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Introduction

This course is about building computational processes. We need computational processes
for computing functions, and for performing computational tasks. The means for performing
computational processes are programs. The power and weakness of a computational
process, realized within a program depends on:

1. modeling :

− How good is the description/understanding of the computational process;

− How it is split and combined from simpler processes;

− How clear are the structures used;

− How natural is the organization of the process;

− and more.

2. language : How powerful is the language used to write the program:

− Does it support the needed structures;

− Does it enable high level thinking, i.e., abstraction , ignoring irrelevant details;

− Does it enable modular construction;

− and more.

This course deals with both aspects, with a greater emphasis on programming languages
and their properties. The course emphasizes the value of modularity and abstraction in
modeling, and insists on writing contracts for programs.

What is this course about?
It is about the building, implementation and usage of programming languages in a way that
enables construction of manageable, useful and reusable products. The secret word for all
this is ABSTRACTION!

The course introduces the following subjects , in various contexts:

1. Elements of programming languages:

1



Introduction Principles of Programming Languages

(a) Language building blocks: Atomic elements; composition means; abstraction
means.

(b) Language syntax: Concrete syntax, abstract syntax.

2. Meaning of a programming language:

(a) Operational semantics: Applicative (eager), normal (lazy); lexical scoping,
dynamic scoping.

(b) Types: Type inference, type checking; dynamic typing, static typing techniques;
polymorphic types; type specification language.

3. Using programming languages for problem solving:

(a) Procedure abstraction: As a parameter/argument, returned value, data struc-
ture component.

(b) Abstract data types (ADT): Abstraction – separation between application
to implementation; invariants, operation contracts, ADT embedding, Design by
Contract; hierarchical data types; lazy lists.

4. Meta-programming tools Interpreter, compiler; static (compile) time evaluation,
run-time evaluation.

5. Programming styles :

(a) Iteration vs. recursion.

(b) Continuation Passing Style.

(c) Lazy lists.

6. Software considerations and conventions: Contracts, tests, asymptotic complex-
ity, compile time, runtime.

7. Imperative programming: State, mutation and change in programming.

The following programming languages techniques are used:

1. Substitution operation: Used in the operational semantics algorithms and in type
inference algorithms.

2. Renaming operation: Used in the operational semantics algorithms and in type
inference algorithms.

3. Pattern matching, unification operations: Used in the operational semantics
algorithms and in type inference algorithms.

2
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4. Lazy/eager approaches: Used in various contexts – semantics, ADT implementa-
tion, partial evaluation.

5. Delayed evaluation.

6. Partial evaluation: Currying.

7. Lexical scoping.

Programming paradigms:

1. Functional programming (Scheme, Lisp, ML): Its origins are in the lambda
calculus.

2. Logic programming (Prolog): Its origins are in mathematical logic.

3. Imperative programming (ALGOL-60, Pascal, C): Its origins are in the Von-
Neumann computer architecture.

For each computational paradigm we define its syntax and operational semantics and imple-
ment a meta tool for its evaluation. We use it to solve typical problems,and study essential
properties.

Most subjects and techniques are taught using the scheme language: A small and
powerful language, designed for educational purposes.

− small – It has a very simple syntax, with few details. Can be taught in half an hour.

− powerful – It combines, in an elegant way, the ideas of functional and imperative
programming. It can be easily used to demonstrate all programming approaches.

3



Chapter 1

The Elements of Programming

Functional Programming is a paradigm of programming that is most similar to evalua-
tion of expressions in mathematics. In functional programming a program is viewed as an
expression, which is evaluated by successive applications of functions to their arguments, and
substitution of the result for the functional expression. Its origin is in the lambda calculus
of Church.

The most characteristic feature of functional programming is the lack of state during a
computation. That is, a computation is not a sequence of states, created by triggers that
modify the states. Rather, a computation is a sequence of expressions, that result from
the successive evaluation of sub-expressions. Computation in functional programming has
no side-effects, because there are no variables to be assigned. That is, the only result of a
functional computation is the computed value, and there are no additional changes that can
take place during computation. Variables in functional programming denote values, rather
than locations, as in other kinds of programming (imperative programming). Functional
programming does not include a notion of variable assignment .

We concentrate on functional programming because it is a small and powerful paradigm
for introducing fundamental subjects and techniques in teaching programming languages.

Partial sources: SICP [1] 1.1, 1.2, 1.3, 2.2.2 (online version http://deptinfo.unice.fr/

~roy/sicp.pdf);
HTDP [2] 2.5. (online version http://htdp.org/2003-09-26/Book/)

1.1 The Elements of Programming

A language for expressing computational processes needs:

1. Primitive expressions : Expressions whose evaluation process and hence their
values are built into the language tools.

4
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2. Combination means: Create compound expressions from simpler ones.

3. Abstraction : Manipulate compound objects as stand alone units.

4. Reference : Reference abstracted units by their names.

Scheme possesses these four features in an extremely clean and elegant way:

− Common syntax for all composite objects: Procedure definitions, procedure
applications, collection objects: lists. There is a SINGLE simple syntax for all objects
that can be combined, abstracted, named , and referenced .

− Common semantic status for all composite objects, including procedures.

This elegance is based on a uniform approach to data and procedures: All composite
expressions can be viewed both as data and as procedures. It all depends on how objects
are used. Procedures can be data to be combined, abstracted into other procedures, named,
and applied .

1.1.1 Expressions (SICP 1.1.1 )

Scheme programs are expressions . There are atomic expressions and composite expres-
sions. Expressions are evaluated by the Scheme interpreter. The evaluation process returns
a Scheme value , which is an element in a Scheme type . The Scheme interpreter operates in
a read-eval-print loop: It reads an expression, evaluates it, and prints the resulting value.

Atomic expressions:

Some atomic expressions are primitive : Their evaluation process and the returned values
are already built into Scheme semantics, and all Scheme tools can evaluate them.

Numbers are primitive atomic expressions in Scheme .

> 467

467

;;; This is a primitive expression.

Booleans are primitive atomic expressions in Scheme .

> #t

#t

Primitive procedures are primitive atomic expressions in Scheme .

> +

#<procedure:+>

5
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Composite expressions:

> (+ 45 78)

123

> (- 56 9)

47

> (* 6 50)

300

> (/ 25 5)

5

Sole punctuation marks: “(“, “)”, “ “.
Composite expressions are called forms or combinations. When evaluated, the left-

most expression is taken as the operator , the rest are the operands. The value of the
combination is obtained by applying the procedure specified by the operator to the argu-
ments, which are the values of the operands. Scheme composite expressions are written
in Prefix notation.
More examples of combinations:

(5 9), (*5 9), (5 * 9), (* (5 9)).

Which forms can be evaluated?

Nesting forms:

> (/ 25. 6)

4.16666666666667

> (+ 1.5 3)

4.5

> (+ 2 10 75.7)

87.7

> (+ (* 3 15) (- 9 2))

52

> (+ (* 3 (+ (* 2 4) (+ 13 5))) (+ (- 10 5) 3))

86

Pretty printing:

> (+ (* 3

(+ (* 2 4)

(+ 13 5)))

(+ (- 10 5)

3))

86
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1.1.2 Abstraction and Reference: Variables and Values (SICP 1.1.2 )

Naming computational objects is an essential feature of any programming language. When-
ever we use naming we have a Variable that identifies a value . Values turn into named
objects. define is the Scheme’s special operator for naming. It declares a variable, binds
it to a value, and adds the binding to the global environment .

> (define size 6)

>

The variable size denotes the value 6.

The value of a define combination is void – the single value in type Void.
A form with a special operator is called a special form .

> size

6

> (* 2 size)

12

> (define a 3)

> (+ a (* size 1.5))

12

> (define result (+ a (* size 1.5)) )

> result

12

Note: size is an atomic expression but is not a primitive . define provides the sim-
plest means of abstraction : It allows for using names for the results of complex operations.

The global environment: The global environment is a function from a finite set of
variables to values, that keeps track of the name-value bindings. The bindings defined by
define are added to the global environment function. A variable-value pair is called a
binding . The global environment mapping can be viewed as (and implemented by) a data
structure that stores bindings.
Characters in variable names: Any character, except space, parentheses, “,”, “ ‘ “, and
no “ ’ ” in the beginning. Numbers cannot function as variables.

Note: Most Scheme applications allow redefinition of primitives. But then we get
“disastrous” results:

> (define + (* 2 3))

> +

6

> (+ 2 3)

7
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ERROR: Wrong type to apply: 6

; in expression: (... + 2 3)

; in top level environment.

> (* 2 +)

12

and even:

> (define define 5)

> define

5

> (+ 1 define)

6

> (define a 3)

. . reference to undefined identifier: a

>

Note: Redefinition of primitives is a bad practice, and is forbidden by most language appli-
cations. Evaluation rule for define special forms (define ⟨variable⟩ ⟨expression⟩):

1. Evaluate the 2nd operand, yielding the value value .

2. Add the binding: ⟨⟨variable⟩ value⟩ to the global environment mapping.

1.1.3 Evaluation of Scheme Forms (SICP 1.1.3)

Evaluation of atomic expressions:

1. Special operator symbols are not evaluated.

2. Variables evaluate the values they are mapped to by the global environment map-
ping (via define forms).

3. Primitive expressions evaluate to their denoted values:

− Numbers evaluate to their number values;

− The Booleans atomic expressions #t, #f evaluate to the boolean values #t,
#f , respectively;

− Primitive procedures evaluate to the machine instruction sequences that per-
form the denoted operation. We say that "primitives evaluate to themselves".

Note the status of the global environment mapping in determining the meaning of atomic
symbols. The global environment is consulted first. Apart from primitive and special sym-
bols, all evaluations are global environment dependent.

8
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Evaluation of special forms – forms whose first expression is a special operator:
Special forms are evaluated by the special evaluation rules of their special operators. For
example: in define forms the second expression is not evaluated.

Evaluation of non-special forms: (expr0 . . . exprn):

1. Evaluate all subexpressions expri, i ≥ 0 in the form. The value of expr0 must be of
type Procedure, otherwise the evaluation fails (run-time error).

2. Apply the procedure which is the value of expr0, to the values of the other subex-
pressions.

The evaluation rule is recursive :

> (* (+ 4 (+ 5 7))

(* 6 1 9))

864

Note that (5* 9), (5 * 9) and (not a b) are syntactically correct Scheme forms, but
their evaluation fails.

We can visualize the evaluation process by drawing an evaluation tree , in which each
form is assigned an internal node, whose direct descendents are the operator and operands
of the form. The evaluation process is carried out from the leaves to the root, where every
form node is replaced by the value of applying its operator child to its operands children:

------------------864-------------

| |

* ------16---- ----54-------

| | | | | | |

+ 4 ---12---- * 6 1 9

| | |

+ 5 7

1.1.4 User Defined Procedures (compound procedures)

Procedure construction is an abstraction mechanism that turns a compound operation into
a single unit.

Procedure definition: A compound (user defined) procedure is a value, constructed
by the special operator “lambda” . For example, a procedure with a parameter x and
body (* x x) is created by evaluation of the following lambda form :

> (lambda (x) (* x x))

#<procedure>

9
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The procedure created by the evaluation of this lambda form is called closure , and denoted
⟨Closure (x) (* x x)⟩. Its parameters is (x) and its body is (* x x). The body is not
evaluated when the closure is created. “lambda” is called the value constructor of the
Procedure type. The evaluation of the syntactic form (lambda (x) (* x x)) creates the
semantic value ⟨Closure (x) (* x x)⟩, i.e., the closure. A procedure is a value like any
other value. The origin of the name lambda is in the lambda calculus.

Procedure application: Applications of the above procedure:

> ( (lambda (x) (* x x))

5 )

25

> ( (lambda (x) (* x x))

(+ 2 5) )

49

In an application of a compound procedure, occurrences of the parameters in the body
are replaced by the arguments of the application. The body expressions are evaluated in
sequence. The value of the procedure application is the value of the last expression in the
body.
Nested applications:

> ( + ( (lambda (x) (* x x))

3)

( (lambda (x) (* x x))

4) )

25

>

Multiple expression body and side-effects: The body of a lambda expression can
include several Scheme expressions:

> ( (lambda (x) (+ x 5) 15 (* x x))

3)

9

But – no point in including several expressions in the body, since the value of the procedure
application is that of the last one. Having several expressions in a body is useful only
when their evaluations have side effects , i.e., affect some external state of the computation
environment. For example, a sequence of scheme expressions in a procedure body can be
used for debugging purposes:

10
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> ( (lambda (x) (display x)

(* x x))

3)

39

> ( (lambda (x) (display x)

(newline)

(* x x))

3)

3

9

>

display is a primitive procedure of Scheme. It evaluates its argument and displays it:

> display

#<procedure:display>

> newline

#<procedure:newline>

>

display is a side effect primitive procedure! It displays the value of its argument, but its
returned value (like the special operator define), is void, the single value in Void, on which
no procedure is defined.
Style Rule: display and newline forms should be used only as internal forms in a pro-
cedure body. A deviation from this style rule is considered an bad style . The procedure
below is a bad style procedure – why? What is the type of the returned value?

(lambda (x) (* x x)

(display x)

(newline))

Demonstrate the difference from:

(lambda (x) (display x)

(newline)

(* x x))

> ( (lambda (x) (* x x)

(display x)

(newline))

3)

3

> (+ ( (lambda (x) (* x x)

11
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(display x)

(newline))

3)

4)

3

. . +: expects type <number> as 1st argument, given: #<void>; other

arguments were: 4

>

Summary:

1. The Procedure type consists of closures: user defined procedures.

2. A closure is created by application of lambda – the value constructor of the Proce-
dure type: It constructs values of the Procedure type.
The syntax of a lambda form: (lambda ⟨parameters⟩ ⟨body⟩).
⟨parameters⟩ syntax is: ( ⟨variable⟩ ... ⟨variable⟩ ), 0 or more.
⟨body⟩ syntax is ⟨Scheme-expression⟩ ... ⟨Scheme-expression⟩, 1 or more.

3. A Procedure value is composite : It has 2 parts: parameters and body . It is sym-
bolically denoted: ⟨Closure ⟨parameters⟩ ⟨body⟩⟩.

4. When a procedure is created it is not necessarily applied! Its body is not evaluated.

Naming User Procedures (compound procedures): A definition of a compound pro-
cedure associates a name with a procedure value. Naming a compound procedure is an
abstraction means that allows for multiple applications of a procedure, defined only once.
This is a major abstraction means: The procedure name stands for the procedure operation.
An explicit application using anonymous procedures:

> ((lambda (x) (* x x)) 3)

9

> ( + ( (lambda (x) (* x x))

3)

( (lambda (x) (* x x))

4) )

25

Can be replaced by:

> (define square (lambda (x) (* x x)))

> (square 3)

9

12
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> square

#<procedure:square>

> (define sum-of-squares

(lambda (x y)

(+ (square x) (square y ))))

> (sum-of-squares 3 4)

25

Recall that the evaluation of the define form is dictated by the define evaluation rule:

1. Evaluate the 2nd parameter: The lambda form – returns a procedure value: ⟨Closure (x) (* x x)⟩

2. Add the following binding to the global environment mapping:
square –– #<procedure>

Note that a procedure is treated as just any value, that can be given a name!! Also,
distinguish between procedure definition to procedure call/application .
Syntactic sugar for named procedure-definition: A special, more convenient, syntax
for procedure definition:

> (define (square x) (* x x))

This is just a syntactic sugar : A special syntax, introduced for the sake of convenience. It
is replaced by the real syntax during pre-processing. It is not evaluated by the interpreter.
The syntax of the syntactic sugar syntax of named procedure-definition:

(define (<name> <parameters>) <body>)

It is transformed into:

(define <name> (lambda (<parameters>) <body>))

> (square 4)

16

> (square (+ 2 5))

49

> (square (square 4))

256

> (define (sum-of-squares x y)

(+ (square x) (square y )))

> (sum-of-squares 3 4)

25

13
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> (define (f a)

(sum-of-squares (+ a 1) (* a 2)) )

> (f 3)

52

Intuitively explain these evaluations! Note: We did not provide, yet, a formal semantics!

Summary:

1. In a define special form for procedure definition: First: the 2nd argument is evaluated
(following the define evaluation rule), yielding a new procedure.
Second: The binding ⟨variable – ⟨Closure <parameters> <body>⟩⟩ is added to the
global environment.

2. The define special operator has a syntactic sugar that hides the call to lambda.

3. Procedures that are not named are called anonymous.

1.1.5 Conditional Expressions

So far, the evaluation of a procedure application yields the same computation path for all in-
puts. Addition of computation branching is enabled by evaluating condition expressions .
They are formed by two special operators: cond and if.

(define abs

(lambda (x)

(cond ((> x 0) x)

((= x 0) 0)

(else (- x)))

))

> (abs -6)

6

> (abs (* -1 3))

3

The syntax of a cond form:

(cond (<p1> <e11> ... <e1k1>)

(<p2> <e21> ... <e2k2>)

...

(else <en1> ... <enkn>) )

14
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The arguments of cond are clauses (<p> <e1> ...<en>), where <p> is a predication
(boolean valued expression) and the <ei>s are any Scheme expressions. A predication is an
expression whose value is false or true. The operator of a predication is called a predicate .
The false value is represented by the symbol #f, and the true value is represented by the
symbol #t.

> #f

#f

> #t

#t

> (> 3 0)

#t

> (< 3 0)

#f

>

Evaluation of a conditional expressions:

(cond (<p1> <e11> ... <e1k1>)

(<p2> <e21> ... <e2k2>)

...

(else <en1> ... <enkn>) )

<p1> is evaluated first. If the value is false then <p2> is evaluated. If its value is false then
<p3> is evaluated, and so on until a predication <pi> with a non-false value is reached.
In that case, the <ei> elements of that clause are evaluated, and the value of the last
element <eiki> is the value of the cond form. The last else clause is an escape clause: If
no predication evaluates to true (anything not false), the expressions in the else clause are
evaluated, and the value of the cond form is the value of the last element in the else clause.
Definition: A predicate is a procedure (primitive or not), that returns the values true or
false.

>(cond (#f #t)

( else #f) )

#f

Note: Scheme considers every value different from #f as true.

Another syntax for conditionals: if forms

(define abs

(lambda (x)

15
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(if (< x 0)

(- x)

x)))

if is a restricted form of cond. The syntax of if expressions: (if <predication> <consequent>

<alternative>).
The if evaluation rule: If <predication> is true the <consequent> is evaluated and
returned as the value of the if special form. Otherwise, <alternative> is evaluated and
its value returned as the value of the if form. Conditional expressions can be used like any
other expression:

> (define a 3)

> (define b 4)

> (+ 2 (if (> a b) a b) )

6

> (* (cond ( (> a b) a)

( (< a b) b)

(else -1 ) )

(+ a b) )

28

> ( (if (> a b) + -) a b)

-1

Example 1.1 (Newton’s method for computing square roots). (SICP 1.1.7)

In order to compute square-root we need a method for computing the function square-root.
One such method is Newton’s method. The method consists of successive application of
steps, each of which improves a former approximation of the square root. The improvement
is based on the proved property that if y is a non-zero guess for a square root of x, then
(y + (x/y)) / 2 is a better approximation. The computation starts with an arbitrary
non-zero guess (like 1). For example:

x=2, initial-guess=1

1st step: guess=1 improved-guess= (1+ (2/1))/2 = 1.5

2nd step: guess=1.5 improved-guess= (1.5 + (2/1.5) )/2 = 1.4167

A close look into Newton’s method shows that it consists of a repetitive step as follows:

1. Is the current guess close enough to the square-root? (good-enough?)

2. If not – compute a new guess. (improve).

Call the step sqrt-iter. Then the method consists of repeated applications of sqrt-iter.
The following procedures implement Newton’s method:

16
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(define sqrt

(lambda (x) (sqrt-iter 1 x)))

(define sqrt-iter

(lambda (guess x)

(if (good-enough? guess x)

guess

(sqrt-iter (improve guess x)

x))))

(define improve

(lambda (guess x)

(average guess (/ x guess))))

(define average

(lambda (x y)

(/ (+ x y) 2)))

(define good-enough?

(lambda (guess x)

(< (abs (- (square guess) x)) .001)))

> (sqrt 6.)

ERROR: unbound variable: square

; in expression: (... square guess)

; in scope:

; (guess x)

> (define square (lambda (x) (* x x)))

> square

#<procedure:square>

> (sqrt 6.)

2.44949437160697

> (sqrt (+ 100 44.))

12.0000000124087

> (sqrt (+ (sqrt 2) (sqrt 9.)))

2.10102555114187

> (square (sqrt 4.))

4.00000037168919

17
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Summary: Informal Syntax and Evaluation Semantics:

Syntax: There are 2 kinds of Scheme language expressions:

1. Atomic:

(a) Primitives:

− Number symbols.

− Boolean symbols: #t, #f.

− Primitive procedure symbols.

(b) Non-primitives:

− Variable symbols.

− Special operator symbols.

2. Composite:

− Special forms: ( <special operator> <exp> ... <exp> ).

− Forms: ( <exp> ... <exp> ).

Evaluation semantics:

1. Atomic expressions: Special operators are not evaluated; Variables evaluate to their
associated values given by the global environment mapping; primitives evaluate to
their defined values.

2. Special forms: Special evaluation rules, depending on the special operator.

3. Non-special forms:

(a) Evaluate all subexpressions.

(b) Apply the procedure which is the value of the first subexpression to the values of
the other subexpressions. For user defined procedures, the application involves
substitution of the argument values for the procedure parameters, in the pro-
cedure body expressions. The returned value is the value of the last expression
in the body.

1.2 Procedure Design Using Contracts

Following Felleison, Findler, Flatt and Krishnamurthi: How to Design Programs
http://www.htdp.org/2003-09-26/Book/

Assume that we need to compute the area of a ring, given its outer and inner radius.
We start with a contract , which provides information about the desired procedure:
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Signature: area-of-ring(outer,inner)

Purpose: To compute the area of a ring whose radius is

’outer’ and whose hole has a radius of ’inner’

Type: [Number*Number -> Number]

Example: (area-of-ring 5 3) should produce 50.24

Pre-conditions: outer >= 0, inner >= 0, outer >= inner

Post-condition: result = PI * outer^2 - PI * inner^2

Tests: (area-of-ring 5 3) ==> 50.24

Signature specifies the name of the procedure, and its parameters.
Purpose is a short textual description.
Type specifies the types of the input parameters and of the returned value. The types
of number-valued and boolean-valued expressions are Number and Boolean, respectively.
The type of a procedure is denoted: [<type of arg1>*...*<type of argn> –> <return

type>].
Example gives examples of procedure applications.
Pre-conditions specify conditions that the input parameters are obliged to satisfy.
Post-conditions specify conditions that the returned value is responsible to satisfy.
Invariants describe inter-relationships that must hold between the input parameters.
Tests provide test cases.

Once the contract is written and validated, it is time to provide an implementation that
satisfies the contract.

Signature: area-of-ring(outer,inner)

Purpose: To compute the area of a ring whose radius is

’outer’ and whose hole has a radius of ’inner’

Type: [Number*Number -> Number]

Example: (area-of-ring 5 3) should produce 50.24

Pre-conditions: outer >= 0, inner >= 0, outer >= inner

Post-condition: result = PI * outer^2 - PI * inner^2

Tests: (area-of-ring 5 3) ==> 50.24

Definition: [refines the contract]

(define area-of-ring

(lambda (outer inner)

(- (area-of-disk outer)

(area-of-disk inner))))

In this implementation area-of-ring is a caller of area-of-disk.
A procedure contract that includes:

1. Signature

2. Purpose
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3. Type

4. Example

5. Pre-conditions

6. Post-conditions

7. Invariantss

8. Tests

Signature, purpose and type are mandatory to all procedures. Examples are desirable.
Tests are mandatory for complex procedures. Pre/post-conditions and invariants are rel-
evant only if non-trivial (not vacuous).

The specification of Types, Pre-conditions and Post-conditions requires special
specification languages. The keyword result belongs to the specification language for
post-conditions.

1.2.1 The Design by Contract (DbC) approach:

DbC is an approach for designing computer software. It prescribes that software designers
should define precise verifiable interface specifications for software components based upon
the theory of abstract data types and the conceptual metaphor of business contracts. The
approach was introduced by Bertrand Meyer in connection with his design of the Eiffel object
oriented programming language and is described in his book "Object-Oriented Software
Construction" (1988, 1997).

The central idea of DbC is a metaphor on how elements of a software system collaborate
with each other, on the basis of mutual obligations and benefits. The metaphor comes
from business life, where a client and a supplier agree on a contract . The contract defines
obligations and benefits. If a routine provides a certain functionality, it may:

− Impose a certain obligation to be guaranteed on entry by any client module that calls
it: The routine’s precondition – an obligation for the client, and a benefit for the
supplier.

− Guarantee a certain property on exit: The routine’s postcondition is an obligation
for the supplier, and a benefit for the client.

− Maintain a certain property, assumed on entry and guaranteed on exit: An invari-
ant .

The contract is the formalization of these obligations and benefits.
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--------------------------------------------------------------------

| Client Supplier

------------|-------------------------------------------------------

Obligation: | Guarantee precondition Guarantee postcondition

Benefit: | Guaranteed postcondition Guaranteed precondition

--------------------------------------------------------------------

DbC is an approach that emphasizes the value of developing program specification to-
gether with programming activity. The result is more reliable, testable, documented soft-
ware.

DbC is crucial for software correctness.

Many languages have now tools for writing and enforcing contracts: Java, C#, C++, C,
Python, Lisp, Scheme:
http://www.ccs.neu.edu/scheme/pubs/tr01-372-contract-challenge.pdf

http://www.ccs.neu.edu/scheme/pubs/tr00-366.pdf

The contract language is a language for specifying constraints. Usually, it is based in
Logic. There is no standard, overall accepted contract language: Different languages have
different contract languages. In Eiffel, the contracts are an integral part of the language. In
most other languages, contract are run by additional tools.

Policy of the PPL course:

1. All assignment papers must be submitted with contracts for procedures.

2. Contract mandatory parts: The Signature, Purpose, Type, Tests are mandatory
for every procedure!

3. The Examples part is always recommended as a good documentation.

4. Pre-conditions should be written when the type does not prevent input for which
the procedure does not satisfy its contract. The pre-condition can be written in En-
glish. When a pre-condition exists it is recommended to provide a precondition-test
procedure that checks the pre-condition. This procedure is not part of the supplier
procedure (e.g., not part of area-of-ring) (why?), but should be called by a client
procedure, prior to calling the supplier procedure.

5. Post-conditions are recommended whenever possible. They clarify what the proce-
dure guarantee to supply. Post-conditions provide the basis for tests.

Continue the area-of-ring example: The area-of-ring is a client (a caller) of the
area-of-disk procedure. Therefore, it must consider its contract, to verify that it fulfills
the necessary pre-condition. Here is a contract for the area-of-disk procedure:

21



Chapter 1 Principles of Programming Languages

Signature: area-of-disk(radius)

Purpose: To compute the area of a disk whose radius is the

’radius’ parameter.

Type: [Number -> Number]

Example: (area-of-disk 2) should produce 12.56

Pre-conditions: radius >= 0

Post-condition: result = PI * radius^2

Tests: (area-of-disk 2) ==> 12.56

Definition: [refines the contract]

(define area-of-disk

(lambda (radius)

(* 3.14 (* radius radius))))

Area-of-ring must fulfill area-of-disk precondition when calling it. Indeed, this can
be proved as correct, since both parameters of area-of-disk are not negative. The post
condition of area-of-ring is correct because the post-condition of area-of-disk guaran-
tees that the results of the 2 calls are indeed, PI ∗outer2 and PI ∗inner2, and the definition
of area-of-ring subtracts the results of these calls.

We expect that whenever a client routine calls a supplier routine the client routine
will either explicitly call a pre-condition test procedure, or provide an argument
for the correctness of the call!

Defensive programming is a style of programming, where each procedure first tests
its pre-condition. This is not recommended, as it might interfere with the clarity of the
intended procedure code. Guaranteeing correctness of the pre-conditions is the responsibility
of the clients.

Determining the type of conditionals: The type of a conditional expression depends
on the type of the values of the clauses of the conditional. But what if different conditionals
evaluate to values that belong to different types. For example, the value of (if x 3 #f)

depends on the value of x: might be 3 and might be #f. So, what is the type of such
conditional expressions? Number? Boolean?

Example 1.2 (Bounded computation of Newton’s method for computing square roots).

Example 1.1 presents an implementation for Newton’s approximation method for com-
puting square roots. The contract and implementation are as follows:

Signature: sqrt(x)

Purpose: To compute the square root of x, using Newton’s approximations method

Type: [Number -> Number]

Example: (sqrt 16.) should produce 4.000000636692939
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Pre-conditions: x >= 0

(define sqrt

(lambda (x) (sqrt-iter 1 x)))

Signature: sqrt-iter(guess,x)

Purpose: To compute the square root of x, starting with ’guess’ as initial guess

Type: [Number*Number -> Number]

Example: (sqrt 1 16.) should produce 4.000000636692939

Pre-conditions: x >= 0, guess != 0

(define sqrt-iter

(lambda (guess x)

(if (good-enough? guess x)

guess

(sqrt-iter (improve guess x)

x))))

Assume that we have a request to compute the square root only if the computation does
not exceed a given number of iterations. Otherwise, the necessary action varies by the caller
request. Therefore, if the number of approximations exceeds the bound, we cannot just
return an error. One possibility is to return a value that marks this case, for example #f.
We need to precede each iteration by testing against the bound:

Signature: bounded-sqrt(x,bound)

Purpose: To compute the square root of x, using Newton’s approximations

method, if number of iterations does not exceed ’bound’

Type: [Number*Number -> ?]

Example: (sqrt 16. 7) should produce 4.000000636692939

(sqrt 16. 4) should produce #f

Pre-conditions: x >= 0, bound >= 0

(define bounded-sqrt

(lambda (x bound)

(bounded-sqrt-iter 1 x bound)))

Signature: bounded-sqrt-iter(guess,x,bound)

Purpose: To compute the square root of x, starting with ’guess’ as

initial guess, if number of iterations does not exceed ’bound’

Type: [Number*Number*Number -> ?]

Example: (sqrt 1 16. 7) should produce 4.000000636692939

(sqrt 1 16. 4) should produce #f

Pre-conditions: x >= 0, bound >= 0, guess != 0

(define bounded-sqrt-iter

(lambda (guess x bound)

(if (zero? bound)
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#f

(if (good-enough? guess x)

guess

(bounded-sqrt-iter (improve guess x) x (sub1 bound))))

))

> (bounded-sqrt 16. 7)

4.000000636692939

> (bounded-sqrt 16. 6)

4.000000636692939

> (bounded-sqrt 16. 5)

#f

What is the return type of bounded-sqrt,bounded-sqrt-iter?
The problem is in the conditional that has clauses that return values from different types:
Number and Boolean. In order to accommodate such conditionals we allow union types in
contract specifications. The resulting contracts:

Signature: bounded-sqrt(x,bound)

Purpose: To compute the square root of x, using Newton’s approximations

method, if number of iterations does not exceed ’bound’

Type: [Number*Number -> Number union Boolean]

Example: (sqrt 16. 7) should produce 4.000000636692939

(sqrt 16. 4) should produce #f

Pre-conditions: x >= 0, bound >= 0

Signature: bounded-sqrt-iter(guess,x,bound)

Purpose: To compute the square root of x, starting with ’guess’ as

initial guess, if number of iterations does not exceed ’bound’

Type: [Number*Number*Number -> Number union Boolean]

Example: (sqrt 1 16. 7) should produce 4.000000636692939

(sqrt 1 16. 4) should produce #f

Pre-conditions: x >= 0, bound >= 0, guess != 0

Union typed conditionals (and procedures) is a bad programming style: Union
types are problematic for type checking, let alone, for type inference. Therefore, they are a
major cause for runtime errors. We should strive to avoid using such conditionals.

Side comment on artificial “flag” values: The returned value #f in the last example
is a flag value, that signs a failure to compute the square root under the given bound.
The only role of this value is to signal this case. Using flags is not a good style. There are
various programming approaches that help in avoiding them. For example, an approach that
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abstracts the results of the clauses of a conditional as procedure parameter can help here.
Such an approach, named Continuation Passing Style (CPS ) is taught in Chapter 3 (an
example appears also at the end of Section 1.5.5 in this chapter). The idea is to replace flags
in “conditional-legs” by continuation procedures, that are given as additional parameters:

(define f

(lambda (x)

(if (<predicate> x)

#f

(<some-computation> x)) ))

==>

(define f

(lambda (x consequent-procedure alternative-procedure)

(if (<predicate> x)

(consequent-procedure x)

(alternative-procedure x)) ))

This way, a caller of f instead of receiving the flag value #f and determining the desired
action based on it, directly pass the consequent action and the alternative actions as argu-
ments, when calling f.

1.3 Hierarchical Data types: Pairs and Lists

We already saw that abstractions can be formed by compound procedures that model
processes and general methods of computation. This chapter introduces abstractions formed
by compound data . The ability to combine data entities into compound entities, that can
be further combined adds additional power of abstraction: The entities that participate in
the modeled process are no longer just atomic, unrelated entities, but can be organized into
some relevant structures. The modeled world is not just an unordered collection of elements,
but has an internal structure.

Hierarchical data types also complement the fourth feature of procedures as first class
citizens in functional languages: They can be included in data structures.

1.3.1 The Pair Type

Pairs are a basic compound data object in data modeling. A pair combines 2 data entities
into a single unit, that can be further manipulated by higher level conceptual procedures.

In Scheme, Pair is the basic type, for which the language provides primitives. The
value constructor for pairs in Scheme is the primitive procedure cons, and the primitive
procedures for selecting the first and second elements of a pair are car and cdr, respectively.
Its identifying predicate is pair?, and the equality predicate is equal?.
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> (define x (cons 1 2))

> (car x)

1

> (cdr x)

2

> x

(1 . 2)

This is an example of the dotted notation for pairs: This is the way Scheme prints out
values of the Pair type.
Syntax of pair creation: (cons <exp> <exp>)

Value (semantics) of pair creation: A dotted pair

> (define y (cons x 5))

> (car y)

(1 . 2)

> (cdr y)

5

> y

((1 . 2) . 5)

> (define z (cons x y))

> (car z)

(1 . 2)

> (cdr z)

((1 . 2) . 5)

> (car (car z))

1

> (car (cdr z))

(1 . 2)

> z

((1 . 2) (1 . 2) . 5)

This is the way Scheme denotes (prints out) Pair values whose cdr is a pair. It results from
the way Scheme denotes (prints out) List values – data objects that will be discussed later.

> (cdr (cdr z))

5

> (car (car y))

1

> (car (cdr y))

ERROR: car: Wrong type in arg1 2
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Mixed-type pairs:

> (define pair (cons 1 #t))

> (pair? pair)

#t

> (pair? (car pair))

#f

> (car (car pair))

car: expects argument of type <pair>; given 1

> (procedure? pair?)

#t

Pairs whose components are procedures:

> (define proc-pair (cons + -))

> proc-pair

’(#<procedure:+> . #<procedure:->)

> (car proc-pair)

#<procedure:+>

> ((cdr proc-pair) 3)

-3

Denotation of Pair values: The distinction between Pair typed Scheme expressions
(syntax), to their Pair values (semantics) must be made clear. (cons 1 2) is a Scheme
expression that evaluates into the Pair value (1 . 2). The Pair value cannot be evaluated
by the interpreter. Evaluation of (1 . 2) causes an error.

Example 1.3 (A procedure for constructing pairs of successive numbers).

Signature: successive-pair(n)

Purpose: Construct a pair of successive numbers: (n . n+1).

Type: [Number -> Pair(Number,Number)]

(define successive-pairself

(lambda(n) (cons n (+ n 1))))

> (successive-pair 3)

(3 . 4)

> (pairself (+ 3 4))

(7 . 8)

The type of pair-valued expressions is denoted Pair(<type of 1st>,<type of 2nd>).

1.3.2 Symbol values

Symbols, which are variable names, can be used as variable values. They form the Symbol

type. This is Scheme’s approach for supporting symbolic information. The values of the
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Symbol type are atomic names, i.e., (unbreakable) sequences of keyboard characters (to
distinguish from strings). Values of the Symbol type are introduced via the special operator
quote, that can be abbreviated by the macro character ’. quote is the value constructor
of the Symbol type; its parameter is any sequence of keyboard characters. The Symbol type
identifying predicate is symbol? and its equality predicate is eq?. It has no operations (a
degenerate type).

> (quote a)

’a

;the " ’ " in the returned value marks that this is a returned semantic

;value of the Symbol type, and not a syntactic variable name

> ’a

’a

> (define a ’a)

> a

’a

> (define b ’a)

> b

’a

> (eq? a b)

#t

> (symbol? a)

#t

> (define c 1)

> (symbol? c)

#f

> (number? c)

#t

> (= a b)

. =: expects type <number> as 2nd argument, given: a; other arguments

were: a

>

Notes:

1. The Symbol type differs from the String type: Symbol values are unbreakable names.
String values are breakable sequences of characters.

2. The preceding " ’ " letter is a syntactic sugar for the quote special operator. That
is, every ’a is immediately pre-processed into (quote a). Therefore, the expression
’a is not atomic! The following example is contributed by Mayer Goldberg:

> (define ’a 5)
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> ’b

. . reference to undefined identifier: b

> quote

#<procedure:quote>

> ’0

5

> ’5

5

Explain!

3. quote is a special operator. Its parameter is any sequence of characters (apart of
few punctuation symbols). It has a special evaluation rule: It returns its argument
as is – no evaluation. This differs from the evaluation rule for primitive procedures
(like symbol? and eq?) and the evaluation rule for compound procedures, which first
evaluate their operands, and then apply.
Question: What would have been the result if the operand of quote was evaluated
as for primitive procedures?

Pair components can be used for tagging information:

A tagging procedure:

Signature: tag(tg,n)

Purpose: Construct a pair of tg and n.

Type: [Symbol*(Number union Symbol) -> Pair(Symbol,(Number union Symbol))]

(define tag

(lambda (tg n)

(cons ’tg n)))

(define get-tag

(lambda (tagged-pair)

(car tagged-pair)))

(define get-content

(lambda (tagged-pair)

(cdr tagged-pair)))

> (define tagged-name (cons ’roman-name ’Augustus))

> (get-tag tagged-name)

’roman-name

> (get-content tagged-name)

’Augustus
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1.3.3 The List Type

Lists represent finite sequences , i.e., ordered collections of data elements (compound or
not). The sequence ⟨v1, v2, . . . , vn⟩ is represented by the list (v1v2 . . . vn). The empty se-
quence is represented by the empty list . List is recursive type (inductively defined):

1. The empty list ().

2. For a list (v1v2 . . . vn), and a value v0, (v0v1v2 . . . vn) is a list, whose head is v0, and
tail is (v1v2 . . . vn).

The List type has two value constructors: cons and list.

1. The empty list is constructed by the value constructor list: The value of the expres-
sion (list) is (). The empty list () is also the value of two built in variables: null

and empty.

2. A non-empty list can be constructed either by cons or by list.

(a) (cons head tail): cons takes two parameters. head is an expression denoting
some value v0, and tail is an expression whose value is a list (v1v2 . . . vn). The
value of (cons head tail) is the list (v0v1v2 . . . vn).

(b) (list e1 e2 ... en): list takes indefinite number of parameters. If e1,

e2..., en (n ≥ 0) are expressions whose values are (v1, v2, . . . vn), respectively,
then the value of (list e1 e2 ... en) is the list (v1v2 . . . vn). For n = 0

(list) evaluates to the empty list.

List implementation: Scheme lists are implemented as nested pairs, starting from the
empty list value. The list created by (conse1(conse2(cons...(consen(list))...))) is imple-
mented as a nested pair (it’s the same value constructor, anyway), and the list created by
(list e1 e2 ... en) is translated into the former nested cons application.
Printing form: The printing form of lists is: (<a1> <a2> ... <an>). The printing
form describes the value (semantics) of List-typed expressions (syntax).

The selectors of the List type are car – for the 1st element, and cdr – for the tail of the
given list (which is a list). The predicates are list? for identifying List values, and null?

for distinguishing the empty list from all other lists. The equality predicate is equal?.

> (define one-through-four (cons 1 (cons 2 (cons 3 (cons 4 (list) )))))

> one-through-four

(1 2 3 4)

> (car one-through-four)

1

> (cdr one-through-four)

(2 3 4)
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> (car (cdr one-through-four))

2

> (cons 10 one-through-four)

(10 1 2 3 4)

> (list 3 4 5 7 8)

(3 4 5 7 8)

> (define x (list 5 6 8 2))

> x

(5 6 8 2)

> (define one-through-four (list 1 2 3 4))

>one-through-four

(1 2 3 4)

>(car one-through-four)

1

>(cdr one-through-four)

(2 3 4)

>(car (cdr one-through-four))

2

>(cons 10 one-through-four)

(10 1 2 3 4)

Note: The value constructor cons is considered more basic for lists. (list <a1> <a2> ...

<an>) can be (and is usually) implemented as (cons <a1> (cons <a2> (cons...(cons

<an> (list))...))).
Note on the Pair and List value constructors and selectors: The Pair and the
List types have the same value constructor cons, and the same selectors car, cdr. This is
unfortunate, but is actually the Scheme choice. Scheme can live with this confusion since it
is not statically typed (reminder: a language is statically typed if the type of its expressions
is determined at compile time.) A value constructed by cons can be a Pair value, and also a
List value – in case that its 2nd element (its cdr) is a List value. At run time, the selectors
car and cdr can be applied to every value constructed by cons, either a list value or not (it
is always a Pair value).
Note: Recall that some Pair values are not printed "properly" using the printed form of
Scheme for pairs. For example, we had:

> (define x (cons 1 2))

> (define y (cons x (quote a)))

> (define z (cons x y))

> z

((1 . 2) (1 . 2) . a)
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while the printed form of z should have been: ((1 . 2) . ( (1 . 2) . a)). The
reason is that the principal type of Scheme is List. Therefore, the Scheme interpreter tries
to interpret every cons value as a list, and only if the scanned value encountered at the list
end appears to be different than (list), the printed form for pairs is restored. Indeed, in
the last case above, z = (cons (cons 1 2) (cons (cons 1 2) ’a)) is not a list.

Visual representation of lists – Box-Pointer diagrams: Box-Pointer diagrams are a
helpful visual mode for clarifying the structure of hierarchical lists and complex Pair values.

− The empty list ( ) is visualized as a box:

Figure 1.1: Visual representation for the empty list

− A non empty list is visualized as a sequence of 2-cell boxes . Each box has a pointer
to its content and to the next box in the list visualization. The list ((1 2) ((3)) 4)

is visualized by:

Figure 1.2: Box-pointer Visual representation of lists

Complex list values that are formed by nested applications of the list value constructor,
are represented by a list skeleton of box-and-pointers, and the nested elements form
the box contents.
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Note: The layout of the arrows in the box-and-pointer diagrams is irrelevant. The arrow
pointing to the overall diagram is essential – it stands for the hierarchical data object as a
whole.
Predicate null?: Tests if the list is empty or not.

> null?

#<primitive:null?>

> (null? (list))

#t

> null

’()

> (equal? ’( ) null)

#t

> (null? null)

#t

> (define one-through-four (cons 1 (cons 2 (cons 3 (cons 4 (list) )))))

> (null? one-through-four)

#f

Identification predicate list?: Tests whether its argument is a list.

> list?

#<procedure:list?>

> (list? (list))

#t

> (list? one-through-four)

#t

> (list? 1)

#f

> (list? (cons 1 2))

#f

> (list? (cons 1 (list)))

#t

Homogeneous and Heterogeneous lists Lists of elements with a common type are
called homogeneous lists, while lists whose elements have no common type are termed
heterogeneous lists . For example, (1 2 3), ((1 2) (3 4 5)) are homogeneous lists,
while ((1 2) 3 ((4 5))) is a heterogeneous list. This distinction divides the List type into
two types: Homogeneous-List and Heterogeneous-List. The empty list belongs both to the
Homogeneous-List and the Heterogeneous-List types.

The Homogeneous-List type is a polymorphic type, with a type constructor List that
takes a single parameter. For example:
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List(Number) is the type of Number lists;
List(Pair(Number, Number)) is the type of number pair lists;
List(List(Symbol)) is the type of symbol list lists.
The heterogeneous-List type includes all heterogeneous lists. It is not polymorphic. Its type
constructor is List with no parameters.

All statically typed languages, e.g., JAVA and ML, support only homogeneous list values.
Heterogeneous list values like the above are defined as values of some hierarchical type like
n-TREE.

1.3.3.1 List operations and procedures:

1. Composition of cons, car, cdr:

> (define x (list 5 6 8 2))

> x

(5 6 8 2)

> (car x)

5

> (cdr x)

(6 8 2)

> (cadr x)

6

> (cddr x)

(8 2)

> (caddr x)

8

> (cdddr x)

(2)

> (cadddr x)

2

> (cddddr x)

()

> (cons 2 x)

(2 5 6 8 2)

> (cons x x)

((5 6 8 2) 5 6 8 2)

>

Question: Consider the expressions (cons 1 2) and (list 1 2). Do they have the
same value?

34



Chapter 1 Principles of Programming Languages

2. Selector list-ref: Selects the nth element of a list. Its type is [List*Number –>

T] or [List(T)*Number –> T].

> (define list-ref

(lambda (items n)

(if (= n 0)

(car items)

(list-ref (cdr items) (- n 1)))))

> (define squares (list 1 4 9 16 25 36))

> (list-ref 4 squares)

25

3. Operator length:
Reductional (recursive, inductive) definition:

− The length of a list is the length of its tail (cdr) + 1.

− The length of the empty list is 0.

> (define length

(lambda (items)

(if (null? items)

0

(+ 1 (length (cdr items))))))

WARNING: redefining built-in length

> (length squares)

6

4. Operator append: Computes list concatenation.

Type: [List * List -> List]

> (define append

(lambda (list1 list2)

(if (null? list1)

list2

(cons (car list1)

(append (cdr list1) list2)))))
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WARNING: redefining built-in append

> (append squares (list squares squares))

(1 4 9 16 25 36 (1 4 9 16 25 36) (1 4 9 16 25 36))

> (append (list squares squares) squares)

((1 4 9 16 25 36) (1 4 9 16 25 36) 1 4 9 16 25 36)

5. Constructor make-list: Computes a list of a given length with a given value:

Type: [Number * T -> List(T)]

> (make-list 7 ’foo)

’(foo foo foo foo foo foo foo)

> (make-list 5 1)

’(1 1 1 1 1)

Example 1.4 (Newton’s squarer root with stored approximations).

Consider Example 1.1 for implementing Newton’s method for computing square roots. The
implementation in that example computes a sequence of approximations, which is lost, once
a result is returned. Assume that we are interested in obtaining also the sequence of approx-
imations, for example, in order to observe it, measure its length, etc. The implementation
below returns the approximation sequence as a list.

Type: [Number -> Number]

(define sqrt

(lambda (x) (car (storage-sqrt-iter (list 1) x))))

Type: [List(Number) * Number -> List(Number)]

(define storage-sqrt-iter

(lambda (guess-lst x)

(if (good-enough? (car guess-lst) x)

guess-lst

(storage-sqrt-iter (cons (improve (car guess-lst) x) guess-lst)

x))))

Type: [Number -> Number]

(define length-sqrt

(lambda (x)

(length (storage-sqrt-iter (list 1) x))))
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1.3.3.2 Using heterogeneous lists for representing hierarchical structures (SICP
2.2.2)

Scheme does not enable user defined types, and does not offer built-in types for hierarchical
data like trees. Therefore, lists are used for representing hierarchical data. This is possible
because Scheme supports heterogeneous lists.

Unlabeled trees, i.e., trees with unlabeled internal nodes and leaves labeled with atomic
values, can be represented by lists of lists. A nested list represents a branch, and a nested
atom represents a leaf. For example, the unlabeled tree in Figure 1.3 can be represented by
the list (1 (2 3)). This representation has the drawback that a Tree is represented either
by a List value or by a value of the labels type:

1. The empty tree is represented by the empty list ( ).

2. A leaf tree is represented by some leaf value.

3. A non-empty branching tree is represented by a non-empty list.

We’ll experience the drawbacks of this representation when client procedures of trees will
have many end cases.

A better representation of unlabeled trees uses lists for representing all trees: A leaf tree
l is represented by the list (l), and a branching tree as in Figure 1.3 is represented by ((1)

((2) (3)))

1

32

Figure 1.3: An unlabeled tree

In order to represent a labeled tree, the first element in every nesting level can represent
the root of the sub-tree. A leaf tree l is represented by the singleton list (l). A non-leaf
tree, as for example, the sorted number labeled tree in Figure 1.4 is represented by the list
(1 (0) (3 (2) (4))).

Example 1.5. An unlabeled tree operation – using the first representation, where a leaf tree
is not a list:

Signature: count-leaves(x)

Purpose: Count the number of leaves in an unlabeled tree (a selector):

** The count-leaves of an empty tree is 0.
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1

0 3

42

Figure 1.4: A labeled tree

** The count-leaves of a leaf is 1.

A leaf is not represented by a list.

** The count-leaves of a non-empty and not leaf tree T is the count-leaves of

the "first" branch (car) + the count-leaves of all other branches (cdr).

Type: [List union Number union Symbol union Boolean -> Number]

>(define (count-leaves x)

(cond ((null? x) 0)

((not (list? x)) 1)

(else (+ (count-leaves (car x))

(count-leaves (cdr x))))))

> (define x (cons (list 1 2) (list 3 4)))

> x

((1 2) 3 4)

> (length x)

3

> (count-leaves x)

4

> (list x x)

(((1 2) 3 4) ((1 2) 3 4))

> (length (list x x))

2

> (count-leaves (list x x))

8

1.4 Procedures and the Processes they Generate (SICP 1.2)

Iteration in computing refers to a process of repetitive computations, following a single
pattern. In imperative programming languages (e.g., Java, C++, C) iteration is speci-
fied by loop constructs like while, for, begin-until. Iterative computations (loops) are
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managed by loop variables whose changing values determine loop exit. Loop constructs
provide abstraction of the looping computation pattern. Iteration is a central computing
feature.

Functional languages like the Scheme part introduced in this chapter do not posses
looping constructs like while. The only provision for computation repetition is repeated
function application. The question asked in this section is whether iteration by function call
obtains the advantages of iteration using loop constructs, as in other languages. We show
that recursive function call mechanism can simulate iteration. Moreover, the conditions
under which function call simulates iteration can be syntactically identified: A computing
agent (interpreter, compiler) can determine, based on syntax analysis of a procedure body,
whether its application can simulate iteration.

For that purpose, we discuss the computational processes generated by procedures.
We distinguish between procedure expression – a syntactical notion, to process – a
semantical notion. Recursive procedure expressions can create iterative processes. Such
procedures are called tail recursive .

1.4.1 Linear Recursion and Iteration (SICP 1.2.1 )

Consider the computation of the factorial function. In an imperative language, it is
natural to use a looping construct like while, that increments a factorial computation until
the requested number is reached. In Scheme, factorial can be computed by the following
two procedure definitions:
Recursive factorial:

Signature: factorial(n)

Purpose: to compute the factorial of a number ’n’.

This procedure follows the rule: 1! = 1, n! = n * (n-1)!

Type: [Number -> Number]

Pre-conditions: n > 0, an integer

Post-condition: result = n!

Example: (factorial 4) should produce 24

Tests: (factorial 1) ==> 1

(factorial 4) ==> 24

(define factorial

(lambda (n)

(if (= n 1)

1

(* n (factorial (- n 1))))

))

Alternative: Iterative factorial
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(define factorial

(lambda (n)

(fact-iter 1 1 n) ))

fact-iter:

Signature: fact-iter(product,counter,max-count)

Purpose: to compute the factorial of a number ’max-count’.

This procedure follows the rule:

counter = 1; product = 1;

repeat the simultaneous transformations:

product <-- counter * product, counter <-- counter + 1.

stop when counter > n.

Type: [Number*Number*Number -> Number]

Pre-conditions:

product, counter, max-count > 0

product * counter * (counter + 1) * ... * max-count = max-count!

Post-conditions: result = max-count!

Example: (fact-iter 2 3 4) should produce 24

Tests: (fact-iter 1 1 1) ==> 1

(fact-iter 1 1 4) ==> 24

(define fact-iter

(lambda (product counter max-count)

(if (> counter max-count)

product

(fact-iter (* counter product)

(+ counter 1)

max-count))))

Recursion vs. iteration:
Recursive factorial: The evaluation of the form (factorial 6) yields the following se-
quence of evaluations:

(factorial 6)

(* 6 (factorial 5))

...

(* 6 (* 5 (...(* 2 factorial 1 )...)

(* 6 (* 5 (...(* 2 1)...)

...

(* 6 120)

720

40



Chapter 1 Principles of Programming Languages

We can see it in the trace information provided when running the procedure:

> (require (lib "trace.ss"))

> (trace factorial)

> (trace *)

> (factorial 5)

"CALLED" factorial 5

"CALLED" factorial 4

"CALLED" factorial 3

"CALLED" factorial 2

"CALLED" factorial 1

"RETURNED" factorial 1

"CALLED" * 2 1

"RETURNED" * 2

"RETURNED" factorial 2

"CALLED" * 3 2

"RETURNED" * 6

"RETURNED" factorial 6

"CALLED" * 4 6

"RETURNED" * 24

"RETURNED" factorial 24

"CALLED" * 5 24

"RETURNED" * 120

"RETURNED" factorial 120

120

>

Every recursive call has its own information to keep and manage – input and procedure-
code evaluation, but also a return information to the calling procedure, so that the calling
procedure can continue its own computation. The space needed for a procedure call evalu-
ation is called frame . Therefore, the implementation of such a sequence of recursive calls
requires keeping the frames for all calling procedure applications, which depends on the
value of the input. The computation of (factorial 6) requires keeping 6 frames simultane-
ously open, since every calling frame is waiting for its called frame to finish its computation
and provide its result.

Iterative factorial: The procedure admits the following pseudo-code:

define fact-iter

function (product,counter,max-count)

{while (counter <= max-count)

{ product := counter * product;
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counter := counter + 1;}

return product;}

That is, the iterative factorial computes its result using a looping construct : Repetition
of a fixed process, where repetitions (called iterations) vary by changing the values of
variables. Usually there is also a variable that functions as the loop variable. In contrast
to the evaluation process of the recursive factorial, the evaluation of a loop iteration does
not depend on its next loop iteration: Every loop iteration hands-in the new variable values
to the loop manager (the while construct), and the last loop iteration provides the returned
result. Therefore, all loop iterations can be computed using a fixed space, needed
for a single iteration. That is, the procedure can be computed using a fixed space, which
does not depend on the value of the input. This is a great advantage of looping
constructs. Their great disadvantage, though, is the reliance on variable value change, i.e.,
assignment.

In functional languages there are no looping constructs, since variable values cannot be
changed – No assignment in functional languages. Process repetition is obtained by
procedure (function) calls. In order to achieve the great space advantage of iterative looping
constructs, procedure calls are postponed to be the last evaluation action, which means
that once a procedure-call frame calls for a new frame, the calling frame is done, no further
actions are needed, and it can be abandoned. Therefore, as in the looping construct case,
every frame hands-in the new variable values to the next opened frame, and the last frame
provides the returned result. Therefore, all frames can be computed using a fixed
space, needed for a single frame.

A procedure whose body code includes a procedure call only as a last evaluation step1, is
called iterative . If the evaluation application is “smart enough” to notice that a procedure
is iterative, it can use a fixed space for procedure-call evaluations, and enjoy the advantages
of iterative loop structures, without using variable assignment. Such evaluators are called
tail recursive .

Indeed, there is a single procedure call in the body of the iterative factorial, and it occurs
last in the evaluation actions, implying that it is an iterative procedures. Since Scheme ap-
plications are all tail recursive, the evaluation of (factorial 6) using the iterative version,
yields the following evaluation sequence:

(factorial 6)

(fact-iter 1 1 6)

(fact-iter 1 2 6)

...

(fact-iter 720 7 6)

720

1There can be several embedded procedure calls, each occurs last on a different branching computation

path.
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The trace information, after tracing all procedures::

> (factorial 3)

"CALLED" factorial 3

"CALLED" fact-iter 1 1 3

"CALLED" * 1 1

"RETURNED" * 1

"CALLED" fact-iter 1 2 3

"CALLED" * 2 1

"RETURNED" * 2

"CALLED" fact-iter 2 3 3

"CALLED" * 3 2

"RETURNED" * 6

"CALLED" fact-iter 6 4 3

"RETURNED" fact-iter 6

"RETURNED" fact-iter 6

"RETURNED" fact-iter 6

"RETURNED" fact-iter 6

"RETURNED" factorial 6

6

In the first case – the number of deferred computations grows linearly with n. In the
second case – there are no deferred computations. A computation process of the first kind
is called linear recursive . A computation process of the second kind is called iterative .
In a linear recursive process , the time and space needed to perform the process, are
proportional to the input size. In an iterative process , the space is constant – it is the
space needed for performing a single iteration round. These considerations refer to the space
needed for procedure-call frames (the space needed for possibly unbounded data structures
is not considered here). In an iterative process , the status of the evaluation process is
completely determined by the variables of the procedure (parameters and local variables). In
a linear recursive process , procedure call frames need to store the status of the deferred
computations.

Note the distinction between the three notions:

− recursive procedure - a syntactic notion;

− linear recursive process, iterative process - semantic notions.

fact-iter is a recursive procedure that generates an iterative process.
Recursive processes are, usually, clearer to understand, while iterative ones can save

space. The method of tail-recursion , used by compilers and interpreters, executes iterative
processes in constant space, even if they are described by recursive procedures. A recursive
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procedure whose application does not create deferred computations can be performed as an
iterative process.
Typical form of iterative processes: Additional parameters for a counter and an
accumulator , where the partial result is stored . When the counter reaches some bound ,
the accumulator gives the result.

Example 1.6. (no contract):

> (define count1

(lambda (x)

(cond ((= x 0) (display x))

(else (display x)

(count1 (- x 1))))))

> (define count2

(lambda (x)

(cond ((= x 0) (display x))

(else (count2 (- x 1))

(display x)))))

> (trace count1)

> (trace count2)

> (count1 4)

|(count1 4)

4|(count1 3)

3|(count1 2)

2|(count1 1)

1|(count1 0)

0|#<void>

> (count2 4)

|(count2 4)

| (count2 3)

| |(count2 2)

| | (count2 1)

| | |(count2 0)

0| | |#<void>

1| | #<void>

2| |#<void>

3| #<void>

4|#<void>

count1 generates an iterative process ; count2 generates a linear-recursive process .
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1.4.2 Tree Recursion (SICP 1.2.2)

Consider the following procedure definition for computing the n-th element in the sequence
of Fibonacci numbers:

Recursive FIB

Signature: (fib n)

Purpose: to compute the nth Fibonacci number.

This procedure follows the rule:

fib(0) = 0, fib(1) = 1, fib(n) = fib(n-1) + fib(n-2).

Type: [Number -> Number]

Example: (fib 5) should produce 5

Pre-conditions: n >= 0

Post-conditions: result = nth Fibonacci number.

Tests: (fib 3) ==> 2

(fib 1) ==> 1

(define fib

(lambda (n)

(cond ((= n 0) 0)

((= n 1) 1)

(else (+ (fib (- n 1))

(fib (- n 2)))))

))

The evaluation process generated by this procedure has a tree structure , where nested
forms lie on the same branch:

+-----------------(fib 5)----------------+

| |

+-----(fib 4)---------+ +-----(fib 3)---------+

| | | |

+--(fib 3)--+ +--(fib 2)-+ +-(fib 2)-+ (fib 1)

| | | | | | |

+-(fib 2)-+ (fib 1) (fib 1) (fib 0) (fib 1) (fib 0) 1

| | | | | | |

(fib 1) (fib 0) 1 1 0 1 0

1 0

The time required is proportional to the size of the tree, since the evaluation of (fib 5)

requires the evaluation of all fib forms. Hence, the time required is exponential in the
input of fib. The space required is proportional to the depth of the tree, i.e., linear in
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the input.
Note: The exponential growth order applies to balanced (or almost balanced) trees. Highly
pruned computation trees can yield a smaller growth order.

Iterative FIB

(define fib

(lambda (n) (fib-iter 0 1 n)))

fib-iter:

Signature: fib-iter(current,next,count)

Purpose: to compute the nth Fibonacci number.

We start with current = 0, next = 1, and count as the Fibonacci goal,

and repeat the simultaneous transformation ’count’ times:

next <-- next + current, current <-- next,

in order to compute fib(count).

Type: [Number*Number*Number -> Number]

Example: (fib-iter 0 1 5) should produce 5

Pre-conditions: next = (n+1)th Fibonacci number, for some n >= 0;

current = nth Fibonacci number;

Post-conditions: result = (n+count)th Fibonacci number.

Tests: (fib-iter 1 2 3) ==> 5

(fib-iter 0 1 1) ==> 1

(define fib-iter

(lambda (current next count)

(if (= count 0)

current

(fib-iter next (+ current next) (- count 1)))

))

Example 1.7. – Counting Change (without contract)

Given an amount A of money, and types of coins (5 agorot, 10 agorot, etc), ordered in
some fixed way. Compute the number of ways to change the amount A. Here is a rule:

The number of ways to change A using n kinds of coins (ordered) =
number of ways to change A using the last n-1 coin kinds +
number of ways to change A - D using all n coin kinds, where D is the denomi-
nation of the first kind.

Try it!
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(define count-change

(lambda (amount)

(cc amount 5)))

(define cc

(lambda (amount kinds-of-coins)

(cond ((= amount 0) 1)

((or (< amount 0) (= kinds-of-coins 0)) 0)

(else (+ (cc (- amount

(first-denomination kinds-of-coins))

kinds-of-coins)

(cc amount

(- kinds-of-coins 1)))))))

(define first-denomination

(lambda (kinds-of-coins)

(cond ((= kinds-of-coins 1) 1)

((= kinds-of-coins 2) 5)

((= kinds-of-coins 3) 10)

((= kinds-of-coins 4) 25)

((= kinds-of-coins 5) 50))))

What kind of process is generated by count-change? Try to design a procedure that generates
an iterative process for the task of counting change. What are the difficulties?

1.4.3 Orders of Growth (SICP 1.2.3)

Processes are evaluated by the amount of resources of time and space they require.
Usually, the amount of resources that a process requires is measured by some agreed unit .
For time , this might be number of machine operations, or number of rounds within some
loop. For space , it might be number of registers, or number of cells in a Turing machine
performing the process.

The resources are measured in terms of the problem size , which is some attribute of
the input that we agree to take as most characteristic. The resources are represented as
functions T ime(n) and Space(n), where n is the problem size.

T ime(n) and Space(n) have order of growth of O(f(n)) if for some constant C:
T ime(n) <= C ∗ f(n), Space(n) <= C ∗ f(n), for any sufficiently large n.

− For the linear recursive factorial process: T ime(n) = Space(n) = O(n).

− For the iterative factorial and Fibonacci processes: T ime(n) = O(n), but Space(n) =
O(1).
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− For the tree recursive Fibonacci process: T ime(n) = O(Cn), and Space(n) = O(n).
Order of growth is an indication of the change in resources implied by changes in the
problem size .

− O(1) – Constant growth : Resource requirements do not change with the size of the
problem. For all iterative processes, the space required is constant, i.e., Space(n) =
O(1).

− O(n) – Linear growth : Multiplying the problem size multiplies the resources by
the same factor.
For example: if T ime(n) = Cn then
T ime(2n) = 2Cn = 2T ime(n), and
T ime(4n) = 4Cn = 2T ime(2n), etc.
Hence, the resource requirements grow linearly with the problem size.
A linear iterative process is an iterative process that uses linear time (T ime(n) =
O(n)), like the iterative versions of factorial and of fib.
A linear recursive process is a recursive process that uses linear time and space
(T ime(n) = Space(n) = O(n) ), like the recursive version of factorial.

− O(Cn) – Exponential growth : Any increment in the problem size, multiplies the
resources by a constant number.
For example: if T ime(n) = Cn, then
T ime(n + 1) = Cn+1 = T ime(n) ∗C, and
T ime(n + 2) = Cn+2 = T ime(n + 1) ∗C, etc.
T ime(2n) = C2n = (T ime(n))2.
Hence, the resource requirements grow exponentially with the problem size. The
tree-recursive Fibonacci process uses exponential time.

− O(logn) – Logarithmic growth : Multiplying the problem size implies a constant
increase in the resources.
For example: if T ime(n) = log(n), then
T ime(2n) = log(2n) = T ime(n) + log(2), and
T ime(6n) = log(6n) = T ime(2n) + log(3), etc.
We say that the resource requirements grow logarithmically with the problem size.

− O(na) – Power growth : Multiplying the problem size multiplies the resources by
a power of that factor.
For example: if T ime(n) = na, then
T ime(2n) = (2n)a = T ime(n) ∗ (2a), and
T ime(4n) = (4n)a = T ime(2n) ∗ (2a), etc.
Hence, the resource requirements grow as a power of the problem size. Linear grows
is a special case of power grows (a = 1). Quadratic grows is another special common
case (a = 2, i.e., O(n2)).
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Example 1.8. – Exponentiation (SICP 1.2.4)

This example presents procedures that generate several processes for computing exponenti-
ation, that require different resources, and have different orders of growth in time and space.
Linear recursive version (no contracts): Based on the recursive definition: b0 = 1, bn =
b ∗ bn−1,

(define expt

(lambda (b n)

(if (= n 0)

1

(* b (expt b (- n 1))))))

T ime(n) = Space(n) = O(n).
Linear iterative version: Based on using product and counter, with initialization:
counter = n, product = 1, and repeating the simultaneous transformations: counter <–

counter - 1, product <– product * b until counter becomes zero.

(define expt

(lambda (b n)

(exp-iter b n 1)))

(define exp-iter

(lambda (b counter product)

(if (= counter 0)

product

(exp-iter b

(- counter 1)

(* b product)))))

T ime(n) = O(n), Space(n) = O(1).
Logarithmic recursive version: Based on the idea of successive squaring, instead of
successive multiplications:
For even n: an = (an/2)2.
For odd n: an = a ∗ (an−1).

(define fast-exp

(lambda (b n)

(cond ((= n 0) 1)

((even? n) (square (fast-exp b (/ n 2))))

(else (* b (fast-exp b (- n 1)))))))

Note: even? and odd? are primitive procedures in Scheme:
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> even?

#<primitive:even?>

They can be defined via another primitive procedure, remainder (or modulo), as follows:

(define even?

(lambda (n)

(= (remainder n 2) 0)))

The complementary procedure to remainder is quotient, which returns the integer value
of the division: (quotient n1 n2) ==> n1/n2.
T ime(n) = Space(n) = O(logn), since fast-exp(b, 2n) adds a single additional multipli-
cation to fast-expr(b, n) (in the even case). In this approximate complexity analysis, the
application of primitive procedures is assumed to take constant time.

Example 1.9. – Greatest Common Divisors (GCD) (no contracts) (SICP 1.2.5)

The GCD of 2 integers is the greatest integer that divides both. The Euclid’s algorithm
is based on the observation:

Lemma 1.4.1. If r is the remainder of a/b, then: GCD(a, b) = GCD(b, r). Successive
applications of this observation yield a pair with 0 as the second number. Then, the first
number is the answer.

Proof. Assume a > b. Then a = qb+ r where q is the quotient. Then r = a− qb. Any common
divisor of a and b is also a divisor of r, because if d is a common divisor of a and b, then
a = sd and b = td, implying r = (s − qt)d. Since all numbers are integers, r is divisible by d.
Therefore, d is also a common divisor of b and r. Since d is an arbitrary common divisor of
a and b, this conclusion holds for the greatest common divisor of a and b.

(define gcd

(lambda (a b)

(if (= b 0)

a

(gcd b (remainder a b)))))

Iterative process:
Space(a, b) = O(1).
T ime(a, b) = O(log(n)), where n =min(a, b).
The Time order of growth results from the theorem: n ≥ Fib(T ime(a, b)) = (Θ(CT ime(a,b))/

√
5)

which implies: T ime(a, b) ≤ log(n∗
√
5) = log(n)+ log(

√
5) Hence: T ime(a, b) = O(log(n)),

where n =min(a, b).

Example 1.10. – Primality Test (no contracts) (SICP 1.2.6)
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Straightforward search:

(define smallest-divisor

(lambda (n)

(find-divisor n 2)))

(define find-divisor

(lambda (n test-divisor)

(cond ((> (square test-divisor) n) n)

((divides? test-divisor n) test-divisor)

(else (find-divisor n (+ test-divisor 1))))))

(define divides?

(lambda (a b)

(= (remainder b a) 0)))

(define prime?

(lambda (n)

(= n (smallest-divisor n))))

Based on the observation that if n is not a prime, then it must have a divisor less than or
equal than its square root.
Iterative process. T ime(n) = O(√n), Space(n) = O(1).

Another algorithm, based on Fermat’s Little Theorem:

Theorem 1.4.2. If n is a prime, then for every positive integer a, (an)mod n = a mod n.

The following algorithm picks randomly positive integers, less than n, and applies Fer-
mat’s test for a given number of times: expmod computes be mod n. It is based on the
observation:
(x∗y)mod n = ((x mod n)∗(y mod n)) mod n, a useful technique, as the numbers involved
stay small.

(define expmod

(lambda (b e n)

(cond ((= e 0) 1)

((even? e)

(remainder (square (expmod b (/ e 2) n))

n))

(else

(remainder (* b (expmod b (- e 1) n))

n)))))
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The created process is recursive. The rate of time grows for expmod is T ime(e) = O(log(e)),
i.e., logarithmic grow in the size of the exponent, since: T ime(2 ∗ e) = T ime(e) + 2.

(define fermat-test

(lambda (n a)

(= (expmod a n n) a))))

(define fast-prime?

(lambda (n times)

(cond ((= times 0) t)

((fermat-test n (+ 2 (random (- n 2))))

(fast-prime? n (- times 1)))

(else #f))))

random is a Scheme primitive procedure. (random n) returns an integer between 0 to n-1.

1.5 Higher-Order Procedures

Partial source: (SICP 1.3.1, 1.3.2, 1.3.3, 1.3.4)
Variables provide abstraction of values. Procedures provide abstraction of compound

operations on values. In this section we introduce:

Higher-order procedures: Procedures that manipulate procedures.

This is a common notion in mathematics, where we discuss notions like Σf(x), without
specifying the exact function f . Σ is an example of a higher order procedure. It introduces
the concept of summation , independently of the particular function whose values are being
summed. It allows for discussion of general properties of sums.

In functional programming (hence, in Scheme) procedures have a first class status:

1. Can be named by variables.

2. Can be passed as arguments to procedures.

3. Can be returned as procedure values.

4. Can be included in data structures.

In this section, we introduce higher-order procedures that have the first three features listed
above. In the next section (Section 1.3), we also introduce data structures that can include
procedures as their components.
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1.5.1 Procedures as Parameters (SICP 1.3.1)

Summation Consider the following 3 procedures:
1. sum-integers:

Signature: sum-integers(a,b)

Purpose: to compute the sum of integers in the interval [a,b].

Type: [Number*Number -> Number]

Post-conditions: result = a + (a+1) + ... + b.

Example: (sum-integers 1 5) should produce 15

Tests: (sum-integers 2 2) ==> 2

(sum-integers 3 1) ==> 0

(define sum-integers

(lambda (a b)

(if (> a b)

0

(+ a (sum-integers (+ a 1) b)))))

2. sum-cubes:

Signature: sum-cubes(a,b)

Purpose: to compute the sum of cubic powers of

integers in the interval [a,b].

Type: [Number*Number -> Number]

Post-conditions: result = a^3 + (a+1)^3 + ... + b^3.

Example: (sum-cubes 1 3) should produce 36

Tests: (sum-cubes 2 2) ==> 8

(sum-cubes 3 1) ==> 0

(define sum-cubes

(lambda (a b)

(if (> a b)

0

(+ (cube a) (sum-cubes (+ a 1) b)))))

where cube is defined by: (define cube (lambda (x) (* x x x))).

3. pi-sum:

Signature: pi-sum(a,b)

Purpose: to compute the sum

1/(a*(a+2)) + 1/((a+4)*(a+6)) + 1/((a+8)*(a+10)) + ...
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(which converges to PI/8, when started from a=1).

Type: [Number*Number -> Number]

Pre-conditions: if a < b, a != 0.

Post-conditions:

result = 1/a*(a+2) + 1/(a+4)*(a+6) + ... + 1/(a+4n)*(a+4n+2),

a+4n =< b, a+4(n+1) > b

Example: (pi-sum 1 3) should produce 1/3.

