t, dx = cos t dt, hence
√

1 − x2 =
√

1 − sin2 t =
√

cos2 t = cos t ,

and
∫ √

1 − x2 dx =

∫

cos t cos t dt

=

∫

cos2 t dt

=

∫

1
2
(1 + cos 2t) dt (half-angle identity)

=
t

2
+

sin 2t

4
+ C

=
t

2
+

2 sin t cos t

4
+ C (double-angle identity)

=
t

2
+

sin t
√

1 − sin2 t

2
+ C

=
sin−1 x

2
+

x
√

1 − x2

2
+ C .

The following substitutions are useful in integrals containing the
following expressions:
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expression substitution identity

a2 − u2 u = a sin t 1 − sin2 t = cos2 t

a2 + u2 u = a tan t 1 + tan2 t = sec2 t

u2 − a2 u = a sec t sec2 t − 1 = tan2 t

So for instance, if an integral contains the expression a2−u2, we may
try the substitution u = a sin t and use the identity 1 − sin2 t = cos2 t
in order to transform the original expression in this way:

a2 − u2 = a2(1 − sin2 t) = a2 cos2 t .

Example:

∫
x3

√
9 − x2

dx = 27

∫
sin3 t cos t

√

1 − sin2 t
dt (x = 3 sin t)

= 27

∫

sin3 t dx

= 27

∫

(1 − cos2 t) sin t dx

= 27

(

− cos t +
cos3 t

3

)

+ C

= 27
(

−
√

1 − sin2 t + 1
3
(1 − sin2 t)3/2

)

+ C

= −9
√

9 − x2 + 1
3
(9 − x2)3/2 + C .

where x = 3 sin t, dx = 3 cos t dt.
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Example:
∫ √

9 + 4x2 dx = 2

∫ √
9
4

+ x2 dx (x = 3
2
tan t)

= 2

∫
3

2

√

1 + tan2 t
3

2
sec2 t dt

=
9

2

∫

sec3 t dt

=
9

4
(sec t tan t + ln | sec t + tan t|) + C1

=
9

4

(

2
3
x
√

1 + 4
9
x2 + ln

∣
∣
∣
∣
2
3
x +

√

1 + 4
9
x2

∣
∣
∣
∣

)

+ C1

=
x
√

9 + 4x2

2
+

9

4
ln |2x +

√
9 + 4x2| + C .

where x = 3
2
tan t, dx = 3

2
sec2 t dt

Example:
∫ √

x2 − 1

x
dx =

∫ √
sec2 t − 1

sec t
sec t tan t dt (x = sec t)

=

∫

tan2 t dt

= tan t − t + C

=
√

sec2 t − 1 − t + C

=
√

x2 − 1 − sec−1 x + C .

where x = sec t, dx = sec t tan t dt.
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1.7. Partial Fractions

1.7.1. Rational Functions and Partial Fractions. A rational
function is a quotient of two polynomials:

R(x) =
P (x)

Q(x)
.

Here we discuss how to integrate rational functions. The idea con-
sists of rewriting the rational function as a sum of simpler fractions
called partial fractions. This can be done in the following way:

(1) Use long division of polynomials to get a quotient p(x) and a
remainder r(x). Then write:

R(x) =
P (x)

Q(x)
= p(x) +

r(x)

Q(x)
,

where the degree of r(x) is less than that of Q(x).

(2) Factor the denominator Q(x) = q1(x)q2(x) . . . qn(x), where
each factor qi(x) is either linear ax+b, or irreducible quadratic
ax2 +bx+c, or a power of the form (ax+b)n or (ax2 +bx+c)n.

(3) Decompose r(x)/Q(x) into partial fractions of the form:

r(x)

Q(x)
= F1(x) + F2(x) + F3(x) + · · ·

where each fraction is of the form

Fi(x) =
A

(ax + b)k

or

Fi(x) =
Ax + B

(ax2 + bx + c)k
,

where 1 ≤ k ≤ n (n is the exponent of ax + b or ax2 + bx + c
in the factorization of Q(x).)

Example: Decompose the following rational function into partial
fractions:

R(x) =
x3 + x2 + 2

x2 − 1

Answer :
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(1)
x3 + x2 + 2

x2 − 1
= x + 1 +

x + 3

x2 − 1

(2) x2 − 1 = (x + 1)(x − 1) .

(3)
x + 3

(x + 1)(x − 1)
=

A

x + 1
+

B

x − 1
.

Multiplying by (x + 1)(x − 1) we get:

x + 3 = A(x − 1) + B(x + 1) . (∗)
Now there are two ways of finding A and B:

Method 1. Expand the right hand side of (*), collect terms with the
same power of x, and identify coefficients of the polyno-
mials obtained on both sides:

x + 3 = (A + B) x + (B − A) ,

Hence:
{

1 = A + B (coefficient of x)

3 = −A + B (constant term)

Method 2. In (*) give x two different values (as many as the number
of coefficients to determine), say x = 1 and x = −1. We
get:

{
4 = 2B (x = 1)

2 = −2A (x = −1)

The solution to the system of equations obtained in either
case is A = −1, B = 2, so:

x + 3

(x + 1)(x − 1)
= − 1

x + 1
+

2

x − 1
.

Finally:

R(x) =
x3 + x2 + 2

x2 − 1
= x + 1 − 1

x + 1
+

2

x − 1
.

1.7.2. Factoring a Polynomial. In order to factor a polynomial
Q(x) (with real coefficients) into linear of irreducible quadratic factors,
first solve the algebraic equation:

Q(x) = 0 .

Then for each real root r write a factor of the form (x− r)k where k is
the multiplicity of the root. For each pair of conjugate complex roots
r, r̄ write a factor (x2 − sx+p)k, where s = r + r̄, p = r · r̄, and k is the
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multiplicity of those roots. Finally multiply by the leading coefficient
of Q(x).

Note that the equation Q(x) = 0 is sometimes hard to solve, or only
the real roots can be easily found (when they are integral or rational
they can be found by Ruffini’s rule, or just by trial and error). In that
case we get as many roots as we can, and divide Q(x) by the factors
found. The quotient is another polynomial q(x) which we must now
try to factor. So pose the algebraic equation

q(x) = 0

and try to solve it for this new (and simpler) polynomial.

Example: Factor the polynomial

Q(x) = x6 − x5 − 15x4 + 5x3 + 70x2 + 12x − 72 .

Answer : The roots of Q(x) are 1 (simple), −2 (triple) and 3 (dou-
ble), hence:

Q(x) = (x − 1)(x + 2)3(x − 3)2 .

Example: Factor Q(x) = x3 + 2x2 + 2x + 1.

Answer : Q(x) has a simple real root x = −1. After dividing Q(x)
by x + 1 we get the polynomial x2 + x + 1, which is irreducible (it has
only complex roots), so we factor Q(x) like this:

Q(x) = (x + 1)(x2 + x + 1) .

1.7.3. Decomposing Into Partial Fractions. Assume that Q(x)
has already been factored and degree of r(x) is less than degree of Q(x).
Then r(x)/Q(x) is decomposed into partial fractions in the following
way:

(1) For each factor of the form (x − r)k write

A1

x − r
+

A2

(x − r)2
+

A3

(x − r)3
+ · · · + Ak

(x − r)k
,

where A1 . . . Ak are coefficients to be determined.

(2) For each factor of the form (ax2 + bx + c)k write

B1x + C1

ax2 + bx + c
+

B2x + C2

(ax2 + bx + c)2
+ · · · + Bkx + Ck

(ax2 + bx + c)k

where B1 . . . Bk and C1 . . . Ck are coefficients to be determined.
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(3) Multiply by Q(x) and simplify. This leads to an expression of
the form

r(x) = some polynomial containing the

indeterminate coefficients Ai, Bi, Ci .

Finally determine the coefficients Ai, Bi, Ci. One way of
doing this is by identifying coefficients of the polynomials on
both sides of the last expression. Another way is to write a
system of equations with unknowns Ai, Bi, Ci by giving x
various values.

Example: Decompose the following rational function into partial
fractions:

R(x) =
4x5 − 2x4 + 2x3 − 8x2 − 2x − 3

(x − 1)2 (x2 + x + 1)2
.

Answer : The denominator is already factored, so we proceed with
the next step:

4x5 − 2x4 + 2x3 − 8x2 − 2x − 3

(x − 1)2 (x2 + x + 1)2
=

A

x − 1
+

B

(x − 1)2
+

Cx + D

x2 + x + 1
+

Ex + F

(x2 + x + 1)2
.

Next we multiply by the denominator:

4x5 − 2x4 + 2x3 − 8x2 − 2x − 3 =

A(x − 1)(x2 + x + 1)2 + B(x2 + x + 1)2

+ (Cx + D)(x − 1)2(x2 + x + 1) + (Ex + F )(x − 1)2 =

(A + C)x5 + (A − C + D + B)x4

+ (A + 2B + E − D)x3 + (−A + 3B − C − 2E + F )x2

+ (−A + 2B + C − D + E − 2F )x + (−A + B + D + F ) .

Identifying coefficients on both sides we get:






A + C = 4
A + B − C + D = −2
A + 2B − D + E = 2

−A + 3B − C − 2E + F = −8
−A + 2B + C − D + E − 2F = −2
−A + B + D + F = −3



1.7. PARTIAL FRACTIONS 36

The solution to this system of equations is A = 2, B = −1, C = 2, D =
−1, E = 1, F = 1, hence:

4x5 − 2x4 + 2x3 − 8x2 − 2x − 3

(x − 1)2 (x2 + x + 1)2
=

2

x − 1
− 1

(x − 1)2
+

2x − 1

x2 + x + 1
+

x + 1

(x2 + x + 1)2

1.7.4. Integration of Rational Functions. After decomposing
the rational function into partial fractions all we need to do is to inte-
grate expressions of the form A/(x− r)k and (Bx+C)/(ax2 + bx+ c)k.
For the former we get:

∫
A

(x − r)k
dx = − A

(k − 1)(x − r)k−1
+ C if k 6= 1

∫
A

x − r
dx = A ln |x − r| + C if k = 1

The latter are more involved, but the following are particularly simple
special cases:

∫
1

x2 + a2
dx =

1

a
arctan

x

a
+ C

∫
x

x2 + a2
dx =

1

2
ln (x2 + a2) + C

∫
x

(x2 + a2)k
dx = − 1

2(k − 1)(x2 + a2)k−1
+ C (k 6= 1)

Example: Find the following integral:

∫
x3 − x2 − 7x + 8

x2 − 4x + 4
dx .

Answer : First we decompose the integrand into partial fractions:

(1)
x3 − x2 − 7x + 8

x2 − 4x + 4
= x + 3 +

x − 4

x2 − 4x + 4

(2) x2 − 4x + 4 = (x − 2)2.

(3)
x − 4

(x − 2)2
=

A

x − 2
+

B

(x − 2)2

x − 4 = A(x − 2) + B

x = 2 ⇒ −2 = B
x = 3 ⇒ −1 = A + B
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So A = 1, B = −2, and

x − 4

x2 − 4x + 4
=

1

x − 2
− 2

(x − 2)2

Hence:

x3 − x2 − 7x + 8

x2 − 4x + 4
= x + 3 +

1

x − 2
− 2

(x − 2)2
.

Finally we integrate:
∫

x3 − x2 − 7x + 8

(x − 2)2
dx =

∫

(x + 3) dx +

∫
1

x − 2
dx −

∫
2

(x − 2)2
dx

=
x2

2
+ 3x + ln |x − 2| + 2

x − 2
+ C .

1.7.5. Completing the Square. Many integrals containing an
irreducible (no real roots) quadratic polynomial ax2 + bx + c can be
simplified by completing the square, i.e., writing the polynomial as
u2 + r where u = px + q, e.g.:

x2 + 2x + 2 = (x + 1)2 + 1 .

In general:

ax2 + bx + c =

(

x
√

a +
b

2
√

a

)2

− b2 − 4ac

4a
.

If a = 1 the formula can be simplified:

x2 + bx + c =

(

x +
b

2

)2

+

(

c − b2

4

)

.

This result is of the form u2 ± A2, where u = x + b/2.

Example:
∫

1

x2 + 6x + 10
dx =

∫
1

(x + 3)2 + 1
dx

=

∫
1

u2 + 1
du (u = x + 3)

= tan−1 u + C

= tan−1 (x + 3) + C .
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Example:
∫ √

x2 − 4x + 5 dx =

∫
√

(x − 2)2 + 1 dx

=

∫ √
u2 + 1 du (u = x − 2)

=

∫
√

tan2 t + 1 · sec2 t dt (u = tan t)

=

∫

sec3 t dt

=
sec t tan t

2
+

1

2
ln | sec t + tan t| + C

=
u
√

u2 + 1

2
+

1

2
ln |u +

√
u2 + 1| + C

=
(x − 2)

√
x2 − 4x + 5

2

+
1

2
ln

∣
∣
∣(x − 2) +

√
x2 − 4x + 5

∣
∣
∣ + C .
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1.8. Integration using Tables and CAS

The use of tables of integrals and Computer Algebra Systems allow
us to find integrals very quickly without having to perform all the steps
for their computation. However we often need to modify slightly the
original integral and perhaps complete or simplify the answer.

Example: Find the following integral using the tables at the end of
Steward’s book:

∫ √
x2 − 1

x
dx = · · · .

Answer : In the tables we find the following formula No. 41:

∫ √
a2 − u2

u
du =

√
a2 − u2 − a cos−1 a

|u| + C ,

hence, letting a = 1, u = 1 we get the answer:

∫ √
1 − x2

x
dx =

√
1 − x2 − cos−1 1

|x| + C .

Example: Find the integral:
∫

x2

√
9 + 4x2

dx = · · ·

Answer : In the tables the formula that resembles this integral most
is No. 26:

∫
u2 du√
a2 + u2

=
u

2

√
a2 + u2 − a2

2
ln

(

u +
√

a2 + u2
)

+ C ,

hence making a = 3, u = 2x:
∫

x2

√
9 + 4x2

dx =
1

8

∫
u2 du√
a2 + u2

=
1

8

{
u

2

√
a2 + u2 − a2

2
ln

(

u +
√

a2 + u2
)}

+ C

=
x

8

√
9 + 4x2 − 9

16
ln

(

2x +
√

9 + 4x2
)

+ C .

