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Computer and Network Security by Avi Kak Lecture 26

26.1: DIFFERENCES BETWEEN
STRUCTURED P2P AND SMALL-WORLD

P2P

• First of all, both structured and small-world P2P networks are

most commonly overlaid on top of the internet. So we can refer to

them as structured P2P overlays and small-world P2P

overlays.

• As we saw in Lecture 25, structured P2P overlays place topologi-

cal constraints on what other nodes any given node is aware of for

the purpose of data lookup or data retrieval. In a structured P2P

overlay, a more-or-less uniformly distributed integer, nodeID, is

assigned to each node. In the Chord protocol, for example, a

node is aware of its immediate successor, which would be a node

with the next larger value for nodeID. And, through its routing

table, a node is also aware of a small number of additional nodes

up ahead whose nodeID values sample the node identifier space

logarithmically.

• Structured P2P overlays of Lecture 25 are founded on the as-

sumption that any node can exchange data with any other node
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in the underlying network (meaning the internet). [Say that A and B

are nodes in a structured P2P overlay. Let’s say that at a given moment in time, B is not A’s immediate neigh-

bor in the P2P overlay and that B does not make any appearance at all in A’s routing table. So A is not likely

to forward its queries to B at this moment. But, after the addition of a few other nodes or departures thereof,

it is entirely possible that B could become A’s immediate successor (or predecessor) and/or that B would make

an appearance in A’s routing table. Should that happen, there would need to be a direct communication link

in the underlying internet between A and B.]

• In small-world P2P overlays, on the other hand, it is the human

owner of a node who decides which other nodes his/her node

will communicate with directly. This feature of small-world P2P

overlays could be used by a bunch of people to create their own

private overlay network that would be invisible to the rest of the

internet. Such closed overlays are called darknets.

• In this lecture we will assume that it is NOT our intent to create a

closed private overlay with a small-world P2P. Without requiring

approval from all of the current participants, we want a human

to be able to have his friends connect with his node — in the

same manner that humans form and extend their friendships. In

other words, in this lecture, we are interested in open-ended

small-world P2P overlays.

• Such open-ended small-world P2P networks are also referred to

as unstructured P2P networks.
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• Considering the ad hoc nature of the connections in unstructured

network overlays, we are interested in studying how messages

are routed in such overlays and whether there exist any security

problems with a given routing strategy.

• The best example of a small-world (unstructured) P2P overlay

today is the Freenet that was proposed initially by Ian Clarke in

a dissertation at the University of Edinburgh in 1999. Clarke’s

main focus was on creating a distributed system for key-indexed

storage from where individuals could retrieve information while

remaining anonymous. [As mentioned in Lecture 25, the system of web pages is an

example of key-indexed storage in which the URLs are the keys and, for each key, the web page at

that URL the corresponding value or data.] In other words, Clarke was inter-

ested in creating a “decentralized information distribution sys-

tem” that would provide anonymity to both the providers and

the consumers of information. [In Clarke’s thinking, the regular internet is a

highly centralized information system in which the routing is orchestrated by the DNS that directs an

information consumer’s query to the web pages of the information providers who stay at fixed loca-

tions. According to Clarke, the regular internet makes it all too easy to keep track of the information

providers and and the information consumers.]

• The next section explains Clarke’s original idea for the Freenet

in greater detail.

5



Computer and Network Security by Avi Kak Lecture 26

26.2: Freenet AS ORIGINALLY
ENVISIONED BY IAN CLARKE

• In the Freenet “protocol” proposed by Clarke, a random key is

associated with each data object that we wish to store in a Freenet

overlay. The key is assumed to be uniformly distributed over all

possible data objects. In a practical implementation, this key

would be the hash code of the data object calculated with a

mutually agreed upon algorithm. You can think of the key as the

data object’s address.

• In order to store a data object in the Freenet, your machine issues

a PUT(key, data object) message, where key is the hash code of

the data object. Later we will see how this message propagates

in the network to the node where the data object is stored.

• Consider the Freenet overlay of Figure 1. Such an overlay would

come into existence on a pairwise trust basis. A and B are each

other’s neighbors because they trust each other. And the same

goes for all the other direct links in Figure 1. The result is a web of

trust in which trust can exist between two not-directly-connected

nodes because there exists a path of trust between them.
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A
B

C

D

E

F

Each link was established by a human.  Messages can only

travel along the links shown.  The topology of the network 

can only change by new nodes joining and/or old nodes leaving.

A Freenet Overlay Network with Six Nodes

Figure 1: The labels A through F designate the nodes in a

Freenet overlay network. Pairs of nodes are connected on

the basis of mutual trust between their human owners. (This

figure is from Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)
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• Let’s say that nodeA has the key-value pair <key,data_object>

in its data store. Let’s further say that some other node,D, some-

how finds out about this data object (without knowing where

exactly this data object resides in the overlay) and would like

to download it. D issues the request GET(key) for this data ob-

ject. This request goes to the nodes that are D’s neighbors in

the Freenet. In our case, that is node F . Since F is not able to

find the key key in its data store, it forwards the request to its

neighbors (not including the node where the request originated).

In this manner the GET request will reach node A. A copy of the

data object is sent from A to D. An important element of the

“protocol” is that the data object is cached at all the nodes that

are en route between A and D — that means at the nodes B and

F . This fact results in replicated storage of data objects.

• Each Freenet node allocates a specific amount of memory for the

data store at its location. This implies that, eventually, as the

store fills up, there will be a need to delete some of the objects

stored in the memory. The least recently accessed data

objects are the first to be deleted when memory runs

short. This implies that any specific data object would even-

tually be deleted at a node as the node accumulates more and

more objects, unless, of course, the data object has migrated to

some other node, in which case its survival would be subject to

the memory constraints at that node.

• The above-mentioned deletion of the least recently accessed data
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objects is implemented with the help of a stack data structure.

As each new data object is received, the key and a reference to

the immediate neighbor from where the data object was received

are pushed into the stack. As the stack reaches its storage limit,

the data objects corresponding to the keys that fall off the other

end of the stack are deleted from memory. If a query for a data

object whose key is already in the stack is seen again, its key is

again pushed into the stack and the key removed from where it

resided in the stack previously. [Clarke’s report actually mentions storing a triple

in the stack for each new object — the key, the reference to the node from where query was received,

and the data object itself. But it seems to me that a more efficient implementation would store just the

keys and the neighbor references in the stack for the purpose of deciding which data objects to delete

and have a separate key-sorted store for the data objects for the purpose of caching and retrieval.]

• A new data object is inserted into the network when a node

issues a PUT(key, data object) message. Such a message is

accompanied with a TTL (Time to Live) integer, with the integer

decremented by one for each pass through an en route node. If the

TTL associated with a PUT message received at a node is greater

than 0, the node caches the object and at the same time

forwards the PUTmessage to one of its immediate neighbors. (This

is the second mechanism that results in the replicated storage

of a data object.) A greedy algorithm driven by the difference

between the hash key associated with the data object and the

location keys associated with the nodes decides which neighbor

the PUT message is forwarded to. We will have more to

say about the nature of location keys in Freenet very
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shortly.

• The TTL value we mentioned above is meant to prevent a data

insert query from making endless rounds in a Freenet overlay. For

the same reason, a data retrieval query also has associated with

it a TTL integer value.

• Each node is assigned an identifier, which can be its IP ad-

dress, and a unique location key that is a randomly chosen

number between 0 and 1. The key values in the range 0 and

1 are to be thought of as being real numbers arranged on a circle,

with 0 and 1 being the same number. In other words, the key

values are cyclic over the range from 0 and 1 and any arithmetic

on the key values is carried out modulo 1. [This is analogous to how

the keys are envisioned in a distributed hash table based on, say, the Chord protocol

(see Lecture 25).]

• The GET and PUT messages propagate in the network on the basis

of the difference between the location key and the key associated

with the data object — subject to a bounded depth-first search

for the best destination node. Earlier we mentioned that as a GET

or a PUT message courses its way through the network, at each

node its TTL is decremented and it is forwarded to that node

for which the difference between location key and the object key

is the smallest. Since the search path extended in this manner

may lead to a dead-end, the messages are allowed to backtrack
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in a depth-first manner in order to find alternative paths. The

original TTL would obviously control the depth of the search for

the destination node.

• How exactly TTL controls the search for the best node has to be

understood with care because it is possible for a node to reset the

TTL value to what it was originally in order to extend a path.

• The interplay between the TTL values and the bounded depth-

first search will be illustrated with the help of the Freenet overlay

shown in Figure 2 where the s values are the location keys at each

of the nodes. Note that as a request wends its way through the

network, it takes along with it the list of nodes already visited.

• Let’s first consider a GET request issued at node F for a data

object whose hash key is 0.10 and let’s assume that the TTL value

associated with this request is 2. Since F is only allowed to talk

to D, D will receive the request with a TTL of 1. D will examine

its data store and, not finding the object there, will forward the

request to that neighbor whose location key is closest to the data

key; in this case, D will forward the request to G with a TTL of

0. When G does not find the data object in its store, G will check

the location keys at all its neighbors (not including the one from

which the request was received) before responding negatively to

the GET request. G will discover that B’s location key is closer

to the requested data key of 0.10 than its own location key. So

11
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it will broadcast the GET request to all its immediate neighbors

(excluding the neighbor from which the request was received)

after resetting its TTL to its original value of 2. The search will

continue in this manner until TTL is zero and the location keys

at all the neighbors are further away from the data key than the

node that is the current holder of the request. At that point, the

current node will either respond with the data object if its exists

in its store or will report nonexistence of the data object.

Each link was established by a human.  Messages can only

travel along the links shown.  The topology of the network 

can only change by new nodes joining and/or old nodes leaving.

A Freenet Overlay Network with Nine Nodes

D

EB

CF

G
I

S=0.85

S=0.88

S=0.70

S=0.38 S=0.73

S=0.23 S=0.55

S=0.32

A

S=0.12 H

Figure 2: The s values shown are the location keys at the

nodes labeled A through H in a Freenet overlay. (This figure is

from Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)

• But note a fundamental problem with the bounded depth search

for a data object as explained above. The data object of key 0.10

could actually be in the data store at node A but the search path

may fail to reach that node. This points to a fundamental
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shortcoming of the Freenet overlays: In an arbitrarily

extended overlay, there is no theoretical guarantee

that a data object will be found or that a data object

will be stored at its globally best node. It is for this

reason that a Freenet overlay works best in small networks created

by friends who trust one another and when every node is directly

connected with every other node.

• The same logic as presented above applies to PUT requests.

• Earlier we mentioned that as a data object is either looked up with

a GET message or inserted into the network with a PUT message, it

is cached at all the en route nodes. This caching serves the same

purpose as data replication in a structured P2P network such as

Chord or Pastry. (See Lecture 25 for Chord and Pastry.)

