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1.0 Aims and Objectives 

The main aim of this lesson is to learn the evolution of computer systems in detail and various 
trends towards parallel processing. 
 
1.1 Introduction 

Over the past four decades the computer industry has experienced four generations of 
development. The first generation used Vacuum Tubes (1940 – 1950s) to discrete diodes to 
transistors (1950 – 1960s), to small and medium scale integrated circuits (1960 – 1970s) and to 
very large scale integrated devices (1970s and beyond). Increases in device speed and reliability 
and reduction in hardware cost and physical size have greatly enhanced computer performance. 
The relationships between data, information, knowledge and intelligence are demonstrated. 
Parallel processing demands concurrent execution of many programs in a computer. The highest 
level of parallel processing is conducted among multiple jobs through multiprogramming, time 
sharing and multiprocessing 
 
1.2 Introduction to Parallel Processing 

Basic concepts of parallel processing on high-performance computers are introduced in 
this unit. Parallel computer structures will be characterized as Pipelined computers, array 
processors and multiprocessor systems. 
 
1.2.1 Evolution of Computer Systems 

Over the past four decades the computer industry has experienced four generations of 
development. 
 
1.2.2 Generations Of Computer Systems 

 
First Generation (1939-1954) - Vacuum Tube 

 1937 - John V. Atanasoff designed the first digital electronic computer.  
 1939 - Atanasoff and Clifford Berry demonstrate in Nov. the ABC prototype.  
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 1941 - Konrad Zuse in Germany developed in secret the Z3.  
 1943 - In Britain, the Colossus was designed in secret at Bletchley Park to decode 

German messages.  
 1944 - Howard Aiken developed the Harvard Mark I mechanical computer for the Navy.  
 1945 - John W. Mauchly and J. Presper Eckert built ENIAC(Electronic Numerical 

Integrator and Computer) at U of PA for the U.S. Army.  
 1946 - Mauchly and Eckert start Electronic Control Co., received grant from National 

Bureau of Standards to build a ENIAC-type computer with magnetic tape input/output, 
renamed UNIVAC( in 1947 but run out of money, formed in Dec. 1947 the new company 
Eckert-Mauchly Computer Corporation (EMCC).  

 1948 - Howard Aiken developed the Harvard Mark III electronic computer with 5000 
tubes  

 1948 - U of Manchester in Britain developed the SSEM Baby electronic computer with 
CRT memory  

 1949 - Mauchly and Eckert in March successfully tested the BINAC stored-program 
computer for Northrop Aircraft, with mercury delay line memory and a primitive 
magentic tape drive; Remington Rand bought EMCC Feb. 1950 and provided funds to 
finish UNIVAC  

 1950- Commander William C. Norris led Engineering Research Associates to develop the 
Atlas, based on the secret code-breaking computers used by the Navy in WWII; the Atlas 
was 38 feet long, 20 feet wide, and used 2700 vacuum tubes  

 In 1950, the first stored program computer,EDVAC(Electronic Discrete Variable 
Automatic Computer), was developed. 

 1954 - The SAGE aircraft-warning system was the largest vacuum tube computer system 
ever built. It began in 1954 at MIT's Lincoln Lab with funding from the Air Force. The 
first of 23 Direction Centers went online in Nov. 1956, and the last in 1962. Each Center 
had two 55,000-tube computers built by IBM, MIT, AND Bell Labs. The 275-ton 
computers known as "Clyde" were based on Jay Forrester's Whirlwind I and had 
magnetic core memory, magnetic  drum and magnetic tape storage. The Centers were 
connected by an early network, and pioneered development of the modem and graphics 
display. 

 
Second Generation Computers (1954 -1959) – Transistor 

 1950 - National Bureau of Standards (NBS) introduced its Standards Eastern Automatic 
Computer (SEAC) with 10,000 newly developed germanium diodes in its logic circuits, 
and the first magnetic disk drive designed by Jacob Rabinow  

 1953 - Tom Watson, Jr., led IBM to introduce the model 604 computer, its first with 
transistors, that became the basis of the model 608 of 1957, the first solid-state computer 
for the commercial market. Transistors were expensive at first.  

 TRADIC(Transistorized digital Computer), was built by Bell Laboratories in 1954. 
 1959 - General Electric Corporation delivered its Electronic Recording Machine 

Accounting (ERMA) computing system to the Bank of America in California; based on a 
design by SRI, the ERMA system employed Magnetic Ink Character Recognition 
(MICR) as the means to capture data from the checks and introduced automation in 
banking that continued with ATM machines in 1974. 
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 The first IBM scientific ,transistorized computer, IBM 1620, became available in 1960. 
 

Third Generation Computers (1959 -1971) - IC 

 1959 - Jack Kilby of Texas Instruments patented the first integrated circuit in Feb. 1959; 
Kilby had made his first germanium IC in Oct. 1958; Robert Noyce at Fairchild used 
planar process to make connections of components within a silicon IC in early 1959; the 
first commercial product using IC was the hearing aid in Dec. 1963; General Instrument 
made LSI chip (100+ components) for Hammond organs 1968.  

 1964 - IBM produced SABRE, the first airline reservation tracking system for American 
Airlines; IBM announced the System/360 all-purpose computer, using 8-bit character 
word length (a "byte") that was pioneered in the 7030 of April 1961 that grew out of the 
AF contract of Oct. 1958 following Sputnik to develop transistor computers for BMEWS. 

 1968 - DEC introduced the first "mini-computer", the PDP-8, named after the mini-skirt; 
DEC was founded in 1957 by Kenneth H. Olsen who came for the SAGE project at MIT 
and began sales of the PDP-1 in 1960.  

 1969 - Development began on ARPAnet, funded by the DOD.  
 1971 - Intel produced large scale integrated (LSI) circuits that were used in the digital 

delay line, the first digital audio device.  
 
Fourth Generation (1971-1991) - microprocessor 

 1971 - Gilbert Hyatt at Micro Computer Co. patented the microprocessor; Ted Hoff at 
Intel in February introduced the 4-bit 4004, a VSLI of 2300 components, for the Japanese 
company Busicom to create a single chip for a calculator; IBM introduced the first 8-inch 
"memory disk", as it was called then, or the "floppy disk" later; Hoffmann-La Roche 
patented the passive LCD display for calculators and watches; in November Intel 
announced the first microcomputer, the MCS-4; Nolan Bushnell designed the first 
commercial arcade video game "Computer Space"  

 1972 - Intel made the 8-bit 8008 and 8080 microprocessors; Gary Kildall wrote his 
Control Program/Microprocessor (CP/M) disk operating system to provide instructions 
for floppy disk drives to work with the 8080 processor. He offered it to Intel, but was 
turned down, so he sold it on his own, and soon CP/M was the standard operating system 
for 8-bit microcomputers; Bushnell created Atari and introduced the successful "Pong" 
game  

 1973 - IBM developed the first true sealed hard disk drive, called the "Winchester" after 
the rifle company, using two 30 Mb platters; Robert Metcalfe at Xerox PARC created 
Ethernet as the basis for a local area network, and later founded 3COM  

 1974 - Xerox developed the Alto workstation at PARC, with a monitor, a graphical user 
interface, a mouse, and an ethernet card for networking  

 1975 - the Altair personal computer is sold in kit form, and influenced Steve Jobs and 
Steve Wozniak  

 1976 - Jobs and Wozniak developed the Apple personal computer; Alan Shugart 
introduced the 5.25-inch floppy disk  

 1977 - Nintendo in Japan began to make computer games that stored the data on chips 
inside a game cartridge that sold for around $40 but only cost a few dollars to 
manufacture. It introduced its most popular game "Donkey Kong" in 1981, Super Mario 
Bros in 1985  
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 1978 - Visicalc spreadsheet software was written by Daniel Bricklin and Bob Frankston  
 1979 - Micropro released Wordstar that set the standard for word processing software  
 1980 - IBM signed a contract with the Microsoft Co. of Bill Gates and Paul Allen and 

Steve Ballmer to supply an operating system for IBM's new PC model. Microsoft paid 
$25,000 to Seattle Computer for the rights to QDOS that became Microsoft DOS, and 
Microsoft began its climb to become the dominant computer company in the world.  

 1984 - Apple Computer introduced the Macintosh personal computer January 24.  
 1987 - Bill Atkinson of Apple Computers created a software program called HyperCard 

that was bundled free with all Macintosh computers. 
 
Fifth Generation (1991 and Beyond) 

 1991 - World-Wide Web (WWW) was developed by Tim Berners-Lee and released by 
CERN.  

 1993 - The first Web browser called Mosaic was created by student Marc Andreesen and 
programmer Eric Bina at NCSA in the first 3 months of 1993. The beta version 0.5 of X 
Mosaic for UNIX was released Jan. 23 1993 and was instant success. The PC and Mac 
versions of Mosaic followed quickly in 1993. Mosaic was the first software to interpret a 
new IMG tag, and to display graphics along with text. Berners-Lee objected to the IMG 
tag, considered it frivolous, but image display became one of the most used features of 
the Web. The Web grew fast because the infrastructure was already in place: the Internet, 
desktop PC, home modems connected to online services such as AOL and CompuServe.  

 1994 - Netscape Navigator 1.0 was released Dec. 1994, and was given away free, soon 
gaining 75% of world browser market.  

 1996 - Microsoft failed to recognize the importance of the Web, but finally released the 
much improved browser Explorer 3.0 in the summer.  

 
1.2.3 Trends towards Parallel Processing 

 
From an application point of view, the mainstream of usage of computer is experiencing a 

trend of four ascending levels of sophistication: 
 Data processing 
 Information processing  
 Knowledge processing 
 Intelligence processing 
 

Computer usage started with data processing, while is still a major task of today’s 
computers. With more and more data structures developed, many users are shifting to computer 
roles from pure data processing to information processing. A high degree of parallelism has been 
found at these levels. As the accumulated knowledge bases expanded rapidly in recent years, 
there grew a strong demand to use computers for knowledge processing. Intelligence is very 
difficult to create; its processing even more so. 

Todays computers are very fast and obedient and have many reliable memory cells to be 
qualified for data-information-knowledge processing. 
Computers are far from being satisfactory in performing theorem proving, logical inference and 
creative thinking. 
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From an operating point of view, computer systems have improved chronologically in four 
phases: 

 batch processing 
 multiprogramming 
 time sharing 
 multiprocessing 

 

 
 

Figure 1.1 The spaces of data, information, knowledge and intelligence from the viewpoint of computer 

processing 

 
In these four operating modes, the degree of parallelism increase sharply from phase to phase. 
We define parallel processing as  
Parallel processing is an efficient form of information processing which emphasizes the 
exploitation of concurrent events in the computing process. Concurrency implies parallelism, 
simultaneity, and pipelining. Parallel processing demands concurrent executiom of many 
programs in the computer. The highest level of parallel processing is conducted  among multiple 
jobs or programs through multiprogramming, time sharing, and multiprocessing.  
 
Parallel processing can be challenged in four programmatic levels: 

 Job or program level 
 Task or procedure level  
 Interinstruction level  
 Intrainstruction level 

The highest job level is often conducted algorithmically. The lowest intra-instruction level is 
often implemented directly by hardware means. Hardware roles increase from high to low levels. 
On the other hand, software implementations increase from low to high levels. 

Information 
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Figure 1.2 The system architecture of the super mini VAX – 11/780 microprocessor system 
 

The trend is also supported by the increasing demand for a faster real-time, resource 
sharing and fault-tolerant computing environment. 
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It requires a broad knowledge of and experience with all aspects of algorithms, languages, 
software, hardware, performance evaluation and computing alternatives. 

To achieve parallel processing requires the development of more capable and cost 
effective computer system. 
 

1.3 Let us Sum Up  

 
With respect to parallel processing, the general architecture trend is being shifted from 

conventional uniprocessor systems to multiprocessor systems to an array of processing elements 
controlled by one uniprocessor. From the operating system point of view computer systems have 
been improved to batch processing, multiprogramming, and time sharing and multiprocessing. 
Computers to be used in the 1990 may be the next generation and very large scale integrated 
chips will be used with high density modular design. More than 1000 mega float point operation 
per second are expected in these future supercomputers. The evolution of computer systems 
helps in learning the generations of computer systems. 
 
1.4 Lesson-end Activities 

 

1. Discuss the evolution and various generations of computer systems. 
2. Discuss the trends in mainstream computer usage. 

 
 

1.5 Points for Discussions 

 

 The first generation used Vacuum Tubes (1940 – 1950s) to discrete diodes to transistors 
(1950 – 1960s), to small and medium scale integrated circuits (1960 – 1970s) and to very 
large scale integrated devices (1970s and beyond). 

 
 
1.6 References 

 
1. Advanced Computer Architecture and Parallel Processing by Hesham El-Rewini M. Abd-El-
Barr Copyright © 2005 by John Wiley & Sons, Inc.  
2. www.cs.indiana.edu/classes 
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2.0 Aims and Objectives 

 

The main aim of this lesson is to know the architectural concepts of Uniprocessor systems. The 
development of Uniprocessor system will be introduced categorically. 
 
2.1 Introduction 

 
The typical Uniprocessor system consists of three major components: the main memory, 

the Central processing unit (CPU) and the Input-output (I/O) sub-system. The CPU contains an 
arithmetic and logic unit (ALU) with an optional floating-point accelerator, and some local cache 
memory with an optional diagnostic memory. The CPU, the main memory and the I/O 
subsystems are all connected to a common bus, the synchronous backplane interconnect (SBI) 
through this bus, all I/O device scan communicate with each other, with the CPU, or with the 
memory. 

A number of parallel processing mechanisms have been developed in uniprocessor 
computers and they are identified as multiplicity of functional units, parallelism and pipelining 
within the CPU, overlapped CPU and I/O operations, use of a hierarchical memory system, 
multiprogramming and time sharing, multiplicity of functional units. 
 
2.2 Parallelism in Uniprocessor Systems 

 

A typical uniprocessor computer consists of three major components: the main memory, 
the central processing unit (CPU), and the input-output (I/O) subsystem. 
The architectures of two commercially available uniprocessor computers are given below to 
show the possible interconnection of structures among the three subsystems. 
There are sixteen 32-bit general purpose registers, one of which serves as the program  
Counter (pc).there is also a special CPU status register containing information about the current 
state of the processor and of the program being executed. The CPU contains an arithmetic and 
logic unit (ALU) with an optional floating-point accelerator, and some local cache memory with 
an optional diagnostic memory. 
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2.2.1 Basic Uniprocessor Architecture 

 
    The CPU, the main memory and the I/O subsystems are all connected to a common bus, the 
synchronous backplane interconnect (SBI) through this bus, all I/O device scan communicate 
with each other, with the CPU, or with the memory. Peripheral storage or I/O devices can be 
connected directly to the SBI through the unibus and its controller or through a mass bus and its 
controller.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1 The System Architecture of the mainframe IBM System 

 
The CPU contains the instruction decoding and execution units as well as a cache. Main 

memory is divided into four units, referred to as logical storage units that are four-way 
interleaved. The storage controller provides mutltiport connections between the CPU and the 
four LSUs. Peripherals are connected to the system via high speed I/O channels which operate 
asynchronously with the CPU. 
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LOGICAL STORAGE UNITS 
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2.2.2 Parallel Processing Mechanism 

 

          A number of parallel processing mechanisms have been developed in uniprocessor 
computers.  
We identify them in the following six categories: 

 multiplicity of functional units 
 parallelism and pipelining within the CPU 
 overlapped CPU and I/O operations 
 use of a hierarchical memory system 
 multiprogramming and time sharing 
 multiplicity of functional units 

 
Multiplicity of Functional Units 

 

The early computer has only one ALU in its CPU and hence performing a long sequence 
of ALU instructions takes more amount of time. The CDC-6600 has 10 functional units built into 
its CPU. 

These 10 units are independent of each other and may operate simultaneously. 
A score board is used to keep track of the availability of the functional units and registers being 
demanded. With 10 functional units and 24 registers available, the instruction issue rate can be 
significantly increased. 

Another good example of a multifunction uniprocessor is the IBM 360/91 which has 2 
parallel execution units. One for fixed point arithmetic and the other for floating point arithmetic. 
Within the floating point E-unit are two functional units:one for floating point add- subtract and 
other for floating point multiply – divide. IBM 360/91 is a highly pipelined, multifunction 
scientific uniprocessor. 
 
Parallelism And Pipelining Within The Cpu 

 

Parallel adders, using such techniques as carry-look ahead and carry –save, are now built 
into almost all ALUs. This is in contrast to the bit serial adders used in the first generation 
machines. High speed multiplier recording and convergence division are techniques for 
exploring parallelism and the sharing of hardware resources for the functions of multiply and 
divide. The use of multiple functional units is a form of parallelism with the CPU.  
Various phases of instructions executions are now pipelined, including instruction 
fetch,decode,operand fetch, arithmetic logic execution, and store result. 
 
Overlapped CPU and I/O Operations 

 

I/O operations can be performed simultaneously with the CPU competitions by using 
separate I/O controllers, channels, or I/O processors. 
The direct memory access (DMA) channel can be used to provide direct information transfer 
between the I/O devices and the main memory. The DMA is conducted on a cycle stealing basis, 
which is apparent to the CPU. 
 

Use of Hierarchical Memory System 
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The CPU is 1000 times faster than memory access. A hierarchical memory system can be 

used to close up the speed gap. The hierarchical order listed is 
 registers 
 Cache 
 Main Memory 
 Magnetic Disk 
 Magnetic Tape 

The inner most level is the register files directly addressable by ALU.  
Cache memory can be used to serve as a buffer between the CPU and the main memory. Virtual 
memory space can be established with the use of disks and tapes at the outer levels. 
 
Balancing Of Subsystem Bandwidth 

 

CPU is the fastest unit in computer. The bandwidth of a system is defined as the number 
of operations performed per unit time. In case of main memory the memory bandwidth is 
measured by the number of words that can be accessed per unit time. 
 
Bandwidth Balancing Between CPU and Memory 

 
The speed gap between the CPU and the main memory can be closed up by using fast 

cache memory between them. A block of memory words is moved from the main memory into 
the cache so that immediate instructions can be available most of the time from the cache. 
 
Bandwidth Balancing Between Memory and I/O Devices 

 

Input-output channels with different speeds can be used between the slow I/O devices 
and the main memory. The I/O channels perform buffering and multiplexing functions to transfer 
the data from multiple disks into the main memory by stealing cycles from the CPU. 
 
Multiprogramming 

 
Within the same interval of time, there may be multiple processes active in a computer, 

competing for memory, I/O and CPU resources. Some computers are I/O bound and some are 
CPU bound. Various types of programs are mixed up to balance bandwidths among functional 
units.  
Example 

Whenever a process P1 is tied up with I/O processor for performing input output 
operation at the same moment CPU can be tied up with an process P2. This allows simultaneous 
execution of programs. The interleaving of CPU and I/O operations among several 

programs is called as Multiprogramming. 

 
Time-Sharing 

 

The mainframes of the batch era were firmly established by the late 1960s when advances 
in semiconductor technology made the solid-state memory and integrated circuit feasible. These 
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advances in hardware technology spawned the minicomputer era. They were small, fast, and 
inexpensive enough to be spread throughout the company at the divisional level.  

Multiprogramming mainly deals with sharing of many programs by the CPU. Sometimes 
high priority programs may occupy the CPU for long time and other programs are put up in 
queue. This problem can be overcome by a concept called as Time sharing in which every 
process is allotted a time slice of CPU time and thereafter after its respective time slice is over 
CPU is allotted to the next program if the process is not completed it will be in queue waiting for 
the second chance to receive the CPU time. 
 
2.3 Let us Sum Up 

 

The architectural design of Uniprocessor systems has been discussed with the help of 2 
examples system architecture of the supermini VAX-11/780 Uniprocessor system. And System 
Architecture of the mainframe IBM system 370/Model 168 Uniprocessor computer.  Various 
components such as main memory, Unibus Adapter, mass Bus adapter SBI I/O device have been 
discussed.  

A number of parallel processing mechanisms have been developed in Uniprocessor 
computers and the categorization made to understand various parallelism.  
 
2.4 Lesson-end Activities 

 

1. Illustrate how parallelism can be implemented in uniprocessor architecture. 
2. How system bandwidth can be balanced? Discuss. 

 
 

2.5 Points for Discussions 

The CPU, the main memory and the I/O subsystems are all connected to a common bus, 
the synchronous backplane interconnect (SBI) through this bus, all I/O device scan communicate 
with each other, with the CPU, or with the memory. Peripheral storage or I/O devices can be 
connected directly to the SBI through the unibus and its controller or through a mass bus and its 
controller. 
The hierarchical order of memory systems are listed 

 registers 
 Cache 
 Main Memory 
 Magnetic Disk 
 Magnetic Tape 

Band Width: The bandwidth of a system is defined as the number of operations performed per 
unit time. 
The interleaving of CPU and I/O operations among several programs is called as 
Multiprogramming. 
Time sharing is mechanism in which every process is allotted a time slice of CPU time and 
thereafter after its respective time slice is over CPU is allotted to the next program if the process 
is not completed it will be in queue waiting for the second chance to receive the CPU time. 
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2.6 References 

 

 Parallel Processing Computers – Hayes 
 Computer Architecture and Parallel Processing – Kai Hwang 
 Operating Systems - Donovan 
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3 Aims and Objectives 

The main objective of this lesson is to learn the parallel computers three architectural 
configurations called pipelined computers, Array Processors, and Multiprocessor Systems. 
 
3.1 Introduction 

Parallel computers are those systems that emphasize parallel processing. The process of 
executing an instruction in a digital computer involves 4 major steps namely Instruction fetch, 
Instruction decoding, Operand fetch, Execution. 
In a pipelined computer successive instructions are executed in an overlapped fashion. 
In a non pipelined computer these four steps must be completed before the next instructions can 
be issued. 

An array processor is a synchronous parallel computer with multiple arithmetic logic 
units called processing elements (PE) that can operate in parallel in lock step fashion. 
By replication one can achieve spatial parallelism. The PEs are synchronized to perform the 
same function at the same time. 

A basic multiprocessor contains two or more processors of comparable capabilities. All 
processors share access to common sets of memory modules, I/O channels and peripheral 
devices. 
 

3.2 Parallel Computer Structures 

 
Parallel computers are those systems that emphasize parallel processing. We divide parallel 
computers into three architectural configurations: 

 Pipeline computers 
 Array processors 
 multiprocessors 

 
 
3.2.1 Pipeline Computers 

 
The process of executing an instruction in a digital computer involves 4 major steps 

 Instruction fetch 
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 Instruction decoding 
 Operand fetch 
 Execution 

In a pipelined computer successive instructions are executed in an overlapped fashion. 
In a non pipelined computer these four steps must be completed before the next instructions 

can be issued. 

 
 Instruction fetch : Instruction is fetched from the main memory 
 Instruction decoding:  Identifying the operation to be performed. 
 Operand Fetch: If any operands is needed is fetched.  
 Execution : Execution of the Arithmetic and logical operation 

An instruction cycle consists of multiple pipeline cycles. The flow of data (input operands, 
intermediate results and output results) from stage to stage is triggered by a common clock of the 
pipeline. The operations of all stages are triggered by a common clock of the pipeline. 
For non pipelined computer, it takes four pipeline cycles to complete one instruction. Once a 
pipe line is filled up, an output result is produced from the pipeline on each cycle. The 
instruction cycle has been effectively reduced to 1/4th of the original cycle time by such 
overlapped execution. 

 
 

Figure 3.1 A pipelined Processor 

 

 
 

Figure 3.2 Space Diagram for a Pipelined Processor 

 
3.2.2 Array Processors 

 

An array processor is a synchronous parallel computer with multiple arithmetic logic 
units called processing elements (PE) that can operate in parallel in lock step fashion. 

S0 S1 S2 S4 S3 

Processor 
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By replication one can achieve spatial parallelism. The PEs are synchronized to perform the 
same function at the same time. 

Scalar and control type of instructions are directly executed in the control unit (CU). 
Each PE consists of an ALU registers and a local memory. The PEs are interconnected by a data-
routing network. Vector instructions are broadcasted to the PEs for distributed execution over 
different component operands fetched directly from local memories. Array processors designed 
with associative memories are called as associative processors.  

 
 

Figure 3.3 Functional structure of a modern pipeline computer with scalar and vector 

capabilities 

 
3.2.3 Multiprocessor Systems 

 

A basic multiprocessor contains two or more processors of comparable capabilities. All 
processors share access to common sets of memory modules, I/O channels and peripheral 
devices. The entire system must be controlled by a single integrated operating system providing 
interactions between processors and their programs at various levels. 
Multiprocessor hardware system organization is determined by the interconnection structure to 
be used between the memories and processors. Three different interconnection are 

 Time shared Common bus 
 Cross Bar switch network 
 Multiport memories 

 
3.3 Let us Sum Up 

 
A pipeline computer performs overlapped computations to exploit temporal parallelism.  
An array processor uses multiple synchronized arithmetic and logic units to achieve spatial 
parallelism.  
A multiprocessor system achieves asynchronous parallelism through a set of interactive 
processors with shared resources.  
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3.4 Lesson-end Activities 

 
1.Discuss how instructions are executed in a pipelined processor. 
2.What are the 2 methods in which array processors can be implemented? Discuss. 
 

3.5 Points for Discussions 

 
The fundamental difference between an array processor and a multiprocessor system is that the 
processing elements in an array processor operate synchronously but processors in a 
multiprocessor systems may not operate synchronously. 
 
3.6 References 

From Net : Tarek A. El-Ghazawi, Dept. of Electrical and Computer Engineering, The George 
Washington University 
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4 Aims and Objectives 

 
The main objective is to learn various architectural classification schemes, Flynn’s classification, 
Feng’s classification, and Handler’s  Classification. 
 
4.1 Introduction 

 

The Flynn’s classification scheme is based on the multiplicity of instruction streams and 
data streams in a computer system. Feng’s scheme is based on serial versus parallel processing. 
Handler’s classification is determined by the degree of parallelism and pipelining in various 
subsystem levels. 
 
