
Lecture 10: Key Distribution for Symmetric Key

Cryptography and Generating Random Numbers

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

February 10, 2017
9:33am

c©2017 Avinash Kak, Purdue University

Goals:

• Why might we need key distribution centers?

• Master key vs. Session key

• The Needham-Schroeder and Kerberos Protocols

• Generating pseudorandom numbers

• Generating cryptograhically secure pseudorandom num-

bers

• Hardware and software entropy sources for truly random num-

bers

• A word of caution regarding software entropy sources

CONTENTS

Section Title Page

10.1 The Need for Key Distribution Centers 3

10.2 The Needham-Schroeder Key Distribution 5
Protocol

10.2.1 Some Variations on the KDC Approach to Key 10
Distribution

10.3 Kerberos 12

10.4 Random Number Generation 23

10.4.1 When are Random Numbers Truly Random? 25

10.5 Pseudorandom Number Generators (PRNG): 27
Linear Congruential Generators

10.6 Cryptographically Secure PRNGs: The ANSI 32
X9.17/X9.31 Algorithm

10.7 Cryptographically Secure PRNGs: The Blum 37
Blum Shub Generator (BBS)

10.8 Entropy Sources for Generating True Random 40
Numbers

10.9 Software Entropy Sources 47

10.9.1 /dev/random and /dev/urandom as Sources of 49
Random Bytes

10.9.2 EGD — Entropy Gathering Daemon 54

10.9.3 PRNGD (Pseudo Random Number Generator Daemon) 58

10.9.4 A Word of Caution Regarding Software Sources of Entropy 60

10.10 Homework Problems 63

2

Computer and Network Security by Avi Kak Lecture 10

10.1: THE NEED FOR KEY
DISTRIBUTION CENTERS

• Let’s say we have a large number of people, processes, or systems

that want to communicate with one another in a secure fashion.

Let’s further add that this group of people/processes/systems is

not static, meaning that the individual entities may join or leave

the group at any time.

• A simple-minded solution to this problem would consist of each

party physically exchanging an encryption key with every one of

the other parties. Subsequently, any two parties would be able to

establish a secure communication link using the encryption key

they possess for each other. This approach is obviously not

feasible for large groups of people/processes/systems,

especially when group membership is ever changing.

• A more efficient alternative consists of providing every group

member with a single key for securely communicate with a key

distribution center (KDC). This key would be called a mas-

ter key. When A wants to establish a secure communication

link with B, A requests a session key from KDC for communi-

3

Computer and Network Security by Avi Kak Lecture 10

cating with B.

• In implementation, this approach must address the following is-

sues:

– Assuming that A is the initiator of a session-key request to

KDC, when A receives a response from KDC, how can A

be sure that the sending party for the response is indeed the

KDC?

– Assuming that A is the initiator of a communication link with

B, how does B know that some other party is not masquerad-

ing as A?

– How does A know that the response received from B is indeed

from B and not from someone else masquerading as B?

– What should be the lifetime of the session key acquired by A

for communicating with B?

• The next section presents how the Needham-Schroeder protocol

addresses the issues listed above. A more elaborate version of

this protocol, known as the Kerberos protocol, will be presented

in Section 10.3.

4

Computer and Network Security by Avi Kak Lecture 10

10.2: THE NEEDHAM-SCHROEDER KEY
DISTRIBUTION PROTOCOL

A party named A wants to establish a secure communication link

with another party B. Both the parties A and B possess master

keys KA and KB, respectively, for communicating privately with a

key distribution center (KDC). [In a university setting, there is almost never a need

for user-to-user secure communication links. So for folks like us in a university, all we need is a password to log into

the computers. However, consider an organization like the U. S. State Department where people working in different

U.S. embassies abroad may have a need for user-to-user secure communication links. Now, in addition to the master

key, a user named A may request a session key for establishing a direct communication link with another user named

B. This session key, specific to one particular communication link, would be valid only for a limited time duration.

This is where Needham-Schroeder protocol can be useful.] Now A engages in the following

protocol (Figure 1):

• Using the key KA for encryption, user A sends a request to KDC for a

session key intended specifically for communicating with user B.

• The message sent by A to KDC includes A’s network address (IDA), B’s
network address (IDB), and a unique session identifier. The session

identifier is a nonce — short for a “number used once” — and we will
denoted it N1. The primary requirement on a nonce — a random number
— is that it be unique to each request sent by A to KDC. The message

sent by A to KDC can be expressed in shorthand by

5

Computer and Network Security by Avi Kak Lecture 10

KDC
Party

B

A
E(K , [ID , ID , N1])

BA

Party

A

E(K , [K , ID])
B S A

E(K , N2)
S

E(K , N2 + 1)
S

1

E(K , [K , ID , ID , N1, E(K , [K , ID])])
ASBBAS A 2

3

 As encrypted by KDC for delivery to B

4

5

Figure 1: A pictorial depiction of the Needham-Schroder

protocol. (This figure is from Lecture 10 of “Computer and Network Security” by Avi Kak)

6

Computer and Network Security by Avi Kak Lecture 10

E(KA, [IDA, IDB , N1])

where E(., .) stands for encryption of the second-argument data block

with a key that is in the first argument.

• KDC responds to A with a message encrypted using the key KA. The

various components of this message are

– The session-key KS that A can use for communicating with B.

– The original message received from A, including the nonce used by
A. This is to allow A to match the response received from KDC with

the request sent. Note that A may be trying to establish multiple
simultaneous sessions with B.

– A “packet” of information meant for A to be sent to B. This packet
of information, encrypted using B’s master key KB includes, again,

the session key KS, and A’s identifier IDA. (Note that A cannot look
inside this packet because A does not have access to B’s master key

KB. We will sometimes refer to this packet of information as a ticket
that A receives for sending to B.

• The message that KDC sends back to A can be expressed as

E(KA, [KS, IDA, IDB , N1, E(KB, [KS, IDA])])

7

Computer and Network Security by Avi Kak Lecture 10

• Using the master key KA, A decrypts the message received from KDC.
Because only A and KDC have access to the master key KA, A is certain

that the message received is indeed from KDC.

• A keeps the session key KS and sends the packet intended for B to B.
This message is sent to B unencrypted by A. But note that it was

previously encrypted by KDC using B’s master key KB. Therefore,
this first contact from A to B is protected from eavesdropping.

• B decrypts the message received from A using the master key KB. B

compares the IDA in the decrypted message with the sender identifier

associated with the message received from A. By matching the two, B
makes certain that no one is masquerading as A.

• B now has the session key for communicating securely with A.

• Using the session key KS, B sends back to A a nonce N2. A responds
back with N2 + 1, using, of course, the same session key KS. This serves

as a confirmation that the session key KS works for the ongoing session
— this requires that what A encrypts with KS be different from what

B encrypted with KS. This part of the handshake also ensures that B
knows that it did not receive a first contact from A that A is no longer

interested in. An additional benefit of this step is that it provides some
protection against a replay attack. [A replay attack takes different forms in

different contexts. For example, in the situation here, if A was allowed to send back to

B the same nonce that it received from the latter, then B could suspect that some other

party C posing as A was merely “replaying” back B’s message that it had obtained by,

say, eavesdropping. In another version of the replay attack, an attacker may repeatedly

send an information packet to a victim hoping to elicit from the latter variations on

the response that the attacker may then analyze for some vulnerability in the victim’s

8

Computer and Network Security by Avi Kak Lecture 10

machine. The PTW attack on WEP that you saw in Section 9.8.3 of Lecture 9 is an

example of that form of a replay attack.] The message sent by B back to A

can be expressed as

E(KS, [N2])

And A’s response back to B as

E(KS, [N2 + 1])

• This exchange of message is shown graphically in Figure 1. A most

important element of this exchange is that what the KDC sends
back to A for B can only be understood by B.