• To repeat what is probably the most significant difference be-

tween the structured and the unstructured overlays, whereas the

logic used for deciding where to store a data object in a Freenet is

essentially the same as in a structured P2P overlay based on, say,

the Chord protocol, any two nodes in a Freenet overlay are di-

rectly connected only if the human operators who own the nodes

trust each other.

• Shown below is an email from Ian Clarke saying that this conclu-

sion of mine as stated above is not correct. Since he has addressed
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so succinctly the issue of the scalability of the Freenet as envi-

sioned by him, I have reproduced his email here. This was done

with his permission.
Date: Mon, 22 Sep 2008 12:08:52 -0500

From: "Ian Clarke"

To: "Avi Kak"

Subject: Re: Freenet makes its way into education

Thanks Avi - that is great, although I think I may have discovered an important misunderstanding/omission

:-(

The bold bullet-point on page 13 says:

"any two nodes in a Freenet overlay are directly connected only if the human operators who own the nodes trust

each other."

This is only true of earlier pre-release versions of Freenet 0.7 (versions released in 2006 and 2007), and

is not true of the original Freenet design, nor of versions of Freenet released towards the end of 2007 and

in 2008. In recent versions of Freenet, this is only true if a user’s Freenet node is in "darknet mode".

The Freenet design described in my original dissertation[1] allowed Freenet to create and remove connections

between peers, users were not responsible for creating these connections manually. In fact, this process

was central to allowing Freenet to scale. See the second paragraph of section 5.1 of my original dissertation

- "When the information is found, it is passed back through the nodes that originally forward on the message,

and each is updated with the knowledge of where the information was stored". Also note section 7.1.3.3 where

I show that retrieval path lengths remain short even as the size of the network is increased from 500 to 900

nodes. This is possible only because of this rewiring process (since in those simulations, the original network

configuration was random).

The basic idea is that when a node initiates *or* routes a request for data, and the data is found, that node

establishes a new connection to the node were the data was found (this may occur with a probability less than

1.0). This means that when data is found, every node that participated in the retrieval of that data will

(with a certain probability) establish a connection to the node which had the data. Since nodes have a limited

number of connections, this may require that they drop their least recently used connection to make room for

the new one.

We later discovered that this very simple "rewiring" algorithm caused the network to converge to a near-perfect

Kleinberg network. This is the key to how the original Freenet was able to scale. In section 2.1.3.3 of

my original dissertation[1] you can see that it was successful in retrieving data with a path-length of around

10 in networks up to 900 nodes.

Oskar does a much deeper study of destination sampling in Part I of his thesis[2], and I recommend reading

that over my original paper for a robust explanation of this. Our conjecture is that destination sampling

is as effective a means to create a small world network as other more complicated approaches such ,as Chord.

In late 2007 we re-introduced destination sampling, albeit in a simpler form than in the original Freenet

proposal, we called this "opennet", in contrast to "darknet", where users can only connect to their friends.

I hope this is helpful, please don’t hesitate to let me know if you have any questions, or if I can be of

any further assistance.

Kind regards,

Ian.

[1] http://freenetproject.org/papers/ddisrs.pdf

[2] http://www.math.chalmers.se/˜ossa/lic.pdf
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26.3: THE SMALL-WORLD
PHENOMENON

• At roughly the same time when Ian Clarke was putting together

his ideas on Freenet, Duncan Watts and Steven Strogatz pub-

lished a computer simulation of the small world phenomenon.

This simulation study and subsequent work by others related to

routing in small-world networks have played important roles in

the recent evolution of the Freenet. The rest of this section is de-

voted exclusively to the small world phenomenon. We will come

back to the computer simulation experiments by Watts and Stro-

gatz in the next section.

• The small world phenomenon, demonstrated experimentally by

the famous psychologist Stanley Milgram in 1967, says thatmost

humans are connected by chains of friendships that

have roughly six individuals in them. [Milgram arrived at this

conclusion by asking people in American heartland cities like Wichita and Omaha to send letters to

specifically named east-coast individuals (they were referred to as “targets”) who were not known to

the senders. A condition placed on each sender was that he/she could only mail the letter to someone

with whom the sender was on a first-name basis. It was expected that of all the friends the sender

knew, he/she would send the letter to a friend who was most likely to send/forward the letter to its

ultimate destination. The same condition was placed on each recipient of the letter — he/she could
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only mail the letter to a friend with whom he/she was on a first-name basis and who appeared to be

most likely to route the letter to its final destination. Obviously, a recipient on a first-name basis with

the target would send the letter directly to its final destination. When Milgram examined the mail

chains that were completed successfully in this manner, he discovered that, on the average, each letter

took six steps between the original sender and the target.]

• To be sure, the notion of the world being small (in the sense

that any two human beings are connected through small chains

of friendship) was in our collective consciousness even before Mil-

gram did his famous experiments. Since time immemorial, when

people have met their friends at the unlikeliest of places (say you

live in a small town in the US and you bump into a US friend

at a train station in Japan), people have often exclaimed “It’s a

small world.” People have often said the same thing upon being

introduced to a stranger at a party and discovering that they

have several friends in common with this new person. [ Also note

that what some consider to be the world’s best-loved song “It’s a small world (after all)” was written

by Sherman brothers for Walt Disney Studios in 1964, three years before Milgram’s experiments. Some

people might say that the song is less about people being connected through short chains of friendship

and more about all people being the same despite superficial differences. Nonetheless, the song’s title

was probably inspired by the perceived smallness of the world in all aspects of life — including who

knows whom through what connection.]

• It would probably be fair to say that, in the best tradition of

psychologists, Milgram carried out his experiments to test what

many people seemed to believe intuitively.
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• Although Milgram’s experiments created a lot of excitement in

the popular culture and made “six degrees of separation” a part

of our lexicon, it is important to bear in mind that only a very

small number of the chains started in Milgram’s experiments were

completed. (In fact, in his first experiment, only 384 out of 24,163

chains were completed.) Non-completion of the chains does not

mean that the small world phenomenon does not exist. [It is

easy to understand why most chains would not be completed. To many people, receiving a letter that

they would need to forward to a friend must have seemed like a chain letter. (Most people react to

chain letters by simply ignoring them.) And if people did not think it was a chain letter and actually

appreciated the seriousness of the experiment, they might still have considered it to be too much of a

bother to mail that letter again.]

• As to whether the small-world phenomenon as uncovered by Mil-

gram’s experiments is a true reflection of the social networks in

the real world depends on what you think of the “mechanisms”

underlying the grouping of people in a mail-forwarding chain.

There is obviously some “self-selection” bias in choosing the indi-

vidual for the next mail forwarding step, in the sense that you are

more likely to select someone who has the time and the attitude

to engage in the experiment than someone who is your friend but

would be reluctant to cooperate.

• Do the above two statements mean that the small world phe-

nomenon is more a myth than a reality? Not at all. Despite the

problems with the experiments carried out by Milgram, the mail

forwarding chains that were completed are believed to be more a
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reflection of reality than the chains that were never completed.
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26.4: DEMONSTRATION OF THE
SMALL-WORLD PHENOMENON BY

COMPUTER SIMULATION

• In 1998, Duncan Watts and Steven Strogatz published a “small

world” computer simulation study in the journal “Nature” that

attracted the attention of researchers in many different areas of

“hard sciences.”

• The intent behind the Watts and Strogatz computer-simulation

study was to see what sort of an interconnection model would cap-

ture the small-world phenomenon uncovered by Milgram. Recall

from the previous section that the small-world phenomenon ac-

cording to Milgram meant that any two individuals are connected

by a small chain of friends. On the average, the number of friends

in the chain is around 6. [The exact length of the chain, even in the average

sense, is not an issue. The important point is that this number is small.]

• The interconnection model used by Watts and Strogatz and their

simulation experiments do capture the fact that any two nodes

in a network are connected, on the average, by a small chain in a

manner that is independent of the size of the network. What is
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interesting is that, in addition to measuring the average length of

the shortest chain connecting any pair of nodes, Watts and Stro-

gatz also measured the local clustering as would be perceived

by any node locally.

• By local clustering in a human context, we mean the extent

to which an individual’s friends are each other’s friends.

• If the interconnection model used by Watts and Strogatz reflects

how humans relate to one another, that implies that, for the

most part, we think of ourselves as existing in small communi-

ties — each individual exists in his/her own small world. But,

with a small probability, someone in one community will know

someone else in a different community. Even though these inter-

community links (called long-range contacts) are rare so as to be

largely imperceptible to most of us individually, the overall effect

is the Milgram phenomenon. That is, the shortest path between

any two individuals — including individuals living in different

communities — never has more than a few other individuals in

it.

• Watts and Strogatz carried out their simulations on a ring lattice

in which all the nodes in a network are assumed to be arranged

in the form of a ring as shown in Figure 3. We will assume that

the total number of nodes in a network is N . Initially, each node

is provided with k local contacts. For example, in the network

20
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shown in Figure 3, we have k = 4. That is, we assume that each

individual exists in a world with only 4 other individuals in it.

[Note that n nodes can have a maximum of n(n− 1)/2 edges that connect them (resulting in a fully

connected subgraph or a clique). In the construction shown in Figure 3, each neighborhood consists

of one node along with its four immediate neighbors, two on either side. That is, each neighborhood

consists of 5 nodes. Note that 5 nodes along with 10 edges, with no duplicate edges between any pair

of nodes, will constitute a clique. In the Watts and Strogatz construction shown in Figure 3, each

neighborhood consisting of 5 nodes has only 7 arcs that connect these nodes. While each such local

cluster is not fully connected to form a clique, nonetheless it exhibits a high degree of clustering.]

Figure 3: Every node in this ring lattice has 4 local contacts.

(This figure is from Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)

• A small-world network is created by rewiring the basic network

diagram, such as the one shown in Figure 3, so that a small

number of randomly selected nodes are also connected to more

distant nodes.
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Figure 4: A rewired version of the ring lattice network of

Figure 3 when the probability with which an arc is chosen

for rewiring is 0.08. (This figure is from Lecture 26 of “Lecture Notes on Computer and

Network Security” by Avi Kak)

• To be more specific, when a node is chosen for rewiring, the

reewiring at the node consists of redirecting one of the outgoing

arcs at the node to some other destination node. The extent of

rewiring in the network is controlled by a probability p. This

can be accomplished for each rewiring try by calling a random-

number generator function, such as rand() in Perl, that returns

a random real number that is distributed uniformly between 0

and 1 and deciding to rewire an arc if the value returned is less

than p; otherwise leaving the arc unchanged. Shown in Figure 4

is the network obtained with p = 0.08.

22



Computer and Network Security by Avi Kak Lecture 26

Figure 5: A rewired version of the ring lattice network of

Figure 3 when the probability with which an arc is chosen

for rewiring is 1.0. (This figure is from Lecture 26 of “Lecture Notes on Computer and

Network Security” by Avi Kak)

• As the value of p increases from 0 to 1.0, you will see a progression

of network connectivity ranging from what was shown in Figure

3, going through what is shown in Figure 4, and finally ending up

in a randomly rewired graph, as shown in Figure 5. The graph

we get when p = 1.0 is a close approximation to what are known

as the Erdos-Renyi random graphs. (These are named after the

mathematicians Paul Erdos and Alfred Renyi.)