Tests: (pi-sum 2 2) ==> 1/8

(pi-sum 3 1) ==> 0

(define pi-sum

(lambda (a b)

(if (> a b)

0

(+ (/ 1 (* a (+ a 2))) (pi-sum (+ a 4) b)))))

The procedures have the same pattern:

(define <name>

(lambda (a b)

(if (> a b)

0

(+ (<term> a)

(<name> (<next> a) b)))))

The 3 procedures can be abstracted by a single procedure, where the empty slots <term>

and <next> are captured by formal parameters that specify the <term> and the <next>

functions, and <name> is taken as the defined function sum:
sum:

Signature: sum(term,a,next,b)

Purpose: to compute the sum of terms, defined by <term>

in predefined gaps, defined by <next>, in the interval [a,b].

Type: [[Number -> Number]*Number*[Number -> Number]*Number -> Number]

Post-conditions: result = (term a) + (term (next a)) + ... (term n),

where n = (next (next ...(next a))) =< b,

(next n) > b.

Example: (sum identity 1 add1 3) should produce 6,

where ’identity’ is (lambda (x) x)

Tests: (sum square 2 add1 2) ==> 4

(sum square 3 add1 1) ==> 0
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(define sum

(lambda (term a next b)

(if (> a b)

0

(+ (term a)

(sum term (next a) next b)))))

Using the sum procedure, the 3 procedures above have different implementations (same
contracts):

(define sum-integers

(lambda (a b)

(sum identity a add1 b)))

(define sum-cubes

(lambda (a b)

(sum cube a add1 b)))

(define pi-sum

(lambda (a b)

(sum pi-term a pi-next b)))

(define pi-term

(lambda (x)

(/ 1 (* x (+ x 2)))))

(define pi-next

(lambda (x)

(+ x 4)))

Discussion: What is the advantage of defining the sum procedure, and defining the three
procedures as concrete applications of sum?

1. First, the sum procedure prevents duplications of the computation pattern of sum-
ming a sequence elements between given boundaries. Duplication in software is bad
for many reasons, that can be summarized by management difficulties, and lack of
abstraction – which leads to the second point.

2. Second, and more important, the sum procedure expresses the mathematical notion of
sequence summation. Having this notion, further abstractions can be formulated, on
top of it. This is similar to the role of interface in object-oriented languages.
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Definite integral – Definition based on sum: Integral of f from a to b is approximated
by: [f(a+ dx/2) + f(a+ dx+ dx/2) + f(a+ 2dx+ dx/2) + ...] × dx for small values of dx. The
definite integral can be computed (approximated) by the procedure:

(define dx 0.005)

(define integral

(lambda (f a b)

(* (sum f (+ a (/ dx 2)) add-dx b)

dx)))

(define add-dx

(lambda (x) (+ x dx)))

For example:

> (integral cube 0 1 0.01)

0.2499875

> (integral cube 0 1 0.001)

0.249999875

True value: 1/4.

Sequence-operation – Definition based on sum:

Signature: sequence-operation(operation,start,a,b)

Purpose: to compute the repeated application of an operation on

all integers in the interval [a,b], where <start> is

the neutral element of the operation.

Type: [[Number*Number -> Number]*Number*Number*Number -> Number]

Pre-conditions: start is a neutral element of operation:

(operation x start) = x

Post-conditions:

result = if a =< b: a operation (a+1) operation ... b.

if a > b: start

Example: (sequence-operation * 1 3 5) is 60

Tests: (sequence-operation + 0 2 2) ==> 2

(sequence-operation * 1 3 1) ==> 1

(define sequence-operation

(lambda (operation start a b)

(if (> a b)

start

(operation a (sequence-operation operation start (+ a 1) b)))))
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where operation stands for any binary procedure, such as +, *, -, and start stands for the
neutral (unit) element of operation, i.e., 0 for +, and 1 for *. For example:

> (sequence-operation * 1 3 5)

60

> (sequence-operation + 0 2 7)

27

> (sequence-operation - 0 3 5)

4

> (sequence-operation expt 1 2 4)

2417851639229258349412352

> (expt 2 (expt 3 4))

2417851639229258349412352

1.5.2 Constructing procedure arguments at run-time

Procedures are constructed by the value constructor of the Procedure type: lambda. The
evaluation of a lambda form creates a closure. For example, the evaluation of

(lambda (x) (+ x 4))

creates the closure:

<Closure (x)(+ x 4)>

lambda forms can be evaluated during computation. Such closures are termed anony-
mous procedures, since they are not named. Anonymous procedures are useful whenever
a procedural abstraction does not justify being named and added to the global environment
mapping.

For example, in defining the pi-sum procedure, the procedure (lambda (x) (/ 1 (* x

(+ x 2)))) that defines the general form of a term in the sequence is useful only for this
computation. It can be passed directly to the pi-sum procedure:

(define pi-sum

(lambda (a b)

(sum (lambda (x) (/ 1 (* x (+ x 2))))

a

(lambda (x) (+ x 4))

b)))

The body of the pi-sum procedure includes two anonymous procedures that are created at
runtime, and passed as arguments to the sum procedure. The price of this elegance is that
the anonymous procedures are redefined in every application of pi-sum.

The integral procedure using an anonymous procedure:
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(define integral

(lambda (f a b dx)

(* (sum f

(+ a (/ dx 2.0))

(lambda (x) (+ x dx))

b)

dx)))

Note that once the next procedure is created anonymously within the integral procedure,
the dx variable can become a parameter rather than a globally defined variable.

1.5.3 Defining Local Variables – Using the let Abbreviation

Local variables are an essential programming technique, that enables the declaration of
variables with a restricted scope. Such variables are used for saving repeated computations.
In a restricted scope, a local variable can be initialized with the value of some computation,
and then substituted where ever this computation is needed. In imperative programming
local variables are also used for storing changing values, like values needed for loop manage-
ment. Local variables are characterized by:

1. Declaration combined with a restricted scope , where the variable is recognized – a
restricted program region, where occurrences of the variable are bound to the variable
declaration.

2. A one-time initialization: A local variable is initialized by a value that is computed
only once.

3. Substitution of the initialization value for variable occurrences in the scope.

In Scheme, variables are declared only in lambda forms and in define forms. Therefore,
the core language presented so far has no provision for local variable. Below, we show how
local variable behavior can be obtained by plain generation and immediate application of a
run time generated closure to initialization values. We then present the Scheme syntactic
sugar for local values – the let special form. This special operator does not need a special
evaluation rule (unlike define, lambda, if, cond, quote) since it is just a syntactic sugar
for a plain Scheme form.

Parameters, scope, bound and free variable occurrences: A lambda form includes
parameters and body . The parameters act as variable declarations in most program-
ming languages. They bind their occurrences in the body of the form, unless, there is a
nested lambda form with the same parameters. The body of the lambda form is the scope
of the parameters of the lambda form. The occurrences that are bound by the parameters
are bound occurrences, and the ones that are not bound are free . For example, in the
integral definition above, in the lambda form:
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(lambda (f a b dx)

(* (sum f

(+ a (/ dx 2.0))

(lambda (x) (+ x dx))

b)

dx))

The parameters, or declared variables, are f, a, b, dx. Their scope is the entire lambda
form. Within the body of the lambda form, they bind all of their occurrences. But the
occurrences of +, *, sum are free . Within the inner lambda form (lambda (x) (+ x

dx)), the occurrence of x is bound, while the occurrence of dx is free.
A define form also acts as a variable declaration. The defined variable binds all of its free
occurrences in the rest of the code. We say that a defined variable has a universal scope .

Example 1.11. Local variables in computing the value of a polynomial function:

Consider the following function:

f(x, y) = x(1 + xy)2 + y(1 − y) + (1 + xy)(1 − y)

In order to compute the value of the function for given arguments, it is useful to define two
local variables:

a = 1+xy

b = 1-y

then:
f(x, y) = xa2 + yb + ab

The local variables save repeated computations of the 1 + xy and 1 − y expressions. The
body of f(x, y) can be viewed as a function in a and b (since within the scope of f , the
occurrences of x and y are already bound). That is, the body of f(x, y) can be viewed as
the function application

f(x, y) = f_helper(1 + xy,1 − y)

where for given x, y:
f_helper(a, b) = xa2 + yb + ab

The Scheme implementation for the f_helper function:

(lambda (a b)

(+ (* x (square a))

(* y b)

(* a b)))
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f(x, y) can be implemented by applying the helper function to the values of a and b, i.e.,
1 + xy and 1 − y:

(define f

(lambda (x y)

((lambda (a b)

(+ (* x (square a))

(* y b)

(* a b)))

(+ 1 (* x y))

(- 1 y))

))

The important point is that this definition of the polynomial function f provides the behavior
of local variables: The initialization values of the parameters a, b are computed only once,
and substituted in multiple places in the body of the f_helper procedure.

Note: The helper function cannot be defined in the global environment, since it has x

and y as free variables, and during the evaluation process, while the occurrences of a and b

are replaced by the argument values, x and y stay unbound:

> (define f_helper

(lambda (a b)

(+ (* x (square a))

(* y b)

(* a b))))

> (f_helper (+ 1 (* x y)) (- 1 y))

reference to undefined identifier: x

The let abbreviation: A conventional abbreviation for this construct, which internally
turns into a nested lambda form application, is provided by the let special operator. That is,
a let form is just a syntactic sugar for application of a lambda form. Such abbreviations
are termed derived expressions. The evaluation of a let form creates an anonymous closure
and applies it.

(define f

(lambda ( x y)

(let ((a (+ 1 (* x y)))

(b (- 1 y)))

(+ (* x (square a))
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(* y b)

(* a b)))))

The general syntax of a let form is:

(let ( (<var1> <exp1>)

(<var2> <exp2>)

...

(<varn> <expn>) )

<body> )

The evaluation of a let form has the following steps:

1. Each <expi> is evaluated (simultaneous binding).

2. The values of the <expi>s are replaced for all free occurrences of their corresponding
<vari>s, in the let body.

3. The <body> is evaluated.

These rules result from the internal translation to the lambda form application:

( (lambda ( <var1> ... <varn> )

<body> )

<exp1>

...

<expn> )

Therefore, the evaluation of a let form does not have any special evaluation rule (unlike
the evaluation of define and lambda forms, which are true special operators).
Notes about let evaluation:

1. let provides variable declaration and an embedded scope.

2. Each <vari> is associated (bound) to the value of <expi> (simultaneous binding).
Evaluation is done only once.

3. The <expi>s reside in the outer scope, where the let resides. Therefore, variable
occurrences in the <expi>s are not bound by the let variables, but by binding oc-
currences in the outer scope.

4. The <body> is the let scope. All variable occurrences in it are bound by the let

variables (substituted by their values).

5. The evaluation of a let form consists of creation of an anonymous procedure,
and its immediate application to the initialization values of the local variables.
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> (define x 5)

> (+ (let ( (x 3) )

(+ x (* x 10)))

x)

==>

> (+ ( (lambda (x) (+ x (* x 10)))

3)

x)

38

Question: How many times the let construct is computed in:

> (define x 5)

> (define y (+ (let ( (x 3) )

(+ x (* x 10)))

x))

> y

38

> (+ y y)

76

In evaluating a let form, variables are bound simultaneously. The initial values are
evaluated before all let local variables are substituted.

> (define x 5)

> (let ( (x 3) (y (+ x 2)))

(* x y))

21

1.5.4 Procedures as Returned Values (SICP 1.3.4)

The ability to have procedures that create procedures provides a great expressiveness. Many
applications provide skeletal procedures that employ changing functions (algorithms). For
example, Excel enables filter creation with a changing filtering function. General procedure
handling methods can be implemented using procedures that create procedures.

A function definition whose body evaluates to the value of a lambda form is a
high order procedure that returns a procedure as its value.

First, let us see how repeated lambda abstractions create procedures (closures) that create
procedures.

− A form: (+ x y y), evaluates to a number.
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− A lambda abstraction: (lambda (x) (+ x y y)), evaluates to a procedure definition.

− A further lambda abstraction of the lambda form: (lambda (y) (lambda (x) (+ x

y y))), evaluates to a procedure with formal parameter y, whose application (e.g.,
((lambda (y) (lambda (x) (+ x y y))) 3) evaluates to a procedure in which y is
already substituted, e.g., <Closure (x) (+ x 3 3)>.

> (define y 0)

> (define x 3)

> (+ x y y)

3

> (lambda (x) (+ x y y))

#<procedure>

> ((lambda (x) (+ x y y)) 5)

5

> (lambda (y) (lambda (x) (+ x y y)))

#<procedure>

> ((lambda (y) (lambda (x) (+ x y y))) 2)

#<procedure>

> (((lambda (y) (lambda (x) (+ x y y))) 2) 5)

9

> (define f (lambda (y) (lambda (x) (+ x y y)) ) )

> ((f 2) 5)

9

> (define f (lambda (y) (lambda (x) (+ x y y))))

> ((f 2) 5)

9

> ((lambda (y) ((lambda (x) (+ x y y)) 5)) 2)

9

> ((lambda (x) (+ x y y)) 5)

5

>

The following examples demonstrate high order procedures that return procedures (closures)
as their returned value.

Example 1.12. Average damp:

Average damping is average taken between a value val and the value of a given
function f on val. Therefore, every function defines a different average. This function-
specific average can be created by a procedure generator procedure:
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average-damp:

Signature: average-damp(f)

Purpose: to construct a procedure that computes the average damp

of a function average-damp(f)(x) = (f(x) + x )/ 2

Type: [[Number -> Number] -> [Number -> Number]]

Post-condition: result = closure r,

such that (r x) = (average (f x) x)

Tests: ((average-damp square) 10) ==> 55

((average-damp cube) 6) ==> 111

(define average-damp

(lambda (f)

(lambda (x) (average x (f x)))))

For example:

> ((average-damp (lambda (x) (* x x))) 10)

55

> (average 10 ((lambda (x) (* x x)) 10))

55

((average-damp cube) 6)

111

> (average 6 (cube 6))

111

> (define av-damped-cube (average-damp cube))

> (av-damped-cube 6)

111

Example 1.13. The derivative function:

For every number function, its derivative is also a function. The derivative of a function
can be created by a procedure generating procedure:

derive:

Signature: derive(f dx)

Purpose: to construct a procedure that computes the derivative

dx approximation of a function:

derive(f dx)(x) = (f(x+dx) - f(x) )/ dx

Type: [[Number -> Number]*Number -> [Number -> Number]]

Pre-conditions: 0 < dx < 1

Post-condition: result = closure r, such that

(r y) = (/ (- (f (+ x dx)) (f x))
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dx)

Example: for f(x)=x^3, the derivative is the function 3x^2,

whose value at x=5 is 75.

Tests: ((derive cube 0.001) 5) ==> ~75

(define derive

(lambda (f dx)

(lambda (x)

(/ (- (f (+ x dx)) (f x))

dx))))

The value of (derive f dx) is a procedure!

> (define cube (lambda (x) (* x x x)))

> ((derive cube .001) 5)

75.0150010000254

> ((derive cube .0001) 5)

75.0015000099324

>

Closure creation time – Compile time vs runtime Creation of a closure takes time
and space. In general, it is preferred that expensive operations are done before a program is
run, i.e., in static compile time . When a closure (i.e., a procedure created at runetime)
depends on other closures, it is preferred that these auxiliary closures are created at compile
time. The following example, presents four procedures that differ in the timing of the
creation of the auxiliary procedures.

Example 1.14 (Compile time vs runtime creation of auxiliary closures).

Given a definition of a procedure that approximates the derivative of a function of one
argument, f: x:

(define dx 0.00001)

Signature: derive(f)

Type: [[Number -> Number] -> [Number -> Number]]

(define derive

(lambda (f)

(lambda(x)

(/ (- (f (+ x dx))

(f x))

dx))))
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The following four procedures approximate the nth derivative of a given function of one
argument, f:

Signature: nth-deriv(f,n)

Type: [[Number -> Number]*Number -> [Number -> Number]]

(define nth-deriv

(lambda (f n)

(lambda (x)

(if (= n 0)

(f x)

( (nth-deriv (derive f) (- n 1)) x)))

))

(define nth-deriv

(lambda (f n)

(if (= n 0)

f

(lambda (x)

( (nth-deriv (derive f) (- n 1)) x)))

))

(define nth-deriv

(lambda (f n)

(if (= n 0)

f

(nth-deriv (derive f) (- n 1)) )

))

(define nth-deriv

(lambda (f n)

(if (= n 0)

f

(derive (nth-deriv f (- n 1)) ))

))

The four procedures are equivalent in the sense that they evaluate to the same function.
However, there is a crucial difference in terms of the creation time of the auxiliary closures,
i.e., the closures used by the final n-th derivative procedure. Consider for example:

(define five-exp (lambda (x) (* x x x x x)))

(define fourth-deriv-of-five-exp (nth-deriv five-exp 4))
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1. The first and second versions create no closure at compile time. Every application
of fourth-deriv-of-five-exp to an argument number, repeatedly computes all the
lower derivative closures prior to the application. In the first version a closure is
created even for the 0-derivative, and a test for whether the derivative rank is zero
is performed as part of the application to an argument number, while in the second
version this test is performed prior to the closure creation, and no extra closure is
created for the 0 case.

2. The third and forth versions create four closures – the first, second, third and fourth
derivatives of five-exp at compile time. No closure is created when fourth-deriv-of-five-exp

is applied to an argument number. They differ in terms of the process recursive-
iterative properties: The third version is iterative, while the fourth is recursive.

As a conclusion we see that closures can be compared on the iterative-recursive dimension
and on the compile-run time dimension. Clearly, an iterative version that maximizes the
compile time creation is the preferred one, i.e., the third version, in the above example.

1.5.5 Procedures that Store Delayed (Future) Computations

An important usage of lambda abstraction is delaying a computation, since when a pro-
cedure returns a closure, the computation embedded in a returned closure is not applied.
We say that the computation is delayed . We present two cases where delayed computation
using lambda abstraction solves a hard problem in an elegant (simple) way.

Delayed computation for distinguishing ambiguous values:

Example 1.15.

The task in this example is to write Scheme implication (if forms) in terms of Scheme
or and and. Recall that Scheme or and and are optimized to save redundant evaluation
(they are special operators, not primitive procedures).
First try:

(if condition consequence alternative) ==>

(or (and condition consequence) alternative)

For example,

> (define x 0)

> (define y 6)

> (if (zero? x) 100000 (/ y x))

100000

> (or (and (zero? x) 100000) (/ y x))

100000
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But what about

> (if (zero? x) #f #t)

#f

> (or (and (zero? x) #f) #t)

#t

The problem is, of course, that once the condition does not evaluate to #f, the value of the
overall expression is the value of the consequence, even if the consequence value is #f. But
in this case the or operator evaluates the alternative. The or form can be corrected by
delaying the computation of the consequence and the alternative, using lambda abstraction:

(if condition consequence alternative) ==>

((or (and condition (lambda () consequence)) (lambda () alternative)))

> (if (zero? x) #f #t)

#f

> ((or (and (zero? x) (lambda () #f)) (lambda () #t)))

#f

Delayed computation for obtaining iterative processes Recall the distinction be-
tween recursive to iterative processes. A procedure whose computations are recursive is
characterized by a storage (frames in the Procedure-call stack) that stores the future com-
putations, once the recursion basis is computed. In Section 1.4 we provided iterative versions
for some recursive procedures. But they were based on new algorithms that compute the
same functions. In many cases this is not possible.

A recursive procedure can be turned iterative by using high order procedures that store
the delayed computations. These delayed computation procedures are created at run-time
and passed as arguments. Each delayed computation procedure corresponds to a frame in
the Procedure-call stack. The resulting iterative procedure performs the recursion base, and
calls itself with an additional delayed computation argument procedure.

Example 1.16. Turning the factorial recursive procedure iterative by using procedures that
store the delayed computations:

Consider the recursive factorial procedure:

Signature: factorial(n)

Purpose: to compute the factorial of a number ’n’.

This procedure follows the rule: 1! = 1, n! = n * (n-1)!

Type: [Number -> Number]

Pre-conditions: n > 0, an integer

Post-condition: result = n!
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Example: (factorial 4) should produce 24

Tests: (factorial 1) ==> 1

(factorial 4) ==> 24

(define factorial

(lambda (n)

(if (= n 1)

1

(* n (factorial (- n 1))))

))

We turn it into a procedure fact$ that accepts an additional parameter for the delayed
(future) computation. This procedure will be applied once the factorial procedure apply,
i.e., in the base case. Otherwise, it will be kept in a run-time created closure that waits for
the result of factorial on n − 1:

(define fact$

(lambda (n cont)

(if (= n 0)

(cont 1)

(fact$ (- n 1) (lambda (res) (cont (* n res)))))

))

The cont parameter stands for the delayed computation (cont stands for continuation).
If the given argument is the base case, the continuation is immediately applied. Overawes,
a closure is created that “stores” the cont procedure and waits until the result on n − 1 is
obtained, and then applies. The created continuations are always procedures that just apply
the delayed computation and a later continuation to the result of a recursive call:

(fact$ 3 (lambda (x) x))

==>

(fact$ 2 (lambda (res)

( (lambda (x) x)

(* 3 res))))

==>

(fact$ 1 (lambda (res)

( (lambda (res)

( (lambda (x) x) (* 3 res)))

(* 2 res))))

==>

(fact$ 0 (lambda (res)

( (lambda (res)
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( (lambda (res)

( (lambda (x) x) (* 3 res)))

(* 2 res)))

(* 1 res))))

==>

( (lambda (res)

( (lambda (res)

( (lambda (res)

( (lambda (x) x) (* 3 res)))

(* 2 res)))

(* 1 res)))

1)

==>

( (lambda (res)

( (lambda (res)

( (lambda (x) x) (* 3 res)))

(* 2 res)))

1)

==>

( (lambda (res)

( (lambda (x) x) (* 3 res)))

2)

==>

( (lambda (x) x) 6)

==>

6

The continuations are built one on top of the other, in analogy to the frames in the
Procedure-call stack. In Section 4.2 we present this idea as the Continuation Passing Style
(CPS ) approach.

1.6 Polymorphic Procedures

So far we have created and manipulated powerful procedures that demonstrate complex
programming features. The type of a procedure was intuitively inferred from its code,
based on the primitive elements in it. For example, the type of the average procedure
below is determined by the known type of the primitive procedures + and /. The type of
average-damp is derived from the type of average.

average-damp:

Signature: average-damp(f)
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Type: [[Number -> Number] -> [Number -> Number]]

(define average-damp

(lambda (f)

(lambda (x) (average x (f x)))))

Type: Number*Number -> Number]

(define average

(lambda (x y)

(/ (+ x y) 2)))

But, consider the following abstraction on average-damp, where the application (call)
to average-damp is abstracted as a call to a parameter procedure op:

(define op-damp

(lambda (f op)

(lambda (x) (op x (f x)))))

What is the type of op-damp?

(define op-damp

(lambda (f op)

(lambda (x) (op x (f x)))))

Consider its applications:

> (op-damp - +)

#<procedure>

> ((op-damp - +) 3)

0

> (op-damp not (lambda (x y) (and x y)))

#<procedure>

> ((op-damp not (lambda (x y) (and x y))) #t)

#f

We see that op-damp returns a closure, but of which type? What is the type of its pa-
rameters? Based on the code we can determine that both parameters are one-parameter
procedures (primitives or closures), but we cannot determine their types. Moreover, these
closures have varying types: The type of (op-damp - +) is number –> number while the
type of (op-damp not (lambda (x y) (and x y))) is Boolean –> Boolean.

We say that procedures that can accept arguments and return values of varying types are
polymorphic, i.e., have multiple types and the expressions that create these procedures are
polymorphic expressions. Such procedures belong to multiple Procedure types, based on
their argument types.

Here are further examples of polymorphic procedures:
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> ((lambda (x) x) 3)

3

> ((lambda (x) x) #t)

#t

> ((lambda (x) x) (lambda (x) (- x 1)))

#<procedure:x>

> ((lambda (x) x) (lambda (x) x))

#<procedure:x>

> ( (lambda (f x) (f (f x)))

abs -3)

3

> ( (lambda (f x) (f (f x)))

(lambda (x) (* x x))

3)

81

We see that the closure ⟨closure (x) x⟩ can belong to the types
[Number –> Number],
[Boolean –> Boolean],
[[Number –> Number] –> [Number –> Number]].

In order to assign a single type expression to polymorphic language expressions (and
procedures) we introduce type variables , denoted T1, T2, .... Type variables in type
expressions range over all types. Type expressions that include type variables are called
polymorphic type expressions since they denote multiple types.

− The type of the identity lambda expression and procedure is [T –> T].

− The type of the expression (lambda (f x) (f x)) is [[T1 –> T2]*T1 –> T2].

− The type of the expression (lambda (f x) (f (f x))) is [[T –> T]*T –> T].

− The type of op-damp is [[T1 –> T2]*[T1*T2 –> T3] –> [T1 –> T3]].

Polymorphic pair/list procedures: cons, car, cdr are polymorphic procedures:
They apply to arguments, and return results of multiple types.

Example 1.17 (A polymorphic pair-valued procedure).

Signature: pairself(x)

Purpose: Construct a pair of a common component.

type: [T -> Pair(T,T)]
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(define pairself (lambda(x)

(cons x x)))

> (pairself 3)

(3 . 3)

> (pairself (+ 3 4))

(7 . 7)

> (pairself (lambda(x) x))

(#<procedure> . #<procedure>)

Example 1.18.
Signature: firstFirst(pair)

Purpose: Retrieve the first element of the first element of a pair.

Type: Pair(Pair(T1,T2),T3) -> T1

(define firstFirst (lambda(pair)

(car (car pair))))

Type: [T -> Boolean]

(define firstFirst-argument-type-test

(lambda (pair) (and (pair? pair) (pair? (car pair)))))

Example 1.19.
Signature: member(el, pair)

Purpose: Find whether the symbol el occurs in pair.

Type: [Symbol*Pair(T1,T2) -> Boolean]

(define member (lambda (el pair)

(cond ((and (pair? (car pair))

(member el (car pair))) #t)

((eq? el (car pair)) #t)

((and (pair? (cdr pair))

(member el (cdr pair))) #t)

((eq? el (cdr pair)) #t)

(else #f))))

Note that before recursively applying member, we test the calling arguments for their type.
Indeed, according to the Design by Contract policy, it is the responsibility of clients to call
procedures with appropriate arguments, i.e., arguments that satisfy the procedure’s pre-
condition and type. Procedures that take over the responsibility for testing their arguments
demonstrate defensive programming .

Below is a better version, that uses a type-test procedure. The type of the arguments to
member is not checked in the procedure.

(define member (lambda (el pair)
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(cond ((and (member-type-test el (car pair))

(member el (car pair))) #t)

((eq? el (car pair)) #t)

((and (member-type-test el (cdr pair))

(member el (cdr pair))) #t)

((eq? el (cdr pair)) #t)

(else #f))))

Type: [T1*T2 -> Boolean]

(define member-type-test

(lambda (el pair-candidate)

(and (symbol? el)

(pair? pair-candidate))))

Here is a defensive programming version:

(define member (lambda (el pair)

(cond ((not (member-type-test el pair))

(error ’member "wrong type arguments: el = ~s pair = ~s" el pair))

((and (member-type-test el (car pair))

(member el (car pair))) #t)

((eq? el (car pair)) #t)

((and (member-type-test el (cdr pair))

(member el (cdr pair))) #t)

((eq? el (cdr pair)) #t)

(else #f))))

Summary of the demonstrated computing features:

In this chapter we have shown how Scheme handles several essential computing features:

1. Performing iteration computation, without losing the advantages of iteration.

2. Procedures as arguments to procedures. This feature enables the formulation of essen-
tial abstract notions, like sequence summation, that can further support more abstract
notions.

3. Run time created procedures (anonymous procedures) that save the population of a
name space with one-time needed procedures.

4. Local variables.

5. Procedures that create procedures as their returned values.

74



Chapter 1 Principles of Programming Languages

6. Polymorphic procedures.

7. Compile (design) time vs. run time computation.

8. Delayed computation.

9. Hierarchical data types.

10. Procedure contracts.

Glossary: Language expressions – atomic, composite; Primitive elements; Semantics;
Types – atomic, composite; Type specification language; Value constructors; Type con-
structors; Design by contract; Preconditions; Postconditions; Procedure signature; High
order procedures; Process, Linear recursive process, Iterative process, space/time resources,
recursive procedure, tail recursion, iterative procedures; Side-effect, syntactic sugar, derived
expressions.
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Chapter 2

Theoretical Introduction of
Programming Languages: Syntax,
Semantics, Types

Partial sources:
SICP [1] 1.1.5, 1.1.7, 1.3;
Krishnamurthi [8] 3, 24-26 (online version http://cs.brown.edu/~sk/Publications/Books/

ProgLangs/2007-04-26/plai-2007-04-26.pdf);
Friedman and Wand [3] 7 (online version: http://dl.taq.ir/computer/essentials_of_

programming_languages_friedman.pdf).

The theoretical specification of a programming language has two “legs”: Syntax and
semantics . The syntax of a programming language consists of atomic elements, some of
which are primitives , and from combination and abstraction means. The specification of
syntax is done using grammars. The semantics of a programming language has two aspects:
The operational semantics aspect, which deals with algorithms for evaluation of language
expressions, and the theory of types which deals with the specification and management of
the values that are computed by language expressions.

2.1 Syntax: Concrete and Abstract

Syntax of languages can be specified by a concrete syntax or by an abstract syntax .
The concrete syntax includes all syntactic information needed for parsing a language element
(program), e.g., punctuation marks. The abstract syntax include only the essential infor-
mation needed for language processing, e.g., for executing a program. The abstract syntax
is an abstraction of the concrete syntax: There can be many forms of concrete syntax for a
single abstract syntax. The abstract syntax provides a layer of abstraction that protects
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against modifications of the concrete syntax.

2.1.1 Concrete Syntax:

The concrete syntax of a language defines the actual language. The concrete syntax of
Scheme is a small and simple context free grammar (Scheme is a context free language,
unlike most programming languages).

We use the BNF notation for specifying the syntax of Scheme. Quote from Wikipedia:

In computer science, Backus-Naur Form (BNF ) is a metasyntax used to ex-
press context-free grammars: that is, a formal way to describe formal languages.
John Backus and Peter Naur developed a context free grammar to define the
syntax of a programming language by using two sets of rules: i.e., lexical rules
and syntactic rules.

BNF is widely used as a notation for the grammars of computer programming languages,
instruction sets and communication protocols, as well as a notation for representing parts
of natural language grammars.

1. Syntactic categories (non-terminals) are denoted as <category>.

2. Terminal symbols (tokens) are surrounded with ’.

3. Optional items are enclosed in square brackets, e.g. [<item-x>].

4. Items repeating 0 or more times are enclosed in curly brackets or suffixed with an
asterisk, e.g. <word> –> <letter> <letter>*.

5. Items repeating 1 or more times are followed by a +.

6. Alternative choices in a production are separated by the | symbol, e.g.,
<alternative-A> ∣ <alternative-B>.

7. Grouped items are enclosed in simple parentheses.

Concrete syntax of the subset of Scheme introduced so far:

<scheme-exp> -> <exp> | ’(’ <define> ’)’

<exp> -> <atomic> | ’(’ <composite> ’)’

<atomic> -> <number> | <boolean> | <variable> | <quoted-variable>

<composite> -> <special> | <macro> | <form>

<number> -> Numbers

<boolean> -> ’#t’ | ’#f’

<variable> -> Restricted sequences of letters, digits,punctuation marks

<quoted-variable> -> A variable starting with ’
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<special> -> <lambda> | <quote> | <cond> | <if>

<macro> -> <let>

<form> -> <exp>+

<define> -> ’define’ <variable> <exp>

<lambda> -> ’lambda’ ’(’ <variable>* ’)’ <exp>+

<quote> -> ’quote’ <variable>

<cond> -> ’cond’ <condition-clause>* <else-clause>

<condition-clause> -> ’(’ <exp> <exp>+ ’)’

<else-clause> -> ’(’ ’else’ <exp>+ ’)’

<if> -> ’if’ <exp> <exp> <exp>

<let> -> ’let’ ’(’ <var-definition>* ’)’ <exp>+

<var-definition> -> ’(’ <variable> <exp> ’)’

Note that the <define> expression cannot be nested in other combined expressions.
Therefore, a <define> expression can appear only at the top level of Scheme expressions.

The expressions of the Scheme language are obtained from the concrete syntax by ter-
minal derivations from the start symbol <Scheme-EXP>. For example, the expression (if

#f (/ 1 0) 2) is syntactically correct in Scheme because it can be derived in the above
syntax. Here is a derivation which produces it:

<scheme-exp> ->

<exp> ->

( <composite> ) ->

( <special> ) ->

( <if> ) ->

( if <exp> <exp> <exp> )->

( if <atomic> <exp> <exp> )->

( if <boolean> <exp> <exp> ) ->

( if #f <exp> <exp> ) ->

( if #f <exp> <atomic> ) ->

( if #f <exp> number) ->

( if #f <exp> 2) ->

( if #f ( <composite> ) 2) ->

( if #f ( <form> ) 2) ->

( if #f ( <exp> <exp> <exp> ) 2) ->

( if #f ( <atomic> <exp> <exp> ) 2) ->

( if #f ( <variable> <exp> <exp> ) 2) ->

( if #f ( / <exp> <exp> ) 2) ->

( if #f ( / <atomic> <exp> ) 2) ->

( if #f ( / <number> <exp> ) 2) ->

( if #f ( / 1 <exp> ) 2) ->

( if #f ( / 1 <atomic> ) 2) ->
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( if #f ( / 1 <number> ) 2) ->

( if #f ( / 1 0 ) 2).

Write a derivation tree for ( if #f ( / 1 0 ) 2).

2.1.2 Abstract Syntax

The abstract syntax of a language emphasizes the content parts of the language, and ig-
nores syntactical parts that are irrelevant for the semantics. For example, the exact ordering
of the arguments in a define special form, or the exact parentheses or phrasing symbols, are
irrelevant. In Scheme, we could have replaced the “(“ and “)” by “<” and “>”, respectively;
or replace the white space by commas, without changing the denotation of the expressions.
A single abstract syntax can be an abstraction of multiple concrete syntax grammars.

Abstract syntax singles out alternative kinds of a category, and the components of
a composite element. For each component, the abstract syntax emphasizes its role in the
composite sentence, its category , its amount in the composite sentence, and whether its
instances are ordered.

Abstract syntax choices and structure can be represented by an and/or tree whose
nodes are labeled by grammatical categories. Alternative kinds of a category are represented
by an or-branch , and the components of a composite grammatical category are represented
by an and-branch , whose child nodes are labeled by the component categories. Component
branches are labeled by their roles, and the child nodes are also annotated by the amount
using the +, * symbols, and ordering.

The abstract syntax of a concrete syntax can be constructed by following the rules of
the concrete syntax, and creating an or-branch for a rule choice and an and-branch for a
composite rule. For example, the concrete syntax rule for the scheme-exp

<scheme-exp> -> <exp> | ’(’ <define> ’)’

is represented by the and/or tree in Figure 2.1.
The concrete syntax rule for a lambda form:

<lambda> -> ’(’ ’lambda’ ’(’ <variable>* ’)’ <exp>+ ’)’

is represented by the and/or tree in Figure 2.2.
The full abstract syntax of a language is obtained by combining the and/or trees of all
language categories. For example, the abstract syntax of the <scheme-exp>, <exp> and
<define> categories of Scheme are represented by the and/or tree in Figure 2.3.

Compilers and interpreters use an Abstract Syntax Parser (ASP) which defines an
interface to the syntax, to be used by all clients of the parser. The separation of abstract
syntax from the concrete syntax provides an additional degree of freedom to compilers and
interpreters.
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Figure 2.1: And/or tree for <scheme-exp>

Figure 2.2: And/or tree for <lambda>
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Figure 2.3: And/or tree for the categories <scheme-exp>, <exp>, <define>

The and/or tree of the abstract syntax of a language determines the Abstract Syntax
Tree (AST ) representations of language expressions. For a language expressions e, AST (e)
is a tree whose internal nodes are labeled by language categories, roles or operators, and its
leaves are labeled by atomic elements of the expression (language terminal symbols) that
are not punctuation marks. For example, an AST of the expression (lambda (x y) (+ x

y)) might be the tree in Figure 2.4. It can be created by following the and/or-branches of
the appropriate ASD. The UML Class Diagram is a good language for specifying abstract
syntax: It can describe the grammar categories and their inter-relationships, while ignoring
the concrete syntax details.

Symbolic description of the scheme abstract syntax: We specify, for each category,
its kinds or its components (parts).

<scheme-exp>:

Kinds: <exp>, <define>

<exp>:

Kinds: <atomic>, <composite>

<atomic>:

Kinds: <number>, <boolean>, <variable>

<composite>:

Kinds: <special>, <form>

<number>:

Kinds: numbers.

<boolean>:

Kinds: #t, #f
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Figure 2.4: A possible AST for (lambda (x y) (+ x y))

<variable>:

Kinds: Restricted sequences of letters, digits, punctuation marks

<special>:

Kinds: <lambda>, <quote>, <cond>, <if>, <let>

<form>:

Components: Expression: <exp>. Amount: >= 1. Ordered.

<define>:

Components: Variable: <variable>

Expression: <exp>

<lambda>:

Components: Parameter: <variable>. Amount: >= 0. Ordered.

Body: <exp>. Amount: >= 1 . Ordered.

<quote>:

Components: Quoted-name: <variable>

<cond>:

Components: Clause: <condition-clause>. Amount >= 0. Ordered.

Else-clause: <else-clause>

<condition-clause>:

Components: Predicate: <exp>

Action: <exp>. Amount: >= 1. Ordered.

<else-clause>:

Components: Action: <exp>. Amount: >= 1. Ordered.

<if>:

Components: Predicate: <exp>

Consequence: <exp>

Alternative: <exp>
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<let>:

Components: Var: <variable-initialization>. Amount: >= 0.

Body: <exp>. Amount: >= 1 . Ordered.

<variable-initialization>:

Components: Variable: <variable>

Expression: <exp>

The Scheme interpreters and compilers in chapter 6 use an abstract syntax based parser
for analyzing Scheme expressions. Figure 2.5 presents a UML class diagram [12, 9] for the
Scheme concrete syntax above.

Figure 2.5: Scheme Abstract Syntax formulated in UML class diagram

1. Categories are represented as classes.

2. Kinds are represented by class hierarchy relationships.

3. Components are represented as composition relationships between the classes.

2.2 Operational Semantics: The Substitution Model

The operational semantics is specified by a set of formal evaluation rules that can be
summarized as an algorithm eval(exp) for evaluation of Scheme expressions.

In order to formally define eval(exp) we first introduce several concepts:
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1. Binding instance or declaration : A binding instance (declaration) of a variable
is a variable occurrence to which other occurrences refer.
In Scheme:

(a) Variables occurring as lambda parameters are binding instances (declarations).

(b) Top level (non-nested) defined variables (in a define form) are binding in-
stances (declarations).

(c) Variables occurring as let local variables are binding instances (declarations).

2. Scope : The scope of a binding instance x is the region of the program text in which
occurrences of x refer to (are bound by) the declaration of x (where the variable
declaration is recognized).
In Scheme:

(a) The scope of lambda parameters is the entire lambda expression.

(b) The scope of define variables is the entire program, from the define expression
and on: Universal scope .

(c) The scope of let local variables is the entire let body (not including the initial-
ization expressions).

3. Bound occurrence in an expression : Occurrences of a variable x (not as binding
instances (declarations)) within the scope of a binding instance x are called bound .
The binding instance (declaration) that binds an occurrence of x is the most
nested declaration of x that includes the x occurrence in its scope.

4. Free occurrence in an expression : Occurrences of a variable x (not as binding
instances) that are not bound are free .

(lambda (x) (+ x 5))

;x is bound by its declaration in the parameter list.

(define y 3) ;A binding y instance.

(+ x y) ;x, + are free, y is bound (considering the above evaluations).

(+ x ( (lambda (x) (+ x 3)) 4))

;the 1st x occurrence is free,

;the 2nd is a binding instance,

;the 3rd is bound by the declaration in the lambda parameters.

(lambda (y) ;a binding instance

(+ x y
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;the x occurrence is free

;the y occurrence is bound by the outer declaration

((lambda (x y) (+ x y))

;the x and y occurrences are bound by the internal declarations.

3 4)

))

An equivalent form:

(lambda (y)

(+ x y

(let ((x 3)

(y 4)) ;declarations of x and y

(+ x y))

;the x and y occurrences are bound by the let declarations.

))

Note: A variable is bound or free with respect to an expression in which it occurs. A
variable can be free in one expression but bound in an enclosing expression.

5. Renaming : Bound variables in expressions can be consistently renamed by new
variables (not occurring in the expression) without changing the intended meaning of
the expression. That is, expressions that differ only by consistent renaming of bound
variables are considered equivalent . For example, the following are equivalent pairs:

(lambda (x) x) ==> (lambda (x1) x1)

(+ x ( (lambda (x) (+ x y)) 4)) ==> (+ x ( (lambda (x1) (+ x1 y)) 4))

Incorrect renaming:

(+ x ( (lambda (y) (+ y y)) 4)) ==> (+ x1 ( (lambda (x1) (+ x1 y)) 4)))

6. The substitute operation : An operation of replacement of free occurrences of
variables in an expression by given expressions .

Definition: A substitution s is a mapping from a finite set of variables to a finite
set of syntactic expressions. A binding is a pair ⟨x, s(x)⟩ such that x = s(x).

Substitutions are written using set notation. For example:

− {x = 3, y = a, z = #t, w = (lambda(x) (+ x 1))} is a substitution, while
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− {x = 3, x = a, z = #t, w = (lambda(x) (+ x 1))} is not a substitution.

Definition: Composition (combination) of substitutions The composition of
substitutions s and s′, denoted s○s′, is a substitution s′′ that extends s with a binding
⟨x, s′(x)⟩ for every variable x for which s(x) is not defined.

For example,
{x = 3, y = a}○{z = #t, w = (lambda(x)(+ x 1))} =
{x = 3, y = a, z = #t, w = (lambda(x)(+ x 1))}

The empty substitution { } is the neutral (unit) element of the substitution-composition
operation: For every substitution s, { } ○ s = s ○ { } = s.

Definition: The substitute operation is an application of a substitution s to an
expression E. It is denoted E ○ s (or just Es if no confusion arises), and involves
replacement of free variable occurrences by values:

(a) Consistent renaming of the expression E and the values in s.

(b) Simultaneous replacement of all free occurrences of the variables of s in (the
renamed) E by (the renamed) corresponding values.

Example 2.1 (Substitution applications E ○ s).

(a) 10○{x = 5} = 10: No renaming; no replacement.

(b) (+ x y)○{x = 5} = (+ 5 y): No renaming; just replacement.

(c) (+ x y)○{x = 5, y = ’x} = (+ 5 ’x): No renaming; just replacement.
Note the difference between the variable x to the Symbol value ’x.

(d) ((+ x ((lambda (x) (+ x 3)) 4)))○{x = 5} =

i. Renaming: E turns into ((+ x ((lambda (x1) (+ x1 3)) 4)))

ii. Substitute: E turns into ((+ 5 ((lambda (x1) (+ x1 3)) 4)))

(e) (lambda (y)(((lambda (x) x) y) x))○{x = (lambda(x)(y x))}:

Variable y in the substitution is free. It should stay free after the substitution
application.

i. Renaming:
The substitution turns into (lambda (x1) (y x1));
E turns into (lambda (y2) (((lambda (x3) x3) y2) x));

ii. Substitute: E turns into

(lambda (y2) ( ((lambda (x3) x3) y2)

(lambda (x1) (y x1)))

)
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What would be the result without renaming? Note the difference in the binding
status of the variable y.

(f) (lambda (f) (g (f 3)))○{g = (lambda (x) (f x))}:

Variable f in the substitution is free. It should stay free after the substitution is
applied.

i. Renaming:
The substitution turns into (lambda (x1) (f x1));
E turns into (lambda (f2) (g (f2 3)));

ii. Substitute:
E turns into (lambda (f2) ((lambda (x1) (f x1)) (f2 3)))

Applying a substitution to multiple expressions: The notion is extended into
E1,E2, . . . ,En ○ s. It will be useful for lambda expressions and closures with multiple
expressions in their bodies.
Writing agreement: In manual descriptions of substitutions, if there is no variable
overlapping between the substitution values and the substituted expression, we save
the explicit writing of the renaming step.

2.2.1 The Substitution Model – Applicative Order Evaluation:

The substitution model uses applicative order evaluation , which is an eager approach
for evaluation. The rules formalize the informally stated rules in Chapter 1:

1. Eval : Evaluate the elements of the compound expression;

2. Apply : Apply the procedure which is the value of the operator of the expression,
to the arguments, which are the values of the operands of the expression. For user
defined procedures (closures) this step is broken into 2 steps: Substitute and reduce .

(a) Substitute: Replaces the evaluated arguments for free occurrences of the pa-
rameters in the procedure body, yielding the so called reduced body.

(b) Reduce: Recursive application of the evaluation algorithm on the reduced body.

Therefore, the model is also called eval-substitute-reduce . The algorithm that defines
the operational semantics is called applicative-eval. The input to the algorithm can be
a plain scheme expression, or the result of the application of a substitution to a scheme
expression. Therefore, the algorithm is a function:
applicative-eval: <scheme-exp>→ Scheme_type

Scheme_type = Number ∪Boolean ∪ Symbol ∪ Procedure ∪ Pair ∪List ∪ V oid ∪Empty.
We use the identifying predicates atom?, composite? number?, boolean?, and variable?,

for identifying atomic, composite, number, boolean, and variable expressions, respectively.
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The predicates primitive-procedure?, and procedure? are used for identifying primitive
procedures and user defined procedures, respectively.
How to avoid mixing syntactic expressions with values: The rules for application
of a user procedure create a confusion between syntactic expressions and computed values.
The eval step creates values, which should be substituted for parameter occurrences in the
procedure body. But this might create an undesirable mixture of values within a syntactic
expression. In order to avoid that, the algorithm uses the following assumption:

Every type in Scheme_type has value->syntax function that maps values to a
Scheme expression that evaluates to the given value:
Numbers, booleans: value->syntax (v) = v

Symbols: value->syntax ( ’v) = (quote v)

Pairs: for a pair p whose literal expression is (a1 . a2), value->syntax ( p) =
(cons a1 a2)

Lists: For a list lst whose literal expression is (a1 a2 ... an), value->syntax (
lst) = (cons a1 (const a2 ... (cons an ()) ... ))

Closures: For a closure cl whose literal expression is <closure(x1 ... xn)

e1 e2 ... em>, value->syntax ( cl) = (lambda (x1 ... xn) e1 e2 ... em)

The applicative-eval algorithm:

Signature: applicative-eval(e)

Purpose: Evaluate a Scheme expression

Type: [<scheme-exp> → Scheme-type]

Definition:

applicative-eval[e] =

I. atom?(e):

1. number?(e) or boolean?( e) or empty-list?(e):

applicative-eval[e] = make-number(e) or make-boolean(e) or make-empty(e)

;a number or a boolean or an empty-list atom evaluates into a number or

a boolean or the empty list value, respectively

2. variable?(e):

a. If GE(e) is defined:

applicative-eval[e] = GE(e)

b. Otherwise: e must be a variable denoting a Primitive procedure:

applicative-eval[e] = primitive-value(e).

II. composite?(e): e = (e0 e1 ... en)(n >= 0):

1. e0 is a Special Operator:

applicative-eval[e] is defined by the special evaluation rules
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of e0 (see below).

2. a. Evaluate: compute applicative-eval[ei] = vi’ for i=0..n.

b. primitive-procedure?(v0’):

applicative-eval[e] = system application v0’(v1’, ..., vn’).

c. procedure?(v0’):

v0’ is a closure: <Closure (x1 ... xn) b1 ... bm>

i. value->syntax: let ei’ = value->syntax(vi’), for i=1..n

ii. Substitute (preceded by renaming):

b1, ..., bm ○{x1 = e1’, ..., xn = en’} = b1’, ..., bm’

iii. Reduce: applicative-eval[b1’], ..., applicative-eval[b(m-1)’].

applicative-eval[e] = applicative-eval[bm’].

Special operators evaluation rules:

1. e = (define x e1):

GE = GE○{x=applicative-eval[e1]}
applicative-eval[e]=void

2. e = (lambda (x1 x2 ... xn) b1 ... bm), m>=1:

applicative-eval[e] = make-closure((x1 ...xn),(b1 ... bm)) =

<Closure (x1 ...xn) b1 ... bm>

3. e = (quote a): ;a must be a symbol

applicative-eval[e] = make-symbol(a)

4. e = (cond (p1 e11 ...) ... (else en1 ...)):

If not(false?(applicative-eval[p1])):

applicative-eval[e11], applicative-eval[e12], ...

applicative-eval[e] = applicative-eval[last e1i]

Otherwise, continue with p2 in the same way.

If for all pi-s applicative-eval[pi] = #f:

applicative-eval[en1], applicative-eval[en2], ...

applicative-eval[e] = applicative-eval[last eni]

5. e = (if p con alt):

If not(false?(applicative-eval[p])):

then applicative-eval[e] = applicative-eval[con]

else applicative-eval[e] = applicative-eval[alt]

Note: value?(e) holds for all values computed by applicative-eval, i.e., for numbers,
boolean values (#t, #f), symbols (computed by the Symbol value constructor quote), clo-
sures (computed by the Procedure value constructor lambda), and pairs and lists.

Example 2.2. Assume that the following definitions are already evaluated:
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(define square (lambda (x) (* x x)))

(define sum-of-squares (lambda (x y)

(+ (square x) (square y))

))

(define f (lambda (a)

(sum-of-squares (+ a 1) (* a 2) )

))

(define sum

(lambda (a term b next)

(if (> a b)

0

(+ (term a) (sum (next a) term b next)))))

Apply applicative-eval:

> (f 5)

136

> (sum 3 (lambda(x)(* x x)) 5 (lambda(x)(+ x 1)))

50

applicative-eval[ (f 5) ] ==>

applicative-eval[ f ] ==>

<Closure (a) (sum-of-squares (+ a 1) (* a 2) )>

applicative-eval[ 5 ] ==> 5

==>

applicative-eval[ (sum-of-squares (+ 5 1) (* 5 2)) ] ==>

applicative-eval[sum-of-squares] ==>

<Closure (x y) (+ (square x) (square y))>

applicative-eval[ (+ 5 1) ] ==>

applicative-eval[ + ] ==> <primitive-procedure +>

applicative-eval[ 5 ] ==> 5

applicative-eval[ 1 ] ==> 1

==> 6

applicative-eval[ (* 5 2) ] ==>

applicative-eval[ * ] ==> <primitive-procedure *>

applicative-eval[ 5 ] ==> 5

applicative-eval[ 2 ] ==> 2

==> 10

==>

applicative-eval[ (+ (square 6) (square 10)) ] ==>

applicative-eval[ + ] ==> <primitive-procedure +>

applicative-eval[ (square 6) ] ==>
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applicative-eval[ square ] ==> <Closure (x) (* x x)>

applicative-eval[ 6 ] ==> 6

==>

applicative-eval[ (* 6 6) ] ==>

applicative-eval[ * ] ==> <primitive-procedure *>

applicative-eval[ 6 ] ==> 6

applicative-eval[ 6 ] ==> 6

==> 36

applicative-eval[ (square 10) ]

applicative-eval[ square ] ==> <Closure (x) (* x x))>

applicative-eval[ 10 ] ==> 10

==>

applicative-eval[ (* 10 10) ] ==>

applicative-eval[ * ] ==> <primitive-procedure *>

applicative-eval[ 10 ] ==> 10

applicative-eval[ 10 ] ==> 10

==> 100

==> 136

Example 2.3. A procedure with no formal parameters, and with a primitive expression as
its body:

> (define five (lambda () 5))

> five

<Closure () 5>

> (five)

5

applicative-eval[ (five) ] ==>

applicative-eval[ five ] ==> <Closure () 5)>

==>

applicative-eval[ 5 ] ==>

5

Example 2.4.

> (define four 4)

> four

4

> (four)
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ERROR: Wrong type to apply: 4

; in expression: (... four)

; in top level environment.

applicative-eval[ (four) ] ==>

applicative-eval[ four ] ==> 4

the Evaluate step yields a wrong type.

Example 2.5.

> (define y 4)

> (define f (lambda (g)

(lambda (y) (+ y (g y)))))

> (define h (lambda (x) (+ x y)))

> (f h)

<Closure (y1) (+ y1 ((lambda (x) (+ x y))

y1))>

> ( (f h) 3)

10

applicative-eval[ (f h) ] ==>

applicative-eval[ f ] ==>

<Closure (g) (lambda (y) (+ y (g y)))>

applicative-eval[ h ] ==>

<Closure (x) (+ x y)>

==>

Apply value->syntax(<Closure (x) (+ x y)>), followed by substitute – rename both
expressions and replace:
(lambda (y2) (+ y2 (g y2)))○{g = (lambda (x1) (+ x1 y))}

==>

applicative-eval[ (lambda (y2) (+ y2

((lambda (x1) (+ x1 y)) y2 ) )) ]

==>

<Closure (y2) (+ y2 ((lambda (x1) (+ x1 y)) y2) ) >

Note the essential role of renaming here. Without it, the application ((f h) 3) would
replace all free occurrences of y by 3, yielding 9 as the result.

Example 2.6 (The essential role of the value->syntax translation:).
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I. Repeated evaluation of a symbol value:

applicative-eval[((lambda (x)(display x) x) (quote a))] ==>

Eval:

applicative-eval[(lambda (x)(display x) x)] ==> <Closure (x)(display x) x>

applicative-eval[(quote a)] ==> the symbol ’a

Value->syntax and substitute:

(display x),x ○ {x = (quote a)} = (display (quote a)), (quote a)

Reduce:

applicative-eval[ (display (quote a)),(quote a) ] ==>

Eval:

applicative-eval[ (display (quote a)) ] ==>

applicative-eval[display] ==> Code of display.

applicative-eval[(quote a)] ==> ’a , (*)

==> void

Eval:

applicative-eval[(quote a)] ==> ’a

==> ’a

II. Repeated evaluation of a Procedure value:

> ((lambda (f x)(f x)) (lambda (x) x) 3)

3

applicative-eval[ ((lambda (f x)(f x)) (lambda (x) x) 3) ] ==>

Eval:

applicative-eval[(lambda (f x)(f x))] ==> <Closure (f x)(f x)>

applicative-eval[(lambda (x) x) ] ==> <Closure (x) x)>

applicative-eval[3] ==> 3

Value->syntax, followed by renaming and substitution:

(f1 x1)○{f1 = (lambda (x2) x2), x1 = 3} = ((lambda (x2) x2) 3)

Reduce:

applicative-eval[((lambda (x2) x2) 3)] ==>

Eval:

applicative-eval[(lambda (x2) x2)] ==> <Closure (x2) x2> (*)

applicative-eval[3] ==> 3

Substitute x2 by 3 in x2 ==> 3

Reduce:

applicative-eval[3]= 3
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In both evaluations, canonical syntactic expressions are created by value->syntax (the
symbol a and the closure <Closure (x2) x2>). The evaluation completes correctly be-
cause at the point of repeated evaluation of applicative-eval (the lines marked by (*),
applicative-eval is given the canonical syntactic expressions, rather the already computed
values. Otherwise, the first evaluation would have failed with an “unbound variable” error,
and the second with “unknown type of argument”. Try it!

The substitution model – applicative order uses the call-by-value method
for parameter passing.
Parameter passing method : In procedure application, the values of the ac-
tual arguments are substituted for the formal parameters. This is the standard
evaluation model in Scheme (LISP), and the most frequent method in other
languages (Pascal, C, C++, Java).

2.2.2 The Substitution Model – Normal Order Evaluation:

applicative-eval implements the eager approach in evaluation . The eagerness is
expressed by immediate evaluation of arguments, prior to closure application. An alternative
algorithm, that implements the lazy approach in evaluation avoids argument evaluation
until essential:

1. Needed for deciding a computation branch.

2. Needed for application of a primitive procedure.

The normal-eval algorithm is similar to applicative-eval. The only difference, which
realizes the lazy approach, is moving the argument evaluation from step II.2.a. into step
II.2.b., just before a primitive procedure is applied. Otherwise, the algorithm is unchanged,
and the computation rules for the special operators are the same:

Signature: normal-eval(e)

Purpose: Evaluate a Scheme expression

Type: [<scheme-exp> -> Scheme-type]

Definition:

normal-eval[e] =

I. atom?(e):

1. number?(e) or boolean?( e) or empty-list?(e):

normal-eval[e] = make-number(e) or make-boolean(e), or make-empty(e)

;a number or a boolean or an empty-list atom evaluates into a number or

a boolean or the empty list value, respectively

2. variable?(e):

a. If GE(e) is defined:

normal-eval[e] = GE(e)
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b. Otherwise: e must be a variable denoting a Primitive procedure:

normal-eval[e] = Scheme-value of e.

II. (composite? e): e = (e0 e1 ... en)(n >= 0):

1. e0 is a Special Operator:

normal-eval[e] is defined by the special evaluation rules of e0.

2. a. Evaluate: compute normal-eval[e0] = e0’.

b. (primitive-procedure? e0’):

Evaluate: compute normal-eval[ei] = ei’ for all ei.

normal-eval[e] = system application e0’(e1’, ..., en’).

c. (procedure? e0’):

e0’ is a closure: <Closure (x1 ... xn) b1 ... bm >:

i. Substitute (preceded by renaming):

b1, ..., bm ○{x1 = e1, ..., xn = en} = b1’, ..., bm’

ii. Reduce: normal-eval[b1’], ..., normal-eval[bm’]

iii. Return: normal-eval[e] = normal-eval[bm’]

Note that normal-eval is defined only on Scheme expressions (as expected from an inter-
preter). Why?

Example 2.7. The Expansions step for Example 2.2– In this step there are no evaluations,
just replacements.

normal-eval[ (f 5) ] ==>

normal-eval[f] ==> <Closure (a) (sum-of-squares (+ a 1) (* a 2))>

==>

normal-eval[ (sum-of-squares (+ 5 1) (* 5 2)) ] ==>

normal-eval[ sum-of-squares ] ==>

<Closure (x y) (+ (square x) (square y))>

==>

normal-eval[ (+ (square (+ 5 1)) (square (* 5 2))) ] ==>

normal-eval[ + ] ==> <primitive-procedure +>

normal-eval[ (square (+ 5 1)) ] ==>

normal-eval[ square ] ==> <Closure (x) (* x x)>

==>

normal-eval[ (* (+ 5 1) (+ 5 1)) ] ==>

normal-eval[ * ] ==> <primitiv-procedure *>

normal-eval[ (+ 5 1) ] ==>

normal-eval[ + ] ==> <primitive-procedure +>

normal-eval[ 5 ] ==> 5

normal-eval[ 1 ] ==> 1

==> 6
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normal-eval[ (+ 5 1) ] ==>

normal-eval[ + ] ==> <primitive-procedure +>

normal-eval[ 5 ] ==> 5

normal-eval[ 1 ] ==> 1

==> 6

==> 36

normal-eval[ (square (* 5 2)) ] ==>

normal-eval[ square ] ==> <Closure (x) (* x x)>

==>

normal-eval[ (* (* 5 2) (* 5 2)) ] ==>

normal-eval[ * ] ==> <primitiv-procedure *>

normal-eval[ (* 5 2) ] ==>

normal-eval[ * ] ==> <primitive-procedure *>

normal-eval[ 5 ] ==> 5

normal-eval[ 2 ] ==> 2

==> 10

normal-eval[ (* 5 2) ] ==>

normal-eval[ * ] ==> <primitive-procedure *>

normal-eval[ 5 ] ==> 5

normal-eval[ 2 ] ==> 2

==> 10

==> 100

==> 136

2.2.3 Comparison: The applicative order and the normal order of evalu-
ations:

1. If both orders terminate (no infinite loop): They compute the same value.

2. Normal order evaluation repeats many computations.

3. Whenever applicative order evaluation terminates, normal order terminates as well.

4. There are expressions where normal order evaluation terminates, while applicative
order does not:

(define loop (lambda (x) (loop x)))

(define g (lambda (x) 5))

(g (loop 0))

In normal order, the application (loop 0) is not evaluated. In applicative order:
Better, do not try! Most interpreters use applicative-order evaluation.
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5. Side effects (like printing – the display primitive in Scheme) can be used to identify
the evaluation order. Consider, for example,

> (define f (lambda (x) (display x) (newline) (+ x 1)))

> (define g (lambda (x) 5))

> (g (f 0))

0

5

− What evaluation order was used?

− What are the side effect and the result in the other evaluation order?

Explain the results by applying both evaluation orders of the eval algorithm.

The normal-order evaluation model uses the call-by-name method for param-
eter passing : In procedure application, the actual arguments themselves are
substituted for the formal parameters. This evaluation model is used in Scheme
(LISP) for special forms . The call by name method was first introduced in
Algol-60.

2.2.4 Local Recursive Procedures

Recall the special operator let, which is a syntactic sugar for application of an anonymous
lambda, i.e., runtime creation of a closure and its immediate application. Example 1.11
in Chapter 1, introduces a procedure for solving a polynomial function, using component
substitution:

(define f

(lambda ( x y)

(let ((a (+ 1 (* x y)))

(b (- 1 y)))

(+ (* x (square a))

(* y b)

(* a b)))))

is actually the procedure:

(define f

(lambda (x y)

((lambda (a b)
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(+ (* x (square a))

(* y b)

(* a b)))

(+ 1 (* x y))

(- 1 y))

))

Therefore:

applicative-eval[ (f 3 1) ] ==>*

Substitute: <body of f>○{x = 3, y = 1} ==>

applicative-eval[ ((lambda (a b) (+ (* 3 (square a))

(* 1 b)

(* a b)))

(+ 1 (* 3 1))

(- 1 1)) ] ==>*

applicative-eval[ (+ (* 3 16) (* 1 0) (* 4 0)) ] ==>

48

The symbol ==>* is used to denote application of several applicative-eval steps.
Alternatively, we can define the internal procedure as a local procedure f-xy, and apply it
to the components (+ 1 (* x y)) and (- 1 y):

(define f

(lambda (x y)

(let ( (f-xy (lambda (a b)

(+ (* x (square a))

(* y b)

(* a b)))

) )

(f-xy (+ 1 (* x y)) (- 1 y)))

))

applicative-eval[ (f 3 1) ] ==>

applicative-eval[ f ] ==> <Closure (x y) (let ...)>

applicative-eval[ 3 ] ==> 3

applicative-eval[ 1 ] ==> 1

Substitute: <body of f>○{x = 3, y = 1} ==>
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applicative-eval[ ( (lambda (f-xy) (f-xy (+ 1 (* 3 1)) (- 1 1)))

(lambda (a b)(+ (* 3 (square a))

(* 1 b)

(* a b))) ) ] ==>*

applicative-eval[ ( <Closure (a b)(+ (* 3 (square a))

(* 1 b)

(* a b)) >

(+ 1 (* 3 1))

(- 1 1)) ] ==>*

applicative-eval[ (+ (* 3 16) (* 1 0) (* 4 0)) ] ==>*

48

Indeed, since procedures are first class citizens in functional programming, we expect that
local variables can have any Scheme value, be it a number value or a closure.

But, what happens if the closure computes a recursive function? Consider:

(define factorial

(lambda (n)

(let ( (iter (lambda (product counter)

(if (> counter n)

product

(iter (* counter product)

(+ counter 1))))

) )

(iter 1 1))))

In order to clarify the binding relationships between declarations and variable occurrences
we add numbering, that unifies a declaration with its bound variable occurrences:

(define factorial

(lambda (n1)

(let ( (iter2 (lambda (product3 counter3)

(if (> counter3 n1)

product3

(iter4 (* counter3 product3)

(+ counter3 1))))

) )

(iter2 1 1))))

This analysis of declaration scopes and variable occurrences in these scopes clarifies the
problem:

− The binding instance n1 has the whole lambda body as its scope.
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− The binding instance iter2 has the let body as its scope.

− The binding instances product3 and counter3 have the body of the iter lambda as
their scope.

− In the body of the iter2 lambda form:

– The variable occurrences n1, counter3, product3 are bound by the correspond-
ing binding instances.

– The variable occurrences >, *, + denote primitive procedures.

– 1 is a number.

– if denotes a special operator.

– iter4 is a free variable !!!!! Causes a runtime error in evaluation:

applicative-eval[ (factorial 3) ] ==>*

Substitute: <body of factorial>○{n = 3} ==>

applicative-eval[ ( (lambda (iter) (iter 1 1))

(lambda (product counter)

(if (> counter 3)

product

(iter (* counter product)

(+ counter 1))))

) ] ==>*

applicative-eval[ ( <Closure (product counter)

(if (> counter 3)

product

(iter (* counter product)

(+ counter 1))) >

1 1) ] ==>*

applicative-eval[ (if (> 1 3) 1 (iter (* 1 1) (+ 1 1))) ] ==>*

applicative-eval[ (iter (* 1 1) (+ 1 1)) ] ==>

*** RUN-TIME-ERROR: variable iter undefined ***

The problem is that iter is a recursive procedure : It applies the procedure iter which
is not globally defined. iter is just a parameter that was substituted by another procedure.
Once iter is substituted, its occurrence turns into a free variable , that must be already
bound when it is evaluated. But, unfortunately, it is not! This can be seen clearly, if we
replace the let abbreviation by its meaning expression:
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1. (define factorial

2. (lambda (n)

3. ( (lambda (iter) (iter 1 1))

4. (lambda (product counter)

5. (if (> counter n)

6. product

7. (iter (* counter product)

8. (+ counter 1))))

9. )))

> (factorial 3)

reference to undefined identifier: iter

We see that the occurrence of iter in line 3 is indeed bound by the lambda parameter,
which is a declaration. Therefore, this occurrence of iter is replaced at the substitute step
in the evaluation. But the occurrence of iter on line 7 is not within the scope of any iter

declaration, and therefore is free, and is not replaced !
Indeed, the substitution model cannot simply compute recursive functions. For globally

defined procedures like factorial it works well because we have strengthened the lambda
calculus substitution model with the global environment mapping. But, that does not
exist for local procedures.
Therefore:

For local recursive functions there is a special operator letrec, similar to let,
and used only for local procedure (function) definitions. It’s syntax is the same
as that of let. But, the scope of the local procedure declarations includes all
of the initialization procedures!

(define factorial

(lambda (n)

(letrec ( (iter (lambda (product counter)

(if (> counter n)

product

(iter (* counter product)

(+ counter 1))))

) )

(iter 1 1))

))

Usage agreement: The special operator let is used for introducing non Procedure
local variables, while the special operator letrec is used for introducing Procedure local
variables. Note that the substitution model presented above does not account for local
recursive procedures.
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In lambda calculus, which is the basis for functional programming, recursive functions
are computed with the help of fixed point operators. A recursive procedure is rewritten ,
using a fixed point operator, in a way that defines it as a recursive procedures.

2.2.4.1 Side comment: Fixed point operators

Based on excerpt from Wikipedia:
A fixed point combinator (or fixed-point operator) is a higher-order function which com-
putes fixed points of functions. This operation is relevant in programming language theory
because it allows the implementation of recursion in the form of a rewrite rule, without
explicit support from the language’s runtime engine. A fixed point of a function f is a value
x such that f(x) = x. For example, 0 and 1 are fixed points of the function f(x) = x2,
because 02 = 0 and 12 = 1.

Recursive functions can be viewed as high order functions, that take a function parameter
as well as other arguments. Viewed this way, the intended semantics is to find a function
argument, which is equal to the original definition, so that recursive calls use the same
function. This is achieved by replacing the definition of f (its lambda expression) by an
application of a fixed point operator to the lambda expression that defines f .
What is a fixed-point of a high order function?
Whereas a fixed-point of a first-order function (a function on "simple" values such as integers)
is a first-order value, a fixed point of a higher-order function F is another function f-fix

such that

F(F-fix) = F-fix.

A fixed point operator is a function FIX which produces such a fixed point f-fix for any
function F:

FIX(F) = F-fix.

Therefore: F( FIX(F) ) = FIX(F).
Fixed point combinators allow the definition of anonymous recursive functions (see the

example below). Somewhat surprisingly, they can be defined with non-recursive lambda
abstractions.

Example 2.8. Consider the factorial function:

factorial(n) = (lambda (n)(if (= n 0) 1 (* n (factorial (- n 1)))))

Function abstraction:

F = (lambda (f)

(lambda (n)(if (= n 0) 1 (* n (f (- n 1))))))
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Note that F is a high-order procedure, which accepts an integer procedure argument, and
returns an integer procedure. That is, F creates integer procedures, based on its integer pro-
cedure argument. For example, F( +1 ), F( square ), F( cube ) are three procedures,
created by F.

The question is: Which argument procedure to F obtains the intended meaning of recur-
sion? We show that FIX(F) has the property that it is equal to the body of F, with recursive
calls to FIX(F). That is:
FIX(F) = (lambda (n)(if (= n 0) 1 (* n (FIX(F) (- n 1)))))

which is the intended meaning of recursion.
We know that: FIX(F) = F(FIX(F)). Therefore:

FIX(F) ==>

F( FIX(F) ) ==>

( (lambda (f)

(lambda (n)(if (= n 0) 1 (* n (f (- n 1))))))

FIX(F) ) ==>

(lambda (n)(if (= n 0) 1 (* n (FIX(F) (- n 1)))))

That is, FIX(F) performs the recursive step. Hence, in order to obtain the recursive factorial
procedure we can replace all occurrences of factorial by FIX(F), where FIX is a fixed point
operator, and F is the above expression.
An example of an application:

FIX(F) (1) ==>

F( FIX(F) ) (1) ==>

( ( (lambda (f)

(lambda (n)(if (= n 0) 1 (* n (f (- n 1))))))

FIX(F) )

1) ==>

( (lambda (n)(if (= n 0) 1 (* n (FIX(F) (- n 1)))))

1) ==>

(if (= 1 0) 1 (* 1 (FIX(F) (- 1 1)))) ==>

(* 1 (FIX(F) (- 1 1))) ==>

(* 1 (FIX(F) 0)) ==>* (skipping steps)

(* 1 (if (= 0 0) 1 (* 0 (FIX(F) (- 0 1))))) ==>

(* 1 1) ==> 1

We see that FIX(F) functions exactly like the intended factorial function. Therefore,
factorial can be viewed as an abbreviation for FIX(F):

(define factorial (FIX F))

where F is the high-order procedure above.
Scheme applications saves us the need to explicitly use fixed point operators in order to

define local recursive procedures. The letrec special operator is used instead.
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Summary:

− Local procedures are defined with letrec.

− Local non-procedure variables are defined with let.

− The substitution model (without using fixed-point operators) cannot compute local
(internal) recursive procedures. The meaning of the letrec special operator can be
defined within an imperative operational semantics (accounts for changing variable
states). Within the substitution model, we have only an intuitive understanding of
the semantics of local recursive procedures (letrec works by "magic").

2.2.5 Partial evaluation using Function Currying

Currying is a technique for turning a function (procedure) of n parameters into a chain of n
single parameter procedures. It is called after Haskell Curry. It is used when parameters are
not all available, and fixing part of them enables partial evaluation of a procedure code.
Currying turns a procedure (lambda (x1 x2 ... xn) body) into a chain of high order
procedures (lambda (x1) (lambda (x2) ... (lambda (xn) body)...)). The Currying
technique is used in every language that supports closures, i.e., run-time created procedures:
All functional languages, Javascript, C#.

Example 2.9.

Signature: add(x,y)

Type: [Number*Number -> Number]

(define add

(lambda (x y) (+ x y)))

Can be Curried into:

Signature: c-add(x)

Type: [Number -> [Number -> Number]]

(define c-add

(lambda (x)

(lambda (y) (add x y))))

(define add3 (c-add 3))

> (add3 4)

7

Example 2.10. Recall the sum procedure for summing finite sequences:

Signature: sum(term a next b)

Type: [[Number -> Number]*Number*[Number -> number]*Number ->Number]

104



Chapter 2 Principles of Programming Languages

(define sum

(lambda (term a next b)

(if (> a b)

0

(+ (term a)

(sum term (next a) next b)))))

For a given mathematical sequence, the procedures term, next are fixed and maybe fre-
quently used for varying intervals. In that case, sum can be Curried into c-sum and reused
for multiple interval boundaries:

Signature: c-sum(term)

Type: [[Number -> Number] -> [[Number -> number] -> [Number*Number ->Number]]]

(define c-sum

(lambda (term)

(lambda (next)

(lambda (a b)

(sum term a next b)))))

For the sequence of squares with skips of 2:

⟨a2, (a + 2)2, ...⟩ ∶

(define sum-sqrts-skip2 ((c-sum (lambda (x)(* x x)))

(lambda (x) (+ x 2)) ))

> (sum-sqrts-skip2 2 6)

56

Further generalization can involve general Currying procedures:

Signature: curry2(f)

Type: [[T1*T2 -> T3] -> [T1 -> [T2 -> T3]]]

(define curry2

(lambda (f)

(lambda (x)

(lambda (y) (f x y)))))

> (((curry2 add) 3) 4)

7

(define add3 ((curry2 add) 3))

> (add3 4)

7

> (add3 7)

10
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Example 2.11 (Naive Currying).

