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Preface

The following notes were written before and during the course on Convex Geometry which was

held at the University of Karlsruhe in the winter term 2002/2003. Although this was the first

course on this topic which was given in English, the material presented was based on previous

courses in German which have been given several times, mostly in summer terms. In comparison

with these previous courses, the standard program was complemented by sections on surface area

measures and projection functions as well as by a short chapter on integral geometric formulas.

The idea here was to lay the basis for later courses on Stochastic Geometry, Integral Geometry

etc., which usually follow in a subsequent term.

The exercises at the end of each section contain all the weekly problems which were handed

out during the course and discussed in the weakly exercise session. Moreover, I have included a

few additional exercises (some of which are more difficult) and even some hard or even unsolved

problems. The list of exercises and problems is far from being complete, in fact the number

decreases in the later sections due to the lack of time while preparing these notes.

I thank Matthias Heveling and Markus Kiderlen for reading the manuscript and giving hints

for corrections and improvements.

Karlsruhe, February 2003 Wolfgang Weil

During repetitions of the course in 2003/2004 and 2005/2006 a number of misprints and small

errors have been detected. They are corrected in the current version. Also, additional material

and further exercises have been added.

Karlsruhe, October 2007 Wolfgang Weil

During the courses in 2008/2009 (by D. Hug) and 2009/2010 (by W. Weil) these lecture notes

have been revised and extended again. Also, some pictures have been included.

Karlsruhe, October 2009 Daniel Hug and Wolfgang Weil
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Introduction

Convexity is an elementary property of a set in a real (or complex) vector space V . A set A ⊂ V
is convex if it contains all the segments joining any two points of A, i.e. if x, y ∈ A and α ∈ [0, 1]
implies that αx + (1 − α)y ∈ A. This simple algebraic property has surprisingly many and

far-reaching consequences of geometric nature, but it also has topological consequences (if V
carries a compatible topology) as well as analytical ones (if the notion of convexity is extended

to real functions via their graphs). The interplay between convex sets and functions turns out

to be particularly fruitful. Results on convex sets and functions play a central role in many

mathematical fields, in particular in functional analysis, in optimization theory and in stochastic

geometry.

During this course, we shall concentrate on convex sets in R
n as the prototype of a finite di-

mensional real vector space. In infinite dimensional spaces often other methods have to be used

and different types of problems occur. Here, we concentrate on the classical part of convexity.

Starting with convex sets and their basic properties (in Chapter 1), we briefly discuss convex

functions (in Chapter 2), and then come (in Chapter 3) to the theory of convex bodies (com-

pact convex sets). Our goal here is to present the essential parts of the Brunn-Minkowski theory

(mixed volumes, quermassintegrals, Minkowski inequalities, in particular the isoperimetric in-

equality) as well as some more special topics (surface area measures, projection functions). In

the last chapter, we will shortly discuss selected basic formulas from integral geometry. If time

permits we will discuss symmetrization of convex sets and functions in an additional chapter.

The course starts rather elementary. Apart from a good knowledge of linear algebra (and, in

Chapter 2, analysis) no deeper knowledge of other fields is required. Later we will occasionally

use results from functional analysis, in some parts, we require some familiarity with topological

notions and, more importantly, we use some concepts and results from measure theory.
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Preliminaries and notations

Throughout the course we work in n-dimensional Euclidean space R
n. Elements of R

n are

denoted by lower case letters like x, y, . . . , a, b, . . . , scalars by greek letters α, β, . . . and (real)

functions by f, g, . . . We identify the vector space structure and the affine structure of R
n, i.e.

we do not distinguish between vectors and points. The coordinates of a point x ∈ R
n are used

only occasionally, therefore we indicate them as x = (x(1), . . . , x(n)). We equip R
n with its usual

topology generated by the standard scalar product

〈x, y〉 := x(1)y(1) + · · · + x(n)y(n), x, y ∈ R
n,

and the corresponding Euclidean norm

‖x‖ := ((x(1))2 + · · · + (x(n))2)1/2, x ∈ R
n.

By Bn we denote the unit ball,

Bn := {x ∈ R
n : ‖x‖ ≤ 1},

and by

Sn−1 := {x ∈ R
n : ‖x‖ = 1}

the unit sphere. Sometimes, we also make use of the Euclidean metric d(x, y) := ‖x − y‖,

x, y ∈ R
n. Sometimes it is convenient to write x

α
instead of 1

α
x, for x ∈ R

n and α ∈ R.

Convex sets in R
1 are not very exciting (they are open, closed or half-open, bounded or

unbounded intervalls), usually results on convex sets are only interesting for n ≥ 2. In some

situations, results only make sense, if n ≥ 2, although we shall not emphasize this in all cases. As

a rule, A,B, . . . denote general (convex or nonconvex) sets, K,L, . . . will be used for compact

convex sets (convex bodies) and P,Q, . . . for (convex) polytopes.

A number of notations will be used frequently, without further explanations:

lin A linear hull of A
aff A affine hull of A
dim A dimension of A (= dimension of aff A)

int A interior of A
rel int A relative interior of A (interior w.r.t. aff A)

cl A closure of A
bd A boundary of A
rel bd A relative boundary of A

13
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If f is a function on R
n with values in R or in the extended real line [−∞,∞] and if A is

a subset of the latter, we frequently abbreviate the set {x ∈ R
n : f(x) ∈ A} by {f ∈ A}.

Hyperplanes E ⊂ R
n are therefore shortly written as E = {f = α}, where f is a linear form,

f 6= 0, and α ∈ R (note that this representation is not unique). The corresponding closed half-

spaces generated by E are then {f ≥ α} and {f ≤ α}, and the open half-spaces are {f > α}
and {f < α}.

The symbol ⊂ always includes the case of equality. The abbreviation w.l.o.g. means ‘without

loss of generality’ and is used sometimes to reduce the argument to a special case. The logical

symbols ∀ (for all) and ∃ (exists) are occasionally used in formulas. � denotes the end of a proof.

Finally, we write |A| for the cardinality of a set A.

Each section is complemented by a number of exercises. Some are very easy, but most require

a bit of work. Those which are more challenging than it appears from the first look are marked

by ∗. Occasionally, problems have been included which are either very difficult to solve or even

unsolved up to now. They are indicated by P.



Chapter 1

Convex sets

1.1 Algebraic properties

The definition of a convex set requires just the structure of R
n as a vector space. In particular, it

should be compared with the notions of a linear and an affine subspace.

Definition. A set A ⊂ R
n is convex, if αx + (1 − α)y ∈ A for all x, y ∈ A and α ∈ [0, 1].

Examples. (1) The simplest convex sets (apart from the points) are the segments. We denote by

[x, y] := {αx + (1 − α)y : α ∈ [0, 1]}

the closed segment between x and y, x, y ∈ R
n. Similarly,

(x, y) := {αx + (1 − α)y : α ∈ (0, 1)}

is the open segment and we define half-open segments (x, y] and [x, y) in an analogous way.

(2) Other trivial examples are the affine flats in R
n.

(3) If {f = α} (f 6= 0 a linear form, α ∈ R) is the representation of a hyperplane, the open

half-spaces {f < α}, {f > α} and the closed half-spaces {f ≤ α}, {f ≥ α} are convex.

(4) Further convex sets are the balls

B(r) := {x ∈ R
n : ‖x‖ ≤ r}, r ≥ 0,

and their translates.

(5) Another convex set and a nonconvex set:

b

b

b

b
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16 CHAPTER 1. CONVEX SETS

Let k ∈ N, let x1, . . . , xk ∈ R
n, and let α1, . . . , αk ∈ [0, 1] with α1 + . . . αk = 1, then

α1x1 + · · · + αkxk is called a convex combination of the points x1, . . . , xk.

Theorem 1.1.1. A set A ⊂ R
n is convex, if and only if all convex combinations of points in A lie

in A.

Proof. Taking k = 2, we see that the condition on the convex combinations implies convexity.

For the other direction, assume A is convex and k ∈ N. We use induction on k.

For k = 1, the assertion is trivially fulfilled.

For the step from k − 1 to k, k ≥ 2, assume x1, . . . , xk ∈ A and α1, . . . , αk ∈ [0, 1] with

α1 + . . . αk = 1. We may assume αi 6= 0, i = 1, . . . , k, and define

βi :=
αi

α1 + · · · + αk−1

, i = 1, . . . , k − 1,

hence βi ∈ [0, 1] and β1+. . .+βk−1 = 1. By the induction hypothesis, β1x1+. . .+βk−1xk−1 ∈ A,

and by the convexity

k∑

i=1

αixi =

(
k−1∑

i=1

αi

)(
k−1∑

i=1

βixi

)

+

(

1 −
k−1∑

i=1

αi

)

xk ∈ A.

If {Ai : i ∈ I} is an arbitrary family of convex sets (in R
n), then the intersection

⋂

i∈I Ai is

convex. In particular, for a given set A ⊂ R
n, the intersection of all convex sets containing A is

convex, it is called the convex hull conv A of A.

The following theorem shows that conv A is the set of all convex combinations of points in A.

Theorem 1.1.2. For A ⊂ R
n,

conv A =

{
k∑

i=1

αixi : k ∈ N, x1, . . . , xk ∈ A,α1, . . . , αk ∈ [0, 1],
k∑

i=1

αi = 1

}

.

Proof. Let B denote the set on the right-hand side. If C is a convex set containing A, Theorem

1.1.1 implies B ⊂ C. Hence, we get B ⊂ conv A.

On the other hand, the set B is convex, since

β(α1x1 + · · · + αkxk) + (1 − β)(γ1y1 + · · · + γmym)

= βα1x1 + · · · + βαkxk + (1 − β)γ1y1 + · · · + (1 − β)γmym,

for xi, yj ∈ A and coefficients β, αi, γj ∈ [0, 1] with α1 + . . . + αk = 1 and γ1 + . . . + γm = 1,

and

βα1 + · · · + βαk + (1 − β)γ1 + · · · + (1 − β)γm = β + (1 − β) = 1.

Since B contains A, we get conv A ⊂ B.
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Remarks. (1) Trivially, A is convex, if and only if A = conv A.

(2) Later, in Section 1.2, we will give an improved version of Theorem 1.1.2 (CARATHEODORY’s

theorem), where the number k of points used in the representation of conv A is bounded by n+1.

Definition. For sets A,B ⊂ R
n and α, β ∈ R, we put

αA + βB := {αx + βy : x ∈ A, y ∈ B}.

The set αA+βB is called a linear combination of the sets A,B, the operation + is called vector

addition. Special cases get special names:

A + B the sum set

A + x (the case B = {x}) a translate of A
αA the multiple of A
αA + x (for α ≥ 0) a homothetic image of A
−A := (−1)A the reflection of A (in the origin)

A − B := A + (−B) the difference of A and B

Remarks. (1) If A,B are convex and α, β ∈ R, then αA + βB is convex.

(2) In general, the relations A + A = 2A and A − A = {0} are wrong. For a convex set A and

α, β ≥ 0, we have αA + βA = (α + β)A. The latter property characterizes convexity of a set A.

We next show that convexity is preserved by affine transformations.

Theorem 1.1.3. Let A ⊂ R
n, B ⊂ R

m be convex and f : R
n → R

m affine. Then

f(A) := {f(x) : x ∈ A}

and

f−1(B) := {x ∈ R
n : f(x) ∈ B}

are convex.

Proof. Both assertions follow from

αf(x) + (1 − α)f(y) = f(αx + (1 − α)y).

Corollary 1.1.4. The projection of a convex set onto an affine subspace is convex.

The converse is obviously false, a shell bounded by two concentric balls is not convex but has

convex projections.

Definition. (a) The intersection of finitely many closed half-spaces is called a polyhedral set.

(b) The convex hull of finitely many points x1, . . . , xk ∈ R
n is called a (convex) polytope P .
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(c) The convex hull of affinely independent points is called a simplex, an r-simplex is the convex

hull of r + 1 affinely independent points.

Intuitively speaking, the vertices of a polytope P form a minimal set of points from P which

generate the polytope. A precise definition is the following.

Definition. A point x of a polytope P is called a vertex of P , if P \ {x} is convex. The set of all

vertices of P is denoted by vert P .

Theorem 1.1.5. Let P be a polytope in R
n, and let x1, . . . , xk ∈ R

n be distinct points.

(a) If P = conv {x1, . . . , xk}, then x1 is a vertex of P , if and only if x1 /∈ conv {x2, . . . , xk}.

(b) P is the convex hull of its vertices.

Proof. (a) If x1 is a vertex of P , then x1 /∈ P \ {x1}. Since P \ {x1} is convex, we get

conv {x2, . . . , xk} ⊂ P \ {x1}, and hence x1 /∈ conv {x2, . . . , xk}.

Conversely, assume that x1 /∈ conv {x2, . . . , xk}. If x1 is not a vertex of P , then there exist

distinct points a, b ∈ P \ {x1} and λ ∈ (0, 1) such that x1 = (1 − λ)a + λb. Hence there exist

k ∈ N, µ1, . . . , µk ∈ [0, 1] and τ1, . . . , τk ∈ [0, 1] with µ1 + . . . + µk = 1 and τ1 + . . . + τk = 1
such that µ1, τ1 6= 1 and

a =
k∑

i=1

µixi, b =
k∑

i=1

τixi.

Thus we get

x1 =
k∑

i=1

((1 − λ)µi + λτi) xi,

from which it follows that

x1 =
k∑

i=2

(1 − λ)µi + λτi

1 − (1 − λ)µ1 − λτ1

xi, (1.1)

where (1−λ)µ1+λτ1 6= 1 and the right-hand side of (1.1) is a convex combination of x2, . . . , xk,

a contradiction.

(b) Using (a), we can successively remove points from {x1, . . . , xk} which are not vertices with-

out changing the convex hull. Moreover, if x /∈ {x1, . . . , xk} and x is a vertex of P , then

P = conv {x, x1, . . . , xk} implies that x /∈ conv {x1, . . . , xk} = P , a contradiction.

Remarks. (1) A polyhedral set is closed and convex. Polytopes, as convex hulls of finite sets, are

closed and bounded, hence compact. We discuss these topological questions in more generality

in Section 1.3.

(2) For a polytope P , Theorem 1.1.5 shows that P = conv vertP . This is a special case of

MINKOWSKI’s theorem, which is proved in Section 1.5.

(3) Polyhedral sets and polytopes are somehow dual notions. We shall see later in Section 1.4

that the set of polytopes coincides with the set of bounded polyhedral sets.

(4) The polytope property is preserved by the usual operations. In particular, if P,Q are poly-

topes, then the following sets are polytopes as well:
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• conv (P ∪ Q),

• P ∩ Q,

• αP + βQ, for α, β ∈ R,

• f(P ), for an affine map f : R
n → R

m.

Here, only the second assertion is not straight-forward. The proof that P ∩ Q is a polytope

will follow later for instance from the mentioned connection between polytopes and bounded

polyhedral sets.

(5) If P is the convex hull of affinely independent points x0, . . . , xr, then each xi is a vertex of

P , i.e. P is an r-simplex. An r-simplex P has dimension dim P = r.

Simplices are characterized by the property that their points are unique convex combinations of

the vertices.

Theorem 1.1.6. A convex set A ⊂ R
n is a simplex, if and only if there exist x0, . . . , xk ∈ A such

that each x ∈ A has a unique representation as a convex combination of x0, . . . , xk.

Proof. By definition, A is a simplex, if A = conv {x0, . . . , xk} with affinely independent

x0, . . . , xk ∈ R
n. The assertion therefore follows from Theorem 1.1.2 together with the unique-

ness property of affine combinations (with respect to affinely independent points) and the well-

known characterizations of affine independence (see also Exercise 11).

Exercises and problems

1. (a) Show that A ⊂ R
n is convex, if and only if αA + βA = (α + β)A holds, for all α, β ≥ 0.

(b) Which non-empty sets A ⊂ R
n are characterized by αA+βA = (α+β)A, for all α, β ∈ R?

2. Let A ⊂ R
n be closed. Show that A is convex, if and only if A + A = 2A holds.

3. A set

R := {x + αy : α ≥ 0}, x ∈ R
n, y ∈ Sn−1,

is called a ray (starting in x with direction y).

Let A ⊂ R
n be convex and unbounded. Show that A contains a ray.

Hint: Start with the case of a closed set A. For the general case, Theorem 1.3.2 is useful.

4. For a set A ⊂ R
n, the polar A◦ is defined as

A◦ := {x ∈ R
n : 〈x, y〉 ≤ 1 ∀y ∈ A}.

Show that:
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(a) A◦ is closed, convex and contains 0.

(b) If A ⊂ B, then A◦ ⊃ B◦.

(c) (A ∪ B)◦ = A◦ ∩ B◦.

(d) If P is a polytope, P ◦ is polyhedral.

5. (a) If ‖ · ‖′ : R
n → [0,∞) is a norm, show that the corresponding unit ball B′ := {x ∈ R

n :
‖x‖′ ≤ 1} is convex and symmetric (i.e. B′ = −B′).

(b) Show that

‖ · ‖1 : R
n → [0,∞), x = (x(1), . . . , x(n)) 7→

n∑

i=1

|x(i)|,

and

‖ · ‖∞ : R
n → [0,∞), x = (x(1), . . . , x(n)) 7→ max

i=1,...,n
|x(i)|,

are norms. Describe the corresponding unit balls B1 and B∞.

(c) Show that for an arbitrary norm ‖ · ‖′ : R
n → [0,∞) there are constants α, β, γ > 0 such that

α‖ · ‖1 ≤ β‖ · ‖∞ ≤ ‖ · ‖′ ≤ γ‖ · ‖1.

Describe these inequalities in terms of the corresponding unit balls B1, B∞, B′.

Hint: Show first the last inequality. Then prove that

inf{‖x‖∞ : x ∈ R
n, ‖x‖′ = 1} > 0,

and deduce the second inequality from that.

(d) Use (c) to show that all norms on R
n are equivalent.

6. For a set A ⊂ R
n let

ker A := {x ∈ A : [x, y] ⊂ A for all y ∈ A}
be the kernel of A. Show that ker A is convex. Show by an example that A ⊂ B does not imply

kerA ⊂ ker B.

7. Let A ⊂ R
n be a locally finite set (this means that A ∩ B(r) is a finite set, for all r ≥ 0). For each

x ∈ A, we define the Voronoi cell

C(x, A) := {z ∈ R
n : ‖z − x‖ ≤ ‖z − y‖ ∀y ∈ A},

consisting of all points z ∈ R
n which have x as their nearest point (or one of their nearest points)

in A.

(a) Show that the Voronoi cells C(x, A), x ∈ A, are closed and convex.

(b) If conv A = R
n, show that the Voronoi cells C(x, A), x ∈ A, are bounded and polyhedral,

hence they are convex polytopes.

Hint: Use Exercise 3.

(c) Show by an example that the condition conv A = R
n is not necessary for the boundedness of

the Voronoi cells C(x, A), x ∈ A.
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8. Show that the set A of all convex subsets of R
n is a complete lattice with respect to the inclusion

order.

Hint: Define A ∧ B := A ∩ B,

A ∨ B := conv (A ∪ B),

inf M :=
⋂

A∈M

A, M ⊂ A,

supM := conv

(
⋃

A∈M

A

)

, M ⊂ A.

9. Show that, for A, B ⊂ R
n, we have conv (A + B) = conv A + conv B.

10. Let A, B ⊂ R
n be nonempty convex sets, and let x ∈ R

n. Show that

(a)

conv ({x} ∪ A) = {λa + (1 − λ)x : λ ∈ [0, 1], a ∈ A}.

(b) If A ∩ B = ∅, then

conv ({x} ∪ A) ∩ B = ∅ or conv ({x} ∪ B) ∩ A = ∅.

11. Assume that x1, . . . , xk ∈ R
n are such that each x ∈ conv {x1, . . . , xk} is a unique convex combi-

nation of x1, . . . , xk. Show that x1, . . . , xk are affinely independent.

12. Let P = conv {x0, . . . , xn} be an n-simplex in R
n. Denote by Ei the affine hull of {x0, . . . , xn} \

{xi} and by Hi the closed half-space bounded by Ei and with xi ∈ Hi, i = 0, . . . , n.

(a) Show that xi ∈ intHi, i = 0, . . . , n.

(b) Show that P =
n⋂

i=0

Hi.

(c) Show that P ∩ Ei is an (n − 1)-simplex.
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1.2 Combinatorial properties

Combinatorial problems arise in connection with polytopes. In the following, however, we dis-

cuss problems of general convex sets which are called combinatorial, since they involve the

cardinality of points or sets. The most important results in this part of convex geometry (which

is called Combinatorial Geometry) are the theorems of CARATHÉODORY, HELLY and RADON.

Theorem 1.2.1 (RADON). Let x1, . . . , xm ∈ R
n be affinely dependent points. Then there exists

a partition {1, . . . ,m} = I ∪ J , I ∩ J = ∅, such that

conv {xi : i ∈ I} ∩ conv {xj : j ∈ J} 6= ∅.

Proof. Let x1, . . . , xm ∈ R
n be affinely dependent. Then there exist α1, . . . , αm ∈ R, not all

zero, such that
m∑

i=1

αixi = 0 and

m∑

i=1

αi = 0.

Define I := {i ∈ {1, . . . ,m} : αi ≥ 0} and J := {1, . . . ,m} \ I . Then

α :=
∑

i∈I

αi =
∑

j∈J

(−αj) > 0.

Hence

y :=
∑

i∈I

αi

α
xi =

∑

j∈J

−αj

α
xj ∈ conv {xi : i ∈ I} ∩ conv {xj : j ∈ J}.

Observe that any sequence of n + 2 points in R
n is affinely dependent. As a consequence, we

next derive HELLY’s Theorem (in a particular version). It provides an answer to a question of

the following type. Let A1, . . . , Am be a sequence of sets such that any s of these sets enjoy a

certain property (for instance, having nonempty intersection). Do then all sets of the sequence

enjoy this property?

Theorem 1.2.2 (HELLY). Let A1, . . . , Am be convex sets in R
n, m ≥ n + 1. If each n + 1 of the

sets A1, . . . , Am have nonempty intersection, then

m⋂

i=1

Ai 6= ∅.

Proof. We proceed by induction with respect to m ≥ n + 1. For m = n + 1 there is nothing to

show. Let m ≥ n + 2, and assume that the assertion is true for m − 1 sets. Hence there are

xi ∈ A1 ∩ · · · ∩ Ǎi ∩ · · · ∩ Am
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(Ai is omitted) for i = 1, . . . ,m. The sequence x1, . . . , xm of m ≥ n+2 points is affinely depen-

dent. By Radon’s theorem (possibly after a change of notation) there is some k ∈ {1, . . . ,m−1}
and a point x ∈ R

n satisfying

x ∈ conv {x1, . . . , xk} ∩ conv {xk+1, . . . , xm}.

Since x1, . . . , xk ∈ Ak+1, . . . , Am, we get

x ∈ conv {x1, . . . , xk} ⊂ Ak+1 ∩ · · · ∩ Am. (2.2)

Furthermore, since xk+1, . . . , xm ∈ A1, . . . , Ak, we also have

x ∈ conv {xk+1, . . . , xm} ⊂ A1 ∩ · · · ∩ Ak. (2.3)

Thus (2.2) and (2.3) yield x ∈ A1 ∩ · · · ∩ Am.

HELLY’s Theorem has interesting applications. For some of them, we refer to the exercises. In

general, the theorem cannot be extended to infinite families of convex sets (see Exercise 1). An

exception is the case of compact sets.

Theorem 1.2.3 (HELLY). Let A be a family of at least n + 1 compact convex sets in R
n (A may

be infinite) and assume that any n + 1 sets in A have a non-empty intersection. Then, there is a

point x ∈ R
n which is contained in all sets of A.

Proof. By Theorem 1.2.2, every finite subfamily of A has a non-empty intersection. For compact

sets, this implies
⋂

A∈A

A 6= ∅.

In fact, if
⋂

A∈A A = ∅, then
⋃

A∈A

(Rn \ A) = R
n.

By the covering property, any compact A0 ∈ A is covered by finitely many open sets R
n \

A1, ..., R
n \ Ak, Ai ∈ A. This implies

k⋂

i=0

Ai = ∅,

a contradiction.

The following result will be frequently used later on.

Theorem 1.2.4 (CARATHÉODORY). For a set A ⊂ R
n and x ∈ R

n the following two assertions

are equivalent:

(a) x ∈ conv A,

(b) there is an r-simplex P (0 ≤ r ≤ n) with vertices in A and such that x ∈ P .
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Proof. (b)⇒(a): Since vert P ⊂ A, we have x ∈ P = conv vertP ⊂ conv A.

(a)⇒(b): By Theorem 1.1.2, x = α1x1 + · · · + αkxk with k ∈ N, x1, . . . , xk ∈ A, α1, . . . , αk ∈
(0, 1] and α1 + . . . + αk = 1. Let k be the minimal number for which such a representation is

possible, i.e. x is not in the convex hull of any k − 1 points of A. We now show that x1, . . . , xk

are affinely independent. In fact, assume that there were numbers β1, . . . , βk ∈ R, not all zero,

such that
k∑

i=1

βixi = 0 and

k∑

i=1

βi = 0.

Let J be the set of indices i ∈ {1, . . . , k}, for which βi > 0 and choose i0 ∈ J such that

αi0

βi0

= min
i∈J

αi

βi

.

Then, we have

x =
k∑

i=1

(

αi −
αi0

βi0

βi

)

xi

with

αi −
αi0

βi0

βi ≥ 0,
k∑

i=1

(

αi −
αi0

βi0

βi

)

= 1 and αi0 −
αi0

βi0

βi0 = 0.

This is a contradiction to the minimality of k.

Exercises and problems

1. Show by an example that Theorem 1.2.3 is wrong if the sets in A are only assumed to be closed

(and not necessarily compact).

2. In an old German fairy tale, a tailor claimed the fame to have ‘killed seven with one stroke’. A

closer examination showed that the victims were in fact flies which had landed on a toast covered

with jam. The tailor had used a fly-catcher of convex shape for his sensational victory. As the

remains of the flies on the toast showed, it was possible to kill any three of them with one stroke of

the (suitably) shifted fly-catcher without even turning the direction of the handle.

Is it possible that the tailor told the truth?

3. Let F be a family of finitely many parallel closed segments in R
2, |F| ≥ 3. Suppose that for any

three segments in F there is a line intersecting all three segments.

Show that there is a line in R
2 intersecting all the segments in F .

∗ Show that the above result remains true without the finiteness condition.
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4. Prove the following version of CARATHÉODORY’s theorem:

Let A ⊂ R
n and x0 ∈ A be fixed. Then conv A is the union of all simplices with vertices in A and

such that x0 is one of the vertices.

5.∗ Prove the following generalization of CARATHÉODORY’s theorem (Theorem of BUNDT):

Let A ⊂ R
n be a connected set. Then conv A is the union of all simplices with vertices in A and

dimension at most n − 1.

6. Collect further examples for applications of Helly’s theorem:

Lutwak’s containment result (simplices),

centre point result

elementary applications
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1.3 Topological properties

Although convexity is a purely algebraic property, it has a variety of topological consequences.

One striking property of convex sets is that they always have (relative) interior points. In order

to prove that, we first need an auxiliary result.

Proposition 1.3.1. If P = conv {x0, . . . , xk} is a k-simplex in R
n, 1 ≤ k ≤ n, then

rel int P = {α0x0 + · · · + αkxk : αi ∈ (0, 1), α0 + . . . + αk = 1} .

Proof. W.l.o.g. we may assume k = n (working in aff A) and x0 = 0 (using α0 = 1 − α1 −
. . . − αk and replacing P by P − x0). Then we have

P = {α1x1 + · · · + αnxn : αi ∈ [0, 1], α1 + . . . + αk ≤ 1} ,

and we need to show that

int P = {α1x1 + · · · + αnxn : αi ∈ (0, 1), α1 + . . . + αk < 1} .

Notice that x1, . . . , xn is a basis of R
n. Let F : R

n → R
n be defined by F (x) = (α1, . . . , αk)

if x = α1x1 + . . . + αkxk. Then F is a homeomorphism. Therefore, int P = F−1(int F (P )).
Obviously,

int F (P ) = {(α1, ..., αn) : αi ∈ (0, 1), α1 + . . . + αk < 1}
and the proof is complete.

Theorem 1.3.2. If A ⊂ R
n, A 6= ∅, is convex, then rel int A 6= ∅.

Proof. If dim A = k, then A contains k + 1 affinely independent points and hence a k-simplex

P . By Proposition 1.3.1, there is some x ∈ rel int P . Each such x fulfills x ∈ rel int A.

Theorem 1.3.2 shows that, for the investigation of a fixed convex set A, it is useful to consider the

affine hull of A, as the basic space, since then A has interior points. We will often take advantage

of this fact by assuming that the affine hull of A is the whole space R
n. Therefore, proofs in the

following frequently start with the sentence that we may assume (w.l.o.g.) that the convex set

under consideration has dimension n.

A further consequence of convexity is that topological notions like interior or closure of a

(convex) set can be expressed in purely geometric terms.

Theorem 1.3.3. If A ⊂ R
n is convex, then

cl A = {x ∈ R
n : ∃y ∈ A with [y, x) ⊂ A}

and

int A = {x ∈ R
n : ∀y ∈ R

n \ {x} ∃z ∈ (x, y) with [x, z] ⊂ A}.

Again, we first need an auxiliary result.
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Proposition 1.3.4. If A ⊂ R
n is convex, x ∈ cl A, y ∈ rel int A, then [y, x) ⊂ rel int A.

Proof. As we explained above, we may assume dim A = n. Let x ∈ cl A, y ∈ rel int A and

z ∈ (y, x), that is z = αy+(1−α)x, α ∈ (0, 1). We have to show that z ∈ int A. Since x ∈ cl A,

there exists a sequence xk → x with xk ∈ A for k ∈ N. Then yk := 1
α
(z − (1−α)xk) converges

towards y, as k → ∞. Since y ∈ int A, for k large enough we have yk ∈ int A. Then, there exists

an open ball V around yk with V ⊂ A. The convexity of A implies z ∈ αV + (1 − α)xk ⊂ A.

Since αV + (1 − α)xk is open, z ∈ int A.

Proof of Theorem 1.3.3. The case A = ∅ is trivial, hence we assume now that A 6= ∅.

Concerning the first equation, we may assume dim A = n since the sets on both sides depend

only on aff A. Let B be the set on the right-hand side. Then we obviously have B ⊂ cl A. To

show the converse inclusion, let x ∈ cl A. By Theorem 1.3.2 there is a point y ∈ int A, hence by

Proposition 1.3.4 we have [y, x) ⊂ int A ⊂ A. Therefore, x ∈ B.

The second equation is trivial for dim A < n, since then both sides are empty. Hence, let

dim A = n. We denote the set on the right-hand side by C. Then the inclusion int A ⊂ C is

obvious. For the converse, let x ∈ C. Again, we choose y ∈ int A by Theorem 1.3.2, y 6= x.

The definition of C implies that for 2x − y ∈ R
n there exists z ∈ (x, 2x − y) with z ∈ A. Then

x ∈ (y, z) and Proposition 1.3.4 shows that x ∈ int A.

Remarks. (1) For simplicity, we have formulated Theorem 1.3.3(b) for the interior of a convex

set A. The result can be easily modified to cover the case of the relative interior of a lower

dimensional set A.