4.2 Architectural Classification Schemes 

 

4.2.1 Flynn’s Classification 

 

The most popular taxonomy of computer architecture was defined by Flynn in 1966. 
Flynn's classification scheme is based on the notion of a stream of information. Two types of 
information flow into a processor: instructions and data. The instruction stream is defined as the 
sequence of instructions performed by the processing unit. The data stream is defined as the data 
traffic exchanged between the memory and the processing unit.  
According to Flynn's classification, either of the instruction or data streams can be single or 
multiple.  
Computer architecture can be classified into the following four distinct categories:  

 single-instruction single-data streams (SISD);  
 single-instruction multiple-data streams (SIMD);  
 multiple-instruction single-data streams (MISD); and  
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 multiple-instruction multiple-data streams (MIMD).  
Conventional single-processor von Neumann computers are classified as SISD systems. Parallel 
computers are either SIMD or MIMD. When there is only one control unit and all processors 
execute the same instruction in a synchronized fashion, the parallel machine is classified as 
SIMD. In a MIMD machine, each processor has its own control unit and can execute different 
instructions on different data. In the MISD category, the same stream of data flows through a 
linear array of processors executing different instruction streams. In practice, there is no viable 
MISD machine; however, some authors have considered pipelined machines (and perhaps 
systolic-array computers) as examples for MISD. An extension of Flynn's taxonomy was 
introduced by D. J. Kuck in 1978. In his classification, Kuck extended the instruction stream 
further to single (scalar and array) and multiple (scalar and array) streams. The data stream in 
Kuck's classification is called the execution stream and is also extended to include single (scalar 
and array) and multiple (scalar and array) streams. The combination of these streams results in a 
total of 16 categories of architectures.  
 
4.2.1.1 SISD Architecture 

 
 A serial (non-parallel) computer  
 Single instruction: only one instruction stream is being acted on by the CPU during any 

one clock cycle  
 Single data: only one data stream is being used as input during any one clock cycle  
 Deterministic execution  
 This is the oldest and until recently, the most prevalent form of computer  
 Examples: most PCs, single CPU workstations and mainframes  

 

 
 

Figure 4.1  SISD COMPUTER 
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4.2.1.2 SIMD Architecture  

 A type of parallel computer  
 Single instruction: All processing units execute the same instruction at any given clock 

cycle  
 Multiple data: Each processing unit can operate on a different data element  
 This type of machine typically has an instruction dispatcher, a very high-bandwidth 

internal network, and a very large array of very small-capacity instruction units.  
 Best suited for specialized problems characterized by a high degree of regularity, such as 

image processing.  
 Synchronous (lockstep) and deterministic execution  
 Two varieties: Processor Arrays and Vector Pipelines  
 Examples:  

o Processor Arrays: Connection Machine CM-2, Maspar MP-1, MP-2  
o Vector Pipelines: IBM 9000, Cray C90, Fujitsu VP, NEC SX-2, Hitachi S820  

 
Figure 4.2  SIMD COMPUTER 

 
CU-control unit 
PU-processor unit 
MM-memory module 
SM-Shared memory 
IS-instruction stream 
DS-data stream 

 
 

 

4.2.1.3 MISD Architecture 
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There are n processor units, each receiving distinct instructions operating over the same data 
streams and its derivatives. The output of one processor become input of the other in the macro 
pipe. No real embodiment of this class exists. 

 A single data stream is fed into multiple processing units.  
 Each processing unit operates on the data independently via independent instruction 

streams.  
 Few actual examples of this class of parallel computer have ever existed. One is the 

experimental Carnegie-Mellon C.mmp computer (1971).  
 Some conceivable uses might be:  

o multiple frequency filters operating on a single signal stream  
o multiple cryptography algorithms attempting to crack a single coded message.  

 
 

Figure 4.3  MISD COMPUTER 

 

 

 
4.2.1.4 MIMD Architecture  

 

Multiple-instruction multiple-data streams (MIMD) parallel architectures are made of multiple 
processors and multiple memory modules connected together via some interconnection network. 
They fall into two broad categories: shared memory or message passing. Processors exchange 
information through their central shared memory in shared memory systems, and exchange 
information through their interconnection network in message passing systems.  
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 Currently, the most common type of parallel computer. Most modern computers fall into 
this category.  

 Multiple Instruction: every processor may be executing a different instruction stream  
 Multiple Data: every processor may be working with a different data stream  
 Execution can be synchronous or asynchronous, deterministic or non-deterministic  
 Examples: most current supercomputers, networked parallel computer "grids" and multi-

processor SMP computers - including some types of PCs.  

A shared memory system typically accomplishes interprocessor coordination through a global 
memory shared by all processors. These are typically server systems that communicate through a 
bus and cache memory controller.  
A message passing system (also referred to as distributed memory) typically combines the local 
memory and processor at each node of the interconnection network. There is no global memory, 
so it is necessary to move data from one local memory to another by means of message passing.  

 
 

Figure 4.4  MIMD COMPUTER 

 

 
 

 Computer Class  Computer System Models 

 

1. SISD IBM 701, IBM 1620, IBM 7090, PDP VAX11/ 780 

2. SISD (With 

multiple 

functional units) 

IBM360/91 (3); IBM 370/168 UP 

3. SIMD (Word 

Slice 

Processing) 

 Illiac – IV ; PEPE 

4. SIMD (Bit Slice STARAN; MPP; DAP 
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processing) 

5. MIMD (Loosely 

Coupled) 

IBM 370/168 MP; Univac 1100/80 

6. MIMD(Tightly 

Coupled) 

Burroughs- D – 825 

 

Table 4.1 Flynn’s Computer System Classification 

 
4.2.2 Feng’s Classification 

 
Tse-yun Feng suggested the use of degree of parallelism to classify various computer 

architectures. 
Serial Versus Parallel Processing  

The maximum number of binary digits that can be processed within a unit time by a 
computer system is called the maximum parallelism degree P. 
 
A bit slice is a string of bits one from each of the words at the same vertical position. 
There are 4 types of methods under above classification 

 Word Serial and Bit Serial (WSBS) 
 Word Parallel and Bit Serial (WPBS) 
 Word Serial and Bit Parallel(WSBP) 
 Word Parallel and Bit Parallel (WPBP) 
 

WSBS has been called bit parallel processing because one bit is processed at a time. 
WPBS has been called bit slice processing because m-bit slice is processes at a time. 
WSBP is found in most existing computers and has been called as Word Slice processing 
because one word of n bit processed at a time. 
WPBP is known as fully parallel processing in which an array on n x m bits is processes at one 
time. 

Mode Computer Model Degree of 

parallelism 

WSPS 

N = 1 

M = 1 

The ‘MINIMA’ (1,1) 

WPBS 

N=1 

M>1 

STARAN 

MPP 

DAP 

(1,256) 

(1,16384) 

(1,4096) 

WSBP 

n>1 

m=1 

(Word Slice Processing) 

IBM 370/168 UP 

CDC 6600 

Burrough 7700 

VAX 11/780 

(64,1) 

(60,1) 

(48,1) 

(16/32,1) 

WPBP 

n>1 

m>1 

(fully parallel Processing) 

Illiav IV (64,64) 
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Table 4.2 Feng’s Computer Classification 

 
4.2.3 Handler’s Classification 

 
Wolfgang Handler has proposed a classification scheme for identifying the parallelism 

degree and pipelining degree built into the hardware structure of a computer system. He 
considers at three subsystem levels: 
 

 Processor Control Unit (PCU) 
 Arithmetic Logic Unit (ALU) 
 Bit Level Circuit (BLC) 

 
Each PCU corresponds to one processor or one CPU. The ALU is equivalent to Processor 
Element (PE). The BLC corresponds to combinational logic circuitry needed to perform 1 bit 
operations in the ALU. 
A computer system C can be characterized by a triple containing six independent entities 
 
T(C) = <K x K', D x D', W x W' > 
 
Where K = the number of processors (PCUs) within the computer 
D = the number of ALUs under the control of one CPU  
W = the word length of an ALU or of an PE 
W' = The number of pipeline stages in all ALUs or in a PE 
D' = the number of ALUs that can be pipelined  
K' = the number of  PCUs that can be pipelined 
 

4.3 Let us Sum Up 

 

The architectural classification schemes has been presented in this lesson under 3 different 
classifications Flynn’s, Feng’s and Handler’s. The instruction format representation has also be 
given for Flynn’s scheme and examples of all classifications has been discussed. 
 
4.4 Lesson-end Activities 

 
1.With examples, explain Flynn’s computer system classification. 
2.Discuss how parallelism can be achieved using Feng’s and Handler’s classification. 
 
4.5 Points for Discussions 

 

Single Instruction, Single Data stream (SISD)  

A sequential computer which exploits no parallelism in either the instruction or data streams. 
Examples of SISD architecture are the traditional uniprocessor machines like a PC or old 
mainframes.  
Single Instruction, Multiple Data streams (SIMD)  

A computer which exploits multiple data streams against a single instruction stream to perform 
operations which may be naturally parallelized. For example, an array processor or GPU.  
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Multiple Instruction, Single Data stream (MISD)  

Unusual due to the fact that multiple instruction streams generally require multiple data streams 
to be effective..  
Multiple Instruction, Multiple Data streams (MIMD)  

Multiple autonomous processors simultaneously executing different instructions on different 
data. Distributed systems are generally recognized to be MIMD architectures; either exploiting a 
single shared memory space or a distributed memory space.  
 
4.6 References 

 
 http://en.wikipedia.org/wiki/Multiprocessing 
 Free On-line Dictionary of Computing, which is licensed under the GFDL. 
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Lesson 5 : Parallel Processing Applications 

 

Contents: 

 
5.0 Aims and Objectives 
5.1 Introduction 
5.2. Parallel Processing Applications 

5.2.1 Predictive Modelling and Simulations 
5.2.2 Engineering Design and Automation 
5.2.3 Energy Resources Exploration 
5.2.4 Medical, Military and Basic research 

5.3 Let us Sum Up 
5.4 Lesson-end Activities 
5.5 Points for discussions 
5.6 References 
 
5.0 Aims and Objectives 

 
The main objective of this lesson is introducing some representative applications of high-

performance computers. This helps in knowing the computational needs of important 
applications. 
 
5.1 Introduction  

 

Fast and efficient computers are in high demand in many scientific, engineering and 
energy resource, medical, military, artificial intelligence and the basic research areas. Large scale 
computations are performed in these application areas. Parallel processing computers are needed 
to meet these demands. 
 

5.2 Parallel Processing Applications 

 

Fast and efficient computers are in high demand in many scientific, engineering, energy 
resource, medical, military, AI, and basic research areas. 
Parallel processing computers are needed to meet these demands. 
Large scale scientific problem solving involves three interactive disciplines; 

 Theories 
 Experiments 
 Computations 

Theoretical scientists develop mathematical models that computer engineers solve numerically, 
the numerical results then suggest new theories. Experimental science provides data for 
computational science and the latter can model processes that are hard to approach in the 
laboratory. 
Computer Simulation has several advantages: 

 It is far cheaper than physical experiments 
 It can solve much wider range of problems that specific laboratory equipments can 
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Computational approaches are only limited by computer speed and memory capacity, while 
physical experiments have many special practical constraints. 
 
5.2.1 Predictive Modelling and Simulations 

 

Predictive modelling is done through extensive computer simulation experiments, which often 
involve large-scale computations to achieve the desired accuracy and turnaround time. 
 
A) Numerical Weather Forecasting 

 
Weather modelling is necessary for short range forecasts and do long range hazard predictions 
such as flood, drought and environment pollutions. 
 

B) Oceanography and Astrophysics 

Since ocean can store and transfer heat and exchange it with the atmosphere. Understanding of 
oceans helps us in 

 Climate Predictive Analysis 
 Fishery Management 
 Ocean Resource Exploration 
 Costal Dynamics and Tides 

 

C) Socioeconomics and Government Use 

 

Large computers are in great demand in the areas of econometrics, social engineering, 
government census, crime control, and the modelling of the world’s economy for the year 2000. 
 
5.2.2 Engineering Design and Automation 

 
Fast computers have been in high demand for solving many engineering design problems, such 
as the finite element analysis needed for structural designs and wind tunnel experiments for aero 
dynamics studies. 
 
A) Finite Element Analysis 

 

The design of dams, bridges, ships, supersonic jets, high buildings, and space vehicles requires 
the resolution of a large system of algebraic equations.  
 

B) Computational Aerodynamics 

 
Large scale computers have made significant contributions in providing new technological 
capabilities and economies in pressing ahead with aircraft and spacecraft lift and turbulence 
studies. 
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C) Artificial Intelligence and Automation 

 
Intelligent I/O interfaces are being demanded for future supercomputers that must directly 
communicate with human beings in images, speech, and natural languages. The various 
intelligent functions that demand parallel processing are: 

 Image Processing  
 Pattern Recognition 
 Computer Vision 
 Speech Understanding 
 Machien Interface 
 CAD/CAM/CAI/OA 
 Intelligent Robotics 
 Expert Computer Systems 
 Knowledge Engineering  

 

D) Remote Sensing Applications  

 

Computer analysis of remotely sensed earth resource data has many potential applications in 
agriculture, forestry, geology, and water resource.  
 
5.2.3 Energy Resources Exploration 

 

Energy affects the progress of the entire economy on a global basis. Computer can play the 
important role in the discovery of oil and gas and the management of their recovery, in the 
development of workable plasma fusion energy and in ensuring nuclear reactor safety. 
 

A) Seismic Exploration 

 
Many oil companies are investing in the use of attached array processors or vector 
supercomputer for seismic data processing, which accounts for about 10 percent of the oil 
finding costs. Seismic explorations sets off a sonic wave by explosive or by jamming a heavy 
hydraulic ram into the ground about the spot are used to pick up the echoes. 
 

B) Reservoir Modelling 

 
Super computers are used to perform three dimensional modelling of oil fields.  
 
C) Plasma Fusion Power 

 

Nuclear fusion researchers to use a computer 100 times more powerful than any existing one to 
model the plasma dynamics in the proposed Tokamak fusion power generator. 
 

D) Nuclear Reactor Safety 

 

Nuclear reactor designs and safety control can both be aided by computer simulation studies. 
These studies attempt to provide for : 
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 On-Line analysis of reactor conditions 
 Automatic control for normal and abnormal operations 
 Quick assessment of potential mitigation accidents 

 
5.2.4 Medical, Military and Basic research 

 
Fast computers are needed in the computer assisted tomography, artificial heart design, liver 
diagnosis, brain damage estimation, and genetic engineering studies. Military defence needs to 
use supercomputers for weapon design, effects, simulation and other electronic warfare. 
 

A) Computer Aided Tomography 

 
The human body can be modelled by computer assisted tomography (CAT) scanning.  
 
B) Genetic Engineering 

 

Biological system can be simulated on super computers. 
 

C) Weapon Research and Defence 

 
Military Research agencies have used the majority of existing supercomputers. 
 

D) Basic Research Problem  

 
Many of the aforementioned application areas are related to basic scientific research. 
 
5.3 Let us Sum Up 

 

The above details are some of the parallel processing applications, without using super 
computers, many of these challenges to advance human civilization could be hardly realized. 
 
5.4 Lesson-end Activities 

 

1. How parallel processing can be applied in Engineering design & Simulation? Give 
examples. 

2. How parallel processing can be applied in Medicine & military research? Give examples. 
 
5.5 Points for discussions 

 
Computer Simulation has several advantages: 

 It is far cheaper than physical experiments. 
 It can solve much wider range of problems that specific laboratory equipments can. 

 
Computational approaches are only limited by computer speed and memory capacity, while 
physical experiments have many special practical constraints. 
Various Parallel Processing Applications are 
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 Predictive Modelling and Simulations 
 Engineering Design and Automation 
 Energy Resources Exploration 
 Medical, Military and Basic research 
 

 

5.6 References 

 
 Materials of super computer applications can be found in Rodrique et al (1980) 
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UNIT – II 
 
Lesson 6 : Solving Problems in parallel , Utilizing Temporal Parallelism 

 

Contents:  

 
6.0 Aims and Objectives 
6.1 Introduction 
6.2 Utilizing Temporal Parallelism 

6.2.1 Method 1: Temporal Parallelism 
6.2.2 Utilizing Data Parallelism 

6.2.2.1 Method 2: Data Parallelism 
6.2.2.2 Method 3 : Combined Temporal and Data Parallelism 
6.2.2.3 Method 4 : Data Parallelism with Dynamic Assignment  
6.2.2.4 Method 5 : Data Parallelism with quasi Dynamic Scheduling 

6.3 Let us Sum Up 
6.4 Lesson-end Activities 
6.5 Points for discussions 
6.6 Suggested References 
 
6.0 Aims and Objectives 

 
The main objective of this lesson is given by an example of how a simple job can be solved in 
parallel in many different ways. 
 
6.1 Introduction 

 
The simple example given here is correction of answer sheets by teachers and it explains 

the concept of parallelism and how tasks are allocated to processors for getting maximum 
efficiency in solving problems in parallel. The term temporal means pertaining to time and this 
method breaks up a job into a set of tasks to be executed overlapped in time and thus it is 
temporal parallelism. In case of data parallelism the input data is divided into independent sets 
and processed simultaneously. 
 
6.2 Utilizing Temporal Parallelism 

 
The term temporal means pertaining to time. An example is considered suppose 1000 

candidates appear in an examination. There are answers to 4 questions in each answer book and a 
teacher has to correct the answers based upon the following instructions. 
Instructions given a teacher to correct an answer book 

Step 1 : Take an answer book from the pile of answer books. 
Step 2 : Correct the answer to Q1 namely A1. 
Step 3 : Repeat for Q2, Q3 and Q4 as A2, A3 and A4 
Step 4 : Add marks given for each answer. 
Step 5 : Put answer books in a pile of corrected answer books. 
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Step 6 : Repeat steps 1 to 5 until no more answer books are left in the input. 
 
If a teacher takes 20 minutes to correct a paper, then 20,000 minutes will be taken and if to speed 
up the correction the following methods can be applied. 
 
6.2.1 Method 1: Temporal Parallelism 

 
The four teachers can sit cooperatively to correct an answer book. The first teacher 

corrects answer for Q1 and passes it to the second teacher who corrects for Q2. (The first teacher 
immediately takes up the second paper) and passes it to the third teacher who corrects for Q3 and 
passes it to the fourth teacher who corrects for Q4. After correction of 4 papers all the teacher 
will be busy. 
Time taken to correct A1= Time taken to correct A2= Time taken to correct A3=  
Time taken to correct A4 = 5 minutes, then time taken to correct one single paper will be 5 
minutes. The total time taken to correct 1000 papers will be 20 + (999 * 5) = 51015 minutes. 
This is about 1/4th of the time taken by one teacher.  
 
This method is called as parallel processing as 4 teacher work in parallel. The type of parallelism 
used in this method is called as temporal parallelism. The term temporal means pertaining to 
time. This method breaks up the job into set of tasks to be executed overlapped in time it is said 
to use temporal parallelism. It is also known as assembly line processing or pipeline processing 
or vector processing. 
 
This method of parallel processing is appropriate if 

 The jobs to be carried out are identical. 
 A job can be divided into many independent tasks and each can be performed separately 
 The timer taken for each task is same. 
 The time taken to send a job from one teacher to the next is negligible compared to the 

time needed to do the task  
 The number of tasks is much smaller compared to the total number of jobs to be done. 

Assuming 
Let the number of jobs = n 
Let the time to do a job = p. let each job be divisible into k tasks and let each task be done by a 
different teacher 
Let the time for doing each task = plk. 
Time to complete n hobs with no pipelining processing = np. 
Time taken to complete n jobs with pipelining organization of k teacher =  
 
 =P+(n-1)  
 
 
= p 
 
speedup due to pipeline processing =                                =                                         
 
 

p 
k 

(k+n-1) 
k 

np 

P(k+n-1)/k 

k 

1 + [(k-1) / n] 
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The main problems encountered in implementing this method are : 
 Synchronization : identical time should be taken for doing each task in the pipeline so 

that a job can flow smoothly in the pipeline without holdup. 
 Bubbles in pipeline : if some tasks are absent then idle time will be encountered. 
 Fault tolerance : the system does not have tolerate faults. If one teacher goes out then 

the entire pipeline is upset. 
 Inter task communication: The time to pass answer books between teachers in the 

pipeline should be much smaller compared to the time taken to correct an answer by a 
teacher. 

 Scalability: The number of teacher working n the pipeline cannot be increased beyond a 
certain limit. 

 
6.2.2 Utilizing Data Parallelism 

 

6.2.2.1 Method 2: Data Parallelism 

 
The answer books are divided into four piles and each pile is given to a teacher. Assume 

each teacher takes 20 minutes to correct an answer book so that every teacher gets 250 answer 
books and the time taken to correct all the 1000 papers is 5000 minutes. This type of parallelism 
is called as data parallelism as the input data is divided into independent sets and processed 
simultaneously.  
 
P1 to P250 allotted to T1 
P251 to P500 allotted to T2 
P501 to P750 allotted to T3 
P751 to P1000 allotted to T4 
 
Assuming 

 

Let the number of jobs = n 
Let the time to do a job = p  
Let there be k teachers 
Let the time to distribute the jobs to k teachers be kq.  
Time to complete n jobs by single teacher = np 
Time taken to complete n jobs by k teachers  
 
 =kq  
 
 
 
Speedup due to parallel processing =                                                                         
 
 
The speed is not directly proportional to the number of teachers as the time to distribute jobs to 
teachers (which is an unavoidable overhead) increases as the number of teacher is increased. 
 

np 
k 

k 

1 + (k2q/np) 
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The main advantages:  
 There is no synchronization required between teachers. Each teacher can correct papers at 

their own place. 
 The problem of bubble is absent 
 It is more fault tolerant. Each teacher can act as per their own way. 
 There is no communication required between teachers as teacher works independently. 

 
The main disadvantages:  

 The assignment of jobs to each teacher is pre-decided. This is called a static assignment. 
 The set of jobs must be partitionable into subsets of mutually independent jobs. Each 

subset should take the same time to complete. 
 Each teacher must be capable of correcting answers to all questions but in pipeline only 

one question allotted for one teacher. 
 The time taken to divide a set of jobs into equal subsets of jobs should be small. 

 
6.2.2.2 Method 3 : Combined Temporal and Data Parallelism 

 

The previous 2 methods are combined to get this method. This method almost halves the 
time taken by a single pipeline. Even though this method reduces the time to complete the set of 
jobs it also has the drawbacks of both temporal and data parallelism. This method is effective 
only if the number of jobs given to each pipeline is much larger that the number of stages in the 
pipeline. 
 
6.2.2.3 Method 4 : Data Parallelism with Dynamic Assignment  

 
In this method the head examiner gives one answer paper to each teacher and keeps the 

rest with him. All teachers simultaneously correct the paper given to them. A teacher who 
completes the correction goes to the head examiner for another paper, which is given to him for 
correction. If second teacher completes then he queues up in front of the head examiner and 
waits for his turn to get an answer sheet. This procedure is repeated until all the papers are 
corrected. 
 
The main advantages are : 

 Balancing the work assigned to each teacher dynamically as the work progresses. A 
teacher who completes gets another paper immediately. 

 Overall time to correct paper will be minimized. 
 The problem of Bubble is absent. 

 
The main disadvantages are 

 The examiner can attend only one teacher if more teachers have completed and the other 
teacher has to be in queue 

 The head examiner can become a bottleneck. If he leaves then the teachers has to wait 
until he comes back again. 

 The head examiner himself is idle between handing out papers. 
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 T is difficult to increase the number of teachers as it will increase the probability of many 
teachers completing their jobs simultaneously thereby leading to long queues of teachers 
waiting to get an answer paper. 

 

6.2.2.4 Method 5 : Data Parallelism with quasi Dynamic Scheduling 

 

The teacher may be given small bunch of papers for correction rather than giving one by 
one and he held up in queue before the head examiner. 
The assignment of jobs to teacher in method 3 is static schedule and the assignment is done 
initially and not changed. Here the assignment is done dynamically who corrects the papers first 
will get more answer sheets. 
 
6.3 Let us Sum Up 

 
There are many ways of solving a problem in parallel. The main advantages and disadvantages 
with reference to each method have been discussed and this helps in choosing the method based 
on the situation. 
 
6.4 Lesson-end Activities 

 

1.What are the method available for achieving data parallelism. Elaborate. 
2. What are the method available for achieving temporal parallelism. Elaborate  
 
 
6.5 Points for discussions 

 

The term temporal means pertaining to time. This method breaks up the job into set of 
tasks to be executed overlapped in time it is said to use temporal parallelism. It is also known as 
assembly line processing or pipeline processing or vector processing. 

In case of data parallelism, the input data is divided into independent sets and processed 
simultaneously.  
 
6.6 References 

 
 Frenkel, K.A editor Special issue on Parallelism, Communications of ACM 
 Rodrigue.G Parallel Computations, Academic Press 
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Lesson 7: Comparison of temporal and data parallel processing & Data parallel processing 

with specialized processors 

 

Contents: 

 
7.0 Aims and Objectives 
7.1 Introduction 
7.2 Comparison of Temporal and Data Parallel Processing 

7.2.1 Data Parallel Processing with Specialized Processors 
7.2.1.1 Method 6 : Specialist Data Parallelism 
7.2.1.2 Method 7 : Coarse grained specialist temporal parallelism 
7.2.1.3 Method 8 : Agenda Parallelism  

7.3 Let us Sum Up 
7.4 Lesson-end Activities 
7.5 Points for discussions 
7.6 Suggested References 
 
7.0 Aims and Objectives 

 
The main objective of this lesson is to differentiate between temporal and data parallel 
processing and to discuss few more methods of data parallel processing with specialized 
processors. 
 
7.1 Introduction 

 
 In case of temporal parallel processing jobs are divided into set of independent tasks, and 
they are given equal time, Bubbles in jobs leads to idling of processors, task assignment is static 
and it is not tolerant to processor faults. 
 In case of data parallelism full jobs are assigned to processing, and they may take different 
time and no concept of synchronization needed and it tolerant to processor faults.  
 Various other methods such as Specialist data parallelism in which head examiner despatches 
answer sheets to examiner, In coarse grained temporal parallel processing the answer sheets are 
divided and assigned to input tray and output tray , In case of agenda parallelism the answer 
book is used as an agenda of questions.  
 
