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Chapter 1: Getting started with R Language

Remarks

Editing R Docs on Stack Overflow

See the documentation guidelines for general rules when creating documentation.

A few features of R that immigrants from 

other language may find unusual

Unlike other languages variables in R need not require type declaration.•

The same variable can be assigned different data types at different instances of time, if 

required.

•

Indexing of atomic vectors and lists starts from 1, not 0.•

R arrays (and the special case of matrices) have a dim attribute that sets them apart from R's 

"atomic vectors" which have no attributes.

•

A list in R allows you to gather a variety of objects under one name (that is, the name of the 

list) in an ordered way. These objects can be matrices, vectors, data frames, even other 

lists, etc. It is not even required that these objects are related to each other in any way.

•

Recycling•

Missing values•

Examples

Installing R

You might wish to install RStudio after you have installed R. RStudio is a development 

environment for R that simplifies many programming tasks.

Windows only:

Visual Studio (starting from version 2015 Update 3) now features a development environment for 

R called R Tools, that includes a live interpreter, IntelliSense, and a debugging module. If you 

choose this method, you won't have to install R as specified in the following section.

For Windows

Go to the CRAN website, click on download R for Windows, and download the latest version 1. 
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of R.

Right-click the installer file and RUN as administrator.2. 

Select the operational language for installation.3. 

Follow the instructions for installation.4. 

For OSX / macOS

Alternative 1

(0. Ensure XQuartz is installed )

Go to the CRAN website and download the latest version of R.1. 

Open the disk image and run the installer.2. 

Follow the instructions for installation.3. 

This will install both R and the R-MacGUI. It will put the GUI in the /Applications/ Folder as R.app 

where it can either be double-clicked or dragged to the Doc. When a new version is released, the 

(re)-installation process will overwrite R.app but prior major versions of R will be maintained. The 

actual R code will be in the /Library/Frameworks/R.Framework/Versions/ directory. Using R within 

RStudio is also possible and would be using the same R code with a different GUI.

Alternative 2

Install homebrew (the missing package manager for macOS) by following the instructions on 

https://brew.sh/

1. 

brew install R2. 

Those choosing the second method should be aware that the maintainer of the Mac fork advises 

against it, and will not respond to questions about difficulties on the R-SIG-Mac Mailing List.

For Debian, Ubuntu and derivatives

You can get the version of R corresponding to your distro via apt-get. However, this version will 

frequently be quite far behind the most recent version available on CRAN. You can add CRAN to 

your list of recognized "sources".

sudo apt-get install r-base

You can get a more recent version directly from CRAN by adding CRAN to your sources list. 

Follow the directions from CRAN for more details. Note in particular the need to also execute this 

so that you can use install.packages(). Linux packages are usually distributed as source files and 

need compilation:

sudo apt-get install r-base-dev
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For Red Hat and Fedora

sudo dnf install R

For Archlinux

R is directly available in the Extra package repo.

sudo pacman -S r

More info on using R under Archlinux can be found on the ArchWiki R page.

Hello World!

"Hello World!"

Also, check out the detailed discussion of how, when, whether and why to print a string.

Getting Help

You can use function help() or ? to access documentations and search for help in R. For even 

more general searches, you can use help.search() or ??.

#For help on the help function of R 
help() 
 
#For help on the paste function 
help(paste)    #OR 
help("paste")  #OR 
?paste         #OR 
?"paste"

Visit https://www.r-project.org/help.html for additional information

Interactive mode and R scripts

The interactive mode

The most basic way to use R is the interactive mode. You type commands and immediately get 

the result from R.

Using R as a calculator
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Start R by typing R at the command prompt of your operating system or by executing RGui on 

Windows. Below you can see a screenshot of an interactive R session on Linux:

This is RGui on Windows, the most basic working environment for R under Windows: 
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After the > sign, expressions can be typed in. Once an expression is typed, the result is shown by 

R. In the screenshot above, R is used as a calculator: Type

1+1

to immediately see the result, 2. The leading [1] indicates that R returns a vector. In this case, the 

vector contains only one number (2).

The first plot

R can be used to generate plots. The following example uses the data set PlantGrowth, which 

comes as an example data set along with R

Type int the following all lines into the R prompt which do not start with ##. Lines starting with ## 

are meant to document the result which R will return.

data(PlantGrowth) 
str(PlantGrowth) 
## 'data.frame':    30 obs. of  2 variables: 
## $ weight: num  4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ... 
## $ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1 ... 
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anova(lm(weight ~ group, data = PlantGrowth)) 
## Analysis of Variance Table 
## 
## Response: weight 
##           Df  Sum Sq Mean Sq F value  Pr(>F) 
## group      2  3.7663  1.8832  4.8461 0.01591 * 
## Residuals 27 10.4921  0.3886 
## --- 
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
boxplot(weight ~ group, data = PlantGrowth, ylab = "Dry weight")

The following plot is created:

data(PlantGrowth) loads the example data set PlantGrowth, which is records of dry masses of plants 

which were subject to two different treatment conditions or no treatment at all (control group). The 

data set is made available under the name PlantGrowth. Such a name is also called a Variable.

To load your own data, the following two documentation pages might be helpful:

Reading and writing tabular data in plain-text files (CSV, TSV, etc.)•

I/O for foreign tables (Excel, SAS, SPSS, Stata)•

str(PlantGrowth) shows information about the data set which was loaded. The output indicates that 

PlantGrowth is a data.frame, which is R's name for a table. The data.frame contains of two columns 

and 30 rows. In this case, each row corresponds to one plant. Details of the two columns are 

shown in the lines starting with $: The first column is called weight and contains numbers (num, the 

dry weight of the respective plant). The second column, group, contains the treatment that the plant 

was subjected to. This is categorial data, which is called factor in R. Read more information about 

data frames.

To compare the dry masses of the three different groups, a one-way ANOVA is performed using 

anova(lm( ... )). weight ~ group means "Compare the values of the column weight, grouping by 

the values of the column group". This is called a Formula in R. data = ... specifies the name of the 

table where the data can be found.

The result shows, among others, that there exists a significant difference (Column Pr(>F)), p = 

0.01591) between some of the three groups. Post-hoc tests, like Tukey's Test, must be performed 

to determine which groups' means differ significantly.
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boxplot(...) creates a box plot of the data. where the values to be plotted come from. weight ~ 

group means: "Plot the values of the column weight versus the values of the column group. ylab = 

... specifies the label of the y axis. More information: Base plotting

Type q() or Ctrl-D to exit from the R session.

R scripts

To document your research, it is favourable to save the commands you use for calculation in a file. 

For that effect, you can create R scripts. An R script is a simple text file, containing R commands.

Create a text file with the name plants.R, and fill it with the following text, where some commands 

are familiar from the code block above:

data(PlantGrowth) 
 
anova(lm(weight ~ group, data = PlantGrowth)) 
 
png("plant_boxplot.png", width = 400, height = 300) 
boxplot(weight ~ group, data = PlantGrowth, ylab = "Dry weight") 
dev.off() 

Execute the script by typing into your terminal (The terminal of your operating system, not an 

interactive R session like in the previous section!)

R --no-save <plant.R >plant_result.txt

The file plant_result.txt contains the results of your calculation, as if you had typed them into the 

interactive R prompt. Thereby, your calculations are documented.

The new commands png and dev.off are used for saving the boxplot to disk. The two commands 

must enclose the plotting command, as shown in the example above. png("FILENAME", width = ..., 

height = ...) opens a new PNG file with the specified file name, width and height in pixels. 

dev.off() will finish plotting and saves the plot to disk. No output is saved until dev.off() is called.

Read Getting started with R Language online: https://riptutorial.com/r/topic/360/getting-started-

with-r-language
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Chapter 2: *apply family of functions 

(functionals)

Remarks

A function in the *apply family is an abstraction of a for loop. Compared with the for loops *apply 

functions have the following advantages:

Require less code to write.1. 

Doesn't have an iteration counter.2. 

Doesn't use temporary variables to store intermediate results.3. 

However for loops are more general and can give us more control allowing to achieve complex 

computations that are not always trivial to do using *apply functions.

The relationship between for loops and *apply functions is explained in the documentation for for 

loops.

Members of the *apply Family

The *apply family of functions contains several variants of the same principle that differ based 

primarily on the kind of output they return.

function Input Output

apply matrix, data.frame, or 
array

vector or matrix (depending on the length of each 

element returned)

sapply vector or list
vector or matrix (depending on the length of each 

element returned)

lapply vector or list list

vapply vector or `list
vector or matrix (depending on the length of each 

element returned) of the user-designated class

mapply
multiple vectors, lists or 

a combination
list

See "Examples" to see how each of these functions is used.

Examples
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Use anonymous functions with apply

apply is used to evaluate a function (maybe an anonymous one) over the margins of an array or 

matrix.

Let's use the iris dataset to illustrate this idea. The iris dataset has measurements of 150 

flowers from 3 species. Let's see how this dataset is structured:

> head(iris) 
 
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
1         5.1          3.5          1.4         0.2  setosa 
2         4.9          3.0          1.4         0.2  setosa 
3         4.7          3.2          1.3         0.2  setosa 
4         4.6          3.1          1.5         0.2  setosa 
5         5.0          3.6          1.4         0.2  setosa 
6         5.4          3.9          1.7         0.4  setosa

Now, imagine that you want to know the mean of each of these variables. One way to solve this 

might be to use a for loop, but R programmers will often prefer to use apply (for reasons why, see 

Remarks):

> apply(iris[1:4], 2, mean) 
 
Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
    5.843333     3.057333     3.758000     1.199333

In the first parameter, we subset iris to include only the first 4 columns, because mean only 

works on numeric data.

•

The second parameter value of 2 indicates that we want to work on the columns only (the 

second subscript of the r×c array); 1 would give the row means.

•

In the same way we can calculate more meaningful values:

# standard deviation 
apply(iris[1:4], 2, sd) 
# variance 
apply(iris[1:4], 2, var)

Caveat: R has some built-in functions which are better for calculating column and row sums and 

means: colMeans and rowMeans.

Now, let's do a different and more meaningful task: let's calculate the mean only for those values 

which are bigger than 0.5. For that, we will create our own mean function.

> our.mean.function <- function(x) { mean(x[x > 0.5]) } 
> apply(iris[1:4], 2, our.mean.function) 
 
Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
    5.843333     3.057333     3.758000     1.665347
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(Note the difference in the mean of Petal.Width)

But, what if we don't want to use this function in the rest of our code? Then, we can use an 

anonymous function, and write our code like this:

apply(iris[1:4], 2, function(x) { mean(x[x > 0.5]) })

So, as we have seen, we can use apply to execute the same operation on columns or rows of a 

dataset using only one line.

Caveat: Since apply returns very different kinds of output depending on the length of the results of 

the specified function, it may not be the best choice in cases where you are not working 

interactively. Some of the other *apply family functions are a bit more predictable (see Remarks).

Bulk File Loading

for a large number of files which may need to be operated on in a similar process and with well 

structured file names.

firstly a vector of the file names to be accessed must be created, there are multiple options for this:

Creating the vector manually with paste0()

 files <- paste0("file_", 1:100, ".rds")

•

Using list.files() with a regex search term for the file type, requires knowledge of regular 

expressions (regex) if other files of same type are in the directory.

 files <- list.files("./", pattern = "\\.rds$", full.names = TRUE)

•

where X is a vector of part of the files naming format used.

lapply will output each response as element of a list.

readRDS is specific to .rds files and will change depending on the application of the process.

my_file_list <- lapply(files, readRDS)

This is not necessarily faster than a for loop from testing but allows all files to be an element of a 

list without assigning them explicitly.

Finally, we often need to load multiple packages at once. This trick can do it quite easily by 

applying library() to all libraries that we wish to import:

lapply(c("jsonlite","stringr","igraph"),library,character.only=TRUE)

Combining multiple `data.frames` (`lapply`, `mapply`)
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In this exercise, we will generate four bootstrap linear regression models and combine the 

summaries of these models into a single data frame.

library(broom) 
 
#* Create the bootstrap data sets 
BootData <- lapply(1:4, 
                   function(i) mtcars[sample(1:nrow(mtcars), 
                                             size = nrow(mtcars), 
                                             replace = TRUE), ]) 
 
#* Fit the models 
Models <- lapply(BootData, 
                 function(BD) lm(mpg ~ qsec + wt + factor(am), 
                                 data = BD)) 
 
#* Tidy the output into a data.frame 
Tidied <- lapply(Models, 
                 tidy) 
 
#* Give each element in the Tidied list a name 
Tidied <- setNames(Tidied, paste0("Boot", seq_along(Tidied)))

At this point, we can take two approaches to inserting the names into the data.frame.

#* Insert the element name into the summary with `lapply` 
#* Requires passing the names attribute to `lapply` and referencing `Tidied` within 
#* the applied function. 
Described_lapply <- 
 lapply(names(Tidied), 
        function(nm) cbind(nm, Tidied[[nm]])) 
 
Combined_lapply <- do.call("rbind", Described_lapply) 
 
#* Insert the element name into the summary with `mapply` 
#* Allows us to pass the names and the elements as separate arguments. 
Described_mapply <- 
 mapply( 
  function(nm, dframe) cbind(nm, dframe), 
  names(Tidied), 
  Tidied, 
  SIMPLIFY = FALSE) 
 
Combined_mapply <- do.call("rbind", Described_mapply)

If you're a fan of magrittr style pipes, you can accomplish the entire task in a single chain (though 

it may not be prudent to do so if you need any of the intermediary objects, such as the model 

objects themselves):

library(magrittr) 
library(broom) 
Combined <- lapply(1:4, 
                   function(i) mtcars[sample(1:nrow(mtcars), 
                                             size = nrow(mtcars), 
                                             replace = TRUE), ]) %>% 
 lapply(function(BD) lm( mpg ~ qsec + wt + factor(am), data = BD)) %>% 
 lapply(tidy) %>% 
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 setNames(paste0("Boot", seq_along(.))) %>% 
 mapply(function(nm, dframe) cbind(nm, dframe), 
        nm = names(.), 
        dframe = ., 
        SIMPLIFY = FALSE) %>% 
 do.call("rbind", .)

Using built-in functionals

Built-in functionals: lapply(), sapply(), and 

mapply()

R comes with built-in functionals, of which perhaps the most well-known are the apply family of 

functions. Here is a description of some of the most common apply functions:

lapply() = takes a list as an argument and applies the specified function to the list.•

sapply() = the same as lapply() but attempts to simplify the output to a vector or a matrix.

vapply() = a variant of sapply() in which the output object's type must be specified.○

•

mapply() = like lapply() but can pass multiple vectors as input to the specified function. Can 

be simplified like sapply().

Map() is an alias to mapply() with SIMPLIFY = FALSE.○

•

lapply()

lapply() can be used with two different iterations:

lapply(variable, FUN)•
lapply(seq_along(variable), FUN)•

# Two ways of finding the mean of x 
set.seed(1) 
df <- data.frame(x = rnorm(25), y = rnorm(25)) 
lapply(df, mean) 
lapply(seq_along(df), function(x) mean(df[[x]))

sapply()

sapply() will attempt to resolve its output to either a vector or a matrix.

# Two examples to show the different outputs of sapply() 
sapply(letters, print)  ## produces a vector 
x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE)) 
sapply(x, quantile)  ## produces a matrix

mapply()
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mapply() works much like lapply() except it can take multiple vectors as input (hence the m for 

multivariate).

mapply(sum, 1:5, 10:6, 3) # 3 will be "recycled" by mapply

Using user-defined functionals

User-defined functionals

Users can create their own functionals to varying degrees of complexity. The following examples 

are from Functionals by Hadley Wickham:

randomise <- function(f) f(runif(1e3)) 
 
lapply2 <- function(x, f, ...) { 
    out <- vector("list", length(x)) 
    for (i in seq_along(x)) { 
        out[[i]] <- f(x[[i]], ...) 
    } 
    out 
}

In the first case, randomise accepts a single argument f, and calls it on a sample of Uniform 

random variables. To demonstrate equivalence, we call set.seed below:

set.seed(123) 
randomise(mean) 
#[1] 0.4972778 
 
set.seed(123) 
mean(runif(1e3)) 
#[1] 0.4972778 
 
 
set.seed(123) 
randomise(max) 
#[1] 0.9994045 
 
set.seed(123) 
max(runif(1e3)) 
#[1] 0.9994045

The second example is a re-implementation of base::lapply, which uses functionals to apply an 

operation (f) to each element in a list (x). The ... parameter allows the user to pass additional 

arguments to f, such as the na.rm option in the mean function:

lapply(list(c(1, 3, 5), c(2, NA, 6)), mean) 
# [[1]] 
# [1] 3 
# 
# [[2]] 
# [1] NA 
 

https://riptutorial.com/ 14

http://adv-r.had.co.nz/Functionals.html


lapply2(list(c(1, 3, 5), c(2, NA, 6)), mean) 
# [[1]] 
# [1] 3 
# 
# [[2]] 
# [1] NA 
 
 
lapply(list(c(1, 3, 5), c(2, NA, 6)), mean, na.rm = TRUE) 
# [[1]] 
# [1] 3 
# 
# [[2]] 
# [1] 4 
 
lapply2(list(c(1, 3, 5), c(2, NA, 6)), mean, na.rm = TRUE) 
# [[1]] 
# [1] 3 
# 
# [[2]] 
# [1] 4

Read *apply family of functions (functionals) online: https://riptutorial.com/r/topic/3567/-apply-

family-of-functions--functionals-
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Chapter 3: .Rprofile

Remarks

There is a nice chapter on the matter in Efficient R programming

Examples

.Rprofile - the first chunk of code executed

.Rprofile is a file containing R code that is executed when you launch R from the directory 

containing the .Rprofile file. The similarly named Rprofile.site, located in R's home directory, is 

executed by default every time you load R from any directory. Rprofile.site and to a greater 

extend .Rprofile can be used to initialize an R session with personal preferences and various 

utility functions that you have defined.

Important note: if you use RStudio, you can have a separate .Rprofile in every RStudio 

project directory.

Here are some examples of code that you might include in an .Rprofile file.

Setting your R home directory

# set R_home 
Sys.setenv(R_USER="c:/R_home") # just an example directory 
# but don't confuse this with the $R_HOME environment variable.

Setting page size options

options(papersize="a4") 
options(editor="notepad") 
options(pager="internal")

set the default help type

options(help_type="html")

set a site library
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.Library.site <- file.path(chartr("\\", "/", R.home()), "site-library")

Set a CRAN mirror

local({r <- getOption("repos") 
    r["CRAN"] <- "http://my.local.cran" 
    options(repos=r)})

Setting the location of your library

This will allow you to not have to install all the packages again with each R version update.

# library location 
.libPaths("c:/R_home/Rpackages/win")

Custom shortcuts or functions

Sometimes it is useful to have a shortcut for a long R expression. A common example of this 

setting an active binding to access the last top-level expression result without having to type out 

.Last.value:

makeActiveBinding(".", function(){.Last.value}, .GlobalEnv)

Because .Rprofile is just an R file, it can contain any arbitrary R code.

Pre-loading the most useful packages

This is bad practice and should generally be avoided because it separates package loading code 

from the scripts where those packages are actually used.

See Also

See help(Startup) for all the different startup scripts, and further aspects. In particular, two system-

wide Profile files can be loaded as well. The first, Rprofile, may contain global settings, the other 

file Profile.site may contain local choices the system administrator can make for all users. Both 

files are found in the ${RHOME}/etc directory of the R installation. This directory also contains global 

files Renviron and Renviron.site which both can be completemented with a local file ~/.Renviron in 

the user's home directory.

.Rprofile example

https://riptutorial.com/ 17



Startup

# Load library setwidth on start - to set the width automatically. 
.First <- function() { 
  library(setwidth) 
  # If 256 color terminal - use library colorout. 
  if (Sys.getenv("TERM") %in% c("xterm-256color", "screen-256color")) { 
    library("colorout") 
  } 
}

Options

# Select default CRAN mirror for package installation. 
options(repos=c(CRAN="https://cran.gis-lab.info/")) 
 
# Print maximum 1000 elements. 
options(max.print=1000) 
 
# No scientific notation. 
options(scipen=10) 
 
# No graphics in menus. 
options(menu.graphics=FALSE) 
 
# Auto-completion for package names. 
utils::rc.settings(ipck=TRUE)

Custom Functions

# Invisible environment to mask defined functions 
.env = new.env() 
 
# Quit R without asking to save. 
.env$q <- function (save="no", ...) { 
  quit(save=save, ...) 
} 
 
# Attach the environment to enable functions. 
attach(.env, warn.conflicts=FALSE)

Read .Rprofile online: https://riptutorial.com/r/topic/4166/-rprofile

https://riptutorial.com/ 18

https://riptutorial.com/r/topic/4166/-rprofile


Chapter 4: Aggregating data frames

Introduction

Aggregation is one of the most common uses for R. There are several ways to do so in R, which 

we will illustrate here.

Examples

Aggregating with base R

For this, we will use the function aggregate, which can be used as follows:

aggregate(formula,function,data)

The following code shows various ways of using the aggregate function.

CODE:

df = data.frame(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup = 
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5)) 
 
# sum, grouping by one column 
aggregate(value~group, FUN=sum, data=df) 
 
# mean, grouping by one column 
aggregate(value~group, FUN=mean, data=df) 
 
# sum, grouping by multiple columns 
aggregate(value~group+subgroup,FUN=sum,data=df) 
 
# custom function, grouping by one column 
# in this example we want the sum of all values larger than 2 per group. 
aggregate(value~group, FUN=function(x) sum(x[x>2]), data=df)

OUTPUT:

> df = data.frame(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup = 
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5)) 
> print(df) 
    group subgroup value 
1 Group 1        A   2.0 
2 Group 1        A   2.5 
3 Group 2        A   1.0 
4 Group 2        A   2.0 
5 Group 2        B   1.5 
> 
> # sum, grouping by one column 
> aggregate(value~group, FUN=sum, data=df) 
    group value 
1 Group 1   4.5 
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2 Group 2   4.5 
> 
> # mean, grouping by one column 
> aggregate(value~group, FUN=mean, data=df) 
    group value 
1 Group 1  2.25 
2 Group 2  1.50 
> 
> # sum, grouping by multiple columns 
> aggregate(value~group+subgroup,FUN=sum,data=df) 
    group subgroup value 
1 Group 1        A   4.5 
2 Group 2        A   3.0 
3 Group 2        B   1.5 
> 
> # custom function, grouping by one column 
> # in this example we want the sum of all values larger than 2 per group. 
> aggregate(value~group, FUN=function(x) sum(x[x>2]), data=df) 
    group value 
1 Group 1   2.5 
2 Group 2   0.0

Aggregating with dplyr

Aggregating with dplyr is easy! You can use the group_by() and the summarize() functions for this. 

Some examples are given below.

CODE:

# Aggregating with dplyr 
library(dplyr) 
 
df = data.frame(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup = 
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5)) 
print(df) 
 
# sum, grouping by one column 
df %>% group_by(group) %>% summarize(value = sum(value)) %>% as.data.frame() 
 
# mean, grouping by one column 
df %>% group_by(group) %>% summarize(value = mean(value)) %>% as.data.frame() 
 
# sum, grouping by multiple columns 
df %>% group_by(group,subgroup) %>% summarize(value = sum(value)) %>% as.data.frame() 
 
# custom function, grouping by one column 
# in this example we want the sum of all values larger than 2 per group. 
df %>% group_by(group) %>% summarize(value = sum(value[value>2])) %>% as.data.frame()

OUTPUT:

> library(dplyr) 
> 
> df = data.frame(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup = 
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5)) 
> print(df) 
    group subgroup value 
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1 Group 1        A   2.0 
2 Group 1        A   2.5 
3 Group 2        A   1.0 
4 Group 2        A   2.0 
5 Group 2        B   1.5 
> 
> # sum, grouping by one column 
> df %>% group_by(group) %>% summarize(value = sum(value)) %>% as.data.frame() 
    group value 
1 Group 1   4.5 
2 Group 2   4.5 
> 
> # mean, grouping by one column 
> df %>% group_by(group) %>% summarize(value = mean(value)) %>% as.data.frame() 
    group value 
1 Group 1  2.25 
2 Group 2  1.50 
> 
> # sum, grouping by multiple columns 
> df %>% group_by(group,subgroup) %>% summarize(value = sum(value)) %>% as.data.frame() 
    group subgroup value 
1 Group 1        A   4.5 
2 Group 2        A   3.0 
3 Group 2        B   1.5 
> 
> # custom function, grouping by one column 
> # in this example we want the sum of all values larger than 2 per group. 
> df %>% group_by(group) %>% summarize(value = sum(value[value>2])) %>% as.data.frame() 
    group value 
1 Group 1   2.5 
2 Group 2   0.0

Aggregating with data.table

Grouping with the data.table package is done using the syntax dt[i, j, by] Which can be read out 

loud as: "Take dt, subset rows using i, then calculate j, grouped by by." Within the dt statement, 

multiple calculations or groups should be put in a list. Since an alias for list() is .(), both can be 

used interchangeably. In the examples below we use .().

CODE:

# Aggregating with data.table 
library(data.table) 
 
dt = data.table(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup = 
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5)) 
print(dt) 
 
# sum, grouping by one column 
dt[,.(value=sum(value)),group] 
 
# mean, grouping by one column 
dt[,.(value=mean(value)),group] 
 
# sum, grouping by multiple columns 
dt[,.(value=sum(value)),.(group,subgroup)] 
 
# custom function, grouping by one column 
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# in this example we want the sum of all values larger than 2 per group. 
dt[,.(value=sum(value[value>2])),group]

OUTPUT:

> # Aggregating with data.table 
> library(data.table) 
> 
> dt = data.table(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup = 
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5)) 
> print(dt) 
     group subgroup value 
1: Group 1        A   2.0 
2: Group 1        A   2.5 
3: Group 2        A   1.0 
4: Group 2        A   2.0 
5: Group 2        B   1.5 
> 
> # sum, grouping by one column 
> dt[,.(value=sum(value)),group] 
     group value 
1: Group 1   4.5 
2: Group 2   4.5 
> 
> # mean, grouping by one column 
> dt[,.(value=mean(value)),group] 
     group value 
1: Group 1  2.25 
2: Group 2  1.50 
> 
> # sum, grouping by multiple columns 
> dt[,.(value=sum(value)),.(group,subgroup)] 
     group subgroup value 
1: Group 1        A   4.5 
2: Group 2        A   3.0 
3: Group 2        B   1.5 
> 
> # custom function, grouping by one column 
> # in this example we want the sum of all values larger than 2 per group. 
> dt[,.(value=sum(value[value>2])),group] 
     group value 
1: Group 1   2.5 
2: Group 2   0.0

Read Aggregating data frames online: https://riptutorial.com/r/topic/10792/aggregating-data-

frames
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Chapter 5: Analyze tweets with R

Introduction

(Optional) Every topic has a focus. Tell the readers what they will find here and let future 

contributors know what belongs.

Examples

Download Tweets

The first think you need to do is to download tweets. You need to Setup your tweeter account. 

Much Information can be found in Internet on how to do it. The following two links were useful for 

my Setup (last checked in May 2017)

In particular I found the following two links useful (last checked in May 2017):

Link 1

Link 2

R Libraries

You will need the following R packages

library("devtools") 
library("twitteR") 
library("ROAuth")

Supposing you have your keys You have to run the following code

api_key <- XXXXXXXXXXXXXXXXXXXXXX 
api_secret <- XXXXXXXXXXXXXXXXXXXXXX 
access_token <- XXXXXXXXXXXXXXXXXXXXXX 
access_token_secret <- XXXXXXXXXXXXXXXXXXXXXX 
 
 
setup_twitter_oauth(api_key,api_secret)

Change XXXXXXXXXXXXXXXXXXXXXX to your keys (if you have Setup your tweeter account you know 

which keys I mean).

Let's now suppose we want to download tweets on coffee. The following code will do it

search.string <- "#coffee" 
no.of.tweets <- 1000 
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c_tweets <- searchTwitter(search.string, n=no.of.tweets, lang="en") 

You will get 1000 tweets on "coffee".

Get text of tweets

Now we need to access the text of the tweets. So we do it in this way (we also need to clean up 

the tweets from special characters that for now we don't need, like emoticons with the sapply 

function.)

coffee_tweets = sapply(c_tweets, function(t) t$getText()) 
 
coffee_tweets <- sapply(coffee_tweets,function(row) iconv(row, "latin1", "ASCII", sub=""))

and you can check your tweets with the head function.

head(coffee_tweets)

Read Analyze tweets with R online: https://riptutorial.com/r/topic/10086/analyze-tweets-with-r
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Chapter 6: ANOVA

Examples

Basic usage of aov()

Analysis of Variance (aov) is used to determine if the means of two or more groups differ 

significantly from each other. Responses are assumed to be independent of each other, Normally 

distributed (within each group), and the within-group variances are assumed equal.

In order to complete the analysis data must be in long format (see reshaping data topic). aov() is a 

wrapper around the lm() function, using Wilkinson-Rogers formula notation y~f where y is the 

response (independent) variable and f is a factor (categorical) variable representing group 

membership. If f is numeric rather than a factor variable, aov() will report the results of a linear 

regression in ANOVA format, which may surprise inexperienced users.

The aov() function uses Type I (sequential) Sum of Squares. This type of Sum of Squares tests all 

of the (main and interaction) effects sequentially. The result is that the first effect tested is also 

assigned shared variance between it and other effects in the model. For the results from such a 

model to be reliable, data should be balanced (all groups are of the same size).

When the assumptions for Type I Sum of Squares do not hold, Type II or Type III Sum of Squares 

may be applicable. Type II Sum of Squares test each main effect after every other main effect, and 

thus controls for any overlapping variance. However, Type II Sum of Squares assumes no 

interaction between the main effects.

Lastly, Type III Sum of Squares tests each main effect after every other main effect and every 

interaction. This makes Type III Sum of Squares a necessity when an interaction is present.

Type II and Type III Sums of Squares are implemented in the Anova() function.

Using the mtcars data set as an example.

mtCarsAnovaModel <- aov(wt ~ factor(cyl), data=mtcars)

To view summary of ANOVA model:

summary(mtCarsAnovaModel)

One can also extract the coefficients of the underlying lm() model:

coefficients(mtCarsAnovaModel)

Basic usage of Anova()
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When dealing with an unbalanced design and/or non-orthogonal contrasts, Type II or Type III Sum 

of Squares are necessary. The Anova() function from the car package implements these. Type II 

Sum of Squares assumes no interaction between main effects. If interactions are assumed, Type 

III Sum of Squares is appropriate.

