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Goals:

• What is a hash function?

• Different ways to use hashing for message authentication

• The birthday paradox and the birthday attack

• Structure of cryptographically secure hash functions

• SHA Series of Hash Functions

• Compact Python and Perl implementations for SHA-1 using
BitVector [Although SHA-1 is now considered to be fully broken (see Section 15.7.1), program-

ming it is still a good exercise if you are learning how to code Merkle type hash functions.]

• Message Authentication Codes
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15.1: WHAT IS A HASH FUNCTION?

• In the context of message authentication, a hash function takes a

variable sized input message and produces a fixed-sized

output. The output is usually referred to as the hashcode

or the hash value or the message digest. [Hash functions are also

extremely important for creating efficient storage structures for associative arrays in the memory of a

computer. (As to what is meant by an “associative array”, think of a telephone directory that consists

of <name,number> pairs.) Those types of hash functions also play a central role in many modern

big-data processing algorithms. For example, in the MapReduce framework used in Hadoop, a hash

function is applied to the “keys’ related to the Map tasks in order to determine their bucket addresses,

with each bucket constituting a Reduce task. In this lecture, the notion of a hash function for efficient

storage is briefly reviewed in Section 15.9.]

• For example, the SHA-512 hash function takes for input mes-

sages of length up to 2128 bits and produces as output a 512-bit

message digest (MD). SHA stands for Secure Hash Al-

gorithm. [A series of SHA algorithms has been developed by the National

Institute of Standards and Technology and published as Federal Information Process-

ing Standards (FIPS).]

• We can think of the hashcode (or the message digest) as a fixed-
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sized fingerprint of a variable-sized message.

• Message digests produced by the most commonly used hash func-

tions range in length from 160 to 512 bits depending on the al-

gorithm used.

• Since a message digest depends on all the bits in the input mes-

sage, any alteration of the input message during transmission

would cause its message digest to not match with its original

message digest. This can be used to check for forgeries, unautho-

rized alterations, etc. To see the change in the hashcode produced

by an innocuous (practically invisible) change in a message, here

is an example:

Message: "The quick brown fox jumps over the lazy dog"

SHA1 hashcode: 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12

Message: "The quick brown fox jumps over the lazy dog"

SHA1 hashcode: 8de49570b9d941fb26045fa1f5595005eb5f3cf2

The only difference between the two messages shown above is the

extra space between the words “brown” and “fox” in the second

message. Notice how completely different the hashcodes look.

SHA-1 produces a 160 bit hashcode. It takes 40 hex characters

to show the code in hex.

• The two hashcodes (or, message digests, if you would rather call

them that) shown above were produced by the following Perl
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script:

#!/usr/bin/perl -w

use Digest::SHA1;

my $hasher = Digest::SHA1->new();

$hasher->add( "The quick brown fox jumps over the lazy dog" );

print $hasher->hexdigest;

print "\n";

$hasher->add( "The quick brown fox jumps over the lazy dog" );

print $hasher->hexdigest;

print "\n";

As the script shows, this uses the SHA-1 algorithm for creating

the message digest. [I downloaded the module Digest-SHA1 directly from http://search.cpan.

org/. When I tried to do the same by downloading the libraries libdigest-perl and libdigest-sha-perl

through the Synaptic Package Manager on my Ubuntu laptop, it did not work for me.]

• Perl’s Digest module, used in the script shown above, can be

used to invoke any of over fifteen different hash algorithms. The

module can output the hashcode in either binary format, or in

hex format, or a binary string output as in the form of aBase64-

encoded string. A similar functionality in Python is provided by

the hashlib library. Both the Digest module for Perl and the

hashlib library for Python come with the standard distribution

of the two languages.

5



Computer and Network Security by Avi Kak Lecture 15

15.2: DIFFERENT WAYS TO USE
HASHING FOR MESSAGE

AUTHENTICATION

Figures 1 and 2 show six different ways in which you could incorpo-

rate message hashing in a communication network. These constitute

different approaches to protect the hash value of a message. No

authentication at the receiving end could possibly be achieved if both

the message and its hash value are accessible to an adversary wanting

to tamper with the message. To explain each scheme separately:

• In the symmetric-key encryption based scheme shown in Figure

1(a), the message and its hashcode are concatenated together to

form a composite message that is then encrypted and placed on

the wire. The receiver decrypts the message and separates out its

hashcode, which is then compared with the hashcode calculated

from the received message. The hashcode provides authentication

and the encryption provides confidentiality.

• The scheme shown in Figure 1(b) is a variation on Figure 1(a)

in the sense that only the hashcode is encrypted. This scheme

is efficient to use when confidentiality is not the issue but mes-
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sage authentication is critical. Only the receiver with access to

the secret key knows the real hashcode for the message. So the

receiver can verify whether or not the message is authentic. [A

hashcode produced in the manner shown in Figure 1(b) is also known as the Message

Authentication Code (MAC) and the overall hash function as a keyed hash func-

tion. We will discuss such applications of hash functions in greater detail in Section

15.8.]

• The scheme in Figure 1(c) is a public-key encryption version of

the scheme shown in Figure 1(b). The hashcode of the message is

encrypted with the sender’s private key. The receiver can recover

the hashcode with the sender’s public key and authenticate the

message as indeed coming from the alleged sender. Confidential-

ity again is not the issue here. The sender encrypting with

his/her private key the hashcode of his/her message

constitutes the basic idea of digital signatures, as ex-

plained previously in Lecture 13.

• If we want to add symmetric-key based confidentiality to the

scheme of Figure 1(c), we can use the scheme shown in Figure

2(a). This is a commonly used approach when both confidential-

ity and authentication are needed.

• A very different approach to the use of hashing for authentica-

tion is shown in Figure 2(b). In this scheme, nothing is encrypted.

However, the sender appends a secret string S, known also to the
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receiver, to the message before computing its hashcode. Before

checking the hashcode of the received message for its authen-

tication, the receiver appends the same secret string S to the

message. Obviously, it would not be possible for anyone to alter

such a message, even when they have access to both the original

message and the overall hashcode.

• Finally, the scheme in Figure 2(c) shows an extension of the

scheme of Figure 2(b) where we have added symmetric-key based

confidentiality to the transmission between the sender and the

receiver.
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Figure 1: Different ways of incorporating message hashing

in a communication link. (This figure is from Lecture 15 of “Computer and

Network Security” by Avi Kak)
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in a communication link. (This figure is from Lecture 15 of “Computer and

Network Security” by Avi Kak)
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15.3: WHEN IS A HASH FUNCTION
SECURE?

• A hash function is called secure if the following two conditions

are satisfied:

– It is computationally infeasible to find a message that

corresponds to a given hashcode. This is sometimes referred

to as the one-way property of a hash function. [For long messages,

that is, messages that are much longer than the length of the hashcode, one may expect this property to

hold true trivially. However, note that a hash function must possess this property regardless of the

length of the messages. In other words, it should be just as difficult to recover from its hashcode a

message that is as short as, say, a single byte as a message that consists of millions of bytes.]

– It is computationally infeasible to find two different

messages that hash to the same hashcode value. This is also

referred to as the strong collision resistance property of

a hash function.

• A weaker form of the strong collision resistance property is that

for a given message, there should not correspond another mes-

sage with the same hashcode.
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• Hash functions that are not collision resistant can fall prey

to birthday attack. More on that later.

• If you use n bits to represent the hashcode, there are only 2n

distinct hashcode values. [If we place no constraints whatsoever on the messages and

if there can be an arbitrary number of different possible messages, then obviously there will exist multiple

messages giving rise to the same hashcode. However, considering messages with no constraints whatsoever

does not represent reality because messages are not noise — they must possess considerable structure in order

to be intelligible to humans and there is almost always some sort of an upper bound on the different types of

messages that are possible in any given context.] Collision resistance refers to the

likelihood that two different messages possessing certain basic

structure so as to be meaningful will result in the same hashcode.

• There exist several applications, such as in the dissemination of

popular media content, where confidentiality of the message con-

tent is not an issue, but authentication is. Authentication

here means that the message has not been altered in

any way — that is, it is the authentic original mes-

sage as produced by its author. In such applications, we

would like to send unencrypted plaintext messages along with

their encrypted hashcodes. [That would eliminate the computational over-

head of encryption and decryption for the main message content and yet allow for its

authentication.] But this would work only if the hashing function

has perfect collision resistance. [If a hashing approach has poor collision resis-

tance, an adversary could compute the hashcode of the message content and replace it with some other

content that has the same hashcode value.]

