
Core JavaScript Documentation
Release 0.0

Jonathan Fine

Nov 14, 2017

Contents

1 About this course 2

1.1 Getting started . 2

1.2 Counters example . 3

1.3 Test tools . 5

2 Objects 8

2.1 Immutables . 8

2.2 Equality . 10

2.3 Objects . 12

2.4 The object tree . 14

2.5 Simple classes . 16

3 Functions 18

3.1 The global object . 18

3.2 Closures . 20

3.3 What is this? . 22

3.4 Bind is transient . 23

3.5 What is new? . 24

3.6 Arguments . 26

3.7 Mark Miller’s device . 26

4 Examples and exercises 28

4.1 Exercise one . 28

4.2 Solution one . 29

4.3 Exercise two . 31

4.4 Solution two . 32

i

Core JavaScript Documentation, Release 0.0

This document has a search.

Contents 1

CHAPTER 1

About this course

1.1 Getting started

1.1.1 What you need

You’ll need on your machine

1. A JavaScript interpreter which provides a command line

2. An editor on your machine.

You’ll also to download and unzip the course work folder.

1.1.2 Windows and Linux

For Windows the easiest thing to do is to download the JSDB interpreter, and use notepad (or some other editor).

For Linux you and install Rhino and use your favourite editor.

$ sudo apt-get install rhino

1.1.3 Are you ready?

You’ll want to be able to run the JavaScript interpreter from the command line when in the work folder. This will be

automatic (via the PATH) with Linux and Rhino. For Windows the easiest thing to do is to place the jsdb.exe file in

the work folder.

When you’re ready type js at a command prompt. This starts the interpreter and gives you a js> prompt. You’ll get

something like this.

core-javascript-work$ js

Rhino 1.7 release 2 2010 01 20

js>

2

Core JavaScript Documentation, Release 0.0

Now type the command as below at the JavaScript prompt (with Return at the end of each line) and you’ll get responses

as below.

js> a = '0'

0

js> b = 0

0

js> c = ''

js> a == b

true

js> b == c

true

js> a == c

false

You might be surprised by the last response from the interpreter, but every JavaScript interpreter does this.

1.1.4 Yes, you’re ready

To exit the interpreter use Ctrl-C or Ctrl-D.

1.2 Counters example

1.2.1 Goal

The goal is to create a web page which contains several independent counters. Each time a counter is clicked, it is

incremented. Here’s you can try out a working example of what’s wanted.

Below is the complete code of this example. To simplify the matter, it is completely self-contained. It uses no library

code, other than the definition of SimpleClass.

In general library code is a good idea. This example is designed to teach you the basics of JavaScript, and not the use

of a library. We hope that what you learn here will help you choose a library, and build libraries of your own.

1.2.2 counters.html

<html>

<head>

<script src="library.js"></script>

<script src="counters.js"></script>

<link rel="stylesheet" type="text/css" href="counters.css" />

<title>JS for Python: example: counters</title>

</head>

<body>

<h1>Counters</h1>

<p>Click on a counter to increment its value.</p>

<div id="example">

<p>This will disappear if JavaScript is working properly.</p>

</div>

1.2. Counters example 3

Core JavaScript Documentation, Release 0.0

<p>Return to documentation of Counters example.

→˓</p>

</body>

1.2.3 counters.css

body {

background: #DDD;

font-family: sans-serif;

}

#example {

padding: 20px;

}

#example span {

padding: 10px;

margin: 10px;

border: 10px solid blue;

background: #DDF;

foreground: blue;

font-weight: bold;

}

1.2.4 counters.js

(function()

{

// Define a Counter class.

var counter = {}; // Prototype object for Counter.

counter.__init__ = function(name){

this.name = name;

this.count = 0;

};

counter.onclick = function(event){

this.count ++;

};

counter.html = function(){

return this.name + ' ' + this.count;

};

Counter = SimpleClass(counter);

// Make explicit use of global variables.

var global = (function(){return this;})();

4 Chapter 1. About this course

Core JavaScript Documentation, Release 0.0

// Interaction.

var onclick_factory = function(models){

var onclick = function(event){

event = event || global.event; // For IE event handling.

var target = event.target || event.srcElement;

var id = target.id;

if (id) {

var id_num = +id.slice(1);

var model = models[id_num];

model.onclick();

var html = model.html();

if (html){

global.document.getElementById(id).innerHTML = html;

}

}

};

return onclick;

};

// Set up the web page.

global.onload = function(){

var models = [

Counter('apple'),

Counter('banana'),

Counter('cherry'),

Counter('date')

];

var element = document.getElementById('example');

element.innerHTML = (

'apple 0'

+ 'banana 0'

+ 'cherry 0'

+ 'date 0'

);

element.onclick = onclick_factory(models);

element = undefined; // Avoid IE memory leak.

};

})();

1.3 Test tools

To make it easier to test code, and to ensure that example code is correct, there is a small testtools.js file in the work

folder.

1.3. Test tools 5

Core JavaScript Documentation, Release 0.0

1.3.1 How to write tests

To prepare a test create a file like this. It’s also in the work folder. (For real examples the file will give assert a more

interesting argument, whose truth or falsity is perhaps not obvious.)

