
Lecture 11: Prime Numbers And Discrete Logarithms

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

February 14, 2017
1:53pm

c©2017 Avinash Kak, Purdue University

Goals:

• Primality Testing

• Fermat’s Little Theorem

• The Totient of a Number

• The Miller-Rabin Probabilistic Algorithm for Testing for Primality

• Python and Perl Implementations for the Miller-Rabin Primal-
ity Test

• The AKS Deterministic Algorithm for Testing for Primality

• Chinese Remainder Theorem for Modular Arithmetic with Large Com-
posite Moduli

• Discrete Logarithms

CONTENTS

Section Title Page

11.1 Prime Numbers 3

11.2 Fermat’s Little Theorem 5

11.3 Euler’s Totient Function 12

11.4 Euler’s Theorem 15

11.5 Miller-Rabin Algorithm for Primality Testing 18

11.5.1 Miller-Rabin Algorithm is Based on an Intuitive Decomposition of 20
an Even Number into Odd and Even Parts

11.5.2 Miller-Rabin Algorithm Uses the Fact that x2 = 1 Has No 21
Non-Trivial Roots in Zp

11.5.3 Miller-Rabin Algorithm: Two Special Conditions That Must Be 24
Satisfied By a Prime

11.5.4 Consequences of the Success and Failure of One or Both Conditions 28

11.5.5 Python and Perl Implementations of the Miller-Rabin 29
Algorithm

11.5.6 Miller-Rabin Algorithm: Liars and Witnesses 38

11.5.7 Computational Complexity of the Miller-Rabin Algorithm 40

11.6 The Agrawal-Kayal-Saxena (AKS) Algorithm 43
for Primality Testing

11.6.1 Generalization of Fermat’s Little Theorem to Polynomial Rings 45
Over Finite Fields

11.6.2 The AKS Algorithm: The Computational Steps 50

11.6.3 Computational Complexity of the AKS Algorithm 52

11.7 The Chinese Remainder Theorem 53

11.7.1 A Demonstration of the Usefulness of CRT 57

11.8 Discrete Logarithms 60

11.9 Homework Problems 64

Computer and Network Security by Avi Kak Lecture 11

11.1: PRIME NUMBERS

• Prime numbers are extremely important to computer

security. As you will see in the next lecture, public-key cryp-

tography would not be possible without prime numbers.

• As stated in Lecture 12, an important concern in public-key cryp-

tography is to test a randomly selected integer for its primality.

That is, we first generate a random number and then try to figure

out whether it is prime.

• An integer is prime if it has exactly two distinct divisors, the

integer 1 and itself. That makes the integer 2 the first prime.

• We will also be very interested in two integers being relatively

prime to each other. Such integers are also called coprimes.

Two integers m and n are coprimes if and only if their Greatest

Common Divisor is equal to 1. That is if gcd(m,n) = 1.

Therefore, whereas 4 and 9 are coprimes, 6 and 9 are not. [See

Lecture 5 for gcd.]

3

Computer and Network Security by Avi Kak Lecture 11

• Much of the discussion in this lecture uses the notion of co-

primes, as defined above. The same concept used in earlier

lectures was referred to as relatively prime. But as men-

tioned above, the two mean the same thing.

• Obviously, the number 1 is coprime to every integer.

4

Computer and Network Security by Avi Kak Lecture 11

11.2: FERMAT’S LITTLE THEOREM

• Our main concern in this lecture is with testing a randomly gen-

erated integer for its primality. As you will see in Section 11.5,

the test that is computationally efficient is based directly on Fer-

mat’s Little Theorem. [This theorem also plays an important role in the

derivation of the famous RSA algorithm for public-key cryptography that is presented

in Section 12.2.3 of Lecture 12. Yet another application of this theorem will be in the

speedup of the modular exponentiation algorithm that is presented in Section 12.5 of

Lecture 12.]

• The theorem states that if p is a prime number, then for

every integer a the following must be true

ap ≡ a (mod p) (1)

Another way of saying the same thing is that for any prime p and

any integer a, ap − a will always be divisible by p. [Review the notation

of modular arithmetic in Lecture 5 to fully understand what this theorem is saying. As stated in that

lecture, ap ≡ a (mod p) means that ap mod p = a mod p. For example, 83 ≡ 8 (mod 3) since

83 mod 3 = 2 and, at the same time, 8 mod 3 = 2.]

5

Computer and Network Security by Avi Kak Lecture 11

• A “simpler” form of Fermat’s Little Theorem states that when p

is a prime, then for any integer a that is coprime to p, the

following relationship must hold:

ap−1 ≡ 1 (mod p) (2)

This form of the theorem does NOT include a’s for which a ≡ p

(mod p). That is, a = 0 and a’s that are multiples of

p are excluded specifically. [Recall from Section 5.4 of Lecture 5

that gcd(0, n) = n for all n, implying that 0 cannot be a coprime vis-a-vis any number

n.] Another way of stating the theorem in Equation (2) is that

for every prime p and every a that is coprime to p, ap−1− 1 will

always be divisible by p.

• The relationship expressed above can also be written as

ap−1 mod p = 1 (3)

• To prove the theorem as stated in Eq. (2), let’s write down the

following sequence assuming that p is prime and a is a non-zero

integer that is coprime to p:

a, 2a, 3a, 4a,, (p− 1)a (4)

It turns out that if we reduce these numbers modulo p, we will

simply obtain a rearrangement of the sequence

6

Computer and Network Security by Avi Kak Lecture 11

1, 2, 3, 4,, (p− 1)

In what follows, we will first show two examples of this and then

present a simple proof.

• For example, consider p = 7 and a = 3. Now the sequence shown

in the expression labeled (4) above will be 3, 6, 9, 12, 15, 18

that when expressed modulo 7 becomes 3, 6, 2, 5, 1, 4.

• For another example, consider p = 7 and a = 8. Now the se-

quence shown in the expression labeled (3) above will be

8, 16, 24, 32, 40, 48 that when expressed modulo 7 becomes

1, 2, 3, 4, 5, 6.

• Therefore, we can say

{a, 2a, 3a,, (p− 1)a} mod p =

some permutation of {1, 2, 3,, (p− 1)} (5)

for every prime p and every a that is coprime to p.

• The above conclusion can be established more formally by noting

first that, since a cannot be a multiple of p, it is impossible for

k · a ≡ 0 (mod p) for k, 1 ≤ k ≤ p − 1. The product

k ·a cannot be a multiple of p because of the constraints we have

7

Computer and Network Security by Avi Kak Lecture 11

placed on the values of k and a. Additionally note that k · a is

also not allowed to become zero because a must be a non-zero

integer and because the smallest value for k is 1. Next we can

show that for any j and k with 1 ≤ j, k ≤ (p − 1), j 6= k, it is

impossible that j · a ≡ k · a (mod p) since otherwise we would

have (j − k) · a ≡ 0 (mod p), which would require that either

a ≡ 0 (mod p) or that j ≡ k (mod p).

• Hence, the product k · a(mod p) as k ranges from 1 through

p − 1, both ends inclusive, must yield some permutation of the

integer sequence {1, 2, 3, . . . , p− 1}.

• Therefore, multiplying all of the terms on the left hand side of

Eq. (4) would yield

ap−1 · 1 · 2 · · · p− 1 ≡ 1 · 2 · 3 · · · p− 1 (mod p)

Canceling out the common factors on both sides then gives the

Fermat’s Little Theorem as in Eq. (2). (The common factors can

be canceled out because they are all coprimes to p.)

• We therefore have a formal proof for Fermat’s Little Theorem as

stated in Eq. (2). But what about the theorem as stated in Eq.

(1)? Note that Equation (1) places no constraints on a. That is,

Eq. (1) does not require a to be a coprime to p.

8

Computer and Network Security by Avi Kak Lecture 11

• Proof of the theorem in the form of Eq. (1) follows directly from

the theorem as stated in Eq. (2) by multiplying both sides of the

latter by a. Since p is prime, when a is not a coprime to p, a

must either be 0 or a multiple of p. When a is 0, Eq. (1) is true

trivially. When a is, say, n ·p, Eq. (1) reduces trivially to Eq. (2)
because the mod p operation cancels out the p factors on both

sides of Eq. (1).

• Do you think it is possible to use Fermat’s Little

Theorem directly for primality testing? Let’s say you

have a number n you want to test for primality. So you have come

up with a small randomly selected integer a for use in Fermat’s

Little Theorem. Now let’s say you have a magical procedure that

can efficiently compute an−1 mod n. If the answer returned by

this procedure is NOT 1, you can be sure that n is NOT a prime.

