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Preliminaries

Preparatory reading. These books are intended for high-school students who like
math. All three books are great, my personal favorite is the first one.

(1) R. Courant, H. Robbins, I. Stewart, What is mathematics, Oxford, 1996 (or
earlier editions).

(2) T. W. Korner, The pleasures of counting, Cambridge U. Press, 1996.
(3) K. M. Ball, Strange curves, counting rabbits, and other mathematical explo-

rations, Princeton University Press, 2003.

Reading. There are many good textbooks in analysis, though I am not going to follow
any of them too closely. The following list reflects my personal taste:

(1) V. A. Zorich, Mathematical analysis, vol.1, Springer, 2004.
(2) A. Browder, Mathematical analysis. An introduction. Undergraduate Texts in

Mathematics. Springer-Verlag, New York, 1996.
(3) R. Courant and F. John, Introduction to calculus and analysis, vol.1, Springer,

1989 (or earlier editions).
(4) D. Maizler, Infinitesimal calculus (in Hebrew).
(5) G. M. Fihtengol’tz, Course of Differential and Integral Calculus, vol. I (in

Russian)
(6) E. Hairer, G. Wanner, Analysis by its history, Springer, 1996.

The last book gives a very interesting and motivated exposition of the main ideas of
this course given in the historical perspective.

You may find helpful informal discussions of various ideas related to this course (as
well to the other undergraduate courses) at the web page of Timothy Gowers:

www.dpmms.cam.ac.uk/~wtg10/mathsindex.html

I suppose that the students attend in parallel with this course the course “Introduction
to the set theory”, or the course “Discrete Mathematics”. The notes (in Hebrew) of
Moshe Jarden might be useful:

www.math.tau.ac.il/~jarden/Courses/set.pdf

Problem books. For those of you who are interested to try to solve more difficult
and interesting problems and exercises, I strongly recommend to look at two excellent
collections of problems:

(1) B. M. Makarov, M. G. Goluzina, A. A. Lodkin, A. N. Podkorytov, Selected
problems in real analysis, American Mathematical Society, 1992.

(2) G. Polya, G. Szegö, Problems and theorems in analysis (2 volumes) Springer,
1972 (there are earlier editions).
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Basic notation.

Symbols from logic.

∨ or
∧ and
¬ negation
=⇒ yields
⇐⇒ is equivalent to

Example: (x2 − 3x + 2 = 0) ⇐⇒ ((x = 1) ∨ (x = 2))

Quantifiers:

∃ exists
∃! exists and unique (warning: this notation isn’t standard)
∀ for every

Set-theoretic notation.

∈ belongs
/∈ does not belong
⊂ subset
∅ empty set
∩ intersection of sets
∪ union of sets
#(X) cardinality of the set X
X \ Y = {x ∈ X : x /∈ Y } complement to Y in X

Example: (X ⊂ Y ) := ∀x ( (x ∈ X) =⇒ (x ∈ Y ) )

We shall freely operate with these notion during the course. Usually, the sets we deal
with are subsets of the set of real numbers R.

Subsets of reals:

N natural numbers (positive integers)
Z integers
Z+ = N

⋃{0} non-negative integers
Q rational numbers
R real numbers
[a, b] := {x ∈ R : a ≤ x ≤ b} closed interval (one point sets are closed
intervals as well)
(a, b) := {x ∈ R : a < x < b} open interval
(a, b] and [a, b) semi-open intervals

Sums and products.
n∑

j=1

aj = a1 + a2 + ... + an

n∏

j=1

aj = a1 · a2 · ... · an
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Some abbreviations.

iff “if and only if”
wlog “without loss of generality”
RHS, LHS “right-hand side”, “left-hand side”
qed “ end of the proof”1. Often is replaced by the box like this one: ✷

:= according to the definition (the same as
def

= )

1“quod erat demonstrandum” (in Latin), “which was to be demonstrated”



iv LECTURE NOTES (TEL AVIV, 2009)

Basic Greek letters.

α alpha
β beta
γ, Γ gamma
δ, ∆ delta
ε epsilon
ζ zeta
η eta
θ, Θ theta
ι iota
κ kappa
λ, Λ lambda
µ mu
ν nu
ξ, Ξ xi
π, Π pi
ρ rho
σ, Σ sigma
τ tau
υ, Υ upsilon
ϕ, Φ phi
χ chi
ψ, Ψ psi
ω, Ω omega

Exercise: Translate from the Greek the word µαθηµατικα.
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1. Real Numbers

1.1. Infinite decimal strings. All of you have an idea what are the real numbers.
For instance, we often think of the real numbers as strings of elements of the set
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} preceded by a sign (we write only a minus sign, the absence of
the sign means that the sign is positive). A finite string of elements of this set followed by
a decimal point followed by an infinite string of elements of this set. If the string starts
with zeroes, they can be removed: 0142.35000... = 142.35, if the string has an infinite
sequence of nines, the last element which differs from nine should be increased by one,
and then the nines should be replaced by the zeroes: 13.4999999... = 13.5000... = 13.5.
We call such strings finite.

Then we can define what is the sum, the product and the quotient of two such strings,
and we can compare the strings. It is not completely obvious, but you’ve certainly learnt
this in the high-school how to do this for finite strings:

Exercise 1.1.1. Try to write down the “algorithms” for addition, multiplication and
comparison of two finite decimal strings.

One may prefer to operate with strings which consist of zeroes and ones only. In
other civilizations, people used to operate with expansions with a different base, say
{0, 1, 2, 3, 4, 5, 6, ..., 59} (this base goes back to Babylon). Do they deal with the same
set R of real numbers? How to formalize this question? and how to answer it?

1.2. The axioms. We know that it is possible to add and multiply real numbers; that
is,

∀x, y ∈ R x + y, x · y ∈ R .

Let us write down the customary rules (called “axioms”):

Axioms of addition +.

(+1) ∃ the null element 0 ∈ R such that ∀x ∈ R: x + 0 = 0 + x = x;
(+2) ∀x ∈ R ∃ an element −x ∈ R such that x + (−x) = (−x) + x = 0;
(+3) associativity: ∀x, y, z ∈ R x + (y + z) = (x + y) + z;
(+4) commutativity: ∀x, y ∈ R x + y = y + x.

In “scientific words” these axioms mean that R with addition is an abelian group.

Axioms of multiplication ·.
(·1) ∃ the unit element 1 ∈ R \ {0} such that ∀x ∈ R: x · 1 = 1 · x = x;
(·2) ∀x ∈ R \ {0} ∃ the inverse element x−1 such that x · x−1 = x−1 · x = 1;
(·3) associativity: ∀x, y, z ∈ R x · (y · z) = (x · y) · z
(·4) commutativity: ∀x, y ∈ R x · y = y · x.

This group of the axioms means that the set R \ {0} with the multiplication is also an
abelian group.

Relation between addition and multiplication is given by
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Distributive axiom. ∀x, y, z ∈ R (x + y) · z = x · z + y · z.

Exercise 1.2.1. Prove that a ·0 = 0. Prove that if a ·b = 0, then either a = 0, or b = 0.

Any set K with two operations satisfying all these axioms is called a field. The fields
are studied in the courses in algebra.

Exercise 1.2.2. Construct a finite field with more than two elements.

Axioms of order ≤. Real numbers are equipped with another important structure: the
order relation. Having two real numbers x and y we can always juxtapose them and
tell whether they are equal or one of them is bigger than the other one. To make this
formal, we need to check that the reals satisfy the third set of the axioms:

(≤1) ∀x ∈ R x ≤ x;
(≤2) if x ≤ y and y ≤ x, then x = y;
(≤3) if x ≤ y and y ≤ z, then x ≤ z;
(≤4) ∀x, y ∈ R either x ≤ y or y ≤ x.

These axioms say that R is a (linearly) ordered set. The next two axioms relate the
order with addition and multiplication on R:

(+,≤) if x ≤ y, then ∀z ∈ R x + z ≤ y + z;
(·,≤) if x ≥ 0 and y ≥ 0, then x · y ≥ 0.

Now, we can say that R is an ordered field.

Exercise 1.2.3. Let x ≥ y. Prove that x · z ≥ y · z if z > 0 and x · z ≤ y · z if z < 0.

Exercise 1.2.4. Let x ≥ y > 0. Prove that x2 ≥ y2.

The axioms introduced above still are not enough to start the course of analysis.

Completeness axiom: if X and Y are non-empty subsets of R such that

∀x ∈ X ∀y ∈ Y x ≤ y

then ∃c ∈ R such that

∀x ∈ X ∀y ∈ Y x ≤ c ≤ y .

Intuitively, this should hold for reals, however, it would take some time to check it
for the infinite decimals. I will not do this verification in my lectures. Later, we will
learn several equivalent forms of this axiom, then the verification will be much easier,
see Exercise 2.1.9.

Why do we call all these rules the axioms? Let us say that a set F equipped with
two operations (call them “addition” and multiplication”) and with an order relation is
a complete ordered field if it satisfies all the axioms given above. We know (or rather
believe) that the reals give us an example of a complete ordered field. This is a good
point to turn things around (as we often do in math), and to accept the following

Definition 1.2.5. A field of real numbers R is a complete ordered field.
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I.e., from now on, we will allow ourselves to freely use the axioms introduced above.
When we start with an abstract system of axioms two questions arise: First, whether

there exists an object which satisfies them? or maybe, the axioms from our system con-
tradict each other? Second, assuming that such an object exists, whether it is unique?
Imagine two different objects called “real numbers”! In our case, the answers to the
both questions are positive. Since the proofs are too long for the first acquaintance with
analysis, we’ll skip them.

To prove existence, it suffices to check, for instance, that the infinite decimal strings satisfy
these axioms. Note, that there are other constructions of the set of reals (like Dedekind cuts
and Cauchy sequences of rationals). Luckily, all of them lead to the same object.

Suppose that we have two complete ordered fields, denote them R and R′. How to say that
they are equivalent? Some thought gives us the answer: we call R and R′ equivalent if there exist
a one-to-one correspondence f between R and R′ which preserves the arithmetic operations and
the order relation; i.e.

f(x + y) = f(x) + f(y),

f(x · y) = f(x) · f(y),

x ≤ y =⇒ f(x) ≤ f(y) .

It’s not very difficult to construct2 such a map f . This construction leads to a theorem which

says that any two complete ordered field are equivalent.

Natural and integer numbers. Naively, the set of natural numbers is the set of all real
numbers of the form

1, 1 + 1, (1 + 1) + 1, ((1 + 1) + 1) + 1, ... .

A formal definitions is slightly more complicated.

Definition 1.2.6 (inductive sets). A set X ⊂ R is called inductive if
(
x ∈ X

)
=⇒

(
x + 1 ∈ X

)

For instance, the set of all reals is inductive.

Definition 1.2.7 (natural numbers). The set of natural numbers N is the intersection
of all inductive sets that contains the element 1.

In other words, a real number x is natural if it belongs to each inductive set that
contains 1.

Claim 1.2.8. The set of natural numbers is inductive.

Proof: Suppose n ∈ N. Let X be an arbitrary inductive subset of R that contains n.
Since X is inductive, n + 1 is also in X. Hence, n + 1 belongs to each inductive subset
of R, whence, n + 1 ∈ N; i.e., the set N is inductive. ✷

This definition provides a justification for the principle of mathematical induction.
Suppose there is a proposition P (n) whose truth depends on the natural numbers. The
principle states that if we can prove the truth of P (1) (“the base”), and that assuming
the truth of P (n) we can prove the truth of P (n + 1), then P (n) is true for all natural
n.

2I suggest to the students with curiosity to build such a map yourselves.
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Exercise 1.2.9. Prove:

(i) any natural number can be represented as a sum of ones: 1 + 1 + ... + 1;

(ii) if m and n are natural numbers, then either |m − n| ≥ 1, or m = n.

Example 1.2.10 (Bernoulli’s inequality). ∀x > −1 and ∀n ∈ N

(1 + x)n ≥ 1 + nx .

The equality sign is possible only when either n = 1 or x = 0.

Proof: Fix x > −1. For n = 1, the LHS and the RHS equal 1+x. Hence, we’ve checked
the base of the induction.

Assume that we know that

(1 + x)n ≥ 1 + nx .

Since 1 + x is a positive number, we can multiply this inequality by 1 + x. We get

(1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + (n + 1)x + nx2 .

If x 6= 0, the RHS is bigger than 1 + (n + 1)x, and we are done. ✷

Exercise 1.2.11. Prove that ∀m,n ∈ N

1
n
√

1 + m
+

1
m
√

1 + n
≥ 1 .

Hint: Use Bernoulli’s inequality.

Exercise 1.2.12. Suppose a1, ..., an are non-negative reals such that S = a1+ ... +an <
1. Prove that

1 + S ≤ (1 + a1) · ... · (1 + an) ≤ 1

1 − S
and

1 − S ≤ (1 − a1) · ... · (1 − an) ≤ 1

1 + S
.

Exercise 1.2.13. Prove:

12 + 22 + ... + n2 =
n(n + 1)(2n + 1)

6
, n ∈ N .

Exercise 1.2.14. Prove that

2(
√

n − 1) < 1 +
1√
2

+
1√
3

+ ... +
1√
n

< 2
√

n .

Hint: to prove the left inequality, set Xn = 2
√

n −
(
1 + 1√

2
+ ... + 1√

n

)
, and show that

the sequence Xn + 1√
n

does not increase.

Definition 1.2.15 (integers).

Z =
{

x ∈ R :
(
x ∈ N

) ∨(
− x ∈ N

) ∨(
x = 0

)}
.

Remark: It is purely a matter of agreement that we start the set of natural numbers
with 1. In some textbooks the set N starts with 0.

In what follows, we denote the set of non-negative integers by Z+ = N ∪ {0}.
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Rational numbers.

Definition 1.2.16.
Q =

{
x =

m

n
: m,n ∈ Z, n 6= 0

}
.

Exercise 1.2.17. Whether the set of integers Z is a field? Whether the set of rationals
Q is a field?

Exercise 1.2.18. Check that the rationals Q form an ordered field.

Exercise 1.2.19. Prove that the equation s2 = 2 does not have a rational solution.

Exercise 1.2.20. Check that the field of rationals Q doesn’t satisfy the completeness
axiom.

1.3. Application: solution of equation sn = a.

Theorem 1.3.1. For each a > 0 and each natural n ∈ N, the equation sn = a has a
unique positive solution s.

Proof: Define the sets X := {x ∈ R : x > 0, xn < a} and Y := {y ∈ R : y > 0, yn > a}.
The both sets are not empty. For instance, to see that the set X is not empty, we take
t = 1 + 1/a. Then tn ≥ t > 1/a, and (1/t)n < a. Therefore, 1/t ∈ X.

The completeness axiom can be applied to these sets since

∀x ∈ X, y ∈ Y (xn < a < yn) =⇒ (x < y) .

By the axiom,
∃s ∀x ∈ X,∀y ∈ Y x ≤ s ≤ y .

We claim that sn = a.
First, observe that X contains a positive number so that s is positive as well. Indeed,

take t = 1 + 1/a. Then tn ≥ t > 1/a, and (1/t)n < a. Therefore, 1/t ∈ X.
Now, assume that sn < a. Our aim is to find another value s1 which is bigger than s

but still sn
1 < a. Then s1 ∈ X, that is, X has an element which is (strictly) bigger than

s. Hence, contradiction.
To find such s1, we choose a small positive ǫ so that 0 < ǫ < a−sn and ǫ < na. Then

sn < a − ǫ = a
(
1 − ǫ

a

)
= a

(
1 − n

ǫ

na

)
≤ a

(
1 − ǫ

na

)n

(at the last step we used Bernoulli’s inequality). Put

s1 =
s

1 − ǫ/(na)
.

We see that s1 > s and still sn
1 < a. Therefore, sn ≥ a.

A similar argument shows that sn ≤ a. Now, we start with assumption that sn > a.
Then we take a small positive ǫ such that 0 < ǫ < sn − a and ǫ < nsn. We have

a < sn − ǫ = sn
(
1 − ǫ

sn

)
= sn

(
1 − n

ǫ

nsn

)
≤ sn

(
1 − ǫ

nsn

)n

(at the last step, we again used Bernoulli’s inequality). Put s2 = s
(
1 − ǫ

nsn

)
, then

s2 < s, and still sn
2 > a; i.e., s2 ∈ Y , which again contradicts the choice of s. Therefore,

sn = a proving existence of the solution.
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To prove uniqueness, we suppose that there are two positive solutions to our equation:
sn
1 = sn

2 , but s1 6= s2. Then

0 = sn
2 − sn

1 = (s2 − s1)(s
n−1
2 + sn−2

2 s1 + ... + s2s
n−2
1 + sn−1

1 ),

whence (see Exercise 1.2.1), sn−1
2 + sn−2

2 s1 + ... + s2s
n−2
1 + sn−1

1 = 0. This is impossible
since on the left-hand side we have a sum of positive real numbers. ✷

Exercise 1.3.2. Let a ∈ R, n ∈ N. Prove that equation sn = a cannot have more than
two real solutions.

1.4. The distance on R. We also know how to measure the distance between two real
numbers. Set

|x| =

{
x, x ≥ 0,

−x, x < 0

The value d(x, y) = |x − y| is the distance between x and y. It enjoys the following
properties:

positivity: d(x, y) ≥ 0 and d(x, y) = 0 iff x = y;
symmetry: d(x, y) = d(y, x);
triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) with the equality sign iff the point
z lies within the close segment with the end-points x and y.

The first two properties are obvious. Let’s prove the triangle inequality.

|y − z|

x

x

y

y

z

z

|x − y|

|x − y|

|x − z|

|x − z|

|y − z|

Figure 1. To the proof of triangle inequality

Let, say, x < y. If z ∈ [x, y], then

d(x, y) = y − x = (y − z) − (z − x) = d(y, z) + d(x, z) .

If z does not belong to the interval [x, y], say z > y, then

d(x, y) = y − x < z − x = d(x, z) < d(x, z) + d(y, z) .

Done! ✷

Question: How the triangle inequality got its name?

There are other versions of the triangle inequality which we’ll often use in this course:

|x + y| ≤ |x| + |y| ,
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|x − y| ≥
∣∣ |x| − |y|

∣∣ ,

and
|x1 + ... + xn| ≤ |x1| + ... + |xn| .

We apply the name “triangle inequality” to these inequalities as well.
To get the first inequality, we add inequalities x ≤ |x| and y ≤ |y|. We get x + y ≤

|x| + |y|. Applying this to −x and −y instead of x and y, we get −(x + y) ≤ |x| + |y|.
These two inequalities together give us |x + y| ≤ |x| + |y|.

To prove the second inequality, we assume that |x| ≥ |y|. Then

|x| = |(x − y) + y| ≤ |x − y| + |y|,
whence

|x − y| ≥ |x| − |y| =
∣∣|x| − |y|

∣∣.
The third inequality follows from the first one by induction. ✷.
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2. Upper and lower bounds

2.1. Maximum/minimum supremum/infimum. The completeness axiom has a
number of important corollaries which will be of frequent use during the whole course.
We start with some definitions.

A subset X ⊂ R is upper bounded if ∃c such that ∀x ∈ X, x ≤ c. Any c with this
property is called an upper bound (or a majorant) of X. A subset X ⊂ R is lower
bounded if ∃c such that ∀x ∈ X, x ≥ c. Any c with this property is called a lower bound
(or a minorant) of X. A set X is bounded if it is upper- and lower bounded.

Next, we define the maximum and minimum of a set X:

Definition 2.1.1 (maximum/minimum).

(a = max X) := (a ∈ X ∧ ∀x ∈ X (x ≤ a)) ,

that is, a is a majorant of X and belongs to X. Similarly,

(a = minX) := (a ∈ X ∧ ∀x ∈ X (x ≥ a)) ,

that is, a is a minorant of X and belongs to X.

If a set is unbounded from above, then certainly it does not have a maximum. How-
ever, even if X is upper bounded, the maximum does not have to exists: for example
consider an open interval (0, 1).

Example 2.1.2. The open interval (0, 1) has nor maximum neither minimum.

Proof: Suppose that c is a majorant of (0, 1). Then c ≥ 1. Observe, that (0, 1)∩[1,∞) =
∅, hence, c cannot belong to (0, 1). The proof that (0, 1) has no minimum is similar. ✷

Claim 2.1.3. If the maximum exists, then it is unique.

Proof: Suppose the set X has two different maxima: a 6= b. Then either a < b or
b < a. Assume, for instance, that a < b. Note that b ∈ X since b is a maximum of X.
Therefore, a does not majorize X. ✷

Exercise 2.1.4. Each finite subset of R has a maximum and a minimum.

Hint: use induction by the number of elements in the set.

Let X ⊂ R be an upper bounded set. Consider the set of all upper bounds of X:

MX
def
= {c ∈ R : ∀x ∈ X x ≤ c} .

This set is not empty and is lower bounded (why?).
For instance, both for X = [0, 1] and X = (0, 1), we have MX = [1, +∞).

supXX

MX

Figure 2. Supremum of the set X
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Definition 2.1.5 (supremum). The supremum of X is the least upper bound of X, that
is the minimum of the set MX :

supX := minMX .

An equivalent way to pronounce the same definition is

s = supX iff (∀x ∈ X x ≤ s) ∧
(
∀p < s ∃x′ ∈ X p < x′) .

We see from the previous exercise that if the supremum exists, then it is unique.

Examples: sup[−1, 1] = max[−1, 1] = 1, sup[−1, 1) = 1. In the second case the
maximum does not exists.

Lemma 2.1.6 (existence of supremum). For every non-empty upper bounded set X ⊂
R, the supremum exists.

Proof: Consider the set MX of all upper bounds of X. We have to show that this set
has a minimum.

Since X is upper bounded, MX 6= ∅. Condition of the completeness axiom is fulfilled
for the sets X and MX . Therefore,

∃s ∈ R ∀x ∈ X ∀c ∈ MX x ≤ s ≤ c .

That is, s is an upper bound of X, and hence belongs to MX . The same relation shows
that s is a minorant of MX . Therefore, s = minMX . ✷

Now, let X ⊂ R be a lower bounded set. The infimum of X is the greatest lower
bound of X, that is

inf X := max{c ∈ R : ∀x ∈ X x ≥ c} .

If the infimum exists, it is unique.
Here is an equivalent way to word the same definition:

s = inf X iff (∀x ∈ X x ≥ s) ∧
(
∀p > s ∃x′ ∈ X x′ < p

)
.

Exercise 2.1.7. Let X ⊂ R and let −X := {x ∈ R : −x ∈ X}. Show inf X = sup(−X).
Deduce that every lower bounded set has an infimum.

It is interesting to note that existence of the supremum of an upper bounded set is
equivalent to the completeness axiom:

Exercise 2.1.8. Let X and Y be non-empty subsets of R such that

∀x ∈ X ∀y ∈ Y x ≤ y .

Then the set X is bounded from above. Set c = supX. Check that ∀x ∈ X ∀y ∈ Y one
has x ≤ c ≤ y.

The meaning of the following exercise is to verify that any upper bounded set of
infinite decimals has a supremum. I.e., the infinite decimals satisfy the completeness
axiom.
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Exercise 2.1.9. For a non-negative decimal x, we denote by l(x) = min{n ∈ Z+ : x ≤
10n}. In other words, this is the length of the part of the string left to the decimal
point.

i. Let X be a set of non-negative infinite decimals. Check that X is bounded from
above iff the set {l(x) : x ∈ X} is bounded from above.

ii. Work out an “algorithm” that finds one by one the digits in the decimal expansion
of supX.

2.2. Some corollaries: Most of the corollaries given below are evident if we define the
reals using the infinite decimals. Here we deduce them from the axioms of the complete
ordered field.

Claim 2.2.1. Every bounded subset E of the set N of natural numbers has the maximum.

Proof: Since E is upper bounded, there exists (a real) s = supE. By the definition of
the supremum, there is an n ∈ E such that s− 1 < n ≤ s. Suppose that there exists an
m ∈ E such that m > n. Then m ≥ n + 1 > s. Contradiction!

Hence, n = max E. ✷

Exercise 2.2.2. Check that any non-empty subset of Z bounded from below has the
minimum.

Exercise 2.2.3.
(i) Show that 1 = min N.

(ii) Show that if m,n ∈ Z and |m − n| < 1, then m = n.

Claim 2.2.4. The set N is unbounded from above. The set of integers Z is unbounded
from above and from below.

Proof: If N is bounded, then according to the previous claim it has a maximal element
n. Since N is an inductive set, n+1 is also a natural number, and n+1 > n. We obtain
a natural number which is bigger than n. Hence, the contradiction. ✷

Claim 2.2.5 (Archimedes principle). For every x ∈ R, there exists a unique k ∈ Z such
that k ≤ x < k + 1.

k-10 1-1 2-2 k

x

Figure 3. Archimedes principle

Proof: Assume x /∈ Z, otherwise there is nothing to prove. Consider a subset of the
integers {n ∈ Z : n ≤ x}. This is a non-empty set of integers which is bounded from
above. Therefore, it has a maximum k = max{n ∈ Z : n ≤ x} and this k satisfies
k ≤ x < k + 1.
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To prove uniqueness of such k, suppose, that k′ ≤ x < k′ + 1. Then k′ belongs to the
set {n ∈ Z : n ≤ x}, whence, k′ ≤ k. If k′ < k, then by the exercise above, k′ ≤ k − 1,
and hence k′ + 1 ≤ k ≤ x. This contradiction shows that k′ = k. ✷

This number k is called an integer part of x and is denoted by [x] (some CS folks
call the same function a floor function and denote it by ⌊x⌋ but we will not use this
notation). The fractional part of x is the number {x} : x−[x]. It is also defined uniquely
and is always in the semi-open interval [0, 1).

Exercise 2.2.6. Draw the graph of the function f(x) = {10x}.
The following is a straightforward extension of the Archimedes principle: For every

h > 0 and every x ∈ R there exists a unique k ∈ Z such that (k − 1)h ≤ x < kh.

Claim 2.2.7. Whatever small is a positive ǫ, there is a natural number n such that
0 < 1/n < ǫ.

Proof: otherwise, ∀n ∈ N we have 1/n ≥ ǫ, or n ≤ 1/ǫ, that is, the set of naturals N is
upper bounded which is impossible. ✷

Claim 2.2.8. Let h ≥ 0 and ∀n ∈ N h ≤ 1/n. Then h = 0.

Proof: is the same as in in the previous claim: if h > 0, then ∀n ∈ N n ≤ 1/h and as
above we arrive at the contradiction. ✷

Claim 2.2.9. Every open interval contains rationals:

∀(a, b) ⊂ R ∃r ∈ Q ∩ (a, b) .

Proof: Choose n ∈ N such that 0 < 1/n < b − a. Then choose m ∈ Z such that
m−1

n ≤ a < m
n (we use the extended version of Archimedes principle with h = 1

n). Take
r = m

n . By construction, r > a.

If r ≥ b, then m−1
n < a < b ≤ m

n , and b − a < 1
n which contradicts the choice of n. ✷

What about irrational numbers? Try to prove yourself that every open interval
contains at least one irrational number or wait till the next lecture.

It is worth mentioning that one really needs the completeness axiom for derivation of these
corollaries.

Consider a set of rational functions, that is functions represented as quotients of two poly-
nomials: r(x) = p(x)/q(x) (there could be points x where r is not defined. Two functions
r1 = p1/q1 and r2 = p2/q2 are equal if p1q2 − p2q1 is a zero polynomial (that is, identically
equals zero). Show that these functions form a field with usual addition and multiplication
(that is, check the axioms). Now, introduce an order: let r1 and r2 be two rational functions.
We say that r1 < r2 if there is an x > 0 such that r1(t) < r2(t) for all t ∈ (0, x).

Exercise* 2.2.10. Show that this is an ordered field (i.e., check the axioms).

The integers in this field are rational functions which identically equal an integer number. For
example, the integer 7 is represented by a rational function r = (7q)/q where q is an arbitrary
polynomial.

Exercise* 2.2.11. Check that the rational function r = 1/x is a majorant for the set of all
integers in that field. In other words, the integers are bounded therein.
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3. Three basic lemmas:

Cantor, Heine-Borel, Bolzano-Weierstrass

In this lecture we prove three fundamental lemmas. The most of the proofs in the
rest of the course rely upon them.

3.1. The nested intervals principle.

Lemma 3.1.1 (Cantor). Any nested sequence of closed intervals I1 ⊃ I2 ⊃ ... ⊃ In ⊃
In+1 ⊃ ... has a non-empty intersection:

⋂

n≥1

In 6= ∅ .

In other words, ∃c ∈ R such that ∀n ∈ N c ∈ In.

Proof: Let In = [an, bn]. Clearly, ∀m,n we have am ≤ bn (otherwise, Im ∩ In =
[am, bm] ∩ [an, bn] = ∅). Consider the sets

A := {am : m ∈ N} , B := {bn : n ∈ N} .

Any element from the set B is an upper bound for the set A, that is the completeness
axiom is applicable. It says:

∃c ∈ R : ∀m,n ∈ N am ≤ c ≤ bn .

In particular,

an ≤ c ≤ bn, ∀n ∈ N ,

proving the lemma. ✷

Clearly, the lemma fails if the nester intervals are open. E.g.,
⋂

n

(0, 1/n) = ∅.

Question 3.1.2. Where in the proof of Cantor’s lemma we used that the nested inter-
vals are closed?

Exercise 3.1.3. Whether the lemma holds true for semi-open nested intervals?

Exercise 3.1.4. In the assumptions of the Cantor lemma,
⋂

n In is always a closed
interval.

Sometimes, the following complement to the Cantor lemma is useful: if, additionally,
in the assumptions of the lemma, the lengths of the intervals In |In| = bn−an are getting
closer and closer to zero (formally, ∀ǫ > 0 ∃k such that |Ik|(= bk − ak) < ǫ,) then the
intersection of Ij is a singleton: ⋂

j≥1

Ij = {c} .

Indeed, if there are two different points c1 and c2 in the intersection of Ij ’s (and, say,
c1 < c2), then

an ≤ c1 < c2 ≤ bn, ∀n ∈ N,

whence |In| = bn − an ≥ c2 − c1 which contradicts to the assumption.
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3.2. The finite subcovering principle. To proceed further, we need several new
definitions. Let Y be a subset of R, and let S = {Xα}α∈A be a collection of subsets of
R. We say that S covers Y , if

Y ⊂
⋃

α∈A

Xα .

In other words, for every point y ∈ Y , ∃α ∈ A such that y ∈ Xα.

Examples:

1. Trivial coverings: let Y be an arbitrary subset of R. Consider S1 := {R}, that is, S1

consists of the one set R. We get a covering. Another example is S2 := {y}y∈Y , here S2

consists of all one-point sets, again we get a covering.

2. Let Y = (0, 1) and S = {X1, X2}, where X1 = [−1, 1/2] and X2 = [1/3, 2].

3. Let Y = [0, 1], S = {Ix}x∈[0,1], where Ix = (x − 1/4, x + 1/4).

Lemma 3.2.1 (Heine-Borel). For any system of open intervals S = {I} which covers
a closed interval J there is a finite subsystem which still covers J .

In this case, we say that there exists a finite subcovering. Before going to the proof,
we suggest to analyze the third example above and to choose a finite subcovering in
that case.

Proof: We use a “bisection method”. Assume that the lemma is wrong. Then we
construct inductively an infinite nested sequence of closed sub-intervals Jn of J such that
∀n the intervals Jn cannot be covered by any finite subcollection of S, and |Jn| = 2−n|J |.

Start with J0 = J and dissect it onto two equal closed subintervals. Since J0 has no
finite subcovering, one of these two parts also has no finite subcovering. Call this part
J1. Then J1 ⊂ J0, |J1| = 2−1|J | and J1 has no finite subcovering. Then we continue
this dissection procedure.