9

Computer and Network Security by Avi Kak Lecture 10

10.2.1: Some Variations on the KDC Approach to

Key Distribution

• It is not practical to have a single KDC service very large networks

or network of networks.

• One can think of KDC’s organized hierarchically, with each lo-

cal network serviced by its own KDC, and a group of networks

serviced by a more global KDC, and so on.

• A local KDC would distribute the session keys for secure commu-

nications between users/processes/systems in the local network.

But when a user/process/system desires a secure communication

link with another user/process/system in another network, the

local KDC would communicate with a higher level KDC and re-

quest a session key for the desired communication link.

• Such a hierarchy of KDCs simplifies the distribution of master

keys. A KDC hierarchy also limits the damage caused by a faulty

or subverted KDC.

• Before ending this section, it is important to point out that for

small networks there does exist an alternative to the KDC based

10

Computer and Network Security by Avi Kak Lecture 10

approach to session-key generation. The alternative consists of

storing at every node of a network the “master” keys needed for

communicating privately with each of the other N nodes in a

network. Therefore, each node will store N − 1 such keys. If the

messages shuttling back and forth in the network are short, you

may use these keys directly for encryption. However, when the

messages are of arbitrary length, a node A in the network can use

the master key for another node B to first set up a session key

and subsequently use the session key for the actual encryption of

the messages.

11

Computer and Network Security by Avi Kak Lecture 10

10.3: KERBEROS

• To see a need for this protocol, consider the following application

“scenario:”

– Let’s say that a university computer network wants to provide printer
services to its students. The printers are located at certain designated

locations on the campus. Each student gets a “printer budget” on a
semester basis. A student is allowed a certain number of free pages.

When a student has used up his/her printer budget, he/she is ex-
pected to deposit money in the registrar’s office for additional pages.

– The printers are connected to machines that we can refer to as “printer

servers” that — let’s say — run the CUPS software. [In Linux/Unix en-

vironments, CUPS is probably the most popular software package used today to turn your machine into

printer server. (The acronym started out as standing for “Common Unix Printing System” but now it’s a

name unto itself. With CUPS installed, your machine can accept print requests from other hosts in your

LAN or even in the internet at large if you enable CUPS accordingly. Most of the time, though, most

folks use CUPS on a standalone basis to send jobs to printers that you are authorized to access.) CUPS

is an implementation of the Internet Printing Protocol (IPP). Think of IPP in the same way as you think

of HTTP: IPP is a client-server protocol in which the client hosts send requests for print jobs (and, only

the requests, since, eventually, the print jobs go directly to the printers) to the server hosts. The clients

may query a server for the status of a printer, for the status of a print job, the printer options, etc. In

the same manner as HTTP, IPP is described in a series of RFC documents issued by IETF. For example,

RFC 2910 and 2911 describe the version IPP/1.1 of the protocol. By the way, the default server port for

IPP is TCP/631 in the same manner as the default server port for HTTP is TCP/80. CUPS also uses

12

Computer and Network Security by Avi Kak Lecture 10

the port UDP/631 for printer discovery. With regard to the relationship between IPP and TCP, IPP is

in the application layer of the 4-layer TCP/IP stack you’ll see in Lecture 16. Under IPP, each printer

gets its own IP address and communications with the printer are based on the TCP protocol described

in Lecture 16.]

– There are several security and authentication issues involved in this
scenario. When a print request is received, a printer server must

first authenticate the client — since not all the client hosts on the
campus may be authorized to send jobs to the printer in question.

Subsequently, the printer server must also validate the print request
received against the print budget for the student who sent the re-

quest. Finally, the printer server must somehow enable a confidential
communication link directly from the host where the print request

originated to the printer in question. That is, you would not want a
student to send his/her job to the printer in plaintext. At the same
time, you would not want an off-the-shelf printer to have to do too

much security-related computing for an encrypted link between
the student and the printer. The printer server would not want to

route all the print jobs through itself since that would unnecessarily
bog down the server.

– The big issue here is how to establish a direct authenticated and
confidential communication link between the host where the print

request originated and the printer. Since printers generally are rudi-
mentary when it comes to general purpose computing, you may not

expect a printer to contain all of the software that generally is required
these days (such as the SSL/TLS libraries) for establishing such links.
And you certainly would not want the students to establish password

based connections with the printers (for authentication) since such
passwords are likely to be transmitted in clear text over a network.

– All of the difficulties mentioned above are solved by the Kerberos

13

Computer and Network Security by Avi Kak Lecture 10

protocol described in this section. With the Kerberos protocol, there
is no reason to transmit passwords in clear text or otherwise. As in

the Needham-Schroeder protocol, Kerberos operates on the principle
of shared secret keys. If you have enabled Kerberos in the CUPS soft-

ware on the printer server, when you add a client host to the group of
hosts allowed to send print jobs to the printers, you’ll simultaneously

create a secret key (like the master keys in the Needham-Schroeder
protocol) that will be shared by the client and the printer server. The

printer server will also possess a shared secret key for communicating
with each of the printers it is in charge of. Eventually, through the
Kerberos protocol, the printer server will bring into existence a secret

session key that would allow, say, a student’s laptop to send a
print job directly to the printer over an encrypted link.

• This protocol provides security for client-server interactions in a

network. We are talking about servers such as printer servers (as

in the example described above), database servers, news servers,

FTP servers, and so on.

• The main difference between the Needham-Schroeder protocol

and the Kerberos protocol is that the latter makes a distinction

between the clients, on the one hand, and the service providers,

on the other. As you will recall, no such distinction is made in

the Needham-Schroeder protocol.

• In the Kerberos protocol, the Key Distribution Center (KDC) is

divided into two parts, one devoted to client authenticaiton, and

the other in charge of providing security to the service providers.

14

Computer and Network Security by Avi Kak Lecture 10

• With regard to the strange sounding name of this protocol, note

that Kerberos is another name for Cerberus, the three-headed

dog who guards the gates of Hades in Greek mythology.

• As mentioned, and as shown in Figure 2, the KDC in Ker-

beros has two parts to it, one in charge of security vis-a-vis the

clients and the other in charge of the security vis-a-vis the ser-

vice providers. The former is called the Authentication Server

(AS) and the latter the Ticket Granting Server (TGS). If there

is any complexity to Kerberos, especially vis-a-vis the Needham-

Schroeder protocol, it is owing to the fact that a client cannot

gain direct access to TGS and only the TGS can provide a session

key to communicate with a service provider. A client must first

authtenticate himself/herself/itself to AS and obtain from AS a

session key for accessing TGS. [Consider again the printer scenario I painted for when

Kerberos is supposed to be used — it makes perfect sense in that scenario to separate the Authentication

Server AS from the Ticket Granting Server TGS. With such a separation, AS can concern itself exclusively

with matters related to user authentication, which would include keeping up-to-date with who is allowed to use

which printers. In a large enterprise like Purdue University with its tens of thousands of users, the database of

users and which printers and other resources the users are allowed to access is bound to be in a constant state

of flux as new students join the university, graduating students leave, and other students who may drop out

for a while. On the other hand, TGS can concern itself exclusively with issues related directly to the printers.

These issues could include keeping track of the current load on each printer so that a user wanting access to a

printer that already has too many jobs in its queue could be warned; etc.]