12
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15.4: SIMPLE HASH FUNCTIONS

• Practically all algorithms for computing the hashcode of a mes-

sage view the message as a sequence of n-bit blocks. The message

is processed one block at a time in an iterative fashion in order

to generate its hashcode.

• Perhaps the simplest hash function consists of starting with the

first n-bit block, XORing it bit-by-bit with the second n-bit block,

XORing the result with the next n-bit block, and so on. We will

refer to this as the XOR hash algorithm. With the XOR hash

algorithm, every bit of the hashcode represents the parity at that

bit position if we look across all of the n-bit blocks. For that

reason, the hashcode produced is also known as longitudinal

parity check.

• The hashcode generated by the XOR algorithm can be useful as

a data integrity check in the presence of completely random

transmission errors. But, in the presence of an adversary trying

to deliberately tamper with the message content, the XOR al-

gorithm is useless for message authentication. An adversary can

modify the main message and add a suitable bit block before the

13
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hashcode so that the final hashcode remains unchanged. To see

this more clearly, let {X1, X2, . . . , } be the bit blocks of a message

M , each block of size n bits. That is M = (X1||X2|| . . . ||Xm).

(The operator ’||’ means concatenation.) The hashcode produced

by the XOR algorithm can be expressed as

∆(M) = X1 ⊕X2 ⊕ · · · ⊕Xm

where ∆(M) is the hashcode. Let’s say that an adversary can

observe {M,∆(M)}. An adversary can easily create a forgery of

the message by replacing X1 through Xm−1 with any desired

Y1 through Ym−1 and then replacing Xm with an Ym that is given

by

Ym = Y1 ⊕ Y2 ⊕ · · · ⊕ Ym−1 ⊕ ∆(M)

On account of the properties of the XOR operator, it is easy

to show that the hashcode for Mforged = {Y1||Y2|| · · · ||Ym} will

be the same as ∆(M). Therefore, when the forged message is

concatenated with the original ∆(M), the recipient would not

suspect any foul play.

• When you are hashing regular text and the character encoding is

based on ASCII (or its variants), the collision resistance property

of the XOR algorithm suffers even more because the highest bit

in every byte will be zero. Ideally, one would hope that, with an

N -bit hashcode, any particular message would result in a given

hashcode value with a probability of 1
2N
. But when the highest

bit in each byte for each character is always 0, some of the N bits

14
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in the hashcode will predictably be 0 with the simple XOR algo-

rithm. This obviously reduces the number of unique

hashcode values available to us, and thus increases

the probability of collisions.

• To increase the space of distinct hashcode values available for the

different messages, a variation on the basic XOR algorithm con-

sists of performing a one-bit circular shift of the partial hashcode

obtained after each n-bit block of the message is processed. This

algorithm is known as the rotated-XOR algorithm (ROXR).

• That the collision resistance of ROXR is also poor is obvious from

the fact that we can take a message M1 along with its hashcode

value h1; replace M1 by a message M2 of hashcode value h2; ap-

pend a block of gibberish at the end M2 to force the hashcode

value of the composite to be h1. So even if M1 was transmitted

with an encrypted h1, it does not do us much good from the

standpoint of authentication. We will see later how secure

hash algorithms make this ploy impossible by includ-

ing the length of the message in what gets hashed.

• As a quick example of how the length of a message is included

in what gets hashed, here is how the now-not-so-popular SHA-1

algorithm pads a message before it is hashed:

The very first step in the SHA-1 algorithm is to pad the message

so that it is a multiple of 512 bits.
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This padding occurs as follows (from NIST FPS 180-2):

Suppose the length of the message M is L bits.

Append bit 1 to the end of the message, followed by K

zero bits where K is the smallest nonnegative solution to

(L + 1 + K) mod 512 = 448

Next append a 64-bit block that is a binary representation

of the length integer L.

Consider the following example:

Message = "abc"

length L = 24 bits

This is what the padded bit pattern would look like:

01100001 01100010 01100011 1 00......000 00...011000

a b c <---423---> <---64---->

<------------------- 512 ------------------------------>

• As to why we append a single bit of ’1’ at the end of the actual

message, see Section 15.7.3 where I have described my Python

and Perl implementations of the SHA-1 hashing algorithm.

16
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15.5: WHAT DOES PROBABILITY
THEORY HAVE TO SAY ABOUT A
RANDOMLY PRODUCED MESSAGE

HAVING A PARTICULAR HASH VALUE?

• Assume that we have a random message generator and that we

can calculate the hashcode for each message produced by the

generator.

• Let’s say we are interested in knowing whether any of the mes-

sages is going to have its hashcode equal to a particular value

h.

• Let’s consider a pool of k messages produced randomly by the

message generator.

• We pose the following question: What is the value of k so that

the pool contains at least one message whose hashcode is equal

to h with probability 0.5?

• To find k, we reason as follows:

17
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– Let’s say that the hashcode can take onN different but equiprob-

able values.

– Say we pick a message x at random from the pool of messages.

Since all N hashcodes are equiprobable, the probability of

message x having its hashcode equal to h is 1
N .

– Since the hashcode of message x either equals h or does not

equal h, the probability of the latter is 1− 1
N
.

– If we pick, say, two messages x and y randomly from the pool,

the events that the hashcode of neither is equal to h are prob-

abilistically independent. That implies that the probability

that none of two messages has its hashcode equal to h is

(1 − 1
N
)2. [Of course, by similar reasoning, the probability that both x and y will have their

hashcodes equal to h is ( 1

N
)2. But it is more difficult to use such joint probabilities to answer our overall

question stated in red on the previous page on account of the phrase “at least one” in it. Also see the

note in blue at the end of this section.]

– Extending the above reasoning to the entire pool of k mes-

sages, it follows that the probability that none of the mes-

sages in a pool of k messages has its hashcodes equal to h is

(1− 1
N
)k.

– Therefore, the probability that at least one of the k mes-

sages has its hashcode equal to h is

18
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1 −


1− 1

N





k

(1)

– The probability expression shown above can be considerably

simplified by recognizing that as a approaches 0, we can write

(1 + a)n ≈ 1 + an. Therefore, the probability expression we

derived can be approximated by

≈ 1 −


1− k

N



 =
k

N
(2)

• So the upshot is that, given a pool of k randomly produced mes-

sages, the probability there will exist at least one message in this

pool whose hashcode equals the given value h is k
N
.

• Let’s now go back to the original question: How large should k

be so that the pool of messages contains at least one message

whose hashcode equals the given value h with a probability of

0.5? We obtain the value of k from the equation k
N

= 0.5. That

is, k = 0.5N .

• Consider the case when we use 64 bit hashcodes. In this case,

N = 264. We will have to construct a pool of 263 messages so that

the pool contains at least one message whose hashcode equals h

with a probability of 0.5.
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• To illustrate the danger of arriving at formulas through back-of-the-envelope reasoning, consider the following

seemingly more straightforward approach to the derivation of Equation (2): With all hashcodes being equiprob-

able, the probability that any given message has its hashcode equal to a particular value h is obviously 1/N .

Now consider a pool of just 2 messages. Speaking colloquially (that is, without worrying about violating the

rules of logic), as you might over a glass of wine in a late-night soiree, the event that this pool has at least

one message whose hashcode is h is made up of the event that the first of the two messages has its hashcode

equal to h or the event that the second of the two messages has its hashcode equal to h. Since the two events

are disjunctive, the probability that a pool of two messages has at least one message whose hashcode is h is a

sum of the individual probabilities in the disjunction — that gives is a probability of 2/N . Generalizing this

argument to a pool of k messages, we get for the desired probability a value of k/N that was shown in Equation

(2). But this formula, if considered as a precise formula for the probability we are looking for, couldn’t possibly

be correct. As you can see, this formula gives us absurd values for the probability when k exceeds N .

20
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15.5.1: What Is the Probability That There Exist At

Least Two Messages With the Same Hashcode?

• Assuming that a hash algorithm is working perfectly, meaning

that it has no biases in its output that may be induced by either

the composition of the messages or by the algorithm itself, the

goal of this section is to estimate the smallest size of a pool of ran-

domly selected messages so that there exist at least two messages

in the pool with the same hashcode with probability 0.5.

• Given a pool of k messages, the question “What is the proba-

bility that there exists at least one message in the pool whose

hashcode is equal to a specific value?” is very different

from the question “What is the probability that there ex-

ist at least two messages in the pool whose hashcodes are the

same?”

