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Preface

This book has grown out of two courses the author has taught at the Uni-
versity at Albany. The first course investigates the rigid motions (isometries)
of the Euclidean plane and develops rosette, frieze and wallpaper groups. In
particular, we study discrete subgroups of the group of isometries of the
plane (i.e., two-dimensional crystallographic groups).

The second course develops Euclidean, spherical and hyperbolic geome-
try in dimension two from an analytic point of view, providing realizations
of Euclidean and non-Euclidean geometry from an analytic, rather than
axiomatic, point of view, and develops tools like the cosine law and the
Gauss–Bonnet theorem that provide a deeper insight into the geometry than
is provided by the axioms alone. This has particular value for prospective
high school teachers, as the cosine law is actually used in the high school
curriculum, and a unified development of both that and Euclidean geometry
puts things in a modern perspective that might be very useful to the high
school students themselves.

In particular, we show how isometries provide clean and direct proofs of
the basic theorems in Euclidean geometry and their analogues on the sphere
and in hyperbolic space.

Terminology. We shall be primarily interested in subpsaces of Euclidean
n-space, Rn, defined as the space of all n-tuples of real numbers:

Rn = {(x1, . . . , xn) : x1, . . . , xn ∈ R}.
Thus, formally, Rn is the cartesian product of n copes of the real line. More
generally, if X1, . . . , Xn are sets, their cartesian product is given by

X1 × · · · ×Xn = {(x1, . . . , xn) : xi ∈ Xi for i = 1, . . . , n}.
If X is a finite set, we write |X| for the number of elements in X. An

elementary counting argument gives:

Lemma 0.0.1. Let X1, . . . , Xn be finite sets. Then X1 × · · · ×Xn is finite
and the number of elements in it is the product of the numbers of elements
in the individual sets:

(0.0.1) |X1 × · · · ×Xn| = |X1| · · · |Xn|.
Given subset X,Y ⊂ Z, we write X r Y for the set-theoretic difference:

X r Y = {x ∈ X : x 6∈ Y }
= X r (X ∩ Y ).

Functions. A function

f : X → Y

is sometimes called a map, a mapping , or a transformation. We call X its
domain and Y its codomain.
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We say that f is one-to-one or injective if

f(x) = f(y) ⇒ x = y.

An injective function is called an injection.
The image or range of f is

im f = f(X) = {y ∈ Y : y = f(x) for some x ∈ X}.
For Z ⊂ X, we write f(Z) = {f(z) : z ∈ Z} for the image of f |Z : Z → Y ,
the restriction of f to Z.

We say that f : X → Y is onto or surjective if its range is all of Y ,
i.e., if the range is equal to the codomain. A surjective function is called a
surjection.

If f is both injective and surjective, it is said to be bijective. A bijective
function is called a bijection or one-to-one correspondence.

If f : X → Y is bijective, its inverse function

f−1 : Y → X

is defined by setting f−1(y) to be the unique x ∈ X with f(x) = y: x exists
because f is surjective and is unique because f is injective. The inverse
function f−1 is easily seen to be bijective.

Relationships between functions are often expressed via a diagram. We
say

X
h //

f   

Z

Y

g

??

commutes if h = g ◦ f . A more general diagram commutes if any two ways
of getting from one node to another give the same function. Thus,

X
f

//

g

��

Y

h
��

Z
k // W

commutes if k ◦ g = h ◦ f .

Relations. Formally, a relation R on a set X is a subset R ⊂ X × X. It
is customary to write xRy if the ordered pair (x, y) is in R (and usually a
symbolic operator such as ∼ is used rather than a letter like R. Relations
express a relationship between x and y. One generally does not talk about
the subset R at all, but gives a criterion for xRy to hold.

Examples 0.0.2.

(1) The usual ordering ≤ on R is a relation. It is an example of an order
relation to be discussed below.
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(2) Let X be a set and let P(X) be the set of all subsets of X. (P(X) is
called the power set of X.) Then the standard inclusion of subsets
S ⊂ T gives a relation on P(X). It is also an order relation.

(3) Among the integers, there is a relation, let’s call it ≡, defined by
setting a ≡ b if they have the same parity (i.e., either both are odd
or both are even). Note that we can test for parity by taking powers
of (−1): n is even if (−1)n = 1 and is odd if (−1)n = (−1). Thus,
a ≡ b if and only if (−1)a = (−1)b. This relation is generally called
congruence mod 2, and is written a ≡ b mod 2. It is an exmple of
what’s known as an equivalence relation to be discussed below.

(4) Let f : X → Y be a function. Define the relation ∼ on X by setting
x1 ∼ x2 if f(x1) = f(x2). We call this the relation on X induced by
f . This will also be seen to be an equivalence relation.

With these examples in mind, we give some potential properties of rela-
tions.

Definition 0.0.3. Let R be a relation on X

• R is reflexive if xRx for all x ∈ X.
• R is symmetric if xRy ⇒ yRx.
• R is antisymmetric if (xRy and yRx)⇒ x = y.
• R is transitive if (xRy and yRz)⇒ xRz.

We say R is an order relation or partial ordering if it is reflexive, anti-
symmetric and transitive. We say it is a total ordering if in addition each
pair of elements in X is comparable, i.e., for x, y ∈ X, either xRy or yRx.

We say R is an equivalence relation if it is reflexive, symmetric and tran-
sitive.

Remark 0.0.4.

• The relation ≤ on R is a total ordering.
• The relation ⊂ on P(X) is a partial ordering, but not a total ordering
if X has more than one element: if x 6= y ∈ X, then neither {x}
nor {y} is contained in the other, so these subsets are not related in
P(X).
• For a set X, let Pf (X) ⊂ P(X) be the finite subsets of X. Then
there is an equivalence relation on Pf (X) given by setting S ∼ T if
S and T have the same number of elements.

Equivalence relations are about grouping similar things together, while
order relations are about comparing different things. In the former case the
notion of equivalence classes is valuable.

Definition 0.0.5. If ∼ is an equivalence relation on X we define the equiv-
alence class of x ∈ X by

[x] = {y ∈ X : x ∼ y} ⊂ X.
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The set of all equivalence classes, X/∼, is
X/∼ = {[x] : x ∈ X}

and the canonical map
π : X → X/∼

is defined by π(x) = [x] for all x ∈ X.

Example 0.0.6. Let f : X → Y be a function and let ∼ be the relation on
X induced by f (Example 0.0.2(4)). Then the equivalence classes are the
subsets f−1(y) with y in the image of f .

The key result about equivalence relations is the following.

Lemma 0.0.7. Let ∼ be an equivalence relation on X. Then every element
of X belongs to exactly one equivalence class. A given element x lies in [x],
and if [x]∩ [y] 6= ∅, then [x] = [y]. Finally, if π : X → X/∼ is the canonical
map, then π is onto and

(0.0.2) [x] = π−1([x]).

Of course, here the [x] on the right is a point in the set X/∼ (which consists
of subsets of X), while the [x] on the left is a subset of X.

Proof. If z ∈ [x]∩[y], then x ∼ z ∼ y by symmetry, so x ∼ y by transitivity.
Transitivity then shows that [y] ⊂ [x]. By symmetry, y ∼ x, so [x] ⊂ [y],
and both must coincide with [z] by the argument just given. In particular,

y ∈ [x] ⇔ [y] = [x],

and (0.0.2) follows. �

Acknowledgements. Many mathematicians have been generous with their
thoughts and insights. I wish to thank Noam Elkies, Charles Frohman, Greg
Kuperberg, John Randall, Peter Shalen and Deane Yang.

I have also learned from my students, both past and present. In addition
to contributing ideas and asking interesting and useful questions, they have
caught mistakes and typos for which I am grateful. Special thanks go to
Gabe Holmes and Aaron Wolff.
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1. Some linear algebra

We review some basic linear algebra. The reader may wish to start with
Chapter 2 and use this chapter as a reference work.

1.1. Vector spaces and linear maps. We will make significant use of the

standard vector operations in Rn: for x =



x1
...
xn


 and y =



y1
...
yn


 in Rn and

a ∈ R we have the operations of vector addition and of scalar multiplication:

x+ y =



x1 + y1

...
xn + yn


 ,

ax =



ax1
...

axn


 .

These operations satisfy the following properties:

(1) Vector addition is associative and commutative with additive iden-
tity element 0 = (0, . . . , 0), i.e.:
(a) (x+ y) + z = x+ (y + z) for all x, y, z ∈ Rn.
(b) x+ y = y + x for all x, y ∈ Rn.
(c) 0 + x = x for all x ∈ Rn.

(2) The “distributivity laws” hold:

a(x+ y) = ax+ ay,

(a+ b)x = ax+ bx,

for all x, y ∈ Rn and a, b ∈ R.
(3) Scalar multiplication is “associative” and unital:

(a) a(bx) = (ab)x for all a, b ∈ R and x ∈ Rn.
(b) 1x = x for all x ∈ Rn.

We sometimes write a · x for ax.
A set V with operations of addition and scalar multiplication satisfying

(1)–(3) is called a vector space over R and forms the basic object of study in
an elementary linear algebra course. We shall assume the student is familiar
with the material from such a course, though we will review some of it here.
The reader may consult [1] for most of the omitted proofs. For determinant
theory, we suggest looking at [17]. One of the central objects of study is the
linear functions.

Definition 1.1.1. Let V and W be vector spaces over R. A function f :
V →W is said to be linear if

f(x+ y) = f(x) + f(y),(1.1.1)

f(ax) = af(x),(1.1.2)
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for all x, y ∈ V and a ∈ R. A linear function f : V →W is an isomorphism
if it is one-to-one and onto. We then say V andW are isomorphic. We write

f : V
∼=−→W

when f is an isomorphism.

Since an isomorphism f : V →W is one-to-one and onto, it has an inverse
function f−1 : W → V . As the reader may easily check, f−1 is linear, and
hence an isomorphism as well. Since f preserves the vector operations, an
isomorphism allows us to identify the vector spaces V and W .

Definition 1.1.2. Let f : V →W be linear. The kernel of f is

ker f = {v ∈ V : f(v) = 0}.
The following is elementary and standard.

Lemma 1.1.3. Let f : V →W be linear. Then f is one-to-one if and only
if ker f = {0}.

An important subject in mathematics is finding solutions of f(x) = y for
a function f : X → Y . One of the major values of linear algebra is that
such problems can be solved more easily than analogous nonlinear problems.
As a result, linear approximation is often used to study nonlinear problems.
This is one of the main motivations for differential calculus, as the derivative
determines the best linear approximation for a function at a particular point.

Definition 1.1.4. Let f : V →W be linear. The problem

f(x) = y

is said to be homogeneous if y = 0 and inhomogeneous if y 6= 0. If y 6= 0,
the problem

f(x) = 0

is the associated homogeneous problem to f(x) = y. If y 6= 0 and if x0 is
some specific solution of f(x) = y, then we call it a particular solution of
f(x) = y.

The solutions of f(x) = 0 are precisely the kernel of f . Another standard
result is the following.

Lemma 1.1.5. Let f : V →W be linear and let v0 be a particular solution
of f(v) = w. Then the set of all solutions of f(v) = w is

(1.1.3) v0 + ker f = {v0 + v : v ∈ ker f}.
Note that the elements of v0 + ker f are the set of all possible particular

solutions of f(v) = w. Thus, if v ∈ ker f and if we replace v0 with v1 = v0+v,
then v0 + ker f = v1 + ker f .

When V = Rn we shall see that v0+ker f is an example of what’s known
as an affine subspace of Rn.
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Even to restrict attention to studying the geometry of Rn, the properties
of abstract vector spaces become important, as we shall make use of the sub-
spaces of Rn. For instance, in studying the rotations of R3 (and hence also
of the unit sphere S2, as studied in spherical geometry, below), it becomes
valuable to take seriously the linear structure of the plane perpendicular to
the axis of rotation.

Definition 1.1.6. Let V be a vector space. A subspace W ⊂ V of V is a
subset with the properties that:

(1) For w1, w2 ∈W , the sum w1 + w2 ∈W .
(2) For w ∈W and a ∈ R, aw ∈W .

In particular, W is a subspace if and only if the vector operations of V
(addition and scalar multiplication) restrict to well-defined operations onW .
In this case, it is easily seen that W is a vector space under the operations
inherited from V .

Example 1.1.7. Let f : V → W be linear. Then ker f is a subspace of V
and the image im f is a subspace of W .

As we saw above, ker f detects whether f is one-to-one, while f is onto if
and only if im f =W .

1.2. Spans and linear independence. We shall also need the notion of
a basis.

Definition 1.2.1. Let V be a vector space over R and let v1, . . . , vk ∈ V .
A linear combination of v1, . . . , vk is a sum

a1v1 + · · ·+ akvk

with a1, . . . , ak ∈ R. We write span(v1, . . . , vk) for the set of all linear
combinations of v1, . . . , vk:

span(v1, . . . , vk) = {a1v1 + · · ·+ akvk : a1, . . . , ak ∈ R}.

If span(v1, . . . , vk) = V we say that v1, . . . , vk span V .
We say that v1, . . . , vk are linearly independent if

a1v1 + · · ·+ akvk ⇒ a1 = · · · = ak = 0.

We say that v1, . . . , vk form a basis for V if

(1) v1, . . . , vk are linearly independent.
(2) v1, . . . , vk span V .
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Example 1.2.2. Let ei =




0
...
0
1
0
...
0




,∈ Rn with the 1 in the ith coordinate. Then

e1, . . . , en is a basis for Rn, as

(1.2.1)



x1
...
xn


 = x1e1 + · · ·+ xnen,

so e1, . . . , en span Rn, and if x1e1 + · · · + xnen = 0, then x = 0, so each
xi = 0, giving linear independence. We call E = e1, . . . , en the standard or
canonical basis of Rn.

Lemma 1.2.3. Let v1, . . . , vk ∈ V be linearly independent. Then any el-
ement of their span can be written uniquely as a linear combination of
v1, . . . , vk, i.e., if a1v1 + · · · + akvk = b1v1 + · · · + bkvk, then ai = bi for
all i.

Proof. If a1v1 + · · ·+ akvk = b1v1 + · · ·+ bkvk, then

0 = (a1v1 + · · ·+ anvn)− (b1v1 + · · ·+ bnvn)

= (a1 − b1)v1 + · · ·+ (an − bn)vn.
By linear independence ai − bi = 0 for all i, hence ai = bi. �

Proposition 1.2.4. Let B = v1, . . . , vn be a basis for V . Then there is an
isomorphism

ΦB : Rn → V

given by

ΦB






a1
...
an





 = a1v1 + · · ·+ anvn

Thus, if V has a basis with n elements, it is isomorphic to Rn.
Moreover, ΦB satisfies

ΦB(ei) = vi

for i = 1, . . . , n.

Notation 1.2.5. The inverse function Φ−1
B has the special notation

Φ−1
B (v) = [v]B
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for all v ∈ V . We call [v]B the B-coordinates of v. Explicitly, if B = v1, . . . , vn

and v = a1v1 + · · · + anvn, then [v]B =



a1
...
an


. We emphasize that the B-

coordinates depend strongly on the basis B. If we change even one element
of the basis, it will change the coordinates significantly.

Proof of Proposition 1.2.4. ΦB is linear because

(a1v1 + · · ·+ anvn) + (b1v1 + · · ·+ bnvn) = (a1 + b1)v1 + · · ·+ (an + bn)vn,

a(a1v1 + · · ·+ anvn) = (aa1)v1 + · · ·+ (aan)vn,

by the basic vector identities.
ΦB is onto because v1, . . . , vn span V . ΦB is one-to-one by Lemma 1.2.3:

if a1v1 + · · ·+ anvn = b1v1 + · · ·+ bnvn, Then ai = bi for all i.
The last statement is immediate from the definitions of ΦB and the canon-

ical basis elements ei. �

The following is now immediate from (1.2.1).

Lemma 1.2.6. Let E = e1, . . . , en be the canonical basis of Rn. Then ΦE :
Rn → Rn is the identity map, hence [x]E = x for all x ∈ Rn.

The following result makes use of similar arguments to those in Proposi-
tion 1.2.4.

Lemma 1.2.7. Let V and W be vector spaces and let v1, . . . , vn be a basis
for V . Let w1, . . . , wn ∈ W be arbitrary. Then there is a unique linear
function f : V →W with f(vi) = wi for all i. It satisfies

(1.2.2) f(a1v1 + · · ·+ anvn) = a1w1 + · · ·+ anwn.

In particular:

(1) The range of f is span(w1, . . . , wn), so f is onto if and only if
w1, . . . , wn span W .

(2) f is one-to-one if and only if w1, . . . , wn are linearly independent.
(3) f is an isomorphism if and only if w1, . . . , wn is a basis for W .

Proof. If f : V →W is linear and f(vi) = wi for i = 1, . . . , n then

f(a1v1 + · · ·+ anvn) = a1f(v1) + · · ·+ anf(vn)

= a1w1 + · · ·+ anwn

with the first equality following from linearity, so f is uniquely determined
by linearity and knowing the values of f on the basis elements.

Conversely, given arbitrary elements w1, . . . , wn of W , we use (1.2.2) to
define a a function f : V → W . This gives a well-defined function by
Proposition 1.2.4: every element of V may be written uniquely as a linear
combination of v1, . . . , vn. The linearity of f now follows by the properties
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defining a vector space. So it remains to verify (1)–(3). Of these, (1) is
obvious, while (3) follows from (1) and (2).

For (2), note that if w1, . . . , wn are linearly dependent there are scalars
a1, . . . , an, not all 0, with a1w1 + · · · + anwn = 0. So a1v1 + · · · + anvn ∈
ker f . But since a1, . . . , an are not all 0 and since v1, . . . , vn are linearly
independent, a1v1 + · · · + anvn 6= 0 and ker f 6= 0. So f is not one-to-one.
The converse is clear. �

Corollary 1.2.8. Let B = v1, . . . , vn be a basis of V . Then ΦB : Rn → V
is the unique linear function such that

ΦB(ei) = vi

for i = 1, . . . , n. We obtain a one-to-one correspondence between the ordered
bases B = v1, . . . , vn of V and the linear isomorphisms f : Rn → V given by

B 7→ ΦB.

Lemma 1.2.7 is a key tool in understanding linear maps. We may use it
to study the linear maps from Rn to Rm and to show they are induced by
matrices. We may then use matrix manipulations to study the linear maps
from Rn to Rm in greater detail. We can then use bases to apply these more
detailed results to linear maps between more general vector spaces.

1.3. Matrices. We write A = (aij) for the m× n matrix

(1.3.1) A =




a11 a12 . . . a1n
a21 a22 . . . a2n

. . .

am1 am2 . . . amn




with mn real entries aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. This matrix induces a linear
function TA : Rn → Rm via the matrix product TA(x) = Ax. Here we use
column vectors for the elements of both Rn and Rm, and write

(1.3.2) x =



x1
...
xn




for the generic element of Rn. Thus, x is an n × 1 column matrix. So we
regard Ax as the product of two matrices, and, as usual, if A is as above
and if B = (bij) is any n × k matrix, AB is the m × k matrix whose ijth
coordinate is

∑n
k=1 aikbkj .

The matrix product satisfies an important property.

Lemma 1.3.1. Let A = (aij) be m× n and let B = (bij) be n× k. Then

TA ◦ TB = TAB : Rk → Rm,

i.e., matrix multiplication corresponds to composition of functions (in the
usual order).
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Proof. This follows from the associativity of matrix multiplication: for A
and B as above and for a k × ℓ matrix C = (cij), we have

(AB)C = A(BC).

We refer the reader to [1] or [17] for the basic properties of matrix addition
and multiplication. �

Note that for an m × n matrix A, the function TA : Rn → Rm as de-
fined above is linear because matrix multiplication satisfies a distributive
property: for any two n× k matrices B = (bij) and C = (cij), we have

A(B + C) = AB +AC,

and also

A · aB = aAB

for all a ∈ R. In the above, B + C is the n × k matrix whose ijth entry is
bij + cij and aB is the n× k matrix whose ijth entry is abij .

Definition 1.3.2. Let A be an m × n matrix. The nullspace, N(A), of A
is the kernel of TA:

N(A) = {x ∈ Rn : Ax = 0}.
Phrased in terms of matrices, Lemma 1.1.5 becomes:

Lemma 1.3.3. Let A be an m × n matrix and let b ∈ Rm. Let x0 be a
solution of Ax = b. Then the set of all solutions of Ax = b is

(1.3.3) xo +N(A) = {x+ v : v ∈ N(A)}.
Notation 1.3.4. We write Mm,n(R) for the set of all m× n matrices with
coefficients in R. We abbreviate Mn(R) =Mn,n(R) the set of square, n× n
matrices with real coefficients.

Given column vectors v1, . . . , vn ∈ Rm we write [v1| . . . |vn] for the m× n
matrix whose ith column is vi. Thus, A = (aij) may be written as [a1| . . . |an]

where ai =



a1i
...
ani


 for i = 1, . . . , n.

Straightforward calculation gives the following.

Lemma 1.3.5. Let A = [v1| . . . |vn] be m× n and let x =



x1
...
xn


. Then Ax

may be given explicitly as the linear combination

(1.3.4) Ax = x1v1 + · · ·+ xnvn,

Thus:

(1) Aei = vi, the ith column of A, for i = 1, . . . , n.
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(2) TA is the unique linear function from Rn to Rm with TA(ei) = vi for
i = 1, . . . , n.

Note that the uniqueness in (2) comes from Lemma 1.2.7. From this, we
immediately obtain that the linear functions from Rn to Rm are in one-to-
one correspondence with the m× n matrices:

Corollary 1.3.6. Let T : Rn → Rm be linear. Then there is a unique m×n
matrix A = [T ] such that T = TA:

[T ] = [T (e1)| . . . |T (en)].
Lemma 1.3.5 allows us to translate Lemma 1.2.7 into a statement about

matrices:

Corollary 1.3.7. Let A = [v1| . . . |vn] be m × n and let TA : Rn → Rm be
the induced linear transformation.

(1) TA is onto if and only if v1, . . . , vn span Rm.
(2) TA is one-to-one if and only if v1, . . . , vn are linearly independent.
(3) TA is an isomorphism if and only if v1, . . . , vn is a basis of Rm.

We can now apply the technique of Gauss elimination to study linear
transformations from Rn to Rm. First we review the notion of invertibility
of matrices.

Definition 1.3.8. The n × n matrix A is invertible if there is an n × n
matrix B such that

AB = BA = In
where In is the n× n identity matrix

In =




1 0 . . . 0
0 1 . . . 0

. . .

0 0 . . . 1


 ,

i.e., the n×n matrix whose diagonal entries are all 1 and whose off-diagonal
entries are all 0.

The identity matrix is the unique matrix with the property that TIn = I,
the identity map of Rn. If A is invertible, there is a unique matrix B with
AB = BA = In as shown in Lemma 3.1.3(1) below. We write A−1 for the
inverse matrix B. Invertibility is important for the following reason.

Lemma 1.3.9. The n × n matrix A is invertible if and only if the linear
mapping TA is an isomorphism. If A is invertible, then T−1

A = TA−1.

Proof. If A is invertible, then

TA−1TA = TA−1A = TIn = I.

Since I is one-to-one, this forces TA to be one-to-one. Similarly, TATA−1 = I,
and since I is onto, this forces TA to be onto. Thus, if A is invertible, TA is
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an isomorphism, and the identities TA−1TA = TATA−1 = I display TA−1 as
the inverse function of TA.

Conversely, if TA is an isomorphism, the inverse function T−1
A is linear,

and hence is equal to TB for some n × n matrix B by Corollary 1.3.6. By
the calculations just given, the identities TA−1TA = TATA−1 = I together
with Corollary 1.3.6 force AB = BA = In. �

Notation 1.3.10. We write GLn(R) for the set of invertible n×n matrices
with coefficients in R.

1.4. Block matrices and their multiplication. It is valuable in several
contexts to subdivide matrices into blocks.

Definition 1.4.1. Let A = (aij) be a k×ℓ matrix, B = (bij) a k×r matrix,
C = (cij) an s× ℓ matrix and D = (dij) and s× r matrix. We write

(1.4.1) M =

[
A B

C D

]

for the (k + r)× (ℓ+ s) matrix whose ij-th entry is given by

(1.4.2) mij =





aij if i ≤ k and j ≤ ℓ,
bi,j−ℓ if i ≤ k and j > ℓ,

ci−k,j if i > k and j ≤ ℓ,
di−k,j−ℓ if i > k and j > ℓ.

The following is immediate.

Lemma 1.4.2. Let M be a (k+ r)× (ℓ+ s) matrix. Then there are unique
matrices A, B, C and D with

M =

[
A B

C D

]
.

Remark 1.4.3. Indeed, there are other block structures of significant in-
terest. For instance, in (1.4.1) we shall denote the first ℓ columns of M

by

[
A

C

]
, and denote the first k rows by [A |B]. In fact, we can dice a

matrix into an arbitrary grid of blocks, and it is often valuable to do so. An
important point is that these grids multiply gridwise. That has important
consequences.

Proposition 1.4.4. Let B1, . . . , Bn be matrices with k rows and arbitrary
numbers of columns. Let A be a matrix with k columns. Then

(1.4.3) A [B1| . . . |Bn] = [AB1| . . . |ABn].
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Let A1, . . . , Am be matrices with k columns and arbitrary numbers of rows.
Let B be a matrix with k rows. Then

(1.4.4)



A1
...

Am


B =



A1B
...

AmB


 .

Now let’s reverse things, with the block “columns” on the left and the
block “rows” on the right: let A1, . . . , An be matrices with r rows and let
B1, . . . , Bn be matrices with s columns. Suppose the number of columns of
Ai is equal to the number of rows of Bi for i = 1, . . . , n. Then

(1.4.5) [A1| . . . |An]



B1
...

Bn


 = A1B1 + · · ·+AnBn.

The result is r × s.
Putting these together in the case of matrices with a 2×2 block structure,

we obtain the following: if the number of columns of A and C is equal to
the number of rows of X and Y , and the number of columns of B and D is
equal to the number of rows of Z and W , then

(1.4.6)

[
A B

C D

] [
X Y

Z W

]
=

[
AX +BZ AY +BW

CX +DZ CY +DW

]
.

Proof. The identities (1.4.3) and (1.4.4) are straightforward from the def-
inition of matrix multiplication. For (1.4.5), let vij be the i-th row of Aj
and let wjk be the k-th column of Bj . then the i-th row of [A1| . . . |An]
is obtained by horizontally concatenating vi1, . . . , vin and the k-th column

of



B1
...

Bn


 is obtained by vertically concatenating w1k, . . . , wnk. Their ma-

trix product is precisely
∑n

j=1 vijwjk, which is precisely the ik-th entry of
A1B1 + · · ·+AnBn.

The formula (1.4.6) follows from the others. �

1.5. Dimension. We can now use Gauss elimination to study matrices.
Complete proofs of the following assertions can be found in [1].

Proposition 1.5.1. Let A = [v1| . . . |vn] be an m× n matrix and let

TA : Rn → Rm

be the induced linear function.

(1) If TA is one-to-one, then n ≤ m, and if n = m, then A is invertible.
(2) If TA is onto, then n ≥ m, and if n = m, then A is invertible.
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Sketch of proof. If TA is one-to-one, then there are no free variables, so A
reduces to a matrix with a pivot in every column. Since there is at most one
pivot per row, the number of columns is less than or equal to the number
of rows. If there is the same number of rows as columns, then the reduced
matrix must be In. Any matrix that reduces to In is invertible.

If TA is onto, then A reduces to a matrix with a pivot in every row. We
repeat the argument above, reversing the role of rows and columns. �

Corollary 1.5.2. Let B = v1, . . . , vn be a basis for the vector space V . Then
any other basis also has n elements. Moreover, we have the following:

(1) If w1, . . . , wk ∈ V are linearly independent, then k ≤ n, and if k = n,
then w1, . . . , wk form a basis for V .

(2) If w1, . . . , wk span V , then k ≥ n, and if k = n then w1, . . . , wk form
a basis for V .

Proof. The uniqueness of the number of elements in a basis follows from
(1) and (2). The proofs of (1) and (2) follow by applying the isomorphism
Φ−1
B : V → Rn. Since Φ−1

B is an isomorphism, it is easy to see that if
w1, . . . , wk ∈ V , then w1, . . . , wk are linearly independent if and only if
Φ−1
B (w1), . . . ,Φ

−1
B (wk) are linearly independent, and w1, . . . , wk span V if

and only if Φ−1
B (w1), . . . ,Φ

−1
B (wk) span R

n.
Thus, we may assume V = Rn and we may apply Corollary 1.3.7 and

Proposition 1.5.1 to A = [w1| . . . |wk]. �

This results in a significant strengthening of Corollary 1.3.7.

Corollary 1.5.3. Rn and Rm are isomorphic if and only if n = m. More-
over, if A is an n× n matrix, then the following conditions are equivalent.

(1) TA is one-to-one, i.e., the columns of A are linearly independent.
(2) TA is onto, i.e., the columns of A span Rn.
(3) TA is an isomorphism, i.e., the columns of A form a basis of Rn.

Proof. If TA : Rn → Rm is an isomorphism, then the columns of A form
a basis of Rm. Since there are n columns, this forces m = n. Now apply
Proposition 1.5.1. �

Since the number of elements in a basis is unique, the following makes
sense.

Definition 1.5.4. If the vector space V has a basis with n elements we say
V has dimension n and write dimV = n. We adopt the convention that the
zero vector space 0 = {0} has the empty set as its basis, so that dim 0 = 0.

Note that every n-dimensional vector space is isomorphic to Rn.
The concept of span is useful in studying subspaces. The following lemma

is elementary.

Lemma 1.5.5. Let v1, . . . , vk ∈ V . Then span(v1, . . . , vk) is a subspace of
V , and any subspace of V containing v1, . . . , vk must contain span(v1, . . . , vk).
Thus, span(v1, . . . , vk) is the smallest subspace of V containing v1, . . . , vk.
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Of course v1, . . . , vk are linearly dependent if they are not linearly inde-
pendent. In other words, v1, . . . , vk are linearly dependent if there are real
numbers a1, . . . , ak, not all 0, such that

a1v1 + · · ·+ akvk = 0.

A key observation is the following:

Lemma 1.5.6. Suppose that a1v1 + · · ·+ akvk = 0 with ai 6= 0. Then

vi ∈ span(v1, . . . , vi−1, vi+1, . . . , vk).

Conversely, if vi ∈ span(v1, . . . , vi−1, vi+1, . . . , vk), then there are real num-
bers a1, . . . , ak with ai 6= 0 such that a1v1 + · · · + akvk = 0. In particular,
the following properties hold:

(1) The vectors v1, . . . , vk ∈ V are linearly dependent if and only if one
of the vi is in the span of the others.

(2) If vi ∈ span(v1, . . . , vi−1, vi+1, . . . , vk), then

span(v1, . . . , vk) = span(v1, . . . , vi−1, vi+1, . . . , vk).

Thus, v1, . . . , vk are linearly dependent if and only if span(v1, . . . , vk)
is the span of a proper subset of {v1, . . . , vk}.

(3) Let v1, . . . , vk be linearly independent and suppose

vk+1 6∈ span(v1, . . . , vk).

Then v1, . . . , vk+1 are linearly independent.

Proof. If a1v1 + · · ·+ akvk = 0 with ai 6= 0, then

aivi = −a1v1 − · · · − ai−1vi−1 − ai+1vi+1 − · · · − akvk, so

vi = −
a1
ai
v1 − · · · −

ai−1

ai
vi−1 −

ai+1

ai
vi+1 − · · · −

ak
ai
vk

∈ span(v1, . . . , vi−1, vi+1, . . . , vk).

Conversely, if vi ∈ span(v1, . . . , vi−1, vi+1, . . . , vk), we have

vi = c1v1 + · · ·+ ci−1vi−1 + ci+1vi+1 + · · ·+ ckvk

for real numbers c1, . . . , ci−1, ci+1, . . . , ck. hence

c1v1 + · · ·+ ckvk = 0

with ci = −1, establishing the desired dependence relation.
(1) is now immediate, and (2) follows from Lemma 1.5.5. For (3), if

vk+1 6∈ span(v1, . . . , vk) and if

a1v1 + · · ·+ ak+1vk+1 = 0,

then ak+1 cannot be nonzero. But linear independence of v1, . . . , vk then
forces the other coefficients to be 0 as well. �

Definition 1.5.7. A vector space is finite-dimensional if it is the span of
a finite set of vectors. If a vector space is not finite-dimensional we write
dimV =∞.
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The following is immediate from Lemma 1.5.6(2).

Corollary 1.5.8. Let V be a finite dimensional vector space, say

V = span(v1, . . . , vk).

then some subset of {v1, . . . , vk} forms a basis for V . In particular, V has
a basis and dimV ≤ k.

When V is a subspace of Rn, one can actually solve for the subset in
question using Gauss elimination. Just set A = [v1| . . . |vk] and reduce A to
the reduced row echelon matrix B = [w1| . . . |wk]. Suppose that wi1 , . . . , wiℓ
are the pivot columns of B. Then vi1 , . . . , viℓ can be shown to give a basis
for V = span(v1, . . . , vk).

Example 1.5.9. If f : V → W is linear with V finite-dimensional, then
the image f(V ) is finite-dimensional, as if v1, . . . , vk is a basis for V , then
f(V ) = span(f(v1), . . . , f(vk)).

We obtain a very useful tool from the results above.

Corollary 1.5.10. Let V be an n-dimensional vector space. If v1, . . . , vk ∈
V are linearly independent, then they may be extended to a basis v1, . . . , vn
for V .

Proof. We argue by induction on n − k. If n − k = 0, then v1, . . . , vk is
already a basis for V by Corollary 1.5.2(1). Otherwise, since v1, . . . , vk are
linearly independent, span(v1, . . . , vk) must be a proper subspace of V , so
there exists vk+1 ∈ V − span(v1, . . . , vk). But then v1, . . . , vk+1 are linearly
independent by Lemma 1.5.6(3). This is also the inductive step, and the
result follows. �

We also obtain the following.

Corollary 1.5.11. Let W be a subspace of the finite-dimensional vector
space V . Then W is finite-dimensional, with dimW ≤ dimV . If dimW =
dimV then W = V .

Proof. We construct a basis for W using the inductive procedure given in
the proof of Corollary 1.5.10. We start with a nonzero element w1 ∈W and
continue until we have a basis w1, . . . , wk of W . This must eventually occur,
as there can be at most dimV elements in any linearly independent subset
of V by Corollary 1.5.2(1).

Suppose then that we have obtained a basis w1, . . . , wk of W . If k =
dimV then w1, . . . , wk is also a basis of V by Corollary 1.5.2(1), and hence
W = V . �

1.6. Rank. We can now apply dimension to the study of linear functions.

Definition 1.6.1. Let f : V → W be linear with V finite-dimensional.
Then the rank, rank f , of f is the dimension of the image, f(V ), of f . If A
is an m×n matrix, then the rank, rankA, of A is the rank of TA : Rn → Rm.
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Proposition 1.6.2. Let f : V → W be linear with V finite-dimensional.
Let w1, . . . , wr be a basis for the image of f and let v1, . . . , vr ∈ V with
f(vi) = wi for i = 1, . . . , r. Let y1, . . . , ym be a basis for ker f . Then

(1.6.1) B = v1, . . . , vr, y1, . . . , ym

is a basis for V . Thus,

(1.6.2) rank f + dimker f = dimV.

Proof. We first show v1, . . . , vr, y1, . . . , ym are linearly independent. Sup-
pose c1v1 + · · ·+ crvr + d1y1 + · · ·+ dmym = 0. Then

0 = c1f(v1) + · · ·+ crf(vr) + d1f(y1) + · · ·+ dmf(ym)

= c1f(v1) + · · ·+ crf(vr)

= c1w1 + · · ·+ crwr,

as f(y1) = · · · = f(ym) = 0. But w1, . . . , wr are linearly independent, so
c1 = · · · = cr = 0. This leaves

d1y1 + · · ·+ dmym = 0.

But y1, . . . , ym are linearly independent, so d1 = · · · = dm = 0.
Now we show v1, . . . , vr, y1, . . . , ym span V . Let v ∈ V . Then f(v) ∈

f(V ) = span(w1, . . . , wr). Say f(v) = c1w1 + · · ·+ crwr. Then,

f
(
v − (c1v1 + · · ·+ crvr)

)
= f(v)− (c1w1 + · · ·+ crwr) = 0,

so v − (c1v1 + · · ·+ crvr) ∈ ker f = span(y1, . . . , ym). Say

v − (c1v1 + · · ·+ crvr) = d1y1 + · · ·+ dmym.

But then v = c1v1 + · · ·+ crvr + d1y1 + · · ·+ dmym. �

The following lemma is easy but valuable.

Lemma 1.6.3. Let V be finite dimensional and let f : V → W be linear.

Let g :W
∼=−→W ′ and h : V ′ ∼=−→ V be isomorphisms. Then

rank(g ◦ f ◦ h) = rank f.

Proof. Since h is onto, f(V ) = f ◦ h(V ′). So g ◦ f ◦ h(V ′) is the image
of f(V ) under the isomorphism g. So the dimension of the image g ◦ f ◦ h
equals the dimension of the image of f . �

1.7. Direct sums. There is a useful operation on vector spaces that re-
flects the way Rm+n is obtained from Rm and Rn.

Definition 1.7.1. Let V and W be vector spaces. The direct sum V ⊕W
is the set V ×W endowed with the vector operations

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)

c(v1, w1) = (cv1, cw1)

for all v1, v2 ∈ V , w1, w2 ∈W and c ∈ R.
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This is just the expected structure, and there is an obvious isomorphism

Rm ⊕ Rn → Rm+n






x1
...
xm


 ,



y1
...
yn





 7→




x1
...
xm
y1
...
yn




It is useful to view this as an external operation on vector spaces. The
reader may verify the following propositions.

Proposition 1.7.2. Let V andW be finite-dimensional with bases v1, . . . , vm
and w1, . . . , wn, respectively. Then

(v1, 0), . . . , (vm, 0), (0, w1), . . . , (0, wn)

is a basis for V ⊕W , hence dim(V ⊕W ) = dimV + dimW .

Proposition 1.7.3. Let V , W be vector spaces. Then the maps

ι1 : V → V ⊕W,
ι2 :W → V ⊕W

given by ι1(v) = (v, 0), ι2(w) = (0, w) are linear and if Z is a vector space
and f : V → Z and g : W → Z are linear, there is a unique linear map
h : V ⊕W → Z such that the following diagram commutes:

V
ι1 //

f
##

V ⊕W
h
��

W
ι2oo

g
{{

Z.

Specifically, h(v, w) = f(v) + g(w).

Proposition 1.7.4. Let V , W be vector spaces. Then the maps

π1 : V ⊕W → V,

π2 : V ⊕W →W

given by π1(v, w) = v, π2(v, w) = w are linear and if Z is a vector space
and f : Z → V and g : Z → W are linear, there is a unique linear map
h = (f, g) : Z → V ⊕W such that the following diagram commutes:

Z
f

{{

h

��

g

$$

V V ⊕Wπ1oo
π2 // W .

Specifically, h(z) = (f(z), g(z)). In other words, f and g are the coordinate
functions of h in terms of the ordered pairs in V ⊕W .
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1.8. Base change. We review the relationship between bases and matri-
ces. Since we are using matrices, we will write vectors in Rn as column
vectors as in (1.3.2). Thus, if B = v1, . . . , vn is a basis of V , then the
isomorphism

ΦB : Rn
∼=−→ V

is given by

ΦB






x1
...
xn





 = x1v1 + · · ·+ xnvn.

Recall from Notation 1.2.5, that the inverse isomorphism Φ−1
B : V → Rn has

a special notation: if v = x1v1 + · · ·+ xnvn ∈ V , we write

(1.8.1) [v]B = Φ−1
B (v) =



x1
...
xn


 = x1e1 + · · ·+ xnen.

We call [v]B the B-coordinates of v.
Now suppose given a linear function f : V →W and bases B = v1, . . . , vn

of V and B′ = w1, . . . , wm of W . Write T : Rn → Rm for the composite

Rn
ΦB−−→ V

f−→W
Φ−1

B′−−→ Rm.

Definition 1.8.1. With the notations above, the matrix [f ]B′B of f with
respect to the bases B′, B is the matrix of T as given by Corollary 1.3.6:

[f ]B′B = [T ]

= [T (e1)| . . . |T (en)]
= [Φ−1

B′ fΦB(e1)| . . . |Φ−1
B′ fΦB(en)]

= [Φ−1
B′ f(v1)| . . . |Φ−1

B′ f(vn)] (Proposition 1.2.4)

= [[f(v1)]B′ | . . . | [f(vn)]B′ ] (1.8.1).

This generalizes what we have done for linear functions from Rn to Rm:

Lemma 1.8.2. Let E = e1, . . . , en and E ′ = e1, . . . , em be the canonical
bases of Rn and Rm, respectively. Let T : Rn → Rm be linear. Then

[T ]E ′E = [T ] = [T (e1)| . . . |T (en)],
the matrix of T as given in Corollary 1.3.6.

Proof. By Lemma 1.2.6, ΦE and ΦE ′ are the identity maps of Rn and Rm,
respectively. �

There is a nice relationship between [f ]B′B and the coordinate functions
given by the bases B and B′ via (1.8.1).



A COURSE IN LOW-DIMENSIONAL GEOMETRY 27

Lemma 1.8.3. With the notations above,

(1.8.2) [f ]B′B[v]B = [f(v)]B′

for all v ∈ V . Here, the left-hand side is the product of the matrix [f ]B′B
with the B-coordinates of v.

Proof. Let v = a1v1 + · · ·+ anvn. Then [v]B =



a1
...
an


, so

[f ]B′B[v]B = [[f(v1)]B′ : . . . : [f(vn)]B′ ]



a1
...
an




= a1[f(v1)]B′ + · · ·+ an[f(vn)]B′

= [a1f(v1) + · · ·+ anf(vn)]B′ ,

as w 7→ [w]B′ is linear (as the inverse to ΦB′). But linearity of f gives

a1f(v1) + · · ·+ anf(vn) = f(a1v1 + · · ·+ anvn) = f(v),

and the result follows. �

Note that all three of the terms in (1.8.2) depend strongly on the bases
chosen. In fact, we will see that the matrices [I]B′B (with I the identity
map of a vector space V ) play a very important role in understanding the
relationship between two bases and how it affects coordinatizing matrices.
The following is very important in developing that investigation.

Proposition 1.8.4. Let f : V → W and g : W → Z be linear. Let
B = v1, . . . , vn be a basis of V , let B′ = w1, . . . , wm be a basis of W and let
B′′ = z1, . . . , zk be a basis of Z. Then

[g]B′′B′ [f ]B′B = [g ◦ f ]B′′B,

where the left-hand side is the matrix product.

Proof. It suffices to show that both sides have the same effect on an ar-

bitrary vector



a1
...
an


. But this is easy, as, if v = a1v1 + . . . , anvn, then



a1
...
an


 = [v]B. So

[g]B′′B′ [f ]B′B



a1
...
an


 = [g]B′′B′ [f ]B′B[v]B

= [g]B′′B′ [f(v)]B′
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= [g ◦ f(v)]B′′

= [g ◦ f ]B′′B



a1
...
an


 .

Here, we have used Lemma 1.8.3 twice. �

Proposition 1.8.4 is very flexible and has many important consequences.
Of particular importance is the analysis of linear functions f : V → V where
we use the same basis for both copies of V .

Notation 1.8.5. Let f : V → V be linear and let B = v1, . . . , vn be a basis
of V . We write [f ]B for the matrix [f ]BB:

[f ]B = [[f(v1)]B| . . . |[f(vn)]B].

Using the same basis for the domain and codomain gives a consistent
coordinatization of f , and we can ask what geometric effect f has with
respect to these coordinates. This is of value even when V = Rn as we
may think of the basis B as providing a linear change of variables. We have
seen the value of changing variables in calculus, and it also has significant
value in both linear algebra and geometry. In geometry, we shall be most
interested in the change of variables given by an orthonormal basis of Rn.
These are the bases that will arise in studying linear isometries. For more
general linear functions, arbitrary bases become important for base change.

The following is immediate from Proposition 1.8.4.

Corollary 1.8.6. Let f, g : V → V be linear and let B = v1, . . . , vn be a
basis of V . Then

[g ◦ f ]B = [g]B[f ]B.

Proposition 1.8.4 also shows how to convert between different coordinati-
zations of f .

Definition 1.8.7. Let B = v1, . . . , vn and B′ = w1, . . . , wn be two different
bases of the vector space V . The transition matrix from B to B′ is

[I]B′B = [[v1]B′ | . . . |[vn]B′ ],

where I is the identity map of V .

A useful example is the following, whose proof is immediate from Lem-
ma 1.2.6.

Lemma 1.8.8. Let B = v1, . . . , vn be a basis of Rn. Then the transition
matrix from B to the standard basis is given by

[I]EB = [v1| . . . |vn].
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Lemma 1.8.9. Let B = v1, . . . , vn and B′ = w1, . . . , wn be two different
bases of the vector space V . Then the transition matrices between them in
opposite directions are inverse to one another:

[I]B′B = [I]−1
BB′ .

Proof.

[I]B′B[I]BB′ = [I ◦ I]B′B′ = [[w1]B′ | . . . |[wn]B′ ] = [e1| . . . |en] = In.

A similar calculation gives [I]BB′ [I]B′B = In. �

The follwing is now immediate from Proposition 1.8.4 and Lemma 1.8.9.

Corollary 1.8.10. Let B = v1, . . . , vn and B′ = w1, . . . , wn be two different
bases of the vector space V . Let f : V → V be linear. Then

[f ]B′ = P [f ]BP
−1

where P = [I]B′B.

Corollary 1.8.11. Let B and B′ be bases for the finite-dimensional vector
space V and let f : V → V be linear. Then

det[f ]B = det[f ]B′ .

Proof.

det(P [f ]BP
−1) = det(P ) det([f ]B) det(P

−1)

= detP det[f ]B(detP )
−1

= det[f ]B,

as real numbers commute. �

Thus, the following is well-defined.

Definition 1.8.12. Let f : V → V be linear with V a finite-dimensional
vector space. We define det f by

det f = det[f ]B

for any basis B of V .

Proposition 1.8.13. Let f, g : V → V be linear with V a finite-dimensional
vector space. Then:

(1) det(f ◦ g) = det f det g.
(2) det I = 1.
(3) det(af) = adimV det f for a ∈ R.
(4) f is invertible if and only if det f 6= 0.

Proof. These follow from the basic properties of determinants of matrices.
Here we use that if dimV = n, then [aI]B = aIn for any basis B and any
a ∈ R, and af = (aI) ◦ f . �
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The following is more delicate, as it requires the development of determi-
nant theory for matrices with coefficients in a commutative ring (see [17]).
Recall that the characteristic polynomial chA(x) of an n×n matrix is given
by

chA(x) = det(xIn −A).
Here, xIn − A is an n× n matrix with coefficients in the commutative ring
R[x] of polynomials (with variable x) with coefficients in R. So xIn is the
matrix whose diagonal entries are all x and whose off-diagonal entries are
all 0, and A is considered to be a matrix of constant polynomials.

Characteristic polynomials are important, as their roots are real numbers
c such that det(cIn − A) = 0, meaning that the real n × n matrix cIn − A
is not invertible. But that in turn means there is a nonzero vector v ∈ Rn

with (cIn − A)v = 0, i.e., cv = Av. This says c is an eigenvalue of A and
that v is an eigenvector for (A, c) (Definition 4.1.22). We obtain:

Lemma 1.8.14. The eigenvalues of A are the roots of the characteristic
polynomial chA(x).

We bring this in now to extend it to linear functions on arbitrary finite-
dimensional vector spaces.

Lemma 1.8.15. Let f : V → V be linear with V finite-dimensional. Let
B and B′ be bases for V . Then the matrices [f ]B and [f ]B′ have the same
characteristic polynomial.

Proof.

(P [f ]BP
−1)− In = P ([f ]B − In)P−1.

Now use the fact that determinants of matrices with coefficients in a com-
mutative ring are product preserving (see [17]). �

So the following is well-defined.

Definition 1.8.16. Let f : V → V be linear with V finite-dimensional.
Then the characteristic polynomial chf (x) is defined to be ch[f ]B(x) for any
basis B of V .

As above, we define an eigenvalue c of f to be a real number for which
there exists a nonzero v ∈ V with f(v) = cv. For an eigenvalue c of f ,
the eigenspace of (f, c) is the subspace consisting of all vectors v ∈ V with
f(v) = cv. Such vectors are called eigenvectors of (f, c).

Proposition 1.8.17. Let f : V → V be linear with V finite-dimensional.
Let B be a basis of V and let c ∈ R. Then

f(v) = cv ⇔ [f ]B[v]B = c[v]B.

Thus, the eigenvalues of f are the eigenvalues of [f ]B, which, in turn are
the roots of chf (x). Moreover, ΦB maps the eigenspace of ([f ]B, c) isomor-
phically onto the eigenspace of (f, c).
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Proof. [f(v)]B = [f ]B[v]B. �

A very important topic in base change is invariant subspaces. Recall that
if f : V → V is linear, then a subspace W is f -invariant, or an invariant
subspace of f , if f(W ) =W .

Lemma 1.8.18. Let B = v1, . . . , vn be a basis of V and let f : V → V be
linear. Let W = span(v1, . . . , vk). Then W is f -invariant if and only if [f ]B
has the following form:

(1.8.3) [f ]B =

[
A X
0 B

]
,

where A is k × k, X is k × (n− k), 0 is the (n− k)× k zero-matrix and B
is (n − k) × (n − k). This simply means that the ijth entry of [f ]B is 0 if
i > k and j ≤ k, and we identify the remaining entries in matrix blocks.

In this case, A = [f |W ]B′ with B′ = v1, . . . , vk and f |W : W → W is the
restriction of f to have both domain and codomain W .

Proof. [f ]B has the stated form if and only if f(vj) ∈ span(v1, . . . , vk)
whenever j ≤ k. �

Recall the expansion of the determinant by the jth column. See [17,
Corollary 10.2.12] for a proof.

Lemma 1.8.19. Let A = (aij) be n× n and let j ∈ {1, . . . , n}. Then

detA =
n∑

i=1

(−1)i+jaij detAij

where Aij is the (n − 1) × (n − 1) matrix obtained by deleting the ith row
and jth column of A.

Corollary 1.8.20. Let C =

[
A X
0 B

]
as in (1.8.3). Then

detC = detA detB.

Proof. We argue by induction on k and take the decomposition with re-
spect to the first column. Then the only nonzero entries ci1 are for i ≤ k.
Moreover, when i ≤ k, we have ci1 = ai1. Thus,

detC =
k∑

i=1

(−1)i+1ai1 detCi1.

When k = 1, this is just a11 detB = detA detB and we are done. For k > 1
we get

detC =
k∑

i=1

(−1)i+1ai1 det

[
Ai1 Xi

0 B

]
,
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where Xi is obtained from X by deleting the ith row. Now Ai1 is ℓ × ℓ for
ℓ = k − 1, and inductively we may assume

det

[
Ai1 Xi

0 B

]
= detAi1 detB.

We obtain that

detC =

(
k∑

i=1

(−1)i+1ai1 detAi1

)
detB = detA detB,

by the expansion of detA by its first column. �

In line with our discussion of conjugacy in a group, we make the following
definition.

Definition 1.8.21. The n × n matrices A and B are conjugate if there is
an invertible n× n matrix P with B = PAP−1.

In particular, the matrices of f : V → V with respect to two different
bases are conjugate by Corollary 1.8.10. We also have a converse:

Corollary 1.8.22. Let f : V → V be linear and let B = v1, . . . , vn be a
basis of V . Let A = [f ]B and let B be an n×n matrix conjugate to A. Then
there is a basis B′ of V with B = [f ]B′.

Proof. It suffices to show that P = [I]B′B for a basis B′ of V . By Corol-
lary 1.3.7, the columns of P form a basis B′′ = z1, . . . , zn. of Rn. Let
g : Rn → V be the composite

Rn
T
P−1

//

g

((
Rn

ΦB
// V .

Then, g is an isomorphism, so B′ = g(e1), . . . , g(en) is a basis of V . In
particular, then g = ΦB′ . So Φ−1

B′ = T−1
P−1Φ

−1
B = TPΦ

−1
B , hence

[vi]B′ = Φ−1
B′ (vi)

= TP (Φ
−1
B (vi))

= TP (ei)

= zi �

1.9. Exercises.

1. Let A =

[
a b
c d

]
and let B =

[
d −b
−c a

]
.

(a) Show that AB = BA =

[
ad− bc 0

0 ad− bc

]
.

(b) Deduce that A is invertible if and only if ad− bc 6= 0 and that
if ad− bc 6= 0, then A−1 = 1

ad−bcB.
2. Prove Proposition 1.7.2.
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3. Prove Proposition 1.7.3.
4. Prove Proposition 1.7.4.
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2. Basic Euclidean geometry

2.1. Lines in Rn.

Definition 2.1.1. A line through the origin in Rn is a one-dimensional
subspace:

ℓ = span(v) = {tv : t ∈ R}
for some nonzero vector v ∈ Rn. (Note that a singleton v is linearly inde-
pendent if and only if v 6= 0, as then tv = 0 ⇒ t = 0.) In general, a line in
Rn has the form

ℓ = x+ span(v) = {x+ tv : t ∈ R}
for x, v ∈ Rn with v 6= 0.

Of course, y = x+ tv ⇔ y − x = tv ∈ span(v). Thus:

Lemma 2.1.2. x+ span(v) = {y ∈ Rn : y − x ∈ span(v)}.
We may think of x+ span(v) as the translation of span(v) by x:

Definition 2.1.3. Let x ∈ Rn. Then the translation by x, τx : Rn → Rn is
given by

τx(y) = x+ y

for all y ∈ Rn.

So translation by x is just vector addition with x. This is our first example
of an isometry of Rn (Lemma 2.4.2, below). It enters the picture here, as

x+ span(v) = τx(span(v)).

Some basic properties of translations are:

Lemma 2.1.4.

(1) τx ◦ τy = τx+y for all x, y ∈ Rn. Here, ◦ denotes composition of
functions. Thus, τx ◦ τy = τy ◦ τx.

(2) τ0 = id, where id is the identity function and 0 is the origin.
(3) τ−x is the inverse function for τx, i.e., τx ◦ τ−x = τ−x ◦ τx = id. In

particular, τx is one-to-one and onto.

In any case, any line is a translation of a line through the origin. But
what if we translate span(v) to a different point in x+ span(v)? Do we get
the same line?

Lemma 2.1.5. Let y ∈ x+ span(v). Then x+ span(v) = y + span(v).

Proof. Write y = x+ cv. Then y + tv = x+ (t+ c)v, giving

y + span(v) ⊂ x+ span(v),

while x+ tv = y + (t− c)v, giving
x+ span(v) ⊂ y + span(v). �

We next characterize lines through the origin. This is basic linear algebra.
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Lemma 2.1.6. Let v and w be nonzero elements of Rn. Then the following
conditions are equivalent.

(1) span(v) = span(w).
(2) w = tv for some t 6= 0.
(3) v, w is a linearly dependent set.

Proof. Since v and w are nonzero, (1) ⇔ (2) is immediate. If w = tv with
t 6= 0, then tv − w = 0, so (2) ⇒ (3). If av + bw = 0 with a, b not both 0,
then b 6= 0, as v 6= 0. So w = −a

b
v, so (3) ⇒ (2). �

We obtain the following.

Proposition 2.1.7. Let v and w be nonzero. Then

(2.1.1) x+ span(v) = y + span(w) ⇔ y − x ∈ span(v) = span(w).

In particular, if x 6= y, this gives span(y − x) = span(v) = span(w).

Proof. Clearly, we may assume x 6= y.
Suppose x+span(v) = y+span(w). Since y ∈ y+span(w), y−x ∈ span(v)

by Lemma 2.1.2. By similar reasoning, x − y ∈ span(w). Since x 6= y, this
forces span(y − x) = span(v) = span(w) by Lemma 2.1.6.

Conversely, suppose y−x ∈ span(v) = span(w). Since span(v) = span(w),
we may, without loss of generality, assume v = w (recall our discussion of
translation). y − x ∈ span(v), so y ∈ x + span(v) by Lemma 2.1.2. Now
apply Lemma 2.1.5. �

We now recover one of Euclid’s axioms:

Corollary 2.1.8. Let x 6= y ∈ Rn. Then there is a unique line containing
both points:

←→xy = x+ span(y − x) = {x+ t(y − x) : t ∈ R} = {(1− t)x+ ty : t ∈ R}.

Proof. Since x 6= y, x+span(y−x) is a line, and it certainly contains both x
and y. Conversely, any line containing x must have the form x+span(v) for
some v, and similarly for y. Now apply Proposition 2.1.7 to see span(v) =
span(y − x). �

We wish now to prove Euclid’s parallel postulate. But a word of caution
is in order first: there are two different notions of being parallel, which
coincide in R2 but are different in Rn for n > 2.

Definition 2.1.9.

(1) The lines ℓ = x + span(v) and m = y + span(w) in Rn are parallel,
written ℓ‖m, if span(v) = span(w) (i.e., if they are translates of each
other).

(2) Lines ℓ and m in R2 are two-dimensionally parallel if either ℓ = m
or ℓ ∩m = ∅.
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Note that we allow a line to be parallel to itself. Two-dimensional par-
allelism is the notion used by Euclid and also in classical non-Euclidean
geometry, which is realized by hyperbolic geometry, to be studied below.

But it is the wrong notion to use in R3: the lines
[
1
0
0

]
+ span

([
0
0
1

])
and

[
0
1
0

]
+ span

([
1
0
0

])
do not intersect, but one is a translate of the z-axis and

the other of the x-axis. (Lines in Rn that are not parallel but do not intersect
are called skew lines.)

The definition of parallel makes the parallel postulate immediate.

Theorem 2.1.10 (Parallel postulate). Let ℓ = x+ span(v) be a line in Rn

and let y ∈ Rn. Then there is a unique line through y parallel to ℓ: the line
y + span(v).

Proof. Lemma 2.1.5. �

But what is really meant by the parallel postulate in Euclidean geometry
is that there is a unique line through y two-dimensionally parallel to ℓ. So
it’s important that the two notions of parallelism coincide in R2:

Proposition 2.1.11. Lines ℓ = x + span(v) and m = y + span(w) in R2

are two-dimensionally parallel if and only if they are parallel. Nonparallel
lines in R2 intesect in exactly one point.

Proof. If span(v) = span(w) and ℓ and m have a point of intersection, then
ℓ = m by Lemma 2.1.5.

If ℓ and m have two points of intersection, they must be equal by Corol-
lary 2.1.8. Thus, it suffices to show that if span(v) 6= span(w), then ℓ ∩m
is nonempty. Thus, suppose span(v) 6= span(w). We wish to find z ∈ ℓ∩m,
i.e., z = x+ sv = y + tw, i.e.,

(2.1.2) sv + (−t)w = y − x.
Because span(v) 6= span(w), v, w are linearly independent by Lemma 2.1.6.
Since R2 has dimension 2, they form a basis of R2, so we can solve (2.1.2)
for s and t.

Less abstractly, write v, w, x and y as column vectors, with v = [ v1v2 ] and
w = [ w1

w2 ]. Let A = [ v1 w1
v2 w2 ]. Then (2.1.2) is equivalent to saying that

(2.1.3) A ·
[
s
−t

]
= y − x.

Since the columns of A are linearly independent, A is invertible, and we
may solve (2.1.3) either by Gauss elimination or by multiplying through by
A−1. �

Note that all we have used is that R2 is 2-dimensional. So the above
argument also holds in a plane through the origin in R3.
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Remark 2.1.12. We can extend these same ideas to affine planes in R3.
(An affine plane in Rn is a translate of a plane through the origin, i.e., a
translate of a two-dimensional linear subspace.) Two affine planes in Rn are
defined to be parallel if they are translates of one another. One may then
show that two distinct affine planes in R3 are parallel if and only if they do
not intersect.

There are higher dimensional analogues as well.

We next wish to address the question of which translations preserve a
particular line. The following definition is useful.

Definition 2.1.13. Given a vector 0 6= w ∈ Rn and a line ℓ = x+ span(v)
in Rn we say that w is parallel to ℓ (w‖ℓ) if w ∈ span(v).

Proposition 2.1.14. Let ℓ = x+span(v) be a line in Rn and let 0 6= w ∈ Rn.
Then τw(ℓ) = ℓ if and only if w ‖ ℓ.
Proof. τw(ℓ) = (x + w) + span(v). By Proposition 2.1.7, this is equal to ℓ
if and only if w = (x+ w)− x ∈ span(v). �

We can recover more of Euclid’s standard results.

Definition 2.1.15. Let ℓ and ℓ′ be lines in R2. A transversal to ℓ and ℓ′ is
a line m that intersects both. In the following diagram, α and γ are called
corresponding angles, while α and δ are called alternate interior angles. γ
and δ are vertical angles.

(2.1.4)

ℓ′
m

δ

γ

β

α ℓ

We shall not discuss angle measure until Section 5.4 below. But all we
shall need about it here is that a straight angle has measure π and that
translations preserve angle measure (see Proposition 5.4.9). We use the
unsigned notion of angle measure here.

Proposition 2.1.16. Let ℓ and ℓ′ be parallel lines in R2 and let m be
transversal to them. Then corresponding angles have equal measure, as do
alternate interior angles.

Proof. Alternate interior angles clearly have the same measure, as, in (2.1.4),
the measures of γ and β add up to π, as do the measures of δ and β. Thus,
it suffices to show that the measures of corresponding angles are equal.

Let x = m∩ ℓ and let y = m∩ ℓ′. Then τy−x(ℓ) is the unique line through
y parallel to ℓ, and hence is equal to ℓ′. But (y−x) ‖ m, so τy−x(m) = m. In
particular, τy−x carries α onto γ. Since translations preserve angle measure,
the result follows. �
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Corollary 2.1.17. The measures of the three interior angles of a triangle
in R2 add up to π.

Proof. Let A, B and C be the vertices of the triangle and let α, β and γ
be the interior angles at A, B and C, respectively. Let ℓ′ = τ(B−A)(ℓ). Then
we obtain the following diagram.

(2.1.5)
ℓ′

δ β ǫ

α

ℓ

γ

By Proposition 2.1.16, α and δ have the same measure, as do γ and ǫ. But
the measures of δ, β and ǫ add up to π, as their angle sum forms a straight
line. �

Just as the parallel postulate is false in hyperbolic space, so is the angle
sum theorem.

2.2. Lines in the plane. We should discuss the relationship between our
definition of lines in Rn and the more usual definitions of lines in the plane.
We have defined lines to be tranlates of one-dimensional linear subspaces of
Rn. This coincides with the notion of one-dimensional affine subspaces as
discussed in Section 2.8 below (Definition 2.8.6).

Linear algebra gives another way to construct affine subspaces: by Lem-
ma 1.3.3, the solution set of a linear system Ax = b for an m × n matrix
A is either ∅ or an affine subspace of Rn of dimension n − rankA. With a
little work, one can show that every affine subspace can be obtained in this
way. There are obviously a lot of variables here, and this description of a
particular affine subspace is not unique.

When n = 2 and the subspace is one-dimensional, this latter description
becomes simpler, and the most common description of a line in the plane is
as the solutions of a linear system

(2.2.1) ax+ by = c,

where a and b are not both 0. This is precisely the solutions of Ax = [c]
where A = [a b] and x = [ xy ]. That a and b are not both zero says that
A is a nonzero matrix and hence has rank one (its single row is linearly
independent). The nullspace N(A) obviously contains [−ba ] and hence also
contains its span. By (1.6.2), N(A) has dimension one. Thus,

(2.2.2) N(A) = span ([−ba ]) .

(This could also be verified via Gauss elimination with a lot less theory.)
Lemma 1.3.3 then gives the following:

Proposition 2.2.1. Let v be a particular solution of (2.2.1). Then set of
all solutions is precisely the line

v + span ([−ba ]) .
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Of course, the line [ ab ] + span(e2) is the line x = a and if c 6= 0, the line
[ ab ] + span ([ cd ]) may be written in slope-intercept form as y = d

c
x + bc−ad

c
.

In particular, the slope of the line [ ab ] + span ([ cd ]) is d
c
. The following is

immediate from the slope-intercept form.

Proposition 2.2.2. Two lines in the plane are parallel if and only if they
have the same slope.

The point-slope formula is also important. Here, the line containing [ ab ]
with slope m has point-slope formula

(2.2.3)
y − b
x− a = m.

This may be immediately converted to slope-intercept form by multiplying
both sides by x− a. We obtain

(2.2.4) y = mx+ (b−ma).
This line does have slope m and contains the point [ ab ]. Substituting for x
and y, we see it is the unique such line:

Proposition 2.2.3. y = mx+ (b−ma) is the unique line through [ ab ] with
slope m.

2.3. Inner products and distance. All the geometric properties we study
in this book are based on inner products. The inner product determines dis-
tance and angles. The simplest case is the Euclidean case, where the inner
product is the same at every point. We study that here. More complicated
geometries are obtained by allowing the inner product to vary from point
to point, providing what’s called a Riemannian metric on the space one is
studying. Distance and angle are then obtained by applying this metric to
pairs of tangent vectors at the point in question. That is the defining prop-
erty of the geometry of hyperbolic space, for instance. We shall expand on
this later.

The standard inner product on Rn is called the dot product: for vectors

x =

[ x1
...
xn

]
and y =

[
y1
...
yn

]
in Rn, the dot product 〈x, y〉 is given by

〈x, y〉 = x1y1 + · · ·+ xnyn.

As the reader may easily verify, the dot product satisfies the following prop-
erties:

Lemma 2.3.1. The dot product is:

(1) Bilinear: for x, y, z ∈ Rn and a ∈ R,

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 〈x, ay〉 = a〈x, y〉,(2.3.1)

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 〈ax, y〉 = a〈x, y〉.(2.3.2)
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(2) Symmetric: for x, y ∈ Rn,

(2.3.3) 〈x, y〉 = 〈y, x〉.
(3) Positive-definite:

〈x, x〉 ≥ 0 for all x ∈ Rn,(2.3.4)

〈x, x〉 = 0 if and only if x = 0.(2.3.5)

Property (3) follows because if x =

[ x1
...
xn

]
, then 〈x, x〉 = ∑n

i=1 x
2
i . Since

each x2i is nonnegative,
n∑

i=1

x2i = 0 ⇔ x2i = 0 for all i

⇔ xi = 0 for all i

⇔ x = 0.

Note that (2.3.1) says that if x ∈ Rn then the function fx : Rn → R given
by

fx(y) = 〈x, y〉
is linear. (2.3.2) shows the same for gx(y) = 〈y, x〉.

The positive-definite property allows us to define distance in Rn. First
we define the norm.

Definition 2.3.2. The norm function on Rn is given by

‖x‖ =
√
〈x, x〉.

For x, y ∈ Rn we define the distance from x to y to be

d(x, y) = ‖y − x‖.
We wish to show that distance is well-behaved. The next theorem will

help show this.

Theorem 2.3.3 (Cauchy–Schwarz Inequality). Let x, y ∈ Rn. Then

(2.3.6) |〈x, y〉| ≤ ‖x‖‖y‖ with equality ⇔ x, y are linearly dependent.

Removing the absolute value, 〈x, y〉 = ‖x‖‖y‖ if and only if either x = 0 or
y = sx for some s ≥ 0.

Proof. If either x or y is 0, both sides of the inequality are 0, and the result
follows, so assume x, y 6= 0. Consider the inner product

(2.3.7) 〈tx+ y, tx+ y〉 = t2〈x, x〉+ 2t〈x, y〉+ 〈y, y〉.
as a quadratic in t. By positive-definiteness, the quadratic has a root if and
only if tx+ y = 0 for some t, which may occur if and only if x, y is linearly
dependent. If (2.3.7) has no roots, then the discriminant

4〈x, y〉2 − 4〈x, x〉〈y, y〉 < 0,(2.3.8)
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hence
|〈x, y〉| =

√
〈x, y〉2 <

√
〈x, x〉〈y, y〉 = ‖x‖‖y‖.

If (2.3.7) does have a root it has only one root: the value of t for which
tx = −y. There is only one such t since x 6= 0. For a quadratic with only
one root, the discriminant is 0, and (2.3.6) follows.

In particular for x 6= 0, we have equality in (2.3.6) if and only if y = sx
for some s. In this case, 〈x, y〉 = 〈x, sx〉 = s〈x, x〉, in which case 〈x, y〉 is
nonnegative if and only if s ≥ 0. Thus, 〈x, y〉 = ‖x‖‖y‖ if and only if either
x = 0 or y = sx for s ≥ 0. �

Proposition 2.3.4. The Euclidean norm ‖x‖ =
√
〈x, x〉 satisfies:

(1) ‖x‖ ≥ 0 for all x, with equality if and only if x = 0.
(2) ‖cx‖ = |c|‖x‖ for x ∈ Rn, c ∈ R.
(3) The triangle inequality holds: ‖x + y‖ ≤ ‖x‖ + ‖y‖ with equality if

and only if either x = 0 or y = sx for some s ≥ 0.

Proof. (1) and (2) follow from the positive-definiteness and bilinearity of
the inner product, respectively. (3) follows from the Cauchy–Schwarz in-
equality:

〈x+ y, x+ y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉
≤ 〈x, x〉+ 2|〈x, y〉|+ 〈y, y〉
≤ 〈x, x〉+ 2‖x‖‖y‖+ 〈y, y〉
= (‖x‖+ ‖y‖)2,

with equality if and only if 〈x, y〉 = ‖x‖‖y‖. �

Recall from Corollary 2.1.8 that if x 6= y, the unique line containing x
and y is

←→xy = {(1− t)x+ ty : t ∈ R}.
As t goes from 0 to 1, this traces out the line segment from x to y:

Definition 2.3.5. For x 6= y ∈ Rn, the line segment from x and y is

(2.3.9) xy = {(1− t)x+ ty : 0 ≤ t ≤ 1}.
We shall also record the following here.

Definition 2.3.6. Let x 6= y ∈ Rn. The ray emanating at x and containing
y is

(2.3.10) −→xy = {(1− t)x+ ty : t ≥ 0}.
The following measure of distance is important. Recall d(x, y) = ‖y−x‖.

Lemma 2.3.7. Let z = (1− t)x+ ty for t ∈ R.

(1) If t ≥ 0, then d(x, z) = td(x, y).
(2) If t ≤ 1, then d(z, y) = (1− t)d(x, y).
(3) If 0 ≤ t ≤ 1 then d(x, z) + d(z, y) = d(x, y).
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Proof. (1) is a direct calculation:

d(x, z) = ‖(1− t)x+ ty − x‖ = ‖ − tx+ ty‖ = ‖t(y − x)‖ = |t|‖y − x‖.
The result follows, as we’ve assumed t ≥ 0. The proof of (2) is similar, or
we could deduce it by exchanging x with y and 1− t with t. (3) follows by
adding (1) and (2). �

Proposition 2.3.8. The Euclidean distance function satisfies the following,
for all x, y, z ∈ Rn:

(1) d(x, y) ≥ 0 with equality if and only if x = y.
(2) d(x, y) = d(y, x).
(3) d(x, y) ≤ d(x, z) + d(z, y) with equality if and only if z is on the line

segment xy.

Proof. These follow from the analogous properties in Proposition 2.3.4,
with (3) being the only one requiring a proof. Note that (3) is trivial if
x = y, where the line segment degenerates to the point x. Thus, we assume
x 6= y. Now,

d(x, y) = ‖y − x‖ = ‖(y − z) + (z − x)‖
≤ ‖y − z‖+ ‖z − x‖ = d(z, y) + d(x, z)

with equality if and only if either y − z = 0 or z − x = s(y − z) for some
s ≥ 0. In the former case, z = y. in the latter, we solve for z, getting

z + sz = x+ sy

(1 + s)z = x+ sy

z =
1

1 + s
x+

s

1 + s
y

= (1− t)x+ ty

for t = s
1+s . Since s ≥ 0, both t and 1 − t are nonnegative, and hence

t ∈ [0, 1]. �

Our goal in this part of the book is to study the geometry of Rn, and in
doing so it will be valuable to study its linear subspaces. A subspace inherits
the inner product from Rn, and it will be useful in this context to study it
using abstract tools for studying a vector space with an inner product.

Definition 2.3.9. An inner product space is a vector space over R together
with a function

V × V → R

(v, w) 7→ 〈v, w〉,
satisfying the properties of bilinearity, symmetry and positive-definiteness
given in Lemma 2.3.1 for the dot product.

As was the case for the standard inner product on Rn, we may make the
following definitions.
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Definition 2.3.10. Let V be an inner product space. Then the induced
norm on V is given by setting ‖v‖ =

√
〈v, v〉. The distance function induced

by this norm is given by setting d(v, w) = ‖w − v‖ for v, w ∈ V .

The reader should verify the following.

Theorem 2.3.11. Let V be an inner product space. Then the Cauchy–
Schwarz inequality holds for the inner product and its induced norm, pre-
cisely as stated in Theorem 2.3.3. The norm then satisfies the properties
listed in Proposition 2.3.4. In consequence, the induced distance function
satisfies the three properties listed in Proposition 2.3.8.

Norms are important in analysis, and do not always come from inner
products, so we give a general definition:

Definition 2.3.12. A norm on a vector space V is a function ‖ ‖ : V → R

such that:

(1) ‖ ‖ is positive definite: ‖v‖ ≥ 0 for all v ∈ V , with equality if and
only if v = 0.

(2) ‖cv‖ = |c|‖v‖ for c ∈ R and v ∈ V .
(3) ‖ ‖ satisfies the following triangle inequality: ‖v + w‖ ≤ ‖v‖ + ‖w‖

for all v, w ∈ V .

The distance function induced by this norm is given by setting

d(v, w) = ‖w − v‖
for v, w ∈ V .

Note that the triangle inequality in Definition 2.3.12 is weaker than that
in Proposition 2.3.4. Thus, the following example shows that not every norm
comes from an inner product.

Lemma 2.3.13. There is a norm on R2 given by setting ‖[ ab ]‖ = |a| + |b|.
Since ‖e1 + e1‖ = ‖e1‖+ ‖e2‖ this norm is not induced by an inner product
on R2.

Proof. All three properties in Definition 2.3.12 are immediate from the
properties of the absolute value function on R, which is the norm coming
from the standard inner product on R = R1. �

From now on we will only consider norms induced by inner products.

Remark 2.3.14. There are a number of different inner products we could

put on Rn. For instance, if c1, . . . , cn are positive constants and if x =

[ x1
...
xn

]

and y =

[
y1
...
yn

]
, then

(2.3.11) 〈〈x, y〉〉 = c1x1y1 + · · ·+ cnxnyn
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gives an inner product satisfying the properties in Lemma 2.3.1, and in-
ducing a different notion of distance from the usual one. The set of points
of norm one in this new norm is an ellipsoid. (Ellipsoids are important in
studying multinormal distributions in probability and statistics, and this
new inner product could be a useful tool in such a study.)

We shall see using Gram–Schmidt orthogonalization that any two inner
products on Rn differ by a linear change of variables.

2.4. Euclidean isometries are affine. We will make heavy use of isome-
tries in studying Euclidean, spherical and hyperbolic geometry. Isometries
provide the congruences studied by Euclid.

Definition 2.4.1. An isometry of Rn is a function α : Rn → Rn such that

(2.4.1) d(α(x), α(y)) = d(x, y) for all x, y ∈ Rn,

where d is the standard Euclidean distance function on Rn: d(x, y) = ‖y−x‖,
defined using the standard norm. We write In for the set of all isometries
of Rn.

The subsets X,Y ⊂ Rn are said to be congruent if there is an isometry
α ∈ In with α(X) = Y . We then say that α provides a congruence from X
to Y .

Note that (2.4.1) implies an isometry is one-to-one, as if α(x) = α(y),
then d(α(x), α(y)) = 0. It is customary to also require that α be onto, as
that then shows that In is a group (as discussed below). But we shall see
that (2.4.1) implies that α is onto, and that is one of the goals of this section.

We’ve seen one infinite family of isometries already: the translations.
Recall that for x ∈ Rn, the translation τx : Rn → Rn is defined by

τx(y) = (x+ y).

Lemma 2.4.2. For x ∈ Rn, the translation τx is an isometry.

Proof. For y, z ∈ Rn,

d(τx(y), τx(z)) = ‖τx(y)− τx(z)‖
= ‖(x+ y)− (x+ z)‖ = ‖y − z‖ = d(y, z). �

We shall see that all isometries of Rn are composites of translations and
linear isometries. They following lemma is key.

Lemma 2.4.3. Let α ∈ In and let x, y in Rn. Then

(2.4.2) α((1− t)x+ ty) = (1− t)α(x) + tα(y) for 0 ≤ t ≤ 1.

Proof. We may and shall assume x 6= y. Write z = (1− t)x+ ty. We have

d(α(x), α(z)) + d(α(z), α(y)) = d(x, z) + d(z, y) (α is an isometry)

= d(x, y) (Lemma 2.3.7)

= d(α(x), α(y)).
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By Proposition 2.3.8(3), α(z) is on the line segment from α(x) to α(y), say

α(z) = (1− s)α(x) + sα(y)

for s ∈ [0, 1]. By Lemma 2.3.7(1),

d(α(x), α(z)) = sd(α(x), α(y)) = sd(x, y),

but since α is an isometry,

d(α(x), α(z)) = d(x, z) = td(x, y).

Since x 6= y, s = t and the result follows. �

The following is immediate.

Corollary 2.4.4. Isometries of Rn preserve line segments: if α ∈ In and
x, y ∈ Rn, then

α(xy) = α(x)α(y).

We wish to remove the condition that 0 ≤ t ≤ 1 in Lemma 2.4.3. Some
definitions may be helpful. Note that Lemma 2.4.3 says that an isometry
α : Rn → Rn is an affine function as defined in the following:

Definition 2.4.5.

(1) A subset C ⊂ Rn is convex if xy ⊂ C for all x, y ∈ C.
(2) Let C ⊂ Rn be convex. A function f : C → Rm is affine if

f((1− t)x+ ty) = (1− t)f(x) + tf(y) for all x, y ∈ C and t ∈ [0, 1].

Lemma 2.4.3 may now be restated as follows.

Lemma 2.4.6. Isometries of Rn are affine.

We currently have only one family of isometries:

Corollary 2.4.7. Translations of Rn are affine.

For some examples of convex sets, we have the following.

Lemma 2.4.8. Let −∞ ≤ a < b ≤ ∞. Then the interval (a, b) is convex.
So are [a, b], [a, b) and (a, b] whenever they are defined.

Proof. We treat the case [a, b]. The others are similar. Let r, s ∈ [a, b], and
t ∈ [0, 1]. Then a ≤ r, s ≤ b. Since t and 1− t are nonnegative, we obtain

a = (1− t)a+ ta ≤ (1− t)r + ts ≤ (1− t)b+ tb = b. �

And more examples come as follows:

Example 2.4.9. A linear subspace V ⊂ Rn is convex, as convexity is ex-
pressed in terms of the vector operations. Indeed,

(2.4.3) (1− t)x+ ty ∈ V for all x, y ∈ V and t ∈ R.

Thus, for x 6= y ∈ V , ←→xy ⊂ V .
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Affine functions are very important in piecewise linear topology, or, on a
more basic level, in studying simplicial complexes. In that context, they are
important in developing modern algebraic topology. Lemma 2.4.3 says that
isometries of Rn are affine maps. We wish to show they automatically satisfy
a seemingly stronger property, based on the algebraic closure properties of
Rn:

Proposition 2.4.10. Let f : Rn → Rm be affine. Then

(2.4.4) f((1− t)x+ ty) = (1− t)f(x) + tf(y) for all t ∈ R.

Indeed, if C is convex and if f : C → Rm is affine, then

(2.4.5) f((1− t)x+ ty) = (1− t)f(x) + tf(y)

whenever x, y, (1− t)x+ ty ∈ C.
Proof. Let x, y ∈ C, and again we may assume x 6= y. Let t ∈ R, and
suppose z = (1− t)x+ ty ∈ C. We wish to show f(z) = (1− t)f(x) + tf(y).

We already know this for t ∈ [0, 1]. Assume t > 1. Then we can solve for
y as an element of xz:

y =
t− 1

t
x+

1

t
z

= (1− u)x+ uz,

for u = 1
t
. Since t > 1, u ∈ (0, 1). Since f is affine,

f(y) = (1− u)f(x) + uf(z).

Now solve for f(z):

f(z) =
u− 1

u
f(x) +

1

u
f(y)

= (1− t)f(x) + tf(y),

as t = 1
u
.

Thus, the desired result holds for t > 1, and it suffices to consider t < 0.
Let z = (1− t)x+ ty and let s = 1− t. Then s > 1 and z = (1− s)y + sx.
Thus, exchanging the roles of x and y, the preceding case gives

f(z) = (1− s)f(y) + sf(x)

= tf(y) + (1− t)f(x),
as desired. �

The following is immediate from (2.4.4).

Corollary 2.4.11. Isometries preserve lines: if α : Rn → Rn is an isometry
and x 6= y ∈ Rn, then

(2.4.6) α(←→xy) =←−−−−→α(x)α(y).
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Indeed, if f : Rn → Rm is affine and f(x) 6= f(y), then

(2.4.7) f(←→xy) =←−−−−→f(x)f(y).

2.5. Affine functions and linearity. Not every affine map from Rn to
itself is an isometry, but the affine property will help us understand the
isometries.

Proposition 2.5.1. Let f : Rn → Rm be affine with f(0) = 0. Then f is
linear. More generally, if C ⊂ Rn is convex with 0 ∈ C and if f : C → Rm

is affine with f(0) = 0, then

(1) f(x+ y) = f(x) + f(y) whenever x, y and x+ y lie in C.
(2) f(ax) = af(x) whenever x and ax lie in C, a ∈ R.

In particular, if V ⊂ Rn is a linear subspace and f : V → Rm is affine with
f(0) = 0, then f is linear.

Proof. We first show (2). Here ax = (1− a)0 + ax, so

f(ax) = (1− a)f(0) + af(x)

by (2.4.5). (2) follows, as f(0) = 0.

x+ y•

x •

•

x+y
2

y•

Figure 2.5.1. The parallelogram law

For (1), we use (2) with a = 1
2 , noting that the average,

x+ y

2
=

(
1− 1

2

)
x+

1

2
y,

of x and y lies in C.

1

2
f(x+ y) = f

(
x+ y

2

)
by (2)

= f

((
1− 1

2

)
x+

1

2
y

)

=

(
1− 1

2

)
f(x) +

1

2
f(y) by (2.4.5)
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=
1

2
(f(x) + f(y)).

Now multiply through by 2. �

Corollary 2.5.2. Let f : Rn → Rm be an affine map. Then f = τx ◦ g,
where g : Rn → Rm is linear and τx is the translation of Rm by x = f(0).
Thus,

g(v) = f(v)− f(0)
for all v ∈ Rn.

Proof. Let g = τ−x ◦ f with x = f(0). Since translations are isometries,
they are affine. The composite of affine maps is clearly affine. And

g(0) = τ−x(f(0)) = f(0)− x = 0.

So g is linear. Now τx ◦ g = τx ◦ τ−x ◦ f = f . �

We obtain the following.

Theorem 2.5.3. Let α : Rn → Rn be an isometry. Then α = τx ◦ β, where
β : Rn → Rn is a linear isometry and x = α(0). Thus,

β(v) = α(v)− α(0)
for all v ∈ Rn.

Proof. Just apply the preceding proof and note that τ−x◦α is the composite
of two isometries, and hence an isometry. �

This allows a nice refinement of Corollary 2.4.11.

Corollary 2.5.4. Let α : Rn → Rn be an isometry. Write α = τy ◦ β, with
β a linear isometry. Then the effect of α on lines is given by

(2.5.1) α(x+ span(v)) = α(x) + span(β(v)).

Expressed purely in terms of α this gives

α(x+ span(v)) = α(x) + span(α(v)− α(0)).
Proof. Let ℓ = x+ span(v). We have β(x+ tv) = β(x) + tβ(v), so

β(ℓ) = β(x) + span(β(v)).

Translating this by y, we get

α(ℓ) = (β(x) + y) + span(β(v)) = α(x) + span(β(v)). �

Linear algebra now gives us the missing piece in showing isometries of Rn

are onto and invertible.

Lemma 2.5.5. Let A be an n×n matrix such that the induced linear func-
tion TA : Rn → Rn is an isometry. Then A is invertible and T−1

A = TA−1 is
a linear isometry.

Thus if β : Rn → Rn is a linear isometry, it is bijective and its inverse
function is a linear isometry.
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Proof. By (2.4.1), isometries are one-to-one. So the columns of A are lin-
early independent. Since there are n of them, they form a basis of Rn, hence
A is invertible. Thus TA is onto. But if f : Rn → Rn is an onto isometry,
then its inverse function is clearly an isometry. T−1

A = TA−1 so the inverse
is a linear isometry. �

For a linear isometry β, the inverse function of τx ◦ β is β−1 ◦ τ−x, the
composite of two isometries. We obtain:

Corollary 2.5.6. Every isometry α : Rn → Rn is bijective and its inverse
function is an isometry.

The above argument depended on the fact that isometries are one-to-one.
But linear functions, and hence affine functions, are neither one-to-one nor
onto in general.

We also have the following.

Corollary 2.5.7. The decomposition of Theorem 2.5.3 is unique: if

τx ◦ β = τy ◦ γ
with β, γ linear isometries, then x = y and β = γ.

Proof. By Lemma 2.5.5, the inverse function β−1 of β is a linear isometry.

τ−1
y ◦ τx ◦ β ◦ β−1 = τ−1

y ◦ τy ◦ γ ◦ β−1

τx−y = γ ◦ β−1.

The right-hand side is a linear isometry, so τx−y is linear, and hence preserves
0. But that forces x− y = 0, so x = y, and hence

id = τ0 = γ ◦ β−1,

so γ = β. �

2.6. Affine automorphisms of Rn. There is an useful generalization Eu-
clidean isometries.

Definition 2.6.1. A one-to-one, onto affine map f : Rn → Rn is called an
affine automorphism. We write An for the collection of all affine automor-
phisms of Rn.

Since isometries α : Rn → Rn are bijective (Corollary 2.5.6) and are affine,
we have:

Lemma 2.6.2. Isometries of Rn are affine automorphisms: In ⊂ An.
In general, an automorphism of a given mathematical object is a bijec-

tive function f from that object to itself, such that both f and its inverse
function, f−1 preserve the mathematical structure we are studying. This
idea occurs in many areas of mathematics, e.g., in differential topology,
an automorphism is called a diffeomorphism. We shall study these in the
context of smooth manifolds, below. The simplest instance of this is the
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following: a diffeomorphism f : Rn → Rn is a differentiable bijection whose
inverse function is also differentiable. Thus, the function f : R → R given
by f(x) = x3, while bijective, is not a diffeomorphism, because its inverse
function, f−1(x) = 3

√
x is not differentiable at 0.

Since linear isomorphisms have linear inverses, the following is justified.

Definition 2.6.3. A linear automorphism of a vector space V is a linear
isomorphism g : V → V .

We shall now show that our definition of “affine automorphism” is also
justified, i.e., that the inverse function of a bijective affine map is affine.

Proposition 2.6.4. Let f be an affine automorphism of Rn. Then f can
be written uniquely in the form

(2.6.1) f = τx ◦ g
with g a linear automorphism of Rn (and hence x = f(0)). The inverse
function f−1 is also an affine automorphism.

Proof. The decomposition (2.6.1) comes from Corollary 2.5.2. Since f is
one-to-one, so is g. So g is a linear isomorphism by the first part of the ar-
gument for Lemma 2.5.5. Uniqueness follows precisely as in Corollary 2.5.7.

The collection of affine automorphisms is closed under composition and
contains both the isometries and the linear isomorphisms. So f−1 = g−1◦τ−x
is an affine automorphism. �

2.7. Similarities. Similarities are important in Euclidean geometry.

Definition 2.7.1. A function f : Rn → Rn is a similarity with scaling factor
s > 0 if

(2.7.1) d(f(x), f(y)) = s · d(x, y)
for all x, y ∈ Rn. We write Sn for the set of all similarities of Rn.

Note that an isometry is a similarity with scaling factor 1. Another family
of examples is as follows.

Example 2.7.2. Let 0 6= s ∈ R. Define µs : R
n → Rn by µs(x) = sx. Then

for s > 0, µs is a similarity with scaling factor s, as

(2.7.2) d(µs(x), µs(y)) = ‖sy − sx‖ = s‖y − x‖ = sd(x, y).

Similarly, for s < 0, µs is a similarity with scaling factor |s|.
Since the functions µs, s 6= 0, are linear, they are affine. They are auto-

morphisms with inverse functions µ 1
s
.

The following is immediate.

Lemma 2.7.3. Let f and g be similarities of Rn with scaling factors s and
t, respectively. Then f ◦ g is a similarity with scaling factor st.
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Corollary 2.7.4. Let f : Rn → Rn be a similarity with scaling factor s.
Then f = µs ◦ α for α an isometry of Rn. Thus, f is a bijection, and
f−1 = α−1 ◦ µ 1

s
is a similarity with scaling factor 1

s
. In particular, f is an

affine automorphism of Rn. We have inclusions

(2.7.3) In ⊂ Sn ⊂ An.
Finally, if f = µs ◦ α, then f is linear if and only if α is linear.

Proof. Let f : Rn → Rn be a similarity with scaling factor s. Then

α = µ 1
s
◦ f

is a similarity with scaling factor 1, and hence is an isometry. And f = µs◦α.
The rest follows, as µt is linear and hence affine for all t > 0. �

Corollary 2.7.5. Let f : Rn → Rn be a similarity with scaling factor s.
Then f may be written uniquely in the form

(2.7.4) f = τx ◦ µs ◦ β
With β a linear isometry of Rn. Here x = f(0).

Proof. Since f is an affine automorphism, we may apply Proposition 2.6.4
to obtain

f = τx ◦ g
with x = f(0) and g a linear automorphism of Rn. Since translations are
similarities with scaling factor 1, g is a similarity with scaling factor s. Now
apply Corollary 2.7.4 to g. �

Another consequence of Corollary 2.7.4 is the following.

Corollary 2.7.6. Let f : Rn → Rn be a similarity and let α : Rn → Rn be
an isometry. Then f ◦ α ◦ f−1 is an isometry.

Proof. f ◦ α ◦ f−1 is a similarity with scaling factor s · 1 · 1
s
= 1, hence an

isometry. �

Note the same proof shows the following.

Corollary 2.7.7. Let f, g : Rn → Rn be similarities. Then f ◦ g ◦ f−1 is a
similarity whose scaling factor is the same as that of g.

2.8. Convex and affine hulls; affine subspaces and maps. Since we
are studying convex sets in a very general manner we should dispose of the
following immediately. We shall use it without discussion

Lemma 2.8.1. The intersection of an arbitrary family of convex sets is
convex.

Note that the empty set is convex, and may occur as such an intersection.
We regard this as a pathological example, and wish to study nonempty
convex sets.
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2.8.1. Convex and affine hulls.

Definition 2.8.2. An affine combination of x1, . . . , xk ∈ Rn is a sum

a1x1 + · · ·+ akxk

with
∑k

i=1 ai = 1. A convex combination of x1, . . . , xk ∈ Rn is an affine
combination a1x1+· · ·+akxk in which the coefficients ai are all nonnegative.

The affine hull (or affine span) Aff(x1, . . . , xk) of x1, . . . , xk is the set of
all affine combinations of x1, . . . , xk. The convex hull Conv(x1, . . . , xk) of
x1, . . . , xk is the set of all convex combinations of x1, . . . , xk.

Note that the order of x1, . . . , xk is irrelevant to the definitions of affine
and convex hulls. A convenient alternative notation is given as follows: if
X = {x1, . . . , xk} we may write Aff(X) and Conv(X) for the affine and
convex hulls of x1, . . . , xk, respectively.

This permits the following definition:

Definition 2.8.3. A polytope is the convex hull of some finite set of points
in Rn for some n.1

Polytopes are important in several areas of topology and geometry, in-
cluding applied topics such as linear programming.

Note that for a single point, Aff(x) = Conv(x) = {x}. We have also seen
the affine and convex hulls of two points:

Example 2.8.4. Let x1 6= x2 ∈ Rn and let a1 + a2 = 1. Then a1 = 1− a2,
so

a1x1 + a2x2 = (1− a2)x1 + a2x2 = (1− t)x1 + tx2

for t = a2. Moreover, a1 and a2 are both nonnegative if and only if t ∈ [0, 1].
Thus, Conv(x1, x2) is the line segment x1x2 and Aff(x1, x2) is the line

←−→x1x2.
In particular, for a < b ∈ R, Conv(a, b) = ab is just the closed interval

[a, b], and Aff(a, b) = R.

In particular, we have a solid understanding of the convex and affine
hulls of any two distinct points in Rn. We also have some important explicit
examples of convex and affine hulls of multiple points:

Example 2.8.5. The convex and affine hulls of the canonical basis vectors
of Rn play important roles in multiple mathematical contexts. Since

a1e1 + · · ·+ anen =



a1
...
an


 ,

1Some authors would call this a (compact) convex polyhedron. There are numerous
variations in naming, with the same name being used for different concepts in some cases.
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we obtain

Aff(e1, . . . , en) =







a1
...
an


 :

n∑

i=1

ai = 1





(2.8.1)

= {α ∈ Rn : 〈α, ξ〉 = 1}, ξ = e1 + · · ·+ en.

Equivalently, one can view Aff(e1, . . . , en) as solution space of the matrix
equation

ξT · x = [1].

Here, the transpose, ξT , of ξ is the 1× n matrix [1 · · · 1], i.e., each entry of
the matrix is 1.

The convex hull of e1, . . . , en is known as the standard (n − 1)-simplex
∆n−1:

∆n−1 =







a1
...
an


 :

n∑

i=1

ai = 1 and ai ≥ 0 for i = 1, . . . , n




,(2.8.2)

the set of all α ∈ Rn whose coordinates are all nonnegative with 〈α, ξ〉 = 1.
Such α are sometimes called probability vectors and figure prominently in
the study of Markov chains and other phenomena in probability theory.

The indexing comes from the fact that the topological dimension of ∆n−1

is n− 1. ∆1 is the line segment e1e2, and hence has dimension 1. ∆2 is the
triangle (including its interior) in R3 with vertices e1, e2 and e3 and therefore
is 2-dimensional. ∆3 is a solid (i.e., including its interior) tetrahedron in
R4, and for k > 3, ∆k is a k-dimensional analogue of a tetrahedron. One
can show that topologically, ∆k is homeomorphic to the closed unit disk
Dk = {x ∈ Rk : ‖x‖ ≤ 1}.

Note that the line segment ∆1 has two vertices, the triangle ∆2 has three
1-dimensional edges, and the tetrahedron ∆3 has four 2-dimensional faces.
There is much to study and generalize here.

For x 6= y ∈ Rn, Aff(x, y) = ←→xy is a line in Rn, and hence is a translate
of a one-dimensional linear subspace of Rn. To study affine combinations of
more than two vectors, it is useful to generalize the notion of lines in Rn.

Definition 2.8.6. An affine subspace of Rn is a translate

τx(V ) = {v + x : v ∈ V }
of a linear subspace V of Rn. The dimension of τx(V ) is defined to be the
dimension of V . We shall refer to V as the linear base of H = τx(V ).

Examples 2.8.7. 0 is the only linear subpace of Rn of dimension 0, so the
affine subspaces of dimension 0 are those of the form τx(0) = {x} for x ∈ Rn.

Note that our definition of a line is precisely that of an affine subspace of
dimension 1. A line has the form τx(span(v)), where x, v ∈ Rn with v 6= 0.
But every one-dimensional linear subspace of Rn has the form span(v) for
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some v 6= 0, as every one-dimensional vector space has a basis with one
element.

We shall refer to the two-dimensional affine subspaces of Rn as affine
planes.

The following is a direct generalization of Proposition 2.1.7.

Proposition 2.8.8. The affine subspaces τx(V ) and τy(W ) are equal if and
only if V = W and y − x ∈ V (i.e., y ∈ τx(V )). In particular, τx(V ) is a
linear subspace if and only if x ∈ V . Moreover, if H = τx(V ), then its linear
base V is equal to τ−y(H) for all y ∈ H.

Proof. τx(V ) = τy(W ) if and only if τx−y(V ) = W . Since 0 ∈ V , This
implies x − y ∈ W . Similarly, y − x ∈ V . Since these are subspaces,
x− y ∈ V ∩W , so τx−y(V ) = V and τy−x(W ) =W . �

Corollary 2.8.9. Let H ⊂ K be affine subspaces of Rn. Then dimH ≤
dimK, and if dimH = dimK, then H = K.

Proof. Let x ∈ H, then the linear bases of H and K are τ−x(H) and
τ−x(K), respectively. The result now follows from standard properties of
linear subspaces. �

There is a nice characterization of affine subspaces coming from linear
algebra. We borrow from Chapter 4 for a clean proof.

Proposition 2.8.10. A subset H ⊂ Rn is an affine subspace if and only if
there is a linear map f : Rn → Rm for some m and an element y ∈ Rm such
that H = f−1(y).

Proof. Let f : Rn → Rm be linear and suppose f−1(y) is nonempty. Let
x0 ∈ f−1(y). Then x0 is a “particular solution” of the equation f(x) = y.
The general solution is then given by all the elements of the affine subspace
(ker f) + x0 = τx0(ker f).

Conversely, let H be an affine subspace of Rn and let V its linear base.
Say H = τx(V ). Corollary 4.3.7 constructs a linear map πV ⊥ : Rn → Rn

whose kernel is V . But thenH = π−1
V ⊥(πV ⊥(x)). In fact, since ImπV ⊥ = V ⊥,

we may replace πV ⊥ : Rn → Rn with the composite

Rn
π
V⊥−−−→ V ⊥ ∼=−→ Rm,

where m = n − dimV and the isomorphism V ⊥ ∼=−→ Rm maybe be induced
by an orthonormal basis of V ⊥ (making it an isometry). �

We may identify Aff(x1, . . . , xn) as an affine subspace.

Proposition 2.8.11. Let x1, . . . , xk ∈ Rn. Then

(2.8.3) Aff(x1, . . . , xk) = τx1(span(x2 − x1, . . . , xk − x1)).
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Aff(x1, . . . , xk) is the smallest affine subspace containing x1, . . . , xk: if H
is any affine subspace of Rn containing x1, . . . , xk, then

Aff(x1, . . . , xk) ⊂ H.
In particular, affine subspaces are closed under taking affine combinations of
their elements (but not linear combinations, unless they are actually linear
subspaces).

In consequence, if x 6= y ∈ H, then ←→xy = {(1− t)x+ ty : t ∈ R} ⊂ H.

Proof. Let H be an affine subspace containing x1, . . . , xk ∈ H. Then the
linear subspace V = τ−x1(H) contains x2 − x1, . . . , xk − x1, and hence con-
tains their span. It suffices to verify (2.8.3)

Now,

τx1(a2(x2 − x1) + · · ·+ ak(xk − x1))

= x1 + (a2x2 + · · ·+ akxk)−
(

k∑

i=2

ai

)
x1

=

(
1−

k∑

i=2

ai

)
x1 + a2x2 + · · ·+ akxk.

Since the coefficients now add up to 1, this shows

τx1(span(x2 − x1, . . . , xk − x1)) ⊂ Aff(x1, . . . , xk).

Conversely, if
∑k

i=1 a1 = 1, then

τ−x(a1x1 + · · ·+ akxk) = (a1x1 + · · ·+ akxk)− (a1x1 + · · ·+ akx1)

= a2(x2 − x1) + · · ·+ ak(xk − x1),
so τ−x1(Aff(x1, . . . , xn)) ⊂ span(x2 − x1, . . . , xk − x1). �

Convex hulls have an analogous property:

Proposition 2.8.12. Let x1, . . . , xk ∈ Rn. Then Conv(x1, . . . , xk) is the
smallest convex subset of Rn containing x1, . . . , xk.

Proof. We first show Conv(x1, . . . , xk) is convex. Let x =
∑k

i=1 aixi and

y =
∑k

i=1 bixi be convex combinations of x1, . . . , xk and let t ∈ [0, 1]. Then

(1− t)x+ ty = [(1− t)a1 + tb1]x1 + · · ·+ [(1− t)ak + tbk]xk.

Since ai, bi ∈ [0,∞), each coefficient (1− t)ai+ tbi ∈ [0,∞) by Lemma 2.4.8.
These coefficients add up to 1 because

k∑

i=1

[(1− t)ai + tbi] = (1− t)
(

k∑

i=1

ai

)
+ t

(
k∑

i=1

bi

)
= (1− t)1 + t · 1 = 1.

Now let C be a convex subset of Rn containing x1, . . . , xk. We show by
induction on k that Conv(x1, . . . , xk) ⊂ C. When k = 2, this is just the
definition of convexity. Assume now that x = a1x1 + · · ·+ akxk is a convex
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combination of x1, . . . , xk and that the result is true for fewer than k points.
We wish to show x ∈ C. If ak = 1, x = xk, and x ∈ C by hypothesis.
Otherwise,

(2.8.4) x = (1− ak)
(

a1
1− ak

x1 + · · ·+
ak−1

1− ak
xk−1

)
+ akxk.

By the case k = 2, it suffices to show that a1
1−akx1 + · · · +

ak−1

1−akxk−1 ∈ C.
But this follows from the induction hypothesis as

∑k−1
i=1 ai = 1− ak. �

The following is now immediate from Proposition 2.4.10.

Corollary 2.8.13. Affine subspaces are convex. Moreover, if H is an affine
subspace of Rn and if f : H → Rm is affine, then

(2.8.5) f((1− t)x+ ty) = (1− t)f(x) + tf(y) for all x, y ∈ H and t ∈ R.

2.8.2. Joins. The proof of Proposition 2.8.12 motivates a useful notion we
will call the linear join. In some contexts this is simply called the join, but
there is a related, but different, notion we shall call the topological (or exter-
nal) join that coincides with this one in special circumstances. Topological
joins are important in both homotopy theory and geometry.

Definition 2.8.14. Let X and Y be subsets of Rn. The linear join, X · Y ,
of X and Y is the union of the line segments from points in X to points in
Y

X · Y = {(1− t)x+ ty : x ∈ X, y ∈ Y, t ∈ [0, 1]}(2.8.6)

=
⋃

(x,y)∈X×Y
xy.

If Y = {y}, a single point, we refer to X · {y} as the linear cone on X, with
cone point y.

Note that the line segments in a join can intersect. For instance, for any
distinct points x, y ∈ Rn, the point 1

2(x+ y) lies on both of the segments xy

and 0(x+ y) of {0, x} · {y, x+ y}:
x+ y•

x •

•

x+y
2

y•

This ambiguity is the primary distinction between linear joins and topolog-
ical joins of compact subsets.
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In the displayed example, the reader familiar with graph theory should
note that this point of intersection at 1

2(x + y) marks the only distinc-
tion between the join {0, x} · {y, x + y} and the complete bipartite graph
K({0, x}, {y, x+ y}) with vertex sets {0, x} and {y, x+ y}.

A first application of joins to geometry is the following.

Proposition 2.8.15. Let x1, . . . , xk ∈ Rn. Then the convex hull of x1, . . . , xk
is the linear join of Conv(x1, . . . , xk−1) with {xk}:
(2.8.7) Conv(x1, . . . , xk) = Conv(x1, . . . , xk−1) · {xk}.
More generally, if X = {x1, . . . , xk} and if X = S ∪ T , then
(2.8.8) Conv(X) = Conv(S) · Conv(T ).
Note we are not assuming that S ∩ T = ∅.
Proof. (2.8.7) follows from (2.8.8), so we prove the latter. Note that we
may make the following identification:

(2.8.9) Conv(S) = {a1x1 + · · ·+ akxk : ai = 0 if xi 6∈ S} ⊂ Conv(X),

with an analogous statement for Conv(T ). (Implicitly, here and below, we

assume this is a convex combination, i.e.,
∑k

i=1 si = 1 and xi ≥ 0 for all
i.) By Proposition 2.8.12, Conv(X) is convex, so Conv(S) · Conv(T ) ⊂
Conv(X).

To show the opposite inclusion, let y = a1x1+ · · ·+akxk ∈ Conv(X). Let

bi =

{
ai if xi ∈ S
0 otherwise,

ci =

{
ai if xi ∈ X r S

0 otherwise.

Let t =
∑k

i=1 ci. If t = 1, then y ∈ Conv(T ) ⊂ Conv(S) ·Conv(T ), and we’re
done. If t = 0, then y ∈ Conv(S), and we’re done. Otherwise t ∈ (0, 1), and
we set

z =
b1

1− tx1 + · · ·+
bk

1− txk ∈ Conv(S),

w =
c1
t
x1 + · · ·+

ck
t
xk ∈ Conv(T ),

and we have y = (1− t)z + tw ∈ Conv(S) · Conv(T ). �

Corollary 2.8.16. Let C and D be nonempty convex subsets of Rn. Then
their linear join C ·D is convex.

Proof. Let a, b ∈ C ·D. Then a ∈ xy = Conv(x, y) for x ∈ C and y ∈ D,
and b ∈ Conv z, w for z ∈ C and w ∈ D.

Then any convex combination of a and b lies in

Conv(x, y) · Conv(z, w) = Conv(x, y, z, w)

= Conv(x, z) · Conv(y, w) ⊂ C ·D. �
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2.8.3. Affine maps. Up until now, affine maps have been considered as
taking value in Rm. It is valuable to allow their codomain to be an affine
subspace of Rm.2

Definition 2.8.17. Let C ⊂ Rn be convex and let K ⊂ Rm be an affine

subspace. A map f : C → K is affine if the composite C
f−→ K ⊂ Rm is

affine. This simply means f((1− t)x+ ty) = (1− t)f(x)+ tf(y) for x, y ∈ C
and t ∈ [0, 1].

If H is an affine subspace of Rn, then an affine isomorphism f : H → K
is a bijective affine map. An affine isomorphism f : H → H is called an
affine automorphism of H.

The following makes it easy to study affine maps.

Lemma 2.8.18. Let H ⊂ Rn and K ⊂ Rm be affine subspaces and let
x ∈ H. Let V and W be the linear bases of H and K, respectively. Then a
map f : H → K is affine if and only if the composite

V
τx−→ H

f−→ K
τ−f(x)−−−−→W

is linear. In particular, we get a commutative diagram

(2.8.10) H
f

// K

V

τx ∼=

OO

g
// W ,

τf(x) ∼=

OO

where g = τ−f(x) ◦ f ◦ τx. Here, the vertical maps are bijective translations,
and the map g is linear if and only if f is affine.

Proof. Translations are isometries and therefore are affine (a direct proof
that translations are affine is easy). Composites of affine maps are affine.
Linear maps are obviously affine. By Proposition 2.5.1, an affine map be-
tween vector spaces that takes 0 to 0 is linear. So the result follows. �

Thus, we can deduce the properties of affine functions from those of trans-
lations and linear maps. Since the vertical maps in (2.8.10) are bijective, we
obtain the following.

Corollary 2.8.19. Let f : H → K be an affine isomorphism. Then the
linear map g : V → W between their linear bases in (2.8.10) is a linear
isomorphism. Thus, H and K have the same dimension and the inverse
map f−1 : K → H is affine.

The following very simple consequence of Lemma 2.8.18 bears mention.

2If we write f : X → Y , then Y is the codomain of f . If Z ⊂ Y and if the image of
f is contained in Z, we may regard f as being a map from X to Z. Writing f : X → Z

amounts to restricting the codomain of f to Z.
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Corollary 2.8.20. Let H ⊂ Rn and K ⊂ Rm be affine subspaces and let
f : H → K be affine. Then f(H) is an affine subspace of Rm (and hence of
K).

Proof. For x ∈ H, f(H) = τf(x)(g(V )). �

Affine functions are very useful for studying convex and affine hulls:

Proposition 2.8.21. Let f : H → K be an affine function between affine
subspaces of Rn and Rm, respectively. Then f respects affine combinations
of points in H, i.e., if x1, . . . , xk ∈ H and

∑n
i=1 ai = 1, then

(2.8.11) f(a1x1 + · · ·+ akxk) = a1f(x1) + · · ·+ akf(xk).

Thus,

f(Aff(x1, . . . , xk)) = Aff(f(x1), . . . , f(xk)),

f(Conv(x1, . . . , xk)) = Conv(f(x1), . . . , f(xk)).

Proof. (2.8.11) is certainly true if f is linear, so by Lemma 2.8.18, it suffices

to assume f is a translation, say f = τx. Since
∑k

i=1 ai = 1,

τx(a1x1 + · · ·+ akxk) = (a1x1 + · · ·+ akxk) + (a1x+ · · ·+ akx)

= a1(x1 + x) + · · ·+ ak(xk + x)

= a1τx(x1) + · · ·+ akτx(xk). �

We immediately obtain the following useful tool for analyzing convex and
affine hulls of finite sets.

Corollary 2.8.22. Let f : Rk → Rn be the linear map with f(ei) = xi for
i = 1, . . . , k. Then

f(Aff(e1, . . . , ek)) = Aff(x1, . . . , xk),

f(∆k−1) = Conv(x1, . . . , xk).

In particular, the convex hull of k points in Rn is the image of the standard
(k − 1)-simplex under a linear (hence affine) map from Rk to Rn.

We also obtain the following.

Corollary 2.8.23. Let X = {x1, . . . , xk} ⊂ Rn and let H = Aff(X). Let
K be an affine subspace of Rm. Then the affine maps from H to K are
determined by their restriction to X, i.e., if f and g are affine maps from
H to K that agree on X, then f = g.

Proof. The elements of H all have the form
∑k

i=1 aixi with
∑k

i=1 ai = 1.

By (2.8.11), if f : H → K is affine, then f(
∑k

i=1 aixi) is determined by
f(x1), . . . , f(xk). �

Proposition 2.8.21 allows us to analyze products of convex sets.
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Definition 2.8.24. We identify Rn+k with Rn × Rk, writing [ xy ] for the
generic element of Rn+k with x ∈ Rn and y ∈ Rk. With this convention,
given C ⊂ Rn and D ⊂ Rk, we write

(2.8.12) C ×D = {[ xy ] : x ∈ C, y ∈ D} ⊂ Rn+k.

The reader may easily check that if C and D are convex, so is C ×D.

The follwing is useful.

Proposition 2.8.25. Let X = {x1, . . . , xℓ} ⊂ Rn and Y = {y1, . . . , ym} ⊂
Rk. Then

Conv(X)× Conv(Y ) = Conv(X × Y )(2.8.13)

= Conv
([ xi

yj

]
: 1 ≤ i ≤ ℓ, 1 ≤ j ≤ m

)
.

Proof. We claim that given convex combinations
∑ℓ

i=1 aixi ∈ Conv(X) and∑m
j=1 bjyj ∈ Conv(Y ),

(2.8.14)

[∑ℓ
i=1 aixi∑m
j=1 bjyj

]
=

∑

i=1,...,ℓ
j=1,...,m

aibj
[ xi
yj

]
.

Note that this claim is sufficient to prove the proposition, as

ℓ∑

i=1

m∑

j=1

aibj =

ℓ∑

i=1

ai




m∑

j=1

bj


 =

ℓ∑

i=1

ai = 1,

so the claim implies Conv(X) × Conv(Y ) ⊂ Conv(X × Y ). The opposite
inclusion is immediate from Proposition 2.8.12, as Conv(X) × Conv(Y ) is
convex.

To prove the claim, note that for z ∈ Rk,
[∑ℓ

i=1 aixi

z

]
= τ[ 0z ]

(
ℓ∑

i=1

ai [
xi
0 ]

)
=

ℓ∑

i=1

aiτ[ 0z ]
([ xi0 ]) =

ℓ∑

i=1

ai [
xi
z ]

by Proposition 2.8.21. Similarly, for w ∈ Rn,
[

w∑m
j=1 bjyj

]
=

m∑

j=1

bj
[ w
yj

]
.

The result follows. �

A useful special case of this is for Y = {a, b} ⊂ R with a < b so that
Conv(Y ) = [a, b]. E.g., if Y = {0, 1}, Conv(Y ) is the unit interval I = [0, 1].

Corollary 2.8.26. Let X = {x1, . . . , xk} ⊂ Rn and let a < b ∈ R. Then

(2.8.15) Conv(X)× [a, b] = Conv ([ x1a ] , . . . , [ xka ] , [ x1b ] , . . . , [
xk
b ]) .
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We may iterate this to study Conv(X)× I2 = Conv(X)× I × I ⊂ Rn+2,
or more generally Conv(X)×Ik ⊂ Rn+k, where Ik is the product of k copies
of the unit interval I = [0, 1]. Or, starting with X = {0, 1}, we may study
the convex subset In ⊂ Rn. These polytopes are important enough to merit
a name.

Definition 2.8.27. The standard n-cube In ⊂ Rn is

[0, 1]n = {a1e1 + · · ·+ anen : a1, . . . , an ∈ [0, 1]}.
We obtain the following from Corollary 2.8.26 by induction on n.

Corollary 2.8.28. Let S ⊂ Rn be the set of vectors whose coordinates are
all either 0 or 1:

(2.8.16) S =
{
ǫ1e1 + · · ·+ ǫnen : ǫ1, . . . , ǫn ∈ {0, 1}

}
.

Then In = Conv(S).
Moreover, every element of S is a sum of canonical basis vectors: for v ∈

S, the coordinates of v are all either 0 or 1. Let ii . . . , ik be the coordinates
of v that are nonzero, with i1 < · · · < ik. Then v = ei1 + · · · + eik (if none
of the coordinates of v are nonzero, then k = 0 and v is the origin). Thus,

(2.8.17) S =
{
ei1 + · · ·+ eik : 1 ≤ i1 < · · · < ik ≤ n and 0 ≤ k ≤ n

}
.

An induction argument like that given in Proposition 2.8.12 allows us to
strengthen Proposition 2.8.21.

Proposition 2.8.29. Let C ⊂ Rk be convex and let f : C → Rn be affine.
Then f respects convex combinations of points in C: if x1, . . . , xk ∈ C and∑k

i=1 ai = 1 with ai ≥ 0 for all i, then

(2.8.18) f(a1x1 + · · ·+ akxk) = a1f(x1) + · · ·+ akf(xk).

Thus, f(Conv(x1, . . . , xk)) = Conv(f(x1), . . . , f(xk)).

Proof. We argue by induction on k, with the case k = 2 being immediate
from the definition of convex functions. For the inductive step we apply f
to (2.8.4). �

It is easy to extend affine mappings on ∆k−1 to affine mappings on
Aff(e1, . . . , ek).

Lemma 2.8.30. Let f : ∆k−1 → Rn be an affine map. Then f extends to
a unique affine map

f̂ : Aff(e1, . . . , ek)→ Aff(f(e1), . . . , f(ek))

and to a unique linear map f̂ : Rk → Rn. Indeed, these extensions are
specified by

(2.8.19) f̂(a1e1 + · · ·+ akek) = a1f(e1) + · · ·+ akf(ek).
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Proof. (2.8.19) specifies the unique linear map from Rk to Rm that agrees
with f on the vertices of ∆k−1. It extends f by Proposition 2.8.29. Its
restriction to Aff(e1, . . . , ek) is affine because the inclusion of Aff(e1, . . . , ek)
is affine and the composite of affine maps is affine. This is the unique affine
mapping on Aff(e1, . . . , ek) extending f by Proposition 2.8.21. �

2.8.4. Affine and convex hulls of infinite sets. Not every convex set
is the convex hull of a finite set of points. For instance, the closed unit disk

Dn = {x ∈ Rn : ‖x‖ ≤ 1}
is convex, but cannot be expressed as the convex hull of a finite set because
of the curvature of its boundary. The convex hull of a finite set always has
vertices, edges, faces, etc., and there are no such phenomena for the disk.

For this and similar examples, it is useful to generalize the notion of
convex hull. We shall see that Dn is the convex hull of the infinite set Sn−1,
the unit sphere in Rn:

Sn−1 = {x ∈ Rn : ‖x‖ = 1}.
Definition 2.8.31. Let ∅ 6= X ⊂ Rn. The convex hull Conv(X) is the
union of the convex hulls of the finite subsets of X. The affine hull Aff(X)
is the union of the affine hulls of the finite subsets of X.3

Proposition 2.8.32.

(1) Conv(X) is the smallest convex set containing X.
(2) For any x ∈ X,

Aff(X) = τx(span({y − x : y ∈ X}))
is the smallest affine subspace containing X.

Proof. By Proposition 2.8.12, Conv(X) is contained in any convex subset
containing X, so (1) follows if we show Conv(X) to be convex. Let x, y ∈
Conv(X). Then there are finite subsets S and T of X such that x ∈ Conv(S)
and y ∈ Conv(T ). But then xy ⊂ Conv(S ∪ T ) ⊂ Conv(X) by Proposi-
tion 2.8.12.

(2) follows from Proposition 2.8.11 and the behavior of spans. Note that
since Rn is finite-dimensional there is a finite set {y1, . . . , yk} ⊂ X such that

span({y − x : y ∈ X}) = span(y1 − x, . . . , yk − x). �

The minimality conditions in Proposition 2.8.32 give us the following.
Note that Conv(X) ⊂ Aff(X) by (1), as affine subspaces are convex.

Corollary 2.8.33. If ∅ 6= X ⊂ Y ⊂ Conv(X), then Conv(X) = Conv(Y ).
In particular, Conv(Conv(X)) = Conv(X).

If X ⊂ Y ⊂ Aff(X), then Aff(X) = Aff(Y ). In particular,

Aff(Aff(X)) = Aff(Conv(X)) = Aff(X).

3While it makes sense to define Conv(∅) to be ∅, Aff(∅) makes no sense, and ∅ does
not have a well-defined dimension.
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These notions allow us to define the dimension of an arbitrary convex set.

Definition 2.8.34. Let ∅ 6= C ⊂ Rn be convex. We define the dimension
of C to be the dimension (as an affine subspace) of its affine hull.

Remark 2.8.35. Note that if the convex set C contains at least two points,
say x and y, then Aff(C) contains the affine line ←→xy = Aff(x, y), and hence
dimC ≥ 1. So a convex set is zero-dimensional if and only if it consists of a
single point.

2.8.5. Convex subsets of lines.

Examples 2.8.36. There are some obvious examples of convex subsets of
R:

(1) closed intervals [a, b] for a < b ∈ R;
(2) half-open intervals (a, b] or [a, b) with a, b ∈ R;
(3) open intervals (a, b) with a, b ∈ R;
(4) open intervals (−∞, a) or (a,∞) for a ∈ R;
(5) half-open intervals (−∞, a] or [a,∞) for ∈ R;
(6) R;
(7) single points {a};
(8) ∅.

The reader should check that these types, as listed, are preserved by the
affine automorphisms of R.

Proposition 2.8.37. The convex subsets of R are exactly the ones listed in
Examples 2.8.36.

Proof. Disposing of the trivial cases, we assume C ⊂ R is a convex subset
with at least two points and unequal to all of R.