• Strictly speaking, an Erdos-Renyi graph is obtained by starting

with N isolated nodes, visiting each of the N(N − 1) possible

node pairs, and selecting with probability p a node pair for a

direct connection with an edge. [As mentioned earlier, the maximum number of

edges in a graph of N nodes is

(

N
2

)

= N !
(N−2)!2! = N(N − 1)/2. In an Erdos-Renyi random
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graph, each of these possible edges is present with probability p. Additionally, the selection of each

edge is independent of all other edges.] Selecting a node pair for a direct

connection with probability p can be accomplished by firing up a

random number generator as we are considering each node pair.

Assuming the random number generator outputs real numbers

distributed uniformly between 0 and 1, if the value output is less

than p, we draw an edge between the two nodes. Otherwise, we

move on and consider the next node pair.

• In an Erdos-Renyi graph, the probability that the degree of a

node is d is given by the binomial distribution

prob{degree = d} =

(

N − 1
d

)

pd(1− p)N−1−d

The average degree of a node in such a graph can be expressed

as z = (N − 1)p. Expressing the probability p in terms of z,

we can write for the degree distribution

prob{degree = d} =

(

N − 1
d

)[

z

N − 1

]d [

1−
z

N − 1

]N−1−d

≈
zd

d!
e−z

where the last approximation becomes exact as N approaches in-

finity. That is, asN becomes large, we can expect the probability

distribution of the node degrees to become a Poisson distribution.

(A consequence of the Poisson law for degree distribution is that
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we can use the maximum of the Poisson distribution to associate

a scale with the graph.)

• Unfortunately, the degree distribution in real-life large graphs,

such as the graph in which the nodes are the different websites

(or the web pages) in the internet and the arcs the URL links

between the websites (or the web pages), is not Poisson. It is

therefore generally believed that the Erdos-Renyi random graph

is not the right model for real-life large networks of nodes. This

has given rise to a second method of modeling random graphs —

the method of preferential attachment. These graphs are

also called scale-free graphs and Barabasi-Albert graphs.

• The degree distribution in Barabasi-Albert graphs exhibits a power

law. That is, in a Barabasi-Albert graph, the probability that the

degree of a node is d is given by prob{degree = d} = c/dα

for some positive constants c and α. Typically, 2 ≤ α ≤ 3. To

fit the Barabasi-Albert model to an actual network, you plot its

degree distribution on a log-log plot and then fit the best straight

line to the plot. The absolute value of the slope is α. On the

other hand, to generate a Barabasi-Albert graph, you start with

a connected graph of m0 nodes (this graph only needs to be con-

nected and not necessarily complete) and, at each time step, you

add a new node to the network. The new node is connected with

the m ≤ m0 other nodes. The probability that the new node

is connected to a given existing node i is di
∑i−1

j=1 dj
where dj is the
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degree at node j. This formula makes a node that is already well

connected more attractive as a connection destination for a new

node. Figure 6 shows an example of a Barabasi-Albert graph that

we get after 200 iterations of the algorithm with m0 = 10. The

value of m, the number of nodes that the new node is connected

at each iteration was set to 1. (Barabasi-Albert random graphs

are named after the physcists Albert-Laszio Barabasi and Reka

Albert.)

Figure 6: An example of a Barabasi-Albert random graph.

It was generated with 200 iterations of the algorithm and

with the parameters m0 = 10 and m = 1. (This figure is from Lecture

26 of “Lecture Notes on Computer and Network Security” by Avi Kak)

• Structured and random graphs that are of interest to us are char-

acterized by two properties: 1) the diameter of the graph; and

2) the clustering coefficient of the graph.
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• By the diameter of a graph, we mean the maximum value of

the shortest path between any pair of nodes in the graph. The

length of a path between any two nodes A and B means the total

number of edges on a path that connects A with B. So if there

is a direct arc between A and B, the length of the path between

A and B through the direct arc is 1. The diameter of a graph

is also often taken to be the average value of the shortest path

between every pair of nodes in the graph. [Strictly speaking, this definition

makes sense only for fully connected graphs. (Note that we only said “fully connected graph” and not

a “complete graph.” The diameter of a complete graph is always 1.) When a graph consists of multiple

connected components or when a graph contains isolated nodes, it is not clear how to compute the

diameter either in the sense of it being the maximum value of the shortest distance between every

pair of nodes, or in the sense of it being the average value of the shortest distance between every pair

of nodes. Most people simply ignore the node pairs that are not connected from the computation of

either the maximum or the average.]

• The clustering coefficient of a graph measures the average

extent to which the immediate neighbors of any node are also

each other’s immediate neighbors. [Since the clustering coefficient is an average

of the “neighbors of a node are also one another’s neighbors,” it is not clear how to account for isolated

nodes in this average. Most people simply ignore the isolated vertices.]

• Both types of random graphs we talked about — the Erdos-

Renyi graphs and the Barabasi-Albert graphs — possess small

diameters. The asymptotic value of the diameter of an Erdos-

Renyi random graph is given by lnN/ ln(pN) where N is the

total number of nodes in the graph and p the probability that
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any pair of nodes is connected by a direct link. The asymptotic

value of the diameter of a Barabasi-Albert random graph is given

by lnN/ln lnN .

• So far we have focused much on the random end of the graphs

used by Watts and Strogatz in their computer simulation of the

small world phenomenon. As mentioned earlier, the graphs used

by Watts and Strogatz consist of random rewirings of the base

graph of Figure 3, the extent of rewiring controlled by the prob-

ability p. When p = 1, we end up with a random graph like an

Erdos-Renyi graph.

• We can therefore expect that when p = 1 in the Watts and Stro-

gatz computer simulation, we will end up with a small diameter

graph. Obviously, p = 1 will destroy the local clustering embed-

ded in the ring lattice of Figure 3. So we can expect the clustering

coefficient to approach zero as p approaches 1. When p = 0, we

can obviously expect the graph diameter to become large in di-

rect proportion to the size of the total number of nodes in the

graph, but clustering to remain large.

• We will use L(p) and C(p) to denote the diameter and the clus-

tering coefficient, respectively, of a Watts and Strogatz graph.

We have already seen that L(p = 1) is proportional to lnN and

C(p = 1) is close to zero. We also know that L(p = 0) is linearly

proportional to N and C(p = 0) is close to unity.
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• What made Watts and Strogatz paper such a celebrated piece

of work was the demonstration by the authors that the diame-

ter L(p)/L(0) falls off rapidly as the value of p is increased even

slightly from 0. On the other hand, the clustering coefficient

C(p)/C(0) remains pegged at close to unity for these values of p.

This is demonstrated by the plots of L(p)/L(0) and C(p)/C(0)

shown in Figure 7 for a ring lattice network in which the total

number of nodes is set as N = 200 and the number of arcs em-

anating at each node set as K = 6. L(p)/L(0) is shown by the

solid red plot and C(p)/C(0) by the dashed green plot. Note that

the horizontal axis is logarithmic so that we can see more clearly

as to what happens to the two ratios when the probability p in-

creases even slightly beyond zero. It is clear that when we intro-

duce just a few long-range contacts by choosing a small non-zero

value for p, the network “shrinks” rapidly in terms of its diame-

ter, the local clustering remains substantially the same. This is

the small-world phenomenon in its classic sense.

• We refer to a network (or a graph) as a small-world

network (or a small-world graph) if it has a small

diameter and a large clustering coefficient.

• In the rest of this section, we will show the Perl script that was

used for the two plots presented in Figure 7. The same code

can also be used to construct the graphs presented in Figures 3

through 5. If you wish to construct a ring lattice of the sort shown
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Figure 7: As the probability p for a long-range contact

increases even slightly beyond zero, the diameter of the

network shrinks rapidly, as shown by the solid red plot,

while the local clustering coefficient remains substantially

unchanged, as shown by the dashed green plot. (This figure is from

Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)
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in Figures 3 through 5, you’d need to comment out the lines (I)

through (P) of the script that comes next. Edit the values of $N ,

$K, and $p in lines (A), (B), and (C) as necessary to generate

the ring-lattice graphs. You can control the diameter and the

degree of clustering by changing the value of the probability $p

in line (C). After you have commented out the lines (I) through

(P), you can invoke the script by

small_world.pl wsfig.dot

where wsfig.dot is the name of the “DOT” file that is needed

by the GraphViz program neato to create a postscript of the

image of your graph structure. “DOT” is the language used

by the GraphViz library for describing graphs as consisting of

nodes and arcs, along with their labels, visualization attributes,

etc. (See www.graphviz.org for further details.) The contents of

wsfig.dot, as produced by a call such as above, can be converted

into a postscript figure by

neato -Gsplines=true -Gsep=3.0 -Tps -Gcenter -Gsize="6,6" wsfig.dot -o wsfig.ps

The splines=true option is to override the default of neato to

use only straight edges between the nodes. With this option, at

least some of the edges will be curved. The sep=3.0 option is

an attempt to increase the distance between the edges. You can

display the postscript graph by

gv wsfig.ps

Examples of such graphs were shown in Figures 3 through 5. If

you also want to see the pairwise shortest distances between the
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nodes in the graph, the diameter of the graph, and its clustering

coefficient, make the same calls as above but now also include the

lines (I) through (N) of the script. But note that that will work

only for small graphs, typically when the total number of nodes

is less than 20, since otherwise the matrix of pairwise numbers

will be too large for a typical display window on your terminal

screen.

• If you just want to produce the plots shown in Figure 7, comment

out the lines (C) through (N) and make sure that the lines (O)

and (P) are uncommented if you happened to have commented

them out earlier. Now you can execute the script by just calling

small_world.pl

Make sure that the two arguments needed by the call in line

(O) are as you want them. The first argument sets the number of

nodes in the ring-lattice graph and the second argument the num-

ber of neighbors connected directly to each node. The call shown

above outputs a “.gif” file called SmallWorld.gif for the plots

using the Perl module GD::Graph. This is done in the function

plot_diameters_and_clustering_coefficients() whose

implementation begins in line (Q).