• Raising the same two questions in a different context, the question

“What is the probability that, in a class of 20 students, some-

one else has the same birthday as yours (assuming you are

one of the 20 students)?” is very different from the ques-

tion “What is the probability that there exists at least one

pair of students in a class of 20 students with the same birth-

day?” The former question was addressed in the previous section.

Based on the result derived there, the probability of the former
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is approximately 19
365. The latter question we will address in this

section. As you will see, the probability of the latter is roughly

the much larger value (20×19)/2
365 = 190

365. [Strictly speaking, as you’ll see, this calcula-

tion is valid only when the class size is very small compared to 365.] This is referred to as

the birthday paradox — it is a paradox only in the sense that

it seems counterintuitive. [A quick way to accept the ‘paradox’ intuitively

is that for ‘20 choose 2’ you can construct C(20, 2) =

(

20
2

)

= 20!

18!2!
= 20×19

2
= 190

different possible pairs from a group of 20 people. Since this number, 190, is rather

comparable to 365, the total number of different birthdays, the conclusion is not sur-

prising.] The birthday paradox states that given a group of 23 or

more randomly chosen people, the probability that at least two

of them will have the same birthday is more than 50%. And if

we randomly choose 60 or more people, this probability is greater

than 90%. (These statements are based on the more precise fo-

mulas shown in this section.) [A man on the street would certainly think that

it would take many more than 60 people for any two of them to have the same birthday with near

certainty. That’s why we refer to this as a ‘paradox.’ Note, however, it is NOT a paradox in the sense

of being a logical contradiction.]

• Given a pool of k messages, each of which has a hashcode value

from N possible such values, the probability that the pool will

contain at least one pair of messages with the same hashcode is

given by

1 − N !

(N − k)!Nk
(3)
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• The following reasoning establishes the above result: The rea-

soning consists of figuring out the total number of ways, M1, in

which we can construct a pool of k message with no duplicate

hashcodes and the total number of ways, M2, we can do the same

while allowing for duplicates. The ratioM1/M2 then gives us the

probability of constructing a pool of k messages with no dupli-

cates. Subtracting this from 1 yields the probability that the pool

of k messages will have at least one duplicate hashcode.

– Let’s first find out in how many different ways we can construct

a pool of k messages so that we are guaranteed to have no

duplicate hashcodes in the pool.

– For the first message in the pool, we can choose any arbitrar-

ily. Since there exist only N distinct hashcodes, and, there-

fore, since there can only beN different messages with distinct

hashcodes, there are N ways to choose the first entry for the

pool. Stated differently, there is a choice of N different can-

didates for the first entry in the pool.

– Having used up one hashcode, for the second entry in the pool,

we can select a message corresponding to the other N −1 still

available hashcodes.

– Having used up two distinct hashcode values, for the third

entry in the pool, we can select a message corresponding to
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the other N − 2 still available hashcodes; and so on.

– Therefore, the total number of ways,M1, in which we can con-

struct a pool of k messages with no duplications in hashcode

values is

M1 = N × (N − 1)× . . .× (N − k + 1) =
N !

(N − k)!
(4)

– Let’s now try to figure out the total number of ways, M2, in

which we can construct a pool of k messages without worrying

at all about duplicate hashcodes. Reasoning as before, there

are N ways to choose the first message. For selecting the

second message, we pay no attention to the hashcode value of

the first message. There are still N ways to select the second

message; and so on. Therefore, the total number of ways we

can construct a pool of k messages without worrying about

hashcode duplication is

M2 = N ×N × . . .×N = Nk (5)

– Therefore, if you construct a pool of k purely randomly se-

lected messages, the probability that this pool has no dupli-

cations in the hashcodes is

M1

M2
=

N !

(N − k)!Nk
(6)
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– We can now make the following probabilistic inference: if you

construct a pool of k message as above, the probability that

the pool has at least one duplication in the hashcode values

is

1 − N !

(N − k)!Nk
(7)

• The probability expression in Equation (3) (or Equation (7) above)

can be simplified by rewriting it in the following form:

1 − N × (N − 1)× . . .× (N − k + 1)

Nk
(8)

which is the same as

1 − N

N
× N − 1

N
× . . .× N − k + 1

N
(9)

and that is the same as

1 −
[(

1− 1

N

)

×
(

1− 2

N

)

× . . .×
(

1− k − 1

N

)]

(10)

• We will now use the approximation that (1 − x) ≤ e−x for all

x ≥ 0 to make the claim that the above probability is lower-

bounded by

1 −
[

e−
1
N × e−

2
N × . . .× e−

k−1
N

]

(11)
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• Since 1 + 2 + 3 + . . . + (k − 1) is equal to k(k−1)
2

, we can write

the following expression for the lower bound on the probability

1 − e−
k(k−1)

2N (12)

So the probability that a pool of k messages will have

at least one pair with identical hashcodes is always

greater than the value given by the above formula.

• When k is small and N large, we can use the approximation

e−x ≈ 1− x in the above formula and express it as

1 −


1 − k(k − 1)

2N



 =
k(k − 1)

2N
(13)

It was this formula that we used when we mentioned the birthday

paradox at the beginning of this section. There we had k = 20

and N = 365.

• We will now use Equation (12) to estimate the size k of the pool

so that the pool contains at least one pair of messages with equal

hashcodes with a probability of 0.5. We need to solve

1 − e−
k(k−1)

2N =
1

2

Simplifying, we get

e
k(k−1)

2N = 2

Therefore,
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k(k − 1)

2N
= ln2

which gives us

k(k − 1) = (2ln2)N

• Assuming k to be large, the above equation gives us

k2 ≈ (2ln2)N (14)

implying

k ≈
√

(2ln2)N

≈ 1.18
√
N

≈
√
N

• So our final result is that if the hashcode can take on a total N

different values with equal probability, a pool of
√
N messages

will contain at least one pair of messages with the same hashcode

with a probability of 0.5.

• So if we use an n-bit hashcode, we have N = 2n. In this case,

a pool of 2n/2 randomly generated messages will contain at least

one pair of messages with the same hashcode with a probability

of 0.5.
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• Let’s again consider the case of 64 bit hashcodes. Now N = 264.

So a pool of 232 randomly generated messages will have at least

one pair with identical hashcodes with a probability of 0.5.
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15.6: THE BIRTHDAY ATTACK

• This attack applies to the following scenario: Say Mr. BigShot

has a dishonest assistant, Mr. Creepy, preparing contracts for

Mr. BigShot’s digital signature.

• Mr. Creepy prepares the legal contract for a transaction. Mr.

Creepy then proceeds to create a large number of variations of the

legal contract without altering the legal content of the contract

and computes the hashcode for each. These variations may be

constructed by mostly innocuous changes such as the insertion of

additional white space between some of the words, or contraction

of the same; insertion or deletion of some of the punctuation,

slight reformatting of the document, etc.

• Next, Mr. Creepy prepares a fraudulent version of the contract.

As with the correct version, Mr. Creepy prepares a large number

of variations of this contract, using the same tactics as with the

correct version.

• Now the question is: “What is the probability that the two sets

29



Computer and Network Security by Avi Kak Lecture 15

of contracts will have at least one contract each with the same

hashcode?”

• Let the set of variations on the correct form of the contract be

denoted {c1, c2, . . . , ck} and the set of variations on the fraudu-

lent contract by {f1, f2, . . . , fk}. We need to figure out the

probability that there exists at least one pair (ci, fj)

so that h(ci) = h(fj).

• If we assume (a very questionable assumption indeed) that all the fraudulent

contracts are truly random vis-a-vis the correct versions of the

contract, then the probability of f1’s hashcode being any one

of N permissible values is 1
N . Therefore, the probability that

the hashcode h(c1) matches the hashcode h(f1) is
1
N . Hence the

probability that the hashcode h(c1) does notmatch the hashcode

h(f1) is 1− 1
N .

• Extending the above reasoning to joint events, the probability

that h(c1) does not match h(f1) and h(f2) and . . ., h(fk) is



1− 1

N





k

• The probability that the same holds conjunctively for all members

of the set {c1, c2, . . . , ck} would therefore be
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(

1− 1

N

)k
2

This is the probability that there will NOT exist any

hashcode matches between the two sets of contracts

{c1, c2, . . . , ck} and {f1, f2, . . . , fk}.

• Therefore the probability that there will exist at least one

match in hashcode values between the set of correct contracts

and the set of fraudulent contracts is

1 −
(

1− 1

N

)k
2

• Since 1 − 1
N

is always less than e−
1
N , the above probability will

always be greater than

1 −
(

e−
1
N

)k
2

• Now let’s pose the question: “What is the least value of k so

that the above probability is 0.5?” We obtain this value of k by

solving

1 − e−
k
2

N =
1

2

which simplifies to

e
k
2

N = 2
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which gives us

k =
√

(ln 2)N = 0.83
√
N ≈

√
N

So if B is willing to generate
√
N versions of the both the correct

contract and the fraudulent contract, there is better than an even

chance that B will find a fraudulent version to replace the correct

version.