Suppose C bounded above and let b = sup(C).

Case 1. b ∈ C. Then for any a ∈ C, the line segment [a, b] ⊂ C. If C
is not bounded below, C must equal (−∞, b]. If C is bounded below, let
a = inf(C). If a ∈ C, then C = [a, b]. If a 6∈ C, then if 0 < ǫ < b− a, there
is a c ∈ C with a < c < a + ǫ. Since [c, b] ⊂ C and ǫ may be arbitrarily
small, C = (a, b].

Case 2. b 6∈ C. For ǫ > 0, there exists c ∈ C with b − ǫ < c < b. By the
argument just given, C ∩ (−∞, c] must have the form (a, c] for a ∈ [−∞, c)
or the form [a, c] for a ∈ (−∞, c] Since this is true for any ǫ, C must have
the form (a, b) for a ∈ [−∞, b) or the form [a, b) for a ∈ (−∞, b).

If C is not bounded above, then for any c ∈ C, [c,∞) ⊂ C. Since C 6= R,
it is bounded below, and is covered by a reversal of the above arguments. �

Since affine maps carry convex sets to convex sets and since every line in
Rn is affinely isomorphic to R this allows us to classify all the convex subsets
of an arbitrary line in Rn. We start with some notation.
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Notation 2.8.38. Let x, y ∈ Rn. We shall use [x, y] as an alternate notation
for the line segment xy. When x 6= y we shall also write

(2.8.20) [x, y) = {(1− t)x+ ty : t ∈ [0, 1)} = xy r {y}.
We call this a half-open segment. We shall also write

(2.8.21) (x, y) = {(1− t)x+ ty : t ∈ (0, 1)} = xy r {x, y},
and call it an open segment.

Corollary 2.8.39. Let ℓ be a line in Rn. Then any convex subset of ℓ has
one of the following forms:

(1) a line segment xy = [x, y] for x 6= y ∈ ℓ;
(2) a half-open segment [x, y) for x 6= y ∈ ℓ;
(3) an open segment (x, y) for x 6= y ∈ ℓ;
(4) an “open ray” −→xy r {x} for x 6= y ∈ ℓ;
(5) a ray −→xy for x 6= y ∈ ℓ;
(6) ℓ;
(7) a single point x ∈ ℓ;
(8) ∅.

2.9. Affine independence, interiors and faces.

2.9.1. Affine independence.

Definition 2.9.1. x1, . . . , xk ∈ Rn are affinely independent if

a1x1 + · · ·+ akxk = 0 with
k∑

i=1

ai = 0 ⇒ ai = 0 for all i.

The following is immediate from the definitions.

Lemma 2.9.2. If x1, . . . , xk are linearly independent, then they are affinely
independent. In particular, e1, . . . , en are affinely independent.

The converse to Lemma 2.9.2 is false. Indeed, 0, 1 ∈ R are affinely inde-
pendent in R, but are not linearly independent.

Affine independence is important in understanding convex hulls of finite
sets.

Proposition 2.9.3. Let x1, . . . , xk ∈ Rn and let f : Rk → Rn be the linear
map with f(ei) = xi for i = 1, . . . , k. Then the diagram (2.8.10) becomes

(2.9.1) Aff(e1, . . . , ek)
f

// Aff(x1, . . . , xk)

span(e2 − e1, . . . , ek − e1)
f

//

τe1 ∼=
OO

span(x2 − x1, . . . , xk − x1),

τx1 ∼=
OO

We deduce that the following conditions are equivalent:

(1) x1, . . . , xk are affinely independent.
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(2) f restricts to a bijection from Aff(e1, . . . , ek) onto Aff(x1, . . . , xk).
(3) x2 − x1, . . . , xk − x1 are linearly independent.
(4) Aff(x1, . . . , xk) has dimension k − 1 as an affine subspace.

Proof. The horizontal maps in (2.8.10) are both f because f : Rk → Rn is
linear: f ◦ τe1 = τf(e1) ◦ f .

(1)⇒(2). If
∑k

i=1 aixi =
∑k

i=1 bixi with
∑k

i=1 ai =
∑k

i=1 bi = 1, then∑k
i=1(ai − bi)xi = 0, so ai − bi = 0 for all i by (1).
(2)⇒(3). The assumption (2) is that the upper horizontal map in (2.9.1)

is a bijection. Since the vertcal maps are also bijective, the lower horizontal
map is not only bijective but also linear, and hence a linear isomorphism.
Since e2 − e1, . . . , ek − e1 are linearly independent and f(ei − e1) = xi − x1,
(3) follows.

(3)⇔(4). span(x2−x1, . . . , xk−x1) has dimension k−1 if and only if the
k − 1 generators x2 − x1, . . . , xk − x1 are linearly independent.

(3)⇒(1). If a1x1+ · · ·+ akxk = 0 with
∑k

i=1 ai = 0, then
∑k

i=2 ai = −a1,
so

k∑

i=2

ai(xi − x1) =
k∑

i=2

aixi −
(

k∑

i=2

ai

)
x1 =

k∑

i=1

aixi = 0,

so ai = 0 for i ≥ 2 by linear independence, which then forces a1 = 0. �

Example 2.9.4. Any two distinct points x, y ∈ Rn are affinely independent
as Aff(x, y) is a line (Example 2.8.4), and hence is 1-dimensional.

Definition 2.9.5. A set of points in Rn is collinear if there is a line con-
taining all of them.

Proposition 2.9.6. Three distinct points x, y, z ∈ Rn are affinely indepen-
dent if and only if they are not collinear.

Proof. If x, y and z are contained in the line ℓ, then Aff(x, y.z) ⊂ ℓ, so
dimAff(x, y, z) ≤ 1. So they cannot be affinely independent.

Conversely, if they are affinely dependent, we can find a, b, c ∈ R, not all
0, with ax+ by+ cz = 0 and a+ b+ c = 0. Suppose c 6= 0. then −c = a+ b,
and

ax+ by = −cz = (a+ b)z,

so

z =
a

a+ b
x+

b

a+ b
y ∈ ←→xy. �

Example 2.9.7. 0, e1, . . . , en ∈ Rn are affinely independent: if

a0 · 0 + a1e1 + · · ·+ anen = 0

with
∑n

i=0 ai = 0, then a1 = · · · = an = 0 by the linear independence of
e1, . . . , en, and hence a0 = −

∑n
i=1 ai is 0 as well. Note that

Aff(0, e1, . . . , en) = Rn.
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Example 2.9.8. Let I2 be the unit square in R2. By Corollary 2.8.28,

I2 = Conv (0, [ 01 ] , [
1
0 ] , [

1
1 ]) = Conv(0, e1, e2, e1 + e2) :

[ 01 ] [ 11 ]

[ 00 ] [ 10 ]

As shown in Example 2.9.7,

Aff (0, [ 01 ] , [
1
0 ] , [

1
1 ]) = R2

is 2-dimensional (and hence I2 is 2-dimensional), so these vertices cannot
be affinely independent. By Proposition 2.9.6, any three of the vertices are
affinely independent.

The same reasoning shows the following.

Example 2.9.9. By Corollary 2.8.28, the n-cube In ⊂ Rn is the convex hull
of the 2n points whose coordinates are all equal to either 0 or 1. As these
points include the affinely independent set 0, e1, . . . , en, their affine span is
Rn, and hence the n-cube in n-dimensional. But for n > 1, 2n > n + 1, so
the 2n points in question cannot be affinely independent.

Proposition 2.9.3 gives us a useful calculating tool. Recall that the di-
mension of a convex set C is set equal to the dimension of its affine hull (as
an affine subspace).

Corollary 2.9.10. Let ∅ 6= C ⊂ Rn be convex. Then the dimension of C is
the largest integer k such that C contains an affinely independent set with
k + 1 points. Moreover, if C = Conv(x1, . . . , xm), we may take those k + 1
points to be in {x1, . . . , xm}.
Proof. Let H = Aff(C) and let V be its linear base. Let x ∈ C. By
Proposition 2.8.32, V = span({y − x : y ∈ C}), so if k = dimV , then a
maximal linear independent subset of V has the form y1 − x, . . . , yk − x for
y1, . . . , yk ∈ C. By Proposition 2.9.3, x, y1, . . . , yk are affinely independent.

Conversely, if x, y1, . . . , yk ∈ C are affinely independent, then

Aff(x, y1, . . . , yk) ⊂ Aff(C)

has dimension k, so dimC ≥ k.
Finally, if C = Conv(x1, . . . , xm), then take x = x1. We have

V = span(x2 − x1, . . . , xm − x1).
Apply the previous argument. �

Indeed, since affine subspaces are convex, we obtain the following.
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Corollary 2.9.11. Let H be an affine subspace of Rn. Then the dimension
of H is the largest k for which there exists an affinely independent subset of
H with k + 1 elements. Moreover, if x1, . . . , xk+1 ∈ H are affinely indepen-
dent, then H = Aff(x1, . . . , xk+1).

Proof. For the last statement, note that if x1, . . . , xk+1 ∈ H are affinely
independent, then Aff(x1, . . . , xk+1) is a k-dimensional affine subspace of
H, and therefore must be all of H by Corollary 2.8.9. �

The results above assemble to something useful:

Proposition 2.9.12. Let H be an affine subspace of Rn with dimH = k.
Let x1, . . . , xk+1 ∈ H be affinely independent. Then:

(1) H = Aff(x1, . . . , xk+1).
(2) If K is an affine subspace of Rm, then the affine maps from H to K

are determined by their restriction to {x1, . . . , xk+1}.
(3) Any function f : {x1, . . . , xk+1} → K extends to an affine map

f̄ : H → K.
(4) If K also has dimension k, then f̄ is an affine isomorphism if and

only if f(x1), . . . , f(xk+1) are affinely independent.

Thus, there is a one-to-one correspondence between the affine maps from H
to K and the functions from {x1, . . . , xk+1} to K.4

Proof. (1) is just Corollary 2.9.11, and (2) follows from (1) by Corol-
lary 2.8.23.

To prove (3), let g : Rk+1 → Rn with g(ei) = xi for i = 1, . . . , k + 1. By
Proposition 2.9.3, g restricts to an affine isomorphism

g1 : Aff(e1, . . . , ek+1)
∼=−→ Aff(x1, . . . , xk+1).

Let h : Rk+1 → Rm be the linear map with h(ei) = f(xi) for i = 1, . . . , k+1.
Since Aff(f(x1), . . . , f(xk+1)) ⊂ K, h restricts to an affine map

h1 : Aff(e1, . . . , ek+1)→ K.

We have a diagram

Aff(x1, . . . , xk+1) Aff(e1, . . . , ek+1)
g1

∼=
oo

h1 // K

Since g1 is an affine isomorphism, its inverse function g−1
1 is affine. We

obtain an affine map

f̄ = h1 ◦ g−1
1 : Aff(x1, . . . , xk+1)→ K

that agrees with f on each xi.
For (4), note that f̄ is an affine isomorphism if and only if h1 is. But if

dimK = k, this is equivalent to f(x1), . . . , f(xk+1) being affinely indepen-
dent. �

4In the language of category theory this saysH is the free affine space on {x1, . . . , xk+1}.



68 MARK STEINBERGER

Since isometries are affine maps, we obtain the following.

Corollary 2.9.13. Let x, y and z be noncollinear points in R2 then any
two isometries of R2 that agree on x, y and z must be equal.

Proof. x, y, z are affinely independent by Proposition 2.9.6. Now apply
Proposition 2.9.12 with H = K = R2. �

Of course, not every affine isomorphism from R2 to R2 is an isometry, so
not every function f : {x, y, z} → R2 with f(x), f(y), f(z) noncollinear ex-
tends to an isometry. Indeed, at minimum, f : {x, y, z} → {f(x), f(y), f(z)}
must be distance-preserving.

2.9.2. Interiors. We can now use Proposition 2.9.3 to show that dimC
gives a reasonable notion for the topological dimension of C. We first need
to develop a little elementary topology.

Definition 2.9.14. Let ∅ 6= C be a convex subset of Rn. Let H = Aff(C)
and let V be its linear base. For ǫ > 0, let Bǫ(0, V ) be the open ball of
radius epsilon in V :

Bǫ(0, V ) = {v ∈ V : ‖v‖ < ǫ}.
We say that x is an interior point of C, written x ∈ Int(C), if there exists
ǫ > 0 such that

(2.9.2) x+Bǫ(0, V ) ⊂ C.
Here,

(2.9.3) x+Bǫ(0, V ) = τx(Bǫ(0, V )) = {x+ v : v ∈ Bǫ(0, V )}.
We define the boundary of C by ∂C = Cr Int(C). This is mainly of interest
when C is what’s known as a closed subspace of Aff(C).

Example 2.9.15. If C = {x}, then Aff(C) = {x}, and its linear base is the
trivial subspace 0. Bǫ(0, 0) = {0} for all ǫ > 0, so Int({x}) = {x}.

The following elementary observation shows that Int(C) coincides with
what’s known as the topological interior of C when viewed as a subspace of
Aff(C).

Lemma 2.9.16. Let ∅ 6= C be a convex subset of Rn. Let H = Aff(C) and
let V be its linear base. Then for x ∈ H,

(2.9.4) τx(Bǫ(0, V )) = Bǫ(x,H) = {y ∈ H : d(x, y) < ǫ}.
Thus, x ∈ Int(C) if and only if Bǫ(x,H) ⊂ C for some ǫ > 0.

Proof. τx : V → Aff(C) is a bijective isometry. �

In some cases, every point of C is an interior point. For instance, Bǫ(0, V )
is convex and is equal to its own interior (by the triangle inequality). Here,
Aff(Bǫ(0, V )) = V . Similarly, a linear or affine subspace is its own interior.

Another important example is the standard simplex ∆n−1.
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Lemma 2.9.17. Let n ≥ 1. The linear base of Aff(e1, . . . , en) is

(2.9.5) V =

{
a1e1 + · · ·+ anen :

n∑

i=1

ai = 0

}
= {x ∈ Rn : 〈x, ξ〉 = 0},

where ξ = e1+ · · ·+ en. As V is the nullspace of the 1×n matrix ξT , it has
dimension n− 1, as does ∆n−1.

The interior of ∆n−1 is the set of points in ∆n−1 whose coordinates are
all positive:
(2.9.6)

Int(∆n−1) =

{
a1e1 + · · ·+ anen :

n∑

i=1

ai = 1 and ai > 0 for all i

}
.

Proof. Aff(e1, . . . , en) = {x ∈ Rn : 〈x, ξ〉 = 1}. By the bilinearity of the
inner product, if 〈x, ξ〉 = 1, then 〈y, ξ〉 = 1 if and only if y = x + v with
v ∈ V , i.e., Aff(e1, . . . , en) = τx(V ). So V is the linear base, as claimed.

Let

U =

{
a1e1 + · · ·+ anen :

n∑

i=1

ai = 1 and ai > 0 for all i

}

and let x = x1e1 + · · · + xnen ∈ U . Let ǫ = min(x1, . . . , xn) and let v =
a1e1 + · · · + anen ∈ Bǫ(0, V ). Then |ai| < ǫ for all i, so the coordinates of
x+v are all positive. Since x+v ∈ Aff(e1, . . . , en), it must lie in U ⊂ ∆n−1.
Thus, U ⊂ Int(∆n−1).

Conversely, if x = x1e1 + · · · + xnen ∈ ∆n−1 with xi = 0, let j 6= i. Let
vδ = −δei + δej ∈ Aff(e1, . . . , en). Then x + vδ ∈ Rn r∆n−1 for all δ > 0.
Since

‖vδ‖ = δ‖ej − ei‖ = δ
√
2

may be made arbitrarily small, x ∈ ∂∆n−1. �

The same reasoning gives us the following.

Lemma 2.9.18. The interior of the unit n-cube In = [0, 1]n ⊂ Rn is (0, 1)n,
i.e., the set of points in Rn whose coordinates are all positive and less than
1.

As shown in Example 2.9.9, Aff(In) = Rn, so its linear base is Rn as well.

Proof. Let x = a1e1 + · · ·+ anen ∈ (0, 1)n. Let

ǫ = min(a1, . . . , an, 1− a1, . . . , 1− an).
Then as in Lemma 2.9.17 we see x+Bǫ(0,R

n) ⊂ In. The remainder of the
argument is analogous to that in Lemma 2.9.17. �

Let f : Rk → Rn be the linear map with f(ei) = xi for i = 1, . . . , k.
Proposition 2.9.3 shows that if x1, . . . , xk are affinely independent, then
f : ∆k−1 → Conv(x1, . . . , xn) is bijective. Lemma 2.9.17 allows us to prove
the converse.
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Proposition 2.9.19. Let f : Rk → Rn be the linear map with f(ei) = xi
for i = 1, . . . , k. Then x1, . . . , xk are affinely independent if and only if
f : ∆k−1 → Conv(x1, . . . , xn) is bijective.

Proof. The maps

f : Aff(e1, . . . , ek)→ Aff(x1, . . . , xk)(2.9.7)

f : Conv(e1, . . . , ek)→ Conv(x1, . . . , xk)(2.9.8)

are always onto, essentially by definition of the affine and convex hulls. Thus,
Proposition 2.9.3 shows that x1, . . . , xk are affinely independent if and only
if (2.9.7) is injective. Since ∆k−1 ⊂ Aff(e1, . . . , ek), injectivity of (2.9.7)
implies injectivity of (2.9.8), so it suffices to show the converse.

So suppose (2.9.7) is not injective. The diagram (2.9.1) in the proof of
Proposition 2.9.3 then shows that the linear the map

(2.9.9) f : span(e2 − e1, . . . , ek − e1)→ span(x2 − x1, . . . , xk − x1)
of linear bases is not injective. In particular, we can find a nonzero vector
v in the linear base, V , of Aff(e1, . . . , ek) with f(v) = 0. By Lemma 2.9.17,
x = e1+···+ek

k
∈ Int(∆)k−1, and hence x+ tv ∈ ∆k−1 for t sufficiently small.

But f(x+ tv) = f(x) + tf(v) = f(x), so (2.9.8) is not injective. �

We can use Lemma 2.9.17 to characterize the interior of an arbitrary
polytope. The following lemma is equivalent to the statement that linear
maps are continuous. We include it for simplicity.

Lemma 2.9.20. Let f : Rn → Rm be linear. Then for each ǫ > 0, there
exists δ > 0 such that ‖f(x)‖ < ǫ whenever ‖x‖ < δ.

Proof. Let c = min(‖f(e1)‖, . . . , ‖f(en)‖) and let x = x1e1 + · · · + xnen.
Then

‖f(x)‖ = ‖x1f(e1) + · · ·+ xnf(en)‖ ≤ |x1|‖f(e1)‖+ · · ·+ |xn|‖f(en)‖
≤ c(|x1|+ · · ·+ |xn|) ≤ cn‖x‖,

as ‖x‖ =
√
x21 + · · ·+ x2n ≥

√
x2i = |xi|. Take δ = ǫ

cn
. �

A key step in the above is that ‖x1e1+ · · ·+xnen‖ =
√
x21 + · · ·+ x2n. We

shall apply the above lemma with Rn replaced by a linear subspace of Rk for
some k. We can do so by borrowing ideas from Chapter 4, which introduces
the idea of an orthonomal basis. Here, v1, . . . , vn is an orthonormal basis of
V ⊂ Rk if

(2.9.10) 〈vi, vj〉 =
{
1 if i = j

0 if i 6= j

and span(v1, . . . , vn) = V . By Corollary 4.2.3, every subspace of Rk has
such a basis. By Corollary 4.1.6, if v1, . . . , vn is orthonormal, then

‖x1v1 + · · ·+ xnvn‖ =
√
x21 + · · ·+ x2n.
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We obtain the following.

Corollary 2.9.21. Let V be a linear subspace of Rn and let f : V → Rm

be linear. Then for each ǫ > 0, there exists δ > 0 such that ‖f(x)‖ < ǫ
whenever ‖x‖ < δ.

And this, in turn, implies that affine maps satisfy a property called uni-
form continuity:

Corollary 2.9.22. Let f : H → K be an affine map between affine subspaces
of Rn and Rm, respectively. Then f is uniformly continuous, meaning that
for each ǫ > 0, there exists δ > 0 such that f(Bδ(x,H)) ⊂ Bǫ(f(x),K) for
all x ∈ H (i.e., δ does not depend on x).

Proof. This is a direct consequence of Corollary 2.9.21 and (2.8.10). �

As an easy corollary, we have the following.

Corollary 2.9.23. Let C = Conv(x1, . . . , xk) be a polytope in Rn and let
x ∈ Int(C). Let f : Rk → Rn be the linear map with f(ei) = xi for i =
1, . . . , k. Then for each i = 1, . . . , k, there exists

yi = a1e1 + · · ·+ akek ∈ ∆k−1

such that f(yi) = x and ai > 0.

Proof. Let H = Aff(x1, . . . , xk). Choose ǫ > 0 such that Bǫ(x,H) ⊂ C.
Define γ : R → Rn by γ(t) = (1 − t)x + txi. Then γ is affine. Since
x, xi ∈ H, the image of γ lies H. By uniform continuity, there exists δ such
that γ(Bδ(0,R)) ⊂ Bǫ(x,H). So for 0 < δ′ < δ, γ(−δ′) lies in the convex set
C. Moreover, x is easily seen to lie in the interior of the line segment from
γ(−δ′) to xi, i.e., x = (1 − s)γ(−δ′) + sxi for s ∈ (0, 1). Write γ(−δ′) as a
convex combination

γ(−δ′) = b1x1 + · · ·+ bkxk,

i.e., γ(−δ′) = f(z) for z = b1e1 + · · ·+ bkek. But then x is the image under
f of (1− s)z + sei, whose i-th coordinate, (1− s)bi + s, is positive. �

We can now prove the following.

Proposition 2.9.24. Let C = Conv(x1, . . . , xk) be a polytope in Rn. Let
f : Rk → Rn be the linear map with f(ei) = xi for i = 1, . . . , k. Then
f(Int(∆k−1)) = Int(C).

Proof. We first show f(Int(∆k−1)) ⊂ Int(C). Let H = Aff(x1, . . . , xk) and
let W be its linear base.

W = span(x2 − x1, . . . , xk − x1).
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V = span(e2 − e1, . . . , ek − e1) is the linear base for Aff(e1, . . . , ek) ⊂ Rk.
Let x ∈ Int(∆k−1). Since f is linear, we obtain the following as in (2.9.1)

Aff(e1, . . . , ek)
f

// Aff(x1, . . . , xk)

V
f

//

τx ∼=
OO

W .

τf(x) ∼=
OO

Since x ∈ Int(∆k−1), there exists ǫ > 0 such that τx(Bǫ(0, V )) ⊂ ∆k−1,
and hence τf(x)(f(Bǫ(0, V ))) ⊂ C. It suffices to show there exists δ > 0 such
that Bδ(0,W ) ⊂ f(Bǫ(0, V )).

By Corollary 1.5.8, since x2 − x1, . . . , xk − x1 generate W , we can find a
subset, xi1 − x1, . . . , xir − x1 that is a basis of W . Let

V1 = span(ei1 − e1, . . . , eir − e1) ⊂ V.
Then f |V1 : V1 →W is an isomorphism. Write g :W → V for the composite

W
(f |V1 )−1

−−−−−→ V1 ⊂ V.
Then f ◦ g is the identity map on W . Since g is linear, Corollary 2.9.21
provides a δ > 0 with g(Bδ(0,W )) ⊂ Bǫ(0, V ). But then

Bδ(0,W ) = f ◦ g(Bδ(0,W )) ⊂ f(Bǫ(0, V )).

We now show f : Int(∆k−1) → Int(C) is onto. Let x ∈ Int(C). By
Corollary 2.9.23, we can choose yi ∈ ∆k−1, i = 1, . . . , k, such that f(yi) = x
and the i-th coordinate of yi is positive. But then x = f(y) for y = y1+···+yk

k
,

a convex combination of y1, . . . , yk, and hence an element of ∆k−1. Since
the coordinates of y are all positive, the result follows. �

Corollary 2.9.25. Let C = Conv(x1, . . . , xk) ⊂ Rn. Then x ∈ Int(C) if
and only if it can be written as a convex combination x = a1x1 + · · ·+ akxk
with ai > 0 for all i.

Corollary 2.9.26. Let C = Conv(x1, . . . , xk) be a polytope in Rn. Let K
be an affine subspace of Rm and let f : C → K be affine. Then

f(Int(C)) = Int(f(C)).

Proof. Let g : Rk → Rn be the linear map taking ei to xi for all i. Let
h : Rk → Rm be the linear map taking ei to f(xi) for all i. Then f ◦ g|∆k−1

agrees with h|∆k−1 on vertices, so the two are equal. The result follows from
Proposition 2.9.24. �

Corollary 2.9.27. Let ∅ 6= C ⊂ Rn be convex. Then Int(C) is nonempty.
Indeed, if dimC = k and if x1, . . . , xk+1 ∈ C are algebraically independent,
then Int(Conv(x1, . . . , xk+1)) ⊂ Int(C).
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Proof. First note that by Corollary 2.9.10, we can find an affinely inde-
pendent subset x1, . . . , xk+1 ∈ C. By construction, Aff(x1, . . . , xk+1) =
Aff(C), and the two have the same linear base, W . We have shown that
Int(Conv(x1, . . . , xk+1)) is nonempty, and for x ∈ Int(Conv(x1, . . . , xk+1)),
we have

τx(Bǫ(0,W )) ⊂ Conv(x1, . . . , xk+1) ⊂ C
for some ǫ > 0, so x ∈ Int(C). �

We now have the tools we need to prove the following.

Theorem 2.9.28. Let ∅ 6= C ⊂ Rn be convex and let K be an affine subspace
of Rm. Let f : C → K be affine. Then f extends to a unique affine map
f̄ : Aff(C)→ K.

Proof. Let k = dimC and let x1, . . . , xk+1 ∈ C be affinely independent.
Then Aff(C) = Aff(x1, . . . , xk+1), so any affine map f̄ : Aff(C) → K is
determined by its restriction to {x1, . . . , xk+1}, and hence by its restriction
to C. Thus, it suffices to show that f extends to an affine map on Aff(C).

Let x ∈ Int(C) and let V be the linear base of Aff(C). Then D = τ−1
x (C)

is a convex subset of V containing 0 = τx−1(x) in its interior. Let g be the
composite

D
τx−→ C

f−→ K
τ−f(x)−−−−→W,

where W is the linear base of K. Then g is affine. Since g(0) = 0, any
extension of g to an affine map ḡ : V → W is linear. If ḡ is such an
extension, then f̄ = τf(x) ◦ ḡ ◦ τx is the desired extension of f to Aff(C).

Thus, we may assume that Aff(C) = V , K =W , 0 ∈ Int(C) and f(0) = 0.
We shall show that f then extends to a linear map f̄ : V → W . By
assumption, there exists ǫ > 0 such that Bǫ(0, V ) ⊂ C. Making ǫ slightly
smaller, we may assume that the closed ball B̄ǫ(0, V ) ⊂ C, where

B̄ǫ(0, V ) = {x ∈ V : ‖x‖ ≤ ǫ}.
We shall again use the fact that any linear subspace of Rn admits an

orthonormal basis. Let v1, . . . , vk be an orthonormal basis of V , so that

〈vi, vj〉 = δij =

{
0 for i 6= j,

1 for i = j.

Then

‖a1v1 + · · ·+ akvk‖ =
√
a21 + · · ·+ a2k.

In particular, if |ai| ≤ δ for all i, then ‖a1v1 + · · · + akvk‖ ≤ δ
√
k. Let

wi =
ǫ√
k
vi. Then B = w1, . . . , wk is a basis of V . Let

IB = {a1w1 + · · ·+ akwk : |ai| ≤ 1 for all i.}
Note that we have inclusions

(2.9.11) B̄ ǫ√
k
(0, V ) ⊂ IB ⊂ B̄ǫ(0, V ) ⊂ C.
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In particular, f is defined and affine on the convex set IB, with f(0) = 0.
By Proposition 2.5.1 and induction on k,

(2.9.12) f(a1w1 + · · ·+ akwk) = a1f(w1) + · · ·+ akf(wk)

whenever |ai| ≤ 1 for all i.

In other words, f agrees on IB with the unique linear map f̄ : V → W
agreeing with f on the basis B. It suffices to show that f̄ agrees with f on
an arbitrary point y ∈ C.

Let y0 = sy for s = ǫ

‖y‖
√
k
. Then y0 ∈ B̄ ǫ√

k
(0, V ) ⊂ IB, so f̄(y0) = f(y0).

By Proposition 2.5.1,

f(y) = f

(
1

s
y0

)
=

1

s
f(y0) =

1

s
f̄(y0) = f̄

(
1

s
y0

)
= f̄(y). �

Remark 2.9.29. In discussing affine maps whose domain is an affine sub-
space, Equation (2.4.4) would actually be the definition of choice for an
affine map. It is the property one uses.

One would be tempted to use that definition for an affine map on an affine
subspace, and then give a different name to maps whose domain is a convex
set that satisfy f((1 − t)x + ty) = (1 − t)f(x) + tf(y) for t ∈ [0, 1]. The
name “convex map” has a certain appeal, but that is commonly used for a
different concept.

Thanks to Theorem 2.9.28, there is no need for a different name, though
we had to work to develop the tools to show it.

2.9.3. Faces. Points not in the interior of Conv(x1, . . . , xk) lie in faces.
The following notion will help use develop their theory.

Definition 2.9.30. Let X = {x1, . . . , xk} ⊂ Rn and let x ∈ Conv(X).
Define the support S(x) ⊂ X of x in X to be the set of all xi ∈ X for which
there exists a convex combination x = a1x1 + · · ·+ akxk with ai > 0.

The following lemma is useful.

Lemma 2.9.31. Let X = {x1, . . . , xk} ⊂ Rn and let x ∈ Conv(X). Let
y 6= z ∈ Conv(X) and suppose x lies in the interior, (y, z) of the line
segment yz. Then the supports of these elements behave as follows:

(2.9.13) S(y) ∪ S(z) ⊂ S(x).
Proof. x = (1− t)y + tz for some t ∈ (0, 1), so if

y = a1x1 + · · ·+ akxk,

z = b1x1 + · · ·+ bkxk,

Then
x = ((1− t)a1 + tb1)x1 + · · ·+ ((1− t)ak + tbk)xk.

If at least one of ai and bi is positive, so is ((1 − t)ai + tbi), and the result
follows. �
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The following generalizes some of the arguments above and is useful in
understanding the points in

∂ Conv(X) = Conv(X)r Int(Conv(X)).

Lemma 2.9.32.

(1) Let X = {x1, . . . , xk} ⊂ Rn and let x ∈ Conv(X). Then x lies in the
interior of the convex hull of its support in X:

(2.9.14) x ∈ Int(Conv(S(x))).

(2) Let y ∈ Conv(X) ∩Aff(S(x)). Then S(y) ⊂ S(x), so by (1),

(2.9.15) y ∈ Int(Conv(S(y))) ⊂ Conv(S(y)) ⊂ Conv(S(x)).

Thus,

(2.9.16) Conv(S(x)) = Conv(X) ∩Aff(S(x)).

Proof. (1) Let f : Rk → Rn be the linear map taking ei to xi for all i. Let
S(x) = {xi1 , . . . , xir}. Note that for z ∈ ∆k−1 with f(z) = x, z must lie
in Conv(ei1 , . . . , eir). By hypothesis, we may choose zj ∈ Conv(ei1 , . . . , eir),
for j = 1, . . . , r, such that

zj = cj1ei1 + · · ·+ cjreir

with f(zj) = x and cjj > 0. then z = z1+···+zr
r

∈ Int(Conv(ei1 , . . . , eir))
with f(z) = x, so x ∈ Int(Conv(S(x))), as claimed.

(2) By (1) if H = Aff(S(x)), there exists ǫ > 0 such that

Bǫ(x,H) ⊂ Conv(S(x)).

Let y ∈ Conv(X)∩Aff(S(x)). Since x, y ∈ H = Aff(S(x)), we have an affine
map γ : R→ H via

γ(t) = (1− t)x+ ty.

By Corollary 2.9.22, there exists δ > 0 such that

γ(−δ) ∈ Bǫ(x,H) ⊂ Conv(S(x)).

Then x is in the interior of the line segment joining y to γ(−δ), i.e.,
x = (1− s)y + sγ(−δ) for s ∈ (0, 1).

By Lemma 2.9.31, S(y) ⊂ S(x). �

Corollary 2.9.33. Let X = {x1, . . . , xk} ⊂ Rn and let x ∈ Conv(X). Then
x ∈ Int(Conv(X)) if and only if its support S(x) is equal to X.

Proof. If S(x) = X, then x ∈ Int(Conv(X)) by Lemma 2.9.32. The con-
verse follows from Corollary 2.9.25. �

We shall see that the subsets Conv(S(x)) comprise the faces of Conv(X),
but it is useful to have a definition of faces that doesn’t depend on X:

Definition 2.9.34. Let X = {x1, . . . , xk} ⊂ Rn. A face of Conv(X) is a
nonempty subset F ⊂ Conv(X) such that
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(1) F = H ∩ Conv(X) for some affine subspace H ⊂ Rn.
(2) Conv(X)r F is convex.

A face of dimension zero is called a vertex. A face of dimension 1 is called
an edge. We write V(Conv(X)) for the set of vertices of X and E(Conv(X))
for the set of edges.

Remarks 2.9.35. Note that Conv(x1, . . . , xk) is itself a face. The other
faces are called proper faces. Since both H and Conv(X) are convex, F is
the intersection of two convex subsets of Rn, and hence is convex. So it has
a dimension.

Note that if F is a face, then (1) is satisfied by taking H = Aff(F ). That
could have been built into the definition, but it can be easier to verify that a
given subset is a face without having to determine its affine hull in advance.

A vertex consists of a single point v ∈ Conv(X), as any convex set con-
taining two distinct points has dimension at least 1. Any point v ∈ Conv(X)
automatically staisfies (1) with H = Aff(v) = {v}, so the sole criterion for
v to be a vertex is that Conv(X)r {v} is convex.

Note that for X = {x1, . . . , xn} it is not necessarily true that every ele-
ment ofX is a vertex. For instance, ifX = {0, 1, 2} ⊂ R, then Conv(X)r{1}
is not convex, so 1 is not a vertex.

The following is basic, but useful.

Lemma 2.9.36. Let F1 ⊂ F2 be faces of the polytope C = Conv(X) with
F1 6= F2. Then dimF1 < dimF2.

Proof. We have Fi = Aff(Fi) ∩ C, and Aff(F1) ⊂ Aff(F2). If these two
affine subspaces are equal, then F1 = F2. Otherwise,

dimAff(F1) < dimAff(F2). �

Lemma 2.9.37. Let X = {x1, . . . , xk} ⊂ Rn and let F1 and F2 be faces of
Conv(X) with F1 ∩ F2 6= ∅. Then F1 ∩ F2 is a face as well.

Proof. If H1 and H2 are affine subspaces and x ∈ H1 ∩H2, then

τ−x(H1 ∩H2) = τ−x(H1) ∩ τ−x(H2)

is a linear subspace, so H1 ∩H2 is affine. It is easy to see that

(Aff(F1) ∩Aff(F2)) ∩ Conv(X) = F1 ∩ F2.

Thus, it suffices to show Conv(X)r(F1∩F2) is convex. The most compli-
cated verification is showing that if x ∈ F1rF2 and y ∈ F2rF1, then xy =
[x, y] is disjoint from F1∩F2. We argue by contradiction. Suppose z ∈ (x, y)
lies in F1 ∩ F2. Since x, y, z are collinear and distinct, Aff(x, z) = Aff(x, y).
But Aff(x, z) lines in Aff(F1) and hence y ∈ Aff(F1)∩Conv(X) = F1, giving
the desired contradition. �

Lemma 2.9.38. X = {x1, . . . , xk} ⊂ Rn and let x ∈ Conv(X). Then there
is at most one face of Conv(X) containing x in its interior.
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Proof. Suppose x lies in the interior of both F1 and F2. Let ǫ > 0 be
small enough that both Bǫ(x,Aff(F1)) and Bǫ(x,Aff(F2)) are contained in
Conv(X). But then

Bǫ(x,Aff(F1 ∩ F2)) ⊂ Bǫ(x,Aff(F1)) ∩Bǫ(x,Aff(F2)) ⊂ Conv(X),

so x lies in the interior of F1∩F2, i.e., we may as well assume F1 is contained
in F2 and that Bǫ(x,Aff(F2)) ⊂ Conv(X).

Let Vi be the linear base for Aff(Fi) for i = 1, 2. Then V1 is a proper
subspace of V2 and there exists a vector v ∈ V2 r V1 of norm less than ǫ.
but then x− v and x+ v lie in Conv(X)rF1, but the line segment between
them does not. �

We obtain the following.

Proposition 2.9.39. Let X = {x1, . . . , xk} ⊂ Rn and let x ∈ Conv(X). Let
S(x) be its support in X. Then Conv(S(x)) is the unique face of Conv(X)
containing x in its interior. Since every face of Conv(X) has nonempty
interior, the subsets Conv(S(x)) with x ∈ X are the only faces of Conv(X).

Proof. Lemma 2.9.32 shows that

Aff(S(x)) ∩ Conv(X) = Conv(S(x)).

To show Conv(S(x)) is a face, it suffices to show that Conv(X)rConv(S(x))
is convex. So let y, z ∈ Conv(X)r Conv(S(x)), and suppose w ∈ yz lies in
Conv(S(x)). By Lemma 2.9.31, S(y) ∪ S(z) ⊂ S(w). But S(w) ⊂ S(x) by
Lemma 2.9.32, so y, z ∈ Conv(S(x)), contradicting the existence of such a
w.

By Lemma 2.9.32, x is in the interior of Conv(S(x)), and the result follows
from Lemma 2.9.38. �

Corollary 2.9.40. Let X = {x1, . . . , xk} ⊂ Rn. Then any vertex of Conv(X)
lies in X. Moreover, v ∈ X is a vertex if and only if v does not lie in
Conv(X r {v}), i.e., there is no subset S ⊂ X not containing v such that
v ∈ Conv(S).

Proof. A vertex is a 0-dimensional face. By Proposition 2.9.39. every face
of Conv(X) has the form Conv(S) for some S ⊂ X. If S has more than one
element, then Conv(S) has dimension at least one. Moreover, Conv(x) =
{x}, so v must lie in X, and S(v) = {v}. But for v ∈ X, S(v) 6= {v} if and
only if v is a convex combination of the points in X r {v}. �

We obtain a unique and unabiguous way to describe a polytope.

Proposition 2.9.41. Let X = {x1, . . . , xk} ⊂ Rn and let C = Conv(X).
Write V = V(C), the set of vertices of C. (Recall from Corollary 2.9.40 that
V ⊂ X.) Then

(2.9.17) C = Conv(V).
Since vertices depend only on C and not on the choice of a convex generating
set X for C, this gives a unique description of a polytope.
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Proof. If x ∈ X r V, then x ∈ Conv(X r {x}) by Corollary 2.9.40, so

X ⊂ Conv(X r {x}).
Since Conv(X) is the smallest convex set containing X,

Conv(X) ⊂ Conv(X r {x}),
hence Conv(X) = Conv(X r {x}). The result follows by induction on
|X r V|. �

Notation 2.9.42. We shall feel free to discuss a polytope P without prior
reference to a set of convex generators X (i.e., a finite set X with P =
Conv(X)). In particular, our preferred set of convex generators will be its
set of vertices V = V(P).

Let x ∈ P. The support of x, S(x), is taken to be its support in V: if
V = {v1, . . . , vk}, then S(x) ⊂ V is the set of all vi such that x may be
written as a convex combination x = a1v1 + · · ·+ akvk with ai > 0.

By Proposition 2.9.39, Conv(S(x)) is the unique face of P containing x
in its interior. We call Conv(S(x)) the carrier of x (in P).

Recall the boundary of P is ∂P = P r Int(P). Proposition 2.9.39 gives
us the following:

Corollary 2.9.43. Let P be a polytope. Then the boundary of P is the
union of its proper faces. In particular, every element of ∂P lies in a proper
face of P.

Proof. A point x is in the interior of P if and only if its carrier is P.
Otherwise, it is in the boundary and its carrier is a proper face of P. �

Another consequence of Proposition 2.9.39 is the following.

Corollary 2.9.44. Let P be a polytope with vertex set V. Then any face F
of P is the convex hull of the vertices that lie in it:

(2.9.18) F = Conv(F ∩ V).
Proof. F is the convex hull of some subset S ⊂ V , all of whose elements
must lie in F , i.e., S ⊂ F ∩ V . But we claim S must be equal to F ∩ V .

Suppose to the contrary that there exists v ∈ F ∩ V r S. Then

v ∈ F = Conv(S) ⊂ Conv(V r {v}),
contradicting that v is a vertex. �

The following is valuable in identifying carriers.

Proposition 2.9.45. Let P be a polytope and let v, w ∈ P. Let x and y be
interior points of the segment [v, w]. Then x and y have the same carrier.
The carriers of v and w are contained in it.

Proof. Carriers are determined by supports. We may as well assume that
x ∈ (v, y) and y ∈ (x,w). By Lemma 2.9.31, S(y) ⊂ S(x) and vice versa,
and both supports contain S(v) and S(w). �
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The following addresses the situation where one polytope is contained
in another as a subset of Rn, with no known relationship between their
structure. One application we will find for it is in showing which subsets
T ⊂ V(P) are vertex sets for faces of P. We shall use it in our analysis of
the Platonic solids.

Corollary 2.9.46. Let T be a finite subset of the polytope P and let Q =
Conv(T ). Then every element of Int(Q) has the same carrier, F ⊂ P in P
(i.e., F is a face of P and Int(Q) ⊂ Int(F )). Moreover, Q ⊂ F . (We shall
hereby refer to F as the carrier of Q in P.)

Proof. Let x 6= y ∈ Int(Q) and define γ : R → Aff(Q) ⊂ Aff(P) by
γ(t) = (1 − t)x + ty. Since x and y are in the interior of Q, we can find
δ > 0, such that γ([−δ, 1 + δ]) ⊂ Q ⊂ P. Since x and y are in the interior
of [γ(−δ), γ(1 + δ)], they have the same carrier, F , in P.

It suffices to show that ∂Q ⊂ F . But if x ∈ ∂Q and y ∈ Int(Q), let
γ(t) = (1− t)x+ ty for t ∈ R. Because y ∈ Int(Q), there exists δ > 0 such
that γ([0, 1 + δ]) ⊂ Q ⊂ P. Since y is in the interior of [x, γ(1 + δ)], the
support of x is contained in S(y). So x ∈ Conv(S(y)) = F . �

A convenient source of faces is the following. In fact, one can show that all
faces arise in this manner. We go back to considering convex generating sets
that could include nonvertices, as this result is commonly used to identify
which of the convex generators are actually vertices.

Proposition 2.9.47. Let X = {x1, . . . , xk} ⊂ Rn and let C = Conv(X).
Let f : Rn → R be affine. Let f(C) = [a, b]. Then:

(1) f−1(b) ∩ C is a face of C.
(2) Let S = f−1(b) ∩ X. Then f−1(b) ∩ C = Conv(S). Moreover, b is

the maximum value of the restriction, f |X , of f to X, while a is the
minimum value.

In particular, every affine function f : Rn → R that is not constant on X
may be used to identify two proper faces of C: f−1(b) and f−1(a).

Proof. (1) f−1(b) is an affine subspace, so it suffices to show C r f−1(b) is
convex. Let x, y ∈ C r f−1(b). Then

f((1− t)x+ ty) = (1− t)f(x) + tf(y) ≤ max(f(x), f(y)) < b.

(2) First note that f(Conv(S)) = Conv(f(S)) = Conv({b}) = {b}.
Now let T = X rS. Then f(Conv(T )) = Conv(f(T )) ⊂ [a, b), as f(T ) ⊂

[a, b).
Now C is the linear join Conv(T ) ·Conv(S), so any element of C has the

form z = (1− t)x+ ty with x ∈ Conv(T ) and y ∈ Conv(S), t ∈ I. But then
f(z) = (1− t)f(x) + tf(y).

By the observations above, f(x) < b and f(y) = b. so if t < 1, then
f(z) < b. �
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2.9.4. Examples. We first describe the faces of the standard simplex.

Example 2.9.48. The faces of ∆n−1 correspond to the nonempty subsets
of {1, . . . , n}. Let 1 ≤ i1 < · · · < ik ≤ n, and set

Fi1,...,ik = Conv(ei1 , . . . , eik)

(2.9.19)

=
{
a1e1 + · · ·+ anen ∈ ∆n−1 : aj = 0 for j 6∈ {i1, . . . , ik}

}
.

Since this is the standard simplex in the Euclidean space span(ei1 , . . . , eik),
it has dimension k − 1 by Lemma 2.9.17. Moreover,

Fi1,...,ik = ∆n−1 ∩ span(ei1 , . . . , eik),

so Fi1,...,ik satisfies (1) in the definition of face. Moreover,

(2.9.20) Int(Fi1,...,ik) = {a1ei1 + · · ·+ akeik : aj > 0 for j = 1, . . . , k} .
Finally,

∆n−1 r Fi1,...,ik =



a1e1 + · · ·+ anen ∈ ∆n−1 :

k∑

j=1

aij < 1



 .

This condition demonstrates the complement is convex. Therefore, Fi1,...,ik
is a face of ∆n−1. In particular, we have constructed

(
n
k

)
different (k − 1)-

dimensional faces of ∆n−1. Since every nonempty subset of {1, . . . , n} is the
vertex set of a face, we have constructed all possible faces of ∆n−1.

Remark 2.9.49. The 0-dimensional faces (vertices) are given by Fi = {ei},
the i-th basis element. We of course just write ei for this set.

The 1-dimensional faces (edges) are the line segments Fi,j = eiej for i < j.
There are

(
n
2

)
of them.

There are n different (n − 2)-dimensional faces, each of which is ob-
tained by omitting one of the vertices. We write ∂i(∆

n−1) for the (n − 2)-
dimensional face opposite the vertex ei:

∂i(∆
n−1) = F1,...,i−1,i+1,...,n(2.9.21)

= Conv(ej : j 6= i)

=
{
a1e1 + · · ·+ anen ∈ ∆n−1 : ai = 0

}
,

We have

(2.9.22) ∂∆n−1 =
n⋃

i=1

∂i∆
n−1,

and every element of x ∈ ∂∆n−1 lies in the interior of exactly one face,
specified by the nonzero coordinates of x: we can write x uniquely as

(2.9.23) x = ai1ei1 + · · ·+ aikeik with aij 6= 0 for j = 1, . . . , k.

So Fi1,...,ik is the unique face containing x in its interior. Here, the interior
of a vertex is the vertex itself.
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Example 2.9.50. We now consider the faces of the n-cube In. Let fi :
Rn → R be the projection onto the i-th coordinate:

fi(a1e1 + · · ·+ anen) = ai.

Then fi is linear, so that f−1
i (0) = ker fi is a linear subspace, in this case

span(ej : j 6= i), and f−1
i (1) is an affine subspace, in this case τei(f

−1
i (0)).

These linear and affine subspaces have dimension n− 1.
We write ∂0i (I

n) = In ∩ f−1
i (0) and ∂1i (I

n) = In ∩ f−1
i (1). Then

∂0i (I
n) = {a1e1 + · · ·+ anen ∈ In : ai = 0},(2.9.24)

∂1i (I
n) = {a1e1 + · · ·+ anen ∈ In : ai = 1}.

This gives

In r ∂0i (I
n) = {a1e1 + · · ·+ anen ∈ In : ai > 0},(2.9.25)

In r ∂1i (I
n) = {a1e1 + · · ·+ anen ∈ In : ai < 1}.

These complements are convex, so ∂0i (I
n) and ∂1i (I

n) are faces of In. Note
that ∂0i (I

n) is the unit cube in the (n − 1)-dimensional Euclidean space
span(ej : j 6= i), and hence has dimension n− 1 as a convex set. Moreover,
∂1i (I

n) = τei(∂
0
i (I

n)), and hence is (n − 1)-dimensional also. We shall refer
to ∂0i (I

n) and ∂1i (I
n) as opposite faces of In.

Recall from Corollary 2.8.28 that In = Conv(S) for

(2.9.26) S =
{
ǫ1e1 + · · ·+ ǫnen : ǫ1, . . . , ǫn ∈ {0, 1}

}
.

By Corollary 2.9.40, the vertices of In must lie in S, and hence its vertices
are the elements of S whose complement is convex. In fact, every element of
S is a vertex, as it is an intersection of faces: if ǫi ∈ {0, 1} for i = 1, . . . , n,
then

(2.9.27) ǫ1e1 + · · ·+ ǫnen = ∂ǫ11 (In) ∩ · · · ∩ ∂ǫnn (In),

an intersection of faces, and hence a face.
Note that every element of In not in Int(In) lies in at least one (n − 1)-

dimensional face, so that

(2.9.28) ∂In =
n⋃

i=1

(∂0i (I
n) ∪ ∂1i (In)).

Remark 2.9.51. Recall that an edge of a polytope is a 1-dimensional face,
and hence is the convex hull of two vertices. We call it the edge determined
by these two vertices. Note that each vertex of I2 lies on exactly two edges.
For instance, 0 lies on Conv(0, e1) and Conv(0, e2), but Conv(0, e1 + e2) is
not an edge, as it intersects the interior of I2.
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2.10. Exercises.

1. Prove that the line [ ab ] + span ([ cd ]) coincides with the set of points
[ xy ] with y = d

c
x+ bc−ad

c
.

2. Put the line y = mx+ b in the form v + span(w).
3. Show that any two distinct affine planes in R3 are parallel (i.e., are

translates of one another) if and only if they do not intersect.
4. Generalize the preceding problem to appropriate affine subspaces of

Rn.
5. Show that any distance-preserving function f : Rn → Rm is affine

and one-to-one.
6. Show that if f : Rn → Rm is affine and one-to-one, then n ≤ m.

Show that the range of f is an affine subspace of dimension m.
7. Show that not every linear isomorphism TA : Rn → Rn is an isome-

try.
8. We say X ⊂ Rn is an affine set if (1− t)x+ ty ∈ X for all x, y ∈ X

and t ∈ R.
(a) Show that if X ⊂ Rn is an affine set containing 0, then X is a

linear subspace.
(b) Deduce that every affine set in Rn is an affine subspace.

9. Let C ⊂ Rn be convex and let f : C → Rm be affine. Show that
f(C) is a convex subset of Rm.

10. Let C ⊂ Rn be convex. Show that Int(C) is also convex.
11. Let C ⊂ Rn be convex. Let x ∈ Int(C) and y ∈ ∂C. Show that

[x, y) ⊂ Int(C).
12. Show that the closed unit disk

Dn = {x ∈ Rn : ‖x‖ ≤ 1}
is convex.

13. Show that the open unit disk

Int(Dn) = {x ∈ Rn : ‖x‖ < 1}
is convex.

14. Show that the unit sphere

Sn−1 = {x ∈ Rn : ‖x‖ = 1}
is not convex.

15. Show that Dn is the convex hull of Sn−1.
16. Show that every face of In is the intersection of some collection of

(n− 1)-dimensional faces.
17. For a given x ∈ ∂In, describe the face containing x in its interior.
18. What are the edges of In? How many of them are there?
19. What are the edges of In containing 0? Does each of the other

vertices lie in the same number of edges?
20. How many (n − 1)-dimensional faces of In contain 0? Do you get

the same number for any other vertex?
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3. Groups

Group theory is valuable in understanding isometry, as In, the set if
isometries of Rn, forms a group under composition. Other geometric ques-
tions may be solved by group theory as well.

3.1. Definition and examples.

Definition 3.1.1. A group, G, is a set together with a binary operation,
which we think of as multiplication. I.e., for g, h ∈ G the prduct gh ∈ G.
The operation has the following properties.

(1) Multiplication is associative: (gh)k = g(hk) for all g, h, k ∈ G.
(2) There is an identity element e for the multiplication: ge = eg = g

for all g ∈ G.
(3) Each element g ∈ G is invertible: there is an element h ∈ G with

gh = hg = e.

If G is finite (i.e., if it has finitely many elements), we refer to the number
of elements in it, |G|, as its order.

Note that the multiplication is not assumed to be commutative, and it
will not be commutative in most of the groups of interest here. Note that the
definition of invertibility above is exactly the definition used for invertibility
of matrices.

Examples 3.1.2.

(1) Let X be a set. The permutation group Σ(X) of X is the set of
all bijections, σ : X → X. It is a group under composition, as the
inverse function of a bijection is a bijection. The n-symmetric group
Σn is defined to be Σ({1, . . . , n}).

(2) The set In of isometries of Rn is a group under composition. It is
immediate that the composition of isometries is an isometry. The
identity element is the identity map, id, of Rn. Inverses exist by
Corollary 2.5.6.

(3) The set An of affine automorphisms of Rn is also a group under
composition by Proposition 2.6.4. It contains In as a subgroup (see
below).

(4) The set Sn of all similarities of Rn is a group under composition by
Lemma 2.7.3 and Corollary 2.7.4.

(5) The set of n×n invertible matrices forms a group, denoted GLn(R),
under matrix multiplication. The identity element is the identity
matrix In. That the product of invertible matrices is invertible is
shown by the proof of Lemma 3.1.3(2) below.

(6) Note that GL1(R) is the set of 1×1 matrices [s] with s a nonzero real
number. The product [s] · [t] = [st]. Thus, we may identify GL1(R)
with the group R× of nonzero real numbers under multiplication.

(7) Rn is a group under addition. So is any other vector space. Vec-
tor spaces are groups with additional structure, with the additional
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structure given by the scalar multiplication. We call the group struc-
ture here the “additive group” of the vector space.

(8) The integers, Z, form a group under addition.

From now on we will suppress the composition symbol and simply write
αβ for the composition of α, β ∈ In.
Lemma 3.1.3. Let G be a group.

(1) Let g, h, k ∈ G with hg = gk = e. Then h = k. Thus, inverses are
unique, and we may write g−1 for the unique element with gg−1 =
g−1g = e.

(2) For h, k ∈ G, (hk)−1 = k−1h−1.

Proof. For (1), if hg = gk = e, then

k = ek = (hg)k = h(gk) = he = h.

For (2), we simply multiply:

k−1h−1 · hk = k−1(h−1h)k = k−1ek = k−1k = e

hk · k−1h−1 = h(kk−1)h−1 = heh−1 = hh−1 = e �

We can now define higher powers of elements of G inductively: gn =
g · gn−1 for n > 1, and define negative powers by g−n = (gn)−1 for n > 0.
Of course, g0 = e and g1 = g. The following is tedious to prove, but true
(see [17]).

Lemma 3.1.4. Let G be a group and let g ∈ G. Then for all m,n ∈ Z,

(1) gm · gn = gm+n,
(2) (gm)n = gmn.

Remark 3.1.5. In a group such as R or Z whose group operation is written
additively, the k-th “power” of an element g is

kg = g + · · ·+ g︸ ︷︷ ︸
k times

when k > 0. The 0th “power” is, of course, 0, while, if k < 0, the kth
“power” of g is the (additve) inverse of (−k)g, as defined above. Note that
if G = R or Z this notion of kg coincides with multiplication by the integer
k by the definition of multiplication in R.

The power laws of Lemma 3.1.4 then look like distributivity and associa-
tivity, respectively.

We will be very interested in studying subgroups of GLn(R) and In.
Definition 3.1.6. Let G be a group. A subgroup H ⊂ G is a nonempty
subset such that:

(1) H is closed under multiplication: for h, k ∈ H, the product hk is in
H.

(2) H is closed under inverses: for h ∈ H, h−1 ∈ H.
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A subgroup H ⊂ G is easily seen to be a group under the operation of G.

Examples 3.1.7. (1) In is a subgroup of the group Sn of similarities
of Rn, which is in turn a subgroup of An.

(2) The set Rpos of positive real numbers under multiplication, is a sub-
group of the group R× of nonzero real numbers under multiplication.

(3) Write LIn for the linear isometries from Rn to Rn and write Ln for
the linear automorphisms of Rn (i.e., the isomorphisms from Rn to
Rn). Then we have inclusions of subgroups

(3.1.1)
LIn ⊂ In
∩ ∩
Ln ⊂ An.

(4) The translations of Rn form a subgroup, Tn ⊂ In:
Tn = {τx : x ∈ Rn}.

(5) The set of n × n invertible matrices with integer coefficients is not

a subgroup of GLn(R). For instance, if A =

[
1 1
0 2

]
, then A has

integer coefficients and is invertible, but the reader may easily verify
that

A−1 =

[
1 −1

2
0 1

2

]
,

which does not have integer coefficients.
Thus, to obtain a subgroup, we define GLn(Z) to be the set of

matrices A ∈ GLn(R) such that both A and A−1 have integer coef-
ficients.

(6) Let G be a group and let g ∈ G. By Lemma 3.1.4, the set of all
powers of g form a subgroup 〈g〉 of G, called the cyclic subgroup
generated by g:

〈g〉 = {gn : n ∈ Z}.
Clearly, any subgroup H containing g must contain 〈g〉, so 〈g〉 is the
smallest subgroup containing g.

(7) For g1, . . . , gk ∈ G, we write 〈g1, . . . , gk〉 for the smallest subgroup of
G containing g1, . . . , gk. This subgroup can be difficult to describe,
and we must be careful not to confuse this notation for that of the
inner product. We shall use a similar notation for “generators and
relations” below.

(8) For n > 0 in Z, 〈n〉 = {kn : k ∈ Z} is the set of all multiples of n.
In particular, when n = 2, 〈2〉 is the set of all even integers.

Regarding Example (5) above, the following is an easy consequence of [17,
Corollary 10.3.6].

Proposition 3.1.8. A matrix A ∈ GLn(R) with integer coefficients lies in
GLn(Z) if and only if detA = ±1.
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Since this is important in 2-dimensional geometry, we include a proof for
n = 2.

Proof of Proposition 3.1.8 for n = 2. Let A =

[
a b
c d

]
∈ GL2(R). Then

(3.1.2) A−1 =
1

detA

[
d −b
−c a

]
,

e.g., by Excercise 1 in Chapter 1. Thus, if detA = ±1, then A−1 has integer
coefficients.

Conversely, if A−1 has integer coefficients, then detA−1 is an integer (as
is detA). We have

1 = det(I2) = det(AA−1) = detA detA−1.

Thus, detA has a multiplicative inverse in Z, so detA = ±1. �

The case of n > 2 just replaces (3.1.2) with the formula A−1 = 1
detAA

adj,

where Aadj, the adjoint matrix of A, is an integer matrix by determinant
theory.

Definition 3.1.9. A group G is cyclic if g = 〈g〉 for some g ∈ G.
3.2. Orders of elements. Cyclic subgroups give important information
about the elements in a group. Some of that information is encoded in the
concept of order.

Definition 3.2.1. An integer k is called an exponent for an element g ∈ G
if gk = e. Of course, 0 is an exponent for every group element. We say g has
finite order if it has a positive exponent. In this case, we define the order
of g, written |g|, to be the smallest positive exponent of g, i.e., the smallest
positive integer g for which gk = e.

If g does not have a positive exponent, we write |g| =∞.

Knowing the order of an element allows us to determine the structure of
the cyclic subgroup it generates.

Proposition 3.2.2. Let g ∈ G have finite order, say |g| = n. Then:

(1) gk = gℓ if and only if k − ℓ = nq for some q ∈ Z.5

(2) 〈g〉 has exactly n elements: e = g0, g1, . . . , gn−1. Thus, |g| = |〈g〉|.
If |g| =∞, then the elements {gk : k ∈ Z} are all distinct.

Proof. Let |g| = n. If k − ℓ = nq, then k = ℓ+ nq, so

gk = gℓ+nq = gℓ(gn)q = gℓeq = gℓ,

as gn = e. Conversely, if gk = gℓ with k > ℓ, then e = gkg−ℓ = gk−ℓ. By
the standard division properties of integers, we may write k − ℓ = nq + r

5In the language of number theory, this says k is congruent to ℓ mod n, written k ≡
ℓ mod n.
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with 0 ≤ r < n (i.e., r is the remainder if we divide k − ℓ by n). Then
e = gk−ℓ = gnq+r = (gn)qgr = eqgr = gr. So r is an exponent of g. But n
is the smallest positive exponent of g and r < n. So r is not positive. Thus
r = 0, and hence k − ℓ = nq.

(2) now follows from (1): if m ∈ Z and if r is the remainder when we
divide m by n, then gm = gr by the argument given above (and yes, we can
do divisions with remainder even when m is negative), so

gm ∈ {gk : 0 ≤ k < n}.
Moreover, these n elements are all distict, as if 0 ≤ ℓ < k ≤ n and if gk = gℓ,
this would force n to divide k − ℓ, which is impossible, as 0 < k − ℓ < n.

Finally, if |g| =∞ and gk = gℓ with k ≥ ℓ, then e = gk−ℓ. Since g has no
positive exponents, k − ℓ is not positive, so k = ℓ. �

Examples 3.2.3.

(1) Let 0 6= x ∈ Rn. Then τkx = τkx 6= id, as kx 6= 0, so |τx| =∞ in In.
(2) Let A =

[
0 −1
1 0

]
∈ GL2(R). Then A

2 = −I2, A3 = −A and A4 = I2,
so A has order 4.

3.3. Conjugation and normality. The subgroup of translations intro-
duces a useful concept called normality. Translations do not commute with
general isometries, but we can compute their deviation from commuting in
an important sense. The key observation is the following.

Lemma 3.3.1. Let A be an invertible n× n matrix and let x ∈ Rn. Then

(3.3.1) TAτxT
−1
A = τAx.

Proof. For y ∈ Rn,

TAτxT
−1
A (y) = TAτx(A

−1y) = TA(A
−1y + x)

= AA−1y +Ax = y +Ax = τAx(y). �

Thus, if β is a linear isometry of Rn and x ∈ Rn, then

βτxβ
−1 = τβ(x).

But this extends immediately to the following:

Corollary 3.3.2. Let α ∈ In and x ∈ Rn. Write α = τzβ with β a linear
isometry (and hence z = α(0)) Then

(3.3.2) ατxα
−1 = τβ(x)

Phrased entirely in terms of α, this says

ατxα
−1 = τw for w = α(x)− α(0).

Proof. Since α−1 = β−1τ−z, we have

ατxα
−1 = τzβτxβ

−1τ−z
= τzτβ(x)τ−z
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= τz+β(x)−z
= τβ(x). �

The same argument shows the following.

Corollary 3.3.3. Let f ∈ An and x ∈ Rn. Write f = τz ◦ g with g a linear
isomorphism from Rn to itself (and hence z = f(0)). Then

(3.3.3) fτxf
−1 = τg(x).

The operation we are looking at is called conjugation and detects devia-
tion from commuting.

Definition 3.3.4. Let x, g ∈ G, where G is a group. The conjugate of g by
x is xgx−1.

Conjugation computes the deviation from commuting in the following
way. If xgx−1 = h, then xg = hx, so “pulling x past g” replaces g by
h. Corollary 3.3.2 says every conjugate of a translation is a translation.
So if we pull an isometry past a translation, our translation is replaced by
a different, and computable translation. This is a very nice property and
can be used to describe the multiplication in In in full generality. Recall
from Theorem 2.5.3 that every isometry is a composite τxβ with β a linear
isometry.

Proposition 3.3.5. Let x, y ∈ Rn and let β, γ be linear isometries of Rn.
Then

(3.3.4) τxβ · τyγ = τx+β(y)βγ.

Here, βγ, as the composite of two linear isometries, is a linear isometry.

Proof. τxβ · τyγ = τx(βτyβ
−1)βγ = τxτβ(y)βγ = τx+β(y)βγ. �

Of course, exactly the same calculation holds for affine automorphisms,
and by the same proof. It is convenient here to use the fact that a linear
automorphism of Rn can be written uniquely in the form TA for A ∈ GLn(R).

Proposition 3.3.6. Let A,B ∈ GLn(R) and x, y ∈ Rn. Then

(3.3.5) τxTA · τyTB = τx+AyTAB.

Definition 3.3.7. Let H be a subgroup of G.

(1) The conjugate of H by x ∈ G is

xHx−1 = {xhx−1 : h ∈ H.}
(2) We say H is normal in G, written H ⊳ G, if xHx−1 = H for all

x ∈ G.
Lemma 3.3.8.

(1) For H a subgroup of G and x ∈ G, xHx−1 is a subgroup of G.
(2) H ⊳G if and only if xhx−1 ∈ H for all x ∈ G and h ∈ H.
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Proof. For (1), for h, k ∈ H, we have

xhx−1 · xkx−1 = xh(x−1x)kx−1 = xhkx−1,

so xHx−1 is closed under multiplication. And

(xkx−1)−1 = (x−1)−1h−1x−1 = xh−1x−1,

so xHx−1 is closed under inverses.
For (2), suppose xhx−1 ∈ H for all x ∈ G and h ∈ H. Then

(3.3.6) xHx−1 ⊂ H for all x ∈ G.
But then

H = x(x−1Hx)x−1 ⊂ xHx−1

since x−1Hx ⊂ H by substituting x−1 for x in (3.3.6). So xHx−1 = H. �

By Lemma 3.3.8(2) and Lemma 3.3.2, we obtain:

Proposition 3.3.9. Tn ⊳ In.
But in fact, Lemma 3.3.2 is stronger than this as it says exactly how Tn

is normal.

3.4. Homomorphsims. In this book, our primary interest in groups is in
studying groups of symmetries of geometric figures. This fits into a frame-
work called “group actions,” meaning that the way the group acts on the
geometry and the figure is the primary focus of interest. In group theory
proper, one is often more interested in the relationships between different
groups. These relationships are often captured by the functions between
groups that preserve the group structure:

Definition 3.4.1. Let G and H be groups. A homomorphism f : G → H
is a function with the property that

f(xy) = f(x)f(y) for all x, y ∈ G.
The kernel, ker f , of f is

ker f = {x ∈ G : f(x) = e},
the set of elements carried by f to the identity element of H.

Example 3.4.2. The determinant function gives rise to a homomorphism

det : GLn(R)→ R×,

det(A) = detA. The point here is that a matrix A is invertible if and only
if its determinant is nonzero, i.e., detA is an element of the group R× of
nonzero real numbers under multiplication. This map is a homomorphism
because det(AB) = detA · detB for any two n× n matrices A and B.

The kernel of the determinant map is the group

(3.4.1) SLn(R) = {A ∈ GLn(R) : detA = 1}.
It is called the n-th special linear group of R. We shall see that SL2(R) is
important in understanding the isometries of hyperbolic space.
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Recall that Σn = Σ({1, . . . , n}), the permutation group of {1, . . . , n}. The
following gives a very important example of a homomorphism.

Lemma 3.4.3. There is a homomorphism ιn : Σn → GL(R) obtained by
setting

(3.4.2) ιn(σ) = [eσ(1)| . . . |eσ(n)],
the matrix whose i-th column is eσ(i), where e1, . . . , en are the canonical basis
vectors of Rn.

This homomorphism is one-to-one.

Proof. This is certainly one-to-one, as if ιn(σ) = ιn(τ), then eσ(i) = eτ(i)
for all i, hence σ(i) = τ(i) for all i and σ = τ .

To see it is a homomorphism, we have

ιn(σ)ιn(τ) = ιn(σ)[eτ(1)| . . . |eτ(n)]
= [ιn(σ) · eτ(1)| . . . |ιn(σ) · eτ(n)]
= [eσ(τ(1))| . . . |eσ(τ(n))],

where the last equality follows as, for any matrix A, Aej is the j-th column
of A. The result follows as στ is the composition of σ and τ . �

We shall study ιn in greater detail later. But now is a good time to make
the following definition.

Definition 3.4.4. The n-th alternating group An is the kernel of the com-
posite

Σn
ιn−→ GLn(R)

det−−→ R×,

i.e., An is the group of permutations σ with the property that ιn(σ) has
determinant 1.6

We now develop some elementary theory about homomorphisms.

Lemma 3.4.5. Let f : G→ H be a homomorphism of groups and let x ∈ G.
Then f(xk) = (f(x))k for all k ∈ Z.

Proof. For k = 0 this follows from x0 = e and e · e = e. so that

f(e) = f(e · e) = f(e) · f(e).
Multiplying both sides by f(e)−1 we get f(e) = e.

6There is a different definition of An intrinsic to studying permutation groups (see, e.g.,
[17, 11]). One shows that every permutation is a composite of transpositions: permutations
that interchange two indices and fix the rest. One then shows there is a homomorphism
sgn : Σn → {±1} whose value on every transposition is −1 and defines An to be the
kernel of sgn. That sgn is well-defined is an essential component in the development of
the determinant function, though there are approaches that work in the other direction.

We are not giving rigorous treatments of either determinant theory or permutation
groups in this text. We strongly encourage the reader to consult an upper level algebra
text such as [17] or [11] to learn the details.
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For k > 0, this follows by induction on k from the inductive definition of
powers and the homomorphism property. For k < 0 it follows from the fact
that xkx−k = e. and hence

e = f(xkx−k) = f(xk)f(x−k) = f(xk)(f(x))−k,

as −k > 0. Now multiply both sides by (f(x))k = ((f(x))−k)−1 and the
result follows. �

Corollary 3.4.6. Let f : G → H be a homomorphism of groups. Then
ker f ⊳G.

Proof. ker f is obviously closed under multiplication, and is closed under
inverses by Lemma 3.4.5, so ker f is a subgroup of G. For h ∈ ker f and
x ∈ G,

f(xhx−1) = f(x)f(h)f(x−1) = f(x)f(h)f(x)−1 = f(x)ef(x)−1 = e.

So xhx−1 ∈ ker f . �

Example 3.4.7. A linear function f : V →W between vector spaces gives
a homomorphism between their additive groups.

A more interesting example comes from Theorem 2.5.3, shich shows that
each α ∈ In may be written uniquely as a composite α = τxβ with β ∈ LIn
(i.e., β : Rn → Rn is a linear isometry).

Proposition 3.4.8. Define

π : In → LIn
as follows: if α = τxβ with β ∈ LIn, set π(α) = β. Then π is a homomor-
phism whose kernel is Tn. Moreover, if j : LIn ⊂ In is the inclusion, then
π ◦ j = idLIn, the identity map of LIn (i.e., for β ∈ LIn, π(β) = β). Thus,
π is onto.

In the language of group theory, this says that

1 // Tn i // In π // LIn // 1

is a split extension, where i is the natural inclusion.

Proof. Let α1, α2 ∈ In with

α1 = τx1β1, α2 = τx2β2,

with β1, β2 ∈ LIn. Then
α1α2 = τx1β1τx2β2(3.4.3)

= τx1+β1(x2)β1β2

by Proposition 3.3.5. Thus

π(α1α2) = β1β2 = π(α1)π(α2),

so π is a homomorphism.
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Now, kerπ = {τxβ : β = id} = Tn. Finally, if β is a linear isometry, then
β = τ0β, and hence π(β) = β. �

Another useful example is the following. Recall that Sn, the group of
similarities of Rn is defined to be the set of functions f : Rn → Rn such that
there exists 0 < s ∈ R, such that

d(f(x), f(y)) = s · d(x, y) for all x, y ∈ Rn.

The real number s is called the scaling factor, scale(f), of f . Recall also
that the positive real numbers Rpos form a group under multiplication (with
identity element 1). Finally, for s ∈ Rpos, we have a linear similarity

µs : R
n → Rn

given by µs(x) = sx for all x ∈ Rn, by (2.7.2).

Proposition 3.4.9. The scaling factor

scale : Sn → Rpos

is a surjective homomorphism with kernel In. Thus, In ⊳ Sn. Moreover,
there is a homomorphism σ : Rpos → Sn given by σ(s) = µs. Since
scale(µs) = s, scale ◦ σ = idRpos . In the language of group theory this says
that

1→ In i−→ Sn scale−−−→ Rpos → 1

is a split extension, where i is the inclusion of In in Sn.
Proof. That scale is a homomorphism is immediate from Lemma 2.7.3.
Since isometries are similarities of scaling factor 1, In is the kernel of scale.
Moreover, scale is surjective because scale ◦ σ = idRpos . �

We have already studied the kernel of a linear function. Kernels of general
group homomorphisms are useful for the same reasons.

Lemma 3.4.10. Let f : G → H be a homomorphism and let x, y ∈ G.
Then f(x) = f(y) if and only if x−1y ∈ ker f . Thus, f is one-to-one if and
only if ker f = {e}.
Proof.

f(x) = f(y) ⇔ e = f(x)−1f(y) = f(x−1y)

⇔ x−1y ∈ ker f.

Thus ker f = {e} implies f is one-to-one. But f(e) = e, so if f is one-to-one,
then no other element may be carried by f to e, and hence ker f = {e}. �

Two groups may be identified with one another if they are isomorphic:

Definition 3.4.11. An ismomorphism f : G→ H of groups is a homomor-
phism that is one-to-one and onto. The inverse function f−1 : H → G is
then easily seen to be a group homomorphism, and hence an isomorphism.
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We say that G and H are isomorphic if there is an isomorphism between
them. We write

f : G
∼=−→ H

to indicate that f is an isomorphism from G to H.
A one-to-one homomorphism ι : G→ K is called an embedding of groups.

The homomorphism ιn : Σn → GLn(R) is an embedding. We also have
an interesting example of an isomorphism of groups.

Proposition 3.4.12. There is an isomorphism ν : Rn → Tn from the addi-
tive group Rn to the translation subgroup of In, given by ν(x) = τx.

Proof. τxτy = τx+y. �

We also have the following:

Example 3.4.13. There is an isomorphism T : GLn(R) → Ln given by
T (A) = TA, the transformation induced by A. We will see below that this
restricts to an isomorphism T : On → LIn, where On is the nth orthogonal
group, defined below.

The group Rpos, of positive real numbers under multiplication, is an old
friend.

Lemma 3.4.14. There is an isomorphsim exp : R→ Rpos given by

exp(x) = ex.

Here R is the group of real numbers under addition.

Proof. exp is a homomorphism as ex+y = ex · ey. It is a bijection whose
inverse function is the natural logarithm. �

Isomorphic groups have the same group structure. Every group theo-
retic property is preserved by an isomorphism. An important example of
isomorphism is the following.

Proposition 3.4.15. Let G be a group and let x ∈ G. Define the conjuga-
tion by x, cx : G→ G, by

cx(y) = xyx−1.

Then cx is an isomorphism from G to itself. Moreover, if H is a subgroup
of G, then cx(H) = xHx−1, the conjugate subgroup of H by x. In fact,

cx : H
∼=−→ xHx−1.

Thus, conjugate subgroups are isomorphic.

Proof. cx(y)cx(z) = xyx−1xzx−1 = xyzx−1 = cx(yz), so cx is a homomor-
phism. But cx−1 is easily seen to provide an inverse function for cx, so cx is
bijective.

Now xHx−1 = cx(H) by definition, and the rest follows by restriction of
the properties above. �
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In fact, two subgroups being conjugate is stronger than being isomorphic.
A very important example of homomorphisms is the following.

Proposition 3.4.16. Let G be a group and let g ∈ G. Then there is a
unique homomorphism

fg : Z→ G

with fg(1) = g. Explicitly, fg(k) = gk for all k ∈ Z.
The image of fg is 〈g〉. If |g| = n < ∞, then ker fg = 〈n〉, the cyclic

subgroup of Z generated by |g| = n. Otherwise ker fg = {0}, the identity
subgroup of Z, and hence fg is one-to-one. In consequence, if |g| = ∞, fg
induces an isomorphsim

fg : Z
∼=−→ 〈g〉.

Proof. k ∈ Z is the kth power of 1 in the (additve) group structure of Z,
so if fg : Z → G is a homomorphism with fg(1) = g, then fg(k) = gk by

Lemma 3.4.5. Conversely, if we define fg : Z→ G by fg(k) = gk, then fg is
a homomorphism by the rules of exponents. By construction, the image of
fg is 〈g〉.

The kernel of fg is the set of exponents of g, which, by Proposition 3.2.2(1)
is the set of multiples of |g| if |g| is finite. But if |g| is infinite, g has no
exponents other than 0, hence ker fg = {0}, then. �

3.5. A matrix model for isometries and affine maps. Much of this
material could have been presented in Chapter 2, but is easier to understand
with a little group theory.

Definition 3.5.1. Let A ∈ GLn(R) (i.e., A is an invertible n×nmatrix with
coefficients in R) and let x ∈ Rn. We write M(A, x) for the (n+1)× (n+1)
block matrix

(3.5.1) M(A, x) =

[
A x

0 1

]
.

These assemble into an useful collection of matrics

(3.5.2) An =

{[
A x

0 1

]
: A ∈ GLn(R), x ∈ Rn

}
.

Indeed, An is a subgroup of GLn+1(R):

Lemma 3.5.2. The product of two elements of An is given as follows:

(3.5.3)

[
A x

0 1

] [
B y

0 1

]
=

[
AB x+Ay

0 1

]
.

The inverse of M(A, x) is given by

(3.5.4)

[
A x

0 1

]−1

=

[
A−1 −A−1x

0 1

]
,

and hence An is closed under inverses.
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Proof. (3.5.3) is immediate from (1.4.6). (3.5.4) then follows by an easy
calculation. �

This now allows us to establish an isomorphism between An and the group
An of affine automorphsims of Rn.

Proposition 3.5.3. There is an isomorphism ϕ : An → An given by

(3.5.5) ϕ(M(A, x)) = τxTA.

Proof. By Proposition 3.3.6 and (3.5.3), ϕ is a homomorphism. Since every
affine automorphism of Rn can be written uniquely in the form τxTA, ϕ is
bijective. �

Block multiplication also gives a nice model for the way an affine auto-
morphism acts on a vector in Rn.

Lemma 3.5.4. Let A ∈Mn(R) and x ∈ Rn. Then for y ∈ Rn, we have

(3.5.6)

[
A x

0 1

] [
y

1

]
=

[
τxTA(y)

1

]
.

Thus, the action of the affine automorphism τxTA on Rn can be read off
from the action of the block matrix M(A, x) on the affine subspace

τen+1(R
n) ⊂ Rn+1.

Here, we are identifying Rn with span(e1, . . . , en) ⊂ Rn+1.

Proof. This follows from Proposition 1.4.4. �

Let us consider this correspondence in the context of isometries. The
subgroup In ⊂ An consists of the composites τxTA such that TA is a linear
isometry. The n× n matrices A such that TA is an isometry are called the
orthogonal matrices and form a subgroup On ⊂ GLn(R). We will study On

in Chapter 4.

Definition 3.5.5. Define In ⊂ An by

(3.5.7) In =

{[
A x

0 1

]
: A ∈ On, x ∈ Rn

}
.

Since On is a subgroup of GLn(R), Lemma 3.5.2 shows In to be a subgroup
of An. Indeed, since ϕ(M(A, x)) is an isometry if and only if TA is an
isometry, we have:

Proposition 3.5.6. In = ϕ−1(In), and hence ϕ : In → In is an isomor-
phism of groups. As before,

(3.5.8) ϕ

([
A x

0 1

])
= τxTA,

where A ∈ On and x ∈ Rn.
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3.6. G-sets. We are concerned here on the ways that groups of symmetries
act on geometric objects. For instance, we wish to study how In acts on Rn

and how subgroups of In act on subsets of Rn. It is useful to develop some
language and basic results that cover a variety of cases.

Definition 3.6.1. Let G be a group. A G-set X is a set together with a
function

G×X → X(3.6.1)

(g, x) 7→ gx(3.6.2)

called the action of G on X, that satisfies:

(1) g(hx) = (gh)x for all g, h ∈ G and x ∈ X.
(2) ex = x for all x ∈ X.

We will write g ·x at times for gx to avoid ambiguity. We will write “G acts
on X via (3.6.2)” to say that X is a G-set with the specified action.

If X and Y are G-sets, a G-map (or G-equivariant map) f : X → Y is a
function f such that f(gx) = gf(x) for all g ∈ G and x ∈ X.

In most cases of interest, we will want X to have a topology and want
the action to preserve the topology. This will be implicit in most of our
examples, but is discussed in detail in Section A.4. For the most part we
will work implicitly with regard to the topology.

Examples 3.6.2.

(1) In acts on Rn via
(α, x) 7→ α(x).

(2) If G acts on X and H is a subgroup of G, then the restriction of the
action map to H ×X specifies an action of H on X: h · x = hx. In
particular, every subgroup of In acts in this way on Rn.

(3) If G acts on X and f : K → G is a group homomorphism, then K
acts on X via (k, x) 7→ f(k)x.

There are two important concepts regardingG-actions: orbit and isotropy.

Definition 3.6.3. Let X be a G-set and let x ∈ X. The isotropy subgroup
Gx of X is

(3.6.3) Gx = {g ∈ G : gx = x},
the set of all elements of G that fix x. It is easily seen to be a subgroup of
G by properties (1) and (2) of Definition 3.6.1.

The orbit G · x is

(3.6.4) G · x = {gx : g ∈ G}.
The isotropy subgroup expresses the redundancy in expressing the ele-

ments in the orbit:

(3.6.5) g1x = g2x ⇔ g−1
2 g1x = x ⇔ g−1

2 g1 ∈ Gx.
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Different elements in an orbit can have different isotropy subgroups, but
they are conjugate.

Lemma 3.6.4. Let X be a G-set and let x ∈ X and g ∈ G. Then

(3.6.6) Ggx = gGxg
−1.

Proof. As in (3.6.5), g1gx = gx if and only if g−1g1g ∈ Gx. Now conjugate
by g. �

A major theme here is the following:

Definition 3.6.5. Let X be a G-set and let Y ⊂ X. We say that g ∈ G
preserves Y if g(Y ) = Y , where g(Y ) is the image of Y under g:

g(Y ) = {g(y) : y ∈ Y }.
We define the symmetries of Y under this action to be the subgroup

(3.6.7) SG(Y ) = {g ∈ G : g(Y ) = Y },
consisting of the elements of G that preserve Y .

Indeed, SG(Y ) is the isotropy subgroup of Y under the obvious action of
G on the set of all subsets of X: the action in which g ·Y = g(Y ). Given that
observation, the following is an immediate consequence of Lemma 3.6.4.

Corollary 3.6.6. Let X be a G-set and let Y ⊂ X. Then for any g ∈ G,
we have

(3.6.8) SG(g(Y )) = gSG(Y )g−1.

Another important concept regarding G-sets is that of fixed-points.

Definition 3.6.7. Let X be a G-set and let g ∈ G. The fixed-point set of
X under g is

(3.6.9) Xg = {x ∈ X : gx = x}.
For a subgroup H ⊂ G, the H-fixed-point set is

(3.6.10) XH = {x ∈ X : hx = x for all h ∈ H}.
Since the elements fixing a given x form a subgroup, we obtain:

(3.6.11) Xg = X〈g〉.

A useful observation is the following.

Lemma 3.6.8. Let X be a G-set, H a subgroup of G, and g ∈ G. Then

(3.6.12) g(XH) = XgHg−1
.

Similarly, g(Xh) = Xghg−1
.

Proof. The inclusion g(XH) ⊂ XgHg−1
is obvious. Conversely, ghg−1y = y

if and only if hg−1y = g−1y. �
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3.7. Direct products. Let G1, . . . , Gk be groups. Then the Cartesian
product G1 × · · · × Gk has a group structure given by coordinatewise mul-
tiplication:

(x1, . . . , xk)(y1, . . . , yk) = (x1y1, . . . , xkyk).

We call this group structure the direct product of G1, . . . , Gk and denote it
simply by G1× · · · ×Gk. As the reader may verify, it has the property that
a function f : H → G1 × · · · × Gk is a group homomorphism if and only if
each of its coordinate functions fi : H → Gi is a group homomorphism.
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4. Linear isometries

We study the linear isometries from Rn to itself (i.e., the group of linear
automorphisms of Rn.

4.1. Orthonormal bases and orthogonal matrices.

Definition 4.1.1.

(1) A unit vector u ∈ Rn is a vector of norm 1: ‖u‖ = 1.
(2) The set of all unit vectors in Rn is the (n− 1)-sphere Sn−1:

Sn−1 = {u ∈ Rn : ‖u‖ = 1}.
(3) The vectors x, y ∈ Rn are orthogonal if 〈x, y〉 = 0. In this case we

write x ⊥ y.
(4) The vectors x1, . . . , xk ∈ Rn form an orthogonal set if 〈xi, xj〉 = 0

for all i 6= j and if xi 6= 0 for all i.
(5) The vectors x1, . . . , xk ∈ Rn form an orthonormal set if 〈xi, xj〉 = 0

for all i 6= j and each xi is a unit vector.
(6) The Kronecker delta, δij is defined by the formula

δij =

{
0 if i 6= j

1 if i = j.

Thus, x1, . . . , xk ∈ Rn is an orthonormal set if and only if

〈xi, xj〉 = δij

for all i, j.

The Kronecker delta is a very useful notation. For instance, the n × n
identity matrix In has ijth coordinate δij , hence

In = (δij).

Lemma 4.1.2. Let x1, . . . , xk ∈ Rn form an orthogonal set. Then x1, . . . , xk
are linearly independent.

Proof. Suppose a1x1 + · · ·+ akxk = 0. Then

0 = 〈xi, a1x1 + · · ·+ akxk〉 = a1〈xi, x1〉+ · · ·+ ak〈xi, xk〉
= ai〈xi, xi〉,

as 〈xi, xj〉 = 0 for i 6= j. Since xi 6= 0, 〈xi, xi〉 6= 0, hence ai = 0 for all i. �

Thus, if x1, . . . , xn is an orthonormal set in Rn, it is a basis of Rn. In gen-
eral, if V ⊂ Rn is a subspace, an orthonormal basis of V is an orthonormal
set that spans V , and hence forms a basis for V . Orthonormal bases have a
number of applications. They are very easy to work with if we can calculate
the inner products of the vectors involved:
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Lemma 4.1.3. Let B = v1, . . . , vk be an orthonormal basis for a subspace
V ⊂ Rn and let v ∈ V . Then

(4.1.1) v = 〈v, v1〉v1 + · · ·+ 〈v, vk〉vk.
In particular,

(4.1.2) [v]B =



〈v, v1〉

...
〈v, vk〉


 .

Proof. Since v1, . . . , vk is a basis for V and v ∈ V , we can find coefficients
a1, . . . , ak with v = a1v1 + · · ·+ akvk. It suffices to show ai = 〈v, vi〉 for all
i. But

〈v, vi〉 = 〈a1v1 + · · ·+ akvk, vi〉 = a1〈v1, vi〉+ · · ·+ ak〈vk, vi〉
= ai〈vi, vi〉 = ai,

as 〈vj , vi〉 = δji for all j. �

We wish to find the matrices A that induce linear isometries. Orthogo-
nality is the key idea. We first investigate the relationship between orthog-
onality and the Pythagorean formula. The following is a special case of the
cosine law to be proven below.

Lemma 4.1.4. Let x, y ∈ Rn. Then

‖x+ y‖2 = ‖x‖2 + ‖y‖2 ⇔ x ⊥ y.
Proof.

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉.
The right-hand side is ‖x‖2 + ‖y‖2 if and only if 〈x, y〉 = 0. �

We may now characterize not only the linear isometries of Rn, but more
generally the linear isometric embeddings of Rn into Rm, i.e., the linear
functions TA : Rn → Rm with d(TA(x), TA(y)) = d(x, y) for all x, y ∈ Rn.
Here, A is an m× n matrix.

Theorem 4.1.5. Let A = [v1| . . . |vn] be m × n and let TA be the linear
function induced by A. Then the following conditions are equivalent.

(1) TA is an isometric embedding.
(2) ‖Ax‖ = ‖x‖ for all x ∈ Rn.
(3) The columns, v1, . . . , vn, of A are an orthonormal set.
(4) 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ Rn.

Proof. (1) ⇒ (2):

‖Ax‖ = d(Ax, 0) = d(TA(x), TA(0)) = d(x, 0) = ‖x‖.
(2) ⇒ (3): ‖vi‖ = ‖Aei‖ = 1, so each vi is a unit vector. For i 6= j,

‖vi + vj‖2 = ‖A(ei + ej)‖2 = ‖ei + ej‖2 = ‖ei‖2 + ‖ej‖2 = ‖vi‖2 + ‖vj‖2.
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The third equality is by Lemma 4.1.4, as ei and ej are orthogonal. (The
others are by (2) and linearity.) So vi and vj are orthogonal by Lemma 4.1.4.

(3) ⇒ (4): Let x = x1e1 + · · ·+ xnen and y = y1e1 + · · ·+ ynen. Then

〈Ax,Ay〉 = 〈A(x1e1 + · · ·+ xnen), A(y1e1 + · · ·+ ynen)〉

=
n∑

i,j=1

xiyj〈Aei, Aej〉

=

n∑

i,j=1

xiyjδij

=

n∑

i=1

xiyi = 〈x, y〉.

(4) ⇒ (1):

d(TA(x), TA(y)) = ‖Ay −Ax‖ = ‖A(y − x)‖
=
√
〈A(y − x), A(y − x)〉

=
√
〈y − x, y − x〉 = d(x, y). �

Corollary 4.1.6. Let v1, . . . , vn be an orthonormal set in Rm and a1, . . . , an ∈
R. Then,

(4.1.3) ‖a1v1 + · · ·+ anvn‖ =
√
a21 + · · ·+ a2n.

Proof. Let A = [v1| . . . |vn]. Then a1v1 + · · ·+ anvn = A



a1
...
an


. Now apply

the equivalence of (2) and (3) above. �

Of course, the columns being orthonormal, and hence linearly indepen-
dent, implies n ≤ m. We obtain a nice characterization of linear isometric
embeddings via transposes.

Definition 4.1.7. Let A = (aij) be an m× n matrix. We write AT for the
transpose of A: the n×m matrix whose ijth entry is aji. Thus, if vi is the
i-th column of A, then the ith row of AT is vTi .

The following elementary result is useful.

Lemma 4.1.8. Let A be m× n and let B be n× k. Then (AB)T = BTAT .

Proof. The ijth coordinate of (AB)T is the jith coordinate of AB:
n∑

k=1

ajkbki =

n∑

k=1

bkiajk.

This is dot product of the ith column of B with the transpose of the jth
row of A, and that’s exactly what we get from the ijth coordinate of BTAT .
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(As the displayed equation hints, this lemma holds for matrices over any
commutative ring.) �

Transposes are useful in uncovering the relationship between the matrix
product and the dot product.

Lemma 4.1.9. Let A be m× n and let x ∈ Rn and y ∈ Rm. Then

(4.1.4) 〈Ax, y〉 = 〈x,AT y〉 = yTAx = xTAT y.

In particular, if x, y ∈ Rn and A = In we obtain the dot product of x and y
as the matrix product of the row matrix xT with y:

(4.1.5) 〈x, y〉 = xT y.

Proof. Each term in (4.1.4) expands to
∑

i=1,...,m
j=1,...,n

aijxjyi. �

Corollary 4.1.10. Let A be the m × n matrix whose ith row is the row
matrix wi for i = 1, . . . ,m and let B be the n × k whose jth column is the
column matrix vj for j = 1, . . . , k. Then the ijth coordinate of AB is given
by

(AB)ij = 〈wTi , vj〉.

Proof. By definition, (AB)ij is the matrix product wivj . Apply (4.1.5). �

Corollary 4.1.11. Let A = [v1| . . . |vn] be m× n. Then the ijth coordinate
of ATA is 〈vi, vj〉. Thus TA is a linear isometric embedding if and only if
ATA = In.

Proof. Since the transpose of the ith row of AT is just vi, the ijth entry of
ATA is 〈vi, vj〉 by Corollary 4.1.10. So ATA = In if and only if 〈vi, vj〉 = δij
for all i, j. �

Of course, if m = n, the columns form an orthonormal set if and only
if they form an orthonormal basis of Rn. In this case, A is invertible, so
ATA = In ⇒ AT = A−1. Of course, a linear isometric embedding from Rn

to Rn is by definition a linear isometry. Summarizing the above information,
we obtain a characterization of the linear isometries of Rn.

Theorem 4.1.12. Let A be n×n. Then the following conditions are equiv-
alent.

(1) TA : Rn → Rn is a linear isometry.
(2) The columns of A form an orthonormal basis of Rn.
(3) 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ Rn.
(4) A is invertible with inverse AT .
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Definition 4.1.13. An n × n matrix A such that TA is a linear isometric
embedding is called an orthogonal matrix. It is characterized by its columns
being an orthonormal basis of Rn. We write O(n) for the set of n × n
orthogonal matrices.

Proposition 4.1.14. O(n) is a subgroup of GLn(R).

Proof. For A,B ∈ O(n),

(AB)T = BTAT = B−1A−1 = (AB)−1,

so O(n) is closed under multiplication. Also, since AT = A−1, AAT = In.
But AAT = (AT )TAT , so AT satisfies Theorem 4.1.12, and hence lies in
O(n). So O(n) is closed under inverses. �

That last observation gives:

Corollary 4.1.15. Let A ∈ O(n). Then AT ∈ O(n), hence the rows of A
form an orthonormal basis of Rn.

Theorem 4.1.12 now gives:

Corollary 4.1.16. There is a group isomorphism

T : O(n)→ LIn
from the orthogonal group to the group of linear isometries of Rn, given by
T (A) = TA.

For any n× n matrix A, det(A) = det(AT ). We obtain the following.

Corollary 4.1.17. Let A ∈ O(n) then detA = ±1. We obtain a group
homomorphism

det : O(n)→ {±1}.
Its kernel is

SO(n) = {A ∈ O(n) : detA = 1},
a subgroup of O(n) called the n-th special orthogonal group.

Proof. Since In = ATA,

1 = det In = det(AT ) det(A) = det(A)2,

so detA = ±1. Kernels of homomorphisms are always subgroups. �

Recall the embedding ιn : Σn → GLn(R) of Lemma 3.4.3 given by

(4.1.6) ιn(σ) = [eσ(1)| . . . |eσ(n)],
the matrix whose i-th column is eσ(i). In particular, the columns of ιn(σ)
are obtained by permuting the columns of In and hence form an orthonor-
mal basis of Rn. Thus, ιn(σ) is an orthogonal matrix, and we obtain the
following.
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Corollary 4.1.18. The embedding ιn takes value in On, i.e., (4.1.6) gives
an embedding

ιn : Σn → On.

In particular, det(ιn(σ)) = ±1 for all σ ∈ Σn.

Definition 4.1.19. We write sgn : Σn → {±1} for the composite

Σn
ιn−→ O(n)

det−−→ {±1}.
Recall that a transposition is a permutation that interchanges two indices

and leaves all the others fixed.

Lemma 4.1.20. Let τ ∈ Σn be a transposition. Then sgn(τ) = −1. Thus
sgn : Σn → {±1} is onto. Its kernel is the alternating group An defined in
Definition 3.4.4.

Proof. ιn(τ) is obtained from the identity matrix by exchanging two columns.
So its determinant is − det In = −1. �

Remark 4.1.21. Using group theoretic analysis, one can show there is a
unique homomorphism s : Σn → {±1} taking each transposition to −1.
(See, e.g., [17, Proposition 3.5.8] for existence. Uniqueness follows becuase
the transpositions generate Σn [17, Corollary 3.5.6]). By Lemma 4.1.20, that
unique homomorphism coincides with the definition we’ve given of sgn.

However, the existence and uniqueness of s are often used in the proof that
det(AB) = detA detB. So care is needed to avoid circular arguments. The
reader is encouraged to read a careful development of the group theory and
determinant theory used here. The treatment of determinants, in particular,
is generally nonrigorous in elementary linear algebra courses.

Recall:

Definition 4.1.22. c ∈ R is an eigenvalue for the n × n matrix A if there
is a nonzero vector v with Av = cv. If c is an eigenvalue, the eigenspace of
(A, c) is the set of all vectors v with Av = cv. The eigenspace is a subspace
of Rn. Its elements are called eigenvectors of (A, c).

Lemma 4.1.23. Let c be a real eigenvalue for the orthogonal matrix A.
Then c = ±1.
Proof. Let v be a nonzero eigenvector for A, c. Then

〈v, v〉 = 〈Av,Av〉 = 〈cv, cv〉 = c2〈v, v〉.
Since v 6= 0, 〈v, v〉 6= 0, so c2 = 1. �

Another characterization of eigenvalues is that they are the roots of the
characteristic polynomial chA(x) of A. We shall discuss this further below.
Here, we note that orthogonal matrices may have nonreal eigenvalues, i.e.,

nonreal roots of chA(x). For instance

[
0 −1
1 0

]
has characteristic polynomial

x2 + 1 and hence has eigenvalues ±i.
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4.2. Gramm–Schmidt. Orthogonal matrices play a very important role
in both Euclidean and spherical geometry. Since the columns of an orthogo-
nal matrix form an orthonormal basis of Rn it will be worth our while to find
ways to produce orthonormal bases. One such method is called Gramm–
Schmidt orthogonalization. It will be very useful in our study of spherical
geometry below.

Algorithm 4.2.1 (Gramm–Schmidt orthogonalization). Let v1, . . . , vk be
linearly independent in Rn We first give an inductive procedure to obtain
an orthogonal set w1, . . . , wk such that span(v1, . . . , vi) = span(w1, . . . , wi)
for i = 1, . . . , k.

We then replace each wi with zi = wi
‖wi‖ obtaining an orthonormal set

z1, . . . , zk such that span(v1, . . . , vi) = span(z1, . . . , zi) for i = 1, . . . , k. The
end result is called the Gramm–Schmidt orthogonalization of v1, . . . , vk.
Note in particular that z1, . . . , zk is an orthonormal basis for span(v1, . . . , vk).
In addition it respects the particular nest of subspaces span(v1, . . . , vi) for
i = 1, . . . , k.

We give the procedure here and show in the proposition below that it
behaves as stated.

We define w1, . . . , wk inductively. We first set w1 = v1. Suppose now that
we have inductively found w1, . . . , wi for 1 ≤ i ≤ k − 1 such that:

(1) w1, . . . , wi is an orthogonal set.
(2) span(v1, . . . , vj) = span(w1, . . . , wj) for j = 1, . . . , i.

We now give the procedure for finding wi+1. We show in the proposition
below that (1) and (2) remain true with i replaced by i+ 1, and hence the
process may continue.

In particular, we set

(4.2.1) wi+1 = vi+1 −
〈w1, vi+1〉
〈w1, w1〉

w1 − · · · −
〈wi, vi+1〉
〈wi, wi〉

wi.

Proposition 4.2.2. The Gramm–Schmidt process works as stated: given
w1, . . . , wi satisfying (1) and (2), and choosing wi+1 by the formula (4.2.1),
the resulting set w1, . . . , wi+1 satisfies (1) and (2) with i replaced by i+ 1.

Proof. Since w1, . . . , wi is an orthogonal set,

〈wj , wi+1〉 = 〈wj , vi+1〉 −
〈wj , vi+1〉
〈wj , wj〉

〈wj , wj〉 = 0

for 1 ≤ j ≤ i by bilinearity and the fact that 〈wj , wm〉 = 0 for j 6= m ∈
{1, . . . , i}. It suffices to show that span(v1, . . . , vi+1) = span(w1, . . . , wi+1):
since v1, . . . , vi+1 are linearly independent, this forces w1, . . . , wi+1 to be lin-
early independent, and hence wi+1 6= 0, making w1, . . . , wi+1 an orthogonal
set.

By the inductive assumption of (2), span(w1, . . . , wi) = span(v1, . . . , vi).
By Lemma 1.5.5, span(w1, . . . , wi, x) = span(v1, . . . , vi, x) for any vector x.
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In particular,

(4.2.2) span(w1, . . . , wi, vi+1) = span(v1, . . . , vi+1).

By (4.2.1), wi+1 ∈ span(w1, . . . , wi, vi+1), so Lemma 1.5.5 gives

span(w1, . . . , wi+1) ⊂ span(v1, . . . , vi+1).

But (4.2.1) also gives vi+1 ∈ span(w1, . . . , wi+1), which also includes v1, . . . , vi
by induction. So

span(v1, . . . , vi+1) ⊂ span(w1, . . . , wi+1). �

Corollary 4.2.3. Every subspace W ⊂ Rn has an orthonormal basis.

Proof. Start with a basis v1, . . . , vk of W and apply the Gramm–Schmidt
process. The resulting set z1, . . . , zk is orthonormal, and hence linearly in-
dependent. Its span is span(v1, . . . , vk) =W . �

Remark 4.2.4. There is nothing sacred about restricting attention to Rn

in the above. The Gramm–Schmidt process works precisely as stated for
linearly independent vectors v1, . . . , vk in any inner product space V (Def-
inition 2.3.9). In particular, every finite-dimensional inner product space
admits an orthonormal basis.

4.3. Orthogonal complements. Lemma 4.1.3 has important applications
to both theoretical and practical questions. We shall use it repeatedly. We
shall now use it to study orthogonal complements, which are also important
for both theoretical and practical questions.

Definition 4.3.1. Let S ⊂ Rn be any subset. We write S⊥ for the set of
vectors orthogonal to every element of S:

S⊥ = {v ∈ Rn : 〈v, s〉 = 0 for all s ∈ S}.
By the bilinearity of the inner product, S⊥ is a subspace of Rn. We will

be particularly interested in V ⊥, where V is a subspace of Rn.

Definition 4.3.2. Let V be a subspace of Rn. Then V ⊥ is called the
orthogonal complement of V .

Lemma 4.3.3. Let S = {v1, . . . , vk}. Then S⊥ is the orthogonal comple-
ment of span(v1, . . . , vk). In particular, if v1, . . . , vk is a basis for V , then
V ⊥ = {v1, . . . , vk}⊥, the set of vectors orthogonal to each of v1, . . . , vk.

Proof. Since {v1, . . . , vk} ⊂ span(v1, . . . , vk),

span(v1, . . . , vk)
⊥ ⊂ {v1, . . . , vk}⊥.

The reverse inclusion follows from the bilinearity of the inner product: if a
vector is orthogonal to each of v1, . . . , vk, then it must be orthogonal to any
linear combination of v1, . . . , vk. �

The following algorithm is useful both theoretically and practically.



A COURSE IN LOW-DIMENSIONAL GEOMETRY 107

Lemma 4.3.4. Let V be a subspace of Rn and let v1, . . . , vk be an orthonor-
mal basis for V (obtained, for instance, by applying the Gram–Schmidt pro-
cess to an arbitrary basis of V ). Extend it to a basis v1, . . . , vk, wk+1, . . . , wn
of Rn (e.g., by inductive application of Lemma 1.5.6(3)). Now apply the
Gram–Schmidt process to v1, . . . , vk, wk+1, . . . , wn, respecting the stated or-
der of the basis. Note this does not change the first k vectors, v1, . . . , vk, as
they are already orthonormal. We obtain an orthonormal basis v1, . . . , vn of
Rn, where v1, . . . , vk is the original orthonormal basis of V .

Then under this procedure, vk+1, . . . , vn is a basis for V ⊥.

Proof. Let v ∈ Rn By Lemma 4.1.3, we may write

v = 〈v, v1〉v1 + · · ·+ 〈v, vn〉vn.
By Lemma 4.3.3, v ∈ V ⊥ if and only if 〈v, vi〉 = 0 for i = 1, . . . , k. Thus,
v ∈ V ⊥ if and only if v ∈ span(vk+1, . . . , vn). �

Corollary 4.3.5. Let V be a subspace of Rn. Then dimV + dimV ⊥ = n.
Moreover (V ⊥)⊥ = V .

Proof. For the last statement,

(V ⊥)⊥ = {vk+1, . . . , vn}⊥

= span(v1, . . . , vk) = V

by the proof given above. �

Corollary 4.3.6. Let V be a subspace of Rn Let v1, . . . , vk be an orthonor-
mal basis of V and w1, . . . , wl an orthonormal basis of V ⊥. Then

v1, . . . , vk, w1, . . . , wl

is an orthonormal basis of Rn.

Proof. By the orthogonality of V and V ⊥, v1, . . . , vk, w1, . . . , wl is an or-
thonormal set. By Corollary 4.3.5, it has n elements. �

Corollary 4.3.7. Let V be a subspace of Rn. Then each y ∈ Rn may be
written uniquely in the form y = v + w with v ∈ V and w ∈ V ⊥. Indeed, if
v1, . . . , vk is an orthonormal basis for V and w1, . . . , wn−k is an orthonormal
basis for V ⊥ there are linear functions πV : Rn → V and πV ⊥ : Rn → V ⊥

given by

πV (y) = 〈y, v1〉v1 + · · ·+ 〈y, vk〉vk,(4.3.1)

πV ⊥(y) = 〈y, w1〉w1 + · · ·+ 〈y, wn−k〉wn−k,
called the orthogonal projections of Rn onto V and V ⊥, respectively, and

(4.3.2) y = πV (y) + πV ⊥(y) for all y ∈ Rn.

These projections are independent of the choices of orthonormal bases for V
and V ⊥ and satisfy

πV |V = idV πV ⊥ |V ⊥ = idV ⊥(4.3.3)
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πV |V ⊥ = 0 πV ⊥ |V = 0.(4.3.4)

In consequence, we have

ImπV = V ImπV ⊥ = V ⊥(4.3.5)

kerπV = V ⊥ kerπV ⊥ = V.(4.3.6)

Finally,

πV ◦ πV = πV πV ⊥ ◦ πV ⊥ = πV ⊥ .(4.3.7)

Proof. The maps in (4.3.1) are linear by the bilinearity of the inner product.
(4.3.3) is immediate from Lemma 4.1.3, and Corollary 4.3.6 gives (4.3.2).
This gives the desired decomposition y = v + w with v ∈ V and w ∈ V ⊥.

(4.3.4) follows since 〈vi, wj〉 = 0 for i = 1, . . . , k and j = 1, . . . , n − k.
This in turn gives the uniqueness of the decomposition y = v+w as follows:
let y = v + w with v ∈ V and w ∈ V ⊥. Then

(4.3.8) πV (y) = πV (v) + πV (w) = v + 0 = v,

as πV restricts to the identity on V and the zero map on V ⊥. Similarly,
πV ⊥(y) = w. This shows both the uniqueness of the decomposition y = v+w
and the independence of the projection maps from the choices of bases. The
remaining results follow from this, also. �

Corollary 4.3.7 can be partially restated in terms of direct sum decompo-
sition.

Corollary 4.3.8. Let V be a subspace of Rn. Then there are inverse iso-
morphisms

ι : V ⊕ V ⊥ ∼=−→ Rn, ι(v, w) = v + w,

π : Rn
∼=−→ V ⊕ V ⊥, π(y) = (πV (y), πV ⊥(y)).

Proof. Corollary 4.3.7 shows ι ◦ π = idRn . And (4.3.8) and its analogue for
πV ⊥ show that π ◦ ι = idV⊕V ⊥ . �

In studying linear isometries, orthogonal complements are extremely im-
portant. A key idea in linear algebra is invariant subspaces.

Definition 4.3.9. Let A be an n×n matrix. An invariant subspace of A (or
of TA) is a subspace V ⊂ Rn such that Av ∈ V for all v ∈ V , i.e., TA(V ) ⊂ V .
To save words, we will simply say V is A-invariant (or TA-invariant).

The simplest example of invariant subspaces comes from eigenvectors.

Lemma 4.3.10. A one-dimensional subspace span(v) is A-invariant if and
only if v is an eigenvector for (A, c) for some c.

Proof. span(v) is one-dimensional if and only if v 6= 0. Since A · av = aAv,
span(v) is A-invariant if and only if Av ∈ span(v), i.e., if and only if Av = cv
for some c ∈ R. �
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More generally, of course, the eigenspace of (A, c) is A-invariant for any
eigenvalue c of A. Lemma 4.3.10 can be used to find additional invariant
subspaces if A is orthogonal. We shall make use of this in studying O(3),
below.

Lemma 4.3.11. Let V be an invariant subspace for an orthogonal matrix
A. Then V ⊥ is A-invariant as well.

Proof. We first show that A(V ) = V , i.e., that the restriction of TA to V
carries V onto V . To see this, let v1, . . . , vk be an orthonormal basis of V .
Then Av1, . . . , Avk is an orthonormal set contained in V , and hence a basis
for V , as dimV = k. So the range of the restriction of TA to V is V .

This implies that for v ∈ V , A−1v ∈ V , so V is A−1-invariant as well.
Let w ∈ V ⊥. We wish to show Aw ∈ V ⊥ as well. Recall that A−1 is

orthogonal. Thus, for v ∈ V ,

〈v,Aw〉 = 〈A−1v,A−1Aw〉 = 〈A−1v, w〉 = 0,

as w ∈ V ⊥ and A−1v ∈ V . �

4.4. Applications to rank. The notion of orthogonal complement is use-
ful in studying nonorthogonal matrices as well. Recall the following.

Definition 4.4.1. Let A be m × n. Then kerTA = {x ∈ Rn : Ax = 0} is
called the null space of A, and may be denoted N(A).

Note that by Corollary 4.1.10, x ∈ N(A) if and only if x is orthogonal to
every column of AT . We obtain the following.

Lemma 4.4.2. Let A be m × n, then N(A) is the orthogonal complement
of the span of the columns of AT . Since the columns span the range of AT

we get

(4.4.1) N(A) = AT (Rm)⊥.

Thus, dimN(A) = n− rank(AT ), and hence rankA = rank(AT ).

In particular, this gives us an algorithm for finding a basis for {v1, . . . , vk}⊥
for v1, . . . , vk ∈ Rn: set A = [v1| . . . |vk] and then use Gauss elimination to
find a basis for N(AT ) = A(Rk)⊥, since (AT )T = A.

Since the rank of A is the dimension of the span of its columns, rankA
is the maximal number of linearly independent columns of A. Let A =
[v1, . . . , vn] and r = rankA. Suppose that vi1 , . . . , vir are linearly indepen-
dent and let B = [vi1 | . . . |vir ]. Then r = rankB = rank(BT ) so BT has
r linearly independent columns, hence B has r linearly independent rows.
Let C be the r × r matrix obtained from B by restricting to those r lin-
early independent rows. Then CT has rank r, hence so does C, hence C is
invertible. In particular detC 6= 0. We obtain:
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Corollary 4.4.3. Let A be m × n with r = rankA. Then we can throw
away some of the rows and columns of A to obtain an invertible r×r matrix.
Conversely, if A has such an r × r invertible submatrix, then rankA ≥ r.
Thus, rankA is the largest number r such that A has an invertible r × r
submatrix obtained by throwing away some of the rows and columns of A.

Proof. We prove the converse. If A has such a submatrix, C, and if B is
obtained from A by deleting the columns but not the rows, then B is an
m× r matrix r of whose rows are linearly independent. So rankB = r, and
and the columns of B are linearly independent. So A has at least r linearly
independent columns and rankA ≥ r. �

4.5. Invariant subspaces for linear isometries. For simplicity, we work
for the moment in Rn, though the result generalizes to an arbitrary finite-
dimensional inner product space.

Proposition 4.5.1. Let f : Rn → Rn be a linear isometry and let V be
an f -invariant subspace. Then V ⊥ is f -invariant by Lemma 4.3.11. Let
B′ = v1, . . . , vk be an orthonormal basis for V and let B′′ = w1, . . . , wn−k be
an orthonormal basis for V ⊥. Let B = v1, . . . , vk, w1, . . . , wn−k, a basis of
Rn by Corollary 4.3.6. Then

[f ]B =

[
[f |V ]B′ 0

0 [f |V ⊥ ]B′′

]
,

hence det[f ]B = det[f |V ]B′ det[f |V ⊥ ]B′′.

Proof. Simply apply the proof of Lemma 1.8.18, noting in this case that
X = 0, as V ⊥ is f -invariant. �

Proposition 4.5.2. Let f : Rn → Rn be linear and let B = v1, . . . , vn be an
orthonormal basis of Rn. Then f is a linear isometry if and only if [f ]B is
orthogonal.

Proof. We already know f is an isometry if and only if [f ] = [f ]E is or-
thogonal. But if B is orthonormal, then [I]EB = [v1| . . . |vn] is orthogonal.
[f ]B = [I]−1

EB[f ]E [I]EB. Since O(n) is a subgroup of GL(n,R), [f ]E is orthog-
onal if and only if [f ]B is orthogonal. �

We can generalize this to inner product spaces, and in process give a
different proof of Proposition 4.5.2. The point is that an inner product
space V has a norm and distance coming from the inner product in exactly
the same way the norm and distance come from the inner product in Rn:
‖v‖ =

√
〈v, v〉 and d(v, w) = ‖v−w‖. The properties of the Euclidean norm

and distance immediately generalize to this context, and Theorem 4.1.5
generalizes to the following.

Theorem 4.5.3. Let V and W be inner product spaces. Let v1, . . . , vn be
an orthonormal basis of V and let w1, . . . , wn be arbitrary. Let f : V → W
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be the unique linear function with f(vi) = wi for i = 1, . . . , n. Then the
following conditions are equivalent:

(1) f is an isometry, i.e., d(f(v), f(v′)) = d(v, v′) for all v, v′ ∈ V .
(2) ‖f(v)‖ = ‖v‖ for all v ∈ V .
(3) w1, . . . , wn is an orthonormal set.
(4) 〈f(v), f(v′)〉 = 〈v, v′〉 for all v, v′ ∈ V .

Proof. The proof of Theorem 4.1.5 generalizes word for word. �

Corollary 4.5.4. Let B = v1, . . . , vn be an orthonormal basis for the inner
product space V and let f : V → V be linear. Then f is an isometry if and
only if [f ]B is orthogonal.

Proof. Let ΦB : Rn → V be the isomorphism induced by B. Then ΦB
and Φ−1

B are isometries by Theorem 4.5.3. Thus, if f is an isometry, so is

T = Φ−1
B ◦ f ◦ΦB, hence the matrix of T is orthogonal. But the matrix of T

is [f ]B.
The converse follows similarly, as if T is an isometry, so is

f = ΦB ◦ T ◦ Φ−1
B . �
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5. Isometries of R2

5.1. Reflections. Orthonormal basis is the key idea needed to understand
reflections. We may reflect across a line in R2, a plane in R3, etc. In this
section, we study reflections across lines in R2.

Let ℓ = x + span(y) be a line in Rn. Then span(y) is a line through the
origin. As such, it contains exactly two unit vectors, v = y

‖y‖ and −v. These
may be thought of as giving orientations to span(y) = span(v), as

span(v) = {tv : t ∈ R}
gives a parametrization of span(v) in which v appears on the positive side of
0 and −v on the negative. These positions reverse if we parametrize span(v)
as {t(−v) : t ∈ R}. Formally:

Definition 5.1.1. An orientation for a line ℓ = x+span(y) in Rn is a choice
of unit vector v ∈ span(y), i.e., a unit vector parallel to ℓ.

So every line has exactly two orientations. An orientation of a line may
be thought of as a choice of orthonormal basis for span(y). The same idea
may be used to orient a plane in Rn, except we must then use an equivalence
class of orthonormal bases. We will discuss this later. The following trick
is useful for extending an orthonormal basis of span(y) to an orthonormal
basis of the plane.

Definition 5.1.2. For y = [ y1y2 ] ∈ R2, write y⊥ =
[−y2
y1

]
.

This does not conflict with the notation {y}⊥ = span(y)⊥, and they are
certainly related:

Lemma 5.1.3. For y 6= 0, y and y⊥ are orthogonal, and

span(y⊥) = span(y)⊥,

the orthogonal complement of span(y). Also, ‖y‖ = ‖y⊥‖ and the slope of
span(y⊥) is y1

−y2 , the negative reciprocal of the slope of span(y).

Proof. y⊥ is nonzero and orthogonal to y. so span(y⊥) is a 1-dimensional
subspace of {y}⊥ = span(y)⊥, which, by Corollary 4.3.5 is 1-dimensional.
The rest is straightforward. �

Note that if v = y
‖y‖ , then v

⊥ = y⊥

‖y⊥‖ gives one of the two orientations for

span(y⊥). In particular, we have the following.

Corollary 5.1.4. For any unit vector v ∈ R2 there are exactly two unit
vectors orthogonal to it: ±v⊥. Thus, there are exactly two orthonormal
bases whose first vector is v: v, v⊥ and v,−v⊥.

Back to lines, we can make the following definition.

Definition 5.1.5. Let ℓ = x + span(y) be a line in R2. A unit normal N
for ℓ is a unit vector N with span(N) = span(y)⊥.
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Corollary 5.1.4 gives the following.

Corollary 5.1.6. A line ℓ = x+span(y) in R2 has exactly two unit normals:
±v⊥, with v = y

‖y‖ . Moreover, for either choice of unit normal N , B = v,N

is an orthonormal basis of R2.

We can use these orthonormal bases to obtain a grid based on the line ℓ.

Theorem 5.1.7. Let ℓ = x+ span(v) be a line in R2 with v a unit vector.
Let N be a unit normal for ℓ. Then every y ∈ R2 may be written uniquely
as the sum

y = (x+ sv) + tN

of a point x+sv ∈ ℓ and a point tN ∈ span(N) = span(v)⊥. The coordinates
s and t are affine functions R2 → R:

s(y) = 〈y − x, v〉(5.1.1)

t(y) = 〈y − x,N〉.
Moreover, the value t(y) is independent of the choice of x ∈ ℓ (but s(y) is
not).

•y

•

〈y−x,N〉N

WW

ℓ

•

〈y−x,v〉v

77

x

Proof. If x = 0 this is just a restatement of Lemma 4.1.3. If x 6= 0, then
0 ∈ τ−x(ℓ) = span(v), and we get

τ−x(y) = 〈τ−x(y), v〉v + 〈τ−x(y), N〉N.
So

y = τxτ−x(y) = x+ 〈τ−x(y), v〉v + 〈τ−x(y), N〉N
= x+ sv + tN,

with s = s(y) and t = t(y) as in (5.1.1), as τ−x(y) = y − x. Unique-
ness of s and t follow from the uniqueness of coefficients after applying τ−x
(Lemma 4.1.3). s and t are affine as each is the composite of a linear function
and a translation.

To see that t is independent of the choice of x, note that any other point
z ∈ ℓ has the form z = x+ cv for some c ∈ R, and hence

〈y − z,N〉 = 〈y − x− cv,N〉 = 〈y − x,N〉 − c〈v,N〉 = 〈y − x,N〉,
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as 〈v,N〉 = 0. �

This allows us to define the reflection of R2 across ℓ.

Definition 5.1.8. Let ℓ = x+ span(v) be a line in R2 with v a unit vector.
Let N be a unit normal for ℓ. The reflection, σℓ, of R2 across ℓ takes
y = (x+ sv) + tN to (x+ sv)− tN . Thus,

σℓ(y) = y − 2t(y)N = y − 2〈y − x,N〉N,(5.1.2)

with t(y) = 〈y − x,N〉 as studied in Theorem 5.1.7.
The formula (5.1.2) (and therefore the function σℓ) is independent of the

choice of unit normal: the only other choice would be −N , and

〈y − x,−N〉(−N) = 〈y − x,N〉N
by the bilinearity of the inner product.

We call ℓ the axis of σℓ and call σℓ the reflection with axis ℓ.

(5.1.3) •y

•

〈y−x,N〉N

WW

−〈y−x,N〉N

��

ℓ

•

〈y−x,v〉v

77

x • σℓ(y)

The following is immediate from the definition. A function whose square
is the identity is called an involution.