Consider a more complex version of the add procedure, where a complex computation,
say the recursive fib procedure, is applied to the available (non-delayed) parameter:

Signature: add-fib(x,y)

Type: [Number*Number -> Number]

(define add-fib

(lambda (x y)

(+ (fib x) y)))

> (add-fib 4 5)

10

Naive Currying:

Signature: c-add-fib(x)

Type: [Number -> [Number -> Number]]

(define c-add-fib

(lambda (x)

(lambda (y)

(+ (fib x) y))))

(define add-fib4 (c-add-fib 4))

> (add-fib4 5)

10

> (add-fib4 3)

8

> (add-fib4 5)

10

This Currying is naive because it does not meet the expectations of partial evaluation: In
every application of add-fib4, (fib 4) is re-computed, although we could have computed
it once at the time of Currying, i.e., before the definition of add-fib4.

The following version demonstrates the full idea of Currying: Delaying computations
in unknown variables, while applying computations in known variables.

(define c-add-fib

(lambda (x)

(let ((fib-x (fib x))) ;Applying known computation

(lambda (y) ;delaying unknown computations

(+ fib-x y)))

))

Using the new version, (fib 4) is computed once, while add-fib-4 is defined.
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Example 2.12. Consider the recursive procedure expt:

Signature: expt(x,y)

Type: [Number*Number -> Number]

(define expt

(lambda (b n)

(if (= n 0)

1

(* b (expt b (- n 1))))))

Naive Currying:

Signature: c-expt(x,y)

Type: [Number -> [Number -> Number]]

(define c-expt

(lambda (b)

(lambda (n)

(expt b n))))

> ((c-expt 3) 4)

81

Another naive Currying:

(define c-expt

(lambda (b)

(lambda (n)

(if (= n 0)

1

(* b ((c-expt b) (- n 1)) )))

))

Both Curried versions are naive since the Curried procedures still need to apply computations
or to handle substitutions of the known variable b. In order to cope with the recursion,
we define a local recursive procedure that resides in the scope of the known variable and
therefore does not need it as a parameter:

(define c-expt

(lambda (b)

(letrec ((helper (lambda (n)

(if (= n 0)

1

(* b (helper (- n 1)))))

))
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helper

)))

(define expt3 (c_expt 3) )

> (expt3 4)

81

expt3 is a procedure in the single delayed variable n, in which all occurrences of the known
variable b are already substituted.

Example 2.13.

If expt would have included some complex computation in the known variable b, it would
have been computed prior to the definition of the internal recursive procedure helper:

> (define expt’

(lambda (b n)

(if (even? (fib b))

(if (= n 0)

1

(* b (expt b (- n 1))))

0)

))

Currying:

> (define c-expt’

(lambda (b)

(let ((fib-b (fib b)))

(letrec ((helper (lambda (n)

(if (even? fib-b)

(if (= n 0)

1

(* b (helper (- n 1))))

0)

)))

helper

))

))

2.2.6 Revisiting: Primitive procedures, User-defined procedures, Derived
expressions (Syntactic sugar), Special operators

With the operational semantics formally defined, and the experience gained so far, it is time
to revisit the four different ways to implement functions using procedures. We demonstrate
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it via an example, and emphasize the requirements and advantages/disadvantages of each.
The example involves the or logic operator which is implemented in most programming

languages (including Scheme). The syntax of or expressions in Scheme is:

(or <expression>*) zero or more expressions.

> (or)

#f

> (or (= 1 2) #f #t (= y 4))

#t

In order to optimize the performance, most implementations use an optimized opera-
tional semantics that evaluates just as much as needed for determining the resulting value.
The Scheme optimized evaluation rule for or:

1. Evaluate the arguments from left to right.

2. If an argument evaluates to a non #f value, stop. The value of this argument is the
value of the or expression.

3. Otherwise, the value of the or expression is #f.

The four alternatives for implementing or:

1. Primitive procedure: But following the substitution model (applicative or normal),
all sub-expressions are evaluated before the the whole or expression is evaluated (as
in +, map expressions). Therefore, this option is not appropriate for implementing the
or operator using the optimized evaluation rule.

2. User-defined procedure: For a binary or, the implementation can be:

> (define user-or

(lambda (first second)

(if (eq? first #f)

second

first)))

> user-or

#<procedure: user-or>

> (user-or #f (> 2 3)

#f

> (user-or 1 2)

1

> (user-or #t (fib 250))

#t

109



Chapter 2 Principles of Programming Languages

Does this user-defined procedure provides the desired operational semantics?
The answer depends on the version of the Substitution model we use:

(a) Applicative order: The optimized evaluation rule is not implemented, since all
arguments are evaluated before the whole or expression is evaluated.

(b) Normal order: The optimized evaluation rule is implemented, since the if

operator does not evaluate the alternative, if the consequence is not false.

3. Derived expression (syntactic sugar): The or operator is translated in pre-
processing time, before evaluation starts (like the macro character) into an alternative
Scheme code. We consider three options for a binary or, showing how name clash can
be prevented by creating separate lexical scopes (using lambda abstraction).

(a) Try 1: Translate an or expression into a conditional expression:

(or exp1 exp2) ==>

(if exp1 exp1 exp2)

For example,

(or (> (fib 250) 300) (> y 1)) ==>

(if (> (fib 250) 300)

(> (fib 250) 300)

(> y 1))

Problem: Repeated evaluation of the first expression. In addition to ineffi-
ciency, if there are side effects (e.g., printouts), or in the context of imperative
programming, repetition might change the results and effects of evaluation.

(b) Try 2: Evaluate the first expression just once, and use a local variable to refer
to the returned value:

(or exp1 exp2) ==>

(let ((test1 exp1))

(if test11 test11 exp2))

For example,

(or (> (fib 250) 300) (> y 1)) ==>

(let ((test1 (> (fib 250) 300)))

(if test1

test1

(> y 1)))
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Problem: The let operator defines a lexical scope for the body. In this scope,
all references to the newly defined local variable test1 refer to the let variable.
But what if the arguments of the or expression also include the variable test1 as
a free variable? Then their evaluation is modified to refer to the local variable
instead. For example:

> (define test1 #t)

> (or (= 1 2) test1)

#t

while

> (let ((test1 (= 1 2)))

(if test1

test1

test1))

#f

The local test1 variable overrides the declaration in the surrounding scope.

(c) Try 3: Insert a separate lexical scope to prevent name clashes. In this case,
the local variable might have a clash with free variables in the second argument.
Therefore, a new lexical scope is inserted for the second expression – using lambda
abstraction:

(or exp1 exp2) ==>

(let ((test1 exp1)

(thunk (lambda () exp2)))

(if test1 test11 (thunk)))

For the last example,

> (define test1 #t)

> (or (= 1 2) test1)

#t

and indeed

> (let ((test1 (= 1 2))

(thunk (lambda () test1)))

(if test1

test1

(thunk)))

#f

and another example,
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> (define test1 #t)

> (define thunk (lambda () #t))

> (or (= 1 2) (thunk))

#t

and indeed

> (let ((test1 (= 1 2))

(thunk (lambda() (thunk))))

(if test1

test1

(thunk)))

#t

There is no clash between the local thunk variable to the free occurrence of this
variable in the second argument, which refers to the global declaration. The clash
is prevented due to the scope separation.
Recall that we have already used lambda abstraction for delaying computation.
Here we see another use of lambda abstraction: for separating lexical scopes .

4. Special operator: The or operator is inserted to the language as a special operator.
That is, the concrete and abstract syntax is extended to include or expressions, and
the operational semantics is extended with the special evaluation rule. This option is
inferior to the derived expression one.

2.2.7 Formalizing tail recursion – analysis of expressions that create it-
erative processes

Based on the operational semantics, language expressions can be analyzed so to identify
whether they create recursive or iterative processes. This analysis can be formalized (and
automated), so that an expression can be proved to create iterative processes. Having an
iterative process automated identifier, a compiler (interpreter) can be tail recursive , i.e.,
can identify iterative expressions and evaluate them using bounded space.

Head and tail positions: The tail recursion analysis starts with the concepts of head
and tail positions, which characterize positions in expressions where user procedures can
be called without affecting the iterative nature of the processes that the expression creates.
Tail positions are positions whose evaluations is the last to occur. Head positions are all
other positions. Head positions are marked H and tail positions are marked T:

1. (<PRIMITIVE> H ... H)

2. (define var H)

3. (if H T T)
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4. (lambda (var1 ... varn) H ... T)

5. (let ( (var1 H) ...) H ...T)

6. Application: (H ... H)

Example 2.14. (define x (let ((a (+ 2 3)) (b 5)) (f a b)))

− The let sub-expression is in head position.

− The (+ 2 3) and 5 sub-expressions of the let expressions are in head positions.

− The (f a b) sub-expression of the let expression is in tail position.

− The 2 and 3 sub-expressions of (+ 2 3) are in head positions.

− The f, a, b sub-expressions of (f a b) are in head positions.

An expression is in tail form if its head positions do not include calls to user procedures,
and its sub-expressions are in tail form. By default, atomic expressions are in tail form.

Example 2.15.

− (+ 1 x) is in tail form.

− (if p x (+ 1 (+ 1 x))) is in tail form.

− (f (+ x y)) is in tail form.

− (+ 1 (f x)) is not in tail form (but (f x) is in tail form).

− (if p x (f (- x 1))) is in tail form.

− (if (f x) x (f (- x 1))) is not in tail form.

− (lambda (x) (f x)) is in tail form.

− (lambda (x) (+ 1 (f x))) is not in tail form.

− (lambda (x) (g (f 5))) is not in tail form.

Proposition 2.2.1. Expressions in tail form create iterative processes.
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2.3 Types

The evaluation of a language expression results a value . The set of all returned values is
the set of computed values of a language. This set is usually divided into subsets, called
types, on which common operations are defined. That is, a type is a distinguished set of
values on which common operations are defined. The theory of types of a programming
language associates a type T with the set of language expressions whose evaluations yield
values in T . That is:

Language expressions ---- Evaluation algorithm ----> Types (sets of values)

(syntax) (semantics)

The theory provides methods and techniques for identifying, for every language expression,
what is the type (or types) of the values that result from its evaluation(s).
Syntax notions: expressions, variables, symbols, forms
Semantic notions: types, values

The purpose of type management in programming languages is to prevent unfeasible
computations, i.e., computations that cannot be completed due to improper applications of
procedures to values. For example, prevent:

> (+ ((lambda (x) x) (lambda (x) x)) 4)

+: expects type <number> as 1st argument, given: #<procedure:x>; other

arguments were: 4

Language expressions (syntax) are assigned a type (semantics), so that well typing rules
can be checked. For example, the above expression is not well typed, since that type of the +
primitive procedure is [number*Number –> Number], while the types of the given arguments
were [T –> T] and Number.

But, can we guarantee that expressions are well typed? Consider:

> (define x 4)

> (+ 3

(if (> x 0)

(+ x 1)

"non-positive value"))

5

and

> (define x 0)

> (+ 3

(if (> x 0)

(+ x 1)

"non-positive value"))
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+: expects type <number> as 2nd argument, given: "non-positive value";

other arguments were: 3

What happened? The expression (if (> x 0) (+ x 1) “non-positive value”) is not
well typed. Depending on the runtime value of the variable x, it evaluates either to a
number or to a string. Such expressions might cause runetime errors when combined with
other operations.

Programming languages that enforce type checking at static time (before runtime),
usually prohibit conditional expressions that might evaluate to different types. In Scheme
(Dr. Racket), since types are checked at runetime, such conditionals are allowed, but should
be handled with much care.

Typing information is not part of Scheme syntax. However, all primitive procedures
have predefined types for their arguments and result. The Scheme interpreter checks type
correctness at run-time: dynamic typing .

Type classification: Primitive, atomic, composite types:
Primitive types are types already built in the language. That is, the language can compute
their values and provides operations for operating on them. All types in the Scheme subset
that we study are primitive, i.e., the user cannot add new types (unlike in ML or Java).
Atomic and Composite types: Atomic types are sets of atomic values, i.e., values that
are not decomposable into values of other types. Composite types are sets of values that are
constructed from values of other types.

Standard specification of a type: The standard specification includes information
about the values in the type, language expressions that return these values, value con-
structors, operations for identification (identification predicate), comparison (equality
predicate), and management:

1. Values: The set of values of the type

2. Value constructors: Operations that construct values in the type. For atomic types,
every value is a constructor. For composite types, the value constructors are functions
from the component types to the specified type.

3. Identifying predicates: Identify the values of the type

4. Equality predicates: Compare values of the type

5. Operations: Operate on values of the type

2.3.1 Atomic Types

Scheme supports several primitive atomic types, of which we discuss only Number ,
Boolean and Symbol .
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The Number Type: Scheme allows number type overloading: integer and real expres-
sions can be combined freely in Scheme expressions. We consider a single Number type.
Values of the Number type are denoted by number symbols:

Scheme does not distinguish between the syntactic number symbol to its
semantic number value : The number symbol stands both for the syntactic
sign and its number value.

The identifying predicate of the Number type is number?, the equality predicate is the
primitive procedure =, and the operations are the regular arithmetic primitive operations
and relations. Each number symbol is evaluated to the number it stands for, i,e., each
number symbol is a value constructor for a single Number value (there is infinity of value
constructors).

The Boolean Type: The Boolean type is a 2 valued set {#t, #f}, with the identi-
fying predicate boolean?, the equality predicate eq?, and the regular boolean connectives
(and, or, not, and more) as operations (note that and, or are special operators since they
optimize their argument evaluation). The values of the Boolean type (semantics) are syn-
tactically denoted by 2 Scheme symbols: #t, #f. #t denotes the value #t, and #f denotes
the value #f. Therefore, there are two value constructors: #t, #f.

Scheme does not distinguish between the syntactic boolean symbol to its
semantic boolean value .

The Symbol Type: The values of the Symbol type are atomic names, i.e., (unbreak-
able) sequences of keyboard characters (to distinguish from strings). quote is the value
constructor of the Symbol type (with ’ as a macro character). Its parameter is any se-
quence of keyboard characters. The Symbol type identifying predicate is symbol? and its
equality predicate is eq?. The Symbol type is a degenerate type, i.e., there are no operations
defined on Symbol types.

2.3.2 Composite Types

A composite type is a type whose values are composed from values of other types (including
self values, in the case of a recursive type). The values of a composite type can be decomposed
into values of other (or self) types. For example, the rational numbers can be viewed as the
composite Rational-number type, whose values are constructed, each, from two integer
values (and therefore, can be decomposed into their nominator and denominator integer
components).

In the Scheme subset used in this course, the composite types are Procedure, Pair and
List . As already said above, there are no user defined types. For example, we cannot define
a new Rational-number type, but rather, decide how to represent rational numbers using
values of the primitive types, e.g., as pairs of integers.
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Type and value constructors: In order to describe a composite type we need to

1. specify the types from which its values are constructed;

2. describe how values of the component types are composed to form a new value of the
defined type.

The first need is provided by a type constructor . The second need is provided by value
constructors. That is, a type constructor is a function that takes type arguments (sets)
and returns a new set – the defined composite type. A value constructor is a function that
takes value arguments and returns a value in the type of the value constructor.

1. Procedure types: The type constructor for procedure types is ->. It is used for all
procedure arities. [type1∗ . . .∗ typen → type] (n ≥ 1) denotes the type (set) of all n-ary
procedures, that take n arguments from types type1, . . . , typen, and return a value in
type type. [Empty → type] is the type of all parameter-less procedures that return a
value in type type. That is, –> is a (n + 1)-ary n ≥ 0 function:

–>∶ ⨉n+1
0

TY PES → Procedure

–>(type1, . . . , typen, type) = [type1 ∗ . . . ∗ typen → type] n ≥ 1
–>(type) = [Empty → type]

where TY PES is the set of all types (including procedure types), and Procedure is
the set of all procedure types.

The value constructor for all procedure types is lambda. It takes as arguments a list of
n variables (n ≥ 0), and a body that consists of m expressions (m ≥ 1). It constructs
a procedure value in a procedure type [type1 ∗ . . . ∗ typen− > type] (n ≥ 1), or in
[Empty− > type] (n = 0). That is, lambda is the function:

lambda∶ n-variables-list ×m-expression-list→ [type1 ∗ . . . ∗ typen → type] n ≥ 1
lambda∶ empty-variable-list ×m-expression-list→ [Empty → type] n = 0

The procedure value (closure) that is constructed by application of the value construc-
tor lambda is determined by the operational-semantics algorithm. The challenge of
type inference systems is to identify the type of this procedure value (closure) based
on:

(a) the length of the variable list

(b) the syntax of the expressions in the procedure body

(c) the rules of the evaluation algorithm
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2. Pair types: The type constructor for pair types is Pair. It takes two type arguments
type1, type2 and returns a pair type Pair(type1, type2):

Pair∶ TY PES × TY PES → Pair

where TY PES is the set of all types, and Pair is the set of all pair types. The pair type
returned by application of Pair to types type1, type2 is denoted Pair(type1, type2).
Pair(Number,Number) denotes the type (set) of all number pairs, Pair(Number,[T ->

Boolean]) denotes the type of all pairs of a number and a boolean 1-ary procedure,
and Pair(Number,T) is a polymorphic pair type denoting all pair types whose first
component is Number.

The value constructor of pair types is cons.

cons∶ type1 × type2 → Pair(type1, type2)

3. List types: The type constructor for list types is List. For homogeneous lists It
takes a single type argument type and returns a list type List(type):

List∶ TY PES →Homogeneous_list

where TY PES is the set of all types, and Homogeneous_list is the set of all homo-
geneous list types. For heterogeneous lists, there is a single type, denoted List: The
type constructor List does not take any type parameters. The homogeneous list type
returned by application of List to type type is denoted List(type).

The value constructor of list types is cons.

Homogeneous lists: cons∶ type1 ×List(type1)→ List(type1)
Heterogeneous lists: cons∶ type1 ×List→ List

Type inference systems combine the three aspects of programming language: syntax, eval-
uation rules, types.

The type of a language expression: The evaluation of a language expression yields a
value. The type to which this value belongs is the type of the expression:

Language-expression ----evaluation----> Value ----belongs-to----> Type

type-of(exp) = type-of(value-of(exp))

In case that different evaluations of an expression return values in different types we say that
the expression is polymorphic. We have introduced type variables to the type language
in order to denote the type of such expressions. type expressions that include type variables
are termed polymorphic. Hence, the type of a p polymorphic expression is denoted by a
polymorphic type expression.
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The type constructors –>, Pair, list are polymorphic: They can be applied to poly-
morphic type expressions and can return a polymorphic type expression. The “amount of
polymorphism” in the type of an expression is determined by the “amount” of primitives
occurring in it. For example,

− The type of (lambda (x) (+ (* x x) 3)) is [Number –> Number]. This is deter-
mined from the known types of the primitive procedures +, *.

− The type of (lambda (x y) (not (and x y))) is [T1*T2 –> Boolean]. This is de-
termined from the known types of the primitive procedure not and the special operator
and1.

− The types of (lambda (x) x) (which creates the identity closure) and (lambda (f

x) (f (f x))) (which creates the closure ⟨closure (f x) (f (f x))⟩ are [T –> T]

and [[T –> T]*T –> T], respectively.

Summary: Types of computed values

1. Atomic types:

− Number:

(a) Includes integers and reals.

(b) Value constructors: All number symbols.

(c) Identifying predicate: number?
Equality predicate: =
Operations: Primitive arithmetic operations and relations.

− Boolean:

(a) A set of two values: #t, #f.

(b) Value constructors: The symbols #t, #f.

(c) Identifying predicate: boolean?
Equality predicate: eq?
Operations: Primitive propositional connectives (note that and, or are spe-
cial operators in Scheme).

− Symbol:

(a) The set of all unbreakable keyboard character sequences. Includes variable
names.

(b) Value constructor: quote

1The T1, T2 type parameters are due to the lack of real Boolean type in Scehme. In other languages the

type of this procedure would be [Boolean*Boolean –> Boolean].
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(c) Identifying predicate: symbol?
Equality predicate: eq?
Operations: None (a degenerated type).

2. Composite types:

− Procedure:

(a) A polymorphic type: The collection of all procedure (function) types. Each
concrete procedure type includes all procedures with the same argument
and result types.

(b) Type constructor: –> written in infix notation. A Procedure type expression
has the syntax: [ <Type-expression-tuple> –> Type-expression]. Type
expressions can be polymorphic, i.e., include type variables .

(c) Value constructor:
For primitive procedures: We do not create them, and therefore, we do not
have value constructors for them (we just have names to apply them).
For user defined procedures (closures), lambda is the value constructor.

(d) Identifying predicates:
For primitive procedures: primitive? For User defined procedures (clo-
sures): procedure?
Equality predicate: none.(why?)
Operations: All high order procedures (primitive and user defined).

− Pair:

(a) Type constructor: Pair – a polymorphic type constructor, that takes 2 type
expressions as arguments.

(b) Value constructor:
cons – Can take any values of a Scheme type.
Type of cons: [T1*T2 –> Pair(T1,T2)]

(c) Getters: car, cdr.
Type of car: [Pair(T1,T2) –> T1] Type of cdr: [Pair(T1,T2) –> T2]

(d) Predicates: pair?, equal?

Type of pair?: [T –> Boolean]

Type of equal?: [T1*T2 –> Boolean]

− List:

(a) Type constructors: For homogeneous lists, List(T) – a polymorphic type
constructor that takes a single type expression as argument; for heteroge-
neous lists, List – that takes no parameters.

(b) Value constructors: cons, list.

– Type of list: [T1*...*Tn –> List], and also [T*...*T –> List(T)],
n ≥ 0.
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– Type of cons: [T*List –> List], and also [T*List(T) –> List(T)].

(c) Selectors: car, cdr.
Type of car: [List –> T] and also [List(T) –> T].
Type of cdr: [List –> List] and also [List(T) –> List(T)].
Preconditions for (car list) and (cdr list): list != ().

(d) Predicates: list?, null?, equal?

Type of list?: [T –> Boolean]

Type of null?: [T –> Boolean]

Type of equal?: [T1*T2 –> Boolean]

2.3.3 A Type Language for Scheme

Writing procedure contracts and checking or inferring the type of language expressions re-
quires a type language , i.e., a language for specification of types. The Scheme types intro-
duced so far include the atomic types Number, Boolean, Symbol, Void, and the composite
types Procedure, Pair and List (with two variants: Homogeneous and Heterogeneous).

Union types: We have seen that conditional expressions that can return values of different
types require the addition of the union operation on types. For simplicity, the formal type
language introduced below does not include union types (which means that it cannot describe
the type of conditionals with different type values).

The Tuple type: In order to simplify the specification of the type of procedures with
multiple parameters, we introduce an additional composite type: Tuples. The set of all
pairs of values forms the type of 2-tuples, the set of all triplets of values forms the type of
3-tuple, and the set of all n-tuples of values forms the type of n-tuples. The set of 0-ary
tuples is the empty set type Empty.

The type constructor of Tuple types is * and it can take any number of type arguments.

*∶ ⨉n
1
TY PES → Tuple n ≥ 0

*(type1, . . . , typen) = type1 ∗ . . . ∗ typen n ≥ 1
*() = Empty n = 0

where Tuple is the set of all tuple types. The type expression Number*Number*Boolean

describes the type of all triplets of 2 numbers and a boolean, e.g., ⟨2,7.4,#t⟩, ⟨0,−63,#f⟩.
The type expression Symbol*[Number –> Number] describes the type of all pairs of a symbol
and a single variable procedure from numbers to numbers.

Tuple type expressions are used in the formal specification of the input types of proce-
dures. For example the procedure type-expression [Number*T -> Number] is considered as
consisting from the tuple type-expression Number*T and the type Number. Under this view,
the Procedure type constructor –> takes 2 arguments: A tuple type-expression for the input
parameters and an output type-expression.
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We introduce tuple types as degenerate types: There are no value constructors for
tuples, and language expressions do not evaluate to tuples. Procedures do not take tuples as
arguments and do not return tuples as their output values. Indeed, Pair types and 2-tuple
types describe the same sets of values, but no confusion arises since the Scheme subset that
we use does not manipulate tuple values.

For the purpose of static type inference, the Scheme language is restricted for conditional
expressions with a single type for all consequences. Therefore, the Union type can be
removed.

BNF grammar of the type language for the Scheme subset introduced so far:

Type -> ’Void’ | Non-void

Non-void -> Atomic | Composite | Type-variable

Atomic -> ’Number’ | ’Boolean’ | ’Symbol’

Composite -> Procedure | Pair | List

Procedure -> ’[’ Tuple ’->’ Type ’]’

Tuple -> (Non-void ’*’ )* Non-void | ’Empty’

Pair -> ’Pair’ ’(’ Non-void ’,’ Non-void ’)’

List -> ’List’ ’(’ Non-void ’)’ | ’List’

Type-variable -> A symbol starting with an upper case letter

Note that:

1. No procedure type expression has Void for its parameter types.

2. No procedure type expression has Empty as its return type.

Specification of Recursive types

The Church numbers type is defined inductively as follows: Zero is a Church number,
and for a Church number c, S(c) is also a Church number. Church numbers provide
symbolic representation for the natural numbers, where the numbers 0, 1, 2, 3, ...

are represented by the Church numbers Zero, S(Zero), S(S(Zero)), S(S(S(Zero))),

... .
We can represent this set by the set of Scheme expressions

’Zero, (lambda () ’Zero), (lambda () (lambda () ’Zero)), (lambda () (lambda ()

(lambda () ’Zero))), ..., which can represent the natural numbers via the following pro-
cedures, that provide 1:1 mappings between this set and the set of natural numbers:

(define church-num

(lambda (n)

(if (= n 0)

’Zero
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(lambda () (church-num (- n 1))))

))

(define church-val

(lambda (church-num)

(if (eq? church-num ’Zero)

0

(+ 1 (church-val (church-num))))

))

What are the contracts for these procedures? We can try:

Signature: church-num(n)

Type: [Number -> Procedure union Number]

Signature: church-val(church-num)

Type: [Procedure union Number -> Number]

But this type misses the main purpose of type specification: Type safety , i.e., preventing
runtime type errors. Furthermore, no pre-condition can fix the problem, as it requires an
inductive characterization of the input values.

A precise type information requires a recursive definition of the set of Church numbers:
Church-num = ’Zero union [Empty -> Church-num]

Then, we could have the types:

Signature: church-num(n)

Type: [Number -> Church-num]

Signature: church-val(church-num)

Type: [Church-num -> Number]

The type language introduced above does not support user-defined types. In partic-
ular, it does not enable definition of recursive types . Therefore, we cannot write correct
contracts for procedures that operate only on recursive types. In chapter 3 we introduce
the Abstract Data Type (ADT) technique for information representation, that enables
a designer to construct newly defined data types. However, this technique is not supported
by the Scheme language, and requires a sever discipline on the designer’s part.
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Abstraction on Data

Partial sources: SICP 2.1, 2.2 [1]; Krishnamurthi 27-30 [8].

Management of compound data increases the conceptual level of the design, adds
modularity and enables better maintenance, reuse , and integration . Processes can be
designed, without making commitments about concrete representation of information. For
example, we can design a process for, say “student registration to a course“, without making
any commitment as to what a Student entity is, requiring only that a student entity must
be capable of providing its updated academic record.
Conceptual level: The problem is manipulated in terms of its conceptual elements, using
only conceptually meaningful operations.
Modularity: The implementation can be separated from the usage of the data – a
method called data abstraction .
Maintenance, reuse, integration: Software can be built in terms of general features,
operations and combinations. For example, the notion of a linear combination can be
defined, independently of the exact identity of the combined objects, which can be matrices,
polynomials, complex numbers, etc. Algebraic rules, such as commutativity, associativity,
etc can be expressed, independently from the data identity – numbers, database relations,
database classes etc.

Example 3.1. – Linear combinations

(define (linear-combination a b x y)

(+ (* a x) (* b y)))

To express the general concept, abstracted from the exact type of a, b, x, y, we need
operations add and mul that correctly operate on different types:

(define (linear-combination a b x y)

(add (mul a x) (mul b y)))

124



Chapter 3 Principles of Programming Languages

The data abstraction approach enables operations that are identified by the arguments.
The concepts of abstract class and interface in Object-Oriented programming im-

plement the data abstraction approach: A linear combination in an OO language can be
implemented by a method that takes arguments that implement an interface (or an abstract
class) with the necessary multiplication and addition operations. The parameters of the
method are known to have the interface type, but objects passed as arguments invoke their
specific type implementation for add and mul.

3.1 Data Abstraction: Abstract Data Types

Data abstraction intends to separate usage from implementation (also termed concrete
representation).
Client level – Usage: The parts of the program that use the data objects, i.e., the clients ,
access the data objects via operations, such as set union, intersection, selection. They make
no assumption about how the data objects are implemented.
Supplier level – Implementation: The parts of the program that implement the data
objects provide procedures for selectors (getters in Object-Oriented programming) and
constructors. Constructors are the glue for constructing compound data objects, and
selectors are the means for splitting compound objects. The connection between the ab-
stract conceptual (client) level of usage to the concrete level of implementation is done by
implementing the client needs in terms of the constructors and selectors.

The principle of data abstraction is the separation between these levels:

2. Client Level

||

||

\||/

\/

1. Abstract Data Types (ADTs):

Data operators: Constructors, selectors, predicates

Correctness rules (Invariants)

/\

/||\

||

||

3. Supplier (implementation) Level

Rules of correctness (invariants): An implementation of data objects is verified (tested
to be true) by rules of correctness (invariants). An implementation that satisfies the cor-
rectness rules is correct. For example, every implementation of arrays that satisfies

get(A[i], set(A[i],val)) = val
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for an array A, and reference index i, is correct. Correct implementations can still differ in
other criteria, like space and time efficiency.

Software development order: First the Abstract Data Types level is determined. Then
the client level is written, and only then the supplier level . In languages that support
the notion of interface (or abstract class), like Java and C++, the client-supplier sep-
aration is enforced by the language constructs. The ADT formulation should be determined
in an early stage of development, namely, before the development of the conceptual and
implementation levels.

An abstract data type (ADT) consists of:

1. Signatures of constructors.

2. Operator signatures: Selectors, predicates, and possibly other operations.

3. (a) Specification of types, pre-conditions and post-conditions for the constructor and
operator signatures.

(b) Rules of correctness (invariants).

Type vs. ADT: Type is a semantic notion : A set of values. Usually, there are various
operations defined on these values – selectors, identifying predicate, equality, and construc-
tors. ADT is a syntactic notion : A collection of operation signatures and correctness
rules.

An ADT is implemented by a type (usually having the same name) that imple-
ments the signatures declared by the ADT. The type constructors, selectors and
operations must obey the type specifications, and satisfy the pre/post-conditions
and invariants.

3.1.1 Example: Binary Trees – Management of Hierarchical Information

Hierarchical information requires data structure that enable combination of compound data,
in a way that preserves the hierarchical structure. Such structures are needed, for example,
for representing business organizations, library structures, operation plans, etc. Management
of hierarchical data includes operations like counting the number of atomic data elements,
adding or removing data elements, applying operations to the data elements in the structure,
etc.

Binary-Tree is a natural ADT for capturing binary hierarchical structures. It provides
a constructor for combining structures into a new binary tree, and operations for selecting
the components, identification and comparison.
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3.1.1.1 The Binary-Tree ADT

The Binary-Tree ADT is implemented by the Binary-Tree type. We use the same name for
the ADT and the type.
Constructor signatures:

Signature: make-binary-tree(l,r)

Purpose: Returns a binary tree whose left sub-tree is l

and whose right sub-tree is r

Type: [Binary-Tree*Binary-Tree -> Binary-Tree]

Pre-condition: binary-tree?(l) and binary-tree?(r)

Signature: make-leaf(d)

Purpose: Returns a leaf binary-tree whose data element is d

Type: [T -> Binary-Tree]

Selector signatures:

Signature: left-tree(r), right-tree(r)

Purpose: (left-tree <t>): Returns the left sub-tree of the binary-tree <t>.

(right-tree <t>): Returns the right sub-tree of the binary-tree <t>.

Type: [Binary-Tree -> Binary-Tree]

Pre-condition: composite-binary-tree?(t)

Signature: leaf-data(r)

Purpose: Returns the data element of the leaf binary-tree <t>.

Type: [Binary-Tree -> T]

Pre-condition: leaf?(t)

Predicate signatures:

Signature: leaf?(t)

Type: [T -> Boolean]

Post-condition: true if t is a leaf -- constructed by make-leaf

Signature: composite-binary-tree?(t)

Type: [T -> Boolean]

Post-condition: true if t is a composite binary-tree -- constructed by

make-binary-tree

Signature: binary-tree?(t)

Type: [T -> Boolean]

Post-condition: result = (leaf?(t) or composite-binary-tree?(t) )
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Signature: equal-binary-tree?(t1, t2)

Type: [Binary-Tree*Binary-Tree -> Boolean]

Invariants:

leaf-data(make-leaf(d)) = d

left-tree(make-binary-tree(l,r)) = l

right-tree(make-binary-tree(l,r)) = r

leaf?(make-leaf(d)) = true

leaf?(make-binary-tree(l,r)) = false

composite-binary-tree?(make-binary-tree(l,r)) = true

composite-binary-tree?(make-leaf(d)) = false

Note that the Binary-Tree operations have the Binary-Tree as their type. That is, the
ADT defines a new type, that extends the type language. In practice, Scheme does not
recognize any of the ADTs that we define. This is a programmers’ means for achieving
software abstraction. Therefore, our typing rule is:

1. ADT operations are declared as introducing new types.

2. Clients of the ADT are expressed (typed) using the new ADT types.

3. Implementers (suppliers) of an ADT use already implemented types or ADTs types.

3.1.1.2 Client level: Binary-Tree management

Some client operations may be:

;Signature: count-leaves(tree)

;Purpose: Count the number of leaves of ’tree’

;Type: [Binary-Tree -> number]

(define count-leaves

(lambda (tree)

(if (composite-binary-tree? tree)

(+ (count-leaves (left-tree tree))

(count-leaves (right-tree tree)))

1)))

;Signature: has-leaf?(item,tree)

;Purpose: Does ’tree’ includes a leaf labaled ’item’

;Type: [T*Binary-Tree -> Boolean]

(define has-leaf?

(lambda (item tree)
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(if (composite-binary-tree? tree)

(or (has-leaf? item (left-tree tree))

(has-leaf? item (right-tree tree)))

(equal? item (leaf-data tree)))))

;Signature: add-leftmost-leaf(item,tree)

;Purpose: Creates a binary-tree with ’item’ added as a leftmost leaf to ’tree’,

such that the left-most leaf turns into a branch with ’item’ as a left

leaf-subtree and the older leaf as a right leaf-subtree

;Type: [T*Binary-Tree -> Binary-Tree]

(define add-leftmost-leaf

(lambda (item tree)

(if (composite-binary-tree? tree)

(make-binary-tree (add-leftmost-leaf item (left-tree tree))

(right-tree tree))

(make-binary-tree (make-leaf item)

tree))

))

Note: The client operations are written in a non-defensive style. That is, correct type
of arguments is not checked. They should be associated with appropriate type-checking
procedures, that their clients should apply prior to their calls, or be extended with defensive
correct application tests.

3.1.1.3 Supplier (implementation) level

In this level we define the Binary-Tree type that implements the Binary-Tree ADT. The
implementation is in terms of the already implemented List (not necessarily homogeneous)
type. We use the first representation discussed in subsection 1.3.3.2, where the unlabeled
binary-tree in Figure 1.3, is represented by the list (1 (2 3)). In every implementation,
the Binary-Tree type is replaced by an already known type. We present two type implemen-
tations.

Binary-Tree implementation I: A binary-tree is represented as a heterogeneous list.

;Signature: make-binary-tree(l,r)

;Type: [T1*T2 -> List]

;Pre-condition: binary-tree?(l) and binary-tree?(r)

(define make-binary-tree

(lambda (l r)

(list l r)))
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;Signature: make-leaf(d)

;Type: [T -> T]

(define make-leaf

(lambda (d) d))

;Signature: left-tree(t)

;Type: [List -> List union T]

;Pre-condition: composite-binary-tree?(t)

(define left-tree

(lambda (t) (car t)))

;Signature: right-tree(t)

;Type: [List -> List union T]

;Pre-condition: composite-binary-tree?(t)

(define right-tree

(lambda (t) (cadr t)))

;Signarture: leaf-data(t)

;Type: [T -> T]

;Pre-condition: leaf?(t)

(define leaf-data

(lambda (t) t))

;Signarture: leaf?(t)

;Type: [T -> Boolean]

(define leaf?

(lambda (t) #t))

;Signarture: composite-binary-tree?(t)

;Type: [T -> Boolean]

(define composite-binary-tree?

(lambda (t)

(and (list? t)

(list? (cdr t))

(null? (cddr t))

(binary-tree? (left-tree t))

(binary-tree? (right-tree t)))

))

;Signarture: binary-tree?(t)

;Type: [T -> Boolean]
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(define binary-tree?

(lambda (t) (or (leaf? t) (composite-binary-tree? t))))

;Signature: equal-binary-tree?(t1,t2)

;Type: [T1*T2 -> Boolean]

;Pre-condition: binary-tree?(t1) and binary-tree?(t2)

(define equal-binary-tree?

(lambda (t1 t2)

(cond ( (and (composite-binary-tree? t1)

(composite-binary-tree? t2))

(and (equal-binary-tree? (left-tree t1)

(left-tree t2))

(equal-binary-tree? (right-tree t1)

(right-tree t2))))

( (and (leaf? t1) (leaf? t2))

(equal? (leaf-data t1) (leaf-data t2)))

(else #f))))

Note the difference between typing the ADT operation signatures and typing their implemen-
tation. The ADT signatures are typed in terms of the ADT type itself since the signatures
are used by the ADT clients, while the implementation uses already defined types.

Once the ADT is implemented, the client level operations can be applied:

> (define t (make-binary-tree (make-leaf 1)

(make-binary-tree (make-leaf 2)

(make-leaf 3))))

> (define tt (make-binary-tree t t))

> t

(1 (2 3))

> tt

((1 (2 3)) (1 (2 3)))

> (leaf? t)

#t

> (composite-binary-tree? t)

#t

> (binary-tree? t)

#t

> (left-tree t)

1

> (right-tree t)
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(2 3)

> (leaf-data (left-tree t))

1

> (count-leaves t)

3

> (count-leaves tt)

6

> (has-leaf? 2 t)

#t

> (add-leftmost-leaf 0 t)

((0 1) (2 3))

Does the implementation satisfy the invariants of the Binary-Tree ADT? The
invariants are:

leaf-data(make-leaf(d)) = d

left-tree(make-binary-tree(l,r)) = l

right-tree(make-binary-tree(l,r)) = r

leaf?(make-leaf(d)) = true

leaf?(make-binary-tree(l,r)) = false

composite-binary-tree?(make-binary-tree(l,r)) = true

composite-binary-tree?(make-leaf(d)) = false

The first three invariants are satisfied. But what about the last one? Consider, for example:

> (composite-binary-tree? (make-leaf (list 5 6)))

#t

> (leaf? (make-leaf (list 5 6)))

#t

> (has-leaf? (list 5 6) (make-leaf (list 5 6)))

#f

What is the problem? There is no way to distinguish leaves that carry data of 2-element
lists from composite-binary trees. The leaf predicate just accepts any argument, and the
composite-binary-tree? tests whether its argument is a 2 element list of data of the
binary-tree structure.

The Binary-Tree implementation does not provide means for singling out binary-trees
from lists of an appropriate structure, and in particular, cannot distinguish leaves that carry
list data from composite-binary-trees. The solution is to tag the implementation values by
their intended type.
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Tagged-data ADT: The idea is to introduce an interface of operations that enable iden-
tification of data. The identification means can be any kind of tagging. The interface
below assumes that tags are symbols. The Tagged-data ADT defines a polymorphic type:
Tagged-data(T):

Signature: attach-tag(x,tag)

Purpose: Construct a tagged-data value

Type: [T*Symbol -> Tagged-data(T)]

Signature: get-tag(tagged)

Purpose: Select the tag from a tagged-data value

Type: [Tagged-data(T) -> Symbol]

Signature: get-content(tagged)

Purpose: Select the data from a tagged-data value

Type: [Tagged-data(T) -> T]

Signature: tagged-data?(datum)

Purpose: Identify tagged-data values

Type: [T -> Boolean]

Signature: tagged-by?(tagged,tag)

Purpose: Identify tagged-data values

Type: [T*Symbol -> Boolean]

Invariants:

get-tag(attach-tag(x,tag)) = tag

get-content(attach-tag(x,tag)) = x

tagged-data?(d) <=> exist x and tag such that d=attach-tag(x,tag)

tagged-by?(attach-tag(x,tag),tag’)) <=> (tag = tag’)

Binary-tree implementation II – Tagged-data based implementation using het-
erogeneous lists:

;Signature: make-binary-tree(l,r)

;Type: [T1*T2 -> Tagged-data(List)]

;Pre-condition: binary-tree?(l) and binary-tree?(r)

(define make-binary-tree

(lambda (l r)

(attach-tag (list l r) ’composite-binary-tree)))
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;Signature: make-leaf(d)

;Type: [T -> Tagged-data(T)]

(define make-leaf

(lambda (d)

(attach-tag d ’leaf)))

;Signature: left-tree(t)

;Type: [Tagged-data(List) -> Tagged-data(List union T)]

;Pre-condition: composite-binary-tree?(t)

(define left-tree

(lambda (t) (car (get-content t))))

;Signature: right-tree(t)

;Type: [Tagged-data(List) -> Tagged-data(List union T)]

;Pre-condition: composite-binary-tree?(t)

(define right-tree

(lambda (t) (cadr (get-content t))))

;Signarture: leaf-data)t)

;Type: [Tagged-data(T) -> T]

;Pre-condition: leaf?(t)

(define leaf-data

(lambda (t) (get-content t)))

;Type: [T -> Boolean]

(define leaf?

(lambda (t) (tagged-by? t ’leaf)))

;Type: [T -> Boolean]

(define composite-binary-tree?

(lambda (t)

(tagged-by? t ’composite-binary-tree)))

binary-tree? and equal-binary-tree? are not modified, as they are implemented in
terms of other Binary-Tree ADT operations. Client operations stay intact.

Correctness of the tagged implementation of the Binary-tree ADT: The invari-
ants are:

leaf-data(make-leaf(d)) = d

left-tree(make-binary-tree(l,r)) = l

right-tree(make-binary-tree(l,r)) = r
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leaf?(make-leaf(d)) = true

leaf?(make-binary-tree(l,r)) = false

composite-binary-tree?(make-binary-tree(l,r)) = true

composite-binary-tree?(make-leaf(d)) = false

The invariant are proved by applying one of the evaluation algorithms. Based on known
results, that changing evaluation ordering (as in the case of the applicative-eval and
normal-eval algorithms) might affect termination, but not the returned value upon termi-
nation, we allow to change evaluation ordering in proofs.

1. Proving: leaf-data(make-leaf(d)) = d. We prove: For an arbitrary expression d,
eval[(leaf-data (make-leaf d))] = eval[d]

eval[(leaf-data (make-leaf d))] ==>*

eval[(leaf-data (attach-tag eval[d] ’leaf))] ==>*

eval[(get-content (attach-tag eval[d] ’leaf))] ==>

based on the Tagged-data ADT invariant get-content(attach-tag(x,tag))=x

eval[d]

2. Proving: composite-binary-tree?(make-leaf(d)) = false. We prove: For an ar-
bitrary expression d, eval[(composite-binary-tree (make-leaf d))] = #f

eval[(composite-binary-tree (make-leaf d))] ==>*

eval[(composite-binary-tree (attach-tag eval[d] ’leaf))] ==>*

eval[(tagged-by? (attach-tag eval[d] ’leaf)) ’composite-binary-tree] ==>

based on the Tagged-data ADT invariant

tagged-by?(attach-tag(x,tag),tag’)) <=> (tag = tag’)

eval[(equal? ’leaf ’composite-binary-tree)] ==> #f

Implementation for the Tagged-data ADT: In order to apply the Tagged-data based
implementation of Binary-tree we still need an implementation for the Tagged-data ADT.
Here is one possibility – Pair based:

;Signature: attach-tag(x,tag)

;Type: [Symbol*T -> Pair(Symbol, T)]

(define attach-tag (lambda (x tag) (cons tag x)))

;Signature: get-tag(tagged)

;Type: Pair(Symbol,T) -> Symbol

(define get-tag (lambda (tagged) (car tagged)))

135



Chapter 3 Principles of Programming Languages

;Signature: get-content(tagged)

;Type: [Pair(Symbol,T) -> T]

(define get-content (lambda (tagged) (cdr tagged)))

;Signature: tagged-data?(datum)

;Type: [T -> Boolean]

(define tagged-data?

(lambda (datum)

(and (pair? datum) (symbol? (car datum))) ))

;Signature: tagged-by?(tagged,tag)

;Type: [T*Symbol -> Boolean]

(define tagged-by?

(lambda (tagged tag)

(and (tagged-data? tagged)

(eq? (get-tag tagged) tag))))

> (define tagged-1 (attach-tag 1 ’number))

> (get-tag tagged-1)

number

> (get-content tagged-1)

1

> (tagged-data? tagged-1)

#t

Once the Tagged-data ADT is implemented, its clients – Binary-Tree, and the clients of
the clients can be applied:

> (define t (make-binary-tree (make-leaf 1)

(make-binary-tree (make-leaf 2)

(make-leaf 3))))

> (define tt (make-binary-tree t t))

> t

(composite-binary-tree (leaf . 1) (composite-binary-tree (leaf . 2) (leaf . 3)))

> tt

(composite-binary-tree

(composite-binary-tree (leaf . 1) (composite-binary-tree (leaf . 2) (leaf . 3)))

(composite-binary-tree (leaf . 1) (composite-binary-tree (leaf . 2) (leaf . 3))))

> (leaf? t)
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#f

> (composite-binary-tree? t)

#t

> (binary-tree? t)

#t

> (left-tree t)

(leaf . 1)

> (right-tree t)

(composite-binary-tree (leaf . 2) (leaf . 3))

> (leaf-data (left-tree t))

1

> (count-leaves t)

3

> (count-leaves tt)

6

> (has-leaf? 2 t)

#t

> (add-leftmost-leaf 0 t)

(composite-binary-tree

(composite-binary-tree (leaf . 0) (leaf . 1))

(composite-binary-tree (leaf . 2) (leaf . 3)))

> (make-leaf (list 5 6))

(leaf 5 6)

> (composite-binary-tree? (make-leaf (list 5 6)))

#f

> (leaf? (make-leaf (list 5 6)))

#t

> (has-leaf? (list 5 6) (make-leaf (list 5 6)))

#t

Note the last three calls. Earlier, (make-leaf (list 5 6)) was recognized both as a leaf
and as a composite-binary-tree.

3.1.2 Example: Rational Number Arithmetic (SICP 2.1.1)

Rational number arithmetic supports arithmetic operations like addition, subtraction, mul-
tiplication and division of rational numbers. A natural candidate for the ADT level is an
ADT that describes rational numbers, and provides operations for selecting their parts,
identifying them and comparing them. Therefore, we start with a definition of an ADT Rat
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for rational numbers. It assumes that a rational number is constructed from a numerator
and a denominator numbers.

3.1.2.1 The Rat ADT

The Rat ADT would be implemented by the Rat type. We use the same name for the ADT
and the type.
Constructor signature:

Signature: make-rat(n,d)

Purpose: Returns a rational number whose numerator is the

integer <n>, and whose denominator is the integer <d>

Type: [Number*Number -> Rat]

Pre-condition: d != 0, n and d are integers.

Selector signatures:

Signature: numer(r), denom(r)

Purpose: (numer <r>): Returns the numerator of the rational number <r>.

(denom <r>): Returns the denominator of the rational number <r>.

Type: [Rat -> Number]

Post-condition for denom: result != 0.

Predicate signatures:

Signature: rat?(r)

Type: [T -> Boolean]

Post-condition: result = (Type-of(r) = Rat)

Signature: equal-rat?(x, y)

Type: [Rat*Rat -> Boolean]

The ADT invariants will be discussed following the presentation of several alternative im-
plementations.

Note that the Rat operations are declared as have the Rat type. That is, we use the ADT
as a new type, that extends the type language. In practice, Scheme does not recognize any of
the ADTs that we define. This is a programmers means for achieving software abstraction.
Therefore, our typing rule is:

1. ADT operations are declared as introducing new types.

2. Clients of the ADT are expressed (typed) using the new ADT types.

3. Implementers (suppliers) of an ADT use already implemented types or ADTs.
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3.1.2.2 Client level: Rational-number arithmetic

The client operations for using rationals are: Addition, subtraction, multiplication,
division , and equality . In addition, the client level includes a print-rat operation, for
nice intuitive display of rationals. All operations are implemented in terms of the Rat ADT:

Type: [Rat*Rat -> Rat] for add-rat, sub-rat, mul-rat, div-rat.

(define add-rat

(lambda (x y)

(make-rat (+ (* (numer x) (denom y))

(* (denom x) (numer y)))

(* (denom x) (denom y)))))

(define sub-rat

(lambda (x y)

(make-rat (- (* (numer x) (denom y))

(* (denom x) (numer y)))

(* (denom x) (denom y)))))

(define mul-rat

(lambda (x y)

(make-rat (* (numer x) (numer y))

(* (denom x) (denom y)))))

(define div-rat

(lambda (x y)

(make-rat (* (numer x) (denom y))

(* (denom x) (numer y)))))

Type: Rat -> Void

(define print-rat

(lambda (x)

(display (numer x))

(display "/")

(display (denom x))

(newline)))

Note: In all Rat arithmetic procedures, clients should verify that the arguments are of
type Rat (using the rat? procedure).
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3.1.2.3 Supplier (implementation) level

In this level we define the Rat type that implements the Rat ADT. The implementation is
in terms of the already implemented Pair type. The implementation depends on a repre-
sentation decision: What are the values of the Rat type. In every implementation, the Rat
type is replaced by an already known type.

We present several Rat type implementations. All are based on the Pair type, but differ
in the actual integers from which the values of Rat are constructed.

Rat implementation I – Based on an unreduced Pair representation: A rational
number is represented by a pair of its numerator and denominator. That is, Rat=Pair(Number,Number):

Signature: make-rat(n,d)

Type: [Number *Number -> Pair(Number,Number)]

Pre-condition: d != 0

(define make-rat (lambda (n d) (cons n d)))

Type: [Pair(Number,Number) -> Number]

(define numer (lambda (r) (car r)))

Type: [Pair(Number,Number) -> Number]

(define denom (lambda(r) (cdr r)))

Type: [T --> boolean]

(define rat? (lambda (r) (pair? r)))

Type: [Pair(Number,Number)*Pair(Number,Number) -> Number]

(define equal-rat?

(lambda (x y)

(= (* (numer x) (denom y))

(* (numer y) (denom x))))

Pre-condition and argument types tests:

(define make-rat-pre-condition-argument-type-test

(lambda (n d)

(and (integer? n) (integer? d) (not (= d 0)))))

(define numer-argument-type-test

(lambda (r)

(rat? r))
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(define denom-argument-type-test

(lambda (r)

(rat? r)))

Once the ADT is implemented, the client level operations can be applied:

> (define one-half (make-rat 1 2))

> (define two-sixth (make-rat 2 6))

> (print-rat (add-rat one-half two-sixth))

10/12

> (print-rat (mul-rat one-half two-sixth))

2/12

> (print-rat (div-rat two-sixth one-half))

4/6

> (div-rat two-sixth one-half)

(4 . 6)

> (define x (print-rat (div-rat two-sixth one-half)))

> x

???????

Note on the types of the implemented Rat operations: Note the difference be-
tween typing the ADT operation signatures and typing their implementation. The ADT
signatures are typed in terms of the ADT itself since the signatures are used by the ADT
clients, while the implementation uses already defined ADTs. For the above implementa-
tion Rat=Pair(Number,Number), the Rat type in the ADT declaration is replaced by the
implementation type Pair(Number,Number). For example, in the ADT declaration the type
of make-rat is [Number*Number –> Rat], while the type of the implemented make-rat is
[Number*Number –> Pair(Number,Number)].
Variation on the Rat operator definition: The Rat value constructor and selectors can
be defined as new names for the Scheme primitive Pair constructor and selectors:

(define make-rat cons)

(define numer car)

(define denom cdr)

(define rat? pair?)

> make-rat

#<primitive:cons>

In the original definition, make-rat uses cons, and therefore is a compound procedure. In
the second definition, make-rat is another name for the primitive procedure which is the
value of cons. In this case there is a single procedure with two names. The second option
is more efficient in terms of time and space.
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Rat implementation II – Tagged unreduced Pair representation: The intention
behind the previous implementation of Rat is to identify the Rat type with the type
Pair(Number,Number). But the identifying predicate rat? is defined by:
(define rat? (lambda (r) (pair? r))).
Therefore, rat? identifies any pair as a rational number implementation, including for
example, the pairs (a . b), and (1 . 0):

> (rat? (make-rat 3 2))

#t

> (rat? (cons (quote a) (quote b)))

#t

The problem is that the Rat implementation does not provide any means for singling out
pairs that implement Rat values from all other pairs. The solution is to tag the implemen-
tation values by their intended type.

Tagged Pair based implementation: The tagged implementation is
Rat=Tagged-data(Pair(Number,Number))=Pair(Symbol,Pair(Number,Number)). equal-rat?
is not listed as it does not change.

Signature: make-rat(n, d)

Type: [Number*Number -> Tagged-data(Pair(Number,Number))]

Pre-condition: d != 0; n and d are integers.

(define make-rat

(lambda (n d)

(attach-tag (cons n d) ’rat)))

Signature: numer(r)

Type: [Tagged-data(Pair(Number,Number)) -> Number]

(define numer

(lambda (r)

(car (get-content r))))

Signature: denom(r)

Type: [Tagged-data(Pair(Number,Number)) -> Number]

Post-condition: result != 0

(define denom

(lambda (r)

(cdr (get-content r))))

Signature: rat?(r)

Type: [T -> Boolean]
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Post-condition: result = (Type-of(r) = Rat)

(define rat? (lambda (x) (tagged-by? x ’rat)))

> (define one-half (make-rat 1 2))

> (define two-sixth (make-rat 2 6))

> (print-rat (add-rat one-half two-sixth))

10/12

> (print-rat (mul-rat one-half two-sixth))

2/12

> (define x (print-rat (div-rat two-sixth one-half)))

> one-half

(rat 1 . 2)

> (get-tag one-half)

rat

> (content one-half)

(1 . 2)

> (rat? one-half)

#t

> (rat? (content one-half))

#f

> (rat? (div-rat one-half two-sixth))

#t

Rat implementation III – Tagged, reduced at construction time Pair represen-
tation: The idea behind this implementation is to represent the rational number by a
reduced pair of numerator and denominator. The reduction uses the gcd procedure from
http://mitpress.mit.edu/sicp/code/ch2support.scm).

(define gcd

(lambda (a b)

(if (= b 0)

a

(gcd b (remainder a b)))))

The implementation is still: Rat=Pair(Symbol,Pair(Number,Number)). rat?, equal-rat?

are not listed as there is no change.

Signature: make-rat(n,d)

Type: [Number*Number -> Tagged-data(Pair(Number,Number))]

Pre-condition: d != 0; n and d are integers

(define make-rat

(lambda (n d)
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(let ((g (gcd n d)))

(attach-tag (cons (/ n g) (/ d g)) ’rat))))

Signature: numer(r)

Type: [Tagged-data(Pair(Number,Number)) -> Number]

(define numer (lambda (r) (car (get-content r))))

Signature: denom(r)

Type: [Tagged-data(Pair(Number,Number)) -> Number]

Post-condition: result != 0

(define denom (lambda (r) (cdr (get-content r))))

> (print-rat (div-rat two-sixth one-half))

2/3

> (define one-half (make-rat 5 10))

> one-half

(rat 1 . 2)

Rat implementation IV: Tagged, reduced at selection time Pair representation:
The idea behind this implementation is to represent the rational number by the given nu-
merator and denominator, but reduce them when queried. The implementation is still:
Rat=Pair(Symbol,Pair(Number,Number)). rat?, equal-rat? are not listed as there is no
change.

Signature: make-rat(n,d)

Type: [Number*Number -> Tagged-data(Pair(Number,Number))]

Pre-condition: d != 0 ; n and d are integers

(define make-rat

(lambda (n d)

(attach-tag (cons n d) ’rat)))

Signature: numer(r)

Type: [Tagged-data(Pair(Number,Number)) -> Number]

(define numer

(lambda (r)

(let ((g (gcd (car (get-content r))

(cdr (get-content r)))))

(/ (car (get-content r)) g))))

Signature: denom(r)
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Type: [Tagged-data(Pair(Number,Number)) -> Number]

Post-condition: result != 0

(define denom

(lambda (r)

(let ((g (gcd (car (get-content r))

(cdr (get-content r)))))

(/ (cdr (get-content r)) g))))

Invariants of the Rat ADT: We get back now to the Rat ADT invariants. The role of
the invariants is to characterize correct implementations. Our intuition is that all presented
implementations are correct. Hence, we need rules that are satisfied by all implementations
above.
First suggestion:

numer(make-rat(n,d)) = n

denom(make-rat(n,d)) = d

Are these rules satisfied by all implementations above? The answer is no! . Implementations
III and IV do not satisfy them. Yet, our intuition is that these implementations are correct.
That means that the suggested invariants are too strict, and therefore reject acceptable
implementations.
Second suggestion:

numer(make-rat(n,d))/denom(make-rat(n,d)) = n/d

This invariant is satisfied by all of the above implementations.

Summary of the operations of the Rat ADT:

Signature: make-rat(n,d)

Purpose: Returns a rational number whose numerator is the

integer <n>, and whose denominator is the integer <d>

Type: [Number*Number -> Rat]

Pre-condition: d != 0, n and d are integers.

Selector signatures:

Signature: numer(r), denom(r)

Purpose: (numer <r>): Returns the numerator of the rational number <r>.

(denom <r>): Returns the denominator of the rational number <r>.

Type: [Rat -> Number]

Post-condition for denom: result != 0.

Predicate signatures:
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Signature: rat?(r)

Type: [T -> Boolean]

Post-condition: result = (Type-of(r) = Rat)

Signature: equal-rat?(x, y)

Type: [Rat*Rat -> Boolean]

Rule of correctness (invariant):

[ (numer (make-rat n d)) / (denom (make-rat n d)) ] = n/d

3.1.3 Example: Church Numbers

The Church numbers type (already introduced at the end of Chapter 2) is defined inductively
as follows: Zero is a Church number, and for a Church number c, S(c) is also a Church
number. These are all Church numbers. This inductive definition can be summarized in the
following definition:
Church-num = ’Zero union S(Church-num)

Church numbers provide symbolic representation for the natural numbers, where
the numbers 0, 1, 2, 3, ... are represented by the Church numbers Zero, S(Zero),

S(S(Zero)), S(S(S(Zero))), ... . Viewing Church numbers as an ADT separates their
usage from their implementation. Client view is:

Signature: make-church-num(n)

Purpose: Returns a Church number

Type: [Number -> ChurchNum]

Pre-condition: n >= 0, an integer.

Selector signature:

Signature: church-val(church-num)

Purpose: (church-val <church-num>): Returns the numerical value of church-num

Type: [ChurchNum -> Number]

Post-condition: result >= 0.

Predicate signatures:

Signature: church?(x)

Type: [T -> Boolean]

Post-condition: result = (Type-of(x) = Church-num)

Signature: equal-rat?(x, y)

Type: [Church-num*Church -> Boolean]

invariant:
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church-val(make-church-num(n)) = n

Client level operations on Church numbers is the standard integer arithmetics. We
present here only the supplier level (implementation), without tagging.

Church Numbers implementation I – Based on lambda abstraction: Consider
the set of Scheme expressions 0, (lambda () ’Zero), (lambda () (lambda () ’Zero)),

(lambda () (lambda () (lambda () ’Zero))), ..., whose evaluation yields the set 0,

<closure () ’Zero>, <closuer () <closure () ’Zero», <closure () <closure () <closure

() ’Zero»>, .... It can implement Church numbers, by representing Zero by o, and repre-
senting the Church number S(S...(S(Zero))), by (lambda () (lambda () ... (lambda

() ’Zero))), with the same number of S and lambda applications. Under this implemen-
tation, the set of Church numbers is implemented as the type:
Church-num = ’Zero union [Empty -> Church-num]

We already know that Inductively-defined (recursive) types cannot be described by the
type language introduced in Chapter 2. Therefore, the supplier view:

Signature: church-num(n)

Type: [Number -> Procedure union Number]

Signature: church-val(church-num)

Type: [Procedure union Number -> Number]

is not precise, and cannot guarantee type safety . Therefore, for recursive types, we de-
fine the type of the supplier view using the recursive implementation type, named also
Church-num.

Type: [Number -> ChurchNum]

(define make-church-num

(lambda (n)

(if (= n 0)

’Zero

(lambda () (make-church-num (- n 1))))

))

Type: [Number -> ChurchNum]

(define church-val

(lambda (church-num)

(if (eq? church-num ’Zero)

0

(+ 1 (church-val (church-num))))

))

147



Chapter 3 Principles of Programming Languages

Invariant correctness: In order to prove church-val(make-church-num(n)) = n, we
need to prove, for an arbitrary non-negative integer n:

eval[church-val(make-church-num(n))] = eval[n]

The proof is obtained by processing the operational semantics algorithms (e.g., applicative-eval
on both sides.

Church Numbers implementation II – Based on Pair implementation: Consider
the set of Scheme expressions Zero, (S . Zero), (S . (S . Zero)), (S . (S . (S .

Zero))), .... This set is created by evaluating the Scheme expressions: ’Zero, (cons ’S

’Zero), (cons ’S (cons ’S ’Zero)), (cons ’S (cons ’S (cons ’S ’Zero))), ... .
It can implement Church numbers, by representing Zero by the symbol ’Zero, and repre-
senting the Church number S(S...(S(Zero))), by (S . (S ... (S . Zero))), with the
same number of S-s. Under this implementation, the set of Church numbers is implemented
as the type:
Church-num = ’Zero union Pair(Symbol,Church-num)

Signature: make-church-num(x)

Purpose: Computes the nth Church number.

Type: Number -> Church-num

(define church-num

(lambda (n)

(if (zero? n)

’Zero

(cons ’S (make-church-num (- n 1))))

))

Signature: church-val(x)

Purpose: Computes the nth Church number.

Type: Church-num -> Number

(define church-val

(lambda (church-num)

(if (eq? church-num ’Zero)

0

(+ 1 (church-val (cdr church-num))))

))

3.1.4 What is Meant by Data? (SICP 2.1.3)

The question that motivates this subsection is: What is data? The notion of data is
usually understood as something consumed by procedures. But in functional languages,
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procedures are first class citizens, i.e., handled like values of other types. Therefore in such
languages the distinction between data and procedures is especially obscure.

In order to clarify this issue we ask whether procedures can be used as data, i.e., con-
sumed by procedures. Specifically, we consider the previous Binary-Tree management or the
Rational Number arithmetic problem, where the implementations use the built-in Pair and
List types. We pose the problem:

Suppose that the Scheme application does not include built-in Pair or List types.
How can we build an implementation for the Binary-Tree and the Rat ADTs?

We solve the problem by:

1. Defining a Pair ADT: Pair(T1,T2).

2. Defining a Pair type that implements the Pair ADT in terms of the Procedure type.
That is: Pair(T1,T2) = [Symbol –> (T1 union T2)].

The Pair ADT:

Signature: cons(x,y)

Type: [T1*T2 -> Pair(T1,T2)]

Signature: car(p)

Type: [Pair(T1,T2) -> T1]

Signature: cdr(p)

Type: [Pair(T1,T2) -> T2]

Signature: pair?(p)

Type: [T -> Boolean]

Signature: equal-pair?(p1,p2)

Type: [Pair(T1,T2)*Pair(T1,T2) -> Boolean]

Invariants:

(car (cons x y)) = x

(cdr (cons x y)) = y

Below are two implementations of the Pair ADT in terms of procedures. A pair is repre-
sented by a procedure, that enables selection of the pair components. The implementations
differ in their processing of the pair components. The first implementation, termed eager ,
represents a pair as a procedure built specifically for selection of the pair components. The
second implementation, termed lazy , represents a pair as a procedure built for answering
any request about the pair components.
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3.1.4.1 Pair implementation I: Eager Procedural representation

Signature: cons(x,y)

Type: [T1*T2 -> [Symbol -> (T1 union T2)]

(define cons

(lambda (x y)

(lambda (m)

(cond ((eq? m ’car) x)

((eq? m ’cdr) y)

(else (error "Argument not ’car or ’cdr -- CONS" m) ))) ))

Signature: car(pair)

Type: [[Symbol -> (T1 union T2)] -> T1]

(define car (lambda (pair) (pair ’car)))

Signature: cdr(pair)

Type: [[Symbol -> (T1 union T2)] -> T2]

(define cdr (lambda (pair) (pair ’cdr)))

Signature: equal-pair?(p1,p2)

Type: [[[(T1 union T2)] -> T2]*[[(T1 union T2)] -> T2] -> Boolean]

(define equal-pair?

(lambda (p1 p2)

(and (equal? (car pair1) (car pair2))

(equal? (cdr pair1) (cdr pair2)) )))

A pair data value is a procedure, that stores the information about the pair components.
car takes a pair data value – a procedure – as an argument, and applies it to the symbol
car. cdr is similar, but applies its argument pair procedure to the symbol textttcdr. The
pair procedure, when applied to the symbol car, returns the value of the first parameter of
cons. Hence, (car (cons x y)), evaluates to the first pair component. The rule for cdr

holds for similar arguments. Note that the definition of cons returns a closure as its value,
but does not apply it!

applicative-eval[ (cons 1 2) ] ==>*

<closure (m)

(cond ((eq? m ’car) 1)

((eq? m ’cdr) 2)

(else (error "Argument not ’car or ’cdr -- CONS" m) ))>

applicative-eval[ (car (cons 1 2 )) ] ==>

applicative-eval[ car ] ==> <closure (pair) (pair ’car)>
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applicative-eval[ (cons 1 2) ] ==>* <the cons closure as above >

sub[pair, <cons closure>, (pair ’car) ] ==> (<cons closure> ’car)

reduce:

( (lambda (m)

(cond ((eq? m ’car) 1)

((eq? m ’cdr) 2)

(else (error "Argument not ’car or ’cdr -- CONS" m) )))

’car) ==>*

applicative-eval, sub, reduce:

(cond ((eq? ’car ’car) 1)

((eq? ’car ’cdr) 2)

(else (error "Argument not ’car or ’cdr -- CONS" ’car) )) ==>

1

> (define x (cons 1 2))

> x

#<Closure (m) (cond ((eq? m ’car) x) ((eq? m ’cdr) y) (else (error

#"Argument not ... "))))>

> (define y (car x))

> y

1

> (define z (cdr x))

> z

2

> (define w (cons y z))

> (car w)

1

> (cdr w)

2

> cons

#<Closure (x y) (lambda (m) (cond ((eq? m ’car) x) ((eq? m ’cdr) y)

(else (error ... ))))>

> car

#<Closure (pair) (pair ’car)>

Notes:

1. Pairs are represented as procedures that receive messages. A pair is created by ap-
plication of the cons procedure, that generates a new procedure for the defined pair.
Therefore, the variables x, w above denote different pair objects – different procedures
(recall that the Procedure type does not have an equality predicate).
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2. The equal-pair? implementation uses the built-in primitive predicate equal?. Since
Pair is a polymorphic ADT, its implementation requires a polymorphic equality pred-
icate, that can be either built-in or written (for example, as a very long conditional of
value comparisons).

3. The technique of EAGER procedural abstraction, where data values are implemented
as procedures that take a message as input, is called message passing .

An alternative writing of this implementation, using a locally created procedure named
dispatch:

Signature: cons(x,y)

Type: [T1*T2 -> [Symbol -> T1 union T2 union String]

(define cons

(lambda (x y)

(letrec

((dispatch (lambda(m)

(cond ((eq: m ’car) x)

((eq? m ’cdr) y)

(else

(error "Argument not ’car or ’cdr -- CONS" m))))

))

dispatch)))

The Pair implementation does not support the predicate pair?. In order to implement
pair? we need an explicit typing, that should be planed as part of an overall types imple-
mentation.

3.1.4.2 Pair implementation II: Lazy Procedural representation

The eager procedural implementation for the Pair ADT represents a Pair value as a proce-
dure that already prepared the computations for all known selectors. The lazy procedural
implementation defers everything: A Pair value is represented as a procedure that “ ‘waits”
for just any selector. In selection time, the given selector procedure is applied by the pair
components. The constructor does not prepare anything – it is truly lazy!

Signature: cons(x,y)

Type: [T1*T2 -> [ [T1*T2 -> T3] -> T3]]

(define cons

(lambda (x y)

(lambda (sel) (sel x y))))

Signature: car(pair)
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Type: [[ [T1*T2 -> T3] -> T3] -> T1]

(define car

(lambda (pair)

(pair (lambda (x y) x))))

Signature: cdr(pair)

Type: [[ [T1*T2 -> T3] -> T3] -> T2]

(define cdr

(lambda (pair)

(pair (lambda (x y) y))))

Evaluation examples:

applicative-eval[ (cons 1 2) ] ==>

<closure (sel) (sel 1 2)>

applicative-eval[ (car (cons 1 2 )) ] ==>*

applicative-eval[ car ] ==> <closure (pair) (pair (lambda(x y) x))>

applicative-eval[ (cons 1 2) ] ==>* <closure (sel) (sel 1 2) >

sub, reduce:

applicative-eval[

( <closure (sel) (sel 1 2) > (lambda(x y) x) ) ] ==>*

applicative-eval[ ( (lambda(x y) x) 1 2) ] ==>

applicative-eval, sub, reduce:

1

Question: Assume that the Pair ADT has an additional operation function-value speci-
fied by the following contract:

Signature: sum-values(pair,f)

Purpose: Returns the sum of f values on the components of a pair of numbers

Type: [Pair(Number,Number)*[Number -> Number] -> Number]

Example: sum-values((2 . 3),(lambda (x) (- x))) = -5

Add this operation to the eager and lazy procedural implementations of the ADT Pair.

Side comment: The lazy procedural implementation implements the Visitor
design pattern

Software design patterns [4] (http://www.cs.up.ac.za/cs/aboake/sws780/references/
patternstoarchitecture/Gamma-DesignPatternsIntro.pdf) is an approach that provides
solutions for typical problems that accrue in multiple contexts. Visitor is a well known
design pattern, suggested in [4]. Here is a short description taken from wikipedia:
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In object-oriented programming and software engineering, the visitor de-
sign pattern is a way of separating an algorithm from an object structure
it operates on. A practical result of this separation is the ability to add new
operations to existing object structures without modifying those structures.

In essence, the visitor allows one to add new virtual functions to a family of
classes without modifying the classes themselves; instead, one creates a visitor
class that implements all of the appropriate specializations of the virtual func-
tion. The visitor takes the instance reference as input, and implements the goal
through double dispatch .

In the Visitor design pattern, a client holds an operation – the visitor , and an element
– the object , where the exact identity of both is not known to the client. The client lets
the visitor approach the object (by applying the accept method of the object. The object
then dispatches itself to the visitor. After this double dispatch – visitor to object and object
to visitor, the concrete visitor holds the concrete object and can apply its operation on the
object.

The lazy procedural implementation is based on a similar double dispatch: In order to
operate, a selector gives itself (visits) to an object, and then the object dispatches itself to
the operator for applying its operation.

3.1.4.3 Comparison of the eager and the lazy procedural implementations:

1. Eager: More work at constructions time. Immediate at selection time.
Lazy: Immediate at construction time. More work at selection time.

2. Eager: Selectors that are not simple getters can have any arity.
Lazy: selectors can be added freely, but must have the same arity.

3.2 The Sequence Interface (includes examples from SICP 2.2.3)

Object-oriented programming languages support a variety of interfaces and implementation
utilities for aggregates, like Set, List, Array. These interfaces declare standard collection
services like has-next(), next(), item-at(ref), size(), is-empty() and more.

Functional languages provide furthermore, powerful sequence operations that put an
abstraction barrier (ADT interface) between clients running sequence applications to
the sequence implementation. The advantage is the separation between usage and implemen-
tation: Ability to develop abstract level client applications, without any commitment
to the exact sequence implementation. Sequence operations abstract away the element-
by-element sequence manipulation. Using sequence operations, client procedures become
clearer, cleaner, and their uniformity stands out.
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3.2.1 Mapping over Lists

The basic sequence operation is sequence procedure map, that applies a transformation
to all elements of a list , and returns a list of the results. It takes a procedure of one
argument, and a list and applies the procedure to all elements of the list and returns a list
of the results:

Signature: map(proc,sequence)

Purpose: Apply ’proc’ to all ’sequence’.