(2) Theorem 1.3.3 shows that (and how) topological notions like the interior and the closure of a

set can be defined for convex sets A on a purely algebraic basis, without that a topology has to

be given in the underlying space. This can be used in arbitrary real vector spaces V (without a

given topology) to introduce and study topological properties of convex sets.

In view of this remark, we deduce the following two corollaries from Theorem 1.3.3, instead of

giving a direct proof based on the topological notions rel int and cl .

Corollary 1.3.5. For a convex set A ⊂ R
n, the sets rel int A and cl A are convex.

Proof. The convexity of rel int A follows immediately from Proposition 1.3.4.

For the convexity of cl A, let A 6= ∅, x1, x2 ∈ cl A, α ∈ (0, 1). From Theorem 1.3.3, we get

points y1, y2 ∈ A with [y1, x1) ⊂ A, [y2, x2) ⊂ A. Hence

α[y1, x1) + (1 − α)[y2, x2) ⊂ A.

Since

[αy1 + (1 − α)y2, αx1 + (1 − α)x2) ⊂ α[y1, x1) + (1 − α)[y2, x2),

we obtain αx1 + (1 − α)x2 ∈ cl A, again from Theorem 1.3.3.
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Corollary 1.3.6. For a convex set A ⊂ R
n,

cl A = cl rel int A

and

rel int A = rel int cl A.

Proof. The inclusion

cl rel int A ⊂ cl A

is obvious. Let x ∈ cl A. By Theorem 1.3.2 there is a y ∈ rel int A and by Proposition 1.3.4

we have [y, x) ⊂ rel int A. Since rel int A is convex (Corollary 1.3.5), Theorem 1.3.3 implies

x ∈ cl rel int A.

The inclusion

rel int A ⊂ rel int cl A

is again obvious. Let x ∈ rel int cl A. Since cl A is convex (Corollary 1.3.5), we can apply

Theorem 1.3.3 in aff A = aff cl A to cl A. Therefore, for y ∈ rel int A (which exists by Theorem

1.3.2), y 6= x, we obtain z ∈ cl A such that x ∈ (y, z). By Proposition 1.3.4, x ∈ rel int A.

We finally study the topological properties of the convex hull operator. For a closed set A ⊂ R
n,

the convex hull conv A need not be closed. A simple example is given by the set

A := {(t, t−1) : t > 0} ∪ {(0, 0)} ⊂ R
2.

However, the convex hull operator behaves well with respect to open and compact sets.

Theorem 1.3.7. If A ⊂ R
n is open, conv A is open. If A ⊂ R

n is compact, conv A is compact.

Proof. Let A be open and x ∈ conv A. Then there exist xi ∈ A and αi ∈ (0, 1], i ∈ {1, . . . , k},

such that x = α1x1 + · · · + αkxk and α1 + . . . + αk = 1. We can choose a ball U around the

origin such that xi + U ⊂ A ⊂ conv A, i = 1, . . . , k. Since

U + x = α1(U + x1) + · · · + αk(U + xk) ⊂ conv A,

we have x ∈ int conv A, hence conv A is open.

Now let A be compact. Since A is contained in a ball B(r), we have conv A ⊂ B(r), i.e.

conv A is bounded. In order to show that conv A is closed, let xk → x, xk ∈ conv A, k ∈ N. By

Theorem 1.2.4, each xk has a representation

xk = αk0xk0 + · · · + αknxkn

with

αki ∈ [0, 1],
n∑

i=0

αki = 1 and xki ∈ A.

Because A and [0, 1] are compact, we find a subsequence (kr)r∈N in N such that the 2n + 2
sequences (xkrj)r∈N, j = 0, . . . , n, and (αkrj)r∈N, j = 0, . . . , n, all converge. We denote the

limits by yj and βj , j = 0, . . . , n. Then, yj ∈ A, βj ∈ [0, 1], β0 + . . . + βn = 1 and x =
β0y0 + · · · βnyn. Hence, x ∈ conv A.
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Remarks. (1) The last theorem shows, in particular, that a convex polytope P is compact; a fact,

which can of course be proved in a simpler, more direct way.

(2) We give an alternative argument for the first part of Theorem 1.3.7 (following a suggestion

of Mathew Penrose). Let A be open and x ∈ conv A. Then there exist xi ∈ A and αi ∈ (0, 1],
i ∈ {1, . . . , k}, such that x = α1x1 + · · · + αkxk and α1 + . . . + αk = 1. If k = 1, the assertion

is clear. If k ≥ 2, we have

x = α1x1 + (1 − α1)
k∑

j=2

αj

1 − α1

xj

︸ ︷︷ ︸

=:y

.

Since x1 ∈ int conv A amd y ∈ conv A, Proposition 1.3.4 yields that x ∈ [x1, y) ⊂ int conv A.

(3) For an alternative argument for the second part of Theorem 1.3.7, define

C := {(α0, . . . , αn, x0, . . . , xn) ∈ [0, 1]n+1 × An+1 : α0 + . . . + αn = 1}
and

f : C → conv A, f(α0, . . . , αn, x0, . . . , xn) :=
n∑

i=0

αixi.

Clearly, f is continuous and C is compact. Hence f(C) is compact. By Carathéodory’s theorem,

f(C) = conv A, which shows that conv A is compact.

Exercises and problems

1. Let P = conv {a0, . . . , an} be an n-simplex in R
n and x ∈ intP .

Show that the polytopes

Pi := conv {a0, . . . , ai−1, x, ai+1, . . . , an}, i = 0, . . . , n,

are n-simplices with pairwise disjoint interiors and that

P =
n⋃

i=0

Pi.

2. Show that, for A ⊂ R
n,

cl conv A =
⋂

{B ⊂ R
n : B ⊃ A, B closed and convex}.

3. Let A, B ⊂ R
n be convex.

(a) Show that rel int (A + B) = rel intA + rel intB.

(b) If A (or B) is bounded, show that cl (A + B) = clA + clB.

(c) Show by an example that (b) is wrong, if neither A nor B are assumed to be bounded.

4. Let A, B ⊂ R
n be convex, A closed, B compact. Show that A+B is closed (and convex). Give an

example which shows that the compactness of one of the sets A, B is necessary for this statement.
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1.4 Support and separation theorems

Convex sets are sets which contain with their elements also all convex combinations. In this

section, we consider a description of convex sets which is of a dual nature, in that it describes

convex sets A as intersections of half-spaces. For such a result, we have to assume that A is a

closed set.

We start with results on the metric projection which are of independent interest.

Theorem 1.4.1. Let A ⊂ R
n be nonempty, convex and closed. Then for each x ∈ R

n, there is a

unique point p(A, x) ∈ A satisfying

‖p(A, x) − x‖ = inf
y∈A

‖y − x‖.

Definition. The mapping p(A, ·) : R
n → A is called the metric projection (onto A).

b

b

x

p(A, x)

A

Proof of Theorem 1.4.1. For x ∈ A, we obviously have p(A, x) = x. For x /∈ A, there is a ball

B(r) such that

A ∩ (x + B(r)) 6= ∅.

Then,

inf
y∈A

‖y − x‖ = inf
y∈A∩(x+B(r))

‖y − x‖.

Since Ar := A∩ (x+B(r)) is compact and f : y 7→ ‖y−x‖ continuous, there is a point y0 ∈ A
realizing the minimum of f on Ar.

If y1 ∈ A is a second point realizing this minimum, with y1 6= y0, then y2 := 1
2
(y0 + y1) ∈ A

and ‖y2 − x‖ < ‖y0 − x‖, by Pythagoras’ theorem.

b

b bb

x

y0 y1y2

This is a contradiction and hence the metric projection p(A, x) is unique.
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Remark. As the above proof shows, the existence of a nearest point p(A, x) is guaranteed for all

closed sets A. The convexity of A is responsible for the uniqueness of p(A, x). A more general

class of sets consists of closed sets A, for which the uniqueness of p(A, x) holds at least in an

ε-neighborhood of A, i.e. for all x ∈ A + εBn, with ε > 0. Such sets are called sets of positive

reach, and the largest ε for which uniqueness of the metric projection holds is called the reach of

A. Convex sets thus have reach ∞.

Definition. Let A ⊂ R
n be closed and convex, and let E = {f = α} be a hyperplane. E is

called supporting hyperplane of A, if A ∩ E 6= ∅ and A is contained in one of the two closed

half-spaces {f ≤ α}, {f ≥ α} (or in both, but this implies A ⊂ {f = α}, hence it is only

possible for lower dimensional sets A). A half-space containing A and bounded by a supporting

hyperplane of A is called supporting half-space of A, the set A∩E is called support set and any

x ∈ A ∩ E is called supporting point.

If E is a supporting hyperplane of A, we also say shortly that the hyperplane E supports A.

Example. The set

A := {(x(1), x(2)) ∈ R
2 : x(2) ≥ 1

x(1)
, x(1) > 0}

is closed and convex. The line g := {x(1) + x(2) = 2} is a supporting line, since (1, 1) ∈ A ∩ g
and A ⊂ {x(1) + x(2) ≥ 2}. The lines h := {x(1) = 0} and k := {x(2) = 0} bound the set A, but

are not supporting lines since they do not have a point in common with A.

Theorem 1.4.2. Let A ⊂ R
n be nonempty, closed and convex and let x ∈ R

n \ A. Then, the

hyperplane E through p(A, x), orthogonal to x− p(A, x), supports A. Moreover, the half-space

H bounded by E and not containing x is a supporting half-space.

Proof. Obviously x /∈ E. Since p(A, x) ∈ E ∩ A, it remains to show that A ⊂ H . Assume

that there is y ∈ A, y /∈ H . Then 〈y − p(A, x), x − p(A, x)〉 > 0. We consider the orthogonal

projection ȳ of x onto the line through p(A, x) and y. By Pythagoras’ theorem, ‖ȳ − x‖ <
‖p(A, x) − x‖. If ȳ ∈ (p(A, x), y], we put y′ := ȳ. Otherwise, we have y ∈ (p(A, x), ȳ] and put

y′ := y.

b

b b

b

H
A

x y

p(A, x)

y′

E

In both cases we obtain a point y′ ∈ (p(A, x), y] ⊂ A with ‖y′ − x‖ < ‖p(A, x) − x‖. This

is a contradiction, hence we conclude A ⊂ H .
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Corollary 1.4.3. Every nonempty, closed convex set A ⊂ R
n, A 6= R

n, is the intersection of all

closed half-spaces which contain A. More specifically, A is the intersection of all its supporting

half-spaces.

Proof. Obviously, A lies in the intersection B of its supporting half-spaces. For x /∈ A, Theorem

1.4.2 implies the existence of a supporting half-space H of A with x /∈ H . Hence x /∈ B.

Theorem 1.4.2 and Corollary 1.4.3 do not imply that every boundary point of A is a support point.

In order to show such a result, we approximate x ∈ bd A by points xk from R
n \A and consider

the corresponding supporting hyperplanes Ek which exist by Theorem 1.4.2. For xk → x, we

want to define a supporting hyperplane in x as the limit of the Ek. A first step in this direction is

to show that p(A, xk) → p(A, x) (where p(A, x) = x), hence to show that p(A, ·) is continuous.

We even show now that p(A, ·) is Lipschitz continuous with Lipschitz constant 1.

Theorem 1.4.4. Let A ⊂ R
n be nonempty, closed and convex. Then,

‖p(A, x) − p(A, y)‖ ≤ ‖x − y‖,
for all x, y ∈ R

n.

Proof. During the proof, we abbreviate p(A, ·) by p. Let x, y ∈ R
n. The case x ∈ A

or y ∈ A is easy, thus we assume now x, y /∈ A. Then, by Theorem 1.4.2, we obtain

〈x− p(x), p(y)− p(x)〉 ≤ 0 and 〈y − p(y), p(x)− p(y)〉 ≤ 0. Addition of these two inequalities

yields

〈p(y) − p(x), p(y) − y + x − p(x)〉 ≤ 0,

and therefore

‖p(y) − p(x)‖2 ≤ 〈p(y) − p(x), y − x〉 ≤ ‖p(y) − p(x)‖ · ‖y − x‖,
where the Cauchy-Schwarz inequality was used for the last estimate. For p(x) 6= p(y), this

implies the required inequality. The case p(x) = p(y) is trivial.

Theorem 1.4.5 (Support Theorem). Let A ⊂ R
n be closed and convex. Then through each

boundary point of A there exists a supporting hyperplane.

Proof. For given x ∈ bd A, we consider the closed unit ball x+B(1) around x. For each k ∈ N,

we choose xk ∈ x + B(1), xk /∈ A, and such that ‖x − xk‖ < 1
k
. Then

‖x − p(A, xk)‖ = ‖p(A, x) − p(A, xk)‖ ≤ ‖x − xk‖ <
1

k
,

by Theorem 1.4.4. Since xk, p(A, xk) are interior points of x+B(1), there is a (unique) boundary

point yk in x + B(1) such that xk ∈ (p(A, xk), yk). Theorem 1.4.2 then implies p(A, yk) =
p(A, xk). In view of the compactness of x + B(1), we may choose a converging subsequence

ykr
→ y. By Theorem 1.4.4, p(A, ykr

) → p(A, y) and p(A, ykr
) = p(A, xkr

) → p(A, x) = x,

hence p(A, y) = x. Since y ∈ bd (x + B(1)), we also know that x 6= y. The assertion now

follows from Theorem 1.4.2.
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Remark. Supporting hyperplanes, half-spaces and points can be defined for nonconvex sets A
as well; they only exist however, if conv A is closed and not all of R

n. Then, conv A is the

intersection of all supporting half-spaces of A.

Some of the previous results can be interpreted as separation theorems. For two sets A,B ⊂ R
n

and a hyperplane E = {f = α}, we say that E separates A and B, if either A ⊂ {f ≤ α}, B ⊂
{f ≥ α} or A ⊂ {f ≥ α}, B ⊂ {f ≤ α}. Theorem 1.4.2 then says that a closed convex set A
and a point x /∈ A can be separated by a hyperplane (there is even a separating hyperplane which

has positive distance to both, A and x). This result can be extended to compact convex sets B
(instead of the point x). Theorem 1.4.5 says that each boundary point of A can be separated

from A by a hyperplane. The following result gives a general criterion for sets, which can be

separated.

Theorem 1.4.6 (Separation Theorem). Let A,B ⊂ R
n be nonempty and convex with

rel int A ∩ rel int B = ∅.

Then, there exists a hyperplane E which separates A and B.

Proof. Assume 0 ∈ rel int A − rel int B. Then, there is a point x ∈ rel int A with −x ∈
−rel int B, hence x ∈ rel int B. Thus, x ∈ rel int A ∩ rel int B, a contradiction. It follows

that 0 /∈ rel int A − rel int B = rel int (A − B) (see Exercise 1.3.3(a)).

If 0 /∈ cl (A − B), we apply Theorem 1.4.2 (in aff (A − B)). If 0 ∈ cl (A − B), we apply

Theorem 1.4.5 (in aff (A − B)). In both cases, we obtain a hyperplane E = {f = 0} through

0 with A − B ⊂ {f ≤ 0}. Put α := supx∈A f(x), then A ⊂ {f ≤ α}. Let y ∈ B. Then, for

any x ∈ A, f(x) − f(y) = f(x − y) ≤ 0 and thus f(y) ≥ f(x) for all x ∈ A. This shows that

f(y) ≥ α, i.e. B ⊂ {f ≥ α}.

Remarks. (1) In topological vector spaces V of infinite dimensions similar support and sepa-

ration theorems hold true, however there are some important differences, mainly due to the fact

that convex sets A in V need not have relative interior points. Therefore a common assumption

is that int A 6= ∅. Otherwise it is possible that A is closed but does not have any support points,

or, in the other direction, that every point of A is a support point (although A does not lie in a

hyperplane).

(2) Some of the properties which we derived are characteristic for convexity. For example, a

closed set A ⊂ R
n such that each x /∈ A has a unique metric projection onto A, must be

convex (Motzkin’s Theorem). Also the Support Theorem has a converse. A closed set A ⊂ R
n,

int A 6= ∅, such that each boundary point is a support point, must also be convex. For proofs of

these results, see e.g. [S, Theorem 1.2.4] or [We].

(3) Let A ⊂ R
n be nonempty, closed and convex. Then, for each direction u ∈ Sn−1, there is

a supporting hyperplane E(u) of A in direction u (i.e. with outer normal u), if and only if A is

compact.

For the rest of this section, we consider convex polytopes and show that for a polytope P finitely

many supporting half-spaces suffice to generate P (as the intersection). In other words, we show

that polytopes are polyhedral sets. First, we introduce the faces of a polytope.



34 CHAPTER 1. CONVEX SETS

Definition. The support sets of a polytope P are called faces. A face F of P is called a k-face,

if dim F = k, k ∈ {0, . . . , n − 1}.

Theorem 1.4.7. The 0-faces of a polytope P ⊂ R
n are given by the vertices of P , i.e. they are of

the form {x}, x ∈ vert P .

Proof. Let {x} be a 0-face of P . Hence there is a supporting hyperplane {f = α} such that

P ⊂ {f ≤ α} and P ∩ {f = α} = {x}. Then P \ {x} = P ∩ {f < α} is convex, hence

x ∈ vert P .

Conversely, let x ∈ vert P and let vert P \ {x} = {x1, . . . , xk}. Then, x /∈ P ′ :=
conv {x1, . . . , xk}. By Theorem 1.4.2 there exists a supporting hyperplane {f = α} of P ′

through p(P ′, x) with supporting half-space {f ≤ α} and such that β := f(x) > α. Let

y ∈ P , i.e.

y =
k∑

i=1

αixi + αk+1x, αi ≥ 0,
k+1∑

i=1

αi = 1.

Then

f(y) =
k∑

i=1

αi f(xi)
︸ ︷︷ ︸

≤α<β

+αk+1f(x) ≤ β

and equality holds if and only if α1 = . . . = αk = 0 and αk+1 = 1, i.e. y = x. Hence {f ≤ β}
is a supporting halfspace and P ∩ {f = β} = {x}, thus x is a 0-face of P .

Definition. The 1-faces of a polytope are called edges, and the (n − 1)-faces are called facets.

Remark. In the following, we shall not distinguish between 0-faces and vertices anymore, al-

though one is a set and the other is a point.

Theorem 1.4.8. Let P ⊂ R
n be a polytope with vert P = {x1, . . . , xk} and let F be a face of

P . Then, F = conv {xi : xi ∈ F}.

Proof. Assume F = P ∩ {f = α} and, w.l.o.g., x1, . . . xm ∈ F and xm+1, . . . , xk /∈ F . If

{f ≤ α} is the supporting half-space, we have xm+1, . . . , xk ∈ {f < α}, i.e. f(xj) = α − δj ,

δj > 0, j = m + 1, . . . , k.

Let x ∈ P , x = α1x1 + · · · + αkxk, αi ≥ 0,
∑

αi = 1. Then,

f(x) = α1f(x1) + · · · + αkf(xk) = α − αm+1δm+1 − · · · − αkδk.

Hence, x ∈ F , if and only if αm+1 = · · · = αk = 0.

Remark. Theorem 1.4.8 implies, in particular, that a face of a polytope is a polytope and that

there are only finitely many faces.

Corollary 1.4.9. A polytope P is polyhedral.
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Proof. If dim P = k < n, we can assume w.l.o.g. that 0 ∈ E := aff P . Also, it is possible to

write E as an intersection of half-spaces H̃1, . . . , H̃j in R
n, E =

⋂r
j=1 H̃j . If P is polyhedral in

E, i.e.

P =
m⋂

i=1

Hi,

where Hi ⊂ E are k-dimensional half-spaces, then

P =
m⋂

i=1

(Hi ⊕ E⊥) ∩
r⋂

j=1

H̃j,

hence P is polyhedral in R
n. Therefore, it is sufficient to treat the case dim P = n.

Let F1, . . . , Fm be the faces of P and H1, . . . , Hm corresponding supporting half-spaces (i.e.

half-spaces with P ⊂ Hi and Fi = P ∩ bd Hi, i = 1, . . . ,m). Then we have

P ⊂ H1 ∩ · · · ∩ Hm =: P ′.

Assume, there is x ∈ P ′ \ P . We choose y ∈ int P and consider [y, x] ∩ P . Since P is compact

and convex (and x /∈ P ), there is z ∈ (y, x) with {z} = [y, x] ∩ bd P . By the support theorem

there is a supporting hyperplane of P through z, and hence there is a face Fi of P with z ∈ Fi.

Since each Fi lies in the boundary of P ′, we have z ∈ bd P ′. On the other hand, Proposition

1.3.4 shows that z ∈ int P ′, a contradiction.

Exercises and problems

1. Let A ⊂ R
n be closed and intA 6= ∅. Show that A is convex, if and only if every boundary point

of A is a support point.

2.∗ Let A ⊂ R
n be closed. Suppose that for each x ∈ R

n the metric projection p(A, x) onto A is

uniquely determined. Show that A is convex (MOTZKIN’s theorem).

3. Let A ⊂ R
n be non-empty, closed and convex. Show that A is compact, if and only if, for any

direction u ∈ Sn−1, there is a supporting hyperplane E(u) of A in direction u (i.e. with outer

normal u).

4. Let A, K ⊂ R
n be convex, A closed, K compact, and assume A ∩ K = ∅.

Show that there is a hyperplane {f = α} with A ⊂ {f < α} and B ⊂ {f > α}. Show

more generally that α can be chosen such that there is an ǫ > 0 with A ⊂ {f ≤ α − ǫ} and

B ⊂ {f ≥ α + ǫ} (strong separation).

5. A bavarian farmer is happy owner of a large herd of happy cows, consisting of totally black and

totally white animals. One day he finds them sleeping in the sun on his largest meadow. Watching
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them, he notices that, for any four cows it would be possible to build a straight fence, separating

the black cows from the white ones.

Show that the farmer could build a straight fence, separating the whole herd into black and white

animals.

Hint: Cows are lazy. When they sleep, they sleep - even if you build a fence across the meadow.

6. Let F1, . . . , Fm be the facets of the polytope P and H1, . . . , Hm the corresponding supporting

half-spaces. Show that

(∗) P =
m⋂

i=1

Hi.

(This is a generalization of the representation shown in the proof of Corollary 1.4.9.) Show further

that the representation (∗) is minimal in the sense that, for each representation

P =
⋂

i∈I

H̃i,

with a family of half-spaces {H̃i : i ∈ I}, we have {H1, . . . , Hm} ⊂ {H̃i : i ∈ I}.
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1.5 Extremal representations

In the previous section we have seen that the trivial representation of closed convex sets A ⊂ R
n

as intersection of all closed convex sets containing A can be improved to a nontrivial one, where

A is represented as the intersection of the supporting half-spaces. On the other hand, we have

the trivial representation of A as the set of all convex combinations of points of A. Therefore,

we discuss now the similar nontrivial problem to find a subset B ⊂ A, as small as possible, for

which A = conv B holds. Although there are some general results for closed convex sets A, we

will concentrate on the compact case, where we can give a complete (and simple) solution for

this problem.

Definition. Let A ⊂ R
n be closed and convex. A point x ∈ A is called extreme point, if x cannot

be represented as a nontrivial convex combination of points of A, i.e. if x = αy + (1− α)z with

y, z ∈ A, α ∈ (0, 1), implies that x = y = z. The set of all extreme points of A is denoted by

ext A.

Remarks. (1) If A is a closed half-space, ext A = ∅. In general, ext A 6= ∅, if and only if A does

not contain any lines.

(2) For x ∈ A, we have x ∈ ext A, if and only if A \ {x} is convex. In fact, assume that

x ∈ ext A. Let y, z ∈ A \ {x}. Then [y, z] ⊂ A. If [y, z] 6⊂ A \ {x}, then x ∈ (y, z) which

contradicts x ∈ ext A. Hence [y, z] ⊂ A \ {x}, i.e. A \ {x} is convex. Conversely, assume that

A\{x} is convex. Let y, z ∈ A and α ∈ (0, 1) such that x = αy +(1−α)z. If y 6= x and z 6= x,

then y, z ∈ A \ {x} and therefore x ∈ [y, z] ⊂ A \ {x}, a contradiction. Therefore, y = x or

z = x, which implies that x = y = z.

(3) For a polytope P , the preceding remark yields that ext P = vert P .

(4) If {x} is a support set of A, then x ∈ ext A. The converse is false, as the following example

of a planar set A shows. A is the sum of a circle and a segment, each of the points xi is extreme,

but {xi} is not a support set.

bb

b b

A

x2x1

x3 x4

The preceding remark explains why the following definition is relevant.

Definition. Let A ⊂ R
n be closed and convex. A point x ∈ A is called exposed point, if {x} is

a support set of A. The set of all exposed points of A is denoted by exp A.

Remark. In view of Remark (4) above, we have exp A ⊂ ext A.

Theorem 1.5.1 (MINKOWSKI). Let K ⊂ R
n be compact and convex, and let A ⊂ K. Then,

K = conv A, if and only if ext K ⊂ A. In particular, K = conv ext K.
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Proof. Suppose K = conv A and x ∈ ext K. Assume x /∈ A. Then A ⊂ K \{x}. Since K \{x}
is convex, K = conv A ⊂ K \ {x}, a contradiction.

In the other direction, we need only show that K = conv ext K. We prove this by induction

on n. For n = 1, a compact convex subset of R
1 is a segment [a, b] and ext [a, b] = {a, b}.

Let n ≥ 2 and suppose the result holds in dimension n− 1. Since ext K ⊂ K, we obviously

have conv ext K ⊂ K. We need to show the opposite inclusion. For that purpose, let x ∈ K
and g an arbitrary line through x. Then g ∩ K = [y, z] with x ∈ [y, z] and y, z ∈ bd K. By the

support theorem, y, z are support points, i.e. there are supporting hyperplanes Ey, Ez of K with

y ∈ K1 := Ey ∩ K and z ∈ K2 := Ez ∩ K. By the induction hypothesis,

K1 = conv extK1; K2 = conv extK2.

We have ext K1 ⊂ ext K. Namely, consider u ∈ ext K1 and u = αv + (1 − α)w, v, w ∈ K,

α ∈ (0, 1). Since u lies in the supporting hyperplane Ey, the same must hold for v and w. Hence

v, w ∈ K1 and since u ∈ ext K1, we obtain u = v = w. Therefore, u ∈ ext K.

In the same way, we get ext K2 ⊂ ext K and thus

x ∈ [y, z] ⊂ conv {conv ext K1 ∪ conv ext K2}
⊂ conv ext K.

Corollary 1.5.2. Let P ⊂ R
n be compact and convex. Then P is a polytope, if and only if ext P

is finite.

Proof. If P is a polytope, then Theorem 1.1.5 and the preceding Remark (3) show that ext P is

finite. For the converse, assume that ext P is finite, hence ext P = {x1, . . . , xk}. Theorem 1.5.1

then shows P = conv {x1, . . . , xk}, hence P is a polytope.

Now we are able to prove a converse of Corollary 1.4.9.

Theorem 1.5.3. Let P ⊂ R
n be a bounded polyhedral set. Then P is a polytope.

Proof. Clearly, P is compact and convex. We show that ext P is finite.

Let x ∈ ext P and assume P =
⋂k

i=1 Hi with half-spaces Hi bounded by the hyperplanes

Ei, i = 1, . . . , k. We consider the convex set

D :=
k⋂

i=1

Ai,

where

Ai =

{
Ei

int Hi

if
x ∈ Ei ,

x /∈ Ei .

Then x ∈ D ⊂ P . Since x is an extreme point and D is relatively open, we get dim D = 0,

hence D = {x}. Since there are only finitely many different sets D possible, ext P must be

finite. The result now follows from Corollary 1.5.2.
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Remark. This result now shows that the intersection of finitely many polytopes is again a poly-

tope.

If we replace, in Theorem 1.5.1, the set ext K by exp K, the corresponding result will be wrong,

in general, as simple examples show (compare Theorem 1.5.1 and the remark preceding it).

There is however a modified version which holds true for exposed points.

Theorem 1.5.4. Let K ⊂ R
n be compact and convex. Then

K = cl conv exp K.

Proof. Since K is compact, for each x ∈ R
n there exists a point yx ∈ K farthest away from x,

i.e. a point with

‖yx − x‖ = max
y∈K

‖y − x‖.

The hyperplane E through yx orthogonal to yx − x is then a supporting hyperplane of K and we

have E ∩ K = {yx}, hence yx ∈ exp K. Let

K̂ := cl conv {yx : x ∈ R
n}.

Then K̂ ⊂ K, thus K̂ is compact.

Assume that there exists x ∈ K \ K̂. Then, by Theorem 1.4.2 there is a hyperplane E ′ =
{f = α} with x ∈ {f > α} and K̂ ⊂ {f ≤ α} (E ′ is the supporting hyperplane through p(K̂, x)
in direction x−p(K̂, x)). Consider the half-line s starting in x, orthogonal to E ′ and in direction

of that half-space of E ′, which contains K̂. On s, we can find a point z with

‖x − z‖ > max
y∈K̂

‖y − z‖.

In fact, we may choose a cube W large enough to contain K̂, and such that p(K̂, x) is the center

of a facet of W . Now we choose a ball B with center z ∈ s in such a way that W ⊂ B, but

x /∈ B. Then z is the required point.
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b
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z

By definition of K̂, there exists yz ∈ K̂ with

‖yz − z‖ = max
y∈K

‖y − z‖ ≥ ‖x − z‖,

a contradiction. Therefore, K = K̂. Because of yx ∈ exp K, for all x ∈ R
n, we obtain

K = K̂ ⊂ cl conv exp K ⊂ K,

hence K = cl conv exp K.

Corollary 1.5.5 (STRASZEWICZ). Let K ⊂ R
n be compact and convex. Then

ext K ⊂ cl exp K.

Proof. By Theorems 1.5.4 and 1.3.7, we have

K = cl conv exp K ⊂ cl conv cl exp K = conv cl exp K ⊂ K ,

hence

K = conv cl exp K.

By Theorem 1.5.1, this implies ext K ⊂ cl exp K.
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Exercises and problems

1. Let A ⊂ R
n be closed and convex. Show that ext A 6= ∅, if and only if A does not contain any line.

2. Let K ⊂ R
n be compact and convex.

(a) If n = 2, show that ext K is closed.

(b) If n ≥ 3, show by an example that ext K need not be closed.

3. Let A ⊂ R
n be closed and convex. A subset M ⊂ A is called extreme set (in A), if M is convex

and if x, y ∈ A, (x, y) ∩ M 6= ∅ implies [x, y] ⊂ M .

Show that:

(a) Extreme sets M are closed.

(b) Each support set of A is extreme.

(c) If M, N ⊂ A are extreme, then M ∩ N is extreme.

(d) If M is extreme in A and N ⊂ M is extreme in M , then N is extreme in A.

(e) If M, N ⊂ A are extreme and M 6= N , then rel intM ∩ rel intN = ∅.

(f) Let E(A) := {M ⊂ A : M extreme}. Then A =
⋃

M∈E(A)

rel intM is a disjoint union.

4. A real (n, n)-matrix A = ((αij)) is called doubly stochastic, if αij ≥ 0 and

n∑

k=1

αkj =

n∑

k=1

αik = 1

for all i, j ∈ {1, . . . , n}. A doubly stochastic matrix with components in {0, 1} is called permuta-

tion matrix.

Show:

(a) The set K ⊂ R
n2

of doubly stochastic matrices is compact and convex.

(b) The extreme points of K are precisely the permutation matrices.