Example: Find the same integral using Maple.
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Answer : In Maple we enter at the prompt:

> int(x^2/sqrt(9+4*x^2),x);

and it returns:
x

8

√
9 + 4x2 − 9

16
arcsinh

(
2

3
x

)

First we notice that the answer omits the constant C. On the other
hand, it involves an inverse hyperbolic function:

arcsinhx = ln
(

x +
√

1 + x2
)

,

hence the answer provided by Maple is:

x

8

√
9 + 4x2 − 9

16
ln

(

2x

3
+

√

1 +
4x2

9

)

=

x

8

√
9 + 4x2 − 9

16
ln

(

2x +
√

9 + 4x2
)

+
9

32
ln(3) ,

so it differs from the answer found using the tables in a constant 9
32

ln(3)
which can be absorbed into the constant of integration.
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1.9. Numerical Integration

Sometimes the integral of a function cannot be expressed with el-

ementary functions, i.e., polynomial, trigonometric, exponential, loga-
rithmic, or a suitable combination of these. However, in those cases we
still can find an approximate value for the integral of a function on an
interval.

1.9.1. Trapezoidal Approximation. A first attempt to approx-

imate the value of an integral
∫ b

a
f(x) dx is to compute its Riemann

sum:

R =
n∑

i=1

f(x∗
i ) ∆x .

Where ∆x = xi −xi−1 = (b− a)/n and x∗
i is some point in the interval

[xi−1, xi]. If we choose the left endpoints of each interval, we get the
left-endpoint approximation:

Ln =
n∑

i=1

f(xi−1))∆x = (∆x){f(x0) + f(x1) + · · · + f(xn−1)} ,

Similarly, by choosing the right endpoints of each interval we get the
right-endpoint approximation:

Rn =
n∑

i=1

f(xi)∆x = (∆x){f(x1) + f(x2) + · · · + f(xn)} .

The trapezoidal approximation is the average of Ln and Rn:

Tn =
1

2
(Ln+Rn) =

∆x

2
{f(x0)+2f(x1)+2f(x2)+· · ·+2f(xn−1)+f(xn)} .

Example: Approximate
∫ 1

0
x2 dx with trapezoidal approximation us-

ing 4 intervals.

Solution: We have ∆x = 1/4 = 0.25. The values for xi and f(xi) =
x2

i can be tabulated in the following way:

i xi f(xi)
0 0 0
1 0.25 0.0625
2 0.5 0.25
3 0.75 0.5625
4 1 1
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Hence:

L4 = 0.25 · (0 + 0.0625 + 0.25 + 0.5625) = 0.218750 ,

R4 = 0.25 · (0.0625 + 0.25 + 0.5625 + 1) = 0.468750 .

So:

T4 =
1

2
(L4 + R4) =

1

2
(0.218750 + 0.468750) = 0.34375 .

Compare to the exact value of the integral, which is 1/3 = 0.3333 . . . .

1.9.2. Midpoint Approximation. Alternatively, in the Riemann
sum we can use the middle point xi = (xi−1 + xi)/2 of each interval

[xi−1, xi]. Then the midpoint approximation of
∫ b

a
f(x) dx is

Mn = (∆x){f(x1) + f(x2) + · · · + f(xn)} .

Example: Approximate
∫ 1

0
x2 dx with midpoint approximation using

4 intervals.

Solution: We have:

i xi f(xi)
1 0.125 0.015625
2 0.375 0.140625
3 0.625 0.390625
4 0.875 0.765625

Hence:

M4 = 0.25 · (0.015625 + 0.140625 + 0.390625 + 0.765625)

= 0.328125 .

1.9.3. Simpson’s Approximation. Simpson’s approximation is
a weighted average of the trapezoidal and midpoint approximations
associated to the intervals [x0, x2], [x2, x4], . . . , [xn−2, xn] (of length
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2∆x each):

S2n =
1

3
(2Mn + Tn)

=
1

3

[

2(2∆x){f(x1) + f(x3) + · · · + f(x2n−1)}

+
2∆x

2
{f(x0) + 2f(x2) + 2f(x4) + · · · + 2f(xn−2) + f(xn)}

]

=
∆x

3
{f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·

+ 2f(x2n−2) + 4f(x2n−1) + f(x2n)} .

Example: Approximate
∫ 1

0
x2 dx with Simpson’s approximation us-

ing 8 intervals.

Solution: We use the previous results and get:

S8 =
1

3
(2M4 + T4) =

1

3
(2 · 0.328125 + 0.34375) = 1/3 .

Note: in this particular case Simpson’s approximation gives the exact
value—in general it just gives a good approximation.

1.9.4. Error Bounds. Here we give a way to estimate the error
or difference E between the actual value of an integral and the value
obtained using a numerical approximation.

1.9.4.1. Error Bound for the Trapezoidal Approximation. Suppose
|f ′′(x)| ≤ K for a ≤ x ≤ b. Then the error ET in the trapezoidal
approximation verifies:

|ET | ≤
K(b − a)3

12n2
.

1.9.4.2. Error Bound for the Midpoint Approximation. Suppose |f ′′(x)| ≤
K for a ≤ x ≤ b. Then the error EM in the trapezoidal approximation
verifies:

|EM | ≤ K(b − a)3

24n2
.

1.9.4.3. Error Bound for the Simpson’s Rule. Suppose |f (4)(x)| ≤
K for a ≤ x ≤ b. Then the error ES in the Simpson’s rule verifies:

|ES| ≤
K(b − a)5

180n4
.
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Example: Approximate the value of π using the trapezoidal, mid-
point and Simpson’s approximations of

∫ 1

0

4

1 + x2
dx

for n = 4. Estimate the error.

Answer : First note that:

4

∫ 1

0

1

1 + x2
dx = 4

[
tan−1 x

]1

0
= 4

π

4
= π ,

so by approximating the given integral we are in fact finding approxi-
mated values for π.

Now we find the requested approximations:

(1) Trapezoidal approximation:

T4 =
1/4

2
{f(0) + 2f(1/4) + 2f(1/2) + 2f(3/4) + f(1)}

= 3.131176470 .

For estimating the error we need the second derivative of f(x) =
4/(1 + x2), which is f ′′(x) = 8(3x2 − 1)/(1 + x2)3 so we have

|f ′′(x)| =
8|3x2 − 1|
|1 + x2|3 ≤ 8(3x2 + 1)

(1 + x2)3

≤ 8(3 · 12 + 1)

1
= 32

for 0 ≤ x ≤ 1, hence

|ET | ≤
32 · (1 − 0)3

12 · 42
= 0.1666 . . .

(2) Midpoint approximation:

TM =
1

4
{f(1/8) + f(3/8) + f(5/8) + f(7/8)}

= 3.146800518 .

The error estimate is:

|EM | ≤ 32 · (1 − 0)3

24 · 42
= 0.08333 . . .
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(3) Simpson’s rule:

TS =
1/4

3
{f(0) + 4f(1/4) + 2f(1/2) + 4f(3/4) + f(1)}

= 3.141568627

For the error estimate we now need the fourth derivative:

f (4)(x) = 96(5x4 − 10x2 + 1)/(1 + x2)5 ,

so

|f (4)(x)| ≤ 96(5 + 10 + 1)

1
= 1536

for 0 ≤ x ≤ 1. Hence the error estimate is

|ES| ≤
1536 · (1 − 0)5

180 · 44
= 0.0333 . . .
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1.10. Improper Integrals

1.10.1. Improper Integrals. Up to now we have studied inte-
grals of the form

∫ b

a

f(x) dx ,

where f is a continuous function defined on the closed and bounded

interval [a, b]. Improper integrals are integrals in which one or both of
these conditions are not met, i.e.,

(1) The interval of integration is not bounded:

[a, +∞) , (−∞, a] , (−∞, +∞) ,

e.g.: ∫ ∞

1

1

x2
dx .

(2) The integrand has an infinite discontinuity at some point c in
[a, b]:

lim
x→c

f(x) = ±∞ .

e.g.:
∫ 1

0

1√
x

dx .

1.10.2. Infinite Limits of Integration. Improper Integrals
of Type 1. In case one of the limits of integration is infinite, we define:

∫ ∞

a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx ,

or ∫ a

−∞
f(x) dx = lim

t→−∞

∫ a

t

f(x) dx .

If both limits of integration are infinite, then we choose any c and
define: ∫ ∞

−∞
f(x) dx =

∫ c

−∞
f(x) dx +

∫ ∞

c

f(x) dx .

If the limits defining the integral exist the integral is called conver-

gent, otherwise it is called divergent.

Remark : Sometimes we write [F (x)]∞a as an abbreviation for

[F (x)]∞a = lim
t→∞

[F (x)]ta .
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Analogously:
[F (x)]a−∞ = lim

t→−∞
[F (x)]at ,

and

[F (x)]∞−∞ = [F (x)]c−∞ + [F (x)]∞c = lim
t→−∞

[F (x)]ct + lim
t→∞

[F (x)]tc .

Example:
∫ ∞

1

1

x2
dx = lim

t→∞

∫ t

1

1

x2
dx = lim

t→∞

[

−1

x

]t

1

= lim
t→∞

(

−1

t
+ 1

)

= 1 ,

or in simplified notation:
∫ ∞

1

1

x2
dx =

[

−1

x

]∞

1

= lim
t→∞

(

−1

t
+ 1

)

= 1 .

Example: For what values of p is the following integral convergent?:
∫ ∞

1

1

xp
dx .

Answer : If p = 1 then we have
∫ t

1

1

x
dx = [ln x]t1 = ln t ,

so ∫ ∞

1

1

x
dx = lim

t→∞

∫ t

1

1

xp
dx = lim

t→∞
ln t = ∞ ,

and the integral is divergent. Now suppose p 6= 1:
∫ t

1

1

xp
dx =

[
x−p+1

−p + 1

]t

1

=
1

1 − p

{
1

tp−1
− 1

}

If p > 1 then p − 1 > 0 and
∫ ∞

1

1

xp
dx = lim

t→∞

1

1 − p

{
1

tp−1
− 1

}

= 0 ,

hence the integral is convergent. On the other hand if p < 1 then
p − 1 < 0, 1 − p > 0 and

∫ ∞

1

1

xp
dx = lim

t→∞

1

1 − p

{
t1−p − 1

}
= ∞ ,

hence the integral is divergent. So:

∫ ∞

1

1

xp
dx is convergent if p > 1 and divergent if p ≤ 1.
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1.10.3. Infinite Integrands. Improper Integrals of Type 2.
Assume f is defined in [a, b) but

lim
x→b−

f(x) = ±∞ .

Then we define
∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx .

Analogously, if f is defined in (a, b] but

lim
x→a+

f(x) = ±∞ .

Then we define
∫ b

a

f(x) dx = lim
t→a+

∫ b

t

f(x) dx .

Finally, if f(x) has an infinite discontinuity at c inside [a, b], then
the definition is

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx .

If the limits defining the integral exist the integral is called conver-

gent, otherwise it is called divergent.

Remark : If the interval of integration is [a, b) sometimes we write

[F (x)]ba as an abbreviation for lim
t→b−

[F (x)]ta—and analogously for inter-

vals of the form (a, b].

Example:

∫ 1

0

1√
x

dx = lim
t→0−

∫ 1

t

1√
x

dx = lim
t→0−

[
2
√

x
]1

t
= lim

t→0−

(

2 − 2
√

t
)

= 2 ,

or in simplified notation:

∫ 1

0

1√
x

dx =
[
2
√

x
]1

0
= lim

t→0−

(

2 − 2
√

t
)

= 2 .

Example: Evaluate

∫ 1

0

ln x dx.
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Answer : The function ln x has a vertical asymptote at x = 0 because
lim

x→0+
ln x = −∞. Hence:

∫ 1

0

ln x dx = lim
t→0+

∫ 1

t

ln x dx

= lim
t→0+

[x ln x − x]1t

= lim
t→0+

{(1 ln 1 − 1) − (t ln t − t)}

= lim
t→0+

{t − 1 − t ln t} ( lim
t→0+

t ln t = 0)

= −1 .

1.10.4. Comparison Test for Improper Integrals. Suppose f
and g are continuous functions such that f(x) ≥ g(x) ≥ 0 for x ≥ 0.

(1) If
∫ ∞

a
f(x) dx if convergent then

∫ ∞
a

g(x) dx is convergent.

(2) If
∫ ∞

a
g(x) dx if divergent then

∫ ∞
a

f(x) dx is divergent.

A similar statement holds for type 2 integrals.

Example: Prove that

∫ ∞

0

e−x2

dx is convergent.

Answer : We have:
∫ ∞

0

e−x2

dx =

∫ 1

0

e−x2

dx +

∫ ∞

1

e−x2

dx .

The first integral on the right hand side is an ordinary definite integral
so we only need to show that the second integral is convergent. In fact,
for x ≥ 1 we have x2 ≥ x, so e−x2 ≤ e−x. On the other hand:

∫ t

1

e−x dx =
[
−e−x

]t

1
= −e−t + e−1 ,

hence ∫ ∞

1

e−x dx = lim
t→∞

(
−e−t + e−1

)
= e−1 ,

so
∫ ∞
1

e−x dx is convergent. Hence, by the comparison theorem
∫ ∞

1
e−x2

dx
is convergent, QED.



CHAPTER 2

Applications of Integration

2.1. More about Areas

2.1.1. Area Between Two Curves. The area between the curves
y = f(x) and y = g(x) and the lines x = a and x = b (f , g continuous
and f(x) ≥ g(x) for x in [a, b]) is

A =

∫ b

a

f(x) dx −
∫ b

a

g(x) dx =

∫ b

a

[f(x) − g(x)] dx .

Calling yT = f(x), yB = g(x), we have:

A =

∫ b

a

(yT − yB) dx

Example: Find the area between y = ex and y = x bounded on the
sides by x = 0 and x = 1.

Answer : First note that ex ≥ x for 0 ≤ x ≤ 1. So:

A =

∫ 1

0

(ex − x) dx =

[

ex − x2

2

]1

0

=

(

e1 − 12

2

)

−
(

e0 − 02

2

)

= e − 1
2
− 1 = e − 3

2
.

The area between two curves y = f(x) and y = g(x) that intersect
at two points can be computed in the following way. First find the
intersection points a and b by solving the equation f(x) = g(x). Then
find the difference:

∫ b

a

f(x) dx −
∫ b

a

g(x) dx =

∫ b

a

[f(x) − g(x)] dx .

