

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Table	of	Contents
Introduction

Act	with	Prudence

Apply	Functional	Programming	Principles

Ask	"What	Would	the	User	Do?"	(You	Are	not	the	User)

Automate	Your	Coding	Standard

Beauty	Is	in	Simplicity

Before	You	Refactor

Beware	the	Share

The	Boy	Scout	Rule

Check	Your	Code	First	before	Looking	to	Blame	Others

Choose	Your	Tools	with	Care

Code	in	the	Language	of	the	Domain

Code	Is	Design

Code	Layout	Matters

Code	Reviews

Coding	with	Reason

A	Comment	on	Comments

Comment	Only	What	the	Code	Cannot	Say

Continuous	Learning

Convenience	Is	not	an	-ility

Deploy	Early	and	Often

Distinguish	Business	Exceptions	from	Technical

Do	Lots	of	Deliberate	Practice

Domain-Specific	Languages

Don't	Be	Afraid	to	Break	Things

Don't	Be	Cute	with	Your	Test	Data

Don't	Ignore	that	Error!

Don't	Just	Learn	the	Language,	Understand	its	Culture

Don't	Nail	Your	Program	into	the	Upright	Position

Don't	Rely	on	"Magic	Happens	Here"

97	Things	Every	Programmer	Should	Know

2

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Don't	Repeat	Yourself

Don't	Touch	that	Code!

Encapsulate	Behavior,	not	Just	State

Floating-point	Numbers	Aren't	Real

Fulfill	Your	Ambitions	with	Open	Source

The	Golden	Rule	of	API	Design

The	Guru	Myth

Hard	Work	Does	not	Pay	Off

How	to	Use	a	Bug	Tracker

Improve	Code	by	Removing	It

Install	Me

Inter-Process	Communication	Affects	Application	Response	Time

Keep	the	Build	Clean

Know	How	to	Use	Command-line	Tools

Know	Well	More	than	Two	Programming	Languages

Know	Your	IDE

Know	Your	Limits

Know	Your	Next	Commit

Large	Interconnected	Data	Belongs	to	a	Database

Learn	Foreign	Languages

Learn	to	Estimate

Learn	to	Say	"Hello,	World"

Let	Your	Project	Speak	for	Itself

The	Linker	Is	not	a	Magical	Program

The	Longevity	of	Interim	Solutions

Make	Interfaces	Easy	to	Use	Correctly	and	Hard	to	Use	Incorrectly

Make	the	Invisible	More	Visible

Message	Passing	Leads	to	Better	Scalability	in	Parallel	Systems

A	Message	to	the	Future

Missing	Opportunities	for	Polymorphism

News	of	the	Weird:	Testers	Are	Your	Friends

One	Binary

Only	the	Code	Tells	the	Truth

Own	(and	Refactor)	the	Build

97	Things	Every	Programmer	Should	Know

3

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Pair	Program	and	Feel	the	Flow

Prefer	Domain-Specific	Types	to	Primitive	Types

Prevent	Errors

The	Professional	Programmer

Put	Everything	Under	Version	Control

Put	the	Mouse	Down	and	Step	Away	from	the	Keyboard

Read	Code

Read	the	Humanities

Reinvent	the	Wheel	Often

Resist	the	Temptation	of	the	Singleton	Pattern

The	Road	to	Performance	Is	Littered	with	Dirty	Code	Bombs

Simplicity	Comes	from	Reduction

The	Single	Responsibility	Principle

Start	from	Yes

Step	Back	and	Automate,	Automate,	Automate

Take	Advantage	of	Code	Analysis	Tools

Test	for	Required	Behavior,	not	Incidental	Behavior

Test	Precisely	and	Concretely

Test	While	You	Sleep	(and	over	Weekends)

Testing	Is	the	Engineering	Rigor	of	Software	Development

Thinking	in	States

Two	Heads	Are	Often	Better	than	One

Two	Wrongs	Can	Make	a	Right	(and	Are	Difficult	to	Fix)

Ubuntu	Coding	for	Your	Friends

The	Unix	Tools	Are	Your	Friends

Use	the	Right	Algorithm	and	Data	Structure

Verbose	Logging	Will	Disturb	Your	Sleep

WET	Dilutes	Performance	Bottlenecks

When	Programmers	and	Testers	Collaborate

Write	Code	as	If	You	Had	to	Support	It	for	the	Rest	of	Your	Life

Write	Small	Functions	Using	Examples

Write	Tests	for	People

You	Gotta	Care	about	the	Code

97	Things	Every	Programmer	Should	Know

4

97Your	Customers	Do	not	Mean	What	They	Say

97	Things	Every	Programmer	Should	Know

5

97	Things	Every	Programmer	Should
Know
Pearls	of	wisdom	for	programmers	collected	from	leading	practitioners.

This	is	a	GitBook	version	of	the	'97	Things	Every	Programmer	Should	Know'	project.

All	content	is	licensed	under	the	Creative	Commons	Attribution	Non	Commercial	Share	Alike
3.0	license.	Print	versions	of	the	book	are	available	on	Amazon.com.

If	you	find	any	mistakes	or	have	any	suggestions,	you	can	create	issue	or	pull	request	to
repository.

97	Things	Every	Programmer	Should	Know

6Introduction

https://www.gitbook.io
http://programmer.97things.oreilly.com/wiki/index.php/97_Things_Every_Programmer_Should_Know
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.amazon.com/Things-Every-Programmer-Should-Know/dp/0596809484
https://github.com/97-things/97-things-every-programmer-should-know/issues
https://github.com/97-things/97-things-every-programmer-should-know/pulls
https://github.com/97-things/97-things-every-programmer-should-know

Act	with	Prudence
"Whatever	you	undertake,	act	with	prudence	and	consider	the	consequences"	Anon

No	matter	how	comfortable	a	schedule	looks	at	the	beginning	of	an	iteration,	you	can't	avoid
being	under	pressure	some	of	the	time.	If	you	find	yourself	having	to	choose	between	"doing
it	right"	and	"doing	it	quick"	it	is	often	appealing	to	"do	it	quick"	on	the	understanding	that
you'll	come	back	and	fix	it	later.	When	you	make	this	promise	to	yourself,	your	team,	and
your	customer,	you	mean	it.	But	all	too	often	the	next	iteration	brings	new	problems	and	you
become	focused	on	them.	This	sort	of	deferred	work	is	known	as	technical	debt	and	it	is	not
your	friend.	Specifically,	Martin	Fowler	calls	this	deliberate	technical	debt	in	his	taxonomy	of
technical	debt,	which	should	not	be	confused	with	inadvertent	technical	debt.

Technical	debt	is	like	a	loan:	You	benefit	from	it	in	the	short-term,	but	you	have	to	pay
interest	on	it	until	it	is	fully	paid	off.	Shortcuts	in	the	code	make	it	harder	to	add	features	or
refactor	your	code.	They	are	breeding	grounds	for	defects	and	brittle	test	cases.	The	longer
you	leave	it,	the	worse	it	gets.	By	the	time	you	get	around	to	undertaking	the	original	fix
there	may	be	a	whole	stack	of	not-quite-right	design	choices	layered	on	top	of	the	original
problem	making	the	code	much	harder	to	refactor	and	correct.	In	fact,	it	is	often	only	when
things	have	got	so	bad	that	you	must	fix	it,	that	you	actually	do	go	back	to	fix	it.	And	by	then
it	is	often	so	hard	to	fix	that	you	really	can't	afford	the	time	or	the	risk.

There	are	times	when	you	must	incur	technical	debt	to	meet	a	deadline	or	implement	a	thin
slice	of	a	feature.	Try	not	to	be	in	this	position,	but	if	the	situation	absolutely	demands	it,	then
go	ahead.	But	(and	this	is	a	big	BUT)	you	must	track	technical	debt	and	pay	it	back	quickly
or	things	go	rapidly	downhill.	As	soon	as	you	make	the	decision	to	compromise,	write	a	task
card	or	log	it	in	your	issue	tracking	system	to	ensure	that	it	does	not	get	forgotten.

If	you	schedule	repayment	of	the	debt	in	the	next	iteration,	the	cost	will	be	minimal.	Leaving
the	debt	unpaid	will	accrue	interest	and	that	interest	should	be	tracked	to	make	the	cost
visible.	This	will	emphasize	the	effect	on	business	value	of	the	project's	technical	debt	and
enables	appropriate	prioritization	of	the	repayment.	The	choice	of	how	to	calculate	and	track
the	interest	will	depend	on	the	particular	project,	but	track	it	you	must.

Pay	off	technical	debt	as	soon	as	possible.	It	would	be	imprudent	to	do	otherwise.

By	Seb	Rose

97	Things	Every	Programmer	Should	Know

7Act	with	Prudence

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://programmer.97things.oreilly.com/wiki/index.php/Seb_Rose

Apply	Functional	Programming	Principles
Functional	programming	has	recently	enjoyed	renewed	interest	from	the	mainstream
programming	community.	Part	of	the	reason	is	because	emergent	properties	of	the
functional	paradigm	are	well	positioned	to	address	the	challenges	posed	by	our	industry's
shift	toward	multi-core.	However,	while	that	is	certainly	an	important	application,	it	is	not	the
reason	this	piece	admonishes	you	to	know	thy	functional	programming.

Mastery	of	the	functional	programming	paradigm	can	greatly	improve	the	quality	of	the	code
you	write	in	other	contexts.	If	you	deeply	understand	and	apply	the	functional	paradigm,	your
designs	will	exhibit	a	much	higher	degree	of	referential	transparency.

Referential	transparency	is	a	very	desirable	property:	It	implies	that	functions	consistently
yield	the	same	results	given	the	same	input,	irrespective	of	where	and	when	they	are
invoked.	That	is,	function	evaluation	depends	less	—	ideally,	not	at	all	—	on	the	side	effects
of	mutable	state.

A	leading	cause	of	defects	in	imperative	code	is	attributable	to	mutable	variables.	Everyone
reading	this	will	have	investigated	why	some	value	is	not	as	expected	in	a	particular
situation.	Visibility	semantics	can	help	to	mitigate	these	insidious	defects,	or	at	least	to
drastically	narrow	down	their	location,	but	their	true	culprit	may	in	fact	be	the	providence	of
designs	that	employ	inordinate	mutability.

And	we	certainly	don't	get	much	help	from	industry	in	this	regard.	Introductions	to	object
orientation	tacitly	promote	such	design,	because	they	often	show	examples	composed	of
graphs	of	relatively	long-lived	objects	that	happily	call	mutator	methods	on	each	other,	which
can	be	dangerous.	However,	with	astute	test-driven	design,	particularly	when	being	sure	to
"Mock	Roles,	not	Objects",	unnecessary	mutability	can	be	designed	away.

The	net	result	is	a	design	that	typically	has	better	responsibility	allocation	with	more
numerous,	smaller	functions	that	act	on	arguments	passed	into	them,	rather	than
referencing	mutable	member	variables.	There	will	be	fewer	defects,	and	furthermore	they
will	often	be	simpler	to	debug,	because	it	is	easier	to	locate	where	a	rogue	value	is
introduced	in	these	designs	than	to	otherwise	deduce	the	particular	context	that	results	in	an
erroneous	assignment.	This	adds	up	to	a	much	higher	degree	of	referential	transparency,
and	positively	nothing	will	get	these	ideas	as	deeply	into	your	bones	as	learning	a	functional
programming	language,	where	this	model	of	computation	is	the	norm.

Of	course,	this	approach	is	not	optimal	in	all	situations.	For	example,	in	object-oriented
systems	this	style	often	yields	better	results	with	domain	model	development	(i.e.,	where
collaborations	serve	to	break	down	the	complexity	of	business	rules)	than	with	user-interface

97	Things	Every	Programmer	Should	Know

8Apply	Functional	Programming	Principles

http://www.jmock.org/oopsla2004.pdf

development.

Master	the	functional	programming	paradigm	so	you	are	able	to	judiciously	apply	the
lessons	learned	to	other	domains.	Your	object	systems	(for	one)	will	resonate	with	referential
transparency	goodness	and	be	much	closer	to	their	functional	counterparts	than	many	would
have	you	believe.	In	fact,	some	would	even	assert	that	the	apex	of	functional	programming
and	object	orientation	are	merely	a	reflection	of	each	other,	a	form	of	computational	yin	and
yang.

By	Edward	Garson

97	Things	Every	Programmer	Should	Know

9Apply	Functional	Programming	Principles

http://programmer.97things.oreilly.com/wiki/index.php/Edward_Garson

Ask	"What	Would	the	User	Do?"	(You	Are
not	the	User)
We	all	tend	to	assume	that	other	people	think	like	us.	But	they	don't.	Psychologists	call	this
the	false	consensus	bias.	When	people	think	or	act	differently	to	us,	we're	quite	likely	to	label
them	(subconsciously)	as	defective	in	some	way.

This	bias	explains	why	programmers	have	such	a	hard	time	putting	themselves	in	the	users'
position.	Users	don't	think	like	programmers.	For	a	start,	they	spend	much	less	time	using
computers.	They	neither	know	nor	care	how	a	computer	works.	This	means	they	can't	draw
on	any	of	the	battery	of	problem-solving	techniques	so	familiar	to	programmers.	They	don't
recognize	the	patterns	and	cues	programmers	use	to	work	with,	through,	and	around	an
interface.

The	best	way	to	find	out	how	users	think	is	to	watch	one.	Ask	a	user	to	complete	a	task
using	a	similar	piece	of	software	to	what	you're	developing.	Make	sure	the	task	is	a	real	one:
"Add	up	a	column	of	numbers"	is	OK;	"Calculate	your	expenses	for	the	last	month"	is	better.
Avoid	tasks	that	are	too	specific,	such	as	"Can	you	select	these	spreadsheet	cells	and	enter
a	SUM	formula	below?"	—	there's	a	big	clue	in	that	question.	Get	the	user	to	talk	through	his
or	her	progress.	Don't	interrupt.	Don't	try	to	help.	Keep	asking	yourself	"Why	is	he	doing
that?"	and	"Why	is	she	not	doing	that?"

The	first	thing	you'll	notice	is	that	users	do	a	core	of	things	similarly.	They	try	to	complete
tasks	in	the	same	order	—	and	they	make	the	same	mistakes	in	the	same	places.	You
should	design	around	that	core	behavior.	This	is	different	from	design	meetings,	where
people	tend	to	be	listened	to	for	saying	"What	if	the	user	wants	to...?"	This	leads	to	elaborate
features	and	confusion	over	what	users	want.	Watching	users	eliminates	this	confusion.

You'll	see	users	getting	stuck.	When	you	get	stuck,	you	look	around.	When	users	get	stuck,
they	narrow	their	focus.	It	becomes	harder	for	them	to	see	solutions	elsewhere	on	the
screen.	It's	one	reason	why	help	text	is	a	poor	solution	to	poor	user	interface	design.	If	you
must	have	instructions	or	help	text,	make	sure	to	locate	it	right	next	to	your	problem	areas.	A
user's	narrow	focus	of	attention	is	why	tool	tips	are	more	useful	than	help	menus.

Users	tend	to	muddle	through.	They'll	find	a	way	that	works	and	stick	with	it	no	matter	how
convoluted.	It's	better	to	provide	one	really	obvious	way	of	doing	things	than	two	or	three
shortcuts.	You'll	also	find	that	there's	a	gap	between	what	users	say	they	want	and	what
they	actually	do.	That's	worrying	as	the	normal	way	of	gathering	user	requirements	is	to	ask
them.	It's	why	the	best	way	to	capture	requirements	is	to	watch	users.	Spending	an	hour
watching	users	is	more	informative	than	spending	a	day	guessing	what	they	want.

97	Things	Every	Programmer	Should	Know

10Ask	"What	Would	the	User	Do?"	(You	Are	not	the	User)

by	Giles	Colborne

97	Things	Every	Programmer	Should	Know

11Ask	"What	Would	the	User	Do?"	(You	Are	not	the	User)

http://programmer.97things.oreilly.com/wiki/index.php/Giles_Colborne

Automate	Your	Coding	Standard
You've	probably	been	there	too.	At	the	beginning	of	a	project,	everybody	has	lots	of	good
intentions	—	call	them	"new	project's	resolutions."	Quite	often,	many	of	these	resolutions	are
written	down	in	documents.	The	ones	about	code	end	up	in	the	project's	coding	standard.
During	the	kick-off	meeting,	the	lead	developer	goes	through	the	document	and,	in	the	best
case,	everybody	agrees	that	they	will	try	to	follow	them.	Once	the	project	gets	underway,
though,	these	good	intentions	are	abandoned,	one	at	a	time.	When	the	project	is	finally
delivered	the	code	looks	like	a	mess,	and	nobody	seems	to	know	how	it	came	to	be	this
way.

When	did	things	go	wrong?	Probably	already	at	the	kick-off	meeting.	Some	of	the	project
members	didn't	pay	attention.	Others	didn't	understand	the	point.	Worse,	some	disagreed
and	were	already	planning	their	coding	standard	rebellion.	Finally,	some	got	the	point	and
agreed	but,	when	the	pressure	in	the	project	got	too	high,	they	had	to	let	something	go.
Well-formatted	code	doesn't	earn	you	points	with	a	customer	that	wants	more	functionality.
Furthermore,	following	a	coding	standard	can	be	quite	a	boring	task	if	it	isn't	automated.	Just
try	to	indent	a	messy	class	by	hand	to	find	out	for	yourself.

But	if	it's	such	a	problem,	why	is	that	we	want	to	have	a	coding	standard	in	the	first	place?
One	reason	to	format	the	code	in	a	uniform	way	is	so	that	nobody	can	"own"	a	piece	of	code
just	by	formatting	it	in	his	or	her	private	way.	We	may	want	to	prevent	developers	using
certain	anti-patterns,	in	order	to	avoid	some	common	bugs.	In	all,	a	coding	standard	should
make	it	easier	to	work	in	the	project,	and	maintain	development	speed	from	the	beginning	to
the	end.	It	follows	then	that	everybody	should	agree	on	the	coding	standard	too	—	it	does
not	help	if	one	developer	uses	three	spaces	to	indent	code,	and	another	one	four.

There	exists	a	wealth	of	tools	that	can	be	used	to	produce	code	quality	reports	and	to
document	and	maintain	the	coding	standard,	but	that	isn't	the	whole	solution.	It	should	be
automated	and	enforced	where	possible.	Here	are	a	few	examples:

Make	sure	code	formatting	is	part	of	the	build	process,	so	that	everybody	runs	it
automatically	every	time	they	compile	the	code.
Use	static	code	analysis	tools	to	scan	the	code	for	unwanted	anti-patterns.	If	any	are
found,	break	the	build.
Learn	to	configure	those	tools	so	that	you	can	scan	for	your	own,	project-specific	anti-
patterns.
Do	not	only	measure	test	coverage,	but	automatically	check	the	results	too.	Again,
break	the	build	if	test	coverage	is	too	low.

97	Things	Every	Programmer	Should	Know

12Automate	Your	Coding	Standard

Try	to	do	this	for	everything	that	you	consider	important.	You	won't	be	able	to	automate
everything	you	really	care	about.	As	for	the	things	that	you	can't	automatically	flag	or	fix,
consider	them	to	be	a	set	of	guidelines	supplementary	to	the	coding	standard	that	is
automated,	but	accept	that	you	and	your	colleagues	may	not	follow	them	as	diligently.

Finally,	the	coding	standard	should	be	dynamic	rather	than	static.	As	the	project	evolves,	the
needs	of	the	project	change,	and	what	may	have	seemed	smart	in	the	beginning,	isn't
necessarily	smart	a	few	months	later.

By	Filip	van	Laenen

97	Things	Every	Programmer	Should	Know

13Automate	Your	Coding	Standard

http://programmer.97things.oreilly.com/wiki/index.php/Filip_van_Laenen

Beauty	Is	in	Simplicity
There	is	one	quote	that	I	think	is	particularly	good	for	all	software	developers	to	know	and
keep	close	to	their	hearts:

Beauty	of	style	and	harmony	and	grace	and	good	rhythm	depends	on	simplicity.	—
Plato

In	one	sentence	I	think	this	sums	up	the	values	that	we	as	software	developers	should
aspire	to.

There	are	a	number	of	things	we	strive	for	in	our	code:

Readability
Maintainability
Speed	of	development
The	elusive	quality	of	beauty

Plato	is	telling	us	that	the	enabling	factor	for	all	of	these	qualities	is	simplicity.

What	is	beautiful	code?	This	is	potentially	a	very	subjective	question.	Perception	of	beauty
depends	heavily	on	individual	background,	just	as	much	of	our	perception	of	anything
depends	on	our	background.	People	educated	in	the	arts	have	a	different	perception	of	(or
at	least	approach	to)	beauty	than	people	educated	in	the	sciences.	Arts	majors	tend	to
approach	beauty	in	software	by	comparing	software	to	works	of	art,	while	science	majors
tend	to	talk	about	symmetry	and	the	golden	ratio,	trying	to	reduce	things	to	formulae.	In	my
experience,	simplicity	is	the	foundation	of	most	of	the	arguments	from	both	sides.

Think	about	source	code	that	you	have	studied.	If	you	haven't	spent	time	studying	other
people's	code,	stop	reading	this	right	now	and	find	some	open	source	code	to	study.
Seriously!	I	mean	it!	Go	search	the	web	for	some	code	in	your	language	of	choice,	written	by
some	well-known,	acknowledged	expert.

You're	back?	Good.	Where	were	we?	Ah	yes...	I	have	found	that	code	that	resonates	with
me	and	that	I	consider	beautiful	has	a	number	of	properties	in	common.	Chief	among	these
is	simplicity.	I	find	that	no	matter	how	complex	the	total	application	or	system	is,	the
individual	parts	have	to	be	kept	simple.	Simple	objects	with	a	single	responsibility	containing
similarly	simple,	focused	methods	with	descriptive	names.	Some	people	think	the	idea	of
having	short	methods	of	five	to	ten	lines	of	code	is	extreme,	and	some	languages	make	it
very	hard	to	do	this,	but	I	think	that	such	brevity	is	a	desirable	goal	nonetheless.

97	Things	Every	Programmer	Should	Know

14Beauty	Is	in	Simplicity

The	bottom	line	is	that	beautiful	code	is	simple	code.	Each	individual	part	is	kept	simple	with
simple	responsibilities	and	simple	relationships	with	the	other	parts	of	the	system.	This	is	the
way	we	can	keep	our	systems	maintainable	over	time,	with	clean,	simple,	testable	code,
keeping	the	speed	of	development	high	throughout	the	lifetime	of	the	system.	Beauty	is	born
of	and	found	in	simplicity.

By	Jørn	Ølmheim

97	Things	Every	Programmer	Should	Know

15Beauty	Is	in	Simplicity

Before	You	Refactor
At	some	point	every	programmer	will	need	to	refactor	existing	code.	But	before	you	do	so
please	think	about	the	following,	as	this	could	save	you	and	others	a	great	deal	of	time	(and
pain):

The	best	approach	for	restructuring	starts	by	taking	stock	of	the	existing	codebase	and
the	tests	written	against	that	code.	This	will	help	you	understand	the	strengths	and
weaknesses	of	the	code	as	it	currently	stands,	so	you	can	ensure	that	you	retain	the
strong	points	while	avoiding	the	mistakes.	We	all	think	we	can	do	better	than	the
existing	system...	until	we	end	up	with	something	no	better	—	or	even	worse	—	than	the
previous	incarnation	because	we	failed	to	learn	from	the	existing	system's	mistakes.

Avoid	the	temptation	to	rewrite	everything.	It	is	best	to	reuse	as	much	code	as	possible.
No	matter	how	ugly	the	code	is,	it	has	already	been	tested,	reviewed,	etc.	Throwing
away	the	old	code	—	especially	if	it	was	in	production	—	means	that	you	are	throwing
away	months	(or	years)	of	tested,	battle-hardened	code	that	may	have	had	certain
workarounds	and	bug	fixes	you	aren't	aware	of.	If	you	don't	take	this	into	account,	the
new	code	you	write	may	end	up	showing	the	same	mysterious	bugs	that	were	fixed	in
the	old	code.	This	will	waste	a	lot	of	time,	effort,	and	knowledge	gained	over	the	years.

Many	incremental	changes	are	better	than	one	massive	change.	Incremental	changes
allows	you	to	gauge	the	impact	on	the	system	more	easily	through	feedback,	such	as
from	tests.	It	is	no	fun	to	see	a	hundred	test	failures	after	you	make	a	change.	This	can
lead	to	frustration	and	pressure	that	can	in	turn	result	in	bad	decisions.	A	couple	of	test
failures	is	easy	to	deal	with	and	provides	a	more	manageable	approach.

After	each	iteration,	it	is	important	to	ensure	that	the	existing	tests	pass.	Add	new	tests
if	the	existing	tests	are	not	sufficient	to	cover	the	changes	you	made.	Do	not	throw	away
the	tests	from	the	old	code	without	due	consideration.	On	the	surface	some	of	these
tests	may	not	appear	to	be	applicable	to	your	new	design,	but	it	would	be	well	worth	the
effort	to	dig	deep	down	into	the	reasons	why	this	particular	test	was	added.

Personal	preferences	and	ego	shouldn't	get	in	the	way.	If	something	isn't	broken,	why
fix	it?	That	the	style	or	the	structure	of	the	code	does	not	meet	your	personal	preference
is	not	a	valid	reason	for	restructuring.	Thinking	you	could	do	a	better	job	than	the
previous	programmer	is	not	a	valid	reason	either.

New	technology	is	insufficient	reason	to	refactor.	One	of	the	worst	reasons	to	refactor	is
because	the	current	code	is	way	behind	all	the	cool	technology	we	have	today,	and	we
believe	that	a	new	language	or	framework	can	do	things	a	lot	more	elegantly.	Unless	a

97	Things	Every	Programmer	Should	Know

16Before	You	Refactor

cost–benefit	analysis	shows	that	a	new	language	or	framework	will	result	in	significant
improvements	in	functionality,	maintainability,	or	productivity,	it	is	best	to	leave	it	as	it	is.

Remember	that	humans	make	mistakes.	Restructuring	will	not	always	guarantee	that
the	new	code	will	be	better	—	or	even	as	good	as	—	the	previous	attempt.	I	have	seen
and	been	a	part	of	several	failed	restructuring	attempts.	It	wasn't	pretty,	but	it	was
human.

by	Rajith	Attapattu

97	Things	Every	Programmer	Should	Know

17Before	You	Refactor

http://programmer.97things.oreilly.com/wiki/index.php/Rajith_Attapattu

Beware	the	Share
It	was	my	first	project	at	the	company.	I'd	just	finished	my	degree	and	was	anxious	to	prove
myself,	staying	late	every	day	going	through	the	existing	code.	As	I	worked	through	my	first
feature	I	took	extra	care	to	put	in	place	everything	I	had	learned	—	commenting,	logging,
pulling	out	shared	code	into	libraries	where	possible,	the	works.	The	code	review	that	I	had
felt	so	ready	for	came	as	a	rude	awakening	—	reuse	was	frowned	upon!

How	could	this	be?	All	through	college	reuse	was	held	up	as	the	epitome	of	quality	software
engineering.	All	the	articles	I	had	read,	the	textbooks,	the	seasoned	software	professionals
who	taught	me.	Was	it	all	wrong?

It	turns	out	that	I	was	missing	something	critical.

Context.

The	fact	that	two	wildly	different	parts	of	the	system	performed	some	logic	in	the	same	way
meant	less	than	I	thought.	Up	until	I	had	pulled	out	those	libraries	of	shared	code,	these
parts	were	not	dependent	on	each	other.	Each	could	evolve	independently.	Each	could
change	its	logic	to	suit	the	needs	of	the	system's	changing	business	environment.	Those
four	lines	of	similar	code	were	accidental	—	a	temporal	anomaly,	a	coincidence.	That	is,	until
I	came	along.

The	libraries	of	shared	code	I	created	tied	the	shoelaces	of	each	foot	to	each	other.	Steps	by
one	business	domain	could	not	be	made	without	first	synchronizing	with	the	other.
Maintenance	costs	in	those	independent	functions	used	to	be	negligible,	but	the	common
library	required	an	order	of	magnitude	more	testing.

While	I'd	decreased	the	absolute	number	of	lines	of	code	in	the	system,	I	had	increased	the
number	of	dependencies.	The	context	of	these	dependencies	is	critical	—	had	they	been
localized,	it	may	have	been	justified	and	had	some	positive	value.	When	these
dependencies	aren't	held	in	check,	their	tendrils	entangle	the	larger	concerns	of	the	system
even	though	the	code	itself	looks	just	fine.

These	mistakes	are	insidious	in	that,	at	their	core,	they	sound	like	a	good	idea.	When
applied	in	the	right	context,	these	techniques	are	valuable.	In	the	wrong	context,	they
increase	cost	rather	than	value.	When	coming	into	an	existing	code	base	with	no	knowledge
of	the	context	where	the	various	parts	will	be	used,	I'm	much	more	careful	these	days	about
what	is	shared.

Beware	the	share.	Check	your	context.	Only	then,	proceed.

97	Things	Every	Programmer	Should	Know

18Beware	the	Share

By	Udi	Dahan

97	Things	Every	Programmer	Should	Know

19Beware	the	Share

http://programmer.97things.oreilly.com/wiki/index.php/Udi_Dahan

The	Boy	Scout	Rule
The	Boy	Scouts	have	a	rule:	"Always	leave	the	campground	cleaner	than	you	found	it."	If
you	find	a	mess	on	the	ground,	you	clean	it	up	regardless	of	who	might	have	made	the
mess.	You	intentionally	improve	the	environment	for	the	next	group	of	campers.	Actually	the
original	form	of	that	rule,	written	by	Robert	Stephenson	Smyth	Baden-Powell,	the	father	of
scouting,	was	"Try	and	leave	this	world	a	little	better	than	you	found	it."

What	if	we	followed	a	similar	rule	in	our	code:	"Always	check	a	module	in	cleaner	than	when
you	checked	it	out."	No	matter	who	the	original	author	was,	what	if	we	always	made	some
effort,	no	matter	how	small,	to	improve	the	module.	What	would	be	the	result?

I	think	if	we	all	followed	that	simple	rule,	we'd	see	the	end	of	the	relentless	deterioration	of
our	software	systems.	Instead,	our	systems	would	gradually	get	better	and	better	as	they
evolved.	We'd	also	see	teams	caring	for	the	system	as	a	whole,	rather	than	just	individuals
caring	for	their	own	small	little	part.

I	don't	think	this	rule	is	too	much	to	ask.	You	don't	have	to	make	every	module	perfect	before
you	check	it	in.	You	simply	have	to	make	it	a	little	bit	better	than	when	you	checked	it	out.	Of
course,	this	means	that	any	code	you	add	to	a	module	must	be	clean.	It	also	means	that	you
clean	up	at	least	one	other	thing	before	you	check	the	module	back	in.	You	might	simply
improve	the	name	of	one	variable,	or	split	one	long	function	into	two	smaller	functions.	You
might	break	a	circular	dependency,	or	add	an	interface	to	decouple	policy	from	detail.

Frankly,	this	just	sounds	like	common	decency	to	me	—	like	washing	your	hands	after	you
use	the	restroom,	or	putting	your	trash	in	the	bin	instead	of	dropping	it	on	the	floor.	Indeed
the	act	of	leaving	a	mess	in	the	code	should	be	as	socially	unacceptable	as	littering.	It
should	be	something	that	just	isn't	done.

But	it's	more	than	that.	Caring	for	our	own	code	is	one	thing.	Caring	for	the	team's	code	is
quite	another.	Teams	help	each	other,	and	clean	up	after	each	other.	They	follow	the	Boy
Scout	rule	because	it's	good	for	everyone,	not	just	good	for	themselves.

by	Uncle	Bob

97	Things	Every	Programmer	Should	Know

20The	Boy	Scout	Rule

http://programmer.97things.oreilly.com/wiki/index.php/Uncle_Bob

Check	Your	Code	First	before	Looking	to
Blame	Others
Developers	—	all	of	us!	—	often	have	trouble	believing	our	own	code	is	broken.	It	is	just	so
improbable	that,	for	once,	it	must	be	the	compiler	that's	broken.

Yet	in	truth	it	is	very	(very)	unusual	that	code	is	broken	by	a	bug	in	the	compiler,	interpreter,
OS,	app	server,	database,	memory	manager,	or	any	other	piece	of	system	software.	Yes,
these	bugs	exist,	but	they	are	far	less	common	than	we	might	like	to	believe.

I	once	had	a	genuine	problem	with	a	compiler	bug	optimizing	away	a	loop	variable,	but	I
have	imagined	my	compiler	or	OS	had	a	bug	many	more	times.	I	have	wasted	a	lot	of	my
time,	support	time,	and	management	time	in	the	process	only	to	feel	a	little	foolish	each	time
it	turned	out	to	be	my	mistake	after	all.

Assuming	the	tools	are	widely	used,	mature,	and	employed	in	various	technology	stacks,
there	is	little	reason	to	doubt	the	quality.	Of	course,	if	the	tool	is	an	early	release,	or	used	by
only	a	few	people	worldwide,	or	a	piece	of	seldom	downloaded,	version	0.1,	Open	Source
Software,	there	may	be	good	reason	to	suspect	the	software.	(Equally,	an	alpha	version	of
commercial	software	might	be	suspect.)

Given	how	rare	compiler	bugs	are,	you	are	far	better	putting	your	time	and	energy	into
finding	the	error	in	your	code	than	proving	the	compiler	is	wrong.	All	the	usual	debugging
advice	applies,	so	isolate	the	problem,	stub	out	calls,	surround	it	with	tests;	check	calling
conventions,	shared	libraries,	and	version	numbers;	explain	it	to	someone	else;	look	out	for
stack	corruption	and	variable	type	mismatches;	try	the	code	on	different	machines	and
different	build	configurations,	such	as	debug	and	release.

Question	your	own	assumptions	and	the	assumptions	of	others.	Tools	from	different	vendors
might	have	different	assumptions	built	into	them	—	so	too	might	different	tools	from	the
same	vendor.	When	someone	else	is	reporting	a	problem	you	cannot	duplicate,	go	and	see
what	they	are	doing.	They	maybe	doing	something	you	never	thought	of	or	are	doing
something	in	a	different	order.

As	a	personal	rule	if	I	have	a	bug	I	can't	pin	down,	and	I'm	starting	to	think	it's	the	compiler,
then	it's	time	to	look	for	stack	corruption.	This	is	especially	true	if	adding	trace	code	makes
the	problem	move	around.

Multi-threaded	problems	are	another	source	of	bugs	to	turn	hair	gray	and	induce	screaming
at	the	machine.	All	the	recommendations	to	favor	simple	code	are	multiplied	when	a	system
is	multi-threaded.	Debugging	and	unit	tests	cannot	be	relied	on	to	find	such	bugs	with	any

97	Things	Every	Programmer	Should	Know

21Check	Your	Code	First	before	Looking	to	Blame	Others

consistency,	so	simplicity	of	design	is	paramount.

So	before	you	rush	to	blame	the	compiler,	remember	Sherlock	Holmes'	advice,	"Once	you
eliminate	the	impossible,	whatever	remains,	no	matter	how	improbable,	must	be	the	truth,"
and	prefer	it	to	Dirk	Gently's,	"Once	you	eliminate	the	improbable,	whatever	remains,	no
matter	how	impossible,	must	be	the	truth."

By	Allan	Kelly

97	Things	Every	Programmer	Should	Know

22Check	Your	Code	First	before	Looking	to	Blame	Others

http://programmer.97things.oreilly.com/wiki/index.php/Allan_Kelly

Choose	Your	Tools	with	Care
Modern	applications	are	very	rarely	built	from	scratch.	They	are	assembled	using	existing
tools	—	components,	libraries,	and	frameworks	—	for	a	number	of	good	reasons:

Applications	grow	in	size,	complexity,	and	sophistication,	while	the	time	available	to
develop	them	grows	shorter.	It	makes	better	use	of	developers'	time	and	intelligence	if
they	can	concentrate	on	writing	more	business-domain	code	and	less	infrastructure
code.

Widely	used	components	and	frameworks	are	likely	to	have	fewer	bugs	than	the	ones
developed	in-house.

There	is	a	lot	of	high-quality	software	available	on	the	web	for	free,	which	means	lower
development	costs	and	greater	likelihood	of	finding	developers	with	the	necessary
interest	and	expertise.

Software	production	and	maintenance	is	human-intensive	work,	so	buying	may	be
cheaper	than	building.

However,	choosing	the	right	mix	of	tools	for	your	application	can	be	a	tricky	business
requiring	some	thought.	In	fact	when	making	a	choice,	there	are	a	few	things	you	should
keep	in	mind:

Different	tools	may	rely	on	different	assumptions	about	their	context	—	e.g.,	surrounding
infrastructure,	control	model,	data	model,	communication	protocols,	etc.	—	which	can
lead	to	an	architectural	mismatch	between	the	application	and	the	tools.	Such	a
mismatch	leads	to	hacks	and	workarounds	that	will	make	the	code	more	complex	than
necessary.

Different	tools	have	different	lifecycles,	and	upgrading	one	of	them	may	become	an
extremely	difficult	and	time-consuming	task	since	the	new	functionality,	design	changes,
or	even	bug	fixes	may	cause	incompatibilities	with	the	other	tools.	The	greater	the
number	tools	the	worse	the	problem	can	become.

Some	tools	require	quite	a	bit	of	configuration,	often	by	means	of	one	or	more	XML	files,
which	can	grow	out	of	control	very	quickly.	The	application	may	end	up	looking	as	if	it
was	all	written	in	XML	plus	a	few	odd	lines	of	code	in	some	programming	language.	The
configurational	complexity	will	make	the	application	difficult	to	maintain	and	to	extend.

97	Things	Every	Programmer	Should	Know

23Choose	Your	Tools	with	Care

Vendor	lock-in	occurs	when	code	that	depends	heavily	on	specific	vendor	products
ends	up	being	constrained	by	them	on	several	counts:	maintainability,	performances,
ability	to	evolve,	price,	etc.

If	you	plan	to	use	free	software,	you	may	discover	that	it's	not	so	free	after	all.	You	may
need	to	buy	commercial	support,	which	is	not	necessarily	going	to	be	cheap.

Licensing	terms	matter,	even	for	free	software.	For	example,	in	some	companies	it	is
not	acceptable	to	use	software	licensed	under	the	GNU	license	terms	because	of	its
viral	nature	—	i.e.,	software	developed	with	it	must	be	distributed	along	with	its	source
code.

My	personal	strategy	to	mitigate	these	problems	is	to	start	small	by	using	only	the	tools	that
are	absolutely	necessary.	Usually	the	initial	focus	is	on	removing	the	need	to	engage	in	low-
level	infrastructure	programming	(and	problems),	e.g.,	by	using	some	middleware	instead	of
using	raw	sockets	for	distributed	applications.	And	then	add	more	if	needed.	I	also	tend	to
isolate	the	external	tools	from	my	business	domain	objects	by	means	of	interfaces	and
layering,	so	that	I	can	change	the	tool	if	I	have	to	with	just	a	small	amount	of	pain.	A	positive
side	effect	of	this	approach	is	that	I	generally	end	up	with	a	smaller	application	that	uses
fewer	external	tools	than	originally	forecast.

By	Giovanni	Asproni

97	Things	Every	Programmer	Should	Know

24Choose	Your	Tools	with	Care

http://programmer.97things.oreilly.com/wiki/index.php/Giovanni_Asproni

Code	in	the	Language	of	the	Domain
Picture	two	codebases.	In	one	you	come	across:

if	(portfolioIdsByTraderId.get(trader.getId())

		.containsKey(portfolio.getId()))	{...}

You	scratch	your	head,	wondering	what	this	code	might	be	for.	It	seems	to	be	getting	an	ID
from	a	trader	object,	using	that	to	get	a	map	out	of	a,	well,	map-of-maps	apparently,	and
then	seeing	if	another	ID	from	a	portfolio	object	exists	in	the	inner	map.	You	scratch	your
head	some	more.	You	look	for	the	declaration	of	portfolioIdsByTraderId	and	discover	this:

Map<int,	Map<int,	int>>	portfolioIdsByTraderId;

Gradually	you	realise	it	might	be	something	to	do	with	whether	a	trader	has	access	to	a
particular	portfolio.	And	of	course	you	will	find	the	same	lookup	fragment	—	or	more	likely	a
similar-but-subtly-different	code	fragment	—	whenever	something	cares	whether	a	trader
has	access	to	a	particular	portfolio.

In	the	other	codebase	you	come	across	this:

if	(trader.canView(portfolio))	{...}

No	head	scratching.	You	don't	need	to	know	how	a	trader	knows.	Perhaps	there	is	one	of
these	maps-of-maps	tucked	away	somewhere	inside.	But	that's	the	trader's	business,	not
yours.

Now	which	of	those	codebases	would	you	rather	be	working	in?

Once	upon	a	time	we	only	had	very	basic	data	structures:	bits	and	bytes	and	characters
(really	just	bytes	but	we	would	pretend	they	were	letters	and	punctuation).	Decimals	were	a
bit	tricky	because	our	base	10	numbers	don't	work	very	well	in	binary,	so	we	had	several
sizes	of	floating-point	types.	Then	came	arrays	and	strings	(really	just	different	arrays).	Then
we	had	stacks	and	queues	and	hashes	and	linked	lists	and	skip	lists	and	lots	of	other
exciting	data	structures	that	don't	exist	in	the	real	world.	"Computer	science"	was	about
spending	lots	of	effort	mapping	the	real	world	into	our	restrictive	data	structures.	The	real
gurus	could	even	remember	how	they	had	done	it.

97	Things	Every	Programmer	Should	Know

25Code	in	the	Language	of	the	Domain

Then	we	got	user-defined	types!	OK,	this	isn't	news,	but	it	does	change	the	game
somewhat.	If	your	domain	contains	concepts	like	traders	and	portfolios,	you	can	model	them
with	types	called,	say,	Trader	and	Portfolio.	But,	more	importantly	than	this,	you	can	model
relationships	between	them	using	domain	terms	too.

If	you	don't	code	using	domain	terms	you	are	creating	a	tacit	(read:	secret)	understanding
that	this	int	over	here	means	the	way	to	identify	a	trader,	whereas	that	int	over	there	means
the	way	to	identify	a	portfolio.	(Best	not	to	get	them	mixed	up!)	And	if	you	represent	a
business	concept	("Some	traders	are	not	allowed	to	view	some	portfolios	—	it's	illegal")	with
an	algorithmic	snippet,	say	an	existence	relationship	in	a	map	of	keys,	you	aren't	doing	the
audit	and	compliance	guys	any	favors.

The	next	programmer	along	might	not	be	in	on	the	secret,	so	why	not	make	it	explicit?	Using
a	key	as	a	lookup	to	another	key	that	performs	an	existence	check	is	not	terribly	obvious.
How	is	someone	supposed	to	intuit	that's	where	the	business	rules	preventing	conflict	of
interest	are	implemented?

Making	domain	concepts	explicit	in	your	code	means	other	programmers	can	gather	the
intent	of	the	code	much	more	easily	than	by	trying	to	retrofit	an	algorithm	into	what	they
understand	about	a	domain.	It	also	means	that	when	the	domain	model	evolves	—	which	it
will	as	your	understanding	of	the	domain	grows	—	you	are	in	a	good	position	to	evolve	the
code.	Coupled	with	good	encapsulation,	the	chances	are	good	that	the	rule	will	exist	in	only
one	place,	and	that	you	can	change	it	without	any	of	the	dependent	code	being	any	the
wiser.

The	programmer	who	comes	along	a	few	months	later	to	work	on	the	code	will	thank	you.
The	programmer	who	comes	along	a	few	months	later	might	be	you.

By	Dan	North

97	Things	Every	Programmer	Should	Know

26Code	in	the	Language	of	the	Domain

http://programmer.97things.oreilly.com/wiki/index.php/Dan_North

Code	Is	Design
Imagine	waking	up	tomorrow	and	learning	the	construction	industry	has	made	the
breakthrough	of	the	century.	Millions	of	cheap,	incredibly	fast	robots	can	fabricate	materials
out	of	thin	air,	have	a	near-zero	power	cost,	and	can	repair	themselves.	And	it	gets	better:
Given	an	unambiguous	blueprint	for	a	construction	project,	the	robots	can	build	it	without
human	intervention,	all	at	negligible	cost.

One	can	imagine	the	impact	on	the	construction	industry,	but	what	would	happen	upstream?
How	would	the	behavior	of	architects	and	designers	change	if	construction	costs	were
negligible?	Today,	physical	and	computer	models	are	built	and	rigorously	tested	before
investing	in	construction.	Would	we	bother	if	the	construction	was	essentially	free?	If	a
design	collapses,	no	big	deal	—	just	find	out	what	went	wrong	and	have	our	magical	robots
build	another	one.	There	are	further	implications.	With	models	obsolete,	unfinished	designs
evolve	by	repeatedly	building	and	improving	upon	an	approximation	of	the	end	goal.	A
casual	observer	may	have	trouble	distinguishing	an	unfinished	design	from	a	finished
product.

Our	ability	to	predict	time	lines	will	fade	away.	Construction	costs	are	more	easily	calculated
than	design	costs	—	we	know	the	approximate	cost	of	installing	a	girder,	and	how	many
girders	we	need.	As	predictable	tasks	shrink	toward	zero,	the	less	predictable	design	time
starts	to	dominate.	Results	are	produced	more	quickly,	but	reliable	time	lines	slip	away.