Lemma 5.1.9. σℓ ◦ σℓ = id, so reflections are involutions.

Reflections give us a new family of isometries.

Proposition 5.1.10. Let ℓ be a line in R2. Then σℓ is an isometry.

Proof. Let ℓ = w+ span(v) with v a unit vector and and N a unit normal.
Let x, y ∈ R2. Then,

x = w + 〈x− w, v〉v + 〈x− w,N〉N,
y = w + 〈y − w, v〉v + 〈y − w,N〉N.

So

d(σℓ(x), σℓ(y)) = ‖
(
w + 〈y − w, v〉v − 〈y − w,N〉N

)
(5.1.4)

−
(
w + 〈x− w, v〉v − 〈x− w,N〉N

)
‖

= ‖
(
〈y − w, v〉 − 〈x− w, v〉

)
v

−
(
〈y − w,N〉 − 〈x− w,N〉

)
N‖

= ‖〈y − x, v〉v − 〈y − x,N〉N‖.
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Because v,N is an orthonormal basis, ‖av+bN‖ =
√
a2 + b2 for any a, b ∈ R

(Corollary 4.1.6). In particular, the last line of (5.1.4) is equal to

‖〈y − x, v〉v + 〈y − x,N〉N‖,
which is just ‖y − x‖ by Lemma 4.1.3. �

We now have two infinite families of isometries of R2: translations and
reflections. These two families differ in two important ways. First, transla-
tions preserve orientation of the plane (to be discussed below) and reflections
reverse it. Second, translations have no fixed-points and reflections do have
fixed-points.

Definition 5.1.11. Let α : X → X be a function. The fixed-point set, Xα,
of α is

Xα = {x ∈ X : α(x) = x}.
We leave it to the reader to show (Rn)τx = ∅ for all 0 6= x ∈ Rn.

Lemma 5.1.12. Let ℓ be a line in R2. Then

(R2)σℓ = ℓ,

i.e., the fixed-point set of σℓ is precisely ℓ.

Proof. Let ℓ = x + span(v) with v a unit vector. Let N be a unit normal
for ℓ. From the definition of σℓ we see σℓ(y) = y if and only if 〈y−x,N〉 = 0,
and this holds if and only if y−x ∈ span(v) = {N}⊥. But that is equivalent
to saying y ∈ ℓ. �

The output of Theorem 5.1.7 is useful as it shows that the complement
of ℓ in R2 is the union of two convex pieces.

Corollary 5.1.13. Let ℓ = x+ span(v) be a line in R2 with v a unit vector
and N a unit normal. Let

c = 〈x,N〉.
Then

(5.1.5) ℓ = {y ∈ R2 : 〈y,N〉 = c} = {y ∈ R2 : 〈y − x,N〉 = 0}.
Define the positive and negative parts with respect to N of the complement

of ℓ to be

(R2 − ℓ)+ = {y ∈ R2 : 〈y,N〉 > c} = {y ∈ R2 : 〈y − x,N〉 > 0}
(R2 − ℓ)− = {y ∈ R2 : 〈y,N〉 < c} = {y ∈ R2 : 〈y − x,N〉 < 0}.

In particular, these depend on the orientation of span(v)⊥ given by N .
Then each of these parts is convex, and their union is R2 − ℓ, the com-

plement of ℓ in R2. If y and z are in different parts, the line segment from
y to z intersects ℓ.

Finally, the reflection σℓ interchanges these two pieces.
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Proof. To establish (5.1.5), note that

〈x+ tv,N〉 = 〈x,N〉+ t〈v,N〉 = 〈x,N〉 = c,

as v is orthogonal to N . Moreover, if 〈y−x,N〉 = 0, then y−x is orthogonal
to N , and hence lies in span(v).

The rest is immediate from Theorem 5.1.7, as t : R2 → R is affine. The
last sentence follows as σℓ changes the sign of t. �

The following will prove useful.

Lemma 5.1.14. Let ℓ be a line in R2 and let m = τx(ℓ) for x ∈ R2. Then

σm = τxσℓτ−x.

Proof. This is equivalent to showing σmτx = τxσℓ. Let ℓ = z + span(v)
with v a unit vector. Then m = τx(z) + span(v), so the two lines have the
same unit normal, N = v⊥. Let y ∈ R2 and write

y = z + sv + tN.

Then

σmτx(y) = σm(τx(z) + sv + tN)

= τx(z) + sv − tN
= x+ (z + sv − tN)

= τx(σℓ(y)). �

We now introduce the classical Euclidean notion of dropping a perpen-
dicular.

Definition 5.1.15. The lines ℓ = x + span(y) and m = z + span(w) are
perpendicular (written ℓ ⊥ m) if y and w are orthogonal, i.e., if span(w) =
span(y⊥). We say a nonzero vector z is perpendicular to ℓ (z ⊥ ℓ) if z is
orthogonal to y.

Corollary 5.1.16. For any line ℓ = x+ span(y) and any z ∈ R2 there is a
unique line through z perpendicular to ℓ: the line z + span(y⊥).

This allows us to define the perpendicular bisector of a line segment.

Definition 5.1.17. Let x 6= y ∈ R2. The perpendicular bisector of the
segment xy is the line z+span((y−x)⊥) with z = x+y

2 , the midpoint of the
line segment xy.

This is perpendicular to ←→xy by Corollary 2.1.8 and bisects xy as it passes
through the midpoint.

Proposition 5.1.18. Let ℓ be a line in R2 and let y 6∈ ℓ. Then ℓ is the
perpendicular bisector of yσℓ(y).

Conversely if x 6= y ∈ R2 and if ℓ is the perpendicular bisector of xy, then
σℓ exchanges x and y.
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Proof. Let ℓ = w + span(v) with v a unit vector. Let N be a unit normal
for ℓ and let y 6∈ ℓ. Then

y = w + 〈y − w, v〉v + 〈y − w,N〉N,
so the midpoint, z, of yσℓ(y) is given by

z =
y + σℓ(y)

2
= w + 〈y − w, v〉v,

which lies in ℓ. In particular, ℓ = z + span(v). Moreover,

y − σℓ(y) = 2〈y − w,N〉N,
so (y − σℓ(y))⊥ is a multiple of v, and hence ℓ is the perpendicular bisector

of yσℓ(y), as claimed.
Conversely, let x 6= y ∈ R2, let z = x+y

2 and let v be a unit vector
orthogonal to y− x, so that ℓ = z+ span(v) is the perpendicular bisector of
xy. Say N = y−x

‖y−x‖ . Then

x = z − tN
y = z + tN

where t = ‖y−x‖
2 . So σℓ does exchange x and y. �

There is an important relationship between reflections and translations:
the product of two reflections through parallel lines is a translation, and
every translation can be obtained that way. Let us first define the directed
distance between two parallel lines. Recall that two lines ℓ andm are parallel
if they are translations of the same line through the origin.

Definition 5.1.19. Let ℓ = x + span(v) and m = y + span(v) be parallel
lines in R2. The directed distance from ℓ to m is the vector obtained as
follows: let n be any line perpendicular to ℓ (and hence also to m). Then
the directed distance from ℓ to m is n ∩ m − n ∩ ℓ, i.e., the vector whose
initial point is n ∩ ℓ and whose endpoint is n ∩m.

Proposition 5.1.20. Let ℓ ‖ m. Then the directed distance from ℓ to m
is the unique vector w ⊥ ℓ such that m = τw(ℓ). In particular, the directed
distance is independent of the choice of the line n perpendicular to ℓ.

Proof. Let n ⊥ ℓ and let x = n ∩ ℓ. Since x ∈ ℓ, ℓ = x+ span(v) for a unit
vector v ‖ ℓ. Since x ∈ n and n ⊥ ℓ, n = x + span(N), where N is a unit
normal for ℓ. In particular, n ∩m = x+ tN for some t. So

n ∩m− n ∩ ℓ = (x+ tN)− x = tN

is perpendicular to ℓ, and

τtN (ℓ) = τtN (x+ span(v)) = (x+ tN) + span(v) = m,

as x+ tN ∈ m.
For the uniqueness, if w ⊥ ℓ, then w = uN for some u. With n and x as

above, τw(ℓ) = (x+uN)+span(v). If this is equal tom = (x+tN)+span(v),
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then (x+tN)−(x+uN) ∈ span(v), i.e., (t−u)N ∈ span(v). Since 〈v,N〉 = 0,
t− u = 0, and uniqueness is achieved. �

A perhaps simpler geometric argument for the independence part of the
above is as follows:

Second proof that the directed distance between parallel lines is
independent of the choice of the perpendicular n. Write

ℓ = x+ span(v) and m = y + span(v)

with v a unit vector. Let N be a unit normal for ℓ (and hence for m). Let
n ⊥ ℓ and let w = n ∩ ℓ. Then n = w + span(N).

•

m

•

sv

77

•

ℓ

n

w

•

n′
sv

77

x

We have an alternative perpendicular to ℓ given by n′ = x+span(N). By
the prescription above, it suffices to show that

n ∩m− w = n′ ∩m− x.(5.1.6)

Since w ∈ ℓ, we may write w = x + sv for some s ∈ R. We may and shall
assume s 6= 0. In particular, w = τsv(x). By (5.1.6), it suffices to show
n ∩m = n′ ∩m+ sv = τsv(n

′ ∩m).
Since sv ‖ m, τsv(m) = m by Proposition 2.1.14, so τsv(n

′ ∩m) ∈ m. So
τsv(n

′ ∩m) = τsv(n
′) ∩m. But

τsv(n
′) = (x+ sv) + span(N) = w + span(N) = n,

and the result follows. �

We can now compute the composition of two reflections in parallel lines.

Proposition 5.1.21. Let ℓ and m be parallel lines in R2. Then σmσℓ is
the translation by twice the directed distance from ℓ to m. In particular, if
v ⊥ ℓ and m = τv(ℓ), then σmσℓ = τ2v.
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Proof. We may assume ℓ 6= m, as we already know reflections are involu-
tions. Write ℓ = x+ span(v) with v a unit vector. Let N be a unit normal
for ℓ. Let n = x+ span(N) and let y = n ∩m. Then m = y + span(v) and
it suffices to show

σmσℓ = τ2(y−x).(5.1.7)

Let z ∈ R2. Then

σmσℓ(z) = σm(z − 2〈z − x,N〉N)

= z − 2〈z − x,N〉N − 2〈z − 2〈z − x,N〉N − y,N〉N
= z − 2〈z − x,N〉N − 2〈z − y,N〉N + 4〈z − x,N〉〈N,N〉N
= z + 2〈(z − x)− (z − y), N〉N
= z + 2〈y − x,N〉N.

Since y ∈ n = x+ span(N), y − x = cN for some c, hence

〈y − x,N〉N = 〈cN,N〉N = c〈N,N〉N = cN = y − x,
so (5.1.7) follows. �

Corollary 5.1.22. Let 0 6= w ∈ R2. Let ℓ be any line perpendicular to
w, say ℓ = x + span(w⊥). Let m = τw

2
(ℓ) = (x + w

2 ) + span(w⊥) and let

n = τ−w
2
(ℓ) = (x− w

2 ) + span(w⊥). Then

τw = σmσℓ = σℓσn.

The characterization of line segments in terms of distance given in Propo-
sition 2.3.8 has been of considerable help in understanding isometries. We
have a similarly useful characterization of perpendicular bisectors in terms
of distance.

Proposition 5.1.23. Let x 6= y ∈ R2 and let ℓ be the perpendicular bisector
of xy. Then

ℓ = {z ∈ R2 : d(x, z) = d(y, z)}.(5.1.8)

Proof. One direction is easy: if z ∈ ℓ, then
d(x, z) = d(σℓ(x), σℓ(z)) (σℓ is an isometry)

= d(y, z),

by Proposition 5.1.18 and Lemma 5.1.12.
Thus, suppose z ∈ R2 with d(x, z) = d(y, z). Suppose, by contradiction

that z 6∈ ℓ. By construction, x and y are on opposite sides of ℓ under
the decomposition of Corollary 5.1.13. Say x and z are in (R2 − ℓ)+ and
y ∈ (R2 − ℓ)−. By Corollary 5.1.13, the line segment xz is contained in
(R2 − ℓ)+, while yz crosses ℓ. Say yz ∩ ℓ = w.

d(x, z) = d(y, z) (by assumption)

= d(y, w) + d(w, z) (Proposition 2.3.8)
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x

z
ℓ w

σℓ(z)

y

= d(σℓ(y), σℓ(w)) + d(w, z) (reflections are isometries)

= d(x,w) + d(w, z),

as σℓ exchanges x and y, and w lies on ℓ, the fixed-point set of σℓ. But
now Proposition 2.3.8 forces w to be on xz, contradicting that xz doesn’t
intersect ℓ. So z ∈ ℓ as claimed. �

The following is now useful for congruence proofs such as the side-side-side
theorem.

Corollary 5.1.24. Let x 6= y ∈ R2 and let z 6= w ∈ R2 with d(x, z) = d(y, z)
and d(x,w) = d(y, w). Let ℓ be the unique line containing z and w. Then ℓ
is the perpendicular bisector of xy and hence σℓ interchanges x and y.

And here is an illustration of its use in Euclidean geometry. We shall not
discuss angle measure until Section 5.4. All we need for the discussion here is
that unsigned angle measure is preserved by isometries (Proposition 5.4.9).

Proposition 5.1.25 (Pons asinorum). Let △ABC be a triangle with two
sides of equal length. Say d(A,B) = d(A,C).

A

B
M

ℓ

C

Then the angles opposite these two sides have equal (unsigned) measure.

Proof. Note that by Lemma 2.4.3, isometries preserve line segments, so if
α is an isometry, then α(△ABC) = △α(A)α(B)α(C). So our notion of
congruence via isometries is compatible with Euclidean geometry.

Let M be the midpoint of BC. Then

d(M,B) = d(M,C) =
1

2
d(B,C).

So M lies on the perpendicular bisector of BC (in fact, it lies there by
definition of the perpendicular bisector). Since d(A,B) = d(A,C), A also



A COURSE IN LOW-DIMENSIONAL GEOMETRY 121

lies on the perpendicular bisector. So the unique line ℓ containing A and M
is the perpendicular bisector. So σℓ interchanges B and C.

Since A ∈ ℓ, σℓ fixes A. Since σℓ is an isometry, it gives a congruence
from △ABC to itself that fixes A and exchanges B and C. So it exchanges
the angles ∠ABC and ∠ACB. We shall show in Proposition 5.4.9, that
isometries preserve angle measure. So ∠ABC and ∠ACB have the same
measure. �

5.2. Trigonometric functions. We develop the basic properties of trig
functions here as they are essential to studying the linear isometries of R2.

A key property of the trigonometric functions is the following, which is
often presented as some form of revealed truth. We shall derive it here,
along with the other important trig identities. Unless otherwise stated, all
angle measures in this book will be in radians.

Theorem 5.2.1. Let θ, φ ∈ R. Then

cos(θ + φ) = cos θ cosφ− sin θ sinφ(5.2.1)

sin(θ + φ) = cos θ sinφ+ sin θ cosφ.(5.2.2)

To prove this we will exploit the relationship between the trig functions
and complex exponentials. So we shall assume some basic material on real
and complex power series. The reader is welcome to skip this section and
simply apply the above theorem at will.

First, we define the sine and cosine functions by their Taylor series. We
will then derive their other properties from this definition.

Definition 5.2.2. For x ∈ R,

cos(x) =

∞∑

k=0

(−1)k x
2k

(2k)!

sin(x) =

∞∑

k=0

(−1)k x2k+1

(2k + 1)!
.

By the ratio test, the radius of convergence for these series is ∞, and
therefore we can differentiate them term by term on all of R:

Lemma 5.2.3. d
dx

cosx = − sinx and d
dx

sinx = cosx.

We now make the connection to the complex exponential. Complex num-
bers have the form z = x + iy with x, y ∈ R and may be identified with
the points (x, y) of the plane. There is an important relationship between
complex numbers and polar coordinates we will describe below. Write C for
the complex numbers. We define functions Re : C → R and Im : C → R

by Re(x + iy) = x and Im(x + iy) = y for x, y ∈ R. Thus, Re and Im
correspond to the coordinate projections of R2 onto R. We define addition
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and multiplication in the complex numbers as follows. For z = a + bi and
w = c+ di with a, b, c, d ∈ R, we set

z + w = (a+ c) + (b+ d)i(5.2.3)

zw = (ac− bd) + (ad+ bc)i.(5.2.4)

We identify R with the subring {a + 0i : a ∈ R}. Note that addition in C

corresponds to vector addition in R2 and that multiplication of a complex
number by a real number corresponds to scalar multiplication in R2. The
multiplication rule (5.2.4) is then forced by distributivity and the property
that i2 = −1, where i = 0 + 1i.

The following is straightforward.

Proposition 5.2.4. C is a commutative ring:

(1) Addition is commutative and associative with identity element 0. Ev-
ery element has an additive inverse.

(2) Multiplication is commutative and associative with identity element
1.

(3) The distributive law holds: z(w1+w2) = zw1+zw2 for all z, w1, w2 ∈
C.

In fact, C is a field, meaning that in addition to being a commutative ring,
every nonzero element has a multiplicative inverse. To show this, define the
complex conjugate z̄ of z = a+ bi, a, b ∈ R, to be z̄ = a− bi. The following
is easily verified.

Lemma 5.2.5. For z, w ∈ C,

z + w = z̄ + w̄(5.2.5)

zw = z̄w̄.(5.2.6)

For z = a+ bi, a, b ∈ R,

zz̄ = a2 + b2,(5.2.7)

so identifying z with the vector (a, b) ∈ R2, ‖z‖ =
√
zz̄. We write |z| =

√
zz̄

and call it the modulus of z. Since both complex conjugation and the square
root are product-preserving, |zw| = |z||w|. Finally,

R = {z ∈ C : z = z̄}.

Corollary 5.2.6. C is a field. For 0 6= z ∈ C, z−1 = z̄
zz̄
.

Proof. The key point is that z̄
zz̄

makes sense: zz̄ = a2+ b2 is a positive real

number for z 6= 0, so it has a multiplicative inverse 1
zz̄

in R, and hence also
in C. So

z ·
(
z̄ · 1

zz̄

)
= 1. �
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Power series in C follow the same rules as power series in R. They have
a radius of convergence, calculated in terms of the distance in R2, that can
be found by the ratio test.

Definition 5.2.7. The complex exponential function is given by

ez =
∞∑

n=0

zn

n!

for z ∈ C.

By the ratio test, the radius of convergence for ez is ∞ so ez is defined
everywhere. The trig functions are obtained by restricting the complex
exponential to the pure imaginary axis.

Theorem 5.2.8. Let θ ∈ R. Then

eiθ = cos θ + i sin θ.(5.2.8)

Proof.

eiθ =
∞∑

n=0

in
θn

n!
.

We need to keep track of the powers of i. i2 = −1, i3 = −i, i4 = 1, i5 = i,
and the pattern repeats: for each k ≥ 0, i4k = 1, i4k+1 = i, i4k+2 = −1,
i4k+3 = −i. The even powers are ±1 and the odd powers are ±i. Specifically,
i2ℓ = (i2)ℓ = (−1)ℓ and therefore i2ℓ+1 = (−1)ℓi.

Collecting terms, we have

eiθ =

∞∑

ℓ=0

i2ℓ
θ2ℓ

(2ℓ)!
+

∞∑

ℓ=0

i2ℓ+1 θ2ℓ+1

(2ℓ+ 1)!

=
∞∑

ℓ=0

(−1)ℓ θ
2ℓ

(2ℓ)!
+ i

∞∑

ℓ=0

(−1)ℓ θ2ℓ+1

(2ℓ+ 1)!

= cos θ + i sin θ. �

We shall make use of the following basic result from algebra. See [5] or
[17] for a proof.

Proposition 5.2.9 (Binomial theorem). Let z, w ∈ C and n ≥ 1. Then

(z + w)n =

n∑

k=0

(
n

k

)
zn−kwk,(5.2.9)

where
(
n
k

)
= n!

k!(n−k)! is an integer for 0 ≤ k ≤ n.
In fact, the theorem holds for z, w in any commutative ring. We deduce

a key property of the complex exponential.

Theorem 5.2.10. For z, w ∈ C,

ezew = ez+w.



124 MARK STEINBERGER

Proof.

ezew =
∞∑

n=0

zn

n!

∞∑

n=0

wn

n!

=
∞∑

n=0

n∑

j=0

zj

j!

wn−j

(n− j)!

=
∞∑

n=0

1

n!

n∑

j=0

n!

j!(n− j)!z
jwn−j

=
∞∑

n=0

(z + w)n

n!

= ez+w �

We obtain Theorem 5.2.1.

Proof of Theorem 5.2.1. By Theorem 5.2.10,

ei(θ+φ) = eiθeiφ,

so

cos(θ + φ)+i sin(θ + φ)

= (cos θ + i sin θ)(cosφ+ i sinφ)

= (cos θ cosφ− sin θ sinφ) + i(cos θ sinφ+ sin θ cosφ).

Equating the real parts of both sides gives (5.2.1), and equating the pure
imaginary parts of both sides gives (5.2.2). �

We now wish to show that cos2 θ+sin2 θ = 1. This is equivalent to saying
the vector (cos θ, sin θ) has norm 1, or that the complex number eiθ has
modulus 1.

The complex numbers of modulus 1 comprise the unit circle:

S1 = {z ∈ C : |z| = 1} = {z ∈ C : zz̄ = 1},

and for our trig identity it suffices to show eiθeiθ = 1. By (5.2.5) and (5.2.6),

ez =

∞∑

n=0

zn

n!
=

∞∑

n=0

z̄n

n!
= ez̄,

so

eiθeiθ = eiθe−iθ = eiθ−iθ = e0 = 1.

We obtain:

Proposition 5.2.11. For θ ∈ R, cos2 θ + sin2 θ = 1, i.e., eiθ ∈ S1.
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The remaining properties of the trig functions may be best seen using a
combination of group theory and calculus. Note that the nonzero elements
of C form a group under multiplication, as each one has a multiplicative
inverse. We denote this group

C× = {z ∈ C : z 6= 0}.
Since the modulus function is multiplicative, S1 ⊂ C× is closed under mul-
tiplication. Moreover, the inverse of z ∈ S1, z̄

zz̄
, is just z̄ as zz̄ = 1. But

|z̄| = |z|, so S1 is also closed under inverses, and hence is a subgroup of C×.
By Proposition 5.2.11, we may define a function exp : R→ S1 by

exp(θ) = eiθ.

Theorem 5.2.10 then gives:

Proposition 5.2.12. exp : R → S1 is a group homomorphism. Here R is
the group of real numbers under addition.

In particular, we can use calculus to study its kernel. Identifying C with
R2 we see that d

dx
exp(x) corresponds to the ordered pair (− sinx, cosx) ∈

S1. In particular, if x ∈ ker exp, then cosx = 1 and sinx = 0. So the
second coordinate of d

dx
exp(x) is nonzero. So Im ◦ exp is one-to-one in a

neighborhood of x by the inverse function theorem. In particular, this holds
for x = 0 so exp is one-to-one on (−ǫ, ǫ) for some ǫ > 0, hence (−ǫ, ǫ) ∩
ker exp = {0}. By Lemma 3.4.10, any two distict elements of ker exp must
be at least ǫ apart. Thus, if {xn} is a sequence of elements of ker exp with
limn→∞ xn = x, then there exists N such that x = xn for all n ≥ N . Thus,
the greatest lower bound of the set of positive elements of ker exp must lie
in ker exp: there is a smallest positive element in ker exp.

Definition 5.2.13. Define 2π to be the smallest positive element of ker exp.

Proposition 5.2.14. ker exp = 〈2π〉 = {2πk : k ∈ Z}, the subgroup of R
generated by 2π.

Proof. Let x ∈ ker exp. Then there is an integer k such that x lies in the
half-open interval [2πk, 2π(k+1)). But then x−2πk is an element of ker exp
lying in [0, 2π), so x− 2πk = 0. �

The following is now immediate from Lemma 3.4.10.

Corollary 5.2.15. expx = exp y if and only if y = x+2kπ for some k ∈ Z.
In particular, exp is one-to-one on [θ, θ + 2π) for all θ ∈ R.

The most important remaining verification is that exp : R → S1 is onto.
That and the remaining properties of the trig functions can be obtained
from calculus and the theorems above.

A priori, there is no connection between the geometric intuition we’ve
built about trig functions and the analytic definitions given here. We must
remedy this.



126 MARK STEINBERGER

First, note that if sin θ = 0, then cos θ = ±1 since cos2 θ + sinθ = 1. So
eiθ = ±1. In particular, consider θ = π. We have (eiπ)2 = e2πi = 1, so
eiπ = ±1. But π is not a multiple of 2π, so eiπ 6= 1. We obtain de Moivre’s
theorem:

(5.2.10) eiπ = −1.
By Corollary 5.2.15, we obtain:

Lemma 5.2.16. sin θ = 0 if and only if θ = nπ for some n ∈ Z.

Now d
dθ

sin θ = cos θ is continuous and is positive at θ = 0, so the sine
function is strictly increasing on an interval (−ǫ, ǫ) for some ǫ > 0. By
Lemma 5.2.16 and the continuity of the sine we obtain:

Corollary 5.2.17. sin θ is positive for θ ∈ (0, π) and is negative for θ ∈
(π, 2π). Thus, the cosine is strictly decreasing on [0, π] and is strictly in-
creasing on [π, 2π].

We now consider the zeros of the cosine. If cos θ = 0, then sin θ = ±1, so
eiθ = ±i. We generalize the preceding argument. The key property about
±i is that they are the two square roots of −1. We know there are only two
square roots because C is a field:

Lemma 5.2.18. Let 0 6= z ∈ C have a square root. Say z = w2. Then z
has exactly two square roots in C: ±w.
Proof. Any square root of z is a root of the polynomial x2−z. A polynomial
f of degree n with coefficients in a field F has at most n roots. Since x2− z
has the two distinct roots ±w, there are no others. �

But exp can produce two square roots of −1: (ei
π
2 )2 = e2i

π
2 = eiπ = −1,

and (ei
3π
2 )2 = ei3π = −1. By the preceding lemma, {eiπ2 , ei 3π2 } = {±i}. By

Corollary 5.2.17, we obtain the following.

Corollary 5.2.19. ei
π
2 = i and ei

3π
2 = −i. In particular, π

2 and 3π
2 are

the only values of θ ∈ [0, 2π) for which cos θ = 0. Since cos is continuous,
cos 0 = 1 and cosπ = −1, the cosine is positive on (−π

2 ,
π
2 ) and is negative

on (π2 ,
3π
2 ). Thus, the sine is strictly increasing on [−π

2 ,
π
2 ] and is strictly

decreasing on [π2 ,
3π
2 ].

In particular, the sine restricts to a strictly increasing function

f = sin |[−π
2
,π
2
] :
[
−π
2
,
π

2

]
→ [−1, 1],

as sin(−π
2 ) = −1 and sin(π2 ) = 1. As f is increasing, it is one-to-one. By

the intermediate value theorem, f is onto. Thus, there is a one-to-one and
onto inverse function

arcsin = f−1 : [−1, 1]→
[
−π
2
,
π

2

]
.
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Now let z = x+ yi ∈ S1 with x ≥ 0. Since x2+ y2 = 1, x =
√

1− y2. Let
θ = arcsin y. So θ ∈ [−π

2 ,
π
2 ], hence cos θ > 0, giving cos θ =

√
1− sin2 θ =

x. Thus z = eiθ, and every point in S1 with nonnegative x-coordinate is in
the image of exp.

If z = x+ iy with x < 0, then −z has positive real part, so −z = e−θ for
θ ∈ [−π

2 ,
π
2 ] by the argument just given, but then ei(θ+π) = eiθeiπ = −eiθ =

z. Thus:

Corollary 5.2.20. exp : R→ S1 is onto. By restriction, exp : [θ, θ+2π)→
S1 is bijective for all θ ∈ R.

Let 0 6= z ∈ C. Then z
|z| has modulus 1, i.e., z

|z| ∈ S1. By Corollary 5.2.20

there is a unique θ ∈ [0, 2π), called the argument, arg z, of z with eiθ = z
|z| .

We obtain the complex version of polar coordinates.

Corollary 5.2.21. Let 0 6= z ∈ C. Then there are unique real numbers r, θ
with r > 0 and θ ∈ [0, 2π) such that z = reiθ. r = |z|, the modulus of z, and
θ is called the argument of z.

Of course reiθseiφ = rsei(θ+φ). In particular:

Corollary 5.2.22. Every complex number has a square root. If z = reiθ

then the square roots of z are ±√rei θ2 .
Corollary 5.2.21 translates directly into the usual form of polar coordi-

nates.

Corollary 5.2.23. Let 0 6= v = (x, y) ∈ R2. Then there are unique real
numbers r, θ with r > 0 and θ ∈ [0, 2π) with v = (r cos θ, r sin θ). r = ‖v‖,
the norm of v.

Remark 5.2.24. Let 0 < θ < π
2 . Then the usual derivation of sin θ as the

opposite over the hypoteneuse for a right triangle based at the origin that
makes the angle θ with respect to the positive x-axis follows from this, as
the quotient of opposite over hypoteneuse is just r sin θ

r
. Similarly for the

cosine.

Corollary 5.2.22 is a special case of a much deeper theorem called the
Fundamental theorem of algebra. Its proof is beyond the scope of this book.
See [17] for a proof using algebraic topology or [5] for a purely algebraic
proof. The statement is as follows:

Theorem 5.2.25 (Fundamental theorem of algebra). Every polynomial of
positive degree with complex coefficients has a root in C.

This applies to Corollary 5.2.22 as any square root of the complex number
z is a root of the polynomial x2−z. However, the proofs of the Fundamental
theorem of algebra are not constructive, while the proof Corollary 5.2.22 is
constructive. Indeed, it shows that the square roots of z ∈ S1 also lie in S1,
with nicely specified angles.
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Corollary 5.2.26. ei
π
4 = 1√

2
+ 1√

2
i, i.e., cos π4 = 1√

2
and sin π

4 = 1√
2
.

Proof. Each side of the equality coincides with the unique square root of i
lying in the first quadrant. �

We can get similar benefit out of complex cube roots. Note that ei
2π
3 and

ei
4π
3 are both cube roots of 1, one lying in the second quadrant and one in

the third. If z = reiθ with r > 0, then w = 3
√
rei

θ
3 is a cube root of z, as

are wei
2π
3 = 3

√
rei(

θ
3
+ 2π

3
) and wei

4π
3 = 3

√
rei(

θ
3
+ 4π

3
). In particular, these give

three distinct roots of x3 − z, and hence they are the only roots of x3 − z.
We have:

Lemma 5.2.27. z = reiθ with r > 0. Then there are exactly three cube

roots of z in C: 3
√
rei

θ
3 , 3
√
rei(

θ
3
+ 2π

3
) and 3

√
rei(

θ
3
+ 4π

3
). At most one of them

is in the first quadrant.

We can use this to recover the trigonometric functions of familiar angles:

Corollary 5.2.28. ei
π
3 = 1

2 +
√
3
2 i, i.e., cos

π
3 = 1

2 and sin π
3 =

√
3
2 . ei

π
6 =√

3
2 + 1

2 i, i.e., cos
π
6 =

√
3
2 and sin π

6 = 1
2 .

Proof. The binomial expansion for (12 +
√
3
2 i)

3 simplifies to −1, so 1
2 +

√
3
2 i

is the unique cube root of −1 lying in the first quadrant. But so is ei
π
3 , so

they must be equal. Similarly, both ei
π
6 and

√
3
2 + 1

2 i are first quadrant cube
roots of i. �

Note we did not need to use the fact that the sum of the angles in a
Euclidean triangle is π, which would be used in the most familiar proofs of
these calculations.

Similar results to Lemma 5.2.27 are available for nth roots.
The only remaining issue for the trig functions is to approximate the value

of π. But standard calculus techniques deduce from only the results here
that the area of the unit disk

D2 = {v ∈ R2 : ‖v‖ ≤ 1}
is π. This area can now be approximated by the areas of inscribed polygons.

5.3. Linear isometries of R2: calculation of O(2). In this section, as
we use matrices, we will write vectors as column matrices.

By Theorem 4.1.12, the linear isometries of Rn are the linear mappings
induced by the matrices whose columns form an orthonormal basis of Rn.
For n = 2, Corollary 5.1.4 shows us that every orthonormal basis either has
the form v, v⊥ or v,−v⊥ for some unit vector v. But the unit vectors in

R2 are precisely

{[
cos θ
sin θ

]
: θ ∈ [0, 2π)

}
. Recalling that

[
a
b

]⊥
=

[
−b
a

]
we

obtain:
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Corollary 5.3.1. The matrices in O(2) are precisely
{
Rθ =

[
cos θ − sin θ
sin θ cos θ

]∣∣∣∣ θ ∈ [0, 2π)

}

⋃{
Sθ =

[
cos θ sin θ
sin θ − cos θ

]∣∣∣∣ θ ∈ [0, 2π)

}
.

The determinant of Rθ is 1 and the determinant of Sθ is −1. Thus:
Corollary 5.3.2.

SO(2) =

{
Rθ =

[
cos θ − sin θ
sin θ cos θ

]∣∣∣∣ θ ∈ [0, 2π)

}

We shall see that the matrices Rθ induce rotations and the matrices Sθ
induce reflections.

Proposition 5.3.3. The matrix Rθ rotates the plane about the origin by
the angle θ in the counterclockwise direction. We write ρ(0,θ) = TRθ .

Proof. We use polar coordinates.
[
cos θ − sin θ
sin θ cos θ

] [
r cosφ
r sinφ

]
=

[
r(cos θ cosφ− sin θ sinφ)
r(sin θ cosφ+ cos θ sinφ)

]

=

[
r cos(θ + φ)
r sin(θ + φ)

]

by Theorem 5.2.1. So the plane is indeed being rotated by θ about 0. �

So the elements of SO(2) are rotations of the plane. Their composition
law is as follows:

Proposition 5.3.4. The matrix product RθRφ = Rθ+φ. Thus, the matrices
in SO(2) commute with each other. The induced linear functions satisfy
ρ(0,θ) ◦ ρ(0,φ) = ρ(0,θ+φ).

Proof.[
cos θ − sin θ
sin θ cos θ

] [
cosφ − sinφ
sinφ cosφ

]

=

[
cos θ cosφ− sin θ sinφ − cos θ sinφ− sin θ cosφ
sin θ cosφ+ cos θ sinφ − sin θ sinφ+ cos θ cosφ

]

=

[
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

]
�

Rotations help explain the perp operation for vectors:

Lemma 5.3.5. Let v ∈ R2. Then v⊥ = ρ(0,π
2
)(v).

Proof. Rπ
2
=

[
0 −1
1 0

]
. Multiplication by this matrix has the desired effect

on coordinates. �
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There are a number of approaches available now for studying the linear
reflections. We shall use that fact that every isometry preserving the origin
is linear. Let

ℓθ = span

([
cos θ
sin θ

])
,

the line through the origin meeting S1 in ±
[
cos θ
sin θ

]
. (Of course, ℓθ = ℓθ+π.)

The reflection σℓθ fixes the origin (Lemma 5.1.12), and hence is linear. So σℓθ
is the linear isometry represented by the matrix [σℓθ(e1)|σℓθ(e2)], the matrix
whose columns are the images under σℓθ of the canonical basis vectors of
R2. We have

σℓθ(e1) = e1 − 2

〈
e1,

[
− sin θ
cos θ

]〉[
− sin θ
cos θ

]
=

[
1− 2 sin2 θ
2 sin θ cos θ

]
=

[
cos(2θ)
sin(2θ)

]
,

σℓθ(e2) = e2 − 2

〈
e2,

[
− sin θ
cos θ

]〉[
− sin θ
cos θ

]
=

[
2 cos θ sin θ
1− 2 cos2 θ

]
=

[
sin(2θ)
− cos(2θ)

]
.

Thus, we have proven:

Proposition 5.3.6. σℓθ is the linear transformation induced by the matrix
S2θ.

Reversing it, we see that TSθ = σℓ θ
2

. So the matrices Sθ all represent

reflections.
We now show how to express the effect of a linear reflection on a vector

in polar coordinates.

Lemma 5.3.7. σℓθ

([
r cosφ
r sinφ

])
=

[
r cos(2θ − φ)
r sin(2θ − φ)

]
.

Proof. We multiply matrices:

S2θ

[
r cosφ
r sinφ

]
=

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

] [
r cosφ
r sinφ

]

=

[
r(cos 2θ cosφ+ sin 2θ sinφ)
r(sin 2θ cosφ− cos 2θ sinφ)

]
=

[
r cos(2θ − φ)
r sin(2θ − φ)

]
. �

We now show how to compose linear reflections. Since reflection matri-
ces have determinant −1, the product of two reflection matrices will have
determinant 1, and hence will be a rotation matrix by our analysis above.

Proposition 5.3.8. The composite of two linear reflections is a linear ro-
tation. Specifically,

σℓθσℓφ = ρ(0,2(θ−φ)),

the rotation about 0 = ℓθ ∩ ℓφ by twice the directed angle from ℓφ to ℓθ.

Proof. The argument is very similar to that of Lemma 5.3.7.

S2θS2φ =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

] [
cos 2φ sin 2φ
sin 2φ − cos 2φ

]
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=

[
cos 2θ cos 2φ+ sin 2θ sin 2φ cos 2θ sin 2φ− sin 2θ cos 2φ
sin 2θ cos 2φ− cos 2θ sin 2φ sin 2θ sin 2φ+ cos 2θ cos 2φ

]

=

[
cos 2(θ − φ) − sin 2(θ − φ)
sin 2(θ − φ) cos 2(θ − φ)

]
. �

Note that the directed angle from ℓφ to ℓθ does not make sense, as ℓφ =
ℓφ+π and similarly for ℓθ. But when you double the difference, the added π
ceases to matter.

We now show how to compose rotations with reflections. We could do
this by simply multiplying matrices again, but there is a more conceptual
way to do both this and the calculation above. Note that ℓ0 is the x-axis
and that σℓ0 is induced by the matrix

S0 =

[
cos 0 sin 0
sin 0 − cos 0

]
=

[
1 0
0 −1

]
.(5.3.1)

Thus, the effect of σℓ0 on the plane is the same as that of complex conjugation
if we identify the plane with C in the usual way.

Lemma 5.3.9. σℓθ = ρ(0,2θ)σℓ0 for all θ ∈ R.

Proof. This follows from a special case of Proposition 5.3.8: σℓθσℓ0 = ρ(0,2θ).
Just multiply both sides on the right by σℓ0 and use the fact that σm is an
involution (i.e., σ2m = id) for every line m.

However, we can prove it much more simply by direct calculation of matrix
products:

R2θS0 =

[
cos 2θ − sin 2θ
sin 2θ cos 2θ

] [
1 0
0 −1

]
= S2θ. �

Now we can show what happens when we conjugate a linear rotation by
a linear reflection.

Proposition 5.3.10. Let ℓ be a line through the origin and θ ∈ R. Then

σℓρ(0,θ)σ
−1
ℓ = ρ(0,−θ).

Proof. When ℓ = ℓ0 it is immediate from the matrix multiplication
[
1 0
0 −1

] [
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

]
=

[
cos θ sin θ
− sin θ cos θ

]
.

For ℓ = ℓφ, we can deduce it from this case and Lemma 5.3.9:

σℓφρ(0,θ)σ
−1
ℓφ

= (ρ(0,2φ)σℓ0)ρ(0,θ)(ρ(0,2φ)σℓ0)
−1

= ρ(0,2φ)(σℓ0ρ(0,θ)σ
−1
ℓ0

)ρ−1
(0,2φ)

= ρ(0,2φ)ρ(0,−θ)ρ
−1
(0,2φ) = ρ(0,−θ),

as any two rotations about 0 commute. �

As usual, we obtain the following.
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Corollary 5.3.11. If 0 ∈ ℓ, then
σℓρ(0,θ) = ρ(0,−θ)σℓ.

We obtain a simpler proof of Proposition 5.3.8.

Alternative proof of Proposition 5.3.8.

σℓθσℓφ = ρ(0,2θ)σℓ0ρ(0,2φ)σℓ0
= ρ(0,2θ)ρ(0,−2φ)σℓ0σℓ0
= ρ(0,2(θ−φ)). �

Similarly, we can use Lemma 5.3.9, Corollary 5.3.11 and the composition
rule for rotations about 0 to compute an arbitrary composition of rotations
about 0 and reflections in lines through 0. Group theoretically, we have the
following.

Corollary 5.3.12. O(2) may be decomposed as

O(2) = {Rθ, RθS0 : θ ∈ R}
with the multiplication law given by S2

0 = id, RθRφ = Rθ+φ and S0Rθ =
R−θS0. Here, of course Rθ = Rφ if and only if θ − φ is a multiple of 2π.

5.4. Angles in R2 and Rn; the cosine law; orientation in R2.

5.4.1. Angles in R2. The angle between a pair of lines doesn’t make com-
plete sense as, for instance, span ([ 10 ]) and span ([ 11 ]) have angles of both π

4

and 3π
4 between them in the counterclockwise direction. To be more specific,

we should work with the angle between two rays. Recall that for x 6= y ∈ Rn,
The ray from x through y is

−→xy = {(1− t)y + ty : t ≥ 0}.
The following is immediate:

Lemma 5.4.1.
−→xy = {x+ t(y − x) : t ≥ 0}

= τx(
−→
0v),

for v = y−x
‖y−x‖ . We say −→xy has initial point x or that it emanates from x.

The angle between two rays in R2 with the same initial point is now easily
defined.

Definition 5.4.2. Let −→xy and −→xz be rays in R2 with initial point x. Let

y − x =
[
r cos θ
r sin θ

]
and z − x =

[
s cosφ
s sinφ

]
with r, s > 0. Then the (directed)

angle from −→xz to −→xy is θ − φ.
Note that the angle is defined by first translating the rays to emanate from

the origin and then taking the angle of the translated rays. The following is
the main ingredient in the proof of the cosine law.
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Lemma 5.4.3. Let 0 6= x, y ∈ R2. Then

(5.4.1) 〈x, y〉 = ‖x‖‖y‖ cos θ,
where θ is the angle from

−→
0x to

−→
0y.

Proof. Let x =
[
r cosφ
r sinφ

]
and y =

[
s cosψ
s sinψ

]
with r, s > 0. Then, r = ‖x‖,

s = ‖y‖ and θ = ψ − φ.
〈x, y〉 =

〈[
r cosφ
r sinφ

]
,
[
s cosψ
s sinψ

]〉

= rs(cosφ cosψ + sinφ sinψ)

= rs cos(ψ − φ). �

5.4.2. Angles in Rn. Note that the definition of directed angle in R2

depends on the parametrization of the unit circle by the complex exponential
function. We don’t have this tool in higher dimensions. There, it’s easiest
to define the unsigned angle between two rays. To do better, we will need
to discuss oriented planes in Rn. In the meantime we have the following.

Definition 5.4.4. The unsigned angle, θ, between two rays −→xy and −→xz in
Rn is given by

θ = cos−1

( 〈y − x, z − x〉
‖y − x‖‖z − x‖

)
= cos−1

( 〈τ−x(y), τ−x(z)〉
‖τ−x(y)‖‖τ−x(z)‖

)
.(5.4.2)

Here cos−1 is the inverse function of cos : [0, π] → [−1, 1]. Note that
〈y−x,z−x〉

‖y−x‖‖z−x‖ lies in the domain of cos−1 by the Cauchy–Schwarz inequality.

Despite the fact that τ−x is an isometry, we cannot simplify the far right-
hand side of (5.4.2), as τ−x is not linear unless x = 0. We must show the
following:

Lemma 5.4.5. (5.4.2) is independent of the choices of y ∈ −→xy and z ∈ −→xz.
Proof. If v = y−x

‖y−x‖ and w = z−x
‖z−x‖ we may replace y by x+ tv and replace

z by x + sw for any s, t > 0 and have the same two rays. Since (5.4.2)
incorporates the translation by −x it suffices to note that

〈tv, sw〉
‖tv‖‖sw‖ =

st〈v, w〉
|s||t| = 〈v, w〉

for any s, t > 0, as v and w are unit vectors. �

Of course, unsigned angles are exactly what is used in Euclidean geometry
and hence are appropriate in the following, which we may as well state in Rn.
The cosine law generalizes the Pythagorean theorem to nonright triangles.

Theorem 5.4.6 (Cosine law). Let △ABC be a triangle in Rn and let θ
be the unsigned angle corresponding to the vertex C. Write a, b, c for the
lengths of the sides opposite the vertices A,B,C, respectively. Then

c2 = a2 + b2 − 2ab cos θ.(5.4.3)



134 MARK STEINBERGER

Proof. θ is the unsigned angle between
−→
CA and

−−→
CB, so

ab cos θ = 〈B − C,A− C〉
by (5.4.2). We have

c2 = 〈B −A,B −A〉
= 〈(B − C)− (A− C), (B − C)− (A− C)〉
= 〈B − C,B − C〉+ 〈A− C,A− C〉 − 2〈B − C,A− C〉
= a2 + b2 − 2ab cos θ. �

Remark 5.4.7. Note that the rays emanating from x ∈ Rn are in one-to-
one correspondence with the oriented lines containing x. If ℓ is such a line
the orientation specifies a unique unit vector v such that ℓ = x + span(v).

This corresponds to a unique ray τx(
−→
0v), i.e., the ray from x through x+ v.

Thus, we can define the directed angle between nonparallel oriented lines in
R2 by taking x to be their point of intersection. Similarly, we may define
the unsigned angle between intersecting lines in Rn.

Isometries of Rn are affine maps and therefore preserve rays: for α ∈ In
and t ∈ R,

α((1− t)x+ ty) = (1− t)α(x) + tα(y).

Thus:

Lemma 5.4.8. For α ∈ In and x 6= y ∈ Rn, α(−→xy) = −−−−−−→α(x)α(y).

Thus, we can ask whether isometries preserve signed and/or unsigned
angles.

Proposition 5.4.9. Isometries of Rn preserve unsigned angles.

Proof. By Theorem 2.5.3, every isometry is a composite τxβ where β is a
linear isometry. Thus, it suffices to assume our isometry is either a trans-
lation or is linear. Formula (5.4.2) is clearly invariant under translation,
as

τz(y)− τz(x) = y − x
for any x, y and z, so we may assume our isometry, β, is linear. But
linear isometries preserve inner product, differences and norms, so (5.4.2) is
invariant under linear isometry. �

Similarities of Rn are also affine functions, so we can ask if they, also,
preserve unsigned angles. Indeed, this is an important aspect of the theory
of similar triangles.

Proposition 5.4.10. Similarities of Rn preserve unsigned angles.

Proof. By Corollary 2.7.5, it suffices to show that µs : R
n → Rn preserves

unsigned angles, where µs(x) = sx. (Here, 0 < s ∈ R.) But this is obvious
from (5.4.2). �
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Indeed, we can prove a converse for this. This matches conventional
wisdom about similar triangles.

Theorem 5.4.11. An affine automorphism of Rn is a similarity if and only
if it preserves unsigned angles.

Proof. Let f be an affine autmorphism of Rn that preserves unsigned an-
gles. Write f = τxg with g linear. Then g preserves unsigned angles, and
it suffices to show g is a linear similarity, i.e., that g = µsβ for β a linear
isometry of Rn and s > 0.

Write g = TA, where A = [v1| . . . |vn] is the n× n matrix whose columns
are v1, . . . , vn ∈ Rn. Since g is an automorphism, v1, . . . , vn are linearly
independent.

Of course vi = g(ei); since g preserves angles, 〈vi, vj〉 = 0 for i 6= j. It
suffices to show that ‖vi‖ = ‖vj‖ for all i, j, as then if s = ‖vi‖, g = µsTB,
for B =

[
v1
s
| . . . |vn

s

]
. Since v1

s
, . . . , vn

s
is an orthonormal basis of Rn, B is an

orthogonal matrix, and the result follows.
By (5.4.2),

(5.4.4)
〈Ax,Ay〉
‖Ax‖‖Ay‖ =

〈x, y〉
‖x‖‖y‖

for all x, y ∈ Rn.
Now,

(5.4.5)
〈ei, ei + ej〉
‖ei‖‖ei + ej‖

=
1√
2
=
〈ej , ei + ej〉
‖ej‖‖ei + ej‖

for all i 6= j, so

(5.4.6)
〈vi, vi + vj〉
‖vi‖‖vi + vj‖

=
〈vj , vi + vj〉
‖vj‖‖vi + vj‖

for i 6= j. Since 〈vi.vj〉 = 0, this evaluates to

(5.4.7)
〈vi, vi〉

‖vi‖‖vi + vj‖
=

〈vj , vj〉
‖vj‖‖vi + vj‖

.

Multiplying through by ‖vi + vj‖, this gives ‖vi‖ = ‖vj‖. �

5.4.3. Orientation in R2. For isometries of the plane, we can ask if signed
angles are preserved, or perhaps reversed.

Definition 5.4.12. Let α be an isometry of R2. We say α is orientation-
preserving if it preserves signed (directed) angles. We say α orientation-
reversing if it reverses the sign of every directed angle.

A priori, there could be isometries of R2 that preserve the signs of some
angles and reverse the signs of other angles, but that is not the case. Recall
that every linear isometry of R2 is either a reflection in a line through the
origin or a rotation about the origin.
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Proposition 5.4.13. Let α = τxβ be an isometry of R2 with β linear. Then
α is orientation-preserving if β is a rotation and is orientation-reversing if
β is a reflection.

Proof. Translations obviously preserve signed angles, so it suffices to as-

sume α = β is linear. Two rays emanating from y have the form τy(
−→
0v) and

τy(
−→
0w) for unit vectors v, w. For β linear, βτy = τβ(y)β. So the angle from

βτy(
−→
0v) to βτy(

−→
0w) is the angle from τβ(y)β(

−→
0v) to τβ(y)β(

−→
0w), which in turn

is the angle from β(
−→
0v) =

−−−→
0β(v) to β(

−→
0w) =

−−−→
0β(w).

Write v =
[
cos θ
sin θ

]
and w =

[ cosφ
sinφ

]
. Then the angle from τy(

−→
0v) to τy(

−→
0w)

is φ − θ. We have two cases to consider. If β is a rotation, β = ρ(0,ψ) for
some ψ, so

β(v) =
[
cos(θ+ψ)
sin(θ+ψ)

]
,

β(w) =
[
cos(φ+ψ)
sin(φ+ψ)

]
,

by Proposition 5.3.3. Clearly, the angle is preserved.

In the remaining case, β = σℓψ for some ψ. Here ℓψ = span
([

cosψ
sinψ

])
,

and by Lemma 5.3.7,

β(v) =
[
cos(2ψ−θ)
sin(2ψ−θ)

]
,

β(w) =
[
cos(2ψ−φ)
sin(2ψ−φ)

]
.

This clearly reverses the sign of the angle. �

We extend this easily to similarities of R2.

Proposition 5.4.14. A similarity τxµsβ of R2, with β a linear isometry,
is orientation-preserving if β is a rotation and is orientation-reversing if β
is a reflection.

Proof. It suffices to show that µs is orientation-preserving. This is obvious
from the proof of Proposition 5.4.13. �

By Proposition 5.4.13, an isometry of R2 either preserves all angles or
reverses all angles. The following now makes sense.

Definition 5.4.15. Let α ∈ I2. We define the sign, sgnα, of α by

sgnα =

{
1 if α is orientation-preserving

−1 if α is orientation-reversing.

Now consider the composite α1α2 of α1, α2 ∈ I2. If both α1 and α2

reverse all angles, then the composite preserves all angles. We may analyze
the other cases similarly and obtain:
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Corollary 5.4.16. The composite α1α2 of α1, α2 ∈ I2 is orientation-reversing
if exactly one of α1 and α2 orientation-reversing. In all other cases, α1α2

is orientation-preserving. Thus, sgn(α1α2) = sgn(α1) sgn(α2), so

sgn : I2 → {±1}
is a group homomorphism. Here {±1} is a group under multiplication in
the standard way.

In particular, the product of two orientation-preserving isometries is ori-
entation-preserving. But if α preserves all angles, α−1 must also. Thus:

Corollary 5.4.17. The orientation-preserving isometries form a subgroup,

O2 ⊂ I2.
Another proof of this comes from the fact that O2 = ker sgn. This also

shows that O2 ⊳ I2, though that is also implicit in Corollary 5.4.16: any
conjugate of an orientation-preserving isometry is orientation-preserving.

5.5. Calculus of isometries of R2. In principle, Chapter 2 and Sec-
tion 5.3 tell us everything we want to know about I2 and its composition
law. But in fact, there is more geometry to be uncovered. There are two
families of isometries we have not discussed yet.

Definition 5.5.1. Let x ∈ R2. The rotation, ρ(x,θ), about x by the angle θ
is τxρ(0,θ)τ−x. It rotates the rays emanating from x radially by the angle θ.

Rotations about a fixed x compose with one another as expected.

Lemma 5.5.2. ρ(x,θ)ρ(x,φ) = ρ(x,θ+φ). For 0 < θ < 2π the fixed-point set

(R2)ρ(x,θ) = {x}.
Proof.

ρ(x,θ)ρ(x,φ) = τxρ(0,θ)τ−xτxρ(0,φ)τ−x
= τxρ(0,θ)ρ(0,φ)τ−x
= τxρ(0,θ+φ)τ−x
= ρ(x,θ+φ).

For the second statement we first consider the case x = 0. Here ρ(0,θ) is
the linear transformation TRθ induced by the rotation matrix Rθ. A fixed-
point y of TRθ is a vector y such that Rθy = y, i.e., (I − Rθ)y = 0, with I
the identity matrix. But

I −Rθ =
[
1− cos θ sin θ
− sin θ 1− cos θ

]

has determinant 2(1 − cos θ), which is nonzero for 0 < θ < 2π. Therefore,
I − Rθ is invertible for 0 < θ < 2π, and hence (I − Rθ)y = 0 implies that



138 MARK STEINBERGER

y = 0. Thus, the fixed-point set of ρ(0,θ) is {0}.7 For general x, we apply
the following lemma, which actually applies to arbitrary group actions on
sets. �

Lemma 5.5.3. Let α, β ∈ In. Then (Rn)αβα
−1

= α((Rn)β).

Proof.

x ∈ (Rn)αβα
−1 ⇔ αβα−1(x) = x

⇔ βα−1(x) = α−1(x)

⇔ α−1(x) ∈ (Rn)β

⇔ x ∈ α((Rn)β). �

Thus, every nonidentity rotation has exactly one fixed-point. When we
complete the classification of the isometries of R2 we will obtain the converse:
every isometry of R2 with exactly one fixed-point is a rotation about that
point.

5.5.1. Glide reflections. We have one more infinite family of isometries
to define.

Definition 5.5.4. Let ℓ be a line in R2. A glide reflection with axis ℓ is a
composite τxσℓ with x ‖ ℓ. (By our definitions, this requires that x 6= 0, so
a glide reflection is not a reflection.) We call τxσℓ with x ‖ ℓ the standard
form of this glide reflection and show below it is unique.

Lemma 5.5.5. Let ℓ be a line in R2 and let x ‖ ℓ. Then τx commutes with
σℓ, and hence (τxσℓ)

2 = τ2x = τ2x. The fixed-point set (R2)τxσℓ = ∅, i.e., a
glide reflection has no fixed-points.

Proof. Let ℓ = y + span(v) with v a unit vector. Then

σℓτx(z) = z + x− 2〈z + x− y, v⊥〉v⊥

= z − 2〈z − y, v⊥〉v⊥ + x− 2〈x, v⊥〉v⊥.
But 〈x, v⊥〉 = 0 as x ‖ ℓ, so the latter is just τxσℓ(z). Thus τx and σℓ
commute.

Thus, (τxσℓ)
2 = τxσℓτxσℓ = τ2xσ

2
ℓ = τ2x = τ2x, as σ

2
ℓ = id. Now, τ2x is a

nonidentity translation, and has no fixed-points. But any fixed-point of α
is a fixed-point of α2, so τxσℓ has no fixed-points. �

Pictorially, a glide reflection with axis ℓ looks like footsteps walking along
the line ℓ. The glide reflection flips each left-footstep to a right-footstep,
advanced along ℓ by the amount of the glide τx. Similarly each right-footstep
flips and glides to a left-footstep:

We can detect the axis of a glide reflection in the following way.

7The argument here is a direct proof that 1 is not an eigenvalue for Rθ for 0 < θ < 2π.
In fact, for these θ, there are no real eigenvalues for Rθ, as the characteristic polynomial
of Rθ has no real roots.
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Lemma 5.5.6. Let α = τxσℓ be a glide reflection in standard form (i.e.,
x ‖ ℓ). Then ℓ is the only line preserved by α (i.e., the only line m with
α(m) = m.

Proof. First note that ℓ is preserved by α as σℓ fixes ℓ pointwise, while
τx preserves ℓ by Proposition 2.1.14. (In particular, the effect of α on ℓ is
translation by x along ℓ.)

Let m be a line not parallel to ℓ and let z = m ∩ ℓ. Then

α(z) = α(m) ∩ α(ℓ) = α(m) ∩ ℓ.

Since α has no fixed-points, α(z) 6= z. Moreover, α(z) ∈ ℓ, but α(z) 6= z =
ℓ ∩m, so α(z) 6∈ m. So α(m) 6= m.

Now let m ‖ ℓ with m 6= ℓ. Since m ∩ ℓ = ∅, m must lie in either the
positive or negative part of R2 − ℓ as described in Corollary 5.1.13. Since
these two parts are interchanged by σℓ and preserved by τx, α(m) 6= m.

More explicitly, if m ‖ ℓ and m 6= ℓ, write ℓ = y+span(v) for a unit vector
v. Since x ‖ ℓ, x = sv for some 0 6= s ∈ R. Since m ‖ ℓ, m = z + span(v)
for some z. Write z = y + uv + tv⊥. Then z − uv ∈ m, so m = z′ + span(v)
with z′ = y + tv⊥. Since m 6= ℓ, tv⊥ = z′ − y 6∈ span(v), so t 6= 0.

The generic element of m then has the form y + tv⊥ + av, and

σℓ(y + tv⊥ + av) = y − tv⊥ + av.

So τxσℓ(y + tv⊥ + av) = y − tv⊥ + (a+ s)v. In particular,

α(m) = (y − tv⊥) + span(v) = σℓ(z
′) + span(v).

But σℓ(z
′)− z′ = −2tv⊥ 6∈ span(v) So α(m) 6= m. �

Corollary 5.5.7. The standard form of a glide reflection is unique: if

τxσℓ = τyσm

with x ‖ ℓ and y ‖ m, then x = y and ℓ = m.

Proof. By Lemma 5.5.6, ℓ and m must coincide with the unique line pre-
served by the glide reflection in question, so ℓ = m. But then

τx = τxσℓσℓ = τyσmσℓ = τy,

so x = y. �
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5.5.2. Calculating composites of isometries. We have seen that every
isometry of R2 either has the form τxρ(0,θ) or τxσℓθ for some x ∈ R2 and θ ∈
R. We shall show that if 0 < θ < 2π then τxρ(0,θ) is a rotation about some
point by θ and that τxσℓθ is either a reflection or a glide reflection depending
on whether x is perpendicular to ℓθ or not. Thus, we have constructed all
the isometries of R2 already and understand their geometric properties. We
first treat the case of rotations.

We first put ρ(y,θ) as the composite of a translation and a linear rotation.

Lemma 5.5.8. Let y ∈ R2 and θ ∈ R. Then

ρ(y,θ) = τ(I−Rθ)yρ(0,θ),(5.5.1)

where Rθ is the standard 2× 2 rotation matrix and I is the identity matrix.

Proof. By definition, ρ(y,θ) = τyρ(0,θ)τ−y. Since ρ(0,θ) is linear, we may
apply Proposition 3.3.5 (with γ the identity transformation), obtaining

ρ(y,θ) = τy+ρ(0,θ)(−y)ρ(0,θ).

But ρ(0,θ) is multiplication by the rotation matrix Rθ, so

y + ρ(0,θ)(−y) = y −Rθy = (I −Rθ)y. �

Proposition 5.5.9. Let 0 < θ < 2π and let x ∈ R2. Then τxρ(0,θ) = ρ(y,θ)
for some y ∈ R2.

Proof. By (5.5.1) it suffices to solve (I − Rθ)y = x. Since 0 < θ < 2π,
(I − Rθ) is invertible as shown in the proof of Lemma 5.5.1. hence y =
(I −Rθ)−1x is the unique solution. �

Remark 5.5.10. We have seen that the orientation-preserving isometries of
R2 are precisely those of the form τxρ(0,θ) for some x ∈ R2 and θ ∈ R. By the
above analysis, these are either translations (θ a multiple of 2π) or rotations.
The composite of orientation-preserving isometries is orientation-preserving.
We shall compute these composites more precisely.

Corollary 5.5.11. Let x, y ∈ R2 and θ, φ ∈ R. If θ+ φ is not a multiple of
2π then

ρ(x,θ)ρ(y,φ) = ρ(z,θ+φ)

for some z ∈ R2. Otherwise, ρ(x,θ)ρ(y,φ) is a translation.

Proof. By (5.5.1) there are vectors v and w with

ρ(x,θ) = τvρ(0,θ),

ρ(y,φ) = τwρ(0,φ).

So

ρ(x,θ)ρ(y,φ) = τvρ(0,θ)τwρ(0,φ)

= τv+Rθwρ(0,θ+φ)
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by Proposition 3.3.5. If θ+ φ is not a multiple of 2π the result follows from
Proposition 5.5.9. Otherwise, ρ(0,θ+φ) is the identity and we are done. �

We can also give a nice theoretical calculation of compositions of trans-
lations with rotations.

Corollary 5.5.12. Let x, y ∈ R2 and θ ∈ R. Then there exist z, w ∈ R2

with

τxρ(y,θ) = ρ(z,θ),

ρ(y,θ)τx = ρ(w,θ).

Proof. These are immediate from Proposition 3.3.5, (5.5.1) and Proposi-
tion 5.5.9. �

All the above calculations can be carried out explicitly in full using the
formula for inverting a 2 × 2 matrix. The results are numerically ugly as
trig functions are numerically ugly. We will introduce a geometric calculus
for carrying out these calculations, below, but the results are numerically
appealing only when the trig functions are nicely computable.

We shall now analyze the orientation-reversing isometries of R2 and their
compositions with each other and with the orientation-preserving isometries.
One immediate result is the following. Recall from Proposition 5.1.21 that
if ℓ and m are parallel lines in R2, then σmσℓ is the translation by twice the
directed distance from ℓ to m. The other composites of two reflections are
given as follows.

Lemma 5.5.13. Let ℓ and m be nonparallel lines in R2 and let x = ℓ ∩m.
Let v and w be unit vectors parallel to ℓ and m, respectively, and let v =[
cos θ
sin θ

]
and w =

[
cosφ
sinφ

]
. Then

(5.5.2) σmσℓ = ρ(x,2(φ−θ)),

the rotation about x = ℓ ∩m by twice the directed angle from ℓ to m.

Proof. Recall that for ψ ∈ R, ℓψ = span
([

cosψ
sinψ

])
. In particular, span(v) =

ℓθ and span(w) = ℓφ, and hence ℓ = τx(ℓθ) andm = τx(ℓφ). By Lemma 5.1.14,

σℓ = τxσℓθτ−x,

σm = τxσℓφτ−x.

Thus,

σmσℓ = τxσℓφτ−xτxσℓθτ−x
= τxσℓφσℓθτ−x
= τxρ(0,2(φ−θ))τ−x
= ρ(x,2(φ−θ)).

Here, we used Proposition 5.3.8 to evaluate σℓφσℓθ . �
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Remark 5.5.14. As in Proposition 5.3.8, while the directed angle from ℓ
to m is not well-defined, twice the directed angle is well-defined. Choosing
v and w above amounts to orienting ℓ and m, and with those orientations,
the directed angle makes sense. But a choice of the opposite orientation in
either case would add or subtract π from that directed angle, and when the
angle is doubled, the extra π goes away.

In other words, if ψ is the directed angle from v to w, then

σmσℓ = ρ(x,2ψ) = ρ(x,2(ψ±π)).

Moreover,

m = ρ(x,ψ)(ℓ) = ρ(x,ψ±π)(ℓ).

We obtain the following corollary.

Corollary 5.5.15. Let x ∈ R2 and 0 < θ < 2π. Let ℓ be any line through
x. Let m = ρ(x, θ2)

(ℓ) and let n = ρ(x,− θ
2)
(ℓ). Then

(5.5.3) ρ(x,θ) = σmσℓ = σℓσn.

Moreover, m and n are the unique lines satisfying (5.5.3).

Proof. Uniqueness follows from the argument in the remark above, but it
also follows from group theory: if σmσℓ = σm′σℓ. then

σmσℓσ
−1
ℓ = σm′σℓσ

−1
ℓ

σm = σm′ .

Similarly multiplication on the left by σ−1
ℓ proves the uniqueness of n. Of

course, since reflections are involutions, σ−1
ℓ = σℓ. �

A key now is to evaluate the composite of a translation τx and a reflection
σℓ. We know that if x ‖ ℓ then the result is a glide reflection and cannot be
meaningfully simplified. When x ⊥ ℓ we get a nice, clean result.

Lemma 5.5.16. Let x ⊥ ℓ in R2. Then

τxσℓ = στx
2
(ℓ),

σℓτx = στ−x
2
(ℓ),

reflections in lines parallel to ℓ.

Proof. We apply Corollary 5.1.22. Let m = τx
2
(ℓ) and let n = τ−x

2
(ℓ).

Then τx = σmσℓ, so τxσℓ = σmσℓσℓ = σm, as reflections are involutions.
Also, τx = σℓσn, so σℓτx = σℓσℓσn = σn. �

Finally, we address the general case of composition of reflections and
translations.
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Proposition 5.5.17. Let ℓ = x + span(v) be a line in R2 with v a unit
vector. Let y ∈ R2. Write y = z + w with z ∈ span(v) and w ∈ span(v⊥)
(hence z = 〈y, v〉v and w = 〈y, v⊥〉v⊥, as v, v⊥ is an orthonormal basis of
R2). Then

τyσℓ = τzστw
2
(ℓ),

σℓτy = τzστ−w
2
(ℓ).

If y ⊥ ℓ, then z = 0 and these are reflections in lines parallel to ℓ. Otherwise,
z 6= 0 and these are glide reflections in standard form, with axes are parallel
to ℓ.

Regardless, if α is either a reflection or a glide reflection with axis ℓ, then
τyα and ατy are either reflections or glide reflections with axis parallel to ℓ.

Proof. We have τy = τzτw, and τz commutes with τw and σℓ as either z = 0
or z ‖ ℓ. Now apply Lemma 5.5.16 to the appropriate composite of τw and
σℓ. �

Since every orientation-reversing isometry has the form τxσℓθ for some θ,
we obtain the following.

Corollary 5.5.18. Every orientation-reversing isometry of R2 is either a
reflection or a glide reflection.

In summation, we have:

Theorem 5.5.19. Every isometry of R2 is either a translation, a rotation,
a reflection or a glide reflection. The former two are orientation-preserving
and the latter two are orientation-reversing. Both translations and glide
reflections are without fixed-points. The fixed-point set of a nonidentity ro-
tation consists of only the point about which it rotates. The fixed-point set
of a reflection is the line of reflection.

We can now analyze conjugation in I2 in some detail:

Theorem 5.5.20. Let α ∈ I2. Then:

(1) If α = τzβ with β : Rn → Rn a linear isomorphism, then

ατxα
−1 = τβ(x).

Phrased entirely in terms of α this says ατxα
−1 = τw, where w =

α(x)− α(0).
(2) ασℓα

−1 = σα(ℓ).

(3) αρ(x,θ)α
−1 = ρ(α(x),ψ), where ψ = θ if α is orientation-preserving

and ψ = −θ if α is orientation-reversing.
(4) If γ is a glide reflection with axis ℓ, then αγα−1 is a glide reflection

with axis α(ℓ).
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Proof. (1) is just Corollary 3.3.2 for n = 2. For (2), we have

(R2)ασℓα
−1

= α((R2)σℓ)

by Lemma 5.5.3, but this is just α(ℓ). The only isometry with fixed-point
set α(ℓ) is σα(ℓ).

In case (3), a similar argument shows the fixed set of αρ(x,θ)α
−1 is α(x),

so αρ(x,θ)α
−1 is the rotation about α(x) by some angle ψ. But determining

ψ requires further work. So we take a different approach. Let ℓ be any line
through x and let m = ρ(x, θ2)

(ℓ). Then ρ(x,θ) = σmσℓ by Corollary 5.5.15.

Thus,

αρ(x,θ)α
−1 = (ασmα

−1)(ασℓα
−1)

= σα(m)σα(ℓ).

This last is the rotation about α(m ∩ ℓ) by twice the directed angle from
α(ℓ) to α(m). Since orientation-preserving isometries preserve angles and
orientation-reversing isometries reverse them, (3) follows.

For (4), write γ = τxσℓ, with x ‖ ℓ. Thus, we may write ℓ = y + span(x)
for some y ∈ R2. We have

αγα−1 = (ατxα
−1)(ασℓα

−1)

= τwσα(ℓ)

with w = α(x)− α(0), by (1) and (2). By Corollary 2.5.4,

α(ℓ) = α(y) + span(α(x)− α(0)),
so w ‖ α(ℓ) and this is a glide reflection in standard form with axis α(ℓ). �

We also have all the ingredients to analyze compositions of isometries.
Let us consider the compositions of rotations with reflections.

Proposition 5.5.21. Let ℓ be a line in R2 and let x ∈ ℓ. Then ρ(x,θ)σℓ and
σℓρ(x,θ) are both reflections in lines through x for every θ ∈ R.

Proof. Let m be the line through x such that the directed angle from some
orientation of ℓ to some orientation of m is θ

2 . Then ρ(x,θ) = σmσℓ so
ρ(x,θ)σℓ = σmσℓσℓ = σm.

The other case is similar. �

Proposition 5.5.22. Let ℓ be a line in R2 and let x 6∈ ℓ. Let 0 < θ < 2π.
Then ρ(x,θ)σℓ and σℓρ(x,θ) are both glide reflections.

Proof. Let m be the unique line through x parallel to ℓ and let n be the
line through x such that the directed angle from some orientation of m
to some orientation of n is θ

2 . Then ρ(x,θ) = σnσm so ρ(x,θ)σℓ = σnσmσℓ.
By Proposition 5.1.21, σmσℓ = τv for a nonzero vector v ⊥ m (nonzero
because m 6= ℓ. Thus, ρ(x,θ)σℓ = σnτv. Because 0 < θ < 2π, 0 < θ

2 < π,
and hence v is not perpendicular to n, so the result is a glide reflection by
Proposition 5.5.17. Note the axis is parallel to n and not ℓ.
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The other case is similar. �

5.5.3. Calculus of reflections. Corollary 5.1.22 shows that every trans-
lation is the product of two reflections. Corollary 5.5.15 shows that every
rotation is the product of two reflections. Thus, every orientation-preserving
isometry of R2 is a product of two reflections.

The orientation-reversing isometries of R2 are either reflections or glide
reflections, and the latter are composites of reflections and translations. So
every orientation-reversing isometry of R2 is either a reflection or the product
of three reflections.

We can use Corollaries 5.1.22 and 5.5.15 to develop a calculus for compos-
ing isometries useful for both practical and theoretical results. The following
example is representative.

The following example is useful in studying wallpaper groups.

Example 5.5.23. We calculate the composite α = ρ(0,π3 )
ρ([ 20 ],

2π
3 )

. We do

so by writing ρ(0,π3 )
= σℓσm and writing ρ([ 20 ],

2π
3 )

= σmσn. This then gives

α = σℓσmσmσn = σℓσn,

as σm is an involution.
We can do this because of the flexibility of Corollary 5.5.15. The equation

ρ(0,π3 )
= σℓσm is equivalent to saying that ℓ∩m = 0 and the directed angle

from m to ℓ is π
6 , while ρ([ 20 ],

2π
3 )

= σmσn says m∩ n = [ 20 ] and the directed

angle from n to m is π
3 . In particular, m must go through both 0 and [ 20 ],

and hence must be the x-axis.
The directed angles now allow us to precisely calculate the lines ℓ and n.

ℓ is the line through 0 such that the directed angle from the positive x-axis
to ℓ is π

6 . Thus, ℓ has slope tan π
6 = 1√

3
. Since 0 ∈ ℓ, ℓ is the line y = 1√

3
x.

On the other hand, n is the line through [ 20 ] such that the angle from n
to the x-axis is π

3 , so the angle from the x-axis to n is −π
3 . But this says n

has slope −
√
3. Since n goes through [ 20 ], the point-slope formula gives

y − 0

x− 2
= −
√
3,

so n is the line y = −
√
3x+ 2

√
3.

n

P

ℓ

m
0 [ 20 ]

Now α = σℓσn = ρ(P,θ), where P = ℓ∩n and θ is twice the directed angle

from n to ℓ. By Corollary 5.5.11, θ = π
3 + 2π

3 = π, so it suffices to calculate

P . We do this by setting 1√
3
x = −

√
3x+ 2

√
3. This gives P =

[
3
2√
3
2

]
.
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We can use the same argument to prove the following.

Lemma 5.5.24. Let v 6= w ∈ R2 and suppose θ + φ is not a multiple of
2π. Write ρ(v,θ)ρ(w,φ) = ρ(z,θ+φ) as in Corollary 5.5.11 and let m be the
line containing v and w. Then z 6∈ m and ρ(w,φ)ρ(v,θ) = ρ(σm(z),θ+φ). In
particular, ρ(v,θ) and ρ(w,φ) do not commute.

Proof. As in Example 5.5.23, we write ρ(v,θ) = σℓσm and ρ(w,φ) = σmσn,
giving ρ(v,θ)ρ(w,φ) = σℓσn.

But we could just as easily have used Corollary 5.5.15 to write ρ(v,θ) =
σmσℓ′ and ρ(w,φ) = σn′σm, and this allows us to write

ρ(w,φ)ρ(v,θ) = σn′σmσmσℓ′ = σn′σℓ′ .

In this procedure, the directed angle from ℓ′ to m is opposite to the directed
angle from m to ℓ, while the directed angle from m to n′ is opposite to the
directed angle from m to n (Corollary 5.5.15):

n

z

ℓ

ℓ′

m
v w

n′

z′

Since orientation-reversing isometries reverse directed angles and since σm
fixes m (and hence also fixes v and w), the angle reversal defining ℓ′ and n′

shows that ℓ′ = σm(ℓ) and n
′ = σm(n). Thus, the intersection, z′, of ℓ′ and

n′ is σm(ℓ) ∩ σm(n) = σm(z).
By Corollary 5.5.11, ρ(w,φ)ρ(v,θ) = ρ(z′,θ+φ), so the result follows. �

This covers the most general case of the following proposition, which is
useful in characterizing the finite groups of symmetries in R2.

Proposition 5.5.25. Let v 6= w ∈ R2 and let θ, φ be arbitrary elements of
(0, 2π). Then ρ(v,θ) and ρ(w,φ) do not commute.

Proof. By Lemma 5.5.24 we need only consider the case where φ + θ is a
multiple of 2π. In this case, both ρ(v,θ)ρ(w,φ) and ρ(w,φ)ρ(v,θ) are translations.
Again we can write

ρ(v,θ) = σℓσm = σmσℓ′

ρ(w,φ) = σmσn = σn′σm

with m the line containing v and w, and again

ρ(v,θ)ρ(w,φ) = σℓσn

ρ(w,φ)ρ(v,θ) = σn′σℓ′ .

Since these composites are translations, we have ℓ ‖ n and n′ ‖ ℓ′, and the
argument in Lemma 5.5.24 again shows that σm(ℓ) = ℓ′ and σm(n) = n′.
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We first consider the case θ = π (and hence φ = π). In this case ℓ
and n are perpendicular to m. By the angle reversal, this gives ℓ′ = ℓ
and n′ = n, so ρ(w,φ)ρ(v,θ) = σnσℓ. This just reverses the direction in the
directed distance used to calculate the translation vector, so ρ(w,φ)ρ(v,θ) is
the translation inverse to ρ(v,θ)ρ(w,φ).

In the remaining case, ℓ and ℓ′ have different slopes. Since the transla-
tion vectors for the two composites are perpendicular to the lines ℓ and ℓ′,
respectively, these translation vectors also have different slopes. �

The calculus of reflections permits a significant strengthening of Proposi-
tion 5.5.22. It will play an important role in our study of wallpaper groups.

Proposition 5.5.26. Let ℓ be a line in R2 and let y 6∈ ℓ. Let A be the
directed distance from y to ℓ, i.e., if p is the line through y perpendicular to
ℓ, then p∩ ℓ = y +A. Let B = ρ(0,π2 )

(A). Let 0 6= θ ∈ R and let φ = θ
2 . Let

q be the line through y+A such that the directed angle from ℓ to q is φ and
let

w = − sinφA+ cosφB.

Then w ‖ q, and
(5.5.4) ρ(y,θ)σℓ = τ(2 sinφw)σq,

a glide reflection in standard form. Pictorially, we have:

(5.5.5)

q

m

ℓ

φ

n

p

y y+A

Here, m is the line through y parallel to ℓ and n is the line through y parallel
to q.

Since ‖w‖ = ‖A‖, the length of the glide is 2 |sinφ| ‖A‖.
Proof. Since the directed angle from m to n is φ, our calculus of reflections
gives

ρ(y,θ)σℓ = σnσmσℓ.

Since A is the directed distance from m to ℓ, σmσℓ = τ−2A, and hence

ρ(y,θ)σℓ = σnτ(−2A).
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The directed angle from p to n is φ + π
2 . Since w is visibly equal to

ρ(0,φ+π
2 )
(A), w is parallel to n, and hence to q.

Let

v = ρ(0,π2 )
(w) = ρ(0,φ+π)(A) = − cosφA− sinφB.

Then v ⊥ w, hence v ⊥ n, and
(5.5.6) cosφ v + sinφw = − cos2 φA− sin2 φA = −A.
Thus, τ−2A = τ(2 cosφ v)τ(2 sinφw), and hence

ρ(y,θ)σℓ = σnτ(2 cosφ v)τ(2 sinφw).

Since v ⊥ n, σnτ(2 cosφ v) is the reflection across τ(− 1
2
(2 cosφ v))(n). It suffices

to show that τ(− cosφ v)(n) = q.
Now n = y + span(w), so τ(− cosφ v)(n) = y − cosφ v + span(w). But by

(5.5.6), y + A ∈ y − cosφ v + span(w). Since q is the line through y + A
parallel to n, the result follows. �

The reverse composition behaves similarly. Here is the result. We leave
the proof to the reader.

Proposition 5.5.27. Let ℓ be a line in R2 and let y 6∈ ℓ. Let A be the
directed distance from y to ℓ, i.e., if p is the line through y perpendicular to
ℓ, then p∩ ℓ = y +A. Let B = ρ(0,π2 )

(A). Let 0 6= θ ∈ R and let φ = θ
2 . Let

q be the line through y+A such that the directed angle from q to ℓ is φ and
let

w = sinφA+ cosφB.

Then w ‖ q, and
(5.5.7) σℓρ(y,θ) = τ(2 sinφw)σq,

a glide reflection in standard form. Pictorially, we have:

(5.5.8)
m

ℓ

φ

p

y y+A

n

q
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Here, m is the line through y parallel to ℓ, n is the line through y parallel to
q. Again, the glide has length 2 |sinφ| ‖A‖.
5.6. Classical results from Euclidean geometry. We now give deriva-
tions from our analytic geometry of some standard results in Euclidean
geometry. We first give a converse to the Pons asinorum.

Proposition 5.6.1. Let △ABC be a triangle such that ∠ABC and ∠ACB
have the same unsigned measure. Then d(A,B) = d(A,C).

Proof. Let ℓ bisect the angle ∠BAC and let M = ℓ ∩BC.
A

B
M

ℓ

C

Since the measures of the three interior angles of a triangle must add up to
π (Corollary 2.1.17), ∠AMC and ∠AMB have the same mesaure. But since
these two measures add up to π, both must be right angles. But then, since ℓ

bisects ∠BAC, d(M,B)
d(A,M) and

d(M,C)
d(A,M) are equal to the tangents of equal angles.

So d(M,B) = d(M,C). But then d(A,B) = d(A,C) by the Pythagorean
theorem (a special case of the cosine law). �

5.7. Exercises.

1. Show that a similarity of R2 with two fixed-points is an isometry.
2. Show that an orientation-preserving isometry of R2 with two fixed-

points is the identity.
3. Show that an isometry of R2 fixing three noncollinear points is the

identity. Here, the three points are noncollinear if there is no line
containing all three of them.

4. What can you say about an orientation-reversing isometry with two
fixed-points? Can you identify the isometry by knowing the two
points?

5. Here, the standard form of an isometry is one of τx, ρ(x,θ), σℓ or τxσℓ
with x ‖ ℓ. Please specify the explicit values of x, θ, ℓ.
(a) Let ℓ be the line y = 1√

3
x− 2√

3
. Write α = ρ(0,π

3
)σℓ in standard

form.
(b) Let ℓ be the line y = −

√
3x+2. Write α = σℓρ(0,−π

3
) in standard

form.
(c) Write α = ρ(0,π

3
)ρ([√3

1

]

,π
3

) in standard form.

(d) Write α = ρ([ 20 ],
π
3 )
ρ(0, 2π

3
) in standard form.

(e) Write α = ρ([ 20 ],
π
3 )
ρ(0,−π

3
) in standard form.
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(f) Write α = τ[ 2
−2

]ρ(0,π
2
) in standard form. (Hint: write the trans-

lation as σℓσm and the rotation as σmσn. Then ℓ and m are
perpendicular to the translation vector and m ∩ n = 0. This
specifies m and that determines the other lines.)

(g) Show that if x 6∈ ℓ and θ is not a multiple of 2π, then both
σℓρ(x,θ) and ρ(x,θ)σℓ are glide reflections.
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6. Groups of symmetries: planar figures

We introduce the general theory of symmetry groups by studying sym-
metry groups in the plane. In the planar case, we have developed enough
background to study the symmetries in depth. We first explain the notion
of the symmetry group of a subset of Rn.

6.1. Symmetry in Rn; congruence and similarity.

6.1.1. The group of symmetries of X ⊂ Rn.

Definition 6.1.1. Let X ⊂ Rn. We write

S(X) = {α ∈ In : α(X) = X}.
We call this the group of symmetries of X, though in fact they are the
symmetries of Rn that carryX onto itself. (Thus, in some contexts, S(Rn, X)
would be a better notation: the symmetries of the pair (Rn, X).)

S(X) is easily seen to be a subgroup of In: it is certainly closed under
composition, and, because isometries are bijections, if α(X) = X, the inverse
function must carry X onto X as well.

Alternatively, we can ask when a subgroup of In lies in S(X).

Definition 6.1.2. Let H ⊂ In and let X ⊂ Rn. We say X is H-invariant
if α(X) ⊂ X for all α ∈ H.

These concepts fit together as follows.

Lemma 6.1.3. Let H ⊂ In and let X ⊂ Rn. Then X is H-invariant if and
only if H ⊂ S(X).

Proof. It suffices to show that if X is H-invariant then α(X) = X for all
α ∈ H. But this follows from the fact that H is a subgroup. If α ∈ H, so
is α−1, and hence α−1(X) ⊂ X. But applying α to both sides now gives
X ⊂ α(X). As α(X) ⊂ X, the result follows. �

Our first calculation has already been done for us by Proposition 2.5.1:

Example 6.1.4. The symmetry group of the origin in Rn consists of the
linear isometries of Rn:

(6.1.1) S({0}) = LIn,
which in turn is isomorphic to the orthogonal group O(n).

Currently, we have a good understanding of O(2), and have used it to
classify the isometries of R2. We will use that understanding to get a good
handle on the symmetry groups of subsets of R2.

We will study O(3) in Chapter 7. It will be the basis of our understand-
ing of the isometries of the sphere S2 (and hence our understanding of the
geometry of the earth’s surface). It is also the starting point for studying
the isometries of R3. The study of O(n) for n ≥ 4 is more difficult.
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6.1.2. The subgroups T (X) and O(X) of S(X).

Definition 6.1.5. Let X ⊂ Rn. We write

T (X) = {τx : τx ∈ S(X)}.
More generally, if H is a subgroup of In, we write

T (H) = H ∩ Tn,
the set of translations in H.

Note these are subgroups of S(X) and H, respectively, as the intersection
of two subgroups of a group is always a subgroup.

It is also of value to study the subgroup of orientation-preserving sym-
metries of X. We have so far only developed the requisite theory for n = 2,
where we are able to use signed angles to define orientation-preservation for
nonlinear maps (Definition 5.4.12), and then show in in Corollary 5.4.17 that
the collection, O2, of orientation-preserving isometries of R2 is a subgroup
of I2.

For n > 2 we do not have well-defined signed angles between pairs of
vectors, and we need additional theory. We give such a treatment in Sec-
tion 8.2. Corollary 8.2.2 identifies the orientation-preserving isometries of
Rn and shows that they form a subgroup On ⊂ In. Given that, we can make
the following definitions.

Definition 6.1.6. Let X ⊂ Rn, The orientation-preserving symmetries of
X are

O(X) = {α ∈ S(X) : α is orientation-preserving} = S(X) ∩ On.
For an arbitrary subgroup H ⊂ In we write O(H) for the orientation-
preserving elements of H:

O(H) = H ∩ On.
There are inclusions of subgroups

T (X) ⊂ O(X) ⊂ S(X),

T (H) ⊂ O(H) ⊂ H.
6.1.3. Congruence and similarity.

Definition 6.1.7. The subsets X and Y of Rn are congruent if there is an
isometry α of Rn with α(X) = Y . The isometry α is said to be a congruence
from X to Y . Thus, the symmetry group S(X) is the set of all congruences
from X to itself.

We can now use the idea of conjugacy to relate the symmetry groups of
congruent figures. Recall that if H is a subgroup of G and if g ∈ G then the
conjugate of H by g is the subgroup

gHg−1 = {ghg−1 : h ∈ H}.
By Proposition 3.4.15, conjugate sugroups of G are isomorphic.
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Lemma 6.1.8. Let X ⊂ Rn and let α : Rn → Rn be an isometry. Then the
symmetry groups of X and of α(X) are conjugate by α, and hence isomor-
phic:

S(α(X)) = αS(X)α−1.

Proof.

βα(X) = α(X) ⇔ α−1βα(X) = X

⇔ α−1βα ∈ S(X)

⇔ β ∈ αS(X)α−1. �

Since {x} = τx({0}) we obtain the following:

Corollary 6.1.9. S({x}) = τxLInτ−1
x .

Similar subsets of Rn also have isomorphic symmetry groups. We have
seen this concept before in the study of similar triangles in Euclidean geom-
etry.

Definition 6.1.10. The subsets X and Y of Rn are similar if there is a
similarity f ∈ Sn of Rn with f(X) = Y . We say f is a similarity from X to
Y .

In this case, the fact that In is normal in Sn produces an interesting
result. The point is that if H is a subgroup of In and f ∈ Sn, then

fHf−1 ⊂ fInf−1 = In.
In particular, if we conjugate an element of H by f , we get an isometry and
not just a simliarity. So conjugation by f produces an isomorphism

(6.1.2) cf : H
∼=−→ fHf−1

between two subgroups of In.
Lemma 6.1.11. Let X ⊂ Rn and let f : Rn → Rn be a similarity. Then
the symmetry groups of X and of f(X) are conjugate by f , and hence iso-
morphic:

S(f(X)) = fS(X)f−1.

Proof. Let α ∈ In. Then
αf(X) = f(X) ⇔ f−1αf(X) = X

⇔ f−1αf ∈ S(X)

⇔ α ∈ fS(X)f−1.

Here, the second equivalence uses that f−1αf is an isometry. �

We will see that the analogous result where f is replaced by an affine
isomorphism of Rn is false, as then f−1αf need not be an isometry.

Lemma 6.1.11 is useful for comparing the symmetry groups of different
models of the n-cube. The standard n-cube is In = [0, 1]n. But it is easier
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to calculate the symmetry group of [−1, 1]n, as the latter symmetry group
is given by linear isometries. The two models are obviously similar.

Another such example is given by equilateral triangles. Any two equilat-
eral triangles can be shown to be similar. One particular standard model
for an equilateral triangle is shown in Section 6.5 to have symmetry group
D6, the dihedral group of order 6. Therefore every equilateral triangle has
symmetry group isomorphic to D6, and we can identify the generators in
terms of the geometry of the triangle.

Indeed, it can be shown that any two triangles are affinely isomorphic.
But not every triangle has symmetry group D6. Some have symmetry group
D2, and some have no nonidentity symmetries.

6.2. Symmetries of polytopes.

6.2.1. Generalities. We have developed the theory of polytopes in Sec-
tions 2.8 and 2.9. We defined them to be the convex hulls of finite sets. Here,
if S = {x1, . . . , xk} ⊂ Rn, the convex hull, Conv(S) is the set of all convex
combinations of the points in S. Here, a convex combination of x1, . . . , xk
is a sum

a1x1 + · · ·+ akxk

with ai ≥ 0 for all i and
∑k

i=1 ai = 1. Conv(S) is the smallest convex
subset of Rn containing S. In particular, if x ∈ Conv(S), then Conv(S) =
Conv(S ∪ {x}) so the polytope does not determine the set S. So we will
write P for the polytope and refer to S as a convex generating set for P.

Isometries of Rn are affine. By Proposition 2.8.21, if x = a1x1+· · ·+akxk,
then

(6.2.1) α(x) = a1α(x1) + · · ·+ akα(xk) for α ∈ In.
In particular, the effect of α on P = Conv(S) is determined by its effect on
S. Moreover, α(P) = Conv(α(S)). So if α(S) = S, then α(P) = P. We
obtain the following.

Lemma 6.2.1. For a finite set S ⊂ Rn and for P = Conv(S), S(S) is a
subgroup of S(P).

In fact, the same thing holds for infinite sets S, by the same argument.
However, for some sets S, there are isometries of S(Conv(S)) that do not

preserve S. This can happen when there are elements in S which are not
vertices of Conv(S) (see below). We give an example and then discuss the
issue in greater detail.

Example 6.2.2. Let S = {−1, 34 , 1} ⊂ R. Then

Conv(S) = Conv({−1, 1}) = [−1, 1].
Let α ∈ I1 be multiplication by −1. Then α ∈ S([−1, 1]). But α(S) 6= S as
α(34) 6∈ S.
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A key in understanding the symmetries of a polytope is the notion of
face. Let P = Conv(S). A face of P is a nonempty subset of the form
F = P∩H, where H is an affine subspace of Rn and Pr F is convex. It is
shown in Proposition 2.9.39 that F = Conv(T ) for some T ⊂ S. Thus, it is
a polytope, and has a dimension, given as the dimension of the affine hull
Aff(T ) of T , an affine subspace of Rn. Moreover, we may take the affine
subspace H in the definition of face to be Aff(T ).

A vertex is a face of dimension 0. By Corollary 2.9.40, every vertex of
P = Conv(S) must lie in S. Write V = V(P) for the set of vertices of P .
By Proposition 2.9.41, P = Conv(V). Thus, V is the unique smallest convex
generating set for P.

Proposition 6.2.3. Let P be a polytope and let α ∈ S(P). Then for each
face F of P, α(F ) is a face of the same dimension as F .

Proof. Let V = V(P) be the vertices of P. Let F be a face of P, and write
F = Conv(T ) for T ⊂ V. By Proposition 2.8.21,

α(F ) = Conv(α(T )) = P ∩Aff(α(T )),

and its complement in P is convex, as α is one-to-one and preserves convex-
ity. �

Since a vertex is simply a face of dimension 0, the following is immediate.

Corollary 6.2.4. Let P be a polytope and let α ∈ S(P). Let v ∈ S be a
vertex of P. Then α(v) is also a vertex of P.

Corollary 6.2.5. Let P ⊂ Rn be a polytope with vertex set V. Let α ∈ S(P).
Then α restricts to a bijection

(6.2.2) α|V : V ∼=−→ V.
In particular, α ∈ S(V), and hence the inclusion S(V) ⊂ S(P) of Corol-
lary 6.2.1 is the identity:

(6.2.3) S(V) = S(P).

Moreover, the passage from α to α|V induces a group homomorphism from
S(P) to the group of permutations of V:

ρ : S(P)→ Σ(V)(6.2.4)

ρ(α) = α|V .
This restriction map is injective if dimP = n.

Proof. α is injective, hence its restriction to V is also. By Corollary 6.2.4,
α(V) ⊂ V. Since V is finite,

α|V : V → V
is bijective. So α ∈ S(V), and ρ is well-defined. ρ is a homomorphism
because it respects composition.
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If dimP = n, then Aff(P) is an n-dimensional affine subspace of Rn, hence
Aff(P) = Rn. Of course, Aff(P) = Aff(V), and an affine map on Aff(V) is
determined by its effect on V (Corollary 2.8.23). So ρ is injective. �

Indeed, using exactly the same argument as that in Proposition 6.2.3,
we can compare the faces of congruent, similar, or even affinely isomorphic
polytopes.

Proposition 6.2.6. Let α be an isometry of Rn (or more generally a sim-
ilarity or affine automorphism). Let P be a polytope in Rn. Then

α(Int(P)) = Int(α(P)),

and if F is a face of P, then α(F ) is a face of α(P) of the same dimension.

Remark 6.2.7. By (2.8.11), the restriction of α to Aff(P) is determined by
ρ(α). But if Aff(P) 6= Rn (i.e., if dimP < n). then α will not be determined
by its restriction to Aff(P). For instance, if P = Conv(−e1, e1) ⊂ R2,
then the linear isometry of R2 induced by

[
1 0
0 −1

]
(i.e., complex conjugation)

restricts to the identity on R (and hence on P), but is not the identity
isometry. In particular, this transformation is a nontrivial element of S(P).

Moreover, ρ : S(P)→ Σ(V) is rarely onto. Indeed, for α ∈ S(P), we must
have

(6.2.5) d(α(x), α(y)) = d(x, y) for x, y ∈ V,
and not all paris of elements of V will, in general, have the same distance
from each other that x has from y. So not every permutation of the vertices
can be realized by an isometry. For instance, if P is the square and if x
and y share an edge, then no symmetry of P can take x and y to points
diagonally opposite one another.

An exception is the standard simplex ∆n−1 ⊂ Rn. Recall that ∆n−1

has vertices e1, . . . , en, the standard basis elements of Rn. Note here that
d(ei, ej) =

√
2 for all i 6= j.

Proposition 6.2.8. The restriction map

(6.2.6) ρ : S(∆n−1)
Σ−→ ({e1, . . . , en}) ∼= Σn

is onto.

Proof. Let σ ∈ Σn. Then σ corresponds to the permutation of {e1, . . . , en}
taking ei to eσ(i) for all i. But this permutation is induced by the matrix
Aσ = [eσ(1)| . . . |eσ(n)] whose i-th column is eσ(i) for all i. Since the columns
of Aσ form an orthonormal basis of Rn, Aσ is an orthogonal matrix and
hence induces an isometry of Rn having the desired effect on the canonical
basis vectors. Thus σ is in the image of ρ, and ρ is onto. �

Remark 6.2.9. The map ρ : S(∆n−1)
Σ−→ ({e1, . . . , en}) from the last ex-

ample is not one-to-one for the same reason the analogous map for

Conv(−e1, e1) ⊂ R2
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was not one-to-one. There is a reflection map of Rn across the hyperplane
Aff(e1, . . . , en), and this provides a nontrivial element of S(∆n−1) that re-
stricts to the identity on ∆n−1.

Indeed let P ⊂ Rn be a polytope with vertex set V. If P has dimension
less than n, then In will always contain nontrivial elements that restrict to
the identity on Aff(P), and hence ρ is not one-to-one.

6.2.2. Centroids. A useful concept in studying polytopes is the centroid.

Definition 6.2.10. Let P ⊂ Rn be a polytope with vertex set V. The
centroid of P is

(6.2.7) c(P) =
1

|V|
∑

v∈V
v,

the average of the points in V.8

Proposition 6.2.11. Let P ⊂ Rn be a polytope with vertex set

V = {v1, . . . , vk}.

Then every α ∈ S(P) preserves the centroid, c(P), of P. i.e., S(P) is a
subgroup of S(c(P)). In particular, if c(P) = 0, then S(P) is a subgroup of
the group of linear isometries of Rn.

Proof. c(P) = 1
k
v1 + · · · + 1

k
vk, a convex combination of v1, . . . , vk. Thus,

for α ∈ S(P), (2.8.11) gives

α(c(P)) =
1

k
α(v1) + · · ·+

1

k
α(vk) =

1

k

k∑

i=1

α(vi).

Since α restricts to a permutation on V, ∑k
i=1 α(vi) =

∑k
i=1 vi, and hence

α(c(P)) = c(P). �

A similar argument gives the following.

Proposition 6.2.12. Let P ⊂ Rn be a polytope and let α be an isometry
of Rn (or, more generally, a symmetry or an affine isomorphism). Then α
carries the centroid of P to the centroid of α(P).

Corollary 6.2.13. Let P be a polytope and let F be a face of P. Let
α ∈ S(P). Then α carries the centroid of F to the centroid of α(F ).

8It is essential that we are taking the average of the vertices and not simply the average
of some convex generating set. If we were to expand V to a larger convex generating set,
the average of that expanded generating set might be different, and the results to follow
would be false.
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6.2.3. Symmetries of the n-cube. We can use Proposition 6.2.12 to
compute the centroid of the n-cube. The standard n-cube In is [0, 1]n ⊂ Rn.
Its vertices are computed in Example 2.9.50. Here, we shall model the n-
cube as [−1, 1]n, which we shall call the standard balanced n-cube. It is
related by an obvious similarity to the standard model. In particular, its
vertices are

(6.2.8) S =
{
ǫ1e1 + · · ·+ ǫnen : ǫ1, . . . , ǫn ∈ {±1}

}
.

Corollary 6.2.14. The standard balanced n-cube has centroid 0. Therefore
its symmetries are all linear.

Proof. For each v in the vertex set S of (6.2.8), it negative, −v, also lies in
S. So the sum of the vertices is 0. �

Now apply the obvious similarity from the balanced n-cube to the stan-
dard one:

Corollary 6.2.15. The centroid of the standard n-cube is 1
2e1 + · · ·+ 1

2en.

To compute the symmetries of the balanced n-cube, we shall pay attention
to their effect on faces.

We now compute the symmetry group of the balanced n-cube. We first
display the group itself and then show it gives the desired symmetries.

Definition 6.2.16. The group of n×n signed permutation matrices, O(n,Z),
consists of the matrices of the form A = [ǫ1eσ(1)| . . . |ǫneσ(n)] with σ ∈ Σn
and ǫi ∈ {±1} for all i. These are precisely the invertible matrices taking
each canonical basis element to a signed canonical basis element, so they
form a subgroup of GLn(R). Indeed, their columns form an orthonormal
basis of Rn, so O(n,Z) is a subgroup of O(n). For each σ ∈ Σn, there are
2n ways to sign the permutation matrix Aσ, so O(n,Z) has 2n ·n! elements.

Note that for A ∈ O(n,Z), the transformation TA preserves the balanced
n-cube [−1, 1]n. Thus, we obtain an injective group homomorphism

T : O(n,Z)→ S([−1, 1]n)(6.2.9)

A→ TA.

Proposition 6.2.17. The map T of (6.2.9) is an isomorphism.

Proof. As shown in Example 2.9.50, the (n−1)-dimensional faces of [−1, 1]n
have the form

(6.2.10) ∂ǫi ([−1, 1]n) = {a1e1 + · · ·+ anen ∈ [−1, 1]n : ai = ǫ}
for i = 1, . . . , n and ǫ ∈ ±1. Note that ∂ǫi ([−1, 1]n) is the image under τǫei
of the standard balanced (n − 1)-cube in span({ej : j 6= i}). By Propo-
sition 6.2.12, the centroid of ∂ǫi ([−1, 1]n) is ǫei. But each α ∈ S([−1, 1]n)
takes (n− 1)-dimensional faces to (n− 1)-dimensional faces, and must take
centroids to centroids. So α(ei) is a signed canonical basis vector for all i.
Thus, T is onto. �
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6.2.4. Symmetries of the regular n-gon in R2. We shall also study
the symmetries of the standard regular n-gon in R2, n ≥ 3, which we take

to be Pn = Conv(v0, . . . , vn−1) with vj =

[
cos 2πj

n

sin 2πj
n

]
for j = 0, . . . , n− 1.

We shall verify here that each vj is a vertex of Pn and that its centroid is
the origin. We shall complete the calculation of S(Pn) in Section 6.5.

For simplicity of notation, let ρ = ρ(0. 2πn )
. We shall make use of the fact

that

(6.2.11) ρ(vj) = vj+1 for j = 0, . . . , n− 2, and ρ(vn−1) = v0.

Thus, ρ permutes the elements of {v0, . . . , vn−1}. The following is now
immediate from (2.8.11).

Lemma 6.2.18. ρ ∈ S(Pn).

We immediately obtain the following.

Corollary 6.2.19. The origin is the centroid of Pn. Thus every symmetry
of Pn is linear.

Proof. By Proposition 6.2.11, ρ preserves the centroid of Pn. But the only
fixed-point of ρ is the origin. �

Note that v0 = [ 10 ].

Lemma 6.2.20. v0 is a vertex of Pn.

Proof. Since the cosine function is decreasing on [0, π] and cos(−t) = cos t,
the x-coordinate of vj is in [−1, cos 2π

n
] for j = 1, . . . , n−1. By (2.8.11), the x-

coordinate of each element of Conv(v1, . . . , vn−1) lies in that interval. Thus,
v0 is not in Conv(v1, . . . , vn−1). So v0 is a vertex by Corollary 2.9.40. �

Corollary 6.2.21. vj is a vertex of Pn for all j = 0, . . . , n− 1.

Proof. For j = 1, . . . , n − 1, vj = ρj(v0). Since ρ ∈ S(Pn), so is ρj . By
Corollary 6.2.4, symmetries of Pn carry vertices to vertices. �

6.3. Geometry meets number theory: the golden mean. The golden

mean is defined to be the number Φ = 1+
√
5

2 . It is important in number
theory, as it generates what is known as the ring of integers in the number
field Q(

√
5) = {a+ b

√
5 : a, b ∈ Q}. Note that the quadratic formula shows

Φ to be a root of the quadratic x2 − x− 1. We obtain the following.

Lemma 6.3.1. The golden mean satisfies

(6.3.1) Φ2 = Φ+ 1.

Moreover, the multiplicative inverse of Φ in R is given by

(6.3.2)
1

Φ
= Φ− 1 =

−1 +
√
5

2
.
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Proof. Φ is a root of x2 − x − 1, so Φ2 − Φ − 1 = 0, and (6.3.1) follows
immediately. Similarly,

Φ(Φ− 1) = Φ2 − Φ = 1,

and we obtain (6.3.2). �

Notation 6.3.2. We write φ = 1
Φ = Φ− 1 = −1+

√
5

2 .

Since 2 =
√
4 <
√
5 < 3 =

√
9, we obtain:

Lemma 6.3.3. We have 1.5 < Φ < 2, hence .5 < φ < .75.

This gives rise to the famous geometric observation:

Proposition 6.3.4. Let R be a rectangle one of whose sides has length 1
and the other has length Φ. Cut it into a square of side 1 and a rectangle S
whose sides have lengths 1 and Φ− 1. Then we take the ratio of the smaller
side over the larger side in R and S is the same: the ratio is φ

Proof. Since 1 < Φ < 2, the smaller side of S has length Φ − 1 = φ, and
the larger side of S has length 1. �

A second connection with geometry now follows from our work on the
regular pentagon P5. We make use of the identification of R2 with the

complex numbers C. Under this identification, the vertex vj =

[
cos 2πj

5

sin 2πj
5

]

corresponds to the complex exponential e
2πj
5

·i = cos 2πj
5 + i sin 2πj

5 . So, as

a complex number, v5j = 1 for all j. Indeed, we can say more. A standard

notation is to set ζ5 = e
2πi
5 . We then have

(6.3.3) vj = ζj5 for j = 0, . . . , 4.

Of course v0 = e0 = 1.
We obtain the following very useful calcuations.

Proposition 6.3.5. We have

cos
2π

5
=
φ

2
,(6.3.4)

cos
4π

5
= −Φ

2
.(6.3.5)

Proof. Write ξ5 = ζ5+ζ
4
5 = v1+v4. Since ζ

5
5 = 1, ζ45 = ζ−1

5 . Since ‖ζ5‖ = 1,

ζ−1
5 = ζ̄5, the complex conjugate of ζ5. Thus,

ξ5 = ζ5 + ζ̄5 =

(
cos

2π

5
+ i sin

2π

5

)
+

(
cos

2π

5
− i sin 2π

5

)
(6.3.6)

= 2 cos
2π

5

So (6.3.4) is equaivalent to showing that ξ5 = φ.
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Let ω = ζ25 + ζ35 = v2 + v3. Note that ζ35 is the inverse of ζ25 . So an
argument similar to that for (6.3.6) shows that

(6.3.7) ω = 2 cos
4π

5
.

So (6.3.5) is equivalent to snowing that ω = −Φ. Now

(6.3.8) ξ5 + ω + 1 = v0 + · · ·+ v5 = 0,

as the centroid of P5 is 0, so

(6.3.9) ω = −ξ5 − 1.

Now

ξ25 = (ζ5 + ζ−1
5 )2 = ζ25 + 2ζ5ζ

−1
5 + ζ−2

5 = ω + 2 = −ξ5 + 1,(6.3.10)

so ξ5 is a root of x2 + x− 1. Since ξ5 = 2 cos 2π
5 > 0, the quadratic formula

gives

(6.3.11) ξ5 =
−1 +

√
5

2
= φ,

as the other root is negative. We obtain (6.3.4). But now

(6.3.12) ω = −ξ5 − 1 = −1 +
√
5

2
= −Φ,

and (6.3.5) follows. �

6.4. Symmetries of points and lines in R2. Example 6.1.4 shows that
the symmetry group of the origin in Rn is the group of linear isometries of
Rn. When n = 2 we can use our calculation of O(2) to say more:

Example 6.4.1. In R2, we have

(6.4.1) S({0}) = LI2 = {ρ(0,θ) : θ ∈ R} ∪ {σℓθ : θ ∈ R}.

Thus, for n = 2, T ({0}) = {id} and O({0}) = {ρ(0,θ) : θ ∈ R}, which we
may identify with SO(2).

We can now use Corollary 6.1.9 to find S({x}) for x 6= 0.

Corollary 6.4.2. Let x ∈ R2. Then

S({x}) = {ρ(x,θ) : θ ∈ R} ∪ {σℓ : x ∈ ℓ}.

Proof. ρ(x,θ) = τxρ(0,θ)τ−x (by definition), and if x ∈ ℓ, then σℓ = τxσℓθτ−x
for ℓθ = τ−x(ℓ) (Lemma 5.1.14). �

We next calculate the symmetries of a line.
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Proposition 6.4.3. Let ℓ = y+span(v) be a line in R2 with v a unit vector.
Then

T (ℓ) = {τsv : s ∈ R},
O(ℓ) = T (ℓ) ∪ {ρ(x,π) : x ∈ ℓ}.

Moreover, the reflections in S(ℓ) are {σℓ} ∪ {σm : m ⊥ ℓ} and the glide
reflections in S(ℓ) are {σℓτx : x ‖ ℓ}.
Proof. The calculation of T (ℓ) is Proposition 2.1.14. The calculation of the
glide reflections in S(ℓ) is Lemma 5.5.6.

Let’s now consider the rotations in S(ℓ). First note that if x ∈ ℓ, then
ℓ = x + span(v) and ρ(x,π)(x + sv) = x − sv, so ρ(x,π) ∈ S(ℓ). Thus, for
rotations, it suffices to show:

(1) If x 6∈ ℓ and θ is not a multiple of 2π, then ρ(x,θ) 6∈ S(ℓ).
(2) If x ∈ ℓ and θ is not a multiple of π, then ρ(x,θ) 6∈ S(ℓ).

To prove (1), we may as well translate the problem and assume x = 0.
This simplifies the calculations. We drop a perpendicular from x = 0 to

ℓ, and that perpendicular is easily seen to be ℓφ, where
[
cosφ
sinφ

]
= v⊥. Let

z = ℓφ∩ℓ, Then the Pythagorean theorem shows z to be the closest point on
ℓ to the origin. Since rotations are isometries, ρ(0,θ)(z) is the closest point
on ρ(0,θ) to the origin. Since x 6∈ ℓ, z 6= 0, and since θ is not a multiple of
2π, ρ(0,θ)(z) 6= z. Thus ρ(0,θ)(ℓ) 6= ℓ.

To prove (2), we again assume x = 0. We then have ℓ = ℓφ where[
cosφ
sinφ

]
= v. But ρ(0,θ)(ℓφ) = ℓφ+θ, and this is ℓφ if and only if θ is a multiple

of π.
Finally, we calculate the reflections in S(ℓ). If m ⊥ ℓ and if x = ℓ ∩m,

then ℓ = x + span(v) amd m = x + span(v⊥). An easy calculation shows
σm(ℓ) = x+ span(−v) = ℓ. Of course, σℓ is the identity on ℓ, so σℓ ∈ S(ℓ).

If m ‖ ℓ and m 6= ℓ, then σm(ℓ) 6= ℓ by an argument similar to that
of Lemma 5.5.6. Thus, it suffices to consider the case where m is neither
parallel nor perpendicular to ℓ. Let x = ℓ ∩m. As above we may translate
the problem and assume that x = 0. Thus, we may assume ℓ = ℓφ and
m = ℓφ+ψ where ψ is not a multiple of π2 . By Lemma 5.3.7, σm(ℓ) = ℓφ+2ψ,
and that is not equal to ℓφ, as 2ψ is not a multiple of π. �

6.5. Dihedral groups. We study the symmetries of the regular n-gon for

n ≥ 3. Let vi =

[
cos 2πi

n

sin 2πi
n

]
and let Pn be the polygon whose vertices are

v0, . . . , vn−1. So P4 is the following:
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Formally, Pn is the convex hull, Conv(v0, . . . , vn−1), and we have demon-
strated in Corollary 6.2.21 that each vi satisfies the formal definition of a
vertex for a polytope. Since Pn = Conv(v0, . . . , vn−1), these are the only
vertices of Pn.

By Corollary 6.2.5, every symmetry of Pn must permute the vertex set
{v0, . . . , vn−1}, and since the vertex set contains 3 noncollinear points, the
symmetries of Pn are determined by their effect on the vertices.

Proposition 6.5.1. The symmetry group of Pn is finite, with 2n elements:

S(Pn) =
{
ρi(0, 2πn )

: 0 ≤ i < n
}
∪
{
ρi(0, 2πn )

σℓ0 : 0 ≤ i < n
}
,

with ℓ0 the x-axis as usual. Thus,

O(Pn) =
{
ρi(0, 2πn )

: 0 ≤ i < n
}
.

In particular, these isometries are all linear.9 Finally, note that

(6.5.1) ρi(0, 2πn )
σℓ0 = σℓπi

n

,

where ℓπi
n

= span

([
cos πi

n

sin πi
n

])
. This line through the origin contains either

a vertex of Pn or the midpoint of an edge, or both. Every line through the
origin and one of these vertices or midpoints is included in this list.

Note that there are exactly n rotations (including the identity) and n
reflections in S(Pn).

Proof. As discussed above, a symmetry of Pn is determined by its effect
on the vertices. But it cannot permute the vertices arbitrarily, as it must
preserve distance.

The cosine law tells us the distance between two points, v and w, on the

unit circle if we know the unsigned angle between the rays
−→
0v and

−→
0w: if

that angle is θ, then the distance, d, is determined by

d2 = ‖v‖2 + ‖w‖2 − 2‖v‖‖w‖ cos θ = 2(1− cos θ).(6.5.2)

In particular, this distance increases with θ, so the two closest vertices to vi
are vi−1 and vi+1, where we identify v0 as vn to make sense of this. We call
these the adjacent vertices to vi. Any α ∈ S(Pn) must take adjacent vertices
to adjacent vertices.

Thus, if we know α(v0) there are exactly two choices for α(v1). And since
α(v0) occupies one of the vertices adjacent to α(v1), v2 must go to the other
vertex adjacent to α(v1). Continuing in this manner, we see that the targets
of the rest of the vertices are determined, once we know α(v0) and α(v1).

Now consider the displayed isometries. ρi
(0, 2πn )

= ρ(0, 2πin ) takes v0 to vi

and takes v1 to the next vertex in the counterclockwise direction, while

9We already knew this from Corollary 6.2.19, but the argument here is more elementary.
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ρi
(0, 2πn )

σℓ0 takes v0 to vi and takes v1 to the adjacent vertex in the clockwise

direction. Thus, no other isometries of Pn are possible.
Now, (6.5.1) is just Lemma 5.3.9. When i is even, this line goes through

v i
2
. When i = 2k+1, the line goes through the the midpoint of vkvk+1. The

rest follows since ℓθ = ℓθ+π for all θ. �

Definition 6.5.2. The group S(Pn) displayed above is the standard model
for the dihedral group, D2n of order 2n. A standard notation would be to
set ρ(0, 2πn )

= b, or bn if n varies, and set σℓ0 = a. So

D2n = {bi : 0 ≤ i < n} ∪ {bia : 0 ≤ i < n}.
We have bn = ρ(0,2π) = id and this is the smallest power of b that gives
the identity. As discussed in Chapter 3, this says the order of b is n. We
also have a2 = σ2ℓ0 = id, so a has order 2. Note that abia−1 = b−i by

Proposition 5.3.10. Thus, abi = b−ia, allowing us to compute the product
of any two of the listed elements.

The group O(D2n) = {bi : 0 ≤ i < n} is the cyclic group of order n,
written Cn. In particular, Cn = 〈b〉.

We can easily find a subset X with symmetry group Cn.

Example 6.5.3. Let Qn be obtained from Pn by replacing the edge vivi+1

by an arrow pointing from vi to vi+1. Q4:

��

��

__

??

Obviously, any symmetry of Qn must preserve Pn, so S(Qn) is a subgroup of
S(Pn). Since all the arrows point counterclockwise, there are no reflections in
S(Qn), so S(Qn) ⊂ O(Pn). Moreover, each bi does preserve Qn, so S(Qn) =
O(Qn) = Cn.

Let α : R2 → R2 be an isometry. By Lemma 6.1.8, S(α(Pn)) = αD2nα
−1,

a conjugate subgroup to S(Pn). In general, if H is a subgroup of the group
G and if g ∈ G, there is an isomorphism

cg : H → gHg−1

h 7→ ghg−1.

This is easily seen to be a bijective group homomorphism. Its inverse is given
by conjugating by g−1. Thus there are lots of subgroups of I2 isomorphic
to D2n. In fact, we will show that every finite subgroup of I2 is conjugate
either to the standard copy of D2n or the standard copy of Cn.

Before we continue, there are some additional cases to consider for small
values of n.
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Definition 6.5.4. We set C1 = id, D2 = {σℓ0 , id}, C2 = {ρ(0,π), id},
and D4 = {ρ(0,π), σℓ0 , ρ(0,π)σℓ0 = σℓπ

2
, id}. Note that in every case, the

orientation-preserving subgroup of D2n is Cn and that Cn is cyclic of order
n.

As the reader may verify, the following figures have symmetry groups
conjugate to C1, D2, C2 and D4, respectively:

��

OO

Note that C2 and D2 are isomorphic as groups, but are not conjugate in
I2 as ρ(0,π) is orientation-preserving and σℓ0 is orientation-reversing.

6.6. Index 2 subgroups. We show how to derive the structure of S(X)
from the structure of O(X). The techniques used apply to much more
general situations, so we state them in that context.

Definition 6.6.1. Let H be a subgroup of G and let x ∈ G. The right
coset, Hx, of H by x is

Hx = {hx : h ∈ H}.
Note that x = ex ∈ Hx.

The right cosets partition G into disjoint sets:

Lemma 6.6.2. Let H be a subgroup of G then the following statements are
equivalent:

(1) Hx ∩Hy 6= ∅.
(2) Hx = Hy.
(3) xy−1 ∈ H.

Proof. (2) ⇒ (1) is immediate. To see that (1) ⇒ (3), let z ∈ Hx ∩ Hy.
Then z = hx = ky with h, k ∈ H. Then xy−1 = h−1k ∈ H.

Finally, suppose xy−1 = h ∈ H. Then x = hy, so kx = (kh)y ∈ Hy for all
k ∈ H, so Hx ⊂ Hy. But y = h−1x, so ky = (kh−1)x ∈ Hx for all k ∈ H,
so Hy ⊂ Hx. Thus Hx = Hy. We’ve shown that (3) ⇒ (2). �

He = {he : h ∈ H} is precisely H, and (3) shows that Hx = He if and
only if x = xe−1 ∈ H.

Definition 6.6.3. We say H has finite index in G if the number of distinct
right cosets of H in G is finite. We then write [G : H] for the number of
these right cosets, and call it the index of H in G. If there are infinitely
many right cosets we write [G : H] =∞.

We obtain the following as a bonus.
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Theorem 6.6.4 (Lagrange’s theorem). Let G be a finite group and let H
be a subgroup. Then |G| = [G : H] · |H|, so the order of H divides the order
of G.

Proof. Each element of G lies in exactly one right coset of H. There are
[G : H] such cosets. For a given coset Hx there is a function

H → Hx

h 7→ hx.

This is a bijection as its inverse function is given by multiplying on the right
by x−1. In particular, each right coset has |H| elements in it, and the result
follows. �

Corollary 6.6.5. Let G be a finite group and let g ∈ G. Then |g| divides
|G|.
Proof. |g| = |〈g〉|. �

Corollary 6.6.6. Let G be a group whose order is a prime number, p. Then
G is cyclic. Indeed, any nonidentity element of G is a generator.

Proof. Let e 6= g ∈ G. Then |〈g〉| divides p and is greater than one. So
|〈g〉| = |G|, hence 〈g〉 = G. �

Our focus in this section is on index 2 subgroups. These arise in many
important contexts. The following helps us recognize index 2 subgroups
even when the groups are infinite. Recall that if Y ⊂ X, the set-theoretic
difference X r Y is {x ∈ X : x 6∈ Y }.
Proposition 6.6.7. Let H be a subgroup of G with H 6= G. Then the
following conditions are equivalent.

(1) H has index 2 in G (i.e., [G : H] = 2).
(2) For all x ∈ GrH, Hx = GrH.
(3) For all x, y ∈ GrH, xy ∈ H.

Proof. (1) ⇒ (2): Here, there are exactly 2 right cosets of H in G. One is
He = H. Since the right cosets partition G, this says every element not in
the coset H must be in the other coset. In particular, if x 6∈ H, then Hx is
the other coset, which must consist of all elements of GrH.