• If n bits are used for the hashcode,N = 2n. In this case, k = 2n/2.

• The birthday attack consists of, as you’d expect, Mr. Creepy

getting Mr. BigShot to digitally sign a correct version of the

contract, meaning getting Mr. BigShot to encrypt the hashcode

of the correct version of the contract with his private key, and

then replacing the contract by its fraudulent version that has the

same hashcode value.

• This attack is called the birthday attack because the combina-

torial issues involved are the same as in the birthday paradox

presented earlier in Section 15.5.1. Also note that for an n-bit

hash coding algorithm that has no security flaws, the approxi-

mate value we obtained for k is the same in both cases. That is,

k = 2n/2.
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15.7: STRUCTURE OF
CRYPTOGRAPHICALLY SECURE HASH

FUNCTIONS

• A hash function is cryptographically secure if it is computation-

ally infeasible to find collisions, that is if it is computationally in-

feasible to construct meaningful messages whose hashcode would

equal a specified value. Additionally, a hash function should be

strictly one-way, in the sense that it lets us compute the hash-

code for a message, but does not let us figure out a message for

a given hashcode — even for very short messages. [See Section 15.3 for

the two important properties of secure hash functions. We are talking about the same two properties

here. “Secure” and “cryptographically secure” mean the same thing for hash functions.]

• Most secure hash functions are based on the structure proposed

by Ralph Merkle in 1979. This structure forms the basis of MD5,

Whirlpool and the SHA series of hash functions.

• The input message is partitioned into L number of bit blocks,

each of size b bits. If necessary, the final block is padded suitably

so that it is of the same length as others.
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• The final block also includes the total length of the message whose

hash function is to be computed. This step enhances the se-

curity of the hash function since it places an additional con-

straint on the counterfeit messages.

• Merkle’s structure, shown in Figure 3, consists of L stages of

processing, each stage processing one of the b-bit blocks of the

input message.

• Each stage of the structure in Figure 3 takes two inputs, the b-

bit block of the input message meant for that stage and the n-bit

output of the previous stage.

• For the n-bit input, the first stage is supplied with a special n-bit

pattern called the Initialization Vector (IV).

• The function f that processes the two inputs, one n bits long and

the other b bits long, to produce an n bit output is usually called

the compression function. That is because, usually, b > n,

so the output of the f function is shorter than the length of the

input message segment.

• The function f itself may involve multiple rounds of pro-

cessing of the two inputs to produce an output.
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• The precise nature of f depends on what hash algorithm is being

implemented, as we will see in the rest of this lecture.

Length +
PaddingBlock 2

Message 
Block 1
Message 

Initialization
Vector

b bits b bits

f f f

b bits

n bits n bits n bitsn bits

H
ash

Figure 3: Merkle’s structure for computing a cryptograph-

ically secure hash function. (This figure is from Lecture 15 of “Computer and

Network Security” by Avi Kak)
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15.7.1: The SHA Family of Hash Functions

• SHA (Secure Hash Algorithm) refers to a family of NIST-approved

cryptographic hash functions.

• The following table shows the various parameters of the different

SHA hash functions.

Algorithm Message Block Word Message Security

Size Size Size Digest Size (ideally)

(bits) (bits) (bits) (bits) (bits)

SHA-1 < 264 512 32 160 80

SHA-256 < 264 512 32 256 128

SHA-384 < 2128 1024 64 384 192

SHA-512 < 2128 1024 64 512 256

Here is what the different columns of the above table stand for:

– The column Message Size shows the upper bound on the size

of the message that an algorithm can handle.

– The column heading Block Size is the size of each bit block

that the message is divided into. Recall from Section 15.7 that
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an input message is divided into a sequence of b-bit blocks.

Block size for an algorithm tells us the value of b in Figure 3.

– The Word Size is used during the processing of the input

blocks, as will be explained later.

– The Message Digest Size refers to the size of the hashcode

produced.

– Finally, the Security column refers to how many messages

would have to be generated before two can be found with the

same hashcode with a probability of 0.5 — assuming that the

algorithm has no hidden security holes. As shown previously

in Sections 15.5.1 and 15.6, for a secure hash algorithm that

has no security holes and that produces n-bit hashcodes,

one would need to come up with 2n/2 messages in order to

discover a collision with a probability of 0.5. That’s why the

entries in the last column are half in size compared to the

entries in the Message Digest Size.

• The algorithms SHA-256, SHA-384, and SHA-512 are collectively

referred to as SHA-2.

• Also note that SHA-1 is a successor to MD5 that was a widely

used hash function. There still exist many legacy applications that use MD5 for
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calculating hashcodes.

• SHA-1 was cracked theoretically in the year 2005 by two different

research groups. In one of these two demonstrations, Xiaoyun

Wang, Yiqun Lisa Yin, and Hongbo Yu demonstrated that it was

possible to come up with a collision for SHA-1 within a space of

size only 269, which was far fewer than the security level of 280

that is associated with this hash function.

• More recently, in February 2017, SHA-1 was actually broken by

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini,

and Yarik Markov. They were able to produce two dif-

ferent PDF documents with the same SHA-1 hash-

code. [The title of their paper is “The First Collision For Full

SHA-1” and you can download it from http://shattered.io/.

The attack the authors mounted on SHA-1 is named “The SHAt-

tered attack”. The authors say that this attack is 100,000 faster

than the brute force attack that relies on the birthday para-

dox. The authors claim that the brute force attack would re-

quire 12,000,000 GPU years to complete, and it is therefore im-

practical. On the other hand, the SHAttered attack required

only 110 years of single-GPU computations. More specifically,

according to the authors, the SHAttered attack entailed over

9,223,372,036,854,775,808 SHA1 computations. The authors lever-

aged the PDF format for creating two different PDFs with the

same SHA-1 hash value. To compare SHAttered with the the-

oretical attack mentioned in the previous bullet, the authors of
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SHAttered say their attack took 263 SHA-1 compressions. Note

that document formats like PDF that contain macros appear to

be particularly vulnerable to attacks like SHAttered. Such docu-

ments may lend themselves to what is known as the chosen-prefix

collision attack in which given two different message prefixes p1
and p2, the goal is to find two suffixes s1 and s2 so that the

hash value for the concatenation p1||s1 is the same as for the

concatenation p2||s2.]

• I believe that, in 2010, NIST officially withdrew its approval

of SHA-1 for applications that need to be compliant with U.S.

Government standards. Nonetheless, SHA-1 has continued to be

widely used in many applications and protocols that require se-

cure and authenticated communications. Unfortunately, SHA-1

continues to be widely used in SSL/TLS, PGP, SSH, S/MIME,

and IPSec. (These standards will be briefly reviewed in Lec-

ture 20.) Hopefully, going forward, that will stop being the case

in light of the real collisions obtained by the SHAttered attack.

• All of the SHA family of hash functions are described in the

FIPS180 document that can be downloaded from:
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

The SHA-512 algorithm details presented in the next subsection

are taken from the above document.
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15.7.2: The SHA-512 Secure Hash Algorithm

Figure 4 shows the overall processing steps of SHA-512. To describe

them in detail:

Append Padding Bits and Length Value: This step makes

the input message an exact multiple of 1024 bits:

• The length of the overall message to be hashed must be a

multiple of 1024 bits.

• The last 128 bits of what gets hashed are reserved for the

message length value.

• This implies that even if the original message were by chance

to be an exact multiple of 1024, you’d still need to append

another 1024-bit block at the end to make room for the 128-

bit message length integer.

• Leaving aside the trailing 128 bit positions, the padding con-

sists of a single 1-bit followed by the required number of 0-bits.

40



Computer and Network Security by Avi Kak Lecture 15

Augmented Message: Multiple of 1024−bit blocks

Actual Message Length: L bits

Block 1 Block 2 Block N

Initialization
Vector H

ash

1024 bits 1024 bits 1024 bits

512 bits

Padding +
Length

f f f

M M M1 2 N

H H H H0 1 2 N−1 HN

512 bits 512 bits512 bits 512 bits 512 bits

Figure 4: Overall processing steps of the SHA-512 Secure

Hash Algorithm. (This figure is from Lecture 15 of “Computer and Network Security” by

Avi Kak)
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• The length value in the trailing 128 bit positions is an unsigned

integer with its most significant byte first.