Hint for (b): You may use the following simple combinatorial result (marriage theorem):

Given a finite set H , a nonempty set D and a function f : H → P(D) with

∣
∣
∣

⋃

h∈H̃

f(h)
∣
∣
∣ ≥ |H̃|, for all H̃ ⊂ H,

then there exists an injective function g : H → D with g(h) ∈ f(h), for all h ∈ H .
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Chapter 2

Convex functions

2.1 Properties and operations of convex functions

In the following, we consider functions

f : R
n → [−∞,∞].

We assume the usual rules for addition and multiplication with ∞, namely:

α + ∞ := ∞, for α ∈ (−∞,∞],
α −∞ := −∞, for α ∈ [−∞,∞),
α∞ := ∞, (−α)∞ := −∞, for α ∈ (0,∞],
0∞ := 0.

Definition. For a function f : R
n → (−∞,∞], the set

epi f := {(x, α) : x ∈ R
n, α ∈ R, f(x) ≤ α} ⊂ R

n × R

is called the epigraph of f . f is convex, if epi f is a convex subset of R
n × R = R

n+1.

Remarks. (1) A function f : R
n → [−∞,∞) is concave, if −f is convex. Thus, for a convex

function f we exclude the value −∞, whereas for a concave function we exclude ∞.

(2) If A ⊂ R
n is a subset, a function f : A → (−∞,∞) is called convex, if the extended function

f̃ : R
n → (−∞,∞], given by

f̃ :=

{
f

∞ on
A ,

Rn \ A ,

is convex. This automatically requires that A is a convex set. In view of this construction, we

need not consider convex functions defined on subsets of R
n, but we rather can assume that

convex functions are always defined on all of R
n.

(3) On the other hand, we often are only interested in convex functions f : R
n → (−∞,∞] at

points, where f is finite. We call

dom f := {x ∈ R
n : f(x) < ∞}

43
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the effective domain of the function f : R
n → (−∞,∞]. For a convex function f , the effective

domain dom f is convex.

(4) The function f ≡ ∞ is convex, it is called the improper convex function; convex functions

f with f 6≡ ∞ are called proper. The improper convex function f ≡ ∞ has epi f = ∅ and

dom f = ∅.
Theorem 2.1.1. A function f : R

n → (−∞,∞] is convex, if and only if

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y),

for all x, y ∈ R
n, α ∈ [0, 1].

Proof. By definition, f is convex, if and only if epi f = {(x, β) : f(x) ≤ β} is convex. The

latter condition means

α(x1, β1) + (1 − α)(x2, β2) = (αx1 + (1 − α)x2, αβ1 + (1 − α)β2) ∈ epi f,

for all α ∈ [0, 1] and whenever (x1, β1), (x2, β2) ∈ epi f , i.e. whenever f(x1) ≤ β1, f(x2) ≤ β2.

Hence, f is convex, if and only if

f(αx1 + (1 − α)x2) ≤ αβ1 + (1 − α)β2,

for all x1, x2 ∈ R
n, α ∈ [0, 1] and all β1 ≥ f(x1), β2 ≥ f(x2). Then, it is necessary and sufficient

that this inequality is satisfied for β1 = f(x1), β2 = f(x2), and we obtain the assertion.

Remarks. (1) A function f : R
n → R is affine, if and only if f is convex and concave. If f is

affine, then epi f is a half-space in R
n+1 (and dom f = R

n).

(2) For a convex function f , the sublevel sets {f < α} and {f ≤ α} are convex.

(3) If f, g are convex and α, β ≥ 0, then αf + βg is convex.

(4) If (fi)i∈I is a family of convex functions, the (pointwise) supremum supi∈I fi is convex. This

follows since

epi

(

sup
i∈I

fi

)

=
⋂

i∈I

epi fi.

(5) As a generalization of Theorem 2.1.1, we obtain that f is convex, if and only if

f(α1x1 + · · · + αkxk) ≤ α1f(x1) + · · · + αkf(xk),

for all k ∈ N, xi ∈ R
n, and αi ∈ [0, 1] with

∑
αi = 1.

(6) A function f : R
n → (−∞,∞] is positively homogeneous (of degree 1), if

f(αx) = αf(x), for all x ∈ R
n, α ≥ 0.

If f is positively homogeneous, f is convex if and only if it is subadditive, i.e. if

f(x + y) ≤ f(x) + f(y),

for all x, y ∈ R
n.

The following simple result is useful for generating convex functions from convex sets in R
n×R.
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Theorem 2.1.2. Let A ⊂ R
n × R be convex and suppose that

fA(x) := inf {α ∈ R : (x, α) ∈ A} > −∞,

for all x ∈ R
n. Then, fA is a convex function.

Proof. The definition of fA(x) implies that

epi fA = {(x, β) : ∃α ∈ R, α ≤ β, and a sequence αi ց α with (x, αi) ∈ A}.
It is easy to see that epi fA is convex.

Remarks. (1) The condition fA > −∞ is fulfilled, if and only if A does not contain a vertical

half-line which is unbounded from below.

(2) For x ∈ R
n, let

{x} × R := {(x, α) : α ∈ R}
be the vertical line in R

n × R through x. Let A ⊂ R
n × R be closed and convex. Then, we have

A = epi fA, if and only if

A ∩ ({x} × R) = {x} × [fA(x),∞), for all x ∈ R
n.

Theorem 2.1.2 allows us to define operations of convex functions by applying corresponding

operations of convex sets to the epigraphs of the functions. We give two examples of that kind.

Definition. A convex function f : R
n → (−∞,∞] is closed, if epi f is closed.

If f : R
n → (−∞,∞] is convex, then cl epi f is the epigraph of a closed convex function, which

we denote by cl f .

To see this, we have to show that A := cl epi f fulfills fA > −∞. The case f ≡ ∞ is trivial,

then f is closed and fA = f .

Let f be proper, then epi f 6= ∅. W.l.o.g. we may assume that dim dom f = n. We choose

a point x ∈ int dom f . Then, (x, f(x)) ∈ bd epi f . Hence, there is a supporting hyperplane

E ⊂ R
n ×R of cl epi f at (x, f(x)). The corresponding supporting half-space is the epigraph of

an affine function h ≤ f . Thus, fA ≥ h > −∞.

Remark. cl f is the largest closed convex function below f .

Our second example is the convex hull operator. If (fi)i∈I is a family of (arbitrary) functions

fi : R
n → (−∞,∞], we consider A :=

⋃

i∈I epi fi. Suppose conv A does not contain any

vertical line, then, by Theorem 2.1.2, conv (fi) := fconv A is a convex function, which we call

the convex hull of the functions fi, i ∈ I . It is easy to see, that conv (fi) is the largest convex

function below all fi, i.e.

conv (fi) = sup{g : g convex, g ≤ fi ∀i ∈ I}.
conv (fi) exists, if and only if there is an affine function h with h ≤ fi, for all i ∈ I .

Further applications of Theorem 2.1.2 are listed in the exercises.

The following representation of convex functions is a counterpart to the support theorem for

convex sets.
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Theorem 2.1.3. Let f : R
n → (−∞,∞] be closed and convex. Then,

f = sup {h : h ≤ f, h affine}.
Proof. By assumption, epi f is closed and convex. Moreover, we can assume that f is proper,

i.e. epi f 6= ∅. By Corollary 1.4.3, epi f is the intersection of all closed half-spaces H ⊂ R
n ×R

which contain epi f .

There are three types of closed half-spaces in R
n × R:

H1 = {(x, r) : r ≥ l(x)}, l : R
n → R affine,

H2 = {(x, r) : r ≤ l(x)}, l : R
n → R affine,

H3 = H̃ × R, H̃ half-space in R
n.

Half-spaces of type H2 cannot occur, due to the definition of epi f and since epi f 6= ∅. Half-

spaces of type H3 can occur, hence we have to show that these ‘vertical’ half-spaces can be

avoided, i.e. epi f is the intersection of all half-spaces of type H1 containing epi f . Then we are

finished since the intersection of half-spaces of type H1 is the epigraph of the supremum of the

corresponding affine functions l.
For the result just explained it is sufficient to show that any point (x0, r0) /∈ epi f can be

separated by a non-vertical hyperplane E from epi f . Hence, let E3 be a vertical hyperplane

separating (x0, r0) and epi f , obtained from Theorem 1.4.2, and let H3 be the corresponding

vertical half-space containing epi f . Since f > −∞, there is at least one affine function l1 with

l1 ≤ f . We may represent H3 as

H3 = {(x, r) ∈ R
n × R : l0(x) ≤ 0}

with some affine function l0 : R
n → R, and we may assume l0(x0) > 0.

For x ∈ dom f , we then have

l0(x) ≤ 0, l1(x) ≤ f(x),

hence

αl0(x) + l1(x) ≤ f(x), for all α ≥ 0.

For x /∈ dom f , this inequality holds trivially since then f(x) = ∞. Hence

mα := αl0 + l1

is an affine function fulfilling mα ≤ f . Since l0(x0) > 0, we have mα(x0) > r0 for sufficiently

large α.

We now come to another important operation on convex functions, the construction of the con-

jugate function.

Definition. Let f : R
n → (−∞,∞] be proper and convex, then the function f ∗ defined by

f ∗(y) := sup
x∈Rn

(〈x, y〉 − f(x)), y ∈ R
n,

is called the conjugate of f .
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Theorem 2.1.4. The conjugate f ∗ of a proper convex function f : R
n → (−∞,∞] fulfills:

(a) f ∗ is proper, closed and convex.

(b) f ∗∗ := (f ∗)∗ = cl f .

Proof. (a) For x /∈ dom f , we have 〈x, y〉 − f(x) = −∞ (for all y ∈ R
n), hence

f ∗ = sup
x∈dom f

(〈x, ·〉 − f(x)).

For x ∈ dom f , the function

gx : y 7→ 〈x, y〉 − f(x)

is affine, therefore f ∗ is convex (as the supremum of affine functions).

Because of

epi f ∗ = epi

(

sup
x∈dom f

gx

)

=
⋂

x∈dom f

epi gx

and since epi gx is a closed half-space, epi f ∗ is closed, and hence f ∗ is closed.

In order to show that f ∗ is proper, we consider an affine function h ≤ f . Such a function

exists by Theorem 2.1.3 and it has a representation

h = 〈·, y〉 − α, with suitable y ∈ R
n, α ∈ R.

This implies

〈·, y〉 − α ≤ f,

hence

〈·, y〉 − f ≤ α,

and therefore f ∗(y) ≤ α.

(b) By Theorem 2.1.3,

cl f = sup{h : h ≤ cl f, h affine}.

Writing h again as

h = 〈·, y〉 − α, y ∈ R
n, α ∈ R,

we obtain

cl f = sup
(y,α)

(〈·, y〉 − α),

where the supremum is taken over all (y, α) with

〈·, y〉 − α ≤ cl f.

The latter holds, if and only if

α ≥ sup
x

(〈x, y〉 − cl f(x)) = (cl f)∗(y).
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Consequently, we have

cl f(x) ≤ sup
y

(〈x, y〉 − (cl f)∗(y)) = (cl f)∗∗(x),

for all x. Since cl f ≤ f , the definition of the conjugate function implies

(cl f)∗ ≥ f ∗,

and therefore

cl f ≤ (cl f)∗∗ ≤ f ∗∗.

On the other hand,

f ∗∗(x) = (f ∗)∗(x) = sup
y

(〈x, y〉 − f ∗(y)),

where

f ∗(y) = sup
z

(〈z, y〉 − f(z)) ≥ 〈x, y〉 − f(x).

Therefore,

f ∗∗(x) ≤ sup
y

(〈x, y〉 − 〈x, y〉 + f(x)) = f(x),

which gives us f ∗∗ ≤ f . By part (a), f ∗∗ is closed, hence f ∗∗ ≤ cl f .

Finally, we mention a canonical possibility to describe convex sets A ⊂ R
n by convex functions.

The common way to describe a set A is by the function

1A(x) :=

{
1

0
if

x ∈ A ,

x /∈ A ,

however, 1A is neither convex nor concave. Therefore, we here define the indicator function δA

of a (arbitrary) set A ⊂ R
n by

δA(x) :=

{
0

∞ if
x ∈ A ,

x /∈ A .

Remark. A is convex, if and only if δA is convex.

Exercises and problems

1. Let A ⊂ R
n be nonempty, closed and convex and containing no line. Let further f : R

n → R be

convex and assume there is a point y ∈ A with

f(y) = max
x∈A

f(x).

Show that there is also a z ∈ ext A with

f(z) = max
x∈A

f(x).
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2. Let f : R
n → (−∞,∞] be convex. Show that the following assertions are equivalent:

(i) f is closed.

(ii) f is lower semi-continuous, i.e. for all x ∈ R
n we have

f(x) ≤ lim inf
y→x

f(y).

(iii) All the sublevel sets {f ≤ α}, α ∈ R, are closed .

3. Let f, f1, . . . , fm : R
n → (−∞,∞] be convex functions and α ≥ 0. Show that:

(a) The function α ◦ f : x 7→ inf{β ∈ R : (x, β) ∈ α · epi f} is convex.

(b) The function f1 � · · · � fm : x 7→ inf{β ∈ R : (x, β) ∈ epi f1 + · · · + epi fm} is convex,

and we have

f1 � · · · � fm(x) = inf{f1(x1) + · · · + fm(xm) : x1, . . . , xm ∈ R
n, x1 + · · · + xm = x}.

(f1 � · · · � fm is called the infimal convolution of f1, . . . , fm.)

(c) Let {fi : i ∈ I} (I 6= ∅) be a family of convex functions on R
n, such that conv (fi) exists.

Show that

conv (fi) = inf{α1 ◦ fi1 � · · · � αm ◦ fim : αj ≥ 0,
∑

αj = 1, ij ∈ I, m ∈ N}.

4. Let A ⊂ R
n be convex and 0 ∈ A. The distance function dA : R

n → (−∞,∞] is defined as

dA(x) = inf{α ≥ 0 : x ∈ αA}, x ∈ R
n.

Show that dA has the following properties:

(a) dA is positively homogeneous, nonnegative and convex.

(b) dA is finite, if and only if 0 ∈ intA.

(c) {dA < 1} ⊂ A ⊂ {dA ≤ 1} ⊂ cl A.

(d) If 0 ∈ intA, then intA = {dA < 1} and cl A = {dA ≤ 1}.

(e) dA(x) > 0, if and only if x 6= 0 and βx /∈ A for some β > 0.

(f) Let A be closed. Then dA is even (i.e. dA(x) = dA(−x)∀x ∈ R
n), if and only if A is

symmetric with respect to 0 (i.e. A = −A).

(g) Let A be closed. Then dA is a norm on R
n, if and only if A is symmetric, compact and

contains 0 in its interior.

(h) If A is closed, then dA is closed.
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2.2 Regularity of convex functions

We start with a continuity property of convex functions.

Theorem 2.2.1. A convex function f : R
n → (−∞,∞] is continuous in int dom f and Lipschitz

continuous on compact subsets of int dom f .

Proof. Let x ∈ int dom f . There exists a n-simplex P with P ⊂ int dom f and x ∈ int P . If

x0, . . . , xn are the vertices of P and y ∈ P , we have

y = α0x0 + · · · + αnxn,

with αi ∈ [0, 1],
∑

αi = 1, and hence

f(y) ≤ α0f(x0) + · · · + αnf(xn) ≤ max
i=0,...,n

f(xi) =: c.

Therefore, f ≤ c on P .

Let now α ∈ (0, 1) and choose an open ball U centered at 0 such that x + U ⊂ P . Let

z = x + αu, u ∈ bd U . Then,

z = (1 − α)x + α(x + u),

f(z) ≤ (1 − α)f(x) + αf(x + u) ≤ (1 − α)f(x) + αC,

where C := max{|f(y)| : y ∈ x + cl U} ≤ c. This gives us

f(z) − f(x) ≤ α(C − f(x)).

On the other hand,

x =
1

1 + α
(x + αu) +

(

1 − 1

1 + α

)

(x − u),

and hence

f(x) ≤ 1

1 + α
f(x + αu) +

(

1 − 1

1 + α

)

f(x − u),

which implies

f(x) ≤ 1

1 + α
f(z) +

α

1 + α
C.

We obtain

α(f(x) − C) ≤ f(z) − f(x).

Together, the two inequalities give

|f(z) − f(x)| ≤ α(C − f(x)),

for all z ∈ x + αU . Let ̺ be the radius of U . Thus we have shown that

|f(z) − f(x)| ≤ 2C

̺
‖z − x‖.
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Now let A ⊂ int dom f be compact. Hence there is some ̺ > 0 such that A + ̺Bn ⊂
int dom f . Let x, z ∈ A. Since f is continuous on A + ̺Bn,

C̃ := max{|f(y)| : y ∈ A + ̺Bn} < ∞.

By the preceding argument,

|f(z) − f(x)| ≤ 2C̃

̺
‖z − x‖,

if ‖z − x‖ ≤ ̺. For ‖z − x‖ ≥ ̺, this is true as well.

Now we discuss differentiability properties of convex functions. We first consider the case f :
R

1 → (−∞,∞].

Theorem 2.2.2. Let f : R
1 → (−∞,∞] be convex.

(a) In each point x ∈ int dom f , the right derivative f+(x) and the left derivative f−(x) exist

and fulfill f−(x) ≤ f+(x).

(b) On int dom f , the functions f+ and f− are monotonically increasing and, for almost all

x ∈ int dom f (with respect to the Lebesgue measure λ1 on R
1), we have f−(x) = f+(x), hence

f is almost everywhere differentiable on cl dom f .

(c) Moreover, f+ is continuous from the right and f− continuous from the left, and f is the

indefinite integral of f+ (of f− and of f ′) in int dom f .

Proof. W.l.o.g. we concentrate on the case dom f = R
1.

(a) If 0 < m ≤ l and 0 < h ≤ k, the convexity of f implies

f(x − m) = f((1 − m

l
)x +

m

l
(x − l)) ≤ (1 − m

l
)f(x) +

m

l
f(x − l),

hence
f(x) − f(x − l)

l
≤ f(x) − f(x − m)

m
.

Similarly, we have

f(x) = f(
h

h + m
(x − m) +

m

h + m
(x + h)) ≤ h

h + m
f(x − m) +

m

h + m
f(x + h),

which gives us
f(x) − f(x − m)

m
≤ f(x + h) − f(x)

h
.

Finally,

f(x + h) = f((1 − h

k
)x +

h

k
(x + k)) ≤ (1 − h

k
)f(x) +

h

k
f(x + k),

and therefore
f(x + h) − f(x)

h
≤ f(x + k) − f(x)

k
.
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We obtain that the left difference quotients in x increase monotonically and are bounded above

by the right difference quotients, which decrease monotonically. Therefore, the limits

f+(x) = lim
hց0

f(x + h) − f(x)

h

and

f−(x) = lim
mց0

f(x) − f(x − m)

m

(

= lim
tր0

f(x + t) − f(x)

t

)

exist and fulfill f−(x) ≤ f+(x).
(b) For x′ > x, we have just seen that

f−(x) ≤ f+(x) ≤ f(x′) − f(x)

x′ − x
≤ f−(x′) ≤ f+(x′). (2.1)

Therefore, the functions f− and f+ are monotonically increasing. As is well-known, a monoton-

ically increasing function has only countably many points of discontinuity (namely jumps), and

therefore it is continuous almost everywhere. In the points x of continuity of f−, (2.1) implies

f−(x) = f+(x).
(c) Assume now x < y. From

f(y) − f(x)

y − x
= lim

zցx

f(y) − f(z)

y − z
≥ lim

zցx
f+(z)

we obtain limzցx f+(z) ≤ f+(x), hence limzցx f+(z) = f+(x), since f+ is increasing. For

y < x, we get by a similar argument

lim
zրx

f−(z) ≥ lim
zրx

f(z) − f(y)

z − y
=

f(x) − f(y)

x − y
,

and hence f−(x) ≤ limzրx f−(z) ≤ f−(x). Thus we also have limzրx f−(z) = f−(x).
Finally, for arbitrary a ∈ R, we define a function g by

g(x) := f(a) +

∫ x

a

f−(s) ds.

We first show that g is convex, and then g = f .

For z := αx + (1 − α)y, α ∈ [0, 1], x < y, we have

g(z) − g(x) =

∫ z

x

f−(s) ds ≤ (z − x)f−(z),

g(y) − g(z) =

∫ y

z

f−(s) ds ≥ (y − z)f−(z).

It follows that

α(g(z) − g(x)) + (1 − α)(g(z) − g(y)) ≤ α(z − x)f−(z) + (1 − α)(z − y)f−(z)

= f−(z)(z − [αx + (1 − α)y]) = 0,
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therefore

g(z) ≤ αg(x) + (1 − α)g(y),

i.e. g is convex.

As a consequence, g+ and g− exist. For y > x,

g(y) − g(x)

y − x
=

1

y − x

∫ y

x

f−(s) ds =
1

y − x

∫ y

x

f+(s) ds ≥ f+(x),

hence we obtain g+(x) ≥ f+(x). Analogously,

g(x) − g(y)

x − y
=

1

x − y

∫ x

y

f−(s) ds ≤ f−(x),

and thus we get g−(x) ≤ f−(x). Since g+ ≥ f+ ≥ f− ≥ g− and g+ = g−, except for at

most countably many points, we have g+ = f+ and g− = f− except for at most countably many

points. By the continuity from the left of g− and f−, and the continuity from the right of g+ and

f+, it follows that g+ = f+ and g− = f− on R. Hence, h := g − f is differentiable everywhere

and h′ ≡ 0. Therefore, h ≡ c = 0 because we have g(a) = f(a).

Now we consider the n-dimensional case. If f : R
n → (−∞,∞] is convex and x ∈ int dom f ,

then, for each u ∈ R
n, u 6= 0, the equation

g(u)(t) := f(x + tu), t ∈ R,

defines a convex function g(u) : R
1 → (−∞,∞] and we have 0 ∈ int dom g(u). By Theorem

2.2.2, the right derivative g+
(u)(0) exists. This is precisely the directional derivative

f ′(x; u) := lim
tց0

f(x + tu) − f(x)

t
(2.2)

of f in direction u. Therefore, we obtain the following corollary to Theorem 2.2.2.

Corollary 2.2.3. Let f : R
n → (−∞,∞] be convex and x ∈ int dom f . Then, for each u ∈

R
n, u 6= 0, the directional derivative f ′(x; u) of f exists.

The corollary does not imply that f ′(x; u) = −f ′(x;−u) holds (in fact, the latter equation is

only true if g−
(u)(0) = g+

(u)(0)). Also, the partial derivatives f1(x), ..., fn(x) of f need not exist

in each point x. However, in analogy to Theorem 2.2.2, on can show that f1, ..., fn exist almost

everywhere (with respect to the Lebesgue measure λn in R
n) and that in points x, where the

partial derivatives f1(x), ..., fn(x) exist, the function f is even differentiable. Even more, a

convex function f on R
n is twice differentiable almost everywhere (in a suitable sense). We refer

to the exercises, for these and a number of further results on derivatives of convex functions.

The right-hand side of (2.2) also makes sense for u = 0 and yields the value 0. We therefore

define f ′(x; 0) := 0. Then u 7→ f ′(x; u) is a positively homogeneous function on R
n and if

f is convex, f ′(x; ·) is also convex. For support functions, we will continue the discussion of

directional derivatives in the next section.
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For a function f which is differentiable or twice differentiable, the first or second derivatives

can be used to characterize convexity of f .

Remarks. (1) (see Exercise 3) Let A ⊂ R be open and convex and let f : A → R be a real

function.

If f is differentiable, then f is convex, if and only if f ′ is monotone increasing (on A).

If f is twice differentiable, then f is convex, if and only if f ′′ ≥ 0 (on A).

(2) (see Exercise 4) Let A ⊂ R
n be open and convex and let f : A → R be a real function.

If f is differentiable, then f is convex, if and only if

〈grad f(x) − grad f(y), x − y〉 ≥ 0, for all x, y ∈ A.

(Here, grad f(x) := (f1(x), . . . , fn(x)) is the gradient of f at x.)

If f is twice differentiable, then f is convex, if and only if the Hessian matrix

∂2f(x) := ((fij(x)))n×n

of f at x is positive semidefinite, for all x ∈ A.

Exercises and problems

1. (a) Give an example of two convex functions f, g : R
n → (−∞,∞], such that f and g both have

minimal points (i.e. points in R
n, where the infimum of the function is attained), but f + g

does not have a minimal point.

(b) Suppose f, g : R
n → R are convex functions, which both have a unique minimal point in

R
n. Show that f + g has a minimal point.

Hint: Show first that the sets

{x ∈ R
n : f(x) ≤ α} resp. {x ∈ R

n : g(x) ≤ α}

are compact, for each α ∈ R.

2. Let f : R → R be a convex function. Show that

f(x) − f(0) =

∫ x

0
f+(t) dt =

∫ x

0
f−(t) dt,

for all x ∈ R.

3. Let A ⊂ R be open and convex and f : A → R a real function.

(a) Assume f is differentiable. Show that f is convex, if and only if f ′ is monotone increasing

(on A).

(b) Assume f is twice differentiable. Show that f is convex, if and only if f ′′ ≥ 0 (on A).
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4. Let A ⊂ R
n be open and convex and f : A → R a real function.

(a) Assume f is differentiable. Show that f is convex, if and only if

〈grad f(x) − grad f(y), x − y〉 ≥ 0, for all x, y ∈ A.

(Here, grad f(x) := (f1(x), . . . , fn(x)) is the gradient of f at x.)

(b) Assume f is twice differentiable. Show that f is convex, if and only if the Hessian matrix

∂2f(x) := ((fij(x)))n×n

of f at x is positive semidefinite, for all x ∈ A.

5. For a convex function f : R
n → (−∞,∞] and x ∈ int dom f , we define the subgradient of f at x

by

∂f(x) := {v ∈ R
n : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ R

n}.
Show that:

(a) ∂f(x) is nonempty, compact and convex.

(b) We have

∂f(x) = {v ∈ R
n : 〈v, u〉 ≤ f ′(x; u) ∀u ∈ R

n, u 6= 0}.

(c) If f is differentiable in x, then

∂f(x) = {grad f(x)}.

6.∗ Let f : R
n → (−∞,∞] be convex and x ∈ int dom f . Suppose that all partial derivatives

f1(x), . . . , fn(x) at x exist. Show that f is differentiable at x.

7. Let f : R
n → R be convex. Show that f is differentiable almost everywhere.

Hint: Use Exercise 6.
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2.3 The support function

The most useful analytic description of compact convex sets is by the support function. It is one

of the basic tools in the following chapter. The support function of a set A ⊂ R
n with 0 ∈ A is

in a certain sense dual to the distance function, which was discussed in Exercise 2.1.3.

Definition. Let A ⊂ R
n be nonempty and convex. The support function hA : R

n → (−∞,∞]
of A is defined as

hA(u) := sup
x∈A

〈x, u〉, u ∈ R
n.

Theorem 2.3.1. Let A,B ⊂ R
n be nonempty convex sets. Then

(a) hA is positively homogeneous, closed and convex (and hence subadditive).

(b) hA = hcl A and

cl A = {x ∈ R
n : 〈x, u〉 ≤ hA(u) ∀u ∈ R

n}.

(c) A ⊂ B implies hA ≤ hB; conversely, hA ≤ hB implies cl A ⊂ cl B.

(d) hA is finite, if and only if A is bounded.

(e) hαA+βB = αhA + βhB, for all α, β ≥ 0.

(f) h−A(u) = hA(−u), for all u ∈ R
n.

(g) If Ai, i ∈ I , are nonempty and convex and A := conv
(⋃

i∈I Ai

)
, then

hA = sup
i∈I

hAi
.

(h) If Ai, i ∈ I , are nonempty, convex and closed and if A :=
⋂

i∈I Ai is nonempty, then

hA = cl conv (hAi
)i∈I .

(i) δ∗A = hA.

Proof. (a) For α ≥ 0 and u, v ∈ R
n, we have

hA(αu) = sup
x∈A

〈x, αu〉 = α sup
x∈A

〈x, u〉 = αhA(u)

and

hA(u + v) = sup
x∈A

〈x, u + v〉 ≤ sup
x∈A

〈x, u〉 + sup
x∈A

〈x, v〉 = hA(u) + hA(v).

Furthermore, as a supremum of closed functions, hA is closed.

(b) The first part follows from

sup
x∈A

〈x, u〉 = sup
x∈cl A

〈x, u〉, u ∈ R
n.
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For x ∈ cl A, we therefore have 〈x, u〉 ≤ hA(u), for all u ∈ R
n. Conversely, suppose x ∈ R

n

fulfills 〈x, ·〉 ≤ hA(·), and assume x /∈ cl A. Then, by Theorem 1.4.2, there exists a (supporting)

hyperplane separating x and cl A, i.e. a direction y ∈ Sn−1 and α ∈ R such that

〈x, y〉 > α and 〈z, y〉 ≤ α, for all z ∈ cl A.

This implies

hcl A(y) = hA(y) ≤ α < 〈x, y〉,
a contradiction.

(c) The first part is obvious, the second follows from (b).

(d) If A is bounded, we have A ⊂ B(r), for some r > 0. Then, (c) implies hA ≤ hB(r) =
r‖ · ‖, hence hA < ∞. Conversely, hA < ∞ and Theorem 2.2.1 imply that hA is continuous

on R
n. Therefore, hA is bounded on Sn−1, i.e. hA ≤ r = hB(r) on Sn−1, for some r > 0. The

positive homogeneity, proved in (a), implies that hA ≤ hB(r) on all of R
n, hence (c) shows that

cl A ⊂ B(r), i.e. A is bounded.

(e) For any u ∈ R
n, we have

hαA+βB(u) = sup
x∈αA+βB

〈x, u〉 = sup
y∈A,z∈B

〈αy + βz, u〉 = sup
y∈A

〈αy, u〉 + sup
z∈B

〈βz, u〉

= αhA(u) + βhB(u).

(f) For any u ∈ R
n, we have

h−A(u) = sup
x∈−A

〈x, u〉 = sup
y∈A

〈−y, u〉

= sup
y∈A

〈y,−u〉 = hA(−u).

(g) Since Ai ⊂ A, we have hAi
≤ hA (from (c)), hence

sup
i∈I

hAi
≤ hA.

Conversely, any y ∈ A has a representation

y = α1yi1 + · · · + αkyik ,

with k ∈ N, yij ∈ Aij , αj ≥ 0,
∑

αj = 1 and ij ∈ I . Therefore, we get

hA(u) = sup
y∈A

〈y, u〉 = sup
yij

∈Aij
,αj≥0,

∑
αj=1,ij∈I,k∈N

〈α1yi1 + · · · + αkyik , u〉

= sup
αj≥0,

∑
αj=1,ij∈I,k∈N

(α1hAi1
(u) + · · · + αkhAik

(u)) ≤ sup
i∈I

hAi
(u).
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(h) Since A ⊂ Ai, we have hA ≤ hAi
(from (c)), for all i ∈ I . Using the inclusion of the

epigraphs, the definition of cl and conv for functions and (a), we obtain

hA ≤ cl conv (hAi
)i∈I .

On the other hand, Theorem 2.1.3 shows that

g := cl conv (hAi
)i∈I

is the supremum of all affine functions below g. Since g is positively homogeneous, we can

concentrate on linear functions. [In fact, if 〈·, y〉 + α ≤ g, then α ≤ 0 since 0 + α ≤ g(0) = 0.