• Shown below is the script:
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#!/usr/bin/perl -w

# small_world.pl

# by Avi Kak (kak@purdue.edu)

# updated October 23, 2008

# Generate a Watts-Strogatz small world network consisting

# of $N nodes. Each node is directly connected to $K

# immediate neighbors that are located symmetrically in

# the ring lattice on two sides of the node.

# We will model the network as a hash. The keys in the

# hash are the node indices. So if there are a total

# of N nodes in the network, the hash will consist of N

# <key,value> pairs. The value for each key is again a

# hash. The keys for this inner hash at a given node in

# the network are the indices of the destination nodes at

# the outgoing arcs. So if we focus on node $i in the network,

# and if ’base_graph’ is the main hash representing the

# network, $base_graph{i} would stand for a hash consisting of

# the <key,value> pairs such that the keys are the destination

# nodes that the node $i is directly connected with and

# values would be set to 1 for all such destintation nodes.

# For all other network nodes that are not the destination

# nodes for the outgoing arcs emanating from $i,

# $base_graph{i}{j} would be left undefined. It is obviously

# the case that if $base_graph{i}{j} is set to 1, then

# $base_graph{j}{i} must also be set to 1. And if we delete an

# arc at node i by undefing $basic_graph{i}{j}, then that arc

# is not completely deleted until we also undef $base_graph{j}{i}.

# It is interesting to observe that each arc from node $i to

# node $j gets a double representation, once in the hash

# $base_graph{i} and then again in the hash $base_graph{j}.

# Of the various functions that are shown below, the functions

# make_base_graph() and rewire_base_graph() are based on the

# code in Mary Lynn Reed’s article "Simulating Small-World

# Networks" that appeared in Dr. Dobb’s Portal in April 2004.

# The functions shortest_paths() and display_shortest_distance()

# are based on the article "Empirical Study of Graph Properties

# with Particular Interest towards Random Graphs" by Lee Weinstein.

use strict;

my $out_dot_file = shift;

my $N = 20; #(A)

my $K = 4; #(B)

33



Computer and Network Security by Avi Kak Lecture 26

my $p = 0.08; #(C)

my $seed = time(); #(D)

srand($seed); #(E)

my %base_graph = make_base_graph( $N, $K ); #(F)

my %rewired_graph = rewire_base_graph( $p, %base_graph ); #(G)

display_graph_on_ring_lattice( %rewired_graph ); #(H)

my %floyd_warshall_matrix = shortest_paths( %rewired_graph ); #(I)

display_shortest_distances( %floyd_warshall_matrix ); #(J)

my $dia = diameter( %floyd_warshall_matrix ); #(K)

printf "Diameter of the graph is %.3f\n", $dia; #(L)

my $cluster_coeff = clustering_coefficient( %rewired_graph ); #(M)

printf "Average cluster coefficient is %.3f \n", $cluster_coeff; #(N)

# The first arg below is the total number of nodes in the

# graph and the second arg the total number of neighbors.

# Choose an even number for the second arg so that the

# immediate neighbors of a node will be symmetrically placed

# on the two sides of the node.

my $plot_data = diameters_and_clustering_for_different_p(100, 4); #(O)

plot_diameters_and_clustering_coefficients( $plot_data ); #(P)

#######################################################################

# Subroutines

#######################################################################

# This subroutine uses the GD::Graph package to construct

# the plots shown in Figure 7. The plot output is

# deposited in a file called ’SmallWorld.gif’. The subroutine

# needs for its input a reference to an array that in turn

# contains references to the following three arrays: 1) an array

# of labels to use for the x-axis; 2) an array of the graph

# diameters for different values of probability; and 3) an

# array of clustering coefficients for different value of

# probability.

sub plot_diameters_and_clustering_coefficients { #(Q)

my $plot_data = shift;

use GD::Graph::lines;

use GD::Graph::Data;
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my $sw_graph = new GD::Graph::lines();

$sw_graph->set(

x_label => ’probability p’,

y_label => ’L(p)/L(0) and C(p)/C(0)’,

title => ’Small World Simulation’,

y_max_value => 1.0,

y_min_value => 0,

y_tick_number => 5,

y_label_skip => 1,

x_labels_vertical => 1,

x_label_skip => 4,

x_label_position => 1/2,

line_types => [ 1, 2 ],

line_type_scale => 8,

line_width => 3,

) or warn $sw_graph->error;

$sw_graph->set_legend( ’L(p)/L(0)’, ’C(p)/C(0)’ );

$sw_graph->plot($plot_data) or die $sw_graph->error;

my $ext = $sw_graph->export_format;

open( OUTPLOT , ">SmallWorld.$ext") or

die "Cannot open SmallWorld.$ext for write: $!";

binmode OUTPLOT;

print OUTPLOT $sw_graph->gd->$ext();

close OUTPLOT;

}

# This subroutine calculates the diameter of a graph of nodes

# and its clustering coefficient for different values of

# the probability p:

sub diameters_and_clustering_for_different_p { #(R)

my $N = shift; # The total number of nodes in graph

my $K = shift; # The immediate neighbors of each node

my %base_graph = make_base_graph( $N, $K );

# Figure out the values of the probability $p for which

# you want to compute the diameter and the clustering

# coefficient. To demonstrate the small-world phenomenon,

# you need a logarithmic scale for p. We will choose

# values for p that span the range 0.0001 and 1.0 in such

# a way that the tick marks on the horizontal axis are

# equispaced. Note that on a logarithmic scale, the middle

# point between two given points is the geometric mean of

# the two.

my $x = 1.0 / sqrt(10);

my $y = $x * sqrt( $x );

my $z = sqrt( $x );

my @p_array = (0.0001, $y * 0.001, $x * 0.001, $z * 0.001, 0.001,

$y * 0.01, $x * 0.01, $z * 0.01, 0.01,
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$y * 0.1, $x * 0.1, $z * 0.1, 0.1,

$y * 1.0, $x * 1.0, $z * 1.0, 1.0);

my $dia_no_rewire;

my $clustering_no_rewire;

my @dia_array;

my @clustering_coeffs;

my @x_axis_tick_labels;

foreach my $p (@p_array) {

my %rewired_graph = rewire_base_graph( $p, %base_graph );

my %floyd_warshall_matrix = shortest_paths( %rewired_graph );

my $dia = diameter( %floyd_warshall_matrix );

$dia_no_rewire = $dia if $p == $p_array[0];

my $dia_ratio = $dia / $dia_no_rewire;

my $cluster_coeff = clustering_coefficient( %rewired_graph );

$clustering_no_rewire = $cluster_coeff if $p == $p_array[0];

my $clustering_ratio = $cluster_coeff / $clustering_no_rewire;

printf "For p=%.5f, L(p)/L(0) = %.2f C(p)/C(0) = %.2f \n",

$p, $dia_ratio, $clustering_ratio;

push @dia_array, $dia_ratio;

push @clustering_coeffs, $clustering_ratio;

if ( ($p == 0.0001) || ($p == 0.001) || ($p == 0.01)

|| ($p == 0.1) || ($p == 1.0) ) {

push @x_axis_tick_labels, $p;

} else {

push @x_axis_tick_labels, undef;

}

}

return [ \@x_axis_tick_labels, \@dia_array, \@clustering_coeffs ];

}

# Create the base graph consisting of nodes and arcs. As explained in

# the top-level comments, a graph is represented by hash of a hash.

# The keys in the outer hash are the node indices, and the values

# anonymous hashes whose keys are destination nodes connected to a

# given node in the graph and whose values are 1 for those destination

# nodes:

sub make_base_graph { #(S)

my $N = shift; # total number of nodes in the graph

my $k = shift; # neighbors directly connected on lattice

my %graph;

foreach my $i (0..$N-1) {

my $left = int($K / 2); # Number of nodes to connect to the left

my $right = $K - $left; # Number of nodes to connect to the right

foreach my $j (1..$left) {

my $ln = ($i - $j) % $N;

$graph{$i}{$ln} = 1;

$graph{$ln}{$i} = 1;

}

foreach my $j (1..$right) {

my $rn = ($i + $j) % $N;

$graph{$i}{$rn} = 1;
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$graph{$rn}{$i} = 1;

}

}

return %graph;

}

# Rewire each edge with probability $p

sub rewire_base_graph { #(T)

my $p = shift; # probability for rewiring a link

my %graph = @_;

my $N = keys %graph; # total number of nodes in the graph

foreach my $i (keys %graph) {

foreach my $j (keys %{$graph{$i}}) {

my $r = rand();

if ($r < $p) {

# randomly select a new node $jnew to connect to $i

my $done = 0;

my $jnew;

while (!$done) {

$jnew = int($N * rand());

if ( ($jnew != $i) && ($jnew != $j) ) {

$done = 1;

}

}

# remove edge $i <--> $j

undef $graph{$i}{$j};

undef $graph{$j}{$i};

# add edge $i <--> $jnew

$graph{$i}{$jnew}++;

$graph{$jnew}{$i}++;

}

}

}

return %graph;

}

# This is the function that is called to display a ring lattice.

# It dumps its output into a DOT file that can then be visually

# displayed as a ring lattice of nodes by the neato program.

sub display_graph_on_ring_lattice { #(U)

die "No output DOT file specified" if !defined( $out_dot_file );

my %argGraph = @_;

my $NumNodes = keys %argGraph; # number of nodes in the graph

my %graph;

foreach my $i (0..$NumNodes-1) {

foreach my $j (0..$NumNodes-1) {

$graph{$i}{$j} = $argGraph{$i}{$j};

}

}
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use constant PI => 3.14159;

open OUT, "> $out_dot_file";

print OUT "graph WS { \n";

print OUT "node [shape=point,color=blue,width=.1,height=.1];\n";

foreach my $i (keys %graph) {

my $delta_theta = 2 * PI / $NumNodes;

my $posx = sin( $i * $delta_theta );

my $posy = cos( $i * $delta_theta );

print OUT "$i [pos = \"$posx,$posy!\" ];";

}

print OUT "\n";

# This is my attempt to decrease the "strength" associated

# with each edge in order to make it more pliable for curving

# by the spline option set in the command line:

print OUT "edge [weight=0.001];\n";

foreach my $i (keys %graph) {

foreach my $j (keys %{$graph{$i}}) {

print OUT "$i -- $j;\n" if $graph{$i}{$j};

undef $graph{$j}{$i};

# print OUT "$i -- $j\n";

}

}

print OUT "}\n";

close OUT;

}

# This is an implementation of the Floyd-Warshall All Pairs Shortest

# Path algorithm. Note that this is not the most efficient way to

# compute pairwise shortest distances in a graph; however, it is easy to

# program. The time complexity of this algorithm is O(N^3) where N is

# the number of nodes in the graph. A faster version of this

# algorithm is Seidel’s All Pairs Shortest Distance Algorithm.

sub shortest_paths { #(V)

my %argGraph = @_; # Copy argument graph into %g:

my $N = keys %argGraph; # Number of nodes in graph

my %g;

foreach my $i (0..$N-1) {

foreach my $j (0..$N-1) {

$g{$i}{$j} = $argGraph{$i}{$j};

}

}

my %tempg;

foreach my $p (0..$N-1) {

foreach my $q (0..$N-1) {

$g{$p}{$q} = 0 if $p == $q;

$g{$p}{$q} = 1000000 if !defined( $g{$p}{$q} );
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}

}

foreach my $t (0..$N-1) {

foreach my $i (0..$N-1) {

foreach my $j (0..$N-1) {

$tempg{$i}{$j} = $g{$i}{$j} < $g{$i}{$t} + $g{$t}{$j} ?