• In the rest of the Kerberos protocol described here, we will use

the following notation:

15

Computer and Network Security by Avi Kak Lecture 10

– KClient denotes the secret key held by AS for the Client.

– KTGS denotes the secret key held by AS for TGS. TGS also

has this key.

– KServiceProvider denotes the secret key held by AS for the Ser-

vice Provider. The Service Provider also has access to this

key.

– KClient−TGS denotes the session key that AS will send to

the Client for communicating with TGS.

– KClient−ServiceProvider denotes the session key that TGS will

send to the Client for communicating with the Service Provider.

Client Provider

AS TGS

Ticket Granting
Server

Key Distribution Center (KDC)

Authentication
Server

Service
Client wants a session key to
talk to the service provider server

Figure 2: The main “actors” that participate in the Ker-

beros protocol. (This figure is from Lecture 10 of “Computer and Network Security” by Avi

Kak)

16

Computer and Network Security by Avi Kak Lecture 10

• Each Client registerswith the Authentication Server and is granted

a user identity and a secret password. As shown in Figure 3, the

Client sends a request in plain text to the AS. This request is

for a service that the Client expects from the Service Provider.

(Message 1) [The message numbers are shown in small circles in Figure 3.]

• The AS sends back to the Client the following two messages en-

crypted with the KClient key. In the database maintained by AS,

this key is specific to the Client and will remain unchanged as

long as the client does not alter his/her password. Note that this

encryption key is not directly known to the Client. The two

messages are:

– A session key KClient−TGS that the client can use to commu-

nicate with TGS. (Message 2) This message may be expressed

as

E(KClient, [KClient−TGS])

– A Ticket-Granting Ticket (TGT) that is meant for de-

livery to TGS. This ticket includes the client’s user ID, the

client’s network address, validation time, and the sameKClient−TGS

session key as mentioned above. The ticket is encrypted with

the KTGS secret key that the AS server maintains for TGS.

(Message 3) Therefore, this message from AS to the Client

may be expressed by

17

Computer and Network Security by Avi Kak Lecture 10

Client
Provider
Service

AS TGS

Ticket Granting
Server

Key Distribution Center (KDC)

Authentication
Server

Client−TGS Session Key Encrypted

Client
with K and ticket for TGS

encrypted with K
TGS

Ticket received from AS for TGS and

Client Authenticator encrypted with
the Client−TGS session key

Client−to−ServiceProvider Ticket encrypted with K

and client−to−ServiceProvider session key encrypted
with with the Client−TGS session key

Timestamp in Client Authenticator + 1 encrypted with the

Client−to−ServiceProvider Session Key

Client−to−ServiceProvider Ticket as received from TGS and the Client Authenticator

encrypted with Client−to−ServiceProvider Session key

1
Request Ticket for TGS in clear text

2,3

4,5

6,7

8,9

10

SP

Figure 3: A pictorial depiction of the Kerberos protocol.

(This figure is from Lecture 10 of “Computer and Network Security” by Avi Kak.)

18

Computer and Network Security by Avi Kak Lecture 10

E(KClient, [KClient−TGS, E(KTGS, [ClientID,ClientIP, V alidityPeriod,KClient−TGS])])

The TGT is also referred to as the initial ticket since it en-

able the Client to subsequently obtain Client-to-ServiceProvider

tickets from TGS.

• When the client receives the above messages, the client enters

his/her password into a dialog box. An algorithm converts this

password into what would be the KClient encryption key if the

password is correct. The password is immediately de-

stroyed and the generated key used to decrypt the messages

received from AS. The decryption allows the Client to extract

the session key KClient−TGS and the ticket meant for TGS from

the information received from AS.

• The client now sends the following two messages to TGS:

– The encrypted ticket meant for TGS followed by the ID of the

requested service. If the client wants to access an FTP server,

this would be the ID of the FTP server. (Message 4)

– A Client Authenticator that is composed of the client ID

and the timestamp, the two encrypted with the KClient−TGS

session key. (Message 5)

19

Computer and Network Security by Avi Kak Lecture 10

• TGS recovers the ticket from the first of the two messages listed

above. From the ticket, it recovers the KClient−TGS session. The

TGS then uses the session key to decrypt the second message

listed above that allows it to authenticate the Client.

• TGS now sends back to the Client the following two messages:

– AClient-to-ServiceProvider ticket that consists of 1) the Client

ID, 2) the Client network address, 3) the validation period,

and 4) a session key for the Client and the Service Provider,

KClient−ServiceProvider. This session key is encrypted with the

KServiceProvider key that is known to TGS. (Message 6)

– The sameKClient−ServiceProvider session key as mentioned above

but this time encrypted with the KClient−TGS session key.

(Message 7)

• The client recovers the ticket meant for the service provider with

the KClient−TGS session key.

• The client next sends the following two messages to the service

provider:

– The Client-to-ServiceProvider ticket that was encrypted by

TGS with the KServiceProvider key. (Message 8)

20

Computer and Network Security by Avi Kak Lecture 10

– An authenticator that consists of the Client ID and the time-

stamp. This authenticator is encrypted with theKClient−ServiceProvider

session key. (Message 9)

• The Service Provider decrypts the ticket with its ownKServiceProvider

key. It extracts the KClient−ServiceProvider session key from the

ticket, and then uses the session key the decrypt the second mes-

sage received from the client.

• If the client is authenticated, the ServiceProvider sends to the

Client a message that consists of the timestamp in the authentica-

tor received from the Client plus one. This message is encrypted

using the KClient−ServiceProvider session key. (Message 10)

• The client decrypts the message received from the Service Provider

using the KClient−ServiceProvider session key and makes sure that

the message contains the correct value for the timestamp. If

that is the case, the client can start interacting with the Ser-

vice Provider. When the “Service Providers” are the campus-wide

printers at a place like Purdue, as in the motivatiional scenario

painted at the beginning of this section, it is theKClient−ServiceProvider

key that allows a student’s laptop to send his/her job directly to

a printer over an encrypted connection.

• An additional advantage of separating AS from TGS (although

21

Computer and Network Security by Avi Kak Lecture 10

they may reside in the same machine) is that the Client needs to

contact AS only once for a Client-to-TGS ticket and the Client-

to-TGS session key. These can subsequently be used for multiple

requests to the different service providers in a network.

• In your use of network-based client-server applications, you are

likely to run into the acronym GSS-API (sometimes abbreviated

GSSAPI) when a server asks you to authenticate yourself. GSS-

API is an official standard and Kerberos is the most common

implementation of this API. The acronym GSS-API stands for

Generic Security Services API. [I suppose you already know that API stands

for Application Programming Interface. API has got to be one of the most commonly

used acronyms in modern engineering.]

22

Computer and Network Security by Avi Kak Lecture 10

10.4: RANDOM NUMBER GENERATION

Secure communications in computer networks would simply be im-

possible without high quality random and pseudorandom number

generation. Here are some of the reasons:

• The session keys that a KDC must generate on the fly are nothing

but a sequence of randomly generated bytes. For the purpose of

transmission over character-oriented channels (as is the case with

all internet communications), each byte in such a sequence could

be represented by its two hex digits. So a 128-bit session key

would simply be a string of 32 hex digits.

• The nonces that are exchanged during handshaking between a

host and a KDC (see Section 10.2) and amongst hosts are also

random numbers.

• As we will see in Lecture 12, random numbers are also needed for

the RSA public-key encryption algorithm. Fundamentally, what

RSA needs are prime numbers. However, since there do not exist

methods that can generate prime numbers directly, we resort to

generating random numbers and testing them for primality.