Of	course,	the	pressures	of	a	competitive	economy	still	apply.	With	construction	costs
eliminated,	a	company	that	can	quickly	complete	a	design	gains	an	edge	in	the	market.
Getting	design	done	fast	becomes	the	central	push	of	engineering	firms.	Inevitably,
someone	not	deeply	familiar	with	the	design	will	see	an	unvalidated	version,	see	the	market
advantage	of	releasing	early,	and	say	"This	looks	good	enough."

Some	life-or-death	projects	will	be	more	diligent,	but	in	many	cases	consumers	learn	to
suffer	through	the	incomplete	design.	Companies	can	always	send	out	our	magic	robots	to
'patch'	the	broken	buildings	and	vehicles	they	sell.	All	of	this	points	to	a	startlingly
counterintuitive	conclusion:	Our	sole	premise	was	a	dramatic	reduction	in	construction	costs,
with	the	result	that	quality	got	worse.

It	shouldn't	surprise	us	the	above	story	has	played	out	in	software.	If	we	accept	that	code	is
design	—	a	creative	process	rather	than	a	mechanical	one	—	the	software	crisis	is
explained.	We	now	have	a	design	crisis:	The	demand	for	quality,	validated	designs	exceeds
our	capacity	to	create	them.	The	pressure	to	use	incomplete	design	is	strong.

97	Things	Every	Programmer	Should	Know

27Code	Is	Design

Fortunately,	this	model	also	offers	clues	on	how	we	can	get	better.	Physical	simulations
equate	to	automated	testing;	software	design	isn't	complete	until	it	is	validated	with	a	brutal
battery	of	tests.	To	make	such	tests	more	effective	we	are	finding	ways	to	rein	in	the	huge
state	space	of	large	systems.	Improved	languages	and	design	practices	give	us	hope.
Finally,	there	is	one	inescapable	fact:	Great	designs	are	produced	by	great	designers
dedicating	themselves	to	the	mastery	of	their	craft.	Code	is	no	different.

By	Ryan	Brush

97	Things	Every	Programmer	Should	Know

28Code	Is	Design

http://programmer.97things.oreilly.com/wiki/index.php/Ryan_Brush

Code	Layout	Matters
An	infeasible	number	of	years	ago	I	worked	on	a	Cobol	system	where	staff	weren't	allowed
to	change	the	indentation	unless	they	already	had	a	reason	to	change	the	code,	because
someone	once	broke	something	by	letting	a	line	slip	into	one	of	the	special	columns	at	the
beginning	of	a	line.	This	applied	even	if	the	layout	was	misleading,	which	it	sometimes	was,
so	we	had	to	read	the	code	very	carefully	because	we	couldn't	trust	it.	The	policy	must	have
cost	a	fortune	in	programmer	drag.

There's	research	to	show	the	we	all	spend	much	more	of	our	programming	time	navigating
and	reading	code	—	finding	where	to	make	the	change	—	than	actually	typing,	so	that's
what	we	want	to	optimize	for.

Easy	to	scan.	People	are	really	good	at	visual	pattern	matching	(a	leftover	from	the	time
when	we	had	to	spot	lions	on	the	savannah),	so	I	can	help	myself	by	making	everything
that	isn't	directly	relevant	to	the	domain,	all	the	"accidental	complexity"	that	comes	with
most	commercial	languages,	fade	into	the	background	by	standardizing	it.	If	code	that
behaves	the	same	looks	the	same,	then	my	perceptual	system	will	help	me	pick	out	the
differences.	That's	why	I	also	observe	conventions	about	how	to	lay	out	the	parts	of	a
class	within	a	compilation	unit:	constants,	fields,	public	methods,	private	methods.

Expressive	layout.	We've	all	learned	to	take	the	time	to	find	the	right	names	so	that	our
code	expresses	as	clearly	as	possible	what	it	does,	rather	than	just	listing	the	steps	—
right?	The	code's	layout	is	part	of	this	expressiveness	too.	A	first	cut	is	to	have	the	team
agree	on	an	automatic	formatter	for	the	basics,	then	I	might	make	adjustments	by	hand
while	I'm	coding.	Unless	there's	active	dissension,	a	team	will	quickly	converge	on	a
common	"hand-finished"	style.	A	formatter	cannot	understand	my	intentions	(I	should
know,	I	once	wrote	one),	and	it's	more	important	to	me	that	the	line	breaks	and
groupings	reflect	the	intention	of	the	code,	not	just	the	syntax	of	the	language.	(Kevin
McGuire	freed	me	from	my	bondage	to	automatic	code	formatters.)

Compact	format.	The	more	I	can	get	on	a	screen,	the	more	I	can	see	without	breaking
context	by	scrolling	or	switching	files,	which	means	I	can	keep	less	state	in	my	head.
Long	procedure	comments	and	lots	of	whitespace	made	sense	for	8-character	names
and	line	printers,	but	now	I	live	in	an	IDE	that	does	syntax	coloring	and	cross	linking.
Pixels	are	my	limiting	factor	so	I	want	every	one	to	contribute	towards	my	understanding
of	the	code.	I	want	the	layout	to	help	me	understand	the	code,	but	no	more	than	that.

97	Things	Every	Programmer	Should	Know

29Code	Layout	Matters

A	non-programmer	friend	once	remarked	that	code	looks	like	poetry.	I	get	that	feeling	from
really	good	code,	that	everything	in	the	text	has	a	purpose	and	that	it's	there	to	help	me
understand	the	idea.	Unfortunately,	writing	code	doesn't	have	the	same	romantic	image	as
writing	poetry.

By	Steve	Freeman

97	Things	Every	Programmer	Should	Know

30Code	Layout	Matters

http://programmer.97things.oreilly.com/wiki/index.php/Steve_Freeman

Code	Reviews
You	should	do	code	reviews.	Why?	Because	they	increase	code	quality	and	reduce	defect
rate.	But	not	necessarily	for	the	reasons	you	might	think.

Because	they	may	previously	have	had	some	bad	experiences	with	reviews,	many
programmers	tend	to	dislike	code	reviews.	I	have	seen	organizations	that	require	that	all
code	pass	a	formal	review	before	being	deployed	to	production.	Often	it	is	the	architect	or	a
lead	developer	doing	this	review,	a	practice	that	can	be	described	as	architect	reviews
everything.	This	is	stated	in	their	software	development	process	manual,	so	therefore	the
programmers	must	comply.	There	may	be	some	organizations	that	need	such	a	rigid	and
formal	process,	but	most	do	not.	In	most	organizations	such	an	approach	is
counterproductive.	Reviewees	can	feel	like	they	are	being	judged	by	a	parole	board.
Reviewers	need	both	the	time	to	read	the	code	and	the	time	to	keep	up	to	date	with	all	the
details	of	the	system.	The	reviewers	can	rapidly	become	the	bottleneck	in	this	process,	and
the	process	soon	degenerates.

Instead	of	simply	correcting	mistakes	in	code,	the	purpose	of	code	reviews	should	be	to
share	knowledge	and	establish	common	coding	guidelines.	Sharing	your	code	with	other
programmers	enables	collective	code	ownership.	Let	a	random	team	member	walk	through
the	code	with	the	rest	of	the	team.	Instead	of	looking	for	errors	you	should	review	the	code
by	trying	to	learn	it	and	understand	it.

Be	gentle	during	code	reviews.	Ensure	that	comments	are	constructive,	not	caustic.
Introduce	different	review	roles	for	the	review	meeting,	to	avoid	having	organizational
seniority	among	team	members	affect	the	code	review.	Examples	of	roles	could	include
having	one	reviewer	focus	on	documentation,	another	on	exceptions,	and	a	third	to	look	at
the	functionality.	This	approach	helps	to	spread	the	review	burden	across	the	team
members.

Have	a	regular	code	review	day	each	week.	Spend	a	couple	of	hours	in	a	review	meeting.
Rotate	the	reviewee	every	meeting	in	a	simple	round-robin	pattern.	Remember	to	switch
roles	among	team	members	every	review	meeting	too.	Involve	newbies	in	code	reviews.
They	may	be	inexperienced,	but	their	fresh	university	knowledge	can	provide	a	different
perspective.	Involve	experts	for	their	experience	and	knowledge.	They	will	identify	error-
prone	code	faster	and	with	more	accuracy.	Code	reviews	will	flow	more	easily	if	the	team
has	coding	conventions	that	are	checked	by	tools.	That	way,	code	formatting	will	never	be
discussed	during	the	code	review	meeting.

97	Things	Every	Programmer	Should	Know

31Code	Reviews

Making	code	reviews	fun	is	perhaps	the	most	important	contributor	to	success.	Reviews	are
about	the	people	reviewing.	If	the	review	meeting	is	painful	or	dull	it	will	be	hard	to	motivate
anyone.	Make	it	an	informal	code	review	whose	prime	purpose	is	sharing	knowledge
between	team	members.	Leave	sarcastic	comments	outside	and	bring	a	cake	or	brown	bag
lunch	instead.

by	Mattias	Karlsson

97	Things	Every	Programmer	Should	Know

32Code	Reviews

http://programmer.97things.oreilly.com/wiki/index.php/Mattias_Karlsson

Coding	with	Reason
Trying	to	reason	about	software	correctness	by	hand	results	in	a	formal	proof	that	is	longer
than	the	code	and	is	more	likely	to	contain	errors	than	the	code.	Automated	tools	are
preferable,	but	not	always	possible.	What	follows	describes	a	middle	path:	reasoning	semi-
formally	about	correctness.

The	underlying	approach	is	to	divide	all	the	code	under	consideration	into	short	sections	—
from	a	single	line,	such	as	a	function	call,	to	blocks	of	less	than	ten	lines	—	and	arguing
about	their	correctness.	The	arguments	need	only	be	strong	enough	to	convince	your	devil's
advocate	peer	programmer.

A	section	should	be	chosen	so	that	at	each	endpoint	the	state	of	the	program	(namely,	the
program	counter	and	the	values	of	all	"living"	objects)	satisfies	an	easily	described	property,
and	that	the	functionality	of	that	section	(state	transformation)	is	easy	to	describe	as	a	single
task	—	these	will	make	reasoning	simpler.	Such	endpoint	properties	generalize	concepts	like
precondition	and	postcondition	for	functions,	and	invariant	for	loops	and	classes	(with
respect	to	their	instances).	Striving	for	sections	to	be	as	independent	of	one	another	as
possible	simplifies	reasoning	and	is	indispensable	when	these	sections	are	to	be	modified.

Many	of	the	coding	practices	that	are	well	known	(although	perhaps	less	well	followed)	and
considered	'good'	make	reasoning	easier.	Hence,	just	by	intending	to	reason	about	your
code,	you	already	start	thinking	toward	a	better	style	and	structure.	Unsurprisingly,	most	of
these	practices	can	be	checked	by	static	code	analyzers:

1.	 Avoid	using	goto	statements,	as	they	make	remote	sections	highly	interdependent.
2.	 Avoid	using	modifiable	global	variables,	as	they	make	all	sections	that	use	them

dependent.
3.	 Each	variable	should	have	the	smallest	possible	scope.	For	example,	a	local	object	can

be	declared	right	before	its	first	usage.
4.	 Make	objects	immutable	whenever	relevant.
5.	 Make	the	code	readable	by	using	spacing,	both	horizontal	and	vertical.	For	example,

aligning	related	structures	and	using	an	empty	line	to	separate	two	sections.
6.	 Make	the	code	self-documenting	by	choosing	descriptive	(but	relatively	short)	names	for

objects,	types,	functions,	etc.
7.	 If	you	need	a	nested	section,	make	it	a	function.
8.	 Make	your	functions	short	and	focused	on	a	single	task.	The	old	24-line	limit	still

applies.	Although	screen	size	and	resolution	have	changed,	nothing	has	changed	in
human	cognition	since	the	1960s.

9.	 Functions	should	have	few	parameters	(four	is	a	good	upper	bound).	This	does	not

97	Things	Every	Programmer	Should	Know

33Coding	with	Reason

restrict	the	data	communicated	to	functions:	Grouping	related	parameters	into	a	single
object	benefits	from	object	invariants	and	saves	reasoning,	such	as	their	coherence	and
consistency.

10.	 More	generally,	each	unit	of	code,	from	a	block	to	a	library,	should	have	a	narrow
interface.	Less	communication	reduces	the	reasoning	required.	This	means	that	getters
that	return	internal	state	are	a	liability	—	don't	ask	an	object	for	information	to	work	with.
Instead,	ask	the	object	to	do	the	work	with	the	information	it	already	has.	In	other	words,
encapsulation	is	all	—	and	only	—	about	narrow	interfaces.

11.	 In	order	to	preserve	class	invariants,	usage	of	setters	should	be	discouraged,	as	setters
tend	to	allow	invariants	that	govern	an	object's	state	to	be	broken.

As	well	as	reasoning	about	its	correctness,	arguing	about	your	code	gives	you
understanding	of	it.	Communicate	the	insights	you	gain	for	everyone's	benefit.

By	Yechiel	Kimchi

97	Things	Every	Programmer	Should	Know

34Coding	with	Reason

http://programmer.97things.oreilly.com/wiki/index.php/Yechiel_Kimchi

A	Comment	on	Comments
In	my	first	programming	class	in	college,	my	teacher	handed	out	two	BASIC	coding	sheets.
On	the	board,	the	assignment	read	"Write	a	program	to	input	and	average	10	bowling
scores."	Then	the	teacher	left	the	room.	How	hard	could	this	be?	I	don't	remember	my	final
solution	but	I'm	sure	it	had	a		FOR/NEXT		loop	in	it	and	couldn't	have	been	more	than	15	lines
long	in	total.	Coding	sheets	—	for	you	kids	reading	this,	yes,	we	used	to	write	code	out
longhand	before	actually	entering	it	into	a	computer	—	allowed	for	around	70	lines	of	code
each.	I	was	very	confused	as	to	why	the	teacher	would	have	given	us	two	sheets.	Since	my
handwriting	has	always	been	atrocious,	I	used	the	second	one	to	recopy	my	code	very
neatly,	hoping	to	get	a	couple	extra	points	for	style.

Much	to	my	surprise,	when	I	received	the	assignment	back	at	the	start	of	the	next	class,	I
received	a	barely	passing	grade.	(It	was	to	be	an	omen	to	me	for	the	rest	of	my	time	in
college.)	Scrawled	across	the	top	of	my	neatly	copied	code,	"No	comments?"

It	was	not	enough	that	the	teacher	and	I	both	knew	what	the	program	was	supposed	to	do.
Part	of	the	point	of	the	assignment	was	to	teach	me	that	my	code	should	explain	itself	to	the
next	programmer	coming	behind	me.	It's	a	lesson	I've	not	forgotten.

Comments	are	not	evil.	They	are	as	necessary	to	programming	as	basic	branching	or
looping	constructs.	Most	modern	languages	have	a	tool	akin	to	javadoc	that	will	parse
properly	formatted	comments	to	automatically	build	an	API	document.	This	is	a	very	good
start,	but	not	nearly	enough.	Inside	your	code	should	be	explanations	about	what	the	code	is
supposed	to	be	doing.	Coding	by	the	old	adage,	"If	it	was	hard	to	write,	it	should	be	hard	to
read,"	does	a	disservice	to	your	client,	your	employer,	your	colleagues,	and	your	future	self.

On	the	other	hand,	you	can	go	too	far	in	your	commenting.	Make	sure	that	your	comments
clarify	your	code	but	do	not	obscure	it.	Sprinkle	your	code	with	relevant	comments
explaining	what	the	code	is	supposed	to	accomplish.	Your	header	comments	should	give
any	programmer	enough	information	to	use	your	code	without	having	to	read	it,	while	your
in-line	comments	should	assist	the	next	developer	in	fixing	or	extending	it.

At	one	job,	I	disagreed	with	a	design	decision	made	by	those	above	me.	Feeling	rather
snarky,	as	young	programmers	often	do,	I	pasted	the	text	of	the	email	instructing	me	to	use
their	design	into	the	header	comment	block	of	the	file.	It	turns	out	that	managers	at	this
particular	shop	actually	reviewed	the	code	when	it	was	committed.	It	was	my	first
introduction	to	the	term	career-limiting	move.

by	Cal	Evans

97	Things	Every	Programmer	Should	Know

35A	Comment	on	Comments

http://programmer.97things.oreilly.com/wiki/index.php/Cal_Evans

Comment	Only	What	the	Code	Cannot	Say
The	difference	between	theory	and	practice	is	greater	in	practice	than	it	is	in	theory	—	an
observation	that	certainly	applies	to	comments.	In	theory,	the	general	idea	of	commenting
code	sounds	like	a	worthy	one:	Offer	the	reader	detail,	an	explanation	of	what's	going	on.
What	could	be	more	helpful	than	being	helpful?	In	practice,	however,	comments	often
become	a	blight.	As	with	any	other	form	of	writing,	there	is	a	skill	to	writing	good	comments.
Much	of	the	skill	is	in	knowing	when	not	to	write	them.

When	code	is	ill-formed,	compilers,	interpreters,	and	other	tools	will	be	sure	to	object.	If	the
code	is	in	some	way	functionally	incorrect,	reviews,	static	analysis,	tests,	and	day-to-day	use
in	a	production	environment	will	flush	most	bugs	out.	But	what	about	comments?	In	The
Elements	of	Programming	Style	Kernighan	and	Plauger	noted	that	"a	comment	is	of	zero	(or
negative)	value	if	it	is	wrong."	And	yet	such	comments	often	litter	and	survive	in	a	code	base
in	a	way	that	coding	errors	never	could.	They	provide	a	constant	source	of	distraction	and
misinformation,	a	subtle	but	constant	drag	on	a	programmer's	thinking.

What	of	comments	that	are	not	technically	wrong,	but	add	no	value	to	the	code?	Such
comments	are	noise.	Comments	that	parrot	the	code	offer	nothing	extra	to	the	reader	—
stating	something	once	in	code	and	again	in	natural	language	does	not	make	it	any	truer	or
more	real.	Commented-out	code	is	not	executable	code,	so	it	has	no	useful	effect	for	either
reader	or	runtime.	It	also	becomes	stale	very	quickly.	Version-related	comments	and
commented-out	code	try	to	address	questions	of	versioning	and	history.	These	questions
have	already	been	answered	(far	more	effectively)	by	version	control	tools.

A	prevalence	of	noisy	comments	and	incorrect	comments	in	a	code	base	encourage
programmers	to	ignore	all	comments,	either	by	skipping	past	them	or	by	taking	active
measures	to	hide	them.	Programmers	are	resourceful	and	will	route	around	anything
perceived	to	be	damage:	folding	comments	up;	switching	coloring	scheme	so	that	comments
and	the	background	are	the	same	color;	scripting	to	filter	out	comments.	To	save	a	code
base	from	such	misapplications	of	programmer	ingenuity,	and	to	reduce	the	risk	of
overlooking	any	comments	of	genuine	value,	comments	should	be	treated	as	if	they	were
code.	Each	comment	should	add	some	value	for	the	reader,	otherwise	it	is	waste	that	should
be	removed	or	rewritten.

What	then	qualifies	as	value?	Comments	should	say	something	code	does	not	and	cannot
say.	A	comment	explaining	what	a	piece	of	code	should	already	say	is	an	invitation	to
change	code	structure	or	coding	conventions	so	the	code	speaks	for	itself.	Instead	of
compensating	for	poor	method	or	class	names,	rename	them.	Instead	of	commenting
sections	in	long	functions,	extract	smaller	functions	whose	names	capture	the	former

97	Things	Every	Programmer	Should	Know

36Comment	Only	What	the	Code	Cannot	Say

sections'	intent.	Try	to	express	as	much	as	possible	through	code.	Any	shortfall	between
what	you	can	express	in	code	and	what	you	would	like	to	express	in	total	becomes	a
plausible	candidate	for	a	useful	comment.	Comment	what	the	code	cannot	say,	not	simply
what	it	does	not	say.

By	Kevlin	Henney

97	Things	Every	Programmer	Should	Know

37Comment	Only	What	the	Code	Cannot	Say

http://programmer.97things.oreilly.com/wiki/index.php/Kevlin_Henney

Continuous	Learning
We	live	in	interesting	times.	As	development	gets	distributed	across	the	globe,	you	learn
there	are	lots	of	people	capable	of	doing	your	job.	You	need	to	keep	learning	to	stay
marketable.	Otherwise,	you'll	become	a	dinosaur,	stuck	in	the	same	job	until,	one	day,	you'll
no	longer	be	needed	or	your	job	gets	outsourced	to	some	cheaper	resource.

So	what	do	you	do	about	it?	Some	employers	are	generous	enough	to	provide	training	to
broaden	your	skill	set.	Others	may	not	be	able	to	spare	the	time	or	money	for	any	training	at
all.	To	play	it	safe,	you	need	to	take	responsibility	for	your	own	education.

Here's	a	list	of	ways	to	keep	you	learning.	Many	of	these	can	be	found	on	the	Internet	for
free:

Read	books,	magazines,	blogs,	twitter	feeds,	and	web	sites.	If	you	want	to	go	deeper
into	a	subject,	consider	joining	a	mailing	list	or	newsgroup.
If	you	really	want	to	get	immersed	in	a	technology,	get	hands	on	—	write	some	code.
Always	try	to	work	with	a	mentor,	as	being	the	top	guy	can	hinder	your	education.
Although	you	can	learn	something	from	anybody,	you	can	learn	a	whole	lot	more	from
someone	smarter	or	more	experienced	than	you.	If	you	can't	find	a	mentor,	consider
moving	on.
Use	virtual	mentors.	Find	authors	and	developers	on	the	web	who	you	really	like	and
read	everything	they	write.	Subscribe	to	their	blogs.
Get	to	know	the	frameworks	and	libraries	you	use.	Knowing	how	something	works
makes	you	know	how	to	use	it	better.	If	they're	open	source,	you're	really	in	luck.	Use
the	debugger	to	step	through	the	code	to	see	what's	going	on	under	the	hood.	You'll	get
to	see	code	written	and	reviewed	by	some	really	smart	people.
Whenever	you	make	a	mistake,	fix	a	bug,	or	run	into	a	problem,	try	to	really	understand
what	happened.	It's	likely	that	somebody	else	ran	into	the	same	problem	and	posted	it
somewhere	on	the	web.	Google	is	really	useful	here.
A	really	good	way	to	learn	something	is	to	teach	or	speak	about	it.	When	people	are
going	to	listen	to	you	and	ask	you	questions,	you'll	be	highly	motivated	to	learn.	Try	a
lunch-n-learn	at	work,	a	user	group,	or	a	local	conference.
Join	or	start	a	study	group	(à	la	patterns	community)	or	a	local	user	group	for	a
language,	technology,	or	discipline	you	are	interested	in.
Go	to	conferences.	And	if	you	can't	go,	many	conferences	put	their	talks	online	for	free.
Long	commute?	Listen	to	podcasts.
Ever	run	a	static	analysis	tool	over	the	code	base	or	look	at	the	warnings	in	your	IDE?
Understand	what	they're	reporting	and	why.

97	Things	Every	Programmer	Should	Know

38Continuous	Learning

Follow	the	advice	of	The	Pragmatic	Programmers	and	learn	a	new	language	every	year.
At	least	learn	a	new	technology	or	tool.	Branching	out	gives	you	new	ideas	you	can	use
in	your	current	technology	stack.
Not	everything	you	learn	has	to	be	about	technology.	Learn	the	domain	you're	working
in	so	you	can	better	understand	the	requirements	and	help	solve	the	business	problem.
Learning	how	to	be	more	productive	—	how	to	work	better	—	is	another	good	option.
Go	back	to	school.

It	would	be	nice	to	have	the	capability	that	Neo	had	in	The	Matrix,	and	simply	download	the
information	we	needed	into	our	brains.	But	we	don't,	so	it	will	take	a	time	commitment.	You
don't	have	to	spend	every	waking	hour	learning.	A	little	time,	say	each	week,	is	better	than
nothing.	There	is	(or	should	be)	a	life	outside	of	work.

Technology	changes	fast.	Don't	get	left	behind.

by	Clint	Shank

97	Things	Every	Programmer	Should	Know

39Continuous	Learning

http://www.pragprog.com/titles/tpp/the-pragmatic-programmer
http://programmer.97things.oreilly.com/wiki/index.php/Clint_Shank

Convenience	Is	not	an	-ility
Much	has	been	said	about	the	importance	and	challenges	of	designing	good	API's.	It's
difficult	to	get	right	the	first	time	and	it's	even	more	difficult	to	change	later.	Sort	of	like	raising
children.	Most	experienced	programmers	have	learned	that	a	good	API	follows	a	consistent
level	of	abstraction,	exhibits	consistency	and	symmetry,	and	forms	the	vocabulary	for	an
expressive	language.	Alas,	being	aware	of	the	guiding	principles	does	not	automatically
translate	into	appropriate	behavior.	Eating	sweets	is	bad	for	you.

Instead	of	preaching	from	on	high,	I	want	to	pick	on	a	particular	API	design	'strategy,'	one
that	I	encounter	time	and	again:	the	argument	of	convenience.	It	typically	begins	with	one	of
the	following	'insights:'

I	don't	want	other	classes	to	have	to	make	two	separate	calls	to	do	this	one	thing.
Why	should	I	make	another	method	if	it's	almost	the	same	as	this	method?	I'll	just	add	a
simple	switch.
See,	it's	very	easy:	If	the	second	string	parameter	ends	with	".txt",	the	method
automatically	assumes	that	the	first	parameter	is	a	file	name,	so	I	really	don't	need	two
methods.

While	well	intended,	such	arguments	are	prone	to	decrease	the	readability	of	code	using	the
API.	A	method	invocation	like

parser.processNodes(text,	false);

is	virtually	meaningless	without	knowing	the	implementation	or	at	least	consulting	the
documentation.	This	method	was	likely	designed	for	the	convenience	of	the	implementer	as
opposed	to	the	convenience	of	the	caller	—	"I	don't	want	the	caller	to	have	to	make	two
separate	calls"	translated	into	"I	didn't	want	to	code	up	two	separate	methods."	There's
nothing	fundamentally	wrong	with	convenience	if	it's	intended	to	be	the	antidote	to
tediousness,	clunkiness,	or	awkwardness.	However,	if	we	think	a	bit	more	carefully	about	it,
the	antidote	to	those	symptoms	is	efficiency,	consistency,	and	elegance,	not	necessarily
convenience.	APIs	are	supposed	to	hide	underlying	complexity,	so	we	can	realistically
expect	good	API	design	to	require	some	effort.	A	single	large	method	could	certainly	be
more	convenient	to	write	than	a	well	thought-out	set	of	operations,	but	would	it	be	easier	to
use?

The	metaphor	of	API	as	a	language	can	guide	us	towards	better	design	decisions	in	these
situations.	An	API	should	provide	an	expressive	language,	which	gives	the	next	layer	above
sufficient	vocabulary	to	ask	and	answer	useful	questions.	This	does	not	imply	it	should

97	Things	Every	Programmer	Should	Know

40Convenience	Is	not	an	-ility

provide	exactly	one	method,	or	verb,	for	each	question	that	may	be	worth	asking.	A	diverse
vocabulary	allows	us	to	express	subtleties	in	meaning.	For	example,	we	prefer	to	say	run
instead	of	walk(true),	even	though	it	could	be	viewed	as	essentially	the	same	operation,	just
executed	at	different	speeds.	A	consistent	and	well	thought	out	API	vocabulary	makes	for
expressive	and	easy	to	understand	code	in	the	next	layer	up.	More	importantly,	a
composable	vocabulary	allows	other	programmers	to	use	the	API	in	ways	you	may	not	have
anticipated	—	a	great	convenience	indeed	for	the	users	of	the	API!	Next	time	you	are
tempted	to	lump	a	few	things	together	into	one	API	method,	remember	that	the	English
language	does	not	have	one	word	for		MakeUpYourRoomBeQuietAndDoYourHomeWork	,	even	though
it	would	seem	really	convenient	for	such	a	frequently	requested	operation.

By	Gregor	Hohpe

97	Things	Every	Programmer	Should	Know

41Convenience	Is	not	an	-ility

http://programmer.97things.oreilly.com/wiki/index.php/Gregor_Hohpe

Deploy	Early	and	Often
Debugging	the	deployment	and	installation	processes	is	often	put	off	until	close	to	the	end	of
a	project.	In	some	projects	writing	installation	tools	is	delegated	to	a	release	engineer	who
take	on	the	task	as	a	"necessary	evil."	Reviews	and	demonstrations	are	done	from	a	hand-
crafted	environment	to	ensure	that	everything	works.	The	result	is	that	the	team	gets	no
experience	with	the	deployment	process	or	the	deployed	environment	until	it	may	be	too	late
to	make	changes.

The	installation/deployment	process	is	the	first	thing	that	the	customer	sees,	and	a	simple
installation/deployment	process	is	the	first	step	to	having	a	reliable	(or,	at	least,	easy	to
debug)	production	environment.	The	deployed	software	is	what	the	customer	will	use.	By	not
ensuring	that	the	deployment	sets	up	the	application	correctly,	you'll	raise	questions	with
your	customer	before	they	get	to	use	your	software	thoroughly.

Starting	your	project	with	an	installation	process	will	give	you	time	to	evolve	the	process	as
you	move	through	the	product	development	cycle,	and	the	chance	to	make	changes	to	the
application	code	to	make	the	installation	easier.	Running	and	testing	the	installation	process
on	a	clean	environment	periodically	also	provides	a	check	that	you	have	not	made
assumptions	in	the	code	that	rely	on	the	development	or	test	environments.

Putting	deployment	last	means	that	the	deployment	process	may	need	to	be	more
complicated	to	work	around	assumptions	in	the	code.	What	seemed	a	great	idea	in	an	IDE,
where	you	have	full	control	over	an	environment,	might	make	for	a	much	more	complicated
deployment	process.	It	is	better	to	know	all	the	trade-offs	sooner	rather	than	later.

While	"being	able	to	deploy"	doesn't	seem	to	have	a	lot	of	business	value	early	on	as
compared	to	seeing	an	application	run	on	a	developer's	laptop,	the	simple	truth	is	that	until
you	can	demonstrate	you	application	on	the	target	environment,	there	is	a	lot	of	work	to	do
before	you	can	deliver	business	value.	If	your	rationale	for	putting	off	a	deployment	process
is	that	it	is	trivial,	then	do	it	anyway	since	it	is	low	cost.	If	it's	too	complicated,	or	if	there	are
too	many	uncertainties,	do	what	you	would	do	with	application	code:	experiment,	evaluate,
and	refactor	the	deployment	process	as	you	go.

The	installation/deployment	process	is	essential	to	the	productivity	of	your	customers	or	your
professional	services	team,	so	you	should	be	testing	and	refactoring	this	process	as	you	go.
We	test	and	refactor	the	source	code	throughout	a	project.	The	deployment	deserves	no
less.

By	Steve	Berczuk

97	Things	Every	Programmer	Should	Know

42Deploy	Early	and	Often

http://programmer.97things.oreilly.com/wiki/index.php/Steve_Berczuk

Distinguish	Business	Exceptions	from
Technical
There	are	basically	two	reasons	that	things	go	wrong	at	runtime:	technical	problems	that
prevent	us	from	using	the	application	and	business	logic	that	prevents	us	from	misusing	the
application.	Most	modern	languages,	such	as	LISP,	Java,	Smalltalk,	and	C#,	use	exceptions
to	signal	both	these	situations.	However,	the	two	situations	are	so	different	that	they	should
be	carefully	held	apart.	It	is	a	potential	source	of	confusion	to	represent	them	both	using	the
same	exception	hierarchy,	not	to	mention	the	same	exception	class.

An	unresolvable	technical	problem	can	occur	when	there	is	a	programming	error.	For
example,	if	you	try	to	access	element	83	from	an	array	of	size	17,	then	the	program	is	clearly
off	track,	and	some	exception	should	result.	The	subtler	version	is	calling	some	library	code
with	inappropriate	arguments,	causing	the	same	situation	on	the	inside	of	the	library.

It	would	be	a	mistake	to	attempt	to	resolve	these	situations	you	caused	yourself.	Instead	we
let	the	exception	bubble	up	to	the	highest	architectural	level	and	let	some	general	exception-
handling	mechanism	do	what	it	can	to	ensure	the	system	is	in	a	safe	state,	such	as	rolling
back	a	transaction,	logging	and	alerting	administration,	and	reporting	back	(politely)	to	the
user.

A	variant	of	this	situation	is	when	you	are	in	the	"library	situation"	and	a	caller	has	broken	the
contract	of	your	method,	e.g.,	passing	a	totally	bizarre	argument	or	not	having	a	dependent
object	set	up	properly.	This	is	on	a	par	with	accessing	83rd	element	from	17:	the	caller
should	have	checked;	not	doing	so	is	a	programmer	error	on	the	client	side.	The	proper
response	is	to	throw	a	technical	exception.

A	different,	but	still	technical,	situation	is	when	the	program	cannot	proceed	because	of	a
problem	in	the	execution	environment,	such	as	an	unresponsive	database.	In	this	situation
you	must	assume	that	the	infrastructure	did	what	it	could	to	resolve	the	situation	—	repairing
connections	and	retrying	a	reasonable	number	of	times	—	and	failed.	Even	if	the	cause	is
different,	the	situation	for	the	calling	code	is	similar:	there	is	little	it	can	do	about	it.	So,	we
signal	the	situation	through	an	exception	that	we	let	bubble	up	to	the	general	exception
handling	mechanism.

In	contrast	to	these,	we	have	the	situation	where	you	cannot	complete	the	call	for	a	domain-
logical	reason.	In	this	case	we	have	encountered	a	situation	that	is	an	exception,	i.e.,
unusual	and	undesirable,	but	not	bizarre	or	programmatically	in	error.	For	example,	if	I	try	to
withdraw	money	from	an	account	with	insufficient	funds.	In	other	words,	this	kind	of	situation
is	a	part	of	the	contract,	and	throwing	an	exception	is	just	an	alternative	return	path	that	is

97	Things	Every	Programmer	Should	Know

43Distinguish	Business	Exceptions	from	Technical

part	of	the	model	and	that	the	client	should	be	aware	of	and	be	prepared	to	handle.	For
these	situations	it	is	appropriate	to	create	a	specific	exception	or	a	separate	exception
hierarchy	so	that	the	client	can	handle	the	situation	on	its	own	terms.

Mixing	technical	exceptions	and	business	exceptions	in	the	same	hierarchy	blurs	the
distinction	and	confuses	the	caller	about	what	the	method	contract	is,	what	conditions	it	is
required	to	ensure	before	calling,	and	what	situations	it	is	supposed	to	handle.	Separating
the	cases	gives	clarity	and	increases	the	chances	that	technical	exceptions	will	be	handled
by	some	application	framework,	while	the	business	domain	exceptions	actually	are
considered	and	handled	by	the	client	code.

By	Dan	Bergh	Johnsson

97	Things	Every	Programmer	Should	Know

44Distinguish	Business	Exceptions	from	Technical

http://programmer.97things.oreilly.com/wiki/index.php/Dan_Bergh_Johnsson

Do	Lots	of	Deliberate	Practice
Deliberate	practice	is	not	simply	performing	a	task.	If	you	ask	yourself	"Why	am	I	performing
this	task?"	and	your	answer	is	"To	complete	the	task,"	then	you're	not	doing	deliberate
practice.

You	do	deliberate	practice	to	improve	your	ability	to	perform	a	task.	It's	about	skill	and
technique.	Deliberate	practice	means	repetition.	It	means	performing	the	task	with	the	aim	of
increasing	your	mastery	of	one	or	more	aspects	of	the	task.	It	means	repeating	the
repetition.	Slowly,	over	and	over	again.	Until	you	achieve	your	desired	level	of	mastery.	You
do	deliberate	practice	to	master	the	task	not	to	complete	the	task.

The	principal	aim	of	paid	development	is	to	finish	a	product	whereas	the	principal	aim	of
deliberate	practice	is	to	improve	your	performance.	They	are	not	the	same.	Ask	yourself,
how	much	of	your	time	do	you	spend	developing	someone	else's	product?	How	much
developing	yourself?

How	much	deliberate	practice	does	it	take	to	acquire	expertise?

Peter	Norvig	writes	that	"It	may	be	that	10,000	hours	[...]	is	the	magic	number."
In	Leading	Lean	Software	Development	Mary	Poppendieck	notes	that	"It	takes	elite
performers	a	minimum	of	10,000	hours	of	deliberate	focused	practice	to	become
experts."

The	expertise	arrives	gradually	over	time	—	not	all	at	once	in	the	10,000th	hour!
Nevertheless,	10,000	hours	is	a	lot:	about	20	hours	per	week	for	10	years.	Given	this	level	of
commitment	you	might	be	worrying	that	you're	just	not	expert	material.	You	are.	Greatness	is
largely	a	matter	of	conscious	choice.	Your	choice.	Research	over	the	last	two	decades	has
shown	the	main	factor	in	acquiring	expertise	is	time	spent	doing	deliberate	practice.	Innate
ability	is	not	the	main	factor.

Mary:	"There	is	broad	consensus	among	researchers	of	expert	performance	that	inborn
talent	does	not	account	for	much	more	than	a	threshold;	you	have	to	have	a	minimum
amount	of	natural	ability	to	get	started	in	a	sport	or	profession.	After	that,	the	people
who	excel	are	the	ones	who	work	the	hardest."

There	is	little	point	deliberately	practicing	something	you	are	already	an	expert	at.	Deliberate
practice	means	practicing	something	you	are	not	good	at.

Peter:	"The	key	[to	developing	expertise]	is	deliberative	practice:	not	just	doing	it	again
and	again,	but	challenging	yourself	with	a	task	that	is	just	beyond	your	current	ability,
trying	it,	analyzing	your	performance	while	and	after	doing	it,	and	correcting	any

97	Things	Every	Programmer	Should	Know

45Do	Lots	of	Deliberate	Practice

http://norvig.com/21-days.html

mistakes."
Mary:	"Deliberate	practice	does	not	mean	doing	what	you	are	good	at;	it	means
challenging	yourself,	doing	what	you	are	not	good	at.	So	it's	not	necessarily	fun."

Deliberate	practice	is	about	learning.	About	learning	that	changes	you;	learning	that	changes
your	behavior.	Good	luck.

By	Jon	Jagger

97	Things	Every	Programmer	Should	Know

46Do	Lots	of	Deliberate	Practice

http://programmer.97things.oreilly.com/wiki/index.php/Jon_Jagger

Domain-Specific	Languages
Whenever	you	listen	to	a	discussion	by	experts	in	any	domain,	be	it	chess	players,
kindergarten	teachers,	or	insurance	agents,	you'll	notice	that	their	vocabulary	is	quite
different	from	everyday	language.	That's	part	of	what	domain-specific	languages	(DSLs)	are
about:	A	specific	domain	has	a	specialized	vocabulary	to	describe	the	things	that	are
particular	to	that	domain.

In	the	world	of	software,	DSLs	are	about	executable	expressions	in	a	language	specific	to	a
domain	with	limited	vocabulary	and	grammar	that	is	readable,	understandable,	and	—
hopefully	—	writable	by	domain	experts.	DSLs	targeted	at	software	developers	or	scientists
have	been	around	for	a	long	time.	For	example,	the	Unix	'little	languages'	found	in
configuration	files	and	the	languages	created	with	the	power	of	LISP	macros	are	some	of	the
older	examples.

DSLs	are	commonly	classified	as	either	internal	or	external:

Internal	DSLs	are	written	in	a	general	purpose	programming	language	whose	syntax
has	been	bent	to	look	much	more	like	natural	language.	This	is	easier	for	languages
that	offer	more	syntactic	sugar	and	formatting	possibilities	(e.g.,	Ruby	and	Scala)	than	it
is	for	others	that	do	not	(e.g.,	Java).	Most	internal	DSLs	wrap	existing	APIs,	libraries,	or
business	code	and	provide	a	wrapper	for	less	mind-bending	access	to	the	functionality.
They	are	directly	executable	by	just	running	them.	Depending	on	the	implementation
and	the	domain,	they	are	used	to	build	data	structures,	define	dependencies,	run
processes	or	tasks,	communicate	with	other	systems,	or	validate	user	input.	The	syntax
of	an	internal	DSL	is	constrained	by	the	host	language.	There	are	many	patterns	—
e.g.,	expression	builder,	method	chaining,	and	annotation	—	that	can	help	you	to	bend
the	host	language	to	your	DSL.	If	the	host	language	doesn't	require	recompilation,	an
internal	DSL	can	be	developed	quite	quickly	working	side	by	side	with	a	domain	expert.

External	DSLs	are	textual	or	graphical	expressions	of	the	language	—	although	textual
DSLs	tend	to	be	more	common	than	graphical	ones.	Textual	expressions	can	be
processed	by	a	tool	chain	that	includes	lexer,	parser,	model	transformer,	generators,
and	any	other	type	of	post-processing.	External	DSLs	are	mostly	read	into	internal
models	which	form	the	basis	for	further	processing.	It	is	helpful	to	define	a	grammar
(e.g.,	in	EBNF).	A	grammar	provides	the	starting	point	for	generating	parts	of	the	tool
chain	(e.g.,	editor,	visualizer,	parser	generator).	For	simple	DSLs,	a	handmade	parser
may	be	sufficient	—	using,	for	instance,	regular	expressions.	Custom	parsers	can
become	unwieldy	if	too	much	is	asked	of	them,	so	it	makes	sense	to	look	at	tools
designed	specifically	for	working	with	language	grammars	and	DSLs	—	e.g.,

97	Things	Every	Programmer	Should	Know

47Domain-Specific	Languages

openArchitectureWare,	ANTlr,	SableCC,	AndroMDA.	Defining	external	DSLs	as	XML
dialects	is	also	quite	common,	although	readability	is	often	an	issue	—	especially	for
non-technical	readers.

You	must	always	take	the	target	audience	of	your	DSL	into	account.	Are	they	developers,
managers,	business	customers,	or	end	users?	You	have	to	adapt	the	technical	level	of	the
language,	the	available	tools,	syntax	help	(e.g.,	intellisense),	early	validation,	visualization,
and	representation	to	the	intended	audience.	By	hiding	technical	details,	DSLs	can	empower
users	by	giving	them	the	ability	to	adapt	systems	to	their	needs	without	requiring	the	help	of
developers.	It	can	also	speed	up	development	because	of	the	potential	distribution	of	work
after	the	initial	language	framework	is	in	place.	The	language	can	be	evolved	gradually.
There	are	also	different	migration	paths	for	existing	expressions	and	grammars	available.

By	Michael	Hunger

97	Things	Every	Programmer	Should	Know

48Domain-Specific	Languages

http://programmer.97things.oreilly.com/wiki/index.php/Michael_Hunger

Don't	Be	Afraid	to	Break	Things
Everyone	with	industry	experience	has	undoubtedly	worked	on	a	project	where	the
codebase	was	precarious	at	best.	The	system	is	poorly	factored,	and	changing	one	thing
always	manages	to	break	another	unrelated	feature.	Whenever	a	module	is	added,	the
coder's	goal	is	to	change	as	little	as	possible,	and	hold	their	breath	during	every	release.
This	is	the	software	equivalent	of	playing	Jenga	with	I-beams	in	a	skyscraper,	and	is	bound
for	disaster.

The	reason	that	making	changes	is	so	nerve	wracking	is	because	the	system	is	sick.	It
needs	a	doctor,	otherwise	its	condition	will	only	worsen.	You	already	know	what	is	wrong
with	your	system,	but	you	are	afraid	of	breaking	the	eggs	to	make	your	omelet.	A	skilled
surgeon	knows	that	cuts	have	to	be	made	in	order	to	operate,	but	the	skilled	surgeon	also
knows	that	the	cuts	are	temporary	and	will	heal.	The	end	result	of	the	operation	is	worth	the
initial	pain,	and	the	patient	should	heal	to	a	better	state	than	they	were	in	before	the	surgery.

Don't	be	afraid	of	your	code.	Who	cares	if	something	gets	temporarily	broken	while	you
move	things	around?	A	paralyzing	fear	of	change	is	what	got	your	project	into	this	state	to
begin	with.	Investing	the	time	to	refactor	will	pay	for	itself	several	times	over	the	life	cycle	of
your	project.	An	added	benefit	is	that	your	team's	experience	dealing	with	the	sick	system
makes	you	all	experts	in	knowing	how	it	should	work.	Apply	this	knowledge	rather	than
resent	it.	Working	on	a	system	you	hate	is	not	how	anybody	should	have	to	spend	their	time.

Redefine	internal	interfaces,	restructure	modules,	refactor	copy–pasted	code,	and	simplify
your	design	by	reducing	dependencies.	You	can	significantly	reduce	code	complexity	by
eliminating	corner	cases,	which	often	result	from	improperly	coupled	features.	Slowly
transition	the	old	structure	into	the	new	one,	testing	along	the	way.	Trying	to	accomplish	a
large	refactor	in	"one	big	shebang"	will	cause	enough	problems	to	make	you	consider
abandoning	the	whole	effort	midway	through.