Type: [[T1 -> T2]*List(T1) -> List(T2)]

Examples:

(map abs (list -10 2.5 -11.6 17)) ==> (10 2.5 11.6 17)

(map (lambda (x) (* x x))

(list 1 2 3 4)) ==> (1 4 9 16)

Post-condition: For all i=1..length(sequence): resulti = proc(sequencei)

Client level of the Sequence Interface:

Example 3.2. Mapping over homogeneous lists: Scaling a number list by a given factor:

Signature: scale-list(items,factor)

Purpose: Scaling elements of a number list by a factor.

Type: [List(Number)*Number -> List(Number)]

(define scale-list

(lambda (items factor)

(if (null? items)

(list)

(cons (* (car items) factor)

(scale-list (cdr items) factor)))))

> (scale-list (list 1 2 3 4 5) 10)

(10 20 30 40 50)

Written as a client of the Sequence Interface:

> (define scale-list

(lambda (items factor)

(map (lambda (x) (* x factor))

items))

> (scale-list (list 1 2 3 4 5) 10)

(10 20 30 40 50)

Example 3.3. Mapping over hierarchical (heterogeneous) lists (viewed as trees): Scaling an
unlabeled number-binary-tree:
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Signature: scale-tree(tree,factor)

Purpose: Scale an unlabeled tree with number leaves.

Type: [(List*Number) -> Number]

(define scale-tree

(lambda (tree factor)

(cond ((empty? tree) tree)

((not (list? tree)) (* tree factor))

(else (cons (scale-tree (car tree) factor)

(scale-tree (cdr tree) factor))))))

> (scale-tree (list 1 (list 2 (list 3 4) 5) (list 6 7))

10)

(10 (20 (30 40) 50) (60 70))

Written as a client of the Sequence Interface: An unlabeled tree is a list of trees or leaves.
Tree scaling can be obtained by mapping scale-tree on all branches that are trees, and
multiplying those that are leaves by the factor.

Signature: scale-tree(tree,factor)

Purpose: Scale an unlabeled tree with number leaves.

Type: [List*Number -> List]

(define scale-tree

(lambda (tree factor)

(map (lambda (sub-tree)

(if (list? sub-tree)

(scale-tree sub-tree factor)

(* sub-tree factor)))

tree)))

> (scale-tree (list 1 (list 2 (list 3 4) 5) (list 6 7))

10)

(10 (20 (30 40) 50) (60 70))

> (scale-tree (list) 10)

()

> (scale-tree (list 1) 10)

(10)

>

The second version is better since it clearly conceives a tree as a list of branches that are
either trees or leaves (numbers). It ignores the detailed tree construction, is simpler, less
prone to errors, and does not depend on lower level construction.
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Implementation of the map Sequence operation:

Signature: map(proc,items)

Purpose: Apply ’proc’ to all ’items’.

Type: [[T1 -> T2]*List(T1) -> List(T2)]

(define map

(lambda (proc items)

(if (null? items)

(list)

(cons (proc (car items))

(map proc (cdr items))))))

> (map abs (list -10 2.5 -11.6 17))

(10 2.5 11.6 17)

> (map (lambda (x) (* x x))

(list 1 2 3 4))

(1 4 9 16)

Value and importance of mapping operations: Mapping operations establish a higher
level of abstraction in list processing. The element-by-element attention is shifted into a
whole-list transformation attention. The two scale-list procedures perform exactly the
same operations, but the mapping version supports a higher level of abstraction.

Mapping provides an abstraction barrier for list processing.

More general map: The definition of map in Scheme is more general, and allows the
application of n-ary procedures to n list arguments:

> (map + (list 1 2 3) (list 40 50 60) (list 700 800 900))

(741 852 963)

> (map (lambda (x y) (+ x (* 2 y)))

(list 1 2 3)

(list 4 5 6))

(9 12 15)

Tree map: Recursion (induction) on the depth of the tree (list) rather than on all branches
(length of the heterogeneous list).

Signature: tree-map(proc tree)

Purpose: Apply .proc to all leaves of the tree (represented as a heterogeneous list)

Type: [List -> List]

(define tree-map

(lambda (proc tree)
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(map (lambda (sub-tree)

(if (list? sub-tree)

(tree-map proc sub-tree)

(proc sub-tree)))

tree)))

> (tree-map abs (list -1 (list 2 (list 3 -4) 5) (list -6 7)))

’(1 (2 (3 4) 5) (6 7)) ‘

3.2.2 More sequence operations: The Sequence interface as an abstrac-
tion barrier

We add more sequence operations, that enable rich management of lists at the Sequence
level:

1. Filtering a homogeneous list:

Signature: filter(predicate, sequence)

Purpose: return a list of all sequence elements that satisfy the predicate

Type: [[T-> Boolean]*List(T) -> List(T)]

Example: (filter odd? (list 1 2 3 4 5)) ==> (1 3 5)

Post-condition: result = sequence - {el|el∈sequence and not(predicate(el))}

2. Accumulation of procedure application:

Signature: accumulate(op,initial,sequence)

Purpose: Accumulate by ’op’ all sequence elements, starting (ending)

with ’initial’

Type: [[T1*T2 -> T2]*T2*List(T1) -> T2]

Examples: (accumulate + 0 (list 1 2 3 4 5)) ==> 15

(accumulate * 1 (list 1 2 3 4 5)) ==> 120

(accumulate cons (list) (list 1 2 3 4 5)) ==> (1 2 3 4 5)

Post-condition: result = (sequencen op (sequencen−1 ... (sequence1 op initial)...)

There are several primitive procedures for accumulation: foldr which is equal to the
above accumulate, and also foldl, fold which apply the operation ’op’ in different
orderings.

3. Enumeration of elements:

(a) Interval enumeration:
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Signature: enumerate-interval(low, high)

Purpose: List all integers within an interval:

Type: [Number*Number -> List(Number)]

Example: (enumerate-interval 2 7) ==> (2 3 4 5 6 7)

Pre-condition: high ≥ low

Post-condition: result = (low low+1 ... high)

(b) Heterogeneous list (tree) enumeration:

Signature: enumerate-tree(tree)

Purpose: List all leaves of a number tree

Type: [List union T -> List(Number)]

Example: (enumerate-tree (list 1 (list 2 (list 3 4)) 5)) ==> (1 2 3 4 5)

Post-condition: result = flatten(tree)

Client level of the Sequence interface: We show an example of two seemingly different
procedures that actually share common sequence operations. Nevertheless, the similarity is
revealed only when using the Sequence interface. The two procedures are sum-odd-squares

that sums the squares of odd leaves in an unlabeled number tree, and even-fibs that lists
the even numbers in a Fibonacci sequence up to some point.

Signature: sum-odd-squares(tree)

Purpose: return the sum of the odd squares of the leaves

Type: [List union Number -> Number]

(define sum-odd-squares

(lambda (tree)

(cond ((null? tree) 0)

((not (list? tree))

(if (odd? tree) (square tree) 0))

(else (+ (sum-odd-squares (car tree))

(sum-odd-squares (cdr tree)))))

))

It does the following:

1. Enumerates the leaves of a tree.

2. Filters them using the odd? filter.

3. Squares the selected leaves.

4. Accumulates the results, using +, starting from 0.
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Signature: even-fibs(n)

Purpose: List all even elements in the length n prefix of the

sequence of Fibonacci numbers

Type: [Number -> List(Number)]

(define even-fibs

(lambda (n)

(letrec ((next (lambda(k)

(if (> k n)

(list)

(let ((f (fib k)))

(if (even? f)

(cons f (next (+ k 1)))

(next (+ k 1))))))))

(next 0))))

It does the following:

1. Enumerates the integers from 0 to n.

2. Computes the Fibonacci number of each.

3. Filters them using the even? filter.

4. Accumulates the results, using cons, starting from the empty list.

This analysis can be visualized as:

sum-odd-squares: enumerate: tree leaves ---> filter: odd? --->

map: square ---> accumulate: +, 0.

even-fibs: enumerate: integers ---> map: fib --->

filter: even? ---> accumulate: cons, (list).

Rewriting the procedures as clients of the Sequence interface:

Signature: sum-odd-squares(tree)

Purpose: return the sum of all odd square leaves

Type: [List -> Number]

(define sum-odd-squares

(lambda (tree)

(accumulate +

0

(map square

(filter odd?

(enumerate-tree tree))))))
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Signature: even-fibs(n)

Purpose: List all even elements in the length n prefix of the

sequence of Fibonacci numbers

Type: [Number -> List(Number)]

(define even-fibs

(lambda (n)

(accumulate cons

(list)

(filter even?

(map fib

(enumerate-interval 0 n))))))

Implementation of the additional Sequence operations

1. Filtering a sequence:

Signature: filter(predicate, sequence)

Purpose: return a list of all sequence elements that satisfy the predicate

Type: [[T-> Boolean]*List(T) -> List(T)]

(define filter

(lambda (predicate sequence)

(cond ((null? sequence) sequence)

((predicate (car sequence))

(cons (car sequence)

(filter predicate (cdr sequence))))

(else (filter predicate (cdr sequence))))))

2. Accumulation:

Signature: accumulate(op,initial,sequence)

Purpose: Accumulate by ’op’ all sequence elements, starting (ending)

with ’initial’

Type: [[T1*T2 -> T2]*T2*List(T1) -> T2]

(define accumulate

(lambda (op initial sequence)

(if (null? sequence)

initial

(op (car sequence)

(accumulate op initial (cdr sequence))))))

3. Enumeration of elements:
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(a) Signature: enumerate-interval(low, high)

Purpose: List all integers within an interval:

Type: [Number*Number -> List(Number)]

(define enumerate-interval

(lambda (low high)

(if (> low high)

(list)

(cons low (enumerate-interval (+ low 1) high)))))

(b) Signature: enumerate-tree(tree)

Purpose: List all leaves of a number tree

Type: [List union T -> List(Number)]

(define enumerate-tree

(lambda (tree)

(cond ((null? tree) (tree))

((not (list? tree)) (list tree))

(else (append (enumerate-tree (car tree))

(enumerate-tree (cdr tree)))))

))

Reuse – Value of abstraction: More client level applications:

Example 3.4. list-fib-squares:

Signature: list-fib-squares(n)

Purpose: Compute a list of the squares of the first n+1 Fibonacci numbers:

Enumerate [0,n] --> map fib --> map square --> accumulate: cons, (list).

Type: [Number -> List(Number)]

(define list-fib-squares

(lambda (n)

(accumulate cons

(list)

(map square

(map fib

(enumerate-interval 0 n))))))

> (list-fib-squares 10)

(0 1 1 4 9 25 64 169 441 1156 3025)

Example 3.5. product-of-squares-of-odd-elements:
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Signature: product-of-squares-of-odd-elements(sequence)

Purpose: Compute the product of the squares of the odd elements in a

number sequence.

Filter: odd? --> map square --> accumulate: *, 1.

Type: [List(Number) -> Number]

(define product-of-squares-of-odd-elements

(lambda (sequence)

(accumulate *

1

(map square

(filter odd? sequence)))))

> (product-of-squares-of-odd-elements (list 1 2 3 4 5))

225

Example 3.6. salary-of-highest-paid-programmer:

Signature: salary-of-highest-paid-programmer(records)

Purpose: Compute the salary of the highest paid programmer:

Filter: programmer? --> map: salary --> accumulate: max, 0.

Type: [List -> Number]

(define salary-of-highest-paid-programmer

(lambda (records)

(accumulate max

0

(map salary

(filter programmer? records))))

3.2.3 Partial evaluation of sequence operations

Example 3.7 (Partial evaluation of a sequence procedure – Curried map).

First version – Delaying the list:

Naive version:

Signature: c-map-proc(proc)

Purpose: Create a delayed map for ’proc’.

Type: [[T1 -> T2] -> [List(T1) -> List(T2)]]

(define c-map-proc

(lambda (proc)

(lambda (lst)

(if (empty? lst)
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empty

(cons (proc (car lst))

((c-map-proc proc) (cdr lst)))))

))

(define c-map-cube (c-map-proc (lambda (x) (* x x x))))

> (c-map-cube ’(1 2 3 4)) ***c-map-proc is applied 4 times

’(1 8 27 64)

A Curried version that performs partial evaluation:

(define c-map-proc

(lambda (proc)

(letrec ((iter (lambda (lst)

(if (empty? lst)

empty

(cons (proc (car lst))

(iter (cdr lst)))))

))

iter)

))

(define c-map-cube (c-map-proc (lambda (x) (* x x x))))

> (c-map-cube ’(1 2 3 4)) ***c-map-proc is not applied

’(1 8 27 64)

Second version – Delaying the procedure; non-naive Currying:

Signature: c-map-list(lst)

Purpose: Create a delayed map for ’lst’.

Type: [List(T1) -> [[T1 -> T2] -> List(T2)]]

(define c-map-list

(lambda (lst)

(if (empty? lst)

(lambda (proc) empty) ;c-map-list returns a procedure

(let ((mapped-cdr (c-map-list (cdr lst)))) ;Inductive Currying

(lambda (proc)

(cons (proc (car lst))

(mapped-cdr proc)))))

))

(define c-map-1234 (c-map-list ’(1 2 3 4)))

> (c-map-1234 (lambda (x)(* x x x)))

164



Chapter 3 Principles of Programming Languages

’(1 8 27 64)

3.2.4 Nested mappings

Loops form a conventional control structure. In functional languages, nested loops are
implemented nested mappings.

Example 3.8. Compute all permutations of the elements of a set S::

In order to systematically solve the problem we need to take the following decisions:

1. An ADT for representing a set.

2. An ADT for representing a permutation.

3. A decision about the collection for all permutations.

4. A method for generating permutations.

The Set interface (an ADT without invariants):
Constructors: make-set(el1, ..., eln), extend-set(el,s)
Selectors: set-remove-el(el,s) – which removes el from s, select-el(s)
Predicates: empty-set?(s), set?(s), equal-set?(s1, s2)
Neutral element: empty-set
Permutation representation: A permutation will be represented using a list (heteroge-
neous), and the collection of permutations will be a list of permutation lists.
Computation method: We use an inductive construction, that builds a list of all permu-
tations from the list of all permutations of a subset in which one set element is removed.

1. If S is empty – the empty list.

2. If S is not empty:
For every member x of S:
1. compute all permutations of S-x, and
2. adjoin x in front of all permutations.

First we need to decide how the ADT Set is implemented. Assume that a set is implemented
as a list (possibly with element repetitions, which should be ignored). First try:

(define permutations

(lambda (s)

(letrec((extend-permutations (lambda (x pers)

(map (lambda (p) (cons x p))

pers))))

(if (empty-set? s)
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(list empty) ; list of the empty permutation

(map

(lambda (x)

(extend-permutations x (permutations (set-remove-el x s))))

s)))

))

> (permutations (make-set 2 5 7))

’(((2 (5 (7))) (2 (7 (5)))) ((5 (2 (7))) (5 (7 (2)))) ((7 (2 (5))) (7 (5 (2)))))

What happened? Every inductive step causes an additional nesting of the permutations.

> (permutations (list 5 7))

’(((5 (7))) ((7 (5))))

> (permutations (list 7))

’(((7)))

> (permutations empty)

’(())

We need to flatten the list of lists of permutations for a selected member x, before moving to
the next element. We can do that by accumulating all lists, using the append list operation.
The flattening of a list using accumulate with append is popular, and can be abstracted:

Type: [[T1 -> List(T2)]*List(T1) -> List(T2)]

(define flatmap

(lambda (proc seq)

(foldr append (list) (map proc seq))))

Recall that foldr is the primitive that acts as the accumulate procedure defined earlier.
Second try:

(define permutations

(lambda (s)

(letrec((extend-permutations (lambda (x pers)

(map (lambda (p) (cons x p))

pers))))

(if (empty-set? s)

(list empty) ; list of the empty permutation

(flatmap

(lambda (x)

(extend-permutations x (permutations (set-remove-el x s))))

s)))

))

> (permutations (make-set 2 5 7))

’((2 5 7) (2 7 5) (5 2 7) (5 7 2) (7 2 5) (7 5 2))
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Which can even be shortened into:

(define permutations

(lambda (s)

(if (empty-set? s)

(list empty) ; list of the empty permutation

(flatmap

(lambda (x)

(map (lambda (p) (cons x p))

(permutations (set-remove-el x s))))

s))

))

In order to apply the permutations procedure we used a List implementation of sets:

(define make-set list)

(define set-remove-el

(lambda (item sequence)

(filter (lambda (x) (not (= x item)))

sequence)))

(define empty-set? empty?)

Abstraction barrier question: Does the above implementation of permutations pre-
serve the abstraction barrier of the Set ADT?
Answer: Observe the two applications of sequence operations in the code of permutations.
The map application indeed performs a mapping over a list operation, since the permutations
procedure returns a list. However, the application of flatmap applies a List sequence oper-
ation to the set-valued parameter s. Suppose that the Set implementation is not based on
lists but, say, on numbers. Then every call to permutations of a non-empty set causes a
runtime type error!

Example 3.9. Generate a list of all triplets (i, j, i+j), such that: 1 ≤ j < i ≤ n (for some
natural number n), and i + j is prime.

Approach:

1. Generate a list of pairs (i j).

2. Filter those with prime sum.

3. Create the triplets.

1. Creating the pairs:
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For i= 1,n

for j = 1,i-1

(list i j)

> (map (lambda (i)

(map (lambda (j) (list i j))

(enumerate-interval 1 (- i 1))))

(enumerate-interval 1 n))

Note: n is free. For example:

> (map (lambda (i)

(map (lambda (j) (list i j))

(enumerate-interval 1 (- i 1))))

(enumerate-interval 1 5))

(()

((2 1))

((3 1) (3 2))

((4 1) (4 2) (4 3))

((5 1) (5 2) (5 3) (5 4)))

To remove the extra parentheses: Use flatmap to accumulate by append, starting from ().

(accumulate append

(list)

(map (lambda (i)

(map (lambda (j) (list i j))

(enumerate-interval 1 (- i 1))))

(enumerate-interval 1 n)))

Note: n is free. For example:

> (accumulate append

(list)

(map (lambda (i)

(map (lambda (j) (list i j))

(enumerate-interval 1 (- i 1))))

(enumerate-interval 1 5)))

((2 1)

(3 1)

(3 2)

(4 1)

(4 2)
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(4 3)

(5 1)

(5 2)

(5 3)

(5 4))

2. Filter the pairs with a prime sum – The filter predicate:

(define prime-sum?

(lambda (pair)

(prime? (+ (car pair) (cadr pair)))))

> (prime-sum? (list 3 6))

#f

> (prime-sum? (list 3 4))

#t

3. Make the triplets:

(define make-pair-sum

(lambda (pair)

(list (car pair) (cadr pair) (+ (car pair) (cadr pair)))))

The overall prime-sum-pairs procedure:

(define prime-sum-pairs

(lambda (n)

(map make-pair-sum

(filter prime-sum?

(flatmap

(lambda (i)

(map (lambda (j) (list i j))

(enumerate-interval 1 (- i 1))))

(enumerate-interval 1 n))

)))

For example:

> (prime-sum-pairs 5)

((2 1 3) (3 2 5) (4 1 5) (4 3 7) (5 2 7))
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Chapter 4

Delayed Evaluation on Data and on
Control (Behavior)

This chapter presents two methods of using delayed evaluation: Lazy lists, which use a
delayed evaluation on possibly infinite data, and continuation passing style, which uses
delayed evaluation for specification of future computations.

4.1 Lazy Lists (ML Sequences, Scheme Streams)

Based on:

1. Paulson: Chapter 5.12 – 5.16,

2. SICP: 3.5

Lazy lists (streams in Scheme, or sequences in ML), are lists whose elements are not
explicitly computed. When working with a lazy operational semantics (normal order sub-
stitution or environment model), all lists are lazy. However, when working with an eager
operational semantics (applicative order substitution), all lists are not lazy: Whenever a list
constructor applies, it computes the full list.
In Scheme:

− (cons head tail) – means that both head and tail are already evaluated.

− (list el1, ..., el2) – means that the eli-s are already evaluated.

− (append list1 list2) – means that list1 and list2 are already evaluated.

− (map f lst) – means that lst is already evaluated.
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Therefore, in eager operational semantics, lazy lists must be defined as a new datatype,
and be implemented in a way that enforces delaying the computation of their elements. The
unique delaying mechanism in Scheme is wrapping the delayed computation as a closure:
(lambda () <expression>)

Lazy lists can support very big and even infinite sequences. Input lazy lists can sup-
port high level real-time programming – modeling and applying abstract concepts to input
that is being read (produced). They provide a natural way for handling infinite series in
mathematics.

Lazy lists are a special feature of functional programming. They are easy to implement
in functional languages due to the first class status of high order functions: Creation at run
time.

While working with lazy (possibly infinite) lists, we can view, at every moment, only a
finite part of the data. Therefore, when designing a recursive function, we are not worried
about termination – the function always terminates because the list is not computed. In-
stead, we should make sure that every finite part of the result can be produced in
finite time.

Lazy lists remove the space inefficiency that characterizes sequence operations. We
have seen that sequence manipulation allows for powerful sequence abstractions using the
Sequence interface. But, sequence manipulation requires large space due to the creation of
intermediate sequences. Sometime, large sequences are built just in order to retrieve few
elements.

Compare the two equivalent procedures for summing the primes within a given interval:

1. The standard iterative style:

(define sum-primes

(lambda (a b)

(letrec ((iter (lambda (count accum)

(cond ((> count b) accum)

((prime? count) (iter (1+ count) (+ count accum)))

(else (iter (1+ count) accum)))))

)

(iter a 0))

))

using a filter procedure prime?

2. Using sequence operations:

(define sum-primes

(lambda (a b)
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(accumulate +

0

(filter prime?

(enumerate-interval a b)))))

The first function interleaves the prime? test with the summation, and creates no
intermediate sequence. The second procedure first produces the sequence of integers from a

to b, then produces the filtered sequence, and only then accumulates the primes. Consider
(do not try!):

- head(tail(filter(prime?,

enumerate_interval(10000, 1000000))

In order to find the second prime that is greater than 10000 we construct: The list of integers
between 10000 and 1000000, and the list of all primes between 10000 and 1000000, instead
of just finding 2 primes!!!

Lazy lists provide:

− Simplicity of sequence operations.

− Low cost in terms of space.

− Ability to manipulate large and infinite sequences.

4.1.1 The Lazy List (ML Sequence, Scheme Stream) Abstract Data Type

Main idea: The sequence is not fully computed. The tail of the list is wrapped within
a closure, and therefore not evaluated. We have seen this idea earlier: Whenever we need
to delay a computation, we wrap the delayed expression within a closure, that includes the
necessary environment for evaluation, and yet prevents the evaluation. This is a special
feature of languages that support run time generated closures.

The lazy list datatype is called stream in Scheme (sequence in ML). Its values are
either the empty list ’() or a pair of any value and a delayed lazy list. The delay is created
by a “closure wrap”:

Definition: The lazy lists type LzL is a recursively defined set of the following values

1. ’empty-lzl ∈ LzL

2. for every scheme-type value v, and a lazy list lzl, ⟨ v, ⟨ closure () lzl ⟩⟩ ∈ LzL

that is the set LzL is defined as follows:
LzL = { ’empty-lzl } ∪ Scheme-type*[Empty -> LzL]

The type expression for defining lazy lists:
Homogeneous lazy lists: LzL(T) = { empty-lzl } | T*[Empty -> LzL(T)]

Heterogeneous lazy lists: LzL = { empty-lzl } | T*[Empty -> LzL]
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Using lambda abstraction for delaying evaluation creates a promise: the unevaluated part
of the list. Some examples for created “promises”:

> (define l0 (list))

> (define l1 (cons 1 (lambda () l0)) )

> (define l2 (cons 2 (lambda () l1)))

> l0

’()

> l1

’(1 . #<procedure>)

> ((cdr l1))

’()

> l2

’(2 . #<procedure>)

> ((cdr l2))

’(1 . #<procedure>)

In general, the values of lazy lists are constructed recursively, by providing a current value
and a computation to be delayed:

;Signature: interegers-from(n)

;Type: [N -> N*[Empty -> LzL(N)]] (= LzL(N) )

> (define integers-from

(lambda (n)

(cons n (lambda () (integers-from (add1 n))))

))

> (define ints (integers-from 0))

> ints

’(0 . #<procedure>)

> ((cdr ints))

’(1 . #<procedure>)

> ((cdr ((cdr ints))))

’(2 . #<procedure>)

Note: The tail is always wrapped within a function, and the recursion has no basis.
Lazy lists are usually big or infinite, and therefore are not explicitly created. Rather,

they are implicitly created, by recursive functions. Since it is hard to explicitly manage
these lambda wrappings and exposure, we develop a set of lazy list operations, by analogy
with lists.

4.1.1.1 The LzL type interface (operations)

The Lazy-list type (ADT) has the following interface:
empty-lzl, cons-lzl, head, tail, empty-lzl?

173



Chapter 4 Principles of Programming Languages

Implementation of the interface:

Value-constructors:

(define empty-lzl empty)

Signature: cons-lzl(x,lzl)

Type: [T*LzL -> LzL]

Pre-condition: lzl=empty-lzl or <closure () Lazy-list>

(define cons-lzl cons)

Question: What happens if cons-lzl is given a non-LzL 2nd argument?

Head and tail:

Signature: head(lz-ist)

Type: [LzL -> T] ;that is, the type is [T*[Empty -> LzL] -> T]

Pre-condition: lzl-lst is not empty: (not (empty-lzl? lzl-lst)))

(define head car)

The tail of a lazy list is a parameter less function. Therefore, to inspect the tail, apply the
tail function. The application forces evaluation of the tail.

Signature: tail(lz-ist)

Type: [LzL -> T] ;that is, the type is [T*[Empty -> LzL] -> T]

Pre-condition: lzl-lst is not empty: (not (empty-lzl? lzl-lst)))

(define tail

(lambda (lz-lst)

((cdr lz-lst))

))

> (head l1)

1

> (tail l1)

’()

> (tail l2)

’(1 . #<procedure>)

> (tail (tail ints))

’(2 . #<procedure>)

> (car (tail (tail ints)))

2
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Predicate:

Signature: empty-lzl?(lz-ist)

Type: [T -> Boolean]

(define empty-lzl? empty?)

The first n elements of a lazy-list and the nth element selectors:

Signature: take(lz-lst,n)

Type: [LzL*Number -> List]

Comment: If n > length(lz-lst) then the result is lz-lst as a List

(define take

(lambda (lz-lst n)

(if (or (= n 0) (empty-lzl? lz-lst))

empty-lzl

(cons (head lz-lst)

(take (tail lz-lst) (sub1 n))))

))

> (take ints 5)

’(0 1 2 3 4)

> (take (integers-from 30) 7)

’(30 31 32 33 34 35 36)

> (take (cons-lzl 1

(lambda () (cons-lzl 2

(lambda () (cons-lzl 3

(lambda () empty-lzl))))))

3)

’(1 2 3)

> (take (cons-lzl 1

(lambda () (cons-lzl 2

(lambda () (cons-lzl 3

(lambda () empty-lzl))))))

6)

’(1 2 3)

Signature: nth(lz-lst,n)

Type: [LzL*Number -> T]

Pre-condition: n < length(lz-lst)

(define nth

(lambda (lz-lst n)

(if (= n 0)

(head lz-lst)
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(nth (tail lz-lst) (sub1 n)))

))

>(nth ints 25)

25

Evaluation of (take (integers-from 30) 2) – using the substitution model:

applicative-eval[(take (integers-from 30) 2)] ==>

applicative-eval[(integers-from 30) ] ==> ; eval step

applicative- eval[ (cons 30 (lambda () (integers-from (+ 30 1))))]

==> (30 . (lambda () (integers-from (+ 30 1))))

applicative-eval

[(30 . (take ((lambda () (integers-from (+ 30 1)))) (- 2 1))) ] ==>

; substitute, reduce

applicative-eval[ (take ((lambda () (integers-from (+ 30 1)))) (- 2 1))]

==> ; eval step

applicative-eval[ (lambda () (integers-from (+ 30 1))) ] ==>

; eval step

applicative-eval[ (integers-from (+ 30 1)) ] ==>

;reduce step

applicative-eval[ (cons 31 (lambda () (integers-from (+ 31 1)))) ]

==> ( 31 . (lambda () (integers-from (+ 31 1))))

applicative-eval

[ (31 . (take ((lambda () (integers-from (+ 31 1)))) (- 1 1))) ] ==>

;reduce step

applicative-eval

[ (take ((lambda () (integers-from (+ 31 1)))) (- 1 1)) ] ==>

;eval step

applicative-eval[ (lambda () (integers-from (+ 31 1))) ]

==> ;eval step

applicative-eval[ (integers-from (+ 31 1)) ] ==>

;reduce step

applicative-eval[ (32 . (lambda () (integers-from (+ 32 1)))) ]

==> (32 . (lambda () (integers-from (+ 32 1))))

’() ==>

(31 . ()) ==>

(30 . (31 . ())) = (30 31)

Notes:

1. The third element of the (integers-from 30) list, 32, is computed, although not
requested!
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2. A repeated computation, say (take (integers-from 30) 7), repeats all the inspec-
tion steps of the lazy-list.

4.1.2 Integer lazy lists

The infinite lazy list of ones:

(define ones (cons-lzl 1 (lambda () ones)))

>(take ones 7)

’(1 1 1 1 1 1 1)

> (nth ones 10)

1

Example 4.1 (The infinite lazy-lists of factorials and Fibonacci numbers).

The infinite lazy-list of integer factorials can be defined using the factorial procedure:

(define fact

(lambda (n) (if (= n 1)

1

(* n (fact (- n 1))))))

Type: [Number -> LzL(Number)]

(define facts-from

(lambda (k)

(letrec ((helper

(lambda (n fact-n)

(cons-lzl fact-n (lambda () (helper (add1 n) (* (add1 n) fact-n)))))

))

(helper k (fact k)))))

(define facts-from-3 (facts-from 3))

> (take facts-from-3 6)

’(6 24 120 720 5040 40320)

The idea is to define a computation that keeps track of pairs of an integer and its factorial
value.

An alternative approach, that internally builds the lazy-list of all integer factorials, does
not rely on an external factorial procedure:

(define facts

(letrec ((factgen

(lambda (n fact-n)

(cons-lzl fact-n (lambda () (factgen (add1 n) (* (add1 n) fact-n)))))
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))

(factgen 1 1)))

> (take facts 5)

’(1 2 6 24 120)

A similar approach can be used to build the lazy-list of all Fibonacci numbers:

(define fibs

(letrec ((fibgen

(lambda (a b)

(cons-lzl a (lambda () (fibgen b (+ a b)))))

))

(fibgen 0 1)))

> (take fibs 7)

’(0 1 1 2 3 5 8)

Note that the body of the delayed tail of a lazy list must be an application of a function
that constructs a lazy list.

4.1.3 Elementary Lazy List Processing

Procedures that construct lazy lists by manipulation of other lazy lists, usually have the
form

(lambda (lz-lst ...)

.... (cons (...)

(lambda () "application of some procedures on the tail(s) of the

input lazy-list(s)")))

Example 4.2 (Applying square to a lazy list).

Signature: squares(lz-list)

Type: [LzL(Number) -> LzL(number)]

(define squares

(lambda (lz-lst)

(if (empty-lzl? lz-lst)

lz-lst

(cons-lzl (let ((h (head lz-lst)))

(* h h))

(lambda () (squares (tail lz-lst)))))

))

> (take (squares ints) 7)

’(0 1 4 9 16 25 36)
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Example 4.3 (Lazy list addition).

Signature: lz-lst-add(lz1,lz2)

Type: [LzL(Number)*LzL(Number) -> LzL(number)]

(define lz-lst-add

(lambda (lz1 lz2)

(cond ((empty-lzl? lz1) lz2)

((empty-lzl? lz2) lz1)

(else

(cons-lzl (+ (head lz1) (head lz2))

(lambda () (lz-lst-add (tail lz1) (tail lz2))))))

))

; definition of the integers using lazy-list addition:

(define integers (cons-lzl 0 (lambda () (lz-lst-add ones integers))))

> (take integers 7)

’(0 1 2 3 4 5 6)

> (take (lz-lst-add (integers-from 100) (squares integers)) 7)

’(100 102 106 112 120 130 142)

;; definition of the Fibonacci numbers using lazy-list addition

(define fib-numbers

(cons 0

(lambda () (cons 1 (lambda () (lz-lst-add (tail fib-numbers) fib-numbers))))

))

> (take fib-numbers 7)

’(0 1 1 2 3 5 8)

Example 4.4 (Lazy list append (interleave)).

Regular lists append is defined by:

(define append

(lambda (l1 l2)

(if (empty? l1)

l2

(cons (car l1)

(append (cdr l1) l2)))))

Trying to write an analogous lazy-list-append yields:

Signature: lz-lst-append(lz1,lz2)

Type: [LzL*LzL -> LzL]

179



Chapter 4 Principles of Programming Languages

(define lz-lst-append

(lambda (lz1 lz2)

(if (empty-lzl? lz1)

lz2

(cons-lzl (head lz1)

(lambda () (lz-lst-append (tail lz1) lz2))))

))

The problem: Observing the elements of the appended list, we see that all elements of
the first lazy-list come before the second lazy-list. What if the first list is infinite? There
is no way to reach the second list. So, this version does not satisfy the natural property of
lazy-list functions: Every finite part of the lazy-list “depends” on at most a finite part of the
lazy-list.

Therefore, when dealing with possibly infinite lists, append is replaced by an interleaving
function, that interleaves the elements of lazy-lists in a way that guarantees that every
element of the lazy-lists is reached within finite time:

Signature: interleave(lz1,lz2)

Type: [LzL*LzL -> LzL]

(define interleave

(lambda (lz1 lz2)

(if (empty-lzl? lz1)

lz2

(cons-lzl (head lz1)

(lambda () (interleave lz2 (tail lz1)))))

))

> (take (lz-lst-append (integers-from 100) fibs) 7)

’(100 101 102 103 104 105 106)

> (take (interleave (integers-from 100) fibs) 7)

’(100 0 101 1 102 1 103)

4.1.4 High Order Lazy-List Functions

High order list functions, like map and filter, need their duals for lazy-lists (why they
cannot directly apply?). When applied to lazy lists, they take and return lazy-lists as
parameters and returned values.

Signature: lz-lst-map(f,lz)

Type: [[T1 -> T2]*LzL(T1) -> LzL(T2)]

(define lz-lst-map

(lambda (f lz)

(if (empty-lzl? lz)
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lz

(cons-lzl (f (head lz))

(lambda () (lz-lst-map f (tail lz)))))

))

> (take (lz-lst-map (lambda (x) (* x x)) ints) 5)

’(0 1 4 9 16)

Signature: lz-lst-filter(p,lz)

Type: [[T1 -> T2]*LzL(T1) -> LzL(T1)]

(define lz-lst-filter

(lambda (p lz)

(cond ((empty-lzl? lz) lz)

((p (head lz)) (cons-lzl (head lz) (lambda () (lz-lst-filter p (tail lz)))))

(else (lz-lst-filter p (tail lz))))

))

(define divisible?

(lambda (x y)

(= (remainder x y) 0)))

(define no-sevens (lz-lst-filter (lambda (x) (not (divisible? x 7))) ints))

> (nth no-sevens 100) ;The 100th integer not divisible by 7:

117

Concrete lazy-list mappings and filters:

; lazy-list scaling:

Signature: lz-lst-scale(c,lz)

Type: [Number*LzL(Number) -> LzL(Number)]

(define lz-lst-scale

(lambda (c lz)

(lz-lst-map (lambda (x) (* x c)) lz)

))

;The lazy-list of powers of 2:

(define double (cons-lzl 1 (lambda () (lz-lst-scale 2 double))))

> (take double 7)

’(1 2 4 8 16 32 64)

;lz-lists of lazy lists:

> (take (lz-lst-map integers-from ints) 3)

’((0 . #<procedure:...zy-lists-aux.rkt:11:12>)

(1 . #<procedure:...zy-lists-aux.rkt:11:12>)
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(2 . #<procedure:...zy-lists-aux.rkt:11:12>))

Example 4.5 (Lazy-list iteration).

Recall the integers lazy-list creation function:

(define integers-from

(lambda (n)

(cons-lzl n (lambda () (integers-from (add1 n))))

))

It can be re-written as:

(define integers-from

(lambda (n)

(cons-lzl n (lambda () (integers-from (lambda (k) (add1 k)) n)))

))

A further generalization can replace the concrete function (lambda (k) (add1 k)) by a
function parameter:

Signature: integers-iterate(f,n)

Type: [[Number->Number]*Number -> LzL(Number)]

(define integers-iterate

(lambda (f n)

(cons-lzl n (lambda () (integers-iterate f (f n))))

))

> (take (integers-iterate add1 3) 7)

’(3 4 5 6 7 8 9)

> (take (integers-iterate (lambda (k) (* k 2)) 3) 7)

’(3 6 12 24 48 96 192)

> (take (integers-iterate (lambda (k) k) 3) 7)

’(3 3 3 3 3 3 3)

Example 4.6 (Primes again: two ways to define the infinite lazy-list of primes:).

Primes – First definition:

(define primes

(cons-lzl 2 (lambda () (lz-lst-filter prime? (integers-from 3)))))

(define prime?

(lambda (n)

(letrec ((iter (lambda (lz)

(cond ((> (sqr (head lz)) n) #t)
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((divisible? n (head lz)) #f)

(else (iter (tail lz)))))

))

(iter primes))

))

> (take primes 6)

’(2 3 5 7 11 13)

Primes – Second definition: The lazy-list of primes can be created as follows:

1. Start with the integers lazy-list: [2,3,4,5,....].

2. Select the first prime: 2.
Filter the current lazy-list from all multiples of 2: [2,3,5,7,9,...]

3. Select the next element on the list: 3.
Filter the current lazy-list from all multiples of 3: [2,3,5,6,11,13,17,...].

4. i-th step: Select the next element on the list: k. Surely it is a prime, since it is not a
multiplication of any smaller integer.
Filter the current lazy-list from all multiples of k.

5. All elements of the resulting lazy-list are primes, and all primes are in the resulting
lazy-list.

Signature: sieve(lz)

Type: [LzL(Number) -> LzL(Number)]

(define sieve

(lambda (lz)

(cons-lzl (head lz)

(lambda ()

(sieve (lz-lst-filter (lambda (x) (not (divisible? x (head lz))))

(tail lz)))))

))

(define primes1 (sieve (integers-from 2)))

> (take primes1 7)

’(2 3 5 7 11 13 17)

4.2 Continuation Passing Style (CPS) Programming

Continuation Passing Style is a programming method that assumes that every user defined
procedure f$ carries a continuation , which is a future computation specification cont,
in the form of a procedure, that needs to apply once the computation of f$ ends.
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Since a CPS procedure carries a future computation, they are written as iterative pro-
cedures: The “bottom” action is directly applied, and all depending actions are postponed
to the continuation. A CPS procedure has one of the following formats:

1. (continuation (primitive-procedure ....))

2. (CSP-user-procedure .... continuation)

3. A conditional with the above alternatives.

Example 4.7. The procedures

(define square (lambda (x) (* x x)))

(define add1 (lambda (x) (+ x 1)))

turn into:

(define square$

(lambda (x cont) (cont (* x x)))

(define add1$

(lambda (x cont) (cont (+ x 1))))

Notation: A CPS version of a procedure proc is conventionally named proc$.

Example 4.8. The procedure:

(define h

(lambda (x) (add1 (+ x 1))))

turns into:

(define h$

(lambda (x cont) (add1$ (+ x 1) cont)))

The solution used in square, add1, of applying the continuation to the body, does not
work for h because we have to pass a continuation to add1$! Note that once in CPS, all user
defined procedures are usually written in CPS.

Example 4.9. Nested applications – The procedure:

(define h1

(lambda (x) (square (add1 (+ x 1)))))

turns into:
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(define h1$

(lambda (x cont)

(add1$ (+ x 1) (lambda (add1-res) (square$ add1-res cont)))

))

What happened?
Since (add1 (+ x 1)) is the first computation to occur, we must pass add1$ the future
computation, which is the application of square$ to the value of (add1$ (+ x 1)). Once
square$ is applied, it is only left to apply the given future cont.

Example 4.10. Determining evaluation order – The procedure:

(define h2

(lambda (x y)(mult (square x) (add1 y)))))

where mult is:

(define mult

(lambda (x y) (* x y)))

turns into:

(define h2$

(lambda (x y cont)

(square$ x

(lambda (square-res)

(add1$ y

(lambda (add1-res) (mult$ square-res add1-res cont)))))

))

or into:

(define h2$

(lambda (x y cont)

(add1$ y

(lambda (add1-res)

(square$ x

(lambda (square-res) (mult$ square-res add1-res cont)))))

))

where mult$ is:

(define mult$

(lambda (x y cont) (cont (* x y))))
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Why?
Because we need to split the body of h2 into a single computation that is given a future
continuation. Since Scheme does not specify the order of argument evaluation we can select
either (square x) or (add1 y) as the first computation to happen. The rest is pushed into
the continuation.

What is the relationship between h2 to h2$?

Claim 4.1. For every numbers x, y, and a continuation procedure cont:
(h2$ x y cont) = (cont (h2 x y))

Proof.

applicative-eval[ (h2$ x y cont) ] ==>*

applicative-eval[ (square$ x

(lambda (square-res)

(add1$ y

(lambda (add1-res) (mult$ square-res add1-res cont))))) ] ==>*

applicative-eval[ ((lambda (square-res)

(add1$ y (lambda (add1-res) (mult$ square-res add1-res cont))))

(* x x)) ] ==>*

applicative-eval[ (add1$ y (lambda (add1-res) (mult$ x*x add1-res cont))) ] ==>*

applicative-eval[ ((lambda (add1-res) (mult$ x*x add1-res cont)) (+ y 1)) ] ==>*

applicative-eval[ (mult$ x*x y+1 cont) ] ==>*

applicative-eval[ (cont (* x*x y+1)) ] =

since applicative-eval[ (* x*x y+1) ] = applicative-eval[ (h2 x y) ]

applicative-eval[ (cont (h2 x y)) ]

The general relationship between a procedure to its CPS version is defined as follows:

Def 4.1. A procedure f$ is CPS equivalent to a procedure f, if for every input value x1,

x2, ..., xn, n ≥ 0, and a continuation cont, (f$ x1 ... xn cont) = (cont (f x1 ...

xn))

CPS is useful for various computation tasks. We concentrate on two such tasks:

1. Turning a recursive process into an iterative one.

2. Controlling multiple alternative future computations: Errors (exceptions), search, and
backtracking.
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4.2.1 Recursive to Iterative CPS Transformations

Example 4.11. Factorial – Consider the recursive factorial procedure:

(define fact

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

An evaluation of its application relies on a recursion management mechanism of the eval-
uation algorithm (e.g., applicative-eval), that “knows” to delay a computation until a
recursive call evaluation is finished. The delayed computation is a future computation for
a recursive call. The management of future computations due to recursive procedure calls is
usually performed by holding a stack of procedure activation frames that keep track of
the delayed computations. Every procedure call opens a new activation frame. Figure 4.1
show the procedure call stack for (fact 3).

Figure 4.1: Stack of procedure activation frames for (fact 3)

The recursion control mechanism can be replaced by continuation management ,
where an activation frame is replaced by a future (continuation) computation, provided to
the recursive application. The recursive call (* n (fact (- n 1))) whose computation
opens a new frame for (fact (- n 1)) with the delayed (* n result) computation in the
current frame, is replaced by the recursive call:

(fact$ (- n 1)

(lambda (result) (* n result)))
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The calling frame is replaced by a continuation. But – the frames are built one of top of
the otehr, So – the same should apply for the continuation. Therefore, the continuation to
(fact (- n 1)) should apply the previous continuatiuon:

(fact$ (- n 1)

(lambda (result) (cont (* n result))))

The top frame, that folds back all the open frames is replaced by application of the
delayed computation to its result: ((cont 1)). Overall, the fact procedure turns into a
fact$ procedure, with body: 1→ turns into (cont 1)

or
(* n (fact (- n 1))) → turns into

(fact$ (- n 1)

(lambda (res) (cont (* n res))))

and altogether:

(define fact$

(lambda (n cont)

(if (= n 0)

(cont 1)

(fact$ (- n 1) (lambda (res) (cont (* n res)))))

))

Clearly, a fact$ computation creates an iterative process.

Claim 4.2. fact$ is CPS equivalent to fact. That is, for every n ≥ 0 and continuation
procedure cont, (fact$ n cont) = (cont (fact n)).

Proof. Since fact is a recursive procedure, the proof is by induction (straightforward ex-
pansion does not terminate).
Induction base: n = 0.
applicative-eval[ (fact$ 0 cont) ] ==>*

applicative-eval[ (cont 1) ] =

applicative-eval[ (cont (fact 0)) ]

Inductive hypothesis: n = k ≥ 0 Assume that the hypothesis holds for every integer i ≤ k.
Inductive step: n = k + 1 > 0
applicative-eval[ (fact$ n cont) ] ==>*

applicative-eval[ (fact$ (- n 1) (lambda (res) (cont (* n res)))) ] ==>*

by the inductive hypothesis,

applicative-eval[ ((lambda (res) (cont (* n res))) (fact (- n 1))) ] ==>*
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applicative-eval[ (cont (* n (fact (- n 1)))) ] =

since applicative-eval[ (* n (fact (- n 1))) ] = applicative-eval[ (fact n) ]

applicative-eval[ (cont (fact n)) ]

What continuations are constructed during the computation and how and when they are
applied?
Intuitively we understand that the deeper we get into the recursion, the longer is the con-
tinuation. We demonstrate the sequence of procedure calls:

(fact$ 3 (lambda (x) x))

==>

(fact$ 2 (lambda (res)

( (lambda (x) x)

(* 3 res))))

==>

(fact$ 1 (lambda (res)

( (lambda (res)

( (lambda (x) x) (* 3 res)))

(* 2 res))))

==>

(fact$ 0 (lambda (res)

( (lambda (res)

( (lambda (res)

( (lambda (x) x) (* 3 res)))

(* 2 res)))

(* 1 res))))

==>

( (lambda (res)

( (lambda (res)

( (lambda (res)

( (lambda (x) x) (* 3 res)))

(* 2 res)))

(* 1 res)))

1)

==>

( (lambda (res)

( (lambda (res)

( (lambda (x) x) (* 3 res)))

(* 2 res)))

1)
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==>

( (lambda (res)

( (lambda (x) x) (* 3 res)))

2)

==>

( (lambda (x) x) 6)

==>

6

We see that the procedure creates an iterative process – requires constant space on the
function call stack.

Guidelines for CPS transformation for turning a recursive process into an iterative one:

1. Look for a deepest call to a user defined procedure that is not the last evaluation to
compute.

2. Turn it into the body of the CPS procedure, and fold all later computations into the
future continuation.

3. If no future computations for a deepest expression: Apply the continuation to the
expression.

In many cases providing an iterative procedure is not straightforward. For example in search
problems on hierarchical structures:

(define sum-odd-squares

(lambda (tree)

(cond ((null? tree) 0)

((not (list? tree))

(if (odd? tree) (square tree) 0))

(else (+ (sum-odd-squares (car tree))

(sum-odd-squares (cdr tree)))))))

An iterative version is not immediate because of the deep unbounded hierarchy. In such
cases the CPS transformation that creates an iterative version is helpful.
Observation: The continuations grow! While the function call stack keeps a constant size
for calls of fact$, the size of the closure values grows with the recursive calls! The stack
space is traded for the closure value space.

Example 4.12. Ackermann function:

(define ackermann

(lambda (a b)

(cond ( (zero? a) (+ 1 b))
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( (zero? b) (ackermann (- a 1) 1))

(else (ackermann (- a 1) (ackermann a (- b 1)))))

))

The function creates a tree recursive process. A CPS-equivalent iterative version is con-
structed along the same guidelines:

1. Identify innermost expression.

2. If it is not an application of a user procedure: Apply the continuation on the expression.

3. If it is an application of a user procedure – pass the remaining computation as a
continuation.

(define ackermann$

(lambda (a b cont)

(cond ( (zero? a) (cont (+ 1 b)))

( (zero? b) (ackermann$ (- a 1) 1 cont))

(else (ackermann$ a (- b 1)

(lambda (res) (ackermann$ (- a 1) res cont)))))

))

Example 4.13. map function:

(define map

(lambda (f list)

(if (null? list)

list

(cons (f (car list))

(map f (cdr list))))

))

This procedure includes two user-procedure calls, nested within a cons application. There-
fore, the process is not iterative. In order to transform it into a CPS-equivalent iterative
version we need to select an expression that does not include nested user procedure applica-
tions, and postpone the rest of the computation to the future continuation. The two nested
user procedure calls appear in the arguments of the cons application. We can select either
of them, thus receiving two CPS versions:

(define map$

(lambda (f$ list cont)

(if (null? list)

(cont list)
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(f$ (car list)

(lambda (f-res)

(map$ f$

(cdr list)

(lambda (map-res)

(cont (cons f-res map-res)))))))

))

(define map$

(lambda (f$ list cont)

(if (null? list)

(cont list)

(map$ f$

(cdr list)

(lambda (map-res)

(f$ (car list)

(lambda (f-res)

(cont (cons f-res map-res)))))))

))

The to-CPS transformations above are done intuitively, by observing a deepest user-
procedure call and delaying other computations to the continuation. Based on the head
and tail position analysis, introduced in Chapter ??, this analysis can be formalized (and
automated), so that an expression can be proved to create iterative processes. Moreover, the
transformation itself can be automated. Having an iterative process automated identifier, a
compiler (interpreter) can be tail recursive – can identify iterative expressions and evaluate
them using bounded space.

4.2.2 Controlling Multiple Alternative Future Computations: Errors (Ex-
ceptions), Search and Backtracking

These are the applications that actually gain from the CPS style: Multiple clients, with
different future computations can use an independent CPS-based service. Instead of mod-
ifying the code of a service for achieving different future computations, the client hands
the future computations to the service. The responsibility of the client is to provide future
computations, and the responsibility of the server is to correctly apply the given future
continuations. The benefit for the client is that it needs not bother to properly apply the
future continuations, while the benefit for the server is that it needs not bother to modify
its code for each future continuation.

This usage of CPS reminds the “inversion of control” design pattern of Fowler http:

//martinfowler.com/bliki/InversionOfControl.html: Instead of a client that holds a
server and complements its code with application of desirable future computations, we have
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a client that provides future computations to a server, which is responsible for their proper
applications.

Example 4.14. Replace a call to error by a fail continuation:

An error (exception) marks an alternative, not planned future. Errors and exceptions
break the computation (like a goto or break in an imperative language). A call to the
Scheme primitive procedure error breaks the computation and returns no value. This is a
major problem to the type system.

In the CPS style errors can be implemented by continuations. Such a CPS procedure
carries two continuations, one for the planned future – the success continuation, and one
for the error – the fail continuation.

Signature: sumlist(li)

Purpose: Sum the elements of a number list. If the list includes a non

number element -- produce an error.

Type: [List -> Number union ???]

(define sumlist

(lambda (li)

(cond ((null? li) 0)

((not (number? (car li))) (error "non numeric value!"))

(else

(+ (car li) (sumlist (cdr li)))))

))

An iterative CPS version, that uses success/fail continuations:

(define sumlist

(lambda (li)

(letrec

((sumlist$

(lambda (li succ-cont fail-cont)

(cond ((null? li) (succ-cont 0)) ;; end of list

((number? (car li)) ;; non-end, car is numeric

(sumlist$ (cdr li)

(lambda (sum-cdr) ;success continuation

(succ-cont (+ (car li) sum-cdr)))

fail-cont)) ;fail continuation

(else (fail-cont)))) ;apply the fail continuation

))

(sumlist$ li

(lambda (x) x)

(lambda ( ) (display "non numeric value!"))))

))
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Note that while the success continuation is gradually built along the computation – con-
structing the stored future actions, the fail continuation is not constructed. When applied,
it discards the success continuation.

Example 4.15. Using a fail continuation in search.

In this example, the fail continuation is used to direct the search along a tree. If the
search on some part of the tree fails, the fail continuation applies the search to another part
of the tree.

The tree in this example is an unlabeled tree , that is, a tree whose branches are un-
labeled, and whose leaves are labeled by atomic values. This is the standard view of an
heterogeneous list. For example, ((3 4) 5 1) is a list representation of such a tree.
Tree interface:
Constructors: make-tree(1st,2nd, ...), add-subtree(first,rest), make-leaf(data),

empty-tree;
Selectors: first-subtree(tree), rest-subtree(tree), leaf-date(leaf);
Predicates: composite-tree?(t), leaf?(t), empty-tree?(t);
with the obvious preconditions for the constructors and the selectors. Implementation ap-
pears at the end of the example.

The CPS version includes a success and a fail continuations. In the search decision point,
when the search is turned to the first sub-tree, the fail continuation that is passed is the
search in the rest of the sub-trees. The fail continuation is applied when the search reaches
a leaf and fails.

Signature: leftmost-even(tree)

Purpose: Find the left most even leaf of an unlabeled tree whose leaves are

labeled by numbers. If none, return #f.

Type: [List -> Number union Boolean]

Examples: (leftmost-even ’((1 2) (3 4 5))) ==> 2

(leftmost-even ’((1 1) (3 3) 5)) ==> #f

(define leftmost-even

(lambda (tree)

(leftmost-even$ tree (lambda (x) x) (lambda ( ) #f))

))

(define leftmost-even$

(lambda (tree succ-cont fail-cont)

(cond ((empty-tree? tree) (fail-cont))

((leaf? tree)

(if (even? (leaf-data tree))

(succ-cont tree)

(fail-cont)))
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(else ; Composite tree

(leftmost-even$

(first-subtree tree)

succ-cont

(lambda () (leftmost-even$ (rest-subtrees tree) ; (*)

succ-cont

fail-cont)))))

))

The leftmost-even procedure performs an exhaustive search on the tree, until an even leaf
is found. Whenever the search in the first sub-tree fails, it invokes a recursive search on the
rest of the sub-trees. This kind of search can be viewed as a backtracking search policy:
If the decision to search in the first sub-tree appears wrong, a retreat to the decision point
occurs, and an alternative route is selected.

Note that the fail continuation that is passed to the fail continuation that is constructed
in the decision point (marked by *) is the fail continuation that is passed to leftmost-even$

as an argument. To understand that think about the decision points:

− If the search in (first-subtree tree) succeeds, then the future is succ-cont.

− If it fails, then the future is the search in (rest-subtrees tree).

− If the search in (rest-subtrees tree) succeeds, the future is succ-cont.

− If it fails, then the future is fail-cont.

Example of a search trace:

(leftmost-even ((1 2) (3 4) 5)) ==>

(leftmost-even$ ((1 2) (3 4) 5) (lambda (x) x) (lambda () #f)) ==>

(leftmost-even$ (1 2) (lambda (x) x)

(lambda ()

(iter$ ((3 4))

(lambda (x) x)

(lambda () #f)))) ==>

(leftmost-even$ 1 (lambda (x) x)

(lambda ()

(iter$ (2)

(lambda (x) x)

(lambda ()

(iter$ ((3 4) 5)

(lambda (x) x)

(lambda () #f)))))) ==>*
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(leftmost-even$ (2)

(lambda (x) x)

(lambda ()

(iter$ ((3 4) 5)

(lambda (x) x)

(lambda () #f)))) ==>*

( (lambda (x) x) 2) ==>

2

Implementation of the unlabeled-tree interface as a heterogeneous list:

(define make-tree list)

(define add-subtree cons)

(define make-leaf (lambda (d) d))

(define empty-tree empty)

(define first-subtree car)

(define rest-subtrees cdr)

(define leaf-data (lambda (x) x))

(define composite-tree? pair?)

(define leaf?

(lambda (t) (not (list? t))))

(define empty-tree? empty?)

(define tree (make-tree (make-tree (make-leaf 3) (make-leaf 4))

(make-leaf 5)

(make-leaf 1)))

>tree

’((3 4) 5 1)

We use the printed form of heterogeneous lists for describing unlabeled trees as well.
Suppose that a different client wishes to have the original tree, in case that a an even

leaf does not exists:

(define leftmost-even

(lambda (tree)

(leftmost-even$ tree (lambda (x) x) (lambda ( ) tree))

))

The service (suppolier) code is not affected. Only the calling arguments.

At last, a non-CPS version:
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(define leftmost-even

(lambda (tree)

(letrec

((iter (lambda (tree)

(cond ((empty-tree? tree) #f)

((leaf? tree)

(if (even? (leaf-data tree)) (leaf-data tree) #f))

(else

(let ((res-first (iter (first-subtree tree))))

(if res-first

res-first

(iter (rest-subtrees tree)))))))

))

(iter tree))

))

Example 4.16. Using a success continuation for reconstructing a hierarchy.

In this example, the success/fail continuations are used for reconstructing the original
hierarchical structure, after replacing an old leaf by a new one. In this example the CPS style
simplifies the implementation, and enables easy revision of future continuations. Therefore,
we start with a CPS version. Then show the more complex and less readable non-CPS
version.
A CPS version:

Signature: replace-leftmost(old new tree)

Purpose: Find the left most leaf whose value is ’old’ and replace it

by new. If none, return #f.

Type: [T1*T2*List -> List union Boolean]

Examples: (replace-leftmost 3 1 ’((2 2) (4 3 2 (2)) 3) ) ==>

((2 2) (4 1 2 (2)) 3)

(replace-leftmost 2 1 ’((1 1) (3 3))) ==> #f

(define replace-leftmost

(lambda (old new tree)

(replace-leftmost$ tree (lambda (x) x) (lambda() #f) )

))

(define replace-leftmost$

(lambda (tree succ-cont fail-cont)

(cond ((empty? tree) (fail-cont))

((leaf? tree)
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(if (eq? (leaf-data tree) old)

(succ-cont (make-leaf new))

(fail-cont)))

(else ; Composite tree

(replace-leftmost$

(first-subtree tree)

(lambda (first-res)

(succ-cont (add-subtree first-res (rest-subtrees tree))))

(lambda ()

(replace-leftmost$

(rest-subtrees tree)

(lambda (rest-res)

(succ-cont

(add-subtree (first-subtree tree) rest-res)))

fail-cont)))) )

))

Explanation: For a composite tree, apply the search on its left sub-tree:

− The success continuation:

1. Combines the resulting already replaced sub-tree with the rest sub-trees, and
then

2. Applies the given success continuation.

− The fail continuation:

1. Applies the search to the rest sub-trees. For this search:

(a) The success continuation combines the first sub-tree with the resulting al-
ready replaced rest sub-trees, and then

(b) Applies the original success continuation.

2. The fail continuation is the originally given fail continuation.

Question: Suppose that in case that old is not found we are asked to return the original
tree. This is a more reasonable request, as the default of “replace the leftmost occurrence
of”. How should the replace-leftmost procedure be change?
To answer that, we observe that the CPS procedure does not make any assumption about
the future, success or fail, continuations. So, the answer lies in the “futures” provided to
the CPS procedure: in case of success, do nothing (the identity procedure), but in case of
failure, return the given tree:

(define replace-leftmost
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(lambda (old new tree)

(replace-leftmost$ tree (lambda (x) x) (lambda() tree) )) ;the only change!

))

A non-CPS version: The non-CPS version searches recursively along the tree.

1. If a replacement in a sub-tree is successful, then the result should be combined with
the rest of the tree.

2. If a replacement in a sub-tree fails, then

(a) If the replacement in the rest of the sub-tree is successful, the sub-trees should
be combined.

(b) Otherwise, the replacement fails.

Therefor, this version faces the problem of marking whether a search was successful and
returns the result of the replacement. That is, the internal procedure has to return two
pieces of information:

− The replaced structure

− A sign of whether the replacement was successful.

Therefore, the internal iter procedure returns a pair of the new structure and a boolean
flag marking success or failure.

(define replace-leftmost

(lambda (old new tree)

(letrec ((combine-tree-flag cons)

(get-tree car)

(get-flag cdr)

(iter

(lambda (tree flag)

(cond ((empty-tree? tree) (combine-tree-flag tree flag))

((leaf? tree)

(if (and (not flag) (eq? (leaf-data tree) old))

(combine-tree-flag (make-leaf new) #t)

(combine-tree-flag tree flag)))

(else

(let ((new-first-flagged (iter (first-subtree tree) flag)))

(if (get-flag new-first-flagged)

(combine-tree-flag

(add-subtree (get-tree new-first-flagged)

(rest-subtrees tree))
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#t)

(let

((new-rest-flagged (iter (rest-subtrees tree) flag)))

(combine-tree-flag

(add-subtree (first-subtree tree)

(get-tree new-rest-flagged))

(get-flag new-rest-flagged))))))))

))

(let ( (replace-result (iter tree #f)) )

(if (get-flag replace-result)

(get-tree replace-result)

#f)) )))
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Chapter 5

Type Correctness

Based on Krishnamurthi [8] chapters 24-26, Friedman and Wand [3] chapter 7.

Contracts of programs provide specification for their most important properties: Sig-
nature, type, preconditions and postconditions. It says nothing about the implementation
(such as performance).

Program correctness deals with proving that a program implementation satisfies its
contract:

1. Type correctness : Check well-typing of all expressions, and possibly infer missing
types.

2. Program verification : Show that if preconditions hold, then the program termi-
nates, and the postconditions hold (the Design by Contract philosophy).

Program correctness can be checked either statically or dynamically. In static program
correctness the program text is analyzed without running it. It is intended to reveal prob-
lems that characterize the program independently of specific data. Static type checking
verifies that the program will not encounter run time errors due to type mismatch problems.
In dynamic program correctness, problems are detected by running the program on spe-
cific data. Static correctness methods are considered strong since they analyze the program
as a whole, and do not require program application. Dynamic correctness methods, like unit
testing, are complementary to the static ones.

This chapter presents two algorithms for static type inference:

1. An inference algorithm based on type inference rules. This algorithm is non-deterministic
and its implementation is complex, as it involves cumbersome data structures and non-
deterministic decisions.

2. An inference algorithm based on solving type equations. This algorithm is an outcome
of the first algorithm. It is deterministic, involves simple data structures, and simple
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to implement. Chapter 3 presents an implementation of this algorithm, emphasizing
the importance of abstract data types in software.

5.1 What is Type Checking/Inference?

Most programming languages are typed , i.e., the sets of their computed values are split into
subsets, termed types, that collect together values of a similar kind. In the part of Scheme
that we study:

Computed_values = {Numbers, Booleans, Symbols, Procedures, Tuples}

where
Numbers = {1,2,5.1,−3, ....}
Booleans = {#t,#f}
Symbols = {a, ab1, moshe, ...}
Procedures = set of all primitive procedures and closures over values, which is internally
split into 1-ary closures from numbers to numbers, 2-ary closures from number pairs to clo-
sures, etc.
Tuples = set of all tuples of values, which is internally split into pairs of numbers, pairs of
closures, triplets, quadruples of values, etc.

Once a language uses computations in known domains like Arithmetics or Boolean logic,
its semantics admits types. Most programming languages admit fully typed semantics, i.e.,
every computed value belongs to a known type. Some languages, though, have semi-typed
semantics, i.e., they allow typeless values. Such are, for example, languages of web applica-
tions that manage semi-structured data bases. Only theoretical computation languages, like
Lambda Calculus and Pure Logic Programming have untyped semantics. These languages
do not include built-in domains.

The closures computed by a typed language are not defined over all values. The appli-
cation of a primitive procedure or a closure to wrong arguments create a computation error,
termed run-time errors. Correct applications are characterized by well typing rules, that
dictate correct combinations of types.
The basic well typing rule – correct closure application: A closure is defined only
on values in its domain and returns values only in its range.
If types are inter-related, then well typing includes additional rules. For example, if type
Integer is a subtype of (included in) type Real which is a subtype of type Complex , then
a closure from Real to Integer can apply also to Integer values, and its result values can
be the input to a function defined on type Real .

Type checking/inference involves association of program expressions with types. The
intention is to associate an expression e with type t, such that evaluation of e yields values
in t. This way the evaluator that runs the program can check the well typing conditions
before actually performing bad applications.
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The purpose of type checking/inference is to guarantee type safety , i.e., predict
well typing problems and prevent computation when well typing is violated.

Specification of type information about language expressions:

Type checking/inference requires that the language syntax includes type information.
Many programming languages have fully-typed syntax, i.e., the language syntax requires
full specification of types for all language constructs. In such languages, all constants and
variables (including procedure and function variables) must be provided with full typing
information. Such are, for example, the languages Java, C, C++, Pascal1.

Some languages have a partially-typed syntax, i.e., programs do not necessarily asso-
ciate their constructs with types. The Scheme and Prolog languages do not include any
typing information. The ML language allows for partially-typed specifications. In such
languages, typing information might arise from built-in typing of language primitives. For
example, in Scheme, number constants have the built-in Number typing, and the symbol “-”
has the built-in Procedure type [Number*Number –> Number].

If a language syntax does not include types, and there are no built-in primitives with
built-in types, then the language has an untyped semantics. Pure Logic Programming is
an untyped language.

Static/dynamic type checking/inference:
Type checking/inference is performed by an algorithm that uses type information within
the program code for checking well typing conditions. If the type checking algorithm is
based only on the program code, then it can be applied off-line, without actually running
the program. This is static type checking/inference . Such an algorithm uses the known
semantics of language constructs for statically checking well typing conditions. A weaker
version of a type checking algorithm requires concrete data for checking well typing, usually
based on type tagging of values. Therefore, they require an actual program run, and the
type checking is done at runtime. This is dynamic type checking . Clearly, static type
checking is preferable over dynamic type checking.

The programming languages Pascal, C, C++, Java that have a fully typed syntax, have
static type checking algorithms. The ML language, that allows for partial type specification,
has static type inference algorithms. That is, based on partial type information provided
for primitives and in the code, the algorithm statically infers type information, and checks
for well typing. The Scheme and Prolog languages, that have no type information in their
syntax, have only dynamic typing.

Properties of type checking/inference algorithms:
The goal of a type checking/inference algorithm is to detect all violations of well typing. A

1Java generics and C++ templates provide a restricted form of type variables.
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type checking algorithm that detects all such violations is termed strong . Otherwise, it is
weak . The difficulty is, of course, to design efficient, static, strong type checking algorithms.
Static type checkers need to follow the operational semantics of the language, in order to
determine types of expressions in a program, and check for well typing. The type checker of
the C language is known to be weak, due to pointer arithmetics.

How types are specified? – the Type Language:
Specification of typing information in programs and within type checking algorithms requires
a language for writing types . A type specification language has to specify atomic types
and composite types. Some languages allow for User defined types , in addition to the
types that are built-in (like primitives) in the language. This is possible in all object-oriented
languages, where every class defines a new type. ML also allows for user defined types. It
is not possible in Scheme (without structs).
Language expressions vs. type expressions: The programming language and the
type language are two different languages, and the aim is to assign a type expression to
every language expression. Language expressions include value constructors and type
expressions include type constructors. Value constructors create values of types, and type
constructors create composite types.
Examples of value constructors in Scheme: Number symbols (the symbol 3 creates the value
3), boolean symbols, lambda.
Examples of type constructors in the type language introduced below: * that constructs the
Tuple type and –> that constructs the Procedure type.

In object-oriented languages, where every class has an associated type, class constructors
act as value constructors for the class type – create objects (instances) of the class, while
class declarations act as type constructors.
Type polymorphism: Some programming languages include expressions that evaluate or
create values from multiple types. Such expressions are termed polymorphic. For example,
in object-oriented languages, Class-hierarchy implies subtyping relationships between class
types, and assign multiple types to attributes and methods within a class hierarchy. Func-
tional languages (like Scheme and ML), support polymorphic procedures, i.e., procedures
having multiple types.

In order to describe the multiple types of a polymorphic language expression, the type
language includes type variables. Type expressions that include type variables describe
multiple types, and are termed polymorphic type expressions . The type of a polymorphic
language expression is specified by a polymorphic type expressions.

Summary of terms:

1. Programming language properties: Typed language semantics; Semi-typed lan-
guage semantics; Well typing rules; Fully/partially typed syntax.
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2. Type language properties: Atomic/composite types; User defined types; Poly-
morphic type-expressions, value/type constructors.

3. Type correctness mechanisms: Static/dynamic type checking ; Type infer-
ence ; Strong/weak type mechanism; Type safety .

5.2 The Type Language

The formal type language, which was introduced in Chapter 2, includes the atomic types
Number, Boolean, Symbol, Void, the empty type Empty, and the composite types Procedure,
Pair, List. Union types are not included in the formal specification. Moreover, Void is not
an input parameter type for Procedure types, and Empty is not an output parameter type.
The type inference methods that are introduced in this chapter are restricted to infer only
these types. The restrictions are:

1. Type inference does not apply to language expressions that return union types (like
conditionals), procedures defined on the void value of the Void type, or procedures
with no returned value.

2. Type specification does not enable user-defined types. In particular, there are no
recursive types (apart for the built-in ones).

Type variables and Type polymorphism:
Scheme expressions that do not include primitives do not have a specified type. Such expres-
sions can yield, at runtime, values of different types, based on the types of their variables.
We have already seen that procedures like the identity procedure (lambda (x) x) can be
applied to values of any type and returns a value of the input type:

> ( (lambda (x) x) 3)

3

> ( (lambda (x) x) #t)

#t

> ( (lambda (x) x) (lambda (x) (+ x 1)))

#<procedure:x>

Therefore, the identity procedure has multiple types in these applications:
In the first: [Number –> Number]

In the 2nd: [Boolean –> Boolean]

In the 3rd: [[Number –> Number] –> [Number –> Number]]

Type variables provide the necessary abstraction: The well-typing rules enable substitution
(replacement) of type variables by other type expressions. Here are some type expressions
that describe the types of procedures:
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1. The type expression for the identity procedure is [T –> T].

2. The type expression for (lambda (f x)(f x)) is [[T1 -> T2]*T1 -> T2].

3. The type expression for (lambda (f x)((f x) x)) is
[[T1 -> [T1 -> T2]]*T1 -> T2].

Type expressions that include type variables are called polymorphic type-expressions ,
and are constructed using polymorphic type-constructors. Language expressions whose
type is polymorphic are called polymorphic language-expressions.

BNF grammar of the type language for the inference algorithms:

Type -> ’Void’ | Non-void

Non-void -> Atomic | Composite | Type-variable

Atomic -> ’Number’ | ’Boolean’ | ’Symbol’

Composite -> Procedure | Pair | List

Procedure -> ’[’ Tuple ’->’ Type ’]’

Tuple -> (Non-void ’*’ )* Non-void | ’Empty’

Pair -> ’Pair’ ’(’ Non-void ’,’ Non-void ’)’

List -> ’List’ ’(’ Non-void ’)’ | ’List’

Type-variable -> A symbol starting with an upper case letter

Value constructors and type constructors: We already know that value constructors
are functions that construct values of types, based on given input values. Type constructors
are functions that construct types, based on given input types. In our type language, the
type constructor for Procedure types is ->, the type constructor for Pair types is Pair, and
the type constructor for List types is List. For atomic types, the type is a type constructor
of a single value – itself.

Note the analogy with value constructors: The value constructor for procedure values is
lambda, for Pair and List values it is cons and the empty list empty is a value constructor
for itself. Similarly, values of atomic types, like numbers and symbols are constructors of
themselves.

5.3 Type Substitutions and Unifiers

Checking well-typing of polymorphic type-expressions requires precise definition of correct
replacement of type variables by type expressions. It involves concepts that we have already
met in the formal definition of the operational semantics: Substitution, Composition
of substitutions, the Substitute operation , and requires Renaming . We also add
the notions of Type-unification, Type-unifier and Type-most-general-unifier (Type-
mgu).
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Definition: A type-substitution s is a mapping from a finite set of type variables to a
finite set of type expressions, such that s(T ) does not include T . A type-binding is a
pair ⟨T, s(T )⟩ such that T = s(T ).

Substitutions are written using set notions: {T1=Number, T2=[[Number->T3]->T3]}.
{T1=Number, T2=[[Number->T3]->T2]} is illegal.

Definition: The application of a type-substitution s to a type expression τ , denoted
τ ○ s (or just τs), consistently replaces all occurrences of type variables T in τ by their
mapped type expressions s(T ). The replacement is simultaneous.

For example,
[[T1->T2]->T2]○{T1=Boolean, T2=[T3->T3]} = [[Number->[T3->T3]] -> [T3->T3]]

We say that a type expression τ ′ is an instance of a type expression τ , if there is a type-
substitution s such that τ ○ s = τ ′. τ is more general than τ ′, if τ ′ is an instance of τ . The
following type expressions are instances of [T -> T]:

[Number -> Number] = [T->T]○{T = Number}

[Symbol -> Symbol] = [T->T]○{T = Symbol}

[[Number->Number] -> [Number->Number]] = [T->T]○{T = [Number->Number]}

[[Number->T1] -> [Number->T1]] = [T->T]○{T = [Number->T1]}

Definition: Combination (composition) of type-substitutions
The combination of type-substitutions s and s′, denoted s ○ s′, is an operation that results
a type-substitution, or fails. It is defined by:

1. s′ is applied to the type-expressions of s, i.e., for every variable T ′ for which s′(T ′) is
defined, occurrences of T ′ in type expressions in s are replaced by s′(T ′).