TEST('all-pass', function()

{

assert(2 + 2 === 4);

assert('the ' + 'cat' === 'the cat');

});

TEST('2-4-fail', function()

{

assert(true);

assert(false);

assert(1);

assert(0);

});

1.3.2 How to run tests

Here’s how to run the tests at the command line, finishing with a command prompt that allows you inspect the state

and also run the test again.

Rhino

For Rhino use load to run the test again.

core-javascript-work$ js -f testtools.js -f demo_testtools.js -f -

Testing: all-pass

Testing: 2-4-fail

! assert 2 has failed

! assert 4 has failed

Rhino 1.7 release 2 2010 01 20

js> load('demo_testtools.js') // You type this.

Testing: all-pass

Testing: 2-4-fail

! assert 2 has failed

! assert 4 has failed

js>

JSDB

For JSDB use run to run the test again.

C:core-javascript-work> jsdb -load testtools.js -load demo_testtools.js

Testing: all-pass

Testing: 2-4-fail

! assert 2 has failed

! assert 4 has failed

js> load('demo_testtools.js') // You type this.

Testing: all-pass

Testing: 2-4-fail

6 Chapter 1. About this course

Core JavaScript Documentation, Release 0.0

! assert 2 has failed

! assert 4 has failed

js>

1.3.3 testools.js

(Optional on a first reading.) Here’s the file testools.js. It’s short and simple (and has a not-nice dependency on global

variables). It also has a branch based on whether it’s being run on JSDB or Rhino.

var telltail = 'global';

var _assertion_count = 0;

// Define a global function 'log'.

var log;

if (this.hasOwnProperty('jsArguments')){

log = function(s){

print(s + '\n');

};

} else {

log = print;

}

//

var TEST = function(title, code){

var x;

log('Testing: ' + title);

_assertion_count = 0;

try {

code();

} catch (x) {

log('! Exception at ' + x.fileName +':' + x.lineNumber);

log('! [' + x.name + '] ' + x.message);

}

};

var assert = function(arg){

_assertion_count += 1;

if (!arg){

var msg = '! assert ' + _assertion_count + ' has failed';

log(msg);

}

};

1.3. Test tools 7

CHAPTER 2

Objects

2.1 Immutables

First, a quick word about variables. A value is an indentifier that holds a value. In JavaScript every value has a type,

but variables are not typed. In other words, any variable can hold any value. Most dynamic language (such as Perl,

Python and Ruby) are like this.

Always declare variables with a var statement, because sometimes a missing var can cause a hard-to-find bug. Exper-

iments at the command line are the only exception to this rule.

We can change an array or a ‘dictionary’. Immutable values are values that can’t be changed. We can’t change, for

example, the third character in a string.

2.1.1 Strings

Strings literals are delimited by single or double quote marks, with special characters escaped. There’s no difference

between the two forms (except in single quote you don’t have to escape double quote, and vice versa.) Generally, I

prefer the single quote form as it’s less busy on the eye and slightly easier to type.

js> s = 'Hello world.'

Hello world.

We can add two strings together to produce a third string.

js> r = "I'm me. "

I'm me.

js> r + s

I'm me. Hello world.

2.1.2 typeof

There’s a built-in operator called ‘typeof’ that returns a string that, sort-of, gives the type of a value.

8

Core JavaScript Documentation, Release 0.0

js> typeof(s)

string

Because typeof is an operator (just as ‘+’ is an operator) the parentheses are not needed, and many JavaScript pro-

grammers omit them.

js> typeof s

string

Here we see that typeof produces (returns) a string.

js> typeof typeof s

string

2.1.3 Numbers

JavaScript numbers are platform and processor independent. It uses IEE 754 to represent both integers and floats.

js> i = 42

42

js> typeof i

number

2.1.4 Booleans

JavaScript has keywords ‘true’ and ‘false’ whose values are always true and false respectively.

js> t = true

true

js> typeof b

boolean

Logical comparisions also produce Booleans.

js> f = (1 > 2)

false

js> typeof f

boolean

2.1.5 undefined and null

JavaScript has two values that represent None. Later, we’ll see why, and which to use when. For now we’ll simply

note that they are different, because their types are different.

js> typeof undefined

undefined

js> typeof null

object

2.1. Immutables 9

Core JavaScript Documentation, Release 0.0

2.1.6 Gotchas

js> s = 'Hello world.'

Hello world.

js> s.lang = 'en'

en

js> s.lang === undefined

true

2.2 Equality

Equality in JavaScript can be a little odd.

2.2.1 Double equals

JavScript has two operations for equality (and inequality). One of them is ‘==’ (and ‘!=’ for inequality). It’s the oddest.

Not transitive

If a is equal to b, and if b is equal to c , then we expect a to be equal to c. This is called the transitive property.

js> '0' == 0 // 'a' is equal to 'b'

true

js> 0 == '' // 'b' is equal to 'c'

true

js> '0' == '' // 'a' is not equal to 'c'

false

Not reflexive

We expect a to be equal to a. This is called the reflexive property.

js> NaN == NaN

false

Fortunately, this seems to be the only example.

Is symmetric

If a is equal to b then we expect b to be equal to a. This is called the symmetric property. In JavaScript equality is

symmetric.

2.2.2 Triple equality

JavaScript also has ‘===’ (and ‘!==’ for inequality).