According to the Cantor lemma (and its complement), the closed intervals Jn have one
point intersection:

⋂
n Jn = {c}. The point c belongs to J and therefore is covered by an

open interval I = (a, b) from the collection S, that is a < c < b. Take ǫ = min(b−c, c−a).
We know that for some n the length of Jn (which is 2−n|J |) is less than ǫ, and that
c ∈ Jn. Therefore, Jn ⊂ (a, b) = I. Hence, Jn has a finite subcovering from our sub-
collection, in fact a subcovering by one open interval I. We arrive at the contradiction
which proves the lemma. ✷

Exercise 3.2.2. Try to change assumptions of this lemma. Whether the result persists
if the intervals in the covering are closed? What about coverings of an open interval by
closed ones? or by open ones? Consider all three remaining cases.

3.3. The accumulation principle. We start with some definitions. Let x be a real
number. Any open interval I ∋ x is called a vicinity (or neighbourhood) of x. The set
I \ {x} is called a punctured vicinity of x.

Let X ⊂ R. A point p is called an accumulation point of X if any vicinity of p contains
infinitely many points from X. Equivalently, any punctured vicinity of p contains at
least one point of X.

Exercise 3.3.1. Proof equivalence of these definitions.
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Exercise 3.3.2. Find accumulation points of the following sets:

{1/n}n∈N, [a, b), (−2,−1) ∪ (1, 2), Z, Q, R \ Q, R.

Lemma 3.3.3 (Bolzano-Weierstrass). Each infinite bounded set X ⊂ R has an accu-
mulation point.

Proof: Let X ⊂ [a, b] =: J . Assume the assertion is wrong, that is each point x ∈ J
has a neighbourhood U(x) which has a finitely many points in the intersection with X.
The open intervals {U(x)}x∈J obviously cover J and by the Borel lemma we can chose
a finite subcovering. That is,

X ⊂ J ⊂
N⋃

k=1

U(xk) ,

and therefore the set X is finite:

#(X) ≤
N∑

k=1

#(X ∩ U(xk) ) < ∞ .

This contradicts the assumption and proves the lemma. ✷

Exercise 3.3.4. Starting with the Bolzano-Weierstrass lemma, derive the existence of
the supremum for every upper bounded subset of R.

The meaning of this exercise is simple: the four principles (completeness, existence
of the supremum, Borel’s covering lemma, and Bolzano-Weierstrass’ lemma) appear to
be equivalent to each other.

Exercise 3.3.5. All real points are coloured in two colours: black and white, and the
both colours were used. Prove that there are points of different colours at the distance
less than 0.001.

3.4. Appendix: Countable and uncountable subsets of R. Here we touch very
briefly the notions of finite, infinite, countable and uncountable sets. You will learn
more in the courses “Introduction to the set theory” or in “Discrete Mathematics”.
First, recall some terminology. A map f : X → Y is

injective (or “one-to-one”) if

∀x1, x2 ∈ X x1 6= x2 =⇒ f(x1) 6= f(x2) ;

i.e., injective maps define one-to-one correspondence between X and its image f(X) ⊂
Y .

surjective if

∀y ∈ Y ∃x ∈ X f(x) = y ;

i.e., surjective maps map X into the whole Y . In this case, we say that f maps X onto
Y .

bijective if it is injective and surjective; that is, bijective maps define one-to-one corre-
spondence between the sets X and Y .
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bijection

X Y X Y X Y

injection surjection

Figure 4. Injective, surjective, and bijective maps

Definition 3.4.1. A set X is called finite if there is a bijection between the set
{1, 2, ..., n} and X. The number n is called a cardinality of a finite set X and denoted
by #X.

The emptyset ∅ is also finite, and its cardinality equals 0.

Exercise 3.4.2. Any subset of a finite set is finite as well.

Definition 3.4.3. A set X is called countable if there exists a bijection θ : N → X.

Claim 3.4.4. Any infinite subset N1 ⊂ N is countable.

Proof: we build the map θ : N → N1 as follows:

θ(1) = min N1 ,

θ(n) = min
{
n ∈ N1 : n > θ(n − 1)

}
= min N1 \

{
θ(1), ..., θ(n − 1)

}
.

This map is injective since n1 < n2 yields θ(n1) < θ(n2), and surjective since if m ∈ θ(N),
then θ(n) ≤ m for all n ∈ N; i.e., the finite set {1, 2, ..., m} contains an infinite subset
{θ(1), θ(2), ..., θ(n), ...} which is the absurd. ✷

Corollary 3.4.5. Any infinite subset of a countable set is countable.

Claim 3.4.6. The set of ordered pairs of positive integer numbers

N × N
def
=

{
(m,n) : m,n ∈ N

}

is countable.

The proof of this claim follows by inspection of the infinite Cantor board (Figure 5)
that explains how to build a bijection between the sets N and N × N. ✷

Corollary 3.4.7. Any finite or countable union of countable sets is countable.

Proof: Let N1 ⊂ N, and let X =
⋃

m∈N1

Xm be a finite or countable union of countable

sets. Let Xm =
{
xm,1, xm,2, ... xm,n, ...

}
. Then ψ : (m,n) 7→ xm,n defines a bijection

between X and a subset of N × N. The previous claims yield that X is countable. ✷
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Figure 5. Cantor’s board

Corollary 3.4.8. The set of rational numbers is countable.

Proof: Consider the countable sets

Qm
def
=

{
r =

n

m
: n ∈ Z

}
, m ∈ N .

(For instance, Q7 =
{
...,−2

7 ,−1
7 , 0, 1

7 , 2
7 , ...

}
). Then

Q =
⋃

m∈N

Qm

is a countable union of countable sets. Hence, it is countable. ✷

Exercise 3.4.9. Write down an explicit formula for the bijection between the sets N

and N × N.

Theorem 3.4.10 (Cantor). Any interval (open, closed, or semi-open) of positive length
contains uncountable many points.

Proof: Since any interval of positive length contains a closed subinterval of positive
length, it suffices to prove the statement for closed intervals. Suppose that the statement
is not correct, i.e., there is a closed interval I1 of positive length which contains countably
many points: I1 =

{
x1, x2, ..., xn, ...

}
. Choose a closed subinterval I2 ⊂ I1 of positive

length that does not contain the point x1. Then choose a closed subinterval of positive
length I3 ⊂ I2 that does not contain the point x2, etc.

At the n-th step, having a closes interval of positive length In, we choose its closed
subinterval In+1 ⊂ In of positive length that does not contain the point xn+1. By

Cantor’s lemma, the intersection
⋂

j

Ij is not empty. Take any point c ∈
⋂

j

Ij . By

construction, c ∈ I1, but c differs from any of the points x1, x2, ..., xn, .... Contradiction!
✷
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Exercise 3.4.11. The set of all irrational numbers is uncountable.

Exercise 3.4.12.

i Prove that it is possible to draw only countably many disjoint figures 8 on the plane.

ii* Prove that it is possible to draw only countably many disjoint letters T on the plane.
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4. Sequences and their limits

4.1. The infinite sequence is a function defined on the set N of natural numbers, f : N →
R. Such a function f can be written as a infinite string

{f(1), f(2), f(3), ... , f(n), ...}.
For historical reasons, in this case the argument is usually written as a subscript:
{f1, f2, f3, ... , fn, ...}. A standard notation for such a string is {fn}n∈N. The value
fn is called the n-th term of the sequence.

Examples:

Arithmetic progression
{1, 2, 3, 4, 5, 6, ... },

or more generally

{a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, ... }.
Geometric progression

{q0, q1, q2, q3, q4, q5, ... }
Definition 4.1.1 (convergence). A sequence {xn} converges to the limit a if

∀ǫ > 0 ∃N ∈ N such that ∀n ≥ N |xn − a| < ǫ .

In other words, whatever small ǫ is, only finitely many terms of the sequence do not
belong to the interval (a − ǫ, a + ǫ). If the sequence {xn} converges to the limit a, we

a2ǫ

1 2 3 4

x1

x2

x3

x4

n

xn

Figure 6. Convergent sequence

write
a = lim

n→∞
xn ,

or xn → a. If a sequence is not convergent, it is called divergent.

Examples:

{1/n}, the sequence converges to zero;
{(n + 1)/n}, the sequence converges to one;{
1, 1

2 , 3, 1
4 , 5, 1

6 , ....
}
, the sequence is divergent;

{1 + (−1)n/n}, the sequence converges to one;
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{sinn/n}, the sequence converges to zero;
{qn}, the sequence converges to zero if |q| < 1, converges to one if q = 1, and is
divergent in the other cases.

4.2. Fundamental properties of the limits.

(a) If the limit exists, it is unique.

Proof: Let a and b be limits of a sequence {xn}. We have to prove that a = b. Given
positive ǫ, we can find N ∈ N such that simultaneously |xN − a| < ǫ and |xN − b| < ǫ.
Therefore,

|a − b| = |(a − xN ) + (xN − b)| ≤ |xN − a| + |xN − b| < 2ǫ .

Since this holds for an arbitrary positive ǫ, we conclude that a = b, completing the proof.
✷

(b) If a sequence converges, then it is bounded.

Proof: Let a be a limit of a sequence {xn}. Using the definition of convergence with
ǫ = 1, we find N ∈ N such that |xn − a| < 1 for all n ≥ N . Therefore, for these n’s,
|xn| < |a| + 1. Hence {xn} is bounded:

|xn| ≤ M := max(|x1|, |x2|, ... , |xN−1|, |a| + 1) , ∀n ∈ N .

✷

Note that the bounded sequence {(−1)n} diverges.

(c) Let {xn} and {yn} be two sequences such that the set {n ∈ N : xn 6= yn} is finite,
and let {xn} converges to a. Then {yn} converges to a as well.

In other words, the limit depends only on a tail of the sequence. We leave this as an
exercise.

Exercise 4.2.1. Prove that every convergent sequence has either the maximal term, or
the minimal term, or the both ones. Provide examples for each of the three cases.

Exercise 4.2.2. Let a sequence {xn} converge to zero, and let a sequence {y} be
obtained from {xn} by a permutation of its terms, then {yn} converges to zero as well.

With sequences we can do the same operations as with functions: for example, we
can add and multiply them termwise.

Theorem 4.2.3. Let a = limxn and b = lim yn. Then

(i) lim(xn ± yn) = a ± b;
(ii) lim(xn · yn) = a · b;
(iii) if b 6= 0, then lim(xn/yn) = a/b.

Proof:

(i) Given ǫ > 0, we choose N1 such that |xn − a| < ǫ for all n ≥ N1 and choose N2 such
that |yn − b| < ǫ for all n ≥ N2. Thus, for n ≥ N := max(N1, N2), both inequalities
hold. Therefore,

|(xn ± yn) − (a ± b)| ≤ |xn − a| + |yn − b| < 2ǫ ,
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proving the claim.

(ii) Since {xn} is convergent, it is bounded. Take M = sup |xn|. Given ǫ > 0, choose
values N1 and N2 such that for all n ≥ N1 we have |xn − a| < ǫ, and for all n ≥ N2 we
have |yn − b| < ǫ. Then

|xn · yn − a · b| = |xn · (yn − b) + (xn − a) · b|
≤ (sup |xn|) · |yn − b| + |b| · |xn − a| < M · ǫ + |b| · ǫ = (M + |b|)ǫ .

(iii) We start with a warning some terms of the sequence {yn} can vanish. A good
news is that a number of vanishing terms of this sequence is always finite. So that, the
sequence {xn/yn} is well-defined for sufficiently large indices n.

Now, keeping in mind that (ii) has been proved already, we conclude that it suffices
to prove (iii) only in a special case when xn = 1 for all n ∈ N. We have to estimate the
quantity ∣∣∣∣

1

y n

− 1

b

∣∣∣∣ =
|yn − b|
|yn| · |b|

.

Since the sequence {yn} has a non-zero limit, we can choose N1 ∈ N such that
|yn| ≥ δ(> 0) for all n ≥ N1. Then, given ǫ > 0, we choose N2 ∈ N such that ∀n ≥ N2

|yn − b| < ǫ. Therefore, ∀n ≥ N := max(N1, N2)∣∣∣∣
1

y n

− 1

b

∣∣∣∣ <
ǫ

δ|b| ,

completing the proof of the theorem. ✷

Exercise 4.2.4. Prove:

1. Let a = limxn, b = lim yn and a < b. Then xn < yn for all sufficiently large indices
n.

2. Let a = limxn, b = lim yn and xn ≤ yn for all sufficiently large indices n. Then
a ≤ b.

Theorem 4.2.5 (Two policemen, a.k.a. the sandwich). Let

xn ≤ cn ≤ yn , n ∈ N,

and let the sequences {xn} and {yn} converge to the same limit a. Then the sequence
{cn} also converges to a.

Question: Explain, how the theorem got these names.

Proof: Given ǫ > 0, choose the naturals N1 and N2 such that

∀n ≥ N1 a − ǫ < xn ,

and

∀n ≥ N2 yn < a + ǫ .

Then for any n ≥ N := max(N1, N2)

a − ǫ < cn < a + ǫ ,

proving the convergence of {cn} to a. ✷
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Definition 4.2.6 (monotonic sequence). A sequence {xn} does not decrease if

x1 ≤ x2 ≤ ... ≤ xn ≤ ... .

A sequence {xn} does not increases if

x1 ≥ x2 ≥ ... ≥ xn ≥ ... .

If the strong inequalities hold, we’ll say correspondingly that the sequence increases/decreases.
In any of these cases, a sequence is called monotonic.

The next result is fundamental:

Theorem 4.2.7. Any upper bounded non-decreasing sequence {xn} converges, and

limxn = supxn .

Proof: Take a := supxn. According to the definition of the supremum, xn ≤ a for each
n ∈ N, and given ǫ > 0 there is an N ∈ N such that xN > a − ǫ. By monotonicity,

∀n ≥ N xn ≥ xN > a − ǫ .

Therefore, for all sufficiently large indices n, a − ǫ < xn ≤ a, proving the theorem. ✷

This result is equivalent to the existence of the supremum of any upper bounded
subset of the reals (and therefore, to all other equivalent forms of this statement we
already know).
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5. Convergent sequences

5.1. Examples.

5.1.1. Fix q > 1 and consider a sequence with terms

xn =
n

qn
.

We shall prove that it converges to zero.
First, check that the sequence eventually (that is, for large enough n) decreases.

Indeed,
xn+1

xn
=

n + 1

n · q .

If n is sufficiently large, the left hand side is less than one since lim(n + 1)/n = 1 and
q > 1. That is, for large n, xn+1 < xn.

Therefore, by the theorem from the previous lecture, the sequence {xn} converges to
a non-negative limit a. Let us show that a = 0. We have

a = limxn+1 = lim

(
n + 1

qn
· xn

)
=

1

q
· lim n + 1

n︸ ︷︷ ︸
=1

· limxn =
a

q
.

Comparing the right and left hand sides, we conclude that a = 0. ✷

Corollary 5.1.1. lim n√n = 1.

Indeed, taking into account the limit we’ve just computed, given ǫ > 0 we can take
N so large that ∀n ≥ N

1 < n < (1 + ǫ)n .

Then
1 <

n√
n < 1 + ǫ ,

proving the convergence to one. ✷

Exercise 5.1.2. Let M ∈ N, a > 0, and q > 1. Prove that

lim
nM

qn
= 0 and lim

n√
a = 1 .

5.1.2. For each positive q,

lim
n→∞

qn

n!
= 0 .

We use a similar argument: first show that the sequence xn = qn/n! eventually
decays:

xn+1

xn
=

qn+1

qn
· n!

(n + 1)!
=

q

n + 1
< 1 ,

if n is sufficiently large. Therefore, the sequence converges to a limit a. We check that
a vanishes:

a = limxn+1 = lim
q

n + 1
· xn = 0 · a = 0 .

✷

In the following example the sequence is defined recurrently.
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5.1.3. Take x0 = 1, xn =
√

2 + xn−1. We show that the sequence {xn} converges to 2.
Less formally, √

2 +

√
2 + ...

√
2 + ... = 2 .

First, using induction by n, we check that 1 ≤ xn < 2 for all n. The base n = 1 of the
induction is evident. Assume that the claims are verified for n, check that they hold for
n + 1. Since 1 ≤ xn < 2, we have 1 < xn+1 =

√
2 + xn <

√
4 = 2, proving the claim for

n+1. Now, we check that the sequence {xn} increases, which is equivalent to 2+x > x2

for 1 ≤ x < 2. This holds since the quadratic polynomial x2 − x− 2 = (x− 2)(x + 1) is
negative for these x’s.

We conclude that {xn} is an increasing upper bounded sequence, so that, it has a
limit which we call a. Then

a2 = lim
n→∞

x2
n+1 = 2 lim

n→∞
xn = 2a ,

so that a = 2. ✷

5.1.4.

lim
n→∞

1 · 3 · 5 · ... · (2n − 1)

2 · 4 · 6 ... · 2n
= 0 .

This follows from the following chain:
(

1 · 3 · 5 · ... · (2n − 1)

2 · 4 · 6 ... · 2n

)2

=
1 · 3
2 · 2 · 3 · 5

4 · 4 · ... · (2n − 3)(2n − 1)

(2n − 2)2
· 2n − 1

2n
· 1

2n
<

1

2n
.

so that

(5.1.3)
1 · 3 · 5 · ... · (2n − 1)

2 · 4 · 6 ... · 2n
<

1√
2n

,

and the statement follows. ✷

It’s worth to mention that the estimate (5.1.3) is not bad. In reality,

lim
n→∞

√
n

1 · 3 · 5 · ... · (2n − 1)

2 · 4 · 6 ... · 2n
=

1√
2π

.

This follows from the Wallis formula which, hopefully, you will learn in the second
semester.

Exercise 5.1.4. Find the limit

lim
n→∞

(
1√

n2 + 1
+

1√
n2 + 2

+ ... +
1√

n2 + n

)

5.2. Two theorems. Now we prove two rather useful results. They assert that if
{xn} is a convergent sequence, then sequences of arithmetic and geometric means must
converge to the same limit.

Theorem 5.2.1. Let limxn = a. Then

lim
n→∞

1

n

n∑

k=1

xk = a.
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Proof: Without loss of generality, we assume that a = 0, otherwise we just replace xn

by xn − a. Put M = sup |xn| (that is, sup{|xn| : n ∈ N}). Given ǫ > 0, find sufficiently
large N such that |xk| < ǫ for all k ≥ N . Then

∣∣∣∣∣
1

n

n∑

k=1

xk

∣∣∣∣∣ ≤
1

n

n∑

k=1

|xk| =
1

n

N∑

k=1

|xk| +
1

n

n∑

k=N+1

|xk| ≤
N · M

n
+ ǫ < 2ǫ ,

provided that n ≥ N ·M
ǫ . This proves the theorem. ✷

Exercise 5.2.2. Prove or disprove the following statement: If a sequence

1

n

n∑

k=1

xk

converges, then the sequence {xk} converges as well.

Exercise 5.2.3. If a sequence {xn} is such that lim(xn+1 − xn) = c, then

lim
xn

n
= c

as well.

Theorem 5.2.4. Let xn be a positive sequence such that limxn = a. Then

lim
n→∞

n
√

x1x2 ... xn = a .

Proof: The idea of the proof is the same as in the previous theorem. First consider
the case when the limit a 6= 0. Then without loss of generality, we assume that a = 1,
otherwise we just replace xn by xn/a. Put M = sup |xn|, and m = inf |xn|. Observe
that m > 0 (why?). Given ǫ > 0, we have 1 − ǫ < xn < 1 + ǫ for all sufficiently large
n > N . Then

x1 · ... · xn < MN (1 + ǫ)n−N =
( M

1 + ǫ

)N
(1 + ǫ)n

and
n
√

x1x2 ... xn < Q1/n(1 + ǫ)

with Q =
(
M/(1 + ǫ)N

)
. Since Q1/n → 1 as n → ∞, we can choose N1 (depending on

ǫ and M) such that, for n > N1, we have Q1/n < 1 + ǫ. Whence,

n
√

x1x2 ... xn < (1 + ǫ)2

for n > max(N,N1). Similarly

n
√

x1x2 ... xn ≥ (1 − ǫ)2

(check this!). If ǫ < 1, these two estimates yield

−2ǫ < (1 − ǫ)2 − 1 ≤ n
√

x1x2 ... xn − 1 ≤ (1 + ǫ)2 − 1 < 3ǫ ,

completing the proof.
The case a = 0 is similar, and we leave it as an exercise. ✷
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Corollary 5.2.5. Let tn > 0 and

lim
n→∞

tn+1

tn
= c.

Then lim n√tn = c as well.

Proof: we reduce this statement to Theorem 5.2.4. Put

x1 := t1, xn =
tn

tn−1
.

Then tn = x1 · x2 · ... · xn and the statement follows from Theorem 5.2.4. ✷

5.3. More examples.

5.3.1. Take in the previous corollary tn =
(
2n
n

)
(the binomial coefficient “choose n from

2n”). The corollary is applicable since

tn+1

tn
=

(2n + 2)!

( (n + 1)!)2
· (n!)2

(2n)!
=

(2n + 1)(2n + 2)

(n + 1)2
,

tends to 4 when t → ∞. We obtain

lim
n→∞

n

√(
2n

n

)
= 4 .

Exercise 5.3.1. For a (fixed) natural k, find

lim
n→∞

n

√(
kn

n

)
.

The next two limits are quite famous.

5.3.2. Let x0 > 0 and

(5.3.2) xn+1 :=
1

2

(
xn +

a

xn

)
, a > 0 .

Then the sequence {xn} converges to
√

a.

This is an iterative Newton method of finding square roots3. Note that the right-hand
side of (5.3.2) is the arithmetic mean between two approximation to xn and a/xn to√

a.
If we know that the sequence {xn} is convergent, then it is quite easy to guess that the

limit is
√

a. Indeed, denote the limit c. Then using the recurrence from the definition
of {xn}, we get an equation

c =
1

2

(
c +

a

c

)
.

That is, c2 = a and c =
√

a.

3known to Babylonians and to the first-century Greek mathematician Heron of Alexandria
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Proof: in order to simplify recursion, let us replace xn by

ξn :=
xn −√

a√
a

.

Then xn =
√

a(1+ ξn). Let us find a recursion for ξn: substituting the previous formula
into recursion for xn, we get

√
a(1 + ξn+1) =

1

2

(√
a(1 + ξn) +

a√
a(1 + ξn)

)
.

Whence (after some simplifications)

ξn+1 =
ξ2
n

2(1 + ξn)
.

Next, observe that ξn are positive for any n ∈ N. Indeed, 1 + ξ0 = x0√
a

> 0, so that

ξ1 > 0. Then ξ2 > 0 etc. Therefore,

ξn+1 <
ξ2
n

2ξn
=

ξn

2
< ... <

ξ1

2n
.

That is, ξn converges to zero and xn converges to
√

a. ✷

The proof above also gives a convergence of the Newton algorithm with the rate of
geometric progression:

|xn −√
a| <

Const

2n

√
a .

In fact, the convergence even faster (like q2n
with some q < 1). This explain a remarkable

efficiency of Newton’s method.

Exercise 5.3.3. Try to give a better estimate of |xn−
√

a|. Using Newton method (and
calculator, if needed) find

√
111 with error of order 10−6. How many iterations were

you needed for that?

5.3.3. The sequence

xn :=

(
1 +

1

n

)n

converges to a limit. To prove this, we define another sequence

yn :=

(
1 +

1

n

)n+1

.

We’ll show that the sequence {yn} decays. Then since it is lower bounded (yn > 1) it
is convergent. Since

xn = yn · n

n + 1

and the second factor on the right hand side converges to one, xn converges to the same
limit as yn.
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To check that {yn} decays, we use Bernoulli’s inequality. We have

yn−1

yn
=

(
1 + 1

n−1

)n

(
1 + 1

n

)n+1 =
n2n+1

(n − 1)n(n + 1)n+1

=
n2n

(n2 − 1)n
· n

n + 1
=

(
1 +

1

n2 − 1

)n

· n

n + 1

≥
(

1 +
n

n2 − 1

)
· n

n + 1
>

(
1 +

1

n

)
· n

n + 1
= 1 ,

completing the argument. ✷

The limit of this sequence is denoted by e. This is one of the most important con-
stants. It’s easy to see that 2 ≤ e < 3. Indeed, by Bernoulli’s inequality

xn =

(
1 +

1

n

)n

≥ 1 + n
1

n
= 2 .

To get the upper bound, note that

y5 =

(
1 +

1

5

)6

=

(
6

5

)6

=
46656

15625
< 3 .

Since the sequence yn decays, its limit is less than 3. The approximate value is e ≈
2.718281828459... . Later, we’ll find another representation for this constant:

e = lim
n→∞

(
1 +

1

1!
+

1

2!
+ ... +

1

n!

)

which is more convenient for numerical computation of e. We will also prove that e is
an irrational number.
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6. Cauchy’s sequences. Upper and lower limits.

Extended convergence

In this lecture, we continue our study of convergent sequences.

6.1. Cauchy’s sequences. Suppose, we need to check that some sequence converges
but we have no clue about its limiting value. The definition of the limit will not help
us too much: it is not an easy task to verify it without a priori knowledge about the
limit. It would be useful to have an equivalent definition of convergence which does not
mention the limiting value at all.

Definition 6.1.1 (Cauchy’s sequence). A sequence {xn} is called Cauchy’s sequence,
if

∀ǫ > 0 ∃N ∈ N such that ∀m,n ≥ N |xn − xm| < ǫ . (C)

Theorem 6.1.2 (Cauchy). A sequence {xn} is convergent if and only if it is Cauchy’s
sequence.

Proof: In one direction the result is clear: if the sequence {xn} converges to a limit a,
then according to the definition of the limit,

∀ǫ > 0 ∃N ∈ N such that ∀m,n ≥ N

|xn − a| < ǫ , |xm − a| < ǫ ,

and therefore
|xn − xm| = |(xn − a) + (a − xm)| < 2ǫ ,

proving that {xn} is Cauchy’s sequence.
In the other direction, first, let us observe that the sequence {xn} is bounded: choose

N ∈ N such that
xN − 1 < xm < xN + 1

for all m ≥ N . Then the bound for |xn| is

sup
n

|xn| ≤ max{|x1|, |x2|, ..., |xN−1|, |xN | + 1} .

Now, introduce the sequences

xn = inf
m≥n

xm , xn = sup
m≥n

xm .

The values xn, and xn are finite since the sequence {xn} is bounded. Compare xn

with xn+1: in the definition of xn+1 we take an infimum over a smaller set, therefore,
xn+1 ≥ xn. Similarly, xn+1 ≤ xn. Besides, we always have xn ≤ xn. Summarizing,

... ≤ xn ≤ xn+1 ≤ ... ≤ x̄n+1 ≤ x̄n ≤ ... ,

and we get a sequence of closed nested intervals [xn, x̄n]. By Cantor’s lemma, the
intersection of these intervals is not empty, so we choose

c ∈
⋂

n≥1

[xn, xn]

as a candidate for limxn. We claim that the sequence {xn} converges to c.
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Note that the values c and xn both belong to the interval [xn, xn]. Hence

|c − xn| ≤ xn − xn .

In order to estimate the difference on the left hand side, fix ǫ > 0 and choose N ∈ N

according to (C). Let n ≥ N . Then for some m ≥ n

xn (= sup
k≥n

xk) < xm + ǫ < xn + 2ǫ,

and similarly

xn > xn − 2ǫ .

Hence xn − xn < (xn + 2ǫ)− (xn − 2ǫ) = 4ǫ, and |c− xn| < 4ǫ completing the proof. ✷

Example 6.1.3. Consider the sequence

Sn = 1 +
1

2
+

1

3
+ ... +

1

n
.

Then

S2n − Sn =
1

n + 1
+

1

n + 2
+ ... +

1

2n
> n · 1

2n
=

1

2
.

Hence the sequence {Sn} is not Cauchy’s sequence and therefore is divergent.
Note that we can check divergence of this sequence without appeal to the Cauchy

criterion. The property S2n − Sn ≥ 1
2 we’ve established shows that the sequence Sn is

unbounded.

6.2. Upper and lower limits. In the proof of the Cauchy theorem, for a given se-
quence {xn} bounded from above and from below, we defined two sequences {xn} and
{xn}. Sometimes, they are called the lower and upper envelopes of the sequence {xn}.

Note that if the sequence {xn} does not decrease, then xn = xn, and if the sequence
{xn} does not increase, then xn = xn.

Example 6.2.1.

(i) If xn = 1
n , then xn = 1

n while xn = 0.

(ii) If xn = (−1)n, then xn = −1 while xn = 1.

(iii) If xn = (−1)n

n , then

{xn} = {−1,−1

3
,−1

3
,−1

5
,−1

5
, ... }, {xn} = {1

2
,
1

2
,
1

4
,
1

4
,
1

6
,
1

6
, ... } .

In the course of the proof of Cauchy’s theorem, we observed that

(i) the sequence xn does not decrease;
(ii) the sequence xn does not increase;
(iii) ∀m,n xn ≤ xm

In particular, we see that the both envelopes are monotonic sequences, and therefore
they converge when they are bounded. Now, we look more carefully at their limits.
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Definition 6.2.2 (limsup, liminf). If the sequence {xn} is upper bounded, then its upper
limit (or limit superior) is

lim sup
n→∞

xn := lim
n→∞

xn = lim
n→∞

sup
m≥n

xm .

If the sequence {xn} is not upper bounded, we say that its upper limit equals +∞.
If the sequence {xn} is lower bounded, then its lower limit is

lim inf
n→∞

xn := lim
n→∞

xn = lim
n→∞

inf
m≥n

xm .

If the sequence {xn} is not lower bounded, we say that its lower limit equals −∞.

We see that always lim inf xn ≤ lim supxn.
Deciphering the definition of the upper limit, we see that lim supxn = L if and only

if the following two conditions are fulfilled:

(a) ∀ǫ > 0 ∃N ∈ N such that ∀n ≥ N xn < L + ǫ;
(b) ∀ǫ > 0 ∀N ∈ N ∃n > N such that xn > L − ǫ.

Indeed, condition (a) says that ∀n ≥ N xn < L+ǫ; i.e., that limxn ≤ L, while condition
(b) says that ∀n ≥ N xn ≥ L; i.e., that limxn ≥ L.

Exercise 6.2.3. Formulate and prove the similar criterium for lim inf xn.

Theorem 6.2.4. A sequence {xn} converges to the limit a if and only if

lim inf xn = lim supxn = a . (L)

In other words, the sequence {xn} converges to the limit a if and only if the envelopes
{xn} and {xn} converge to the same limit a.

Proof: In one direction, since xn ≤ xn ≤ xn, then (L) combined with the two policemen
theorem give us convergence of {xn}.

In the other direction, if {xn} converges to the limit a, then we fix ǫ > 0 and choose
N ∈ N such that ∀m ≥ N we have |xm − a| < ǫ. If n ≥ N , then for some m ≥ n we
have

a − ǫ < xn ≤ xn < xm + ǫ < a + 2ǫ ,

therefore lim supxn = limxn = a, and similarly lim inf xn = a proving (L). ✷

Note that we use more or less the same argument as in the proof of Cauchy’s theorem.

Exercise 6.2.5. Check that

lim sup(−xn) = − lim inf xn ;

and if 0 < a ≤ xn ≤ b < ∞,

lim sup 1/xn = 1/ lim inf xn .

Prove the inequalities

lim sup(xn + yn) ≤ lim supxn + lim sup yn ,

lim sup(xn · yn) ≤ lim supxn · lim sup yn ,

(in the second inequality, we assume that xn, yn > 0). Show that, if one of the sequences
{xn} or {yn} converges, then there is an equality sign in these inequalities.
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Exercise 6.2.6. Let 0 < a ≤ xn ≤ b < +∞. Show that

lim supxn · lim sup
1

xn
≥ 1 .