• The padded message is now an exact multiple of 1024 bit

blocks. We represent it by the sequence {M1,M2, . . . ,MN},
where Mi is the 1024 bits long ith message block.

Initialize Hash Buffer with Initialization Vector: You’ll

recall from Figure 3 that before we can process the first message

block, we need to initialize the hash buffer with IV, the Initial-

ization Vector:

• We represent the hash buffer by eight 64-bit registers.

• For explaining the working of the algorithm, these registers

are labeled (a, b, c, d, e, f, g, h).

• The registers are initialized by the first 64 bits of the frac-

tional parts of the square-roots of the first eight

primes. These are shown below in hex:

6a09e667f3bcc908

bb67ae8584caa73b

3c6ef372fe94f82b

a54ff53a5f1d36f1

510e527fade682d1
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9b05688c2b3e6c1f

1f83d9abfb41bd6b

5be0cd19137e2179

Process Each 1024-bit Message Block Mi: Each message

block is taken through 80 rounds of processing. All of this pro-

cessing is represented by the module labeled f in Figure 4.

• The 80 rounds of processing for each 1024-bit message block

are depicted in Figure 5. In this figure, the labels a, b, c, . . . , h

are for the eight 64-bit registers of the hash buffer. Figure

5 stands for the modules labeled f in the overall processing

diagram in Figure 4.

• In keeping with the overall processing architecture shown in

Figure 3, the module f for processing the message block Mi

has two inputs: the current contents of the 512-bit hash buffer

and the 1024-bit message block. These are fed as inputs to

the first of the 80 rounds of processing depicted in Figure 5.

• The round based processing requires a message schedule

that consists of 80 64-bit words labeled {W0,W1, . . . ,W79}.
The first sixteen of these, W0 through W15, are the sixteen

64-bit words in the 1024-bit message block Mi. The rest of

the words in the message schedule are obtained by

Wi = Wi−16 +64 σ0(Wi−15) +64 Wi−7 +64 σ1(Wi−2)
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where

σ0(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x)

σ1(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x)

ROTRn(x) = circular right shift of the 64 bit arg by n bits

SHRn(x) = right shift of the 64 bit arg by n bits

with padding by zeros on the left

+64 = addition module 264

• The ith round is fed the 64-bit message schedule word Wi and

a special constant Ki.

• The constants Ki’s represent the first 64 bits of the frac-

tional parts of the cube roots of the first eighty

prime numbers. Basically, these constants are meant to

be random bit patterns to break up any regularities in the

message blocks. These constants are shown below in hex.

They are to be read from left to right and top to bottom. [In

other words, K0 is the first value in the first row, K1 the second value in the first row, K2 the third value

in the first row, K3 the last value in the first row. For K4, we look at the first value in the second row;

and so on.]

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc

3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118

d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2

72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694

e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65

2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5

983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4
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c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70

27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df

650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b

a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30

d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8

19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8

391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3

748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec

90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b

ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178

06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b

28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c

4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

• How the contents of the hash buffer are processed along with

the inputs Wi and Ki is referred to as implementing the

round function.

• The round function consists of a sequence of transpositions

and substitutions, all designed to diffuse to the maximum ex-

tent possible the content of the input message block. The

relationship between the contents of the eight registers of the

hash buffer at the input to the ith round and the output from

this round is given by

h = g

g = f

f = e

e = d +64 T1

d = c

c = b

b = a

a = T1 +64 T2
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where +64 again means modulo 264 addition and where

T1 = h +64 Ch(e, f, g) +64

∑

e +64 Wi +64 Ki

T2 =
∑

a +64 Maj(a, b, c)

Ch(e, f, g) = (e AND f)⊕ (NOT e AND g)

Maj(a, b, c) = (a AND b)⊕ (a AND c)⊕ (b AND c)

∑

a = ROTR28(a)⊕ROTR34(a)⊕ ROTR39(a)

∑

e = ROTR14(e)⊕ ROTR18(e)⊕ROTR41(e)

+64 = addition modulo 264

Note that, when considered on a bit-by-bit basis the function

Maj() is true, that is equal to the bit 1, only when a majority

of its arguments (meaning two out of three) are true. Also,

the function Ch() implements at the bit level the conditional

statement “if arg1 then arg2 else arg3”.

• The output of the 80th round is added to the content of the

hash buffer at the beginning of the round-based processing.

This addition is performed separately on each 64-

bit word of the output of the 80th modulo 264. In

other words, the addition is carried out separately for each of
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the eight registers of the hash buffer modulo 264.

Finally, ....: After all the N message blocks have been processed

(see Figure 4), the content of the hash buffer is the message digest.
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the 512 bit hash buffer

Eight 64−bit registers of
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Figure 5: The 80 rounds of processing that each 1024-bit

message block goes through are depicted here. (This figure is from

Lecture 15 of “Computer and Network Security” by Avi Kak)
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15.7.3: Compact Python and Perl Implementations

for SHA-1 Using BitVector

• As mentioned in Section 15.7.1, SHA-1 is now to be considered as

a completely broken hash function in light of the collision results

obtained by the SHAttered attack.

• Despite its having been broken, SHA-1 can still serve as a useful

stepping stone if you are learning how to write code for Merkle

type hash functions. My goal in this section is to demonstrate

my Python and Perl implementations for SHA-1 in order to help

you do the same for SHA-512 in the second of the programming

homeworks at the end of this lecture.

• Even more specifically, my goal here is to show how you can

use my BitVector modules (Algorithm::BitVector in Perl and

BitVector in Python) to create compact implementations for cryp-

tographically secure hash algorithms. Typical implementations of

the SHA algorithms consist of several hundred lines of code. With

BitVector in Python and Algorithm::BitVector in Perl, you can

do the same in under 100 lines.

• Since you already know about SHA-512, let me first quickly

present the highlights of SHA-1 so that you can make sense of
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the Python and Perl implementations that follow.

• Whereas SHA-512 used a block length of 1024 bits, SHA-1 uses a

block length of 512 bits. After padding and incorporation of the

length of the original message, what actually gets hashed must

be integral multiple of 512 bits in length. Just as in SHA-512,

we first extend the message by a single bit ’1’ and then insert an

appropriate number of 0 bits until we are left with just 64 bit

positions at the end in which we place the length of the original

message in big endian representation. Since the length field is

64 bits long, obviously, the longest message that is meant to be

hashed by SHA-1 is 264 bits.

• Let’s say that L is the length of the original message. After we

extend the message by a single bit ’1’, the length of the extended

message is L+1. Let N be the number of zeros needed to append

to the extended message so that we are left with 64 bits at the

end where we can store the length of the original message. The

following relationship must hold: (L + 1 + N + 64) % 512 = 0 where

the Python operator ‘%’ carries out a modulo 512 division of its

left operand to return a nonnegative remainder less than the

modulus 512. This implies that N = (448− (L+ 1)) % 512. [The reason for

sticking 1 at the end of a message is to be able to deal with empty messages. So when the original message is

an empty string, the extended message will still consist of a single bit set to 1.]

• As in SHA-512, each block of 512 bits is taken through 80 rounds
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of processing. A block is divided into 16 32-bit words for round-

based processing. In the code shown at the end of this section,

we denote these 16 words by w[i] for i from 0 through 15. These

16 words extracted from a block are extended into an 80 word

schedule by the formula:

w[i] = w[i− 3] ⊕ w[i− 8] ⊕ w[i− 14] ⊕ w[i− 16]

for i from 16 through 79.

• The initialization vector needed for the first invocation of the

compression function is given by a concatenation of the following

five 32-bit words:

h0 = 67452301

h1 = efcdab89

h2 = 98badcfe

h3 = 10325476

h4 = c3d2e1f0

where each of the five parts is shown as a sequence of eight hex

digits.