2. A variable T ′ in s′, for which s(T ) is defined, is removed from the domain of s′, i.e.,
s′(T ) is not defined on it any more.

3. The modified s′ is added to s.

4. Identity bindings, i.e., s(T ) = T , are removed.

5. If for some variable, (s ○ s′)(T ) includes T , the combination fails.

For example,
{T1=Number, T2=[[Number->T3] -> T3]}○{T3=Boolean, T1=[T2->T2]} =

{T1 = Number, T2 = [[Number->Boolean]->Boolean], T3=Boolean}

Definition: Renaming of type variables
This is the operation of consistent renaming of type variables within a type expression, by
new type symbols, that do not occur in the type expression.

207



Chapter 5 Principles of Programming Languages

Renamed type expressions are equivalent:

[[T1 -> T2]*T1 -> T2] ≡ [[S1 -> T2]*S1 -> T2]

[[T1 -> T2]*T1 -> T2] ≡ [[S1 -> S2]*S1 -> S2]

The variables in the substituting expressions should be new. For example, the following
renamings of [[T1->T2]*T1 -> T2] are illegal:

[[T1->T2]*S2 -> T2]

[[T2->T2]*T2 -> T2]

[[[T1->T2]->T2]*[T1->T2] -> T2]

Unification of type expressions is an operation that makes type expressions identical
by application of a type substitution. For example:
[S*[Number->S]->S] ○ {S=Pair(T1), T2=[Number->S], T3=Pair(T1)} =
[Pair(T1)*T2->T3] ○ {S=Pair(T1), T2=[Number->S], T3=Pair(T1)} =
[Pair(T1)*[Number->Pair(T1)]->Pair(T1)]

Therefore, {S=Pair(T1), T2=[Number->S], T3=Pair(T1)} is a unifier for these type ex-
pressions.

Definition: Unifier of type expressions
A unifier of type expressions τ1, τ2 is a type substitution s such that τ1 ○ s = τ2 ○ s.
The type expressions should not include common type variables! (Apply renaming, if
needed.)

Example 5.1 (Unification of type expressions).

1. The type expressions
[S*[Number->S1]->S] and
[Pair(T1)*[T1->T1]->T2]

are unifiable by {S=Pair(Number), T1=Number, S1=Number, T2=Pair(Number)}

2. The type expressions
[S*[Number->S]->S] and
[Pair(T1)*[T1->T1]->T2]

are not unifiable!

Unifiable type expressions can be unified by multiple unifiers. For example, the type
expressions [S*S->S] and [Pair(T1)*T2->T2] are unifiable by the unifiers
{S=Pair(T1), T2=Pair(T1)},
{S=Pair(Number), T2=Pair(Number)},
{S=Pair(Boolean), T2=Pair(Boolean)}, etc.
The first unifier is the most general unifier (mgu), since it substitutes only the nec-
essary type variables. All other unifiers are obtained from it by application of additional
substitutions. The most general unifier is unique, up to consistent renaming.
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5.4 Static Type Inference for Scheme

A type checking/inference algorithm checks/infers correctness of types of program expres-
sions. Its goal is to guarantee type safety , i.e., to infer type T for an expression e, in case
that the application of the operational semantics algorithm to e completes its computation,
and results a value in type T. If the application of the operational semantics does not com-
plete safely, the type inference algorithm should not infer a type, and moreover, point to
the problem. That is, the algorithm should be type safe .

The algorithm proves that the type of a given expression e is t, under assumptions about
types of variables in e. For example, type inference for the expression (+ x 5) needs to
state that provided that the type of x is Number, the type of the expression is also Number.
It should not prove that under no assumptions, the type of this expression is Number.

The typing system is introduced gradually. First, we introduce a typing system for
a restricted language that includes atomic expressions with numbers, booleans, primitive
procedures, and variables, and composite expressions with quote forms, lambda forms and
application forms. Then we extend the basic system for typing conditionals and for typing
in presence of definitions, including definitions of recursive procedures. At last, we introduce
the type-equations based inference algorithm.

5.4.1 Typing Statements

A typing statement is an assertion of the form:

If the type of language variables in a language expression e is ⟨type-assumptions⟩
Then the type of e is ⟨type-conclusion⟩.

The typing statement terminology consists of the type-environment concept which states
“type-assumptions” and its extension operation, and the typing-statement concept and
its instantiation and unification operations.

Type environment: A type environment is a substitution of language variables by
type expressions, i.e., a mapping of a finite set of variables to type expressions. It is denoted
as a set of variable type assumptions. For example,

{x:Number, y:[Number --> T]}

is a type environment, in which the variable x is mapped to the Number type, and the
variable y is mapped to the polymorphic procedure type [Number –> T].

1. The type of a variable v with respect to a type environment Tenv is denoted Tenv(v).

2. The empty type environment , denoted { }, stands for no assumptions about types
of variables.
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3. Extending a type environment: Assume that we wish to extend the above type
environment with a type assumption about the type of variable z: {z:Boolean}. This
is performed by the substitution composition :
{x:Number, y:[Number–>T]} ○ {z:Boolean} = {x:Number, y:[Number–>T], z:Boolean}.
Recall that the empty substitution is the neutral element of the substitution-composition
operation: { }○{x1:T1, ..., xn:Tn} = {x1:T1, ..., xn:Tn}.

4. Application of a type-substitution to a type environment: For a type envi-
ronment Tenv and a type-substitution s, the application of s to Tenv, denoted Tenv ○
s, is the application of s to all type expressions in Tenv. For example:
{x:[S1*S2->S1], y:[Number–>S2]} ○ {S1=Pair(T), S2=[Number->T], S3=Pair(T)}

=
{x:[Pair(T)*[Number->Pair(T)]->Pair(T)], y:[Number->[Number->T]]}

Typing statement: A typing statement is a true/false formula that states a judg-
ment about the type of an expression, given a type environment.

Notation: Tenv |- e:t

It states: For every type-substitution s, if Tenv ○ s holds then e has type t ○ s.

For example, the typing statement

{x:Number} |- (+ x 5):Number

states that under the assumption that the type of x is Number, the type of (+ x 5) is
Number. The typing statement

{f:[T1 --> T2], g:T1} |- (f g):T2

states that for every consistent replacement of T1, T2, under the assumption that the type
of f is [T1 –> T2], and the type of g is T1, the type of (f g) is T2.

The following typing statements are false:

{f:[T1 --> T2]} |- (f g):T2

This is false because having no type assumption on g, (f g) might not satisfy the well-typing
rules of Scheme, and create a runtime error. The typing statement

{f:[Empty --> T2], g:T2} |- (f g):T2

is false because based on the operational semantics of Scheme, if f is a parameter-less
procedure, the expression (f g) does not satisfy the well-typing rules of Scheme.
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1. Instantiation of typing statements: An instance of a typing statement TS is
a typing statement TS′ that results from the application of a type-substitution s to
all type expressions in TS: TS′ = TS ○ s.
A typing statement implies all of its instances. For example, the (false) typing state-
ment
{f:[T1 –> T2], g:T2} |- (f g):T2

implies the (false) instances:
{f:[T1 –> Boolean], g:Boolean} |- (f g):Boolean and
{f:[Number->[Number->Boolean]],g:[Number->Boolean]} |- (f g):[Number->Boolean]

2. Unifiable typing statements: Typing statements TS and TS′ are unifiable if there
exists a type substitution s such that TS ○s = TS′ ○s. TS and TS′ should not include
common type variables: Unification must be preceded by renaming!

Example 5.2 (Unification of typing statements).

(a) The typing statements
{f:[T1 –> T2], g:T1} |- (f g):T2 and
{f:[Number -> Number], g:T3} |- (f g):Number

are unifiable by {T1=Number, T2=Number, T3=Number}

(b) The typing statements
{f:[T1 –> T2], g:T1} |- (f g):T2 and
{f:T3, g:Pair(Number)} |- (f g):T4

are unifiable by {T3=[Pair(Number)->T4], T1=Pair(Number), T2=T4}

(c) The typing statements
{f:[T1 –> T2], g:T1} |- (f g):T2 and
{f:T3, g:Pair(T3)} |- (f g):T4

are not unifiable!

Similarly to type expressions, unifiable typing statements can be unified by multiple
unifiers. The most general unifier (mgu), is the one that substitutes only the
necessary type variables. All other unifiers are obtained from it by application of
additional substitutions.

Unification of typing statements can be extended to sets of typing statements, where
the intention is that the sets include pairwise unifiable typing statements.

3. Extending the type environment in a typing statement: By definition of its
meaning, if a typing statement
{x1 ∶ τ1, . . . , xn ∶ τn} ⊢ e ∶ τ holds, then any extension:
{x1 ∶ τ1, . . . , xn ∶ τn, y ∶ ρ} ⊢ e ∶ τ also holds.
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5.4.2 Static type inference for a restricted Scheme language

We start with a Scheme subset that is defined by the following grammar (no conditionals,
no definitions):

<scheme-exp> -> <exp>

<exp> -> <atomic> | <composite>

<atomic> -> <number> | <boolean> | <variable>

<composite> -> <special> | <form>

<number> -> Numbers

<boolean> -> ’#t’ | ’#f’

<variable> -> Restricted sequences of letters, digits, punctuation marks

<special> -> <lambda> | <quote>

<form> -> ’(’ <exp>+ ’)’

<lambda> -> ’(’ ’lambda’ ’(’ <variable>* ’)’ <exp>+ ’)’

<quote> -> ’(’ ’quote’ <variable> ’)’

In order to provide a type checking/inference system, we need to formulate the well
typing rules for the language. We introduce only well typing rules intended to guarantee
that procedure can be applied to arguments. The rules depend on the operational semantics.
They consist of typing axioms , which take care of language primitives and of variables,
and typing rules, which reflect the operational semantics of composite expressions.

Well typing rules for the restricted language:

Typing axiom Number :

For every type environment _Tenv and number _n:

_Tenv |- _n:Number

Typing axiom Boolean :

For every type environment _Tenv and boolean _b:

_Tenv |- _b:Boolean

Typing axiom Variable :

For every type environment _Tenv and variable _v:

_Tenv |- _v:Tenv(v)

i.e., the type statement for _v is the type that _Tenv assigns to it.

Typing axioms Primitive procedure :

Every primitive procedure has its own function type.

Examples:

The + procedure has the typing axiom:
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For every type environment _Tenv:

_Tenv |- +:[Number* ... *Number -> Number]

The not procedure has the typing axiom:

For every type environment _Tenv:

_Tenv |- not:[_S -> Boolean]

_S is a type variable. That is, not is a polymorphic

primitive procedure.

The display procedure has the typing axiom:

For every type environment _Tenv:

_Tenv |- display:[_S -> Void]

_S is a type variable. That is, display is a polymorphic

primitive procedure.

Typing axiom Symbol :

For every type environment _Tenv and a syntactically legal sequence of

characters _s:

_Tenv |- (quote _s):Symbol

Typing rule Procedure :

For every: type environment _Tenv,

variables _x1, ..., _xn, n ≥ 0

expressions _e1, ..., _em, m ≥ 1, and

type expressions _S1, ...,_Sn, _U1, ...,_Um :

Procedure with parameters (n > 0):

If _Tenv○{_x1:_S1, ..., _xn:_Sn } |- _ei:_Ui for

all i = 1..m ,

Then _Tenv |- (lambda (_x1 ... _xn ) _e1 ... _em) : [_S1*...*_Sn -> _Um]

Parameter-less Procedure (n = 0):

If _Tenv |- _ei:_Ui for all i=1..m,

Then _Tenv |- (lambda ( ) _e1 ... _em):[Empty -> _Um]

Typing rule Application :

For every: type environment _Tenv,

expressions _f, _e1, ..., _en, n ≥ 0 , and

type expressions _S1, ..., _Sn, _S:

Procedure with parameters (n > 0):

If _Tenv |- _f:[_S1*...*_Sn -> _S],

_Tenv |- _e1:_S1, ..., _Tenv |- _en:_Sn

Then _Tenv |- (_f _e1 ... _en):_S

Parameter-less Procedure (n = 0):

213



Chapter 5 Principles of Programming Languages

If _Tenv |- _f:[Empty -> _S]

Then _Tenv |- (_f):_S

Typing rule Monotonicity :

For every: type environments _Tenv, _Tenv’,

expression _e and type expression _S:

If _Tenv |- _e:_S,

Then _Tenv○_Tenv’ |- e:_S

Notes:

1. Meta-variables: The typing axioms and rules include meta-variables for language
expressions, type expressions and type environments. When axioms are instantiated
or rules are applied, the meta-variables are replaced by real expressions of the same
kind. The meta-variables should not be confused with language or type variables.
Therefore, they deliberately are preceded with “_”, so to distinguish them from non-
meta variables.

2. Axiom and rule independence: Each typing axiom and typing rule specifies an in-
dependent (stand alone), universally quantified typing statement. The meta-variables
used in different rules are not related, and can be consistently renamed .

3. Identifying pattern: Apart for the Application rule, each typing axiom or rule
has an identifying typing statement pattern . That is, each axiom or rule is
characterized by a different typing statement pattern.
For example, the identifying pattern of the Number rule is _Tenv |- _n:Number;
the identifying pattern of the Procedure rule is _Tenv |- (lambda (_x1 ... _xn)

_e1 ... _em):[_S1*...*_Sn -> _S]. The Application rule is the only rule which
is applied when all other rules/axioms do not apply.

4. The monotonicity rule: This rule states that typing statements stay valid under
additional typing information for variables. It is needed since sometimes, different
sub-expressions require different typing assumptions. In such cases, there is a need to
combine typing statements that rely on different type environments. The monotonicity
rule enables extension of type environments, so that the typing of all sub-expressions
rely on the same type environment.

5. Exhaustive sub-expression typing: Every typing rule requires typing statements
for all sub-expressions of the expression for which a typing statement is derived. This
property guarantees type safety – the typing algorithm assign a type to every sub-
expression which is evaluated at run-time.
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The type inference algorithm:

Type inference is performed by considering language expressions as expression trees . For
example, the expression (+ 2 (+ 5 7)) is viewed as the expression tree in Figure 5.1. The

Figure 5.1

tree has the given expression as its root, leaves 7, 5, +, 2, + and the internal node (+

5 7). The algorithm assigns a type to every sub-expression, in a bottom-up manner. The
algorithm starts with derived typing statements for the leaves. These typing statements
result from instantiation of typing axioms. Next, the algorithm derives a typing state-
ment for the sub-expression (+ 5 7), by application of a typing rule to already derived
typing statements. The algorithm terminates with a derived typing statement for the given
expression.

Example 5.3. Derive a typing statement for (+ 2 (+ 5 7)).

The leaves of the tree are numbers and the primitive variable +. Typing statements for
them can be obtained by instantiating typing axiom Number for the number leaves, and
the typing axiom Primitive procedure for the + leaves:

1. { } |- 5:Number

2. { } |- 7:Number

3. { } |- 2:Number

4. { } |- +:[Number*Number -> Number]

Application of typing rule Application to typing statements 4,1,2, with type-substitution
{_S1=Number, _S2=Number, _S=Number}:

5. { } |- (+ 5 7):Number
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Applying typing rule Application to typing statements 4,3,5, with type-substitution {_S1=Number,

_S2=Number, _S=Number}:

6. { } |- (+ 2 (+ 5 7)):Number

The final typing statement states that under no type assumption for variables, the type of
(+ 2 (+ 5 7)) is Number. When such a statement is derived, we say that (+ 2 (+ 5 7))

is well typed , and its type is Number.

Algorithm Type-derivation below infers types of Scheme expressions, based on the well
typing rules. It uses the procedure instantiate for instantiating a typing statement, the
procedure apply-rule, for instantiating a typing rule, and a local variable derived-ts-pool
for collecting the intermediate derived typing statements.

Algorithm Type-derivation:
Input: A language expression e

Output: A pair of a typing statement for e (Tenv |- e:t) and its derivation (a sequence
of typing statements), or FAIL
Method:

1. Consistently rename all bound variables in e with new fresh variables.

2. Let derived-ts-pool be a local variable, initialized to the empty sequence.

3. For every leaf sub-expression l of e, apart from procedure parameters:
Find: A typing axiom A with typing statement TS, such that:

(a) Replace the type-environment meta-variable by a type-environment expression,
and the language variable by language expressions. Let TS′ be the resulting
typing statement.

(b) Find a type substitution s for such that TS′ is an instance of A. That is, A ○ s =
TS′.

do: Rename TS′, number it (new serial number), and add it to derived-ts-pool.

4. For every non-leaf sub-expression e’ of e (bottom-up order, including e):
Find: A typing rule R = If condition Then consequence, such that:

(a) Replace the meta-type-environments variables by type-environment expressions,
and the language variables by language expressions. Let R′= If condition′ Then

consequence′ be the resulting rule.

(b) Find a set DTS of derived typing statements in derived-ts-pool, and a most
general unifier s for condition′ and DTS. That is, condition′ ○ s =DTS′ ○ s.
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do: Rename the typing statement consequence′ ○ s, number it (new serial number),
and add it to derived-ts-pool.

5. If derived-ts-pool includes a typing statement TS for e, i.e., Tenv |- e:t,
Output = ⟨TS,derived-ts-pool⟩.
Otherwise, Output = FAIL.

Definition: (Well typing, type of well typed expression)

− e is well-typed if Type-derivation(e) does not fail, i.e., Type-derivation(e) =
⟨TS,derivation⟩, where derivation is the set of typing statements obtained during
the type inference for e.

− e has type t if it is well typed, and Type-derivation(e)=⟨{ } |- e:t,derivation⟩.

Heuristic guidelines: Algorithm Type-derivation has points of non-determinism at ap-
plications of typing axioms and rules, since there is a need to select substitutions for the
meta-variables. But, since well typing requires an empty type environment, our heuristic rule
is to always pick a minimal type environment. Note however that the type environment
must include type assumptions for all free variables in the typed expression!

1. Applications of the Number, Boolean, Symbol and Primitive-procedure axioms
always use an empty type environment.

2. Applications of the Variable axiom use type environments with an assumption to the
typed variable.

3. Applications of the Procedure rule use type environments that includes type assump-
tions only to the free variables of the lambda expressions (which are extended in the
rule condition by type assumptions to the parameters).

4. Applications of the Application rule use type environments according to already
derived typing statements (in derived-ts-pool).

Example 5.4.

Find a type for the variable x, i.e., apply Type-derivation(x): The only axiom that has
instances for x is Variable .
The axiom: For every type environment _Tenv and variable _v: _Tenv |- _v:_Tenv(_v).
Replacement for _Tenv and _v:

variable expression

_Tenv {x:T}

_v x

No further type substitution is required since the resulting typing statement {x:T} |- x:T

is a typing statement for x. result: x is well-typed but does not have a type.
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Example 5.5. Application of the Procedure rule, with ts-pool that includes

{x1:[Number -> T], x2:Number} |- (x1 x2):T

for deriving a typing statement for (lambda(x2)(x1 x2)).

The Procedure rule:

Typing rule Procedure :

For every: type environment _Tenv,

variables _x1, ..., _xn, n>=0

expressions _e1, ..., _em, m>=1, and

type expressions _S1,...,_Sn, _U1,...,_Um:

Procedure with parameters:

If _Tenv○{_x1:_S1, ..., _xn:_Sn} |- _bi:_Ui for all i=1..m,

Then _Tenv |- (lambda (_x1 ... _xn) _e1 ... _em):[_S1*...*_Sn -> _Um]

Parameter-less Procedure:

If _Tenv |- _ei:_Ui for all i=1..m,

Then _Tenv |- (lambda ( ) _e1 ... _em):[Empty -> _Um]

The replacement of _Tenv and the language variables (for n=m=1) is:

variable expression

_Tenv {x1:[Number -> T]}

_x1 x2

_e1 (x1 x2)

Applying the type-substitution {_S1 = Number, _U1 = T} to the condition typing state-
ment yields the typing statement in ts-pool, since {x1:[Number -> T]}○{x2:Number} =

{x1:[Number -> T], x2:Number}

The derived typing statement:
{x1:[Number -> T]} |- (lambda(x2)(x1 x2)):[Number -> T].

Example 5.6. Further application of the Procedure rule, in order for deriving a typing
statement for (lambda(x1)(lambda(x2)(x1 x2))).

Again, it is the Procedure rule that applies, with n=m=1.
The replacement of _Tenv and the language variables is:

variable expression

_Tenv { }

_x1 x1

_e1 (lambda (x2)(x1 x2))

Applying the type-substitution {_S1 = [Number -> T], _U1 = [Number -> T]} to the con-
dition typing statement yields the typing statement that is derived in the previous example,
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since { }○{x1:[Number -> T]} = {x1:[Number -> T]}

The derived typing statement:
{ } |- (lambda (x1)(lambda (x2) (x1 x2))):[[Number -> T] –> [Number –> T]].

Conventions: In every rule application we note:

1. The support typing statements from the ones already derived (belong to derived-ts-pool.

2. The involved type-substitution. We omit specification of the replacement to type
environment meta-variables and to language meta variables.

Example 5.7. Derive the type for ((lambda(x)(+ x 3)) 5). The tree structure is de-
scribed in Figure 5.2:

Figure 5.2

The leaves of this expression are numbers, the primitive variable + and the variable x.
Typing statements for the number and + are obtained by instantiating the Number and
the primitive procedure axioms:

1. { } |- 5:Number

2. { } |- 3:Number

3. { } |- +:[Number*Number -> Number]
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A typing statement for the variable x leaf can be obtained only by instantiating the Variable
axiom. Since no type is declared for x, its type is just a type variable:

4. {x:T} |- x:T

The next sub-expression for typing is (+ x 3). This is an application, and is an instan-
tiation of the identifying pattern of the Application rule. But, we need to get different
instantiations of the Number and the Primitive procedure axioms, so that the type envi-
ronments for all statements can produce a consistent replacement for the type environment
meta-variable _Tenv in the Application rule. Therefore, we use the Monotonicity rule.
Applying this rule to typing statements 2, 3:

5. {x:T1} |- 3:Number

6. {x:T2} |- +:[Number*Number -> Number]

Note the renaming before insertion to the derived typing statements pool. Applying typing
rule Application to typing statements 6, 4, 5, with type-substitution {_S1=T1=T2=T=number,

_S2=Number, _S=Number}:

7. {x:Number} |- (+ x 3):Number

The next expression corresponds to the pattern of the Procedure rule. It is applied to
statement 7, with the type-substitution {_S1=Number, _U1=Number}:

8. { } |- (lambda (x) (+ x 3)):[Number -> Number]

The overall expression corresponds to the pattern of the Application typing rule. Applying
this rule to statements 8, 1, with type-substitution {_S1=Number, _S=Number}:

9. { } |- ((lambda (x) (+ x 3)) 5):Number

Therefore, the expression ((lambda(x)(+ x 3)) 5) is well typed, and its type is Number.
The above sequence of typing statements is its type derivation.
Convention: We avoid explicit application of the monotonicity rule, and just mention it
in the justification of rule application. For example, in the last proof, we can skip explicit
derivation of typing statements (5), (6), and derive statement (7) directly from statements
(2), (3), (4), while noting that in addition to Application it also involves Monotonicity .

Example 5.8 (A failing type derivation). Derive a type for (+ x (lambda(x) x)).
Renaming: The expression includes two leaves labeled x that reside in two different lexical
scopes, and therefore can have different types. Renaming results (+ x (lambda(x1) x1)).
The tree structure is described in Figure 5.3.

The leaves of this expression are x1,x,+. Instantiating the Variable and the primitive
procedure axioms:
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Figure 5.3

1. {x1:T1} |- x1:T1

2. { } |- +:[Number*Number -> Number]

3. {x:T2} |- x:T2

Applying typing rule Procedure to statement 1, with the type-substitution {_S1=T1,

_U1=T1}:

4. { } |- (lambda (x1) x1):[T1 -> T1]

The only rule identifying pattern that can unify with the given expression (+ x (lambda

(x1) x1)) is that of the Application rule. But the rule cannot apply to the already
derived statements since there is no type-substitution that turns the statements in the
rule condition to be instances of the derived statements: For the procedure type we need
the type substitution {_S1=Number, _S2=Number, _S=Number}; the type T2 of the first
argument can be substituted by Number. For the second argument (lambda(x1) x1), we
need _Tenv |- (lambda(x1) x1):Number, which is not an instance of derived statement no.
4 (no variable substitution can turn statement no. 4 into the necessary typing statement:
In statement 4 the type is [T1 –> T1], while the necessary type is Number). Therefore,
Type-derivation((+ x (lambda (x1) x1)))=FAIL.

Example 5.9 (A failing type derivation). Derive the type for (lambda(x) (x x)). The
tree structure is described in Figure 5.4.

Note that atomic components with the same label are listed as a single leaf. This is
correct since type checking is preceded by renaming, implying that multiple occurrences of
a variable have the same binding (declaration), and therefore must have the same type.

Instantiating the Variable rule:
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Figure 5.4

1. {x:T1} |- x:T1 (the x procedure)

Now we want to get a typing statement for (x x). This expression unifies only with the
identifying pattern of the Application typing rule. In order to apply this rule with typing
statements no. 1, 2 as its support, we have to find a replacement to _Tenv and the lan-
guage variables, and a type-substitution that turn the statements in the condition of the
Application rule into instances of 1:

variable expression

_Tenv {x:T1}

_f x

_e1 x

The type-substitution is {_S1=T1, _S=T2}. The rule requires that if for some _Tenv, _Tenv
|- _e1:_S1 and also _Tenv |- _f:[_S1 –> _S], then _Tenv |- (_f _e1):_S. But in this
case, the condition on _e1 means {x:T1} |- x:T1 while the condition on _f means {x:T1}
|- x:[T1 –> T2], implying T1 = [T1 –> T2] which is an illegal type-substitution due to
circularity. Therefore, no rule can be applied, and the expression is not well-typed.
Discussion: The last two examples show failed type derivations. The derivation in Example
5.8 fails because the given expression is not well typed. The derivation in Example 5.9 fails
because the expression cannot be typed by a finite derivation based on the given system of
typing rules. In general, there can be 3 reasons for a failing type derivation:

1. The given system is weak, i.e., some rules are missing.

2. The given expression is erroneous.

3. The given expression cannot be finitely typed.
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Example 5.10. Typing a high order procedure:

(lambda (g dx)

(lambda (x)

(/ (- (g (+ x dx)) (g x))

dx)))

The leaves of this expression are dx; then g, x from sub-expression (g x); g, +, x,

dx from sub-expression (g (+ x dx)); and -, /. We note that all repeated occurrences of
variables reside in the same lexical scope, and therefore must have a single type (cannot be
distinguished by renaming). Therefore, we have a single typing statement for every variable.
Instantiations of the Variable axiom:

1. {dx:T1} |- dx:T1

2. {x:T2} |- x:T2

3. {g:T3} |- g:T3

Instantiations of the Primitive procedure axiom:

4. { } |- +:[Number*Number -> Number]

5. { } |- -:[Number*Number -> Number]

6. { } |- /:[Number*Number -> Number]

Typing (g x) – apply typing rule Application to typing statements 2,3, with type-substitution
{_S1=T2, _S=T4, T3=[T2 –> T4]}:

7. {x:T2, g:[T2 -> T4]} |- (g x):T4

Typing (+ x dx) – apply typing rule Application to typing statements 4,2,1, with type-
substitution {_S1=T2=Number, _S2=T1=Number, _S=Number}:

8. {x:Number, dx:Number} |- (+ x dx):Number

Typing (g (+ x dx)) – apply typing rule Application to typing statements 3,8, with
type-substitution {_S1=Number, _S=T5, T3=[Number –> T5]}:

9. {x:Number, dx:Number, g:[Number -> T5]} |- (g (+ x dx)):T5

Typing (- (g (+ x dx)) (g x)) – apply typing rule Application to typing statements
5,9,7, with type-substitution {_S1=T5=Number, _S2=T4=Number, _S=Number}:

10. {x:Number, dx:Number, g:[Number -> Number]} |-

(- (g (+ x dx)) (g x)):Number

Typing (/ (- (g (+ x dx)) (g x)) dx) – apply typing rule Application to typing state-
ments 6,10,1, with type-substitution {_S1=Number, _S2=T1=Number, _S=Number}:
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11. {x:Number, dx:Number, g:[Number -> Number]} |-

(/ (- (g (+ x dx)) (g x))

dx):Number

Typing (lambda (x) (/ (- (g (+ x dx)) (g x)) dx)) – apply typing rule Procedure
to typing statement 11, with type-substitution {_S1=Number, _U1=Number}:

12. {dx:Number, g:[Number -> Number]} |-

(lambda (x)

(/ (- (g (+ x dx)) (g x))

dx)):[Number -> Number]

Typing the full expression – apply typing rule Procedure to typing statement 12, with
type-substitution {_S1=[Number –> Number], _S2=Number, _U1=[Number –> Number]}:

13. { } |- (lambda (g dx)

(lambda (x)

(/ (- (g (+ x dx)) (g x))

dx))):

[[Number -> Number]*Number -> [Number -> Number]]

Which steps use the monotonicity typing rule?

5.4.3 Adding definitions:

Consider the sequence of expressions:

> (define x 1)

> (define y (+ x 1))

> (+ x y)

3

What is the type of x?
What is the type of y?
What is the type of (+ x y)?
Clearly, (+ x y) should be well-typed, and its type is Number. The typing system described
so far cannot support a proof that concludes:

{ } |- (+ x y):Number

because there is no support for deriving { } |- x:Number and { } |- y:Number. Therefore,
we add a rule that states that if the expression in the definition is well-typed and has a type
t, then the defined variable has this type as well:
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Typing rule Define :

For every definition expression (define _x _e) and type expression _S:

If { } |- _e:_S,

Then { } |- (define _x _e):Void, and

{ } |- _x:_S

Restriction: No repeated variable definitions.

Note that there is no derivation for the define expression. The reason is twofold: First,
define expressions are not nested within other expressions, and therefore, no other expres-
sion require typing a define expression as its component. Second, the type of a define

expression is known in advance: It’s always void.

Example 5.11. Given the definitions:

> (define x 1)

> (define y (+ x 1))

derive a type for (+ x y).

1. Deriving a type for x:

1. { } |- 1:Number

Applying the Define rule:

2. { } |- (define x 1):Void

3. { } |- x:Number

2. Deriving a type for y:

4. { } |- +:Number*Number -> Number.

Applying the Application typing rule to statements no. 1, 3, 4, with type-substitution
{_S1=T1=Number, _S2=T2=Number, _S=Number}:

5. { } |- (+ x 1):Number

Applying the Define rule to statement 5:
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6. { } |- (define y (+ x 1)):Void

7. { } |- y:Number

3. Type derivation for (+ x y):
Applying the Application typing rule to statements no. 3, 4, 7, with type substitution
{_S1=T1=Number, _S2=T2=Number, _S=Number}:

4. { } |- (+ x y):Number

Example 5.12. Given the definition:

> (define deriv

(lambda (g dx)

(lambda (x)

(/ (- (g (+ x dx)) (g x))

dx))))

derive a type for (deriv (lambda (x) x) 0.05).

1. The definition of deriv is well-typed since Example 5.10 presents a type derivation
to the lambda expression. The inferred type is: [[Number -> Number]*Number ->

[Number -> Number]].

2. Applying the Define rule to this conclusion:

1. { } |- (define deriv

(lambda (g dx)

(lambda (x)

(/ (- (g (+ x dx)) (g x))

dx)))):Void

2. { } |- deriv:[[Number -> Number]*Number -> [Number -> Number]]

3. Type derivation for (deriv (lambda (x) x) 0.05):
By instantiating the Number and the Variable axioms:

3. { } |- 0.05:Number

4. {x:T1} |- x:T1

Applying the Procedure rule to statement 4, with type substitution {_S1=T1, _U1=T1}:
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5. { } |- (lambda (x) x):[T1 -> T1]

Applying the Application rule to statements no. 2, 5, 3, with the type-substitution
{_S1=[Number -> Number], T1=Number, _S2=Number, _S=[Number -> Number]}:

7. { } |- (deriv (lambda (x) x) 0.05):[Number -> Number]

The expression (deriv (lambda (x) x) 0.05) is well-typed and its type is [Number
-> Number].

5.4.4 Adding control:

Typing conditionals require addition of well-typing rules whose identifying patterns corre-
spond to the conditional special forms. A reasonable rule might be:

For every type environment _Tenv,

expressions _p, _c, _a, and

type expression _S:

If _Tenv |- _p:Boolean and

_Tenv |- _c:_S and

_Tenv |- _a:_S

Then _Tenv |- (if _p _c _a):_S

This is the right thing to require, since it enables static typing of conditionals that infers
a single type, independently of the control flow. This is, indeed, the typing rule in all
statically typed languages. However, in Scheme:

1. Conditionals do not expect a boolean predicate expression: Every expression that
evaluates not to #f is interpreted as True.

2. The consequence and alternative expressions can have different types.

In order to avoid the Union type we require that the consequence and the alternative have
the same type. The resulting typing rule:

Typing rule If :

For every type environment _Tenv,

expressions _e1, _e2, _e3, and

type expressions _S1, _S2:

If _Tenv |- e1:_S1,

_Tenv |- e2:_S2,

_Tenv |- e3:_S2

Then _Tenv |- (if e1 e2 e3):_S2
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Note that although the rule conclusion does not include any dependency on the predi-
cate type _S1 and the predicate type _S1 is arbitrary, it is still included in the rule. The
purpose is to guarantee that the predicate is well-typed. This is necessary for guaranteeing
type safety. Note also that while the evaluation of a conditional follows only a single con-
clusion clause, the type derivation checks all clauses. That is, type derivation and language
computation follow different program paths.

Example 5.13. Derive a type for the expression:

(+ 3

(if (zero? mystery)

5

( (lambda (x) x) 3)))

The tree structure is described in Figure 5.5. The leaves are 3,5,x,zero?,mystery,+.

Figure 5.5

Instantiating the Number, Variable and Primitive procedure axioms:
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1. { } |- 3:Number

2. { } |- 5:Number

3. {x:T1} |- x:T1

4. {mystery: T2} |- mystery:T2

5. { } |- zero?:[Number -> Boolean]

6. { } |- +:[Number*Number -> Number]

Applying typing rule Procedure to statement no. 3, with type substitution {_S1=T1,

_U1=T1}:

7. { } |- (lambda (x) x):[T1 -> T1]

Applying typing rule Application to statements no. 7, 1, with type substitution {_S1=Number,

_S=T1=Number}:

8. { } |- ( (lambda (x) x) 3 ):Number

Applying typing rule Application to statements no. 5, 4, with type substitution {_S1=T2=Number,

_S=Boolean}:

9. {mystery:Number} |- (zero? mystery):Boolean

Applying typing rule If to statements no. 9, 2, 8, with type substitution {_S1=Boolean,

_S2=Number}:

10. {mystery:Number} |-

( if (zero? mystery)

5

( (lambda (x) x) 3 ) ):Number

Applying typing rule Application to statements no. 6, 1, 10, with type substitution
{_S1=Number, _S2=Number, _S=Number}:

11. {mystery:Number} |- (+ 3 ( if (zero? mystery)

5

((lambda (x) x) 3) )):Number

If the expression is preceded by a definition of the mystery variable as a Number value, the
expression is well typed, and its type is number.

5.4.5 Adding recursion:

Recursive definitions require modification of the notion of a well-typed definition. For non
recursive definitions, a definition (define x e) is well-typed if e is well typed. In a recursive
definition (define f e), e includes free occurrences of f, and therefore cannot be statically
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typed without an inductive environment about the type of f. Hence, we say that in a
recursive definition (define f e), e is well-typed and has type [S1*...Sn –> S], for n>0
or [Empty –> S] for n=0, if Type-derivation(e) outputs a typing statement {f:[S1*...Sn
–> S]} |- e:[S1*...Sn –> S] (alternatively {f:[Empty –> S]} |- e:[Empty –> S]).

Therefore, we add a rule for recursive definitions (define f e), that states that if e is
well-typed with typing statement {f:T } |- e:T, then the definition is well-typed and the
defined variable has this type as well:

Typing rule Recursive-definition :

For every: recursive-definition expression (define _f _e) and type

expression _S:

If {_f:_S } |- _e:_S,

Then { } |- (define _f _e):Void, and

{ } |- _f:_S

Restriction: No repeated variable definitions.

Example 5.14. – Given the definition:

> (define factorial

(lambda (n)

(if (= n 1)

1

(* n (factorial (- n 1))))))

derive a type for (fact 3).

1. Type derivation for the definition expression of factorial:
The leaves are =,-,*,n,1,factorial. Instantiating the Number, Variable, Prim-
itive procedure typing axioms:

1. { } |- =:[Number*Number -> Boolean]

2. { } |- -:[Number*Number -> Number]

3. { } |- *:[Number*Number -> Number]

4. { } |- 1:Number

5. {n:T1} |- n:T1

6. {factorial:T2} |- factorial:T2

Applying typing rule Application to statements no. 2, 5, 4, with type-substitution
{_S1=T1=Number, _S2=Number, _S=Number}

7. {n:Number} |- (- n 1):Number
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Applying typing rule Application to statements no. 6, 7, with type-substitution
{_S1=Number, _S=T3, T2=[Number -> T3]}:

8. {factorial:[Number -> T3], n:Number} |- (factorial (- n 1)):T3

Applying typing rule Application to statements no. 3, 5, 8, with type-substitution
{_S1=Number, _S2=Number, _S=Number, T1=Number, T3=Number}:

9. {factorial:[Number -> Number], n:Number} |- (* n (factorial (- n 1)))):Number

Applying typing rule Application to statements no. 1, 5, 4, with type-substitution
{_S1=T1=Number, _S2=Number, _S=Boolean}:

10. {n:Number} |- (= n 1):Boolean

Applying typing rule If to statements no. 10, 4, 9, with type-substitution {_S1=Boolean,

_S2=Number, _S=Boolean}:

11. {factorial:[Number -> Number], n:Number} |-

(if (= n 1)

1

(* n (factorial (- n 1)) )):Number

Applying typing rule Procedure to statement no. 11, with type-substitution {_S1=Number,

_U1=Number}:

12. {factorial:[Number -> Number]} |-

(lambda (n)

(if (= n 1)

1

(* n (factorial (- n 1)) )) ):[Number -> Number]

Therefore, the definition of factorial is well typed since this is a recursive definition,
and the type of factorial is [Number -> Number].
Applying typing rule Recursive-definition to statement no. 12, with type-substitution
{_S=[Number -> Number]}:
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13. { } |- (define factorial (lambda (n)

(if (= n 1)

1

(* n (factorial (- n 1)) )) )):Void

14. { } |- factorial:[Number -> Number]

2. Type derivation for the application (factorial 3):
Instantiating the Number typing axiom:

15. { } |- 3:Number

Applying typing rule Application to statements no. 14, 15, with type substitution
{_S1=Number, _S=Number}:

3. { } |- (factorial 3):Number

Note: Inter-related recursive definitions : Consider

(define f (lambda (...) (... (g ...) ...)

(define g (lambda (...) (... (f ...) ...)

The Recursive-definition does not account for inter-related recursion since typing each
defining expression requires a type environment for the other variable. Indeed, in statically
typed languages (like ML), recursion and inter-related recursion require explicit declaration.
Question: Why this is not a problem in Scheme?

5.4.6 Type Correctness with the Pair and List Types

The Pair and List Types have operations which are Scheme primitives (no special operators).
In addition, there is the empty value. Therefore, there is a need for an axiom for empty, and
the Primitive procedure typing axiom has to be extended for the new primitives.

Pairs:

For every type environment _Tenv and type expressions _S,_S1,_S2:

_Tenv |- cons:[_S1*_S2 -> Pair(_S1,_S2)]

_Tenv |- car:[Pair(_S1,_S2) -> _S1]

_Tenv |- cdr:[Pair(_S1,_S2) -> _S2]

_Tenv |- pair?:[_S -> Boolean]

_Tenv |- equal?:[Pair(_S1,_S2)*Pair(_S1,_S2) -> Boolean]
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Homogeneous lists:

For every type environment _Tenv and type expression _S:

_Tenv |- empty:List(_S)

_Tenv |- list:[Empty -> List(_S)]

_Tenv |- list:[_S* ...*_S -> List(_S)] n >0

_Tenv |- cons:[_S*List(_S) -> List(_S)]

_Tenv |- car:[List(_S) -> _S]

_Tenv |- cdr:[List(_S) -> List(S)]

_Tenv |- null?:[List(_S) -> Boolean]

_Tenv |- list?:[_S -> Boolean]

_Tenv |- equal?:[List(_S)*List(_S) -> Boolean]

Heterogeneous lists:

For every type environment _Tenv and type expression _S:

_Tenv |- empty:List

_Tenv |- list:[Empty -> List]

_Tenv |- cons:[S*List -> List]

_Tenv |- car:[List -> _S]

_Tenv |- cdr:[List -> List]

_Tenv |- null?:[List -> Boolean]

_Tenv |- list?:[_S -> Boolean]

_Tenv |- equal?:[List*List -> Boolean]

Example 5.15. Derive the type of the firstFirst procedure. Its definition:

(define firstFirst (lambda(pair)

(car (car pair))))

We derive a type for the lambda form: Instantiation of the Variable axiom and the
Primitive procedure Pair axiom (an arbitrary decision, and with renaming):

1. {pair:T1 } |- pair:T1

2. { } |- car:[Pair(T2,T3) -> T2]

Typing (car pair) – Applying the Application typing rule to statements 1,2, with type
substitution {S1=T1=Pair(T2,T3), S=T2}:

3. {pair: Pair(T2,T3)} |- (car pair):T2

Typing (car (car pair)) – In order to apply the Application typing rule to statements
3,2, we first have to rename these statements:
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2’. { } |- car:[Pair(T21,T31) -> T21]

3’. {pair: Pair(T22,T32)} |- (car pair):T22

Applying the Application typing rule to statements 2’,3’, with type substitution
{S1=T22=Pair(T21,T31), S=T21}:

4. {pair:Pair(Pair(T21,T31),T32 ) } |- (car (car pair)):T21

Application of typing rule Procedure to statement 4, with type substitution
{S1=Pair(Pair(T21,T31),T32), U1=T21}:

5. { } |- (lambda (pair) (car (car pair))):

[Pair(Pair(T21,T31),T32) -> T21]

Following this definition, the type of firstFirst is {[Pair(Pair(T21,T31),T32) –> T21]},
and well typed derivations can end with the type assignment
{firstFirst<-Pair(Pair(T21,T31),T32) –> T21}.

Example 5.16. Type derivation for (firstFirst (cons (cons 1 2) 3)):

Instantiation of the Number axiom, Variable axiom, and the Primitive procedure
Pair axiom (an arbitrary decision, and with renaming):

1. { } |- 1:Number

2. { } |- 2:Number

3. { } |- 3:Number

4. { } |- cons:[T1*T2 -> Pair(T1,T2)]

5. {firstFirst:T3} |- firstFirst:T3

Typing (cons 1 2) – Applying the Application typing rule to statements 1,2,4, with type
substitution {S1=Number, S2=Number, S=Pair(Number,Number), T1=Number, T2=Number}:

6. { } |- (cons 1 2):Pair(Number,Number)

Typing (cons (cons 1 2) 3) – Applying the Application typing rule to statements 6,3,4,
with type substitution {S1=Pair(Number,Number), S2=Number,

S=Pair(Pair(Number,Number),Number), T1=Pair(Number,Number), T2=Number}:

7. { } |- (cons (cons 1 2) 3):Pair(Pair(Number,Number),Number)

Typing (firstFirst (cons (cons 1 2) 3)) – Applying the Application typing rule to
statements 7,5, with type substitution {S1=Pair(Pair(Number,Number),Number), S=T4,

T3=[Pair(Pair(Number,Number),Number) –> T4]}:

7. {firstFirst: [Pair(Pair(Number,Number),Number) -> T4]} |-

(firstFirst (cons (cons 1 2) 3)):T4

234



Chapter 5 Principles of Programming Languages

The definition of firstFirst justifies derivations whose last typing statement has the type
environment {firstFirst:[Pair(Pair(T21,T31),T32) –> T21]}. The type environment
in statement 7 is an instance of this type environment, under the type substitution
{T21=T31=T32=Number}. Therefore, the type derivation of (firstFirst (cons (cons 1

2) 3)) is correct.

5.5 Type Checking and Inference using Type Constraints Ap-
proach

Algorithm Type-derivation involves non-deterministic decisions in applications of typing
axioms and rules:

1. Replacement of the type environment meta variables.

2. Selection of type-substitution that can unify the typing statements in the rule condition
with supporting typing statements from the pool.

3. Application of the monotonicity rule.

In addition, implementation of this algorithm involves management of multiple data types:
type-environment, language variables and expressions, type expressions.

The algorithm can be mechanized by replacing the applications of typing axioms and
rules with type equations that are constructed for every sub-expression of the typed ex-
pression. A solution to the equations assigns types to every sub -expression. The type check-
ing/inference procedure turns into a type equation solver . Compilers and interpreters like
ML, that support static type checking/inference use the type equation approach.

Example 5.17. – Typing the procedure (lambda (f x) (f x x)) using type equations.

There are 4 type variables: Tf , Tx, T(fxx), T(lambda(fx)(fxx)). The type constraints (equa-
tions) are:

Tf = [Tx ∗ Tx → T(fxx)]

T(lambda(fx)(fxx)) = [Tf ∗ Tx → T(fxx)]

Solution: T(lambda(fx)(fxx)) = [[Tx ∗ Tx → T(fxx)] ∗ Tx → T(fxx)].

Type equation solvers use a unification algorithm for unifying polymorphic type ex-
pressions. We will introduce a unification algorithm in the operational semantics of Logic
programming (Chapter 7). We now demonstrate a method for inferring a type for an
expression e, by constructing and solving type equations. The method has four stages:

1. Rename bound variables in e.

2. Assign type variables to all sub-expressions.
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3. Construct type equations.

4. Solve the equations.

We demonstrate the method by example. The running example is the expression:

(lambda (f g)

(lambda (x)

(f (+ x (g 3)))))

5.5.1 Creating and solving type constraints

Stage I: Renaming : None needed.

Stage II: Assign type variables: Every sub expression is assigned a type variable:

Expression V ariable

(lambda (f g) (lambda (x) (f (+ x (g 3))))) T0

(lambda (x) (f (+ x (g 3)))) T1

(f (+ x (g 3))) T2

f Tf

(+ x (g 3)) T3

+ T+
x Tx

(g 3) T4

g Tg

3 Tnum3

Stage III: Construct type equations – the typing rules of algorithm Type-derivation
turn into type equations: The rules are:

1. Number, Boolean, Symbol, Primitive-procedures: Construct equations using
their types. For example, for the number 3: Tnum3 = Number and for the binary
primitive procedure +: T+ = Number ∗Number → Number.

2. Procedure (Lambda expressions): The type inference rule is:

For every: type environment _Tenv,

variables _x1, ..., _xn, n ≥ 0

expressions _e1, ..., _em, m ≥ 1, and

type expressions _S1, ...,_Sn, _U1, ...,_Um :

Procedure with parameters (n > 0):

If _Tenv○{_x1:_S1, ..., _xn:_Sn } |- _ei:_Ui for all i = 1..m ,
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Then _Tenv |- (lambda (_x1 ... _xn ) _e1 ... _em) : [_S1*...*_Sn -> _Um]

Parameter-less Procedure (n = 0):

If _Tenv |- _ei:_Ui for all i=1..m,

Then _Tenv |- (lambda ( ) _e1 ... _em):[Empty -> _Um]

Extracting the type restriction on the involved sub-expressions yields:
For (lambda (v1 ...vn) e1 ... em) with n > 0, construct the equation:
T(lambda(v1...vn)e1...em) = [Tv1 ∗ . . . ∗ Tvn → Tem].
For (lambda ( ) e1 ... em), construct the equation:
T(lambda()e1...em) = [Empty → Tem].

3. Application: The type-inference rule is:

For every: type environment _Tenv,

expressions _f, _e1, ..., _en, n ≥ 0 , and

type expressions _S1, ..., _Sn, _S:

Procedure with parameters (n > 0):

If _Tenv |- _f:[_S1*...*_Sn -> _S],

_Tenv |- _e1:_S1, ..., _Tenv |- _en:_Sn

Then _Tenv |- (_f _e1 ... _en):_S

Parameter-less Procedure (n = 0):

If _Tenv |- _f:[Empty -> _S]

Then _Tenv |- (_f):_S

Extracting the type restriction on the involved sub-expressions yields:
For (f e1 ... en) with n > 0, construct the equation:
Tf = [Te1 ∗ . . . ∗ Ten → T(fe1...en)].
For (f) construct the equation:
Tf = [Empty → T(f)].

Note: The inference rules for Procedure and Application require type inference for all
internal expressions, even though the final inferred type does depend on their type. Why?
In the type-equations approach this requirement is achieved by constructing type equations
for all sub-expressions, as described below.

The algorithm constructs equations for the primitive sub-expressions and for all com-
posite sub-expressions. For the running example:
The equations for the primitive sub-expressions are:

Expression Equation

3 Tnum3 = Number

+ T+ = Number ∗Number → Number
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The equations for composite sub-expressions are:

Expression Equation

(lambda (f g) (lambda (x) (f (+ x (g 3))))) T0 = [Tf ∗ Tg → T1]
(lambda (x) (f (+ x (g 3)))) T1 = [Tx → T2]
(f (+ x (g 3))) Tf = [T3 → T2]
(+ x (g 3)) T+ = [Tx ∗ T4 → T3]
(g 3) Tg = [Tnum3 → T4]

Stage IV: Solving the equations: The equations are solved by gradually producing
type-substitutions for all type variables. For an expression e, the algorithm infers a type t

if the final type-substitution maps its variable Te to t (includes the binding ⟨Te = t⟩). If
an expression has an infer ed type then all of its sub-expressions have types as well. If the
procedure fails (output is FAIL) then either there is a type error or the constructed type
equations are too weak. Circular type-substitution cause failure. The solution is processed
by considering the equations one by one.
Input: A set of type equations.
Output: A type substitution of FAIL.
Method:

Initialization:
substitution := { }

Order the set of input equations in some sequential order.
equation := te1 = te2, the first equation.

Loop:

1. Apply the current substitution to the equation:
equation := te1 ○ substitution = te2 ○ substitution

2. If te1 ○ substitution and te2substitution are atomic types:
if te1 ○ substitution ≠ te2substitution: substitution := FAIL

otherwise: Do nothing.

3. Without loss of generality:
If te1 ○ substitution = T , i.e., a type variable, and te1 ○ substitution ≠ te2 ○
substitution:
substitution := substitution○{T = te2 ○ substitution}. That is, apply the
equation to substitution, and add the equation to the substitution. If the
application fails (circular mapping), substitution := FAIL.

4. if te1 ○ substitution and te2 ○ substitution are composite types:
if they have the same type constructor: Split te1 ○ substitution and te2 ○
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substitution into component type expressions, create equations for correspond-
ing components, and add the new equations to the pool of equations.
if they have different type constructors: substitution := FAIL

5. Without loss of generality:
if te1 ○ substitution is an atomic type and te2 ○ substitution is a composite
type: substitution := FAIL

6. if there is a next equation: equation := next(equation)

until
substitution = FAIL or
there is no next equation.

Output: substitution

Continuing the running example:

Equations substitution

1. T0 = [Tf ∗ Tg → T1] {}
2. T1 = [Tx → T2]
3. Tf = [T3 → T2]
4. T+ = [Tx ∗ T4 → T3]
5. Tg = [Tnum3 → T4]
6. Tnum3 = Number

7. T+ = Number ∗Number → Number

Equation 1: The application equation1○substitution leaves equation1 as a substitution,
since one of its sides is still a type variable. Therefore:
substitution := substitution ○ (equiation1 ○ substitution) ∶

Equations substitution

2. T1 = [Tx → T2] {T0 = [Tf ∗ Tg → T1]}
3. Tf = [T3 → T2]
4. T+ = [Tx ∗ T4 → T3]
5. Tg = [Tnum3 → T4]
6. Tnum3 = Number

7. T+ = Number ∗Number → Number
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Equation 2: Following the same argument:
substitution := substitution ○ (equiation2 ○ substitution) ∶

Equations substitution

3. Tf = [T3 → T2] {T0 = [Tf ∗ Tg → [Tx → T2]],
4. T+ = [Tx ∗ T4 → T3] T1 = [Tx → T2]}
5. Tg = [Tnum3 → T4]
6. Tnum3 = Number

7. T+ = Number ∗Number → Number

Equation 3: Following the same argument:
substitution := substitution ○ (equiation3 ○ substitution) ∶

Equations substitution

4. T+ = [Tx ∗ T4 → T3] {T0 = [[T3 → T2] ∗ Tg → [Tx → T2]],
5. Tg = [Tnum3 → T4] T1 = [Tx → T2],
6. Tnum3 = Number Tf = [T3 → T2]}
7. T+ = Number ∗Number → Number

Equation 4: Following the same argument:
substitution := substitution ○ (equiation4 ○ substitution) ∶

Equations substitution

5. Tg = [Tnum3 → T4] {T0 = [[T3 → T2] ∗ Tg → [Tx → T2]],
6. Tnum3 = Number T1 = [Tx → T2],
7. T+ = Number ∗Number → Number Tf = [T3 → T2],

T+ = [Tx ∗ T4 → T3]}

Equation 5: Following the same argument:
substitution := substitution ○ (equiation5 ○ substitution) ∶

Equations substitution

6. Tnum3 = Number {T0 = [[T3 → T2] ∗ [Tnum3 → T4]→ [Tx → T2]],
7. T+ = Number ∗Number → Number T1 = [Tx → T2],

Tf = [T3 → T2],
T+ = [Tx ∗ T4 → T3],
Tg = [Tnum3 → T4]}
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Equation 6: Following the same argument:
substitution := substitution ○ (equiation6 ○ substitution) ∶

Equations substitution

7. T+ = [Number ∗Number → Number] {T0 = [[T3 → T2] ∗ [Number → T4]→ [Tx → T2]],
T1 = [Tx → T2],
Tf = [T3 → T2],
T+ = [Tx ∗ T4 → T3],
Tg = [Number → T4],
Tnum3 = Number}

Equation 7: Applying the substitution to equation7, i.e., equiation7 ○ substitution,
yields the equation [Tx ∗T4 → T3] = [Number ∗Number → Number], which has composite
type expressions on both sides. Since these expressions have the same type constructor, the
new equation is split into three equations: Tx = Number, T4 = Number and T3 = Number.
Processing the three equations yields:

Equations substitution

{T0 = [[Number → T2] ∗ [Number → Number]→ [Number → T2]],
T1 = [Number → T2],
Tf = [Number → T2],
T+ = [Number ∗Number → Number],
Tg = [Number → T4],
Tnum3 = Number,

Tx = Number,

T4 = Number,

T3 = Number}

Output: substitution

Properties of the type-equation based inference algorithm:

1. Characterization: The algorithm is deterministic. It is derived from the type-
derivation rule-based algorithm by:

(a) Replacing language expressions by type variables that stand for their types. This
steps implies removal of the type environment expression.

(b) For every composite sub-expression and every primitive symbol: Constructing
type equations, that are derived from the inference rules of these expressions.
Together with the requirement to process all equations, this step guarantees well-
typing of every sub-expression

2. Well-typing: If the algorithm terminates with non Fail substitution then the
input language expression is well-typed. For example, for the running example,
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(lambda (f g)

(lambda (x)

(f (+ x (g 3)))))

the algorithm proves that it is well-typed. If the lambda expression includes internal
expressions, as in:

(lambda (f g)

(lambda (x)

(display x) (newline) (* x x) (f (+ x (g 3)))))

the algorithm guarantees that the internal expressions are also checked for well-typing.

3. Type inference: If the input language expression e does not have free variables,
then if it is well-typed its inferred type is the output mapping of its type variable:
substitution(Te). For the running example expression, its type variable was marked
T0 and its inferred type is
substitution(T0) = [[Number → T2] ∗ [Number → Number]→ [Number → T2]]

4. Type safety: If the input language expression does not have free variables, The
algorithm guarantees type safety, since it enforces well-typing of all sub-expressions.

5. Comparison with the rule-based inference method: The inference algorithm
holds a small set of inference rules, that are repeatedly used in a non-deterministic way
in all type inference applications. In contrast, the equation-based algorithm creates a
new set of equations in every application, and process the set in a deterministic way.

Extending the typed language:
The typed language under the type-equations approach can be extended, similarly to the
one under the type-inference-rules approach, to apply to conditional expressions, definitions,
and other language expressions. This requires addition of equations for the new kinds of
language expressions. Such equations are obtained by extracting from the corresponding
type-inference rules, the enforced type inter-relationship constraints.

5.5.2 Implementing Type Inference Using the Type Constraints Approach

In order to implement the type-inference method of using type constraints, we adopt the
ADT approach:

1. ADTs: Type-Expression (TE), Substitution, Equation, where the Substitution and
Equation ADTs are clients (built on top) of the Type-Expression ADT.
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2. Client procedures:

(a) Of Substitution: substitution-application,substitution-combination.

(b) Of Equation and of the client procedures of Substitution: infer-type, solve.

3. Implementation:

(a) Module type-expression-adt: Type-Expression is implemented as a tagged-
data, using the type constructor as a tag.

(b) Module substitution-adt: Substitution is implemented as a pair-list (2-element
list) of variables and type expressions. Includes the client procedures substitution
-application, substitution-combination.

(c) Module equation-adt: Equation is implemented as a pair-list of type expressions.

(d) Module solve: Includes the client procedures infer-type, solve.

(e) Additional modules:
Module Scheme-exprs-type-vars includes the procedure make-expr-tvars-list
which associates a type variable with every sub-expression of the given expres-
sion.
Module asp includes abstract syntax procedures for Scheme expressions.
Module auxiliary includes auxiliary procedures.

(f) Testing modules: type-expression-adt-tests, substitution-adt-tests,

equation-adt-tests, solve-tests, utils.

The full system appears in the course site.

Type-Expression ADT (partial):

Constructors:

Signature: make-proc-te(tuple-te, te)

Type: Client view: [Tuple*Type -> Procedure

Example: (make-proc-te (make-tuple-te (list Number)) ’Number)

==> (-> (*Number) Number)

Signature: make-tuple-te(te-list)

Type: Client view:[List(TE)-> Tuple]

Example: (make-tuple-te

(list ’Number (make-proc-te (make-tuple-te (list ’Number))’T1)))

==> (* Number (-> (* Number) T1))

Some getters:

Signature: get-constructor(te)
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Type: Client view: [Composite-Type-Expression -> Symbol]

Example: (get-constructor (make-tuple-te (list ’Number ’Number))) ==> *

Signature: tuple-components(te)

Type: Client view: [Tuple -> List(TE)]

Example: (tuple-components (make-tuple-te (list ’Number ’Number))) ==> (Number Number)

Signature: proc-return-te(te)

Type: Client view:[Procedure -> TE]

Example: (proc-return-te (make-proc-te (make-tuple-te (list ’Number)) ’T1)) ==> T1

Some predicates:

Signature: equal-atomic-te?(te1 te2)

Type: [List union Symbol * List union Symbol -> Boolean]

Signature: type-expr?(te)

Type: [T -> Boolean]

Substitution ADT (partial):

Constructors:

Signature: make-sub(variables, tes)

Type: Client view: [List(Symbol)*List(Type-expression) -> Substitution]

Example: (make-sub ’(x y z)

(list ’Number ’Boolean

(make-proc-te (make-tuple-te (list ’Number)) ’Number)))

==> ((x y z) (Number Boolean (-> (* Number) Number)))

Some getters:

Signature: get-variables(sub)

Type: Client view: [Substitution -> List(Var)]

Example: (get-variables

(make-sub

’(x y z)

(list ’Number ’Boolean

(make-proc-te (make-tuple-te (list ’Number)) ’Number))) )

==> (x y z)

Predicates:

Signature: non-circular?(var, te)

Type: [Symbol*Type-Expression -> Boolean]

Example: (non-circular? ’T (make-proc-te (make-tuple-te (list ’Number)) ’Number)) ==> #t
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(non-circular? ’T (make-proc-te (make-tuple-te (list ’T)) ’Number)) ==> #f

Signature: sub?(sub)

Type: [T -> Boolean]

Equation ADT (partial):

Constructors:

Signature: make-equation-from-tes(te1,te2)

Type: Client view: [Type-expression*Type-expression -> Equation]

Example: (make-equation-from-tes

’((-> (* Number Number) Number)

’(-> (* Number) Boolean)))

==> ((-> (* Number Number) Number) (-> (* Number) Boolean)))

Signature: make-equations(expression-type-vars-list)

Purpose: Return a set of equations for a given Scheme expression and a list of

pairs: Sub-expression and its type variable

Type: Client view: [List(Pair-List(Scheme-expression,Symbol)) -> List(Equation)]

Example: (make-equations

’(((lambda(x)(+ x 1)) var_0) ((+ x 1) var_1) (1 var_4) (x var_3) (+ var_2)))

==> ’((var_0 (-> (* var_3) var_1)) (var_2 (-> (* var_3 var_4) var_1)))

Signature: make-equation(se,expr-tvars-list)

Purpose: Return a single equation

Type: Client view:

[Scheme-expression*List(Pair-List(Scheme-expression,Symbol)) -> Equation]

Some getters:

Signature: get-left(eq)

Type: Client view: [Equation -> Type-Expression]

Some predicates:

Signature: equation?(eq)

Type: [T -> Boolean]

The system is architectured after the ADTs: There are 3 Type-equation, Substitution
and Equation ADT modules. The Substitution-ADT module includes the 2 client procedures
of Substitution: substitution-application,substitution-combination.

The main functionality of type inference is defined in the “solve” module, in which the
2 main client procedures infer-type, solve are defined. The solve procedure performs
the actual task of solving the type constraints, and the infer-type procedure performs the
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overall type inference task, starting from a Scheme expression, via assigning type variables
to all sub-expressions, construction of the equations, and solving them.

Signature: infer-type(scheme-expr)

Purpose: Infer the type of a scheme expression using the equations method

Type: Client view: [Scheme-expression -> Type-expression]

Example: (infer-type ’(lambda (f x) (f (f x)))) ==> (-> (* (-> (* T_4) T_4) T_4) T_4)

(define infer-type

(lambda (scheme-expr)

(let ((expr-tvars-list (make-expr-tvars-list scheme-expr)))

;make-expr-tvars-list is defined in ass2.rkt

(get-expression-of-variable

(solve-equations (make-equations expr-tvars-list))

(val-of-index scheme-expr expr-tvars-list))

;get the type expression of the variable that represents scheme-expr,

;in the substitution returned by solve-equations.

)

))

(define solve-equations

(lambda(equations)

(solve equations (make-sub ’() ’()))))

Signature: solve(equations,substitution)

Purpose: Solve the equations, starting from a given substitution. returns the

resulting substitution, or error, if not solvable

(define solve

(lambda(equations subst)

(if (null? equations)

subst

(let

((eq (make-equation-from-tes

(substitution-application subst

(get-left (get-first-equation equations)))

(substitution-application subst

(get-right (get-first-equation equations)))))

)

(letrec ((solve-var-eq ;If one side of eq is a variable

(lambda(var-part other-part)

(solve (cdr equations)

(substitution-combination subst
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(make-sub (list var-part) (list other-part))))))

(both-sides-atomic?

(lambda(eq) (and (atomic-te? (get-left eq))

(atomic-te? (get-right eq)))))

(handle-both-sides-atomic

(lambda(eq)

(if (equal-atomic-te? (get-left eq) (get-right eq))

(solve (get-rest-equations equations) subst)

(error ’solve "equation contains unequal atomic types: ~e" eq))))

)

(cond ((variable-te? (get-left eq))

(solve-var-eq (get-left eq) (get-right eq)))

((variable-te? (get-right eq))

(solve-var-eq (get-right eq) (get-left eq)))

((both-sides-atomic? eq) (handle-both-sides-atomic eq))

((and (composite-te? (get-left eq))

(composite-te? (get-right eq)) (unifyable-structure eq))

(solve (append (get-rest-equations equations) (split-equation eq))

subst))

(else (error ’solve "equation contains unknown type expresion: ~s" eq)))

)))

))

Notes:

1. The type inference system follows the principles of the ADT approach for software
construction.

2. But, the system does not preserves the principles of data abstraction. Try finding
where the “abstraction barrier” is broken, and why.

3. What are the conclusions for leaving the role of keeping abstraction barriers in the
hands of the software developers?
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Evaluators for Functional
Programming

Sources: SICP 4.1. [1] and extensions.

Introduction on Meta-Circular Evaluators

Programming languages are used to describe problems and specify solutions. They pro-
vide means for combination and abstraction that enable hiding unnecessary details, and
expressing high level concepts. The design of new descriptive languages is a natural need
in complex applications. It arises in multiple paradigms, and not restricted to the design of
programming languages.

Metalinguistic abstraction is used to describe languages . It involves two major
tasks:

1. Syntax , i.e., language design : Language atoms, primitives, combination and ab-
straction means.

2. Semantics (operational), i.e., language evaluation rules — a procedure that
when applied to a language expression, performs the actions needed for evaluating
that expression.

The method of implementing a language in another language is called embedding .
The evaluator that we implement for Scheme, uses Scheme (i.e., some already implemented
Scheme evaluator) as an embedding (implementation) language. That is:

1. Interpreted language: Scheme.

2. Implementation (embedding) language: Scheme.
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Such evaluators, in which the target language is equal to the implementation language, are
called meta-circular evaluators.

The evaluators that we provide are meta-circular evaluators for Scheme (without
letrec). We provide two evaluators and a compiler:

1. Substitution evaluator : This evaluator implements the applicative-eval opera-
tional semantics algorithm. Its rules distinguish between atomic to composite expres-
sions. For composite expressions, special forms have their own computation rules.
Primitive forms evaluate all sub-expressions, and apply the primitive procedure. Oth-
erwise, the computation rule follows the eval-substitute-reduce pattern.

2. Environment evaluator : This evaluator implements the environment-based op-
erational semantics, also introduced in this chapter. This evaluator modifies the sub-
stitution evaluator by introducing an environment data structure, that extends the
simple global environment of the substitution evaluator.

3. Environment-based compiler : A compiler that is based on the environment eval-
uator: Applies static (compile time) translation of Scheme code to the underlying
application (Dr. Racket) code, while delaying run-time dependent computation.

All evaluators have the same architecture, described in Figure 6.1. The course site
includes full implementations for the three evaluators. The Core package is a client of the

Figure 6.1: Visual representation of environments

ASP and the Data structures packages, which are stand alone packages. There is a single
ASP package, used by all evaluators. But every evaluator has its own Data structures
package. The Tests packages of the evaluators provide regression testing – i.e., tests
that should be repeatedly run following every modification, in order to verify that a newly
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inserted test does not violate an older test. The Utils package provides services used by all
otter packages.

The use of an abstract syntax parser creates an abstraction barrier between the
concrete syntax and its client – the evaluator:

− Concrete syntax can be modified, without affecting the clients.

− Evaluation rules can be modified, without affecting the syntax.

Input to the evaluators: All evaluators receive as input a scheme expression or an
already evaluated scheme expression (in case of repeated evaluation). Therefore, there is a
question of representation : “How to represent a Scheme expression?” For that purpose,
the evaluators exploit the uniformity of Scheme expressions and the printed form of lists:

1. Compound Scheme expressions have the form: ( <exp> <exp> ... <exp> ), where
<exp> is any Scheme expression, i.e.: Atomic (Number or Boolean or Variable), or
compound.

2. The printed form of Scheme lists is: ( <val> <val> ... <val> ), where <val> is
the printed form of a value of a Scheme type, i.e.: Number or Symbol or Boolean or
Procedure or Pair or List.

The evaluators treat Scheme expressions as constant lists. This view saves us the need to
write an input tokenizer for retrieving the needed tokens from a character string which is
a Scheme expression (as needed in other languages, that treat symbolic input as strings –
like JAVA). The components of a Scheme expressions are retrieved using the standard List
selectors: car, cdr, list-ref. For example:

> (derive-eval (list ’+ 1 2))

3

> (derive-eval (list ’lambda (list ’lst) (list ’car (list ’car ’lst)) ))

(procedure (lst) ((car (car lst))))

Note that the input to the evaluators is an unevaluated list! Otherwise, the evaluator is
asked to evaluate an already evaluated expression, and is either useless or fails:

> (derive-eval (lambda (lst) (car (car lst)) ))

. . ASP.scm:247:31: car: expects argument of type <pair>; given #<procedure>

Quoted lists: Building Scheme expressions as constant lists using List constructors is
quite heavy. In order to relax the writing, we introduce the Scheme syntactic sugar for
constant lists: " ’ " (yes, it is the same " ’ " symbol, used to shorten the quote

constructor of the Symbol type!). The " ’ " symbol is a macro character, replaced by
construction of the list value whose printed form is quoted. That is,
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’(lambda (lst) (car (car lst)) ) =

(list ’lambda (list ’lst) (list ’car (list ’car ’lst)) ).
Using " ’ ", Scheme expressions can be given as constant input lists:

> (derive-eval ’(lambda (lst) (car (car lst)) ))

(procedure (lst) ((car (car lst))))

6.1 Abstract Syntax Parser (ASP) (SICP 4.1.2)

An abstract syntax parser is a tool that can:

1. Determine the kind of a Scheme expression;

2. Can select the components of a Scheme expression;

3. Can construct a language expression, when given its components;

These services result from the abstract syntax essentials:

− It distinguishes alternatives and components of a category.

− It ignores other syntactic details.

For example, for the <conditional> category, it distinguishes

− The <if> and <cond> alternatives.

− For the <if> category, it distinguishes the 3 components: <predicate>, <consequence>,

<alternative>.

The abstract syntax parser implements an interface of the abstract syntax of the in-
terpreted language:

− Constructors;

− Selectors, for retrieving the components of an expression;

− Predicates, for identification.

That is:

The abstract syntax is a collection of ADTs that are implemented by
the concrete syntax type, using the ASP!

For every Scheme expression, its ADT includes its constructor, selectors and predicates. The
ASP implements the expression ADT.

The abstract syntax parser does not provide information about the concrete syntax of
expressions. Therefore, revision of the exact syntax of the cond ADT does not modify the
API of the abstract syntax. It affects only the implementation of the cond ADT! This way
the exact syntax of the expressions is separated from the core of any tool that uses the
parser.
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Derived expressions: Language expressions are classified into:

1. Language kernel expressions: Form the core of the language – Every implementation
must implement them.

2. Derived expressions: Re-written using the core expressions. They are implementa-
tion invariants.

For example, in Scheme, it is reasonable to include only one conditional operator in the
kernel, and leave the other as derived. Another natural example is let expressions, that can
be re-written as applications of anonymous procedures (closures).

Identifying Scheme expressions: The name (identifier) of a special form is used as a
type tag , that identifies the type of expressions. This is similar to the type Tagged-data(T)
in chapter 3. This approach exploits the prefix syntax of Scheme. This way:

− A lambda expression is identified as a list starting with the lambda tag.

− An if expression is identified as a list starting with the if tag.

The Tagged-data interface and an implementation is given below:

; Signature: attach-tag(x, tag)

; Type: [LIST*Symbol -> LIST]

(define attach-tag

(lambda (x tag) (cons tag x)))

; Note that the tagged content MUST be a list!

; Signature: get-tag(tagged)

; Type: LIST -> Symbol

(define get-tag (lambda (tagged) (car tagged)))

; Signature: get-content(tagged)

; Type: [LIST -> T]

(define get-content

(lambda (tagged) (cdr tagged)))

Signature: tagged-data?(datum)

Type: [T -> Boolean]

(define tagged-by?

(lambda (datum)

(and (list? datum) (symbol? (car datum))) ))
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; Signature: tagged-by?(tagged, tag)

; Type: [T*Symbol -> Boolean]

(define tagged-by?

(lambda (tagged tag)

(and (tagged-data? tagged)

(eq? (get-tag tagged) tag))))

6.1.1 The parser procedures:

For each type of expression the abstract syntax parser implements:

− Predicates, to identify Scheme expressions.

− Selectors to select parts of Scheme expressions.

− Constructors.

1. Atomic expressions:

− Atomic identifier:

(define atomic?

(lambda (exp)

(or (number? exp) (boolean? exp) (variable? exp) (null? exp))))

− Numbers:

(define number?

(lambda (exp)

(number? exp)))

− Booleans:

(define boolean?

(lambda (exp)

(or (eq? exp ’#t) (eq? exp ’#f))))

− Variables:

(define variable?