Be	the	surgeon	who	isn't	afraid	to	cut	out	the	sick	parts	to	make	room	for	healing.	The
attitude	is	contagious	and	will	inspire	others	to	start	working	on	those	cleanup	projects
they've	been	putting	off.	Keep	a	"hygiene"	list	of	tasks	that	the	team	feels	are	worthwhile	for
the	general	good	of	the	project.	Convince	management	that	even	though	these	tasks	may
not	produce	visible	results,	they	will	reduce	expenses	and	expedite	future	releases.	Never
stop	caring	about	the	general	"health"	of	the	code.

By	Mike	Lewis

97	Things	Every	Programmer	Should	Know

49Don't	Be	Afraid	to	Break	Things

http://programmer.97things.oreilly.com/wiki/index.php/Mike_Lewis

Don't	Be	Cute	with	Your	Test	Data
It	was	getting	late.	I	was	throwing	in	some	placeholder	data	to	test	the	page	layout	I'd
been	working	on.

I	appropriated	the	members	of	The	Clash	for	the	names	of	users.	Company	names?
Song	titles	by	the	Sex	Pistols	would	do.	Now	I	needed	some	stock	ticker	symbols	—
just	some	four	letter	words	in	capital	letters.

I	used	those	four	letter	words.

It	seemed	harmless.	Just	something	to	amuse	myself,	and	maybe	the	other	developers
the	next	day	before	I	wired	up	the	real	data	source.

The	following	morning,	a	project	manager	took	some	screenshots	for	a	presentation.*

Programming	history	is	littered	with	these	kinds	of	war	stories.	Things	that	developers	and
designers	did	"that	no	one	else	would	see"	which	unexpectedly	became	visible.	The	leak
type	can	vary	but,	when	it	happens,	it	can	be	deadly	to	the	person,	team,	or	company
responsible.	Examples	include:

During	a	status	meeting,	a	client	clicks	on	an	button	which	is	as	yet	unimplemented.
They	are	told:	"Don't	click	that	again,	you	moron."
A	programmer	maintaining	a	legacy	system	has	been	told	to	add	an	error	dialog,	and
decides	to	use	the	output	of	existing	behind-the-scenes	logging	to	power	it.	Users	are
suddenly	faced	with	messages	such	as	"Holy	database	commit	failure,	Batman!"	when
something	breaks.
Someone	mixes	up	the	test	and	live	administration	interfaces,	and	does	some	"funny"
data	entry.	Customers	spot	a	$1m	"Bill	Gates-shaped	personal	massager"	on	sale	in
your	online	store.

To	appropriate	the	old	saying	that	"a	lie	can	travel	halfway	around	the	world	while	the	truth	is
putting	on	its	shoes,"	in	this	day	and	age	a	screw-up	can	be	Dugg,	Twittered,	and	Flibflarbed
before	anyone	in	the	developer's	timezone	is	awake	to	do	anything	about	it.

Even	your	source	code	isn't	necessarily	free	of	scrutiny.	In	2004,	when	a	tarball	of	the
Windows	2000	source	code	made	its	way	onto	file	sharing	networks,	some	folks	merrily
grepped	through	it	for	profanity,	insults,	and	other	funny	content.	(The	comment		//	TERRIBLE
HORRIBLE	NO	GOOD	VERY	BAD	HACK		has,	I	will	admit,	become	appropriated	by	me	from	time	to
time	since!)

97	Things	Every	Programmer	Should	Know

50Don't	Be	Cute	with	Your	Test	Data

http://www.kuro5hin.org/story/2004/2/15/71552/7795

In	summary,	when	writing	any	text	in	your	code	—	whether	comments,	logging,	dialogs,	or
test	data	—	always	ask	yourself	how	it	will	look	if	it	becomes	public.	It	will	save	some	red
faces	all	round.

By	Rod	Begbie

97	Things	Every	Programmer	Should	Know

51Don't	Be	Cute	with	Your	Test	Data

http://programmer.97things.oreilly.com/wiki/index.php/Rod_Begbie

Don't	Ignore	that	Error!
I	was	walking	down	the	street	one	evening	to	meet	some	friends	in	a	bar.	We	hadn't
shared	a	beer	in	some	time	and	I	was	looking	forward	to	seeing	them	again.	In	my
haste,	I	wasn't	looking	where	I	was	going.	I	tripped	over	the	edge	of	a	curb	and	ended
up	flat	on	my	face.	Well,	it	serves	me	right	for	not	paying	attention,	I	guess.

It	hurt	my	leg,	but	I	was	in	a	hurry	to	meet	my	friends.	So	I	pulled	myself	up	and	carried
on.	As	I	walked	further	the	pain	was	getting	worse.	Although	I'd	initially	dismissed	it	as
shock,	I	rapidly	realized	there	was	something	wrong.

But	I	hurried	on	to	the	bar	regardless.	I	was	in	agony	by	the	time	I	arrived.	I	didn't	have
a	great	night	out,	because	I	was	terribly	distracted.	In	the	morning	I	went	to	the	doctor
and	found	out	I'd	fractured	my	shin	bone.	Had	I	stopped	when	I	felt	the	pain,	I'd've
prevented	a	lot	of	extra	damage	that	I	caused	by	walking	on	it.	Probably	the	worst
morning	after	of	my	life.

Too	many	programmers	write	code	like	my	disastrous	night	out.

Error,	what	error?	It	won't	be	serious.	Honestly.	I	can	ignore	it.	This	is	not	a	winning	strategy
for	solid	code.	In	fact,	it's	just	plain	laziness.	(The	wrong	sort.)	No	matter	how	unlikely	you
think	an	error	is	in	your	code,	you	should	always	check	for	it,	and	always	handle	it.	Every
time.	You're	not	saving	time	if	you	don't:	You're	storing	up	potential	problems	for	the	future.

We	report	errors	in	our	code	in	a	number	of	ways,	including:

Return	codes	can	be	used	as	the	resulting	value	of	a	function	to	mean	"it	didn't	work."
Error	return	codes	are	far	too	easy	to	ignore.	You	won't	see	anything	in	the	code	to
highlight	the	problem.	Indeed,	it's	become	standard	practice	to	ignore	some	standard	C
functions'	return	values.	How	often	do	you	check	the	return	value	from	printf?

errno	is	a	curious	C	aberration,	a	separate	global	variable	set	to	signal	error.	It's	easy	to
ignore,	hard	to	use,	and	leads	to	all	sorts	of	nasty	problems	—	for	example,	what
happens	when	you	have	multiple	threads	calling	the	same	function?	Some	platforms
insulate	you	from	pain	here;	others	do	not.

Exceptions	are	a	more	structured	language-supported	way	of	signaling	and	handling
errors.	And	you	can't	possibly	ignore	them.	Or	can	you?	I've	seen	lots	of	code	like	this:

97	Things	Every	Programmer	Should	Know

52Don't	Ignore	that	Error!

try	{

				//	...do	something...

}

catch	(...)	{}	//	ignore	errors

The	saving	grace	of	this	awful	construct	is	that	it	highlights	the	fact	you're	doing	something
morally	dubious.

If	you	ignore	an	error,	turn	a	blind	eye,	and	pretend	that	nothing	has	gone	wrong,	you	run
great	risks.	Just	as	my	leg	ended	up	in	a	worse	state	than	if	I'd	stopped	walking	on	it
immediately,	plowing	on	regardless	can	lead	to	very	complex	failures.	Deal	with	problems	at
the	earliest	opportunity.	Keep	a	short	account.

Not	handling	errors	leads	to:

Brittle	code.	Code	that's	filled	with	exciting,	hard-to-find	bugs.
Insecure	code.	Crackers	often	exploit	poor	error	handling	to	break	into	software
systems.
Poor	structure.	If	there	are	errors	from	your	code	that	are	tedious	to	deal	with
continually,	you	have	probably	have	a	poor	interface.	Express	it	so	that	the	errors	are
less	intrusive	and	the	their	handling	is	less	onerous.

Just	as	you	should	check	all	potential	errors	in	your	code,	you	need	to	expose	all	potentially
erroneous	conditions	in	your	interfaces.	Do	not	hide	them,	pretending	that	your	services	will
always	work.

Why	don't	we	check	for	errors?	There	are	a	number	of	common	excuses.	Which	of	these	do
you	agree	with?	How	would	you	counter	each	one?

Error	handling	clutters	up	the	flow	of	the	code,	making	it	harder	to	read,	and	harder	to
spot	the	"normal"	flow	of	execution.
It's	extra	work	and	I	have	a	deadline	looming.
I	know	that	this	function	call	will	never	return	an	error	(printf	always	works,	malloc
always	returns	new	memory	—	if	it	fails	we	have	bigger	problems...).
It's	only	a	toy	program,	and	needn't	be	written	to	a	production-worthy	level.

By	Pete	Goodliffe

97	Things	Every	Programmer	Should	Know

53Don't	Ignore	that	Error!

http://programmer.97things.oreilly.com/wiki/index.php/Pete_Goodliffe

Don't	Just	Learn	the	Language,
Understand	its	Culture
In	high	school,	I	had	to	learn	a	foreign	language.	At	the	time	I	thought	that	I'd	get	by	nicely
being	good	at	English	so	I	chose	to	sleep	through	three	years	of	French	class.	A	few	years
later	I	went	to	Tunisia	on	vacation.	Arabic	is	the	official	language	there	and,	being	a	former
French	colony,	French	is	also	commonly	used.	English	is	only	spoken	in	the	touristy	areas.
Because	of	my	linguistic	ignorance,	I	found	myself	confined	at	the	poolside	reading
Finnegans	Wake,	James	Joyce's	tour	de	force	in	form	and	language.	Joyce's	playful	blend
of	more	than	forty	languages	was	a	surprising	albeit	exhausting	experience.	Realizing	how
interwoven	foreign	words	and	phrases	gave	the	author	new	ways	of	expressing	himself	is
something	I've	kept	with	me	in	my	programming	career.

In	their	seminal	book,	The	Pragmatic	Programmer,	Andy	Hunt	and	Dave	Thomas	encourage
us	to	learn	a	new	programming	language	every	year.	I've	tried	to	live	by	their	advice	and
throughout	the	years	I've	had	the	experience	of	programming	in	many	languages.	My	most
important	lesson	from	my	polyglot	adventures	is	that	it	takes	more	than	just	learning	the
syntax	to	learn	a	language:	You	need	to	understand	its	culture.	You	can	write	Fortran	in	any
language,	but	to	truly	learn	a	language	you	have	to	embrace	the	language.	Don't	make
excuses	if	your	C#	code	is	a	long	Main	method	with	mostly	static	helper	methods,	but	learn
why	classes	make	sense.	Don't	shy	away	if	you	have	a	hard	time	understanding	the	lambda
expressions	used	in	functional	languages,	force	yourself	to	use	them.

Once	you've	learned	the	ropes	of	a	new	language,	you'll	be	surprised	how	you'll	start	using
languages	you	already	know	in	new	ways.	I	learned	how	to	use	delegates	effectively	in	C#
from	programming	Ruby,	releasing	the	full	potential	of	.NETs	generics	gave	me	ideas	on
how	I	could	make	Java	generics	more	useful,	and	LINQ	made	it	a	breeze	to	teach	myself
Scala.

You'll	also	get	a	better	understanding	of	design	patterns	by	moving	between	different
languages.	C	programmers	find	that	C#	and	Java	have	commoditized	the	iterator	pattern.	In
Ruby	and	other	dynamic	languages	you	might	still	use	a	visitor,	but	your	implementation
won't	look	like	the	example	from	the	Gang	of	Four	book.

Some	might	argue	that	Finnegans	Wake	is	unreadable,	while	others	applaud	it	for	its	stylistic
beauty.	To	make	the	book	a	less	daunting	read,	single	language	translations	are	available.
Ironically,	the	first	of	these	was	in	French.	Code	is	in	many	ways	similar.	If	you	write	Wakese
code	with	a	little	Python,	some	Java,	and	a	hint	of	Erlang,	your	projects	will	be	a	mess.	If	you

97	Things	Every	Programmer	Should	Know

54Don't	Just	Learn	the	Language,	Understand	its	Culture

instead	explore	new	languages	to	expand	your	mind	and	get	fresh	ideas	on	how	you	can
solve	things	in	different	ways,	you	will	find	that	the	code	you	write	in	your	trusty	old	language
gets	more	beautiful	for	every	new	language	you've	learned.

By	Anders	Norås

97	Things	Every	Programmer	Should	Know

55Don't	Just	Learn	the	Language,	Understand	its	Culture

Don't	Nail	Your	Program	into	the	Upright
Position
I	once	wrote	a	spoof	C++	quiz,	in	which	I	satirically	suggested	the	following	strategy	for
exception	handling:

By	dint	of	plentiful		try...catch		constructs	throughout	our	code	base,	we	are
sometimes	able	to	prevent	our	applications	from	aborting.	We	think	of	the	resultant
state	as	"nailing	the	corpse	in	the	upright	position."

Despite	my	levity,	I	was	actually	summarizing	a	lesson	I	received	at	the	knee	of	Dame	Bitter
Experience	herself.

It	was	a	base	application	class	in	our	own,	homemade	C++	library.	It	had	suffered	the
pokings	of	many	programmers'	fingers	over	the	years:	Nobody's	hands	were	clean.	It
contained	code	to	deal	with	all	escaped	exceptions	from	everything	else.	Taking	our	lead
from	Yossarian	in	Catch-22,	we	decided,	or	rather	felt	(decided	implies	more	thought	than
went	into	the	construction	of	this	monster)	that	an	instance	of	this	class	should	live	forever	or
die	in	the	attempt.

To	this	end,	we	intertwined	multiple	exception	handlers.	We	mixed	in	Windows'	structured
exception	handling	with	the	native	kind	(remember		__try...__except		in	C++?	Me	neither).
When	things	threw	unexpectedly,	we	tried	calling	them	again,	pressing	the	parameters
harder.	Looking	back,	I	like	to	think	that	when	writing	an	inner		try...catch		handler	within
the	catch	clause	of	another,	some	sort	of	awareness	crept	over	me	that	I	might	have
accidentally	taken	a	slip	road	from	the	motorway	of	good	practice	into	the	aromatic	but
insalubrious	lane	of	lunacy.	However,	this	is	probably	retrospective	wisdom.

Needless	to	say,	whenever	something	went	wrong	in	applications	based	on	this	class,	they
vanished	like	Mafia	victims	at	the	dockside,	leaving	behind	no	useful	trail	of	bubbles	to
indicate	what	the	hell	happened,	notwithstanding	the	dump	routines	that	were	supposedly
called	to	record	the	disaster.	Eventually	—	a	long	eventually	—	we	took	stock	of	what	we
had	done,	and	experienced	shame.	We	replaced	the	whole	mess	with	a	minimal	and	robust
reporting	mechanism.	But	this	was	many	crashes	down	the	line.

I	wouldn't	bother	you	with	this	—	for	surely	nobody	else	could	ever	be	as	stupid	as	we	were
—	but	for	an	online	argument	I	had	recently	with	a	bloke	whose	academic	job	title	declared
he	should	know	better.	We	were	discussing	Java	code	in	a	remote	transaction.	If	the	code
failed,	he	argued,	it	should	catch	and	block	the	exception	in	situ.	("And	then	do	what	with	it?"
I	asked.	"Cook	it	for	supper?")

97	Things	Every	Programmer	Should	Know

56Don't	Nail	Your	Program	into	the	Upright	Position

He	quoted	the	UI	designers'	rule:	NEVER	LET	THE	USER	SEE	AN	EXCEPTION	REPORT,
rather	as	though	this	settled	the	matter,	what	with	it	being	in	caps	and	everything.	I	wonder	if
he	was	responsible	for	the	code	in	one	of	those	blue-screened	ATMs	whose	photos
decorate	the	feebler	blogs,	and	had	been	permanently	traumatized.	Anyway,	if	you	should
meet	him,	nod	and	smile	and	take	no	notice,	as	you	sidle	towards	the	door.

By	Verity	Stob

97	Things	Every	Programmer	Should	Know

57Don't	Nail	Your	Program	into	the	Upright	Position

http://programmer.97things.oreilly.com/wiki/index.php/Verity_Stob

Don't	Rely	on	"Magic	Happens	Here"
If	you	look	at	any	activity,	process,	or	discipline	from	far	enough	away	it	looks	simple.
Managers	with	no	experience	of	development	think	what	programmers	do	is	simple	and
programmers	with	no	experience	of	management	think	the	same	of	what	managers	do.

Programming	is	something	some	people	do	—	some	of	the	time.	And	the	hard	part	—	the
thinking	—	is	the	least	visible	and	least	appreciated	by	the	uninitiated.	There	have	been
many	attempts	to	remove	the	need	for	this	skilled	thinking	over	the	decades.	One	of	the
earliest	and	most	memorable	is	the	effort	by	Grace	Hopper	to	make	programming	languages
less	cryptic	—	which	some	accounts	predicted	would	remove	the	need	for	specialist
programmers.	The	result	(COBOL)	has	contributed	to	the	income	of	many	specialist
programmers	over	subsequent	decades.

The	persistent	vision	that	software	development	can	be	simplified	by	removing	programming
is,	to	the	programmer	who	understands	what	is	involved,	obviously	naïve.	But	the	mental
process	that	leads	to	this	mistake	is	part	of	human	nature	and	programmers	are	just	as
prone	to	making	it	as	everyone	else.

On	any	project	there	are	likely	many	things	that	an	individual	programmer	doesn't	get
actively	involved	in:	eliciting	requirements	from	users,	getting	budgets	approved,	setting	up
the	build	server,	deploying	the	application	to	QA	and	production	environments,	migrating	the
business	from	the	old	processes	or	programs,	etc.

When	you	aren't	actively	involved	in	things	there	is	an	unconscious	tendency	to	assume	that
they	are	simple	and	happen	"by	magic."	While	the	magic	continues	to	happen	all	is	well.	But
when	—	it	is	usually	"when"	and	not	"if"	—	the	magic	stops	the	project	is	in	trouble.

I've	known	projects	lose	weeks	of	developer	time	because	no	one	understood	how	they
relied	on	"the	right"	version	of	a	DLL	being	loaded.	When	things	started	failing	intermittently
team	members	looked	everywhere	else	before	someone	noticed	that	"a	wrong"	version	of
the	DLL	was	being	loaded.

Another	department	was	running	smoothly	—	projects	delivered	on	time,	no	late	night
debugging	sessions,	no	emergency	fixes.	So	smoothly,	in	fact,	that	senior	management
decided	that	things	"ran	themselves"	and	they	could	do	without	the	project	manager.	Inside
six	months	the	projects	in	the	department	looked	just	like	the	rest	of	the	organization	—	late,
buggy	and	continually	being	patched.

You	don't	have	to	understand	all	the	magic	that	makes	your	project	work,	but	it	doesn't	hurt
to	understand	some	of	it	—	or	to	appreciate	someone	who	understands	the	bits	you	don't.

97	Things	Every	Programmer	Should	Know

58Don't	Rely	on	"Magic	Happens	Here"

Most	importantly,	make	sure	that	when	the	magic	stops	it	can	be	started	again.

By	AlanGriffiths

97	Things	Every	Programmer	Should	Know

59Don't	Rely	on	"Magic	Happens	Here"

http://programmer.97things.oreilly.com/wiki/index.php/AlanGriffiths

Don't	Repeat	Yourself
Of	all	the	principles	of	programming,	Don't	Repeat	Yourself	(DRY)	is	perhaps	one	of	the
most	fundamental.	The	principle	was	formulated	by	Andy	Hunt	and	Dave	Thomas	in	The
Pragmatic	Programmer,	and	underlies	many	other	well-known	software	development	best
practices	and	design	patterns.	The	developer	who	learns	to	recognize	duplication,	and
understands	how	to	eliminate	it	through	appropriate	practice	and	proper	abstraction,	can
produce	much	cleaner	code	than	one	who	continuously	infects	the	application	with
unnecessary	repetition.

Duplication	is	waste
Every	line	of	code	that	goes	into	an	application	must	be	maintained,	and	is	a	potential
source	of	future	bugs.	Duplication	needlessly	bloats	the	codebase,	resulting	in	more
opportunities	for	bugs	and	adding	accidental	complexity	to	the	system.	The	bloat	that
duplication	adds	to	the	system	also	makes	it	more	difficult	for	developers	working	with	the
system	to	fully	understand	the	entire	system,	or	to	be	certain	that	changes	made	in	one
location	do	not	also	need	to	be	made	in	other	places	that	duplicate	the	logic	they	are
working	on.	DRY	requires	that	"every	piece	of	knowledge	must	have	a	single,	unambiguous,
authoritative	representation	within	a	system."

Repetition	in	process	calls	for	automation
Many	processes	in	software	development	are	repetitive	and	easily	automated.	The	DRY
principle	applies	in	these	contexts	as	well	as	in	the	source	code	of	the	application.	Manual
testing	is	slow,	error-prone,	and	difficult	to	repeat,	so	automated	test	suites	should	be	used,
if	possible.	Integrating	software	can	be	time	consuming	and	error-prone	if	done	manually,	so
a	build	process	should	be	run	as	frequently	as	possible,	ideally	with	every	check-in.
Wherever	painful	manual	processes	exist	that	can	be	automated,	they	should	be	automated
and	standardized.	The	goal	is	to	ensure	there	is	only	one	way	of	accomplishing	the	task,	and
it	is	as	painless	as	possible.

Repetition	in	logic	calls	for	abstraction

97	Things	Every	Programmer	Should	Know

60Don't	Repeat	Yourself

Repetition	in	logic	can	take	many	forms.	Copy-and-paste	if-then	or	switch-case	logic	is
among	the	easiest	to	detect	and	correct.	Many	design	patterns	have	the	explicit	goal	of
reducing	or	eliminating	duplication	in	logic	within	an	application.	If	an	object	typically	requires
several	things	to	happen	before	it	can	be	used,	this	can	be	accomplished	with	an	Abstract
Factory	or	a	Factory	Method.	If	an	object	has	many	possible	variations	in	its	behavior,	these
behaviors	can	be	injected	using	the	Strategy	pattern	rather	than	large	if-then	structures.	In
fact,	the	formulation	of	design	patterns	themselves	is	an	attempt	to	reduce	the	duplication	of
effort	required	to	solve	common	problems	and	discuss	such	solutions.	In	addition,	DRY	can
be	applied	to	structures,	such	as	database	schema,	resulting	in	normalization.

A	Matter	of	principle
Other	software	principles	are	also	related	to	DRY.	The	Once	and	Only	Once	principle,	which
applies	only	to	the	functional	behavior	of	code,	can	be	thought	of	as	a	subset	of	DRY.	The
Open/Closed	Principle,	which	states	that	"software	entities	should	be	open	for	extension,	but
closed	for	modification,"	only	works	in	practice	when	DRY	is	followed.	Likewise,	the	well-
known	Single	Responsibility	Principle	requires	that	a	class	have	"only	one	reason	to
change,"	relies	on	DRY.

When	followed	with	regard	to	structure,	logic,	process,	and	function,	the	DRY	principle
provides	fundamental	guidance	to	software	developers	and	aids	the	creation	of	simpler,
more	maintainable,	higher-quality	applications.	While	there	are	scenarios	where	repetition
can	be	necessary	to	meet	performance	or	other	requirements	(e.g.,	data	denormalization	in
a	database),	it	should	be	used	only	where	it	directly	addresses	an	actual	rather	than	an
imagined	problem.

By	Steve	Smith

97	Things	Every	Programmer	Should	Know

61Don't	Repeat	Yourself

http://programmer.97things.oreilly.com/wiki/index.php/Steve_Smith

Don't	Touch	that	Code!
It	has	happened	to	everyone	of	us	at	some	point.	Your	code	was	rolled	on	to	the	staging
server	for	system	testing	and	the	testing	manager	writes	back	that	she	has	hit	a	problem.
Your	first	reaction	is	"Quick,	let	me	fix	that	—	I	know	what's	wrong."

In	the	bigger	sense,	though,	what	is	wrong	is	that	as	a	developer	you	think	you	should	have
access	to	the	staging	server.

In	most	web-based	development	environments	the	architecture	can	be	broken	down	like
this:

Local	development	and	unit	testing	on	the	developer's	machine
Development	server	where	manual	or	automated	integration	testing	is	done
Staging	server	where	the	QA	team	and	the	users	do	acceptance	testing
Production	server

Yes,	there	are	other	servers	and	services	sprinkled	in	there,	like	source	code	control	and
ticketing,	but	you	get	the	idea.	Using	this	model,	a	developer	—	even	a	senior	developer	—
should	never	have	access	beyond	the	development	server.	Most	development	is	done	on	a
developer's	local	machine	using	their	favorite	blend	of	IDEs,	virtual	machines,	and	an
appropriate	amount	of	black	magic	sprinkled	over	it	for	good	luck.

Once	checked	into	SCC,	whether	automatically	or	manually,	it	should	be	rolled	over	to	the
development	server	where	it	can	be	tested	and	tweaked	if	necessary	to	make	sure
everything	works	together.	From	this	point	on,	though,	the	developer	is	a	spectator	to	the
process.

The	staging	manager	should	package	and	roll	the	code	to	the	staging	server	for	the	QA
team.	Just	like	developers	should	have	no	need	to	access	anything	beyond	the	development
server,	the	QA	team	and	the	users	have	no	need	to	touch	anything	on	the	development
server.	If	it's	ready	for	acceptance	testing,	cut	a	release	and	roll,	don't	ask	the	user	to	"Just
look	at	something	real	quick"	on	the	development	server.	Remember,	unless	you	are	coding
the	project	by	yourself,	other	people	have	code	there	and	they	may	not	be	ready	for	the	user
to	see	it.	The	release	manager	is	the	only	person	who	should	have	access	to	both.

Under	no	circumstances	—	ever,	at	all	—	should	a	developer	have	access	to	a	production
server.	If	there	is	a	problem,	your	support	staff	should	either	fix	it	or	request	that	you	fix	it.
After	it's	checked	into	SCC	they	will	roll	a	patch	from	there.	Some	of	the	biggest
programming	disasters	I've	been	a	part	of	have	taken	place	because	someone
*cough*me*cough*	violated	this	last	rule.	If	it's	broke,	production	is	not	the	place	to	fix	it.

97	Things	Every	Programmer	Should	Know

62Don't	Touch	that	Code!

by	Cal	Evans

97	Things	Every	Programmer	Should	Know

63Don't	Touch	that	Code!

http://programmer.97things.oreilly.com/wiki/index.php/Cal_Evans

Encapsulate	Behavior,	not	Just	State
In	systems	theory,	containment	is	one	of	the	most	useful	constructs	when	dealing	with	large
and	complex	system	structures.	In	the	software	industry	the	value	of	containment	or
encapsulation	is	well	understood.	Containment	is	supported	by	programming	language
constructs	such	as	subroutines	and	functions,	modules	and	packages,	classes,	and	so	on.

Modules	and	packages	address	the	larger	scale	needs	for	encapsulation,	while	classes,
subroutines,	and	functions	address	the	more	fine-grained	aspects	of	the	matter.	Over	the
years	I	have	discovered	that	classes	seem	to	be	one	of	the	hardest	encapsulation	constructs
for	developers	to	get	right.	It's	not	uncommon	to	find	a	class	with	a	single	3000-line	main
method,	or	a	class	with	only	set	and	get	methods	for	its	primitive	attributes.	These	examples
demonstrate	that	the	developers	involved	have	not	fully	understood	object-oriented	thinking,
having	failed	to	take	advantage	of	the	power	of	objects	as	modeling	constructs.	For
developers	familiar	with	the	terms	POJO	(Plain	Old	Java	Object)	and	POCO	(Plain	Old	C#
Object	or	Plain	Old	CLR	Object),	this	was	the	intent	in	going	back	to	the	basics	of	OO	as	a
modeling	paradigm	—	the	objects	are	plain	and	simple,	but	not	dumb.

An	object	encapsulates	both	state	and	behavior,	where	the	behavior	is	defined	by	the	actual
state.	Consider	a	door	object.	It	has	four	states:	closed,	open,	closing,	opening.	It	provides
two	operations:	open	and	close.	Depending	on	the	state,	the	open	and	close	operations	will
behave	differently.	This	inherent	property	of	an	object	makes	the	design	process
conceptually	simple.	It	boils	down	to	two	simple	tasks:	allocation	and	delegation	of
responsibility	to	the	different	objects	including	the	inter-object	interaction	protocols.

How	this	works	in	practice	is	best	illustrated	with	an	example.	Let's	say	we	have	three
classes:	Customer,	Order,	and	Item.	A	Customer	object	is	the	natural	placeholder	for	the
credit	limit	and	credit	validation	rules.	An	Order	object	knows	about	its	associated	Customer,
and	its	addItem	operation	delegates	the	actual	credit	check	by	calling
	customer.validateCredit(item.price())	.	If	the	postcondition	for	the	method	fails,	an
exception	can	be	thrown	and	the	purchase	aborted.

Less	experienced	object	oriented	developers	might	decide	to	wrap	all	the	business	rules	into
an	object	very	often	referred	to	as		OrderManager		or		OrderService	.	In	these	designs,
	Order	,		Customer	,	and		Item		are	treated	as	little	more	than	record	types.	All	logic	is
factored	out	of	the	classes	and	tied	together	in	one	large,	procedural	method	with	a	lot	of
internal	if-then-else	constructs.	These	methods	are	easily	broken	and	are	almost	impossible
to	maintain.	The	reason?	The	encapsulation	is	broken.

97	Things	Every	Programmer	Should	Know

64Encapsulate	Behavior,	not	Just	State

So	in	the	end,	don't	break	the	encapsulation,	and	use	the	power	of	your	programming
language	to	maintain	it.

By	Einar	Landre

97	Things	Every	Programmer	Should	Know

65Encapsulate	Behavior,	not	Just	State

http://programmer.97things.oreilly.com/wiki/index.php/Einar_Landre

Floating-point	Numbers	Aren't	Real
Floating-point	numbers	are	not	"real	numbers"	in	the	mathematical	sense,	even	though	they
are	called	real	in	some	programming	languages,	such	as	Pascal	and	Fortran.	Real	numbers
have	infinite	precision	and	are	therefore	continuous	and	non-lossy;	floating-point	numbers
have	limited	precision,	so	they	are	finite,	and	they	resemble	"badly-behaved"	integers,
because	they're	not	evenly	spaced	throughout	their	range.

To	illustrate,	assign	2147483647	(the	largest	signed	32-bit	integer)	to	a	32-bit	float	variable
(x,	say),	and	print	it.	You'll	see	2147483648.	Now	print		x	-	64	.	Still	2147483648.	Now	print
	x	-	65		and	you'll	get	2147483520!	Why?	Because	the	spacing	between	adjacent	floats	in
that	range	is	128,	and	floating-point	operations	round	to	the	nearest	floating-point	number.

IEEE	floating-point	numbers	are	fixed-precision	numbers	based	on	base-two	scientific

notation:	1.d1d2...dp-1	×	2e,	where	p	is	the	precision	(24	for	float,	53	for	double).	The

spacing	between	two	consecutive	numbers	is	21-p+e,	which	can	be	safely	approximated	by

ε|x|,	where	ε	is	the	machine	epsilon	(21-p).

Knowing	the	spacing	in	the	neighborhood	of	a	floating-point	number	can	help	you	avoid
classic	numerical	blunders.	For	example,	if	you're	performing	an	iterative	calculation,	such
as	searching	for	the	root	of	an	equation,	there's	no	sense	in	asking	for	greater	precision	than
the	number	system	can	give	in	the	neighborhood	of	the	answer.	Make	sure	that	the
tolerance	you	request	is	no	smaller	than	the	spacing	there;	otherwise	you'll	loop	forever.

Since	floating-point	numbers	are	approximations	of	real	numbers,	there	is	inevitably	a	little
error	present.	This	error,	called	roundoff,	can	lead	to	surprising	results.	When	you	subtract
nearly	equal	numbers,	for	example,	the	most	significant	digits	cancel	each	other	out,	so	what
was	the	least	significant	digit	(where	the	roundoff	error	resides)	gets	promoted	to	the	most
significant	position	in	the	floating-point	result,	essentially	contaminating	any	further	related
computations	(a	phenomenon	known	as	smearing).	You	need	to	look	closely	at	your
algorithms	to	prevent	such	catastrophic	cancellation.	To	illustrate,	consider	solving	the

equation	x2	-	100000x	+	1	=	0	with	the	quadratic	formula.	Since	the	operands	in	the

expression	-b	+	sqrt(b2	-	4)	are	nearly	equal	in	magnitude,	you	can	instead	compute	the	root

r1	=	-b	+	sqrt(b2	-	4),	and	then	obtain	r2	=	1/r1,	since	for	any	quadratic	equation,	ax2	+	bx	+
c	=	0,	the	roots	satisfy	r1r2	=	c/a.

Smearing	can	occur	in	even	more	subtle	ways.	Suppose	a	library	naively	computes	ex	by

the	formula	1	+	x	+	x2/2	+	x3/3!	+	This	works	fine	for	positive	x,	but	consider	what
happens	when	x	is	a	large	negative	number.	The	even-powered	terms	result	in	large	positive

97	Things	Every	Programmer	Should	Know

66Floating-point	Numbers	Aren't	Real

numbers,	and	subtracting	the	odd-powered	magnitudes	will	not	even	affect	the	result.	The
problem	here	is	that	the	roundoff	in	the	large,	positive	terms	is	in	a	digit	position	of	much
greater	significance	than	the	true	answer.	The	answer	diverges	toward	positive	infinity!	The

solution	here	is	also	simple:	for	negative	x,	compute	ex	=	1/e|x|.

It	should	go	without	saying	that	you	shouldn't	use	floating-point	numbers	for	financial
applications	—	that's	what	decimal	classes	in	languages	like	Python	and	C#	are	for.
Floating-point	numbers	are	intended	for	efficient	scientific	computation.	But	efficiency	is
worthless	without	accuracy,	so	remember	the	source	of	rounding	errors	and	code
accordingly!

By	Chuck	Allison

97	Things	Every	Programmer	Should	Know

67Floating-point	Numbers	Aren't	Real

http://programmer.97things.oreilly.com/wiki/index.php/Chuck_Allison

Fulfill	Your	Ambitions	with	Open	Source
Chances	are	pretty	good	that	you	are	not	developing	software	at	work	that	fulfills	your	most
ambitious	software	development	daydreams.	Perhaps	you	are	developing	software	for	a
huge	insurance	company	when	you	would	rather	be	working	at	Google,	Apple,	Microsoft,	or
your	own	start-up	developing	the	next	big	thing.	You'll	never	get	where	you	want	to	go
developing	software	for	systems	you	don't	care	about.

Fortunately,	there	is	an	answer	to	your	problem:	open	source.	There	are	thousands	of	open
source	projects	out	there,	many	of	them	quite	active,	which	offer	you	any	kind	of	software
development	experience	you	could	want.	If	you	love	the	idea	of	developing	operating
systems,	go	help	with	one	of	the	dozen	operating	system	projects.	If	you	want	to	work	on
music	software,	animation	software,	cryptography,	robotics,	PC	games,	massive	online
player	games,	mobile	phones,	or	whatever,	you'll	almost	certainly	find	at	least	one	open
source	project	dedicated	to	that	interest.

Of	course	there	is	no	free	lunch.	You	have	to	be	willing	to	give	up	your	free	time	because
you	probably	cannot	work	on	an	open	source	video	game	at	your	day	job	—	you	still	have	a
responsibility	to	your	employer.	In	addition,	very	few	people	make	money	contributing	to
open	source	projects	—	some	do	but	most	don't.	You	should	be	willing	to	give	up	some	of
your	free	time	(less	time	playing	video	games	and	watching	TV	won't	kill	you).	The	harder
you	work	on	an	open	source	project	the	faster	you'll	realize	your	true	ambitions	as	a
programmer.	It's	also	important	to	consider	your	employee	contract	—	some	employers	may
restrict	what	you	can	contribute,	even	on	your	own	time.	In	addition,	you	need	to	be	careful
about	violating	intellectual	property	laws	having	to	do	with	copyright,	patents,	trade	marks,
and	trade	secrets.

Open	source	provides	enormous	opportunities	for	the	motivated	programmer.	First,	you	get
to	see	how	someone	else	would	implement	a	solution	that	interests	you	—	you	can	learn	a
lot	by	reading	other	people's	source	code.	Second,	you	get	to	contribute	your	own	code	and
ideas	to	the	project	—	not	every	brilliant	idea	you	have	will	be	accepted	but	some	might	and
you'll	learn	something	new	just	by	working	on	solutions	and	contributing	code.	Third,	you'll
meet	great	people	with	the	same	passion	for	the	type	of	software	that	you	have	—	these
open	source	friendships	can	last	a	lifetime.	Fourth,	assuming	you	are	a	competent
contributor,	you'll	be	able	to	add	real-world	experience	in	the	technology	that	actually
interests	you.

Getting	started	with	open	source	is	pretty	easy.	There	is	a	wealth	of	documentation	out	there
on	the	tools	you'll	need	(e.g.,	source	code	management,	editors,	programming	languages,
build	systems,	etc.).	Find	the	project	you	want	to	work	on	first	and	learn	about	the	tools	that

97	Things	Every	Programmer	Should	Know

68Fulfill	Your	Ambitions	with	Open	Source

project	uses.	The	documentation	on	projects	themselves	will	be	light	in	most	cases,	but	this
perhaps	matters	less	because	the	best	way	to	learn	is	to	investigate	the	code	yourself.	If	you
want	to	get	involved,	you	could	offer	to	help	out	with	the	documentation.	Or	you	could	start
by	volunteering	to	write	test	code.	While	that	may	not	sound	exciting,	the	truth	is	you	learn
much	faster	by	writing	test	code	for	other	people's	software	than	almost	any	other	activity	in
software.	Write	test	code,	really	good	test	code.	Find	bugs,	suggest	fixes,	make	friends,
work	on	software	you	like,	and	fulfill	your	software	development	ambitions.

by	Richard	Monson-Haefel

97	Things	Every	Programmer	Should	Know

69Fulfill	Your	Ambitions	with	Open	Source

http://programmer.97things.oreilly.com/wiki/index.php/Richard_Monson-Haefel

The	Golden	Rule	of	API	Design
API	design	is	tough,	particularly	in	the	large.	If	you	are	designing	an	API	that	is	going	to
have	hundreds	or	thousands	of	users,	you	have	to	think	about	how	you	might	change	it	in
the	future	and	whether	your	changes	might	break	client	code.	Beyond	that,	you	have	to	think
about	how	users	of	your	API	affect	you.	If	one	of	your	API	classes	uses	one	of	its	own
methods	internally,	you	have	to	remember	that	a	user	could	subclass	your	class	and
override	it,	and	that	could	be	disastrous.	You	wouldn't	be	able	to	change	that	method
because	some	of	your	users	have	given	it	a	different	meaning.	Your	future	internal
implementation	choices	are	at	the	mercy	of	your	users.

API	developers	solve	this	problem	in	various	ways,	but	the	easiest	way	is	to	lock	down	the
API.	If	you	are	working	in	Java	you	might	be	tempted	to	make	most	of	your	classes	and
methods	final.	In	C#,	you	might	make	your	classes	and	methods	sealed.	Regardless	of	the
language	you	are	using,	you	might	be	tempted	to	present	your	API	through	a	singleton	or
use	static	factory	methods	so	that	you	can	guard	it	from	people	who	might	override	behavior
and	use	your	code	in	ways	which	may	constrain	your	choices	later.	This	all	seems
reasonable,	but	is	it	really?

Over	the	past	decade,	we've	gradually	realized	that	unit	testing	is	an	extremely	important
part	of	practice,	but	that	lesson	has	not	completely	permeated	the	industry.	The	evidence	is
all	around	us.	Take	an	arbitrary	untested	class	that	uses	a	third-party	API	and	try	to	write	unit
tests	for	it.	Most	of	the	time,	you'll	run	into	trouble.	You'll	find	that	the	code	using	the	API	is
stuck	to	it	like	glue.	There's	no	way	to	impersonate	the	API	classes	so	that	you	can	sense
your	code's	interactions	with	them,	or	supply	return	values	for	testing.

Over	time,	this	will	get	better,	but	only	if	we	start	to	see	testing	as	a	real	use	case	when	we
design	APIs.	Unfortunately,	it's	a	little	bit	more	involved	than	just	testing	our	code.	That's
where	the	Golden	Rule	of	API	Design	fits	in:	It's	not	enough	to	write	tests	for	an	API	you
develop;	you	have	to	write	unit	tests	for	code	that	uses	your	API.	When	you	do,	you	learn
first-hand	the	hurdles	that	your	users	will	have	to	overcome	when	they	try	to	test	their	code
independently.

There	is	no	one	way	to	make	it	easy	for	developers	to	test	code	which	uses	your	API.
	static	,		final	,	and		sealed		are	not	inherently	bad	constructs.	They	can	be	useful	at
times.	But	it	is	important	to	be	aware	of	the	testing	issue	and,	to	do	that,	you	have	to
experience	it	yourself.	Once	you	have,	you	can	approach	it	as	you	would	any	other	design
challenge.

By	Michael	Feathers

97	Things	Every	Programmer	Should	Know

70The	Golden	Rule	of	API	Design

http://programmer.97things.oreilly.com/wiki/index.php/Michael_Feathers

The	Guru	Myth
Anyone	who	has	worked	in	software	long	enough	has	heard	questions	like	this:

I'm	getting	exception	XYZ.	Do	you	know	what	the	problem	is?

Those	asking	the	question	rarely	bother	to	include	stack	traces,	error	logs,	or	any	context
leading	to	the	problem.	They	seem	to	think	you	operate	on	a	different	plane,	that	solutions
appear	to	you	without	analysis	based	on	evidence.	They	think	you	are	a	guru.

We	expect	such	questions	from	those	unfamiliar	with	software:	To	them	systems	can	seem
almost	magical.	What	worries	me	is	seeing	this	in	the	software	community.	Similar	questions
arise	in	program	design,	such	as	"I'm	building	inventory	management.	Should	I	use
optimistic	locking?"	Ironically,	people	asking	the	question	are	often	better	equipped	to
answer	it	than	the	question's	recipient.	The	questioners	presumably	know	the	context,	know
the	requirements,	and	can	read	about	the	advantages	and	disadvantages	of	different
strategies.	Yet	they	expect	you	to	give	an	intelligent	answer	without	context.	They	expect
magic.

It's	time	for	the	software	industry	to	dispel	this	guru	myth.	"Gurus"	are	human.	They	apply
logic	and	systematically	analyze	problems	like	the	rest	of	us.	They	tap	into	mental	shortcuts
and	intuition.	Consider	the	best	programmer	you've	ever	met:	At	one	point	that	person	knew
less	about	software	than	you	do	now.	If	someone	seems	like	a	guru,	it's	because	of	years
dedicated	to	learning	and	refining	thought	processes.	A	"guru"	is	simply	a	smart	person	with
relentless	curiosity.

Of	course,	there	remains	a	huge	variance	in	natural	aptitude.	Many	hackers	out	there	are
smarter,	more	knowledgeable,	and	more	productive	than	I	may	ever	be.	Even	so,	debunking
the	guru	myth	has	a	positive	impact.	For	instance,	when	working	with	someone	smarter	than
me	I	am	sure	to	do	the	legwork,	to	provide	enough	context	so	that	person	can	efficiently
apply	his	or	her	skills.	Removing	the	guru	myth	also	means	removing	a	perceived	barrier	to
improvement.	Instead	of	a	magical	barrier,	I	see	a	continuum	on	which	I	can	advance.

Finally,	one	of	software's	biggest	obstacles	is	smart	people	who	purposefully	propagate	the
guru	myth.	This	might	be	done	out	of	ego,	or	as	a	strategy	to	increase	one's	value	as
perceived	by	a	client	or	employer.	Ironically,	this	attitude	can	make	smart	people	less
valuable,	since	they	don't	contribute	to	the	growth	of	their	peers.	We	don't	need	gurus.	We
need	experts	willing	to	develop	other	experts	in	their	field.	There	is	room	for	all	of	us.

By	Ryan	Brush

97	Things	Every	Programmer	Should	Know

71The	Guru	Myth

http://programmer.97things.oreilly.com/wiki/index.php/Ryan_Brush

Hard	Work	Does	not	Pay	Off
As	a	programmer,	working	hard	often	does	not	pay	off.	You	might	fool	yourself	and	a	few
colleagues	into	believing	that	you	are	contributing	a	lot	to	a	project	by	spending	long	hours
at	the	office.	But	the	truth	is	that	by	working	less	you	might	achieve	more	—	sometimes
much	more.	If	you	are	trying	to	be	focused	and	'productive'	for	more	than	30	hours	a	week
you	are	probably	working	too	hard.	You	should	consider	reducing	the	workload	to	become
more	effective	and	get	more	done.

This	statement	may	seem	counterintuitive	and	even	controversial,	but	it	is	a	direct
consequence	of	the	fact	that	programming	and	software	development	as	a	whole	involve	a
continuous	learning	process.	As	you	work	on	a	project	you	will	understand	more	of	the
problem	domain	and,	hopefully,	find	more	effective	ways	of	reaching	the	goal.	To	avoid
wasted	work,	you	must	allow	time	to	observe	the	effects	of	what	you	are	doing,	reflect	over
the	things	that	you	see,	and	change	your	behavior	accordingly.