$g{$i}{$j} : $g{$i}{$t} + $g{$t}{$j};

}

}

%g = %tempg;

}

# Undefine the edges that were not there to begin with:

foreach my $i (0..$N-1) {

foreach my $j (0..$N-1) {

undef $g{$i}{$j} if $g{$i}{$j} >= 1000000;

}

}

return %g;

}

# Compute the diameter as the average of all pairwise shortest

# path-lengths in the graph:

sub diameter { #(W)

my %graph = @_;

my $N = keys %graph; # Number of nodes in graph

my $diameter = 0;

foreach my $p (0..$N-1) {

foreach my $q ($p..$N-1) {

$diameter += $graph{$p}{$q} if defined $graph{$p}{$q};

}

}

return $diameter / ($N * ($N - 1) / 2.0 );

}

# Utility routine good for troubleshooting:

sub display_shortest_distances { #(X)

my %g = @_; # Copy argument graph into %g:

my $N = keys %g; # Number of nodes in graph

foreach my $p (0..$N-1) {

foreach my $q (0..$N-1) {

if ( defined($g{$p}{$q}) ) {

print "$g{$p}{$q} ";

}

else {

print " ";

}

}

print "\n";

}

}
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# Calculates the clustering coefficient of a graph. See

# the text for what is meant by this coefficient.

sub clustering_coefficient { #(Y)

my %g = @_;

my $N = keys %g;

my @cluster_coeff_arr;

my %neighborhood;

# Initialize the neighborhood for each node. Obviously,

# each node belongs to its own neigborbood:

foreach my $i (0..$N-1) {

$neighborhood{$i} = [$i];

}

foreach my $i (0..$N-1) {

foreach my $j (0..$N-1) {

if (defined($g{$i}{$j}) && ($g{$i}{$j} == 1)) {

push @{$neighborhood{$i}}, $j;

}

}

}

# For troubleshooting:

# foreach my $i (0..$N-1) {

# print "@{$neighborhood{$i}}\n";

# }

foreach my $i (0..$N-1) {

my $n = @{$neighborhood{$i}}; # size of neighborhood

foreach my $j (@{$neighborhood{$i}}) {

foreach my $k (@{$neighborhood{$i}}) {

if (defined($g{$j}{$k})) {

$cluster_coeff_arr[$i]++ if $g{$j}{$k} == 1;

}

}

}

# Divide by n(n-1) because every edge in the neighborhood will be

# counted twice. Ordinarily, you would divide by n(n-1)/2.

$cluster_coeff_arr[$i] /= $n * ($n - 1) unless $n == 1;

# For troubleshooting:

# print "for $i, the cluster coefficient is $cluster_coeff_arr[$i]\n";

}

my $total = 0.0;

foreach my $i (0..$N-1) {

$total += $cluster_coeff_arr[$i] if defined $cluster_coeff_arr[$i];

}

my $average_cluster_coeff = $total / $N;

# For troubleshooting:

# print "the average cluster coefficient is $average_cluster_coeff\n";

return $average_cluster_coeff;

}
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26.5: DECENTRALIZED ROUTING IN
SMALL-WORLD NETWORKS

• TheMilgram experiments and the computer simulations byWatts

and Strogatz tell us about the existence of the small-world phe-

nomenon, meaning that humans form networks that are charac-

terized by small network diameters and large clustering coeffi-

cients.

• But Milgram’s experiments additionally demonstrated that hu-

mans also possess an innate ability to navigate through such net-

works. A letter wending its way through individuals who belong

to different friendship clusters is an example of this human-driven

navigation. Another example would be a human finding his/her

way to a far off destination by asking for directions along the way

(assuming that the individuals encountered during the journey

may not know directly how to get to the final destination from

where they are, but do know someone else who might provide

further similar help).

• Jon Kleinberg was the first to make the observation that Mil-

gram’s experiments also constituted a discovery of the innate
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ability of humans to find short paths to their destinations using

only local information. In another celebrated paper dealing with

the small world phenomenon, Kleinberg then raised the question

as to what conditions would have to prevail in a network for there

to exist decentralized algorithms that would allow the short paths

to be discovered.

• Kleinberg used a two-dimensional lattice of nodes for answering

the above question. With (i, j) denoting the coordinates of a node

in a grid, Kleinberg used the following L1 metric to measure the

distances in the grid:

d( (i, j), (k, l) ) = |k − i| + |l − j| (1)

This metric is also known as the city block metric or the Man-

hattan distance.

• Kleinberg used three integer parameters, pp, qq and rr, to specify

the connectivity in a grid lattice of the sort shown in Figure 8.

For any given node A in the grid, all its immediate neighbors

within the L1 distance of pp are A’s local contacts. That is, node

A has outgoing arcs that connect it with all nodes at a distance

of up to and including pp from A. (When pp = 1, that would

only be the four immediate neighbors, to the east and west, and

to the north and south. That is the case shown in Figure 8.) In

addition, the node A has qq ≥ 0 long-range contacts. The qq
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p, q, and r.  For a node such as A, all the other nodes within distance

p are its local contacts.  In addition, every node such as A has q long−range

contacts. The parameter r controls the probability that a node at a certain

distance is A’s long−range contact. For the grid shown, p = 1 and q = 2.

The connectivity of the nodes is controlled by three integer parameters

Figure 8: Shown is a two-dimensional lattice of nodes in

which a node such as A has all its neighbors within some

L1 distance forming its local contacts. A also has qq long-

range contacts at distances that are set randomly. (This figure

is from Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)
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long-range contacts for a node are selected by firing up a random

number generator that spits out qq random numbersX according

to the inverse rth-power distribution:

prob(X = xi) ∝ |xi|
−rr i = 1, 2, . . . , qq (2)

for some prespecified constant rr. Construing each of these ran-

dom numbers as an L1 distance from node A, we randomly select

a long-range destination node at each such distance. Note that

the L1 metric gives rise to diamond-shaped equidistance contours

in the plane of the grid. So, in general, there will be several can-

didates for the long-range contact at each distance. Of these, we

will select one with uniform randomness. Referring to Figure 8,

we can say that the probability of a node such as F to be A’s

long-range contact is given by

|d(A, F )|−rr

∑

Y |d(A, Y )|−rr
(3)

where the summation in the denominator is over all qq long-range

contacts of node A.

• When rr = 0 in the above model, a node’s long-range contacts

will be selected uniformly from all the nodes in the network. This

corresponds to how the long-range contacts are selected in the

Watts and Strogatz model.
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• The network created by the procedure outlined above can be

considered to be a superposition of a structured base graph and

a sparse random graph. The nodes, along with each node’s local

contacts, constitute the base graph and the randomly-selected

long-range contacts the superimposed random graph. The base

graph exhibits a high clustering coefficient in the sense that the

neighbors of a node are highly likely to be each other’s neighbors

also. The superimposed random graph provides the occasional

short-cuts needed for giving a small diameter to the network.

• Using the above network model, Kleinberg has theoretically es-

tablished that there exists an efficient decentralized algorithm

for routing a message from any node to any other node but only

when rr = 2. The “time” taken by the decentralized algorithm

is O(log2N) where N is the total number of nodes in the net-

work. The decentralized algorithm consists of each en route node

making a greedy routing decision based purely on (i) the coor-

dinates of its local and long-range contacts; (ii) the coordinates

of the nodes that the message was previously routed through;

and (iii) the coordinates of the target node. The message that

needs to be delivered carries with it the target node coordinates

and the coordinates of the nodes already visited. This result by

Kleinberg applies to the empirically interesting case of pp = 1

and qq = 1. That is, each node is directly connected with its

four closest neighbors and has one long-range contact.

• All of the preceding discussion in this section has focused on two
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dimensional graphs, that is, graphs whose nodes can be located

with two indices. Kleinberg has shown the results can be ex-

tended to k-dimensional graphs for arbitrary k. That is, one

can prove the existence of a decentralized greedy algorithm for

efficiently discovering the small-world paths in a time that is a

polynomial in logN , where N is the total number of nodes in the

network, provided the distribution of long-range contacts follows

an inverse k-power distribution. In other words, the probability

that a node y is a long-range contact for a node x should be given

by

prob(x, y) =
|d(x, y)|−k

∑

z |d(x, z)|
−k

(4)

where the summation in the denominator is over all the qq long-

range contacts that any node in the network is allowed to have.

• An Open Question: Kleinberg’s work shows that the con-

nectivity in a network must obey certain specific mathematical

conditions so that the short paths typical of small worlds can

be discovered at all on the basis of just local reasoning. Klein-

berg has also demonstrated the non-existence of decentralized

algorithms for finding the short paths when the mathematical

conditions on the connectivity are violated. On the other hand,

Milgram’s work has shown that humans appear to have the abil-

ity to find the small-world short paths in their social networks.

Does that mean that the human networks implicitly satisfy the
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mathematical constraints discovered by Kleinberg? As matters

stand today, we do not yet know the answer to this fundamental

question.

• A problem with modeling computer networks in which humans

directly restrict the connections between the machines on the

basis of trust with Kleinberg’s graphs is that it is not clear how

to interpret the node indexing used in the graphs. The most

straightforward interpretation would be based on geographical

locations of the nodes. But that frequently does not make sense

for the case of overlay networks.
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26.6: SMALL-WORLD BASED
EXAMINATION OF THE ORIGINAL

CONCEPTUALIZATION OF FREENET

• This confluence of the Freenet ideas proposed by Clarke and the

computer-simulation-based confirmation of the small-world phe-

nomenon by Watts and Strogatz led to the belief that, since the

individual connections in a Freenet are based on friendships and

trust, the routing patterns in a Freenet would exhibit the small

world phenomenon. One thought that, even as the number of

nodes in a Freenet grew arbitrarily, there would exist short paths

between any pair of nodes.

• But, as made clear by Kleinberg’s work summarized in the previ-

ous section, the existence of small-world short paths in a network

is different from the existence of decentralized routing algorithms

for the discovery of those short paths.

• The data insertion and data migration notions incorporated in

Clarke’s original proposal for the Freenet do not provide any

mathematical guarantee that a data object present at a given

node would be retrievable by all other nodes in a Freenet network.

48



Computer and Network Security by Avi Kak Lecture 26

Those notions do not even ensure that a previously inserted data

object would survive in the network as the data stores at the

various nodes begin to fill up with the data objects currently in

demand.

• In summary, Clarke’s original ideas may work well in small friend-

to-friend networks in which each node is directly connected with

all the other nodes. However, such may not be the case in arbi-

trary P2P networks.
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26.7: SANDBERG’S DECENTRALIZED
ROUTING ALGORITHM FOR FREENET

• Section 26.2 mentions associating an immutable identifier and a

randomly selected unique location key with each node. To briefly

review some of the other statements made in that section: The

key value is cyclic over the range from 0 to 1 and any arithmetic

on the keys is modulo 1. A data object is stored at a node whose

location key is closest to the hash key associated with the data

object. When a data object is inserted into a Freenet or retrieved

from it, it is cached at all the en route nodes. This caching plays

the same role in a Freenet as data replication in a structured P2P

network.