(2) ⇒ (3): Let x, y ∈ GrH. Since H is a subgroup, y−1 ∈ GrH. So

GrH = Hx = Hy−1

by (2). Thus, xy ∈ H by Lemma 6.6.2(3).
(3) ⇒ (1): H = He is one coset of H in G. If x 6∈ H, then Hx 6= He,

as xe−1 6∈ H. So H 6= G implies there are at least two cosets. It suffices to
show that if x, y ∈ G r H, then Hx = Hy, i.e., xy−1 ∈ H. But this last
follows from (3), as y−1 6∈ H. �
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Note that (2) and (3) hold vacuously if H = G, so the requirement that
H 6= G is necessary for the equivalence above. (2) or (3) alone is equivalent
to saying that [G : H] = 1 or 2.

We can now give some examples of index 2 subgroups, using (3), above.

Examples 6.6.8.

(1) The orientation-preserving isometries O2 have index 2 in I2 as the
product of any two orientation-reversing isometries is orientation-
preserving.

(2) The even integers 〈2〉 have index 2 in Z as the sum of any two odd
integers is even.

(3) The special orthogonal group SO(n) has index 2 in O(n), as if A,B ∈
O(n)r SO(n), then det(AB) = detA detB = (−1)2 = 1.

(4) The cyclic group Cn has index 2 in the dihedral group D2n: every
element of D2n r Cn lies in the right coset of σℓ0 .

There is a nice group-theoretic characterization of index 2 subgroups:

Corollary 6.6.9. Index 2 subgroups are always normal. In fact, a subgroup
H ⊂ G has index 2 if and only if H is the kernel of a surjective group
homomorphism f : G→ {±1}.
Proof. Let [G : H] = 2. Define f : G→ {±1} by

f(x) =

{
1 if x ∈ H
−1 otherwise.

If exactly one of x and y is in H, then xy 6∈ H, so −1 = f(xy) = f(x)f(y).
Otherwise, xy ∈ H, and 1 = f(xy) = f(x)f(y). Thus, f is a homomorphism.
ker f = f−1(1) = H.

Conversely, suppose f : G → {±1} is a homomorphism with ker f = H.
Then if x, y ∈ GrH, f(xy) = f(x)f(y) = (−1)2 = 1, so xy ∈ ker f = H. �

By Lemma 4.1.20, the alternating group An is the kernel of the sign
homomorphism sgn : Σn → {±1}. We obtain:

Corollary 6.6.10. The alternating group An has index 2 in Σn.

The following is a key in understanding symmetry groups.

Proposition 6.6.11. Let H be an index 2 subgroup of G and let K be an
arbitrary subgroup of G. If K is not contained in H, then H ∩K has index
2 in K.

Proof. Let x, y ∈ K r K ∩ H. Then x, y ∈ G r H, so xy ∈ H. But
x, y ∈ K, and K is a subgroup, so xy ∈ K. Thus, xy ∈ K ∩ H, and the
result follows. �

We obtain the following:
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Corollary 6.6.12. Let H be a subgroup of I2 with O(H) 6= H. Then O(H)
has index 2 in H. Thus, if β ∈ H rO(H), then H rO(H) = O(H)β.

Another useful consequence of Proposition 6.6.11 requires some group
theory.

Corollary 6.6.13. Let n ≥ 5. Then An is the only index 2 subgroup of Σn.

Proof. We argue by contradition. Suppose H is an index 2 subgroup of
Σn with H 6= An. Then K ∩ An has index 2 in An, and hence K ∩ An is
a nontrivial proper normal subgroup of An. But for n ≥ 5, An is what’s
known as a simple group: a group with no normal subgroups other than
the trivial group and itself (see, e.g., [17, Theorem 4.2.7]).10 We obtain the
desired contradition. �

Remark 6.6.14. By studying the groups in question, one can show that
An is also the only index 2 subgroup of Σn for n < 5.

6.7. Left cosets; orbit counting; the first Noether theorem. This
material is not needed in this chapter, but it important. We include it here
because the idea of cosets has been introduced.

Let H be a subgroup of G. A left coset of H in G is a subset of the form

(6.7.1) xH = {xh : h ∈ H}
for x ∈ G. Of course, x = xe ∈ xH. The proof of the following is analogous
to that of Lemma 6.6.2.

Lemma 6.7.1. Let H be a subgroup of G then the following statements are
equivalent:

(1) xH ∩ yH 6= ∅.
(2) xH = yH.
(3) y−1x ∈ H.

Definition 6.7.2. We write G/H for the set of left cosets of H in G:

G/H = {xH : x ∈ G}.
Thus, G/H is a collection of subsets of G. Note that since each x ∈ G
lies in the left coset xH and since any two left cosets are either disjoint or
identical, every element of G lies in exactly one left coset of H in G. G/H
is sometimes called the homogeneous space of G with respect to H.

Similarly, we write H\G for the set of right cosets of H in G. If H has
finite index in G, then by definition, [G : H] = |H\G|.
Lemma 6.7.3. There is a bijection χ : G/H → H\G given by

χ(xH) = Hx−1.

10The simplicity of An for n ≥ 5 is also an essential ingredient in Galois’ famous proof
that there is no formula involving interated roots for solving polynomials of degree n ≥ 5.
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Proof. We have that xH = yH if and only if y−1x ∈ H. But y−1x =
y−1(x−1)−1, so this is equivalent to saying Hy−1 = Hx−1. �

Definition 6.7.4. Let H be a subgroup of G. Then the canonical map
π : G→ G/H is defined by π(x) = xH for all x ∈ G.

There is an important connection betweenG-sets and homogeneous spaces.
Recall that if X is a G-set (i.e., G acts on X) and if x ∈ X, then the isotropy
subgroup Gx is the set of elements of G that fix x, while the orbit Gx (or
G · x) is the set of images of x under the action of G:

Gx = {g ∈ G : gx = x},
Gx = {gx : g ∈ G}.

Two orbits that intersect nontrivially must be equal, so every element of X
lies in exactly one orbit.

Lemma 6.7.5. Let H be a subgroup of G. Then G/H is a G-set via

g · xH = (gx)H

for g ∈ G and xH ∈ G/H. The isotropy subgroup of eH under this action
is H. The canonical map π : G→ G/H is a G-map, where the action of G
on G is given by left multiplication.

Proof. Setting g · xH = (gx)H is well-defined as if xH = yH, then x = yh
for some h ∈ H, hence gx = gyh. This determines an action of G on G/H
by associativity. The isotropy subgroup of eH is {g ∈ G : gH = H}. But
this is precisely H.

Regarding π, we have π(gx) = gπ(x). �

Note that G/H consists of a single orbit, as G/H = G · eH.

Definition 6.7.6. The action of G on a set X is transitive if X consists of
a single G-orbit.

In fact, every transitive G-set is G-isomorphic to a homogeneous space:

Proposition 6.7.7. Let X be a G-set and let x ∈ X. Then there is a G-
map fx : G/H → X with f(eH) = x if and only if H is contained in the
isotropy subgroup Gx. There is a unique such fx in this case: fx(gH) = gx
for all g ∈ G. The image of fx is the orbit Gx, and fx is one-to-one if and
only if H = Gx. Thus, taking H = Gx, we obtain a G-isomorphism

(6.7.2) fx : G/Gx
∼=−→ Gx.

Proof. If there is a G-map fx : G/H → X with fx(eH) = x, then the
composite f = fx ◦ π : G → X is a G-map, so if g ∈ G, f(g) = gx. But
f(g) = fx(gH), so fx(gH) = gx for all g ∈ G. But if h ∈ H, hH = eH, so
we must have hx = x. Thus H ⊂ Gx.
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Conversely, if H ⊂ Gx and if g1H = g2H, then g−1
2 g1 ∈ H ⊂ Gx. So

g−1
2 g1x = x, and hence g1x = g2x. So setting fx(gH) = gx gives a well-
defined function fx : G/H → X. It is obviously a G-map, and its image is
Gx.

Now fx(g1H) = fx(g2H) if and only if g1x = g2x, and this in turn holds
if and only if g−1

2 g1 ∈ Gx. So fx is one-to-one precisely when H = Gx. �

Corollary 6.7.8. A G-set is transitive if and only if it is G-isomorphic to
a homogeneous space.

The following is immediate from Lagrange’s theorem (Theorem 6.6.4).

Corollary 6.7.9. Let X be a G-set and x ∈ X. Then the orbit Gx is finite
if and only if Gx has finite index in G. In this case |Gx| = [G : Gx]. Thus,
if G itself is finite, |G| = |Gx| · |Gx| for any x ∈ X.

The left and right cosets of H are generally different subsets of G. They
coincide precisely when H ⊳G.

Proposition 6.7.10. Let H be a subgroup of G. Then the following condi-
tions are equivalent.

(1) H ⊳G.
(2) xH = Hx for all x ∈ G.
(3) There is a well-defined operation on G/H given by

(xH)(yH) = xyH

for all x, y ∈ G.
(4) There is a group structure on G/H making π : G → G/H a homo-

morphism.

Proof. (1)⇔(2) Multiplying by x on the right shows xHx−1 = H if and
only if xH = Hx.

(1)⇔(3) Assuming (1), it suffices to show that (xy)−1xhyk ∈ H for all
h, k ∈ H. By (2), hy = yh′ for some h′ ∈ H, and the result follows.

(3)⇒(4) The operation specified in (3) inherits associativity from the
group operation in G. It has eH as an identity element, and x−1H is an
inverse for xH.

(4)⇒(1) H = kerπ. Kernels are always normal. �

Remark 6.7.11. Note that (4) forces the operation on G/H to be the one
specified in (3). When H ⊳G, when we write G/H, we shall always intend
it to have this group structure.

Example 6.7.12. Consider the case G = Z and H = 〈n〉. Here, the group
operation is additive, so the cosets are written additively: a + 〈n〉 is the
coset containing a. Since Z is abelian, there is no distinction between left
and right cosets. It is customary to write Zn for Z/〈n〉. It is the standard
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cyclic group of order n. We write ā for the coset a + 〈n〉. In this notation,
we have

ā+ b̄ = a+ b,

ā · b̄ = ab.

For a > 0,

ā = 1̄ + · · ·+ 1̄︸ ︷︷ ︸
a times

= a · 1̄,

so Zn = 〈1̄〉, and 0̄ = n̄ = n · 1̄, while, if 0 < a < n, then a 6∈ 〈n〉, so a · 1̄ 6= 0̄.
Thus Zn is indeed cyclic of order n.

Theorem 6.7.13 (First Noether isomorphism theorem). Let H⊳G and let
f : G→ K be a group homomorphism. Then f factors through a homomor-
phism f̄ : G/H → K making the following diagram commute if and only if
H ⊂ ker f .

(6.7.3) G
f

//

π
!!

K

G/H

f̄

<<

Moreover, f̄ is an injective if and only if H = ker f , and is surjective if and
only if f is surjective.

Proof. If the diagram commutes, then

H = kerπ ⊂ ker(f̄ ◦ π) = ker f.

Conversely, if H ⊂ ker f , then f(xh) = f(x) for all x ∈ G and h ∈ H, so
there is a function f̄ : G/H → K making the diagram commute. It is a
group homomorphism by (3), above.

By construction, the image of f̄ is the image of f , hence the surjectivity
statement. If f̄ is injective, then ker f = ker(f̄ ◦π) = kerπ = H. Conversely
if ker f = H and if xH ∈ ker f̄ , then e = f̄(xH) = f(x), and hence x ∈ H.
But then xH = eH, and ker f̄ is trivial, making f̄ injective. �

As a first application, recall from Proposition 3.4.16 that for any group G
and any g ∈ G, there is a unique homomorphism fg : Z→ G with fg(1) = g.
Explicitly, fg(m) = gm for all m ∈ Z, so that the image of fg is 〈g〉 and the
kernel of fg is

{m ∈ Z : gm = e},
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the set of all exponents of g. In particular, if |g| is finite, ker fg = 〈|g|〉, and
if |g| is infinite, ker fg = 0. We ask now when fg factors as

Z
fg

//

π
  

G.

Zn

f̄g

>>

Note that since π(1) = 1̄ such a factorization exists if and only if there is a
homomorphism f̄g : Zn → G with f̄g(1̄) = g.

Corollary 6.7.14. There is a homomorphism f̄g : Zn → G with f̄g(1̄) = g
if and only if n is an exponent for g. Such a homomorphism is unique. It’s
image is 〈g〉. It is injective if and only if |g| = n. In particular, every cyclic
group 〈g〉 of order n is isomorphic to Zn by the isomorphism f̄g : Zn → 〈g〉
given by f̄g(ā) = ga for all a ∈ Z.

Corollary 6.6.6 now gives:

Corollary 6.7.15. Any group of prime order p is isomorphic to Zp.

6.8. Leonardo’s theorem. The finite subgroups of I2 are known as ro-
sette groups, as they occur as groups of symmetries of finite polygons. The
following theorem of Leonardo da Vinci will verify that fact, once we know
that Cn is the symmetry group of a polygon.

Theorem 6.8.1 (Leonardo’s theorem). Every finite subgroup of I2 is con-
jugate to either the standard copy of D2n or the standard copy of Cn.

The proof will take up this whole section. Let H ⊂ I2 be finite. First
note that H contains no nonidentity translations, as τx has infinite order if
x 6= 0, so 〈τx〉 is infinite.

Next let x ‖ ℓ, and let γ = τxσℓ. Then γ2 = τ2x. If γk = id, then
γ2k = τ2kx = id as well. This forces k = 0, so glide reflections have infinite
order as well, and hence cannot lie in H.

Thus only rotations and reflections can lie in H. We wish next to show
that all rotations in H must have a common center. A key idea is the notion
of commutators.

Definition 6.8.2. Let G be a group and let x, y ∈ G. The commutator of
x and y is

[x, y] = xyx−1y−1.

These measure the deviation from commutativity.

Lemma 6.8.3. The elements x, y ∈ G commute if and only if [x, y] = e.

Proof.

xyx−1y−1 = e ⇔ xyx−1y−1y = y
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⇔ xyx−1x = yx

⇔ xy = yx. �

Corollary 6.8.4. Let H be a finite subgroup of I2 and let ρ(x,θ), ρ(y,φ) ∈ H,
with θ, φ ∈ (0, 2π). Then x = y. Thus, all the rotations in H must have a
common center of rotation.

Proof. Suppose x 6= y. By Proposition 5.5.25, ρ(x,θ) and ρ(y,φ) do not
commute, so the commutator [ρ(x,θ), ρ(y,φ)] 6= id. Now,

[ρ(x,θ), ρ(y,φ)] = ρ(x,θ)ρ(y,φ)ρ(x,−θ)ρ(y,−φ).

Since the rotational angles add up to a multiple of 2π, this is a translation by
Corollary 5.5.11. But H contains no nonidentity translations, so x = y. �

We now study the elements of finite order in O({x}).
Proposition 6.8.5. The rotation ρ(x,θ) has finite order if and only if θ is

a rational multiple of 2π. If θ = 2πk
n

with k
n
in lowest terms, then ρ(x,θ) has

order n.

Proof. Suppose id = ρn(x,θ) = ρ(x,nθ). Then nθ is a multiple of 2π, say

nθ = 2πk, so θ = 2π k
n
, a rational multiple of 2π. This must be the case for

any element of finite order.
Let θ = 2πk

n
with n > 0, where k

n
is in lowest terms. This means k

and n are relatively prime, and hence have no common prime divisor. If
id = ρm(x,θ) = ρ(x,mθ), then mθ is a multiple of 2π, say mθ = 2πℓ with

ℓ ∈ Z. Then mk
n

= ℓ, or mk = nℓ, so n divides mk. Since n and k are
relatively prime, standard elementary number theory shows n must divide
m. In particular, the lowest positive exponent for ρ(x,θ) is n, so ρ(x,θ) has
order n. �

Write Cn(x) =
〈
ρ(
x, 2π

n

)
〉
= τxCnτ−x.

Proposition 6.8.6. Let H be a finite subgroup of I2 with O(H) 6= {id}.
Then O(H) = Cn(x) for some n > 1 and x ∈ R2.

Proof. By Corollary 6.8.4, there exists x ∈ R2 such that each element of
O(H) has the form ρ(x,θ) for some θ. Each such θ which occurs must be a

rational multiple of 2π. Let φ = 2πk
n

be the smallest positive such θ which

occurs, with k
n
in lowest terms and n > 0.

We first show that O(H) = 〈ρ(x,φ)〉. To see this, suppose ρ(x,θ) ∈ O(H).
Then there is a unique integer m such that θ is in the half-open interval
[mφ, (m+ 1)φ). Let ψ = θ −mφ. Then ψ ∈ [0, φ) and

ρ(x,ψ) = ρ(x,θ)ρ(x,−mφ) = ρ(x,θ)ρ
−m
(x,φ).

The right-hand side is in O(H), so ρ(x,ψ) ∈ O(H). But 0 ≤ ψ < φ, and φ is
the smallest positive angle such that the rotation about x by that angle is
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in O(H), so ψ is not positive. Thus, ψ = 0, and hence θ = mφ, and ρ(x,θ) is
a power of ρ(x,φ).

We now show that this, together with our assumption on the minimality
of φ = 2πk

n
forces k = 1. Thus, let φ0 =

2π
n
. By Proposition 6.8.5, both ρ(x,φ)

and ρ(x,φ0) have order n, and hence 〈ρ(x,φ)〉 and 〈ρ(x,φ0)〉 have n elements.

But ρ(x,φ) = ρk(x,φ0) ∈ 〈ρ(x,φ0)〉. Since 〈ρ(x,φ)〉 is the smallest subgroup of I2
containing ρ(x,φ), this forces 〈ρ(x,φ)〉 ⊂ 〈ρ(x,φ0)〉. But each of these groups
has n elements, so 〈ρ(x,φ)〉 = 〈ρ(x,φ0)〉. Thus, ρ(x,φ0) ∈ 〈ρ(x,φ)〉 ⊂ O(H). But
φ0 ≤ φ, so the minimality of φ forces φ0 = φ, and hence k = 1. �

Proof of Leonardo’s theorem. If O(H) = H, Proposition 6.8.6 com-
pletes the proof. Otherwise, by Corollary 6.6.12, O(H) has index 2 in H,
and if β ∈ H rO(H), H rO(H) = O(H)β. Such a β must be orientation-
reversing. Since H contains no glide reflections, β = σℓ for some ℓ.

If O(H) = {id}, let x be any element of ℓ in the argument below. Other-
wise, let x be the unique point in R2 such that O(H) = Cn(x) (uniqueness
follows because x is the unique fixed-point for every nonidentity element in
Cn(x)). Note, then, that x must lie in ℓ, as otherwise, if ρ(x,θ) ∈ O(H), then
ρ(x,θ)σℓ is a glide reflection in H by Proposition 5.5.22.

In particular, 0 ∈ τ−x(ℓ), so τ−x(ℓ) = ℓφ = ρ(0,φ)(ℓ0) for some φ, with
ℓ0 the x-axis. Let α = τxρ(0,φ). Then α(0) = x and α(ℓ0) = ℓ. By Theo-

rem 5.5.20, αCnα
−1 = Cn(x) and ασℓ0α

−1 = σℓ. Since conjugation by α is a
homomorphism, it must take the coset Cnσℓ0 in D2n onto the coset Cn(x)σℓ
in H. We obtain that H = αD2nα

−1. �

6.9. Orbits and isotropy in the plane. Fix a subgroup H ⊂ I2. We
study the way H acts on points in the plane.

Definition 6.9.1. For x ∈ R2, the orbit Hx (or H ·x if emphasis is needed)
of x under the action of H is

Hx = {α(x) : α ∈ H}.
The isotropy subgroup Hx of x under this action is

Hx = {α ∈ H : α(x) = x}.
Thus, the orbit is the set of images of x under the transformations in H

and the isotropy subgroup is the set of group elements fixing x. It is easily
seen to be a subgroup of H.

Of course ifH = I2, thenHx = R2 whileHx = S({x}), studied above. We
are more interested in what are called discrete subgroups of I2, in which H
is much smaller and the isotropy subgroups Hx are finite, and are therefore
either cyclic or dihedral.

Definition 6.9.2. Let n > 1. We say that x is an n-center for H if Hx is
isomorphic to either Cn or D2n, i.e., the orientation preserving transforma-
tions in Hx are precisely Cn(x). A point of symmetry for H is an n-center
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for some n > 1. We shall also refer to an n-center as a point of symmetry
of period n.

In the same spirit, we say ℓ is a line of symmetry for H if σℓ ∈ H.

Example 6.9.3. We illustrate these concepts with a simple rectangular
grid, which we call X.

Assume the grid continues infinitely in both the vertical and horizontal di-
rections, tiling the whole plane. Let H = S(X), the symmetry group of this
pattern. Then the center of each square in the grid can be seen to be a
4-center: the shortest rotation about the center of a square that preserves
the pattern is by 90◦ = π

2 . The vertices of the squares are also 4-centers.
One can also see that the midpoints of the edges of the squres are 2-centers.

As for lines of symmetry, the grid lines themselves are reflection lines. So
are the perpendicular bisectors of the edges of the squares, and so are the
lines extending the diagonals of the squares. In particular, each 4-center lies
on 4 lines of symmetry, so its isotropy subgroup Hx is D8. Each 2-center
lies on two lines of symmetry, so its isotropy subgroup Hx is D4.

The symmetry group H = S(X) is the wallpaper group W1
4 . We shall

study it further in Section 6.14

The study of n-centers will be important in understanding the discrete
subgroups of I2. Note the emphasis on orientation-preserving symmetries
in the definition of n-center.

We will in general be interested in studying the restriction of the action
to O(H) and T (H). Note that O(H)x = O(Hx) is exactly what contributes
the n in n-center. T (H)x = {id} for all x, as nontrivial translations have no
fixed-points. But the orbit T (H)x is important:

Definition 6.9.4. The T -orbit of x under H is

T (H)x = {α(x) : α ∈ T (H)}.
There is a nice relationship between isotropy and conjugacy.
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Lemma 6.9.5. Let α ∈ H and x ∈ R2. Then Hα(x) = αHxα
−1. Thus, if x

is an n-center for H, so is α(x). In particular, the set of all n-centers for
H is H-invariant.

Proof.

β(α(x)) = α(x) ⇔ (α−1βα)(x) = x

⇔ α−1βα ∈ Hx

⇔ β ∈ αHxα
−1. �

We will see lots of examples of these ideas in the upcoming sections.

6.10. Frieze groups. A frieze group F is a subgroup of I2 such that

T (F) = 〈τv〉 = {τkv : k ∈ Z} = {τkv : k ∈ Z}
for some v 6= 0. We shall see that frieze groups are symmetry groups of
repeating patterns called friezes, and that each is isomorphic to one of seven
specific groups.

As a first example, we consider the case where F = T (F) = 〈τv〉. We
call this group F1(v), or simply F1. Note that Theorem 5.5.20 shows that
the conjugacy class of F1(v) depends on ‖v‖, as τv conjugate to τw implies
‖v‖ = ‖w‖. Moreover, the conjugacy class depends only on ‖v‖, as if ‖v‖ =
‖w‖ there is a rotation ρ = ρ(0,θ) with ρ(v) = w, and hence ρτvρ

−1 = τw,

and hence ρF1(v)ρ
−1 = F1(w).

It is easy to find a pattern whose symmetry group is F1. For instance, let
X be the pattern that repeats infinitely in both directions:

· · · F F F F F F F F F F F F · · ·
Since the letter F detects orientation and there are no reverse F’s in the
pattern, there are no orientation-reversing isometries in S(X). Also, there
are no rotated F’s, so O(X) = T (X), and the translation subgroup is obvi-
ously generated by a single translation. So S(X) = T (X) = 〈τv〉 where τv
translates each F to the next F to the right.

This pattern X is a typical frieze pattern. It repeats infinitely in both
directions and occurs in a narrow strip. Friezes are used in architcture as
decorative borders.

Let us now analyze how we can add rotations to F1 without adding any
additional translations.

Lemma 6.10.1. Let F be a subgroup of I2 with T (F) = 〈τv〉 for v 6= 0.
Suppose that ρ(x,θ) ∈ F with θ ∈ (0, 2π). Then θ = π. Thus, every point of
symmetry for F is a 2-center.

Proof. Write ρ(x,θ) = τyρ(0,θ). Then ρ(x,θ)τvρ
−1
(x,θ) = τρ(0,θ)(v) by Theo-

rem 5.5.20. Since F is closed under conjugation, ρ(0,θ)(v) = kv for some
k ∈ Z, but since ρ(0,θ)(v) has the same norm as v, k = ±1. But k = 1 only
occurs when θ is a multiple of 2π, which has been ruled out, and k = −1
implies θ = π in the range given. �
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π-rotations behave nicely with respect to translations.

Lemma 6.10.2.

(1) Let x,w ∈ R2. Then τwρ(x,π) = ρ(
x+ 1

2
w,π
).

(2) For x, y ∈ R2, ρ(y,π)ρ(x,π) = τ2(y−x).

Proof. First note that if ℓ and m are perpendicular, then the directed angle
from ℓ to m and the directed angle from m to ℓ are both π

2 , so σℓσm and
σmσℓ are both equal to the rotation about ℓ ∩ m by π. This will occur
frequently in our analysis of the symmetry groups of patterns.

In this case, we prove (2) by setting m equal to the the line through x
and y, ℓ the perpendicular to m through y, and n the perpendicular to m
through x. Then

ρ(y,π)ρ(x,π) = σℓσmσmσn = σℓσn.

Now ℓ ‖ n, and the directed distance from n to ℓ can be calculated along
the perpendicular m to these two lines. We get

σℓσn = τ2(m∩ℓ−m∩n) = τ2(y−x),

giving (2). (1) now follows from (2) by taking y = x+ 1
2w and then multi-

plying both sides of the resulting equation (2) on the right by ρ(x,π). Since
a rotation by π is an involultion (is its own inverse), we obtain (1). �

We can now characterize the orientation-preserving subgroups of frieze
groups.

Proposition 6.10.3. Let F be a subgroup of I2 with T (F) = 〈τv〉 for v 6= 0
and with T (F) 6= O(F). Then T (F) has index 2 in O(F).

If β ∈ O(F)r T (F), β = ρ(x,π) for some x ∈ R2, and the other elements
of O(F)r T (F) are precisely the elements

(6.10.1) τkvρ(x,π) = ρ(
x+ k

2
v,π
), k ∈ Z.

In particular, there are exactly two T -orbits of 2-centers for F : T (F)x and
T (F)

(
x+ 1

2v
)
.

The multiplication in O(F) is then determined by

(6.10.2) ρ(x,π)τkvρ
−1
(x,π) = τ−kv,

so that ρ(x,π)τkv = τ−kvρ(x,π).
Finally, there is a unique line preserved by O(F): ℓ = x+ span(v).

Proof. Lemma 6.10.1 shows that any element of O(F)\T (F) has the form
ρ(x,π) for some x. Lemma 6.10.2(1) verifies the equation in (6.10.1). These
elements must of course lie in O(F). But Lemma 6.10.2(2) shows that if
ρ(y,π) ∈ O(F), then τ2(y−x) ∈ T (F) = 〈τv〉, so 2(y−x) = kv for some k, and

hence y = x+ k
2v, as stated.
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Therefore, the elements y = x+ k
2v are all the 2-centers for F , and lie in

T (F)x when k is even and in T (F)
(
x + 1

2v
)
when k is odd. These orbits

are distinct because x and x+ 1
2v are less than ‖v‖ apart.

Formula (6.10.2) is easy, using Lemma 6.10.2(2). Let y = x + k
2v. Then

τkv = ρ(y,π)ρ(x,π), so

ρ(x,π)τkvρ
−1
(x,π) = ρ(x,π)ρ(y,π)ρ(x,π)ρ

−1
(x,π) = ρ(x,π)ρ(y,π),

and this last is equal to τ−kv by another application of Lemma 6.10.2(2).
By Proposition 6.4.3, a line ℓ is preserved by ρ(y,π) if and only if y ∈ ℓ. But

there is only one line containing all the 2-centers of F : ℓ = x+span(v). �

Remark 6.10.4. Proposition 6.10.3 actually gives a construction, depend-
ing only on the choice of x and v, for a frieze group F2 consisting of
orientation-preserving isometries, and shows that any orientation-preserving
frieze group containing rotations is isomorphic to it, for appropriate x and
v.

We may write this group as F2(v, x) if we wish to avoid ambiguity. The
reader may check that the conjugacy class of F2(v, x) in I2 depends only on
‖v‖.

These groups are isomorphic as x and v vary. Abstractly, they are isomor-
phic to what’s called the infinite dihedral group, D∞, which is generated by
elements a and b where b has infinite order, a has order 2, and aba−1 = b−1.
Note then that 〈b〉 has index 2 in D∞, and is normal. One may construct a
homomorphsim of D∞ onto D2n taking b to bn and a to a.

This will be the paradigm from here on for the frieze groups studied. A
given class of frieze groups consists of groups that are abstractly isomorphic
and whose conjugacy class in I2 depends only on ‖v‖.

The following, if continued infinitely in both directions, provides a pat-
tern X whose symmetry group is F2. Find its 2-centers and its shortest
translation.

(6.10.3)

The result of this process of continuing a visual pattern infinitely in both
directions will be referred to as the frieze pattern generated by the piece
displayed.

We now consider how we can add orientation-reversing isometries to F1

or F2 to obtain a frieze group leaving O(F) as stated. We need a lemma to
determine which orientation-reversing transformations may occur.
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Lemma 6.10.5. Let F be a frieze group with T (F) = F1 = 〈τv〉. If σℓ ∈ F ,
then ℓ is either parallel or perpendicular to v. If a glide reflection τxσℓ ∈ F ,
then ℓ is parallel to v and x = k

2v for some integer k.

Proof. The generic orientation-reversing isometry has the form α = τxσℓφ
with ℓφ = span

([ cosφ
sinφ

])
. If α ∈ F , then ατvα−1 ∈ F . By Theorem 5.5.20,

ατvα
−1 = τσℓφ (v)

. Since σℓφ is an isometry, w has the same norm as v, and

τw ∈ 〈τv〉 if and only if w = ±v. This occurs if and only if ℓφ is either
parallel or perpendicular to v.

By Proposition 5.5.17, α is a reflection in a line parallel to ℓφ if x ⊥ ℓφ,
and a glide reflection with axis parallel to ℓφ otherwise. In particular, we
are done if α is a reflection.

We next rule out glide reflections whose axis is perpendicular to v. But
that is easy. If ℓ is perpendicular to v and x is parallel to ℓ, then (τxσℓ)

2 =
τ2x, a translation in a direction perpendicular to v, and hence cannot lie in
T (F) = 〈τv〉.

The remaining case is a glide reflection τxσℓ with ℓ ‖ v, and we apply the
same argument. (τxσℓ)

2 = τ2x ∈ 〈τv〉, so 2x = kv for some k ∈ Z. �

We may now determine the frieze groups whose translation subgroup is
〈τv〉. By Corollary 6.6.12, the result will be determined by finding a single
orientation-reversing transformation in F . We first consider the case where
O(F) = F1.

Proposition 6.10.6. Let F be a frieze group with O(F) = F1 = 〈τv〉.
Suppose F contains a reflection σℓ with ℓ ‖ v. Then

(6.10.4) F = 〈τv〉 ∪ {τkvσℓ : k ∈ Z}.

Thus F r O(F) consists of the reflection σℓ and the glide reflections τkvσℓ
with k 6= 0.

We call this group F1
1 . Its multiplication is determined by the fact that

σℓ commutes with all the elements in O(F) = 〈τv〉.
Finally, ℓ is the unique line preserved by F .

Proof. (6.10.4) follows immediately from Corollary 6.6.12. The transfor-
mations τkvσℓ with k 6= 0 are glide reflections since kv ‖ ℓ. The fact that σℓ
commutes with τv shows that the elements displayed in (6.10.4) do, in fact,
form a subgroup of I2.

Finally, Proposition 6.4.3 shows that the only line preserved by a glide
reflection is its axis. �

Remark 6.10.7. Since σℓ commutes with τkv and since 〈τv〉 is isomorphic
to Z, F1

1 is isomorphic to Z × D2. The frieze pattern generated by the
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following image has symmetry group F1
1 .

Note that the glide reflections τkvσℓ square to τ
2k
v , so that every noniden-

tity even power of τv occurs as the square of a glide reflection in F1
1 , but no

odd power does.

The next case to consider is where F contains a reflection in a line per-
pendicular to v.

Proposition 6.10.8. Let F be a frieze group with O(F) = F1 = 〈τv〉.
Suppose F contains a reflection σm with m ⊥ v. Then

(6.10.5) F = 〈τv〉 ∪ {τkvσm : k ∈ Z} = 〈τv〉 ∪
{
στ k

2 v
(m) : k ∈ Z

}
.

Thus FrO(F) consists of the reflections in the translates ofm by mutiples of
1
2v. The translations and reflections in F relate as follows. For n = τ k

2
v(m)

we have

(6.10.6) σnτkvσ
−1
n = τ−kv,

so σnτkv = τ−kvσn.
We call this group F2

1 . The lines preserved by F2
1 consist of all lines

parallel to v.

Proof. The first equality in (6.10.5) is just Corollary 6.6.12, and the second
equality is Lemma 5.5.16. Equation (6.10.6) also follows from Lemma 5.5.16,
which shows both σnτkv and τ−kvσn to be equal to the reflection in τ− k

2
v(n).

Note that (6.10.6) shows that the transformations listed in (6.10.5) are
closed under multiplication and inverses, and therefore form a subgroup
of I2, so this group does exist. The statement about preserved lines is
immediate from Proposition 6.4.3. �

Remark 6.10.9. By (6.10.6), F2
1 is abstractly isomorphic to the infinite

dihedral group D∞. The frieze pattern generated by the following image
has symmetry group F2

1 .

By Lemma 6.10.5, the only other possibility for a frieze group F with
O(F) = T (F) is that F contains glide reflections but not reflections.

Proposition 6.10.10. Let F be a frieze group with O(F) = F1 = 〈τv〉,
and suppose F contains a glide reflection but no reflections. Then the axis
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ℓ of the glide reflection is parallel to v, and F contains the glide reflection
γ = τ 1

2
vσℓ that squares to τv. Moreover,

(6.10.7) F = 〈γ〉 = {γk : k ∈ Z}.
We call this group F3

1 . The orientation-preserving elements of F3
1 are

{γ2k = τkv : k ∈ Z} and the orientation-reversing elements are the glide
reflections

{γ2k+1 = τ 2k+1
2

v
σℓ : k ∈ Z}.

Thus, the squares of the glide reflections in F3
1 are precisely the odd powers

of τv. Finally, ℓ is the only line preserved by F3
1 .

Proof. By Lemma 6.10.5, F contains a glide reflection of the form τn
2
vσℓ,

with ℓ ‖ v, for some n ∈ Z. If n were even, say n = 2k, this would be τkvσℓ.
But then σℓ = τ−kvτkvσℓ is in F , and F has been assumed to contain no
reflections. Thus, n = 2k + 1 is odd. But then

τ−kvτ 2k+1
2

v
σℓ = τ 1

2
vσℓ = γ

is in F as claimed.
By Corollary 6.6.12, F = O(F) ∪O(F)γ. But O(F) = 〈τv〉 = 〈γ2〉 is the

set of even powers of γ, while O(F)γ = 〈γ2〉γ is the set of odd powers of γ,
so F = 〈γ〉. The rest follows easily as above. �

Remark 6.10.11. F3
1 is the symmetry group of the frieze pattern generated

by the following.

By Lemma 6.10.5 and the statements of the propositions above, the groups
F1, F1

1 , F2
1 and F3

1 exhaust all possibilities for frieze groups withO(F) = F1.
Each of these has been realized as the symmetry group of a pattern.

We shall now find the frieze groups with O(F) = F2. Lemma 6.10.5 will
again come into play.

Proposition 6.10.12. Let F be a frieze group with O(F) = F2. Suppose
F contains a reflection σℓ with ℓ ‖ v. Then ℓ is the line containing the
2-centers for O(F) (and hence for F). Moreover, σℓ commutes with all the
elements of O(F), and if y is a 2-center for F , then ρ(y,π)σℓ is the reflection
in the line, m(y), through y perpendicular to ℓ. In particular, the isotropy
subgroup Fy for every 2-center y of F is D4.

We call this group F1
2 . Its orientation-reversing elements consist of the

reflections σℓ and σm(y) for y a 2-center of F , and the glide reflections τkvσℓ
for 0 6= k ∈ Z. Since σℓ commutes with all the elements of O(F), we have
isomorphisms

F1
2
∼= F2 ×D2

∼= D∞ ×D2.
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Finally, ℓ is the only line preserved by F .
Proof. Let X2 be the set of 2-centers. They all lie on a line m parallel to
v. By Lemma 6.9.5, if σℓ ∈ F , then σℓ(X2) = X2. This forces σℓ(m) = m.
But since m ‖ ℓ, that forces ℓ = m by Proposition 6.4.3.

In particular, every 2-center y lies on ℓ. But since m(y) ⊥ ℓ, the compos-
ites σm(y)σℓ and σℓσm(y) are both equal to ρ(y,π). So σℓρ(y,π) and ρ(y,π)σℓ
are both equal to σm(y).

Since ℓ is parallel to v, σℓ commutes with the translations in O(F), and its
composites with them give the stated glide reflections. That σℓ commutes
with all the elements in O(F) shows that adjoining σℓ to O(F) does in fact
provide a group with the stated elements.

Finally, ℓ was the only line preserved by O(F), and is also preserved by
σℓ, so it is the only line preserved by F = F1

2 . �

Remark 6.10.13. Note that the squares of the glide reflections in F1
2 are

precisely the nonidentity even powers of τv. F1
2 is the symmetry group of

the frieze pattern generated by the following.

(6.10.8)

The last frieze group is the most complicated and interesting.

Proposition 6.10.14. Let F be a frieze group with O(F) = F2 and suppose
F contains a reflection σm with m ⊥ v, but does not contain a reflection in
any line parallel to v. Let ℓ be the line containing the 2-centers of F and let
y = m ∩ ℓ. Then the closest 2-centers to y are y ± 1

4v. Write x = y + 1
4v.

Then ρ(x,π)σm = τ 1
2
vσℓ = γ, the same γ as in F3

1 .

We call this group F2
2 . The orientation-reversing isometries in F2

2 consist
of the reflections {

τkvσm = στ k
2 v

(m) : k ∈ Z

}
,

and the glide reflections
{
τkvρ(x,π)σm = τkvγ = γ2k+1 : k ∈ Z

}
.

The multiplication in F2
2 may be obtained from the equations

σmτkvσ
−1
m = τ−kv(6.10.9)

σmρ(x,π)σ
−1
m = ρ(

x− 1
2
v,π
).(6.10.10)

The isotropy subgroups of the 2-centers are all C2, and ℓ is the unique line
preserved by F2

2 .

Proof. Let X2 be the set of 2-centers for F . None of the points in X2 can
lie on m, as if y = m ∩ ℓ, then ρ(y,π)σm = σℓ. Since σℓ 6∈ F , y cannot be a
2-center for F .



A COURSE IN LOW-DIMENSIONAL GEOMETRY 183

By Lemma 6.9.5, σm(X2) = X2. But closest 2-centers are
1
2‖v‖ apart. If

x is a closest 2-center to y, σm(x) will have the same distance from y as x
does, and will be a closest 2-center to x (the distances are additive, as y lies
on the line segment between x and σm(x)). Therefore, both x and σm(x)
must be 1

4‖v‖ away from y. We may choose x = y + 1
4v as stated.

Now ρ(x,π) is the product of σℓ with the reflection in the line through x
perpendicular to ℓ. That line is τ 1

4
v(m). So

ρ(x,π)σm = σℓστ 1
4 v

(m)σm = σℓτ 1
2
v,

as the directed distance from m to τ 1
4
v(m) is 1

4v. But this is γ, as claimed.

The listing of orientation-reversing elements is now immediate from Corol-
lary 6.6.12.

Equation (6.10.9) was shown in the analysis of F2
1 . For Equation (6.10.10),

we have

σmρ(x,π)σ
−1
m = σmσℓτ 1

2
v = σℓσmτ 1

2
v = σℓστ− 1

4 v
(m),

with the last equality from Lemma 5.5.16. But τ− 1
4
v(y) = τ− 1

2
v(x), so the

result is ρ(
x− 1

2
v,π
), as claimed.

Finally, ℓ is the only line preserved by F2, and is still preserved by F2
2 . �

Remark 6.10.15. Note that both F2
1 and F3

1 are subgroups of F2
2 . In fact,

F2
2 is generated by σm and γ, as γ2 = τv and γ = ρ(x,π)σm. Moreover,

σmγσ
−1
m = σmτ 1

2
vσℓσ

−1
m = τ− 1

2
vσmσℓσ

−1
m = τ− 1

2
vσℓ = γ−1,

so F2
2 is abstractly isomorphic to D∞, but perhaps in a surprising way.

Note that the glide reflections in F2
2 square to the odd powers of τv. In

fact these glide reflections all lie in the subgroup F3
1 , where they already

had this property.
F2
2 is the symmetry group of the frieze pattern generated by the following:

(6.10.11)

Here, the vertical lines of symmetry pass through the midpoints of the hori-
zontal lines of the pattern, while the 2-centers occur at the midpoints of the
vertical lines of the pattern.

Finally, we make the now expected observation that there are no other
frieze groups.

Proposition 6.10.16. There are no frieze groups F with O(F) = F2 that
contain glide reflections by not reflections. Thus, the only frieze groups with
O(F) = F2 are F2, F1

2 and F2
2 .
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Proof. Let F be a frieze group with O(F) = F2 and let α be a glide
reflection in F . Then α must preserve the line ℓ containing the 2-centers,
and hence α = τ k

2
vσℓ for some k (as it squares to a power of τv). If k is

even, α = τnvσℓ for n = k
2 , and hence σℓ ∈ F . But this implies F = F1

2 . If

k is odd, then α = τnvγ for n = k−1
2 , so γ ∈ F . But then ρ(x,π)γ = σm ∈ F ,

and hence F = F2
2 . �

6.11. Fundamental regions and orbit spaces. Let’s start by framing
an example to analyze. Let F be a frieze group, and assume the translation
subgroup is generated by a horizontal translation, say from left to right.
In all cases other than F1 and F2

1 there is a unique line ℓ preserved by F .
Let us identify ℓ with the x-axis. In the cases of F1 and F2

1 , where every
horizontal line is now preserved, we may also focus attention on the x-axis
and call it ℓ. Let

(6.11.1) Y =
{[

x1
x2

]
∈ R2 : x2 ∈ [−c, c]

}

for some fixed c > 0. Thus, Y consists of the points in the plane of distance
less than or equal to c from ℓ.11 An analysis of the frieze groups now shows
that Y is F-invariant, i.e., F ⊂ S(Y ).

We now wish to focus on how the transformations F affect Y . We give
a more intuitive treatment of some material addressed more rigorously in
Appendix A.

Definition 6.11.1. An action of a group G on a set Y gives, for each g ∈ G
and y ∈ Y an element gy ∈ Y (sometimes written g · y) such that

g1 · (g2 · y) = (g1g2) · y(6.11.2)

e · y = y(6.11.3)

for all g1, g2 ∈ G and y ∈ Y . Here g1g2 is the product in G and e is the
identity element of G.

Example 6.11.2. If G is a subgroup of S(Y ), then G acts on Y via g · y =
g(y).

As the example illustrates, for an action of G on Y and a g ∈ G there
is an induced transformation µg : Y → Y given by µg(y) = g · y. (6.11.2)
is then equivalent to saying that µg1 ◦ µg2 = µg1g2 for all g1, g2 ∈ G, while
(6.11.3) is equivalent to µe = idY , the identity function of Y .

In particular, then µg ◦µg−1 = µg−1 ◦µg = idY so each µg is bijective with
inverse function µg−1 .

Our motivating examples, (6.11.1) and the more general Example 6.11.2,
are more than just actions on sets. The geometry of the action is important
and is our basic object of study here.

11We take the distance from a point to a line in the plane to be the length of the
perpendicular line segment “dropped” from the point to the line.
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Definition 6.11.3. Let Y ⊂ Rn. An action of G on Y is isometric if each
µg ∈ S(Y ) as in Example 6.11.2. More generally, an action is smooth if each
µg is smooth as described in Chapter 8.1. More generally still, the action
is continuous if each µg is continuous, as described in Appendix A. In any
of these cases, we call Y a G-space, as the structure of Y as a topological
space becomes part of the structure of the action.

If G acts on both X and Y , a G-map f : X → Y is a function such that

f(gx) = gf(x)

for all g ∈ G and x ∈ X. If X and Y are G-spaces, we can talk about f
being continuous, smooth or isometric, as appropriate.

If f is bijective, it’s inverse function is a G-map, and we call f an iso-
morphism of G-sets. If X and Y are G-spaces, we call f a continuous,
smooth or metric G-isomorphism if both f and f−1 are continuous, smooth
or isometric, respectively.

We will find the above concepts very useful in analyzing wallpaper groups.
A very important concept is that of fundamental region. We should discuss
polygons a bit first. The boundary of a polygon consists of a union of line
segments that form a circuit with the property that no two edges meet in an
interior point and each vertex lies on exactly two edges. Here is an example
of a nonconvex polygon:

The complement of such a circuit in the plane has exactly two connected
pieces: a bounded piece that we call the interior of the polygon, and an
unbounded piece, the exterior. The polygon itself consists of the interior
plus the boundary. We write ∂P for the boundary of the polygon P and
write Int(P ) for its interior.

Definition 6.11.4. Let G act isometrically on Y ⊂ R2. A fundamental
region for the action of G on Y is a polygon P ⊂ Y such that:

(1) Y =
⋃
g∈G g(P ).

(2) If P ∩ g(P ) 6= ∅ for g 6= e, then P ∩ g(P ) ⊂ ∂P .

One may define fundamental regions for smooth or continuous actions, but
one would not expect them to be polygons. Polygons work in the isometric
case, because isometries take polygons to polygons. There are also higher
dimensional analogues of fundamental regions. For an isometric action in
Rn, the fundamental region is an n-dimensional polytope.
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Example 6.11.5. A pattern with symmetry group F1 is generated by:

//

��

//

��

//

��

//

��

//

��

//

�� ��// // // // // //

Here, we can take Y to be a slight widening of X (to include the arrow
heads). A fundamental region for the action of F1 on Y is given by a single
rectangle T obtained by vertically thickening the following chamber.

//

� �//

Note the splitting of the arrow heads on the vertical lines, as the remainder
of the heads lies in the interiors of adjacent translates of T . In fact, even
the slightest horizontal translate of T is also a fundamental region for F1, as
it still satisfies the two properties. It doesn’t matter how exactly you chop
the pattern as long as those two properties are satisfied.

The situation of F1
1 is more complicated, as F1

1 consists of more than just
translations.

Example 6.11.6. A pattern with symmetry group F1
1 is generated by

// // // // // //

// // // // // //

Here, we might first ask for a fundamental region T for the translation
subgroup T (F1

1 ) = F1, getting a vertical thickening of the following:

//

//

The only element of F1
1 that carries interior points of T to interior points of T

is σℓ, which exchanges the top and bottom chambers of T . So a fundamental
region R for the action of F1

1 on Y is given by either one of these chambers,

say
//

.

Remark 6.11.7. Note that if G acts on Y and if P is a fundamental re-
gion for this action, each G-orbit meets P in at least one point by Defini-
tion 6.11.4(1). But Definition 6.11.4(2) shows that if a G-orbit Gx meets P
in more than one point, then Gx∩P is contained in ∂P . Thus, if Gx meets
P in an interior point, it meets P in no other point.

Definition 6.11.8. Let Y be a G-space. The orbit space, Y/G of the action
of G on Y is the set of all orbits of this action. Thus, the points in Y/G are
the G-orbits in Y . The canonical map π : Y → Y/G takes each y ∈ Y to
the orbit containing it.
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It is customary to give Y/G the quotient topology induced by the canon-
ical map π. This is discussed in detail in Appendix A. Let P be a funda-
mental region for the action of G on Y . By Remark 6.11.7, the composite

P ⊂ Y π−→ Y/G

is surjective, and as a set we may regard Y/G as obtained from P by making
some identifications on ∂P . In fact, in our situation we may identify the
topological space Y/G with the quotient topology obtained from P with
these identifications. A rigorous proof is given in Appendix A for the special
case of the Klein bottle (Corollary A.5.12). The general case for frieze
and wallpaper groups follows from a standard theorem about continuous
functions from compact spaces to Hausdorff spaces. We shall not treat it
here, but shall content ourselves with describing the orbit spaces in terms
of identifications on the fundamental region.

In particular, we can describe the orbit spaces for the actions of F1 and
F1
1 on the horizontal strip Y discussed above. In the case of F1, each point

on the left vertical boundary is identified with its image under τv, which
occurs on the right vertical boundary. There are no other identifications
on the fundamental region, so the orbit space is the result of making this
identification of the left boundary with the right, resulting in wrapping up
the fundamental region to form a cylinder.

In the case of F1
1 , we get exactly the same result, only restricting to the

smaller fundamental region
//

. The result is again a cylinder by the same
reasoning.

Example 6.11.9. A pattern with symmetry group F2
1 is generated by

�� �� �� �� .

A fundamental region T for the translation subgroup T (F2
1 ) = F1, is given

by � � . The only element of F2
1 that carries interior points of T to

interior points of T is the reflection across the nonbarbed vertical line, which
exchanges left and right halves of T . So a fundamental region for the action

of F2
1 on Y may be given by � . There are no identifications on the

boundary of this region from the action of F2
1 , so the fundamental region

and the orbit space coincide in this case.

For F3
1 , we use the pattern

�� �� �� ��

OO OO OO

.

A fundamental region, T , for T (F) is given by � �

OO

. Of this, the

left side, �
O

, forms a fundamental region S for F3
1 . The glide reflection

generating F3
1 identifies the left edge of S with the right edge, but twisted

so the arrow heads line up together. The result is a Möbius band.
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For F2 we use the following pattern:

o /
O

�

o /
O

�

o /
O

�

o /
O

�

o /
O

�

O

�o / o / o / o / o /

There are 2-centers at the center of each square and at the midpoints of the
vertical edges of the squares. A fundamental region T for T (F2) is given by
a single square with the outer arrowheads chopped:

o /

� o /

O

The only element of F2 taking interior points of T to interior points of T is
the rotation by π about the center of T . For a fundamental region S for F2

we can divide T in half by any line through the center, and then take either
of the halves as S. For instance, divide T in half with a vertical line. Then
on each vertical edge of S, the upper half of the edge is identified with the
lower half by the rotation about the center point of the edge. In particular,
the orbit space looks like a pillow case.

For F1
2 we can use (6.10.8) for a pattern, getting a single square as a

fundamental region T for T (F1
2 ). The elements of F1

2 that carry interior
points of T to interior points of T consist of σℓ, the reflection in the line
perpendicular to σℓ going through the center of the square, and the rotation
about the center by π. A fundamental region S for F1

2 is given by any of
the four squares whose boundaries are given by these lines of reflection, and
the orbit space coincides with S.

For F2
2 we use (6.10.11) for a pattern. The 2-centers are at the midpoints

of the vertical lines of the pattern and lines of symmetry are the vertical lines
through the midpoints of the horizontal lines in the pattern. A fundamental

region T for T (F) is given by . The elements of F2
2 taking interior

points of T to interior points of T are the two reflections and the rotation
about the center point. This allows us to choose the left quarter of T , from
the left edge to the first line of symmetry, as a fundamental region, S, for
F2
2 . In this case, the upper half of the left edge of S is identified to the lower

half of the left edge by the rotation about the center point of that edge. The
resulting orbit space is a cone with two corners on its edge.

6.12. Translation lattices in Rn. Frieze groups are the isometry groups
in I2 whose translation subgroups are cyclic of infinite order: T (F) = 〈τv〉
for some v 6= 0. Of course v 6= 0 is equivalent to saying span(v) 6= 0, and
hence the singleton v is linearly independent.
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Wallpaper groups, a.k.a. 2-dimensional crystallographic groups, are sub-
groups W ⊂ I2 whose translation subgroup is given by

T (W) = 〈τv, τw〉 =
{
τkv τ

ℓ
w : k, ℓ ∈ Z

}
=
{
τkv+ℓw : k, ℓ ∈ Z

}
,

where v, w are linearly independent in R2. Our goal in this section is
to understand these translation subgroups. They are what’s known as 2-
dimensional translation lattices. Since translation lattices are also impor-
tant in studying higher dimensional crystallographic groups (with important
physical applications when n = 3), we shall study translation lattices in Rn.

Recall from Proposition 3.4.12 that there is an isomorphism of groups

ν : Rn
∼=−→ Tn

given by ν(x) = τx, where Rn is an additive group in the usual way. The
translation subgroup of a wallpaper group is the image under ν of a lattice
in R2:

Definition 6.12.1. A lattice in Rn is the additive subgroup generated by a
basis v1, . . . , vn of Rn as a vector space over R. Thus, v1, . . . , vn are linearly
independent and their associated lattice is

Λ = 〈v1, . . . , vn〉 = {a1v1 + · · ·+ anvn : a1, . . . , an ∈ Z}.
We call B = v1, . . . , vn a Z-basis for Λ, and write ΛB = Λ(v1, . . . , vn) for the
lattice with Z-basis B.

We write TΛ for the image of Λ under ν : Rn ∼= Tn and call it the trans-
lation lattice induced by Λ. In particular, for Λ = Λ(v1, . . . , vn),

TΛ = 〈τv1 , . . . , τvn〉 =
{
τa1v1 . . . τ

an
vn : a1, . . . , an ∈ Z

}

=
{
τa1v1+···+anvn : a1, . . . , an ∈ Z

}
.

In particular, a wallpaper group is a subgroup W ⊂ I2 such that T (W)
is a translation lattice.

Example 6.12.2. The standard lattice ΛE in Rn is Λ(e1, . . . , en): the lattice
whose Z-basis is the canonical basis E of Rn. Note that

ΛE =







a1
...
an


 : a1, . . . , an ∈ Z





= Zn,

the Cartesian product of n copies of Z. The group structure on Zn here is
the direct product of n copies of Z, as the addition in Rn is coordinatewise.

The following helps us get a handle on lattices.

Lemma 6.12.3. Let B = v1, . . . , vn be a Z-basis for a lattice in Rn and let
AB = [v1| . . . |vn], the n × n matrix whose ith column is vi for all i. Then
the linear transformation TAB induced by AB is a linear isomorphism

TAB : Rn
∼=−→ Rn
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and restricts to an isomorphism of groups:

fB : Zn = ΛE
∼=−→ ΛB.

Specifically,

(6.12.1) fB






a1
...
an





 = a1v1 + · · ·+ anvn

for a1, . . . , an ∈ Z.

Proof. TAB is an isomorphism because the columns of AB form a basis
of Rn. In fact, (6.12.1) holds for TAB for any a1, . . . , an ∈ R by matrix
multiplication, so it holds for fB : Zn → ΛB as well. But that shows fB
maps Zn onto ΛB, while fB is one-to-one because TAB is. �

Corollary 6.12.4. Any two n-dimensional translation lattices are conjugate
in the group An of affine automorphisms of Rn.

Proof. By Lemma 3.3.1, TABτvT
−1
AB

= τABv = τfB(v) for all v ∈ ΛE . �

For simplicity of notation, write elements of Zn as row vectors. Note that
we obtain a composite isomorphism ν ◦ fB : Zn → TΛB via

ν ◦ fB(a1, . . . , an) = τa1v1+···+anvn = τa1v1 . . . τ
an
vn .

Now, TΛB acts isometrically on Rn, as translations are isometries. So we get
an isometric action of Zn on Rn via

(a1, . . . , an) · w = τa1v1+···+anvn(w).

We write RnB for Rn with this action of Zn.
But Zn also acts on Rn via the isometric action induced by ΛE :

(a1, . . . , an) · w = τa1e1+···+anen(w).

We write RnE for Rn with this action of Zn. Of course, if a is the column
vector with ordered coordinates a1, . . . , an, this is just τa(w).

Proposition 6.12.5. Let B = v1, . . . , vn be a Z-basis for a lattice in Rn.
Then

TAB : RnE
∼=−→ RnB

is a linear (but not necessarily isometric) isomorphism of Zn-spaces.

Proof. TAB is a linear isomorphism, and is isometric if and only if the
columns of AB, v1, . . . , vn, form an orthonormal basis of Rn. It suffices to
show TAB is a Zn-map.

TAB((a1, . . . , an) · w) = AB · (w + a1e1 + · · ·+ anen)

= ABw + a1ABe1 + · · ·+ anABen

= TAB(w) + a1v1 + · · ·+ anvn

= (a1, . . . , an) · TAB(w),
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where the final action is evaluated in RnB. �

This actually gives us all we need to define fundamental regions for trans-
lation lattices. Recall that the n-cube In is the set of all vectors x ∈ Rn

whose coordinates all lie in the unit interval I = [0, 1] Thus,

In = {x1e1 + · · ·+ xnen : xi ∈ I for all i}.
The boundary ∂In consists of those elements of In with the property that
at least one of their coordinates lies in {0, 1}. ∂In is the union of (n − 1)-
dimensional faces, ∂0i I

n and ∂1i In, for i = 1, . . . , n. Here, for ǫ = 0 or 1,

∂ǫi I
n = {x1e1 + · · ·+ xnen ∈ In : xi = ǫ}.

There is an obvious affine bijection ιǫi : I
n−1 → ∂ǫi I

n,

ιǫi






x1
...

xn−1





 =




x1
...

xi−1

ǫ
xi
...

xn−1




,

so the faces of In are (n− 1)-dimensional polytopes. We have

∂In =
n⋃

i=1

(∂0i I
n ∪ ∂1i In).

The interior of In is

Int(In) = {x1e1 + · · ·+ xnen : xi ∈ (0, 1) for all i}.
Lemma 6.12.6. In is a fundamental region for the action of Zn (or ΛE)
on RnE in the sense that:

(1) Rn =
⋃
a∈Zn τa(I

n).
(2) If In ∩ τa(In) 6= ∅ for a 6= 0, then In ∩ τa(In) ⊂ ∂In.

Moreover, each Zn-orbit
Zn · x = ΛE · x

intersects In. If ΛE ·x intersects the interior of In, then (ΛE ·x)∩In consists
of just this one interior point. If ΛE · x intersects the boundary of In, say
y ∈ (ΛE ·x)∩∂In, then (ΛE ·x)∩In is contained entirely in ∂In, and consists
of 2k points, where k is the number of coordinates of y that lie in {0, 1}.
Proof. Let x = x1e1 + . . . , xnen ∈ Rn and let a = ⌊x1⌋e1 + · · · + ⌊xn⌋en
where ⌊t⌋ denotes the greatest integer less then or equal to the real number
t. Then x ∈ τa(In), so (1) holds.

For (2), let In ∩ τa(In) 6= ∅ with 0 6= a = a1e1+ · · ·+ ane
n ∈ Zn. Then τa

translates the ith coordinate by ai for all i. This says [0, 1]∩ [ai, ai + 1] 6= ∅
for i = 1, . . . , n, and hence ai ∈ {−1, 0, 1} for all i. Since a 6= 0, at least
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one ai ∈ {−1, 1}, and hence any point in In ∩ τa(In) must have at least one
coordinate in {0, 1}.

Regarding orbits, each orbit intersects In by (1). More specifically, let x
and a be as above and let zi = (xi − ⌊xi⌋) for i = 1, . . . , n. Then

z = z1e1 + · · ·+ znen ∈ (ΛE · x) ∩ In.
Note that zi ∈ [0, 1) by construction. If zi ∈ (0, 1) and τa(z) ∈ In, then
ai = 0. If zi = 0 and τa(y) ∈ In, then ai ∈ {0, 1}. Considering those i such
that zi = 0, there are 2k choices of a for which τa(z) ∈ In. Compare the
resulting elements τa(z) to the y in the statement, and the result follows. �

Corollary 6.12.7. Let B = v1, . . . , vn be a Z-basis for a lattice in Rn and

let TAB : RnE
∼=−→ RnB be the induced linear Zn-isomorphism. Then TAB(I

n) is
a fundamental region for the action of Zn (and hence ΛB) on RnB. Moreover,

TAB(I
n) = {x1v1 + · · ·+ xnvn : xi ∈ I for all i}.

We call it the parallelepiped P (v1, . . . , vn) generated by v1, . . . , vn.

Proof. By Proposition 6.2.6, TAB(I
n) is an n-dimensional polytope with

boundary TAB(∂I
n). �

Of special interest here is the case n = 2. Here, I2 is the usual unit square
and if B = v, w is a Z-basis for a lattice in R2, then the parallelepiped P (v, w)
generated by v, w is the parallelogram in R2 with vertices 0, v, w and v+w:

v+w

w

v

P (v,w)

The edges of this parallelogram are the images of the edges of I2 under TAB ,
and its interior points are the images of the interior points of I2 under TAB :
{sv + tw : s, t ∈ (0, 1)}.

By Corollary 6.12.7, P (v, w) is a fundamental region for the action of
ΛB (or TΛB) on Rn. This is obvious from the linear algebra and the proof
of Corollary 6.12.7, but not obvious from the fact that ΛB is generated by
v, w as an abelian group. In fact, we can use fundamental regions to find
alternative Z-bases for ΛB.

In fact, a given lattice will have infinitely many Z-bases, and infinitely
many noncongruent parallelograms as fundamental regions. But any two
fundamental regions have the same area. The area is calculated as follows.

Proposition 6.12.8. Let B = v, w be a Z-basis for a lattice in R2. Then
the area of P (v, w) is | detAB|.
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Proof. Let B = ATBAB, where T represents the transpose. Then

detB = detATB detAB = (detAB)
2,

as the determinant of a square matrix is equal to the determinant of its
transpose. Thus, it suffices to show that the square of the area of P (v, w)
is equal to detB.

By Corollary 4.1.11,

B =

[
〈v, v〉 〈v, w〉
〈v, w〉 〈w,w〉

]
,

so detB = 〈v, v〉〈w,w〉−〈v, w〉2. We calculate the area of the parallelogram
P (v, w) as the product of its base and its height. We leave it as an exercise
to the reader that this formula works. We take v as the base vector, so
the base length is ‖v‖. For the height, we use the formula from the Gram–

Schmidt orthogonalization: the height vector is w− 〈v,w〉
〈v,v〉 v. So the square of

the length of the height vector is
〈
w − 〈v, w〉〈v, v〉 v, w −

〈v, w〉
〈v, v〉 v

〉
= 〈w,w〉 − 2

〈v, w〉
〈v, v〉 〈v, w〉+

〈v, w〉2
〈v, v〉2 〈v, v〉

= 〈w,w〉 − 〈v, w〉
2

〈v, v〉 .

So the square of the area of P (v, w) is this times ‖v‖2, which is precisely
detB. �

We now go back to n-dimensional lattices. Recall that GLn(Z) is the sub-
group of GLn(R) consisting of the matrices with integer coefficients whose
inverse matrix also has integer coefficients. We saw in Proposition 3.1.8 that
a matrix A ∈ GLn(R) with integer coefficients lies in GLn(Z) if and only if
detA = ±1.
Proposition 6.12.9. Let Λ be a lattice in Rn with Z-basis B = v1, . . . , vn.
Then B′ = w1, . . . , wn is also a Z-basis of Λ if and only if there is a matrix
B ∈ GLn(Z) such that wi is the ith column of ABB for all i (i.e., ABB =
AB′).

Proof. Let B ∈ GLn(Z) and let wi be the ith colum of ABB for i = 1, . . . , n.
We show B′ = w1, . . . , wn is a Z-basis for ΛB, i.e., that ΛB = ΛB′ . First
note that since B is invertible, ABB is invertible, and hence its columns,
w1, . . . , wn form a basis B′ of Rn over R, and hence do form a Z-basis for
a lattice. Since ΛB is generated as an abelian group by v1, . . . , vn, it is the
smallest subgroup of Rn containing v1, . . . , vn, so if v1, . . . , vn ∈ ΛB′ , then
ΛB ⊂ ΛB′ . Similarly, if w1, . . . , wn ⊂ ΛB, then ΛB′ ⊂ ΛB. Thus, it suffices
to show that

v1, . . . , vn ∈ ΛB′ = 〈w1, . . . , wn〉,(6.12.2)

w1, . . . , wn ∈ ΛB = 〈v1, . . . , vn〉.(6.12.3)
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Let B = (bij), i.e., the ijth entry of B is bij . Since wi is the ith column of
ABB and since AB = [v1, . . . , vn], we have

wi = b1iv1 + · · ·+ bnivn ∈ ΛB,

so (6.12.3) holds. By the definition of B′, ABB = AB′ . So AB′B−1 = AB.
Since B−1 has integer coefficients, the same argument gives (6.12.2).

For the converse, suppose ΛB = ΛB′ . Then both (6.12.2) and (6.12.3) hold.
By (6.12.3), there are integers bij , 1 ≤ i, j ≤ n with wi = b1iv1 + · · ·+ bnivn
for all i, so if B = (bij), then ABB = AB′ . By (6.12.2), there are integers
b′ij , 1 ≤ i, j ≤ n with vi = b′1iw1 + · · · + b′niwn for all i. Setting B′ = (b′ij)
we get AB′B′ = AB. So ABBB′ = AB. Since AB is invertible BB′ = In so
B and B′ are inverse integer matrices and hence B ∈ GLn(Z). �

Corollary 6.12.10. Let B = v1, v2 and B′ = w1, w2 be two different Z-bases
for a lattice Λ in R2. Then P (v1, v2) and P (w1, w2) have the same area.

Proof. By Proposition 6.12.9, there is a matrix B ∈ GL2(Z) with ABB =
AB′ . So

| detAB′ | = | detAB detB| = | detAB|,
as matrices in GLn(Z) have determinant ±1. The result now follows from
Proposition 6.12.8. �

Proposition 6.12.9 provides many examples of alternative Z-bases for a
lattice Λ(v, w) in R2. For instance B′ = 2v + w, 3v + 2w is one such, as
det [ 2 3

1 2 ] = 1. The following gives an infinite family of Z-bases that may be
of some interest.

Corollary 6.12.11. Let B = v, w be a Z-basis for a lattice Λ in R2. Then
so are B′ = v, v+w, B′′ = v, 2v+w, etc. The fundamental region P (v, v+w)
is the parallelogram generated by v and the main diagonal of P (v, w). We
obtain a sequence, P (v, w), P (v, v+w), . . . , P (v, kv+w), . . . of fundamental
regions for Λ, infinitely many of which are nonconguent.

Proof. Let B =

[
1 1
0 1

]
. Then ABB = AB′ , AB′B = AB′′ , etc., so Proposi-

tion 6.12.9 shows that v, kv + w is a Z-basis for ΛB for all k ≥ 0.
It is not impossible for P (v, w) and P (v, v + w) to be congruent. E.g., if

v = e1 and w =

[
cos 2π

3

cos 2π
3

]
, then v + w =

[
cos π

3
cos π

3

]
. The two parallelograms

P (v, w) and P (v, v +w) are congruent, but not by a congruence preserving
the origin. In P (v, w), the origin is at one of the angles of measure 2π

3
occurring in the parallelogram, and in P (v, v + w), the origin is at one of
the angles of measure π

3 .
Regardless, as we move forward in the sequence of fundamental regions,

the angle at 0 gets smaller and smaller, and we get infinitely many non-
congruent fundamental regions for whatever our choice of Λ was. To see
this, note that all the parallelograms in the sequence have the same area.



A COURSE IN LOW-DIMENSIONAL GEOMETRY 195

Because the all have the same base vector v, they also all have the same
height h. Let θk be the angle at 0 in the parallelogram P (v, kv + w). For
simplicity of calculation, rotate so that v = te1 for t > 0, and reflect, if
necessary, so that w =

[
x
h

]
. Then kv + w =

[
kt+x
h

]
, so tan θk = h

kt+x , and
hence limk→∞ θk = 0. �

In classifying wallpaper groups, we’ll start with an abstract subgroup
of I2 whose translation subgroup is a translation lattice and then deduce
information about the group. In particular, we will not be given a preferred
Z-basis for the lattice and we’ll need to be able to find one.

The following definition is nonstandard but is nicely adapted to studying
groups of isometries. It will eliminate some of the point set topology that
might come into play here.

Definition 6.12.12. A subset X ⊂ Rn is uniformly discrete if there exists
ǫ > 0 such that d(x, y) > ǫ for all x 6= y ∈ X.

The following suggests this will be useful.

Lemma 6.12.13. Let Λ be a lattice in Rn and let x ∈ Rn. Then the orbit
{x+ v : v ∈ Λ} of x under the translation action by Λ is uniformly discrete.

Proof. Since d(x + v, x + w) = d(v, w), the result is independent of the
choice of x (and the same ǫ can be used for any x). Moreover, for a fixed x
and for w, v ∈ Λ, d(x+ v, x+w) = d(x, x+w− v). As w− v ∈ Λ, it suffices
to find an ǫ such that the distance from x to any of its translates by nonzero
elements of Λ must be greater than ǫ.

Let B = v1, . . . , vn be a Z-basis for Λ, and consider the linear isomorphism

TAB : RnE
∼=−→ RnB. Since the result is independent of x, we can take x =

1
2v1+· · ·+ 1

2vn, the center of mass of P (v1, . . . , vn). Let y = 1
2e1+· · ·+ 1

2en =

T−1
AB

(x). Then if z ∈ Rn with d(y, z) < 1
2 , it is easy to see that z lies in the

interior of In = P (e1, . . . , en). By the continuity of T−1
AB

there exists ǫ > 0

such that d(T−1
AB

(w), y) < 1
2 whenever d(w, x) < ǫ. Thus, for d(w, x) < ǫ, w

lies in the interior of P (v1, . . . , vn). But since P (v1, . . . , vn) is a fundamental
region for ΛB, the interior of P (v1, . . . , vn) is disjoint from its image under
any element of ΛB. So any translate of x by a nonzero element of ΛB has
distance more than ǫ from x. �

Remark 6.12.14. This underlines the difference between saying that v, w
is a Z-basis for a lattice in R2 and the weaker condition that 〈v, w〉 is iso-
morphic to Z × Z. The latter condition holds for v = e1 and w = re1 for
some irrational number r, as no integral multiple of r can be an integer. Of
course, for this v, w there can be no fundamental region. But also, there are
elements in 〈v, w〉 of arbitrarily small nonzero norm.

Our motivation in using this concept is the following.
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Lemma 6.12.15. Let X ⊂ Rn be uniformly discrete. Let {xi : i ≥ 1} be a
sequence in X with limi→∞ xi = y ∈ Rn. Then the there exists N > 0 such
that xi = y for all i ≥ N . Thus, {xi : i ≥ 1} is eventually constant and the
limit element y must lie in X.

Proof. By hypothesis, there is an ǫ > 0 such that d(x, x′) > ǫ for all x 6= x′

in X. Since limi→∞ xi = y, there exists N > 0 such that d(xi, y) <
ǫ
2 for all

i ≥ N . But then d(xi, xj) < ǫ for all i, j > N . But this forces xi = xj for
i, j ≥ N . This, in turn forces xi = y for i ≥ N �

We deduce the following “intuitively obvious” fact.

Corollary 6.12.16. Let X ⊂ Rn be uniformly discrete and let x ∈ X. Then
there exists a closest element, y, to x in X r {x}, i.e., there exists y 6= x
in X such that d(x, z) ≥ d(x, y) for all z 6= x in X. Moreover, there are
only finitely many such y. By abuse of language, we shall call them closest
elements to x in X.

Proof. There exists ǫ > 0 such that d(y, z) > ǫ for all y 6= z in X. So
S = {d(z, x) : z ∈ X r {x}} is bounded below by a positive number. Let s
be the greatest lower bound of the elements in S. Then s > 0 and for each
δ > 0, there is an element z ∈ X r {x} with d(z, x) < s + δ. Thus, we can
choose a sequence {zi ∈ X r {x} : i ≥ 1} such that d(zi, x) < s+ 1

i
.

We shall now make use of some basic results in point-set topology. (See,
e.g., [8].) Note that {zi : i ≥ 1} lies in the closed ball of radius s+1 about x
(i.e., {z ∈ Rn : d(x, z) ≤ s+1}), which is compact by the Heine–Borel theo-
rem. By a basic result on compactness, there is a subsequence of {zi : i ≥ 1}
converging to some y ∈ Rn. In other words, after passing to a subsequence, if
necessary, we can assume limi→∞ zi = y. Note that any subset of a uniformly
discrete set is uniformly discrete. Thus, by Lemma 6.12.15, y ∈ X r {x}
and there exists N > 0 such that xi = y for all i ≥ N . So d(x, y) < s + 1

i
for all i ≥ N , and hence d(x, y) = s.

The same argument shows there are only finitely many such y. Otherwise,
we could form a sequence {yi : i ≥ 1} of distinct such y, which would all
lie in the closed ball of radius d(x, y) about x. As above, we may assume
the sequence converges. But uniform discreteness forces the sequence to be
eventually constant, violating the assumption the yi are distinct. �

Definition 6.12.17. In a lattice Λ we refer to a closest element to 0 as a
minimal length element (i.e., v is a minimal length element if ‖v‖ is minimal
among the norms of the nonzero elements of Λ). A shortest translation for
TΛ is a translation τv where v is a minimal length element of Λ.

Corollary 6.12.16 shows that every lattice has minimal length elements.
The same argument actually shows more.

Corollary 6.12.18. Let v be a minimal length element of the lattice Λ ⊂ Rn.
Then there are finitely many minimal length vectors in

Λr {kv : 0 6= k ∈ Z},
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i.e., there are finitely many vectors w ∈ Λr 〈v〉 such that ‖w‖ ≤ ‖z‖ for all
z ∈ Λr 〈v〉.

Also, if S is the set of minimal length vectors in Λ, then there are finitely
many nonzero vectors of minimal length in Λ r (S ∪ {0}). We call them
vectors of subminimal length in Λ.

Proof. Λ r {kv : 0 6= k ∈ Z} and Λ r S are uniformly discrete. Apply
Corollary 6.12.16 to find the elements closest to 0. �

Lemma 6.12.19. Let v be a minimal length element of the lattice Λ in Rn.
Then 〈v〉 = Λ ∩ span(v).

Proof. span(v) is the union over k ∈ Z of the line segment from kv to
(k + 1)v. Each of these segments has length ‖v‖. If w lies in the interior of
one of these segments, then ‖w − kv‖ < ‖v‖, so w cannot lie in Λ by the
minimality of ‖v‖. �

We can apply these ideas to find a Z-basis for a lattice in R2.

Proposition 6.12.20. Let Λ be a lattice in R2. Let v be a minimal length
vector in Λ and let w be a vector of minimal length in Λr 〈v〉. Then v, w is
a Z-basis for Λ. We call such a basis a minimal length Z-basis for Λ.

Proof. By Lemma 6.12.19, v, w are linearly independent over R, and hence
form a Z-basis, B, for a lattice ΛB ⊂ Λ. We wish to show ΛB = Λ.

Since P (v, w) is a fundamental region for ΛB, for any point z ∈ R2 there
is a y ∈ ΛB with z− y ∈ P (v, w). Applying this to z ∈ Λ, it suffices to show
that

(6.12.4) P (v, w) ∩ Λ = {0, v, w, v + w}.
So let z ∈ P (v, w) ∩ Λ. Then z = sv + tw with s, t ∈ [0, 1]. If t = 0,
z ∈ span(v) ∩ Λ = 〈v〉, and hence z = 0 or z = v. If t = 1, then z − w ∈
span(v) ∩ Λ = 〈v〉, so z = w or z = v + w. Thus, it suffices to assume
t ∈ (0, 1) and derive a contradiction.

For t ∈ (0, 1), z 6∈ span(v). By our minimality assumption on ‖w‖,
‖z‖ ≥ ‖w‖. Note that the line segment vw cuts P (v, w) into two triangles,
one, which we’ll call T1 with vertices 0, v, w, and the other, T2, with vertices
v, w, v + w. Each vertex of T1 lies in the convex set {y ∈ R2 : ‖y‖ ≤ ‖w‖}.
Since a triangle is the convex hull of its vertices, T1 ⊂ {y ∈ R2 : ‖y‖ ≤ ‖w‖},
and hence every element in T1 has norm less than or equal to ‖w‖. In fact,
we can be even more specific. We can identify T1 as

T1 = {uy : y ∈ vw, u ∈ [0, 1]},
and ‖uy‖ = u‖y‖ for u and y as above, so ‖uy‖ < ‖w‖ if u < 1. So the only
elements of norm ‖w‖ in T1 lie in vw. But on vw, 〈(1−t)v+tw, (1−t)v+tw〉
is a quadratic in t with positive leading coefficient, and hence attains its
maximum on [0, 1] precisely on one or both endpoints, so ‖y‖ < ‖w‖ for all
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y in the interior of vw. In consequence, the only points of T1 ∩ Λ are 0, v
and w.

Now, for T2, note that the rotation about 1
2(v+w) by π takes T2 onto T1

and preserves Λ, as
ρ(y,π)(x) = 2y − x

for x, y ∈ R2. So the result follows here, also. �

In analyzing wallpaper groups, it is useful to study the minimal length
Z-bases for the lattice of translations. Note that if v is a minimal length
vector in Λ so is −v.
Proposition 6.12.21. Let Λ be a lattice in R2 and let S be the set of
minimal length vectors in Λ. Then S has one of the following forms:

(1) S = {±v} for some v.
(2) S = {±v,±w}, where the smallest unsigned angle θ between span(v)

and span(w) satisfies π
3 < θ ≤ π

2 .
(3) S = {±v,±w,±(v−w)} where the smallest unsigned angle θ between

span(v) and span(w) is π
3 .

Proof. (1) is certainly a possiblity, e.g., if B = e1, 2e2, then S = {±e1}.
Suppose there are vectors v, w ∈ S such that the unsigned angle θ between−→

0v and
−→
0w is less than π

3 . Then as in the proof of the cosine law,

‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2‖v‖‖w‖ cos θ
= 2‖v‖2(1− cos θ),

as ‖v‖ = ‖w‖. But 0 < θ < π
3 , so

1
2 < cos θ < 1, and hence ‖v − w‖2 <

‖v‖2, contradicting the minimality of ‖v‖. Thus, any two vectors in S not
negatives of each other must determine an unsigned angle ≥ π

3 .

If θ = π
3 , then cos θ = 1

2 and the same argument shows ‖v − w‖ = ‖v‖,
and hence ±(v−w) ∈ S. Pictorially, we get an array if equal-length vectors
in S forming the vertices of a regular hexagon.

−v
oo

w−v

XX

w

FF

v //

−w

��

v−w

��

That the angle from
−−−−−→
0(w − v) to −−−→0(−v) is π

3 can be seen by translating the
equilateral triangle △0vw by −v.

There cannot be any additional elements of S as that would introduce
angles between rays of S that are less than π

3 , contradicting our earlier
calculation. So we are precisely in case (3). This situation is realized geo-
metrically by ΛB for B = v, w for this choice of v and w.
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If θ > π
2 , i.e., if θ is obtuse, we may exchange it for the angle between the

rays determined by v and −w, which is then acute. Thus, by renaming w if
necessary, we may assume θ theta is acute. By our calculations above, if we
rule out (3), we may assume π

3 < θ ≤ π
2 . But the angle π− θ between v and

−w is then less than 2π
3 . But then additional elements in S would produce

angles between rays of S less than π
3 , which is impossible. So if π3 < θ ≤ π

4 ,
then (2) holds. �

6.13. Orientation-preserving wallpaper groups. Recall that a wall-
paper group is a two-dimensional crystallographic group, i.e., a subgroup
W ⊂ I2 such that the translation subgroup T (W) of W is a translation
lattice in R2, i.e.,

T (W) = 〈τv, τw〉 =
{
τ ivτ

j
w : i, j ∈ Z

}
,

where v, w is a basis of R2 as a vector space over R. In this section we study
wallpaper groups not containing any orientation-reversing isometries.

Recall that a point of symmetry for a subgroup H ⊂ I2 is a point x whose
isotropy subgroup

Hx = {α ∈ H : α(x) = x}
is isomorphic to either Cn or D2n for some n > 1. The value n is then called
the period of x. A point of symmetry of period n is called an n-center for
H.

By Leonardo’s theorem, x is a point of symmetry whose period is divisible
by n if and only if Hx is finite and ρ(x, 2πn )

∈ H.

Recall that a subset Y ⊂ Rn is uniformly discrete if there exists ǫ > 0
such that d(x, y) > ǫ for all x, y ∈ Y with x 6= y. The following is key.

Lemma 6.13.1. Let W be a wallpaper group and let X̃n be the set of points
of symmetry of W whose period is divisible by n > 1. Then X̃n is uniformly
discrete. In fact, if ℓ is the shortest length of a nonidentity translation in W
(which exists by Lemma 6.12.13), then d(x, y) ≥ 1

2ℓ for all x, y ∈ X̃n with
x 6= y.

Proof. By hypothesis, ρ(x, 2πn )
and ρ(y,− 2π

n )
lie in W, hence so does their

product. By Corollary 5.5.11,

ρ(x, 2πn )
ρ(y,− 2π

n )
= τv

for some τv ∈ T (W), and hence ‖v‖ ≥ ℓ by our definition of ℓ. Now,

ρ(x, 2πn )
= τvρ(y, 2πn )

,

so

ρ(x, 2πn )
(y) = τvρ(y, 2πn )

(y) = τv(y).
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Since d(x, y) = d
(
x, ρ(x, 2πn )

(y)
)
= d(x, τv(y)), we have an isosceles triangle

with vertices x, y and τv(y). By the triangle inequality,

d(y, τv(y)) ≤ d(x, y) + d(x, τv(y)) = 2d(x, y).

But d(y, τv(y)) = ‖v‖ ≥ ℓ, and the result follows. �

We now wish to show the period of a point of symmetry in a wallpaper
group cannot be too large. In fact, the period is quite constrained, and this
will make it easy to classify the orientation-preserving wallpaper groups.

Proposition 6.13.2. Let W be a wallpaper group that admits n-centers.
Then n = 2, 3, 4 or 6.

Proof. Let x be an n-center for W and let y be a closest n-center to x
(Corollary 6.12.16), and write

d = d(x, y).

Let z = ρ(y, 2πn )
(x), and let w = ρ(z, 2πn )

(y). These are again n-centers, as

the set of n-centers is W-invariant (Lemma 6.9.5). Moreover, we have

(6.13.1) d = d(x, y) = d(y, z) = d(z, w),

as rotations are isometries.
If n = 4, the angles ∠xyz and ∠yzw are right angles. Since the distances

in (6.13.1) are equal we obtain a square with vertices x, y, z, w:

w x

z y.

If n = 6, the angles ∠xyz and ∠yzw have measure π
3 . Since the distances

in (6.13.1) are equal, we must have x = w, and △xyz is equilateral. Since
w = x, it is not an n-center distinct from x.

Finally, we claim that if n = 5 or if n ≥ 7, then d(x,w) < d(x, y) = d,
which contradicts that y is a closest n-center to x, and hence shows there
cannot be n-centers in a wallpaper group W if n = 5 or n ≥ 7.

Thus, assume that n = 5 or if n ≥ 7. Since isometries preserve distance,
we may as well rotate and translate our points so that z = 0 and y =

[
d
0

]
.

Then by our choice of angles, w =

[
d cos 2π

n

d sin 2π
n

]
and x =

[
d−d cos 2π

n

d sin 2π
n

]
, and hence

(6.13.2) d(x,w) =

∣∣∣∣d
(
1− 2 cos

2π

n

)∣∣∣∣ .

Since n > 4, these angles are acute, so 0 < cos 2π
n
< 1, and hence

−1 < 1− 2 cos
2π

n
< 1.
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By (6.13.2), d(x,w) < d. Since w is not equal to x in this case, we obtain
our desired contradiction. �

Corollary 6.13.3. Let W be a wallpapergroup that admits 4-centers. Then
W does not admit either 3-centers or 6-centers. Thus, every point of sym-
metry in W has period 2 or 4.

Proof. Let x be a 4-center forW and let y be either a 3-center or a 6-center.
Then ρ(x, 2π4 )

and ρ(y, 2π3 )
lie in W, hence so does

ρ(y, 2π3 )
ρ(x,− 2π

4 )
= ρ(z, 2π12 )

for some z. But this has period divisible by 12, which is ruled out by
Proposition 6.13.2. �

6.13.1. Groups admitting 4-centers. We shall make use of the follow-
ing.

Lemma 6.13.4. Let x 6= y ∈ R2. Then ρ
(
x, π2

)
ρ
(
y, π2

)
= ρ(z, π) where x,

y, z form an isosceles right triangle with right angle at z.

Proof. Let m be the line containing x and y. Let ℓ be the line through x
such that the directed angle from m to ℓ is π

4 and let n be the line through

y such that the directed angle from n to m is π
4 . Then ρ

(
x, π2

)
ρ
(
y, π2

)
=

σℓσmσmσn = σz,

z nℓ

m
x y

with z = ℓ ∩ n. �

We now show there is a unique orientation-preserving wallpaper group
with a given 4-center x and a given shortest nonzero translation τv. First
consider the composite τvρ

(
x, π2

)
. Using our calculus of isometries, we can

compute it as σmσℓσℓσn with ℓ the line through x perpendicular to v, m =
ℓ + 1

2v and n the line through x bisecting the directed angle from q =
x+ span(v) to ℓ:

(6.13.3)

y

qx z

n

ℓ m

The diagram provides a 4-center, y. We also obtain a point of symmetry
z = m ∩ q, as τvρ(x, π) = σmσq = ρ(z, π).

Note the distance from x to z is 1
2‖v‖. Moreover, no point of symmetry

can be closer to x than z is, as the period of each point of symmetry for
W is divisible by 2, and if u ∈ R2, then ρ(u, π)ρ(x, π) is the translation by
2(u− x), a vector whose norm is twice the distance from x to u.
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By Lemma 6.13.4, this forces z to be a 2-center: otherwise ρ
(
x, π2

)
ρ
(
z, π2

)

is a rotation at a point closer to x than z is. Lemma 6.13.4 also establishes
that ρ

(
y, π2

)
ρ
(
x, π2

)
= ρ(z, π). Similarly, ρ

(
x, π2

)
ρ
(
y, π2

)
= ρ(z′, π), with z′

in the following diagram.

(6.13.4)

z′ y

qx z

n

ℓ m

Again, z′ must be a 2-center, as otherwise, there is a point of symmetry
closer to x than z or z′ is. Additionally, ρ(z′, π)ρ(x, π) is the translation by
w = 2(z′−x), a vector orthogonal to v and having the same length as v. By
Proposition 6.12.20, v, w is a Z-basis for T (W), and a fundamental region,
R, for T (W) is given as follows.

(6.13.5)
τw(z)

τw(x) τv+w(x)

z′
y

τv(z′)

z
x τv(x)

Moreover, the labelled points are the only points of symmetry in R, as any
other point would be closer to one of these than is permissible, as that would
violate the minimality assumption on the length of v. Since every T -orbit in
R2 meets the fundamental region for T (W), there are exactly two T -orbits
of 4-centers for W: one of them represented here by y and the other by x,
τv(x), τw(x) and τv+w(x), all of which lie in the same T -orbit. Similarly,
there are exactly two T -orbits of 2-centers for W, one of them represented
by z and τw(z) and the other by z′ and τv(z′).

Thus, we have identified all the translations and rotations inW. SinceW
is orientation-preserving, we know all its elements. Note that the argument
above shows that both τw and the rotations at all the points of symmetry
in R are generated by τv and ρ(x,π2 )

. The same argument, applied to the

translates of R by the elements of T (W), will show that τv and ρ(x,π2 )
generate all of W, provided we show they generate the rotations by π

2 at all
elements in the T -orbit of x. But the same argument as that given for the
diagram (6.13.3) shows that

τk(v+w))ρ(x,π2 )
= ρ(τkw(x),π2 )

,

τk(v−w))ρ(x,π2 )
= ρ(τkv(x),π2 )

,

for all k ∈ Z. We can then iterate this argument at all of these translates of
x to get the others.
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Note that the only elements ofW that carry interior points of R to interior
points of R are the rotations about y. Thus, a fundamental region for W is
given by the triangle, S with vertices x, y and τv(x):

(6.13.6) τw(x) τv+w(x)

y

S

z
x • τv(x)

There are two sets of identifications on S induced by elements of W. The
edges xy and yτv(x) are folded together via ρ(y,π2 )

, joining x to τv(x); the

edge xτv(x) is folded in half via ρ(z,π) with the crease point at z. The orbit

space is topologically a sphere S2.
An alternate choice for a fundamental region S for W is given by the

square with vertices x, z′, y and z.

(6.13.7)
τw(z)

τw(x) τv+w(x)

z′
y

τv(z′)

z

S

x τv(x)

The orbit space is, of course, the same, and is instructive to see.
Note that by Theorem 5.5.20, we can conjugateW via a translation and a

rotation so that x = 0 and v lies on the positve x-axis. But conjugation will
not change the length of v. WriteW(r) for the case where x = 0 and v = re1
with r > 0. Note that conjugation by the linear map induced by rI2 takes
τe1 to τre1 and preserves ρ(0,π2 )

. While rI2 does not induce an isometry, it

does induce an affine isomorphism from R2 to itself, so the groups W(r) are
all conjugate in the group of affine isomorphisms. In particular, they are
isomorphic. We have shown:

Theorem 6.13.5. For a given x and v in R2 with v 6= 0 there is a unique
orientation-preserving wallpaper group containing ρ(x,π2 )

in which τv is a

shortest translation. We call it W4. It is generated by ρ(x,π2 )
and τv, and a

fundamental region R for T (W4) is given by (6.13.5), with the labelled points
being the only points of symmetry in R. We see there are two T -orbits of
4-centers and two T -orbits of 2-centers.

A fundamental region S for W4 is given in (6.13.6). The orbit space is a
sphere, S2.

The conjugacy class of this group in O2 depends only on ‖v‖, and as ‖v‖
varies, these groups are isomorphic.

Example 6.13.6. A pattern whose symmetry group isW4 is given by prop-
agating the pattern in Figure 6.13.1 across the plane. The arrow-bordered



204 MARK STEINBERGER

squares are fundamental regions for T (W), with 4-centers at their vertices
and centers and with 2-centers at the midpoints of the double-headed arrows.
The orientations of the barbs implies there are no reflections or glide reflec-
tions that preserve this pattern, so its symmetry group must be orientation-
preserving and hence be W4.

o /
O

�

o /
O

�

o /
O

�

o /
O

�

O

�o /
O

�

o /
O

�

o /
O

�

o /
O

�

O

�o /
O

�

o /
O

�

o /
O

�

o /
O

�

O

�o / o / o / o /

Figure 6.13.1. A pattern with symmetry group W4.

6.13.2. Groups admitting 6-centers. We now give a similar uniqueness
theorem for wallpaper groups that admit 6-centers. By Proposition 6.13.2
and Corollary 6.13.3, all points of symmetry in such a group have period 2,
3, or 6.

Lemma 6.13.7. Let A be a 6-center for a wallpaper groupW and let B be a
6-center closest to A. Then ρ(A,π3 )

ρ(B,π3 )
= ρ(X, 2π3 )

, where X is a 3-center

closer to A than B is. In fact, X is a 3-center closest to A, and the midpoint
M of AB is a 2-center. Moreover, M is a point of symmetry closest to A,
and τB−A is a shortest translation in W. Thus, closest 6-centers differ by a
shortest translation.

Proof. Let m =
←→
AB. Let ℓ be the line through A such that the directed

angle from m to ℓ is π
6 and let n be the line through B such that the directed

angle from n to m is π
6 . Then ρ(A,π3 )

ρ(B,π3 )
= σℓσmσmσn = ρ(X, 2π3 )

with X

in the diagram below.

(6.13.8)
X

nℓ

A
M

B

The period of X is divisible by 3. Since X is closer to A than B is, X cannot
be a 6-center, so it must be a 3-center. If X ′ were a 3-center closer to A than
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X is, then a similar diagram displays ρ(A,π3 )
ρ(B′,π

3 )
= ρ(X′, 2π

3 )
, where B′ is

a 6-center closer to A than B is. Since this is impossible, X is a 3-center
closest to A.

(6.13.8) also shows that ρ(X, 2π3 )
ρ(A,π3 )

= ρ(M,π), so M is a point of sym-

metry of period divisible by 2. Since it is closer to A than B is, M is a
2-center. We have ρ(M,π)ρ(A,π) = τ2(M−A) = τB−A. Since the 6-centers are
W-invariant and since τB−A(A) = B, this is a shortest translation in W. If
N were a 2-center closer to A than M is, we’d have ρ(N,π)ρ(A,π) = τ2(N−A),
a translation shorter than τB−A. So M is a point of symmetry closest to
A. �

We assume now that W is a wallpaper group that admits 6-centers and
that A and B are closest 6-centers inW. Rotating (6.13.8) by increments of
2π
3 about X, we obtain an equilateral triangle whose vertices are 6-centers.

(6.13.9)
C

•

A B

Here, X is the marked point at the centroid of the triangle, and the trans-
lations τv = τB−A, τw = τC−A and τw−v = τC −B are shortest translations
in W by Lemma 6.13.7. By Proposition 6.12.20, v, w is a Z-basis for T (W),
and a fundamental region, R, for T (W) is given as follows.

(6.13.10)

◦

◦C

•
◦

D

◦

A ◦

•

B

Here, the vertices of R are all translates of A: B = τv(A), C = τw(A) and
D = τv+w(A). Since ‖v‖ = ‖w‖, R is a rhombus. It is the union of two
equilateral triangles along the common edge BC. The points marked • are
3-centers, and occur at the centroids of the two equilateral triangles. The
points marked ◦ are 2-centers. The ones on the edges of R occur at the
midpoints of those edges. The other is at the center point of R and occurs
at the midpoint of BC, which is also the midpoint of AD.

Since v and w are shortest translations inW, the argument of Lemma 6.13.7
shows there are no other points of symmetry in R than those marked. The
2-centers on opposite edges of R are translates of one another, so there are
three T -orbits of 2-centers. No interior point of R is a translate of any other
interior point of R, so there are two T -orbits of 3-centers. There is one
T -orbit of 6-centers, given by the vertices of R.

The only elements of W that carry interior points of R to interior points
of R are the rotations about the marked centers in the interior of R. As a
result, a fundamental region S forW is given by the region shown in (6.13.8):



206 MARK STEINBERGER

the triangle whose vertices are A, B and the centroid of the triangle △ABC.
The orbit space is again a sphere for the same reasons as for W4.

The argument given in Lemma 6.13.7 shows both τw and all the rotations
at the marked points in R are generated by ρ(A,π3 )

and τv (or, in fact, by

ρ(A,π3 )
and any of the rotations of maximal period for one of the marked

points). An argument similar to that used in Theorem 6.13.5 shows that W
is generated by ρ(A,π3 )

and τv, and is the unique wallpaper group containing

ρ(A,π3 )
for which τv is a shortest translation. Again as in Theorem 6.13.5,

we obtain the following.

Theorem 6.13.8. For a given x and v in R2 with v 6= 0 there is a unique
orientation-preserving wallpaper group containing ρ(x,π3 )

in which τv is a

shortest translation. We call it W6. It is generated by ρ(x,π3 )
and τv, and a

fundamental region R for T (W6) is given by (6.13.10), with the vertices and
the marked points being the only points of symmetry in R. We see there are
three T -orbits of 2-centers (marked ◦), two T -orbits of 3-centers (marked •)
and one T -orbit of 6-centers (the vertices of R).

A fundamental region S for W6 is given in (6.13.8). The orbit space is a
sphere S2.

The conjugacy class of this group in O2 depends only on ‖v‖, and as ‖v‖
varies, these groups are isomorphic.

Example 6.13.9. A pattern whose symmetry group is W6 is given in
Figure 6.13.2. There are 6-centers at the center of each honeycomb cell.
The double-headed arrows prevent orientation-reversing symmetries, so the
group must be W6.
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Figure 6.13.2. A pattern whose symmetry group is W6
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6.13.3. Groups admitting 3-centers but not 6-centers. Thus, here,
W is a wallpaper group admitting 3-centers but not 6-centers. Since ρ(x, 2π3 )

ρ(y,π)
has order 6, any wallpaper group containing both a 3-center and a 2-center
must contain a 6-center. Thus, if W contains 3-centers but not 6-centers,
then every point of symmetry for W must be a 3-center.

Lemma 6.13.10. Let W be a wallpaper whose only points of symmetry are
3-centers. Let A be a 3-center and let B be a 3-center closest to A. Then
ρ(A, 2π3 )

ρ(B, 2π3 )
= ρ(C, 4π3 )

where △ABC is equilateral, and hence C is also a

closest 3-center to A.
Moreover, ρ(B, 4π3 )

ρ(A, 2π3 )
= τv, where v = 2(M−A), withM the midpoint

of BC.

(6.13.11)

ℓ

C

n
τv(A)

m
A B

Conversely, if v′ ∈ T (W), then an analogous diagram holds with 3-centers
B′ and C ′ in place of B and C, respectively, and with v′ in place of v. If
‖v′‖ < ‖v‖, then d(A,B′) < d(A,B). Since B is a 3-center closest to A,
that forces τv to be a shortest translation in T (W).

Proof. That ρ(A, 2π3 )
ρ(B, 2π3 )

= ρ(C, 4π3 )
with △ABC equilateral follows as in

Lemma 6.13.7.
The composite ρ(B, 4π3 )

ρ(A, 2π3 )
is a translation because the angle sum is a

multiple of 2π. To calculate it, write
←→
AB = m and

←→
BC = n. Then

ρ(B, 4π3 )
ρ(A, 2π3 )

= σnσmσmσℓ = σnσℓ,

with the directed angle from ℓ to n being π
3 , so that ℓ is as pictured in

(6.13.11). Since ℓ ‖ n, this composite is the translation by 2(q ∩ n− q ∩ ℓ),
where q is the perpendicular to ℓ and n containing A, i.e., with q ∩ ℓ = A.
Since AB and AC have equal length, the proof of the Pons asinorum shows
q ∩ n is M , the midpoint of BC.

So ρ(B, 4π3 )
ρ(A, 2π3 )

= τv, with v as claimed, giving ρ(B, 4π3 )
= τvρ(A, 4π3 )

.

Given v′ as in the converse, we can reverse engineer the entire diagram with
B′ and C ′ in the analgous positions, and we get ρ(B′, 4π

3 )
= τv′ρ(A, 4π3 )

, so if

τv′ ∈ W, B′ is a 3-center for W. The result follows. �

Note that since B and C are closer to A than τv(A) and since v is a
shortest translation for W, B and C cannot be in the T -orbit of A. But
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the argument for the converse shows that if A is a 3-center for W and v is
a shortest translation, then the points B and C obtained from the diagram

(6.13.12)
C

A τv(A)

B

are 3-centers forW. Here ∠CAτv(A), ∠BAτv(A), ∠Cτv(A)A and ∠Bτv(A)A
are all π6 as in (6.13.8).

We can now repeat the argument for Lemma 6.13.10 with C in place of
B, obtaining a diagram

(6.13.13)
D

τw(A)

A C

with D a 3-center for W and w a shortest translation in W. Note that
w = ρ(0π3 )

(v), so v, w are linearly independent. Since both are shortest

translations in W, v, w is a Z-basis for T (W), and generate a rhombic fun-
damental region R for T (W).

(6.13.14) τw(A)

•

τv+w(A)

A

•

τv(A)

A more complete picture of the rotations and translations for W is given
in Figure 6.13.3. The 3-centers are indicated by • and the solid line seg-
ments between 3-centers all represent shortest translations. Note that D =
τw−v(B) so that τw(B) = τv(D).

The fundamental region R for T (W) is the union of two equilateral tri-
angles with 3-centers at their centroids and vertices. There are no other
3-centers in R, as that would violate the minimality of ‖v‖. Thus, there
are exactly three T -orbits of 3-centers for W, represented by A, B and C,
respectively.
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•
τw(A)

•

τw−v(A) •

B

C

•τv+w(A)

•

•

•

•

A •τv(A)

D

•τv−w(A)

τw(B)

Figure 6.13.3. Array of 3-centers and translations for W3.

A fundamental region S for W is not obvious. But the following blowup
from Figure 6.13.3 suffices.

(6.13.15)
τw(A)

C τw(B)

τv(A)

Note we have rotated the appropriate section of Figure 6.13.3 about τw(A)
by −π

6 in order to fit the grid for our graphics generator.

If we rotate this region about C by multiples of 2π
3 it sweeps out the full

circle about C and covers the lower half of R. If we rotate by multiples of
2π
3 about τw(B) it covers the upper half of R. Thus, R2 =

⋃
α∈W α(S). But

it’s easy to see that no element of W carries interior points of S to interior
points of S. So S is indeed a fundamental region for W.

The identifications on S induced by W are given by gluing the seg-
ment Cτw(A) to Cτv(A) by the rotation about C and gluing the segment

τw(B)τw(A) to τw(B)τv(A) by the rotation about τw(B). Once again, the
orbit space is topologically a sphere, S2.

As above, we get:

Theorem 6.13.11. For a given x and v in R2 with v 6= 0 there is a unique
orientation-preserving wallpaper group with no 6-centers containing ρ(x, 2π3 )
in which τv is a shortest translation. We call itW3. It is generated by ρ(x, 2π3 )
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and τv, and a fundamental region R for T (W3) is given by (6.13.14), with
the vertices and marked points being the only points of symmetry in R. The
only points of symmetry are 3-centers, of which there are three T -orbits: one
given by the vertices of R and the other two by the marked points.

A fundamental region S for W3 is given in (6.13.15). The orbit space is
a sphere.

The conjugacy class of this group in O2 depends only on ‖v‖, and as ‖v‖
varies, these groups are isomorphic.

Example 6.13.12. A pattern with symmetry group W3 is given in Fig-
ure 6.13.4.
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O

&x

O
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Figure 6.13.4. A pattern with symmetry group W3.

6.13.4. The remaining cases. In the cases we’ve studied so far, the pres-
ence of rotations of certain periods determines the structure of the trans-
lation lattice of W. If there are 4-centers, there is a Z-basis consisting of
orthogonal vectors of equal length. If there are 3-centers, the translation
lattice has a Z-basis consisting of vectors of equal length and forming an
angle of π3 with one another.

In the remaining cases, the translation lattice T (W) can be arbitrary.
This introduces additional complication. There are exactly two cases re-
maining:

• All points of symmetry have period 2.
• There are no points of symmetry and W = T (W) is a translation
lattice.

Let us deal with the latter case first, as that will shed light on the former.
Thus, we assume W = T (W). By Theorem 5.5.20 and our calculation of
SO(2), the conjugacy class of T (W) in O2 determines and is determined by
the following data.
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(1) The length of a shortest translation τv.
(2) The length of a shortest translation τw with w not in span(v).
(3) The shortest possible directed angle from v to w among pairs v and

w as above.

For conjugacy in I2, replace the directed angle by the unsigned angle in (3).
Thus, many of these translation lattices are geometrically distinct, even if
you fix the length of the shortest translation.

On the other hand, by Corollary 6.12.4, any two translation lattices are
conjugate in A2, so they are linearly equivalent, just not geometrically. We
shall refer to a wallpaper group for which W = T (W) as W1.

A fundamental region for W1 is simply the fundamental region R for
T (W) in any of these examples: the parallelogram with vertices x, τv(x),
τw(x) and τv+w(x) for any x ∈ R2 and for v and w satisfying (1) and (2)
above:

(6.13.16) τv(x) τv+w(x)

x τw(x)

The orbit space is obtained by identifying the left edge with the right edge
via τw and identifying the bottom edge with the top edge via τv. The result
looks a bit twisted when v and w are not perpendicular, but as shown in
Corollary 6.12.7, the linear map TAB induces a linear isomorphism from the
fundamental region for the standard lattice onto the fundamental region
here (when we take x = 0) respecting the boundary identifications used to
construct the orbit space. For the standard lattice, the fundamental region
is the unit square. The identifications of the left and right edges can be seen
to form a cylinder. Identifying the top and bottom then creates a figure
called a torus (denoted T 2) which is topologically equivalent to the surface
of a doughnut. We have shown:

Theorem 6.13.13. An orientation-preserving wallpaper group with no points
of symmetry is a translation lattice. Its fundamental region is a parallelo-
gram as in (6.13.16) and its orbit space is a torus. Any two such groups
are linearly conjugate, but not necessarily equivalent geometrically. We call
them W1.

Example 6.13.14. Figure 6.13.5 displays a pattern whose symmetry group
is W1.

There is one remaining case for orientation-preserving wallpaper groups.
We let W be an orientation-preserving wallpaper group whose only points
of symmetry are 2-centers. Note that if x and y are 2-centers, then

ρ(y,π)ρ(x,π) = τ2(y−x) ∈ T (W).

But then ρ(y,π) = τ2(y−x)ρ(x,π) lies in the right coset T (W)ρ(x,π), so T (W)
has index 2 in W. Thus, if v, w is a Z-basis for the lattice inducing T (W),
then τv, τw and ρ(x,π) generate W.
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Figure 6.13.5. A pattern whose symmetry group is W1.

Note that for any τz ∈ T (W), τz and ρ(x,π) generate the frieze group
F2(z, x) defined in Remark 6.10.4. Its elements are

F2(z, x) =
{
τkz, τkzρ(x,π) : k ∈ Z

}
=
{
τkz, ρ(x+ k

2
z,π) : k ∈ Z

}
.

The multiplication is given by the conjugation formula

(6.13.17) ρ(x,π)τuρ
−1
(x,π) = τ−u

for any x, u ∈ R2.
Thus, a rotation ρ(x,π) together with a translation do not generate a wall-

paper group: the subgroup they generate in I2 has a translation subgroup
isomorphic to Z, not Z × Z. So three generators are necessary for W: two
for T (W) and one rotation.

As above, if τz and ρ(x,π) are in W, so is ρ(x+ 1
2
z,π), the rotation by π

about the midpoint of the segment xτz(x). Thus, if v, w form a Z-basis B
for the lattice inducing T (W) and if x is a 2-center for W, then the marked
points are 2-centers in the following diagram for a fundamental region R for
T (W).

(6.13.18) •τv(x) • •τv+w(x)

•

•

x •

•

•

•

τw(x)

Here, the marked point in the center is x + 1
2(v + w), the midpoint of the

diagonal xτv+w(x). It coincides with the midpoint of the other diagonal

τv(x)τw(x).
Note that there cannot be any other 2-centers in R, as that would induce

a new translation not in ΛB = T (W).
The only element of W that carries interior points of R to interior points

of R is the rotation by π about the center point of R. So a fundamental
region S for W is given by the left half of R:

(6.13.19) •τv(x) • •τv+w(x)

•

•

x •

• S

•

•

τw(x)
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The identifications on the boundary of S given byW are obtained by folding
each of the right and left edges in half along the midpoint and identifying
the top and bottom edges by τv. The result is sewn up completely around
the boundary, topologically forming a sphere, S2.

Conversely, if we start with a translation lattice TΛ and an x ∈ R2, then

W2(Λ, x) =
{
τz, τzρ(x,π) : z ∈ Λ

}
=
{
τz, ρ(x+ 1

2
z,π) : z ∈ Λ

}
(6.13.20)

forms a orientation-preserving subgroup of I2 with T (W) = TΛ and with all
points of symmetry of period 2. (That W2(Λ, x) is closed under multiplica-
tion in I2 follows from (6.13.17). It is closed under inverses follows from the
last expression in (6.13.20).) We have shown:

Theorem 6.13.15. For any translation lattice TΛ and any x ∈ R2, there is a
unique orientation-preserving wallpaper group W whose points of symmetry
all have period 2 such that T (W) = TΛ and x is a 2-center. The points of
symmetry for W are precisely the points τ 1

2
z(x) with τz ∈ T (W).

W is generated by τv, τw and ρ(x,π) for any Z-basis v, w of Λ. A fun-
damental region R for T (W) is given in (6.13.18) with the marked points
being the only points of symmetry in R. A fundamental region S for W is
given by the left half of R as in (6.13.19). The orbit space is topologically a
sphere, S2.

Two such groups are conjugate in O2 or I2 if and only if their translation
lattices are, but any two such groups are conjugate in A2. We call them W2.

Example 6.13.16. A pattern whose symmetry group is W2 is given in
Figure 6.13.6.
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Figure 6.13.6. A pattern whose symmetry group is W2.

6.14. General wallpaper groups. Given an orientation-preserving wall-
paper group W0 we study how to add orientation-reversing isometries to
W0 to obtain a wallpaper group W whose orientation-preserving subgroup
O(W) is equal to W0.
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Note that by Corollary 6.6.12 this forces W0 to have index 2 in W, so
that if α ∈ W rW0, then W rW0 is precicely equal to the right coset

W0α = {βα : β ∈ W0}.
Index 2 subgroups are always normal, so αW0α

−1 =W0.
The following is elementary group theory.

Lemma 6.14.1. Let W0 be an orientation-preserving wallpaper group and
let α be an orientation-reversing isometry. Then W = W0 ∪ W0α is a
wallpaper group if and only if the following hold:

(1) αW0α
−1 =W0.

(2) α2 ∈ W0.

Proof. If W0 ∪W0α is a group, then (1) is a consequence of the normality
of index 2 subgroups, while (2) is a consequence of the index 2 property, as
if α2 = βα with β ∈ W0, then α = β ∈ W0, which we have ruled out. Thus
α2 must lie in W0.

Conversely, suppose (1) and (2) hold. Then (1) impliesW0∪W0α is closed
under multiplication. The key case is that for β1, β2 ∈ W0,

β1αβ2 = β1(αβ2α
−1)α = β1β3α

for some β3 ∈ W0 by (1). To see that W0 ∪ W0α is closed under inverses,
the key case is that (βα)−1 = α−1β−1 and α−1 = α−2α is in W0α by (1).
Thus, W =W0 ∪W0α is a subgroup of I2. �

We now see how to apply this to the situation at hand. First, we are
assuming α is orientation-reversing. So α = τxσℓφ for some line ℓφ through

the origin and some x ∈ R2. If x ⊥ ℓφ, α is then a reflection with axis parallel
to ℓφ; otherwise, α is a glide reflection with axis parallel to ℓφ. Since W0 is
a wallpaper group, T (W0) = TΛ for some lattice Λ ⊂ R2.

Lemma 6.14.2. Let W be a wallpaper group with O(W) = W0. Let α
be an orientation-reversing isometry in W, and write α = τxσℓφ with ℓφ
a line through the origin. Let T (W0) = TΛ for the lattice Λ ⊂ R2. Then
αTΛα−1 = TΛ. Moreover,

(6.14.1) ατvα
−1 = τσℓφ (v)

,

so σℓφ : Λ → Λ is a bijective group homomorphism, and, as an isometry,
preserves the norm.

In particular, if S is the set of nonzero vectors of minimal length in Λ,
then σℓφ : S → S is bijective. The analogous result holds for the set of
vectors T in Λ whose norm is the next size up.

Proof. Theorem 5.5.20 gives (6.14.1). Since W0 ⊳W, τσℓφ (v)
∈ W0. But it

is also in T2, and W0 ∩ T2 = T (W0) by definition, and this in turn is equal
to TΛ. So αTΛα−1 ⊂ TΛ. But α−1 is also orientation-reversing, so the same
argument shows α−1TΛα ⊂ TΛ. Conjugating this by α gives TΛ ⊂ αTΛα−1.
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Thus, the map cα : TΛ → TΛ given by conjugating by α is a bijection.
The map ν : Λ → TΛ given by ν(v) = τv is an isomorphism. (6.14.1) says
the following diagram commutes:

Λ

σℓφ

��

ν

∼=
// TΛ
cα ∼=

��

Λ
ν

∼=
// TΛ,

so σℓφ : Λ→ Λ is a bijective. �

Of course, we can use S and T to find a Z-basis for Λ. And knowing S
and T will tell us which possible α can arise in this context.

We will now sharpen Lemma 6.14.1.

Proposition 6.14.3. Let W0 be an orientation-preserving wallpaper group
with T (W0) = TΛ. Let α be an orientation-reversing isometry. Write α =
τxσℓφ with ℓφ a line through the origin. Then W =W0∪W0α is a wallpaper
group if and only if the following hold:

(1) There is a Z-basis v, w for Λ such that σℓφ(v), σℓφ(w) is also a Z-basis
for Λ.

(2) For all y ∈ R2, α(y) and y have the same isotropy group under W0,
i.e., if y is an n-center for W0, then so are α(y) and α−1(y).

(3) If α is a glide reflection, then α2 ∈ TΛ.
Proof. SupposeW =W0∪W0α is a wallpaper group. Then (1) follows from
Lemma 6.14.2, while (2) follows from the fact that each y and α(y) must
have the same isotropy subgroup under the action of W. But isotropy sub-
groups for wallpaper groups are either cyclic or dihedral, so their orientation-
preserving subgroups must be isomorphic. Finally, if α is a glide reflection,
then α2 is a translation, which must lie in W0 by Lemma 6.14.1.

Conversely, suppose (1)–(3) hold. Then conjugation by α induces an
isomorphism from TΛ to itself by (6.14.1). But every element ofW0 not in TΛ
has the form ρ(y,θ) for some θ, and αρ(y,θ)α

−1 = ρ(α(y),±θ) by Theorem 5.5.20.
By (2), conjugation by α induces a bijection from W0 to itself. The result
now follows from Lemma 6.14.1. �

Some other useful general results are as follows.

Lemma 6.14.4. Let ℓ be a line of symmetry for a wallpaper groupW. Then
there are infinitely many lines of symmetry for W parallel to ℓ. The directed
distance between a closest pair of such lines is ±1

2v, where τv is the shortest
translation perpendicular to ℓ.

Proof. By Theorem 5.5.20, ασℓα
−1 = σα(ℓ) for all α ∈ I2. In particular, if

ℓ is a line of symmetry for W and if α ∈ W, then α(ℓ) is a line of symmetry
for W.
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Since T (W) is a lattice, there exists a translation τz ∈ T (W) with z
not parallel to ℓ. So τz(ℓ) 6= ℓ, and is a line of symmetry for W. But
any translation of ℓ is parallel to ℓ so there exist lines of symmetry for W
other than ℓ that are parallel to ℓ. In fact, infinitely many of them, as the
translates τkz(ℓ) with k ∈ Z are all distinct.

Let m and n be distinct lines of symmetry for W parallel to ℓ. Then
σmσn is the translation by twice the directed distance from n to m. The
directed distance is perpendicular to n and hence to ℓ. Conversely, if w is
perpendicular to ℓ, then τwσn is the reflection in τ 1

2
w(n).

Since any subset of T (W) is uniformly discrete, there is a shortest trans-
lation τv perpendicular to ℓ, and for each line of symmetry n parallel to ℓ,
τ 1
2
w(n) must be the line of symmetry closest to n in the direction of v. �

We can now invetigate the relationship between these lines of symmetry
and the points of symmetry of even period.

Proposition 6.14.5. Let ℓ be a line of symmetry for a wallpaper group W.
Let x be a point of symmetry for W with even period such that x does not
lie on a line of symmetry parallel to ℓ. Then x lies exactly half way between
two closest lines of symmetry parallel to ℓ, i.e., if τv is a shortest translation
in T (W) perpendicular to ℓ, then x lies on a line τ 1

4
v(m) where m is a line

of symmetry parallel to ℓ.

Proof. By Lemma 6.14.4 there is a line of symmetry m parallel to ℓ such
that x lies on τtv(m) for t ∈ (0, 12). Let n be the line through x perpendicular
to ℓ. Then

ρ(x,π)σm = σnσ(τtv(m))σm = σnτ2tv,

a glide reflection with axis n. Thus, (ρ(x,π)σm)
2 = τ4tv is a translation

perpendicular to ℓ. But this forces t = 1
4 . �

We wish to extend these results to glide reflections.

Definition 6.14.6. Let γ = τzσℓ be a glide reflection in standard form (i.e.,
z ‖ ℓ). We say γ is an essential glide reflection for a wallpaper group W if
γ ∈ W, but τz is not in W; equivalently, σℓ is not in W. In this case, we
say ℓ is an essential glide axis for W, i.e., ℓ is the axis for a glide reflection
in W, but is not a line of symmetry for W.

For γ = τzσℓ as above, γ2 = τ2z is in W, so τz is a square root of a
translation in W.

We say a glide reflection γ is inessential for W if it is not essential. In
this case, it is the composite of two elements of W, τz and σℓ.

We say γ is primitive forW if it is essential and τ2z is a shortest translation
in W parallel to ℓ.

The following is elementary but useful.
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Lemma 6.14.7. Let γ1 = τzσℓ be a glide reflection in standard form, and
suppose γ1 is an essential glide reflection for a wallpaper group W. Then
there is a glide reflection γ, primitive forW, with the property that the set of
all glide reflections in W with axis ℓ is {γ2k+1 = τ(k+ 1

2
)vσℓ : k ∈ Z}, where

τv is a shortest translation in W parallel to ℓ.

Proof. Since any subset of T (W) is uniformly discrete, there is a shortest
translation τv parallel to ℓ. But this implies that the set of translations in
W parallel to ℓ is precisely 〈τv〉 = {τkv : k ∈ Z} = {τkv : k ∈ Z}. This
is because the translations parallel to ℓ in I2 are {τw : w ∈ span(v)}, and
this forces w to lie in the line segment from kv to (k + 1)v for some k ∈ Z.
But if τw ∈ W and if τv is a shortest translation in W lying in span(v), this
forces w to be an endpoint of this segment. Otherwise, w − kv gives rise to
a translation in W parallel to ℓ and shorter than τv.

For any z ‖ ℓ, τz and σℓ commute. So (τzσℓ)
2 = τ2z σ

2
ℓ = τ2z, as σ

2
ℓ = id.

So (τzσℓ)
2k = τ2kz and (τzσℓ)

2k+1 = τ(2k+1)zσℓ.

For γ1 = τzσℓ as in the statement, γ21 = τ2z is in W, so 2z = kv for
some k, and k must be odd, as otherwise τz ∈ W. Let k = 2r + 1. then
γ = γ1τ−rv = τ 1

2
vσℓ is the desired primitive glide reflection for W. �

Lemma 6.14.8. Let γ be an essential glide reflection for a wallpaper group
W, and let ℓ be the axis of γ. Then there are infinitely many essential glide
axes parallel to ℓ. The directed distance between a closest pair of such axes
is ±1

2v, where τv is the shortest translation perpendicular to ℓ.

Proof. The proof is similar to that of Lemma 6.14.4. Let w be a shortest
translation inW parallel to ℓ. By the proof of Lemma 6.14.7, we may assume
γ = τ 1

2
wσℓ is primitive for W. Let τz ∈ W with z not parallel to ℓ. Then

τzγτ
−1
z = (τzτ 1

2
wτ

−1
z )(τzσℓτ

−1
z )

= τ 1
2
wστz(ℓ),

a primitive glide reflection whose axis is parallel to ℓ. Let γ1 = τ 1
2
wσm and

γ2 = τ 1
2
wσn be primitive glide reflections with axes parallel to ℓ. Since, τ 1

2
w

commutes with the reflection in any line parallel to w,

γ2γ1 = τwσnσm = τwτu,

where u is twice the directed distance from m to n. In particular, τu ∈ W,
and u ⊥ ℓ. The result now follows precisely as in Lemma 6.14.4. �

As we shall see, it is possible that there are essential glide axes parallel
to lines of symmetry. In this case, the following holds.