Show that the equality sign is attained there if and only if the sequence {xn} is conver-
gent.

Exercise 6.2.7. Let an be positive numbers such that

An =

n∑

k=1

ak → ∞, n → ∞ .

For any sequence {tn} set

t̃n =
1

An

n∑

k=1

aktk .

Then

lim inf tn ≤ lim inf t̃n ≤ lim sup t̃n ≤ lim sup tn .

In particular, if tn → L, then t̃n → L. This extends Theorem 5.2.1 which corresponds
to the case an = 1.

6.3. Convergence in wide sense.

Definition 6.3.1 (convergence to ∞). The sequence xn converges to ∞, if

∀M < ∞ ∃N ∈ N such that ∀n ≥ N |xn| ≥ M .

Of course, this just means that the sequence {1/xn} converges to zero and nothing
else.

Definition 6.3.2 (convergence to ±∞). The sequence {xn} converges to +∞ if

∀M < ∞ ∃N ∈ N such that ∀n ≥ N xn ≥ M ,

and that a sequence {xn} converges to −∞ if

∀M > −∞ ∃N ∈ N such that ∀n ≥ N xn ≤ M ,

Exercise 6.3.3. Give 3 examples of sequences {xn} satisfying each of the following
properties:

(i) {xn} converges to +∞;
(ii) {xn} converges to −∞;
(iii) {xn} converges to ∞ but converges neither to +∞ nor to −∞;
(iv) {xn} is divergent in the wide sense.

(There should be 12 examples all together.)

Exercise 6.3.4. Extend Theorem 6.2.4 to the wide convergence.

Exercise 6.3.5 (Stoltz’ lemma). Suppose the sequence {yn} increases and lim yn =
+∞. If there exists the limit

lim
xn+1 − xn

yn+1 − yn
= L ,
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then
lim

xn

yn
= L .

Here, L is a real number or ±∞.

Hint: use Exercise 6.2.7 with

ak = yk − yk−1, tk =
xk − xk−1

yk − yk−1

(for convenience, we set x0 = y0 = 0).

Exercise 6.3.6. Show that for each p ∈ N,

lim
n→∞

1

np+1

n∑

k=1

kp =
1

p + 1
.

Hint: use Stoltz’ lemma.

Exercise* 6.3.7. Let xn ≤ 1
2(xn−1 +xn−2). Show that the sequence {xn} is convergent

(either to a finite number or to −∞.
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7. Subsequences and partial limits.

7.1. Subsequences. Let {xn} be a sequence, we want to define its subsequence. In
plain words, we write down the sequence {xn} as a string, and then drop out some
elements from this string taking care that an infinite number of elements remain. What
remains is called a subsequence. More formally, we take an increasing sequence {nk} of
natural numbers (n1 < n2 <...< nk <...) and form a new function k 7→ xnk

defined on
N.

Exercise 7.1.1. Prove that any sequence contains a monotonic subsequence.

Exercise 7.1.2. Show that a monotonic sequence converges if it contains a convergent
subsequence.

Our first result is a version of the Bolzano-Weierstrass lemma 3.3.3.

Lemma 7.1.3 (Bolzano-Weierstrass). Each bounded sequence has a convergent subse-
quence.

Proof: Let E be the set of all values attended by the sequence {xn}. Consider two
cases:
(a) The set E is finite. The we can choose an infinite number of elements in our sequence
which have the same value:

xn1
= xn2

= ... = xnk
= ... = x ∈ E , n1 < n2 < ... < nk < ... .

We get a subsequence {xnk
} converging to x.

(b) Now, assume that the set E is infinite. According to the Bolzano-Weierstrass lemma
about accumulation points, E has an accumulation point x. Choose n1 ∈ N such that
|xn1

− x| < 1. Then choose n2 > n1 such that |xn2
− x| < 1

2 , etc. At the k-th step,

choose nk > nk−1 such that |xnk
− x| < 1

k . Clearly, the subsequence {xnk
} converges to

x. ✷

Another proof of this lemma follows from the first exercise above combined with a
theorem about convergence of monotonic bounded sequences we proved earlier.

It is not difficult to formulate and to prove a version of this lemma for the extended
convergence:

Lemma 7.1.4 (Bolzano-Weierstrass for extended convergence). Each sequence has a
subsequence convergent in the wide sense.

Exercise 7.1.5. Prove this lemma.

7.2. Partial limits. If a subsequence {xnk
} is convergent, then its limit is called a

partial limit of {xn}. It’s not difficult to verify that if the original sequence {xn}
converges to the limit a, then any of its subsequences also converges to a. Define the
limit set PL({xn}) of all partial limits of the sequence {xn}.
Theorem 7.2.1. Let {xn} be a bounded sequence. Then

lim supxn = max
{
c : c ∈ PL({xn})

}
,

and
lim inf xn = min

{
c : c ∈ PL({xn})

}
.
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Proof: We’ll prove only the first of these two relations, the proof of the second one is
similar. In fact, we have to prove two statements: (α) any partial limit of {xn} does
not exceed lim supxn and (β) lim supxn ∈ PL({xn}).

Let us recall what we already know about the value L = lim supxn:

(a) ∀ǫ > 0 ∃N ∈ N such that ∀n ≥ N xn < L + ǫ;
(b) ∀ǫ > 0 ∀N ∈ N ∃n > N such that xn > L − ǫ.

A minute reflection shows that (α) follows from (a) and then (β) follows from (a) and
(b) (check this formally!) completing the proof. ✷

In the previous lecture we proved that the sequence {xn} converges to a limit a if
and only if

lim inf xn = lim supxn = a .

Combining this with the theorem above, we obtain

Corollary 7.2.2. A sequence {xn} converges if and only if the set of its limit set is a
singleton: PL({xn}) = {a}. In this case, a = limxn.

Exercise 7.2.3. Find lim supxn, lim inf xn, supxn, inf xn, and the set PL({xn}) of all
partial limits for the sequences

xn = cosn nπ

4
and xn = n(−1)nn.

Exercise 7.2.4. Construct a sequence whose set of partial limits coincides with the
closed interval [0, 1].

Exercise 7.2.5. (a) Show that there is no sequence {xn} with PL({xn}) = (0, 1).

(b) Show that there is no sequence {xn} with PL({xn}) = {1, 1
2 , ..., 1

n , ...}.
(c) Show that any accumulation point of the set PL({xn}) must belong to PL({xn})
as well.

Exercise 7.2.6. Suppose the subsequences {x2n} and {x2n+1} converge to the same
limit. Show that the sequence {xn} converge.

Exercise 7.2.7. Let {xn} be a sequence such that ∀n ≥ 1 |xn+1 − xn| ≤ 1
2n . Can

this sequence be unbounded? Can this sequence be divergent? The same questions for
|xn+1 − xn| ≤ 1

n .

Problem 7.2.8. Let {xn} be a bounded sequence such that

lim(xn − xn−1) = 0.

Show that the set PL({xn} coincides with the (closed) interval

[lim inf xn, lim supxn].

Problem* 7.2.9 (Fekete’s lemma). Let a sequence {xn} satisfy 0 ≤ xm+n ≤ xm + xn,
∀m,n ∈ N (such sequences are called subadditive). Show that there exists the limit

lim
n→∞

xn

n
= inf

n≥1

xn

n
.
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7.2.1. Appendix: The continued fraction of the golden mean and the Fibonacci numbers. Let

xn+1 = 1 +
1

xn
, x0 = 1 .

We shall show that lim xn =
√

5+1
2 . (This number is called the golden mean.) In other words,

1 +
1

1 + 1
1+ 1

1+ ....

=

√
5 + 1

2
.

The expression on the left hand side is an example of a continued fraction.
First, let us write down several the beginning of the sequence {xn}:

x0 =
1

1
, x1 = 1 +

1

1
=

2

1
, x2 = 1 +

1

2
=

3

2
, x3 = 1 +

2

3
=

5

3
,

x4 = 1 +
3

5
=

8

5
, x5 = 1 +

5

8
=

13

8
, x6 = 1 +

8

13
=

21

13
, ... .

Let xn = pn

qn

, pn and qn are mutually prime natural numbers. Then by induction

pn = pn−1 + pn−2, p0 = 1, p1 = 2,

qn = qn−1 + qn−2, q0 = q1 = 1.

We see that pn and qn are famous Fibonacci numbers. We conclude from these formulas that

qnpn−1 − qn−1pn = −(qn−1pn−2 − qn−2pn−1) = ... = (−1)n(q1p0 − q0p1) = (−1)n (A)

and that
qnpn−2 − qn−2pn = qn−1pn−2 − qn−2pn−1 = (−1)n−1 . (B)

From (A) we get

xn−1 − xn =
(−1)n

qnqn−1
, (C)

from (B) we get

xn−2 − xn =
(−1)n−1

qnqn−2
. (D)

Looking at (D), we conclude by induction that the subsequence {x2n} increases (and is
< 2), while the subsequence {x2n+1} decreases (and is > 1). Therefore, the both subsequences
converges. Further, the increasing sequence of natural numbers {qn} tends to +∞, so looking
at (C), we conclude that the subsequences {x2n} and {x2n+1} have the same limit α. From the

initial recursion we see that α is a positive solution to the equation α = 1+ 1
α , that is α = 1+

√
5

2 .

Problem 7.2.10. Show that

1 +
1

2 + 1
2+ 1

2+ ....

=
√

2 .

If you want to learn more about fascinated continued fractions, read section 1.6 of the book

by Hairer and Wanner mentioned in the introduction.
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8. Infinite series

8.1. Let {aj} be a sequence of real numbers, the sum an + an+1 + ... + am is denoted
by

m∑

j=n

aj =
∑

n≤j≤m

aj .

Our goal is to prescribe a meaning for the sum of all terms of the sequence {aj}; i.e. to
the expression

∞∑

j=1

aj = a1 + a2 + ... + an + ... (∗)

called (an infinite) series. Numbers aj are called the terms.
Define a sequence of partial sums Sn =

∑n
j=1 aj .

Definition 8.1.1. The series
∑∞

1 aj is called convergent if the sequence Sn of partial
sums converges. In this case, the limiting value S = lim Sn is called the sum of the
series:

∑∞
1 aj = S.

Dealing with series, usually it is not very difficult to check convergence or divergence,
to find the value of the sum is a much more delicate problem which we almost will not
touch here. We start with several simple observations and examples.

1. Convergence or divergence of the series depends on its tail only; i.e. if two series
have the same terms aj for j ≥ j0 then they converge or diverge simultaneously.

2. If the series (∗) converges, then lim an = 0. Indeed, an = Sn+1 − Sn and therefore

lim an = lim(Sn+1 − Sn) = limSn+1 − limSn = S − S = 0 .

8.2. Examples.

8.2.1. Geometric series. Let aj = qj−1. Then

Sn =
1 − qn

1 − q
,

and if |q| < 1 the series converges to 1
1−q . In the case |q| ≥ 1 the series is divergent.

8.2.2. Harmonic series. Let aj = 1
j . Then, as we know, limSn = +∞ and therefore

the series is divergent. Later in this course, we will show that there exists the limit

lim
n→∞

(Sn − log n) = γ ,

called the Euler constant.

8.2.3. Let aj = (−1)j . Then Sn = 0 if n is even, and Sn = 1 if n is odd. Therefore,
the series diverges.
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8.2.4. Let

aj =
1

(α + j)(α + j + 1)
.

Observe that

aj =
1

α + j
− 1

α + j + 1
,

so that

Sn =
n∑

j=1

[
1

α + j
− 1

α + j + 1

]
=

1

α + 1
− 1

α + n + 1

(such sums with cancelation of all intermediate terms are called sometimes telescopic).
We see that the series converges to the value 1

α+1 = limSn.

8.2.5. Let

aj =
(−1)j−1

j
.

In this case, we consider separately partial sums with even and odd indices. We have

S2n =

(
1 − 1

2

)
+

(
1

3
− 1

4

)
+ ... +

(
1

2n − 1
− 1

2n

)
.

Therefore, the sequence S2n increases. It is bounded from above by 1:

S2n = 1 −
(

1

2
− 1

3

)
−

(
1

4
− 1

5

)
− .... < 1 .

Hence, {S2n} converges to the limit S. Further the sequence {S2n+1} converges to the
same limit:

limS2n+1 = lim

(
S2n +

(−1)2n

2n + 1

)
= limS2n = S .

Therefore, the whole sequence Sn converges. As we have seen S2n ↑ S, it is not difficult
to see that S2n+1 ↓ S (check this!).

The sum of this series is S = log 2, we’ll compute it later, in Section 23.3.

Definition 8.2.1. Suppose that the sequence of positive numbers aj monotonically
converges to 0. Then the series

∑
j≥0(−1)jaj is called the Leibniz series.

Theorem 8.2.2 (Leibniz).

(i) Each Leibniz series converges to a sum S;

(ii) S2n ↓ S while S2n+1 ↑ S;

(iii) |S − Sn| < an+1; i.e., the error of approximation of the whole sum S by the n-th
partial sum Sn does not exceed the first neglected term.

Proof of Theorem 8.2.2 repeats the argument from Example 8.2.5. We have S2n −
S2n−2 = −a2n1

+ a2n < 0, and

S2n = (a0 − a1) + (a2 − a3) + ... + (a2n−2 − a2n−1) + a2n > 0 .

Hence, S2n ↓ S′. Similarly, the sequence S2n−1 increases, and is < a0. Hence S2n−1 ↓ S′′.
Next, S2n − S2n−1 = a2n → 0, whence, S′ = S′′.
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−a3

S1 S2S3 S4

−a5

S5

+a2

+a4

Figure 7. Leibniz’ theorem

At last, the inequality S2n > S > S2n−1 together with S2n − S2n−1 = a2n yield
S − S2n−1 < a2n, while the inequality S2n > S > S2n+1 together with S2n − S2n+1 =
a2n+1 yield S2n − S < a2n+1. ✷

8.3. Cauchy’s criterion for convergence. Absolute convergence. Cauchy’s cri-
terion for convergence of sequences immediately gives us

Theorem 8.3.1 (Cauchy’s criterion for the series convergence). The series (∗) con-
verges if and only if ∀ǫ > 0 ∃N ∈ N such that ∀m ≥ n ≥ N

|an+1 + an+1 + ... + am|︸ ︷︷ ︸
=Sm−Sn

< ǫ .

Definition 8.3.2 (absolute convergence). The series
∑

aj is called absolutely convergent
if the series

∑ |aj | converges. The series
∑

aj is called conditionally convergent if it
converges but not absolutely.

Claim 8.3.3. If the series converges absolutely, then it converges in the usual sense.

This follows at once from the Cauchy criterion. In the opposite direction the result

is wrong: the series
∑ (−1)j

j converges but not absolutely.

Till the end of this lecture we consider only series with positive terms.

8.4. Series with positive terms. Convergence tests. The theorem on convergence
of upper bounded increasing sequences immediately gives us

Theorem 8.4.1. The series with positive terms converges if and only if the sequence
of its partial sums is upper bounded.

An efficient way to check convergence or divergence of a series with positive terms
is to compare it with another series with positive terms for which we convergence or
divergence are known.

Corollary 8.4.2. Let 0 < aj ≤ bj, j ≥ j0. If the series
∑

bj converges, then the series∑
aj also converges. If the series

∑
aj diverges, then the series

∑
bj also diverges.

This follows from Theorem 8.4.1. Sometimes, another form of the same result is
useful:
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Corollary 8.4.3. If aj and bj are positive and

0 < lim inf
aj

bj
≤ lim sup

aj

bj
< ∞ ,

then the series
∑

aj and
∑

bj converge or diverge simultaneously.

Usually, in applications of this corollary there exists the limit

lim
j→∞

aj

bj
= L ,

and we need only to check that 0 < L < +∞.

Example 8.4.4. The series
∞∑

j=1

1

j2

converges. This we see by comparison with the convergent series
∞∑

j=1

1

j(j + 1)
.

In this case, the quotient of the terms tends to 1.

Example 8.4.5. The series
∞∑

j=1

√
j + 1

j3/2

diverges. This we see by comparison with the divergent harmonic series
∑∞

j=1
1
j .

The simplest was to check the convergence of the series with positive terms is to
compare it with the geometric series.

Claim 8.4.6 (Cauchy’s root test). Set

α := lim sup j
√

aj .

If α < 1, then the series
∑

aj converges. If α > 1, then the series diverges.

Proof: Let α < 1. Choose α′: α < α′ < 1. Then according to the definition of the
upper limit, aj < α′j , j ≥ j0, and by Corollary 8.4.2 the series converges.

If α > 1, then choose α′ such that 1 < α′ < α, and by the definition of lim sup we see
that there are arbitrary large indices j such that aj ≥ α′j > 1. Therefore, the sequence
aj does not tend to zero4, and the series

∑
aj diverges. ✷

Exercise 8.4.7 (D’Alembert’s “ratio test”). Suppose aj > 0 and there exists the limit

β = lim
j→∞

aj+1

aj
.

If β < 1, then the series converges, if β > 1, the series diverges.

Hint: use Corollary 5.2.5.

4Moreover, lim sup aj = +∞.
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Example 8.4.8. The series
∑

j≥2

1

(log j)j

converges by application of the Cauchy test.

Example 8.4.9. The series
∑

j≥1

xj

j!

(absolutely) converges for any real x by application of the d’Alambert test.

Example 8.4.10. The series
∑

j≥1

xj

js

converges for x < 1 and diverges for x > 1. This can be obtain easily by application
of any of the two tests, and the answer does not depend on the choice of real s. In the
remaining case x = 1 the answer depends on s. As we already know, the series diverges
for s = 1 and therefore for all s ≤ 1. A bit later, we’ll see that the series converges for
all s > 1.

The both tests do not lead to any conclusion in the “boundary” case when α or β
equal 1. In this case, the following theorem is very useful:

Theorem 8.4.11 (Cauchy’s compression). Let aj be a non-increasing sequence of pos-
itive numbers. Then the series

∑
j≥1 aj converges and diverges simultaneously with the

series
∑

k≥0 2ka2k .

Proof: Let sn be a partial sum
∑n

j=1 aj , let Ak = 2ka2k , and let Sn be a partial sum

Sn =
∑n

k=0 Ak. Since the terms aj do not increase, for each k ≥ 0 we have

1

2
Ak+1 = 2ka2k+1 ≤ a2k+1 + a2k+2 + ... + a2k+1 ≤ 2ka2k = Ak .

Summing up these inequalities from k = 0 till k = n, we get

1

2
(Sn+1 − a1) ≤ s2n+1 − a1 ≤ Sn .

This means that the increasing sequence of partial sums {sn} is bounded from above
if and only if the increasing sequence of partial sums {Sn} is bounded from above.
Therefore, the sequences sn and Sn converge and diverge simultaneously. ✷

The theorem is useful since the new series
∑

k≥1 2ka2k usually has “better conver-
gence” than the original one.

Example 8.4.12. The series
∑

n≥1

1

ns
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converges if and only if s > 1. Indeed, in this case the new series from Cauchy’s theorem
is ∞∑

k=1

2k 1

2ks
=

∞∑

k=1

2k(1−s) .

If s > 1, we get a convergent geometric series, if s ≤ 1 the terms do not tend to zero
and the series diverges.

Exercise 8.4.13. Check convergence or divergence of the series
∑

n≥1 an when

an = 2nn!n−n, an = 3nn!n−n, an =
1

log n!
(n ≥ 2),

an = nne−n1.001
, an =

nlog n

(log n)n
, an =

(n!)2

(2n)!
,

an =
(√

n + 1 −
√

n − 1
)α

, an =

√
n + 1 −

√
n − 1

nα
(α ∈ R),

an =
1

n loga n
, an =

1

n loga n log logb n
(a, b ∈ R)

Exercise 8.4.14. Suppose that an ↓ 0, and
∑

an = +∞. Prove that
∑

min(an, 1/n) = +∞ .

Hint: Use Cauchy’s compression.

There are many interesting problems about the infinite series with positive terms.
For instance,

Problem 8.4.15. Let an ≥ 0 and the series
∑

an diverges.

(i) Show that the series
∑ an

1 + an
also diverges.

(ii) Let Sn = a1 + ... + an. Show that

(a)
∑

n≥1

an

Sn
= +∞; (b)

∑

n≥1

an

S1+ǫ
n

< ∞ for each ǫ > 0 .
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9. Rearrangement of the infinite series

9.1. Be careful! Some operations customary for finite sums might be illegal for infinite
convergent sums. To see this, let us return to the convergent series

∑
j≥1(−1)j−1/j and

denote by S its sum. We have

2S =
2

1
− 2

2
+

2

3
− 2

4
+

2

5
− 2

6
+

2

7
...

=
2

1
− 1

1
+

2

3
− 1

2
+

2

5
− 1

3
+

2

7
− 1

4
+ ... .

Consider separately the terms with even and odd denominators. The terms with even
denominators are negative:

−1

2
, −1

4
, −1

5
, ... .

There are two terms with any odd denominator, one term is positive, another one is
negative, and the difference is positive:

2

1
− 1

1
=

1

1
,

2

3
− 1

3
=

1

3
,

2

5
− 1

5
=

1

5
, ... .

Collecting the terms together in such a way that the denominators increase, we get

2S =
1

1
− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ .... = S .

Therefore, S = 0. On the other hand, this is definitely impossible, since the sequence
S2n increases to S, and S2 = 1

2 , so that S > 1
2 .

Exercise 9.1.1. What was illegal in our sequence of operations?

9.2. Rearrangement of the series.

Definition 9.2.1. A sequence
∑

j≥1 bj is a rearrangement of the sequence
∑

j≥1 aj if
every term in the first sequence appears exactly once in the second and conversely. In
other words, there is a bijection ϕ : N → N such that aj = aϕ(j) for j ∈ N.

Theorem 9.2.2 (Dirichlet). After an arbitrary rearrangement of the terms, the abso-
lutely convergent series

∑
j≥1 aj converges to the same sum.

Proof: First, we prove assume that aj ≥ 0. Set

S =

∞∑

j=1

aj , Sn =

n∑

j=1

aj .

Let {bj} be an arbitrary rearrangement of the sequence {aj}. Set

S′
n =

n∑

j=1

bj .

Then, for each n ∈ N, S′
n ≤ S. Hence, the series

∑
bj converges to the sum S′, and

S′ ≤ S.
In turn, the sequence aj is a rearrangement of the sequence

∑
bj , whence S ≤ S′.

Hence, S = S′.
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Now, we consider the general case when the terms aj are real. First, we introduce
a useful notation. For real a, we set a+ = max(a, 0), and a− = max(−a, 0)(= (−a)+).
Then a = a+ −a− and |a| = a+ +a−. Using this notation and applying the special case
proven above, we get

∑
bj =

∑
(b+

j − b−j ) =
∑

b+
j − b−j

=
∑

a+
j −

∑
a−j =

∑
(a+

j − a−j ) =
∑

aj

completing the proof. ✷.

9.3. Rearrangement of conditionally convergent series. For conditionally con-
vergent series the situation is very different.

Theorem 9.3.1 (B. Riemann). Suppose that the series
∑

j≥1 aj converges conditionally.

Then given −∞ ≤ α ≤ β ≤ +∞, there exists a rearrangement {bj} of the sequence {aj}
such that

lim inf sn = α, lim sup sn = β , where sn =
n∑

j=1

bj .

Here is a striking

Corollary 9.3.2. Suppose that the series
∑

j≥1 aj converges conditionally. Then, given

s ∈ R, there exists a rearrangement {bj} of the sequence {aj} such that
∑

j≥1 bj = s.

We start with a simple claim:

Claim 9.3.3. Suppose that the series
∑

j≥1 aj converges conditionally. Then
∑

a+
j =

∑
a−j = +∞ .

Proof of Claim 9.3.3: Suppose one of the sums, say the first one, converges. Since
n∑

j=1

a−j =

n∑

j=1

a+
j −

n∑

j=1

aj ,

we conclude that the other sum also converges. Recalling that
n∑

j=1

|aj | =

n∑

j=1

a+
j +

n∑

j=1

a−j ,

we conclude that the series
∑ |aj | converges, which contradicts our assumption. ✷

Proof of Theorem 9.3.1: we consider only the case when −∞ < α ≤ β < +∞, leaving
the other cases as exercises.

We split the set N into two disjoint subsets: N+ = {j ∈ N : aj > 0} and N− = {j ∈
N : aj ≤ 0}. Let n1 < n2 < ... be the elements of the set N+, and m1 < m2 < ... be the
elements of the set N−. That is, an1

, an2
, an3

, ... , are positive terms of the sequence
aj , and am1

, am2
, am3

, ... , are negative terms of the same sequence. Since the series∑
aj converges, we have limj aj = 0, whence limj anj = limj amj = 0.
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Now, the idea of the proof is very simple. First, we add the positive terms

an1
+ an2

+ ... = b1 + b2 + ...

and stop at the moment when their sum will increase β. This moment will occur since∑
j anj = +∞. Suppose we took k1 positive terms. Then the difference between the

sum and β is ank1
at most. Then we start to add the negative terms

(
an1

+ ... + ank1

)
+ am1

+ am2
+ ... =

(
b1 + ... + bk1

)
+ bk1+1 + bk1+2 + ...

and stop at the moment when the sum will be less than α. This is also possible due
to divergence of the sum

∑
j amj = −∞. Suppose we took ℓ1 negative terms. Then

the difference between α and the sum is −amℓ1
at most. Then again we start to add

positive terms

(
an1

+ ... + ank1

)
+

(
am1

+ ... + amℓ1

)
+ ank1

+1 + ank1
+2 + ...

=
(
b1 + ... + bk1

)
+

(
bk1+1 + ... + bk1+ℓ1

)
+ bk1+ℓ1+1 + bk1+ℓ1+2 + ...

and stop when the sum will be bigger than β, and continue in the same way. Then
the partial sums of the new series oscillate between the numbers α and β, and since
limj anj = limj amj = 0, the lower and upper bounds for this oscillation are closer and
closer to α and β.

Now, we will try to make the proof more formal. We define the bijection ϕ : N → N.
We will do it in an infinite sequence of steps. Each step consists of two parts.

Step 1: We set

k1 = min



k :

k∑

j=1

anj > β



 , ℓ1 = min



ℓ :

k1∑

j=1

anj +
ℓ∑

j=1

amj < α



 ,

and let

ϕ(j) = nj , for 1 ≤ j ≤ k1, ϕ(k1 + j) = mj , for 1 ≤ j ≤ ℓ1 .

At the first step, we use first N+
1 = k1 positive terms of the sequence {aj}, first N−

1 = ℓ1

non-positive terms of the sequence {aj}. The total number of the terms we use is
N1 = N+

1 + N−
1 .

Proceeding the same way, at the t-the step we use kt positive terms and ℓt non-positive
terms. After the t-th step, ϕ(j) is defined for 1 ≤ j ≤ Nt, where Nt = N+

t + N−
t , and

N+
t =

t∑

i=1

ki, N−
t =

t∑

i=1

ℓi .

It is easy to see that the construction yields three properties of the mapping ϕ:

(i) ϕ(j) is defined for all j ∈ N;

(ii) ϕ(i) 6= ϕ(j) for i 6= j;

(iii) for each p ∈ N, there is j such that ϕ(j) = p.
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That is, ϕ is a bijection of N onto itself. Now, we set bj = aϕ(j), and denote

sn =
n∑

j=1

bj .

For every t ∈ N, we have sNt < α and sNt+kt+1
> β. Therefore,

lim inf sn ≤ α, lim sup sn ≥ β .

To show the opposite inequalities, we note that

α − |bNt | ≤ sN ≤ β + |bNt+kt+1
| for Nt ≤ N ≤ Nt+1 − 1 .

This is the place where we use our “ stopping time rules”. Since lim bj = 0, we see that
given ǫ > 0, we have α− ǫ ≤ sN ≤ β + ǫ, provided that N is big enough. This completes
the proof of Riemann’s theorem. ✷

Exercise 9.3.4. Check the properties (i), (ii), (iii) from the proof.

Exercise 9.3.5. Check the remaining cases of Riemann’s theorem when either one of
the values α and β, or both of them, are infinite.

Exercise 9.3.6. Suppose that the series
∑

j≥1 aj converges and that bj = aϕ(j) with

the bijection ϕ : N → N such that sup{|ϕ(j) − j| : j ∈ N} < ∞. Show that
∑

j≥1 bj =∑
j≥1 aj .
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10. Limits of functions. Basic properties

10.1. Cauchy’s definition of limit. Denote by U∗
δ (a) = {x : 0 < |x − a| < δ} the

punctured δ-neighbourhood of a.

Definition 10.1.1 (the limit according to Cauchy). Let f : E → R be a function
defined on a set E ⊂ R, and let a be an accumulation point of E. We say that f has a
limit L when x tends to a along E: lim

E∋x→a
f(x) = L, if

∀ǫ > 0 ∃δ > 0 such that ∀x ∈ U∗
δ (a)

⋂
E |f(x) − L| < ǫ .

Usually, we deal with the case when the set E contains some punctured neighbourhood
of a. Then we just say that f has a limit L at the point a: lim

x→a
f(x) = L, or f(x) → L

for x → a.

a

L

2δ

2ǫ

Figure 8. To the definition of the limit

Remarks:

i. Existence of the limit and its value do not depend on the value of the function
f(x) at the point x = a, moreover, the function f does not need to be defined at a at
all. For example, the function f : R \ {0} → R defined by f(x) = 2x + 1, has the limit
lim
x→0

f(x) = 1. If we consider the function f1(x) : R → R which equals f(x) for x 6= 0

and equals C at the origin, then its limit at the origin is the same for any C:

lim
x→0

f1(x) = lim
x→0

f(x) = 1 .

ii. If E1 ⊂ E, a is an accumulation of E1 (and therefore of E) and the limit lim
E∋x→a

f(x)

exists, then the limit of f along E1 also exists and has the same value.

Example 10.1.2.

lim
x→0

x sin
1

x
= 0 .

More generally,
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Claim 10.1.3. If lim
x→a

f(x) = 0, and a function g is bounded in a punctured neighbour-

hood U∗(a) of a, then lim
x→a

f(x)g(x) = 0.

Proof: Indeed, set M = sup{|g(x)| : x ∈ U∗(a)} , fix ǫ > 0 and choose δ > 0 such that

|f(x)| <
ǫ

M
for x ∈ U∗

δ (a) .

We may always assume that U∗
δ (a) ⊂ U∗(a), otherwise we make δ smaller. Then

|f(x)g(x)| <
ǫ

M
· M = ǫ , x ∈ U∗

δ (a) ,

and we are done. ✷

In the example above, f(x) = x and g(x) = sin 1
x .

Agreement. If E = (a, b) (b > a), then we use notations

lim
x↓a

f(x) = lim
x→a+0

f(x)
def
= lim

E∋x→a
f(x)

(this is called the limit from above, or the right limit). If E = (b, a) (b < a), then we
write

lim
x↑a

f(x) = lim
x→a−0

f(x)
def
= lim

E∋x→a
f(x)

(this is called the limit from below, or the left limit).

Example 10.1.4. f(x) = sgn(x). In this case the limit at the origin does not exist,
however

lim
x↑0

sgn(x) = −1, lim
x↓0

sgn(x) = +1 .

Exercise 10.1.5. Suppose that the limits from above and from below exist and are
equal. Then the usual limit exists as well and has the same value.

10.2. Heine’s definition of limit. The next theorem shows the limit of functions
can be defined using only the notion of limits of sequences.