10 Chapter 2. Objects

Core JavaScript Documentation, Release 0.0

Is transitive

Unlike double equals, triple equals is always transitive.

js> '0' === 0 // unequal

false

js> 0 === '' // unequal

false

js> '0' === '' // unequal

false

Not reflexive

js> NaN === NaN

false

By the way, there’s a thread on Facebook with subject Time and Date on my wall shows NaNNaNNaN at NaN:NaN.

I wonder how that happened.

Is symmetric

Triple equality is still symmetric.

2.2.3 Don’t use double equality

Double equality does implicit conversions and besides has some odd rules. My advice is don’t use double equality.

Triple equality does not do conversions. If you want to do conversions in your comparision my advice is to make them

explicit.

2.2.4 Compare as string

The easiest conversion is to string. Here are two immutables, a number and a string.

js> a = 0

0

js> b = '0'

0

These quantities are double equal but not triple equal.

js> a == b

true

js> a === b

false

Here’s how to do an explicit conversion to string before comparison, which gives an equality.

js> '' + a === '' + b // Converts variables to strings.

true

2.2. Equality 11

Core JavaScript Documentation, Release 0.0

Note: It’s always easier to read a triple equal comparison, because you’re not distracted by the complex double equal

rules.

2.2.5 Compare as number

[To follow later.]

2.3 Objects

JavaScript has objects and is object-oriented, but in an unusual way (more on that later).

2.3.1 Simple objects

Simple objects are like dictionaries or hashes in other languages. They support key-value storage and access to

attributes. Here’s how to create a simple object.

js> obj = {}

[object Object]

js> typeof obj

object

We can store attribute values in a simple object (or any object in the doc:object-tree).

js> obj.s = 'hi'

hi

js> obj.i = 10

10

We can get these values back again.

js> obj.s === 'hi'

true

js> obj.i == 10

true

2.3.2 Missing attributes

It’s not an error to ask for something that’s not there. We get undefined.

js> obj.dne === undefined

true

We still get undefined if we set the value to undefined.

js> obj.undef = undefined

undefined

js> obj.dne === undefined

true

12 Chapter 2. Objects

Core JavaScript Documentation, Release 0.0

You can use null to signal that there is a value, but that it is None.

js> obj.none = null

null

js> obj.none === null

true

2.3.3 hasOwnProperty

You can use hasOwnProperty to help figure out why an object has an undefined attribute. It’s also useful when

inspecting the doc::object-tree. Often, however, it’s better to write your code so you don’t need to do this (for example

by using null).

js> obj.hasOwnProperty('dne')

false

js> obj.hasOwnProperty('undef')

true

js> obj.hasOwnProperty('none')

true

2.3.4 Object literals

You can create a simple object by placing key-value pairs in the curly braces.

js> someone = {

> 'name': 'Joe Doe',

> 'age': 43

> }

[object Object]

js> someone.age

43

Take care not to put a trailing semicolon in the object literal. It will work in Firefox but not in Internet Explorer.

2.3.5 Arrays

An array is a list of items. You can put anything is as a value for the list. Use square brackets to create an array.

js> array = []

Arrays expand to accomodate the data you store in them. You can even leave gaps.

js> array[0] = 'zero'

zero

js> array[3] = 'three'

three

An array turned into a string consists of the string on its entries joined by commas.

js> array

zero,,,three

js> array[1] === undefined

true

2.3. Objects 13

Core JavaScript Documentation, Release 0.0

2.3.6 Array literals

As with simple objects, simply place the values between the square brackets, separated by commas.

js> seasons = ['spring', 'summer', 'autumn', 'winter']

spring,summer,autumn,winter

As with simple objects, beware of trailing commas and missing entries. This will work in some browsers and not

others.

2.3.7 JSON

JSON,stands for JavaScript Simple Object Notation. It is very much one of the best parts of JavaScript. It is the

fat-free alternative to XML, and is widely used in AJAX (instead of XML). JSON objects are object and array literals

constructed using only simple objects, arrays, strings, true, false and null.

If your code accepts JSON objects then it will be a lot easier to use it with AJAX or otherwise integrate it with other

systems.

Many programming languages have JSON libraries. You don’t have to use JavaScript to use JSON.

To provide standards, there are rules on how to write a JSON objects. Many applications and programming languages

will generate valid JSON for you. I find YAML a convenient way of authoring JSON data.

2.4 The object tree

Objects can have attributes. The statements

value = obj.attr # Get the attr of 'a'.

obj.attr = value # Set the attr of 'a'.

respectively set and get the attr attribute of the object obj. Inheritance is where an object gets some its attributes from

one or other more objects. JavaScript uses an object tree for inheritance.

2.4.1 Tree

All JavaScript objects are part of an inheritance tree. Each object in the tree has a parent object, which is also called

the prototype object (of the child). There is a single exception to this rule, which is the root of the tree. The root of

the tree does not have a parent object.

Note: You can’t get far in JavaScript without understanding the object tree.

Get

When JavaScript needs to get an attribute value of an object, it first looks up the attr of the attribute in the object’s

dictionary. If the attr is a key in the dictionary, the associated value is returned.

If the attr is not a key, then the process is repeated using the object’s parent, grandparent, and so on until the key is

found. If the key is not found in this way then undefined is returned.