However, should the answer equal 1, then you cannot

be certain that n is a prime. You see, if the answer is 1,

then n may either be a composite or a prime. [A non-prime number

is also referred to as a composite number.] That is because the relationship

of Fermat’s Little Theorem is also satisfied by numbers that are

composite. For example, consider the case n = 25 and a = 7:

725−1 mod 25 = 1

For another example of the same, when n = 35 and a = 6, we

have

635−1 mod 35 = 1

9

Computer and Network Security by Avi Kak Lecture 11

• So what is one to do if Fermat’s Little Theorem is satisfied for a

given number n for a random choice for a? One could try another

choice for a. [Remember, Fermat’s Little Theorem must be satisfied by

every a that is coprime to n.] For the case of n = 25, we could next

try a = 11. If we do so, we get

1125−1 mod 25 = 16

which tells us with certainty that 25 is not a prime.

• In the examples described above, you can think of the numbers 7,

6, and 11 as probes for primality testing. The larger the number

of probes, a’s, you use for a given n, with all the a’s satisfying

Fermat’s Little Theorem, the greater the probability that n is a

prime. You stop testing as soon you see the theorem not being

satisfied for some value of a, since that is an iron-clad guarantee

that n is NOT a prime.

• Note that Fermat’s Little Theorem does NOT require that the

probe a itself be a prime number. If the number n you are testing

for primality is indeed a prime, every randomly chosen probe a

between 1 and n−1 will obvoiusly be coprime to that value of n.

On the other hand, should n actually be a composite, any choice

you make for a may or may not be coprime to n. Let’s say you

are testing n = 9633197 for primality and a random selection for

the probe throws up the value a = 7. For this pair of n and a,

we have

10

Computer and Network Security by Avi Kak Lecture 11

79633197−1 mod 9633197 = 117649

implying that 9633197 is definite NOT a prime. As it turns out,

the value of a = 7 in this test is a factor of 9633197.

• We will show in Section 11.5 how the above logic for primality

testing is incorporated in a computationally efficient algorithm

known as the Miller-Rabin algorithm.

• Before presenting the Miller-Rabin test in Section 11.5, and while

we are on a theory jag, we want to get two more closely related

things out of the way in Sections 11.3 and 11.4: the totient func-

tion and the Euler’s theorem. We will need these in our presen-

tation of the RSA algorithm in Lecture 12.

11

Computer and Network Security by Avi Kak Lecture 11

11.3: EULER’S TOTIENT FUNCTION

• An important quantity related to positive integers is the Euler’s

Totient Function, denoted φ(n).

• As you will see in Lecture 12, the notion of a totient plays a critical

role in the famous RSA algorithm for public key cryptography.

• For a given positive integer n, φ(n) is the number of positive

integers less than or equal to n that are coprime to n. Recall that

two integers a and b are coprimes to each other if gcd(a, b) = 1;

that is, if their greatest common divisor is 1. [See Lecture 5 for gcd.] φ(n)

is known as the totient of n. [Don’t forget that 0 cannot be a coprime

to any integer n since gcd(0, n) = n 6= 1 always.]

• It follows from the definition that φ(1) = 1. Here are some

positive integers and their totients:

ints: 1 2 3 4 5 6 7 8 9 10 11 12

totients: 1 1 2 2 4 2 6 4 6 4 10 4

To see why φ(3) = 2: We know that 1 is coprime to 3. The

12

Computer and Network Security by Avi Kak Lecture 11

number 2 is also coprime to 3 since their gcd is 1. However, 3 is

not coprime to 3 because gcd(3, 3) = 3.

• If p is prime, its totient is given by φ(p) = p− 1.

• Suppose a number n is a product of two primes p and q, that is

n = p× q, then

φ(n) = φ(p) · φ(q) = (p− 1)(q − 1)

This follows from the observation that in the set of numbers

{1, 2, 3, . . . , p, p + 1, . . . , pq − 1}, the number p is not a co-

prime to n since gcd(p, n) = p. By the same token 2p, 3p,,

(q − 1)p are not coprimes to n. By similar reasoning, q, 2q,,

(p − 1)q are not coprimes to n. That then leaves the following

as the number of coprimes to n:

φ(n) = (pq − 1)− [(q − 1) + (p− 1)]

= pq − (p + q) + 1

= (p − 1)× (q − 1)

= φ(p)× φ(q)

• [An aside: Euler’s Totient Function and the Euler’s Theorem to be
presented next are named after Leonhard Euler who lived from 1707 to

13

Computer and Network Security by Avi Kak Lecture 11

1783. He was the first to use the word “function” and gave us the notation
f(x) to describe a function that takes an argument. He was an extremely

high-energy and rambunctious sort of a guy who was born and raised in
Switzerland and who at the age of 22 was invited by Catherine the Great

to a professorship in St. Petersburg. He is considered to be one of the
greatest mathematicians and probably the most prolific. His work fills

70 volumes, half of which were written with the help of assistants during
the last 17 years of his life when he was completely blind.

As to how he became blind is a story unto itself. Being in-
tensely curious about the solar eclipse, the legend has it that he would

try watching it directly without any eye protection. On the other hand,
Galileo, who lived in the century previous to Euler’s and who was even

more intensely interested in astronomical phenomena, used to watch solar
eclipses through their reflection in water.

Such are the stories of the greats of the past who have shaped
us as we know ourselves today.]

14

Computer and Network Security by Avi Kak Lecture 11

11.4: EULER’S THEOREM

• This theorem states that for every positive integer n and every

a that is coprime to n, the following must be true

aφ(n) ≡ 1 (mod n)

where, as defined in the previous section, φ(n) is the totient of n.

• Note that when n is a prime, φ(n) = n − 1. In this

case, Euler’s Theorem reduces to the Fermat’s Little Theorem.

However, Euler’s Theorem holds for all positive integers n as

long as a and n are coprime.

• To prove Euler’s theorem, let’s say

R =
{

x1, x2, . . . , xφ(n)
}

is the set of all integer less than n that are relatively prime (the

same thing as co-prime) to n.

• Now let S be the set obtained when we multiply modulo n each

element of R by some integer a co-prime to n. That is

15

Computer and Network Security by Avi Kak Lecture 11

S =
{

a× x1 mod n, a× x2 mod n, . . . , a× xφ(n) mod n
}

• We claim that S is simply a permutation of R. To prove this, we

first note that (a×xi mod n) cannot be zero because, as a and

xi are coprimes to n, the product a× xi cannot contain n as a

factor. Next we can show that for 1 ≤ i, j ≤ φ(n), i 6= j, it is

not possible for (a×xi mod n) to be equal to (a×xj mod j). If

it were possible for (a×xi mod n) to be equal to (a×xj mod j),

then (a× xi − a× xj ≡ 0 (mod n)) since both a× xi and

a × xj are coprimes to n. That would imply that either a is

0 mod n, or that xi ≡ xj (mod n), both clearly violating the

assumptions.

• Therefore, we can say that

S = merely a permutation of R

implying that multiplying all of the elements of S should equal

the product of all of the elements of R. That is

∏

i

si ∈ S mod n =
∏

i

ri ∈ R mod n

• Looking at the individual elements of S, multiplying all of the

elements of S will give us a result that is aφ(n) times the product of

16

Computer and Network Security by Avi Kak Lecture 11

all of the elements of R. So the above equation can be expressed

as

aφ(n) ×
∏

i

ri ∈ R ≡
∏

i

ri ∈ R (mod n)

which then directly leads to the statement of the theorem.

17

Computer and Network Security by Avi Kak Lecture 11

11.5: MILLER-RABIN ALGORITHM FOR
PRIMALITY TESTING

• One of the most commonly used algorithms for testing a randomly

selected number for primality is the Miller-Rabin algorithm.

• A most notable feature of this algorithm is that it only makes

a probabilistic assessment of primality: If the algorithm

says that the number is composite (the same thing as not a

prime), then the number is definitely not a prime. On the other

hand, if the algorithm says that the number is a prime, then

with a very small probability the number may not actually be a

prime. (With proper algorithmic design, this probability can

be made so small that, as someone has said, there would be

a greater probability that, as you are sitting at a workstation,

you’d win a lottery and get hit by a bolt of lightening at the

same time.)

• The algorithm is presented in detail in the next several subsec-

tions. However, before you delve into these subsections, keep

in the mind the fact that, theoretically speaking, all that the

Miller-Rabin test does is to check whether or not the equality

18

Computer and Network Security by Avi Kak Lecture 11

ap−1 ≡ 1 (mod p) is satisfied for a candidate prime p and for

a set of values for the probe a. What the next few subsections

accomplish is to show how this test can be carried out in a com-

putationally efficient manner by exploiting a factorization of the

even number p − 1. As to how many probes one should try for

the test, we will address that issue in Section 11.5.6.