Theorem 10.2.1. Let a be an accumulation point of the set ⊂ R, and let f : E → R.
Then the following two conditions are equivalent:

(A) lim
E∋x→a

f(x) = L ,

and

(B) for any sequence {xn} convergent to a and such that xn ∈ E \ {a} for each
n ∈ N, the sequence {f(xn)} converges to L.

Proof: Implication (A) ⇒ (B) follows by straightforward inspection. We shall prove
that (B) implies (A). Assume that (B) holds but (A) fails, that is

∃ǫ > 0 ∀δ > 0 ∃x ∈ U∗
δ (a) |f(x) − L| ≥ ǫ .

Choosing here δ = 1
n we get

∀n ∈ N ∃xn such that 0 < |xn − a| <
1

n
and |f(x) − L| ≥ ǫ .
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We see that f(xn) does not converge to L and therefore we arrived at the contradic-
tion. ✷

Remark 10.2.2. In the theorem, we can replace (B) by a seemingly weaker condition

(B’) for any sequence {xn} ⊂ E\{a} convergent to a the sequence {f(xn)} converges.

This already yields (B): assume that (B) fails but (B’) holds, i.e., there are two sequences
{x′

n}, {x′′
n} ⊂ E\{a}, both are convergent to a, such that lim f(x′

n) = L′ and lim f(x′′
n) =

L′′, where L′ 6= L′′. Take xn = x′
m for n = 2m and xn = x′′

m for n = 2m + 1. Then
xn → a but the sequence f(xn) has two limit points L′ and L′′, and therefore it does
not converge. We arrive at the contradiction which proves (B).

Example 10.2.3. Consider the Dirichlet function D : R → R which equals 0 at irra-
tional x and 1 at rational x. Then D does not have a limit at any real point a. Indeed,
take two sequences {xn} ⊂ Q and {yn} ⊂ R \ Q converging to a. Then D(xn) = 1 for
all n, hence limD(xn) = 1. Similarly, limD(yn) = 0.

Exercise 10.2.4. Show that

D(x) = lim
m→∞

(
lim

n→∞
cos2n (2πxm!)

)
.

Theorem 10.2.1 will allow us to transfer all the properties of the limit of sequences
we’ve already known to the limits of functions.

Corollary 10.2.5 (Cauchy’s criterion). The limit lim
E∋x→a

f(x) exists if and only if

∀ǫ > 0 ∃δ > 0 such that |f(x′) − f(x′′)| < ǫ , (C)

provided x′, x′′ ∈ E and 0 < |x′ − a| < δ, 0 < |x′′ − a| < δ.

Here is a logic of the proof:

∃ lim
E∋x→a

f(x) ⇒ (C)

⇒ ∀{xn} ⊂ E \ {a} convergent to a, {f(xn)} is Cauchy′s sequence

⇒ (B′) ⇒ ∃ lim
E∋x→a

f(x) .

We leave the rest as an exercise. ✷

Exercise 10.2.6. Prove that lim
x→0

sin
1

x
does not exist.

10.3. Limits and arithmetic operations. Set (f + g)(x) = f(x) · g(x), (f · g)(x) =

f(x) · g(x), and

(
f

g

)
(x) =

f(x)

g(x)
.

Theorem 10.3.1. Let the functions f and g be defined on a set E \ {a} where {a} is
an accumulation point of E. Suppose that

lim
E∋x→a

f(x) = A, and lim
E∋x→a

g(x) = B .

Then there exists the limits:

a) lim
E∋x→a

(f + g)(x) = A + B,
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b) lim
E∋x→a

(f · g)(x) = A · B,

c) if B 6= 0 and g(x) 6= 0 for x ∈ E, then

lim
E∋x→a

f

g
(x) =

A

B
.

This theorem can be checked using the definition of the limit, it also follows at once
from the corresponding properties of the limits of sequences, so we shall not prove it
here.

Example 10.3.2. Let m and n be positive integers. Then

lim
x→1

xm − 1

xn − 1
= lim

x→1

1 + x + ... + xm−1

1 + x + ... + xn−1
=

m

n
.

As a corollary, we obtain the value for another limit:

lim
x→1

x1/m − 1

x1/n − 1
=

n

m
.

Indeed, we introduce a new variable x = tmn, then t → 1 for x → 1 (why?), and

lim
x→1

x1/m − 1

x1/n − 1
= lim

t→1

tn − 1

tm − 1
=

n

m
.

10.4. The first remarkable limit: lim
x→0

sinx

x
= 1. Since the function sin x

x is even, it

suffices to consider the case when x ↓ 0. First, we prove the inequality

(∗) sinx < x < tanx

valid for 0 < x < π
2 . For that, consider the circle of radius one centered at O and two

points A and B on that circle such that the angle ∠AOB equals x radians. Let C be
the intersection point of the tangent to the circle at A and the line containing the radius
OB. Then

x

O A

C

B

1

1

Figure 9. The triangles AOB and AOC

△AOB ⊂ sectorAOB ⊂ △AOC ,
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so that

Area(△AOB) < Area(sectorAOB) < Area(△AOC) .

Computing the areas, we get
sinx

2
<

x

2
<

tanx

2
,

that is (∗).
Dividing (∗) by sinx, we obtain

1 >
sinx

x
> cos x ,

or

0 < 1 − sinx

x
< 1 − cos x .

But

1 − cos x = 2 sin2 x

2
< 2

(x

2

)2
=

x2

2
(we have used the first inequality from (∗)). So that

0 < 1 − sinx

x
<

x2

2
.

This yields the limit in the box. Done! ✷

Corollary 10.4.1.

lim
n→∞

{
cos

t

2
· cos

t

22
· cos

t

23
· ... · cos

t

2n

}
=

sin t

t
.

Proof: Indeed,

sin t = 2 cos
t

2
sin

t

2
= 22 cos

t

2
cos

t

22
sin

t

22

= ... = 2n cos
t

2
cos

t

22
... cos

t

2n
sin

t

2n
,

so the product of cosines equals

sin t

2n sin t
2n

=
sin t

t
·

t
2n

sin t
2n

.

Notice, that the second factor converges to 1 since t
2n converges to 0. ✷

Exercise 10.4.2 (Vieta). Prove that

2

π
=

√
2

2

√
2 +

√
2

2

√
2 +

√
2 +

√
2

2
...

(the product on the RHS is infinite).

Hint: Let t = 2/π in the previous corollary. Using induction, check that cos
π

2n+1
=

√
2 +

√
2 + ... +

√
2

2
, n ∈ N, with n square roots on the RHS.
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10.5. Limits at infinity and infinite limits. We extend the definition of limit to
two cases: first, we allow the point a to be ±∞. Second, we allow the limit to be ±∞.

Definition 10.5.1. Let f be a function defined for x > x0. We say that lim
x→+∞

f(x) = L

if
∀ǫ > 0 ∃M ∀x > M |f(x) − L| < ǫ .

If f is defined for x < x0 we say that lim
x→−∞

f(x) = L if

∀ǫ > 0 ∃M ∀x < M |f(x) − L| < ǫ .

Exercise 10.5.2. Check that lim
x→+∞

f(x) = lim
y↓0

f

(
1

y

)
.

Example 10.5.3.

lim
x→+∞

arctanx =
π

2
, lim

x→−∞
arctanx = −π

2
.

Consider the first case. Fix ǫ > 0 and choose M = tan(π
2 − ǫ). If x > tan(π

2 − ǫ), then
arctanx > π

2 − ǫ, and since arctanx is always less than 1, we are done. The second case
is similar to the first one. ✷.

Definition 10.5.4. We say that lim
E∋x→a

f(x) = +∞, if

∀M > 0 ∃δ > 0 such that ∀x ∈ U∗
δ (a) f(x) > M .

Similarly, we say that lim
E∋x→a

f(x) = −∞ if

∀M > 0 ∃δ > 0 such that ∀x ∈ U∗
δ (a) f(x) < −M .

In both cases, lim
E∋x→a

1

f(x)
= 0.

Example 10.5.5.

i

lim
x↓0

1

sinx
= +∞, lim

x↑0
1

sinx
= −∞.

ii.
lim

x→±∞
x3 = ±∞.

Example 10.5.6. Let P (x) = apx
p + ... and Q(x) = bqx

q + ... be polynomials of degrees
p and q. Then

lim
x→+∞

P (x)

Q(x)
= lim

x→+∞
apx

p + ap−1x
p−1 + ... + a0

bqxq + bq−1xq−1 + ... + b0

= lim
x→+∞

xp−q · ap + ap−1x
−1 + ... + a0x

−p

bq + bq−1x−1 + ... + b0x−q
.

The latter limit equals 0 if p < q, equals +∞ if p > q and ap and bq have the same
signs, and −∞ if they are of different signs, and equals the quotient

ap

bq
of the leading

coefficients if the polynomials have the same degrees p = q.
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10.6. Limits of monotonic functions. Set sup
E

f = sup{f(x) : x ∈ E} if f is

bounded from above on E, and = +∞ otherwise, and set inf
E

f = inf{f(x) : x ∈ E} if

f is bounded from below and = −∞ otherwise.

Theorem 10.6.1. Suppose f : (a, b) → R does not decrease. Then the limits

(1) lim
x↑b

f(x) = sup
(a,b)

f ,

and

(2) lim
x↓a

f(x) = inf
(a,b)

f

exist.

Proof: We shall prove the first relation, proof of the second one is similar.
First, assume that f is bounded from above on (a, b), then sup

(a,b)
f < +∞. We fix ǫ > 0

and use of the definition of the supremum. We find x0 < b such that f(x0) > sup
(a,b)

f − ǫ.

Since f does not decrease on the interval (a, b), we have f(x) ≥ f(x0) for x ≥ x0, so
that

sup
(a,b)

f − ǫ < f(x) ≤ sup
(a,b)

f , x0 ≤ x < b .

This proves (1) in the case when f is bounded from above.
Now, let f be unbounded from above. Then for any M we find x0 such that f(x0) >

M , hence f(x) > M for x0 ≤ x < b, and lim
x↑b

f(x) = +∞. ✷

Exercise 10.6.2. Find the following limits:

lim
x↓0

x

[
1

x

]
, lim

x↑0
x

[
1

x

]
, lim

x→0

√
1 + x −

√
1 − x

x
, lim

x→0
x cos

1

x
,

lim
x→+∞

(√
x +

√
x +

√
x −√

x

)
, lim

x→π

sinx

π − x
, lim

x→0

x

tanx
,

lim
x→±∞

x + sinx

x − sinx
, lim

x↓0
sinx

x2
, lim

x→0

1 − cos x

x2
, lim

x→0

sin 5x − sin 3x

x
,

lim
n→∞

sinπ
√

n2 + 1 , lim
n→∞

sinπ
(
n3 + 1

)1/3
, lim

n→∞
sin sin ... sin︸ ︷︷ ︸

n times

x .
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11. The exponential function and the logarithm

11.1. The function t 7→ at. First, we recall the definition of the function t 7→ at for
a > 0 and t ∈ Z that you’ve known from the high-school, then then we extend it to the
set of all rational t ∈ Q, and then to the whole real axis. The discussion will be brief.

11.1.1. t ∈ Z. We set a0 = 1, at = a · a · ... · a︸ ︷︷ ︸
t times

, and a−t =
1

at
for t ∈ N. This function

has the following properties

(a) am · an = am+n;
(b) (am)n = amn;
(c) an · bn = (ab)n;
(d) for n > 0, an < bn if and only if a < b;
(e) let n < m, then an < am provided a > 1, and an > am provided a < 1.

11.1.2. t ∈ Q. Suppose t =
m

n
. Then we denote by x = at a unique positive solution

to the equation xn = am. Note that with this definition

a
m
n = (am)

1

n =
(
a

1

n

)m

(why?).
First of all, we need to check that this definition is correct; i.e., that if we use a

different representation t =
m′

n′ then the answer will be the same. Let

x = a
m
n , y = a

m′

n′ ,

then

xnn′

= amn′

, ynn′

= am′n .

Since
m′

n′ =
m

n
, we have m′n = mn′; i.e., xnn′

= ynn′
. Since the positive nn′-th root is

unique, we get x = y. ✷

Notice that the properties (a)–(e) formulated above hold true for the extension t 7→ at,
t ∈ Q. We check only (a) and leave the rest as an exercise.

Claim 11.1.1. For t1, t2 ∈ Q, at1+t2 = at1 · at2.

Proof: Suppose

x1 = a
m1
n1 , x2 = a

m2
n2 .

We need to check that

x1 · x2 = a
m1
n1

+
m2
n2 .

We have

xn1n2

1 = am1n2 , xn1n2

2 = am2n1 ,

whence

(x1 · x2)
n1n2 = am1n2 · am2n1 = am1n2+m2n1
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(note that in the last equation, we’ve used the property (a) for integer t’s). That is

x1 · x2 = a
m1n2+m2n1

n1n2 = a
m1
n1

+
m2
n2 ,

completing the proof. ✷

We need one more property of the exponential function:

(f) lim
Q∋r→t

ar = at, t ∈ Q.

Proof of (f): First, we prove (f) in a special case when t = 0; i.e, we prove that
lim

Q∋r→0
ar = 1. We prove it in the case a > 1, the case a < 1 is similar.

We use Heine’s definition of the limit. Let {rn} be a sequence of rationals converging
to 0. We fix an arbitrarily small ǫ > 0 and choose k ∈ N such that

1 − ǫ < a−1/k < a1/k < 1 + ǫ

(why this is possible?). Then we choose N ∈ N such that for n ≥ N ,

−1

k
< rn <

1

k
.

Then we have

1 − ǫ < a−1/k
(e)
< arn

(e)
< a1/k < 1 + ǫ ,

proving the claim in the case t = 0.
Now, consider the general case. We have

lim
Q∋r→t

ar · a−t = lim
Q∋r→t

ar−t = lim
Q∋s→0

as = 1 ,

hence, the claim. ✷

11.1.3. t ∈ R. Assume again that a > 1. Given t ∈ R, consider the numbers

s = sup{ar : r ∈ Q, r < t}, i = inf{aq : q ∈ Q, q > t}.
It is not difficult to see that these two numbers must coincide. First note that s ≤ i
(why?). Then, given k ∈ N, choose the rationals r and q such that r < t < q and
q − r < 1

k . Then

0 ≤ i − s < aq − ar = ar(aq−r − 1) < s(a1/k − 1) .

Letting k → ∞, we get s = i. ✷

Definition 11.1.2. For a > 1 and for each t ∈ R, we set at = s = i. If a < 1, then we

set at =
(

1
a

)−t
.

An equivalent definition says

at def
= lim

Q∋r→t
ar .

Exercise 11.1.3. Show that the limit on the right hand side exists, and prove the
equivalence of these definitions.

This extends the function t 7→ at to the whole real axis preserving the properties
(a)–(f):



DIFFERENTIAL AND INTEGRAL CALCULUS, I 55

(a) at · as = at+s;
(b)

(
at

)s
= ats;

(c) at · bt = (ab)t;
(d) for t > 0, at < bt if and only if a < b, for t < 0, at < bt if and only if a > b.
(e) let t < s, then at < as provided a > 1, and at > as provided a < 1;
(f) lims→t as = at.

Exercise 11.1.4. Check the properties (a)–(f).

Next, we’ll need one more property of the exponential function:

Claim 11.1.5. The function t 7→ at maps R onto R+.

I.e., for each positive y, there is t ∈ R such that at = y. Note, that due do mono-
tonicity claimed in (e), if such a t exists then it must be unique.

Proof: Suppose that a > 1. Fix y > 0 and consider the sets

A< = {t ∈ R : at < y} and A> = {t ∈ R : at > y} .

The both sets are not empty, for instance, if we take a big enough n ∈ N, then −n ∈ A<

and n ∈ A>. By (e), for each t1 ∈ A< and t2 ∈ A>, we have t1 < t2. Therefore, by the
completeness axiom, there exists t ∈ R such that t1 ≤ t ≤ t2 for each t1 ∈ A< and each
t2 ∈ A>. Let us show that at = y.

Suppose that at < y. Since at+1/n → at when n → ∞, we can choose big enough n
such that t + 1

n ∈ A<. This contradicts to our assumption that the point t separates
the sets A< and A>. Similarly, the assumption at > y also leads to the contradiction.
Thus, at = y, completing the proof. ✷

The claim we’ve just proven allows us to define the inverse function to at which is
called the logarithmic function loga : R+ 7→ R.

11.2. The logarithmic function loga x. This function is defined as inverse to the
function t 7→ at, that is loga(a

t) = aloga t = t. It follows from the definition that
loga 1 = 0 and loga a = 1. Now we list the basic properties of the logarithmic function:

(i) loga(xy) = loga x + loga y;
(ii) loga(x

y) = y loga x .
(iii) if x < y, then loga x < loga y provided a > 1, and loga x > loga y provided a < 1;
(iv) lim

x→y
loga x = loga y;

Exercise 11.2.1. Check the properties (i)–(iv) of the logarithmic functions.

Another important property is

(v)

loga x =
logb x

logb a
.

Indeed, if u = logb x and v = logb a, then bu = x and bv = a. Now, we need to express
the value t = loga x, that is the solution of the equation at = x through u and v. We
have bvt = at = x = bu, hence vt = u and t = u

v as we needed. ✷
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In particular, we see that

loga x =
1

logx a
.

If the basis a equals e, then we simply write log x = loge x. Such logarithms are called
the natural ones. The reason why the base e is important will be clear later (the base
a = 2 is also very useful). It is worth to remember the special case of (v):

loga x =
log x

log a

which allows to convert any logarithms to the natural ones.

Having the logarithms, we can define the power function x 7→ xα for x > 0 by

xα = eα log x .

If α ∈ Z this definition coincide with the one we know from the high-school (why?). If
α > 0 the function x 7→ xα increases, if α < 0, then this function decreases.

It is important to remember that the exponential function grows at infinity faster
than the power function:

Claim 11.2.2. For a > 1 and p < ∞,

(∗) lim
x→+∞

xp

ax
= 0.

Proof: The relation (∗) easily follows from its special case for the sequences. We know
that np/an → 0, as N ∋ n → ∞. Therefore, we can fix sufficiently small ǫ > 0 and
choose big enough N such that ∀n > N

n[p]+1

an
< ǫ .

Then for n = [x] (x is large enough) we have

0 <
xp

ax
<

(n + 1)[p]+1

an+1
· a < aǫ .

Done! ✷

Corollary 11.2.3.

i. Setting in (∗) ax = tα, we see that the logarithmic function grows slower than any
power function:

lim
t→+∞

loga t

tα
=

1

α
lim

x→+∞
x

ax
= 0 .

Here α > 0, of course.

ii. Making the change of variables s = 1
x , we arrive at another important limit:

lim
s↓0

sα| loga s| = 0 .

Here again α > 0.
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Example 11.2.4.

i.
lim
x↓0

xx = lim
x↓0

ex log x = e0 = 1.

ii.
lim
x↓0

xxx
= lim

x↓0
exx log x = 0 .

Now, the exponent tends to −∞, hence the limit equals 0.
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12. The second remarkable limit.

The symbols “o small” and “∼”

12.1. lim
x→±∞

(
1 +

1

x

)x

= e.

Proof: We already know the special case:

lim
n→∞

(
1 +

1

n

)n

= e ,

which is a definition of the number e. Now, let x → +∞, and let n = [x] be the integer
part of x. Then

(
1 +

1

n + 1

)n+1 n + 1

n + 2
=

(
1 +

1

n + 1

)n

<

(
1 +

1

x

)x

<

(
1 +

1

n

)n+1

=

(
1 +

1

n

)n n + 1

n
,

and the result follows.
Now, consider the second case: x → −∞. We have

lim
x→−∞

(
1 +

1

x

)x

= lim
y→+∞

(
1 − 1

y

)−y

,

and (
1 − 1

y

)−y

=

(
y

y − 1

)y

=

(
1 +

1

y − 1

)y−1

·
(

y

y − 1

)
.

Letting y → +∞, we see that the first factor on the right hand side converges to e,
while the second factor converges to 1. Done! ✷

Corollary 12.1.1.

lim
t→0

(1 + t)
1

t = e

and

lim
t→0

log(1 + t)

t
= 1 .

Proof: To get the first limit put x = 1/t in the 2nd remarkable limit. The second

relation follows from the first one: if y = (1 + t)1/t → e, then log y → 1, and log y is
nothing but 1

t log(1 + t).

12.2. Infinitesimally small values and the symbols o and ∼. Here we develop a
useful formalism which in many cases make the formulas simpler.

Definition 12.2.1. Let E ⊂ R, and a be an accumulation point of E. The function
α : E → R is called infinitesimally small at a, if

lim
E∋x→a

α(x) = 0.



DIFFERENTIAL AND INTEGRAL CALCULUS, I 59

Let us make several trivial comments. If α and β are infinitesimally small at a, then
their sum α + β is infinitesimally small as well. If α is infinitesimally small at a and
β is bounded, then the product α · β is infinitesimally small as well. At last, relation
f(x) = L + α(x) where α is infinitesimally small at a is equivalent to limx→a f(x) = L.

Another notation for infinitesimally small values is o(1) (“o small”). This notation is
quite useful.

Definition 12.2.2. Let f, g : E → R, and let a be an accumulation point of E. We say
that

f(x) = o(g(x)) , x → a, x ∈ E ,

if f(x) = α(x)g(x), where α is infinitesimally small at a.

For instance,

x2 = o(x), x → 0,

x = o(x2), x → ±∞,

1

x
= o

(
1

x2

)
, x → 0,

and

1

x2
= o

(
1

x

)
, x → ±∞.

Definition 12.2.3. We say that the functions f and g are equivalent at a:

f ∼ g, x → a, x ∈ E,

if

lim
E∋x→a

f(x)

g(x)
= 1 .

Another way to express the same is to write

f(x) = g(x) + o(g(x)) = (1 + o(1))g(x), x → a, x ∈ E .

Examples:

(i) if Pn−1(x) is a polynomial of degree ≤ n − 1, then xn + Pn−1(x) ∼ xn for
x → ±∞.

The next relations hold for x → 0:

(ii) x2 + x ∼ x;
(iii) sinx ∼ x;
(iv) log(1 + x) ∼ x;
(v) ex − 1 ∼ x;
(vi) (1 + x)a − 1 ∼ ax.



60 LECTURE NOTES (TEL AVIV, 2009)

Let us prove the last two relations: in (v) we introduce a new variable t = log(1+x),
then (v) reduces to (iv). In (vi) we use both (iv) and (v):

lim
x→0

(1 + x)a − 1

x
= lim

x→0

ea log(1+x) − 1

x

= lim
x→0

ea log(1+x) − 1

a log(1 + x)
· a log(1 + x)

x

= lim
y→0

ey − 1

y
· a lim

x→0

log(1 + x)

x
= a .

Exercise 12.2.4. Show that
√

x +
√

x +
√

x ∼ x
1

8 for x → 0, and is ∼ √
x for x → +∞.

Exercise 12.2.5. Find the limits

lim
x→∞

(
x2 + 1

x2 − 1

)x2

, lim
x→+∞

(ex − 1)1/x , lim
x→1

x
1

x−1 ,

lim

(
at + bt

2

)1/t

(t → +∞, t → −∞, t → 0) .

Exercise 12.2.6. Find the limits

lim
x→1

(
m

1 − xm
− n

1 − xn

)
(m, n ∈ N), lim

x→0

log cosαx

log cos βx
(β 6= 0) .

Hint: in the first limit, write x = 1+s and use that (1+s)n = 1+ns+ n(n−1)
2 s2+o(s2)

for s → 0 and n ∈ N. In the second limit, use that cosx = 1 − 1
2x2 + o(x2) for x → 0.

Let
lim

x→+∞
f(x) = lim

x→+∞
g(x) = +∞ .

If g(x) = o(f(x)) for x → +∞, then we say that f grows faster at +∞ than g (or,
equivalently, that g grows slower at +∞ than f). For example, for each α > 0, and
p < ∞, xα grows faster than logp x, and for each a > 1, ax grows faster than xα.

Exercise* 12.2.7. Prove that for any sequence of functions

f1(x), f2(x), ...fn(x), ... x0 < x < +∞,

such that
lim

x→+∞
fn(x) = +∞ , ∀n ∈ N ,

it is possible to construct other two functions ϕ(x) and ψ(x) such that ϕ grows to +∞
faster than any of fn (i.e., for each n, lim

x→+∞
(ϕ/fn)(x) = +∞) and ψ grows to +∞

slower than any of fn (i.e., for each n, lim
x→+∞

(ψ/fn)(x) = 0).
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13. Continuous functions, I

13.1. Continuity.

Definition 13.1.1. The function f defined in a neighbourhood of a point a is called
continuous at a if

f(a) = lim
x→a

f(x).

In other words, ∀ǫ > 0 exists δ > 0 such that ∀x ∈ Uδ(a)

|f(x) − f(a)| < ǫ.

Here, as usual, Uδ(a) = {t : |t − a| < δ} is a δ-neighbourhood of a.
If a function f is continuous at any point it is defined, we say that this function is

continuous everywhere.

The function f can be defined only on a set E and a ∈ E. If a is an accumulation
point of E then we say that f is continuous at a along E if

f(a) = lim
E∋x→a

f(x) .

If a is an isolated point of E, then we also say that also f is continuous at a.

Examples:

i. The constant function f(x) = const is continuous everywhere.

ii. The identity function f(x) = x is continuous everywhere.

iii. The function f(x) = sinx is continuous everywhere. Indeed, if |x − a| < ǫ, then we
get

| sinx − sin a| =

∣∣∣∣2 cos
x + a

2
sin

x − a

2

∣∣∣∣

≤ 2

∣∣∣∣sin
x − a

2

∣∣∣∣ ≤ 2

∣∣∣∣
x − a

2

∣∣∣∣ = |x − a| < ǫ .

Similarly, the cosine function is continuous.

iv. The exponential function x 7→ ax and the logarithmic function x 7→ log x are con-
tinuous everywhere they are defined. This follows from the properties of these functions
established in the previous lecture.

v. The function f : [0, +∞) → [0,∞) defined by f(x) = e−1/x2

for x 6= 0 and f(0) = 0
is continuous at every point of [0,+∞).

13.2. Points of discontinuity. There are various reasons for a function f to be dis-
continuous at a point a. We give here a brief classification of possible cases. In what
follows, we’ll use notations

f(a − 0) = lim
x↑a

f(x), f(a + 0) = lim
x↓a

f(x) .
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f(a-0)=f(a+0)

a a

The infinite limits f(a-0), f(a+0)

a

removable sinluraity

f(a)

a

f(a-0)

f(a+0)

the limits f(a-0), f(a+0) are different

The limits f(a-0), f(a+0) do not exist

Figure 10. Possible discontinuities at a

Removable discontinuity. We say that the function f has a removable discontinuity at
the point a if the limits from above and from below at this point exist and have the same
value: f(a−0) = f(a+0). In this case, we can always define (or re-define) the function
f at this point by the common value of these limits making the function continuous.

Examples:

i. Let f(x) = x for x 6= 0 and f(0) = 10. This function is clearly discontinuous at the
origin. However, re-defining f at the origin by prescribing it the zero value, we obtain
a continuous function at the origin.

ii. Let f(x) = x sin 1
x for x 6= 0. Again setting f(0) = 0, we get a continuous function.

iii. Let f(x) = sin x
x for x 6= 0. Setting f(0) = 1, we get a continuous function.

iv. Consider the Riemann function

R(x) =

{
1
n if x = m

n ∈ Q \ {0}, (m,n) = 1

0 if x ∈ R \ Q or x = 0.

Here (m, n) is the greatest common divisor of m and n; i.e., (m,n) = 1 means that m
and n are mutually primes. We show that R has a limit at any point a ∈ R and

(R) lim
x→a

R(x) = 0 .
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We fix a and an arbitrary large natural number N . Consider the set

QN =
{

r =
m

n
: m ∈ Z, n ∈ N, (m,n) = 1, n ≤ N

}
.

If r1, r2 ∈ QN and r1 6= r2, then

∣∣r1 − r2

∣∣ =
∣∣m1

n1
− m2

n2

∣∣ =
|m1n2 − m2n1|

n1n2
≥ 1

n1n2
≥ 1

N2
.

Hence, we can find a punctured neighbourhood U∗(a) such that it contains no rational
numbers from QN . This means that

∀x ∈ U∗(a) 0 ≤ R(x) <
1

N
,

that is (R) holds. Relation (R) yields that Riemann’s function is continuous at any
irrational point and at the origin, and is discontinuous at any rational point except of
x = 0. ✷

Problem* 13.2.1. Whether there exists a function f : R → R continuous at all rational
points and discontinuous at all irrational points?

Different one-sided limits. Another simple singularity appears when the function f has
different one-sided limits at the point a, i.e., f(a− 0 and f(a+0 exist but do not equal.
It is also convenient to include into this group the case when at least one of these two
limits is infinite.

For instance, if a discontinuity point of a monotonic function is not removable, then
it must be of that kind.

Examples:

i. f(x) = sgnx, a = 0.

ii. f(x) = tanx, a = π
2 .

Exercise 13.2.2. Give an example of the function f : R → R which is continuous at
R \ Z and discontinuous at all integer points.

Problem 13.2.3. The discontinuity set of an arbitrary monotonic function is at most
countable.

At least one of the two one-sided limits does not exist. This are discontinuities of more
complicated (hence, interesting!) nature.

Exercise 13.2.4. The function f(x) = sin 1
x has no limits from the left and the right

at the origin.

13.3. Local properties of continuous functions. Everywhere below we assume
that the function f : E → R is continuous at a. We list some simple local properties of
f :

Local boundedness. There exists a neighbourhood U(a) of a such that f is bounded in
E ∩ U(a).
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Local conservation of the sign. If f(a) 6= 0, then there exists a neighbourhood U(a) of
a where f has the same sign as at a:

sgnf(x) = sgnf(a) , ∀x ∈ E ∩ U(a) .

Arithmetic of continuous functions. If g : E → R is continuous at a, then the functions
f + g and f · g are also continuous at a. If g(x) 6= 0 in a neighbourhood of a, then the

quotient f
g is also continuous at a.

Exercise 13.3.1. Prove these three properties.

Using these properties, we see for example, that every polynomial is a continuous
function on R and any rational function (that is the function of the form R = P

Q

where P and Q are polynomials) is continuous everywhere except of the zeroes of the
denominator.

Continuity of the composition. If f : E → V is continuous at a, and g : V → R is
continuous at b = f(a), then the composition (g ◦ f)(x) is continuous at a.

Proof: Indeed, fix ǫ > 0 and choose δ > 0 such that

|g(y) − g(b)| < ǫ

provided |y − b| < δ. Then having this δ choose an η > 0 such that

|f(x) − f(a)| < δ

provided |x − a| < η. With this choice

|g(f(x)) − g(f(a))| = |g(y) − g(b)| < ǫ .

Done! ✷

The last property implies continuity of the power function x 7→ xα = eα log x on
(0, +∞) for α < 0 and on [0, +∞) for α > 0. Using this fact, we prove now that

eλ = lim
x→∞

(
1 +

λ

x

)x

for each λ ∈ R. Indeed, we may assume that λ 6= 0 (if λ = 0 the formula is trivial).
Then we introduce a new variable t = x

λ which goes to ∞ with x. We have

lim
x→∞

(
1 +

λ

x

)x

= lim
t→∞

[(
1 +

1

t

)t
]λ

=

[
lim
t→∞

(
1 +

1

t

)t
]λ

= eλ .

The limit was interchanged with the brackets using continuity of the power function,
the limit of the expression in the brackets equal e, as we know from the previous lecture.

Exercise 13.3.2. Suppose that the functions f, g : E → R are continuous at a. Show
that the functions max(f, g)(x) and min(f, g)(x) are also continuous at a. Deduce that
if f is continuous at a, then |f | is continuous at a as well.
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Problem 13.3.3 (Cauchy’s functional equation). Suppose f : R → R is a continuous
function such that, for each x, y ∈ R, f(x + y) = f(x) + f(y). Then f(x) = kx for some
k ∈ R.