If the result is negative that means that we have subtracted wrong.
Just take the result in absolute value.

50
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Example: Find the area between y = x2 and y = 2 − x. Solution:
First, find the intersection points by solving x2−(2−x) = x2+x−2 = 0.
We get x = −2 and x = 1. Next compute:

∫ 1

−2

(x2 − (2 − x)) dx =

∫ 1

−2

(x2 + x − 2) dx = −9/2 .

Hence the area is 9/2.

Sometimes it is easier or more convenient to write x as a function of
y and integrate respect to y. If xL(y) ≤ xR(y) for p ≤ y ≤ q, then the
area between the graphs of x = xL(y) and x = xR(y) and the horizontal
lines y = p and y = q is:

A =

∫ q

p

(xR − xL) dy

Example: Find the area between the line y = x−1 and the parabola
y2 = 2x + 6.

–4

–2

0

2

4

–2 2 4 6

x

Answer : The intersection points between those curves are (−1,−2)
and (5, 4), but in the figure we can see that the region extends to the
left of x = −1. In this case it is easier to write

xL = 1
2
y2 − 3 , xR = y + 1 ,

and integrate from y = −2 to y = 4:

A =

∫ 4

−2

(xR − xL) dx =

∫ 4

−2

{
(y + 1) − (1

2
y2 − 3)

}
dx

=

∫ 4

−2

(
−1

2
y2 + y + 4

)
dx

=

[

−y3

6
+

y2

2
+ 4y

]4

−2

= 18
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2.2. Volumes

2.2.1. Volumes by Slices. First we study how to find the volume
of some solids by the method of cross sections (or “slices”). The idea
is to divide the solid into slices perpendicular to a given reference line.
The volume of the solid is the sum of the volumes of its slices.

2.2.2. Volume of Cylinders. A cylinder is a solid whose cross
sections are parallel translations of one another. The volume of a cylin-
der is the product of its height and the area of its base:

V = Ah .

2.2.3. Volume by Cross Sections. Let R be a solid lying along-
side some interval [a, b] of the x-axis. For each x in [a, b] we denote A(x)
the area of the cross section of the solid by a plane perpendicular to
the x-axis at x. We divide the interval into n subintervals [xi−1, xi], of
length ∆x = (b− a)/n each. The planes that are perpendicular to the
x-axis at the points x0, x1, x2, . . . , xn divide the solid into n slices. If
the cross section of R changes little along a subinterval [xi−1, xi], the
slab positioned alongside that subinterval can be considered a cylinder
of height ∆x and whose base equals the cross section A(x∗

i ) at some
point x∗

i in [xi−1, xi]. So the volume of the slice is

∆Vi ≈ A(x∗
i ) ∆x .

The total volume of the solid is

V =
n∑

i=1

∆Vi ≈
n∑

i=1

A(x∗
i ) ∆x .

Once again we recognize a Riemann sum at the right. In the limit as
n → ∞ we get the so called Cavalieri’s principle:

V =

∫ b

a

A(x) dx .

Of course, the formula can be applied to any axis. For instance
if a solid lies alongside some interval [a, b] on the y axis, the formula
becomes

V =

∫ b

a

A(y) dy .

Example: Find the volume of a cone of radius r and height h.
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Answer : Assume that the cone is placed with its vertex in the origin
of coordinates and its axis on the x-axis. The x coordinate runs through
the interval [0, h]. The cross section of the cone at each point x is a
circular disk of radius xr/h, hence its area is A(x) = π(xr/h)2 =
πr2x2/h2. The volume of the cone can now be computed by Cavalieri’s
formula:

V =

∫ h

0

πr2

h2
x2 dx =

πr2

h2

[
x3

3

]h

0

=
πr2

h2

h3

3
=

1

3
πr2h .

2.2.4. Solids of Revolution. Consider the plane region between
the graph of the function y = f(x) and the x-axis along the interval
[a, b]. By revolving that region around the x-axis we get a solid of

revolution. Now each cross section is a circular disk of radius y, so its
area is A(x) = πy2 = π[f(x)]2. Hence, the volume of the solid is

V =

∫ b

a

πy2 dx =

∫ b

a

π[f(x)]2 dx .

Example: Find the volume of a cone of radius r and height h.

Answer : Assume that the cone is placed with its vertex in the origin
of coordinates and its axis on the x-axis. This cone can be obtained by
revolving the area under the line y = rx/h between x = 0 and x = h
around the x-axis. So its volume is

V =

∫ h

0

π
(rx

h

)2

dx =

∫ h

0

πr2

h2
x2 dx =

πr2

h2

[
x3

3

]h

0

=
πr2

h2

h3

3
=

1

3
πr2h .

If the revolution is performed around the y-axis, the roles of x and
y are interchanged, so in that case the formula is

V =

∫ b

a

πx2 dy ,

where x must be written as a function of y.

If the region being revolved is the area between two curves y = f(x)
and y = g(x), then each cross section is an annular ring (or washer)with
outer radius f(x) and inner radius g(x) (assuming f(x) ≥ g(x) ≥ 0.)
The area of the annular ring is A(x) = π(f(x)2 − g(x)2), hence the
volume of the solid will be:

V =

∫ b

a

π
[
(yT )2 − (yB)2

]
dx =

∫ b

a

π
[
f(x)2 − g(x)2

]
dx .
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If the revolution is performed around the y-axis, then:

V =

∫ b

a

π
[
(xR)2 − (xL)2

]
dy .

Example: Find the volume of the solid obtained by revolving the
area between y = x2 and y =

√
x around the x-axis.

Solution: First we need to find the intersection points of these curves
in order to find the interval of integration:

{

y = x2

y =
√

x
⇒ (x, y) = (0, 0) and (x, y) = (1, 1) ,

hence we must integrate from x = 0 to x = 1:

V = π

∫ 1

0

[
(
√

x)2 − (x2)2
]

dx = π

∫ 1

0

(
x − x4

)
dx

= π

[
x2

2
− x5

5

]1

0

= π

(
1

2
− 1

5

)

=
3π

10
.

2.2.5. Volumes by Shells. Next we study how to find the volume
of some solids by the method of shells. Now the idea is to divide the
solid into shells and add up their volumes.

2.2.6. Volume of a Cylindrical Shell. A cylindrical shell is the
region between two concentric circular cylinders of the same height h.
If their radii are r1 and r2 respectively, then the volume is:

V = πr2
2h − πr2

1h = πh(r2
2 − r2

1) = πh

2r
︷ ︸︸ ︷

(r2 + r1)

t
︷ ︸︸ ︷

(r2 − r1) = 2πrth ,

where r = (r2 + r1)/2 is the average radius, and t = r2 − r1 is the
thickness of the shell.

2.2.7. Volumes by Cylindrical Shells. Consider the solid gen-
erated by revolving around the y-axis the region under the graph of
y = f(x) between x = a and x = b. We divide the interval [a, b] into n
subintervals [xi−1, xi] of length ∆x = (b− a)/n each. The volume V of
the solid is the sum of the volumes ∆Vi of the shells determined by the
partition. Each shell, obtained by revolving the region under y = f(x)
over the subinterval [xi−1, xi], is approximately cylindrical. Its height



2.2. VOLUMES 55

is f(x∗
i ), where x∗

i is the midpoint of [xi−1, xi]. Its thickness is ∆x. Its
average radius is x∗

i . Hence its volume is

∆Vi ≈ 2πx∗
i f(x∗

i )∆x ,

and the volume of the solid is

V =
n∑

i=1

∆Vi ≈
n∑

i=1

2πx∗
i f(x∗

i )∆x .

As n → ∞ the right Riemann sum converges to the following integral:

V =

∫ b

a

2πxf(x) dx =

∫ b

a

2πxy dx .

Example: Find the volume of the solid obtained by revolving around
the y-axis the plane area between the graph of y = 1−x2 and the x-axis.

Answer : The graph intersects the positive x-axis at x = 1, so the
interval is [0, 1]. Hence

V =

∫ 1

0

2πxy dx =

∫ 1

0

2πx · (1 − x2) dx = 2π

∫ 1

0

(x − x3) dx

= 2π

[
x2

2
− x4

4

]1

0

= 2π

(
1

2
− 1

4

)

=
π

2
.

2.2.8. Revolving the Region Between Two Curves. Here we
find the volume of the solid obtained by revolving around the y-axis
the area between two curves y = f(x) and y = g(x) over an interval
[a, b]. The computation is similar, but if f(x) ≥ g(x) the shells will
have height f(x∗

i )− g(x∗
i ), so the volume will be given by the integral:

V =

∫ b

a

2πx(f(x) − g(x)) dx =

∫ b

a

2πx(yT − yB) dx .

Example: Find the volume of the solid obtained by revolving the
plane region limited by the curves y = x and y = x2 over the interval
[0, 1].

Answer : In [0, 1] we have x ≥ x2, so:

V =

∫ 1

0

2πx (yT − yB) dx = 2π

∫ 1

0

x (x − x2) dx

= 2π

∫ 1

0

(x2 − x3) dx = 2π

[
x3

3
− x4

4

]1

0

= 2π

(
1

3
− 1

4

)

= 2π
1

12
=

π

6
.
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If the region is revolved around the x-axis then the variables x and
y reverse their roles:

V =

∫ b

a

2πy (xR − xL) dy .

2.2.9. Revolving Around an Arbitrary Line. If the plane re-
gion is revolved around a vertical line y = c, the radius of the shell will
be x − c (or c − x, whichever is positive) instead of x, so the formula
becomes:

V =

∫ b

a

2π(x − c)(f(x) − g(x)) dx =

∫ b

a

2π(x − c)(yT − yB) dx .

Similarly, if the region is revolved around the horizontal line x = c,
the formula becomes:

V =

∫ b

a

2π(y − c)(f(y) − g(y)) dy =

∫ b

a

2π(y − c)(xR − xL) dy ,

where y − c must be replaced by c − y if c > y.
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2.3. Arc Length, Parametric Curves

2.3.1. Parametric Curves. A parametric curve can be thought
of as the trajectory of a point that moves trough the plane with coor-
dinates (x, y) = (f(t), g(t)), where f(t) and g(t) are functions of the
parameter t. For each value of t we get a point of the curve. Example:
A parametric equation for a circle of radius 1 and center (0, 0) is:

x = cos t, y = sin t .

The equations x = f(t), y = g(t) are called parametric equations.

Given a parametric curve, sometimes we can eliminate t and obtain
an equivalent non-parametric equation for the same curve. For instance
t can be eliminated from x = cos t, y = sin t by using the trigonometric
relation cos2 t + sin2 t = 1, which yields the (non-parametric) equation
for a circle of radius 1 and center (0, 0):

x2 + y2 = 1 .

Example: Find a non-parametric equation for the following para-
metric curve:

x = t2 − 2t, y = t + 1 .

Answer : We eliminate t by isolating it from the second equation:

t = (y − 1) ,

and plugging it in the first equation:

x = (y − 1)2 − 2(y − 1) .

i.e.:
x = y2 − 4y + 3 ,

which is a parabola with horizontal axis.

2.3.2. Arc Length. Here we describe how to find the length of a
smooth arc. A smooth arc is the graph of a continuous function whose
derivative is also continuous (so it does not have corner points).

If the arc is just a straight line between two points of coordinates
(x1, y1), (x2, y2), its length can be found by the Pythagorean theorem:

L =
√

(∆x)2 + (∆y)2 ,

where ∆x = x2 − x1 and ∆y = y2 − y1.
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More generally, we approximate the length of the arc by inscribing
a polygonal arc (made up of straight line segments) and adding up the
lengths of the segments. Assume that the arc is given by the parametric
functions x = f(x), y = g(x), a ≤ t ≤ b.

We divide the interval into n subintervals of equal length. The
corresponding points in the arc have coordinates (f(ti), g(ti)), so two
consecutive points are separated by a distance equal to

Li =
√

[f(ti) − f(ti−1)]2 + [g(ti) − g(ti−1)]2 .

We have ∆t = ti − ti−1 = (b − a)/n. On the other hand, by the mean
value theorem

f(ti) − f(ti−1) = f ′(t∗i ) ∆t

g(ti) − f(ti−1) = g′(t∗i ) ∆t

for some t∗i in [ti−1, ti]. Hence

Li =
√

[f ′(x∗
i ) ∆t]2 + [g′(t∗i ) ∆t]2 =

√

[f ′(t∗i )]
2 + [g′(t∗i )]

2 ∆t .

The total length of the arc is

L ≈
n∑

i=1

si =
n∑

i=1

√

[f ′(t∗i )]
2 + [g′(t∗i )]

2 ∆t ,

which converges to the following integral as n → ∞:

L =

∫ b

a

√

[f ′(t)]2 + [g′(t)]2 dt .

This formula can also be expressed in the following (easier to remem-
ber) way:

L =

∫ b

a

√
(

dx

dt

)2

+

(
dy

dt

)2

dt

The last formula can be obtained by integrating the length of an
“infinitesimal” piece of arc

ds =
√

(dx)2 + (dy)2 = dt

√
(

dx

dt

)2

+

(
dy

dt

)2

.

Example: Find the arc length of the curve x = t2, y = t3 between
(1, 1) and (4, 8).
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Answer : The given points correspond to the values t = 1 and t = 2
of the parameter, so:

L =

∫ 2

1

√
(

dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 2

1

√

(2t)2 + (3t2)2 dt

=

∫ 2

1

√
4t2 + 9t4 dt

=

∫ 2

1

t
√

4 + 9t2 dt

=
1

18

∫ 40

13

√
u du (u = 4 + 9t2)

=
1

27

[
403/2 − 133/2

]

=
1

27
(80

√
10 − 13

√
13) .

In cases when the arc is given by an equation of the form y = f(x)
or x = f(x) the formula becomes:

L =

∫ b

a

√

1 +

(
dy

dx

)2

dx

or

L =

∫ b

a

√
(

dx

dy

)2

+ 1 dy

Example: Find the length of the arc defined by the curve y = x3/2

between the points (0, 0) and (1, 1).
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Answer :

L =

∫ 1

0

√

1 +

(
dy

dx

)2

dx =

∫ 1

0

√

1 + [(x3/2)′]2 dx

=

∫ 1

0

√

1 +

(
3x1/2

2

)2

dx =

∫ 1

0

√

1 +
9x

4
dx

=

[
1

27
(4 + 9x)3/2

]1

0

=
1

27
(133/2 − 8) .
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2.4. Average Value of a Function (Mean Value Theorem)

2.4.1. Average Value of a Function. The average value of finitely
many numbers y1, y2, . . . , yn is defined as

yave =
y1 + y2 + · · · + yn

n
.