19

Computer and Network Security by Avi Kak Lecture 11

11.5.1: Miller-Rabin Algorithm is Based on an

Intuitive Decomposition of an Even Number into Odd

and Even Parts

• Given any odd positive integer n, we can express n − 1 as a

product of a power of 2 and a smaller odd number:

n − 1 = 2k · q for some k > 0, and odd q

This follows from the fact that if n is odd, then n − 1 is even.

It follows that after we have factored out the largest power of 2

from n− 1, what remains, meaning q, must be odd.

• In any programming language, finding the values for k and q is

quite trivial. As you will see in the Python and Perl scripts shown

in Section 11.5.5, all you have to do is to count the number of

trailing zeros in the bit representation of the integer n − 1. [In

general, given an odd integer, its least significant bit (the rightmost bit in the most commonly used printed

representation of the binary representations of integers) will be set to 1. Multiplying this integer by 2 amounts

to shifting the bit pattern for the odd integer to the left by one position. So if an odd integer (which in our case

would be q) is multiplied k times by 2, you would be shifting the bit pattern for q to the left by k positions.

Reversing this argument, in order to discover how many times 2 can divide an arbitrary integer n − 1, all we

have to do is to count how many trailing zeros there are in the bit representation of n− 1.]

20

Computer and Network Security by Avi Kak Lecture 11

11.5.2: Miller-Rabin Algorithm Uses the Fact that

x2 = 1 Has No Non-Trivial Roots in Zp

• When we say that x2 = 1 has only trivial roots in Zp for any

prime p, we mean that only x = 1 and x = −1 can satisfy the

equation x2 = 1. [Zp was defined in Section 5.5 of Lecture 5 as a prime finite field.]

• Let’s first try to see what the negative integer −1 stands for in

the finite field Zp for any prime p.

• Let’s consider the finite field Z7 for a moment:

Natural

nums: ... -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ...

Z_7 : ... 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 ...

We notice that −1 is congruent to 6 modulo 7. In general, we

can say that for any prime p, we have in the finite field Zp:

−1 ≡ (p − 1) (mod p)

• Getting back to the title of this section, an interesting thing about

the prime finite field Zp is that there exist only two numbers, −1

and 1, in the field that when squared give us 1. That is,

21

Computer and Network Security by Avi Kak Lecture 11

1 · 1 mod p = 1

−1 · −1 mod p = 1

• The relationship shown above also holds for any two integers a

and b, with a congurent to 1 modulo p, and b congruent to -1

modulo p. That is, for any integer a with a ≡ 1 (mod p) and

any integer b with b ≡ −1 (mod p), we must have:

a2 mod p = (a mod p) · (a mod p) mod p = 1

b2 mod p = (b mod p) · (b mod p) mod p = 1

Besides 1 and -1, there do not exist any other integers x ∈ Zp

that when squared will return 1 mod p.

• We will prove the above assertion by contradiction:

– Let’s assume that there does exist an x ∈ Zp, x 6= 1 and

x 6= −1, such that

x · x mod p = 1

which is the same thing as saying that

x2 ≡ 1 (mod p)

22

Computer and Network Security by Avi Kak Lecture 11

– The above equation can be expressed in the following forms:

x2 − 1 ≡ 0 (mod p)

x2 − x + x − 1 ≡ 0 (mod p)

(x − 1) · (x + 1) ≡ 0 (mod p)

– Now remember that in our proof by contradiction we are

not allowing x to be either −1 or 1. Therefore, for the last of

the above equivalences to hold true, it must be the case that

either x − 1 or x + 1 is congruent to 0 modulo the prime p.

But we know already that, when p is prime, no number

is Zp can satisfy this condition if x is not allowed

to be either 1 or −1. [Any x, which is neither 1 nor -1, satisfying the last of

the equations above would imply that p possesses non-trivial factors. Remember, 0 is the same thing as

p in arithmetic modulo p.] Therefore, the above equivalences must be

false unless x is either −1 or 1. (As mentioned earlier, −1 is

a standin for p− 1 in the finite field Zp.)

• We summarize the above proof by saying that in Zp the equation

x2 = 1 has only two trivial roots −1 and 1. There do not exist

any non-trivial roots for x2 = 1 in Zp for any prime p.

23

Computer and Network Security by Avi Kak Lecture 11

11.5.3: Miller-Rabin Algorithm: Two Special

Conditions That Must Be Satisfied by a Prime

• First note that for any prime p, it being an odd number, the

following relationship must hold (as stated in Section 11.5.1)

p − 1 = 2k · q for some k > 0, and odd q

• The algorithm is based on the observation that for any integer a

in the range 1 < a < p− 1 (pay attention to the two inequalities; they say that a is not

allowed to take on either the first two values or the last value of the range of the integers in Zp and that

all of the allowed values for a are coprime to p if p is truly a prime), one of the following

conditions must be true when p is a prime:

CONDITION 1: Either it must be the case that

aq ≡ 1 (mod p)

CONDITION 2: Or, it must be the case that one of the num-

bers aq, a2q, a4q,, a2
k−1q is congruent to−1 modulo p. That

is, there exists some number j in the range 1 ≤ j ≤ k, such

that

24

Computer and Network Security by Avi Kak Lecture 11

a2
j−1q ≡ − 1 (mod p)

• The rest of this subsection presents a proof for the Conditions 1

and 2 stated above. We must prove that when p is a prime, then

either Condition 1 or Condition 2 must be satisfied.

• Since p − 1 = 2k · q for some k and for some odd integer

q, the following statement of Fermat’s Little Theorem

ap−1 ≡ 1 (mod p)

can be re-expressed as

a2
k·q ≡ 1 (mod p)

for any positive integer a that is coprime to p. For prime p,

that includes all values of a such that 1 ≤ a ≤ (p− 1).

• We now restrict the range of a to 1 < a < (p− 1) by excluding

from the range specified for the Fermat’s Little Theorem the val-

ues a = 1 and a = p− 1, the second being the same as a = −1.

That is because Fermat’s Little Theorem is always satisfied for

25

Computer and Network Security by Avi Kak Lecture 11

these two values of a regardless of whether p is a prime or a

composite.

• Choosing some a in the range 1 < a < (p − 1), let’s examine

the following sequence of numbers

aq mod p, a2q mod p, a2
2q mod p, a2

3q mod p,, a2
kq mod p

Note that every number in this sequence is a square

of the previous number. Therefore, on the basis of the

argument presented in Section 11.5.2, either it must be the case

that the first number satisfies aq mod p = 1, in which case

every number in the sequence is 1; or it must be the case that

one of the numbers in the sequence is−1 (the other square-root

of 1), which would then make all the subsequent numbers equal

to 1. This is the proof for Condition 1 and Condition 2 of

the previous section. [You might ask as to why this proof does not include the following

logic: If one of the members of the sequence after the first member is +1, that would also make all subsequent

members equal to +1. To respond, let’s say that the kth member is the first member of the sequence that is

+1. That, by Section 11.5.2, implies that the (k− 1)th member must be -1. This (k− 1)th member could even

be the first member of the sequence. So we are led back to the conclusion that either the first member is +1

or one of the members (including possibly the first) before we get to the end of the sequence is -1.]

• In the logic stated above, note the role played by the fact that

when x2 = 1 in Zp, then it must be the case that either x = 1

26

Computer and Network Security by Avi Kak Lecture 11

or x = −1. (This fact was established in Section 11.5.2.) Also

recall that in Zp, the number −1 is the same thing as p− 1.

27

Computer and Network Security by Avi Kak Lecture 11

11.5.4: Consequences of the Success and Failure of

One or Both Conditions

• The upshot of the points made so far is that if for a given number

p there exists a number a that is greater than 1 and less than

p − 1 and for which neither of the Conditions 1 and 2 is

satisfied, then the number p is definitely not a prime.

• Since we have not established a “if and only if” sort of a connec-

tion between the primality of a number and the twoConditions,

it is certainly possible that a composite number may also satisfy

the two Conditions.

• Therefore, we conclude that if neither Condition is true for a

randomly selected 1 < a < (p − 1), then p is definitely not a

prime. However, if the Conditions are true for a given 1 < a <

(p− 1), then p may be either a composite or a prime.

• From experiments it is known that if either of theConditions is

true for a randomly selected 1 < a < (p−1), then p is likely to be

prime with a very high probability. To increase the probability of

n being a prime, one can repeat testing for the two Conditions

with different randomly selected choices for a.