• The goal of the compression function for each block of 512 bits

of the message is to process the 512 block along with the 160-bit

hash code produced for the previous block to output the 160-bit

hashcode for the new block. The final 160-bit hashcode is the

SHA-1 digest of the message.
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• As mentioned, the compression function for each 512-bit block
works in 80 rounds. These rounds are organized into 4 round
sequences of 20 rounds each, with each round sequence charac-
terized by its own processing function and its own round constant.
If the five 32-words on the hashcode produced by the previous
512-bit block are denoted a, b, c, d, and e, then for the first 20
rounds the function and the round constant are given by

f = (b & c)⊕
(

(∼ b) & d

)

k = 0x5a827999

For the second 20 round-sequence the function and the constant
are given by

f = b ⊕ c ⊕ d

k = 0x6ed9eba1

The same for the third 20 round-sequence are given by

f = (b & c) ⊕ (b & d) ⊕ (c & d)

k = 0x8f1bbcdc

And, for the fourth and the final 20 round sequence, we have

f = b ⊕ c ⊕ d

k = 0xca62c1d6

• At the ith round, i = 0 . . . 79, we update the values of a, b, c, d,

and e by first calculating
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T =

(

(a << 5) + f + e + k + w[i]

)

mod 232

where w[i] is the ith word in the 80-word schedule obtained from

the sixteen 32-words of the message block. Next, we update the

values of a, b, c, d, and e as follows

e = d

d = c

c = b << 30

b = a

a = T

where you have to bear in mind that while c is set to b circularly

rotated to the left by 30 positions, but the value of b itself must

remain unchanged for the logic of SHA1. This is particularly

important in light of how b is used at the end of 80 rounds of

processing for a 512-bit message block.

• After all of the 80 rounds of processing are over, we create output

hashcode for the current 512-bit block of the message by

h0 = (h0 + a) mod 232

h1 = (h1 + b) mod 232

h2 = (h2 + c) mod 232

h3 = (h3 + d) mod 232

h4 = (h4 + e) mod 232
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Note that each hi is a 32 bit word. The hashcode produced

after the current block has been processed is the concatenation

of h0, h1, h2, h3, and h4. This hashcode produced after the

final message block is processed is the SHA1 hash of the input

message.

• The implementations shown below are meant to be invoked in a

command-line mode as follows:

sha1_from_command_line.py string_whose_hash_you_want

sha1_from_command_line.pl string_whose_hash_you_want

• Here is the Python implementation:

#!/usr/bin/env python

## sha1_from_command_line.py

## by Avi Kak (kak@purdue.edu)

## February 19, 2013

## Modified: March 2, 2016

## Call syntax:

##

## sha1_from_command_line.py your_message_string

## This script takes its message on the standard input from

## the command line and sends the hash to its standard

## output. NOTE: IT ADDS A NESWLINE AT THE END OF THE OUTPUT

## TO SHOW THE HASHCODE IN A LINE BY ITSELF.

import sys

import BitVector

if BitVector.__version__ < ’3.2’:

sys.exit("You need BitVector module of version 3.2 or higher" )

from BitVector import *

if len(sys.argv) != 2:
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sys.stderr.write("Usage: %s <string to be hashed>\n" % sys.argv[0])

sys.exit(1)

message = sys.argv[1]

# Initialize hashcode for the first block. Subsequetnly, the

# output for each 512-bit block of the input message becomes

# the hashcode for the next block of the message.

h0 = BitVector(hexstring=’67452301’)

h1 = BitVector(hexstring=’efcdab89’)

h2 = BitVector(hexstring=’98badcfe’)

h3 = BitVector(hexstring=’10325476’)

h4 = BitVector(hexstring=’c3d2e1f0’)

bv = BitVector(textstring = message)

length = bv.length()

bv1 = bv + BitVector(bitstring="1")

length1 = bv1.length()

howmanyzeros = (448 - length1) % 512

zerolist = [0] * howmanyzeros

bv2 = bv1 + BitVector(bitlist = zerolist)

bv3 = BitVector(intVal = length, size = 64)

bv4 = bv2 + bv3

words = [None] * 80

for n in range(0,bv4.length(),512):

block = bv4[n:n+512]

words[0:16] = [block[i:i+32] for i in range(0,512,32)]

for i in range(16, 80):

words[i] = words[i-3] ^ words[i-8] ^ words[i-14] ^ words[i-16]

words[i] << 1

a,b,c,d,e = h0,h1,h2,h3,h4

for i in range(80):

if (0 <= i <= 19):

f = (b & c) ^ ((~b) & d)

k = 0x5a827999

elif (20 <= i <= 39):

f = b ^ c ^ d

k = 0x6ed9eba1

elif (40 <= i <= 59):

f = (b & c) ^ (b & d) ^ (c & d)

k = 0x8f1bbcdc

elif (60 <= i <= 79):

f = b ^ c ^ d

k = 0xca62c1d6

a_copy = a.deep_copy()

T = BitVector( intVal = (int(a_copy << 5) + int(f) + int(e) + int(k) + \

int(words[i])) & 0xFFFFFFFF, size=32 )

e = d

d = c

b_copy = b.deep_copy()

b_copy << 30

c = b_copy

b = a
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a = T

h0 = BitVector( intVal = (int(h0) + int(a)) & 0xFFFFFFFF, size=32 )

h1 = BitVector( intVal = (int(h1) + int(b)) & 0xFFFFFFFF, size=32 )

h2 = BitVector( intVal = (int(h2) + int(c)) & 0xFFFFFFFF, size=32 )

h3 = BitVector( intVal = (int(h3) + int(d)) & 0xFFFFFFFF, size=32 )

h4 = BitVector( intVal = (int(h4) + int(e)) & 0xFFFFFFFF, size=32 )

message_hash = h0 + h1 + h2 + h3 + h4

hash_hex_string = message_hash.getHexStringFromBitVector()

sys.stdout.writelines((hash_hex_string, "\n"))

• Here are some hash values produced by the above script:

sha1_from_command_line.py 0 => b6589fc6ab0dc82cf12099d1c2d40ab994e8410c

sha1_from_command_line.py 1 => 356a192b7913b04c54574d18c28d46e6395428ab

sha1_from_command_line.py hello => aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d

sha1_from_command_line.py 1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ =>

475f6511376a8cf1cc62fa56efb29c2ed582fe18

• Shown below is the Perl version of the script:

#!/usr/bin/env perl

## sha1_from_command_line.pl

## by Avi Kak (kak@purdue.edu)

## March 2, 2016

## Call syntax:

##

## sha1_from_command_line.pl your_message_string

## This script takes its message on the standard input from

## the command line and sends the hash to its standard

## output. NOTE: IT ADDS A NESWLINE AT THE END OF THE OUTPUT

## TO SHOW THE HASHCODE IN A LINE BY ITSELF.

use strict;

use warnings;

use Algorithm::BitVector 1.25;
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die "Usage: %s <string to be hashed>\n" if @ARGV != 1;

my $message = shift;

# Initialize hashcode for the first block. Subsequetnly, the

# output for each 512-bit block of the input message becomes

# the hashcode for the next block of the message.

my $h0 = Algorithm::BitVector->new(hexstring => ’67452301’);

my $h1 = Algorithm::BitVector->new(hexstring => ’efcdab89’);

my $h2 = Algorithm::BitVector->new(hexstring => ’98badcfe’);

my $h3 = Algorithm::BitVector->new(hexstring => ’10325476’);

my $h4 = Algorithm::BitVector->new(hexstring => ’c3d2e1f0’);

my $bv = Algorithm::BitVector->new(textstring => $message);

my $length = $bv->length();

my $bv1 = $bv + Algorithm::BitVector->new(bitstring => "1");

my $length1 = $bv1->length();

my $howmanyzeros = (448 - $length1) % 512;

my @zerolist = (0) x $howmanyzeros;

my $bv2 = $bv1 + Algorithm::BitVector->new(bitlist => \@zerolist);

my $bv3 = Algorithm::BitVector->new(intVal => $length, size => 64);

my $bv4 = $bv2 + $bv3;

my @words = (undef) x 80;

my @words_bv = (undef) x 80;

for (my $n = 0; $n < $bv4->length(); $n += 512) {

my @block = @{$bv4->get_bit( [$n .. $n + 511] )};

@words = map {[@block[$_ * 32 .. ($_ * 32 + 31)]]} 0 .. 15;

@words_bv = map {Algorithm::BitVector->new( bitlist => $words[$_] )} 0 .. 15;

my ($a,$b,$c,$d,$e) = ($h0,$h1,$h2,$h3,$h4);

my ($f,$k);

foreach my $i (16 .. 79) {

$words_bv[$i] = $words_bv[$i-3] ^ $words_bv[$i-8] ^ $words_bv[$i-14] ^ $words_bv[$i-16];

$words_bv[$i] = $words_bv[$i] << 1;

}

foreach my $i (0 .. 79) {

if (($i >= 0) && ($i <= 19)) {

$f = ($b & $c) ^ ((~$b) & $d);

$k = 0x5a827999;

} elsif (($i >= 20) && ($i <= 39)) {

$f = $b ^ $c ^ $d;

$k = 0x6ed9eba1;

} elsif (($i >= 40) && ($i <= 59)) {

$f = ($b & $c) ^ ($b & $d) ^ ($c & $d);