The average value has the property that if each of the numbers y1, y2, . . . , yn

is replaced by yave, their sum remains the same:

y1 + y2 + · · · + yn =

(n times)
︷ ︸︸ ︷
yave + yave + · · · + yave

Analogously, the average value of a function y = f(x) in the interval
[a, b] can be defined as the value of a constant fave whose integral over
[a, b] equals the integral of f(x):

∫ b

a

f(x) dx =

∫ b

a

fave dx = (b − a) fave .

Hence:

fave =
1

b − a

∫ b

a

f(x) dx .

2.4.2. The Mean Value Theorem for Integrals. If f is con-
tinuous on [a, b], then there exists a number c in [a, b] such that

f(c) = fave =
1

b − a

∫ b

a

f(x) dx ,

i.e.,
∫ b

a

f(x) dx = f(c)(b − a) .

Example: Assume that in a certain city the temperature (in ◦F) t
hours after 9 A.M. is represented by the function

T (t) = 50 + 14 sin
πt

12
.

Find the average temperature in that city during the period from
9 A.M. to 9 P.M.
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Answer :

Tave =
1

12 − 0

∫ 12

0

(

50 + 14 sin
πt

12

)

dt

=
1

12

[

50t − 14 · 12

π
cos

πt

12

]12

0

=
1

12

{(

50 · 12 − 168

π
cos

12π

12

)

−
(

50 · 0 − 168

π
cos 0

)}

= 50 +
28

π
≈ 58.9 .
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2.5. Applications to Physics and Engineering

2.5.1. Work. Work is the energy produced by a force F pushing
a body along a given distance d. If the force is constant, the work done
is the product

W = F · d .

The SI (international) unit of work is the joule (J), which is the work
done by a force of one Newton (N) pushing a body along one meter
(m). In the American system a unit of work is the foot-pound. Since
1 N = 0.224809 lb and 1 m = 3.28084 ft, we have 1 J = 0.737561 ft lb.

More generally, assume that the force is variable and depends on
the position. Let F (x) be the force function. Assume that the force
pushes a body from a point x = a to another point x = b. In order to
find the total work done by the force we divide the interval [a, b] into
small subintervals [xi−1, xi] so that the change of F (x) is small along
each subinterval. Then the work done by the force in moving the body
from xi−1 to xi is approximately:

∆Wi ≈ F (x∗
i ) ∆x ,

where ∆x = xi − xi−1 = (b− a)/n and x∗
i is any point in [xi−1, xi]. So,

the total work is

W =
n∑

i=1

∆Wi ≈
n∑

i=1

F (x∗
i ) ∆x .

As n → ∞ the Riemann sum at the right converges to the following
integral:

W =

∫ b

a

F (x) dx .

2.5.2. Elastic Springs. Consider a spring on the x-axis so that its
right end is at x = 0 when the spring is at its rest position. According
to Hook’s Law, the force needed to stretch the spring from 0 to x is
proportional to x, i.e.:

F (x) = kx ,

where k is the so called spring constant.

The energy needed to stretch the spring from 0 to a is then the
integral

W =

∫ a

0

kx dx = k
a2

2
.
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2.5.3. Work Done Against Gravity. According to Newton’s
Law, the force of gravity at a distance r from the center of the Earth
is

F (r) =
k

r2
,

where k is some positive constant.

The energy needed to lift a body from a point at distance R1 from
the center of the Earth to another point at distance R2 is given by the
following integral

W =

∫ R2

R1

k

r2
dr =

[

−k

r

]R2

R1

= k

(
1

R1

− 1

R2

)

.

Example: Find the energy needed to lift 1000 Km a body whose
weight is 1 N at the surface of Earth. The Earth radius is 6378 Km.

Answer : First we must determine the value of the constant k in
this case. Since the weight of the body for r = 6378 Km is 1 N we
have k/63782 = 1, so k = 63782. Next we have R1 = 6378, R2 =
6378 + 1000 = 7378, hence

W = 63782

(
1

6378
− 1

7378

)

= 864.462 N Km .

Since 1 Km = 1000 m, the final result in joule is

864.462 N Km = 864.462 N × 1000 m = 864462 J .

2.5.4. Work Done Filling a Tank. Consider a tank whose bot-
tom is at some height y = a and its top is at y = b. Assume that
the area of its cross section is A(y). We fill the tank by lifting from
the ground (y = 0) tiny layers of thickness dy each. Their weight is
dF = ρA(y) dy, where ρ is the density of the liquid that we are putting
in the tank. The work needed to lift each layer is

dW = dF · y = ρyA(y) dy .

Hence, the work needed to fill the tank is

W =

∫ b

a

ρyA(y) dy .
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2.5.5. Emptying a Tank. Consider a tank like the one in the
previous paragraph. Now we empty it by pumping its liquid to a fix
height h. The analysis of the problem is similar to the previous para-
graph, but now the work done to pump a tiny layer of thickness dy
is

dW = dF · (h − y) = ρ (h − y)A(y) dy .

Hence the total work needed to empty the tank is

W =

∫ b

a

ρ (h − y)A(y) dy .

2.5.6. Force Exerted by a Liquid Against a Vertical Wall.
The pressure p of an homogeneous liquid of density ρ at depth h is

p = ρh .

When the pressure is constant, the force exerted by the liquid against
a surface is the product of the pressure and the area of the surface.
However the pressure against a vertical wall is not constant because it
depends on the depth.

Assume that the surface of the liquid is at y = c and we place
a vertical plate of width w(y) between y = a and y = b. The force
exerted at y (so at depth h = c− y) against a small horizontal strip of
height dy and width w(t) (area = w(t) dy) is

dF = ρ (c − y)w(y) dy .

hence the total force is

F =

∫ b

a

ρ (c − y)w(y) dy .

Example: A cylindrical tank of radius 1 m and full of water (ρ =
9800 N/m3) is lying on its side. What is the pressure exerted by the
water on its (vertical) bottom?

Answer : We assume the center of the tank is at y = 0, so the top
of the liquid is at y = 1, and its bottom is at y = −1. On the other
hand we obtain geometrically w(y) = 2

√

1 − y2. Hence the total force
is:

F =

∫ 1

−1

9800 · (1 − y)2
√

1 − y2 dy = 19800 · π

2
= 30787.6 N .
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2.5.7. Moments, Center of Mass. Here we will find a point in
a solid in which it can be balanced. That point is called center of mass.

In the particular case when the solid consists of just two particles,
we can use the Law of the Lever, discovered by Archimedes. If two
mases m1 and m2 are attached to a rod of negligible mass on opposite
sides of a fulcrum at distance d1, d2 from the fulcrum, the rod will
balance if

m1d1 = m2d2 .

If the particles lie along the x axis at coordinates x1 and x2 respectively
(with x1 < x2), and x is the coordinate of the center of mas, then
d1 = x − x1, d2 = x2 − x, so

m1(x − x1) = m2(x2 − x)

m1x + m2x = m1x1 + m2x2

x =
m1x1 + m2x2

m1 + m2

.

The numbers m1x1 and m2x2 are called moments of the masses m1

and m2. So the center of masses is found by dividing the total moment
by the total mass. More generally, for a solid made up of n particles of
masses mi placed on the x-axis at points xi:

x =

n∑

i=1

mixi

n∑

i=1

mi

=
M

m
,

where M =
n∑

i=1

mixi is the total moment of the solid, and m =
n∑

i=1

mi

is its total mass.

If we now consider particles distributed in a plane with coordinates
(xi, yi), then the moment of the system about the y-axis is

My =
n∑

i=1

mixi ,

and the moment of the system about the x-axis is

Mx =
n∑

i=1

miyi .

My measures the tendency of the solid to rotate about the y-axis, and
Mx measures the tendency of the solid to rotate about the x-axis.
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The coordinates of the center of mass (x, y) are now

x =
My

m
, y =

Mx

m
.

Now consider a flat plate of uniform density ρ occupying the plane
region under a curve y = f(x) between x = a and x = b. Slices parallel
to the y axis of width ∆x and length f(x) have mass ρf(x) ∆x, and
their moment about the y-axis will be xρf(x) ∆x. The sum of their
moments in the limit as ∆x → 0 is the integral:

My = ρ

∫ b

a

xf(x) dx .

The moment about the x-axis of a slice can be found taking into account
that by symmetry its center of mass is at distance f(x)/2 from the x-
axis, so the moment is 1

2
f(x)ρf(x) ∆x = ρ1

2
[f(x)]2 ∆x. Adding and

taking the limit we get the integral

Mx = ρ

∫ b

a

1
2
[f(x)]2 dx .

The total mass of the plate is its density times its area:

m = ρ

∫ b

a

f(x) dx .

Hence, the coordinates of its center of mass are:

x =
My

m
=

ρ
∫ b

a
xf(x) dx

ρ
∫ b

a
f(x) dx

=

∫ b

a
xf(x) dx

∫ b

a
f(x) dx

y =
Mx

m
=

ρ
∫ b

a
1
2
[f(x)]2 dx

ρ
∫ b

a
f(x) dx

=

∫ b

a
1
2
[f(x)]2 dx

∫ b

a
f(x) dx

.

Example: Find the center of mass of a semicircular plate of radius r.

Answer : We use coordinates so that the plate occupies the region
under the graph of y =

√
r2 − x2, −r ≤ x ≤ r. The area of the

semicircle is A = πr2/2. By symmetry x = 0, so we only need to
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find y:

y =
1

A

∫ r

−r

1
2
{f(x)}2 dx =

1

πr2/2
· 1

2

∫ r

−r

(
√

r2 − x2)2 dx

=
2

πr2

∫ r

0

(r2 − x2) dx =
2

πr2

[

r2x − x3

3

]r

0

dx

=
2

πr2

(

r3 − r3

3

)

=
2

πr2

2r3

3
=

4r

3π
.
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2.6. Probability

2.6.1. Continuous Random Variables. A random variable is
a real-valued function defined on some set of possible outcomes of a
random experiment; e.g. the number of points obtained after rolling
a dice - which can be 1, 2, 3, 4, 5 or 6. In this example the random
variable can take only a discrete set of values. If the variable can take a
continuous set of values then it is called a continuous random variable,
e.g. a person’s height.

Given a random variable X, its probability distribution function

is the function F (x) = P (X ≤ x) = probability that the random
variable X takes a value less than or equal to x. For instance if F (x) is
the probability distribution function of the number of points obtained
after rolling a dice, then F (4.7) = P (X ≤ 4.7) = probability that the
number of points is less than or equal to 4.7, i.e., the number of points
is 1, 2, 3 or 4, so the probability is 4/6 = 2/3, and F (4.7) = 2/3.

If the random variable is continuous then we can also define a prob-

ability density function f(x) equal to the limit as ∆x → 0 of the prob-
ability that the random variable takes a value in a small interval of
length ∆x around x divided by the length of the interval. This def-
inition means that f(x) = F ′(x). The probability that the random
variable takes a value in some interval [a, b] is

P (a ≤ X ≤ b) = F (b) − F (a) =

∫ b

a

f(x) dx .

In general the probability density of a random variable satisfies two
conditions:

(1) f(x) ≥ 0 for every x (probabilities are always non-negative).

(2)

∫ ∞

−∞
f(x) dx = 1 (the probability of a sure event is 1).

Example: A probability distribution is called uniform on a set S if
its probability density is constant on S. Find the probability density
of the uniform distribution on the interval [2, 5].

Answer : The probability density function must be constant on [2, 5],
so for 2 ≤ x ≤ 5 we have f(x) = c for some constant c. On the other
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hand f(x) = 0 for x outside [2, 5], hence:

1 =

∫ ∞

−∞
f(x) dx =

∫ 5

2

c dx = c(5 − 2) = 3c ,

so c = 1/3. Hence

f(x) =

{

1/3 if 2 ≤ x ≤ 5,

0 otherwise.

2.6.2. Means. The mean or average of a discrete random variable
that takes values x1, x2, . . . , xn with probabilities p1, p2, . . . , pn respec-
tively is

x = x1p1 + x2p2 + · · · + xnpn =
n∑

i=1

xipi .

For instance the mean value of the points obtained by rolling a dice is

1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
=

7

2
= 3.5 .

This means that if we roll the dice many times in average we may
expect to get about 3.5 points per roll.

For continuous random variables the probability is replaced with
the probability density function, and the sum becomes an integral:

µ = x =

∫ ∞

−∞
xf(x) dx .

2.6.3. Waiting Times. The time that we must wait for some
event to occur (such as receiving a telephone call) can be modeled with
a random variable of density

f(t) =

{

0 if t < 0,

ce−ct if t ≥ 0,

were c is a positive constant. Note that, as expected:
∫ ∞

−∞
f(t) dt =

∫ ∞

0

ce−ct dx =
[
−e−ct

]∞
0

= lim
u→∞

{−e−cu − (−e0)} = 1 .
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The mean waiting time can be computed like this:

µ =

∫ ∞

−∞
tf(t) dt

=

∫ ∞

0

tce−ct dx

=
[
−te−ct

]∞
0

+

∫ ∞

0

e−ct dx (I. by parts)

= 0 +

[

−e−ct

c

]∞

0

=
1

c
,

hence µ = 1/c. So we can rewrite the density function like this:

f(x) =

{

0 if t < 0,
1
µ
e−t/µ if t ≥ 0,

Example: Assume that the average waiting time for a catastrophic
meteorite to strike the Earth is 100 million years. Find the probability
that the Earth will suffer a catastrophic meteorite impact in the next
100 years. Find the probability that no such catastrophic event will
happen in the next 5 billion years.

Answer : We have µ = 108 years, so the probability density function
is

f(t) = 10−8e−10−8 t (t ≥ 0) .