23

Computer and Network Security by Avi Kak Lecture 10

• As you will see in Lecture 24, you also need random numbers to

serve as salts in password hashing schemes. As you will learn in

that lecture, you combine randomly generated bits with the string

of characters entered by user as his/her password, and then hash

the whole thing to create a password hash. Salts make it much

more challenging to crack passwords by table lookup.

• You need true random numbers, as opposed to pseudorandom

numbers, to serve as one-time keys.

24

Computer and Network Security by Avi Kak Lecture 10

10.4.1: When Are Random Numbers Truly Random?

• To be considered truly random, a sequence of numbers must ex-

hibit the following two properties:

Uniform Distribution: This means that all the numbers in a

designated range must occur equally often.

Independence: This means that if we know some or all the

number up to a certain point in a random sequence, we should

not be able to predict the next one (or any of the future ones).

• Truly random numbers can only be generated by physical phe-

nomena (microscopic phenomena such as thermal noise, and macro-

scopic phenomena such as cards, dice, and the roulette wheel).

• Modern computers try to approximate truly random numbers

through a variety of approaches that we will address in Section

10.6 through 10.8 of this lecture.

• Algorithmically generated random numbers are called pseudo-

random numbers. [Despite the pejorative sense conveyed by “pseudo,” the repeatabil-

ity of pseudorandom numbers is of great importance in engineering work. Let’s say you are debugging

25

Computer and Network Security by Avi Kak Lecture 10

a computer program that requires random input for one of its variables. If you only had access to truly

random numbers for testing the program, it would be difficult for you to be certain that the change in

the behavior of the program for its different runs was not because of a bug in your code.]

26

Computer and Network Security by Avi Kak Lecture 10

10.5: PSEUDORANDOM NUMBER
GENERATORS (PRNGs): LINEAR
CONGRUENTIAL GENERATORS

• This is by far the most common approach for generating pseudo-

random numbers for non-security applications.

• Starting from a seed X0, a sequence of (presumably pseudoran-

dom) numbers X0, X1,, Xi, ... is generated using the recur-

sion:

Xn+1 = (a ·Xn + c) mod m

where

m the modulus m > 0

a the multiplier 0 < a < m

c the increment 0 ≤ c < m

X0 the seed 0 < X0 < m

• The values for the numbers generated will be in the range 0 ≤

Xn < m.

27

Computer and Network Security by Avi Kak Lecture 10

• As to how random the produced sequence of numbers is depends

critically on the values chosen for m, a, and c. For example,

choosing a = c = 1 results in a very predictable sequence.

• Should a previously generated number be produced again, what

comes after the number will be a repeat of what was seen before.

That is because for a given choice of m, c, a, the next number

depends only on the current number. Consider the case when

a = 7, c = 0, m = 32 and when the seed X0 = 1. The se-

quence of numbers produced is {7, 17, 23, 1, 7, 17, 23, 1,}.

The period in this case is only 4.

• Since the “randomness” property of the generated sequence of

numbers depends so critically on m, a, c, people have come up

with criteria on how to select values for these parameters:

– To the maximum extent possible, the selected parameters

should yield a full-period sequence of numbers. The pe-

riod of a full-period sequence is equal to the size of the mod-

ulus. Obviously, in a full-period sequence, each number be-

tween 0 and m− 1 will appear only once in a sequence of m

numbers.

– It has been shown that when m is a prime and c is zero, then

for certain value of a, the recursion formula shown above is

guaranteed to produce a sequence of period m − 1. Such a

28

Computer and Network Security by Avi Kak Lecture 10

sequence will have the number 0 missing. But every number

n, 0 < n < m, will make exactly one appearance in such a

sequence.

– The sequence produced must pass a suite of statistical tests

meant to evaluate its randomness. These tests measure how

uniform the distribution of the sequence of numbers is and

how statistically independent the numbers are.

• Commonly, the modulus m — we want it to be a prime — is

chosen so that it is also the largest positive integer value for a

system. So for a 4-byte signed integer representation, m would

commonly be set to 231 − 1. With c = 0, our recursion for

generating a pseudorandom sequence then becomes

Xn+1 = (a ·Xn) mod (231 − 1)

• Earlier we said that when m is a prime and c is zero, then certain

values of a will guarantee an output sequence with a period of

m− 1. A commonly used value for a is 75 = 16807.

• Statistical properties of the pseudorandom numbers generated by

usingm = 231−1 and a = 75 have been analyzed extensively. It

is believed that such sequences are statistically indistinguishable

from true random sequences consisting of positive integers greater

than 0 and less than m.

29

Computer and Network Security by Avi Kak Lecture 10

• But are such sequences cryptographically secure? [The previous

bullet says that a random sequence produced by a linear congruential generator can

be indistinguishable from a true random sequence. So why this question about its

cryptographic security? Yes, indeed, taken purely as a sequence of numbers, without

any knowledge of how the sequence was produced, the output of a linear congruential

generator can indeed look very random when analyzed with probability-based and other

statistical tools. But should the attacker know that the sequence was produced by a

linear congruential generator, all bets are off regarding its cryptographic security. Read

on.]

• A pseudorandom sequence of numbers is cryptographically

secure if it is difficult for an attacker to predict the next number

from the numbers already in his/her possession.

• When linear congruential generators are used for produc-

ing random numbers, the attacker only needs three pieces

of information to predict the next number from the

current number: m, a, c. The attacker may be able to in-

fer the values for these parameters by solving the simultaneous

equations:

X1 = (a ·X0 + c) mod m

X2 = (a ·X1 + c) mod m

X3 = (a ·X2 + c) mod m

Just as an exercise assume that m = 16, c = 0, and a = 3.

30

Computer and Network Security by Avi Kak Lecture 10

Assuming X0 to be 3, set up the above three equations for the

next three values of the sequence. These values are 9, 11, and 1.

You will see that it is not that difficult to infer the value for the

parameters of the recursion.

• The upshot is that even when a pseudorandom number generator

(PRNG) produces a “good” random sequence, it may not be

secure enough for cryptographic applications.

• A pseudorandom sequence produced by a PRNG can be made

more secure from a cryptographic standpoint by restarting the

sequence with a different seed after every N numbers. One way

to do this would be to take the current clock time modulo m as a

new seed after every so many numbers of the sequence have been

produced.

31

Computer and Network Security by Avi Kak Lecture 10

10.6: CRYPTOGRAPHICALLY SECURE
PRNG’S: The ANSI X9.17/X9.31

ALGORITHM

• As mentioned in the previous section, a pseudorandom sequence

of numbers is cryptographically secure if it is difficult for an at-

tacker to predict the next number from the numbers already in

his/her possession. The algorithm of the previous section does

NOT yield cryptographically secure random numbers.

• We will now talk about a widely used cryptographically secure

pseudorandom number generator (CSPRNG). This technique for

generating pseudorandom numbers is used in many secure sys-

tems, including those for financial transactions, email exchange

(as made possible by, say, the PGP protocol that we will take up

in Lecture 20), etc.

• X9.17 in the title of this section refers to the 1985 version of the

ANSI standard whose Appendix C describes this PRNG. And

X9.31 refers to the 1998 version of the standard whose Appendix

A2.4 describes the same PRNG.

32

Computer and Network Security by Avi Kak Lecture 10

• As shown in Figure 4, this PRNG is driven by two encryption

keys and two special inputs that change for each output number

in a sequence.

• Each of the three “EDE” boxes shown in Figure 4 stands for the

two-key 3DES algorithm. As you will recall from Lecture 9, the

two-key 3DES algorithm carries out a DES encryption, followed

by a DES decryption, and followed by a DES encryption. The

acronym EDE means “encrypt-decrypt-encrypt”.