Professional	programming	is	usually	not	like	running	hard	for	a	few	kilometers,	where	the
goal	can	be	seen	at	the	end	of	a	paved	road.	Most	software	projects	are	more	like	a	long
orienteering	marathon.	In	the	dark.	With	only	a	sketchy	map	as	guidance.	If	you	just	set	off
in	one	direction,	running	as	fast	as	you	can,	you	might	impress	some,	but	you	are	not	likely
to	succeed.	You	need	to	keep	a	sustainable	pace	and	you	need	to	adjust	the	course	when
you	learn	more	about	where	you	are	and	where	you	are	heading.

In	addition,	you	always	need	to	learn	more	about	software	development	in	general	and
programming	techniques	in	particular.	You	probably	need	to	read	books,	go	to	conferences,
communicate	with	other	professionals,	experiment	with	new	implementation	techniques,	and
learn	about	powerful	tools	that	simplify	your	job.	As	a	professional	programmer	you	must
keep	yourself	updated	in	your	field	of	expertise	—	just	as	brain	surgeons	and	pilots	are
expected	to	keep	themselves	up	to	date	in	their	own	fields	of	expertise.	You	need	to	spend
evenings,	weekends,	and	holidays	educating	yourself,	therefore	you	cannot	spend	your
evenings,	weekends,	and	holidays	working	overtime	on	your	current	project.	Do	you	really
expect	brain	surgeons	to	perform	surgery	60	hours	a	week,	or	pilots	to	fly	60	hours	a	week?
Of	course	not,	preparation	and	education	is	an	essential	part	of	their	profession.

Be	focused	on	the	project,	contribute	as	much	as	you	can	by	finding	smart	solutions,
improve	your	skills,	reflect	on	what	you	are	doing,	and	adapt	your	behavior.	Avoid
embarrassing	yourself,	and	our	profession,	by	behaving	like	a	hamster	in	a	cage	spinning
the	wheel.	As	a	professional	programmer	you	should	know	that	trying	to	be	focused	and
'productive'	60	hours	a	week	is	not	a	sensible	thing	to	do.	Act	like	a	professional:	prepare,
effect,	observe,	reflect,	and	change.

97	Things	Every	Programmer	Should	Know

72Hard	Work	Does	not	Pay	Off

By	Olve	Maudal

97	Things	Every	Programmer	Should	Know

73Hard	Work	Does	not	Pay	Off

http://programmer.97things.oreilly.com/wiki/index.php/Olve_Maudal

How	to	Use	a	Bug	Tracker
Whether	you	call	them	bugs,	defects,	or	even	design	side	effects,	there	is	no	getting	away
from	them.	Knowing	how	to	submit	a	good	bug	report	and	also	what	to	look	for	in	one	are
key	skills	for	keeping	a	project	moving	along	nicely.

A	good	bug	report	needs	three	things:

How	to	reproduce	the	bug,	as	precisely	as	possible,	and	how	often	this	will	make	the
bug	appear.
What	should	have	happened,	at	least	in	your	opinion.
What	actually	happened,	or	at	least	as	much	information	as	you	have	recorded.

The	amount	and	quality	of	information	reported	in	a	bug	says	as	much	about	the	reporter	as
it	does	about	the	bug.	Angry,	terse	bugs	("This	function	sucks!")	tell	the	developers	that	you
were	having	a	bad	time,	but	not	much	else.	A	bug	with	plenty	of	context	to	make	it	easier	to
reproduce	earns	the	respect	of	everyone,	even	if	it	stops	a	release.

Bugs	are	like	a	conversation,	with	all	the	history	right	there	in	front	of	everyone.	Don't	blame
others	or	deny	the	bug's	very	existence.	Instead	ask	for	more	information	or	consider	what
you	could	have	missed.

Changing	the	status	of	a	bug,	e.g.,	Open	to	Closed,	is	a	public	statement	of	what	you	think
of	the	bug.	Taking	the	time	to	explain	why	you	think	the	bug	should	be	closed	will	save
tedious	hours	later	on	justifying	it	to	frustrated	managers	and	customers.	Changing	the
priority	of	a	bug	is	a	similar	public	statement,	and	just	because	it's	trivial	to	you	doesn't	mean
it	isn't	stopping	someone	else	from	using	the	product.

Don't	overload	a	bug's	fields	for	your	own	purposes.	Adding	"VITAL:"	to	a	bug's	subject	field
may	make	it	easier	for	you	to	sort	the	results	of	some	report,	but	it	will	eventually	be	copied
by	others	and	inevitably	mistyped,	or	will	need	to	be	removed	for	use	in	some	other	report.
Use	a	new	value	or	a	new	field	instead,	and	document	how	the	field	is	supposed	to	be	used
so	other	people	don't	have	to	repeat	themselves.

Make	sure	that	everyone	knows	how	to	find	the	bugs	that	the	team	is	supposed	to	be
working	on.	This	can	usually	be	done	using	a	public	query	with	an	obvious	name.	Make	sure
everyone	is	using	the	same	query,	and	don't	update	this	query	without	first	informing	the
team	that	you're	changing	what	everyone	is	working	on.

Finally,	remember	that	a	bug	is	not	a	standard	unit	of	work	any	more	than	a	line	of	code	is	a
precise	measurement	of	effort.

97	Things	Every	Programmer	Should	Know

74How	to	Use	a	Bug	Tracker

By	Matt	Doar

97	Things	Every	Programmer	Should	Know

75How	to	Use	a	Bug	Tracker

http://programmer.97things.oreilly.com/wiki/index.php/Matt_Doar

Improve	Code	by	Removing	It
Less	is	more.	It's	a	quite	trite	little	maxim,	but	sometimes	it	really	is	true.

One	of	the	improvements	I've	made	to	our	codebase	over	the	last	few	weeks	is	to	remove
chunks	of	it.

We'd	written	the	software	following	XP	tenets,	including	YAGNI	(that	is,	You	Aren't	Gonna
Need	It).	Human	nature	being	what	it	is,	we	inevitably	fell	short	in	a	few	places.

I	observed	that	the	product	was	taking	too	long	to	execute	certain	tasks	—	simple	tasks	that
should	have	been	near	instantaneous.	This	was	because	they	were	overimplemented;
festooned	with	extra	bells	and	whistles	that	were	not	required,	but	at	the	time	had	seemed
like	a	good	idea.

So	I've	simplified	the	code,	improved	the	product	performance,	and	reduced	the	level	of
global	code	entropy	simply	by	removing	the	offending	features	from	the	codebase.	Helpfully,
my	unit	tests	tell	me	that	I	haven't	broken	anything	else	during	the	operation.

A	simple	and	thoroughly	satisfying	experience.

So	why	did	the	unnecessary	code	end	up	there	in	the	first	place?	Why	did	one	programmer
feel	the	need	to	write	extra	code,	and	how	did	it	get	past	review	or	the	pairing	process?
Almost	certainly	something	like:

It	was	a	fun	bit	of	extra	stuff,	and	the	programmer	wanted	to	write	it.	(Hint:	Write	code
because	it	adds	value,	not	because	it	amuses	you.)
Someone	thought	that	it	might	be	needed	in	the	future,	so	felt	it	was	best	to	code	it	now.
(Hint:	That	isn't	YAGNI.	If	you	don't	need	it	right	now,	don't	write	it	right	now.)
It	didn't	appear	to	be	that	big	an	"extra,"	so	it	was	easier	to	implement	it	rather	than	go
back	to	the	customer	to	see	whether	it	was	really	required.	(Hint:	It	always	takes	longer
to	write	and	to	maintain	extra	code.	And	the	customer	is	actually	quite	approachable.	A
small	extra	bit	of	code	snowballs	over	time	into	a	large	piece	of	work	that	needs
maintenance.)
The	programmer	invented	extra	requirements	that	were	neither	documented	nor
discussed	that	justified	the	extra	feature.	The	requirement	was	actually	bogus.	(Hint:
Programmers	do	not	set	system	requirements;	the	customer	does.)

What	are	you	working	on	right	now?	Is	it	all	needed?

By	Pete	Goodliffe

97	Things	Every	Programmer	Should	Know

76Improve	Code	by	Removing	It

http://programmer.97things.oreilly.com/wiki/index.php/Pete_Goodliffe

Install	Me
I	am	not	the	slightest	bit	interested	in	your	program.

I	am	surrounded	by	problems	and	have	a	to-do	list	as	long	as	my	arm.	The	only	reason	I	am
at	your	website	right	now	is	because	I	have	heard	an	unlikely	rumor	that	every	one	my
problems	will	be	eliminated	by	your	software.	You'll	forgive	me	if	I'm	skeptical.

If	eyeball	tracking	studies	are	correct,	I've	already	read	the	title	and	I'm	scanning	for	blue
underlined	text	marked	download	now.	As	an	aside,	if	I	arrived	at	this	page	with	a	Linux
browser	from	a	UK	IP,	chances	are	I	would	like	the	Linux	version	from	a	European	mirror,	so
please	don't	ask.	Assuming	the	file	dialog	opens	straight	away,	I	consign	the	thing	to	my
download	folder	and	carry	on	reading.

We	all	constantly	perform	cost-benefit	analysis	of	everything	we	do.	If	your	project	drops
below	my	threshold	for	even	a	second,	I	will	ditch	it	and	go	onto	something	else.	Instant
gratification	is	best.

The	first	hurdle	is	install.	Don't	think	that's	much	of	a	problem?	Go	to	your	download	folder
now	and	have	a	look	around.	Full	of	tar	and	zip	files	right?	What	percentage	of	those	have
you	unpacked?	How	many	have	you	installed?	If	you	are	like	me,	only	a	third	are	doing	little
more	than	acting	as	hard	drive	filler.

I	may	want	doorstep	convenience,	but	I	don't	want	you	entering	my	house	uninvited.	Before
typing	install	I	would	like	to	know	exactly	where	you	are	putting	stuff.	It's	my	computer	and	I
like	to	keep	it	tidy	when	I	can.	I	also	want	to	be	able	to	remove	your	program	the	instant	I	am
disenchanted	with	it.	If	I	suspect	that's	impossible	I	won't	install	it	in	the	first	place.	My
machine	is	stable	right	now	and	I	want	to	keep	it	that	way.

If	your	program	is	GUI	based	then	I	want	to	do	something	simple	and	see	a	result.	Wizards
don't	help,	because	they	do	stuff	that	I	don't	understand.	Chances	are	I	want	to	read	a	file,	or
write	one.	I	don't	want	to	create	projects,	import	directories,	or	tell	you	my	email	address.	If
all	is	working,	on	to	the	tutorial.

If	your	software	is	a	library,	then	I	carry	on	reading	your	web	page	looking	for	a	quick	start
guide.	I	want	the	equivalent	of	"Hello	world"	in	a	five-line	no-brainer	with	exactly	the	output
described	by	your	website.	No	big	XML	files	or	templates	to	fill	out,	just	a	single	script.
Remember,	I	have	also	downloaded	your	rival's	framework.	You	know,	the	one	who	always
claims	to	be	so	much	better	than	yours	in	the	forums?	If	all	is	working,	onto	the	tutorial.

There	is	a	tutorial	isn't	there?	One	that	talks	to	me	in	language	I	can	understand?

97	Things	Every	Programmer	Should	Know

77Install	Me

And	if	the	tutorial	mentions	my	problem,	I'll	cheer	up.	Now	I'm	reading	about	the	things	I	can
do	it	starts	to	get	interesting,	fun	even.	I'll	lean	back	and	sip	my	tea	—	did	I	mention	I	was
from	the	UK?	—	and	I'll	play	with	your	examples	and	learn	to	use	your	creation.	If	it	solves
my	problem,	I'll	send	you	a	thank-you	email.	I'll	send	you	bug	reports	when	it	crashes,	and
suggestions	for	features	too.	I'll	even	tell	all	my	friends	how	your	software	is	the	best,	even
though	I	never	did	try	your	rival's.	And	all	because	you	took	such	care	over	my	first	tentative
steps.	How	could	I	ever	have	doubted	you?

By	Marcus	Baker

97	Things	Every	Programmer	Should	Know

78Install	Me

http://programmer.97things.oreilly.com/wiki/index.php/Marcus_Baker

Inter-Process	Communication	Affects
Application	Response	Time
Response	time	is	critical	to	software	usability.	Few	things	are	as	frustrating	as	waiting	for
some	software	system	to	respond,	especially	when	our	interaction	with	the	software	involves
repeated	cycles	of	stimulus	and	response.	We	feel	as	if	the	software	is	wasting	our	time	and
affecting	our	productivity.	However,	the	causes	of	poor	response	time	are	less	well
appreciated,	especially	in	modern	applications.	Much	performance	management	literature
still	focuses	on	data	structures	and	algorithms,	issues	that	can	make	a	difference	in	some
cases	but	are	far	less	likely	to	dominate	performance	in	modern	multi-tier	enterprise
applications.

When	performance	is	a	problem	in	such	applications,	my	experience	has	been	that
examining	data	structures	and	algorithms	isn't	the	right	place	to	look	for	improvements.
Response	time	depends	most	strongly	on	the	number	of	remote	inter-process
communications	(IPCs)	conducted	in	response	to	a	stimulus.	While	there	can	be	other	local
bottlenecks,	the	number	of	remote	inter-process	communications	usually	dominates.	Each
remote	inter-process	communication	contributes	some	non-negligible	latency	to	the	overall
response	time,	and	these	individual	contributions	add	up,	especially	when	they	are	incurred
in	sequence.

A	prime	example	is	ripple	loading	in	an	application	using	object–relational	mapping.	Ripple
loading	describes	the	sequential	execution	of	many	database	calls	to	select	the	data	needed
for	building	a	graph	of	objects	(see	Lazy	Load	in	Martin	Fowler's	Patterns	of	Enterprise
Application	Architecture).	When	the	database	client	is	a	middle-tier	application	server
rendering	a	web	page,	these	database	calls	are	usually	executed	sequentially	in	a	single
thread.	Their	individual	latencies	accumulate,	contributing	to	the	overall	response	time.	Even
if	each	database	call	takes	only	10ms,	a	page	requiring	1000	calls	(which	is	not	uncommon)
will	exhibit	at	least	a	10-second	response	time.	Other	examples	include	web-service
invocation,	HTTP	requests	from	a	web	browser,	distributed	object	invocation,	request–reply
messaging,	and	data-grid	interaction	over	custom	network	protocols.	The	more	remote	IPCs
needed	to	respond	to	a	stimulus,	the	greater	the	response	time	will	be.

There	are	a	few	relatively	obvious	and	well-known	strategies	for	reducing	the	number	of
remote	inter-process	communications	per	stimulus.	One	strategy	is	to	apply	the	principle	of
parsimony,	optimizing	the	interface	between	processes	so	that	exactly	the	right	data	for	the
purpose	at	hand	is	exchanged	with	the	minimum	amount	of	interaction.	Another	strategy	is

97	Things	Every	Programmer	Should	Know

79Inter-Process	Communication	Affects	Application	Response	Time

http://martinfowler.com/eaaCatalog/lazyLoad.html

to	parallelize	the	inter-process	communications	where	possible,	so	that	the	overall	response
time	becomes	driven	mainly	by	the	longest-latency	IPC.	A	third	strategy	is	to	cache	the
results	of	previous	IPCs,	so	that	future	IPCs	may	be	avoided	by	hitting	local	cache	instead.

When	you're	designing	an	application,	be	mindful	of	the	number	of	inter-process
communications	in	response	to	each	stimulus.	When	analyzing	applications	that	suffer	from
poor	performance,	I	have	often	found	IPC-to-stimulus	ratios	of	thousands-to-one.	Reducing
this	ratio,	whether	by	caching	or	parallelizing	or	some	other	technique,	will	pay	off	much
more	than	changing	data	structure	choice	or	tweaking	a	sorting	algorithm.

By	Randy	Stafford

97	Things	Every	Programmer	Should	Know

80Inter-Process	Communication	Affects	Application	Response	Time

http://programmer.97things.oreilly.com/wiki/index.php/Randy_Stafford

Keep	the	Build	Clean
Have	you	ever	looked	at	a	list	of	compiler	warnings	the	length	of	an	essay	on	bad	coding
and	thought	to	yourself:	"You	know,	I	really	should	do	something	about	that...	but	I	don't
have	time	just	now?"	On	the	other	hand,	have	you	ever	looked	at	a	lone	warning	that	just
appeared	in	a	compilation	and	just	fixed	it?

When	I	start	a	new	project	from	scratch,	there	are	no	warnings,	no	clutter,	no	problems.	But
as	the	code	base	grows,	if	I	don't	pay	attention,	the	clutter,	the	cruft,	the	warnings,	and	the
problems	can	start	piling	up.	When	there's	a	lot	of	noise,	it's	much	harder	to	find	the	warning
that	I	really	want	to	read	among	the	hundreds	of	warnings	I	don't	care	about.

To	make	warnings	useful	again,	I	try	to	use	a	zero-tolerance	policy	for	warnings	from	the
build.	Even	if	the	warning	isn't	important,	I	deal	with	it.	If	not	critical,	but	still	relevant,	I	fix	it.	If
the	compiler	warns	about	a	potential	null-pointer	exception,	I	fix	the	cause	—	even	if	I	"know"
the	problem	will	never	show	up	in	production.	If	the	embedded	documentation	(Javadoc	or
similar)	refers	to	parameters	that	have	been	removed	or	renamed,	I	clean	up	the
documentation.

If	it's	something	I	really	don't	care	about	and	that	really	doesn't	matter,	I	ask	the	team	if	we
can	change	our	warning	policy.	For	example,	I	find	that	documenting	the	parameters	and
return	value	of	a	method	in	many	cases	doesn't	add	any	value,	so	it	shouldn't	be	a	warning	if
they	are	missing.	Or,	upgrading	to	a	new	version	of	the	programming	language	may	make
code	that	was	previously	OK	now	emit	warnings.	For	example,	when	Java	5	introduced
generics,	all	the	old	code	that	didn't	specify	the	generic	type	parameter	would	give	a
warning.	This	is	a	sort	of	warning	I	don't	want	to	be	nagged	about	(at	least,	not	yet).	Having
a	set	of	warnings	that	are	out	of	step	with	reality	does	not	serve	anyone.

By	making	sure	that	the	build	is	always	clean,	I	will	not	have	to	decide	that	a	warning	is
irrelevant	every	time	I	encounter	it.	Ignoring	things	is	mental	work,	and	I	need	to	get	rid	of	all
the	unnecessary	mental	work	I	can.	Having	a	clean	build	also	makes	it	easier	for	someone
else	to	take	over	my	work.	If	I	leave	the	warnings,	someone	else	will	have	to	wade	through
what	is	relevant	and	what	is	not.	Or	more	likely,	just	ignore	all	the	warnings,	including	the
significant	ones.

Warnings	from	your	build	are	useful.	You	just	need	to	get	rid	of	the	noise	to	start	noticing
them.	Don't	wait	for	a	big	clean-up.	When	something	appears	that	you	don't	want	to	see,
deal	with	it	right	away.	Either	fix	the	source	of	the	warning,	suppress	this	warning	or	fix	the

97	Things	Every	Programmer	Should	Know

81Keep	the	Build	Clean

warning	policies	of	your	tool.	Keeping	the	build	clean	is	not	just	about	keeping	it	free	of
compilation	errors	or	test	failures:	Warnings	are	also	an	important	and	critical	part	of	code
hygiene.

By	Johannes	Brodwall

97	Things	Every	Programmer	Should	Know

82Keep	the	Build	Clean

http://programmer.97things.oreilly.com/wiki/index.php/Johannes_Brodwall

Know	How	to	Use	Command-line	Tools
Today,	many	software	development	tools	are	packaged	in	the	form	of	Integrated
Development	Environments	(IDEs).	Microsoft's	Visual	Studio	and	the	open-source	Eclipse
are	two	popular	examples,	though	there	are	many	others.	There	is	a	lot	to	like	about	IDEs.
Not	only	are	they	easy	to	use,	they	also	relieve	the	programmer	of	thinking	about	a	lot	of
little	details	involving	the	build	process.

Ease	of	use,	however,	has	its	downside.	Typically,	when	a	tool	is	easy	to	use,	it's	because
the	tool	is	making	decisions	for	you	and	doing	a	lot	of	things	automatically,	behind	the
scenes.	Thus,	if	an	IDE	is	the	only	programming	environment	that	you	ever	use,	you	may
never	fully	understand	what	your	tools	are	actually	doing.	You	click	a	button,	some	magic
occurs,	and	an	executable	file	appears	in	the	project	folder.

By	working	with	command-line	build	tools,	you	will	learn	a	lot	more	about	what	the	tools	are
doing	when	your	project	is	being	built.	Writing	your	own	make	files	will	help	you	to
understand	all	of	the	steps	(compiling,	assembling,	linking,	etc.)	that	go	into	building	an
executable	file.	Experimenting	with	the	many	command-line	options	for	these	tools	is	a
valuable	educational	experience	as	well.	To	get	started	with	using	command-line	build	tools,
you	can	use	open-source	command-line	tools	such	as	GCC	or	you	can	use	the	ones
supplied	with	your	proprietary	IDE.	After	all,	a	well-designed	IDE	is	just	a	graphical	front-end
to	a	set	of	command-line	tools.

In	addition	to	improving	your	understanding	of	the	build	process,	there	are	some	tasks	that
can	be	performed	more	easily	or	more	efficiently	with	command-line	tools	than	with	an	IDE.
For	example,	the	search	and	replace	capabilities	provided	by	the	grep	and	sed	utilities	are
often	more	powerful	than	those	found	in	IDEs.	Command-line	tools	inherently	support
scripting,	which	allows	for	the	automation	of	tasks	such	as	producing	scheduled	daily	builds,
creating	multiple	versions	of	a	project,	and	running	test	suites.	In	an	IDE,	this	kind	of
automation	may	be	more	difficult	(if	not	impossible)	to	do	as	build	options	are	usually
specified	using	GUI	dialog	boxes	and	the	build	process	is	invoked	with	a	mouse	click.	If	you
never	step	outside	of	the	IDE,	you	may	not	even	realize	that	these	kinds	of	automated	tasks
are	possible.

But	wait.	Doesn't	the	IDE	exist	to	make	development	easier,	and	to	improve	the
programmer's	productivity?	Well,	yes.	The	suggestion	presented	here	is	not	that	you	should
stop	using	IDEs.	The	suggestion	is	that	you	should	"look	under	the	hood"	and	understand
what	your	IDE	is	doing	for	you.	The	best	way	to	do	that	is	to	learn	to	use	command-line
tools.	Then,	when	you	go	back	to	using	your	IDE,	you'll	have	a	much	better	understanding	of

97	Things	Every	Programmer	Should	Know

83Know	How	to	Use	Command-line	Tools

what	it	is	doing	for	you	and	how	you	can	control	the	build	process.	On	the	other	hand,	once
you	master	the	use	of	command-line	tools	and	experience	the	power	and	flexibility	that	they
offer,	you	may	find	that	you	prefer	the	command	line	over	the	IDE.

By	Carroll	Robinson

97	Things	Every	Programmer	Should	Know

84Know	How	to	Use	Command-line	Tools

http://programmer.97things.oreilly.com/wiki/index.php/Carroll_Robinson

Know	Well	More	than	Two	Programming
Languages
The	psychology	of	programming	people	have	known	for	a	long	time	now	that	programming
expertise	is	related	directly	to	the	number	of	different	programming	paradigms	that	a
programmer	is	comfortable	with.	That	is	not	just	know	about,	or	know	a	bit,	but	genuinely
can	program	with.

Every	programmer	starts	with	one	programming	language.	That	language	has	a	dominating
effect	on	the	way	that	programmer	thinks	about	software.	No	matter	how	many	years	of
experience	the	programmer	gets	using	that	language,	if	they	stay	with	that	language,	they
will	only	know	that	language.	A	one	language	programmer	is	constrained	in	their	thinking	by
that	language.

A	programmer	who	learns	a	second	language	will	be	challenged,	especially	if	that	language
has	a	different	computational	model	than	the	first.	C,	Pascal,	Fortran,	all	have	the	same
fundamental	computational	model.	Switching	from	Fortran	to	C	introduces	a	few,	but	not
many,	challenges.	Moving	from	C	or	Fortran	to	C++	or	Ada	introduces	fundamental
challenges	in	the	way	programs	behave.	Moving	from	C++	to	Haskell	is	a	significant	change
and	hence	a	significant	challenge.	Moving	from	C	to	Prolog	is	a	very	definite	challenge.

We	can	enumerate	a	number	of	paradigms	of	computation:	procedural,	object-oriented,
functional,	logic,	dataflow,	etc.	Moving	between	these	paradigms	creates	the	greatest
challenges.

Why	are	these	challenges	good?	It	is	to	do	with	the	way	we	think	about	the	implementation
of	algorithms	and	the	idioms	and	patterns	of	implementation	that	apply.	In	particular,	cross-
fertilization	is	at	the	core	of	expertise.	Idioms	for	problem	solutions	that	apply	in	one
language	may	not	be	possible	in	another	language.	Trying	to	port	the	idioms	from	one
language	to	another	teaches	us	about	both	languages	and	about	the	problem	being	solved.

Cross-fertilization	in	the	use	of	programming	languages	has	huge	effects.	Perhaps	the	most
obvious	is	the	increased	and	increasing	use	of	declarative	modes	of	expression	in	systems
implemented	in	imperative	languages.	Anyone	versed	in	functional	programming	can	easily
apply	a	declarative	approach	even	when	using	a	language	such	as	C.	Using	declarative
approaches	generally	leads	to	shorter	and	more	comprehensible	programs.	C++,	for
instance,	certainly	takes	this	on	board	with	its	wholehearted	support	for	generic
programming,	which	almost	necessitates	a	declarative	mode	of	expression.

97	Things	Every	Programmer	Should	Know

85Know	Well	More	than	Two	Programming	Languages

The	consequence	of	all	this	is	that	it	behooves	every	programmer	to	be	well	skilled	in
programming	in	at	least	two	different	paradigms,	and	ideally	at	least	the	five	mentioned
above.	Programmers	should	always	be	interested	in	learning	new	languages,	preferably
from	an	unfamiliar	paradigm.	Even	if	the	day	job	always	uses	the	same	programming
language,	the	increased	sophistication	of	use	of	that	language	when	a	person	can	cross-
fertilize	from	other	paradigms	should	not	be	underestimated.	Employers	should	take	this	on
board	and	allow	in	their	training	budget	for	employees	to	learn	languages	that	are	not
currently	being	used	as	a	way	of	increasing	the	sophistication	of	use	of	the	languages	that
are	used.

Although	it's	a	start,	a	one-week	training	course	is	not	sufficient	to	learn	a	new	language:	It
generally	takes	a	good	few	months	of	use,	even	if	part-time,	to	gain	a	proper	working
knowledge	of	a	language.	It	is	the	idioms	of	use,	not	just	the	syntax	and	computational
model,	that	are	the	important	factors.

By	Russel	Winder

97	Things	Every	Programmer	Should	Know

86Know	Well	More	than	Two	Programming	Languages

http://programmer.97things.oreilly.com/wiki/index.php/Russel_Winder

Know	Your	IDE
In	the	1980s	our	programming	environments	were	typically	nothing	better	than	glorified	text
editors...	if	we	were	lucky.	Syntax	highlighting,	which	we	take	for	granted	nowadays,	was	a
luxury	that	certainly	was	not	available	to	everyone.	Pretty	printers	to	format	our	code	nicely
were	usually	external	tools	that	had	to	be	run	to	correct	our	spacing.	Debuggers	were	also
separate	programs	run	to	step	through	our	code,	but	with	a	lot	of	cryptic	keystrokes.

During	the	1990s	companies	began	to	recognize	the	potential	income	that	they	could	derive
from	equipping	programmers	with	better	and	more	useful	tools.	The	Integrated	Development
Environment	(IDE)	combined	the	previous	editing	features	with	a	compiler,	debugger,	pretty
printer,	and	other	tools.	During	that	time,	menus	and	the	mouse	also	became	popular,	which
meant	that	developers	no	longer	needed	to	learn	cryptic	key	combinations	to	use	their
editors.	They	could	simply	select	their	command	from	the	menu.

In	the	21st	century	IDEs	have	become	so	common	place	that	they	are	given	away	for	free	by
companies	wishing	to	gain	market	share	in	other	areas.	The	modern	IDE	is	equipped	with	an
amazing	array	of	features.	My	favorite	is	automated	refactoring,	particularly	Extract	Method,
where	I	can	select	and	convert	a	chunk	of	code	into	a	method.	The	refactoring	tool	will	pick
up	all	the	parameters	that	need	to	be	passed	into	the	method,	which	makes	it	extremely
easy	to	modify	code.	My	IDE	will	even	detect	other	chunks	of	code	that	could	also	be
replaced	by	this	method	and	ask	me	whether	I	would	like	to	replace	them	too.

Another	amazing	feature	of	modern	IDEs	is	the	ability	to	enforce	style	rules	within	a
company.	For	example,	in	Java,	some	programmers	have	started	making	all	parameters
final	(which,	in	my	opinion,	is	a	waste	of	time).	However,	since	they	have	such	a	style	rule,
all	I	would	need	to	do	to	follow	it	is	set	it	up	in	my	IDE:	I	would	get	a	warning	for	any	non-
final	parameter.	Style	rules	can	also	be	used	to	find	probable	bugs,	such	as	comparing
autoboxed	objects	for	reference	equality,	e.g.,	using		==		on	primitive	values	that	are
autoboxed	into	reference	objects.

Unfortunately	modern	IDEs	do	not	require	us	to	invest	effort	in	order	to	learn	how	to	use
them.	When	I	first	programmed	C	on	Unix,	I	had	to	spend	quite	a	bit	of	time	learning	how	the
vi	editor	worked,	due	to	its	steep	learning	curve.	This	time	spent	up-front	paid	off
handsomely	over	the	years.	I	am	even	typing	the	draft	of	this	article	with	vi.	Modern	IDEs
have	a	very	gradual	learning	curve,	which	can	have	the	effect	that	we	never	progress
beyond	the	most	basic	usage	of	the	tool.

97	Things	Every	Programmer	Should	Know

87Know	Your	IDE

My	first	step	in	learning	an	IDE	is	to	memorize	the	keyboard	shortcuts.	Since	my	fingers	are
on	the	keyboard	when	I'm	typing	my	code,	pressing	Ctrl+Shift+I	to	inline	a	variable	saves
breaking	the	flow,	whereas	switching	to	navigate	a	menu	with	my	mouse	interrupts	the	flow.
These	interruptions	lead	to	unnecessary	context	switches,	making	me	much	less	productive
if	I	try	to	do	everything	the	lazy	way.	The	same	rule	also	applies	to	keyboard	skills:	Learn	to
touch	type,	you	won't	regret	the	time	invested	up-front.

Lastly,	as	programmers	we	have	time	proven	Unix	streaming	tools	that	can	help	us
manipulate	our	code.	For	example,	if	during	a	code	review,	I	noticed	that	the	programmers
had	named	lots	of	classes	the	same,	I	could	find	these	very	easily	using	the	tools	find,	sed,
sort,	uniq,	and	grep,	like	this:

find	.	-name	"*.java"	|	sed	's/.*\///'	|	sort	|	uniq	-c	|	grep	-v	"^	*1	"	|	sort	-r

We	expect	a	plumber	coming	to	our	house	to	be	able	to	use	his	blow	torch.	Let's	spend	a	bit
of	time	to	study	how	to	become	more	effective	with	our	IDE.

by	Heinz	Kabutz

97	Things	Every	Programmer	Should	Know

88Know	Your	IDE

http://programmer.97things.oreilly.com/wiki/index.php/Heinz_Kabutz

Know	Your	Limits
"Man's	got	to	know	his	limitations."	—	Dirty	Harry

Your	resources	are	limited.	You	only	have	so	much	time	and	money	to	do	your	work,
including	the	time	and	money	needed	to	keep	your	knowledge,	skills,	and	tools	up-to-date.
You	can	only	work	so	hard,	so	fast,	so	smart,	and	so	long.	Your	tools	are	only	so	powerful.
Your	target	machines	are	only	so	powerful.	So	you	have	to	respect	the	limits	of	your
resources.

How	to	respect	those	limits?	Know	yourself,	know	your	people,	know	your	budgets,	and
know	your	stuff.	Especially,	as	a	software	engineer,	know	the	space	and	time	complexity	of
your	data	structures	and	algorithms,	and	the	architecture	and	performance	characteristics	of
your	systems.	Your	job	is	to	create	an	optimal	marriage	of	software	and	systems.

Space	and	time	complexity	are	given	as	the	function	O(f(n))	which	for	n	equal	the	size	of	the
input	is	the	asymptotic	space	or	time	required	as	n	grows	to	infinity.	Important	complexity

classes	for	f(n)	include	ln(n),	n,	n	ln(n),	ne,	and	en.	As	graphing	these	functions	clearly
shows,	as	n	gets	bigger	O(ln(n))	is	ever	so	much	smaller	than	O(n)	and	O(n	ln(n)),	which	are

ever	so	much	smaller	than	O(ne)	and	O(en).	As	Sean	Parent	puts	it,	for	achievable	n	all
complexity	classes	amount	to	near-constant,	near-linear,	or	near-infinite.

97	Things	Every	Programmer	Should	Know

89Know	Your	Limits

access	time capacity

register <	1	ns 64b

cache	line 64B

L1	cache 1	ns 64	KB

L2	cache 4	ns 8	MB

RAM 20	ns 32	GB

disk 10	ms 10	TB

LAN 20	ms >	1	PB

internet 100	ms >	1	ZB

Complexity	analysis	is	in	terms	of	an	abstract	machine,	but	software	runs	on	real	machines.
Modern	computer	systems	are	organized	as	hierarchies	of	physical	and	virtual	machines,
including	language	runtimes,	operating	systems,	CPUs,	cache	memory,	random-access
memory,	disk	drives,	and	networks.	The	first	table	shows	the	limits	on	random	access	time
and	storage	capacity	for	a	typical	networked	server.

97	Things	Every	Programmer	Should	Know

90Know	Your	Limits

Note	that	capacity	and	speed	vary	by	several	orders	of	magnitude.	Caching	and	lookahead
are	used	heavily	at	every	level	of	our	systems	to	hide	this	variation,	but	they	only	work	when
access	is	predictable.	When	cache	misses	are	frequent	the	system	will	be	thrashing.	For
example,	to	randomly	inspect	every	byte	on	a	hard	drive	could	take	32	years.	Even	to
randomly	inspect	every	byte	in	RAM	could	take	11	minutes.	Random	access	is	not
predictable.	What	is?	That	depends	on	the	system,	but	re-accessing	recently	used	items	and
accessing	items	sequentially	are	usually	a	win.

Algorithms	and	data	structures	vary	in	how	effectively	they	use	caches.	For	instance:

Linear	search	makes	good	use	of	lookahead,	but	requires	O(n)	comparisons.
Binary	search	of	a	sorted	array	requires	only	O(log(n))	comparisons.
Search	of	a	van	Emde	Boas	tree	is	O(log(n))	and	cache-oblivious.

Elements Search	time	(ns)

linear binary vEB

8 50 90 40

64 180 150 70

512 1200 230 100

4096 17000 320 160

How	to	choose?	In	the	last	analysis,	by	measuring.	The	second	table	shows	the	time
required	to	search	arrays	of	64-bit	integers	via	these	three	methods.	On	my	computer:

Linear	search	is	competitive	for	small	arrays,	but	loses	exponentially	for	larger	arrays.
van	Emde	Boas	wins	hands	down,	thanks	to	its	predictable	access	pattern.

"You	pays	your	money	and	you	takes	your	choice."	—	Punch

By	Greg	Colvin

97	Things	Every	Programmer	Should	Know

91Know	Your	Limits

http://www.nytimes.com/1988/02/28/magazine/on-language-you-pays-yer-money.html?pagewanted=all
http://programmer.97things.oreilly.com/wiki/index.php/Greg_Colvin

Know	Your	Next	Commit
I	tapped	three	programmers	on	their	shoulders	and	asked	what	they	were	doing.	"I	am
refactoring	these	methods,"	the	first	answered.	"I	am	adding	some	parameters	to	this	web
action,"	the	second	answered.	The	third	answered,	"I	am	working	on	this	user	story."

It	might	seem	that	the	first	two	were	engrossed	in	the	details	of	their	work	while	only	the	third
could	see	the	bigger	picture,	and	that	the	latter	had	the	better	focus.	However,	when	I	asked
when	and	what	they	would	commit,	the	picture	changed	dramatically.	The	first	two	where
pretty	clear	over	what	files	would	be	involved	and	would	be	finished	within	an	hour	or	so.
The	third	programmer	answered,	"Oh,	I	guess	I	will	be	ready	within	a	few	days.	I	will
probably	add	a	few	classes	and	might	change	those	services	in	some	way."

The	first	two	did	not	lack	a	vision	of	the	overall	goal.	They	had	selected	tasks	they	thought
led	in	a	productive	direction,	and	could	be	finished	within	a	couple	of	hours.	Once	they	had
finished	those	tasks,	they	would	select	a	new	feature	or	refactoring	to	work	on.	All	the	code
written	was	thus	done	with	a	clear	purpose	and	a	limited,	achievable	goal	in	mind.

The	third	programmer	had	not	been	able	to	decompose	the	problem	and	was	working	on	all
aspects	at	once.	He	had	no	idea	of	what	it	would	take,	basically	doing	speculative
programming,	hoping	to	arrive	at	some	point	where	he	would	be	able	to	commit.	Most
probably	the	code	written	at	the	start	of	this	long	session	was	poorly	matched	for	the	solution
that	came	out	in	the	end.

What	would	the	first	two	programmers	do	if	their	tasks	took	more	than	two	hours?	After
realizing	they	had	taken	on	too	much,	they	would	most	likely	throw	away	their	changes,
define	smaller	tasks,	and	start	over.	To	keep	working	would	have	lacked	focus	and	led	to
speculative	code	entering	the	repository.	Instead,	changes	would	be	thrown	away,	but	the
insights	kept.

The	third	programmer	might	keep	on	guessing	and	desperately	try	to	patch	together	his
changes	into	something	that	could	be	committed.	After	all,	you	cannot	throw	away	code
changes	you	have	done	—	that	would	be	wasted	work,	wouldn't	it?	Unfortunately,	not
throwing	the	code	away	leads	to	slightly	odd	code	that	lacks	a	clear	purpose	entering	the
repository.

At	some	point	even	the	commit-focused	programmers	might	fail	to	find	something	useful
they	thought	could	be	finished	in	two	hours.	Then,	they	would	go	directly	into	speculative
mode,	playing	around	with	the	code	and,	of	course,	throwing	away	the	changes	whenever

97	Things	Every	Programmer	Should	Know

92Know	Your	Next	Commit

some	insight	led	them	back	on	track.	Even	these	seemingly	unstructured	hacking	sessions
have	purpose:	to	learn	about	the	code	to	be	able	to	define	a	task	that	would	constitute	a
productive	step.

Know	your	next	commit.	If	you	cannot	finish,	throw	away	your	changes,	then	define	a	new
task	you	believe	in	with	the	insights	you	have	gained.	Do	speculative	experimentation
whenever	needed,	but	do	not	let	yourself	slip	into	speculative	mode	without	noticing.	Do	not
commit	guesswork	into	your	repository.

By	Dan	Bergh	Johnsson

97	Things	Every	Programmer	Should	Know

93Know	Your	Next	Commit

http://programmer.97things.oreilly.com/wiki/index.php/Dan_Bergh_Johnsson

Large	Interconnected	Data	Belongs	to	a
Database
If	your	application	is	going	to	handle	a	large,	persistent,	interconnected	set	of	data	elements,
don't	hesitate	to	store	it	in	a	relational	database.	In	the	past	RDBMSs	used	to	be	expensive,
scarce,	complex,	and	unwieldy	beasts.	This	is	no	longer	the	case.	Nowadays	RDBMS
systems	are	easy	to	find	—	it	is	likely	that	the	system	you're	using	has	already	one	or	two
installed.	Some	very	capable	RDBMSs,	like	MySQL	and	PostgreSQL,	are	available	as	open
source	software,	so	cost	of	purchase	is	no	longer	an	issue.	Even	better,	so-called	embedded
database	systems	can	be	linked	as	libraries	directly	into	your	application,	requiring	almost
no	setup	or	management	—	two	notable	open	source	ones	are	SQLite	and	HSQLDB.	These
systems	are	extremely	efficient.

If	your	application's	data	is	larger	than	the	system's	RAM,	an	indexed	RDBMS	table	will
perform	orders	of	magnitude	faster	than	your	library's	map	collection	type,	which	will	thrash
virtual	memory	pages.	Modern	database	offerings	can	easily	grow	with	your	needs.	With
proper	care,	you	can	scale	up	an	embedded	database	to	a	larger	database	system	when
required.	Later	on	you	can	switch	from	a	free,	open	source	offering	to	a	better-supported	or
more	powerful	proprietary	system.

Once	you	get	the	hang	of	SQL,	writing	database-centric	applications	is	a	joy.	After	you've
stored	your	properly	normalized	data	in	the	database	it's	easy	to	extract	facts	efficiently	with
a	readable	SQL	query;	there's	no	need	to	write	any	complex	code.	Similarly,	a	single	SQL
command	can	perform	complex	data	changes.	For	one-off	modifications,	say	a	change	in
the	way	you	organize	your	persistent	data,	you	don't	even	need	to	write	code:	Just	fire	up
the	database's	direct	SQL	interface.	This	same	interface	also	allows	you	to	experiment	with
queries,	sidestepping	a	regular	programming	language's	compile–edit	cycle.

Another	advantage	of	basing	your	code	around	an	RDBMS	involves	the	handling	of
relationships	between	your	data	elements.	You	can	describe	consistency	constraints	on	your
data	in	a	declarative	way,	avoiding	the	risk	of	the	dangling	pointers	you	get	if	you	forget	to
update	your	data	in	an	edge	case.	For	example,	you	can	specify	that	if	a	user	is	deleted	then
the	messages	sent	by	that	user	should	be	removed	as	well.

You	can	also	create	efficient	links	between	the	entities	stored	in	the	database	anytime	you
want,	simply	by	creating	an	index.	There	is	no	need	to	perform	expensive	and	extensive
refactorings	of	class	fields.	In	addition,	coding	around	a	database	allows	multiple
applications	to	access	your	data	in	a	safe	way.	This	makes	it	easy	to	upgrade	your
application	for	concurrent	use	and	also	to	code	each	part	of	your	application	using	the	most

97	Things	Every	Programmer	Should	Know

94Large	Interconnected	Data	Belongs	to	a	Database

appropriate	language	and	platform.	For	instance,	you	could	write	the	XML	back-end	of	a
web-based	application	in	Java,	some	auditing	scripts	in	Ruby,	and	a	visualization	interface	in
Processing.

Finally,	keep	in	mind	that	the	RDBMS	will	sweat	hard	to	optimize	your	SQL	commands,
allowing	you	to	concentrate	on	your	application's	functionality	rather	than	on	algorithmic
tuning.	Advanced	database	systems	will	even	take	advantage	of	multicore	processors
behind	your	back.	And,	as	technology	improves,	so	will	your	application's	performance.

By	Diomidis	Spinellis

97	Things	Every	Programmer	Should	Know

95Large	Interconnected	Data	Belongs	to	a	Database

http://www.processing.org/
http://programmer.97things.oreilly.com/wiki/index.php/Diomidis_Spinellis

Learn	Foreign	Languages
Programmers	need	to	communicate.	A	lot.

There	are	periods	in	a	programmer's	life	when	most	communication	seems	to	be	with	the
computer.	More	precisely,	with	the	programs	running	on	that	computer.	This	communication
is	about	expressing	ideas	in	a	machine-readable	way.	It	remains	an	exhilarating	prospect:
Programs	are	ideas	turned	into	reality,	with	virtually	no	physical	substance	involved.

Programmers	need	to	be	fluent	in	the	language	of	the	machine,	whether	real	or	virtual,	and
in	the	abstractions	that	can	be	related	to	that	language	via	development	tools.	It	is	important
to	learn	many	different	abstractions,	otherwise	some	ideas	become	incredibly	hard	to
express.	Good	programmers	need	to	be	able	to	stand	outside	their	daily	routine,	to	be	aware
of	other	languages	that	are	expressive	for	other	purposes.	The	time	always	comes	when	this
pays	off.

Beyond	communication	with	machines,	programmers	need	to	communicate	with	their	peers.
Today's	large	projects	are	more	social	endeavors	than	simply	an	application	of	the	art	of
programming.	It	is	important	to	understand	and	express	more	than	the	machine-readable
abstractions	can.	Most	of	the	best	programmers	I	know	are	also	very	fluent	in	their	mother's
tongue,	and	typically	in	other	languages	as	well.	This	is	not	just	about	communication	with
others:	Speaking	a	language	well	also	leads	to	a	clarity	of	thought	that	is	indispensable
when	abstracting	a	problem.	And	this	is	what	programming	is	also	about.

Beyond	communication	with	machine,	self,	and	peers,	a	project	has	many	stakeholders,
most	with	a	different	or	no	technical	background.	They	live	in	testing,	quality	and
deployment,	in	marketing	and	sales,	they	are	end	users	in	some	office	(or	store	or	home).
You	need	to	understand	them	and	their	concerns.	This	is	almost	impossible	if	you	cannot
speak	their	language	—	the	language	of	their	world,	their	domain.	While	you	might	think	a
conversation	with	them	went	well,	they	probably	don't.