I.e., the linear functions are the only continuous solutions of the functional equation
f(x + y) = f(x) + f(y).

Hint: First, using induction, check that f(nx) = nf(x) for any n ∈ Z. Then check that
f(m

n x) = m
n f(x). Then use the continuity of f .

Problem* 13.3.4. Prove the same under a weaker assumption that f is bounded from
above in a neighbourhood of the origin.

Problem 13.3.5.

a. Suppose f : R → R is a continuous function that does not vanish identically and such
that, for each x, y ∈ R, one has f(x + y) = f(x)f(y). Then f(x) = ekx for some k ∈ R.

b. Formulate and prove a similar characterization of the logarithmic function f(x) =
k log x, and the power function f(x) = xk (in the both cases, k ∈ R).
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14. Continuous functions, II

14.1. Global properties of continuous functions. In what follows we denote by
C(E) the collection of all continuous functions on the set E ⊂ R.

Theorem 14.1.1. Let f ∈ C[a, b] and let the values of the function f at the end-points
have different signs: f(a)f(b) < 0. Then there exists an intermediate point c ∈ (a, b)
where the function f vanishes.

Our intuitive understanding of the word “continuous” suggests that the result is
correct: the graph of continuous function should be a “continuous curve” and we cannot
connect a point above the x-axis with a point below x-axis by a continuous line which
does not intersects the x-axis.

Proof: We construct inductively a sequence of nested intervals In = [an, bn], I0 ⊃ I1 ⊃
... ⊃ In ⊃ ... such that |In| = 2−n|I0|, and f(an)f(bn) < 0.

Set a0 = a, b0 = b, and I0 = [a0, b0]. As we know, at the end-points of I0 the function
f has different signs: f(a0)f(b0) < 0. Having the interval In, we consider its middle
point ξ and check the sign of f(ξ). If f(ξ) = 0, then the theorem is proven and there
is no need in the further construction. If f(ξ) 6= 0, then either f(an) or f(bn) has the
opposite sign with f(ξ). If f(an)f(ξ) < 0, then we set an+1 = an, bn+1 = ξ, otherwise
we set an+1 = ξ, bn+1 = bn. In any case, we get a new interval In+1 with the same
properties.

By Cantor’s lemma the intersection of the intervals In is a singleton set:

{c} =
⋂

n≥1

In .

We claim that the function f vanishes at c. By construction,

lim
n→∞

an = lim
n→∞

bn = c.

By continuity of f
f2(c) = lim

n→∞
f(an)f(bn) ≤ 0 ,

so that f(c) = 0. We are done. ✷

The proof of this theorem is constructive, and it can be easily turned to a simple and
effective numerical algorithm (called sometimes bisection method) for finding roots of
equations.

The result can be put in a more general form:

Theorem 14.1.2 (Intermediate Value Property). Let f ∈ C[a, b], and let f(a) = A,
f(b) = B, where A 6= B. Then for any intermediate value C between A and B (that is
A < C < B or B < C < A) there exists c ∈ (a, b) such that f(c) = C.

Proof: Consider a new function f1(x) = f(x) − C. Its values at the end-points have
different signs, so applying Theorem 1 we find a point c ∈ (a, b) such that f1(c) = 0, or
f(c) = C. ✷

Corollary 14.1.3. For each polynomial P of odd degree there exists a point ξ ∈ R such
that P (ξ) = 0.
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Proof: Let P (x) = a2N−1x
2N−1 + ... be a polynomial of degree 2N − 1, i.e., a2N−1 6= 0.

Suppose, for instance, that a2N−1 > 0. Then lim
x→±∞

P (x) = ±∞. Therefore, we can find

a sufficiently big positive M such that P (M) > 0 and P (−M) < 0. The rest follows
from continuity of P and from the IVP-property. ✷

Corollary 14.1.4. If f ∈ C(a, b) then the image f(a, b) is an interval (maybe, infinite,
semi-infinite, or a singleton).

In the proof of this corollary we will use the following characteristics property of
intervals: the set Y ⊂ R is an interval provided that for each pair of points y1, y2 ∈ Y ,
y1 < y2, we have (y1, y2) ⊂ Y .

Exercise 14.1.5. Check this!

Hint: consider the interval with end-points at i = inf Y and s = supY .

Proof of Corollary 14.1.4: Take any two points y1 < y2 in f(a, b). We need to check
that (y1, y2) ⊂ f(a, b). Since y1, y2 ∈ f(a, b), there are points ξ1, ξ2 ∈ (a, b) such that
f(ξi) = yi, i = 1, 2. Suppose, for instance, that ξ1 < ξ2. Then by the IVP-property, for
any y ∈ (y1, y2), there is ξ ∈ (ξ1, ξ2) such that f(ξ) = y; i.e., (y1, y2) ⊂ f(a, b). ✷

Exercise 14.1.6. A point ξ is said to be a fixed point of the function f if f(ξ) = ξ.

i. Prove that any continuous function that maps the interval [0, 1] into itself has a fixed
point. In other words, if f ∈ C[0, 1] and 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1], then there exists
a point ξ ∈ [0, 1] such that f(ξ) = ξ.

ii. Let the function f be defined on [a, b] and satisfy there

|f(x) − f(y)| ≤ K|x − y|, ∀x, y ∈ [a, b]

with some K < 1. Show that f has a unique fixed point at the interval [a, b].

Exercise 14.1.7. Let P be a polygon in the plane. Prove that there is a vertical line
which splits P onto two polygons of equal area.

Exercise 14.1.8. Let a1, a2, a3 > 0, λ1 < λ2 < λ3. Show that equation
a1

x − λ1
+

a2

x − λ2
+

a3

x − λ3
= 0

has exactly 2 real solutions.

Exercise 14.1.9. Let f ∈ C[0, 1], and f(0) = f(1). Show that there exists a ∈ [0, 1
2 ]

such that f(a) = f(a + 1
2).

Theorem 14.1.10 (Weierstrass). If f ∈ C[a, b], then f is bounded on [a, b] and attains
there its maximum and minimum values.

Proof: First, we prove the boundedness of f . In the previous lecture we proved lo-
cal boundedness of continuous functions. Therefore, for each x ∈ [a, b] there exists a
neighbourhood U(x) and a constant Cx such that

|f(y)| ≤ Cx , y ∈ U(x) .
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The neighbourhoods {U(x)}x∈[a,b] form a covering of [a, b]. Hence, using the Borel
covering lemma we can find a finite sub-covering

[a, b] ⊂
N⋃

k=1

U(xk)

Then
|f(x)| ≤ max{Cx1

, ..., Cxk
} , x ∈ [a, b] ,

that is. f is bounded on [a, b].
Now we show that f achieves its maximum and minimum values. We’ll show this

only for the maximum value. The other case is similar. Let

M = sup
[a,b]

f.

By the definition of the supremum, there is a sequence {xn} ⊂ [a, b] such that

lim
n→∞

f(xn) = M.

Since the sequence {xn} is bounded we can find a convergent subsequence

{xni} → x∗ ∈ [a, b].

Then by continuity of f
f(x∗) = lim

i→∞
f(xni) = M .

We are done. ✷

Remark 14.1.11. The both conclusions of the Weierstrass theorem may fail if f is
continuous on an open interval (or on the whole real axis).

For instance, the function f(x) = 1/x is continuous on the interval (0, 1) but is
unbounded there. The function f(x) = x is bounded on the same interval but has no
maximal and minimal values on that interval.

Combining the Weierstrass theorem and the IVP of continuous functions, we get

Corollary 14.1.12. If f ∈ C[a, b], then the image f [a, b] is a closed interval with the
end-points at min[a,b] f and max[a,b] f .

Exercise 14.1.13.

i. Give an example of a bounded continuous function on R which has no maximum and
minimum.

ii. Prove, that if f ∈ C(R) is a positive function and lim
x→∞

f(x) = 0, then f attains its

maximum value.

14.2. Uniform continuity.

Definition 14.2.1. The function f : E → R is called uniformly continuous on E if
∀ǫ > 0 ∃δ > 0 such that the inequality

(α) |f(x) − f(y)| < ǫ

holds ∀x, y ∈ E provided that |x − y| < δ.
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It is instructive to compare this definition with the definition of continuity everywhere
on E. The latter says that ∀x ∈ E ∀ǫ > 0 ∃δ > 0 (depending on x and ǫ) such that (α)
holds provided that |x − y| < δ. Here, δ depends on a point x. The uniform continuity
guarantees the choice of δ which works everywhere on E, which is, at least formally, a
stronger property than continuity everywhere.

In order to show that a continuous function f is not uniformly continuous, one has to
find two sequences of points {xn} and {yn} in the domain of f such that |xn − yn| → 0
but |f(xn) − f(yn)| ≥ const.

Examples:

i. Consider the function f(x) = sin 1
x on the set E = (0, 1]. The function is continuous

(as a composition of two continuous functions) but not uniformly continuous. Indeed,
consider two sequences of points: xn = (2πn)−1 and yn = [ (2n + 1

2)π ]−1. Clearly,
|xn − yn| → 0 but f(xn) = 1, f(yn) = 0.

ii. The identity function f(x) = x is uniformly continuous everywhere on R.

iii. The square function f(x) = x2 is continuous on R but not uniformly. Suppose
xn =

√
n + 1 and yn =

√
n. Then

|xn − yn| =
1√

n + 1 +
√

n
→ 0

but f(xn) − f(yn) = 1.

iv. The function f(x) =
√

x is uniformly continuous on {x ≥ 0}. This follows from
inequality

|√x −√
y| ≤

√
|x − y| , x, y ≥ 0 .

To prove this inequality, we suppose that y = x + h with h > 0. Then

√
y −√

x =
h√

x + h +
√

x
≤

√
h =

√
y − x .

v. The function f(x) = 1
x is not uniformly continuous on (0.1]. Indeed, consider the

sequences xn = 1
2n and yn = 1

2n+1 , the difference between them converges to zero, but

f(yn) − f(xn) = 1.

vi. The function f(x) = sin(x2) is not uniformly continuous on R. Choose xn =√
π
2 (n + 1), yn =

√
π
2 n, then |xn − yn| → 0 but |f(xn) − f(yn)| = 1.

Theorem 14.2.2 (Cantor). If f ∈ C[a, b], then f is uniformly continuous on [a, b].

Proof: Assume that f is not uniformly continuous on [a, b], then, for some ǫ > 0, one
can find two sequences {xn} and {yn} such that |xn − yn| → 0 but |f(xn)− f(yn)| ≥ ǫ.
Passing to the subsequences, we may assume that {xnk

} and {ynk
} converge to c ∈ [a, b].

Then |f(xnk
) − f(ynk

)| → 0 and we arrive at the contradiction. ✷

An alternative proof can be done using the Heine-Borel covering lemma.

Exercise 14.2.3. If f ∈ C[a, b], then the functions

m(x) = inf
a≤ξ≤x

f(ξ), and M(x) = sup
a≤ξ≤x

f(ξ)
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are also continuous on [a, b].

Exercise 14.2.4.

i. Let the function f be uniformly continuous on a bounded set E. Prove that f is
bounded.

ii. Let f ∈ C(a, b) where (a, b) is a finite interval. Prove that f is uniformly continuous
on (a, b) if and only if there exist the limiting values f(a + 0) and f(b − 0).

iii. Let f ∈ C(R) be bounded and monotonic. Prove that f is uniformly continuous.

Exercise 14.2.5. Check the uniform continuity of the following functions:

log x , x ∈ (0, 1] ;
1

log x
, x ∈ (0, 1) ; x +

x

x + 1
, x ∈ [0, +∞) ;

x sinx ; sinx2 ; sin
√

x (x ∈ R) .

Exercise 14.2.6. Let f : E → R, E ⊂ R. Show that the function f is uniformly
continuous on E if and only if

ωf (δ)
def
= sup {|f(x) − f(y)| : x, y ∈ E, |x − y| < δ} → 0

for δ → 0.

14.3. Inverse functions. We start with a simple result (in fact, we’ve used it already):

Theorem 14.3.1. Suppose the function f : X → R is strongly monotonic, and Y = fX
is the range of f . Then there exists the inverse function f−1 : Y → X which is also
strongly monotonic. It increases when f increases, and decreases when f decreases.

The proof follows by a straightforward inspection and we skip it.
For continuous functions, strong monotonicity is also a necessary conditions for exis-

tence of the inverse function.

Theorem 14.3.2. Let the function f ∈ C[a, b] have an inverse function. Then f is
strongly monotonic.

Proof: First, observe that since f is invertible, for any x, y ∈ [a, b], f(x) 6= f(y).
Strongly monotonic functions have the following characteristic property: for each

triple of points x1 < x2 < x3 the value f(x2) must be belong to the open interval with
the end-points at f(x1) and f(x3). Now, assume that the theorem is wrong and that
there exists a triple x1 < x2 < x3 such that, for example, f(x1) < f(x3) < f(x2) (the
other cases are similar). Therefore, by the IVP-property there exists ξ ∈ (x1, x2) such
that f(ξ) = f(x3) which contradicts invertibility of f . ✷

The next theorem says that for monotonic functions continuity is equivalent to the
IVP-property.

Theorem 14.3.3. Suppose f : [a, b] → R is monotonic. Then f is continuous on [a, b]
if and only if the image f [a, b] is a closed interval with the end-points at f(a) and f(b).

Proof: If f is continuous, then by the IVP-property the image f [a, b] contains any
intermediate point between f(a) and f(b).



DIFFERENTIAL AND INTEGRAL CALCULUS, I 71

In the other direction, suppose f [a, b] be a closed interval and suppose that f is
discontinuous at c ∈ [a, b]. We assume that c ∈ (a, b), the cases c = a, and c = b are
similar. By monotonicity of f , the one-sided limits f(c − 0) and f(c + 0) exist, and at
least one of open intervals

(f(c), f(c + 0)), (f(c − 0), f(c))

is not empty, let us call this interval I. The function f does not attain any value from
this interval, on the other hand, I ⊂ [f(a), f(b)]. The contradiction proves the theorem.
✷

Note that the theorem fails without monotonicity assumption:

Exercise 14.3.4. Consider the function

f(x) =

{
sin 1

x x ∈ R \ {0}
0 x = 0 .

This function is discontinuous at the origin. Check that for any closed interval I ⊂ R

the image fI is an interval as well.

Combining these theorems, we obtain

Corollary 14.3.5. Let f ∈ C[a, b] be strongly monotonic. Then the inverse function
f−1 is also continuous and strongly monotonic.

Proof: Indeed, by Theorem 14.3.1, the inverse function f−1 is strongly monotonic.
Suppose for instance, that f and hence f−1 are (strongly) increasing functions. Let
α = f(a) and β = f(b). Then by the IVP-property f [a, b] = [α, β]; i.e., f−1[α, β] = [a, b],
and by Theorem 14.3.3 the function f−1 must be continuous. ✷

For example, the function arcsinx is continuous on [−1, 1] and the function arctanx
is continuous on R.

In some sense, the continuity assumption in the last corollary is redundant:

Problem 14.3.6. Let f : (a, b) → R be monotonic, and let the inverse f−1 be defined
on a set E. Then f−1 is continuous on E.

Problem 14.3.7. Let f : [0, 1] → [0, 1] be a continuous increasing function. Then for
each x ∈ [0, 1] one of the following holds: either x is a fixed point of f (that is, f(x) = x),
or the n-th iterate fn(x) converges to a fixed point of f when n → ∞.
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15. The derivative

15.1. Definition and some examples.

Definition 15.1.1 (The derivative). f be a function defined in an open neighbourhood
U of a point x ∈ R. The function f is called differentiable at x if there exists the limit

f ′(x) = lim
y→x

f(y) − f(x)

y − x
= lim

ǫ→0

f(x + ǫ) − f(x)

ǫ

called the derivative of f at x. The function f is differentiable on an open interval (a, b)
if it is differentiable at every point x ∈ (a, b).

Sometimes, we denote the differences by the symbols ∆:

∆x = y − x = ǫ

and

∆f(x, ǫ) = f(x + ǫ) − f(x).

Notice that ∆f is a function of two variables: x and ∆x = ǫ. In these notations

f ′(x) = lim
∆x→0

∆f(x,∆x)

∆x
=

df

dx
,

where df and dx are (in the meantime) symbolic notations called the differentials of f
and of x.

If the function f is defined on the closed interval [a, b], then we say that f is differ-
entiable at the end-points a and b if there exist one-sided limits:

f ′(a + 0) = lim
y↓a

f(y) − f(a)

y − a
, f ′(b − 0) = lim

y↑b
f(y) − f(b)

y − b
.

It follows immediately from the definition, that if f is differentiable at x, then it must
be continuous at x, otherwise, the limit in the definition of the derivative is infinite.

Examples:

(i) Let f(x) be the constant function. Then f ′(x) = 0 everywhere. Soon, we’ll see that
this property characterizes the constant functions: they are the only functions with the
zero derivative.

(ii) Let f(x) = xn, n ∈ N. Then

∆f(x, ǫ) = (x + ǫ)n − xn = nxn−1ǫ + o(ǫ), ǫ → 0.

So that

f ′(x) = lim
ǫ→0

∆f(x, ǫ)

ǫ
= lim

ǫ→0

(
nxn−1 + o(1)

)
= nxn−1.

In particular, if the function f(x) is linear, than its derivative is a constant function:
(ax + b)′ = a. We’ll learn soon that the linear functions are the only functions with
constant derivative.

(iii) Consider the sine-function f(x) = sinx. Then

∆f(x, ǫ) = sin(x + ǫ) − sinx = 2 sin
ǫ

2
cos

(
x +

ǫ

2

)
,
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and

(sinx)′ = lim
ǫ→0

(
sin(ǫ/2)

ǫ/2

)
cos

(
x +

ǫ

2

)
= cos x.

In a similar way, one finds the derivative of the cosine function

(cos x)′ = − sinx.

(iv) Next, consider the exponential function f(x) = ax. Now

∆f = ax+ǫ − ax = ax (aǫ − 1) = ax
(
eǫ log a − 1

)
,

and

lim
ǫ→0

∆f(x, ǫ)

ǫ
= ax lim

ǫ→0

eǫ log a − 1

ǫ
= ax log a lim

δ→0

eδ − 1

δ
= ax log a.

Therefore,

(ax)′ = ax log a .

In particular,

(ex)′ = ex.

This explains why in many situations it is simpler to work with the base e than with
the other bases.

(v) Now, let f(x) = xµ, x > 0 (with µ ∈ R and µ 6= 0). Then

∆f(x, ǫ) = (x + ǫ)µ − xµ = xµ
{(

1 +
ǫ

x

)µ
− 1

}

= xµ
{

1 + µ
ǫ

x
+ o(ǫ) − 1

}
= µxµ−1ǫ + o(ǫ) ,

and

(xµ)′ = µxµ−1 .

This computation extends example (ii).

(vi) Consider the logarithmic function f(x) = loga |x| defined for x ∈ R \ {0}. In this
case,

∆f(x, ǫ) = loga |x + ǫ| − loga |x| = loga

∣∣∣1 +
ǫ

x

∣∣∣ .

If ǫ is sufficiently small: |ǫ| < |x|, then the expression 1 + ǫ/x is positive and

∆f(x, ǫ) = loga

(
1 +

ǫ

x

)
=

log (1 + ǫ/x)

log a
=

ǫ

x log a
+ o(ǫ) .

Hence

(loga |x|)′ =
1

x log a
.

In particular,

(log |x|)′ =
1

x
.

(vii) At last, consider the function f(x) = |x|. It is easy to see directly from the
definition that f ′(x) = sgn(x) for x 6= 0 and that f has no derivative at the origin.
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15.2. Some rules. In this section we show several simple rules which help us to com-
pute derivatives.

Theorem 15.2.1. Let the functions f and g be defined on an interval (a, b) and suppose
they are differentiable at the point x ∈ (a, b). Then

(i) the sum f + g is differentiable at x and (f + g)′(x) = f ′(x) + g′(x);
(ii) the product f · g is differentiable at x and

(f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x).

In particular, if c is a constant, then (cf)′(x) = cf ′(x).

(iii) if g(x) 6= 0, then the quotient f
g is differentiable at x and

(
f

g

)′
(x) =

f ′(x)g(x) − f(x)g′(x)

g2(x)
.

Proof: The proof of (i) is obvious. Next,

(f · g)(x + ǫ) − (f · g)(x)

= f(x + ǫ)g(x + ǫ) − f(x)g(x + ǫ) + f(x)g(x + ǫ) − f(x)g(x)

= (f(x + ǫ) − f(x))g(x + ǫ) + f(x)(g(x + ǫ) − g(x))

which readily gives us (ii).
Having (ii), it suffices to prove (iii) in a special case when f equals identically 1:

(iv)

(
1

g

)′
(x) = − g′(x)

g2(x)
.

We have

1

g(x + ǫ)
− 1

g(x)
= −g(x + ǫ) − g(x)

g(x + ǫ)g(x)

= −g(x + ǫ) − g(x)

g2(x)
· g(x + ǫ)

g(x)
,

which yields (iv). This proves the theorem. ✷

Example 15.2.2. Consider the function f(x) = tanx = sin x
cos x . We have

f ′(x) =
cos2 x + sin2 x

cos2 x
=

1

cos2 x
.

That is,

(tanx)′ =
1

cos2 x
.

Similarly,

(cotx)′ = − 1

sin2 x
.
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Example 15.2.3. If

P (x) =

n∑

j=0

ajx
j

is a polynomial of degree n, then

P ′(x) =
n−1∑

i=0

(i + 1)ai+1x
i.

is a polynomial of degree n − 1.

15.3. Derivative of the inverse function and of the composition.

Theorem 15.3.1. Let the function f : (a, b) → R be a continuous, strictly monotone
function. Suppose f is differentiable at the point x0 ∈ (a, b) and f ′(x0) 6= 0. Then the
inverse function g = f−1 is differentiable at y0 = f(x0) and

g′(y0) =
1

f ′(x0)
.

Symbolically, if y = f(x), then x = g(y) and

g′(y) =
dx

dy
=

1
dy
dx

.

Proof: Let x = g(y). If y → y0, then g(y) → g(y0) (since the function g is continuous
at y0) or, what is the same, x → x0. Then we have

lim
y→y0

g(y) − g(y0)

y − y0
= lim

x→x0

x − x0

f(x) − f(x0)

= lim
x→x0

1
f(x)−f(x0)

x−x0

=
1

f ′(x0)
,

proving the theorem. ✷

Theorem 15.3.1 gives us the expression for g′(y) in terms of the variable x, however,
applying Theorem 15.3.1, we have to return to the variable y.

Examples:

i. Let f(x) = sinx, x ∈ [−π
2 , +π

2 ].

(arcsin y)′ =
1

(sinx)′
=

1

cos x
=

1√
1 − sin2 x

=
1√

1 − y2
.

Similarly,

(arccos y)′ = − 1√
1 − y2

.

ii. Let f(x) = tanx, x ∈ (−π
2 , π

2 ). Then

(arctan y)′ =
1

(tanx)′
= cos2 x =

1

1 + tan2 x
=

1

1 + y2
.
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Similarly,

(arccoty)′ = − 1

1 + y2
.

iii. Let f(x) = ax. Then g(y) = loga y and

(loga y)′ =
1

ax log a
=

1

y log a
.

(We’ve known already the answer in advance, of course).

Theorem 15.3.2 (The Chain Rule). Let the function y = f(x) be differentiable at the
point x0 and let the function z = g(y) be differentiable at the point y0 = f(x0). Then
the composition function g ◦ f is differentiable at x0 and

(g ◦ f)′(x0) = g′(y0)f
′(x0) = g′(f(x0))f

′(x0).

Symbolically,
dz

dx
=

dz

dy
· dy

dx
.

Proof: We have

(g ◦ f)(x) − (g ◦ f)(x0)

x − x0
=

g(f(x)) − g(f(x0))

f(x) − f(x0)
· f(x) − f(x0)

x − x0

=
g(y) − g(y0)

y − y0
· f(x) − f(x0)

x − x0
.

If x → x0, then y → y0 (since the function f is continuous at x0), and we see that the
last expression tends to g′(y0)f

′(x0) proving the theorem. ✷

The chain rule is easily extended to the composition of several functions: if F =
f1 ◦ f2 ◦ ... ◦ fn, then

F ′ = f ′
1(f2 ◦ ... ◦ fn)f ′

2(f3 ◦ ... ◦ fn) ... f ′
n.

This can be easily proved by induction with respect to n. In particular, if

F = f ◦ f ◦ ... ◦ f = f◦n

is the n-th iterate of the function f , then

F ′ = f ′(f◦ (n−1))f ′(f◦ (n−2))...f ′(f)f ′ .

Examples:

i. The logarithmic derivative. Let f(x) = log g(x). Then

f ′(x) =
g′

g
(x) .

For example, if P (x) = c(x − x1)...(x − xn) is a polynomial of degree n, then

P ′

P
(x) =

1

x − x1
+ ... +

1

x − xn
.

ii. If f(x) = eg(x), then f ′(x) = g′(x)eg(x).
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iii. If f(x) = u(x)v(x), then

f ′ =
(
ev log u

)′
= ev log u(v log u)′ = uv

(
v′ log u + v

u′

u

)
.

For example,

(xx)′ = xx

(
log x + x

1

x

)
= xx (log x + 1) .
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16. Applications of the derivative

The differential calculus was systematically developed by Newton and Leibnitz, how-
ever Archimedes, Fermat, Barrow and many other great mathematicians already used it
in some concrete situations. In this lecture we bring just a few of numerous applications
without trying to make the arguments completely formal.

16.1. Local linear approximation. Given a function f : (a, b) → R and a point
x0 ∈ (a, b), we want to find a linear approximation to the function f which will be good
in a small neighbourhood of the point x0. More precisely, we are looking for the linear
function L(x) = c0 + c1(x − x0) such that

f(x) = L(x) + o(x − x0), x → x0.

In the limit x → x0, we obtain condition: f(x0) = L(x0) (of course, if the function f is
continuous at x0, so let’s assume that this is the case), that is c0 = f(x0). Then

c1 =
f(x) − f(x0)

x − x0
+ o(1) ,

and in the limit we obtain c1 = f ′(x0) (provided that f is differentiable at x0). Therefore,
the linear function L equals

L(x) = f(x0) + (x − x0)f
′(x0),

and we obtain

f(x) = f(x0) + (x − x0)f
′(x0) + o(x − x0), x → x0.

Sometimes, the approximate equality

f(x) ≈ f(x0) + (x − x0)f
′(x0)

can be used in order to find the numerical value of f(x) if f(x0) is known. The closer
x to x0, the better approximation we get. Consider two examples:

If f(x) = log x and x0 = 1, then we get an approximation for small values of t:

log(1 + t) ≈ t

which shows, for example, that log 1.02 ≈ 0.02 while my calculator gives log 1.02 =
0.0198026.

If f(x) =
√

x and x0 = 100, then f(x0) = 10, f ′(x0) = 1
20 , so we get

√
100 + t ≈ 10 +

t

20
.

For example,
√

101 ≈ 10.05, and my calculator gives
√

101 = 10.049876.

Exercise 16.1.1. Without using the calculator, find the approximate values of tan 44◦

and of 1
0.9513 . Check the results with the calculator.

Later, we’ll develop further the idea of this section and find a polynomial P (x) of
degree ≤ n which locally approximate the function f(x) in the following way:

f(x) = P (x) + o((x − x0)
n), x → x0.
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16.2. The tangent line. Given a curve γ in the (x, y)-plane and a point M0(x0, y0)
on γ, we want to draw through M0 a tangent line to γ. For that, we consider another
point M1(x1, y1) on γ which is sufficiently close to M0 and draw the straight line Q
through these points. The tangent line to γ at M0 is a limiting position of this straight
line when the point M1 moves to M0 along γ.

γ

M0

Figure 11. The tangent line to the curve γ

Now, assume that the line γ is a graph of the function f(x), and let us find equation
of the tangent line. The equation of the straight line Q is

y = f(x0) +
f(x1) − f(x0)

x1 − x0
(x − x0) .

We see that if existence of the limiting equation as x1 → x0 is equivalent to the differ-
entiability of the function f at x0. The limiting equation is

y = f(x0) + f ′(x0)(x − x0) .

This is the equation of the tangent line we were after. In particular, we see that the

y = f(x)

x0x1

f(x0)

f(x1)

y = f(x0) + f ′(x0)(x − x0)

y = f(x0) + f(x1)−f(x0)
x1−x0

(x − x0)

Figure 12. The tangent to the graph of the function f

slope of the tangent line at the point x0 equals f ′(x0).
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Example 16.2.1. Let f(x) = x2 sin 1
x for x 6= 0 and f(0) = 0. This function is

differentiable at the origin, and f ′(0) = limǫ→0 ǫ sin 1
ǫ = 0. We see that the x-axis is the

tangent line to the graph of f at the origin. Observe that in this example the graph of
f has infinitely many intersections with the tangent line in any neighbourhood of the
origin.

Exercise 16.2.2. Find the angles between the graphs of functions y = 8 − x and
y = 4

√
x + 4 at the point of their intersection.

Exercise 16.2.3. Find the value of parameter a such that the graphs of the functions
y = ax2 and y = log x touch each other (i.e. have a joint tangent line).

16.3. Lagrange interpolation. From high school, we know that there is a unique
straight line that passes through given two points in the plane, and we know how to
write the equation of this line. Here, we consider a more general problem: given a set
of n + 1 points in the plane, Mj(xj , yj), 0 ≤ j ≤ n, find a polynomial P (x) of degree
≤ n whose graph passes all these points; i.e.

(a) P (xj) = yj , 0 ≤ j ≤ n.

A natural restriction is that the points xj must be disjoint: xj 6= xi for j 6= i.
To solve the problem we define the polynomial

Q(x) = (x − x0)(x − x1) ... (x − xn)

of degree n and observe that

(b) lim
x→xj

Q(x)

(x − xj)Q′(xj)
= lim

x→xj

Q(x) − Q(xj)

(x − xj)Q′(xj)
= 1.

Now, we can present the solution of the problem:

(c) P (x)
def
=

n∑

k=0

ykQ(x)

(x − xk)Q′(xk)
.

First of all, observe that P is indeed a polynomial of degree ≤ n: since Q(x) vanishes
at xk, the polynomial Q(x)/(x− xk) is a polynomial of degree n, so that P is a sum of
n + 1 polynomials of degree n, and therefore has degree ≤ n.

Now, we check that P satisfies conditions (b). When we plug x = xj in the right
hand side of (c), we see that the terms with k 6= j vanish (since the numerator vanishes
and the denominator does not). Therefore, the only term with k = j remains on the
right hand side. Since this remaining term is a polynomial, it is a continuous function
of x, so we can find its value at xj using (b):

P (xj) = lim
x→xj

yjQ(x)

(x − xj)Q′(xj)
= yj .

Mention, that the solution P we have found is unique: if there are two solutions P1

and P2 satisfying (a), then their difference P1−P2 vanishes at all n+1 points xj . Being
a polynomial of degree ≤ n, it must be the zero function.
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It is also worth to mention another form of the formula (c):

(d)
P (x)

Q(x)
=

n∑

k=0

P (xk)

(x − xk)Q′(xk)

which provides the partial fraction decomposition of the rational function P/Q in the
case when deg P < deg Q and Q has only simple zeroes (the latter condition yields that
Q′ does not vanish at zeroes of Q).

Exercise 16.3.1 (Newton). Show that for n ≥ 1

n∑

j=0

xp
j

Q′(xj)
=





0, 0 ≤ p ≤ n − 1

1, p = n.