• The two inputs are: (1) A 64-bit representation of the current

date and time (DTj); and (2) A 64-bit number generated when

the previous random number was output (Vj). The PRNG is ini-

tialized with a seed value for V0 for the very first random number

that is output.

• All three EDE boxes shown in Figure 4 use the same two 56-bit

encryption keys K1 and K2. These two encryption keys stay the

same for the entire pseudorandom sequence.

• The output of the PRNG consists of the sequence of pairs (Rj, Vj+1),

j = 0, 1, 2,, where Rj is the j
th random number produced

by the algorithm and Vj+1 the input for the (j + 1)th iteration of

the algorithm. From Figure 4 the output pair (Rj, Vj+1) is given

by

33

Computer and Network Security by Avi Kak Lecture 10

V
j+1

EDE

EDE

EDE

V
j

Date and Time

64 bits

64 bits 64 bits

64 bits

Keys K1 and K2 for EDE

112 bits

Random Number R
j

Figure 4: ANSI X9.17/X9.31 Pseudorandom Number Gen-

erator. (This figure is from Lecture 10 of “Computer and Network Security” by Avi Kak.)

34

Computer and Network Security by Avi Kak Lecture 10

Rj = EDE ([K1, K2] , [Vj ⊗ EDE([K1, K2] , DTj)]) (1)

Vj+1 = EDE ([K1, K2] , [Rj ⊗ EDE([K1, K2] , DTj)]) (2)

where EDE([K1, K2], X) refers to the encrypt-decrypt-encrypt

sequence of 3DES using the two keys K1 and K2.

• The following reasons contribute to the cryptographic security of

this approach to PRNG:

– We can think of Vj+1 as a new seed for the next random

number to be generated. This seed cannot be predicted from

the current random number Rj.

– Besides the difficult-to-predict pseudorandom seed for each

random number, the scheme uses one more independently

specified pseudorandom input — an encryption of the current

date and time.

– Each random number is related to the previous random num-

ber through multiple stages of DES encryption. An exami-

nation of Equation (1) above shows there are more than

two EDE encryptions between two consecutive random

numbers. If you could say from Equation (2) that there exists

one EDE encryption between a random number and the seed

for the next random number, then it would be fair to say that

35

Computer and Network Security by Avi Kak Lecture 10

there exist three EDE encryptions between two consec-

utive random numbers. Since one EDE encryption amounts

to three DES encryptions, we can say that there exist nine

DES encryptions between two consecutive random num-

bers, making it virtually impossible to predict the next ran-

dom number from the current random number.

– Even if the attacker were to somehow get hold of the current

Vj, it would still be practically impossible to predict Vj+1 be-

cause there stand at least two EDE encryptions between the

two.

• Is there a price to pay for the cryptographic security of ANSI

X9.17/X9.31? Yes, it is a much slower way to generate pseudo-

random numbers. That makes this approach unsuitable for many

applications that require randomized inputs.

• Finally, note that whereas the ANSI X9.17/X9.31 standard re-

quires the 2-key 3DES (that is, EDE) in Figure 4, the NIST

version allows AES to be used for the same.

• Awonderful article to read on the cryptographic security of PRNGs

is “Cryptanalytic Attacks on Pseudorandom Number Genera-

tors” by John Kelsey, Bruce Schneier, David Wagner, and Chris

Hall.

36

Computer and Network Security by Avi Kak Lecture 10

10.7: CRYPTOGRAPHICALLY SECURE
PRNG’S: THE BLUM BLUM SHUB

GENERATOR (BBS)

• This is another cryptographically secure PRNG. This has prob-

ably the strongest theoretically proven cryptographic security.

• The BBS algorithm consists of first choosing two large prime

numbers p and q that both yield a remainder of 3 when divided

by 4. That is

p ≡ q ≡ 3 (mod 4)

For example, the prime numbers 7 and 11 satisfy this requirement.

• Let

n = p · q

• Now choose a number s that is relatively prime to n. (This

implies that p and q are not factors of s.)

• The BBS generator produces a pseudorandom sequence of bits

Bj according to

37

Computer and Network Security by Avi Kak Lecture 10

X0 = s2 mod n

for i = 1 to inf

Xi = (Xi−1)
2 mod n

Bi = Xi mod 2

• Note that Bi is the least significant bit of Xi at each iteration.

• Because BBS generates a pseudorandom bit stream directly, it is

also referred to as a cryptographically secure pseudoran-

dom bit generator (CSPRBG).

• By definition, a CSPRBG must pass the next-bit test, that

is there must not exist a polynomial-time algorithm that can

predict the kth bit given the first k − 1 bits with a probability

significantly greater than 0.5. BBS passes this test. [In the theory

and practice of algorithms, polynomial-time algorithms are considered to be efficient

algorithms and exponential-time algorithms considered to be inefficient. At Purdue,

our class ECE664 goes into such distinctions between the different types of algorithms.]

• The above discussion is not meant to imply that you can only gen-

erate pseudorandom single-bit streams with the BBS algorithm.

By packing the single bits into, say, 4-byte memory blocks, one

38

Computer and Network Security by Avi Kak Lecture 10

can generate 32-bit integers that would be cryptographically se-

cure. In fact, this is what you are supposed to do in one of the

programming problems in the Homework section of this lecture.

39

Computer and Network Security by Avi Kak Lecture 10

10.8: ENTROPY SOURCES FOR
GENERATING TRUE RANDOM

NUMBERS

• Over the years, new types of random number generators have

been developed that allow for the generation of true random

numbers, as opposed to just pseudorandom numbers. We will

refer to an entity that allows for the production of true random

numbers as TRNG for True Random Number Generator. And,

as you know, the acronym PRNG stands for a Pseudo Random

Number Generator. And the acronym CSPRNG stands for a

cryptographically secure PRNG.

• A fundamental difference between a PRNG and TRNG is that

whereas the former must have a seed for initialization, the lat-

ter works without seeds. This fundamental difference between

a PRNG and TRNG also applies to the difference between a

CSPRNG and TRNG.

• These new types of random number generators are based on the

idea that only the analog phenomena can be trusted to produce

truly random numbers. We are talking about analog phenomena

40

Computer and Network Security by Avi Kak Lecture 10

such as thermal noise in electronic components; direct and indi-

rect consequences of human interactions with the computers and

computer networks; various system properties that change with

time in unpredictable ways; etc. [To be sure, we have always had true sources of

random bits that depended on greatly amplifying the thermal noise in resistors and then digitizing it for the

production of random bits. But those random bit generators consumed much power and were generally not

considered appropriate for routine communication devices in computer networks. The new types of hardware

implementations that I mention in this section do NOT suffer from this limitation.]

• We will consider an entropy source to be any source that is capa-

ble of yielding a truly random stream of 1’s and 0’s. Presumably,

the randomness of the bits provided by the entropy sources is, di-

rectly or indirectly, a consequence of some analog phenomenon.

• The reader may ask: If we can have entropy sources for the pro-

duction of random sequences of 1’s and 0’s, why bother with

CSPRNGs of the type I presented in Section 10.6?

• To answer the above question, entropy sources, in general, are

not capable of providing random bits at the rate needed by high-

performance applications. For such applications, the best they

can do is to serve as the seeds needed by CSPRNGs of the type

presented in Section 10.6.

• The use of entropy-source based random numbers for security in

computer networks has spawned new phrases that are now part

41

Computer and Network Security by Avi Kak Lecture 10

of the lexicon of network security:

– “entropy source”

– “hardware entropy source”

– “software entropy source”

– “accumulation of entropy”

– “eating up entropy”

– “entropic content”

– “extent of entropy”

– “entropy hole”

– etc.