Proposition 6.14.9. Suppose W has an essential glide axis ℓ parallel to
a line of symmetry n. Then the line of symmetry is half way between two
closest essential glide axes parallel to ℓ.
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Proof. Let w be a shortest translation parallel to ℓ and let v be a shortest
translation perpendicular to ℓ. Since no essential glide axis is a line of
symmetry, there is an essential glide axism parallel to ℓ such that n = τtv(m)
for t ∈ (0, 12).

Now, γ = τ 1
2
wσm is a primitive glide reflection with axis m, and

σnγ = τ 1
2
wσnσm = τ 1

2
wτ2tv ∈ W.

Since τ 1
2
w 6∈ W, τ2tv 6∈ W. But τ21

2
w
∈ W, so τ4tv = τ22tv ∈ W, so t = 1

4 . �

The next result will follow as in Proposition 6.14.5.

Proposition 6.14.10. Let ℓ be an axis for an essential glide reflection for
a wallpaper group W. Let x be a point of symmetry for W with even period
such that x does not lie on an essential glide axis parallel to ℓ. Then x
lies exactly half way between two closest such axes, i.e., if τv is a shortest
translation in T (W) perpendicular to ℓ, then x lies on a line τ 1

4
v(m) where

m ‖ ℓ is the axis of an essential glide reflection in W.
Moreover, there is a line p orthogonal to ℓ that is the axis for an essential

glide reflection with glide τ 1
2
v, and x lies on τ 1

4
w(p), where w is the shortest

translation in W parallel to ℓ.

Proof. As in the proof of Proposition 6.14.5, we may assume x ∈ τtv(m)
where t ∈ (0, 12) andm ‖ ℓ is the axis of a glide reflection inW. In particular,
if w is a shortest translation parallel to ℓ, then γ = τ 1

2
wσm is a glide reflection

in W. Let n = x+ span(v), the line through x perpendicular to ℓ Then

ρ(x,π)γ = σnστtv(m)τ 1
2
wσm = σnτ 1

2
wστtv(m)σm = σnτ 1

2
wτ2tv = σpτ2tv,

where p = n − 1
4v = τ− 1

4
v(n). This is a glide reflection with axis p, so its

square is τ4tv, a translation in W perpendicular to ℓ, Thus, t = 1
4 and x

is half way between m and τ 1
2
v(m) as claimed. Finally, we have the glide

reflection

(6.14.2) γ′ = ρ(x,π)γ = σpτ 1
2
v

whose axis, p, is orthogonal to ℓ, and n = τ 1
4
w(p), as claimed. �

6.14.1. Wallpaper groups with O(W) = W4. Let W be a wallpaper
group with O(W) = W4 and let α ∈ W rW4. The nonzero translation
vectors inW4 of minimal length form a set S = {±v,±w}, where v ⊥ w and
‖v‖ = ‖w‖. So S is the vertex set for a square X centered at the origin. Let
α = τxσℓφ . By Lemma 6.14.2, σℓφ is one of the reflections in the dihedral
group S(X) ∼= D8, so ℓφ = span(v), ℓφ = span(w), ℓφ = span(v + w) or
ℓφ = span(v−w). Thus, the axis of α must be parallel to one of v, w, v+w
or v − w.
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As shown in (6.13.5), a fundamental region R for T (W4) is given by

τw(z)
τw(x) τv+w(x)

z′
y

τv(z′)

z
x τv(x)

for any x ∈ R2, and if x is a 4-center, the points of symmetry in R2 are
the 4-centers x, y and their translates, and the 2-centers z, z′ and their
translates.

Let us now consider the possibilities for α above to have the form α = σℓ
where ℓ meets R. By our analysis above, then in regard to the picture, ℓ
must be vertical, horizontal or diagonal.

Since α ∈ W, the isotropy subgroup Wα(a) must equal Wa for all a ∈ R2.
So σℓ must take 4-centers to 4-centers and take 2-centers to 2-centers. Note
that the centers lie at the vertices of a grid made by vertical and horizontal
lines, where the distance between closest lines in either direction is 1

2‖v‖.
Suppose first that ℓ is vertical. The reflection across ℓ must carry vertical

lines in this grid to vertical lines in the grid. Therefore, either ℓ must be one
of the grid lines, or it must be half way between adjacent grid lines. But
the latter case is impossible as σℓ would then take 2-centers to 4-centers and
vice versa.

Thus, if ℓ is vertical, it must coincide with one of the grid lines, and
therefore must go through a 4-center, say y. But then Wy is dihedral, and
hence is D8 and there are four lines of symmetry through y: a vertical line,
a horizontal line, and two diagonal lines, as in the British flag.

(6.14.3)

z′ y

x z

Tracing these out in our fundamental region R, we see that every point
of symmetry has dihedral isotropy. The diagram (6.14.3) displays all the
lines of symmetry meeting R that result from this fact. Note that this
exhausts the possibilities for lines of symmetry meeting R, as additional
lines would intersect the ones displayed, producing new rotations. Note
that the presence of a reflection across any one of the lines displayed in
(6.14.3) would produce the entire array of lines of symmetry displayed here,
using the patterns associated with the lines of symmetry in D8, since each
one of these lines contains a 4-center.
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Indeed, W4 together with the reflection in any vertical, horizontal or
diagonal line meeting a 4-center generates exactly this group. And it is
indeed a group, as the assumptions of Proposition 6.14.3 are satisfied. We
call itW1

4 . A pattern whose symmetry group isW1
4 is shown in Figure 6.14.1.

Figure 6.14.1. A pattern with symmetry group W1
4

The only elements ofW1
4 that carry interior points of R to interior points

of R are the elements in the isotropy subgroup of y. Thus, a fundamental
region forW1

4 is given by any of the small isosceles right triangles in (6.14.3),
e.g., the one with vertices x, y and z.

(6.14.4)
τw(z)

τw(x) τv+w(x)

z′
y

τv(z′)

z

S
x τv(x)

Note that there are no identifications on S coming from elements ofW1
4 and

the orbit space is just S. We can think of the orbit space R2/W1
4 as obtained

from the orbit space R2/W4, a sphere, by making the identifications induced
by the reflections. These additional identifications amount to folding the
sphere over onto itself and flattening it out.

We’ve seen that W4 together with the reflection in any of the lines dis-
played in (6.14.3) produces W1

4 . This covers all possible reflections in lines
parallel to v or w that preserve the arrays of centers. But it only covers the
diagonal lines going through a 4-center. Let

ℓ =
←→
zz′.

ℓ is diagonal, but is not a line of symmetry forW1
4 . The points of symmetry

on ℓ are all 2-centers. Note that σℓ does preserve the set of 4-centers and
also preserves the set of 2-centers. Thus, Proposition 6.14.3 shows that
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W = W4 ∪ W4σℓ is a wallpaper group. We call it W2
4 . Since z and z′ lie

on ℓ, their isotropy subgroups under W2
4 are dihedral. So the diagonal lines

through z and z′ perpendicular to ℓ must also be lines of symmetry for W2
4 .

In the picture below, the dotted lines surround a fundamental region R for
T (W2

4 ) and the solid lines represent lines of symmetry for W2
4 .

(6.14.5)

τw(z)
τw(x) τv+w(x)

z′ •
y

τv(z′)

z

S
x τv(x)

There cannot be any additional lines of symmetry, as that would introduce
new rotations. Thus, there are two T -orbits of 2-centers forW2

4 , represented
by z and z′, each with isotropy D4, and two T -orbits of 4-centers for W2

4 ,
represented by x and y, each with isotropy C4. A fundamental region S for
W2

4 is given by the triangle with vertices x, z and z′, as indicated in the
picture. The identifications on S induced by W2

4 are simply to identify xz

and xz′ via ρ
(
x, π2

)
. The orbit space is a cone.

A pattern with symmetry group W2
4 is given in Figure 6.14.2. A funda-

mental region R for T (W2
4 ) is overlaid in dotted lines. Its vertices and center

point are 4-centers. The 2-centers are at the midpoints of its edges. Its lines
of symmetry are the vertical and horizontal lines through its 2-centers.

Our analysis above shows thatW1
4 and W 2

4 are the only wallpaper groups
obtained from W4 by adjoining a reflection. One can still ask if one can
obtain a different wallpaper group by adjoining a glide reflection. “Different”
here is key, as Proposition 5.5.22 shows that if ρ(x,θ) is a nontrivial rotation
and x 6∈ ℓ, then both ρ(x,θ)σℓ and σℓρ(x,θ) are glide reflections. In particular,

both W1
4 and W 2

4 have numerous glide reflections.
Thus, we consider wallpaper groups of the form W = W4 ∪ W4α with

α a glide reflection. So α = τuσℓ with u ‖ ℓ, and α2 = τ2u must lie in
TΛ = T (W4). The case where τu ∈ TΛ is uninteresting, as then σℓ = τ−1

u α is
in W, so W is already known to be one of W1

4 and W 2
4 . So the interesting

cases are where τu is not in TΛ but τ2u is. As shown above, ℓ (and hence
u) must be vertical, horizontal or diagonal with respect to region R in the
layout

τw(z)
τw(x) τv+w(x)

z′
y

τv(z′)

z
x τv(x)
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Figure 6.14.2. A pattern with symmetry group W2
4 .

where x and y are 4-centers and z and z′ are 2-centers. We shall assume
that ℓ intersects R in more than one point.

First, consider the case where ℓ is vertical. If ℓ contains one of the points
of symmetry in R, then σℓ is already known to preserve the periods of all
points of symmetry, and hence we have to translate by a multiple of τw
to again preserve the periods. As above, this implies σℓ ∈ W and hence
W = W1

4 . Thus, the only possibility for something new with ℓ vertical is
if ℓ passes half way between the vertical columns of centers, i.e., if ℓ passes
through either x+ 1

4v or x+ 3
4v. In either case, u must be an odd multiple

of 1
2w in order to preserve the periods of the points of symmetry for W4.

But then τu = τ 2k+1
2

w
= τkwτ 1

2
w. Since τkw ∈ W , this implies τ 1

2
wσℓ ∈ W .

Thus, we may assume u = 1
2w.

We shall show that these glide reflections lie inW2
4 . To do so, we make use

of the following lemma, which gives a precise calculation of the composite
of a rotation by π

2 with a reflection not containing the rotation point. The
lemma is actually a special case of Proposition 5.5.26, but it is simpler and
easier to picture than the general case, so we present it here in full detail.

Lemma 6.14.11. Let 0 6= A ∈ R2 and let B = ρ(0,π2 )
(A). Let y ∈ R2 and

let ℓ be the line through y + A parallel to B: ℓ = (y + A) + span(B). Then
ρ(y,π2 )

σℓ is the glide reflection which in standard form is given by τ(B−A)σq,
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where q is the line through y+A and y+B, i.e., q = (y+A)+span(B−A).

q
ℓ•

y+B

•
y

y+A
•

Proof. Let m be the line through y parallel to ℓ and let n be the line
through y parallel to q.

n

m ℓ

•
y y+A

•

Then ρ(y,π2 )
= σnσm, hence

ρ(y,π2 )
σℓ = σn(σmσℓ)

= σnτ−2A

= σnτ−(B+A)τ(B−A)
= σ(n+ 1

2
(B+A))τ(B−A)

By Lemma 5.5.16, as (B + A) ⊥ n. In particular, ρ(y,π2 )
σℓ = σqτ(B−A) for

q = n+ 1
2(B +A). Now n = y + span(B −A), hence

q =

(
y +

1

2
(B +A)

)
+ span(B −A),

and it suffices to show that y +A and y +B are on q. But

y +
1

2
(B +A) +

1

2
(B −A) = y +B,

y +
1

2
(B +A)− 1

2
(B −A) = y +A. �

We now apply Lemma 6.14.11 in W2
4 with ℓ the line through z and τv(z

′)
in the fundamental region R:

τw(z)
τw(x) τv+w(x)

z′ •
y

τv(z′)

z

S
x τv(x)

ℓ
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This gives A = 1
4(v − w) and B = 1

4(v + w). This gives ρ(y,π2 )
σℓ = σqτ 1

2
v

with q = x + 3
4v + span(w). This is one of the vertical glide reflections we

uncovered above. Since σℓ ∈ W2
4 , this glide reflection is as well.

A similar argument with ℓ the line through z′ and τw(z) shows the glide
reflection σqτ− 1

2
v is in W2

4 where q = x+ 1
4v + span(w). This is the inverse

of the vertical glide reflection through x+ 1
4v discussed above.

If instead we use the other two reflections in W2
4 that intersect R, we see

that the two nontrivial horizontal glide reflections that generate wallpaper
groups when added to W4 also produce W2

4 .
The only remaining possibility is glide reflections whose axis is diagonal

with respect to R. In the diagonal rows of points of symmetry, the isotropy
is the same for all points of symmetry in the row, and is different between
closest rows. So the axis for a diagonal glide reflection in a wallpaper group
containing W4 must lie along one of the rows of centers rather than in
between.

One case is easy, as it already occurred in the frieze group F2
2 : if m is the

line containing the points z and z′ in R and if ℓ is the line containing x and
y, then ρ(y,π)σm = τ 1

2
(v+w)σℓ, a glide reflection with axis ℓ. In particular,

this glide reflection is inW2
4 . So are all other possible glide reflections along

diagonal lines of 4-centers.
Finally, we apply Lemma 6.14.11 with ℓ the vertical line through x. Here,

A = −1
2v, B = −1

2w, and ρ(y,π2 )
σℓ = σqτ 1

2
(v−w), a glide reflection whose

axis q is the line through z and z′. So this glide reflection, along with all
other candidates for glide reflections through diagonal lines of 2-centers, is
in W1

4 . We have proven the following.

Theorem 6.14.12. There are exactly two wallpaper groups obtained by
adding orientation-reversing symmetries to W4: W1

4 and W2
4 . In W1

4 , the
two T -orbits of 4-centers have isotropy D8 and the two T -orbits of 2-centers
have isotropy D4, so every point of symmetry lies on a line of symmetry.
The pattern of lines of symmetry in the fundamental region R for T (W1

4 ) is
given in (6.14.3), and a fundamental region for W1

4 is indicated in (6.14.4).
The orbit space is just this fundamental region S.

In W2
4 , the two T -orbits of 2-centers have isotropy D4, but the two T -

orbits of 4-centers have isotropy C4. So every 2-center is on a line of sym-
metry, but none of the 4-centers are. The pattern of lines of symmetry in
a fundamental region R for T (W2

4 ) is given in (6.14.5), and a fundamental
region for W2

4 is indicated by S there. The orbit space is a cone.

6.14.2. Wallpaper groups with O(W) = W6. Let W be a wallpaper
group with O(W) = W6 and let α ∈ W rW6. The nonzero translation
vectors in W6 of minimal length form the vertex set for a regular hexagon
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X centered at the origin.

(6.14.6)

−v
oo

w−v

XX

w

FF

v //

−w

��

v−w

��

The identification of the upper left arrow as w − v may be obtained either
via algebra in C or by translating the equilateral triangle with vertices 0, v
and w by −v.

Let α = τxσℓφ . By Lemma 6.14.2, σℓφ is one of the reflections in the
dihedral group S(X) ∼= D12, so ℓφ either coincides with the span of one of
the displayed vectors, or bisects the angle between an adjacent pair.

Suppose W admits a reflection through a 6-center x. Then the isotropy
subgroupWx is dihedral, and since the six reflections inWx must be parallel
to those preserving the regular hexagon X, the three lines emanating from
x in the following diagram of the fundamental region R for T (W6) must be
lines of symmetry.

(6.14.7) ◦

•

◦ ◦ ◦

x

S

•

◦

Here, the figure gives a fundamental region R for T (W), with the 2-centers
indicated as ◦, the 3-centers as • and the vertices of the rhombus are x,
τv(x), τw(x) and τv+w(x), the 6-centers in R. Every center that meets one
of the three lines of symmetry emanating from xmust have dihedral isotropy,
which forces all the other indicated lines to be lines of symmetry.

There can be no other lines of symmetry meeting R, as that would in-
troduce new rotations. So any one of the little triangles in (6.14.7) is a
fundamental region for W, as indicated by S in the figure. A complete dia-
gram with these symmetries is given in Figure 6.14.3, showing that we have
in fact constructed a wallpaper group. We call it W1

6 , and (6.14.7) gives a
fundamental region for T (W1

6 ) with all its symmetries.
We can now ask if there are alternative ways we could add reflections to

W6 to obtain a wallpaper group. (6.14.7) makes a good guide for answering
this question, because the axis for any such reflection would have to be
parallel to one of the lines drawn in that figure. If a line ℓ meets R and is
parallel to the bottom edge of (6.14.7), then σℓ(x) is directly above x, and
cannot be a 6-center unless ℓ coincides with the upper edge of R.
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Figure 6.14.3. A figure with symmetry group W1
6 . The

vertices of the small equilateral triangles are all 6-centers.

A similar analysis applies to all the other possible directions for lines of
symmetry. The only permissible reflections that carry 6-centers to 6-centers
are the ones displayed in (6.14.7). Thus, W1

6 is the only wallpaper group
obtained fromW6 by adding reflections. We must yet consider the possibility
that glide reflections could be added to W6 to produce a wallpaper group
with no reflections. We repeat the diagram for the fundamental region R
for T (W1

6 ) and label some points.

(6.14.8)

y

τw−v(x)
◦

•

◦ ◦ z2 ◦z3

z1
τ−v(x)

•

◦ x

Up to symmetry, the glides we need to consider are as follows:

(1) The axis is the line containing z2 and z3. The glide takes z3 to z2.
(2) The axis is the line containing z1 and z3. The glide takes z3 to z1.
(3) The axis is the vertical line through z2. The glide takes z2 to

τw−v(z3).

By Propositions 5.5.26 and 5.5.27, these glide reflections all lie in W1
6 . The

one in (1) is ρ(y, 2π3 )
σℓ where ℓ is the line through x and z2. The one in (2)

is ρ(x, 2π3 )
σm where m is the line through z3 and τw−v(x). The one in (3) is

σnρ(y, 2π3 )
where n is the line through z3 and τw−v(x).
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We have obtained the following.

Theorem 6.14.13. There is only one way to extend W6 to a wallpaper
group containing orientation-reversing isometries. The result is W1

6 . A
fundamental region for T (W1

6 ) showing its points and lines of symmetry is
shown in (6.14.7). There are three T -orbits of 2-centers, each with isotropy
D4; two T -orbits of 3-centers, each with isotropy D6; one T -orbit of 6-
centers with isotropy D12. A fundamental region forW1

6 is the small triangle
marked S in (6.14.7). There are no identifications on S induced by W1

6 , so
the orbit space is just S.

6.14.3. Wallpaper groups with O(W) = W3. As was the case for W4

we will construct two different wallpaper groups W with O(W) =W3 (and
with W rO(W) 6= ∅) and then show there are no others.

First note that the translation subgroups ofW3 andW6 coincide. Indeed,
W3 is a subgroup ofW6, andW6rW3 consists of rotations only. For instance,
if you remove the arrowheads from the diagram in Figure 6.13.4 (a diagram
whose symmetry group is W3), you get a diagram whose symmetries are
W1

6 , providing an embedding of W3 into O(W1
6 ) = W6. The image of this

embedding consists of the obvious elements.
Thus, the nonzero translation vectors in W3 of minimal length form the

vertex set for a regular hexagon X centered at the origin.

(6.14.9)

−v
oo

w−v

XX

w

FF

v //

−w

��

v−w

��

Let W be a wallpaper group with O(W) = W3 and let α = τxσℓφ be in
WrW3 with ℓφ a line through the origin. Then by Lemma 6.14.2, σℓφ is one
of the reflections in the dihedral group S(X) ∼= D12, so ℓφ either coincides
with the span of one of the displayed vectors, or bisects the angle between
an adjacent pair.

Precisely as in the case of W6, the axis of α (either as a reflection or a
glide reflection) must be parallel to one of the lines in the following diagram
for a fundamental region R for T (W3).

(6.14.10) •τw(x) •

•

τv+w(x)

•x

•

•τv(x)
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Here, x can be any 3-center.
The complication here is that, just as the 4-centers in aW4-group needn’t

lie on lines of symmetry, a particular T -orbit of 3-centers in a W3-group
needn’t lie on lines of symmetry.

Let us first assume that the 3-center x does lie on a line of symmetry.
Thus, the isotropy subgroup of x with respect to W is D6. Thus, there
are exactly three lines of symmetry containing x, and they make unsigned
angles of 2π

3 with one another.
Thus, there are exactly two possibilities:

(1) The long diagonal xτv+w(x) lies on a line of symmetry.

(2) The edges xτv(x) and xτw(x) lie on lines of symmetry.

In Case (1), representatives of all three T -orbits of 3-centers lie on xτv+w(x)
so the isotropy group for all three orbits is D6. That gives us the following
lines of symmetry intersecting R in more than one point.

(6.14.11) •

S

τw(x) •

•

τv+w(x)

•x

•

•τv(x)

Here, the dotted lines represent the edges of R. Note that there can be no
further reflections meeting R in more than one point as that would introduce
additional rotations. We call this group W1

3 . Note that the equilateral
triangle labelled S gives a fundamental region for W1

3 , as its image under
iterated rotations and reflections can be seen to cover all of R2, and no
element of W1

3 carries interior points of S to interior points of S. In fact, no
two points of S are identified by elements of W1

3 and the orbit space of W1
3

is just S.
Another way of seeing this is that the union of S with its reflection across

xτv+w(x) is the fundamental region for W3 given in (6.13.15). So S can
be seen as the result of folding a fundamental region for W3 in half along
the reflection line, and the orbit space of W1

3 can be seen as the result of
flattening out the spherical orbit space for W3 via this fold.

A pattern with symmetry group W1
3 is given in Figure 6.14.4. Note that

the “local pattern” around the 3-centers is different for 3-centers in different
T -orbits. One T -orbit of 3-centers looks like a target for the arrows. Another
is a source. The third is the center of an empty hexagon. This underlines the
fact that 3-centers from different T -orbits for W1

3 are not mapped to one
another by either rotations or reflections. That gives another verification
that the orbit space of W1

3 is just S.
In Case (2) the vertices of R all have isotropy D6. Since the two specified

edges lie on lines of symmetry, we obtain the following lines of symmetry
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&&xx
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OO
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&&xx
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&&xx

OO

&&xx

OO

&&xx
OO

&&xx

OO

&&xx

OO

&&xx

OO

&&xx

OO

xx

Figure 6.14.4. A figure with symmetry group W1
3 .

meeting R in more than one point.

(6.14.12) •τw(x) •

•

τv+w(x)

•x

•

•τv(x)

There cannot be any additional lines of symmetry meeting R in more than
one point, as that would introduce new rotations on the boundary ofR. Thus
the two T -orbits of 3-centers represented by the 3-centers in the interior of
R have isotropy C3 while the T -orbit given by the vertices of R has isotropy
D6. Thus not all 3-centers lie on lines of symmetry, and it makes a difference
to our diagram that we chose x so it did. We call the resulting group W2

3 .
A fundamental region for S is given by the following triangle, where the

unlabelled vertex coincides with the unlabelled centroid in the lower (or
left-hand) equilateral triangle in (6.14.12).

(6.14.13) •
τw(x)

•

•
τv(x)
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//
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Figure 6.14.5. A pattern with symmetry group W2
3 .

We have rotated the appropriate section of (6.14.12) by −π
6 about τw(x)

to suit our graphics generator. Note this is precisely the left half of the
fundamental region for W3 given in (6.13.15). The orbit space is obtained
by gluing together the two left-hand edges of S via the rotation about their
common vertex, and is topologically a cone.

A pattern whose symmetry group is W2
3 is given in Figure 6.14.5. Again

the three T -orbits of 3-centers have different local pattern, but two of them
are mirror images of one another and are identified via the reflection that
takes one center to the other.

All that remains now is to show that any wallpaper group W containing
orientation-reversing isometries with O(W) = W3 must be one of W1

3 and
W2

3 . As shown above, this amounts to showing that there is at least one
3-center for W that lies on a line of symmetry.

Thus, suppose first that W admits a line ℓ of symmetry. We shall show
ℓ must contain a 3-center. First note from Figure 6.13.3 that there are
three different possible orientations for a rhombic fundamental region R for
T (W3). In the framework of that picture, the long diagonal in one of them is
vertical, while the long diagonals of the other two have positive and negative
slope, respectfully.

This implies that any line of symmetry for W is parallel to either the
long diagonal or the lower edge of some fundamental region R for T (W3).
Suppose first that W admits a line of symmetry ℓ parallel to the lower edge
of R, and meeting R. So consider Figure 6.14.6, and suppose ℓ is parallel
to the line m through v and τv(x). If ℓ = m, then the 3-center A lies on ℓ
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•τ2w−v(A)

•E

D

•
τw(A)

•

τw−v(A) •

C

•τv+w(A)

•

•

•

A •τv(A)

Figure 6.14.6. Array of 3-centers and translations for W3.

and we’re done. Otherwise, σℓ(A) lies on the line through A perpendicular
to ℓ. Since σℓ(A) is a 3-center, it must equal either D, E or τ2w−v(A). In
the first case, since C lies on the perpendicular bisector of AD, the 3-center
C lies on ℓ. In the second, since d(A,D) = d(D,E) is the shortest distance
between two 3-centers, D lies on ℓ. In the last case, τw(A) lies on ℓ. In all
of these cases, W =W2

3 .
Now assume ℓ meets R and is parallel to the long diagonal m of R, i.e.,

to the line containing A and τv+w(A). The lines parallel to m either contain
no 3-centers or contain a whole line of 3-centers, so if ℓ is parallel to m, then
either ℓ contains a vertex of R, in which case we are done, or ℓ is half way
between two such lines of 3-centers. But in this case, σℓ takes either τv(A)
or τw(A) to the midpoint of the segment between them, which is impossible
as that point is not a point of symmetry for W3.

Thus, it remains to show that if W contains a glide reflection, it must
contain a reflection. The argument here is identical to the one given forW6.
Thus, we have shown the following.

Theorem 6.14.14. There are exactly two wallpaper groups obtained by
adding orientation-reversing isometries to W3. In the first, W1

3 , every T -
orbit of 3-centers has isotropy D6. A fundamental region R for T (W1

3 )
showing all points and lines of symmetry is given in (6.14.11). The equi-
lateral triangle S in that diagram is a fundamental region for W1

3 , and also
gives its orbit space.

In the second, W2
3 , two of the T -orbits of 3-centers have isotropy C3 and

the third has isotropy D6. A fundamental R region for T (W2
3 ) showing all

points and lines of symmetry is given in (6.14.12). A fundamental S region
for W2

3 is given in (6.14.13). The orbit space is a cone.
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6.14.4. Wallpaper groups with O(W) = W2. Here, since the transla-
tion lattice can be arbitrary, there are more complications possible than in
the previous cases. In fact, there are four different wallpaper groupsW con-
taining orientation-reversing isometries such that O(W) =W2. One of them
contains glide reflections but no reflections. But all of them are forecast by
the discussions above.

Recall that if Λ is a lattice in R2 and if x ∈ R2, there is a unique
orientation-preserving wallpaper group W2 = W2(Λ, x) whose points of
symmetry all have period 2 such that T (W2) = TΛ and x is a 2-center
(see (6.13.20)). If B = v, w is a Z-basis for Λ then a fundamental region
for T (W2) is given in the following diagram. The marked points are its
2-centers.

(6.14.14) •τv(x) • •τv+w(x)

•

•

x •

•

•

•

τw(x)

Here, the marked point in the center is x + 1
2(v + w), the midpoint of the

diagonal xτv+w(x). It coincides with the midpoint of the other diagonal

τv(x)τw(x).
In the previous cases, the rotational symmetries determined the shape of

a preferred fundamental region for TΛ. In this case and for W1-groups, the
shape will be influenced by the orientation-reversing isometries present.

Recall from Lemma 6.14.4 that if ℓ is a line of symmetry for a wallpaper
group W, then there are infinitely many lines of symmetry parallel to ℓ.
There are three cases:

(1) There are reflections in more than one direction, i.e., not all lines of
symmetry are parallel.

(2) There are reflections, and all lines of symmetry are parallel.
(3) There are no reflections, but there are glide reflections.

Let us first consider Case (1). Of course if ℓ and m are nonparallel lines
of symmetry for W, then σmσℓ = ρ(x,2θ) ∈ W, where x = ℓ∩m and θ is the
directed angle from ℓ to m. In a W2-group, 2θ must equal π, and hence ℓ
and m must be perpendicular. By Lemma 6.14.4, we obtain a rectangular
grid of lines of symmetry. The lines parallel to ℓ are {τ k

2
v(ℓ) : k ∈ Z},

where τv is a shortest translation in W perpendicular to ℓ, and the lines
parallel to m are {τ k

2
w(m) : k ∈ Z}, where τw is a shortest translation in W

perpendicular to m (hence parallel to ℓ). Note there can be no other lines
of symmetry for ℓ as we have ruled out additional lines parallel to either ℓ
or m, and any other line would introduce a rotation by an angle other than
π, which cannot exist in a W2-group.
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Each intersection point between lines parallel to ℓ and lines parallel to m
is a 2-center. We obtain a region T as follows.

(6.14.15) •τw(x)

ℓ

• • τv+w(x)

• •y •

•x •
m

•τv(x)

By construction,
⋃
z∈T (W) τz(T ) = R2, so T is a fundamental region for

T (W) if and only if there is no translation τz ∈ T (W) taking an interior
point of T to an interior point of T . However, each translation τz ∈ T (W)
preserves parallel lines, carries 2-centers ofW to 2-centers ofW, and carries
lines of symmetry of W to lines of symmetry of W. Since τ 1

2
v and τ 1

2
w are

not in W, the only way τz can carry an interior point of T to an interior
point of T is if it takes some vertex of T to the center point y of T . In other
words, ±z must equal either z1 or z2 where

z1 =
1

2
(v + w)

z2 =
1

2
(v − w).

Note that z1 + z2 = v, so if either of τz1 or τz2 is in T (W), so is the other.
Let u = τ 1

2
w(x). Then u is a 2-center, and if τz ∈ W, then τ 1

2
z(u) is a 2-

center for W. In particular, if τz1 and τz2 are in W, we obtain the displayed
2-centers in the centers of the four rectangles of (6.14.15), precisely as in
Proposition 6.14.5. Moreover, by Proposition 6.14.5, there are no other 2-
centers in T , so the region bounded by the dotted lines below must be the
fundamental region for T (W) = TΛ. In particular z1, z2 must be a Z-basis
for Λ.

(6.14.16) •τw(x)

ℓ

τz1 (u)
• •τv+w(x)

•
S

•

•u •y •τz1+z2 (u)

• •

•x
τz2 (u)

•
m

•τv(x)

In particular, if τz1 and τz2 are in T (W), then the fundamental region R
for T (W) is rhombic (its sides have equal length), and the two diagonals
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Figure 6.14.7. A pattern with symmetry group W1
2 .

of this rhombus are lines of symmetry for W. Note that any rhombus can
be obtained in this manner. We call this group W1

2 . It has two T -orbits of
2-centers with isotropy D4 and two T -orbits of 2-centers with isotropy C2.

The triangle labeled S in (6.14.16) gives a fundamental region for W1
2 .

The only identification on S given by elements of W1
2 is induced by the

rotation about the midpoint of uτz1(u) by π. It folds the edge uτz1(u) in
half. So the orbit space is a cone. A pattern with symmetry group W1

2 is
given in Figure 6.14.7. A fundamental region for T (W1

2 ) can be taken to
have vertices at the center points of the bricks. Its edges are diagonal in the
picture.

The other possibility when there are reflections in two different directions
is that the region T in (6.14.15) is a fundamental region for T (W) = TΛ.
In this case Λ has a Z-basis v, w. As shown above, there can be no further
lines or points of symmetry in T .

(6.14.17) •τw(x) • • τv+w(x)

• • •

•x •
S

• τv(x)

We call this group W2
2 . Its four T -orbits of 2-centers all have isotropy D4.

The small rectangle labelled S is a fundamental region forW2
2 . There are

no identifications on S induced by W2
2 , so S is the orbit space. A pattern

with symmetry groupW2
2 is given in Figure 6.14.8. A single brick represents

the fundamental region R.
We now consider Case (2), where all lines of symmetry are parallel. There

cannot be any points of symmetry on a line of symmetry, as if x were such
a point, the isotropy group Wx would be D4, requiring a line of symmetry
through x perpendicular to the original line of symmetry.
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Figure 6.14.8. A pattern with symmetry group W2
2

Let ℓ be a line of symmetry forW. By Lemma 6.14.4 the lines of symmetry
for W are precisely

{
τ k

2
v(ℓ) : k ∈ Z

}
where v is a shortest translation in W

perpendicular to ℓ.
By Proposition 6.14.5 any point x of symmetry must be exactly half way

between any two such lines. Thus, there is a line m = τ k
2
v(ℓ) such that

x ∈ τ 1
4
v(m). We now have τkvρ(x,π) = ρ(

τ k
2 v

(x),π
), providing a 2-center in

each permissible location along x+ span(v).
Since W is a wallpaper group, there is a translation τz ∈ W with z 6∈

span(v). So there is a 2-center τz(x) not on x + span(v). As above, this
produces a 2-center along τz(x) + span(v) half way between each adjacent
pair of lines of symmetry for W, including a 2-center, u, between m and
τ 1
2
v(m), i.e., in the same chamber as x. But then ρ(u,π)ρ(x,π) = τ2(u−x) is a

translation parallel to ℓ.
Let τw be a shortest translation inW parallel to ℓ. Then for each 2-center

z = τ k
2
v(x) along x + span(v) there is an infinite family

{
τ r
2
w(z) : r ∈ Z

}

of 2-centers along z + span(w). By the minimality of w, these are the only
2-centers between the lines of symmetry z ± τ 1

4
v(span(w)). Therefore, the

only 2-centers for W are
{
τ 1
2
(kv+rw)(x) : k, r ∈ Z

}
.

These are precisely the 2-centers in W2(ΛB, x) where B = v, w, so T (W) =
TΛB , and the fundamental region R for T (W) is as follows.

(6.14.18) •τw(x) • •τv+w(x)

• S • •

•x • •τv(x)

The solid vertical lines are the only lines of symmetry that meet R and the
marked points are its 2-centers, all of which have isotropy C2. We call this
group W3

2 . A pattern with symmetry group W3
2 is given in Figure 6.14.9.

The marked points in it give all its 2-centers. The lines of symmetry are the
vertical lines between the columns of 2-centers.
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The left-hand quarter panel in (6.14.18), labelled S, is a fundamental
region forW3

2 . The identifications on it glue its lower boundary to its upper
boundary via τw and fold it’s left hand boundary in half via ρ(x+ 1

2
w,π),

producing a shape like a pillow case.

• • • •

• • • •

• • • •

• • • •

• • • •

Figure 6.14.9. A pattern with symmetry group W3
2 .

Finally, we address Case (3), where W contains glide reflections but not
reflections. W2-groups are the first case in which that can occur.

First let γ = τvσℓ be a glide reflection in standard form. Suppose there
is a 2-center x on ℓ. Then ρ(x,π) = σℓσm, where m is the line through x
perpendicular to ℓ, so

γρ(x,π) = τvσℓσℓσm = τvσm = σ(τ 1
2 v

(m)),

as we saw in the frieze group F2
2 . In particular, this cannot happen in a

wallpaper group without reflections.
So we now assume W has no reflections, but does have glide reflec-

tions. Thus, there is no 2-center on a glide axis, and we can apply both
Lemma 6.14.8 and Proposition 6.14.10. We obtain that there is a rectan-
gular grid of glide axes and that each rectangular box contains exactly one
2-center that occurs at its center. Moreover, if ℓ is a glide axis for W and
if m is a glide axis orthogonal to ℓ, then the glide axes parallel to ℓ are{
τ k

2
v(ℓ) : k ∈ Z

}
and the glide axes parallel to m are

{
τ k

2
w(m) : k ∈ Z

}
,

where τv is a shortest translation perpendicular to ℓ and τw is a shortest
translation parallel to ℓ. Thus, precisely as was the case for W3

2 , the set of
2-centers for W is {

τ 1
2
(kv+rw)(x) : k, r ∈ Z

}
.

These are precisely the 2-centers in W2(ΛB, x) where B = v, w, so T (W) =
TΛB , and the fundamental region R for T (W) is as follows, where the dotted
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lines denote glide axes.

(6.14.19) •τw(x)

ℓ

•

n

• τv+w(x)

p

• • y •

m

•x • •τv(x)

There can be no glide axes parallel to neither ℓ nor m, as if ℓ ∩ q 6= ∅, then
the product of a glide reflection with axis ℓ and a glide reflection with axis q
is the composite of σℓσq with translations on either side, and gives a rotation
about some point by twice the directed angle from q to ℓ. So (6.14.5) gives
the entire picture of the symmetries of W in R. We call this group W4

2 .
Let us analyze the primitive glide reflections with the axes indicated in

(6.14.19). Specifically, let γ1 = τ 1
2
wσℓ, γ2 = τ 1

2
vσp, γ3 = τ 1

2
wσn and γ4 =

τ 1
2
vσm. Then

γ2γ1 = τ 1
2
vσpτ 1

2
wσℓ = σpτ 1

2
wτ 1

2
vσℓ = σ(

τ− 1
4w

(p)
)σ(

τ 1
4 v

(ℓ)
) = ρ(y,π).

Let S be the lower left rectangular block in (6.14.5). Then the following
illustrates that S is a fundamental region for W4

2 .

(6.14.20) •τw(x) • • τv+w(x)

γ1(S) γ2γ1(S)

•τ 1
2w

(x) • y •

S γ4(S)

•
τ 1
2 v

(x)
x • •τv(x)

The orbit space of W4
2 is perhaps the most interesting of all the orbit

spaces of wallpaper groups. (Some might prefer the Klein bottle, which is
the orbit space of W3

1 , below.) The lower edge of S is identified to upper
edge by γ1, which takes x to y and takes τ 1

2
v(x) to τ 1

2
w(x). Thus, the upper

and lower edges are identified via the same twist used in making the Möbius
band. And the Möbius band is what we get if we make that identification
and nothing else.

Similarly, the left-hand edge is identified with the right-hand edge via γ4,
which applies the same twist, taking x to y and τ 1

2
w(x) to τ 1

2
v(x). So again,

if we made only this identification, but not the identification of the lower
edge with the upper, we would get a Möbius band.
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But here, we are making both identifications at once. The result is a
rectangle with the identifications indicated by the arrows below.

����

oo

//

OOOO

Thus, the double-headed arrows are identified with each other preserving
the direction of the arrowheads, and similarly for the single-headed arrows.
The result is what’s known as a real projective space, RP2. It is a surface,
or 2-dimensional manifold, as can be shown by methods similar to those
applied to the Klein bottle in Appendix A.

• •

&

• •

&

• •

•

8

• •

8

x

• •

8

x

•

• •

&

f

• •

&

f

• •

f

•

8

• •

8

x

• •

8

x

•

• •

&

f

• •

&

f

• •

f

•

8

• •

8

• •

8

•

Figure 6.14.10. A pattern with symmetry group W4
2 .

A pattern with symmetry group W4
2 is given in Figure 6.14.10. The

marked points are its points of symmetry, and the dotted region superim-
posed on it is a fundamental region R for T (W).

From the isotropy data and reflections present we can see that the groups
W1

2–W4
2 are all distinct. But we have exhausted all possibilities for adding

orientation-reversing isometries toW2 to obtain a wallpaper group. We have
obtained the following.

Theorem 6.14.15. There are exactly four different wallpaper groups ob-
tained by adding orientation-reversing isometries to W2. In one of them,
W2

2 , all four T -orbits of 2-centers have isotropy D4. The fundamental re-
gions for T (W2

2 ) and for W2
2 are given in (6.14.17). The orbit space is S.

The fundamental region for T (W2
2 ) is rectangular.

In a second, W1
2 , there are two T -orbits of 2-centers with isotropy D4 and

two with isotropy C2. The fundamental regions for T (W1
2 ) and for W1

2 are
given in (6.14.16). The orbit space is a cone. The fundamental region for
T (W1

2 ) is rhombic.
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A third, W3
2 has four T -orbits of 2-centers with isotropy C2, but does

have lines of symmetry. The fundamental regions for T (W3
2 ) and forW3

2 are
given in (6.14.18). The orbit space looks like a pillow case. The fundamental
region for T (W3

2 ) is rectangular.
The fourth, W4

2 , has no lines of symmetry, but does admit glide reflec-
tions. Each T -orbit of 2-centers has isotropy C2. The fundamental region
for T (W4

2 ) is given in (6.14.19) and that for for W4
2 is given in (6.14.20).

The orbit space is a real projective space RP2. The fundamental region for
T (W4

2 ) is rectangular.

6.14.5. Wallpaper groups with O(W) = W1. W1 is just a translation
lattice:

W1 = T (W1) = TΛ = {τz : z ∈ Λ}
for some arbitrary lattice Λ ⊂ R2. But the presence of orientation-reversing
isometries imposes stronger conditions on what lattices may occur.

Let us first suppose that W contains a reflection σℓ. Since W1 has index
2 in W, this says

(6.14.21) W rW1 = {τzσℓ : τz ∈ W1}.
Moreover, the isometries τzσℓ are reflections if z ⊥ ℓ and are glide reflections
otherwise. Whether some of these glide reflections are essential will depend
on the relationship between ℓ and the translations that occur in W1.

Let ℓφ be the line through the origin parallel to ℓ. By Lemma 6.14.2,

(6.14.22) σℓτzσ
−1
ℓ = τσℓφ (z)

for any z ∈ R2. In particular, if τz ∈ W1 = TΛ, so is τσℓφ (z)
.

By Lemma 6.14.4, there is an infinite family of lines of symmetry parallel
to ℓ,

{
τ k

2
v(ℓ) : k ∈ Z

}
, where τv is a shortest translation perpendicular to

ℓ. These are the only lines of symmetry parallel to ℓ, and there can be no
other lines of symmetry for W, as if two lines of symmetry intersect, there
is a rotation about their point of intersection.

So far, we know there are translations {τkv : k ∈ Z} in TΛ perpendicular
to ℓ (and no other translations perpendicular to ℓ, as τv is a shortest such
translation). We next claim there are translations parallel to ℓ. To see this,
suppose τz ∈ TΛ is neither parallel nor perpendicular to ℓ. Then we obtain
the following situation.

(6.14.23)

−v v

σℓφ (z) z

ℓφ
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By construction, ℓφ is the perpendicular bisector of zσℓφ(z), so the midpoint
1
2(z+ σℓφ(z)) is on ℓφ, as is the origin. So z+ σℓφ(z) is on ℓφ. But z ∈ Λ, as
is σℓφ(z) by (6.14.22), so τ(z+σℓφ (z))

is a translation parallel to ℓ in TΛ.
Let τw be a shortest translation parallel to ℓ in TΛ. Then as shown earlier,

{τkw : k ∈ Z} is the set of all translations parallel to ℓ in TΛ.

Lemma 6.14.16. Let W be wallpaper group with O(W) = W1 = TΛ and
let σℓ ∈ W. Let τv be a shortest translation perpendicular to ℓ and τw a
shortest translation parallel to ℓ. Let τz ∈ W. Then

(6.14.24) z =
k

2
w +

r

2
v for k, r ∈ Z.

Moreover, k and r are either both even or both odd.

Proof. Since v and w are perpendicular, they form a basis of R2 as a vector
space over R. So z = sw + tv for s, t ∈ R. Now τz(ℓ) is the axis for the
reflection τzσℓτ

−1
z by Theorem 5.5.20, so τz(ℓ) ∈

{
τ k

2
v(ℓ) : k ∈ Z

}
. On the

other hand τz(ℓ) = τtv(τsw(ℓ)) = τtv(ℓ), as sw is parallel to ℓ. Thus, t is an
integral multiple of 1

2 .

Again by Theorem 5.5.20, σℓτzσ
−1
ℓ = τσℓφ (z)

, so σℓφ(z) ∈ Λ. Since w ∈ ℓφ
and v ⊥ ℓφ, we have

σℓφ(sw + tv) = sw − tv,

so z + σℓφ(z) = 2sw ∈ Λ. So s is an integral multiple of 1
2 also.

We know that neither 1
2v nor 1

2w is in Λ. We claim this implies that if

z = k
2w + r

2v ∈ Λ, then either k and r are both even or k and r are both

odd. To see this, note that if z = 2m+1
2 w + 2n

2 v, then z −mw − nv = 1
2w.

Similarly, if z = 2m
2 w + 2n+1

2 v, then z −mw − nv = 1
2v. �

It is possible that v, w is a Z-basis for Λ, in which case k and r must
always be even. Otherwise, there exists a pair of odd integers k, r with
k
2w + r

2v ∈ Λ. But then, subtracting multiples of v and w as above, we see

that z1 = 1
2w + 1

2v and z2 = 1
2w − 1

2v are in Λ. Since w = z1 + z2 and

v = z1 − z2, the lattice ΛB with B = z1, z2 must contain all sums k
2w + r

2v
with k and r either both even or both odd. Since such sums do form an
additive subgroup of R2, the presence of a single such sum in which both k
and r are odd forces Λ = ΛB.

Of course, z2 = σℓφ(z1). We have shown that exactly one of the following
must hold:

(1) z1 =
1
2w + 1

2v and σℓφ(z1) = z2 =
1
2w − 1

2v form a Z-basis for Λ.
(2) v and w form a Z-basis for Λ.
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In Case (1), for x ∈ ℓ, we obtain a fundamental region R for T (W) as
follows.

(6.14.25)
τz1+z2 (x)

τz2 (x) S τz1 (x)

x

ℓ

Here, the dotted lines are the edges of R and the solid line ℓ is the only
line of symmetry meeting R in more than one point. Since z2 = σℓφ(z1),
R is rhombic. We can obtain any rhombus we like in this way by varying
the lengths of v and w. We call this group W1

1 , and the triangle labelled S
forms a fundamental region for W1

1 . Its orbit space is rather complicated,

as we identify the edge τz1(x)τz1+z2(x) with the edge xτz1(x) via the com-
posite σℓτ−z1 . This identification applies a twist, identifying τz1(x) to x and
identifying τz1+z2(x) to τz1(x), wrapping these two edges up into a single
circle.

Lemma 6.14.17. The orbit space of W1
1 is a Möbius band.

Proof. Write y = τz1+z2(x) and z = τz1(x). Then the orbit space is the
result of making the indicated identifications on S:

(6.14.26)
y•

&&
S •z

xx

x
•

Let m be the midpoint of xy. We shall cut S along the segment mz:

(6.14.27)
y•

&&•m // // •z

xx

x
•

This separates S into two right triangles, which we then glue to each other
along their hypoteneuses via that stated identification between yz and zx.
We obtain the follwing rectangle, where the opposite edges are to be identi-
fied with one another according to the orientations specified by the double
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arrows obtained from the cut we made:

(6.14.28) •

&&

•oooo

• // // •
The result of this identification is a Möbius band. �

Another feature of W1
1 is the presence of essential glide reflections.

Proposition 6.14.18. W1
1 has essential glide axes half way between each

closest pair of lines of symmetry. These are the only essential glide axes for
W1

1 .

Proof. Let v, w, z1 and z2 be as above. Let m be a line of symmetry for
W1

1 . Then Lemma 5.5.16 gives

τz1σm = τw
2
τ v

2
σm = τw

2
στ v

4
(m)

Since τw
2
6∈ Λ, this is an essential (in fact primitive) glide reflection. Its axis

is half way between m and τ v
2
(m), a closest pair of lines of symmetry.

To see this gives all essential glide axes forW1
1 , note that the orientation-

reversing elements ofW1
1 have the form τkz1+rz2σℓ with k, r ∈ Z, by (6.14.21),

since z1, z2 is a Z-basis for Λ. Now,

kz1 + rz2 = k

(
1

2
w +

1

2
v

)
+ r

(
1

2
w − 1

2
v

)
=
k + r

2
w +

k − r
2

v,

so

τkz1+rz2σℓ = τ k+r
2
w
σn,

where n = τ k−r
4
v
(ℓ). If k + r is even, so is k − r. In this case n is a line

of symmetry for W1
1 and τ k+r

2
w
∈ Λ, so the result is either a reflection or

an inessential glide reflection. If k + r is odd, so is k − r, and the result
is an essential glide reflection whose axis is τ v

4
(m), where m is the line of

symmetry τ k−r−1
4

v
(ℓ). �

A pattern with symmetry group W1
1 is given in Figure 6.14.11. The lines

of symmetry in it are horizontal and follow the arrows.
In Case (2), v, w form a Z-basis for Λ, so a fundamental region R for

T (W) is given as follows.

(6.14.29)

ℓ

τw(x)

τ 1
2 v

(ℓ) τv(ℓ)

τv+w(x)

x

S

τv(x)

We call this group W2
1 . A fundamental region for W2

1 is given by the square
marked S. The only identification on S is the identification of it’s lower
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// // //

// //

// // //

// //

// // //

Figure 6.14.11. A pattern with symmetry group W1
1 .

edge to its upper edge via τw. The orbit space is a cylinder. An argument
similar to that of Proposition 6.14.18 shows the following.

Proposition 6.14.19. There are no essential glide reflections in W2
1 .

A pattern with symmetry group W2
1 is given in Figure 6.14.12.

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

Figure 6.14.12. A pattern with symmetry group W2
1 .

We now consider the case where W has glide reflections by no reflections.
Let ℓ be a glide axis for W. Let τw be a shortest translation parallel to ℓ
and write γℓ = τ 1

2
wσℓ. By Lemma 6.14.7, the glide relfections in W with

axis ℓ are precisely
{
γ2k+1
ℓ = τ 2k+1

2
w
σℓ : k ∈ Z

}
. The glide reflections γℓ and

γ−1
ℓ are called primitive for ℓ. Note γ2 = τw.
If m is a glide axis parallel to ℓ, then this same τw is the shortest trans-

lation parallel to m, so the primitive glide reflections with axis m are
γm = τ 1

2
wσm and its inverse. By Lemma 6.14.8, the glide axes parallel

to ℓ are precisely
{
τ k

2
v(ℓ) : k ∈ Z

}
, where v is a shortest translation perpen-

dicular to ℓ.
These are in fact the only glide axes forW: if q is a glide axis not parallel

to ℓ, then ℓ ∩ q 6= ∅. If τzσq is a glide reflection with axis q, then

τzσqτw
2
σℓ = τzσqσℓτw

2
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is the product of the rotation σqσℓ with translations on either side, and
hence is a rotation about some point by twice the directed angle from ℓ to
q. Since there are no nonidentity rotations in W, no such glide axis q can
exist.

Thus, having found the glide axes inW, and having identified the shortest
translations, v and w, perpendicular and parallel to these axes, respectively,
it suffices to determine the lattice Λ inducingW1 = TΛ, to find its relatioship
to v and w, and to describe its fundamental region R.

Lemma 6.14.20. Let W be a wallpaper group with O(W) = W1 = TΛ.
Suppose W contains no reflections, but does contain a glide reflection with
axis ℓ. Let τv be a shortest translation perpendicular to ℓ and let τw be a
shortest translation parallel to ℓ. Then v, w form a Z-basis for Λ. Thus, for
x ∈ ℓ we obtain a fundamental region R for TΛ =W1 as follows:

(6.14.30)

ℓ

τw(x)

τ 1
2 v

(ℓ) τv(ℓ)

τv+w(x)

x τv(x)

Here, the dashed lines are glide axes and the solid lines are the other edges
of R.

Proof. As above we write γℓ = τw
2
σℓ for a primitive glide reflection in W

with axis ℓ.
The argument here is similar to that of Lemma 6.14.16. Let τz ∈ W.

Then z = sw + tv for some s, t ∈ R. By Theorem 5.5.20,

τzγℓτ
−1
z = τzτw

2
σℓτ

−1
z = τw

2
τzσℓτ

−1
z = τw

2
σm,

where m = τz(ℓ) = τtv(ℓ). This is a primitive glide reflection in W, so t
must be an integral multiple of 1

2 . Again by Theorem 5.5.20,

γτzγ
−1 = τσℓφ (z)

,

where σℓφ is the line through the origin parallel to ℓ, as σℓ = τyσℓφ for some
y ⊥ ℓ. As in the proof of Lemma 6.14.16, this implies s an integral multiple
of 1

2 . So z =
k
2w+ r

2v for k, r ∈ Z, and again as in the lemma, k and r are
either both even or both odd, as neither w

2 nor v
2 is in Λ.

But if k and r are both odd, then z1 =
w
2 + v

2 ∈ Λ. However,

τz1γ = τw
2
τ v

2
τw

2
σℓ = τwτ v

2
σℓ = τwστ v

4
(ℓ),

as v ⊥ ℓ. This is a glide reflection with axis τ v
4
(ℓ), which is not a glide axis

for W. Thus, k and r must be both even, and v, w is a Z-basis for Λ. And
this implies (6.14.30) is a fundamental region R for TΛ =W1. �
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Figure 6.14.13. A pattern with symmetry group W3
1 .

Lemma 6.14.20 completely characterizes the unique wallpaper group with
glide axis ℓ and with shortest translations τv and τw as stated. We call this
group W3

1 .
Despite the similarity in appearance between the fundamental regions R

for translation in W2
1 and W3

1 (here, glide axes replace lines of symmetry),
the fundamental regions S are quite different. The fundamental region S for
W3

1 , is the lower half of R. The glide reflection τw
2
στ v

2
(ℓ) carries the lower

half onto the upper half with a twist:

(6.14.31)

ℓ

τw(x)

S

τv(ℓ)

τv+w(x)

x τv(x)

In particular, while the left edge of S is identified with the right edge by
translation, its lower edge is identified with its upper edge with a twist. So
the orbit space is a rectangle with the following identifications on its edges:

•

����

// •

����•

S

•oo
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These are precisely the identifications used to construct the Klein bottle in
Figure A.3.1. In particular, the Klein bottle is studied extensively in Ap-
pendix A. It is shown there to be a 2-dimensional manifold, or surface. We
shall confine ourselves here to noting that if we just make the identifica-
tion between the lower and upper edge, we obtain a Möbius strip, but if we
just make the identification between the left and right edges, we obtain a
cylinder. So we can either think of the Klein bottle as obtained by gluing
together the two edges of a cylinder with an orientation reversal, or can
think of it as obtained from an identification on the boundary of a Möbius
strip. A pattern with symmetry group W3

1 is given in Figure 6.14.13.
We have shown the following.

Theorem 6.14.21. There are exactly three wallpaper groups W contain-
ing orientation-reversing isometries such that O(W) = W1. In the first of
them, W1

1 , there is a rhombic fundamental region for T (W1
1 ) with a line of

symmetry as its diagonal. See (6.14.25) for fundamental regions for T (W1
1 )

and W1
1 . The orbit space is a Möbius band.

In the second, W2
1 , the fundamental region for its translation subgroup,

shown in (6.14.29), is rectangular, with lines of symmetry parallel to one set
of edges. The orbit space is a cylinder.

Finally, W3
1 has no lines of symmetry, but has glide reflections. The fun-

damental regions for T (W3
1 ) and W3

1 are shown in (6.14.30) and (6.14.31),
respectively. The orbit space is a Klein bottle.

6.15. Exercises.

1. Let C be a polytope in Rk with centroid x̄ and let D be a polytope in
Rn−k with centroid ȳ. Show that

[
x̄
ȳ

]
is the centroid of C×D ⊂ Rn.

2. What are the isotropy subgroups of the following points under the
action of S([−1, 1]3)? What points are these on the cube? (What
are the faces of which these are interior points? Are they centroids?)
(a) e1 + e2 + e3.
(b) e2 + e3.
(c) 1

2e1 + e2 + e3.
(d) e3.
(e) 1

2e3.

3. What is the orbit of e1 + e2 + e3 under the action of S([−1, 1]3)?
What is the orbit of e3?

4. Consider the action of S([−1, 1]n) on [−1, 1]n. Describe the orbit and
isotropy subgroup of each of the following points.
(a) e1 + · · ·+ en.
(b) en.

5. Consider the action of S(Pn) on the regular n-gon Pn.
(a) Describe the orbit and isotropy subgroup of the vertex vi.
(b) Describe the orbit and isotropy subgroup of the midpoint of an

edge.
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(c) Describe the orbit and isotropy subgroup of a point on an edge
that is neither the midpoint of the edge nor a vertex.

6. Show that both F2
1 and F3

1 are isomorphic to subgroups of F2
2 .

7. Show that W1
1 is isomorphic to a subgroup of W1

2 .

8. Show that W3
1 is isomorphic to a subgroup of W4

2 .
9. Show that both W1

2 and W4
2 are isomorphic to subgroups of W2

4 .
10. Show that W2

1 is isomorphic to a subgroup of W2
2 .

11. Show that both W1
2 and W2

2 are isomorphic to subgroups of W1
4 .

12. Is W3
2 isomorphic to a subgroup of a W4-group?

13. Show that both W1
3 and W 2

3 are isomorphic to subgroups of W1
6 .

14. The following are rosette patterns. Indicate the following for each:
• all lines of symmetry;
• the shortest rotation preserving the pattern;
• the name of the rosette group.

(a)

�� ��

��

??

��

__

__ ??

(b)

//

�� oo

OO

(c)

o /
O

��

O

/o
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(d)

(e)

(f)

15. The following are frieze patterns. For each one, indicate the follow-
ing:
• The shortest translation, τv, that preserves the pattern, X.
• All points of symmetry.
• All lines of svmmetry.
• A fundamental region, R, for T (X).
• A fundamental region, S for F = S(X).
• Which translations are squares of a glide reflection in F?
• What are the isotropy subgroups of the points of symmetry, if
any?
• Which frieze group is F?
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(a)

//

��

oo

��

// oo

��

// oo

��oo

OO

// oo

OO

// oo

OO

//

(b)

//

��

oo

��

// oo

��

// oo

��// oo // oo // oo

(c)

//

��

//

��

// //

��

// //

��oo

OO

oo oo

OO

oo oo

OO

oo

(d)

• • • • •

• • • • •

(e)

• +3 • • +3 • •

• • +3 • • +3 •

(f)

• o /
O

�

• o /
O

�

• o /
O

�

• o /
O

�

•O

�• o / • o / • o / • o / •

(g)
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(h)

// oo // oo //

// oo // oo //

(i)

// oo // oo //

oo // oo // oo

(j)

(k)

// // //

oo oo oo

(l)

(m)

16. The following are wallpaper patterns. For each one, indicate the
following:
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• Shortest translations, τv and τw, in two different directions, that
preserve the pattern and form the boundary of a fundamental
region R for T (X).
• All n-centers for each possible n.
• All lines of symmetry.
• If there are glide reflections but no reflections, give the axes for
the glide reflections.
• A fundamental region, R, for T (X). IfW = S(X) is aW3-group
that contains lines of symmetry, base it at a 3-center on a line
of symmetry. Otherwise base it at an n-center for the largest
possible n.
• A fundamental region, S for W.
• What are the T -orbits of n-centers for each n? What is their
isotropy?
• Which wallpaper group is W?

(a)
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(b)

(c)

// // //

oo oo

// // //

oo oo

// // //
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(d)

(e)
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(f)

(g)
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(h)

(i)

//

��

oo

��

//oo

��oo

��

OO

//oo

��

OO

//

//

��

OO

oo

��

OO

//oo

��

OO

oo

��

OO

//oo

OO

��

//

//

OO

oo

OO

//oo

OO
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(j)

(k)

(l)
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(m)

p p p p

b b b

p p p p

b b b

p p p p

(n)
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(o)

(p)
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(q)

(r)
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(s)

(t)
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(u)
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7. Linear isometries of R3

7.1. Linear orientations of Rn. Let’s begin by reviewing what we know
about orientations in the Euclidean plane. We can think of the standard
orientation of R2 as being given by the information required to identify the
counterclockwise direction for calculating angles. This in turn can be seen
as coming from the usual ordering of the canonical basis E = e1, e2. This

then determines the the sign of the directed angle from the ray
−→
0e1 to the

ray
−→
0x by finding the unique θ ∈ [0, 2π) with

x

‖x‖ = cos θe1 + sin θe2.

In the very same way, an (ordered) orthonormal basis will be seen to
provide an orientation for any 2-dimensional inner product space (e.g., any
2-dimensional subspace of Rn).

Using the directed angle determined by the (standard) orientation, we
were then able to detect whether an isometry of R2 preserves or reverses
orientation by seeing whether it preserves or reverses the signs of directed
angles.

Notice that the orientation of the plane does not provide a preferred
orientation to lines in the plane: not even for lines through the origin. Each
line ℓ in the plane has two orientations, each given by a choice of unit vector
parallel to ℓ. In particular, the orientation of a line corresponds to a choice
or orthonormal basis for its translation through the origin.

We begin to see a pattern. An orientation of an inner product space V
should correspond in some way to a choice of orthonormal basis. And that
choice will not automatically orient the subspaces of V .

In fact, an inner product is not necessary for orienting a vector space. In-
ner products induce lengths and unsigned angles, but are not needed for
orientations themselves. Recall the one-to-one correspondence of Corol-
lary 1.2.8 between the bases of an n-dimensional vector space V and the
linear isomorphisms from Rn to V . This correspondence takes the basis B
to the isomorphism ΦB : Rn → V . The inverse of this correspondence takes
the linear isomorphism f : Rn → V to the basis f(e1), . . . , f(en) of V .

Definition 7.1.1. The linear isomorphisms f, g : Rn → V are orientation
equivalent if the determinant of g−1 ◦ f is positive. The bases B and B′ are
orientation equivalent if ΦB and ΦB′ are orientation equivalent.

This is easily seen to be an equivalence relation:

Lemma 7.1.2. Orientation equivalence is an equivalence relation between
linear isomorphisms Rn → V .

Proof. Write f ∼ g if det(g−1f) is positive. Then certainly f ∼ f as
det(I) = 1, so ∼ is reflexive. To see it is symmetric, suppose f ∼ g.
We wish to show g ∼ f , i.e., that f−1g has positive determinant. But
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f−1g = (g−1f)−1, so

det(f−1g) =
1

det(g−1f)
.

Since the latter is positive, so is the former.
Finally we show transitivity. Suppose f ∼ g and g ∼ h. We have h−1f =

(h−1g)(g−1f). So

det(h−1f) = det(h−1g) det(g−1f)

is positive. �

Note that Φ−1
B′ ΦB is the linear transformation induced by the transition

matrix [I]B′B and hence the bases B and B′ are orientation equivalent if and
only if this transition matrix has positive determinant.

Definition 7.1.3. A linear orientation of the n-dimensional vector space V
consists of a choice of orientation equivalence class of linear isomorphisms
f : Rn → V (or equivalently of bases B of V ). A specific linear isomorphism
or basis in the given class is said to induce the orientation of V .

A vector space together with a choice of orientation is called an oriented
vector space.

The canonical orientation of Rn is the one given by the canonical basis
E = e1, . . . , en. This corresponds to the identity map of Rn.

Lemma 7.1.4. An n-dimensional vector space, n ≥ 1, has exactly two
linear orientations. If B = v1, . . . , vn represents one of them, then B′ =
−v1, v2, . . . , vn represents the other.

Proof. For B and B′ as above, the transition matrix is given by

[I]B′B =




−1 0 . . . 0
0 1 . . . 0

. . .

0 0 . . . 1


 ,

which has determinant −1. So B and B′ lie in different equivalence classes
and it suffices to show there are at most two classes.

Thus, assume neither g nor h is orientation equivalent to f . Then g−1f
and h−1f both have negative determinant. Now,

det(g−1h) = det(g−1f) det(f−1h) = det(g−1f) det((h−1f)−1)

is the product of two negative numbers, and hence is positive. �

We have seen that an orientation of R2 does not induce an orientation of a
one-dimensional subspace. Nor, of course, does an orientation of a subspace
induce an orientation of the whole. What we have is the following. For
simplicity, we state the result in Rn, but any inner product space will do.
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Proposition 7.1.5. Let V be a subspace of Rn. Then an orientation of
V together with an orientation of V ⊥ determine an orientation of Rn as
follows: if B1 = v1, . . . , vk is a basis of V and B2 = w1, . . . , wn−k is a basis
of V ⊥, then the basis B = v1, . . . , vk, w1, . . . , wn−k determines an orientation
of Rn that depends only on the orientation classes of B1 and B2.

If we reverse the orientation on either one of V and V ⊥, the resulting
orientation of Rn is reversed, but if we reverse the orientation on both V
and V ⊥, then the orientation of Rn is unchanged.

Conversely, if we are given orientations on both V and Rn, there is a
unique orientation of V ⊥ compatible with these under the above association.

Proof. If B′1 = v1, . . . , vk and B′2 = w′
1, . . . , w

′
n−k are alternative bases of V

and V ⊥, respectively, and if B′ = v′1, . . . , v
′
k, w

′
1, . . . , w

′
n−k, then the transi-

tion matrix [I]B′B is given by

[I]B′B =

[
[I]B′

1B1
0

0 [I]B′
2B2

]
.

So det[I]B′B = det[I]B′
1B1

det[I]B′
2B2

, hence reversing the orientation class of
exactly one of the two bases will reverse the orientation of the induced basis
of Rn. Reversing both will preserve it.

Since there are exactly two orientations of Rn, fixing the orientation class
of the basis of V and allowing the orientation class on V ⊥ to vary, we obtain
the two orientations of Rn via this process, each uniquely associated with
an orientation of V ⊥. �

Definition 7.1.6. Let V be an oriented vector space, with its orientation
induced by the linear isomorphism g : Rn → V . Let f : V → V be a linear
isomorphism. We say that f is orientation-preserving if f ◦ g induces the
same orientation as g, and orientation-reversing otherwise.

The following generalizes the orientation behavior of linear isometries of
R2.

Lemma 7.1.7. Let V be an oriented vector space and let f : V → V be a
linear isomorphism. Then f is orientation-preserving if and only if det f is
positive. In particular, this is independent of the choice of linear orientation
of V .

Proof. Let g = ΦB : Rn → V induce the orientation of V . Then g−1◦(f ◦g)
is the linear transformation induced by the matrix [f ]B and hence has the
same determinant as f . �

7.2. Rotations. We first show every element in SO(3) is a rotation. But
what does that mean? Let’s first examine rotating about the north pole e3.
Rotating about a pole should fix that pole and rotate in the plane orthogonal
to that pole. So we are fixing e3 and will rotate the xy-plane. If we rotate
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by the angle θ, the resulting matrix is

R(e3,θ) =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 .

This is indeed a special orthogonal matrix (i.e., orthogonal with determi-
nant 1), and induces a linear isometry

ρ(e3,θ) = TR(e3,θ)
.

Note that we are implicitly orienting the xy-plane by looking down on
it. If we look up from the south pole, the displayed transformation would
rotate the orthogonal plane counterclockwise in the implicit orientation of
the plane given by looking up at it. We should begin by making this precise.

In this section we write elements of R3 as column vectors so we can use
linear algebra. Let u be a unit vector in R3, i.e., u ∈ S2. Then {u}⊥ =
span(u)⊥ is a 2-dimensional subspace of R3 and can be identified as the
nullspace of the row matrix uT .

Let v be a unit vector in {u}⊥. Then u, v is an orthonormal set, so
span(u, v) is 2-dimensional. Thus, {u, v}⊥ is 1-dimensional, and contains
exactly two unit vectors, say z and −z. Now u, v, z and u, v,−z are both or-
thonormal bases of R3, so [u|v|z] and [u|v|−z] are both orthogonal matrices.
Since

[u|v| − z] = [u|v|z]



1 0 0
0 1 0
0 0 −1


 ,

det[u|v|− z] = − det[u|v|z]. So exactly one of [u|v|z] and [u|v|− z] is special
orthogonal. Let w = ±z such that det[u|v|w] = 1. We have shown:

Lemma 7.2.1. For any orthonormal set u, v ∈ R3 there is a unique vector
w such that u, v, w is an orthonormal basis of R3 and det[u|v|w] = 1. This
choice of w induces the unique linear orientation on {u}⊥, coming from
the orthonormal basis v, w of {u}⊥, such that the basis u, v, w induces the
standard orientation of R3.

Note that the uniqueness of the orientation on {u}⊥ was shown in Propo-
sition 7.1.5.

Remark 7.2.2. We shall refer to the orientation on {u}⊥ given by the basis
v, w as the orientation induced by the pole u. If we replace w by −w we
get the opposite orientation on {u}⊥. And −w is the unique vector with
the property that −u, v,−w is orthonormal and det[−u|v| −w] = 1. So the
orientation on {u}⊥ = {−u}⊥ induced by the pole −u is the opposite of the
orientation induced by u. This expresses the difference between “looking
down” from u and “looking up” from −u.
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Definition 7.2.3. Define ρ(u,θ), the rotation about the pole u by the angle

θ, to be the unique linear transformation of R3 with

ρ(u,θ)(v) = (cos θ)v + (sin θ)w,(7.2.1)

ρ(u,θ)(w) = (− sin θ)v + (cos θ)w,

ρ(u,θ)(u) = u,

with v, w as above. In other words, if B = v, w, u, then the matrix of ρ(u,θ)
with respect to B is precisely the matrix R(e3,θ) above. We call span(u) the
axis of ρ(u,θ).

The proof of the following is immediate from the constructions.

Lemma 7.2.4. Since B is orthonormal and [ρ(u,θ)]B = R(e3,θ), an orthogonal
matrix, ρ(u,θ) is an isometry.

The matrix of ρ(u,θ) with respect to the standard basis of R3 is

R(u,θ) := [ρ(u,θ)] = PR(e3,θ)P
−1,

where P = [I]EB = [v|w|u]. Note that

det[v|w|u] = − det[v|u|w] = det[u|v|w],
so B induces the standard linear orientation of R3 (i.e., [v|w|u] is special
orthogonal).

But we also wish to show this transformation is independent of the choice
of the unit vector v ∈ {u}⊥.
Lemma 7.2.5. Let v, w ∈ Rn be an orthonormal set and let V = span(v, w).
Then the unit vectors in V are precisely the elements

(7.2.2) x = (cosφ)v + (sinφ)w for φ ∈ [0, 2π).

Moreover, given x satisfying (7.2.2), the unique orthonormal basis x, y in-
ducing the same orientation of V as v, w is given by

(7.2.3) y = (− sinφ)v + (cosφ)w = cos
(
φ+

π

2

)
v + sin

(
φ+

π

2

)
w.

Finally, if n = 3 and [u|v|w] is special orthogonal, so is [u|x|y].
Proof. Let A = [v|w]. Then TA : R2 → V is a linear isometric isomorphism.
The vectors satsifying (7.2.2) are precisely TA(S

1), which are the unit vectors
of V as TA preserves the norm. TA also preserves orthogonality, so the unit
vectors orthogonal to x are precisely ±y. The transition matrix from x, y to
v, w is the standard rotation matrix Rφ, which has determinant 1, so these
two bases induce the same orientation. Replacing y by −y reverses the sign
of the determinant of the transition matrix, and hence x,−y induces the
opposite orientation.

Finally, if n = 3 and [u|v|w] is special orthogonal, so is [v|w|u], and the
transition matrix from the basis x, y, u to the basis v, w, u is the rotation
matrix R(e3,φ), which has determinant 1. The result follows. �
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We must show the following.

Proposition 7.2.6. Let u ∈ S2. Then the linear transformation ρ(u,θ) de-

fined in (7.2.1) is independent of the choice of v ∈ {u}⊥.
Proof. As stated above, if we use v to define ρ(u,θ), and if B = v, w, u,
then the matrix [ρ(u,θ)]B of ρ(u,θ) with respect to B is R(e3,θ). But if v′ and
w′ are given by (7.2.2) and (7.2.3), respectively, and if B′ = v′, w′, u, then
[I]BB′ = R(e3,φ). So

[ρ(u,θ)]B′ = [I]−1
BB′ [ρ(u,θ)]B[I]BB′

= R(e3,−φ)R(e3,θ)R(e3,φ)

= R(e3,θ). �

Note that Remark 7.2.2 gives:

Lemma 7.2.7. ρ(u,θ) = ρ(−u,−θ).

Proof.

ρ(u,θ)(v) = cos(−θ)v + sin(−θ) · (−w),
ρ(u,θ)(−w) = − sin(−θ)v + cos(−θ) · (−w),
ρ(u,θ)(−u) = −u. �

We’ve seen in the planar case that fixed-point sets are important.

Lemma 7.2.8. Let u ∈ S2 and let θ ∈ (0, 2π) then the fixed-point set of
ρ(u,θ) is span(u), the axis of rotation.

Proof. The fixed-point set of a linear transformation f is the eigenspace of
(f, 1). We know that u, and hence span(u) are fixed by ρ(u,θ), so it suffices
to show the eigenspace is 1-dimensional.

Let A = [f ]B =




cos θ − sin θ 0
sin θ cos θ 0
0 0 1


. Then the eigenspace of (f, 1) is

the image under ΦB of the eigenspace of (A, 1), so it suffices to show this
last eigenspace, which is the nullspace of In −A, is 1-dimensional.

In −A =




1− cos θ sin θ 0
− sin θ 1− cos θ 0

0 0 0


. Now,

det

[
1− cos θ sin θ
− sin θ 1− cos θ

]
= 2(1− cos θ),

which is nonzero for θ ∈ (0, 2π), so

[
1− cos θ sin θ
− sin θ 1− cos θ

]
reduces via

Gauss elimination to the identity matrix. So A reduces to




1 0 0
0 1 0
0 0 0


,

which has rank 2, so its nullspace has dimension 1, as desired. �
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We next show that every element of SO(3) is a rotation. Let V be an
n-dimensional vector space and let f : V → V be linear. Recall that the
characteristic polynomial chf (x) = det(xI − f) of f is a monic polynomial
of degree n, i.e.,

chf (n) = xn + an−1x
n−1 + · · ·+ a0

with a0, . . . , an−1 ∈ R. Its roots are the eigenvalues of f . Recall also that
chf (x) = ch[f ]B(x) for any basis B of V .

Lemma 7.2.9. If n is odd then f has at least one real eigenvalue.

Proof. This is just the standard result that every odd degree polynomial
over R has at least one real root. In this case note that

chf (x)

xn
= 1 +

an−1

x
+
an−2

x2
+ · · ·+ a0

xn
,

so limx→±∞
chf (x)
xn

= 1. But this implies limx→±∞ chf (x) = limx→±∞ xn =
±∞ when n is odd. In particular, chf (x) must take on both positive and
negative values, and hence must have a root by the intermediate value the-
orem. �

Recall from Corollary 4.5.4 that if V is an inner product space with or-
thonormal basis B then the linear function f : V → V is an isometry if and
only if [f ]B is orthogonal.

Proposition 7.2.10. Let f : R3 → R3 be a linear isometry of determinant
1. Then 1 is an eigenvalue of f .

Proof. Write f = TA for A ∈ SO(3). By Lemma 7.2.9, A has at least one
eigenvalue, which by Lemma 4.1.23 must be ±1. If the eigenvalue is 1 we
are done. If not, let u be a unit eigenvector for A,−1. By Lemma 4.3.10,
span(u) is an invariant subspace of A. By Lemma 4.3.11, V = span(u)⊥

is A-invariant as well. Let B′ = v, w be an orthonormal basis of V and let
B = u, v, w be the induced orthonormal basis of R3. Since f is an isometry
and V is f -invariant, f |V : V → V is an isometry, hence [f |V ]B′ is an
orthogonal matrix. Again, since {u} and V are f -invariant, by construction
of the basis B, [f ]B is the block sum

[f ]B =

[
−1 0
0 [f |V ]B′

]
,

and hence det f = det[f ]B = det[−1] det[f |V ]B′ = − det[f |V ]B′ . So

det[f |V ]B′ = −1.
By our analysis of O(2), this makes [f |V ]B′ the matrix representing a reflec-
tion in a line ℓ through the origin. Since ℓ is pointwise fixed by [f |V ]B′ , it
consists of eigenvectors for the eigenvalue 1. But then 1 is an eigenvalue for
f |V and hence also for f . �

We obtain:
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Theorem 7.2.11. Let f : R3 → R3 be a linear isometry of determinant 1.
Then f is a rotation of R3 about a unit eigenvector u of (f, 1).

Proof. The proof is very similar to that of Proposition 7.2.10. Start with
a unit eigenvector u of (f, 1) and let V = {u}⊥. Then f |V : V → V is an
isometry, so if B′ = v, w is an orthonormal basis of V , [f |V ]B′ is orthogonal.
Now choose B′ so that det[v, w, u] = 1 to give the correct orientation data as
above. Now B = v, w, u is an orthonormal basis of R3, and since f(u) = u,

[f ]B =

[
[f |V ]B′ 0

0 1

]
.

We have

1 = det f = det[f |V ]B′ · 1,
so by our analysis of SO(2), [f |V ]B′ is a 2 × 2 rotation matrix Rθ for some
θ. But then, visibly, [f ]B = R(e3,θ) and hence f = ρ(u,θ). To explicitly solve
for θ we solve

cos θ = 〈f(v), v〉, sin θ = 〈f(v), w〉. �

Remark 7.2.12. The proof of Theorem 7.2.11 can be carried out algorith-
mically. Starting with A ∈ SO(3), the eigenspace of (TA, 1) is the nullspace
of I − A, which can be computed by Gauss elimination. Having chosen a
unit vector u ∈ N(I − A), find an orthonormal basis v, w for N(uT ), and
replace w by −w, if necessary, to get the correct orientations. We can now
compute θ by calculating

TA(v) = 〈TA(v), v〉v + 〈TA(v), w〉w
TA(w) = 〈TA(w), v〉v + 〈TA(w), w〉w

and then using inverse trig functions.
In practice, one must do these calculations in order to compute the com-

posite of two rotations: given unit vectors u, v ∈ R3 and angles θ, φ, we
know that

ρ(u,θ) ◦ ρ(v,φ)
is a linear isometry of determinant 1, and hence is equal to ρ(w,ψ) for some
w,ψ. The above steps may be used to calculate w and ψ.

7.3. Cross products. Cross products are a useful computational tool for
finding orthonormal bases in R3.

Definition 7.3.1. Write HomR(V,W ) for the set of linear functions from
V to W , and note that HomR(V,W ) is a vector space via

(f + g)(x) = f(x) + g(x),

(cf)(x) = cf(x).
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Lemma 7.3.2. Let f : Rn → R be linear. Then there is a unique vector
y = ϕ(f) such that

f(x) = 〈y, x〉
for all x ∈ Rn. This gives a linear isomorphism

ϕ : HomR(R
n,R)

∼=−→ Rn.

Proof. f = TA for A = [f ] =
[
f(e1) . . . f(en)

]
, so just take

(7.3.1) y = AT =



f(e1)
...

f(en)


 ,

as, for a row matrix A, Ax = 〈AT , x〉 for all x ∈ Rn. ϕ is linear by (7.3.1)
and is an isomorphism as a linear map is uniquely determined by what it
does to basis elements. �

Definition 7.3.3. Let u, v ∈ R3 and define d(u, v) : R3 → R by

d(u, v)(x) = det[x|u|v].
Since the determinant is linear in each column when its other column entries
are fixed, d(u, v) : R3 → R is linear. Define the cross product u× v of u and
v to be ϕ(d(u, v)), i.e., u× v is the unique vector in R3 such that

〈u× v, x〉 = det[x|u|v]
for all x ∈ R3.

Our main purpose in introducing cross products is (3), below, which has
obvious applications to rotations in R3. The other properties then allow
valuable calculations.

Proposition 7.3.4. The cross product gives a bilinear function

R3 × R3 → R3

satisfying the following properties:

(1) u× v = −v × u.
(2) u× v is orthogonal to both u and v.
(3) If u, v is an orthonormal set, then [u× v|u|v] is a special orthogonal

matrix, i.e., u × v, u, v is an orthonormal basis of R3 inducing the
standard orientation.

(4) u× v 6= 0 if and only if u, v are linearly independent.
(5) 〈u× v, w〉 = 〈u, v × w〉.
(6) (u× v)× w = 〈u,w〉v − 〈v, w〉u.
(7) 〈u× v, w × z〉 = 〈u,w〉〈v, z〉 − 〈v, w〉〈u, z〉.

Proof. The cross product is bilinear by the linearity of the map ϕ in
Lemma 7.3.2 together with the fact the determinant is linear in each column
when the other column entries are fixed.
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(1) follows because the determinant changes sign if you interchange two
columns of the matrix.

(2) follows because any matrix with two equal columns has determinant
0.

For (3), let w, u, v be an orthonormal basis with det[w|u|v] = 1. Then

u× v = 〈u× v, w〉w + 〈u× v, u〉u+ 〈u× v, v〉v
= det[w|u|v]w
= w,

as u× v is orthogonal to u and v.
For (4), u× u = 0 because any matrix with two equal columns has deter-

minant 0. It then follows that u×v = 0 if u, v are linearly dependent. At the
other extreme, if u and v are orthogonal and both nonzero, then u

‖u‖ × v
‖v‖

has norm 1 by (3), hence u × v has norm ‖u‖‖v‖ by bilinearity. Finally, if
u, v are linearly independent, apply the first step in the Gramm–Schmidt
process. By the preceding case,

0 6= u×
(
v − 〈u, v〉〈u, u〉u

)
= u× v,

where the equality follows from the bilinearity of the cross product and the
fact u× u = 0.

(5) simply says det[w|u|v] = det[u|v|w].
In (6), both sides are linear in w, keeping u and v fixed. We can now

calculate both sides when w is one of the canonical basis vectors, noting the
coordinates of u× v can be calculated from the expansions with respect to
the first column of det[ei|u|v] for i = 1, 2, 3. Since both sides of (6) agree
when w is a canonical basis vector, they must agree for arbitrary vectors w.

(7) may now be obtained from (5) and (6). �

Either a direct calculation or (3) now gives:

Corollary 7.3.5. e1 × e2 = e3, e2 × e3 = e1 and e3 × e1 = e2. The
other cross products of canonical basis vectors can now be obtained from
Proposition 7.3.4(1).

We now give our application to rotations.

Corollary 7.3.6. Let u ∈ S2 and let v be a unit vector in {u}⊥ (e.g.,
v = u×ei

‖u×ei‖ when u, ei are linearly independent). Then B = v, u × v, u is

an orthonormal basis inducing the standard orientation of R3, and hence
[ρ(u,θ)]B = R(e3,θ).

7.4. Reflections. Reflections in R3 behave very much like reflections in
R2. In R2 we reflect over a line. In R3 we reflect over a plane. What’s in
common is that we reflect across a set having a fixed normal direction.
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A linear reflection reflects across a linear subspace. A plane V ⊂ R3 is
2-dimensional, so V ⊥ is 1-dimensional. Thus, there are exactly two unit
vectors in V ⊥, and we call them unit normals for V .

Definition 7.4.1. Let V be a 2-dimensional linear subspace of R3. Then
the reflection across V is given by

σV (x) = x− 2〈x,N〉N
for N a unit normal of V .

This is easily seen to be independent of the choice of unit normal, as the
only other choice is −N . The bilinearity of the inner product shows σV to
be a linear function.

Proposition 7.4.2. σV is a linear isometry of determinant −1. If v, w is
an orthonormal basis of V and if B = N, v, w, then

[σV ]B =



−1 0 0
0 1 0
0 0 1


 .

Thus, σV is an involution, i.e., σ2V = I. Moreover, the fixed-point set of σV
is V .

Proof. If x ∈ V , 〈x,N〉 = 0, so x is fixed by σV . Since 〈N,N〉 = 1,
σV (N) = −N . Thus, [σV ]B is the displayed matix. Since that matrix is
orthogonal and B is orthonormal, σV is an isometry. We have

[σ2V ]B = [σV ]
2
B = In,

so σ2V = I. To find the fixed-point set, note that V = span(N)⊥ = {N}⊥,
so V = {y ∈ R3 : 〈y,N〉 = 0}, so if y 6∈ V , then 〈y,N〉 6= 0, and hence
σV (y) 6= y by the definition of σV . �

So what happens when we compose two linear reflections? The result will
have determinant 1 and hence be a rotation. But which one?

Lemma 7.4.3. Let V and V ′ be distinct 2-dimensional subspaces of R3

with unit normals N and N ′, respectively. Then V ∩V ′ is the 1-dimensional
subspace whose unit vectors are ± N×N ′

‖N×N ′‖ .

Proof. V = {N}⊥ and V ′ = {N ′}⊥. So
V ∩ V ′ = {v ∈ R3 : 〈v,N〉 = 〈v,N ′〉 = 0}

= {N,N ′}⊥.
Since V 6= V ′, span(N) 6= span(N ′), so N,N ′ are linearly independent. So
N ×N ′ is nonzero and span(N,N ′) is 2-dimensional. But then {N,N ′}⊥ is
1-dimensional. Since N ×N ′ is nonzero and lies in {N,N ′}⊥, it must span
{N,N ′}⊥. �
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We can now calculate the product of two linear reflections. Note how
useful the cross product is for keeping track of orientations.

Proposition 7.4.4. Let V and V ′ be distinct 2-dimensional subspaces of
R3 with unit normals N and N ′, respectively. Let u = N×N ′

‖N×N ′‖ . Then

(7.4.1) σV ′σV = ρ(u,2 cos−1〈N,N ′〉).

Indeed, we may interpret cos−1〈N,N ′〉 as being the directed angle from V to
V ′ at the pole u. (At −u, the direction would be opposite, corresponding to
the reversal of the order of the cross product.)

Proof. Let v = N × u and v′ = N ′ × u, so that v,N and v′, N ′ are both
orthonormal bases of W = {u}⊥ giving the orientation induced by u.

Since V is fixed by σV and V ′ by σV ′ , V ∩ V ′ = span(u) is fixed by the
rotation σV ′σV , so the possible poles for σV ′σV are ±u. We calculate the
matrix of σV ′σV with respect to the basis B = v,N, u. Since we know σV ′σV
to be a rotation, it suffices to find [σV ′σV (v)]B. Write

v′ = (cos θ)v + (sin θ)N,

N ′ = −(sin θ)v + (cos θ)N,

so that cos θ = 〈v′, v〉 = 〈N ′, N〉, sin θ = 〈v′, N〉 = −〈N ′, v〉. (That 〈v′, v〉 =
〈N ′, N〉 also follows from Proposition 7.3.4(7).) Since σV fixes v, we have

σV ′σV (v) = σV ′(v)

= v − 2〈v,N ′〉N ′

= v + 2(sin θ)N ′

= (1− 2 sin2 θ)v + 2(sin θ cos θ)N

= cos(2θ)v + sin(2θ)N,

so it suffices to show θ = cos−1〈N,N ′〉. Since cos θ = 〈N,N ′〉 it suffices to
show sin θ > 0, i.e., 〈N, v′〉 > 0. We have

〈N, v′〉 = 〈N,N ′ × u〉
= −〈u×N ′, N〉
= −〈u,N ′ ×N〉
= 〈u,N ×N ′〉
= ‖N ×N ′‖

by the definition of u. �

It is easy to reverse-engineer this process, and we obtain the following.

Corollary 7.4.5. Every linear rotation of R3 is the product of two linear
reflections.

The following is important in spherical geometry.
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Proposition 7.4.6. Let u 6= v ∈ S2. Then there is a unique linear reflection
of R3 interchanging u and v. Specifically, if N = v−u

‖v−u‖ and if V is the 2-

dimensional subspace with unit normal N , then σV (u) = v.

Proof. If V is a two-dimensional subspace with unit normal N and if
σV (u) = v, then

v = u− 2〈u,N〉N,
and hence N = v−u

−2〈u,N〉 . The denominator is nonzero, as u 6= v. Since N is

a unit vector,

1 = ‖N‖ = ‖v − u‖
| − 2〈u,N〉| ,

so −2〈u,N〉 = ±‖v − u‖. Thus, N = ± v−u
‖v−u‖ . This gives uniqueness.

It suffices to show that if N = v−u
‖v−u‖ and if V = {N}⊥, then σV (u) = v.

Now

σV (u) = u− 2〈u,N〉N

= u− 2

(〈u, v〉 − 〈u, u〉
‖v − u‖

)
v − u
‖v − u‖

= u− 2
〈u, v〉 − 1

〈v − u, v − u〉(v − u)

= u− 2
〈u, v〉 − 1

〈u, u〉+ 〈v, v〉 − 2〈u, v〉(v − u)

= u− 2
〈u, v〉 − 1

2− 2〈u, v〉(v − u) = u+ (v − u) = v.

Here, we have used twice that 〈u, u〉 = 〈v, v〉 = 1, as u, v ∈ S2. �

7.5. Rotation-reflections.

Lemma 7.5.1. Let V be a 2-dimensional linear subspace of R3 with unit
normal N . Then σV and ρ(N,θ) commute for all θ ∈ R.

Proof. Let v ∈ V and let B = v,N × v,N . Then [σV ]B and [ρ(N,θ)]B
commute. �

Definition 7.5.2. A rotation-reflection of R3 is a composite

(7.5.1) σV ρ(N,θ) = ρ(N,θ)σV

for V a 2-dimensional linear subspace with unit normal N , and θ ∈ (0, 2π).

Note that both V and span(N) are invariant subspaces for the rotation-
reflection σV ρ(N,θ).

We can now complete our classification of the linear isometries of R3.

Proposition 7.5.3. Every orientation-reversing linear isometry of R3 is
either a reflection or a rotation-reflection.
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Proof. Let f : R3 → R3 be an orientation-reversing linear isometry. Then
f has at least one real eigenvalue. Since both reflections and rotation-
reflections have an eigenvector for −1 we shall begin by supposing that
−1 is an eigenvalue of f . Let N be a unit eigenvector for (f,−1). Then
span(N) is an f -invariant subspace and hence so is V = span(N)⊥. Let
v ∈ V and let w = N × v. Let B = v, w,N . Since f |V : V → V is a linear
isometry, there exists θ ∈ R with f(v) = (cos θ)v+(sin θ)w and f(w) = ±w′

with w′ = (− sin θ)v + (cos θ)w.
If f(w) = −w′, then

[f ]B =



cos θ sin θ 0
sin θ − cos θ 0
0 0 −1


 ,

which has determinant 1. So f(w) = w′, which gives

[f ]B =



cos θ − sin θ 0
sin θ cos θ 0
0 0 −1


 ,

hence f = σV ρ(N,θ). When θ is a multiple of 2π this is just the reflection
σV , and otherwise it is a rotation-reflection.

Suppose, then, that 1 is an eigenvalue of f and let u be a unit eigenvector
for (f, 1). Again, span(u) is an invariant subspace as is V = span(u)⊥. Let
w = u×v and B = v, w, u. Again f(v) = (cos θ)v+(sin θ)w and f(w) = ±w′

as above. If f(w) = w′, then

[f ]B =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 ,

which has determinant 1. Thus, f(w) = −w′ so if B′ = v, w,

[f |V ]B′ =

[
cos θ sin θ
sin θ − cos θ

]
,

a 2× 2 reflection matrix. Every 2× 2 reflection matrix has −1 as an eigen-
value, hence so does f |V . But any eigenvector for f |V is an eigenvector for
f with the same eigenvalue, so we are back in case one and we’re done. �

Remark 7.5.4. The transformation α = σV ρ(N,θ) of (7.5.1) does not in
general determine the subspace V . Indeed, for any 2-dimensional subspace
V with unit normal N , the composite σV ρ(N,π) is the isometry induced by
the orthogonal matrix −I3.

However, since a rotation-reflection has determinant −1, the eigenspace
of (α,−1) must have odd dimension. So if α 6= T−I3 , the eigenspace of
(α,−1) must be 1-dimensional, and hence must equal span(N). This, in
turn determines V .
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7.6. Symmetries of the Platonic solids. The Platonic solids are the
regular polyhedra:12 the tetrahedron, the cube, the octahedron, the dodec-
ahedron and the icosahedron.

7.6.1. The cube and the regular tetrahedron. We first give some ba-
sics on the cube and its symmetries. Proposition 6.2.17 computes the sym-
metries of the n-cube: taking [−1, 1]n as the model for the n-cube, the cen-
troid is 0, so the symmetries are all linear. The symmetries are induced by
the signed permutation matrices, which form the group O(n,Z) ⊂ O(n). The
elements of O(n,Z) are the matrices [ǫ1eσ(1)| . . . |ǫneσ(n)], where ǫi ∈ {±1}
for i = 1, . . . , n, and σ ∈ Σn, the group of permutations of {1, . . . , n}. Note
that |O(n,Z)| = 2nn!, as there are 2n choices of signs and n! permutations.

By Corollary 8.2.2 below, the topological notion of the orientation-pre-
serving property for a linear isometry of Rn coincides with the linear one,
so the group of orientation-preserving isometries is given by

(7.6.1) O([−1, 1]n) ∼= O(n,Z) ∩ SO(n) = {A ∈ O(n,Z) : detA = 1}.
We shall denote it by SO(n,Z). Since O(n,Z) contains orientation-reversing
isometries, SO(n,Z) has index 2 in O(n,Z). and hence has order 2n−1n!.

In particular, the symmetry group of the standard 3-dimensional cube
C = [−1, 1]3 is O(3,Z) and has 48 elements, while O(C) has order 24. We
will show that O(C) is isomorphic to Σ4.

For now, let us review the vertices, edges and faces of C. (For the re-
mainder of Section 7.6, the word “face” means two-dimensional face.) The
vertex set of C is

(7.6.2) S =
{[

ǫ1
ǫ2
ǫ3

]
: ǫi ∈ {±1} for i = 1, . . . , 3

}
.

The faces are

(7.6.3) ∂ǫi (C) =
{[

a1
a2
a3

]
∈ C : ai = ǫ

}
for i = 1, . . . , 3 and ǫ = ±1.

In particular, the vertex

(7.6.4) v =
[
ǫ1
ǫ2
ǫ3

]
= ∂ǫ11 (C) ∩ ∂ǫ22 (C) ∩ ∂ǫ33 (C),

and lies in no other faces of C.
Each edge is the intersection of two faces, and is therefore given by spec-

ifying two coordinates by particular elements of {±1}. In particular, two
vertices share an edge if and only if they have two coordinates in common.

Let v =
[
ǫ1
ǫ2
ǫ3

]
and w =

[
δ1
δ2
δ3

]
be vertices of C. Then

d(v, w) =
√
(ǫ1 − δ1)2 + (ǫ2 − δ2)2 + (ǫ3 − δ3)2

12Here, we take “polyhedron” to mean a 3-dimensional polytope.
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But

(ǫi − δi)2 =
{
0 if ǫi = δi

4 otherwise.

Thus, d(v, w) = 2
√
k, where k is the number of coordinates in which v and

w differ. In particular, if v and w share an edge, the distance is 2. If they
agree on exactly one coordinate (and hence are diagonally apart on a face),
the distance is 2

√
2. If they agree in no coordinate (and hence v = −w), the

distance is 2
√
3.

Since each vertex is contained in exactly three faces, there are exactly
three vertices of distance 2

√
2 from it.

7.6.2. The regular tetrahedron. We shall show that the regular tetrahe-
dron is the convex hull of some of the coordinates of the cube C = [−1, 1]3.
We’ll be able to use this to say more about S(C) and O(C).

Recall that the set of vertices of C is denoted by S. Consider the set

(7.6.5) T =
{[

1
1
1

]
,
[

1
−1
−1

]
,
[−1

1
−1

]
,
[−1
−1
1

]}
⊂ S.

Then each pair of distinct vertices in T agrees on exactly one coordinate, so
the distance between any pair of distinct elements of T is 2

√
2.

So any three distinct elements of T form the vertex set for an equilateral
triangle in R3. The triangles are all congruent, and assemble to form a
tetrahedron, T = Conv(T ). Since the faces of T are congruent to one
another, the tetrahedron is regular.

Since each vertex of C has exactly three vertices of distance 2
√
2 from it,

T contains every vertex of distance 2
√
2 from any of its vertices.

Now let

T ′ = S r T

and let T′ = Conv(T ′). Then the same argument given above shows that
T′ is a regular tetrahdron and that for w ∈ T ′, T ′ r {w} is the set of all
vertices of C of distance 2

√
2 from w. Moreover, T ′ = {−v : v ∈ T}. For

v ∈ T and w ∈ T ′, either d(v, w) = 2 or d(v, w) = 2
√
3.

Proposition 7.6.1. S(T) is an index two subgroup of S(C) and hence has
order 24.

Proof. First note that the sum of the vectors in T is 0, so the centroid of
T is 0. Thus, S(T) is a subgroup of the group of linear isometries of R3. So
if α ∈ S(T) and v ∈ T , α(−v) = −α(v) ∈ T ′ So α permutes the vertices of
C, and hence α ∈ S(C).

Now let α ∈ S(C). Then α may not permute the elements of T , as

α
([

1
1
1

])
can be any vertex of S by our calculation of S(C).

Let w = α
([

1
1
1

])
, and suppose w is not in T . Then α must carry every

other vertex in T to a vertex of distance 2
√
2 from w, which must lie in T ′.
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So if w 6∈ T , then α(T ) = T ′, and hence α(T) = T′. Since α permutes S,
we must also have α(T ′) = T .

We see that S(C) permutes the two-element set {T, T ′}. We obtain a
surjective homomorphism

f : S(C)→ Σ({T, T ′}) ∼= Σ2,

with f(α)(T ) = α(T ) and f(α)(T ′) = α(T ′). Since Σ2 has 2! = 2 elements,
ker f has index 2 in S(C). But ker f is the set of α ∈ S(C) that permute
the elements of T , and hence lie in S(T). �

Corollary 7.6.2. The symmetry group S(T) of the regular tetrahedron T
is isomorphic to the full permutation group of its vertex set, i.e., to Σ4.

Proof. Corollary 6.2.5 gives a homomorphism ρ : S(T) → Σ(T ), which is
injective as Aff(T ) = R3 (it is easy to show that the vertices in T are affinely
independent), and hence an element of S(T) is determined by its effect on
T .

But both S(T) and Σ4 have 24 elements, so ρ is an isomorphism. �

We can now use this to derive information about O(C).

7.6.3. Calculation of O(C). Consider the pairs of points {±v} with v ∈
T . Then there are four such pairs. Write X for the four-element set they
comprise:

(7.6.6) X =
{
{±v} : v ∈ T

}
.

Then S(C) permutes the elements of X, i.e., there is a homomorphism

π : S(C)→ Σ(X)(7.6.7)

π(α)({±v}) = {±α(v)},
for α ∈ S(C) and v ∈ T . By Corollary 7.6.2, π restricts to an isomorphism

(7.6.8) π|S(T) : S(T)
∼=−→ Σ(X).

We use this to obtain the following:

Corollary 7.6.3. The restriction of π to O(C) is an isomorphism:

(7.6.9) π|O(C) : O(C)
∼=−→ Σ(X).

Thus, O(C) is isomorphic to Σ4.

Proof. Since O(C) and Σ(X) both have order 24, it suffices to show (7.6.3)
is onto. Since π restricts to an isomorphism from S(T) onto Σ(X), it suffices
to show that for α ∈ S(T), there exists β ∈ O(C) with π(α) = π(β).

If α is orientation-preserving, take β = α. Otherwise, take β = −α, the
composite of α with multiplication by −1. Since −I3 is orientation-reversing,
β ∈ O(C). And multiplication by −1 acts as the identity on X. �
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Remark 7.6.4. The boundary of the cube induces a tiling of the 2-sphere
S2 by radial projection (i.e., the function that takes a nonzero vector v to
v

‖v‖). The symmetry group of this tiling coincides precisely with S(C).

The projective space RP2 is the quotient of S2 obtained by identifying each
x ∈ S2 with its antipode −x. Thus, we obtain RP2 from S2 by identifying
any two points that differ by multiplication by −I3. Since the action of −I3
carries faces to faces in C, the tiling of S2 induces a tiling of RP2 with four
vertices, six edges and three faces.

The proof of Corollary 7.6.3 amounts to studying the induced action of
S(C) on RP2, where −I3 acts as the identity. The set X projects to the
vertex set for this tiling of RP2, which is invariant under the action of S(C).
The argument studies the action of S(C) on that four-element set. In fact,
both O(C) and S(T) map isomorphically onto the symmetry group of this
tiling of RP2, despite being different subgroups of S(C). (The isometry
group of RP2 is the quotient group O(3)/(±I3).)

Under this model, we can view RP2 as obtained as follows. Let Y be the

union of the three faces of C containing the vertex v0 =
[
1
1
1

]
and identify the

six edges of Y not meeting v0 as indicated in the following diagram: specifi-
cally, we identify these edges in opposite pairs according to the orientations
given in the following diagram:

a //

b

��

c

FF

v0

c

��

b

XX

a
oo

So a, b and c correspond to the three of the edges of RP2 that don’t meet
v0; the other three edges of RP2 come from the edges of the diagram that
emanate from v0. The identifications of the edges in Y correspond to mul-
tiplication by −1 in C. These identifications also reduce the six vertices
of Y r v0 to three vertices of RP2, indicated by the endpoints of the edges
emanating from v0. Note that each pair of vertices in RP2 is connected by
a unique edge.

Using this model, you can study the induced action of O(C) on RP2.
Corollary 7.6.3 shows this action is effective, meaning that no nonidentity
element of O(C) acts as the identity on RP2.

7.6.4. The dodecahedron. We shall make use of the golden mean

Φ =
1 +
√
5

2
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studied in Section 6.3. As shown in (6.3.2) there, the multiplicative inverse
φ = 1

Φ satisfies

φ = Φ− 1 =
−1 +

√
5

2
.

Thus,

(7.6.10) Φ + φ =
1 +
√
5

2
+
−1 +

√
5

2
=
√
5 < 3.

Moreover, Lemma 6.3.3 gives the numerical estimates

Φ ∈ (1.5, 2), φ ∈ (.5, .75).

We shall also make use of the following:

(7.6.11) Φ2 − φ2 = Φ2 − (Φ− 1)2 = 2Φ− 1 =
√
5.

The last equality follows from Φ = 1+
√
5

2 . Also,

(7.6.12) Φ2 + φ2 = Φ2 + (Φ− 1)2 = 2Φ2 − 2Φ + 1 = 3.

Definition 7.6.5. The standard regular dodecahedron D is defined to be
Conv(V ), where

(7.6.13) V =
{[ 0

±φ
±Φ

]
,
[±Φ

0
±φ

]
,
[ ±φ
±Φ
0

]
,
[±1
±1
±1

]}
,

where the signs ±1 in the various coordinates are independent of each other.
Thus, there are 20 elements in V , including the eight elements

(7.6.14) S =
{[±1

±1
±1

]}
.

Recall that S is the set of vertices of the standard balanced cube

(7.6.15) C = [−1, 1]3.

Thus, C is a convex subset of the dodecahedron D. We single out two
elements of V for special consideration:

(7.6.16) v0 =
[
1
1
1

]
, v1 =

[
0
φ
Φ

]
.

Recall that S(C) consists of the linear isometries induced by the signed
permutation matrices O(n,Z). In particular, we have very good control over
these isometries. The subgroup S(C) ∩ S(D) will help us get good control
on the geometry of D and on its full group of isometries.

We do not yet know that each v ∈ V is a vertex of D. If we did, then
Proposition 6.2.5 would tell us that S(V ) = S(D). But at this point we only
have the result of Lemma 6.2.1 that S(V ) ⊂ S(D). We shall use this to show
that every v ∈ V is a vertex of D.
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Lemma 7.6.6. Let

H = (S(C) ∩ S(V )) ⊂ (S(C) ∩ S(D)).

Then H consists of the isometries induced by the following specific signed
permutation matrices:







±1 0 0
0 ±1 0
0 0 ±1


 ,




0 0 ±1
±1 0 0
0 ±1 0


 ,




0 ±1 0
0 0 ±1
±1 0 0





 .

Here, as above, the signs in a given matrix are independent of each other,
so the order of H is 24.

The action of H on the convex generating set V has two orbits: S = Hv0
and V r S = Hv1.

Proof. The permutations in these matrices are either the identity or what
is called the cyclic permutations σ = (1 2 3) and σ−1 = (1 3 2):

σ(1) = 2 σ(2) = 3 σ(3) = 1

σ−1(1) = 3 σ−1(3) = 2 σ−1(2) = 1.

These are precisely the permutations that preserve the “cyclic” ordering
of 0, φ and Φ encoded into the elements in V . So these are precisely the
matrices for elements of S(C) that preserve V .

Regarding the orbits, S is H-invariant and every element of S lies in the
orbit of v0. Similarly, V rS is H-invariant and each of its elements is in the
orbit of v1. �

The following calculations will be useful. They also provide evidence
suggesting that S(D) acts transitively on V . (Recall that a G-action on a
set V is transitive if V consists of a single G-orbit.)

Lemma 7.6.7. The inner products of elements of V satisfy the following.

〈v, v0〉 =





3 for v = v0√
5 for v = v1,

[
Φ
0
φ

]
,
[
φ
Φ
0

]

1 for v =
[−1

1
1

]
,
[

1
−1
1

]
,
[

1
1
−1

]
,
[

0
−φ
Φ

]
,
[−φ

Φ
0

]
,
[

Φ
0
−φ

]

−1 for v =
[

1
−1
−1

]
,
[−1

1
−1

]
,
[−1
−1
1

]
,
[ 0
φ
−Φ

]
,
[
φ
−Φ
0

]
,
[−Φ

0
φ

]

−
√
5 for v =

[ 0
−φ
−Φ

]
,
[−Φ

0
−φ

]
,
[ −φ
−Φ
0

]

−3 for v = −v0.

(7.6.17)
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〈v, v1〉 =





3 for v = v1√
5 for v = v0,

[−1
1
1

] [
0
−φ
Φ

]

1 for v =
[

1
−1
1

]
,
[−1
−1
1

]
,
[
Φ
0
φ

]
,
[−Φ

0
φ

]
,
[
φ
Φ
0

]
,
[−φ

Φ
0

]

−1 for v =
[−1

1
−1

]
,
[

1
1
−1

]
,
[−Φ

0
−φ

]
,
[

Φ
0
−φ

]
,
[ −φ
−Φ
0

]
,
[
φ
−Φ
0

]

−
√
5 for v = −v0,

[
1
−1
−1

]
,
[ 0
φ
−Φ

]

−3 for v = −v1.

(7.6.18)

Proof. These are strightforward from (7.6.10). (7.6.11) and (7.6.12), along
with the calculations that Φ−φ = Φ−(Φ−1) = 1 and Φφ = Φ2−Φ = 1. �

Corollary 7.6.8. The elements of V are all vertices of D. Thus, S(V ) =
S(D), and hence

(7.6.19) H = S(C) ∩ S(D).

Proof. Since H ⊂ S(D) and since symmetries of a polytope carry vertices
to vertices, it suffices to show v0 and v1 are vertices.

We use Proposition 2.9.47. Let f0, f1 : R3 → R be the linear maps
given by fi(x) = 〈x, vi〉 for i = 1, 2. By Lemma 7.6.7, fi(D) = [−3, 3] and
f−1
i (3) = {vi}. So vi is a 0-dimensional face of D for i = 1, 2. �

For each v ∈ V , the negative −v is also in V , so the vectors in V add up
to 0. We obtain:

Corollary 7.6.9. The centroid of D is the origin, so S(D) is a subgroup of
the group of linear isometries of R3.

Note that the vertices of D all have norm
√
3. Moreover, if v and w are

vertices of D, we have

(7.6.20) ‖v − w‖2 = 〈v, v〉+ 〈w,w〉 − 2〈v, w〉,

so Lemma 7.6.7 gives a calculation of the distances between vertices of D.
The larger the inner product 〈v, w〉, the smaller the distance between v and
w. Since there are at most two orbits of V under the action of S(D), we
obtain the following.

Corollary 7.6.10. The shortest distance between distinct vertices of D is

(7.6.21)

√
3 + 3− 2

√
5 = 2φ.

Each vertex v has distance 2φ from exactly three other vertices. Moreover,
there are six vertices of distance 2 from v, six of distance 2

√
2, three of

distance 2Φ and one of distance 2
√
3.
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Proof. It suffices to verify the equality in (7.6.21) and to show that
√
6 + 2

√
5 = 2Φ.

For the former, we have

6− 2
√
5 = 4

(
3−
√
5

2

)
= 4(2− Φ).

But φ2 = 2−Φ. For the latter, we add
√
5 rather than subtract it and note

that 3+
√
5

2 = Φ+ 1 = Φ2. �

We now determine the faces of D. We start by constructing one of the

three faces containing v0. Let v1 =
[
0
φ
Φ

]
, v2 =

[
0
−φ
Φ

]
, v3 =

[
1
−1
1

]
, v4 =

[
Φ
0
φ

]
,

and set

U = {v0, v1, v2, v3, v4}.
We shall show that F = Conv(U) is a face of D.

Let N = v0+ · · ·+v4 =
[

Φ+2
0

3Φ+1

]
. Then the centroid of F will be 1

5N when

we show F is in fact a face. We use the linear function f(x) = 〈x,N〉 to
show this. As the reader may calculate,

(7.6.22) f(vi) = 4Φ + 3 for vi ∈ U .

Now let x0 =
[

Φ
0
−φ

]
, x1 =

[
φ
Φ
0

]
, x2 =

[
φ
−Φ
0

]
, x3 =

[−1
1
1

]
and x4 =

[−1
−1
1

]
Then

an easy calculation gives

(7.6.23) f(xi) = 2Φ− 1 =
√
5 < 4Φ + 3 for i = 0, . . . , 4.

The other vertices are the negatives of these, so their values under f are
negatives of these. So f(D) = [−4Φ − 3, 4Φ + 3] and Proposition 2.9.47
gives the following.

Proposition 7.6.11. F = D ∩ f−1(4Φ + 3) is a face of D.

The following is useful in understanding what is going on.

Lemma 7.6.12. We have

(7.6.24) N = (Φ + 2)
[
1
0
Φ

]
.

Proof. (Φ + 2)Φ = Φ2 + 2Φ = Φ+ 1 + 2Φ = 3Φ + 1. �

Write

(7.6.25) ρF = ρ( N
‖N‖ ,

2π
5

),

the rotation about N
‖N‖ by 2π

5 . We shall show that ρF lies in S(D) and

permutes the vertices of F . A key in doing this is that cos 2π
5 = φ

2 as shown
in (6.3.4). Using this, the following can be obtained by a good computer
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algebra program (we used Maple) and can be verified by a tedious, but direct
calculation. But we can also use theory to simplify that verification a bit:

Proposition 7.6.13. The matrix inducing ρF is given by

RF =




1
2 −Φ

2
φ
2

Φ
2

φ
2 −1

2
φ
2

1
2

Φ
2


 .(7.6.26)

The rotation ρF acts on the vertices vi and xi in V as follows:

v0 7→ v1 7→ v2 7→ v3 7→ v4 7→ v0(7.6.27)

x0 7→ x1 7→ x2 7→ x3 7→ x4 7→ x0.(7.6.28)

Since every vertex or its negative is one of these, and since ρF is linear, ρF
permutes the elements of V , and hence lies in S(D).

Proof. It is easy to verify (7.6.27) and (7.6.28) by hand and that RF ·N =
N . Since any three distinct elements of U are linearly independent, this
verifies that RF has order 5 and fixes N . (The order is also verified in what
follows.)

It is also easy to verify that the columns of RF are orthonormal, so that
RF is an orthogonal matrix. To see it gives the desired rotation, we argue
as follows. Let

u =
N

|N | =
1√

Φ2 + 1

[
1
0
Φ

]
.

Then e2 is orthogonal to u and an easy calculation shows that

u× e2 =
1√

Φ2 + 1

[−Φ
0
1

]
.

We obtain an orthonormal basis B = e2, w, u, with w = u×e2, and it suffices
to show that the matrix |TRF |B of TRF with respect to B is R(e3, 2π5 )

. Since

B is orthonormal and RF is orthogonal and fixes u,

(7.6.29) |TRF |B =



〈RF · e2, e2〉 〈RF · w, e2〉 0
〈RF · e2, w〉 〈RF · w,w〉 0

0 0 1


 .

If we accept the Maple calculation that detRF = 1, then it suffices to notice
that 〈RF ·e2, e2〉 is the (2, 2) coordinate of RF , which is φ2 = cos 2π

5 by (6.3.4),
and that 〈RF · e2, w〉 is positive. Without the determinant calculation, one
must additionally show that 〈RF · w, e2〉 is negative. By (4.1.4),

〈RF · w, e2〉 = 〈w,RTF e2〉,
which is again easy to calculate. �

Corollary 7.6.14. S(D) acts transitively on the vertices of D.
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Proof. Every element of V lies in exactly one S(D)-orbit. Since ρF (v0) =
v1, v0 and v1 lie in the same S(D)-orbit. Since H ⊂ S(D), H ·v0 ⊂ S(D) ·v0,
i.e., H · v0 = S is contained in this S(D)-orbit, as is H · v1 = V r S. So this
S(D)-orbit consists of all of V . �

Since v0 and v1 are 2φ apart and ρF is an isometry, the following is
immediate from Proposition 7.6.13.

Corollary 7.6.15. F is a regular pentagon with edge length 2φ.

We now calculate the order of S(D).

Corollary 7.6.16. The isotropy subgroup of any vertex under the action of
S(D) has order six and is isomorphic to Σ3. Thus, S(D) has order 120.

Proof. Since S(D) acts transitively on the vertices, our isotropy claim will
follow if we prove it for v0. Since v0, v1, v4 are linearly independent, any
element in the isotropy subgroup of v0 is determined by its effect on v1 and
v4 (it fixes v0). The only vertices of distance 2φ from v0 are v1, v4 and

z =
[
φ
Φ
0

]
. So S(D)v0 embeds in the permutation group Σ({v1, v4, z}) ∼= Σ3.

Σ3 has six elements. The cyclic permuation induced by
[
0 0 1
1 0 0
0 1 0

]
fixes v0, so

S(D)v0 has order divisible by three.
Let

(7.6.30) σ = TA for A =



1 0 0
0 −1 0
0 0 1


 .

Then σ permutes the vertices of F and fixes v4. σ is the reflection across
the xz-plane and has order 2.

Write

(7.6.31) τ = ρFσρ
−1
F .

Then τ permutes the vertices of F . fixes v0 and has order 2. So the order of
S(D)v0 is divisible by 2. Thus, S(D)v0 induces the full permutation group
Σ({v1, v4, z}) and has order six.

But S(D) acts transitively on the vertices of D so the orbit S(D)v0 has 20
elements. By Corollary 6.7.9, S(D) has order |S(D)v0 ||S(D)v0| = 120. �

We next determine the symmetries of D that take F to F , i.e., the group
S(D) ∩ S(F ).

Lemma 7.6.17. S(D) ∩ S(F ) is a dihedral group of order 10. Its elements
are

{ρkF , ρkF τ : 0 ≤ k ≤ 4},
where τ is given in (7.6.31).
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Proof. Since both σ and ρF are in S(D) ∩ S(F ), so is τ . τ fixes v0. It also
exchanges v1 and v4 and exchanges v2 and v3. Since v0, v1 and v4 are linearly
independent, a linear isometry of R3 is determined by its effect on v0, v1 and
v4, and hence by its effect on F . So τ has order 2 and satisfies τρF τ

−1 = ρ−1
F .

In particular, τ and ρF generate a group isomorphic to the symmetry group
of the standard regular pentagon P5, which is the dihedral group D10. Note
that adjacent vertices of F are 2φ apart, while nonadjacent vertices have
distance 2 from each other. So the argument given for the calculation of
S(Pn) (Proposition 6.5.1) applies here to show there are no other elements
in S(D) ∩ S(F ). �

By Proposition 6.2.12, an isometry α ∈ S(D) carries the centroid of F
to the centroid of α(F ). Thus, α(F ) = F if and only if α(15N) = 1

5N . We
obtain the following:

Lemma 7.6.18. Let K be a subgroup of S(D). Then set of faces

K · F = {α(F ) : α ∈ K}
is in one-to-one correspondence with the orbit K · 15N . So

|K · F | = [K : KN ] =
|K|
|KN |

is the index of the isotropy subgroup, KN , of N under the action of K.

Proof. For the last statement, we note that since the isometries in K are
linear the isotropy subgroups of N and 1

5N coincide. �

By Lemma 7.6.17, S(D)N has order 10, so S(D) · F consists of all 12
visible faces of the dodecahedron. This begs the question of whether there
are any other faces of D. In other words, if the convex hull of a subset of V
is a face of D, is it one of the faces α(F ) for α ∈ S(D)? (I.e., does S(D) act
transitively on the faces of D?)

We shall not give a detailed argument for this. One could use some more
advanced topology, but one can also use Proposition 2.9.39 to show the
following.

Proposition 7.6.19. Let v 6= w be vertices of D. Then the segment

[v, w] = vw = Conv(v, w)

is an edge of D if and only if the distance d(v, w) from v to w is 2φ. More-
over:

(1) If d(v, w) = 2, then (v, w) = Int([v, w]) is contained in the interior
of a face α(F ) with α ∈ S(D).

(2) If v, w ∈ V have distance greater than 2 from one another, then
(v, w) lies in the interior of D.
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Proof. Since S(D) acts transitively on the vertices, we may assume v = v0.
There are exactly three vertices of distance 2φ from v0: v1, v4 and z. They

are cyclically permuted by the symmetry ρ = TA, A =
[
0 0 1
1 0 0
0 1 0

]
, which lies in

H ⊂ S(D).13

The segment [v0, v1] is contained in F ∩ ρ2(F ), the intersection of two
2-dimensional faces. Since these two faces are distinct, their intersection is
a face of dimension less than 2. As it contains a segment, F ∩ ρ2(F ) must
be an edge. Since v0 and v1 are vertices, they cannot lie in the interior of
an edge. Thus F ∩ ρ2(F ) = [v0, v1] is an edge. But [v0, v4] and [v0, z] are
images of [v0, v1] under powers of ρ, and hence are edges also.

The vertices of distance 2 from v0 are all images under powers of ρ of either
v2 or v3. So (1) will follow if we show (v0, v2) and (v0, v3) are contained in
Int(F ). But this follows from Corollary 2.9.46, as both (v0, v2) and (v0, v3)
intersect (v1, v4), so all three segments have the same carrier, which must
perforce contain the verticies v0, v1, v2, v3, v4: the full vertex set of F .

Note that the map τ of (7.6.31) fixes v0 and exchanges v2 and v3. It is
then easy to see that the isotropy subgroup S(D)v0 acts transitively on the

vertices of distance 2 from v0. The vertices of distance 2
√
2 from v0 are

the negatives of those of distance 2. Since the isometries are linear, S(D)v0
acts transitively on those of distance 2

√
2 as well. So in analyzing this case,

we may simply study [v0, w] for w =
[−1
−1
1

]
. The midpoint of [v0, w] is the

canonical basis vector e3. It suffices to show the carrier of e3 is D.