14 Chapter 2. Objects

Core JavaScript Documentation, Release 0.0

Set

When JavaScript needs to set an attribute value of an object it ignores the inheritance tree. It simply sets that value in

the object’s dictionary.

2.4.2 Root

When the interpreter starts up, the root of the tree is placed at Object.prototype. (We’ll find out later why that location

is used.)

Every object inherits from the root, although perhaps not directly. Here’s a simple example:

js> root = Object.prototype

js> a = {}

js> a.attr === undefined

true

js> root.attr = 'gotcha'

js> a.attr

gotcha

If we give root a attr attribute then every other object, including those already created and those not yet created, also

has a attr attribute with the same value. (In practice it’s better not to change Object.prototpye.)

This applies arrays:

js> array = [0, 1, 2]

0,1,2

js> array.attr

gotcha

And even to functions:

js> f = function(){}

function () {

}

js> f.attr

gotcha

Note: A page might have many scripts, all of which would like to modify the Object.prototype root object. This can

cause bugs and incompatibilities. So try not to do this.

However, this up-the-tree lookup does not apply if attr is found earlier in the tree. We continue the previous example

to show this, and the behaviour of set.

js> a.attr = 'fixed'

js> a.attr

fixed

js> root.attr

gotcha

2.4. The object tree 15

Core JavaScript Documentation, Release 0.0

2.4.3 Create

Any tree can be constructed from its root, together with a command create(parent) that returns a new child of the

given parent node.

In all but the most recent version of JavaScript the create function is not built in. However, it’s easy to write one, once

you know enough JavaScript. Here’s how its done in the work folder’s library.js file.

var create = function(parent){

var tmp = function(){};

tmp.prototype = parent;

var child = new tmp();

return child;

};

2.4.4 Using create

Here’s an example of its use:

js> a = {}

js> b = create(a)

js> a.attr = 'apple'

apple

js> b.attr

apple

And a continuation of the example:

js> c = create(b)

js> c.attr

apple

js> b.attr = 'banana'

banana

js> c.attr

banana

Note: JavaScript uses an inheritance tree. By using create, we can create any inheritance tree. All JavaScript objects

are in this tree.

2.5 Simple classes

JavaScript has objects, which through the object tree support inheritance. Almost all object-oriented languages have

classes and instances, but JavaScript has neither. This will be explained later, along with a discussion of the conse-

quences.

For now our focus is on getting going with object-oriented programming. The easiest way to do this is via create.

16 Chapter 2. Objects

Core JavaScript Documentation, Release 0.0

2.5.1 Definition

Here’s a factory function that creates classes. It returns a function called cls, which in turn when called returns

instances. At it’s heart is create, and also apply and arguments, which we’ve not seen before).

var SimpleClass = function(prototype){

var cls = function(){

var instance = create(prototype);

instance.__init__.apply(instance, arguments);

return instance;

};

return cls;

};

2.5.2 Why cls?

We call the returned function cls because in JavaScript class, like function is a reserved word in JavaScript. However,

in JavaScript the identifier class has no meaning, and cannot be used in any valid JavaScript program. It seems that

they intended to provide a built-in class capability, but never got round to it.

2.5.3 Fruit example

Here’s an example of the use of SimpleClass. There’s a bug in it, and I’ve changed the test so it passes. Can you find

the bug and fix the example?

TEST('SimpleClass', function()

{

var fruit = {};

fruit.__init__ = function(name, colour){

this.name = name;

this.colour = colour;

};

fruit.greet = function(){

return "Hello, I'm a " + this.color + " " + this.name + ".";

};

var Fruit = SimpleClass(fruit);

var bn = Fruit('banana', 'yellow');

var rc = Fruit('cherry', 'red');

var gs = Fruit('Granny Smith', 'green');

assert(bn.greet() === "Hello, I'm a undefined banana.");

});

2.5. Simple classes 17

CHAPTER 3

Functions

3.1 The global object

JavaScript has a global object. It is, so to speak, the object of last resort. If there’s no other suitable object then

JavaScript will use the global object (rather than reporting an error).

Note: Douglas Crockford writes JavaScript’s global object ... is far and away the worst part of JavaScript’s

many bad parts.

3.1.1 Getting global

Here’s how to get the global object.

js> return_this = function(){return this;}

function () {

return this;

}

js> global = return_this()

[object global]

The programmer who wants to can always obtain access to the global object.

3.1.2 Global variables

Global variables are nothing more than attributes of the global object.

18

Core JavaScript Documentation, Release 0.0

js> s = 'Hello world.'

Hello world.

js> global.s

Hello world.

js> global.i = 42

42

js> i

42

3.1.3 Global pollution

It’s very easy to inadvertently pollute (change) the global object. All it takes is an assignment to an undeclared variable

in a function.

js> pollute = function(n){ i = n; };

function (n) {

i = n;

}

js> i

42

js> pollute(13)

js> i

13

3.1.4 More global pollution

There’s a more subtle way to pollute the global object, which involves JavaScript’s this object.