Of course, “entropy” itself is a very old idea and, in the information

theoretic context, measures the extent of uncertainty one can associate

with a random process. Nevertheless, before the advent of the new

class of random number generators described in this section, you

were unlikely to run into phrases like “the keys generated by a

communication device may be weak because they are based on

insufficient accumulation of entropy.”

• If we organize the bit stream produced by an entropy source into

words, which could be bytes, and if we consider each such word

as a random variable that can take the ith value with probability

pi, we can associate the following entropy with the bit stream:

H = −
∑

i

pi log2 pi

Let’s say the bit stream is organized into bytes. A byte takes

on 256 numeric values, 0 through 255. If each of these values

42

Computer and Network Security by Avi Kak Lecture 10

is equally probable, then pi =
1
256, and the entropy associated

with the entropy source would be 8 bits. This is the highest

entropy possible for 8-bit words. If the probability distribution

of the values taken by 8-bit words were to become nonuniform,

the entropy will become less than its maximum value. For the

deterministic case, when all the 8-bit patterns are the same, the

entropy is zero.

• Let’s say you want a random number that can be used as a 128-

bit key. Ideally, you would want your entropy source to produce

128-bit words with equal probability. Such an entropy source has

an entropy of 128 bits.

• Before delving into the nature of the modern entropy sources, my

immediate goal is to re-emphasize the importance of randomness

to the security of modern computer networks. As you will realize

from the brief discussion in the next bullet (and as you’ll realize

even more strongly later in this course), if a network device were

to use a poor quality random number generator — one whose

random numbers are predictable — it would be much too vulner-

able to security exploits. The more nonuniform the probabilities

of the values taken by the random numbers, the more predictable

they become.

• Ideally, any network device — be it a computer, a router, or, for

that matter, an embedded device with a communication inter-

43

Computer and Network Security by Avi Kak Lecture 10

face — would only want to use one-time random numbers for the

keys needed for encrypting the communications with other hosts

or devices. A one-time random number means that there is very

little chance that the same random number will be used again

in the foreseeable future. One-time random numbers obviously

translate into one-time keys. A network device may need session

keys as we mentioned earlier in this lecture or public/private keys

along the lines talked about in Lecture 12. Whereas a sequence

of random bytes can be used directly as a session key, the pub-

lic/private keys are obtained from those random bytes that can

be shown to constitute prime numbers (see Lecture 12). If a

random number generator is so poor that it can only

generate one of a small number of different random

numbers, its session keys become predictable. As

you will see in Section 12.6, such a random number

would also result in an attacker being able to figure

out the private key that goes with a public key. [It

is important to bear in mind that even an algorithmic approach to random number

generation, of the sort described in Section 10.6, needs an initialization number to get

it started. To the extent this initialization number is not truly random for each execu-

tion of the algorithm, the random number you get from the algorithm may not be as

cryptographically secure as you might think.]

• Let’s get back to the subject of entropy sources for the production

of random bits and bytes. There are two types of entropy sources

to consider: the on-chip hardware based entropy sources and the

other purely software based entropy sources.

44

Computer and Network Security by Avi Kak Lecture 10

• The on-chip hardware based TRNG obviously use hardware en-

tropy sources, as you’ll see in what follows in this section. On

the other hand, a software based TRNG uses different types of

software processes as sources of entropy, as you will see in Section

10.9.

• The on-chip hardware based approach is exemplified by Intel’s

Bull Mountain Digital Random Number Generator (DRNG). It

uses two inverters (an inverter converts an input of 0 into an out-

put of 1 and vice versa) with the output of one connected to the

input of the other. This manner of connecting the two inverters

means that, unless the conditions external to the inverters force

their outputs to be otherwise, the output of one inverter must be

opposite of the output of the other. These external conditions

are controlled by a driver circuit. In the off state of the driver

circuit, when the output of one inverter is 1, the output of the

other must be 0. As to which inverter would output a 1 and which

would output a 0 depends on the thermal noise that accompa-

nies the 1-to-0 and 0-to-1 transitions of the circuit elements. In

theory, the two inverters must be exactly identical for the stream

of 1’s and 0’s produced in this manner to be truly random. Since

that is impossible to satisfy in practice, additional circuity must

be used to compensate for any departure from the ideal in the

two inverters. Intel has shown that this approach can produce

a bit stream at 3 GHz. This bit stream must subsequently be

conditioned to compensate for any biases in randomness caused

by the two inverters not being truly identical. Finally, the con-

45

Computer and Network Security by Avi Kak Lecture 10

ditioned bits are used to initialize a hardware implementation of

a CSPRNG for higher production rates of the random bytes. In-

tel also provides a machine-code instruction, RDRAND, for 64-bit

processors for fetching random numbers from the DRNG. [At this

point it is important to mention that even the best entropy sources are performance constrained with regard

to how fast they can generate the random numbers. By its very definition, an entropy source must sample

some analog phenomenon. So the rate at which an entropy source can produce the random bits depends on

the rate at which the analog phenomenon is changing. Even though Intel’s hardware based approach generates

truly random bits faster than any of the other approach I’ll mention later, it must nonetheless be used with a

hardware implemented CSPRNG for producing bytes at the rates needed by various applications.]

• The next section takes up the subject of software entropy sources

for the production of truly random bits.

46

Computer and Network Security by Avi Kak Lecture 10

10.9: SOFTWARE ENTROPY SOURCES

• The previous section introduced the notion of entropy sources

for generating true random numbers and focused specifically on

hardware sources of entropy. In this section, we take up the

subject of software entropy sources.

• Software entropy sources are based on the fact that in virtu-

ally every computer there are constantly occurring “phenomena”

that, either directly or indirectly, are consequences of some hu-

man interaction with that computer or some other networked

computer. For example, the exact time instants associated with

your keystrokes as you are working on your computer is a random

process with a great deal of uncertainty associated with it. [If you

are like the rest of the human beings, after every few keystrokes you are either looking at what you just entered

to make sure that you did not make any errors, fetching yourself a cup of coffee, watching the newspaper that’s

open in another window, pacing the floor back and forth if you are stuck in the middle of a difficult writing

assignment, and so on. All of these are analog sources of randomness that translate into randomness associated

with your keystrokes.] By the same token, the timing of the interrupts

generated by you clicking on your mouse buttons are also random.

Equally random are the movements of the mouse pointer on your

screen. Yet another source of entropy are the times associated

with the disk I/O events.

47

Computer and Network Security by Avi Kak Lecture 10

• Other software sources of entropy include information entered in

various log files (in /var/log/syslog, for example, that is used for

the logging of networking and security events), and the output of

various system commands such as ps, pstat, netstat, vmstat, df,

uptime, etc.

• All of these software sources of entropy can be divided into two

categories: those that can only be accessed with root privileges

(these are referred to as belonging to the kernel space) and those

that are accessible with ordinary user privileges (these are referred

to as belonging to user space).

• The random bits made available by the kernel space entropy

sources are available through a special file /dev/random in your

Linux/Unix platforms.

• On the other hand, the random bits made available by user space

entropy sources can be obtained either through EGD (Entropy

Gathering Daemon) or through PRNGD (Pseudo Random Num-

ber Generator Daemon).

• In the three subsections that follow, I’ll first take up /dev/random,

and its closely related /dev/urandom as sources of random bits.

Subsequently, I’ll talk about EGD and PRNGD as user-space

entropy suppliers.