So the answer to the first question is

∫ 100

0

10−8e−10−8 t dt =
[

1 − e−10−8 t
]100

0
= 1−e−10−8·100 = 1−e−10−6 ≈ 10−6 ,

i.e., about 1 in a million. Regarding the second question, the probabil-
ity is

1 −
∫ 5·109

0

10−8e−10−8 t dt = 1 −
[

1 − e−10−8 t
]5·109

0

= 1 −
{

1 − e−10−8·5·109
}

= e−50 ≈ 2 · 10−22 ,

which is practically zero.
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2.6.4. Normal Distributions. Many important phenomena fol-
low a so called Normal Distribution, whose density function is:

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

.

Its mean is µ. The positive constant σ is called standard deviation; it
measures how spread out the values of the random variable are.

Example: Intelligent Quotient (IQ) scores are distributed normally
with mean µ = 100 and standard deviation σ = 15. What proportion
of the population has an IQ between 70 and 130?

Answer : The integral cannot be evaluated in terms of elementary
functions, but it can be approximated with numerical methods:

P (70 ≤ X ≤ 130) =

∫ 130

70

1

15
√

2π
e−(x−100)2/2·152

dx ≈ 0.9544997360 · · · .

Another approach for solving these kinds of problems is to use the
error function, defined in the following way:

φ(x) =
2√
π

∫ x

0

e−t2 dt .

The following are some of its values (rounded to three decimal places):

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
φ(x) 0.0 0.112 0.223 0.329 0.438 0.520 0.604 0.678 0.742 0.797

x 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
φ(x) 0.843 0.880 0.910 0.934 0.952 0.966 0.976 0.984 0.989 0.993

x 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
φ(x) 0.995 0.997 0.998 0.999 0.999 1.000 1.000 1.000 1.000 1.000

Example: Solve the previous problem using the error function.

Answer : We need to transform our integral into another expression
containing the error function:
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P (70 ≤ X ≤ 130) =

∫ 130

70

1

15
√

2π
e−(x−100)2/450 dx

=
1√
π

∫ √
2

−
√

2

e−u2

du [u = (x − 100)/15
√

2]

=
2√
π

∫ √
2

0

e−u2

du (by symmetry)

= φ(
√

2) ≈ φ(1.4) ≈ 0.952



CHAPTER 3

Differential Equations

3.1. Differential Equations and Separable Equations

3.1.1. Population Growth. The growth of a population is usu-
ally modeled with an equation of the form

dP

dt
= kP ,

where P represents the number of individuals an a given time t. This
model assumes that the rate of growth of population is proportional to
the population size.

A solution to this equation is the exponential function:

P (t) = Cekt .

Check: P ′(t) = kCekt = kP (t).

A more realistic model takes into account that any environment has
a limited carrying capacity K, so if P reaches K the population stops
growing. The model in this case is the following:

dP

dt
= kP

(

1 − P

K

)

.

This is called the logistic differential equation.

3.1.2. Motion of a Spring. Consider an object of mass m at the
end of a vertical spring. According to Hook’s law the restoring force of
a spring stretched (or compressed) a distance x from its natural length
is

F = −kx ,

where k is a positive constant (the spring constant) and the negative
sign expresses that the sense of the force is opposite to the sense of
the stretching. By Newton’s Second Law (force equals mass times

74
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acceleration):

m
d2x

dt2
= −kx ,

or equivalently:

d2x

dt2
= − k

m
x .

This is an example of a second order differential equation because
it involves second order derivatives.

3.1.3. General Differential Equations. A differential equation

is an equation that contains one or more unknown functions and one
or more of its derivatives. The order of the differential equation is the
order of the highest derivative that occurs in the equation.

3.1.4. First-order Differential Equations. A first-order differ-

ential equation is an equation of the form

dy

dx
= F (x, y) ,

where F (x, y) is a function of x and y. A solution of the differential
equation is a function y(x) such that y′(x) = F (x, y(x)) for all x in
some appropriate interval.

Example: Consider the following differential equation:

dy

dx
=

2y

x
.

A possible solution for that equation is, for instance, y = x2, because

dy

dx
= y′(x) = (x2)′ = 2x ,

and

2
y

x
= 2

x2

x
= 2x ,

hence y′(x) =
2 y(x)

x
for all x 6= 0.
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3.1.5. Separable Differential Equations. A differential equa-
tion is said to be separable if it can be written in the form

f(y) dy = g(x) dx ,

so that the left hand side depends on y only and the right hand side
depends on x only. In particular this is true if the equation is of the
form

dy

dx
= g(x) φ(y) ,

where the right hand side is a product of a function of x and a function
of y. In this case we get:

1

φ(y)
dy = g(x) dx .

Given the equation

f(y) dy = g(x) dx ,

we can solve it by integrating both sides. Since the antiderivatives of
a function differ in a constant, we get:

∫

f(y) dy =

∫

g(x) dx + C ,

If F (y) =
∫

f(y) dy and G(x) =
∫

g(x) dx then the solution takes the
form

F (y) = G(x) + C .

Next we will try to solve this equation algebraically in order to either
write y as a function of x, or x as a function of y.

Example: Consider the equation

dy

dx
= y2 x .

The right hand side is the product of a function of x and a function of
y, so it is separable:

1

y2
dy = x dx .

Integrating both sides we get:

−1

y
=

x2

2
+ C ,

hence

y = − 2

x2 + 2C
= − 2

x2 + C ′ ,

where C ′ is a new constant equal to 2C.
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3.1.6. Initial Value Problems. A differential equation together
with an initial condition







dy

dx
= F (x, y)

y(x0) = y0

is called an initial value problem.

The initial condition can be used to determine the value of the
constant in the solution of the equation.

Example: Solve the following initial value problem:






dy

dx
= y2 x

y(0) = 1

Solution: We already found the general solution to the differential
equation:

y = − 2

x2 + C
.

Next we let x = 0 and y = 1, and solve for C:

1 = − 2

C
=⇒ C = −2 .

So the solution is

y = − 2

x2 − 2
=

2

2 − x2
.
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3.2. Directional Fields and Euler’s Method

Here we study a graphical method (direction fields) and a numerical
method (Euler’s method) to solve differential equations.

3.2.1. Slope Fields. Consider a differential equation of the form

dy

dx
= F (x, y) .

If y(x) is a solution, the slope of its graph at each point (x, y(x))
should be equal to F (x, y). So the right hand side of the equation can
be interpreted as a slope field in the xy-plane. The graph of a solution
is called a solution curve for the slope field. Each solution curve is
a particular solution of the slope field. A point (x0, y0) in the xy-
plane plays the role of an initial condition, and the solution curve that
passes through that point corresponds to the solution of the differential
equation satisfying the corresponding initial condition y(x0) = y0.

3.2.2. Direction Fields. This method consists of interpreting the
differential equation as a slope field and sketch solutions just by fol-
lowing the field.

Example: The direction field for the differential equation

y′ = x + y

looks like this:

–2

–1

0

1

2

y(x)

–2 –1 1 2

x
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3.2.3. Euler’s Method. Euler’s method consists of approximat-
ing solutions to a differential equation with polygonal lines made of
short straight lines each with slope equal to y′ at their initial point. So
assume that we want to find approximate values of a solution for an
initial-value problem {

y′ = F (x, y)
y(x0) = y0

at equally spaced points x0, x1 = x0 + h, x2 = x1 + h, . . . , where h is
called the step size. We take (x0, y0) as the initial point of the solution.
The slope at (x0, y0) is y′

0 = F (x0, y0), hence next point will be (x1, y1)
so that (y1 − y0)/h = F (x0, y0), i.e., y1 = y0 + hF (x0, y0). Proceeding
in the same way we get in general:

y1 = y0 + hF (x0, y0)

y2 = y1 + hF (x1, y1)

· · ·
yn = yn−1 + hF (xn−1, yn−1)

· · ·

Example: Use Euler’s method with step size 0.1 to find approximate
values of the solution to the initial value problem

{
y′ = x + y
y(0) = 1

Answer : We have:
y(0) = y0 = 1

y(0.1) ≈ y1 = y0 + hF (x0, y0) = 1 + 0.1(0 + 1) = 1.1

y(0.2) ≈ y2 = y1 + hF (x1, y1) = 1.1 + 0.1(0.1 + 1.1) = 1.22

y(0.3) ≈ y3 = y2 + hF (x2, y2) = 1.22 + 0.1(0.2 + 1.22) = 1.362

· · ·
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3.3. Exponential Growth and Decay

3.3.1. Natural Growth. Consider population with P (t) individ-
uals at time t and with constant birth rate β (births per unit of time)
and death rate δ (deaths per unit of time). This basically means that if
P does not change, then during a unit of time (say, a year), βP births
and δP deaths will occur. Since P in fact varies, we need to use smaller
intervals of time [t, t + ∆t] in which P can be considered almost con-
stant. During such interval of time the number of births will be βP∆t,
and the number of deaths δP∆t. So the change in the population will
be

∆P = P (t + ∆t) − P (t) ≈ βP∆t − δP∆t .

Dividing by ∆t and finding the limit as ∆t → 0 we get

P ′(t) = (β − δ)P (t) ,

i.e.,
dP

dt
= kP ,

where k = β− δ. With x(t) in place of P (t) we get the Natural Growth

Equation:
dx

dt
= kx .

This equation can be solved by separation of variables:

dx

x
= k dt

∫
dx

x
=

∫

k dt + C

ln x = kt + C

x = ekt+C = Aekt ,

where A = eC . Putting t = 0 we see that A = x0 = x(0), hence:

x(t) = x0e
kt .

Example: The current (year 2000) population of the Earth is 6 bil-
lion people, and the yearly birth and death rates are β = 0.021 and
δ = 0.009 respectively. Assuming the birth and death rates remain
constant, find the population of the Earth in the year 2100.

Answer : For the purpose of the problem we can take t = 0 in the
year 2000, so the year 2100 will correspond to t = 100. So we have
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x0 = 6 billion, and k = β − δ = 0.021 − 0.009 = 0.012, hence:

P (t) = P0 ekt = 6 e0.012t

in billions. So the solution is

P (100) = 6 e0.012×100 = 19.92 billion .

3.3.2. Radioactive Decay. Consider a given sample of radioac-
tive material with N(t) atoms at time t. During a given unit of time
a fix fraction of these atoms will spontaneously decay, so the sample
behaves like a population with a constant death rate and no births:

dN

dt
= −kN ,

where k > 0 is the decay constant. The solution to this equation is

N(t) = N0 e−kt ,

where No is the number of atoms at time t = 0.

The half-life τ of the material is the time required for half of the
sample to decay, i.e.:

1

2
N0 = N0 e−kτ ,

so

τ =
ln 2

k
.

3.3.3. Radiocarbon Dating. The air in the atmosphere contains
two carbon isotopes: 12C, which is stable, and 14C, which is radioactive
with a half-life of about 5700 years—so k = ln 2/τ = ln 2/5700 =
0.0001216.

While an organism is alive, it absorbs both carbon isotopes by
breathing air, so the proportion of those isotopes in living matter is
the same as in air. But when an organism dies, the 14C in it keeps
decaying without being replaced. So by measuring the proportion of
14C in an organism we can estimate for how long it has been dead.

Example: A cadaver found in an old burial site has 80% as much
14C as a current day human body. When did that individual die?

Answer : We have:

0.80 = e−kt = e−kt
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Hence

t = − ln 0.80

k
= − ln 0.80

0.0001216
= 1835 years ago .

3.3.4. Continuously Compounded Interest. Consider an ac-
count opened with an initial amount of A0 dollars and an annual inter-
est rate r. Let A(t) be the number of dollars in the account at time t.
Assume the interest is compounded after an interval of time ∆t. The
interest produced is rA(t)∆t, so

A(t + ∆t) = A(t) + rA(t)∆t ,

i.e.
∆A

∆t
= rA(t) .

The limit for ∆t → 0 is called continuously compounded interest. In
that case we get:

dA

dt
= rA(t) .

The solution to this equation is

A(t) = A0e
rt .



CHAPTER 4

Infinite Sequences and Series

4.1. Sequences

A sequence is an infinite ordered list of numbers, for example the
sequence of odd positive integers:

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 . . .

Symbolically the terms of a sequence are represented with indexed
letters:

a1, a2, a3, a4, a5, a6, a7, . . . , an, . . .

Sometimes we start a sequence with a0 (index zero) instead of a1.

Notation: the sequence a1, a2, a3, . . . is also denoted by {an} or
{an}∞n=1.

Some sequences can be defined with a formula, for instance the
sequence 1, 3, 5, 7, . . . of odd positive integers can be defined with the
formula an = 2n − 1.

A recursive definition consists of defining the next term of a se-
quence as a function of previous terms. For instance the Fibonacci

sequence starts with f1 = 1, f2 = 1, and then each subsequent term is
the sum of the two previous ones: fn = fn−1+fn−2; hence the sequence
is:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

4.1.1. Limits. The limit of a sequence is the value to which its
terms approach indefinitely as n becomes large. We write that the limit
of a sequence an is L in the following way:

lim
n→∞

an = L or an → L as n → ∞ .

For instance

lim
n→∞

1

n
= 0 ,

83



4.1. SEQUENCES 84

lim
n→∞

n + 1

n
= 1 ,

etc.

If a sequence has a (finite) limit the it is said to be convergent,
otherwise it is divergent.

If the sequence becomes arbitrarily large then we write

lim
n→∞

an = ∞ .

For instance

lim
n→∞

n2 = ∞ .

4.1.2. Theorem. Let f be a function defined in [1,∞]. If limx→∞ f(x) =
L and an = f(n) for integer n ≥ 1 then limn→∞ an = L (i.e., we can
replace the limit of a sequence with that of a function.)

Example: Find lim
n→∞

ln n

n
.

Answer : According to the theorem that limit equals lim
x→∞

ln x

x
, where

x represents a real (rather than integer) variable. But now we can use
L’Hôpital’s Rule:

lim
x→∞

ln x

x
= lim

x→∞

(ln x)′

(x)′
= lim

x→∞

1/x

1
= 0 ,

hence

lim
n→∞

ln n

n
= 0 .

Example: Find lim
n→∞

rn (r > 0).

Answer : This limit is the same as that of the exponential function
rx, hence

lim
n→∞

rn =







0 if 0 < r < 1

1 if r = 1

∞ if r > 1
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4.1.3. Operations with Limits. If an → a and bn → b then:

(an + bn) → a + b.

(an − bn) → a − b.

can → ca for any constant c.

anbn → ab.

an

bn

→ a

b
if b 6= 0.