The Anova() function wraps around the lm() function.

Using the mtcars data sets as an example, demonstrating the difference between Type II and Type 

III when an interaction is tested.

> Anova(lm(wt ~ factor(cyl)*factor(am), data=mtcars), type = 2) 
Anova Table (Type II tests) 
 
Response: wt 
                       Sum Sq Df F value    Pr(>F) 
factor(cyl)            7.2278  2 11.5266 0.0002606 *** 
factor(am)             3.2845  1 10.4758 0.0032895 ** 
factor(cyl):factor(am) 0.0668  2  0.1065 0.8993714 
Residuals              8.1517 26 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
> Anova(lm(wt ~ factor(cyl)*factor(am), data=mtcars), type = 3) 
Anova Table (Type III tests) 
 
Response: wt 
                        Sum Sq Df F value    Pr(>F) 
(Intercept)            25.8427  1 82.4254 1.524e-09 *** 
factor(cyl)             4.0124  2  6.3988  0.005498 ** 
factor(am)              1.7389  1  5.5463  0.026346 * 
factor(cyl):factor(am)  0.0668  2  0.1065  0.899371 
Residuals               8.1517 26 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Read ANOVA online: https://riptutorial.com/r/topic/3610/anova
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Chapter 7: Arima Models

Remarks

The Arima function in the forecast package is more explicit in how it deals with constants, which 

may make it easier for some users relative to the arima function in base R.

ARIMA is a general framework for modeling and making predictions from time series data using 

(primarily) the series itself. The purpose of the framework is to differentiate short- and long-term 

dynamics in a series to improve the accuracy and certainty of forecasts. More poetically, ARIMA 

models provide a method for describing how shocks to a system transmit through time.

From an econometric perspective, ARIMA elements are necessary to correct serial correlation and 

ensure stationarity.

Examples

Modeling an AR1 Process with Arima

We will model the process

#Load the forecast package 
library(forecast) 
 
#Generate an AR1 process of length n (from Cowpertwait & Meltcalfe) 
# Set up variables 
set.seed(1234) 
n <- 1000 
x <- matrix(0,1000,1) 
w <- rnorm(n) 
 
# loop to create x 
for (t in 2:n) x[t] <- 0.7 * x[t-1] + w[t] 
plot(x,type='l')
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We will fit an Arima model with autoregressive order 1, 0 degrees of differencing, and an MA order 

of 0.

#Fit an AR1 model using Arima 
fit <- Arima(x, order = c(1, 0, 0)) 
summary(fit) 
# Series: x 
# ARIMA(1,0,0) with non-zero mean 
# 
# Coefficients: 
#          ar1  intercept 
#       0.7040    -0.0842 
# s.e.  0.0224     0.1062 
# 
# sigma^2 estimated as 0.9923:  log likelihood=-1415.39 
# AIC=2836.79   AICc=2836.81   BIC=2851.51 
# 
# Training set error measures: 
#                         ME      RMSE       MAE MPE MAPE    MASE       ACF1 
# Training set -8.369365e-05 0.9961194 0.7835914 Inf  Inf 0.91488 0.02263595 
# Verify that the model captured the true AR parameter

Notice that our coefficient is close to the true value from the generated data

fit$coef[1] 
#       ar1 
# 0.7040085 
 
#Verify that the model eliminates the autocorrelation 
acf(x)
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acf(fit$resid)
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#Forecast 10 periods 
fcst <- forecast(fit, h = 100) 
fcst 
     Point Forecast      Lo 80    Hi 80     Lo 95    Hi 95 
1001    0.282529070 -0.9940493 1.559107 -1.669829 2.234887 
1002    0.173976408 -1.3872262 1.735179 -2.213677 2.561630 
1003    0.097554408 -1.5869850 1.782094 -2.478726 2.673835 
1004    0.043752667 -1.6986831 1.786188 -2.621073 2.708578 
1005    0.005875783 -1.7645535 1.776305 -2.701762 2.713514 
... 
 
#Call the point predictions 
fcst$mean 
# Time Series: 
# Start = 1001 
# End = 1100 
# Frequency = 1 
  [1]  0.282529070  0.173976408  0.097554408  0.043752667  0.005875783 -0.020789866 -
0.039562711 -0.052778954 
  [9] -0.062083302 
... 
 
#Plot the forecast 
plot(fcst)
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Read Arima Models online: https://riptutorial.com/r/topic/1725/arima-models
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Chapter 8: Arithmetic Operators

Remarks

Nearly all operators in R are really functions. For example, + is a function defined as function (e1, 

e2) .Primitive("+") where e1 is the left-hand side of the operator and e2 is the right-hand side of 

the operator. This means it is possible to accomplish rather counterintuitive effects by masking the 

+ in base with a user defined function.

For example:

`+` <- function(e1, e2) {e1-e2} 
 
> 3+10 
[1] -7

Examples

Range and addition

Let's take an example of adding a value to a range (as it could be done in a loop for example):

3+1:5

Gives:

[1] 4 5 6 7 8

This is because the range operator : has higher precedence than addition operator +.

What happens during evaluation is as follows:

3+1:5•

3+c(1, 2, 3, 4, 5) expansion of the range operator to make a vector of integers.•

c(4, 5, 6, 7, 8) Addition of 3 to each member of the vector.•

To avoid this behavior you have to tell the R interpreter how you want it to order the operations 

with ( ) like this:

  (3+1):5

Now R will compute what is inside the parentheses before expanding the range and gives:

 [1] 4 5
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Addition and subtraction

The basic math operations are performed mainly on numbers or on vectors (lists of numbers).

1. Using single numbers

We can simple enter the numbers concatenated with + for adding and - for subtracting:

> 3 + 4.5 
# [1] 7.5 
> 3 + 4.5 + 2 
# [1] 9.5 
> 3 + 4.5 + 2 - 3.8 
# [1] 5.7 
> 3 + NA 
#[1] NA 
> NA + NA 
#[1] NA 
> NA - NA 
#[1] NA 
> NaN - NA 
#[1] NaN 
> NaN + NA 
#[1] NaN

We can assign the numbers to variables (constants in this case) and do the same operations:

> a <- 3; B <- 4.5; cc <- 2; Dd <- 3.8 ;na<-NA;nan<-NaN 
> a + B 
# [1] 7.5 
> a + B + cc 
# [1] 9.5 
> a + B + cc - Dd 
# [1] 5.7 
> B-nan 
#[1] NaN 
> a+na-na 
#[1] NA 
> a + na 
#[1] NA 
> B-nan 
#[1] NaN 
> a+na-na 
#[1] NA

2. Using vectors

In this case we create vectors of numbers and do the operations using those vectors, or 

combinations with single numbers. In this case the operation is done considering each element of 

the vector:

> A <- c(3, 4.5, 2, -3.8); 
> A 
# [1]  3.0  4.5  2.0 -3.8 
> A + 2 # Adding a number 
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# [1]  5.0  6.5  4.0 -1.8 
> 8 - A # number less vector 
# [1]  5.0  3.5  6.0 11.8 
> n <- length(A) #number of elements of vector A 
> n 
# [1] 4 
> A[-n] + A[n] # Add the last element to the same vector without the last element 
# [1] -0.8  0.7 -1.8 
> A[1:2] + 3 # vector with the first two elements plus a number 
# [1] 6.0 7.5 
> A[1:2] - A[3:4] # vector with the first two elements less the vector with elements 3 and 4 
# [1] 1.0 8.3

We can also use the function sum to add all elements of a vector:

> sum(A) 
# [1] 5.7 
> sum(-A) 
# [1] -5.7 
> sum(A[-n]) + A[n] 
# [1] 5.7

We must take care with recycling, which is one of the characteristics of R, a behavior that happens 

when doing math operations where the length of vectors is different. Shorter vectors in the 

expression are recycled as often as need be (perhaps fractionally) until they match the length of 

the longest vector. In particular a constant is simply repeated. In this case a Warning is show.

> B <- c(3, 5, -3, 2.7, 1.8) 
> B 
# [1]  3.0  5.0 -3.0  2.7  1.8 
> A 
# [1]  3.0  4.5  2.0 -3.8 
> A + B # the first element of A is repeated 
# [1]  6.0  9.5 -1.0 -1.1  4.8 
Warning message: 
In A + B : longer object length is not a multiple of shorter object length 
> B - A # the first element of A is repeated 
# [1]  0.0  0.5 -5.0  6.5 -1.2 
Warning message: 
In B - A : longer object length is not a multiple of shorter object length

In this case the correct procedure will be to consider only the elements of the shorter vector:

> B[1:n] + A 
# [1]  6.0  9.5 -1.0 -1.1 
> B[1:n] - A 
# [1]  0.0  0.5 -5.0  6.5

When using the sum function, again all the elements inside the function are added.

> sum(A, B) 
# [1] 15.2 
> sum(A, -B) 
# [1] -3.8 
> sum(A)+sum(B) 
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# [1] 15.2 
> sum(A)-sum(B) 
# [1] -3.8

Read Arithmetic Operators online: https://riptutorial.com/r/topic/4389/arithmetic-operators
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Chapter 9: Bar Chart

Introduction

The purpose of the bar plot is to display the frequencies (or proportions) of levels of a factor 

variable. For example, a bar plot is used to pictorially display the frequencies (or proportions) of 

individuals in various socio-economic (factor) groups(levels-high, middle, low). Such a plot will 

help to provide a visual comparison among the various factor levels.

Examples

barplot() function

In barplot, factor-levels are placed on the x-axis and frequencies (or proportions) of various factor-

levels are considered on the y-axis. For each factor-level one bar of uniform width with heights 

being proportional to factor level frequency (or proportion) is constructed.

The barplot() function is in the graphics package of the R's System Library. The barplot() function 

must be supplied at least one argument. The R help calls this as heights, which must be either 

vector or a matrix. If it is vector, its members are the various factor-levels.

To illustrate barplot(), consider the following data preparation:

> grades<-c("A+","A-","B+","B","C") 
> Marks<-sample(grades,40,replace=T,prob=c(.2,.3,.25,.15,.1)) 
> Marks 
[1] "A+" "A-" "B+" "A-" "A+" "B"  "A+" "B+" "A-" "B"  "A+" "A-" 
[13] "A-" "B+" "A-" "A-" "A-" "A-" "A+" "A-" "A+" "A+" "C"  "C" 
[25] "B"  "C"  "B+" "C"  "B+" "B+" "B+" "A+" "B+" "A-" "A+" "A-" 
[37] "A-" "B"  "C"  "A+" 
> 

A bar chart of the Marks vector is obtained from

> barplot(table(Marks),main="Mid-Marks in Algorithms")
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Notice that, the barplot() function places the factor levels on the x-axis in the lexicographical order 

of the levels. Using the parameter names.arg, the bars in plot can be placed in the order as stated 

in the vector, grades.

# plot to the desired horizontal axis labels 
> barplot(table(Marks),names.arg=grades ,main="Mid-Marks in Algorithms")

Colored bars can be drawn using the col= parameter.
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> barplot(table(Marks),names.arg=grades,col = c("lightblue", 
        "lightcyan", "lavender", "mistyrose",  "cornsilk"), 
         main="Mid-Marks in Algorithms")

A bar chart with horizontal bars can be obtained as follows:

> barplot(table(Marks),names.arg=grades,horiz=TRUE,col = c("lightblue", 
          "lightcyan", "lavender", "mistyrose",  "cornsilk"), 
           main="Mid-Marks in Algorithms")
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A bar chart with proportions on the y-axis can be obtained as follows:

> barplot(prop.table(table(Marks)),names.arg=grades,col = c("lightblue", 
           "lightcyan", "lavender", "mistyrose",  "cornsilk"), 
            main="Mid-Marks in Algorithms")

The sizes of the factor-level names on the x-axis can be increased using cex.names parameter.
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> barplot(prop.table(table(Marks)),names.arg=grades,col = c("lightblue", 
          "lightcyan", "lavender", "mistyrose",  "cornsilk"), 
           main="Mid-Marks in Algorithms",cex.names=2)

The heights parameter of the barplot() could be a matrix. For example it could be matrix, where 

the columns are the various subjects taken in a course, the rows could be the labels of the grades. 

Consider the following matrix:

> gradTab 
     Algorithms Operating Systems Discrete Math 
  A-         13                10             7 
  A+         10                 7             2 
  B           4                 2            14 
  B+          8                19            12 
  C           5                 2             5

To draw a stacked bar, simply use the command:

> barplot(gradTab,col = c("lightblue","lightcyan", 
       "lavender", "mistyrose",  "cornsilk"),legend.text = grades, 
        main="Mid-Marks in Algorithms")

https://riptutorial.com/ 44

https://i.stack.imgur.com/ZDXEB.jpg


To draw a juxtaposed bars, use the besides parameter, as given under:

 > barplot(gradTab,beside = T,col = c("lightblue","lightcyan", 
       "lavender", "mistyrose",  "cornsilk"),legend.text = grades, 
        main="Mid-Marks in Algorithms")
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A horizontal bar chart can be obtained using horiz=T parameter:

> barplot(gradTab,beside = T,horiz=T,col = c("lightblue","lightcyan", 
       "lavender", "mistyrose",  "cornsilk"),legend.text = grades, 
        cex.names=.75,main="Mid-Marks in Algorithms")
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Read Bar Chart online: https://riptutorial.com/r/topic/8091/bar-chart
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Chapter 10: Base Plotting

Parameters

Parameter Details

x x-axis variable. May supply either data$variablex or data[,x]

y y-axis variable. May supply either data$variabley or data[,y]

main Main title of plot

sub Optional subtitle of plot

xlab Label for x-axis

ylab Label for y-axis

pch Integer or character indicating plotting symbol

col Integer or string indicating color

type
Type of plot. "p" for points, "l" for lines, "b" for both, "c" for the lines part alone 

of "b", "o" for both ‘overplotted’, "h" for ‘histogram’-like (or ‘high-density’) vertical 

lines, "s" for stair steps, "S" for other steps, "n" for no plotting

Remarks

The items listed in the "Parameters" section is a small fraction of hte possible parameters that can 

be modified or set by the par function. See par for a more complete list. In addition all the graphics 

devices, including the system specific interactive graphics devices will have a set of parameters 

that can customize the output.

Examples

Basic Plot

A basic plot is created by calling plot(). Here we use the built-in cars data frame that contains the 

speed of cars and the distances taken to stop in the 1920s. (To find out more about the dataset, 

use help(cars)).

plot(x = cars$speed, y = cars$dist, pch = 1, col = 1, 
     main = "Distance vs Speed of Cars", 
     xlab = "Speed", ylab = "Distance")
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We can use many other variations in the code to get the same result. We can also change the 

parameters to obtain different results.

with(cars, plot(dist~speed, pch = 2, col = 3, 
     main = "Distance to stop vs Speed of Cars", 
     xlab = "Speed", ylab = "Distance"))
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Additional features can be added to this plot by calling points(), text(), mtext(), lines(), grid(), 

etc.

plot(dist~speed, pch = "*", col = "magenta", data=cars, 
     main = "Distance to stop vs Speed of Cars", 
     xlab = "Speed", ylab = "Distance") 
mtext("In the 1920s.") 
grid(,col="lightblue")
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Matplot

matplot is useful for quickly plotting multiple sets of observations from the same object, particularly 

from a matrix, on the same graph.

Here is an example of a matrix containing four sets of random draws, each with a different mean.

xmat <- cbind(rnorm(100, -3), rnorm(100, -1), rnorm(100, 1), rnorm(100, 3)) 
head(xmat) 
#          [,1]        [,2]       [,3]     [,4] 
# [1,] -3.072793 -2.53111494  0.6168063 3.780465 
# [2,] -3.702545 -1.42789347 -0.2197196 2.478416 
# [3,] -2.890698 -1.88476126  1.9586467 5.268474 
# [4,] -3.431133 -2.02626870  1.1153643 3.170689 
# [5,] -4.532925  0.02164187  0.9783948 3.162121 
# [6,] -2.169391 -1.42699116  0.3214854 4.480305

One way to plot all of these observations on the same graph is to do one plot call followed by 

three more points or lines calls.

plot(xmat[,1], type = 'l') 
lines(xmat[,2], col = 'red') 
lines(xmat[,3], col = 'green') 
lines(xmat[,4], col = 'blue')
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However, this is both tedious, and causes problems because, among other things, by default the 

axis limits are fixed by plot to fit only the first column.

Much more convenient in this situation is to use the matplot function, which only requires one call 

and automatically takes care of axis limits and changing the aesthetics for each column to make 

them distinguishable.

matplot(xmat, type = 'l')
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Note that, by default, matplot varies both color (col) and linetype (lty) because this increases the 

number of possible combinations before they get repeated. However, any (or both) of these 

aesthetics can be fixed to a single value...

matplot(xmat, type = 'l', col = 'black')
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...or a custom vector (which will recycle to the number of columns, following standard R vector 

recycling rules).

matplot(xmat, type = 'l', col = c('red', 'green', 'blue', 'orange'))

https://riptutorial.com/ 54

https://i.stack.imgur.com/fWKXq.png


Standard graphical parameters, including main, xlab, xmin, work exactly the same way as for plot. 

For more on those, see ?par.

Like plot, if given only one object, matplot assumes it's the y variable and uses the indices for x. 

However, x and y can be specified explicitly.

matplot(x = seq(0, 10, length.out = 100), y = xmat, type='l')
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In fact, both x and y can be matrices.

xes <- cbind(seq(0, 10, length.out = 100), 
             seq(2.5, 12.5, length.out = 100), 
             seq(5, 15, length.out = 100), 
             seq(7.5, 17.5, length.out = 100)) 
matplot(x = xes, y = xmat, type = 'l')
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Histograms

Histograms allow for a pseudo-plot of the underlying distribution of the data.

hist(ldeaths)
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hist(ldeaths, breaks = 20, freq = F, col = 3)
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Combining Plots

It's often useful to combine multiple plot types in one graph (for example a Barplot next to a 

Scatterplot.) R makes this easy with the help of the functions par() and layout().

par()

par uses the arguments mfrow or mfcol to create a matrix of nrows and ncols c(nrows, ncols) which 

will serve as a grid for your plots. The following example shows how to combine four plots in one 

graph:

par(mfrow=c(2,2)) 
plot(cars, main="Speed vs. Distance") 
hist(cars$speed, main="Histogram of Speed") 
boxplot(cars$dist, main="Boxplot of Distance") 
boxplot(cars$speed, main="Boxplot of Speed")
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layout()

The layout() is more flexible and allows you to specify the location and the extent of each plot 

within the final combined graph. This function expects a matrix object as an input:

layout(matrix(c(1,1,2,3), 2,2, byrow=T)) 
hist(cars$speed, main="Histogram of Speed") 
boxplot(cars$dist, main="Boxplot of Distance") 
boxplot(cars$speed, main="Boxplot of Speed")
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Density plot

A very useful and logical follow-up to histograms would be to plot the smoothed density function of 

a random variable. A basic plot produced by the command

plot(density(rnorm(100)),main="Normal density",xlab="x")

would look like
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You can overlay a histogram and a density curve with

x=rnorm(100) 
hist(x,prob=TRUE,main="Normal density + histogram") 
lines(density(x),lty="dotted",col="red")

which gives
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Empirical Cumulative Distribution Function

A very useful and logical follow-up to histograms and density plots would be the Empirical 

Cumulative Distribution Function. We can use the function ecdf() for this purpose. A basic plot 

produced by the command

plot(ecdf(rnorm(100)),main="Cumulative distribution",xlab="x")

would look like 
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Getting Started with R_Plots

Scatterplot•
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You have two vectors and you want to plot them.

x_values <- rnorm(n = 20 , mean = 5 , sd = 8) #20 values generated from Normal(5,8) 
y_values <- rbeta(n = 20 , shape1 = 500 , shape2 = 10) #20 values generated from Beta(500,10)

If you want to make a plot which has the y_values in vertical axis and the x_valuesin horizontal axis, 

you can use the following commands:

plot(x = x_values, y = y_values, type = "p") #standard scatter-plot 
plot(x = x_values, y = y_values, type = "l") # plot with lines 
plot(x = x_values, y = y_values, type = "n") # empty plot

You can type ?plot() in the console to read about more options.

Boxplot•

You have some variables and you want to examine their Distributions

#boxplot is an easy way to see if we have some outliers in the data. 
 
z<- rbeta(20 , 500 , 10) #generating values from beta distribution 
z[c(19 , 20)] <- c(0.97 , 1.05) # replace the two last values with outliers 
boxplot(z) # the two points are the outliers of variable z.

Histograms•

Easy way to draw histograms

hist(x = x_values) # Histogram for x vector 
hist(x = x_values, breaks = 3) #use breaks to set the numbers of bars you want

Pie_charts•

If you want to visualize the frequencies of a variable just draw pie

First we have to generate data with frequencies, for example :

P <- c(rep('A' , 3) , rep('B' , 10) , rep('C' , 7) ) 
t <- table(P) # this is a frequency matrix of variable P 
pie(t) # And this is a visual version of the matrix above

Read Base Plotting online: https://riptutorial.com/r/topic/1377/base-plotting
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Chapter 11: Bibliography in RMD

Parameters

Parameter in YAML header Detail

toc table of contents

number_sections numbering the sections automatically

bibliography path to the bibliography file

csl path to the style file

Remarks

The purpose of this documentation is integrating an academic bibliography in a RMD file.•

To use the documentation given above, you have to install rmarkdown in R via 

install.packages("rmarkdown").

•

Sometimes Rmarkdown removes the hyperlinks of the citations. The solution for this is 

adding the following code to your YAML header: link-citations: true

•

The bibliography may have any of these formats:•

Format File extension

MODS .mods

BibLaTeX .bib

BibTeX .bibtex

RIS .ris

EndNote .enl

EndNote XML .xml

ISI .wos

MEDLINE .medline

Copac .copac

JSON citeproc .json
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Examples

Specifying a bibliography and cite authors

The most important part of your RMD file is the YAML header. For writing an academic paper, I 

suggest to use PDF output, numbered sections and a table of content (toc).

--- 
title: "Writing an academic paper in R" 
author: "Author" 
date: "Date" 
output: 
  pdf_document: 
    number_sections: yes 
toc: yes 
bibliography: bibliography.bib 
---

In this example, our file bibliography.bib looks like this:

@ARTICLE{Meyer2000, 
  AUTHOR="Bernd Meyer", 
  TITLE="A constraint-based framework for diagrammatic reasoning", 
  JOURNAL="Applied Artificial Intelligence", 
  VOLUME= "14", 
  ISSUE = "4", 
  PAGES= "327--344", 
  YEAR=2000 
}

To cite an author mentioned in your .bib file write @ and the bibkey, e.g. Meyer2000.

# Introduction 
 
`@Meyer2000` results in @Meyer2000. 
 
`@Meyer2000 [p. 328]` results in @Meyer2000 [p. 328] 
 
`[@Meyer2000]` results in [@Meyer2000] 
 
`[-@Meyer2000]` results in [-@Meyer2000] 
 
# Summary 
 
# References

Rendering the RMD file via RStudio (Ctrl+Shift+K) or via console rmarkdown::render("<path-to-

your-RMD-file">) results in the following output:
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---

pandoc
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will use a Chicago author-date format for citations and references. To use another style, you will 

need to specify a CSL 1.0 style file in the csl metadata field. In the following a often used citation 

style, the elsevier style, is presented (download at https://github.com/citation-style-language/styles 

). The style-file has to be stored in the same directory as the RMD file OR the absolute path to the 

file has to be submitted.

To use another style then the default one, the following code is used:

--- 
title: "Writing an academic paper in R" 
author: "Author" 
date: "Date" 
output: 
  pdf_document: 
    number_sections: yes 
toc: yes 
bibliography: bibliography.bib 
csl: elsevier-harvard.csl 
--- 
 
# Introduction 
 
`@Meyer2000` results in @Meyer2000. 
 
`@Meyer2000 [p. 328]` results in @Meyer2000 [p. 328] 
 
`[@Meyer2000]` results in [@Meyer2000] 
 
`[-@Meyer2000]` results in [-@Meyer2000] 
 
# Summary 
 
# Reference
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Notice the differences to the output of example "Specifying a bibliography and cite authors"

Read Bibliography in RMD online: https://riptutorial.com/r/topic/7606/bibliography-in-rmd
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Chapter 12: boxplot

Syntax

boxplot(x, ...) # generic function•

boxplot(formula, data = NULL, ..., subset, na.action = NULL) ## S3 method for class 

'formula'

•

boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE, notch = FALSE, outline = 

TRUE, names, plot = TRUE, border = par("fg"), col = NULL, log = "", pars = list(boxwex = 

0.8, staplewex = 0.5, outwex = 0.5), horizontal = FALSE, add = FALSE, at = NULL) ## 

Default S3 method

•

Parameters

Parameters Details (source R Documentation)

formula
a formula, such as y ~ grp, where y is a numeric vector of data values to be 

split into groups according to the grouping variable grp (usually a factor).

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action
a function which indicates what should happen when the data contain NAs. 

The default is to ignore missing values in either the response or the group.

boxwex
a scale factor to be applied to all boxes. When there are only a few groups, the 

appearance of the plot can be improved by making the boxes narrower.

plot
if TRUE (the default) then a boxplot is produced. If not, the summaries which 

the boxplots are based on are returned.

col
if col is non-null it is assumed to contain colors to be used to colour the bodies 

of the box plots. By default they are in the background colour.

Examples

Create a box-and-whisker plot with boxplot() {graphics}

This example use the default boxplot() function and the irisdata frame.

> head(iris) 
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species 

https://riptutorial.com/ 71



1          5.1         3.5          1.4         0.2  setosa 
2          4.9         3.0          1.4         0.2  setosa 
3          4.7         3.2          1.3         0.2  setosa 
4          4.6         3.1          1.5         0.2  setosa 
5          5.0         3.6          1.4         0.2  setosa 
6          5.4         3.9          1.7         0.4  setosa

Simple boxplot (Sepal.Length)

Create a box-and-whisker graph of a numerical variable

boxplot(iris[,1],xlab="Sepal.Length",ylab="Length(in centemeters)", 
           main="Summary Charateristics of Sepal.Length(Iris Data)")

Boxplot of sepal length grouped by species

Create a boxplot of a numerical variable grouped by a categorical variable

boxplot(Sepal.Length~Species,data = iris)
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Bring order

To change order of the box in the plot you have to change the order of the categorical variable's 

levels. 

For example if we want to have the order virginica - versicolor - setosa

newSpeciesOrder <- factor(iris$Species, levels=c("virginica","versicolor","setosa")) 
boxplot(Sepal.Length~newSpeciesOrder,data = iris)
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Change groups names

If you want to specifie a better name to your groups you can use the Names parameter. It take a 

vector of the size of the levels of categorical variable

boxplot(Sepal.Length~newSpeciesOrder,data = iris,names= c("name1","name2","name3"))
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Small improvements

Color

col : add a vector of the size of the levels of categorical variable

boxplot(Sepal.Length~Species,data = iris,col=c("green","yellow","orange"))
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Proximity of the box

boxwex: set the margin between boxes. 

Left boxplot(Sepal.Length~Species,data = iris,boxwex = 0.1) 

Right boxplot(Sepal.Length~Species,data = iris,boxwex = 1)

See the summaries which the boxplots are 

based plot=FALSE

To see a summary you have to put the paramater plot to FALSE. 

Various results are given
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> boxplot(Sepal.Length~newSpeciesOrder,data = iris,plot=FALSE) 
$stats #summary of the numerical variable for the 3 groups 
     [,1] [,2] [,3] 
[1,]  5.6  4.9  4.3 # extreme value 
[2,]  6.2  5.6  4.8 # first quartile limit 
[3,]  6.5  5.9  5.0 # median limit 
[4,]  6.9  6.3  5.2 # third quartile limit 
[5,]  7.9  7.0  5.8 # extreme value 
 
$n #number of observations in each groups 
[1] 50 50 50 
 
$conf #extreme value of the notchs 
         [,1]     [,2]     [,3] 
[1,] 6.343588 5.743588 4.910622 
[2,] 6.656412 6.056412 5.089378 
 
$out #extreme value 
[1] 4.9 
 
$group #group in which are the extreme value 
[1] 1 
 
$names #groups names 
[1] "virginica"  "versicolor" "setosa" 

Additional boxplot style parameters.

Box

boxlty - box line type•

boxlwd - box line width•

boxcol - box line color•

boxfill - box fill colors•

Median

medlty - median line type ("blank" for no line)•

medlwd - median line widht•

medcol - median line color•

medpch - median point (NA for no symbol)•

medcex - median point size•

medbg - median point background color•

Whisker

whisklty - whisker line type•

whisklwd - whisker line width•

whiskcol - whisker line color•
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Staple

staplelty - staple line type•

staplelwd - staple line width•

staplecol - staple line color•

Outliers

outlty - outlier line type ("blank" for no line)•

outlwd - outlier line width•

outcol - outlier line color•

outpch - outlier point type (NA for no symbol)•

outcex - outlier point size•

outbg - outlier point background color•

Example

Default and heavily modified plots side by side

par(mfrow=c(1,2)) 
# Default 
boxplot(Sepal.Length ~ Species, data=iris) 
# Modified 
boxplot(Sepal.Length ~ Species, data=iris, 
        boxlty=2, boxlwd=3, boxfill="cornflowerblue", boxcol="darkblue", 
        medlty=2, medlwd=2, medcol="red", medpch=21, medcex=1, medbg="white", 
        whisklty=2, whisklwd=3, whiskcol="darkblue", 
        staplelty=2, staplelwd=2, staplecol="red", 
        outlty=3, outlwd=3, outcol="grey", outpch=NA 
        )
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Read boxplot online: https://riptutorial.com/r/topic/1005/boxplot
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Chapter 13: caret

Introduction

caret is an R package that aids in data processing needed for machine learning problems. It 

stands for classification and regression training. When building models for a real dataset, there are 

some tasks other than the actual learning algorithm that need to be performed, such as cleaning 

the data, dealing with incomplete observations, validating our model on a test set, and compare 

different models.

caret helps in these scenarios, independent of the actual learning algorithms used.