7.2 Comparison of Temporal and Data Parallel Processing 

 
S.No Temporal Parallel Processing 

(pipelining Idea) 

Data Parallel processing 

1 Job is divided in to set of 
independent tasks and tasks are 
assigned for processing 

Full jobs are assigned for processing 

2. Tasks should take equal time. 
Pipeline stages thus to be 
synchronized 

Jobs may take different times. No need 
to synchronize beginning of jobs. 

3 Bubbles in jobs lead to idling of Bubbles do not cause idling of 
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processors processors 
4 Task assignment static Job assignment may be static, dynamic 

or quasi dynamic 
5 Not tolerant to processor faults Tolerates processor faults 
6 Efficient with fine grained tasks Efficient with coarse grained tasks and 

quasi dynamic scheduling 
7 Scales well as long as the number of 

data items to be processed is much 
larger than the number of processors 
in the pipeline and the time taken to 
communicate task from one 
processor to the next is negligible. 

Scales well as long as the number of 
jobs is much greater than the number of 
processors and processing time is much 
higher than the time to distribute data to 
processors 

 
7.2.1 Data Parallel Processing with Specialized Processors 

 
Data parallel processing is more tolerant but requires each teacher to be capable of correcting 
answers to all questions with equal ease. 
 

7.2.1.1 Method 6 : Specialist Data Parallelism 

 
In this a head examiner dispatches the answer sheet to teachers. 
1. Give one answer paper to T1, T2, T3, T4  (Teacher Ti corrects only the answer to question 
Qi) 
2. When a corrected answer paper is turned check if all the questions are graded. If yes add 
marks and put the paper in the output pile. 
3. If no, check with questions not graded. 
4. For each I, if the Ai is ungraded and teacher Ti, or if any other teacher Tp is idle and answer 
paper remains in input pile with Ap uncorrected send it to him. 
5. Repeat steps 2,3,4 until no answer paper remains in the input pile and all teachers are idle. 
 
The main disadvantages are : 

 The load is not balanced. 
 If some answers take much longer time to grade than others then some of the teachers 

will be busy while others are idle. 
 The head examiner will waste lot of time in checking which questions are not answered 

and which teachers are idle. 
 The maximum possible speedup will not be attained 

 
7.2.1.2 Method 7 : Coarse grained specialist temporal parallelism 

 
Here all teachers work independently and simultaneously. Many teachers spend lot of time in 
waiting for other teachers to complete their work. 
Procedure 2.3 Coarse grained specialist temporal processing 
Answer papers are divided into 4 equal piles and put in the in-trays of each teacher. Each teacher 
repeats 4 times simultaneously steps 1 to 5. 
For teachers Ti (I = 1 to 4) do in parallel 
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1. Take an answer sheet paper from in-tray. 
2. Grade answer Ai to question Qi and put in out-tray 
3. Repeat steps 1 and 2 till no papers left in in-tray 
4. Check if teacher T(i+1) Mod 4’s in-tray is empty. 
5. As soon as it is empty, empty own out-tray into the in-tray of that teacher. 

 
7.2.1.3 Method 8 : Agenda Parallelism  

 
In this method answer book is thought as an agenda of questions to be graded. All 

teachers are asked to work on the first item on the agenda, grade the answer to the first questions 
in all papers. A head examiner gives one paper to each teacher and asks him to grade the answer 
A1 to Q1. When a teacher finishes this he is given another paper in which he again grades A1. 
When A1 of all papers are grades, then A2 is taken up by all teachers, this is repeated until all 
questions in all papers are graded. This is a data parallel method with dynamic schedule and fine 
grain tasks. A chart showing various methods of parallel processing has been depicted. 
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Figure 7. 1 Chart Showing Various Methods of Parallel Processing 
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7.3 Let us Sum Up 

 

Comparative study of data parallel processing and temporal parallel parallelism has been made 
and other data processing with specialized processors has been carried out. 
In method 6, a head examiner dispatches the answer sheet to teachers. 
In method 7, all teachers work independently and simultaneously. Many teachers spend lot of 
time in waiting for other teachers to complete their work. 
In method 8, answer book is thought as an agenda of questions to be graded. 
 
7.4 Lesson-end Activities 

 

1.Discuss how parallelism can be achieved using specialized processors. 
2.Compare data parallelism with temporal parallelism. 
 
7.5 Points for discussions 

 

Besides the various issues, there are also constraints placed by the structure and interconnection 
of computers in a parallel computing system. Thus picking a suitable method is also governed by 
the architecture of the parallel computer using which a problem is solved. 
 
7.6 References 

 
Parallel Computer Architecture and programming – V. Rajaraman and C.Siva Ram Murthy 
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Lesson 8 : Inter Task Dependency 
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8.0 Aims and Objectives 

 
The main aim of this lesson is to bring important types of problems encountered in  
parallel computers in which parallelism can be exploited. 
 
8.1 Introduction 

 
A problem of recipe of Chinese vegetable fried rice preparation is taken, and the task graph is 
drawn for each tasks. The tasks may be independent of one another or some times may be 
dependent of the previous task. The task graph is drawn shown and the number of cooks and 
their time allotment table is also drawn. 
 

 

8.2 Inter Task Dependency 

 
In general tasks of a job are inter-related. Some tasks can be done simultaneously and 

independently while others have to wait for the completion of previous tasks. The inter-relation 
of various tasks of a job may be represented graphically as a Task Graph. 

 The Circles represents Tasks.  
 A line with arrow connecting 2 circles shows dependency of tasks. 
 The direction of arrow shows precedence. 
 A task at the head end of an arrow can be done after all tasks at their respective tails are 

done. 
 
Procedure Recipe for Chinese vegetable fried rice 
 
T1 Clean and wash rice 
T2 Boil water in a vessel with 1 teaspoon salt 
T3 Put rice in boiling water with some oil and cook till soft 
T4 Drain rice and cool 
T5 Wash and scrape carrots 
T6 Wash and string French beans 
T7 Boil water with ½ teaspoon salt into 2 vessels 
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T8 Drop carrots and French beans separately in boiling water and keep for 1 minute. 
T9 Drain and cool carrots and French beans. 
T10 Dice carrots. 
T11 Dice French beans. 
T12 Peel onion and dice into small pieces. Wash and chop spring onions 
T13 Clean cauliflower. Cut into small pieces 
T14 Heat oil in iron pan and fry diced onion and cauliflower for 1 minute in heated oil. 
T15 Add diced carrots, French beans to above and fry for 2 minutes 
T16 Add cooled rice, chopped spring onions and Soya sauce to the above and stir and 

fry for 5 minutes 
 
There are 16 tasks in cooking Chinese vegetable fried rice. Some of these tasks can be carried 
out simultaneously and others have to be done in sequence. For instance T1, T2, T5,T6, T7, T12 
and T13 can be done simultaneously whereas T8 cannot be done unless T5, T6,T7 are done. 
 
If suppose this dish has to be prepared for 50 people and 4 cooks are ready to do it. Task 
assignments for the cooks must be such that they work simultaneously and synchronize. 
 

Task T1 T2 T3 T4 T5 T6 T7 T8 
Time 5 10 15 10 5 10 8 1 
Task T9 T10 T11 T12 T13 T14 T15 T16 
Time 10 10 10 15 12 4 2 5 

Table 8. 1 Time for each task 
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Figure 8.1 A task Graph to cook Chinese vegetable fried rice 

 
Cook 1 T1 T2   T3 T4 T16 
 5 10 15 10 5   
Cook 2 T5 T6 T8 T9 T10 T15 Idle 
 5 10 1 10 10 2  
Cook 3 T7 T13 T14 Idle    
 8 12 4     
Cook 4 T12 Idle T11 Idle    
 15 11 10     
 

Figure 8.2 Assignment of Tasks to Cooks 

 
Procedure Assigning tasks in a task graph to cooks 

T1 T2 T5 T6 T7 T12 T13 

T4 T9 

T14 
T3 T8 

T10 T11 

T15 

T16 
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Step 1 : Find tasks which can be carried out in parallel in level 1. Sum their total tile. In the 
above case the sum of tasks 1,2,5,6,7,12,13 = 65 minutes. There are 4 cooks so the tasks 
assigned for each cook will be 65 / 4 = 16 minutes 
The assignment based on the logic is 
Cook1  (T1,T2)    (15 minutes) 
Cook 2  (T5,T6)   (15 minutes) 
Cook 3  (T7, T13) ( 20 minutes) 
Cook 4  (T12)       (15 minutes) 
 

 Step 2: Find tasks that can be carried out in level 2. They are T3, T8, and T14. There are 
4 cooks. T14 cannot start unless T12 and T13 are completed. Thus cook1 is allocated T3; 
Cook2  T8; Cook 3  T14; Cook 4  No task. AT the end of step 2 Cook 1 has 
worked for 30 minutes. 

 Step 3 : The tasks which can be carried out in parallel are T4 and T9. T4 has to follow T3 
and T9 has to follow T8. Cook1  T4 and cook2  T9 

 Step 4: The next allocated tasks are T10 and T11 each taking 10 minutes. They follow 
completion of T9. Assignments are Cook 2  T10 and Cook4  T11. Cook 4 cannot 
start T11 till cook 2 completes T9. 

 Step 5 : In the next level T15 can be allocated and as it has to follow completion of T10 
and T11. This can be allocated to T9. 

 Step 6 : Only T16 is left and it cannot start till T4, T15 and T14 are complete.T4 is last to 
finish and T16 is allocated to Cook 2 

The problem is an example of parallel computing. These bring important problems encountered 
during parallelism. 
 

8.3 Let us Sum Up 

 
The lesson indicated the problem encountered during parallelism and the graph depicted the 
dependent tasks and independent tasks. The cook has been assigned the task in task graph and it 
represented the time requirement for each cook to carry out the task successfully. 
 
8.4 Lesson-end Activities 

1.List out the various graphical notations available to draw a task graph. 
2.How tasks can be allocated in parallel? Give your own example procedure & task graph. 
 
8.5 Points for discussions 

The inter-relation of various tasks of a job may be represented graphically as a Task Graph. 
 The Circles represents Tasks.  
 A line with arrow connecting 2 circles shows dependency of tasks. 
 The direction of arrow shows precedence. 
 A task at the head end of an arrow can be done after all tasks at their respective tails are 

done. 
 
8.6 References 

 
Parallel Computer Architecture and programming – V. Rajaraman and C.Siva Ram Murthy 
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Lesson 9: Instruction Level parallel Processing, Pipelining of processing elements 
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9.0 Aims and Objectives 

 
The main aim of this lesson is to execute a number of instructions in parallel by scheduling them 
suitably on a single processor. 
 
9.1 Introduction 

 

One of the important methods of increasing the speed of PEs is pipelined execution of 
instructions. An architecture SMAC2P is used to explain the concept of instruction cycle which 
is broken into 5 steps. They are Fetch, Decode, Execute, Memory Access and Store register. 
 
9.2 Instruction Level Parallel Processing 

 

9.2.1 Pipelining of Processing Elements 

 
 One of the important methods of increasing the speed of PEs is pipelined execution of 
instructions. 
 Pipelining is an effective method of increasing the execution speed of processors 
provided the following “ideal” conditions are satisfied: 
 

1. It is possible to break an instruction into a number of independent parts, each part taking 
nearly equal time to execute. 

2. There is so called locality in instruction execution. If the instructions are not executed in 
sequence but “jump around” due to many branch instructions, then pipelining is not 
effective. 

3. Successive instruction is such that the work done during the execution of an instruction 
can be effectively used by the next and successive instruction. Successive instructions are 
also independent of one another. 

4. Sufficient resources are available in a processor so that if a resource is required by 
successive instructions in the pipeline it is readily available. 

 
In actual practice these “ideal” conditions are not always satisfied. The non-ideal situation arises 
because of the following reasons: 
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1. It is not possible to break up an instruction execution into a number of parts each taking 

exactly the same time. For ex., executing a floating point division will normally take 
much longer than say, decoding an instruction. It is, however, possible to introduce 
delays (if needed) so that different parts of an instruction take equal time. 

2. All real programs have branch instructions which disturb the sequential execution of 
instructions. Fortunately statistical studies show that the probability of encountering a 
branch instruction is low; around 17%. Further it may be possible to predict when 
branches will be taken a little ahead of time and take some pre-emptive action. 

3. Successive instructions are not always independent. The results produced by an 
instruction may be required by the next instruction and must be made available at the 
right time. 

4. There are always resource constraints in a processor as the chip size is limited. It will not 
be cost effective to duplicate some resources indiscriminately. For ex., it may not be 
useful have more than two floating point arithmetic units. 

 
The challenges is thus to make pipelining work under these non-ideal conditions. 

 
The computer is a Reduced Instruction Set Computer (RISC) which is designed to facilitate 
pipelined instruction execution. The computer is similar to SMAC2. It has the following units. 
 
Step 1 : Fetch an instruction from the instruction memory (FI) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.1  Block diagram for Fetch Instruction 

 
 A data cache(or memory) and an instruction cache (or memory). It is assumed that the 

instructions to be executed are stored in the instruction memory and the data to be read or 
written are stored in the data memory. These two memories have their own address and data 
registers. (IMAR- Memory Address Register of instruction memory, DMAR – Memory 
Address Register of data memory, IR - Data Register of Instruction memory, MDR - Data 
Register of Data memory ) 

 

PC IMAR Instruction 
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IR 
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Instruction Memory Data 
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 A Program Counter (PC) which contains the address of the next instruction to be executed. 
The machine is word addressable. Each word is 32 bits long. 

 A register file with 32 registers. These are general purpose registers used to store operands 
and index values. 

 The instructions are all of equal length and the relative positions of operands are fixed. There 
are 3 instruction types shown in the fig 

 The only instructions which access memory are load and store instructions. A load 
instruction reads a word from the data memory and stores it in a specified in the register file 
and a store instruction stores the contents of a register in the data memory. This is called 
Load-Store Architecture. 

 An ALU which carries out one integer arithmetic or one logic operation in one clock cycle. 
Solid lines indicate Data paths and dashed lines indicate control signal. 
IMAR  PC 
IP  IMEM[IMAR] 
NAR  PC + 1 
All the above operations are carried out in one cycle. 
 
Step 2 : Decode Instructions and Fetch Register (DE) 

 
The instructions are decoded and the operands fields are used to read values of specified 
registers. The operations carried out during this step are shown below: 
 B1  Reg [ IR21...25] 
 B2  Reg [ IR16…20] 
 IMM  IR0…15(Mtype instruction) 
All these operations sre carried out in one clock cycle. Observe that the outputs from the register 
file are stored in two buffer registers B1 and B2. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 9.2 Data flow in decode and fetch register step 

 
Step 3 : Execute instruction and calculate effective address(EX) 

 

 The ALU operations are carried out. The instructions where ALU is used may be classified as 
shown below: 

 Two registers are operands  
B3  B1 <operation> B2 

IR 
 
 

Register File 

B1 

B2 

IMM 
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  Where operation is ADD, SUB, MUL or DIV and B3 is the register where ALU 
output is stored 

 Increment/Decrement (INC/DEC/BCT) 
B3  B1 + 1 (Increment) 
B3  B1 – 1 (Decrement or BCT) 

 Branch on equal (JEQ) 
B3  B1 – B2 

  If B3 = 0 set zero flag in Status Register = 1 
 Effective address calculation( for LD/ST) 

For load and store instructions the effective address is stored in B3 
  B3  B2 + IMM 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.3 Data Flow for ALU operation 

 
Step 4 : Memory Access (MEM) 

Load/Store and address determination are carried out here. The address for load or store 
operation was computed in the previous step and is in B3. The following operations are carried 
out for load/store. 

 DMAR  B3 
Where DMAR is data memory address register 
 MDR  DMEM [DMAR] load instruction (LD) 
 DMEM[DMAR]  MDR  B1 store instruction (ST) 
 
For branch instructions the address of the next instruction to be executed must be found. 

The four branch instructions in our computer are JMP, JMI, JEQ and BCT 
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The PC value in these four cases is as follows: 
For JMP 
  PC  IR0…25 
For JMI 
  If (negative flag = 1)PC  IR0…25 
  Else PC  NAR 
For JEQ and BCT 
  If (zero flag = 1) PC  IR0…15 

Else PC  NAR 
For other instructions: 
  PC  NAR 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 9.4 Data flow for load / store, next address step 

Step 5: Store register (SR) 

The result of ALU operation or load immediate or load from memory instruction is stored back 
in the specified register in the register file. The 3 cases are: 
 
Store ALU output in register file 
   Reg[IR11…15]  B3 
Load immediate (LDI) 
   Reg[IR21…25]  IMM (IMM=IR(0…15)) 
Load data retrieved from data memory in register file (LD) 
   Reg[IR21…25]  MDR 

DMAR Data Memory MDR B3 

B1 
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Conditional branch instruction JEQ,JMI and BCT require 3 cycles. Instructions INC, 
DEC and LDI do not need a memory access cycle and can complete in 3 cycles. 

The proportion of these instructions in actual programs has to be found statistically by 
executing a large number of programs and counting the number of such instructions.  

 
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 9.5 Data Flow for the store register step 

9.3 Let us Sum Up 

Pipelining is an effective method of increasing the execution of processors provided the 
following conditions are satisfied. They are break up of an instruction to independent parts, no 
locality in instruction execution, sufficient resources are available. The Instruction cycle has 
been clearly explained with neat diagrammatic representation such as Fetch an instruction from 
the instruction memory, Decode Instructions and Fetch Register (DE), Execute Instructions and 
calculates effective address, Memory access and Store register. 
 
9.4 Lesson-end Activities 

1.With neat diagrams, explain how parallel processing can be applied in instruction pipelining. 
 
9.5 Points for discussions 

 
 Instruction Execution Cycle Steps 
 Fetch an instruction from the instruction memory 
 Decode Instructions and Fetch Register (DE) 
 Execute Instructions and calculates effective address 
 Memory access and Store register. 

 
 
9.6 References 

 

Parallel Computer Architecture and programming – V. Rajaraman and C.Siva Ram Murthy 
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Lesson 10 : Delays in Pipelining Execution, Difficulties in Pipelining 

 
Contents: 

 
10.0 Aims and Objectives 
10.1 Introduction 
10.2 Delays in Pipeline Execution 

10.2.1 Delay Due To Resource Constraints (Structural Hazard) 
10.2.2 Delay Due To Data Dependency (Data Hazard) 
10.2.3 Pipeline Delay Due To Branch Instructions (Control Hazard) 
10.2.4 Branch Prediction schemes 
10.2.5 Difficulties in Pipelining 

10.3 Let us Sum Up 
10.4 Lesson-end Activities 
10.5 Points for discussions 
10.6 References 
 
10.0 Aims and Objectives 

 

The main objective of this lesson is to study about various pipeline Hazards and the preventive 
measures. 
 
10.1 Introduction 

 

Limits to pipelining: Hazards prevent next instruction from executing during its designated clock 
cycle 
– Structural hazards: HW cannot support this combination of instructions (single person to fold 
and put clothes away) 
– Data hazards: Instruction depends on result of prior instruction still in the pipeline (missing 
sock) 
– Control hazards: Pipelining of branches & other instructions that change the PC 
– Common solution is to stall the pipeline until the hazard is resolved, inserting one or more 
“bubbles” in the pipeline 

 
10.2 Delays in Pipeline Execution 

 

Delays in pipeline execution of instruction due to non ideal conditions are called Pipeline 
hazards. 
The non –ideal conditions are : 

 Available resources in a processor are limited. 
 Successive instructions are not independent of one another.  
 All programs have branches and loops 

Each of the above conditions causes delays in pipeline. It can be classified as 
 
Structural Hazards. They arise from resource conflicts when the hardware cannot support all 
possible combinations of instructions in simultaneous overlapped execution.  
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Data Hazards. They arise when an instruction depends on the result of a previous instruction in 
a way that is exposed by the overlapping of instructions in the pipeline.  
Control Hazards. They arise from the pipelining of branches and other instructions that change 
the PC. 
 
10.2.1 Delay Due To Resource Constraints (Structural Hazard) 

When a machine is pipelined, the overlapped execution of instructions requires pipelining of 
functional units and duplication of resources to allow all possible combinations of instructions in 
the pipeline.  
If some combination of instructions cannot be accommodated because of a resource conflict, the 
machine is said to have a structural hazard.  

Common instances of structural hazards arise when  

 Some functional unit is not fully pipelined. Then a sequence of instructions using that 
unpipelined unit cannot proceed at the rate of one per clock cycle. 

 Some resource has not been duplicated enough to allow all combinations of instructions 
in the pipeline to execute. 

 
Example1:  
A machine may have only one register-file write port, but in some cases the pipeline might want 
to perform two writes in a clock cycle.  

Example2:  
A machine has shared a single-memory pipeline for data and instructions. As a result, when an 
instruction contains a data-memory reference(load), it will conflict with the instruction reference 
for a later instruction (instr 3):  

Clock cycle number 

Instr 1 2 3 4 5 6 7 8 

Load IF ID EX MEM WB          

Instr 1    IF ID EX MEM WB       

Instr 2       IF ID EX MEM WB    

Instr 3        IF ID EX MEM WB 

   
To resolve this, we stall the pipeline for one clock cycle when a data-memory access occurs. The 
effect of the stall is actually to occupy the resources for that instruction slot. The following table 
shows how the stalls are actually implemented.  

 

Clock cycle number 
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Instr 1 2 3 4 5 6 7 8 9  

Load IF ID EX MEM WB          

Instr 1   IF ID EX MEM WB        

Instr 2     IF ID EX MEM WB      

Stall       bubble bubble bubble bubble bubble    

Instr 3         IF ID EX MEM WB  

Instruction 1 assumed not to be data-memory reference (load or store), otherwise Instruction 3 
cannot start execution for the same reason as above.  

To simplify the picture it is also commonly shown like this:  

Clock cycle number 

Instr 1 2 3 4 5 6 7 8 9  

Load IF ID EX MEM WB          

Instr 1   IF ID EX MEM WB        

Instr 2     IF  ID EX MEM WB      

Instr 3       stall IF ID EX MEM WB  

 
10.2.2 Delay Due To Data Dependency (Data Hazard) 

 
A major effect of pipelining is to change the relative timing of instructions by overlapping their 
execution. This introduces data and control hazards. Data hazards occur when the pipeline 
changes the order of read/write accesses to operands so that the order differs from the order seen 
by sequentially executing instructions on the unpipelined machine.  

Consider the pipelined execution of these instructions:  

    1 2 3 4 5 6 7 8 9 

ADD R1, R2, R3 IF ID EX MEM WB         

SUB R4, R5, R1   IF IDsub EX MEM WB       

AND R6, R1, R7     IF IDand EX MEM WB     

OR R8, R1, R9        IF IDor EX MEM WB   

XOR R10,R1,R11         IF Idxor EX MEM WB 

All the instructions after the ADD use the result of the ADD instruction (in R1). The ADD 
instruction writes the value of R1 in the WB stage (shown black), and the SUB instruction reads 
the value during ID stage (IDsub). This problem is called a data hazard. Unless precautions are 
taken to prevent it, the SUB instruction will read the wrong value and try to use it.  
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The AND instruction is also affected by this data hazard. The write of R1 does not complete until 
the end of cycle 5 (shown black). Thus, the AND instruction that reads the registers during cycle 
4 (IDand) will receive the wrong result.  

The OR instruction can be made to operate without incurring a hazard by a simple 
implementation technique. The technique is to perform register file reads in the second half of 
the cycle, and writes in the first half. Because both WB  for ADD and IDor for OR are performed 
in one cycle 5, the write to register file by ADD will perform in the first half of the cycle, and the 
read of registers by OR will perform in the second half of the cycle.  

The XOR instruction operates properly, because its register read occur in cycle 6 after the 
register write by ADD.  

The next page discusses forwarding, a technique to eliminate the stalls for the hazard involving 
the SUB and AND instructions.  

We will also classify the data hazards and consider the cases when stalls can not be eliminated. 
We will see what compiler can do to schedule the pipeline to avoid stalls.  

The problem with data hazards, introduced by this sequence of instructions can be solved with a 
simple hardware technique called forwarding.  
   

    1 2 3 4 5 6 7 

ADD R1, R2, R3 IF ID EX MEM WB     

SUB R4, R5, R1   IF IDsub EX MEM WB   

AND R6, R1, R7     IF IDand EX MEM WB 

The key insight in forwarding is that the result is not really needed by SUB until after the ADD 
actually produces it. The only problem is to make it available for SUB when it needs it.  

If the result can be moved from where the ADD produces it (EX/MEM register), to where the 
SUB needs it (ALU input latch), then the need for a stall can be avoided.  
Using this observation , forwarding works as follows:  

The ALU result from the EX/MEM register is always fed back to the ALU input latches. If the 
forwarding hardware detects that the previous ALU operation has written the register 
corresponding to the source for the current ALU operation, control logic selects the forwarded 
result as the ALU input rather than the value read from the register file. 

Forwarding of results to the ALU requires the additional of three extra inputs on each ALU 
multiplexer and the addition of three paths to the new inputs.  

The paths correspond to a forwarding of: 
(a) the ALU output at the end of EX, 
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(b) the ALU output at the end of MEM, and 
(c) the memory output at the end of MEM. 

Without forwarding our example will execute correctly with stalls:  

    1 2 3 4 5 6 7 8 9 

ADD R1,R2, R3 IF ID EX MEM WB         

SUB R4,R5, R1   IF stall stall IDsub EX MEM  WB   

AND R6,R1, R7     stall stall IF IDand EX MEM  WB 

As our example shows, we need to forward results not only from the immediately previous 
instruction, but possibly from an instruction that started three cycles earlier. Forwarding can be 
arranged from MEM/WB latch to ALU input also.  Using those forwarding paths the code 
sequence can be executed without stalls:  

    1 2 3 4 5 6 7 

ADD R1, R2, R3 IF ID EXadd MEMadd WB     

SUB R4, R5, R1   IF ID EXsub MEM WB   

AND R6, R1, R7     IF ID EXand MEM WB 

The first forwarding is for value of R1 from EXadd to EXsub .  
The second forwarding is also for value of R1 from MEMadd to EXand.  
This code now can be executed without stalls.  

Forwarding can be generalized to include passing the result directly to the functional unit that 
requires it: a result is forwarded from the output of one unit to the input of another, rather than 
just from the result of a unit to the input of the same unit.  
 