(lambda (exp) (symbol? exp)))

2. Quoted expressions:
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(define quoted?

(lambda (exp)

(tagged-by? exp ’quote)))

(define text-of-quotation

(lambda (exp) (car (get-content exp))))

(define make-quote

(lambda (text)

(attach-tag (list text) ’quote)))

3. Lambda expressions:

(define lambda?

(lambda (exp)

(tagged-by? exp ’lambda) ))

(define lambda-parameters

(lambda (exp)

(car (get-content exp))))

(define lambda-body

(lambda (exp)

(cdr (get-content exp))))

; Type: LIST(Symbol)*LIST -> LIST

(define make-lambda

(lambda (parameters body)

(attach-tag (cons parameters body) ’lambda)))

4. Definition expressions – 2 forms:

− Syntax: (define <var> <val>)

(define definition?

(lambda (exp)

(tagged-by? exp ’define)))

(define definition-variable

(lambda (exp)

(car (get-content exp))))
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(define definition-value

(lambda (exp)

(cadr (get-content exp))))

(define make-definition

(lambda (var value)

(attach-tag (list var value) ’define)))

− Function (procedure) definition:

(define (<var> <par1> ... <parn>) <body>)

(define function-definition?

(lambda (exp)

(and (tagged-by? exp ’define)

(list? (cadr exp)))))

(define function-definition-variable

(lambda (exp)

(caar (get-content exp))))

(define function-definition-parameters

(lambda (exp)

(cdar (get-content exp))))

(define function-definition-body

(lambda (exp)

(cdr (get-content exp))))

Note that we do not provide a constructor for function definition expressions,
since they are derived expressions.

5. Conditional expression – cond:

(define cond? (lambda (exp) (tagged-by? exp ’cond)))

(define cond-clauses (lambda (exp) (cdr exp)))

(define cond-predicate (lambda (clause) (car clause)))

(define cond-actions (lambda (clause) (cdr clause)))

(define cond-first-clause (lambda (clauses) (car clauses)))
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(define cond-rest-clauses (lambda (clauses) (cdr clauses)))

(define cond-last-clause? (lambda (clauses) (null? (cdr clauses))))

(define cond-empty-clauses? (lambda (clauses) (null? clauses)))

(define cond-else-clause?

(lambda (clause) (eq? (cond-predicate clause) ’else)))

; A constructor for cond clauses:

(define make-cond-clause

(lambda (predicate exps) (cons predicate exps)))

; A constructor for cond:

(define make-cond

(lambda (cond-clauses)

(attach-tag cond-clauses ’cond)))

6. Conditional expression – if:

(define if?

(lambda (exp) (tagged-by? exp ’if)))

(define if-predicate

(lambda (exp)

(car (get-content exp))))

(define if-consequent

(lambda (exp)

(cadr (get-content exp))))

(define if-alternative

(lambda (exp)

(caddr (get-content exp))))

(define make-if

(lambda (predicate consequent alternative)

(attach-tag (list predicate consequent alternative) ’if)))

7. let:

(define let? (lambda (exp) (tagged-by? exp ’let)))
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(define let-bindings

(lambda (exp)

(car (get-content exp))))

(define let-body

(lambda (exp)

(cdr (get-content exp))))

(define let-variables

(lambda (exp)

(map car (let-bindings exp))))

(define let-initial-values

(lambda (exp)

(map cadr (let-bindings exp))))

(define make-let

(lambda (bindings body)

(attach-tag (cons bindings body) ’let)))

8. letrec:

(define letrec?

(lambda (exp) (tagged-by? exp ’letrec)))

(define letrec-bindings

(lambda (exp)

(car (get-content exp))))

(define letrec-body

(lambda (exp)

(cdr (get-content exp))))

(define letrec-variables

(lambda (exp) (map car (letrec-bindings exp))))

(define letrec-initial-values

(lambda (exp) (map cadr (letrec-bindings exp))))
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(define make-letrec

(lambda (bindings body)

(attach-tag (cons bindings body) ’letrec)))

(define letrec-binding-variable

(lambda (binding) (car binding)))

(define letrec-binding-value

(lambda (binding) (cadr binding)))

9. Procedure application expressions – any composite expression that is not
one of the above:

(define application? (lambda (exp) (list? exp)))

(define operator (lambda (exp) (car exp)))

(define operands (lambda (exp) (cdr exp)))

(define no-operands? (lambda (ops) (null? ops)))

(define first-operand (lambda (ops) (car ops)))

(define rest-operands (lambda (ops) (cdr ops)))

(define make-application

(lambda (operator operands) (cons operator operands)))

10. Begin:

(define begin? (lambda (exp) (tagged-by? exp ’begin)))

(define begin-actions (lambda (exp) (get-content exp)))

(define make-begin (lambda (seq) (attach-tag seq ’begin)))

11. Sequence:

(define sequence-last-exp? (lambda (exp) (null? (cdr exp))))

(define sequence-first-exp (lambda (exps) (car exps)))

(define sequence-rest-exps (lambda (exps) (cdr exps))

(define sequence-empty? (lambda (exp) (null? exp)))
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6.1.2 Derived expressions

Derived expressions are expressions that can be defined in terms of other expressions that
the evaluator already can handle. A derived expression is not part of the language kernel: It
is not directly evaluated by the evaluator. Instead, it is syntactically translated into another
semantically equivalent expression that is part of the language kernel. For example, if can
be a derived expression, defined in terms of cond:

(if (> x 0)

x

(if (= x 0)

0

(- x)))

can be reduced to:

(cond ((> x 0) x)

(else (cond ((= x 0) 0)

(else (- x)))))

which can be optimized into

(cond ((> x 0) x)

((= x 0) 0)

(else (- x)))

This is a conventional method that provides further abstraction and flexibility to lan-
guages – A compiler or interpreter does not handle explicitly the derived expressions. This
way, the evaluator provides semantics and implementation only to its core (kernel) ex-
pressions. All other (derived) expressions are defined in terms of the core expressions, and
therefore, are independent of the semantics and the implementation.

Management of derived expressions consists of:

1. Overall management:

(a) A predicate derived? that identifies derived expressions.

(b) A procedure shallow-derive that translates a derived expression into a kernel
expression without handling of nested derived expressions.

(c) A procedure derive that recursively applies shallow-derive.

2. Concrete translation: For every derived expression a shallow translation procedure
is provided. For example, if if is a derived expression, then there is a procedure
if->cond.
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6.1.2.1 Overall management of derived expressions

(define derived?

(lambda (exp)

(or (if? exp) (function-definition? exp) (let? exp))))

; Type: [<Scheme-exp> -> <Scheme-exp>]

; Pre-condition: exp is a derived expression.

(define shallow-derive

(lambda (exp)

(cond ((if? exp) (if->cond exp))

((function-definition? exp) (function-define->define exp))

((let? exp) (let->combination exp))

((letrec? exp) (letrec->let exp))

(else (error ’shallow-derive "unhandled derivation: ~s" exp)))))

; Type: [<Scheme-exp> -> <Scheme-exp>]

; Deep derivation -- due to the recursive application

; Handling of multiple (repeated) derivation

(define derive

(lambda (exp)

(if (atomic? exp)

exp

(let ((derived-exp

(let ((mapped-derive-exp (map derive exp)))

(if (not (derived? exp))

mapped-derive-exp

(shallow-derive mapped-derive-exp)))

))

(if (equal? exp derived-exp)

exp

(derive derived-exp)) ; Repeated derivation

))))

6.1.2.2 Concrete translations

1. if as a derived expression:

(define if->cond

(lambda (exp)

(let ((predicate (if-predicate exp))

(first-actions (list (if-consequent exp)))
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(second-actions (list (if-alternative exp))) )

(let ((first-clause (make-cond-clause predicate first-actions))

(second-clause (make-cond-clause ’else second-actions))

)

(make-cond (list first-clause second-clause))))

))

> (if->cond ’(if (> x 0)

x

(- x)))

(cond ((> x 0) x) (else (- x)))

> (if->cond ’(if (> x 0)

x

(if (= x 0)

0

(- x))))

(cond ((> x 0) x) (else (if (= x 0) 0 (- x))))

if->cond performs a shallow translation: It does not apply recursively, all the way down to
nested sub-expressions. A deep if->cond should produce:

(cond ((> x 0) x) (else (cond ((= x 0) 0) (else (- x)))))

But, this is not needed since derive takes care of applying shallow-derive in all nested
applications.

Note: The parser provides selectors and predicates for all language expressions, includ-
ing derived ones. Note the usage of the cond constructor. This is typical for expressions
that are used for defining other derived expressions.

2. cond as a derived expression: The cond expression:

(cond ((> x 0) x)

((= x 0) (display ’zero) 0)

(else (- x)))

is translated into:

(if (> x 0)

x

(if (= x 0)

(begin (display ’zero)

0)

(- x)))
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(define cond->if

(lambda (exp)

(letrec

((sequence->exp

(lambda (seq)

(cond ((sequence-empty? seq) seq)

((sequence-last-exp? seq) (sequence-first-exp seq))

(else (make-begin seq)))))

(expand-clauses

(lambda (clauses)

(if (cond-empty-clauses? clauses)

’false ; no else clause

(let

((first (cond-first-clause clauses))

(rest (cond-rest-clauses clauses)))

(if (cond-else-clause? first)

(if (cond-empty-clauses? rest)

(sequence->exp (cond-actions first))

(error "ELSE clause isn’t last -- COND->IF"

clauses))

(make-if (cond-predicate first)

(sequence->exp (cond-actions first))

(expand-clauses rest)))))))

)

(expand-clauses (cond-clauses exp)))

))

> (cond->if ’(cond ((> x 0) x) (else (if (= x 0) 0 (- x)))))

(if (> x 0) x (if (= x 0) 0 (- x)))

> (cond->if ’(cond ((> x 0) x)

(else (cond ((= x 0) 0)

(else (- x))))))

(if (> x 0) x (cond ((= x 0) 0) (else (- x))))

Again, this is a shallow cond->if translation.

3. let as a derived expression: The expression

(let ((x (+ y 2))

(y (- x 3)))

(* x y))
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is equivalent to

((lambda (x y)

(* x y))

(+ y 2)

(- x 3))

(define let->combination

(lambda (exp)

(let ((vars (let-variables exp))

(body (let-body exp))

(initial-vals (let-initial-values exp)))

(make-application (make-lambda vars body) initial-vals))))

4. Procedure-definition as a derived syntax: The expression

(define (f x y)

(display x) (+ x y))

is equivalent to

(define f

(lambda (x y) (display x) (+ x y)))

Since the shortened procedure definition syntax provides basic notation relaxation, it makes
sense to consider it as a derived expression and not as language special form.

(define function-define->define

(lambda (exp)

(let ((var (function-definition-variable exp))

(params (function-definition-parameters exp))

(body (function-definition-body exp)))

(make-definition var (make-lambda params body)))))

6.2 A Meta-Circular Evaluator for the Substitution Model –
Applicative-Eval Operational Semantics

The substitution model manages entities of three kinds:

1. Language expressions .

2. The global environment mapping for “storing” defined values.
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3. Values that are computed by the evaluation algorithms: Numbers, booleans, symbols,
procedures, pairs and lists.

The design of each evaluator starts with the formulation of ADTs (interfaces) for these
entities (as established in Chapter 3), and providing an implementation.

Language expressions are already managed by the ASP package, which treats each com-
posite expression as an ADT, and implements constructors, selectors and predicates. All
evaluators use the same ASP package. The global environment and the value concepts are
formulated as ADTs and implemented in the Data Structures package. The Core package
implements the operational semantics. The overall architecture of all evaluators is described
in figure 6.1, in the beginning of the chapter.
Source code: Substitution-evaluator package in the course site.

6.2.1 Data Structures package

6.2.1.1 Value ADTs and their implementation

The values managed by the evaluator are numbers, booleans, symbols, procedures, pairs and
lists. Values should be distinguished from syntactic expressions, since they should not be
affected by repeated evaluation. Since Scheme syntax identifies syntactic expressions with
computed values (e.g., a quoted symbol is also a syntactic variable; a list is also a genuine
Scheme expression), the evaluator must “mark” already computed values. Therefore, all
commuted values are tagged either as procedures, or as values (including numbers and
booleans).

Indeed, algorithm applicative-eval introduced in Chapter ?? distinguishes already
computed values from syntactic expressions. Consider, for example, the following two eval-
uations:

applicative-eval[((lambda (x)(display x) x) (quote a))] ==>

Eval:

applicative-eval[(lambda (x)(display x) x)] ==> <Closure (x)(display x) x>

applicative-eval[(quote a)] ==> a

Substitute: sub[x,a,(display x) x] = (display a) a

Reduce:

applicative-eval[ (display a) ] ==>

Eval:

applicative-eval[display] ==> Code of display.

applicative-eval[’a’] ==> ’a’ , since ’a’ is a value of the symbol (*)

type (and not a variable!).

applicative-eval[’a’] ==> ’a’

and also:
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applicative-eval[((lambda (lst)(car lst)) (list 1 2 3))] ==>

Eval:

applicative-eval[(lambda (lst)(car lst))] ==> <Closure (lst)(car lst) >

applicative-eval[(list 1 2 3)] ==> List value ’(1 2 3)’

Substitute: sub[lst,’(1 2 3)’,(car lst)] = (car ’(1 2 3)’)

Reduce:

applicative-eval[ (car ’(1 2 3)’) ] ==>

Eval:

applicative-eval[car] ==> Code of car.

applicative-eval[’(1 2 3)’] ==> ’(1 2 3)’ (*)

==> 1

The evaluation correctly completes because applicative-eval avoids repetitive evaluations
(the lines marked by (*). Otherwise, the first evaluation would have failed with an “unbound
variable” error, and the second with “1 is not a procedure”. That is, if e is a value of Symbol
or Pair or List or Procedure (User or primitive), then applicative-eval[e] = e.

For that purpose, the evaluator manages value types with appropriate identification
predicates, selectors and constructors. Below we define ADTs that are implemented by
evaluator types for primitive procedures, user procedures (closures), and all otter values.

Primitive procedure values: A primitive procedure value is not a syntactic expression,
and cannot be repeatedly evaluated, as required for example, in the evaluation of ((lambda
(f)(f (list 1 2))) car). The evaluator must manage its own primitive procedure
values. The management includes the abilities to construct , identify , and retrieve the
underlying implemented code .
The Primitive-procedure ADT:

1. Constructor make-primitive-procedure: Attaches a tag to an implemented code
argument.
Type: [T -> Primitive-procedure].

2. Identification predicate primitive-procedure?.
Type: [T –> Boolean].

3. Selector primitive-implementation: It retrieves the implemented code from a prim-
itive procedure value.
Type: [Primitive-procedure –> T].

Implementation of the Primitive-procedure ADT: Primitive procedures are repre-
sented as tagged values, using the tag primitive.

Type: [T -> LIST]

(define make-primitive-procedure
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(lambda (proc)

(attach-tag (list proc) ’primitive)))

Type: [T -> Boolean]

(define primitive-procedure?

(lambda (proc)

(tagged-by? proc ’primitive)))

Type: [LIST -> T]

(define primitive-implementation

(lambda (proc)

(car (get-content proc))))

For example:

> (make-primitive-procedure cons)

(primitive #<primitive:cons>)

> ( (primitive-implementation (make-primitive-procedure cons))

1 2)

(1 . 2)

User procedure (closure) values: Closures should be managed as Procedure values.
The management includes the abilities to construct, identify and select (get) the pa-
rameters and the body of the closure. That is, when the evaluator evaluates a lambda

expression, it creates its own Procedure value. When a closure is applied, the selectors of
the parameters and the body are used.
The Procedure ADT:

1. make-procedure: Attaches a tag to a list of parameters and body.
Type: [LIST(Symbol)*LIST –> Procedure]

2. Identification predicate compound-procedure?.
Type: [T –> Boolean]

3. Selector procedure-parameters.
Type: [Procedure –> LIST(Symbol)]

4. Selector procedure-body.
Type: [Procedure –> LIST]

Implementation of the User-procedure ADT: User procedures (closures) are repre-
sented as tagged values, using the tag procedure.
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Type: [LIST(Symbol)*LIST -> LIST]

(define make-procedure

(lambda (parameters body)

(attach-tag (cons parameters body) ’procedure)))

Type: [T -> Boolean]

(define compound-procedure?

(lambda (p)

(tagged-by? p ’procedure)))

Type: [LIST -> LIST(Symbol)]

(define procedure-parameters

(lambda (p)

(car (get-content p))))

Type: [LIST -> LIST]

(define procedure-body

(lambda (p)

(cdr (get-content p))))

Identifier evaluator-procedure? for either primitive or user procedure:.

Type: [LIST -> Boolean]

Purpose: An identification predicate for procedures -- closures and primitive:

(define evaluator-procedure?

(lambda (p)

(or (primitive-procedure? p) (compound-procedure? p))))

Other values: Values result from the evaluation of numbers, booleans or application of
primitive procedures. The resulting values should not be repeatedly evaluated. Therefore,
the evaluator distinguishes values and evaluate them to themselves.
The Value ADT:

1. Constructor make-value.
Type: [Scheme-type-value –> Evaluator-value].

2. Identification predicate value?.
Type: [T –> Boolean].

3. Selector value-content.
Type: [Value –> Scheme-type-value].

Implementation of the Evaluator-list ADT:
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Type: [Scheme-type-value -> LIST]

(define make-value

(lambda (x) (attach-tag (list x) ’value)))

Type: [T -> Boolean]

(define value?

(lambda (s) (tagged-by? s ’value)))

Type: [LIST -> LIST]

(define value-content

(lambda (s) (car (get-content s))))

6.2.1.2 The Global Environment (GE) ADT and its implementation

The Global Environment (GE) ADT represents the global environment mapping from vari-
ables to values, used by the substitution operational semantics algorithms. In addition,
in order to use primitive procedures that are already implemented in Scheme, the global
environment treats primitive procedures as defined variables.
The Global Environment ADT:

1. make-the-global-environment: Creates the single value that implements this ADT,
including Scheme primitive procedure bindings.
Type: [Empty –> GE]

2. lookup-variable-value: For a given variable var, returns the value of the global-
environment on var if defined, and signs an error otherwise.
Type: [Symbol –> T]

3. add-binding!: Adds a binding , i.e., a variable-value pair to the global environment
mapping. Note that add-binding is a mutator : It changes the global environment
mapping to include the new binding.
Type: [Binding –> Void]

Implementation of the Global Environment ADT
I. The constructor: We know that the global environment mapping is a substitution.
Therefore, the GE ADT is implemented using the Substation ADT, which was already im-
plemented for the static type inference system, using the equations method. The Global
Environment type has a single value, named the-global-environment. This value is im-
plemented as a substitution that maps primitive-procedure names to their built-in imple-
mentations, and other defined names to their values. The Substitution operations, used
for the GE implementation are: make-sub, get-value-of-variable, extend-sub. The
implementation of the Substitution ADT is also included in the ge-adt.rkt module.
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; Type: Client view: [Void -> GE]

; Supplier view: [Void -> LIST]

; The global environment is implemented as a substitution: A 2-element list of

; symbols and their values

(define make-the-global-environment

(lambda ()

(let* ((primitive-procedures

(list (list ’car car)

(list ’cdr cdr)

(list ’cons cons)

(list ’null? null?)

(list ’+ +)

(list ’* *)

(list ’/ /)

(list ’> >)

(list ’< <)

(list ’- -)

(list ’= =)

(list ’list list)

(list ’append append)

;; more primitives

))

(prim-variables (map car primitive-procedures))

(prim-values (map (lambda (x) (make-primitive-procedure (cadr x)))

primitive-procedures)) )

(make-sub prim-variables prim-values))

))

(define the-global-environment (make-the-global-environment))

II. The selector: The selector of the Global Environment ADT is a procedure that looks
for the value of a given variable argument in the global environment:

; Type: [Symbol -> T]

(define lookup-variable-value

(lambda (var)

(get-value-of-variable the-global-environment var)))

If the global environment is not defined on the search variable, an error is triggered.
III. The mutator: The mutator of the Global Environment ADT is add-binding!, which
adds a binding, i.e., a variable-value pair, to the single GE element the-global-environment.
add-binding! applies the Substitution operation extend-sub, to the-global-environment
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and the new variable-value pair, which creates a new, extended substitution. However, since
the interpreter consults the-global-environment for values of variables, add-binding!

changes the value of the-global-environment to the new extended substitution. The
mutation is implemented using the Scheme operation set!, which changes the value of an
already defined variable (assignment).

The implementation of add-binding! is not in the realm of functional pro-
gramming as it is based on mutation. The mutator is used only in the evaluation of
define forms. If the interpreted language does not include the define special operator, the
substitution interpreter system is within the functional programming paradigm.

; Type: [PAIR(Symbol,T) -> Void]

(define add-binding!

(lambda (binding)

(let ((bvar (binding-variable binding))

(bval (binding-value binding)))

(set! the-global-environment (extend-sub the-global-environment bvar bval)))

))

;;;;;;;;;;; Bindings

; Type: [Symbol*T -> PAIR)Symbol,T)]

(define make-binding

(lambda (var val)

(cons var val)))

; Type: [PAIR(Symbol,T) -> Symbol]

(define binding-variable

(lambda (binding)

(car binding)))

; Type: [PAIR(Symbol,T) -> T]

(define binding-value

(lambda (binding)

(cdr binding)))

Once the-global-environment is defined, we can look for values of its defined variables:

> (lookup-variable-value ’cons)

’(primitive #<procedure:cons>)

> (eq? (primitive-implementation (lookup-variable-value ’cons)) cons)

#t

> ( (primitive-implementation (lookup-variable-value ’cons)) 1 2)

(1 . 2)
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> (lookup-variable-value ’map)

. . get-value-of-variable: sub is an empty substitution or var is not a

variable of sub:

sub is ((car cdr cons null? + * / > < - = list append) ((primitive #<procedure:car>)

(primitive #<procedure:cdr>) (primitive #<procedure:cons>) (primitive #<procedure:null?>)

(primitive #<procedure:+>) (primitive #<procedure:*>) (primitive #<procedure:/>)

(primitive #<procedure:>>) (primitive #<procedure:<>) (primitive #<procedure:->)

(primitive #<procedure:=>) (primitive #<procedure:list>)

(primitive #<procedure:append>)));

var is map

> (add-binding! (make-binding ’map (make-primitive-procedure map)))

> ( (primitive-implementation (lookup-variable-value ’map)) - ’(1 2))

(-1 -2)

6.2.2 Core Package: Evaluation Rules

The core of the evaluator consists of the applicative-eval procedure, that implements the
applicative-eval algorithm. The main evaluation loop is created by application of closures
– user defined procedures. In that case, the evaluation process is an interplay between the
procedures applicative-eval and apply-procedure.

− (applicative-eval <exp>) evaluates <exp>. It calls the abstract syntax parser for
the task of identifying language expressions. The helper procedures eval-atomic,

eval-special-form, eval-list and apply-procedure carry the actual evaluation
on the given expression. They use the abstract syntax parser selectors for getting
expression components.

− (apply-procedure <procedure> <arguments>) applies <procedure> to <arguments>.
It distinguishes between

– Application of a primitive procedure: By calling apply-primitive-procedure.

– Application of a compound procedure:

∗ It substitutes the free occurrences of the procedure parameters in its body,
by the argument values;

∗ It sequentially evaluates the forms in the procedure body.

6.2.2.1 Main evaluator loop:

The evaluator application is preceded by deep replacement of all derived expressions by
their defining expressions.
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(define derive-eval

(lambda (exp)

(applicative-eval (derive exp))))

The input to the evaluator is either a syntactically legal kernel Scheme expression
(the evaluator does not check syntax correctness) or an evaluator value , i.e., an already
evaluated Scheme expression. The evaluator does not support the letrec special operator.
Therefore, the input expression cannot include inner recursive procedures.

; Type: [(<Scheme-exp> o "variable-value-substitution" ->

; (Evaluator-data-structure-value union Scheme-type)]

; Evaluator-value is a Scheme-type value, that is marked as a value and its

; content is any Scheme-type value, including Numbers, Booleans, Symbols, Pairs, Lists.

; Procedures (user or primnitive) are distinguished from other values.

; Note that the evaluator does not create closures of the underlying Scheme application.

; Pre-conditions: The given expression is legal according to the concrete syntax.

; No derived forms.

; Inner ’define’ expressions are not legal.

; Post-condition: If the input is an Evaluator-value, then output=input.

(define applicative-eval

(lambda (exp)

(cond ((atomic? exp) (eval-atomic exp)) ;Number or Boolean or Symbol or empty

((special-form? exp) (eval-special-form exp))

((evaluator-value? exp) exp)

((application? exp)

(let ((renamed-exp (rename exp)))

(apply-procedure (applicative-eval (operator renamed-exp))

(list-of-values (operands renamed-exp)))))

(else (error ’eval "unknown expression type: ~s" exp)))))

(define list-of-values

(lambda (exps)

(if (no-operands? exps)

(list)

(cons (applicative-eval (first-operand exps))

(list-of-values (rest-operands exps))))))

6.2.2.2 Evaluation of atomic expressions

The identifier of atomic expressions is defined in the ASP:

(define atomic?
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(lambda (exp)

(or (number? exp) (boolean? exp) (variable? exp) (null? exp))))

(define eval-atomic

(lambda (exp)

(if (not (variable? exp))

(make-value exp)

(lookup-variable-value exp))))

6.2.2.3 Evaluation of special forms

(define special-form?

(lambda (exp)

(or (quoted? exp) (lambda? exp) (definition? exp)

(if? exp) (begin? exp) ))) ; cond is taken as a derived operator

(define eval-special-form

(lambda (exp)

(cond ((quoted? exp) (make-value exp))

((lambda? exp) (eval-lambda exp))

((definition? exp) (eval-definition exp))

((if? exp) (eval-if exp))

((begin? exp) (eval-begin exp))

)))

lambda expressions:

(define eval-lambda

(lambda (exp)

(make-procedure (lambda-parameters exp)

(lambda-body exp))))

Definitions: No handling of procedure definitions – they are treated as derived expres-
sions.

(define eval-definition

(lambda (exp)

(add-binding!

(make-binding (definition-variable exp)

(applicative-eval (definition-value exp))) )

’ok))
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if expressions:

(define (eval-if exp)

(if (true? (applicative-eval (if-predicate exp)))

(applicative-eval (if-consequent exp))

(applicative-eval (if-alternative exp))))

sequence evaluation:

(define eval-begin

(lambda (exp)

(eval-sequence (begin-actions exp))))

(define eval-sequence

(lambda (exps)

(let ((vals (map (lambda(e) (applicative-eval e))

exps)))

(last vals))

))

Auxiliary procedures:

(define true?

(lambda (x)

(not (false? x))))

(define false?

(lambda (x)

(or (eq? x #f) (equal? x ’(value #f)))))

6.2.2.4 Value identification

(define evaluator-value?

(lambda (val) (or (value? val)

(primitive-procedure? val) (compound-procedure? val))))

6.2.2.5 Evaluation of applications

apply-procedure evaluates a form (a non-special combination). Its arguments are an
Evaluator-procedure, i.e., a tagged procedure value that is created by the evaluator, and
already evaluated arguments (the applicative-eval procedure first evaluates the argu-
ments and then calls apply procedure). The argument values are either atomic (numbers
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or booleans) or tagged evaluator values. If the procedure is not primitive, apply-procedure
carries out the substitute-reduce steps of the applicative-eval algorithm.

; Type: [Evaluator-procedure*LIST -> Evaluator-value union Scheme-type]

(define apply-procedure

(lambda (procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))

((compound-procedure? procedure)

(let ((parameters (procedure-parameters procedure))

(body (rename (procedure-body procedure))))

(eval-sequence

(substitute body parameters arguments))))

(else (error ’apply "Unknown procedure type: ~s" procedure)))))

Primitive procedure application: Primitive procedures are tagged data values used
by the evaluator. Therefore, their implementations must be retrieved prior to application
(using the selector primitive-implementation). The arguments are values, evaluated by
applicative-eval. Therefore, the arguments are values of the interpreter, i.e., tagged
data values – for values, primitive procedures and closures. The primitive procedure imple-
mentation should receive only the value-content . The result of the application should be
wrapped as an evaluator value.

; Type: [Evaluator-primitive-procedure*LIST -> Evaluator-value]

; Retrieve the primitive implementation, retrieve content of the evaluator value

; arguments, apply and create a new evaluator value.

(define apply-primitive-procedure

(lambda (proc args)

(make-value

(apply (primitive-implementation proc)

(map (lambda (arg)

(cond ((evaluator-value? arg) (value-content arg))

((primitive-procedure? arg) (primitive-implementation arg))

((compound-procedure? arg)

(error ’apply-primitive-procedure

"primitive-appliled-to-evaluator-procedure: ~s" arg))

(else arg)))

args)))

))

apply is a Scheme primitive procedure that applies a procedure on its arguments:
(apply f e1 ... en) ==> (f e1 ... en).
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Its type is: [[T1*...*Tn –> T]*LIST –> T]. For a procedure of n parameters, the list
argument must be of length n, with corresponding types.
Problem with applying high order primitive procedures: The applicative-eval

evaluator cannot apply high order Scheme primitive procedures like map, apply. The reason
is that such primitives expect a closure as an argument. But in order to create a Scheme
closure for a given lambda expression, applicative-eval has to explicitly call Scheme to
evaluate the given expression. Since applicative-eval is implemented in Scheme, it means
that the Scheme interpreter has to open a new Scheme interpreter process. Things would
have been different, if Scheme would have provided a primitive for closure creation. But,
since lambda, the value constructor of procedures is a special operator, Scheme does not
enables us to retrieve its implementation, and therefore we cannot intentionally apply it to
given parameters and body.

6.2.2.6 Substitution and renaming

Substitution: The substitute procedure substitutes free variable occurrences in an ex-
pression by given values. The expression can be either a Scheme expression or a Scheme
value. substitute is preceded by renaming, and therefore, the substituted variables do not
occur as bound in the given expression (all bound variables are already renamed).

The substitute operation is part of the Substitution ADT. It is the same procedure as
the one used in the type inference system for the equations method, only adapted to the
case of Scheme expressions and Scheme values.

;Signature: substitute(expr,variables,values)

; Purpose: Consistent replacement of all FREE occurrences of the substitution

; variables in ’expr’ by the values of the substitution, respectively.

; ’expr’ is a Scheme expression or an Evaluator value.

;Type: Client view: [Scheme-expression*List(Variable)*List(Evaluator-value) ->

; Scheme-expression o "variable-value-substitution]

;Example: (substitute

; ’(lambda (x2)(+ x2 y)) ’(x y z) ’(3 4 (lambda (x1)(+ x1 1))))

; ==> (lambda (x2)(+ x2 4))

; Pre-conditions: (1) substitution is not performed on ’define’ or ’let’

; expressions or on expressions containing such sub-expressions.

; (2) ’expr’ is already renamed. Therefore, the substitution

; variables have no bound occurrences in expr.

(define substitute

(lambda (expr variables values)

(if (evaluator-value? expr)

(substitution-application-to-value (make-sub variables values) expr)

(substitution-application-to-expr (make-sub variables values) expr))

))
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(define substitution-application-to-expr

(lambda (sub expr)

(cond ((empty-sub? sub) expr)

((or (number? expr) (boolean? expr) (quoted? expr)) expr)

(else (let ((vars (get-variables sub))

(values (get-values sub)))

(cond ((variable? expr)

(if (member expr vars)

(get-value-of-variable sub expr)

expr))

(else

; expression is a list of expressions, lambda, application, cond.

(map (lambda (e)

(substitute e vars values))

expr))))))

))

(define substitution-application-to-value

(lambda (sub val-expr)

(let ((vars (get-variables sub))

(values (get-values sub)))

(cond ((primitive-procedure? val-expr) val-expr)

((value? val-expr)

(if (atomic? (value-content val-expr))

val-expr

(make-value (map (lambda (e) (substitute e vars values))

(value-content val-expr)))))

((compound-procedure? val-expr)

(make-procedure (procedure-parameters val-expr)

(map (lambda (e) (substitute e vars values))

(procedure-body val-expr))))))

))

Renaming: rename performs consistent renaming of bound variables.

Signature: rename(exp)

Purpose: Consistently rename bound variables in ’exp’.

Type: [(<Scheme-exp> union Evaluator-value) -> (<Scheme-exp> union Evaluator-value)]

(define rename

(letrec ((make-new-names
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(lambda (old-names)

(if (null? old-names)

(list)

(cons (gensym) (make-new-names (cdr old-names))))))

(replace

(lambda (val-exp)

(cond ((primitive-procedure? val-exp) val-exp)

((value? val-exp)

(if (atomic? (value-content val-exp))

val-exp

(make-value (map rename (value-content val-exp)))))

((compound-procedure? val-exp)

(let* ((params (procedure-parameters val-exp))

(new-params (make-new-names params))

(renamed-subs-body (map rename

(procedure-body val-exp)))

(renamed-body

(substitute renamed-subs-body params new-params)))

(make-procedure new-params renamed-body))))

)))

(lambda (exp)

(cond ((atomic? exp) exp)

((lambda? exp)

(let* ((params (lambda-parameters exp))

(new-params (make-new-names params))

(renamed-subs (map rename exp)))

(substitute renamed-subs params new-params)) )

;Replace free occurrences

((evaluator-value? exp) (replace exp))

(else (map rename exp))

))

))

6.3 The Environment Based Operational Semantics

The major operations of a programming language evaluator are the instantiation (concretiza-
tion) of abstractions:

1. Procedure application – for procedure abstractions.

2. Class (type) instantiation – for data abstractions.
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In both cases, the interest of the evaluator is to minimize the instantiation overload.
That is, to maximize reuse among all instantiations of an abstraction object. For that
purpose, evaluators try to:

1. Separate the abstraction object from the concrete instantiation information;

2. Maximize the evaluation operation on the single abstraction object , and mini-
mize the evaluation operation in a concrete instantiation . That is, reuse a single
partially (maximally) evaluated abstraction object in all concrete instantiations!

For procedure abstraction it means that evaluators try to:

1. Separate the procedure from the concrete input arguments;

2. Maximize evaluation operation on the procedure object and minimize evaluation ac-
tions in every application.

In the substitution evaluator, procedure application involves the following operations:

1. Argument evaluation.

2. Renaming : Repeated in every procedure application.

3. Substitution : Repeated in every procedure application.

4. Reduction (requires syntax analysis).

The substitution operation applies the pairing of procedure parameters with the correspond-
ing arguments. Renaming is an annoying by product of substitution.
The problem: Substitution requires repeated analysis of procedure bodies. In every ap-
plication, the entire procedure body is repeatedly:

− Renamed

− Substituted

− Analyzed by the ASP (reduce)

The environment based operational semantics replaces substitution and renaming by a
data structure – environment – that is associated with every procedure application. The
environment is a finite mapping from variables (the parameters) to values (the argument
values). That is, actual substitution is replaced by information needed for substitution, but
is not applied (a lazy approach!).

− The environment based evaluator saves repeated renaming and substitution.

− The environment based compiler saves repeated syntax analysis of code.

We present an environment based evaluator env-eval that modifies the substitution
based evaluator applicative-eval. The modifications are:
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1. Data structures:

− The simple static global environment mapping is modified into a more complex
dynamic (run-time created) mapping structure, termed environment .

− The closure data structure is modified to carry an environment.

− env-eval processes pure syntactic expressions, since there is no substitution step.
There is clear distinction between syntactic expressions to their semantic values.
Therefore, there is no need to mark already evaluated expressions as values,
implying that the Value data structure is not needed. The evaluator computes
plain Scheme values.

2. Evaluation rules:

− Expressions are evaluated with respect to an environment (replaces the former
substitution). The environment plays the role of a context for the evaluation.

− The evaluation rule for procedure application is modified, so to replace substitu-
tion (and renaming) by environment creation.

6.3.1 Data Structures

6.3.1.1 The environment data structure

− Environment terminology:

1. An environment is a finite sequence of frames: ⟨f1, f2, . . . , fn⟩.

2. A frame is a substitution of variables by Scheme-type values. It is also called
symbol table . A variable-value pair in a frame is called binding .

3. Environments can overlap. An environment ⟨f1, f2, . . . , fn⟩ includes n embedded
environments: ⟨f1, f2, . . . , fn⟩, ⟨f2, . . . , fn⟩, . . . , ⟨fn⟩, ⟨⟩.
The empty sequence is called the empty environment .
The environment ⟨fi+1, fi+2, . . . , fn⟩ is the enclosing environment of the frame
fi in ⟨f1, f2, . . . , fn⟩, and fi extends the environment ⟨fi+1, fi+2, . . . , fn⟩.
Another form of environment overlapping is tail sharing , i.e., environments that
share their ancestor environment, as in ⟨k, f1, f2, . . . , fn⟩ and ⟨l, f1, f2, . . . , fn⟩.

− Variable value definitions:

1. The value of a variable x in a frame f is given by f(x).

2. The value of a variable x in an environment E is the value of x in the
first frame of E in which it is defined. If x is not defined in any frame of E it is
unbound in E.
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− Environment structure: Environments are dynamically created during computa-
tion: Every procedure application creates a new frame that acts as a replacement for
substitution. The environment structure that is created during computation is a tree
structure . The root of the environment structure is a single frame environment,
called the global environment . The global environment is the only environment
that statically exists, and provides the starting context for every computation. It
holds variable bindings that are defined on top level – using the define special opera-
tor. Environments created during computation can only extend existing environments
in the environment tree. Therefore, the global environment – the root – is the last
frame in every environment. When a computation ends, only the global environment,
and environments held by closures which are values of global variables, are left. All
other environments are gone.

Visual notation:

− Frames: We draw frames as bounding boxes, with bindings written within the boxes.

− Environments: We draw environments as box pointer diagrams of frames.

Figure 6.2: Visual representation of environments

Figure 6.2 shows 3 environments: A, B, C.

− Environment C is the global environment . It consists of a single frame (global)
labeled I.

− Environment A consists of the sequence of frames: II, I.

− Environment B consists of the sequence of frames: III, I.
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− The variables x, z are bound in frame II to 7 and 6, respectively.

− The variables x, y are bound in frame I to 3 and (1 2), respectively.

− The value of x with respect to A is 7, and with respect to B and to C is 3.

− The value of y with respect to A and to C is (1 2), and with respect to B it is 2.

− With respect to environment A, the binding of x to 7 in frame II is said to shadow
its binding to 3 in frame I.

Operations on environments and frames:

1. Environment operations:

Constructor:

Environment extension: Env*Frame -> Env

< f1, f2, ..., fn > ∗f = < f, f1, f2, ..., fn >

Selectors:

Find variable value: <Variable>*Env -> Scheme-type

E(x) = fi(x), where for 1 ≤ j < i, fj(x) is undefined

(= unbound)

First-frame: Env -> Frame

< f1, f2, ..., fn >1 = f1

Enclosing-environment: Env -> Env

< f1, f2, ..., fn >enclosing = < f2, ..., fn >

Operation:

Add a binding: Env*Binding -> Env

Pre-condition: f1(x)=unbound

< f1, f2, ..., fn > ∗ < x, val > = < f2, ..., fn > ∗(f1∗ < x, val >)

2. Frame operations:

Constructor: A frame is constructed from variable and value sequences:

(< var1, ..., varn > , < val1, ..., valn >) ⇒ [< var1, ..., varn > → < val1, ..., valn >]

Selector: Variable value in a frame:

f(x) or UNBOUND, if x is not defined in f.
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6.3.1.2 The closure data structure

A closure in the environment model is a pair of a procedure code, i.e., parameters and
body, and an environment. It is denoted <Closure parameters body, environment>. The
components of a closure cl are denoted clparameters, clbody, clenvironment.

6.3.2 The Environment Model Evaluation Algorithm

Signature: env-eval(e,env)

Purpose: Evaluate Scheme expressions using an Environment data structure

for holding parameter bindings in procedure applications..

Type: <Scheme-exp>*Env -> Scheme type

env-eval[e,env] =

I. atomic?(e):

1. number?(e) or boolean?(e): env-eval[e,env] = e.

2. variable?(e):

a. If env(e) is defined, env-eval[e,env] = env(e).

b. Otherwise: e must be a variable denoting a Primitive procedure:

env-eval[e,env] = built-in code for e.

II. composite?(e): e = (e0 e1 ... en) (n >= 0):

1. e0 is a Special Operator:

env-eval[e,env] is defined by the special evaluation rule of

e0 (see below).

2. a. Evaluate: Compute env-eval[ei,env] = ei’ for all ei.

b. primitive-procedure?(e0’):

env-eval[e,env] = system application e0’(e1’,...,en’)

c. procedure?(e0’): e0’ = <Closure (x1 ... xn) b1,...,bm, env’ >

i. Environment-extension:

new-env = env’ ○ [{x1, ..., xn} → {e1’,...,en’}]

ii. Reduce:

env-eval[b1,new-env],...,env-eval[bm−1,new-env]

env-eval[e,env] = env-eval[bm,new-env]

Special operator evaluation rules:

1. e = (define x e1):

GE = GE ○ <x,env-eval[e1,GE]>

2. e = (lambda (x1 x2 ... xn) b1 ... bm) at least one bi is required:

env-eval[e,env] = <Closure (x1,...,xn) (b1,...,bm), env)
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3. e = (quote e1):

env-eval[e,env] = e1

4. e = (cond (p1 e11 ... e1k1) ... (else en1 ... enkn))

If true?(env-eval[p1,env]) (!= #f in Scheme):

env-eval[e11,env],env-eval[e12,env],...

env-eval[e,env] = env-eval[e1k1,env]

otherwise, continue with p2 in the same way.

If for all pi-s env-eval[pi,env] = #f:

env-eval[en1,env],env-eval[en2,env],...

env-eval[e,env] = env-eval[enkn,env]

5. e = (if p con alt)

If true?(env-eval[p,env]):

then env-eval[e,env] = env-eval[con,env]

else env-eval[e,env] = env-eval[alt,env]

6. e = (begin e1,...,en)

env-eval[e1,env],...,env-eval[en−1,env].

env-eval[e,env] = env-eval[en,env].

Notes:

1. A new environment is created only when the computation reduces to the evaluation
of a closure body. Therefore, there is a 1:many correspondence between environments
and lexical scopes.

− An environment corresponds to a lexical scope (i.e., a procedure definition body).

− A lexical scope can correspond to multiple environments!

2. env-eval consults or modify the environment structure in the following steps:

(a) Creation of a compound procedure (closure): Evaluation of a lambda form (and
of a let form).

(b) Application of a compound procedure (closure) – the only way to add a frame
(also in the evaluation of a let form).

(c) Evaluation of define form – adds a binding to the global environment.

(d) Evaluation of a variable.

3. De-allocation of frames: Is not handled by the environment evaluator (left to the
storage-allocation strategy of an interpreter). When the evaluation of a procedure
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body is completed, if the new frame is not included within a value of some variable
of another environment, the new frame turns into garbage and disappears from the
environments structure.

6.3.2.1 Substitution model vs. environment model

It can be proved:
For scheme expressions in the functional programming paradigm (no destructive operations):

applicative-eval[e] = env-eval[e,GE].

The two evaluation algorithms differ in the application step II.2.c.

− The substitute-reduce steps in applicative-eval: Rename the procedure body and
the evaluated arguments, substitute the parameters by the evaluated arguments, and
evaluate the substituted body,

is replaced by

− the environment extension step in env-eval: Bind the parameters to the evaluated
arguments, extend the environment of the procedure, and evaluate the procedure body
with respect to this new environment.

The effect is that explicit substitution in applicative-eval is replaced by variable bindings
in an environment structure that tracks the scope structure in the code:

The environment structure in a computation of env-eval is always isomorphic to
the scope structure in the code. Therefore, the computations are equivalent.

Scheme applications are implemented using the environment model. This result enables us
to run functional Scheme code as if it runs under applicative-eval.

6.3.2.2 Environment structures

An environment diagram is a data structure (type) that is associated with a computation
of (or part of) env-eval. Its values carry the following data:

1. All environments constructed during the computation. Each environment is identified
by its (unique) name, and its serial number in the order of environment construction.
Usually, the names are E1, E2, ..., where the environment named Ei is the i-th in
the construction order. The global environment is named GE.

2. Each environment is associated with a lexical block in the evaluated code, and its
code.
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3. Each environment has a return control link and a return value . The return control
link points to the environment where computation continues, once the evaluation of
the code of the environment is over. The return value is the value of the evaluation of
the code of the environment.

Environment structures are visualized, using the visual notation of environments. This
notation is enriched with:

1. Environment names.

2. The lexical blocks of the environments (optional) and their codes. The global scope is
marked B0 and inner scopes are marked B1, B2, .... For example:

(define square (lambda(x) (* x x) B1)) B0

3. Return control links and return values. These links are marked with dashed arrows.
Each dashed arrow points to the name of the environment that the return control link
points to, and to the return value of the environment.

The dual structure of environments – Scoping and control: The tree structured
lexical scopes are reflected in the tree structure of frames in an environment diagram. The
sequential computation is reflected in the linear order of frames. Therefore, the environment
links – also called access links – create a tree structure, while the return control links
create a linear order.

Example 6.1.

env-eval[(define square (lambda(x)(* x x))),GE] ==>

GE(square) = env-eval[(lambda(x)(* x x)),GE]> =

= <Closure (x)(* x x),GE>

Lexical blocks: (define square (lambda(x) (* x x) B1)) B0

Evaluating this form with respect to the global environment includes evaluation of the
lambda form, and binding square to the created closure , in the global environment. The
resulting environment diagram is described in Figure 6.3. Note that the closure carries the
Global Environment.
Note: Since the Global Environment is static, and always corresponds to the global scope
B0, the B0 is usually omitted from the diagram.

Example 6.2. Continuing Example 6.1:

env-eval[(square 5), GE] ==>

env-eval[square, GE] ==> <Closure (x)(* x x), GE>

env-eval[5, GE] ==> 5
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Figure 6.3

Denote: E1 = GE * make-frame([x],[5])

env-eval[ (* x x), E1 ] ==>

env-eval[*, E1] ==> <Primitive procedure *>

env-eval[x, E1] ==> 5

env-eval[x, E1] ==> 5

25

The resulting environment diagram is described in Figure 6.4.

Figure 6.4

Example 6.3. Continuing Example 6.1, assume that the following definitions are already
evaluated (with respect to the Global Environment):

(define sum-of-squares

(lambda (x y)

(+ (square x) (square y))))
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(define f

(lambda (a)

(sum-of-squares (+ a 1) (* a 2))))

Lexical blocks:
(define sum-of-squares (lambda (x y) (+ (square x) (square y)) B2))

(define f (lambda (a) (sum-of-squares (+ a 1) (* a 2)) B3))

env-eval[(f 5), GE] ==>

env-eval[f, GE] ==>

<Closure (a) (sum-of-squares (+ a 1) (* a 2)), GE>

env-eval[5, GE] ==> 5

Denote: E1 = GE * make-frame([a],[5])

env-eval[ (sum-of-squares (+ a 1) (* a 2)), E1 ] ==>

env-eval[sun-of-squares, E1] ==>

<Closure (x y) (+ (square x) (square y)), GE>

env-eval[(+ a 1), E1] ==>* 6

env-eval[(* a 2), E1] ==>* 10

Denote: E2 = GE * make-frame([x,y],[6,10])

env-eval[ (+ (square x) (square y)), E2 ] ==>

env-eval[+, E2] ==> <Primitive procedure +>

env-eval[(square x), E2] ==>

env-eval[square, E2] ==> <Closure (x) (* x x), GE>

env-eval[x, E2] ==> 6

Denote: E3 = GE * make-frame([x],[6])

env-eval[(* x x), E3] ==>* 36

env-eval[(square y), E2] ==>

env-eval[square, E2] ==> <Closure (x) (* x x), GE>

env-eval[y, E2] ==> 10

Denote: E4 = GE * make-frame([x],[10])

env-eval[(* x x), E4] ==>* 100

136

The resulting environment diagram is described in Figure 6.5.

Example 6.4. Assume that the definitions below are already evaluated. Lexical blocks are
marked on the definitions.

(define sum

(lambda (term a next b)

(if (> a b) 0 (+ (term a) (sum term (next a) next b))) B1))
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Figure 6.5

(define sum-integers (lambda (a b) (sum identity a add1 b) B2))

(define identity (lambda (x) x B3))

(define sum-cubes (lambda (a b) (sum cube a add1 b) B4))

(define cube (lambda (x) (* x x x) B5))

Describe the computation of the following expressions by an environment diagram:

(sum-cubes 3 5)

(sum-integers 2 4)

Example 6.5. Assume that the following definitions are already evaluated:

(define make-adder
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(lambda (increment)

(lambda (x) (+ x increment) B2) B1))

(define add3 (make-adder 3))

(define add4 (make-adder 4))

Describe the computation of the following expressions by an environment diagram:

(add3 4)

(add4 4)

Note that the closures denoted by add3 and add4 are created during computations with
respect to environments that correspond to lexical block B1. All applications of these
closures create environments that correspond to block B2.

In the substitution model the increment parameter would have been substituted by 3
and 4, respectively.

Example 6.6. Suppose that make-adder is not needed globally, and is needed only once,
for the definition of add3. Describe the computation of the following expressions by an
environment diagram:

(define add3

(let ((make-adder (lambda (increment)

(lambda (x) (+ x increment) B2) B1)) )

(make-adder 3) B3))

(add3 4)

Note that prior to the definition of add3, two anonymous closures, (lambda (make-adder)(make-adder

3)) and (lambda (increment)(lambda (x)(+ x increment))) are created, with respect
to the Global Environment. Then, the application of the first closure to the second creates
an environment that corresponds to lexical block B3. The evaluation of the expression of
block B3 creates another environment that corresponds to lexical block B1. The closure
denoted by add3 is created with respect to this last environment. All applications of add3

create environments that correspond to block B2.
The resulting environment diagram is described in Figure 6.6.

Example 6.7. Describe the computation of the following expressions by an environment
diagram:

(define member

(lambda (el lst)

(cond ((null? lst) (lst))
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Figure 6.6
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((eq? el (car lst)) lst)

(else (member el (cdr lst)))))

(member ’b (list ’a ’b ’c))

Note how all recursive calls to member are evaluated with respect to environments that
correspond to the single lexical block defined by member, while the return control links follow
the order of recursive calls. Indeed, since member is iterative, a tail recursive interpreter
would point the return control link directly to the initial calling environment.

Example 6.8. Try a curried version of member:

Suppose that there are several important known lists such as student-list, course-list,
to which multiple searches are applied. Then, it is reasonable to use a curried version,
that defers the element binding, but enables early binding to the searched list (partial
evaluation):

(define c_member

(lambda (lst)

(lambda (el)

(cond ((null? lst) (lst))

((eq? el (car lst)) lst)

(else

((c_member (cdr lst)) el)))

)))

(define search-student-list

(c_member (get-student-list) ))

(define search-course-list

(c_member (get-course-list) ))

Partial evaluation enables evaluation with respect to a known argument, yielding a single
definition and compilation of these procedures, used by all applications.
Describe the computation of several applications of search-student-list and of search-course-list
by an environment diagram. Note how all recursive calls are evaluated with respect to envi-
ronments that correspond to the lexical blocks defined by these procedures, while the return
control links follow the order of recursive calls.

6.3.3 Static (Lexical) and Dynamic Scoping Evaluation Policies

There are two approaches for interpreting variables in a program: Static (also called lexi-
cal) and dynamic. The static approach is now prevailing. The dynamic approach is taken
as a historical accident .

The main issue of static scoping is to provide a policy for distinguishing variables in
a program (as we tend to repeatedly use names). It is done by determining the correlation
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between a variable declaration (binding instance) and its occurrences , based on the
static code and not based on the computation order. That is, the declaration that binds
a variable occurrence can be determined based on the program text (scoping structure),
without any need for running the program. This property enables better compilation and
management tools. This is the scoping policy used in the substitution and in the environment
operational semantics.

In dynamic scoping , variable occurrences are bound by the most recent declarations
of that variable. Therefore, variable identifications depend on the history of the computation,
i.e., on dynamic runs of a program. In different runs, a variable occurrence can be bound
by different declarations, based on the computation.

The env-eval algorithm can be adapted into dynamic-env-eval, that operates under
the dynamic evaluation policy, by unifying the enclosing-environment and the return control
links. The modifications are:

1. A closure does not carry an environment (that corresponds to the lexical scope of the
definition).

If e = (lambda (x1 x2 ... xn) b1 ... bm):

dynamic-env-eval[e,env] = make-procedure((x1,...,xn),(b1,...,bm))

2. A closure application is evaluated with respect to its calling environment:

Step II.2.c of dynamic-env-eval[e, env]:

II. composite?(e): e = (e0 e1 ... en) (n >= 0):

1. e0 is a Special Operator:

env-eval[e,env] is defined by the special evaluation rule of

e0 (see below).

2. a. Evaluate: Compute env-eval[ei,env] = ei’ for all ei.

b. primitive-procedure?(e0’):

env-eval[e,env] = system application e0’(e1’,...,en’)

c. procedure?(e0’): e0’ = <Closure (x1 ... xn) b1,...,bm>

i. Environment-extension:

new-env = env ○ [{x1, ..., xn} → {e1’,...,en’}] (***)

ii. Reduce:

env-eval[b1,new-env],...,env-eval[bm−1,new-env]

env-eval[e,env] = env-eval[bm,new-env]

Note that in dynamic scoping evaluation, the tree-like environment structure disappears,
leaving only the sequential frames structure of the return-control-links. Lexical scope does
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not exist, and free variable occurrences in a procedure are bound by the most recent declara-
tions, depending on the computation history. That is, bindings of free variable occurrences
are determined by the calling scopes. Procedure calls that reside in different scopes, might
have different declarations that bind free occurrences. Clearly, this cannot be done at com-
pile time (because calling environments exist only at runtime), which is why this evaluation
policy is called dynamic scoping evaluation. The impact is that in dynamic evaluation free
variables are not used. All necessary scope information is passed as procedure parameters,
yielding long parameter sequences.

Example 6.9. Consider Example 6.6:

(define add3

(let ((make-adder (lambda (increment)

(lambda (x) (+ x increment) B2) B1)) )

(make-adder 3) B3))

(add3 4)

The computation according to the dynamic evaluation policy is described in the environment
diagram in Figure 6.7. Since the (add3 4) expression is evaluated with respect to the
Global Environment, the free valuable occurrence of increment in the definition of the add3
procedure has no corresponding declaration, and therefore the result of the computation is an
“unbound variable” error. Note that since under the dynamic evaluation policy environment
structure is useless, only the return-control-links stay.

We see that unlike the applicative and the normal order evaluation algorithms, the
static and the dynamic scoping evaluation algorithms yield different results. Therefore, a
programmer must know in advance the evaluation semantics.
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Figure 6.7
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Example 6.10.

> (define f

(lambda (x) (a x x)))

; ’x’ is bound by the parameter of ’f’, while ’a’ is bound by

; declarations in the global scope (the entire program)

> (define g

(lambda (a x) (f x)))

> (define a +)

; An ’a’ declaration in the global scope.

> (g * 3)

6

In lexical scoping, the a occurrence in the body of f is bound by the a declaration in the
global scope, whose value is the primitive procedure +. Every application of f is done with
respect to the global environment, and therefore, a is evaluated to <primitive +>. However,
in a dynamic scoping discipline, the a is evaluated with respect to the most recent frame
where it is defined – the first frame of g’s application, where it is bound to <primitive *>.
Therefore,
env-eval[(g * 3),GE] ==> 6

while
dynamic-env-eval[(g * 3),GE] ==> 9

Example 6.11.

Assume the definitions of Example 6.10.

> (let ( (a 3))

(f a))

6

env-eval[(let ((a 3)) (f a)),GE] ==> 6

while
dynamic-env-eval[(let ( (a 3)) (f a)),GE] ==> runtime error: 3 is not a procedure.

Example 6.12.

(define init 0)

(define 1+ (lambda(x)(+ x 1)))

(define f

(lambda (f1)

(let ((f2 (lambda () (f1 init))))

(let ((f1 1+)
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(init 1))

(f2) ))

))

Which is identical to:

(define f

(lambda (f1)

( (lambda (f2)

( (lambda (f1 init) (f2) )

1+ 1))

(lambda () (f1 init)))

))

Now evaluate:

> (f (lambda (x) (* x x)))

env-eval[(f (lambda (x) (* x x)))] ==> 0

dynamic-env-eval[(f (lambda (x) (* x x)))] ==> 2

Why?

Summary of the evaluation policies discussed so far:

1. The substitution model (applicative/normal) and the environment model implement
the static scoping approach;

(a) Applicative order and environment model – eager evaluation approach.

(b) Normal order – lazy evaluation approach.

2. (a) The (applicative) env-eval algorithm has a normal version (not presented). It
extends the applicative version, i.e., no contradiction.

(b) The applicative-eval and the env-eval are equivalent.

(c) All algorithms are equivalent on the intersection of their domains.

(d) Cost of the normal wider domain: Lower efficiency, and complexity of implemen-
tation of the normal policy.

3. The static-dynamic scoping policies: Contradicting results. The algorithm dynamic-env-eval

is not equivalent to the other 3 algorithms.

(a) The major drawback of the dynamic evaluation semantics is that programs cannot
use free variables, since it is not known to which declarations they will be bound
during computation. Indeed, in this discipline, procedures usually have long
parameter lists. Almost no modern language uses dynamic evaluation. Logo and
Emacs Lisp are some of the few languages that use dynamic evaluation.
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(b) The implementation of dynamic evaluation is simple. Indeed, traditional LISPs
used dynamic binding.

Conclusion: Programs can be indifferent to whether the operational semantics is one of
the applicative, normal or environment models. But, programs cannot be switched between
the above algorithms and the dynamic scoping policy.

6.4 A Meta-Circular Evaluator for the Environment Based
Operational Semantics

(Environment-evaluator package in the course site.)
Recall the meta-circular evaluator that implements the substitution model for functional

programming. It has the following packages:

1. Evaluation rules.

2. Abstract Syntax Parser (ASP) (for kernel and derived expressions).

3. Data structure package, for handling procedures and the Global environment.

The evaluator for the environment based operational semantics implements the env-eval
algorithm. Therefore, the main modification to the substitution model interpreter involves
the management of the data structures: Environment and Closure. The ASP package is the
same for all evaluators. We first present the evaluation rules package, and then the data
structures package.

6.4.1 Core Package: Evaluation Rules

The env-eval procedure takes an additional argument of type Env, which is consulted when
bindings are defined, and used when a closure is created or applied.

As in the substitution evaluator, there is a single environment that statically exist: The
global environment. It includes bindings to the built-in primitive procedures.

6.4.1.1 Main evaluator loop:

(SICP 4.1.1).
The core of the evaluator, as in the substitution model evaluator, consists of the env-eval

procedure, that implements the environment model env-eval algorithm. Evaluation is
preceded by deep replacement of derived expressions.

; Type: [<Scheme-exp> -> Scheme-type]

(define derive-eval

(lambda (exp)

(env-eval (derive exp) the-global-environment)))
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The input to the environment based evaluator is a syntactically legal Scheme expres-
sion (the evaluator does not check syntax correctness), and an environment value . The
evaluator does not support the letrec special operator. Therefore, the input expression
cannot include inner recursive procedures.

; Type: [<Scheme-exp>*Env -> Scheme-type]

; (Number, Boolean, Pair, List, Evaluator-procedure)

; Note that the evaluator does not create closures of the

; underlying Scheme application.

; Pre-conditions: The given expression is legal according to the concrete syntax.

; Inner ’define’ expressions are not legal.

(define env-eval

(lambda (exp env)

(cond ((atomic? exp) (eval-atomic exp env))

((special-form? exp) (eval-special-form exp env))

((application? exp)

(apply-procedure (env-eval (operator exp) env)

(list-of-values (operands exp) env)))

(else (error ’eval "unknown expression type: ~s" exp)))))

; Type: [LIST -> LIST]

(define list-of-values

(lambda (exps env)

(if (no-operands? exps)

’()

(cons (env-eval (first-operand exps) env)

(list-of-values (rest-operands exps) env)))))

6.4.1.2 Evaluation of atomic expressions

(define atomic?

(lambda (exp)

(or (number? exp) (boolean? exp) (variable? exp) (null? exp))))

(define eval-atomic

(lambda (exp env)

(if (or (number? exp) (boolean? exp) (null? exp))

exp

(lookup-variable-value env exp))))
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6.4.1.3 Evaluation of special forms

(define special-form?

(lambda (exp)

(or (quoted? exp) (lambda? exp) (definition? exp)

(if? exp) (begin? exp) ))) ; cond is taken as a derived operator

(define eval-special-form

(lambda (exp env)

(cond ((quoted? exp) (text-of-quotation exp))

((lambda? exp) (eval-lambda exp env))

((definition? exp)

(if (not (eq? env the-global-environment))

(error ’eval "non global definition: ~s" exp)

(eval-definition exp)))

((if? exp) (eval-if exp env))

((begin? exp) (eval-begin exp env))

)))

lambda expressions:

(define eval-lambda

(lambda (exp env)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env)))

Definition expressions: No handling of procedure definitions: They are treated as de-
rived expressions.

(define eval-definition

(lambda (exp)

(add-binding!

(make-binding (definition-variable exp)

(env-eval (definition-value exp)

the-global-environment)))

’ok))

if expressions:

(define eval-if

(lambda (exp env)
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(if (true? (env-eval (if-predicate exp) env))

(env-eval (if-consequent exp) env)

(env-eval (if-alternative exp) env))))

Sequence evaluation:

(define eval-begin

(lambda (exp env)

(eval-sequence (begin-actions exp) env)))

(define eval-sequence

(lambda (exps env)

(let ((vals (map (lambda (e)(env-eval e env)) exps)))

(last vals))))

Auxiliary procedures:

(define true?

(lambda (x) (not (eq? x #f))))

(define false?

(lambda (x) (eq? x #f)))

6.4.1.4 Evaluation of applications

apply-procedure evaluates a form (a non-special combination). Its arguments are an
Evaluator-procedure, i.e., a tagged procedure value that is created by the evaluator, and
already evaluated arguments (the env-eval procedure first evaluates the arguments and
then calls apply procedure). The argument values are either Scheme values (numbers,
booleans, pairs, lists, primitive procedure implementations) or tagged evaluator values of
procedures or of primitive procedures. If the procedure is not primitive, apply-procedure
carries out the environment-extension-reduce steps of the env-eval algorithm.

; Type: [Evaluator-procedure*LIST -> Scheme-type]

(define apply-procedure

(lambda (procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))

((compound-procedure? procedure)

(let* ((parameters (procedure-parameters procedure))

(body (procedure-body procedure))

(env (procedure-environment procedure))
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(new-env (extend-env (make-frame parameters arguments) env)))

(eval-sequence body new-env)))

(else (error ’apply "unknown procedure type: ~s" procedure)))))

Primitive procedure application: Primitive procedures are tagged data values used
by the evaluator. Therefore, their implementations must be retrieved prior to application
(using the selector primitive-implementation). The arguments are values, evaluated
by env-eval. Therefore, the arguments are either Scheme numbers, booleans, pairs, lists,
primitive procedure implementations, or tagged data values of procedures or of primitive
procedures.

; Type: [Evaluator-primitive-procedure*LIST -> Scheme-type]

; Purpose: Retrieve the primitive implementation, and apply to args.

(define apply-primitive-procedure

(lambda (proc args)

(apply (primitive-implementation proc) args)))

6.4.2 Data Structures Package

6.4.2.1 Procedure ADTs and their implementation

The environment based evaluator manages values for primitive procedure , and for user
procedure . User procedures are managed since the application mechanism must retrieve
their parameters, body and environment. Primitive procedures are managed as values since
the evaluator has to distinguish them from user procedures. For example, when evaluating
(car (list 1 2 3)), after the Evaluate step, the evaluator must identify whether the
value of car is a primitive implementation or a user procedure1.

Primitive procedure values: The ADT for primitive procedures is the same as in the
substitution evaluator.
The ADT:

1. Constructor make-primitive-procedure: Attaches a tag to an implemented code
argument.
Type: [T -> Primitive-procedure].

2. Identification predicate primitive-procedure?.
Type: [T –> Boolean].

3. Selector primitive-implementation: It retrieves the implemented code from a prim-
itive procedure value.
Type: [Primitive-procedure –> T].

1In the substitution evaluator there was also the problem of preventing repeated evaluations.
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Implementation of the Primitive-procedure ADT: Primitive procedures are repre-
sented as tagged values, using the tag primitive.

Type: [T --> LIST]

(define make-primitive-procedure

(lambda (proc)

(attach-tag (list proc) ’primitive)))

Type: [T -> Boolean]

(define primitive-procedure?

(lambda (proc)

(tagged-by? proc ’primitive)))

Type: [LIST -> T]

(define primitive-implementation

(lambda (proc)

(car (get-content proc))))

User procedure (closure) values: The tagged Procedure values of env-eval are sim-
ilar to those of applicative-eval. The only difference involves the environment compo-
nent, used both in construction and in selection.
The ADT:

1. make-procedure: Attaches a tag to a list of parameters and body.
Type: [LIST(Symbol)*LIST*Env –> Procedure]

2. Identification predicate compound-procedure?.
Type: [T –> Boolean]

3. Selector procedure-parameters.
Type: [Procedure –> LIST(Symbol)]

4. Selector procedure-body.
Type: [Procedure –> LIST]

5. Selector procedure-environment.
Type: [Procedure –> Env]

Implementation of the User-procedure ADT: User procedures (closures) are repre-
sented as tagged values, using the tag procedure.

Type: [LIST(Symbol)*LIST*Env -> LIST]

(define make-procedure

(lambda (parameters body env)
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(attach-tag (list parameters body env) ’procedure)))

Type: [T -> Boolean]

(define compound-procedure?

(lambda (p)

(tagged-by? p ’procedure)))

Type: [LIST -> LIST(Symbol)]

(define procedure-parameters

(lambda (p)

(car (get-content p))))

Type: [LIST -> LIST]

(define procedure-body

(lambda (p)

(cadr (get-content p))))

Type: [LIST -> Env]

(define procedure-environment

(lambda (p)

(caddr (get-content p))))

Type: [T -> Boolean]

Purpose: An identification predicate for procedures -- closures and primitive:

(define procedure?

(lambda (p)

(or (primitive-procedure? p) (compound-procedure? p))))

6.4.2.2 Environment related ADTs and their implementations:

The environment based operational semantics has a rich environment structure. Therefore,
the interface to environments includes three ADTs: Env, Frame, Binding. The Env ADT is
implemented on top of the Frame ADT, and both are implemented on top of the Binding
ADT. Frame is implemented on top of the Substitution ADT.

The Env ADT and its implementation:
The ADT:

1. make-the-global-environment(): Creates the single value that implements this ADT,
including Scheme primitive procedure bindings.
Type: [Void –> GE]
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2. extend-env(frame,base-env): Creates a new environment which is an extension of
base-env by frame.
Type: [Frame*Env –> Env]

3. lookup-variable-value(env,var): For a given variable var, returns the value of env
on var if defined, and signs an error otherwise.
Type: [Symbol*Env –> T]

4. first-frame(env): Retrieves the first frame.
Type: [Env –> Frame]

5. enclosing-env(env): Retrieves the enclosing environment.
Type: [Env –> Env]

6. empty-env?(env): checks whether env is empty.
Type: [Env –> Boolean]

7. add-binding!(binding): Adds a binding , i.e., a variable-value pair to the global
environment mapping. Note that add-binding is a mutator : It changes the global
environment mapping to include the new binding.
Type: [PAIR(Symbol,T) –> Void]

Implementation of the Env ADT: An environment is a sequence of frames, which are
substitutions of Scheme variables by Scheme values. Environments are implemented as lists
of frames. The end of the list is the-empty-environment.

The global environment requires mutation, in order to implement the effect of the define
special operator. Since the global environment is the last enclosing environment in every
environment, it means that every environment must allow changes in its frames
(actually only in its last non-empty frame). Therefore, The list of frames which implements
an environment must consist of mutable values. In DrRacket, mutable values are imple-
mented using the Box data structure, whose values are created using the constructor box,
retrieved using the selector unbox, and changed using the mutator set-box!.

;;; Global environment construction:

(define the-empty-environment ’())

; Type Client view: [Void -> GE]

; Supplier view: [Void -> LIST(Box(LIST)) union {empty}

(define make-the-global-environment

(lambda ()

(let* ((primitive-procedures

(list (list ’car car)

(list ’cdr cdr)
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(list ’cons cons)

(list ’null? null?)

(list ’+ +)

(list ’* *)

(list ’/ /)

(list ’> >)

(list ’< <)

(list ’- -)

(list ’= =)

(list ’list list)

(list ’box box)

(list ’unbox unbox)

(list ’set-box! set-box!)

;; more primitives

))

(prim-variables (map car primitive-procedures))

(prim-values (map (lambda (x) (make-primitive-procedure (cadr x)))

primitive-procedures))

(frame (make-frame prim-variables prim-values)))

(extend-env frame the-empty-environment))))

(define the-global-environment (make-the-global-environment))

;;; Environment operations:

; Environment constructor: ADT type is [Frame*Env -> Env]

; An environment is implemented as a list of boxed frames. The box is

; needed because the first frame, i.e., the global environment, is

; changed following a variable definition.

; Type: [[Symbol -> PAIR(Symbol,T) union {empty}]*

; LIST(Box([Symbol -> PAIR(Symbol,T) union {empty}])) ->

; LIST(Box([Symbol -> PAIR(Symbol,T) union {empty}]))]

(define extend-env

(lambda (frame base-env)

(cons (box frame) base-env)))

; Environment selectors

; Input type is an environment, i.e.,

; LIST(Box([Symbol -> PAIR(Symbol,T) union {empty}]))

(define enclosing-env (lambda (env) (cdr env)))

(define first-boxed-frame (lambda(env) (car env)))

(define first-frame (lambda(env) (unbox (first-boxed-frame env))))
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; Environment selector: ADT type is [Var*Env -> T]

; Purpose: If the environment is defined on the given variable, selects its value

; Type: Client view: [Env*Variable -> T]

; Supplier side: [LIST(Box(Frame))*Symbol -> T]

;Implementation: Uses the frame->lookup-variable-value getter of frames.

(define lookup-variable-value

(lambda (env var)

(letrec ((defined-in-env ; ADT type is [Var*Env -> Binding union {empty}]

(lambda (var env)

(if (empty-env? env)

(error ’lookup "variable not found: ~s\n env = ~s" var env)

(frame->lookup-variable-value

(first-frame env)

var

(lambda () (defined-in-env var (enclosing-env env))))))

))

(defined-in-env var env))

))

; Environment identification predicate

; Type: [T -> Boolean]

(define empty-env?

(lambda (env)

(eq? env the-empty-environment)))

; Global environment mutator: ADT type is [Binding -> Void]

; Type: [PAIR(Symbol,T) -> Void]

; Note: Mutation is enabled only for the global environment

(define add-binding!

(lambda (binding)

(let ((frame (first-frame the-global-environment)))

(set-box! (first-boxed-frame the-global-environment)

(extend-frame binding frame)))

))

Note the delicate handling of boxed frames: The (single) element of the-global-environment
is a boxed frame. Evaluation of a define expression requires changing the value that is
stored in this frame. As noted already for the substitution interpreter, the add-binding!

mutator turns the interpreter itself into a non-Function Programming application, since
it supports. changing the value (state) of the the-global-environment variable.
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The Frame ADT and its implementation:
The ADT:

1. make-frame(variables,values): Creates a new frame from the given variables and
values.
Type: [LIST(Symbol)*LIST –> Frame]

Pre-condition: number of variables = number of values

2. extend-frame: Creates a new frame that includes the new binding and all previous
bindings in the given frame.
Type: [Binding*Frame –> Frame]

3. frame->lookup-variable-value: Gets the value of a given variable, if defined. If
undefined, applies the given fail continuation.
Type: [Frame*Variable*Procedure -> T]

Implementation of the Frame ADT: A frame is implemented as a substitution from
Scheme variables to Scheme values:

; Frame constructor: A frame is a mapping from Scheme variables to Scheme values.

; Type: Client view: [[LIST(Symbol)*LIST -> Frame]

; Implementation: A substitution from Scheme variables to Scheme values.

; Precondition: All preconditions for corerct Frame implementation are already

; checked in the Sunstitution constructor.

(define make-frame

(lambda (variables values)

(make-sub variables values)

))

; Frame constructor:

; Purpose: Produces a new frame that extends the given frame with the new binding.

; Type: Client view: [Binding*Frame -> Frame]

(define extend-frame

(lambda (binding frame)

(let ((bvar (binding-variable binding))

(bval (binding-value binding)))

(extend-sub frame bvar bval))

))

;Frame getter:

; Purpose: Get the value of a given variable. If undefined, apply given fail continuation

; Type: Client view: [Frame*Variable*Procedure -> T]

(define frame->lookup-variable-value get-value-of-variable)
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;The substitution getter (lambda (sub var fail-cont) ...}

Side note: Alternatively, a frame (and a substitution) can be implemented as a lookup
procedure for a variable value, in the lists of variables and values that construct the frame:

(define make-frame

(lambda (variables values)

(letrec ((lookout

(lambda (vars vals)

(lambda (var)

(cond ((empty? vars) empty)

((eq? var (car vars)) (make-binding (car vars) (car vals)))

(else ((lookout (cdr vars) (cdr vals))

var)))))))

(lookout variables values))

))

The Binding ADT and its implementation:
The ADT:

1. make-binding(var,val): Creates a binding.
Type: [Symbol*T –> Binding]

2. Two selectors for the value and the value: binding-variable, binding-value, with
types [Binding –> Symbol] and [Binding –> T], respectively.