Hint: in the case p < n, apply (d) to P (x) = xp+1 and set x = 0. In the case p = n,
apply (d) to P (x) = xn, multiply the formula you get by x, and let x → ∞.

16.3.1. Appendix: the Horner scheme. In the solution above we used two simple facts which
you may not know yet:

16.3.2. If a polynomial Q of degree n + 1 vanishes at xj, then Q(x) = (x− xj)Q1(x) where Q1

is a polynomial of degree n.

16.3.3. If a polynomial of degree ≤ n vanishes at n + 1 points, then it must be zero everywhere.

To prove these facts, you should recall the Horner scheme (a fast algorithm of a division of a
polynomial by a linear factor) which you’ve probably known from the high-school. Here it is:

Claim 16.3.4 (Horner’s scheme). Consider the polynomial p(x) =

n∑

k=0

pkxk and the number

c ∈ R. Then there are another polynomial q and a constant r ∈ R such that

p(x) = (x − c)q(x) + r .

Here the degree of q is less than the degree of p by one, and r = p(c).

Proof: We look for q at the form q(x) =

n−1∑

k=0

qkxk, we need to find the coefficients qk. We

have

pnxn + pn−1x
n−1 + ... + p1x + p0 = (x − c)(qn−1x

n−1 + ... + q1x + q0) + r ,

which is equivalent to the chain of equations:

pn = qn−1

pn−1 = qn−2 − cqn−1

pn−2 = qn−3 − cqn−2

... ...

p1 = q0 − cq1

p0 = r − cq0 .

From here, we find one by one the coefficients qk and the remainder r. ✷

This yields 16.3.2 and 16.3.3.
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Remark 16.3.5. The Horner scheme works without any modifications for polynomials with
coefficients in other fields different from R. For instance, the coefficients pk and the value c can
be rational numbers. Then the polynomial q has rational coefficients and the value r = p(c) is
rational as well. Similarly, the coefficients of P might be complex numbers.
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17. Derivatives of higher orders

17.1. Definition and examples. Let f be a function defined in a neighbourhood of
a point x. The derivatives of higher orders of f at x are defined recurrently:

f ′′(x) = (f ′)′(x) =
d2f

dx2

(the second order derivative),

f ′′′(x) = (f ′′)′(x) =
d3f

dx3

(the third order derivative) etc, and

f (n)(x) = (f (n−1))′(x) =
dnf

dxn

(the derivative of order n). Sometimes, it is convenient to agree that the zeroth order

derivative is f itself: f (0) = f , we’ll follow this agreement.

Example 17.1.1. Let

P (x) =
n∑

k=0

ckx
k

be a polynomial of degree n. Then differentiating P , we have:

P (0)(x) = P (x), P (0) = c0;

P ′(x) = c1 + 2c2x + ... + ncnxn−1, P ′(0) = c1;

P
′′
(x) = 2c2 + 3 · 2c3x + ... + n(n − 1)cnxn−2, P

′′
(0) = 2c2;

P
′′′

(x) = 3 · 2c3 + ... + n(n − 1)(n − 2)cnxn−3, P
′′′

(0) = 3 · 2c3;

...

P (n)(x) = n!cn, P (n)(0) = n!cn;

P (k)(x) = 0, for k > n .

We obtain

ck =
P (k)(0)

k!
, k ∈ Z+,

and

P (x) = P (0) +
P ′(0)

1!
x +

P ′′(0)

2!
x2 + ... +

P (n)(0)

n!
xn .

From here, we easily get a more general formula

P (x) = P (x0) +
P ′(x0)

1!
(x − x0) +

P ′′(x0)

2!
(x − x0)

2 + ... +
P (n)(x0)

n!
(x − x0)

n .

To prove it, we consider the polynomial Q(x) = P (x + x0), apply the previous boxed
formula to the polynomial Q(y), and then replace y by x − x0.
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We’ll return to these formulas a bit later when we’ll begin the study the Taylor
expansion.

Exercise 17.1.2. Let u(x) and v(x) be twice differentiable non-vanishing functions of
x, and let

g(x) = log
u(x)

v(x)
.

Find g′′(x).

The next table gives expressions for the higher derivatives of some elementary func-
tions. These expressions are of frequent use. The formulas can be easily checked by
induction with respect to the order of derivative.

f(x) f ′(x) f ′′(x) ... f (n)(x)

ax ax log a ax log2 a ... ax logn a

ex ex ex ... ex

sinx cos x − sinx ... sin
(
x + nπ

2

)

cos x − sinx − cos x ... cos
(
x + nπ

2

)

xµ µxµ−1 µ(µ − 1)xµ−2 ... µ(µ − 1)...(µ − n + 1)xµ−n

log |x| 1
x − 1

x2 ... (−1)n−1(n − 1)!x−n

ax+b
cx+d

ad−bc
(cx+d)2

−2c(ad−bc)
(cx+d)2

... (−1)n−1cn−1n!(ad−bc)
(cx+d)n+1

1√
ax+b

− a
2(ax+b)3/2

a21·3
22(ax+b)5/2

... (−1)nan1·3·...·(2n−1)

2n(ax+b)n+1
2

Exercise 17.1.3. Find (
log x

x

)(n)

.

Example 17.1.4. Consider the function

f(x) =
1

x2 − a2
.

First, represent f in the form more convenient for differentiation:

f(x) =
1

2a

(
1

x − a
− 1

x + a

)
.

Making use of this form, we easily find that

f (n)(x) =
(−1)nn!

2a

(
1

(x − a)n+1
− 1

(x + a)n+1

)
.
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Example 17.1.5. Let
f(x) = eax sin bx .

Then

f ′(x) = aeax sin bx + beax cos bx

=
√

a2 + b2

{
a√

a2 + b2
sin bx +

b√
a2 + b2

cos bx

}
eax

=
√

a2 + b2 sin(bx + ϕ)eax ,

where ϕ is an “auxiliary phase” defined by

sinϕ =
b√

a2 + b2
, cos ϕ =

a√
a2 + b2

.

Differentiating further, we get

f (n)(x) = (a2 + b2)
n
2 sin(bx + nϕ)eax .

Functions which have derivatives of any order are called infinitely differentiable. The
elementary functions are usually infinitely differentiable in the domain of definition.
The set of infinitely differentiable functions on an interval I is denoted by C∞(I).

Example 17.1.6. Consider the function

f(x) =





e−1/x2

for x 6= 0

0 for x = 0.

We show that f is an infinitely differentiable function on R and that

(1) f (n)(x) =





Pn

(
1
x

)
e−1/x2

, x 6= 0

0, x = 0,

where Pn(s) is a polynomial of degree 3n in s. We shall need a

Claim 17.1.7. For each p, p < ∞,

lim
x→0

x−pe−1/x2

= 0 .

Proof of the claim: follows by the change of variable: set t = 1/x2, then

lim
x→0

x−pe−1/x2

= lim
t→+∞

tp/2e−t = 0 .

✷

Making use of induction with respect to n, we see that (1) holds for all n ≥ 1 with
P0 = 1 and

Pn+1(s) = 2s3Pn(s) − s2P ′
n(s) , degPn+1 = degPn + 3.

At the origin, using the claim and again the induction with respect to n, we have

f (n+1)(0) = lim
x→0

f (n)(x)

x
= 0
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This completes the argument. ✷

Exercise 17.1.8. Build the non-negative infinitely differentiable function which van-
ishes outside of the interval [0, 1] but does not vanish identically.

Exercise 17.1.9. Suppose

f(x) =





x2n sin 1
x for x 6= 0

0 for x = 0.

Show that f is n times differentiable at the origin and f (j)(0) = 0, 1 ≤ j ≤ n. Show
that the n + 1-st derivative of f at the origin does not exist.

17.2. The Leibniz rule. We know that the product of two n times differentiable func-
tions is n times differentiable as well. The Leibnitz formula gives an explicit expression
for the n-th derivative of the product:

(uv)(n) =
n∑

m=0

(
n

m

)
u(n−m)v(m) ,

where, as usual,
(

n
m

)
is the binomial coefficient “n choose m”.

Proof: We use induction with respect to n. For n = 1 the formula is correct. Suppose
it is correct for the n-th derivative, and check its correctness for the n + 1-st derivative:

(uv)(n+1) =

(
n∑

m=0

(
n

m

)
u(n−m)v(m)

)′

=
n∑

m=0

(
n

m

)
u(n−m+1)v(m) +

n∑

m=0

(
n

m

)
u(n−m)v(m+1)

= u(n+1)v(0) +
n∑

m=1

((
n

m

)
+

(
n

m − 1

))
u(n+1−m)v(m) + u(0)v(n+1)

=
n+1∑

m=0

(
n + 1

m

)
u(n+1−m)v(m) ,

completing the argument. ✷

Exercise 17.2.1. Find (x2 cos ax)(2008).

Example 17.2.2. Find the n-th order derivative of g(y) = arctan y at y = 0. We’ll
show that

g(n)(0) =





0 for n = 2m

(−1)m(2m)! for n = 2m + 1.

Indeed, since the function arctan y is odd, its derivatives of even order vanish at the
origin (prove!), so we need to find only derivatives of odd orders. We have

g′(y)(1 + y2) = 1.
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Differentiating this equation n = 2m times and using the Leibnitz rule, we get the
recurrence relation

(1 + y2)g(n+1) + 2nyg(n) + n(n − 1)g(n−1) = 0.

Substituting here y = 0, we get

g(2m+1)(0) + 2m(2m − 1)g(2m−1) = 0.

Since g′(0) = 1, this yields the result. ✷

Exercise 17.2.3. Show that

dn arcsin y

dyn

∣∣∣
y=0

=





0 for n = 2m

((2m − 1)!!)2 for n = 2m + 1.

Here, (2m − 1)!! = 1 · 3 · 5 · ... · (2m − 1).

Hint: use that (1 − y2)g′′(y) − yg′(y) = 0 for g(y) = arcsin y.

Exercise 17.2.4. Function y(x) satisfies the differential equation y′′ − xy = 0 with

y(0) = 0 and y′(0) = 1. Find the derivatives of all orders y(n)(0).
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18. Basic theorems of the differential calculus:

Fermat, Rolle, Lagrange

18.1. Theorems of Fermat and Rolle. Local extrema. We start with a simple

Claim 18.1.1. Let the function f has the finite derivative at x0. If f ′(x0) > 0, then
there exists a δ > 0 such that

(I)





f(x) > f(x0) for x0 < x < x0 + δ

f(x) < f(x0) for x0 − δ < x < x0.

If f ′(x0) < 0, then

(II)





f(x) < f(x0) for x0 < x < x0 + δ

f(x) > f(x0) for x0 − δ < x < x0.

Proof of the claim: If f ′(x0) > 0, using the definition of the limit, we choose a δ > 0
such that

f(x) − f(x0)

x − x0
> 0 for 0 < |x − x0| < δ.

This is equivalent to (I). The second case is similar. ✷

In the case (I) we say that the function f increases at x0, in the case (II) we say that
the function f decreases at x0.

Definition 18.1.2. We say that the function f has a local extremum at the point x0,
if one of the following holds:

f(x) ≤ f(x0), ∀x ∈ U(x0),

f(x) ≥ f(x0), ∀x ∈ U(x0),

where U(x0) is a neighbourhood of x0. In the first case, we say that f has a local
maximum at x0, and a local minimum in the second case.

Theorem 18.1.3 (Fermat). Let a function f be defined in a neighbourhood of a point
x0, be differentiable at x0, and have a local extremum there. Then f ′(x0) = 0.

The proof follows at once from the claim above. ✷

If f ′(x) = 0 then the point x is called a critical point of the function f . The set of
all critical points

{
x : f ′(x) = 0

}
is called sometimes a stationary set of the function f .

18.1.1. Classification of local extrema. Vanishing of the derivative is only a necessary
condition for the local extremum, for example, consider the function f(x) = x3 in a
neighbourhood of the origin. Its derivative vanishes at the origin, but the function does
not have a local extremum there.

Note that if f attains its extremal value on the edge of the interval, then the derivative
does not have to vanish. For example, consider the identity function f(x) = x on [−1, 1].

The next figure explains how to recognize what happens at critical points.
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a

f ′ f ′

a

a a

a

f ′

f f f

f ′′(a) ≥ 0 f ′′(a) ≤ 0 f ′′(a) = 0

a a

a

Figure 13. Classification of local extrema

Exercise 18.1.4. Find the critical points and their characters for the functions f(x) =
log2 x

x
, x > 0, and g(x) = x(x − 1)1/3, x ∈ R. Sketch the graphs of these functions.

Hint: in the second example, the one-to-one change of variables t = (x−1)1/3 simplifies
the investigation.

18.1.2. Geometric applications. Now, we give two geometric applications of Fermat’s
theorem.

Question 18.1.5. Find x such that the rectangle on the following figure has the max-

-1 10 x

Figure 14

imal area (the radius of the circumference equals one).
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To solve this question, denote by S(x) the area which we need to maximize. Then

S(x) = (1 + x)
√

1 − x2. We need to maximize this function for −1 ≤ x ≤ 1. Since it is
non-negative and vanishes at the end points x = ±1, at achieves its maximum at some
inner point x0 ∈ (−1, 1). Then S′(x0) = 0; i.e.,

√
1 − x2 − x(x + 1)√

1 − x2
= 0 ,

and we get equation

2x2 + x − 1 = 0

with solutions x1 = 1
2 and x2 = −1. The second root it irrelevant for us, and we see

that the function S achieves its maximal value 3
√

3
4 at the point x = 1

2 . ✷

In the second application, we prove the Snellius Law of Refraction. Recall that
Fermat’s principle of least action in optics says that the path of a light ray is determined
by the property that the time the light takes to go from point A to point B under the
given condition must be the least possible.

Question 18.1.6 (The Law of Refraction). Given two points A and B on the opposite
sides of the x-axis. Find the path from A to B that requires the shortest possible time
if the velocity on one side of the x-axis is a and on the other side is b.

x

A

B

β

velocity = a

velocity = b

αh1

h2

L

Figure 15. Law of refraction

If the light intersects the real axis at x, then the time it takes to go from A to B
equals

T (x) =
1

a

√
h2

1 + x2 +
1

b

√
h2

2 + (L − x)2 .

We are looking the minimum of this function. We have

T ′(x) =
1

a

x√
h2

1 + x2
− 1

b

L − x√
h2

2 + (L − x)2
.



DIFFERENTIAL AND INTEGRAL CALCULUS, I 91

This function vanishes for

1

a

x√
h2

1 + x2

︸ ︷︷ ︸
=sin α

=
1

b

L − x√
h2

2 + (L − x)2︸ ︷︷ ︸
=sin β

.

Hence, the answer:
sinα

sinβ
=

a

b
.

It is easy to see that we’ve indeed found the minimum of T . For instance, since
T ′′(x) > 0 everywhere (check!).

Hairer and Wanner write in their book (p. 93) that Fermat himself found the problem
too difficult for analytical treatment, and that the computations were performed by
Leibniz.

18.1.3. Rolle’s theorem and its applications.

Theorem 18.1.7 (Rolle). Let the function f be continuous on the closed interval [a, b],
be differentiable on the open interval (a, b), and let f(a) = f(b). Then there exists a
point c ∈ (a, b) such that f ′(c) = 0.

Proof: By the Weierstrass theorem, the continuous function f in the closed interval [a, b]
attains its maximal and minimal values:

f(xmin) = min
x∈[a,b]

f(x), f(xmax) = max
x∈[a,b]

f(x).

Consider two cases:

(i) First, assume that min[a,b] f = max[a,b] f . Then f is the constant function and f ′ = 0
everywhere.

(ii) Now, suppose that min[a,b] f 6= max[a,b] f . Then at least one of the points xmin, xmax

must belong to the open interval (a, b), and by the Fermat theorem, the derivative of f
vanishes at this point. ✷

Exercise 18.1.8. Suppose f is a differentiable function on R such that

lim
x→−∞

f(x) = lim
x→+∞

f(x) = 0 .

Show that there exists a point c ∈ R such that f ′(c) = 0.

Usually, counting zeroes of smooth functions, we are taking into account their multi-
plicities: if

f(c) = f ′(c) = ... = f (n−1)(c) = 0, but f (n)(c) 6= 0,

then we say that f has zero of multiplicity n at c. If n = 1, we say that c is a simple
zero of f . For example, the function x 7→ xn (n ∈ N) has zero of multiplicity n at the
origin. The function ex − 1 − x has zero of multiplicity 2 at the origin.

Exercise 18.1.9. Construct a function the has zero of multiplicity m at x = 0 and n
at x = 1. Construct a function the has zeroes of multiplicity 2 at each integer point.
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Exercise 18.1.10.

i. (extension of Rolle’s theorem)
Show that if the function f is continuous on the closed interval [a, b], n times differen-
tiable on the open interval (a, b), and has n + 1 zeroes in (a, b), then its n-th derivative
has at least one zero in the open interval (a, b).

ii. Show that if a polynomial P of degree n has n real zeroes, then its derivative has
n − 1 real zeroes.

iii. Show that if a polynomial of degree n has at least n+1 real zeroes, then it vanishes
identically.

Problem 18.1.11. For non-zero c1, c2, ..., cn, and for pairwise distinct α1, α2, ..., αn,
prove that the equation

c1x
α1 + c2x

α2 + ... + cnxαn = 0

has at most n − 1 zeroes in (0, +∞), and that the equation

c1e
α1s + c2e

α2s + ... + cneαns = 0

has at most n − 1 real zeroes.

Hint: use induction with respect to n.

This bookkeeping can be made more accurate:

Problem* 18.1.12 (Descartes’ sign rule). If α1 < α2 < ... < αn, then the number of
positive zeroes of the function

f(x) =
n∑

j=1

cjx
αj

(with their multiplicities) does not exceed the number of changes of signs in the sequence
of coefficients c1, c2, ..., cn.

18.2. Mean-value theorems.

Theorem 18.2.1 (Lagrange’s mean value theorem). Let the function f be continuous
on the closed interval [a, b] and differentiable on the open interval (a, b). Then there is
a point c ∈ (a, b) such that

f(b) − f(a) = f ′(c)(b − a).

ba c

Figure 16. Lagrange’s MVT
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Proof: Notice, that in the special case f(b) = f(a) the result coincides with the Rolle
theorem. Now, using this special case we prove the general one. For this, define a linear
function L(x) that interpolates the values of f at the end-points:

L(x) = f(a) +
f(b) − f(a)

b − a
(x − a),

and set

F (x) = f(x) − L(x).

We have F (a) = F (b) = 0, so the Rolle theorem can be applied to F . We get an
intermediate point c ∈ (a, b) such that F ′(c) = 0, or

f ′(c) = L′(c) =
f(b) − f(a)

b − a
,

completing the proof. ✷

Corollary 18.2.2.
If the function f is differentiable on an open interval (a, b) and has a positive derivative
there, then f is strictly increasing. If f ′ is negative, then f is strictly decreasing. If
f ′ is non-negative, then f does not decrease, and if f ′ is not positive, then f does not
increase.
If f ′ ≡ 0 on (a, b), then f is a constant function.

If f is n times differentiable and f (n) ≡ 0, then f is a polynomial of degree n − 1 or
less.

Corollary 18.2.3. If f is a differentiable function, and f ′ = f . Then f(x) = Cex (C
is a constant).

Proof: Consider the function F (x) = f(x)e−x. Then F ′(x) = f ′(x)e−x − f(x)e−x = 0,
therefore, F is a constant function. ✷

We’ve just learnt how to solve the simplest differential equations. The next problem
looks more complicated (but in a year, after the course of ordinary differential equations
you will recall it with a smile).

Problem 18.2.4. Let f be a twice differentiable function such that f ′′ + f = 0. Show
that f(x) = C1 sinx + C2 cosx where C1 and C2 are constants.

Hint: Let g′′ + g = 0. Multiply the equation by 2g′, deduce that (g′2 + g2)′ = 0, hence
g′2 + g2 is the constant function. Apply this to the function g(x) = f(x) − (C1 sinx +
C2 cos x) with appropriate C1 and C2.

Exercise 18.2.5. Suppose f is a differentiable function on [0, +∞), f(0) = 1, and
f ′ ≥ f everywhere. Show that f(x) ≥ ex for x ≥ 0.

Exercise 18.2.6. Let f : (0, +∞) → R be a twice differentiable function, such that
f ′′(x) > 0 everywhere. Prove that for each x > 0,

f(2x) − f(x) < f(3x) − f(2x) .
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Exercise 18.2.7. Let the function f be defined on the interval I, and for some α > 1
and K < ∞ satisfy

|f(x) − f(y)| ≤ K|x − y|α, ∀x, y ∈ I.

Then f is a constant function.

Problem 18.2.8. Prove that if f is an unbounded differentiable function on an interval
(a, b), then its derivative f ′ is also unbounded.

Whether the converse is true?

Problem 18.2.9. Prove that if f is a differentiable function on an interval (a, b) (finite
or infinite) with the bounded derivative, then f is uniformly continuous on this interval.

Whether the converse is true; i.e. whether the uniformly continuous differentiable
function must have a bounded derivative?

Note that the pointwise existence of f ′ does not guarantee that f ′ is continuous. For
instance, the function

f(x) =

{
x2 sin(1/x), x 6= 0,

0, x = 0

is differentiable everywhere on R, while its derivative

f ′(x) =

{
2x sin(1/x) − cos(1/x), x 6= 0,

0, x = 0

is discontinuous at the origin. Nevertheless, as the next theorem shows, the derivatives,
like continuous functions, always possess the intermediate value property.

Theorem 18.2.10 (Darboux). Let the function f be differentiable everywhere in the
segment [a, b]. Then f ′ attains every intermediate value between f ′(a) and f ′(b).

Proof: Suppose that f ′(a) < f ′(b) and fix y such that f ′(a) < y < f ′(b). By the
definition of the derivative, we can find h > 0, such that

f(a + h) − f(a)

h
< y,

f(b) − f(b − h)

h
> y .

Define the function g : [a, b − h] → R,

g(t)
def
=

f(t + h) − f(t)

h
, g ∈ C[a, b − h] .

Then g(a) < y < g(b) and by the intermediate value property of continuous functions,
there exists a point c ∈ (a, b − h) such that

y = g(c) =
f(c + h) − f(c)

h
.

It remains to apply Lagrange’s theorem (which does not requires continuity of the
derivative). By this theorem, there exists x ∈ (c, c+h) such that f(c+h)−f(c) = f ′(x)h.
Then f ′(x) = g(c) = y, completing the proof. ✷

The next theorem slightly generalizes Lagrange’s theorem:
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Theorem 18.2.11 (Cauchy’s extended mean value theorem). Let f and g be continuous
functions on [a, b] differentiable in the open interval (a, b). Then there exists a point
c ∈ (a, b) such that

f ′(c)[g(b) − g(a)] = g′(c)[f(b) − f(a)].

If g′ 6= 0 on (a, b), then g(b) 6= g(a), and

f(b) − f(a)

g(b) − g(a)
=

f ′(c)
g′(c)

.

Proof: Notice, that if g(x) = x then we get the previous result. The strategy of the
proof is similar: define an auxiliary function

F (x) = f(x)[g(b) − g(a)] − g(x)[f(b) − f(a)].

We have F (b) = F (a) = f(a)g(b) − f(b)g(a), and applying the Rolle theorem, we get
the result. ✷

Problem* 18.2.12.

i. Suppose f is infinitely differentiable function on the real axis such that

∀x ∈ R ∃n ∈ Z+ ∀m ≥ n f (m)(x) = 0 .

Then f is a polynomial.

ii. Suppose f is infinitely differentiable function on the real axis such that

∀x ∈ R ∃n ∈ Z+ f (n)(x) = 0 .

Then f is a polynomial.
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19. Applications of fundamental theorems

19.1. L’Hospital’s rule. Here we bring a theorem which in many cases simplifies
calculation of limits of the form “ 0

0 ” and “ ∞
∞ ”.

Theorem 19.1.1. Let −∞ ≤ a < b ≤ +∞. Let f and g be differentiable functions
defined on an interval (a, b), and g′ 6= 0 on (a, b). Suppose that

(19.1.2) lim
x↓a

f ′(x)

g′(x)
= L (−∞ ≤ L ≤ +∞) ,

and that either

(19.1.3) lim
x↓a

f(x) = lim
x↓a

g(x) = 0 ,

or

(19.1.4) lim
x↓a

|g(x| = +∞ .

Then

(19.1.5) lim
x↓a

f(x)

g(x)
= L .

Remarks:

(i) the same result holds for x ↑ b;

(ii) it may look strange that in the case “ ∞
∞ ” we required only that |g(a)| = +∞ and

have not said anything about the limiting value f(a). However, as we will see in the
proof, in this case, the assumptions of the theorem yield that |f(a)| = ∞.

Proof of l’Hospital’s rule: Since g′ 6= 0, by Darboux’s theorem 18.2.10, either everywhere
g′ > 0, or everywhere g′ < 0. We suppose that g′ > 0 everywhere in (a, b); i.e., that the
function g(x) (strictly) increases with x. Therefore, by Cauchy’s extended mean value
theorem 18.2.11, that

(19.1.6) ∃u ∈ (s, t) such that
f(t) − f(s)

g(t) − g(s)
=

f ′(u)

g′(u)
.

We consider separately two cases: L ∈ R and L = ±∞. Each of these cases will have
two subcases depending on the type of the uncertainty we deal with (“ 0

0 ” or “ ∞
∞ ”).

1st case: L ∈ R. Fix ǫ > 0. By (19.1.2),

∃c ∈ (a, b) ∀u ∈ (a, c) L − ǫ <
f ′(u)

g′(u)
< L + ǫ .

Then, by (19.1.6), we have

(19.1.7) L − ǫ <
f(t) − f(s)

g(t) − g(s)
< L + ǫ ,

provided that a < s < t ≤ c.
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Subcase 1a: “ 0
0 ” uncertainty. Suppose that condition (19.1.3) holds. Letting s ↓ 0

in (19.1.7), we get

L − ǫ <
f(t)

g(t)
< L + ǫ ,

provided that a < t < c, whence, (19.1.5).

Subcase 1b: “ ∞
∞ ” uncertainty. Now, we suppose that condition (19.1.4) holds. Since

the function g increases, this means that g(s) ↓ −∞ when s ↓ a. Choose t ∈ (a, c) such
that g(t) < 0. Then g(s) < 0 for a < s < t. Multiplying (19.1.7)

(
g(s)− g(t)

)
/g(s) > 0,

we get

(L − ǫ)

(
1 − g(t)

g(s)

)
<

f(s) − f(t)

g(s)
< (L + ǫ)

(
1 − g(t)

g(s)

)
.

Given t, we find d ∈ (a, t) such that
∣∣∣∣
f(t)

g(s)

∣∣∣∣ < ǫ and
g(t)

g(s)
< ǫ for a < s < d ,

we get

(L − ǫ)(1 − ǫ) − ǫ <
f(s)

g(s)
< (L + ǫ)(1 + ǫ) + ǫ, for a < s < d .

Therefore, f(s)/g(s) tends to L as s ↓ a.

2nd case: L = ±∞. Now, we briefly consider the case L = +∞ (the case L = −∞ is
similar). Fix an arbitrarily large positive M . By (19.1.2),

∃c ∈ (a, b) ∀u ∈ (a, c)
f ′

g′
(u) > M .

Then, by(19.1.6),
f(t) − f(s)

g(t) − g(s)
> M for a < s < t < c .

The rest is very similar to the same case, and we leave to check the details to the
students. ✷

Examples:

i.

lim
x→0

tanx − x

x − sinx
= lim

x→0

1
cos2 x

− 1

1 − cos x
= lim

x→0

1

cos2 x

1 − cos2 x

1 − cos x
= 2.

ii.

lim
x→0

(
1

x2
− cot2 x

)
= lim

x→0

sin2 x − x2 cos2 x

x2 sin2 x

= lim
x→0

sinx + x cos x

sinx
· lim

x→0

sinx − x cos x

x2 sinx

= 2 · lim
x→0

x sinx

2x sinx + x2 cos x
=

2

3
.
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iii. Consider the limit

lim
x→∞

x + sinx

x − sinx
.

This is a “∞
∞”-type limit which equals 1 since

x + sinx

x − sinx
=

1 + sinx/x

1 − sinx/x
=

1 + o(1)

1 + o(1)
, x → ∞ .

On the other hand, differentiating the numerator and denominator, we get an expression

1 + cosx

1 − cos x

which obviously has no limit as x → ∞.

Exercise 19.1.8. Find the limits

lim
x→0

ax + a−x − 2

x2
(a > 0), lim

x→0

ax − bx

cx − dx
(c 6= d) .

Problem 19.1.9. Prove that if f is differentiable on (a,+∞) and

lim
x→+∞

f ′(x) = 0,

then f(x) = o(x) when x → +∞.

Problem 19.1.10. Prove that if the function f has the second derivative at x, then

f ′′(x) = lim
h→0

f(x + h) + f(x − h) − 2f(x)

h2
.

Whether existence of the limit on the right hand side yields existence of the second
derivative of f at x?

19.2. Appendix: Algebraic numbers. Lagrange’s MVT has a nice application in the alge-
braic number theory.

Definition 19.2.1. The number t ∈ R is algebraic if there exist a0, a1, ..., an ∈ Z, an 6= 0, with

n∑

j=0

ajt
j = 0 .

The degree of the algebraic number t is the least possible n with this property.
The number t ∈ R is transcendental if it is not algebraic.

For instance, the rational numbers are algebraic numbers of degree 1,
√

2 is an algebraic
number of degree 2. The number 103/17 is also algebraic.

Note that if a rational number satisfies some algebraic equation with rational coefficients, then
it satisfies another equation of the same degree with integer coefficients and hence is algebraic.

The first question is natural: do the transcendental numbers exist?

Exercise 19.2.2 (Cantor). The set of algebraic numbers is countable. Hence, the transcendental
numbers exist.

Unfortunately, this neat argument does not give us explicit examples of transcendental num-
bers.
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Theorem 19.2.3 (Liouville). Suppose t is an algebraic number of degree n ≥ 2. Then there
exist a positive constant c (depending on t) such that

∣∣t − p

q

∣∣ ≥ c

qn

for any p, q ∈ Z.

The theorem says that algebraic numbers are badly approximated by the rational ones.

Proof: We assume that
∣∣t − p

q

∣∣ < 1 (otherwise, any c ≤ 1 works).

Suppose that P (x) =

n∑

j=0

ajx
j is a polynomial of degree n with integer coefficients such that

P (t) = 0.

Claim 19.2.4. The polynomial P cannot have rational roots.

Proof of Claim: Indeed, suppose that P (
p

q
) = 0. Then

P (x) = P (x) − P (
p

q
) = (x − p

q
)Q(x)

where Q is a polynomial with rational coefficients of degree n − 1. Since

Q(t) =
P (t)

t − p/q
= 0

we arrive at the contradiction (t cannot satisfy an algebraic equation of degree less than n).
This proves the claim. ✷

The claim yields that, for any integers p and q, the number P (p/q) is a non-zero rational
number of the form r/qn with integer r 6= 0. Hence

∣∣P
(p

q

)∣∣ ≥ 1

qn
.

Now, we have
1

qn
≤

∣∣P
(p

q

)∣∣ =
∣∣P

(p

q

)
− P (t)

∣∣ MVT
=

∣∣p
q
− t

∣∣|P ′(ξ)| .

The point ξ lies in the interval with the end-points at t and p/q, hence, it belongs to the larger
interval (t− 1, t + 1). Denoting by M the maximum of |P ′| over the closed interval [t− 1, t + 1],
we get

1

Mqn
≤

∣∣p
q
− t

∣∣ .