28

Computer and Network Security by Avi Kak Lecture 11

11.5.5: Python and Perl Implementations for the

Miller-Rabin Algorithm

• Shown on the next page is a Python implementation of the Miller-

Rabin algorithm for primality testing. The names chosen for the

variables should either match those in the earlier explanations in

this lecture or are self-explanatory.

• You will notice that this code only uses for a the values 2, 3, 5, 7,

11, 13, and 17, as shown in line (B). Researchers have shown that

using these for probes suffices for primality testing for integers

smaller than 341,550,071,728,321. [As you will see in the next lecture, asymmetric-

key cryptography uses prime numbers that are frequently much larger than this. So the probe set shown here

would not be sufficient for those algorithms.]

• As you should expect by this time, the very first thing our imple-

mentation must do is to express a prime candidate p in the form

p−1 = q∗2k. This is done in lines (D) through (G) of the script.

Note how we find the values of q and k by bit shifting. [This is

standard programming idiom for finding how many times an integer is divisible by 2.

Also see the explanation in the second bullet in Section 11.5.1.]

• What you see in lines (H) through (R) is the loop that tests the

candidate prime p with each of the probe values. As shown in

29

Computer and Network Security by Avi Kak Lecture 11

line (J), a probe yields success if aq is either equal to 1 or to p−1

(which is the same thing as -1 in mod p arithmetic). If neither

is the case, we then resort to the inner loop in lines (M) through

(Q) for squaring at each iteration a power of aq. Should one of

these powers equal p− 1, we exit the inner loop.

• The last part of the code, in lines (U) through (c), exercises the

testing function on a set of primes that have been diddled with

the addition of a small random integer.

• Here is the Python implementation:

#!/usr/bin/env python

PrimalityTest.py

Author: Avi Kak

Date: February 18, 2011

Updated: February 28, 2016

An implementation of the Miller-Rabin primality test

You can call this script with either no comamnd-line args or with just one

command-line arg. If you call it with no args, it returns primality results on a

set of randomly altered 36 primes. On the other hand, if you call it with just

one arg, it returns the answer for that integer.

def test_integer_for_prime(p): #(A1)

if p == 1: return 0 #(A2)

probes = [2,3,5,7,11,13,17] #(A3)

if p in probes: return 1 #(A4)

if any([p % a == 0 for a in probes]): return 0 #(A5)

k, q = 0, p-1 # need to represent p-1 as q * 2^k #(A6)

while not q&1: #(A7)

q >>= 1 #(A8)

k += 1 #(A9)

for a in probes: #(A10)

a_raised_to_q = pow(a, q, p) #(A11)

if a_raised_to_q == 1: continue #(A12)

if (a_raised_to_q == p-1) and (k > 0): continue #(A13)

30

Computer and Network Security by Avi Kak Lecture 11

a_raised_to_jq = a_raised_to_q #(A14)

primeflag = 0 #(A15)

for j in range(k-1): #(A16)

a_raised_to_jq = pow(a_raised_to_jq, 2, p) #(A17)

if a_raised_to_jq == p-1: #(A18)

primeflag = 1 #(A19)

break #(A20)

if not primeflag: return 0 #(A21)

probability_of_prime = 1 - 1.0/(4 ** len(probes)) #(A22)

return probability_of_prime #(A23)

primes = [179, 233, 283, 353, 419, 467, 547, 607, 661, 739, 811, 877, \

947, 1019, 1087, 1153, 1229, 1297, 1381, 1453, 1523, 1597, \

1663, 1741, 1823, 1901, 7001, 7109, 7211, 7307, 7417, 7507, \

7573, 7649, 7727, 7841] #(A24)

if __name__ == ’__main__’:

import sys #(M1)

import random #(M2)

if len(sys.argv) == 1: #(M3)

for p in primes: #(M4)

p += random.randint(1,10) #(M5)

probability_of_prime = test_integer_for_prime(p) #(M6)

if probability_of_prime > 0: #(M7)

print("%d is prime with probability: %f" %(p,probability_of_prime))

#(M8)

else: #(M9)

print("%d is composite" % p) #(M10)

elif len(sys.argv) == 2: #(M11)

p = int(sys.argv[1]) #(M12)

probability_of_prime = test_integer_for_prime(p) #(M13)

if probability_of_prime > 0: #(M14)

print("%d is prime with probability: %f" %(p,probability_of_prime))

#(M15)

else: #(M16)

print("%d is composite" % p) #(M17)

else: #(M18)

sys.exit("""You cannot call ’PrimalityTest.py’ with more """ #(M19)

"""than one command-line argument""")

• When called without a command-line argument, the exact output

of the above script will depend on how the prime numbers are

modified in line (M5). A typical run without a command-line

argument will produce something like what is shown below:

31

Computer and Network Security by Avi Kak Lecture 11

181 is prime with probability: 0.999938964844

234 is composite

291 is composite

361 is composite

423 is composite

477 is composite

555 is composite

614 is composite

668 is composite

748 is composite

814 is composite

884 is composite

954 is composite

1025 is composite

1091 is prime with probability: 0.999938964844

1162 is composite

1231 is prime with probability: 0.999938964844

1306 is composite

1387 is composite

1456 is composite

1527 is composite

1603 is composite

1671 is composite

1742 is composite

1833 is composite

1911 is composite

7008 is composite

7119 is composite

7212 is composite

7308 is composite

7424 is composite

7512 is composite

7582 is composite

7657 is composite

7734 is composite

7844 is composite

• On the other hand, if you call the Python script shown above with

an integer supplied as a command-line argument, it will report

back the result for just that integer.

• Shown next is the Perl implementation of the same algorithm.

The only significant difference between the Python code shown

above and the Perl code shown next is regarding the modular

32

Computer and Network Security by Avi Kak Lecture 11

exponentiation step implemented in lines (R) through (W) of the

script that follows. [I am referring to implementing in Perl what was done by a single state-

ment call in line (I) of the Python code.] Unless you use the Perl’s Math::BigInt

library, you can be pretty certain that Perl will make errors even

for seemingly small exponentiations like 389. The result of this

exponentiation cannot be accomodated in Perl’s native 4-byte

representation for an unsigned integer. [The largest unsigned integer that Perl

can fit in a 4-byte representation is 232 − 1.] So, at some point during the cal-

culation of 389, Perl will switch to a floating point representation

for the partial result whose conversion to int will not yield the

correct answer. Try calculating (3 ** 89) % 179 in Perl. And then

try to do the same in Python by calling pow(3,89,179) or, for that

matter, even by the less efficient (3 ** 89) % 179. Python will yield

the correct answer of 1 in either case. On the other hand, Perl’s

answer will be incorrect — I get 8 on my machine. To get around

this problem, the code in lines (R) through (W) is an implemen-

tation of the modular exponentiation algorithm that the built-in

function pow() of Python is also based on.

#!/usr/bin/env perl

PrimalityTest.pl

Author: Avi Kak

Date: February 28, 2016

An implementation of the Miller-Rabin primality test

You can call this script with either no comamnd-line args or with just one

command-line arg. If you call it with no args, it returns primality results on a

set of randomly altered 36 primes. On the other hand, if you call it with just

one arg, it returns the answer for that integer.

use strict;

use warnings;

unless (@ARGV) {

33

Computer and Network Security by Avi Kak Lecture 11

my @primes = qw[179 233 283 353 419 467 547 607 661 739 811 877

947 1019 1087 1153 1229 1297 1381 1453 1523 1597

1663 1741 1823 1901 7001 7109 7211 7307 7417 7507

7573 7649 7727 7841]; #(M1)

foreach my $p (@primes) { #(M2)

$p += 1 + int(rand(10)); #(M3)

my $probability_of_prime = test_integer_for_prime($p); #(M4)

$probability_of_prime > 0 ? #(M5)

print "$p is prime with probability: $probability_of_prime\n" : #(M6)

print "$p is composite\n"; #(M7)

}

} elsif (@ARGV == 1) { #(M8)

my $p = shift; #(M9)

die "Your number is too large for this script. Instead, try the " .

"script ’PrimalityTestWithBigInt.pl’\n"

if $p > 0x7f_ff_ff_ff; #(M10)

my $probability_of_prime = test_integer_for_prime($p); #(M11)

$probability_of_prime > 0 ?

print "$p is prime with probability: $probability_of_prime\n" :

print "$p is composite\n"; #(M12)

} else { #(M13)

die "You cannot call ’PrimalityTest.py’ with more " .