10.2.3 Pipeline Delay Due To Branch Instructions (Control Hazard) 

Control hazards can cause a greater performance loss for DLX pipeline than data hazards. 
When a branch is executed, it may or may not change the PC (program counter) to something 
other than its current value plus 4. If a branch changes the PC to its target address, it is a taken 
branch; if it falls through, it is not taken.  
If instruction i is a taken branch, then the PC is normally not changed until the end of MEM 
stage, after the completion of the address calculation and comparison (see diagram).  
The simplest method of dealing with branches is to stall the pipeline as soon as the branch is 
detected until we reach the MEM stage, which determines the new PC. The pipeline behavior 
looks like :  
   

Branch IF ID EX MEM WB           
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Branch successor   IF(stall) stall stall IF ID EX MEM WB   

Branch successor+1           IF ID EX MEM WB 

The stall does not occur until after ID stage (where we know that the instruction is a branch).  
This control hazards stall must be implemented differently from a data hazard, since the IF cycle 
of the instruction following the branch must be repeated as soon as we know the branch 
outcome. Thus, the first IF cycle is essentially a stall (because it never performs useful work), 
which comes to total 3 stalls.  
Three clock cycles wasted for every branch is a significant loss. With a 30% branch frequency 
and an ideal CPI of 1, the machine with branch stalls achieves only half the ideal speedup from 
pipelining!  
The number of clock cycles can be reduced by two steps:  

 Find out whether the branch is taken or not taken earlier in the pipeline;  
 Compute the taken PC (i.e., the address of the branch target) earlier. 

Both steps should be taken as early in the pipeline as possible.  
By moving the zero test into the ID stage, it is possible to know if the branch is taken at the end 
of the ID cycle. Computing the branch target address during ID requires an additional adder, 
because the main ALU, which has been used for this function so far, is not usable until EX.  
 
10.2.4 Branch Prediction schemes 

 
There are many methods to deal with the pipeline stalls caused by branch delay. We discuss four 
simple compile-time schemes in which predictions are static - they are fixed for each branch 
during the entire execution, and the predictions are compile-time guesses.  

 Stall pipeline  
 Predict taken  
 Predict not taken  
 Delayed branch 
  

Stall pipeline  

 

The simplest scheme to handle branches is to freeze or flush the pipeline, holding or deleting any 
instructions after the branch until the branch destination is known.  
Advantage: simple both to software and hardware (solution described earlier)  
   
Predict Not Taken  

 

A higher performance, and only slightly more complex, scheme is to predict the branch as not 
taken, simply allowing the hardware to continue as if the branch were not executed. Care must be 
taken not to change the machine state until the branch outcome is definitely known.  

 The complexity arises from:  
we have to know when the state might be changed by an instruction;  

 we have to know how to "back out" a change.  
The pipeline with this scheme implemented behaves as shown below:  
   

Untaken Branch IF ID EX MEM WB     
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Instr 

Instr i+1   IF ID EX MEM WB    

Instr i+2     IF ID EX MEM WB 

 

Taken Branch 
Instr IF ID EX MEM WB       

Instr i+1   IF idle idle idle idle     

Branch target     IF ID EX MEM WB   

Branch target+1       IF ID EX MEM WB 

When branch is not taken, determined during ID, we have fetched the fall-through and just 
continue. If the branch is taken during ID, we restart the fetch at the branch target. This causes 
all instructions following the branch to stall one clock cycle.  
   
Predict Taken  

 

An alternative scheme is to predict the branch as taken. As soon as the branch is decoded and the 
target address is computed, we assume the branch to be taken and begin fetching and executing 
at the target address.  
Because in DLX pipeline the target address is not known any earlier than the branch outcome, 
there is no advantage in this approach. In some machines where the target address is known 
before the branch outcome a predict-taken scheme might make sense.  
   
Delayed Branch  

 

In a delayed branch, the execution cycle with a branch delay of length n is  
Branch instr  
sequential successor 1  
sequential successor 2  
. . . . .  
sequential successor n  
Branch target if taken 

Sequential successors are in the branch-delay slots. These instructions are executed whether or 
not the branch is taken.  
The pipeline behavior of the DLX pipeline, which has one branch delay slot is shown below:  
   

Untaken branch instr IF ID EX MEM WB         

Branch delay 
instr(i+1) 

  IF ID EX MEM WB       

Instr i+2     IF ID EX MEM WB     

Instr i+3       IF ID EX MEM WB   

Instr i+4         IF ID  EX MEM WB 
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Taken branch instr IF ID EX MEM WB         

Branch delay 
instr(i+1) 

  IF ID EX MEM WB       

Branch target     IF ID  EX MEM WB     

Branch target+1       IF ID EX MEM WB   

Branch target+2         IF ID EX MEM WB 

 
10.2.5 Difficulties in Pipelining 

 
The another difficulty which makes pipeline processing challenging is due to the interruption of 
normal flow of a program due to events such as illegal instruction codes, page faults and I/O 
calls. These are called as Exception conditions. 
Various list of exception conditions has been listed out. It has been mentioned that whether after 
the exception the normal process can be started or not. 
The problem of restarting computation is complicated by the fact that several instructions will be 
in various stages of completion in the pipeline. If the pipeline processing can be stopped when an 
exception condition is detected in such a way that all instructions which occur before the one 
causing the exception are completed and all instructions which were in progress at the instant 
exception occurred can be restarted from the beginning, the pipeline is said to have precise 
exceptions. 
 

Occurs during pipeline stage Exception Type 
Yes / No Which Stage ? 

Resume or 
Terminated 

    
I/O Request No -- Resume 
OS request by user 
program 

No -- Resume 

User initiates break 
point  during execution 

No -- Resume 

User Tracing Program No -- Resume 
Arithmetic Overflow or 
underflow 

Yes EX Resume 

Page fault Yes FI, MEM Resume 
Misaligned Memory 
access 

Yes FI, MEM Resume 

Memory protection 
violation 

Yes FI, MEM Resume 

Undefined instruction Yes DE Resume 
Hardware failure Yes Any Resume 
Power failure Yes Any Resume 

Table : 10.1 Exception Types in Computer 
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10.3 Let us Sum Up 

 

It discussed the various delays in pipeline execution and the different hazards are structural 
hazards, data hazards and control hazards and the prevention mechanism for the hazards. 
 
10.4 Lesson-end Activities 

 
1.What delays are encountered in pipeline execution? How can they be overcome? 
2. Discuss the difficulties involved in pipelining. Also, explain the prevention measures.    
 
10.5 Points for discussions 

 
 Structural Hazard 
 Data Hazard 
 Control Hazard 
 Branch prediction Buffer 

 
 
10.6 References 

 
Materials from Net : Shankar Balachandran, Dept. of Computer Science and Engineering,IIT-
Madras,shankar@cse.iitm.ernet.in 
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UNIT – III 

 
Lesson 11 : Principles of Linear Pipelining, Classification of Pipeline Processors 

 
Contents: 

 
11.0 Aims and Objectives 
11.1 Introduction 
11.2 Pipelining 

11.2.1 Principles of Linear Pipelining 
11.2.2 Classification of Pipeline Processors 

11.3 Let us Sum Up 
11.4 Lesson-end Activities 
11.5 Points for discussions 
11.6 References 
 
11.0 Aims and Objectives 

 
The main objective of this lesson is to known the basic properties of pipelining, 

classification of pipeline processors and the required memory support. 
 
11.1 Introduction 

 
Pipeline is similar to the assembly line in industrial plant. To achieve pipelining one must 

divide the input process into a sequence of sub tasks and each of which can be executed 
concurrently with other stages. The various classification or pipeline line processor are 
arithmetic pipelining, instruction pipelining, processor pipelining have also been briefly 
discussed. 
 
11.2 Pipelining 

 

Pipelining offers an economical way to realize temporal parallelism in digital computers. To 
achieve pipelining, one must subdivide the input task into a sequence of subtasks, each of which 
can be executed by a specialized hardware stage. 

 Pipelining is the backbone of vector supercomputers 
 Widely used in application-specific machine where high throughput is needed 
 Can be incorporated in various machine architectures (SISD,SIMD,MIMD,.....) 

 
Easy to build a powerful pipeline and waste its power because: 

 Data can not be fed fast enough 
 The algorithm does not have inherent concurrency. 
 Programmers do not know how to program it efficiently. 



61 

Types of Pipelines 

 
 Linear Pipelines 
 Non-linear Pipelines 
 Single Function Pipelines 
 Multifunctional Pipelines 

» Static 
» Dynamic 
 

11.2.1 Principles of Linear Pipelining 

 
A. Basic Principles and Structure 
 
Let T be a task which can be partitioned into K subtasks according to the linear precedence 
relation: 
T= {T1,T2,..........,Tk} ; i.e., 
a subtask Tj cannot start until { Ti " i < j } are finished. This can be modelled with the linear 
precedence graph: 
 

 
 
A linear pipeline (No Feedback!) can always be constructed to process a succession of subtask 
with a linear precedence graph. 
 
 

 
Figure 11.1 Basic Structure and Control of a Linear Pipeline 

 
Processor (L=latch, C=clock, Si=the ith stage.) 

 Stages are pure combinational circuits used for processing. 
 Latches are fast registers to hold the intermediate data between the stages. 
 Informational flow is controlled by a common clock with some clock period “t”, and the 

pipeline runs at a frequency of 1/t 
 t is selected as: t = MAX{ti} + tL = tM + tL where, ti= propagation delay of stage Si 

tL=latch delay 
 Pipeline clock period is controlled by the stage with the max delay. 
 Unless the stage delays are balanced, one big and slow stage can slow down the whole 

pipe 



62 

Space-Time Diagrams 
Consider a four stage linear pipeline processor and a sequence of tasks. 
T1, T2,... 
Where each task has 4 subtasks (1st subscript if for task, 2nd is for subtask) as follows: 
T1=>{T11,T12,T13,T14} 
T2=>{T21,T22,T23,T24} 
… 
T2=>{Tn1,Tn2,Tn3,Tn4} 
A space-time diagram can be constructed to illustrate how the overlapping execution of the tasks 
as follows 

 
 

Figure 11.2 Space - Time Diagram 

 

Performance Measure for Linear Pipelined Processors 

 

Speedup Sk- the speedup of a k-stage linear pipeline processor(over an equivalent non-pipelined) 
is given by Sk=(T)/(Tk)=  
 
Execution time for the non-pipelined processor 
Execution time for the pipelined processor 
 

 With a non-pipelined processor, each task takes k clocks, thus for n tasks T1=n. k clocks 
 With a pipelined processor we need k clocks to fill the pipe and generate the first result 

(n-1) clocks to generate the remaining n-1 results 
 
Thus, Tk=k+(n-1), and,  

 
The maximum speedup, attained after an infinite # of takes is 

 
 
Efficiency “E” - the ration of the busy time span over the overall time span (note : E is easy to 
see from spacetime) 
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» Overall time span =(# of stages) * (total # of clocks) 

= k*(k+n-1) clock.stage 
» Busy time span = (# of stages) * (# of tasks) 

= k*(n) clock.stage 

 
Note that : 
Overall time span <=> Allocated computational power 
Busy time span <=> Utilized computational power and  
Thus E <=> Pipeline Utilization 

note also that :  
where Sk = actual speedup and k can be viewed as the maximum speedup 
Throughput “W” - is the number of tasks that can be completed, by the pipeline, per unit time 
» For a k-stage pipeline with a clock period t , n tasks take (k+n-1) t time units 
Thus 
 

 
and 

 
To illustrate the operation principles of a pipeline computation, the design of a pipeline floating 
point adder is given. It is constructed in four stages. The inputs are 
A = a x 2p 

B = b x 2q 

Where a and b are 2 fractions and p and q are their exponents and here base 2 is assumed. 
To compute the sum  
C = A+ B = c x 2r = d x 2s 

Operations performed in the four pipeline stages are specified. 
1. Compare the 2 exponents p and q to reveal the larger exponent r =max(p,q) and to 
determine their difference t =p-q 
2. Shift right the fraction associated with the smaller exponent by t bits to equalize the 
two components before fraction addition. 
3. Add the preshifted fraction with the other fraction to produce the intermediate sum 
fraction c where 0 <= c <1. 
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4. Count the number of leading zeroes, say u, in fraction c and shift left c by u bits to 
produce the normalized fraction sum d = c x 2u, with a leading bit 1. Update the large 
exponent s by subtracting s= r – u to produce the output exponent.  

 

 
 
Figure 11.3 A pipelined floating-point adder with four processing stages 

 
11.2.2 Classification of Pipeline Processors 

 
Arithmetic Pipelining 

The arithmetic and logic units of a computer can be segmentized for pipeline operations in 
various data formats. Well known arithmetic pipeline examples are 

 Star 100 
 The eight stage pipes used in TI-ASC 
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 14 pipeline stages used in Cray-1 
 26 stages per pipe in the cyber-205 

 
Instruction Pipelining 

 

The execution of a stream of instructions can be pipelined by overlapping the execution of the 
current instruction with fetch, decode and operand fetch of subsequent instructions. This 
technique is known as instruction look-ahead. 
 
Processor pipelining 

 

This refers to pipelining processing of the same data stream by a cascade of processors each of 
which processes a specific task. The data stream passes the first processor with results stored in 
memory block which is also accessible by the second processor. The second processor then 
passes the refined results to the third and so on. 
 
The principle pipeline classification schemes are : 
Unification Vs Multifunction pipelines 

 
A pipeline with fixed and dedicated function such as floating adder is called unifuncitonal 
pipeline. Eg : Cray-1 
A multifunction pipe may perform different functions, either at different times or at the same 
time, by interconnecting different subsets of stages in the pipeline. 
Eg : TI-ASC 
 
Static Vs Dynamic Pipeline 

 
A static pipeline has only one functional configuration at a time. 
A dynamic pipeline permits several functional configurations to exist simultaneously. 
 
Scalar Vs Vector Pipelines 

 
A scalar pipeline processes a sequence of scalar operands under the control of DO loop. 
A vector pipeline is designed to handle vector instructions over vector operands. 
 
11.3 Let us Sum Up 

 
The basics of pipelining has been discussed such as structure of a linear pipeline processor, space 
time diagram of a linear pipeline processor for over lapped processing of multiple tasks. Four 
pipeline stages have been explained with a pipelined floating point adder. Various classification 
schemes for pipeline processors have been explained. 
 
11.4 Lesson-end Activities 

 
1.Discuss the classification schemes of pipeline processors. 
2. Discuss the Principles of Linear Pipelining with floating point adder.   
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11.5 Points for discussions 

 
 Pipelining is the backbone of vector supercomputers. It is  Widely used in application-

specific machine where high throughput is needed 
 Can be incorporated in various machine architectures (SISD,SIMD,MIMD,.....) 

 
 
11.6 References 

 
 31R6 - Computer Design by Leslie S. Smith 
 Tarek A. El-Ghazawi, Dept. of Electrical and Computer Engineering, The George 

Washington University 
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Lesson 12 : General Pipeline and Reservation Tables, Arithmetic Pipeline Design Examples 

 
Contents: 

 

12.0 Aims and Objectives 
12.1 Introduction 
12.2 General Pipeline and Reservation Tables 

12.2.1 Arithmetic Pipeline Design Examples 
12.3 Let us Sum Up 
12.4 Lesson-end Activities 
12.5 Points for discussions 
12.6 References 
 
12.0 Aims and Objectives 

 
The main objective of this lesson is to learn about reservation tables and how successive pipeline 
stages are utilized for a specific evaluation function. 
 
12.1 Introduction 

 

The interconnection structures and data flow patterns in general pipelines are 
characterized either feedforward or feedbackward connections, in addition to the cascaded 
connections in a linear pipeline. A 2D chart known as reservation table shows how the 
successive pipelines stages are utilized for a specific function evaluation in successive pipeline 
cycles.  Multiplication of 2 numbers is done by repeated addition and shift operations.  

  
12.2 General Pipeline and Reservation Tables 

 

Reservation tables are used how successive pipeline stages are utilized for a specific 
evaluation function. 

Consider an example of pipeline structure with both feed forward and feedback 
connections. The pipeline is dual functional denoted as function A and function B. The pipeline 
stages are numbered as S1, S2 and S3. The feed forward connection connects a stage Si to a stage 
Sj such that j ≥ i + 2 and feedback connection connects to Si to a stage Sj such that j <= i. 
 
 

Time t0 t1 t2 t3 t4 t5 t6 t7 
S1 A   A   A  
S2  A      A 
S3   A  A A   

 
Table 12.1 Reservation Table for function A 
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Time  t0 t1 t2 t3 t4 t5 t6 
S1 B    B   
S2   B   B  
S3  B  B   B 

 

Table 12.2 Reservation Table for function B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.1 A sample Pipeline 

 

Output (A) 

 

S1 

 

S2 

 

S3 

Input 

Output (B) 

Feed Back 
Connections 
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The row corresponds to the 2 functions of the sample pipeline. The rows correspond to pipeline 
stages and the columns to clock time units. The total number of clock units in the table is called 
the evaluation time. A reservation table represents the flow of data through the pipeline for one 
complete evaluation of a given function. A market entry in the (i,j)th  square of the table 
indicates the stage Si will be used j time units after initiation of the function evaluation. 
 
12.2.1 Arithmetic Pipeline Design Examples 

 
The multiplication of 2 fixed point numbers is done by repeated add-shift operations, using ALU 
which has built in add and shift functions. Multiple number additions can be realized with a 
multilevel tree adder. The conventional carry propagation adder (CPA) adds 2 input numbers say 
A and B, to produce one output number called the sum A+B carry save adder (CSA) receives 
three input numbers, say A,B and D and two output numbers, the sum S and the Carry vector C. 
 

 A =  1 1 1 1 0 1 
 B =  0 1 0 1 1 0 
 D =  1 1 0 1 1 1 
 C = 1 1 0 1 1 1  
 S =  0 1 1 1 0 0 
          
 A+B+D = 1 1 1 0 0 1 0 
          

 
A CSA can be implemented with a cascade of full adders with the carry-out of a lower 

stage connected to the carry-in of a higher stage. A carry-save adder can be implemented with a 
set of full adders with all the carry-in terminals serving as the input lines for the third input 
number D, and all the carry-out terminals serving as the output lines for the carry vector C. 

This pipeline is designed to multiply two 6 bit numbers. There are five pipeline stages. 
The first stage is for the generation of all 6 x 6 = 36 immediate product terms, which forms the 
six rows of shifted multiplicands. The six numbers are then fed into two CSAs in the second 
stage. In total four CSAs are interconnected to form a three level merges six numbers into two 
numbers: the sum vector S and the carry vector C. The final stage us a CPA which adds the two 
numbers C and S to produce the final output of the product A x B. 
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Figure 12.2 A Pipelined Multiplier built with a CSA tree 

12.3 Let us Sum Up 

 

Many interesting pipeline utilization can be revealed by the reservation table.  It is possible to 
have multiple marks in a row or in a column. A CSA (carry save adder) is used to perform 
multiple number additions. 
 
12.4 Lesson-end Activities 

 

1. Give the reservation tables and sample pipeline for any two functions. 
2. With example, discuss carry propagation adder (CPA) and carry save adder (CSA). 
 
12.5 Points for discussions 

 
 The conventional carry propagation adder (CPA) adds 2 input numbers and produces an 

output number called as Sum. 
 A carry save adder (CSA) receives three input numbers A, B, D and outputs of 2 numbers 

the sum vector and the carry vector. 
 

 
12.6 References 

 
 Computer Architecture and Parallel Processing – Kai Hwang 
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Lesson 13 : Data Buffering and Busing Structure, Internal Forwarding and Register 

Tagging, Hazard Detection and Resolution, Job Sequencing and Collision Prevention. 

 
Contents: 

 

13.0 Aims and Objectives 
13.1 Introduction 
13.2 Data Buffering and Busing Structure 

13.2.1 Internal Forwarding and Register Tagging 
13.2.2 Hazard Detection and Resolution 
13.2.3 Job Sequencing and Collision Prevention 

13.3 Let us Sum Up 
13.4 Lesson-end Activities 
13.5 Points for discussions 
13.6 References 
 
13.0 Aims and Objectives 

 
The objective of this lesson is to be familiar with busing structure, register tagging and 

various pipeline hazards and its preventive measures and job sequencing and Collision 
prevention. 
 
13.1 Introduction 

 

Buffers are used to speed close up the speed gap between memory accesse=s for either 
instructions or operands. Buffering can avoid unnecessary idling of the processing stages caused 
by memory access conflicts or by unexpected branching or interrupts. The concepts of busing is 
discussed which eliminates the time delay to store and to retrieve intermediate results or to from 
the registers.  

The computer performance can be greatly enhanced if one can eliminate unnecessary 
memory accesses and combine transitive or multiple fetch-store operations with faster register 
operations. This is carried by register tagging and forwarding. A pipeline hazard refers to a 
situation in which a correct program ceases to work correctly due to implementing the processor 
with a pipeline.  
There are three fundamental types of hazard:  

 Data hazards,  
 Branch hazards, and  
 Structural hazards. 

 
 
13.2 Data Buffering and Busing Structure 

 

Another method to smooth the traffic flow in a pipeline is to use buffers to close up the 
speed gap between the memory accesses for either instructions or operands and arithmetic and 
logic executions in the functional pipes. The instruction or operand buffers provide a continuous 
supply of instructions or operands to the appropriate pipeline units. Buffering can avoid 
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unnecessary idling of the processing stages caused by memory access conflicts or by unexpected 
branching or interrupts. Sometimes the entire loop instructions can be stored in the buffer to 
avoid repeated fetch of the same instructions loop, if the buffer size is sufficiently large. It is 
very large in the usage of pipeline computers. 
 
Three buffer types are used in various instructions and data types. Instructions are fetched to the 
instruction fetch buffer before sending them to the instruction unit. After decoding, fixed point 
and floating point instructions and data are sent to their dedicated buffers. The store address and 
data buffers are used for continuously storing results back to memory. The storage conflict buffer 
is used only used when memory  

 
Figure 13.1 Data Buffers, transfer paths, reservation stations and common data bus 

 

Busing Buffers 

 
The sub function being executed by one stage should be independent of the other sub 

functions being executed by the remaining stages; otherwise some process in the pipeline must 
be halted until the dependency is removed. When one instruction waiting to be executed is first 
to be modified by a future instruction, the execution of this instruction must be suspended until 
the dependency is released. 

Another example is the conflicting use of some registers or memory locations by 
different segments of a pipeline. These problems cause additional time delays. An efficient 
internal busing structure is desired to route the resulting stations with minimum time delays. 
 

In the AP 120B or FPS 164 attached processor the busing structure are even more 
sophisticated. Seven data buses provide multiple data paths. The output of the floating point 
adder in the AP 120B can be directly routed back to the input of the floating point adder, to the 
input of the floating point multiplier, to the data pad, or to the data memory. Similar busing is 
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provided for the output of the floating point multiplier. This eliminates the time delay to store 
and to retrieve intermediate results or to from the registers. 
 
13.2.1 Internal Forwarding and Register Tagging 

 
To enhance the performance of computers with multiple execution pipelines 

1. Internal Forwarding refers to a short circuit technique for replacing unnecessary 
memory accesses by register -to-register transfers in a sequence of fetch-arithmetic-store 
operations 

2. Register Tagging refers to the use of tagged registers, buffers and reservations stations 
for exploiting concurrent activities among multiple arithmetic units. 

The computer performance can be greatly enhanced if one can eliminate unnecessary 
memory accesses and combine transitive or multiple fetch-store operations with faster register 
operations. This concept of internal data forwarding can be explored in three directions. The 
symbols Mi and Rj to represent the ith word in the memory and jth fetch, store and register-to-
register transfer. The contents of Mi and Rj are represented by (Mi) and Rj  
 
Store-Fetch Forwarding 

 

The store the n fetch can be replaced by 2 parallel operations, one store and one register transfer. 
2 memory accesses 
 
Mi  (R1) (store) 
R2  (Mi) (Fetch) 
 
Is being replaced by 
Only one memory access 
 
Mi  (R1)  (store) 
R2  (R1) (register Transfer) 
 
Fetch-Fetch Forwarding 

 
The following fetch operations can be replaced by one fetch and one register transfer. One 
memory access has been eliminated. 
2 memory accesses 
 
R1  (Mi) (fetch) 
R2  (Mi) (Fetch) 
 
Is being replaced by 
Only one memory access 
 
R1  (Mi)  (Fetch) 
R2  (R1) (register Transfer) 
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Store-Store Overwriting 

 

The following two memory updates of the same word can be combined into one; since the 
second store overwrites the first. 
 
2 memory accesses 
 
Mi  (R1) (store) 

R1 

Mi 

R2 R1 

Mi 

R2 

R1 

Mi 

R2 R1 

Mi 

R2 

Mi 

R2 
R1 

Mi 

R2 

Store – Fetch Forwarding 

Fetch – Fetch Forwarding 

Store-Store overwriting 

Figure 13.2 Internal Forwarding Examples thick arrows for 

memory accesses and dotted arrows for register transfers 
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Mi  (R2) (store) 
 
Is being replaced by 
Only one memory access 
 
Mi  (R2) (store) 
 
The above steps shows how to apply internal forwarding to simplify a sequence of arithmetic and 
memory access operations 
 
13.2.2 Hazard Detection and Resolution 

 
Defining hazards 

 

The next issue in pipelining is hazards. A pipeline hazard refers to a situation in which a correct 
program ceases to work correctly due to implementing the processor with a pipeline.  
There are three fundamental types of hazard:  

 Data hazards,  
 Branch hazards, and  
 Structural hazards.  

 
Data hazards can be further divided into  

 Write After Read  
 Write After Write 
 Read After Write 

 
Structural Hazards  

 

These occur when a single piece of hardware is used in more than one stage of the pipeline, so 
it's possible for two instructions to need it at the same time.  
So, for instance, suppose we'd only used a single memory unit instead of separate instruction 
memory and data memories. A simple (non-pipelined) implementation would work equally well 
with either approach, but in a pipelined implementation we'd run into trouble any time we 
wanted to fetch an instruction at the same time a lw or sw was reading or writing its data.  
In effect, the pipeline design we're starting from has anticipated and resolved this hazard by 
adding extra hardware.  
Interestingly, the earlier editions of our text used a simple implementation with only a single 
memory, and separated it into an instruction memory and a data memory when they introduced 
pipelining. This edition starts right off with the two memories.  
Also, the first Sparc implementations (remember, Sparc is almost exactly the RISC machine 
defined by one of the authors) did have exactly this hazard, with the result that load instructions 
took an extra cycle and store instructions took two extra cycles.  
 