Hence, the result. ✷

The numbers t ∈ R such that

∀n ≥ 2 ∃p

q
∈ Q

∣∣t − p

q

∣∣ ≤ 1

qn

are called the Liouville numbers. The Liouville theorem says that they are transcendental.

Example 19.2.5. The number

t =

∞∑

k=1

1

10k!

is the Liouville number.
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Indeed, let

p

q
=

n∑

k=1

1

10k!
.

Then q = 10n!, and

0 < t − p

q
=

∞∑

k=n+1

1

10k!
<

2

10(n+1)!
,

while
1

qn
=

1

10n·n!
.

Since 10n! > 2 (sic!), we have

10(n+1)! =
(
10n!

)n+1
> 2 · 10n·n! ,

i.e.,

0 < t − p

q
<

1

qn
.

Done! ✷

It is worth mentioning that the numbers e and π are transcendental but the proofs are not

so simple (they are due to Hermite and Lindemann) and they were found after Liouville proved

his theorem.
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20. Inequalities

Here, we show how the differential calculus helps to prove useful inequalities.

20.1. 2
πx ≤ sinx ≤ x, 0 ≤ x ≤ π

2 . The right inequality we already know. In order
to prove the left inequality, consider the function

ϕ(x) =
sinx

x
, 0 ≤ x ≤ π

2
.

We have

ϕ′(x) =
x cos x − sinx

x2
=

cos x

x2
(x − tanx).

Since x ≤ tanx on the interval [0, π
2 ), ϕ′(x) ≤ 0. Therefore, the function ϕ does not

increase, and

ϕ(x) ≥ ϕ
(π

2

)
=

2

π
,

proving the inequality. ✷

Exercise 20.1.1. Show that the equality signs attains only at the end-points x = 0
and x = π

2 .

Exercise 20.1.2. Show that

π <
sinπx

x(1 − x)
≤ 4

for 0 < x < 1.

20.2. x
1+x < log(1 + x) < x, x > −1, x 6= 0. In order to prove the right inequality,

consider the function ψ(x) = log(1 + x) − x. Its derivative equals

ψ′(x) =
1

1 + x
− 1 = − x

1 + x
.

Therefore, the function ψ increases on (−1, 0), has a local maximum at x = 0 and
decreases for x > 0. At the end-points it equals −∞:

lim
x↓−1

ψ(x) = lim
x↑+∞

ψ(x) = −∞.

So that, the function ψ attains its global maximum at the origin, and hence log(1+x) < x
for x > −1, x 6= 0.

To prove the left inequality, we set

ψ(x) = log(1 + x) − x

1 + x
.

In this case,

ψ′(x) =
1

1 + x
− 1

(1 + x)2
=

x

(1 + x)2
.

Now, ψ′ is positive for x > 0, vanishes at the origin and is negative for −1 < x < 0.
Therefore, ψ decreases for −1 < x < 0 and increases for x > 0. The limiting values of
ψ equals +∞:

lim
x↓−1

ψ(x) = lim
x↑+∞

ψ(x) = +∞.
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So that, ψ attains its global minimum at the origin, and

log(1 + x) >
x

1 + x
, x > −1, x 6= 0,

completing the argument. ✷

Exercise 20.2.1. Show that

a − b

a
< log

a

b
<

a − b

b

for positive a and b.

The inequality we proved has an interesting application:

Corollary 20.2.2. There exists the limit

γ = lim
n→∞

( n∑

j=1

1

j
− log n

)
.

The constant γ is called the Euler constant. Its approximate value is γ ≈ 0.5772.

Proof of Corollary: Consider the series

(S)
∞∑

j=1

(
1

j
− log

j + 1

j

)
.

We’ll show that the terms of this series are positive and that the series is convergent.
Indeed,

1

j + 1
=

1/j

1 + 1/j
< log

(
1 +

1

j

)
<

1

j
,

so that

0 <
1

j
− log

(
1 +

1

j

)
<

1

j
− 1

j + 1
<

1

j2
,

and the series (S) converges since the series
∑

j≥1
1
j2 is convergent.

Denote by γ the sum of the series S. Then
n∑

j=1

1

j
=

n∑

j=1

(
1

j
− log

j + 1

j

)
+ log(n + 1)

= γ + o(1) + log n + o(1) = γ + log n + o(1), n → ∞,

proving the corollary. ✷

20.3. Bernoulli’s inequalities. We prove that for x > 0

xα − αx ≤ 1 − α, 0 < α < 1,

xα − αx ≥ 1 − α, α < 0, or α > 1,

with strong inequalities for x 6= 1.
Consider the function

f(x) = xα − αx + α − 1, x > 0.
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Then f ′(x) = α(xα−1 − 1). If 0 < α < 1, then f ′ is positive on (0, 1), vanishes at x = 1 and is
negative for x > 1, and the limiting values of f are negative:

f(+0) = α − 1 < 0,

lim
x→+∞

f(x) = −∞.

So that
f(x) < f(1) = 0, for x > 0, x 6= 1.

Similarly, if α < 0 or α > 1, f decreases on (0, 1) and increases on (1, +∞), and the limiting
values of f are positive. So that, in this case

f(x) > f(1) = 0, for x > 0, x 6= 1,

completing the proof. ✷

Exercise 20.3.1. Prove inequalities:

xm(1 − x)n ≤ mmnn

(m + n)m+n
, m, n > 0, 0 ≤ x ≤ 1 ,

(x + 1)2−
n−1

n ≤ (xn + 1)
1

n ≤ x + 1 , n ≥ 1, x > 0 .

Exercise 20.3.2. Prove that equation log x = cx
(i) has no solutions if c > 1

e ;

(ii) has a unique solution if c = 1
e or if c ≤ 0;

(iii) has two solutions if 0 < c < 1
e .

Exercise 20.3.3. Prove that equation log(1 + x2) = arctanx has two real solutions.

20.4. Young’s inequality. Here, we prove that

(Y ) ab ≤ ap

p
+

bq

q
,

for a, b > 0, 1
p + 1

q = 1, p, q > 1, and the equality sign attains for ap = bq only.

Introduce the function

h(a) = ab − ap

p
.

Then
h′(a) = b − ap−1.

We see that

h′(a)





> 0, for a < b1/(p−1)

= 0, for a = b1/(p−1)

< 0, for a > b1/(p−1).

Therefore,

h(a) ≤ h
(
b1/(p−1)

)
= b

1+ 1

p−1 − b
p

p−1

p
=

bq

q
,

and the equality sign attains only when a = b1/(p−1). This proves the statement. ✷

If p > 1, the value q = p
p−1 is called sometimes the dual to p. I.e., if p and q are dual

to each other, then 1
p + 1

q = 1.
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Exercise 20.4.1. Prove the inequality

ab ≤ ea + b log
b

e
, a, b > 0.

20.5. Hölder’s inequality. The Hölder inequality says that

(H)
n∑

j=1

xjyj ≤




n∑

j=1

xp
j




1/p 


n∑

j=1

yq
j




1/q

provided that xj , yj ≥ 0, p, q > 1 and 1
p + 1

q = 1, with the equality sign only in the case

when
xp

j

yq
j

= const, 1 ≤ j ≤ n.

When p = q = 2, with get the Cauchy-Schwarz inequality

n∑

j=1

xjyj ≤




n∑

j=1

x2
j




1/2 


n∑

j=1

y2
j




1/2

.

Proof of (H): Set

X =




n∑

j=1

xp
j




1/p

, Y =




n∑

j=1

yq
j




1/q

.

Applying the Young inequality (Y), we get

xj

X
· yj

Y
≤ 1

p

xp
j

Xp
+

1

q

yq
j

Y q
, 1 ≤ j ≤ n.

Adding these inequalities, we obtain

1

X · Y

n∑

j=1

xjyj ≤
1

p
· 1 +

1

q
· 1 = 1,

which yields (H).
There is the equality sign in (H) if and only if for each j we applied (Y) with the

equality sign, that is (xj

X

)p
=

(yj

Y

)q
,

or setting λ = Xp/Y q, we obtain

xp
j = λyq

j , 1 ≤ j ≤ n,

completing the argument. ✷

Exercise 20.5.1. Let p > 1, q < 1, and 1
p + 1

q = 1. Let xi > 0, yi > 0, and let the series∑
i x

p
i and

∑
i y

q
i converge. The the series

∑
i xiyi also converges and its sum does not

exceed the product (
∑

i

xp
i

)1/p

·
(

∑

i

yq
i

)1/q

.
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20.6. Minkowski’s inequality. Minkowski’s inequality says

(M)




n∑

j=1

(xj + yj)
p




1/p

≤




n∑

j=1

xp
j




1/p

+




n∑

j=1

yp
j




1/p

provided that xj , yj > 0 and p ≥ 1.

Proof of (M): Let the index q be dual to p. Then

n∑

j=1

(xj + yj)
p =

n∑

j=1

xj(xj + yj)
p−1 +

n∑

j=1

yj(xj + yj)
p−1

≤




n∑

j=1

xp
j




1/p 


n∑

j=1

(xj + yj)
(p−1)q




1/q

+




n∑

j=1

yp
j




1/p 


n∑

j=1

(xj + yj)
(p−1)q




1/q

=




n∑

j=1

xp
j




1/p 


n∑

j=1

(xj + yj)
p




1/q

+




n∑

j=1

yp
j




1/p 


n∑

j=1

(xj + yj)
p




1/q

,

whence (M) follows at once. ✷

We finish this lecture mentioning two beautiful and deep inequalities proven by
Swedish mathematicians:

Problem* 20.6.1 (Carleman). Let
∑

j≥1 aj be a convergent series with positive terms.
Then the series ∑

j≥1

{a1...aj}1/j

also converges and its sum is

< e
∑

j≥1

aj .

The constant e in this inequality cannot be replaced by a smaller one.

Problem* 20.6.2 (Carlson).



∑

j≥1

aj




4

≤ π2




∑

j≥1

a2
j







∑

j≥1

j2a2
j


 .

The constant π on the right hand side is optimal.
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Try to solve these with some constants on the right hand side. This is also not easy.
If you want to learn more about the inequalities, you should look at the classical book:

Hardy, Littlewood, Polya “Inequalities”

or at the recent book

J.M.Steele “ Cachy-Schwarz master class”.
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21. Convex functions. Jensen’s inequality

21.1. Definition. Let I be an interval, open or closed, finite or infinite. The function
f : I → R is called convex if its graphs lies below the chord between any two points on
the graph.

f(x)

x1 x2x

L(x)

Figure 17. Convexity

Now, we’ll find an analytic form of this condition. We fix two points x1, x2 ∈ I,
x1 < x2, and let x be an intermediate point between x1 and x2; i.e. x1 ≤ x ≤ x2. Let
y = L(x) be an equation of the chord which joins the points (x1, f(x1)) and (x2, f(x2)).
Then the definition says

f(x) ≤ L(x) ∀x ∈ [x1, x2].

The affine function L is given by the equation

L(x) = f(x1) +
f(x2) − f(x1)

x2 − x1
(x − x1),

so that we get the inequality

(a) (x2 − x1)f(x) ≤ (x2 − x)f(x1) + (x − x1)f(x2),

which holds for any triple of points x1 ≤ x ≤ x2 from I. We set

x = λx1 + (1 − λ)x2, λ =
x2 − x

x2 − x1
,

and get

(a′) f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2)

for each λ ∈ [0, 1] and each x1 < x2 in I. Obviously, (a) and (a′) are equivalent. Taking
λ = 1

2 , we get

f
(x + y

2

)
≤ f(x) + f(y)

2

for each x, y ∈ I. This property is “almost equivalent” to convexity of f :
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Exercise 21.1.1. If the function f is continuous on an interval I and if for any pair of
points x, y ∈ I, x < y:

f

(
x + y

2

)
≤ f(x) + f(y)

2
,

then f is convex on I.

It is convenient way to rewrite condition (a) as a double inequality between the slopes
of three chords which join the points (x1, f(x1)), (x, f(x)) and (x2, f(x2)) on the graph
of f :

γ
α

β

Figure 18. α < β < γ

(b)
f(x) − f(x1)

x − x1
≤ f(x2) − f(x1)

x2 − x1
≤ f(x2) − f(x)

x2 − x
.

Each of these two inequalities after a simple transformation reduces to (a).

Exercise 21.1.2. If f and g are two convex functions defined on the same interval I,
then the functions cf(x), where c is a positive constant, f(x)+g(x) and max{f(x), g(x)}
are convex as well.

From this exercise we see that the function |x| is convex on R, and more generally, if
L1(x), ..., Ln(x) are affine functions, then the function max1≤j≤n Lj(x) is also convex.

The other examples will be given a bit later after we’ll find a simple way to verify
that a twice-differentiable function is convex.

Problem 21.1.3 (Geometric meaning of convexity). The set F ⊂ R2 is called convex
if, for any two points A,B ∈ F , the whole segment [A,B] that connects these two points
also belongs to F . For instance, the disk, the triangle and the rectangle are convex sets,
while the annulus is not convex.

Suppose f : I → R, I is an open interval. Consider the set Γ+(f) = {(x, y) : x ∈
I, y ≥ f(x)}. This is a set of points P (x, y) that lie above the graph of f .

Prove that the function f is convex iff the set Γ+(f) is convex.
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21.2. Fundamental properties of convex functions.

Claim 21.2.1. Any convex function on an open interval is continuous.

Proof: Fix two points t, x ∈ I, t > x which are not the end-points of I. Choose a
subinterval [a, b] ⊂ I such that [x, t] ⊂ (a, b). Then applying condition (b) to the triple
x < t < b, we get

f(t) − f(x)

t − x
≤ f(b) − f(x)

b − x

and applying condition (b) to the triple a < x < t, we get

f(x) − f(a)

x − a
≤ f(t) − f(x)

t − x
.

Thus

(t − x)
f(x) − f(a)

x − a
≤ f(t) − f(x) ≤ (t − x)

f(b) − f(x)

b − x
,

which yields continuity of f . ✷

Question 21.2.2. Suppose the function f is convex on a closed interval [a, b]. Whether
it has to be continuous at the end-points a and b?

Exercise 21.2.3. If f is convex and attains its maximum at the point x which is not
an end-point of the interval I, then f is a constant function.

Claim 21.2.4. Set

mf (x, y) =
f(y) − f(x)

y − x
.

If f is convex, then the functions x 7→ mf (x, y) and y 7→ mf (x, y) are increasing.

Proof: is a reformulation of (b). ✷

In the next claim, we’ll use one-sided derivatives of the function f defined by

f ′
+(x) = lim

t↓x
f(t) − f(x)

t − x

(the right derivative) and

f ′
−(x) = lim

t↑x
f(t) − f(x)

t − x

(the left derivative). The (usual) derivative f ′(x) exists if and only if the right and left
derivatives exist and equal to each other.

Claim 21.2.5. If f is convex on I, then f has the right and left derivatives, and

f ′
−(x) ≤ f ′

+(x) ≤ f ′
−(y),

for any x < y, x, y ∈ I.

Proof: follows from the previous claim. ✷
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Remark 21.2.6. The same argument shows that if f is convex on the closed interval
[a, b], then the one-sided derivatives f ′

+(a) and f ′
−(b) exist (finite or infinite), and

f ′
+(a) ≤ f ′

−(x), ∀x ∈ (a, b],

f ′
−(b) ≥ f ′

+(x), ∀x ∈ [a, b).

Exercise 21.2.7. Prove that the set of points x where the derivative of a convex
function does not exist is at most countable.

Claim 21.2.8. If f is differentiable on I, then f is convex if and only if f ′ does not
decrease.

Proof: In one direction, this follows from the inequalities between the one-sided deriva-
tives. Now, assume that f ′ does not decrease. Then using the Lagrange mean value
theorem we get for any triple x1 < x < x2 there are points ξ1 ∈ (x1, x), and ξ2 ∈ (x, x2)
such that

f(x) − f(x1)

x − x1
= f ′(ξ1) and f ′(ξ2) =

f(x2) − f(x)

x2 − x
.

Since f ′(ξ1) ≤ f ′(ξ2), this yields inequality (a). ✷

Claim 21.2.9. If f is twice differentiable on I, then it is convex if and only if f ′′ ≥ 0.

Proof: follows from the previous claim. ✷

Problem 21.2.10. Let f ∈ C2(R) and

lim
x→+∞

f(x) = lim
x→−∞

f(x) = 0.

Prove that there exist at least two points c1 and c2 such that

f ′′(c1) = f ′′(c2) = 0 .

21.3. A function f is called concave if the function −f is convex. The affine function
is the only one which is convex and concave at the same time.

• The function f(x) = xa is convex on [0, +∞) for a ≥ 1, is convex on (0, +∞) for
a ≤ 0, and is concave on [0,+∞) for 0 ≤ a ≤ 1.

• The exponent f(x) = ax is a convex function on R.

• The logarithmic function f(x) = log x is a concave function on (0,+∞).

• The function f(x) = sinx is concave on [0, π] and convex on [π, 2π].

Exercise 21.3.1. Suppose that t ≥ 1. Show that

2tp ≤ (t − 1)p + (t + 1)p

for p ≥ 1, and
2tp ≥ (t − 1)p + (t + 1)p

for 0 ≤ p ≤ 1.

Exercise 21.3.2. Suppose f is a convex function. Show that if f increases, then the
inverse function f−1 is concave, while if f decreases, f−1 is convex.
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Problem 21.3.3. Suppose f is a convex function on R bounded from above. Then f
is a convex function.

If this question looks difficult, try to solve it assuming that f is differentiable on R.

21.4. Jensen’s inequality.

Theorem 21.4.1. Let f be a convex function in the interval I, and let x1, x2, ...,
xn ∈ I. Then

(J) f




n∑

j=1

αjxj


 ≤

n∑

j=1

αjf(xj)

provided that α1, ..., αn ≥ 0 and
∑n

j=1 αj = 1.

Proof: We shall use induction with respect to n. The case n = 2 corresponds to
inequality (a′) proved above.

Now, assuming that (J) is proven for n − 1 ≥ 2, we prove it for n ≥ 3. We assume
that αn > 0 (if αn = 0, then we have already the result), and take β = α2 + ...+αn > 0.
Notice that α1 + β = 1 and that

α2

β
+ ... +

αm

β
= 1.

Then applying (J) first with n = 2 and then with n − 1 we get

f(α1x1 + ... + αnxn) = f

(
α1x1 + β

(
α2

β
x2 + ... +

αn

β
xn

))

≤ α1f(x1) + βf

(
α2

β
x2 + ... +

αn

β
xn

)

≤ α1f(x1) + ... + αnf(xn),

completing the proof. ✷

Problem 21.4.2. Prove that if αj > 0 for every j, then there is equality in (J) if and
only if f is the affine function in the interval [minxj , maxxj ].

Examples:

i. Take f(x) = log x. This function is concave, so (J) works with the opposite inequality:

α1 log x1 + ... + αn log xn ≤ log (α1x1 + ... + αnxn) .

Taking the exponent of the both sides, we get

xα1

1 · ... · xαn
n ≤ α1x1 + ... + αnxn,

provided that α1, ..., αn ≥ 0 and
∑n

j=1 αj = 1.
Consider a special case with

α1 = α2 = ... = αn =
1

n
.
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We get celebrated Cauchy’s inequality between the geometric and arithmetic means:

n
√

x1 · ... · xn ≤ x1 + ... + xn

n
.

ii. Now, we apply the Jensen inequality to the function f(x) = xp, p > 1, again with
α1 = ... = αn = 1

n . Recall, that f is convex for such p’s. We obtain that for any
x1, ..., xn > 0

1

n

n∑

j=1

xj ≤


 1

n

n∑

j=1

xp
j




1/p

, p > 1 .

Note that this inequality also follows from Hólder’s inequality.

Problem 21.4.3. For x1, ..., xn > 0 and p ∈ R \ {0}, set

Mp(x1, ..., xn) =





1

n

n∑

j=1

xp
j





1/p

.

This quantity is called the p-th mean of the values x1, x2, ..., xp.

i. Find the limits

lim
p→0

Mp(x1, ..., xn), lim
p→+∞

Mp(x1, ..., xn), and lim
p→−∞

Mp(x1, ..., xn).

ii. Show that the function p 7→ Mp(x1, ..., xn) is strictly increasing unless all xj are
equal, in that case Mp(x1, ..., xn) is their common value for all p.
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22. The Taylor expansion

In this lecture we develop the polynomial approximation to smooth functions which
works both locally and globally.

22.1. Local polynomial approximation. Peano’s theorem. The starting point
of this lecture is the following

Problem. Let the function f has n derivatives5 at x0. Find the polynomial Pn(x) of
degree ≤ n such that

f(x) = Pn(x) + o((x − x0)
n), x → x0.

In the case n = 1, we know that the solution is given by the linear function

P1(x) = f(x0) + (x − x0)f
′(x0).

Juxtaposing this with another formula

P (x) =

n∑

j=0

P (j)(x0)

j!
(x − x0)

j

which we proved in Section 17 for an arbitrary polynomial P of degree n, we can guess
that the answer to our problem is given by the polynomial

Pn(x) = Pn(x;x0, f) =
n∑

j=0

f (j)(x0)

j!
(x − x0)

j

called the Taylor polynomial of degree n of the function f at x0. The difference

Rn(x) = Rn(x; x0, f) = f(x) − Pn(x)

called the remainder.
The Taylor polynomial of degree n interpolates at the point x0 the value of f and of

its first n derivatives:

P (j)
n (x0) = f (j)(x0), 0 ≤ j ≤ n.

Therefore, the remainder vanishes at x0 with its first n derivatives:

R(j)
n (x0) = 0, 0 ≤ j ≤ n.

The following claim finishes the job:

Claim 22.1.1. Suppose the function g has n derivatives at x0, and

g(x0) = g′(x0) = ... = g(n)(x0) = 0.

Then

g(x) = o((x − x0)
n), x → x0.

5This means that f is differentiable n − 1 times in a neighbourhood of x0 and the n-th derivatives
exists at x0.
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Proof: We shall use induction in n. For n = 1, we have

lim
x→x0

g(x)

x − x0
= lim

x→x0

g(x) − g(x0)

x − x0
= g′(x0) = 0.

Now, having the claim for n, we’ll prove it for n + 1, using the Lagrange mean value
theorem:

g(x) = g(x) − g(x0) = g′(c)(x − x0),

where c is an intermediate point between x0 and x. By the inductive assumption,

g′(x) = o((x − x0)
n), x → x0,

hence

g′(c) = o((c − x0)
n) = o((x − x0)

n), x → x0.

This proves the claim. ✷.

Theorem 22.1.2 (Peano). Let the function f have n derivatives at x0. Then

f(x) =

n∑

j=0

f (j)(x0)

j!
(x − x0)

j + o((x − x0)
n), x → x0.

Exercise 22.1.3. If the function f has n derivatives at x0, and

f(x) = Q(x) + o((x − x0)
n), x → x0 ,

where Q is a polynomial of degree n, then

Q(x) =
n∑

j=0

f (j)(x0)

j!
(x − x0)

j .

22.2. The Taylor remainder. Theorems of Lagrange and Cauchy. The Peano
theorem shows that the Taylor polynomial Pn(x) well approximates the function f locally
in a small neighbourhood of x0 (which generally speaking may shrink as n → ∞). It
appears, that in many cases Pn(x) is close to f globally, that is in a fixed interval
containing x0 whose size does not depend on n. In order to prove this, we need to find
a convenient expression good for the remainder Rn(x).

First, we introduce some notations: let I be an interval (it can be open or close, finite
or infinite). By Cn(I) we denote the class of all n-times differentiable functions on I
such that the n-th derivative is continuous on I. By C∞(I) we denote the class of all
infinitely differentiable functions on I.

Theorem 22.2.1. Let f ∈ Cn[x0, x], and let f (n+1) exist on (x0, x). Let the function ϕ
be continuous on [x0, x], be differentiable on (x0, x), and the derivative ϕ′ do not vanish
on (x0, x). Then there exists an intermediate point c between x0 and x such that

(R) Rn(x) =
ϕ(x) − ϕ(x0)

ϕ′(c)n!
f (n+1)(c)(x − c)n.
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Proof: Fix x and consider the function

F (t)
def
= f(x) −

{
f(t) +

f ′(t)
1!

(x − t) + ... +
f (n)(t)

n!
(x − t)n

}
.

Then F (x) = 0, F (x0) = Rn(x; x0), and

F ′(t) = −f (n+1)(t)

n!
(x − t)n.

So that

Rn(x; x0)

ϕ(x) − ϕ(x0)
= −F (x) − F (x0)

ϕ(x) − ϕ(x0)

Cauchy′sMVT
= −F ′(c)

ϕ′(c)
=

f (n+1)(c)

n!ϕ′(c)
(x − c)n

completing the proof. ✷

In what follows, we use two special cases of (R). Taking

(L) ϕ(t) = (x − t)n+1,

we arrive at the Lagrange formula for the remainder:

Rn(x) =
(x − x0)

n+1

(n + 1)!
f (n+1)(c).

This immediately yields a good estimate of the remainder:

Corollary 22.2.2. Suppose the function f is the same as in Theorem 2. Then

|Rn(x)| ≤ |x − x0|n+1

(n + 1)!
sup
c∈I

|f (n+1)(c)|.

Taking in (R) ϕ(t) = x − t, we arrive at another representation for the remainder
Rn(x) called the Cauchy formula:

(C) Rn(x) =
(x − c)n(x − x0)

n!
f (n+1)(c),

which sometimes gives a better result than the Lagrange formula. The both forms will
be extensively used in the next lecture.

Exercise 22.2.3. Find the approximation error:

√
1 + x ≈ 1 +

x

2
− x2

8
, 0 ≤ x ≤ 1 .

Problem* 22.2.4. Suppose that the function f is twice differentiable on [0, 1], f(0) =
f(1) = 0, and sup |f ′′| ≤ 1. Show that |f ′| ≤ 1

2 everywhere on [0, 1].

Problem* 22.2.5 (Hadamard’s inequality). Suppose that the function f is twice dif-

ferentiable on R, and set Mk = supR |f (k)|, k = 0, 1, 2. Show that M2
1 ≤ 2M0M2.
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In Lecture 16 we defined the Lagrange interpolation polynomial of degree n with the
interpolation nodes at the pairwise distinct points {xj}0≤j≤n:

Ln(x) = Ln(x; x0, f) =
n∑

j=0

f(xj)Q(x)

Q′(xj)(x − xj)
,

where
Q(x) = (x − x0)(x − x1)...(x − xn).

Problem 22.2.6. Show that if f ∈ Cn[a, b] and f (n+1) exists on (a, b), then for any
choice of nodes {xj} ⊂ [a, b] there exists a point c ∈ (a, b) such that

f(x) − Ln(x) =
Q(x)

(n + 1)!
f (n+1)(c).

In particular,

max
I

|f − Ln| ≤
maxI |Q|
(n + 1)!

sup
I

|f (n+1)|.

Hint: Take r = f − Ln, and consider the function

t 7→ r(x)Q(t) − r(t)Q(x).

This function has n + 2 zeroes on [a, b], so that its n + 1-st derivative vanishes at an
intermediate point c.
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23. Taylor expansions of elementary functions

Let f be a C∞-function on I. In many cases, using one of the formulas for the remainder,
we can conclude that

lim
n→∞

Rn(x; x0) = 0

for any point x from the interval I ∋ x0. This means that

(T ) f(x) =
∞∑

j=0

f (j)(x0)

j!
(x − x0)

j , x ∈ I.

The series on the right hand side is called the Taylor series of f at x0. The formula (T)
says the Taylor series converges to f everywhere on I.

We should warn that even if the Taylor series converges, it does not have to represent
the function f . For example, the Taylor series at the origin of the C∞-function

f(x) =





e−1/x2

, x 6= 0

0, x = 0

has only zero coefficients (since f (j)(0) = 0, j ≥ 0), and does not represent the function
f anywhere outside the origin.

In the rest of this lecture we consider examples of the Taylor series for elementary
functions. In all the examples below, we choose x0 = 0 and set Rn(x) = Rn(x; 0, f).
Then using either Lagrange, or Cauchy, representation for the remainder Rn, we show
that it converges to zero on an interval I.

23.1. The exponential function. We start with the exponential function f(x) = ex.
We will use a simple sufficient condition that follows from Lagrange’s estimate for the
remainder.

Lemma 23.1.1. Suppose that f ∈ C∞(I) and that there exists a positive constant C
such that

(23.1.2) sup
j≥0

sup
x∈I

|f j(x)| ≤ C .

Then

f(x) =

∞∑

j=0

f (j)(x0)

j!
(x − x0)

j , x ∈ I .

Proof: By Lagrange’s estimate for the remainder, we have

sup
I

|Rn| ≤
C|x − x0|n+1

(n + 1)!
,

and the right hand side converges to zero as n → ∞. ✷

Clearly, this lemma can be applied to the exponential function, whence,

ex =
∞∑

j=0

xj

j!
, x ∈ R.
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In particular, we obtain that

e =
∞∑

j=0

1

j!
,

with a good estimate for the remainder:

0 < e −
n∑

j=0

1

j!
<

e

(n + 1)!
<

3

(n + 1)!
.

Exercise 23.1.3. Which n one should take to compute e with error at most 10−10?

Claim 23.1.4. The number e is irrational.

Proof: Let e = m
n and sn =

∑n
k=1(k!)−1. Then

n!(e − sn) = (n − 1)!m −
n∑

k=1

n!

k!

is a natural number and hence is ≥ 1. On the other hand,

n!(e − sn) =
n!

(n + 1)!
+

n!

(n + 2)!
+

n!

(n + 3)!
+ ...

=
1

n + 1
+

1

(n + 1)(n + 2)
+

1

(n + 1)(n + 2)(n + 3)
+ ...

<
1

2
+

1

22
+

1

23
+ ... = 1 .

Contradiction! ✷

Exercise 23.1.5. Prove that n! >
(n

e

)n
.

Exercise 23.1.6.

(i) Find lim
n→∞

{en!}. Here, { . } is a fractional part.

(ii) Show that lim
n→∞

n sin(2πen!) = 2π.

23.2. The sine and cosine functions. In this case, the same Lemma 23.1.1 yields the for-
mulas:

sin x =

∞∑

j=0

(−1)j x2j+1

(2j + 1)!
, x ∈ R

and

cos x =

∞∑

j=0

(−1)j x2j

(2j)!
, x ∈ R .

Similar formulas hold for the hyperbolic sine and cosine:

sinh x
def
=

ex − e−x

2
=

∞∑

j=0

x2j+1

(2j + 1)!
, x ∈ R,

and

cosh x
def
=

ex + e−x

2
=

∞∑

j=0

x2j

(2j)!
, x ∈ R.
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Exercise 23.2.1. Prove these two formulas using Lemma 23.1.1.

Exercise 23.2.2. Check that cosh2 x − sinh2 = 1, and that the both functions satisfy the
differential equation f ′′ = f .

Condition (23.1.2) is too restrictive.

Problem 23.2.3. Let I be an interval, and let f ∈ C∞(I) satisfy

sup
x∈I

|f (j)(x)| ≤ C M jj! , j ∈ Z+ ,

with positive constants C and M .

(i) Show that the Taylor series of f at x0 converges to f on the set{
x ∈ I : |x − x0| < M−1

}
.

(ii) Show that if f vanishes with all its derivatives at some point x0 of I:

f (n)(x0) = 0, j ∈ Z+,

then f is the zero function.

(iii) Show that if f vanishes on a subset of I that has an accumulation point in I, then
f is the zero function.

23.3. The logarithmic function. Consider the function f(x) = log(1 + x) defined
for x > −1. We have

f (j)(x) = (−1)j−1 (j − 1)!

(1 + x)j
,

so that f (j)(0) = (−1)j−1(j − 1)!. Lagrange’s estimate for the remainder yields the
convergence of the Taylor expansion for 0 ≤ x ≤ 1:

max
0≤x≤1

|Rn(x)| ≤ n!