Note that
[
0
0
Φ

]
is the midpoint of the vertices

[
0
φ
Φ

]
and

[
0
−φ
Φ

]
, while

[
0
0

−Φ

]

is the midpoint of their negatives, so both these points are in D. And both

e3 and 0 lie in the interior of the segment from
[
0
0
Φ

]
to
[

0
0

−Φ

]
. So e3 and 0

have the same carrier. Since 0 is the centroid of D, that carrier is D.
The segments of length 2Φ are easy, as their midpoints are easily seen to

lie in Int(C), which perforce must be contained in Int(D). The remaining
segment, of length 2

√
3, has 0 as its midpoint. �

Corollary 7.6.20. The faces α(F ) with α ∈ S(D) are the only faces of D.

Proof. Let G be a face of D with vertex set R ⊂ V . Then R cannot contain
a pair of vertices of distance greater than 2 from each other, as then G would
intersect Int(D).

Suppose there is a pair v, w ∈ R of distance two from each other. Then
there is a face α(F ) containing [v, w], so that G∩α(F ) has dimension at least
1. The intersection of two faces, if nonempty, is either a vertex, and edge or
a face. But [v, w] meets the interior of α(F ), so it is not an edge. And α(F )
is the unique face containing any point in its interior. So G = α(F ).

13One can show that ρ = ρ(v0, 2π3 ) by the methods used in the proof of Proposi-

tion 7.6.13.
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Finally, it is impossible that each pair in R has distance 2φ from each
other: there are at least three vertices in R. If u, v, w ∈ R with

d(u, v) = d(v, w) = 2φ,

then, applying an isometry taking v to v0 we see that d(u,w) = 2. �

The following is now useful.

Proposition 7.6.21. The subgroup H = S(D) ∩ S(C) acts transitively on
the 12 faces of the dodecahedron. So does, O(H) ⊂ H, the subgroup of
orientation-preserving transformations in H. As |O(H)| = 12, we obtain a
bijection from O(H) to the set of faces of D given by

α 7→ α(F ).

Proof. The only signed cyclic permutation matrices that preserve N are I3
and the matrix A in (7.6.30). So the isotropy subgroup HN has order 2, and
hence index 12 in H. Since detA = −1, O(H)N is the identity subgroup,
and the result follows. �

The following is a nonstandard definition we find useful here.

Definition 7.6.22. A chord in a face F ′ of D is a segment vw between
nonadjacent vertices v, w of F ′ (i.e., vw is not an edge of F ′).

Note that each face of D has exactly five chords. Each has length 2.
(Each is the image under an isometry of the chord v0v3 of F .)

Corollary 7.6.23. Let F ′ be a face of D. Then F ′ ∩C is both an edge of
C and a chord of F ′.

Proof. Each face F ′ of D has the form α(F ) for some α ∈ H. The face F
satisfies

F = D ∩ f−1(4Φ + 3)

where f is the linear function f(x) = 〈x,N〉 with N the sum of the vertices
of F . The image of f on D is [−4Φ− 3, 4Φ + 3], and the same is true if we
restrict f to C. Indeed,

(7.6.32) f−1(4Φ + 3) ∩C = Conv(v0, v3)

by our calculation of f on the vertices of C. Thus, our assertion is true for
F ′ = F . Since the elements of H are symmetries of C as well as D, the
same is true for F ′. �

Corollary 7.6.24. Let α ∈ S(D) and let F ′ be a face of D. Then the
intersection of the cube α(C) with F ′ is both an edge of α(C) and a chord
of F ′.

Proof. This is simply the image under α of C ∩ α−1(F ′). �

We shall make use of the following.
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Lemma 7.6.25. A cube with centroid at the origin is determined by any
one of its edges.

Proof. Here, we define a cube as being a polytope similar to the standard
cube C. Let e be an edge of C and let u be a unit vector parallel to e. Then
the vertices of C are obtained by rotating the vertices of e by increments of
π
2 about u. The same relationship will hold in any similar polytope centered
at 0. �

Indeed, a cube in R3 is determined by its centroid and any one of its
edges.

Proposition 7.6.26. Let X be the set of cubes

X = {α(C) : α ∈ S(D)}
and let Y be the set of chords of F . Then there is a one-to-one correspon-
dence g : X → Y given by setting g(α(C)) = α(C)∩F . Thus, there are five
elements in X.

Proof. The map g is well-defined by Corollary 7.6.24 and is one-to-one by
Lemma 7.6.25. It is onto because each chord in F is the image of v0v3 under
a power of ρF . �

We obtain the following.

Theorem 7.6.27. There is a group homomorphism

ε : S(D)→ Σ(X) ∼= Σ5(7.6.33)

ε(α) = α(C).

The kernel of ε is {±I3}. The restriction

ε : O(D)→ Σ5

is injective and induces an isomorphism

(7.6.34) ε : O(D)
∼=−→ A5

of O(D) onto the alternating group A5. The image of ε : S(D)→ Σ5 is also
A5.

Proof. The kernel of ε is

ker ε = S(D) ∩
⋂

α∈S(D)

S(α(C)),

the set of isometries of D that also preserve each of the cubes α(C). Since
each α ∈ S(D) is linear, {±I3} ⊂ ker ε. Moreover, ker ε ⊂ S(D)∩S(C) = H,
a group we understand well. Indeed, ker ε ⊂ H ∩ S(ρF (C)), so it suffices to
show that

(7.6.35) H ∩ S(ρF (C)) = {±I3}.



290 MARK STEINBERGER

An easy calcuation shows that the vertices of ρF (C) are

±
[
0
φ
Φ

]
,±
[
Φ
0
φ

]
,±
[−φ

Φ
0

]
,±
[−1
−1
1

]
.

And ±I3 are the only elements of H that preserve this set. Since −I3 is
orientation-reversing, ε : O(D) → Σ5 is an injection onto a 60-element
subgroup of Σ5. So ε(O(D)) has index 2 in Σ5. Corollary 6.6.13 shows that
A5 is the only index 2 subgroup of Σ5, and (7.6.34) follows.

Finally, O(D) has index 2 in S(D) and −I3 is orientation-reversing, so
every element of S(D) r O(D) has the form A · (−I3) for A ∈ O(D). But
ε(A · (−I3)) = ε(A) ∈ A5, and the result follows. �

7.6.5. Duality. The octahedron and the isosahedron are what’s known as
dual polyhedra to the cube and the dodecahedron, respectively:

Definition 7.6.28. Let P be a 3-dimensional polytope. We write F(P) for
the set of (2-dimensional) faces of P. Similarly, we write E(P) and V(P) for
the sets of edges and vertices of P , respectively. For a face F ∈ F(P), we
write c(F ) for its centroid and write

(7.6.36) cF(P) = {c(F ) : F ∈ F(P)}.
We define the dual, d(P), of P to be the convex hull of the centroids of

its faces:

(7.6.37) d(P) = Conv(cF(P)).

We can make one observation immediately: since isometries carry faces
to faces and carry the centroid of a face to the centroid of its image, we
obtain an inclusion S(P) ⊂ S(cF(P)) of subgroups of I3. By Lemma 6.2.1
S(cF(P)) is a subgroup of S(d(P)), even if the centroids c(F ) are not vertices
of d(P). We obtain:

Lemma 7.6.29. Let P be a 3-dimensional polytope in R3. Then we have
inclusions of subgroups

S(P) ⊂ S(cF(P)) ⊂ S(d(P)) ⊂ I3.
We shall not treat the theory of duals in any kind of general way, but will

show for each of the Platonic solids P that we’ve studied, the dual d(P) is
another Platonic solid. Moreover the above inclusion

S(P) ⊂ S(d(P))

is the identity for a Platonic solid P, i.e., S(P) = S(d(P)).
Moreover, we shall show that the dual of a tetrahedron is a tetrahedron,

and that the duals of the cube and dodecahedron are the octahedron and
icosahedron, respectively. And these five solids exhaust the collection of
Platonic solids.

The relationship between S(P ) and S(d(P )) has already been forecast in
the calculation of the symmetries of the n-cube Cn = [−1, 1]n in Propo-
sition 6.2.17. It was shown that the symmetries of Cn are determined by
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their effect on the centroids of its (n−1)-dimensional faces. These centroids
form the vertex set of an n-dimensional analogue of the duals we study here,
providing an interesting higher-dimensional analogue of the octahedron:

Definition 7.6.30. The n-cross, or n-orthoplex, is the convex hull of

{±e1, . . . ,±en} ⊂ Rn

(i.e., each of ei and −ei is in the convex generating set for i = 1, . . . , n). The
4-cross is also known as the 16-cell.

7.6.6. The octahedron. The standard regular octahedron is the dual of
the standard balanced 3-dimensional cube C. Let O = {±e1,±e2,±e3},
where e1, e2, e3 is the canonical basis of R3 and each of ei and −ei is in O
for i = 1, 2, 3. Then O = c(C), and the octahedron O is given by

(7.6.38) O = Conv(O),

Each of the six points ±e1,±e2,±e3 is a vertex of O, as ±ei are the extreme
points in O of the linear function given by the projection onto the i-th
factor of R3. As in Proposition 6.2.17, the linear maps which permute O are
precisely the signed permutations matrices O(3,Z) = S(C). So

(7.6.39) S(C) = S(O)

as subgroups of I3.
We can use the geometry of dualization to study the structure of the

octahedron O. First consider the following. Its proof is obvious.

Lemma 7.6.31. Let f : R3 → R be the linear function f(x) = 〈x, v0〉, where
v0 =

[
1
1
1

]
as above. Then on O, we have f(ei) = 1 and f(−ei) = −1 for

i = 1, 2, 3. Thus f(O) = [−1, 1] and
(f |O)−1(1) = Conv(e1, e2, e3) and (f |O)−1(−1) = Conv(−e1,−e2,−e3)
are faces of O.

Note that v0 is a vertex of C. We can repeat the argument with the other
vertices of C to obtain the following.

Lemma 7.6.32. The sets Conv(ǫ1e1, ǫ2e2, ǫ3e3) are all faces of O, where
ǫ1, ǫ2, ǫ3 ∈ {−1, 1}. Indeed, ǫ1e1, ǫ2e2, and ǫ3e3 attain the maximum value

on O of the linear function fv(x) = 〈x, v〉, where v =
[
ǫ1
ǫ2
ǫ3

]
is a vertex of C.

Thus, we obtain eight faces of O, each isometric to Conv(e1, e2, e3) = ∆2,
an equilateral triangle in R3. The symmetry group S(O) acts transitively on
them.

Proof. The last statement follows since the signed permutations in O(3,Z)
permute the vertex sets of these faces, and hence acts on this set of faces.
It is easy to check that the action is transitive. �
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We’ve constructed a face of O = d(C) corresponding to each vertex of
C, just as there is a vertex of O corresponding to each face of C. We show
next that there are no other faces.

Lemma 7.6.33. Let S be a proper subset of O with at least three elements
that is not one of the vertex sets of the faces in Lemma 7.6.32. Then Conv(S)
contains 0 and hence is not a face of O. In particular, all the faces of O
are given in Lemma 7.6.32.

Proof. Under our hypotheses, S must contain both ei and −ei for some i,
so Conv(S) contains 0. Since S(0) = O, it lies in the interior of O. �

Every segment [±ei,±ej ] with i < j, signs varying independently, is the
intersection of two faces, one with additional vertex ek, the other with addi-
tional vertex −ek, where k = {1, 2, 3}r {i, j}. In particular, these segments
are edges. The other vertex segments are [−ei, ei] which contain 0 and hence
are not edges. We obtain:

Lemma 7.6.34. The edges of O are the segments [±ei,±ej ] with i < j,

signs varying independently. Since there are
(
3
2

)
such pairs i < j and four

choices of sign for each pair, this gives 12 edges.

Finally, we note that the dual of O is a rescaled version of C. To see this,
note that the centroid of Conv(ǫ1e1, ǫ2e2, ǫ3e3) is 1

3(ǫ1e1 + ǫ2e2 + ǫ3e3) =
1
3

[
ǫ1
ǫ2
ǫ3

]
, a rescaling by 1

3 of the vertex
[
ǫ1
ǫ2
ǫ3

]
of C. Since this is true for all

faces of O, we obtain the following.

Proposition 7.6.35. The double dual of C is the rescaling of C by a factor
of 1

3 :

d(d(C)) = d(O) =
1

3
C.

1
3C has exactly the same symmetry group as C (and O) as a subgroup of

the linear isometries of R3.

7.6.7. Dual of the tetrahedron. We compute of the dual of the standard
regular tetrahedron T. As above, we write S for the vertex set (7.6.2) of
the cube C and write T ⊂ S for the vertices of T given in (7.6.5):

T =
{[

1
1
1

]
,
[

1
−1
−1

]
,
[−1

1
−1

]
,
[−1
−1
1

]}
⊂ S.

The vertex set T ′ = S r T is then the vertex set for the complementary
tetrahedron T′.

The four faces of T are the convex hulls of each of the 3-element subsets
of T . And each 3-element subset is determined by the vertex it does not
contain: we write Tv = T r {v} for v ∈ T . Then the faces of T are:

(7.6.40) F(T) = {Conv(Tv) : v ∈ T}.
Lemma 7.6.36. The centroid of Conv(Tv) is −1

3v.
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Proof. The vertices in T add up to 0, so the sum of the vertices unequal to
v is −v. The 1

3 comes from taking their average. �

The vertices in T ′ are the negatives of those in T , so the following is
immediate.

Corollary 7.6.37. The dual of the tetrahedron T is the rescaling 1
3T

′ of the
tetrahdron T′. Iterating this, we see that the double dual d(d(T)) = 1

9T, and
similarly for T′. All of these tetrahedra have the same group of isometries.

7.6.8. The icosahedron. The icosahedron is the dual of the dodecahe-
dron. Recall from Proposition 7.6.21 that the subgroup H = S(C) ∩ S(D)
acts transitively on the faces of D. Here, (see Lemma 7.6.6 and Corol-
lary 7.6.8) H is the group of linear isometries induced by the matrices







±1 0 0
0 ±1 0
0 0 ±1


 ,




0 0 ±1
±1 0 0
0 ±1 0


 ,




0 ±1 0
0 0 ±1
±1 0 0





 ,

where the signs vary independently of one another. (These are the signed
cyclic permutation matrices. They cyclically permute the coordinates and
add signs.) By (7.6.24), the centroid 1

5N of the face F we have studied is

(7.6.41)
1

5
N =

Φ+ 2

5

[
1
0
Φ

]
.

The set of all centroids of faces of D is the orbit of this point under the
action of H:

(7.6.42) cF(D) =

{
Φ+ 2

5

[ ±1
0

±Φ

]
,
Φ+ 2

5

[
0

±Φ
±1

]
,
Φ+ 2

5

[±Φ
±1
0

]}
,

where the signs vary independently.
To simplify notation, we shall rescale and set

(7.6.43) W =
{[ ±1

0
±Φ

]
,
[

0
±Φ
±1

]
,
[±Φ
±1
0

]}
,

and define the standard icosahedron I to be the convex hull Conv(W ). Since
the isometries of D are all linear and preserve cF(D), we have

(7.6.44) S(D) ⊂ S(W ) ⊂ S(I).

Of course, H acts transitively on W .
Let’s give names to some vertices:

(7.6.45) u0 =
[
1
0
Φ

]
, u1 =

[
Φ
1
0

]
, u2 =

[
0
Φ
1

]
.

Taking u0 as our base vertex, define the linear function f : R3 → R by

f(x) = 〈x, u0〉.
The following calculation is left to the reader.
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Lemma 7.6.38. The restriction of f to W is given by

(7.6.46) f(w) =





Φ+ 2 for w = u0,

Φ for w =
[
Φ
1
0

]
,
[
0
Φ
1

]
,
[−1

0
Φ

]
,
[

0
−Φ
1

]
,
[

Φ
−1
0

]
,

−Φ for w =
[−Φ
−1
0

]
,
[

0
−Φ
−1

]
,
[

1
0

−Φ

]
,
[

0
Φ
−1

]
,
[−Φ

1
0

]
,

−Φ− 2 for w = −u0.

Thus, u = (f |W )−1(Φ+ 2) is a vertex of I, and since H acts transitively on
W , W = V(I), the set of vertices of I.

To find faces of I we dot with v0 =
[
1
1
1

]
: let g(x) = 〈x, v0〉.

Lemma 7.6.39. The values of the linear function g on W are given by

(7.6.47) g(w) =





Φ+ 1 for w = u0, u1, u2,

φ for w =
[−1

0
Φ

]
,
[

0
Φ
−1

]
,
[

Φ
−1
0

]
,

−φ for w =
[

1
0

−Φ

]
,
[

0
−Φ
1

]
,
[−Φ

1
0

]
,

−Φ− 1 for w = −u0,−u1,−u2.

Thus, G = Conv(u0, u1, u2) is a face of I with centroid

(7.6.48) c(G) =
Φ + 1

3

[
1
1
1

]
.

(see (7.6.45) for this calculation). Since the orbit of v0 under S(D) has 20
elements, there are 20 faces of the form α(G) with α ∈ S(D).

Let us name some more vertices:

(7.6.49) u3 =
[−1

0
Φ

]
, u4 =

[
0

−Φ
1

]
, u5 =

[
Φ
−1
0

]
.

The calculations in (7.6.46) now give us the following:

Lemma 7.6.40. Let w ∈W . Then

(7.6.50) d(u0, w) =





2 for w = u1, u2, u3, u4, u5,

2Φ for w = −u1,−u2,−u3,−u4,−u5,
2
√
Φ+ 2 for w = −u0.

Since d(u1, u2) = 2, we have:

Lemma 7.6.41. G is an equilateral triangle with side length 2.

The rotation ρF of Proposition 7.6.13 fixes u0 and has order 5. Since it
preserves distance, it must permute the set {u1, u2, u3, u4, u5}. A little group
theory shows this permutation must be cyclic. We can determine more with
brute force calculation (left to the reader):
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Lemma 7.6.42. ρF permutes {u1, u2, u3, u4, u5} as follows:

(7.6.51) u1 7→ u2 7→ u3 7→ u4 7→ u5 7→ u1.

Since ρF is linear, it acts on their negatives by

(7.6.52) − u1 7→ −u2 7→ −u3 7→ −u4 7→ −u5 7→ −u1.

Corollary 7.6.43. There are exactly five faces of the form α(G), α ∈ S(D),
with u0 as a vertex: G1, . . . , G5, where

(7.6.53) Gi =

{
Conv(u0, ui, ui+1) = ρi−1

F (G) for i = 1, . . . , 4,

Conv(u0, u5, u1) = ρ4F (G) for i = 5.

Proof. Of course G = G1. These five faces are immediate from Lem-
ma 7.6.42. They are the only ones because they are the only equilateral
triangles with vertices in W with side length 2 containing u0. Any other
triple chosen from {u0, . . . , u5} will contain a pair of vertices 2Φ apart. �

Proposition 7.6.44. Let v 6= w ∈ W . Then [v, w] is an edge of I if and
only if d(v, w) = 2. If d(v, w) > 2, then (v, w) ⊂ Int(I).

Proof. Since S(D) acts transitively on W , we may assume v = u0. If
d(u0, w) = 2, then w ∈ {u1, u2, u3, u4, u5}. For 2 ≤ i ≤ 5, [u0, ui] = Gi−1∩Gi
and hence is an edge. Similarly, [u0, u1] = G5 ∩G0 is an edge.

If d(u0, w) = 2
√
Φ+ 2, w = −u0. Since 0 ∈ [u0,−u0] and the carrier of 0

is I, the result follows.

If d(u0, w) = 2Φ, we rotate by powers of ρF until w = −u3 =
[

1
0

−Φ

]
. But

the midpoint of [u0,−u3] is e1, and it suffices to show the carrier of e1 is I.
The midpoint of [u1, u5] is Φe1, and the midpoint of [−u1,−u5] is −Φe1.

Since both e1 and 0 are in (Φe1,−Φe1), e1 and 0 have the same carrier, and
the result follows. �

Corollary 7.6.45. The twenty faces {α(G) : α ∈ S(D)} are the only faces
of I.

Proof. Let K be a face of I. Then K has at least 3 vertices, each pair of
which have distance 2 from one another. Moving one vertex to u0, we see
that K must then contain one of the Gi, and hence be equal to it. �

Corollary 7.6.46. The dual of the icosahedron I is a rescaling of the do-
decahedron D. So S(I) ⊂ S(D). Since the reverse inclusion also holds, the
two symmetry groups are equal.

Proof. By (7.6.48), the centroid of G is Φ+1
3 v0, where v0 is a vertex of

D. So for α ∈ S(D), the centroid of α(G) is Φ+1
3 α(v0). Since S(D) acts

transitively on the vertices of D, the dual of I is the rescaling of D by the
factor Φ+1

3 . �
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7.7. Exercises.

1. Show that each face of the dodecahedron D meets the cube C in an
edge and that the passage from a face F ′ of D to F ′ ∩ C gives a
one-to-one correspondence from the faces of D to the edges of C.
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8. Spheres and other manifolds

We now wish to generalize our study of Euclidean geometry to geometry
in more general settings. The general setting in which isometries are best
studied is that of Riemannian geometry. Everything is still based on the
inner product, but the inner product is allowed to vary from point to point.
The basic method is to study inner products of tangent vectors to curves.
The inner product used will depend on the point on the curve at which that
tangent is taken. That is the appropriate setting, for instance, to study the
classical “non-Euclidean geometry” realized by hyperbolic space.

We will begin with the conceptually simpler case of spherical geometry.
The simplest example is the 2-sphere

S2 =
{
x ∈ R3 : ‖x‖ = 1

}
.

This is the set of all unit vectors in R3, and forms a model for the surface of
the earth. This model is used for computing shortest flight paths between
two cities. The “great circle routes” are what is used, and they come directly
out of the geometry we develop here.

More generally, the (n− 1)-sphere is the set of unit vectors in Rn:

Sn−1 =
{
x ∈ Rn : ‖x‖ = 1

}
.

In this chapter, we will show that Sn−1 is what’s called a smooth submanifold
of Rn of codimension 1.

8.1. Some advanced calculus. Advanced calculus is the foundation for
the theory of smooth manifolds.

Recall that if U ⊂ Rn is open and if f : U → Rm, we write

f(x) = (f1(x), . . . , fm(x)) ∈ Rm

and call fi the ith coordinate function of f . Explicitly, fi = πi ◦ f where
πi : R

m → R is the projection onto the ith coordinate:

πi((x1, . . . , xm)) = xi.

The partial derivatives of f are defined by setting the partial of fi with
respect to xj to be

(8.1.1)
∂fi
∂xj

(x) =
d

dt
(fi(x+ tej))|t=0

whenever this derivative exists. Here, ej is the jth canonical basis vector.

Explicitly, ∂fi
∂xj

(x) is the derivative at 0 of fi◦ιj(x), where ιj(x) : (−ǫ, ǫ)→ U

is given by ιj(x)(t) = x + tej . Since U is open in Rn, this is defined for ǫ
sufficiently small.

Definition 8.1.1. If ∂fi
∂xj

(x) is well-defined for all i = 1, . . . ,m and j =

1, . . . , n, we say f is differentiable at x and we define the Jacobian matrix
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of f at x by

Df(x) =

(
∂fi
∂xj

(x)

)
.

If f is differentiable at each x ∈ U we say f is differentiable.

Let’s now briefly review the idea of continuity. For simplicity, we will
restrict attention to subspaces of Euclidean space.

Definition 8.1.2. Let X ⊂ Rn and Y ⊂ Rm. We say that f : X → Y is
continuous if for each x0 ∈ X and each ǫ > 0 there exists δ > 0 such that

‖x− x0‖ < δ ⇒ ‖f(x)− f(x0)‖ < ǫ.

The following is immediate from the definition of continuity.

Lemma 8.1.3. Let X ⊂ Rn and Y ⊂ Rm and let f : X → Y . Then f
is continuous if and only if the composite f : X → Y ⊂ Rm is continuous.
Moreover, if X ⊂ X̂ and f̂ : X̂ → Y is continuous with f̂ |X = f , then f is
continuous.

The above is useful by the following basic result from the calculus of
several variables.

Lemma 8.1.4. Let U ⊂ Rn and let f : U → Rm be differentiable. Then f
is continuous.

We can now discuss higher differentiability.

Definition 8.1.5. We say f is C1, or continuously differentiable, if the
function ∂fi

∂xj
: U → R is well-defined and continuous for all i = 1, . . . ,m

and j = 1, . . . , n. By Proposition A.6.13, this is equivalent to saying the
Jacobian matrix

Df : U →Mm,n(R)

is continuous whereMm,n(R) is the space of m×n matrices with coefficients
in R, which we identify with Rmn in the usual way.

If each ∂fi
∂xj

: U → R is itself C1, we say f is C2. Inductively, if each
∂fi
∂xj

: U → R is Cr for some r ≥ 1 we say f is Cr+1. In other words,

all iterated partials of length r + 1 of all coordinate functions fi of f are
well-defined and continuous.

If f is Cr for all r ≥ 1, we say f is C∞ or smooth. It is also sometimes
customary to write C0 for a continuous function.

The Jacobian matrix is indeed the higher dimensional analogue of the
derivative of a real valued function of one variable, and provides the best
“linear” approximation at x to the function f . Specifically, f is best ap-
proximated near x0 by the affine function

f(x0) +Df(x0) · (x− x0),
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where the · represents the matrix product of Df(x0) with the column vector
x− x0.

This approximation is used in the calculus of several variables to deduce
properties of f from properties of Df . This, of course, is analogous to the
first derivative test and mean value theorem for studying functions of a real
variable.

In order for Df to be the best linear approximation to f , we must have
the following.

Lemma 8.1.6. Let A = (aij) be an m× n matrix and let TA : Rn → Rm be
the induced linear function. Then DTA(x) = A for all x ∈ Rn.

Proof. Write Ai =
[
ai1 . . . ain

]
for the ith row of A. Then the ith

coordinate function of TA is TAi . Now,
∂TAi
∂xj

is the derivative at 0 of the

function γ : R→ R given by

γ(t) = TAi(x+ tej) = TAi(x) + tTAi(ej) = TAi(x) + taij

by linearity and direct matrix multiplication. But γ′(0) = aij and the result
follows. �

And now for some more examples of Jacobian matrices:

Example 8.1.7. A Cr curve in Rn is a Cr map γ : (a, b)→ Rn with (a, b)
an open interval in R. The Jacobian matrix Dγ is given by

Dγ(t) =



γ′1(t)
...

γ′n(t)


 ,

where γi is the ith coordinate function of γ. We write γ′(t) as a shorthand
for Dγ(t).

An important example is the exponential map exp : R → R2 given by

exp(t) =

[
cos t
sin t

]
. We have

D exp(t) =

[
− sin t
cos t

]
= exp(t)⊥.

Note that both exp and D exp take value in the unit circle S1.

Example 8.1.8. Let U ⊂ Rn and let f : U → R be Cr. Then

Df(x) =
[
∂f
∂x1

(x) . . . ∂f
∂xn

(x)
]
= ∇f(x),

the gradient of f at x. As in the one-variable case, this is important in
finding local maxima and minima of f , which may occur only at critical
points: points where ∇f(x) = 0 (or undefined, if f is not C1 everywhere).
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An interesting example is given by f : Rn → R with f(x) = 〈x, x〉 for all
x ∈ Rn. Here,

∂

∂xi
(x) =

d

dt
(〈x+ tei, x+ tei〉)|t=0

=
d

dt
(t2〈ei, ei〉+ 2t〈ei, x〉+ 〈x, x〉)|t=0

= (2t+ 2xi)|t=0 = 2xi.

Thus,
∇f(x) = 2x

if we regard x as a row vector. So 0 is the only critical point of f , and gives
the absolute minimum. Note that f−1(1) = Sn−1, the unit sphere in Rn.

Another easy calculation is the following.

Lemma 8.1.9. Let y ∈ Rn and let τy be the translation by y: τy(x) = x+ y
for all ∈ Rn. Then

Dτy(x) = In
for every x ∈ Rn.

Proof. The ith coordinate function (τy)i is given by

(τy)i(x) = yi + xi,

where yi and xi are the ith coordinates of the vectors y and x, respectively.
Thus

(τy)i(x+ tej) =

{
yi + xi if i 6= j

yi + xi + t if i = j.

Thus,

∂(τy)i
∂xj

(x) =

{
0 if i 6= j

1 if i = j

= δij . �

A basic result from the calculus of several variables is:

Proposition 8.1.10 (Chain rule). Let U ⊂ Rn and V ⊂ Rm be open. Let
f : U → V and g : V → Rk be Cr, 1 ≤ r ≤ ∞. Then g ◦ f is Cr with
Jacobian matrix given by the matrix product of the differentials of g and f
as follows:

D(g ◦ f)(x) = Dg(f(x))Df(x).

This allows us to calculate the Jacobian matrix of any isometry of Rn.
Recall that any isometry α : Rn → Rn may be written as a composite
α = τy ◦ β where β is a linear isometry of Rn. β, in turn, may be written as
TA where A is an n× n orthogonal matrix.

Corollary 8.1.11. Let α = τy ◦ TA be an isometry of Rn with A an n× n
orthogonal matrix. Then Dα(x) = A for all x ∈ Rn.
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The following concept is useful both for orientation theory and for devel-
oping the theory of smooth manifolds.

Definition 8.1.12. Let U ⊂ Rn open. A Cr map f : U → Rm, 1 ≤ r ≤ ∞,
is an immersion at x ∈ U if the columns of Df(x) are linearly independent.
(In particular, if m = n, then Df(x) is invertible.) f itself is an immersion
if it is an immersion at every x ∈ U .

Example 8.1.13. The exponential map exp : R → R2 is an immersion as
D exp(x) 6= 0 for all x ∈ R.

A fundamental property of Cr immersions Rn → Rn is given by the inverse
function theorem.

Theorem 8.1.14 (Inverse function theorem). Let U ⊂ Rn be open and let
f : U → Rn be Cr, 1 ≤ r ≤ ∞. Then Df(x) is invertible if and only if there
are open subsets V ⊂ U and W ⊂ Rn with x ∈ V such that f |V : V →W is
bijective and f−1 :W → V is Cr. Moreover,

Df−1(f(y)) = (Df(y))−1

for all y ∈ V .

Proof. The “only if” part is one of the fundamental results of advanced
calculus. See [12, Theorem I.5.2] for a proof. The “if” part is easy, and
follows from the chain rule: if there are open subsets V ⊂ U and W ⊂ Rn

with x ∈ V such that f |V : V → W is bijective and f−1 : W → V is Cr,
then

In = DI(x) = Df−1(f(x))Df(x)

and
In = DI(f(x)) = Df(x)Df−1(f(x)),

as f−1(f(x)) = x. Here, I is the identity function of Rn. Thus Df(x) is
invertible with inverse Df−1(f(x)). �

Definition 8.1.15. Let U and V be open subsets of Rn. A Cr-isomorphism
f : U → V is a bijective Cr map whose inverse function is also Cr. A C∞-
isomorphism is called a diffeomorphism.

A Cr map f : U → V us a local Cr-isomorphism if each x ∈ U is contained
in a smaller open set U ′ such that f |U ′ : U ′ → f(U ′) is a Cr-ismorphism
onto an open subset of V . The inverse function theorem may be restated
to say that if U is an open subset of Rn, then a Cr map f : U → Rn is an
immersion if and only if it is a local Cr-isomorphism.

Corollary 8.1.16. Let U ⊂ Rn open and let f : U → Rn be a Cr immersion,
1 ≤ r ≤ ∞. Then f(U) ⊂ Rn is open. If f is also one-to-one, then the
inverse function f−1 : f(U) → U is also Cr, so f : U → f(U) is a Cr-
isomorphism. When r = ∞, this says that if U is open in Rn, then a
one-to-one smooth immersion f : U → Rn has open image and the map
f : U → f(U) is a diffeomorphism.
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Proof. That f(U) is open follows from the open sets W about each point
in f(U) obtained from the inverse function theorem. When f is one-to-one,
the inverse function theorem also shows f−1 is Cr on each such W , and
therefore is Cr on all of f(U). �

8.2. Orientation properties of nonlinear mappings in Rn. We regard
Rn to have a natural orientation coming from the standard ordering of the
standard basis. We can think of open subsets U ⊂ Rn as inheriting this
orientation and ask when a Cr map preserves or reverses this orientation.
Since a dimension-reducing linear map neither preserves nor reverses orien-
tation, we shall ask this question only for immersions. This intuition may
be fleshed out as follows:

Definition 8.2.1. Let U ⊂ Rn open and let f : U → Rn be a C1 immersion.
Then f is orientation-preserving if Df(x) has positive determinant for all
x ∈ U .

We say f is orientation-reversing if Df(x) has negative determinant for
all x ∈ U .

This is, of course, consistent with the linear case by Lemma 8.1.6, and
is also consistent with the definition we gave for isometries of the plane
by Corollary 8.1.11. Indeed, Corollary 8.1.11 allows us to determine the
orientation properties of isometries of Rn. Since every linear isometry is
induced by an orthogonal matrix, and since every orthogonal matrix has
determinant ±1, the following is immediate.

Corollary 8.2.2. Let α ∈ In and write α = τy◦TA for A an n×n orthogonal
matrix. Then α is orientation-preserving if detA = 1 (i.e., if A ∈ SO(n)),
and is orientation-reversing if detA = −1. Recalling from (3.3.4) that
(τyTA) ◦ (τzTB) = τy+AzTAB (and hence (τyTA)

−1 = τA−1yTA−1), we see
that the orientation-preserving isometries of Rn form a subgroup, On ⊂ In.

Unlike the linear case, if U is not path-connected, it is possible for a C1

immersion f : U → Rn to be neither orientation-preserving nor orientation-
reversing.

Example 8.2.3. Define f : R − {0} → R by f(x) = x2 for all x in the
domain. Then Df(x) = [2x], a 1 × 1 matrix with entry f ′(x). Of course,
detDf(x) = 2x, so f is a smooth immersion, and is orientation-preserving
on (0,∞) and orientation-reversing on (−∞, 0).

In some cases, it is possible to test for orientation properties at a single
point. To see this we review some determinant theory. See [17] for the
details.

Recall the sign homomorphism sgn : Σn → {±1} of Definition 4.1.19. The
determinant satisfies the following formula ([17, Corollary 10.2.6]).
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Lemma 8.2.4. Let A = (aij) be n× n. Then

(8.2.1) detA =
∑

σ∈Σn
sgn(σ)aσ(1)1 . . . aσ(n)n.

In particular, det is a polynomial in the n2 variables giving the coordinates
of the matrix, and hence gives a smooth function

det :Mn(R)→ R.

Here Mn(R) denotes the space of n×n matrices with coefficients in R, which

we identify with Rn
2
.

As a bonus, we obtain the following. Recall that GLn(R) is the group of
invertible n×n matrices over R and that a matrix A is invertible if and only
if detA 6= 0.

Corollary 8.2.5. GLn(R) = det−1(R− {0}) is an open subset of Mn(R).

Proof. Differentiable maps are continuous. R − {0} = (−∞, 0) ∪ (0,∞) is
an open subset of R. So det−1(R−{0}) is open by Lemma A.1.12 below. �

Definition 8.2.6. A subset X ⊂ Rn is path-connected if for each x, y ∈ X
there is a continuous map γ : [0, 1]→ X with γ(0) = x and γ(1) = y. Such
a γ is called a path from x to y.

Convex sets are certainly path-connected, so we have plenty of examples.

Proposition 8.2.7. Let U ⊂ Rn be open and path-connected and let f :
U → Rn be a C1 immersion. Let x ∈ U . Then f is orientation-preserving
if Df(x) has positive determinant and is orientation-reversing if Df(x) has
negative determinant.

Proof. In other words, we claim the sign of detDf is constant on U when
U is path-connected and f is a C1 immersion. To see this, note that f being
C1 says Df : U →Mn(R) is continuous, hence so is

det ◦Df : U → R.

Let γ be a path from x to y. Then the composite

det ◦Df ◦ γ : [0, 1]→ R

is continuous. Since f is an immersion, det(Df) is never zero. By the
intermediate value theorem, the sign of det(Df(γ(t))) is constant. �

8.3. Topological manifolds; Sn−1. The basic objects of study in geomet-
ric topology are manifolds. We shall show that the unit sphere Sn−1 ⊂ Rn

is an (n− 1)-dimensional manifold.
The following is a basic topological concept.
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Definition 8.3.1. Let X ⊂ Rn and Y ⊂ Rm. A map f : X → Y is a
homeomorphism if it is continuous, one-to-one and onto, and the inverse
function f−1 : Y → X is also continuous. We write

f : X
∼=−→ Y

for a homeomorphism and trust it will not be confused with an isomorphism
of vector spaces.

Example 8.3.2. Define f : R → R by f(x) = x3. Then f is a homeo-
morphism as the inverse function f−1 : R → R is given by f−1(x) = 3

√
x,

a continuous function. Note that f−1 is not differentiable at 0 because
f ′(0) = 0.

Continuous bijections exist that are not homeomorphisms (because their
inverse functions are not continuous). See Example 10.4.5 below.

Definition 8.3.3. Let X ⊂ Rm. A subset V ⊂ X is open in X if there is
an open subset U of Rm with U ∩X = V .

If x ∈ X a neighborhood of x in X is simply an open set in X containing
x.

Definition 8.3.4. A subset M ⊂ Rm is a topological n-manifold, or n-
dimensional manifold, if for each x ∈ M there is a a neighborhood U of x

in M and a homeomorphism h : U
∼=−→ V where V is an open subset of Rn.

The maps h : U
∼=−→ V (or their inverses, depending on one’s convention) are

called charts for M (and if x ∈ U , we call it a chart about x). If h : U
∼=−→ V

is a chart, we call U a chart neighborhood (of each x ∈ U) in M .
Note that any open subset of a chart neighborhood is also a chart neigh-

borhood by restriction.
We sometimes write Mn for M to emphasize that M has dimension n.

The reader is warned not to confuse this with the cartesian product of n
copies of M .

A 2-dimensional manifold is called a surface.

The following is implicit in the above definition, but is probably not in-
tuitive to a beginner.

Remark 8.3.5. R0 is the 0-vector space, consisting of a single point. Its
only open subspaces are ∅ and itself. So a subset M ⊂ Rm is a 0-manifold
if each point of M is a neighborhood of itself, i.e., if for each x ∈ M there
is an open set U of Rm with U ∩M = {x}. Topologically, this says each
point of M is open in the subspace topology inherited from Rm. This says
the subspace topology is what’s known as the discrete topology.

Topological manifolds have many nice properties, but they are hard to
verify, and the intuition in uncovering those properties came from the more
obvious properties of smooth manifolds. We will show that the unit sphere
Sn−1 of Rn is a topological manifold and use it as the motivating example
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in defining smooth manifolds. Consider en, the last of the canonical basis
vectors of Rn, and think of it as the north pole N of Sn−1. The following
shows that the complement of a point in Sn−1 is homeomorphic to Rn−1.

Theorem 8.3.6. Let n ≥ 2 and idenitify Rn−1 with the equatorial (n− 1)-
plane in Rn:

Rn−1 = {(x1, . . . , xn−1, 0) : x1, . . . , xn−1 ∈ R}.

Let U = Sn−1r {N}, the complement of the north pole in Sn−1. Then there
is a homeomorphism hU : U → Rn−1 given by

(8.3.1) hU (x) =
1

1− xn
(x1, . . . , xn−1, 0)

for x = (x1, . . . , xn). The inverse function gU of hU is given by

(8.3.2) gU (x) = tx+ (1− t)N for t =
2

1 + 〈x, x〉
for x = (x1, . . . , xn−1, 0).

Proof. We have defined hU to take x to the unique point on the ray
−→
Nx

lying in Rn−1: hU (x) = (1−t)N+tx for the unique t such that 1−t+txn = 0.

gU , in turn, takes x to the unique point of norm 1 on
−→
Nx other than N .

hU and gU both extend to C1 (in fact C∞ functions) defined on open sets
containing U and Rn−1, respectively, and hence are continuous. Note that
if gU (x) = (y1, . . . , yn), then yn = 1 − t and (y1, . . . , yn−1, 0) = tx. Thus,

1
1−yn = 1

t
, so

hU ◦ gU (x) =
1

t
(tx1, . . . , txn−1, 0) = x.

Similarly, since hU (x) =
1

1−xn (x1, . . . , xn−1, 0), we have

〈hU (x), hU (x)〉 =
(

1

1− xn

)2 n−1∑

i=1

x2i

=

(
1

1− xn

)2

(1− x2n)

=
1 + xn
1− xn

.

But then it’s easy to see that 2
1+〈hU (x),hU (x)〉 = 1 − xn, and that in turn

shows gU ◦ hU = id. �

The map hU is called the stereographic projection of U onto Rn−1. The
following may now be used to motivate the definition of smooth manifold
and show that Sn−1 is one.
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Corollary 8.3.7. Sn−1 is an (n − 1)-manifold for n ≥ 2. Specifically,
let V = Sn−1 r {S} where S = −en is the south pole. Then there is a
homeomorphism hV : V → Rn−1 given by

hV (x) =
1

1 + xn
(x1, . . . , xn−1, 0)

in the notations of Theorem 8.3.6. Since every point of Sn−1 lies in either
U or V , this suffices to show Sn−1 is a manifold.

Note that hU (S) = 0 = hV (N), and hence

hU (U ∩ V ) = hV (U ∩ V ) = Rn r {0}.
The composites

hV ◦ h−1
U : Rn r {0} → Rn r {0},

hU ◦ h−1
V : Rn r {0} → Rn r {0},

are both given by the same formula:

(8.3.3) hV ◦ h−1
U (x) = hU ◦ h−1

V (x) =
1

〈x, x〉x.

Here, hU (U ∩ V ) = hV (U ∩ V ) = Rn−1 − 0.

Proof. We simply use the south pole in place of the north in the arguments
for Theorem 8.3.6. Thus, we set hV (x) equal to the unique point on the ray−→
Sx lying in Rn−1 and set gV (x) equal to the unique point of norm 1 on

−→
Sx

other than S.
The formula for hV is then clear. As above, gU (x) = (tx1, . . . , txn−1, 1−t)

for t = 2
1+〈x,x〉 , hence

hV ◦ gU (x) =
t

2− t x.

The result then follows by calculating t
2−t . The same calculation works in

the opposite direction. �

In particular, S2 is a surface and S1 is a 1-manifold (the latter can also
be shown using the exponential map).

Note that we have not yet considered the 0-sphere, S0 = {±1} ⊂ R, the
unit sphere in R. Since {−1} = S0 ∩ (−2, 0) and {1} = S0 ∩ (0, 2), S0 is a
0-manifold. We obtain:

Corollary 8.3.8. Sn is an n-manifold for n ≥ 0.

8.4. Smooth manifolds.

Definition 8.4.1. A smooth atlas A on a topological n-manifold M is a
family of charts

h : U
∼=−→ h(U) ⊂ Rn h(U) open in Rn

such that:
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(1) {U : [h : U
∼=−→ h(U)] ∈ A} is a cover of M , i.e.,

M =
⋃

h∈A
U.

(2) If h : U
∼=−→ h(U) and k : V

∼=−→ k(V ) are charts in A with U ∩ V 6= ∅
then the mapping

(8.4.1) gkh = k ◦ h−1 : h(U ∩ V )→ k(U ∩ V )

is a diffeomorphism. Note that its inverse function is

ghk = h ◦ k−1 : k(U ∩ V )→ h(U ∩ V ).

The maps gkh for h, k ∈ A are called the transition functions of A. A is said
to provide a smooth structure M , and M together with its atlas is called a
smooth manifold. A smooth 2-manifold is called a smooth surface.

As above, we shall often abbreviate h : U
∼=−→ h(U) ∈ A by h ∈ A. So we

shall be careful to change the function name when we restrict the domain.
Indeed, it is sometimes desirable to allow the domains of two charts to be
equal. Otherwise, we would index everything by the open sets in question
and write gV U in place of gkh.

Examples 8.4.2.

(1) The mappings {hU : U
∼=−→ Rn−1, hV : V

∼=−→ Rn−1} from Corol-
lary 8.3.7 give a smooth atlas for Sn−1. The transition maps are
specified explicitly in (8.3.3), and are smooth.

This gives what is known as the standard smooth structure of
Sn−1.

(2) Rn is a smooth manifold, with atlas given by the identity map.
(3) If M is a smooth n-manifold and W is a nonempty open subset

of M then W is a smooth n-manifold whose charts are given by

h|W∩U :W ∩ U ∼=−→ h(W ∩ U) ⊂ Rn for each h in the atlas for M .
(4) The Klein bottle and the torus are shown to be a smooth 2-manifolds

(surfaces) in Corollary A.7.5, below.

We can define smooth maps between manifolds of different dimensions.

Definition 8.4.3. Let M be a smooth n-manifold with atlas A and let N
be a smooth m-manifold with atlas B. A map f : M → N is smooth if for

each h : U
∼=−→ h(U) ∈ A and k : V

∼=−→ k(V ) ∈ B the composite

(8.4.2) h(U ∩ f−1(V ))
h−1

//

fkh

))

U ∩ f−1(V )
f

// V
k // k(V )

is smooth. Of course, any map out of ∅ is smooth.
We say f : M → N is a diffeomorphism if it is smooth, one-to-one, onto

and the inverse function f−1 : N →M is smooth.
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The property of being a smooth map is a local one.

Lemma 8.4.4. Let M and N be smooth manifolds and let f : M → N .
Then f is smooth if and only if for each x ∈ M there exist charts h and
k such that (8.4.2) is smooth on some smaller open set containing h(x).
Moreover, the rank of the Jacobian matrix Dfkh is independent of the choice
of h and k.

Proof. If we replace h and k by charts h′ and k′ about x and f(x), respec-
tively, then

fk′h′ = gk′k ◦ fhk ◦ ghh′
near x. The result now follows from the chain rule. �

Lemma 8.4.5. If f : M → N is a diffeomorphism from an n-manifold to
an m-manifold, then n = m.

Proof. Suppose U∩f−1(V ) 6= ∅. Since both f and f−1 are smooth, one can
restrict the codomain of the maps fkh of (8.4.2) to obtain a diffeomorphism

fkh : h(U ∩ f−1(V ))→ k(V ∩ f(U))

with inverse

fhk : k(V ∩ f(U))→ h(U ∩ f−1(V )).

In particular, we may assume M an open subset of Rn and N is an open
subset of Rm. Now

Df−1(f(x))Df(x) = In and Df(x)Df−1(f(x)) = Im,

giving an isomorphism of vector spaces between Rn and Rm, so n = m. �

Remark 8.4.6. The analogous result for homeomorphisms of topological
manifolds is also true, as a consequence of invariance of domain [8, Theorem
XVII.3.1]. Specifically, homeomorphic topological manifolds must have the
same dimension.

Example 8.4.7. Define f : R → R by f(x) = x3. Then f is a homeo-
morphism and a smooth bijection, but not a diffeomorphism as f−1 is not
smooth at 0. While f is not a diffeomorphism, the domain and codomain
are diffeomorphic. We could use f to define an atlas on R giving a smooth
structure different from the standard one, but diffeomorphic to the standard
one via f .

Remarks 8.4.8.

(1) John Milnor first showed there are smooth structures on a sphere,
S7 in the first examples, that are not diffeomorphic to the stan-
dard smooth structure. Kervaire and Milnor then classified all such
structures on spheres of dimension ≥ 6, laying the groundwork for a
theory called surgery theory. Surgery theory may be used to classify
the smooth structures on a topological manifold.
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(2) Kirby and Freedman, using work of Donaldson, showed there are
smooth structures on R4 not diffeomorphic to the standard smooth
structure. Note, then, that whole of R4 cannot be the domain of a
chart for such a structure.

Definition 8.4.9. Let M be a topological manifold. We say two smooth
atlases A and B on M are equivalent (and represent the same smooth struc-
ture on M) if the identity map of M gives a diffeomorphism between the
two atlases. In particular, then, either atlas may be used to describe the
smooth maps in or out of M .

If U ⊂ M is open, it is a smooth manifold with an atlas given by the
restriction to U of the charts of M , so we can talk about diffeomorphisms
of U . If h : U → Rn is such that h : U → h(U) is a diffeomorphism, we can
add h to the atlas of M without changing any of the constructions we shall
make below. We can also remove a chart if its domain is covered by other
charts in the atlas. We will allow ourselves this flexibility without further
discussion. In particular, if we say the smooth manifoldM has an atlas with
a particular property, we mean an atlas equivalent to the original one.14

The following concepts are useful.

Definition 8.4.10. An open cover U of a space X is a set of open subsets
of X such that

X =
⋃

U∈U
U.

An open cover V is a refinement of U if each V ∈ V is contained in some
U ∈ U .

The following may be obtained simply by restricting the domains of
charts.

Lemma 8.4.11. Let U be any open cover of the smooth manifold M . Then
M has an atlas A that refines U .
Remark 8.4.12. As shown in Exercises 2 or 3 below, every point in Rn has
arbitrary small neighborhoods diffeomorphic to Rn. We can use these to
alter any given atlas so that the charts actually give diffeomorphisms from
their domains onto all of Rn.

14One approach to defining the smooth structure on M is to insist that every atlas be
“maximal” in the sense that every smooth embedding h : U → Rn of an open subspace of
M into Rn be part of the atlas. This is a huge amount of redundancy in that we have an
overabundance of open sets U , and for each such U and uncountable number of smooth
embeddings h : U → Rn represented in the atlas. The reason one might do this is that if A
and B are maximal atlases on M and if the identity map gives a diffeomorphism between
these atlases, then the atlases A and B are in fact equal. But that seems much too high
a price to pay for uniqueness. In fact, we personally prefer atlases that are locally finite
when possible, meaning that each point has a neighborhood that intersects only finitely
many of the open sets in the atlas.
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As shown in the Exercise 1 below, the displayed smooth structure on Sn−1

coincides with its structure as a submanifold of Rn in the following sense:

Definition 8.4.13. Let N be a smooth n-manifold. A smooth m-submani-
fold M of N is a subset M ⊂ N such that for each x ∈M there is a smooth
chart h : U → Rn = Rm×Rk for N about x such that U∩M = h−1(Rm×0).
The maps h|U∩M : U ∩M → Rm then assemble to give a smooth atlas for
M and the inclusion map M ⊂ N has Jacobian matrices of rank m at every
point in M .

The following is useful.

Proposition 8.4.14. Let M be a smooth m-submanifold of the smooth n-
manifold N . Let S be an s-submanifold of the r-manifold R. Let f : N → R
be a smooth map with f(M) ⊂ S. Then f |M :M → S is smooth.

In the case M = N , if f :M → S ⊂ R, then f :M → S is smooth if and
only if f :M → R is smooth.

Proof. If W ⊂ Rn is open and g :W → Rr is smooth and if

g(W ∩ (Rm × 0)) ⊂ Rs × 0,

then g|W∩(Rm×0) : W ∩ (Rm × 0) → Rs is smooth. In fact, its Jacobian
matrix is a submatrix of the Jacobian matrix of g.

In the case M = N and f : M → S ⊂ R, the above argument shows
that f : M → S is smooth if f : M → R is. But the converse follows by
composite, as S ⊂ R is smooth. �

A vitally important application is the following.

Corollary 8.4.15. Let α : Rn → Rn be a linear isometry. Then α restricts
to a diffeomorphism α|Sn−1Sn−1 → Sn−1.

Proof. Since Sn−1 is the set of points of distance 1 from the origin, and
since α preserves 0 and also preserves distance, α(Sn−1) ⊂ Sn−1. But the
same is true of α−1, so α|Sn−1Sn−1 → Sn−1 is a smooth bijection with inverse
α−1|Sn−1Sn−1 → Sn−1. �

In fact, every smooth manifold is a submanifold of some Euclidean space.

Theorem 8.4.16 (Whitney Embedding Theorem). Every smooth n-mani-
fold is diffeomorphic to a smooth submanifold of R2n.

Of course, some n-manifolds are smooth submanifolds of much lower-
dimensional Euclidean spaces. For instance Sn is a smooth submanifold of
Rn+1. In fact, Sn is what’s called a regular hypersurface in Rn+1, which
gives it some important extra properties. We will now flesh out this notion.

Definition 8.4.17. Let f : Rn → Rm be smooth, with n ≥ m. A point
y ∈ Rm is a regular value of f if Df(x) has rank m for each x ∈ f−1(y).

As shown in Corollary 10.4.10 below, this makes M = f−1(y) a smooth
submanifold of Rn of dimension n−m. We call it a regular submanifold of
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Rn. If m = 1, M is a codimension 1 submanifold of Rn, otherwise known
as a hypersurface in Rn. When n = 3, then M is a surface, and hence a
regular surface in R3.

Example 8.4.18. Sn is a regular hypersurface in Rn+1, as Sn = f−1(1),
where f : Rn+1 → R is given by f(x) = 〈x, x〉. As shown in Example 8.1.8,

(8.4.3) Df(x) = ∇f(x) = 2x

for all x ∈ Rn+1, so 1 is a regular value of f . By Exercise 1 below, this
smooth structure on Sn agrees with the one given in Corollary 8.3.7 via
stereographic projection.

We shall use this to obtain more information about the sphere after de-
veloping the notion of the tangent space of a manifold. We shall see (Corol-
lary 10.2.12) that the tangent space Tu(S

n) to Sn at a point u ∈ Sn is the
orthogonoal complement of span(∇f(u)) in Rn+1, which is precisely {u}⊥.
8.5. Products of manifolds. Let M and N be smooth manifolds of di-
mension m and n, respectively. Then smooth charts h : U → Rm for M and
k : V → Rn for N combine to give a chart for M ×N :

h× k : U × V → Rm × Rn,

which we identify with Rm+n in the usual way. The transition maps from
h× k to h′ × k′ are then simply gh′h × gk′k, which has Jacobian matrix

D(gh′h × gk′k) =
[
Dgh′h 0

0 Dgk′k

]
.

The block sum of two square matrices as above is called the Whitney sum
and has determinant det(Dgh′h) det(Dgk′k). In particular, if each of gh′h and
gk′k preserves orientation, so does gh′h × gk′k, but if each of gh′h and gk′k
reverses orientation, then gh′h × gk′k preserves it. gh′h × gk′k only reverses
orientation if gh′h and gk′k have orientation behavior opposite from one
another.

We call this the standard smooth structure on M ×N . By construction,
it satisfies the following.

Proposition 8.5.1. Let M , N and P be smooth manifolds. Then a map
f : P →M ×N is smooth if and only if its coordinate functions f1 = π1 ◦ f
and f2 = π2 ◦ f are smooth, where π1 :M ×N →M and π2 :M ×N → N
are the projections. In particular, for smooth functions f1 : P → M and
f2 : P → N there is a unique smooth function f = (f1, f2) such that the
following diagram commutes:

P
f1

zz

f

��

f2

##

M M ×N
π1

oo
π2

// N .
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Proof. For U ⊂ Rm, V ⊂ Rn, W ⊂ Rk and a map

f :W → U × V ⊂ Rm × Rn ∼= Rm+n,

the real valued coordinate functions of f when seen as taking value in Rm+n

are the coordinate functions of f1 :W → U and f2 :W → V taken in order,
i.e.,

Df =

[
Df1
Df2

]
. �

8.6. Oriented atlases. The following is a key in defining an orientation
on a manifold.

Definition 8.6.1. Let M be a smooth manifold. An oriented atlas for M
is an atlas A such that the transition maps gkl of (8.4.1) are orientation-
preserving (i.e., their Jacobian matrices have positive determinant at every
point).

Example 8.6.2. For n ≥ 1, the atlas given for Sn in Section 8.3 is not
oriented. The transition map

hV ◦ h−1
U : Rn − {0} → Rn − {0}

is given by

hV ◦ h−1
U (x) =

x

〈x, x〉 .

This is easily seen to be the identity map on the unit sphere

Sn−1 ⊂ Rn − {0},

and exchanges the open subsets {‖x‖ > 1} and {‖x‖ < 1} of Rn − {0}. In
particular, the transition map may be thought of as the reflection of Rn−{0}
across the unit sphere. As such, when n = 2, it plays an important role in
hyperbolic geometry. In Exercise 6 below, we show that D(hV ◦ h−1

U )(en)
has determinant −1. When n ≥ 2, this shows the transition map to be
orientation-reversing by Proposition 8.2.7, as Rn − {0} is path-connected
(Exercise 7).

For the case n = 1, R − {0} is the union of two path-connected pieces,
the positive and negative reals. Each piece has an element (±1) at which
D(hV ◦h−1

U ) has determinant −1, so the transition map is again orientation-
reversing by Proposition 8.2.7.

But now we can obtain an oriented atlas by composing the south pole
chart with an orientation-reversing linear isomorphism of Rn.

An oriented atlas provides an orientation ofM , and indeed any orientation
of M can be seen as coming from an oriented atlas. We shall develop this
further in our discussion of tangent bundles below.
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8.7. Exercises.

1. Let f : Rn−1 × (−∞, 1)→ Rn−1 × (−∞, 1) be given by

f(x, t) = ((1− t)x1, . . . , (1− t)xn−1, t) = (1− t)(x, 0) + tN,

with N the north pole.
Let k : Rn−1 × (−∞, 1)→ Rn−1 × (−∞, 1) be given by

k(x, t) = (x, (1− u(x))t+ u(x)),

= (x, t+ u(x)(1− t))
with

u(x) = 1− 2

1 + 〈x, x〉 ∈ (−1, 1).

(a) Compute the Jacobian matrices of f and k and their determi-
nants. Show that f and k are diffeomorphisms.

(b) Show that (f ◦ k)|Rn−1×0 coincides with the map gU of Theo-
rem 8.3.6.

(c) Deduce from this and the analogous result for gV that the
smooth structure on Sn−1 given in Corollary 8.3.7 coincides with
the structure of an embedded submanifold of Rn.

2. Let B1(0) be the standard open ball of radius 1 in Rn. Let f :
B1(0)→ Rn be given by

f(x) =
1

1− 〈x, x〉x.

Show that f is a diffeomorphism.
3. Let f : (−π

2 ,
π
2 )
n → Rn via

f(x1, . . . , xn) = (arctan(x1), . . . , arctan(xn)).

Show that f is a diffeomorphism.
4. Let U ⊂ Rn, open, and let f : U → Rm be smooth. Let γ : (a, b)→ U

be a smooth curve.
(a) Show that D(f ◦ γ)(t) depends only on γ(t) and γ′(t) for t ∈

(a, b). In fact we refer to D(f ◦γ)(t) as the directional derivative
of f at γ(t) in the direction γ′(t).

(b) Show that if γ′(t) = ej , the jth canonical basis vector, then
D(f ◦ γ)(t) is the jth column of Df(γ(t)). In particular, if

m = 1, then D(f ◦ γ)(t) = ∂f
∂xj

(γ(t)).

(c) Suppose now that γ′(t) =



c1
...
cn


 = c1e1 + · · · + cnen and that

m = 1. Show that

D(f ◦ γ)(t) = c1
∂f

∂x1
(γ(t)) + · · ·+ cn

∂f

∂xn
(γ(t)).
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5. Let n ≥ 2. For j ∈ {1, . . . , n− 1}, define γj :
(
−π

2 ,
π
2

)
→ Rn by

γj(t) = cos(t)en + sin(t)ej .

(a) Show that γj(t) lies in the unit sphere Sn−1 for all t ∈ (−π
2 ,

π
2

)
.

(b) Show that γj(0) = en and γ′(0) = ej .
(c) Deduce from Problem 4 that if U is a neighborhood of en in Rn

and f : U → Rm is smooth, and if we restrict the domain of γj
to an interval (−ǫ, ǫ) contained in γ−1(U), then D(f ◦ γj)(0) is
the jth column of Df(en).

(d) Deduce that if U ⊂ Rn is an open set containing Sn−1 and if
f : U → Rn restricts to the identity on Sn−1, then the jth
column of Df(en) is ej for j = 1, . . . , n− 1.

6. Let n ≥ 1 and let f : Rn−{0} → Rn−{0} be given by f(x) = x
〈x,x〉 .

Define γ : (0, 2) → Rn − {0} by γ(t) = ten. Write fi for the ith
coordinate function of f for i = 1, . . . , n.
(a) Show that fi ◦γ is constant for 1 ≤ i < n and that fn ◦γ(t) = 1

t
for all t.

(b) Deduce that the last column of Df(en) is −en.
(c) Deduce from Problem 5 that if n ≥ 2, Df(en) is the diagonal

matrix whose first n − 1 diagonal entries are 1 and whose last
diagonal entry is −1.

(d) Show that if n = 1, Df(1) = Df(−1) = [−1].
7. For n ≥ 2, show that Rn − {0} is path-connected.
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9. Spherical geometry

The sphere S2 is a reasonably good model for the surface of the earth.
Good enough that it can be used to calculate shortest flight paths for air-
plane flights. The point is that airplanes have to stay within a certain
distance of the surface of the earth and cannot, for instance, tunnel through
it. So the distance travelled along the surface is a good model for the total
distance flown.

So how do we calculate distance on the surface of the earth? Like distance
in the plane, it depends on the inner product. This time, we use the standard
inner product in R3 and use it to calculate the arc length of curves on the
sphere.

We may as well generalize this to studying the unit sphere Sn of Rn+1, as
the shortest paths in Sn may be developed in a simlar way to those in S2.

We shall see later in our discussion of Riemannian geometry that shortest
paths may be given many different parametrizations, but the parametriza-
tions whose velocity vectors have constant length play a special role. They
are called geodesics. The geodesics in Rn are the standard parametriza-
tions of lines (Proposition 11.3.13). Geodesics in Sn are the great circle
routes, which give parametrizations of great circles (Definition 9.1.3). For
this reason, we shall treat the great circles as the “lines” in our discussions
of spherical geometry. We shall discuss lengths of line segments, angles be-
tween oriented lines, etc., just as we did for Rn. And the calculation of
shortest paths will allow us to show that I(Sn), the group of isometries of
Sn, is isomorphic to the orthogonal group On+1, i.e., to the group of linear
isometries of Rn+1 (Theorem 9.1.16).

The geometry of Sn is easier to frame and understand than the geometry
of a general Riemannian manifold because Sn is a smooth submanifold of
Rn+1 (e.g., by Exercise 1 in Chapter 8), and the geometry we care about
for Sn is induced by the inner product of Rn+1. (This is called the subspace
metric on the submanifold.) In particular, we do not need to develop the
theory of geodesics (and the exponential map) in full generality to study
Sn. Instead, we shall devote some time to developing simpler, and hopefully
more intuitive arguments that depend on the use of the subspace metric.
That is the substance of Section 9.1.

9.1. Arc length and distance in Sn; isometries of Sn. Let M be a
smooth submanifold of Rn+1. We shall use the inner product in Rn+1 to
calculate distances in M . We calculate them in terms of the arc lengths of
curves γ : [a, b]→M .

Arc length is often studied in a first multivariate calculus class. One
can calculate the arc length of a piecewise smooth curve in Rn+1. Here,
γ : [a, b] → Rn+1 is piecewise smooth if there is a partition a = x0 < x1 <
· · · < xk = b of [a, b] such that the restriction of γ to [xi, xi+1] is smooth for
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i = 0, . . . , k − 1. Here, a map from a closed interval is smooth if it could be
extended to a smooth map on a slightly larger open interval.

Let γ : (a, b)→ Rn+1 be smooth. Write

γ(t) =



γ1(t)
...

γn+1(t)


 ,

i.e., γ(t) = γ1(t)e1 + · · ·+ γn+1(t)en+1. Then the velocity vector γ′(t) is the
Jacobian matrix of γ at t:

γ′(t) =



γ′1(t)
...

γ′n+1(t)


 = γ′1(t)e1 + · · ·+ γ′n+1(t)en+1.

We define the arc length of a piecewise smooth curve γ : [a, b]→ Rn+1 to
be

(9.1.1) ℓ(γ) =

∫ b

a

‖γ′(t)‖dt,

the integral over [a, b] of the length of the tangent vector of γ at each t ∈
[a, b]. The length ‖γ′(t)‖ is often called the speed of γ at t. It depends, of
course, on the inner product in Rn+1:

‖γ′(t)‖ =
√
〈γ′(t), γ′(t)〉.

Allowing γ to be piecewise smooth rather than smooth permits traversing
two sides of a triangle, for instance, and adding the distances travelled.

But, as discussed at the beginning of this chapter, if we want distances in
M , we must study the arc lengths of piecewise smooth curves γ : [a, b]→M ,
i.e., curves whose image lies in M , and it is natural to ask for smoothness
in terms of the smooth structure on M . But by Proposition 8.4.14, there
is no distinction between smooth maps into M and smooth maps into Rn+1

whose image lies in M : a map f : N → M is smooth if and only if the
composite

N
f−→M ⊂ Rn+1

is smooth.

Definition 9.1.1. LetM be a smooth, path-connected submanifold of Rn+1

and let x, y ∈M . Then the distance from x to y inM (in the metric induced
by the inclusion of M in Rn+1) is given by

(9.1.2) d(x, y) = inf
γ
ℓ(γ),
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where γ runs over the piecewise smooth paths from x to y in M . Here, a
piecewise smooth curve γ : [a, b]→M is a path from x to y if γ(a) = x and
γ(b) = y.15

We say that the piecewise smooth path γ from x to y is distance minimiz-
ing if d(x, y) = ℓ(γ), i.e., if ℓ(γ) ≤ ℓ(△) whenever △ is a piecewise smooth
path from x to y.

In (9.1.2), the arc length is calculated via (9.1.1), using the inner product
in Rn+1 to calculate the lengths of the velocity vectors. With that assump-
tion, (9.1.2) is the distance formula coming from the intrinsic Riemannian
geometry for a submanifold of Rn+1 in the subspace metric. In Chapter 11,
we will consider situations in which the inner product varies depending on
the value of the point γ(t), independent of any particular embedding of M
in Euclidean space. That will give the general case of the distance formula
in Riemannian geometry.

An obvious special case here is where M = Rn+1. Here, we have been
calculating the distance from x to y as ‖y − x‖. It will be helpful to show
that the distance formula (9.1.2) gives the same result here.

Proposition 9.1.2. Let x, y ∈ Rn+1. Then the straight line path

γ(t) = x+ t(y − x), t ∈ [0, 1],

is distance minimizing. Its arc length is ‖y − x‖.
Proof. Note that all paths from x to y are translates of paths from 0 to
y − x and that translation does not affect derivatives, and hence preserves
arc length. Translation also preserves straight line paths. Thus, we may
assume x = 0 and study the distance from 0 to some arbitrary point y.

Let u1 = y
‖y‖ , and extend it to a basis u1, . . . , un+1 of Rn+1. Applying

the Gramm–Schmidt process, if necessary, we may assume u1, . . . , un+1 is
an orthonormal basis of Rn+1. Let γ : [a, b]→ Rn+1 be a piecewise smooth
path from 0 to y, and set

γi(t) = 〈γ(t), ui〉
for i = 1, . . . , n+ 1. Then (4.1.1) gives

γ(t) = 〈γ(t), u1〉u1 + · · ·+ 〈γ(t), un+1〉un+1

= γ1(t)u1 + · · ·+ γn+1(t)un+1,

and hence

γ′(t) = γ′1(t)u1 + · · ·+ γ′n+1(t)un+1

Moreover, the Pythagorean formula for orthonormal coordinates gives

‖γ′(t)‖ =
√
(γ′1(t))

2 + · · ·+ (γ′n+1(t))
2.

15SinceM is path-connected, the Whitney approximation theorem ([13, Theorem 6.26])
shows there are smooth, and hence piecewise smooth paths from x to y.
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Thus,

‖γ′(t)‖ ≥
√
(γ′1(t))

2 = |γ′1(t)|,
and hence

ℓ(γ) =

∫ 1

0
‖γ′(t)‖ dt ≥

∫ 1

0
γ′1(t) dt = γ1(1)− γ1(0)(9.1.3)

by the fundamental theorem of calculus. Note that γ(0) = 0 and

γ(1) = y = ‖y‖u1 + 0u2 + · · ·+ 0un+1,

so γ1(1) = ‖y‖ and (9.1.3) gives ℓ(γ) ≥ ‖y‖. But if β is the straight line
path from 0 to y, β(t) = ty for t ∈ [0, 1], then β′(t) = y for all t, and hence

ℓ(β) =

∫ 1

0
‖y‖ dt = ‖y‖. �

This not only provides a reality check for this new notion of Riemannian
distance, it helps us understand the properties of that distance. A useful
notion of distance should satisfy the properties in Definition A.1.1, below:
symmetry, positive-definiteness and the triangle inequality.

The triangle inequality is the easiest to show, as if γ : [a, b] → M is a
piecewise smooth path from x to y and △ : [b, c]→M is a piecewise smooth
path from y to z, then the arc length of the path obtained by traversing first
γ and then △ is the sum of the arc lengths of γ and △, demonstrating that

(9.1.4) d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈M.

This is the triangle inequality, and is the reason we have considered piecewise
smooth paths instead of insisting on smooth ones.

Reflexivity says d(x, y) = d(y, x). But it’s an easy consequence of the
chain rule that traversing a path in the opposite direction does not change
arc length.

Positive-definiteness, the assertion that d(x, y) > 0 if x 6= y, is somewhat
difficult to prove in general Riemannian manifolds, but is very easy for
submanifolds M ⊂ Rn+1 with the subspace metric. The point is that any
piecewise smooth path from x to y inM is automatically a piecewise smooth
path in Rn+1, and therefore its arc length is greater than or equal to the
distance from x to y in Rn+1. In other words the Riemannian distance from
x to y in M is greater than or equal to the distance from x to y in Rn+1, a
fact we observed intuitively for the distance flown by an airplane in getting
from one city to another. Since the distance in Rn+1 is positive-definite, the
same must be true for the Riemannian distance in M .

The distance minimizing paths in Sn occur along great circles.

Definition 9.1.3. A great circle in Sn is the intersection Sn ∩ V for V a
2-dimensional linear subspace of Rn+1. Recall from Lemma 7.2.5 that if v, w
is an orthonormal basis for V of Rn+1, then

Sn ∩ V = {cos tv + sin tw : t ∈ R}.
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Thus, for v, w ∈ Sn with 〈v, w〉 = 0, the great circle route

γv,w : R→ Sn(9.1.5)

γv,w(t) = cos tv + sin tw

parametrizes the great circle Sn ∩ span(v, w). We shall also refer to the
restriction of γv,w to a closed interval as a great circle route.

Great circles are the “lines” in spherical geometry, and the great circle
routes are their standard parametrizations. Since a given 2-dimensional
subspace V has many choices of orthonormal basis, there are numerous
great circle routes parametrizing V ∩ Sn, but they are nicely related. The
results in the following lemma follow from standard trigonometric formulae,
e.g., the formulae for cos(φ + ψ) and sin(φ + ψ). The proof is left the the
reader.

Lemma 9.1.4. Let v, w be orthogonal vectors in Sn. Then:

(1) The traversal of γv,w in the opposite direction satisfies

(9.1.6) γv,w(−t) = cos tv − sin tw = γv,−w(t).

Thus, γv,−w provides the reverse orientation of the great cirle Sn ∩
span(v, w) to that given by γv,w. This corresponds to the fact that
v,−w gives the opposite orientation to span(v, w) from that given by
v, w.

(2) Let x = γv,w(c) and let y = γv,w
(
c+ π

2

)
. Then

(9.1.7) γv,w(c+ t) = γx,y(t)

for all t ∈ R, Thus γv,w ◦ τc = γx,y where τc is the translation of R
by c. By Lemma 7.2.5, such pairs x, y give all the orthonormal bases
of span(v, w) that induce the same orientation as v, w. Thus, as c
varies, we obtain all the like-oriented great circle routes parametriz-
ing Sn ∩ span(v, w).

(3) Again by Lemma 7.2.5, the curves γx,−y with x, y as in (2) give
all great circle routes parametrizing Sn ∩ spanv, w with the opposite
orientation. By (1),

(9.1.8) γx,−y(t) = γx,y(−t) = γv,w(c− t).
(4) The velocity vector to γv,w at t satisfies

(9.1.9) γ′v,w(t) = − sin tv + cos tw = γv,w

(
t+

π

2

)
.

Thus, γv,w(t), γ
′
v,w(t) is one of the bases of span(v, w) specified in

(2).

By (9.1.9), ‖γ′v,w(t)‖ = 1 for all t. (Curves with this property are said to
be parametrized by arc length.) Thus the speed of γv,w is constantly equal
to 1, and we obtain the following:
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Corollary 9.1.5. Let v, w ∈ Sn be orthogonal. Then the arc length of the
restriction of γv,w to a closed interval is given by

(9.1.10) ℓ(γv,w|[a,b]) =
∫ b

a

‖γ′v,w(t)‖dt =
∫ b

a

dt = b− a.

Moreover, by Lemma 9.1.4, all other parametrizations of γv,w|[a,b] by great
circle routes have the same arc length.

Proof. For the last statement, two prametrizations of γv,w|[a,b] by great
circle routes differ by precomposition with an isometry of R. �

Note that γv,w is periodic in the sense that γv,w(t + 2π) = γv,w(t), so
if b − a > 2π then the length of γv,w|[a,b] is greater than the arc length of
the full circle traced out by γv,w, which is 2π. In particular, for b− a large
enough, γv,w|[a,b] can wrap around the circle as many times as you like. We
will see that γv,w|[a,b] is distance minimizing if and only if b− a ≤ π.

When b− a ≤ π we can calculate the arc length of γv,w|[a,b] by a formula
that only depends on the points it connects in Sn. Indeed, once we show
this path is distance minimizling, this will give us the Riemannian distance
between these two points.

Lemma 9.1.6. If b− a ≤ π, then
(9.1.11) ℓ(γv,w|[a,b]) = cos−1(〈γv,w(b), γv,w(a)〉).
Proof. For simplicity, consider the case a = 0. Then γv,w(a) = v and
γv,w(b) = cos bv + sin bw. Since v, w is an orthonormal set,

〈v, cos bv + sin bw〉 = cos b.

If 0 ≤ b ≤ π, the result follows from the standard properties of cos−1.
For the general case, expanding 〈cos av + sin aw, cos bv + sin bw〉 results

in the usual expansion of cos(b− a). �

We may as well at this point codify definitions about lines and line seg-
ments in Sn, as the ideas are useful in showing great circle routes minimize
arc length.

Definition 9.1.7. A line in Sn is a great circle. A line segment in Sn is a
subset

(9.1.12) {γu,v(t) : t ∈ [a, b]} with u ⊥ v ∈ Sn and b− a < 2π.

Its endpoints are x = γu,v(a) and y = γu,v(b). We say the parametrization
in (9.1.12) goes from x to y. Note that a parametrization from y to x is
then given by γu,−v|[−b,−a]. By Corollary 9.1.5, any two parametrizations of
a line segment by great circle routes have the same arc length. We define
the length of the segment to be this arc length.

The following is useful.
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Lemma 9.1.8. Let u 6= ±v ∈ Sn. Then there is a unique great circle
containing u and v and exactly two line segments with u and v as endpoints.
The shorter of these segments has length cos−1(〈u, v〉). We shall call it
the “minor segment” with endpoints u and v. The longer has length 2π −
cos−1〈u, v〉. We shall call it the “major segment”.

If u = −v, then every great circle through one of them contains the
other. All the great circle routes with u and v as endpoints have length
cos−1(〈u, v〉) = π.

Proof. Suppose u 6= ±v. Since both have norm 1, they are linearly inde-
pendent and V = span(u, v) is a 2-dimensional subspace of Rn+1. So V ∩Sn
is the unique great circle containing u and v. Let u,w be an orthonormal
basis of V . Then v = cos tu + sin tw for some t ∈ (0, 2π). Then γv,w|[0,t]
gives one great circle route from u to v. It’s length is t, and cos t = 〈u, v〉.
The two possible values of t ∈ [0, 2π) with this cosine are cos−1(〈u, v〉) and
2π − cos−1(〈u, v〉). The result now follows since γv,w|[t,2π] parametrizes the
other line segment with endpoints u and v.

If u = −v, then every linear subspace containing one contains the other.
If V is a 2-dimensional linear subspace containing u, simply choose an or-
thonormal basis u,w for V and calculate as above. �

Showing that great circle routes of length ≤ π on Sn are distance mini-
mizing is surprisingly deep. Isometries will be useful, both for this and for
further study of the geometry of the spheres.

Recall from Corollary 8.4.15 that if α : Rn+1 → Rn+1 is a linear isometry,
then it restricts to a diffeomorphism α0 = α|Sn : Sn → Sn. If γ : [a, b]→ Sn

is piecewise smooth, so is α0 ◦ γ and we can compare their arc lengths. The
following shows α0 is an isometry in the same sense as the isometries of Rn

studied in previous chapters.

Proposition 9.1.9. Let α : Rn+1 → Rn+1 be a linear isometry and let
α0 : Sn → Sn be its restriction to Sn. Then α0 preserves arc length, and
hence preserves distance between points on the sphere.

More specifically, if α = TA, the linear transformation induced by the
(n + 1) × (n + 1) orthogonal matrix A, and if γ : [a, b] → Sn is piecewise
smooth, then the velocity vector (α0 ◦ γ)′(t) is given by the matrix product

(9.1.13) (α0 ◦ γ)′(t) = A · γ′(t),
and hence has the same norm as γ′(t).

Proof. Since the velocity vector for a map γ : [a, b] → Sn is simply the
derivative of the composite

[a, b]
γ−→ Sn ⊂ Rn+1,

we simply calculate our derivatives in Rn+1. Thus

(α0 ◦ γ)′(t) = (α ◦ γ)′(t) = Dα(γ(t)) · γ′(t)
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by the chain rule. Equation (9.1.13) is now immediate from Lemma 8.1.6.
Since A is an orthogonal matrix,

‖(α0 ◦ γ)′(t)‖ = ‖γ′(t)‖,
and hence the arc length integrals for α0 ◦ γ and γ are identical. Thus, α0

preserves arc lengths of paths. But the inverse of α0 is also the restriction
to Sn of a linear isometry of Rn+1, so α0 preserves the Riemannian distance
between points in the sphere. �

Remark 9.1.10. In fact, the proof of Proposition 9.1.9 shows that α0 is
an isometry in the stronger sense (Definition 11.1.5) used in general Rie-
mannian manifolds, and therefore preserves angles between curves in Sn

(Lemma 11.2.12). We shall discuss angles in greater detail in our devel-
opment of the geometry of S2. For convenience, however, we shall use the
following definition in this section.

Definition 9.1.11. An isometry of Sn is a function α : Sn → Sn that pre-
serves the Riemannian distance. We write I(Sn) for the set of all isometries
of Sn.

We shall see in Theorem 9.1.16 that every isometry of Sn is the restriction
to Sn of a linear isometry of Rn+1. Thus, every isometry of Sn is a surjective
diffeomorphism, and I(Sn) is a group isomorphic to the orthogonal group
On+1.

To show that great circle routes are distance minimizing, we shall in-
troduce what turns out to be the exponential map for Sn. Normally, the
exponential map is defined using geodesics in a Riemannian manifold. The
geodesics are specific parametrizations of distance minimizing curves. The
great circle routes as defined above are in fact geodesics.

We take an approach here that does not use Riemannian geometry, and
define a map that coincides with the Riemannian exponential map. We
will call it the exponential map, but will define it directly and verify its
properties directly.

Definition 9.1.12. Let S = −en+1, the negative of the last canonical basis
vector of Rn+1. We identify it with the south pole of Sn. The exponential
map for Sn at S is the map exp : Rn → Sn given by

exp(v) =

{
S if v = 0,

cos ‖v‖S + sin ‖v‖ v
‖v‖ if v 6= 0.

(9.1.14)

Here, as in Theorem 8.3.6, we identify Rn with the equatorial n-plane in
Rn+1: the points whose last coordinate is 0. This identifies the unit sphere
in Rn with the equator in Sn: the set of points in Sn orthogonal to S.

Note, then that if ‖v‖ = 1 in Rn, we obtain

(9.1.15) exp(tv) = cos t S + sin t v = γS,v(t),

so t 7→ exp(tv) is precisely the great circle route from S through v.
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Proposition 9.1.13. The exponential map

exp : Rn → Sn

is smooth. Its restriction to Bπ(0) = {w ∈ Rn : ‖w‖ < π} gives a diffeomor-
phism

(9.1.16) exp |Bπ(0) : Bπ(0)
∼=−→ Sn r {en+1}.

Proof. Elementary calculus comes to the rescue here. Let

f(x) =

{
sinx
x

x 6= 0

1 x = 0.

Then (9.1.14) gives

(9.1.17) exp(v) = cos ‖v‖S + f(‖v‖)v,
so exp is smooth if v 7→ cos ‖v‖ and v 7→ f(‖v‖) are smooth. Now

cosx =
∞∑

k=0

(−1)k
(2k)!

x2k = g(x2),

f(x) =
∞∑

k=0

(−1)k
(2k + 1)!

x2k = h(x2),

where g(x) =
∑∞

k=0
(−1)k

(2k)! x
k and h(x) =

∑∞
k=0

(−1)k

(2k+1)!x
k are smooth on all of

R by the ratio test. While v 7→ ‖v‖ =
√
〈v, v〉 is not smooth at 0 because of

the square root, v 7→ 〈v, v〉 is polynomial on the coordinates of v, and hence
smooth on all of Rn. Thus,

exp(v) = g(〈v, v〉)S + h(〈v, v〉)v
is smooth on all of Rn.

We claim next that exp |Bπ(0) : Bπ(0) → Sn r {en+1} is bijective. We
construct an inverse function as follows. Let u ∈ Sn. Then u = x+ sS with
x ∈ Rn (i.e., with 〈x, S〉 = 0). Thus, x = u − 〈u, S〉S. Since 〈x, S〉 = 0, we
have

1 = 〈u, u〉 = 〈x, x〉+ 〈sS, sS〉 = ‖x‖2 + s2.

Since s ∈ [−1, 1], t = cos−1 s is the unique element of [−π
2 ,

π
2 ] with s = cos t

and ‖x‖ = sin t. If u 6= ±S, x 6= 0 and cos t > 0, so v = x
‖x‖ is the unique

element of Sn with u = exp(tv). Of course, 0 = exp−1(S).

Moreover, t = cos−1(〈u, S〉) and v = u−〈u,S〉S
‖u−〈u,S〉S‖ are smooth functions on

{u ∈ Rn+1 : |〈u, S〉| < 1}r span(S),

an open set in Rn+1 containing Snr{±S}. Thus, the inverse function exp−1

is smooth on Sn r {±S}.
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Thus, it suffices to show exp−1 is smooth on a neighborhood of S. By
the inverse function theorem, this follows if the Jacobian matrix at 0 of the
composite

B0(π)
exp−−→ Sn r {en+1} h−→ Rn

is invertible, where h corresponds to the chart hU for the smooth structure of
Sn given in Theorem 8.3.6. At this point, in calculating, Jacobian matrices,
we should drop the (n+1)-st coordinate of 0 that we have been carrying for
points in Rn. We may express h by

(9.1.18) h(x1e1 + · · ·+ xn+1en+1) =
1

1− xn+1
(x1e1 + · · ·+ xnen).

Note this extends by the same formula to a smooth function

h̄ : {x1e1 + · · ·+ xn+1en+1 ∈ Rn+1 : xn+1 6= 1} → Rn

and that h ◦ exp = h̄ ◦ exp.
Write f = h̄ ◦ exp. Then the ith column of Df(0) is the velocity vector

at 0 of f ◦ △ where △ : (−π, π) → B0(π) is given by △(t) = tei. (Here,
1 ≤ i ≤ n.) By (9.1.15), exp ◦△ = γS,ei , so the chain rule gives

(f ◦ △)′(0) = Dh̄(S) · (exp ◦△)′(0)

= Dh̄(S) · γ′S,ei(0)
= Dh̄(S) · ei,

the ith column of Dh̄(S). By (9.1.18), the jth coordinate function of h̄ is
xj

1−xn+1
for 1 ≤ i ≤ n. Thus, Dh̄(S) · ei = 1

2ei for these values of i. Thus,

Df(0) = 1
2In. �

The following is elaborated further in Corollary 10.2.12.

Lemma 9.1.14. Let γ : (a, b) → Sn be smooth. Then 〈γ(t), γ′(t)〉 = 0 for
all t.

Proof. Let f : Rn+1 → R be given by f(x) = 〈x, x〉. Then Sn = f−1(1), so
f ◦ γ is constant. Thus,

0 = (f ◦ γ)′(t) = Df(γ(t)) · γ′(t)
= 2[γ1(t) . . . γn+1(t)] · γ′(t) (8.4.3)

= 2〈γ(t), γ′(t)〉. �

Theorem 9.1.15. Let u 6= v ∈ Sn. Then the shortest path from u to v
is a great circle route, and therefore has length cos−1(〈u, v〉). Thus, the
Riemannian distance from u to v in Sn is cos−1(〈u, v〉).
Proof. u 6= 0, so we can find a basis u1, . . . , un+1 with u1 = u. Applying
Gramm–Schmidt if necessary, we may assume u1, . . . , un+1 is an orthonormal
basis of Rn+1. Let A = [u2| . . . |un+1| − u1], the matrix with columns as
listed. Then the transformation TA induced by A takes the south pole S to
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u. Noting that linear isometries preserve great circle routes, we may assume
u = S by Proposition 9.1.9.

By Lemma 9.1.8, it suffices to show that if γ : [a, b] → Sn is a piecewise
smooth path from S to some arbitrary w, then ℓ(γ) ≥ cos−1(〈S,w〉). If
γ visits S or w more than once, we may shorten it, so we may assume
γ−1(S) = {a} and γ−1(w) = {b}.16

Now first consider the case w = en+1. Here, γ maps [a, b) into Snr {±S}
so

exp−1 ◦γ : (a, b)→ Bπ(0)r {0}
is smooth. Thus, there are smooth functions

φ : (a, b)→ (0, π),

v : (a, b)→ Sn−1 = Sn ∩ Rn,

with γ(t) = cosφ(t)S + sinφ(t)v(t) for t ∈ (a, b). But then

γ′(t) = − sinφ(t)φ′(t)S + cosφ(t)φ′(t)v(t) + sinφ(t)W (t).

Since v(t) ∈ Sn−1 ⊂ Rn, W (t) ∈ Rn, also. So S is orthogonal to both v(t)
and W (t). Moreover, v(t) is orthogonal to W (t) by Lemma 9.1.14. Thus,

‖γ′(t)‖ =
√

sin2 φ(t)(φ′(t))2 + cos2 φ(t)(φ′(t))2 + sin2 φ(t)

≥
√

(sin2(t) + cos2(t))(φ′(t))2

≥ |φ′(t)| ≥ φ′(t).

Now φ(t) = cos−1(〈γ(t), S〉) is continuous on [a, b], and the potentially im-

proper integral
∫ b
a
φ′(t) dt converges to φ(b)− φ(a) = π by the fundamental

theorem of calculus. Since ‖γ′(t)‖ ≥ φ′(t) and since γ is piecewise smooth,
ℓ(γ) ≥ π.

For w 6= en+1 we may now assume en+1 is not in the image of γ: otherwise
ℓ(γ) > π. We may now repeat the argument above. �

Recall that the isometries of Sn are the (Riemannian) distance preserving
functions α : Sn → Sn and that the set of isometries of Sn is denoted I(Sn).
We obtain the following converse to Proposition 9.1.9.

Theorem 9.1.16 (Isometries of Sn are linear). Let α0 : Sn → Sn be an
isometry. Then there is a unique linear isometry, α : Rn+1 → Rn+1 with
α|Sn = α0. We obtain an isomorphism of groups

ι : On+1 → I(Sn)(9.1.19)

A 7→ TA|Sn .

16Technically, this requires an understanding of the behavior of closed subsets of a
closed interval.
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Proof. Let α0 : S
n → Sn be an isometry. By Theorem 9.1.15,

〈α0(u), α0(v)〉 = 〈u, v〉
for all u, v ∈ Sn. Let vi = α0(ei) for i = 1, . . . , n+ 1. Since all points on Sn

have norm 1, v1, . . . , vn+1 is an orthonormal basis of Rn+1, so

A = [v1| . . . |vn+1]

is an orthogonal matrix. Moreover TA(ei) = α0(ei) for all i, so TA is the
only linear isometry of Rn+1 that could restrict to α0. To see that it does,
let u ∈ Sn. Since v1, . . . , vn+1 is an orthonormal basis,

α0(u) = 〈α0(u), v1〉v1 + · · ·+ 〈α0(u), vn+1〉vn+1

= 〈α0(u), α0(e1)〉v1 + · · ·+ 〈α0(u), α0(en+1)〉vn+1

= 〈u, e1〉v1 + · · ·+ 〈u, en+1〉vn+1,

since α0 preserves the inner product. But this is exactly TA(u), as

u = 〈u, e1〉e1 + · · ·+ 〈u, en+1〉en+1. �

9.2. Lines and angles in S2. We have defined lines in Sn to be great
circles. The great circle route

γv,w(t) = cos tv + sin tw

provides a parametrization for the great circle Sn∩span(v, w) when v, w ∈ Sn

are orthogonal. In particular, this gives an orientation for the great circle.
Recall that angles between intersecting lines are not well-defined in Rn.

For instance, in the following picture, the angle between span(v) and span(w)
could be taken to be the angle from v to w or the angle from v to −w.

.

w

gg

v

77

−v
ww

−w
''

0

In absolute value, the two angles add up to π. For this reason, we defined
angles as being between rays, rather than lines. Essentially, a ray is an
oriented line, so on the sphere, we shall define angles as being between
oriented lines.

Note first that in the picture above, the vectors v and w are velocity
vectors for specific parametrizations of the lines in question. And if γ and
△ are parametrized curves in Sn with γ(t) = △(s), then γ′(t) and △′(s)
are vectors in Rn+1. We shall define the angle between γ and △ at this
intersection point to be the angle between their velocity vectors. In general,
this is an unsigned angle, because there is no preferred orientation for the
two-dimensional subspace these two velocity vectors span.

We shall specialize here to studying the angle between two oriented lines
in S2. In this case, the point of intersection will provide an orientation
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for the plane containing the velocity vectors, allowing us to define directed
angles. Let us set up some conventions.

Conventions 9.2.1. A pair of unit vectors u, v ∈ S2 are antipodes if u =
−v.

Let ℓ be a line in S2, say ℓ = V ∩ S2 with V a 2-dimensional subspace of
R3. Then V ⊥ is 1-dimensional and has two unit vectors, say ±u. A choice
of unit vectors determines an orientation for V ⊥.

We shall refer to ±u as the poles of ℓ. Note that if u is a pole of ℓ, then
V = {u}⊥ and hence

(9.2.1) ℓ = {v ∈ S2 : 〈u, v〉 = 0}.
As discussed in Remark 7.2.2, a choice of pole for ℓ determines an orien-

tation of V (and vice versa, as the opposite pole determines the opposite
orientation of V ): if we choose u as our pole, then for any v ∈ ℓ, the orien-
tation of V induced by u corresponds to the unique orthonormal basis v, w
of V such that det[u, v, w] = 1, i.e., such that the orthonormal basis u, v, w
of R3 determines the standard orientation of R3.

Moreover, by Corollary 7.3.6, the cross product may be used to determine
an orthonormal basis of V inducing the orientation of V determined by the
pole u: For any v ∈ ℓ, the orientation of V determined by u corresponds to
the orthonormal basis v, u× v of V .

This orientation of V in turn orients ℓ via the great circle route

γv,u×v(t) = cos tv + sin t(u× v).
Choosing the opposite pole results in the reverse orientation as

(−u)× v = −(u× v).
Note we can tell these two orientations apart by the velocity vector to the
great circle route:

γ′v,u×v(0) = u× v = −γ′v,(−u)×v(0).(9.2.2)

Of course, the same relationship will hold if v is replaced by any other point
on ℓ. Thus, by Lemma 9.1.4,

γ′v,u×v(t) = −γ′v,(−u)×v(−t)(9.2.3)

for all t. (The point here is that γv,u×v(t) = γv,(−u)×v(−t), so we are taking
velocity vectors at the same point.) Of course, this could also be verified
directly.

Interestingly, there is no analogue of parallel lines in S2.

Proposition 9.2.2. Let ℓ and m be distinct lines in S2. Then ℓ∩m consists
of the two points ±u, where

(9.2.4) u =
N ×M
‖N ×M‖ ,

where N and M are poles for ℓ and m, respectively.
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Proof. Let V and W be the planes in R3 whose intersection with S2 give
ℓ and m, respectively. By Lemma 7.4.3, V ∩W = span(u), with u as in
(9.2.4). Since span(u) ∩ S2 = {±u}, the result follows. �

This now allows us to define directed angles between oriented lines in S2.
The setup here is as follows. Suppose the lines ℓ and m are oriented by
the poles N and M , respectively. Let u = N×M

‖N×M‖ . We shall analyze the

directed angle from ℓ to m at u with respect to these orientations.
Let v = N × u and let w = M × u. Then the orientations on ℓ and m

are parametrized by γu,v and γu,w, respectively. Note that by construction,

v and w are orthogonal to u, and lie in {u}⊥, a plane whose pole is u and
may be oriented by u. As defined above, the unsigned angle between the
oriented lines ℓ and m at u is given by the angle in R3 between γ′u,v(0) = v

and γ′u,w(0) = w. Since v and w lie in the subspace {u}⊥, which is oriented
by its pole u, we may calculate the directed angle as well:

Definition 9.2.3. Under the conventions above, the directed angle from
ℓ to m is equal to the angle in the oriented subspace {u}⊥ from v to w.
Specifically, if w = cos tv + sin t(u × v), then the directed angle is t. In
particular, cos t = 〈v, w〉.

But in fact, we can calculate this angle from N and M .

Proposition 9.2.4. Continuing the conventions above, the directed angle
from ℓ to m at u = N×M

‖N×M‖ is cos−1(〈N,M〉). The directed angle at −u is

− cos−1(〈N,M〉).
In particular, at either u or −u the unsigned angle is cos−1(〈N,M〉).

Proof. First note that since v = N × u,
u× v = −(N × u)× u

= −[〈N, u〉u− 〈u, u〉N ]

= N,

where the second equality is from Proposition 7.3.4(6) and the third is from
the fact that u,N is orthonormal. Similarly, u× w =M .

Moreover, Proposition 7.3.4(7) gives

〈v, w〉 = 〈N × u,M × u〉
= 〈N,M〉〈u, u〉 − 〈u,M〉〈N, u〉
= 〈N,M〉.

Now apply the proof of Proposition 7.4.4. �

Corollary 9.2.5. Let ℓ and m be lines in S2 with poles N and M , respec-
tively. Then the following conditions are equivalent.

(1) ℓ and m are perpendicular, i.e., the unsigned angle between them is
π
2 .
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(2) 〈N,M〉 = 0.
(3) N ∈ m.
(4) M ∈ ℓ.

Proof. The equivalence of (1) and (2) is immediate from Proposition 9.2.4.
The other conditions are equivalent via (9.2.1). �

9.3. Spherical triangles. In R2 any three noncollinear points determine a
triangle. The same is true in S2. Here, u, v, w are noncollinear if they are not
contained in a single spherical line. Since a spherical line is the intersection
of S2 with a 2-dimensional linear subspace of R3, this is equivalent to saying
u, v, w are linearly independent. In particular, no two of u, v, w can be
antipodes. The edges of the spherical triangle, △(u, v, w), determined by
u, v, w are defined to be the three minor segments whose vertices lie in
{u, v, w}. The following shows how to choose a pole for the minor segment
from u to v appropriate for calcuating the interior angle of △(u, v, w) at u.

Lemma 9.3.1. Let u 6= ±v ∈ S2 then N = u×v
‖u×v‖ is a unit vector orthogonal

to both u and v, and hence is a pole for the unique spherical line ℓ containing
u and v. Let w = N × u, so that the orientation on span(u, v) induced by
N is given by the orthonormal basis u,w. Then

v = cos s u+ sin sw

for s ∈ (0, π), and hence γu,w|[0,s] is the minor segment from u to v. More-
over,

(9.3.1) ‖u× v‖ = sin s = sin(d(u, v)),

where d(u, v) is the Riemannian distance from u to v in S2.

Proof. Since u and v are linearly independent, u × v 6= 0, and hence N is
a unit vector. It is orthogonal to u and v. Independently if this, there is a
unique unit vector w orthogonal to u such that

v = cos s u+ sin sw

for s ∈ (0, π). By bilinearity of the cross product,

u× v = cos s (u× u) + sin s (u× w) = sin s (u× w),
as u × u = 0. Since sin s > 0, sin s = ‖u × v‖, and hence u × w = N . But
then, N × u = w by Proposition 7.3.4(6). The second equality in (9.3.1)
follows as the distance minimizing path γu,w|[0,s] has length s. �

The following is now immediate from Proposition 9.2.4.

Corollary 9.3.2. The interior angle ∠wuv of △(u, v, w) at u has unsigned
measure

(9.3.2) m(∠wuv) = cos−1

〈
u× w
‖u× w‖ ,

u× v
‖u× v‖

〉
.

Equation (9.3.2) allows us to make the following calculation.
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Corollary 9.3.3 (Spherical law of cosines). In a spherical triangle△(u, v, w),

(9.3.3) cos(∠wuv) =
cos(d(v, w))− cos(d(u,w)) cos(d(u, v))

sin(d(u,w)) sin(d(u, v)))
.

Proof. Taking the cosine of both sides of (9.3.2) gives

cos(∠wuv) =
〈u× w, u× v〉
‖u× w‖‖u× v‖

=
〈u, u〉〈v, w〉 − 〈u,w〉〈u, v〉

‖u× w‖‖u× v‖ (Proposition 7.3.4(7))

=
〈v, w〉 − 〈u,w〉〈u, v〉
‖u× w‖‖u× v‖ .

The denominator agrees with that of the right-hand side of (9.3.3) by (9.3.1).
The numerators agree by the distance formula in Theorem 9.1.15. �

Corollary 9.3.2 is more than we need to analyze the following potentially
interesting example.

Example 9.3.4. Consider the spherical triangle △(e1, e2, e3). The poles for
the edges of this triangle are ±e1, ±e2 and ±e3, depending on the orienta-
tions used to calculate the angles in question. Since these poles are pairwise
orthogonal, the three interior angles are all right angles, and hence the sum
of the interior angles is 3π

2 . In particular, the angle sum is greater than π.
This is quite different from the behavior of triangles in the plane.

Note that the spherical triangle in this case may be identified with the
intersection of S2 with the first octant of R3.

Of course, the three edges in a spherical triangle are segments in three
distinct spherical lines. We could ask a different question: what are the
spherical triangles determined by three distinct spherical lines? As this last
example illustrates, the three lines divide S2 into eight triangular regions.

To see this, note that each spherical line meets each other spherical line in
two points. So each spherical line contains four vertices and hence is divided
into four edges. The other two lines meet each other in two vertices which
are antipodes of one another. So the original line meets four triangular faces
in each of the two hemispheres into which it divides S2.

Note that each of the eight triangles is congruent to one of the others: the
one whose vertices are the antipodes of its own vertices. The congruence is
induced by the linear isometry −I3 of R3.

9.4. Isometries of S2. By Theorem 9.1.16, the isometries of S2 are iso-
morphic as a group to the linear isometries of R3. The isomorphism is given
by restricting a linear isometry to its effect on S2.

We have calculated the linear isometries of R3 in Chapter 7. Therefore
we have everything we need to study the isometries of S2.
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We have seen in Section 7.2 that every linear isometry of R3 of determi-
nant one is a rotation ρ(u,θ) about some unit vector u by the angle θ This
rotation has two important invariant subspaces. On span(u), ρ(u,θ) is the
identity, so that span(u) is contained in the eigenspace of (ρ(u,θ), 1). On the

orthogonal complement span(u)⊥, ρ(u,θ) is the ordinary 2-dimensional rota-

tion by θ with respect to the orientation of span(u)⊥ induced by u. Since
−u induces the opposite orientation on span(u)⊥, we have

(9.4.1) ρ(u,θ) = ρ(−u,−θ).

All linear isometries of Rn have determinant ±1. The linear isometries
of R3 of determinant −1 fall into two families: reflections (Section 7.4) and
rotation-reflections (Section 7.5).

A reflection of R3 reflects across a 2-dimensional linear subspace V . Here,
if N is a unit normal to V (i.e., a unit vector in V ⊥), then the reflection in
V is given by

σV (x) = x− 2〈x,N〉N.
This is independent of the choice of unit normal, as −N gives the same
function.

Of course, ℓ = V ∩ S2 is a line in S2 and N is a pole of ℓ. So we write

σℓ : S
2 → S2

for the restriction of σV to S2. Proposition 7.4.4 and Proposition 9.2.4 now
give:

Proposition 9.4.1. Let ℓ 6= m be lines in S2 with poles N and M , respec-
tively. Let u = N×M

‖N×M‖ . Then

(9.4.2) σmσℓ = ρ(u,2 cos−1(〈N,M〉)),

the rotation about u by twice the directed angle, measured at u, from ℓ to m
with respect to the orientations induced by N and M , respectively.

Finally, as discussed in Section 7.5, a rotation-reflection is a composite

(9.4.3) ρ(N,θ)σℓ = σℓρ(N,θ),

where ℓ is a spherical line with pole N and θ ∈ (0, 2π). N being a pole of ℓ
is sufficient for ρ(N,θ) and σℓ to commute.

Recall from Remark 7.5.4, that for any spherical line ℓ with pole N ,
the composite ρ(N,π)σℓ is the isometry induced by the orthogonal matrix
−I3, so (9.4.3) does not in general determine the line ℓ. But in all other
cases, span(N) is the eigenspace of the linear isometry inducing the rotation-
reflection, and hence ℓ is determined by the isometry.

Recall that I(S2) is the group of isometries of S2. If X ⊂ S2, we write
S(X) for the symmetries of X:

S(X) = {α ∈ I(S2) : α(X) = X}.
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Since linear isometries of Rn preserve the inner product, we obtain the fol-
lowing.

Lemma 9.4.2. Let ℓ be a line in S2 with pole N . Then

(9.4.4) S(ℓ) = {α ∈ I(S2) : α(N) = ±N} = S({±N}).
Corollary 9.4.3. Let ℓ be a line in S2 with pole N . Then

S(ℓ) = {ρ(N,θ) : θ ∈ R} ∪ {ρ(u,π) : u ∈ ℓ} ∪ {σm : m ⊥ ℓ}(9.4.5)

∪ {σℓρ(N,θ) : θ ∈ R} ∪ {(T−I3)|S2}.
Proof. Let A ∈ O3. By Lemma 9.4.2, (TA)|S2 ∈ S(ℓ) if and only if N is
an eigenvector for A. We first consider rotations. If θ is not a multiple
of 2π, then the eigenspace of (ρ(u,θ), 1) is span(u), while the eigenspace of
(ρ(u,θ),−1) = ∅ unless θ is an odd multiple of π. In this last case, the

eigenspace of (ρ(u,θ),−1) intersects S2 in the line whose pole is u, which
contains N if and only if u ∈ ℓ by Corollary 9.2.5.

We next consider reflections. Here, for a plane V in R3 with unit normal
M , the eigenspace of (σV , 1) is V . This contains N if and only if ℓ ⊥ (V ∩S2)
by Corollary 9.2.5. The eigenspace of (σV ,−1) is span(M), which contains
N if and only if ℓ = V ∩ S2.

Finally, we consider rotation-reflections α = σWρ(M,θ) with M a unit
normal for W and θ ∈ (0, π). Here, the eigenspace of (α, 1) is empty, and if
θ 6= π then the eigenspace of (α,−1) is span(M), which contains N if and
only if ℓ =W ∩ S2. In the remaining case θ = π and hence α = T−I3 . �

Remark 9.4.4. As shown in Example 8.6.2, Sn admits an oriented atlas,
and hence is an orientable manifold in the sense of Definition 10.5.2, below.
It is not too difficult to show that if A ∈ On+1, then (TA)|Sn is orientation-
preserving if detA = 1, and is orientation-reversing otherwise.

9.5. Perpendicular bisectors. Recall that if ℓ is a line in R2 then ℓ is
the perpendicular bisector of the line segment between x and σℓ(x) for any
x ∈ R2 r ℓ. Moreover, ℓ then consists of the set of all points equidistant
from x and σℓ(x). This becomes useful in studying congruences of triangles.

Here, we will establish analogous results for reflections in S2.

Proposition 9.5.1. Let ℓ be a line in S2 with pole N and let u ∈ S2 r ℓ.
Then ℓ perpendicularly bisects all segments with endpoints u and σℓ(u).

Proof. The keyword “all” is relevant in case u = ±N , and then σℓ(u) = −u
and there are infinitely many segments with these as endpoints. Since each
one contains N , it is perpendicular to ℓ by Corollary 9.2.5. For each one
of them, its point of intersection with ℓ is orthogonal (as a vector) to each
of ±u, as it lies on ℓ, and hence its spherical distance from each of ±u is
cos−1(0) = π

2 . Thus, it bisects the segment.
If u 6= ±N , u,N are linearly independent, and hence N × u 6= 0. Now,

(9.5.1) σℓ(u)× u = (u− 2〈u,N〉N)× u = −2〈u,N〉N × u,
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as u × u = 0. Since u 6∈ ℓ, 〈u,N〉 6= 0, and hence M = σℓ(u)×u
‖σℓ(u)×u‖ ∈ S2 is a

pole for the spherical line m containing u and σℓ(u). Moreover, by (9.5.1),
M is orthogonal to N , and hence ℓ is perpendicular to m at both points
of intersection. But the next result shows that these points of intersection
bisect the two segments in m with endpoints u and σℓ(u). �

Proposition 9.5.2. Let ℓ be a line in S2 with pole N and let u ∈ S2 r ℓ.
Then

(9.5.2) ℓ = {v ∈ S2 : d(u, v) = d(σℓ(u), v)},
where d is the Riemannian distance.

Proof. Of course, d(u, v) = d(σℓ(u), v) if and only if 〈u, v〉 = 〈σℓ(u), v〉.
Since σℓ(u) = u − 2〈u,N〉N , this holds if and only if 〈v,N〉 = 0, which is
equivalent to v ∈ ℓ. �

9.6. Exercises.

1. Give the vertices of an equilateral triangle in S2 whose angle sum is
greater than 5π

2 .
(a) What is the angle sum?
(b) What are the lengths of its sides?

2. Repeat the last problem for an equilateral triangle whose angle sum
is less than 3π

2 .

3. Prove the side-side-side theorem in S2. Specifically, if we have trian-
gles△ABC and△DEF with AB = DE, BC = EF and AC = DF ,
then there is an isometry of S2 carrying A onto D, B onto E and C
onto F .

4. Prove the side-angle-side theorem in S2. Specifically, if we have
triangles △ABC and △DEF with AB = DE, AC = DF and
m(∠BAC) = m(∠EDF ), then there is an isometry of S2 carrying
A onto D, B onto E and C onto F .

5. Prove that a triangle in S2 with two equal sides has two equal angles.
6. Write ρe1,π2 ρe2,

π
2
as an explicit rotation around an explicit axis.

7. Find the vertices of an inscribed regular tetrahedron in S2 one of
whose vertices is e3. Call them e3, v1, v2, v3 (note the potential con-
nection with problem 1).
(a) What are the angles in the spherical equilateral triangles formed

by the vertices of this tetrahedron?
(b) Find the matrix for ρ(e3, 2π3 ) with respect to the standard basis

and show it permutes the vertices v1, v2, v3.
(c) Find the matrix for ρ(v1, 2π3 ) with respect to the standard basis

and show it permutes the vertices e3, v2, v3.
(d) Use these matrices to compute the composite ρ(e3, 2π3 ) ◦ ρ(v1, 2π3 ).

What rotation is the composite? Write it in the form ρ(w,θ) for
specific w and θ.
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(e) Let σV be the reflection that interchanges e3 and v3. Find the
matrix of σV and show it permutes the vertices v1, v2.

(f) Let σW be the reflection that interchanges e3 and v2. Find the
matrix of σW and show it permutes the vertices v1, v3.

(g) Find the matrix of the composite σV ◦σW . What rotation does
it represent? Write it in the form ρ(w,θ) for specific w and θ.

(h) Let β = ρ(e3, 2π3 ) ◦ σV with V as above.

(i) Show that β is a rotation-reflection. Write it in the stan-
dard form β = ρ(w,θ) ◦ σZ , where Z = {w}⊥. (I.e., please
specify w and θ. Z is then implicitly defined.)

(ii) Calculate the effect of β on the vertices e3, v1, v2, v3.
(iii) What rotation is β2? (Write it in the form ρ(u,φ) for spe-

cific u and φ.) What is β4?
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10. Tangent bundles

The tangent bundle is the key concept underlying both differential topol-
ogy and differential geometry. It is the underlying concept behind orienta-
tions and also behind the notion of straight lines in spherical and hyperbolic
geometry.

The basic idea is this:

10.1. The local model. Let U ⊂ Rn be open. Then we can think of
U × Rn as a representation space for the tangent vectors of smooth curves
in U . In particular, if γ : (a, b)→ U is smooth, then for each t ∈ U , the pair
(γ(t), γ′(t)) lies in U × Rn and represents the tangent vector to γ at γ(t):
the tangent line at γ(t) to the image of γ is the line γ(t) + span(γ′(t)). So
the pair (γ(t), γ′(t)) does specify the tangent line. Moreover, every point in
U × Rn arises this way.

We take this as a local model for the tangent space of a smooth manifold.
Specifically, we write TU = U×Rn and write π : TU → U for the projection
onto the first factor. In particular, π−1(x) = {x} × Rn is called the fibre
over x and has the structure of a vector space of dimension dimU . We call
U×Rn the tangent space of U and call π the tangent bundle of U . We write
TxU for π−1(x) and call it the tangent space of U at x. We suppress the
{x} and write TxU = Rn.

Given open sets U ⊂ Rn and V ⊂ Rk and a smooth map f : U → V , we
define the tangent map Tf : TU → TV by

(10.1.1) Tf(x, y) = (f(x), Df(x)y).

Thus, the following diagram commutes:

TU
Tf

//

π

��

TV

π

��

U
f

// V .

In particular, Tf takes the tangent space of U at x to the tangent space of
V at f(x) by the linear transformation

(10.1.2) Txf : Rn → Rk

induced by the Jacobian matrix Df(x).
If g : V →W is smooth with W ⊂ Rm, open, then T (g ◦ f) = Tg ◦Tf by

the chain rule:

Tg ◦ Tf(x, y) = Tg(f(x), Df(x)y) =
(
g ◦ f(x), [Dg(f(x))Df(x)]y

)

= (g ◦ f(x), D[g ◦ f ](x)y) = T [g ◦ f ](x, y).
Example 10.1.1. Let γ : (a, b)→ U ⊂ Rn be a smooth curve. The tangent
space of (a, b) is (a, b)× R, as above, and for (t, s) ∈ (a, b)× R,

Tγ(t, s) = (γ(t), γ′(t)s).
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In particular, Ttγ : R → Rn is multiplication by the n × 1 matrix γ′(t). So
the image of Ttγ is span(γ′(t)). Moreover, γ′(t) = Ttγ(1), the image of 1 ∈ R

under Ttγ : R→ Rn.

In the above example, t varies throughout (a, b). Let’s now fix x ∈ U and
insist γ : (−ǫ, ǫ)→ U with γ(0) = x.

Lemma 10.1.2. Let x ∈ U ⊂ Rn and let v ∈ Rn = TxU . Then there is
an ǫ > 0 and a smooth curve γ : (−ǫ, ǫ) → U with γ(0) = x and γ′(0) =
T0γ(1) = v.

Proof. Set γ(t) = x+ tv. For ǫ small enough, the image of γ lies in U . �

By the chain rule, if f : U → V is smooth, with V ⊂ Rk, open, and if
v = T0γ(1) ∈ TxU , then Txf(v) = T0(f ◦ γ)(1). Thus, we may use smooth
curves to calculate Txf . In fact, this is exactly what we did in Exercises 4–6
of Chapter 8.

10.2. The tangent bundle of a smooth manifold. Let A be an atlas

for the smooth n-manifold M . Then for each h : U
∼=−→ h(U) ⊂ Rn in A we

can use T (h(U)) = h(U) × Rn as a model for TU . We can then assemble
these local models into a single space as follows: let

T̃M =
∐

h∈A
h(U)× Rn,

The disjoint union over all the charts h : U
∼=−→ h(U) of the tangent spaces of

the open subsets h(U) ⊂ Rn. We put an equivalence relation ∼ on T̃M as

follows. If x ∈ U∩V and if h : U
∼=−→ h(U) and k : V

∼=−→ k(V ) are charts in A,
we set (h(x), v) ∈ h(U)×Rn equivalent to (k(x), Dgkh(h(x))v) ∈ k(V )×Rn.
Here, gkh is the transition map (8.4.1) from h to k.

The tangent space of M is given by

TM = T̃M/∼ =

(
∐

h∈A
h(U)× Rn

)/
∼.

In Proposition A.7.7 below, we show that if ∼ is the equivalence relation
on
∐
h∈A h(U) given by setting h(x) ∼ k(x) for x ∈ U ∩ V as above, then

there is a homeomorphism

(10.2.1) η̄ :

(
∐

h∈A
h(U)

)/
∼ ∼=−→M

that restricts on each h(U) to h−1, i.e., η̄(h(x)) = x for h(x) in the image
of the standard inclusion h(U) ⊂∐h∈A h(U).
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We can relate these as follows. Since equivalence in T̃ (M) implies equiv-
alence in

∐
h∈A h(U), there is a commutative diagram

(10.2.2)
∐
h∈A h(U)× Rn //

π

��

(
∐
h∈A h(U)× Rn)/∼

π̃

��∐
h∈A h(U) // (

∐
h∈A h(U))/∼,

where the horizontal maps are the canonical maps for the equivalence rela-
tions in question, the left hand vertical is the disjoint union of the projec-
tions onto the first factor, and π̃ takes the equivalence class of (h(x), v) ∈
h(U)× Rn to the equivalence class of (h(x)) ∈ h(U).

The upper right corner of (10.2.2) is by definition TM . Define π : TM →
M to be the composite π = η̄ ◦ π̃, with η̄ the mapping in (10.2.1). We refer
to π : TM → M as the tangent bundle of M and refer to π−1(x) ⊂ TM
as TxM , the tangent space of M at x ∈ M . We also call it the fibre of the
tangent bundle over x.

We have constructed a commutative diagram

(10.2.3) h(U)× Rn

π

��

ι̂ //

(
∐

h∈A
h(U)× Rn

)/
∼

π̃

��

= TM

π

��

h(U)
ι //

h−1

88

(
∐

h∈A
h(U)

)/
∼ η̄

∼=
// M ,

where ι̂ is induced by the standard inclusion h(U)× Rn ⊂∐h∈A h(U)×Rn.

Proposition 10.2.1. The map ι̂ : h(U)× Rn → TM of (10.2.3) is a home-
omorphism onto π−1U ⊂ TM . Moreover, the following diagram commutes:

(10.2.4) h(U)× Rn
ι̂

∼=
//

π

��

π−1U

π

��

h(U)
h−1

∼=
// U .

In particular, ι̂ restricts to a homeomorphism

(10.2.5) ι̂ : {h(x)} × Rn = Th(x)U
∼=−→ TxM.

Proof. The equivalence relation defining TM does not identify distinct
elements of h(U) × Rn, so ι̂ is one-to-one. Moreover, if x ∈ U , then
any element of π−1(x) is an equivalence class of the form [(k(x), v)] with
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(k(x), v) ∈ k(V )× Rn for a chart k : V
∼=−→ k(V ) ⊂ Rn about x. But

(k(x), v) ∼ (h(x), Dghk(k(x))v) ∈ h(U)× Rn,

so ι̂ maps onto π−1(U) as claimed. It suffices to show ι̂ is an open map. To
see this, write

p :
∐

h∈A
h(U)× Rn →

(
∐

h∈A
h(U)× Rn

)/
∼

for the canonical map taking each element to its equivalence class. (We
call it p to avoid too many maps π.) We wish to show that for W open in
h(U)×Rn, p−1p(W ) is open in the disjoint union. Now, the intersection of
p−1p(W ) with k(V ) × Rn is the image of W ∩ (h(U ∩ V ) × Rn) under the
map

g̃kh : h(U ∩ V )× Rn → k(U ∩ V )× Rn(10.2.6)

(h(x), v) 7→ (k(x), Dgkh(h(x))v)

= (gkh(h(x)), Dgkh(h(x))v).

This map g̃kh is in fact smooth if we regard its domain and codomain as
open subsets of Rn × Rn = R2n, as matrix multiplication is polynomial in
the coefficients of the matrix and vector in question.

But that shows g̃kh to be a diffeomorphism, as its inverse function is g̃hk.
Since a diffeomorphism is an open map, we are done. �

In fact, we have also just shown:

Proposition 10.2.2. TM is a smooth manifold with the charts given by

h̄ = ι̂−1 : π−1(U)
∼=−→ h(U)× Rn ⊂ R2n.

The transition maps gk̄h̄ are precisely the maps g̃kh of (10.2.6). The tangent
bundle projection map π : TM →M is smooth.

Note that (10.2.5) provides TxM with the structure of an n-dimensional
vector space. In fact, it provides a basis, coming from the canonical basis of
Rn = Th(x)U . To emphasize the dependence on the particular chart h, write

(10.2.7) Th(x)h
−1 : Th(x)U

∼=−→ TxM

for (10.2.5). This notation is meant to be compatible with (10.1.2). We will
expand on it below.

If we vary the chart neighborhood to a chart V containing x, by (10.2.6),
we get a commutative diagram

(10.2.8) Rn
Dgkh(h(x))

∼=
//

Th(x)h
−1

""

Rn

Tk(x)k
−1

||

TxM .
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Since Dgkh(h(x)) is a linear isomorphism, the induced vector space structure
on TxM is independent of the choice of chart. Moreover, if each Dgkh(h(x))
has positive determinant, then different charts induce the same orientation
on TxM . We obtain:

Proposition 10.2.3. An oriented atlas for M provides a linear orientation
for each TxM compatible with the isomorphisms (10.2.7).

We now associate a map of tangent spaces to any smooth map.

Definition 10.2.4. Let M be a smooth n-manifold and N a smooth m-
manifold. Let f : M → N be a smooth map. Then Tf : TM → TN is the
smooth map defined as follows. Given smooth charts

h : U
∼=−→ h(U) ⊂ Rn,

k : V
∼=−→ k(V ) ⊂ Rm,

for M and N , respectively, Tf is defined on π−1(U ∩ f−1(V )) to be the
composite

π−1(U ∩ f−1(V ))
h̄ // h(U ∩ f−1(V ))× Rn

fk̄h̄ // k(V )× Rm
k̄−1

// π−1(V ),

where fk̄h̄(h(x), v) = (kf(x), Dfkh(x)v), with fkh the map of (8.4.2). This
is easily seen to be compatible with the change of chart neighborhoods, and
defines a smooth map Tf : TM → TN such that the following diagram
commutes:

TM
Tf

//

π

��

TN

π

��

M
f

// N .

Moreover, the map (Tf)k̄h̄ of (8.4.2) is just the map fk̄h̄ above. Note that
the map Txf : TxM → Tf(x)N obtained by restricting Tf is given in local
coordinates by multiplication by the matrix Dfkh(x) and hence is linear. In
other words, Txf is the linear map whose matrix with respect to the bases
provided by the charts h and k is Dfkh(x).