Data Hazards  
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This is when reads and writes of data occur in a different order in the pipeline than in the 
program code. There are three different types of data hazard (named according to the order of 
operations that must be maintained):  
 

RAW  

A Read After Write hazard occurs when, in the code as written, one instruction reads a location 
after an earlier instruction writes new data to it, but in the pipeline the write occurs after the read 
(so the instruction doing the read gets stale data).  
 

WAR  

A Write After Read hazard is the reverse of a RAW: in the code a write occurs after a read, but 
the pipeline causes write to happen first.  
 

WAW  

A Write After Write hazard is a situation in which two writes occur out of order. We normally 
only consider it a WAW hazard when there is no read in between; if there is, then we have a 
RAW and/or WAR hazard to resolve, and by the time we've gotten that straightened out the 
WAW has likely taken care of itself.  
(the text defines data hazards, but doesn't mention the further subdivision into RAW, WAR, and 
WAW. Their graduate level text mentions those)  
 

Control Hazards  

 

This is when a decision needs to be made, but the information needed to make the decision is not 
available yet. A Control Hazard is actually the same thing as a RAW data hazard (see above), but 
is considered separately because different techniques can be employed to resolve it - in effect, 
we'll make it less important by trying to make good guesses as to what the decision is going to 
be.  
Two notes: First, there is no such thing as a RAR hazard, since it doesn't matter if reads occur 
out of order. Second, in the MIPS pipeline, the only hazards possible are branch hazards and 
RAW data hazards.  
 

Resolving Hazards 

 
There are four possible techniques for resolving a hazard. In order of preference, they are:  
Forward. If the data is available somewhere, but is just not where we want it, we can create 
extra data paths to ``forward'' the data to where it is needed. This is the best solution, since it 
doesn't slow the machine down and doesn't change the semantics of the instruction set. All of the 
hazards in the example above can be handled by forwarding.  
Add hardware. This is most appropriate to structural hazards; if a piece of hardware has to be 
used twice in an instruction, see if there is a way to duplicate the hardware. This is exactly what 
the example MIPS pipeline does with the two memory units (if there were only one, as was the 
case with RISC and early SPARC, instruction fetches would have to stall waiting for memory 
reads and writes), and the use of an ALU and two dedicated adders.  
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Stall. We can simply make the later instruction wait until the hazard resolves itself. This is 
undesirable because it slows down the machine, but may be necessary. Handling a hazard on 
waiting for data from memory by stalling would be an example here. Notice that the hazard is 
guaranteed to resolve itself eventually, since it wouldn't have existed if the machine hadn't been 
pipelined. By the time the entire downstream pipe is empty the effect is the same as if the 
machine hadn't been pipelined, so the hazard has to be gone by then.  
 

Document (AKA punt). Define instruction sequences that are forbidden, or change the 
semantics of instructions, to account for the hazard. Examples are delayed loads and delayed 
branches. This is the worst solution, both because it results in obscure conditions on permissible 
instruction sequences, and (more importantly) because it ties the instruction set to a particular 
pipeline implementation. A later implementation is likely to have to use forwarding or stalls 
anyway, while emulating the hazards that existed in the earlier implementation. Both Sparc and 
MIPS have been bitten by this; one of the nice things about the late, lamented Alpha was the 
effort they put into creating an exceptionally "clean" sequential semantics for the instruction set, 
to avoid backward compatibility issues tying them to old implementations.  
 
13.2.3 Job Sequencing and Collision Prevention 

 
Initiation   the start a single function evaluation 
Collision   two or more initiations attempt to use the same stage at the same time 
 

Problem: 

 
To properly schedule queued tasks awaiting initiation in order to avoid collisions 
and to achieve high throughput. 
Reservation Table + Modified State Diagram + MAL 

 

Fundamental concepts: 

 

Latency - number of time units between two initiations (any positive integer 1, 2,…) 
Latency sequence – sequence of latencies between successive initiations 
Latency cycle – a latency sequence that repeats itself 
Control strategy – the procedure to choose a latency sequence 
Greedy strategy – a control strategy that always minimizes the latency between the 
current initiation and the very last initiation 
 

 

Definitions: 

 
1. A collision occurs when two tasks are initiated with latency (initiation interval) equal to the 
column distance between two “X” on some row of the reservation table. 
2. The set of column distances F ={l1,l2,…,lr} between all possible pairs of “X” on each row of 
the reservation table is called the forbidden set of latencies. 
3. The collision vector is a binary vector C = (Cn…C2 C1), 
Where Ci=1 if i belongs to F (set of forbidden latencies) and Ci=0 otherwise. 
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Example: Let us consider a Reservation Table with the following set of forbidden 
latencies F and permitted latencies P (complementation of F). 
 

 
Forbidden list = F = {1,5,6,8} 
Collision vector: C={1 0 1 1 0 0 0 1) 
8 7 6 5 4 3 2 1 
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Facts: 

 
1. The collision vector shows both permitted and forbidden latencies from the same 
reservation table. 
2. One can use n-bit shift register to hold the collision vector for implementing a control strategy 
for successive task initiations in the pipeline. Upon initiation of the first task, the collision vector 
is parallel-loaded into the shift register as the initial state. The shift register is then shifted right 
one bit at a time, entering 0’s from the left end. A collision free initiation is allowed at time 
instant t+k   a bit 0 is being shifted at of the register after k shifts from time t. 
A state diagram is used to characterize the successive initiations of tasks in the 
pipeline in order to find the shortest latency sequence to optimize the control strategy. A state on 
the diagram is represented by the contents of the shift register after the proper number of shifts is 
made, which is equal to the latency between the current and next task initiations. 
3. The successive collision vectors are used to prevent future task collisions with 
previously initiated tasks, while the collision vector C is used to prevent possible 
collisions with the current task. If a collision vector has a “1” in the ith bit (from the 
right), at time t, then the task sequence should avoid the initiation of a task at time t+i. 
4. Closed logs or cycles in the state diagram indicate the steady – state sustainable latency 
sequence of task initiations without collisions. 
The average latency of a cycle is the sum of its latencies (period) divided by the 
number of states in the cycle. 
5. The throughput of a pipeline is inversely proportional to the reciprocal of the average latency. 
A latency sequence is called permissible if no collisions exist in the successive initiations 
governed by the given latency sequence. 
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6. The maximum throughput is achieved by an optimal scheduling strategy that achieves the 
(MAL) minimum average latency without collisions. 
 

Corollaries: 

 

1. The job-sequencing problem is equivalent to finding a permissible latency cycle with the 
MAL in the state diagram. 
2. The minimum number of X’s in array single row of the reservation table is a lower 
bound of the MAL. 
Simple cycles are those latency cycles in which each state appears only once per 
each iteration of the cycle. 
A single cycle is a greedy cycle if each latency contained in the cycle is the 
minimal latency (outgoing arc) from a state in the cycle. 
A good task-initiation sequence should include the greedy cycle. 
 
Procedure to determine the greedy cycles 

1. From each of the state diagram, one chooses the arc with the smallest latency label 
unit; a closed simple cycle can formed. 
2. The average latency of any greedy cycle is no greater than the number of latencies in the 
forbidden set, which equals the number of 1’s in the initial collision vector. 
3. The average latency of any greedy cycle is always lower-bounded by the  
 
MAL <=  ALgreedy <=#of1'sin the collision vector 
 
13.3 Let us Sum Up 

 
Buffers helped in closing up the speed gap. It helps in avoiding idling of the processing 

stages caused by memory access. Busing concepts eliminated the time delay. A pipeline hazard 
refers to a situation in which a correct program ceases to work correctly due to implementing the 
processor with a pipeline. Various pipeline hazards are Data hazards, Branch hazards, and 
Structural hazards. 

 

13.4 Lesson-end Activities  
 
1. How buffering can be done using Data Buffering and Busing Structure? Explain. 
2. Define Hazard. What are the types of hazards? How they can be detected and resolved? 
3. Discuss i. Store-Fetch Forwarding ii. Fetch-Fetch Forwarding iii. Store-Store overwriting  
4. Discuss Job Sequencing and Collision Prevention 

 

13.5 Points for discussions 

 

 Register Tagging and Forwarding 
o The computer performance can be greatly enhanced if one can eliminate 

unnecessary memory accesses and combine transitive or multiple fetch-store 
operations with faster register operations. This is carried by register tagging and 
forwarding.. 

 Pipeline Hazards : Data Hazard, Control Hazard, Structural Hazard 
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Lesson 14 : Vector Processing Requirements, Characteristics, Pipelined Vector Processing 

Methods 
 
14.0 Aims and Objectives 
14.1 Introduction 
14.2 Vector Processing Requirements 

14.2.1 Characteristics of Vector Processing 
14.2.1.1 Vector Instructions 
14.2.1.2 Comparison - Vector and Scalar Operations 
14.2.1.3 Scalar and Vector Processing 

14.2.2 Pipelined Vector Processing Methods 
14.3 Let us Sum Up 
14.4 Lesson-end Activities  
14.5 Points for discussions 
14.6 References 
 
 
14.0 Aims and Objectives 
 
The main aim this lesson is to learn the vector processing requirements, its characteristics and the 
instructions used by vector and to perform a comparative study to know the difference between 
scalar and vector operations. 
 
14.1 Introduction 

 

 A vector processor consists of a scalar processor and a vector unit, which could be 
thought of as an independent functional unit capable of efficient vector operations. Various 
pipelined vector processing methods are Horizontal Processing, in which vector computations 
are performed horizontally from left to right in row fashion. 
 Vertical processing, in which vector computations are carried out vertically from top to 
bottom in column fashion. Vector looping, in which segmented vector loop computations are 
performed from left to right and top to bottom in a combined horizontal and vertical method. 
 
14.2 Vector Processing Requirements 

 

 A vector operand contains an ordered set of n elements, where n is called the length of 
the vector. Each element in a vector is a scalar quantity, which may be a floating point number, 
an integer, a logical value or a character. 
A vector processor consists of a scalar processor and a vector unit, which could be thought of as 
an independent functional unit capable of efficient vector operations.  

Vector Hardware 

Vector computers have hardware to perform the vector operations efficiently. Operands can not 
be used directly from memory but rather are loaded into registers and are put back in registers 
after the operation. Vector hardware has the special ability to overlap or pipeline operand 
processing.  
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Figure 14.1 Vector Hardware 

Vector functional units pipelined, fully segmented each stage of the pipeline performs a step of 
the function on different operand(s) once pipeline is full, a new result is produced each clock 
period (cp). 

Pipelining 

 
The pipeline is divided up into individual segments, each of which is completely independent 
and involves no hardware sharing. This means that the machine can be working on separate 
operands at the same time. This ability enables it to produce one result per clock period as soon 
as the pipeline is full. The same instruction is obeyed repeatedly using the pipeline technique so 
the vector processor processes all the elements of a vector in exactly the same way. The pipeline 
segments arithmetic operation such as floating point multiply into stages passing the output of 
one stage to the next stage as input. The next pair of operands may enter the pipeline after the 
first stage has processed the previous pair of operands. The processing of a number of operands 
may be carried out simultaneously.  

The loading of a vector register is itself a pipelined operation, with the ability to load one 
element each clock period after some initial startup overhead.  

Chaining 

 
Theoretical speedup depends on the number of segments in the pipeline so there is a direct 
relationship between the number of stages in the pipeline you can keep full and the performance 
of the code. The size of the pipeline can be increased by chaining thus the Cray combines more 
than one pipeline to increase its effective size. Chaining means that the result from a pipeline can 
be used as an operand in a second pipeline as illustrated in the next diagram.  
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S(I) = A * X(I) + Y(I)  

 
 

 

Figure 14.2 Pipeline Chaining 

This example shows how two pipelines can be chained together to form an effectively single 
pipeline containing more segments. The output from the first segment is fed directly into the 
second set of segments thus giving a resultant effective pipeline length of 8. Speedup (over scalar 
code) is dependent on the number of stages in the pipeline. Chaining increases the number of 
stages 

14.2.1 Characteristics of Vector Processing  

 

14.2.1.1 Vector Instructions 

 
The ISA of a scalar processor is augmented with vector instructions of the following types: 
 
Vector-vector instructions:  
        f1: Vi  Vj           (e.g. MOVE Va, Vb) 
        f2: Vj x Vk  Vi      (e.g. ADD  Va, Vb, Vc) 
 
Vector-scalar instructions: 
        f3: s  x Vi  Vj      (e.g. ADD  R1, Va, Vb) 



86 

 
Vector-memory instructions:  
        f4: M  V             (e.g. Vector Load) 
        f5: V  M             (e.g. Vector Store) 
 
Vector reduction instructions: 
        f6: V  s             (e.g. ADD V, s) 
        f7: Vi x Vj  s       (e.g. DOT Va, Vb, s) 
 
Gather and Scatter instructions: 
        f8: M x Va  Vb       (e.g. gather) 
        f9: Va x Vb  M       (e.g. scatter) 
 
Masking instructions: 
        fa: Va x Vm  Vb      (e.g. MMOVE V1, V2, V3) 
 
Gather and scatter are used to process sparse matrices/vectors. The gather operation, uses a base 
address and a set of indices to access from memory "few" of the elements of a large vector into 
one of the vector registers. The scatter operation does the opposite. The masking operations 
allows conditional execution of an instruction based on a "masking" register.  
 
A Boolean vector can be generated as a result of comparing two vectors, and can be used as a 
masking vector for enabling and disabling component operations in a vector instruction. 
A compress instruction will shorten a vector under the control of a masking of vector. 
A merge instruction combines two vectors under the control of a masking vector. 
 
In general machine operation suitable for pipelining should have the following properties: 

 Identical Processes (or functions) are repeatedly invoked many times, each of which 
can be subdivided into subprocesses (or sub functions) 

 Successive Operands are fed through the pipeline segments and require as few buffers 
and local controls as possible. 

 Operations executed by distinct pipelines should be able to share expensive resources, 
such as memories and buses in the system. 

 The operation code must be specified in order to select the functional unit or to 
reconfigure a multifunctional unit to perform the specified operation. 

 For a memory reference instruction, the base addresses are needed for both source 
operands and result vectors. If the operands and results are located in the vector register 
file, the designated vector registers must be specified. 

 The address increment between the elements must be specified. 
 The address offset relative to the base address should be specified. Using the base 

address and the offset the relative effective address can be calculated. 
 The Vector length is needed to determine the termination of a vector instruction. 
 The Relative Vector/Scalar Performance and Amdahl Law 
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14.2.1.2 Comparison - Vector and Scalar Operations 

A scalar operation works on only one pair of operands from the S register and returns the 
result to another S register whereas a vector operation can work on 64 pairs of operands together 
to produce 64 results executing only one instruction. Computational efficiency is achieved by 
processing each element of a vector identically eg initializing all the elements of a vector to zero. 
A vector instruction provides iterative processing of successive vector register elements by 
obtaining the operands from the first element of one or more V registers and delivering the result 
to another V register. Successive operand pairs are transmitted to a functional unit in each clock 
period so that the first result emerges after the start up time of the functional unit and successive 
results appear each clock cycle.  

Vector overhead is larger than scalar overhead, one reason being the vector length which has to 
be computed to determine how many vector registers are going to be needed (ie the number of 
elements divided by 64).  

Each vector register can hold up to 64 words so vectors can only be processed in 64 element 
segments. This is important when it comes to programming as one situation to be avoided is 
where the number of elements to be processed exceeds the register capacity by a small amount 
eg a vector length of 65. What happens in this case is that the first 64 elements are processed 
from one register, the 65th element must then be processed using a separate register, after the 
first 64 elements have been processed. The functional unit will process this element in a time 
equal to the start up time instead of one clock cycle hence reducing the computational efficiency. 
There is a sharp decrease in performance at each point where the vector length spills over into a 
new register.  

The Cray can receive a result by a vector register and retransmit it as an operand to a subsequent 
operation in the same clock period. In other words a register may be both a result and an operand 
register which allows the chaining of two or more vector operations together as seen earlier. In 
this way two or more results may be produced per clock cycle.  

Parallelism is also possible as the functional units can operate concurrently and two or more 
units may be co-operating at once. This combined with chaining, using the result of one 
functional unit as the input of another, leads to very high processing speeds.  

Scalar and vector processing examples 
DO 10 I = 1, 3  
JJ(I) = KK(I)+LL(I)  
10 CONTINUE  
 

14.2.1.3 Scalar and Vector Processing 

Scalar Processing  

 

Read one element of Fortran array KK  
Read one element of LL  
Add the results  
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Write the results to the Fortran array JJ  
Increment the loop index by 1  
Repeat the above sequence for each succeeding array element until the loop index equals its 
limit.  
 
Vector Processing  

 

Load a series of elements from array KK to a vector register and a series of elements from array 
LL to another vector register (these operations occur simultaneously except for instruction issue 
time)  
Add the corresponding elements from the two vector registers and send the results to another 
vector register, representing array JJ  
Store the register used for array JJ to memory  
This sequence would be repeated if the array had more elements than the maximum elements 
used in vector processing ie 64.  
 
Processing Order and Results  

 

Inherent to vector processing is a change in the order of operations to be performed on individual 
array elements, for any loop that includes two separate vectorized operations. The following 
example illustrates this:  
 
DO 10 I =1, 3  
L(I) = J(I) + K(I)  
N(I) = L(I) + M(I)  
10 CONTINUE  
 
Scalar Version  

 

The two statements within this loop are each executed three times, with the operations 
alternating;  
L(I) is calculated before N(I) in each iteration  
the new value of L(I) is used to calculate the value of N(I).  
 

Results Of Scalar Processing  

 

Event Operation Values  
1 L(1) = J(1)+K(1) 7 = 2 + 5  
2 N(1) = L(1)+M(1) 11 = 7 + 4  
3 L(2) = J(2)+K(2) -1 = (-4) + 3  
4 N(2) = L(2)+M(2) 5 = (-1) + 6  
5 L(3) = J(3)+K(3) 15 = 7 + 8  
6 N(3) = L(3)+M(3) 13 = 15 + (-2)  
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Vector Version  

 
With vector processing the first line within the loop processes all elements of the array before the 
second line is executed.  
 
Results Of  Vector Processing  

 

Event Operation Values  
1 L(1) = J(1)+K(1) 7 = 2 + 5  
2 L(2) = J(2)+K(2) -1 = (-4) + 3  
3 L(3) = J(3)+K(3) 15 = 7 + 8  
4 N(1) = L(1)+M(1) 11 = 7 + 4  
5 N(2) = L(2)+M(2) 5 = (-1) + 6  
6 N(3) = L(3)+M(3) 13 = 15 + (-2)  
NB Both processing methods produce the same results for each array element.  
 
Scalar Vector 
The loop repeats the loop control 
overhead in each iteration 

Using pipelines the overhead is reduced 

 A vector length register is used to control 
the vector operations 

 
The pipeline vector computers can be divided into 2 architectural configurations according to 
where the operands are received in a vector processor. 
They are : 
Memory -to- memory Architecture, in which source operands, intermediate and final results are 
retrieved directly from the main memory. 
Register-to-register architecture, in which operands and results are retrieved indirectly from the 
main memory through the use of large number of vector or scalar registers. 
 
14.2.2 Pipelined Vector Processing Methods 

 

Vector computations are often involved in processing large arrays of data. By ordering 
successive computations in the array, the vector array processing can be classified into three 
types : 
 

 Horizontal Processing, in which vector computations are performed horizontally from 
left to right in row fashion. 

 Vertical processing, in which vector computations are carried out vertically from top 
to bottom in column fashion. 

 Vector looping, in which segmented vector loop computations are performed from left 
to right and top to bottom in a combined horizontal and vertical method. 

 
A simple vector summation computation illustrate these vector processing methods 
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Let { ai for 1 <= i<= n) ne n scalar contstants, Xj = (X1j,X2j…… Xmj)
T for j = 1,2,3 ….n ne n 

column vectors and Yj = (Y1j,Y2j…… Ym)T be a column vector of m components. The 
computation to be performed is 
Y = ai.x1 + a2.x2 + …. an.xn 
 
Y1 = Z11 + Z12 + …..Z1n 
Y2 = Z21 + Z22 + …..Z2n 
. 
. 
. 
Ym = Zm1 +Zm2+…..Zmn 
 
Horizontal Vector Processing 

In this method all components of the vector y are calculated in sequential order, yi for i = 
1,2,….m. Each summation involving n-1 additions must be completed before switching to the 
evaluation the next summation. 
 
Vertical Vector Processing :  

The sequence of additions in this method are, compute the partial sum sequentially through the 
pipeline (in row wise z11+z12…) 
Computer the partial sum in the column format repeatedly. 
 
Vector Looping Method:  

 

It combines the horizontal and vertical approaches into a block approach. 
 
14.3 Let us Sum Up 

 
The various vector instructions have been discussed and the comparative study between scalar 
and vector helps in known differences existing between them. The pipeline vector computers are 
also divided into 2 architectural configurations according to where the operands are received in a 
vector processor has been discussed and the various pipelined vector processing methods has 
been mentioned. 
 
14.4 Lesson-end Activities  
 
1. Compare scalar and vector processing. 
2. Explain various vector processing methods. 
3. What is pipeline chaining? Also, give the characteristics of vector processing. 
  
 
14.5 Points for discussions 

 

 Pipelining 
 Difference between vector and scalar 
 Vector Processing methods 
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14.6 References 
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UNIT – IV 

 
Lesson 15 : SIMD Array Processors, Organization, Masking and Data Routing & Inter PE 

communications 

 
15.0 Aims and Objectives 
15.1 Introduction 
15.2 SIMD Array Processor 

15.2.1 SIMD Computer Organization 
15.2.2 Masking and Data Routing 
15.2.3 Inter PE Communications 

15.3 Let us Sum Up 
15.4 Lesson-end Activities  
15.5 Points for discussions 
15.6 Suggested References 
 
 
15.0 Aims and Objectives 

 
The aim of this lesson is to know about various organization and control mechanisms of 

array processors. 
 
15.1 Introduction 

 
 A synchronous array of parallel processors is called an array processor which consists of 
multiple processing elements (PE) under supervision of one control unit (CU). Some array 
processor may use 2 routing register, one for input and the other for output. Each PEi is either 
active or in the inactive mode during each instruction cycle. If a PEi is active, it executes the 
instruction broadcast to it by the CU. If a PEi is inactive, it will not execute the broadcast 
instruction. The masking schemes are used to specify the status flag of PEi. 

There are fundamental decisions in determining the appropriate structure of an 
interconnection network for an SIMD machine. They are made between Operation Modes, 
Control Strategies, Switching methodologies, Network Topologies. 
 
15.2 SIMD Array Processor  

 

A synchronous array of parallel processors is called an array processor which consists of 
multiple processing elements (PE) under supervision of one control unit (CU). An array 
processor can handle single instruction multiple data streams (SIMD). It is also known as SIMD 
computers. 

 
SIMD appears in 2 basic architectural organization 

 Array Processors using random access memory 
 Associative Processors 
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Classification of Parallel Machines 

 
Depending on whether there is one or several of these streams we have 4 classes of computers. 

• Single Instruction Stream, Single Data Stream: SISD 
• Multiple Instruction Stream, Single Data Stream: MISD 
• Single Instruction Stream, Multiple Data Stream: SIMD 
• Multiple Instruction Stream, Multiple Data Stream: MIMD 
 

15.2.1 SIMD Computer Organization 

 

 All N identical processors operate under the control of a single instruction stream issued by a 
central control unit. 

 There are N data streams; one per processor, so different data can be used in each processor. 
 

 
 

Figure 15.1 Configuration of SIMD Array Processor 

 

• The processors operate synchronously and a global clock is used to ensure lockstep 
operation, i.e., at each step (global clock tick) all processors execute the same instruction, 
each on a different datum. 

• Array processors such as the ICL DAP, Connection Machine CM-200, and MasPar are 
SIMD computers. 

• SIMD machines are particularly useful at exploiting data parallelism to solve problems 
having a regular structure in which the same instructions are applied to subsets of data. 
 

 
 
The same instruction is issued to all 4 processors (add two numbers), and all processors execute 
the instructions simultaneously. It takes one step to add the matrices, compared with 4 steps on a 
SISD machine. 
 

• In this example the instruction is simple, but in general it could be more complex such as 
merging two lists of numbers. 

• The data may be simple (one number) or complex (several numbers). 
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• Sometimes it may be necessary to have only a subset of the processors execute an 
instruction, i.e., only some data needs to be operated on for that instruction. This 
information can be encoded in the instruction itself indicating whether 

– the processor is active (execute the instruction) 
– the processor is inactive (wait for the next instruction) 

• SIMD machines usually have 1000's of very simple processors. Shared memory SIMD 
machines are unrealistic because of the cost and difficulty in arranging for  efficient 
access to shared memory for so many processors. There are no commercial shared 
memory SIMD machines. 

• MIMD machines use more powerful processors and shared memory machines exist for 
small numbers of processors (up to about 100). 

 

15.2.2 Masking and Data Routing 

 

Each processor PE has its own memory PEMi. It has a set of working registers and flags 
names Ai, Bi ,Ci. It contains an Arithmetic and Logic unit Si and a local index register Ii, an 
address register Di and a data routing register Ri. The Ri of each PEi is connected to the Rj of 
other PEs via the interconnection network. When data transfer among PEs occurs, it is the 
content of Ri registers that are being transferred. 
Some array processor may use 2 routing register, one for input and the other for output. Each PEi 
is either active or in the inactive mode during each instruction cycle. If a PEi is active, it executes 
the instruction broadcast to it by the CU. If a PEi is inactive, it will not execute the broadcast 
instruction.  
The masking schemes are used to specify the status flag Si of PEi. The conventions Si = 1 is 
chosen for an active PEi and Si = 0 for an inactive PEi. In the CU, there is a global index register 
I and a Masking register M. The M register has N bits. 
The physical length of a vector is determined by the number of PEs. The CU performs the 
segmentation of a long vector into vector loops, the setting of a global address, and the offset 
increment. 
 