Implementation of the Binding ADT: Bindings are implemented as pairs.

Type: [Symbol*T --> PAIR(Symbol,T)]

(define make-binding

(lambda (var val)

(cons var val)))

Type: [PAIR(Symbol,T) -> Symbol]

(define binding-variable

(lambda (binding)

(car binding)))

Type: [PAIR(Symbol,T) -> T]

(define binding-value

(lambda (binding)

(cdr binding)))

309



Chapter 6 Principles of Programming Languages

6.5 A Meta-Circular Compiler for Functional Programming
(SICP 4.1.7)

The env-eval evaluator improves the applicative-eval, by replacing environment associa-
tion for renaming and substitution. Yet, it does not handle the repetition of code analysis in
every procedure application. The problem is that syntax analysis is mixed within evaluation.
There is no separation between:

− Static analysis, to

− Run time evaluation.

A major role of a compiler is static (compile time) syntax analysis, that is separated from
run time execution.

Consider a recursive procedure:

(define (factorial n)

(if (= n 1)

1

(* (factorial (- n 1)) n)))

Its application on a number n applies itself additional n-1 times. In each application the
procedure code is repeatedly analyzed. That is, eval-sequence is applied to factorial

body, just to find out that there is a single if expression. Then, the predicate of that if

expression is repeatedly retrieved, implying a repeated analysis of (= n 1). Then, again,
(* (factorial (- n 1)) n) is repeatedly analyzed, going through the case analysis in
env-eval over and over. In every application of factorial, its body is repeatedly retrieved
from the closure data structure.

Example 6.13. Trace the evaluator execution.

> (require-library "trace.ss")

> (trace eval)

(eval)

> (trace apply-procedure)

(apply-procedure)

*** No analysis of procedure (closure bodies): ***

> (eval

’(define (factorial n)

(if (= n 1)

1

(* (factorial (- n 1)) n))) )
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|(eval (define (factorial n) (if (= n 1) 1

(* (factorial (- n 1)) n)))

(((false true car cdr cons null? = * -)

#f

#t

(primitive #<primitive:car>)

(primitive #<primitive:cdr>)

(primitive #<primitive:cons>)

(primitive #<primitive:null?>)

(primitive #<primitive:=>)

(primitive #<primitive:*>)

(primitive #<primitive:->))))

| (eval (lambda (n) (if (= n 1) 1 (* (factorial (- n 1)) n)))

<<the-global-environment>>)

| (procedure

(n)

((if (= n 1) 1 (* (factorial (- n 1)) n)))

<<the-global-environment>>)

(factorial 3)

*** |(EVAL (FACTORIAL 3)

<<THE-GLOBAL-ENVIRONMENT>>)

| (eval factorial

<<the-global-environment>>)

| #1=(procedure

(n)

((if (= n 1) 1 (* (factorial (- n 1)) n)))

<<the-global-environment>>)

| (eval 3

<<the-global-environment>>)

| 3

*** | (apply-procedure #2=(procedure

(n)

((if (= n 1) 1 (* (factorial (- n 1)) n)))

<<the-global-environment>>))

(3))

*** | |(EVAL #3=(IF (= N 1) 1 (* (FACTORIAL (- N 1)) N))

((#6=(n) 3)

.

#8= <<the-global-environment>>))
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| | (eval #3=(= n 1)

((#6=(n) 3)

.

#8= <<the-global-environment>>))

| | |(eval =

((#4=(n) 3)

.

#6= <<the-global-environment>>))

| | |(primitive #<primitive:=>)

| | |(eval n

((#4=(n) 3)

.

#6= <<the-global-environment>>))

| | |3

| | |(eval 1

((#4=(n) 3)

.

#6= <<the-global-environment>>))

| | |1

| | |(apply-procedure (primitive #<primitive:=>) (3 1))

| | |#f

| | #f

| | (eval #3=(* (factorial (- n 1)) n)

((#6=(n) 3)

.

#8= <<the-global-environment>>))

| | |(eval *

((#4=(n) 3)

.

#6= <<the-global-environment>>))

| | |(primitive #<primitive:*>)

| | |(eval #3=(factorial (- n 1))

((#6=(n) 3)

.

#8= <<the-global-environment>>))

| | | (eval factorial

((#4=(n) 3)

.

#6= <<the-global-environment>>))

| | | #1=(procedure

(n)
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((if (= n 1) 1 (* (factorial (- n 1)) n)))

<<the-global-environment>>)

| | | (eval #3=(- n 1)

((#6=(n) 3)

.

#8= <<the-global-environment>>))

| | | |(eval -

((#4=(n) 3)

.

#6= <<the-global-environment>>))

| | | |(primitive #<primitive:->)

| | | |(eval n

((#4=(n) 3)

.

#6= <<the-global-environment>>))

| | | |3

| | | |(eval 1

((#4=(n) 3)

.

#6= <<the-global-environment>>))

| | | |1

| | | |(apply-procedure (primitive #<primitive:->) (3 1))

| | | |2

| | | 2

*** | | | (apply-procedure #2=(procedure

(n)

((if (= n 1) 1 (* (factorial (- n 1)) n)))

<<the-global-environment>>)

(2))

*** | | | |(EVAL #3=(IF (= N 1) 1 (* (FACTORIAL (- N 1)) N))

((#6=(N) 2)

.

#8= <<THE-GLOBAL-ENVIRONMENT>>))

| | | | (eval #3=(= n 1)

((#6=(n) 2)

.

#8= <<the-global-environment>>))

| | | | |(eval =

((#4=(n) 2)

.

#6= <<the-global-environment>>))
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| | | | |(primitive #<primitive:=>)

| | | | |(eval n

((#4=(n) 2)

.

#6= <<the-global-environment>>))

| | | | |2

| | | | |(eval 1

((#4=(n) 2)

.

#6= <<the-global-environment>>))

| | | | |1

| | | | |(apply-procedure (primitive #<primitive:=>) (2 1))

| | | | |#f

| | | | #f

| | | | (eval #3=(* (factorial (- n 1)) n)

((#6=(n) 2)

.

#8= <<the-global-environment>>))

| | | | |(eval *

((#4=(n) 2)

.

#6= <<the-global-environment>>))

| | | | |(primitive #<primitive:*>)

| | | | |(eval #3=(factorial (- n 1))

((#6=(n) 2)

.

#8= <<the-global-environment>>))

| | | | | (eval factorial

((#4=(n) 2)

.

#6= <<the-global-environment>>))

| | | | | #1=(procedure

(n)

((if (= n 1) 1 (* (factorial (- n 1)) n)))

<<the-global-environment>>)

| | | | | (eval #3=(- n 1)

((#6=(n) 2)

.

#8= <<the-global-environment>>))

| | | |[10](eval -

((#4=(n) 2)
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.

#6= <<the-global-environment>>))

| | | |[10](primitive #<primitive:->)

| | | |[10](eval n

((#4=(n) 2)

.

#6= <<the-global-environment>>))

| | | |[10]2

| | | |[10](eval 1

((#4=(n) 2)

.

#6= <<the-global-environment>>))

| | | |[10]1

| | | |[10](apply-procedure (primitive #<primitive:->) (2 1))

| | | |[10]1

| | | | | 1

*** | | | | | (apply #2=(procedure

(n)

((if (= n 1) 1 (* (factorial (- n 1)) n)))

<<the-global-environment>>))

(1))

*** | | | |[10](EVAL #3=(IF (= N 1) 1 (* (FACTORIAL (- N 1)) N))

((#6=(N) 1)

.

#8= <<THE-GLOBAL-ENVIRONMENT>>))

| | | |[11](eval #3=(= n 1)

((#6=(n) 1)

.

#8= <<the-global-environment>>))

| | | |[12](eval =

((#4=(n) 1)

.

#6= <<the-global-environment>>))

| | | |[12](primitive #<primitive:=>)

| | | |[12](eval n

((#4=(n) 1)

.

#6= <<the-global-environment>>))

| | | |[12]1

| | | |[12](eval 1

((#4=(n) 1)
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.

#6= <<the-global-environment>>))

| | | |[12]1

| | | |[12](apply-procedure (primitive #<primitive:=>) (1 1))

| | | |[12]#t

| | | |[11]#t

| | | |[11](eval 1

((#4=(n) 1)

.

#6= <<the-global-environment>>))

| | | |[11]1

| | | |[10]1

| | | | | 1

| | | | |1

| | | | |(eval n

((#4=(n) 2)

.

#6= <<the-global-environment>>))

| | | | |2

| | | | |(apply-procedure (primitive #<primitive:*>) (1 2))

| | | | |2

| | | | 2

| | | |2

| | | 2

| | |2

| | |(eval n

((#4=(n) 3)

.

#6= <<the-global-environment>>))

| | |3

| | |(apply (primitive #<primitive:*>) (2 3))

| | |6

| | 6

| |6

| 6

|6

The body of the factorial procedure was analyzed 4 times. Assume now that we compute

> (factorial 4)

24
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The code of factorial body is again analyzed 5 times. The problem:

env-eval performs code analysis and evaluation simultaneously, which leads to
major inefficiency due to repeated analysis.

Evaluation tools distinguish between

− Compile time (static time): Things performed before evaluation, to

− Run time (dynamic time): Things performed during evaluation.

Clearly: Compile time is less expensive than run time. Analyzing a procedure body
once, independently from its application, means compiling its code into something more
efficient/optimal, which is ready for evaluation. This way: The major syntactic analysis is
done just once!

6.5.1 The Analyzer

Recall that the environment evaluation model improves the substitution model by replac-
ing renaming and substitution in procedure application by environment generation (and
environment lookup for finding the not substituted value of a variable). The environment
model does not handle the problem of repeated analyses of procedure bodies. This is the
contribution of the analyzer: A single analysis in static time, for every procedure.

The analyzing env-eval improves env-eval by preparing a procedure that is ready for
execution , once an environment is given. It produces a true compilation product.

1. Input to the syntax analyzer: Expression in the analyzed language (Scheme).

2. Output of the syntax analyzer: A procedure of the target language (Scheme).

Analysis considerations:

1. Determine which parts of the env-eval work can be performed statically:

− Syntax analysis;

− Translation of the evaluation code that is produced by env-eval into an imple-
mentation code that is ready for evaluation, in the target language.

2. Determine which parts of the env-eval work cannot be performed statically – genera-
tion of data structure that implement evaluator values, and environment consultation:

− Environment construction.

− Variable lookup.

− Actual procedure construction, since it is environment dependent.
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Since all run-time dependent information is kept in the environments, the compile-time –
run-time separation can be obtained by performing abstraction on the environment :
The env-eval definition

(define env-eval

(lambda (exp env)

<body>))

turns into:

(define env-eval

(lambda (exp)

(lambda (env)

<analyzed-body>))

That is: analyze: <Scheme-exp> –> <Closure (env) ...> The analyzer env-eval can
be viewed as a Curried version of env-eval.

Therefore, the derive-analyze-eval is defined by:

; Type: [<Scheme-exp> -> [(Env -> Scheme-type)]]

(define (derive-analyze-eval exp)

((analyze (derive exp)) the-global-environment))

where, the analysis of exp and every sub-expression of exp is performed only once, and
creates already compiled Scheme procedures. When run time input is supplied (the env

argument), these procedures are applied and evaluation is completed.
analyze is a compiler that performs partial evaluation of the env-eval computation.

We can even separate analysis from evaluation by saving the compiled code:

> (define exp1 ’<some-Scheme-expression>)

> (define compiled-exp1 (analyze (derive exp1)))

> (compiled-exp1 the-global-environment)

Compiled-exp1 is a compiled program (a Scheme expression) that can be evaluated by
applying it to the-global-environment variable.

There are two principles for switching from env-eval code to a Curried analyze code.

1. Curry the env parameter.

2. Inductive application of analyze on all sub-expressions.

The Env-eval –> analyzer transformation is explained separately for every kind of Scheme
expressions.
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6.5.1.1 Atomic expressions:

In the env-eval:

(define eval-atomic

(lambda (exp env)

(if (or (number? exp) (boolean? exp) (null? exp))

exp

(lookup-variable-value env exp))))

Here we wish to strip the environment evaluation from the static analysis:

(define analyze-atomic

(lambda (exp)

(if (or (number? exp) (boolean? exp) (null? exp))

(lambda (env) exp)

(lambda (env) (lookup-variable-value env exp))

)))

Discussion: What is the difference between the above and:

(define analyze-atomic

(lambda (exp)

(lambda (env)

(if (or (number? exp) (boolean? exp) (null? exp))

exp

(lookup-variable-value exp env)

))))

Analyzing a variable expression produces a procedure that at run time needs to scan the
given environment. This is still – a run time excessive overhead. More optimal compilers
prepare at compile time code for construction of a symbol table , and replace the above run
time lookup by an instruction for direct access to the table.

6.5.1.2 Composite expressions:

Analysis of composite expressions requires inductive thinking. Before Currying, the analyzer
is applied to the sub-expressions! Therefore, there are two steps:

1. Apply syntax analysis to sub-expressions.

2. Curry.

In the env-eval:
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(define eval-special-form

(lambda (exp env)

(cond ((quoted? exp) (text-of-quotation exp))

((lambda? exp) (eval-lambda exp env))

((definition? exp)

(if (not (eq? env the-global-environment))

(error "Non global definition" exp)

(eval-definition exp)))

((if? exp) (eval-if exp env))

((begin? exp) (eval-begin exp env))

)))

In the syntax analyzer:

(define analyze-special-form

(lambda (exp)

(cond ((quoted? exp) (analyze-quoted exp))

((lambda? exp) (analyze-lambda exp))

((definition? exp) (analyze-definition exp))

((if? exp) (analyze-if exp))

((begin? exp) (analyze-begin exp)))

))

Quote expressions:

(define analyze-quoted

(lambda (exp)

(let ((text (text-of-quotation exp))) ; Inductive step

(lambda (env) text)))) ; Currying

Discussion: What is the difference between the above analyze-quoted and

(define analyze-quoted

(lambda (exp)

(lambda (env) (text-of-quotation exp))))

Lambda expressions: In the env-eval:

(define eval-lambda

(lambda (exp env)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env)))
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In the syntax analyzer:

(define analyze-lambda

(lambda (exp)

(let ((parameters (lambda-parameters exp))

(body (analyze-sequence (lambda-body exp))))

; Inductive step

(lambda (env) ; Currying

(make-procedure parameters body env))))

In analyzing a lambda expression, the body is analyzed only once! The body component
of a procedure (an already evaluated object) is a Scheme object (closure), not an expression.
In env-eval, the body of the computed procedures are texts – Scheme expressions.

Definition expressions: In the env-eval:

(define eval-definition

(lambda (exp)

(add-binding!

(make-binding (definition-variable exp)

(env-eval (definition-value exp)

the-global-environment)))

’ok))

In the syntax analyzer:

(define (analyze-definition

(lambda (exp)

(let ((var (definition-variable exp))

(val (analyze (definition-value exp)))) ; Inductive step

(lambda (env) ; Currying

(if (not (eq? env the-global-environment))

(error ’eval "non global definition: ~s" exp)

(begin

(add-binding! (make-binding var (val the-global-environment)))

’ok))))))

Note the redundant env parameter in the result procedure! Why?
Analyzing a definition still leaves the load of variable search to run-time, but saves

repeated analyses of the value.
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if expressions: In the env-eval:

(define eval-if

(lambda (exp env)

(if (true? (eval (if-predicate exp) env))

(eval (if-consequent exp) env)

(eval (if-alternative exp) env))))

In the syntax analyzer:

(define analyze-if

(lambda (exp) ; Inductive step

(let ((pred (analyze (if-predicate exp)))

(consequent (analyze (if-consequent exp)))

(alternative (analyze (if-alternative exp))))

(lambda (env) ; Currying

(if (true? (pred env))

(consequent env)

(alternative env))))))

Sequence expressions: In the env-eval:

(define eval-begin

(lambda (exp env)

(eval-sequence (begin-actions exp) env)))

In the syntax analyzer:

(define analyze-begin

(lambda (exp)

(let ((actions (analyze-sequence (begin-actions exp))))

(lambda (env) (actions env)))))

In the env-eval:

; Pre-condition: Sequence of expressions is not empty

(define eval-sequence

(lambda (exps env)

(let ((vals (map (lambda (e)(env-eval e env)) exps)))

(last vals))))

In the syntax analyzer:

322



Chapter 6 Principles of Programming Languages

; Pre-condition: Sequence of expressions is not empty

(define analyze-sequence

(lambda (exps)

(let ((procs (map analyze exps))) ; Inductive step

(lambda (env) ; Currying

(let ((vals (map (lambda (proc) (proc env)) procs)))

(last vals))))))

Application expressions: In the env-eval:

(define apply-procedure

(lambda (procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))

((compound-procedure? procedure)

(let* ((parameters (procedure-parameters procedure))

(body (procedure-body procedure))

(env (procedure-environment procedure))

(new-env (extend-env (make-frame parameters arguments) env)))

(eval-sequence body new-env)))

(else (error ’apply "unknown procedure type: ~s" procedure)))))

In the syntax analyzer:

(define analyze-application

(lambda (exp)

(let ((application-operator (analyze (operator exp)))

(application-operands (map analyze (operands exp))))

; Inductive step

(lambda (env)

(apply-procedure

(application-operator env)

(map (lambda (operand) (operand env))

application-operands))))))

The analysis of general application first extracts the operator and operands of the expres-
sion and analyzes them, resulting Curried Scheme procedures: Environment dependent exe-
cution procedures. At run time, these procedures are applied, resulting (hopefully) an eval-
uator procedure and its operands – Scheme values. These are passed to apply-procedure,
which is the equivalent of apply-procedure in env-eval.

; Type: [Analyzed-procedure*LIST -> Scheme-type]
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(define apply-procedure

(lambda (procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))

((compound-procedure? procedure)

(let* ((parameters (procedure-parameters procedure))

(body (procedure-body procedure))

(env (procedure-environment procedure))

(new-env (extend-env (make-frame parameters arguments) env)))

(body new-env)))

(else (error ’apply "unknown procedure type: ~s" procedure)))))

If the procedure argument is a compound procedure of the analyzer, then its body is already
analyzed, i.e., it is an Env-Curried Scheme closure (of the target Scheme language) that
expects a single env argument.
Note: No recursive calls for further analysis; just direct application of the already analyzed
closure on the newly constructed extended environment.

6.5.1.3 Main analyzer loop:

Modifying the evaluation execution does not touch the two auxiliary packages:

− Abstract Syntax Parser package.

− Data Structures package.

The evaluator of the analyzed code just applies the result of the syntax analyzer:

(define derive-analyze-eval

(lambda (exp)

((analyze (derive exp)) the-global-environment)))

The main load is put on the syntax analyzer. It performs the case analysis, and dispatches
to procedures that perform analysis alone. All auxiliary analysis procedures return env

Curried execution Scheme closures.

; Type: [<Scheme-exp> -> [(Env -> Scheme-type)]]

; (Number, Boolean, Pair, List, Evaluator-procedure)

; Pre-conditions: The given expression is legal according to the concrete syntax.

; Inner ’define’ expressions are not legal.

(define analyze

(lambda (exp)

(cond ((atomic? exp) (analyze-atomic exp))

((special-form? exp) (analyze-special-form exp))
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((application? exp) (analyze-application exp))

(else (error ’eval "unknown expression type: ~s" exp)))))

The full code of the analyzer is in the course site.

Example 6.14. (analyze 3) returns the Scheme closure: <Closure (env) 3>

> (analyze 3)

#<procedure> ;;; A procedure of the underlying Scheme.

> ((analyze 3) the-global-environment)

3

Example 6.15.

> (analyze ’car)

#<procedure> ;;; A procedure of the underlying scheme.

> ((analyze ’car) the-global-environment)

(primitive #<primitive:car>) ;;; An evaluator primitive procedure.

> (eq? car (cadr ((analyze ’car) the-global-environment)))

#t

> ((cadr ((analyze ’car) the-global-environment)) (cons 1 2))

1

Example 6.16.

> (analyze ’(quote (cons 1 2)))

#<procedure>;;; A procedure of the underlying Scheme.

> ((analyze ’(quote (cons 1 2))) the-global-environment)

(cons 1 2)

Example 6.17.

> (analyze ’(define three 3))

#<procedure>;;; A procedure of the underlying Scheme.

> ((analyze ’(define three 3)) the-global-environment)

ok

> ((analyze ’three) the-global-environment)

3

> (let ((an-three (analyze ’three) ))

(cons (an-three the-global-environment)

(an-three the-global-environment)))

(3 . 3)
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No repeated analysis for evaluating three.

Example 6.18.

> (analyze ’(cons 1 three))

#<procedure>;;; A procedure of the underlying Scheme.

> ((analyze ’(cons 1 three)) the-global-environment)

(1 . 3)

Example 6.19.

> (analyze ’(lambda (x) (cons x three)))

#<procedure>;;; A procedure of the underlying Scheme.

> ((analyze ’(lambda (x) (cons x three))) the-global-environment)

(procedure (x) #<procedure> <<the-global-environment>>)

Example 6.20.

> (analyze ’(if (= n 1) 1 (- n 1)))

#<procedure>;;; A procedure of the underlying Scheme.

> ((analyze ’(if (= n 1) 1 (- n 1))) the-global-environment)

Unbound variable n

Why???????

Example 6.21.

> (analyze ’(define (factorial n)

(if (= n 1)

1

(* (factorial (- n 1)) n))))

#<procedure>;;; A procedure of the underlying Scheme.

> ((analyze ’(define (factorial n)

(if (= n 1)

1

(* (factorial (- n 1)) n)))) the-global-environment)

ok

> ((analyze ’factorial) the-global-environment)

#0=(procedure (n) #<procedure> <<the-global-environment>>)

> (trace analyze)

> ((analyze ’(factorial 4)) the-global-environment)

|(analyze (factorial 4))

| (analyze factorial)
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| #<procedure>

| (analyze 4)

| #<procedure>

|#<procedure>

24

No repeated analysis for evaluating the recursive calls of factorial.

> (trace analyze)

(analyze)

> (derive-analyze-eval

’ (define (factorial n)

(if (= n 1)

1

(* (factorial (- n 1)) n))))

| (analyze (define (factorial n) (if (= n 1) 1

(* (factorial (- n 1)) n))))

| |(analyze (lambda (n) (if (= n 1) 1 (* (factorial (- n 1)) n))))

| | (analyze (if (= n 1) 1 (* (factorial (- n 1)) n)))

| | |(analyze (= n 1))

| | | (analyze =)

| | | #<procedure>

| | | (analyze n)

| | | #<procedure>

| | | (analyze 1)

| | | #<procedure>

| | |#<procedure>

| | |(analyze 1)

| | |#<procedure>

| | |(analyze (* (factorial (- n 1)) n))

| | | (analyze *)

| | | #<procedure>

| | | (analyze (factorial (- n 1)))

| | | |(analyze factorial)

| | | |#<procedure>

| | | |(analyze (- n 1))

| | | | (analyze -)

| | | | #<procedure>

| | | | (analyze n)

| | | | #<procedure>
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| | | | (analyze 1)

| | | | #<procedure>

| | | |#<procedure>

| | | #<procedure>

| | | (analyze n)

| | | #<procedure>

| | |#<procedure>

| | #<procedure>

| |#<procedure>

| #<procedure>

|ok

> (derive-analyze-eval ’(factorial 4))

|(eval (factorial 4) <<the-global-environment>>)

| (analyze (factorial 4))

| |(analyze factorial)

| |#<procedure>

| |(analyze 4)

| |#<procedure>

| #<procedure>

|24

> (derive-analyze-eval ’(factorial 3))

| (analyze (factorial 3))

| |(analyze factorial)

| |#<procedure>

| |(analyze 3)

| |#<procedure>

| #<procedure>

|6

328



Chapter 7

Logic Programming - in a Nutshell

Sources:

1. Sterling and Shapiro [11]: The Art of Prolog.

Topics:

1. Relational logic programming: Programs specify relations among entities.

2. Logic programming: Programs with data structures: Lists, binary trees, symbolic
expressions, natural numbers.

3. Meta tools: Backtracking optimization (cuts), unify, meta-circular interpreters.

4. Prolog and more advanced programming: Arithmetic, cuts, negation.

Introduction

The origin of Logic Programming is in constructive approaches in Automated Theorem
Proving, where logic proofs answer queries and construct instantiation to requested variables.
The idea behind logic programming suggests a switch in mode of thinking:

1. Structured logic formulas are viewed as relationship (procedure) specifications.

2. A query about logic implication is viewed as a relationship (procedure) call .

3. A constructive logic proof of a query is viewed as a query computation , dictated by
an operational semantics algorithm.

Logic programming, like functional languages (e.g., ML, Scheme), departs radically from
the mainstream of computer languages. Its operational semantics is not based on the Von-
Neumann machine model (like a Turing machine), but is derived from an abstract model
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of constructive logic proofs (resolution proofs). In comparison, the operational semantics of
functional languages is based on the Lambda-calculus reduction rules.

In the early 70s, Kowalski [7] observed that an axiom:

A if B1 and B2 ... and Bn

can be read as a procedure of a recursive programming language:

− A is the procedure head and the Bis are its body.

− An attempt to solve A is understood as its execution: To solve (execute) A, solve
(execute) B1 and B2 ... and Bn.

The Prolog (Programming in Logic) language was developed by Colmerauer and his
group, as a theorem prover, embodying the above procedural interpretation.

Prolog has developed beyond the original logic basis. Therefore, there is a distinction
between (pure) logic programming to full Prolog . The Prolog language includes prac-
tical programming constructs, like primitives for arithmetics, and meta-programming and
optimization constructs, that are beyond the pure logic operational semantics.

A programming language has three fundamental aspects:

1. Syntax - concrete and abstract grammars, that define correct (symbolic) combina-
tions.

2. Semantics - the "things" (values) computed by the programs of the language.

3. Operational semantics - an evaluation algorithm for computing the semantics of a
program.

For logic programs:

1. Syntax - a restricted subset of predicate calculus: A logic program is a set of formulas
(classified into rules and facts), defining known relationships in the problem domain.

2. Semantics - A set of answers to queries :

− A program is applied to (or triggered by) a goal (query) logic statement. The
goal might include variables .

− The semantics is a set of answers to goal queries. If a goal includes variables, the
answers provide substitutions (instantiations) for the variables in a query.

3. Operational semantics - Program execution is an attempt to prove a goal statement.

− The proof tries to instantiate the variables (provide values for the variables),
such that the goal becomes true.
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− A computation of a logic program is a deduction of consequences of the program.
It is triggered by a given goal.

− The operational semantics is the proof algorithm. It is based on two essential
mechanisms:

– Unification : The mechanism for parameter passing. A powerful pattern
matcher.

– Backtracking : The mechanism for searching for a proof.

4. Language characteristics:

− Logic programming has no primitives (apart from the polymorphic unification
operator =, and true).

− There are no types (since there are no primitives).

− Logic programming is based on unification: No value computation.

− Prolog extends pure logic programming with domain primitives (e.g., arithmetics)
and rich meta-level features. Prolog is dynamically typed (like Scheme).

Logic programming shows that a logic language can be turned into a pro-
gramming language , once it is assigned operational semantics.

7.1 Relational Logic Programming

Relational logic programming is a language of relations. It includes explicit relation speci-
fication, and rules for reasoning about relations. It is the source for the Logic Database
language Datalog .

7.1.1 Syntax Basics

1. Atomic symbols: Constant symbols and variable symbols.

(a) Constant symbols are:

− Individuals - describe specific entities, like computer_Science_Department,
israel, etc.

− Predicates - describe relations. Some relations are already built-in as lan-
guage primitives: =, true.

− Constant symbols start with lower case letters.

(b) Variable symbols start with upper case letters or with _. Example variables: X,

Y, _Foo, _. _ is anonymous variable.

(c) Individual constant symbols and variables are collectively called terms.
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2. The basic combination means in logic programming is the atomic formula . Atomic
formulas include the individual constant true, and formulas of the form:

predicate_symbol(term1, ..., termn)

Examples of atomic formulas:

(a) father(abraham, isaac) – In this atomic formula, father is a predicate symbol,
and abraham and isaac are individual symbols.

(b) father(Abraham, isaac) – Here, Abraham is a variable. Note that Father(Abraham,
isaac) is syntactically incorrect. Why?

3. Predicate symbols have arity - number of arguments. The arity of father in father(abraham,

isaac) is 2. Since predicate symbols can be overloaded with respect to arity, we de-
note the arity next to the predicate symbol. The above is father/2. There can be
father/3, father/1, etc.

4. Abstraction means: Procedures.

− Procedures are defined using facts and rules.

− The collection of facts and rules for a predicate p is considered as the definition
of p.

− Procedures are triggered using Queries .

7.1.2 Facts

The simplest statements are facts: A fact consists of a single atomic formula, followed by
“.”. Facts state relationships between entities. For example, the fact

father(abraham, isaac).

states that the binary relation father holds between the individual constants abraham and
isaac. More precisely, father is a predicate symbol, denoting a binary relation that holds
between the two individuals denoted by the constant symbols abraham and by isaac.

− A fact is a statement consisting of a single atomic formula: It is an assertion of an
atomic formula.

− The simplest fact is:

true.

It is a language primitive. true/0 is a zero-ary predicate. It cannot be redefined.
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Example 7.1. Following is a three relationship (procedure) program:

% Signature: parent(Parent, Child)/2

% Purpose: Parent is a parent of Child

parent(rina, moshe).

parent(rina, rachel).

parent(rachel, yossi).

parent(reuven, moshe).

% Signature: male(Person)/1

% Purpose: Person is a male.

male(moshe).

male(yossi).

male(reuven).

% Signature: female(Person)/1

% Purpose: Person is a female.

female(rina).

female(rachel).

A computation is triggered by posing a query to a program. A query has the syntax:

?- af1, af2, . . . , afn.

where the afi-s are atomic formulas, and n ≥ 1. It has the meaning: Assuming that the
program facts (and rules) hold, do af1 and af2 and ... afn hold as well. For example, the
query:

?- parent(rina, moshe).

means: "Is rina a parent of moshe?”. A computation is a proof of a query. For the above
query, the answer is:

true ;

fail.

That is, it is true and no more alternative answers.
Query: "Is there an X which is a child of rina?":

?- parent(rina,X).

X = moshe ;

X = rachel.
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The “;” stands for a request for additional answers. In this case, there are two options for sat-
isfying the query. We see that variables in queries are existentially quantified . That
is, the query “?- parent(rina,X).” stands for the logic formula ∃ X, parent(rina,X).

The constructive proof not only returns true, but finds the substitutions for which the
query holds. The proof searches the program by order of the facts. For each fact, the com-
putation tries to unify the query with the fact. If the unification succeeds, the resulting
substitution for the query variables is the answer (or true if there are no variables).

The main mechanism in computing answers to queries is unification , which is a gen-
eralization of the pattern matching operation of ML: Unify two expressions by applying a
consistent substitution to the variables in the expressions. The only restriction is that the
two expressions should not include shared variables.
Query: "Is there an X which is a parent of moshe?":

?- parent(X,moshe).

X = rina ;

X = reuven.

A complex query: "Is there an X which is a child of rina, and is also a parent of some
Y?":

?- parent(rina,X),parent(X,Y).

X = rachel,

Y = yossi.

A single answer is obtained. The first answer to “?- parent(rina,X).”, i.e., X = moshe

fails. The Prolog interpreter performs backtracking , i.e., goes backwards, and tries to find
another answer to the first query, following the rest of the facts, by order.
A complex query: "Find two parents of moshe?":

?- parent(X,moshe),parent(Y,moshe).

X = rina,

Y = rina ;

X = rina,

Y = reuven ;

X = reuven,

Y = rina ;

X = reuven,

Y = reuven.

A complex query: "Find two different parents of moshe?":

?- parent(X,moshe),parent(Y,moshe),X \= Y.

X = rina,

Y = reuven ;
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X = reuven,

Y = rina ;

fail.

Facts can include variables: Variables in facts are universally quantified . The
fact “loves(rina,X).“ stands for the logic formula ∀ X, loves(rina,X), that is, “rina loves
everyone”.

Example 7.2. A loves procedure:

% Signature: loves(Someone, Somebody)/2

% Purpose: Someone loves Somebody

loves(rina,Y). /* rina loves everybody. */

loves(moshe, rachel).

loves(moshe, rina).

loves(Y,Y). /* everybody loves himself (herself). */

Queries:

?- loves(rina,moshe).

true ;

fail.

?- loves(rina,X).

X = rina;

true .

?- loves(X,rina).

X = rina ;

X = moshe ;

X = rina.

?- loves(X,X).

X = rina ;

true.

The first query is answered as true, based on the first fact, where the fact variable Y

is substituted by moshe. There is no substitution to query variables, and no alternative
answers. The second query is also answered as true, based on the first fact. In this case,
the query variable X is substituted by the fact variable Y, but this is not reported by Prolog.
There is an alternative answer X=rina, based on the forth fact. The third query has three
answers, based on the first, third and forth facts, respectively. The forth query has two
answers, based on the first and the forth rules, respectively.
Note: Variables in facts are rare. Usually facts state relations among individual constant,
not general "life" facts.
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7.1.3 Rules

Rules are formulas that state conditioned relationships between entities. Their syntactical
form is:

H ∶ −B1, . . . ,Bn.

where H,B1, . . . ,Bn are atomic formulas. H is the rule head and B1, . . . ,Bn is the rule
body . The intended meaning is that if all atomic formulas in the rule body hold (when
presented as queries), then the head atomic formula is also true as a query. The symbol
“:-” stands for logic implication (directed from the body to the head, i.e., if body then

head), and the symbol “,” stands for logic and (conjunction).
For example, the rule

father(Dad, Child) :- parent(Dad, Child), male(Dad).

states that Dad(a variable) is a father of Child (variable) if Dad is a parent of Child and
is a male. The rule

mother(Mum, Child) :- parent(Mum, Child), female(Mum).

states that Mum (a variable) is a mother of a Child (variable) if Mum is a parent of Child

and is a female. In these rules:

− father(Dad, Child), mother(Mum, Child) are the rule heads.

− parent(Dad, Child), male(Dad) is the body of the first rule.

− The symbols Dad, Mum, Child are variables. They are universally quantified over the
rule.

Variable quantification in rules is the same as for facts: Variables occurring in rules
are universally quantified. The lexical scope of the quantification is the rule .
Variables in different rules are unrelated: Variables are bound only within a rule. Therefore,
variables in a rule can be consistently renamed . The father rule above, can be
equivalently written:

father(X, Y):- parent(X, Y), male(X).

Consider the following rule, defining a sibling relationship:

%Signature: sibling(Person1, Person2)/2

% Purpose: Person1 is a sibling of Person2.

sibling(X,Y) :- parent(P,X), parent(P,Y).
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The variable P appears only in the rule body. Such variables can be read as existentially
quantified over the rule body (simple logic rewrite of the universally quantified P). There-
fore, the above rule is read: For all X,Y, X is a sibling of Y if there exists a P which is a
parent of both X, Y.

A procedure is an ordered collection of rules and facts, sharing a single predicate and
arity for the rule heads, and the facts. The collection of rules and facts that make a single
procedure is conventionally written consecutively.

Example 7.3. An eight procedure program:

% Signature: parent(Parent, Child)/2

% Purpose: Parent is a parent of Child

parent(rina, moshe).

parent(rina, rachel).

parent(rachel, yossi).

parent(reuven, moshe).

% Signature: male(Person)/1

% Purpose: Person is a male.

male(moshe).

male(yossi).

male(reuven).

% Signature: female(Person)/1

% Purpose: Person is a female.

female(rina).

female(rachel).

% Signature: father(Dad, Child),

% Purpose: Dad is a father of Child

father(Dad, Child) :- parent(Dad, Child), male(Dad).

% Signature: mother(Mum, Child),

% Purpose: "Mum is a mother of Child

mother(Mum, Child) :- parent(Mum, Child), female(Mum).

% Signature: sibling(Person1, Person2)/2

% Purpose: Person1 is a sibling of Person2.

sibling(X,Y) :- parent(P,X), parent(P,Y).

% Signature: cousin(Person1, Person2)/2

% Purpose: Person1 is a cousin of Person2.
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cousin(X,Y) :- parent(PX,X), parent(PY,Y), sibling(PX,PY).

% Signature: grandmother(Person1, Person2)/2

% Purpose: Person1 is a grandmother of Person2.

grandmother(X,Y) :- mother(X,Z), parent(Z,Y).

Queries and answers:

?- father(D,C).

D = reuven,

C = moshe.

?- mother(M,C).

M = rina,

C = moshe ;

M = rina,

C = rachel ;

M = rachel,

C = yossi ;

fail.

Query: “Find a two kids mother” :

?- mother(M,C1),mother(M,C2).

M = rina,

C1 = moshe,

C2 = moshe ;

M = rina,

C1 = moshe,

C2 = rachel ;

M = rina,

C1 = rachel,

C2 = moshe ;

M = rina,

C1 = rachel,

C2 = rachel ;

M = rachel,

C1 = yossi,

C2 = yossi ;

fail.

Query: “Find a two different kids mother” :

?- mother(M,C1),mother(M,C2),C1\=C2.
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M = rina,

C1 = moshe,

C2 = rachel ;

M = rina,

C1 = rachel,

C2 = moshe ;

fail.

Query: “Find a grandmother of yossi” :

?- grandmother(G,yossi).

G = rina ;

fail.

In order to compute the ancestor relationship we need to insert a recursive rule that
computes the transitive closure of the parent relationships:

% Signature: ancestor(Ancestor, Descendant)/2

% Purpose: Ancestor is an ancestor of Descendant.

ancestor(Ancestor, Descendant) :- parent(Ancestor, Descendant).

ancestor(Ancestor, Descendant) :- parent(Ancestor, Person),

ancestor(Person, Descendant).

?- ancestor(rina,D).

D = moshe ;

D = rachel ;

D = yossi ;

fail.

?- ancestor(A,yossi).

A = rachel ;

A = rina ;

fail.

Let us try a different version of the recursive rule:

ancestor(Ancestor, Descendant) :- parent(Ancestor, Descendant).

ancestor(Ancestor, Descendant) :- ancestor(Person, Descendant),

parent(Ancestor, Person).

?- ancestor(A,yossi).

A = rachel ;

A = rina ;

ERROR: Out of local stack

?- ancestor(rina,D).
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D = moshe ;

D = rachel ;

D = yossi ;

ERROR: Out of local stack

?- ancestor(rina,yossi).

true ;

ERROR: Out of local stack

What happened? The recursive rule first introduces a new query for the same recursive
procedure ancestor. Since this query cannot be answered using the base case, new similar
queries are infinitely created. The first version of the ancestor procedure does not have this
problem since the recursive rule first introduces a base query parent(Ancestor, Person),
that enforces a concrete binding to the variables. Then the next query ancestor(Person,

Descendant), just checks that the variable values satisfy the ancestor procedure. If not,
backtracking is triggered and a different option for the first query is tried. The first version
of ancestor is called tail recursive . It is always recommended to write recursive rules in
a tail form.

Summary:

1. A rule is a conditional formula of the form “H :- B1,....,Qn.”. H is called the head
and B1,...,Bn the body of the rule. H, B1,...,Bn are atomic formulas (denote
relations).

2. The symbol ":-" stands for "if" and the symbol "," stands for "and".

3. The primitive predicate symbols true, = cannot be defined by rules (cannot appear
in rule heads). true is a primitive proposition, and = is the binary unification predicate.

4. A rule is a lexical scope : The variables in a rule are bound procedure variables
and therefore can be freely renamed.

− They are universally quantified (∀) over the entire rule.

− Variables that appear only in rule bodies can be considered as existentially quan-
tified (∃) over the rule body.

5. Variables in different rules reside in different lexical scopes.

6. Rules cannot be nested .

− Logic Programming does not support procedure nesting . Compare with the
power provided by procedure nesting in functional programming (Scheme, ML).
There is no way to define an auxiliary nested procedure (as usually needed in
iterative processes).
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− There is no notion of nested scopes.

− No notion of free variables : All variables are bound within a rule.

− The variables occurring in rule heads can be viewed as variable declarations.

7. The operation of consistently renaming the variables in a rule is called variable re-
naming . It is used every time a rule is applied (like renaming prior to substitution
in the substitution model operational semantics for functional programming - Scheme,
ML).

8. Programming conventions:

− Procedure definitions are singled out. All facts and rules for a predicate are
written as a contiguous block, separated from other procedure definitions.

− Every procedure definition is preceded with a contract , that includes, at least:
signature specification and purpose declaration .

Problem modeling in Relational Logic Programming (RLP): Logic Programming
languages express knowledge using predications (atomic formulas) and terms. Predications
represent relations in the problem domain, and terms represent entities in the problem
domain. Therefore, modeling issues involve decisions about the identity of entities and
relations. In RLP the entities are atomic elements, while in general, they can be complex.
In the above “family relationships” problems, the decision to model people using entities and
family relationships as relations, is the natural one. However, this is not always the case.

For example, in the domain of Components and Connectors, a problem consists of an-
swering (or computing answers to) queries about components that are interconnected by
connectors. This domain includes complex software systems whose components are interre-
lated and depend on each other in multiple manners, data-flow diagrams, digital circuits,
and more. All problems have associated visual drawing conventions, where components are
visualized using complex geometrical shapes and connectors are visualized using various
kinds of lines.

For modeling a Components and Connectors problem there are two possible approaches:

1. Take components as entities and connectors as relationships.

2. Take connectors as entities and components as relationships.

The decision is not straightforward, since both options seem reasonable. However, in general,
the second option is the better one, since while their is a wide variety of components that
characterize different relations among connectors, connectors are more uniform.
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7.1.4 Syntax

Concrete syntax of Relational Logic Programming: A program is a non empty set
of procedures, each consisting of an ordered set of rules and facts, having the same predicate
and arity.

<program> -> <procedure>+

<procedure -> (<rule> | <fact>)+ with identical predicate and arity

<rule> -> <head> ’: -’ <body>’.’

<fact> -> <head>’.’

<head> -> <atomic-formula>

<body> -> (<atomic-formula>’,’)* <atomic-formula>

<atomic-formula> -> <constant> | <predicate>’(’(<term>’,’)* <term>’)’

<predicate> -> <constant>

<term> -> <constant> | <variable>

<constant> -> A string starting with a lower case letter.

<variable> -> A string starting with an upper case letter.

<query> -> ’?-’ (<atomic-formula>’,’)* <atomic-formula> ’.’

Abstract syntax of Relational Logic Programming:

<program>:

Components: <procedure>

<procedure>:

Components: Rule: <rule>

Fact: <atomic-formula>

Overall amount of rules and facts: >=1. Ordered.

<rule>:

Components: Head: <atomic-formula>

Body: <atomic-formula> Amount: >=1. Ordered.

<atomic-formula>:

Kinds: <predication>, constant.

<predication>:

Components: Predicate: <constant>

Term: <term>. Amount: >=1. Ordered.

<term>:

Kinds: <constant>,<variable>

<constant>:

Kinds: Restricted sequences of letters, digits, punctuation marks,

starting with a lower case letter.

<variable>:

Kinds: Restricted sequences of letters, digits, punctuation marks,
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starting with an upper case letter.

<query>:

Components: Goal: <atomic-formula>. Amount: >=1. Ordered.

7.1.5 Operational Semantics

The operational semantics of logic programming is based on two mechanisms: Unification
and Search and backtracking .

7.1.5.1 Unification

Unification is the operation of identifying atomic formulas by substituting expressions for
variables. For example, the atomic formulas
p(3,X), p(Y,4) can be unified by the substitution: {X = 4, Y = 3}, and
p(X,3,X), p(Y,Z,4) can be unified by the substitution: {X = 4, Z = 3, Y = 4}.

Formal definition of unification:

Definition: A substitution s in logic programming involves logic variables as variables,
and logic terms as values, such that s(X) ≠ X. A pair ⟨X,s(X)⟩ is called a binding , and
written X = s(X).

For example,

− {X = 4, Z = 3, U =X}, {X = 4, Z = 3, U = V } are substitutions, while

− {X = 4, Z = 3, Y = Y }, or {X = 4, Z = 3,X = Y } are not substitutions.

Definition: The application of a substitution s to an atomic formula A, denoted A ○ s
(or just As) replaces the terms for their variables in A. The replacement is simultaneous.

For example,

− p(X,3,X,W ) ○ {X = 4, Y = 4} = p(4,3,4,W )

− p(X,3,X,W ) ○ {X = 4,W = 5} = p(4,3,4,5)

− p(X,3,X,W ) ○ {X =W,W =X} = p(W,3,W,X).

Definition: An atomic formula A′ is an instance of an atomic formula A, if there is a
substitution s such that A ○ s = A′. A is more general than A′, if A′ is an instance of A.

For example,

− p(X,3,X,W ) is more general than p(4,3,4,W ), which is more general than p(4,3,4,5).
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− p(X,3,X,W ) is more general than p(W,3,W,W ), which is more general than p(5,3,5,5).

− p(X,3,X,W ) is more general than p(W,3,W,X), which is more general than p(X,3,X,W ).

Definition: A unifier of atomic formulas A and B is a substitution s, such that A○s = B○s.

For example, the following substitutions are unifiers of p(X,3,X,W ) and p(Y,Z,4,W ):

− {X = 4, Z = 3, Y = 4}

− {X = 4, Z = 3, Y = 4,W = 5}

− {X = 4, Z = 3, Y = 4,W = 0}

Definition: A most general unifier (mgu) of atomic formulas A and B is a unifier s of
A and B, such that A ○ s = B ○ s is more general than all other instances of A and B that
are obtained by applying a unifier. That is, for every unifier s′ of A and B, there exists a
substitution s′′ such that A ○ s ○ s′′ = A ○ s′.
If A and B are unifiable they have an mgu (unique up to renaming).

For example, {X = 4, Z = 3, Y = 4} is an mgu of p(X,3,X,W ) and p(Y,Z,4,W ).

Definition: Combination of substitutions
The combination of substitutions s and s′, denoted s ○ s′, is defined by:

1. s′ is applied to the terms of s, i.e., for every variable X for which s(X) is defined,
occurrences of variables X ′ in s(X) are replaced by s′(X ′).

2. A variable X for which s(X) is defined, is removed from the domain of s′, i.e., s′(X)
is not defined on it any more.

3. The modified s′ is added to s.

4. Identity bindings, i.e., s(X) =X, are removed.

For example,
{X = Y,Z = 3, U = V } ○ {Y = 4,W = 5, V = U,Z =X} =

{X = 4, Z = 3, Y = 4,W = 5, V = U}.

Unification algorithms: The method introduced in Chapter 5 for solving type equations
is in fact a unification algorithm for any kind of expressions, that computes an mgu. Given
atomic formulas A,B, they can be unified by following this method steps:

1. Start with an empty substitution sub = {}, and an equation sequence that includes a
single equation equations = (A = B).
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2. Apply sub to the first equation in equations: Denote eq′
1
= equation1 ○ sub.

3. If one side in eq′
1

is a variable, and the other side is not the same variable, apply eq′
1

to sub, and combine the substitutions.

4. Atomic equation sides: If both sides in eq′
1

are atomic, then if both sides are the
same constant (or predicate) symbol, do nothing, and if the sides are different predicate
symbols: return FAIL.

5. Composite equation sides: If the predicate symbols and the number of arguments
are the same, then split the equation into equations of corresponding arguments, add
to equations, and repeat the unification process. Otherwise, return FAIL.

We present a different, more efficient unification algorithm that computes an mgu of
two atomic formulas, if they are unifiable. It is based on the notion of disagreement set of
atomic formulas.

Definition: The disagreement set of atomic formulas is the set of left most symbols on
which the formulas disagree , i.e., are different.

For example,

− disagreement-set(p(X,3,X,W ), p(Y,Z,4,W )) = {X,Y }.

− disagreement-set(p(5,3,X,W ), p(5,3,4,W )) = {X,4}.

A unification algorithm:
Signature: unify(A,B)
Type: [Atomic-formula*Atomic-formula -> Substitution or FAIL]
Post-condition: result =mgu(A,B) if A and B are unifiable or FAIL, otherwise

unify(A,B) =

let help(s) =

if A ○ s = B ○ s then s

else let D = disagreement-set(A ○ s, B ○ s)

in if D = {X, t} /* X is a variable; t is a term

then help(s ○ {X = t})

else FAIL

end

in help( {} )

end

Example 7.4.
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1. unify[ p(X, 3, X, W), p(Y, Y, Z, Z) ] ==>

help[ {} ] ==>

D = {X, Y}

help[ {X = Y} ] ==>

D = {Y, 3}

help[ {X = 3, Y= 3} ] ==>

D = {Z, 3} ]

help[ {X = 3, Y= 3, Z = 3} ] ==>

D = {W, 3}

help[ {X = 3, Y= 3, Z:= 3, W = 3} ] ==>

{X = 3, Y = 3, Z = 3, W = 3}

2. unify[ p(X, 3, X, 5), p(Y, Y, Z, Z) ] ==>

FAIL

Properties of this unification algorithm:

1. The algorithm terminates, because in every recursive call a variable is substituted, and
there is a finite number of variables.

2. The algorithm’s complexity is quadratic in the length of the input formulas (the exact
complexity depends on the implementation, whether it is incremental or not). In real
applications variables are not actually substituted. Instead, bindings are kept.

3. There are more efficient algorithms!

4. Pattern matching: Unification of atomic formulas where only one includes variables
(as in ML function application) is called pattern matching . In unify(A,B):

(a) If B does not include variables: The application B ○ s in the computation of
the disagreement set can be saved: No need to scan B.

(b) If, in addition, A does not include repeated variable occurrences (as in ML pat-
terns), the application A ○ s can be saved as well: No need to scan A. The
disagreement set can be found just by keeping parallel running pointers on the
two atomic formulas.

Therefore: If B does not include variables, and A does not include variable repeti-
tions, the complexity of the algorithm reduces to linear! This argument explains the
limitations that ML puts on patterns.

7.1.5.2 answer-query : An abstract interpreter for Logic Programming

Description of the computation: The computation of a Prolog program is triggered by
a query :
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Q = ?- G1, ..., Gn.

The query components are called goals. The interpreter tries all possible proofs for the
query, and computes a set of answers , i.e., substitutions to the variables in the query.
Each answer corresponds to a proof of the query . If the query cannot be proved, then
the set is the empty set .

Facts as rules: Facts are treated as rules, whose body is the single atomic formula true.
For example, the fact

r(baz,bar).

is written as the rule

r(baz,bar) :- true.

Goal and rule selection: Each proof is a repeated effort to prove:

− The selected goal .

− Using the selected rule .

If the selected rule does not lead to a proof, the next selected rule is tried. This is the
backtracking mechanism of the interpreter. If no rule leads to a proof, the computation
fails. Rule selection is performed by unification between the selected goal and the head of
the candidate rule. Therefore, the algorithm has two points of non deterministic choice :
The goal and the rule selections.

Selections of goals and rules are directed by a goal selection rule Gsel and a rule
selection rule Rsel.

1. Goal selection: Gsel is a selection function defined on tuples of goals. That is,
Gsel(G1, . . . ,Gn) = Gi, n ≥ 1, 1 ≤ i ≤ n, such that Gi ≠ true.

2. Rule selection: Rsel is a function that for a given goal and a program (a sequence
of rules) creates a sequence of all rule-substitution pairs such that:
Rsel(G,P ) = (⟨R,σ⟩)R∈P, G○σ=head(R)○σ. That is, for every rule R ∈ P , if R is A

:- B1, . . . ,Bn., n ≥ 1, and unify(A,G) = σ succeeds with the unifying substitution
(mgu) σ, then ⟨R,σ⟩ ∈ Rsel(G,P ).

Prolog solves this duplicate non-determinism by selecting

− Goal selection as the left most goal which is different from true. That is,
GselProlog(G1, . . . ,Gn) = G1, provided that G1 ≠ true.

− Rule selection by the procedure rule ordering . That is, for Prolog, if the rules in
P are ordered as R1, . . . ,Rn, then RselProlog(G,P ) = (⟨Ri1 , σi1⟩, . . . , ⟨Rim , σim⟩), such
that ij < ij+1, for 1 ≤ j ≤m.

347



Chapter 7 Principles of Programming Languages

The answer-query algorithm calls a proof-tree algorithm that builds a proof tree
and collects the answers from its leaves. The proof tree is a tree with labeled nodes and
edges. It is defined as follows:

1. The nodes are labeled by queries, with a marked goal in the query (the selected goal).

2. The edges are labeled by substitutions and rule numbers.

3. The root node is labeled by the input query and its selected goal.

4. The child nodes of a node labeled Q with a marked goal G represent all possible
successive queries, obtained by applying all possible rules to G. The child nodes are
ordered by the rule selection ordering (dictated by Rsel), where the left most child
corresponds to the first selected rule.

The Tree operations used in the proof-tree algorithm are:

1. Constructors:

− make_node(label): Creates a node labeled label.

− add_branch(tree, edge_label, branch): Adds branch as a right branch to the
root node of tree, with edge labeled by edge_label.

2. Selector: label(node) selects the label of node.

The answer-query algorithm:

Signature:
answer-query(Q,P,Gsel,Rsel)

Input:
A query: Q = ?- G1, . . . ,Gn., where Gi, i = 1..n is an atomic formula
A program P , with numbered rules (denoted by number(R))
A goal selection rule Gsel

A rule selection rule Rsel

Output: A set of substitutions for variables of Q (not necessarily for all variables).

Method:

1. answers = {})
2. PT := proof-tree(make_node(Q)). Answers are collected in the answers vari-

able.
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3. Return {s ∣ s ∈ answers/Q}
where answers/Q is the restriction of the substitutions in answers to the variables
of Q.

What are the possible answers of answer-query?

1. An empty set answer (no substitutions) marks a failure of the interpreter to find a
proof.

2. An answer with empty substitutions marks success proofs with no variables to substi-
tute (e.g., when the query is ground).

3. An answer with non-empty substitutions marks success proofs that require substitu-
tions to some (or all) query variables.

proof-tree :

Signature: proof-tree(node). node is a tree node with label query, which is a tuple of
atomic formulas, called goals.

Input: A tree node node

Output: A proof tree rooted in node.

Method:

if label(node) is ?- true, . . . , true.

then 1. Mark node as a Success node (leaf). A success backtracking point .

2. answers ∶= answers ∪ {s1 ○ s2 ○ . . . ○ sn}, where s1, . . . , sn are the substitution
labels of the path from the tree-root to node. Mark node with this substitution.

else 1. Goal selection: G = Gsel(label(node)). G ≠ true since Gsel does not select a
true goal.

2. Variables renaming: Rename variables in every rule and fact of P (justified
since all variables are universally quantified, i.e., bound).

3. Rule selection: rules = Rsel(G,P ) = (⟨R,σ⟩)R∈P, G○σ=head(R)○σ apply-rules(node,G, rules)

apply-rules:

Signature: apply-rules(node,G, rules)

Input: node is the root-node of a proof-tree, with label query, which is a tuple of atomic
formulas, called goals; G is an atomic formula (≠ true) included in query; rules is a
sequence of rule-substitution pairs (⟨R,σ⟩)R∈P, G○σ=head(R)○σ.
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Output: The proof tree rooted in node, extended with proof-trees created by the applica-
tion of the rules in rules to the selected goal G.

Method: Rule application: (reduce step)

if empty?(rules)

then output= node, i.e., the tree rooted at node. A failure backtracking point .

else assume that the first element in rules is ⟨R,σ⟩.

1. New query construction:
new_query = (replace(label(node),G, body(R)))○σ. That is, if label(node) =
G1, . . . ,Gn, n ≥ 1, G = Gi, and body(R) = B1, . . . ,Bm,m ≥ 1, then new_query =
(G1, . . . ,Gi−1,B1, . . . ,Bm,Gi+1, . . . ,Gn) ○ σ.

2. New query expansion:
add_branch(node, ⟨σ, number(R)⟩, proof-tree(make_node(new_query)), )

3. Application of other selected rules: apply-rules(node,G, tail(rules))

end

Comments:

1. In the rename step, the variables in the rules are renamed by new names. This way
the program variables in every binding step are different from previous steps. Since
variables in rules are bound procedure variables they can be freely renamed.
Renaming convention: In every recursive call, increase some auxiliary counter, such
that variables X, Y,... are renamed as X1, Y1,... at the first level, X2, Y2,... at
the second level, etc.

2. Advice for substitution in the rule selection step: Let unify produce a substitution to
the rule head variables, rather than to the goal variables. This way the query variables
are kept in the substitutions produced in a proof branch. Since the mgu is unique up
to renaming, the proof is indifferent to whether it includes varrule_head ∶= vargoal or
vargoal ∶= varrule_head.

3. The goal and rule selection decisions can affect the performance of the interpreter.

Example 7.5. The proof tree for the biblical family database:

% Signature: father(F,C)/2

father(abraham.isaac).

father(haran,lot).

father(haran,yiscah).

father(haran,milcah).
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Figure 7.1: The proof tree - a finite success tree

% Signature: male(P)/1

male(isaac).

male(lot).

% Signature: female(P)/1

female(milcah).

female(yiscah).

% Signature: son(C, P)/2

son(X, Y) - father(Y, X), male(X).

% Signature: daughter(C, P)/2

daughter(X, Y) - father(Y, X), female(X).

Query: "Find a son of haran":

?- son(S, haran).

Analysis of answer-query :

Paths in the proof tree:
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− A path from the root in the proof tree corresponds to a computation of answer-
query .

− A finite root-to-leaf path with a Success marked leaf is a successful computation
path . A tree with a successful computation path is a success tree . A successful
computation path corresponds to a successful computation of answer-query . The
answer of a successful path is its substitution label.
Definition: [Provable query ]
A query Q is provable from a program P , denoted P ⊢ Q, iff for some goal and rule
selection rules Gsel and Rsel, the proof tree algorithm for answer-query(Q,P,Gsel,Rsel)
computes a success tree .

− A finite root-to-leaf path with a non Success marked leaf is a finite-failure com-
putation path . A proof tree that all of its paths are failed computation paths is a
(finite) failure tree .

− An infinite computation path is an infinite path. Infinite computations can be
created by recursive rules (direct or indirect recursion).

Significant kinds of proof trees:

1. Finite success proof tree: A finite tree with a successful path.

2. (Finite) Failure proof tree: A finite tree with no successful path.

3. Infinite success proof tree: An infinite tree with a successful path. In this case it
is important not to explore an infinite path. For Prolog: Tail recursion is safe, while
left recursion is dangerous.

4. Infinite failure proof tree: An infinite tree with no successful path. Dangerous to
explore.

The proof tree in Example 7.5 is a finite success tree. The resulting substitution on
the successful computation path is: {X1=S, Y1=haran} ○ {S=lot}, which is the substitu-
tion {X1=lot, Y1=haran, S=lot}. The restriction to the query variables yields the single
substitution: {S=lot}.

Properties of answer-query :

1. Proof tree uniqueness: The proof tree for a given query and a given program is
unique, for all goal and rule selection procedures (up to sibling ordering).
Conclusion: The set of answers is independent of the concrete selection procedures
for goals and rules.
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2. Performance: Goal and rule selection decisions have impact on performance.

(a) The rules of a procedure should be ordered according to the rule selection pro-
cedure. Otherwise, the computation might get stuck in an infinite path, or try
multiple failed computation paths.

(b) The atomic formulas in a rule body should be ordered according to the goal
selection procedure.

3. Soundness and completeness:

− Definition: [logical implication]
A query Q is logically implied from a program P, denoted P ⊧ Q, if it is true
whenever the program is true.

− Completeness: P ⊧ Q implies P ⊢ Q. That is, if a query is logically implied
from a program, then it is also provable by answer-query .

− Soundness: P ⊢ Q implies P ⊧ Q. That is, if a query is provable by answer-
query , then it is logically implied from the program.

7.1.5.3 Properties of Relational Logic Programming

Decidability:

Proposition 7.1.1. Given a program P and a query Q, the problem "Is Q provable from
P", denoted P ⊢ Q, is decidable.

Proof. The proof tree consists of nodes that are labeled by queries, i.e., sequences of atomic
formulas. The atomic formulas consist of predicate and individual constant symbols that
occur in the program and the query, and from variables. Therefore, (1) the number of atomic
formulas is finite, up to variable renaming, and (2) the number of different selected goals in
queries on a path is finite (up to variable renaming). Consequently, every path in the proof
tree can be decided to be a success, a failure or an infinite computation path.

Note that all general purpose programming languages are only partially decidable (the
halting problem). Therefore, relational logic programming is less expressive than a general
purpose programming language.
Question: If relational logic programming is decidable, does it mean that all relational
logic programming proof trees are finite?

Types: Logic programming is typeless. That is, the semantics of the language does not
recognize the notion of types. The computed values are not clustered into types, and the
abstract interpreter algorithm cannot fail at run time due to type mismatch between proce-
dures and arguments.
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Comparison:
Logic programming: Typeless. No runtime errors due to non-well-typing.
Scheme: Dynamically typed. Syntax does not specify types. Run time errors.
ML: Statically typed. Type information inferred. No run time errors due to non-well-typing.

7.1.6 Relational logic programs and SQL operations

Relational logic programming is the basis for the DataLog language, which is a logic based
language for database processing. DataLog is relational logic programming + arithmetic +
negation + some database related restrictions. The operational semantics of DataLog is
defined in a different way (bottom up semantics).

DataLog is more expressive than SQL. The relational algebra operations: Union, Carte-
sian product, diff, projection, selection, and join can be implemented in relational logic
programming. Yet, recursive rules (like computing the transitive closure of a relation) can-
not be expressed in SQL (at least not in the traditional SQL).

Union:

r_union_s(X1, ..., Xn) :- r(X1, ..., Xn).

r_union_s(X1, ..., Xn) :- s(X1, ..., Xn).

Cartesian production:

r_X_s(X1, ..., Xn, Y1, ..., Ym) :- r(X1, ..., Xn ), s(Y1, ..., Ym).

Projection:

r1(X1, X3) :- r(X1, X2, X3).

Selection:

r1(X1,X2, X3) :- r(X1, X2, X3), X2 \= X3.

Natural Join:

r_join_s(X1, ..., Xn, X, Y1, ..., Ym) :-

r(X1, ..., Xn, X ), s(X, Y1, ..., Ym).

Intersection:

r_meets_s(X1, ..., Xn) :- r(X1, ..., Xn ), s(X1, ..., Xm).

Transitive closure of a binary relation r:

tr_r(X, Y) :- r(X, Y).

tr_r(X, Y) :- r(X, Z), tr_r(Z, Y).

For example, if r is the parent relation, then tr-parent is the ancestor relation.
Compare the SQL embedding in relational logic programming, with the SQL embedding in
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Scheme (as in the homework for Chapter 3).

7.2 Logic Programming

Logic programming adds an additional syntactic symbol - functor - that can represent
data structures, and is more expressive than relational logic programming. However, this
addition is not priceless:

1. The computation algorithm requires a more complex unification operation.

2. The language becomes partially decidable. That is, while the answer to a query
in relational logic programming can always be decided to be a success or a failure,
logic programming is partially decidable, like all other general purpose programming
languages.

3. Logic programming is still a typeless language: No runtime errors.

7.2.1 Syntax

The only difference between the syntax of Logic Programming and the syntax of Relational
Logic Programming is the addition of a new kind of a constant symbol: Functor (function
symbol). It enriches the set of terms so that they can describe structured data .

Definition: Terms in Logic Programming. The syntax of terms is more complicated,
and requires an inductive definition:

1. Basis: Individual constant symbols and variables are terms.

2. Inductive step: For terms t1, . . . , tn, and a functor f , f(t1, . . . , tn) is a term.

Example 7.6. Terms and atomic formulas in Logic Programming:

Terms:

− cons(a,[ ]) – describes the list [a]. [ ] is an individual constant, standing for the
empty list . The cons functor has a syntactic sugar notation as an infix operator |:
cons(a,[ ]) is written: [a|[ ]].

− cons(b,cons(a,[ ])) – the list [b,a], or [b|[a|[ ]]]. The syntax [b,a] uses the
printed form of lists in Prolog.

− cons(cons(a,[ ]), cons(b,cons(a,[ ]))) – the list [[a],[b,a]], or [[a|[ ]]|[b|[a,|[

]]]].

− time(monday,12,14)
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− street(alon,32)

− tree(Element,Left,Right) – a binary tree, with Element as the root, and Left and
Right as its sub-trees.

− tree(5,tree(8,void,void),tree(9,void,tree(3,void,void)))

Atomic formulas: The arguments to the predicate symbols in an atomic formula are terms:

− father(abraham,isaac)

− p(f(f(f(g(a,g(b,c))))))

− ancestor(mary,sister_of(friend_of(john)))

− append(cons(a,cons(b,[ ])),cons(c,cons(d,[ ])))

− cons(a,cons(b,cons(c,cons(d,[ ]))))

− append([a,b],[c,d],[a,b,c,d])

Notes:

1. Every functor has an arity : Number of arguments. In Example 7.6:

− The arity of cons is 2.

− The arity of sister_of is 1.

− The arity of time is 3.

− The arity of street is 2.

2. Functors can be nested : Terms might have unbound depth: f(f(f(g(a,g(b,c))))).

Therefore: The number of different atomic formulas that can be constructed from
a given set of predicate, functor and individual constant symbols is unbounded - in
contrast to the situation in Relational Logic Programming!

3. Predicate symbols cannot be nested :

− p(f(f(f(g(a,g(b,c)))))) – p is a predicate symbol, while f, g, are functors.

− ancestor(mary,sister_of(friend_of(john))) – ancestor is a predicate sym-
bol, and sister_of,friend_of are functors.

− course(ppl,time(monday,12,14),location(building34,201)) – course is a
predicate symbol, and time,location are functors.

− address(street(alon,32),shikun_M,tel_aviv,israel) – address is a predi-
cate symbol, and street,shikun_M are functors.
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4. The syntax of terms and of atomic formulas is identical. They differ in the position
(context) in statements:

− Terms are arguments to both terms and to predicates.

− Atomic formulas are the building blocks of rules and facts.

7.2.1.1 Formalizing the syntax extension

New concrete syntax rules:

<term> -> <constant> | <variable> | <composite-term>

<composite-term> -> <functor> ’(’ (<term>’,’)* <term>’)’

<functor> -> <constant>

New abstract syntax rules:

<term>:

Kinds: <constant>, <variable>, <composite-term>

<composite-term>:

Components: Functor: <constant>

Term: <term>. Amount: >=1. Ordered.

7.2.2 Operational semantics

The answer-query abstract interpreter, presented for Relational Logic Programming, ap-
plies to the Logic Programming as well. The only difference is that the unification algorithm
has to be extended to handle the richer term structure, which includes functors, and has an
unbounded depth.

7.2.2.1 Unification for terms that include functors (composite terms)

The presence of function symbols complicates the unification step in the abstract interpreter.
Recall that the rule selection procedure tries to unify a query goal (an atomic formula) with
the head of the selected rule (an atomic formula). The unification operation, if successful,
produces a substitution (most general unifier) for the variables in the atomic formulas.

The notion of substitution is modified as follows:

Definition: A substitution s is a finite mapping from variables to terms, such that s(X)
does not include X.

All other substitution and unification terminology stays unchanged.
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− unify(member(X,tree(X,Left,Right)) ,

member(Y,tree(9,void,tree(3,void,void))))

yields the mgu substitution: {Y:=9, X:=9, Left:=void, Right=tree(3,void,void)}

− unify(member(X, tree(9,void,tree(E1,L1,R1)) ,

member(Y,tree(Y,Z,tree(3,void,void))))

yields the mgu substitution: {Y:=9, X:=9, Z:=void, E1:=3, L1:=void, R1:=void}

− unify(t(X,f(a),X),t(g(U),U,W))

yields the mgu substitution: {X:=g(f(a)), U:=f(a), W:=g(f(a))}

− unify(t(X,f(X),X),t(g(U),U,W))

fails!

− unify(append([1,2,3],[3,4],List),

append([X|Xs],Ys,[X|Zs]))

yields the mgu substitution: {X:=1, Xs:=[2,3], Ys:=[3,4], List:=[1|Zs]}

− unify(append([1,2,3],[3,4],[3,3,4]),

append([X|Xs],Ys,[Xs|Zs]))

fails!

The unification algorithm presented for Relational Logic Programming applies also to
Logic Programming. The only difference appears in the kind of terms that populate the
disagreement sets that are computed, and an occur check restriction that prevents
infinite unification efforts.

1. Disagreement sets:

− disagreement-set(t(X,f(a),X),
t(g(U), U,W )) = {X,g(U)}

− disagreement-set(append([1,2,3], [3,4], List),
append([1∣Xs], Y s, [X ∣Zs])) = {[2,3],Xs}

− disagreement-set(append([1,2,3], [3,4], [3,3,4]),
append([1,2,3], [3,4], [[1,2]∣Zs])) = {3, [1,2]}
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2. Occur check:
disagreement-set(t(g(U), f(g(U)), g(U)),

t(g(U), U,W )) = {f(g(U)), U}
The disagreement set in the unify algorithm is used for constructing the mgu sub-
stitution, in case that one of its components is a variable. Otherwise, the unification
fails. But in case that the disagreement set includes a binding ⟨X,s(X)⟩, such that
s(X) includes X as in the above example, the mgu cannot be constructed, and the
unification fails.
Therefore, the unification algorithm is extended with the occur check constraint.

A unification algorithm:

Signature: unify(A,B)

Type: [Atomic-formula*Atomic-formula -> Substitution union FAIL]

Post-condition: result = mgu(A,B) if A and B are unifiable

or FAIL, otherwise

unify(A,B) =

let help(s) =

if A ○ s = B ○ s then s

else let D = disagreement-set(A ○ s, B ○ s)

in if [D = {X, t} and X does not occur in t]

/* The occur check constraint

then help(s ○ {X = t})

else FAIL

end

in help( {} )

end

Comparison of the logic programming unification with the ML pattern matching:

1. In ML patterns appear only in function definitions. Expressions in function calls are
first evaluated, and do not include variables when matched.

2. Patterns in ML do not allow repeated variables. Compare:

Logic programming ML

append([], Xs, XS). val rec append =

append([X|Xs], Ys, [X|Zs] :- fn ( [],lst ) => lst

append(X, Ys, Zs). | (h::tail, lst) =>

h::append(tail,lst)

member(X, [X|Xs). val rec member =
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member(X, [Y|Ys]) :- fn (el, []) => false

member(X, Ys). | (el, [h::tail] =>

el = h orelse member(el,tail)

3. ML restricts pattern matching to equality types. In logic programming, since there
is no evaluation, and comparison is by unification rather than equality, there are no
restrictions.

Expressivity and decidability of Logic Programming:

1. Logic Programming has the expressive power of Turing machines. That is, every com-
putable program can be written in Logic Programming. In particular, every Scheme
or ML program can be written in Prolog, and vice versa.

2. Logic Programming is only partially decidable - unlike Relational Logic Programming.
That is, the problem "Is Q provable from P", denoted P |- Q, is partially decidable.
The finiteness argument of Relational Logic Programming does not apply here since
in presence of functors, the number of different atomic formulas is unbounded (since
terms can be nested up to unbounded depth). Therefore, terminating proofs can have
an unbounded length.

7.2.3 Data Structures

7.2.3.1 Trees

1. Defining a tree

% Signature: binary_tree(T)/1

% Purpose: T is a binary tree.

binary_tree(void).

binary_tree(tree(Element,Left,Right)) :-

binary_tree(Left),binary_tree(Right).

2. Tree membership:

% Signature: tree_member(X, T)/2

% Purpose: X is a member of T.

tree_member(X, tree(X, _, _)).

tree_member(X, tree(Y,Left, _)):- tree_member(X,Left).

tree_member(X, tree(Y, _, Right)):- tree_member(X,Right).
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Note: X might be equal to Y in the second and third clauses. That means that different
proof paths provide repeated answers.

Queries:

?- tree_member(g(X),

tree(g(a),

tree(g(b), void, void),

tree(f(a), void, void))).

?- tree_member(a, Tree).

− Draw the proof trees.

− Are the trees finite? Infinite? Success? Failure?

− What are the answers?

7.2.3.2 Natural number arithmetic

Logic programming does not support values of any kind. Therefore, there is no arithmetic,
unless explicitly defined. Natural numbers can be represented by terms constructed from
the symbol 0 and the functor s, as follows:

0 - denotes zero
s(0)- denotes 1
s(...s(s(0))...), n times - denotes n

1. Definition of natural numbers:

% Signature: natural_number(N)/1

% Purpose: N is a natural number.

natural_number(0).

natural_number(s(X)) :- natural_number(X).