$k = 0x8f1bbcdc;

} elsif (($i >= 60) && ($i <= 79)) {

$f = $b ^ $c ^ $d;

$k = 0xca62c1d6;

}

my $a_copy = $a->deep_copy();

my $T = Algorithm::BitVector->new( intVal => (int($a_copy << 5) + int($f)

+ int($e) + int($k) + int($words_bv[$i])) & 0xFFFFFFFF, size => 32 );

$e = $d;
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$d = $c;

my $b_copy = $b->deep_copy();

$b_copy = $b_copy << 30;

$c = $b_copy;

$b = $a;

$a = $T;

}

$h0 = Algorithm::BitVector->new( intVal => (int($h0) + int($a)) & 0xFFFFFFFF, size => 32 );

$h1 = Algorithm::BitVector->new( intVal => (int($h1) + int($b)) & 0xFFFFFFFF, size => 32 );

$h2 = Algorithm::BitVector->new( intVal => (int($h2) + int($c)) & 0xFFFFFFFF, size => 32 );

$h3 = Algorithm::BitVector->new( intVal => (int($h3) + int($d)) & 0xFFFFFFFF, size => 32 );

$h4 = Algorithm::BitVector->new( intVal => (int($h4) + int($e)) & 0xFFFFFFFF, size => 32 );

}

my $message_hash = $h0 + $h1 + $h2 + $h3 + $h4;

my $hash_hex_string = $message_hash->get_hex_string_from_bitvector();

print "$hash_hex_string\n";

• As you would expect, this script produces the same hash values

as the Python version shown earlier in this section:

sha1_from_command_line.pl 0 => b6589fc6ab0dc82cf12099d1c2d40ab994e8410c

sha1_from_command_line.pl 1 => 356a192b7913b04c54574d18c28d46e6395428ab

sha1_from_command_line.pl hello => aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d

sha1_from_command_line.pl 1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ =>

475f6511376a8cf1cc62fa56efb29c2ed582fe18
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15.8: HASH FUNCTIONS FOR
COMPUTING MESSAGE

AUTHENTICATION CODES

• Just as a hashcode is a fixed-size fingerprint of a variable-sized

message, so is a message authentication code (MAC).

• A MAC is also known as a cryptographic checksum and as

an authentication tag.

• A MAC can be produced by appending a secret key to the mes-

sage and then hashing the composite message. The resulting

hashcode is the MAC. [A MAC produced with a hash function is also referred

to by HMAC, where the letter ’H’ stands for “Hash.” A MAC can also be based on

a block cipher or a stream cipher. The block-cipher based MAC, DES-CBC MAC,

is widely used in various standards.] [Because of the use of a secret key, a

MAC is also referred to as a keyed hash function, as men-

tioned earlier in Section 15.2.]

• More sophisticated ways of producing a MAC may involve an

iterative procedure in which a pattern derived from the key is
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added to the message, the composite hashed, another pattern

derived from the key added to the hashcode, the new composite

hashed again, and so on.

• When an encryption algorithm like DES is used for producting

a MAC for a message, the encryption is applied to a fixed-sized

signature of the message as produced by a regular hash function.

In this case, the encryption key becomes the secret that must be

shared between the sender and the receiver of the message.

• Assuming a collision-resistant hash function, the original message

and its MAC can be safely transmitted over a network without

worrying that the integrity of the data may get compromised. A

recipient with access to the key used for calculating the MAC can

verify the integrity of the message by recomputing its MAC and

comparing it with the value received.

• Let’s denote the function that generates the MAC of a messageM

using a secret keyK byC(K,M). That isMAC = C(K, M).

• Here is a MAC function that is positively not safe:

– Let {X1, X2, . . . , } be the 64-bit blocks of a messageM . That

is M = (X1||X2|| . . . ||Xm). (The operator ’||’ means

concatenation.) Let
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∆(M) = X1 ⊕X2 ⊕ · · · ⊕Xm

– We now define

C(K, M) = E(K, ∆(M))

where the encryption algorithm, E(), is assumed to be DES

in the electronic codebook mode. (That is why we assumed

64 bits for the block length. We will also assume the key

length to be 56 bits.) Let’s say that an adversary can observe

{M,C(K,M)}.

– An adversary can easily create a forgery of the message by

replacing X1 through Xm−1 with any desired Y1 through

Ym−1 and then replacing Xm with Ym that is given by

Ym = Y1 ⊕ Y2 ⊕ · · · ⊕ Ym−1 ⊕ ∆(M)

It is easy to show that when the new message Mforged =

{Y1||Y2|| · · · ||Ym} is concatenated with the originalC(K,∆(M)),

the recipient would not suspect any foul play. When the recip-

ient calculates the MAC of the received message using his/her

secret key K, the calculated MAC would agree with the re-

ceived MAC. This is essentially the same point that was men-

tioned earlier in Section 15.4.

• The lesson to be learned from the unsafe MAC algorithm is that

although a brute-force attack to figure out the secret keyK would
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be very expensive (requiring around 256 encryptions of the mes-

sage), it is nonetheless ridiculously easy to replace a legitimate

message with a fraudulent one.

• A commonly-used and cryptographically-secure approach for com-

puting MACs is known asHMAC. It is used in the IPSec proto-

col (for packet-level security in computer networks), in SSL (for

transport-level security), and a host of other applications.

• The size of the MAC produced by HMAC is the same as the

size of the hashcode produced by the underlying hash function

(which is typically SHA-1).

• The operation of the HMAC algorithm is shown Figure 6. This

figure assumes that you want an n-bit MAC and that you will be

processing the input message M one block at a time, with each

block consisting of b bits.

– The message is segmented into b-bit blocks Y1, Y2, . . ..

– K is the secret key to be used for producing the MAC.

– K+ is the secret key K padded with zeros on the left so

that the result is b bits long. Recall, b is the length of each

message block Yi.
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– The algorithm constructs two sequences ipad and opad, the

former by repeating the 00110110 sequence b/8 times, and the

latter by repeating 01011100 also b/8 times.

– The operation of HMAC is described by:

HMACK(M) = h ( (K ⊕ opad) || h ( (K ⊕ ipad) ||M ) )

where h() is the underlying iterated hash function of the sort

we have covered in this lecture.

• The security of HMAC depends on the security of the underly-

ing hash function, and, of course, on the size and the quality of

the key.

• For further information on HMAC, see Chapter 12 of “Cryp-

tography and Network Security” by William Stallings, the source

of the information presented here.
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Figure 6: Operation of the HMAC algorithm for computing

a message authentication code. (This figure is from “Computer and Network

Security” by Avi Kak)
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15.9: HASH FUNCTIONS FOR
EFFICIENT STORAGE OF ASSOCIATIVE

ARRAYS

• While our focus so far in this Lecture has been on hashing for

message authentication, I’d be remiss if I did not touch even

briefly on the other extremely important use of hashing in mod-

ern programming — efficient storage of associative arrays. In

general, the hash functions used in message authentication are

different from those used for efficient storage of information and

it is educational to see the reasons for why that is the case. The

goal of this section is to focus on this difference by presenting

examples of hash functions for efficient storage. I’ll start with

the concept of an associative array because that is what is stored

in the containers based on hash functions.

• An associative array, also known as a map, is a list of <key,value>

pairs. You run into these sorts of arrays all the time when solving

practical problems. For an illustrative example, you can think of

a telephone directory as an associative array that consists of a

list of <string,number> pairs.
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• When working with associative arrays, the goal frequently is to

store them in such a way that the value associated with a key can

be retrieved in constant time, meaning in time that is independent

of the size of the associative array. [Just imagine the practical consequences

when that is not the case. What if the search program being used by a telephone operator responding

to your query for the phone number for an individual had to linearly scan through the entire directory

to fetch that number? In a large metropolitan area with tens of millions of people, a linear scan (or

even binary search) through alphabetized sub-lists would take far too long.]

• These days all high-level programming and scripting language

provide such efficient storage structures. Examples include dict

in Python, hash in Perl, HashMap in Java, Map in C++, etc. Storage

structures, in general, are referred to as containers and these

would be examples of containers that are based on hashing.

• The basic data abstraction used in efficient storage of associative

arrays is that of a bucket and the number of buckets in a storage

container is referred to as the container’s capacity. For each

<key,value> that needs to be stored in the container, we want

to hash the key to a bucket address. You would then place the

<key,value> in question in that bucket. To state it more precisely,

you would place a pointer to that <key,value> in a linked list at

that bucket address.