 Two processes are employed  
Master Process:  

o Holds pool of tasks for worker processes to do  
o Sends worker a task when requested  
o Collects results from workers  

Worker Process: repeatedly does the following  
o Gets task from master process  
o Performs computation  
o Sends results to master  

 Worker processes do not know before runtime which portion of array they will handle or 
how many tasks they will perform.  

 Dynamic load balancing occurs at run time: the faster tasks will get more work to do.  
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Figure 15.2  Components in a Processing element (PEi) 

 

15.2.3 Inter PE Communications 

 

These are fundamental decisions in determining the appropriate structure of an interconnection 
network for an SIMD machine. The decisions are made between 

 Operation Modes 
 Control Strategies 
 Switching methodologies 
 Network Topologies 
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Operation Mode 

 

The operations modes of interconnection networks can be of 3 categories 
 Synchronous  
 Asynchronous  
 Combined. 

Synchronous communication is needed for establishing communication paths synchronously for 
either a data manipulating function or for a data instruction broadcast. 
Asynchronous communication is needed for multiprocessing in which connection requests are 
issued dynamically. A system may also be designed to facilitate both synchronous and 
asynchronous operations.  
 
Control Strategy 

 

A typical interconnection networks consists of number of switching elements and 
interconnecting links. Interconnection functions are realized by properly setting control of the 
switching elements. The control setting function can be of 2 types  

 Distributed Control managed by individual switching element. 
 Centralized Control managed by a centralized  

 
Switching Technology 

 

The 2 major switching methodologies are 
 Circuit switching 
 Packet switching 
 In circuit switching a physical path is actually established between source and 

destination before transmission of data. 
 This is suitable for bulk data transmission. 
 In packet switching, data is put in a packet and routed through interconnection 

network without establishing a physical connection path. 
 This is suitable for short messages. 

 
Network Topology 

 

A network can be depicted by a graph which nodes represent switching points and edges 
represent communication links. The topologies can be of 2 types 

 Static 
 Dynamic 

In static link between 2 processors are passive and dedicated buses cannot be reconfigured for 
direct connection to other processors. 
In dynamic link, configuration can be made by setting the network's active switching elements. 
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15.3 Let us Sum Up 

 
The SIMD computer organization has been explained. The various data masking and 

routing concepts has been explained. The concept of master and slave process has been 
discussed. These are fundamental decisions in determining the appropriate structure of an 
interconnection network for an SIMD machine. The decisions are made between Operation 
Modes, Control Strategies, Switching methodologies, Network Topologies. 
 
15.4 Lesson-end Activities  
 

1. Discuss SIMD computer architecture in detail. 
2. Discuss Inter PE communication. 

 
 
15.5 Points for Discussions 

 

 In circuit switching a physical path is actually established between source and destination 
before transmission of data. 

 This is suitable for bulk data transmission. 
 In packet switching, data is put in a packet and routed through interconnection network 

without establishing a physical connection path. 
 Synchronous communication is needed for establishing communication paths synchronously 

for either a data manipulating function or for a data instruction broadcast. 
 Asynchronous communication is needed for multiprocessing in which connection requests 

are issued dynamically.  
 A system may also be designed to facilitate both synchronous and asynchronous operations 
 
 
 
15.6 Suggested References 

 
Computer Architecture and Parallel Processing – Kai Hwang 
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Lesson 16 :  SIMD Interconnection Networks, Static Vs Dynamic, Mesh Connected Illiac 

Network, Cube Interconnection Network, Shuffle-Exchange Omega Network 

 

Contents: 

16.0 Aims and Objectives 
16.1 Introduction 
16.2 SIMD Interconnection Networks 

16.2.1 Static Versus Dynamic Networks 
16.2.2 Mesh-Connected Illiac Networks 
16.2.3 Cube Interconnection Networks 
16.2.4 Shuffle-Exchange Omega Networks 

16.3 Let us Sum Up 
16.4 Lesson-end Activities  
16.5 Points for Discussions 
16.6 References 
 
 
16.0 Aims and Objectives 

 

The main aim of this lesson is to learn Single stage, recirculating networks and Multistage 
Networks. Important network classes has been included such as Illiac Network, Cube Network, 
Omega Network.  
 
16.1 Introduction 

 

 The SIMD networks classified into 2 categories based on topologies called as Static 
Networks and Dynamic Networks. The diagrammatical representation of static interconnection 
networks is shown. Dynamic networks has been further classified as Single stage versus 
Multistage. Examples of Single stage network is implemented in ILLIAC and examples of 
Multistage network is Omega network 
 
16.2 SIMD Interconnection Networks 

 
Various interconnection networks have been suggested for SIMD computers. 
 
16.2.1 Static versus Dynamic Networks 

 
The topological structure of an SIMD array processor is mainly characterized by the data routing 
network used in interconnecting the processing elements. 
 
Interconnection Networks 

 

• Parallel computers with many processors do not use shared memory hardware. 
• Instead each processor has its own local memory and data communication takes place via 

message passing over an interconnection network. 
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• The characteristics of the interconnection network are important in determining the 
performance of a multicomputer. 

• If network is too slow for an application, processors may have to wait for data to arrive. 
 
Interconnection Networks and Message Passing 

 
In this case each processor has its own private (local) memory and there is no global, 

shared memory. The processors need to be connected in some way to allow them to 
communicate data. 
 

 
 

Figure 16.1 Interconnection Networks and Message Passing 

 
 

 
Figure 16.2 Interconnection Networks 
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The SIMD interconnection networks are classified into the following 2 categories based on 
network topologies 

 Static Networks 
 Dynamic Networks 

 

Static Networks 

 
Topologies in the static networks can be classified according to the dimension required for 
layout. 
One dimensional topologies include 

 Linear array 
Two dimensional topologies include 

 The ring 
 Star 
 Tree 
 Mesh 
 Systolic Array 

Thee dimensional topologies include 
 Completely connected chordal ring 
 3 cube 
 3 cube connected cycle 

 

Dynamic Networks 

 
2 classes of dynamic networks are 

 single stage 
 multi stage 

 

Single Stage Networks 

 
A single stage switching network with N input selectors (IS) and N output selectors (OS). 

Each is essentially a 1- to-D demultiplexer and each OS is an M-to-1 multiplexer. Cross bar 
network is a single stage network. 

The single stage network is also called as recirculating network. Data items may have to 
recirculate through the single stage several times before reaching their final destinations. The 
number of recirculation depends on the connectivity in the single stage network. 
 

Multistage Networks 

Multi-stage networks are based on the so called shuffle-exchange switching element, 
which is basically a 2 x 2 crossbar.  Multiple layers of these elements are connected and 
form the network.  
Many stages of interconnected switches form a multistage SIMD networks.  
Three characterizing feature describe multistage networks 

 The Switch Box 
 Network Topology 
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 Control Structure 

 
 

Figure 16.3 Static Interconnection Network Topologies 

 
Each box is essentially an interchange device with 2 inputs and 2 outputs. There are 4 states in a 
switch box. They are 

 Straight 
 Exchange 
 Upper Broadcast 
 Lower broadcast. 

 

Figure 16.4 A two-by-two switching box and its four interconnection states 
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Examples of Multistage Networks 

 Banyan  
 Baseline  
 Cube  
 Delta  
 Flip  
 Indirect cube  
 Omega  

All multistage networks that are based on shuffle-exchange elements, is a blocking 
network because not all possible input-output connections can be made at the same time, 
since one path might block another (in contrast to a crossbar, which is nonblocking). 
Using crossbars instead of the shuffle-exchange elements, it is possible, to build 
nonblocking networks. Such networks are called CLOS-networks. 

A multistage network is capable of connecting an arbitrary input terminal to an arbitrary output 
terminal. Multistage networks can be  

 One sided 
 Two Sided 

The one sided network called as full switches, have input-output ports on the same side.  
The two sided network have an input side and output side and can be divided into three classes 

 Blocking 
 Arrangeable 
 Non- Blocking 
 

In Blocking networks, simultaneous connections of more than one terminal pair may result 
conflicts in the use of network communication links. 
Examples : Data Manipulator, Flip, N cube, omega 
 
In rearrangeable network, a network can perform all possible connections between inputs and 
outputs by rearranging its existing connections so that a connection path for a new input-output 
pair can always be established. 
Example : Benes Network 
 
A non –blocking can handle all possible connections without blocking. 
Example : Clos Network 
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(a) Omega Network 

 

 
(b) Benes Network 

 
(c) Clos Network 

Figure 16.5 Several Multistage Interconnection Networks 

 

16.2.2 Mesh-Connected Illiac Networks 

 
In a mesh network nodes are arranged as a q-dimensional lattice, and communication is allowed 
only between neighboring nodes. 
In a periodic mesh, nodes on the edge of the mesh have wrap-around connections to nodes on the 
other side. This is sometimes called a toroidal mesh. 
 
Mesh Metrics 

For a q-dimensional non-periodic lattice with kq nodes: 
• Network connectivity = q  
• Network diameter = q(k-1) 
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• Network narrowness = k/2 
• Bisection width =  kq-1 
• Expansion Increment = kq-1 
• Edges per node  =  2q 

 

 
 

Figure 16.6 Topology 

 

 
 

Figure 16.7 Mesh Connections 

 
Figure 16.8 Mesh Redrawn 
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The topology is formerly described by the four routing functions: 
• R+ : I i+1 mod N=> (0,1,2…,14,15) 
• R- : Ii-1 mod N=> (15,14,…,2,1,0) 
• R+r: Ii+r mod N=> (0,4,8,12)(1,5,9,13)(2,6,10,14)(3,7,11,15) 
• R-r: Ii-r mod N=> (15,11,7,3)(14,10,6,2)(13,9,5,1)(12,8,4,0) 
where (i j k)(l m n)=> i-->j,j-->k,k-->i ; l-->m,m-->n,n-->l and r = N 
 

Each PEi is directly connected to its four neighbors in the mesh network. Horizontally, all PEs of 
all rows form a linear circular list as governed by the following two permutations, each with a 
single cycle of order N. The permutation cycles (a b c) (d e) stands for permutation ab, bc, 
ca  and de, ed in a circular fashion with each pair of parentheses. 
R+1 = (0 1 2 ….N-1) 
R–1 = (N-1 ….. 2 1 0) 
For the example betwork of N = 16 and r = 16 = 4, the shift by a distance of four is specifies by 
the followimg permutations, each with four cycles of order four each: 
 
R +4 = (0 4 8 12)(1 5 9 13)(2 6 10 14)(3 7 11 15) 
R –4 = (12 8 4 0)(13 9 5 1)(14 10 6 2)(15 11 7 3) 
 

16.2.3 Cube Interconnection Networks 

 

The cube network consists of m functions defined by cubei (Pm-I ..Pi+1 PiPi-i ... Po) 
= Pm-i ….Pi+iPiPi-i …..Po 

for 0 <= i < m. When the PE addresses are considered as the corners of an m-dimensional cube 
this network connects each PE to its m neighbors. 
 
Dimensionality of a cube “n” = log2N 

• Communication links connect each pair of PEs with addresses that differ in 1 bit only (distance 
of 1). 
• Examples 

  
 

Figure 16.9 A 3 Cube of 8 nodes 

 
Figure 16.10 A 3-cube with nodes denoted as C2 C1 C0 in binary. 
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Figure 16.11 The recirculating Network 

 
It takes <= log N steps to rotate data from any PE to another. 
• Routing functions are formerly described as: 
Ci (An-1 …. A1 A0)= An-1…Ai+1 A’i Ai-1……A0 
V i =0,1,2,…,n-1 
 
Example: N=8 => n=3 
 

 
 

Figure 16.12 A multistage Cube network for N = 8 

 

Two functions straight and exchange switch boxes are used in constructing multistage cube 
networks. The stages are numbered as 0 at input end and increased to n-1 at the output stage.  
 

16.2.4 Shuffle-Exchange Omega Networks 

 

A shuffle-exchange network consists of n=2k nodes, and two kinds of connections. 
1.Routing 
• Have wide applications in implementing parallel algorithms such as FFT, sorting, AT, and 
polynomial evaluations. 
• Two routing functions: shuffle “S” and Exchange “E”. 
Shuffle: 

S(A)=S(An-1…A1A0)=A.n-2…A1A0An-1, 0<A<1 
Which is effectively like shuffling the bottom half of a card deck into the top half. 
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Exchange: 
E(An-1…A1A0)= (An-1…A1A0’)=C0 . The complement of LSM means data exchange 
between 2 PEs with adjacent addresses. 
 
 Exchange connections links nodes whose numbers differ in their lowest bit. 
 Perfect shuffle connections link node i with node 2i mod(n-1), except for node n-1 which is 

connected to itself. 
 Example of n = 8 

 
 
An N by N omega network, consists of n identical stages, where each stage is a 
perfect shuffle interconnection followed by a column of N/2 four-function interchange boxes 
under individual box control.  The shuffle connects output  
P n-l...Pl P0 of stage i to input  P n-2...PlP0Pn-l of stage i-1. Each interchange box in an omega 
network is controlled by the n-bit destination tags associated with the data on its input lines. 
 
The perfect shuffle cuts the deck into 2 halves from the center and remixes them evenly. 
The inverse perfect shuffle does the opposite to restore the original ordering. 

 
Figure 16.13 (a) Perfect Shuffle and Inverse Perfect Shuffle for n = 8 
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8-Node Shuffle-Exchange Network 

 
Below is an 8-node shuffle-exchange network, in which shuffle links are shown with solid lines, 
and exchange links with dashed lines. 
 

 
Figure 16.13 (b) Shuffle Exchange recirculating network for N = 8 

 

Shuffle-Exchange Networks 

 
• What is the origin of the name “shuffle-exchange”? 
• Consider a deck of 8 cards numbered 0, 1, 2,…,7. The deck is divided into two halves and 

shuffled perfectly, giving the order: 
  0, 4, 1, 5, 2, 6, 3, 7 

• The final position of a card i can be found by following the shuffle link of node i in a shuffle-
exchange network. 

 
Shuffle-Exchange Networks 

 
• Let ak-1, ak-2,…, a1, a0 be the address of a node in a shuffle-exchange network in binary. 
• A datum at this node will be at node number 

  ak-2,…, a1, a0, ak-1 
  after a shuffle operation. 
• This corresponds to a cyclic leftward shift in the binary address. 
• After k shuffle operations we get back to the node we started with, and nodes through which 

we pass are called a necklace. 

 
 

Figure 16.14 The Multi stage Omega Network 

0 2 3 4 5 6 7 1 
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16.3 Let us Sum Up 

 
Various SIMD interconnection networks has been explained in detail and the different 

classification of networks as static and dynamic networks. An Illiac network, Cube network and 
Omega network has been explained. 

 
16.4 Lesson-end Activities  
 
1. Explain Static Networks Vs Dynamic Networks. 
2. Discuss Mesh-Connected Illiac Networks and Cube Interconnection Networks 
3. Discuss Shuffle-Exchange Omega Networks 

 
 
16.5 Points for Discussions 

 

 Static Versus Dynamic 
 Single Stage versus Multi Stage 
 Mesh Connected Illiac Network 
 Cube Network 
 Omega Network 
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Lesson 17 : Microprocessor Architecture and Programming, Functional structures  

 

Contents: 

 
17.0 Aims and Objectives 
17.1 Introduction 
17.2 Micro Processor Architecture and Programming 

17.2.1 Functional Structures 
17.2.2 Loosely Coupled Multiprocessors 
17.2.3 Example : Cm* 
17.2.4 Tightly Coupled Multiprocessors 
17.2.5 Example : Cyber-170 
17.2.6 Processor Characteristics for Multiprocessing 

17.3 Let us Sum Up 
17.4 Lesson-end Activities  
17.5 Points for Discussions 
17.6 Suggested References 
 
17.0 Aims and Objectives 

 

The main aim of this lesson is to learn the architectural models of multiprocessor defined as 
loosely coupled and tightly coupled multiprocessor. A number of architectural features are 
described below for a processor to be effective in multiprogramming environment. 
 
17.1 Introduction 

 
A multiprocessor is expected to reach faster speed than the fastest uni-processor. Multiprocessor 
characteristics are Interconnection Structures, Interprocessor Arbitration, Interprocessor 
Communication and Synchronization, Cache Coherence. Multiprocessing sometimes refers to 
the execution of multiple concurrent software processes in a system as opposed to a single 
process at any one instant. The 2 architectural models of Multiprocessor are 
Tightly Coupled Multiprocessor are defined as Tasks and/or processors communicate in a highly 
synchronized fashion, Communicates through a common shared memory, Shared memory 
system 
Loosely Coupled System is defined as Tasks or processors do not communicate in a        
synchronized fashion, Communicates by message passing packets, Overhead for data exchange 
is high, Distributed memory system. 
 
17.2 Micro Processor Architecture and Programming 

A number of processors (two or more) are connected in a manner that allows them to share the 
simultaneous execution of a single task. In addition, a multiprocessor consisting of a number of 
single uni-processors is expected to be more cost effective than building a high-performance 
single processor. An additional advantage of a multiprocessor consisting of n processors is that if 
a single processor fails, the remaining fault-free n-1 processors should be able to provide 
continued service albeit with degraded performance.  



111 

17.2.1 Functional Structures 

Multiproceesors are characterized by 2 attributes: First a multiprocessor is a single computer that 
includes multiple processor and second processors may communicate and cooperate at different 
levels in solving a given problem. The communication may occur by sending messages from one 
processor to the other by sharing a common memory. 

2 Different Architectural Models of Multiprocessor are 
Tightly Coupled System 
     - Tasks and/or processors communicate in a highly synchronized fashion 
     - Communicates through a common shared memory 
     - Shared memory system 
Loosely Coupled System 
     - Tasks or processors do not communicate in a synchronized fashion 
     - Communicates by message passing packets 
     - Overhead for data exchange is high 
     - Distributed memory system 
 
17.2.2 Loosely Coupled Multiprocessors 

 
 In loosely coupled Multiprocessors each processor has a set of input-output devices and a 

large local memory from where instructions and data are accessed. 
 Computer Module is a combination of  

o Processor 
o Local Memory 
o I/O Interface 

 Processes which executes on different computer modules communicate by exchanging 
messages through a Message Transfer System (MTS). 

 The Degree of coupling is very Loose. Hence it is often referred as distributed system. 
 Loosely coupled system is usually efficient when the interactions between tasks are 

minimal. 
 
 
 
 
 
 
 
 
 
 

(a) Figure 17.1 A Computer Module 

 

 

 

 

 

 
 

Processor 
(P) 

 Channel with arbiter 
switch 

I/O 
Local 

Memory 
(LM) 

Local Bus 

 

 

 
 

Processor 
(P) 

 Channel with 

I/O 
Local 

Memory 
(LM) 

Local 
Bus 

 

 
 

Processor 
(P) 

 Channel with 

I/O 
Local 

Memory 
(LM) 

Local 
Bus 

…… 

Computer Module 0 Computer Module N-1 



112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.2 Non-Hierarchical Loosely coupled Multiprocessor System 

 

It consists of a  
 processor  
 local memory 
 Local Input-output devices 
 Interface to other computer Modules 

 The interface may contain a channel and arbiter switch (CAS) 
 If requests from two or more different modules collide in accessing a physical segment of the 

MTs, the arbiter is responsible for choosing one of the simultaneous requests according to a 
given service discipline. 

 It is also responsible for delaying requests until the servicing of the selected request is 
completed. 

 The channel within the CAS may have a high speed communication memory which is used 
for buffering block transfers of messages. 

 The message transfer system is a time shared bus or a shared memory system. 
 
17.2.3 Example of Loosely Coupled Multiprocessors : The Cm* Architecture 

 

The example of LCS is the Cm* architecture. Each computer module of the Cm* includes a local 
switch called the Slocal. The Slocal intercepts and routes the processor’s requests to the memory 
and the I/O devices outside of the computer module via a map bus. It also accepts references 
from other computer modules to its local memory and I/O devices. The address translation uses 
the four higher bits of the processors address along with the current  address by the X-bit of the 
LSI -11 processor status word (PSW), to access a mapping tablewhich determines whether the 
reference is local or nonlocal. 
A virtual address of the nonlocal reference is formed by concatenating the nonlocal address field 
given by the mapping table and the source processors identification. The virtual address is 
fetched by the Kmap via the map bus in response to a service request for nonlocal access. A 
number of computer modules may be connected to a map bus so that they share the use of a 
single KMap. The Kmap is a processor that is responsible for mapping addresses and routing 
data between Slocals.    
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A cluster is regared as the lowest level, is made up of computer modules, a KMap and the map 
bus. Clustering can enhance the cooperative ability of the processors in a cluster to operate on 
shared data with low communication overhead. 
The three processors in the Kmap are the Kbus, the Linc and the Pmap. The KBus is the bus 
controller which arbitrates requests to the map bus. The Pmap is the mapping processor which 
responds to requests from the Kbus and Linc. It also performs most of the request processing. 
The Pmap communicates with the computer modules in its cluster via the map bus which is a 
packet switched bus. 
Three sets of queues provide interfaces between the Kbus, Linc and the Pmap. Since PMap is 
much faster than the memory in the computer modules, it is multiprogrammed to handle upto 
eight concurrent requests. Each of the eight partition is called a context and exists in the Pmap. 
Typically, each context processes one transaction. If one context needs to wait for a message 
packet to return with the reply to some request, the PMap switches to another context that is 
ready to run so that some other transaction can proceed concurrently. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 17.3 The components of the kmap in Cm* 
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17.2.4 Tightly Coupled Multiprocessors(TCS) 

 
The throughput of the hierarchical loosely coupled multiprocessor may be too slow for some 
applications that require fast response times. If high speed or real time processing is required the 
TCS may be used. 
Two typical models are discussed 
In the first model, it consists of  

o p processors 
o l memory modules 
o d input-output channels 

The above units are connected through a set of three interconnection networks namely the  
o processor-memory interconnection network (PMIN) 
o I/O processor interconnection network (IOPIN) 
o Interrupt Signal Interconnection Network (ISIN) 

 
The PMIN is a switch which can connect every processor to every module. It has pl set of 

cross points. It is a multistage network. A memory can satisfy only one processor’s request in a 
given memory cycle. Hence if more than one processors attempt to access the same memory 
module, a conflict occurs and it is resolved by the PMIN. 

Another method to resolve the conflict is to associate a reserved storage area with each 
processor and it is called as ULM unmapped local memory. It helps in reducing the traffic in 
PMIN. 

Since each memory references goes through the PMIN, it encounters delay in the processors 
memory switch so this can be overcome by using a private cache with each processor.  
 
A multiprocessor organization which uses a private cache with each processor is shown. This 
multiprocessor organization encounters the cache coherence problem. More than one consistent 
copy of data may exist in the system. 
 
In the figure there is a module attached to each processor that directs the memory reference to 
either the ULM or the private cache of that processor.  This module is called the memory map 
and is similar in operation to the Slocal.  
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Figure 17.4 Tightly Configured Multiprocessor configurations 
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Figure 17.4 (Continued) 

 

17.2.5 Example of Tightly Coupled Multiprocessor : The Cyber – 170 Architecture 

 
This configuration has 2 subsystems. 

o The central processing sub system 
o The peripheral processing sub system 

These subsystems have to access to a common central memory (CM) through a central memory 
controller, which is essentially a high speed cross bar switch. In addition to the central memory 
there is an optional secondary memory called the extended core memory (ECM) which is a low 
speed random access read-write memory. The ECM and CM form a 2 level memory hierarchy. 
Here the CMC becomes the switching center, which performs the combined functions of 
ISIN,IOPIN, and PMIN. 
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Figure 17.5 A Cyber-170 Multiprocessor configurations with the two processors 

 
CM : Central Memory 
CMC : Central Memory Controller 
CPi : ith central processor 
CPS  : Central Processing System 
PPS : peripheral processing subsystem 
 
17.2.6 Processor Characteristics for Multiprocessing 

 

A number of desirable architectural features are described below for a processor to be effective 
in multiprocessing environment. 
 
Processor recoverability 

 

The process and processor are 2 different entities. If the processor fails there should be another 
processor to take up the routine. Reliability of the processor should be present. 
 
Efficient Context Switching 

 

A general purpose register is a large register file that can be used for multi-programmed 
processor. For effective utilization it is necessary for the processor to support more than one 
addressing domain and hence to provide a domain change or context switching operation. 

PPS 

 

CP0 CP1 

CMC CM 

CPS 

ECM 
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Large Virtual and Physical address space 

 
A processor intended to be used in the construction of a general purpose medium to large scale 
multiprocessor must support a large physical address space. In addition a large virtual space is 
also needed. 
 
Effective Synchronization Primitives 

 
The processor design must provide some implementation of invisible actions which serve as the 
basis for synchronization primitives. 
 
Interprocessor Communication mechanism 

 
The set of processor used in multiprocessor must have an efficient means of interprocessor 
mechanism. 
 
Instruction Set 

 
The instruction set of the processor should have adequate facilities for implementing high level 
languages that permit effective concurrency at the procedural level and for efficiently 
manipulating data structures. 
 
17.3 Let us Sum Up 

 
The architectural model of Multiprocessor system has been discussed such as Tightly and 
Loosely coupled multiprocessor, its block diagram and examples has been neatly explained. The 
tightly coupled processor shares a common memory and the loosely coupled processor does not 
share a common memory. The concept of cache coherence has also be discussed.  Various 
processor characteristics of multiprocessor have been last topic of this lesson. 
 
17.4 Lesson-end Activities  
 
1. Discuss in detail Micro Processor Architecture and Programming 
2. Explain the various multiprocessor characteristics. 
 
 
17.5 Points for Discussions 

 

o Multiprocessor  
o Tightly Coupled Multiprocessor 
o Loosely Coupled Multiprocessor 
o Cache Coherence  
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Lesson 18 : Interconnection Networks 

 

Contents: 

 
18.0 Aims and Objectives 
18.1 Introduction 
18.2 Interconnection Networks 

18.2.1 Time shared or Common Buses 
18.2.2 Crossbar Switch and Mutliport Memories 
18.2.3 Multistage Networks for Multiprocessors 

18.3 Let us Sum Up 
18.4 Lesson-end Activities  
18.5 Points for Discussions 
18.6 References 
 
 
18.0 Aims and Objectives 

 

The main objective of this lesson is to define the characteristics of multiprocessor systems, (ie)  
is the ability of each processor to share a set of memory modules, and I/O devices.  This sharing 
capability is provided through a set of interconnection networks. 
 