For all u ∈ R
n and λ > 0, we have 〈λu, y〉 + α ≤ g(λu). Hence 〈u, y〉 + α/λ ≤ g(u), and

therefore 〈u, y〉 ≤ g(u). This shows that the given estimate can be replaced by the stronger

estimate 〈·, y〉 ≤ g.]

Therefore, assume 〈·, y〉 ≤ g, y ∈ R
n, is such a function. Then,

〈·, y〉 ≤ hAi
, for all i ∈ I.

(c) implies that y ∈ Ai, i ∈ I , hence y ∈ ⋂i∈I Ai = A. Therefore,

〈·, y〉 ≤ hA,

from which we get

g = cl conv (hAi
)i∈I ≤ hA.

(i) For x ∈ R
n, we have

δ∗A(x) = sup
y∈Rn

(〈x, y〉 − δA(y)) = sup
y∈A

〈x, y〉 = hA(x),

hence δ∗A = hA.

The following result is crucial for the later considerations.

Theorem 2.3.2. Let h : R
n → (−∞,∞] be positively homogeneous, closed and convex. Then

there exists a unique nonempty, closed and convex set A ⊂ R
n such that

hA = h.

Proof. The positive homogeneity implies that h(0) = 0, hence h is proper.

We consider h∗. For α > 0, we obtain from the positive homogeneity

h∗(x) = sup
y∈Rn

(〈x, y〉 − h(y)) = sup
y∈Rn

(〈x, αy〉 − h(αy))

= α sup
y∈Rn

(〈x, y〉 − h(y)) = αh∗(x).
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Therefore, h∗ can only obtain the values 0 and ∞. We put A := domh∗. By Theorem 2.1.4(a),

A is nonempty, closed and convex, and

h∗ = δA.

Theorem 2.3.1(i) implies

h∗∗ = δ∗A = hA.

By Theorem 2.1.4(b), we have h∗∗ = h, hence hA = h.

The uniqueness of A follows from Theorem 2.3.1(b).

We mention without proof a couple of further properties of support functions, which are mostly

simple consequences of the definition or the last two theorems. In the following remarks, A is

always a nonempty closed convex subset of R
n.

Remarks. (1) We have A = {x}, if and only if hA = 〈x, ·〉.
(2) We have hA+x = hA + 〈x, ·〉.
(3) A is origin-symmetric (i.e. A = −A), if and only if hA is even, i.e. hA(x) = hA(−x), for all

x ∈ R
n.

(4) We have 0 ∈ A, if and only if hA ≥ 0.

Let A ⊂ R
n be nonempty, closed and convex. For u ∈ R

n \ {0}, we consider the sets

E(u) := {x ∈ R
n : 〈x, u〉 = hA(u)}

and

A(u) := A ∩ E(u) = {x ∈ A : 〈x, u〉 = hA(u)}.
If hA(u) = ∞, both sets are empty. If hA(u) < ∞, then E(u) is a hyperplane, which bounds A,

but need not be a supporting hyperplane (see the example in Section 1.4), namely if A(u) = ∅.

If A(u) 6= ∅, then E(u) is a supporting hyperplane of A (at each point x ∈ A(u)) and A(u) is the

corresponding support set. We discuss now the support function of A(u). In order to simplify

the considerations, we concentrate on the case, where A is compact (then A(u) is nonempty and

compact, for all u ∈ Sn−1).

Definition. A compact convex set K 6= ∅ is called a convex body. We denote by Kn the set of all

convex bodies in R
n.

Theorem 2.3.3. Let K ∈ Kn and u ∈ R
n \ {0}. Then,

hK(u)(x) = h′
K(u; x), x ∈ R

n,

i.e. the support function of K(u) is given by the directional derivatives of hK at the point u.

Proof. For y ∈ K(u) and v ∈ R
n, we have

〈y, v〉 ≤ hK(v),
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since y belongs to K. In particular, for v := u + tx, x ∈ R
n, t > 0, we thus get

〈y, u〉 + t〈y, x〉 ≤ hK(u + tx),

and hence

〈y, x〉 ≤ hK(u + tx) − hK(u)

t

(because of hK(u) = 〈y, u〉). For t ց 0, we obtain

〈y, x〉 ≤ h′
K(u; x).

Since this holds for all y ∈ K(u), we arrive at

hK(u)(x) ≤ h′
K(u; x). (3.3)

Conversely, we obtain from the subadditivity of hK

hK(u + tx) − hK(u)

t
≤ hK(tx)

t
= hK(x),

and thus

h′
K(u; x) ≤ hK(x).

This shows that the function x 7→ h′
K(u; x) is finite. As we have mentioned in the last section, it

is also convex and positively homogeneous. Namely,

h′
K(u; x + z) = lim

tց0

hK(u + tx + tz) − hK(u)

t

≤ lim
tց0

hK(u
2

+ tx) − hK(u
2
)

t
+ lim

tց0

hK(u
2

+ tz) − hK(u
2
)

t

≤ lim
tց0

hK(u + 2tx) − hK(u)

2t
+ lim

tց0

hK(u + 2tz) − hK(u)

2t

= h′
K(u; x) + h′

K(u; z)

and

h′
K(u; αx) = lim

tց0

hK(u + tαx) − hK(u)

t
= αh′

K(u; x),

for x, z ∈ R
n and α ≥ 0. By Theorem 2.3.2 (in connection with Theorem 2.3.1(d)), there exists

a nonempty, compact convex set L ⊂ R
n with

hL(x) = h′
K(u; x), x ∈ R

n.

For y ∈ L, we have

〈y, x〉 ≤ h′
K(u; x) ≤ hK(x), x ∈ R

n,
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hence y ∈ K. Furthermore,

〈y, u〉 ≤ h′
K(u; u) = hK(u)

and

〈y,−u〉 ≤ h′
K(u;−u) = −hK(u),

from which we obtain

〈y, u〉 = hK(u),

and thus y ∈ K ∩ E(u) = K(u). It follows that L ⊂ K(u), and therefore (again by Theorem

2.3.1)

h′
K(u; x) = hL(x) ≤ hK(u)(x). (3.4)

Combining the inequalities (3.3) and (3.4), we obtain the assertion.

Remark. As a consequence, we obtain that K(u) consists of one point, if and only if h′
K(u; ·) is

linear. In view of Exercise 2.2.5 and Exercise 2.2.6, the latter is equivalent to the differentiability

of hK at u. If all the support sets K(u), u ∈ Sn−1, of a nonempty, compact convex set K consist

of points, the boundary bd K does not contain any segments. Such sets K are called strictly

convex. Hence, K is strictly convex, if and only if hK is differentiable on R
n \ {0}.

We finally consider the support functions of polytopes. We call a function h on R
n piecewise

linear, if there are finitely many convex cones A1, . . . , Am ⊂ R
n, such that R

n =
⋃m

i=1 Ai and h
is linear on Ai, i = 1, . . . ,m.

Theorem 2.3.4. Let K ∈ Kn. Then K is a polytope, if and only if hK is piecewise linear.

Proof. The convex body K is a polytope, if and only if

K = conv {x1, . . . , xk},

for some x1, . . . , xk ∈ R
n. In view of Theorem 2.3.1, the latter is equivalent to

hK = max
i=1,...,k

〈xi, ·〉,

which holds, if and only if hK is piecewise linear.

To be more precise, if hK has the above form, the convex cones Ai of linearity are given by

Ai := {x ∈ R
n : max

j=1,...,k
〈xj, x〉 = 〈xi, x〉}, i = 1, . . . , k.

Conversely, if hK is linear on the cone Ai, we may assume that Ai is closed and has interior

points. Then xi is determined by

〈xi, ·〉 = hK

on Ai. The convexity of hK implies that hK ≥ 〈xi, ·〉 on R
n. [In fact, let z ∈ int Ai and let

x ∈ R
n \ {z}. Then there are y ∈ Ai and λ ∈ (0, 1) such that z = λx + (1 − λ)y. Then

〈xi, z〉 = hK(z) = hK(λx + (1 − λ)y) ≤ λhK(x) + (1 − λ)hK(y) = λhK(x) + (1 − λ)〈xi, y〉,
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and thus 〈xi, x〉 ≤ hK(x) for all x ∈ R
n.] Hence

hK = max
i=1,...,k

〈xi, ·〉

follows.

Exercises and problems

1. Let f : R
n → R be positively homogeneous and twice continuously partially differentiable on

R
n \ {0}. Show that there are nonempty, compact convex sets K, L ⊂ R

n such that

f = hK − hL.

Hint: Use Exercise 2.2.4(b).

2. Let K ⊂ R
n be compact and convex with 0 ∈ intK and let K◦ be the polar of K (see Exercise

1.1.4). Show that

(a) K◦ is compact and convex with 0 ∈ intK◦,

(b) K◦◦ := (K◦)◦ = K,

(c) K is a polytope, if and only if K◦ is a polytope,

(d) hK = dK◦ .



Chapter 3

Convex bodies

3.1 The space of convex bodies

In the following, we mostly concentrate on convex bodies (nonempty compact convex sets) K in

R
n and first discuss the space Kn of convex bodies. We emphasize that we do not require that a

convex body has interior points; hence lower-dimensional bodies are included in Kn. The set Kn

is closed under addition,

K,L ∈ Kn =⇒ K + L ∈ Kn,

and multiplication with nonnegative scalars,

K ∈ Kn, α ≥ 0 =⇒ αK ∈ Kn.

(In fact, we even have αK ∈ Kn, for all α ∈ R, since the reflection −K of a convex body K
is again a convex body.) Thus, Kn is a convex cone and the question arises, whether we can

embed this cone into a suitable vector space. Since (Kn, +) is a (commutative) semi-group, the

problem reduces to the question, whether this semi-group can be embedded into a group. A

simple algebraic criterion (which is necessary and sufficient) is that the cancellation rule must be

valid. Although this can be checked directly for convex bodies (see the exercises), we use now

the support function for a direct embedding which has a number of additional advantages.

For this purpose, we consider the support function hK of a convex body as a function on the

unit sphere Sn−1 (because of the positive homogeneity of hK , the values on Sn−1 determine hK

completely). Let C(Sn−1) be the vector space of continuous functions on Sn−1. This is a Banach

space with respect to the maximum norm

‖f‖ := max
u∈Sn−1

|f(u)|, f ∈ C(Sn−1).

We call a function f : Sn−1 → R convex, if the homogeneous extension

f̃ :=

{‖x‖f( x
‖x‖

)

0
for

x 6= 0,

x = 0,

is convex on R
n. Let Hn be the set of all convex functions on Sn−1. By Remark (3) (after

Theorem 2.1.1) and Theorem 2.2.1, Hn is a convex cone in C(Sn−1).

63
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Theorem 3.1.1. The mapping

T : K 7→ hK

is (positively) linear on Kn and maps the convex cone Kn one-to-one onto the convex cone Hn.

Moreover, T is compatible with the inclusion order on Kn and the pointwise order ≤ on Hn.

In particular, T embeds the (ordered) convex cone Kn into the (ordered) vector space

C(Sn−1).

Proof. The positive linearity of T follows from Theorem 2.3.1(e) and the injectivity from Theo-

rem 2.3.1(b). The fact that T (Kn) = Hn is a consequence of Theorem 2.3.2. The compatibility

with respect to the orderings follows from Theorem 2.3.1(c).

Remark. Positive linearity of T on the convex cone Kn means

T (αK + βL) = αT (K) + βT (L),

for K,L ∈ Kn and α, β ≥ 0. This linearity does not extend to negative α, β, in particular not to

difference bodies K −L = K + (−L). One reason is that the function hK − hL is in general not

convex, but even if it is, hence if

hK − hL = hM ,

for some M ∈ Kn, the body M is in general different from the difference body K −L. We write

K ⊖ L := M and call this body the Minkowski difference of K and L. Whereas the difference

body K − L exists for all K,L ∈ Kn, the Minkowski difference K ⊖ L only exists in special

cases, namely if K can be decomposed as K = M + L (then M = K ⊖ L).

With respect to the norm topology provided by the maximum norm in C(Sn−1), the cone Hn is

closed (see Exercise 6). Our next goal is to define a natural metric on Kn, such that T becomes

even an isometry (hence, we then have an isometric embedding of Kn into the Banach space

C(Sn−1)).

Definition. For K,L ∈ Kn, let

d(K,L) := inf {ε ≥ 0 : K ⊂ L + B(ε), L ⊂ K + B(ε)}.

It is easy to see that the infimum is attained, hence it is in fact a minimum.

Theorem 3.1.2. For K,L ∈ Kn, we have

d(K,L) = ‖hK − hL‖.

Therefore, d is a metric on Kn and fulfills

d(K + M,L + M) = d(K,L),

for all K,L,M ∈ Kn.
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Proof. From Theorem 2.3.1 we obtain

K ⊂ L + B(ε) ⇔ hL ≤ hK + εhB(1)

and

L ⊂ K + B(ε) ⇔ hK ≤ hL + εhB(1).

Since hB(1) ≡ 1 on Sn−1, this implies

K ⊂ L + B(ε), L ⊂ K + B(ε) ⇔ ‖hK − hL‖ ≤ ε,

and the assertions follow.

In an arbitrary metric space (X, d), the class C(X) of nonempty compact subsets of X can be

supplied with the Hausdorff metric d̃, which is defined by

d̃(A,B) := max (max
x∈A

d(x,B), max
y∈B

d(y,A)).

Here A,B ∈ C(X), and we have used the abbreviation

d(u,C) := min
v∈C

d(u, v), u ∈ X,C ∈ C(X),

(the minimal and maximal values exist due to the compactness of the sets and the continuity

of the metric). We show now that, on Kn ⊂ C(Rn), the Hausdorff metric d̃ coincides with the

metric d.

Theorem 3.1.3. For K,L ∈ Kn, we have

d(K,L) = d̃(K,L).

Proof. We have

d(K,L) = max (inf {ε ≥ 0 : K ⊂ L + B(ε)}, inf {ε ≥ 0 : L ⊂ K + B(ε)}).

Now

K ⊂ L + B(ε) ⇔ d(x, L) ≤ ε, for all x ∈ K,

⇔ max
x∈K

d(x, L) ≤ ε,

hence

inf {ε ≥ 0 : K ⊂ L + B(ε)} = max
x∈K

d(x, L),

which yields the assertion.
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We now come to an important topological property of the metric space (Kn, d): Every bounded

subset M ⊂ Kn is relative compact. This is a special property which holds also, for example, in

the metric space (Rn, d), but it does not hold in general metric spaces.

In Kn, a subset M is bounded, if there exists c > 0 such that

d(K,L) ≤ c, for all K,L ∈ M.

This is equivalent to

K ⊂ B(c′), for all K ∈ M,

for some constant c′ > 0. Here, we can replace the ball B(c′) by any compact set, in particular

by a cube W ⊂ R
n. The subset M is relative compact, if every sequence K1, K2, . . . , with

Kk ∈ M, has a converging subsequence. Therefore, the mentioned topological property is a

consequence of the following theorem.

Theorem 3.1.4 (BLASCHKE’s Selection Theorem). Let M ⊂ Kn be an infinite collection of

convex bodies, all lying in a cube W . Then, there exists a sequence K1, K2, . . . , with Kk ∈ M
(pairwise different), and a body K0 ∈ Kn such that

Kk → K0, as k → ∞.

Proof. W.l.o.g. we assume that W is the unit cube.

For each i ∈ N, we divide W into 2in cubes of edge length 1/2i. For K ∈ M, let Wi(K) be

the union of all cubes in the ith dissection, which intersect K. Since there are only finitely many

different sets Wi(K), K ∈ M, but infinitely many bodies K ∈ M, we first get a sequence (in

M)

K
(1)
1 , K

(1)
2 , . . .

with

W1(K
(1)
1 ) = W1(K

(1)
2 ) = · · · ,

then a subsequence (of K
(1)
1 , K

(1)
2 , . . . )

K
(2)
1 , K

(2)
2 , . . .

with

W2(K
(2)
1 ) = W2(K

(2)
2 ) = · · · ,

and in general a subsequence

K
(j)
1 , K

(j)
2 , . . .

of K
(j−1)
1 , K

(j−1)
2 , . . . with

Wj(K
(j)
1 ) = Wj(K

(j)
2 ) = · · · ,

for all j ∈ N (j ≥ 2).
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Since

min
y∈K

(j)
l

d(x, y) ≤
√

n

2j
,

for all x ∈ K
(j)
k , we have

d(K
(j)
k , K

(j)
l ) ≤

√
n

2j
, for all k, l ∈ N, and all j.

By the subsequence property we deduce

d(K
(j)
k , K

(i)
l ) ≤

√
n

2i
, for all k, l ∈ N, and all j ≥ i.

In particular, if we choose the ’diagonal sequence’ Kk := K
(k)
k , k = 1, 2, . . . , then

d(Kk, Kl) ≤
√

n

2l
, for all k ≥ l.

Hence (Kk)k∈N is a Cauchy sequence in M, that is, for each ε > 0 there exists m ∈ N such that

d(Kk, Kl) < ε, for all k, l ≥ m. (1.1)

Let

K̃k := cl conv (Kk ∪ Kk+1 ∪ · · · )
and

K0 :=
∞⋂

k=1

K̃k.

We claim that

Kk → K0, as k → ∞, and K0 ∈ Kn.

First, by construction we have K̃k ∈ Kn and K̃k+1 ⊂ K̃k, k = 1, 2, . . . . Therefore, K0 6= ∅ and

hence K0 ∈ Kn.

For ε > 0, (1.1) implies

Kl ⊂ Kk + B(ε), for all k, l ≥ m,

therefore

K̃k′ ⊂ Kk + B(ε), for all k, k′ ≥ m,

and thus

K0 ⊂ Kk + B(ε), for all k ≥ m.

Conversely, for each ε > 0, there is m̄ ∈ N such that

K̃k ⊂ K0 + B(ε), for all k ≥ m̄.
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Namely, assume on the contrary that

K̃k 6⊂ K0 + B(ε), for infinitely many k.

Then

K̃ki
∩ [W \ int (K0 + B(ε))] 6= ∅,

for a suitable sequence k1, k2, . . . . Since K̃ki
and W \ int (K0 + B(ε)) are compact, this would

imply
∞⋂

i=1

(
K̃ki

∩ [W \ int (K0 + B(ε))]
)

= K0 ∩ [W \ int (K0 + B(ε))] 6= ∅,

a contradiction.

Since K̃k ⊂ K0 + B(ε) implies Kk ⊂ K0 + B(ε), we obtain

d(K0, Kk) ≤ ε, for all k ≥ max(m, m̄).

The topology on Kn given by the Hausdorff metric allows us to introduce and study geometric

functionals on convex bodies by first defining them for a special subclass, for example the class

Pn of polytopes. Such a program requires that the geometric functionals under consideration

have a continuity or monotonicity property and also that the class Pn of polytopes is dense in

Kn. We now discuss the latter aspect; geometric functionals will be investigated in the next

section.

Theorem 3.1.5. Let K ∈ Kn and ε > 0.

(a) There exists a polytope P ∈ Pn with P ⊂ K and d(K,P ) ≤ ε.

(b) There exists a polytope P ∈ Pn with K ⊂ P and d(K,P ) ≤ ε.

(c) If 0 ∈ rel int K, then there exists a polytope P ∈ Pn with P ⊂ K ⊂ (1 + ε)P .

There is even a polytope P̃ ∈ Pn with P̃ ⊂ rel int K and K ⊂ rel int ((1 + ε)P̃ ).

Proof. (a) The family

{x + int B(ε) : x ∈ bd K}
is an open covering of the compact set bd K, therefore there exist x1, . . . , xm ∈ bd K with

bd K ⊂
m⋃

i=1

(xi + int B(ε)).

Let

P := conv {x1, . . . , xm},
then

P ⊂ K and bd K ⊂ P + B(ε).
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The latter implies K ⊂ P + B(ε) and therefore d(K,P ) ≤ ε.

(b) For each u ∈ Sn−1, there is a supporting hyperplane E(u) of K (in direction u). Let

A(u) be the open half-space of E(u) which fulfills A(u) ∩ K = ∅ (A(u) has the form {〈·, u〉 >
hK(u)}). Then, the family

{A(u) : u ∈ Sn−1}
is an open covering of the compact set bd (K + B(ε)), since every y ∈ bd (K + B(ε)) fulfills

y /∈ K and is therefore separated from K by a supporting hyperplane E = E(u) of K. Therefore

there exist u1, . . . , um ∈ Sn−1 with

bd (K + B(ε)) ⊂
m⋃

i=1

A(ui).

Let

P :=
m⋂

i=1

(Rn \ A(ui)),

then

K ⊂ P.

Since R
n \ P =

⋃m
i=1 A(ui), we also have

P ⊂ K + B(ε),

and therefore d(K,P ) ≤ ε.

(c) W.l.o.g. we may assume that dim K = n, hence 0 ∈ int K. If we copy the proof of (b)

with B(ε) = εB(1) replaced by εK, we obtain a polytope P ′ with

K ⊂ P ′ ⊂ (1 + ε)K.

The polytope P := 1
1+ε

P ′ then fulfills 0 ∈ int P and

P ⊂ K ⊂ (1 + ε)P.

In particular, we get a polytope P̄ with 0 ∈ int P̄ and

P̄ ⊂ K ⊂ (1 +
ε

2
)P̄ .

We choose P̃ := δP̄ with 0 < δ < 1. Then

P̃ ⊂ rel int P̄ ⊂ rel int K.

If δ is close to 1, such that (1 + ε
2
)1

δ
< 1 + ε, then

K ⊂ (1 +
ε

2
)
1

δ
P̃ ⊂ rel int ((1 + ε)P̃ ).
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Remarks. (1) The theorem shows that clPn = Kn. One can even show that the metric space

Kn is separable, since there is a countable dense set P̃n of polytopes. For this purpose, the

above proofs have to be modified such that the polytopes involved have vertices with rational

coordinates.

(2) In the proof of (a), the polytope P which was constructed has its vertices on bd K. If we use

the open covering {x + int B(ε) : x ∈ rel int K} of K instead, we obtain a polytope P with

d(K,P ) ≤ ε and P ⊂ rel int K.

There is also a simultaneous proof of (b) and the first part of (c), which uses (a). Namely,

assuming dim K = n and 0 ∈ int K, the body K contains a ball B(α), α > 0. For given

ε ∈ (0, 1), by (a) there is some P ∈ Pn, P ⊂ K, such that d(K,P ) < αε
2

. Hence

hP (u) ≥ hK(u) − αε

2
≥ α

(

1 − ε

2

)

> 0, u ∈ Sn−1,

and therefore α(1 − ε/2)Bn ⊂ P . This shows that

P ⊂ K ⊂ P +
αε

2
Bn ⊂ P +

αε

2

1

α(1 − ε/2)
P =

(

1 +
ε/2

1 − ε/2

)

P ⊂ (1 + ε)P.

Thus we obtain (c) and also get

‖h(1+ε)P − hK‖ ≤ ε‖hP‖ ≤ ε‖hK‖,

which implies (b).

Exercises and problems

1. Let K, L, M ∈ Kn. Without using support functions, show that:

(a) For u ∈ Sn−1, we have

K(u) + M(u) = (K + M)(u).

(b) If K + L ⊂ M + L, then K ⊂ M (generalized cancellation rule).

2. Let (Ki)i∈N be a sequence in Kn and K ∈ Kn. Show that Ki → K (in the Hausdorff metric), if

and only if the following two conditions are fulfilled:

(a) Each x ∈ K is a limit point of a suitable sequence (xi)i∈N with xi ∈ Ki, for all i ∈ N.

(b) For each sequence (xi)i∈N with xi ∈ Ki, for all i ∈ N, every culmination point lies in K.

3. (a) Let K, M ∈ Kn be convex bodies, which cannot be separated by a hyperplane (i.e., there is

no hyperplane {f = α} with K ⊂ {f ≤ α} and M ⊂ {f ≥ α}). Further, let (Ki)i∈N and

(Mi)i∈N be sequences in Kn. Show that

Ki → K, Mi → M =⇒ Ki ∩ Mi → K ∩ M.
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(b) Let K ∈ Kn be a convex body and E ⊂ R
n an affine subspace with E ∩ intK 6= ∅. Further,

let (Ki)i∈N be a sequence in Kn. Show that

Ki → K =⇒ (E ∩ Ki) → E ∩ K.

Hint: Use Exercise 2 above.

4. Let K ⊂ R
n be compact. Show that:

(a) There is a unique ball Ka of smallest diameter with K ⊂ Ka (circumball).

(b) If intK 6= ∅, then there exists a ball Ki of maximal diameter with Ki ⊂ K (inball).

5. A body K ∈ Kn is strictly convex, if it does not contain any segments in the boundary.

(a) Show that the set of all strictly convex bodies in R
n is a Gδ-set in Kn, i.e. intersection of

countably many open sets in Kn.

(b)∗ Show that the set of all strictly convex bodies in R
n is dense in Kn.

6. Let (Ki)i∈N be a sequence in Kn, for which the support functions hKi
(u) converge to the values

h(u) of a function h : Sn−1 → R, for each u ∈ Sn−1. Show that h is the support function of a

convex body and that hKi
→ h uniformly on Sn−1.

7. Let P be a convex polygon in R
2 with intP 6= ∅. Show that:

(a) There is a polygon P1 and a triangle (or a segment) ∆ with P = P1 + ∆.

(b) P has a representation P = ∆1 + · · ·+∆m, with triangles (segments) ∆j which are pairwise

not homothetic.

(c) P is a triangle, if and only if m = 1.

8.∗ A body K ∈ Kn, n ≥ 2, is indecomposable, if K = M +L implies M = αK+x and L = βK+y,

for some α, β ≥ 0 and x, y ∈ R
n. Show that:

(a) If P ∈ Kn is a polytope and all 2-faces of P are triangles, P is indecomposable.

(b) For n ≥ 3, the set of indecomposable convex bodies is a dense Gδ-set in Kn.

9. Let In be the set of convex bodies K ∈ Kn, which are strictly convex and indecomposable.

(a) Show that In is dense in Kn.

(b)P Find one element of In.



72 CHAPTER 3. CONVEX BODIES

3.2 Volume and surface area

The volume of a convex body K ∈ Kn can be defined as the Lebesgue measure λn(K) of K.

However, the convexity of K implies that the volume also exists in an elementary sense and,

moreover, that also the surface area of K exists. Therefore, we now introduce both notions in an

elementary way, first for polytopes and then for arbitrary convex bodies by approximation.

Since we will use a recursive definition on the dimension n, we first remark that the support

set K(u), u ∈ Sn−1, of a convex body K lies in a hyperplane parallel to u⊥. Therefore, the

orthogonal projection K(u)|u⊥ is a translate of K(u), and we can consider K(u)|u⊥ as a convex

body in R
n−1 (if we identify u⊥ with R

n−1). Assuming that the volume is already defined in

R
n−1, we then denote by V (n−1)(K(u)|u⊥) the (n − 1)-dimensional volume of this projection.

In principle, the identification of u⊥ with R
n−1 requires that we have given an orthonormal basis

in u⊥. However, it will be apparent that the quantities we define depend only on the Euclidean

metric in u⊥, hence they are independent of the choice of a basis.

Definition. Let P ∈ Pn be a polytope.

For n = 1, hence P = [a, b] with a ≤ b, we define V (1)(P ) := b − a and F (1)(P ) := 2.

For n ≥ 2, let

V (n)(P ) :=







1

n

∑

(∗)

hP (u)V (n−1)(P (u)|u⊥)

0
if

dim P ≥ n − 1 ,

dim P ≤ n − 2 ,

and

F (n)(P ) :=







∑

(∗)

V (n−1)(P (u)|u⊥)

0
if

dim P ≥ n − 1 ,

dim P ≤ n − 2 ,

where the summation (∗) is over all u ∈ Sn−1, for which P (u) is a facet of P . We shortly write

V (P ) for V (n)(P ) and call this the volume of P . Similarly, we write F (P ) instead of F (n)(P )
and call this the surface area of P .

For dim P = n−1, there are two support sets of P which are facets, namely P = P (u0) and P =
P (−u0), where u0 is a normal vector to P . Since then V (n−1)(P (u0)|u⊥

0 ) = V (n−1)(P (−u0)|u⊥
0 )

and hP (u0) = −hP (−u0), we obtain V (P ) = 0, in coincidence with the Lebesgue measure of

P . Also, in this case, F (P ) = 2V (n−1)(P (u0)|u⊥
0 ). For dim P ≤ n− 2, the polytope P does not

have any facets, hence V (P ) = 0 and F (P ) = 0.
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Proposition 3.2.1. The volume V and surface area F of polytopes P,Q have the following

properties:

(1) V (P ) = λn(P ),

(2) V and F are invariant with respect to rigid motions,

(3) V (αP ) = αnV (P ), F (αP ) = αn−1F (P ), for α ≥ 0,

(4) V (P ) = 0, if and only if dim P ≤ n − 1,

(5) if P ⊂ Q, then V (P ) ≤ V (Q) and F (P ) ≤ F (Q).

Proof. (1) We proceed by induction on n. The result is clear for n = 1. Let n ≥ 2. As we have

already mentioned, V (P ) = 0 = λn(P ) if dim P ≤ n−1. For dim P = n, let P (u1), . . . , P (uk)
be the facets of P . Then, we have

V (P ) =
1

n

k∑

i=1

hP (ui)V
(n−1)(P (ui)|u⊥

i ),

where, by the inductive assumption, V (n−1)(P (ui)|u⊥
i ) equals the (n−1)-dimensional Lebesgue

measure (in u⊥
i ) of P (ui)|u⊥

i . We assume w.l.o.g. that hP (u1), . . . , hP (um) ≥ 0 and

hP (um+1), . . . , hP (uk) < 0, and consider the pyramid-shaped polytopes Pi := conv (P (ui) ∪
{0}), i = 1, . . . k. Then V (Pi) = 1

n
hP (ui)V

(n−1)(P (ui)|u⊥
i ), i = 1, . . . ,m, and V (Pi) =

− 1
n
hP (ui)V

(n−1)(P (ui)|u⊥
i ), i = m + 1, . . . , k. Hence,

V (P ) =
m∑

i=1

V (Pi) −
k∑

i=m+1

V (Pi)

=
m∑

i=1

λn(Pi) −
k∑

i=m+1

λn(Pi)

= λn(P ).

Here, we have used that the Lebesgue measure of the pyramid Pi is 1
n

times the content of the

base (here V (n−1)(P (ui)|u⊥
i )) times the height (here hP (ui)). Moreover the Lebesgue measure

of the pyramid parts outside P cancel out, and the pyramid parts inside P yield a dissection of P
(into sets with disjoint interior).

(2), (3), (4) and the first part of (5) follow now directly from (1) (and the corresponding

properties of the Lebesgue measure). It remains to show F (P ) ≤ F (Q), for polytopes P ⊂ Q.

We may assume dim Q = n. Again, we denote the facets of P by P (u1), . . . , P (uk). We make

use of the following elementary inequality (a generalization of the triangle inequality),

V (n−1)(P (ui)|u⊥
i ) ≤

∑

j 6=i

V (n−1)(P (uj)|u⊥
j ), i = 1, . . . , k. (2.2)
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In order to motivate (2.2), we project P (uj), j 6= i, orthogonally onto the hyperplane u⊥
i . The

projections then cover P (ui)|u⊥
i . Since the projection does not increase the (n− 1)-dimensional

Lebesgue measure, (2.2) follows. The estimate (2.2) implies that

F (Q ∩ H) ≤ F (Q),

for any closed half-space H ⊂ R
n. Since P ⊂ Q is a finite intersection of half-spaces, we obtain

F (P ) ≤ F (Q) by successive truncation.