Examples

Preprocessing

Pre-processing in caret is done through the preProcess() function. Given a matrix or data frame 

type object x, preProcess() applies transformations on the training data which can then be applied 

to testing data.

The heart of the preProcess() function is the method argument. Method operations are applied in 

this order:

Zero-variance filter1. 

Near-zero variance filter2. 

Box-Cox/Yeo-Johnson/exponential transformation3. 

Centering4. 

Scaling5. 

Range6. 

Imputation7. 

PCA8. 

ICA9. 

Spatial Sign10. 

Below, we take the mtcars data set and perform centering, scaling, and a spatial sign transform.

auto_index <- createDataPartition(mtcars$mpg, p = .8, 
                                  list = FALSE, 
                                  times = 1) 
 
mt_train <- mtcars[auto_index,] 
mt_test <- mtcars[-auto_index,] 
 
process_mtcars <- preProcess(mt_train, method = c("center","scale","spatialSign")) 
 
mtcars_train_transf <- predict(process_mtcars, mt_train) 
mtcars_test_tranf <- predict(process_mtcars,mt_test)
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Read caret online: https://riptutorial.com/r/topic/4271/caret
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Chapter 14: Classes

Introduction

The class of a data-object determines which functions will process its contents. The class-attribute 

is a character vector, and objects can have zero, one or more classes. If there is no class-

attribute, there will still be an implicit class determined by an object's mode. The class can be 

inspected with the function class and it can be set or modified by the class<- function. The S3 

class system was established early in S's history. The more complex S4 class system was 

established later

Remarks

There are several functions for inspecting the "type" of an object. The most useful such function is 

class, although sometimes it is necessary to examine the mode of an object. Since we are 

discussing "types", one might think that typeof would be useful, but generally the result from mode 

will be more useful, because objects with no explicit "class"-attribute will have function dispatch 

determined by the "implicit class" determined by their mode.

Examples

Vectors

The most simple data structure available in R is a vector. You can make vectors of numeric 

values, logical values, and character strings using the c() function. For example:

c(1, 2, 3) 
## [1] 1 2 3 
c(TRUE, TRUE, FALSE) 
## [1]  TRUE  TRUE FALSE 
c("a", "b", "c") 
## [1] "a" "b" "c"

You can also join to vectors using the c() function.

x <- c(1, 2, 5) 
y <- c(3, 4, 6) 
z <- c(x, y) 
z 
## [1] 1 2 5 3 4 6

A more elaborate treatment of how to create vectors can be found in the "Creating vectors" topic

Inspect classes

Every object in R is assigned a class. You can use class() to find the object's class and str() to 
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see its structure, including the classes it contains. For example:

class(iris) 
[1] "data.frame" 
 
str(iris) 
'data.frame':    150 obs. of  5 variables: 
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... 
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... 
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... 
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... 
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 ... 
 
class(iris$Species) 
[1] "factor"

We see that iris has the class data.frame and using str() allows us to examine the data inside. The 

variable Species in the iris data frame is of class factor, in contrast to the other variables which are 

of class numeric. The str() function also provides the length of the variables and shows the first 

couple of observations, while the class() function only provides the object's class.

Vectors and lists

Data in R are stored in vectors. A typical vector is a sequence of values all having the same 

storage mode (e.g., characters vectors, numeric vectors). See ?atomic for details on the atomic 

implicit classes and their corresponding storage modes: "logical", "integer", "numeric" (synonym 

"double"), "complex", "character" and "raw". Many classes are simply an atomic vector with a 

class attribute on top:

x <- 1826 
class(x) <- "Date" 
x 
# [1] "1975-01-01" 
 x <- as.Date("1970-01-01") 
 class(x) 
#[1] "Date" 
 is(x,"Date") 
#[1] TRUE 
 is(x,"integer") 
#[1] FALSE 
 is(x,"numeric") 
#[1] FALSE 
  mode(x) 
#[1] "numeric"

Lists are a special type of vector where each element can be anything, even another list, hence 

the R term for lists: "recursive vectors":

mylist <- list( A = c(5,6,7,8), B = letters[1:10], CC = list( 5, "Z") )

Lists have two very important uses:

Since functions can only return a single value, it is common to return complicated results in a •
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list:

f <- function(x) list(xplus = x + 10, xsq = x^2) 
 
f(7) 
# $xplus 
# [1] 17 
# 
# $xsq 
# [1] 49

Lists are also the underlying fundamental class for data frames. Under the hood, a data 

frame is a list of vectors all having the same length:

L <- list(x = 1:2, y = c("A","B")) 
DF <- data.frame(L) 
DF 
#   x y 
# 1 1 A 
# 2 2 B 
is.list(DF) 
# [1] TRUE

•

The other class of recursive vectors is R expressions, which are "language"- objects

Read Classes online: https://riptutorial.com/r/topic/3563/classes
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Chapter 15: Cleaning data

Introduction

Cleaning data in R is paramount to make any analysis. whatever data you have, be it from 

measurements taken in the field or scraped from the web it is most probable that you will have to 

reshape it, transform it or filter it to make it suitable for your analysis. In this documentation, we will 

cover the following topics: - Removing observations with missing data - Factorizing data - 

Removing incomplete Rows

Examples

Removing missing data from a vector

First lets create a vector called Vector1:

set.seed(123) 
Vector1 <- rnorm(20)

And add missing data to it:

set.seed(123) 
Vector1[sample(1:length(Vector1), 5)] <- NA

Now we can use the is.na function to subset the Vector

Vector1 <- Vector1[!is.na(Vector1)]

Now the resulting vector will have removed the NAs of the original Vector1

Removing incomplete rows

There might be times where you have a data frame and you want to remove all the rows that might 

contain an NA value, for that the function complete.cases is the best option.

We will use the first 6 rows of the airquality dataset to make an example since it already has NAs

x <- head(airquality)

This has two rows with NAs in the Solar.R column, to remove them we do the following

x_no_NA <- x[complete.cases(x),]

The resulting dataframe x_no_NA will only have complete rows without NAs
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Read Cleaning data online: https://riptutorial.com/r/topic/8165/cleaning-data
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Chapter 16: Code profiling

Examples

System.time

System time gives you the CPU time required to execute a R expression, for example:

system.time(print("hello world")) 
 
# [1] "hello world" 
#    user  system elapsed 
#       0       0       0 

You can add larger pieces of code through use of braces:

system.time({ 
    library(numbers) 
    Primes(1,10^5) 
})

Or use it to test functions:

fibb <- function (n) { 
    if (n < 3) { 
        return(c(0,1)[n]) 
    } else { 
        return(fibb(n - 2) + fibb(n -1)) 
    } 
} 
 
system.time(fibb(30))

proc.time()

At its simplest, proc.time() gives the total elapsed CPU time in seconds for the current process. 

Executing it in the console gives the following type of output:

proc.time() 
 
#       user     system    elapsed 
#    284.507    120.397 515029.305 

This is particularly useful for benchmarking specific lines of code. For example:

t1 <- proc.time() 
fibb <- function (n) { 
    if (n < 3) { 
        return(c(0,1)[n]) 
    } else { 
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        return(fibb(n - 2) + fibb(n -1)) 
    } 
} 
print("Time one") 
print(proc.time() - t1) 
 
t2 <- proc.time() 
fibb(30) 
 
print("Time two") 
print(proc.time() - t2)

This gives the following output:

source('~/.active-rstudio-document') 
 
# [1] "Time one" 
#    user  system elapsed 
#       0       0       0 
 
# [1] "Time two" 
#    user  system elapsed 
#   1.534   0.012   1.572 

system.time() is a wrapper for proc.time() that returns the elapsed time for a particular 

command/expression.

print(t1 <- system.time(replicate(1000,12^2))) 
##  user  system elapsed 
## 0.000   0.000   0.002 

Note that the returned object, of class proc.time, is slightly more complicated than it appears on 

the surface:

str(t1) 
## Class 'proc_time'  Named num [1:5] 0 0 0.002 0 0 
##  ..- attr(*, "names")= chr [1:5] "user.self" "sys.self" "elapsed" "user.child" ...

Line Profiling

One package for line profiling is lineprof which is written and maintained by Hadley Wickham. Here 

is a quick demonstration of how it works with auto.arima in the forecast package:

library(lineprof) 
library(forecast) 
 
l <- lineprof(auto.arima(AirPassengers)) 
shine(l)

This will provide you with a shiny app, which allows you to delve deeper into every function call. 

This enables you to see with ease what is causing your R code to slow down. There is a 

screenshot of the shiny app below:
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Microbenchmark

Microbenchmark is useful for estimating the time taking for otherwise fast procedures. For 

example, consider estimating the time taken to print hello world.

system.time(print("hello world")) 
 
# [1] "hello world" 
#    user  system elapsed 
#       0       0       0 

This is because system.time is essentially a wrapper function for proc.time, which measures in 

seconds. As printing "hello world" takes less than a second it appears that the time taken is less 

than a second, however this is not true. To see this we can use the package microbenchmark:

library(microbenchmark) 
microbenchmark(print("hello world")) 
 
# Unit: microseconds 
#                 expr    min     lq     mean  median     uq     max neval 
# print("hello world") 26.336 29.984 44.11637 44.6835 45.415 158.824   100

Here we can see after running print("hello world") 100 times, the average time taken was in fact 
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44 microseconds. (Note that running this code will print "hello world" 100 times onto the console.)

We can compare this against an equivalent procedure, cat("hello world\n"), to see if it is faster 

than print("hello world"):

microbenchmark(cat("hello world\n")) 
 
# Unit: microseconds 
#                  expr    min      lq     mean median     uq     max neval 
# cat("hello world\\n") 14.093 17.6975 23.73829 19.319 20.996 119.382   100

In this case cat() is almost twice as fast as print().

Alternatively one can compare two procedures within the same microbenchmark call:

microbenchmark(print("hello world"), cat("hello world\n")) 
# Unit: microseconds 
# expr                    min     lq     mean  median     uq     max neval 
# print("hello world") 29.122 31.654 39.64255 34.5275 38.852 192.779   100 
# cat("hello world\\n")  9.381 12.356 13.83820 12.9930 13.715  52.564   100

Benchmarking using microbenchmark

You can use the microbenchmark package to conduct "sub-millisecond accurate timing of expression 

evaluation".

In this example we are comparing the speeds of six equivalent data.table expressions for updating 

elements in a group, based on a certain condition.

More specifically:

A data.table with 3 columns: id, time and status. For each id, I want to find the record 

with the maximum time - then if for that record if the status is true, I want to set it to 

false if the time is > 7

library(microbenchmark) 
library(data.table) 
 
set.seed(20160723) 
dt <- data.table(id = c(rep(seq(1:10000), each = 10)), 
                time = c(rep(seq(1:10000), 10)), 
                status = c(sample(c(TRUE, FALSE), 10000*10, replace = TRUE))) 
setkey(dt, id, time)  ## create copies of the data so the 'updates-by-reference' don't affect 
other expressions 
dt1 <- copy(dt) 
dt2 <- copy(dt) 
dt3 <- copy(dt) 
dt4 <- copy(dt) 
dt5 <- copy(dt) 
dt6 <- copy(dt) 
 
microbenchmark( 
 
  expression_1 = { 
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    dt1[ dt1[order(time), .I[.N], by = id]$V1, status := status * time < 7 ] 
    }, 
 
  expression_2 = { 
    dt2[,status := c(.SD[-.N, status], .SD[.N, status * time > 7]), by = id] 
    }, 
 
  expression_3 = { 
    dt3[dt3[,.N, by = id][,cumsum(N)], status := status * time > 7] 
    }, 
 
  expression_4 = { 
    y <- dt4[,.SD[.N],by=id] 
    dt4[y, status := status & time > 7] 
  }, 
 
  expression_5 = { 
    y <- dt5[, .SD[.N, .(time, status)], by = id][time > 7 & status] 
    dt5[y, status := FALSE] 
  }, 
 
  expression_6 = { 
    dt6[ dt6[, .I == .I[which.max(time)], by = id]$V1 & time > 7, status := FALSE] 
    }, 
 
  times = 10L ## specify the number of times each expression is evaluated 
) 
 
# Unit: milliseconds 
#         expr         min          lq        mean      median         uq          max neval 
# expression_1   11.646149   13.201670   16.808399   15.643384   18.78640    26.321346    10 
# expression_2 8051.898126 8777.016935 9238.323459 8979.553856 9281.93377 12610.869058    10 
# expression_3    3.208773    3.385841    4.207903    4.089515    4.70146     5.654702    10 
# expression_4   15.758441   16.247833   20.677038   19.028982   21.04170    36.373153    10 
# expression_5 7552.970295 8051.080753 8702.064620 8861.608629 9308.62842  9722.234921    10 
# expression_6   18.403105   18.812785   22.427984   21.966764   24.66930    28.607064    10

The output shows that in this test expression_3 is the fastest.

References

data.table - Adding and modifying columns

data.table - special grouping symbols in data.table

Read Code profiling online: https://riptutorial.com/r/topic/2149/code-profiling
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Chapter 17: Coercion

Introduction

Coercion happens in R when the type of objects are changed during computation either implicitly 

or by using functions for explicit coercion (such as as.numeric, as.data.frame, etc.).

Examples

Implicit Coercion

Coercion happens with data types in R, often implicitly, so that the data can accommodate all the 

values. For example,

x = 1:3 
x 
[1] 1 2 3 
typeof(x) 
#[1] "integer" 
 
x[2] = "hi" 
x 
#[1] "1"  "hi" "3" 
typeof(x) 
#[1] "character"

Notice that at first, x is of type integer. But when we assigned x[2] = "hi", all the elements of x 

were coerced into character as vectors in R can only hold data of single type.

Read Coercion online: https://riptutorial.com/r/topic/9793/coercion
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Chapter 18: Color schemes for graphics

Examples

viridis - print and colorblind friendly palettes

Viridis (named after the chromis viridis fish) is a recently developed color scheme for the Python 

library matplotlib (the video presentation by the link explains how the color scheme was 

developed and what are its main advantages). It is seamlessly ported to R.

There are 4 variants of color schemes: magma, plasma, inferno, and viridis (default). They are 

chosen with the option parameter and are coded as A, B, C, and D, correspondingly. To have an 

impression of the 4 color schemes, look at the maps:
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(image souce)

The package can be installed from CRAN or github.

The vignette for viridis package is just brilliant.

Nice feature of the viridis color scheme is integration with ggplot2. Within the package two ggplot2

-specific functions are defined: scale_color_viridis() and scale_fill_viridis(). See the example 

below:

library(viridis) 
library(ggplot2) 
 
gg1 <- ggplot(mtcars)+ 
    geom_point(aes(x = mpg, y = hp, color = disp), size = 3)+ 
    scale_color_viridis(option = "B")+ 
    theme_minimal()+ 
    theme(legend.position = c(.8,.8)) 
 
gg2 <- ggplot(mtcars)+ 
        geom_violin(aes(x = factor(cyl), y = hp, fill = factor(cyl)))+ 
        scale_fill_viridis(discrete = T)+ 
        theme_minimal()+ 
        theme(legend.position = 'none') 
 
library(cowplot) 
output <- plot_grid(gg1,gg2, labels = c('B','D'),label_size = 20) 
print(output)

https://riptutorial.com/ 95

https://github.com/sjmgarnier/viridis
https://cran.r-project.org/web/packages/viridis/index.html
https://github.com/sjmgarnier/viridis
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html


https://riptutorial.com/ 96

https://i.stack.imgur.com/1lbdU.png
http://colorbrewer2.org


RColorBrewer is a port of the project for R and provides also colorblind-friendly palettes.

An example of use

colors_vec <- brewer.pal(5, name = 'BrBG') 
print(colors_vec) 
[1] "#A6611A" "#DFC27D" "#F5F5F5" "#80CDC1" "#018571"

RColorBrewer creates coloring options for ggplot2: scale_color_brewer and scale_fill_brewer.

library(ggplot2) 
ggplot(mtcars)+ 
        geom_point(aes(x = mpg, y = hp, color = factor(cyl)), size = 3)+ 
        scale_color_brewer(palette = 'Greens')+ 
        theme_minimal()+ 
        theme(legend.position = c(.8,.8))
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A handy function to glimse a vector of colors

Quite often there is a need to glimpse the chosen color palette. One elegant solution is the 

following self defined function:

color_glimpse <- function(colors_string){ 
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        n <- length(colors_string) 
        hist(1:n,breaks=0:n,col=colors_string) 
}

An example of use

color_glimpse(blues9)

colorspace - click&drag interface for colors

The package colorspace provides GUI for selecting a palette. On the call of choose_palette() 

function the following window pops-up:
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When the palette is chosen, just hit OK and do not forget to store the output in a variable, e.g. pal.

pal <- choose_palette()

The output is a function that takes n (number) as input and produces a color vector of length n 

according to the selected palette.

pal(10) 
[1] "#023FA5" "#6371AF" "#959CC3" "#BEC1D4" "#DBDCE0" "#E0DBDC" "#D6BCC0" "#C6909A" "#AE5A6D" 
"#8E063B"

basic R color functions

Function colors() lists all the color names that are recognized by R. There is a nice PDF where 
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one can actually see those colors.

colorRampPalette creates a function that interpolate a set of given colors to create new color 

palettes. This output function takes n (number) as input and produces a color vector of length n 

interpolating the initial colors.

pal <- colorRampPalette(c('white','red')) 
pal(5) 
[1] "#FFFFFF" "#FFBFBF" "#FF7F7F" "#FF3F3F" "#FF0000"

Any specific color may be produced with an rgb() function:

rgb(0,1,0)

produces green color.

Colorblind-friendly palettes

Even though colorblind people can recognize a wide range of colors, it might be hard to 

differentiate between certain colors.

RColorBrewer provides colorblind-friendly palettes:

library(RColorBrewer) 
display.brewer.all(colorblindFriendly = T)
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The Color Universal Design from the University of Tokyo proposes the following palettes:

#palette using grey 
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cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", 
"#CC79A7") 
 
#palette using black 
cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", 
"#CC79A7")

Read Color schemes for graphics online: https://riptutorial.com/r/topic/8005/color-schemes-for-

graphics
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Chapter 19: Column wise operation

Examples

sum of each column

Suppose we need to do the sum of each column in a dataset

set.seed(20) 
df1 <- data.frame(ID = rep(c("A", "B", "C"), each = 3), V1 = rnorm(9), V2 = rnorm(9)) 
m1 <- as.matrix(df1[-1])

There are many ways to do this. Using base R, the best option would be colSums

colSums(df1[-1], na.rm = TRUE)

Here, we removed the first column as it is non-numeric and did the sum of each column, specifying 

the na.rm = TRUE (in case there are any NAs in the dataset)

This also works with matrix

colSums(m1, na.rm = TRUE)

This can be done in a loop with lapply/sapply/vapply

 lapply(df1[-1], sum, na.rm = TRUE)

It should be noted that the output is a list. If we need a vector output

 sapply(df1[-1], sum, na.rm = TRUE)

Or

 vapply(df1[-1], sum, na.rm = TRUE, numeric(1))

For matrices, if we want to loop through columns, then use apply with MARGIN = 1

 apply(m1, 2, FUN = sum, na.rm = TRUE)

There are ways to do this with packages like dplyr or data.table

 library(dplyr) 
 df1 %>% 
     summarise_at(vars(matches("^V\\d+")), sum, na.rm = TRUE)
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Here, we are passing a regular expression to match the column names that we need to get the sum 

in summarise_at. The regex will match all columns that start with V followed by one or more numbers 

(\\d+).

A data.table option is

library(data.table) 
setDT(df1)[, lapply(.SD, sum, na.rm = TRUE), .SDcols = 2:ncol(df1)]

We convert the 'data.frame' to 'data.table' (setDT(df1)), specified the columns to be applied the 

function in .SDcols and loop through the Subset of Data.table (.SD) and get the sum.

If we need to use a group by operation, we can do this easily by specifying the group by 

column/columns

 df1 %>% 
   group_by(ID) %>% 
   summarise_at(vars(matches("^V\\d+")), sum, na.rm = TRUE)

In cases where we need the sum of all the columns, summarise_each can be used instead of 
summarise_at

df1 %>% 
    group_by(ID) %>% 
    summarise_each(funs(sum(., na.rm = TRUE)))

The data.table option is

setDT(df1)[, lapply(.SD, sum, na.rm = TRUE), by = ID] 

Read Column wise operation online: https://riptutorial.com/r/topic/2212/column-wise-operation
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Chapter 20: Combinatorics

Examples

Enumerating combinations of a specified length

Without replacement

With combn, each vector appears in a column:

combn(LETTERS, 3) 
 
# Showing only first 10. 
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 
[1,] "A"  "A"  "A"  "A"  "A"  "A"  "A"  "A"  "A"  "A" 
[2,] "B"  "B"  "B"  "B"  "B"  "B"  "B"  "B"  "B"  "B" 
[3,] "C"  "D"  "E"  "F"  "G"  "H"  "I"  "J"  "K"  "L"

With replacement

With expand.grid, each vector appears in a row:

expand.grid(LETTERS, LETTERS, LETTERS) 
# or 
do.call(expand.grid, rep(list(LETTERS), 3)) 
 
# Showing only first 10. 
   Var1 Var2 Var3 
1     A    A    A 
2     B    A    A 
3     C    A    A 
4     D    A    A 
5     E    A    A 
6     F    A    A 
7     G    A    A 
8     H    A    A 
9     I    A    A 
10    J    A    A

For the special case of pairs, outer can be used, putting each vector into a cell:

# FUN here is used as a function executed on each resulting pair. 
# in this case it's string concatenation. 
outer(LETTERS, LETTERS, FUN=paste0) 
 
# Showing only first 10 rows and columns 
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 
 [1,] "AA" "AB" "AC" "AD" "AE" "AF" "AG" "AH" "AI" "AJ" 
 [2,] "BA" "BB" "BC" "BD" "BE" "BF" "BG" "BH" "BI" "BJ" 
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 [3,] "CA" "CB" "CC" "CD" "CE" "CF" "CG" "CH" "CI" "CJ" 
 [4,] "DA" "DB" "DC" "DD" "DE" "DF" "DG" "DH" "DI" "DJ" 
 [5,] "EA" "EB" "EC" "ED" "EE" "EF" "EG" "EH" "EI" "EJ" 
 [6,] "FA" "FB" "FC" "FD" "FE" "FF" "FG" "FH" "FI" "FJ" 
 [7,] "GA" "GB" "GC" "GD" "GE" "GF" "GG" "GH" "GI" "GJ" 
 [8,] "HA" "HB" "HC" "HD" "HE" "HF" "HG" "HH" "HI" "HJ" 
 [9,] "IA" "IB" "IC" "ID" "IE" "IF" "IG" "IH" "II" "IJ" 
[10,] "JA" "JB" "JC" "JD" "JE" "JF" "JG" "JH" "JI" "JJ"

Counting combinations of a specified length

Without replacement

choose(length(LETTERS), 5) 
[1] 65780

With replacement

length(letters)^5 
[1] 11881376

Read Combinatorics online: https://riptutorial.com/r/topic/5836/combinatorics
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Chapter 21: Control flow structures

Remarks

For loops are a flow control method for repeating a task or set of tasks over a domain. The core 

structure of a for loop is

for ( [index] in [domain]){ 
  [body] 
}

Where

[index] is a name takes exactly one value of [domain] over each iteration of the loop.1. 

[domain] is a vector of values over which to iterate.2. 

[body] is the set of instructions to apply on each iteration.3. 

As a trivial example, consider the use of a for loop to obtain the cumulative sum of a vector of 

values.

x <- 1:4 
cumulative_sum <- 0 
for (i in x){ 
  cumulative_sum <- cumulative_sum + x[i] 
} 
cumulative_sum

Optimizing Structure of For Loops

For loops can be useful for conceptualizing and executing tasks to repeat. If not constructed 

carefully, however, they can be very slow to execute compared to the preferred used of the apply 

family of functions. Nonetheless, there are a handful of elements you can include in your for loop 

construction to optimize the loop. In many cases, good construction of the for loop will yield 

computational efficiency very close to that of an apply function.

A 'properly constructed' for loop builds on the core structure and includes a statement declaring 

the object that will capture each iteration of the loop. This object should have both a class and a 

length declared.

[output] <- [vector_of_length] 
for ([index] in [length_safe_domain]){ 
  [output][index] <- [body] 
}

To illustrate, let us write a loop to square each value in a numeric vector (this is a trivial example 

for illustration only. The 'correct' way of completing this task would be x_squared <- x^2).
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x <- 1:100 
x_squared <- vector("numeric", length = length(x)) 
for (i in seq_along(x)){ 
  x_squared[i] <- x[i]^2 
}

Again, notice that we first declared a receptacle for the output x_squared, and gave it the class 

"numeric" with the same length as x. Additionally, we declared a "length safe domain" using the 

seq_along function. seq_along generates a vector of indices for an object that is suited for use in for 

loops. While it seems intuitive to use for (i in 1:length(x)), if x has 0 length, the loop will attempt 

to iterate over the domain of 1:0, resulting in an error (the 0th index is undefined in R).

Receptacle objects and length safe domains are handled internally by the apply family of functions 

and users are encouraged to adopt the apply approach in place of for loops as much as possible. 

However, if properly constructed, a for loop may occasionally provide greater code clarity with 

minimal loss of efficiency.

Vectorizing For Loops

For loops can often be a useful tool in conceptualizing the tasks that need to be completed within 

each iteration. When the loop is completely developed and conceptualized, there may be 

advantages to turning the loop into a function.

In this example, we will develop a for loop to calculate the mean of each column in the mtcars 

dataset (again, a trivial example as it could be accomplished via the colMeans function).

column_mean_loop <- vector("numeric", length(mtcars)) 
for (k in seq_along(mtcars)){ 
  column_mean_loop[k] <- mean(mtcars[[k]]) 
}

The for loop can be converted to an apply function by rewriting the body of the loop as a function.

col_mean_fn <- function(x) mean(x) 
column_mean_apply <- vapply(mtcars, col_mean_fn, numeric(1))

And to compare the results:

identical(column_mean_loop, 
          unname(column_mean_apply)) #* vapply added names to the elements 
                                     #* remove them for comparison

The advantages of the vectorized form is that we were able to eliminate a few lines of code. The 

mechanics of determining the length and type of the output object and iterating over a length safe 

domain are handled for us by the apply function. Additionally, the apply function is a little bit faster 

than the loop. The difference of speed is often negligible in human terms depending on the 

number of iterations and the complexity of the body.
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Examples

Basic For Loop Construction

In this example we will calculate the squared deviance for each column in a data frame, in this 

case the mtcars.

Option A: integer index

squared_deviance <- vector("list", length(mtcars)) 
for (i in seq_along(mtcars)){ 
  squared_deviance[[i]] <- (mtcars[[i]] - mean(mtcars[[i]]))^2 
}

squared_deviance is an 11 elements list, as expected.

class(squared_deviance) 
length(squared_deviance)

Option B: character index

squared_deviance <- vector("list", length(mtcars)) 
Squared_deviance <- setNames(squared_deviance, names(mtcars)) 
for (k in names(mtcars)){ 
  squared_deviance[[k]] <- (mtcars[[k]] - mean(mtcars[[k]]))^2 
}

What if we want a data.frame as a result? Well, there are many options for transforming a list into 

other objects. However, and maybe the simplest in this case, will be to store the for results in a 

data.frame.

squared_deviance <- mtcars #copy the original 
squared_deviance[TRUE]<-NA  #replace with NA or do squared_deviance[,]<-NA 
for (i in seq_along(mtcars)){ 
  squared_deviance[[i]] <- (mtcars[[i]] - mean(mtcars[[i]]))^2 
} 
dim(squared_deviance) 
[1] 32 11

The result will be the same event though we use the character option (B).

Optimal Construction of a For Loop

To illustrate the effect of good for loop construction, we will calculate the mean of each column in 

four different ways:

Using a poorly optimized for loop1. 

Using a well optimized for for loop2. 

Using an *apply family of functions3. 

Using the colMeans function4. 
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Each of these options will be shown in code; a comparison of the computational time to execute 

each option will be shown; and lastly a discussion of the differences will be given.

Poorly optimized for loop

column_mean_poor <- NULL 
for (i in 1:length(mtcars)){ 
  column_mean_poor[i] <- mean(mtcars[[i]]) 
}

Well optimized for loop

column_mean_optimal <- vector("numeric", length(mtcars)) 
for (i in seq_along(mtcars)){ 
  column_mean_optimal <- mean(mtcars[[i]]) 
}

vapply Function

column_mean_vapply <- vapply(mtcars, mean, numeric(1))

colMeans Function

column_mean_colMeans <- colMeans(mtcars)

Efficiency comparison

The results of benchmarking these four approaches is shown below (code not displayed)

Unit: microseconds 
     expr     min       lq     mean   median       uq     max neval  cld 
     poor 240.986 262.0820 287.1125 275.8160 307.2485 442.609   100    d 
  optimal 220.313 237.4455 258.8426 247.0735 280.9130 362.469   100   c 
   vapply 107.042 109.7320 124.4715 113.4130 132.6695 202.473   100 a 
 colMeans 155.183 161.6955 180.2067 175.0045 194.2605 259.958   100  b

Notice that the optimized for loop edged out the poorly constructed for loop. The poorly 

constructed for loop is constantly increasing the length of the output object, and at each change of 

the length, R is reevaluating the class of the object.

Some of this overhead burden is removed by the optimized for loop by declaring the type of output 

object and its length before starting the loop.

In this example, however, the use of an vapply function doubles the computational efficiency, 

largely because we told R that the result had to be numeric (if any one result were not numeric, an 

error would be returned).
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Use of the colMeans function is a touch slower than the vapply function. This difference is 

attributable to some error checks performed in colMeans and mainly to the as.matrix conversion 

(because mtcars is a data.frame) that weren't performed in the vapply function.

The Other Looping Constructs: while and repeat

R provides two additional looping constructs, while and repeat, which are typically used in 

situations where the number of iterations required is indeterminate.