(n + 1)!
=

1

n + 1
.

Therefore, for 0 ≤ x ≤ 1,

(23.3.1) log(1 + x) =
∞∑

j=1

(−1)j−1 xj

j
.

In particular, we find the formula which was promised in Lecture 8:

log 2 = 1 − 1

2
+

1

3
− 1

4
+ ... .

For x > 1 the Taylor series diverges (its terms tend to infinity with n). For the
negative x’s, we have to use Cauchy’s formula for the remainder. If |x| < 1, then for
some intermediate c between 0 and x:

|Rn(x)| =

∣∣∣∣
(x − c)nx

(1 + c)n+1

∣∣∣∣ =

∣∣∣∣
x

1 + c

∣∣∣∣
∣∣∣∣
x − c

1 + c

∣∣∣∣
n

.

Claim 23.3.2. ∣∣∣∣
x − c

1 + c

∣∣∣∣ < |x|.
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Proof of Claim: since c is an intermediate point between 0 and x, |x − c| = |x| − |c|.
Then

∣∣∣∣
x − c

1 + c

∣∣∣∣ =
|x| − |c|
|1 + c| ≤ |x| − |c|

1 − |c| <
|x| − |c||x|

1 − |c| = |x|.

proving the claim. ✷

Making use of the claim, we continue the estimate for the remainder Rn(x) and get

|Rn(x)| < |x|n+1.

Since |x| < 1, we see that the remainder goes to zero with n. Therefore, the Taylor
expansion converges to log(1 + x) for −1 < x ≤ 1. ✷

It is curious, that the remainder in Cauchy’s form gives us the result for |x| < 1 but
to get the expansion at the end-point x = 1 we have to use Lagrange’s estimate of the
remainder.

There is another way to find the Taylor expansion for log(1 + x). The derivative of
this function equals

1

1 + x
=

∞∑

j=0

(−1)jxj .

Recalling that log(1 + x) = 0 at x = 0 and that
(
xj+1

)′
= (j + 1)xj , we immediately

arrive at the expansion (23.3.1). This idea will be justified in the second semester.

Exercise 23.3.3. Find the Taylor expansion of the function log 1+x
1−x and investigate its

convergence.

23.4. The binomial series. In this section, we consider the function f(x) = (1 + x)a

defined for x > −1. Now,

f (j)(x) = a(a − 1)...(a − j + 1)(1 + x)a−j ,

and we get (at least, formally) the Newton formula

(1 + x)a =
∞∑

j=0

a(a − 1)...(a − j + 1)

j!
xj .

Of course, if a ∈ N, then there are only finitely many non-zero terms in the series on
the right hand side, and we arrive at the familiar binomial formula.

We shall prove convergence of this formula for |x| < 1. The formula is also valid at
x = 1 and (for a ≥ 0) at x = −1. This will follow from the Abel convergence theorem
that you’ll learn in the second semester course.
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So we fix s < 1, assume that |x| < s, and estimate the remainder using the Cauchy
formula:

|Rn(x)| =

∣∣∣∣
a(a − 1)...(a − n)

n!
(1 + c)a−n−1(x − c)nx

∣∣∣∣

=
∣∣∣a

(
1 − a

1

)
...

(
1 − a

n

)∣∣∣ (1 + c)a−1

∣∣∣∣
x − c

1 + c

∣∣∣∣
n

|x|

≤ (1 + c)a−1 ·
∣∣∣a

(
1 − a

1

)
...

(
1 − a

n

)∣∣∣ |x|n+1 = (1 + c)a−1 · qn

(in the passage from the second to the third line we used the claim from the previous
section). If n is big enough, we have

qn+1

qn
=

∣∣∣∣
(

1 − a

n + 1

)
x

∣∣∣∣ ≤ s < 1,

so that qn and hence Rn(x) tend to zero for |x| < 1.

23.5. The Taylor series for arctanx. Let f(x) = arctanx, |x| ≤ 1. To arrive at the
Taylor expansion, recall that

f ′(x) =
1

1 + x2
=

∞∑

j=0

(−1)jx2j .

Hence, the guess:

arctanx =
∞∑

j=0

(−1)j x2j+1

2j + 1
.

To justify our guess, we need to bound the remainder. For this, we need a formula
for the j-th derivative f (j)(x).

Claim 23.5.1. For each j ≥ 1,

(C) f (j) = (j − 1)! cosj f sin j
(
f +

π

2

)
.

Proof of the claim: We’ll use the induction with respect to j. For j = 1 we have

f ′(x) =
1

1 + x2
=

1

1 + tan2 f
= cos2 f = cos f sin

(
f +

π

2

)
.

Suppose the claim is verified for j = n, then

f (n+1) = (n − 1)! cosn−1 f · nf ′
{
− sin f sinn

(
f +

π

2

)
+ cos f cos n

(
f +

π

2

)}

= n! cosn+1 f cos
(
(n + 1)f + n

π

2

)

= n! cosn+1 f sin
(
(n + 1)

(
f +

π

2

))
,

proving the claim. ✷
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Corollary 23.5.2. For each n ≥ 1,

sup
[−1,1]

|f (n)| ≤ n!.

Then, by the Lagrange estimate for the remainder,

sup
x∈[−1,1]

|Rn(x)| ≤ 1

(n + 1)!
sup

[−1,1]
|f (n+1)| ≤ 1

n
.

That is, the Taylor expansion converges to arctanx everywhere on [−1, 1].
Plugging the value x = 0 into (C), we get

f (j)(0) = (j − 1)! sin
jπ

2
=





(−1)m(2m)!, j = 2m + 1

0, j = 2m

(we got this expression in Lecture 17 by a different calculation). So that we obtain the
Taylor expansion for arctanx

arctanx =

∞∑

j=0

(−1)j x2j+1

2j + 1

valid on [−1, 1].
Taking x = 1, we arrive at a remarkable formula of Leibnitz:

π

4
= 1 − 1

3
+

1

5
− 1

7
+

1

9
− ... .

Problem 23.5.3. Prove that

arcsinx = x +
∞∑

n=1

(2n − 1)!!

(2n)!!(2n + 1)
x2n+1, −1 ≤ x ≤ 1.

Here,

(2n − 1)!! = 1 · 3 · 5 · ... · (2n − 1), (2n)!! = 2 · 4 · ... · 2n .

Plugging x = 1
2 into the expansion of arcsinx, we get

π

6
=

1

2
+

∞∑

n=1

(2n − 1)!!

(2n)!!(2n + 1)22n+1
.

This expansion of π
6 is essentially better than the previous one of π

4 . Why?

23.6. Some computations. There are many elementary functions for which it is not easy
to find a good expression for coefficients in the Taylor expansion. In most of applications,
one usually needs only a few first terms in the Taylor expansion which can be found directly
(sometimes, this requires a patience). Consider several examples:
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23.6.1. f(x) = tanx. This is an odd function, so in its Taylor expansion all even coefficients
vanish. We’ll find first three non-vanishing odd coefficients. We have

f ′(x) = cos−2 x, f ′(0) = 1,

then
f ′′(x) = 2 sinx cos−3 x,

f ′′′(x) = 2 cos−2 x + 6 sin2 x cos−4 x = −4 cos−2 x + 6 cos−4 x, f ′′′(0) = 2,

f (iv)(x) = −8 sin x cos−3 x + 24 sin x cos−5 x,

and at last

f (v)(x) = −8 cos−2 x + 24 sin2 x cos−4 x + 24 cos−4 x + 120 sin2 cos−6 x

= 16 cos−2 x − 120 cos−4 x + 120 cos−6 x,

so that f (v)(0) = 16. We find that

tanx = x +
1

3
x3 +

2

15
x5 + o(x6), x → 0.

Exercise 23.6.1. Find the approximation error

tanx ≈ x +
x3

3
, |x| ≤ 1

10
.

23.6.2. f(x) = log cos x. Not that f ′(x) = − tanx, that f(0) = 0, and that f is an even
function. Hence, we can use computation from the previous example. We get

f ′(0) = 0, f
′′

(0) = −1, f
′′′

(0) = 0, f (iv)(0) = −2, f (v)(0) = 0 .

Hence,

log cos x = −1

2
x2 − 1

12
x4 + o(x5) x → 0 .

Exercise 23.6.2. Find the Taylor polynomials of degree n at the point x0 to the following
functions

1+x+x2

1−x+x2 (n = 4, x0 = 0) m

√
am + x (a > 0) (n = 4, x0 = 0)

√
2x − x2 (n = 3, x0 = 1) e2x−x2

(n = 4, x0 = 0)

sin(sinx) (n = 3, x0 = 0) xx − 1 (n = 3, x0 = 1) .

23.7. Application to the limits. In many cases, knowledge of the Taylor expansion simplifies
computation of limits. For example, making use of the expansions of tanx and log cos x we easily
find

lim
x→0

sin x − x

tanx − x
= lim

x→0

−x3/6 + o(x3)

x3/3 + o(x3)
= −1

2
,

and

lim
x→0

log cos x

x2
= −1

2
.

Exercise 23.7.1. Find the limits

lim
x→0

sin x − arcsin x

tanx − arctan x
lim
x→0

(
sin x

x

) 1
1−cos x

lim
x→0

cos x − e−
1
2
x2

x4

lim
x→0

(
1

x
− 1

sin x

)
lim
x→1

1 − x + log x

1 −
√

2x − x2
lim

x→+∞

(
6
√

x6 + x5 − 6
√

x6 − x5
)

.
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24. The complex numbers

In this lecture we introduce the complex numbers and recall they basic properties.

24.1. Basic definitions and arithmetics. As you probably remember from the high-
school, the complex numbers are the expressions z = x + iy with i2 = −1. We can add
and multiply the complex numbers as follows

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) ,

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1) .

If z = x + iy, then the value z = x − iy is called the conjugate to z, x is the real part
of z, x = Re z = z+z

2 , and y is the imaginary part of z, y = Im z = z−z
2i . Note that

zz = x2 + y2 is always non-negative, and vanishes iff z = 0. The non-negative number√
zz is called the absolute value of z, denoted r = |z| =

√
x2 + y2. If z 6= 0, then there

is the inverse to z:

z−1 =
1

z
=

z

zz
=

x − iy

x2 + y2
=

x

x2 + y2
− i

y

x2 + y2
.

Then, for z2 6= 0, we can define
z1

z2
= z1 ·

1

z2
.

I.e., the complex number form a field denoted by C. Any real number x can be regarded
as a complex number x + i0 with zero imaginary part. I.e., R ⊂ C.

Exercise 24.1.1. Check:

z1 + z2 = z1 + z2 , z1 · z2 = z1 · z2 .

Claim 24.1.2 (Triangle inequality).

|z + w| ≤ |z| + |w| .
Proof: We have

|z + w|2 = (z + w)(z + w) = (z + w)(z + w)

= zz + ww + zw + wz = |z|2 + |w|2 + 2Re(zw) .

Note that −|a| ≤ Re a ≤ |a|, whence

|z + w|2 ≤ |z|2 + |w|2 + 2|z| |w| = (|z| + |w|)2 .

Done! ✷

Exercise 24.1.3.

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2) .

Exercise 24.1.4 (Cauchy-Schwarz inequality).
∣∣∣
∑

zjwj

∣∣∣
2
≤

(∑
|zj |2

)(∑
|wj |2

)
.
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24.2. Geometric representation of complex numbers. The argument. We can
represented complex numbers by two-dimensional vectors:

z = x + iy 7→
(

x

y

)
.

Then, the addition law for the complex numbers corresponds to the addition law for

r

−y

y z

z

x
ϕ

Figure 19. Complex plane

the vectors, and the absolute value of the complex number is the same as the length
of the corresponding vector. However, the vector representation is not very convenient
when we need to multiply the complex number. In this case, it is more convenient to
use the polar coordinates.

Definition 24.2.1 (argument). For z 6= 0, the argument of z is the angle ϕ = arg z the
point z is seen from the origin. The angle is measured counterclockwise, started with
the positive ray.

We have

tanϕ =
y

x
,

x = r cos ϕ, y = r sinϕ

(as above, r = |z|), and

z = r(cos ϕ + i sinϕ) .

This representation is consistent with multiplication: if zj = rj(cos ϕj +sinϕj), j = 1, 2,
are non-zero complex numbers, then

z1 · z2 = r1r2(cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)) .

I.e., multiplying the complex numbers, we multiply their absolute values and add their
arguments.

Corollary 24.2.2 (Moivre). If z = r(cos ϕ + i sinϕ), then

zn = rn(cos nϕ + i sinnϕ) , n ∈ N .
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Warning: the angles are measured up to 2πk, k ∈ Z. Hence, the argument is not the
number but rather a set of real numbers, such that the difference between any two
numbers from this set equals 2πk with some integer k. The most popular choice for the
representative from this set is ϕ ∈ [0, 2π).

Example 24.2.3. Let us solve the equation zn = a. Here, n ∈ N. We suppose that
a 6= 0, otherwise, the equation has only the zero solution. Denote a = ρ(cos θ + i sin θ).
Then

rn(cos nϕ + i sinnϕ) = ρ(cos θ + i sin θ) ,

i.e., rn = ρ and nϕ = θ + 2kπ with some k ∈ Z. Hence, r = n
√

ρ. The obvious solution
for the second equation is ϕ = θ/n. However, after a minute reflection we realize that
it has n distinct solutions:

ϕk =
θ

n
+

2kπ

n
, k = 0, 1, ..., n − 1 .

Figure 20. The roots of unity, n = 2, n = 5, and n = 8

Consider the special case a = 1. In this case, ρ = 1 and θ = 0. We get n points

zk = cos

(
2kπ

n

)
+ i sin

(
2kπ

n

)
, k = 0, 1, ..., n − 1

called the roots of unity.

Exercise 24.2.4. Solve the equations z4 = i, z2 = i, z2 = 1 + i. Find the absolute
value and the argument of the solutions, as well as their real and imaginary parts. Mark
the solutions on the complex plane.

Exercise 24.2.5. Let

ω = cos

(
2π

n

)
+ i sin

(
2π

n

)
.

Compute the sums

1 + ω + ω2 + ... + ωn−1 =? ,

1 + 2ω + 3ω2 + ... + nωn−1 =? ,

and

1 + ωh + ω2h + ... + ω(n−1)h =?

(h is a positive integer).
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24.3. Convergence in C. The distance between the complex numbers z1 and z2 is
|z1 − z2|.
Definition 24.3.1. The sequence zn converges to z (denoted by zn → z or z = lim

n→∞
zn),

if lim
n→∞

|z − zn| = 0.

Since

max
{
|x − xn|, |y − yn|

}
≤

√
(x − xn)2 + (y − yn)2︸ ︷︷ ︸

=|z−zn|

≤ |x − xn| + |y − yn| ,

the sequence zn converges to z iff the corresponding real and imaginary parts converge:

xn → x , yn → y .

Exercise 24.3.2. Check that the Cauchy criterion of convergence works for the complex
sequences.

Definition 24.3.3 (continuity). The complex valued function f is continuous at z, if
for each sequence zn → z, f(zn) → f(z).

Exercise 24.3.4. Check that the sum and the product of continuous functions is con-
tinuous. Check that the quotient of continuous functions is continuous in the points
where the denominator does not vanish.

Hint: the proofs are the same as in the real case.

We see that the polynomials are continuous functions in the whole complex plane.
That’s all we need to prove in the next lecture the fundamental theorem of algebra.

Exercise 24.3.5. If f = u + iv, then f is continuous iff its real and imaginary parts u
and v are continuous. If f is continuous, then |f | is also continuous.
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25. The fundamental theorem of algebra and its corollaries

25.1. The theorem and its proof.

Theorem 25.1.1. Any polynomial P (z) = c0 + c1z + ... + cnzn of positive degree has
at least one zero in C.

Proof: WLOG, we assume that cn = 1. Denote m = inf
z∈C

|P (z)|.

Claim 25.1.2. There is a sufficiently big R such that |P (z)| > m + 1 for |z| > R.

Indeed, we have

P (z) = zn
(
1 +

cn−1

z
+ ... +

c0

zn

)
,

whence

|P (z)| ≥ |z|n
(
1 −

∣∣∣
cn−1

z
+ ... +

c0

zn

∣∣∣
)

≥ |z|n
(
1 −

( |cn−1|
|z| + ... +

|c0|
|z|n

)

︸ ︷︷ ︸
≤1/2

)
≥ 1

2
|z|n

|z|≥R

≥ 1

2
Rn ≥ m + 1

provided that R is sufficiently big. ✷

Therefore, m = inf
|z|≤R

|P (z)|. Next, using the Bolzano-Weierstrass lemma, we will

check that the infimum is actually attained:

Claim 25.1.3. There exists z0 with |z0| ≤ R such that |P (z0)| = m.

Indeed, choose a sequence of points zk, |zk| ≤ R, such that

|P (zk)| ≤ m +
1

k
.

The sequences xk = Re zk and yk = Im zk are bounded max{|xk|, |yk|} ≤ R. Hence, they
have convergent subsequences. Hence, the sequence {zk} has a convergent subsequence
zkj

→ z0. Then by continuity of the polynomial P , we have

P (z0) = lim
j→∞

P (zkj ) ,

whence |P (z0)| = m. ✷

Suppose that P does not have zeroes in C, i.e., m > 0, and consider the polynomial

Q(z)
def
=

P (z + z0)

P (z0)
.

Then 1 = Q(0) ≤ |Q(z)|, z ∈ C.
To complete the proof, we show that there are points z where |Q(z)| < Q(0). This

will lead to the contradiction. We have

Q(z) = 1 + qkz
k + qk+1z

k+1 + ... + qnzn with |qk| 6= 0.
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Set ψ = arg qk and consider the points z with arg z =
π − ψ

k
. Then

arg(qkz
k) = ψ + (π − ψ) = π,

so that qkz
k = −rk|qk|. Let’s estimate |Q(z)| assuming on each step that r is chosen

sufficiently small:

|Q(z)| ≤
∣∣∣1 + qkz

k
∣∣∣ + |qk+1|rk+1 + ... + |qn|rn

= 1 − rk|qk| + rk+1|qk+1| + ... + rn|qn|

= 1 − rk
(
|qk| − r|qk+1| − ... − rn−k|qn|

)
< 1 ,

and we are done! ✷

25.2. Factoring the polynomials. In Lecture 16, we discussed the Horner scheme
of the polynomial division. This scheme also works for the polynomials with complex
coefficients. It yields, that if P is a polynomial of degree n ≥ 1, then

P (z) = (z − a)P1(z) + P (a)

where P1 is a polynomial of degree n − 1. In particular, if P vanishes at a, then

P (z) = (z − a)P1(z) .

Using induction with respect to the degree of P , we arrive at

Corollary 25.2.1 (factorization of polynomials). Every polynomial of degree n ≥ 1 can
be factored:

P (z) = c(z − z1) ... (z − zn) .

Note that some of the zeroes z1,...,zn of P may coincide. We say that a is a zero of
P of multiplicity k if

P (z) = (z − a)kP1(z)

where the polynomial P1 does not vanish at a. Usually, we count zeroes of the polynomi-
als with their multiplicities6. Then we can write down the factorization in the following
form

P (z) = c(z − z1)
k1 ... (z − zm)km

where the zeroes z1, ..., zm are pairwise different, and
∑

kj = n.

Exercise 25.2.2. If a polynomial of degree P has more than n zeroes in C (counting
with the multiplicities), then it vanishes identically.

6For instance, the polynomial P (z) = z(z − 1)2(z − 2)10 has 1 zero at the origin, 2 zeroes at z = 1,
and 10 zeroes at z = 2.
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25.3. Rational functions. Partial fraction decomposition. Rational functions
are functions represented as the quotients of the polynomials:

R(z) =
P (z)

Q(z)
.

Writing this representation we assume that the polynomials P and Q have no common

zeroes. Then deg R
def
= max{deg P, deg Q}. The rational functions form a field with

usual addition and multiplication.
The rational function R is defined everywhere except of the zeroes of Q. The zeroes

of the polynomial Q are called the poles of R. Note that a is a pole of R if and only if

lim
z→a

|R(z)| = +∞ .

If a is a zero of Q of multiplicity k, then we say that the pole of R at a also has
multiplicity k. The polynomials are the rational functions without poles.

Claim 25.3.1. If a is a pole of R of multiplicity, then there are the unique coefficients
A1, ..., Ak such that

R(z) −
(

A1

z − a
+ ... +

Ak

(z − a)k

)

has no pole at a.

The sum on the RHS is called the singular part of R at a. We denote it by Sa(z).

Proof:

i (existence): Consider the rational function U(z) = (z − a)kR(z), it has no pole at a.
We set Ak = U(a). Then

(z − a)kR(z) − Ak = U(z) − Ak = (z − a)V (z)

where V is a rational function without pole at a, or

R(z) − Ak

(z − a)k
=

V (z)

(z − a)k−1

and the RHS has a pole at a of multiplicity k − 1 or less. Then we apply the same
procedure to the function V .

ii (uniqueness): Suppose that the expression

R(z) −
(

B1

z − a
+ ... +

Bk

(z − a)k

)

also has no pole at a. Then the difference of the two expressions

F (z) =
B1 − A1

z − a
+ ... +

Bk − Ak

(z − a)k



DIFFERENTIAL AND INTEGRAL CALCULUS, I 131

also has no pole at a. Suppose that some Al 6= Bl and set j = max{l : Al 6= Bl}. Then

F (z) =
1

(z − a)j

{
(Bj − Aj) + (Bj−1 − Aj−1(z − a) + ... + (B1 − A1)(z − a)j−1

}
︸ ︷︷ ︸

=T (z)

=
T (z)

(z − a)j

where T is a polynomials, and T (a) = Bj −Aj 6= 0 by our assumption. Hence, F has a
pole at a, arriving at the contradiction. Hence, the claim. ✷

Applying the claim, one by one, to all poles of R, we get

Theorem 25.3.2 (partial fraction decomposition). Every rational function R can be
uniquely represented in the following form:

R(z) =
∑

a

Sa(z) + W (z)

where the sum is taken over the set of all poles a of R, Saj are the corresponding singular
parts, and W is a polynomial.

Exercise 25.3.3. If R = P
Q where the polynomials P and Q has no common zeroes,

then deg W = deg P − deg Q, if the latter is non-negative; otherwise W = 0.

Example 25.3.4. Let

R(z) =
z4 + 1

z(z + 1)(z + 2)
.

This function has simple poles at the points z = 0, −1, −2. Hence,

R(z) =
A0

z
+

A−1

z + 1
+

A−2

z + 2
+ W (z)

where W is a (linear) polynomial. We have

A0 = lim
z→0

R(z)z = lim
z→0

z4 + 1

(z + 1)(z + 2)
=

1

2
,

A−1 = lim
z→−1

R(z)(z + 1) = lim
z→−1

z4 + 1

z(z + 2)
= −2 ,

A−2 = lim
z→−2

R(z)z = lim
z→−2

z4 + 1

z(z + 1)
=

17

2
,

and

W (z) =
z4 + 1

z(z + 1)(z + 2)
−

(
1

2z
− 2

z + 1
+

17

2(z + 2)

)
= ... = z − 3 ,

and finally
z4 + 1

z(z + 1)(z + 2)
=

1

2z
− 2

z + 1
+

17

2(z + 2)
+ z − 3 .

There a more simple way to compute the linear polynomial W (z) = az + b:

a = lim
z→∞

R(z)

z
= 1 ,



132 LECTURE NOTES (TEL AVIV, 2009)

and

b = lim
z→∞

(R(z) − z) = lim
z→∞

z4 + 1 − z2(z + 1)(z + 2)

z(z + 1)(z + 2)
= −3 .

25.3.1. Simple poles and Lagrange interpolation. If the poles of R are simple (i.e., have
multiplicity 1), then we get a representation of R as a sum of simple fractions and a
polynomial:

(25.3.5) R(z) =
∑

j

Aj

z − aj
+ W (z) .

In this case7,

Aj = lim
z→aj

R(z)(z − aj) = lim
z→aj

P (z)(z − aj)

Q(z)
=

P (aj)

Q′(aj)
,

and we get
P (z)

Q(z)
=

∑

j

P (aj)

(z − aj)Q′(aj)
+ W (z)

where the sum is taken over the zeroes of the polynomial Q. If deg P < deg Q, then W
is zero, and we arrive at the Lagrange interpolation formula with nodes at the zeroes of
Q proven in Lecture 15.

P (z) =
∑

j

P (aj)Q(z)

(z − aj)Q′(aj)
.

That is, Lagrange interpolation formula is a special case of the partial fraction decom-
position of rational functions!

7Here we use the derivative of the polynomial Q at a ∈ C. It is defined as usual:

Q
′(a) = lim

z→a

Q(z) − Q(a)

z − a
.

It is easy to see that this limit always exists. If

Q(z) =
∑

0≤j≤n

qjz
j
,

then
Q

′(a) =
∑

0≤j≤n−1

(j + 1)qj+1a
j
.

In algebra, the latter relation is considered as a definition of the derivative Q′
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26. Complex exponential function

26.1. Absolutely convergent series. Here we deal with absolutely convergent series∑
ak with complex terms ak.

26.1.1. Rearrangement of the series. Let us recall that a series
∑

a′k is a rearrangement
of the series

∑
ak if every term in the first series appears exactly once in the second

and conversely. In other words, there is a bijection p : N → N such that a′k = ap(k).

Theorem 26.1.1 (Dirichlet). If the series
∑

ak is absolutely convergent, then all its
rearrangements converge to the same sum.

We’ve already proved this theorem for series with real terms (Theorem 9.2.2). For
series with complex terms the proof is the same. We observe that

ak = αk + iβk = α+
k − α−

k + iβ+
k − iβ−

k

(here we’ve used notation x+ = max{x, 0}, x− = max{−x, 0}). Hence, we can represent
the series

∑
ak by a linear combination of four convergent series with non-negative

terms: ∑
ak =

∑
α+

k −
∑

α−
k + i

∑
β+

k − i
∑

β−
k .

Since all rearrangements of the series with positive terms converge to the same sum, the
result follows. ✷.

26.1.2. Multiplication of series. Having two absolutely convergent series

(A)
∑

k

ak

and

(B)
∑

l

bl ,

we want to learn how to multiply them. Intuitively, the product (AB) should be a
double sum

(AB)
∑

k,l

akbl .

The first question is how to understand this expression? The second question is does it
converges to the product A · B?

Consider the two-dimensional array of all possible products akbl:

a1b1 a1b2 a1b3 ... a1bn ...
a2b1 a2b2 a2b3 ... a2bn ...
a3b1 a3b2 a3b3 ... a3bn ...
... ... ... ... ... ...
... ... ... ... ... ...

amb1 amb2 amb3 ... ambn ...
... ... ... ... ... ...

Recall that we know how enumerate the elements of this array by the naturals N and
each enumeration leads to a different series. Luckily, the previous theorem tells us, that
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if the series we get in this way are absolutely convergent, then different enumerations
will lead to the same answer, so we’ll be able to choose the most convenient one.

Absolute convergence: observe that we can bound the finite sums

|ak1
bl1 | + ... + |aksbls | ≤

(
|a1| + ... + |an|

)(
|b1| + ... + |bn|

)

with n = max{k1, ..., ks, l1, ..., ls}. Hence, an arbitrary finite sum |ak1
bl1 |+ ... +|aksbls | is

bounded by
(∑ |ak|

)(∑ |bl|
)
. Therefore, for any rearrangement of the terms, the series

(AB) is absolutely convergent, and its sum does not depend on the rearrangement.

Cauchy’s product: the most popular rearrangement is the one called Cauchy’s product:

a1b1 + (a1b2 + a2b1) + (a1b3 + a2b2 + a3b1) + ... ,

or ∞∑

k,l=1

akbl =
∞∑

n=1

∑

k+l=n

akbl =
∞∑

n=1

n∑

k=1

akbn−k .

Here is our chief example:

Example 26.1.2. Suppose we have two absolutely convergent Taylor series
∞∑

k=0

akz
k ,

∞∑

l=0

blz
l .

Then their product is represented by another absolutely convergent Taylor series
∞∑

k=0

akz
k ·

∞∑

l=0

blz
l =

∞∑

n=0

cnzn

with
cn =

∑

k+l=n

akbl .

26.2. The complex exponent. Define the functions

ez def
=

∞∑

n=0

zn

n!
, sin z

def
=

∞∑

n=0

(−1)n z2n+1

(2n + 1)!
, cos z

def
=

∞∑

n=0

(−1)n z2n

(2n)!
.

First, note that the series on the RHS absolutely converge at any point z ∈ C, and that
for real z’s the new definitions coincide with the ones we know. Now, the miracle comes:

Claim 26.2.1 (Euler).

eiz = cos z + i sin z , z ∈ C .

Proof: by inspection. We have

eiz =
∞∑

n=0

(iz)n

n!
=

∞∑

m=0

i2m=(−1)m

︷ ︸︸ ︷
(iz)2m

(2m)!
+

∞∑

m=0

i2m+1=i(−1)n

︷ ︸︸ ︷
(iz)2m+1

(2m + 1)!

=
∞∑

m=0

(−1)m z2m

(2m)!
+ i

∞∑

m=0

(−1)m z2m+1

(2m + 1)!
= cos z + i sin z .
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Done! ✷

Note that the cosine function is even, while the sine function is odd. Hence,

Corollary 26.2.2. cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

Corollary 26.2.3. Any non-zero complex number z can be represented in the form
z = reiϕ where r = |z|, and ϕ = arg z.

Corollary 26.2.4. e2πi = 1.

Corollary 26.2.5 (Euler’s formula). eiπ = −1.

This miraculous identity connects the numbers e = limn→∞
(
1 + 1

n

)n
, π defined as

the quotient of the length of the circumference to its diameter, and i =
√
−1.

Exercise 26.2.6. Define

sinh z
def
=

∞∑

n=0

z2n+1

(2n + 1)!
, cosh z

def
=

∞∑

n=0

z2n

(2n)!
.

Check the following relations:

i. cosh z =
ez + e−z

2
, sinh z =

ez − e−z

2
.

ii. sin(iz) = i sinh z, cos(iz) = cosh z.

iii. sin2 z + cos2 z = 1, cosh2 z − sinh2 = 1.

iv. sin
(π

2
− z

)
= cos z.

The fundamental properties of the exponential function ex on the real axis are the
functional equation ex+y = ex · ey and the differential equation (ex)′ = ex. As we know,
each of these properties characterizes the exponential function. Now, we’ll check that
this two properties persist for the function ez on C.

Claim 26.2.7. ez+w = ez · ew.

Proof: by inspection.

ez · ew =
∞∑

n=0

∑

k+l=n

zk

k!
· wl

l!

=

∞∑

n=0

n∑

k=0

zk

k!
· wn−k

(n − k)!

=
∞∑

n=0

1

n!

n∑

k=0

(
n

k

)
zkwn−k

=
∞∑

n=0

(z + w)n

n!
= ez+w

and we are done. ✷
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Corollary 26.2.8. ez+2πi = ez; i.e., ez is a periodic function with the period 2πi.

The function f : C → C is said to be (complex) differentiable at the point z if there
exists the limit

f ′(z) = lim
C∋ǫ→0

f(z + ǫ) − f(z)

ǫ
.

It is important that the limit does not depend on the direction at which ǫ approaches
0.

Claim 26.2.9. The function ez is differentiable in C and (ez)′ = ez.

Proof: We have
ez+ǫ − ez

ǫ
= ez eǫ − 1

ǫ
.

Note that ∣∣∣∣
eǫ − 1

ǫ
− 1

∣∣∣∣ ≤
∞∑

n=1

|ǫ|n
(n + 1)!

= o(1)

as ǫ → 0. Done! ✷