• To remedy the shortcoming of the Freenet as originally concep-

tualized (that we only have a guarantee of the existence of small-

world like short paths between any two nodes but no guarantee

of the existence of a decentralized algorithm for the discovery of

those short paths), Oskar Sandberg has proposed a new routing

algorithm for the Freenet.

• Sandberg’s routing algorithm is based on Kleinberg’s theorems
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on when a network is allowed to possess a decentralized routing

algorithm for finding the small-world short paths. We will refer

to a network whose connectivity allows for efficient decentralized

routing algorithms to exist as a Kleinberg network.

• Obviously, the probability distribution associated with the long-

range contacts in a Kleinberg network obeys the inverse k-power

law for a k-dimensional graph.

• Also recall that a Kleinberg network can be considered to be a

superposition of a base lattice in which every node is directly

connected with a certain number of all its immediate neighbors

and a random network that only contains the long-range contacts.

The L1 distance function that drives the greedy algorithm for

decentralized routing is defined in the base lattice.

• Sandberg’s Freenet routing algorithm is derived by pretending

that a Freenet graph corresponds to the long-range contacts in

some unknown k-dimensional Kleinberg network. If the underly-

ing base lattice of such a Kleinberg network could be found (note

that we already have the graph of the long-range contacts), that

would automatically provide us with an L1 metric for driving a

greedy algorithm for the discovery of short paths.

• Sandberg has shown that finding the unknown base grid can be

cast as a problem in statistical estimation in which the lattice
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coordinates of the actual Freenet nodes are the parameters to be

estimated. Sandberg used the MCMC (Markov-Chain Monte-

Carlo) technique for this estimation.

• To briefly present Sandberg’s formulation of the problem, let V

represent the nodes in an actual Freenet. Let G represent the

underlying base lattice. Let φ denote the positions assigned to

the nodes of V in the base lattice G. Now let E denote the set

of edges in the Freenet network. Since Sandberg assumes that

the Freenet edges are the long-term contacts in a k-dimensional

base lattice G that corresponds to a Kleinberg network, it must

be the case that

prob(E|φ) =

m
∏

i=1

1

d (φ(xi), φ(yi))
k HG

(5)

where xi and yi denote the two nodes at the two ends of an edge

and where we assume that the Freenet has a total of m edges.

HG is the normalizing constant.

• At least theoretically, the equation shown above could be used to

construct a maximum-likelihood estimate for the unknowns φ for

a given value of the dimensionality k. That is, we would want φ

that maximizes the likelihood of the observations E. Evidently,

prob(E|φ) would be maximized by finding those assignments of

Freenet nodes to base lattice positions that minimize the product

of the edge lengths shown in the denominator. There is obviously
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a combinatorial issue in trying every possible assignment of base

lattice to network node mappings to find out the mapping that

minimizes the product of the edge lengths. This, as intuition

might suggest, turns out to be an NP-complete strategy.

• Using Bayes’ rule, Sandberg casts the problem as as exercise in

stochastic optimization:

prob(φ|E) =
prob(E|φ) · prob(φ)

prob(E)
(6)

So our goal is to construct a Bayesian estimate for the φ : G → V

mapping function that results in the largest value for the posterior

distribution on the left hand side above.

• Let’s assume that the underlying base lattice is one dimensional.

A convenient way to model a 1-D lattice is as a ring lattice,

something that becomes intuitive if you assign location keys to

the nodes whose values are between 0 and 1. [Recall that earlier in this

lecture on page 11, we assigned a location key to each node in a Freenet overlay. Since the value of the location

key was between 0 and 1 in that discussion, we can visualize those nodes as being located on a circle. I should

also mention that the Identifier Circle of Lecture 25 is the same thing as a ring lattice.] Shown in

Figure 9 is a Freenet overlay whose nodes have been assigned the

1-D location keys between 0 and 1. The location keys are shown

as the values of the s parameter. Again as previously mentioned

on page 11, the location distance between any two nodes is to

be measured along the circle modulo 1. The chordal arcs shown
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in Figure 9 indicate the human-established pairwise connections

between the nodes. Information between the nodes can only flow

along the chordal arcs. The Freenet overlay shown in Figure 9

on a ring lattice would be more commonly visualized as a regular

graph, as shown in Figure 2.

A

F

H

Freenet Node

s = 0.12

Freenet Node

s = 0.23

Freenet Node

s = 0.32

Freenet Node

s = 0.38

Freenet Node

Freenet Node

s = 0.70

Freenet Node
s = 0.73

Freenet Node

s = 0.85

Freenet Node

s = 0.88

s = 0.55

0
1

D

C

B

E

G

I

In a Freenet overlay, the connection between each pair of nodes

is established by human operators on the basis of trust and friendship.

The arcs drawn directly between the nodes indicate such communication links.

Figure 9: A ring-lattice visualization of a Freenet overlay

whose nodes have been assigned location keys, s, between

0 and 1. (This figure is from Lecture 26 of “Lecture Notes on Computer and Network Security”

by Avi Kak)

• In our current context, assigning location keys to Freenet nodes in

the manner shown in Figure 9 amounts to embedding the nodes

in a 1-D base graph. The assignment of s keys is one possible

54



Computer and Network Security by Avi Kak Lecture 26

embedding in an imaginary base graph on the ring lattice. Since

the direct connections between the nodes are supposed to corre-

spond to the long-range links in the base graph, for the case of

1-D base graphs, we can now write

prob(E|φ) =

m
∏

i=1

1

|φ(xi)− φ(yi)|sHG
(7)

where xi and yi denote the two nodes at the two ends of the ith

direct link in the overlay, where φ(x) returns location value as-

signed to node x, and where the distance |.|s means that distance

is to be measured modulo 1 along the unit circle. Our goal is to

find that mapping φ : V → [0, 1) that maximizes the posterior

probability shown previously as prob(φ|E) in Equation (6).

• But maximization of the posterior prob(φ|E) in Equation (6)

presents certain computational challenges that are best seen if

we write that equation in the following form:

prob(φ|E) =
prob(E|φ) · prob(φ)

∫

φ prob(E|φ) · prob(φ)dφ
(8)

The computational challenge is how to compute the denominator

for any candidate prob(φ). This is where the MCMC technique

we describe next comes in handy. MCMC allows us to generate

samples of φ that conform to a candidate prob(φ) distribution.
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Subsequently, these samples can be used for a Monte Carlo based

approach to finding the value of the integral in the denominator.

• An aside on MCMC: [MCMC, for Markov Chain Monte Carlo, is a variation on the

traditional Monte-Carlo simulations for solving difficult problems in parameter estimation, integration,

combinatorial optimization, etc. Let’s say you want to estimate the integral
∫

x∈X f(x)dx where the

points x belong to some high-dimensional space. The Monte-Carlo approach to estimating the integral

would be to draw a set of N points xi from a uniform distribution over the domain, with the con-

dition that the points are selected independently, and to then form the sum (1/N)
∑N

i=1 f(xi). One

can show that this summation is an unbiased estimate of the true integral. This approach extends

straightforwardly to the estimation of
∫

x∈X p(x)f(x)dx, where p(x) is a probability density function,

if p(x) is simple, like a uniform or a Gaussian density, but, as you would expect, the N samples xi

must now be drawn according to the density p(x). That is, in this case also, an unbiased estimate

of the integral
∫

x∈X p(x)f(x)dx would be given by the summation (1/N)
∑N

i=1 f(xi). Unfortunately,

this standard Monte-Carlo approach does not work when p(x) is a complicated probability density

function — simply because it is non-trivial to sample complicated density functions algorithmically.

This is where MCMC approaches become useful. MCMC sampling is based on the following

intuitions: For the very first sample, x1, you accept any value that belongs to the domain of p(x),

that is, any randomly chosen value x where p(x) > 0. At this point, any sample is as good as any other.

For the next sample, you again randomly choose a value from the interval where p(x) > 0 but now you

must “reconcile” it with what you chose previously for x1. Let’s denote the value you are now looking

at as x∗ and refer to it as our candidate for x2. As to having to “reconcile” x∗ with the previously

selected x1 before accepting the candidate as the next sample, here is what I mean: Your desire for

obvious reasons should be to select a large number of samples in the vicinity of the peaks in p(x) and,

relatively speaking, fewer samples where p(x) is close to 0. You can capture this intuition by examining

the ratio a1 = p(x∗)
p(x1)

. If a1 > 1, then accepting x∗ as x2 makes sense because your decision would be

biased toward placing samples where the probabilities p(x) are higher. However, should a1 < 1, you
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need to exercise some caution in accepting x∗ for x2. While obviously any sample x∗ where p(x∗) > 0

is a legitimate sample, you nonetheless want to accept x∗ as x2 with some hesitation, your hesitation

being greater the smaller the value of a1 in relation to unity. You capture this intuition by saying that

let’s accept x∗ as x2 with probability a1. In an algorithmic implementation of this intuition, you fire

up a random-number generator that returns floating-point numbers in the interval (0, 1). Let’s say the

number returned by the random-number generator is u. You accept x∗ as x2 if u < a1. It is these

intuitions that form the foundation of the original Metropolis algorithm for drawing sam-

ples from a specified probability distribution. Since each sample chosen in this manner depends

on just the sample selected previously, a sequence of such samples forms a Markov chain. For that

reason, this approach to drawing samples from a distribution for the purpose of Monte-

Carlo integration of complex integrands is commonly referred to as the Markov-Chain

Monte-Carlo approach, or, more conveniently, as the MCMC sampler. To be precise, the

Metropolis algorithm for MCMC sampling uses what is known as a proposal distribution q(x∗|xt−1)

to return a candidate x∗ for the current sample xt given the previous sample xt−1 and requires that

q(.|.) be symmetric with respect to its two arguments if you want the theoretical guarantee that the

first-order probability distribution of the samples of the Markov Chain converge to the desired density

p(x). This restriction on the proposal distribution is removed in the more general Metropolis-Hastings

(MH) algorithm, but now the ratio that is tested for the acceptance of the candidate x∗ is given by

the product a = a1× a2 where a2 = q(xt−1|x∗)
q(x∗|xt−1)

. If a ≥ 1, we accept the candidate x∗ immediately for

the next sample. Otherwise, we only accept it with probability a.]

• The Metropolis-Hastings (MH) algorithm is the most popular al-

gorithm for MCMC sampling. The algorithm is straightforward

to implement, as can be seen by the Perl code for the function

metropolis hastings() shown next. The goal of the code is to

generate an MCMC sequence whose first-order density function

approximates p(x) = 0.3 · e−0.2x2

+ 0.7 · e−0.2(x−10)2. This density func-
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tion, calculated by the subroutine desired density() in the Perl

script, is shown by the line plot in Figure 10. A histogram for

the first 500 MCMC samples produced by the script is shown

as a bar graph in the same figure. [Ordinarily, it is best to discard several hun-

dred samples at the beginning of such a sequence to eliminate the effects of initialization. After these initial

samples are rejected, the rest of the sequence would follow even more closely the desired density.] As

mentioned in the rather long small-font note in the previous bul-

let, the MH algorithm requires us to specify a proposal density

function q(x|y). (This is called the proposal density because its

primary role is to propose the next sample of a sequence given

the current sample.) The proposal density function used in the

code is q(x|y) = N (y, 100), that is, it is a normal density that is

centered at the previous sample with a standard deviation of 10.