18.1 Introduction 

 
Interconnection networks helps in sharing resources, one is between the processor and the 

memory modules and the other between the processor and the I/O Systems. There are different 
physical forms available for interconnection networks. They are time shared or common bus, 
Crossbar switch and multistage networks for multiprocessors. 
 
18.2 Interconnection Networks 

 
The organization and performance of a multiple processor system are greatly influenced 

by the interconnection network used to connect them. 
 
18.2.1 Time shared or Common Buses 

 

The simplest interconnection system for multiprocessors is a communication path 
connecting all of the functional units. The common path is called as time shared or common bus. 
The organization is least complex and easier to configure. Such an interconnection is often a 
totally passive unit having no active components such as switches. Transfer operations are 
completely controlled by the bus interfaces of the sending and receiving units. Since the bus is 
shared, a mechanism must provide to resolve contention. The conflict resolution methods include 
static or fixed priorities, FIFO queues and daisy chaining. 

A unit that wishes to initiate transfer must first determine the availability of status of the 
bus, and then address the destination unit to determine its availability and capability to receive 
the transfer. A command is also issued to inform the destination unit what operation it is to 
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perform with the data being transferred, after which the data transfer is finally initiated. A 
receiving unit recognizes its address placed on the bus and responds of the control signals from 
the sender. 
 
Example of Time shared bus is PDP – 11. 

 
 

Figure 18.1 A single bus Multiprocessor organization 

 

M3 wishes to communicate with S5 
              [1] M3 sends signals (address) on the bus that causes S5 to respond 
   [2] M3 sends data to S5 or S5 sends data to M3 (determined by the command line) 
 
 
Multiprocessor with unidirectional buses uses both the buses and not much is actually gained. 
 

 
Figure 18.2 Multi-bus multiprocessor organization 

 

This method increases the complexity. The interconnection subsystem becomes an active device.  
 
Characteristics that affects the performance of the bus 

o Number of active devices on the bus 
o Bus arbitration Algorithm 
o Centralization 
o Data Bandwidth 
o Synchronization of data transmission 
o Error detection 

M3 S7 M6 S5 M 
 

4 
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Various Bus arbitration Algorithms are 
 
The static Priority Algorithm 

 
When multiple devices concurrently request the use of bus, the device with highest 

priority is granted the bus. This method is called as daisy chaining and all the services are 
assigned static priorities according to their locations along a bus grant control line. The device 
closest to the bus control unit will get highest priority. 
Requests are made through a common line, BRQ Bus request. If the central bus control accepts 
the request it passes a BGT Bus grant signal to the concerned device iff the SACK Bus busy line 
is free or idle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.3 Static daisy chain implementation of a system bus 

 

The Fixed Time Slice Algorithm 

 

The available bus band widths divided into fixed time slices and then offered to various 
devices in around robin fashion. If the allotted device does not use the time slice then the time 
slice is wasted. This is called as fixed time slicing or time division multiplexing 
 
Dynamic Priority Algorithm 

 

The priorities allocated to the devices are done dynamically and thus every device gets a 
chance to use the bus and does not suffer longer turn around time. 
The two algorithms are 

o Least Recently used (LRU) 
o Rotating daisy chain (RDC) 
 

The LRU gives the highest priority to the requesting device that has not used the bus for the 
longest interval. 
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In a RDC scheme, no central controller exists, and the bus grant line is connected from 
the last device back to the first in a closed loop. Whichever device is granted access to the bus 
serves as a bus controller for the following arbitration (an arbitrary device is selected to have 
initial access to the bus). Each device’s priority for a given arbitration is determined by that 
device’s distance along the bus grant line from the device currently serving as a bus controller; 
the latter device has the lowest priority. Hence the priorities are dynamically with each bus cycle. 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 18.4 Rotating daisy chain implementation of a system bus 

 

The first come First Served Algorithm 

 

In the FCFS, requests are simply honored in the order received. It favors no particular 
processor or device on the bus. The performance measures will be degraded in case of FCFS 
since the device waiting for the bus for a longer period of time just because the request is made 
late. 

 
18.2.2 Crossbar Switch and Mutliport Memories 

 
If the number of buses in a time shared bus is increased, a point is reached at which there is a 
separate path available for each memory unit. The interconnection networking is called as a 
nonblocking crossbar. 
 
Multiport Memory Module 
        - Each port serves a CPU 
 
Memory Module Control Logic 
        - Each memory module has control logic 
        - Resolve memory module conflicts fixed priority among CPUs 
 
Advantages 
        - Multiple paths -> high transfer rate 

 
Device 

1 

 

 
Device 

2 

 
 

 
Device 

n 

 
 

Bus Grant 
BGT 

Bus 

Bus Busy 
SACK 

Bus Request 
BRQ 

Partial Bus 
Controller 



124 

 
Disadvantages 
        - Memory control logic 
       - Large number of cables and connections 
 

 
Figure 18.5 Cross Bar switch system organization for Multiprocessors 

 

 

 
 

Figure 18.6 Functional structure of a crosspoint in a crossbar network 

 

18.2.3 Multistage Networks for Multiprocessors 

 
In order to design multistage networks, the basic principles involved in the construction 

and control of simple crossbar has to be understood. 
This 2 x 2 switch has the capability of connecting the input A to either the output labelled 

0 or to the output labelled 1, depending on the value of some control bit CA of the input A. If    
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CA  = 0 the input is connected to the upper output, and if CA = 1, the connection is made to the 
lower output. Terminal B of the switches behaves similarly with a control bit CB. The 2 x 2 
module also has the capability to arbitrate between conflicting requests. If both inputs A and B 
require the same output terminal, then only one of them will be connected and the other will be 
blocked or rejected. 

 
 
 

 

 

Figure 18.6 A 2 x2 Crossbar Switch 

 

 
Figure 18.7 1-by-8 demultiplexer implemented with 2 x 2 switch boxes 

 

It is straight forward to construct a 1 x 2n demultiplexer using the above 2 x 2 module. 
This is accomplished by constructing a binary tree of these modules. The destinations are marked 
in binary, If the source A is required to connect to destination (d2d1d0)2 then the root is controlled 
by bit d2, the modules in the second stage are controlled by bit d1, and the modules in the third 
stage are controlled by bit d0. It is clear that A can be connected o any one of the eight output 
terminals. It is also obvious that B can be switched to any one of the eight outputs. The method 
of constructing the 1 x 2n demultiplexer tree can be extended to build a multistage network called 
a banyan tree. 
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Table 18.1  Comparison of three multiprocessor hardware organizations.  

 
Multiprocessor with Time Shared Bus 

1 Lowest overall system cost for hardware and least complex 
2 Very easy to physically modify the hardware system configuration by adding or removing 

functional units 
3 Overall system capacity limited by bus transfer rate. Failure of the bus is a catastrophic 

failure. 
4 Expanding the system by addition of functional units may degrade overall system 

performance 
5 The system efficiency attainable is the lowest of all three basic interconnection systems. 
6 This organization is usually appropriate for smaller systems only. 
  
Multiprocessor with Crossbar Switch 

1 This is the most complex interconnection system. There is a potential for the highest total 
transfer rate. 

2 The functional units are the simplest and cheapest since the control and switching logic is in 
the switch 

3 Because a basic switching matrix is required to assemble any functional units into a working 
configuration, this organization is usually cost effective for multiprocessors only. 

4 System expansion usually improves overall performance. 
5 Theoretically, expansion of the system is limited only by the size of the switch matrix, 

which can often be modularly expanded within initial design or other engineering 
limitations. 

6 The reliability of the switch, and therefore the system can be improved by segmentation and 
/ or redundancy within the switch. 

Multiprocessors with Multiport Memory 

1 Requires the most expensive memory units since most of the control and switching circuitry 
is included in the memory unit 

2 The characteristics of the functional units permit a relatively low cost uniprocessor to be 
assembled from them. 

3 There is potential for a very high total transfer rate in the overall system. 
4 The size and configuration options possible are determined by the number and type of 

memory ports available; this design decision is made quite early in the overall design and is 
difficult to modify. 

5 A large number of cables and connectors are required. 
 
18.3 Let us Sum Up 

 
The interconnection networks such as time shared, Crossbar Switch and multiport 

memory has been discussed. In time shared bus various bus arbitration algorithms such as daisy 
chain, round robin, LRU, FCFS has been explained. Crossbar Switch is the most complex 
interconnection system. There is a potential for the highest total transfer rate and the multiport 
memory is also an expensive memory units since the switching circuitry us included in the 
memory unit and the final table which has clearly differentiated among all three interconnection 
networks. 
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18.4 Lesson-end Activities  
 
1. Discuss the various multiprocessor interconnection networks.  
2. Compare the various multiprocessor hardware organizations. 

 
 
18.5 Points for Discussions 

 
Interconnection Networks:  Interconnection networks helps in sharing resources, one is between 
the processor and the memory modules and the other between the processor and the I/O Systems 
Time shared Bus: All processors (and memory) are connected to a common bus or busses 

- Memory access is fairly uniform, but not very scalable 
Crossbar Switch: Uses O(mn) switches to connect m processors and n memories with distinct 
paths between each processor/memory pair 
Multistage Networks: Multistage networks provide more scalable performance than bus but at 
less cost than crossbar 
Bus Arbitration Algorithms: Daisy Chaining, FCFS, LRU, Round Robin Scheduling, Time slice 

 
 
18.6 References 

 
o System Interconnects, Tarek El-Ghazawi, The George Washington University 
o http://www.gup.uni-

linz.ac.at/thesis/diploma/christian_schaubschlaeger/html/biblio.html#774418 
o Larry Carter, carter@cs.ucsd.edu,  www.cs.ucsd.edu/classes/fa01/cs260 
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UNIT – V 
 

Lesson 19 : Parallel Algorithms, Models of Computation 

 
Contents: 

 
19.0 Aims and Objectives 
19.1 Introduction 
19.2 Parallel Algorithms 

19.2.1 Models of Computation 
19.2.2 Random Access machine 
19.2.3 Parallel Random Access machine 
19.2.4 Interconnection Networks 
19.2.5 Combinatorial Circuits 

19.3 Let us Sum Up 
19.4 Lesson-end Activities  
19.5 Points for discussions 
19.6 References 
 
19.0 Aims and Objectives 

 

The main aim is to learn about parallel algorithms and how a problem can be solved in a parallel 
computer. The abstract machine models are discussed and these models are useful in the design 
of analysis of parallel algorithms. 
 
19.1 Introduction 

 

In order to simplify the design and analysis of parallel algorithms, parallel computers are 
represented by various abstract models. These models capture the important features of parallel 
computer. The Random Access Machine is the preliminary model and the PRAM is one of the 
popular models for designing parallel algorithms. Various division of PRAM models are EREW, 
CREW,ERCW, CRCW. The concept of interconnection networks has been discussed since the 
exchanges of data among processors takes place through the shared memory. The Combinational 
circuit can be viewed as a device with a set of input lines at one end and a set of output lines at 
the other end is also a model of parallel computers. 
 
19.2 Parallel Algorithms 

 
The Algorithms designed for sequential computers are known as Sequential Algorithms. 
The algorithm worked out for a parallel computer is termed as Parallel algorithms. 
 Traditionally, software has been written for serial computation:  

o To be run on a single computer having a single Central Processing Unit (CPU);  
o A problem is broken into a discrete series of instructions.  
o Instructions are executed one after another.  
o Only one instruction may execute at any moment in time.  
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 In the simplest sense, parallel computing is the simultaneous use of multiple compute 
resources to solve a computational problem.  

o To be run using multiple CPUs  
o A problem is broken into discrete parts that can be solved concurrently  
o Each part is further broken down to a series of instructions  
o Instructions from each part execute simultaneously on different CPUs  

 
Parallelism refers to the simultaneous occurrence of events on a computer. 
An event typically means one of the following: 

 An arithmetical operation 
 A logical operation 
 Accessing memory 
 Performing input or output (I/O) 

 

19.2.1 Models of Computation 

 

Various abstract machine models are discussed, and it helps in designing parallel algorithms. 
 
 19.2.2 Random Access machine (RAM) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.1 RAM Model 

 
The basic functional units if the RAM are : 

1. A memory unit with M locations. M can be unbounded. 
2. A processor that operates under the control of sequential algorithm. The processor can 

read data from a memory location, write to a memory location, and can perform basic 
Arithmetic and logical operations. 

3. A memory Access unit (MAU) which creates path from the processor to an arbitrary 
location in the memory. 

RAM model consists of three phases namely 
 Read : The processor reads a datum from the memory. This datum is usually stored in 

one of its local registers. 
 Write : The processor writes the content of one register into an arbitrary memory 

location. 
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 Execute : The processor performs a basic arithmetic and logic operations on the contents 
of one or two of its registers. 

 
19.2.3 Parallel Random Access machine (PRAM) 

 
 

Figure 19.2  Pram Model 

 

 Let  P1, P2 , ... , Pn be identical processors 
 Each processor is a RAM processor with a private local memory. 
 The processors communicate using m shared (or global) memory locations. Each Pi can read 

or write to each of the m shared memory locations. 
 All processors operate synchronously (i.e. using same clock), but can execute a different 

sequence of instructions. 
Most commonly used model for expressing parallel algorithms  

 Shared Memory 
Each processor may have local memory to store local results 

 MIMD 
Model is MIMD, but algorithms tend to be SIMD. 
 
Each PRAM step consists of three phases, executed in the following order: 
 
 A read phase in which each processor may read a value from shared memory 
 A compute phase in which each processor may perform basic arithmetic/logical operations 

on their local data. 
 A write phase where each processor may write a value to shared memory. 
 Note that this prevents reads and writes from being simultaneous.  
 Above requires a PRAM step to be sufficiently long to allow processors to do different 

arithmetic/logic operations simultaneously.  
 
Strengths of PRAM Model 

 

 PRAM model removes algorithmic details concerning synchronization and communication, 
allowing designers to focus on problem features 

 A PRAM algorithm includes an explicit understanding of the operations to be performed at 
each time unit and an explicit allocation of processors to jobs at each time unit. 

 PRAM design paradigms have turned out to be robust and have been mapped efficiently onto 
many other parallel models and even network models. 
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Each active processor executes same instruction 

 Synchronous 
 Memory Access 

Shared memory computers can be classified as follows depending on whether two or more 
processors can gain access to the same memory simultaneously. 
 
 Exclusive Read, Exclusive Write (EREW) 

o Access to memory locations is exclusive, i.e., no 2 processors are allowed to 
simultaneously read from or write into the same location. 

 Concurrent Read, Exclusive Write (CREW) 

o Multiple processors are allowed to read from the same location, but write is still 
exclusive, i.e., no 2 processors are allowed to write into the same location 
simultaneously. 

 Exclusive Read, Concurrent Write (ERCW) 

o Multiple processors are allowed to write into the same location, but read access remains 
exclusive. 

 Concurrent Read, Concurrent Write (CRCW) 

o Both multiple read and write privileges are allowed. 
o Handling concurrent writes 

 Common CRCW PRAM allows concurrent writes only when all processors 
are writing the same value  

 Arbitrary CRCW PRAM allows an arbitrary processor to succeed at writing to 
the memory location  

 Priority CRCW PRAM allows the processor with minimum index to succeed 
 
19.2.4 Interconnection Networks 

 

 Parallel computers with many processors do not use shared memory hardware. 
 Instead each processor has its own local memory and data communication takes place via 

message passing over an interconnection network. 
 The characteristics of the interconnection network are important in determining the 

performance of a multicomputer. 
 If network is too slow for an application, processors may have to wait for data to arrive. 
 
19.2.5 Combinatorial Circuits 

 

It is another model of parallel computers. Combinational circuit refers to a family of 
models of computation. A combinational circuit can be viewed as a device that has a set of input 
lines at one end and set of output lines at the other. And each component, having received its 
inputs, does a simple arithmetic and logical operations in one time and produces the results as 
output. 
A combinational circuit consists of a number of interconnected components arranged in columns 
called stages. 
Each component is a simple processor with a constant fan-in and fan-out 

o Fan-in: Number of input lines carrying data from outside world or from a previous stage. 
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o Fan-out: Number of output lines carrying data to the outside world or to the next stage. 
 

Component Characteristics 

 

o Only active after input arrives 
o Computes a value to be output in O(1) time, usually using only simple arithmetic or logic 

operations.  
o Component is hardwired to execute its computation. 

 

Component Circuit Characteristics 

 

o Has no program 
o Has no feedback 
o Depth: The number of stages in a circuit . Gives worst case running time for problem                                 
o Width: Maximal number of components per stage. 
o Size: The total number of components 

 

Two Way Combinational Circuits 

 

o copying data to the outside world or to the next stage. 
o Sometimes used as a two-way devices 
o Input and output switch roles 

 data travels from left-to-right at one time and from right-to-left at a later time. 
o Useful particularly for communications devices. 
o Subsequently, the circuits are assumed to be two-way devices.  

 Needed to support  MAU (memory access unit) for RAM and PRAM 
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Figure 19.3 Combinatorial Circuit 

 
 

Figure 19.4 Butterfly Circuit 

 

The butterfly circuit has n inputs and n outputs. The depth of the circuit is (1 + log n) and the 
width of the circuit is n. The size in this case is (n + n log n) where n = 8 
 
19.3 Let us Sum Up 

 
Various models of computations have been discussed with its schematic diagram. The 

PRAM is one of the popular models for designing parallel algorithms, its phases of algorithms 
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and it’s Model of subdivision based on memory access called as EREW, CREW, ERCW, and 
CRCW has been discussed. The concept of combinatorial circuit its important parameters such as 
width, size and depth has been given as an example with respect to butterfly circuit. 
 
19.4 Lesson-end Activities  

 

1. Write short notes on parallel algorithms. 
2. Explain the abstract machine models of computation. 
  

 
19.5 Points for discussions 

 

 Random Access Machine 
 Parallel Random Access Machine 
 Definitions of EREW, CREW, ERCW, CRCW 
 Combinatorial Circuits 

 
 
19.6 References 

 

 PRAM Models, Advanced Algorithms & Data Structures, Lecture Theme 13,         Prof. 
Dr. Th. Ottmann 

 PRAM and Basic Algorithms by Shietung Peng 
 Introduction to Parallel Processing: Algorithms and Architectures by Behrooz Parhami 
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Lesson 20 : Analysis of Parallel Algorithms, Prefix Computation 

 
Contents: 

 
20.0 Aims and Objectives 
20.1 Introduction 
20.2 Analysis of Parallel Algorithms 

20.2.1 Running Time 
20.2.2 Number of Processors 
20.2.3 Cost 
20.2.4 Prefix Computation 
20.2.5 Prefix Computation on the PRAM 
20.2.6 Prefix Computation on the Linked List 

20.3 Let us Sum Up 
20.4 Lesson-end Activities  
20.5 Points for discussions 
20.6 Suggested References 
 
20.0 Aims and Objectives 

 
The main aim of this lesson is to analyse the parallel algorithms based on the principle 

criteria Running time, Number of Processors and Cost. 
 
20.1 Introduction 

 

Any sequential algorithm is evaluated based on 2 parameters called as the running time 
complexity and space complexity. The parallel algorithms are evaluated based on running time, 
number of processors and cost factors. The concept of prefix computation has been discussed 
which is a very useful sub operation in many parallel algorithms. 
 

20.2 Analysis of Parallel Algorithms 

 
Any sequential algorithm is evaluated in terms of 2 parameters 

 Running time complexity 
 Space complexity 

Parallel algorithms are evaluated based on the following 
 Running Time 
 Number of Processors 
 Cost 

 
20.2.1 Running Time 

 
The running time of an algorithm is a function of the input given to the algorithm. The 

algorithm may perform well for certain inputs and relatively bad for certain others. The worst 
case running time is defined as the maximum running time of the algorithm taken over all the 
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inputs. The average case running time is the average running time of the algorithm over all the 
inputs. 
The running time depends not only on the algorithm but also on the machine it is being executed. 
 

Notion of Order 

 
Consider 2 functions f(n) and g(n) defined from the set of positive integer to the set of 

positive reals. 
 The function g(n) is said to be order of at least f(n) denoted by (f(n))if there exist 

positive constantsc,n0 such that g(n) >= cf(n) for all n >= n0 
 The function g(n) is said to be order at most f(n) denoted by O (f(n))if there exist 

positive constantsc,n0 such that g(n) <= cf(n) for all n >= n0 
 The function g(n) is said to be of the same order as f(n)  if g(n) O (f(n)) and g(n) 

(f(n)).  
 
Lower and Upper Bound 

 

The lower bound on a problem is indicative of the minimum number of steps required to 
solve the problem in the worst case.. Every problem is associated with a lower bound and upper 
bound. 
 
Speedup 

 

Speed-up is the ratio of the time taken to run the best sequential algorithm on one 
processor of the parallel machine divided by the time to run on N processors of the parallel 
machine. 
S(N) = Tseq/Tpar(N) 
Efficiency is the speed-up per processor. 
 (N) = S(N)/N=(1/N)(Tseq/Tpar(N)) 
Overhead is defined as 
f(N) = 1/  (N) -1 
 
20.2.2 Number of Processors 

 

The next important criteria for evaluating parallel algorithm are the number of processors 
required to solve the problem. Given a problem of input size n, the number of processors 
required by an algorithm, is a function of n denoted by p(n). 
 
20.2.3 Cost 

 

The cost of a parallel algorithm is defined as the product of the running time of the 
parallel algorithm and the number of processors used. 
 
Cost =running time x number of processors 
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The efficiency of a parallel algorithm is defined as the ratio of worst case running time of the 
fastest sequential algorithm and the cost of the parallel algorithm. 
 
20.2.4 Prefix Computation 

 
Prefix computation is a very useful sub operation in many parallel algorithms. The prefix 

computation problem is defined as follows. 
 A set  is given, with an operation  on the set such that 

1.  is a binary operation 
2.  is a closed under  
3.  is associative 

 
Let X = { x0,x1,….,xn-1} where xi  (0<=i<=n-1). Define 
 
   S0=x0 
   S1=.x0  x1 
   . 
   . 
   . 
   Sn-1 = x0  x1  …..  xn-1 
 Obtaining the set S= {s0,s1,….,sn-1} given the set X is known as the prefix computation. 
The indices of the element used to compute is form a string 012…I, which is a prefix of the 
string 012…n-1, and hence the name prefix computation for this problem. 
 
20.2.5 Prefix Computation on the PRAM 

 

Assume that the set is the set of natural numbers and the operation  is the + operation. 
Let X = {x0, x1, …. , xn-1}be the input. The partial sums si(0<=i<=n-1) where 

si = x0 + x1 + ….. + xi can be found easily on a RAM in (n) time 
  

The PRAM algorithm given here requires n processors P0, P1, …. , Pn-1, where n is a 
power of 2. There are n memory locations m0, m1, … m n-1. Initially the memory location 
mi(0<=i<=n-1) contains the input xi. When the algorithm terminates the location mi (0<=i<=n-1) 
has the partial sum output si. The algorithm is given below. 

It contains of (log n) iterations; during each step, the binary operation + is performed by 
pairs of processors whose indices are separated by a distance twice that in the previous iteration. 

 
Procedure Prefix Computation 

 for j : = 0 to (log n) – 1 do 
  for i : = 2 j to n-1 do in parallel 
   si : = s (i-2

j
) + si 

  end for 
end for 

 
Analysis 
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There are log n iterations in this algorithm. In each iteration one addition is done in 
parallel and hence takes O(1) time. The time complexity is therefore O(log n) Since the 
algorithm uses n processors, the cost of the algorithm is O (n log n), which is clearly not cost 
optimal. This algorithm has the optimal time complexity among the non-CRCW machines. This 
is because prefix computation of sn-1 requires O (n) additions which has a lower bound of O (log 
n) on any non-CRCW parallel machine. 

 
 

Figure 19. 5 Prefix Computation on the PRAM 

A Cost Optimal Algorithm for Prefix Computation 

 
This algorithm also runs in (log n) time but makes use of fewer processors to achieve this. Let 
X = { x0,x1,….,xn-1}be the input to the prefix computation. Let k= log n and m=n/k. The 
algorithm uses m processors P0, P1, …. , Pm-1. The input sequence X is split into m subsequences, 
each of size k, namely 
   Y0 = x0, x1, ….., xk-1 
   Y1 = xk, xk+1, ….., x2k-1 

   . 

   . 

   . 

   Ym-1 = xn-k, xn-k+1, ….., xn-1 

The algorithm given below proceeds in 3 steps. 
 
Step1 : The processor Pi (0<=i<=m-1) works on the sequence Yi, and computes the prefix sums 
of the sequence Yi, using a sequential algorithm. Thus the processor Pi computes Sik,Sik+1, …., 
S(i+1)k-1, where 
 
   sik+j = xik+xik+1+ ….., xik+j 
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for j = 0, 1, ….., k-1. 
 
Step2 : The processors P0, P1, ..., Pm-1 perform a parallel prefix computation on the sequence {sk-

1, s2k-1, …, sn-1}. This parallel prefix computation is done using the algorithm described earlier. 
When this step is completed, sik-1 will be replaced by    sk-1 + s2k-1,….,sik-1. 
 
Step3 : Each processor Pi (0<=i<=m-1)computes sik+j = sik-1+sik+j, for j=0,1,…,k-2. 
 
Example for Cost Prefix 

 
Sequence –  0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 
Use  n / [lg n]  PEs with lg(n) items each 
0,1,2,3   4,5,6,7   8,9,10,11   12,13,14,15 
STEP 1: Each PE performs sequential prefix sum 
0,1,3,6   4,9,15,22   8,17,27,38   12,19,39,54 
STEP 2: Perform parallel prefix sum on last nr. in PEs 
0,1,3,6   4,9,15,28   8,17,27,66   12,19,39,120 
Now prefix value is correct for last number in each PE 
STEP 3: Add last number of each sequence to incorrect sums in next sequence (in parallel) 
0,1,3,6   10,15,21,28   36,45,55,66   78,91,105,120 

 

AlgorithmAnalysis 

Analysis: 
Step 1 takes O(k) = O(lg n)  time. 
Step 2 takes  

o O(lg m) = O(lg n/k)  
o O(lg n- lg k) = O(lg n - lg lg n)   
o O(lg n) 

Step 3 takes O(k) = O(lg n) time  
o The overall time for this algorithm is O(n). 
o The overall cost is O((lg n) O n/(lg n)) = O(n)  

 
20.2.6 Prefix Computation on the Linked List 

 
The algorithm for prefix computation on a linked list technique is called as pointer jumping. The 
data are stored in the pointer based structures called as linked lists, trees etc. 