Remarks. (1) In the proof of (1), we could have avoided the occurrence of ‘outside’ pyramids

by the following argument. If 0 ∈ int P , the pyramid dissection of P shows V (P ) = λn(P ). For

small enough t ∈ R
n, we then have −t ∈ int P and the corresponding dissection w.r.t. t shows

that V (P + t) = V (P ). We use

V (P ) =
1

n

k∑

i=1

hP (ui)λn−1(P (ui)|u⊥
i )

(which follows from the inductive assumption) and the same formula for P + t and observe that

hP+t(ui) = hP (ui) + 〈t, ui〉 and λn−1((P + t)(ui)|u⊥
i ) = λn−1(P (ui)|u⊥

i ).

It follows that
k∑

i=1

〈t, ui〉λn−1(P (ui)) = 0.

Since this holds for all small enough t, it must hold for all t ∈ R
n. Thus

k∑

i=1

uiλn−1(P (ui)) = 0,

which yields V (P + t) = V (P ) for all t ∈ R
n. Therefore, the assumption 0 ∈ int P can be made

w.l.o.g. and we obtain V (P ) = λn(P ), in general.

(2) We can now simplify our formulas for the volume V (P ) and the surface area F (P ) of a poly-

tope P . First, since we have shown that our elementarily defined volume equals the Lebesgue

measure and is thus translation invariant, we do not need the orthogonal projection of the facets

anymore. Second, since V (n−1)(P (u)) = 0, for dim P (u) ≤ n−2, we can sum over all u ∈ Sn−1.

If we write, in addition, v instead of V (n−1), we obtain

V (P ) =
1

n

∑

u∈Sn−1

hP (u)v(P (u))

and

F (P ) =
∑

u∈Sn−1

v(P (u)).
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These are the formulas which we will use, in the following.

For a convex body K ∈ Kn, we define

V+(K) := inf
P⊃K

V (P ), V−(K) := sup
P⊂K

V (P ),

and

F+(K) := inf
P⊃K

F (P ), F−(K) := sup
P⊂K

F (P ),

(here P ∈ Pn).

Theorem 3.2.2 (and Definition). Let K ∈ Kn.

(a) We have

V+(K) = V−(K) =: V (K)

and

F+(K) = F−(K) =: F (K).

V (K) is called the volume and F (K) is called the surface area of K.

(b) Volume and surface area have the following properties:

(b1) V (K) = λn(K),

(b2) V and F are invariant with respect to rigid motions,

(b3) V (αK) = αnV (K), F (αK) = αn−1F (K), for α ≥ 0,

(b4) V (K) = 0, if and only if dim K ≤ n − 1,

(b5) if K ⊂ L, then V (K) ≤ V (L) and F (K) ≤ F (L),

(b6) K 7→ V (K) is continuous.

Proof. (a) We first remark that for a polytope P the monotonicity of V and F (which was proved

in Proposition 3.2.1(5)) shows that V +(P ) = V (P ) = V −(P ) and F+(P ) = F (P ) = F−(P ).
Hence, the new definition of V (P ) and F (P ) is consistent with the old one.

For an arbitrary body K ∈ Kn, we get from Proposition 3.2.1(5)

V−(K) ≤ V+(K) and F−(K) ≤ F+(K),

and by Proposition 3.2.1(2), V−(K), V+(K), F−(K) and F+(K) are motion invariant. After a

suitable translation, we may therefore assume 0 ∈ rel int K. For ε > 0, we then use Theorem

3.1.5(c) and find a polytope P with P ⊂ K ⊂ (1 + ε)P. From Proposition 3.2.1(3), we get

V (P ) ≤ V−(K) ≤ V+(K) ≤ V ((1 + ε)P ) = (1 + ε)nV (P )

and

F (P ) ≤ F−(K) ≤ F+(K) ≤ F ((1 + ε)P ) = (1 + ε)n−1F (P ).
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For ε → 0, this proves (a).

(b1) – (b5) follow now directly for bodies K ∈ Kn ((b1) by approximation with polytopes;

(b2) – (b5) partially by approximation or from the corresponding properties of the Lebesgue

measure).

It remains to prove (b6). Consider a convergent sequence Ki → K, Ki, K ∈ Kn. In view

of (b2), we can assume 0 ∈ rel int K. Using again Theorem 3.1.5(c), we find a polytope P with

P ⊂ rel int K, K ⊂ rel int (1 + ε)P. If dim K = n, we can choose a ball B(r), r > 0, with

K + B(r) ⊂ (1 + ε)P (choose r = minu∈Sn−1(h(1+ε)P (u)− hK(u))). Then Ki ⊂ (1 + ε)P , for

i ≥ i0. Analogously, we can choose a ball B(r′), r′ > 0, with P + B(r′) ⊂ K ⊂ Ki + B(r′),
for i ≥ i1. This implies P ⊂ Ki (see Exercise 1(b) of Section 3.1). For i ≥ max(i0, i1), we

therefore obtain

V (P ) − V ((1 + ε)P ) ≤ V (Ki) − V (K) ≤ V ((1 + ε)P ) − V (P ),

and hence

|V (Ki) − V (K)| ≤ (1 + ε)nV (P ) − V (P )

≤ [(1 + ε)n − 1]V (K) → 0,

as ε → 0. If dim K = j ≤ n − 1, hence V (K) = 0, we have

K ⊂ int ((1 + ε)P + εW ),

where W is a cube, centred at 0, with edge length 1 and dimension n− j, lying in the orthogonal

space (aff K)⊥. As above, we obtain Ki ⊂ (1 + ε)P + εW , for i ≥ i0. Since

V ((1 + ε)P + εW ) ≤ εn−j(1 + ε)jC

(where we can choose the constant C to be the j-dimensional Lebesgue measure of K), this gives

us V (Ki) → 0 = V (K), as ε → 0.

Remark. We shall see in the next section that the surface area F is also continuous.

Exercises and problems

1. A convex body K ∈ K2 is called universal cover, if for each L ∈ K2 with diameter ≤ 1 there is a

rigid motion gL with L ⊂ gLK.

(a) Show that there is a universal cover K0 with minimal area.

P (b) Find the shape and the area of K0.
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3.3 Mixed volumes

There is another, commonly used definition of the surface area of a set K ⊂ R
n, namely as the

derivative of the volume functional of the outer parallel sets of K, i.e.

F (K) = lim
εց0

1

ε
(V (K + B(ε)) − V (K)).

We will see now, that our notion of surface area of a convex body K fulfills also this limit

relation. In fact, we will show that V (K+B(ε)) is a polynomial in ε (this is the famous STEINER

formula) and thereby get a whole family of geometric functionals. We start with an even more

general problem and investigate how the volume

V (α1K1 + · · · + αmKm),

for Ki ∈ Kn, αi > 0, depends on the variables α1, . . . , αm. This will lead us to a family of mixed

functionals of convex bodies, the mixed volumes.

Again, we first consider the case of polytopes. Since the recursive representation of the

volume of a polytope P was based on the support sets (facets) of P , we discuss how support sets

behave under linear combinations.

Proposition 3.3.1. Let m ∈ N, α1, . . . , αm > 0, let P1, . . . , Pm ∈ Pn be polytopes, and let

u, v ∈ Sn−1. Then,

(a) (α1P1 + · · · + αmPm)(u) = α1P1(u) + · · · + αmPm(u),

(b) dim (α1P1 + · · · + αmPm)(u) = dim (P1 + · · · + Pm)(u),

(c) if (P1 + · · · + Pm)(u) ∩ (P1 + · · · + Pm)(v) 6= ∅, then

(P1 + · · · + Pm)(u) ∩ (P1 + · · · + Pm)(v) = (P1(u) ∩ P1(v)) + · · · + (Pm(u) ∩ Pm(v)).

Proof. (a) By Theorem 2.3.1 and Theorem 2.3.3, for all x ∈ R
n we have

h(α1P1+···+αmPm)(u)(x) = h′
α1P1+···+αmPm

(u; x)

= α1h
′
P1

(u; x) + · · · + αmh′
Pm

(u; x)

= α1hP1(u)(x) + · · · + αmhPm(u)(x)

= hα1P1(u)+···+αmPm(u)(x).

Theorem 2.3.1 now yields the assertion.

(b) Let P := P1 + · · · + Pm and P̃ := α1P1 + · · · + αmPm. W.l.o.g. we may assume

0 ∈ rel int Pi(u), i = 1, . . . ,m. By Exercise 1.3.3 (a) it follows that 0 ∈ rel int P (u). We put

α := min
i=1,...,m

αi, β := max
i=1,...,m

αi.

Then, 0 < α < β and (in view of (a))

αP (u) ⊂ P̃ (u) ⊂ βP (u),
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that is, dim P (u) = dim P̃ (u).
(c) Using the notation introduced above, we assume P (u)∩P (v) 6= ∅. Consider x ∈ P (u)∩

P (v). Since x ∈ P , it has a representation x = x1 + · · · + xm, with xi ∈ Pi. Because of

hP (u) = 〈x, u〉 =
m∑

i=1

〈xi, u〉 ≤
m∑

i=1

hPi
(u) = hP (u),

we get that 〈xi, u〉 = hPi
(u) and thus xi ∈ Pi(u), for i = 1, ...,m. In the same way, we obtain

xi ∈ Pi(v), i = 1, ...,m.

Conversely, it is clear that any x ∈ (P1(u) ∩ P1(v)) + · · · + (Pm(u) ∩ Pm(v)) fulfills x ∈
P1(u) + · · · + Pm(u) = P (u) and x ∈ P1(v) + · · · + Pm(v) = P (v), by (a).

In the proof of an important symmetry property of mixed volumes, we also need the following

lemma.

Lemma 3.3.2. Let K ∈ Kn, let u, v ∈ Sn−1 be linearly independent, and let w = λu + µv with

some λ ∈ R and µ > 0. Then K(u) ∩ K(v) 6= ∅ implies that K(u) ∩ K(v) = K(u)(w).

Proof. Let z ∈ K(u) ∩ K(v) and w = λu + µv with some λ ∈ R and µ > 0. Then z ∈ K(u),
hence 〈z, u〉 = hK(u) = hK(u)(u) and

hK(u)(−u) = max{〈x,−u〉 : x ∈ K(u)} = max{−〈x, u〉 : x ∈ K(u)}
= max{−hK(u)(u) : x ∈ K(u)} = −hK(u)(u) = −〈z, u〉 = 〈z,−u〉.

Therefore we have 〈z, λu〉 = hK(u)(λu) for all λ ∈ R. We deduce

〈z, w〉 = 〈z, λu〉 + 〈z, µv〉 = hK(u)(λu) + hK(µv) ≥ hK(u)(λu) + hK(u)(µv)

≥ hK(u)(λz + µv) = hK(u)(w) ≥ 〈z, w〉,

which yields z ∈ K(u)(w).
Now let z ∈ K(u)(w). There is some x0 ∈ K(u) ∩ K(v) 6= ∅. Then 〈x0, u〉 = hK(u) =

〈z, u〉, since z ∈ K(u), and 〈x0, v〉 = hK(v). By the preceding argument, x0 ∈ K(u)(w), and

therefore

λ〈z, u〉 + µ〈z, v〉 = 〈z, w〉 = 〈x0, w〉 = λ〈x0, u〉 + µ〈x0, v〉,
hence 〈z, v〉 = 〈x0, v〉 = hK(v), i.e. z ∈ K(v). Thus it follows that z ∈ K(u) ∩ K(v).

In analogy to the recursive definition of the volume of a polytope, we now define the mixed

volume of polytopes. Again, we use projections of the support sets (faces) in order to make the

definition rigorous. After we have shown translation invariance of the functionals, the corre-

sponding formulas will become simpler.

For polytopes P1, ..., Pk ∈ Pn, let N(P1, ..., Pk) denote the set of all facet normals of the

convex polytope P1 + · · · + Pk.
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Definition. For polytopes P1, ..., Pn ∈ Pn, we define the mixed volume V (n)(P1, ..., Pn) of

P1, ..., Pn recursively:

V (1)(P1) := V (P1) = hP1(1) + hP1(−1) (= b − a, if P1 = [a, b] with a ≤ b), for n = 1,

V (n)(P1, ..., Pn) :=
1

n

∑

u∈N(P1,...,Pn−1)

hPn
(u)V (n−1)(P1(u)|u⊥, ..., Pn−1(u)|u⊥), for n ≥ 2.

Theorem 3.3.3. The mixed volume V (n)(P1, ..., Pn) of polytopes P1, ..., Pn ∈ Pn is symmetric

in the indices 1, ..., n, independent of individual translations of the polytopes P1, ..., Pn, and for

dim(P1 + · · · + Pn) ≤ n − 1, we have V (n)(P1, ..., Pn) = 0.

Furthermore, for m ∈ N, P1, ..., Pm ∈ Pn, and α1, ..., αm ≥ 0, we have

V (α1P1 + · · · + αmPm) =
m∑

i1=1

· · ·
m∑

in=1

αi1 · · ·αinV (n)(Pi1 , ..., Pin). (3.3)

For the proof, it is convenient to extend the k-dimensional mixed volume V (k)(Q1, ..., Qk)
(which is defined for polytopes Q1, ..., Qk in a k-dimensional linear subspace E ⊂ R

d) to poly-

topes Q1, ..., Qk ∈ Pn, which fulfill dim(Q1 + · · · + Qk) ≤ k, namely by

V (k)(Q1, ..., Qk) := V (k)(Q1|E, ..., Qk|E),

where E is a k-dimensional subspace parallel to Q1 + · · · + Qk, 1 ≤ k ≤ n − 1. The transla-

tion invariance and the dimensional condition, which we will prove, show that this extension is

consistent (and independent of E in case dim(Q1 + · · · + Qk) < k). In the following inductive

proof, we already make use of this extension in order to simplify the presentation. In particular,

in the induction step, we use the mixed volume V (n−1)(P1(u), ..., Pn−1(u)).

In addition, we extend the mixed volume to the empty set, namely as V (n)(P1, ..., Pn) := 0,

if one of the sets Pi is empty.

Proof. We use induction on the dimension n.

For n = 1, the polytopes Pi are intervals and the mixed volume equals the (one-dimensional)

volume V (1) (the length of the intervals), which is linear

V (1)(α1P1 + · · · + αmPm) =
m∑

i=1

αiV
(1)(Pi).

Hence, (3.3) holds as well as the remaining assertions.

Now we assume that the assertions of the theorem are true for all dimensions ≤ n−1, and we

consider dimension n ≥ 2. We first discuss the dimensional statement. If dim (P1 + · · ·+Pn) ≤
n − 1, then either N(P1, . . . , Pn−1) = ∅ or N(P1, . . . , Pn−1) = {−u, u}, where u is the normal

on aff (P1 + · · · + Pn). In the first case, we have V (n)(P1, . . . , Pn) = 0, by definition; in the
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second case, we have

V (n)(P1, . . . , Pn)

=
1

n
(hPn

(u)V (n−1)(P1(u), . . . , Pn−1(u)) + hPn
(−u)V (n−1)(P1(−u), . . . , Pn−1(−u))

=
1

n
(hPn

(u)V (n−1)(P1(u), . . . , Pn−1(u)) − hPn
(u)V (n−1)(P1(u), . . . , Pn−1(u))

= 0.

Next, we prove (3.3). If αi = 0, for a certain index i, the corresponding summand αiPi on

the left-hand side can be deleted, as well as all summands on the right-hand side which contain

this particular index i. Therefore, it is sufficient to consider the case α1 > 0, ..., αm > 0. By the

definition of volume and Proposition 3.3.1,

V (α1P1 + · · · + αmPm) =
1

n

∑

u∈N(P1,...,Pm)

h∑m
i=1 αiPi

(u) v

(

(
m∑

i=1

αiPi)(u)

)

=
m∑

in=1

αin

1

n

∑

u∈N(P1,...,Pm)

hPin
(u) v

(
m∑

i=1

αi(Pi(u)|u⊥)

)

.

The inductive assumption implies

v

(
m∑

i=1

αi(Pi(u)|u⊥)

)

=
m∑

i1=1

· · ·
m∑

in−1=1

αi1 · · ·αin−1 V (n−1)(Pi1(u), ..., Pin−1(u)).

Hence, we obtain

V (α1P1 + · · · + αmPm)

=
m∑

i1=1

· · ·
m∑

in−1=1

m∑

in=1

αi1 · · ·αin−1αin

1

n

∑

u∈N(P1,...,Pm)

hPin
(u) V (n−1)(Pi1(u), ..., Pin−1(u))

=
m∑

i1=1

· · ·
m∑

in=1

αi1 · · ·αin V (n)(Pi1 , ..., Pin).

Here, we have used that, for a given set of indices {i1, ..., in}, the summation over N(P1, ..., Pm)
can be replaced by the summation over N(Pi1 , ..., Pin−1). Namely, for u /∈ N(Pi1 , ..., Pin−1) the

support set Pi1(u) + · · · + Pin−1(u) = (Pi1 + · · · + Pin−1)(u) has dimension ≤ n − 2 and hence

V (n−1)(Pi1(u), ..., Pin−1(u)) = 0. We will use this fact also in the following parts of the proof.

We next show the symmetry. Since V (n−1)(P1(u), ..., Pn−1(u)) is symmetric (in the indices)

by the inductive assumption, it suffices to show

V (n)(P1, ..., Pn−2, Pn−1, Pn) = V (n)(P1, ..., Pn−2, Pn, Pn−1).
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Moreover, we may assume that P := P1 + · · · + Pn fulfills dim P = n. By definition,

V (n−1)(P1(u), ..., Pn−1(u))

=
1

n − 1

∑

ṽ∈Ñ

hPn−1(u)(ṽ)V (n−2)((P1(u))(ṽ), ..., (Pn−2(u))(ṽ)) ,

where we have to sum over the set Ñ of facet normals of P (u) (in u⊥). Formally, we would

have to work with the projections (the shifted support sets) P1(u)|u⊥, ..., Pn−1(u)|u⊥, but here

we make use of our extended definition of the (n− 2)-dimensional mixed volume and of the fact

that

hPn−1(u)|u⊥(ṽ) = hPn−1(u)(ṽ),

for all ṽ⊥u. The facets of P (u) are (n − 2)-dimensional faces of P , thus they arise (because of

dim P = n) as intersections P (u) ∩ P (v) of the facet P (u) with another facet P (v) of P . Since

dim P = n, the case v = −u cannot occur. If P (u) ∩ P (v) is a (n − 2)-face of P , hence a facet

of P (u), the corresponding normal (in u⊥) is given by ṽ = ‖v|u⊥‖−1(v|u⊥), hence it is of the

form ṽ = λu + µv with some λ ∈ R and µ > 0.

By Proposition 3.3.1(c),

P (u) ∩ P (v) = (P1(u) ∩ P1(v)) + · · · + (Pn(u) ∩ Pn(v));

in particular, Pi(u) ∩ Pi(v) 6= ∅ for i = 1, . . . , n. For a (n − 2)-face P (u) ∩ P (v) of P , we

therefore obtain by Lemma 3.3.2

(Pi(u))(ṽ) = Pi(u) ∩ Pi(v), i = 1, ..., n − 2,

which implies

V (n−1)(P1(u), ..., Pn−1(u))

=
1

n − 1

∑

v∈N(P1,...,Pn),
P (u)∩P (v) 6=∅

hPn−1(u)

(
v|u⊥

‖v|u⊥‖

)

V (n−2)(P1(u) ∩ P1(v), ..., Pn−2(u) ∩ Pn−2(v)).

Here, we may sum again over all v ∈ N(P1, ..., Pn), with P (u) ∩ P (v) 6= ∅, since for those

v, for which P (u) ∩ P (v) 6= ∅ is not an (n − 2)-face of P , the mixed volume V (n−2)(P1(u) ∩
P1(v), ..., Pn−2(u) ∩ Pn−2(v)) vanishes by the inductive hypothesis. Also, for n = 2, the mixed

volume V (n−2)(P1(u) ∩ P1(v), ..., Pn−2(u) ∩ Pn−2(v)) is defined to be 1.

Let γ(u, v) denote the (outer) angle between u and v, then

‖v|u⊥‖ = sin γ(u, v), 〈u, v〉 = cos γ(u, v),

and hence
v|u⊥

‖v|u⊥‖ =
1

sin γ(u, v)
v − 1

tan γ(u, v)
u.
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For x ∈ Pn−1(u) ∩ Pn−1(v), we have

hPn−1(u)(ṽ) = 〈x, ṽ〉 =
1

sin γ(u, v)
〈x, v〉 − 1

tan γ(u, v)
〈x, u〉

=
1

sin γ(u, v)
hPn−1(v) − 1

tan γ(u, v)
hPn−1(u).

Hence, altogether we obtain

V (n)(P1, ..., Pn−2, Pn−1, Pn)

=
1

n

∑

u∈N(P1,...,Pn)

hPn
(u) V (n−1)(P1(u), ..., Pn−1(u))

=
1

n(n − 1)

∑

u,v∈N(P1,...,Pn),v 6=±u

[ 1

sin γ(u, v)
hPn

(u)hPn−1(v)

− 1

tan γ(u, v)
hPn

(u)hPn−1(u)
]

V (n−2)(P1(u) ∩ P1(v), ..., Pn−2(u) ∩ Pn−2(v))

= V (n)(P1, ..., Pn−2, Pn, Pn−1),

and the symmetry is proved.

For the remaining assertion, we put m = n in (3.3). Since the left-hand side of (3.3) is invari-

ant with respect to individual translations of the polytopes Pi, the same holds true for the coeffi-

cients of the polynomial on the right-hand side, in particular for the coefficient V (n)(P1, ..., Pn).
Here we need the symmetry of the coefficients and we make use of the fact that the coefficients

of a polynomial in several variables are uniquely determined, if they are chosen to be symmet-

ric.

Remark. In the following, we use similar abbreviations as in the case of volume,

V (P1, ..., Pn) := V (n)(P1, ..., Pn)

and

v(P1(u), ..., Pn−1(u)) := V (n−1)(P1(u), ..., Pn−1(u)).

As a special case of the polynomial expansion of volumes, we obtain

V (P1 + · · · + Pm) =
m∑

i1=1

· · ·
m∑

in=1

V (Pi1 , . . . , Pin).

The question arises, whether this expansion can be inverted.
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Corollary 3.3.4 (Inversion Formula). For P1, ..., Pn ∈ Pn, we have

V (P1, ..., Pn) =
1

n!

n∑

k=1

(−1)n+k
∑

1≤r1<···<rk≤n

V (Pr1 + · · · + Prk
).

Proof. We denote the right-hand side by f(P1, ..., Pn), then formula (∗) in Theorem 3.3.3

implies that f(α1P1, ..., αnPn) is a homogeneous polynomial of degree n in the variables

α1 ≥ 0, ..., αn ≥ 0 (and with symmetric coefficients). Replacing P1 by {0}, we have

(−1)n+1n!f({0}, P2, ..., Pn)

=
∑

2≤r≤n

V (Pr) −
[
∑

2≤r≤n

V ({0} + Pr) +
∑

2≤r<s≤n

V (Pr + Ps)

]

+

[
∑

2≤r<s≤n

V ({0} + Pr + Ps) +
∑

2≤r<s<t≤n

V (Pr + Ps + Pt)

]

− · · ·
= 0,

which means that f({0}, α2P2, ..., αnPn) = f(0 · P1, α2P2, ..., αnPn) is the zero polynomial.

Consequently, in the polynomial f(α1P1, ..., αnPn), only those coefficients can be non-vanishing

which contain the index 1. Replacing 1 subsequently by 2, ..., n, we obtain that only the coef-

ficient of α1 · · ·αn can be non-zero. This coefficient occurs only once in the representation of

f , namely for k = n with (r1, ..., rn) = (1, ..., n). Therefore, by Theorem 3.3.3, this coefficient

must coincide with V (P1, ..., Pn).

Theorem 3.3.5. For convex bodies K1, ..., Kn ∈ Kn and arbitrary approximating sequences

(P
(j)
1 )j∈N, ..., (P

(j)
n )j∈N of polytopes, such that P

(j)
i → Ki, i = 1, ..., n, as j → ∞, the limit

V (K1, ..., Kn) = lim
j→∞

V (P
(j)
1 , ..., P (j)

n )

exists and is independent of the choice of the approximating sequences (P
(j)
i )j∈N. The number

V (K1, ..., Kn) is called the mixed volume of K1, ..., Kn. The mapping V : (Kn)n → R defined

by (K1, ..., Kn) 7→ V (K1, ..., Kn) is called mixed volume.

In particular,

V (K1, ..., Kn) =
1

n!

n∑

k=1

(−1)n+k
∑

1≤r1<···<rk≤n

V (Kr1 + · · · + Krk
). (3.4)

and, for m ∈ N, K1, ..., Km ∈ Kn and α1, ..., αm ≥ 0,

V (α1K1 + · · · + αmKm) =
m∑

i1=1

· · ·
m∑

in=1

αi1 · · ·αinV (Ki1 , ..., Kin) . (3.5)



84 CHAPTER 3. CONVEX BODIES

Furthermore, for all K,L,K1, . . . , Kn ∈ Kn,

(a) V (K, ...,K) = V (K) and nV (K, ...,K,B(1)) = F (K).
(b) V is symmetric.

(c) V is multilinear, i.e.

V (αK + βL,K2, ..., Kn) = αV (K,K2, ..., Kn) + βV (L,K2, ..., Kn),

for all α, β ≥ 0.

(d) V (K1 + x1, ..., Kn + xn) = V (K1, ..., Kn) for all x1, . . . , xn ∈ R
n.

(e) V (gK1, ..., gKn) = V (K1, ..., Kn) for all rigid motions g.

(f) V is continuous, i.e.

V (K
(j)
1 , ..., K(j)

n ) → V (K1, ..., Kn),

whenever K
(j)
i → Ki, i = 1, ..., n.

(g) V ≥ 0 and V is monotone in each argument.

Proof. The existence of the limit

V (K1, ..., Kn) = lim
j→∞

V (P
(j)
1 , ..., P (j)

n ),

the independence from the approximating sequences and formula (3.4) follow from Corollary

3.3.4 and the continuity of the addition of convex bodies and of the volume functional. Equation

(3.5) is a consequence of (3.3).

(d), (e) and (f) follow now directly from (3.4).

(a) For polytopes the relation V (K, ...,K) = V (K) follows by induction and for general

bodies K by approximation with polytopes; alternatively, one can obtain it from Corollary 3.3.4

and (3.4). Concerning the relation nV (K, ...,K,B(1)) = F (K), again we first discuss the case

K ∈ Pn. Let (Qj)j∈N be a sequence of polytopes with Qj → B(1). Then,

nV (K, ...,K,Qj) → nV (K, ...,K,B(1))

and also

nV (K, ...,K,Qj) =
∑

u∈N(K)

hQj
(u)v(K(u))

→
∑

u∈N(K)

hB(1)(u)v(K(u)) =
∑

u∈N(K)

v(K(u)) = F (K).

For the generalization to arbitrary bodies K, we approximate K from inside and outside by

polytopes and use (f); here only the monotonicity of the surface area is needed, not the continuity

(which we have not proved yet).

(b) follows from the corresponding property for polytopes.

(c) is a consequence of (∗2), if we apply it to the linear combination

α1(αK + βL) + α2K2 + · · ·αmKm = α1αK + α1βL + α2K2 + · · ·αmKm
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twice (once as a combination of m bodies and once as a combination of m + 1 bodies), and then

compare the coefficients. Alternatively, if all bodies are polytopes, the assertion follows from the

definition and the symmetry of mixed volumes together with the additivity of support functions.

The general case is obtained by approximation.

(g) Again it is sufficient to prove this for polytopes. Then V ≥ 0 follows by induction and

the formula

V (P1, ..., Pn) =
1

n

∑

u∈N(P1,...,Pn−1)

hPn
(u)v(P1(u), ..., Pn−1(u)),

where we may assume, in view of (d), that 0 ∈ rel int Pn, hence hPn
≥ 0. If Pn ⊂ Qn, then

hPn
≤ hQn

, hence

V (P1, ..., Pn) ≤ V (P1, ..., Pn−1, Qn),

by the same formula and since the mixed volume is nonnegative.

Remarks. (1) In addition to V ≥ 0, one can show that V (K1, . . . , Kn) > 0, if and only if there

exist segments s1 ⊂ K1, . . . , sn ⊂ Kn with linearly independent directions (see the exercises

below).

(2) Theorem 3.3.5 (a) and (f) now imply the continuity of the surface area F .

Now we consider the parallel body K + B(α), α ≥ 0, of a body K ∈ Kn. With the choice

m = 2, α1 := 1, α2 := α and K1 := K,K2 := B(1), Theorem 3.3.5 implies

V (K + B(α)) = V (K + αB(1)) = V (α1K1 + α2K2)

=
2∑

i1=1

· · ·
2∑

in=1

αi1 · · ·αinV (Ki1 , ..., Kin) (3.6)

=
n∑

i=0

αi

(
n

i

)

V (K, . . . ,K
︸ ︷︷ ︸

n−i

, B(1), . . . , B(1)
︸ ︷︷ ︸

i

).

The coefficients in this particular polynomial expansion deserve special attention.

Definition. For K ∈ Kn,

Wi(K) := V (K, . . . ,K
︸ ︷︷ ︸

n−i

, B(1), . . . , B(1)
︸ ︷︷ ︸

i

)

is called the i-th quermassintegral of K, i = 0, . . . , n, and

Vj(K) = V
(n)
j (K) :=

(
n
j

)

κn−j

Wn−j(K) =

(
n
j

)

κn−j

V (K, . . . ,K
︸ ︷︷ ︸

j

, B(1), . . . , B(1)
︸ ︷︷ ︸

n−j

)

is called the j-th intrinsic volume of K, j = 0, . . . , n. Here, κk is the volume of the k-dimensional

unit ball. Since we have extended the mixed volume to the empty set, we also define

Wi(∅) := Vj(∅) := 0, i, j = 0, . . . , n.

Formula (3.6) directly implies the following result.
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Theorem 3.3.6 (STEINER formula). For K ∈ Kn and α ≥ 0, we have

V (K + B(α)) =
n∑

i=0

αi

(
n

i

)

Wi(K),

respectively

V (K + B(α)) =
n∑

j=0

αn−jκn−jVj(K).

Remarks. (1) In particular, we get

F (K) = nW1(K) = lim
αց0

1

α
(V (K + B(α)) − V (K)),

hence the surface area is the “derivative” of the volume functional.

(2) As a generalization of the STEINER formula (3.6), one can show that

Vk(K + B(α)) =
k∑

j=0

αk−j

(
n − j

n − k

)
κn−j

κn−k

Vj(K),

for k = 0, . . . , n − 1 (see the exercises).

(3) Here we deduced the Steiner formula as a special case of the polynomial expansion of the

volume of a general Minkowski combination of convex bodies, that is via the introduction of

mixed volumes. Of course, it is possible to follow a more direct approach by decomposing the

outer parallel set of a convex polytope P by the inverse images under the projection map of the

relative interiors of the faces of P . The result for a general convex body then follows again by

approximation with polytopes.

The quermassintegrals are the classical notation used in most of the older books. The name

quermassintegral will become clear in chapter 4 where we discuss some projection formulas.