"than one command-line argument"; #(M14)

}

sub test_integer_for_prime { #(A1)

my $p = shift; #(A2)

return 0 if $p == 1; #(A3)

my @probes = (2,3,5,7,11,13,17); #(A4)

my @in_probes = grep {$p == $_} @probes; #(A5)

return 1 if @in_probes; #(A6)

my $p_mod_a = 1; #(A7)

map { $p_mod_a = 0 if $p % $_ == 0 } @probes; #(A8)

return 0 if $p_mod_a == 0; #(A9)

my ($k, $q) = (0, $p - 1); #(A10)

while (! ($q & 1)) { #(A11)

$q >>= 1; #(A12)

$k += 1; #(A13)

}

my ($a_raised_to_q, $a_raised_to_jq, $primeflag); #(A14)

foreach my $a (@probes) { #(A15)

my ($base,$exponent) = ($a,$q); #(A16)

my $a_raised_to_q = 1; #(A17)

while ((int($exponent) > 0)) { #(A18)

$a_raised_to_q = ($a_raised_to_q * $base) % $p

if int($exponent) & 1; #(A19)

$exponent = $exponent >> 1; #(A20)

$base = ($base * $base) % $p; #(A21)

}

next if $a_raised_to_q == 1; #(A22)

next if ($a_raised_to_q == ($p - 1)) && ($k > 0); #(A23)

$a_raised_to_jq = $a_raised_to_q; #(A24)

$primeflag = 0; #(A25)

foreach my $j (0 .. $k - 2) { #(A26)

$a_raised_to_jq = ($a_raised_to_jq ** 2) % $p; #(A27)

34

Computer and Network Security by Avi Kak Lecture 11

if ($a_raised_to_jq == $p-1) { #(A28)

$primeflag = 1; #(A29)

last; #(A30)

}

}

return 0 if ! $primeflag; #(A31)

}

my $probability_of_prime = 1 - 1.0/(4 ** scalar(@probes)); #(A32)

return $probability_of_prime; #(A33)

}

• As was the case with the Python script, the Perl script shown

above can also be called with and without a command-line ar-

gumnet, and its behavior in both cases is the same as for the

Python script — except when the number involved is too large

to fit in a 4-byte representation that Perl uses for unsigned ints.

Since you have already seen the without-command-line-argument

behavior for the Python case, here is calling the Perl script shown

above with an integer supplied through the command line:

PrimalityTest.pl 1234567891

and it comes back

1234567891 is prime with probability: 0.99993896484375

• On the other hand, if you call the script with a larger number, as

in

PrimalityTest.pl 123456789123456789

you will get the following response from the script:

Your number is too large for this script. Instead, try the

script ’PrimalityTestWithBigInt.pl’

35

Computer and Network Security by Avi Kak Lecture 11

• As implied by the above error message, if you want to use Perl for

primality testing of really large numbers, you’ll have to import

the Math::BigInt library into your script, as shown by the script

that follows:

#!/usr/bin/env perl

PrimalityTestWithBigInt.pl

Author: Avi Kak

Date: February 28, 2016

use strict;

use warnings;

use Math::BigInt;

die "\nUsage: $0 <integer> \n" unless @ARGV == 1; #(M1)

my $p = shift @ARGV; #(M2)

$p = Math::BigInt->new("$p"); #(M3)

my $answer = test_integer_for_prime($p); #(M4)

if ($answer) { #(M5)

print "$p is prime with probability: $answer\n"; #(M6)

} else {

print "$p is composite\n"; #(M7)

}

sub test_integer_for_prime { #(A1)

my $p = shift; #(A2)

return 0 if $p->is_one(); #(A3)

my @probes = qw[2 3 5 7 11 13 17]; #(A4)

foreach my $a (@probes) { #(A5)

$a = Math::BigInt->new("$a"); #(A6)

return 1 if $p->bcmp($a) == 0; #(A7)

return 0 if $p->copy()->bmod($a)->is_zero(); #(A8)

}

my ($k, $q) = (0, $p->copy()->bdec()); #(A9)

while (! $q->copy()->band(Math::BigInt->new("1"))) { #(A10)

$q->brsft(1); #(A11)

$k += 1; #(A12)

}

my ($a_raised_to_q, $a_raised_to_jq, $primeflag); #(A13)

foreach my $a (@probes) { #(A14)

my $abig = Math::BigInt->new("$a"); #(A15)

my $a_raised_to_q = $abig->bmodpow($q, $p); #(A16)

next if $a_raised_to_q->is_one(); #(A17)

my $pdec = $p->copy()->bdec(); #(A18)

next if ($a_raised_to_q->bcmp($pdec) == 0) && ($k > 0); #(A19)

$a_raised_to_jq = $a_raised_to_q; #(A20)

$primeflag = 0; #(A21)

36

Computer and Network Security by Avi Kak Lecture 11

foreach my $j (0 .. $k - 2) { #(A22)

my $two = Math::BigInt->new("2"); #(A23)

$a_raised_to_jq = $a_raised_to_jq->copy()->bmodpow($two, $p); #(A24)

if ($a_raised_to_jq->bcmp($p->copy()->bdec()) == 0) { #(A25)

$primeflag = 1; #(A26)

last; #(A27)

}

}

return 0 if ! $primeflag; #(A28)

}

my $probability_of_prime = 1 - 1.0/(4 ** scalar(@probes)); #(A29)

return $probability_of_prime; #(A30)

}

• If you call the script with a larger number, as in

PrimalityTestWithBigInt.pl 1234567891234567891234567891

you will get the following response from the script:

1234567891234567891234567891 is prime with probability: 0.99993896484375

37

Computer and Network Security by Avi Kak Lecture 11

11.5.6: Miller-Rabin Algorithm: Liars and Witnesses

• When n is known to be composite, then the dual test

aq 6≡ 1

and

a2
i·q 6≡ − 1 mod n for all 0 < i < k − 1

will be satisfied by only a certain number of a’s, a < n. All such

a’s are called witnesses for the compositeness of n.

• When a randomly chosen a for a known composite n does not

satisfy the dual test above, it is called a liar for the compositeness

of n.

• It has been shown theoretically that, in general, for a composite

n, at least 3/4th of the numbers a < n will be witnesses for its

compositeness.

• It follows from the above statement that if n is indeed composite,

then the Miler-Rabin algorithm will declare it to be a prime with

a probability of 4−t where t is the number of probes used.

38

Computer and Network Security by Avi Kak Lecture 11

• In reality, the probability of a composite number being declared

prime by the Miller-Rabin algorithm is significantly less than 4−t.

• If you are careful in how you choose a candidate for a prime

number, you can safely depend on the Miller-Rabin algorithm to

verify its primality.

39

Computer and Network Security by Avi Kak Lecture 11

11.5.7: Computational Complexity of the

Miller-Rabin Algorithm

• The running time of this algorithm is O(t× log3n) where n is the

integer being tested for its primality and t the number of probes

used for testing. [In the theory of algorithms, the notation O(), sometimes called the ’Big-O’, is

used to express the limiting behavior of functions. If you write f(n) = O(g(n)), that implies that as n → ∞,

f(n) will behave like g(n). More precisely, it means that as n → ∞, there will exist a positive integer M and

an integer n0 such that |f(n)| ≤ M |g(n)| for all n > n0. (At Purdue, the theory of complexity is taught

in ECE664.)]

• A more efficient FFT based implementation can reduce the time

complexity measure to O(t× log2n).

• In the theory of algorithms, the Miller-Rabin algorithm would be

called a randomized algorithm.

• A randomized algorithm is an algorithm that can make ran-

dom choices during its execution.

• As a randomized algorithm, the Miller-Rabin algorithm belongs

to the class co-RP.

40

Computer and Network Security by Avi Kak Lecture 11

• The class RP stands for randomized polynomial time.

This is the class of problems that can be solved in polynomial

time with randomized algorithms provided errors are made on

only the “yes” inputs. What that means is that when the answer

is known to be “yes”, the algorithm occasionally says “no”.

• The class co-RP is similar to the classRP except that the algo-

rithm occasionally makes errors on only the “no” inputs. What

that means is that when the answer is known to be “no”, the

algorithm occasionally says “yes”.

• The Miller-Rabin algorithm belongs to co-RP because occasion-

ally when an input number is known to not be a prime, the

algorithm declares it to be prime.

• The class co-RP is a subset of the class BPP. BPP stands for

bounded probabilistic polynomial-time. These are ran-

domized polynomial-time algorithms that yield the correct an-

swer with an exponentially small probability of error.

• The fastest algorithms that behave deterministically belong to

the class P in the theory of computational complexity. P stands

for polynomial-time. All problems that can be solved in ex-

ponential time in a deterministic machine belong to the classNP

in the theory of computational complexity.