To begin with, note that we can push values onto an array.

js> array = []

js> array.push(1, 2, 3)

3

js> array

1,2,3

Let’s try using array.push as a stand-alone function.

js> p = array.push

function push() { [native code for Array.push, arity=1] }

js> p(4, 5, 6)

3

The push function returns the length of the object it has just pushed to. So the value 3 above is a signal that all is not

well. And indeed it is not. The original array is unchanged, and the global object has an entry at 0.

js> array

1,2,3

js>

js> global[0]

4

3.1. The global object 19

Core JavaScript Documentation, Release 0.0

It’s also got a length!

js> global.length

3

3.1.5 Explanation

This behaviour is a consequence of What is this? and Bind is transient, together with JavaScript’s no-exceptions

design.

3.2 Closures

You’ll see closures a lot in JavaScript. The reasons for this are:

1. In JavaScript, Bind is transient.

2. It is callback functions attached to DOM elements that respond to events.

3. Most code attaches callbacks to individual DOM elements (rather than delegating to a parent element).

3.2.1 Test code

Here’s the test code for closures.

TEST('closures', function()

{

// A factory for creating get-set pairs.

var get_set_factory = function(){

var value;

var get = function(){

return value;

};

var set = function(new_value){

value = new_value;

};

return {

get: get,

set: set

};

};

// Create and unpack two get-set pairs.

var tmp;

tmp= get_set_factory();

var get_a = tmp.get;

var set_a = tmp.set;

tmp= get_set_factory();

var get_b = tmp.get;

var set_b = tmp.set;

// Test that both pairs work.

20 Chapter 3. Functions

Core JavaScript Documentation, Release 0.0

set_a(12);

assert(get_a() === 12);

set_b(13);

assert(get_b() === 13);

// Test that each pair has its own value.

assert(get_a() === 12);

});

3.2.2 Discussion

The factory function creates two functions, get and set, which refer to the variable value of the factory function. The

get function returns the value of this variable, while the set function changes it.

To test the factory function we create two get-set pairs. We then test that each set operation changes the value return

by its partner get operation.

Finally, we test that the two pairs don’t interfere with each other.

3.2.3 Explanation

Objects continue to exist so long as a reference remains to them. When the last reference to an object is removed (or

when the object is part of cyclic garbage) the object can be destroyed. When the return value of a function is stored

(say as the value of a variable) then this return value continues to exist. Similarly, anything referred to by the return

value continues to exist.

Closures come about when the return value of a function is itself a function defined within the outer function (or

contains references to such functions).

Suppose the outer function returns an inner function (or in other words a function that is defined within the outer

function). Suppose also that the inner function uses a variable (or parameter) of the outer function. In this situation

the inner function holds a reference to the value of this variable. The code in the inner function can read (or get) this

value. It can also write to this variable.

One final point. Each call of the outer function creates a new instantiation of the function variable.

3.2.4 Exercises

A programmer, perhaps in a hurry, misses out a var in the example above. So now it reads:

var get_set_factory = function(){

value; // Here's the missing *var*.

1. Which tests to you expect to pass, and which to fail?

2. Make this change and run the tests. Which actually fail?

3. Explain what is happening.

4. What does this tell us about coding and testing?

3.2. Closures 21

Core JavaScript Documentation, Release 0.0

3.3 What is this?

JavaScript has a keyword this, whose value depends on the execution context. It is always an object (and never an

immutable, such as a number).

3.3.1 Test code

TEST('return_this', function()

{

var return_this = function(){

return this;

};

var default_this = return_this();

assert(default_this.telltail === 'global');

var obj = {};

obj.return_this = return_this;

assert(obj.return_this === return_this);

assert(obj.return_this() === obj);

assert(obj['return_this']() === obj);

assert(return_this.call(obj) === obj);

assert(return_this.apply(obj) === obj);

assert(return_this.call(undefined).telltail === 'global');

assert(return_this.apply(undefined).telltail === 'global');

});

3.3.2 Discussion

The function return_this is a convenient way of getting of getting hold of the object that is the value of this. The code

that follows shows:

1. The default value of this is the global object.

2. When return_this is called as either a method (i.e. an attribute that is a function) or item of obj then this is obj

itself.

3. That the call and apply methods of a function allow us to set the value of this within a particular execution of

the function.

4. If we pass undefined to function call or apply then we get the global object as this.

3.3.3 Explanation

Throughout the execution of JavaScript code, the identifier this has a value, which is an object (and not an immutable

value). The value of this depends on how the JavaScript interpreter got to be executing the code.

1. At the command line this is the global object.

2. In a function this is the object from which the interpreter got the function.

22 Chapter 3. Functions

Core JavaScript Documentation, Release 0.0

3. Because global variables are attributes of the global object, the rule for calling global variables as functions is a

special case of the previous rule.

4.

Here’s a helpful way to look at the situation. It is as if the interpreter maintains a this stack, which starts containing a

single item, the global object. Each time an item access of an object is immediately followed by a function call, the

object is added to the this stack, and removed at the end of the function call. For all other function calls the global

object is added to the this stack.

During execution of a function the value of this is the element at the top of the this stack.

Finally, the function call and apply methods allow for a particular object to be placed at the top of the this stack before

the function is called.

3.3.4 Exercises

1. At the command-line try making an assignment to this. What happens?

2. Try loading a JavaScript program that makes an assignment to this. What happens?

3. For what values of value is the following true?

return_this.apply(value) === value;

4. Write a simple test that detects these values.

3.4 Bind is transient

3.4.1 Test code

Here’s the test code for attribute bind.