(an)p → ap if p > 0 and an > 0 for every n.

Example: Find lim
n→∞

n2 + n + 1

2n2 + 3
.

Answer : We divide by n2 on top and bottom and operate with limits
inside the expression:

lim
n→∞

n2 + n + 1

2n2 + 3
= lim

n→∞

1 + 1
n

+ 1
n2

2 + 3
n2

=
1 + 0 + 0

2 + 0
=

1

2
.

4.1.4. Squeeze Theorem. If an ≤ bn ≤ cn for every n ≥ n0 and
lim

n→∞
an = lim

n→∞
cn = L, then lim

n→∞
bn = L.

Consequence: If lim
n→∞

|an| = 0 then lim
n→∞

an = 0.

Example: Find lim
n→∞

cos n

n
.

Answer : We have − 1

n
≤ cos n

n
≤ 1

n
, and

1

n
→ 0 as n → ∞, hence

by the squeeze theorem

lim
n→∞

cos n

n
= 0 .

4.1.5. Other definitions.

4.1.5.1. Increasing, Decreasing, Monotonic. A sequence is increas-

ing if an+1 > an for every n. It is decreasing if an+1 < an for every n.
It is called monotonic if it is either increasing or decreasing.

Example: Probe that the sequence an =
n + 1

n
is decreasing.
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Answer : an+1 − an =
n + 2

n + 1
− n + 1

n
=

−1

n(n + 1)
< 0, hence

an+1 < an for all positive n.

4.1.5.2. Bounded. A sequence is bounded above if there is a number
M such that an ≤ M for all n. It is bounded below if there is a number
m such that m ≤ an for all n. It is called just bounded if it is bounded
above and below.

Example: Probe that the sequence an =
n + 1

n
is bounded.

Answer : It is in fact bounded below because all its terms are posi-
tive: an > 0. To prove that it is bounded above note that

an =
n + 1

n
= 1 +

1

n
≤ 2 .

since 1/n ≤ 1 for all positive integer n.

4.1.6. Monotonic Sequence Theorem. Every bounded mono-
tonic sequence is convergent.

For instance, we proved that an =
n + 1

n
is bounded and monotonic,

so it must be convergent (in fact n+1
n

→ 1 as n → ∞).

Next example shows that sometimes in order to find a limit you
may need to make sure that the limits exists first.

Example: Prove that the following sequence has a limit. Find it:

√
2,

√

2 +
√

2,

√

2 +

√

2 +
√

2, . . .

Answer : The sequence can be defined recursively as a1 =
√

2,
an+1 =

√
2 + an for n ≥ 1. First we will prove by induction that

0 < an < 2, so the sequence is bounded.

We start (base of induction) by noticing that 0 < a1 =
√

2 < 2.
Next the induction step. Assume (induction hypothesis) that for a
given value of n it is true that 0 < an < 2. From here we must prove
that the same is true for the next value of n, i.e. that 0 < an+1 < 2.
In fact (an+1)

2 = 2 + (an) < 2 + 2 = 4, hence 0 < an+1 <
√

4 = 2,
q.e.d. So by the induction principle all terms of the sequence verify
that 0 < an < 2.
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Now we prove that an is increasing:

(an+1)
2 = 2 + an > an + an = 2an > an · an = (an)2 ,

hence an+1 > an.

Finally, since the given sequence is bounded and increasing, by the
monotonic sequence theorem it has a limit L. We can find it by taking
limits in the recursive relation:

an+1 =
√

2 + an .

Since an → L and an+1 → L we have:

L =
√

2 + L ⇒ L2 = 2 + L ⇒ L2 − L − 2 = 0 .

That equation has two solutions, −1 and 2, but since the sequence is
positive the limit cannot be negative, hence L = 2.

Note that the trick works only when we know for sure that the limit
exists. For instance if we try to use the same trick with the Fibonacci
sequence 1, 1, 2, 3, 5, 8, 13, . . . (f1 = 1, f2 = 1, fn = fn−1 + fn−2),
calling L the “limit” we get from the recursive relation that L = L+L,
hence L = 0, so we “deduce” limn→∞ fn = 0. But this is wrong, in fact
the Fibonacci sequence is divergent.
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4.2. Series

A series is an infinite sum:
∞∑

n=1

an = a1 + a2 + a3 + · · · + an + · · ·

In order to define the value of these sum we start be defining its
sequence of partial sums

sn =
n∑

i=1

ai = a1 + a2 + · · · + an .

Then, if limn→∞ sn = s exists the series is called convergent and its
sum is that limit:

∞∑

n=1

an = s = lim
n→∞

sn .

Otherwise the series is called divergent.

For instance, consider the following series:

1

2
+

1

22
+

1

23
+ · · · + 1

2n
+ · · · =

∞∑

n=1

1

2n
.

Its partial sums are:

sn =
n∑

i=1

1

2i
=

1

2
+

1

22
+ · · · + 1

2n
= 1 − 1

2n
.

Hence its sum is
∞∑

n=1

1

2n
= lim

n→∞

n∑

i=1

1

2i
= lim

n→∞

(

1 − 1

2n

)

= 1 + 0 = 1 .

4.2.1. Geometric Series. A series verifying an+1 = ran, where r
is a constant, is called geometric series. If the first term is a 6= 0 then
the series is

a + ar + ar2 + · · · + arn + · · · =
∞∑

n=0

arn .

The partial sums are now:

sn =
n∑

i=0

ari .
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The nth partial sum can be found in the following way:

sn = a + ar + ar2 + · · · + arn

rsn = ar + ar2 + · · · + arn + arn+1

hence

sn − rsn = a + 0 + 0 + · · · + 0 − arn+1 ,

so:

sn =
a(1 − rn+1)

1 − r
.

If |r| < 1 we can rewrite the result like this:

sn =
a

1 − r
− a

1 − r
rn+1 ,

and then get the limit as n → ∞:

s = lim
n→∞

sn =
a

1 − r
− a

1 − r
lim

n→∞
rn+1

︸ ︷︷ ︸

↓

0

=
a

1 − r

So for |r| < 1 the series is convergent and

∞∑

n=0

arn =
a

1 − r
.

For |r| ≥ 1 the series is divergent.

4.2.2. Telescopic Series. A telescopic series is a series whose
terms can be rewritten so that most of them cancel out.

Example: Find
∞∑

n=1

1

n(n + 1)
.

Answer : Note that
1

n(n + 1)
=

1

n
− 1

n + 1
. So the nth partial sum

is

sn =
∞∑

i=1

(
1

i
− 1

i + 1

)

=
1

1
− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ · · · + 1

n
− 1

n + 1

= 1 − 1

n + 1
.
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Hence, the sum of the series is

s = lim
n→∞

sn = lim
n→∞

(

1 − 1

n + 1

)

= 1 .

4.2.3. Theorem. If the series
∑∞

n=0 an is convergent then
limn→∞ an = 0.

Proof : If the series is convergent then the sequence of partial sums
sn =

∑n
i=1 ai have a limit s. On the other hand an = sn − sn−1, so

taking limits we get limn→∞ an = s − s = 0.

The converse is not true in general. The harmonic series provides
a counterexample.

4.2.4. The Harmonic Series. The following series is called har-

monic series: ∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

The main fact about it is that it is divergent. In order to prove it
we find

s1 = 1

s2 = 1 + 1
2

s4 = 1 + 1
2

+
(

1
3

+ 1
4

)
> 1 + 1

2
+

(
1
4

+ 1
4

)
= 1 + 1

2
+ 1

2
= 1 + 2

2

s8 = 1 + 1
2

+
(

1
3

+ 1
4

)
+

(
1
5

+ 1
6

+ 1
7

+ 1
8

)

> 1 + 1
2

+
(

1
4

+ 1
4

)
+

(
1
8

+ 1
8

+ 1
8

+ 1
8

)
= 1 + 1

2
+ 1

2
+ 1

2
= 1 + 3

2

etc., so in general s2n > 1+ n
2
, hence the sequence of partial sums grows

without limit and the series diverges.

4.2.5. Test for Divergence. If lim
n→∞

an does not exist or if lim
n→∞

an 6= 0

then
∞∑

n=1

an diverges.

Example: Show that
∞∑

n=1

n

n + 1
diverges.

Answer : We have lim
n→∞

n

n + 1
= 1. Since the nth term of the series

does not tend to 0, the series diverges.
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Example: Show that
∞∑

n=1

sin n diverges.

Answer : All we need to show is that sin n does not tend to 0. If for
some value of n, sin n ≈ 0, then n ≈ kπ for some integer k, but then

sin (n + 1) = sinn cos 1 + cos n sin 1

≈ sin kπ cos 1 + cos kπ sin 1

= 0 ± sin 1

= ±0.84 · · · 6= 0

So if a term sin n is close to zero, the next term sin (n + 1) will be far
from zero, so it is impossible for sin n to get permanently closer and
closer to 0.

4.2.6. Operations with Series. If
∑∞

n=1 an and
∑∞

n=1 bn are con-
vergent series and c is a constant then the following series are also
convergent and:

(1)
∞∑

n=1

can = c
∞∑

n=1

an

(2)
∞∑

n=1

(an + bn) =
∞∑

n=1

an +
∞∑

n=1

bn

(3)
∞∑

n=1

(an − bn) =
∞∑

n=1

an −
∞∑

n=1

bn
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4.3. The Integral and Comparison Tests

4.3.1. The Integral Test. Suppose f is a continuous, positive,
decreasing function on [1,∞), and let an = f(n). Then the convergence
or divergence of the series

∑∞
n=1 an is the same as that of the integral

∫ ∞
1

f(x) dx, i.e.:

(1) If

∫ ∞

1

f(x) dx is convergent then
∞∑

n=1

an is convergent.

(2) If

∫ ∞

1

f(x) dx is divergent then
∞∑

n=1

an is divergent.

The best way to see why the integral test works is to compare the
area under the graph of y = f(x) between 1 and ∞ to the sum of the
areas of rectangles of height f(n) placed along intervals [n, n + 1].

f(1)

f(2)

f(4)

f(3)

f(5)

y = f(x)

0

0.2

0.4

0.6

0.8

1

1.2

y

1 2 3 4 5 6

x

f(3)

f(6)
f(5)

f(4)

f(2)

f(1)

y = f(x)

0

0.2

0.4

0.6

0.8

1

1.2

y

1 2 3 4 5 6

x

Figure 4.3.1

From the graph we see that the following inequality holds:

∫ n+1

1

f(x) dx ≤
n∑

i=1

an ≤ f(1) +

∫ n

1

f(x) dx .

The first inequality shows that if the integral diverges so does the series.
The second inequality shows that if the integral converges then the
same happens to the series.

Example: Use the integral test to prove that the harmonic series
∑∞

n=1 1/n diverges.
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Answer : The convergence or divergence of the harmonic series is
the same as that of the following integral:

∫ ∞

1

1

x
dx = lim

t→∞

∫ t

1

1

x
dx = lim

t→∞

[

ln x
]t

1
= lim

t→∞
ln t = ∞ ,

so it diverges.

4.3.2. The p-series. The following series is called p-series:
∞∑

n=1

1

np
.

Its behavior is the same as that of the integral
∫ ∞

1
1
xp dx. For p = 1

we have seen that it diverges. If p 6= 1 we have
∫ ∞

1

1

xp
dx = lim

t→∞

∫ t

1

1

xp
dx = lim

t→∞

[
x1−p

1 − p

]t

1

= lim
t→∞

t1−p

1 − p
− 1

1 − p
.

For 0 < p < 1 the limit is infinite, and for p > 1 it is zero so:

The p-series
∞∑

n=1

1

np
is

{

convergent if p > 1

divergent if p ≤ 1

4.3.3. Comparison Test. Suppose that
∑

an and
∑

bn are series
with positive terms and suppose that an ≤ bn for all n. Then

(1) If
∑

bn is convergent then
∑

an is convergent.

(2) If
∑

an is divergent then
∑

bn is divergent.

Example: Determine whether the series
∞∑

n=1

cos2 n

n2
converges or di-

verges.

Answer : We have

0 <
cos2 n

n2
≤ 1

n2
for all n ≥ 1

and we know that the series p-series
∞∑

n=1

1

n2
converges. Hence by the

comparison test, the given series also converges (incidentally, its sum

is 1
2
− π

2
+ π2

6
= 0.5736380465 . . . , although we cannot prove it here).
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4.3.4. The Limit Comparison Test. Suppose that
∑

an and
∑

bn are series with positive terms. If

lim
n→∞

an

bn

= c ,

where c is a finite strictly positive number, then either both series
converge or both diverge.

Example: Determine whether the series
∞∑

n=1

1√
1 + 4n2

converges or

diverges.

Answer : We will use the limit comparison test with the harmonic

series
∞∑

n=1

1

n
. We have

lim
n→∞

1/n

1/
√

1 + 4n2
= lim

n→∞

√
1 + 4n2

n

= lim
n→∞

√

1 + 4n2

n2

= lim
n→∞

√

1

n2
+ 4 =

√
4 = 2 ,

so the given series has the same behavior as the harmonic series. Since
the harmonic series diverges, so does the given series.

4.3.5. Remainder Estimate for the Integral Test. The dif-
ference between the sum s =

∑∞
n=1 an of a convergent series and its

nth partial sum sn =
∑

i=1 ai is the remainder :

Rn = s − sn =
∞∑

i=n+1

ai .

The same graphic used to see why the integral test works allows us
to estimate that remainder. Namely: If

∑
an converges by the Integral

Test and Rn = s − sn, then

∫ ∞

n+1

f(x) dx ≤ Rn ≤
∫ ∞

n

f(x) dx
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Equivalently (adding sn):

sn +

∫ ∞

n+1

f(x) dx ≤ s ≤ sn +

∫ ∞

n

f(x) dx

Example: Estimate
∞∑

n=1

1

n4
to the third decimal place.

Answer : We need to reduce the remainder below 0.0005, i.e., we
need to find some n such that

∫ ∞

n

1

x4
dx < 0.0005 .

We have ∫ ∞

n

1

x4
dx =

[

− 1

3x3

]∞

n

=
1

3n3
,

hence
1

3n3
< 0.0005 ⇒ n >

3

√

3

0.0005
= 18.17 . . . ,

so we can take n = 19. So the sum of the 15 first terms of the given
series coincides with the sum of the whole series up to the third decimal
place:

19∑

i=1

1

i4
= 1.082278338 . . .