41

Computer and Network Security by Avi Kak Lecture 11

• The class P is a subset of class BPP and there is no known

direct relationship between the classes BPP and NP. In general

we have

P ⊂ RP ⊂ NP

P ⊂ co−RP ⊂ BPP

42

Computer and Network Security by Avi Kak Lecture 11

11.6: THE AGRAWAL-KAYAL-SAXENA
(AKS) ALGORITHM FOR PRIMALITY

TESTING

• Despite the millennia old obsession with prime numbers,

until 2002 there did not exist a computationally efficient test

with an unconditional guarantee of primality.

– A deterministic test of primality (as opposed to a randomized

test) is considered to be computationally efficient if it

belongs to class P. That is, the running time of the algorithm

must be a polynomial function of the size of the number whose

primality is being tested. (The size of n is proportional

to log n. Think of the binary representation of n.)

– If there was no concern about computational efficiency, you

could always test for primality by dividing n by all integers up

to
√
n. The running time of this algorithm would be directly

proportional to n, which is exponential in the size of n.

– Only very small integers can be tested for primality by such a

brute-force approach even though it is unconditionally guar-

43

Computer and Network Security by Avi Kak Lecture 11

anteed to yield the correct answer.

– Hence the great interest by all (the governments, the scien-

tists, the commercial enterprise, etc.) in discovering a com-

putationally efficient algorithm for testing for primality that

guarantees its result unconditionally.

• So when on August 8, 2002 The New York Times broke the

story that the trio of Manindra Agrawal, Neeraj Kayal, and Nitin

Saxena (all from the Indian Institute of Technology at Kanpur)

had found a computationally efficient algorithm that returned an

unconditionally guaranteed answer to the primality test, it caused

a big sensation.

44

Computer and Network Security by Avi Kak Lecture 11

11.6.1: Generalization of Fermat’s Little Theorem to

Polynomial Rings Over Finite Fields

• The Agrawal-Kayal-Saxena (AKS) algorithm is based on the fol-

lowing generalization of Fermat’s Little Theorem to polynomial

rings over finite fields. [See Lecture 6 for what a polynomial ring is.] This gener-

alization states that if a number a is coprime to another number

p, p > 1, then p is prime if and only if the polynomial

(x + a)p defined over the finite field Zp obeys the following

equality:

(x + a)p ≡ xp + a (mod p) (6)

Pay particular attention to the ‘if and only if’ clause in the

statement above the equation. That implies that the equality in

Eq. (6) is both a necessary and a sufficient condition for p to

be a prime. It is this fact that allows the AKS test for primality

to be deterministic. By contrast, Fermat’s Little Theorem is only a necessary

condition for the p to be prime. Therefore, a test based directly on Fermat’s Little

Theorem — such as the Miller-Rabin test — can only be probabilistic in the sense

explained earlier.

• To establish Eq. (6), we can expand the binomial (x + a)p as

follows:

45

Computer and Network Security by Avi Kak Lecture 11

(x + a)p =

(

p

0

)

xp +

(

p

1

)

xp−1 ·a +

(

p

2

)

xp−2 ·a2 + · · · +

(

p

p

)

ap (7)

where the binomial coefficients are given by

(

p

i

)

=
p!

i!(p− i)!

• To prove Eq. (6) in the forward direction, suppose p is prime.

Then all of the binomial coefficients, since they contain p as a

factor, will obey

(

p

i

)

≡ 0 (mod p)

Also, in this case, by Fermat’s Little Theorem, we have ap−1 = 1.

As a result, the expansion in Eq. (7) reduces to the form shown

in Eq. (6).

• To prove Eq. (6) in the opposite direction, suppose p is compos-

ite. It then has a prime factor q > 1. Let qk be the greatest

power of q that divides p. Then qk does NOT divide the bino-

mial coefficient
(

p
q

)

. That is because this binomial coefficient has

factored out of it some power of q and therefore the binomial co-

efficient cannot have qk as one of its factors. [To make the same

assertion contrapositively, let’s assume for a moment that qk is a

46

Computer and Network Security by Avi Kak Lecture 11

factor of
(

p
q

)

. Then it must be the case that a larger power of q

can divide p which is false by the assumption about k.] We also

note that qk must be coprime to ap−q since we started out with

the assumption that a and p were coprimes, implying that a and

p cannot share any factors (except for the number 1). Now the

coefficient of the term xq in the binomial expansion is

(

p

q

)

· ap−q

We have identified a factor of p, the factor being qk, that does not

divide
(

p
q

)

and and that is a coprime to ap−q. For the coefficient

of xq to be 0 mod p, it must be divisible by p. But for that to be

the case, the coefficient must be divisible by all factors of p. But

we have just identified a factor, qk, that divides neither
(

p
q

)

not

ap−q. Therefore, the coefficient of xq cannot be 0 mod p. This

establishes the proof of Eq. (6) in the opposite direction, since

we have shown that when p is not a prime, the equality in Eq.

(6) does not hold.

• The generalization of Fermat’s Little Theorem can be used di-

rectly for primality testing, but it would not be computationally

efficient since it would require we check each of the p coefficients

in the expansion of (x + a)p for some a that is coprime to p.

• There is a way to make this sort of primality testing more efficient

by making use of the fact that if

47

Computer and Network Security by Avi Kak Lecture 11

f(x) mod p = g(x) mod p (8)

then

f(x) mod h(x) = g(x) mod h(x) (9)

where f(x), g(x), and h(x) are polynomials whose coefficients

are in the finite field Zp. (But bear in mind the fact that whereas

Eq. (8) implies Eq. (9), the reverse is not true.)

• As a result, the primality test of Equation (4) can be expressed

in the following form for some value of the integer r:

(x + a)p mod (xr − 1) = (xp + a) mod (xr − 1) (10)

with the caveat that there will exist some composite p for which

this equality will also hold true. So, when p is known to be a

prime, the above equation will be satisfied by all a coprime to p

and by all r. However, when p is a composite, this equation will

be satisfied by some values for a and r.

• The main AKS contribution lies in showing that, when r is chosen

appropriately, if Eq. (10) is satisfied for appropriately chosen

values for a, then p is guaranteed to be a prime. The amount

of work required to find the value to use for r and

the number of values of a for which the equality in

48

Computer and Network Security by Avi Kak Lecture 11

Eq. (10) must be tested is bounded by a polynomial

in log p.

49

Computer and Network Security by Avi Kak Lecture 11

11.6.2: The AKS Algorithm: The Computational

Steps

p = integer to be tested for primality

if (p == a^b for some integer a and for some integer b > 1) :

then return ‘‘p is COMPOSITE’’

r = 2

This loop is to find the appropriate value for the number r:

while r < p:

if (gcd(p,r) is not 1) : # (A)

return "p is COMPOSITE"

if (r is a prime greater than 2):

let q be the largest factor of r-1

if (q > (4 . sqrt(r) . log p)) and

(p^{(r-1)/q} is not 1 mod r) :

break

r = r+1

Now that r is known, apply the following test:

for a = 1 to (2 . sqrt(r) . log p) :

if ((x-a)^p is not (x^p - a) mod (x^r - 1): #(B)

return "p is COMPOSITE"

return "p is PRIME"

There are two main challenges in creating an efficient implementation

from the pseudocode shown above:

• For large candidate numbers, the number of iterations of the

while loop for finding an appropriate value for r may be large

50

Computer and Network Security by Avi Kak Lecture 11

enough to require that you use the binary GCD algorithm in

Section 5.4.4 of Lecture 5 — as opposed to the regular Euclid’s

algorithm also presented in the same section.

• Your main challenge is going to be to carry out what looks like

computer algebra in line (B) where you are supposed to figure

out whether, for the given value for a, the polynomial (x− a)p is

congruent to the polynomial xp−amodulo the polynomial xr−1.

Barring an implementation of this step as an exercise in computer

algebra, how does one do that? One way to implement this step

is by using logic that is similar to what was shown in Section 7.9

of Lecture 7 where we talked about polynomial multiplications

modulo the irreducible polynomial for AES. Accordingly, as we

raise (x − a) to successively larger powers, the modulo xr − 1

effect would come into play only when the exponent of (x − a)

is r or larger. Starting with (x− a)r, its expansion has only one

term to which the modulo operation needs to be applied and that

term is xr. So if we pre-calculate the value xr mod (xr−1), with

the coefficients manipulated in the field Zp, we can find out what

(x− a)r mod (xr − 1) is easily. If we now multiply this result by

(x − a) and use similar logic as in the previous step, we obtain

(x− a)(r+1) mod (xr − 1) easily; and so on.