The intrinsic volumes follow the more modern terminology. Their advantages are that the index

j of Vj corresponds to the degree of homogeneity,

Vj(αK) = αjVj(K), K ∈ Kn, α ≥ 0,

and that they are independent of the surrounding dimension, i.e. for a body K ∈ Kn with

dim K = k < n, we have

V
(n)
j (K) = V

(k)
j (K), j = 0, . . . , k,

(see Exercise 5).

The intrinsic volumes are important geometric functionals of a convex body. First, by defini-

tion,

Vn(K) = V (K, . . . ,K) = V (K)
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is the volume of K. Then,

2Vn−1(K) = nV (K, . . . ,K,B(1)) = F (K)

is the surface area of K (such that, for a body K of dimension n − 1, Vn−1(K) is the (n − 1)-
dimensional content of K). At the other end, V1(K) is proportional to the mean width of K.

Namely,
κn−1

n
V1(K) = V (K,B(1), . . . , B(1)).

Approximating the unit ball by polytopes, one can show that

V (K,B(1), . . . , B(1)) =
1

n

∫

Sn−1

hK(u)du,

where the integration is with respect to the spherical Lebesgue measure. A rigorous proof of

this fact will be given in Section 3.5. Since bK(u) := hK(u) + hK(−u) gives the width of K in

direction u (the distance between the two parallel supporting hyperplanes), we obtain

1

n

∫

Sn−1

hK(u)du =
1

2n

∫

Sn−1

bK(u)du =
κn

2
B(K),

where

B(K) :=
1

nκn

∫

Sn−1

bK(u)du

denotes the mean width. Hence

V1(K) =
nκn

2κn−1

B(K).

Finally,

V0(K) =
1

κn

Wn(K) =

{
1

0
if

K 6= ∅ ,

K = ∅ .

is the EULER-POINCARÉ characteristic of K. It plays an important role in integral geometry

(see Chapter 4). The other intrinsic volumes Vj(K), 1 < j < n − 1, have interpretations as

integrals of curvature functions, if the boundary of K is smooth, e.g. Vn−2(K) is proportional to

the integral mean curvature of K.

Remark. From Theorem 3.3.5 we obtain the following additional properties of the intrinsic

volumes Vj:

• K 7→ Vj(K) is continuous,

• Vj is motion invariant,

• Vj ≥ 0 and Vj is monotone.

Later, in Section 4.3, we shall discuss a further property of Vj , namely the additivity. The intrinsic

volume Vj is additive in the sense that

Vj(K ∪ M) + Vj(K ∩ M) = Vj(K) + Vj(M),

for all K,M ∈ Kn such that K ∪ M ∈ Kn.
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Exercises and problems

1. (a) Let s1, . . . , sn ∈ Kn be segments of the form si = [0, xi], xi ∈ R
n. Show that

n! V (s1, . . . , sn) = |det(x1, . . . , xn)|.

(b) For K1, . . . , Kn ∈ Kn, show that V (K1, . . . , Kn) > 0 if and only if there exist segments

si ⊂ Ki, i = 1, . . . , n, with linearly independent directions.

2. (a) For K, M ∈ K2 show the inequality

V (K, M) ≤ 1

8
F (K)F (M).

Hint: Use Exercise 7 in Section 3.1.

(b)∗ Show that equality holds in the above inequality, if and only if K, M are orthogonal segments

(or if one of the bodies is a point).

3. (a)∗ For K ∈ K2 show the inequality

V (K,−K) ≤
√

3

18
F 2(K).

(b)P Show that equality holds in the above inequality, if and only if K is an equilateral triangle (or

a point).

4. For K, K ′ ∈ Kn, show that

∫

D(K,K′)
dx =

n∑

j=0

(
n

j

)

V (K, . . . , K
︸ ︷︷ ︸

n−j

,−K ′, . . . ,−K ′

︸ ︷︷ ︸

j

),

where D(K, K ′) := {z ∈ R
n : K ∩ (K ′ + z) 6= ∅}.

5. For K ∈ Kn, show that the intrinsic volume Vj(K) = V
(n)
j (K) is independent of the dimension

n, i.e. if dimK = k < n, then

V
(k)
j (K) = V

(n)
j (K), for 0 ≤ j ≤ k.

6. Suppose K ∈ Kn and L is a q-dimensional linear subspace of R
n, q ∈ {0, . . . , n − 1}. Let BL

denote the unit ball in L.

Show that:

(a) V (K + αBL) =

q
∑

j=0

αq−jκq−j

∫

L⊥

Vj(K ∩ (L + x)) dλn−q(x), for all α ≥ 0.

(b) The (n − q)-dimensional volume of the projection K |L⊥ fulfills

Vn−q(K|L⊥) =

(
n
q

)

κq
V (K, . . . , K
︸ ︷︷ ︸

n−q

, BL, . . . , BL
︸ ︷︷ ︸

q

).
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Hint for (a): Use FUBINI’s theorem in R
n = L × L⊥ for the left-hand side and apply Exercise 5.

7. For a convex body K ∈ Kn and α ≥ 0, prove the following STEINER formula for the intrinsic

volumes:

Vk(K + B(α)) =

k∑

j=0

αk−j

(
n − j

n − k

)
κn−j

κn−k
Vj(K) (0 ≤ k ≤ n − 1).

8.P Prove the following Theorem of HADWIGER:

Let f : Kn → R be additive, motion invariant and continuous (resp. monotone). Then, there are

constants βj ∈ R (resp. βj ≥ 0), such that

f =
n∑

j=0

βjVj .
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3.4 The BRUNN-MINKOWSKI Theorem

The BRUNN-MINKOWSKI Theorem was one of the first main results on convex bodies (proved

around 1890). It says that, for convex bodies K,L ∈ Kn, the function

t 7→ n
√

V (tK + (1 − t)L), t ∈ [0, 1],

is concave. As consequences we will get inequalities for mixed volumes, in particular the cele-

brated isoperimetric inequality.

We first need an auxiliary result.

Lemma 3.4.1. For α ∈ (0, 1) and r, s, t > 0,

(
α

r
+

1 − α

s
)[αrt + (1 − α)st]

1
t ≥ 1

with equality, if and only if r = s.

Proof. The function x 7→ ln x is strictly concave, therefore we have

ln{(α
r

+
1 − α

s
)[αrt + (1 − α)st]

1
t }

=
1

t
ln(αrt + (1 − α)st) + ln(

α

r
+

1 − α

s
)

≥ 1

t
(α ln rt + (1 − α) ln st) + α ln

1

r
+ (1 − α) ln

1

s

= 0

with equality if and only if r = s (the use of the logarithm is possible since its argument is always

positive). The strict monotonicity of the logarithm now proves the result.

The following important inequality is known as the Brunn-Minkowski inequality. It has

numerous applications to and connections with geometry, analysis and probability theory.

Theorem 3.4.2 (BRUNN-MINKOWSKI). For convex bodies K,L ∈ Kn and α ∈ (0, 1),

n
√

V (αK + (1 − α)L) ≥ α n
√

V (K) + (1 − α) n
√

V (L)

with equality, if and only if K and L lie in parallel hyperplanes or K and L are homothetic.

Remark. K and L are homothetic, if and only if K = αL + x or L = αK + x, for some

x ∈ R
n, α ≥ 0. This includes the case of points, i.e. K and L are always homothetic, if K or L

is a point.
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Proof. We distinguish four cases.

Case 1: K and L lie in parallel hyperplanes. Then also αK + (1 − α)L lies in a hyperplane,

and hence V (K) = V (L) = 0 and V (αK + (1 − α)L) = 0.

Case 2: We have dim K ≤ n − 1 and dim L ≤ n − 1, but K and L do not lie in parallel

hyperplanes, i.e. dim(K + L) = n. Then dim(αK + (1 − α)L) = n, for all α ∈ (0, 1), hence

n
√

V (αK + (1 − α)L) > 0 = α n
√

V (K) + (1 − α) n
√

V (L),

for all α ∈ (0, 1).
Case 3: We have dim K ≤ n− 1 and dim L = n (or vice versa). Then, for x ∈ K, we obtain

αx + (1 − α)L ⊂ αK + (1 − α)L,

and thus

(1 − α)nV (L) = V (αx + (1 − α)L) ≤ V (αK + (1 − α)L)

with equality, if and only if K = {x}.

Case 4: We have dim K = dim L = n. We may assume V (K) = V (L) = 1. Namely, for

general K,L, we put

K :=
1

n
√

V (K)
K, L :=

1
n
√

V (L)
L

and

α :=
α n
√

V (K)

α n
√

V (K) + (1 − α) n
√

V (L)
.

Then
n

√

V (αK + (1 − α)L) ≥ 1

implies the BRUNN-MINKOWSKI inequality, which we have to prove. Moreover, K and L are

homothetic, if and only if K and L are homothetic.

Thus, we assume V (K) = V (L) = 1 and we have to show that

V (αK + (1 − α)L) ≥ 1

with equality if and only if K,L are translates of each other. Because the volume is translation

invariant, we can make the additional assumption that K and L have their center of gravity at 0,

where the center of gravity of an n-dimensional convex body M is the point c ∈ R
n fulfilling

〈c, u〉 =
1

V (M)

∫

M

〈x, u〉dx,

for all u ∈ Sn−1. The equality case then reduces to the claim that K = L.

We now prove the Brunn-Minkowski theorem by induction on n. For n = 1, the Brunn-

Minkowski inequality follows from the linearity of the 1-dimensional volume and we even have

equality which corresponds to the fact that in R
1 any two convex bodies (compact intervals) are
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homothetic. Now assume n ≥ 2 and the assertion of the Brunn-Minkowski theorem is true in

dimension n − 1. We choose a unit vector u ∈ Sn−1 and denote by

Eη := {〈·, u〉 = η}, η ∈ R,

the hyperplane in direction u with (signed) distance η from the origin. The function

f : [−hK(−u), hK(u)] → [0, 1], β 7→ V (K ∩ {〈·, u〉 ≤ β}),

is strictly increasing and continuous. Since

V (K ∩ {〈·, u〉 ≤ β}) =

∫ β

−hK(−u)

v(K ∩ Eη) dη

by Fubini’s theorem and since η 7→ v(K∩Eη) is continuous on (−hK(−u), hK(u)), the function

f is differentiable on (−hK(−u), hK(u)) and f ′(β) = v(K ∩ Eβ). Since f is invertible, the

inverse function β : [0, 1] → [−hK(−u), hK(u)], which is also strictly increasing and continuous

satisfies β(0) = −hK(−u), β(1) = hK(u) and

β′(τ) =
1

f ′(β(τ))
=

1

v(K ∩ Eβ(τ))
, τ ∈ (0, 1).

Analogously, for the body L we obtain a function γ : [0, 1] → [−hL(−u), hL(u)] with

γ′(τ) =
1

v(L ∩ Eγ(τ))
, τ ∈ (0, 1).

Because of

α(K ∩ Eβ(τ)) + (1 − α)(L ∩ Eγ(τ)) ⊂ (αK + (1 − α)L) ∩ Eαβ(τ)+(1−α)γ(τ),

for α, τ ∈ [0, 1], we obtain from the inductive assumption

V (αK + (1 − α)L)

=

∫ ∞

−∞

v((αK + (1 − α)L) ∩ Eη)dη

=

∫ 1

0

v((αK + (1 − α)L) ∩ Eαβ(τ)+(1−α)γ(τ))(αβ′(τ) + (1 − α)γ′(τ))dτ

≥
∫ 1

0

v
(
α(K ∩ Eβ(τ)) + (1 − α)(L ∩ Eγ(τ))

)
(

α

v(K ∩ Eβ(τ))
+

1 − α

v(L ∩ Eγ(τ))

)

dτ

≥
∫ 1

0

[

α n−1

√

v(K ∩ Eβ(τ)) + (1 − α) n−1

√

v(L ∩ Eγ(τ))
]n−1

×
(

α

v(K ∩ Eβ(τ))
+

1 − α

v(L ∩ Eγ(τ))

)

dτ.
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Choosing r := v(K ∩Eβ(τ)), s := v(L∩Eγ(τ)) and t := 1
n−1

, we obtain from Lemma 3.4.1 that

the integrand is ≥ 1, which yields the required inequality.

Now assume

V (αK + (1 − α)L) = 1.

Then we must have equality in our last estimation, which implies that the integrand equals 1, for

all τ . Again by Lemma 3.4.1, this yields that

v(K ∩ Eβ(τ)) = v(L ∩ Eγ(τ)), for all τ ∈ [0, 1].

Therefore β′ = γ′, hence the function β − γ is a constant. Because the center of gravity of K is

at the origin, we obtain

0 =

∫

K

〈x, u〉dx =

∫ β(1)

β(0)

ηv(K ∩ Eη)dη =

∫ β(1)

β(0)

ηf ′(η)dη =

∫ 1

0

β(τ)dτ,

where the change of variables η = β(τ) was used. In an analogous way,

0 =

∫ 1

0

γ(τ)dτ.

Consequently,
∫ 1

0

(β(τ) − γ(τ))dτ = 0

and therefore β = γ. In particular, we obtain

hK(u) = β(1) = γ(1) = hL(u).

Since u was arbitrary, V (αK + (1 − α)L) = 1 implies hK = hL, and hence K = L.

Conversely, it is clear that K = L implies V (αK + (1 − α)L) = 1.

Remark. Theorem 3.4.2 implies that the function

f(t) := n
√

V (tK + (1 − t)L)

is concave on [0, 1]. Namely, let x, y, α ∈ [0, 1], then

f(αx + (1 − α)y) = n
√

V ([αx + (1 − α)y]K + [1 − αx − (1 − α)y]L)

= n
√

V (α[xK + (1 − x)L] + (1 − α)[yK + (1 − y)L])

≥ α n
√

V (xK + (1 − x)L) + (1 − α) n
√

V (yK + (1 − y)L)

= αf(x) + (1 − α)f(y).

As a consequence of Theorem 3.4.2, we obtain an inequality for mixed volumes which was first

proved by MINKOWSKI.
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Theorem 3.4.3. For K,L ∈ Kn,

V (K, . . . ,K, L)n ≥ V (K)n−1V (L)

with equality, if and only if dim K ≤ n − 2 or K and L lie in parallel hyperplanes or K and L
are homothetic.

Proof. For dim K ≤ n − 1, the inequality holds since the right-hand side is zero. Moreover, we

then have equality, if and only if either dim K ≤ n − 2 or K and L lie in parallel hyperplanes

(compare Exercise 3.3.1). Hence, we now assume dim K = n.

By Theorem 3.4.2 (similarly to the preceding remark), it follows that the function

f(t) := V (K + tL)
1
n , t ∈ [0, 1],

is concave. Therefore

f+(0) ≥ f(1) − f(0) = V (K + L)
1
n − V (K)

1
n .

Since

f+(0) =
1

n
V (K)

1
n
−1 · nV (K, ...,K, L),

we arrive at

V (K)
1
n
−1 · nV (K, ...,K, L) ≥ V (K + L)

1
n − V (K)

1
n ≥ V (L)

1
n ,

where we used the Brunn-Minkowski inequality in the end (with t = 1
2
). This implies the

assertion. Equality holds if and only if equality holds in the Brunn-Minkowski inequality, which

yields that K and L are homothetic.

Corollary 3.4.4 (Isoperimetric inequality). Let K ∈ Kn be a convex body of dimension n. Then,

(
F (K)

F (B(1))

)n

≥
(

V (K)

V (B(1))

)n−1

.

Equality holds, if and only if K is a ball.

Proof. We put L := B(1) in Theorem 3.4.3 and get

V (K, . . . ,K,B(1))n ≥ V (K)n−1V (B(1))

or, equivalently,

nnV (K, . . . ,K,B(1))n

nnV (B(1), . . . , B(1), B(1))n
≥ V (K)n−1

V (B(1))n−1
.
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The isoperimetric inequality states that, among all convex bodies of given volume (given surface

area), the balls have the smallest surface area (the largest volume).

Using V (B(1)) = κn and F (B(1)) = nκn, we can re-write the inequality in the form

V (K)n−1 ≤ 1

nnκn

F (K)n.

For n = 2 and using the common terminology A(K) for the area (the “volume” in R
2) and L(K)

for the boundary length (the “surface area” in R
2), we obtain

A(K) ≤ 1

4π
L(K)2,

and, for n = 3,

V (K)2 ≤ 1

36π
F (K)3.

Exchanging K and B(1) in the proof above yields a similar inequality for the mixed volume

V (B(1), . . . B(1), K), hence we obtain the following corollary for the mean width B(K).

Corollary 3.4.5. Let K ∈ Kn be a convex body. Then,

(
B(K)

B(B(1))

)n

≥ V (K)

V (B(1))
.

Equality holds, if and only if K is a ball.

Remark. Since B(K) is not greater than the diameter of K, the corollary implies an inequality

for the diameter.

Using Theorem 3.4.2 and the second derivatives, we obtain in a similar manner inequalities of

quadratic type.

Theorem 3.4.6. For K,L ∈ Kn,

V (K, . . . ,K, L)2 ≥ V (K, . . . ,K, L, L)V (K). (4.7)

The proof is left as an exercise. The case of equality is not known completely. Equality holds

for homothetic bodies, but there are also non-homothetic bodies (with interior points) for which

equality holds.

Replacing K or L in (4.7) by the unit ball, we obtain more special inequalities, for example

(in R
3)

πB(K)2 ≥ F (K)

or

F (K)2 ≥ 6πB(K)V (K).
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Exercises and problems

1. Give a proof of Theorem 3.4.6.

2. The diameter diam(K) of a convex body K ∈ Kn is defined as

diam(K) := sup{‖x − y‖ : x, y ∈ K}.

(a) Prove that

B(K) ≤ diam(K) ≤ nκn

2κn−1
· B(K).

(b) If there is equality in one of the two inequalities, what can be said about K?

3. Let K ∈ Kn be an n-dimensional convex body. The difference body D(K) of K is defined as the

centrally symmetric convex body D(K) := 1
2(K + (−K)). Show that

(a) D(K) has the same width as K in every direction.

(b) V (D(K)) ≥ V (K) with equality if and only if K is centrally symmetric.



3.5. SURFACE AREA MEASURES 97

3.5 Surface area measures

In Section 3.3, we have shown that, for polytopes P1, . . . , Pn ∈ Pn, the mixed volume fulfills

the formula

V (P1, . . . , Pn−1, Pn) =
1

n

∑

u∈Sn−1

hPn
(u)v(P1(u), . . . , Pn−1(u)).

Here, the summation extends over all unit vectors u for which v(P1(u), . . . , Pn−1(u)) > 0,

that is, over all facet normals of the polytope P1 + · · · + Pn−1. By approximation (and using

the continuity of mixed volumes and support functions), we therefore get the same formula for

arbitrary bodies Kn ∈ Kn,

V (P1, . . . , Pn−1, Kn) =
1

n

∑

u∈Sn−1

hKn
(u)v(P1(u), . . . , Pn−1(u)). (5.8)

We define

S(P1, . . . , Pn−1, ·) :=
∑

u∈Sn−1

v(P1(u), . . . , Pn−1(u))εu, (5.9)

where εu denotes the Dirac measure in u ∈ Sn−1,

εu(A) :=

{
1

0
if

u ∈ A ,

u /∈ A ,

(here, A runs through all Borel sets in Sn−1). Then, S(P1, . . . , Pn−1, ·) is a finite Borel mea-

sure on the unit sphere Sn−1, which is called the mixed surface area measure of the polytopes

P1, . . . , Pn−1. Equation (5.8) is then equivalent to

V (P1, . . . , Pn−1, Kn) =
1

n

∫

Sn−1

hKn
(u)dS(P1, . . . , Pn−1, u). (5.10)

Our next goal is to extend this integral representation to arbitrary convex bodies K1, . . . , Kn−1

(and thus to define mixed surface area measures for general convex bodies).

We first need an auxiliary result.

Lemma 3.5.1. For convex bodies K1, . . . , Kn−1, Kn, K
′
n ∈ Kn, we have

|V (K1, . . . , Kn−1, Kn) − V (K1, . . . , Kn−1, K
′
n)|

≤ ‖hKn
− hK′

n
‖V (K1, . . . , Kn−1, B(1)).
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Proof. First, let K1, . . . , Kn−1 be polytopes. Since hB(1) ≡ 1 (on Sn−1), we obtain from (5.8)

that

|V (K1, . . . , Kn−1, Kn) − V (K1, . . . , Kn−1, K
′
n)|

=
1

n

∣
∣
∣
∣
∣

∑

u∈Sn−1

(hKn
(u) − hK′

n
(u))v(K1(u), . . . , Kn−1(u))

∣
∣
∣
∣
∣

≤ 1

n

∑

u∈Sn−1

|hKn
(u) − hK′

n
(u)|v(K1(u), . . . , Kn−1(u))

≤ 1

n
sup

v∈Sn−1

|hKn
(v) − hK′

n
(v)|

∑

u∈Sn−1

v(K1(u), . . . , Kn−1(u))

=
1

n
‖hKn

− hK′
n
‖
∑

u∈Sn−1

hB(1)(u)v(K1(u), . . . , Kn−1(u))

= ‖hKn
− hK′

n
‖V (K1, . . . , Kn−1, B(1)).

By Theorem 3.3.5 (continuity of the mixed volume), the inequality extends to arbitrary convex

bodies.

Now we can extend (5.10) to arbitrary convex bodies.

Theorem 3.5.2. For K1, . . . , Kn−1 ∈ Kn, there exists a uniquely determined finite Borel measure

S(K1, . . . , Kn−1, ·) on Sn−1 such that

V (K1, . . . , Kn−1, K) =
1

n

∫

Sn−1

hK(u)dS(K1, . . . , Kn−1, u),

for all K ∈ Kn.

Proof. We consider the Banach space C(Sn−1) and the linear subspace C
2(Sn−1) of twice con-

tinuously differentiable functions. Here, a function f on Sn−1 is called twice continuously dif-

ferentiable, if the homogeneous extension f̃ of f ,

f̃(x) :=

{‖x‖f( x
‖x‖

)

0
if

x ∈ R
n \ {0} ,

x = 0 ,

is twice continuously differentiable on R
n \ {0}. From analysis we use the fact that the subspace

C
2(Sn−1) is dense in C(Sn−1), that is, for each f ∈ C(Sn−1) there is a sequence of functions

fi ∈ C
2(Sn−1) with fi → f in the maximum norm, as i → ∞ (this can be proved either by a

convolution argument or by using a result of STONE-WEIERSTRASS type).

Further, we consider the set Ln of all functions f ∈ C(Sn−1) which have a representation

f = hK−hK′ with convex bodies K,K ′ ∈ Kn. Obviously, Ln is also a linear subspace. Exercise

3.2.1 shows that C2(Sn−1) ⊂ Ln, therefore Ln is dense in C(Sn−1).
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We now define a functional TK1,...,Kn−1 on Ln by

TK1,...,Kn−1(f) := nV (K1, . . . , Kn−1, K) − nV (K1, . . . , Kn−1, K
′),

where f = hK − hK′ . This definition is actually independent of the particular representation of

f . Namely, if f = hK − hK′ = hL − hL′ , then K + L′ = K ′ + L and hence

V (K1, . . . , Kn−1, K) + V (K1, . . . , Kn−1, L
′)

= V (K1, . . . , Kn−1, K
′) + V (K1, . . . , Kn−1, L),

by the multilinearity of mixed volumes. This yields

nV (K1, . . . , Kn−1, K) − nV (K1, . . . , Kn−1, K
′)

= nV (K1, . . . , Kn−1, L) − nV (K1, . . . , Kn−1, L
′).

The argument just given also shows that TK1,...,Kn−1 is linear. Moreover, TK1,...,Kn−1 is a positive

functional since f = hK − hK′ ≥ 0 implies K ⊃ K ′. Hence

V (K1, . . . , Kn−1, K) ≥ V (K1, . . . , Kn−1, K
′)

and therefore TK1,...,Kn−1(f) ≥ 0. Finally, TK1,...,Kn−1 is continuous (with respect to the maxi-

mum norm), since Lemma 3.5.1 shows that

|TK1,...,Kn−1(f)| ≤ c(K1, . . . , Kn−1)‖f‖

with c(K1, . . . , Kn−1) := nV (K1, . . . , Kn−1, B(1)).
Since Ln is dense in C(Sn−1), the inequality just proven (or alternatively, the theorem of

HAHN-BANACH) implies that there is a unique continuous extension of TK1,...,Kn−1 to a positive

linear functional on C(Sn−1). The RIESZ representation theorem then shows that

TK1,...,Kn−1(f) =

∫

Sn−1

f(u)dS(K1, . . . , Kn−1, u),

for f ∈ C(Sn−1), with a finite (nonnegative) Borel measure S(K1, . . . , Kn−1, ·) on Sn−1, which

is uniquely determined by TK1,...,Kn−1 . The existence assertion of the theorem now follows, if we

put f = hK .

For the uniqueness part, let µ, µ′ be two Borel measures on Sn−1, depending on

K1, . . . , Kn−1, such that
∫

Sn−1

hK(u)dµ(u) =

∫

Sn−1

hK(u)dµ′(u)

for all K ∈ Kn. By linearity, we get
∫

Sn−1

f(u)dµ(u) =

∫

Sn−1

f(u)dµ′(u)

first for all f ∈ Ln, and then for all f ∈ C(Sn−1). The uniqueness assertion in the Riesz

representation theorem then implies that µ = µ′.
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Definition. The measure S(K1, . . . , Kn−1, ·) is called the mixed surface area measure of the

bodies K1, . . . , Kn−1. In particular,

Sj(K, ·) := S(K, . . . ,K
︸ ︷︷ ︸

j

, B(1), . . . , B(1)
︸ ︷︷ ︸

n−1−j

, ·)

is called the jth order surface area measure of K, j = 0, . . . , n − 1.

Remarks. (1) For polytopes K1, . . . , Kn−1, the mixed surface area measure S(K1, . . . , Kn−1, ·)
equals the measure defined in (5.9).

(2) All surface area measures have centroid 0. Namely, since

V (K1, . . . , Kn−1, {x}) = 0,

we have ∫

Sn−1

〈x, u〉dS(K1, . . . , Kn−1, u) = 0,

for all x ∈ R
n.

(3) We have

Sj(K,Sn−1) = nV (K, . . . ,K
︸ ︷︷ ︸

j

, B(1), . . . , B(1)
︸ ︷︷ ︸

n−j

)

=
nκn−j
(

n
j

) Vj(K),

in particular

Sn−1(K,Sn−1) = 2Vn−1(K) = F (K),

which explains the name surface area measure.

(4) The measure S0(K, ·) = S(B(1), . . . , B(1), ·) = Sj(B(1), ·) (for j = 0, . . . , n − 1 and

K ∈ Kn) equals the spherical Lebesgue measure ωn−1 (this follows from part (d) of the following

theorem), hence we obtain the equation

V (K,B(1), . . . , B(1)) =
1

n

∫

Sn−1

hK(u)du,

which we used already at the end of Section 3.3.

Further properties of mixed surface area measures follow, if we combine Theorem 3.5.2 with

Theorem 3.3.5. In order to formulate a continuity result, we make use of the weak convergence

of measures on Sn−1 (since Sn−1 is compact, weak and vague convergence are the same). A

sequence of finite measures µi, i = 1, 2, . . . , on Sn−1 is said to converge weakly to a finite

measure µ on Sn−1, if and only if
∫

Sn−1

f(u)dµi(u) →
∫

Sn−1

f(u)dµ(u), as i → ∞,

for all f ∈ C(Sn−1).
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Theorem 3.5.3. The mapping S : (K1, . . . , Kn−1) 7→ S(K1, . . . , Kn−1, ·) has the following

properties:

(a) S is symmetric, i.e.

S(K1, . . . , Kn−1, ·) = S(Kπ(1), . . . , Kπ(n−1), ·),

for all K1, ..., Kn−1 ∈ Kn and all permutations π of 1, . . . , n − 1.

(b) S is multilinear, i.e.

S(αK + βL,K2, ..., Kn−1, ·) = αS(K,K2, ..., Kn−1, ·) + βS(L,K2, ..., Kn−1, ·),

for all α, β ≥ 0, K, L,K2, ..., Kn−1 ∈ Kn.

(c) S is translation invariant, i.e.

S(K1 + x1, ..., Kn−1 + xn−1, ·) = S(K1, ..., Kn−1, ·),

for all Ki ∈ Kn and all xi ∈ R
n.

(d) S is rotation covariant, i.e.

S(ϑK1, ..., ϑKn−1, ϑA) = S(K1, ..., Kn−1, A),

for all Ki ∈ Kn, all Borel sets A ⊂ Sn−1, and all rotations ϑ.

(e) S is continuous, i.e.

S(K
(m)
1 , ..., K

(m)
n−1, ·) → S(K1, ..., Kn−1, ·)

weakly, as m → ∞, provided K
(m)
i → Ki, i = 1, ..., n − 1.

Proof. (a), (b) and (c) follow directly from the integral representation and the uniqueness in

Theorem 3.5.2 together with the corresponding properties of mixed volumes in Theorem 3.3.5.

(d) If ρ ◦ µ denotes the image of a measure µ on Sn−1 under the rotation ρ, then

∫

Sn−1

hKn
(u)d[ϑ−1 ◦ S(ϑK1, ..., ϑKn−1, ·)](u)

=

∫

Sn−1

hKn
(ϑ−1u)dS(ϑK1, ..., ϑKn−1, u)

=

∫

Sn−1

hϑKn
(u)dS(ϑK1, ..., ϑKn−1, u)

= nV (ϑK1, ..., ϑKn−1, ϑKn)

= nV (K1, ..., Kn−1, Kn)

=

∫

Sn−1

hKn
(u)dS(K1, ..., Kn−1, u),



102 CHAPTER 3. CONVEX BODIES

where Kn ∈ Kn is arbitrary. The assertion now follows from the uniquess part of Theorem 3.5.2.

(e) For ε > 0 and f ∈ C(Sn−1), choose K,L ∈ Kn with

‖f − (hK − hL)‖ ≤ ε

and then m0 such that K
(m)
i ⊂ Ki + B(1), i = 1, ..., n − 1, and

|V (K
(m)
1 , . . . , K

(m)
n−1, K) − V (K1, . . . , Kn−1, K)| ≤ ε,

as well as

|V (K
(m)
1 , . . . , K

(m)
n−1, L) − V (K1, . . . , Kn−1, L)| ≤ ε,

for all m ≥ m0. Then,

∣
∣
∣
∣

∫

Sn−1

f(u)dS(K
(m)
1 , . . . , K

(m)
n−1, u) −

∫

Sn−1

f(u)dS(K1, . . . , Kn−1, u)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Sn−1

(f − (hK − hL))(u)dS(K
(m)
1 , . . . , K

(m)
n−1, u)

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

Sn−1

(hK − hL)(u)dS(K
(m)
1 , . . . , K

(m)
n−1, u)

−
∫

Sn−1

(hK − hL)(u)dS(K1, . . . , Kn−1, u)

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

Sn−1

(f − (hK − hL))(u)dS(K1, . . . , Kn−1, u)

∣
∣
∣
∣

≤ ‖f − (hK − hL)‖nV (K1 + B(1), . . . , Kn−1 + B(1), B(1))

+ n|V (K
(m)
1 , . . . , K

(m)
n−1, K) − V (K1, . . . , Kn−1, K)|

+ n|V (K
(m)
1 , . . . , K

(m)
n−1, L) − V (K1, . . . , Kn−1, L)|

+ ‖f − (hK − hL)‖nV (K1, . . . , Kn−1, B(1))

≤ c(K1, . . . , Kn−1)ε,

for m ≥ m0.