If	you	talk	to	accountants,	you	need	a	basic	knowledge	of	cost-center	accounting,	of	tied
capital,	capital	employed,	et	al.	If	you	talk	to	marketing	or	lawyers,	some	of	their	jargon	and
language	(and	thus,	their	minds)	should	be	familiar	to	you.	All	these	domain-specific
languages	need	to	be	mastered	by	someone	in	the	project	—	ideally	the	programmers.
Programmers	are	ultimately	responsible	for	bringing	the	ideas	to	life	via	a	computer.

And,	of	course,	life	is	more	than	software	projects.	As	noted	by	Charlemagne,	to	know
another	language	is	to	have	another	soul.	For	your	contacts	beyond	the	software	industry,
you	will	appreciate	knowing	foreign	languages.	To	know	when	to	listen	rather	than	talk.	To
know	that	most	language	is	without	words.

97	Things	Every	Programmer	Should	Know

96Learn	Foreign	Languages

http://en.wikipedia.org/wiki/Charlemagne

Whereof	one	cannot	speak,	thereof	one	must	be	silent.	-	Ludwig	Wittgenstein

By	Klaus	Marquardt

97	Things	Every	Programmer	Should	Know

97Learn	Foreign	Languages

http://programmer.97things.oreilly.com/wiki/index.php/Klaus_Marquardt

Learn	to	Estimate
As	a	programmer	you	need	to	be	able	to	provide	estimates	to	your	managers,	colleagues,
and	users	for	the	tasks	you	need	to	perform,	so	that	they	will	have	a	reasonably	accurate
idea	of	the	time,	costs,	technology,	and	other	resources	needed	to	achieve	their	goals.

To	be	able	to	estimate	well	it	is	obviously	important	to	learn	some	estimation	techniques.
First	of	all,	however,	it	is	fundamental	to	learn	what	estimates	are,	and	what	they	should	be
used	for	—	as	strange	as	it	may	seem,	many	developers	and	managers	don't	really	know
this.

The	following	exchange	between	a	project	manager	and	a	programmer	is	not	untypical:

Project	Manager:	Can	you	give	me	an	estimate	of	the	time	necessary	to	develop
feature	xyz?

Programmer:	One	month.

Project	Manager:	That's	far	too	long!	We've	only	got	one	week.

Programmer:	I	need	at	least	three.

Project	Manager:	I	can	give	you	two	at	most.

Programmer:	Deal!

The	programmer,	at	the	end,	comes	up	with	an	"estimate"	that	matches	what	is	acceptable
for	the	manager.	But	since	it	is	seen	to	be	the	programmer's	estimate,	the	manager	will	hold
the	programmer	accountable	to	it.	To	understand	what	is	wrong	with	this	conversation	we
need	three	definitions	—	estimate,	target,	and	commitment:

An	estimate	is	an	approximate	calculation	or	judgement	of	the	value,	number,	quantity,
or	extent	of	something.	This	definition	implies	that	an	estimate	is	a	factual	measure
based	on	hard	data	and	previous	experience	—	hopes	and	wishes	must	be	ignored
when	calculating	it.	The	definition	also	implies	that,	being	approximate,	an	estimate
cannot	be	precise,	e.g.,	a	development	task	cannot	be	estimated	to	last	234.14	days.
A	target	is	a	statement	of	a	desirable	business	objective,	e.g.,	"The	system	must
support	at	least	400	concurrent	users."
A	commitment	is	a	promise	to	deliver	specified	functionality	at	a	certain	level	of	quality
by	a	certain	date	or	event.	One	example	could	be	"The	search	functionality	will	be
available	in	the	next	release	of	the	product."

97	Things	Every	Programmer	Should	Know

98Learn	to	Estimate

Estimates,	targets,	and	commitments	are	independent	from	each	other,	but	targets	and
commitments	should	be	based	on	sound	estimates.	As	Steve	McConnell	notes,	"The
primary	purpose	of	software	estimation	is	not	to	predict	a	project's	outcome;	it	is	to
determine	whether	a	project's	targets	are	realistic	enough	to	allow	the	project	to	be
controlled	to	meet	them."	Thus,	the	purpose	of	estimation	is	to	make	proper	project
management	and	planning	possible,	allowing	the	project	stakeholders	to	make	commitments
based	on	realistic	targets.

What	the	manager	in	the	conversation	above	was	really	asking	the	programmer	was	to
make	a	commitment	based	on	an	unstated	target	that	the	manager	had	in	mind,	not	to
provide	an	estimate.	The	next	time	you	are	asked	to	provide	an	estimate	make	sure
everybody	involved	knows	what	they	are	talking	about,	and	your	projects	will	have	a	better
chance	of	succeeding.	Now	it's	time	to	learn	some	techniques....

By	Giovanni	Asproni

97	Things	Every	Programmer	Should	Know

99Learn	to	Estimate

http://programmer.97things.oreilly.com/wiki/index.php/Giovanni_Asproni

Learn	to	Say	"Hello,	World"
Paul	Lee,	username	leep,	more	commonly	known	as	Hoppy,	had	a	reputation	as	the	local
expert	on	programming	issues.	I	needed	help.	I	walked	across	to	Hoppy's	desk	and	asked,
could	he	take	a	look	at	some	code	for	me?

Sure,	said	Hoppy,	pull	up	a	chair.	I	took	care	not	to	topple	the	empty	cola	cans	stacked	in	a
pyramid	behind	him.

What	code?

In	a	function	in	a	file,	I	said.

So	let's	take	a	look	at	this	function.	Hoppy	moved	aside	a	copy	of	K&R	and	slid	his	keyboard
in	front	of	me.

Where's	the	IDE?	Apparently	Hoppy	had	no	IDE	running,	just	some	editor	which	I	couldn't
operate.	He	grabbed	back	the	keyboard.	A	few	keystrokes	later	and	we	had	the	file	open	—
it	was	quite	a	big	file	—	and	were	looking	at	the	function	—	it	was	quite	a	big	function.	He
paged	down	to	the	conditional	block	I	wanted	to	ask	about.

What	would	this	clause	actually	do	if		x		is	negative?	I	asked.	Surely	it's	wrong.

I'd	been	trying	all	morning	to	find	a	way	to	force		x		to	be	negative,	but	the	big	function	in	the
big	file	was	part	of	a	big	project,	and	the	cycle	of	recompiling	then	rerunning	my	experiments
was	wearing	me	down.	Couldn't	an	expert	like	Hoppy	just	tell	me	the	answer?

Hoppy	admitted	he	wasn't	sure.	To	my	surprise,	he	didn't	reach	for	K&R.	Instead,	he	copied
the	code	block	into	a	new	editor	buffer,	re-indented	it,	wrapped	it	up	in	a	function.	A	short
while	later	he'd	coded	up	a	main	function	that	looped	forever,	prompting	the	user	for	input
values,	passing	them	to	the	function,	printing	out	the	result.	He	saved	the	buffer	as	a	new
file,	tryit.c.	All	of	this	I	could	have	done	for	myself,	though	perhaps	not	as	quickly.	But	his
next	step	was	wonderfully	simple	and,	at	the	time,	quite	foreign	to	my	way	of	working:

$	cc	tryit.c	&&	./a.out

Look!	His	actual	program,	conceived	just	a	few	minutes	earlier,	was	now	up	and	running.	We
tried	a	few	values	and	confirmed	my	suspicions	(so	I'd	been	right	about	something!)	and
then	he	cross-checked	the	relevant	section	of	K&R.	I	thanked	Hoppy	and	left,	again	taking
care	not	to	disturb	his	cola	can	pyramid.

97	Things	Every	Programmer	Should	Know

100Learn	to	Say	"Hello,	World"

Back	at	my	own	desk,	I	closed	down	my	IDE.	I'd	become	so	used	to	working	on	a	big	project
within	a	big	product	I'd	started	to	think	that	was	what	I	should	be	doing.	A	general	purpose
computer	can	do	little	tasks	too.	I	opened	a	text	editor	and	began	typing.

#include	<stdio.h>

int	main()

{

				printf("Hello,	World\n");

				return	0;

}

By	Thomas	Guest

97	Things	Every	Programmer	Should	Know

101Learn	to	Say	"Hello,	World"

http://programmer.97things.oreilly.com/wiki/index.php/Thomas_Guest

Let	Your	Project	Speak	for	Itself
Your	project	probably	has	a	version	control	system	in	place.	Perhaps	it	is	connected	to	a
continuous	integration	server	that	verifies	correctness	by	automated	tests.	That's	great.

You	can	include	tools	for	static	code	analysis	into	your	continuous	integration	server	to
gather	code	metrics.	These	metrics	provide	feedback	about	specific	aspects	of	your	code,
as	well	as	their	evolution	over	time.	When	you	install	code	metrics,	there	will	always	be	a	red
line	that	you	do	not	want	to	cross.	Let's	assume	you	started	with	20%	test	coverage	and
never	want	to	fall	below	15%.	Continuous	integration	helps	you	keep	track	of	all	these
numbers,	but	you	still	have	to	check	regularly.	Imagine	you	could	delegate	this	task	to	the
project	itself	and	rely	on	it	to	report	when	things	get	worse.

You	need	to	give	your	project	a	voice.	This	can	be	done	by	email	or	instant	messaging,
informing	the	developers	about	the	latest	decline	or	improvement	in	numbers.	But	it's	even
more	effective	to	embody	the	project	in	your	office	by	using	an	extreme	feedback	device
(XFD).

The	idea	of	XFDs	is	to	drive	a	physical	device	such	as	a	lamp,	a	portable	fountain,	a	toy
robot,	or	even	an	USB	rocket	launcher,	based	on	the	results	of	the	automatic	analysis.
Whenever	your	limits	are	broken,	the	device	alters	its	state.	In	case	of	a	lamp,	it	will	light	up,
bright	and	obvious.	You	can't	miss	the	message	even	if	you're	hurrying	out	the	door	to	get
home.

Depending	on	the	type	of	extreme	feedback	device,	you	can	hear	the	build	break,	see	the
red	warning	signals	in	your	code,	or	even	smell	your	code	smells.	The	devices	can	be
replicated	at	different	locations	if	you	work	on	a	distributed	team.	You	can	place	a	traffic	light
in	your	project	manager's	office,	indicating	overall	project	health	state.	Your	project	manager
will	appreciate	it.

Let	your	creativity	guide	you	in	choosing	an	appropriate	device.	If	your	culture	is	rather
geeky,	you	might	look	for	ways	to	equip	your	team	mascot	with	radio-controlled	toys.	If	you
want	a	more	professional	look,	invest	in	sleek	designer	lamps.	Search	the	Internet	for	more
inspiration.	Anything	with	a	power	plug	or	a	remote	control	has	the	potential	to	be	used	as
an	extreme	feedback	device.

The	extreme	feedback	device	acts	as	the	voice	box	of	your	project.	The	project	now	resides
physically	with	the	developers,	complaining	or	praising	them	according	to	the	rules	the	team
has	chosen.	You	can	drive	this	personification	further	by	applying	speech	synthesis	software
and	a	pair	of	loudspeakers.	Now	your	project	really	speaks	for	itself.

97	Things	Every	Programmer	Should	Know

102Let	Your	Project	Speak	for	Itself

By	Daniel	Lindner

97	Things	Every	Programmer	Should	Know

103Let	Your	Project	Speak	for	Itself

http://programmer.97things.oreilly.com/wiki/index.php/Daniel_Lindner

The	Linker	Is	not	a	Magical	Program
Depressingly	often	(happened	to	me	again	just	before	I	wrote	this),	the	view	many
programmers	have	of	the	process	of	going	from	source	code	to	a	statically	linked	executable
in	a	compiled	language	is:

1.	 Edit	source	code
2.	 Compile	source	code	into	object	files
3.	 Something	magical	happens
4.	 Run	executable

Step	3	is,	of	course,	the	linking	step.	Why	would	I	say	such	an	outrageous	thing?	I've	been
doing	tech	support	for	decades,	and	I	get	the	following	questions	again	and	again:

1.	 The	linker	says	def	is	defined	more	than	once.
2.	 The	linker	says	abc	is	an	unresolved	symbol.
3.	 Why	is	my	executable	so	large?

Followed	by	"What	do	I	do	now?"	usually	with	the	phrases	"seems	to"	and	"somehow"	mixed
in,	and	an	aura	of	utter	bafflement.	It's	the	"seems	to"	and	"somehow"	that	indicate	that	the
linking	process	is	viewed	as	a	magical	process,	presumably	understandable	only	by	wizards
and	warlocks.	The	process	of	compiling	does	not	elicit	these	kinds	of	phrases,	implying	that
programmers	generally	understand	how	compilers	work,	or	at	least	what	they	do.

A	linker	is	a	very	stupid,	pedestrian,	straightforward	program.	All	it	does	is	concatenate
together	the	code	and	data	sections	of	the	object	files,	connect	the	references	to	symbols
with	their	definitions,	pull	unresolved	symbols	out	of	the	library,	and	write	out	an	executable.
That's	it.	No	spells!	No	magic!	The	tedium	in	writing	a	linker	is	usually	all	about	decoding	and
generating	the	usually	ridiculously	overcomplicated	file	formats,	but	that	doesn't	change	the
essential	nature	of	a	linker.

So	let's	say	the	linker	is	saying	def	is	defined	more	than	once.	Many	programming
languages,	such	as	C,	C++,	and	D,	have	both	declarations	and	definitions.	Declarations
normally	go	into	header	files,	like:

extern	int	iii;

which	generates	an	external	reference	to	the	symbol		iii	.	A	definition,	on	the	other	hand,
actually	sets	aside	storage	for	the	symbol,	usually	appears	in	the	implementation	file,	and
looks	like	this:

97	Things	Every	Programmer	Should	Know

104The	Linker	Is	not	a	Magical	Program

int	iii	=	3;

How	many	definitions	can	there	be	for	each	symbol?	As	in	the	film	Highlander,	there	can	be
only	one.	So,	what	if	a	definition	of	iii	appears	in	more	than	one	implementation	file?

//	File	a.c

int	iii	=	3;

//	File	b.c

double	iii(int	x)	{	return	3.7;	}

The	linker	will	complain	about		iii		being	multiply	defined.

Not	only	can	there	be	only	one,	there	must	be	one.	If	iii	only	appears	as	a	declaration,	but
never	a	definition,	the	linker	will	complain	about	iii	being	an	unresolved	symbol.

To	determine	why	an	executable	is	the	size	it	is,	take	a	look	at	the	map	file	that	linkers
optionally	generate.	A	map	file	is	nothing	more	than	a	list	of	all	the	symbols	in	the	executable
along	with	their	addresses.	This	tells	you	what	modules	were	linked	in	from	the	library,	and
the	sizes	of	each	module.	Now	you	can	see	where	the	bloat	is	coming	from.	Often	there	will
be	library	modules	that	you	have	no	idea	why	were	linked	in.	To	figure	it	out,	temporarily
remove	the	suspicious	module	from	the	library,	and	relink.	The	undefined	symbol	error	then
generated	will	indicate	who	is	referencing	that	module.

Although	it	is	not	always	immediately	obvious	why	you	get	a	particular	linker	message,	there
is	nothing	magical	about	linkers.	The	mechanics	are	straightforward;	it's	the	details	you	have
to	figure	out	in	each	case.

By	Walter	Bright

97	Things	Every	Programmer	Should	Know

105The	Linker	Is	not	a	Magical	Program

http://creativecommons.org/licenses/by/3.0/us/

The	Longevity	of	Interim	Solutions
Why	do	we	create	interim	solutions?

Typically	there	is	some	immediate	problem	to	solve.	It	might	be	internal	to	the	development
team,	some	tooling	that	fills	a	gap	in	the	tool	chain.	It	might	be	external,	visible	to	end	users,
such	as	a	workaround	that	addresses	missing	functionality.

In	most	systems	and	teams	you	will	find	some	software	that	is	somewhat	dis-integrated	from
the	system,	that	is	considered	a	draft	to	be	changed	sometime,	that	does	not	follow	the
standards	and	guidelines	that	shaped	the	rest	of	the	code.	Inevitably	you	will	hear
developers	complaining	about	these.	The	reasons	for	their	creation	are	many	and	varied,	but
the	key	to	an	interim	solution's	success	is	simple:	It	is	useful.

Interim	solutions,	however,	acquire	inertia	(or	momentum,	depending	on	your	point	of	view).
Because	they	are	there,	ultimately	useful	and	widely	accepted,	there	is	no	immediate	need
to	do	anything	else.	Whenever	a	stakeholder	has	to	decide	what	action	adds	the	most	value,
there	will	be	many	that	are	ranked	higher	than	proper	integration	of	an	interim	solution.
Why?	Because	it	is	there,	it	works,	and	it	is	accepted.	The	only	perceived	downside	is	that	it
does	not	follow	the	chosen	standards	and	guidelines	—	except	for	a	few	niche	markets,	this
is	not	considered	to	be	a	significant	force.

So	the	interim	solution	remains	in	place.	Forever.

And	if	problems	arise	with	that	interim	solution,	it	is	unlikely	there	will	be	provision	for	an
update	that	brings	it	into	line	with	accepted	production	quality.	What	to	do?	A	quick	interim
update	on	that	interim	solution	often	does	the	job.	And	will	most	likely	be	well	received.	It
exhibits	the	same	strengths	as	the	initial	interim	solution...	it	is	just	more	up	to	date.

Is	this	a	problem?

The	answer	depends	on	your	project,	and	on	your	personal	stake	in	the	production	code
standards.	When	the	systems	contains	too	many	interim	solutions,	its	entropy	or	internal
complexity	grows	and	its	maintainability	decreases.	However,	this	is	probably	the	wrong
question	to	ask	first.	Remember	that	we	are	talking	about	a	solution.	It	may	not	be	your
preferred	solution	—	it	is	unlikely	to	be	anyone's	preferred	solution	—	but	the	motivation	to
rework	this	solution	is	weak.

So	what	can	we	do	if	we	see	a	problem?

1.	 Avoid	creating	an	interim	solution	in	the	first	place.
2.	 Change	the	forces	that	influence	the	decision	of	the	project	manager.

97	Things	Every	Programmer	Should	Know

106The	Longevity	of	Interim	Solutions

3.	 Leave	it	as	is.

Let's	examine	these	options	more	closely:

1.	 Avoidance	does	not	work	in	most	places.	There	is	an	actual	problem	to	solve,	and	the
standards	have	turned	out	to	be	too	restrictive.	You	might	spend	some	energy	trying	to
change	the	standards.	An	honorable	albeit	tedious	endeavor...	and	that	change	will	not
be	effective	in	time	for	your	problem	at	hand.

2.	 The	forces	are	rooted	in	the	project	culture,	which	resists	volitional	change.	It	could	be
successful	in	very	small	projects	—	especially	if	it's	just	you	—	and	you	just	happen	to
clean	the	mess	without	asking	in	advance.	It	could	also	be	successful	if	the	project	is
such	a	mess	that	it	is	visibly	stalled	and	some	time	for	cleaning	up	is	commonly
accepted.

3.	 The	status	quo	automatically	applies	if	the	previous	option	does	not.

You	will	create	many	solutions,	some	of	them	will	be	interim,	most	of	them	will	be	useful.	The
best	way	to	overcome	interim	solutions	is	to	make	them	superfluous,	to	provide	a	more
elegant	and	useful	solution.	May	you	be	granted	the	serenity	to	accept	the	things	you	cannot
change,	courage	to	change	the	things	you	can,	and	wisdom	to	know	the	difference.

By	Klaus	Marquardt

97	Things	Every	Programmer	Should	Know

107The	Longevity	of	Interim	Solutions

http://en.wikipedia.org/wiki/Serenity_prayer
http://programmer.97things.oreilly.com/wiki/index.php/Klaus_Marquardt

Make	Interfaces	Easy	to	Use	Correctly	and
Hard	to	Use	Incorrectly
One	of	the	most	common	tasks	in	software	development	is	interface	specification.	Interfaces
occur	at	the	highest	level	of	abstraction	(user	interfaces),	at	the	lowest	(function	interfaces),
and	at	levels	in	between	(class	interfaces,	library	interfaces,	etc.).	Regardless	of	whether
you	work	with	end	users	to	specify	how	they'll	interact	with	a	system,	collaborate	with
developers	to	specify	an	API,	or	declare	functions	private	to	a	class,	interface	design	is	an
important	part	of	your	job.	If	you	do	it	well,	your	interfaces	will	be	a	pleasure	to	use	and	will
boost	others'	productivity.	If	you	do	it	poorly,	your	interfaces	will	be	a	source	of	frustration
and	errors.

Good	interfaces	are:

Easy	to	use	correctly.	People	using	a	well-designed	interface	almost	always	use	the
interface	correctly,	because	that's	the	path	of	least	resistance.	In	a	GUI,	they	almost
always	click	on	the	right	icon,	button,	or	menu	entry,	because	it's	the	obvious	and	easy
thing	to	do.	In	an	API,	they	almost	always	pass	the	correct	parameters	with	the	correct
values,	because	that's	what's	most	natural.	With	interfaces	that	are	easy	to	use
correctly,	things	just	work.
Hard	to	use	incorrectly.	Good	interfaces	anticipate	mistakes	people	might	make	and
make	them	difficult	—	ideally	impossible	—	to	commit.	A	GUI	might	disable	or	remove
commands	that	make	no	sense	in	the	current	context,	for	example,	or	an	API	might
eliminate	argument-ordering	problems	by	allowing	parameters	to	be	passed	in	any
order.

A	good	way	to	design	interfaces	that	are	easy	to	use	correctly	is	to	exercise	them	before
they	exist.	Mock	up	a	GUI	—	possibly	on	a	whiteboard	or	using	index	cards	on	a	table	—
and	play	with	it	before	any	underlying	code	has	been	created.	Write	calls	to	an	API	before
the	functions	have	been	declared.	Walk	through	common	use	cases	and	specify	how	you
want	the	interface	to	behave.	What	do	you	want	to	be	able	to	click	on?	What	do	you	want	to
be	able	to	pass?	Easy	to	use	interfaces	seem	natural,	because	they	let	you	do	what	you
want	to	do.	You're	more	likely	to	come	up	with	such	interfaces	if	you	develop	them	from	a
user's	point	of	view.	(This	perspective	is	one	of	the	strengths	of	test-first	programming.)

Making	interfaces	hard	to	use	incorrectly	requires	two	things.	First,	you	must	anticipate
errors	users	might	make	and	find	ways	to	prevent	them.	Second,	you	must	observe	how	an
interface	is	misused	during	early	release	and	modify	the	interface	—	yes,	modify	the
interface!	—	to	prevent	such	errors.	The	best	way	to	prevent	incorrect	use	is	to	make	such

97	Things	Every	Programmer	Should	Know

108Make	Interfaces	Easy	to	Use	Correctly	and	Hard	to	Use	Incorrectly

use	impossible.	If	users	keep	wanting	to	undo	an	irrevocable	action,	try	to	make	the	action
revocable.	If	they	keep	passing	the	wrong	value	to	an	API,	do	your	best	to	modify	the	API	to
take	the	values	that	users	want	to	pass.

Above	all,	remember	that	interfaces	exist	for	the	convenience	of	their	users,	not	their
implementers.

By	Scott	Meyers

97	Things	Every	Programmer	Should	Know

109Make	Interfaces	Easy	to	Use	Correctly	and	Hard	to	Use	Incorrectly

http://programmer.97things.oreilly.com/wiki/index.php/Scott_Meyers

Make	the	Invisible	More	Visible
Many	aspects	of	invisibility	are	rightly	lauded	as	software	principles	to	uphold.	Our
terminology	is	rich	in	invisibility	metaphors	—	mechanism	transparency	and	information
hiding,	to	name	but	two.	Software	and	the	process	of	developing	it	can	be,	to	paraphrase
Douglas	Adams,	mostly	invisible:

Source	code	has	no	innate	presence,	no	innate	behavior,	and	doesn't	obey	the	laws	of
physics.	It's	visible	when	you	load	it	into	an	editor,	but	close	the	editor	and	it's	gone.
Think	about	it	too	long	and,	like	the	tree	falling	down	with	no	one	to	hear	it,	you	start	to
wonder	if	it	exists	at	all.
A	running	application	has	presence	and	behavior,	but	reveals	nothing	of	the	source
code	it	was	built	from.	Google's	home	page	is	pleasingly	minimal;	the	goings	on	behind
it	are	surely	substantial.
If	you're	90%	done	and	endlessly	stuck	trying	to	debug	your	way	through	the	last	10%
then	you're	not	90%	done,	are	you?	Fixing	bugs	is	not	making	progress.	You	aren't	paid
to	debug.	Debugging	is	waste.	It's	good	to	make	waste	more	visible	so	you	can	see	it
for	what	it	is	and	start	thinking	about	trying	not	to	create	it	in	the	first	place.
If	your	project	is	apparently	on	track	and	one	week	later	it's	six	months	late	you	have
problems,	the	biggest	of	which	is	probably	not	that	it's	six	months	late,	but	the	invisibility
force	fields	powerful	enough	to	hide	six	months	of	lateness!	Lack	of	visible	progress	is
synonymous	with	lack	of	progress.

Invisibility	can	be	dangerous.	You	think	more	clearly	when	you	have	something	concrete	to
tie	your	thinking	to.	You	manage	things	better	when	you	can	see	them	and	see	them
constantly	changing:

Writing	unit	tests	provides	evidence	about	how	easy	the	code	unit	is	to	unit	test.	It	helps
reveal	the	presence	(or	absence)	of	developmental	qualities	you'd	like	the	code	to
exhibit;	qualities	such	as	low	coupling	and	high	cohesion.
Running	unit	tests	provides	evidence	about	the	code's	behavior.	It	helps	reveal	the
presence	(or	absence)	of	runtime	of	qualities	you'd	like	the	application	to	exhibit;
qualities	such	as	robustness	and	correctness.
Using	bulletin	boards	and	cards	makes	progress	visible	and	concrete.	Tasks	can	be
seen	as	Not	Started,	In	Progress,	or	Done	without	reference	to	a	hidden	project
management	tool	and	without	having	to	chase	programmers	for	fictional	status	reports.
Doing	incremental	development	increases	the	visibility	of	development	progress	(or	lack
of	it)	by	increasing	the	frequency	of	development	evidence.	Completion	of	releasable
software	reveals	reality;	estimates	do	not.

97	Things	Every	Programmer	Should	Know

110Make	the	Invisible	More	Visible

It's	best	to	develop	software	with	plenty	of	regular	visible	evidence.	Visibility	gives
confidence	that	progress	is	genuine	and	not	an	illusion,	deliberate	and	not	unintentional,
repeatable	and	not	accidental.

By	Jon	Jagger

97	Things	Every	Programmer	Should	Know

111Make	the	Invisible	More	Visible

http://programmer.97things.oreilly.com/wiki/index.php/Jon_Jagger

Message	Passing	Leads	to	Better
Scalability	in	Parallel	Systems
Programmers	are	taught	from	the	very	outset	of	their	study	of	computing	that	concurrency	—
and	especially	parallelism,	a	special	subset	of	concurrency	—	is	hard,	that	only	the	very	best
can	ever	hope	to	get	it	right,	and	even	they	get	it	wrong.	There	is	invariably	great	focus	on
threads,	semaphores,	monitors,	and	how	hard	it	is	to	get	concurrent	access	to	variables	to
be	thread-safe.

True,	there	are	many	difficult	problems,	and	they	can	be	very	hard	to	solve.	But	what	is	the
root	of	the	problem?	Shared	memory.	Almost	all	the	problems	of	concurrency	that	people	go
on	and	on	about	relate	to	the	use	of	shared	mutable	memory:	race	conditions,	deadlock,
livelock,	etc.	The	answer	seems	obvious:	Either	forgo	concurrency	or	eschew	shared
memory!

Forgoing	concurrency	is	almost	certainly	not	an	option.	Computers	have	more	and	more
cores	on	an	almost	quarterly	basis,	so	harnessing	true	parallelism	becomes	more	and	more
important.	We	can	no	longer	rely	on	ever	increasing	processor	clock	speeds	to	improve
application	performance.	Only	by	exploiting	parallelism	will	the	performance	of	applications
improve.	Obviously,	not	improving	performance	is	an	option,	but	it	is	unlikely	to	be
acceptable	to	users.

So	can	we	eschew	shared	memory?	Definitely.

Instead	of	using	threads	and	shared	memory	as	our	programming	model,	we	can	use
processes	and	message	passing.	Process	here	just	means	a	protected	independent	state
with	executing	code,	not	necessarily	an	operating	system	process.	Languages	such	as
Erlang	(and	occam	before	it)	have	shown	that	processes	are	a	very	successful	mechanism
for	programming	concurrent	and	parallel	systems.	Such	systems	do	not	have	all	the
synchronization	stresses	that	shared	memory,	multi-threaded	systems	have.	Moreover	there
is	a	formal	model	—	Communicating	Sequential	Processes	(CSP)	—	that	can	be	applied	as
part	of	the	engineering	of	such	systems.

We	can	go	further	and	introduce	dataflow	systems	as	a	way	of	computing.	In	a	dataflow
system	there	is	no	explicitly	programmed	control	flow.	Instead	a	directed	graph	of	operators,
connected	by	data	paths,	is	set	up	and	then	data	fed	into	the	system.	Evaluation	is
controlled	by	the	readiness	of	data	within	the	system.	Definitely	no	synchronization
problems.

97	Things	Every	Programmer	Should	Know

112Message	Passing	Leads	to	Better	Scalability	in	Parallel	Systems

Having	said	all	this,	languages	such	as	C,	C++,	Java,	Python,	and	Groovy	are	the	principal
languages	of	systems	development	and	all	of	these	are	presented	to	programmers	as
languages	for	developing	shared	memory,	multi-threaded	systems.	So	what	can	be	done?
The	answer	is	to	use	—	or,	if	they	don't	exist,	create	—	libraries	and	frameworks	that	provide
process	models	and	message	passing,	avoiding	all	use	of	shared	mutable	memory.

All	in	all,	not	programming	with	shared	memory,	but	instead	using	message	passing,	is	likely
to	be	the	most	successful	way	of	implementing	systems	that	harness	the	parallelism	that	is
now	endemic	in	computer	hardware.	Bizarrely	perhaps,	although	processes	predate	threads
as	a	unit	of	concurrency,	the	future	seems	to	be	in	using	threads	to	implement	processes.

By	Russel	Winder

97	Things	Every	Programmer	Should	Know

113Message	Passing	Leads	to	Better	Scalability	in	Parallel	Systems

http://programmer.97things.oreilly.com/wiki/index.php/Russel_Winder

A	Message	to	the	Future
Maybe	it's	because	most	of	them	are	smart	people,	but	in	all	the	years	I've	taught	and
worked	side-by-side	with	programmers,	it	seems	that	most	of	them	thought	that	since	the
problems	they	were	struggling	with	were	difficult	that	the	solutions	should	be	just	as	difficult
for	everyone	(maybe	even	for	themselves	a	few	months	after	the	code	was	written)	to
understand	and	maintain.

I	remember	one	incident	with	Joe,	a	student	in	my	data	structures	class,	who	had	to	come	in
to	show	me	what	he'd	written.	"Betcha	can't	guess	what	it	does!"	he	crowed.

"You're	right,"	I	agreed	without	spending	too	much	time	on	his	example	and	wondering	how
to	get	an	important	message	across.	"I'm	sure	you've	been	working	hard	on	this.	I	wonder,
though,	if	you	haven't	forgotten	something	important.	Say,	Joe,	don't	you	have	a	younger
brother?"

"Yep.	Sure	do!	Phil!	He's	in	your	Intro	class.	He's	learning	to	program,	too!"	Joe	announced
proudly.

"That's	great,"	I	replied.	"I	wonder	if	he	could	read	this	code."

"No	way!"	said	Joe.	"This	is	hard	stuff!"

"Just	suppose,"	I	suggested,	"that	this	was	real	working	code	and	that	in	a	few	years	Phil
was	hired	to	make	a	maintenance	update.	What	have	you	done	for	him?"	Joe	just	stared	at
me	blinking.	"We	know	that	Phil	is	really	smart,	right?"	Joe	nodded.	"And	I	hate	to	say	it,	but
I'm	pretty	smart,	too!"	Joe	grinned.	"So	if	I	can't	easily	understand	what	you've	done	here
and	your	very	smart	younger	brother	will	likely	puzzle	over	this,	what	does	that	mean	about
what	you've	written?"	Joe	looked	at	his	code	a	little	differently	it	seemed	to	me.	"How	about
this,"	I	suggested	in	my	best	'I'm	your	friendly	mentor'	voice,	"Think	of	every	line	of	code	you
write	as	a	message	for	someone	in	the	future	—	someone	who	might	be	your	younger
brother.	Pretend	you're	explaining	to	this	smart	person	how	to	solve	this	tough	problem.

"Is	this	what	you'd	like	to	imagine?	That	the	smart	programmer	in	the	future	would	see	your
code	and	say,	'Wow!	This	is	great!	I	can	understand	perfectly	what's	been	done	here	and	I'm
amazed	at	what	an	elegant	—	no,	wait	—	what	a	beautiful	piece	of	code	this	is.	I'm	going	to
show	the	other	folks	on	my	team.	This	is	a	masterpiece!'

"Joe,	do	you	think	you	can	write	code	that	solves	this	difficult	problem	but	will	be	so	beautiful
it	will	sing?	Yes,	just	like	a	haunting	melody.	I	think	that	anyone	who	can	come	up	with	the
very	difficult	solution	you	have	here	could	also	write	something	beautiful.	Hmm...	I	wonder	if	I
should	start	grading	on	beauty?	What	do	you	think,	Joe?"

97	Things	Every	Programmer	Should	Know

114A	Message	to	the	Future

Joe	picked	up	his	work	and	looked	at	me,	a	little	smile	creeping	across	his	face.	"I	got	it,
prof,	I'm	off	to	make	the	world	better	for	Phil.	Thanks."

By	Linda	Rising

97	Things	Every	Programmer	Should	Know

115A	Message	to	the	Future

http://programmer.97things.oreilly.com/wiki/index.php/Linda_Rising

Missing	Opportunities	for	Polymorphism
Polymorphism	is	one	of	the	grand	ideas	that	is	fundamental	to	OO.	The	word,	taken	from
Greek,	means	many	(poly)	forms	(morph).	In	the	context	of	programming	polymorphism
refers	to	many	forms	of	a	particular	class	of	objects	or	method.	But	polymorphism	isn't
simply	about	alternate	implementations.	Used	carefully,	polymorphism	creates	tiny	localized
execution	contexts	that	let	us	work	without	the	need	for	verbose	if-then-else	blocks.	Being	in
a	context	allows	us	to	do	the	right	thing	directly,	whereas	being	outside	of	that	context	forces
us	to	reconstruct	it	so	that	we	can	then	do	the	right	thing.	With	careful	use	of	alternate
implementations,	we	can	capture	context	that	can	help	us	produce	less	code	that	is	more
readable.	This	is	best	demonstrated	with	some	code,	such	as	the	following	(unrealistically)
simple	shopping	cart:

public	class	ShoppingCart	{

				private	ArrayList<Item>	cart	=	new	ArrayList<Item>();

				public	void	add(Item	item)	{	cart.add(item);	}

				public	Item	takeNext()	{	return	cart.remove(0);		}

				public	boolean	isEmpty()	{	return	cart.isEmpty();	}

}

Let's	say	our	webshop	offers	items	that	can	be	downloaded	and	items	that	need	to	be
shipped.	Let's	build	another	object	that	supports	these	operations:

public	class	Shipping	{

				public	boolean	ship(Item	item,	SurfaceAddress	address)	{	...	}

				public	boolean	ship(Item	item,	EMailAddress	address	{	...	}

}

When	a	client	has	completed	checkout	we	need	to	ship	the	goods:

while	(!cart.isEmpty())	{

				shipping.ship(cart.takeNext(),	???);

}

The	???	parameter	isn't	some	new	fancy	elvis	operator,	it's	asking	should	I	email	or	snail-
mail	the	item?	The	context	needed	to	answer	this	question	no	longer	exists.	We	have	could
captured	the	method	of	shipment	in	a	boolean	or	enum	and	then	use	an	if-then-else	to	fill	in
the	missing	parameter.	Another	solution	would	be	create	two	classes	that	both	extend	Item.
Let's	call	these	DownloadableItem	and	SurfaceItem.	Now	let's	write	some	code.	I'll	promote

97	Things	Every	Programmer	Should	Know

116Missing	Opportunities	for	Polymorphism

Item	to	be	an	interface	that	supports	a	single	method,	ship.	To	ship	the	contents	of	the	cart,
we	will	call		item.ship(shipper)	.	Classes		DownloadableItem		and		SurfaceItem		will	both
implement	ship.

public	class	DownloadableItem	implements	Item	{

				public	boolean	ship(Shipping	shipper)	{

								shipper.ship(this,	customer.getEmailAddress());

				}

}

public	class	SurfaceItem	implements	Item	{

				public	boolean	ship(Shipping	shipper)	{

								shipper.ship(this,	customer.getSurfaceAddress());

				}

}

In	this	example	we've	delegated	the	responsibility	of	working	with		Shipping		to	each	Item.
Since	each	item	knows	hows	it's	best	shipped,	this	arrangement	allows	us	to	get	on	with	it
without	the	need	for	an	if-then-else.	The	code	also	demonstrates	a	use	of	two	patterns	that
often	play	well	together:	Command	and	Double	Dispatch.	Effective	use	of	these	patterns
relies	on	careful	use	of	polymorphism.	When	that	happens	there	will	be	a	reduction	in	the
number	of	if-then-else	blocks	in	our	code.

While	there	are	cases	where	it's	much	more	practical	to	use	if-then-else	instead	of
polymorphism,	it	is	more	often	the	case	that	a	more	polymorphic	coding	style	will	yield	a
smaller,	more	readable	and	less	fragile	code	base.	The	number	of	missed	opportunities	is	a
simple	count	of	the	if-then-else	statements	in	our	code.

By	Kirk	Pepperdine

97	Things	Every	Programmer	Should	Know

117Missing	Opportunities	for	Polymorphism

http://programmer.97things.oreilly.com/wiki/index.php/Kirk_Pepperdine

News	of	the	Weird:	Testers	Are	Your
Friends
Whether	they	call	themselves	Quality	Assurance	or	Quality	Control,	many	programmers	call
them	Trouble.	In	my	experience,	programmers	often	have	an	adversarial	relationship	with
the	people	who	test	their	software.	"They're	too	picky"	and	"They	want	everything	perfect"
are	common	complaints.	Sound	familiar?

I'm	not	sure	why,	but	I've	always	had	a	different	view	of	testers.	Maybe	it's	because	the
"tester"	at	my	first	job	was	the	company	secretary.	Margaret	was	a	very	nice	lady	who	kept
the	office	running,	and	tried	to	teach	a	couple	of	young	programmers	how	to	behave
professionally	in	front	of	customers.	She	also	had	a	gift	for	finding	any	bug,	no	matter	how
obscure,	in	mere	moments.

Back	then	I	was	working	on	a	program	written	by	an	accountant	who	thought	he	was	a
programmer.	Needless	to	say,	it	had	some	serious	problems.	When	I	thought	I	had	a	piece
straightened	out,	Margaret	would	try	to	use	it	and,	more	often	than	not,	it	would	fail	in	some
new	way	after	just	a	few	keystrokes.	It	was	at	times	frustrating	and	embarrassing,	but	she
was	such	a	pleasant	person	that	I	never	thought	to	blame	her	for	making	me	look	bad.
Eventually	the	day	came	when	Margaret	was	able	to	cleanly	start	the	program,	enter	an
invoice,	print	it,	and	shut	it	down.	I	was	thrilled.	Even	better,	when	we	installed	it	on	our
customer's	machine	it	all	worked.	They	never	saw	any	problems	because	Margaret	had
helped	me	find	and	fix	them	first.

So	that's	why	I	say	testers	are	your	friends.	You	may	think	the	testers	make	you	look	bad	by
reporting	trivial	issues.	But	when	customers	are	thrilled	because	they	weren't	bothered	by	all
those	"little	things"	that	QC	made	you	fix,	then	you	look	great.	See	what	I	mean?

Imagine	this:	You're	test-driving	a	utility	that	uses	"ground-breaking	artificial	intelligence
algorithms"	to	find	and	fix	concurrency	problems.	You	fire	it	up	and	immediately	notice	they
misspelled	"intelligence"	on	the	splash	screen.	A	little	inauspicious,	but	it's	just	a	typo,	right?
Then	you	notice	the	configuration	screen	uses	check	boxes	where	there	should	be	radio
buttons,	and	some	of	the	keyboard	shortcuts	don't	work.	Now,	none	of	these	is	a	big	deal,
but	as	the	errors	add	up	you	begin	to	wonder	about	the	programmers.	If	they	can't	get	the
simple	things	right,	what	are	the	odds	their	AI	can	really	find	and	fix	something	tricky	like
concurrency	issues?

They	could	be	geniuses	who	were	so	focused	on	making	the	AI	insanely	great	that	they
didn't	notice	those	trivial	things.	And	without	"picky	testers"	pointing	out	the	problems,	you
wound	up	finding	them.	And	now	you're	questioning	the	competency	of	the	programmers.

97	Things	Every	Programmer	Should	Know

118News	of	the	Weird:	Testers	Are	Your	Friends

So	as	strange	as	it	may	sound,	those	testers	who	seem	determined	to	expose	every	little
bug	in	your	code	really	are	your	friends.

By	Burk	Hufnagel

97	Things	Every	Programmer	Should	Know

119News	of	the	Weird:	Testers	Are	Your	Friends

http://programmer.97things.oreilly.com/wiki/index.php/BurkHufnagel

One	Binary
I've	seen	several	projects	where	the	build	rewrites	some	part	of	the	code	to	generate	a
custom	binary	for	each	target	environment.	This	always	makes	things	more	complicated
than	they	should	be,	and	introduces	a	risk	that	the	team	may	not	have	consistent	versions
on	each	installation.	At	a	minimum	it	involves	building	multiple,	near-identical	copies	of	the
software,	each	of	which	then	has	to	be	deployed	to	the	right	place.	It	means	more	moving
parts	than	necessary,	which	means	more	opportunities	to	make	a	mistake.

I	once	worked	on	a	team	where	every	property	change	had	to	be	checked	in	for	a	full	build
cycle,	so	the	testers	were	left	waiting	whenever	they	needed	a	minor	adjustment	(did	I
mention	that	the	build	took	too	long	as	well?).	I	also	worked	on	a	team	where	the	system
administrators	insisted	on	rebuilding	from	scratch	for	production	(using	the	same	scripts	that
we	did),	which	meant	that	we	had	no	proof	that	the	version	in	production	was	the	one	that
had	been	through	testing.	And	so	on.

The	rule	is	simple:	Build	a	single	binary	that	you	can	identify	and	promote	through	all	the
stages	in	the	release	pipeline.	Hold	environment-specific	details	in	the	environment.	This
could	mean,	for	example,	keeping	them	in	the	component	container,	in	a	known	file,	or	in	the
path.

If	your	team	either	has	a	code-mangling	build	or	stores	all	the	target	settings	with	the	code,
that	suggests	that	no	one	has	thought	through	the	design	carefully	enough	to	separate	those
features	which	are	core	to	the	application	and	those	which	are	platform-specific.	Or	it	could
be	worse:	The	team	knows	what	to	do	but	can't	prioritize	the	effort	to	make	the	change.

Of	course,	there	are	exceptions:	You	might	be	building	for	targets	that	have	significantly
different	resource	constraints,	but	that	doesn't	apply	to	the	majority	of	us	who	are	writing
"database	to	screen	and	back	again"	applications.	Alternatively,	you	might	be	living	with
some	legacy	mess	that's	too	hard	to	fix	right	now.	In	such	cases,	you	have	to	move
incrementally	—	but	start	as	soon	as	possible.

And	one	more	thing:	Keep	the	environment	information	versioned	too.	There's	nothing	worse
than	breaking	an	environment	configuration	and	not	being	able	to	figure	out	what	changed.
The	environmental	information	should	be	versioned	separately	from	the	code,	since	they'll
change	at	different	rates	and	for	different	reasons.	Some	teams	use	distributed	version
control	systems	for	this	(such	as	bazaar	and	git),	since	they	make	it	easier	to	push	changes
made	in	production	environments	—	as	inevitably	happens	—	back	to	the	repository.

By	Steve	Freeman

97	Things	Every	Programmer	Should	Know

120One	Binary

http://programmer.97things.oreilly.com/wiki/index.php/Steve_Freeman

Only	the	Code	Tells	the	Truth
The	ultimate	semantics	of	a	program	is	given	by	the	running	code.	If	this	is	in	binary	form
only,	it	will	be	a	difficult	read!	The	source	code	should,	however,	be	available	if	it	is	your
program,	any	typical	commercial	software	development,	an	open	source	project,	or	code	in	a
dynamically	interpreted	language.	Looking	at	the	source	code,	the	meaning	of	the	program
should	be	apparent.	To	know	what	a	program	does,	the	source	is	ultimately	all	you	can	be
sure	of	looking	at.	Even	the	most	accurate	requirements	document	does	not	tell	the	whole
truth:	It	does	not	contain	the	detailed	story	of	what	the	program	is	actually	doing,	only	the
high-level	intentions	of	the	requirements	analyst.	A	design	document	may	capture	a	planned
design,	but	it	will	lack	the	necessary	detail	of	the	implementation.	These	documents	may	be
lost	sync	with	the	current	implementation...	or	may	simply	have	been	lost.	Or	never	written	in
the	first	place.	The	source	code	may	be	the	only	thing	left.