51

Computer and Network Security by Avi Kak Lecture 11

11.6.3: Computational Complexity of the AKS

Algorithm

• The computational complexity of the AKS algorithm is

O
(

(log p)12 · f(log log p)
)

where p is the integer whose primality is being tested and f is

a polynomial. So the running time of the algorithm is propor-

tional to the twelfth power of the number of bits required to

represent the candidate integer times a polynomial function of

the logarithm of the number of bits.

• There exist proposals for alternative implementations of the AKS

algorithm for which the running time approaches the fourth power

of the number of bits required to represent the number.

52

Computer and Network Security by Avi Kak Lecture 11

11.7: THE CHINESE REMAINDER
THEOREM (CRT)

• Discovered by the Chinese mathematician Sun Tsu Suan-Ching

around 4th century A.D. Particularly useful for modulo arithmetic

operations on very large numbers with respect to large moduli.

• CRT says that in moduloM arithmetic, ifM can be expressed as

a product of n integers that are pairwise coprime, then every in-

teger in the set ZM = {0, 1, 2,,M − 1} can be reconstructed

from residues with respect to those n numbers. [In all examples of mod-

ulo arithmetic so far in this lecture series, the modulus M has been prime. But now we are considering a

modulus that is a composite. As you will see in the next lecture, in the famous RSA algorithm for public-key

cryptography, the modulus M is a product of two primes, and therefore a composite.]

• For example, the prime factors of 10 are 2 and 5. Now let’s

consider an integer 9 in Z10. Its residue modulo 2 is 1 and the

residue modulo 5 is 4. So, according to CRT, 9 can be represented

by the tuple (1, 4). As to why that’s a useful thing to do, you’ll

soon see.

53

Computer and Network Security by Avi Kak Lecture 11

• Let us express a decomposition of M into factors that are pair-

wise coprime by

M =
k
∏

i=1

mi

Therefore, the following must be true for the factors: gcd(mi,mj)

= 1 for 1 ≤ i, j ≤ k and i 6= j. As an example of such a de-

composition, we can express the integer 130 as a product of 5

and 26, which results in m1 = 5 and m2 = 26. Another way to

decompose the integer 130 would be express it as a product of 2,

5, and 13. For this decomposition, we have m1 = 2, m2 = 5 and

m3 = 13.

• CRT allows us to represent any integer A in ZM by the k-tuple:

A ≡ (a1, a2, . . . , ak)

where each ai ∈ Zmi
, its exact value being given by

ai = A mod mi for 1 ≤ i ≤ k

Note that each ai can be any value in the range 0 ≤ ai < mi.

54

Computer and Network Security by Avi Kak Lecture 11

• CRT makes the following two assertions about the k-tuple repre-

sentations for integers:

– The mapping between the integers A ∈ ZM and the k-

tuples is a bijection, meaning that the mapping is one-to-

one and onto. That is, there corresponds a unique k-tuple

for every integer in ZM and vice versa. (More formally, the

bijective mapping is between ZM and the Cartesian product

Zm1 × Zm2 × . . . Zmk
.)

– Arithmetic operations on the numbers in ZM can be carried

out equivalently on the k-tuples representing the numbers.

When operating on the k-tuples, the operations can be

carried out independently on each of coordinates

of the tuples, as represented by

(A + B) mod M ⇔ ((a1 + b1) mod mi, . . . , (ak + bk) mod mk)

(A − B) mod M ⇔ ((a1 − b1) mod mi, . . . , (ak − bk) mod mk)

(A × B) mod M ⇔ ((a1 × b1) mod mi, . . . , (ak × bk) mod mk)

where A ⇔ (a1, a2, . . . , ak) and B ⇔ (b1, b2, . . . , bk)

are two arbitrary numbers in ZM .

• To compute the number A for a given tuple (a1, a2, . . . , ak),

we first calculate Mi = M/mi for 1 ≤ i ≤ k. Since each

55

Computer and Network Security by Avi Kak Lecture 11

Mi has for its factors all the other prime moduli mj, j 6= i, it

must be the case that

Mi ≡ 0 (mod mj) for all j 6= i

Let’s now construct a sequence of numbers ci, 1 ≤ i ≤ k, in the

following manner

ci = Mi × (M−1
i mod mi) for all 1 ≤ i ≤ k

Since Mi is coprime to mi, there must exist a multiplicative in-

verse for Mi mod mi. [The equation above is a bit disconcerting at first sight since it seems

that the right hand side should equal 1 as we are multiplying Mi with M−1

i . But note that we are interpreting

the first operand Mi in modulo M arithmetic and not in modulo mi arithmetic.]

• Now we can write the following formula for obtaining A from the

tuple (a1, a2, . . . , ak):

A =

(

k
∑

i=1

ai × ci

)

mod M

To see the correctness of this formula, we must show that ‘A mod

mi’ produces ai for 1 ≤ i ≤ k. This follows from the fact

that Mj mod mi = 0, j 6= i, implying that cj mod mi = 0,

j 6= i, and the fact that ci mod mi = 1.

56

Computer and Network Security by Avi Kak Lecture 11

11.7.1: A Demonstration of the Usefulness of CRT

• CRT is extremely useful for manipulating very large integers in

modulo arithmetic. We are talking about integers with over 150

decimal digits (that is, numbers potentially larger than 10150).

• To illustrate the idea as to why CRT is useful for manipulat-

ing very large numbers in modulo arithmetic, let’s consider an

example that can be shown on a slide.

• Let’s say that we want to do arithmetic on integers modulo 8633.

That is, M = 8633. This modulus has the following decompo-

sition into two pairwise coprimes:

8633 = 89 × 97

So we have m1 = 89 and m2 = 97. The corresponding Mi

integers are M1 = M/m1 = 97 and M2 = M/m2 = 89.

• By using the Extended Euclid’s Algorithm (see Lecture 5), we

can next figure out the multiplicative inverse for M1 modulo m1

57

Computer and Network Security by Avi Kak Lecture 11

and the multiplicative inverse for M2 modulo m2. (These multi-

plicative inverses are guaranteed to exist since M1 is coprime to

m1, and M2 is coprime to m2.) We have [You could call the Python script

FindMI.py in Section 5.7 of Lecture 5 to get the following MI values.]

M−1
1 mod m1 = 78

M−1
2 mod m2 = 12

You can verify the correctness of the two multiplicative inverses

by showing that 97× 78 ≡ 1(mod 89) and that 89× 12 ≡ 1

(mod 97).

• Now let’s say that we want to add two integers 2345 and 6789

modulo 8633.

• We first express the operand 2345 by its CRT representation,

which is (31, 17) since 2345 mod 89 = 31 and 2345 mod

97 = 17.

• We next express the operand 6789 by its CRT representation,

which is (25, 96) since 6789 mod 89 = 25 and 6789 mod

97 = 96.

• To add the two “large” integers, we simply add the two corre-

sponding CRT tuples modulo the respective moduli. This gives

58

Computer and Network Security by Avi Kak Lecture 11

us (56, 16). For the second of these two numbers, we initially get

113, which modulo 97 is 16.

• To recover the result as a single number, we use the formula

a1 ×M1 ×M−1
1 + a2 ×M2 ×M−1

2 mod M

which for our example becomes

56× 97× 78 + 16× 89× 12 mod 8633

that returns the result 501. You can verify this result by directly

computing 2345+6789 mod 8633 and getting the same answer.

• For the example we worked out above, we decomposed the mod-

ulus M into its prime factors. In general, it is sufficient to de-

compose M into factors that are coprimes on a pairwise basis.

• In the next lecture, we will see how CRT is used in a computa-

tionally efficient approach to modular exponentiation, which is a

key step in public key cryptography.

59

Computer and Network Security by Avi Kak Lecture 11

11.8: DISCRETE LOGARITHMS

• First let’s define what is meant by a primitive root modulo

a positive number N .

• You already know that when p is a prime, the set of remainders,

Zp, is a finite field.

• We can show similarly that for any positive integer N , the set

of all integers i < N that are coprime to N form a group with

modulo N multiplication as the group operator. [Note again

we are talking about a group with a multiplication operator, and NOT a ring with a multiplication operator,

NOR a group with an addition operator.]

• For example, when N = 8, the set of coprimes is {1, 3, 5, 7}.
This set forms a group with moduloN multiplication as the group

operator. What that implies immediately is that the result of

multiplying modulo N any two elements of the set is contained

in the set. For example, 3× 7 mod 8 = 5. The identity element

for the group operator is, of course, 1. And every element has its

inverse with respect to the identity element within the set. For

60

Computer and Network Security by Avi Kak Lecture 11

example, the inverse of 3 is 3 itself since 3× 3 mod 8 = 1. (By

the way, each element of {1, 3, 5, 7} is its own inverse in this

group.)