2. Natural number addition:

% Signature: Plus(X,Y,Z)/3

% Purpose: Z is the sum of X and Y.

plus(X, 0, X) :- natural_number(X).

plus(X, s(Y), s(Z)) :- plus(X, Y, Z).

?- plus(s(0), 0, s(0)). /* checks 1+0=1
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Yes.

?- plus(X, s(0), s(s(0)). /* checks X+1=2, e.g., minus

X=s(0).

?- plus(X, Y, s(s(0))). /* checks X+Y=2, e.g., all pairs of natural

numbers, whose sum equals 2

X=0, Y=s(s(0));

X=s(0), Y=s(0);

X=s(s(0)), Y=0.

3. Natural number binary relation - Less than or equal:

% Signature: le(X,Y)/2

% Purpose: X is less or equal Y.

le(0, X) :- natural_number(X).

le(s(X), s(Z)) :- le(X, Z).

4. Natural numbers multiplication:

% Signature: Times(X,Y,Z)/2

% Purpose: Z = X*Y

times(0, X, 0) :- natural_number(X).

times(s(X), Y, Z) :- times(X, Y, XY), plus(XY, Y, Z).

7.2.3.3 Lists

1. Syntax:
[ ] is the empty list .
[Head|Tail] is a syntactic sugar for cons(Head, Tail), where Tail is a list term.
Simple syntax for bounded length lists:
[a|[ ]] = [a]

[a|[ b|[ ]]] = [a,b]

[rina]

[sister_of(rina),moshe|[yossi,reuven]] = [sister_of(rina),moshe,yossi,reuven]

Defining a list:

list([]). /* defines the basis

list([X|Xs]) :- list(Xs). /* defines the recursion
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2. List membership:

% Signature: member(X, List)/2

% Purpose: X is a member of List.

member(X, [X|Xs]).

member(X, [Y|Ys]) :- member(X, Ys).

?- member(a, [b,c,a,d]). /* checks membership

?- member(X, [b,c,a,d]). /* takes an element from a list

?- member(b, Z). /* generates a list containing b

3. List concatenation:

% Signature: append(List1, List2, List3)/3

% Purpose: List3 is the concatenation of List1 and List2.

append([], Xs, Xs).

append([X|Xs], Y, [X|Zs] ) :- append(Xs, Y, Zs).

?- append([a,b], [c], X). /* addition of two lists

?- append(Xs, [a,d], [b,c,a,d]). /* finds a difference between lists

?- append(Xs, Ys, [a,b,c,d]). /* divides a list into two lists

4. List selection using append:

(a) List prefix and suffix:

prefix(Xs, Ys) :- append(Xs, Zs, Ys).

suffix(Xs, Ys) :- append(Zs, Xs, Ys).

Compare the power of this one step unification with the equivalent Scheme code,
that requires "climbing" the list until the prefix is found, and "guessing" the
suffix.

(b) Redefine member:

member(X, Ys) :- append(Zs, [X|Xs], Ys).

(c) Adjacent list elements:

adjacent(X, Y, Zs) :- append(Ws, [X,Y|Ys], Zs).
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(d) Last element of a list:

last(X, Ys) :- append(Xs, [X], Ys).

5. List Reverse:

(a) A recursive version:

% Signature: reverse(List1, List2)/2

% Purpose: List2 is the reverse of List1.

reverse([], []).

reverse([H|T], R) :- reverse(T, S), append(S, [H], R).

?- reverse([a,b,c,d],R).

R=[d,c,b,a]

But, what about:

?- reverse(R,[a,b,c,d]).

Starting to build the proof tree, we see that the second query is
?- reverse(T1,S1), append(S1, [H1], [a,b,c,d]).

This query fails on the first rule, and needs the second. The second rule is applied
four times, until four elements are unified with the four elements of the input list.
We can try reversing the rule body:

reverse([H|T], R) :- append(S, [H], R), reverse(T, S).

The new version gives a good performance on the last direction, but poor perfor-
mance on the former direction.
Conclusion: Rule body ordering impacts the performance in various directions.
What about reversing rule ordering? In the reversed direction - an infinite
loop.

Typical error: Wrong "assembly" of resulting lists:

wrong_reverse([H|T], R):-

wrong_reverse(T, S), append(S, H, R).

(b) An iterative version:

% Signature: reverse(List1, List2)/2

% Purpose: List2 is the reverse of List1. This version uses an additional
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reverse helper procedure, that uses an accumulator.

reverse(Xs, Ys):- reverse_help(Xs,[],Ys).

reverse_help([X|Xs], Acc, Ys ) :-

Reverse_help(Xs,[X|Acc],Ys).

reverse_help([ ],Ys,Ys ).

?- reverse([a,b,c,d],R).

R=[d,c,b,a]

The length of the single success path is linear in the list length, while in the
former version it is quadratic.

Note: The reverse_help procedure is an helper procedure that should not reside
in the global name space. Unfortunately, Logic Programming does not support
nesting of name spaces (like Scheme, ML, Java). All names reside in the
global space .

Summary of Logic Programming:

1. Identical syntax to terms and atomic formulas. Distinction is made by syntactical
context (recall, in analogy, the uniform syntax of Scheme composite expressions and
Scheme lists).

2. No language primitives - besides true, =.

3. No computation direction: Procedures (predicates) define relations, not functions.

4. No run time errors.

5. Relational logic programming is decidable - although, there can be infinite branches
in search trees.

6. No nesting of name spaces! No local procedures!

7.3 Meta-tools: Backtracking optimization (cuts); Unify; Meta-
circular interpreters

7.3.1 Backtracking optimization – The cut operator

Backtracking along the proof tree is very expensive. Therefore, there is an obvious interest
to avoid needless search. Such cases are:
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1. Exclusive rules: The proof tree is deterministic, i.e., for every query, there is at most
a single success path. Once a success path is scanned, no point to continue the search
for alternative solutions.

2. Deterministic domain rules: It is known to the designer that once a proof path is
taken, there are no other solutions.

3. Erroneous alternatives: Alternative proofs yield erroneous answers, i.e., enable
skipping mandatory requirements.

In these cases, the proof tree can be pruned, so that the interpreter does not try alternative
solutions (and either fails or make mistakes).

Example 7.7. Deterministic domain rules and erroneous alternatives:

Assume a domain of colored pieces, with two domain rule:

1. For every color there is at most a single piece.

2. Every piece has a single color.

. A modeler can describe the domain with the following relations:

part(a). % 1

part(b). % 2

part(c). % 3

red(a). % 1

black(b). % 1

% color(P,C)/2

color(P,red) :- part(P), red(P). % 1

color(P,black) :- part(P), black(P). % 2

color(P,unknown) :- part(P). % 3

but testing using queries reveals two problems:

?- color(a,C).

C = red ;

C = unknown.

?- color(P,red).

P = a ;

false.
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Figure 7.2: Proof tree for colors example

The first query should have a single solution. Rule (3) of predicate color is a default rule ,
based on the second domain rule: Once a color of a part is successfully proved, no other
alternative should be tried. The unknown color is designed for non-red and non-black colors,
and not as an alternative color for a piece. Therefore, the tree shown in Figure 7.2(a),
wrongly finds the unknown color for a.

Moreover, the second query, once finding the answer P=a, can terminate, based on the
first domain rule. But, the program still searches in vain for a possible alternative solution.

The cut system predicate , denoted ! , is a Prolog built-in predicate, for pruning
proof trees. If used after the color has been identified, it cuts the proof tree so that no
alternative colors are searched for a piece, and no alternative pieces are searched for a color:

color(P,red) :- part(P), red(P),!. % 1

color(P,black) :- part(P), black(P),!. % 2

color(P,unknown) :- part(P). % 3

The new proof tree is shown in Figure 7.2(b). Note that if the first domain rule does not
hold, the cuts remove correct solutions, i.e., wrongly prune the proof tree!

The cut goal succeeds whenever it is the current goal, and the proof tree is trimmed
of all alternatives on the way back to and including the point in the derivation tree
where the cut was introduced into the sequence of goals (the head goal in the !
rule).
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Figure 7.3: Proof tree pruning by the Cut operator

Proof tree pruning: For the rule

Rule k: A :- B1, ...Bi, !, Bi+1, ..., Bn.

all alternatives to the node where A was selected are trimmed. Figure 7.3 demonstrates the
pruning caused by cut:

Example 7.8. Erroneous alternatives: Consider the following erroneous program that in-
tends to check whether every list element of a list includes some key:

% Signature: badAllListsHave(List,Key)/2

% Purpose: Check whether Key is a member of every element of List

% which is a list.

% Type: List is a list.

badAllListsHave( [First|Rest],Key):-

is_list(First), member(Key,First),badAllListsHave( Rest,Key).

badAllListsHave( [_|Rest],Key):- badAllListsHave( Rest,Key).

badAllListsHave( [ ],_).

The query

?- badAllListsHave( [ [2], [3] ],3).
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succeeds, since the second rule enables skipping the first element of the list. The point is
that once the is_list(First) goal in the first rule succeeds, the second rule cannot function
as an alternative. Inserting a cut after the is_list(First) goal solves the problem, since
it prunes the erroneous alternative from the tree:

% Signature: allListsHave(List,Key)/2

% Purpose: Check whether Key is a member of every element of List

% which is a list.

% Type: List is a list.

allListsHave( [First|Rest],Key):-

is_list(First), !, member(Key,First),allListsHave( Rest,Key).

allListsHave( [_|Rest],Key):-

badAllListsHave( Rest,Key).

allListsHave( [ ],_).

Example 7.9. Exclusive rules (using arithmetics):

% Signature: minimum(X,Y,Min)/3

% Purpose: Min is the minimum of the numbers X and Y.

% Type: X,Y are Numbers.

% Pre-condition: X and Y are instantiated.

minimum(X,Y,X) :- X =< Y,!.

minimum(X,Y,Y) :- X>Y.

The cut prevents useless scanning of the proof tree.
But:

minimum(X,Y,X) :- X =< Y,!.

minimum(X,Y,Y).

is wrong. For example, the query ?- minimum(1,2,2) succeeds.
The problem here is that the cut is not used only as a pruning means, but as part of the
program specification! That is, if the cut is removed, the program does not compute the
intended minimum relation. Such cuts are called red cuts, and are not recommended. The
green cuts are those that do not change the meaning of the program, only optimize the
search.

Example 7.10. Exclusive rules (using arithmetics):

A program that defines a relation polynomial(Term, X) that states that Term is a
polynomial in X. The polynomials are treated as symbolic expressions. The program is
deterministic: A single answer for every query. Therefore, once a success answer is found,
there is no point to continue the search.
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% Signature: polynomial(Term,X)/2

% Purpose: Term is a polynomial in X.

polynomial(X,X) :-!.

polynomial (Term,X) :-

constant(Term), !.

polynomial(Terml+Term2,X) :-

!, polynomial(Terml,X), polynomial(Term2,X).

polynomial(Terml-Term2,X) :-

!, polynomial(Terml,X), polynomial(Term2,X).

polynomial(Terml*Term2,X) :-

!, polynomial(Terml,X), polynomial(Term2,X).

polynomial(Terml/Term2,X) :-

!, polynomial(Terml,X), constant(Term2).

polynomial(TermTN,X) :-

!, integer(N), N > 0, polynomial(Term,X).

% Signature: constant(X)12

% Purpose: X is a constant symbol (possibly also a number).

Atomic is a Prolog type identification built-in predicate.

constant(X) :- atomic(X).

Using the cut, once a goal is unified with a rule head, the proof tree is pruned such that no
other alternative to the rule can be tried.

7.3.2 Unify

Recall the unification algorithm:

Signature: unify(A,B)

Type: [Atomic-formula*Atomic-formula -> Substitution union FAIL]

Post-condition: result = mgu(A,B) if A and B are unifiable

or FAIL, otherwise

unify(A,B) =

let help(s) =

if A ○ s = B ○ s then s

else let D = disagreement-set(A ○ s, B ○ s)

in if [D = {X, t} and X does not occur in t]

/* The occur check constraint

then help(s ○ {X = t})

else FAIL

end

in help( {} )
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end

The algorithm can be implemented in Logic Programming, but it requires some extra log-
ical tools for inspection of term structure. The algorithm is based on the apply-substitution
operation, and requires the ability to

1. Distinguish between different variables.

2. Distinguish between variables to constants.

The implementation below assumes that the given atomic formulas have been pre-
processed into ground terms (not including variables), such that constants denoting vari-
ables are distinguished from true constants. For example, the atomic formulas c(f(X), G,

X), c(G, Y, f(d)) turn into: c(f(x), g, x), c(g, y, f(d)). The implementation uses
the meta-programming predicate univ, denoted =.., which turns a term into a list of the
functor followed by the arguments. For example:

1 ?- f(a,X,g(Y))=..Term_list.

Term_list = [f, a, X, g(Y)].

2 ?- Term=..[f, a, X, g(Y)].

Term = f(a, X, g(Y)).

The distinction between variables to constants is implemented using a variable and a constant
predicates.

We present first the substitute procedure, which implements the apply-substitution

operation.

% Signature: substitute(Exp, S, ExpS)/3

% Purpose: ExpS is the application of a substitution S on a ground term Exp.

% Examples:

% constant_list([ a, b, c, d, [], 5, 6]).

% variable_list([x, y, z]).

% ?- substitute(p(a, b(x), c(d(y)), x), [[z, 5], [x, 6]], Ans).

% Ans = p(a, b(6), c(d(y)), 6).

% Pre-condition: All logic programming constant symbols in a query must be

% declared either as expression constants or as expression

% variables. That is, belong to one of the constant or variable

% lists. Otherwise, the program enters an infinite loop.

%

substitute(Exp, [], Exp) :- !. %1

% green cut to avoid backtracking in (2)-(6)

substitute(X, S, XS) :- variable(X), member([X, XS], S), %2

!. % red cut to avoid backtracking in (3)

substitute(X, S, X) :- variable(X), %3
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!. % green cut to avoid univ of atom in (6)

substitute(X, S, X) :- constant(X), %4

!. % green cut to avoid univ of atom in (6)

substitute([E|Exp],S,[ES|ExpS]) :- %5

!, % red cut to avoid [E|Exp] unification in (6)

substitute(E, S, ES), substitute(Exp, S, ExpS),

!. % green cut to avoid rerun of the code

substitute(Exp, S, ExpS) :- Exp =.. List, %6

substitute(List, S, ListS), ExpS =.. ListS.

unify is a three-ary predicate, with two parameters that are the terms to be unified, and a
third ‘mgu parameter.

% Signature: unify(A, B, Mgu)/3

% Examples:

% ?- unify(a(x, 5), a(6, y), Mgu).

% Mgu = [[y, 5], [x, 6]].

% ?- unify(c(a(x), z, x), c(z, y, a(d)), Mgu).

% Mgu = [[x, a(d)], [y, a(a(d))], [z, a(a(d))]]

% ?- unify(c(a(x), d, x), c(z, y, a(z)), Mgu).

% false

%

unify(A, B, Mgu) :- help(A, B, [], Mgu). %1

help(A, B, S, Mgu) :- substitute(A, S, AS), %1

substitute(B, S, BS),

help_helper(A, B, S, AS, BS, Mgu).

help_helper(A, B, S, AS, AS, S) :- !. %2

% green cut to avoid disagreement run in (3)

help_helper(A, B, S, AS, BS, Mgu) :- disagreement(AS, BS, [X, T]), %3

not_occurs(T, X),

substitute(S, [[X, T]], SS),

help(A, B, [[X, T]|SS], Mgu).

The disagreement and the not_occur procedures:

% Signature: disagreement(A, B, Set)/3

disagreement(AS, BS, [AS, BS]) :- variable(AS), %1

% green cut to avoid backtracking in (5)

disagreement(AS, BS, [BS, AS]) :- variable(BS), %2

!. % green cut to avoid backtracking in (6)

372



Chapter 7 Principles of Programming Languages

disagreement([A|AS], [A|BS], [X, T]) :- !, %3 red cut to avoid backtracking in (7)

disagreement(AS, BS, [X, T]).

disagreement([A|_], [B|_], [X, T]) :- !, %4 red cut to avoid backtracking in (7)

disagreement(A, B, [X, T]).

disagreement(AS, _, _) :- constant(AS), %5

!, % red cut to avoid univ of constant in (7)

fail.

disagreement(_, BS, _) :- constant(BS), %6

!, % red cut to avoid univ of constant in (7)

fail.

disagreement(A, B, [X, T]) :- A =.. A_list, %7

B =.. B_list,

disagreement(A_list, B_list, [X, T]).

% Signature: not_occurs(T, X)/2

%

not_occurs(X, X) :- !, %1 red cut to avoid backtracking in (2)

fail.

not_occurs(T, _X) :- variable(T), %2

!. % green cut to avoid univ of atom in (5)

not_occurs(T, _X) :- constant(T), %3

!. % green cut to avoid univ of atom in (5)

not_occurs([T|TT], X) :- !, %4 red cut to avoid univ of list in (5)

not_occurs(T, X), not_occurs(TT, X),

!. % green cut to avoid rerun of the code

not_occurs(T, X) :- T =.. T_list, %5

not_occurs(T_list, X).

% Signature: variable(Name)/1

variable(X) :- variable_list(Vars), member(X,Vars).

variable_list([x,y,z]).

% Signature: constant(Name)/1

constant(C) :- constant_list(Consts), member(C, Consts).

constant_list([p,a,b,c,d,[],5,6]).

7.3.3 Meta-circular interpreters for Logic Programming

Recall the abstract interpreter for logic programs.

1. It is based on unification , search , and backtracking .

(a) Goal selection - left most for Prolog.
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(b) Rule selection - first for Prolog, with backtracking to the following rules, in case
of a failure.

2. It has two points of non-deterministic selection.

This behavior can be encoded into a logic programming procedure solve that implements
the abstract interpreter algorithm.

We present several solve procedures. The interpreters exploit the uniformity of the
syntax of terms and of atomic formulas: The atomic formulas of the program are read as
terms, for the interpreter1. All interpreters work in two stages:

1. Pre-processing: The given program P (facts and rules) is translated into a new
program P’, with a single predicate rule, with facts alone.

2. Queries are presented to the procedure solve, and to the transformed program P’.

The first interpreter is a “vanilla” one: A basic interpreter that fully uses Prolog’s rule and
goal selection rules. The rest of the interpreters vary either in providing also a proof tree in
addition to the proof, or in the amount of control they provide to goal selection order.

Pre-processing – Program transformation: The rules and facts of the logic program
are transformed into an all facts procedure rule. The rule:

A :- B1, B2, ..., Bn

Is transformed into the fact:

rule(A, [B1, B2, ..., Bn] ).

A fact A. is transformed into rule(A, true). For example, the program:

% father(abraham, isaac).

% father(haran, lot).

% father(haran, milcah).

% father(haran, yiscah).

% male(isaac).

% male(lot).

% female(milcah).

% female(yiscah).

% son(X, Y) :- father(Y, X),

% male(X).

% daughter(X, Y) :- father(Y, X),

% female(X).

1Recall the Scheme meta-circular interpreter, which exploits the uniform syntax of Scheme expressions

and the printed form of lists.
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is transformed into the program:

rule(father(abraham, isaac), true). %1

rule(father(haran, lot), true). %2

rule(father(haran, milcah), true). %3

rule(father(haran, yiscah), true). %4

rule(male(isaac), true). %5

rule(male(lot), true). %6

rule(female(milcah), true). %7

rule(female(yiscah), true). %8

rule(son(X, Y), [father(Y, X), male(X)]). %9

rule(daughter(X, Y), [father(Y, X), female(X)]). %10

The new program consists of facts alone.

Vanilla (basic) interpreter

The vanilla interpreter simulates Prolog’s goal selection rule, and relies on Prolog’s rule
selection.

% Signature: solve(Exp)/1

% Purpose: Vanilla interpreter.

% Examples:

% ?- solve(son(lot, haran)).

% true.

%

% ?- solve(son(X, Y)).

% X = isaac,

% Y = abraham ;

% X = lot,

% Y = haran ;

% false.

%

solve(true). %1

solve([]). %2

solve([A|B]) :- solve(A), solve(B). %3

solve(A) :- rule(A,B), solve(B). %4

Interpreter operation: The first fact ends a proof of a fact, the second fact ends the proof
of a list of goals (the body of a program rule), the third rule selects a goal to prove, and the
fourth rule finds a program rule whose head unifies with the given goal. This interpreter
relies on Prolog for doing almost everything:
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1. Reading and parsing the input.

2. Unification and rule selection (following the order of the rule procedure).

3. Goal selection and recursive computation (reduction).

Interpreter with associated proofs for answers:

Successful computations can be associated with a parse tree of the proof:

% Signature: solve(Exp, -Proof)/2

% Purpose: Interpreter and associate proofs with success answers

% Examples:

% ?- solve(son(lot,haran), Proof).

% Proof = node(son(lot,haran),

% [node(father(haran,lot),true),node(male(lot),true)]);

% false.

% ?- solve(son(X,Y), Proof).

% X = isaac,

% Y = abraham,

% Proof = node(son(isaac,abraham),

% [node(father(abraham,isaac),true),node(male(isaac),true)]) ;

% X = lot,

% Y = haran,

% Proof = node(son(lot,haran),

% [node(father(haran,lot),true),node(male(lot),true)]) ;

% false.

%

solve(true, true). %1

solve([], []). %2

solve([A|B],[ProofA|ProofB]) :- solve(A,ProofA), solve(B, ProofB). %3

solve(A, node(A,Proof)) :- rule(A,B), solve(B,Proof). %4

Interpreter operation:

1. The first two facts provide proofs to true and to the end of a proof.

2. The third rule structures the proof of list of goals as a list of proofs.

3. The fourth rule specifies the proof of an atomic goal A that unifies with the head of a
program rule with body B, to be a tree-node labeled by the goal A, and with the proof
of B as child trees.

To further clarify, given the propositional program
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a :- b,c,d,e. %1

b :- f,g. %2

c. %3

d. %4

c. %5

e. %6

f. %7

g. %8

whose pre-processing yields:

rule(a, [b,c,d,e]). %1

rule(b, [f,g]). %2

rule(c, true). %3

rule(d, true). %4

rule(c, true). %5

rule(e, true). %6

rule(f, true). %7

rule(g, true). %8

6 ?- solve(a, Proof).

Proof = node(a, [node(b, [node(f, true), node(g, true)]),

% node(c, true),

% node(d, true),

% node(e, true)]) ;

Proof = node(a, [node(b, [node(f, true), node(g, true)]),

% node(c, true),

% node(d, true),

% node(e, true)]) ;

false.

Addition of failed proofs: Finite failure proofs can be added by detecting goals that
could not be computed by the former solve, and adding them as a failure node to the proof.
This can done by addition of two default rules at the end of the solve. One rule, number
5, eliminates failed goals that unify with some rule facts, and the last one, number 6, adds
the failure node.

% Signature: solve(Exp, Proof)/1

% Purpose: Interpreter and associate proofs with success answers.

% Examples:

% ?- solve(son(lot, haran), Proof).

% Proof = node(son(lot, haran),
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% [node(father(haran, lot), true), node(male(lot), true)]);

% false.

% ?- solve(son(X, Y), Proof).

% X = isaac,

% Y = abraham,

% Proof = node(son(isaac, abraham),

% [node(father(abraham, isaac), true), node(male(isaac), true)]) ;

% X = lot,

% Y = haran,

% Proof = node(son(lot, haran),

% [node(father(haran, lot), true), node(male(lot), true)]) ;

% X = milcah,

% Y = haran,

% P = node(son(milcah, haran),

% [node(father(haran, milcah), true), node(male(milcah), fail)]) ;

% X = yiscah,

% Y = haran,

% P = node(son(yiscah, haran),

% [node(father(haran, yiscah), true), node(male(yiscah), fail)]) ;

% false.

%

solve(true, true) :- !. %1 red cut to avoid Proof unification in (6)

solve([], []) :- !. %2 red cut to avoid Proof unification in (6)

solve([A|B], [ProofA|ProofB]) :- !, %3 red cut to avoid Proof unification in (6)

solve(A, ProofA), solve(B, ProofB).

solve(A, node(A, Proof)) :- rule(A, B), solve(B, Proof). %4

solve(A, _) :- rule(A, _), %5

!, % red cut to avoid backtracking in (7)

fail.

solve(A, node(A, fail)). %6

Interpreter with management of goals

This interpreter uses an explicit control of the goal selection order, using a waiting list of
goals (reminds the CPS approach).

% Signature: solve(Exp)/1

% Purpose: Interpreter with explicit management of a waiting list of goals.

% Examples:

% ?- solve(son(lot, haran)).

% true.
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% ?- solve(son(X, Y)).

% X = isaac,

% Y = abraham ;

% X = lot,

% Y = haran ;

% false.

%

solve(Goal) :- solve(Goal, []). %1

solve(true, Goals) :- solve([], Goals). %1

solve([], []). %2

solve([], [G|Goals]) :- solve(G, Goals). %3

solve([A|B], Goals) :- extend_waiting_list([A|B], Goals, NewGoals), %4

solve([], NewGoals).

solve(A, Goals) :- rule(A, B), solve(B, Goals). %5

% Signature: extend_waiting_list(Goals, WaitingList, NewWaitingList)/3

% Purpose: Extend the waiting list of goals.

%

extend_waiting_list(Goals, WaitingList, NewWaitingList) :- %1

% append(Goals, WaitingList, NewWaitingList).

Interpreter operation: The interpreter solve/2 keeps the goals to be proved in a waiting
list - its second argument. The first argument includes the current goals to be proved. The
first four rules are waiting list management.

1. Rule (1) refers to a situation where a fact was proved, and there might be goals in the
waiting list.

2. Rule (2) is the end of processing: No goal to prove and empty waiting list.

3. Rule (3) is the goal selection rule.

4. Rule (4) refers to a situation where there is a list of current goals to prove. The current
goals are added to the waiting list.

5. Rule (5) is the core of the interpreter. By default, the current goal is an atomic formula,
and not a list. First, there is a search for a rule or fact of the original program P whose
head matches the current goal. Then, the body of this fact or rule is solved, in the
context of the waiting goals.

Interpreter that combines proofs and management of goals

% Signature: solve(Exp, Proof)/2
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% Purpose: Interpreter with explicit management of a waiting list of goals., and

% associate proofs with success answers.

% Examples:

% ?- solve(son(lot, haran), Proof).

% Proof = node(son(lot, haran),

% [node(father(haran, lot), true), node(male(lot), true)]);

% false.

% ?- solve(son(X, Y), Proof).

% X = isaac,

% Y = abraham,

% Proof = node(son(isaac, abraham),

% [node(father(abraham, isaac), true), node(male(isaac), true)]) ;

% X = lot,

% Y = haran,

% Proof = node(son(lot, haran),

% [node(father(haran, lot), true), node(male(lot), true)])

% false.

%

solve(Goal, Proof) :- solve(Goal, [], Proof). %1

% Signature: solve(Exp, WaitingList, Proof)/3

%

solve(true, [], true) :- !. %1 red cut to avoid Goals unification in (3)

solve(true, Goals, Proof) :- solve([], Goals, Proof). %2

solve([], [], []). %3

solve([], [G|Goals], [Proof1|Proof2]) :- solve(G, [], Proof1), %4

solve([], Goals, Proof2).

solve([A|B], Goals, Proof) :- extend_waiting_list([A|B], Goals, NewGoals), %5

solve([], NewGoals, Proof).

solve(A, Goals, node(A, Proof)) :- rule(A, B), solve(B, Goals, Proof). %6

7.4 Prolog

Pure Prolog: Logic programming with the Prolog specific selection rules:

1. Left most goal.

2. First rule whose head unifies with the selected goal.

Prolog: Extension with Arithmetic, system predicates, primitives, meta-logic (reflec-
tion) predicates, extra-logic predicates, high order predicates. The two main features of pure
logic programming are lost:
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1. Unidirectional definitions.

2. No run time errors.

7.4.1 Arithmetics

The system predicates for arithmetic provide interface to the underlying arithmetic capabil-
ities of the computer. Prolog provides:

1. An arithmetic evaluator: is.

2. Arithmetic operations: +, -, *, /

3. Primitive arithmetic predicates: =, !=, <, >.

All arithmetic predicates pose instantiation requirements on their arguments. They
cause runtime errors if their arguments cannot be evaluated to numbers.

The is arithmetic evaluator is written as an infix operator:

<value> is <expression>.

<expression> is evaluated and unified with <value>. <expression> must be fully instan-
tiated to a number value.

V is 3 + 6. succeeds with V=9.
V is 3 + X. fails since X cannot be evaluated.
9 is 3 + 6. succeeds.
3+6 is 3 + 6. fails.
V is V + 1. fails.

Examples:

1. Factorial - recursive:

% Signature: factorial(N, F)/2

% Purpose: F is the factorial of N.

% Type: N,F: Type is Integer.

% Pre-condition: N must be instantiated. N>=0.

factorial(0, 1).

factorial(N, F) :-

N > 0, /* Defensive programming! Should belong to the pre-condition.

N1 is N -1,

factorial(N1, F1),

F is N*F1.
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2. Factorial - iterative.

% Signature: factorial(N,F)/2

% Purpose: F is the factorial of N.

% Type: N,F: Type is Integer.

% Pre-condition: N must be instantiated. N>=0.

factorial(N, F) :- factorial(N, 1, F).

% Signature: factorial(N, Acc, F)/3

factorial(0, F, F).

factorial(N, Acc, F) :-

N > 0,

N1 is N -1,

Acc1 is N*Acc,

factorial(N1, Acc1, F).

3. Factorial - another iterative version.

% Signature: factorial(N,F)/2

% Purpose: F is the factorial of N.

% Type: N,F: Type is Integer.

% Pre-condition: N must be instantiated. N>=0.

factorial(N, F) :- factorial(0, N, 1, F).

% Signature: factorial(I, N, Acc, F)/3

factorial(N, N, F, F).

factorial(I, N, Acc, F) :-

I < N,

I1 is I +1,

Acc1 is Acc * I1,

factorial(I1, N, Acc1, F).

4. Computing the sum of members of an integer-list – recursion.

% Signature: sumlist(List, Sum)/2.

% Purpose: Sum is the sum of List’s members.

% Type: List: type is list. Its members are integers.

% Sum: Type is Number.

sumlist( [], 0).

sumlist( [I|Is], Sum) :-

sumlist(Is, Sum1),

Sum is Sum1 + I.
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5. Computing the sum of members of an integer-list - iteration (with accumulator).

% Signature: sumlist(List, Sum)/2.

% Purpose: Sum is the sum of List’s members.

% Type: List: type is list. Its members are integers.

Sum: Type is Number.

sumlist(List, Sum) :- sumlist(List, 0, Sum).

% Signature: sumlist(List, Acc, Sum)/3.

sumlist([], Sum, Sum).

sumlist([I|Is], Sum1, Sum) :-

Sum2 is Sum1 + I,

sumlist(Is, Sum2, Sum).

Restrictions on language primitive predicate symbols:

− They cannot be defined - appear in rule/fact heads. Because they are already
defined.

− They denote infinite relations. Therefore, when they are selected for proving - their
arguments must be already instantiated (substituted). Otherwise - the computation
will explore an infinite number of facts. That is, the proof of

?- 8 < 10.

immediately succeeds. But the proof of

?- X < 10.

has an infinite number of answers. Therefore, it causes a run time error!

Prolog includes, besides arithmetic, a rich collection of system predicates, primitives,
meta-logic (reflection) predicates, extra-logic predicates, high order predicates. They are
not discussed in this introduction.

7.4.2 Negation in Logic Programming

Logic programming allows a restricted form of negation: Negation by failure : The goal
not(G) succeeds if the goal G fails, and vice versa.
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1. male(abraham).

married(rina).

bachelor(X) :- male(X), not(married(X)).

?- bachelor(abraham).

Yes.

2. unmarried_student(X) :- student(X), not(married(X)).

student(abraham).

?- unmarried_student(X).

X = anraham.

3. Define a relation that just verifies truth of goals, without instantiation:

verify(Goal) :- not(not(Goal)).

Opens two search trees - one for each negation. Result is success or fail without any
substitution.

Restrictions:

1. Negated relations cannot be defined: Negation appears only in rule bodies or
queries.

2. Negation is applied to goals without variables.

Therefore:

unmarried_student(X) :- not(married(X)), student(X).

is dangerous! The query

?- unmarried_student(X).

is wrong: Check the search tree!
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Imperative Programming

Mutation and Local State

Real world software like:

− Management of a bank account.

− Student registration system.

− Course grading system.

are characterized as state based systems. The state is created and related to change
along time . Systems deal with the current balance of an account, the current student
registration database , and the current average grade . The bank account balance, the
registration database and the average grade are changed over time, following management
actions.

Such systems differ from the mathematical problems handled in previous chapters, like
sequence summation or writing a language interpreter. The theory problems require com-
putation of results, but have no notion of changing problem elements.

One way to model system states is by using lazy lists , that function as time sequences:
The lazy list holds the states of the system. For example, assume that the withdrawals from
a bank account are kept as a lazy list:

(define make-withdrawals

(lambda (withdraw)

(cons withdraw

(lambda () (make-withdrawals (read))))

))

The states of a bank account to which withdrawals are applied can be modeled as a lazy list
of the account balances:
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(define account-states

(lambda (balance withdrawals)

(cons balance

(lambda ()

(account-states (- balance (car withdrawals))

((cdr withdrawals)))))

))

> (take (account-states 100 (make-withdrawals 10)) 3)

5

6

7

(100 90 85)

With the help of a few additional auxiliary procedures that can smooth the handling of the
account and the withdrawals, the account can look as if it has a really changing state –
modeled as a sequence.

The more conventional, and possibly natural, way to model a changing state is by cap-
turing an object with a concrete store that holds the changing state . The Von-Neumann
architecture, which is the basis for Turing machines, is based on the idea of stored and
changing states. The operational semantics of a program is given by a sequence of system-
states (configurations). A system-state is a snapshot of a system. It includes the current
content of the machine tape + a pointer to the current position in the tape.
Imperative programming is characterized by:

1. Understanding variables as storage places (addresses).

2. Mutation operations, like assignment, for changing the content of variables.

3. Operational semantics – a computation is a sequence of system-states . A
system-state is given by a pair:
<variable contents (values), pointer to a place in the program>.

Mutation in Racket: Racket supports mutation in three ways:

1. Variable assignment using the special operator (mutator) set!.

2. A Box type, whose values are wrappers (or pointers) to values that can be changed
during computation.

3. Mutable data types.

The assignment special operator enables modification of a value of an already defined
variable . The Box type has the constructor box, the selector unbox and the mutator
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set-box!. All are primitive procedures, i.e., no special evaluation rule. Mutable data types
are not discussed here. If there is a need to modify components of a composite value, e.g.,
a list, boxes should be involved.

> (define lst (list 1 2 3))

> (set! lst (list 1 2 4))

’(1 2 4)

> (set! a 4)

. . set!: assignment disallowed;

cannot set variable before its definition

variable: a

; Boxes:

(define a (box 7))

> (* 6 (unbox a))

42

> (set-box! a (+ (unbox a) 3))

> (* 6 (unbox a))

60

; Setting the last element of a list -- must be a list of boxes:

> (define increase-last!

(lambda (lst)

(let ((last-el (last lst)))

(set-box! last-el (add1 (unbox last-el))))

))

> (define l (map box ’(1 2 3 4)))

> l

’(#&1 #&2 #&3 #&4)

> (increase-last! l)

> l

’(#&1 #&2 #&3 #&5)

> (unbox (last l))

5

;A procedure that returns a Box value:

(define wrap-with-box

(lambda (x) (box x)))

> (define b (wrap-with-box 5))

> b

’#&5

> (set-box! b 3)

> (* 3 (unbox b))
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9

(define c-add

(lambda (x)

(lambda (y) (+ x y))))

(define boxed-c-add (box (c-add 7)))

> ((unbox boxed-c-add) 3)

10

;A procedure with a Box valued input:

;Type: [Box(T) -> T1]

;Purpose: A setter for boxes.

; Note how Box typed parameters simulate "call by references".

> (define box-setter

(lambda (b)

(set-box! b (read))

(unbox b)))

> (define b (box 4))

> (unbox b)

4

> (box-setter b)

2

2

> (unbox b)

2

Example 8.1 (Circular lists).

> (define circ-l (list (box 1) (box 2) (box 3)))

> (unbox (car circ-l))

1

> (unbox (cadr circ-l))

2

> (unbox (caddr circ-l))

3

> circ-l

’(#&1 #&2 #&3)

> (set-box! (caddr circ-l) circ-l)

> circ-l

#0=’(#&1 #&2 #&#0#)

> (unbox (caddr circ-l))

#0=’(#&1 #&2 #&#0#) ; Note how circular values are printed.

> (eq? circ-l (unbox (caddr circ-l)))

#t
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The Box type:

Type constructor: Box(T ).
Value constructor: box: [T → Box(T )].
Selector: unbox: [Box(T )→ T ].
Mutator: set-box!: [Box(T )→ V oid].
Identifier: box?: [T → Boolean].
Equality:

Value equality: equal?: [T1 ∗ T2→ Boolean].
Identity equality: eq?: [T1 ∗ T2→ Boolean].

Notes:

− The assignment operator set! and the Box type setter set-box! introduce new kinds
of side effects : variable and structure change. We have already seen two kinds of
side effect procedures: define, which changes the global environment mapping, and
I/O procedures, of which we have seen only the “O” – the display procedure. Side
effect procedures are applied for the sake of their side effects, and not for their returned
value. Therefore, the returned value of side effect procedures is void.

− In imperative programming, where procedures can be applied for the sake of their
side effects, there is a point to use sequences of expressions, as allowed in bodies of
lambda, let and letrec expressions, or in clauses of cond expressions. Therefore, in
this paradigm, the begin special operator, that wraps a sequence of expressions as a
single expression is useful. For example, within if expressions.

− The Box type was already used in the evaluators code, in Chapter 6, for implement-
ing environments. An environment was implemented as a sequence of boxed frames.
This was done for the purpose of enabling changes of the global frame, following the
evaluation of a define special form. The set! special operator enables changes of
non-global frames.

8.1 State Based Modeling

We want to model states in a functional language. How can we modify the given operational
semantics for that purpose? We will use frames as a repository for states:

1. A “state-frame” holds state variables

2. A state-frame is held by a closure that functions as an object, whose state is given by
the frame

3. A state-frame is held by setter-closures, that set the value of state variables.

389



Chapter 8 Principles of Programming Languages

Therefore, a standard template for state management in Scheme is having a closure created
within the scope of a let expression:

(define make-state-manager

(let ((var1 val1)

...

(varn vlan))

(lambda (p1 ...) (.... (set! vari expi) ...)))

Example 8.2 (Random number generation). Generate a sequence of random numbers,
assuming that a rand-init number, and a procedure rand-update, that computes the next
number in the sequence, are given:

(define rand

(let ((x random-init))

(lambda () (set! x (rand-update x)) x)))

In this modeling, rand is an object whose local state is kept in x, and changes with successive
calls to rand. The alternative to a local state based rand, is to pass the current random
value to all client procedures, and explicitly call rand-update.

8.1.1 Object modeling

Example 8.3 (Modeling a bank account withdrawal).

Signature: make-withdraw(amount)

Purpose: Withdraw ’amount’ from a private ’balance’.

Type: [Number -> Number]

Post-condition: result = if balance@pre >= amount

then balance@pre - amount

else balance

(define make-withdraw

(let ((balance 100))

(lambda (amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

(begin (display "Insufficient funds")

(newline)

balance))

)))

Note that the procedure is created within the scope of the declaration of balance. Therefore:
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1. All (free) occurrences of balance within the procedure are bound by this declaration.
In every application of withdraw, all these occurrences reference the single balance

declaration, created by the let application.

2. The balance declaration is local (private) to the withdraw procedure. The balance

variable is the local state of the bank account.

> withdraw

#<procedure:withdraw>

> (withdraw 25)

75

> (withdraw 25)

50

> (withdraw 60)

Insufficient funds

50

> (withdraw 15)

35

> balance

. . reference to an identifier before its definition: balance

− Draw an environment diagram in order to clarify how the balance local variable
functions as a repository for the local state of the bank account.

− begin is a scheme’s special operator. The syntax of a begin form is:
(begin <exp1> <exp2> ...<expn>)

where all <expi>-s are Scheme expressions. The evaluation of a begin form causes
the expressions <exp1>, ..., <expn> to be evaluated in sequence. The value of the
begin form is the value of the last argument.

The begin special operator is relevant only in imperative programming – where the
computation model supports side effects.

− The post condition includes the keyword @pre, as a suffix to the balance variable.
The @pre suffix (taken from the Object Constraint Language (OCL)) designates the
input value of the suffixed parameter.

The @pre suffix is relevant only in imperative programming (programming with change).
Why?

Example 8.4 (Make-withdraw – an Account generator).

A withdrawal constructor that takes the initial balance as an argument, and produces
an account:
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Signature: make-withdraw(balance)

Purpose: Create an Account object with ’balance’ as an initial amount,

and withdrawal capabilities.

Type: [Number -> [Number -> Number]]

Contract of the created Account object:

Signature: parameter: amount

Purpose: Withdraw ’amount’ from a private ’balance’.

Type: [Number -> Number]

Post-condition: result = if balance@pre >= amount

then balance@pre - amount

else balance

(define make-withdraw

(lambda (balance)

(let ((balance balance))

(lambda (amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

(begin (display "Insufficient funds")

(newline)

balance))

))))

Each evaluation of a make-withdraw form creates a withdraw procedural object, with the
make-withdraw argument as the initial balance. The procedures are distinct objects and
do not affect each other. Their balance arguments keep the local states of the accounts.
Draw an environment diagram that clarifies how the local states of different account objects
are managed.

> (define W1 (make-withdraw 100))

> (define W2 (make-withdraw 100))

> W1

#<procedure:...pter7\letrec.rkt:52:7>

> (W1 25)

75

> (W2 25)

75

> (W1 80)

Insufficient funds

75

> (W1 30)

45
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> (W1 50)

Insufficient funds

45

> (W2 50)

25

Example 8.5 (A bank account object – that supports withdrawals and deposits).

make-withdraw is extended with an internal procedure for deposits, and a getter for
the balance. Its value is an internal dispatch procedure, that based on the given message,
invokes either one of the internal procedures.

make-account evaluates, for each call, into a distinct dispatch procedure that resides in
a local environment with balance as a local state variable. Within this environment, there
are four distinct method procedures: get-balance, set-balance!, withdraw, deposit,
and a dispatch procedure. Each dispatch procedure created by make-account is a pro-
cedural bank account object that handles deposits into and withdrawals from the account.
Each evaluation of a make-account form creates a new account.

Signature: make-account(balance)

Type: [Number -> [Symbol -> [Number -> Number]]]

(define make-account

(lambda (balance)

(let ((balance balance))

(letrec

((get-balance (lambda (amount) balance))

(set-balance! (lambda (amount) (set! balance amount)))

(withdraw (lambda (amount)

(if (>= balance amount)

(begin (set-balance! (- balance amount))

balance)

(begin (display "Insufficient funds")

(newline)

balance))))

(deposit (lambda (amount)

(set-balance! (+ balance amount))

balance))

(dispatch (lambda (m)

(cond ((eq? m ’balance) get-balance)

((eq? m ’withdraw) withdraw)

((eq? m ’deposit) deposit)

(else (error ’make-account "Unknown request: ~s" m)))))

)

393



Chapter 8 Principles of Programming Languages

dispatch))

))

> (define acc (make-account 100))

> acc

#<procedure:dispatch>

> ((acc ’withdraw) 50)

50

> ((acc ’withdraw) 60)

Insufficient funds

50

> ((acc ’deposit) 30)

20

> ((acc ’withdraw) 60)

Insufficient funds

20

> (define acc2 (make-account 100))

> ((acc2 ’withdraw) 30)

70

> ((acc ’withdraw) 30)

Insufficient funds

20

Each call to make-account creates a new bank account object (dispatch procedure). Each
call to a bank account object evaluates into its local get-balance,withdrawal or deposit
procedures. Draw an environment diagram that clarifies how local states of objects are kept.
This example uses the message passing programming style and the local state variables
approach.

The programming languages terminology for this approach is encapsulation .
The hiding principle for system design: Protect parts of the system from each
other by providing information access only to parts that need to know, and hide
information from all other.
The encapsulation approach improves modularity .

The syntactic format of operating on an account procedural object may be improved by
introducing interface procedures. Such procedures can act as further abstraction on the
actual representation of objects:

Signature: deposit(account amount)

Type: [ [Symbol -> [Number -> Number]]*Number -> Number]

Post-condition: result = (account ’balance)@pre + amount
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(define deposit

(lambda (account amount)

((account ’deposit) amount)))

Signature: withdraw(account amount)

Type: [ [Symbol -> [Number -> Number]]*Number -> Number]

Post-condition: result = if (account ’balance)@pre >= amount

then (account ’balance)@pre - amount

else (account ’balance)

(define withdraw

(lambda (account amount)

((account ’withdraw) amount)))

> (define acc (make-account 100))

> (withdraw acc 50)

50

> (deposit acc 60)

110

Further generalization – a single procedure for the transactions of account:

Signature: transact(account transaction-type amount)

Type: [ [Symbol -> [Number -> Number]]*Symbol*Number -> Number]

(define transact

(lambda (account transaction-type amount)

((account transaction-type) amount)))

> (transact acc ’withdraw 40)

70

> (transact acc ’deposit 30)

100

8.1.2 Procedural implementation of mutable data structures

The modeling of objects with local state uses the approach of message passing , which is
the eager procedural implementation of structured data, as introduced in Chapter 3. This
approach can be used also for implementing mutable data structures, i.e., data structures
having mutation operations. Mutators are operations that modify the local state of objects.
The following example provides an implementation for the Mutable Pair ADT:

Example 8.6 (Mutable Pair ADT).

; Type: [T1*T2 -> [Symbol -> Procedure]]
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; The dispatch procedure returns procedures with different arities

; (Currying could help here).

(define mpair

(lambda (x y)

(let ((x x) ; No sssignment to input parameters

(y y))

(letrec ((get-x (lambda () x))

(get-y (lambda () y))

(set-x! (lambda (v)

(set! x v)))

(set-y! (lambda (v)

(set! y v)))

(dispatch

(lambda (m)

(cond ((eq? m ’car) get-x)

((eq? m ’cdr) get-y)

((eq? m ’set-car!) set-x!)

((eq? m ’set-cdr!) set-y!)

(else (error ’mpair "Undefined operation ~s" m))))))

dispatch))

))

(define mutable-car (lambda (z) ((z ’car))))

(define mutable-cdr (lambda (z) ((z ’cdr))))

(define set-car!

(lambda (z new-value)

((z ’set-car!) new-value)

))

(define set-cdr!

(lambda (z new-value)

((z ’set-cdr!) new-value)

))

(define p1 (mpair 1 2))

> (mutable-car p1)

1

> (mutable-cdr p1)

2

> (set-car! p1 3)

> (mutable-car p1)

3

> (set-cdr! p1 4)
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> (mutable-cdr p1)

4

> (mutable-cdr (set-cdr! p1 5))

. . procedure application: expected procedure, given: #<void>; arguments were: ’cdr

Example 8.7 (Mutable Pair ADT with self count on setters).

The Pair ADT can be extended with self counting of the number of setter application
to the pair components:

; Type: [T1*T2 -> [Symbol -> Procedure]]

(define mpair

(lambda (x y)

(let ((x x) ; No sssignment to input parameters

(y y)

(setx-number 0)

(sety-number 0))

(letrec ((get-x (lambda () x))

(get-y (lambda () y))

(set-x! (lambda (v)

(set! x v)

(set! setx-number (add1 setx-number))))

(set-y! (lambda (v)

(set! y v)

(set! sety-number (add1 sety-number))))

(how-many-setx (lambda () setx-number))

(how-many-sety (lambda () sety-number))

(dispatch

(lambda (m)

(cond ((eq? m ’car) get-x)

((eq? m ’cdr) get-y)

((eq? m ’set-car!) set-x!)

((eq? m ’set-cdr!) set-y!)

((eq? m ’how-many-setx) how-many-setx)

((eq? m ’how-many-sety) how-many-sety)

(else (error ’mpair "Undefined operation ~s" m))))))

dispatch))

))

(define how-many-setx (lambda (z) ((z ’how-many-setx))))

(define how-many-sety (lambda (z) ((z ’how-many-sety))))

> (define p1 (mpair 1 2))
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> (how-many-setx p1)

0

> (set-car! p1 3)

> (mutable-car p1)

3

>(how-many-setx p1)

1

> (set-car! p1 4)

> (how-many-setx p1)

2

Example 8.8 (Lazy procedural implementation for the Mutable Pair ADT).

The lazy procedural implementation separates the object, i.e., the mutable pair, from its
operations. The application of an operation to an object (i.e., “visit”), the object handles the
operation its argument values (i.e., “accept”), but it cannot handle it its full state. In order
to pass over the local state itself to the mutators, the local state values must be wrapped
with boxes, i.e., have an identity that can be passed over to the mutators. Otherwise, the
mutators are unable to change the local state of the object.

; Type: [T1*T2 -> [[Box(T1)*Box(T2)->T3] -> T3]]

(define lazy-mpair

(lambda (x y)

(let ((x (box x)) ;the local x and y are boxed valued

(y (box y)))

(lambda (sel) (sel x y))) ;the pair object passes boxes to the operations

))

The operations have boxed value parameters. The getters unbox the relevant box, while the
setters set the relevant box:

; Type: [[[Box(T1)*Box(T2)->T3] -> T3] -> T1]

; [[[Box(T1)*Box(T2)->T3] -> T3] -> T2]

(define lazy-mcar (lambda (z) (z (lambda (x y) (unbox x)))))

(define lazy-mcdr (lambda (z) (z (lambda (x y) (unbox y)))))

; Type: [[[Box(T1)*Box(T2)->T3] -> T3]*T1-> Void]

; [[[Box(T1)*Box(T2)->T3] -> T3]*T1-> Void]

(define lazy-set-car!

(lambda (z new-value)

(z (lambda (x y) (set-box! x new-value)))))

(define lazy-set-cdr!

(lambda (z new-value)
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(z (lambda (x y) (set-box! y new-value)))))

> (define p2 (lazy-mpair 1 2))

> (lazy-mcar p2)

1

> (lazy-mcdr p2)

2

> (lazy-set-car! p2 3)

> (lazy-mcar p2)

3

It is recommended to draw an environment diagram that clarifies the roll of the boxes in
passing over the local state of the lazy mutable pair to the mutators, although they are
defined in a different lexical scope. Also, try the above definition without boxes:

1. If the local state variables happen to have the same names as the mutators’ variables
– no mutation takes place.

2. If the local state variables have different names, unbound-variable errors occur. Try!

Example 8.9 (Bad lazy procedural implementations for the Mutable Pair ADT).

;;; First implementation:

(define lazy-mpair

(lambda (x y)

(let ((x x)

(y y))

(lambda (sel) (sel x y)))

))

(define lazy-mcar (lambda (z) (z (lambda (x y) x))))

(define lazy-mcdr (lambda (z) (z (lambda (x y) y))))

(define lazy-set-car!

(lambda (z new-value)

(z (lambda (x y) (set! x new-value)))))

(define lazy-set-cdr!

(lambda (z new-value)

(z (lambda (x y) (set! y new-value)))))

> (define p2 (lazy-mpair 1 2))

> (lazy-mcar p2)

1
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> (lazy-mcdr p2)

2

> (lazy-set-car! p2 3)

> (lazy-mcar p2)

1 ; No change!

;;; Second implementation:

(define lazy-mpair

(lambda (x y)

(let ((x-state x)

(y-state y))

(lambda (sel) (sel x y)))

))

(define lazy-mcar (lambda (z) (z (lambda (x y) x))))

(define lazy-mcdr (lambda (z) (z (lambda (x y) y))))

(define lazy-set-car!

(lambda (z new-value)

(z (lambda (x y) (set! x-state new-value)))))

(define lazy-set-cdr!

(lambda (z new-value)

(z (lambda (x y) (set! y-state new-value)))))

Error: set!: unbound identifier in module in: x-state

Query methods and command operations: In Object-Oriented modeling, it is rec-
ommended to distinguish in every class, the query methods that do not create side effects,
from the command operations that usually are based on side effects.

8.1.3 Sameness and sharing – value and identity equality

Mutation in data structures raises problems of identity and sharing . Different objects
might have equal states but still have different identity. Therefore, it becomes important to
distinguish between object identity to object equality.

Example 8.10 (Sameness and sharing).

> (define x (list (box ’a) (box ’b)))

> (define y (list (car x) (box ’c) (box ’d)))

> (define z (list (box ’a) (box ’c) (box ’d)) )

> (define w y)

> x
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’(#&a #&b)

> y

’(#&a #&c #&d)

> z

’(#&a #&c #&d)

> w

’(#&a #&c #&d)

(set-box! (car y) ’aa)

> x

’(#&aa #&b)

> y

’(#&aa #&c #&d)

> z

’(#&a #&c #&d)

> w

’(#&aa #&c #&d)

> (set-box! (car y) x)

> x

#0=’(#&#0# #&b)

> y

’(#0=#&(#0# #&b) #&c #&d)

> z

’(#&a #&c #&d)

> w

’(#0=#&(#0# #&b) #&c #&d)

>

Note how changing y affects both x and w, although they are not defined using y, while it
does not affect z. The reason is:

− x and y share common parts.

− y and w are identical.

Therefore mutations to y affect the seemingly unrelated variables x and w.
In imperative programming, when object mutations are allowed, there are two kinds of

object equality: value equality and identity equality . Scheme provides two predicates
for equality: equal? for value equality eq? for identity equality:

− equal? – State (value) equality (overloading the Pair and List equality).
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− eq? – Object equality (overloading the Symbol equality).

For the last example:

Value and identity equality:

> (eq? y z)

#f

> (eq? y w)

#t

> (equal? y z)

#t

Structure sharing:

> (eq? (car y) (car x))

#t

Before (car y) is set:

> (equal? (car z) (car x))

#t

But after the mutation:

> (set-box! (car y) ’aa)

> (equal? (car z) (car x))

#f

Example 8.11 (Sameness and sharing in bank accounts).

> (define peter-acc (make-account 100))

> (define fred-acc (make-account 100))

> ((peter-acc ’withdraw) 70)

30

> ((peter-acc ’withdraw) 20)

10

> ((fred-acc ’withdraw) 20)

80

Compare with:

> (define peter-acc (make-account 100))

> (define fred-acc peter-acc)

> ((peter-acc ’withdraw) 70)

30

> ((peter-acc ’withdraw) 20)

10

> ((fred-acc ’withdraw) 20)
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"Insufficient funds"

10

− In the first case the two bank accounts are distinct .

− In the second, there is a single bank account, with two names (aliasing , in the
programming languages terminology): The same bank account is shared by peter
and fred. Changes to peter’s account affect fred’s account!

This example demonstrates the difference between two objects that happen to carry the
same local state information , to a single object that is shared by different variables.
The latter is a dangerous situation that might cause hard to detect bugs (side-effect bugs).
Note that as long as there is no mutation , aliasing causes no problems!

Example 8.12 (List membership using identity equality).

(define memq?

(lambda (x list)

(cond ((null? list) nil)

((eq? x (car list)) list)

(else (memq x (cdr list))))))

WARNING: redefining built-in memq

> (define x (list ’a ’b))

> (define y (cons x x))

> (memq? x y)

((a b) a b)

> (memq? (list ’a ’b) y)

#f

8.2 Operational Semantics: Extending the Environment Model
with Local State Management

The standard operational semantics of imperative programming is given as a computation :

− A computation is a sequence of system-states .

− A system-state is a pair:

– the set of values of the variables in the current scope (including variables in its
enclosing scopes);

– a pointer to the current position in the program code.
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In the scope of this course we cannot develop a new state-based operational semantics.
Instead, we extend the environment model to support state-based modeling. A state in this
framework is:

− The set of values of the variables in the current environment ;

− A pointer to the current position in the program code.

There are three additions: Additional operations for management of assignment in envi-
ronments, addition of the set! assignment special operator and the Box type, and providing
explicit support to the letrec special operator.

1. In the environment data structure:
Addition of an operation (command) for setting the value of an already defined vari-
able:
set-binding!: [<Variable>*Scheme-type*Env -> Void]

The semantics of set-binding!(x, val, ⟨f1, f2, ..., fn⟩) is defined as follows:

if E(x) is defined

then for the frame fi, such that:

fi(x) is defined while fj(x) is undefined for 1 ≤ j < i,

set fi(x) = val

else Error

2. Addition of the set! special operator and the Box type:
env-eval[(set! x e),env] = set-binding!(x,env-eval[e,env],env)

Addition of the primitive procedures of the Box type.

3. Evaluation of a letrec form, as described below.

Evaluation of letrec: In functional programming (substitution or environment model),
recursion is computed by rewriting the code (for example, by adding the function closure
as a parameter, or introducing a fix-point parameter). For that reason, the operational
semantics described in Chapter ?? does not handle recursion in inner scopes. For the global
scope we explicitly added the global-environment mapping, which is defined by application
of define forms.

For recursive global procedures, the define special operator extends the global-environment
mapping with a binding of a variable f and a closure that carries the global-environment
(which is defined on f). Therefore, occurrences of f in the body of this closure are bound by
the declaration of f in the global-environment mapping. But, for locally defined recursive
procedures we had no similar provision.
Consider:
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1. (define f (lambda ....))

2. (let ((f (lambda (...) (... (f...)...)))))

3. (f ...)

Mark the declaration on line (1) as f1, and the declaration on line (2) as f2. Then, the
binding of a let form is:

1. (define f1 (lambda ....))

2. (let ((f2 (lambda (...) (... (f1...)...)))))

3. (f2 ...)

while the intended semantics of recursion requires:

1. (define f1 (lambda ....))

2. (let ((f2 (lambda (...) (... (f2...)...)))))

3. (f2 ...)

In order to enable local recursive procedures, we introduced the letrec special operator,
whose semantics cannot be explained, within functional programming, without rewriting the
code of the recursive procedure. Its effect is to define the local closures within the scope of
the local declarations.

The introduction of local state enables a simple definition for letrec semantics, within
the environment model.

Example 8.13. The letrec form in

(define fact

(lambda (n)

(letrec ((iter (lambda (c p)

(if (= c 0)

p

(iter (- c 1) (* c p))))))

(iter n 1))

))

is defined as equivalent to:

(define fact

(lambda (n)

(let ((iter ’u))

(set! iter (lambda (c p)

(if (= c 0)

p

(iter (- c 1) (* c p)))))

(iter n 1))

))
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That is, the letrec special operator is defined as a derived operator. The semantics of a
letrec form

(letrec ((f1 lambda-exp1) ...(fn lambda-expn)) e1 ... em)

is defined as that of the let form:

(let ((f1 ’unassigned) ... (fn ’unassigned))

(set! f1 lambda-exp1)

...

(set! fn lambda-expn)

e1 ... em))

Static (lexical) observation: The lambda expressions that create the closures for the
local procedures reside within the let scope, and therefore, occurrences of the let variables
in these expressions are bound by the let declarations:

(define f1 (lambda ....))

(let ((f2 ’unassigned))

(set! f2 (lambda (...) (... (f2...)...)))

(f2 ...))

Dynamic (evaluation) observation: The created closures carry the environment that
corresponds to the external let scope, in which the local variable f2 is initialized to a Box
value.

env-eval[(letrec ((f1 lambda-exp1) ...(fn lambda-expn)) e1 ... em), env] =

env-eval[(let ((f1 ’unassigned) ... (fn ’unassigned))

(set! f1 lambda-exp1)

...

(set! fn lambda-expn)

e1 ... em),

env ]

That is, letrec is defined as a derived operator . It is translated into a let form, in
which the internal function names are not initialized. The function definitions are evaluated
within the let body, i.e., with respect to an environment that includes all the letrec declared
variables.
Draw an environment diagram!

8.3 Extending the Environment Model Interpreter and Com-
piler

8.3.1 Imperative evaluator

The changes are:
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1. Adding support for assignment in the environment data structure: Add
support for changing the value of a variable in an environment, and add the procedures
of the Box type to the external variable the-global-environment.

The modification is in the data structures module env-ds.rkt. Recall that an environ-
ment is implemented as a list of boxed frames (the last being the global environment).
Therefore, it is possible to change frames within this list, without affecting clients of
the environment

Variable setting in an environment is implemented by the mutating operation set-binding-in-env

which searches for the first frame in which the given variable is defined, and changes
the binding of this variable to the given value.

; Environment mutator: ADT type is [Env*Var -> Void]

; Purpose: If the environment is defined on the given variable, set its value

; Type: [Symbol*LIST(Box(Frame)*Var*Scheme-type) -> Void]

; Implementation: Uses the get-value-of-variable selector of Substitution,

; which is changed to take also a success continuation.

(define set-binding-in-env!

(lambda (env var val)

(letrec ((defined-in-env ;ADT type is [Var*Env -> Box(Frame) union {empty}]

(lambda (var env)

(if (empty-env? env)

(error ’set! "variable not found: ~s\n env = ~s" var env)

(get-value-of-variable

(first-frame env)

var

(lambda (val) (first-boxed-frame env))

(lambda () (defined-in-env var (enclosing-env env))))))

))

(let* ((boxed-frame (defined-in-env var env))

(frame (unbox boxed-frame)))

(set-box! boxed-frame (change-frame (make-binding var val) frame))))

))

This operation calls the new change-frame constructor, which creates a new frame,
in which the value of the variable is changed to the given value. change-frame calls a
new substitution mutator change-sub, for creating a new substitution with a modified
value for the given variable. In practice, the value is not changed, but the new binding
is added at the head of the new substitution, so that the lookup selector returns the
new value.
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2. Modifying env-eval to support the set! special operator: In the core module
interpreter-core.rkt: Evaluation of assignments calls the new environment muta-
tor:

(define eval-assignment

(lambda (exp env)

(set-binding-in-env! env

(assignment-variable exp)

(env-eval (assignment-value exp) env))

’ok))

3. Adding letrec as a derived expression in the ASP:

(define letrec->let

(lambda (exp)

(letrec ((make-body (lambda (vars vals)

(if (null? vars)

(letrec-body exp)

(make-sequence (make-assignment (car vars)

(car vals))

(make-body (cdr vars)

(cdr vals))))))

(make-bindings (lambda (vars)

(map (lambda (var) (list var ’unassigned))

vars)))

)

(let* ((vars (letrec-variables exp))

(vals (letrec-initial-values exp))

)

(make-let (make-bindings vars) (make-body vars vals))))

))

8.3.2 Imperative compiler

The compiler uses the same data structure and ASP packages. The only modification is to
added syntax analysis and translation of assignment expressions:

(define analyze-assignment

(lambda (exp)

(let ((var (assignment-variable exp))
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(val (analyze (assignment-value exp))))

(lambda (env)

(set-binding-in-env! env var (val env))

’ok))))

8.4 Type checking/Inference with assignments:

Typing begin expressions: In an imperative programming paradigm the special operator
begin gains importance. Its typing rule:

Typing rule begin :

For every type environment _Tenv,

expressions _e1, ..., _en, and

type expressions _S1, ..., _Sn:

If _Tenv |- _e1:_S1, ..., _Tenv |- _en:_Sn

Then _Tenv |- (begin _e1 ... _en):_Sn

Typing set! expressions: An assignment (set! x e) is well typed if e is well typed.
We can further require that the type of e is the type of the variable x, although this
requirement is not enforced by Scheme.

The type of an assignment expression is always Void, but this is conditioned by being
well-typed. We adopt the more restricting version, that enforces a common type for the
variable and the expression. The rule requires Existence of a type for the assigned variable,
and a common type for the variable and the assignment expression. The conclusion infers
the Void type of assignment expressions. It is necessary since assignment expressions can
be components of other expressions.

Typing rule set! :

For every: type environment _Tenv,

expression _e, variable _x, and

type expression _S:

If _Tenv |- _e:_S,

_Tenv |- _x:_S,

Then _Tenv |- (set! _x _e):Void

For typing using the type-constraints method, we need to derive type equations from
the inference rule. We see that the rule enforces two constraints: A common type for the
variable and the assignment expression, and a Void type of assignment expressions.

Type equations for an assignment expression (set! _x _e):

T_x = T_e
T(set! _x _e) = Void
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Note that the equations do not check whether the assigned variable is previously defined.
Comparison between typing of definitions and of assignments: A definition expres-
sions cannot be nested, and therefore cannot block typing of expressions that do not include
occurrences of the defined variable. Therefore, the Define typing rule does not conclude
only a type for the defined variable, and not for the define expression. In contrast, assign-
ment expressions can be nested, and typing of an enclosing expression depends on typing of
the nested assignment expression.

Example 8.14. Derive a type for:

(lambda (balance)

(lambda (amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

’Insufficient- funds)))

Typing statements for the leaves balance, amount, - are obtained by instantiating the
Variable, Symbol and Primitive procedure axioms:

1. {balance:T1} |- balance:T1

2. {amount:T2} |- balance:T2

3. {} |- -:[Number*Number -> Number]

4. {} |- ’Insufficient-funds:Symbol

5. {} |- >=:[Number*Number -> Number]

Applying typing rule Application to typing statements 1,2,3, with type substitution {T1=T2=Number}:

6. {balance:Number, amount:Number} |- (- balance amount):Number

Applying typing rule set! to typing statement 6:

7. {balance:Number, amount:Number} |-

(set! balance (- balance amount)):unit

Applying typing rule begin to typing statements 1,7, with type substitution {T1=Number}:

8. {balance:Number, amount:Number} |-

(begin (set! balance (- balance amount))

balance):Number

Applying typing rule Application to typing statements 1,2,7, with type substitution {T1=T2=Number}:

9. {balance:Number, amount:Number} |- (>= balance amount):Number

Applying typing rule If to typing statements 6,7,9:
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10. {balance:Number, amount:Number} |-

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

’Insufficient- funds):Number union Symbol

Applying typing rule Procedure to typing statement 10:

11. {balance:Number} |-

(lambda (amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

’Insufficient- funds)):[Number -> Number union Symbol]

Applying typing rule Procedure to typing statement 11:

12. {} |-

(lambda (balance)

(lambda (amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

’Insufficient- funds))) :

[Number -> [Number -> Number union Symbol]]

Type checking/inference with the Box type: The Box operations are Racket prim-
itives. Therefore, the Primitive procedure typing axiom has to be extended for the new
primitives.

For every type environment Tenv and type expression S:

Tenv |- box:[S -> Box(S)]

Tenv |- unbox:[Box(S) -> S]

Tenv |- set-box!:[Box(S)*S -> Void]

Tenv |- box?:[S -> Boolean]

Tenv |- equal?:[Box(S)*Box(S) -> Boolean]

Tenv |- eq?:[Box(S)*Box(S) -> Boolean]

8.5 Costs of Introducing Mutation

Languages that are characterized as functional languages (like Scheme and ML) have
operational semantics that is based on successive procedure applications (reductions). The
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main syntactic components are expression and function . The main semantic notion is
reduction . Introducing mutation to such languages sharpens the fundamental difference
between expressions that compute values, to side effect language constructs that are
evaluated for the sake of their side effects and not for their returned values.

Languages that are characterized as imperative languages (like Pascal, C, C++, Java)
have operational semantics that is based on successive evaluation of program statements
(or commands). The main syntactic component is the statement , whose evaluation carries
a side effect. The distinction between value returning expressions to side effect commands
is usually blurred. The main semantic element is the state , which is given by the variable
values.

Function call in functional languages is, usually characterized as call-by-value : The
argument expressions are evaluated, and the resulting values are bound to the corresponding
function parameters. Function call in imperative languages is, often, characterized as call-
by-reference : A function receives implicit references to arguments, rather than copy of
their values, and can modify the arguments held by its caller.

8.5.1 Losing Referential Transparency

Languages where equals can be substituted for equals are called referentially trans-
parent . The static analysis support for such language is much simpler and reliable than for
languages that are not referentially transparent.

− In referentially transparent languages programs can be compared and simplified by
substituting complex expressions by simpler equal expressions.

− In non referentially transparent languages reasoning about programs is hard: Sameness
of objects means sameness of changes, which is hard to define and hard to observe
without actually running the program on sample data.

Consider:

(define W1 (make-withdraw 100))

(define W2 (make-withdraw 100))

> (W1 30)

70

> (W1 70)

0

> (W2 70)

30

Are W1 and W2 the same?
For W1 and W2, we see that they have different effects, although they were created by the
same expression. Surely they cannot be substituted one for the other in other expressions.
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Value classes in Object-Oriented modeling: Classes of objects that should not have
local states are termed value classes and their objects are value objects. Value classes
should provide an equal predicate that equates objects with equal state. Sometimes their
constructor is restricted not to duplicate objects with equal state.

8.5.2 Dependency on Mutation Ordering

Mutation introduces sensitivity to order of operations, which might cause difficulties, espe-
cially in concurrent environment. Without side effects, sequences of expressions are mean-
ingless.
Compare the iterative factorial:

(define factorial

(lambda (n)

(letrec ((iter (lambda(product counter)

(if (> counter n)

product

(iter (* counter product) (+ counter 1))))

))

(iter 1 1))))

with an alternative imperative style:

(define factorial

(lambda (n)

(let ((product (box 1))

(counter (box 1)))

(letrec ((iter (lambda()

(if (> (unbox counter) n)

(unbox product)

(begin

(set-box! product

(* (unbox counter) (unbox product)))

(set-box! counter (+ (unbox counter) 1))

(iter))))

))

(iter)))

))
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Conclusion: Techniques, Principles
and Language Comparison

What did we learn in this course?

Subjects:

1. Elements of programming languages:

(a) Language building blocks: Atomic elements; composition means; abstraction
means.

(b) Language syntax: Concrete syntax, abstract syntax.

2. Meaning of a programming language:

(a) Operational semantics: Applicative (eager), normal (lazy); lexical scoping,
dynamic scoping.

(b) Types: Type inference, type checking; dynamic typing, static typing techniques;
polymorphic types; type specification language.

3. Using programming languages for problem solving:

(a) Procedure abstraction: As a parameter/argument, returned value, data struc-
ture component.

(b) Abstract data types (ADT): Abstraction – separation between application
to implementation; invariants, operation contracts, ADT embedding, Design by
Contract; hierarchical data types; lazy lists.

4. Meta-programming tools Interpreter, compiler; static (compile) time evaluation,
run-time evaluation.

414



Chapter 9 Principles of Programming Languages

5. Programming styles:

(a) Iteration vs. recursion.

(b) Continuation Passing Style.

(c) Lazy lists.

6. Programming considerations and conventions: Contracts, Tests, Asymptotic
complexity, Compile-time vs. Run-time.

7. Imperative programming: State, mutation and change in programming.

Techniques:

1. Substitution operation: Used in the operational semantics algorithms and in type
inference algorithms.

2. Renaming operation: Used in the operational semantics algorithms and in type
inference algorithms.

3. Pattern matching, unification operations: Used in the operational semantics
algorithms and in type inference algorithms.

4. Lazy/eager approaches: Used in various contexts – semantics, ADT implementa-
tion, partial evaluation.

5. Delayed evaluation.

6. Partial evaluation: Currying.

Programming paradigms:

1. Functional programming (Scheme, Lisp, ML): Its origins are in the lambda
calculus.

2. Logic programming (Prolog): Its origins are in mathematical logic.

3. Imperative programming (ALGOL-60, Pascal, C): Its origins are in the Von-
Neumann computer architecture.

Table 9.1 presents a comparison of the languages discussed in this course, with the
addition of the Java language. The comparison covers a variety of parameters, theoretical
and practical.
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Table 9.1: Language comparison

Scheme ML LP Prolog Java

Syntax simple rich simple rich rich

Uniform Syntax yes no yes yes no

Main syntax expression expression term, term, statement
component formula formula

Typing dynamic static – dynamic static

Type inference no yes – – no

Polymorphism yes yes – – yes

Runtime errors yes no no yes yes

Computation
direction yes yes no yes yes

Runtime anonymous
procedures closure closure no term classe

Formal
operational
semantics yes yes yes no no

Procedure evaluation,
application pattern
mechanism evaluation matching unification unification evaluation

Programming
paradigm functional functional logic logic object-oriented

State support yes yes no no yes

Expressive RLP: Decidable,
power TM TM FLP: TM TM TM

User defined
types no yes – – yes

Scope definition lambda fn, => rule rule class, statement

Nested scopes yes yes no no yes

Delay mechanism lambda fn, => – – anonymous class
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Notes:

1. Uniform syntax: A major syntax component (like expressions or statements) and a
printed form of a major data structure share a common syntax. In Prolog, terms and
atomic formulas share a common syntax.

2. Name space support: Support for nested, co-existing scopes.

3. Runtime procedures: Support for procedures that are created at run time. In
Prolog, terms can be turned into atomic formulas (queries) during computation.
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