• Given a single linked list L with n objects, compute, for each object in L, its distance 
from the end of the list. 

• Formally:  suppose next is the pointer field 
– d[i]=     0                    if next[i]=nil  
–               d[next[i]]+1  if next[i]nil  

• Serial algorithm: (n). 
 
LIST-RANK(L)   (in O(lg n) time) 

for each processor i, in parallel 
do if next[i]=nil  
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then d[i]0 
else d[i]1 

while there exists an object i such that next[i]nil 

      do for  each processor i, in parallel 
           do if next[i]nil 

                then d[i] d[i]+ d[next[i]] 
                         next[i] next[next[i]] 

 
 Loop invariant: for each i, the sum of d values in the sublist headed by i is the correct 

distance from i to the end of the original list L. 
 Parallel memory must be synchronized: the reads on the right must occur before the 

writes on the left. Moreover, read d[i] and then read d[next[i]]. 
 An EREW algorithm: every read and write is exclusive.  For an object i,  its processor 

reads d[i], and then its precedent processor reads its d[i]. Writes are all in distinct 
locations. 

 Loop invariant: for each i, the sum of d values in the sublist headed by i is the correct 
distance from i to the end of the original list L. 

 Parallel memory must be synchronized: the reads on the right must occur before the 
writes on the left. Moreover, read d[i] and then read d[next[i]]. 

 An EREW algorithm: every read and write is exclusive.  For an object i, its processor 
reads d[i], and then its precedent processor reads its d[i]. Writes are all in distinct 
locations. 

 
20.3 Let us Sum Up 

 
The three principle criteria that were used in evaluation parallel algorithms are running 

time, number of processors and cost has been discussed. Prefix computation a very useful sub 
operation in many parallel algorithms has been defined and procedure for prefix computation has 
been analysed and its complexity calculation has been done. The algorithm for prefix 
computation called pointer jumping helped in solving problems whose data are stored as pointer 
based. 
 
 

20.4 Lesson-end Activities  
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1. Analyse Parallel Algorithms in terms of Running Time, Number of Processors and Cost.  
2. Explain prefix computation in detail. 
 

 
20.5 Points for discussions 

 

Pointer Jumping 

The algorithm for prefix computation on a linked list technique is called as pointer 
jumping. The data are stored in the pointer based structures called as linked lists, trees etc. 
 
 
 

20.6 References 

 

 Parallel Computer architectures and Programming, V. Rajaraman & C. Siva Ram Murthy 



142 

Lesson 21 : Sorting 
 
Contents: 

 
21.0 Aims and Objectives 
21.1 Introduction 
21.2 Sorting 

21.2.1 Combinational Circuits for Sorting 
21.2.2 Sorting on PRAM Models 
21.2.3 Sorting on Interconnection Networks 

21.3 Let us Sum Up 
21.4 Lesson-end Activities  
21.5 Points for discussions 
21.6 References 
 
 
21.0 Aims and Objectives 

 

The main of this lesson is to learn the concept of sorting and how it is implemented in parallel 
processor and the design of various algorithms 
 
21.1 Introduction 

 
An given unsorted sequence has to be processed to an sorted sequence. 2 different 

combinational circuits have been used for performing sorting. They are Bitonic sorting network 
in which there exists an index i, where 0<=i<=n-1, such that a0 through ai ai is monotonically increasing 
and ai  through an-1 is monotonically decreasing. The next algorithm discussed was merging in 
which the unsorted sequences are divided in to two halves and perform sorting on individual half 
recursively and then merging together to obtain the sorted sequence.  

Various sorting algorithms on PRAM models has been discussed. In sorting on linear 
array, the Odd-even transposition method has been adopted and sorting on hypercube based on 
bitonic method has been discussed. 
 

21.2 Sorting 

The problem of sorting is important as sorting data is at the heart of many computations. Various 
sorting algorithms has been described. 

 
21.2.1 Combinational Circuits for Sorting 

 
The input to the combinational circuits is n unsorted numbers and the output is the sorted 
permutation of the n numbers. 
 
The basic processing unit in the combinational circuit is the comparator. A comparator has 2 
inputs x and y, and has two output x' and y'.  
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There are 2 kinds of comparators. 
In an increasing comparator, x' = min(x,y) and y' = max(x,y). 
In an decreasing comparator, x' = max(x,y) and y' = min(x,y). 
 

 
Figure : 21.2 (a) Increasing and (b) Decreasing Comparator 

Bitonic Sorting Network 

 
Definition 1 (Bitonic Sequence) A bitonic sequence is a sequence of values, <a0,a1,….an-1>with 
the property that (1) there exists an index i, where 0<=i<=n-1, such that a0  through ai ai is 
monotonically increasing and ai  through an-1 is monotonically decreasing, or (2) there exists a 
cyclic shift of indices so that the first condition is satisfied. 
 
Let s = <a0,a1,… ,an-1> be a bitonic sequence such that    a0 ≤ a1 ≤ · · ·  ≤ an/2-1 and an/2 ≥ 
an/2+1 ≥ · · ·  ≥ an-1.  
Consider the following subsequences of s:  
 
  s1 = <min{a0,an/2},min{a1,an/2+1},… ,min{an/2-1,an-1}> 
  s2 = <max{a0,an/2},max{a1,an/2+1},… ,max{an/2-1,an-1}>  
 
Note that s1 and s2 are both bitonic and each element of s1 is less than every element in s2.  
 
The procedure can be applied recursively on s1 and s2 to get the sorted sequence. 
 

   

 

     

 

 

Figure 21.2 Merging a 16-element bitonic sequence through a series of log 16 bitonic splits. 

 
We can easily build a sorting network to implement this bitonic merge algorithm.  
Such a network is called a bitonic merging network.  
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The network contains log n columns. Each column contains n/2 comparators and performs one 
step of the bitonic merge.  
We denote a bitonic merging network with n inputs by  BM[n].  
Replacing the  comparators by Ө comparators results in a decreasing output sequence; such a 
network is denoted by ӨBM[n].  
 
 

 

 

 

 

 

 

 

 

 

Figure 21.3 Bitonic Merge Network 

 
A bitonic merging network for n = 16. The input wires are numbered 0,1,… , n - 1, and the binary 
representation of these numbers is shown. Each column of comparators is drawn separately; the 
entire figure represents a BM[16] bitonic merging network. The network takes a bitonic 
sequence and outputs it in sorted order.  
 
We must first build a single bitonic sequence from the given sequence.  
A sequence of length 2 is a bitonic sequence.  
A bitonic sequence of length 4 can be built by sorting the first two elements using BM[2] and 
next two, using ӨBM[2].  
This process can be repeated to generate larger bitonic sequences.  
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Figure 21.4 Bitonic Sorting Network 

 
A schematic representation of a network that converts an input sequence into a bitonic sequence. 
In this example, BM[k] and ӨBM[k] denote bitonic merging networks of input size k  that use 
Å and Ө comparators, respectively. The last merging network (BM[16]) sorts the input. In this 
example, n = 16.  
 

Analysis 

 

The bitonic sorting network for sorting a sequence of n numbers consists of log n stages. The last 
stage of the network uses a (+)BM(n) which has a depth of log n. The remaining stages perform 
a complete sort of n/2 elements. The depth of the sorting network is given by recirrence relation 
D(n) = d(n/2) + log n solving this we get d(n) = ((log 2) + log n/2 = O(log2 n) 

Combinational Circuit for sorting by Merging 

 
The second combinational circuit for sorting is based on the merge sort algorithm for a 
sequential computer.  
 
Odd-even merge sort  

 

 First develop a merging circuit. The idea is to split the two sequences to be merged into 
two subsequence each. merge them separately, then merge two merged sequence into 
one.  

 First, the even and odd indices elements of a sorted array elements are merged by the 
same odd-even merge algorithm. 

 Then the two output sequences are merging into the final sorted sequence. The element 
only needs to be compared with neighbouring elements from the other sequence, hence 
can be done in one additional time step. 
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Figure 21.5 Merging Circuit  

 
In general a cuircuit for merging two sequences is obtained as follows.  
Let S1 = <X1,X2….Xm> and S2 = <Y1,Y2…Ym> be the input sequences that need to be merged. 

 Using an (m/2,m/2) merging circuit, merge the odd even indexed columns of the two 
sequences :<X1,X3….Xm-1> and <Y1,Y3….Ym-1> to produce a sorted sequence 
<U1,U2….Um>. 

 Using an (m/2,m/2) merging circuit, merge the even indexed columns of the 2 sequences 
<X2,X2…..Xm> and <Y2,Y4…Ym> to produce a sorted sequence <v1,v2….vm>. 

 The output sequence <Z1, Z2……Z2m> is obtained as Z1 = U1,Z2m = Vm, Z2i = 
min(Ui+1,Vi) and Z2i+1 = max(Ui+1,Vi) for I = 1,2,…. m-1. 

 

 
 

Figure 21.6 Odd – Even Merging Circuit 

Analysis 

 
Width : Each comparator has exactly 2 inputs and 2 outputs. The circuit takes 2m inputs and 
produces 2m outputs. Thus it has width of m. 
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Depth: The merging circuit consists of 2 smaller circuits for merging sequences of length m/2, 
followed by one stage of comparators. Thus the depth d(m) of the circuit is 
D(m) = 1               (m = 1) 
D(m) = d(m/2) + 1    (m >1) 
Size : The size p(m) of  the circuit can be obtained by solving the following recurrence relations. 
P(1) = 1    (m=1) 
P(m)= 2p(m/2) + m – 1  (m>1) 
Solving we get p(m)0 = 1 + mlog m. 
 
21.2.2 Sorting on PRAM Models 

 
Various sorting algorithms for the PRAM models of a parallel computer. All these algorithms are 
based on the idea of sorting by enumeration. The sorting is performed in such a way that every 
element is compared with all other elements and placed in its sorted sequence. 
 
Let S = <s1,s2….sn> denoted the unsorted input sequence. The position of each elemnt si of S in 
the sorted sequence, known as rank of Si is determined by computing ri, the number of elements 
smaller than it.  
The array used is R = <r1,r2…..rn> to keep track of the rank of the elements in the input 
sequence. The array Ri is initialized to 0 in all the algorithms. The ri will contain the number of 
elements in the input sequence. 
 
CRCW Sorting 

 
A algorithm is described for SUM CRCW model of a parallel computer which has n2 processors. 
When more than one processor attempts to write to a common memory location, the sum of all 
the individual values is written onto the memory location. 
n2 processors are represented in matrix as n x n. P i,j denoted the processor in the ith row and jth 
column. The processor Pi,j tries to write the value 1 in ri if si > sj or si=  sj and i > j. 
 
Procedure CRCW Sorting 

 

For i := 1 to n do in parallel 
    For j := 1 to n do in parallel 
         If si > sj or (si = sj and i >j) then 
             Pi,j writes 1 to ri 
         End if 
    End for 
End for 
For i := 1 to n do in parallel 
     Pi,1 puts si in (ri +1) position of S 
End for 
 
The above algorithm takes 0(1) time and it uses O(n2) processors which is very large. 
  
CREW Sorting 
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The sorting algorithm for the CREW model is very similar the previous one. The algorithm takes 
n processors and has a time complexity of O(n). Let the processors be denoted by <P1,P2….Pn> . 
The processor Pi computes the value ri after n iterations. In the jth iteration of the algorithm, all 
the processors read sj, the processor pi increments ri if si > sj or si = sj and    i > j. Therefore, after 
n iterations ri contains the number of elements smaller than si in the input sequence. 
 
Procedure CREW Sorting 

 
For i := 1 to n do in parallel 
    For j := 1 to n do  
         If si > sj or (si = sj and i >j) then 
             Pi,j writes 1 to ri 
         End if 
    End for 
     Pi,1 puts si in (ri +1) position of S 
End for 
 
EREW Sorting 

 
Concurrent read conflicts cab be avoided if we ensure that each processor reads a unique element 
in each iteration. This can be achieved by allowing the processors to read elements in a cyclic 
manner. In the first iteration the processors P1,P2….Pn read s1,s2,s3….and in the second iteration 
the processors read s2,s3…sn and s1 respectivbelyand so on. This in the jth iteration the 
processors P1,P2….Pn reads Sj , Sj+1…..  sj-1 and update corresponding r values. This has a 
running complexity of O(n). 
 
Procedure EREW Sorting 

 
For i := 1 to n do in parallel 
    For j := 0 to n-1 do  
          K := (i+j) mod n 
         If si > sk or (si = sk and i >k) then 
             Pi, adds 1 to ri 
         End if 
    End for 
     Pi,1 puts si in (ri +1) position of S 
End for 
 
21.2.3 Sorting on Interconnection Networks 

 
In interconnection networks the comparisons are made as, consider 2 adjacent processors Pi and 
Pj. The processor pi has the element ai and the processor pj has the element aj. The network 
processor Pi sends the element ai to the processor Pj and the processor Pj sends the element aj to 
the processor Pi. The processor Pi keeps the element min(ai,aj) and the processor Pj keeps the 
element max(ai,aj). This is refereed as compare exchange (Pi,Pj). 
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Figure 21.7 A  parallel Exchange Operation 

 
Sorting on a Linear Array  
A linear array has the processors in a row: each processor can communicate with only 
the one before it and the one after it. We give a linear array sorting algorithm that takes 
precisely N steps, where N is the number of processors and the number of data values. 
N - 1 is a lower bound, because one might need to get a data value from the last cell to 
the first cell. 
 
 
Odd-even transposition sort. 

 

At odd steps, compare contents of cell 1 and 2, cells 3 and 4, etc, and swap values if 
necessary so that the smaller value ends up in the leftmost cell. At even steps do the 
same but for the pairs 2 and 3, 4 and 5, etc. 
 
Procedure Odd-even Transposition Sort 
 
For i:= 1 to n do 
    If I is odd then 
         For k := 1,3….. 2[n/2] -1 do in parallel 
            Compare-exchange (Pk,Pk+1) 
          
    Else 
        For k : 2,4…..2[(n-1)/2] do in parallel 
  Compare-exchange (Pk,Pk+1) 

Pi Pj 

Pi Pj 

Pi Pj 

ai 

ai 

ai, aj aj, ai 

Min(ai, aj) Max(ai, aj) 
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       End for 
    End if 
End for 
 

 
Figure 21.8 Odd-even Transposition Sort 

Analysis 

 

There are n parallel phases in the algorithm and during each phase the odd –indexed or even 
indexed processors perform a compare exchange operations which takes O(1) time. The time 
complexity of the algorithm is O(n). The number of processors used is n. The cost is O(n2) which 
is not optimal. 
 
Sorting on a Hypercube 

 
Bitonic sort algorithm can be efficiently mapped onto the hypercube network without much 
communication overhead. The basic idea is to simulate the functioning of the combinational 
circuit for bitonic sorting using a hypercube network. Let the input wires (lines) in the 
combinational circuit are numbered as 0000, 0001……. 1111 in binary from top to bottom.  
The comparison operation is performed between 2 wires whose indices differ exactly in one bit. 
In a hypercube, processors whose indices differ in only bit are neighbours. Thus an optimal 
mapping of input wires to hypercube processors is the one that maps an input wore with index l 
to a processor with index l where l = 1,2,….n-1 and n is the number of processors. Whenever a 
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comparator performs a comparison on 2 wires, a compare exchange operation is performed 
between the corresponding processors in the hypercube. 
The time complexity of this algorithm is O(log 2n) 
 
Procedure Bitonic Sort 
For i := 0 to d-1 do { n = 2d ; d is the dimension of hypercube} 
   For j := I downto 0 do 
         For each Pk such that (i+1)st bit of k ≠ jth bit of k do in parallel 
               Compare–exchange(Pk,Pk

(j)) 
{ for any index p, p(1) denotes the index obtained by flipping the 1st bit in the 
binary representation of P} 

          End for 
    End for 
End for 
 

 
 

Figure 21.9 Communication during the last stage of bitonic sort 
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21.3 Let us Sum Up 

 
Various sorting techniques in parallel processors has been discussed. The bitonic sort, 

odd-even merge sort, CRCW sorting, CREW sorting and EREW sorting. A method called as 
odd-even transposition sort has been discussed and using the method of bitonic sort sorting on 
hypercube has been implemented. 

 
 
21.4 Lesson-end Activities  

 

1. Discuss parallel processor sorting techniques. 
 
21.5 Points for discussions 

 
 Sorting is a concept of arranging unsorted sequence into sorted sequence. Parallel 

processors and algorithms has been implemented. 
 Various types of Sorting are Bitonic sort, odd-even merge sort, odd-even transposition 

sort, sorting on PRAM models and sorting on hypercube 
 
21.6 References 

 
 Parallel Computer architectures and Programming, V. Rajaraman & C. Siva Ram Murthy 
 IFI TE IFI TECHNICAL REPORTS, Institute of Computer Science, Clausthal University 

of Technology 
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Lesson 22 Searching & Matrix Operations 

 
Contents: 

 
22.0 Aims and Objectives 
22.1 Introduction 
22.2 Searching 

22.2.1 Searching on PRAM Models 
22.2.2 Matrix Operations 
22.2.3 Matrix Multiplication 
22.2.4 Solving s system of linear equations 

22.3 Let us Sum Up 
22.4 Lesson-end Activities  
22.5 Points for discussions 
22.6 References 
 
22.0 Aims and Objectives 

 

The main objective of this lesson is to perform searching operations, matrix 
multiplication and gauss elimination method using parallel algorithms. 
 
22.1 Introduction 

 

Searching is one of the most fundamental operations encountered in computing. It is used 
in application where an element belongs to list has to be found out. Here Searching has been 
implemented through PRAM models and the complexity of the algorithm is calculated. Like 
searching matrix and gauss elimination are fundamental components of many numerical and 
non-numerical algorithms. 
 

22.2 Searching 

In the simple case, an array, of elements and an element , is to be 

searched for an element, .  

In the worst case a search algorithm requires time.  

If the array is sorted in nondecreasing order then a binary search algorithm can provide the 

answer in time. This is optimal because it requires this many of bits to identify an 
element.  
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22.2.2 Searching on PRAM Models 

 
Let x denote the element to be searched in A 

EREW Searching  

Consider an -processor EREW SM SIMD computer.  

In this case the value for must first be broadcast to all of the processors, requiring 
time.  

The sequence can then be subdivided into subsequences of length each and each 

processor is assigned  

 

Binary search on these subsequences requires time so that the parallel algorithm 

requires time which is and no better than the sequential 
version. 
 

CREW Searching  

Consider an -processor CREW SM SIMD computer.  

In this case, does not need to be broadcast since all processors can simply read the value in 

parallel. However using the naive division of space leads to time.  

We can modify the binary search itself to achieve a real speedup.  

Recall that the binary search algorithm compares first the element that is at the middle of the 

array, for odd and say for even , making a decision to keep the upper or lower 
half of the array (if the middle element is not itself equal to ).  

To obtain a speedup we use processors to do a -ary search.  
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At each stage of the algorithm the array is split into subsquences of equal length and the 
processors simultaneously check the boundaries of their assigned subsequence. Each 

processor determines whether the target element is to the left or the right of the boundary.  

 

The next stage divides the selected subsequences in subsequences and continues.  

Since each stage is applied to an array whose length is the length of the sequence 

searched during the previous stage less 1, stages are needed.  

As intuitive proof (Akl, 1989), let be the smallest integer such that , that is 

. The proof that stages are need is by induction. The 

statement is true for . Assume it is true for . Now, to search an array of 

length , processor , , compares to where 

. Following the comparison only a subsequence of length 
needs to be search, which completes the proof.  

For processors we've achieved a speedup of  

  

    

  

 

    

  
;for large n  
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The efficiency is then .  

Although this is not cost optimal, it can be shown to be the best possible cost for parallel 
searching. Note that any algorithm using processors can compare an input element to at 
most elements of simultaneously. The remaining subsequence (on average) will be at least  

 

 

CRCW searching  

In previous discussion we assumed that all element of  were unique.  

For arrays of non-unique elements, the processors may well attempt to return the index of a 
found element in parallel.  

Similar to broadcast, write conflicts over processors can be resolved in steps. Foor 
CRCW machines and with , this additional constant eliminates any benefits. any 
speedup.  

Procedure Search 

1. Broadcast x to all the N processors 
2. For i = 1 to N do in parallel 
Si = {S(i-1) (n/N)+1, S(i-1)(n/N)+2…..} 
Search for x sequentially in Si and store the result in ki 
End for 
s3. Fpr I = 1 to N do in parallel 
If Ki > 0 then K := Ki  
End if 
End for 
 
22.2.2 Matrix Operations 

 

Matrix operations are also the fundamental components of many numerical and non-numerical 
algorithms. 
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22.2.3 Matrix Multiplication 

 
The product of an m x n matrix A and n x k matrix of B is M x K matrix of C whose elements 
are 
Cij = Σ ais * bsj; s = 1….n 
 
Procedure Matrix Multiplication 
For I := 1 to m do 
    For j := 1 to k do 
      Cij = 0 
         For s := 1 to n do 
             Cij = Cij + ais * bsj; 
         End for 
    End for 
End for 
 
CREW Matrix Multiplication 

 

The algorithm uses n2 processors which are arranged in a 2d array of size n x n. 
Overall complexity is O(n). 
 
Procedure CREW Matrix Multiplication 

 
For I := 1 to n do in parallel  
    For j := 1 to n do in parallel  
      Ci,j = 0 
         For k := 1 to n do 
             Ci,j = Ci,j + ai,k * bk,j; 
         End for 
    End for 
End for 
 
 
EREW Matrix Multiplication 

 

In case of CREW model one advantage is that a memory location can be accessed by any other 
processor. In EREW model one needs to ensure that every processor reads the value from a 
memory location which is not being accessed by any other processor. 
 
Procedure EREW Matrix Multiplication 

 
For I := 1 to n do in parallel  
    For j := 1 to n do in parallel  
      Ci,j = 0 
         For k := 1 to n do 
              lk := (i+j+k)mod n+1; 
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             Ci,j = Ci,j + ai,1k * b1k, j; 
         End for 
    End for 
End for 
 
CRCW Matrix Multiplication 
The algorithm uses n 3 processors and runs O(1) time. When more than one processor attempts 
to write to he same memory location, the sum of the values is written onto the memory location, 
 
Procedure CRCW Matrix Multiplication 

 
For I := 1 to n do in parallel  
    For j := 1 to n do in parallel  
               For s := 1 to n do in parallel 

Ci,j = 0 
                        Ci,j = Ci,j + ai,s * bs,,j; 
         End for 
    End for 
End for 
 
22.2.4 Solving s system of linear equations 

 
The problem of solving a system of linear equations (Ax = b) is central fro many problems in 
scientific and engineering computing. One of the method for solving linear equation is gauss 
elimination method. 

a0 0 x0   + a0 1 x1    + … + a0 n-1 xn-1   = b0 

 a1 0 x0    + a1 1 x1    + … + a1 n-1 xn-1   = b1 

       ……. 

 an-1 0 x0 + an-1 1 x1 + … + an-1 n-1 xn-1 = bn-1 

 n equations and n variables (x0,x1,...,xn-1) 
 Can be expressed in matrix vector notation A x = b   
 Reduce Ax=b into Ux=y  

o U is an upper triangular 
o Diagonal elements Uii = 1 

        x0   + u0 1 x1    + … + u0 n-1 xn-1   = y0 

                        x1    + … + u1 n-1 xn-1   = y1 

                                                           …….. 

                                                    xn-1   = yn-1 

 Back substitute 
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 Two phases repeated n times 
 Consider the k-th iteration (0  k < n)   
 Phase 1: Normalize k-th row of A 

    for j = k+1 to n-1    Akj /= Akk 
    yk   =  bk/Akk 
    Akk = 1 

 Phase 2: Eliminate 

Using k-th row, make k-th column of A zero for row# > k 
for i = k+1 to n-1 
for j = k+1 to n-1  Aij -= Aik*Akj 
bi   -= aik * yk 
Aik = 0 

 O(n2) divides,  O(n3) subtracts and multiplies 
 p = n, row-striped partition 

           for k = 0 to n-1 
                    k-th phase 1 
          performed by Pk  
         sequentially, no communication 
                   k-th phase 2 
                                Pk broadcasts k-th row to Pk+1, ... , Pn-1   
                                performed in parallel by Pk+1, ... , Pn-1 

Upper Triangularization – Pipelined Parallel 

 p = n, row-stripes partition 
        for all Pi  (i = 0 .. n-1) do in parallel 
            for k = 0 to n-1 
                 if  (i > k)  
             receive row k, send it down 
                       perform k-th phase 2 
                 if (i == k) 
                       perform k-th phase 1 
                       send row k down 
 
Procedure Gauss Elimination 

 

For k := 1 to n do  
    For j := k+1 to n do 
         A[k,j] = a[k,j] / a[k,k] 
   End for 
  Y[k] := b[k] / a[k,k] 
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A[k,k] := 1 
For I := k+1 to n do 
   For j := k+1 to n do 
       A[i,j] := a[i,j] – a[i,k] * a[k,j] 
   End for 
B[i] := b[i] – a[i,k] * y[k] 
A[i,k]:= 0; 
   End for 
end for 
 
22.3 Let us Sum Up 

 
Various algorithms has been carried out for searching operations using PRAM models 

and the difference in the execution has been discussed. Matrix multiplication has been 
implemented through CREW, EREW, CRCW model and gauss elimination has been solved 
using parallel algorithms. 
 
22.4 Lesson-end Activities  

 
1. What are the searching techniques for PRAM models? Explain. 
2. Discuss matrix multiplication using parallel algorithms.  
 

 
22.5 Points for discussions 

 
 Searching on PRAM Models 
 Matrix Multiplication on PRAM Models 

 
 
 
22.6 References 

 
 http://www-unix.mcs.anl.gov/dbpp/text/node45.html#eqlamatmulc 
 Parallel and Distributed Processing, CSE 8380, SMU school of engineering 
 