TEST('transient-bind', function()

{

// Set up the test object.

var return_this = function(){

return this;

};

var obj = {

return_this : return_this

};

assert(obj.return_this === return_this);

// Deferring method call changes the outcome.

var method_deferred = obj.return_this;

assert(method_deferred === obj.return_this);

assert(method_deferred() !== obj.return_this()); // AAA

// The two outcomes, precisely stated.

assert(obj.return_this() === obj);

assert(method_deferred().telltail === 'global');

// Another view on the matter.

assert(method_deferred === return_this);

assert(method_deferred() === return_this()); // BBB

3.4. Bind is transient 23

Core JavaScript Documentation, Release 0.0

});

3.4.2 Discussion

We create an object that has a return_this method. The outcome of calling return_this depends on how it is called.

There’s a logic in the test code that produces contradictory, or at least surprising, outcomes.

From

we would expect

But this means that in obj.return_this() the obj is not relevant. But JavaScript (or its designers) wanted objects to have

methods, so they introduced a special rule.

3.4.3 Explanation

JavaScript does not distinguish classes and instances. Python, and perhaps other dynamic languages, does. This allows

Python to supply a bound method, which retains a reference to the object, when a function belonging to the class is

called on an instance.

Here’s a Python (version 3) command line dialogue that illustrates this.

>>> def method(): pass # The function.

...

>>> class A: method = method # The class.

>>> A.method # Function from class.

<function method at 0x15be518>

>>> A.method is method # Same as the original function.

True

>>> a = A() # Instance.

>>> a.method # Bound method, not original function.

<bound method A.method of <__main__.A object at 0x16b9d10>>

The odd behaviour shown in the JavaScript test code is a consequence of JavaScript not distinguishing between classes

and instances.

3.5 What is new?

This can be omitted at a first reading, and omitted altogether if you never have to deal with code that uses the new

operator. If you do, then you must read about the missing new problem.

JavaScript has an object tree. This is a fundamental language feature. The new operator is a way of adding objects to

the tree. The create function, which is built-in to the latest version of JavaScript, can be defined in terms of new, and

vice versa.

3.5.1 Test code

TEST('new-operator', function()

{

// A 'traditional class'. It records 'this' as a side effect.

var this_in_Fn;

24 Chapter 3. Functions

Core JavaScript Documentation, Release 0.0

var Fn = function(){

this_in_Fn = this;

};

// Call the 'class' without the 'new'.

this_in_Fn = null; // Clear any previous value.

var non_instance = Fn();

assert(non_instance === undefined);

assert(this_in_Fn.telltail === 'global');

// Call the 'class' with the 'new'.

this_in_Fn = null; // Clear any previous value.

var instance = new Fn();

assert(instance === this_in_Fn);

assert(instance.telltail === undefined);

// Demonstrate that instance is a descendant of Fn.prototype.

Fn.prototype.telltail = 'instance-of-Fn';

assert(instance.telltail === 'instance-of-Fn');

// We can give Fn a new prototype.

instance.new_telltail = 'child-of-instance';

Fn.prototype = instance;

// And now an instance of Fn has two telltails.

var second_instance = new Fn();

assert(second_instance.telltail === 'instance-of-Fn');

assert(second_instance.new_telltail === 'child-of-instance');

});

3.5.2 Discussion

By changing the prototype object of Fn we start building a tree of objects.

There is a built-in relation between an object and its parent. There is no relation between the object and its constructor,

here called Fn, except that at the time of construction the parent of the object is Fn.prototype.

The exact rules for the behaviour of new are complicated and not given here.

3.5.3 No missing new warning

We saw that when Fn is called without the new then during its execution the value of this is the global object. If the

constructor Fn mutates this (and almost every constructor does), then it is the global object that is mutated.

This is very bad:

1. You may clobber someone elses data.

2. Someone else may clobber your data.

3. If you create two instances, you will clobber your own data.

4. Testing for this error involves extra work.

5. Bugs that arise from this error can appear random and can be hard to find.

3.5. What is new? 25

Core JavaScript Documentation, Release 0.0

Note: Crockford writes A much better alternative is to not use new at all.”

3.6 Arguments

This can be omitted at a first reading. The main point here is that in JavaScript

1. There is no checking for number and type of arguments.

2. The arguments actually supplied are stored in a special variable, called arguments.

3. The value of arguments is almost, but not exactly, an array.

3.6.1 Test code

TEST('return_arguments', function()

{

var return_arguments = function(){

return arguments;

};

var my_arguments = return_arguments(0, 1);

assert(my_arguments.length === 2);

assert(my_arguments[0] === 0);

assert(my_arguments[1] === 1);

assert('' + my_arguments === '[object Object]');

assert('' + [0, 1] === '0,1');

var array_slice = [].slice;

var my_arguments_fixed = array_slice.call(my_arguments);

assert('' + my_arguments_fixed === '0,1');

var obj = {};

assert(obj.toString.call(my_arguments_fixed) === '[object Array]');

});

3.7 Mark Miller’s device

This can be omitted at a first reading. Mark Miller is one of the leading JavaScript experts at Google. He’s been

credited an ingenious application of call that gives a simple and reliable test for whether or not an object is an array.

This may not sound very much, but it is something that had been puzzling the other experts for some years. For

example, Crockford in his Good Parts (published 2008, page 61) gives a much more complex and less reliable solution

to this problem.