48

Computer and Network Security by Avi Kak Lecture 10

10.9.1: /dev/random and /dev/urandom as Sources of

Random Bytes

• As mentioned previously, /dev/random gathers entropy in the ker-

nel space. It is based on the randomness associated with keystrokes,

mouse movements, disk I/O, device driver I/O, etc.

• You might wonder how much entropy such a source can produce

per unit time. What if you are not banging on the keyboard, or

playing with mouse, or fetching anything from the disk through a

job running in the background (if your job was running in the fore-

ground, then you’d be banging on the keyboard, won’t you!), etc.,

would there still be sufficient entropy generated by /dev/random

for a 256-bit key that your network interface needs to send some

system-generated message to remote machine securely?

• To respond to the question posed above, yes, it is possible for

/dev/random to block until its pool of random bits possesses suf-

ficient number of bits at the entropy level you want.

• Software sources of entropy can typically only generate a few

hundreds bits of entropy per second. So if your needs for random

bytes exceeds this rate, you obviously cannot rely on /dev/random.

49

Computer and Network Security by Avi Kak Lecture 10

• For a non-blocking kernel space source of entropy, you can use

/dev/urandom that uses the random bits supplied by /dev/random

to initialize a CSPRNG (see Section 10.6) in order to produce a

very high-quality stream of pseudorandom bytes. Being pseudo-

random, the byte stream produced by /dev/urandomwill obviously

have less entropy than the byte stream coming from /dev/random.

• In order to use /dev/random, it is sometimes important to also

examine the directory /proc/sys/kernel/random/. This directory

contains text files with information on the entropic state of what

you can expect to see if read the special file /dev/random. For

example, the file entropy avail contains an integer that is the

value of the entropy of the sequence of 1’s and 0’s in the entropy

pool. The size of the entropy pool can be read from the file

poolsize in the same directory.

• Shown below is a Perl script whose inner for loop queries the

file entropy avail once every second until the entropy exceeds

the threshold of 32. Subsequently, the script calls sysread() and

attempts to read 16 bytes from /dev/random. However, as you

will see in the output that follows the script, the actual number

of bytes harvested from /dev/random depends on the entropy of

what is in the entropy pool at the moment.

#!/usr/bin/perl -w

50

Computer and Network Security by Avi Kak Lecture 10

UsingDevRandom.pl

Avi Kak

April 22, 2013

use strict;

open FROM, "/dev/random" or die "unable to open file: $!";

binmode FROM;

for (;;) {

my $entropy = 0;

for (;;) {

$entropy = ‘cat /proc/sys/kernel/random/entropy_avail‘;

last if $entropy > 128;

last if $entropy > 32;

sleep 1;

}

my $pool_size = ‘cat /proc/sys/kernel/random/poolsize‘;

my $how_many_bytes_read = sysread(FROM, my $bytes, 16);

print "Number of bytes read: $how_many_bytes_read\n";

my @bytes = unpack ’C*’, $bytes;

my $hex = join ’ ’, map sprintf("%x", $_), @bytes;

my $output = sprintf "Entropy Available: %-4d Pool Size: %-4d \

Random Bytes in Hex: $hex",

$entropy, $pool_size;

print "$output\n\n\n";

sleep 1;

}

• Shown below is a small segment of the output produced by the

outer infinite loop in the script:

Number of bytes read: 16

Entropy Available: 128 Pool Size: 4096 Random Bytes in Hex: ed a9 6f 82 d9 74 c8 3 10 9c 44 d3 bc cb 4

Number of bytes read: 14

Entropy Available: 113 Pool Size: 4096 Random Bytes in Hex: a2 2a ad cb 8f 84 80 12 db 6a 2e 50 fc e2

Number of bytes read: 13

Entropy Available: 105 Pool Size: 4096 Random Bytes in Hex: 38 2a f8 14 a 5b 47 1a ec b4 b1 2a b9

51

Computer and Network Security by Avi Kak Lecture 10

Number of bytes read: 8

Entropy Available: 42 Pool Size: 4096 Random Bytes in Hex: 5e 25 9e 80 69 b5 4d 34

Number of bytes read: 13

Entropy Available: 110 Pool Size: 4096 Random Bytes in Hex: 9a e0 4b a4 7e 8e e6 c8 67 9c d5 7a 7

Number of bytes read: 10

Entropy Available: 86 Pool Size: 4096 Random Bytes in Hex: 36 9d ea ac 22 4e 9 d9 7c a1

Number of bytes read: 8

Entropy Available: 62 Pool Size: 4096 Random Bytes in Hex: 66 9b b d8 2f 31 af 99

Number of bytes read: 8

Entropy Available: 41 Pool Size: 4096 Random Bytes in Hex: 88 28 64 a5 a2 41 38 3a

Number of bytes read: 13

Entropy Available: 108 Pool Size: 4096 Random Bytes in Hex: 6a 77 56 1 29 eb 1d 2c 84 ee 43 18 49

Number of bytes read: 15

Entropy Available: 121 Pool Size: 4096 Random Bytes in Hex: 6 fc 97 67 28 a1 9 d9 2f e8 63 a3 36 2c 56

• An important thing to note about this output is that every once

in a while it appears to hang. However, just by moving your

mouse a bit or entering a few keystrokes gets the output going

again. That is further proof of the fact that this kernel-space

entropy source gets its randomness from the keystrokes and the

mouse movements.

• The act of reading /dev/random depletes the random bit pool of

the bytes that are read out and causes a reduction in the entropy

of what is left behind. The ‘sleep 1’ statement at the end of the

script is to allow for the replenishment of the entropy before we

examine the pool again.

52

Computer and Network Security by Avi Kak Lecture 10

• /dev/random and /dev/urandom were created by Theodore Ts’o.

53

Computer and Network Security by Avi Kak Lecture 10

10.9.2: EGD — Entropy Gathering Daemon

• As mentioned previously in Section 10.9, EGD gathers its entropy

from user-space events. So if for some reason you do not have

/dev/random in your machine, you could try to install EGD that

is available from SourceForge.

• If you download the source code for EGD from SourceForge and

examine its implementation code (it is in Perl), you will see the

following system commands (amongst several others) that yield

the textual output that serves as the starting point for collecting

entropy:

vmstat -s # print virtual memory statistics

netstat -in # print network connections, routing tables, etc.

df # display disk space available

lsof # list open files

ps aux # snapshot of the current processes

ipcs -a # provide info on interprocess communications

last -n 50 # show listing of the last 50 logged in users

arp -a # show MAC address of network neighbor

• Associated with each source of entropy as listed above is a filter,

referred to as filter in the EGD source code, that when set

54

Computer and Network Security by Avi Kak Lecture 10

to 1 implies that we ignore all non-numerical output from the

command. In other words, all of the output of a command is

accepted only for the cases when filter is set to 0.

• EGD associates with each source a parameter denoted bpb, which

stands for “bits of entropy per byte of the output”. For example,

the bpb parameter associated with the source ‘vmstat -s’ is 0.5.

What that means is that each byte of source (after we remove

all non-numerical characters since the value of filter for this

source is 1) is known to yield an entropy addition of only 0.5

bits. Presumably that implies that if we can extract two bytes of

just numerical information from this source and add that to the

entropy pool, we can increase the entropy of the pool contents by

1 bit.

• As I mentioned earlier, the listing of the sources I show above is a

subset of all the sources in EGD. If any of the sources is found to

be “dead”, in the sense of not yielding any returns, it is dropped

from the source list.

• You fire up the server daemon by calling

egd.pl ~/.gnupg/entropy

where egd.pl is the main Perl file for EGD in the installation

directory. The argument to the command creates a Unix domain

server socket named entropy in the .gnupg file of your home di-

rectory. [There is nothing sacrosanct about either the name of the Unix domain socket or its location.