• The main challenge for a hash function that maps keys to bucket

addresses is to ensure that all the keys are as uniformly dis-
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tributed as possible over all the available bucket addresses. Ide-

ally, you would want each bucket to contain a single <key,value> pair.

When that is the case, then, at search time, you would apply the

same hash function to the key you are interested in and the re-

sulting bucket address would take you directly to the value you

are looking for.

• When the keys are themselves integers, it is relatively easy to

come up with hash functions that can distribute the keys more

or less uniformly over the bucket addresses. Using the arguments

in Section 10.5 of Lecture 10, we could set the capacity of the

container to a large prime number and calculate the bucket ad-

dress for a given key as the remainder modulo the prime (after

multiplying the key with a small integer constant). Since such

remainders are likely to be distributed uniformly over the range

(0, capacity), we can certainly expect that the buckets would

be populated uniformly — provided the keys themselves are dis-

tributed uniformly over whatever range they occupy. [One of the

earliest suggested approaches for hashing the keys for efficient storage of <key,value>

pairs when the keys are strings was to just add the decimal values (as given by ASCII

coding) associated with characters, calculate this addition modulo a prime number,

and use the remainder as the hash index. This approach to hashing was suggested by

Arnold Dumey back in 1956 in his book “Computers and Automation.” By the way,

the first person to have coined the term “hash” was the IBM mathematician

Hans Luhn in 1953.]

• Until recently, several programming languages used the FNV
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hash function for their hash based containers. Based on the idea

of prime numbers mentioned above, FNV is fast, in the sense that

it requires only two operations, one XOR and one multiply, for

each byte of a key. Here is a pseudocode description of the FNV

hash function:

hash = offset_basis

for each octet_of_data to be hashed

hash = hash xor octet_of_data

hash = hash * FNV_Prime

return hash

where offset basis and FNV Prime are specially designated con-

stants. For example, for 32-bit based calculations, the func-

tion uses offset basis = 2, 166, 136, 261 = 0x811C9DC5 and

FNV Prime = 2 ∗ ∗24 + 2 ∗ ∗8 + 0x93 = 16, 777, 619 =

0x01000193. FNV stands for the last names of Glenn Fowler,

Landon Curt Noll, and Kiem-Phong Vo, the inventors of the hash

function.

• More recently, though, several of the programming languages that

previously used the FNV hash have switched over to SipHash

created by Jean-Philippe Anumasson and Daniel Bernstein on

account of its much superior collision resistance. As you will

recall, in the context of hashing, collision refers to multiple keys

hashing to the same bucket address.

• When a hash function calculates bucket addresses modulo a large
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prime, you can run into high collision rates if the keys are such

that, when translated into integers, the bit patterns associated

with them occupy mostly the high-level bits. You see, the mod-

ulo operation, by its definition, discards a certain number of high-

level bits from the keys. For illustration, consider calculating key

values modulo 256 and assume that all the keys when translated

into integers have values larger than 256. In this case, since the re-

mainders would all be zero, you will have all the <key,value> pairs

placed in the bucket with address 0. Although such an extreme

non-uniformity in the distribution of the keys over the buckets

does not happen when the capacity is a prime, you may nonethe-

less end with an unacceptable level of collisions in certain buckets

if the the low-level bits of the keys are mostly zeros.

• It is educational to see how Java hashes keys to bucket addresses

in order to get around the above mentioned problem of too many

collisions in some of the buckets. Java has two levels of hash-

ing: (1) It associates a 4-byte hashcode with every class type

object. These include instances that you create in your own code

from class definitions and also objects such as the class defini-

tions themselves that come with the language or that you create.

And (2) It carries out supplemental hashing of the object-specific

hashcodes to distribute the keys more or less uniformly over all

the buckets.

• In Java, the hashcode associated with a regular integer, as con-

structed from the class Integer, is the integer value itself. If
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the bucket addressing was based solely on these hashcode, you’d

obviously run into the collision problem described above. The

hashcode associated with with a Long is the XOR of the upper 4

bytes with the lower 4 bytes of the 8-byte object. The hashcode

associated associated with a string is given by

public int hashCode() {

int h = hash;

// In the next block, ’value’ is an array of chars in the String object

if (h == 0 && value.length > 0) {

char val[] = value;

for (int i = 0; i < value.length; i++) {

h = 31 * h + val[i]; // val(i] is the ascii code for i-th char

}

hash = h;

}

return h;

}

This hashcode calculation for a string s of size n characters boils

down to:

s[0]*(31**(n-1)) + s[1]*(31**(n-2)) + ... + s[n-1]

• That brings us to the second round of hashing — supplemental

hashing — that Java uses to calculate the bucket addresses. The

goal of this round is to disperse the keys over the entire capacity.

Here is Java’s function for supplemental hashing

static int hash(int h) {

h ^= (h >>> 20) ^ (h >>> 12);

return h ^ (h >>> 7) ^ (h >>> 4);

}
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where h is the hashcode associated with the object. As mentioned

earlier, the goal of supplemental hashing is to disperse the keys

— even the keys that reside mostly in the upper range of the

hashcode values — over the full capacity of the container. The

operator ’>>>’ is Java’s bitwise non-circular right shift operator.

• I must also mention the critical role that is played by Java’s auto-

resizing feature of the hash-based containers. Java associates a

load-factor with a container that, by default is 0.75, but can be

set by the user to any fraction of unity. When the number of

buckets occupied exceeds the load-factor fraction of the capac-

ity, Java automatically doubles the capacity and recalculates the

bucket addresses for the items currently in the container. The

default for capacity is 16, but can be set the user to any desired

value.
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15.10: HOMEWORK PROBLEMS

1. The very first step in the SHA1 algorithm is to pad the message

so that it is a multiple of 512 bits. This padding occurs as follows

(from NIST FPS 180-2): Suppose the length of the message M

is L bits. Append bit 1 to the end of the message, followed by K

zero bits where K is the smallest non-negative solution to

L + 1 +K ≡ 448 (mod 512)

Next append a 64-bit block that is a binary representation of the

length integer L. For example,

Message = "abc"

length L = 24 bits

01100001 01100010 01100011 1 00......000 00...011000

a b c <---423---> <---64---->

<------------------- 512 ------------------------------>

Now here is the question: Why do we include the length of the

message in the calculation of the hash code?
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2. The fact that only the last 64 bits of the padded message are

used for representing the length of the message implies that SHA1

should NOT be used for messages that are longer than what?

3. SHA1 scans through a document by processing 512-bit blocks.

Each block is hashed into a 160 bit hash code that is then used

as the initialization vector for the next block of 512 bits. This

obviously requires a 160 bit initialization vector for the first 512-

bit block. Here is the vector:

H_0 = 67452301 (32 bits in hex)

H_1 = efcdab89

H_2 = 98badcfe

H_3 = 10325476

H_4 = c3d2e1f0

How are these numbers selected?

4. Why can a hash function not be used for encryption?

5. What is meant by the strong collision resistance property of a

hash function?

6. Right or wrong: When you create a new password, only the hash

code for the password is stored. The text you entered for the

password is immediately discarded.
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7. What is the relationship between “hash” as in “hash code” or

“hashing function” and “hash” as in a “hash table”?

8. Programming Assignment:

To gain further insights into hashing, the goal of this homework is

to implement in Perl or Python a very simple hash function (that

is meant more for play than for any serious production work).

Write a function that creates a 32-bit hash of a file through the

following steps: (1) Initialize the hash to all zeros; (2) Scan the

file one byte at a time; (3) Before a new byte is read from the

file, circularly shift the bit pattern in the hash to the left by four

positions; (4) Now XOR the new byte read from the file with the

least significant byte of the hash. Now scan your directory (a very

simple thing to do in both Perl and Python, as shown in Chapters

2 and 3 of my SwO book) and compute the hash of all your files.

Dump the hash values in some output file. Now write another

two-line script to check if your hashing function is exhibiting any

collisions. Even though we have a trivial hash function, it is very

likely that you will not see any collisions even if your directory is

large. Subsequently, by using a couple of files (containing random

text) created specially for this demonstration, show how you can

make their hash codes to come out to be the same if you alter one

of the files by appending to it a stream of bytes that would be

the XOR of the original hash values for the files (after you have

circularly rotated the hash value for the first file by 4 bits to the

left). NOTE: This homework is easy to implement in Python
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if you use the BitVector class.

9. Programming Assignment:

In a manner similar to what I demonstrated in Section 15.7.3 for

SHA-1, this homework calls on you to implement the SHA-512

algorithm using the facilities provided by the BitVector module.
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