This standard-deviation was chosen keeping in mind the interval

(−5.0, 15.0) over which p(x) is defined with values not too close

to zero, as shown by the line plot in Figure 10.

• Shown below is a pseudocode description of the algorithm that is

programmed in the metropolis hastings() subroutine of the Perl

script. In this description, p(x) is the desired density function.

initialize x_0

for i=0 to N-1:

-- draw a sample u from uniform density U(0,1)

(this u is used only for the test on the variable

a at the end of the pseudocode. When a>1, we accept

the new candidate sample x_* for the next sample.

However, when a<1, we accept the candidate x_* only

if a<u)
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-- propose a new candidate sample x_* using q(x_*|x_i)

-- a1 = p(x_*) / p(x_i)

-- a2 = q(x_i|x_*) / q(x_*|x_i)

-- a = a1 . a2

-- if a >= 1:

x_{i+1} = x_*

else if u < a:

x_{i+1} = x_*

else:

x_{i+1} = x_i

Figure 10: A histogram of the samples produced by a Perl

implementation of the Metropolis-Hastings algorithm. (This

figure is from Lecture 26 of “Lecture Notes on Computer and Network Security” by Avi Kak)
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• Shown below is the code that the reader can play with to get

deeper insights into the Metropolis-Hastings algorithm. As you

will notice, as to what extent you will be able to match a given

desired density will depend on your choice of the proposal density

function q(x|y).

#!/usr/bin/perl -w

# Metropolis_Hastings.pl

# by Avi Kak (kak@purdue.edu)

# The Metropolis-Hastings sampling algorithm is used to generate a

# sequence of samples from a given probability density function.

# Such a sequence of samples can be used in MCMC (Markov-Chain

# Monte-Carlo) simulations.

# The workhorse of the code here is the metropolis_hastings()

# function that takes one argument --- the number of samples

# you want the function to return. The implementation is based

# on the logic shown in Figure 5 of "An Introduction to MCMC for

# Machine Learning" by Andrieu, De Freitas, Doucet, and Jordan

# that appeared in the journal Machine Learning in 2003. The

# desired density function used is the same as in their Figure 6.

# The code shown here deposits its histogram in a gif file

# called histogram.gif. The visual display in the gif file

# shows both the histogram for the samples and the true

# desired density function for the samples.

use strict;

use Math::Random; # for normal and uniform densities

use constant PI => 4 * atan2( 1, 1 );

use Math::Big qw/euler/; # euler(x) returns e**x

use Algorithm::MinMax; # efficiently calculates min and max in an array

use GD::Graph::mixed; # for bar graphs and line plots

# Useful for creating reproducible results:

random_seed_from_phrase( ’hellojello’ );

my @samples = metropolis_hastings(500);

# The following call returns a reference to an array whose

# first element is an anonymous array consisting of the

# horizontal labels for the histogram, whose second element

# an anonymous array consisting of the bin counts, and whose
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# third element an anonymous array consisting of the samples of

# the desired density function:

my $histogram = make_histogram( @samples );

plot_histogram( $histogram );

#######################################################################

# Subroutines

#######################################################################

# This subroutine uses the GD::Graph Perl module to create a visual

# display that shows both the bar graph for the histogram

# of the MCMC samples created by the metropolis_hastings() function

# and a line plot of the desired density function for such

# samples. The data fed to this subroutine is output by the

# make_histogram() subroutine.

sub plot_histogram {

my $plot_data = shift;

my $histogram_bars = new GD::Graph::mixed();

$histogram_bars->set(

types => [ qw( bars lines ) ]

);

$histogram_bars->set(

x_label => ’sample values’,

y_label => ’estimated density’,

title => ’Histogram of Metropolis-Hastings Samples’,

y_tick_number => 5,

y_label_skip => 1,

y_max_value => 0.15,

y_min_value => 0.0,

x_labels_vertical => 1,

x_label_skip => 4,

x_label_position => 1/2,

line_type_scale => 8,

line_width => 3,

) or warn $histogram_bars->error;

$histogram_bars->set_legend( ’histogram of sample values’ );

$histogram_bars->plot($plot_data) or die $histogram_bars->error;

my $ext = $histogram_bars->export_format;

open( OUTPLOT , ">histogram.$ext") or

die "Cannot open histogram.$ext for write: $!";

binmode OUTPLOT;

print OUTPLOT $histogram_bars->gd->$ext();

close OUTPLOT;

}

# This subroutine constructs a histogram from the MCMC samples

# constructed by the metropolis_hastings() subroutine.

# This subroutine also constructs an array from the desired

# density function whose calculation is encapsulated in the

# desired_density.pl subroutine. Yet another array synthesized

# in this subroutine consists of the labels to use for the

# visual display constructed by the plot_histogram() subroutine.

sub make_histogram {
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my @data = @_;

my $N = @data;

my ($min, $max) = Algorithm::MinMax->minmax( \@data );

my $num_bins = 30;

my @hist = (0.0) x $num_bins;

my @desired_density;

my $bin_width = ($max - $min) / $num_bins;

my @x_axis_labels;

foreach my $x (@data) {

my $bin_index = int( ($x - $min) / $bin_width );

$hist[ $bin_index ]++;

}

foreach my $i (0..$num_bins) {

my $xval_at_bin_edge = $min + $i * $bin_width;

push @x_axis_labels, sprintf( "%.2f", $xval_at_bin_edge );

push @desired_density, desired_density($xval_at_bin_edge);

}

@hist = map { $_ / $N } @hist;

my ($hmin, $hmax) = Algorithm::MinMax->minmax( \@hist );

my ($dmin, $dmax) = Algorithm::MinMax->minmax( \@desired_density );

@desired_density = map { $_ * ($hmax / $dmax) } @desired_density;

return [ \@x_axis_labels, \@hist, \@desired_density ];

}

# This subroutine constructs a Markov chain according to the

# Metropolis-Hastings algorithm. This algorithm needs a

# proposal density, whose primary role is to help select

# the next sample given the current sample, and the desired

# density for the samples. The number of samples constructed

# is determined by the sole argument to the subroutine. Note

# that ideally you are supposed to discard many initial

# samples since it can take a certain number of iterations

# for the actual density of the samples to approach the

# desired density.

sub metropolis_hastings {

my $N = shift; # Number of samples

my @arr;

my $sample = 0;

foreach my $i (0..$N-1) {

print "Iteration number: $i\n" if $i % ($N / 10) == 0;

# Get proposal probability q( $y | $x ).

my ($newsample, $prob) = get_sample_using_proposal( $sample );

my $a1 = desired_density( $newsample ) / desired_density( $sample );

# IMPORTANT: In our case, $a2 shown below will always be 1.0

# because the proposal density norm($x | $y) is symmetric with

# respect to $x and $y:

my $a2 = proposal_density( $sample, $newsample ) / $prob;

my $a = $a1 * $a2;

my $u = random_uniform();

if ( $a >= 1 ) {

$sample = $newsample;

} else {

$sample = $newsample if $u < $a;
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}

$arr[$i] = $sample;

}

return @arr;

}

# This subroutine along with the subroutine proposal_density() do

# basically the same thing --- implement the normal density as the

# proposal density. It is called proposal density because it is

# used to propose the next sample in the Markov chain. The

# subroutine shown below returns both the proposed sample for

# the next time step and its probability according to

# the normal distribution norm($x, $sigma ** 2). The next

# subroutine, proposal_density(), only evaluates the density

# for a given sample value.

sub get_sample_using_proposal {

my $x = shift;

my $mean = $x; # for proposal_prob($y|$x) = norm($x, $sigma ** 2)

my $sigma = 10;

my $sample = random_normal( 1, $mean, $sigma );

my $gaussian_exponent = - (($sample - $mean)**2) / (2 * $sigma * $sigma);

my $prob = ( 1.0 / ($sigma * sqrt( 2 * PI ) ) ) * euler( $gaussian_exponent );

return ($sample, $prob);

}

# As mentioned above, this subroutine returns the value of the

# norm($x, $sigma) at a given sample value where $x is the mean

# of the density. The sample value where the density is to be

# known is supplied to the subroutine as its first argument.

sub proposal_density {

my $sample = shift;

my $mean = shift;

my $sigma = 10; # for norm($mean, $sigma ** 2)

my $gaussian_exponent = - (($sample - $mean)**2) / (2 * $sigma * $sigma);

my $prob = ( 1.0 / ($sigma * sqrt( 2 * PI ) ) ) * euler( $gaussian_exponent );

return $prob;

}

# This implements the desired density for an MCMC experiment. That is,

# we want the first-order distribution of the Markov chain samples to

# possess the density as described by the function shown here:

sub desired_density {

my $x = shift;

return 0 if ($x < -10.0) or ($x > 20.0);

my $prob = 0.3 * euler(-0.2*($x**2)) + 0.7 * euler(-0.2*(($x - 10.0)**2));

return $prob;

}

• You can execute the code by calling Metropolis Hastings.pl. It

deposits the histogram of the values in the samples of the MCMC
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chain in a file called histogram.gif. Subsequently, you can

display this histogram by calling, say, ‘display histogram.gif’,

where the display command from the ImageMagick suite of tools

in your computer.

• In the MCMC based approach to the estimation of the best map-

ping for the embedding of the V nodes of a Freenet overlay on

the location circle of Figure 9, we first define a state vector that

consists of a |V |-tuple of real numbers from the interval [0, 1).

Starting from some randomly chosen state vector, we now con-

struct a Markov chain with the Metropolis-Hastings algorithm

so that the desired density is given by the posterior p(φ|E) we

showed earlier. Note that the mapping φ can now be thought of

as a state vector.

• In order to use the Metropolis-Hastings method, we need a pro-

posal density q(r|s) that will help us generate a new candidate

state s∗ from the current state si. In “Distributed Routing in

Small-World Networks,” Sandberg has shown how we can define

a symmetric proposal density that takes a Markov chain through

a sequence of states, one state leading to another state by swap-

ping just two node-to-location assignments subject to certain con-

straints, so that the resulting Markov chain will stabilize with the

density that corresponds to the posterior p(φ|E) mentioned ear-

lier.

• In the rest of this section, we will present a brief explanation of the
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Sandberg algorithm as summarized from the paper “Routing in

the Dark: Pitch Black” by Evans, GauthierDickey, and Grothoff.