The while loop

The general form of a while loop is as follows,

while (condition) { 
    ## do something 
    ## in loop body 
}

where condition is evaluated prior to entering the loop body. If condition evaluates to TRUE, the 

code inside of the loop body is executed, and this process repeats until condition evaluates to 

FALSE (or a break statement is reached; see below). Unlike the for loop, if a while loop uses a 

variable to perform incremental iterations, the variable must be declared and initialized ahead of 

time, and must be updated within the loop body. For example, the following loops accomplish the 

same task:

for (i in 0:4) { 
    cat(i, "\n") 
} 
# 0 
# 1 
# 2 
# 3 
# 4 
 
i <- 0 
while (i < 5) { 
    cat(i, "\n") 
    i <- i + 1 
} 
# 0 
# 1 
# 2 
# 3 
# 4 

In the while loop above, the line i <- i + 1 is necessary to prevent an infinite loop.

Additionally, it is possible to terminate a while loop with a call to break from inside the loop body:

iter <- 0 
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while (TRUE) { 
    if (runif(1) < 0.25) { 
        break 
    } else { 
        iter <- iter + 1 
    } 
} 
iter 
#[1] 4

In this example, condition is always TRUE, so the only way to terminate the loop is with a call to 

break inside the body. Note that the final value of iter will depend on the state of your PRNG when 

this example is run, and should produce different results (essentially) each time the code is 

executed.

The repeat loop

The repeat construct is essentially the same as while (TRUE) { ## something }, and has the 

following form:

repeat ({ 
    ## do something 
    ## in loop body 
})

The extra {} are not required, but the () are. Rewriting the previous example using repeat,

iter <- 0 
repeat ({ 
    if (runif(1) < 0.25) { 
        break 
    } else { 
        iter <- iter + 1 
    } 
}) 
iter 
#[1] 2 

More on break

It's important to note that break will only terminate the immediately enclosing loop. That is, the 

following is an infinite loop:

while (TRUE) { 
    while (TRUE) { 
        cat("inner loop\n") 
        break 
    } 
    cat("outer loop\n") 
}
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With a little creativity, however, it is possible to break entirely from within a nested loop. As an 

example, consider the following expression, which, in its current state, will loop infinitely:

while (TRUE) { 
    cat("outer loop body\n") 
    while (TRUE) { 
        cat("inner loop body\n") 
        x <- runif(1) 
        if (x < .3) { 
            break 
        } else { 
            cat(sprintf("x is %.5f\n", x)) 
        } 
    } 
}

One possibility is to recognize that, unlike break, the return expression does have the ability to 

return control across multiple levels of enclosing loops. However, since return is only valid when 

used within a function, we cannot simply replace break with return() above, but also need to wrap 

the entire expression as an anonymous function:

(function() { 
    while (TRUE) { 
        cat("outer loop body\n") 
        while (TRUE) { 
            cat("inner loop body\n") 
            x <- runif(1) 
            if (x < .3) { 
                return() 
            } else { 
                cat(sprintf("x is %.5f\n", x)) 
            } 
        } 
    } 
})()

Alternatively, we can create a dummy variable (exit) prior to the expression, and activate it via <<- 

from the inner loop when we are ready to terminate:

exit <- FALSE 
while (TRUE) { 
    cat("outer loop body\n") 
    while (TRUE) { 
        cat("inner loop body\n") 
        x <- runif(1) 
        if (x < .3) { 
            exit <<- TRUE 
            break 
        } else { 
            cat(sprintf("x is %.5f\n", x)) 
        } 
    } 
    if (exit) break 
}

Read Control flow structures online: https://riptutorial.com/r/topic/2201/control-flow-structures
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Chapter 22: Creating packages with devtools

Introduction

This topic will cover the creation of R packages from scratch with the devtools package.

Remarks

Official R manual for creating packages1. 

roxygen2 reference manual2. 

devtools reference manual3. 

Examples

Creating and distributing packages

This is a compact guide about how to quickly create an R package from your code. Exhaustive 

documentations will be linked when available and should be read if you want a deeper knowledge 

of the situation. See Remarks for more resources.

The directory where your code stands will be refered as ./, and all the commands are meant to be 

executed from a R prompt in this folder.

Creation of the documentation

The documentation for your code has to be in a format which is very similar to LaTeX.

However, we will use a tool named roxygen in order to simplify the process:

install.packages("devtools") 
library("devtools") 
install.packages("roxygen2") 
library("roxygen2")

The full man page for roxygen is available here. It is very similar to doxygen.

Here is a practical sample about how to document a function with roxygen:

#' Increment a variable. 
#' 
#' Note that the behavior of this function 
#' is undefined if `x` is not of class `numeric`. 
#' 
#' @export 
#' @author  another guy 

https://riptutorial.com/ 115

https://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://roxygen.org/roxygen2-manual.pdf
http://roxygen.org/roxygen2-manual.pdf
https://cran.r-project.org/web/packages/devtools/devtools.pdf
https://cran.r-project.org/web/packages/devtools/devtools.pdf
https://docs.google.com/viewer?docex=1&url=http://roxygen.org/roxygen2-manual.pdf


#' @name    Increment Function 
#' @title   increment 
#' 
#' @param x   Variable to increment 
#' @return    `x` incremented of 1 
#' 
#' @seealso   `other_function` 
#' 
#' @examples 
#' increment(3) 
#' > 4 
increment <- function(x) { 
  return (x+1) 
}

And here will be the result.

It is also recommanded to create a vignette (see the topic Creating vignettes), which is a full guide 

about your package.

Construction of the package skeleton

Assuming that your code is written for instance in files ./script1.R and ./script2.R, launch the 

following command in order to create the file tree of your package:

package.skeleton(name="MyPackage", code_files=c("script1.R","script2.R"))

Then delete all the files in ./MyPackage/man/. You have now to compile the documentation:

roxygenize("MyPackage")

You should also generate a reference manual from your documentation using R CMD Rd2pdf 

MyPackage from a command prompt started in ./.

Edition of the package properties

1. Package description

Modify ./MyPackage/DESCRIPTION according to your needs. The fields Package, Version, License, 

Description, Title, Author and Maintainer are mandatory, the other are optional.

If your package depends on others packages, specify them in a field named Depends (R version < 

3.2.0) or Imports (R version > 3.2.0).

2. Optional folders
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Once you launched the skeleton build, ./MyPackage/ only had R/ and man/ subfolders. However, it 

can have some others:

data/: here you can place the data that your library needs and that isn't code. It must be 

saved as dataset with the .RData extension, and you can load it at runtime with data() and 
load()

•

tests/: all the code files in this folder will be ran at install time. If there is any error, the 

installation will fail.

•

src/: for C/C++/Fortran source files you need (using Rcpp...).•

exec/: for other executables.•

misc/: for barely everything else.•

Finalization and build

You can delete ./MyPackage/Read-and-delete-me.

As it is now, your package is ready to be installed.

You can install it with devtools::install("MyPackage").

To build your package as a source tarball, you need to execute the following command, from a 

command prompt in ./ : R CMD build MyPackage

Distribution of your package

Through Github

Simply create a new repository called MyPackage and upload everything in MyPackage/ to the 

master branch. Here is an example.

Then anyone can install your package from github with devtools:

install_package("MyPackage", "your_github_usename")

Through CRAN

Your package needs to comply to the CRAN Repository Policy. Including but not limited to: your 

package must be cross-platforms (except some very special cases), it should pass the R CMD check 

test.

Here is the submission form. You must upload the source tarball.

Creating vignettes
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A vignette is a long-form guide to your package. Function documentation is great if you 

know the name of the function you need, but it’s useless otherwise. A vignette is like a 

book chapter or an academic paper: it can describe the problem that your package is 

designed to solve, and then show the reader how to solve it.

Vignettes will be created entirely in markdown.

Requirements

Rmarkdown: install.packages("rmarkdown")•

Pandoc•

Vignette creation

devtools::use_vignette("MyVignette", "MyPackage")

You can now edit your vignette at ./vignettes/MyVignette.Rmd.

The text in your vignette is formatted as Markdown.

The only addition to the original Markdown, is a tag that takes R code, runs it, captures the output, 

and translates it into formatted Markdown:

```{r} 
# Add two numbers together 
add <- function(a, b) a + b 
add(10, 20) 
```

Will display as:

# Add two numbers together 
add <- function(a, b) a + b 
add(10, 20) 
## [1] 30

Thus, all the packages you will use in your vignettes must be listed as dependencies in 

./DESCRIPTION.

Read Creating packages with devtools online: https://riptutorial.com/r/topic/10884/creating-

packages-with-devtools

https://riptutorial.com/ 118

https://github.com/jgm/pandoc/releases/tag/1.19.2.1
https://daringfireball.net/projects/markdown/syntax
https://riptutorial.com/r/topic/10884/creating-packages-with-devtools
https://riptutorial.com/r/topic/10884/creating-packages-with-devtools


Chapter 23: Creating reports with RMarkdown

Examples

Printing tables

There are several packages that allow the output of data structures in form of HTML or LaTeX 

tables. They mostly differ in flexibility.

Here I use the packages:

knitr•

xtable•

pander•

For HTML documents

--- 
title: "Printing Tables" 
author: "Martin Schmelzer" 
date: "29 Juli 2016" 
output: html_document 
--- 
 
```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = TRUE) 
library(knitr) 
library(xtable) 
library(pander) 
df <- mtcars[1:4,1:4] 
``` 
 
# Print tables using `kable` 
```{r, 'kable'} 
kable(df) 
``` 
 
# Print tables using `xtable` 
```{r, 'xtable', results='asis'} 
print(xtable(df), type="html") 
``` 
 
# Print tables using `pander` 
```{r, 'pander'} 
pander(df) 
```
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For PDF documents

--- 
title: "Printing Tables" 
author: "Martin Schmelzer" 
date: "29 Juli 2016" 
output: pdf_document 
--- 
 
```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = TRUE) 
library(knitr) 
library(xtable) 
library(pander) 
df <- mtcars[1:4,1:4] 
``` 
 
# Print tables using `kable` 
```{r, 'kable'} 
kable(df) 
``` 
 
# Print tables using `xtable` 
```{r, 'xtable', results='asis'} 
print(xtable(df, caption="My Table")) 
``` 
 
# Print tables using `pander` 
```{r, 'pander'} 
pander(df) 
```
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How can I stop xtable printing the comment ahead of each table?

options(xtable.comment = FALSE)

Including LaTeX Preample Commands

There are two possible ways of including LaTeX preamble commands (e.g. \usepackage) in a 

RMarkdown document.

1. Using the YAML option header-includes:

--- 
title: "Including LaTeX Preample Commands in RMarkdown" 
header-includes: 
   - \renewcommand{\familydefault}{cmss} 
   - \usepackage[cm, slantedGreek]{sfmath} 
   - \usepackage[T1]{fontenc} 
output: pdf_document 
--- 
 
```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = TRUE, external=T) 
``` 
 
# Section 1 
 
As you can see, this text uses the Computer Moden Font!
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2. Including External Commands with includes, in_header

--- 
title: "Including LaTeX Preample Commands in RMarkdown" 
output: 
  pdf_document: 
    includes: 
      in_header: includes.tex 
--- 
 
```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = TRUE, external=T) 
``` 
 
# Section 1 
 
As you can see, this text uses the Computer Modern Font!

Here, the content of includes.tex are the same three commands we included with header-includes.

Writing a whole new template

A possible third option is to write your own LaTex template and include it with template. But this 

covers a lot more of the structure than only the preamble.

--- 
title: "My Template" 
author: "Martin Schmelzer" 
output: 
  pdf_document: 
    template: myTemplate.tex 
---

Including bibliographies

A bibtex catalogue cna easily be included with the YAML option bibliography:. A certain style for 

the bibliography can be added with biblio-style:. The references are added at the end of the 

document.

--- 
title: "Including Bibliography" 
author: "John Doe" 
output: pdf_document 
bibliography: references.bib 
--- 
 
# Abstract 
 
@R_Core_Team_2016 
 
# References
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Basic R-markdown document structure

R-markdown code chunks

R-markdown is a markdown file with embedded blocks of R code called chunks. There are two 

types of R code chunks: inline and block.

Inline chunks are added using the following syntax:

`r 2*2`

They are evaluated and inserted their output answer in place.

Block chunks have a different syntax:

```{r name, echo=TRUE, include=TRUE, ...} 
 
2*2 
 
````

And they come with several possible options. Here are the main ones (but there are many others):

echo (boolean) controls wether the code inside chunk will be included in the document•

include (boolean) controls wether the output should be included in the document•

fig.width (numeric) sets the width of the output figures•

fig.height (numeric) sets the height of the output figures•

fig.cap (character) sets the figure captions•

They are written in a simple tag=value format like in the example above.

R-markdown document example

Below is a basic example of R-markdown file illustrating the way R code chunks are embedded 

inside r-markdown.

# Title # 
 
This is **plain markdown** text. 
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```{r code, include=FALSE, echo=FALSE} 
 
# Just declare variables 
 
income <- 1000 
taxes  <- 125 
 
``` 
 
My income is: `r income ` dollars and I payed `r taxes ` dollars in taxes. 
 
Below is the sum of money I will have left: 
 