With	this	in	mind,	ask	yourself	how	clearly	is	your	code	telling	you	or	any	other	programmer
what	it	is	doing?

You	might	say,	"Oh,	my	comments	will	tell	you	everything	you	need	to	know."	But	keep	in
mind	that	comments	are	not	running	code.	They	can	be	just	as	wrong	as	other	forms	of
documentation.	There	has	been	a	tradition	saying	comments	are	unconditionally	a	good
thing,	so	unquestioningly	some	programmers	write	more	and	more	comments,	even
restating	and	explaining	trivia	already	obvious	in	the	code.	This	is	the	wrong	way	to	clarify
your	code.	If	your	code	needs	comments,	consider	refactoring	it	so	it	doesn't.	Lengthy
comments	can	clutter	screen	space	and	might	even	be	hidden	automatically	by	your	IDE.	If
you	need	to	explain	a	change,	do	so	in	the	version	control	system	check-in	message	and	not
in	the	code.

What	can	you	do	to	actually	make	your	code	tell	the	truth	as	clearly	as	possible?	Strive	for
good	names.	Structure	your	code	with	respect	to	cohesive	functionality,	which	also	eases
naming.	Decouple	your	code	to	achieve	orthogonality.	Write	automated	tests	explaining	the
intended	behavior	and	check	the	interfaces.	Refactor	mercilessly	when	you	learn	how	to
code	a	simpler,	better	solution.	Make	your	code	as	simple	as	possible	to	read	and
understand.

Treat	your	code	like	any	other	composition,	such	as	a	poem,	an	essay,	a	public	blog,	or	an
important	email.	Craft	what	you	express	carefully,	so	that	it	does	what	it	should	and
communicates	as	directly	as	possible	what	it	is	doing,	so	that	it	still	communicates	your
intention	when	you	are	no	longer	around.	Remember	that	useful	code	is	used	much	longer
than	ever	intended.	Maintenance	programmers	will	thank	you.	And,	if	you	are	a	maintenance

97	Things	Every	Programmer	Should	Know

121Only	the	Code	Tells	the	Truth

programmer	and	the	code	you	are	working	on	does	not	tell	the	truth	easily,	apply	the
guidelines	above	in	a	proactive	manner.	Establish	some	sanity	in	the	code	and	keep	your
own	sanity.

by	Peter	Sommerlad

97	Things	Every	Programmer	Should	Know

122Only	the	Code	Tells	the	Truth

http://programmer.97things.oreilly.com/wiki/index.php/Peter_Sommerlad

Own	(and	Refactor)	the	Build
It	is	not	uncommon	for	teams	that	are	otherwise	highly	disciplined	about	coding	practices	to
neglect	build	scripts,	either	out	of	a	belief	that	they	are	merely	an	unimportant	detail	or	from
a	fear	that	they	are	complex	and	need	to	be	tended	to	by	the	cult	of	release	engineering.
Unmaintainable	build	scripts	with	duplication	and	errors	cause	problems	of	the	same
magnitude	as	those	in	poorly	factored	code.

One	rationale	for	why	disciplined,	skilled	developers	treat	the	build	as	something	secondary
to	their	work	is	that	build	scripts	are	often	written	in	a	different	language	than	source	code.
Another	is	that	the	build	is	not	really	"code."	These	justifications	fly	in	the	face	of	the	reality
that	most	software	developers	enjoy	learning	new	languages	and	that	the	build	is	what
creates	executable	artifacts	for	developers	and	end	users	to	test	and	run.	The	code	is
useless	without	being	built,	and	the	build	is	what	defines	the	component	architecture	of	the
application.	The	build	is	an	essential	part	of	the	development	process,	and	decisions	about
the	build	process	can	make	the	code	and	the	coding	simpler.

Build	scripts	written	using	the	wrong	idioms	are	difficult	to	maintain	and,	more	significantly,
improve.	It	is	worth	spending	some	time	to	understand	the	right	way	to	make	a	change.
Bugs	can	appear	when	an	application	is	built	with	the	wrong	version	of	a	dependency	or
when	a	build-time	configuration	is	wrong.

Traditionally	testing	has	been	something	that	was	always	left	to	the	"Quality	Assurance"
team.	We	now	realize	that	testing	as	we	code	is	necessary	to	being	able	to	deliver	value
predictably.	In	much	the	same	way,	the	build	process	needs	to	be	owned	by	the
development	team.

Understanding	the	build	can	simplify	the	entire	development	lifecycle	and	reduce	costs.	A
simple-to-execute	build	allows	a	new	developer	to	get	started	quickly	and	easily.	Automating
configuration	in	the	build	can	enable	you	to	get	consistent	results	when	multiple	people	are
working	on	a	project,	avoiding	an	"it	works	for	me"	conversation.	Many	build	tools	allow	you
to	run	reports	on	code	quality,	letting	you	to	sense	potential	problems	early.	By	spending
time	understanding	how	to	make	the	build	yours,	you	can	help	yourself	and	everyone	else
on	your	team.	You	can	focus	on	coding	features,	benefiting	your	stakeholders	and	making
work	more	enjoyable.

Learn	enough	of	your	build	process	to	know	when	and	how	to	make	changes.	Build	scripts
are	code.	They	are	too	important	to	be	left	to	someone	else,	if	for	no	other	reason	than
because	the	application	is	not	complete	until	it	is	built.	The	job	of	programming	is	not
complete	until	we	have	delivered	working	software.

97	Things	Every	Programmer	Should	Know

123Own	(and	Refactor)	the	Build

By	Steve	Berczuk

97	Things	Every	Programmer	Should	Know

124Own	(and	Refactor)	the	Build

http://programmer.97things.oreilly.com/wiki/index.php/Steve_Berczuk

Pair	Program	and	Feel	the	Flow
Imagine	that	you	are	totally	absorbed	by	what	you	are	doing	—	focused,	dedicated,	and
involved.	You	may	have	lost	track	of	time.	You	probably	feel	happy.	You	are	experiencing
flow.	It	is	difficult	to	both	achieve	and	maintain	flow	for	a	whole	team	of	developers	since
there	are	so	many	interruptions,	interactions,	and	other	distractions	that	can	easily	break	it.

If	you	have	already	practiced	pair	programming,	you	are	probably	familiar	with	how	pairing
contributes	to	flow.	If	you	have	not,	we	want	to	use	our	experiences	to	motivate	you	to	start
right	now!	To	succeed	with	pair	programming	both	individual	team	members	and	the	team	as
a	whole	have	to	put	in	some	effort.

As	a	team	member,	be	patient	with	developers	less	experienced	than	you.	Confront	your
fears	about	being	intimidated	by	more	skilled	developers.	Realize	that	people	are	different,
and	value	it.	Be	aware	of	your	own	strengths	and	weaknesses,	as	well	as	those	of	other
team	members.	You	may	be	surprised	how	much	you	can	learn	from	your	colleagues.

As	a	team,	introduce	pair	programming	to	promote	distribution	of	skills	and	knowledge
throughout	the	project.	You	should	solve	your	tasks	in	pairs	and	rotate	pairs	and	tasks
frequently.	Agree	upon	a	rule	of	rotation.	Put	the	rule	aside	or	adjust	it	when	necessary.	Our
experience	is	that	you	do	not	necessarily	need	to	complete	a	task	before	rotating	it	to
another	pair.	Interrupting	a	task	to	pass	it	to	another	pair	may	sound	counterintuitive,	but	we
have	found	that	it	works.

There	are	numerous	situations	where	flow	can	be	broken,	but	where	pair	programming	helps
you	keep	it:

Reduce	the	"truck	factor":	It's	a	slightly	morbid	thought	experiment,	but	how	many	of
your	team	members	would	have	to	be	hit	by	a	truck	before	the	team	became	unable	to
complete	the	final	deliverable?	In	other	words,	how	dependent	is	your	delivery	on
certain	team	members?	Is	knowledge	privileged	or	shared?	If	you	have	been	rotating
tasks	among	pairs,	there	is	always	someone	else	who	has	the	knowledge	and	can
complete	the	work.	Your	team's	flow	is	not	as	affected	by	the	"truck	factor."

Solve	problems	effectively:	If	you	are	pair	programming	and	you	run	into	a
challenging	problem,	you	always	have	someone	to	discuss	it	with.	Such	dialog	is	more
likely	to	open	up	possibilities	than	if	you	are	stuck	by	yourself.	As	the	work	rotates,	your
solution	will	be	revisited	and	reconsidered	by	the	next	pair,	so	it	does	not	matter	if	you
did	not	choose	the	optimal	solution	initially.

97	Things	Every	Programmer	Should	Know

125Pair	Program	and	Feel	the	Flow

Integrate	smoothly:	If	your	current	task	involves	calling	another	piece	of	code,	you
hope	the	names	of	the	methods,	the	docs,	and	the	tests	are	descriptive	enough	to	give
you	a	grasp	of	what	it	does.	If	not,	pairing	with	a	developer	who	was	involved	in	writing
that	code	will	give	you	better	overview	and	faster	integration	into	your	own	code.
Additionally,	you	can	use	the	discussion	as	an	opportunity	to	improve	the	naming,	docs,
and	testing.

Mitigate	interruptions:	If	someone	comes	over	to	ask	you	a	question,	or	your	phone
rings,	or	you	have	to	answer	an	urgent	email,	or	you	have	to	attend	a	meeting,	your	pair
programming	partner	can	keep	on	coding.	When	you	return	your	partner	is	still	in	the
flow	and	you	will	quickly	catch	up	and	rejoin	them.

Bring	new	team	members	up	to	speed	quickly:	With	pair	programming,	and	a
suitable	rotation	of	pairs	and	tasks,	newcomers	quickly	get	to	know	both	the	code	and
the	other	team	members.

Flow	makes	you	incredibly	productive.	But	it	is	also	vulnerable.	Do	what	you	can	to	get	it,
and	hold	on	to	it	when	you've	got	it!

By	Gudny	Hauknes,	Ann	Katrin	Gagnat,	and	Kari	Røssland

97	Things	Every	Programmer	Should	Know

126Pair	Program	and	Feel	the	Flow

http://programmer.97things.oreilly.com/wiki/index.php/Gudny_Hauknes
http://programmer.97things.oreilly.com/wiki/index.php/Ann_Katrin_Gagnat

Prefer	Domain-Specific	Types	to	Primitive
Types
On	23rd	September	1999	the	$327.6	million	Mars	Climate	Orbiter	was	lost	while	entering
orbit	around	Mars	due	to	a	software	error	back	on	Earth.	The	error	was	later	called	the
metric	mix-up.	The	ground	station	software	was	working	in	pounds	while	the	spacecraft
expected	newtons,	leading	the	ground	station	to	underestimate	the	power	of	the	spacecraft's
thrusters	by	a	factor	of	4.45.

This	is	one	of	many	examples	of	software	failures	that	could	have	been	prevented	if	stronger
and	more	domain-specific	typing	had	been	applied.	It	is	also	an	example	of	the	rationale
behind	many	features	in	the	Ada	language,	one	of	whose	primary	design	goals	was	to
implement	embedded	safety-critical	software.	Ada	has	strong	typing	with	static	checking	for
both	primitive	types	and	user-defined	types:

type	Velocity_In_Knots	is	new	Float	range	0.0	..	500.00;

type	Distance_In_Nautical_Miles	is	new	Float	range	0.0	..	3000.00;

Velocity:	Velocity_In_Knots;

Distance:	Distance_In_Nautical_Miles;

Some_Number:	Float;

Some_Number:=	Distance	+	Velocity;	--	Will	be	caught	by	the	compiler	as	a	type	error.

Developers	in	less	demanding	domains	might	also	benefit	from	applying	more	domain-
specific	typing,	where	they	might	otherwise	continue	to	use	the	primitive	data	types	offered
by	the	language	and	its	libraries,	such	as	strings	and	floats.	In	Java,	C++,	Python,	and	other
modern	languages	the	abstract	data	type	is	known	as	class.	Using	classes	such	as
	Velocity_In_Knots		and		Distance_In_Nautical_Miles		adds	a	lot	of	value	with	respect	to	code
quality:

1.	 The	code	becomes	more	readable	as	it	expresses	concepts	of	a	domain,	not	just	Float
or	String.

2.	 The	code	becomes	more	testable	as	the	code	encapsulates	behavior	that	is	easily
testable.

3.	 The	code	facilitates	reuse	across	applications	and	systems.

97	Things	Every	Programmer	Should	Know

127Prefer	Domain-Specific	Types	to	Primitive	Types

The	approach	is	equally	valid	for	users	of	both	statically	and	dynamically	typed	languages.
The	only	difference	is	that	developers	using	statically	typed	languages	get	some	help	from
the	compiler	while	those	embracing	dynamically	typed	languages	are	more	likely	to	rely	on
their	unit	tests.	The	style	of	checking	may	be	different,	but	the	motivation	and	style	of
expression	is	not.

The	moral	is	to	start	exploring	domain-specific	types	for	the	purpose	of	developing	quality
software.

By	Einar	Landre

97	Things	Every	Programmer	Should	Know

128Prefer	Domain-Specific	Types	to	Primitive	Types

http://programmer.97things.oreilly.com/wiki/index.php/Einar_Landre

Prevent	Errors
Error	messages	are	the	most	critical	interactions	between	the	user	and	the	rest	of	the
system.	They	happen	when	communication	between	the	user	and	the	system	is	near
breaking	point.

It	is	easy	to	think	of	an	error	as	being	caused	by	a	wrong	input	from	the	user.	But	people
make	mistakes	in	predictable,	systematic	ways.	So	it	is	possible	to	'debug'	the
communication	between	the	user	and	the	rest	of	the	system	just	as	you	would	between
other	system	components.

For	instance,	say	you	want	the	user	to	enter	a	date	within	an	allowed	range.	Rather	than
letting	the	user	enter	any	date,	it	is	better	to	offer	a	device	such	as	a	list	or	calendar	showing
only	the	allowed	dates.	This	eliminates	any	chance	of	the	user	entering	a	date	outside	of	the
range.

Formatting	errors	are	another	common	problem.	For	instance,	if	a	user	is	presented	with	a
Date	text	field	and	enters	an	unambiguous	date	such	as	"July	29,	2012"	it	is	unreasonable	to
reject	it	simply	because	it	is	not	in	a	preferred	format	(such	as	"DD/MM/YYYY").	It	is	worse
still	to	reject	"29	/	07	/	2012"	because	it	contains	extra	spaces	—	this	kind	of	problem	is
particularly	hard	for	users	to	understand	as	the	date	appears	to	be	in	the	desired	format.

This	error	occurs	because	it	is	easier	to	reject	the	date	than	parse	the	three	or	four	most
common	date	formats.	These	kind	of	petty	errors	lead	to	user	frustration,	which	in	turn	lead
to	additional	errors	as	the	user	loses	concentration.	Instead,	respect	users'	preference	to
enter	information,	not	data.

Another	way	of	avoiding	formatting	errors	is	to	offer	cues	—	for	instance,	with	a	label	within
the	field	showing	the	desired	format	("DD/MM/YYYY").	Another	cue	might	be	to	divide	the
field	into	three	text	boxes	of	two,	two,	and	four	characters.

Cues	are	different	from	instructions:	Cues	tend	to	be	hints;	instructions	are	verbose.	Cues
occur	at	the	point	of	interaction;	instructions	appear	before	the	point	of	interaction.	Cues
provide	context;	instructions	dictate	use.

In	general,	instructions	are	ineffective	at	preventing	error.	Users	tend	to	assume	that
interfaces	will	work	in	line	with	their	past	experience	("Surely	everyone	knows	what	'July	29,
2012'	means?").	So	instructions	go	unread.	Cues	nudge	users	away	from	errors.

Another	way	of	avoiding	errors	is	to	offer	defaults.	For	instance,	users	typically	enter	values
that	correspond	to	today,	tomorrow,	my	birthday,	my	deadline,	or	the	date	I	entered	last	time
I	used	this	form.	Depending	on	context,	one	of	these	is	likely	to	be	a	good	choice	as	a	smart

97	Things	Every	Programmer	Should	Know

129Prevent	Errors

default.

Whatever	the	cause,	systems	should	be	tolerant	of	errors.	You	can	do	this	by	providing
multiple	levels	of	undo	to	all	actions	—	and	in	particular	actions	which	have	the	potential	to
destroy	or	amend	users'	data.

Logging	and	analyzing	undo	actions	can	also	highlight	where	the	interface	is	drawing	users
into	unconscious	errors,	such	as	persistently	clicking	on	the	'wrong'	button.	These	errors	are
often	caused	by	misleading	cues	or	interaction	sequences	that	you	can	redesign	to	prevent
further	error.

Whichever	approach	you	take,	most	errors	are	systematic	—	the	result	of
misunderstandings	between	the	user	and	the	software.	Understanding	how	users	think,
interpret	information,	make	decisions,	and	input	data	will	help	you	debug	the	interactions
between	your	software	and	your	users.

by	Giles	Colborne

97	Things	Every	Programmer	Should	Know

130Prevent	Errors

http://programmer.97things.oreilly.com/wiki/index.php/Giles_Colborne

The	Professional	Programmer
What	is	a	professional	programmer?

The	single	most	important	trait	of	a	professional	programmer	is	personal	responsibility.
Professional	programmers	take	responsibility	for	their	career,	their	estimates,	their	schedule
commitments,	their	mistakes,	and	their	workmanship.	A	professional	programmer	does	not
pass	that	responsibility	off	on	others.

If	you	are	a	professional,	then	you	are	responsible	for	your	own	career.	You	are
responsible	for	reading	and	learning.	You	are	responsible	for	staying	up-to-date	with	the
industry	and	the	technology.	Too	many	programmers	feel	that	it	is	their	employer's	job	to
train	them.	Sorry,	this	is	just	dead	wrong.	Do	you	think	doctors	behave	that	way?	Do
you	think	lawyers	behave	that	way?	No,	they	train	themselves	on	their	own	time,	and
their	own	nickel.	They	spend	much	of	their	off-hours	reading	journals	and	decisions.
They	keep	themselves	up-to-date.	And	so	must	we.	The	relationship	between	you	and
your	employer	is	spelled	out	nicely	in	your	employment	contract.	In	short:	They	promise
to	pay	you,	and	you	promise	to	do	a	good	job.

Professionals	take	responsibility	for	the	code	they	write.	They	do	not	release	code
unless	they	know	it	works.	Think	about	that	for	a	minute.	How	can	you	possibly	consider
yourself	a	professional	if	you	are	willing	to	release	code	that	you	are	not	sure	of?
Professional	programmers	expect	QA	to	find	nothing	because	they	don't	release	their
code	until	they've	thoroughly	tested	it.	Of	course	QA	will	find	some	problems,	because
no	one	is	perfect.	But	as	professionals	our	attitude	must	be	that	we	will	leave	nothing	for
QA	to	find.

Professionals	are	team	players.	They	take	responsibility	for	the	output	of	the	whole
team,	not	just	their	own	work.	They	help	each	other,	teach	each	other,	learn	from	each
other,	and	even	cover	for	each	other	when	necessary.	When	one	team-mate	falls	down,
the	others	step	in,	knowing	that	one	day	they'll	be	the	ones	to	need	cover.

Professionals	do	not	tolerate	big	bug	lists.	A	huge	bug	list	is	sloppy.	Systems	with
thousands	of	issues	in	the	issue	tracking	database	are	tragedies	of	carelessness.
Indeed,	in	most	projects	the	very	need	for	an	issue	tracking	system	is	a	symptom	of
carelessness.	Only	the	very	biggest	systems	should	have	bug	lists	so	long	that
automation	is	required	to	manage	them.

Professionals	do	not	make	a	mess.	They	take	pride	in	their	workmanship.	They	keep
their	code	clean,	well	structured,	and	easy	to	read.	They	follow	agreed	upon	standards
and	best	practices.	They	never,	ever	rush.	Imagine	that	you	are	having	an	out-of-body

97	Things	Every	Programmer	Should	Know

131The	Professional	Programmer

experience	watching	a	doctor	perform	open-heart	surgery	on	you.	This	doctor	has	a
deadline	(in	the	literal	sense).	He	must	finish	before	the	heart-lung	bypass	machine
damages	too	many	of	your	blood	cells.	How	do	you	want	him	to	behave?	Do	you	want
him	to	behave	like	the	typical	software	developer,	rushing	and	making	a	mess?	Do	you
want	him	to	say:	"I'll	go	back	and	fix	this	later?"	Or	do	you	want	him	to	hold	carefully	to
his	disciplines,	taking	his	time,	confident	that	his	approach	is	the	best	approach	he	can
reasonably	take.	Do	you	want	a	mess,	or	professionalism?

Professionals	are	responsible.	They	take	responsibility	for	their	own	careers.	They	take
responsibility	for	making	sure	their	code	works	properly.	They	take	responsibility	for	the
quality	of	their	workmanship.	They	do	not	abandon	their	principles	when	deadlines	loom.
Indeed,	when	the	pressure	mounts,	professionals	hold	ever	tighter	to	the	disciplines	they
know	are	right.

by	Uncle	Bob

97	Things	Every	Programmer	Should	Know

132The	Professional	Programmer

http://programmer.97things.oreilly.com/wiki/index.php/Uncle_Bob

Put	Everything	Under	Version	Control
Put	everything	in	all	your	projects	under	version	control.	The	resources	you	need	are	there:
free	tools,	like	Subversion,	Git,	Mercurial,	and	CVS;	plentiful	disk	space;	cheap	and	powerful
servers;	ubiquitous	networking;	and	even	project-hosting	services.	After	you've	installed	the
version	control	software	all	you	need	in	order	to	put	your	work	in	its	repository	is	to	issue	the
appropriate	command	in	a	clean	directory	containing	your	code.	And	there	are	just	two	new
basic	operations	to	learn:	you	commit	your	code	changes	to	the	repository	and	you	update
your	working	version	of	the	project	with	the	repository's	version.

Once	your	project	is	under	version	control	you	can	obviously	track	its	history,	see	who	wrote
what	code,	and	refer	to	a	file	or	project	version	through	a	unique	identifier.	More	importantly
you	can	make	bold	code	changes	without	fear	—	no	more	commented-out	code	just	in	case
you	need	it	in	the	future,	because	the	old	version	lives	safely	in	the	repository.	You	can	(and
should)	tag	a	software	release	with	a	symbolic	name	so	that	you	can	easily	revisit	in	the
future	the	exact	version	of	the	software	your	customer	runs.	You	can	create	branches	of
parallel	development:	Most	projects	have	an	active	development	branch	and	one	or	more
maintenance	branches	for	released	versions	that	are	actively	supported.

A	version-control	system	minimizes	friction	between	developers.	When	programmers	work
on	independent	software	parts	these	get	integrated	almost	by	magic.	When	they	step	on
each	others'	toes	the	system	notices	and	allows	them	to	sort	out	the	conflicts.	With	some
additional	setup	the	system	can	notify	all	developers	for	each	committed	change,
establishing	a	common	understanding	of	the	project's	progress.

When	you	set	up	your	project,	don't	be	stingy:	place	all	the	project's	assets	under	version
control.	Apart	from	the	source	code,	include	the	documentation,	tools,	build	scripts,	test
cases,	artwork,	and	even	libraries.	With	the	complete	project	safely	tucked	into	the	(regularly
backed	up)	repository	the	damage	of	losing	your	disk	or	data	is	minimized.	Setting	up	for
development	on	a	new	machine	involves	simply	checking	out	the	project	from	the	repository.
This	simplifies	distributing,	building,	and	testing	the	code	on	different	platforms:	On	each
machine	a	single	update	command	will	ensure	that	the	software	is	the	current	version.

Once	you've	seen	the	beauty	of	working	with	a	version	control	system,	following	a	couple	of
rules	will	make	you	and	your	team	even	more	effective:

Commit	each	logical	change	in	a	separate	operation.	Lumping	many	changes	together
in	a	single	commit	will	make	it	difficult	to	disentangle	them	in	the	future.	This	is
especially	important	when	you	make	project-wide	refactorings	or	style	changes,	which
can	easily	obscure	other	modifications.

97	Things	Every	Programmer	Should	Know

133Put	Everything	Under	Version	Control

Accompany	each	commit	with	an	explanatory	message.	At	a	minimum	describe
succinctly	what	you've	changed,	but	if	you	also	want	to	record	the	change's	rationale
this	is	the	best	place	to	store	it.
Finally,	avoid	committing	code	that	will	break	a	project's	build,	otherwise	you'll	become
unpopular	with	the	project's	other	developers.

Life	under	a	version	control	system	is	too	good	to	ruin	it	with	easily	avoidable	missteps.

By	Diomidis	Spinellis

97	Things	Every	Programmer	Should	Know

134Put	Everything	Under	Version	Control

http://programmer.97things.oreilly.com/wiki/index.php/Diomidis_Spinellis

Put	the	Mouse	Down	and	Step	Away	from
the	Keyboard
You've	been	focused	for	hours	on	some	gnarly	problem	and	there's	no	solution	in	sight.	So
you	get	up	to	stretch	your	legs,	or	to	hit	the	vending	machines,	and	on	the	way	back	the
answer	suddenly	becomes	obvious.

Does	this	scenario	sound	familiar?	Ever	wonder	why	it	happens?	The	trick	is	that	while
you're	coding,	the	logical	part	of	your	brain	is	active	and	the	creative	side	is	shut	out.	It	can't
present	anything	to	you	until	the	logical	side	takes	a	break.

Here's	a	real-life	example:	I	was	cleaning	up	some	legacy	code	and	ran	into	an	'interesting'
method.	It	was	designed	to	verify	that	a	string	contained	a	valid	time	using	the	format
hh:mm:ss	xx,	where	hh	represents	the	hour,	mm	represents	minutes,	ss	represents
seconds,	and	xx	is	either	AM	or	PM.

The	method	used	the	following	code	to	convert	two	characters	(representing	the	hour)	into	a
number,	and	verify	it	was	within	the	proper	range:

try	{

				Integer.parseInt(time.substring(0,	2));

}	catch	(Exception	x)	{

				return	false;

}

if	(Integer.parseInt(time.substring(0,	2))	>	12)	{

				return	false;

}

The	same	code	appeared	twice	more,	with	appropriate	changes	to	the	character	offset	and
upper	limit,	to	test	the	minutes	and	seconds.	The	method	ended	with	these	lines	to	check	for
AM	and	PM:

if	(!time.substring(9,	11).equals("AM")	&

				!time.substring(9,	11).equals("PM"))	{

				return	false;

}

If	none	of	this	series	of	comparisons	failed,	returning	false,	the	method	returned	true.

97	Things	Every	Programmer	Should	Know

135Put	the	Mouse	Down	and	Step	Away	from	the	Keyboard

If	the	preceding	code	seems	wordy	and	difficult	to	follow,	don't	worry.	I	thought	so	too	—
which	meant	I'd	found	something	worth	cleaning	up.	I	refactored	it	and	wrote	a	few	unit
tests,	just	to	make	sure	it	still	worked.

When	I	finished,	I	felt	pleased	with	the	results.	The	new	version	was	easy	to	read,	half	the
size,	and	more	accurate	because	the	original	code	tested	only	the	upper	boundary	for	the
hours,	minutes,	and	seconds.

While	getting	ready	for	work	the	next	day,	an	idea	popped	in	my	head:	Why	not	validate	the
string	using	a	regular	expression?	After	a	few	minutes	typing,	I	had	a	working
implementation	in	just	one	line	of	code.	Here	it	is:

public	static	boolean	validateTime(String	time)	{

				return	time.matches("(0[1-9]|1[0-2]):[0-5][0-9]:[0-5][0-9]	([AP]M)");

}

The	point	of	this	story	is	not	that	I	eventually	replaced	over	thirty	lines	of	code	with	just	one.
The	point	is	that	until	I	got	away	from	the	computer,	I	thought	my	first	attempt	was	the	best
solution	to	the	problem.

So	the	next	time	you	hit	a	nasty	problem,	do	yourself	a	favor.	Once	you	really	understand
the	problem	go	do	something	involving	the	creative	side	of	your	brain	—	sketch	out	the
problem,	listen	to	some	music,	or	just	take	a	walk	outside.	Sometimes	the	best	thing	you	can
do	to	solve	a	problem	is	to	put	the	mouse	down	and	step	away	from	the	keyboard.

By	BurkHufnagel

97	Things	Every	Programmer	Should	Know

136Put	the	Mouse	Down	and	Step	Away	from	the	Keyboard

http://programmer.97things.oreilly.com/wiki/index.php/BurkHufnagel

Read	Code
We	programmers	are	weird	creatures.	We	love	writing	code.	But	when	it	comes	to	reading	it
we	usually	shy	away.	After	all,	writing	code	is	so	much	more	fun,	and	reading	code	is	hard
—	sometimes	almost	impossible.	Reading	other	people's	code	is	particularly	hard.	Not
necessarily	because	other	people's	code	is	bad,	but	because	they	probably	think	and	solve
problems	in	a	different	way	to	you.	But	did	you	ever	consider	that	reading	someone	else's
code	could	improve	your	own?

The	next	time	you	read	some	code,	stop	and	think	for	a	moment.	Is	the	code	easy	or	hard	to
read?	If	it	is	hard	to	read,	why	is	that?	Is	the	formatting	poor?	Is	naming	inconsistent	or
illogical?	Are	several	concerns	mixed	together	in	the	same	piece	of	code?	Perhaps	the
choice	of	language	prohibits	the	code	from	being	readable?	Try	to	learn	from	other	people's
mistakes,	so	that	your	code	won't	contain	the	same	ones.	You	may	receive	a	few	surprises.
For	example,	dependency-breaking	techniques	may	be	good	for	low	coupling,	but	they	can
sometimes	also	make	code	harder	to	read.	And	what	some	people	call	elegant	code,	others
call	unreadable.

If	the	code	is	easy	to	read,	stop	to	see	if	there	is	something	useful	you	can	learn	from	it.
Maybe	there's	a	design	pattern	in	use	that	you	don't	know	about,	or	had	previously	struggled
to	implement.	Perhaps	the	methods	are	shorter	and	their	names	more	expressive	than
yours.	Some	open	source	projects	are	full	of	good	examples	of	how	to	write	brilliant,
readable	code	—	while	others	serve	as	examples	of	the	exact	opposite!	Check	out	some	of
their	code	and	take	a	look.

Reading	your	own	old	code,	from	a	project	you	are	not	currently	working	on,	can	also	be	an
enlightening	experience.	Start	with	some	of	your	oldest	code	and	work	your	way	forward	to
the	present.	You	will	probably	find	that	it	is	not	at	all	as	easy	to	read	as	when	you	wrote	it.
Your	early	code	may	also	have	a	certain	embarrassing	entertainment	value,	kind	of	in	the
same	way	as	being	reminded	of	all	the	things	you	said	when	you	were	drinking	in	the	pub
last	night.	Look	at	how	you	have	developed	your	skills	over	the	years	—	it	can	be	truly
motivating.	Observe	what	areas	of	the	code	are	hard	to	read,	and	consider	whether	you	are
still	writing	code	in	the	same	way	today.

So	the	next	time	you	feel	the	need	to	improve	your	programming	skills,	don't	read	another
book.	Read	code.

by	Karianne	Berg

97	Things	Every	Programmer	Should	Know

137Read	Code

http://programmer.97things.oreilly.com/wiki/index.php/Karianne_Berg

Read	the	Humanities
In	all	but	the	smallest	development	project	people	work	with	people.	In	all	but	the	most
abstracted	field	of	research	people	write	software	for	people	to	support	them	in	some	goal	of
theirs.	People	write	software	with	people	for	people.	It's	a	people	business.	Unfortunately
what	is	taught	to	programmers	too	often	equips	them	very	poorly	to	deal	with	people	they
work	for	and	with.	Luckily	there	is	an	entire	field	of	study	that	can	help.

For	example,	Ludwig	Wittgenstein	makes	a	very	good	case	in	the	Philosophical
Investigations	(and	elsewhere)	that	any	language	we	use	to	speak	to	one	another	is	not,
cannot	be,	a	serialization	format	for	getting	a	thought	or	idea	or	picture	out	of	one	person's
head	and	into	another's.	Already	we	should	be	on	our	guard	against	misunderstanding	when
we	"gather	requirements."	Wittgenstein	also	shows	that	our	ability	to	understand	one
another	at	all	does	not	arise	from	shared	definitions,	it	arises	from	a	shared	experience,	from
a	form	of	life.	This	may	be	one	reason	why	programmers	who	are	steeped	in	their	problem
domain	tend	to	do	better	than	those	who	stand	apart	from	it.

Lakoff	and	Johnson	present	us	with	a	catalog	of	Metaphors	We	Live	By,	suggesting	that
language	is	largely	metaphorical,	and	that	these	metaphors	offer	an	insight	into	how	we
understand	the	world.	Even	seemingly	concrete	terms	like	cash	flow,	which	we	might
encounter	in	talking	about	a	financial	system,	can	be	seen	as	metaphorical:	"money	is	a
fluid."	How	does	that	metaphor	influence	the	way	we	think	about	systems	that	handle
money?	Or	we	might	talk	about	layers	in	a	stack	of	protocols,	with	some	high	level	and	some
low	level.	This	is	powerfully	metaphorical:	the	user	is	"up"	and	the	technology	is	"down."	This
exposes	our	thinking	about	the	structure	of	the	systems	we	build.	It	can	also	mark	a	lazy
habit	of	thought	that	we	might	benefit	from	breaking	from	time	to	time.

Martin	Heidegger	studied	closely	the	ways	that	people	experience	tools.	Programmers	build
and	use	tools,	we	think	about	and	create	and	modify	and	recreate	tools.	Tools	are	objects	of
interest	to	us.	But	for	its	users,	as	Heiddeger	shows	in	Being	and	Time,	a	tool	becomes	an
invisible	thing	understood	only	in	use.	For	users	tools	only	become	objects	of	interest	when
they	don't	work.	This	difference	in	emphasis	is	worth	bearing	in	mind	whenever	usability	is
under	discussion.

Eleanor	Rosch	overturned	the	Aristotelean	model	of	the	categories	by	which	we	organize
our	understanding	of	the	world.	When	programmers	ask	users	about	their	desires	for	a
system	we	tend	to	ask	for	definitions	built	out	of	predicates.	This	is	very	convenient	for	us.
The	terms	in	the	predicates	can	very	easily	become	attributes	on	a	class	or	columns	in	a
table.	These	sorts	of	categories	are	crisp,	disjoint,	and	tidy.	Unfortunately,	as	Rosch	showed
in	"Natural	Categories"	and	later	works,	that	just	isn't	how	people	in	general	understand	the

97	Things	Every	Programmer	Should	Know

138Read	the	Humanities

world.	They	understand	it	in	ways	that	are	based	on	examples.	Some	examples,	so-called
prototypes,	are	better	than	others	and	so	the	resulting	categories	are	fuzzy,	they	overlap,
they	can	have	rich	internal	structure.	In	so	far	as	we	insist	on	Aristotelean	answers	we	can't
ask	users	the	right	questions	about	the	user's	world,	and	will	struggle	to	come	to	the
common	understanding	we	need.

by	Keith	Braithwaite

97	Things	Every	Programmer	Should	Know

139Read	the	Humanities

http://programmer.97things.oreilly.com/wiki/index.php/Keith_Braithwaite

Reinvent	the	Wheel	Often
"Just	use	something	that	exists	—	it's	silly	to	reinvent	the	wheel..."

Have	you	ever	heard	this	or	some	variation	thereof?	Sure	you	have!	Every	developer	and
student	probably	hears	comments	like	this	frequently.	Why	though?	Why	is	reinventing	the
wheel	so	frowned	upon?	Because,	more	often	than	not,	existing	code	is	working	code.	It	has
already	gone	through	some	sort	of	quality	control,	rigorous	testing,	and	is	being	used
successfully.	Additionally,	the	time	and	effort	invested	in	reinvention	are	unlikely	to	pay	off	as
well	as	using	an	existing	product	or	code	base.	Should	you	bother	reinventing	the	wheel?
Why?	When?

Perhaps	you	have	seen	publications	about	patterns	in	software	development,	or	books	on
software	design.	These	books	can	be	sleepers	regardless	of	how	wonderful	the	information
contained	in	them	is.	The	same	way	watching	a	movie	about	sailing	is	very	different	to	going
sailing,	so	too	is	using	existing	code	versus	designing	your	own	software	from	the	ground
up,	testing	it,	breaking	it,	repairing	it,	and	improving	it	along	the	way.

Reinventing	the	wheel	is	not	just	an	exercise	in	where	to	place	code	constructs:	It	is	how	to
get	an	intimate	knowledge	of	the	inner	workings	of	various	components	that	already	exist.
Do	you	know	how	memory	managers	work?	Virtual	paging?	Could	you	implement	these
yourself?	How	about	double-linked	lists?	Dynamic	array	classes?	ODBC	clients?	Could	you
write	a	graphical	user	interface	that	works	like	a	popular	one	you	know	and	like?	Can	you
create	your	own	web-browser	widgets?	Do	you	know	when	to	write	a	multiplexed	system
versus	a	multi-threaded	one?	How	to	decide	between	a	file-	or	a	memory-based	database?
Most	developers	simply	have	never	created	these	types	of	core	software	implementations
themselves	and	therefore	do	not	have	an	intimate	knowledge	of	how	they	work.	The
consequence	is	all	these	kinds	of	software	are	viewed	as	mysterious	black	boxes	that	just
work.	Understanding	only	the	surface	of	the	water	is	not	enough	to	reveal	the	hidden
dangers	beneath.	Not	knowing	the	deeper	things	in	software	development	will	limit	your
ability	to	create	stellar	work.

Reinventing	the	wheel	and	getting	it	wrong	is	more	valuable	than	nailing	it	first	time.	There
are	lessons	learned	from	trial	and	error	that	have	an	emotional	component	to	them	that
reading	a	technical	book	alone	just	cannot	deliver!

Learned	facts	and	book	smarts	are	crucial,	but	becoming	a	great	programmer	is	as	much
about	acquiring	experience	as	it	is	about	collecting	facts.	Reinventing	the	wheel	is	as
important	to	a	developer's	education	and	skill	as	weight	lifting	is	to	a	body	builder.

By	Jason	P	Sage

97	Things	Every	Programmer	Should	Know

140Reinvent	the	Wheel	Often

http://programmer.97things.oreilly.com/wiki/index.php/Jason_P_Sage

97	Things	Every	Programmer	Should	Know

141Reinvent	the	Wheel	Often

Resist	the	Temptation	of	the	Singleton
Pattern
The	Singleton	pattern	solves	many	of	your	problems.	You	know	that	you	only	need	a	single
instance.	You	have	a	guarantee	that	this	instance	is	initialized	before	it's	used.	It	keeps	your
design	simple	by	having	a	global	access	point.	It's	all	good.	What's	not	to	like	about	this
classic	design	pattern?

Quite	a	lot,	it	turns	out.	Tempting	they	may	be,	but	experience	shows	that	most	singletons
really	do	more	harm	than	good.	They	hinder	testability	and	harm	maintainability.
Unfortunately,	this	additional	wisdom	is	not	as	widespread	as	it	should	be	and	singletons
continue	to	be	irresistible	to	many	programmers.	But	it	is	worth	resisting:

The	single-instance	requirement	is	often	imagined.	In	many	cases	it's	pure	speculation
that	no	additional	instances	will	be	needed	in	the	future.	Broadcasting	such	speculative
properties	across	an	application's	design	is	bound	to	cause	pain	at	some	point.
Requirements	will	change.	Good	design	embraces	this.	Singletons	don't.

Singletons	cause	implicit	dependencies	between	conceptually	independent	units	of
code.	This	is	problematic	both	because	they	are	hidden	and	because	they	introduce
unnecessary	coupling	between	units.	This	code	smell	becomes	pungent	when	you	try	to
write	unit	tests,	which	depend	on	loose	coupling	and	the	ability	to	selectively	substitute
a	mock	implementation	for	a	real	one.	Singletons	prevent	such	straightforward	mocking.

Singletons	also	carry	implicit	persistent	state,	which	again	hinders	unit	testing.	Unit
testing	depends	on	tests	being	independent	of	one	another,	so	the	tests	can	be	run	in
any	order	and	the	program	can	be	set	to	a	known	state	before	the	execution	of	every
unit	test.	Once	you	have	introduced	singletons	with	mutable	state,	this	may	be	hard	to
achieve.	In	addition,	such	globally	accessible	persistent	state	makes	it	harder	to	reason
about	the	code,	especially	in	a	multi-threaded	environment.

Multi-threading	introduces	further	pitfalls	to	the	singleton	pattern.	As	straightforward
locking	on	access	is	not	very	efficient,	the	so-called	double-checked	locking	pattern
(DCLP)	has	gained	in	popularity.	Unfortunately,	this	may	be	a	further	form	of	fatal
attraction.	It	turns	out	that	in	many	languages	DCLP	is	not	thread-safe	and,	even	where
it	is,	there	are	still	opportunities	to	get	it	subtly	wrong.

The	cleanup	of	singletons	may	present	a	final	challenge:

97	Things	Every	Programmer	Should	Know

142Resist	the	Temptation	of	the	Singleton	Pattern

There	is	no	support	for	explicitly	killing	singletons,	which	can	be	a	serious	issue	in	some
contexts.	For	example,	in	a	plug-in	architecture	where	a	plug-in	can	only	be	safely
unloaded	after	all	its	objects	have	been	cleaned	up.

There	is	no	order	to	the	implicit	cleanup	of	singletons	at	program	exit.	This	can	be
troublesome	for	applications	that	contain	singletons	with	interdependencies.	When
shutting	down	such	applications,	one	singleton	may	access	another	that	has	already
been	destroyed.

Some	of	these	shortcomings	can	be	overcome	by	introducing	additional	mechanisms.
However,	this	comes	at	the	cost	of	additional	complexity	in	code	that	could	have	been
avoided	by	choosing	an	alternative	design.

Therefore,	restrict	your	use	of	the	Singleton	pattern	to	the	classes	that	truly	must	never	be
instantiated	more	than	once.	Don't	use	a	singleton's	global	access	point	from	arbitrary	code.
Instead,	direct	access	to	the	singleton	should	be	from	only	a	few	well-defined	places,	from
where	it	can	be	passed	around	via	its	interface	to	other	code.	This	other	code	is	unaware,
and	so	does	not	depend	on	whether	a	singleton	or	any	other	kind	of	class	implements	the
interface.	This	breaks	the	dependencies	that	prevented	unit	testing	and	improves	the
maintainability.	So,	next	time	you	are	thinking	about	implementing	or	accessing	a	singleton,
hopefully	you'll	pause,	and	think	again.

by	Sam	Saariste

97	Things	Every	Programmer	Should	Know

143Resist	the	Temptation	of	the	Singleton	Pattern

http://programmer.97things.oreilly.com/wiki/index.php/Sam_Saariste

The	Road	to	Performance	Is	Littered	with
Dirty	Code	Bombs
More	often	than	not,	performance	tuning	a	system	requires	you	to	alter	code.	When	we	need
to	alter	code,	every	chunk	that	is	overly	complex	or	highly	coupled	is	a	dirty	code	bomb
laying	in	wait	to	derail	the	effort.	The	first	casualty	of	dirty	code	will	be	your	schedule.	If	the
way	forward	is	smooth	it	will	be	easy	to	predict	when	you'll	finish.	Unexpected	encounters
with	dirty	code	will	make	it	very	difficult	to	make	a	sane	prediction.

Consider	the	case	where	you	find	an	execution	hot	spot.	The	normal	course	of	action	is	to
reduce	the	strength	of	the	underlying	algorithm.	Let's	say	you	respond	to	your	manager's
request	for	an	estimate	with	an	answer	of	3-4	hours.	As	you	apply	the	fix	you	quickly	realize
that	you've	broken	a	dependent	part.	Since	closely	related	things	are	often	necessarily
coupled,	this	breakage	is	most	likely	expected	and	accounted	for.	But	what	happens	if	fixing
that	dependency	results	in	other	dependent	parts	breaking?	Furthermore,	the	farther	away
the	dependency	is	from	the	origin,	the	less	likely	you	are	to	recognize	it	as	such	and	account
for	it	in	your	estimate.	All	of	a	sudden	your	3-4	hour	estimate	can	easily	balloon	to	3-4
weeks.	Often	this	unexpected	inflation	in	the	schedule	happens	1	or	2	days	at	a	time.	It	is
not	uncommon	to	see	"quick"	refactorings	eventually	taking	several	months	to	complete.	In
these	instances,	the	damage	to	the	credibility	and	political	capital	of	the	responsible	team
will	range	from	severe	to	terminal.	If	only	we	had	a	tool	to	help	us	identify	and	measure	this
risk.