Recall that the goal is for a Freenet overlay to redo its location

assignments so that the resulting assignments would constitute a

small-world embedding in an imaginary base ring lattice. This the

network will accomplish by having every pair of nodes examine

their location keys periodically to see if they should switch their

location keys. The following steps are undertaken by a pair of

nodes to consider this switch:

1. Assume that nodes A and B are considering whether or not they should swap
their location keys. Both A and B share the location assignments for their direct
neighbors and they both compute the product D1(A, b) as defined below:

D1(A,B) =
∏

(A,n)∈E

|φ(A)− φ(n)|s ·
∏

(B,n)∈E

|φ(B)− φ(n)|s

2. Next, the two nodes compute another product similar to the one above but under
the assumption that they have swapped their location keys:

D2(A,B) =
∏

(A,n)∈E

|φ(B)− φ(n)|s ·
∏

(B,n)∈E

|φ(A)− φ(n)|s

3. If D2 ≤ D1, the two nodes A and B swap their location keys. Otherwise (and
this is a direct consequence of how the logic of choosing the next state works in
Metropolis-Hastings algorithm as shown earlier), the two nodes swap their location
keys with the probability D1/D2.

• Let’s apply the above algorithm to see if the nodes D and G in

the Freenet overlay of Figure 2 (or, Figure 9) should swap their

location keys. With the assignments as shown, we have

D1(D,G) = (0.85−0.38)(0.70−0.38)(0.88−0.38)(0.73−0.38)·(0.73−0.23)(0.73−0.32)
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and

D2(D,G) = (0.85−0.73)(0.73−0.70)(0.88−0.73)(0.73−0.38)·(0.38−0.23)(0.38−0.32)

D1 turns out to be equal to 0.0053 and D2 to 0.000001. Since

D1 > D2, the two nodes will swap their location keys.

• It is important to note that when two nodes swap their location

keys that does not alter the physical connectivity of the network.

In other words, with regard to who is whose neighbor, the network

remains the same after a swap as it was before.

• From an operational standpoint, a major consequence of swap-

ping the location keys is the possible migration of data objects

from one node to another. Recall that the data objects are stored

on the basis of closeness of their hash values to the location keys

at a node. So if two nodes are swapping their location keys, they

would also need to swap their data objects.

• Another major consequence of two nodes swapping their loca-

tion keys is that any such swap will, in general, alter the search

paths for locating a data object for retrieval and for finding the

best node for storing a data object. As mentioned earlier in Sec-

tion 26.2, when a new data object is inserted into the overlay, a

bounded depth-first search is carried out for the node most appro-

priate for storing that data object. Since the branching decisions

in this depth-first search are made on the basis of location keys,

any time you change the location key associated with a physical
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node, you are likely to alter how that node appears in the search

paths. The same applies to the search paths for retrieving data

objects.

• Every pair of nodes in a Freenet overlay is supposed to period-

ically examine the location keys at the nodes to see if they need

to be swapped.

• Sandberg has shown that this swapping action at every pair of

nodes will eventually cause the location keys to converge to a state

in which the routing needed for the GET and PUT requests will

take only O(logN) steps with high probability.
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26.8: SECURITY ISSUES WITH THE
FREENET ROUTING PROTOCOL

• Apart from the problems that may be created by Denial-of-Service

sort of attacks, I think it would be very difficult to subvert a small

Freenet overlay in which each connection is created on the basis

of the trust between the individuals involved. Obviously, a small

group of friends who have created a Freenet overlay on the basis

of mutual trust are not going to let an untrusted outsider access

to their machines.

• However, Freenet overlays meant for large groups of people, es-

pecially when an overlay is thrown open to people who are not

known personally to those on the inside, are vulnerable to prob-

lems that can be created by using fake location keys, engaging in

illegal location key swaps to spread fake location keys, etc.

• Freenet is based on the assumption that the location keys are

uniformly random, as are the hash keys for the data objects.

When the keys are distributed uniformly over the nodes and the

same is true for the data object keys, one can expect the nodes

to be equally loaded. However, when this assumption regarding

the distribution of keys is not valid, some nodes will see greater
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demands placed on their data stores than other nodes. As the

reader will recall from Section 26.3, when there is pressure on the

allocated memory, nodes are allowed to delete the least recently

accessed data objects. For obvious reasons, data object deletion

is more likely to occur when the nodes are non-uniformly loaded.

• As currently formulated, the Freenet protocol contains no verifi-

cation mechanism to determine the authenticity of the location

keys used at the different nodes. So, a malicious node (or mali-

cious nodes acting in concert) could lay claim to portions of the

location key space and let those keys propagate into the rest of

the overlay through swapping. At the least, such location keys

could cause the assumption of uniform distribution of keys to be

violated.

• A security analysis of the Freenet routing was recently reported

by Evans, GauthierDickey, and Grothoff in their paper “Routing

in the Dark: Pitch Black”. They describe two different attacks

on Sandberg’s routing algorithm: 1) Active Attack, and 2) Join-

Leave Churn.

• Active attack consists of an attacking node (or a group of at-

tacking nodes) to cause the location keys to get clustered in the

neighborhood of some particular value. This can be done by tak-

ing advantage of the swapping action in the Sandberg routing

protocol and also by taking advantage of the fact that an honest

node has no means to verify the location value used by another
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neighboring node. Additionally, an honest node must accept a

request to initiate location key swapping even if such a request

is illegitimate. When the location keys become clustered, the as-

sumption of the distribution of the location keys becomes invalid.

• Natural churn means the new nodes joining an overlay and exist-

ing nodes leaving. We can distinguish between the churn caused

by leave-join activity and by the join-leave activity. As E, G,

and G have pointed out, leave-join actions in which a node leaves

the overlay temporarily and then rejoins with the same location

key should not cause harm to the operation of a network because

of how the network nodes cache the data objects (See Section

26.3 of these notes).

• The same cannot be said for join-leave actions in which a node

stays in the overlay for a while and then leaves for good. This

can result in loss of data objects, especially loss of those objects

that are not cached elsewhere.

• The join-leave churn, however, has another impact that can cause

the location keys to become clustered, thus invalidating the as-

sumption of uniformity of distribution of the location keys. See

the paper by Evans, GauthierDickey, and Grothoff for further

details.
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26.9: GOSSIPING IN SMALL-WORLD
NETWORKS

• As mentioned earlier, a small world is characterized by short path

lengths between any pair of nodes and high clustering coefficients

locally. More precisely, as a network becomes larger and larger,

the paths connecting any two nodes grow only logarithmically on

the average and the clustering coefficient remains nearly constant.

It is therefore interesting to investigate the following questions in

such networks:

1. If a rumor is injected into such a network and if at each time

step those who have the rumor send it to others, how long

will it take for the rumor to cover the entire network? [It

is believed that models that can efficiently spread a rumor in a network can serve

as models for how infectious diseases spread in human populations. The article by

Demers et al. (see Section 26.10 for citation) was one of the earliest to draw these

parallels between efficient distribution of information in a network and the spread

of diseases.]

2. Suppose each node makes a local observation that is of a nu-

merical nature (such as the amount of free storage available

at the node, the number of download requests for some locally
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held resource, etc.), is it possible to compute aggregates of this

information using purely decentralized algorithms?

Decentralized algorithms use only locally available knowledge

that exists at each node and at the node’s immediate neigh-

bors. We want a decentralized algorithm to work

in such a way that each node becomes aware of,

say, the average of all the observations made by

the different nodes of the network. In particular, we

are interested in what are known as gossip algorithms in

which, at each time step, each node is allowed to communi-

cate with only one other node from the rest of the network. In

other words, at any given time step, a node may receive infor-

mation from multiple nodes, but a node can send information

to only one node.

• Both these questions are topics of great interest currently.

• Regarding both these questions, much is already known when

a network forms a complete graph, that is, when it is possible

for any node to communicate directly with every other node.

Whereas a small-world network, in general, does not require that

every pair of nodes have a direct communication link, such an

assumption may not be too far off the mark for small Freenet

overlays established on a friend-to-friend basis. In any case, var-

ious bounds may be safely assumed to be lower-bounded by the

results obtained for complete graphs.
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• Regarding the spreading of rumors, it is not that difficult to rea-

son that the number of time steps it takes must be lower-bounded

by log2N where N is the total number of nodes in a network.

[The reasoning goes something like this: Assuming that a node can only talk to one

other node at any given time, the node that first receives the rumor could contact an-

other node randomly at the first time step. Subsequently, we would have two nodes

that possess the rumor. At the next time step, these two nodes could spread the rumor

to two other nodes. So we could end up with four holders of the rumor at the end of the

second time step, and so on. This is obviously a geometric progression in powers of 2.

For more exact bounds, how a rumor spreads depends obviously on the communication

and the interconnection model assumed for the network. In 1987, Pittel showed that the

time it takes for a rumor to completely cover a network is given by log2N +lnN +O(1)

as N becomes large. ] How fast information injected at one node in

a network spreads to all the other nodes is referred to as the

diffusion speed.

• Regarding decentralized calculation of aggregates of the numeri-

cal parameters observed at the different nodes in a network, for

illustration here is the Push-Sum algorithm by Kempe, Dobra,

and Gehrke: Let xi denote the observation at node i. At each

time step t, each node computes a sum st,i and a weight wt,i. At

node i, the sum is initialized by setting s0,i = x0 and the weight

initialized by setting w0,i = 1. Additionally, at time 0, the node i

sends these two numbers, sum and weight, to itself. Subsequently,

upon updating the sum and the weight using the received infor-

mation, it sends (1
2
st,i,

1
2
wt,i) pair to a node randomly selected

from the network and to itself. As the sum and weight pairs
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are received at each node, the decentralized algorithm works as

follows:

Algorithm Push-Sum (by Kempe, Dobra, and Gehrke)

1. Let (ŝr, ŵr) be all the pairs received at node i at time t− 1

2. Set st,i =
∑

r ŝr and wt,i =
∑

r ŵr

3. Let node i choose a target node ft(i) uniformly at random

4. Let node i send the pair (12st,i,
1
2wt,i) to the target node ft(i)

and to itself.

5. At node i, the ratio
st,i
wt,i

is the estimate of the average at time

t

• Kempe et al. have theoretically established that, with prob-

ability 1 − δ, the error in the estimate formed at each node

vis-a-vis its network-wide true value will drop to ǫ in at most

O(logN+log 1
ǫ
+log 1

δ
) time steps. Practically speaking, the

estimate calculated at each node locally will converge

to its network-wide true value in time proportional

to the logarithm of the size of the network. That is

as efficient as it ever gets. But note that the guarantee made by

the above algorithm regarding the convergence of the estimated

answer to the true answer is probabilistic.

• The algorithm can be easily adapted to the decentralized com-

putation of the sum of the local observations, as opposed to their

average, by using the weight initialization wt,i = 1 at only one

node, while it is initialized to 0 at all other nodes.
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• As mentioned earlier, the Kempe-Dobra-Gehrke algorithm is based

on the assumption that the network graph is complete. Recently,

Boyd, Ghosh, Prabhakar, and Shah have looked into aggregate-

computing gossip algorithms for networks with arbitrary connec-

tion graphs.
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