```{r gain, include=TRUE, echo=FALSE} 
 
gain <- income-taxes 
 
gain 
 
``` 
 
```{r plotOutput, include=TRUE, echo=FALSE, fig.width=6, fig.height=6} 
 
pie(c(income,taxes), label=c("income", "taxes")) 
 
```

Converting R-markdown to other formats

The R knitr package can be used to evaluate R chunks inside R-markdown file and turn it into a 

regular markdown file.

The following steps are needed in order to turn R-markdown file into pdf/html:

Convert R-markdown file to markdown file using knitr.1. 

Convert the obtained markdown file to pdf/html using specialized tools like pandoc.2. 

In addition to the above knitr package has wrapper functions knit2html() and knit2pdf() that can 

be used to produce the final document without the intermediate step of manually converting it to 

the markdown format:

If the above example file was saved as income.Rmd it can be converted to a pdf file using the 

following R commands:

library(knitr) 
knit2pdf("income.Rmd", "income.pdf")

The final document will be similar to the one below.
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Read Creating reports with RMarkdown online: https://riptutorial.com/r/topic/4572/creating-reports-

with-rmarkdown
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Chapter 24: Creating vectors

Examples

Sequence of numbers

Use the : operator to create sequences of numbers, such as for use in vectorizing larger chunks of 

your code:

x <- 1:5 
x 
## [1] 1 2 3 4 5

This works both ways

10:4 
# [1] 10  9  8  7  6  5  4

and even with floating point numbers

1.25:5 
# [1] 1.25 2.25 3.25 4.25

or negatives

-4:4 
#[1] -4 -3 -2 -1  0  1  2  3  4

seq()

seq is a more flexible function than the : operator allowing to specify steps other than 1.

The function creates a sequence from the start (default is 1) to the end including that number.

You can supply only the end (to) parameter

seq(5) 
# [1] 1 2 3 4 5

As well as the start

seq(2, 5) # or seq(from=2, to=5) 
# [1] 2 3 4 5

And finally the step (by)
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seq(2, 5, 0.5) # or seq(from=2, to=5, by=0.5) 
# [1] 2.0 2.5 3.0 3.5 4.0 4.5 5.0

seq can optionally infer the (evenly spaced) steps when alternatively the desired length of the 

output (length.out) is supplied

seq(2,5, length.out = 10) 
# [1] 2.0 2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 5.0

If the sequence needs to have the same length as another vector we can use the along.with as a 

shorthand for length.out = length(x)

x = 1:8 
seq(2,5,along.with = x) 
# [1] 2.000000 2.428571 2.857143 3.285714 3.714286 4.142857 4.571429 5.000000

There are two useful simplified functions in the seq family: seq_along, seq_len, and seq.int. 

seq_along and seq_len functions construct the natural (counting) numbers from 1 through N where 

N is determined by the function argument, the length of a vector or list with seq_along, and the 

integer argument with seq_len.

seq_along(x) 
# [1] 1 2 3 4 5 6 7 8

Note that seq_along returns the indices of an existing object.

# counting numbers 1 through 10 
seq_len(10) 
[1]  1  2  3  4  5  6  7  8  9 10 
# indices of existing vector (or list) with seq_along 
letters[1:10] 
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" 
seq_along(letters[1:10]) 
[1]  1  2  3  4  5  6  7  8  9 10

seq.intis the same as seq maintained for ancient compatibility.

There is also an old function sequencethat creates a vector of sequences from a non negative 

argument.

sequence(4) 
# [1] 1 2 3 4 
sequence(c(3, 2)) 
# [1] 1 2 3 1 2 
sequence(c(3, 2, 5)) 
# [1] 1 2 3 1 2 1 2 3 4 5

Vectors

Vectors in R can have different types (e.g. integer, logical, character). The most general way of 
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defining a vector is by using the function vector().

vector('integer',2) # creates a vector of integers of size 2. 
vector('character',2) # creates a vector of characters of size 2. 
vector('logical',2) # creates a vector of logicals of size 2.

However, in R, the shorthand functions are generally more popular.

integer(2) # is the same as vector('integer',2) and creates an integer vector with two 
elements 
character(2) # is the same as vector('integer',2) and creates an character vector with two 
elements 
logical(2) # is the same as vector('logical',2) and creates an logical vector with two 
elements

Creating vectors with values, other than the default values, is also possible. Often the function c() 

is used for this. The c is short for combine or concatenate.

c(1, 2) # creates a integer vector of two elements: 1 and 2. 
c('a', 'b') # creates a character vector of two elements: a and b. 
c(T,F) # creates a logical vector of two elements: TRUE and FALSE.

Important to note here is that R interprets any integer (e.g. 1) as an integer vector of size one. The 

same holds for numerics (e.g. 1.1), logicals (e.g. T or F), or characters (e.g. 'a'). Therefore, you 

are in essence combining vectors, which in turn are vectors.

Pay attention that you always have to combine similar vectors. Otherwise, R will try to convert the 

vectors in vectors of the same type.

c(1,1.1,'a',T) # all types (integer, numeric, character and logical) are converted to the 
'lowest' type which is character.

Finding elements in vectors can be done with the [ operator.

vec_int <- c(1,2,3) 
vec_char <- c('a','b','c') 
vec_int[2] # accessing the second element will return 2 
vec_char[2] # accessing the second element will return 'b'

This can also be used to change values

vec_int[2] <- 5 # change the second value from 2 to 5 
vec_int # returns [1] 1 5 3

Finally, the : operator (short for the function seq()) can be used to quickly create a vector of 

numbers.

vec_int <- 1:10 
vec_int # returns [1] 1 2 3 4 5 6 7 8 9 10
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This can also be used to subset vectors (from easy to more complex subsets)

vec_char <- c('a','b','c','d','e') 
vec_char[2:4] # returns [1] "b" "c" "d" 
vec_char[c(1,3,5)] # returns [1] "a" "c" "e"

Creating named vectors

Named vector can be created in several ways. With c:

xc <- c('a' = 5, 'b' = 6, 'c' = 7, 'd' = 8)

which results in:

> xc 
a b c d 
5 6 7 8

with list:

xl <- list('a' = 5, 'b' = 6, 'c' = 7, 'd' = 8)

which results in:

> xl 
$a 
[1] 5 
 
$b 
[1] 6 
 
$c 
[1] 7 
 
$d 
[1] 8

With the setNames function, two vectors of the same length can be used to create a named vector:

x <- 5:8 
y <- letters[1:4] 
 
xy <- setNames(x, y)

which results in a named integer vector:

> xy 
a b c d 
5 6 7 8

As can be seen, this gives the same result as the c method.
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You may also use the names function to get the same result:

xy <- 5:8 
names(xy) <- letters[1:4]

With such a vector it is also possibly to select elements by name:

> xy["c"] 
c 
7 

This feature makes it possible to use such a named vector as a look-up vector/table to match the 

values to values of another vector or column in dataframe. Considering the following dataframe:

mydf <- data.frame(let = c('c','a','b','d')) 
 
> mydf 
  let 
1   c 
2   a 
3   b 
4   d

Suppose you want to create a new variable in the mydf dataframe called num with the correct values 

from xy in the rows. Using the match function the appropriate values from xy can be selected:

mydf$num <- xy[match(mydf$let, names(xy))]

which results in:

> mydf 
  let num 
1   c   7 
2   a   5 
3   b   6 
4   d   8

Expanding a vector with the rep() function

The rep function can be used to repeat a vector in a fairly flexible manner.

# repeat counting numbers, 1 through 5 twice 
rep(1:5, 2) 
[1] 1 2 3 4 5 1 2 3 4 5 
 
# repeat vector with incomplete recycling 
rep(1:5, 2, length.out=7) 
[1] 1 2 3 4 5 1 2

The each argument is especially useful for expanding a vector of statistics of 

observational/experimental units into a vector of data.frame with repeated observations of these 
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units.

# same except repeat each integer next to each other 
rep(1:5, each=2) 
[1] 1 1 2 2 3 3 4 4 5 5

A nice feature of rep regarding involving expansion to such a data structure is that expansion of a 

vector to an unbalanced panel can be accomplished by replacing the length argument with a 

vector that dictates the number of times to repeat each element in the vector:

# automated length repetition 
rep(1:5, 1:5) 
 [1] 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 
# hand-fed repetition length vector 
rep(1:5, c(1,1,1,2,2)) 
[1] 1 2 3 4 4 5 5

This should expose the possibility of allowing an external function to feed the second argument of 

rep in order to dynamically construct a vector that expands according to the data.

As with seq, faster, simplified versions of rep are rep_len and rep.int. These drop some attributes 

that rep maintains and so may be most useful in situations where speed is a concern and 

additional aspects of the repeated vector are unnecessary.

# repeat counting numbers, 1 through 5 twice 
rep.int(1:5, 2) 
[1] 1 2 3 4 5 1 2 3 4 5 
 
# repeat vector with incomplete recycling 
rep_len(1:5, length.out=7) 
[1] 1 2 3 4 5 1 2

Vectors from build in constants: Sequences of letters & month names

R has a number of build in constants. The following constants are available:

LETTERS: the 26 upper-case letters of the Roman alphabet•

letters: the 26 lower-case letters of the Roman alphabet•

month.abb: the three-letter abbreviations for the English month names•

month.name: the English names for the months of the year•

pi: the ratio of the circumference of a circle to its diameter•

From the letters and month constants, vectors can be created.

1) Sequences of letters:

> letters 
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" 
"w" "x" "y" "z" 
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> LETTERS[7:9] 
[1] "G" "H" "I" 
 
> letters[c(1,5,3,2,4)] 
[1] "a" "e" "c" "b" "d"

2) Sequences of month abbreviations or month names:

> month.abb 
 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec" 
 
> month.name[1:4] 
[1] "January"  "February" "March"    "April" 
 
> month.abb[c(3,6,9,12)] 
[1] "Mar" "Jun" "Sep" "Dec"

Read Creating vectors online: https://riptutorial.com/r/topic/1088/creating-vectors
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Chapter 25: Data acquisition

Introduction

Get data directly into an R session. One of the nice features of R is the ease of data acquisition. 

There are several ways data dissemination using R packages.

Examples

Built-in datasets

Rhas a vast collection of built-in datasets. Usually, they are used for teaching purposes to create 

quick and easily reproducible examples. There is a nice web-page listing the built-in datasets:

https://vincentarelbundock.github.io/Rdatasets/datasets.html

Example

Swiss Fertility and Socioeconomic Indicators (1888) Data. Let's check the difference in fertility 

based of rurality and domination of Catholic population.

library(tidyverse) 
 
swiss %>% 
        ggplot(aes(x = Agriculture, y = Fertility, 
                   color = Catholic > 50))+ 
        geom_point()+ 
        stat_ellipse()
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library(tidyverse)

library(tidyverse)

eurostat search_eurostat()
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, it does not find all the relevant datasets available. This, it's more convenient to browse the code 

of a dataset manually at the Eurostat website: Countries Database, or Regional Database. If the 

automated download does not work, the data can be grabbed manually at via Bulk Download 

Facility.

library(tidyverse) 
library(lubridate) 
library(forcats) 
library(eurostat) 
library(geofacet) 
library(viridis) 
library(ggthemes) 
library(extrafont) 
 
# download NEET data for countries 
neet <- get_eurostat("edat_lfse_22") 
 
neet %>% 
        filter(geo %>% paste %>% nchar == 2, 
               sex == "T", age == "Y18-24") %>% 
        group_by(geo) %>% 
        mutate(avg = values %>% mean()) %>% 
        ungroup() %>% 
        ggplot(aes(x = time %>% year(), 
                   y = values))+ 
        geom_path(aes(group = 1))+ 
        geom_point(aes(fill = values), pch = 21)+ 
        scale_x_continuous(breaks = seq(2000, 2015, 5), 
                           labels = c("2000", "'05", "'10", "'15"))+ 
        scale_y_continuous(expand = c(0, 0), limits = c(0, 40))+ 
        scale_fill_viridis("NEET, %", option = "B")+ 
        facet_geo(~ geo, grid = "eu_grid1")+ 
        labs(x = "Year", 
             y = "NEET, %", 
             title = "Young people neither in employment nor in education and training in 
Europe", 
             subtitle = "Data: Eurostat Regional Database, 2000-2016", 
             caption = "ikashnitsky.github.io")+ 
        theme_few(base_family =  "Roboto Condensed", base_size = 15)+ 
        theme(axis.text = element_text(size = 10), 
              panel.spacing.x = unit(1, "lines"), 
              legend.position = c(0, 0), 
              legend.justification = c(0, 0))
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that gathers and pre-process human mortality data for those countries, where more or less reliable 

statistics is available.

# load required packages 
library(tidyverse) 
library(extrafont) 
library(HMDHFDplus) 
 
country <- getHMDcountries() 
 
exposures <- list() 
for (i in 1: length(country)) { 
        cnt <- country[i] 
        exposures[[cnt]] <- readHMDweb(cnt, "Exposures_1x1", user_hmd, pass_hmd) 
        # let's print the progress 
        paste(i,'out of',length(country)) 
} # this will take quite a lot of time

Please note, the arguments user_hmd and pass_hmd are the login credentials at the website of 

Human Mortality Database. In order to access the data, one needs to create an account at 

http://www.mortality.org/ and provide their own credentials to the readHMDweb() function.

sr_age <- list() 
 
for (i in 1:length(exposures)) { 
        di <- exposures[[i]] 
        sr_agei <- di %>% select(Year,Age,Female,Male) %>% 
                filter(Year %in% 2012) %>% 
                select(-Year) %>% 
                transmute(country = names(exposures)[i], 
                          age = Age, sr_age = Male / Female * 100) 
        sr_age[[i]] <- sr_agei 
} 
sr_age <- bind_rows(sr_age) 
 
# remove optional populations 
sr_age <- sr_age %>% filter(!country %in% c("FRACNP","DEUTE","DEUTW","GBRCENW","GBR_NP")) 
 
# summarize all ages older than 90 (too jerky) 
sr_age_90 <- sr_age %>% filter(age %in% 90:110) %>% 
        group_by(country) %>% summarise(sr_age = mean(sr_age, na.rm = T)) %>% 
        ungroup() %>% transmute(country, age=90, sr_age) 
 
df_plot <- bind_rows(sr_age %>% filter(!age %in% 90:110), sr_age_90) 
 
# finaly - plot 
df_plot %>% 
        ggplot(aes(age, sr_age, color = country, group = country))+ 
        geom_hline(yintercept = 100, color = 'grey50', size = 1)+ 
        geom_line(size = 1)+ 
        scale_y_continuous(limits = c(0, 120), expand = c(0, 0), breaks = seq(0, 120, 20))+ 
        scale_x_continuous(limits = c(0, 90), expand = c(0, 0), breaks = seq(0, 80, 20))+ 
        xlab('Age')+ 
        ylab('Sex ratio, males per 100 females')+ 
        facet_wrap(~country, ncol=6)+ 
        theme_minimal(base_family = "Roboto Condensed", base_size = 15)+ 
        theme(legend.position='none', 
              panel.border = element_rect(size = .5, fill = NA))
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Chapter 26: Data frames

Syntax

data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE, 

stringsAsFactors = default.stringsAsFactors())

•

as.data.frame(x, row.names = NULL, optional = FALSE, ...) # generic function•

as.data.frame(x, ..., stringsAsFactors = default.stringsAsFactors()) # S3 method for class 

'character'

•

as.data.frame(x, row.names = NULL, optional = FALSE, ..., stringsAsFactors = 

default.stringsAsFactors()) # S3 method for class 'matrix'

•

is.data.frame(x)•

Examples

Create an empty data.frame

A data.frame is a special kind of list: it is rectangular. Each element (column) of the list has same 

length, and where each row has a "row name". Each column has its own class, but the class of 

one column can be different from the class of another column (unlike a matrix, where all elements 

must have the same class).

In principle, a data.frame could have no rows and no columns:

> structure(list(character()), class = "data.frame") 
NULL 
<0 rows> (or 0-length row.names)

But this is unusual. It is more common for a data.frame to have many columns and many rows. 

Here is a data.frame with three rows and two columns (a is numeric class and b is character class):

> structure(list(a = 1:3, b = letters[1:3]), class = "data.frame") 
[1] a b 
<0 rows> (or 0-length row.names)

In order for the data.frame to print, we will need to supply some row names. Here we use just the 

numbers 1:3:

> structure(list(a = 1:3, b = letters[1:3]), class = "data.frame", row.names = 1:3) 
  a b 
1 1 a 
2 2 b 
3 3 c
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Now it becomes obvious that we have a data.frame with 3 rows and 2 columns. You can check 

this using nrow(), ncol(), and dim():

> x <- structure(list(a = numeric(3), b = character(3)), class = "data.frame", row.names = 
1:3) 
> nrow(x) 
[1] 3 
> ncol(x) 
[1] 2 
> dim(x) 
[1] 3 2

R provides two other functions (besides structure()) that can be used to create a data.frame. The 

first is called, intuitively, data.frame(). It checks to make sure that the column names you supplied 

are valid, that the list elements are all the same length, and supplies some automatically 

generated row names. This means that the output of data.frame() might now always be exactly 

what you expect:

> str(data.frame("a a a" = numeric(3), "b-b-b" = character(3))) 
'data.frame':   3 obs. of  2 variables: 
 $ a.a.a: num  0 0 0 
 $ b.b.b: Factor w/ 1 level "": 1 1 1

The other function is called as.data.frame(). This can be used to coerce an object that is not a 

data.frame into being a data.frame by running it through data.frame(). As an example, consider a 

matrix:

> m <- matrix(letters[1:9], nrow = 3) 
> m 
     [,1] [,2] [,3] 
[1,] "a"  "d"  "g" 
[2,] "b"  "e"  "h" 
[3,] "c"  "f"  "i" 

And the result:

> as.data.frame(m) 
  V1 V2 V3 
1  a  d  g 
2  b  e  h 
3  c  f  i 
> str(as.data.frame(m)) 
'data.frame':   3 obs. of  3 variables: 
 $ V1: Factor w/ 3 levels "a","b","c": 1 2 3 
 $ V2: Factor w/ 3 levels "d","e","f": 1 2 3 
 $ V3: Factor w/ 3 levels "g","h","i": 1 2 3

Subsetting rows and columns from a data frame

Syntax for accessing rows and columns: [, [[, 
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and $

This topic covers the most common syntax to access specific rows and columns of a data frame. 

These are

Like a matrix with single brackets data[rows, columns]

Using row and column numbers○

Using column (and row) names○

•

Like a list:

With single brackets data[columns] to get a data frame○

With double brackets data[[one_column]] to get a vector○

•

With $ for a single column data$column_name•

We will use the built-in mtcars data frame to illustrate.

Like a matrix: data[rows, columns]

With numeric indexes

Using the built in data frame mtcars, we can extract rows and columns using [] brackets with a 

comma included. Indices before the comma are rows:

# get the first row 
mtcars[1, ] 
# get the first five rows 
mtcars[1:5, ]

Similarly, after the comma are columns:

# get the first column 
mtcars[, 1] 
# get the first, third and fifth columns: 
mtcars[, c(1, 3, 5)]

As shown above, if either rows or columns are left blank, all will be selected. mtcars[1, ] indicates 

the first row with all the columns.

With column (and row) names

So far, this is identical to how rows and columns of matrices are accessed. With data.frames, most 

of the time it is preferable to use a column name to a column index. This is done by using a 

character with the column name instead of numeric with a column number:

# get the mpg column 
mtcars[, "mpg"] 
# get the mpg, cyl, and disp columns 
mtcars[, c("mpg", "cyl", "disp")]
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Though less common, row names can also be used:

mtcars["Mazda Rx4", ]

Rows and columns together

The row and column arguments can be used together:

# first four rows of the mpg column 
mtcars[1:4, "mpg"] 
 
# 2nd and 5th row of the mpg, cyl, and disp columns 
mtcars[c(2, 5), c("mpg", "cyl", "disp")]

A warning about dimensions:

When using these methods, if you extract multiple columns, you will get a data frame back. 

However, if you extract a single column, you will get a vector, not a data frame under the default 

options.

## multiple columns returns a data frame 
class(mtcars[, c("mpg", "cyl")]) 
# [1] "data.frame" 
## single column returns a vector 
class(mtcars[, "mpg"]) 
# [1] "numeric"

There are two ways around this. One is to treat the data frame as a list (see below), the other is to 

add a drop = FALSE argument. This tells R to not "drop the unused dimensions":

class(mtcars[, "mpg", drop = FALSE]) 
# [1] "data.frame"

Note that matrices work the same way - by default a single column or row will be a vector, but if 

you specify drop = FALSE you can keep it as a one-column or one-row matrix.

Like a list

Data frames are essentially lists, i.e., they are a list of column vectors (that all must have the 

same length). Lists can be subset using single brackets [ for a sub-list, or double brackets [[ for a 

single element.

With single brackets data[columns]

When you use single brackets and no commas, you will get column back because data frames are 

lists of columns.

mtcars["mpg"] 
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mtcars[c("mpg", "cyl", "disp")] 
my_columns <- c("mpg", "cyl", "hp") 
mtcars[my_columns]

Single brackets like a list vs. single brackets like a matrix

The difference between data[columns] and data[, columns] is that when treating the data.frame as a 

list (no comma in the brackets) the object returned will be a data.frame. If you use a comma to 

treat the data.frame like a matrix then selecting a single column will return a vector but selecting 

multiple columns will return a data.frame.

## When selecting a single column 
## like a list will return a data frame 
class(mtcars["mpg"]) 
# [1] "data.frame" 
## like a matrix will return a vector 
class(mtcars[, "mpg"]) 
# [1] "numeric"

With double brackets data[[one_column]]

To extract a single column as a vector when treating your data.frame as a list, you can use 

double brackets [[. This will only work for a single column at a time.

# extract a single column by name as a vector 
mtcars[["mpg"]] 
 
# extract a single column by name as a data frame (as above) 
mtcars["mpg"]

Using $ to access columns

A single column can be extracted using the magical shortcut $ without using a quoted column 

name:

# get the column "mpg" 
mtcars$mpg

Columns accessed by $ will always be vectors, not data frames.

Drawbacks of $ for accessing columns

The $ can be a convenient shortcut, especially if you are working in an environment (such as 

RStudio) that will auto-complete the column name in this case. However, $ has drawbacks as 

well: it uses non-standard evaluation to avoid the need for quotes, which means it will not work if 

your column name is stored in a variable.

my_column <- "mpg" 
# the below will not work 
mtcars$my_column 
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# but these will work 
mtcars[, my_column]  # vector 
mtcars[my_column]    # one-column data frame 
mtcars[[my_column]]  # vector

Due to these concerns, $ is best used in interactive R sessions when your column names are 

constant. For programmatic use, for example in writing a generalizable function that will be used 

on different data sets with different column names, $ should be avoided.

Also note that the default behaviour is to use partial matching only when extracting from recursive 

objects (except environments) by $

# give you the values of "mpg" column 
# as "mtcars" has only one column having name starting with "m" 
mtcars$m 
# will give you "NULL" 
# as "mtcars" has more than one columns having name starting with "d" 
mtcars$d

Advanced indexing: negative and logical 

indices

Whenever we have the option to use numbers for a index, we can also use negative numbers to 

omit certain indices or a boolean (logical) vector to indicate exactly which items to keep.

Negative indices omit elements

mtcars[1, ]   # first row 
mtcars[ -1, ] # everything but the first row 
mtcars[-(1:10), ] # everything except the first 10 rows

Logical vectors indicate specific elements to keep

We can use a condition such as < to generate a logical vector, and extract only the rows that meet 

the condition:

# logical vector indicating TRUE when a row has mpg less than 15 
# FALSE when a row has mpg >= 15 
test <- mtcars$mpg < 15 
 
# extract these rows from the data frame 
mtcars[test, ]

We can also bypass the step of saving the intermediate variable

# extract all columns for rows where the value of cyl is 4. 
mtcars[mtcars$cyl == 4, ] 
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# extract the cyl, mpg, and hp columns where the value of cyl is 4 
mtcars[mtcars$cyl == 4, c("cyl", "mpg", "hp")]

Convenience functions to manipulate data.frames

Some convenience functions to manipulate data.frames are subset(), transform(), with() and 

within().

subset

The subset() function allows you to subset a data.frame in a more convenient way (subset also 

works with other classes):

subset(mtcars, subset = cyl == 6, select = c("mpg", "hp")) 
                mpg  hp 
Mazda RX4      21.0 110 
Mazda RX4 Wag  21.0 110 
Hornet 4 Drive 21.4 110 
Valiant        18.1 105 
Merc 280       19.2 123 
Merc 280C      17.8 123 
Ferrari Dino   19.7 175

In the code above we asking only for the lines in which cyl == 6 and for the columns mpg and hp. 

You could achieve the same result using [] with the following code:

mtcars[mtcars$cyl == 6, c("mpg", "hp")]

transform

The transform() function is a convenience function to change columns inside a data.frame. For 

instance the following code adds another column named mpg2 with the result of mpg^2 to the mtcars 

data.frame:

mtcars <- transform(mtcars, mpg2 = mpg^2)

with and within

Both with() and within() let you to evaluate expressions inside the data.frame environment, 

allowing a somewhat cleaner syntax, saving you the use of some $ or [].

For example, if you want to create, change and/or remove multiple columns in the airquality 

data.frame:

aq <- within(airquality, { 
    lOzone <- log(Ozone) # creates new column 
    Month <- factor(month.abb[Month]) # changes Month Column 
    cTemp <- round((Temp - 32) * 5/9, 1) # creates new column 
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    S.cT <- Solar.R / cTemp  # creates new column 
    rm(Day, Temp) # removes columns 
})

Introduction

Data frames are likely the data structure you will used most in your analyses. A data frame is a 

special kind of list that stores same-length vectors of different classes. You create data frames 

using the data.frame function. The example below shows this by combining a numeric and a 

character vector into a data frame. It uses the : operator, which will create a vector containing all 

integers from 1 to 3.

df1 <- data.frame(x = 1:3, y = c("a", "b", "c")) 
df1 
##   x y 
## 1 1 a 
## 2 2 b 
## 3 3 c 
class(df1) 
## [1] "data.frame"

Data frame objects do not print with quotation marks, so the class of the columns is not always 

obvious.

df2 <- data.frame(x = c("1", "2", "3"), y = c("a", "b", "c")) 
df2 
##   x y 
## 1 1 a 
## 2 2 b 
## 3 3 c

Without further investigation, the "x" columns in df1 and df2 cannot be differentiated. The str 

function can be used to describe objects with more detail than class.

str(df1) 
## 'data.frame':    3 obs. of  2 variables: 
##  $ x: int  1 2 3 
##  $ y: Factor w/ 3 levels "a","b","c": 1 2 3 
str(df2) 
## 'data.frame':    3 obs. of  2 variables: 
##  $ x: Factor w/ 3 levels "1","2","3": 1 2 3 
##  $ y: Factor w/ 3 levels "a","b","c": 1 2 3

Here you see that df1 is a data.frame and has 3 observations of 2 variables, "x" and "y." Then you 

are told that "x" has the data type integer (not important for this class, but for our purposes it 

behaves like a numeric) and "y" is a factor with three levels (another data class we are not 

discussing). It is important to note that, by default, data frames coerce characters to factors. 

The default behavior can be changed with the stringsAsFactors parameter:

df3 <- data.frame(x = 1:3, y = c("a", "b", "c"), stringsAsFactors = FALSE) 
str(df3) 
## 'data.frame':    3 obs. of  2 variables: 
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##  $ x: int  1 2 3 
##  $ y: chr  "a" "b" "c"

Now the "y" column is a character. As mentioned above, each "column" of a data frame must have 

the same length. Trying to create a data.frame from vectors with different lengths will result in an 

error. (Try running data.frame(x = 1:3, y = 1:4) to see the resulting error.)

As test-cases for data frames, some data is provided by R by default. One of them is iris, loaded 

as follows:

mydataframe <- iris 
str(mydataframe)

Convert data stored in a list to a single data frame using do.call

If you have your data stored in a list and you want to convert this list to a data frame the do.call 

function is an easy way to achieve this. However, it is important that all list elements have the 

same length in order to prevent unintended recycling of values.

dataList  <- list(1:3,4:6,7:9) 
dataList 
# [[1]] 
# [1] 1 2 3 
# 
# [[2]] 
# [1] 4 5 6 
# 
# [[3]] 
# [1] 7 8 9 
 
dataframe <- data.frame(do.call(rbind, dataList)) 
dataframe 
#   X1 X2 X3 
# 1  1  2  3 
# 2  4  5  6 
# 3  7  8  9 

It also works if your list consists of data frames itself.

dataframeList  <- list(data.frame(a = 1:2, b = 1:2, c = 1:2), 
                       data.frame(a = 3:4, b = 3:4, c = 3:4)) 
dataframeList 
# [[1]] 
#   a b c 
# 1 1 1 1 
# 2 2 2 2 
 
# [[2]] 
#   a b c 
# 1 3 3 3 
# 2 4 4 4 
 
dataframe      <- do.call(rbind, dataframeList) 
dataframe 
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#   a b c 
# 1 1 1 1 
# 2 2 2 2 
# 3 3 3 3 
# 4 4 4 4

Convert all columns of a data.frame to character class

A common task is to convert all columns of a data.frame to character class for ease of 

manipulation, such as in the cases of sending data.frames to a RDBMS or merging data.frames 

containing factors where levels may differ between input data.frames.

The best time to do this is when the data is read in - almost all input methods that create data 

frames have an options stringsAsFactors which can be set to FALSE.

If the data has already been created, factor columns can be converted to character columns as 

shown below.

bob <- data.frame(jobs = c("scientist", "analyst"), 
                  pay  = c(160000, 100000), age = c(30, 25)) 
str(bob)

'data.frame':    2 obs. of  3 variables: 
 $ jobs: Factor w/ 2 levels "analyst","scientist": 2 1 
 $ pay : num  160000 100000 
 $ age : num  30 25

# Convert *all columns* to character 
bob[] <- lapply(bob, as.character) 
str(bob)

    'data.frame':    2 obs. of  3 variables: 
 $ jobs: chr  "scientist" "analyst" 
 $ pay : chr  "160000" "1e+05" 
 $ age : chr  "30" "25"

# Convert only factor columns to character 
bob[] <- lapply(bob, function(x) { 
    if is.factor(x) x <- as.character(x) 
    return(x) 
})

Subsetting Rows by Column Values

Built in functions can subset rows with columns that meet conditions.

df <- data.frame(item = c(1:10), 
                 price_Elasticity = c(-0.57667, 0.03205, -0.04904, 0.10342, 0.04029, 
                                       0.0742, 0.1669, 0.0313, 0.22204, 0.06158), 
                 total_Margin = c(-145062, 98671, 20576, -56382, 207623, 43463, 1235, 
                                   34521, 146553, -74516))
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To find rows with price_Elasticity > 0:

df[df$price_Elasticity > 0, ]

   item price_Elasticity total_Margin 
2     2          0.03205        98671 
4     4          0.10342       -56382 
5     5          0.04029       207623 
6     6          0.07420        43463 
7     7          0.16690         1235 
8     8          0.03130        34521 
9     9          0.22204       146553 
10   10          0.06158       -74516

subset based on price_Elasticity > 0 and total_Margin > 0:

df[df$price_Elasticity > 0 & df$total_Margin > 0, ]

  item price_Elasticity total_Margin 
2    2          0.03205        98671 
5    5          0.04029       207623 
6    6          0.07420        43463 
7    7          0.16690         1235 
8    8          0.03130        34521 
9    9          0.22204       146553

Read Data frames online: https://riptutorial.com/r/topic/438/data-frames
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Chapter 27: data.table

Introduction

Data.table is a package that extends the functionality of data frames from base R, particularly 

improving on their performance and syntax. See the package's Docs area at Getting started with 

data.table for details.

Syntax

DT[i, j, by]
# DT[where, select|update|do, by]

•

DT[...][...]
# chaining

•

################# Shortcuts, special functions and special symbols inside DT[...]•

.()

# in several arguments, replaces list()

•

J()

# in i, replaces list()

•

:=

# in j, a function used to add or modify columns

•

.N

# in i, the total number of rows

# in j, the number of rows in a group

•

.I

# in j, the vector of row numbers in the table (filtered by i)

•

.SD

# in j, the current subset of the data

# selected by the .SDcols argument

•

.GRP

# in j, the current index of the subset of the data

•

.BY

# in j, the list of by values for the current subset of data

•

V1, V2, ...

# default names for unnamed columns created in j

•

################# Joins inside DT[...]•

DT1[DT2, on, j]

# join two tables

•

i.*

# special prefix on DT2's columns after the join

•

by=.EACHI

# special option available only with a join

•

DT1[!DT2, on, j]

# anti-join two tables

•

DT1[DT2, on, roll, j]•
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# join two tables, rolling on the last column in on=
################# Reshaping, stacking and splitting•

melt(DT, id.vars, measure.vars)

# transform to long format

# for multiple columns, use measure.vars = patterns(...)

•

dcast(DT, formula)

# transform to wide format

•

rbind(DT1, DT2, ...)

# stack enumerated data.tables

•

rbindlist(DT_list, idcol)

# stack a list of data.tables

•

split(DT, by)

# split a data.table into a list

•

################# Some other functions specialized for data.tables•

foverlaps

# overlap joins

•

merge

# another way of joining two tables

•

set

# another way of adding or modifying columns

•

fintersect, fsetdiff, funion, fsetequal, unique, duplicated, anyDuplicated

# set-theory operations with rows as elements

•

uniqueN

# the number of distinct rows

•

rowidv(DT, cols)

# row ID (1 to .N) within each group determined by cols

•

rleidv(DT, cols)

# group ID (1 to .GRP) within each group determined by runs of cols

•

shift(DT, n, type=c("lag", "lead"))

# apply a shift operator to every column

•

setorder, setcolorder, setnames, setkey, setindex, setattr

# modify attributes and order by reference

•

Remarks

Installation and support

To install the data.table package:

# install from CRAN 
install.packages("data.table") 
 
# or install development version 
install.packages("data.table", type = "source", repos = 
"http://Rdatatable.github.io/data.table") 
 
# and to revert from devel to CRAN, the current version must first be removed 

https://riptutorial.com/ 151

https://github.com/Rdatatable/data.table/wiki/Installation


remove.packages("data.table") 
install.packages("data.table")

The package's official site has wiki pages providing help getting started, and lists of presentations 

and articles from around the web. Before asking a question -- here on StackOverflow or anywhere 

else -- please read the support page.

Loading the package

Many of the functions in the examples above exist in the data.table namespace. To use them, you 

will need to add a line like library(data.table) first or to use their full path, like data.table::fread 

instead of simply fread. For help on individual functions, the syntax is help("fread") or ?fread. 

Again, if the package is not loaded, use the full name like ?data.table::fread.

Examples

Creating a data.table