In	fact,	we	have	many	ways	of	measuring	and	controlling	the	degree	and	depth	of	coupling
and	complexity	of	our	code.	Software	metrics	can	be	used	to	count	the	occurrences	of
specific	features	in	our	code.	The	values	of	these	counts	do	correlate	with	code	quality.	Two
of	a	number	of	metrics	that	measure	coupling	are	fan-in	and	fan-out.	Consider	fan-out	for
classes:	It	is	defined	as	the	number	of	classes	referenced	either	directly	or	indirectly	from	a
class	of	interest.	You	can	think	of	this	as	a	count	of	all	the	classes	that	must	be	compiled
before	your	class	can	be	compiled.	Fan-in,	on	the	other	hand,	is	a	count	of	all	classes	that
depend	upon	the	class	of	interest.	Knowing	fan-out	and	fan-in	we	can	calculate	an	instability
factor	using	I	=	fo	/	(fi	+	fo).	As	I	approaches	0,	the	package	becomes	more	stable.	As	I
approaches	1,	the	package	becomes	unstable.	Packages	that	are	stable	are	low	risk	targets
for	recoding	whereas	unstable	packages	are	more	likely	to	be	filled	with	dirty	code	bombs.
The	goal	in	refactoring	is	to	move	I	closer	to	0.

When	using	metrics	one	must	remember	that	they	are	only	rules	of	thumb.	Purely	on	math
we	can	see	that	increasing	fi	without	changing	fo	will	move	I	closer	to	0.	There	is,	however,	a
downside	to	a	very	large	fan-in	value	in	that	these	class	will	be	more	difficult	to	alter	without

97	Things	Every	Programmer	Should	Know

144The	Road	to	Performance	Is	Littered	with	Dirty	Code	Bombs

breaking	dependents.	Also,	without	addressing	fan-out	you're	not	really	reducing	your	risks
so	some	balance	must	be	applied.

One	downside	to	software	metrics	is	that	the	huge	array	of	numbers	that	metrics	tools
produce	can	be	intimidating	to	the	uninitiated.	That	said,	software	metrics	can	be	a	powerful
tool	in	our	fight	for	clean	code.	They	can	help	us	to	identify	and	eliminate	dirty	code	bombs
before	they	are	a	serious	risk	to	a	performance	tuning	exercise.

By	Kirk	Pepperdine

97	Things	Every	Programmer	Should	Know

145The	Road	to	Performance	Is	Littered	with	Dirty	Code	Bombs

http://programmer.97things.oreilly.com/wiki/index.php/Kirk_Pepperdine

Simplicity	Comes	from	Reduction
"Do	it	again...,"	my	boss	told	me	as	his	finger	pressed	hard	on	the	delete	key.	I	watched	the
computer	screen	with	an	all	too	familiar	sinking	feeling,	as	my	code	—	line	after	line	—
disappeared	into	oblivion.

My	boss,	Stefan,	wasn't	always	the	most	vocal	of	people,	but	he	knew	bad	code	when	he
saw	it.	And	he	knew	exactly	what	to	do	with	it.

I	had	arrived	in	my	present	position	as	a	student	programmer	with	lots	of	energy,	plenty	of
enthusiasm	but	absolutely	no	idea	how	to	code.	I	had	this	horrible	tendency	to	think	that	the
solution	to	every	problem	was	to	add	in	another	variable	some	place.	Or	throw	in	another
line.	On	a	bad	day,	instead	of	the	logic	getting	better	with	each	revision,	my	code	gradually
got	larger,	more	complex,	and	farther	away	from	working	consistently.

It's	natural,	particularly	when	in	a	rush,	to	just	want	to	make	the	most	minimal	changes	to	an
existing	block	of	code,	even	if	it	is	awful.	Most	programmers	will	preserve	bad	code,	fearing
that	starting	anew	will	require	significantly	more	effort	than	just	going	back	to	the	beginning.
That	can	be	true	for	code	that	is	close	to	working,	but	there	is	just	some	code	that	is	beyond
all	help.

More	time	gets	wasted	in	trying	to	salvage	bad	work	than	it	should.	Once	something
becomes	a	resource	sink,	it	needs	to	be	discarded.	Quickly.

Not	that	one	should	easily	toss	away	all	of	that	typing,	naming,	and	formatting.	My	boss's
reaction	was	extreme,	but	it	did	force	me	to	rethink	the	code	on	the	second	(or	occasionally
third)	attempt.	Still,	the	best	approach	to	fixing	bad	code	is	to	flip	into	a	mode	were	the	code
is	mercilessly	refactored,	shifted	around,	or	deleted.

The	code	should	be	simple.	There	should	be	a	minimal	number	of	variables,	functions,
declarations,	and	other	syntactic	language	necessities.	Extra	lines,	extra	variables...	extra
anything,	really,	should	be	purged.	Removed	immediately.	What's	there,	what's	left,	should
only	be	just	enough	to	get	the	job	done,	completing	the	algorithm	or	performing	the
calculations.	Anything	and	everything	else	is	just	extra	unwanted	noise,	introduced
accidentally	and	obscuring	the	flow.	Hiding	the	important	stuff.

Of	course,	if	that	doesn't	do	it	then	just	delete	it	all	and	type	it	in	over	again.	Drawing	from
one's	memory	in	that	way	can	often	help	cut	through	a	lot	of	unnecessarily	clutter.

By	Paul	W.	Homer

97	Things	Every	Programmer	Should	Know

146Simplicity	Comes	from	Reduction

http://programmer.97things.oreilly.com/wiki/index.php/Paul_W._Homer

The	Single	Responsibility	Principle
One	of	the	most	foundational	principles	of	good	design	is:

Gather	together	those	things	that	change	for	the	same	reason,	and	separate	those
things	that	change	for	different	reasons.

This	principle	is	often	known	as	the	Single	Responsibility	Principle	or	SRP.	In	short,	it	says
that	a	subsystem,	module,	class,	or	even	a	function,	should	not	have	more	than	one	reason
to	change.	The	classic	example	is	a	class	that	has	methods	that	deal	with	business	rules,
reports,	and	database:

public	class	Employee	{

		public	Money	calculatePay()	...

		public	String	reportHours()	...

		public	void	save()	...

}

Some	programmers	might	think	that	putting	these	three	functions	together	in	the	same	class
is	perfectly	appropriate.	After	all,	classes	are	supposed	to	be	collections	of	functions	that
operate	on	common	variables.	However,	the	problem	is	that	the	three	functions	change	for
entirely	different	reasons.	The		calculatePay		function	will	change	whenever	the	business
rules	for	calculating	pay	change.	The		reportHours		function	will	change	whenever	someone
wants	a	different	format	for	the	report.	The	save	function	will	change	whenever	the	DBAs
change	the	database	schema.	These	three	reasons	to	change	combine	to	make		Employee	
very	volatile.	It	will	change	for	any	of	those	reasons.	More	importantly,	any	classes	that
depend	upon		Employee		will	be	affected	by	those	changes.

Good	system	design	means	that	we	separate	the	system	into	components	that	can	be
independently	deployed.	Independent	deployment	means	that	if	we	change	one	component
we	do	not	have	to	redeploy	any	of	the	others.	However,	if		Employee		is	heavily	used	by	many
other	classes	in	other	components,	then	every	change	to	Employee	is	likely	to	cause	the
other	components	to	be	redeployed;	thus	negating	a	major	benefit	of	component	design	(or
SOA	if	you	prefer	the	more	trendy	name).

97	Things	Every	Programmer	Should	Know

147The	Single	Responsibility	Principle

public	class	Employee	{

		public	Money	calculatePay()	...

}

public	class	EmployeeReporter	{

		public	String	reportHours(Employee	e)	...

}

public	class	EmployeeRepository	{

		public	void	save(Employee	e)	...

}

The	simple	partitioning	shown	above	resolves	the	issues.	Each	of	these	classes	can	be
placed	in	a	component	of	its	own.	Or	rather,	all	the	reporting	classes	can	go	into	the
reporting	component.	All	the	database	related	classes	can	go	into	the	repository	component.
And	all	the	business	rules	can	go	into	the	business	rule	component.

The	astute	reader	will	see	that	there	are	still	dependencies	in	the	above	solution.	That
	Employee		is	still	depended	upon	by	the	other	classes.	So	if		Employee		is	modified,	the	other
classes	will	likely	have	to	be	recompiled	and	redeployed.	Thus,		Employee		cannot	be
modified	and	then	independently	deployed.	However,	the	other	classes	can	be	modified	and
independently	deployed.	No	modification	of	one	of	them	can	force	any	of	the	others	to	be
recompiled	or	redeployed.	Even		Employee		could	be	independently	deployed	through	a
careful	use	of	the	Dependency	Inversion	Principle	(DIP),	but	that's	a	topic	for	a	different
book.

Careful	application	of	the	SRP,	separating	things	that	change	for	different	reasons,	is	one	if
the	keys	to	creating	designs	that	have	an	independently	deployable	component	structure.

by	Uncle	Bob

97	Things	Every	Programmer	Should	Know

148The	Single	Responsibility	Principle

http://www.amazon.com/dp/0135974445/
http://programmer.97things.oreilly.com/wiki/index.php/Uncle_Bob

Start	from	Yes
Recently	I	was	at	a	grocery	store	searching	high	and	low	for	"edamame"	(which	I	only
vaguely	knew	was	some	kind	of	a	vegetable).	I	wasn't	sure	whether	this	was	something	I'd
find	in	the	vegetable	section,	the	frozen	section,	or	in	a	can.	I	gave	up	and	tracked	down	an
employee	to	help	me	out.	She	didn't	know	either!

The	employee	could	have	responded	in	many	different	ways.	She	could	have	made	me	feel
ignorant	for	not	knowing	where	to	look,	or	given	me	vague	possibilities,	or	even	just	told	me
they	didn't	have	the	item.	But	instead	she	treated	the	request	as	an	opportunity	to	find	a
solution	and	help	a	customer.	She	called	other	employees	and	within	minutes	had	guided
me	to	the	exact	item,	nestled	in	the	frozen	section.

The	employee	in	this	case	looked	at	a	request	and	started	from	the	premise	that	we	would
solve	the	problem	and	satisfy	the	request.	She	started	from	yes	instead	of	starting	from	no.

When	I	was	first	placed	in	a	technical	leadership	role,	I	felt	that	my	job	was	to	protect	my
beautiful	software	from	the	ridiculous	stream	of	demands	coming	from	product	managers
and	business	analysts.	I	started	most	conversations	seeing	a	request	as	something	to
defeat,	not	something	to	grant.

At	some	point,	I	had	an	epiphany	that	maybe	there	was	a	different	way	to	work	that	merely
involved	shifting	my	perspective	from	starting	at	no	to	starting	at	yes.	In	fact,	I've	come	to
believe	that	starting	from	yes	is	actually	an	essential	part	of	being	a	technical	leader.

This	simple	change	radically	altered	how	I	approached	my	job.	As	it	turns	out,	there	are	a	lot
of	ways	to	say	yes.	When	someone	says	to	you	"Hey,	this	app	would	really	be	the	bees
knees	if	we	made	all	the	windows	round	and	translucent!"	you	could	reject	it	as	ridiculous.
But	it's	often	better	to	start	with	"Why?"	instead.	Often	there	is	some	actual	and	compelling
reason	why	that	person	is	asking	for	round	translucent	windows	in	the	first	place.	For
example,	you	may	be	just	about	to	sign	a	big	new	customer	with	a	standards	committee	that
mandates	round	translucent	windows.

Usually	you'll	find	that	when	you	known	the	context	of	the	request,	new	possibilities	open	up.
It's	common	for	the	request	to	be	accomplished	with	the	existing	product	in	some	other	way
allowing	you	to	say	yes	with	no	work	at	all:	"Actually,	in	the	user	preferences	you	can
download	the	round	translucent	windows	skin	and	turn	it	on."

Sometimes	the	other	person	will	simply	have	an	idea	that	you	find	incompatible	with	your
view	of	the	product.	I	find	it's	usually	helpful	to	turn	that	"Why?"	on	yourself.	Sometimes	the
act	of	voicing	the	reason	will	make	it	clear	that	your	first	reaction	doesn't	make	sense.	If	not,

97	Things	Every	Programmer	Should	Know

149Start	from	Yes

you	might	need	to	kick	it	up	a	notch	and	bring	in	other	key	decision	makers.	Remember,	the
goal	of	all	of	this	is	to	say	yes	to	the	other	person	and	try	to	make	it	work,	not	just	for	him	but
for	you	and	your	team	as	well.

If	you	can	voice	a	compelling	explanation	as	to	why	the	feature	request	is	incompatible	with
the	existing	product,	then	you	are	likely	to	have	a	productive	conversation	about	whether
you	are	building	the	right	product.	Regardless	of	how	that	conversation	concludes,	everyone
will	focus	more	sharply	on	what	the	product	is,	and	what	it	is	not.

Starting	from	yes	means	working	with	your	colleagues,	not	against	them.

By	Alex	Miller

97	Things	Every	Programmer	Should	Know

150Start	from	Yes

http://programmer.97things.oreilly.com/wiki/index.php/Alex_Miller

Step	Back	and	Automate,	Automate,
Automate
I	worked	with	programmers	who,	when	asked	to	produce	a	count	of	the	lines	of	code	in	a
module,	pasted	the	files	into	a	word	processor	and	used	its	"line	count"	feature.	And	they	did
it	again	next	week.	And	the	week	after.	It	was	bad.

I	worked	on	a	project	that	had	a	cumbersome	deployment	process,	involving	code	signing
and	moving	the	result	to	a	server,	requiring	many	mouse	clicks.	Someone	automated	it	and
the	script	ran	hundreds	of	times	during	final	testing,	far	more	often	than	anticipated.	It	was
good.

So,	why	do	people	do	the	same	task	over	and	over	instead	of	stepping	back	and	taking	the
time	to	automate	it?

Common	misconception	#1:	Automation	is
only	for	testing.
Sure,	test	automation	is	great,	but	why	stop	there?	Repetitive	tasks	abound	in	any	project:
version	control,	compiling,	building	JAR	files,	documentation	generation,	deployment,	and
reporting.	For	many	of	these	tasks,	the	script	is	mightier	than	the	mouse.	Executing	tedious
tasks	becomes	faster	and	more	reliable.

Common	misconception	#2:	I	have	an	IDE,	so	I
don't	have	to	automate.
Did	you	ever	have	a	"But	it	(checks	out|builds|passes	tests)	on	my	machine?"	argument	with
your	teammates?	Modern	IDEs	have	thousands	of	potential	settings,	and	it	is	essentially
impossible	to	ensure	that	all	team	members	have	identical	configurations.	Build	automation
systems	such	as	Ant	or	Autotools	give	you	control	and	repeatability.

Common	misconception	#3:	I	need	to	learn
exotic	tools	in	order	to	automate.

97	Things	Every	Programmer	Should	Know

151Step	Back	and	Automate,	Automate,	Automate

You	can	go	a	long	way	with	a	decent	shell	language	(such	as	bash	or	PowerShell)	and	a
build	automation	system.	If	you	need	to	interact	with	web	sites,	use	a	tool	such	as	iMacros
or	Selenium.

Common	misconception	#4:	I	can't	automate
this	task	because	I	can't	deal	with	these	file
formats.
If	a	part	of	your	process	requires	Word	documents,	spreadsheets,	or	images,	it	may	indeed
be	challenging	to	automate	it.	But	is	that	really	necessary?	Can	you	use	plain	text?	Comma-
separated	values?	XML?	A	tool	that	generates	a	drawing	from	a	text	file?	Often,	a	slight
tweak	in	the	process	can	yield	good	results	with	a	dramatic	reduction	in	tediousness.

Common	misconception	#5:	I	don't	have	the
time	to	figure	it	out.
You	don't	have	to	learn	all	of	bash	or	Ant	to	get	started.	Learn	as	you	go.	When	you	have	a
task	that	you	think	can	and	should	be	automated,	learn	just	enough	about	your	tools	to	do	it.
And	do	it	early	in	a	project	when	time	is	usually	easier	to	find.	Once	you	have	been
successful,	you	(and	your	boss)	will	see	that	it	makes	sense	to	invest	in	automation.

By	Cay	Horstmann

97	Things	Every	Programmer	Should	Know

152Step	Back	and	Automate,	Automate,	Automate

http://programmer.97things.oreilly.com/wiki/index.php/Cay_Horstmann

Take	Advantage	of	Code	Analysis	Tools
The	value	of	testing	is	something	that	is	drummed	into	software	developers	from	the	early
stages	of	their	programming	journey.	In	recent	years	the	rise	of	unit	testing,	test-driven
development,	and	agile	methods	has	seen	a	surge	of	interest	in	making	the	most	of	testing
throughout	all	phases	of	the	development	cycle.	However,	testing	is	just	one	of	many	tools
that	you	can	use	to	improve	the	quality	of	code.

Back	in	the	mists	of	time,	when	C	was	still	a	new	phenomenon,	CPU	time	and	storage	of
any	kind	were	at	a	premium.	The	first	C	compilers	were	mindful	of	this	and	so	cut	down	on
the	number	of	passes	through	the	code	they	made	by	removing	some	semantic	analyses.
This	meant	that	the	compiler	checked	for	only	a	small	subset	of	the	bugs	that	could	be
detected	at	compile	time.	To	compensate,	Stephen	Johnson	wrote	a	tool	called	lint	—	which
removes	the	fluff	from	your	code	—	that	implemented	some	of	the	static	analyses	that	had
been	removed	from	its	sister	C	compiler.	Static	analysis	tools,	however,	gained	a	reputation
for	giving	large	numbers	of	false-positive	warnings	and	warnings	about	stylistic	conventions
that	aren't	always	necessary	to	follow.

The	current	landscape	of	languages,	compilers,	and	static	analysis	tools	is	very	different.
Memory	and	CPU	time	are	now	relatively	cheap,	so	compilers	can	afford	to	check	for	more
errors.	Almost	every	language	boasts	at	least	one	tool	that	checks	for	violations	of	style
guides,	common	gotchas,	and	sometimes	cunning	errors	that	can	be	difficult	to	catch,	such
as	potential	null	pointer	dereferences.	The	more	sophisticated	tools,	such	as	Splint	for	C	or
Pylint	for	Python,	are	configurable,	meaning	that	you	can	choose	which	errors	and	warnings
the	tool	emits	with	a	configuration	file,	via	command	line	switches,	or	in	your	IDE.	Splint	will
even	let	you	annotate	your	code	in	comments	to	give	it	better	hints	about	how	your	program
works.

If	all	else	fails,	and	you	find	yourself	looking	for	simple	bugs	or	standards	violations	which
are	not	caught	by	your	compiler,	IDE,	or	lint	tools,	then	you	can	always	roll	your	own	static
checker.	This	is	not	as	difficult	as	it	might	sound.	Most	languages,	particularly	ones	branded
dynamic,	expose	their	abstract	syntax	tree	and	compiler	tools	as	part	of	their	standard
library.	It	is	well	worth	getting	to	know	the	dusty	corners	of	standard	libraries	that	are	used	by
the	development	team	of	the	language	you	are	using,	as	these	often	contain	hidden	gems
that	are	useful	for	static	analysis	and	dynamic	testing.	For	example,	the	Python	standard
library	contains	a	disassembler	which	tells	you	the	bytecode	used	to	generate	some
compiled	code	or	code	object.	This	sounds	like	an	obscure	tool	for	compiler	writers	on	the

97	Things	Every	Programmer	Should	Know

153Take	Advantage	of	Code	Analysis	Tools

python-dev	team,	but	it	is	actually	surprisingly	useful	in	everyday	situations.	One	thing	this
library	can	disassemble	is	your	last	stack	trace,	giving	you	feedback	on	exactly	which
bytecode	instruction	threw	the	last	uncaught	exception.

So,	don't	let	testing	be	the	end	of	your	quality	assurance	—	take	advantage	of	analysis	tools
and	don't	be	afraid	to	roll	your	own.

By	Sarah	Mount

97	Things	Every	Programmer	Should	Know

154Take	Advantage	of	Code	Analysis	Tools

http://programmer.97things.oreilly.com/wiki/index.php/Sarah_Mount

Test	for	Required	Behavior,	not	Incidental
Behavior
A	common	pitfall	in	testing	is	to	assume	that	exactly	what	an	implementation	does	is
precisely	what	you	want	to	test	for.	At	first	glance	this	sounds	more	like	a	virtue	than	a	pitfall.
Phrased	another	way,	however,	the	issue	becomes	more	obvious:	A	common	pitfall	in
testing	is	to	hardwire	tests	to	the	specifics	of	an	implementation,	where	those	specifics	are
incidental	and	have	no	bearing	on	the	desired	functionality.

When	tests	are	hardwired	to	implementation	incidentals,	changes	to	the	implementation	that
are	actually	compatible	with	the	required	behavior	may	cause	tests	to	fail,	leading	to	false
positives.	Programmers	typically	respond	either	by	rewriting	the	test	or	by	rewriting	the	code.
Assuming	that	a	false	positive	is	actually	a	true	positive	is	often	a	consequence	of	fear,
uncertainty,	or	doubt.	It	has	the	effect	of	raising	the	status	of	incidental	behavior	to	required
behavior.	In	rewriting	a	test,	programmers	either	refocus	the	test	on	the	required	behavior
(good)	or	simply	hardwire	it	to	the	new	implementation	(not	good).	Tests	need	to	be
sufficiently	precise,	but	they	also	need	to	be	accurate.

For	example,	in	a	three-way	comparison,	such	as	C's		strcmp		or	Java's		String.compareTo	,
the	requirements	on	the	result	are	that	it	is	negative	if	the	left-hand	side	is	less	than	the	right,
positive	if	the	left-hand	side	is	greater	than	the	right,	and	zero	if	they	are	considered	equal.
This	style	of	comparison	is	used	in	many	APIs,	including	the	comparator	for	C's		qsort	
function	and		compareTo		in	Java's		Comparable		interface.	Although	the	specific	values		-1	
and		+1		are	commonly	used	in	implementations	to	signify	less	than	and	greater	than,
respectively,	programmers	often	mistakenly	assume	that	these	values	represent	the	actual
requirement	and	consequently	write	tests	that	nail	this	assumption	up	in	public.

A	similar	issue	arises	with	tests	that	assert	spacing,	precise	wording,	and	other	aspects	of
textual	formatting	and	presentation	that	are	incidental.	Unless	you	are	writing,	for	example,
an	XML	generator	that	offers	configurable	formatting,	spacing	should	not	be	significant	to	the
outcome.	Likewise,	hardwiring	placement	of	buttons	and	labels	on	UI	controls	reduces	the
option	to	change	and	refine	these	incidentals	in	future.	Minor	changes	in	implementation	and
inconsequential	changes	in	formatting	suddenly	become	build	breakers.

Overspecified	tests	are	often	a	problem	with	whitebox	approaches	to	unit	testing.	Whitebox
tests	use	the	structure	of	the	code	to	determine	the	test	cases	needed.	The	typical	failure
mode	of	whitebox	testing	is	that	the	tests	end	up	asserting	that	the	code	does	what	the	code
does.	Simply	restating	what	is	already	obvious	from	the	code	adds	no	value	and	leads	to	a
false	sense	of	progress	and	security.

97	Things	Every	Programmer	Should	Know

155Test	for	Required	Behavior,	not	Incidental	Behavior

To	be	effective,	tests	need	to	state	contractual	obligations	rather	than	parrot
implementations.	They	need	to	take	a	blackbox	view	of	the	units	under	test,	sketching	out
the	interface	contracts	in	executable	form.	Therefore,	align	tested	behavior	with	required
behavior.

By	Kevlin	Henney

97	Things	Every	Programmer	Should	Know

156Test	for	Required	Behavior,	not	Incidental	Behavior

http://programmer.97things.oreilly.com/wiki/index.php/Kevlin_Henney

Test	Precisely	and	Concretely
It	is	important	to	test	for	the	desired,	essential	behavior	of	a	unit	of	code,	rather	than	test	for
the	incidental	behavior	of	its	particular	implementation.	But	this	should	not	be	taken	or
mistaken	as	an	excuse	for	vague	tests.	Tests	need	to	be	both	accurate	and	precise.

Something	of	a	tried,	tested,	and	testing	classic,	sorting	routines	offer	an	illustrative
example.	Implementing	a	sorting	algorithm	is	not	necessarily	an	everyday	task	for	a
programmer,	but	sorting	is	such	a	familiar	idea	that	most	people	believe	they	know	what	to
expect	from	it.	This	casual	familiarity,	however,	can	make	it	harder	to	see	past	certain
assumptions.

When	programmers	are	asked	"What	would	you	test	for?"	by	far	and	away	the	most
common	response	is	"The	result	of	sorting	is	a	sorted	sequence	of	elements."	While	this	is
true,	it	is	not	the	whole	truth.	When	prompted	for	a	more	precise	condition,	many
programmers	add	that	the	resulting	sequence	should	be	the	same	length	as	the	original.
Although	correct,	this	is	still	not	enough.	For	example,	given	the	following	sequence:

3	1	4	1	5	9

The	following	sequence	satisfies	a	postcondition	of	being	sorted	in	non-descending	order
and	having	the	same	length	as	the	original	sequence:

3	3	3	3	3	3

Although	it	satisfies	the	spec,	it	is	also	most	certainly	not	what	was	meant!	This	example	is
based	on	an	error	taken	from	real	production	code	(fortunately	caught	before	it	was
released),	where	a	simple	slip	of	a	keystroke	or	a	momentary	lapse	of	reason	led	to	an
elaborate	mechanism	for	populating	the	whole	result	with	the	first	element	of	the	given	array.

The	full	postcondition	is	that	the	result	is	sorted	and	that	it	holds	a	permutation	of	the	original
values.	This	appropriately	constrains	the	required	behavior.	That	the	result	length	is	the
same	as	the	input	length	comes	out	in	the	wash	and	doesn't	need	restating.

Even	stating	the	postcondition	in	the	way	described	is	not	enough	to	give	you	a	good	test.	A
good	test	should	be	readable.	It	should	be	comprehensible	and	simple	enough	that	you	can
see	readily	that	it	is	correct	(or	not).	Unless	you	already	have	code	lying	around	for	checking
that	a	sequence	is	sorted	and	that	one	sequence	contains	a	permutation	of	values	in
another,	it	is	quite	likely	that	the	test	code	will	be	more	complex	than	the	code	under	test.	As
Tony	Hoare	observed:

97	Things	Every	Programmer	Should	Know

157Test	Precisely	and	Concretely

There	are	two	ways	of	constructing	a	software	design:	One	way	is	to	make	it	so	simple
that	there	are	obviously	no	deficiencies	and	the	other	is	to	make	it	so	complicated	that
there	are	no	obvious	deficiencies.

Using	concrete	examples	eliminates	this	accidental	complexity	and	opportunity	for	accident.
For	example,	given	the	following	sequence:

3	1	4	1	5	9

The	result	of	sorting	is	the	following:

1	1	3	4	5	9

No	other	answer	will	do.	Accept	no	substitutes.

Concrete	examples	helps	to	illustrate	general	behavior	in	an	accessible	and	unambiguous
way.	The	result	of	adding	an	item	to	an	empty	collection	is	not	simply	that	it	is	not	empty:	It	is
that	the	collection	now	has	a	single	item.	And	that	the	single	item	held	is	the	item	added.
Two	or	more	items	would	qualify	as	not	empty.	And	would	also	be	wrong.	A	single	item	of	a
different	value	would	also	be	wrong.	The	result	of	adding	a	row	to	a	table	is	not	simply	that
the	table	is	one	row	bigger.	It	also	entails	that	the	row's	key	can	be	used	to	recover	the	row
added.	And	so	on.

In	specifying	behavior,	tests	should	not	simply	be	accurate:	They	must	also	be	precise.

By	Kevlin	Henney

97	Things	Every	Programmer	Should	Know

158Test	Precisely	and	Concretely

http://programmer.97things.oreilly.com/wiki/index.php/Kevlin_Henney

Test	While	You	Sleep	(and	over	Weekends)
Relax.	I	am	not	referring	to	offshore	development	centers,	overtime	on	weekends,	or
working	the	night	shift.	Rather,	I	want	to	draw	your	attention	to	how	much	computing	power
we	have	at	our	disposal.	Specifically,	how	much	we	are	not	harnessing	to	make	our	lives	as
programmers	a	little	easier.	Are	you	constantly	finding	it	difficult	to	get	enough	computing
power	during	the	work	day?	If	so,	what	are	your	test	servers	doing	outside	of	normal	work
hours?	More	often	than	not,	the	test	servers	are	idling	overnight	and	over	the	weekend.	You
can	use	this	to	your	advantage.

Have	you	been	guilty	of	committing	a	change	without	running	all	the	tests?	One	of	the
main	reasons	programmers	don't	run	test	suites	before	committing	code	is	because	of
the	length	of	time	they	may	take.	When	deadlines	are	looming	and	push	comes	to
shove,	humans	naturally	start	cutting	corners.	One	way	to	address	this	is	to	break	down
your	large	test	suite	into	two	or	more	profiles.	A	smaller,	mandatory	test	profile	that	is
quick	to	run,	will	help	to	ensure	that	tests	are	run	before	each	commit.	All	of	the	test
profiles	(including	the	mandatory	profile	—	just	to	be	sure)	can	be	automated	to	run
overnight,	ready	to	report	their	results	in	the	morning.

Have	you	had	enough	opportunity	to	test	the	stability	of	your	product?	Longer-running
tests	are	vital	for	identifying	memory	leaks	and	other	stability	issues.	They	are	seldom
run	during	the	day	as	it	will	tie	up	time	and	resources.	You	could	automate	a	soak	test	to
be	run	during	the	night,	and	a	bit	longer	over	the	weekend.	From	6.00	pm	Friday	to	6.00
am	the	following	Monday	there	are	60	hours	worth	of	potential	testing	time.

Are	you	getting	quality	time	on	your	Performance	testing	environment?	I	have	seen
teams	bickering	with	each	other	to	get	time	on	the	performance	testing	environment.	In
most	cases	neither	team	gets	enough	quality	time	during	the	day,	while	the	environment
is	virtually	idle	after	hours.	The	servers	and	the	network	are	not	as	busy	during	the	night
or	over	the	weekend.	It's	an	ideal	time	to	run	some	quality	performance	tests.

Are	there	too	many	permutations	to	test	manually?	In	many	cases	your	product	is
targeted	to	run	on	a	variety	of	platforms.	For	example,	both	32-bit	and	64-bit,	on	Linux,
Solaris,	and	Windows,	or	simply	on	different	versions	of	the	same	operating	system.	To
make	matters	worse,	many	modern	applications	expose	themselves	to	a	plethora	of
transport	mechanisms	and	protocols	(HTTP,	AMQP,	SOAP,	CORBA,	etc.).	Manually
testing	all	of	these	permutations	is	very	time	consuming	and	most	likely	done	close	to	a
release	due	to	resource	pressure.	Alas,	it	may	be	too	late	in	the	cycle	to	catch	certain
nasty	bugs.

97	Things	Every	Programmer	Should	Know

159Test	While	You	Sleep	(and	over	Weekends)

Automated	tests	run	during	the	night	or	over	weekends	will	ensure	all	these	permutations
are	tested	more	often.	With	a	little	bit	of	thinking	and	some	scripting	knowledge,	you	can
schedule	a	few	cron	jobs	to	kick	off	some	testing	at	night	and	over	the	weekend.	There	are
also	many	testing	tools	out	there	that	could	help.	Some	organizations	even	have	server	grids
that	pool	servers	across	different	departments	and	teams	to	ensure	that	resources	are
utilized	efficiently.	If	this	is	available	in	your	organization,	you	can	submit	tests	to	be	run	at
night	or	over	weekends.

by	Rajith	Attapattu

97	Things	Every	Programmer	Should	Know

160Test	While	You	Sleep	(and	over	Weekends)

http://programmer.97things.oreilly.com/wiki/index.php/Rajith_Attapattu

Testing	Is	the	Engineering	Rigor	of
Software	Development
Developers	love	to	use	tortured	metaphors	when	trying	to	explain	what	it	is	they	do	to	family
members,	spouses,	and	other	non-techies.	We	frequently	resort	to	bridge	building	and	other
"hard"	engineering	disciplines.	All	these	metaphors	fall	down	quickly,	though,	when	you	start
trying	to	push	them	too	hard.	It	turns	out	that	software	development	is	not	like	many	of	the
"hard"	engineering	disciplines	in	lots	of	important	ways.

Compared	to	"hard"	engineering,	the	software	development	world	is	at	about	the	same	place
the	bridge	builders	were	when	the	common	strategy	was	to	build	a	bridge	and	then	roll
something	heavy	over	it.	If	it	stayed	up,	it	was	a	good	bridge.	If	not,	well,	time	to	go	back	to
the	drawing	board.	Over	the	past	few	thousand	years,	engineers	have	developed
mathematics	and	physics	they	can	use	for	a	structural	solution	without	having	to	build	it	to
see	what	it	does.	We	don't	have	anything	like	that	in	software,	and	perhaps	never	will
because	software	is	in	fact	very	different.	For	a	deep-dive	exploration	of	the	comparison
between	software	"engineering"	and	regular	engineering,	"What	is	Software	Design?",
written	by	Jack	Reeves	in	C++	Journal	in	1992,	is	a	classic.	Even	though	it	was	written
almost	two	decades	ago,	it	is	still	remarkably	accurate.	He	painted	a	gloomy	picture	in	this
comparison,	but	the	thing	that	was	missing	in	1992	was	a	strong	testing	ethos	for	software.

Testing	"hard"	things	is	tough	because	you	have	to	build	them	to	test	them,	which
discourages	speculative	building	just	to	see	what	will	happen.	But	the	building	process	in
software	is	ridiculously	cheap.	We've	developed	an	entire	ecosystem	of	tools	that	make	it
easy	to	do	just	that:	unit	testing,	mock	objects,	test	harnesses,	and	lots	of	other	stuff.	Other
engineers	would	love	to	be	able	to	build	something	and	test	it	under	realistic	conditions.	As
software	developers,	we	should	embrace	testing	as	the	primary	(but	not	the	only)	verification
mechanism	for	software.	Rather	than	waiting	for	some	sort	of	calculus	for	software,	we
already	have	the	tools	at	our	disposal	to	ensure	good	engineering	practices.	Viewed	in	this
light,	we	now	have	ammunition	against	managers	who	tell	us	"We	don't	have	time	to	test."	A
bridge	builder	would	never	hear	from	their	boss	"Don't	bother	doing	structural	analysis	on
that	building	—	we	have	a	tight	deadline."	The	recognition	that	testing	is	indeed	the	path	to
reproducibility	and	quality	in	software	allows	us	as	developers	to	push	back	on	arguments
against	it	as	professionally	irresponsible.

Testing	takes	time,	just	like	structural	analysis	takes	time.	Both	activities	ensure	the	quality
of	the	end	product.	It's	time	for	software	developers	to	take	up	the	mantle	of	responsibility	for
what	they	produce.	Testing	alone	isn't	sufficient,	but	it	is	necessary.	Testing	is	the
engineering	rigor	of	software	development.

97	Things	Every	Programmer	Should	Know

161Testing	Is	the	Engineering	Rigor	of	Software	Development

http://www.developerdotstar.com/mag/articles/reeves_design.html

By	Neal	Ford

97	Things	Every	Programmer	Should	Know

162Testing	Is	the	Engineering	Rigor	of	Software	Development

http://programmer.97things.oreilly.com/wiki/index.php/Neal_Ford

Thinking	in	States
People	in	the	real	world	have	a	weird	relationship	with	state.	This	morning	I	stopped	by	the
local	store	to	prepare	for	another	day	of	converting	caffeine	to	code.	Since	my	favorite	way
of	doing	that	is	by	drinking	latte,	and	I	couldn't	find	any	milk,	I	asked	the	clerk.

"Sorry,	we're	super-duper,	mega-out	of	milk."

To	a	programmer,	that's	an	odd	statement.	You're	either	out	of	milk	or	you're	not.	There	is	no
scale	when	it	comes	to	being	out	of	milk.	Perhaps	she	was	trying	to	tell	me	that	they'd	be	out
of	milk	for	a	week,	but	the	outcome	was	the	same	—	espresso	day	for	me.

In	most	real-world	situations,	people's	relaxed	attitude	to	state	is	not	an	issue.	Unfortunately,
however,	many	programmers	are	quite	vague	about	state	too	—	and	that	is	a	problem.

Consider	a	simple	webshop	that	only	accepts	credit	cards	and	does	not	invoice	customers,
with	an		Order		class	containing	this	method:

	public	boolean	isComplete()	{

					return	isPaid()	&&	hasShipped();

	}

Reasonable,	right?	Well,	even	if	the	expression	is	nicely	extracted	into	a	method	instead	of
copy'n'pasted	everywhere,	the	expression	shouldn't	exist	at	all.	The	fact	that	it	does
highlights	a	problem.	Why?	Because	an	order	can't	be	shipped	before	it's	paid.	Thereby,
	hasShipped		can't	be	true	unless		isPaid		is	true,	which	makes	part	of	the	expression
redundant.	You	may	still	want		isComplete		for	clarity	in	the	code,	but	then	it	should	look	like
this:

	public	boolean	isComplete()	{

					return	hasShipped();

	}

In	my	work,	I	see	both	missing	checks	and	redundant	checks	all	the	time.	This	example	is
tiny,	but	when	you	add	cancellation	and	repayment,	it'll	become	more	complex	and	the	need
for	good	state	handling	increases.	In	this	case,	an	order	can	only	be	in	one	of	three	distinct
states:

In	progress:	Can	add	or	remove	items.	Can't	ship.
Paid:	Can't	add	or	remove	items.	Can	be	shipped.
Shipped:	Done.	No	more	changes	accepted.

97	Things	Every	Programmer	Should	Know

163Thinking	in	States

These	states	are	important	and	you	need	to	check	that	you're	in	the	expected	state	before
doing	operations,	and	that	you	only	move	to	a	legal	state	from	where	you	are.	In	short,	you
have	to	protect	your	objects	carefully,	in	the	right	places.

But	how	do	you	begin	thinking	in	states?	Extracting	expressions	to	meaningful	methods	is	a
very	good	start,	but	it	is	just	a	start.	The	foundation	is	to	understand	state	machines.	I	know
you	may	have	bad	memories	from	CS	class,	but	leave	them	behind.	State	machines	are	not
particularly	hard.	Visualize	them	to	make	them	simple	to	understand	and	easy	to	talk	about.
Test-drive	your	code	to	unravel	valid	and	invalid	states	and	transitions	and	to	keep	them
correct.	Study	the	State	pattern.	When	you	feel	comfortable,	read	up	on	Design	by	Contract.
It	helps	you	ensure	a	valid	state	by	validating	incoming	data	and	the	object	itself	on	entry
and	exit	of	each	public	method.

If	your	state	is	incorrect,	there's	a	bug	and	you	risk	trashing	data	if	you	don't	abort.	If	you	find
the	state	checks	to	be	noise,	learn	how	to	use	a	tool,	code	generation,	weaving,	or	aspects
to	hide	them.	Regardless	of	which	approach	you	pick,	thinking	in	states	will	make	your	code
simpler	and	more	robust.

By	Niclas	Nilsson

97	Things	Every	Programmer	Should	Know

164Thinking	in	States

http://programmer.97things.oreilly.com/wiki/index.php/Niclas_Nilsson

Two	Heads	Are	Often	Better	than	One
Programming	requires	deep	thought,	and	deep	thought	requires	solitude.	So	goes	the
programmer	stereotype.

This	"lone	wolf"	approach	to	programming	has	been	giving	way	to	a	more	collaborative
approach,	which,	I	would	argue,	improves	quality,	productivity,	and	job	satisfaction	for
programmers.	This	approach	has	developers	working	more	closely	with	each	other	and	also
with	non-developers	—	business	and	systems	analysts,	quality	assurance	professionals,
and	users.

What	does	this	mean	for	developers?	Being	the	expert	technologist	is	no	longer	sufficient.
You	must	become	effective	at	working	with	others.

Collaboration	is	not	about	asking	and	answering	questions	or	sitting	in	meetings.	It's	about
rolling	up	your	sleeves	with	someone	else	to	jointly	attack	work.

I'm	a	big	fan	of	pair	programming.	You	might	call	this	"extreme	collaboration."	As	a
developer,	my	skills	grow	when	I	pair.	If	I	am	weaker	than	my	pairing	partner	in	the	domain
or	technology,	I	clearly	learn	from	his	or	her	experience.	When	I	am	stronger	in	some	aspect,
I	learn	more	about	what	I	know	and	don't	know	by	having	to	explain	myself.	Invariably,	we
both	bring	something	to	the	table	and	learn	from	each	other.

When	pairing,	we	each	bring	our	collective	programming	experiences	—	domain	as	well	as
technical	—	to	the	problem	at	hand	and	can	bring	unique	insight	and	experience	into	writing
software	effectively	and	efficiently.	Even	in	cases	of	extreme	imbalance	in	domain	or
technical	knowledge,	the	more	experienced	participant	invariably	learns	something	from	the
other	—	perhaps	a	new	keyboard	shortcut,	or	exposure	to	a	new	tool	or	library.	For	the	less-
experienced	member	of	the	pair,	this	is	a	great	way	to	get	up	to	speed.

Pair	programming	is	popular	with,	though	not	exclusive	to,	proponents	of	agile	software
development.	Some	who	object	to	pairing	suggest	"Why	should	I	pay	two	programmers	to
do	the	work	of	one?"	My	response	is	that,	indeed,	you	should	not.	I	argue	that	pairing
increases	quality,	understanding	of	the	domain	and	technology,	techniques	(like	IDE	tricks),
and	mitigates	the	impact	of	lottery	risk	(one	of	your	expert	developers	wins	the	lottery	and
quits	the	next	day).

What	is	the	long-term	value	of	learning	a	new	keyboard	shortcut?	How	do	we	measure	the
overall	quality	improvement	to	the	product	resulting	from	pairing?	How	do	we	measure	the
impact	of	your	partner	not	letting	you	pursue	a	dead-end	approach	to	solving	a	difficult

97	Things	Every	Programmer	Should	Know

165Two	Heads	Are	Often	Better	than	One

problem?	One	study	cites	an	increase	of	40%	in	effectiveness	and	speed	(J	T	Nosek,	"The
Case	for	Collaborative	Programming,"	Communications	of	the	ACM,	March	1998).	What	is
the	value	of	mitigating	your	"lottery	risk?"	Most	of	these	gains	are	difficult	to	measure.

Who	should	pair	with	whom?	If	you're	new	to	the	team,	it's	important	to	find	a	team	member
who	is	knowledgeable.	Just	as	important	find	someone	who	has	good	interpersonal	and
coaching	skills.	If	you	don't	have	much	domain	experience,	pair	with	a	team	member	who	is
an	expert	in	the	domain.

If	you	are	not	convinced,	experiment:	collaborate	with	your	colleagues.	Pair	on	an
interesting,	gnarly	problem.	See	how	it	feels.	Try	it	a	few	times.

By	Adrian	Wible

97	Things	Every	Programmer	Should	Know

166Two	Heads	Are	Often	Better	than	One

http://programmer.97things.oreilly.com/wiki/index.php/Adrian_Wible

Two	Wrongs	Can	Make	a	Right	(and	Are
Difficult	to	Fix)
Code	never	lies,	but	it	can	contradict	itself.	Some	contradictions	lead	to	those	"How	can	that
possibly	work?"	moments.

In	an	interview,	the	principal	designer	of	the	Apollo	11	Lunar	Module	software,	Allan	Klumpp,
disclosed	that	the	software	controlling	the	engines	contained	a	bug	that	should	have	made
the	lander	unstable.	However,	another	bug	compensated	for	the	first	and	the	software	was
used	for	both	Apollo	11	and	12	Moon	landings	before	either	bug	was	found	or	fixed.

Consider	a	function	that	returns	a	completion	status.	Imagine	that	it	returns	false	when	it
should	return	true.	Now	imagine	the	calling	function	neglects	to	check	the	return	value.
Everything	works	fine	until	one	day	someone	notices	the	missing	check	and	inserts	it.

Or	consider	an	application	that	stores	state	as	an	XML	document.	Imagine	that	one	of	the
nodes	in	incorrectly	written	as		TimeToLive		instead	of		TimeToDie	,	as	the	documentation
says	it	should.	Everything	appears	fine	while	the	writer	code	and	the	reader	code	both
contain	the	same	error.	But	fix	one,	or	add	a	new	application	reading	the	same	document,
and	the	symmetry	is	broken,	as	well	as	the	code.

When	two	defects	in	the	code	create	one	visible	fault,	the	methodical	approach	to	fixing
faults	can	itself	break	down.	The	developer	gets	a	bug	report,	finds	the	defect,	fixes	it,	and
retests.	The	reported	fault	still	occurs,	however,	because	a	second	defect	is	at	work.	So	the
first	fix	is	removed,	the	code	inspected	until	the	second	underlying	defect	is	found,	and	a	fix
applied	for	that.	But	the	first	defect	has	returned,	the	reported	fault	is	still	seen,	and	so	the
second	fix	is	rolled	back.	The	process	repeats	but	now	the	developer	has	dismissed	two
possible	fixes	and	is	looking	to	make	a	third	that	will	never	work.

The	interplay	between	two	code	defects	that	appear	as	one	visible	fault	not	only	makes	it
hard	to	fix	the	problem	but	leads	developers	down	blind	alleys,	only	to	find	they	tried	the
right	answers	early	on.