Corollary 3.5.4. For j = 0, . . . , n−1, the mapping K 7→ Sj(K, ·) on Kn is translation invariant,

rotation covariant and continuous.

Moreover,

Sn−1(K + B(α), ·) =
n−1∑

j=0

αn−1−j

(
n − 1

j

)

Sj(K, ·),

for α ≥ 0 (local STEINER formula).
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Proof. We only have to prove the local STEINER formula. The latter follows from Theorem

3.5.3(a) and (b).

The interpretation of the surface area measure Sn−1(P, ·) for a polytope P is quite simple. For a

Borel set A ⊂ Sn−1, the value of Sn−1(P,A) gives the total surface area of the set of all boundary

points of P which have an outer normal in A (since this set is a union of facets, the surface area

is defined). In an appropriate way (and using approximation by polytopes), this interpretation

carries over to arbitrary bodies K: Sn−1(K,A) measures the total surface area of the set of all

boundary points of K which have an outer normal in A. In particular, we have Sn−1(K, ·) = 0,

if and only if dim K ≤ n − 2, and Sn−1(K, ·) = Vn−1(K)(εu + ε−u), if dim K = n − 1 and

K⊥u, u ∈ Sn−1.

Now we study the problem, how far a convex body K is determined by one of its surface area

measures Sj(K, ·), j ∈ {1, . . . , n − 1}. For j = n − 1 (and n-dimensional bodies), we can give

a strong answer to this question.

Theorem 3.5.5. Let K,L ∈ Kn with dim K = dim L = n. Then

Sn−1(K, ·) = Sn−1(L, ·),

if and only if K and L are translates.

Proof. For translates K,L, the equality of the surface area measures follows from Corollary

3.5.4.

Assume now Sn−1(K, ·) = Sn−1(L, ·). Then, Theorem 3.5.2 implies

V (K, . . . ,K, L) =
1

n

∫

Sn−1

hL(u)dSn−1(K,u)

=
1

n

∫

Sn−1

hL(u)dSn−1(L, u)

= V (L).

In the same way, we obtain V (L, . . . , L,K) = V (K). The MINKOWSKI inequalites (Theorem

3.4.3) therefore show that

V (L)n ≥ V (K)n−1V (L)

and

V (K)n ≥ V (L)n−1V (K),

which implies V (K) = V (L). Therefore we have equality in both inequalities and hence K and

L are homothetic. Since they have the same volume, they must be translates.

The uniqueness result holds more generally for the j-th order surface area measures (j ∈
{1, . . . , n − 1}), if the bodies have dimension at least j + 1 (for j = 1 even without a di-

mensional restriction). The proof uses a deep generalization of the MINKOWSKI inequalities

(the ALEXANDROV-FENCHEL inequalities).
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Theorem 3.5.5 can be used to express certain properties of convex bodies in terms of their

surface area measures. We mention only one application of this type, other results can be found

in the exercises. We recall that a convex body K ∈ Kn is centrally symmetric, if there is a point

x ∈ R
n such that K − x = −(K − x) (then x ∈ K and x is the center of symmetry). Also, a

measure µ on Sn−1 is called even, if µ is invariant under reflection, i.e. µ(A) = µ(−A), for all

Borel sets A ⊂ Sn−1.

Corollary 3.5.6. Let K ∈ Kn with dim K = n. Then, K is centrally symmetric, if and only if

Sn−1(K, ·) is an even measure.

In the following, we study the problem which measures µ on Sn−1 arise as surface area measures

Sn−1(K, ·) of convex bodies K (the existence problem). Obviously, a necessary condition is that

µ must have centroid 0. Another condition arises from a dimensional restriction. Namely, if

dim K ≤ n− 2, then Sn−1(K, ·) = 0, whereas for dim K = n− 1, K ⊂ u⊥, u ∈ Sn−1, we have

Sn−1(K, ·) = Vn−1(K)(εu+ε−u) (both results follow from Theorem 3.5.2). Hence, for dim K ≤
n − 1, the existence problem is not of any interest. Therefore, we now concentrate on bodies

K ∈ Kn with dim K = n. Again, Theorem 3.5.2 shows that this implies dim Sn−1(K, ·) = n,

where the latter condition means that Sn−1(K, ·) is not supported by any lower dimensional

sphere, i.e. Sn−1(K,Sn−1 \ E) > 0 for all hyperplanes E through 0. As we shall show now,

these two conditions (the centroid condition and the dimensional condition) characterize (n−1)-
st surface area measures. We first prove the polytopal case.

Theorem 3.5.7. For k ≥ n + 1, let u1, . . . , uk ∈ Sn−1 be unit vectors which span R
n and let

v(1), . . . , v(k) > 0 be numbers such that

k∑

i=1

v(i)ui = 0.

Then, there exists a (up to a translation unique) polytope P ∈ Pn with dim P = n, for which

Sn−1(P, ·) =
k∑

i=1

v(i)εui
,

i.e. the u1, . . . , uk are the facet normals of P and the v(1), . . . , v(k) are the corresponding facet

contents.

Proof. The uniqueness follows from Theorem 3.5.5.

For the existence, we denote by R
k
+ the set of all vectors y = (y(1), . . . , y(k)) with y(i) ≥

0, i = 1, . . . , k. For y ∈ R
k
+, let

P[y] :=
k⋂

i=1

{〈·, ui〉 ≤ y(i)}.
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Since 0 ∈ P[y], this set is nonempty and polyhedral. Moreover, P[y] is bounded hence a convex

polytope in R
n. Namely, assuming αx ∈ P[y], for some x ∈ Sn−1 and all α ≥ 0, we get

〈x, ui〉 ≤ 0, i = 1, . . . , k.

Since the centroid condition implies

k∑

i=1

v(i)〈x, ui〉 = 0

with v(i) > 0 and 〈x, ui〉 ≤ 0, it follows that

〈x, u1〉 = · · · = 〈x, uk〉 = 0.

As a consequence 〈x, z〉 = 0, for all z ∈ R
n, since u1, . . . , uk span R

n. Hence x = 0, a

contradiction.

Therefore, P[y] is a polytope. We next show that the mapping y 7→ P[y] is concave, i.e.

γP[y] + (1 − γ)P[z] ⊂ P[γy+(1−γ)z], (5.11)

for y, z ∈ R
k
+ and γ ∈ [0, 1]. This follows since a point x ∈ γP[y] + (1 − γ)P[z] satisfies

x = γx′ + (1 − γ)x′′ with some x′ ∈ P[y], x′′ ∈ P[z], and hence

〈x, ui〉 = γ〈x′, ui〉 + (1 − γ)〈x′′, ui〉 ≤ γy(i) + (1 − γ)z(i),

which shows that x ∈ P[γy+(1−γ)z]. Since the normal vectors ui of the half spaces {〈·, ui〉 ≤ y(i)}
are fixed and only their distances y(i) from the origin vary, the mapping y 7→ P[y] is continuous

(with respect to the Hausdorff metric). Therefore, y 7→ V (P[y]) is continuous, which implies that

the set

M := {y ∈ R
k
+ : V (P[y]) = 1}

is nonempty and closed. The linear function

ϕ :=
1

n
〈·, v〉, v := (v(1), . . . , v(k)),

is nonnegative on M (and continuous). Since v(i) > 0, i = 1, . . . , k, there is a vector y0 such

that ϕ(y0) =: α ≥ 0 is the minimum of ϕ on M. Since y0 ∈ M implies y
(i)
0 > 0 for some

i ∈ {1, . . . , k}, we get α > 0.

We consider the polytope Q := P[y0]. Since V (Q) = 1, Q has interior points (and 0 ∈ Q).

We may assume that 0 ∈ int Q. Namely, for 0 ∈ bd Q, we can choose a translation vector t ∈ R
n

such that 0 ∈ int (Q + t). Then

Q + t =
k⋂

i=1

{〈·, ui〉 ≤ ỹ
(i)
0 }
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with ỹ
(i)
0 := y

(i)
0 + 〈t, ui〉, i = 1, . . . , k. Obviously, ỹ

(i)
0 > 0 and Q + t = P[ỹ0]. Moreover,

V (Q + t) = V (Q) = 1 and

ϕ(ỹ0) =
1

n
〈y0, v〉 +

1

n

k∑

i=1

〈t, ui〉v(i) = ϕ(y0) +
1

n
〈t,

k∑

i=1

uiv
(i)〉 = α,

since
∑k

i=1 uiv
(i) = 0. Hence, we now assume 0 ∈ int Q, which gives us y

(i)
0 > 0 for i =

1, . . . , k. We define a vector w = (w(1), . . . , w(k)), where w(i) := Vn−1(Q(ui)) is the content of

the support set of Q in direction ui, i = 1, . . . , k. Then,

1 = V (Q) =
1

n

k∑

i=1

y
(i)
0 w(i) =

1

n
〈y0, w〉

=
1

α
ϕ(y0) =

1

αn
〈y0, v〉.

Hence,

〈y0, w〉 = 〈y0,
1

α
v〉 = n.

Next, we define the hyperplanes

E := {〈·, w〉 = n}
and

F := {〈·, 1

α
v〉 = n}

in R
k. We want to show that E = F . First, we notice that y0 ∈ E ∩ F . Since y0 has positive

components, we can find a convex neighborhood U of y0, such that y ∈ U has the following two

properties. First, y(i) > 0 for i = 1, . . . , k and second every facet normal of Q = P[y0] is also

a facet normal of P[y]. We now consider y ∈ F ∩ U . Assume V (P[y]) > 1, then there exists

0 < β < 1 with

V (P[βy]) = 1.

Since y ∈ F ,

ϕ(βy) =
1

n
〈βy, v〉 = βα < α,

a contradiction. Therefore, V (P[y]) ≤ 1. For ϑ ∈ [0, 1], the point ϑy +(1−ϑ)y0 is also in F ∩U .

Therefore the volume inequality just proven applies and we get from (5.11)

V (ϑP[y] + (1 − ϑ)Q) ≤ V (P[ϑy+(1−ϑ)y0]) ≤ 1.

This yields

V (Q, . . . , Q, P[y]) =
1

n
lim
ϑ→0

V (ϑP[y] + (1 − ϑ)Q) − (1 − ϑ)n

ϑ

≤ 1

n
lim
ϑ→0

1 − (1 − ϑ)n

ϑ

= 1.
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Since by our assumption, each facet normal of Q is a facet normal of P[y], we have hP[y]
(ui) =

y(i), for all i for which w(i) > 0. Hence

1 ≥ V (Q, . . . , Q, P[y]) =
1

n

k∑

i=1

hP[y]
(ui)w

(i) =
1

n
〈y, w〉,

for all y ∈ F ∩ U . This shows that F ∩ U ⊂ E, which is only possible if E = F .

Since E = F implies w = 1
α
v, the polytope P := n−1

√
αQ fulfills all assertions of the

theorem.

We now extend this result to arbitrary bodies K ∈ Kn.

Theorem 3.5.8. Let µ be a finite Borel measure on Sn−1 with centroid 0 and dim µ = n. Then,

there exists a (up to a translation unique) body K ∈ Kn, for which

Sn−1(K, ·) = µ.

Proof. Again, we only need to show the existence of K.

We make use of the fact that µ can be approximated (in the weak convergence) by discrete

measures (measures with finite support) µj → µ, for j → ∞, which also have centroid 0 and

fulfill dim µj = n. The measure µj can, for example, be constructed as follows. We divide Sn−1

into finitely many pairwise disjoint Borel sets Aij, i = 0, 1, . . . , k(j), such that µ(A0j) = 0,

whereas diam(cl conv Aij) < 1
j

and µ(Aij) > 0, for i = 1, . . . , k(j). We then put

µj :=

k(j)
∑

i=1

µ(Aij)‖xij‖εuij
,

where

xij :=
1

µ(Aij)

∫

Aij

udµ(u),

and uij :=
xij

‖xij‖
. This definition makes sense since, for i ≥ 1, it can be shown that 0 /∈ cl conv Aij

and therefore xij 6= 0. Moreover, µj has centroid 0 and converges to µ (see the exercises).

Because of dim µ = n, we must have dim µj = n, for large enough j.

From Theorem 3.5.7, we obtain polytopes Pj with 0 ∈ Pj and

µj = Sn−1(Pj, ·), j = 1, 2, . . . .

We show that the sequence (Pj)j∈N is uniformly bounded. First, F (Pj) = µj(S
n−1) → µ(Sn−1)

implies that

F (Pj) ≤ C, j ∈ N,

for some C > 0. The isoperimetric inequality shows that then

V (Pj) ≤ C̃, j ∈ N,
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for another constant C̃ > 0. Now let x ∈ Sn−1 and αj ≥ 0 be such that αjx ∈ Pj , hence

[0, αjx] ⊂ Pj . Since

h[0,αjx] = αj max(〈x, ·〉, 0),

we get

V (Pj) =
1

n

k(j)
∑

i=1

hPj
(uij)Vn−1(Pj(uij))

≥ 1

n

k(j)
∑

i=1

h[0,αjx](uij)Vn−1(Pj(uij))

=
αj

n

∫

Sn−1

max(〈x, u〉, 0)dµj(u).

The weak convergence implies

1

n

∫

Sn−1

max(〈x, u〉, 0)dµj(u) → 1

n

∫

Sn−1

max(〈x, u〉, 0)dµ(u),

and since both sides are support functions (as functions of x), the convergence is uniform in

x ∈ Sn−1 (see Exercise 6 of Section 3.1). Because of dim µ = n and since µ is centred, we get

f(x) :=
1

n

∫

Sn−1

max(〈x, u〉, 0)dµ(u) > 0,

for all x ∈ Sn−1. As a support function, f is continuous, hence

c := min
x∈Sn−1

f(x)

exists and we have c > 0. Therefore, αj ≤ C ′ for all j ≥ j0, with a suitable j0 ∈ N and a certain

constant C ′. This shows that the sequence (Pj)j∈N is uniformly bounded.

By BLASCHKE’s selection theorem, we can choose a convergent subsequence Pjr
→ K,

r → ∞, K ∈ Kn. Then

Sn−1(Pjr
, ·) → Sn−1(K, ·),

but also

Sn−1(Pjr
, ·) → µ.

Therefore, Sn−1(K, ·) = µ.
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Exercises and problems

1. Let K, M, L ∈ Kn such that K = M + L. Show that

Sj(M, ·) =

j
∑

i=0

(−1)j−i

(
j

i

)

S(K, . . . , K
︸ ︷︷ ︸

i

, L, . . . , L
︸ ︷︷ ︸

j−i

, B(1), . . . , B(1)
︸ ︷︷ ︸

n−1−j

, ·),

for j = 0, . . . , n − 1.

2. Let K ∈ Kn and r(K) be the circumradius of K. Show that r(K) ≤ 1 if and only if

V (K, M, . . . , M) ≤ 1
nF (M) for all M ∈ Kn.

3. Let α ∈ (0, 1) and M, L ∈ Kn with dimM = dimL = n.

(a) Show that there is a convex body Kα ∈ Kn with dimKα = n and

Sn−1(Kα, ·) = αSn−1(M, ·) + (1 − α)Sn−1(L, ·).

(b) Show that

V (Kα)
n−1

n ≥ αV (M)
n−1

n + (1 − α)V (L)
n−1

n ,

with equality if and only if M and L are homothetic.

4. Complete the proof of Theorem 3.5.8 by showing that the measures µj are well-defined (i.e. that

xij 6= 0), have centroid 0, fulfill dimµj = n, for almost all j, and converge weakly to the given

measure µ (as j → ∞).



110 CHAPTER 3. CONVEX BODIES

3.6 Projection functions

For a convex body K ∈ Kn and a direction u ∈ Sn−1, we define

v(K,u) := Vn−1(K |u⊥),

the content of the orthogonal projection of K onto the hyperplane u⊥. The function v(K, ·) is

called the projection function of K. We are interested in the information on the shape of K which

can be deduced from the knowledge of its projection function v(K, ·).
First, it is clear that translates K and K + x, x ∈ R

n, have the same projection function.

Second, K and −K have the same projection function, which shows that in general K is not

determined by v(K, ·) (not even up to translations). The question occurs whether we get unique-

ness up to translations and reflections. In order to give an answer, we need a representation of

v(K, ·).

Theorem 3.6.1. For K ∈ Kn and u ∈ Sn−1, we have

v(K,u) =
1

2

∫

Sn−1

|〈x, u〉| dSn−1(K,x).

Proof. An application of FUBINI’s theorem shows that

V (K + [−u, u]) = V (K) + 2v(K,u).

On the other hand, we have

V (K + [−u, u]) =
n∑

i=0

(
n

i

)

V (K, . . . ,K
︸ ︷︷ ︸

i

, [−u, u], . . . , [−u, u]
︸ ︷︷ ︸

n−i

).

From Exercise 3.3.1, we know that

V (K, . . . ,K
︸ ︷︷ ︸

i

, [−u, u], . . . , [−u, u]
︸ ︷︷ ︸

n−i

) = 0,

for i = 0, . . . , n − 2, hence

v(K,u) =
n

2
V (K, . . . ,K, [−u, u]).

The assertion now follows from Theorem 3.5.2, since the segment [−u, u] has support function

|〈·, u〉|.
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Remarks. A couple of properties of projection functions can be directly deduced from Theorem

3.6.1.

(1) We have v(K, ·) = 0, if and only if dim K ≤ n − 2.

(2) If dim K = n − 1, K ⊂ x⊥, then

v(K, ·) = Vn−1(K)|〈x, ·〉|.

(3) If dim K = n and K is not centrally symmetric (i.e. Sn−1(K, ·) 6= Sn−1(−K, ·)), then there

is an infinite family of bodies with the same projection function. Namely, for α ∈ [0, 1], there is

a body Kα ∈ Kn with dim Kα = n and

Sn−1(Kα, ·) = αSn−1(K, ·) + (1 − α)Sn−1(−K, ·)

(this follows from Theorem 3.5.8). Then,

v(Kα, ·) = αv(K, ·) + (1 − α)v(−K, ·) = v(K, ·).

This also shows that there is always a centrally symmetric body, namely K 1
2
, with the same

projection function as K.

The body K 1
2

also has maximal volume in the class C := {Kα : α ∈ [0, 1]} (by the BRUNN-

MINKOWSKI theorem) and is moreover characterized by this fact; i.e., it is the only body in C
with maximal volume.

(4) Since |〈x, ·〉| is a support function, the function v(K, ·) is a positive combination of support

functions, hence it is itself a support function of a convex body ΠK,

hΠK := v(K, ·).

We call ΠK the projection body of K. The projection body is always centrally symmetric to the

origin and, if dim K = n, then dim ΠK = n.

Before we continue to discuss projection functions, we want to describe projection bodies geo-

metrically.

Definition. A finite sum of segments Z := s1 + · · · + sk is called a zonotope. A zonoid is a

convex body which is the limit (in the Hausdorff metric) of a sequence of zonotopes.

Zonotopes are polytopes and they are centrally symmetric. Namely, if si = [−yi, yi] + xi is the

representation of the segment si (with center xi and endpoints −yi + xi, yi + xi), then

Z =
k∑

i=1

[−yi, yi] +
k∑

i=1

xi.

Hence, x :=
∑k

i=1 xi is the center of Z. Zonoids, as limits of zonotopes, are also centrally

symmetric. We assume w.l.o.g. that the center of zonotopes and zonoids is the origin and denote

the correspondings set of zonoids by Zn.

The following results show that zonoids and projection bodies are closely related.
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Theorem 3.6.2. Let K ∈ Kn. Then, K is a zonoid, if and only if there exists an even Borel

measure µ(K, ·) on Sn−1 such that

hK(u) =

∫

Sn−1

|〈x, u〉|dµ(K,x).

For a zonoid K, such a measure µ(K, ·) is called a generating measure of K. We shall soon see

that µ(K, ·) is uniquely determined by hK .

Proof. Suppose

hK(u) =

∫

Sn−1

|〈x, u〉|dµ(K,x).

As in the proof of Theorem 3.5.8, we find a sequence of even, discrete measures µj → µ(K, ·),

µj :=
1

2

k(j)
∑

i=1

αij(ǫuij
+ ǫ−uij

), uij ∈ Sn−1, αij > 0.

Then,

Zj :=

k(j)
∑

i=1

[−αijuij, αijuij]

is a zonotope and

hZj
(u) =

∫

Sn−1

|〈x, u〉|dµj(x)

→
∫

Sn−1

|〈x, u〉|dµ(K,x) = hK(u),

for all u ∈ Sn−1. Therefore, Zj → K (as j → ∞), i.e. K is a zonoid.

Conversely, assume that K = limj→∞ Zj, Zj zonotope. Then,

Zj =

k(j)
∑

i=1

[−yij, yij]

with suitable vectors yij ∈ R
n. Consequently,

hZj
(u) =

k(j)
∑

i=1

|〈yij, u〉|

=

∫

Sn−1

|〈x, u〉|dµj(x),
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where

µj :=
1

2

k(j)
∑

i=1

‖yij‖(ǫuij
+ ǫ−uij

)

and

uij :=
yij

‖yij‖
.

We would like to show that the sequence (µj)j∈N converges weakly.

We have ∫

Sn−1

hZj
(u)du = κn−1V1(Zj) → κn−1V1(K).

Also, using FUBINI’s theorem and Theorem 3.6.1 (for the unit ball), we get
∫

Sn−1

hZj
(u)du =

∫

Sn−1

∫

Sn−1

|〈x, u〉|dudµj(x) = 2κn−1µj(S
n−1).

Hence, µj(S
n−1) is bounded from above by a constant C, for all j. Now we use the fact that the

set MC of all Borel measures ρ on Sn−1 with ρ(Sn−1) ≤ C is weakly compact (see, e.g., the

books of Billingsley, Convergence of probability measures, Wiley 1968, p. 37; or Gänssler-Stute,

Wahrscheinlichkeitstheorie, Springer 1977, p. 344). Therefore, (µj)j∈N contains a convergent

subsequence. W.l.o.g., we may assume that (µj)j∈N converges to a limit measure which we

denote by µ(K, ·). The weak convergence implies that

hK(u) = lim
j→∞

hZj
(u)

= lim
j→∞

∫

Sn−1

|〈x, u〉|dµj(x)

=

∫

Sn−1

|〈x, u〉|dµ(K,x).

Remark. As the above proof shows, we have dim K = n, if and only if dim µ(K, ·) = n.

Corollary 3.6.3. The projection body ΠK of a convex body K is a zonoid. Reversely, if Z is a

zonoid with dim Z = n, then there is a convex body K with dim K = n and which is centrally

symmetric to the origin and fulfills

Z = ΠK.

Proof. The first result follows from Theorems 3.6.1 and 3.6.2. For the second, Theorem 3.6.2

shows that

hZ(u) =

∫

Sn−1

|〈x, u〉|dµ(Z, x)

with an even measure µ(Z, ·), dim µ(Z, ·) = n. By Theorem 3.5.8,

µ(Z, ·) = Sn−1(K, ·),
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for some convex body K ∈ Kn, dim K = n, and hence Z = ΠK. By Corollary 3.5.6, K is

centrally symmetric.

Finally, we want to show that the generating measure of a zonoid is uniquely determined. We

first need two auxiliary lemmas. If A is the (n × n)-matrix of an injective linear mapping in R
n,

we define

AZ := {Ax : x ∈ Z}
and denote by Aµ, for a measure µ on Sn−1, the image measure of

∫

(·)

‖Ax‖dµ(x)

under the mapping

x 7→ Ax

‖Ax‖ , x ∈ Sn−1.

Lemma 3.6.4. If Z ∈ Kn is a zonoid and

hZ =

∫

Sn−1

|〈x, ·〉|dµ(Z, x),

then AZ is a zonoid and

hAZ =

∫

Sn−1

|〈x, ·〉|dAµ(Z, x).

Proof. We have

hAZ = sup
x∈AZ

〈u, x〉 = sup
x∈Z

〈u,Ax〉 = sup
x∈Z

〈AT u, x〉 = hZ(AT u)

=

∫

Sn−1

|〈x,AT u〉|dµ(Z, x) =

∫

Sn−1

|〈Ax, u〉|dµ(Z, x)

=

∫

Sn−1

|〈 Ax

‖Ax‖ , u〉|‖Ax‖dµ(Z, x) =

∫

Sn−1

|〈y, u〉|dAµ(Z, y).

Let V denote the vector space of functions

f =

∫

Sn−1

|〈x, ·〉|dµ(x) −
∫

Sn−1

|〈x, ·〉|dρ(x),

where µ, ρ vary among all finite even Borel measures on Sn−1. V is a subspace of the Banach

space Ce(S
n−1) of even continuous functions on Sn−1.

Lemma 3.6.5. The vector space V is dense in Ce(S
n−1).
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Proof. Choosing µ = cωn−1, for c ≥ 0, and ρ = 0 (or vice versa), we see that V contains all

constant functions.

By Lemma 3.6.4, the support functions hAB(1) lie in V , for all regular (n × n)-matrices A
(the body AB(1) is an ellipsoid). Since

hAB(1)(u) = ‖AT u‖, u ∈ Sn−1,

we obtain all functions

f(B, u) :=
√

〈Au,Au〉 =
√

〈AT Au, u〉

=
√

〈Bu, u〉 =

(
n∑

i,j=1

bijuiuj

) 1
2

,

where B = AT A = ((bij)) varies among the positive definite symmetric (n × n)-matrices B.

Here, in deviation of our usual notation, we used u = (u1, ..., un) and we also consider f(B, u),
for fixed u and in view of the symmetry of B, as a function of the n(n + 1)/2 variables bij, 1 ≤
i ≤ j ≤ n. For ǫ > 0 and 1 ≤ i0 ≤ j0 ≤ n, let B̃ = ((b̃ij)) with

b̃ij :=

{
bij + ǫ

bij

if
(i, j) ∈ {(i0, j0), (j0, i0)} ,

(i, j) /∈ {(i0, j0), (j0, i0)} .

Then, B̃ is symmetric and positive definite, for small enough ǫ. Consequently,

f(B̃, ·) − f(B, ·)
ǫ

∈ V

and

lim
ǫ→0

f(B̃, ·) − f(B, ·)
ǫ

=
∂f

∂bi0,j0

(B, ·) ∈ clV .

A direct computation yields

∂f

∂bi0j0

(B, u) =
ui0uj0

f(B, u)
, for i0 < j0,

(and ∂f
∂bi0i0

(B, u) =
u2

i0

2f(B,u)
). Repeating this argument with bi1j1 etc., we obtain that all partial

derivatives of f w.r.t. the variables bij, 1 ≤ i ≤ j ≤ n, are in clV , hence all functions

u 7→ ui1
1 · · ·uin

n

f(B, u)k
, i1 + · · · + in = 2k, k = 1, 2, . . . .

Now we choose B to be the unit matrix. Then f(B, ·) = 1, hence all even polynomials are in

clV . The theorem of STONE-WEIERSTRASS now shows that clV = Ce(S
n−1).

Theorem 3.6.6. For a zonoid Z ∈ Kn, the generating measure is uniquely determined.
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Proof. Assume we have two even measures µ := µ(Z, ·) and ρ on Sn−1 with

∫

Sn−1

|〈x, ·〉|dµ(x) =

∫

Sn−1

|〈x, ·〉|dρ(x).

Then,
∫

Sn−1

∫

Sn−1

|〈x, u〉|dµ(x)dµ̃(u) =

∫

Sn−1

∫

Sn−1

|〈x, u〉|dρ(x)dµ̃(u),

for all measures µ̃ on Sn−1. Replacing µ̃ by a difference of measures and applying FUBINI’s

theorem, we obtain
∫

Sn−1

f(x)dµ(x) =

∫

Sn−1

f(x)dρ(x),

for all functions f ∈ V . Lemma 3.6.5 shows that this implies µ = ρ.

Combining Theorem 3.6.6 with Theorems 3.6.1, 3.6.2 and 3.5.5, we get directly our final result

in this chapter.

Corollary 3.6.7. A centrally symmetric convex body K ∈ Kn with dim K = n is uniquely

determined (up to translations) by its projection function v(K, ·).

Exercises and problems

1. Let n ≥ 3 and P ∈ Kn be a polytope. Show that P is a zonotope, if and only if all 2-faces of P are

centrally symmetric.

2. Let Z ∈ Kn be a zonoid and u1, . . . , uk ∈ Sn−1.

(a) Show that there exists a zonotope P such that

hZ(ui) = hP (ui), i = 1, . . . , k.

Hint: Use CARATHÉODORY’s theorem for a suitable subset A of R
k.

(b) Show in addition that P can be chosen to be the sum of at most k segments.

Hint: Replace CARATHÉODORY’s theorem by the theorem of BUNDT.

3. Let P, Q ∈ Pn be zonotopes and K ∈ Kn a convex body such that

P = K + Q.

Show that K is also a zonotope.
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4.∗ Let P ∈ Pn be a polytope. Show that P is a zonotope, if and only if hP fulfills the HLAWKA

inequality:

(∗) hP (x) + hP (y) + hP (z) + hP (x + y + z) ≥ hP (x + y) + hP (x + z) + hP (y + z),

for all x, y, z ∈ R
n.

Hint: For one direction, show first that (∗) implies the central symmetry of P and then that (∗)
implies the HLAWKA inequality for each face P (u), u ∈ Sn−1. Then use Exercise 1 above.

5. Let Z ∈ Kn be a zonoid.

(a) For u ∈ Sn−1, show that Z(u) is a zonoid and that

hZ(u) =

∫

Sn−1∩u⊥

|〈x, ·〉|µ(Z, dx) + 〈xu, ·〉,

where

xu := 2

∫

{x∈Sn−1:〈x,u〉>0}
xdµ(Z, x).

(b) Use (a) to show that a zonoid which is a polytope must be a zonotope.
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Chapter 4

Integral geometric formulas

In this final chapter, we discuss integral formulas for intrinsic volumes Vj(K), which are based

on sections and projections of convex bodies K. We shall also discuss some applications of

stereological nature.

As a motivation, we start with the formula for the projection function v(K, ·) from Theorem

3.6.1. Integrating v(K,u) over all u ∈ Sn−1 (with respect to the spherical LEBESGUE measure

ωn−1), we obtain

∫

Sn−1

v(K,u)du = κn−1

∫

Sn−1

dSn−1(K,x) = 2κn−1Vn−1(K).

Since v(K,u) = Vn−1(K|u⊥), we may replace the integration over Sn−1 by one over the space

Ln
n−1 of hyperplanes (through 0) in R

n, namely by considering the normalized image measure

νn−1 of ωn−1 under the mapping u 7→ u⊥. Denoting the integration by νn−1 shortly as dLn−1, we

then get
∫

Ln
n−1

Vn−1(K|Ln−1)dLn−1 =
2κn−1

nκn

Vn−1(K).

This is known as CAUCHY’s surface area formula for convex bodies. Our first goal is to gen-

eralize this projection formula to other intrinsic volumes Vj and to projection flats Lq of lower

dimensions. This requires a natural measure νq on the space of q-dimensional subspaces first.

Later we will also consider integrals over sections of K with affine flats and integrate those with

a natural measure µq on (affine) q-flats. The first section discusses how the measures νq and µq

can be introduced in an elementary way.