Thus, the tangent map is a coordinate-free way of expressing the deriv-
ative of a smooth function f . The following is immediate from the chain
rule.

Lemma 10.2.5. Let f : M → M ′ and g : M ′ → M ′′ be smooth maps of
smooth manifolds. Then T (g ◦ f) = Tg ◦ Tf .

Since T (idM ) is the identity map of TM we obtain the following.

Corollary 10.2.6. Let f : M → N be a diffeomorphism. Then Tf is a
diffeomorphism and Txf : TxM → Tf(x)N is a linear isomorphism for each
x ∈M .
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Example 10.2.7. IfMn is a smooth submanifold of Nn+k and if i :M → N
is the inclusion, then for each x ∈ M we can choose a chart k : V → Rn+k

for N at x with k−1(Rn × 0) = V ∩M , hence h = kV ∩M : V ∩M → Rn is
a chart for M at x, and the Jacobian matrix Dikh is just the matrix of the
standard inclusion of Rn in Rn+k. Thus, Txi : TxM → TxN is the inclusion
of an n-dimensional linear subspace.

It is very useful to express the tangent map Txf in terms of tangents to
curves in M . The following is consistent with the local model.

Definition 10.2.8. Let γ : (a, b)→M be a smooth curve in M . We define
the tangent vector to γ at t ∈ (a, b) by

(10.2.9) γ′(t) = Ttγ(1) ∈ Tγ(t)M

The chain rule gives:

Lemma 10.2.9. Let γ : (a, b)→ M be a smooth curve and let f : M → N
be a smooth map. Then

(10.2.10) Tγ(t)f(γ
′(t)) = (f ◦ γ)′(t)

for all t ∈ (a, b).

Note that if h : U
∼=−→ h(U) ⊂ Rn is a chart for M then h−1 : h(U)→ U ⊂

M is smooth and the map ι̂ of (10.2.4) is precisely Th−1, thus justifying the
notation (10.2.7). In fact, h−1 : h(U) → U is a diffeomorphism. (We note
here that any open subset of a smooth manifold has a smooth structure
induced by restriction of charts.) In particular, if x ∈ U then a curve
γ : (−ǫ, ǫ)→ U with γ(0) = x is smooth if and only if h ◦ γ : (−ǫ, ǫ)→ h(U)
is smooth. So we can use the analysis of the tangents to curves in the
local model to study TxM . In particular, the following is immediate from
Lemma 10.1.2.

Corollary 10.2.10. Let M be a smooth n-manifold. Let x ∈ M and v ∈
TxM . Then there is an ǫ > 0 and a smooth curve γ : (−ǫ, ǫ) → M with
γ(0) = x and γ′(0) = v.

We can use this to study the tangent space of a regular hypersurface
S ⊂ Rn+1. Here, we are given a smooth map f : Rn+1 → R and a regular
value y ∈ Rn+1 for f , meaning that for all x ∈ f−1(y), the Jacobian matrix
Df(x) = ∇f(x) is nonzero (and hence of rank 1, as it is a row matrix).
In this case S = f−1(y) is called a regular hypersurface in Rn+1 and is a
smooth submanifold by Corollary 10.4.10 below.

If i : S ⊂ Rn+1 is the inclusion of a regular hypersurface, we can use
Corollary 10.2.10 to study Txi : TxS → TxR

n+1 = Rn+1 for each x ∈ S,
and to identify exactly which n-dimensional linear subspace of Rn+1 is the
tangent space to S at x.
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Proposition 10.2.11. Let S ⊂ Rn+1 be the regular hypersurface induced
by the smooth map f : Rn+1 → R, with S = f−1(y) for a regular value y of
f . Then for x ∈ S, the tangent space TxS is the nullspace of the row matrix
∇f(x). (Implicitly, we have identified TxS with its image under Txi, with i
the inclusion of S in Rn+1.)

An equivalent description may be given as follows. Let v(x) be the trans-
pose of ∇f(x), so that v(x) is a vector in Rn+1, and is nonzero since y

is a regular value. Let N(x) = v(x)
‖v(x)‖ . Then Tx(S) is the set of vectors

orthogonal to N(x), i.e.,

TxS = span(N(x))⊥.

Since f is smooth, so is N : S → Rn+1. We call it the unit normal to S
induced by f . Note that the unit normal induced by −f is −N , which gives
the other unit normal to each TxS.

Proof. Let w ∈ TxS. Then Txi(w) ∈ TxRn+1 = Rn+1. We wish to show
the matrix product

∇f(x) · Txi(w) = 0.

Let γ : (−ǫ, ǫ) → S be a smooth curve with γ(0) = x and γ′(0) = w. By
Lemma 10.2.9 and Example 10.1.1, Txi(w) is the standard velocity vector
γ′(0) to γ : (a, b)→ Rn+1. But

∇f(x) · γ′(0) = Df(γ(0)) · γ′(0) = D(f ◦ γ)(0) = (f ◦ γ)′(0)

by the chain rule. But since the image of γ is contained in S = f−1(y), f ◦γ
is constant, so its derivative is 0, as desired.

Thus we have shown that Tx(S) is contained in the nullspace of ∇f(x).
Since S is an n-manifold, TxS is an n-dimensional subspace of Rn+1. Since
∇f(x) is a nonzero 1× (n+ 1) row matrix, its nullspace also has dimension
n, so the two subspaces must be equal.

The equivalent formulation just uses that ∇f(x) ·z = 〈v, z〉 for any vector
z ∈ Rn+1. �

Corollary 10.2.12. Let v ∈ Sn Then the tangent space of Sn at v is

span(v)⊥ = {v}⊥ ⊂ Rn+1.

Proof. Sn is the regular hypersurface induced by f : Rn+1 → R, f(x) =
〈x, x〉. Here N(x) = x for x ∈ Sn. �

10.3. Tangent bundles of products. Let M and N be smooth mani-
folds. As shown in Section 8.5, the product M ×N has a smooth structure
whose charts are given by the product of a chart for M and a chart for N .
In particular, the projection maps π1 : M ×N →M and π2 : M ×N → N
are smooth submersions. The tangent maps Tπ1 : T (M × N) → TM and
Tπ2 : T (M × N) → TN then give the coordinate functions for a map
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(Tπ1, Tπ2) : T (M × N) → TM × TN making the following diagram com-
mute:

(10.3.1) T (M ×N)
(Tπ1,Tπ2)

//

π
&&

TM × TN

π×π
xx

M ×N .

Here, the maps π are the tangent bundles ofM×N , M and N , respectively.
Under the assembly procedure (10.2.3), the diagram (10.3.1) is given locally
by

(10.3.2) h(U)× k(V )× Rm+n

π
&&

α // (h(U)× Rm)× (k(V )× Rn)

π×π
vv

h(U)× k(V ),

where α(u, v, (x1, . . . , xm+n)) = (u, (x1, . . . , xm), v, (xm+1, . . . , xm+n)). In
particular, α is a diffeomorphsim and induces a linear isomorphism

T(u,v)(M ×N)→ TuM ⊕ TuN
on fibres. We can now assemble this to get global information:

Proposition 10.3.1. Let M and N be smooth manifolds. Then the map
(Tπ1, Tπ2) of (10.3.1) is a diffeomorphism and induces an isomorphism of
vector spaces

(10.3.3) T(u,v)(M ×N)→ TuM ⊕ TuN.
Let P be a smooth manifold and let f : P → M and g : P → N be smooth.
Consider the smooth map

(f, g) : P →M ×N
of Proposition 8.5.1. Then taking (10.3.3) as an identification, we have

Tx(f, g) = (Txf, Txg)

(in the notation of Proposition 1.7.4) for all x ∈ P .
10.4. Immersions and embeddings; submersions. We can now define
immersions and submersions between smooth manifolds.

Definition 10.4.1. Let f :M → N be a smooth map from the m-manifold
M to the n-manifold N . Then f is a smooth immersion at x if Tx has
rank m and is a smooth submersion at x if Tx has rank n. We say f is a
smooth immersion if it is so at each of the points in M , and similarly for
submersions.

Note that if f is a smooth immersion then m ≤ n and if f is a smooth
submersion then m ≥ n. When m = n, then f is a smooth immersion if and
only if it is a smooth submersion. This motivates another definition.
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Definition 10.4.2. Let f :M → N be a smooth map from an m-manifold
to an n-manifold. Then the codimension, codim f , of f is n−m.

Definition 10.4.3. A smooth embedding f : M → N is a one-to-one

smooth immersion such that f : M
∼=−→ f(M) is a homeomorphism of M

onto the image of f .

The inverse function theorem gives:

Corollary 10.4.4. Let M be a smooth manifold. Then a one-to-one codi-
mension 0 smooth immersion f : N →M is a diffeomorphism onto an open
submanifold of M . Thus, a one-to-one codimension 0 smooth immersion is
a smooth embedding.

Proof. It suffices to consider a one-to-one codimension 0 smooth immersion
f : N →M . Let k : V → Rn be a smooth chart ofM and consider the maps
fkh of (8.4.2). By assumption, they have rank n and hence are invertible.
By the inverse function theorem, the image of fkh is open in k(V ). Taking
the union over all charts of N and applying k−1, we see that f(N) ∩ V is
open in V and hence in M .

Taking the union over all chart neighborhoods V inM we see f(N) is open
inM . By the inverse function theorem, the inverse function f−1 : f(N)→ N
is smooth in each chart, and hence is smooth. Here, we give f(N) the smooth
structure given by restricting the charts of M to the open set f(N). We see
that f : N → f(N) is a diffeomorphism. �

Smooth immersions in higher codimension can be more complicated.

Example 10.4.5. Let f : (−3,−1) ∪ (0, 1)→ R2 be given by

f(x) =

{
(0, x+ 2) x ∈ (−3,−1),(
x, sin 1

x

)
x ∈ (0, 1).

Then Df is never 0, so f is an immersion. Despite being one-to-one, f is
not an embedding, as every point in f((−3,−1)) is the limit of a sequence of
points in f((0, 1)), so f−1 is not continuous on the image of f . The closure
in R2 of image of f is sometimes called the topologist’s sine curve.

On the good side, here are two consequences of the inverse function the-
orem, whose proofs may be found in [2].

Theorem 10.4.6 (See [2, Theorem 7.1]). Let f : Nn →Mm be smooth and

an immersion at x ∈ N . Then there are smooth charts h : U
∼=−→ Rn about x

and k : V
∼=−→ Rm about f(x) such that the following diagram commutes:

U
f

//

h

��

V

k

��

Rn
ι // Rm,
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where ι is the standard inclusion of Rn in Rm:

ι(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

Note that what goes wrong in Example 10.4.5 is that for points x ∈
(−3,−1) we cannot have U = f−1(V ), as every point in f((−3,−1)) is a
limit of points in f((0, 1)).

Theorem 10.4.7 (See [2, Theorem 7.3]). Let f : Nn →Mm be smooth and

a submersion at x ∈ N . Then there are smooth charts h : U
∼=−→ Rn about x

and k : V
∼=−→ Rm about f(x) such that f(U) = V and the following diagram

commutes:

U
f

//

h

��

V

k

��

Rn
π // Rm,

where π is the projection onto the first m coordinates.

There are some very nice consequences of these results.

Corollary 10.4.8. Let f : N → M be a smooth embedding. Then f(N) is
a smooth submanifold of M and f : N → f(N) is a diffeomorphism.

Proof. Let h and h be the charts from Theorem 10.4.6. Since f : N → f(N)
is a homeomorphism, f(U) is open in f(N), so there is an open set W in M
with W ∩f(N) = f(U). Now cut down the chart k to V ∩W and it satisfies
the requirements of Definition 8.4.13. �

A nice application of Theorem 10.4.7 comes from regular values.

Definition 10.4.9. Let f : N → M be smooth. An element y ∈ M is a
regular value for f if f is a submersion at every point in f−1(y).

Corollary 10.4.10. Let y be a regular value for f : Nn → Mm. Then
f−1(y) is a smooth submanifold of dimension n−m.

Proof. Let h and k be the charts given by Theorem 10.4.7. Then

h|h−1(0×Rn−m) : h
−1(0× Rn−m)

∼=−→ 0× Rn−m

gives a chart for f−1(y) at x. Here, of course, 0×Rn−m is the set of points
in Rm whose first m coordinates are 0. �

As shown in Example 8.1.8, 1 is a regular value for the map f : Rn → R

given by f(x) = 〈x, x〉. This gives another proof that Sn−1 = f−1(1) is a
smooth submanifold of Rn.
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10.5. Orientation of manifolds.

Definition 10.5.1. An orientation for a smooth n-manifold is a choice of
linear orientation for each TxM coming from some oriented atlas of M . If
M admits such an atlas, we say M is orientable. We can then obtain the
opposite orientation by composing each chart with an orientation-reversing
linear isomorphism of Rn.

A manifold M together with an orientation is said to be oriented. A
codimension 0 smooth immersion f : M → N between oriented manifolds
is then said to be orientation-preserving if Txf is orientation-preserving for
all x ∈M and to be orientation-reversing if Txf is orientation-reversing for
all x ∈M .

Remark 10.5.2. As shown in Example 8.6.2, the sphere Sn is orientable for
n ≥ 1. The example provides a specific orientation. We are not so lucky with
the Klein bottle or the real projective space RP2, which are not orientable.
Each of them contains an open Möbius band as an open subset. The Möbius
band is often used as an intuitive illustration of nonorientability. (The open
band is obtained by removing the boundary circle from the usual Möbius
band.) It is easy to see that any open subset of an orientable manifold is
orientable, as the restriction of an oriented atlas to an open submanifold is
still oriented.

Remark 10.5.3. Let M and N be oriented smooth manifolds and let f :
M → N be a codimension 0 smooth immersion. For x ∈M , Txf is a linear
isomorphism between oriented vector spaces, but we do not have preferred
bases for either TxM or Tf(x)N . Instead, we have choices of basis, compatible
with the orientations, coming from any choices of charts U about x and V
about f(x). These charts are assumed to come from our chosen oriented
atlases of M and N , so if we choose different charts, the matrix for Txf
coming from the new bases differs from the old one by multiplication by
matrices of positive determinant. Thus, while detTxf is not well-defined,
its sign is well-defined. So we shall feel free discussing the “sign of detTxf”
in the discussion below.

As shown in Example 8.2.3, a codimension 0 immersion may be neither
orientation-preserving nor orientation-reversing, but if M is path-connected
and M and N are oriented, then it must be one or the other:

Proposition 10.5.4. Let f :M → N be a codimension 0 smooth immersion
of oriented manifolds with M path-connected. Then f is either orientation-
preserving or orientation-reversing.

Proof. We wish to show the sign of detTxf is independent of the choice
of x ∈ M . Since M is path-connected, we are asking that if x and y are
connected by a path in M then detTxf and detTyf have the same sign. If
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M and N are open subsets of Rn, this follows from the proof of Proposi-
tion 8.2.7. Thus, detTxf and detTyf have the same sign if they are con-
nected by a path in a chart neighborhood U with the property that f(U) is
contained in a chart neighborhood V of N . Note that such U form an open
cover of M .

We now apply a standard technique in topology called the Lebesgue num-
ber. Let γ : [a, b]→M be a path from x to y and consider the sets γ−1(U),
where U is a chart neighborhood in M such that f(U) is contained in a
chart neighborhood of N . This forms an open cover of the closed interval
[a, b]. By [8, Theorem XI.4.5], this cover has a Lebesgue number λ, with the
property that any subinterval of [a, b] whose width is less than λ is carried
into a set in this cover.

Let b−a
n

< λ, and let xk = a + k b−a
n

for k ∈ {0, . . . , n}. Then x0 = x,
xn = y and for for each k ∈ {0, . . . , n − 1}, γ([xk, xk+1]) is contained in a
chart neighborhood U of M with the property that f(U) is contained in a
chart neighborhood V of N . By the above, detTxkf and detTxk+1

f have
the same sign. So inductively, detTxf and detTyf have the same sign. �

10.6. Vector fields.

Definition 10.6.1. A section of a function f : X → Y is a function s : Y →
X such that f ◦s is the identity map of Y . If X and Y are topological spaces
and f is continuous, a continuous section is simply a section s : Y → X that
is continuous. Similarly, if f is a smooth map between manifolds, we can
ask that a section be smooth.

A vector field on a smooth manifold M is a smooth section of its tangent
bundle π : TM →M .
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11. Riemannian manifolds

A smooth manifold, by itself, has topology but not geometry. For in-
stance, the upper half plane H =

{
[ xy ] ∈ R2 : y > 0

}
can be given a hyper-

bolic geometry that realizes the axioms of “non-Euclidean” geometry. But
H is diffeomorphic (i.e., equivalent as a smooth manifold) to R2, which has
the standard Euclidean geometry.17 The study of manifolds up to diffeo-
morphism is called differential topology.

We derived the standard Euclidean geometry of R2 from the standard
inner product on R2. We can derive the hyperbolic geometry on H via a
different inner product that varies from point to point.

11.1. Riemannian metrics. Recall that if M is a smooth n-manifold,
then the tangent space Tx(M) of M at a point x ∈M is a real vector space

of dimension n, and if h : U
∼=−→ h(U) ⊂ Rn is a smooth chart about x, then

Th(x)h
−1 : Rn → Tx(M)

is a linear isomorphism of vector spaces.
In particular, we can put an inner product on Tx(M), meaning a bilinear,

symmetric, positive-definite function

Tx(M)× Tx(M)→ R,(11.1.1)

(v, w) 7→ 〈v, w〉x.
In fact, we could put many different inner products on Tx(M), and any one
of them admits an orthonormal basis via the Gramm–Schmidt process. So
the result is linearly isometric to Rn with the usual inner product, but not
in an obvious way.

Note that if f : V → W is an injective homomorphism of vector spaces
and if 〈 , 〉 is an inner product on W , then there is an induced inner product
〈 , 〉f on V given by

(11.1.2) 〈v1, v2〉f = 〈f(v1), f(v2)〉
for v1, v2 ∈ V . We call this the pullback by f of the inner product on W .

Now suppose that h : U
∼=−→ h(U) ⊂ Rn is a chart for the smooth n-

manifoldM . Then h is a diffeomorphism, and we get a commutative diagram

(11.1.3) T (U)

π

��

Th

∼=
// T (h(U)) = h(U)× Rn

π

��

U
h

// h(U),

inducing a linear isomorphism of vector spaces

(11.1.4) Txh : Tx(U)
∼=−→ Th(x)(h(U)) = Rn

17A diffeomorphism f : H → R2 is given by f ([ xy ]) = [ x
ln y ].
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for each x ∈ U . Of course, Tx(U) = Tx(M) as T (U) is the full inverse image
of U under the tangent bundle map π : T (M) → M . In particular, if 〈 , 〉x
is an inner product on Tx(M) we can pull it back over Th(x)h

−1 to obtain
an inner product 〈 , 〉h(x) on Th(x)(h(U)) = Rn. Specifically, if y = h(x), we
have

〈v, w〉y = 〈Tyh−1(v), Tyh
−1(w)〉x(11.1.5)

for v, w ∈ Rn. With this as setup we can make the following definition.

Definition 11.1.1. A Riemannian metric on a smooth manifold M is a
choice of inner product for the tangent space at each x ∈ M that varies

smoothly as x varies. This latter means that if h : U
∼=−→ h(U) ⊂ Rn is a

smooth chart for M , then the composite

h(U)× Rn × Rn → R(11.1.6)

(y, v, w) 7→ 〈v, w〉y
is smooth, where 〈 , 〉y is the inner product defined by (11.1.5).

Note that by (10.2.8), it suffices to show (11.1.6) is smooth as U varies
over an open cover of M by chart neighborhoods. Moreover, (11.1.6) gives
a Riemannian metric on h(U). We call it the local model for the metric on
M .

A smooth manifold equipped with a Riemannian metric is said to be a
Riemannian manifold. The metric is said to put a Riemannian structure on
M .

As in the case of H, a given smooth manifold can have Riemannian struc-
tures with very different geometric properties. As in the case of Euclidean
geometry, the study of distances and angles will be important in studying
the geometry of a Riemannian manifold. The characterization of “straight
lines” is surprisingly complicated, but is vital for understanding the geom-
etry. Let’s begin by giving some examples and then study their geometric
properties.

Examples 11.1.2.

(1) Rn with the standard inner product at each point is a Riemannian
manifold, as

(11.1.7) (x, u, v) 7→ 〈u, v〉
is a smooth map from Rn × Rn × Rn to R.

(2) If i : M ⊂ Rn is any smooth submanifold of Rn. Then we can pull
back the standard metric on Rn by T i as in (11.1.2). We call this
the subspace metric on M .

More generally, if η : N → M is a smooth immersion, then any
Riemannian metric onM may be pulled back by Tη to a Riemannian
metric on N . Many other, nonrelated metrics are of course possible
on N .
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(3) In particular, the restriction of the standard Euclidean metric to the
unit sphere Sn ⊂ Rn+1 gives the standard Riemannian structure on
the n-sphere, Sn.

(4) Consider the upper half-plane H as a subset of the complex numbers.
Thus,

(11.1.8) H = {z = x+ iy : x, y ∈ R, y > 0}.
here, it is customary to write x = Re(z) and y = Im(z), the real
and imaginary parts of z, respectively. The standard metric on the
hyperbolic space H sets

(11.1.9) 〈v, w〉z =
1

Im(z)2
〈v, w〉

for z ∈ H, v, w ∈ R2, where the 〈v, w〉 on the right-hand side is
the standard inner product of v, w in R2. Thus, the standard inner
product is scaled by the reciprocal of the square of the Euclidean
distance from z to the x-axis. We think of the x-axis as lying on the
boundary of H (but the x-axis is not part of H). Since z 7→ Im(z) is
smooth and since Im(z) 6= 0 for all z ∈ H, this prescribes a smooth
metric on H.

Definition 11.1.3. A smooth immersion (or embedding) f : M → N of
Riemannian manifolds is isometric if for each x ∈ M , the metric on Tx(M)
induced by f (via pullback) coincides with the existing metric there, i.e., if

(11.1.10) 〈v, w〉x = 〈Txf(v), Txf(w)〉f(x)
for all v, w ∈ Tx(M). Note the dependence of this on Jacobian matrices. If

h : U
∼=−→ h(U) ⊂ Rm and k : V

∼=−→ k(V ) ⊂ Rn are charts about x and f(x),
respectively, this says

(11.1.11) 〈v, w〉y = 〈Dfkh(y)v,Dfkh(y)w〉fkh(y)
for all y ∈ h(U ∩ f−1V ) and v, w ∈ Rm, where fkh = k ◦ f ◦ h−1 as in
(8.4.2). Here, the metrics are the local metrics induced by those on M and
N , respectively, as in (11.1.5).

John Nash (of A Beautiful Mind fame) proved the following. See [10] for
a proof.

Theorem 11.1.4 (Nash embedding theorem). Every Riemannian manifold
m-manifold M embeds isometrically in Rn for n sufficiently large. If M
is compact, we may take n = m(3m + 11)/2. Otherwise, we may take
n = m(m+ 1)(3m+ 11)/2.

Our basic object of study here is isometries.

Definition 11.1.5. An isometry of a Riemannian manifold M is a diffeo-
morphism f :M →M that is isometric in the sense of Definition 11.1.3.
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It is not immediately obvious that this coincides with the notion of surjec-
tive, distance-preserving maps we studied in our work on Euclidean geome-
try. We shall see below that any isometry in the sense of Definition 11.1.5
does preserve distance, and is certainly surjective, as all diffeomorphisms
are. In the Euclidean case we have verified that every distance-preserving
surjection α : Rn → Rn is the composite of a translation and a linear isom-
etry, each of which has been shown to preserve the Euclidean inner product
in the sense of Definition 11.1.5. So our definition here does generalize the
isometries of Euclidean space.

By the chain rule, if f : M → M is an isometry, so is f−1 : M → M .
Isometries are also closed under composition.

Definition 11.1.6. Let M be a Riemannian manifold. We write I(M) for
the group (under composition) of isometries f :M →M .

Isometries give us another source of examples of Riemannian manifolds.
We say a group G acts by isometries on the Riemannian manifold M if for
each g ∈ G the map µg :M →M , µg(x) = gx, is an isometric.

Proposition 11.1.7. Let G act by isometries on the Riemannian manifold
M . Suppose this action is free and properly discontinuous. Then there is a
Riemannian metric on M/G given by setting

(11.1.12) 〈v, w〉π(x) = 〈(Txπ)−1(v)(Txπ)
−1(w)〉x

for all x ∈ M and v, w ∈ Tπ(x)(M/G). The map π : M → M/G is an
isometric immersion.

Proof. The elements in π−1π(x) are those in the orbit Gx. Since G acts
isomometrically on M , the metric induced by (11.1.12) is independent of
the choice of x ∈ π−1π(x). The induced metric is smooth, as π restricts to a
diffeomorphism from a neighborhood of x onto a neighborhood of π(x) (as,
in fact, is true of any codimension 0 immersion). �

In particular, our studies of the standard metric on R2 will enable us to
study the geometry of the Klein bottle and T2, including their isometries.
Similarly, the Euclidean geometry of Rn will give us geometric information
about Tn, and our studies of spherical geometry will have implications for
projective geometry.

11.2. Arc length, distance and angles. Let M be a Riemannian man-
ifold. We wish to study the lengths of curves in M . A natural thing to
do would be to insist that we consider only smooth curves, but a goal here
would be to calculate the perimeters of polygons in M . For instance, we’d
like to show a triangle inequality, that says the length of one side of a tri-
angle in M is less than or equal to the length of the path that traverses the
other two sides. That is most easily done if we consider that traversal as a
single path, rather than the sum of two separate lengths.
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Thus, we assign an arc length to a piecewise smooth curve γ : [a, b]→M .
This means there is a partition a = x0 < x1 < · · · < xk = b of [a, b] such
that the restriction γ|[xi−1,xi] of γ to [xi−1, xi] is smooth for i = 1, . . . , k.
Here, a map from a closed interval to a manifold is considered smooth if it
may be extended to a smooth map on a slightly larger open interval.

Recall that γ′(t) is our notation for Ttγ(1) ∈ Tγ(t)M . Here, in the local
model, if M = U ⊂ Rn, then Ttγ : R→ Rn is multiplication by the velocity
vector γ′(t) (considered as a column matrix, hence a linear map from R to
Rn), hence Ttγ(1) is precisely that velocity vector, hence the notation.

In particular, we may define

‖γ′(t)‖γ(t) =
√
〈γ′(t), γ′(t)〉γ(t) ,

the length of γ′(t) evaluated in the inner product on Tγ(t)(M) in the Rie-
mannian metric.

Definition 11.2.1. Let γ : [a, b] → M be a piecewise smooth curve in the
Riemannian manifold M . Then the arc length of γ is

(11.2.1) ℓ(γ) =

∫ b

a

‖γ′(t)‖γ(t) dt.

Note that the piecewise smooth assumption implies that t 7→ ‖γ′(t)‖γ(t) is
piecewise continuous, with at most finitely many jump discontinuities, and
hence is Riemann integrable.

We now show the arc length is independent of the parametrization of γ.
Recall that a function f : [a, b] → R is increasing if f(x) ≤ f(y) whenever
x ≤ y, and is decreasing if f(x) ≥ f(y) whenever x ≤ y. It is monotonic if
it is either increasing or decreasing.

Lemma 11.2.2. Let γ : [a, b]→M be piecewise smooth and let u : [c, d]→
[a, b] be surjective, piecewise smooth and monotonic. Then

ℓ(γ) = ℓ(γ ◦ u).
Proof. Subdividing [a, b] finely enough, we may assume γ is smooth and
takes value in a chart neighborhood U ⊂ M . Thus, we may simply use the
local model and assume M = U ⊂ Rn. The inner product still varies over
different points in U .

Suppose u is increasing. Then u′(t) ≥ 0 for all t by the first derivative
test. So

ℓ(γ ◦ u) =
∫ d

c

‖(γ ◦ u)′(t)‖γ◦u(t) dt

=

∫ d

c

‖γ′(u(t))u′(t)‖γ◦u(t) dt

=

∫ d

c

‖γ′(u(t))‖γ◦u(t) u′(t) dt
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=

∫ u(d)

u(c)
‖γ′(u)‖γ(u) du.

But this is ℓ(γ) because u : [c, d]→ [a, b] is surjective.
If u is decreasing, ‖u′(t)‖ = −u′(t) by the first derivative test, so

ℓ(γ ◦ u) = −
∫ u(d)

u(c)
‖γ′(u)‖γ(u) du

= −
∫ a

b

‖γ′(u)‖γ(u) du = ℓ(γ). �

Thus, the arc length depends on the path traced out by γ. But note that
γ can go around in circles, wrapping around a given circuit multiple times.
So its arc length doesn’t necessarily measure the size of its image.

Since we can reparametrize γ at will, it can be useful to do so in such a
way that its velocity vector always has unit length.

Definition 11.2.3. We say γ : [a, b] → M is parametrized by arc length if
‖γ′(t)‖γ(t) = 1 for all t ∈ [a, b]. Of course, in this case,

ℓ(γ|[a,t]) =
∫ t

a

‖γ′(u)‖γ(u) du = t− a

for all t ∈ [a, b].

Definition 11.2.4. A curve γ : [a, b] → M is nonsingular if it is smooth
and γ′(t) 6= 0 for all t ∈ [a, b].

Of course, any curve parametrized by arc length is nonsingular. The
following shows a nonsingular curve may be reparametrized by arc length.

Lemma 11.2.5. Let γ : [a, b]→M be nonsingular. Then there is a smooth,
increasing function τ such that γ ◦ τ is parametrized by arc length. We call
γ ◦ τ the parametrization of γ by arc length.

Proof. Define s : [a, b]→ R by

s(t) = ℓ(γ|[a,t]) =
∫ t

a

‖γ′(u)‖γ(u) du.

Since s′(t) = ‖γ′(t)‖γ(t) > 0, s is strictly increasing with image [0, d] with
d = ℓ(γ). Let τ : [0, d]→ [a, b] be the inverse function of s. Then the inverse
function theorem gives

τ ′(u) =
1

s′(τ(u))
=

1

‖γ′(τ(u))‖γ(τ(u))
,

so

(γ ◦ τ)′(u) = γ′(τ(u))
‖γ′(τ(u))‖γ(τ(u))

is a unit vector in Tγ(τ(u))(M) for all u ∈ [0, d]. �
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We now show that isometries preserve arc length.

Lemma 11.2.6. Let f :M → N be an isometric immersion of Riemannian
manifolds and let γ : [a, b]→M be piecewise smooth. Then ℓ(f ◦ γ) = ℓ(γ).

Proof. The isometric condition is that

〈Txf(v), Txf(w)〉f(x) = 〈v, w〉x
for all v, w ∈ Tx(M), and hence

‖Txf(v)‖f(x) = ‖v‖x
for all v ∈ Tx(M). Thus,

ℓ(f ◦ γ) =
∫ b

a

‖(f ◦ γ)′(t)‖(f◦γ)(t) dt

=

∫ b

a

‖(Tf(γ(t))f ◦ Ttγ)(1)‖(f◦γ)(t) dt

=

∫ b

a

‖Ttγ(1)‖γ(t) dt = ℓ(γ) �

We can now define Riemannian distance.

Definition 11.2.7. Let M be a path-connected Riemannian manifold and
let x, y ∈ M . A piecewise smooth path from x to y is a piecewise smooth
curve γ : [a, b]→M with γ(a) = x and γ(b) = y. SinceM is path-connected,
the Whitney approximation theorem ([13, Theorem 6.26]) shows there are
smooth, and hence piecewise smooth curves from x to y.

The distance from x to y with respect to the Riemannian metric on M
(otherwise known as the Riemannian distance from x to y) is defined by

(11.2.2) d(x, y) = inf
γ
ℓ(γ)

as γ varies over all the piecewise smooth paths from x to y.
We say the piecewise smooth path γ from x to y is distance minimizing

if d(x, y) = ℓ(γ), i.e., if ℓ(γ) ≤ ℓ(δ) for all piecewise smooth paths δ from x
to y.

Remark 11.2.8. We will see that the distance minimizing curves in a Rie-
mannian manifold are what’s known as geodesics. The theory of geodesics
is fundamental in the development of differential geometry. Geodesic curves
are the analogue in Riemannian manifolds of the straight lines in Rn. As
such, they will form the edges of triangles in the appropriate analogue of
Euclidean geometry for the manifold in question.

Having defined a distance function, it is natural to ask if it defines a metric
for a topology as in Definition A.1.1. The triangle inequality is obvious from
the piecewise smooth assumption, and symmetry follows from Lemma 11.2.2.
The theory of geodesics will show it is positive-definite. We shall also show
that the topology on M induced by this distance function coincides with its
topology as a smooth manifold.
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Proposition 11.2.9. Let f : M → M be an isometry on a Riemannian
manifold M . Then f preserves distance:

(11.2.3) d(x, y) = d(f(x), f(y))

for all x, y ∈M .

Proof. Let γ : [a, b] → M be a piecewise smooth path from x to y. By
Lemma 11.2.6, ℓ(γ) = ℓ(f ◦ γ) ≥ d(f(x), f(y)), so

d(x, y) ≥ d(f(x), f(y)).
But f−1 : M → M is also an isometry, so the same argument shows
d(f(x), f(y)) ≥ d(x, y). �

Remark 11.2.10. Note that it is essential in Proposition 11.2.9 that f−1

also be an isometry. Indeed, if f :M → N is an isometric immersion, then

d(f(x), f(y)) ≤ d(x, y)
by the argument given. Here, the distance on the left as in N and that on
the right is in M . But these distances need not be equal, as there may be
piecewise smooth paths in N shorter than those in M .

For instance if f : S2 → R3 is the standard embedding and v ∈ S2, then
the distance in S2 from v to −v will be seen to be π, as any path from v to
−v in S2 must stay in S2 and hence go around the sphere. But in R3 we can
cut through the interior in a straight line path, and we see that the distance
from f(v) to f(−v) in R3 is 2.

We now define angles in a Riemannian manifold.

Definition 11.2.11. Let γ1 : (a, b) → M and γ2 : (c, d) → M be smooth
curves through x in the Riemannian manifold M . Suppose γ−1

1 (x) = {s}
and γ−1

2 (x) = {t} and that γ′1(s) and γ
′
2(t) are nonzero. Then we define the

angle from γ1 to γ2 at x to be the the angle from γ′1(s) to γ′2(t) in Tx(M)
with respect to the inner product there. This is a well-defined signed angle
if n = 2 and M is oriented, but is unsigned otherwise.

Note by the proof of Lemma 11.2.2 that this angle is unchanged if we
reparametrize our curves with respect to increasing functions with nononzero
derivatives at the relevant points. But if we reparametrize one of the curves
with respect to a decreasing function, it changes the orientation of that curve
and adds π to the angle.

The chain rule again gives the following.

Lemma 11.2.12 (Isometries preserve angles). Let f : M → N be an iso-
metric embedding. Let γ1 : (a, b)→M and γ2 : (c, d)→M be smooth curves
through x ∈ M with γ−1

1 (x) = {s} and γ−1
2 (x) = {t} and γ′1(s) and γ′2(t)

nonzero. Then the (unsigned) angle from f ◦ γ1 to f ◦ γ2 is equal to the
(unsigned) angle from γ1 to γ2.

The case of signed angles is more delicate.
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11.3. Geodesics. The geodesics in a Riemannian manifold provide dis-
tance-minimizing paths between points. Thus, they play a role like that
of straight lines in Rn. In particular, in Rn with the standard metric, the
straight lines are the geodesics.

A thorough treatment of geodesics requires more differential geometry
than we wish to present here. A very good source is do Carmo’s book [3].
We shall summarize the most important details so we can use the theory to
study “straight lines” and angles in a Riemannian manifold.

11.3.1. Geodesics in the local model. The easiest way to understand
geodesics is in terms of the local model. Let us study a Riemannian metric
on an open subset U ⊂ Rn, so that TU is just U × Rn and the tangent
bundle π : U × Rn → U is the projection map. For each x ∈ U we have an
inner product 〈 , 〉x : Rn × Rn → R such that the map

U × Rn × Rn → R

(x, v, w) 7→ 〈v, w〉x
is smooth.

In particular, this gives smooth functions gij : U → R via

(11.3.1) gij(x) = 〈ei, ej〉x,
with ei and ej the canonical basis vectors. These functions in fact determine
the Riemannian structure. Let v = a1e1+· · ·+anen and w = b1e1+· · ·+bnen.
Then bilinearity gives

(11.3.2) 〈v, w〉x =

n∑

i,j=1

ai gij(x) bj .

This can be expressed as a matrix product as follows. Let G(x) be the
matrix whose ijth coordinate is gij(x), then (11.3.2) just says

(11.3.3) 〈v, w〉x = vT ·G(x) · w,
where vT is the transpose of v. Note the matrix G(x) is symmetric, i.e.,
G(x)T = G(x) by the symmetry of the inner product. G(x) is also invertible
since the inner product is positive-definite: if G(x)v = 0, then

〈v, v〉x = vT ·G(x) · v = 0,

and hence v = 0.
The group GLn(R) of n×n invertible matrices over R is an open subset of

the n2-dimensional Euclidean space Mn(R) (the space of all n× n matrices
over R), as GLn(R) = det−1(Rr{0}), and det :Mn(R)→ R is a polynomial
function in the n2 variables ((8.2.4) — see [17, Corollary 10.2.6]). As an open

subset of Rn
2
, GLn(R) is a manifold.

Definition 11.3.1. A Lie group G is a group which is also a smooth man-
ifold, such that the following hold:
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(1) The multiplication µ : G×G→ G, µ(x, y) = x · y, is a smooth map.
(2) The inverse map χ : G→ G, χ(x) = x−1 is a smooth map.

We already know that the coefficients of the product of two matrices are
polynomials in the coefficients of the matrices, so the multiplication map on
GLn(R) is smooth. The following completes the proof that GLn(R) is a Lie
group.

Proposition 11.3.2. The map χ : GLn(R)→ GLn(R) given by χ(A) = A−1

is smooth.

Proof. It suffices to show that the coefficients of A−1 are quotients of poly-
nomial functions (i.e., rational functions) in the coefficients of A. By [17,
Corollary 10.3.6], the ijth coefficient of A−1 is

(−1)i+j detAji
detA

,

where Aji is the (n− 1)× (n− 1) matrix obtained by deleting the jth row
and ith column of A. �

Corollary 11.3.3. Suppose given a Riemannian metric on the open set
U ⊂ Rn and let G(x) = (gij(x)) be the matrix given by (11.3.1). Define
gij : U → R by setting gij(x) equal to the ijth coordinate of G(x)−1. Then
gij is smooth.

We use this to define important smooth functions in the local model that
depend on the Riemannian metric.

Definition 11.3.4. Suppose given a Riemannian metric on the open set
U ⊂ Rn and let G(x) = (gij(x)) be the matrix given by (11.3.1). For

i, j, k ∈ {1, . . . , n}, the Christoffel symbol Γkij : U → R for this metric is the
smooth function given by

(11.3.4) Γkij =
1

2

n∑

l=1

(
∂gjl
∂xi

+
∂gli
∂xj
− ∂gij
∂xl

)
glk,

where glk is the lkth coordinate of the inverse matrix G−1.

Note that in Rn with the standard metric, G(x) = In for all x, so the
partial derivatives of its coordinate functions are constantly 0. We obtain:

Lemma 11.3.5. In Rn with the standard metric, Γkij is constantly equal to
0 for all i, j, k.

The Christoffel symbols are the coefficient functions for what is called the
Riemannian connection obtained from the metric. They also occur in what
is known as the covariant derivative, which we shall define here, as it is used
in the definition of geodesics. We must first discuss vector fields over smooth
curves.
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Definition 11.3.6. Let γ : (a, b) → M be a smooth curve in a smooth
manifoldM . A smooth vector field over γ is a smooth map V : (a, b)→ TM
making the following diagram commute:

(11.3.5) TM

π

��

(a, b)

V
;;

γ
// M .

We write X(γ) for the set of smooth vector fields over γ. Since each TxM
is a real vector space we can add vector fields pointwise: we set (V +W )(t) to
be the sum of V (t) and W (t) in Tγ(t)M . An examination of the local model
shows that V +W is a smooth vector field for V , W smooth. Similarly, if
V ∈ X(γ) and c ∈ R we set (cV )(t) = cV (t). We see that X(γ) is a real
vector space under these operations.

In fact, if V ∈ X(γ) and f : (a, b)→ R is smooth, we may define a vector
field fV ∈ X(γ) by setting (fV )(t) = f(t)V (t), multiplication on V (t) by
the scalar f(t). This operation satisfies the expected distributive laws:

(f + g)V = fV + gV

f(V +W ) = fV + fW.

The following obvious example is important.

Example 11.3.7. Recall that if γ : (a, b)→M is smooth and t ∈ (a, b), we
write γ′(t) ∈ Tγ(t)M for Ttγ(1). Here, we identify the tangent space of (a, b)
with (a, b)× R, obtaining the tangent map Tγ in the following digram:

(11.3.6) (a, b)× R

π

��

Tγ
// TM

π

��

(a, b)
γ

// M .

So γ′(t) is the tangent vector Tγ(t, 1) in the tangent space to γ(t) ∈M . We
define the tangent verctor field γ′ to γ to be the vector field t 7→ γ′(t). This
is smooth, as Tγ is smooth.

In the local model, this really is the standard tangent vector field. Here,
if M = U ⊂ Rn, then TM = U × Rn and we have

Tγ : (a, b)× R→ U × Rn(11.3.7)

(t, s) 7→ (γ(t), γ′(t)s),

where γ′(t) ∈ Rn is the usual tangent vector to γ at t. Specializing to s = 1,
we see the tangent vector field γ′ is given by

t 7→ (γ(t), γ′(t)) ∈ U × Rn.

We now look more carefully at arbitrary vector fields over curves in the
local model.



358 MARK STEINBERGER

Notation 11.3.8. Let U ⊂ Rn be open. Then TU = U × Rn. Thus, if
γ : (a, b)→ U is smooth, then a smooth vector field over γ is a smooth map

V : (a, b)→ U × Rn(11.3.8)

t 7→ (γ(t), v(t))

with v : (a, b)→ Rn an arbitrary smooth map. In this context, we will write
V = (γ, v) and we note that both γ(t) and v(t) lie in Rn. We write γi(t)
and vi(t) for the ith coordinates of γ(t) and v(t), respectively.

We can now make use of the Christoffel symbols.

Definition 11.3.9. Let U be an open subset of Rn equipped with a Rie-
mannian metric. Let γ : (a, b)→ U be smooth. The covariant derivative on
X(γ) with respect to this metric is the operator

D : X(γ)→ X(γ)

given as follows. For V = (γ, v) as above, D(V ) = (γ,w), where the coordi-
nate functions of w are given by

(11.3.9) wi(t) = v′i(t) +
∑

j,k

vk(t)γ
′
j(t)Γ

i
jk.

Note that w(t) is equal to the sum of v′(t) with a term that depends
on the metric. Since this latter term is expressed entirely in terms of the
Christoffel symbols it vanishes for the standard metric on Rn. We obtain:

Lemma 11.3.10. The covariant derivative for the standard metric on Rn

is given by
D(γ, v) = (γ, v′).

We may now define geodesics in the local model.

Definition 11.3.11. Suppose given a Riemannian metric on the open subset
U ⊂ Rn and let γ : (a, b) → U be a smooth curve in U . As above, write γ′

for the tangent vector field to γ. Then γ is geodesic if D(γ′) = 0, i.e., the
covariant derivative of γ′ is constantly 0.

The following is immediate from (11.3.9).

Lemma 11.3.12. Suppose given a Riemannian metric on the open subset
U ⊂ Rn and let γ : (a, b) → U be a smooth curve in U . Then γ is geodesic
if and only if

(11.3.10) γ′′i (t) +
n∑

j,k=1

Γijk(γ(t))γ
′
j(t)γ

′
k(t) = 0

for all t ∈ (a, b) and for i = 1, . . . , n.

In the standard metric on Rn, we have Γkij = 0, so this just says γ′′ = 0,

so that γ′ is a constant vector, and hence there are vectors v, x ∈ Rn with
γ(t) = tv + x for all t. We obtain:
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Proposition 11.3.13. In Rn with the standard metric, a geodesic is either
a constant function or the standard parametrization of a line:

γ(t) = tv + x.

11.3.2. Geodesics in general Riemannian manifolds. Now let M be
an arbitrary Riemannian manifold and let γ : (a, b) → M be smooth. Let
h : U → h(U) ⊂ Rn be a chart for M with γ(t) ∈ U and let ǫ > 0 with
γ(t− ǫ, t+ ǫ) ⊂ U . Then (11.1.3) gives us a communtative diagram

(11.3.11) T (U)

π

��

Th

∼=
// h(U)× Rn

π

��

(t− ǫ, t+ ǫ)

V |(t−ǫ,t+ǫ)
88

γ|(t−ǫ,t+ǫ)
// U

h
// h(U).

Thus, Th ◦ V |(t−ǫ,t+ǫ) ∈ X(γ|(t−ǫ,t+ǫ)) is a vector field over γ|(t−ǫ,t+ǫ) in the

Riemannian metric on h(U) induced by h−1. Write

Dh(U) : X(γ|(t−ǫ,t+ǫ))→ X(γ|(t−ǫ,t+ǫ))
for the covariant derivative induced by this metric. Note that

(11.3.12) Th−1 ◦Dh(U)(V |(t−ǫ,t+ǫ))
provides a smooth vector field over γ|(t−ǫ,t+ǫ).

The following now defines the covariant derivative in a general Riemann-
ian manifold. It is proven in [3].

Theorem 11.3.14. LetM be a Riemannian manifold and let γ : (a, b)→M
Then there is an operator

D : X(γ)→ X(γ)

obtained by setting D(V )(t) = Th−1 ◦ Dh(U)(V |(t−ǫ,t+ǫ))(t) for any chart
h : U → h(U) containing γ(t) and for ǫ sufficiently small. In particular,
this is independent of the choice of chart about γ(t). Moreover, this co-
variant derivative D satisfies the following properties for V,W ∈ X(γ) and
f : (a, b)→ R smooth:

D(V +W ) = D(V ) +D(W )(11.3.13)

D(fV ) = f ′V + f D(V )(11.3.14)

d

dt
〈V,W 〉 = 〈D(V ),W 〉+ 〈V,D(W )〉.(11.3.15)

Here, as expected, 〈V,W 〉 : (a, b)→ R takes t to 〈V (t),W (t)〉γ(t).
Note that (11.3.13) and (11.3.14) are immediate from (11.3.9). Equation

(11.3.15) is more work, and shows the relationship of the covariant derivative
to the metric. The following is, of course, expected.

Definition 11.3.15. Let M be a Riemannian manifold. A smooth curve
γ : (a, b)→M is geodesic if its tangent vector field γ′ satisfies D(γ′) = 0.
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Theorem 11.3.14 gives the following.

Corollary 11.3.16. Geodesics have constant speed: if γ : (a, b) → M is
geodesic, then t 7→ ‖γ′(t)‖γ(t) is a constant function on (a, b).

Proof. By (11.3.15) d
dt
〈γ′, γ′〉 = 0. �

However, since any nonsingular curve can be parametrized by arc length,
the converse is wildly false. Geodesics are in fact somewhat scarce, as can
be seen from the following theorem. While there are many smooth curves
through a particular point with a particular tangent vector, only one of them
is geodesic.

Theorem 11.3.17. Let M be a Riemannian manifold and let v ∈ Tx(M).
Then for some ǫ > 0, there exists a unique geodesic γx,v : (−ǫ, ǫ)→M with:

(1) γx,v(0) = x.
(2) γ′x,v(0) = v.

Proof. The point here is that the covariant derivative is globally defined on
M , independent of the choice of charts, and that D(γ′) = 0 if and only if
(11.3.10) holds in any given chart about x. The result now follows from the
fundamenal existence and uniqueness theorem for solutions of differential
equations. �

We can now eliminate ǫ from the above.

Corollary 11.3.18. Let γ1, γ2 : (a, b)→M be geodesics in M and suppose
γ1 and γ2 have the same value and velocity vector at some t0 ∈ (a, b). Then
γ1 = γ2 on all of (a, b).

Proof. Let s = inf{t : γ1 = γ2 on [t0, t)}. Then s > t0 by Theorem 11.3.17,
and γ1 = γ2 on [t0, s). If s < b then γ1 = γ2 on [t0, s] by continuity, and
hence γ′1 = γ′2 on [t0, s] by the continuity of the velocity fields. But then
γ1 = γ2 on [t0, s

′) for some s′ > s by Theorem 11.3.17, so s = b. Similarly
γ1 = γ2 on (a, t0]. �

Corollary 11.3.19. Let M be a Riemannian manifold and let x ∈ M and
v ∈ Tx(M). Then there is a unique largest interval containing 0 on which
the geodesic γx,v for which γx,v(0) = x and γ′x,v(0) = v is defined.

Proof. If (a, b) and (c, d) are two intervals about 0 on which such a ge-
odesic is defined, then the two geodesics must agree on (a, b) ∩ (c, d) by
Corollary 11.3.18. So they define a smooth curve on (a, b) ∪ (c, d), which is
geodesic by Theorem 11.3.14. Similarly, we can pass to infinite unions of
intervals about 0, and obtain the desired result. �

In particular, as shown in Proposition 11.3.13, the geodesics in Rn are
defined on all of R.

Since a geodesic has constant speed, γx,v is parametrized by arc length
if and only if ‖v‖x = 1, i.e., if and only if v is a unit vector in the inner
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product space Tx(M). Since every vector v ∈ Tx(M) has the form v = cu
with ‖u‖x = 1 (and c = ‖v‖x), the geodesics γx,u actually determine all the
others by the following:

Proposition 11.3.20. Let M be a Riemannian manifold. Let u be a unit
vector in the inner product space Tx(M) and let (a, b) be the largest interval
on which γx,u is defined. Let 0 6= c ∈ R. Then the largest interval for γx,cu
is
(
a
c
, b
c

)
, and

(11.3.16) γx,cu(t) = γx,u(ct)

for all t ∈
(
a
c
, b
c

)
. In particular, if c > 0, then γx,u is the parametrization

of γx,cu by arc length, while γx,−u traverses the same arc with the opposite
orientation.

Proof. The map t 7→ γx,u(ct) is geodesic by (11.3.10), and its tangent vector
at 0 is cu. The result follows. �

Of course, γx,0 is the constant path with image x, and is the unique
singular geodesic through x.

The following, which is proven in [3], will help motivate studying geodesics.

Theorem 11.3.21. Let γ be a piecewise-smooth distance minimizing path
of constant speed from x to y in the Riemannian manifold M . Then γ is
geodesic.

The exponential map will provide a partial converse.
Our next example gives the geodesics in the n-sphere Sn ⊂ Rn+1. Recall

that for v ∈ Sn, the tangent space Tv(S
n) may be identified with {v}⊥,

the linear subspace of Rn+1 consisting of the vectors orthogonal to v. In
particular, the unit vectors in Tv(S

n) are the vectors w ∈ Sn (i.e., w a unit
vector) with v ⊥ w. The following is now immediate from Theorem 11.3.21
and Theorem 9.1.15. (We could also give a direct proof using Christoffel
symbols and Proposition 9.1.13.)

Theorem 11.3.22. Consider the n-sphere Sn ⊂ Rn+1 endowed with the
subspace metric from Rn+1. Its geodesics of unit speed are the great circle
routes

γv,w : R→ Sn(11.3.17)

γv,w(t) = cos t v + sin t w,

for v, w ∈ Sn with v ⊥ w.
11.4. The exponential map. Let M be a Riemannian manifold. We
write Br(0) for the open ball of radius r about 0 in the inner product space
Tx(M):

Br(0) = {v ∈ Tx(M) : ‖v‖x < r}.
The following is shown in [3].
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Theorem 11.4.1. Let M be a Riemannian manifold and x ∈ M . Then
there exists r > 0 such that γx,v(1) is defined for all v ∈ Br(0). Moreover,
the exponential map expx : Br(0)→M defined by

(11.4.1) expx(v) = γx,v(1)

is smooth.

The exponential map is often expressed best in “polar” coordinates, i.e.,
by writing v ∈ Br(0) in the form v = cu with u a unit vector and c ≥ 0
(so that c = ‖v‖x). As with polar coordinates in the plane, u is only a
well-defined function of v when v 6= 0. Note that

Br(0) = {cu : ‖u‖x = 1 and 0 ≤ c < r}.
The following is immediate from (11.3.16).

Lemma 11.4.2. In polar coordinates, expx(cu) = γx,u(c) = γx,u(‖cu‖x).
Since Br(0) is an open subset of the inner product space Tx(M), we can

identify its tangent bundle with the projection map onto the first factor:

π : Br(0)× Tx(M)→ Br(0).

Thus, we can identify T0(Br(0)) with Tx(M), and we may ask about

T0(expx) : T0(Br(0)) = Tx(M)→ Tx(M).

The following is fundamental.

Lemma 11.4.3. T0(expx) : Tx(M)→ Tx(M) is the identity map.

Proof. Let 0 6= v ∈ Tx(M) and write v = cu with u a unit vector and c > 0.
Then for ǫ small enough, the map

δv : (−ǫ, ǫ)→ Tx(M)

t 7→ tv

takes value in Br(0). By Lemma 11.4.2 and a second application of (11.3.16),

(expx ◦ δv)(t) = expx(tcu) = γx,u(tc) = γx,cu(t) = γx,v(t)

Since δ′v(0) = v, we have

T0(expx)(v) = (expx ◦ δv)′(0) = γ′x,v(0) = v. �.

Since T0(expx) is an isomorphism, the inverse function theorem gives the
following.

Corollary 11.4.4. Let M be a Riemannian manifold and let x ∈M . Then
there exists r > 0 such that

expx : Br(0)→M

is a diffeomorphism onto a neighborhood of x.
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Example 11.4.5. In Sn, the geodesics γv,w of (11.3.17) are defined on all
of R and the exponential map

expv : Tv(S
n)→ Sn

is smooth on all of Tv(S
n). But expv carries the entire sphere of radius π,

Sπ(0) = {z ∈ Tv(Sn) : ‖z‖v = π},
onto the opposite pole, −v, to v, while

expv : Bπ(0)→ Sn

maps Bπ(0) diffeomorphically onto Sn r {−v}. All this is easily verified
using the analytic formula (11.3.17).

Note that

exp−1
v : Sn r {−v} ∼=−→ Bπ(0) ⊂ Tv(Sn)

then provides a chart for the smooth structure on Sn different from that
given by sterographic projection, and quite useful for some purposes.

The connection between geodesics and shortest paths is given in the fol-
lowing, which is proven in [3].

Theorem 11.4.6. Suppose the exponential map expx : Br(0) → M is a
diffeomorphism onto a neighborhood of x in M . Let y = expx(v) for v ∈
Br(0). Then γx,v : [0, 1] → M is a distance minimizing path from x to y
in M . Moreover, if δ : [a, b] → M is another piecewise-smooth, distance
minimizing path from x to y, then

γx,v([0, 1]) = δ([a, b]),

i.e., these two paths have the same image.

Recall from (11.2.2) that the Riemannian distance from x to y in M is
given by d(x, y) = infγ ℓ(γ) as γ varies over all the piecewise smooth paths
from x to y.

Corollary 11.4.7. Suppose the exponential map expx : Br(0) → M is
a diffeomorphism onto a neighborhood of x in M . Let y = expx(v) for
v ∈ Br(0). Then the Riemannian distance from x to y is ‖v‖x.

Proof. γx,v has constant speed ‖v‖x, so

ℓ(γx,v|[0,1]) =
∫ 1

0
‖γ′x,v(t)‖γx,v(t) dt =

∫ 1

0
‖v‖x dt = ‖v‖x.

By Theorem 11.4.6, this is d(x, y). �

We may use Corollary 11.4.7 to get an explicit calculation of the Rie-
mannian distance function for the standard Riemannian metric on Sn.
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Corollary 11.4.8. Let v, w ∈ Sn. Then the Riemannian distance (with
respect to the standard metric) from v to w is

(11.4.2) d(v, w) = cos−1〈v, w〉,
where 〈v, w〉 is the standard inner product of v and w as vectors in Rn+1.

Proof. First assume w 6= −v so that w = expv(z) for some z ∈ Bπ(0). Note
we may identify Tv(S

n) with {v}⊥ = {z ∈ Rn+1 : 〈v, z〉 = 0} and that the
Riemannian metric on Tv(S

n) coincides with the restriction to this subspace
of the standard inner product on Rn+1.

Let ‖z‖ = c and let u = z
c
. Then the geodesic path from v to w

parametrized by arc length is γv,u : [0, c]→ Sn, where

γv,u(t) = cos t v + sin t u.

The length of this path is c, which is thus equal to d(v, w). Moreover,
w = γv,u(c), so

〈v, w〉 = 〈v, cos c v + sin c u〉 = 〈v, cos c v〉 = cos c,

as 〈v, u〉 = 0 because u ∈ Tv(Sn). So (11.4.2) follows.
The remaining case is w = −v. Let γ : [a, b]→ Sn be a piecewise-smooth

path from v to −v. Then t 7→ 〈v, γ(t)〉 is a path from 1 to −1 in R. By
the intermediate value theorem there is a c ∈ (a, b) with 〈v, γ(c)〉 = 0. Let
u = γ(c). Then

ℓ(γ) = ℓ(γ|[a,c]) + ℓ(γ|[c,b]) ≥ d(v, u) + d(u,−v) = π

2
+
π

2
= π,

where the first equality comes from (11.4.2) applied at v and at −v. Of
course, cos−1〈v,−v〉 = π, and it suffices tho display a piecewise smooth
path of length π from v to −v. But the geodesic path γv,z : [0, π]→ Sn will
do, for any z ∈ Sn orthogonal to v. �

Remark 11.4.9. Suppose expx : Br(0) → M is a diffeomorphism onto a
neighborhood of x. Then for v ∈ Br(0), d(expx(0), expx(v)) = ‖v‖x, which
is the distance from 0 to v in Tx(M). It would be tempting to guess that
expx : Br(0) → M is distance preserving with respect to the Riemannian
distance, and perhaps even an isometric immersion. Here, we give Br(0) the
subspace metric in Tx(M).

More advanced differential geometry says that expx is not an isometric
immersion, as the curvature in Tx(M) is 0, while the curvature near x in M
need not be.

But we can show directly that expx : Br(0) → M does not, in general
preserve Riemannian distance. For instance, in S2, consider

expe1 : Bπ(0)→ S2.

By Corollary 11.4.8, expe1
(
π
2 e2
)
= e2 and expe1

(
π
2 e3
)
= e3, with e1 e2, e3

the canonical basis. Thus,

d
(
expe1

(π
2
e2

)
, expe1

(π
2
e3

))
= d(e2, e3) =

π

2
,
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but the distance from π
2 e2 to

π
2 e3 in Te1(S2) is

√
2 π

2 , via the straight-line path

between them (or simply by the usual distance formula in Te1(S
2) ⊂ R3).

Theorems 11.4.6 and 11.3.21, work together to give very powerful result.

Theorem 11.4.10. Let f : M → M be an isometry of the Riemannian
manifold M . Then f preserves geodesics, i.e, if γ : (a, b) → M is geodesic,
so is f ◦ γ.

Proof. By Theorem 11.3.14, being geodesic is a local property in the sense
that if γ is geodesic on a small subinterval around each t ∈ (a, b) then γ is
geodesic on all of (a, b).

By Theorem 11.4.6, γ is distance minimizing on both [t− ǫ, t] and [t, t+ ǫ]
for some ǫ > 0. By Proposition 11.2.9 (and its proof), f ◦ γ is distance
minimizing on these same intervals, and hence geodesic on these intervals
by Theorem 11.3.21.

But f ◦ γ is smooth, so the derivatives of its restrictions to these two
subintervals must agree at t. By uniqueness of geodesics, f ◦ γ is geodesic
on [t− ǫ, t+ ǫ]. �

We obtain the following.

Corollary 11.4.11. Let f : M → M be an isometry of the Riemannian
manifold M . Suppose that expx : Br(0) → M is a diffeomorphism onto a
neighborhood of x. Then expf(x) : Br(0) → M is a diffeomorphism onto a

neighborhood of f(x) (for the same r) and the following diagram commutes:

(11.4.3) Br(0)
Txf

//

expx
��

Br(0)

expf(x)
��

M
f

// M .

Of course, the Br(0) on the left is the ball of radius r in Tx(M), while that
on the right is in Tf(x)(M). In other words, f ◦ expx = expf(x) ◦Txf .

Proof. Txf is a linear isometric isomorphism of inner product spaces and
f is a diffeomorphism, so it suffices to show the diagram commutes. Let
v ∈ Br(0) ⊂ Tx(M). Then f ◦ γx,v is the geodesic taking 0 to f(x) whose
velocity vector at 0 is Txf(v). The result follows. �

Using a little point-set topology we can generalize the invocation to the
intermediate value theorem in the argument for Corollary 11.4.8 to obtain
a strengthening of Corollary 11.4.7. See [8] for details on the theory.

Theorem 11.4.12. Suppose the exponential map expx : Br(0) → M is a
diffeomorphism onto a neighborhood of x in M . Then

(11.4.4) expx(Br(0)) = {y ∈M : d(x, y) < r}.
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Thus, the Riemannian distance is positive-definite (i.e., d(x, y) = 0 implies
x = y), and defines a metric for a topology as in as in Definition A.1.1.
Moreover the topology induced by this distance agrees with the original one.

Proof. We use the general definition of a topological manifold given in
Definition A.5.5. In particular, we use the Hausdorff property. We first
show that if y ∈M r expx(Br(0)), then d(x, y) ≥ r. This implies (11.4.4).

Let ǫ > 0 and let s = r − ǫ. Let B̄s(0) be the closed ball of radius s in
Tx(M):

B̄s(0) = {v : ‖v‖ ≤ s}.
Then B̄s(0) is closed and bounded in Tx(M), and hence is compact by the
Heine–Borel theorem. Since expx : Br(0) → M is a diffeomorphism onto a
neighborhood of x in M , expx(B̄s(0)) is a compact subset of M . Since M is
Hausdorff, expx(B̄s(0)) is closed in M . So the subset V =M r expx(B̄s(0))
is open in M , as is U = expx(Bs(0)). U and V are disjoint, with x ∈ U and
y ∈ V . Since x ∈ U and y ∈ V , no continuous path from x to y in M can
lie entirely in U ∪V by the connectedness of a closed interval. In particular,
any piecewise smooth path γ : [a, b]→M from x to y must meet

M r (U ∪ V ) = expx(Ss(0)),

where Ss(0) is the sphere of radius s in Tx(M):

Ss(0) = {v : ‖v‖ = s}.
In particular, given γ as above, let c ∈ (a, b) with γ(c) = expx(v) with
‖v‖ = s. Then

ℓ(γ) = ℓ(γ|[a,c]) + ℓ(γ|[c,b]) ≥ ℓ(γ|[a,c]) ≥ d(x, γ(c)) = s,

with the last equality coming from Corollary 11.4.7. As observed in Re-
mark 11.2.8, this implies the Riemannian distance satisfies the properties
for a topological metric in Definition A.1.1.

By (11.4.4), for a given x and for small enough ǫ, the ball of radius ǫ with
respect to the metric induced by d coincides with expx(Bǫ(0)), which is open
in M , so open sets in the metric topology induced by d are open in M and
vice versa, as any open set of M containing x must contain expx(Bǫ(0)) for
some ǫ > 0. �
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12. Hyperbolic geometry

We use the upper half plane model H for hyperbolic space. Here,

(12.0.5) H = {z = x+ iy ∈ C : x, y ∈ R and y > 0}.
We write x = Re(z) and y = Im(z). We give H the Riemannian metric

(12.0.6) 〈v, w〉z =
1

Im(z)2
(v · w),

where v · w is the ordinary dot product of the vectors v, w ∈ R2. In other
words, we scale the usual Euclidean inner product so it gets larger and larger
as the point of origin of the two vectors approaches the x-axis.

In particular, if γ : (a, b) → H is a piecewise smooth curve, its speed is
given by

‖γ′(t)‖γ(t) =
√
〈γ′(t), γ′(t)〉γ(t)(12.0.7)

=

√
γ′(t) · γ′(t)
Im(γ(t))

=

√
(γ′1(t))

2 + (γ′2(t))
2

γ2(t)
,

when γ(t) = γ1(t)+ iγ2(t) with γi(t) real for i = 1, 2. Because of the denom-
inator, this depends strongly on the value of γ(t). For instance, consider

γ : (0,∞)→ H

γ(t) = it.

Then γ′(t) = e2 for all t, but ‖γ′(t)‖γ(t) = 1
t
, and the velocity vector gets

longer and longer as t→ 0.
For a piecewise smooth curve γ : [a, b]→ H, we call ‖γ′(t)‖γ(t) the hyper-

bolic length of γ′(t), in distinction to its usual Euclidean length. We use it
to calculate the hyperbolic arc length of γ:

(12.0.8) ℓ(γ) =

∫ b

a

‖γ′(t)‖γ(t) dt

as in (11.2.1). As in spherical geometry, the hyperbolic distance between
two points in H is then given as

(12.0.9) dH(z, w) = inf
γ
ℓ(γ),

as γ ranges over all the piecewise smooth paths in H from z to w, and such
a path γ is said to be distance minimizing if dH(z, w) = ℓ(γ). Distance
minimizing paths are what’s known as geodesics, as studied in Chapter 11.

We will calculate these geodesics. They are the correct analogue of
straight lines in studying the geometry of hyperbolic space. And using them
to make a geometry of lines produces results very different from the geometry
of ordinary lines in Euclidean space. Indeed, the hyperbolic geodesics do not
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satisfy the parallel postulate of Euclidean geometry. Instead, they satisfy its
negation. So H provides an analytic geometric realization of “non-Euclidean
geometry”.

Our approach to developing the geometry here will be by starting with
the group of isometries.

12.1. Boundary of H and compactification of C. It is useful to think
about the hyperbolic space H as having a boundary. One might be tempted
to use the x-axis for this purpose, but it is more useful to close it up so the
boundary is a circle.

First, let us adjoin a formal point, ∞, to C and write

C̄ = C ∪ {∞}.
We shall interpret this via the stereographic projection map of (8.3.1):

hU : U
∼=−→ C.

Here, U = S2 r {N}, N = e3 is the north pole, and we are identifying R2

with C so that

hU (x1e1 + x2e2 + x3e3) =
1

1− x3
(x1 + ix2)

by (8.3.1). We use this to identify C̄ with S2 via the function h̃U : S2 → C̄,

(12.1.1) h̃U (x) =

{
hU (x) x 6= N,

∞ x = N.

Since h̃U is bijective and restricts to a diffeomorphism of U onto C, we may
use it to endow C̄ with the structure of a smooth manifold.18 In other words
we shall identify C̄ with the smooth manifold S2 via h̃U . Since hU : U

∼=−→ C

is a diffeomorphism, this agrees with the usual smooth structure on C.
Thus, we shall declare a map f : C̄→ C̄ to be smooth if the composite

(12.1.2) S2
h̃U−−→ C̄

f−→ C̄
h̃−1
U−−→ S2

is smooth. This agrees with the usual notion of smoothness on f |f−1(C) :

f−1(C)→ C.
Let W ⊂ S2 be given by

(12.1.3) W = {w ∈ S2 : 〈w, e2〉 > 0}.
Then

(12.1.4) h̃U |W :W
∼=−→ H

is a diffeomorphism. Moreover, The open hemisphere W has an obvious
boundary in S2: the great circle Σ with pole e2.

Σ = {w ∈ S2 : 〈w, e2〉 = 0}.
18The topology on C̄ induced by this identification coincides with the one-point com-

pactification construction in point-set topology. See [8]
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Note that

(12.1.5) hU |Σr{N} : Σr {N} ∼=−→ R

is a diffeomorphism of Σ r {N} onto the x-axis. We define the boundary
∂H of H by

(12.1.6) ∂H = R ∪ {∞} ⊂ C̄,

the union of the x-axis with the point at infinity. Then

(12.1.7) h̃U |Σ : Σ
∼=−→ ∂H.

We write

(12.1.8) H̄ = H ∪ ∂H,
and set W̄ = W ∪ Σ = {w ∈ S2 : 〈w, e2〉 ≥ 0}, the closed hemisphere
containing W . Then

(12.1.9) h̃U |W̄ : W̄
∼=−→ H̄.

In order to the smoothness of the composites (12.1.2), we need to consider
the charts in S2 defined near the north pole. The setting we have already
considered works as follows in this context. We set V = S2 r {S} with

S = −e3, the south pole. Corollary 8.3.7 gives a chart hV : V
∼=−→ C, given

by

hV (x1e1 + x2e2 + x3e3) =
1

1 + x3
(x1 + ix2).

This, actually, would be quite sufficient for our purposes, as (8.3.3) then
gives

hU ◦ h−1
V (z) =

z

〈z, z〉 ,

where 〈z, z〉 is the real inner product of z with itself, which, if z = x + iy
with x, y ∈ R, is x2 + y2. But this is the result of complex multiplication
zz̄, where z̄ is the complex conjugate of z: z̄ = x− iy. We obtain

(12.1.10) hU ◦ h−1
V (z) =

z

〈z, z〉 =
z

zz̄
=

1

z̄
,

with the identical formula holding for hV ◦ h−1
U .

This would indeed be sufficient for our purposes, but it is nicer to re-
place hV (x) with its complex conjugate. Write Γ : C → C for complex
conjugation: Γ(z) = z̄. Note that Γ is smooth, as its Jacobian matrix is
DΓ(z) =

[
1 0
0 −1

]
for all z ∈ C. Thus, Γ is a diffeomorphism of C whose

square is the identity, so we can replace hV by

kV = Γ ◦ hV : V
∼=−→ C(12.1.11)

kV (x1e1 + x2e2 + x3e3) =
1

1 + x3
(x1 − ix2).

A straightforward computation from (12.1.10) now gives:
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Proposition 12.1.1. {hU : U
∼=−→ C, kV : V

∼=−→ C} gives an atlas for the
standard smooth structure on S2 with the property that the transition maps
are given by

(12.1.12) hU ◦ k−1
V (z) = kV ◦ h−1

U (z) =
1

z

for all z ∈ Cr {0}.
Cr{0} is, of course the domain as well as the codomain for each of the two

transition maps. The advantage of using these charts is that the transition
maps are holomorphic (complex differentiable) functions. We shall review a
bit of complex analysis.

If f : U → C with U ⊂ C open, we say f is complex differentiable at z if

f ′(z) = lim
h→0

f(z + h)− f(z)
h

exists. We say f is holomorphic on U if it is complex differentiable at each
z ∈ U .

In this case, f is smooth and it’s real Jacobian matrix can be computed
from what are called the Cauchy–Riemann equations. These say that if we
write f(z) = u(z) + iv(z), with u(z), v(z) real, then

∂u

∂x
= Re(f ′(z))

∂u

∂y
= − Im(f ′(z))

∂v

∂x
= Im(f ′(z))

∂v

∂y
= Re(f ′(z)),

so the Jacobian matrix is given by

(12.1.13) Df(z) =

[
Re(f ′(z)) − Im(f ′(z))
Im(f ′(z)) Re(f ′(z))

]
.

There is a nicer, more conceptual way to express this. Think of [f ′(z)]
as a 1 × 1 complex matrix, so it induces a C-linear function from C to
itself by matrix multiplication (which is simply ordinary multiplication in
the 1×1 case. But any complex linear vector space is a real vector space by
restriction of the ground field. And any C-linear function between complex
vector spaces is R-linear. Moreover, if v1, . . . , vn is a C-basis for a complex
vector space, then v1, iv1, . . . , vn, ivn is an R-basis for its underlying real
vector space. We obtain a ring homomorphism

ρ :Mn(C)→M2n(R)

by expressing the linear function induced by an n × n complex matrix in
terms of the R-basis e1, ie1, . . . , en, ien. Here, ρ stands for “realification”.

What the Cauchy–Riemann equations say is that if f : U → C is holomor-
phic, with U an open subset of C, then if we regard it as a smooth function
f : U → R2, then

(12.1.14) Df(z) = ρ([f ′(z)]),
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the realification of the complex matrix [f ′(z)].
Complex differentiation is complex linear on functions and satisfies the

usual product, quotient and chain rules, so we can compute the complex
derivative of a rational function (a quotient of two polynomials) in the usual
way. As in the real case, the complex derivative of a convergent complex
power series

∑∞
k=0 akx

k is the term by term derivative
∑∞

k=1 kakx
k−1.

One big advantage of the atlas given in Proposition 12.1.1 is that the
transition maps are holomorphic. This gives S2 the structure of a complex
manifold (a structure we will not investigate in detail here) and allows us to
say that a function f : S2 → S2 is holomorphic if all the composites given
as in (8.4.2) (as we allow the charts to vary) are holomorphic (and not just
smooth).

12.2. Möbius transformations. As an open subset of C = R2, hyper-
bolic space has an intrinsic orientation. We shall see that the Möbius trans-
formations are the orientation-preserving isometries of H. Recall that

SL2(R) = {A ∈ GL2(R) : detA = 1} .
Let A =

[
a b
c d

]
∈ SL2(R). We define the Möbius transformation ϕA : C̄→ C̄

by

(12.2.1) ϕA(z) =





az + b

cz + d
z 6= −d

c
,∞,

∞ z = −d
c
,

a

c
z =∞.

Such a map is sometimes called a fractional linear transformation. We write
Möb for the set of all Möbius transformations.

Lemma 12.2.1. Let A,B ∈ SL2(R). Then,

(12.2.2) ϕA ◦ ϕB = ϕAB.

Proof. Let A =
[
a b
c d

]
and B = [ r st u ]. Then

ϕA ◦ ϕB(z) =
a
(
rz+s
tz+u

)
+ b

c
(
rz+s
tz+u

)
+ d

=
a(rz + s) + b(tz + u)

c(rz + s) + dH(tz + u)
.

This simplifies to ϕAB(z). The other cases may be computed by hand. �

Corollary 12.2.2. Möb is a group under composition. There is a group
homomorphism

ϕ : SL2(R)→ Möb

via ϕ(A) = ϕA. The kernel of ϕ is {±I2}. Thus, ϕ(A) = ϕ(−A) for all
A ∈ SL2(R).
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Proof. Composition of functions is associative, with identity element id =
ϕI2 . Now ϕA ◦ ϕA−1 = ϕA−1 ◦ ϕA = ϕI2 . So Möb is a group, and ϕ is a
homomorphism. ±I2 are obviously contained in its kernel. The next result
shows nothing else is. �

Complex derivatives will allow us to calculate the Jacobian matrices of
Möbius transformations.

Lemma 12.2.3. Let Let A =
[
a b
c d

]
∈ SL2(R). Then the complex derivative

of ϕA is given by

(12.2.3) ϕ′
A(z) =

1

(cz + d)2

for z 6= ∞,−d
c
. Thus, ϕA is holomorphic on H, with nonzero complex

derivative.

Proof. Just apply the quotient rule.

ϕ′
A(z) =

a(cz + d)− c(az + b)

(cz + d)2

and apply that detA = 1. Regarding the last statement, neither ∞ nor −d
c

lies in H. �

Recall that we may identify C̄ with S2 via h̃U : S2
∼=−→ C̄. So we can ask

and answer the following.

Corollary 12.2.4. Let Let A =
[
a b
c d

]
∈ SL2(R). Then ϕA : C̄ → C̄ is

holomorphic.

Proof. By Lemma 12.2.3, it suffices to show ϕA is holomorphic at ∞ and
−d
c
. Near −d

c
we can consider the composite

C̄
ϕA−−→ C̄

h̃−1
U−−→ S2

kV−−→ C.

This takes z to cz+d
az+b , which is holomorphic near −d

c
as A is invertible:

−d
c
6= − b

a
.

Near ∞ we study the composite

C
kV−−→ S2

h̃U−−→ C̄
ϕA−−→ C̄.

near 0 ∈ C. This composite takes z to

a1
z
+ b

c1
z
+ d

=
a+ bz

c+ dz
.

For c 6= 0, this is covered by Lemma 12.2.3. For c = 0, we apply the other
chart now in the target, getting c+dz

a+bz , and the result follows. �

In particular, as maps from C̄ to C̄, Möbius transformations are continu-
ous.
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Definition 12.2.5. Let A =
[
a b
c d

]
∈ SL2(R). Write tr(A) for the trace of

A.

• We say ϕA is parabolic if |tr(A)| = 2.
• We say ϕA is hyperbolic if |tr(A)| > 2.
• We say ϕA is elliptic if |tr(A)| < 2.

Note this is well-defined as kerϕ = {±I2}. This implies ϕA = ϕB if and only
if B = ±A. Note also that the identity map has been classified as parabolic.

These three types of transformations can be told apart by their fixed-
points. We first characterize the Möbius transformations fixing ∞.

Proposition 12.2.6. The Möbius transformations fixing ∞ have the form

(12.2.4) Möb∞ =
{
ϕA : A =

[
a b
0 1
a

]
with a, b ∈ R, a > 0

}
.

Moreover, for A in (12.2.4) we have

(12.2.5) ϕA(z) = a2z + ab.

Indeed, any degree 1 polynomial of the form f(z) = rz+ s with r, s ∈ R and
r > 0 may be written in this form.

For a = 1, ϕA(z) = z + b is parabolic. When b 6= 0, ∞ is the only
fixed-point of ϕA.

For a 6= 1, ϕA is hyperbolic. Its fixed-points are ∞ and ab
1−a2 . In particu-

lar, the Möbius transformations fixing 0 and ∞ have the form f(z) = cz for
1 6= c > 0 in R.

In the general case of (12.2.4), we have

(12.2.6) A =

[
1 ab
0 1

] [
a 0
0 1

a

]
= A1A2.

So ϕA = ϕA1 ◦ ϕA2, the composite of a parabolic transformation fixing ∞
and a hyperbolic transformation fixing 0 and ∞ (or the identity, if a = 1).

Proof. For a general matrix A =
[
a b
c d

]
∈ SL2(R), we have ϕA(∞) = a

c
, so

ϕA fixes ∞ if and only if c = 0. Since detA = 1, this also forces d = 1
a
.

Finally, since ϕA = ϕ−A, We may assume a > 0. This establishes (12.2.4),
and (12.2.5) follows by direct calculation.

When a = 1, tr(A) = 2, hence ϕA is parabolic and ϕA(z) = z + b by
(12.2.5). On C, this is just translation by b ∈ R, so if b 6= 0, there are no
fixed-points in C.

For a general A in (12.2.4), tr(A) = a2+1
a

. Consider g : (0,∞) → (0,∞),

given by g(a) = a2+1
a

. Then g′(a) = a2−1
a2

is negative on (0, 1) and positive
on (1,∞), so g has an absolute minimum at 1. In particular tr(A) > 2 for
a 6= 1, hence ϕA is hyperbolic for a 6= 1. In this case, for z ∈ C, ϕA(z) = z
if and only if (a2 − 1)z = −ab by (12.2.5), so the fixed-point calculation is
as stated. �
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Proposition 12.2.7. Let A =
[
a b
c d

]
∈ SL2(R), with A 6= ±I2. Then ϕA

has either one or two fixed-points in C̄:

(1) If ϕA is parabolic, then ϕA has exactly one fixed-point in C̄, either
∞ or a point in the x-axis, R (i.e., the fixed-point is on ∂H).

(2) If ϕA is hyperbolic, then ϕA has two fixed-points in C̄, both on ∂H.
(3) If ϕA is elliptic, then there are two fixed-points in C̄. They are

complex conjugates, and one lies in H and the other in C r H̄.

Proof. The case c = 0 (i.e., ∞ is fixed) is treated in Proposition 12.2.6. So
we assume c 6= 0. In this case, ϕA(z) = z if and only if az + b = cz2 + dz.
This gives a quadratic whose solutions are

z =
(a− d)±

√
a2 − 2ad+ d2 + 4bc

2c
.

Since detA = 1, bc = ad− 1, and this is equivalent to

(12.2.7) z =
(a− d)±

√
(a+ d)2 − 4

2c
.

Thus, there are two distinct real roots if |tr(A)| > 2, a single, repeated real
root if |tr(A)| = 2, and a pair of complex conjugate roots if |tr(A)| < 2. �

There are no situations above in which two fixed-points lie in H, so we
obtain the following.

Corollary 12.2.8. Any Möbius transformation fixing more than one ele-
ment of H is the identity. Similarly any Möbius transformation fixing single
element of H along with at least one point of ∂H is the identity.

This now allows the following.

Corollary 12.2.9. Let f and g be Möbius transformations that agree on
two distinct points in H. Then f = g. Similarly, if f and g agree on one
point of H and one point of ∂H, then f = g.

Proof. If f and g agree on both z and w, then gf−1 is a Möbius transfor-
mation fixing z and w. Apply Corollary 12.2.8. �

We now show that the Möbius transformations act on hyperbolic space.

Proposition 12.2.10. Let A =
[
a b
c d

]
∈ SL2(R) with c 6= 0. Then we can

factor A as a composite

A =

[
1 a

c
0 1

] [
1
c

0
0 c

] [
0 −1
1 0

] [
1 d

c
0 1

]
= A1A2A3A4.(12.2.8)

The transformations ϕA1 and ϕA4 are parabolic fixing ∞. If c 6= ±1. ϕA2 is
hyperbolic fixing ∞ and 0 (otherwise it is the identity). ϕA3 is elliptic fixing
±i. Each ϕAk , k = 1, . . . , 4, gives a diffeomorphism

ϕAk : H
∼=−→ H.

We also have ϕAk : H̄→ H̄. Thus, the same is true for ϕA.
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Proof. A direct calculation shows A1A2A3A4 =
[
a ad−1

c

c d

]
. Since detA = 1,

this is A. We now study these matrices case by case. For B =
[
1 b
0 1

]
, ϕB

translates the plane parallel to the x-axis, thus preserving H, the x-axis and
∞.

For B =
[
a 0
0 1
a

]
, ϕB(z) = a2z. This preserves the sign of the pure imagin-

eary part of z, and hence preserves H and H̄, fixing∞. the map ϕB : H→ H

is a diffeomorphism, as B−1 has the same form.
The most interesting case is B =

[
0 −1
1 0

]
. Here ϕB(z) = −1

z
= − z̄

zz̄
, with

z̄ the complex conjugate of z. An easy calculation shows Im(−1
z
) = Im(z)

zz̄
Since zz̄ > 0 for z 6= 0, this has the same sign as Im(z). Again ϕB preserves
H and H̄. The map ϕB : H → H is a diffeomorphism as B−1 = −B, hence
ϕ2
B = id. The fixed-points of ϕB are clear by direct calculation. �

Notation 12.2.11. The Möbius transformations in Proposition 12.2.6 are
important and will recur offen in discussion, so we establish notation for
them.

For a ∈ R, we write pa : H̄→ H̄ for the (parabolic) Möbius transformation
induced by [ 1 a0 1 ]:

(12.2.9) pa(z) = z + a.

For 0 < a ∈ R write ha : H̄ → H̄ for the Möbius transformation induced

by

[√
a 0

0 1√
a

]
:

(12.2.10) ha(z) = az.

This is hyperbolic when a 6= 1 and the identity for a = 1.
The output of Proposition 12.2.6 is that each element of Möb∞ may be

written uniquely in the form

f = pbha(12.2.11)

z 7→ az + b

for b ∈ R and 0 < a ∈ R, and that pbha is parabolic if a = 1 and hyperbolic
if a 6= 1. Moreover, the Möbius transformations fixing both 0 and ∞ are
precisely {ha : 0 < a ∈ R}.
Remarks 12.2.12.

(1) As we shall see, the elliptic Möbius transformations fixing z ∈ H

are precise analogues of the rotations about a particular point in the
Euclidean plane.

(2) An orientation-preserving isometry of R2 that is not a rotation is au-
tomatically a translation, and has no fixed-points. In the hyperbolic
case, there are two families of Möbius transformations of H with no
fixed-points in H: the parabolic ones and the hyperbolic ones. Nei-
ther is a precise analogue of a Euclidean translation, but perhaps
the hyperbolic ones are closer. Parabolic transformations do not fix
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any lines. Hyperbolic ones have a unique fixed line, and “translate”
that line along itself. For instance, the hyperbolic transformation
ha preserves the line ℓ0 = {ti : t > 0}. As we shall see, this line is
geodesic in H.

(3) The hyperbolic transformations ha exhibit different behavior at their
two fixed-points. The behavior depends on whether a > 1 or a < 1.
Suppose a > 1. Then ∞ is what’s known as an attractor for ha in
the sense that for 0 6= z ∈ H̄,

lim
n→∞

hna(z) =∞,

where hna is the composite of ha with itself n times. Here, the limit
may be taken in the usual sense of we regard H̄ as a subset of C̄ = S2.
That is equivalent to saying that limn→∞ ‖hna(z)‖ = ∞, using the
usual norm in C.

The fixed-point 0, on the other hand, is a repulsor when a > 1:
the iterates hna(z) get farther and farther away from 0 as n increases.)

When a < 1 it is 0 that is an attractor for ha. For z ∈ H̄ r {∞},
lim
n→∞

hna(z) = 0.

In this case, ∞ is a repulsor.
(4) The fixed-point, ∞, of the parabolic transformations pa is also an

attractor. For z ∈ H̄,

lim
n→∞

pna(z) =∞.

But some points start by moving away from ∞ before they move
toward it.

The following makes the analogy between elliptic transformations and
rotations explicit when the fixed-point is i.

Lemma 12.2.13. The isotropy subgroup, Möbi, of the complex number i ∈
H under the action of the Möbius transformations is

(12.2.12) Möbi = {ϕRθ : θ ∈ R},
where Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, the standard rotation matrix in SO2. Of course,

ϕRθϕRψ = ϕRθ+ψ .

Proof. This amounts to solving for A in (12.2.7) when z = i. Here Re(z) =
0 when a = d. So the discriminant is 4a2 − 4 and must equal −4c2. This
reduces to a2 + c2 = 1. Since a = d and detA = 1, this forces b = −c and
the result follows. �

We shall see later that the elements of finite order in Möb are all conjugate
to elements of Möbi. Note that ϕRπ = ϕ−I2 = id, so θ 7→ ϕRθ goes around
the circle double-time. We have the following.
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Lemma 12.2.14. The transformation ϕRθ has finite order if and only if θ
is a rational multiple of π. If n and k are relatively prime, ϕR k

nπ
has order

n.

Proof. (ϕRθ)
m = ϕRmθ is the identity if and only if Rmθ = ±I2. This holds

if and only if mθ is an integral multiple of π. �

Remark 12.2.15. We now have what we need to understand the isotropy
subgroup

(12.2.13) Möbz = {f ∈ Möb : f(z) = z}
for any z ∈ H̄. Lemma 12.2.13 computes Möbi and Proposition 12.2.6
computes Möb∞. By Lemma 3.6.4, if f ∈ Möb and z ∈ H̄, then

(12.2.14) Möbf(z) = f Möbz f
−1,

the conjugate subgroup to Möbz by f . Note that Möbi and Möb∞ are not
conjugate, as the nonidentity elements of Möbi are all elliptic, while the
elements of Möb∞ are all either hyperbolic or parabolic. But each type of
Möbius transformation, be it elliptic, parabolic or hyperbolic, is preserved
by conjugation, as matrix conjugation preserves the trace, and

ϕBϕAϕ
−1
B = ϕBAB−1 .

This does not contradict Lemma 3.6.4, as no Möbius transformation takes
∞, which lies in ∂H, to any element in H. However, these calculations are
sufficient to understand every isotropy group:

• Every element in ∂H has the form f(∞) for some Möbius transfor-
mation f . For a ∈ R,

(12.2.15) ϕ[

a 0
1 1
a

](∞) = a.

• Every element of H has the form f(i) for some Möbius transforma-
tion f . For a, b ∈ R with b > 0,

(12.2.16) ϕ[
√
b a√

b

0 1√
b

](i) = a+ bi.

By (12.2.16), every elliptic transformation is conjugate to ϕRθ for some θ.
By (12.2.15), every parabolic or hyperbolic transformation f is conjugate to
pbha for a, b ∈ R with a > 0. In particular if f is parabolic, it is conjugate
to pb for some b ∈ R. If f is hyperbolic, we shall show in Proposition 12.4.21
that f is conjugate to ha for some a > 0.

12.3. Isometric properties of Möbius transformations. We show that
Möbius transformations are Riemannian isometries of H (i.e., isometries in
the strong sense of Definition 11.1.5). We could then deduce from Proposi-
tion 11.2.9 that Möbius transformations preserve arc length and Riemannian
distance with respect to the hyperbolic metric (12.0.6). But since it is easy
to do so, we shall prove this directly.
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In other words, Möbius transformations are distance-preserving, and hence
are isometries in the naive sense we’ve been using in Euclidean and spherical
geometry.

To see that Möbius transformations are Riemannian isometries, we make
use of the factorizations in (12.2.8) and (12.2.6). The only hard step concerns
the elliptic transformation f = ϕA3 , with A3 =

[
0 −1
1 0

]
. Here,

f(z) = −1

z
= −z−1.

In particular, its complex derivative is given by f ′(z) = z−2. We shall apply
this to our situation using the follwing trick. The proof is left to the reader.

Lemma 12.3.1. Identify C with R2 in the usual way so that x + iy is
identified with [ xy ] for x, y ∈ R. Then for ζ, ω ∈ C, the standard real inner
product 〈ζ, ω〉 may be calculated by

(12.3.1) 〈ζ, ω〉 = Re(ζω̄),

where ω̄ is the complex conjugate of ω.

We use this in the following.

Lemma 12.3.2. Let A =
[
0 −1
1 0

]
. Then ϕA : H → H is an isometry in the

sense of Definition 11.1.5.

Proof. Let f(z) = ϕA(z) = −z−1. We must show that for z ∈ H and for
v, w tangent vectors at z, we have

(12.3.2) 〈Df(z)v,Df(z)w〉f(z) = 〈v, w〉z,
i.e.,

1

(Im(f(z))2
〈Df(z)v,Df(z)w〉 = 1

(Im(z))2
〈v, w〉,

where this time the inner products are the ordinary inner products in R2.
Identifying the tangent space with C and applying (12.3.1) along with our
formula for f and hence f ′. this says

1

(Im(−z−1))2
Re(z−2ζz̄−2ω̄) =

1

(Im(z))2
Re(ζω̄)

for all ζ, ω ∈ C. Since z−2z̄−2 is real, ζ and ω drop out and it suffices to
show that

(zz̄)2 Im(−z−1)2 = (Im(z))2.

But −z−1 = −z̄
zz̄
, so Im(−z−1) = Im(z)

zz̄
, and the result follows. �

This was the key step in the following.

Proposition 12.3.3. Let f : H → H be Möbius transformation: f = ϕA
for A ∈ SL2(R). Then f is an isometry in the sense of Definition 11.1.5.
Specifically,

(12.3.3) 〈Df(z)v,Df(z)w〉f(z) = 〈v, w〉z,
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for all z ∈ H and v, w tangent vectors at z.

Proof. It suffices to show this when A is one of the matrices in the factor-
izations (12.2.8) and (12.2.6). Lemma 12.3.2 treats the most difficult case.
The others induce parabolic transformations of the form pb(z) = z+b, b ∈ R,
or hyperbolic transformations of the form ha(z) = az for a > 0.

If f = pb, then f(z) has the same pure imaginary part as z, so the hyper-
bolic inner products at z and f(z) are identical. Since the Jacobian matrix
of pb is the identity, pb is an isometry.

If f = ha then Im(ϕA(z)) = a Im(z). The Jacobian matrix of ha induces
multiplication by a, so the result follows as in Lemma 12.3.2. �

We could now deduce a lot of important results from our chapter on
Riemannian geometry, but we prefer to prove some of the easier results
directly. The point is that H is an open subset of R2, and its geometry is
given by the “local model” in which many proofs are easier.

First, we deduce that Möbius transformations preserve hyperbolic dis-
tance and are therefore isometries in the naive sense.

Definition 12.3.4. A function f : H→ H is distance-preserving, or a naive
isometry if

dH(f(z), f(w)) = dH(z, w) for all z, w ∈ H.

We write I(H) for the set of naive isometries of H.

Remark 12.3.5. Note that while composition provides I(H) with an as-
sociative multiplication with identity element id, we do not yet know it is
a group, as we have not assumed the naive isometries are surjective. (It is
easy to show that if f : H → H is a distance-preserving surjection, then it
is bijective and its inverse function is distance-preserving.)

We studied the naive isometries in our analysis of Euclidean and spherical
geometry, and showed there that being a naive isometry is equivalent to
being an isometry in the stronger sense of Definition 11.1.5. We shall show
in Theorem 12.9.5 that the same is true in the hyperbolic case. As a result,
we will see that the maps in I(H) are surjective and that I(H) is a group.

The first step is showing that Möbius transformations are naive isometries.
This would follow from Proposition 12.3.3 and Proposition 11.2.9, but as
discussed above, we prefer to give a direct proof.

Corollary 12.3.6. Möbius transformations preserve arc length: if f is a
Möbius transformation and γ : [a, b] → H is piecewise smooth, then the arc
lengths of γ and f ◦γ are equal. By (12.0.9), f ∈ I(H). Thus, Möb ⊂ I(H).

Proof. It suffices to show ‖(f ◦γ)′(t)‖f◦γ(t) = ‖γ′(t)‖γ(t). This is immediate
from the chain rule and (12.3.3). �

12.4. Hyperbolic lines and geodesics. We will first define the hyper-
bolic lines and then show they are parametrized by geodesic curves.
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Definition 12.4.1. Let a ∈ R. The hyperbolic line ℓa is given by

(12.4.1) ℓa = {z ∈ H : Re(z) = a} = {a+ bi : 0 < b ∈ R}.
We shall refer to the points a,∞ ∈ ∂H as the endpoints or points at infinity
of ℓa.

Let a, r ∈ R with r > 0. The hyperbolic line Cr(a) is given by

(12.4.2) Cr(a) = {z ∈ H : ‖z−a‖ = r} = {(a+r cos t)+ir sin t : 0 < t < π},
the intersection of H with the circle of radius r with center a. The endpoints,
or points at infinity of Cr(a) are the points a± r ∈ R ⊂ ∂H.

For ℓ one of the lines above, we write ∂ℓ for its endpoints and write

ℓ̄ = ℓ ∪ ∂ℓ.
Thus, for instance, ℓ̄0 = {ti : t ≥ 0} ∪ {∞}. Note that the endpoints are
never in H and never in ℓ. We have ∂ℓ = ℓ̄ ∩ ∂H and ℓ = ℓ̄ ∩H.

In particular ℓ0 is the intersection of H with the y-axis and C1(0) is the
intersection of H with the unit circle.

We now wish to invoke the theory of geodesics. As we’ve seen earlier,
in the context of spherical geometry, these give parametrizations of the
“straight lines” appropriate for the geometry in question. We wish to use
the following results from Chapter 11.

(1) Distance minimizing curves are geodesic (Theorem 11.3.21).
(2) There is a unique geodesic through a given point with a given velocity

vector there (Theorem 11.3.17). This geodesic has a largest interval
on which it is defined and geodesic, and is unique on that interval
(Corollary 11.3.19).

We will prove everything else we need directly.
The following gives a geodesic parametrization of ℓ0.

Proposition 12.4.2. Define γi,i : R→ H by

(12.4.3) γi,i(t) = iet.

Then γi,i parametrizes ℓ0 with constant speed 1 and is distance minimizing
between any two points of ℓ0. Thus, by Theorem 11.3.21 γi,i is geodesic.

Proof. γ′i,i(t) = γi,i(t). By (12.0.7)

‖γ′i,i(t)‖γi,i(t) =
et

et
= 1.

For a < b ∈ R, γi,i|[ln a,ln b] is a path from ai to bi. Its length is

(12.4.4)

∫ ln b

ln a
‖γ′i,i(t)‖γi,i(t) dt = ln b− ln a.

It suffices to show this is minimal for the hyperbolic arc length of piecewise
smooth paths from ai to bi. Thus, let γ : [c, d] → H be such a path, and
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write γ(t) = γ1(t) + iγ2(t) with γi(t) real for i = 1, 2. By (12.0.7), the arc
length of γ is

∫ d

c

√
(γ′1(t))

2 + (γ′2(t))
2

γ2(t)
dt ≥

∫ d

c

|γ′2(t)|
γ2(t)

dt ≥
∫ d

c

γ′2(t)
γ2(t)

dt

= ln γ2(d)− ln γ2(c) = ln b− ln a. �

Corollary 12.4.3. γi,i : R → H is the unique hyperbolic geodesic with
γi,i(0) = i and γ′i,i(0) = i. (Here, we identify the tangent vectors at any

point of H with C, rather than R2.)

Notation 12.4.4. More generally, for z ∈ H and w ∈ C, ‖w‖z = 1, we write
γz,w for the unique hyperbolic geodesic with γz,w(0) = z and γ′z,w(0) = w.
We will see below that the domain of γz,w is all of R.

Since Möbius transformations preserve arc length and distance, we obtain
the following.

Corollary 12.4.5. Let f : H→ H be a Möbius transformation. Then f ◦γi,i
is geodesic, with image f(ℓ0).

Proof. By Corollary 12.3.6, f ◦ γi,i is distance minimizing. �

Remark 12.4.6. The situation here is similar to the parametrization of
lines in Rn by geodesics. In Rn, a line has the form ℓ = x + span(u) for
x, u ∈ Rn with ‖u‖ = 1. A parametrization of ℓ by a geodesic is given by

εx,u : R→ Rn,

εx,u(t) = x+ tu.

This is the unique geodesic ε with ε(0) = x and ε′(0) = u. It maps onto ℓ,
and the geodesic εx,−u parametrizes ℓ with the opposite orientation. (Here,
we are using ε to denote Euclidean geodesics.)

Consider now what happens when x is replaced by a different point, y ∈ ℓ.
Then y = x+ su for some s ∈ R, and

εy,u(t) = x+ su+ tu = x+ τs(t)u = εx,u ◦ τs(t),
where τs : R→ R is translation by s. Thus, εy,u = εx,u ◦ τs.

Now consider the analogous situation for the parametrization

γi,i : R→ ℓ0.

Let σ0 : R→ R be multiplication by −1 and consider the composite

γi,i ◦ σ0(t) = ie−t.

By the chain rule,
(γi,i ◦ σ0)′(t) = γ′i,i(−t),

so γi,i◦σ0 has unit speed. By Lemma 11.2.2, a nonsingular reparametrization
does not change arc length, so γi,i ◦ σ0 is geodesic. Now (γi,i ◦ σ0)′(0) = −i,
so

(12.4.5) γi,i ◦ σ0 = γi,−i.
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It parametrizes ℓ0 with the opposite orientation to that given by γi,i. There
are only two possible unit tangent vectors at i to curves parametrizing ℓ0,
so these are the only two unit unit speed geodesics parametrizing ℓ0 and
taking 0 to i.

Now consider the reparametrization γi,i ◦ τs. By the chain rule, this is
again a unit speed geodesic, this time taking 0 to γi,i(s). Since γi,i : R→ ℓ0
is onto, all the unit speed geodesics parametrizing ℓ0 are either obtained
in this way or by precomposing these with σ0. In fact, we have shown the
following.

Lemma 12.4.7. The geodesic parametrizations of ℓ0 are precisely the com-
posites γi,i ◦ α, with α ∈ I1, the Euclidean isometries of R. Thus, if f
is a Möbius transformation, the geodesic parametrizations of f(ℓ0) are the
composites f ◦ γi,i ◦ α for α ∈ I1.
Proof. The Euclidean isometries are composites τs ◦ β, with β a linear
isometry. The linear isometries are induced by orthogonal matrices, which
in the 1 × 1 case are just [±1]. Of course [1] induces the identity and [−1]
induces σ0. �

We will show that every hyperbolic line is the image of ℓ0 under a Möbius
transformation, and therefore is a geodesic line in H via the parametrizations
given in Lemma 12.4.7. Note first that as shown in the proof of Proposi-
tion 12.2.10, the map f(z) = rz + a is Möbius for r, a ∈ R with r > 0.
We have f(C1(0)) = Cr(a) and f(ℓ0) = ℓa, so it suffices to show there is a
Möbius transformation g with g(ℓa) = Cr(b) for some a, r, b.

We shall also show that Möbius transformations take hyperbolic lines
to hyperbolic lines. The key for understanding the effects of the Möbius
transformations on the hyperbolic lines will be studying g(z) = −z−1.

It is useful to give new formulae for hyperbolic lines. The proof of the
following is immediate from z + z̄ = 2Re(z) and ‖z − a‖2 = (z − a)(z̄ − a).
Lemma 12.4.8. The hyperbolic line ℓa is given by

(12.4.6) ℓa = {z ∈ H : z + z̄ = 2a}.
The hyperbolic line Cr(a) is given by

(12.4.7) Cr(a) = {z ∈ H : zz̄ − a(z + z̄) + a2 = r2}.
Proposition 12.4.9. Let g be the Möbius transformation g(z) = −z−1.
Then g(ℓ0) = ℓ0 and for a 6= 0, g(ℓa) = C 1

2|a|
(− 1

2a), the hyperbolic line with

endpoints − 1
a
= g(a) and 0 = g(∞).

Since g2 = id this also computes the effect of g on all hyperbolic lines
having 0 as an endpoint. If neither 0 nor ∞ is an endpoint, then the line
has the form Cr(a) with a 6= ±r. In this case, g(Cr(a)) = C r

|r2−a2|
( a
r2−a2 ),

the hyperbolic line whose endpoints are 1
r−a and − 1

r+a , the images under g

of the endpoints of Cr(a).
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Proof. Write g(z) = w, so that z = − 1
w
. Then the formula for g(ℓa) is

obtained by solving

− 1

w
− 1

w̄
= 2a.

This may be rewritten as

2aww̄ + (w + w̄) = 0.

If a = 0, this says Re(w) = 0, hence g(ℓ0) = ℓ0. For a 6= 0 we can divide by
2a, getting

ww̄ +
1

2a
(w + w̄) +

1

4a2
=

1

4a2
,

the formula for C 1
2|a|

(− 1
2a).

For a 6= ±r, we calculate g(Cr(a)) by plugging − 1
w
into (12.4.7). A similar

calculation achieves the stated result. �

An immediate corollary is the calculation of which hyperbolic lines are
preserved by g.

Corollary 12.4.10. Let g be the Möbius transformation g(z) = −z−1 and
let ℓ be a hyperbolic line. Then g(ℓ) = ℓ if and only if i ∈ ℓ.

Proof. The only line ℓa containing i is ℓ0, which is also the only line ℓa
preserved by g. The line Cr(a) is preserved by g if and only if r2 − a2 = 1,
i.e., r2 = a2 + 1. But a2 + 1 = (a − i)(a − ı̄) = ‖a − i‖2, and the result
follows. �

A more significant corollary is the following.

Corollary 12.4.11. Let ℓ be the hyperbolic line with endpoints a, b ∈ ∂H
and let f be a Möbius transformation. Then f(ℓ) is the hyperbolic line with
endpoints f(a) and f(b).

Moreover, every hyperbolic line is the image of ℓ0 under a Möbius trans-
formation. Thus every hyperbolic line is the image of a geodesic. Up to pre-
composition with a translation, there are exactly two geodesics parametrizing
each hyperbolic line, one with each possible orientation.

Proof. If f fixes∞, then Proposition 12.2.6 gives f(z) = cz+d with c, d ∈ R

with c > 0, and f(ℓ) is the line with endpoints f(a) and f(b) by a case by
case inspection.

If f does not fix ∞, the factorization (12.2.8) gives f = f3 ◦ f2 ◦ f1 where
f1 and f3 fix ∞ and f2(z) = −z−1. The identification of f(ℓ) follows by
composition and Proposition 12.4.9.

The lines ℓa are all images of ℓ0 under Möbius transformations fixing ∞.
Similarly, the lines Cr(a) are all images of C1(0) under Möbius transforma-
tions, so they are also images of ℓ0 by Proposition 12.4.9. �
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Recall that if X ⊂ H̄, that

(12.4.8) SMöb(X) = {f ∈ Möb : f(X) = X},
the group of all Möbius transformations that preserve X.

Corollary 12.4.12. Let ℓ be a hyperbolic line with endpoints a and b. Then

(12.4.9) SMöb(ℓ) = SMöb({a, b}),
i.e., f preserves ℓ if and only if f preserves the two-point set {a, b}.

An important subgroup of SMöb(ℓ) is the set of Möbius transformations
fixing each endpoint:

Definition 12.4.13. For z 6= w ∈ H̄, we write

(12.4.10) Möbz,w = Möbz ∩Möbw,

the set of elements in Möb that fix both z and w.

The following is proven in Proposition 12.2.6.

Corollary 12.4.14. The Möbius transformations fixing 0 and ∞ are the
transformations ha(z) = az:

(12.4.11) Möb0,∞ = {ha : a > 0}.
These are hyperbolic for a 6= 1. The multiplication is given by

(12.4.12) hahb = hab.

These transformations deserve further study.

Lemma 12.4.15. The hyperbolic transformation ha acts on lines as follows:

(12.4.13) ha(Cr(b)) = Car(ab), ha(ℓb) = ℓab.

Thus if a 6= 1, ℓ0 is the only hyperbolic line preserved by ha. On ℓ0 we can
think of ha as a translation. We can see this in its effect on geodesics:

(12.4.14) ha ◦ γi,i = γi,i ◦ τ ln a.
We shall refer to ℓ0 as the axis of translation for ha.

Proof. The effect of ha on lines is an easy computation. For (12.4.14), we
have

ha ◦ γi,i(t) = iaet = iet+ln a. �

This will allow us to understand the full group SMöb(ℓ0).

Proposition 12.4.16. Möb0,∞ is an index 2 subgroup of SMöb(ℓ0). The
elements of SMöb(ℓ0)rMöb0,∞ form the coset

(12.4.15) (Möb0,∞)g = {hag : a ∈ R},
where g(z) = −z−1. The multiplication of SMöb(ℓ0) is determined by

(12.4.16) ghag
−1 = h 1

a
= h−1

a .
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Thus,

(12.4.17) haghb = ha
b
g,

and the rest of the multiplication follows. In particular, (hag)
2 = ha

a
g2 = id,

so each hag has order 2.
The element hag is elliptic with fixed-point i

√
a ∈ ℓ0. Thus, every element

of SMöb(ℓ0) rMöb0,∞ is elliptic with its fixed-point in ℓ0. Moreover, every
element of ℓ0 is the fixed-point of a unique element of SMöb(ℓ0)rMöb0,∞.

On geodesics,

(12.4.18) hag ◦ γi,i = γi,i ◦ τ ln aσ0,
where σ0(t) = −t.
Proof. By Corollary 12.4.12, f ∈ SMöb(ℓ0)rMöb0,∞ if and only if f inter-
changes 0 and ∞. But then fg−1 fixes both 0 and ∞, and hence fg−1 = ha
for some a ∈ R. Hence f = hag. (12.4.16) and the calculation of the
fixed-point are straightforward.

(12.4.18) follows from Lemma 12.4.15 once we show that g◦γi,i = γi,i◦σ0.
But

g ◦ γi,i(t) = e−ti,

and the result follows. �

Proposition 12.2.6 also determines which parabolic Möbius transforma-
tions fix ∞.

Corollary 12.4.17. The parabolic Möbius transformations fixing ∞ form
the subgroup

(12.4.19) P∞ = {pb : b ∈ R} ⊂ Möb∞ .

Their multiplication is given by

(12.4.20) papb = pa+b.

Indeed, we may deduce the group structure on Möb∞ in the same way we
derived the group structure on In from the translations and the linear isome-
tries. In both cases, the group in question is what’s known as a semidirect
product. The proof of the following is left to the reader.

Proposition 12.4.18. Each Möbius transformation fixing ∞ may be writ-
ten uniquely in the form f = pbha with a, b ∈ R and a > 0. The multiplica-
tion is given by

pb1ha1pb2ha2 = pb1+a1b2ha1a2 .

Behavior on lines is an important difference between hyperbolic and par-
abolic Möbius transformations. The proof of the following is obvious.

Lemma 12.4.19. The parabolic transformations in P∞ act on lines as fol-
lows. For b ∈ R, pb(ℓa) = ℓa+b and pb(Cr(a) = Cr(a+ b). Thus, if b 6= 0, no
hyperbolic line is fixed by pb.
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We may now determine the lines preserved by an arbitrary hyperbolic
Möbius transformation.

Lemma 12.4.20. Let a, b ∈ ∂H. Then there is a Möbius transformation f
with f(∞) = a and f(0) = b.

Proof. If a, b ∈ R, take f = ϕA for A =

[
a
a−b b
1
a−b 1

]
. For a =∞, take f = pb.

For b =∞, take f = pa ◦ g for g(z) = −z−1. �

Recall that a nonidentity Möbius transformation is hyperbolic if and only
if it has exactly two fixed-points in H̄, both of which must then lie on ∂H.
Any other nonidentity Möbius transformation has one fixed-point in H̄. If
the fixed-point lies on ∂H, the transformation is parabolic. If it lies in H,
the transformation is elliptic.

Proposition 12.4.21. The hyperbolic Möbius transformations fixing a, b ∈
∂H are the nonidentity elements in the subgroup Möba,b. If f is a Möbius
transformation taking ∞ to a and 0 to b (e.g., from Lemma 12.4.20), then

(12.4.21) Möba,b = f Möb0,∞ f−1.

Let ℓ be the hyperbolic line with endpoints a and b. Then ℓ is the unique line
preserved by a given nonidentity element g ∈ Möba,b. We refer to ℓ as the
axis of translation for g, and we have

(12.4.22) SMöb(ℓ) = fSMöb(ℓ0)f
−1.

Thus, Möba,b has index 2 in SMöb(ℓ), and every element of SMöb(ℓ)rMöba,b
is an elliptic transformation of order 2 fixing an element of ℓ. Each element
of ℓ arises as such a fixed-point.

Nonidentity parabolic transformations, on the other hand, preserve no
lines.

Proof. Since conjugation induces a bijection from Möb to itself, it preserves
intersections, so

f Möb0,∞ f−1 = f(Möb0 ∩Möb∞)f−1 = (f Möb0 f
−1) ∩ (f Möb∞ f−1)

= Möbb ∩Möba = Möba,b .

By (3.6.8), the Möbius transformations preserving f(m) are the conjugates
by f of the Möbius transformations preserving m. Since no line other than
ℓ0 is preserved by the nonidentity elements of Möb0,∞, no line other than
f(ℓ0) = ℓ can be preserved by the nonidentity elements of Möba,b. Since
f(ℓ0) = ℓ, (12.4.22) follows from (3.6.8).

Regarding parabolic transformations, every parabolic transformation fixes
some a ∈ ∂H, and hence is conjugate by this same transformation f to one
fixing ∞. The same argument applies. �
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Remark 12.4.22. As an open subset of R2, H has a natural orientation in
the sense of Definition 10.5.1. We simply choose the standard identification
of the tangent space at each z ∈ H with R2. That gives a linear orientation
of the tangent space.

Recall, then, that a diffeomorphism f : H → H is orientation-preserving
if detDf(z) > 0 for all z ∈ H and is orientation-reversing if detDf(z) < 0
for all z ∈ H.

The following shows that Möbius transformations are orientation-preser-
ving.

Lemma 12.4.23. Let U ⊂ C be open and let f : U → C be holomorphic.
Suppose the complex derivative f ′(z) 6= 0. Then the real Jacobian matrix
Df has positive determinant.

Thus, Möbius transformations are orientation-preserving.

Proof. Df(z) is the realification of [f ′(z)]. If f ′(z) = a+ ib with a, b ∈ R,
then

Df(z) =

[
a −b
b a

]
,

so detDf = a2 + b2 = ‖f ′(z)‖2. �

Lemma 12.2.3 allows us to make explicit our connection between elliptic
Möbius transformations and rotations. Recall from Lemma 12.2.13 that the
Möbius transformations preserving i are precisely the transformations ϕRθ ,
where Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, is the standard rotation matrix in SO2. Explicitly,

ϕRθ(z) =
cos θ z − sin θ

sin θ z + cos θ
.

Substituting z = i into (12.2.3) gives the following.

Corollary 12.4.24. ϕ′
Rθ

(i) = e−2iθ. Thus, the Jacobian matrix of ϕRθ at i
is

(12.4.23) DϕRθ(i) = R−2θ =

[
cos(−2θ) − sin(−2θ)
sin(−2θ) cos(−2θ)

]
.

Proof. The displayed matrix is just the realification of the complex 1 × 1
matrix [e−2iθ]. �

Recall our geodesic γi,i : R → ℓ0 given by γi,i(t) = iet. We saw that
‖γ′i,i(t)‖γi,i(t) = 1 for all t. Note that γ′i,i(0) = i. We shall now explicitly
compute the velocity vectors for the composites ϕRθ ◦ γi,i and show this
exhausts the unit speed geodesics emanating from i.

Let us first replace γi,i with the unit speed geodesic along C1(0). We first
use (12.2.8) to map ℓ0 onto C1(0).
Lemma 12.4.25. The elliptic transformation ϕRπ

4
carries ℓ0 onto C1(0).

Consider the geodesic γ = ϕRπ
4
◦ γi,i. Then γ(0) = i and γ′(0) is the

complex number 1. Thus, γ = γi,1.
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Proof. The factorization (12.2.8) gives ϕRπ
4

= f3 ◦ f2 ◦ f1 with f1(z) =

z + 1, f2(z) = −z−1 and f3(z) = 2z + 1. f1 takes ℓ0 to ℓ1, which is then
carried to C− 1

2
(−1

2) by f2 (Proposition 12.4.9), and then on to C1(0) by f3.
The calculation of the velocity vector follows from (12.4.23) and the chain
rule. �

Note that when viewed via the factorization (12.2.8), the sign in (12.4.23)
comes from the orientation of C− 1

2
(−1

2) induced by f2: f2 converts the up-

ward pointing orientation of the vertical line ℓ1 to the left-to-right orientation
of the semicircle. The following is now immediate from (12.4.23).

Proposition 12.4.26.

(1) Let θ ∈ R. Then ϕR− θ
2

◦ γi,1 = γi.eiθ , the unique geodesic taking 0 to

i with velocity vector eiθ there. It parametrizes a hyperbolic line by
Corollary 12.4.11.

Since this accounts every possible unit vector at i as θ varies, we
see that every geodesic in H through i parametrizes a hyperbolic line.

(2) Similarly, ϕR− θ
2

◦ γi,eiψ = γi.ei(θ+ψ), so ϕR− θ
2

rotates the line para-

metrized by γi,eiψ by the angle θ about i. The elliptic Möbius trans-
formations fixing i are indeed rotations about i.

We have justified the following.

Definition 12.4.27. The rotation ρ(i,θ) of H about i by θ is given by

(12.4.24) ρ(i,θ) = ϕR− θ
2

.

The following summarized what we know about these rotations.

Proposition 12.4.28. The isotropy group Möbi is given by

(12.4.25) Möbi = {ρ(i,θ) : θ ∈ R}.
This is an Abelian group as

(12.4.26) ρ(i,θ)ρ(i.ψ) = ρ(i,θ+ψ).

Moreover ρ(i,θ) has finite order if and only if θ is a rational multiple of 2π.

If θ = 2πk
n

with (k, n) = 1, then ρ(i,θ) has order n. In particular, ρ(i,θ) = id
if and only if θ is a multiple of 2π.

We now generalize this to elliptic transformations that fix points other
than i, obtaining that all hyperbolic geodesics parametrize hyperbolic lines.
The following is an easy calculation.

Lemma 12.4.29. Let w ∈ H and write w = a + ib with a, b ∈ R. Then
f(z) = bz + a is a Möbius transformation with f(i) = w and f(C1(0)) =
C‖w‖(a). Moreover f ◦ γi,1 = γw,b, the unique unit speed hyperbolic geodesic
whose value at 0 is w and whose velocity vector at 0 is a positive multiple of
1. It parametrizes C‖w‖(a).
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Proposition 12.4.30. Let w ∈ H and let f ∈ Möb with f(i) = w. By
Lemma 3.6.4, the isotropy group Möbw is given by

(12.4.27) Möbw = {fϕRθf−1 : θ ∈ R}.
If f is the Möbius transformation of Lemma 12.4.29, then

(12.4.28) fϕR− θ
2

f−1 ◦ γw,b = γw,beiθ .

Thus, every unit speed geodesic through w is the image of γw,b under a
Möbius transformation, and hence parametrizes a hyperbolic line.

Since w is arbitrary, every hyperbolic geodesic is the composite of a Möbius
transformation with γi,1 and parametrizes a hyperbolic line.

More generally,

(12.4.29) fϕR− θ
2

f−1 ◦ γw,beiψ = γw,bei(θ+ψ) ,

So fϕR− θ
2

f−1 rotates the hyperbolic lines through w by the angle θ about w.

Proof. Since f−1 ◦ γw,b = γi,1, (12.4.28) follows from Proposition 12.4.26
and the chain rule. �

The following is a useful observation.

Lemma 12.4.31. Let f, g ∈ Möb with f(i) = g(i) = w. Then

(12.4.30) fρ(i,θ)f
−1 = gρ(i,θ)g

−1

for all θ.

Proof.

fρ(i,θ)f
−1 = gρ(i,θ)g

−1 ⇔ (g−1f)ρ(i,θ)(g
−1f)−1 = ρ(i,θ).

But g−1f fixes i, so g−1f = ρ(i,ψ) for some ψ and hence commutes with
ρ(i,θ). The result follows. �

In particular, the following is now justified.

Definition 12.4.32. Let f be any Möbius transformation with f(i) = w.
Then

(12.4.31) ρ(w,θ) = fρ(i,θ)f
−1.

In summary, we obtain:

Proposition 12.4.33. Let w ∈ H. The isotropy group Möbw is given by

(12.4.32) Möbw = {ρ(w,θ) : θ ∈ R}.
This is an Abelian group as

(12.4.33) ρ(w,θ)ρ(w.ψ) = ρ(w,θ+ψ).

Moreover ρ(w,θ) has finite order if and only if θ is a rational multiple of 2π.

If θ = 2πk
n

with (k, n) = 1, then ρ(w,θ) has order n. In particular, ρ(w,θ) = id
if and only if θ is a multiple of 2π.
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Remark 12.4.34. Note that the hyperbolic transformations ha (a 6= 1) all
have infinite order. Since every hyperbolic transformation is conjugate to
some ha, all hyperbolic Möbius transformations have infinite order.

Similarly, the parabolic transformations pb, b 6= 0, all have infinite order.
Since every parabolic transformations is conjugate to some pb all parabolic
Möbius transformations have infinite order.

Thus, the only nonidentity Möbius transformations of finite order are el-
liptic, and we’ve identified their orders in Proposition 12.4.33. In particular,
we have the following.

Lemma 12.4.35. The Möbius transformations of order 2 are precisely the
rotations ρ(w,π) for w ∈ H.

This leads to a reinterpretation of part of Proposition 12.4.21.