55

Computer and Network Security by Avi Kak Lecture 10

Additionally, you are also allowed to use a TCP server sockets. If you choose to use a TCP server socket, the

argument to egd.pl would be something like localhost:7777 assuming you want the server to

monitor the port 7777.] Subsequently, the entropy daemon will start serv-

ing out the random bytes through the Unix socket named by the

argument.

• Since EGD invoked in the manner shown above serves out its

random bytes through a server socket, you need to create a client

socket to receive the random bytes from the server. In order to

get used to EGD, the easiest thing to do at the beginning is to use

the egc.pl client in the example subdirectory in the installation

directory. Here is a listing of some of the commands you could

invoke in the examples directory:

egc.pl ~/.gnupg/entropy get # returns the bits currently in the pool

egc.pl ~/.gnupg/entropy read 16 # fetches and displays 16 random bytes

egc.pl ~/.gnupg/entropy readb 16 # fetches 16 random bytes (blocking)

Note the difference between the last two invocations of the client

egc.pl. The third invocation blocks if you ask for more bytes

than there is entropy in the pool. It blocks until the entropy

increases to the level commensurate with the number of bytes

you requested. The second invocation, on the other hand, is

nonblocking because it uses the currently available random bytes

to seed a CSPRNG to yield guaranteed number of bytes (whose

entropy would obviously be lower than what you would get for

the same number of bytes returned by the third invocation).

56

Computer and Network Security by Avi Kak Lecture 10

• Typically, you can count on this entropy server to generate roughly

50 bits of entropy per second.

• You can stop the server daemon by the command ‘killall egd.pl’

• EGD was created by Brian Warner.

57

Computer and Network Security by Avi Kak Lecture 10

10.9.3: PRNGD (Pseudo Random Number Generator

Daemon)

• With regard to the basic mechanism used for gathering entropy,

PRNGD is very similar to EGD, in the sense that the former also

uses the output of user-space processes for randomness.

• While the basic mechanism for entropy gathering is the same,

PRNGD uses its own set of user-space commands for the random

output it needs to generate entropy. In addition to some of the

same system commands as used be EGD, PRNGD also uses the

output obtained by invoking the stat (for status) command on

system files that are likely to be accessed frequently. Examples

of such files are /etc/passwd, /tmp, etc. PRNGD also makes calls

to times(), gettimeofday(), getpid(), etc., for additional random

outputs.

• One large differences between PRNGD and EGD is that the for-

mer is in C whereas the latter is in Perl.

• The other large difference lies in the fact that PRNGD uses the

random bits collected from its entropy sources to seed a CSPRNG

— more specifically the OpenSSL PRNG — and you only see the

output of the CSPRNG. So, at least theoretically speaking, you

58

Computer and Network Security by Avi Kak Lecture 10

never see truly random bytes with PRNGD. On the plus side,

though, you will not run into blocking reads of the bytes with

PRNGD.

• PRNGD was created by Lutz Janicke.

59

Computer and Network Security by Avi Kak Lecture 10

10.9.4: A Word of Caution Regarding Software

Sources of Entropy

• First of all, you need to know that the use of software sources of

entropy is more common than you think.

• As alluded to earlier in Section 10.9, random numbers are needed

not just by your computer when you log into a remote server using

the SSH protocol or when your computer is trying to authenticate

the server at an e-commerce site like Amazon. Random numbers

are also needed by what are known as headless devices, these

being routers, firewalls, sever management cards, etc., for estab-

lishing secure communications with other hosts in a network.

• As it turns out, a very large number of such headless devices

use software entropy sources for the random bytes they need for

the keys. The most common such source is /dev/urandom that

is guaranteed to provide you with any number of pseudorandom

bytes in a non-blocking fashion.

• However, as pointed out in Section 10.9.1, the output bytes pro-

duced by /dev/urandom are NOT meant to be truly random since

they are produced by a CSPRNG that, in turn, is seeded by the

output of the more truly random /dev/random. The headless de-

60

Computer and Network Security by Avi Kak Lecture 10

vices are not able to use /dev/random directly because its output

blocks until sufficient entropy has built up to deliver the number

of bytes needed.

• The main problem with /dev/urandom occurs at boot up. For ob-

vious reasons, the very first thing a communication device would

want to do would be to create the keys it needs to communicate

with other hosts. However, that’s exactly the moment when a

software entropy source like /dev/random is likely to be in an en-

tropy hole, that is, likely to possess very little entropy. Therefore,

any bytes produced by /dev/urandom at this juncture are likely

to be low-entropy bytes, which would make them predictable.

• In a recent publication by Nadia Heninger, Zakir Durumeric, Eric

Wustrow, and J. Alex Halderman, it was demonstrated that this

weakness in the generation of random numbers in headless de-

vices in the internet allowed them to compute the private keys

for 0.5% of the SSL/TLS hosts and 1.06% of the SSH hosts from

a sampling of over 10 million hosts in the internet. The publica-

tion is titled “Mining your Ps and Qs: Detection of Widespread

Weak Keys in Network Devices,” that appeared in Proc. 21st

USENIX Security Symposium, 2012. The “P” and “Q” in the

title refer to the two prime factors of the modulus used in the

RSA algorithm that I’ll present in Lecture 12.

• As to how Heninger et al. managed to figure out the private keys

61

Computer and Network Security by Avi Kak Lecture 10

used by a large number of communication devices in the internet

is explained in Section 12.7 of Lecture 12.

62

Computer and Network Security by Avi Kak Lecture 10

10.10: HOMEWORK PROBLEMS

1. What aspect of the Needham-Schroeder Key Distribution Proto-

col gives each of the two parties A and B (who want to communi-

cate securely with each other) the confidence that no third party

C is masquerading as the other?

2. What is a nonce and why is it used in the Needham-Schroeder

protocol?

3. What sort of secure communication applications is the Kerberos

protocol intended for?

4. What does the acronym GSS-API stand for and what is its rela-

tionship to Kerberos?

5. What is the difference between algorithmically generated random

numbers and true random numbers?

6. What are the essential elements of the X9.17/X9.31 algorithm

63

Computer and Network Security by Avi Kak Lecture 10

for generating pseudorandom numbers that are cryptographically

secure?

7. Programming Assignment:

Write a Python or a Perl script that generates a cryptographi-

cally secure sequence of 8-bit unsigned integers using the Blum-

Blum-Shub algorithm of Section 10.7. The algorithm as described

generates a bit stream. You would need to pack the bits into one-

byte bit arrays. If using Python, take advantage of the bit shifting

functions provided in the BitVector class for packing the pseudo-

random bits into 8-bit BitVectors. [Since you do not yet know how to

generate prime numbers, you will have to supply to your script the two primes p and q

that must both be congruent to 3 modulo 4. At this time, fetch the primes you need

from one of the several web sites that publish a large number of prime numbers. Later

on, after Lecture 11, you will be able to generate your own primes for the script here.]

8. Programming Assignment:

For a stream of 100,000 bytes, compare the execution time of

the program you wrote for the previous problem with that for

your implementation of the RC4 algorithm for doing the same. If

you are using Python, it is rather easy to measure the execution

time with the timeit module. [Pages 322 and 333 of the “Scripting With

Objects” book illustrate how you can use Python’s timeit module.] If using Perl,

you can use either the builtin function time() or, better yet, the

Benchmark module for doing the same. Which algorithm, BBS

64

Computer and Network Security by Avi Kak Lecture 10

or RC4, is faster for generating the byte stream and why?

65