4.1 Invariant measures

We begin with the set Ln
q of q-dimensional (linear) subspaces of R

n, q ∈ {0, . . . , n − 1}. Ln
q

becomes a compact metric space, if we define the distance d(L,L′), for L,L′ ∈ Ln
q , as the

HAUSDORFF distance of L∩B(1) and L′ ∩B(1). We want to introduce an invariant probability

measure νq on Ln
q . Here, probability measure refers to the Borel σ-algebra generated by the

119
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metric structure and invariance refers to the rotation group SOn and means that

νq(ϑA) = νq(A),

for all ϑ ∈ SOn and all Borel sets A ⊂ Ln
q (with ϑA := {ϑL : L ∈ A}). We will obtain νq as

the image measure of an invariant measure ν on SOn.

The rotation group SOn can be viewed as a subset of (Sn−1)n ⊂ R
n2

, if we identify ro-

tations ϑ with orthogonal matrices A (with det A = 1) and then replace A by the n-tuple

(a1, . . . , an) ∈ (Sn−1)n of column vectors. The euclidean metric on R
n2

therefore induces a

metric on SOn and SOn becomes a compact metric space in this way. It is easy to see that the

operations of multiplication and inversion in SOn (i.e. the mappings (ϑ, η) 7→ ϑη and ϑ 7→ ϑ−1)

are continuous. This shows that SOn (with the given metric) is a compact topological group. A

general theorem in the theory of topological groups implies the existence and uniqueness of an

invariant probability measure ν on SOn (called the HAAR measure). Since SOn is not commu-

tative, invariance means here

ν(ϑA) = ν(A), ν(Aϑ) = ν(A), ν(A−1) = ν(A),

for all ϑ ∈ SOn and all Borel sets A ⊂ SOn, where

ϑA := {ϑη : η ∈ A}, Aϑ := {ηϑ : η ∈ A}, A−1 := {η−1 : η ∈ A}.
However, we can show the existence of ν also by a direct construction.

Lemma 4.1.1. There is an invariant probability measure ν on SOn.

Proof. We consider the set LUn ⊂ (Sn−1)n of linearly independent n-tuples. LUn is open and

the complement has measure zero with respect to ωn−1 ⊗ · · · ⊗ ωn−1. On LUn we define the

mapping T onto SOn by

T (x1, . . . , xn) :=

(
y1

‖y1‖
... · · · ...

yn

‖yn‖

)

, (1.1)

where (y1, . . . , yn) is the n-tuple obtained from (x1, . . . , xn) by the GRAM-SCHMIDT orthogo-

nalization procedure (and where, in addition, the sign of yn is chosen such that the matrix on the

right side of (1.1) has determinant 1). Up to the sign of yn, we thus have

yk := xk −
k−1∑

i=1

〈xk, yi〉
yi

‖yi‖2
, k = 2, . . . , n,

and y1 := x1. T is almost everywhere defined (with respect to ωn−1⊗· · ·⊗ωn−1) and continuous.

Let ν be the image measure of ωn−1 ⊗ · · · ⊗ ωn−1 under T . For each continuous function f on

SOn and ϑ ∈ SOn, we then get
∫

SOn

f(ϑη)dν(η) =

∫

Sn−1

· · ·
∫

Sn−1

f(ϑT (x1, . . . , xn))dx1 · · · dxn

=

∫

Sn−1

· · ·
∫

Sn−1

f(

(
ϑy1

‖y1‖
... · · · ...

ϑyn

‖yn‖

)

)dx1 · · · dxn.
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Obviously,
(

ϑy1

‖y1‖
... · · · ...

ϑyn

‖yn‖

)

= T (ϑx1, . . . , ϑxn),

and we obtain ∫

SOn

f(ϑη)dν(η) =

∫

SOn

f(η)dν(η).

This shows that ν is invariant from the left.

For the inversion invariance, we first observe

∫

SOn

f(η−1ϑ)dν(η) =

∫

SOn

f((ϑ−1η)−1)dν(η) =

∫

SOn

g(ϑ−1η)dν(η)

=

∫

SOn

g(η)dν(η) =

∫

SOn

f(η−1)dν(η), (1.2)

for continuous f, g and all ϑ ∈ SOn, where g(ρ) = f(ρ−1), ρ ∈ SOn, and where we used the

left invariance of ν. Hence, by FUBINI’s theorem,

∫

SOn

f(η−1)dν(η) =

∫

SOn

∫

SOn

f(η−1ϑ)dν(ϑ)dν(η) =

∫

SOn

f(ϑ)dν(ϑ),

again from the left invariance.

Finally, the right invariance follows from (1.2) and the inversion invariance,

∫

SOn

f(ηϑ)dν(η) =

∫

SOn

f(η−1ϑ)dν(η) =

∫

SOn

f(η−1)dν(η) =

∫

SOn

f(η)dν(η).

The normalized measure ν := (1/nκn)nν fulfills now all assertions of the lemma.

For the rest of this chapter we choose a fixed subspace L0
q ∈ Ln

q as a reference space and define

νq := Φ ◦ ν,

where

Φ : SOn → Ln
q , ϑ 7→ ϑL0

q.

It is easy to see that Φ is continuous and therefore measurable. The definition of νq is based

on the fact that the rotation group SOn operates transitively on Ln
q , which means that for given

L,L′ ∈ Ln
q there is always a rotation ϑ with L′ = ϑL. This implies that the images ϑL0

q, ϑ ∈
SOn, run through all elements of Ln

q . We abbreviate the integration with respect to νq by dLq.

Then, ∫

Ln
q

f(Lq)dLq =

∫

SOn

f(ϑL0
q)dν(ϑ),

for all continuous functions f on Ln
q .
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Theorem 4.1.2. For q ∈ {1, . . . , n − 1}, the measure νq is an invariant probability measure. It

is the only invariant probability measure on Ln
q .

Moreover, for a continuous function f on Ln
q , we have

∫

Ln
q

f(Lq)dLq =

∫

Ln
n−q

f(L⊥
n−q)dLn−q,

for 1 ≤ q ≤ n − 1, and

∫

Ln
q

f(Lq)dLq =

∫

Ln
m

(
∫

Ln
q (Lm)

f(Lq)dLq

)

dLm,

for 0 ≤ q < m ≤ n − 1. (Here Ln
q (Lm) := {Lq ∈ Ln

q : Lq ⊂ Lm} and we identify this set with

Lm
q .)

Proof. Obviously, νq is a probability measure. To show its invariance, let f be a continuous

function on Ln
q and η ∈ SOn. Then

∫

Ln
q

f(ηLq)dLq =

∫

SOn

f(ηϑL0
q)dν(ϑ)

=

∫

SOn

f(ρL0
q)dν(ρ)

=

∫

Ln
q

f(Lq)dLq.

Next, we show the uniqueness. Assume that ν ′
q is also an invariant probability measure on

Ln
q . Then

∫

Ln
q

f(Lq)dν ′
q(Lq) =

∫

SOn

∫

Ln
q

f(ϑLq)dν ′
q(Lq)dν(ϑ)

=

∫

Ln
q

∫

SOn

f(ϑLq)dν(ϑ)dν ′
q(Lq)

For Lq ∈ Ln
q there exists an η ∈ SOn with Lq = ηL0

q , hence

∫

SOn

f(ϑLq)dν(ϑ) =

∫

SOn

f(ϑηL0
q)dν(ϑ)

=

∫

SOn

f(ϑL0
q)dν(ϑ).

This shows that the function

Lq 7→
∫

SOn

f(ϑLq)dν(ϑ)
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is a constant c(f), which implies that
∫

Ln
q

f(Lq)dν ′
q(Lq) = c(f)

∫

Ln
q

dν ′
q(Lq) = c(f).

In the same way, we get ∫

Ln
q

f(Lq)dLq = c(f),

hence ∫

Ln
q

f(Lq)dν ′
q(Lq) =

∫

Ln
q

f(Lq)dLq,

for all continuous functions f on Ln
q . Therefore, ν ′

q = νq.

The two integral formulas now follow from the uniqueness of νq. Namely,

f 7→
∫

Ln
n−q

f(L⊥
n−q)dLn−q

defines a probability measure ν ′
q on Ln

q (by the RIESZ representation theorem). The invariance of

νn−q shows that ν ′
q is invariant, hence ν ′

q = νq. In the same manner, we obtain the second, iterated

integral formula. Here, the uniqueness result is already used to show that the invariant measure

νϑLm
q on Ln

q (ϑLm) is the image under L 7→ ϑL of the invariant measure νLm
q on Ln

q (Lm).

Now we consider the set En
q of affine q-dimensional subspaces (q-flats, for short) in R

n. Each

Eq ∈ En
q has a unique representation Eq = Lq + x, Lq ∈ Ln

q , x ∈ L⊥
q . This allows us to define a

metric on En
q , namely as

d(Eq, E
′
q) := d(Lq, L

′
q) + d(x, x′).

The metric space En
q is locally compact but not compact. We define the measure µq as the image

µq := Ψ ◦ (ν ⊗ λn−q),

where

Ψ : SOn × (L0
q)

⊥ → En
q , (ϑ, x) 7→ ϑ(L0

q + x)

and λn−q is the LEBESGUE measure on (L0
q)

⊥. Apparently, µq(En
q ) = ∞, but the set En

q (B(1))
of q-flats intersecting the unit ball has finite measure,

µq(En
q (B(1))) = κn−q.

For the measure µq, invariance refers to the group Gn of rigid motions, that is

µq(gA) = µq(A),

for all g ∈ Gn and all Borel sets A ⊂ En
q (again gA := {gL : L ∈ A}). As in the case of

νq, we will denote integration by µq simply as dEq. For a flat Em ∈ En
m, q < m ≤ n − 1, we

put En
q (Em) := {Eq ∈ En

q : Eq ⊂ Em}. Because of the unique decomposition Em = Lm + x,

Lm ∈ Ln
m, x ∈ L⊥

m, we may identify En
q (Em) with Em

q (by mapping x to the origin). We denote

by dLm the integration with respect to the corresponding measure on En
q (Em).
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Theorem 4.1.3. For q ∈ {0, . . . , n − 1}, µq is an invariant measure.

For a continuous function f on En
q with compact support, we have

∫

En
q

f(Eq)dEq =

∫

Ln
q

∫

L⊥
q

f(Lq + x)dxdLq.

Furthermore,
∫

En
q

f(Eq)dEq =

∫

En
m

(
∫

En
q (Em)

f(Eq)dEq

)

dEm,

for 0 ≤ q < m ≤ n − 1.

Proof. For the invariance of µq, we consider g ∈ Gn and a continuous function f on En
q with

compact support. By definition of µq,

∫

En
q

f(gEq)dEq =

∫

SOn

∫

(L0
q)⊥

f(gϑ(L0
q + x))dxdν(ϑ).

We decompose g into rotation and translation,

g : z 7→ η(z + y), η ∈ SOn, y ∈ R
n,

and put x′ := ϑ−1y|(L0
q)

⊥. Then,

gϑ(L0
q + x) = ηϑ(L0

q + x + x′),

hence
∫

En
q

f(gEq)dEq =

∫

SOn

∫

(L0
q)⊥

f(ρ(L0
q + z))dzdν(ρ)

=

∫

En
q

f(Eq)dEq.

The first integral formula follows from

∫

En
q

f(Eq)dEq =

∫

SOn

∫

(L0
q)⊥

f(ϑ(L0
q + x))dxdν(ϑ)

=

∫

SOn

∫

(ϑL0
q)⊥

f(ϑL0
q + x))dxdν(ϑ)

=

∫

Ln
q

∫

L⊥
q

f(Lq + x)dxdLq.

For the second integral formula, we consider Eq ∈ En
q (Em). Because of Em = Lm + x, Lm ∈

Ln
m, x ∈ L⊥

m, we get

Eq = Lq + x + y
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with Lq ∈ Ln
q (Lm) and y ∈ L⊥

q ∩ Lm. Therefore,

∫

En
m

(
∫

En
q (Em)

f(Eq)dEq

)

dEm

=

∫

Ln
m

∫

L⊥
m

(
∫

Ln
q (Lm)

∫

L⊥
q ∩Lm

f(Lq + x + y)dydLq

)

dxdLm

=

∫

Ln
m

∫

Ln
q (Lm)

(
∫

L⊥
m

∫

L⊥
q ∩Lm

f(Lq + x + y)dydx

)

dLqdLm

=

∫

Ln
m

∫

Ln
q (Lm)

(
∫

L⊥
q

f(Lq + z)dz

)

dLqdLm

=

∫

Ln
q

∫

L⊥
q

f(Lq + z)dzdLq

=

∫

En
q

f(Eq)dEq,

where we have used the first integral formula and also Theorem 4.1.2.

We remark that it is also possible to prove a uniqueness result for the measure µq, but the proof

is a bit more involved. We also remark, that both measures νq and µq are actually independent of

the choice of the reference space L0
q .

Exercises and problems

1. Fill in the arguments omitted in the proof of Lemma 4.1.1 (invariance from the right and inversion

invariance) by showing that

ν(Aϑ) = ν(A), and ν(A−1) = ν(A),

for all ϑ ∈ SOn and all Borel sets A ⊂ SOn .

2. Show that

∫

SOn

∫

(L1
q)⊥

f(ϑ(L1
q + x))dxdν(ϑ) =

∫

SOn

∫

(L0
q)⊥

f(ϑ(L0
q + x))dxdν(ϑ),

for L0
q , L

1
q ∈ Ln

q and a continuous function f on En
q with compact support (independence of the

reference space).
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3.∗ Show that µq is the only invariant measure on En
q with

µq(En
q (B(1))) = κn−q.
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4.2 Projection formulas

Theorem 4.2.1 (CAUCHY-KUBOTA). Let K ∈ Kn, q ∈ {0, . . . , n − 1} and j ∈ {0, . . . , q}.

Then, we have
∫

Ln
q

Vj(K|Lq)dLq = βnjqVj(K)

with

βnjq =

(
q
j

)
κqκn−j

(
n
j

)
κnκq−j

.

Proof. The mapping Lq 7→ K|Lq is continuous, therefore

Lq 7→ Vj(K|Lq)

is continuous.

We first consider the case q = n − 1. For j = q, we get CAUCHY’s surface formula which

has been proved already at the beginning of section 4.1. For j < q, we combine this with the

STEINER formula (in dimension n − 1). We obtain

Vn−1(K + B(α)) =
nκn

2κn−1

∫

Ln
n−1

Vn−1(K|Ln−1 + [B(α) ∩ Ln−1])dLn−1

=
nκn

2κn−1

n−1∑

j=0

αn−1−jκn−1−j

∫

Ln
n−1

Vj(K|Ln−1)dLn−1.

(Here, we make use of the fact that Vn−1 is dimension invariant, hence Vn−1(K|Ln−1) yields the

same value in Ln−1 as in R
n.) On the other hand, Corollary 3.5.4 (or Exercise 3.3.7) show that

Vn−1(K + B(α))

(

=
1

2
F (K + B(α))

)

=
n−1∑

j=0

αn−1−j (n − j)κn−j

2
Vj(K).

The formula for j < q = n − 1 follows now by comparing the coefficients in these two polyno-

mial expansions.

Finally, the case q < n−1 is obtained by a recursion. Namely, assume that the formula holds

for q + 1. Then, using Theorem 4.1.2 we obtain

∫

Ln
q

Vj(K|Lq)dLq =

∫

Ln
q+1

(
∫

Ln
q (Lq+1)

Vj(K|Lq)dLq

)

dLq+1.
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The inner integral refers to the hyperplane case (in dimension q + 1) which we have proved

already. Therefore,

∫

Ln
q

Vj(K|Lq)dLq = β(q+1)jq

∫

Ln
q+1

Vj(K|Lq+1)dLq+1

= β(q+1)jqβnj(q+1)Vj(K)

= βnjqVj(K),

where we have used the assertion for q + 1 and the fact that K|Lq = (K|Lq+1)|Lq.

Remarks. (1) For j = q, the CAUCHY-KUBOTA formulas yield

Vj(K) =
1

βnjj

∫

Ln
j

Vj(K|Lj)dLj,

hence Vj(K) is proportional to the mean content of the projections of K onto j-dimensional

subspaces. Since Vj(K|Lj) is also the content of the base of the cylinder circumscribed to K
(with direction space L⊥), Vj(K|Lj) was called the ‘quermass’ of K in direction L⊥. This

explains the name ‘quermassintegral’ for the functionals Wn−j(K) = cnjVj(K).

(2) For j = q = 1, we obtain

V1(K) =
1

βn11

∫

Ln
1

V1(K|L1)dL1.

This gives now a rigorous proof for the fact that V1(K) is proportional to the mean width of K.

Exercises and problems

1. Prove the following generalizations of the CAUCHY-KUBOTA formulas:

(a)

∫

Ln
q

V (q)(K1|Lq, . . . , Kq|Lq)dLq = γnqV (K1, . . . , Kq, B(1), . . . , B(1)
︸ ︷︷ ︸

n−q

),

for K1, . . . , Kq ∈ Kn, 0 ≤ q ≤ n − 1, and a certain constant γnq,

(b)

∫

Ln
q

S
(q)
j (K|Lq, A ∩ Lq)dLq = δnjqSj(K, A),

for K ∈ Kn, a Borel set A ⊂ Sn−1, 0 ≤ j < q ≤ n − 1, and a certain constant δnjq.
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4.3 Section formulas

Theorem 4.3.1 (CROFTON). Let K ∈ Kn, q ∈ {0, . . . , n − 1} and j ∈ {0, . . . , q}. Then, we

have ∫

En
q

Vj(K ∩ Eq)dEq = αnjqVn+j−q(K)

with

αnjq =

(
q
j

)
κqκn+j−q

(
n

q−j

)
κnκj

.

Proof. Here, we start with the case j = 0. From Theorem 4.1.3, we get
∫

En
q

V0(K ∩ Eq)dEq =

∫

Ln
q

∫

L⊥
q

V0(K ∩ (Lq + x))dxdLq.

On the right-hand side, the integrand fulfills

V0(K ∩ (Lq + x)) =

{

1

0
if

x ∈ K|L⊥
q ,

x /∈ K|L⊥
q .

Hence, using Theorems 4.1.2 and 4.2.1, we obtain
∫

En
q

V0(K ∩ Eq)dEq =

∫

Ln
q

Vn−q(K|L⊥
q )dLq

=

∫

Ln
n−q

Vn−q(K|Ln−q)dLn−q

= βn(n−q)(n−q)Vn−q(K)

= αn0qVn−q(K).

This proves the result for j = 0.

Now, let j > 0. We use the result just proven for K ∩ Eq (in Eq) and obtain

Vj(K ∩ Eq) =
1

βqjj

∫

En
q−j(Eq)

V0(K ∩ Eq−j)dEq−j.

Hence,
∫

En
q

Vj(K ∩ Eq)dEq =
1

βqjj

∫

En
q

∫

En
q−j(Eq)

V0(K ∩ Eq−j)dEq−jdEq

=
1

βqjj

∫

En
q−j

V0(K ∩ Eq−j)dEq−j

=
βn(n+j−q)(n+j−q)

βqjj

Vn+j−q(K)

= αnjqVn+j−q(K),
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where we have first used Theorem 4.1.3 and then again the result above.

Remarks. (1) Replacing the pair (j, q) by (0, n − j), we obtain

Vj(K) =
1

αn0(n−j)

∫

En
n−j

V0(K ∩ En−j)dEn−j

=
1

αn0(n−j)

∫

K∩En−j 6=∅

dEn−j

=
1

αn0(n−j)

µn−j({En−j ∈ En
n−j : K ∩ En−j 6= ∅}).

Hence, Vj(K) is (up to a constant) the measure of all (n − j)-flats which meet K.

(2) We can give another interpretation of Vj(K) in terms of flats touching K. Namely, consider

the set

A(α) := ({En−j−1 ∈ En
n−j−1 : K ∩ En−j−1 = ∅, K + B(α) ∩ En−j−1 6= ∅}).

These are the (n − j − 1)-flats meeting the parallel body K + B(α) but not K. If the limit

lim
α→0

1

α
µn−j−1(A(α))

exists, we can interpret it as the measure of all (n−j−1)-flats touching K. Now (1) and Exercise

3.3.7 show that

1

α
µn−j−1(A(α)) =

αn0(n−j−1)

α
[Vj+1(K + B(α)) − Vj+1(K)]

=
αn0(n−j−1)

α

j
∑

i=0

αj+1−i

(
n − i

n − j − 1

)
κn−i

κn−j−1

Vi(K)

→ αn0(n−j−1)(n − j)
κn−j

κn−j−1

Vj(K),

as α → 0.

(3) We can use (1) to solve some problems of Geometrical Probability. Namely, if K,K0 ∈ Kn

are such that K ⊂ K0 and V (K0) > 0, we can restrict µq to {Eq ∈ En
q : K0 ∩ Eq 6= ∅} and

normalize it to get a probability measure. A random q-flat Xq with this distribution is called a

random q-flat in K0. We then get

Prob(Xq ∩ K 6= ∅) =
Vn−q(K)

Vn−q(K0)
.

As an example, we mention the BUFFON needle problem. Originally the problem was formulated

in the following way: Given an array of parallel lines in the plane R
2 with distance 1, what is
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the probability that a randomly thrown needle of length L < 1 intersects one of the lines? If we

consider the disc of radius 1
2

around the center of the needle, there will be almost surely exactly

one line of the array intersecting this disc. Hence, the problem can be formulated in an equivalent

way: Assume the needle N is fixed with center at 0. What is the probability that a random line

X1 in B(1
2
) intersects N? The answer is

Prob(X1 ∩ N 6= ∅) =
V1(N)

V1(B(1
2
))

=
L

π/2

=
2L

π
.

(4) In continuation of (3), we can consider, for K,K0 ∈ Kn with K ⊂ K0 and V (K0) > 0 and

for a random q-flat Xq in K0, the expected j-th intrinsic volume of K ∩ Xq, j ∈ {0, . . . , q}. We

get

EVj(K ∩ Xq) =

∫
Vj(K ∩ Eq)dEq

∫
V0(K0 ∩ Eq)dEq

=
αnjqVn+j−q(K)

αn0qVn−q(K0)
.

If K0 is supposed to be known (and K is unknown) and if Vj(K ∩ Xq) is observable, then

αn0qVn−q(K0)

αnjq

Vj(K ∩ Xq)

is an unbiased estimator of Vn+j−q(K). Varying q, we get in this way three estimators for the

volume V (K), two for the surface area F (K) and one for the mean width B(K).

The estimation formulas in Remark (4) would be of practical interest, if the set K under con-

sideration was not supposed to be convex. In this final part, we therefore want to generalize the

CROFTON formulas to certain non-convex sets. The set class which we consider is the convex

ring Rn, which consists of finite unions of convex bodies,

Rn := {
k⋃

i=1

Ki : k ∈ N, Ki ∈ Kn}.

We assume ∅ ∈ Kn, hence Rn is closed against finite unions and intersections, and it is the

smallest set class with this property and containing Kn. It is easy to see that Rn is dense in the

class Cn of compact subsets of R
n (in the Hausdorff metric), hence any compact set can be well

approximated by elements of Rn.
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Our first goal is to extend the intrinsic volumes Vj to sets in Rn. Since Vj is additive on Kn

(see the exercises), we seek an additive extension. Here a functional ϕ on Rn (or Kn) is called

additive, if

ϕ(K ∪ M) + ϕ(K ∩ M) = ϕ(K) + ϕ(M).

On Rn, we require that this relation holds for all K,M ∈ Rn, whereas on Kn we can only

require it for K,M ∈ Kn with K ∪ M ∈ Kn. In addition, we assume that an additive functional

ϕ fulfills ϕ(∅) = 0. If ϕ : Rn → R is additive, the inclusion-exclusion principle (which follows

by induction) shows that, for A ∈ Rn, A =
⋃k

i=1 Ki, Ki ∈ Kn, we have

(∗) ϕ(A) =
∑

v∈S(k)

(−1)|v|−1ϕ(Kv).

Here, we have used the following notation: S(k) is the set of all non-empty finite subsets of

{1, . . . , k}, |v| is the cardinality of v, and Kv, for v = {i1, . . . , im}, is the intersection Ki1 ∩· · ·∩
Kim . (∗) shows that the values of ϕ on Rn depend only on the behavior of ϕ on Kn. In particular,

if an additive functional ϕ : Kn → R has an additive extension to Rn, then this extension is

unique. On the other hand, (∗) cannot be used to show the existence of such an additive extension,

since the right-hand side may depend on the special representation A =
⋃k

i=1 Ki (and, in general,

a set A ∈ Rn can have many different representations as a finite union of convex bodies). There

is a general theorem of GROEMER which guarantees the existence of an additive extension for all

functionals ϕ which are additive and continuous on Kn. For the intrinsic volumes Vj , however,

we can use a direct approach due to HADWIGER.

Theorem 4.3.2. For j = 0, . . . , n, there is a unique additive extension of Vj onto Rn.

Proof. It remains to show the existence.

We begin with the Euler characteristic V0 and prove the existence by induction on n, n ≥ 0.

It is convenient to start with the dimension n = 0 since R0 = {∅, {0}}(= K0). Because of

V0(∅) = 0 and V0({0}) = 1, V0 is additive on R0.

For the step from dimension n − 1 to dimension n, n ≥ 1, we choose a fixed direction

u0 ∈ Sn−1 and consider the family of hyperplanes Eα := {〈·, u0〉 = α}, α ∈ R. Then, for

A ∈ Rn, A =
⋃k

i=1 Ki, Ki ∈ Kn, we have

A ∩ Eα =
k⋃

i=1

(Ki ∩ Eα)

and by induction hypothesis the additive extension V0(A∩Eα) exists. From (∗) we obtain that the

function fA : α 7→ V0(A∩Eα) is integer-valued and bounded from below and above. Therefore,

fA is piecewise constant and (∗) shows that the value of fA(α) can only change if the hyperplane

Eα supports one of the convex bodies Kv, v ∈ S(k). We define the ‘jump function’

gA(α) := fA(α) − lim
βցα

fA(β), α ∈ R,
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and put

V0(A) :=
∑

α∈R

gA(α).

This definition makes sense since gA(α) 6= 0 only for finitely many values of α. Moreover, for

k = 1, that is A = K ∈ Kn, K 6= ∅, we have V0(K) = 0 + 1 = 1, hence V0 is an extension

of the Euler characteristic. By induction hypothesis, A 7→ fA(α) is additive on Rn for each α.

Therefore, as a limit, A 7→ gA(α) is additive and so V0 is additive. The uniqueness, which we

have already obtained from (∗), shows that this construction does not depend on the choice of

the direction u0.

Now we consider the case j > 0. For A ∈ Rn, A =
⋃k

i=1 Ki, Ki ∈ Kn, and α > 0, x ∈ R
n,

we have

A ∩ (B(α) + x) =
k⋃

i=1

(Ki ∩ (B(α) + x)).

Therefore, (∗) implies

V0(A ∩ (B(α) + x)) =
∑

v∈S(k)

(−1)|v|−1V0(Kv ∩ (B(α) + x)).

Since V0(Kv ∩ (B(α) + x)) = 1, if and only if x ∈ Kv + B(α), we then get from the STEINER

formula
∫

Rn

V0(A ∩ (B(α) + x))dx =
∑

v∈S(k)

(−1)|v|−1

∫

Rn

V0(Kv ∩ (B(α) + x))dx

=
∑

v∈S(k)

(−1)|v|−1Vn(Kv + B(α))

=
∑

v∈S(k)

(−1)|v|−1

(
n∑

j=0

αn−jκn−jVj(Kv)

)

=
n∑

j=0

αn−jκn−j




∑

v∈S(k)

(−1)|v|−1Vj(Kv)



 .

If we define

Vj(A) :=
∑

v∈S(k)

(−1)|v|−1Vj(Kv),

then
∫

Rn

V0(A ∩ (B(α) + x))dx =
n∑

j=0

αn−jκn−jVj(A).

Since this equation holds for all α > 0, the values Vj(A), j = 0, . . . , n, depend only on A and

not on the special representation, and moreover Vj is additive.
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Remarks. (1) The formula

∫

Rn

V0(A ∩ (B(α) + x))dx =
n∑

j=0

αn−jκn−jVj(A),

which we used in the above proof, is a generalized STEINER formula; it reduces to the classical

STEINER formula if A ∈ Kn.

(2) The extended EULER characteristic V0 (also called the EULER-POINCARE characteristic)

plays also an important role in topology. In R
2 and for A ∈ R2, V0(A) equals the number of

connected components minus the number of ‘holes’ in A.

(3) On Rn, Vn is still the volume (Lebesgue measure) and F = 2Vn−1 can still be interpreted

as the surface area. The other (extended) intrinsic volumes Vj do not have a direct geometric

interpretation.

Since union and intersection can be interchanged (as we have used already in the above argu-

ments), the additivity of Vj allows us directly to extend the Crofton formulas to the convex ring.

Theorem 4.3.3 (CROFTON). Let A ∈ Rn, q ∈ {0, . . . , n − 1} and j ∈ {0, . . . , q}. Then, we

have ∫

En
q

Vj(A ∩ Eq)dEq = αnjqVn+j−q(A).

As we have explained in a previous remark, these formulas can be used to give unbiased estima-

tors for Vn+j−q(A) based on intersections A ∩ Xq with random q-flats in the reference body K0.

This can be used in practical situations to estimate the surface area of a complicated tissue A in,

say, a cubical specimen K0 by measuring the boundary length L(A ∩ X2) of a planar section

A ∩ X2. Since the latter quantity is still complicated to obtain, one uses the CROFTON formulas

again and estimates L(A ∩ X2) from counting intersections with random lines X1 in K0 ∩ X2.

Such stereological formulas are used and have been developed further in many applied sciences

including medicine, biology, geology, metallurgy and material science.

Exercises and problems

1. Calculate the probability that a random secant of B(1) is longer than
√

3. (According to the inter-

pretation of a ‘random secant’, one might get here the values 1
2 , 1

3 or 1
4 . Explain why 1

2 is the right,

‘rigid motion invariant’ answer.)

2. Let K, K ′ ∈ Kn and K ∪ K ′ ∈ Kn. Show that:

(a) (K ∩ K ′) + (K ∪ K ′) = K + K ′,

(b) (K ∩ K ′) + M = (K + M) ∩ (K ′ + M), for all M ∈ Kn.

(c) (K ∪ K ′) + M = (K + M) ∪ (K ′ + M), for all M ∈ Kn.



4.3. SECTION FORMULAS 135

3. Let ϕ(K) := V (K, . . . , K
︸ ︷︷ ︸

j-mal

, Mj+1, . . . , Mn), where K, Mj+1, . . . , Mn ∈ Kn. Show that ϕ is

additive, that is

ϕ(K ∩ K ′) + ϕ(K ∪ K ′) = ϕ(K) + ϕ(K ′)

for all K, K ′ ∈ Kn with K ∪ K ′ ∈ Kn.

4. Show that the mappings K 7→ Sj(K, A) are additive on Kn, for all j ∈ {0, . . . , n} and all Borel

sets A ⊂ Sn−1.

5. Show that the convex ring Rn is dense in Cn in the HAUSDORFF metric.

6. Let ϕ : Rn → R be additive and A ∈ Rn, A =
⋃k

i=1 Ki, Ki ∈ Kn. Give a proof for the

inclusion-exclusion formula

(∗) ϕ(A) =
∑

v∈S(k)

(−1)|v|−1ϕ(Kv).
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