A data.table is an enhanced version of the data.frame class from base R. As such, its class() 

attribute is the vector "data.table" "data.frame" and functions that work on a data.frame will also 

work with a data.table. There are many ways to create, load or coerce to a data.table.

Build

Don't forget to install and activate the data.table package

library(data.table)

There is a constructor of the same name:

DT <- data.table( 
  x = letters[1:5], 
  y = 1:5, 
  z = (1:5) > 3 
) 
#    x y     z 
# 1: a 1 FALSE 
# 2: b 2 FALSE 
# 3: c 3 FALSE 
# 4: d 4  TRUE 
# 5: e 5  TRUE

Unlike data.frame, data.table will not coerce strings to factors:

sapply(DT, class) 
#               x           y           z 
#     "character"   "integer"   "logical" 
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Read in

We can read from a text file:

dt <- fread("my_file.csv")

Unlike read.csv, fread will read strings as strings, not as factors.

Modify a data.frame

For efficiency, data.table offers a way of altering a data.frame or list to make a data.table in-place 

(without making a copy or changing its memory location):

# example data.frame 
DF <- data.frame(x = letters[1:5], y = 1:5, z = (1:5) > 3) 
# modification 
setDT(DF)

Note that we do not <- assign the result, since the object DF has been modified in-place. The class 

attributes of the data.frame will be retained:

sapply(DF, class) 
#         x         y         z 
#  "factor" "integer" "logical" 

Coerce object to data.table

If you have a list, data.frame, or data.table, you should use the setDT function to convert to a 

data.table because it does the conversion by reference instead of making a copy (which 

as.data.table does). This is important if you are working with large datasets.

If you have another R object (such as a matrix), you must use as.data.table to coerce it to a 

data.table.

mat <- matrix(0, ncol = 10, nrow = 10) 
 
DT <- as.data.table(mat) 
# or 
DT <- data.table(mat)

Adding and modifying columns

DT[where, select|update|do, by] syntax is used to work with columns of a data.table.

The "where" part is the i argument•
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The "select|update|do" part is the j argument•

These two arguments are usually passed by position instead of by name.

Our example data below is

mtcars = data.table(mtcars, keep.rownames = TRUE)

Editing entire columns

Use the := operator inside j to assign new columns:

mtcars[, mpg_sq := mpg^2]

Remove columns by setting to NULL:

mtcars[, mpg_sq := NULL]

Add multiple columns by using the := operator's multivariate format:

mtcars[, `:=`(mpg_sq = mpg^2, wt_sqrt = sqrt(wt))] 
# or 
mtcars[, c("mpg_sq", "wt_sqrt") := .(mpg^2, sqrt(wt))]

If the columns are dependent and must be defined in sequence, one way is:

mtcars[, c("mpg_sq", "mpg2_hp") := .(temp1 <- mpg^2, temp1/hp)]

The .() syntax is used when the right-hand side of LHS := RHS is a list of columns.

For dynamically-determined column names, use parentheses:

vn = "mpg_sq" 
mtcars[, (vn) := mpg^2]

Columns can also be modified with set, though this is rarely necessary:

set(mtcars, j = "hp_over_wt", v = mtcars$hp/mtcars$wt)

Editing subsets of columns

Use the i argument to subset to rows "where" edits should be made:

mtcars[1:3, newvar := "Hello"] 
# or 
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set(mtcars, j = "newvar", i = 1:3, v = "Hello") 

As in a data.frame, we can subset using row numbers or logical tests. It is also possible to use a 

"join" in i, but that more complicated task is covered in another example.

Editing column attributes

Functions that edit attributes, such as levels<- or names<-, actually replace an object with a 

modified copy. Even if only used on one column in a data.table, the entire object is copied and 

replaced.

To modify an object without copies, use setnames to change the column names of a data.table or 

data.frame and setattr to change an attribute for any object.

# Print a message to the console whenever the data.table is copied 
tracemem(mtcars) 
mtcars[, cyl2 := factor(cyl)] 
 
# Neither of these statements copy the data.table 
setnames(mtcars, old = "cyl2", new = "cyl_fac") 
setattr(mtcars$cyl_fac, "levels", c("four", "six", "eight")) 
 
# Each of these statements copies the data.table 
names(mtcars)[names(mtcars) == "cyl_fac"] <- "cf" 
levels(mtcars$cf) <- c("IV", "VI", "VIII")

Be aware that these changes are made by reference, so they are global. Changing them within 

one environment affects the object in all environments.

# This function also changes the levels in the global environment 
edit_levels <- function(x) setattr(x, "levels", c("low", "med", "high")) 
edit_levels(mtcars$cyl_factor)

Special symbols in data.table

.SD

.SD refers to the subset of the data.table for each group, excluding all columns used in by.

.SD along with lapply can be used to apply any function to multiple columns by group in a 
data.table

We will continue using the same built-in dataset, mtcars:

mtcars = data.table(mtcars) # Let's not include rownames to keep things simpler

Mean of all columns in the dataset by number of cylinders, cyl:
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mtcars[ , lapply(.SD, mean), by = cyl] 
 
#   cyl      mpg     disp        hp     drat       wt     qsec        vs        am     gear 
carb 
#1:   6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143 
3.428571 
#2:   4 26.66364 105.1364  82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909 
1.545455 
#3:   8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714 
3.500000

Apart from cyl, there are other categorical columns in the dataset such as vs, am, gear and carb. It 

doesn't really make sense to take the mean of these columns. So let's exclude these columns. This 

is where .SDcols comes into the picture.

.SDcols

.SDcols specifies the columns of the data.table that are included in .SD.

Mean of all columns (continuous columns) in the dataset by number of gears gear, and number of 

cylinders, cyl, arranged by gear and cyl:

# All the continuous variables in the dataset 
cols_chosen <- c("mpg", "disp", "hp", "drat", "wt", "qsec") 
 
mtcars[order(gear, cyl), lapply(.SD, mean), by = .(gear, cyl), .SDcols = cols_chosen] 
 
#   gear cyl    mpg     disp       hp     drat       wt    qsec 
#1:    3   4 21.500 120.1000  97.0000 3.700000 2.465000 20.0100 
#2:    3   6 19.750 241.5000 107.5000 2.920000 3.337500 19.8300 
#3:    3   8 15.050 357.6167 194.1667 3.120833 4.104083 17.1425 
#4:    4   4 26.925 102.6250  76.0000 4.110000 2.378125 19.6125 
#5:    4   6 19.750 163.8000 116.5000 3.910000 3.093750 17.6700 
#6:    5   4 28.200 107.7000 102.0000 4.100000 1.826500 16.8000 
#7:    5   6 19.700 145.0000 175.0000 3.620000 2.770000 15.5000 
#8:    5   8 15.400 326.0000 299.5000 3.880000 3.370000 14.5500

Maybe we don't want to calculate the mean by groups. To calculate the mean for all the cars in the 

dataset, we don't specify the by variable.

mtcars[ , lapply(.SD, mean), .SDcols = cols_chosen] 
 
#        mpg     disp       hp     drat      wt     qsec 
#1: 20.09062 230.7219 146.6875 3.596563 3.21725 17.84875

Note:

It is not necessary to define cols_chosen beforehand. .SDcols can directly take column names•

.SDcols can also directly take a vector of columnnumbers. In the above example this would 

be mtcars[ , lapply(.SD, mean), .SDcols = c(1,3:7)]

•
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.N

.N is shorthand for the number of rows in a group.

iris[, .(count=.N), by=Species] 
 
#      Species count 
#1:     setosa    50 
#2: versicolor    50 
#3:  virginica    50

Writing code compatible with both data.frame and data.table

Differences in subsetting syntax

A data.table is one of several two-dimensional data structures available in R, besides data.frame, 

matrix and (2D) array. All of these classes use a very similar but not identical syntax for subsetting, 

the A[rows, cols] schema.

Consider the following data stored in a matrix, a data.frame and a data.table:

ma <- matrix(rnorm(12), nrow=4, dimnames=list(letters[1:4], c('X', 'Y', 'Z'))) 
df <- as.data.frame(ma) 
dt <- as.data.table(ma) 
 
ma[2:3]  #---> returns the 2nd and 3rd items, as if 'ma' were a vector (because it is!) 
df[2:3]  #---> returns the 2nd and 3rd columns 
dt[2:3]  #---> returns the 2nd and 3rd rows!

If you want to be sure of what will be returned, it is better to be explicit.

To get specific rows, just add a comma after the range:

ma[2:3, ]  # \ 
df[2:3, ]  #  }---> returns the 2nd and 3rd rows 
dt[2:3, ]  # /

But, if you want to subset columns, some cases are interpreted differently. All three can be subset 

the same way with integer or character indices not stored in a variable.

ma[, 2:3]          #  \ 
df[, 2:3]          #   \ 
dt[, 2:3]          #    }---> returns the 2nd and 3rd columns 
ma[, c("Y", "Z")]  #   / 
df[, c("Y", "Z")]  #  / 
dt[, c("Y", "Z")]  # /

However, they differ for unquoted variable names
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mycols <- 2:3 
ma[, mycols]                # \ 
df[, mycols]                #  }---> returns the 2nd and 3rd columns 
dt[, mycols, with = FALSE]  # / 
 
dt[, mycols]                # ---> Raises an error

In the last case, mycols is evaluated as the name of a column. Because dt cannot find a column 

named mycols, an error is raised.

Note: For versions of the data.table package priorto 1.9.8, this behavior was slightly different. 

Anything in the column index would have been evaluated using dt as an environment. So both 

dt[, 2:3] and dt[, mycols] would return the vector 2:3. No error would be raised for the second 

case, because the variable mycols does exist in the parent environment.

Strategies for maintaining compatibility with 

data.frame and data.table

There are many reasons to write code that is guaranteed to work with data.frame and data.table. 

Maybe you are forced to use data.frame, or you may need to share some code that you don't know 

how will be used. So, there are some main strategies for achieving this, in order of convenience:

Use syntax that behaves the same for both classes.1. 

Use a common function that does the same thing as the shortest syntax.2. 

Force data.table to behave as data.frame (ex.: call the specific method print.data.frame).3. 

Treat them as list, which they ultimately are.4. 

Convert the table to a data.frame before doing anything (bad idea if it is a huge table).5. 

Convert the table to data.table, if dependencies are not a concern.6. 

Subset rows. Its simple, just use the [, ] selector, with the comma:

A[1:10, ] 
A[A$var > 17, ]  # A[var > 17, ] just works for data.table

Subset columns. If you want a single column, use the $ or the [[ ]] selector:

A$var 
colname <- 'var' 
A[[colname]] 
A[[1]]

If you want a uniform way to grab more than one column, it's necessary to appeal a bit:

B <- `[.data.frame`(A, 2:4) 
 
# We can give it a better name 
select <- `[.data.frame` 
B <- select(A, 2:4) 
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C <- select(A, c('foo', 'bar'))

Subset 'indexed' rows. While data.frame has row.names, data.table has its unique key feature. The 

best thing is to avoid row.names entirely and take advantage of the existing optimizations in the 

case of data.table when possible.

B <- A[A$var != 0, ] 
# or... 
B <- with(A, A[var != 0, ])  # data.table will silently index A by var before subsetting 
 
stuff <- c('a', 'c', 'f') 
C <- A[match(stuff, A$name), ]  # really worse than: setkey(A); A[stuff, ]

Get a 1-column table, get a row as a vector. These are easy with what we have seen until now:

B <- select(A, 2)    #---> a table with just the second column 
C <- unlist(A[1, ])  #---> the first row as a vector (coerced if necessary)

Setting keys in data.table

Yes, you need to SETKEY pre 1.9.6

In the past (pre 1.9.6), your data.table was sped up by setting columns as keys to the table, 

particularly for large tables. [See intro vignette page 5 of September 2015 version, where speed of 

search was 544 times better.] You may find older code making use of this setting keys with 

'setkey' or setting a 'key=' column when setting up the table.

library(data.table) 
DT <- data.table( 
  x = letters[1:5], 
  y = 5:1, 
  z = (1:5) > 3 
) 
 
#> DT 
#   x y     z 
#1: a 5 FALSE 
#2: b 4 FALSE 
#3: c 3 FALSE 
#4: d 2  TRUE 
#5: e 1  TRUE

Set your key with the setkey command. You can have a key with multiple columns.

setkey(DT, y)

Check your table's key in tables()

tables() 
 
> tables() 
     NAME NROW NCOL MB COLS  KEY 
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[1,] DT      5    3  1 x,y,z y 
Total: 1MB

Note this will re-sort your data.

#> DT 
#   x y     z 
#1: e 1  TRUE 
#2: d 2  TRUE 
#3: c 3 FALSE 
#4: b 4 FALSE 
#5: a 5 FALSE

Now it is unnecessary

Prior to v1.9.6 you had to have set a key for certain operations especially joining tables. The 

developers of data.table have sped up and introduced a "on=" feature that can replace the 

dependency on keys. See SO answer here for a detailed discussion.

In Jan 2017, the developers have written a vignette around secondary indices which explains the 

"on" syntax and allows for other columns to be identified for fast indexing.

Creating secondary indices?

In a manner similar to key, you can setindex(DT, key.col) or setindexv(DT, "key.col.string"), 

where DT is your data.table. Remove all indices with setindex(DT, NULL).

See your secondary indices with indices(DT).

Why secondary indices?

This does not sort the table (unlike key), but does allow for quick indexing using the "on" syntax. 

Note there can be only one key, but you can use multiple secondary indices, which saves having 

to rekey and resort the table. This will speed up your subsetting when changing the columns you 

want to subset on.

Recall, in example above y was the key for table DT:

DT 
# x y     z 
# 1: e 1  TRUE 
# 2: d 2  TRUE 
# 3: c 3 FALSE 
# 4: b 4 FALSE 
# 5: a 5 FALSE 
 
# Let us set x as index 
setindex(DT, x) 
 
# Use indices to see what has been set 
indices(DT) 
# [1] "x" 
 
# fast subset using index and not keyed column 
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DT["c", on ="x"] 
#x y     z 
#1: c 3 FALSE 
 
# old way would have been rekeying DT from y to x, doing subset and 
# perhaps keying back to y (now we save two sorts) 
# This is a toy example above but would have been more valuable with big data sets

Read data.table online: https://riptutorial.com/r/topic/849/data-table
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Chapter 28: Date and Time

Introduction

R comes with classes for dates, date-times and time differences; see ?Dates, ?DateTimeClasses, 

?difftime and follow the "See Also" section of those docs for further documentation. Related Docs: 

Dates and Date-Time Classes.

Remarks

Classes

POSIXct

A date-time class, POSIXct stores time as seconds since UNIX epoch on 1970-01-01 00:00:00 

UTC. It is the format returned when pulling the current time with Sys.Time().

•

POSIXlt

A date-time class, stores a list of day, month, year, hour, minute, second, and so on. This is 

the format returned by strptime.

•

Date The only date class, stores the date as a floating-point number.•

Selecting a date-time format

POSIXct is the sole option in the tidyverse and world of UNIX. It is faster and takes up less 

memory than POSIXlt.

origin = as.POSIXct("1970-01-01 00:00:00", format ="%Y-%m-%d %H:%M:%S", tz = "UTC") 
 
origin 
## [1] "1970-01-01 UTC" 
 
origin + 47 
## [1] "1970-01-01 00:00:47 UTC" 
 
as.numeric(origin)     # At epoch 
## 0 
 
as.numeric(Sys.time()) # Right now (output as of July 21, 2016 at 11:47:37 EDT) 
## 1469116057 
 
posixlt = as.POSIXlt(Sys.time(), format ="%Y-%m-%d %H:%M:%S", tz = "America/Chicago") 
 
# Conversion to POISXct 
posixct = as.POSIXct(posixlt) 
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posixct 
 
# Accessing components 
posixlt$sec   # Seconds 0-61 
posixlt$min   # Minutes 0-59 
posixlt$hour  # Hour 0-23 
posixlt$mday  # Day of the Month 1-31 
posixlt$mon   # Months after the first of the year 0-11 
posixlt$year  # Years since 1900. 
 
ct = as.POSIXct("2015-05-25") 
lt = as.POSIXlt("2015-05-25") 
 
object.size(ct) 
# 520 bytes 
object.size(lt) 
# 1816 bytes

Specialized packages

anytime•

data.table IDate and ITime•

fasttime•

lubridate•

nanotime•

Examples

Current Date and Time

R is able to access the current date, time and time zone:

Sys.Date()             # Returns date as a Date object 
 
## [1] "2016-07-21" 
 
Sys.time()             # Returns date & time at current locale as a POSIXct object 
 
## [1] "2016-07-21 10:04:39 CDT" 
 
as.numeric(Sys.time()) # Seconds from UNIX Epoch (1970-01-01 00:00:00 UTC) 
 
## [1] 1469113479 
 
Sys.timezone()         # Time zone at current location 
 
## [1] "Australia/Melbourne"

Use OlsonNames() to view the time zone names in Olson/IANA database on the current system:

str(OlsonNames()) 
## chr [1:589] "Africa/Abidjan" "Africa/Accra" "Africa/Addis_Ababa" "Africa/Algiers" 
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"Africa/Asmara" "Africa/Asmera" "Africa/Bamako" ...

Go to the End of the Month

Let's say we want to go to the last day of the month, this function will help on it:

eom <- function(x, p=as.POSIXlt(x)) as.Date(modifyList(p, list(mon=p$mon + 1, mday=0)))

Test:

x <- seq(as.POSIXct("2000-12-10"),as.POSIXct("2001-05-10"),by="months") 
> data.frame(before=x,after=eom(x)) 
      before      after 
1 2000-12-10 2000-12-31 
2 2001-01-10 2001-01-31 
3 2001-02-10 2001-02-28 
4 2001-03-10 2001-03-31 
5 2001-04-10 2001-04-30 
6 2001-05-10 2001-05-31 
> 

Using a date in a string format:

> eom('2000-01-01') 
[1] "2000-01-31"

Go to First Day of the Month

Let's say we want to go to the first day of a given month:

date <- as.Date("2017-01-20") 
 
> as.POSIXlt(cut(date, "month")) 
[1] "2017-01-01 EST"

Move a date a number of months consistently by months

Let's say we want to move a given date a numof months. We can define the following function, that 

uses the mondate package:

moveNumOfMonths <- function(date, num) { 
    as.Date(mondate(date) + num) 
}

It moves consistently the month part of the date and adjusting the day, in case the date refers to 

the last day of the month.

For example:

Back one month:
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> moveNumOfMonths("2017-10-30",-1) 
[1] "2017-09-30"

Back two months:

> moveNumOfMonths("2017-10-30",-2) 
[1] "2017-08-30"

Forward two months:

> moveNumOfMonths("2017-02-28", 2) 
[1] "2017-04-30"

It moves two months from the last day of February, therefore the last day of April.

Let's se how it works for backward and forward operations when it is the last day of the month:

> moveNumOfMonths("2016-11-30", 2) 
[1] "2017-01-31" 
> moveNumOfMonths("2017-01-31", -2) 
[1] "2016-11-30"

Because November has 30 days, we get the same date in the backward operation, but:

> moveNumOfMonths("2017-01-30", -2) 
[1] "2016-11-30" 
> moveNumOfMonths("2016-11-30", 2) 
[1] "2017-01-31"

Because January has 31 days, then moving two months from last day of November will get the 

last day of January.

Read Date and Time online: https://riptutorial.com/r/topic/1157/date-and-time
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Chapter 29: Date-time classes (POSIXct and 

POSIXlt)

Introduction

R includes two date-time classes -- POSIXct and POSIXlt -- see ?DateTimeClasses.

Remarks

Pitfalls

With POSIXct, midnight will display only the date and time zone, though the full time is still stored.

Related topics

Date and Time•

Specialized packages

lubridate•

Examples

Formatting and printing date-time objects

# test date-time object 
options(digits.secs = 3) 
d = as.POSIXct("2016-08-30 14:18:30.58", tz = "UTC") 
 
format(d,"%S")  # 00-61 Second as integer 
## [1] "30" 
 
format(d,"%OS") # 00-60.99… Second as fractional 
## [1] "30.579" 
 
format(d,"%M")  # 00-59 Minute 
## [1] "18" 
 
format(d,"%H")  # 00-23 Hours 
## [1] "14" 
 
format(d,"%I")  # 01-12 Hours 
## [1] "02" 
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format(d,"%p")  # AM/PM Indicator 
## [1] "PM" 
 
format(d,"%z")  # Signed offset 
## [1] "+0000" 
 
format(d,"%Z")  # Time Zone Abbreviation 
## [1] "UTC"

See ?strptime for details on the format strings here, as well as other formats.

Parsing strings into date-time objects

The functions for parsing a string into POSIXct and POSIXlt take similar parameters and return a 

similar-looking result, but there are differences in how that date-time is stored; see "Remarks."

as.POSIXct("11:38",                        # time string 
           format = "%H:%M")               # formatting string 
## [1] "2016-07-21 11:38:00 CDT" 
strptime("11:38",                          # identical, but makes a POSIXlt object 
         format = "%H:%M") 
## [1] "2016-07-21 11:38:00 CDT" 
 
as.POSIXct("11 AM", 
           format = "%I %p") 
## [1] "2016-07-21 11:00:00 CDT"

Note that date and timezone are imputed.

as.POSIXct("11:38:22",                 # time string without timezone 
           format = "%H:%M:%S", 
           tz = "America/New_York")    # set time zone 
## [1] "2016-07-21 11:38:22 EDT" 
 
as.POSIXct("2016-07-21 00:00:00", 
           format = "%F %T")           # shortcut tokens for "%Y-%m-%d" and "%H:%M:%S"

See ?strptime for details on the format strings here.

Notes

Missing elements

If a date element is not supplied, then that from the current date is used.•

If a time element is not supplied, then that from midnight is used, i.e. 0s.•

If no timezone is supplied in either the string or the tz parameter, the local timezone is used.•

Time zones
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The accepted values of tz depend on the location.

CST is given with "CST6CDT" or "America/Chicago"○

•

For supported locations and time zones use:

In R: OlsonNames()○

Alternatively, try in R: system("cat $R_HOME/share/zoneinfo/zone.tab")○

•

These locations are given by Internet Assigned Numbers Authority (IANA)

List of tz database time zones (Wikipedia)○

IANA TZ Data (2016e)○

•

Date-time arithmetic

To add/subtract time, use POSIXct, since it stores times in seconds

## adding/subtracting times - 60 seconds 
as.POSIXct("2016-01-01") + 60 
# [1] "2016-01-01 00:01:00 AEDT" 
 
## adding 3 hours, 14 minutes, 15 seconds 
as.POSIXct("2016-01-01") + ( (3 * 60 * 60) + (14 * 60) + 15) 
# [1] "2016-01-01 03:14:15 AEDT"

More formally, as.difftime can be used to specify time periods to add to a date or datetime object. 

E.g.:

as.POSIXct("2016-01-01")         + 
  as.difftime(3,  units="hours") + 
  as.difftime(14, units="mins")  + 
  as.difftime(15, units="secs") 
# [1] "2016-01-01 03:14:15 AEDT"

To find the difference between dates/times use difftime() for differences in seconds, minutes, 

hours, days or weeks.

# using POSIXct objects 
difftime( 
  as.POSIXct("2016-01-01 12:00:00"), 
  as.POSIXct("2016-01-01 11:59:59"), 
  unit = "secs") 
# Time difference of 1 secs

To generate sequences of date-times use seq.POSIXt() or simply seq.

Read Date-time classes (POSIXct and POSIXlt) online: https://riptutorial.com/r/topic/9027/date-

time-classes--posixct-and-posixlt-
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Chapter 30: Debugging

Examples

Using browser

The browser function can be used like a breakpoint: code execution will pause at the point it is 

called. Then user can then inspect variable values, execute arbitrary R code and step through the 

code line by line.

Once browser() is hit in the code the interactive interpreter will start. Any R code can be run as 

normal, and in addition the following commands are present,

Command Meaning

c Exit browser and continue program

f Finish current loop or function \

n Step Over (evaluate next statement, stepping over function calls)

s Step Into (evaluate next statement, stepping into function calls)

where Print stack trace

r Invoke "resume" restart

Q Exit browser and quit

For example we might have a script like,

toDebug <- function() { 
    a = 1 
    b = 2 
 
    browser() 
 
    for(i in 1:100) { 
        a = a * b 
    } 
} 
 
toDebug()

When running the above script we initially see something like,

Called from: toDebug 
Browser[1]>
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We could then interact with the prompt as so,

Called from: toDebug 
Browser[1]> a 
[1] 1 
Browser[1]> b 
[1] 2 
Browse[1]> n 
debug at #7: for (i in 1:100) { 
    a = a * b 
} 
Browse[2]> n 
debug at #8: a = a * b 
Browse[2]> a 
[1] 1 
Browse[2]> n 
debug at #8: a = a * b 
Browse[2]> a 
[1] 2 
Browse[2]> Q

browser() can also be used as part of a functional chain, like so:

mtcars %>% group_by(cyl) %>% {browser()}

Using debug

You can set any function for debugging with debug.

debug(mean) 
mean(1:3)

All subsequent calls to the function will enter debugging mode. You can disable this behavior with 

undebug.

undebug(mean) 
mean(1:3)

If you know you only want to enter the debugging mode of a function once, consider the use of 

debugonce.

debugonce(mean) 
mean(1:3) 
mean(1:3)

Read Debugging online: https://riptutorial.com/r/topic/1695/debugging
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Chapter 31: Distribution Functions

Introduction

R has many built-in functions to work with probability distributions, with official docs starting at 

?Distributions.

Remarks

There are generally four prefixes:

d-The density function for the given distribution•

p-The cumulative distribution function•

q-Get the quantile associated with the given probability•

r-Get a random sample•

For the distributions built into R's base installation, see ?Distributions.

Examples

Normal distribution

Let's use *norm as an example. From the documentation:

dnorm(x, mean = 0, sd = 1, log = FALSE) 
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) 
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) 
rnorm(n, mean = 0, sd = 1)

So if I wanted to know the value of a standard normal distribution at 0, I would do

dnorm(0)

Which gives us 0.3989423, a reasonable answer.

In the same way pnorm(0) gives .5. Again, this makes sense, because half of the distribution is to 

the left of 0.

qnorm will essentially do the opposite of pnorm. qnorm(.5) gives 0.

Finally, there's the rnorm function:

rnorm(10)

Will generate 10 samples from standard normal.
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If you want to change the parameters of a given distribution, simply change them like so

rnorm(10, mean=4, sd= 3)

Binomial Distribution

We now illustrate the functions dbinom,pbinom,qbinom and rbinom defined for Binomial distribution.

The dbinom() function gives the probabilities for various values of the binomial variable. Minimally it 

requires three arguments. The first argument for this function must be a vector of quantiles(the 

possible values of the random variable X). The second and third arguments are the defining 

parameters of the distribution, namely, n(the number of independent trials) and p(the probability of 

success in each trial). For example, for a binomial distribution with n = 5, p = 0.5, the possible 

values for X are 0,1,2,3,4,5. That is, the dbinom(x,n,p) function gives the probability values P( X = 

x ) for x = 0, 1, 2, 3, 4, 5.

#Binom(n = 5, p = 0.5) probabilities 
> n <- 5; p<- 0.5; x <- 0:n 
> dbinom(x,n,p) 
[1] 0.03125 0.15625 0.31250 0.31250 0.15625 0.03125 
#To verify the total probability is 1 
> sum(dbinom(x,n,p)) 
[1] 1 
> 

The binomial probability distribution plot can be displayed as in the following figure:

> x <- 0:12 
> prob <- dbinom(x,12,.5) 
> barplot(prob,col = "red",ylim = c(0,.2),names.arg=x, 
                           main="Binomial Distribution\n(n=12,p=0.5)")
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Note that the binomial distribution is symmetric when p = 0.5. To demonstrate that the binomial 

distribution is negatively skewed when p is larger than 0.5, consider the following example:

> n=9; p=.7; x=0:n; prob=dbinom(x,n,p); 
> barplot(prob,names.arg = x,main="Binomial Distribution\n(n=9, p=0.7)",col="lightblue")

When p is smaller than 0.5 the binomial distribution is positively skewed as shown below.

> n=9; p=.3; x=0:n; prob=dbinom(x,n,p); 
> barplot(prob,names.arg = x,main="Binomial Distribution\n(n=9, p=0.3)",col="cyan")
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We will now illustrate the usage of the cumulative distribution function pbinom(). This function can 

be used to calculate probabilities such as P( X <= x ). The first argument to this function is a 

vector of quantiles(values of x).

# Calculating Probabilities 
# P(X <= 2) in a Bin(n=5,p=0.5) distribution 
> pbinom(2,5,0.5) 
[1] 0.5

The above probability can also be obtained as follows:

# P(X <= 2) = P(X=0) + P(X=1) + P(X=2) 
> sum(dbinom(0:2,5,0.5)) 
[1] 0.5

To compute, probabilities of the type: P( a <= X <= b )

# P(3<= X <= 5) = P(X=3) + P(X=4) + P(X=5) in a Bin(n=9,p=0.6) dist 
> sum(dbinom(c(3,4,5),9,0.6)) 
[1] 0.4923556 
> 

Presenting the binomial distribution in the form of a table:

> n = 10; p = 0.4; x = 0:n; 
> prob = dbinom(x,n,p) 
> cdf = pbinom(x,n,p) 
> distTable = cbind(x,prob,cdf) 
> distTable 
       x         prob         cdf 
 [1,]  0 0.0060466176 0.006046618 
 [2,]  1 0.0403107840 0.046357402 
 [3,]  2 0.1209323520 0.167289754 
 [4,]  3 0.2149908480 0.382280602 
 [5,]  4 0.2508226560 0.633103258 
 [6,]  5 0.2006581248 0.833761382 
 [7,]  6 0.1114767360 0.945238118 
 [8,]  7 0.0424673280 0.987705446 
 [9,]  8 0.0106168320 0.998322278 
[10,]  9 0.0015728640 0.999895142 
[11,] 10 0.0001048576 1.000000000 
> 

The rbinom() is used to generate random samples of specified sizes with a given parameter 

values.

# Simulation 
> xVal<-names(table(rbinom(1000,8,.5))) 
> barplot(as.vector(table(rbinom(1000,8,.5))),names.arg =xVal, 
                    main="Simulated Binomial Distribution\n (n=8,p=0.5)")
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Read Distribution Functions online: https://riptutorial.com/r/topic/1885/distribution-functions
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Chapter 32: dplyr

Remarks

dplyr is an iteration of plyr that provides a flexible "verb" based functions to manipulate data in R. 

The latest version of dplyr can be downloaded from CRAN using

install.package("dplyr")

The key object in dplyr is a tbl, a representation of a tabular data structure. Currently dplyr (version 

0.5.0) supports:

data frames•

data tables•

SQLite•

PostgreSQL/Redshift•

MySQL/MariaDB•

Bigquery•

MonetDB•

data cubes with arrays (partial implementation)•

Examples

dplyr's single table verbs

dplyr introduces a grammar of data manipulation in R. It provides a consistent interface to work 

with data no matter where it is stored: data.frame, data.table, or a database. The key pieces of 

dplyr are written using Rcpp, which makes it very fast for working with in-memory data.

dplyr's philosophy is to have small functions that do one thing well. The five simple functions (

filter, arrange, select, mutate, and summarise) can be used to reveal new ways to describe data. 

When combined with group_by, these functions can be used to calculate group wise summary 

statistics.

Syntax commonalities

All these functions have a similar syntax:

The first argument to all these functions is always a data frame•

Columns can be referred directly using bare variable names (i.e., without using $)•

These functions do not modify the original data itself, i.e., they don't have side effects. 

Hence, the results should always be saved to an object.

•

We will use the built-in mtcars dataset to explore dplyr's single table verbs. Before converting the 

type of mtcars to tbl_df (since it makes printing cleaner), we add the rownames of the dataset as a 
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column using rownames_to_column function from the tibble package.

library(dplyr) # This documentation was written using version 0.5.0 
 
mtcars_tbl <- as_data_frame(tibble::rownames_to_column(mtcars, "cars")) 
 
# examine the structure of data 
head(mtcars_tbl) 
 
# A tibble: 6 x 12 
#               cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
#              <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
#1         Mazda RX4  21.0     6   160   110  3.90 2.620 16.46     0     1     4     4 
#2     Mazda RX4 Wag  21.0     6   160   110  3.90 2.875 17.02     0     1     4     4 
#3        Datsun 710  22.8     4   108    93  3.85 2.320 18.61     1     1     4     1 
#4    Hornet 4 Drive  21.4     6   258   110  3.08 3.215 19.44     1     0     3     1 
#5 Hornet Sportabout  18.7     8   360   175  3.15 3.440 17.02     0     0     3     2 
#6           Valiant  18.1     6   225   105  2.76 3.460 20.22     1     0     3     1

filter

filter helps subset rows that match certain criteria. The first argument is the name of the 

data.frame and the second (and subsequent) arguments are the criteria that filter the data (these 

criteria should evaluate to either TRUE or FALSE)

Subset all cars that have 4 cylinders - cyl:

filter(mtcars_tbl, cyl == 4) 
 
# A tibble: 11 x 12 
#             cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
#            <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
#1      Datsun 710  22.8     4 108.0    93  3.85 2.320 18.61     1     1     4     1 
#2       Merc 240D  24.4     4 146.7    62  3.69 3.190 20.00     1     0     4     2 
#3        Merc 230  22.8     4 140.8    95  3.92 3.150 22.90     1     0     4     2 
#4        Fiat 128  32.4     4  78.7    66  4.08 2.200 19.47     1     1     4     1 
#5     Honda Civic  30.4     4  75.7    52  4.93 1.615 18.52     1     1     4     2 
# ... with 6 more rows

We can pass multiple criteria separated by a comma. To subset the cars which have either 4 or 6 

cylinders - cyl and have 5 gears - gear:

filter(mtcars_tbl, cyl == 4 | cyl == 6, gear == 5) 
 
# A tibble: 3 x 12 
#           cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
#          <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
#1 Porsche 914-2  26.0     4 120.3    91  4.43 2.140  16.7     0     1     5     2 
#2  Lotus Europa  30.4     4  95.1   113  3.77 1.513  16.9     1     1     5     2 
#3  Ferrari Dino  19.7     6 145.0   175  3.62 2.770  15.5     0     1     5     6

filter selects rows based on criteria, to select rows by position, use slice. slice takes only 2 

arguments: the first one is a data.frame and the second is integer row values.
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To select rows 6 through 9:

slice(mtcars_tbl, 6:9) 
 
# A tibble: 4 x 12 
#        cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
#       <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
#1    Valiant  18.1     6 225.0   105  2.76  3.46 20.22     1     0     3     1 
#2 Duster 360  14.3     8 360.0   245  3.21  3.57 15.84     0     0     3     4 
#3  Merc 240D  24.4     4 146.7    62  3.69  3.19 20.00     1     0     4     2 
#4   Merc 230  22.8     4 140.8    95  3.92  3.15 22.90     1     0     4     2

Or:

slice(mtcars_tbl, -c(1:5, 10:n())) 

This results in the same output as slice(mtcars_tbl, 6:9)

n() represents the number of observations in the current group

arrange

arrange is used to sort the data by a specified variable(s). Just like the previous verb (and all other 

functions in dplyr), the first argument is a data.frame, and consequent arguments are used to sort 

the data. If more than one variable is passed, the data is first sorted by the first variable, and then 

by the second variable, and so on..

To order the data by horsepower - hp

arrange(mtcars_tbl, hp) 
 
# A tibble: 32 x 12 
#             cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
#            <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
#1     Honda Civic  30.4     4  75.7    52  4.93 1.615 18.52     1     1     4     2 
#2       Merc 240D  24.4     4 146.7    62  3.69 3.190 20.00     1     0     4     2 
#3  Toyota Corolla  33.9     4  71.1    65  4.22 1.835 19.90     1     1     4     1 
#4        Fiat 128  32.4     4  78.7    66  4.08 2.200 19.47     1     1     4     1 
#5       Fiat X1-9  27.3     4  79.0    66  4.08 1.935 18.90     1     1     4     1 
#6   Porsche 914-2  26.0     4 120.3    91  4.43 2.140 16.70     0     1     5     2 
# ... with 26 more rows

To arrange the data by miles per gallon - mpg in descending order, followed by number of cylinders - 

cyl:

arrange(mtcars_tbl, desc(mpg), cyl) 
 