Corollary 12.4.36. Let ℓ be a hyperbolic line with ∂ℓ = {a, b}. Then the
nonidentity, nonhyperbolic elements of SMöb(ℓ) are given by

(12.4.34) SMöb(ℓ)rMöba,b = {ρ(w,π) : w ∈ ℓ}.
A consequence of this is the following.

Corollary 12.4.37. An elliptic Möbius transformation of order unequal to
2 preserves no hyperbolic line. An elliptic Möbius transformation of order 2
preserves every line containing its center of rotation (and no others).

12.5. Incidence relations and transitivity properties. The following
is a direct analogue of the Euclidean case.

Proposition 12.5.1. Two points determine a line in H. Given z 6= w ∈ H,
there is a unique hyperbolic line containing z and w.

Proof. If Re(z) = Re(w) = a, then ℓa is the unique vertical line containing
z and w. Since the semicircles Cr(a) are all graphs of functions of x, none
of them contain both z and w.

Now suppose Re(z) 6= Re(w). Then no vertical line contains both z and
w, and both points lie in Cr(a) if and only if

(z − a)(z̄ − a) = (w − a)(w̄ − a)(12.5.1)

zz̄ − a(z + z̄) + a2 = ww̄ − a(w + w̄) + a2

zz̄ − a(2Re(z)) = ww̄ − a(2Re(w)).
Since Re(z) 6= Re(w), this allows us to solve for a and hence r. �

We now analyze how the Möbius transformations act on pairs of points.

Proposition 12.5.2. Let ζ 6= ω ∈ H. Then there is a unique Möbius
transformation f such that:

(1) f(ζ) and f(ω) lie in ℓ0.
(2) f(ζ) = i.
(3) Im(f(ω)) > 1.
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Proof. By Proposition 12.5.1, there is a hyperbolic line ℓ containing ζ and
ω. By Corollary 12.4.11, there is a Möbius transformation f1 taking ℓ onto
ℓ0, obtaining (1).

We can now apply a hyperbolic Möbius transformation ha (ha(z) = az)
such that ha ◦ f1(ζ) = i, obtaining (2).

Now note that if g(z) = −z−1, then g(ti) = 1
t
i for t ∈ R. So g interchanges

the subsets of ℓ0 with pure imaginary parts in (0, 1) and (1,∞). Thus,
composing with g if necessary, we obtain (3).

Uniqueness is proven in Corollary 12.2.9. �

In particular, note that the value of f(ω) is forced by the hyperbolic
distance from ζ to ω. Specifically, (12.4.4) gives the following.

Addendum 12.5.3. The value of f(w) in Proposition 12.5.2 is ied, where
d = dH(z, w).

We obtain the following.

Corollary 12.5.4. Let z 6= w and ζ 6= ω be two pairs of points in H with

dH(z, w) = dH(ζ, ω),

where d is hyperbolic distance. Then there is a unique Möbius transformation
f with f(z) = ζ and f(w) = ω.

Proof. Let d = dH(z, w). Then there are Möbius transformations g, h, with
g(z) = h(ζ) = i and g(w) = h(ω) = ied. Let f = h−1g. Uniqueness is
proven in Corollary 12.2.9. �

Remark 12.5.5. There are analogous results in the plane. The correct ana-
logue is between the Möbius transformations and the orientation-preserving
isometries O2 = O(R2) (we have not yet considered the orientation-reversing
isometries of H).

The elements of O2 are all translations and rotations. Nonidentity trans-
lations have no fixed-points and nonidentity rotations have exactly one fixed-
point. So any two orientation-preserving isometries of R2 that agree on two
points must be equal.

It is then easy to see that given x 6= y ∈ R2, there is a unique orientation-
preserving isometry f ∈ O2 with f(x) = 0 and f(y) on the positive x-axis.
As a consequence if x 6= y ∈ R2 and if z, w ∈ R2 with

d(x, y) = d(z, w),

there is a unique f ∈ O2 with f(x) = z and f(y) = w.

In hyperbolic space we have an extra layer of information coming from
the boundary points.

Lemma 12.5.6. Let w ∈ H and let a ∈ ∂H, then there is a unique hyperbolic
line ℓ containing w and having a as one of its boundary points.



392 MARK STEINBERGER

Proof. This is very much like the proof of Proposition 12.5.1. If a = ∞
or a = Re(w) then ℓ = ℓRe(w). Otherwise, Re(w) and a are distinct real
numbers and ℓ = Cr(b) for some r and b. We must have

(a− b)2 = (w − b)(w̄ − b) = ww̄ − 2bRe(w) + b2.

Solving this, we get b = a2−ww̄
2(a−Re(w)) and r = |a− b|. �

We obtain the following.

Proposition 12.5.7. Let ℓ be a hyperbolic line and let w ∈ ℓ. Let ∂ℓ =
{a, b}. Then there are exactly two Möbius transformations taking ℓ to ℓ0
and w to i. One of them, say f , takes a to ∞. The other is gf , where
g(z) = −z−1. gf takes b to ∞ and a to 0.

Proof. The proof is much like that of Proposition 12.5.2. First find a
Möbius transformation f1 taking ℓ onto ℓ0. Then compose with a hyper-
bolic Möbius transformation ha so that haf(w) = i. Then compose with g,
if necessary so that a goes to ∞.

Uniqueness comes from Corollary 12.2.9. �

The following is an immediate consequence.

Corollary 12.5.8. Let ℓ and m be hyperbolic lines with z ∈ ℓ and w ∈ m.
Then there are exactly two Möbius transformations taking ℓ to m and z to
w. They are determined by their behavior on ∂ℓ. If f is one of them, then
ρ(w,π)f is the other.

12.6. Hyperbolic line segments.

Definition 12.6.1. Let ζ 6= ω ∈ H. A geodesic path from ζ to ω is a
path γ|[a,b] : [a, b] → H with γ a hyperbolic geodesic of unit speed with
γ(a) = ζ and γ(b) = ω. Note that if d = dH(ζ, ω) and f is the Möbius
transformation given by Proposition 12.5.2, then f−1 ◦ γi,i|[0,d] is one such
path. By Corollary 12.4.11, any other such path is obtained from that one
by precomposition with a translation τs : [−s, d− s]→ [0, d] for s ∈ R.

We write [ζ, ω] for the image of such a path and call it the geodesic
segment between ζ and ω. Note that precomposition of f−1 ◦ γi,i|[0,d] by
t 7→ d − t gives a geodesic path from ω to ζ, hence [ζ, ω] = [ω, ζ]. We refer
to d as the length of this segment.

Of course, we set [ζ, ζ] = {ζ}.
Geodesic line segments in H play a role similar to that of ordinary line

segments in Rn. Indeed, they form the edges of hyperbolic triangles. They
also satisfy the following important property.

Proposition 12.6.2. Let ζ 6= ω ∈ H. Then

(12.6.1) [ζ, ω] = {z ∈ H : dH(ζ, z) + dH(z, ω) = dH(ζ, ω)}.
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Proof. Let z ∈ [ζ, ω] and let γ : [a, b] → H be a geodesic path from ζ to
ω with γ(c) = z. Then γ|[a,c] and γ|[c,b] are geodesic paths from ζ to z and
from z to ω, respectively. We have

dH(ζ, ω) = ℓ(γ) = ℓ(γ|[a,c]) + ℓ(γ|[c,b]) = dH(ζ, z) + dH(z, ω).

Conversely, suppose dH(ζ, z) + dH(z, ω) = dH(ζ, ω). Let δ : [a, c] → H be
a unit speed geodesic path from ζ to z and ε : [c, b] → H be a unit speed
geodesic path from z to ω (as can be arranged via a translation to get the
endpoints right). Define γ : [a, b]→ H by

γ(t) =

{
δ(t) for t ∈ [a, c],

ε(t) for t ∈ [c, b].

Then γ is a unit speed distance minimizing path, and hence is geodesic. �

Corollary 12.6.3. Let f ∈ I(H) (i.e., f : H → H is distance-preserving).
Then

(12.6.2) f([z, w]) = [f(z), f(w)] for all z, w ∈ H.

Indeed, if γ : [a, b] → [z, w] is a unit speed geodesic parametrization of
[z, w], then f(γ(t)) is the unique point on [f(z), f(w)] of distance dH(z, γ(t))
from f(z). Thus, f ◦ γ is the unique unit speed geodesic parametrization of
[f(z), f(w)] taking a to f(z).

Proof. Let γ be as in the statement. Then

dH(f(z), f(w)) = dH(z, w) = dH(z, γ(t)) + dH(γ(t), w)

= dH(f(z), f(γ(t))) + dH(f(γ(t)), f(w)).

So f(γ(t)) ∈ [f(z), f(w)] by Proposition 12.6.2. �

Corollary 12.6.4. Let f ∈ I(H). Then f(ℓ) is a hyperbolic line for each hy-
perbolic line ℓ. Moreover, if γ : R→ H is a unit speed geodesic parametriza-
tion of ℓ, then f ◦ γ is a unit speed geodesic parametrization of f(ℓ).

Proof. Let z, ζ, w be any three points on ℓ. By Corollary 12.6.3 f(z), f(ζ),
and f(w) all lie on the same hyperbolic line. Since two distinct points deter-
mine a hyperbolic line and since z, ζ, w are arbitrary, f(ℓ) must be contained
in a single hyperbolic line m. Moreover, since f is distance-preserving, f(ℓ)
must contain the two points of distance d from f(z) for each d > 0, so
f : ℓ→ m is onto.

The result now follows since geodesics are distance-preserving, so f ◦ γ
must coincide with a geodesic parametrization of m. �

Corollary 12.6.5. If f ∈ I(H) is the identity on two points, say z and w,
then f is the identity on the line ℓ containing z and w.

Proof. By Corollary 12.6.4, f(ℓ) is a line. But then f(ℓ) must equal ℓ as it
contains z and w. Moreover, if γ is the unit speed geodesic parametrization
of ℓ taking 0 to z, and with w on it’s “positive side”, then f ◦ γ = γ. Since
ℓ the image of γ, f is the identity there. �
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12.7. Parallels and perpendiculars. We use the naive notion of parallel
lines:

Definition 12.7.1. Two hyperbolic lines are parallel if they do not intersect.
We say they are hyperparallel if they also do not share a common boundary
point.

Note that the lines ℓa all share∞ as a boundary point, so they are parallel,
but not hyperparallel. Similarly, the lines C|a|(a) all share the boundary
point 0. They are pairwise parallel, but not hyperparallel. (We may add ℓ0
to this last family and retain these properties.)

Indeed, for any a ∈ ∂H, the distinct lines having a as one of their bound-
ary points are pairwise parallel but not hyperparallel. We can see this by
applying a parabolic transformatiion to the preceding example.

On the other hand, the lines Cr(0) are pairwise hyperparallel as r varies.
Hyperbolic space satisfies the antithesis of the Parallel Postulate.

Proposition 12.7.2. Let ℓ be a hyperbolic line and let w ∈ H r ℓ. Then
there are infinitely many hyperbolic lines through w parallel to ℓ.

Proof. We first assume ℓ = ℓ0 = {z ∈ H : Re(z) = 0}. Let w ∈ H r ℓ0.
Write w = x+iy with x, y ∈ R. For simplicity, assume x > 0. The argument
for negative x is similar.

Of course ℓx = {z ∈ H : Re(z) = x} is parallel to ℓ0 and contains w.
We now ask which of the lines Cr(a) contain w. Of course, for a ∈ R, there
is a unique such line: the one with r = ‖w − a‖. So we now ask whether
C‖w−a‖(a) intersects ℓ0.

An intermediate value theorem argument shows that C‖w−a‖(a) ∩ ℓ0 = ∅
if and only if a ≥ ‖w − a‖. An easy calculation shows this is equivalent to

a ≥ x2 + y2

2x
,

leaving infinitely many possibilities for a. Note that of the infinitely many
lines through z parallel to ℓ0 only two of them fail to be hyperparallel to ℓ0:

ℓx and C‖w−a‖(a) for a = x2+y2

2x .
For a general line ℓ, let f be a Möbius transformation with f(ℓ0) = ℓ.

Then ℓ and m are parallel if and only if ℓ0 and f−1(m) are parallel. So
apply the preceding argument with w replaced by f−1(w) and take the
images of the resulting lines under f . �

Just as in Rn and Sn, the geodesics provide parametrizations, and hence
orientations of hyperbolic lines. We use them to calculate directed angles
between oriented lines in H. Note that since any pair of distinct points in
H is contained in a unique hyperbolic line, two nonparallel hyperbolic lines
intersect in exactly one point (precisely as was the case in R2, but different
from the behavior in S2).
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Definition 12.7.3. Let ℓ and m be intersecting lines in H, with ℓ ∩m =
z = x + iy with x, y ∈ R. Let γ : R → ℓ and δ : R → m be unit speed
geodesics parametrizing ℓ and m, respectively, with γ(t) = δ(s) = z. Then
‖γ′(t)‖z = ‖δ′(s)‖z = 1, so γ′(t) = yeiθ and δ′(s) = yeiϕ for θ, ϕ ∈ R. We
define the directed angle from ℓ to m to be ϕ− θ.

Note this is precisely the Euclidean directed angle between the oriented
tangent lines to ℓ andm, where the orientations of the tangent lines are given
by the velocity vectors to the geodesics chosen. Just as in the Euclidean case,
a direct calculation of dot products shows the following.

Lemma 12.7.4. Keeping the notations above, the unsigned angle between ℓ
and m with respect to these orientations is cos−1(〈γ′(t), δ′(s)〉z).
Definition 12.7.5. The hyperbolic lines ℓ andm are perpendicular (written
ℓ ⊥ m) if the unsigned angle between them is π

2 . Note this is independent
or orientations as π

2 = π − π
2 .

In particular, perpendicularity depends only on the tangent lines and not
on their orientation:

Corollary 12.7.6. Two hyperbolic lines are perpendicular if and only if
their tangent lines are perpendicular at their point of intersection.

A key here is the observation we made in spherical geometry that if γ :
(a, b) → Sn is smooth, then γ′(t) is orthogonal to γ(t) for all t. Applying
this to circles in R2 and allowing the center and radius to vary, we obtain
the following.

Lemma 12.7.7. Let z ∈ Cr(a). Then the tangent line to Cr(a) at z is the
Euclidean line through z perpendicular to the Euclidean segment za (i.e.,
the radial segment in Cr(a) ending at z).

Of course, the tangent line to ℓa at any point is ℓa.

Corollary 12.7.8. ℓa is perpendicular to Cr(b) if and only if a = b.

Proof. ℓa is perpendicular to Cr(b) if and only if the tangent line to Cr(b)
at z = ℓz ∩ Cr(b) has slope 0. The standard Euclidean parametrization of
Cr(z) shows this to be the case if and only if Re(z) = a. �

Of course if a 6= b, then ℓa∩ℓb = ∅, and the two lines are not perpendicular.

Corollary 12.7.9. There is a unique hyperbolic line perpendicular to ℓa
through any point z ∈ H. It is the line C‖z−a‖(a).
Proof. This is the only line of the form Cr(a) containing z. �

Lemma 12.7.7 has another important and immediate consequence.

Corollary 12.7.10. Let Cr(a) and Cs(b) be intersecting hyperbolic lines with
z = Cr(a) ∩ Cr(b). Then Cr(a) and Cs(b) are perpendicular if and only if the
line segments az and bz are perpendicular.
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A very important result is the following. For unsigned angles, this would
follow from Lemma 11.2.12. We prove the signed case here directly.

Proposition 12.7.11. Möbius transformations preserve directed angles: if
ℓ and m be nonparallel hyperbolic lines f is a Möbius transformation then
the directed angle from ℓ to m is equal to the directed angle from f(ℓ) to
f(m).

Proof. Let γ and δ be geodesics parametrizing ℓ and m respectively, with
γ(t) = δ(s) = z. Then f ◦ γ and f ◦ δ are geodesics parametrizing f(ℓ) and
f(m), respectively.

The result now follows from the chain rule and the simple fact that f
is holomorphic (complex differentiable). The Jacobian matrix Df(z) is the
realification of the complex matrix f ′(z). If f ′(z) = reiψ, then Df = rRψ,
the scalar r times the rotation matrix Rψ. Multiplication by Rψ preserves
directed angles, as does scalar multiplication. �

And now we get a nice bonus from our clear picture of the perpendiculars
to ℓ0. In words: we can “drop a perpendicular” from any point in H to any
hyperbolic line. Perpendiculars are unique in H in a way parallels are not.

Corollary 12.7.12. Let ℓ be a hyperbolic line and let z ∈ H. Then there is
a unique hyperbolic line through z perpendicular to ℓ.

Proof. Let f be a Möbius transformation taking ℓ0 onto ℓ. Then m is a
perpendicular to ℓ containing z if and only if f−1(m) is a perpendicular to
ℓ0 containing f−1(z). �

Perpendicularity may be used to characterize hyperparallel lines.

Proposition 12.7.13. Let ℓ and m be hyperparallel hyperbolic lines. Then
there is a unique hyperbolic line n perpendicular to both ℓ and m.

In the special case that ℓ = ℓ0 and m = Cr(a) we can calculate n explicitly:

(12.7.1) n = C√a2−r2(0).
Proof. We first consider the special case. Here, since n ⊥ ℓ0, it must have
the form Ct(0) for some t > 0. Let z = Ct(0) ∩ Cr(a). By Corollary refper-
pendicularcircles, 0, a and z form the vertices of a right triangle with right
angle at z. By the Pythagorean theorem,

‖a− 0‖2 = ‖z − 0‖2 + ‖z − a‖2.
But ‖z‖ = t and ‖z− a‖ = r, hence a2 = t2 + r2, as claimed. This gives the
uniqueness and formula for n. The existence follows from the assumption
that ℓ0 and Cr(0) are hyperparallel, as then r < |a|, so we may realize this
equation with an actual line Ct(0).

The general case follows from this one by applying a Möbius transfor-
mation f with f(ℓ0) = ℓ. Since f−1(m) is hyperparallel to f−1(ℓ) = ℓ0, it
cannot have the form ℓa, so the special case does apply. �
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This now characterizes hyperparallel lines.

Corollary 12.7.14. Two hyperbolic lines are hyperparallel if and only if
they have a common perpendicular.

Proof. It suffices to show that if ℓ and m have a common perpendicular,
n, then they are hyperparallel. Let f be a Möbius transformation with
f(ℓ0) = n. Then f−1(ℓ) and f−1(m) are both perpendicular to ℓ0 and hence
may be expressed as Cr(0) and Cs(0) for r 6= s. But then f−1(ℓ) and f−1(m)
are hyperparallel, hence ℓ and m are also. �

12.8. Reflections. Möbius transformations are holomorphic and expressed
as fractional linear transformations in the complex variable z. Hyperbolic
reflections all involve complex conjugation. Since perpendicularity to the
hyperbolic line ℓ0 is so easy to understand, we will start by defining the
reflection across ℓ0.

Definition 12.8.1. The hyperbolic reflection, σℓ0 , of H across ℓ0 is defined
by

(12.8.1) σℓ0(z) = −z̄.
In particular, if z = x+ iy with x, y ∈ R, then σℓ0(z) = −x+ iy.

The following is immediate.

Lemma 12.8.2. The reflection σℓ0 preserves H and satisfies σ2ℓ0 = id. The
Jacobian matrix of σℓ0 is

(12.8.2) Dσℓ0(z) =

[
−1 0
0 1

]

for all z ∈ H. Thus, σℓ0 : H→ H is a diffeomorphism.
The fixed-points of σℓ0 are precisely the elements z ∈ H with Re(z) = 0.

In other words, Hσℓ0 = ℓ0.

Continuing the discussion in Remark 12.4.22, that Dσℓ0(z) < 0 for all z
implies the following.

Corollary 12.8.3. σℓ0 : H→ H is orientation-reversing.

Note that σℓ0 is R-linear and equal to it’s Jacobian matrix at any point.
In fact, σℓ0 : R2 → R2 is an orientation-reversing linear isometry. Since
it preserves the pure imaginary part of a complex number z, it is also a
hyperbolic isometry:

Lemma 12.8.4. The reflection σℓ0 is an isometry of H in the sense of
Definition 11.1.5:

(12.8.3) 〈Dσℓ0(z)v,Dσℓ0(z)w〉σℓ0 (z) = 〈v, w〉z
for all z ∈ H and all tangent vectors v, w at z. Moreover, σℓ0 preserves arc
length and hyperbolic distance. Thus σℓ0 ◦ γ is geodesic for every geodesic
γ : R→ H and σℓ0 ∈ I(H).
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The fixed-point set Hσℓ0 of σℓ0 is precisely ℓ0, i.e.,

(12.8.4) ℓ0 = {z ∈ H : σℓ0(z) = z}.
The effect of σℓ0 on hyperbolic lines is easily computed:

(12.8.5) σℓ0(ℓa) = ℓ−a and σℓ0(Cr(a)) = Cr(−a).
In all cases σℓ0(ℓ) is the line with boundary points σℓ0(∂ℓ).

Finally, if ℓ and m are oriented lines, then the directed angle from σℓ0(ℓ)
to σℓ0(m) is the negative of the directed angle from ℓ to m.

Proof. Let A =
[−1 0

0 1

]
. For (12.8.3), if z = x+ iy with x, y ∈ R, then

〈Dσℓ0(z)v,Dσℓ0(z)w〉σℓ0 (z) =
1

y2
(Av ·Aw) = 1

y2
(v · w) = 〈v, w〉z.

Here, · is the standard dot product and the second equality is because A is
an orthogonal matrix.

Let γ : [a, b]→ H be piecewise smooth. Then (12.8.3) implies that

‖(σℓ0 ◦ γ)′(t)‖σℓ0◦γ(t) = ‖γ
′(t)‖γ(t)

for all t, hence σℓ0 ◦ γ and γ have the same arc length.
(12.8.4) and (12.8.5) are easy calculations. Regarding angles, let ℓ∩m =

z = x+ iy. Let γ and δ be unit speed geodesic parametrizations of ℓ and m,
respectively, with γ(t) = δ(s) = z. Write γ′(t) = yeiθ and δ′(s) = yeiϕ. Then

the chain rule shows that (σℓ0 ◦γ)′(t) = yei(π−θ) and (σℓ0 ◦ δ)′(s) = yei(π−ϕ),
and the angle is reversed, as claimed. �

Corollary 12.8.5. Let ℓ be a hyperbolic line. Then σℓ0 preserves ℓ if and
only if either ℓ = ℓ0 or ℓ ⊥ ℓ0.
Proof. Cr(a) ⊥ ℓ0 if and only if a = 0. �

Definition 12.8.6. The perpendicular bisector of a geodesic segment [z, w]
is the unique hyperbolic line through the midpointM of [z, w] perpendicular
to the hyperbolic line containing z and w.

Lemma 12.8.7. Let z ∈ H r ℓ0. Then ℓ0 is the perpendicular bisector of
[z, σℓ0(z)].

Proof. Note first that ‖z‖ = ‖σℓ0(z)‖, as σℓ0 merely alters the sign on the
real part of z. Thus, σℓ0(z) ∈ C‖z‖(0), the unique line through z perpendic-
ular to ℓ0. Let M = i‖z‖ = C‖z‖(0) ∩ ℓ0. Then M is fixed by σℓ0 . Since σℓ0
is an isometry,

(12.8.6) dH(z,M) = dH(σℓ0(z),M).

SinceM lies on the geodesic segment between z and σℓ0(z) and since geodesics
minimize arc length,

(12.8.7) dH(z, σℓ0(z)) = dH(z,M) + dH(M,σℓ0(z)) = 2dH(z,M),

so M is the midpoint of that segment. �
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The following is by now an expected property of perpendicular bisectors.

Proposition 12.8.8. Let z ∈ Hr ℓ0. Then

(12.8.8) ℓ0 = {ζ ∈ H : dH(z, ζ) = dH(σℓ0(z), ζ)}.
Proof. Let ζ ∈ ℓ0. Then ζ is fixed by σℓ0 . Since σℓ0 is an isometry, we get

dH(z, ζ) = dH(σℓ0(z), σℓ0(ζ)) = dH(σℓ0(z), ζ),

as claimed.
Conversely, suppose dH(z, ζ) = dH(σℓ0(z), ζ), and suppose ζ 6∈ ℓ0. Then

Re(ζ) 6= 0. Then Re(ζ) has the same sign as exactly one of z and σℓ0(z).
Suppose both Re(z) and Re(ζ) are negative. The other cases are similar.

By the intermediate value theorem, [z, σℓ0(ζ)] intersects ℓ0, by necessity
in one point, w, as two distinct hyperbolic lineshave at most one point of
intersection. And [z, ζ] cannot intersect ℓ0, as nonvertical hyperbolic lines
are implicitly functions of x.

ζ σℓ0 (ζ)

z σℓ0 (z)

ℓ0

w

By assumption,

dH(z, ζ) = dH(σℓ0(z), ζ) = dH(σℓ0(z), w) + dH(w, ζ) = dH(z, w) + dH(w, ζ),

as σℓ0 is an isometry fixing w. But this forces w ∈ [z, ζ] by Proposi-
tion 12.6.2, contradicting that [z, ζ] ∩ ℓ0 = ∅. �

We can use this detailed understanding of σℓ0 to study the hyperbolic
reflection across an arbitrary hyperbolic line.

Proposition 12.8.9. Let ℓ be a hyperbolic line and let f be a Möbius trans-

formation with f(ℓ0) = ℓ. Then the fixed-point set Hfσℓ0f
−1

is equal to ℓ.
Moreover, let z ∈ H r ℓ and let m be the perpendicular to ℓ containing z.
Let M = m ∩ ℓ and let w be the unique point on m unequal to z with

dH(w,M) = dH(M, z).

Then fσℓ0f
−1(z) = w and ℓ is the perpendicular bisector of [z, w]. As was

the case for ℓ0,

(12.8.9) ℓ = {ζ ∈ H : dH(z, ζ) = dH(σℓ(z), ζ)}.
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Note this is independent of the choice of f : if g is another Möbius trans-
formation with g(ℓ0) = ℓ, then gσℓ0g

−1 will have exactly the same effect on
each element of H as fσℓ0f

−1 does. I.e.,

(12.8.10) fσℓ0f
−1 = gσℓ0g

−1 if f(ℓ0) = g(ℓ0) = ℓ.

For such an f , we write

(12.8.11) σℓ = fσℓ0f
−1,

and call it the reflection of H across ℓ.

Proof. That Hfσℓ0f
−1

= f(Hσℓ0 ) is shown in the proof of Lemma 5.5.3. Of
course, f(Hσℓ0 ) = f(ℓ0) = ℓ.

Let z and m be as in the statement. Since Möbius transformations pre-
serve angles, f−1(m) is the perpendicular to f−1(ℓ) = ℓ0 containing f−1(z).
Now σℓ0(f

−1(z)) is the unique point on f−1(m) other than f−1(z) with

dH(σℓ0(f
−1(z)), f−1(M)) = dH(f

−1(M), f−1(z)).

Now, apply f to this picture, and the result follows. �

The situation of Proposition 12.8.9 is generic for perpendicular bisectors.

Corollary 12.8.10. Let z 6= w ∈ H and let ℓ be the perpendicular bisector
of [z, w]. Then σℓ(z) = w. Thus,

(12.8.12) ℓ = {ζ ∈ H : dH(z, ζ) = dH(w, ζ)}.
Proof. This comes out of the description of σℓ in Proposition 12.8.9. �

Proposition 12.8.9 does not give an explicit calculation of σℓ, but that can
be done as an exercise. Since Möbius transformations are angle-preserving
isometries and σℓ0 is an angle-reversing isometry, we obtain the following.

Corollary 12.8.11. Let ℓ be a hyperbolic line. Then σℓ is an isometry of
H in the sense of Definition 11.1.5:

(12.8.13) 〈Dσℓ(z)v,Dσℓ(z)w〉σℓ(z) = 〈v, w〉z
for all z ∈ H and all tangent vectors v, w at z. Moreover, σℓ preserves arc
length and hyperbolic distance. Thus σℓ ◦ γ is geodesic for every geodesic
γ : R→ H and σℓ ∈ I(H).

If n and m are oriented lines, then the directed angle from σℓ(n) to σ]ℓ(m)
is the negative of the directed angle from n to m.

The following is a consequence of Corollary 12.8.5.

Corollary 12.8.12. Let ℓ and m be hyperbolic lines. Then σℓ preserves m
if and only if either m = ℓ or m ⊥ ℓ.
Proof. Let f be a Möbius transformation with f(ℓ0) = ℓ. We claim that
fσℓ0f

−1 preserves f(n) if and only if σℓ0 preserves n:

fσℓ0f
−1(f(n)) = f(n) ⇔ fσℓ0(n) = f(n)
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⇔ σℓ0(n) = n,

where the last equivalence is obtained by applying f−1 to the previous one.
Thus, fσℓ0f

−1 preserves m if and only if σℓ0 preserves f−1(m). �

12.9. Generalized Möbius transformations. We define a larger class
of transformations that includes both the Möbius transformations and the
hyperbolic reflections.

Definition 12.9.1. Let

S̃L2(R) = {A ∈ GL2(R) : detA = ±1}.
For A =

[
a b
c d

]
∈ S̃L2(R) with detA = −1, define ϕA : C̄→ C̄ by

(12.9.1) ϕA(z) =





az̄ + b

cz̄ + d
z 6= −d

c
,∞

∞ z = −d
ca

c
z =∞.

This extends the definition of ϕA for A ∈ SL2(R). The generalized Möbius
transformations are now given by

(12.9.2) M̃öb = {ϕA : A ∈ S̃L2(R)}.
The following is a straighforward calculation, similar to the one for Lem-

ma 12.2.1. The only difference is that conjugation gets applied at most twice
in the calculation, depending on the determinants of the two matrices.

Lemma 12.9.2. Let A,B ∈ S̃L2(R). Then,

(12.9.3) ϕA ◦ ϕB = ϕAB.

Thus, there is a group homomorphism ϕ : S̃L2(R)→ M̃öb via ϕ(A) = ϕA.

Corollary 12.9.3. Let A =
[
a b
c d

]
∈ S̃L2(R) with detA = −1. Then

(12.9.4) ϕA = ϕBσℓ0 for B =

[
−a b
−c d

]
.

Here, detB = 1, hence ϕB is Möbius.

Thus, Möb has index 2 in M̃öb, with

(12.9.5) M̃öb = Möb∪Möbσℓ0 .

Proof. Let J =
[−1 0

0 1

]
. Then ϕJ = σℓ0 , so (12.9.4) is immediate from

Lemma 12.9.2. Thus, any element of M̃öbrMöb must lie in the right coset

Möbσℓ0 , and (12.9.5) follows. In particular [M̃öb : Möb] = 1 or 2, depending
on whether σℓ0 is Möbius. But nonidentity Möbius transformations have at
most one fixed-point in H, and σℓ0 has an entire hyperbolic line of fixed-

points, so σℓ0 is not Möbius, hence [M̃öb : Möb] = 2. �
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Another proof that the index is 2 and not 1 comes from the fact that every
element of Möb is angle-preserving, while every element of Möbσℓ0 is angle-
reversing. This, of course, is a result of the fact that Möbius transformations
are orientation-preserving, while σℓ0 is orientation-reversing.

Corollary 12.9.4. Generalized Möbius transformations induce diffeomor-
phisms from H to H and extend to mappings from H̄ to H̄. In addition, they
are distance preserving and hence lie in I(H).

For any generalized Möbius transformation f and any hyperbolic line ℓ.
f(ℓ) is the line with boundary points f(∂ℓ).

Proof. Both Möbius transformations and σℓ0 have these properties. �

In particular, M̃öb ⊂ I(H). We now show the two are equal, and hence
that I(H) is a group, as claimed. Note that, just as in the Euclidean and
spherical cases, we have not assumed the elements of I(H) are continuous.
So the following is striking, as before.

Theorem 12.9.5. Every distance-preserving transformation of H is a gen-
eralized Möbius function.

Proof. Let f ∈ I(H). Since f preserves distance, dH(f(i), f(2i)) = dH(i, 2i).
By Corollary 12.5.4, there is a Möbius transformation g with g(i) = f(i) and
g(2i) = f(2i). Replacing f by g−1f , we may assume f(i) = i and f(2i) = 2i.
By Corollary 12.6.5 this implies f is the identity on ℓ0.

By Corollary 12.8.10, if f is the identity on two points z and w and if ℓ is
the perpendicular bisector [z, w], then f(ℓ) = ℓ. Note that each hyperbolic
line of the form Cr(0) is the perpendicular bisector of the geodesic segment
joining a pair of points on ℓ0. Thus f(Cr(0)) = Cr(0) for all r > 0.

For a fixed r and z ∈ Cr(0) r ℓ0, ir is the midpoint of the segment
[z, σℓ0(z)]. Since ir is fixed by f , f(z) ∈ {z, σℓ0(z)}. In particular, one of f
and σℓ0 ◦ f is the identity on ℓ0 ∪ {z}, and hence on Cr(0) as well, as it is
the identity on two points of that line. Replacing f by σℓ0 ◦ f , if necessary,
we may assume f is the identity on ℓ0 ∪ Cr(0).

If f were continuous, this would be enough to deduce that f is the identity
on all of H. But the same argument holds for every r: for r > 0, f coincides
either with the identity or with σℓ0 on Cr(0).

There are, of course, infinitely many possible r to choose from. We claim
it is enough to know that f is the identity on exactly two of them. Suppose
this is the case. Say f is the identity on Cr(0) and Cs(0) with 0 < r < s.
Then for each a ∈ (−r, r), ℓa meets each of these lines in a point, and hence
f is the identity on two points of ℓa. By Corollary 12.6.5, f is the identity
on all of ℓa. But each line Ct(0) then has infinitely many points on which it
is the identity, so f is the identity on Ct(0). Since each z ∈ H lies on C‖z‖(0),
f is the identity everywhere.
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But, of course, if f were the identity on only one line Cr(0), then it must
coincide with σℓ0 on all the others, leading to a contradition, as then σℓ0 ◦ f
is the identity everywhere by the argument above. �

Recall that hyperbolic reflections have the form fσℓ0f
−1 for f Möbius,

and hence are orientation-reversing generalized Möbius transformations. So
what do the other generalized Möbius transformations look like? As in the
Euclidean case, there are also orientation-reversing hyperbolic isometries
that have no fixed-points in H. Indeed, they are enough like glide reflections
that we’ll call them that.

Definition 12.9.6. A hyperbolic glide reflection is a composite hσℓ with
h a hyperbolic transformation whose translation axis is ℓ. We call this its
standard form and call ℓ its axis.

As usual, we shall study these by first considering the case where ℓ = ℓ0.
The following is an easy calculation and is left to the reader.

Lemma 12.9.7. Let a > 0, a 6= 1. Then the hyperbolic Möbius transforma-
tion ha commutes with σℓ0. Let f = haσℓ0, a glide reflection with axis ℓ0.
Then

H̄f = {0,∞}.
On lines, we have f(ℓb) = ℓ−ab and f(Cr(b)) = Car(−ab). Thus, the only
line preserved by f is ℓ0. On ℓ0, f agrees with ha.

Since ha commutes with σℓ0, we have

(12.9.6) f2 = (haσℓ0)
2 = h2aσℓ0

2 = h2a = ha2 ,

a hyperbolic Möbius transformation with axis ℓ0.

Corollary 12.9.8. Let f = hσℓ be a hyperbolic glide reflection in standard
form (so that h is a hyperbolic Möbius transformation with translation axis
ℓ). Then h commutes with σℓ and the only line preserved by f is ℓ. Moreover,

(12.9.7) Hf = ∂ℓ.

Since h commutes with σℓ, we have

(12.9.8) f2 = (hσℓ)
2 = h2σ2ℓ = h2,

a hyperbolic Möbius transformation with axis ℓ.

Proof. Let g be a Möbius transformation with g(ℓ0) = ℓ. Then g−1hg is
hyperbolic with translation axis ℓ0 and g−1σℓg = σℓ0 . So g−1hg = ha for
some a 6= 1 and it commutes with σℓ0 . Moreover, g−1fg = haσℓ0 and the
result follows by conjugating that by g. �

The following observation is useful.

Lemma 12.9.9. An orientation-reversing isometry of H fixes exactly two
points of ∂H.
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Proof. The orientation-reversing isometries have the form f = ϕA with
A =

[
a b
c d

]
∈ S̃L2(R) of determinant −1. For x ∈ R ⊂ ∂H, x 6= −d

c
,

(12.9.9) f(x) =
ax+ b

cx+ d
.

As in the Möbius case, f fixes∞ if and only if c = 0, in which case f(x) = x
when ax + b = dx. Since ad = detA = −1, a 6= d and there is a unique
solution for x ∈ R.

If ∞ is not fixed, the real solutions of f(x) = x are the solutions of

ax+ b = cx2 + dx,

which are the roots of the quadratic cx2+(d−a)x−b = 0. The discriminant
here is (d− a)2 + 4bc. Since detA = −1, 4bc = 4ad+ 4, so the discriminant
is tr(A)2 + 4, which is strictly positive, providing two real roots. �

We obtain the following analogue of the Euclidean case.

Theorem 12.9.10. Every orientation-reversing isometry f of H is either
a reflection or a glide reflection.

Proof. By Lemma 12.9.9, f fixes exactly two points of ∂H. Let ℓ be the
hyperbolic line with these two points as its endpoints. Then fσℓ is a Möbius
transformation fixing the two boundary points ∂ℓ. In particular, either
fσℓ is the identity (in which case f = σℓ), or fσℓ is a nonidentity Möbius
transformation fixing these two points. In this case, fσℓ must be a hyperbolic
Möbius transformation h with translation axis ℓ. But then f = hσℓ is a
hyperbolic glide reflection with axis ℓ. �

The following will be useful.

Corollary 12.9.11. Let f 6= id be a hyperbolic isometry with ℓ ⊂ Hf for
some hyperbolic line ℓ Then f = σℓ.

Proof. Reflections are the only nonidentity isometries of H with more than
one fixed-point in H. Moreover, Hσℓ = ℓ. �

The following could also be proven directly, using Proposition 12.8.9 and
the fact that ρ(i,π2 )

(ℓ0) = C1(0).

Corollary 12.9.12. The reflection across Cr(0) is given by

(12.9.10) σCr(0)(z) =
r2

z̄
.

The reflection across ℓa is given by

(12.9.11) σℓa(z) = 2a− z̄.
Proof. Cr(0) = {z ∈ H : zz̄ = r2}. ℓa = {z ∈ H : z + z̄ = 2a}. �
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12.10. Calculus of isometries. As in the Euclidean case, we show every
orientation-preserving isometry of H is the product of two reflections. As
usual, we start with examples we can analyze easily and extend by conju-
gating.

Lemma 12.10.1. The composite of the reflections in two distinct lines cen-
tered at 0 is given by

(12.10.1) σCr(0)σCs(0) = h( r
s
)2 ,

a hyperbolic Möbius transformation with translation axis ℓ0. Given positive
real numbers a and r, there are unique positive real numbers s and t with

(12.10.2) ha = σCr(0)σCs(0) = σCt(0)σCr(0).

The composite of two reflections in vertical lines is given by

(12.10.3) σℓaσℓb = p2(a−b),

a parabolic Möbius transformation fixing ∞. Given real numbers s and a,
there are unique real numbers b and c with

(12.10.4) ps = σℓaσℓb = σℓcσℓa .

Proof. These are easy calculations based on Corollary 12.9.12. �

We can immediately extend this to general cases. Recall from Proposi-
tion 12.7.13 that if ℓ and m are hyperparallel, there is a unique line perpen-
dicular to both.

Proposition 12.10.2. Let ℓ and m be hyperparallel lines and let n be the
unique line perpendicular to both. Then σℓσm is a hyperbolic Möbius trans-
formation with n as its axis of translation.

Given a hyperbolic Möbius transformation h and a line ℓ perpendicular to
its translation axis, n, there are unique hyperbolic lines m1 and m2 perpen-
dicular to n such that

(12.10.5) h = σℓσm1 = σm2σℓ.

Proof. If ℓ and m are hyperparllel and n is perpendicular to both, then n
is preserved by both σℓ and σm, and hence is preserved by their composite.
Their composite is orientation-preserving, and hence is hyperbolic with n as
its translation axis by Proposition 12.4.21.

Now given a hyperbolic Möbius transformation h and a line ℓ perpen-
dicular to its translation axis, n, let f be a Möbius transformation with
f(ℓ0) = n. The existence and uniqueness of m1 and m2 follow by applying
(12.10.2) to ha = f−1hf and Cr(0) = f−1(ℓ); then apply f to the results. �

The parabolic case is the following.

Proposition 12.10.3. Let ℓ and m be distinct parallel hyperbolic lines that
are not hyperparallel. Let ℓ̄ ∩ m̄ = x ∈ H̄. Then σℓσm is a parabolic Möbius
transformation fixing x.
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Given a parabolic transformation p fixing x and a hyperbolic line ℓ with
x ∈ ∂ℓ, there are unique hyperbolic lines m and n with ∂m ∩ ∂n = x such
that

(12.10.6) p = σℓσm = σnσℓ.

Proof. Let f be a Möbius transformation taking∞ to x. Apply f−1 to the
lines, replace p by f−1pf , and apply Lemma 12.10.1. �

Composition of reflections across intersecting lines has the expected be-
havior.

Proposition 12.10.4. Let ℓ and m be hyperbolic lines with ℓ ∩ m = w.
Then

(12.10.7) σℓσm = ρ(w,θ),

where θ is twice the directed angle from m to ℓ.

As in the Euclidean case, since we’re doubling the angle, it doesn’t matter
how we orient the two lines when calculating the angle. This will come out
in the proof.

Proof of Proposition 12.10.4. The composite f = σℓσm is orientation-
preserving, and hence is a Möbius transformation. Since both σℓ and σm fix
w, so does f . So f = ρ(w,θ) for some θ and it suffices to calculate θ.

To do so, we choose orientations of ℓ and m. These will determine the
directed angles we need. The angle of rotation is then given by the directed
angle from m to f(m). Since m is fixed by σm, f(m) = σℓ(m).

Since angles are determined mod 2π, the angle from m to σℓ(m) is the
sum of the angle from m to ℓ and the angle from ℓ to σℓ(m). The latter
is the angle from σℓ(ℓ) to σℓ(m), which in turn is the negative of the angle
from ℓ to m, as reflections reverse angle measure. But the negative of the
angle from ℓ to m is the angle from m to ℓ, and the result follows. �

12.11. Exercises.

1. Let ℓ be a hyperbolic line and let w ∈ Hr ℓ Show there is a one-to-
one correspondence between the lines through w hyperparallel to ℓ
and the lines perpendicular to ℓ.

2. Show that f(z) = 1
z̄
is the reflection across C1(0).

3. Find the formula for the reflection across Cr(a).
4. Find the formula for the reflection across ℓa.
5. Let T be the hyperbolic triangle with vertices at i, 1+2i and −1+2i.

(a) What are the measures of the angles in T?
(b) What is the angle sum as a fraction of π?
(c) What are the hyperbolic lengths of the sides of T?
(d) How do the above measurements compare to the Euclidean

lengths and angles on the Euclidean triangle connecting those
three points?
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6. Show that i, 1 + i and −1 + i are not collinear in H despite being
collinear in the Euclidean plane.

7. Find a hyperbolic line ℓ perpendicular to both C1(0) and C2(5).
(a) What are the values of its intersections with C1(0) and C2(5)?
(b) Find the eigenvalues of the matrix A ∈ SL2(R) inducing

σC1(0)σC5(2).

8. Let T be the hyperbolic triangle with vertices 1√
3
i, 1√

3
+ 2√

3
i and

− 1√
3
+ 2√

3
i.

(a) Show that T is equilateral with centroid i.
(b) Calcluate the angles of T .
(c) What is the perpendicular bisector, ℓ, of the geodesic segment

[ 1√
3
i, 1√

3
+ 2√

3
i]?

(d) Find the formula for σℓ and verify that it interchanges the end-
points of the above segment.

(e) Calculate σℓσℓ0 .
9. Show that SMöb(ℓ0) is isomorphic to the group O(ℓ) of orientation-

preserving symmetries of a Euclidean line in R2.
10. Show that SI(H)(ℓ0) is isomorphic to the group S(ℓ) of symmetries

of a Euclidean line in R2.
11. Show that M̃öbi = SI(H)({i}) is isomorphic to O(2) ∼= S({0}), the

group of Euclidean symmetries of {0} in R2.
12. Let ℓ and m be hyperbolic lines. Show that σℓ and σm commute if

and only if either ℓ = m or ℓ ⊥ m.
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Appendix A. Spaces with identifications

The topological spaces we study in this book will all be quotient spaces
of metric spaces. We shall only be as general as we need to be in defining
these.

A.1. Metric topology.

Definition A.1.1. A metric on a set X is a distance function

d : X ×X → [0,∞) ⊂ R

with the following properties.

(1) d is symmetric: d(x, y) = d(y, x) for all x, y ∈ X.
(2) d is positive-definite: d(x, y) = 0 if and only if x = y.
(3) The triangle inequality holds: d(x, y) ≤ d(x, z) + d(z, y) for all

x, y, z ∈ X.

Properties (1) and (2) and a strengthened version of (3) are satisfied by
the Euclidean distance function by Proposition 2.3.8.

A topological space consists of a set X together with a notion of which
subsets U ⊂ X will be considered open.

Definition A.1.2. A metric space consists of a set X with a metric d as
above, and we declare that U ⊂ X is open if for each x ∈ U there exists
ǫ ∈ (0,∞) such that

d(x, y) < ǫ ⇒ y ∈ U.
We write

Bǫ(x) = {y ∈ X : d(x, y) < ǫ}
and call it the open ball about x of radius ǫ. Thus, our definition of open
set in a metric space X is that U is open if and only if for each x ∈ U there
is an open ball about x contained in U .

Example A.1.3. In the real numbers R, the distance between points x and
y is |x− y|. Thus, Bǫ(x) is the open interval

(A.1.1) Bǫ(x) = (x− ǫ, x+ ǫ).

Now let a < b and let x ∈ (a, b). Set ǫ = min(|x − a|, |x − b|). Then
Bǫ(x) ⊂ (a, b). So (a, b) is open.

Similarly, (a,∞) and (−∞, b) are open.

We shall need the following.

Lemma A.1.4. Bǫ(x) is open in X.

Proof. This is a consequence of the triangle inequality. If y ∈ Bǫ(x) and
let d = d(x, y). Then d < ǫ, so ǫ − d > 0. We claim that Bǫ−d(y) ⊂ Bǫ(x),
and that will complete the proof that Bǫ(x) is open.

Thus, let z ∈ Bǫ−d(y). Then
d(x, z) < d(x, y) + d(y, z)
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< d+ (ǫ− d) = ǫ

by the triangle inequality. So z ∈ Bǫ(x). �

By the definition of open set, an arbitrary union of open sets is open. We
obtain the following.

Corollary A.1.5. A subset of a metric space is open if and only if it is a
union of open balls.

More general topological spaces are required to satisfy the following ax-
ioms.

Definition A.1.6. A topology for a space X consists of a collection U of
subsets of X, the open subsets of X, satisfying:

(1) ∅ and X are open (i.e., lie in U).
(2) The union of an arbitrary collection of open sets is open.
(3) The intersection of any finite collection of open sets is open.

X, together with a topology, is a topological space. The elements of X are
called its points.

For a point x ∈ X, a neighorhood of x is an open set containing it.

Of course, inductively, (3) is equivalent to saying that the intersection of
any two open sets is open.

Definition A.1.7. The open sets in a metric space clearly satisfy (1)–(3),
and hence form a topology on X. We call it the topology induced by the
metric d. Different metrics on X may induce different topologies. But
sometimes different metrics will induce the same topology

We call a topological space metrizable if its topology is induced by some
(often unspecified) metric on X.

Examples A.1.8. There are two obvious topologies one could place on a
set X.

(1) The discrete topology on X is the one in which every subset of X
is open. Since arbitrary unions of open sets must be open, this is
equivalent to saying each point in X is open.

(2) The indiscrete topology on X is the one in which the only open sets
are ∅ and X.

If X has more than one point, then the indiscrete topology on X does
not satisfy the following property.

Definition A.1.9. Let X be a topological space and let x, y ∈ X. We say x
and y may be separated in X if there are open sets U and V with x ∈ U and
y ∈ V such that U ∩ V = ∅. We call a choice of such U and V a separation
of x and y in X.

We say X is Hausdorff if each pair of distinct points x, y ∈ X may be
separated in X.
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Lemma A.1.10. A metric space X is Hausdorff.

Proof. If x and y are distinct and d = d(x, y) then B d
2
(x) ∩ B d

2
(y) = ∅ by

the triangle inequality. �

Topological spaces were developed to study the notion of continuity, which
is a key ingredient in the intermediate value theorem. Thus, continuity plays
a role in basic calculus. The reader is probably aware of the metric definition
of continuity (Definition 8.1.2). We give a definition here appropriate for
general topological spaces.

Definition A.1.11. A function f : X → Y between topological spaces is
continuous if f−1(U) is open in X whenever U is open in Y . A homeomor-
phism of topological spaces is a continuous, one-to-one, onto map f : X → Y

whose inverse function is continuous. We write f : X
∼=−→ Y for a homeo-

morphism f : X → Y .

In particular, homeomorphic spaces are topologically indistinguishable in
the same way that isomorphic vector spaces are indistinguishable as vector
spaces. So the topological setting strips away notions of differentiability
until they are “added back” with smooth atlases, etc.

We should at least show that our new notion of continuity coincides with
the metric notion.

Lemma A.1.12. Let f : X → Y be a function between the metric spaces X
and Y . Then f is continuous in the topological sense if and only if it satisfies
the (ǫ, δ) definition of continuity that for each x ∈ X and each ǫ > 0, there
exists δ > 0 such that

d(x, y) < δ ⇒ d(f(x), f(y)) < ǫ,

i.e., Bδ(x) ⊂ f−1Bǫ(f(x)).

Proof. Suppose f satisfies the (ǫ, δ) definition of continuity, and let U ⊂ Y
open. We wish to show f−1(U) is open in X. Let x ∈ f−1(U). We wish to
find an open ball about x contained in f−1(U). Since U is open in Y and
f(x) ∈ U , there exists ǫ > 0 with Bǫ(f(x)) ⊂ U . But the (ǫ, δ) definition of
continuity now says there exists δ > 0 with Bδ(x) ⊂ f−1Bǫ(f(x)). But this
in turn is contained in f−1(U), so f−1(U) is open as desired.

Conversely, if the inverse image of every open set is open, we can simply
apply this to each Bǫ(f(x)), which is open by Lemma A.1.4. And that, in
turn, provides an open ball around x contained in f−1(Bǫ(f(x))). �

Note that a metric on X restricts to a metric on any subset of X, and
hence induces a metric topology as above. To avoid ambiguity we write

(A.1.2) Bǫ(x, Y ) = {y ∈ Y : d(x, y) < ǫ}
for the ǫ-ball in Y about x ∈ Y (as differentiated from

Bǫ(x,X) = {y ∈ X : d(x, y) < ǫ},
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the ǫ-ball about x in X).

Definition A.1.13. A subset C of a topological space X is closed if its
complement, X r C, is open.

Lemma A.1.14. The closed sets in a space X satisfy the following:

(1) ∅ and X are closed.
(2) The intersection of an arbitrary family of closed sets is closed.
(3) The union of finitely many closed sets is closed.

Proof. This is immediate from Definition A.1.6 via de Morgan’s laws: if
{Yα : α ∈ A} is an arbitrary family of subsets of a set X, then:

X r
⋂

α∈A
Yα =

⋃

α∈A
(X r Yα),(A.1.3)

X r
⋃

α∈A
Yα =

⋂

α∈A
(X r Yα). �

There are as many examples of closed sets are there are of open sets.
Some are particularly valuable.

Lemma A.1.15. Let X be a metric space. Let x ∈ X and let r > 0. Then
the closed ball B̄r(x) = {y ∈ Z : d(x, y) ≤ r} is closed in X.

Proof. We show the complement of B̄r(x) is open. Let y ∈ X r B̄r(x).
Then d(x, y) = s > r. Then Bs−r(y) is disjoint from B̄r(x): if z were in
Bs−r(y) ∩ B̄r(x), we would have

d(x, y) ≤ d(x, z) + d(z, y)

≤ r + d(z, y)

< r + (s− r) = s,

a contradiction. �

Closed sets are vital to a number of geometric questions. They can be
used to study continuity questions.

Lemma A.1.16. A function f : X → Y between topological spaces is con-
tinuous if and only if f−1(C) is closed in X for every closed subset C of
Y .

Proof. X r f−1(C) = f−1(Y r C). �

Our intuition about spaces comes from metric spaces. So the following
may seem obvious.

Lemma A.1.17. Let X be a Hausdorff space. Then every point x ∈ X is
closed in X (i.e., the one-point subset {x} is a closed subset of X).
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Proof. For y ∈ X r {x}, we can find open sets Uy and Vy with x ∈ Uy and
y ∈ Vy such that Uy ∩ Vy = ∅. In particular, y ∈ Vy ⊂ (X r {x}), so

X r {x} =
⋃

y∈(Xr{x})
Vy

is a union of open sets, and hence is open. �

Thus, Hausdorff spaces are T1:

Definition A.1.18. A topological space is T1 if each of its points is closed.

There do exist spaces that are not T1. Indeed they can be quotient spaces
of metric spaces.

Recall from Proposition 2.8.10 that a subset H ⊂ Rn is an affine subspace
if and only if there is a linear map f : Rn → Rm for some m and an element
y ∈ Rm such that H = f−1(y). In particular, because points are closed in
Rm and linear maps are continuous, we obtain the following.

Lemma A.1.19. An affine subspace H ⊂ Rn is closed in Rn.

A.2. Subspace topology. A subset Y of a topological space X inherits a
topology from X.

Definition A.2.1. Let X be a space and let Y ⊂ X. In the subspace
topology on Y , a subset is open if it is the intersection of Y with an open
subset of X.

In particular, if X is a metric space and Y ⊂ X we can then ask if the
topology Y inherits as a subspace coincides with the topology induced by
the metric of X. The answer is affirmative:

Lemma A.2.2. Let X be a metric space and let Y ⊂ X. Then the subspace
topology and the metric topology on Y coincide.

Proof. Let y ∈ Y . Then the ǫ ball about y in the metric space Y is the
intersection of Y with the ǫ ball about y in the metric space X. �

The subspace topology gives the subspace Y the minimal number of open
sets for the inclusion map Y ⊂ X to be continuous.

Lemma A.2.3. Let Y be a subset of the topological space X, and give it
the subspace topology. Then the inclusion i : Y ⊂ X is continuous.

Proof. For an open set U ⊂ X, i−1(U) = U ∩ Y is open by the definition
of the subspace topology. �

There is a good recognition principle for closed sets in subspaces.

Lemma A.2.4. Let X be a space and let Y ⊂ X. Then the closed subsets
in the subspace topology on Y are precisely the sets Y ∩ C with C closed in
X.
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Proof. An open subset of Y in the subspace topology has the form Y ∩ U
with U open in X. But Y ∩ (X r U) = Y r (Y ∩ U). �

Heredity properties of subspaces are important.

Lemma A.2.5.

(1) Let U be open in X. Then the open sets in the subspace topology on
U are exactly the open sets in X contained in U . In particular, an
open subspace of an open subspace is open.

(2) Let C be closed in X. Then the closed sets in the subspace topology
on C are exactly the closed sets in X contained in C. In particular,
a closed subspace of a closed subspace is closed.

Proof. (1) An open subspace of U (in the subspace topology) is a set of the
form V ∩U , where V is open in X. But intersections of open sets are open,
so V ∩ U is open in X.

The proof of (2) is analogous, using Lemma A.2.4. �

A.3. Quotient topology. It is fair to say that topology grew out of the
study of manifolds and was developed to prove theorems about manifolds.
Under minor hypotheses, manifolds are subspaces of Rn and are therefore
metric spaces. But some constructions of manifolds, e.g., quotients of appro-
priate group actions, are not naturally subsets of Rn nor are they obviously
metric. And while the tangent bundle of a smoothly embedded submanifold
of Rn is obviously a subspace of R2n, it is useful to have a model for the
tangent bundle independent of the embedding.

Let us establish some notation.

Notation A.3.1. The unit square is

I2 = {[ xy ] ∈ R2 : x, y ∈ [0, 1]}.
Its interior is

Int(I2) = {[ xy ] ∈ R2 : x, y ∈ (0, 1)}.
Its boundary is

∂I2 = I2 − Int(I2) = {[ xy ] ∈ I2 : at least one of x and y is in {0, 1}.}.
The idea behind a quotient space is that we wish to make identifications

between certain points on the space X (i.e., view them as the same point in
a new space).

Example A.3.2. The Klein bottle, K, is the space obtained from the unit
square I2 by making certain identifications on the boundary. (We shall give
it the quotient topology as described in Definition A.3.4, below.) We identify
opposite edges of the square with a flip in one direction but not the other.
Thus, we identify the top edge with the bottom edge so the single arrow
heads coincide in Figure A.3.1, and identify the left edge with the right edge
so the double arrow heads there coincide.
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����

//

//

OOOO

Figure A.3.1. Identifications on the unit square to create
the Klein bottle.

So there is a twist in the identification of the vertical edges, but not for the
horizontal ones. Note that if you only make the prescribed identifications
on the vertical edges (but not the horizontal ones) you get a Möbius band,
while, if you only make the prescribed identifications on the horizontal edges,
you get a cylinder.

Though it might not be immediately apparent, the result is a 2-dimen-
sional manifold, or surface. It may be easier to see the surface structure
if you first identify the top and bottom edges, obtaining a cylinder. If we
then make the identification of the two boundary circles of the cylinder, the
gluing is by a homeomorphism between the circles, so near the glued circleK
looks like the product of the circle with an open interval. What’s deceptive
is that the result cannot be embedded in R3. You have to add a dimension
to avoid the surface passing through itself. when you glue the opposite ends
of the cylinder.

A similar construction gives us the standard torus.

Example A.3.3. The 2-torus T2 is obtained from I2 by identifying opposite
edges by tranlations: the bottom edge is identified to the top edge by τe2 ,
while the left edge is identified with the right edge by τe1 The identifications
are as given in Figure A.3.2.

����

//

����//

Figure A.3.2. Identifications on the unit square to create
the 2-torus T2.

We’ve described the Klein bottle and the 2-torus as result of making
identifications on I2 but have not yet described the induced topology on
them. What we have so far is a set of gluing instructions, producing sets
K and T2 together with functions f : I2 → K and g : I2 → T2 taking each
point in I2 its image after gluing. The topology we shall place on K and T2

is the quotient topology, defined in Definition A.3.4(2).
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Definition A.3.4.

(1) Let X and Y be spaces and let f : X → Y be continuous. We say
Y has the quotient topology induced by f if:
(a) f is surjective.
(b) A subset U ⊂ Y is open if and only if f−1(U) is open in X.
In this case, we call f a quotient map or identification map.

(2) More generally, let X be a space and Y a set. Let f : X → Y
be a surjective function. Then we can impose a topology on Y by
declaring U ⊂ Y to be open if f−1(U) is open in X. Again, we call
this the quotient topology induced by f and refer to f a quotient
map or identification map.

Since U 7→ f−1(U) preserves arbitrary unions and intersections
of subsets (whereas V 7→ f(V ) does not), this is easily seen to be a
topology on Y .

The quotient topology has an important property.

Proposition A.3.5. Let f : X → Y be a quotient map and let g : Y → Z
be any function, where Z is a space. Then g is continuous if and only if
g ◦ f is continuous.

Proof. Suppose g ◦ f is continuous and U ⊂ Z is open. Then f−1(g−1(U))
is open in X, so g−1(U) is open in Y . �

Remark A.3.6. The quotient topology induced by a function f : X → Y
can be somewhat bizarre if the function f is badly behaved. For instance,
we could take X = I = [0, 1] and take Y to consist of exactly 3 points, say
Y = {0, z, 1}. If we then define f : X → Y by

f(t) =





0 if t = 0

z if t ∈ (0, 1)

1 if t = 1,

then the point z is open in the quotient topology on Y , but is not closed.
We shall avoid examples like this, but the reader should be aware they exist.

Quotient topologies can be described in terms of closed sets as well as
open ones.

Lemma A.3.7. Let f : X → Y be a quotient map. Then a subset C ⊂ Y
is closed if and only if f−1(C) is closed in X.

Conversely, if f : X → Y is surjective and we topologize Y by declaring
a C ⊂ Y to be closed if and only if f−1(C) is closed, then f is a quotient
map with this topology.

Proof. The correspondence A 7→ f−1(A) respects complements. �

It is useful to be able to recognize when a map is a quotient map.
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Definition A.3.8. An open map is a continuous map f : X → Y such that
f(U) is open in Y whenever U is open in X.

A closed map is a continuous map f : X → Y such that f(C) is closed in
Y whenever C is closed in X.

Lemma A.3.9. A surjective open map is a quotient map. So is a surjective
closed map.

Proof. If f : X → Y is surjective, then A = f(f−1(A)) for any A ⊂ Y . �

We give some examples of spaces constructed as quotients via Defini-
tion A.3.4(2).

Example A.3.10. We can generalize T2 to n dimensions. We consider the
n-cube

In = {x1e1 + · · ·+ xnen : xi ∈ I for all i}.
The interior of In is

Int(In) = {x1e1 + · · ·+ xnen : xi ∈ (0, 1) for all i},
and the boundary ∂In is the set of points at least one of whose coordinates
is in {0, 1}. We have inclusions ιǫi : I

n−1 → ∂In, ǫ = 0 or 1, given by

ιǫi






x1
...

xn−1





 =




x1
...

xi−1

ǫ
xi
...

xn−1




,

inserting ǫ = 0 or 1 into the ith slot. We write ∂ǫi (I
n) = Im(ιǫi), a face of

∂In The boundary of In is the union of these faces.
We define the n-torus Tn to be obtained from In by identifying ι0i (x)

with ι1i (x) for each x ∈ In−1 and i ∈ {1, . . . , n}. Thus, a point in Int(In)
is not identified to any other point in In, while a boundary point that is
contained in exactly k faces is part of a group of 2k elements identified with
one another. This generalizes the idenitifications made to create T2.

The process of making identifications on a space X is often most easily
described by specifing an equivalence relation on X, as that gives a nice
clean description of the set Y and the map f : X → Y . In particular, we
shall take Y to be the set of equavalence classes under the relation. If ∼ is
an equivalence relation on X and if π : X → X/∼ is the canonical map to
its set of equivalence classes, then the equivalence classes of ∼ are the point
inveses of π by Lemma 0.0.7. This description relates nicely to the general
surjective map f : X → Y of Definition A.3.4.
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Example A.3.11. If f : X → Y is a function then there is an equivalence
relation ∼ on X defined by x ∼ y if f(x) = f(y). We refer to ∼ as the
equivalence relation induced by f .

Indeed, if ≈ is an equivalence relation on Y we may define an equivalence
relation on X by setting x ∼ y if f(x) ≈ f(y).

The canonical map π : X → X/∼ has an important universal property.

Proposition A.3.12. Let f : X → Y and let ∼ be an equivalence relation
on X. Then there is a function f̄ : X/∼ → Y making the diagram

(A.3.1) X
f

//

π
!!

Y

X/∼
f̄

==

commute if and only if x ∼ y implies f(x) = f(y). Such an f̄ , if it exists,
is unique, and is given by f̄([x]) = f(x). In this case, the image of f̄ is
the image of f , and f̄ is one-to-one if and only if ∼ coincides with the
equivalence relation induced by f , i.e., if and only if

x ∼ y ⇔ f(x) = f(y).

Proof. The uniqueness and formula for f̄ , if it exists, are forced by π being
onto. The formula then shows f̄ exists if and only if f(x) = f(y) implies
[x] = [y], but that in turn is equivalent to x ∼ y. Finally, f̄ is one-to-one if
and only if f(x) = f(y) is equivalent to [x] = [y]. �

In particular, Proposition A.3.12 determines all functions out of X/∼,
as, if g : X/∼ → Y , then g ◦ π : X → Y is a function, and g = g ◦ π by
uniqueness.

Corollary A.3.13. Let f : X → Y be surjective and let ∼ be the equivalence
relation induced by f . Then f̄ : X/∼ → Y is bijective, and we can identify
f with π.

Of course, we can ask how the results above relate to topologies. For any
equivalence relation ∼ on X the quotient topology induced by π is a natural
topology to put on X/∼.

Proposition A.3.14. Let f : X → Y be a continuous map. Let ∼ be an
equivalence relation on X such that x ∼ y ⇒ f(x) = f(y). Regard X/∼
as a topological space via the quotient topology induced by π : X → X/∼.
Then the induced map f̄ : X/∼ → Y is continuous.

Suppose now that f is onto and that ∼ is the equivalence relation induced
by f . Then f̄ is bijective. If, in addition, Y has the quotient topology induced
by f , then f̄ is a homeomorphism.
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Proof. Let U ⊂ Y be open. Then π−1(f̄−1(U)) = f−1(U) is open in X
since f is continuous. So f̄−1(U) is open in X/∼ as π is a quotient map.
Thus, f̄ is continuous if f is.

If f is onto and ∼ is the equivalence relation induced by f , then f̄ is
bijective By Corollary A.3.13. Assume also that Y has the quotient topology
induced by f . It suffices to show that U ⊂ Y is open if and only if f̄−1(U) is
open in X/∼. But π−1(f̄−1(U)) = f−1(U), so the result follows since both
f and π are quotient maps. �

The point of using equivalence relations instead of simply using functions
is that the equivalence relation can make it easier to define f : X → Y from
the data present. The most pertinent example is from a group action.

A.4. Group actions and orbit spaces.

Definition A.4.1. An action of a group G on a space X is a function

G×X → X

(g, x) 7→ gx

such that:

(1) g(hx) = (gh)x for all g, h ∈ G and x ∈ X.
(2) 1 · x = x for all x ∈ X, where 1 is the identity element of G.
(3) For each g ∈ G the map µg : X → X given by µg(x) = gx is

continuous.

A space X together with an action of G is called a G-space. If X and Y are
G-spaces, a G-map f : X → Y is a continuous function with the property
that f(gx) = gf(x) for all g ∈ G and x ∈ X. A G-homeomorphism is a
G-map f : X → Y that is also a homeomorphism.

If X is a smooth manifold and each µg is smooth, we say G acts smoothly
on X or that the action G × X → X is smooth. If G acts smoothly on
both X and Y , a G-diffeomorphism f : X → Y is a G-map that is also a
diffeomorphism.

As the reader may easily verify, if f : X → Y is a G-homeomorphism, then
the inverse function f−1 is a G-map, and hence also a G-homeomorphism.
Similarly, the inverse function to a G-diffeomorphism is a G-diffeomorphism.

Lemma A.4.2. Let X be a G-space and g ∈ G. Then µg : X → X is a
homeomorphism.

Proof. By properties (1) and (2) of the definition of G-space, µg is a bijec-
tion whose inverse function is µg−1 . Since both µg and µg−1 are continuous,
the result follows. �

There is an important equivalence relation defined on a G-space.

Lemma A.4.3. Let X be a G-space. Then there is an equivalence relation
on X defined by setting x ∼ gx for all x ∈ X and g ∈ G.
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Proof. Reflexivity comes from 1x = x. Symmetry comes from g−1gx = x.
Transitivity comes from g(hx) = (gh)x. �

Definition A.4.4. LetX be a G-space and let ∼ be the equivalence relation
of Lemma A.4.3. We refer to its equivalence classes as the orbits of the action
and write Gx = {gx : g ∈ G} = [x], the equivalence class of x. We write
X/G for X/∼ and refer to the canonical map π : X → X/G as the orbit
map. π(x) = Gx for all x ∈ X. We give X/G the quotient topology induced
by π.

We can use the orbit space to give a different construction for the Klein
bottle. This new construction is useful in showing the Klein bottle is a
smooth manifold, in part because the action of a wallpaper group on R2 is
smooth.

Example A.4.5. We describe a wallpaper group K as follows. Let ℓ be
the line y = 1

2 and let γ be the glide reflection γ = τe1σℓ with e1 = [ 10 ],
the first canonical basis vector. Note that γ makes the desired identification
of the left and right edges of the unit square, while τe2 makes the desired
identification on the top and bottom edges, e2 = [ 01 ]. Define the Klein group
by

(A.4.1) K = {τme2γn : m,n ∈ Z} ⊂ I2.
K is a group because γτe2γ

−1 = σℓτe2σ
−1
ℓ = τ−1

e2
. So

τme2γ
nτ re2γ

s = τm+(−1)nr
e2

γn+s,

(τme2γ
n)−1 = τ (−1)n+1m

e2
γ−n.

We shall provide a homeomorphism from the Klein bottle, K, to R2/K.
We first provide the map and show it is a continuous bijection.

To obtain this, we first show I2 is a fundamental region for K in the sense
that:

(1) R2 =
⋃
g∈K g(I

2).

(2) For all g ∈ K, I2 ∩ g(I2) ⊂ ∂I2.
To see this, note that each element of K carries I2 onto a unique tile of the
form

{[ xy ] : x ∈ [i, i+ 1], y ∈ [j, j + 1]}
for i, j ∈ Z. In fact, for g = τme2γ

n, i = n and j = m. Thus, if g 6∈ {γ±1, τ±1
e2
},

I2 ∩ g(I2) = ∅, while if g ∈ {γ±1, τ±1
e2
}, I2 ∩ g(I2) is one of the edges of I2.

The action of K on the plane is free in the sense that no point is fixed by
any nonidentity element of K.

Now consider the composite

(A.4.2) I2
i //

j

44
R2 π // R2/K,
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with i the standard inclusion of I2 in R2. We claim that j is onto and that the
equivalence relation on I2 induced by j produces precisely the identifications
used to define K. Indeed, by (1), every element x ∈ R2 has the form x = gy
for y ∈ I2 and g ∈ K. Thus, j is onto.

By (2), if j(y) = j(z) for y 6= z, then y and z must both lie on ∂I2.
Moreover, an examination of the effects of {γ±1, τ±1

e2
} shows that y and z

must be related by one of the identifications specified in the definition of K
in Example A.3.2. We obtain a commutative diagram

(A.4.3) I2
i //

π

��

j

""

R2

π

��

K
̄

// R2/K

where the maps π are the quotient maps. By Proposition A.3.14, ̄ is a
continuous bijection.

Using basic point-set topology, it is easy to show ̄ is a homeomorphism.
One need only show that I2 is compact and that R2/K is Hausdorff. We
shall use more elementary arguments involving the concept of a basis for a
topology. Meanwhile, we have some more examples.

Example A.4.6. The standard translation lattice

TΛE = 〈τe1 , τe2〉 = {τke1+ℓe2 : k, ℓ ∈ Z}
is another wallpaper group, giving one of the realizations of W1. The orbit
space R2/TΛE gives an alternative model for the 2-torus T2. Indeed, the unit
square I2 gives a fundamental region for the action of TΛE on R2, satisfying
(1) and (2) above.

The same argument as above provides a commutative diagram

(A.4.4) I2
i //

π

��

j

##

R2

π

��

T2
̄

// R2/TΛE

with ̄ a continuous bijection.

Example A.4.7. The preceding example generalizes to the n-torus Tn.
Here, we use the standard n-dimensional translation lattice

TΛE = 〈τe1 , . . . , τen〉 = {τk1e1+···+knen : k1, . . . , kn ∈ Z}
on Rn. Lemma 6.12.6 shows that In is a fundamental region for this action,
and once again, the identifications on the boundary of In induced by this
action are precisely the ones we used to define Tn. We obtain a commutative
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diagram

(A.4.5) In
i //

π

��

j

##

Rn

π

��

Tn
̄

// Rn/TΛE

where the vertical maps are the quotient maps and ̄ is a continuous bijection.

Example A.4.8. Note that the (n + 1) × (n + 1) matrix −In+1 induces a
linear isometry of Rn+1 and hence preserves the n-sphere, inducing a smooth
map (Corollary 8.4.15) α : Sn → Sn, α(u) = −u for u ∈ Sn. Let G = {id, α},
the group with two elements. We define the n-dimensional real projective
space by

RPn = Sn/G.

We shall show that RPn has a natural Riemannian metric that realizes what
is called projective geometry.

A.5. Basis for a topology.

Definition A.5.1. A basis B for the topology of a space X is a collection
of open sets B such that for each open set U of X and each x ∈ U , there
exists V ∈ B with x ∈ V ⊂ U .

Example A.5.2. For a metric space X the collection

B =
⋃

ǫ>0
x∈X

Bǫ(x)

is a basis for the topology of X by the very definition of that topology. We
can get a smaller basis by restricting to

(A.5.1) B′ =
⋃

n>0
x∈X

B 1
n
(x),

as, for each ǫ > 0 there exists n with 1
n
< ǫ.

Definition A.5.3. A space X is first-countable if each x ∈ X has what’s
called a countable neighborhood base, i.e., a countable set Bx of open subsets
containing x, such that every open subset containing x contains an element
of Bx. In particular, (A.5.1) shows every metric space is first-countable.

A subset Y ⊂ X is dense in X if every open subset of X contains an
element of Y . Decimal approximation shows that the set Q of rational
numbers is dense in R. Similarly, Qn is dense in Rn.

A space X is separable if it has a countable dense subset. A standard
argument shows a finite product of countable sets is countable, so Qn is
countable, and hence Rn is separable.

A spaceX is second-countable if it has a countable basis B for its topology.
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Lemma A.5.4. Every subspace of a separable metric space is second-count-
able. Indeed, we have the following:

(1) A separable metric space X is second-countable.
(2) Every subspace of a second-countable space X is second-countable.

Thus, every subspace of Rn is second-countable.

Proof. (1) Let Y ⊂ X be countable and dense. We claim that

B =
⋃

y∈Y
n>0

B 1
n
(y)

is a basis for X. To see this, let U be an open set containing X. Then
B 1
n
(x) ⊂ U for some n > 0. But then B 1

2n
(x) ⊂ U as well. Since Y is dense

and B 1
2n
(x) is open, there exists y ∈ B 1

2n
(x) ∩ Y . But then

x ∈ B 1
2n
(y) ⊂ B 1

n
(x) ⊂ U

by the symmetry of the metric and the triangle inequality.
(2) if B = {Ui : i > 0} is a basis for X, then {Ui ∩ Y : i > 0} is a basis

for Y ⊂ X. �

The definition of topological manifold given in Definition 8.3.4 required
that M be contained in Rn for some n. This makes M a metric space,
which we used to discuss continuity issues. By Lemma A.5.4 is also makes
M second-countable. Since metric spaces are also Hausdorff, M satisfies the
following more general definition.

Definition A.5.5 (Topological manifold: general defintion). A topological
n-manifold M is a second-countable Hausdorff space with the property that
every point x ∈M has a neighborhood homeomorphic to an open subset of
Rn.

Topological manifolds under this definition turn out to be metrizable. We
shall not need this here. We are most interested in the smooth case. The
general definition of smooth manifold is precisely the one given in Section 8.4.
We do not use the metric there, and need only assume M is a topological
manifold in the sense of Definition A.5.5. This is useful in discussing the
smooth structure on the Klein bottle and other orbit spaces of properly
discontinuous smooth actions, as there is no obvious metric on the orbit
space, nor any obvious embedding in Euclidean space. But in fact, this
seemingly more general definition of smooth manifold does embed smoothly
in Euclidean space:

Theorem A.5.6 (Whitney embedding theorem. See [13, Theorem 6.19]).
Every smooth n-manifold embeds smoothly into R2n.

We now give a couple more general results and apply them to the Klein
bottle and the torus.
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Definition A.5.7. A map f : X → Y is open if f(U) is open in Y for each
open subset U of X.

Note that a continuous bijection f : X → Y is a homeomorphism if and
only if it is an open map.

Lemma A.5.8. Let B be a basis for the topology of X. Then a subset U is
open if and only if it is the union of some family of basis elements.

If f : X → Y is a map, then f is an open map if and only if f(V ) is open
in Y for each basis element V of X.

Proof. Basis elements are open, and an arbitrary union of open sets is open,
so any union of basis elements is open.

Conversely if U is open, then any x ∈ U is contained in a basis element
contained in U , so U is the union of all basis elements contained in it.

The statement about open mappings follows as

f

(
⋃

V ∈S
V

)
=
⋃

V ∈S
f(V )

for any set S of subsets of X. �

We shall now construct a bases for the topology of the Klein bottle and the
2-torus and use them to show the continuous bijections ̄ of Examples A.4.5
and A.4.6 are open maps, and hence homeomorphisms.

The following concept is useful.

Definition A.5.9. Let f : X → Y . A subset U ⊂ X is saturated under f
if U = f−1(f(U)). In particular, if f is an quotient map then U 7→ f−1(U)
gives a one-to-one correspondence from the open sets of Y to the saturated
open sets of X.

We now specify a basis for the Klein bottle K.

Lemma A.5.10. Let π : I2 → K be the canonical map. Then there is a
basis B for K consisting of the images under π of the following collections
of π-saturated subsets of I2:

(1) all ǫ-balls contained entirely in the interior of I2;
(2) the unions Bǫ([ 0t ] , I

2) ∪ Bǫ(
[

1
1−t
]
, I2) for all ǫ ≤ min(t, 1 − t) and

all t ∈ (0, 1);
(3) the unions Bǫ([ t0 ] , I

2) ∪ Bǫ([ t1 ] , I2) for all ǫ ≤ min(t, 1 − t) and all
t ∈ (0, 1);

(4) the unions Bǫ([ 00 ] , I
2)∪Bǫ([ 01 ] , I2)∪Bǫ([ 10 ] , I2)∪Bǫ([ 11 ] , I2) for all

ǫ ≤ 1
2 .

Proof. The displayed sets are obviously open and saturated. Moreover, any
open set containing π−1(x) for some x ∈ K must contain one of the sets in
(1)–(4). �
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The following is the key step in showing ̄ : K → R2/K is open, and hence
a homeomorphism.

Proposition A.5.11. The canonical map π : R2 → R2/K is an open map.

Proof. This is an immediate consequence of Theorem A.7.1 below. �

Corollary A.5.12. The map ̄ : K → R2/K of Example A.4.5 is a homeo-
morphism.

Proof. To avoid confusion, write π′ : I2 → K and π : R2 → R2/K for the
respective canonical maps. It suffices to show that if V is in the basis for
K given in Lemma A.5.10, then ̄(V ) is open in R2/K. In case (1), that is
immediate from π being an open map. In case (2), it follows as

̄π′(Bǫ([ 0t ] , I
2) ∪Bǫ(

[
1

1−t
]
, I2))

= π(Bǫ(
[

1
1−t
]
, I2) ∪ γ(Bǫ([ 0t ] , I2)))

= π(Bǫ(
[

1
1−t
]
,R2)),

and we again use that π is open. Case (3) is similar, using τe2 in place of γ,
and getting the open set π(Bǫ([ t1 ] ,R

2)). In case (4) we apply isometries to
three of the four pieces to obtain π(Bǫ([ 11 ] ,R

2)). �

The argument for the following is almost identical.

Corollary A.5.13. The map ̄ : T2 → R2/TΛE of Example A.4.6 is a home-
omorphism.

Proof. The only changes needed are to replace (2) with

(2′) the unions Bǫ([ 0t ] , I
2) ∪ Bǫ([ 1t ] , I2) for all ǫ ≤ min(t, 1 − t) and all

t ∈ (0, 1)

and replace γ with τe1 . �

The proof of the following generalization is left to the reader.

Corollary A.5.14. The map ̄ : Tn → Rn/TΛE of Example A.4.7 is a
homeomorphism.

A.6. Properly discontinuous actions. We can in fact prove something
much stronger than Proposition A.5.11, and in process show the Klein bottle
is a smooth manifold.

Definition A.6.1. An action of G on X is free and properly discontinuous
if for each x ∈ X there is an open set U containing x such that

(A.6.1) g(U) ∩ U = ∅ for all 1 6= g ∈ G.
Lemma A.6.2. The action of the Klein group K on R2 is free and properly
discontinuous.
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Proof. Let U be any region of the form
{
[ xy ] : x ∈ (x0, x0 + 1), y ∈ (y0, y0 + 1)

}
.

Since γn moves points by |n| units in the x-direction and τme2 moves points by
|m| units in the y-direction while keeping the x-coordinate fixed, g(U)∩U =
∅ for each nonidentity element g ∈ K. �

Similarly, we have the following.

Lemma A.6.3. The action of the torus group TΛE on R2 is free and properly
discontinuous.

In fact, this generalizes to the n-torus.

Lemma A.6.4. The action of the standard n-dimensional lattice TΛE on
Rn is free and properly discontinuous.

Proof. Here, we use the sets

Uy = {x1e1 + · · ·+ xnen : xi ∈ (yi, yi + 1) for i = 1, . . . , n}
for y = y1e1 + · · ·+ ynen arbitrary. �

The action on Sn whose orbit space is RPn is also properly discontinuous.

Lemma A.6.5. Let α : Sn → Sn be given by α(u) = −u for all u ∈ Sn.
Then G = {id, α} acts freely and properly discontinuously on Sn.

Proof. Let u ∈ Sn. Then u ∈ U = {v ∈ Sn : 〈u, v〉 > 0}. Since α(U) =
{v ∈ Sn : 〈u, v〉 < 0}, the result follows. �

We wish to show next that if G acts freely and properly discontinuously on
X and if U satisfies (A.6.1), then the saturation π−1π(U) is homeomorphic
soG×U . But, of course, we have not yet discussed the topology on a product
nor discussed the discrete topology, which is the appropriate topology for
G, here.

Definition A.6.6. The discrete topology on a set S is the one in which
every subset of S is open. Since arbitrary unions of open sets are open,
this is equivalent to saying that every point is open. Thus, the points of a
discrete space form a basis for its topology.

A.6.1. Product topology.

Definition A.6.7. Let X and Y be spaces. The product topology on X×Y
is the one specified by the basis

{U × V : U ⊂ X, V ⊂ Y are open}.
In other words, a subsetW ⊂ X×Y is open if and only if for each (x, y) ∈W
there are open sets U of X and V of Y with

(x, y) ∈ U × V ⊂W.
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Lemma A.6.8. Let B be a basis of X and B′ a basis of Y . Then

{U × V : U ∈ B, V ∈ B′}
is a basis for the product topology of X × Y .

Proof. If U and V are arbitrary open sets of X and Y , respectively, and if
(x, y) ∈ U × V , there exist W ∈ B, W ′ ∈ B′ with x ∈ W ⊂ U , y ∈ W ′ ⊂ V ,
so

(x, y) ∈W ×W ′ ⊂ U × V. �

Corollary A.6.9. Let A be a subspace of X and B a subspace of Y . Then
the product topology on A×B coincides with its subspace topology in X×Y .

Proof. Either topology has a basis given by the sets

(U × V ) ∩ (A×B) = (U ∩B)× (V ∩ Y )

as U and V range over bases of X and Y , respectively. �

Definition A.6.10. Let X and Y be metric spaces. Then the product
metric on X × Y is given by

(A.6.2) d((x, y), (z, w)) = max(d(x, z), d(y, w)).

Lemma A.6.11. Let X and Y be metric spaces. Then the product topology
on X × Y is induced by the product metric (A.6.2). Morover, with respect
to this metric, we have

(A.6.3) Bǫ((x, y)) = Bǫ(x)×Bǫ(y).
Proof. (A.6.3) is immediate from the definition of the metric, as

max(d(x, z), d(y, w)) < ǫ ⇔ d(x, z) < ǫ and d(y, w) < ǫ.

The rest of the argument is similar to that for Lemma A.6.8. If (x, y) ∈
U × V , we can find a single ǫ with Bǫ(x) ⊂ U and Bǫ(y) ⊂ V , so the result
follows. �

Of course, we can identify Rn × Rm with Rn+m via the map

f : Rn × Rm → Rn+m(A.6.4)

((x1, . . . , xn), (y1, . . . , ym)) 7→ (x1, . . . , xn, y1, . . . , ym).

Viewing Rn × Rm as a vector space in the usual way (direct sum) f is a
linear isomorphism.

Let’s take f as an identification and write (v, w) for an arbitrary element
of Rn+m, with v ∈ Rn and w ∈ Rn. This gives us two different metrics on
Rn+1: the product metric d× and the usual metric d. It is useful to compare
these two metrics. Let us study them in greater detail. Each of them comes
from a norm.
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Remark A.6.12. The metric obtained from a norm ‖ · ‖ sets
(A.6.5) d(x, y) = ‖y − x‖.
It is then immediate that

(A.6.6) Bǫ(x) = τx(Bǫ(0)) = τx({z : ‖z‖ < ǫ}).
Recall that any inner product induces a norm: ‖x‖ =

√
〈x, x〉. In our

setting, Rn and Rm are orthogonal complements in Rn+m, so the inner
product is given by

(A.6.7) 〈(v1, w1), (v2, w2)〉 = 〈v1, v2〉+ 〈w1, w2〉,
where the inner products on the right are the standard inner products in Rn

and Rm, respectively (which can be viewed as the restriction of the inner
product in Rn+m to the subspaces Rn and Rm).

Thus, the standard norm is given by

(A.6.8) ‖(v, w)‖ =
√
〈(v, w), (v, w)〉 =

√
〈v, v〉+ 〈w,w〉 =

√
‖v‖2 + ‖w‖2,

where the norms on the right-hand side can be taken to be the standard
norms in Rn and Rm, respectively, and coincide with the subspace norms
coming from Rn+m.

The product norm is given by

(A.6.9) ‖(v, w)‖× = max(‖v‖, ‖w‖),
where the norms on the right are the standard norms in Rn and Rm, re-
spectively. It is then immediate that the product metric is induced by the
product norm:

(A.6.10) d×((v1, w1), (v2, w2)) = ‖(v1, w1)− (v2, w2)‖×
for (v1, w1), (v2, w2) ∈ Rm+n. Moreover, (A.6.8) shows that ‖(v, w)‖ ≥ ‖v‖
and ‖(v, w)‖ ≥ ‖w‖. Thus,
(A.6.11) ‖(v, w)‖ ≥ ‖(v, w)‖× for all (v, w) ∈ Rn+m.

And this immediately implies that

(A.6.12) Bǫ(0, d) ⊂ Bǫ(0, d×).
Here, the second argument indicates the metric in use.

On the other hand if ‖v‖ < ǫ and ‖w‖ < ǫ, then

‖(v, w)‖ =
√
‖v‖2 + ‖w‖2 <

√
2ǫ2 =

√
2 ǫ,

so

(A.6.13) Bǫ(0, d×) ⊂ B√
2 ǫ(0, d).

We obtain the following.

Proposition A.6.13. The standard topology agrees with the product topol-
ogy on Rn × Rm = Rn+m.
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Proof. A subset U is open in the standard topology if for each x ∈ U , we
have Bǫ(x, d) ⊂ U for some ǫ > 0. But this contains B ǫ√

2
(x, d×), so it is

open in the product topology as well. The converse is similar. �

The product topology on an arbitrary pair of spaces has a useful universal
property. First note that a function f : Z → X × Y is specified by its
coordinate functions f1 : Z → X and f2 : Z → Y :

f(z) = (f1(z), f2(z)).

The universal property of the product topology is the following.

Lemma A.6.14. Let Z, X and Y be spaces and let f : Z → X × Y be a
function. Then f is continuous if and only if f1 and f2 are continuous. We
obtain a one-to-one correspondence

Map(Z,X × Y )→ Map(Z,X)×Map(Z, Y )(A.6.14)

f 7→ (f1, f2),

where Map(Z,W ) denotes the set of continuous maps from Z to W . This
may be restated as saying that for any pair of continuous maps g : Z → X
and h : Z → Y there is a unique continuous map h = (g, h) : Z → X × Y
such that the following diagram commutes:

(A.6.15) Z
g

{{

h
��

h

##

X X × Yπ1oo
π2 // Y .

Here, π1((x, y)) = x and π2((x, y)) = y.

Proof. For U ⊂ X open, π−1
1 (U) = U × Y is a basis element for X × Y ,

and hence is open, so π1 is continuous. Similarly π2 is continuous. So
if f : Z → X × Y is continuous, then the composites f1 = π1 ◦ f and
f2 = π2 ◦ f are continuous.

Conversely, if f1 and f2 are continuous, let U × V be a basis element for
X × Y . Then

f−1(U × V ) = f−1
1 (U) ∩ f−1

2 (V )

is open. Since the inverse image of a union is the union of the inverse images,
a map is continuous if and only if the inverse image of every element of some
basis is open. �

Corollary A.6.15. Let X and Y be spaces and let x ∈ X. Let ιx : Y →
X × Y be given by ιx(y) = (x, y) for y ∈ Y . Then ιx is a homeomorphism
of Y onto the subspace x× Y of X × Y .

Proof. ιx is continuous by Lemma A.6.14. The inverse function of ιx : Y →
x× Y is given by the projection of X × Y onto Y . �
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A.6.2. Disjoint unions. The disjoint union of topological spaces has an
important universal property called the coproduct in the language of cate-
gory theory.

Definition A.6.16. We first define the disjoint union of sets. If

{Xs : s ∈ S}
are sets, we assume there is a set X containing each of the Xs. We then
define their disjoint union by

∐

s∈S
Xs = {(s, x) ∈ S ×X : x ∈ Xs}.

In particular, we identify Xs with the subset {s} ×Xs ⊂
∐
s∈S Xs.

Now let {Xs : s ∈ S} be a set of spaces. Their disjoint union,
∐
s∈S Xs,

as spaces is defined to be the topology on their disjoint union as sets given
by the basis

{{s} × U : U open in Xs}.
Identifying Xs with the subset {s} ×Xs as above, we see that the subspace
topology on Xs coincides with the original topology and that a subset

U ⊂
∐

s∈S
Xs

is open if and only if its intersection with each Xs is open.

Lemma A.6.17. Let S have the discrete topology and let X be a space.
Then the product topology on S×X coincides with the disjoint union topology
on
⋃
s∈S({s} ×X).

Proof. Since S is discrete, S ×X has basis {{s} × U : U open in X}. �

A.7. Topology of the orbit space. Now, finally, we shall tackle the orbit
spaces of free and properly discontinuous actions.

Theorem A.7.1. Let π : X → X/G be the canonical map to the orbit space
of a G-action on X. Then π is an open map.

Now let U ⊂ X have the property that

(A.7.1) gU ∩ U = ∅ for all 1 6= g ∈ G.
Then there is a G-homeomorphism

µ : G× U → π−1π(U)

given by µ((g, x)) = gx for all g ∈ G and x ∈ U . Here, G has the discrete
topology. Moreover, π|U : U → π(U) is a homeomorphism and the following
diagram commutes:

(A.7.2) G× U µ
//

π◦π2
##

π−1π(U)

π
zz

π(U).
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Here π2 is projection onto the second factor. In consequence

π|g(U) : g(U)→ π(U)

is a homeomorphism for each g ∈ G.
Finally, if the action of G on X is free and properly discontinuous, then

the set of open sets satisfying (A.7.1) is a basis of X.

Proof. Let X be a G-space. For any x ∈ X, π−1π(x) = Gx = {gx : g ∈ G},
the orbit of x. So, for any Y ⊂ X,

π−1π(Y ) =
⋃

g∈G
g(Y ).

Suppose Y is open in X. Then so is each g(Y ), since multiplication by g is
a homeomorphism, so π−1π(Y ), as a union of open subsets, is open. Since
the orbit space has the quotient topology, π(Y ) is open. Thus, π is an open
map.

Now suppose U satisfies (A.7.1). Then if g 6= h ∈ G, g(U) ∩ h(U) = ∅, as
otherwise h−1g(U) ∩ U would be nonempty. But that makes µ one-to-one.
As shown above for U = Y , the image of µ is π−1π(U). Moreover, µ is an
open map, as it carries the basis elements {g} × V with V open in U onto
the open sets g(V ). Thus, µ is a homeomorphism, and the commutativity
of the diagram follows from the fact that π(gx) = π(x) for all x ∈ X and
g ∈ G. Since µ is a G-map, it is a G-homeomorphism.

By (A.7.1), π|U is one-to-one, and since π is an open map,

π|U : U
∼=−→ π(U).

The same holds for π|g(U) as π|g(U) is the composite of π with multiplication

by g−1 from g(U) to U .
The last statement holds as if (A.7.1) holds for U , it holds for g(V ) for

any open subset V of U and any g ∈ G. �

Corollary A.7.2. If G acts freely and properly discontinuously on the topo-
logical manifold M , then M/G is a topological manifold.

Proof. Since M is a manifold, it has a basis B of chart neighborhoods.
Since the action is free and properly discontinuous, it has a basis B′ of sets
satisfying (A.7.1). The set

B′′ = {U ∩ V : U ∈ B and V ∈ B′}
is a basis of chart neighborhoods satisfying (A.7.1). In particular, for W ∈
B′′, π(W ) is a chart neighborhood ofM/G. The collection {π(W ) :W ∈ B′′}
forms a basis for M/G. �

When G acts smoothly on M we obtain a smooth structure on the orbit
space:
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Proposition A.7.3. Let G act smoothly, freely and properly discontinu-
ously on the smooth n-manifold M . Then M/G is a smooth n-manifold and
π : M → M/G is smooth. Moreover, the maps πkh in (8.4.2) have Jaco-
bian matrices invertible at each point. So π is both an immersion and a
submersion.

If f : M → N is smooth and if f(gx) = f(x) for each g ∈ G and x ∈ M
then induced map f̄ :M/G→ N in the unique factorization

(A.7.3) M
f

//

π
""

N

M/G

f̄

<<

is smooth and the rank of Tπ(x)f̄ : Tπ(x)(M/G) → Tf(x)N is equal to the
rank of Txf .

Finally, if M is oriented and if each µg : M → M is orientation-
preserving, then we may giveM/G an orientation such that π is orientation-
preserving.

Proof. By Lemma 8.4.11, M has an atlas A whose chart neighborhoods

satisfy (A.7.1). For each h : U
∼=−→ h(U) in A, the composite

π(U)
π−1

//

h̄

''

U
h // h(U)

is a homeomorphism, and hence defines a chart for M/G.

The transition maps are somewhat more complicated. Let h : U
∼=−→ h(U)

and k : V
∼=−→ h(V ) be charts in A. Then π−1π(V ) is the disjoint union over

g ∈ G of g(V ). In particular,

U ∩ π−1π(V ) =
⋃

g∈G
U ∩ g(V ),

and the union is disjoint. Since π : U → π(U) is a homeomorphism,

π(U) =
⋃

g∈G
π(U ∩ g(V )),

and again the union is disjoint. On π(U ∩ g(V )) the transition map gk̄h̄ is
given by the composite

π(U ∩ g(V ))
π−1

−−→ U ∩ g(V )
µ
g−1−−−→ V

k−→ k(V ),

a diffeomorphism onto its image because µg−1 is a diffeomorphism of M .
The statement about Jacobian matrices is immediate from the construc-

tion: with appropriate choices of charts, the Jacobian matrix for π is the
identity.
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Let f : M → N be as stated. Then for the choices of charts for M/G
we’ve just made the maps f̄kh of (8.4.2) coincide with the maps fkh for
analyzing Tf , and the result follows.

Finally, if M is oriented, we may choose A to be an oriented atlas. Since
the Jacobian matrices for the transition maps in M/G all come from the
Jacobian matrices of the transition maps in M , the resulting atlas on M/G
is oriented. By construction, π preserves orientation. �

Since isometries of Rn are diffeomorphisms we obtain:

Corollary A.7.4. Let G act freely and properly discontinuously on Rn by
isometries. Then Rn/G is a smooth manifold and π : Rn → Rn/G is smooth
with the maps (8.4.2) having invertible Jacobian matrices at each point.

We also know that G = {id, α} acts smoothly on Sn. We obtain:

Corollary A.7.5. The Klein bottle, the n-torus Tn and RPn are smooth
manifolds. The canonical maps π : R2 → K, π : Rn → Tn and π : Sn → RPn

are smooth immersions (and submersions).

This now allows us to prove the following.

Corollary A.7.6. Define f : Rn → (S1)n by

(A.7.4) f(x1e1 + · · ·+ xnen) = (exp(2πx1), . . . , exp(2πxn)),

where exp : R → S1 is given by exp(x) = [ cosxsinx ]. Then f is an immersion
and submersion and factors through Tn:

(A.7.5) Rn

π
  

f
// (S1)n.

Tn
f̄

<<

The induced map f̄ : Tn → (S1)n is a diffeomorphism.

Proof. For α ∈ TΛE and x ∈ Rn, f(αx) = f(x), so f factors as stated.
Moreover, f factors a product of n copies of x 7→ exp(2πx). The latter is
both an immersion and a submersion as it is a map between 1-manifolds
with nowhere vanishing derivative. So f itself is both an immersion and a
submersion.

The restriction of f to [0, 1)n ⊂ In is bijective. But so is the restriction of
π to [0, 1)n, so f̄ is bijective. Since π is both an immersion and a submersion,
the result follows. �

The following is a key in defining the tangent bundle.

Proposition A.7.7. Let M be a smooth manifold with atlas A. Let

η :
∐

h∈A
h(U)→M
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restrict on each h(U) to h−1. Then η is a quotient map, and the equivalence
relation on

∐
h∈A h(U) induced by η is given by setting h(x) ∈ h(U) equiv-

alent to k(x) ∈ k(V ) whenever x ∈ U ∩ V . In particular, if we denote this
equivalence relation by ∼, we obtain a homeomorphism

η̄ :
∐

h∈A
h(U)/∼ ∼=−→M.

Proof. Because each h−1 : h(U) → U is a homeomorphism onto an open
subset of M , η is an open map. Continuous, open maps are always quotient
maps. �
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Appendix B. Compactness

B.1. Heine–Borel.

Definition B.1.1.

(1) An open cover of a space X is a collection U = {Uα : α ∈ A} of open
subsets Uα of X, that covers X in the sense that

(B.1.1)
⋃

α∈A
Uα = X.

(2) A subcover of an open cover {Uα : α ∈ A} of X is a subcollection of
these sets that still cover X, i.e., the subcover is {Uα : α ∈ B} for
some B ⊂ A, such that

⋃

α∈B
Uα = X.

We say this subcover is finite if B is a finite set.
(3) A space X is compact if every open cover of X has a finite subcover.
(4) A subset Y of a metric space X is bounded if there exists z ∈ X and

r > 0 such that Y is contained in the open ball of radius r about z:
Y ⊂ Br(z).

Example B.1.2. The real numbers R is not compact: the open cover

{(n− 1, n+ 1) : n ∈ Z}
does not admit a finite subcover because the intervals (n − 1, n + 1) are
bounded. But the triangle inequality and induction show that any finite
union of bounded sets is bounded.

Example B.1.3. Any topology on a finite set X gives a compact space,
because there are only finitely many subsets of X in the first place.

The Heine–Borel theorem (see, e.g., [8]) is one of the most important
theorems about the topology of the real line. It gives us our first nontrivial
example of a compact space.

Theorem B.1.4 (Heine–Borel). The closed intervals [a, b] ⊂ R are compact.

We can now obtain a number of more exotic compact spaces from the
following.

Proposition B.1.5. A closed subspace of a compact space is compact.

Proof. Let X be compact and let C be a closed subspace of X. An open
cover of C has the form U = {Uα : α ∈ A}, where Uα = Vα ∩ C, with Vα
open in X. So

C ⊂
⋃

α∈A
Vα,

an open set in X. Since C is closed in X, {Vα : α ∈ A} ∪ {X r C} is an
open cover of X. Since X is compact, there is a finite subset S ⊂ A such
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that {Vα : α ∈ S} ∪ {X r C} covers X. But then {Uα : α ∈ S} is a finite
subcover of our original cover U . �

Example B.1.6. Let C = { 1
n
: n > 0} ∪ {0} ⊂ I = [0, 1]. Then

I r C =
⋃

n>0

(
1

n+ 1
,
1

n

)

is open in R and hence also in I. So C is a closed subspace of the compact
space I and hence is compact.

Note that C consists of a decreasing sequence of positive real numbers
that converges to 0, together with its limit point 0.

Example B.1.7. The Cantor set is obtained from I = [0, 1] by performing a
sequence of deletions. We first delete the open middle third, (13 ,

2
3), obtaining

the disjoint union of two closed intervals of width 1
3 :

C1 =

[
0,

1

3

]
∪
[
2

3
, 1

]
.

We then delete the open middle third of each of these intervals, obtaining
the disjoint union of four intervals of width 1

9 :

C2 =

[
0,

1

9

]
∪
[
2

9
,
1

3

]
∪
[
2

3
,
7

9

]
∪
[
8

9
, 1

]
.

We interate this process, each time removing the open middle third of each
of the intervals, obtaining Cn. the disjoint union of 2n closed intervals of
width (13)

n.
The Cantor set C, is the intersection of all these sets:

(B.1.2) C =
⋂

n>0

Cn.

Each Cn is closed in Cn−1, as its complement there is open. So the infinite
intersection C is closed in I and hence is compact. Note that (13)

n ∈ C for
all n > 0, so C is infinite. In fact, C is uncountable.

The next lemma is useful enough in geometric topology that it is some-
times given a name. Arunas Liulevicius, who taught me smooth manifold
theory, calls it the Hotdog lemma, because of the obvious pictures you can
draw when proving it.

Lemma B.1.8. Let X and Y be spaces. Let A and B be compact subspaces
of X and Y , respectively. LetW be an open subset of X×Y with A×B ⊂W .

(1) or each x ∈ A, there are open sets Ux and Vx of X and Y , respec-
tively, with

(B.1.3) (x×B) ⊂ (Ux × Vx) ⊂W.
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(2) There are open subspaces U and V of X and Y , respectively, such
that

(B.1.4) (A×B) ⊂ (U × V ) ⊂W.

Proof. (1) For each y ∈ B, there exist open subspaces Uy and Vy of X and
Y , respectively, with

(x, y) ∈ (Uy × Vy) ⊂W,
as W is open in the product topology. But then {Vy ∩B : y ∈ B} is an open
cover of B. Since B is compact, there is a finite subset Sx ⊂ B such that

B ⊂
⋃

y∈Sx
Vy.

Now simply set Ux =
⋂
y∈Sx Uy and Vx =

⋃
y∈Sx Vy. These sets satisfy

(B.1.3).
(2) We now have an open cover {Ux∩A : x ∈ A} of A. Since A is compact,

there is a finite subset S of A such that

A ⊂ U =
⋃

x∈S
Ux.

Now set V =
⋂
x∈S Vx and (B.1.4) holds for this U and V . �

The next proposition is a special case of the famous Tikhonov theorem.19

Proposition B.1.9. Let X and Y be compact. Then X × Y (with the
product topology) is compact.

Proof. Let U = {Uα : α ∈ A} be an open cover of X × Y . For each x ∈ X,
the subset x× Y is compact by Corollary A.6.15, so there is a finite subset
Sx ⊂ A such that x × Y ⊂ Wx =

⋃
α∈Sx Uα. By Lemma B.1.8(1), there is

an open set Ux in X such that Ux × Y ⊂Wx.
Now {Ux : x ∈ X} is an open cover of X. So there is a finite subset

S ⊂ X such that X =
⋃
x∈S Ux. But each Ux × Y is contained in a finite

union of elements of U . Since X is a finite union of sets of the form Ux,
X × Y is contained in a finite union of elements of U . �

The following is now useful.

Proposition B.1.10. A compact subspace C of a Hausdorff space X is
closed in X.

19The Tikhonov theorem says that if {Xα : α ∈ A} are compact spaces then the
infinite product

∏
α∈AXα is compact. This is more interesting than it may seem: if

each Xα is finite and nonempty, then
∏
α∈AXα is homeomorphic to the Cantor set; the

product
∏

0<n∈Z
I is called the Hilbert cube and has played an important role in geometric

topology.
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Proof. We show that X r C is open. It suffices to show that for each
y ∈ X r C, there is an open set V ⊂ X r C containing y.

Let y ∈ X r C. Since X is Hausdorff, for each x ∈ C, we can find open
sets Ux and Vy containing x and y, respectively, such that Ux ∩ Vy = ∅.
Since C is compact, there is a finite set S ⊂ C such that C ⊂ ⋃x∈S Ux. But⋃
x∈S Ux is disjoint from V =

⋂
x∈S Vx, an open set in X r C containing

y. �

Corollary B.1.11. Let A and B be subspaces of the Hausdorff space X
with A compact and B closed. Then A ∩ B is compact. In particular, the
intersection of two compact subspaces of a Hausdorff space is compact.

Proof. Since B is closed in X, A ∩ B is closed in A. But closed subspaces
of compact spaces are compact. �

Example B.1.12. It is not true that compact subspaces of non-Hausdorff
spaces are necessarily closed. There are many examples involving exotic
topologies on finite sets. One such example is called Sierpinski space: X
constists of two points, say 0 and 1, where the open sets are {∅, {0}, X}.
This, {0} is open but not closed, and {1} is closed but not open. {0} is a
compact subspace, but not closed.

This example actually arises in cases of interest, as it is the prime spec-
trum of the p-adic integers (and also of the integers localized at p). It is also
the quotient space [0, 1]/[0, 1).

We can now characterize the compact subsets of Rn.

Theorem B.1.13. A subspace X ⊂ Rn is compact if and only if it is closed
and bounded (with respect to the standard metric on Rn).

Proof. By the triangle inequality, a subspace is bounded if and only if it is
contained in Br(0) for some r > 0. And Br(0) is contained in the compact
subspace [−r, r]n. So a closed, bounded subspace is a closed subspace of the
compact space [−r, r]n, and hence is compact.

Now let C ⊂ Rn be compact. By Proposition B.1.10 it is closed in Rn.
To show it is bounded, consider the open cover {Bn(0) ∩ C : 0 < n ∈ Z}.
Since C is compact, it has a finite subcover. Since the balls in this cover are
nested, the largest ball in this finite subcover contains C. �

This now gives tons of examples of compact spaces, some exotic and
some not. One of the most important ones is the standard (n− 1)-simplex
∆n−1 = Conv(e1, . . . , en) ⊂ Rn.

Proposition B.1.14. The standard (n−1)-simplex ∆n−1 ⊂ Rn is compact.

Proof. The vertices e1, . . . , en are contained in the compact, convex subset
In = [0, 1]n ⊂ Rn. So their convex hull ∆n−1 must also be contained in In.
Indeed, by (2.8.2), ∆n−1 = In ∩ f−1(1), where f : Rn → R is the linear map
f(x) = 〈x, ξ〉, with ξ = e1 + · · · + en. Since f−1 is closed in Rn, ∆n−1 is
closed in In and hence compact. �
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A simpler application of Theorem B.1.13 is:

Corollary B.1.15. For x ∈ Rn and r > 0, the closed ball B̄r(x) is compact.

Proof. Lemma A.1.15 shows B̄r(x) to be closed. �

Since the closed ball is also convex, this is an important example. Here
is another:

Corollary B.1.16. The sphere Sr(x) of radius r about x ∈ Rn is compact
for r > 0. Here

(B.1.5) Sr(x) = B̄r(x)rBr(x) = {y ∈ Rn : d(x, y) = r}.
Proof. Br(x) is open in Rn, so Sr(x) is a closed subspace of the compact
space B̄r(x). �

A more exotic example is what’s called the Hawaiian earring. It has an
interesting fundamental group.

Example B.1.17. For x ∈ R2, write Cr(x) for the circle (1-dimensional
sphere) of radius r about x. Define the Hawaiian earring by

(B.1.6) H =
⋃

1<n∈Z
C 1
n

(
1

n
e1

)
.

Thus, H is the union of infinitely many circles, any two of which intersect
only at the origin, and all tangent to the y-axis. Each circle is compact by
Corollary B.1.16, but there are infinitely many of them, so we need further
argument to show H is compact.

Of course, H is contained in the compact subset B̄ 1
2
(12e1), so it suffices to

show it is closed in it. But

B̄ 1
2
e1

(
1

2
e1

)
rH =

⋃

1<n∈Z

(
B 1
n

(
1

n
e1

)
r B̄ 1

n+1

(
1

n+ 1
e1

))
,

a union of open sets in R2.

B.2. Maps out of compact spaces.

Lemma B.2.1. Let f : X → Y be continuous, with X compact. Then f(X)
is compact.

Proof. If {Uα : α ∈ A} is an open cover of f(X), then {f−1(Uα) : α ∈ A}
is an open cover of X. So there is a finite subset S ⊂ A such that

{f−1(Uα) : α ∈ S}
covers X. Since Uα ⊂ f(X), Uα = f(f−1(Uα)), so {Uα : α ∈ S} covers
f(X). �

We have an immediate and important corollary.

Corollary B.2.2. Polytopes are compact.
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Proof. Let P be a polytope. By Corollary 2.8.22, there is a surjective,
continuous map from a standard simplex ∆k−1 onto P. By Corollary B.1.14,
∆k−1 is compact, so the result follows from Lemma B.2.1. �

Corollary 2.8.39 enumerates the convex subsets of a line ℓ. Of them,
only the line segments [x, y] and the individual points {x} are closed and
bounded. We also know that if P is a one-dimensional polytope, then Aff(P)
is a line. We obtain the following.

Corollary B.2.3.

(1) The compact, convex subsets of a line ℓ ⊂ Rn consist of the segments
[x, y] with x 6= y ∈ ℓ, together with the singleton points x ∈ ℓ.

(2) A one-dimensional polytope in Rn is a line segment [x, y] with x 6=
y ∈ Rn.

Proposition B.2.4. Let f : X → Y be continuous, with X compact and Y
Hausdorff. Then f is a closed map, i.e., f(C) is closed in Y whenever C is
closed in X. Moreover, each such f(C) is compact.

Proof. Let C be closed in X. Then C is compact by Proposition B.1.5. So
f(C) is compact by Lemma B.2.1. Since Y is Hausdorff, f(C) is closed in
Y by Proposition B.1.10. �

This gives a very important corollary.

Corollary B.2.5. Let f : X → Y be injective and continuous, with X
compact and Y Hausdorff. Then

f : X
∼=−→ f(X)

is a homeomorphism onto a closed, compact subspace of Y .

Proof. f : X → f(X) is continuous and bijective, so it suffices to show
f−1 : f(X)→ X is continuous. But if C ⊂ X is closed, then f(C) is closed
in f(X) by Proposition B.2.4, and the result follows. �

B.3. Cones and convex bodies.

B.3.1. Cones. The cone construction has a variety of uses in topology,
from geometry to homotopy theory. Cones work best in the context of
compactness.

Definition B.3.1. The cone CX on a space X is the quotient space

CX = X × I/X × 1,

where I = [0, 1]. This can be described as the identification space X × I/∼,
where (x, 1) ∼ (y, 1) for x, y ∈ X. We write π : X×I → CX for the quotient
map. It is customary to write [x, t] for π((x, t)).

The basic idea of a cone is that we stretch X out and pinch it to a point.
The following illustrates the utility of this idea in geometry.
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Proposition B.3.2. Write Dn for the unit disk in Rn and write Sn−1 for
the unit sphere. Then there is a homeomorphism

f : CSn−1 → Dn

[x, t] 7→ (1− t)x.
Proof. f is continuous because the composite f ◦ π : Sn−1 × I → Dn is
continuous. And f is bijective because each element z ∈ Dn r {0} may be
written uniquely in the form z = sx with s ∈ (0, 1] and x ∈ Sn−1: s = ‖z‖
and x = z

‖z‖ . So f ◦π is a bijection from Sn−1× [0, 1) to Dnr {0} and maps

Sn−1 × 1 onto 0.
Since Sn−1 × I is compact, so is its quotient space CSn−1. So f is a

continuous bijection from a compact space onto the Hausdorff space Dn,
and hence is a homeomorphism by Corollary B.2.5. �

Of course, the geometry of Dn as a compact, convex subset of Rn is lost
when we view it as a cone, but Proposition B.3.2 gives us a way to compare it
topologically to other geometric objects. Topology is weaker than geometry,
but can be easier to measure and understand.

B.3.2. Convex bodies.

Definition B.3.3. A convex body in Rn is a compact, convex subset C in
Rn of dimension n, i.e., Aff(C) = Rn.

Examples B.3.4. The standard regular polygon Pn, n ≥ 3, is a convex
body in R2. The Platonic solids are convex bodies in R3. The unit disk Dn

is a convex body in Rn.

Remark B.3.5. Let C be a convex body in Rn. By Corollary 2.9.27, the
interior Int(C) is nonempty, and by Lemma 2.9.16, x ∈ Int(C) if and only
if the open ball Bǫ(x) ⊂ C for some ǫ > 0.

This, of course, shows that Int(C) is an open subspace of Rn, so the
boundary

∂C = C r Int(C)

is closed in C, and hence is compact.20

What we are really studying here is compact, convex subspaces of Rn. The
ones that are also n-dimensional have a name, and have special prominence
for a number of reasons. But the following nonstandard definition may
provide a useful perspective.

Definition B.3.6. Let H be an affine subspace of Rn. A convex body in
H is a compact, convex subset C ⊂ H whose affine hull is H.

In particular, every compact, convex subspace of Rn is a convex body in
its affine hull. Since polytopes are compact, we obtain the following.

20The basic topology of Rn guarantees that Int(C) cannot be closed in Rn and hence
∂C is nonempty (as C is closed in Rn). We shall give a simpler argument that ∂C 6= ∅.
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Lemma B.3.7. Every polytope is a convex body in its affine hull.

Corollary 2.9.27 and Lemma 2.9.16 again give the following.

Lemma B.3.8. Let C be a convex body in the affine subspace H ⊂ Rn.
Then

(B.3.1) Int(C) = {x ∈ C : Bǫ(x,H) ⊂ C for some ǫ > 0}
is an open subset of H, and

∂C = C r Int(C)

is compact.

A very useful technique in convex geometry is intersecting a convex subset
with an affine subspace. Faces of polytopes are obtained in this way. So are
hyperplane sections. Intersection with lines is important in what follows.

Lemma B.3.9. Let C be a compact, convex subset of Rn and let H be an
affine subspace. Then C ∩H is a compact, convex subset.

Proof. Intersections of convex subsets are convex, so it suffices to show
C ∩ H is a compact. By Lemma A.1.19, affine subspaces are closed. Now
apply Corollary B.1.11. �

We shall make use of the following:

Lemma B.3.10. Let C be a convex subset of Rn. Let x ∈ Int(C) and y ∈ C.
Then every element in the half-open line segment [x, y) lies in Int(C).

Proof. Let H = Aff(C). Then a point z lies in Int(C) if and only if
Bǫ(z,H) ⊂ C for some ǫ > 0. Here, if V is the linear base of H,

Bǫ(z,H) = τz(Bǫ(0, V )) = {z + v : v ∈ Bǫ(0, V )}.
Let γt : H → H be given by γt(w) = (1 − t)w + ty. Then z lies in [x, y) if
and only if z = γt(x) for some t ∈ [0, 1). But

γt(x+ v) = (1− t)x+ ty + (1− t)v = z + (1− t)v,
so γt(Bǫ(x,H)) = B(1−t)ǫ(z,H). Since C is convex, B(1−t)ǫ(z,H) ⊂ C, and
hence z ∈ Int(C). �

We can now show the following.

Corollary B.3.11. Let C be a compact, convex subset of Rn and let x ∈
Int(C). Let ℓ be a line in Rn containing x. Then:

(1) If ℓ is not contained in the affine hull Aff(C), then ℓ ∩ C = {x}.
(2) If ℓ is contained in Aff(C), then ℓ ∩ C is a line segment [y, z] with

(y, z) ⊂ Int(C) and y, z ∈ ∂C.
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Proof. (1) If ℓ∩C contains a point y 6= x, then ℓ is the unique line containing
both x and y. Since both x and y are in Aff(C), so is this line.

(2) Let x 6= w ∈ ℓ and consider the affine map γ : R → ℓ given by
γ(t) = (1 − t)x + tw. Since x ∈ Int(C) Bǫ(x,H) ⊂ C for some ǫ > 0.
Since affine maps are continuous, Bδ(0) ⊂ γ−1(Bǫ(x)) for some δ > 0. So
γ(Bδ(0)) ⊂ ℓ ∩ C. By Lemma B.3.9, ℓ ∩ C is compact and convex. Since it
consists of more than one point, it must be a line segment [y, z] for y 6= z
by Corollary B.2.3. Moreover, γ(Bδ(0)) ⊂ [y, z], so x ∈ (y, z). By Lem-
ma B.3.10, all of (y, z) is contained in Int(C).

But y cannot lie in Int(C): if it did there would be an open interval
about γ−1(y) mapping into C. But γ : R → ℓ is an affine isomorphism, so
γ−1(C) = γ−1([x, y]) is a closed interval. So y ∈ ∂C, as is z by the same
argument. �

We can now generalize Proposition B.3.2 to arbitrary compact, convex
subsets of Rn.

Proposition B.3.12. Let C be a compact, convex subset of Rn and let
x ∈ Int(C). Then there is a homeomorphism

h : C(∂C)
∼=−→ C(B.3.2)

[y, t] 7→ (1− t)y + tx,

from the cone on ∂C to C.

Proof. Let x 6= z ∈ C. By Corollary B.3.11, the ray −→xz meets ∂C in exactly
one point, say y. Again by Corollary B.3.11, we must have that z ∈ [x, y].
But [x, y] is precisely the image of the restriction of f to {[y, t] : t ∈ I}, on
which f is one-to-one. So f is a bijection. Since C(∂C) is compact and C
is Hausdorff, f is a homeomorphism by Corollary B.2.5. �

But now we can use the topology of cones to show that any two compact,
convex subsets of Rn of the same dimension are homeomorphic. We first
treat the case of convex bodies.

Theorem B.3.13. Let C be a convex body in Rn. Then ∂C is homeomor-
phic to Sn−1, and hence C is homeomorphic to Dn.

Proof. After applying a translation, if necessary, we may assume the origin
is an interior point of C. Now consider the lines through the origin. By
Corollary B.3.11, each line through the origin intersects ∂C in exactly two
points, one on each side of the origin. Thus, the function

f : ∂C → Sn−1

x 7→ x

‖x‖
is bijective. Since both ∂C and Sn−1 are compact Hausdorff spaces, f is a
homeomorphism.
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Since homeomorphic spaces have homeomorphic cones, C is homeomor-
phic to Dn. (A compactness argument could be used here, as well.) �

This argument generalizes easily:

Theorem B.3.14. Let C be a compact, convex subset of Rn with dimC = k.
Then ∂C is homeomorphic to Sk−1 and hence C is homeomorphic to Dk.

Proof. Let H = Aff(C) and let V be its linear base. Let y ∈ Int(C).
Translating by −y, we may assume H = V and 0 ∈ Int(C). Then as in the
proof of Theorem B.3.13, the map x 7→ x

‖x‖ is a homeomorphism from ∂C

to the unit sphere of V . But an orthonormal basis of V provides a linear
isometry from Rk to V , inducing an isometric homeomorphism from Sk−1

to the unit sphere of V . �

This is a nice, abstract setting in which to have worked, but the result is
actually striking when applied to polytopes.

Corollary B.3.15. Let P be a polytope in Rn with dimP = k. Then ∂P is
homeomorphic to Sk−1, and P is homeomorphic to Dk.

In particular, by Corollary 8.3.8, ∂P is a manifold, which is rather strik-
ing, given the definitions.
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