This	doesn't	happen	only	in	code:	The	problem	also	exists	in	written	requirements
documents.	And	it	can	spread,	virally,	from	one	place	to	another.	An	error	in	the	code
compensates	for	an	error	in	the	written	description.

It	can	spread	to	people	too:	Users	learn	that	when	the	application	says	Left	it	means	Right,
so	they	adjust	their	behavior	accordingly.	They	even	pass	it	on	to	new	users:	"Remember
when	that	applications	says	click	the	left	button	it	really	means	the	button	on	the	right."	Fix
the	bug	and	suddenly	the	users	need	retraining.

97	Things	Every	Programmer	Should	Know

167Two	Wrongs	Can	Make	a	Right	(and	Are	Difficult	to	Fix)

http://www.netjeff.com/humor/item.cgi?file=ApolloComputer

Single	wrongs	can	be	easy	to	spot	and	easy	to	fix.	It	is	the	problems	with	multiple	causes,
needing	multiple	changes,	that	are	harder	to	resolve.	In	part	it	is	because	easy	problems	are
so	easily	fixed	that	people	tend	to	fix	them	relatively	quickly	and	store	up	the	more	difficult
problems	for	a	later	date.

There	is	no	simple	advice	to	give	on	how	to	address	faults	arising	from	sympathetic	defects.
Awareness	of	the	possibility,	a	clear	head,	and	a	willingness	to	consider	all	possibilities	are
needed.

By	Allan	Kelly

97	Things	Every	Programmer	Should	Know

168Two	Wrongs	Can	Make	a	Right	(and	Are	Difficult	to	Fix)

http://programmer.97things.oreilly.com/wiki/index.php/Allan_Kelly

Ubuntu	Coding	for	Your	Friends
So	often	we	write	code	in	isolation	and	the	code	reflects	our	personal	interpretation	of	a
problem,	as	well	as	a	very	personalized	solution.	We	may	be	part	of	the	team,	yet	we	are
isolated,	as	is	the	team.	We	forget	all	too	easily	that	this	code	created	in	isolation	will	be
executed,	used,	extended,	and	relied	upon	by	others.	It	is	easy	to	overlook	the	social	side	of
software	creation.	Creating	software	is	a	technical	exercise	mixed	into	a	social	exercise.	We
just	need	to	lift	our	heads	more	often	to	realize	that	we	are	not	working	in	isolation,	and	we
have	shared	responsibility	towards	increasing	the	probability	of	success	for	everyone,	not
just	the	development	team.

You	can	write	good	quality	code	in	isolation,	all	the	while	lost	in	self.	From	one	perspective,
that	is	an	egocentric	approach	(not	ego	as	in	arrogant,	but	ego	as	in	personal).	It	is	also	a
Zen	view	and	it	is	about	you,	in	that	moment	of	creating	code.	I	always	try	to	live	in	the
moment	because	it	helps	me	get	closer	to	good	quality,	but	then	I	live	in	my	moment.	What
about	the	moment	of	my	team?	Is	my	moment	the	same	as	the	team's	moment?

In	Zulu,	the	philosophy	of	Ubuntu	is	summed	up	as	"Umuntu	ngumuntu	ngabantu"	which
roughly	translates	to	"A	person	is	a	person	through	(other)	persons."	I	get	better	because
you	make	me	better	through	your	good	actions.	The	flip	side	is	that	you	get	worse	at	what
you	do	when	I	am	bad	at	what	I	do.	Among	developers,	we	can	narrow	it	down	to	"A
developer	is	a	developer	through	(other)	developers."	If	we	take	it	down	to	the	metal,	then
"Code	is	code	through	(other)	code."

The	quality	of	the	code	I	write	affects	the	quality	of	the	code	you	write.	What	if	my	code	is	of
poor	quality?	Even	if	you	write	very	clean	code,	it	is	the	points	where	you	use	my	code	that
your	code	quality	will	degrade	to	close	to	the	quality	of	my	code.	You	can	apply	many
patterns	and	techniques	to	limit	the	damage,	but	the	damage	has	already	been	done.	I	have
caused	you	to	do	more	than	what	you	needed	to	do	simply	because	I	did	not	think	about	you
when	I	was	living	in	my	moment.

I	may	consider	my	code	to	be	clean,	but	I	can	still	make	it	better	just	by	Ubuntu	coding.	What
does	Ubuntu	code	look	like?	It	looks	just	like	good	clean	code.	It	is	not	about	the	code,	the
artifact.	It	is	about	the	act	of	creating	that	artifact.	Coding	for	your	friends,	with	Ubuntu,	will
help	your	team	live	your	values	and	reinforce	your	principles.	The	next	person	that	touches
your	code,	in	whatever	way,	will	be	a	better	person	and	a	better	developer.

Zen	is	about	the	individual.	Ubuntu	is	about	Zen	for	a	group	of	people.	Very,	very	rarely	do
we	create	code	for	ourselves	alone.

By	Aslam	Khan

97	Things	Every	Programmer	Should	Know

169Ubuntu	Coding	for	Your	Friends

http://programmer.97things.oreilly.com/wiki/index.php/Aslam_Khan

97	Things	Every	Programmer	Should	Know

170Ubuntu	Coding	for	Your	Friends

The	Unix	Tools	Are	Your	Friends
If	on	my	way	to	exile	on	a	desert	island	I	had	to	choose	between	an	IDE	and	the	Unix
toolchest,	I'd	pick	the	Unix	tools	without	a	second	thought.	Here	are	the	reasons	why	you
should	become	proficient	with	Unix	tools.

First,	IDEs	target	specific	languages,	while	Unix	tools	can	work	with	anything	that	appears	in
textual	form.	In	today's	development	environment	where	new	languages	and	notations
spring	up	every	year,	learning	to	work	in	the	Unix	way	is	an	investment	that	will	pay	off	time
and	again.

Furthermore,	while	IDEs	offer	just	the	commands	their	developers	conceived,	with	Unix	tools
you	can	perform	any	task	you	can	imagine.	Think	of	them	as	(classic	pre-Bionicle)	Lego
blocks:	You	create	your	own	commands	simply	by	combining	the	small	but	versatile	Unix
tools.	For	instance,	the	following	sequence	is	a	text-based	implementation	of	Cunningham's
signature	analysis	—	a	sequence	of	each	file's	semicolons,	braces,	and	quotes,	which	can
reveal	a	lot	about	the	file's	contents.

for	i	in	*.java;	do	

				echo	-n	"$i:	"

				sed	's/[^"{};]//g'	$i	|	tr	-d	'\n'

				echo

done

In	addition,	each	IDE	operation	you	learn	is	specific	to	that	given	task;	for	instance,	adding	a
new	step	in	a	project's	debug	build	configuration.	By	contrast,	sharpening	your	Unix	tool
skills	makes	you	more	effective	at	any	task.	As	an	example,	I've	employed	the	sed	tool	used
in	the	preceding	command	sequence	to	morph	a	project's	build	for	cross-compiling	on
multiple	processor	architectures.

Unix	tools	were	developed	in	an	age	when	a	multiuser	computer	had	128kB	of	RAM.	The
ingenuity	that	went	into	their	design	means	that	nowadays	they	can	handle	huge	data	sets
extremely	efficiently.	Most	tools	work	like	filters,	processing	just	a	single	line	at	the	time,
meaning	that	there	is	no	upper	limit	in	the	amount	of	data	they	can	handle.	You	want	to
search	for	the	number	of	edits	stored	in	the	half-terabyte	English	Wikipedia	dump?	A	simple
invocation	of

grep	'<revision>'	|	wc	–l

97	Things	Every	Programmer	Should	Know

171The	Unix	Tools	Are	Your	Friends

will	give	you	the	answer	without	sweat.	If	you	find	a	command	sequence	generally	useful,
you	can	easily	package	it	into	a	shell	script,	using	some	uniquely	powerful	programming
constructs,	such	as	piping	data	into	loops	and	conditionals.	Even	more	impressively,	Unix
commands	executing	as	pipelines,	like	the	preceding	one,	will	naturally	distribute	their	load
among	the	many	processing	units	of	modern	multicore	CPUs.

The	small-is-beautiful	provenance	and	open	source	implementations	of	the	Unix	tools	make
them	ubiquitously	available,	even	on	resource-constrained	platforms,	like	my	set-top	media
player	or	DSL	router.	Such	devices	are	unlikely	to	offer	a	powerful	graphical	user	interface,
but	they	often	include	the	BusyBox	application,	which	provides	the	most	commonly-used
tools.	And	if	you	are	developing	on	Windows,	the	Cygwin	environment	offers	you	all
imaginable	Unix	tools,	both	as	executables	and	in	source	code	form.

Finally,	if	none	of	the	available	tools	match	your	needs,	it's	very	easy	to	extend	the	world	of
the	Unix	tools.	Just	write	a	program	(in	any	language	you	fancy)	that	plays	by	a	few	simple
rules:	Your	program	should	perform	just	a	single	task;	it	should	read	data	as	text	lines	from
its	standard	input;	and	it	should	display	its	results	unadorned	by	headers	and	other	noise	on
its	standard	output.	Parameters	affecting	the	tool's	operation	are	given	in	the	command	line.
Follow	these	rules	and	"yours	is	the	Earth	and	everything	that's	in	it."

By	Diomidis	Spinellis

97	Things	Every	Programmer	Should	Know

172The	Unix	Tools	Are	Your	Friends

http://programmer.97things.oreilly.com/wiki/index.php/Diomidis_Spinellis

Use	the	Right	Algorithm	and	Data
Structure

A	big	bank	with	many	branch	offices	complained	that	the	new	computers	it	had	bought
for	the	tellers	were	too	slow.	This	was	in	the	time	before	everyone	used	electronic
banking	and	ATMs	were	not	as	widespread	as	they	are	now.	People	would	visit	the
bank	far	more	often,	and	the	slow	computers	were	making	the	people	queue	up.
Consequently,	the	bank	threatened	to	break	its	contract	with	the	vendor.

The	vendor	sent	a	performance	analysis	and	tuning	specialist	to	determine	the	cause	of
the	delays.	He	soon	found	one	specific	program	running	on	the	terminal	consuming
almost	all	the	CPU	capacity.	Using	a	profiling	tool,	he	zoomed	in	on	the	program	and	he
could	see	the	function	that	was	the	culprit.	The	source	code	read:

for	(i=0;	i<strlen(s);	++i)	{

		if	(...	s[i]	...)	...

}

And	string	s	was,	on	average,	thousands	of	characters	long.	The	code	(written	by	the
bank)	was	quickly	changed,	and	the	bank	tellers	lived	happily	ever	after....

Shouldn't	the	programmer	have	done	better	than	to	use	code	that	needlessly	scaled
quadratically?	Each	call	to	strlen	traversed	every	one	of	the	many	thousand	characters	in
the	string	to	find	its	terminating	null	character.	The	string,	however,	never	changed.	By
determining	its	length	in	advance,	the	programmer	could	have	saved	thousands	of	calls	to
strlen	(and	millions	of	loop	executions):

n=strlen(s);

for	(i=0;	i<n;	++i)	{

		if	(...	s[i]	...)	...

}

Everyone	knows	the	adage	"first	make	it	work,	then	make	it	work	fast"	to	avoid	the	pitfalls	of
micro-optimization.	But	the	example	above	would	almost	make	you	believe	that	the
programmer	followed	the	Machiavellian	adagio	"first	make	it	work	slowly."

This	thoughtlessness	is	something	you	may	come	across	more	than	once.	And	it	is	not	just	a
"don't	reinvent	the	wheel"	thing.	Sometimes	novice	programmers	just	start	typing	away
without	really	thinking	and	suddenly	they	have	'invented'	bubble	sort.	They	may	even	be
bragging	about	it.

97	Things	Every	Programmer	Should	Know

173Use	the	Right	Algorithm	and	Data	Structure

The	other	side	of	choosing	the	right	algorithm	is	the	choice	of	data	structure.	It	can	make	a
big	difference:	Using	a	linked	list	for	a	collection	of	a	million	items	you	want	to	search
through	—	compared	to	a	hashed	data	structure	or	a	binary	tree	—	will	have	a	big	impact	on
the	user's	appreciation	of	your	programming.

Programmers	should	not	reinvent	the	wheel,	and	should	use	existing	libraries	where
possible.	But	to	be	able	to	avoid	problems	like	the	bank's,	they	should	also	be	educated
about	algorithms	and	how	they	scale.	Is	it	just	the	eye	candy	in	modern	text	editors	that
make	them	just	as	slow	as	old-school	programs	like	WordStar	in	the	1980s?	Many	say	reuse
in	programming	is	paramount.	Above	all,	however,	programmers	should	know	when,	what,
and	how	to	reuse.	To	be	able	to	do	that	they	should	have	knowledge	of	the	problem	domain
and	of	algorithms	and	data	structures.

A	good	programmer	should	also	know	when	to	use	an	abominable	algorithm.	For	example,	if
the	problem	domain	dictates	there	can	never	be	more	than	five	items	(like	the	number	of
dice	in	a	Yahtzee	game),	you	know	that	you	always	have	to	sort	at	most	five	items.	In	that
case,	bubble	sort	might	actually	be	the	most	efficient	way	to	sort	the	items.	Every	dog	has	its
day.

So,	read	some	good	books	—	and	make	sure	you	understand	them.	And	if	you	really	read
Donald	Knuth's	the	Art	of	Computer	Programming	well,	you	might	even	be	lucky:	Find	a
mistake	by	the	author	and	earn	one	of	Don	Knuth's	hexadecimal	dollar	($2.56)	checks.

By	JC	van	Winkel

97	Things	Every	Programmer	Should	Know

174Use	the	Right	Algorithm	and	Data	Structure

http://programmer.97things.oreilly.com/wiki/index.php/JC_van_Winkel

Verbose	Logging	Will	Disturb	Your	Sleep
When	I	encounter	a	system	that	has	already	been	in	development	or	production	for	a	while,
the	first	sign	of	real	trouble	is	always	a	dirty	log.	You	know	what	I'm	talking	about.	When
clicking	a	single	link	on	a	normal	flow	on	a	web	page	results	in	a	deluge	of	messages	in	the
only	log	that	the	system	provides.	Too	much	logging	can	be	as	useless	as	none	at	all.

If	your	systems	are	like	mine,	when	your	job	is	done	someone	else's	job	is	just	starting.	After
the	system	has	been	developed,	it	will	hopefully	live	a	long	and	prosperous	life	serving
customers.	If	you're	lucky.	How	will	you	know	if	something	goes	wrong	when	the	system	is	in
production,	and	how	will	you	deal	with	it?

Maybe	someone	monitors	your	system	for	you,	or	maybe	you	will	monitor	it	yourself.	Either
way,	the	logs	will	be	probably	part	of	the	monitoring.	If	something	shows	up	and	you	have	to
be	woken	up	to	deal	with	it,	you	want	to	make	sure	there's	a	good	reason	for	it.	If	my	system
is	dying,	I	want	to	know.	But	if	there's	just	a	hiccup,	I'd	rather	enjoy	my	beauty	sleep.

For	many	systems,	the	first	indication	that	something	is	wrong	is	a	log	message	being
written	to	some	log.	Mostly,	this	will	be	the	error	log.	So	do	yourself	a	favor:	Make	sure	from
day	one	that	if	something	is	logged	in	the	error	log,	you're	willing	to	have	someone	call	and
wake	you	in	the	middle	of	the	night	about	it.	If	you	can	simulate	load	on	your	system	during
system	testing,	looking	at	a	noise-free	error	log	is	also	a	good	first	indication	that	your
system	is	reasonably	robust.	Or	an	early	warning	if	it's	not.

Distributed	systems	add	another	level	of	complexity.	You	have	to	decide	how	to	deal	with	an
external	dependency	failing.	If	your	system	is	very	distributed,	this	may	be	a	common
occurrence.	Make	sure	your	logging	policy	takes	this	into	account.

In	general,	the	best	indication	that	everything	is	all	right	is	that	the	messages	at	a	lower
priority	are	ticking	along	happily.	I	want	about	one	INFO-level	log	message	for	every
significant	application	event.

A	cluttered	log	is	an	indication	that	the	system	will	be	hard	to	control	once	it	reaches
production.	If	you	don't	expect	anything	to	show	up	in	the	error	log,	it	will	be	much	easier	to
know	what	to	do	when	something	does	show	up.

By	Johannes	Brodwall

97	Things	Every	Programmer	Should	Know

175Verbose	Logging	Will	Disturb	Your	Sleep

http://programmer.97things.oreilly.com/wiki/index.php/Johannes_Brodwall

WET	Dilutes	Performance	Bottlenecks
The	importance	of	the	DRY	principle	(Don't	Repeat	Yourself)	is	that	it	codifies	the	idea	that
every	piece	of	knowledge	in	a	system	should	have	a	singular	representation.	In	other	words,
knowledge	should	be	contained	in	a	single	implementation.	The	antithesis	of	DRY	is	WET
(Write	Every	Time).	Our	code	is	WET	when	knowledge	is	codified	in	several	different
implementations.	The	performance	implications	of	DRY	versus	WET	become	very	clear
when	you	consider	their	numerous	effects	on	a	performance	profile.

Let's	start	by	considering	a	feature	of	our	system,	say	X,	that	is	a	CPU	bottleneck.	Let's	say
feature	X	consumes	30%	of	the	CPU.	Now	let's	say	that	feature	X	has	ten	different
implementations.	On	average,	each	implementation	will	consume	3%	of	the	CPU.	As	this
level	of	CPU	utilization	isn't	worth	worrying	about	if	we	are	looking	for	a	quick	win,	it	is	likely
that	we'd	miss	that	this	feature	is	our	bottleneck.	However,	let's	say	that	we	somehow
recognized	feature	X	as	a	bottleneck.	We	are	now	left	with	the	problem	of	finding	and	fixing
every	single	implementation.	With	WET	we	have	ten	different	implementations	that	we	need
to	find	and	fix.	With	DRY	we'd	clearly	see	the	30%	CPU	utilization	and	we'd	have	a	tenth	of
the	code	to	fix.	And	did	I	mention	that	we	don't	have	to	spend	time	hunting	down	each
implementation?

There	is	one	use	case	where	we	are	often	guilty	of	violating	DRY:	our	use	of	collections.	A
common	technique	to	implement	a	query	would	be	to	iterate	over	the	collection	and	then
apply	the	query	in	turn	to	each	element:

public	class	UsageExample	{

				private	ArrayList<Customer>	allCustomers	=	new	ArrayList<Customer>();

				//	...

				public	ArrayList<Customer>	findCustomersThatSpendAtLeast(Money	amount)	{

								ArrayList<Customer>	customersOfInterest	=	new	ArrayList<Customer>();

								for	(Customer	customer:	allCustomers)	{

												if	(customer.spendsAtLeast(amount))

															customersOfInterest.add(customer);

								}

								return	customersOfInterest;

				}

}

By	exposing	this	raw	collection	to	clients,	we	have	violated	encapsulation.	This	not	only
limits	our	ability	to	refactor,	it	forces	users	of	our	code	to	violate	DRY	by	having	each	of	them
re-implement	potentially	the	same	query.	This	situation	can	easily	be	avoided	by	removing

97	Things	Every	Programmer	Should	Know

176WET	Dilutes	Performance	Bottlenecks

the	exposed	raw	collections	from	the	API.	In	this	example	we	can	introduce	a	new,	domain-
specific	collective	type	called		CustomerList	.	This	new	class	is	more	semantically	in	line	with
our	domain.	It	will	act	as	a	natural	home	for	all	our	queries.

Having	this	new	collection	type	will	also	allow	us	to	easily	see	if	these	queries	are	a
performance	bottleneck.	By	incorporating	the	queries	into	the	class	we	eliminate	the	need	to
expose	representation	choices,	such	as		ArrayList	,	to	our	clients.	This	gives	us	the
freedom	to	alter	these	implementations	without	fear	of	violating	client	contracts:

public	class	CustomerList	{

				private	ArrayList<Customer>	customers	=	new	ArrayList<Customer>();

				private	SortedList<Customer>	customersSortedBySpendingLevel	=	new	SortedList<Customer>();

				//	...

				public	CustomerList	findCustomersThatSpendAtLeast(Money	amount)	{

								return	new	CustomerList(customersSortedBySpendingLevel.elementsLargerThan(amount));

				}

}

public	class	UsageExample	{

				public	static	void	main(String[]	args)	{

								CustomerList	customers	=	new	CustomerList();

								//	...

								CustomerList	customersOfInterest	=	customers.findCustomersThatSpendAtLeast(someMinimalAmount);

								//	...

				}

}

In	this	example,	adherence	to	DRY	allowed	us	to	introduce	an	alternate	indexing	scheme
with	SortedList	keyed	on	our	customers	level	of	spending.	More	important	than	the	specific
details	of	this	particular	example,	following	DRY	helped	us	to	find	and	repair	a	performance
bottleneck	that	would	have	been	more	difficult	to	find	were	the	code	to	be	WET.

By	Kirk	Pepperdine

97	Things	Every	Programmer	Should	Know

177WET	Dilutes	Performance	Bottlenecks

http://programmer.97things.oreilly.com/wiki/index.php/Kirk_Pepperdine

When	Programmers	and	Testers
Collaborate
Something	magical	happens	when	testers	and	programmers	start	to	collaborate.	There	is
less	time	spent	sending	bugs	back	and	forth	through	the	defect	tracking	system.	Less	time	is
wasted	trying	to	figure	out	whether	something	is	really	a	bug	or	a	new	feature,	and	more
time	is	spent	developing	good	software	to	meet	customer	expectations.	There	are	many
opportunities	for	starting	collaboration	before	coding	even	begins.

Testers	can	help	customers	write	and	automate	acceptance	tests	using	the	language	of	their
domain	with	tools	such	as	Fit	(Framework	for	Integrated	Test).	When	these	tests	are	given	to
the	programmers	before	they	coding	begins,	the	team	is	practicing	Acceptance	Test	Driven
Development	(ATDD).	The	programmers	write	the	fixtures	to	run	the	tests,	and	then	code	to
make	the	tests	pass.	These	tests	then	become	part	of	the	regression	suite.	When	this
collaboration	occurs,	the	functional	tests	are	completed	early	allowing	time	for	exploratory
testing	on	edge	conditions	or	through	workflows	of	the	bigger	picture.

We	can	take	it	one	step	further.	As	a	tester,	I	can	supply	most	of	my	testing	ideas	before	the
programmers	start	coding	a	new	feature.	When	I	ask	the	programmers	if	they	have	any
suggestions,	they	almost	always	provide	me	with	information	that	helps	me	with	better	test
coverage,	or	helps	me	to	avoid	spending	a	lot	of	time	on	unnecessary	tests.	Often	we	have
prevented	defects	because	the	tests	clarify	many	of	the	initial	ideas.	For	example,	in	one
project	I	was	on,	the	Fit	tests	I	gave	the	programmers	displayed	the	expected	results	of	a
query	to	respond	to	a	wildcard	search.	The	programmer	had	fully	intended	to	code	only
complete	word	searches.	We	were	able	to	talk	to	the	customer	and	determine	the	correct
interpretation	before	coding	started.	By	collaborating,	we	prevented	the	defect,	which	saved
us	both	a	lot	of	wasted	time.

Programmers	can	collaborate	with	testers	to	create	successful	automation	as	well.	They
understand	good	coding	practices	and	can	help	testers	set	up	a	robust	test	automation	suite
that	works	for	the	whole	team.	I	have	often	seen	test	automation	projects	fail	because	the
tests	are	poorly	designed.	The	tests	try	to	test	too	much	or	the	testers	haven't	understood
enough	about	the	technology	to	be	able	to	keep	tests	independent.	The	testers	are	often	the
bottleneck,	so	it	makes	sense	for	programmers	to	work	with	them	on	tasks	like	automation.
Working	with	the	testers	to	understand	what	can	be	tested	early,	perhaps	by	providing	a
simple	tool,	will	give	the	programmers	another	cycle	of	feedback	which	will	help	them	deliver
better	code	in	the	long	run.

97	Things	Every	Programmer	Should	Know

178When	Programmers	and	Testers	Collaborate

When	testers	stop	thinking	their	only	job	is	to	break	the	software	and	find	bugs	in	the
programmers'	code,	programmers	stop	thinking	that	testers	are	'out	to	get	them,'	and	are
more	open	to	collaboration.	When	programmers	start	realizing	they	are	responsible	for
building	quality	into	their	code,	testability	of	the	code	is	a	natural	by-product,	and	the	team
can	automate	more	of	the	regression	tests	together.	The	magic	of	successful	teamwork
begins.

By	Janet	Gregory

97	Things	Every	Programmer	Should	Know

179When	Programmers	and	Testers	Collaborate

http://programmer.97things.oreilly.com/wiki/index.php/Janet_Gregory

Write	Code	as	If	You	Had	to	Support	It	for
the	Rest	of	Your	Life
You	could	ask	97	people	what	every	programmer	should	know	and	do,	and	you	might	hear
back	97	distinct	answers.	This	could	be	both	overwhelming	and	intimidating	at	the	same
time.	All	advice	is	good,	all	principles	are	sound,	and	all	stories	are	compelling,	but	where	do
you	start?	More	important,	once	you	have	started,	how	do	you	keep	up	with	all	the	best
practices	you've	learned	and	how	do	you	make	them	an	integral	part	of	your	programming
practice?

I	think	the	answer	lies	in	your	frame	of	mind	or,	more	plainly,	in	your	attitude.	If	you	don't
care	about	your	fellow	developers,	testers,	managers,	sales	and	marketing	people,	and	end
users,	then	you	will	not	be	driven	to	employ	Test-Driven	Development	or	write	clear
comments	in	your	code,	for	example.	I	think	there	is	a	simple	way	to	adjust	your	attitude	and
always	be	driven	to	deliver	the	best	quality	products:

Write	code	as	if	you	had	to	support	it	for	the	rest	of	your	life.

That's	it.	If	you	accept	this	notion,	many	wonderful	things	will	happen.	If	you	were	to	accept
that	any	of	your	previous	or	current	employers	had	the	right	to	call	you	in	the	middle	of	the
night,	asking	you	to	explain	the	choices	you	made	while	writing	the	fooBar	method,	you
would	gradually	improve	toward	becoming	an	expert	programmer.	You	would	naturally	want
to	come	up	with	better	variable	and	method	names.	You	would	stay	away	from	blocks	of
code	comprising	hundreds	of	lines.	You	would	seek,	learn,	and	use	design	patterns.	You
would	write	comments,	test	your	code,	and	refactor	continually.	Supporting	all	the	code	you'd
ever	written	for	the	rest	of	your	life	should	also	be	a	scalable	endeavor.	You	would	therefore
have	no	choice	but	to	become	better,	smarter,	and	more	efficient.

If	you	reflect	on	it,	the	code	you	wrote	many	years	ago	still	influences	your	career,	whether
you	like	it	or	not.	You	leave	a	trail	of	your	knowledge,	attitude,	tenacity,	professionalism,	level
of	commitment,	and	degree	of	enjoyment	with	every	method	and	class	and	module	you
design	and	write.	People	will	form	opinions	about	you	based	on	the	code	that	they	see.	If
those	opinions	are	constantly	negative,	you	will	get	less	from	your	career	than	you	hoped.
Take	care	of	your	career,	of	your	clients,	and	of	your	users	with	every	line	of	code	—	write
code	as	if	you	had	to	support	it	for	the	rest	of	your	life.

By	Yuriy	Zubarev

97	Things	Every	Programmer	Should	Know

180Write	Code	as	If	You	Had	to	Support	It	for	the	Rest	of	Your	Life

http://programmer.97things.oreilly.com/wiki/index.php/Yuriy_Zubarev

Write	Small	Functions	Using	Examples
We	would	like	to	write	code	that	is	correct,	and	have	evidence	on	hand	that	it	is	correct.	It
can	help	with	both	issues	to	think	about	the	"size"	of	a	function.	Not	in	the	sense	of	the
amount	of	code	that	implements	a	function	—	although	that	is	interesting	—	but	rather	the
size	of	the	mathematical	function	that	our	code	manifests.

For	example,	in	the	game	of	Go	there	is	a	condition	called	atari	in	which	a	player's	stones
may	be	captured	by	their	opponent:	A	stone	with	two	or	more	free	spaces	adjacent	to	it
(called	liberties)	is	not	in	atari.	It	can	be	tricky	to	count	how	many	liberties	a	stone	has,	but
determining	atari	is	easy	if	that	is	known.	We	might	begin	by	writing	a	function	like	this:

boolean	atari(int	libertyCount)

				libertyCount	<	2

This	is	larger	than	it	looks.	A	mathematical	function	can	be	understood	as	a	set,	some
subset	of	the	Cartesian	product	of	the	sets	that	are	its	domain	(here,		int)	and	range	(here,
	boolean).	If	those	sets	of	values	were	the	same	size	as	in	Java	then	there	would	be		2L*
(Integer.MAX_VALUE+(-1L*Integer.MIN_VALUE)+1L)		or	8,589,934,592	members	in	the	set
	int×boolean	.	Half	of	these	are	members	of	the	subset	that	is	our	function,	so	to	provide

complete	evidence	that	our	function	is	correct	we	would	need	to	check	around	4.3×109

examples.

This	is	the	essence	of	the	claim	that	tests	cannot	prove	the	absence	of	bugs.	Tests	can
demonstrate	the	presence	of	features,	though.	But	still	we	have	this	issue	of	size.

The	problem	domain	helps	us	out.	The	nature	of	Go	means	that	number	of	liberties	of	a
stone	is	not	any	int,	but	exactly	one	of	{1,2,3,4}.	So	we	could	alternatively	write:

LibertyCount	=	{1,2,3,4}	

boolean	atari(LibertyCount	libertyCount)

				libertyCount	==	1

This	is	much	more	tractable:	The	function	computed	is	now	a	set	with	at	most	eight
members.	In	fact,	four	checked	examples	would	constitute	evidence	of	complete	certainty
that	the	function	is	correct.	This	is	one	reason	why	it's	a	good	idea	to	use	types	closely
related	to	the	problem	domain	to	write	programs,	rather	than	native	types.	Using	domain–
inspired	types	can	often	make	our	functions	much	smaller.	One	way	to	find	out	what	those
types	should	be	is	to	find	the	examples	to	check	in	problem	domain	terms,	before	writing	the
function.

97	Things	Every	Programmer	Should	Know

181Write	Small	Functions	Using	Examples

by	Keith	Braithwaite

97	Things	Every	Programmer	Should	Know

182Write	Small	Functions	Using	Examples

http://programmer.97things.oreilly.com/wiki/index.php/Keith_Braithwaite

Write	Tests	for	People
You	are	writing	automated	tests	for	some	or	all	of	your	production	code.	Congratulations!
You	are	writing	your	tests	before	you	write	the	code?	Even	better!!	Just	doing	this	makes
you	one	of	the	early	adopters	on	the	leading	edge	of	software	engineering	practice.	But	are
you	writing	good	tests?	How	can	you	tell?	One	way	is	to	ask	"Who	am	I	writing	the	tests
for?"	If	the	answer	is	"For	me,	to	save	me	the	effort	of	fixing	bugs"	or	"For	the	compiler,	so
they	can	be	executed"	then	the	odds	are	you	aren't	writing	the	best	possible	tests.	So	who
should	you	be	writing	the	tests	for?	For	the	person	trying	to	understand	your	code.

Good	tests	act	as	documentation	for	the	code	they	are	testing.	They	describe	how	the	code
works.	For	each	usage	scenario	the	test(s):

1.	 Describe	the	context,	starting	point,	or	preconditions	that	must	be	satisfied
2.	 Illustrate	how	the	software	is	invoked
3.	 Describe	the	expected	results	or	postconditions	to	be	verified

Different	usage	scenarios	will	have	slightly	different	versions	of	each	of	these.	The	person
trying	to	understand	your	code	should	be	able	to	look	at	a	few	tests	and	by	comparing	these
three	parts	of	the	tests	in	question,	be	able	to	see	what	causes	the	software	to	behave
differently.	Each	test	should	clearly	illustrate	the	cause	and	effect	relationship	between	these
three	parts.	This	implies	that	what	isn't	visible	in	the	test	is	just	as	important	as	what	is
visible.	Too	much	code	in	the	test	distracts	the	reader	with	unimportant	trivia.	Whenever
possible	hide	such	trivia	behind	meaningful	method	calls	—	the	Extract	Method	refactoring	is
your	best	friend.	And	make	sure	you	give	each	test	a	meaningful	name	that	describes	the
particular	usage	scenario	so	the	test	reader	doesn't	have	to	reverse	engineer	each	test	to
understand	what	the	various	scenarios	are.	Between	them,	the	names	of	the	test	class	and
class	method	should	include	at	least	the	starting	point	and	how	the	software	is	being
invoked.	This	allows	the	test	coverage	to	be	verified	via	a	quick	scan	of	the	method	names.
It	can	also	be	useful	to	include	the	expected	results	in	the	test	method	names	as	long	as	this
doesn't	cause	the	names	to	be	too	long	to	see	or	read.

It	is	also	a	good	idea	to	test	your	tests.	You	can	verify	they	detect	the	errors	you	think	they
detect	by	inserting	those	errors	into	the	production	code	(your	own	private	copy	that	you'll
throw	away,	of	course).	Make	sure	they	report	errors	in	a	helpful	and	meaningful	way.	You
should	also	verify	that	your	tests	speak	clearly	to	a	person	trying	to	understand	your	code.
The	only	way	to	do	this	is	to	have	someone	who	isn't	familiar	with	your	code	read	your	tests
and	tell	you	what	they	learned.	Listen	carefully	to	what	they	say.	If	they	didn't	understand
something	clearly	it	probably	isn't	because	they	aren't	very	bright.	It	is	more	likely	that	you
weren't	very	clear.	(Go	ahead	and	reverse	the	roles	by	reading	their	tests!)

97	Things	Every	Programmer	Should	Know

183Write	Tests	for	People

by	Gerard	Meszaros

97	Things	Every	Programmer	Should	Know

184Write	Tests	for	People

http://programmer.97things.oreilly.com/wiki/index.php/Gerard_Meszaros

You	Gotta	Care	about	the	Code
It	doesn't	take	Sherlock	Holmes	to	work	out	that	good	programmers	write	good	code.	Bad
programmers...	don't.	They	produce	monstrosities	that	the	rest	of	us	have	to	clean	up.	You
want	to	write	the	good	stuff,	right?	You	want	to	be	a	good	programmer.

Good	code	doesn't	pop	out	of	thin	air.	It	isn't	something	that	happens	by	luck	when	the
planets	align.	To	get	good	code	you	have	to	work	at	it.	Hard.	And	you'll	only	get	good	code	if
you	actually	care	about	good	code.

Good	programming	is	not	born	from	mere	technical	competence.	I've	seen	highly	intellectual
programmers	who	can	produce	intense	and	impressive	algorithms,	who	know	their	language
standard	by	heart,	but	who	write	the	most	awful	code.	It's	painful	to	read,	painful	to	use,	and
painful	to	modify.	I've	seen	more	humble	programmers	who	stick	to	very	simple	code,	but
who	write	elegant	and	expressive	programs	that	are	a	joy	to	work	with.

Based	on	my	years	of	experience	in	the	software	factory,	I've	concluded	that	the	real
difference	between	adequate	programmers	and	great	programmers	is	this:	attitude.	Good
programming	lies	in	taking	a	professional	approach,	and	wanting	to	write	the	best	software
you	can,	within	the	Real	World	constraints	and	pressures	of	the	software	factory.

The	code	to	hell	is	paved	with	good	intentions.	To	be	an	excellent	programmer	you	have	to
rise	above	good	intentions,	and	actually	care	about	the	code	—	foster	positive	perspectives
and	develop	healthy	attitudes.	Great	code	is	carefully	crafted	by	master	artisans,	not
thoughtlessly	hacked	out	by	sloppy	programmers	or	erected	mysteriously	by	self-professed
coding	gurus.

You	want	to	write	good	code.	You	want	to	be	a	good	programmer.	So,	you	care	about	the
code:

In	any	coding	situation,	you	refuse	to	hack	something	that	only	seems	to	work.	You
strive	to	craft	elegant	code	that	is	clearly	correct	(and	has	good	tests	to	show	that	it	is
correct).
You	write	code	that	is	discoverable	(that	other	programmers	can	easily	pick	up	and
understand),	that	is	maintainable	(that	you,	or	other	programmers,	will	be	easily	able	to
modify	in	the	future),	and	that	is	correct	(you	take	all	steps	possible	to	determine	that
you	have	solved	the	problem,	not	just	made	it	look	like	the	program	works).
You	work	well	alongside	other	programmers.	No	programmer	is	an	island.	Few
programmers	work	alone;	most	work	in	a	team	of	programmers,	either	in	a	company
environment	or	on	an	open	source	project.	You	consider	other	programmers,	and
construct	code	that	others	can	read.	You	want	the	team	to	write	the	best	software

97	Things	Every	Programmer	Should	Know

185You	Gotta	Care	about	the	Code

possible,	rather	than	to	make	yourself	look	clever.
Any	time	you	touch	a	piece	of	code	you	strive	to	leave	it	better	than	you	found	it	(either
better	structured,	better	tested,	more	understandable...).
You	care	about	code	and	about	programming,	so	you	are	constantly	learning	new
languages,	idioms,	and	techniques.	But	you	only	apply	them	when	appropriate.

Fortunately,	you're	reading	this	collection	of	advice	because	you	do	care	about	code.	It
interests	you.	It's	your	passion.	Have	fun	programming.	Enjoy	cutting	code	to	solve	tricky
problems.	Produce	software	that	makes	you	proud.

By	Pete	Goodliffe

97	Things	Every	Programmer	Should	Know

186You	Gotta	Care	about	the	Code

http://programmer.97things.oreilly.com/wiki/index.php/Pete_Goodliffe

Your	Customers	Do	not	Mean	What	They
Say
I've	never	met	a	customer	yet	that	wasn't	all	too	happy	to	tell	me	what	they	wanted	—
usually	in	great	detail.	The	problem	is	that	customers	don't	always	tell	you	the	whole	truth.
They	generally	don't	lie,	but	they	speak	in	customer	speak,	not	developer	speak.	They	use
their	terms	and	their	contexts.	They	leave	out	significant	details.	They	make	assumptions
that	you've	been	at	their	company	for	20	years,	just	like	they	have.	This	is	compounded	by
the	fact	that	many	customers	don't	actually	know	what	they	want	in	the	first	place!	Some
may	have	a	grasp	of	the	"big	picture,"	but	they	are	rarely	able	to	communicate	the	details	of
their	vision	effectively.	Others	might	be	a	little	lighter	on	the	complete	vision,	but	they	know
what	they	don't	want.	So,	how	can	you	possibly	deliver	a	software	project	to	someone	who
isn't	telling	you	the	whole	truth	about	what	they	want?	It's	fairly	simple.	Just	interact	with
them	more.

Challenge	your	customers	early	and	challenge	them	often.	Don't	simply	restate	what	they
told	you	they	wanted	in	their	words.	Remember:	They	didn't	mean	what	they	told	you.	I	often
do	this	by	swapping	out	words	in	conversation	with	them	and	judging	their	reaction.	You'd	be
amazed	how	many	times	the	term	customer	has	a	completely	different	meaning	to	the	term
client.	Yet	the	guy	telling	you	what	he	wants	in	his	software	project	will	use	the	terms
interchangeably	and	expect	you	to	keep	track	as	to	which	one	he's	talking	about.	You'll	get
confused	and	the	software	you	write	will	suffer.

Discuss	topics	numerous	times	with	your	customers	before	you	decide	that	you	understand
what	they	need.	Try	restating	the	problem	two	or	three	times	with	them.	Talk	to	them	about
the	things	that	happen	just	before	or	just	after	the	topic	you're	talking	about	to	get	better
context.	If	at	all	possible,	have	multiple	people	tell	you	about	the	same	topic	in	separate
conversations.	They	will	almost	always	tell	you	different	stories,	which	will	uncover	separate
yet	related	facts.	Two	people	telling	you	about	the	same	topic	will	often	contradict	each
other.	Your	best	chance	for	success	is	to	hash	out	the	differences	before	you	start	your	ultra-
complex	software	crafting.

Use	visual	aids	in	your	conversations.	This	could	be	as	simple	as	using	a	whiteboard	in	a
meeting,	as	easy	as	creating	a	visual	mock-up	early	in	the	design	phase,	or	as	complex	as
crafting	a	functional	prototype.	It	is	generally	known	that	using	visual	aids	during	a
conversation	helps	lengthen	our	attention	span	and	increases	the	retention	rate	of	the
information.	Take	advantage	of	this	fact	and	set	your	project	up	for	success.

97	Things	Every	Programmer	Should	Know

187Your	Customers	Do	not	Mean	What	They	Say

In	a	past	life,	I	was	a	"multimedia	programmer"	on	a	team	who	produced	glitzy	projects.	A
client	of	ours	described	their	thoughts	on	the	look	and	feel	of	the	project	in	great	detail.	The
general	color	scheme	discussed	in	the	design	meetings	indicated	a	black	background	for	the
presentation.	We	thought	we	had	it	nailed.	Teams	of	graphic	designers	began	churning	out
hundreds	of	layered	graphics	files.	Loads	of	time	was	spent	molding	the	end	product.	A
startling	revelation	was	made	on	the	day	we	showed	the	client	the	fruits	of	our	labor.	When
she	saw	the	product,	her	exact	words	about	the	background	color	were	"When	I	said	black,	I
meant	white."	So,	you	see,	it	is	never	as	clear	as	black	and	white.

By	Nate	Jackson

97	Things	Every	Programmer	Should	Know

188Your	Customers	Do	not	Mean	What	They	Say

http://programmer.97things.oreilly.com/wiki/index.php/Icnatejackson

	Introduction
	Act with Prudence
	Apply Functional Programming Principles
	Ask "What Would the User Do?" (You Are not the User)
	Automate Your Coding Standard
	Beauty Is in Simplicity
	Before You Refactor
	Beware the Share
	The Boy Scout Rule
	Check Your Code First before Looking to Blame Others
	Choose Your Tools with Care
	Code in the Language of the Domain
	Code Is Design
	Code Layout Matters
	Code Reviews
	Coding with Reason
	A Comment on Comments
	Comment Only What the Code Cannot Say
	Continuous Learning
	Convenience Is not an -ility
	Deploy Early and Often
	Distinguish Business Exceptions from Technical
	Do Lots of Deliberate Practice
	Domain-Specific Languages
	Don't Be Afraid to Break Things
	Don't Be Cute with Your Test Data
	Don't Ignore that Error!
	Don't Just Learn the Language, Understand its Culture
	Don't Nail Your Program into the Upright Position
	Don't Rely on "Magic Happens Here"
	Don't Repeat Yourself
	Don't Touch that Code!
	Encapsulate Behavior, not Just State
	Floating-point Numbers Aren't Real
	Fulfill Your Ambitions with Open Source
	The Golden Rule of API Design
	The Guru Myth
	Hard Work Does not Pay Off
	How to Use a Bug Tracker
	Improve Code by Removing It
	Install Me
	Inter-Process Communication Affects Application Response Time
	Keep the Build Clean
	Know How to Use Command-line Tools
	Know Well More than Two Programming Languages
	Know Your IDE
	Know Your Limits
	Know Your Next Commit
	Large Interconnected Data Belongs to a Database
	Learn Foreign Languages
	Learn to Estimate
	Learn to Say "Hello, World"
	Let Your Project Speak for Itself
	The Linker Is not a Magical Program
	The Longevity of Interim Solutions
	Make Interfaces Easy to Use Correctly and Hard to Use Incorrectly
	Make the Invisible More Visible
	Message Passing Leads to Better Scalability in Parallel Systems
	A Message to the Future
	Missing Opportunities for Polymorphism
	News of the Weird: Testers Are Your Friends
	One Binary
	Only the Code Tells the Truth
	Own (and Refactor) the Build
	Pair Program and Feel the Flow
	Prefer Domain-Specific Types to Primitive Types
	Prevent Errors
	The Professional Programmer
	Put Everything Under Version Control
	Put the Mouse Down and Step Away from the Keyboard
	Read Code
	Read the Humanities
	Reinvent the Wheel Often
	Resist the Temptation of the Singleton Pattern
	The Road to Performance Is Littered with Dirty Code Bombs
	Simplicity Comes from Reduction
	The Single Responsibility Principle
	Start from Yes
	Step Back and Automate, Automate, Automate
	Take Advantage of Code Analysis Tools
	Test for Required Behavior, not Incidental Behavior
	Test Precisely and Concretely
	Test While You Sleep (and over Weekends)
	Testing Is the Engineering Rigor of Software Development
	Thinking in States
	Two Heads Are Often Better than One
	Two Wrongs Can Make a Right (and Are Difficult to Fix)
	Ubuntu Coding for Your Friends
	The Unix Tools Are Your Friends
	Use the Right Algorithm and Data Structure
	Verbose Logging Will Disturb Your Sleep
	WET Dilutes Performance Bottlenecks
	When Programmers and Testers Collaborate
	Write Code as If You Had to Support It for the Rest of Your Life
	Write Small Functions Using Examples
	Write Tests for People
	You Gotta Care about the Code
	Your Customers Do not Mean What They Say