The moral of this story is that even the experts in JavaScript can have difficulty finding the best way to solve a simple

problem.

26 Chapter 3. Functions

Core JavaScript Documentation, Release 0.0

3.7.1 Test code

TEST('millers-device', function()

{

var array = [];

var obj = {};

var fn = function(){};

assert(typeof array === 'object');

assert('' + obj === '[object Object]');

assert(obj.toString() === '[object Object]');

var object_toString = obj.toString;

assert(object_toString.call(array) === '[object Array]');

assert(object_toString.call(fn) === '[object Function]');

});

3.7. Mark Miller’s device 27

CHAPTER 4

Examples and exercises

4.1 Exercise one

Here’s some JavaScript code I found somewhere. I’ve changed the names of everything to hide the origin of the code.

But it’s not something I’ve made up.

The exercise is

1. Understand and describe what it does.

2. Provide clearer code that does the same thing.

3. Suggest a better way of going about things.

var AAA = (function (BBB)

{

BBB.fff = function(ccc)

{

return {

ggg: function(ddd)

{

return BBB.hhh(ddd, ccc.iii());

}

};

};

return BBB;

}(AAA || {}));

4.1.1 Hints

1. The code creates and calls an anonymous function, a bit like this.

28

Core JavaScript Documentation, Release 0.0

js> a = function(x){return x + 1}(2)

3

2. What happens if AAA is an object?

3. What happens if AAA is undefined?

4. For now, ignore the assignment to BBB.fff. What value does AAA get? (The answer depends the initial value

of AAA.)

4.2 Solution one

Here’s the code we’re studying.

var AAA = (function (BBB)

{

BBB.fff = function(ccc)

{

return {

ggg: function(ddd)

{

return BBB.hhh(ddd, ccc.iii());

}

};

};

return BBB;

}(AAA || {}));

4.2.1 Verbal summary

We are making sure that there’s an object AAA and giving it an attribute AAA.fff, which is a function. We won’t say

more about the function in this summary.

4.2.2 Hoisting once-only arguments

First, we’ll hoist the argument to the anonymous function into its body. We can always do this, without changing the

meaning, provided the function is called only once.

var AAA = function ()

{

var BBB = AAA || {};

BBB.fff = function(ccc)

{

return {

ggg: function(ddd)

{

return BBB.hhh(ddd, ccc.iii());

}

};

};

return BBB;

4.2. Solution one 29

Core JavaScript Documentation, Release 0.0

}();

There, that’s better. We no longer have to read to the end of the function to find out what BBB is (and in particular its

relationship with AAA).

4.2.3 What is AAA?

Next, we’ll hide (or ignore) the assigment to BBB.fff. This assignment sets an attribute on the object pointed to by the

variable BBB. In other words, it mutates the object pointed to by BBB, but the variable BBB still points to the same

object as it did before.

var AAA = function ()

{

var BBB = AAA || {};

return BBB;

}();

If AAA starts out as an object then the expression

AAA || {}

evaluates to AAA, while if AAA is undefined then it evaluates to the newly created object literal (the left-and-right

curly braces). In either case, this value is assigned to the local variable BBB, which is then returned by the anonymous

function and bound to AAA.

Put another way, if AAA starts off as undefined then it is bound to a new object, while if it starts off as an object then

it finishes as the same object.

Therefore, our truncated version of the original exercise is equivalent to

var AAA = AAA || {};

This idiom is very common in JavaScript, and is (as here) a consequence of using objects as namespaces (which is

better than using the global object) and defensiveness about the order in which files are loaded.

Here’s a command line session that shows this equivalence. To begin with AAA is undefined and the assignment binds

AAA to a new object. For the second assignment AAA is defined and the assignment binds AAA to the object is

already bound to.

js> var AAA = AAA || {}

js> AAA

[object Object]

js> pointer = AAA

[object Object]

js> var AAA = AAA || {}

js> pointer === AAA

true

4.2.4 The assignment to BBB.fff

Reading the code, it looks as if BBB is local to the anonymous function. As a variable it is, but its value is not. The

value of BBB is bound to the global object AAA at the end of the function call.

The following is almost equivalent to our original JavaScript code. Note that BBB.hhh has been changed to AAA.hhh.

30 Chapter 4. Examples and exercises

Core JavaScript Documentation, Release 0.0

var AAA = AAA || {};

AAA.fff = function(ccc)

{

return {

ggg: function(ddd)

{

return AAA.hhh(ddd, ccc.iii());

}

};

};

4.2.5 Caveat

Why did I say almost equivalent? Because we might subsequently do something like

var CCC = AAA;

AAA = undefined;

For the original code the closure variable BBB still exists and points to the same object as CCC, even though AAA is

undefined. Thus, the reference to BBB.hhh in the original code will continue to work.

For the revised code, when the value of AAA is set to undefined the reference to AAA.hhh will fail.