From here we deduce that the actual sum s of the series is between
1.08227 . . .−0.0005 = 1.08177 . . . and 1.08227 . . . +0.0005 = 1.08277 . . . ,
so we can claim s ≈ 1.082. (The actual sum of the series is π4

90
=

1.0823232337 . . . .)
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4.4. Other Convergence Tests

4.4.1. Alternating Series. An alternating series is a series whose
terms are alternately positive and negative., for instance

1 − 1

2
+

1

3
− 1

4
+ · · · =

∞∑

n=1

(−1)n+1

n
.

4.4.1.1. The Alternating Series Test. If the sequence of positive
terms bn verifies

(1) bn is decreasing.

(2) lim
n→∞

bn = 0

then the alternating series

∞∑

n=1

(−1)nbn = b1 − b2 + b3 − b4 + · · ·

converges.

Example: The alternating harmonic series

1 − 1

2
+

1

3
− 1

4
+ · · · =

∞∑

n=1

(−1)n+1

n

converges because 1/n → 0. (Its sum is ln 2 = 0.6931471806 . . . .)

4.4.1.2. Alternating Series Estimation Theorem. If s =
∑∞

n=1(−1)nbn

is the sum of and alternating series verifying that bn is decreasing and
bn → 0, then the remainder of the series verifies:

|Rn| = |s − sn| ≤ bn+1 .

4.4.2. Absolute Convergence. A series
∑∞

n=1 an is called abso-

lutely convergent if the series of absolute values
∑∞

n=1 |an| converges.

Absolute convergence implies convergence, i.e., if a series
∑

an is
absolutely convergent, then it is convergent.

The converse is not true in general. For instance, the alternat-

ing harmonic series
∑∞

n=1
(−1)n+1

n
is convergent but it is not absolutely

convergent.
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Example: Determine whether the series
∞∑

n=1

cos n

n2

is convergent or divergent.

Answer : We see that the series of absolute values
∑∞

n=1
| cos n|

n2 is
convergent by comparison with

∑∞
n=1

1
n2 , hence the given series is ab-

solutely convergent, therefore it is convergent (its sum turns out to be
1/4 − π/2 + π2/6 = 0.324137741 . . . , but the proof of this is beyond
the scope of this notes).

4.4.3. The Ratio Test.

(1) If lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= L < 1 then the series

∞∑

n=1

an is absolutely con-

vergent.

(2) If lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= L > 1 (including L = ∞) then the series

∞∑

n=1

an

is divergent.

(3) If lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= 1 then the test is inconclusive (we do not know

whether the series converges or diverges).

Example: Test the series
∞∑

n=1

(−1)n n!

nn

for absolute convergence.

Answer : We have:
∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

(n + 1)!/(n + 1)n+1

n!/nn
=

nn

(n + 1)n
=

1
(
1 + 1

n

)n −→
n→∞

e−1 < 1 ,

hence by the Ratio Test the series is absolutely convergent.
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4.5. Power Series

A power series is a series of the form
∞∑

n=0

c0x
n = c0 + c1x + c2x

2 + · · · + cnx
n + · · ·

where x is a variable of indeterminate. It can be interpreted as an
infinite polynomial. The cn’s are the coefficients of the series. The
sum of the series is a function

f(x) =
∞∑

n=0

c0x
n

For instance the following series converges to the function shown for
−1 < x < 1:

∞∑

n=0

xn = 1 + x + x2 + · · · + xn + · · · =
1

1 − x
.

More generally given a fix number a, a power series in (x − a), or
centered in a, or about a, is a series of the form

∞∑

n=0

c0(x − a)n = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n + · · ·

4.5.1. Convergence of Power Series. For a given power series
∞∑

n=1

cn(x − a)n there are only three possibilities:

(1) The series converges only for x = a.

(2) The series converges for all x.

(3) There is a number R, called radius of convergence, such that
the series converges if |x− a| < R and diverges if |x− a| > R.

The interval of convergence is the set of values of x for which the
series converges.

Example: Find the radius of convergence and interval of convergence
of the series

∞∑

n=0

(x − 3)n

n
.
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Answer : We use the Ratio Test:
∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

(x − 3)n+1/(n + 1)

(x − 3)n/n
= (x − 3)

n

n + 1
−→
n→∞

x − 3 ,

So the power series converges if |x − 3| < 1 and diverges if |x − 3| >
1. Consequently, the radius of convergence is R = 1. On the other
hand, we know that the series converges inside the interval (2, 4), but
it remains to test the endpoints of that interval. For x = 4 the series
becomes ∞∑

n=0

1

n
,

i.e., the harmonic series, which we know diverges. For x = 2 the series
is ∞∑

n=0

(−1)n

n
,

i.e., the alternating harmonic series, which converges. So the interval
of convergence is [2, 4).



4.6. REPRESENTATION OF FUNCTIONS AS POWER SERIES 100

4.6. Representation of Functions as Power Series

We have already seen that a power series is a particular kind of
function. A slightly different matter is that sometimes a given function
can be written as a power series. We already know the example

1

1 − x
= 1 + x + x2 + x3 + · · · + xn + · · · =

∞∑

n=0

xn (|x| < 1)

Replacing x with other expressions we may write other functions in the
same way, for instance by replacing x with −2x2 we get:

1

1 + 2x2
= 1−2x2+4x4−8x6+· · ·+(−1)n2nx2n+· · · =

∞∑

n=0

(−1)n2nx2n ,

which converges for | − 2x2| < 1, i.e., |x| < 1/
√

2.

4.6.1. Differentiation and Integration of Power Series. Since
the sum of a power series is a function we can differentiate it and in-
tegrate it. The result is another function that can also be represented
with another power series. The main related result is that the deriv-
ative or integral of a power series can be computed by term-by-term

differentiation and integration:

4.6.1.1. Term-By-Term Differentiation and Integration. If the power
series

∑∞
n=0 cn(x− a)n has radius of convergence R > 0 then the func-

tion

f(x) =
∞∑

n=0

cn(x − a)n

is differentiable on the interval (a − R, a + R) and

(1) f ′(x) =
∞∑

n=0

{cn(x − a)n}′ =
∞∑

n=1

ncn(x − a)n−1

(2)

∫

f(x) dx =
∞∑

n=0

∫

cn(x − a)n dx = C +
∞∑

n=0

cn
(x − a)n+1

n + 1

The radii of convergence of the series in the above equations is R.

Example: Find a power series representation for the function

f(x) =
1

(1 − x)2
.



4.6. REPRESENTATION OF FUNCTIONS AS POWER SERIES 101

Answer : We have

1

(1 − x)2
=

d

dx

1

1 − x

and

1

1 − x
=

∞∑

n=0

xn ,

hence

1

(1 − x)2
=

d

dx

∞∑

n=0

xn =
∞∑

n=0

d

dx
xn =

∞∑

n=1

nxn−1

= 1 + 2x + 3x2 + 4x3 + · · · =
∞∑

n=0

(n + 1)xn (re-indexed)

The radius of convergence is R = 1.

Example: Find a power series representation for tan−1 x.

Answer : That function is the antiderivative of 1/(1 + x2), hence:

tan−1 x =

∫
1

1 + x2
dx

=

∫ ∞∑

n=0

(−1)nx2n dx

=
∞∑

n=0

∫

(−1)nx2n dx

= C +
∞∑

n=0

(−1)n x2n+1

2n + 1

= C + x − x3

3
+

x5

5
− x7

7
+ . . .

Since tan−1 0 = 0 then C = 0, hence

tan−1 x =
∞∑

n=0

(−1)n x2n+1

2n + 1
= x − x3

3
+

x5

5
− x7

7
+ . . .

The radius of convergence is R = 1.

Example: Find a power series representation for ln (1 + x).
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Answer : The derivative of that function is 1/(1 + x), hence

ln (1 + x) =

∫
1

1 + x
dx

=

∫ ∞∑

n=0

(−1)nxn dx

= C +
∞∑

n=0

∫

(−1)n xn+1

n + 1
dx

= C + x − x2

2
+

x3

3
− x4

4
+ · · ·

Since ln 1 = 0 then C = 0, so

ln (1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · · =

∞∑

n=1

(−1)n+1xn

n

The radius of convergence is R = 1.
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4.7. Taylor and MacLaurin Series

4.7.1. Polynomial Approximations. Assume that we have a
function f for which we can easily compute its value f(a) at some
point a, but we do not know how to find f(x) at other points x close
to a. For instance, we know that sin 0 = 0, but what is sin 0.1? One
way to deal with the problem is to find an approximate value of f(x).
If we look at the graph of f(x) and its tangent line at (a, f(a)), we
see that the points of the tangent line are close to the graph, so the
y-coordinates of those points are possible approximations for f(x).

y=f(a)+f’(x)(x-a)

y=f(x)

y

xa

Figure 4.7.1. Linear approximation of f(x).

The equation of the tangent line to y = f(x) at x = a is

y = f(a) + f ′(a)(x − a) ,

hence
f(x) ≈ f(a) + f ′(a)(x − a) ,

for x close to a. For instance:

sin(x) ≈ sin a + cos a (x − a) .

For a = 0 we get:

sin(x) ≈ sin 0 + cos 0 · (x − 0) = x ,

so sin(0.1) ≈ 0.1. In fact sin(0.1) = 0.099833416 . . . , which is close to
0.1.

The tangent line is the graph of the first degree polynomial

T1(x) = f(a) + f ′(a)(x − a) .

This polynomial agrees with the value and the first derivative of f(x)
at x = a:

T1(a) = f(a)

T ′
1(a) = f ′(a)
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We can extend the idea to higher degree polynomials in the hope of
obtaining closer approximations to the function. For instance, we may
try a second degree polynomial of the from:

T2(x) = c0 + c1(x − a) + c2(x − a)2 ,

with the following conditions:

T2(a) = f(a)

T ′
2(a) = f ′(a)

T ′′
2 (a) = f ′′(a)

i.e.:






c0 = f(a)

c1 = f ′(a)

2c2 = f ′′(a)

After solving the system of equations obtained we get:

c0 = f(a)

c1 = f ′(a)

c2 =
f ′′(a)

2

hence:

T2(x) = f(a) + f ′(a)x +
f ′′(a)

2
x2 .

In general the nth polynomial approximation of f(x) at x = a is an
nth degree polynomial

Tn(x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n

verifying

Tn(a) = f(a)

T ′
n(a) = f ′(a)

T ′′
n (a) = f ′′(a)

. . .

T (n)
n (a) = f (n)(a)
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From here we get a system of n+1 equations with the following solution:

c0 = f(a)

c1 = f ′(a)

c2 =
f ′′(a)

2!
. . .

cn =
f (n)(a)

n!

hence:

Tn(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n

=
n∑

k=0

f (k)(a)

k!
(x − a)k .

That polynomial is the so called nth-degree Taylor polynomial of

f(x) at x = a.

Example: The third-degree Taylor polynomial of f(x) = sin x at
x = a is

T3(x) = sin a + cos a · (x − a)2 − sin a

2
(x − a)2 − cos a

3!
(x − a)3 .

For a = 0 we have sin 0 = 0 and cos 0 = 1, hence:

T3(x) = x − x3

6
.

So in particular

sin 0.1 ≈ 0.1 − 0.13

6
= 0.09983333 . . . .

The actual value of sin 0.1 is

sin 0.1 = 0.099833416 ,

which agrees with the value obtained from the Taylor polynomial up
to the sixth decimal place.

4.7.2. Taylor’s Inequality. The difference between the value of
a function and its Taylor approximation is called remainder :

Rn(x) = f(x) − Tn(x) .
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The Taylor’s inequality states the following: If |f (n+1)(x)| ≤ M for
|x − a| ≤ d then the reminder satisfies the inequality:

|Rn(x)| ≤ M

(n + 1)!
|x − a|n+1 for |x − a| ≤ d .

Example: Find the third degree Taylor approximation for sinx at
x = 0, use it to find an approximate value for sin 0.1 and estimate its
difference from the actual value of the function.

Answer : We already found

T3(x) = x − x3

6
,

and

T3(0.1) = 0.99833333 . . .

Now we have f (4)(x) = sin x and | sin x| ≤ 1, hence

|R3(0.1)| =≤ 1

4!
0.14 = 0.0000041666 · · · < 0.0000042 = 4.2 · 10−6 .

In fact the estimation is correct, the approximate value differs from the
actual value in

|T3(0.1) − sin 0.1| = 0.000000083313 · · · < 8.34 · 10−8 .

4.7.3. Taylor Series. If the given function has derivatives of all
orders and Rn(x) → 0 as n → ∞, then we can write

f(x) =
∞∑

n=0

f (n)(a)

n!
(x − a)n

= f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2+

· · · + f (n)(a)

n!
(x − a)n + · · ·

The infinite series to the right is called Taylor series of f(x) at x = a.
If a = 0 then the Taylor series is called Maclaurin series.

Example: The Taylor series of f(x) = ex at x = 0 is:

1 + x +
x2

2
+ · · · + xn

n!
+ · · · =

∞∑

n=0

xn

n!
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For |x| < d the remainder can be estimated taking into account that
f (n)(x) = ex and |ex| < ed, hence

|Rn(x)| <
ed

(n + 1)!
|x|n+1 .

We know that limn→∞ xn/n! = 0, so

lim
n→∞

ed

(n + 1)!
|x|n+1 = 0

hence Rn(x) → 0 as n → ∞. Consequently we can write:

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · + xn

n!
+ · · ·

For x = 1 this formula provides a way of computing number e:

e =
∞∑

n=0

1

n!
= 1 + 1 +

1

2!
+

1

3!
+ · · · + 1

n!
+ · · · = 2.718281828459 . . .

The following are Maclaurin series of some common functions:

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

sin x =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
= x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

cos x =
∞∑

n=0

(−1)n x2n

(2n)!
= 1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

ln (1 + x) = −
∞∑

n=1

(−1)n xn

n
= x − x2

2
+

x3

3
− x4

4
+ · · ·

(1 + x)α =
∑

n=0

(
α

n

)

xn = 1 + αx +

(
α

2

)

x2 +

(
α

3

)

x3 + · · ·

where

(
α

n

)

=
α(α − 1)(α − 2) . . . (α − n + 1)

n!
.