# A tibble: 32 x 12 
#             cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
#            <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
#1  Toyota Corolla  33.9     4  71.1    65  4.22 1.835 19.90     1     1     4     1 
#2        Fiat 128  32.4     4  78.7    66  4.08 2.200 19.47     1     1     4     1 
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#3     Honda Civic  30.4     4  75.7    52  4.93 1.615 18.52     1     1     4     2 
#4    Lotus Europa  30.4     4  95.1   113  3.77 1.513 16.90     1     1     5     2 
#5       Fiat X1-9  27.3     4  79.0    66  4.08 1.935 18.90     1     1     4     1 
#6   Porsche 914-2  26.0     4 120.3    91  4.43 2.140 16.70     0     1     5     2 
# ... with 26 more rows

select

select is used to select only a subset of variables. To select only mpg, disp, wt, qsec, and vs from 

mtcars_tbl:

select(mtcars_tbl, mpg, disp, wt, qsec, vs) 
 
# A tibble: 32 x 5 
#     mpg  disp    wt  qsec    vs 
#   <dbl> <dbl> <dbl> <dbl> <dbl> 
#1   21.0 160.0 2.620 16.46     0 
#2   21.0 160.0 2.875 17.02     0 
#3   22.8 108.0 2.320 18.61     1 
#4   21.4 258.0 3.215 19.44     1 
#5   18.7 360.0 3.440 17.02     0 
#6   18.1 225.0 3.460 20.22     1 
# ... with 26 more rows

: notation can be used to select consecutive columns. To select columns from cars through disp 

and vs through carb:

select(mtcars_tbl, cars:disp, vs:carb) 
 
# A tibble: 32 x 8 
#                cars   mpg   cyl  disp    vs    am  gear  carb 
#               <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
#1          Mazda RX4  21.0     6 160.0     0     1     4     4 
#2      Mazda RX4 Wag  21.0     6 160.0     0     1     4     4 
#3         Datsun 710  22.8     4 108.0     1     1     4     1 
#4     Hornet 4 Drive  21.4     6 258.0     1     0     3     1 
#5  Hornet Sportabout  18.7     8 360.0     0     0     3     2 
#6            Valiant  18.1     6 225.0     1     0     3     1 
# ... with 26 more rows

or select(mtcars_tbl, -(hp:qsec))

For datasets that contain several columns, it can be tedious to select several columns by name. 

To make life easier, there are a number of helper functions (such as starts_with(), ends_with(), 

contains(), matches(), num_range(), one_of(), and everything()) that can be used in select. To learn 

more about how to use them, see ?select_helpers and ?select.

Note: While referring to columns directly in select(), we use bare column names, but quotes 

should be used while referring to columns in helper functions.

To rename columns while selecting:
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select(mtcars_tbl, cylinders = cyl, displacement = disp) 
 
# A tibble: 32 x 2 
#   cylinders displacement 
#       <dbl>        <dbl> 
#1          6        160.0 
#2          6        160.0 
#3          4        108.0 
#4          6        258.0 
#5          8        360.0 
#6          6        225.0 
# ... with 26 more rows

As expected, this drops all other variables.

To rename columns without dropping other variables, use rename:

rename(mtcars_tbl, cylinders = cyl, displacement = disp) 
 
# A tibble: 32 x 12 
#                cars   mpg cylinders displacement    hp  drat    wt  qsec    vs 
#               <chr> <dbl>     <dbl>        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
#1          Mazda RX4  21.0         6        160.0   110  3.90 2.620 16.46     0 
#2      Mazda RX4 Wag  21.0         6        160.0   110  3.90 2.875 17.02     0 
#3         Datsun 710  22.8         4        108.0    93  3.85 2.320 18.61     1 
#4     Hornet 4 Drive  21.4         6        258.0   110  3.08 3.215 19.44     1 
#5  Hornet Sportabout  18.7         8        360.0   175  3.15 3.440 17.02     0 
#6            Valiant  18.1         6        225.0   105  2.76 3.460 20.22     1 
# ... with 26 more rows, and 3 more variables: am <dbl>, gear <dbl>, carb <dbl>

mutate

mutate can be used to add new columns to the data. Like all other functions in dplyr, mutate 

doesn't add the newly created columns to the original data. Columns are added at the end of the 

data.frame.

mutate(mtcars_tbl, weight_ton = wt/2, weight_pounds = weight_ton * 2000) 
 
# A tibble: 32 x 14 
#                cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
weight_ton weight_pounds 
#               <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
<dbl>         <dbl> 
#1          Mazda RX4  21.0     6 160.0   110  3.90 2.620 16.46     0     1     4     4 
1.3100          2620 
#2      Mazda RX4 Wag  21.0     6 160.0   110  3.90 2.875 17.02     0     1     4     4 
1.4375          2875 
#3         Datsun 710  22.8     4 108.0    93  3.85 2.320 18.61     1     1     4     1 
1.1600          2320 
#4     Hornet 4 Drive  21.4     6 258.0   110  3.08 3.215 19.44     1     0     3     1 
1.6075          3215 
#5  Hornet Sportabout  18.7     8 360.0   175  3.15 3.440 17.02     0     0     3     2 
1.7200          3440 
#6            Valiant  18.1     6 225.0   105  2.76 3.460 20.22     1     0     3     1 
1.7300          3460 
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# ... with 26 more rows

Note the use of weight_ton while creating weight_pounds. Unlike base R, mutate allows us to refer to 

columns that we just created to be used for a subsequent operation.

To retain only the newly created columns, use transmute instead of mutate:

transmute(mtcars_tbl, weight_ton = wt/2, weight_pounds = weight_ton * 2000) 
 
# A tibble: 32 x 2 
#   weight_ton weight_pounds 
#        <dbl>         <dbl> 
#1      1.3100          2620 
#2      1.4375          2875 
#3      1.1600          2320 
#4      1.6075          3215 
#5      1.7200          3440 
#6      1.7300          3460 
# ... with 26 more rows

summarise

summarise calculates summary statistics of variables by collapsing multiple values to a single value. 

It can calculate multiple statistics and we can name these summary columns in the same 

statement.

To calculate the mean and standard deviation of mpg and disp of all cars in the dataset:

summarise(mtcars_tbl, mean_mpg = mean(mpg), sd_mpg = sd(mpg), 
          mean_disp = mean(disp), sd_disp = sd(disp)) 
 
# A tibble: 1 x 4 
#  mean_mpg   sd_mpg mean_disp  sd_disp 
#     <dbl>    <dbl>     <dbl>    <dbl> 
#1 20.09062 6.026948  230.7219 123.9387

group_by

group_by can be used to perform group wise operations on data. When the verbs defined above 

are applied on this grouped data, they are automatically applied to each group separately.

To find mean and sd of mpg by cyl:

by_cyl <- group_by(mtcars_tbl, cyl) 
summarise(by_cyl, mean_mpg = mean(mpg), sd_mpg = sd(mpg)) 
 
 
# A tibble: 3 x 3 
#    cyl mean_mpg   sd_mpg 
#  <dbl>    <dbl>    <dbl> 
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#1     4 26.66364 4.509828 
#2     6 19.74286 1.453567 
#3     8 15.10000 2.560048

Putting it all togther

We select columns from cars through hp and gear, order the rows by cyl and from highest to lowest 

mpg, group the data by gear, and finally subset only those cars have mpg > 20 and hp > 75

selected <- select(mtcars_tbl, cars:hp, gear) 
ordered <- arrange(selected, cyl, desc(mpg)) 
by_cyl <- group_by(ordered, gear) 
filter(by_cyl, mpg > 20, hp > 75) 
 
Source: local data frame [9 x 6] 
Groups: gear [3] 
 
#            cars   mpg   cyl  disp    hp  gear 
#           <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 
#1   Lotus Europa  30.4     4  95.1   113     5 
#2  Porsche 914-2  26.0     4 120.3    91     5 
#3     Datsun 710  22.8     4 108.0    93     4 
#4       Merc 230  22.8     4 140.8    95     4 
#5  Toyota Corona  21.5     4 120.1    97     3 
# ... with 4 more rows

Maybe we are not interested the intermediate results, we can achieve the same result as above by 

wrapping the function calls:

filter( 
    group_by( 
        arrange( 
            select( 
                mtcars_tbl, cars:hp 
            ), cyl, desc(mpg) 
        ), cyl 
    ),mpg > 20, hp > 75 
)

This can be a little difficult to read. So, dplyr operations can be chained using the pipe %>% 

operator. The above code transalates to:

mtcars_tbl %>% 
    select(cars:hp) %>% 
    arrange(cyl, desc(mpg)) %>% 
    group_by(cyl) %>% 
    filter(mpg > 20, hp > 75) 

summarise multiple columns

dplyr provides summarise_all() to apply functions to all (non-grouping) columns.
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To find the number of distinct values for each column:

mtcars_tbl %>% 
    summarise_all(n_distinct) 
 
# A tibble: 1 x 12 
#   cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
#  <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> 
#1    32    25     3    27    22    22    29    30     2     2     3     6

To find the number of distinct values for each column by cyl:

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_all(n_distinct) 
 
# A tibble: 3 x 12 
#    cyl  cars   mpg  disp    hp  drat    wt  qsec    vs    am  gear  carb 
#  <dbl> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> 
#1     4    11     9    11    10    10    11    11     2     2     3     2 
#2     6     7     6     5     4     5     6     7     2     2     3     3 
#3     8    14    12    11     9    11    13    14     1     2     2     4

Note that we just had to add the group_by statement and the rest of the code is the same. The 

output now consists of three rows - one for each unique value of cyl.

To summarise specific multiple columns, use summarise_at

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_at(c("mpg", "disp", "hp"), mean) 
 
# A tibble: 3 x 4 
#    cyl      mpg     disp        hp 
#  <dbl>    <dbl>    <dbl>     <dbl> 
#1     4 26.66364 105.1364  82.63636 
#2     6 19.74286 183.3143 122.28571 
#3     8 15.10000 353.1000 209.21429

helper functions (?select_helpers) can be used in place of column names to select specific 

columns

To apply multiple functions, either pass the function names as a character vector:

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_at(c("mpg", "disp", "hp"), 
                 c("mean", "sd"))

or wrap them inside funs:

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_at(c("mpg", "disp", "hp"), 
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                 funs(mean, sd)) 
 
# A tibble: 3 x 7 
#    cyl mpg_mean disp_mean   hp_mean   mpg_sd  disp_sd    hp_sd 
#  <dbl>    <dbl>     <dbl>     <dbl>    <dbl>    <dbl>    <dbl> 
#1     4 26.66364  105.1364  82.63636 4.509828 26.87159 20.93453 
#2     6 19.74286  183.3143 122.28571 1.453567 41.56246 24.26049 
#3     8 15.10000  353.1000 209.21429 2.560048 67.77132 50.97689

Column names are now be appended with function names to keep them distinct. In order to 

change this, pass the name to be appended with the function:

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_at(c("mpg", "disp", "hp"), 
                 c(Mean = "mean", SD = "sd")) 
 
mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_at(c("mpg", "disp", "hp"), 
                 funs(Mean = mean, SD = sd)) 
 
 
# A tibble: 3 x 7 
#    cyl mpg_Mean disp_Mean   hp_Mean   mpg_SD  disp_SD    hp_SD 
#  <dbl>    <dbl>     <dbl>     <dbl>    <dbl>    <dbl>    <dbl> 
#1     4 26.66364  105.1364  82.63636 4.509828 26.87159 20.93453 
#2     6 19.74286  183.3143 122.28571 1.453567 41.56246 24.26049 
#3     8 15.10000  353.1000 209.21429 2.560048 67.77132 50.97689

To select columns conditionally, use summarise_if:

Take the mean of all columns that are numeric grouped by cyl:

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_if(is.numeric, mean) 
 
# A tibble: 3 x 11 
#    cyl      mpg     disp        hp     drat       wt     qsec 
#  <dbl>    <dbl>    <dbl>     <dbl>    <dbl>    <dbl>    <dbl> 
#1     4 26.66364 105.1364  82.63636 4.070909 2.285727 19.13727 
#2     6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 
#3     8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 
# ... with 4 more variables: vs <dbl>, am <dbl>, gear <dbl>, 
#   carb <dbl>

However, some variables are discrete, and mean of these variables doesn't make sense.

To take the mean of only continuous variables by cyl:

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_if(function(x) is.numeric(x) & n_distinct(x) > 6, mean) 
 
# A tibble: 3 x 7 
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#    cyl      mpg     disp        hp     drat       wt     qsec 
#  <dbl>    <dbl>    <dbl>     <dbl>    <dbl>    <dbl>    <dbl> 
#1     4 26.66364 105.1364  82.63636 4.070909 2.285727 19.13727 
#2     6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 
#3     8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214

Subset Observation (Rows)

dplyr::filter() - Select a subset of rows in a data frame that meet 

a logical criteria:

dplyr::filter(iris,Sepal.Length>7) 
#       Sepal.Length Sepal.Width Petal.Length Petal.Width   Species 
#    1           7.1         3.0          5.9         2.1 virginica 
#    2           7.6         3.0          6.6         2.1 virginica 
#    3           7.3         2.9          6.3         1.8 virginica 
#    4           7.2         3.6          6.1         2.5 virginica 
#    5           7.7         3.8          6.7         2.2 virginica 
#    6           7.7         2.6          6.9         2.3 virginica 
#    7           7.7         2.8          6.7         2.0 virginica 
#    8           7.2         3.2          6.0         1.8 virginica 
#    9           7.2         3.0          5.8         1.6 virginica 
#    10          7.4         2.8          6.1         1.9 virginica 
#    11          7.9         3.8          6.4         2.0 virginica 
#    12          7.7         3.0          6.1         2.3 virginica

dplyr::distinct() - Remove duplicate rows:

distinct(iris, Sepal.Length, .keep_all = TRUE) 
#       Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 
#    1           5.1         3.5          1.4         0.2     setosa 
#    2           4.9         3.0          1.4         0.2     setosa 
#    3           4.7         3.2          1.3         0.2     setosa 
#    4           4.6         3.1          1.5         0.2     setosa 
#    5           5.0         3.6          1.4         0.2     setosa 
#    6           5.4         3.9          1.7         0.4     setosa 
#    7           4.4         2.9          1.4         0.2     setosa 
#    8           4.8         3.4          1.6         0.2     setosa 
#    9           4.3         3.0          1.1         0.1     setosa 
#   10          5.8         4.0          1.2         0.2     setosa 
#   11          5.7         4.4          1.5         0.4     setosa 
#   12          5.2         3.5          1.5         0.2     setosa 
#   13          5.5         4.2          1.4         0.2     setosa 
#   14          4.5         2.3          1.3         0.3     setosa 
#   15          5.3         3.7          1.5         0.2     setosa 
#   16          7.0         3.2          4.7         1.4 versicolor 
#   17          6.4         3.2          4.5         1.5 versicolor 
#   18          6.9         3.1          4.9         1.5 versicolor 
#   19          6.5         2.8          4.6         1.5 versicolor 
#   20          6.3         3.3          4.7         1.6 versicolor 
#   21          6.6         2.9          4.6         1.3 versicolor 
#   22          5.9         3.0          4.2         1.5 versicolor 
#   23          6.0         2.2          4.0         1.0 versicolor 
#   24          6.1         2.9          4.7         1.4 versicolor 
#   25          5.6         2.9          3.6         1.3 versicolor 
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#   26          6.7         3.1          4.4         1.4 versicolor 
#   27          6.2         2.2          4.5         1.5 versicolor 
#   28          6.8         2.8          4.8         1.4 versicolor 
#   29          7.1         3.0          5.9         2.1  virginica 
#   30          7.6         3.0          6.6         2.1  virginica 
#   31          7.3         2.9          6.3         1.8  virginica 
#   32          7.2         3.6          6.1         2.5  virginica 
#   33          7.7         3.8          6.7         2.2  virginica 
#   34          7.4         2.8          6.1         1.9  virginica 
#   35          7.9         3.8          6.4         2.0  virginica

Aggregating with %>% (pipe) operator

The pipe (%>%) operator could be used in combination with dplyr functions. In this example we 

use the mtcars dataset (see help("mtcars") for more information) to show how to sumarize a data 

frame, and to add variables to the data with the result of the application of a function.

library(dplyr) 
library(magrittr) 
df <- mtcars 
df$cars <- rownames(df) #just add the cars names to the df 
df <- df[,c(ncol(df),1:(ncol(df)-1))] # and place the names in the first column

1. Sumarize the data

To compute statistics we use summarize and the appropriate functions. In this case n() is used for 

counting the number of cases.

 df %>% 
  summarize(count=n(),mean_mpg = mean(mpg, na.rm = TRUE), 
            min_weight = min(wt),max_weight = max(wt)) 
 
#  count mean_mpg min_weight max_weight 
#1    32 20.09062      1.513      5.424

2. Compute statistics by group

It is possible to compute the statistics by groups of the data. In this case by Number of cylinders 

and Number of forward gears

df %>% 
  group_by(cyl, gear) %>% 
  summarize(count=n(),mean_mpg = mean(mpg, na.rm = TRUE), 
            min_weight = min(wt),max_weight = max(wt)) 
 
# Source: local data frame [8 x 6] 
# Groups: cyl [?] 
# 
#    cyl  gear count mean_mpg min_weight max_weight 
#  <dbl> <dbl> <int>    <dbl>      <dbl>      <dbl> 
#1     4     3     1   21.500      2.465      2.465 
#2     4     4     8   26.925      1.615      3.190 
#3     4     5     2   28.200      1.513      2.140 
#4     6     3     2   19.750      3.215      3.460 
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#5     6     4     4   19.750      2.620      3.440 
#6     6     5     1   19.700      2.770      2.770 
#7     8     3    12   15.050      3.435      5.424 
#8     8     5     2   15.400      3.170      3.570

Examples of NSE and string variables in dpylr

dplyr uses Non-Standard Evaluation(NSE), which is why we normally can use the variable names 

without quotes. However, sometimes during the data pipeline, we need to get our variable names 

from other sources such as a Shiny selection box. In case of functions like select, we can just use 

select_ to use a string variable to select

variable1 <- "Sepal.Length" 
variable2 <- "Sepal.Width" 
iris %>% 
select_(variable1, variable2) %>% 
head(n=5) 
#  Sepal.Length Sepal.Width 
#  1          5.1         3.5 
#  2          4.9         3.0 
#  3          4.7         3.2 
#  4          4.6         3.1 
#  5          5.0         3.6

But if we want to use other features such as summarize or filter we need to use interp function 

from lazyeval package

variable1 <- "Sepal.Length" 
variable2 <- "Sepal.Width" 
variable3 <- "Species" 
iris %>% 
select_(variable1, variable2, variable3) %>% 
group_by_(variable3) %>% 
summarize_(mean1 = lazyeval::interp(~mean(var), var = as.name(variable1)), mean2 = 
lazyeval::interp(~mean(var), var = as.name(variable2))) 
#      Species mean1 mean2 
#       <fctr> <dbl> <dbl> 
# 1     setosa 5.006 3.428 
# 2 versicolor 5.936 2.770 
# 3  virginica 6.588 2.974

Read dplyr online: https://riptutorial.com/r/topic/4250/dplyr
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Chapter 33: Expression: parse + eval

Remarks

The function parse convert text and files into expressions.

The function eval evaluate expressions.

Examples

Execute code in string format

In this exemple, we want to execute code which is stored in a string format.

# the string 
str <- "1+1" 
 
# A string is not an expression. 
is.expression(str) 
[1] FALSE 
 
eval(str) 
[1] "1+1" 
 
# parse convert string into expressions 
parsed.str <- parse(text="1+1") 
 
is.expression(parsed.str) 
[1] TRUE 
 
eval(parsed.str) 
[1] 2

Read Expression: parse + eval online: https://riptutorial.com/r/topic/5746/expression--parse-plus-

eval
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Chapter 34: Extracting and Listing Files in 

Compressed Archives

Examples

Extracting files from a .zip archive

Unzipping a zip archive is done with unzip function from the utils package (which is included in 

base R).

unzip(zipfile = "bar.zip", exdir = "./foo")

This will extract all files in "bar.zip" to the "foo" directory, which will be created if necessary. Tilde 

expansion is done automatically from your working directory. Alternatively, you can pass the whole 

path name to the zipfile.

Listing files in a .zip archive

Listing files in a zip archive is done with unzip function from the utils package (which is included in 

base R).

unzip(zipfile = "bar.zip", list = TRUE)

This will list all files in "bar.zip" and extract none. Tilde expansion is done automatically from your 

working directory. Alternatively, you can pass the whole path name to the zipfile.

Listing files in a .tar archive

Listing files in a tar archive is done with untar function from the utils package (which is included in 

base R).

untar(zipfile = "bar.tar", list = TRUE)

This will list all files in "bar.tar" and extract none. Tilde expansion is done automatically from your 

working directory. Alternatively, you can pass the whole path name to the tarfile.

Extracting files from a .tar archive

Extracting files from a tar archive is done with untar function from the utils package (which is 

included in base R).

untar(tarfile = "bar.tar", exdir = "./foo")

This will extract all files in "bar.tar" to the "foo" directory, which will be created if necessary. Tilde 
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expansion is done automatically from your working directory. Alternatively, you can pass the whole 

path name to the tarfile.

Extract all .zip archives in a directory

With a simple for loop, all zip archives in a directory can be extracted.

for (i in dir(pattern=".zip$")) 
    unzip(i)

The dir function produces a character vector of the names of the files in a directory matching the 

regex pattern specified by pattern. This vector is looped through with index i, using the unzip 

function to extract each zip archive.

Read Extracting and Listing Files in Compressed Archives online: 

https://riptutorial.com/r/topic/4323/extracting-and-listing-files-in-compressed-archives
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Chapter 35: Factors

Syntax

factor(x = character(), levels, labels = levels, exclude = NA, ordered = is.ordered(x), nmax = 

NA)

1. 

Run ?factor or see the documentation online.2. 

Remarks

An object with class factor is a vector with a particular set of characteristics.

It is stored internally as an integer vector.1. 

It maintains a levels attribute the shows the character representation of the values.2. 

Its class is stored as factor3. 

To illustrate, let us generate a vector of 1,000 observations from a set of colors.

set.seed(1) 
Color <- sample(x = c("Red", "Blue", "Green", "Yellow"), 
                size = 1000, 
                replace = TRUE) 
Color <- factor(Color)

We can observe each of the characteristics of Color listed above:

#* 1. It is stored internally as an `integer` vector 
typeof(Color)

[1] "integer"

#* 2. It maintains a `levels` attribute the shows the character representation of the values. 
#* 3. Its class is stored as `factor` 
attributes(Color)

$levels 
[1] "Blue"   "Green"  "Red"    "Yellow" 
 
$class 
[1] "factor"

The primary advantage of a factor object is efficiency in data storage. An integer requires less 

memory to store than a character. Such efficiency was highly desirable when many computers had 

much more limited resources than current machines (for a more detailed history of the motivations 

behind using factors, see stringsAsFactors: an Unauthorized Biography). The difference in memory 

use can be seen even in our Color object. As you can see, storing Color as a character requires 

about 1.7 times as much memory as the factor object.
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#* Amount of memory required to store Color as a factor. 
object.size(Color)

4624 bytes

#* Amount of memory required to store Color as a character 
object.size(as.character(Color))

8232 bytes

Mapping the integer to the level

While the internal computation of factors sees the object as an integer, the desired representation 

for human consumption is the character level. For example,

head(Color)

[1] Blue   Blue   Green  Yellow Red    Yellow 
Levels: Blue Green Red Yellow

is a easier for human comprehension than

head(as.numeric(Color))

[1] 1 1 2 4 3 4

An approximate illustration of how R goes about matching the character representation to the 

internal integer value is:

head(levels(Color)[as.numeric(Color)])

[1] "Blue"   "Blue"   "Green"  "Yellow" "Red"    "Yellow"

Compare these results to

head(Color)

[1] Blue   Blue   Green  Yellow Red    Yellow 
Levels: Blue Green Red Yellow

Modern use of factors

In 2007, R introduced a hashing method for characters the reduced the memory burden of 
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character vectors (ref: stringsAsFactors: an Unauthorized Biography). Take note that when we 

determined that characters require 1.7 times more storage space than factors, that was calculated 

in a recent version of R, meaning that the memory use of character vectors was even more taxing 

before 2007.

Owing to the hashing method in modern R and to far greater memory resources in modern 

computers, the issue of memory efficiency in storing character values has been reduced to a very 

small concern. The prevailing attitude in the R Community is a preference for character vectors 

over factors in most situations. The primary causes for the shift away from factors are

The increase of unstructured and/or loosely controlled character data1. 

The tendency of factors to not behave as desired when the user forgets she is dealing with a 

factor and not a character

2. 

In the first case, it makes no sense to store free text or open response fields as factors, as there 

will unlikely be any pattern that allows for more than one observation per level. Alternatively, if the 

data structure is not carefully controlled, it is possible to get multiple levels that correspond to the 

same category (such as "blue", "Blue", and "BLUE"). In such cases, many prefer to manage these 

discrepancies as characters prior to converting to a factor (if conversion takes place at all).

In the second case, if the user thinks she is working with a character vector, certain methods may 

not respond as anticipated. This basic understanding can lead to confusion and frustration while 

trying to debug scripts and codes. While, strictly speaking, this may be considered the fault of the 

user, most users are happy to avoid using factors and avoid these situations altogether.

Examples

Basic creation of factors

Factors are one way to represent categorical variables in R. A factor is stored internally as a 

vector of integers. The unique elements of the supplied character vector are known as the levels 

of the factor. By default, if the levels are not supplied by the user, then R will generate the set of 

unique values in the vector, sort these values alphanumerically, and use them as the levels.

 charvar <- rep(c("n", "c"), each = 3) 
 f <- factor(charvar) 
 f 
 levels(f) 
 
> f 
[1] n n n c c c 
Levels: c n 
> levels(f) 
[1] "c" "n"

If you want to change the ordering of the levels, then one option to to specify the levels manually:

levels(factor(charvar, levels = c("n","c"))) 
 
> levels(factor(charvar, levels = c("n","c"))) 
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[1] "n" "c"

Factors have a number of properties. For example, levels can be given labels:

> f <- factor(charvar, levels=c("n", "c"), labels=c("Newt", "Capybara")) 
> f 
[1] Newt     Newt     Newt     Capybara Capybara Capybara 
Levels: Newt Capybara

Another property that can be assigned is whether the factor is ordered:

> Weekdays <- factor(c("Monday", "Wednesday", "Thursday", "Tuesday", "Friday", "Sunday", 
"Saturday")) 
> Weekdays 
[1] Monday    Wednesday Thursday  Tuesday   Friday    Sunday    Saturday 
Levels: Friday Monday Saturday Sunday Thursday Tuesday Wednesday 
> Weekdays <- factor(Weekdays, levels=c("Monday", "Tuesday", "Wednesday", "Thursday", 
"Friday", "Saturday", "Sunday"), ordered=TRUE) 
> Weekdays 
[1] Monday    Wednesday Thursday  Tuesday   Friday    Sunday    Saturday 
Levels: Monday < Tuesday < Wednesday < Thursday < Friday < Saturday < Sunday

When a level of the factor is no longer used, you can drop it using the droplevels() function:

> Weekend <- subset(Weekdays, Weekdays == "Saturday" |  Weekdays == "Sunday") 
> Weekend 
[1] Sunday   Saturday 
Levels: Monday < Tuesday < Wednesday < Thursday < Friday < Saturday < Sunday 
> Weekend <- droplevels(Weekend) 
> Weekend 
[1] Sunday   Saturday 
Levels: Saturday < Sunday

Consolidating Factor Levels with a List

There are times in which it is desirable to consolidate factor levels into fewer groups, perhaps 

because of sparse data in one of the categories. It may also occur when you have varying 

spellings or capitalization of the category names. Consider as an example the factor

set.seed(1) 
colorful <- sample(c("red", "Red", "RED", "blue", "Blue", "BLUE", "green", "gren"), 
                   size = 20, 
                   replace = TRUE) 
colorful <- factor(colorful)

Since R is case-sensitive, a frequency table of this vector would appear as below.

table(colorful)

colorful 
blue  Blue  BLUE green  gren   red   Red   RED 
   3     1     4     2     4     1     3     2

https://riptutorial.com/ 194



This table, however, doesn't represent the true distribution of the data, and the categories may 

effectively be reduced to three types: Blue, Green, and Red. Three examples are provided. The 

first illustrates what seems like an obvious solution, but won't actually provide a solution. The 

second gives a working solution, but is verbose and computationally expensive. The third is not an 

obvious solution, but is relatively compact and computationally efficient.

Consolidating levels using factor (factor_approach)

factor(as.character(colorful), 
       levels = c("blue", "Blue", "BLUE", "green", "gren", "red", "Red", "RED"), 
       labels = c("Blue", "Blue", "Blue", "Green", "Green", "Red", "Red", "Red"))

 [1] Green Blue  Red   Red   Blue  Red   Red   Red   Blue  Red   Green Green Green 
Blue  Red   Green 
[17] Red   Green Green Red 
Levels: Blue Blue Blue Green Green Red Red Red 
Warning message: 
In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else 
paste0(labels,  : 
  duplicated levels in factors are deprecated

Notice that there are duplicated levels. We still have three categories for "Blue", which doesn't 

complete our task of consolidating levels. Additionally, there is a warning that duplicated levels are 

deprecated, meaning that this code may generate an error in the future.

Consolidating levels using ifelse (ifelse_approach)

factor(ifelse(colorful %in% c("blue", "Blue", "BLUE"), 
       "Blue", 
       ifelse(colorful %in% c("green", "gren"), 
              "Green", 
              "Red")))

 [1] Green Blue  Red   Red   Blue  Red   Red   Red   Blue  Red   Green Green Green 
Blue  Red   Green 
[17] Red   Green Green Red 
Levels: Blue Green Red

This code generates the desired result, but requires the use of nested ifelse statements. While 

there is nothing wrong with this approach, managing nested ifelse statements can be a tedious 

task and must be done carefully.

Consolidating Factors Levels with a List (list_approach)

A less obvious way of consolidating levels is to use a list where the name of each element is the 

desired category name, and the element is a character vector of the levels in the factor that should 

map to the desired category. This has the added advantage of working directly on the levels 

attribute of the factor, without having to assign new objects.
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levels(colorful) <- 
     list("Blue" = c("blue", "Blue", "BLUE"), 
          "Green" = c("green", "gren"), 
          "Red" = c("red", "Red", "RED"))

 [1] Green Blue  Red   Red   Blue  Red   Red   Red   Blue  Red   Green Green Green 
Blue  Red   Green 
[17] Red   Green Green Red 
Levels: Blue Green Red

Benchmarking each approach

The time required to execute each of these approaches is summarized below. (For the sake of 

space, the code to generate this summary is not shown)

Unit: microseconds 
          expr     min      lq      mean   median      uq     max neval cld 
        factor  78.725  83.256  93.26023  87.5030  97.131 218.899   100  b 
        ifelse 104.494 107.609 123.53793 113.4145 128.281 254.580   100   c 
 list_approach  49.557  52.955  60.50756  54.9370  65.132 138.193   100 a

The list approach runs about twice as fast as the ifelse approach. However, except in times of 

very, very large amounts of data, the differences in execution time will likely be measured in either 

microseconds or milliseconds. With such small time differences, efficiency need not guide the 

decision of which approach to use. Instead, use an approach that is familiar and comfortable, and 

which you and your collaborators will understand on future review.

Factors

Factors are one method to represent categorical variables in R. Given a vector x whose values 

can be converted to characters using as.character(), the default arguments for factor() and 

as.factor() assign an integer to each distinct element of the vector as well as a level attribute and 

a label attribute. Levels are the values x can possibly take and labels can either be the given 

element or determined by the user.

To example how factors work we will create a factor with default attributes, then custom levels, 

and then custom levels and labels.

# standard 
factor(c(1,1,2,2,3,3)) 
[1] 1 1 2 2 3 3 
Levels: 1 2 3

Instances can arise where the user knows the number of possible values a factor can take on is 

greater than the current values in the vector. For this we assign the levels ourselves in factor().

factor(c(1,1,2,2,3,3), 
         levels = c(1,2,3,4,5)) 
[1] 1 1 2 2 3 3 
Levels: 1 2 3 4 5
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For style purposes the user may wish to assign labels to each level. By default, labels are the 

character representation of the levels. Here we assign labels for each of the possible levels in the 

factor.

factor(c(1,1,2,2,3,3), 
       levels = c(1,2,3,4,5), 
       labels = c("Fox","Dog","Cow","Brick","Dolphin")) 
[1] Fox Fox Dog Dog Cow Cow 
Levels: Fox Dog Cow Brick Dolphin

Normally, factors can only be compared using == and != and if the factors have the same levels. 

The following comparison of factors fails even though they appear equal because the factors have 

different factor levels.

factor(c(1,1,2,2,3,3),levels = c(1,2,3)) == factor(c(1,1,2,2,3,3),levels = c(1,2,3,4,5)) 
Error in Ops.factor(factor(c(1, 1, 2, 2, 3, 3), levels = c(1, 2, 3)),  : 
  level sets of factors are different

This makes sense as the extra levels in the RHS mean that R does not have enough information 

about each factor to compare them in a meaningful way.

The operators <, <=, > and >= are only usable for ordered factors. These can represent categorical 

values which still have a linear order. An ordered factor can be created by providing the ordered = 

TRUE argument to the factor function or just using the ordered function.

x <- factor(1:3, labels = c('low', 'medium', 'high'), ordered = TRUE) 
print(x) 
[1] low    medium high 
Levels: low < medium < high 
 
y <- ordered(3:1, labels = c('low', 'medium', 'high')) 
print(y) 
[1] high   medium low 
Levels: low < medium < high 
 
x < y 
[1]  TRUE FALSE FALSE

For more information, see the Factor documentation.

Changing and reordering factors

When factors are created with defaults, levels are formed by as.character applied to the inputs 

and are ordered alphabetically.

charvar <- rep(c("W", "n", "c"), times=c(17,20,14)) 
f <- factor(charvar) 
levels(f) 
# [1] "c" "n" "W"

In some situations the treatment of the default ordering of levels (alphabetic/lexical order) will be 

acceptable. For example, if one justs want to plot the frequencies, this will be the result:

https://riptutorial.com/ 197

http://www.riptutorial.com/r/topic/1104/factors


plot(f,col=1:length(levels(f)))

But if we want a different ordering of levels, we need to specify this in the levels or labels 

parameter (taking care that the meaning of "order" here is different from ordered factors, see 