4.3 Exercise two

Here’s some more JavaScript code I found. I’ve changed the names of everything to hide the origin of the code. But

it’s not something I’ve made up.

var copy_attributes = function(tgt, src){

tgt.aaa = src.get_aaa();

tgt.bbb = src.get_bbb();

tgt.ccc = src.get_ccc();

tgt.ddd = src.get_ddd();

tgt.eee = src.get_eee();

tgt.fff = src.get_fff();

tgt.ggg = src.get_ggg();

tgt.hhh = src.get_hhh();

};

The exercise is

1. Rewrite the function copy_attributes so that it makes a loop over

var keys = ['aaa', 'bbb', 'ccc', 'ddd', 'eee', 'fff', 'ggg', 'hhh'];

2. Write a copy_attributes_factory function so that we can write

var copy_attributes = copy_attributes_factory(keys);

3. Write a Fields class such that something like this will work:

4.3. Exercise two 31

Core JavaScript Documentation, Release 0.0

var aaa = Fields(keys);

aaa.copy_attributes(src, tgt);

4.3.1 Hints

1. In JavaScript attribute access and item access are the same. First we use item access to set:

js> a = {}

[object Object]

js> key = 'attrname'

attrname

js> a[key] = 42

42

and then we use attribute access to get:

js> a.attrname

42

2. This applies even for function (aka method) calls.

3. Have the factory function store the keys in a closure.

4. There are many ways of writing Fields. Choose one that suits you.

4.4 Solution two

Here’s the code we are studying. The first task is make a loop that does the assignments.

var copy_attributes = function(tgt, src){

tgt.aaa = src.get_aaa();

tgt.bbb = src.get_bbb();

tgt.ccc = src.get_ccc();

tgt.ddd = src.get_ddd();

tgt.eee = src.get_eee();

tgt.fff = src.get_fff();

tgt.ggg = src.get_ggg();

tgt.hhh = src.get_hhh();

};

4.4.1 Making a loop

As previously hinted, we use item access rather than attribute access. The problem with attribute access is that the

name of the key is hard-coded and we want it to vary during the loop.

Here’s the solution. There’s a bit of overhead in setting up the loop, but the body of the loop is straightforward.

var copy_attributes = function(tgt, src){

var keys = ['aaa', 'bbb', 'ccc', 'ddd', 'eee', 'fff', 'ggg', 'hhh'];

var i;

var key;

32 Chapter 4. Examples and exercises

Core JavaScript Documentation, Release 0.0

for(i=0; i< keys.length; i++){

tgt[key] = src['get_' + key]();

}

};

4.4.2 Factory function

The second task is to write a factory function that takes the list of keys as a parameter.

This is a common refactoring pattern, and so is worth learning well. First we give the code, and then the explanation.

var copy_attributes_factory = function(keys){

return function(src, tgt){

var i;

var key;

for(i=0; i< keys.length; i++){

tgt[key] = src['get_' + key]();

};

};

};

Here’s what we’ve done. We created a wrapper function, with keys as its only parameter. This will be our factory

function. We’ve placed the original function into the body of the wrapper, and return it (as the value of the wrapper

function). Finally, we clean up by removing the keys constant from the inner function.

There, it’s done! When the factory function executes it returns an instance of the inner function for which keys is the

argument we supplied to the factory.

4.4.3 A prototype class

The third task is to write a Fields class that has a copy_attributes method.

Here’s a function prototype based solution. It relies on the user of the class supplying the new operator to create the

new instance (and chaos results if the user forgets).

var Fields = function(keys){

this.keys = keys;

};

Fields.prototype = {

copy_attributes : function(src, tgt){

var keys = this.keys;

var i;

for(i=0; i< keys.length; i++){

tgt[key] = src['get_' + key]();

};

}

};

A minor point is the trailing sequence of right curly braces. Two are followed by a semicolon, but the middle one is

not. Why? What happens if we put a semicolon there?

4.4. Solution two 33

Core JavaScript Documentation, Release 0.0

4.4.4 A SimpleClass solution

Here’s another solution to the third task, which does not require the user to supply a new operator when creating

instances. Instead it uses a factory function, which we call Class , that creates an instance constructor function from a

prototype object.

// Rhino $ js -f library.js -f solution-2-d.js -

var fields = {};

fields.__init__ = function(keys){

this.keys = keys;

};

fields.copy_attributes = function(src, tgt){

var keys = this.keys;

var key;

var i;

for(i=0; i< keys.length; i++){

key = keys[i];

tgt[key] = src['get_' + key]();

};

};

var Fields = SimpleClass(fields);

4.4.5 Exercise: write test

Here’s an exercise. Write a JavaScript file that tests this solution.

4.4.6 Exercise: bound method class

Recall that this-based instance methods are somewhat fragile. In other words, code like this will fail (and make

unwanted changes to the global object):

var instance = MyClass(arg1, arg2);

var fn = instance.method;

element.onclick(fn);

Let’s say that a class has bound methods if we can safely pass around instance methods. In other words, we want

instance.method to have no dependence on the value of this.

We can achieve this by using a different class factory function.

var myclass = {} // The prototype object.

// Add methods to myclass.

var MyClass = BoundMethodClass(myclass);

The exercise is to create (and test) a BoundMethodClass factory.

34 Chapter 4. Examples and exercises

	About this course
	Getting started
	Counters example
	Test tools

	Objects
	Immutables
	Equality
	Objects
	The object tree
	Simple classes

	Functions
	The global object
	Closures
	What is this?
	Bind is transient
	What is new?
	Arguments
	Mark Miller's device

	Examples and exercises
	Exercise one
	Solution one
	Exercise two
	Solution two