1

1 + x
= (1 + x)−1 =

∑

n=0

(−1)nxn = 1 − x + x2 − x3 + · · ·
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tan−1 x =
∑

n=0

(−1)n x2n+1

(2n + 1)!
= x − x3

3
+

x5

5
− x7

7
+ · · ·

Remark : By letting x = 1 in the Taylor series for tan−1 x we get
the beautiful expression:

π

4
= 1 − 1

3
+

1

5
− 1

7
+ · · · =

∞∑

n=0

(−1)n 1

2n + 1
.

Unfortunately that series converges too slowly for being of practical use
in computing π. Since the series for tan−1 x converges more quickly for
small values of x, it is more convenient to express π as a combination
of inverse tangents with small argument like the following one:

π

4
= 4 tan−1 1

5
− tan−1 1

239
.

That identity can be checked with plain trigonometry. Then the inverse
tangents can be computed using the Maclaurin series for tan−1 x, and
from them an approximate value for π can be found.

4.7.4. Finding Limits with Taylor Series. The following ex-
ample shows an application of Taylor series to the computation of lim-
its:

Example: Find lim
x→0

ex − 1 − x

x2
.

Answer : Replacing ex with its Taylor series:

lim
x→0

ex − 1 − x

x2
= lim

x→0

(1 + x + x2

2
+ x3

6
+ x4

24
+ . . . ) − 1 − x

x2

= lim
x→0

x2

2
+ x3

6
+ x4

24
+ . . .

x2

= lim
x→0

{
1

2
+

x

6
+

x2

24
+ . . .

}

=
1

2
.
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4.8. Applications of Taylor Polynomials

4.8.1. Applications to Physics. Here we illustrate an applica-
tion of Taylor polynomials to physics.

Consider the following formula from the Theory of Relativity for
the total energy of an object moving at speed v:

E =
m0c

2

√

1 − v2

c2

,

where c is the speed of light and m0 is the mass of the object at rest.
Let’s rewrite the formula in the following way:

E = m0c
2

(

1 − v2

c2

)−1/2

.

Now we expand the expression using the power series of the binomial
function:

(1 + x)α =
∑

n=0

(
α

n

)

xn = 1 + αx +

(
α

2

)

x2 +

(
α

3

)

x3 + · · · ,

which for α = −1/2 becomes:

(1 + x)−1/2 = 1 − 1

2
x +

(−1
2

2

)

x2 +

(−1
2

3

)

x3 + · · ·

= 1 − 1

2
x +

3

8
x2 − 5

16
x3 + · · · ,

hence replacing x = −v2/c2 we get the desired power series:

E = m0c
2

(

1 +
1

2

v2

c2
+

3

8

v4

c4
+

5

16

v6

c6
+ · · ·

)

.

If we subtract the energy at rest m0c
2 we get the kinetic energy:

K = E − m0c
2 = m0c

2

(
1

2

v2

c2
+

3

8

v4

c4
+

5

16

v6

c6
+ · · ·

)

.

For low speed all the terms except the first one are very small and can
be ignored:

K ≈ m0c
2

(
1

2

v2

c2

)

=
1

2
m0v

2 .

That is the expression for the usual (non relativistic or Newtonian)
kinetic energy, so this tells us at low speed the relativistic kinetic energy
is approximately equal to the non relativistic one.
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4.8.2. Using Series to Solve Differential Equations. Some
differential equations cannot be solved explicitly. In such cases an al-
ternative is to represent the solution as a power series and try to deter-
mine the values of the coefficients that solve the equation. That yields
a power series representation of the solution, which often is enough for
getting approximations to it.

We start with an equation that we do know how to solve explicitly,
so we can compare the power series obtained with the explicit solution:

y′ = y .

This equation can be solved by separation of variables:

dy

y
= dx

∫
dy

y
=

∫

dx

ln y = x + C

y = Aex (A = eC) .

Next we solve it using power series. We start by representing the
solution by a power series:

y = c0 + c1x + c2x
2 + · · · =

∞∑

n=0

cnx
n .

Its derivative is

y′ = c1 + 2c2x + 3c3x
2 · · · =

∞∑

n=0

(n + 1)cn+1x
n .

Now we write the differential equation using the series:

c0 + c1x + c2x
2 + · · · = c1 + 2c2x + 3c3x

2 + · · · ,

or ∞∑

n=0

cnx
n =

∞∑

n=0

(n + 1)cn+1x
n .

In order to be equal the coefficients must be the same on both sides,
so: 





c0 = c1

c1 = 2c2

c2 = 3c3

· · ·
cn = (n + 1)cn+1

· · ·
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This defines a sequence of coefficients in which the first one c0 is arbi-
trary, and the following ones verify the recursive relation

cn+1 =
cn

n + 1
.

So the sequence is:

c0 = (arbitrary)

c1 = c0

c2 =
c1

2
=

c0

2

c3 =
c2

3
=

c0

2 · 3
c4 =

c3

4
=

c0

2 · 3 · 4
· · ·

cn =
c0

n!
· · ·

and the solution is

y = c0 + c0x +
c0

2!
x2 +

c0

3!
x3 + · · · = c0

∞∑

n=0

xn

n!
,

i.e., c0 (a constant) multiplied by the Maclaurin series of ex, so the
solution is the same one we got explicitly (with A = c0).

Lets look now at a more sophisticated example. Solve the differen-
tial equation

y′′ − 2xy′ + y = 0 .

The idea is the same as before, we replace y with a power series, find
its derivatives that appear in the equation, pose the equation with the
powers series, and find a relation among the coefficients:

y =
∞∑

n=0

cnx
n

y′ =
∞∑

n=1

ncnxn−1

y′′ =
∞∑

n=2

n(n − 1)cnx
n−2
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y′′ − 2xy′ + y =
∞∑

n=0

cnx
n − x

∞∑

n=1

ncnx
n−1 +

∞∑

n=2

n(n − 1)cnx
n−2

=
∞∑

n=0

cnx
n −

∞∑

n=1

ncnx
n +

∞∑

n=2

n(n − 1)cnx
n−2

After some reindexing and grouping we get that the equation becomes:
∞∑

n=0

{(n + 2)(n + 1)cn+2 − (2n − 1)cn}xn = 0 ,

which implies:

cn+2 =
2n − 1

(n + 1)(n + 2)
cn .

The first two coefficients c0 and c1 are arbitrary, and the rest can be
computed using that relation:

c2 =
−1

2
c0

c3 =
1

2 · 3c0

c4 =
3

3 · 4c2 = − 3

4!
c0

c5 =
5

4 · 5c3 =
5

5!
c0

· · ·
In general the even and odd coefficients are:

c2n =
(−1) · 3 · 7 · 11 · · · · · (4n − 5)

(2n)!
c0

c2n+1 =
1 · 5 · 9 · · · · · (4n − 3)

(2n + 1)!
c1 ,

and the solution is

y = c0

{

1 +
∞∑

n=1

(−1) · 3 · 7 · 11 · · · · · (4n − 5)

(2n)!
x2n

}

+ c1

{

x +
∞∑

n=1

1 · 5 · 9 · · · · · (4n − 3)

(2n + 1)!
x2n+1

}



APPENDIX A

Hyperbolic Functions

A.1. Hyperbolic Functions

A.1.1. Definitions. The hyperbolic functions are defined in the
following way:

sinh x =
1

2
(ex − e−x)

cosh x =
1

2
(ex + e−x)

tanhx =
sinh x

cosh x
=

ex − e−x

ex + e−x

cothx =
1

tanhx
=

ex + e−x

ex − e−x

sech x =
1

cosh x
=

2

ex + e−x

csch x =
1

sinh x
=

2

ex − e−x

The name hyperbolic comes from the fact that the parametric equa-
tions

{
x = cosh t

y = sinh t

represent an hyperbola. Analogously, the functions sin x, cos x, tanx,
etc., are sometimes called circular functions because the equations

{
x = cos t

y = sin t

represent a circle.

A.1.2. Fundamental Identities. The hyperbolic functions ver-
ify some identities similar to those of the circular functions, except for
some occasional sign differences:

113
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cosh2 x − sinh2 x = 1

1 − tanh2 x = sech2 x

coth2 x − 1 = csch2 x

sinh (x + y) = sinh x cosh y + coshx sinh y

cosh (x + y) = coshx cosh y + sinh x sinh y

sinh 2x = 2 sinh x cosh y

cosh 2x = cosh2 x + sinh2 x

All of them can be verified algebraically, for instance:

cosh2 x − sinh2 x =

(
1

2
(ex + e−x)

)2

−
(

1

2
(ex − e−x)

)2

=
1

4
(e2x + 2 + e−2x) − 1

4
(e2x − 2 + e−2x)

=
1

2
−

(

−1

2

)

= 1 .

A.1.3. Derivatives of Hyperbolic Functions. The derivatives
of the hyperbolic functions are easy to compute from their definitions:

(sinh x)′ = coshx

(coshx)′ = sinh x

(tanhx)′ = sech2 x

(cothx)′ = − csch2 x

(sech x)′ = − sech x tanhx

(csch x)′ = − csch x cothx

A.1.4. Integrals of Hyperbolic Functions. Reversing the deriva-
tives found above we get:

∫

sinh u du = cosh u + C
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∫

cosh u du = sinh u + C

∫

sech2 u du = tanhu + C

∫

csch2 u du = − coth u + C

∫

sech u tanhu du = − sech u + C

∫

csch u coth u du = − csch u + C

A.1.5. Inverse Hyperbolic Functions.

The inverse hyperbolic sine is defined in the following way:

y = sinh−1 x ⇔ x = sinh y =
1

2
(ey − e−y) .

Solving the equation in y we get:

sinh−1 x = ln
(

x +
√

x2 + 1
)

for all x .

The inverse hyperbolic cosine is defined in the following way:

y = cosh−1 x ⇔ x = cosh y =
1

2
(ey + e−y) and y ≥ 0 .

Solving the equation in y we get:

cosh−1 x = ln
(

x +
√

x2 − 1
)

for all x ≥ 1 .

The inverse hyperbolic tangent is defined in the following way:

y = tanh−1 x ⇔ x = tanh y =
ey − e−y

ey + e−y
.

Solving the equation in y we get:

tanh−1 x =
1

2
ln

(
1 + x

1 − x

)

for |x| < 1 .

Similarly we get expressions for the other inverse hyperbolic func-
tions in terms of the natural logarithm:
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coth−1 x =
1

2
ln

(
x + 1

x − 1

)

for |x| > 1 .

sech−1 x = ln

(
1 +

√
1 − x2

x

)

for 0 < x ≤ 1 .

csch−1 x = ln

(

1

x
+

√
1 + x2

|x|

)

for x 6= 0 .

A.1.6. Derivatives of the Inverse Hyperbolic Functions.
The derivatives of the inverse hyperbolic functions can be found from
their expressions in terms of the natural logarithm, e.g.:

(sinh−1 x)′ =
{

ln
(

x +
√

x2 + 1
)}′

=
1 + 2x

2
√

x2+1

x +
√

x2 + 1
=

1√
x2 + 1

.

So, we find:

(sinh−1 x)′ =
1√

x2 + 1

(cosh−1 x)′ =
1√

x2 − 1

(tanh−1 x)′ =
1

1 − x2

(coth−1 x)′ =
1

1 − x2

(sech−1 x)′ =
1

x
√

1 − x2

(csc−1 x)′ =
1

|x|
√

1 + x2

A.1.7. Integrals Involving Inverse Hyperbolic Functions.
Reversing the derivatives found above we get the following integrals:

∫
du√

u2 + 1
= sinh−1 u + C
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∫
du√

u2 − 1
= cosh−1 u + C

∫
du

1 − u2
= tanh−1 u + C if |u| < 1

∫
du

1 − u2
= coth−1 u + C if |u| > 1

∫
du

1 − u2
=

1

2
ln

∣
∣
∣
∣

1 + u

1 − u

∣
∣
∣
∣
+ C (|u| 6= 1)

∫
du

u
√

1 − u2
= − sech−1 |u| + C

∫
du

u
√

1 + u2
= − csch−1 |u| + C

A.1.8. Taylor Series of Hyperbolic Functions. The following
Taylor series involve hyperbolic functions:

sinh x = x +
x3

3!
+

x5

5!
+ · · · =

∞∑

n=0

x2n+1

(2n + 1)!

cosh x = 1 +
x2

2!
+

x4

4!
+ · · · =

∞∑

n=0

x2n

(2n)!

tanh−1 x = x +
x3

3
+

x5

5
+ · · · =

∞∑

n=0

x2n+1

2n + 1
(|x| < 1)



APPENDIX B

Various Formulas

B.1. Summation Formulas

(1)
n∑

i=1

1 = n.

(2)
n∑

i=1

i =
n(n + 1)

2
.

(3)
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

(4)
n∑

i=1

i3 =

[
n(n + 1)

2

]2

.
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Table of Integrals
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Table of Integrals.
∫

un du =
un+1

n + 1
+ C (n 6= −1)

∫
du

u
= ln |u| + C

∫

eu du = eu + C

∫

cos u du = sin u + C
∫

sin u du = − cos u + C

∫

sec2 u du = tanu + C
∫

csc2 u du = − cot u + C

∫

sec u tan u du = sec u + C
∫

csc u cot u du = − csc u + C

∫

sec u du = ln | sec u + tanu| + C
∫

csc u du = ln | csc u − cot u| + C

∫
du√

1 − u2
= sin−1 u + C

∫
du

1 + u2
= tan−1 u + C

∫
du

u
√

u2 − 1
du = sec−1 |u| + C

Integrals Involving Inverse Hyperbolic Functions.
∫

du√
u2 + 1

= sinh−1 u + C

∫
du√

u2 − 1
= cosh−1 u + C

∫
du

u
√

1 − u2
= − sech−1 |u| + C

∫
du

u
√

1 + u2
= − csch−1 |u| + C

Reduction Formulas.
∫

sinn u du = −1

n
sinn−1 u cos u +

n − 1

n

∫

sinn−2 u du

∫

cosn u du =
1

n
cosn−1 u sin u +

n − 1

n

∫

cosn−2 u du

∫

tann u du =
tann−1 u

n − 1
−

∫

tann−2 u du .

∫

secn u du =
secn−2 u tanu

n − 1
+

n − 2

n − 1

∫

secn−2 u du .