• For any positive integer N , the set of all coprimes modulo N ,

along with modulo N multiplication as the group operator, forms

a group that is denoted (Z/NZ)×. When N = p, that is, when

N is a prime, we will denote this group by Z∗
p . [IMPORTANT: Z∗

p is

NOT to be confused with Zp. The two structures are very, very different. Whereas Zp is a finite field in which

every integer is represented. For example, all multiples of p are represented by 0 in Zp. On the other hand,

Z∗

p is merely a group that consist of just the p − 1 integers in the set {1, 2, 3, · · · , p − 1}. Z∗

p is frequently

referred to as a multiplicative group of order p − 1. The order of a group is the number of elements in the

group.] [With regard to the notation (Z/NZ)×, where the superscript is the multiplication symbol, the

superscript is important for what we want this notation to stand for. Without the superscript, that is when your

notation is merely Z/NZ, the notation is used by many authors to mean the same thing as ZN , that is, the set of

remainders modulo N along with the modulo N addition as the group operator.] In the previous

example, we have (Z/8Z)× = {1, 3, 5, 7}. Choosing a prime for

N , for another example we have Z∗
17 = {1, 2, 3, · · · , 16}.

• For some values of N , the set (Z/NZ)× contains an element

whose various powers, when computed modulo N , are all distinct

and span the entire set (Z/NZ)×. Such an element is called the

primitive element of the set (Z/NZ)× or primitive root

modulo N .

• Consider, for example, N = 9. We have

61

Computer and Network Security by Avi Kak Lecture 11

Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}
(Z/9Z)× = {1, 2, 4, 5, 7, 8}

Now we will show that 2 is a primitive element of the group

(Z/9Z)×, which is the same as primitive root mod 9. Con-

sider

20 = 1

21 = 2

22 = 4

23 = 8

24 ≡ 7 (mod 9)

25 ≡ 5 (mod 9)

· · · · · · · · ·
26 ≡ 1 (mod 9)

27 ≡ 2 (mod 9)

28 ≡ 4 (mod 9)
...

• It is clear that for the group (Z/9Z)×, as we raise the element

2 to all possible powers of the elements of Z9, we recover all the

elements of (Z/9Z)×. That makes 2 a primitive root mod 9.

• A primitive root can serve as the base of what is known as a dis-

crete logarithm. Just as we can express xy = z as logx z = y,

we can express

62

Computer and Network Security by Avi Kak Lecture 11

xy ≡ z (mod N)

as

dlogx,N z = y

• Therefore, the table shown on the previous page for the powers

of 2 can be expressed as

dlog2,9 1 = 0

dlog2,9 2 = 1

dlog2,9 4 = 2

dlog2,9 8 = 3

dlog2,9 7 = 4

dlog2,9 5 = 5

· · · · · · · · ·
dlog2,9 1 = 6

dlog2,9 2 = 7

dlog2,9 4 = 8

...

• It should follow from the above discussion that unique discrete

logarithm mod N to some base a exists only if a is a primitive

root modulo N .

63

Computer and Network Security by Avi Kak Lecture 11

11.9: HOMEWORK PROBLEMS

1. What is the relationship between Euler’s Theorem and Fermat’s

Little Theorem?

2. Intuitively speaking, primality testing seems trivial. Why? But,

practically speaking, primality testing is extremely difficult for

large numbers. Why?

3. Shown below is a naive approach to the implementation of the

following primality test

ap−1 ≡ 1 (mod p)

where p is a candidate prime and a a probe:

p = int(sys.argv[1])

assert p > 17

probes = [2,3,5,7,11,13,17]

for a in probes:

product = 1

for _ in range(p-1):

product *= a

if product % p != 1:

64

Computer and Network Security by Avi Kak Lecture 11

print "%d is NOT a prime" % p

sys.exit(0)

print "%d is a prime" % p

Can this implementation really be used for testing a p that has

so many decimal digits in it that it fills up half a page?

Assuming you have not yet heard of the Miller-Rabin test, how

would you make the above code more efficient? And why would

that not be efficient enough for practical applications?

4. The smarter way to implement the primality test takes advantage

of the factorization:

p− 1 = 2k × q

where q is an odd integer. What’s the commonly used program-

ming idiom to find k and q for a given prime number candidate

p?

5. You already know about the Fermat’s Little Theorem (FLT) that

is used for primality testing:

ap−1 ≡ 1 (mod p)

where p is a candidate prime and a a probe. If the test fails, we

are sure that p is not a prime. However, if the test succeeds, with

a probability of approximately 1/4, there is a chance that p is a

composite.

65

Computer and Network Security by Avi Kak Lecture 11

Therefore, if the test succeeds, you choose another probe a and

repeat the test. If this test fails, you are sure p is not a prime.

However, if the test succeeds, with a probability of (1/4)2, there

is a chance that p is a composite.

You continue in this manner until either the test fails or until

the probability that a composite is masquerading as a prime is

sufficiently small.

Considering that we have very fast algorithms for gcd computa-

tion, why can’t our probabilistic testing strategy be based directly

on the test that if p is a prime, then

gcd(p, a) = 1

for all values for the probe a, 1 ≤ a < p? As in the implemen-

tation of the test based on FLT, an implementation of this test

based on gcd could conceivably use a set of randomly selected

values for a.

6. The AKS primality test is based on what generalization of the

Fermat’s Little Theorem?

7. As a small illustration of the Chinese Remainder Theorem (CRT)

that can all be solved mentally, sayM = 30. Let’s say we express

this M as the product of the pairwise coprimes 2, 3, and 5. That

is, m1 = 2, m2 = 3, and m3 = 5. Given that the numbers

involved are small, you should be able to fill the following table

66

Computer and Network Security by Avi Kak Lecture 11

with just mental calculations. [As you know from Section 11.7, the entries

you place in the last column will be your reconstruction coefficients, c1, c2, c3. Let’s say

(p1, p2, p3) is your CRT representation of large integer I. That is, pi = I mod mi. You

can recover I from its CRT representation by I = (
∑

3

1
cipi) mod M .]

mi Mi M−1

i mod mi Mi × (M−1

i mod mi)

2

3

5

After you are done filling the table, calculate (75 + 89) mod 30,

(75 × 89) mod 30, etc., using the Chinese Remainder Theorem.

Verify your answers by direct computations on the operands in

each case.

8. What is difference between the notation ZN and the notation

(Z/NZ)× ?

9. We say that the element 2 is a primitive root of the set (Z/9Z)×.
What does that mean?

10. What is discrete logarithm and when can we define it for a set of

numbers?

67

Computer and Network Security by Avi Kak Lecture 11

11. Programming Assignment:

Expand one of the primality testing scripts shown in Section

11.5.5 into a script for generating prime numbers whose bit rep-

resentations are of specified size. The two main parts of such

a script will be: (1) generation of an appropriate random num-

ber of the required bit-field width; and (2) testing of the random

number with an appropriate script from Section 11.5.5. If you

are doing this homework in Python, for the first part you can

invoke random.getrandombits(bitfield width) to give

you a random integer whose bit-field is limited to size bitfield width.

Once you have gotten hold of such an integer, you would need to

set its lowest bit, so that it is odd, and the highest bit to make

sure that its bit field spans the full size you want. [As will become

clear in Lecture 12, in some cases you may need to set the two highest bits, as opposed

to just the highest bit.] Shown below is a code fragment that does all

of these things:

candidate = random.getrandbits(bitfield_width)

if candidate & 1 == 0: candidate += 1

candidate |= (1 << bitfield_width - 1)

candidate |= (2 << bitfield_width - 3)

where you need the last statement only if you wish to set the

two most significant bits. Subsequently, should this candidate

prime prove to be a composite, you can increment it by 2 and try

again. As you are dubugging your script, you may wish to print

out the bit patterns generated by the calls shown above using a

statement like:

print format(candidate, ’064b’)

68

Computer and Network Security by Avi Kak Lecture 11

assumign that you are generating 64 bit primes.

Should you choose to do this homework in Perl, the statements

that have roughly the same behavior as shown above for Python

would be:

@arr = map {my $x = rand(1); $x > 0.5 ? 1 : 0 } 0 .. $bitfield_width - 4;

push @arr, 1;

unshift @arr, (1,1);

$bstr = join ’’, split /\s/, "@arr";

$candidate = oct("0b".$bstr);

Use your script to generate 64-bit wide and 128-bit wide prime

numbers. [HINT: The Python and Perl solutions to this problem are presented

in the Homework Problems section of Lecture 12. However, try not to look at those

solutions before creating your own solution.]

69