below). There are many alternatives to accomplish that task depending on the situation.

1. Redefine the factor

When it is possible, we can recreate the factor using the levels parameter with the order we want.

ff <- factor(charvar, levels = c("n", "W", "c")) 
levels(ff) 
# [1] "n" "W" "c" 
 
gg <- factor(charvar, levels = c("W", "c", "n")) 
levels(gg) 
# [1] "W" "c" "n"

When the input levels are different than the desired output levels, we use the labels parameter 

which causes the levels parameter to become a "filter" for acceptable input values, but leaves the 

final values of "levels" for the factor vector as the argument to labels:

fm <- factor(as.numeric(f),levels = c(2,3,1), 
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             labels = c("nn", "WW", "cc")) 
levels(fm) 
# [1] "nn" "WW" "cc" 
 
fm <- factor(LETTERS[1:6], levels = LETTERS[1:4],  # only 'A'-'D' as input 
                 labels = letters[1:4])            # but assigned to 'a'-'d' 
fm 
#[1] a    b    c    d    <NA> <NA> 
#Levels: a b c d

2. Use relevel function

When there is one specific level that needs to be the first we can use relevel. This happens, for 

example, in the context of statistical analysis, when a base category is necessary for testing 

hypothesis.

g<-relevel(f, "n") # moves n to be the first level 
levels(g) 
# [1] "n" "c" "W" 

As can be verified f and g are the same

all.equal(f, g) 
# [1] "Attributes: < Component “levels”: 2 string mismatches >" 
all.equal(f, g, check.attributes = F) 
# [1] TRUE

3. Reordering factors

There are cases when we need to reorder the levels based on a number, a partial result, a 

computed statistic, or previous calculations. Let's reorder based on the frequencies of the levels

table(g) 
# g 
#  n  c  W 
# 20 14 17 

The reorder function is generic (see help(reorder)), but in this context needs: x, in this case the 

factor; X, a numeric value of the same length as x; and FUN, a function to be applied to X and 

computed by level of the x, which determines the levels order, by default increasing. The result is 

the same factor with its levels reordered.

g.ord <- reorder(g,rep(1,length(g)), FUN=sum) #increasing 
levels(g.ord) 
# [1] "c" "W" "n"

To get de decreasing order we consider negative values (-1)

g.ord.d <- reorder(g,rep(-1,length(g)), FUN=sum) 
levels(g.ord.d) 
# [1] "n" "W" "c"
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Again the factor is the same as the others.

data.frame(f,g,g.ord,g.ord.d)[seq(1,length(g),by=5),] #just same lines 
#    f g g.ord g.ord.d 
# 1  W W     W       W 
# 6  W W     W       W 
# 11 W W     W       W 
# 16 W W     W       W 
# 21 n n     n       n 
# 26 n n     n       n 
# 31 n n     n       n 
# 36 n n     n       n 
# 41 c c     c       c 
# 46 c c     c       c 
# 51 c c     c       c

When there is a quantitative variable related to the factor variable, we could use other functions 

to reorder the levels. Lets take the iris data (help("iris") for more information), for reordering the 

Species factor by using its mean Sepal.Width.

miris <- iris  #help("iris") # copy the data 
with(miris, tapply(Sepal.Width,Species,mean)) 
#    setosa versicolor  virginica 
#     3.428      2.770      2.974 
 
miris$Species.o<-with(miris,reorder(Species,-Sepal.Width)) 
levels(miris$Species.o) 
# [1] "setosa"     "virginica"  "versicolor"

The usual boxplot (say: with(miris, boxplot(Petal.Width~Species)) will show the especies in this 

order: setosa, versicolor, and virginica. But using the ordered factor we get the species ordered by 

its mean Sepal.Width:

boxplot(Petal.Width~Species.o, data = miris, 
        xlab = "Species", ylab = "Petal Width", 
        main = "Iris Data, ordered by mean sepal width", varwidth = TRUE, 
        col = 2:4) 
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Additionally, it is also possible to change the names of levels, combine them into groups, or add 

new levels. For that we use the function of the same name levels.

f1<-f 
levels(f1) 
# [1] "c" "n" "W" 
levels(f1) <- c("upper","upper","CAP") #rename and grouping 
levels(f1) 
# [1] "upper" "CAP" 
 
f2<-f1 
levels(f2) <- c("upper","CAP", "Number") #add Number level, which is empty 
levels(f2) 
# [1] "upper"  "CAP"    "Number" 
f2[length(f2):(length(f2)+5)]<-"Number" # add cases for the new level 
table(f2) 
# f2 
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#  upper    CAP Number 
#     33     17      6 
 
f3<-f1 
levels(f3) <- list(G1 = "upper", G2 = "CAP", G3 = "Number") # The same using list 
levels(f3) 
# [1] "G1" "G2" "G3" 
f3[length(f3):(length(f3)+6)]<-"G3" ## add cases for the new level 
table(f3) 
# f3 
# G1 G2 G3 
# 33 17  7 

- Ordered factors

Finally, we know that ordered factors are different from factors, the first one are used to represent 

ordinal data, and the second one to work with nominal data. At first, it does not make sense to 

change the order of levels for ordered factors, but we can change its labels.

ordvar<-rep(c("Low", "Medium", "High"), times=c(7,2,4)) 
 
of<-ordered(ordvar,levels=c("Low", "Medium", "High")) 
levels(of) 
# [1] "Low"    "Medium" "High" 
 
of1<-of 
levels(of1)<- c("LOW", "MEDIUM", "HIGH") 
levels(of1) 
# [1] "LOW"    "MEDIUM" "HIGH" 
is.ordered(of1) 
# [1] TRUE 
of1 
# [1] LOW    LOW    LOW    LOW    LOW    LOW    LOW    MEDIUM MEDIUM HIGH   HIGH   HIGH   HIGH 
 
# Levels: LOW < MEDIUM < HIGH

Rebuilding factors from zero

Problem

Factors are used to represent variables that take values from a set of categories, known as Levels 

in R. For example, some experiment could be characterized by the energy level of a battery, with 

four levels: empty, low, normal, and full. Then, for 5 different sampling sites, those levels could be 

identified, in those terms, as follows:

full, full, normal, empty, low

Typically, in databases or other information sources, the handling of these data is by arbitrary 

integer indices associated with the categories or levels. If we assume that, for the given example, 

we would assign, the indices as follows: 1 = empty, 2 = low, 3 = normal, 4 = full, then the 5 

samples could be coded as:

4, 4, 3, 1, 2
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It could happen that, from your source of information, e.g. a database, you only have the encoded 

list of integers, and the catalog associating each integer with each level-keyword. How can a factor 

of R be reconstructed from that information?

Solution

We will simulate a vector of 20 integers that represents the samples, each of which may have one 

of four different values:

set.seed(18) 
ii <- sample(1:4, 20, replace=T) 
ii

[1] 4 3 4 1 1 3 2 3 2 1 3 4 1 2 4 1 3 1 4 1

The first step is to make a factor, from the previous sequence, in which the levels or categories are 

exactly the numbers from 1 to 4.

fii <- factor(ii, levels=1:4) # it is necessary to indicate the numeric levels 
fii

[1] 4 3 4 1 1 3 2 3 2 1 3 4 1 2 4 1 3 1 4 1 

Levels: 1 2 3 4

Now simply, you have to dress the factor already created with the index tags:

levels(fii) <- c("empty", "low", "normal", "full") 
fii

[1] full normal full empty empty normal low normal low empty 

[11] normal full empty low full empty normal empty full empty 

Levels: empty low normal full

Read Factors online: https://riptutorial.com/r/topic/1104/factors
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Chapter 36: Fault-tolerant/resilient code

Parameters

Parameter Details

expr

In case the "try part" was completed successfully tryCatch will return the 

last evaluated expression. Hence, the actual value being returned in 

case everything went well and there is no condition (i.e. a warning or an 

error) is the return value of readLines. Note that you don't need to explicilty 

state the return value via return as code in the "try part" is not wrapped 

insided a function environment (unlike that for the condition handlers for 

warnings and error below)

warning/error/etc

Provide/define a handler function for all the conditions that you want to 

handle explicitly. AFAIU, you can provide handlers for any type of 

conditions (not just warnings and errors, but also custom conditions; see 

simpleCondition and friends for that) as long as the name of the 

respective handler function matches the class of the respective 

condition (see the Details part of the doc for tryCatch).

finally

Here goes everything that should be executed at the very end, 

regardless if the expression in the "try part" succeeded or if there was 

any condition. If you want more than one expression to be executed, then 

you need to wrap them in curly brackets, otherwise you could just have 

written finally = <expression> (i.e. the same logic as for "try part".

Remarks

tryCatch

tryCatch returns the value associated to executing expr unless there's a condition: a warning or an 

error. If that's the case, specific return values (e.g. return(NA) above) can be specified by 

supplying a handler function for the respective conditions (see arguments warning and error in 

?tryCatch). These can be functions that already exist, but you can also define them within tryCatch 

(as we did above).

Implications of choosing specific return values of the handler functions

As we've specified that NA should be returned in case of an error in the "try part", the third element 

in y is NA. If we'd have chosen NULL to be the return value, the length of y would just have been 2 

instead of 3 as lapply will simply "ignore/drop" return values that are NULL. Also note that if you 

don't specify an explicit return value via return, the handler functions will return NULL (i.e. in case 

of an error or a warning condition).
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"Undesired" warning message

When the third element of our urls vector hits our function, we get the following warning in 

addition to the fact that an error occurs (readLines first complains that it can't open the connection 

via a warning before actually failing with an error):

Warning message: 
    In file(con, "r") : cannot open file 'I'm no URL': No such file or directory

An error "wins" over a warning, so we're not really interested in the warning in this particular case. 

Thus we have set warn = FALSE in readLines, but that doesn't seem to have any effect. An 

alternative way to suppress the warning is to use

suppressWarnings(readLines(con = url))

instead of

readLines(con = url, warn = FALSE)

Examples

Using tryCatch()

We're defining a robust version of a function that reads the HTML code from a given URL. Robust 

in the sense that we want it to handle situations where something either goes wrong (error) or not 

quite the way we planned it to (warning). The umbrella term for errors and warnings is condition

Function definition using tryCatch

readUrl <- function(url) { 
    out <- tryCatch( 
 
        ######################################################## 
        # Try part: define the expression(s) you want to "try" # 
        ######################################################## 
 
        { 
            # Just to highlight: 
            # If you want to use more than one R expression in the "try part" 
            # then you'll have to use curly brackets. 
            # Otherwise, just write the single expression you want to try and 
 
            message("This is the 'try' part") 
            readLines(con = url, warn = FALSE) 
        }, 
 
        ######################################################################## 
        # Condition handler part: define how you want conditions to be handled # 
        ######################################################################## 
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        # Handler when a warning occurs: 
        warning = function(cond) { 
            message(paste("Reading the URL caused a warning:", url)) 
            message("Here's the original warning message:") 
            message(cond) 
 
            # Choose a return value when such a type of condition occurs 
            return(NULL) 
        }, 
 
        # Handler when an error occurs: 
        error = function(cond) { 
            message(paste("This seems to be an invalid URL:", url)) 
            message("Here's the original error message:") 
            message(cond) 
 
            # Choose a return value when such a type of condition occurs 
            return(NA) 
        }, 
 
        ############################################### 
        # Final part: define what should happen AFTER # 
        # everything has been tried and/or handled    # 
        ############################################### 
 
        finally = { 
            message(paste("Processed URL:", url)) 
            message("Some message at the end\n") 
        } 
    ) 
    return(out) 
}

Testing things out

Let's define a vector of URLs where one element isn't a valid URL

urls <- c( 
    "http://stat.ethz.ch/R-manual/R-devel/library/base/html/connections.html", 
    "http://en.wikipedia.org/wiki/Xz", 
    "I'm no URL" 
)

And pass this as input to the function we defined above

y <- lapply(urls, readUrl) 
# Processed URL: http://stat.ethz.ch/R-manual/R-devel/library/base/html/connections.html 
# Some message at the end 
# 
# Processed URL: http://en.wikipedia.org/wiki/Xz 
# Some message at the end 
# 
# URL does not seem to exist: I'm no URL 
# Here's the original error message: 
# cannot open the connection 
# Processed URL: I'm no URL 
# Some message at the end 
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# 
# Warning message: 
# In file(con, "r") : cannot open file 'I'm no URL': No such file or directory

Investigating the output

length(y) 
# [1] 3 
 
head(y[[1]]) 
# [1] "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\">" 
# [2] "<html><head><title>R: Functions to Manipulate Connections</title>" 
# [3] "<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\">" 
# [4] "<link rel=\"stylesheet\" type=\"text/css\" href=\"R.css\">" 
# [5] "</head><body>" 
# [6] "" 
 
y[[3]] 
# [1] NA

Read Fault-tolerant/resilient code online: https://riptutorial.com/r/topic/4060/fault-tolerant-resilient-

code
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Chapter 37: Feature Selection in R -- 

Removing Extraneous Features

Examples

Removing features with zero or near-zero variance

A feature that has near zero variance is a good candidate for removal.

You can manually detect numerical variance below your own threshold:

data("GermanCredit") 
variances<-apply(GermanCredit, 2, var) 
variances[which(variances<=0.0025)]

Or, you can use the caret package to find near zero variance. An advantage here is that is defines 

near zero variance not in the numerical calculation of variance, but rather as a function of rarity:

"nearZeroVar diagnoses predictors that have one unique value (i.e. are zero variance 

predictors) or predictors that are have both of the following characteristics: they have 

very few unique values relative to the number of samples and the ratio of the frequency 

of the most common value to the frequency of the second most common value is 

large..."

library(caret) 
names(GermanCredit)[nearZeroVar(GermanCredit)]

Removing features with high numbers of NA

If a feature is largely lacking data, it is a good candidate for removal:

library(VIM) 
data(sleep) 
colMeans(is.na(sleep)) 
 
   BodyWgt   BrainWgt       NonD      Dream      Sleep       Span       Gest 
0.00000000 0.00000000 0.22580645 0.19354839 0.06451613 0.06451613 0.06451613 
      Pred        Exp     Danger 
0.00000000 0.00000000 0.00000000 

In this case, we may want to remove NonD and Dream, which each have around 20% missing 

values (your cutoff may vary)

Removing closely correlated features

Closely correlated features may add variance to your model, and removing one of a correlated pair 
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might help reduce that. There are lots of ways to detect correlation. Here's one:

library(purrr) # in order to use keep() 
 
# select correlatable vars 
toCorrelate<-mtcars %>% keep(is.numeric) 
 
# calculate correlation matrix 
correlationMatrix <- cor(toCorrelate) 
 
# pick only one out of each highly correlated pair's mirror image 
correlationMatrix[upper.tri(correlationMatrix)]<-0 
 
# and I don't remove the highly-correlated-with-itself group 
diag(correlationMatrix)<-0 
 
# find features that are highly correlated with another feature at the +- 0.85 level 
apply(correlationMatrix,2, function(x) any(abs(x)>=0.85)) 
 
  mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
 TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

I'll want to look at what MPG is correlated to so strongly, and decide what to keep and what to 

toss. Same for cyl and disp. Alternatively, I might need to combine some strongly correlated 

features.

Read Feature Selection in R -- Removing Extraneous Features online: 

https://riptutorial.com/r/topic/7561/feature-selection-in-r----removing-extraneous-features
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Chapter 38: Formula

Examples

The basics of formula

Statistical functions in R make heavy use of the so-called Wilkinson-Rogers formula notation1 .

When running model functions like lm for the Linear Regressions, they need a formula. This formula 

specifies which regression coefficients shall be estimated.

my_formula1 <- formula(mpg ~ wt) 
class(my_formula1) 
# gives "formula" 
 
mod1 <- lm(my_formula1, data = mtcars) 
coef(mod1) 
# gives (Intercept)          wt 
#         37.285126   -5.344472 

On the left side of the ~ (LHS) the dependent variable is specified, while the right hand side (RHS) 

contains the independent variables. Technically the formula call above is redundant because the 

tilde-operator is an infix function that returns an object with formula class:

form <- mpg ~ wt 
class(form) 
#[1] "formula"

The advantage of the formula function over ~ is that it also allows an environment for evaluation to 

be specified:

form_mt <- formula(mpg ~ wt, env = mtcars)

In this case, the output shows that a regression coefficient for wt is estimated, as well as (per 

default) an intercept parameter. The intercept can be excluded / forced to be 0 by including 0 or -1 

in the formula:

coef(lm(mpg ~ 0 + wt, data = mtcars)) 
coef(lm(mpg ~ wt -1, data = mtcars))

Interactions between variables a and b can added by included a:b to the formula:

 coef(lm(mpg ~ wt:vs, data = mtcars))

As it is (from a statistical point of view) generally advisable not have interactions in the model 

without the main effects, the naive approach would be to expand the formula to a + b + a:b. This 

works but can be simplified by writing a*b, where the * operator indicates factor crossing (when 
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between two factor columns) or multiplication when one or both of the columns are 'numeric':

coef(lm(mpg ~ wt*vs, data = mtcars))

Using the * notation expands a term to include all lower order effects, such that:

coef(lm(mpg ~ wt*vs*hp, data = mtcars))

will give, in addition to the intercept, 7 regression coefficients. One for the three-way interaction, 

three for the two-way interactions and three for the main effects.

If one wants, for example, to exclude the three-way interaction, but retain all two-way interactions 

there are two shorthands. First, using - we can subtract any particular term:

coef(lm(mpg ~ wt*vs*hp - wt:vs:hp, data = mtcars))

Or, we can use the ^ notation to specify which level of interaction we require:

coef(lm(mpg ~ (wt + vs + hp) ^ 2, data = mtcars))

Those two formula specifications should create the same model matrix.

Finally, . is shorthand to use all available variables as main effects. In this case, the data argument 

is used to obtain the available variables (which are not on the LHS). Therefore:

coef(lm(mpg ~ ., data = mtcars))

gives coefficients for the intercept and 10 independent variables. This notation is frequently used 

in machine learning packages, where one would like to use all variables for prediction or 

classification. Note that the meaning of . depends on context (see e.g. ?update.formula for a 

different meaning).

G. N. Wilkinson and C. E. Rogers. Journal of the Royal Statistical Society. Series C (Applied 

Statistics) Vol. 22, No. 3 (1973), pp. 392-399

1. 

Create Linear, Quadratic and Second Order Interaction Terms

y ~ . : Here . is interpreted as all variables except y in the data frame used in fitting the model. It 

is equivalent to the linear combinations of predictor variables. For example y ~ var1 + var2 + 
var3+...+var15

y ~ . ^ 2 will give all linear (main effects) and second order interaction terms of the variables in 

the data frame. It is equivalent to y ~ var1 + var2 + ...+var15 + var1:var2 + var1:var3 + 
var1:var4...and so on

y ~ var1 + var2 + ...+var15 + I(var1^2) + I(var2^2) + I(var3^2)...+I(var15^2) : Here I(var^2) 

indicates quadratic polynomial of one variable in the data frame.

y ~ poly(var1, degree = 2) + poly(var2, degree = 2)+...poly(var15, degree = 2)
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or

y ~ poly(var1, var2, var3, ....var15, degree = 2) will be equivalent to the above expression.

poly(var1, degree = 2) is equivalent to var1 + I(var1^2).

To get cubic polynomials, use degree = 3 in poly().

There is a caveat in using poly versus I(var, 2), which is after fitting the model, each of them will 

produce different coefficients, but the fitted values are equivalent, because they represent different 

parameterizations of the same model. It is recommended to use I(var, 2) over poly() to avoid the 

summary effect seen in poly().

In summary, to get linear, quadratic and second order interaction terms, you will have an 

expression like

y ~ .^2 + I(var1^2) + I(var2^2)+...I(var15^2)

Demo for four variables:

old <- reformulate( 'y ~ x1+x2+x3+x4' ) 
new <- reformulate( " y ~ .^2 + I(x1^2) + I(x2^2) + I(x3^2) + I(x4^2) ") 
tmp <- .Call(stats:::C_updateform, old, new) 
terms.formula(tmp, simplify = TRUE ) 
 
# ~y ~ x1 + x2 + x3 + x4 + I(x1^2) + I(x2^2) + I(x3^2) + I(x4^2) + 
#   x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 + x3:x4 
# attr(,"variables") 
# list(~y, x1, x2, x3, x4, I(x1^2), I(x2^2), I(x3^2), I(x4^2)) 
# attr(,"factors") 
#         x1 x2 x3 x4 I(x1^2) I(x2^2) I(x3^2) I(x4^2) x1:x2 x1:x3 x1:x4 x2:x3 x2:x4 x3:x4 
# ~y       0  0  0  0       0       0       0       0     0     0     0     0     0     0 
# x1       1  0  0  0       0       0       0       0     1     1     1     0     0     0 
# x2       0  1  0  0       0       0       0       0     1     0     0     1     1     0 
# x3       0  0  1  0       0       0       0       0     0     1     0     1     0     1 
# x4       0  0  0  1       0       0       0       0     0     0     1     0     1     1 
# I(x1^2)  0  0  0  0       1       0       0       0     0     0     0     0     0     0 
# I(x2^2)  0  0  0  0       0       1       0       0     0     0     0     0     0     0 
# I(x3^2)  0  0  0  0       0       0       1       0     0     0     0     0     0     0 
# I(x4^2)  0  0  0  0       0       0       0       1     0     0     0     0     0     0 
# attr(,"term.labels") 
# [1] "x1"      "x2"      "x3"      "x4"      "I(x1^2)" "I(x2^2)" "I(x3^2)" "I(x4^2)" 
# [9] "x1:x2"   "x1:x3"   "x1:x4"   "x2:x3"   "x2:x4"   "x3:x4" 
# attr(,"order") 
# [1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 
# attr(,"intercept") 
# [1] 1 
# attr(,"response") 
# [1] 1 
# attr(,".Environment") 
# <environment: R_GlobalEnv>

Read Formula online: https://riptutorial.com/r/topic/1061/formula
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Chapter 39: Fourier Series and 

Transformations

Remarks

The Fourier transform decomposes a function of time (a signal) into the frequencies that make it 

up, similarly to how a musical chord can be expressed as the amplitude (or loudness) of its 

constituent notes. The Fourier transform of a function of time itself is a complex-valued function of 

frequency, whose absolute value represents the amount of that frequency present in the original 

function, and whose complex argument is the phase offset of the basic sinusoid in that frequency.

The Fourier transform is called the frequency domain representation of the original signal. The 

term Fourier transform refers to both the frequency domain representation and the mathematical 

operation that associates the frequency domain representation to a function of time. The Fourier 

transform is not limited to functions of time, but in order to have a unified language, the domain of 

the original function is commonly referred to as the time domain. For many functions of practical 

interest one can define an operation that reverses this: the inverse Fourier transformation, also 

called Fourier synthesis, of a frequency domain representation combines the contributions of all 

the different frequencies to recover the original function of time.

Linear operations performed in one domain (time or frequency) have corresponding operations in 

the other domain, which are sometimes easier to perform. The operation of differentiation in the 

time domain corresponds to multiplication by the frequency, so some differential equations are 

easier to analyze in the frequency domain. Also, convolution in the time domain corresponds to 

ordinary multiplication in the frequency domain. Concretely, this means that any linear time-

invariant system, such as an electronic filter applied to a signal, can be expressed relatively simply 

as an operation on frequencies. So significant simplification is often achieved by transforming time 

functions to the frequency domain, performing the desired operations, and transforming the result 

back to time.

Harmonic analysis is the systematic study of the relationship between the frequency and time 

domains, including the kinds of functions or operations that are "simpler" in one or the other, and 

has deep connections to almost all areas of modern mathematics.

Functions that are localized in the time domain have Fourier transforms that are spread out across 

the frequency domain and vice versa. The critical case is the Gaussian function, of substantial 

importance in probability theory and statistics as well as in the study of physical phenomena 

exhibiting normal distribution (e.g., diffusion), which with appropriate normalizations goes to itself 

under the Fourier transform. Joseph Fourier introduced the transform in his study of heat transfer, 

where Gaussian functions appear as solutions of the heat equation.

The Fourier transform can be formally defined as an improper Riemann integral, making it an 

integral transform, although this definition is not suitable for many applications requiring a more 

sophisticated integration theory.
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For example, many relatively simple applications use the Dirac delta function, which can be 

treated formally as if it were a function, but the justification requires a mathematically more 

sophisticated viewpoint. The Fourier transform can also be generalized to functions of several 

variables on Euclidean space, sending a function of 3-dimensional space to a function of 3-

dimensional momentum (or a function of space and time to a function of 4-momentum).

This idea makes the spatial Fourier transform very natural in the study of waves, as well as in 

quantum mechanics, where it is important to be able to represent wave solutions either as 

functions either of space or momentum and sometimes both. In general, functions to which Fourier 

methods are applicable are complex-valued, and possibly vector-valued. Still further generalization 

is possible to functions on groups, which, besides the original Fourier transform on ℝ or ℝn (viewed 
as groups under addition), notably includes the discrete-time Fourier transform (DTFT, group = ℤ), the 
discrete Fourier transform (DFT, group = ℤ mod N) and the Fourier series or circular Fourier transform 
(group = S1, the unit circle ≈ closed finite interval with endpoints identified). The latter is routinely 
employed to handle periodic functions. The Fast Fourier transform (FFT) is an algorithm for computing the 
DFT.

Examples

Fourier Series

Joseph Fourier showed that any periodic wave can be represented by a sum of simple sine 

waves. This sum is called the Fourier Series. The Fourier Series only holds while the system is 

linear. If there is, eg, some overflow effect (a threshold where the output remains the same no 

matter how much input is given), a non-linear effect enters the picture, breaking the sinusoidal 

wave and the superposition principle.

# Sine waves 
xs <- seq(-2*pi,2*pi,pi/100) 
wave.1 <- sin(3*xs) 
wave.2 <- sin(10*xs) 
par(mfrow = c(1, 2)) 
plot(xs,wave.1,type="l",ylim=c(-1,1)); abline(h=0,lty=3) 
plot(xs,wave.2,type="l",ylim=c(-1,1)); abline(h=0,lty=3) 
 
# Complex Wave 
wave.3 <- 0.5 * wave.1 + 0.25 * wave.2 
plot(xs,wave.3,type="l"); title("Eg complex wave"); abline(h=0,lty=3)
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wave.4 <- wave.3 
wave.4[wave.3>0.5] <- 0.5 
plot(xs,wave.4,type="l",ylim=c(-1.25,1.25)) 
title("overflowed, non-linear complex wave") 
abline(h=0,lty=3)
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Also, the Fourier Series only holds if the waves are periodic, ie, they have a repeating pattern (non 

periodic waves are dealt by the Fourier Transform, see below). A periodic wave has a frequency f 

and a wavelength λ (a wavelength is the distance in the medium between the beginning and end 

of a cycle, λ=v/f0, where v is the wave velocity) that are defined by the repeating pattern. A non-

periodic wave does not have a frequency or wavelength.

Some concepts:

The fundamental period, T, is the period of all the samples taken, the time between the first 

sample and the last

•

The sampling rate, sr, is the number of samples taken over a time period (aka acquisition 

frequency). For simplicity we will make the time interval between samples equal. This time 

interval is called the sample interval, si, which is the fundamental period time divided by the 

number of samples N. So, si=TN

•

The fundamental frequency, f0, which is 1T. The fundamental frequency is the frequency of 

the repeating pattern or how long the wavelength is. In the previous waves, the fundamental 

frequency was 12π. The frequencies of the wave components must be integer multiples of 

the fundamental frequency. f0 is called the first harmonic, the second harmonic is 2∗f0, the 
third is 3∗f0, etc.

•

repeat.xs     <- seq(-2*pi,0,pi/100) 
wave.3.repeat <- 0.5*sin(3*repeat.xs) + 0.25*sin(10*repeat.xs) 
plot(xs,wave.3,type="l") 
 
title("Repeating pattern") 
points(repeat.xs,wave.3.repeat,type="l",col="red"); 
abline(h=0,v=c(-2*pi,0),lty=3)
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Here’s a R function for plotting trajectories given a fourier series:

plot.fourier <- function(fourier.series, f.0, ts) { 
                        w <- 2*pi*f.0 trajectory <- sapply(ts, function(t) 
fourier.series(t,w)) 
                        plot(ts, trajectory, type="l", xlab="time", ylab="f(t)"); 
                        abline(h=0,lty=3)}

Read Fourier Series and Transformations online: https://riptutorial.com/r/topic/4139/fourier-series-

and-transformations
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Chapter 40: Functional programming

Examples

Built-in Higher Order Functions

R has a set of built in higher order functions: Map, Reduce, Filter, Find, Position, Negate.

Map applies a given function to a list of values:

words <- list("this", "is", "an", "example") 
Map(toupper, words)

Reduce successively applies a binary function to a list of values in a recursive fashion.

Reduce(`*`, 1:10)

Filter given a predicate function and a list of values returns a filtered list containing only values for 

whom predicate function is TRUE.

Filter(is.character, list(1,"a",2,"b",3,"c"))

Find given a predicate function and a list of values returns the first value for which the predicate 

function is TRUE.

Find(is.character, list(1,"a",2,"b",3,"c"))

Position given a predicate function and a list of values returns the position of the first value in the 

list for which the predicate function is TRUE.

Position(is.character, list(1,"a",2,"b",3,"c"))

Negate inverts a predicate function making it return FALSE for values where it returned TRUE and 

vice versa.

is.noncharacter <- Negate(is.character) 
is.noncharacter("a") 
is.noncharacter(mean)

Read Functional programming online: https://riptutorial.com/r/topic/5050/functional-programming
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Chapter 41: Generalized linear models

Examples

Logistic regression on Titanic dataset

Logistic regression is a particular case of the generalized linear model, used to model 

dichotomous outcomes (probit and complementary log-log models are closely related).

The name comes from the link function used, the logit or log-odds function. The inverse function of 

the logit is called the logistic function and is given by:

This function takes a value between ]-Inf;+Inf[ and returns a value between 0 and 1; i.e the logistic 

function takes a linear predictor and returns a probability.

Logistic regression can be performed using the glm function with the option family = binomial 

(shortcut for family = binomial(link="logit"); the logit being the default link function for the 

binomial family).

In this example, we try to predict the fate of the passengers aboard the RMS Titanic.

Read the data:

url <- "http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt" 
titanic <- read.csv(file = url, stringsAsFactors = FALSE)

Clean the missing values:

In that case, we replace the missing values by an approximation, the average.

titanic$age[is.na(titanic$age)] <- mean(titanic$age, na.rm = TRUE) 

Train the model:

titanic.train <- glm(survived ~ pclass + sex + age, 
                         family = binomial, data = titanic)

Summary of the model:

summary(titanic.train)

The output:

Call: 
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glm(formula = survived ~ pclass + sex + age, family = binomial, data = titanic) 
 
Deviance Residuals: 
    Min       1Q   Median       3Q      Max 
-2.6452  -0.6641  -0.3679   0.6123   2.5615 
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|) 
(Intercept)  3.552261   0.342188  10.381  < 2e-16 *** 
pclass2nd   -1.170777   0.211559  -5.534 3.13e-08 *** 
pclass3rd   -2.430672   0.195157 -12.455  < 2e-16 *** 
sexmale     -2.463377   0.154587 -15.935  < 2e-16 *** 
age         -0.042235   0.007415  -5.696 1.23e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 1686.8  on 1312  degrees of freedom 
Residual deviance: 1165.7  on 1308  degrees of freedom 
AIC: 1175.7 
 
Number of Fisher Scoring iterations: 5

The first thing displayed is the call. It is a reminder of the model and the options specified.•

Next we see the deviance residuals, which are a measure of model fit. This part of output 

shows the distribution of the deviance residuals for individual cases used in the model.

•

The next part of the output shows the coefficients, their standard errors, the z-statistic 

(sometimes called a Wald z-statistic), and the associated p-values.

The qualitative variables are "dummified". A modality is considered as the reference. 

The reference modality can be change with I in the formula.

○

All four predictors are statistically significant at a 0.1 % level.○

The logistic regression coefficients give the change in the log odds of the outcome for a 

one unit increase in the predictor variable.

○

To see the odds ratio (multiplicative change in the odds of survival per unit increase in 

a predictor variable), exponentiate the parameter.

○

To see the confidence interval (CI) of the parameter, use confint.○

•

Below the table of coefficients are fit indices, including the null and deviance residuals and 

the Akaike Information Criterion (AIC), which can be used for comparing model performance.

When comparing models fitted by maximum likelihood to the same data, the smaller 

the AIC, the better the fit.

○

One measure of model fit is the significance of the overall model. This test asks 

whether the model with predictors fits significantly better than a model with just an 

intercept (i.e., a null model).

○

•

Example of odds ratios:

exp(coef(titanic.train)[3]) 
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 pclass3rd 
0.08797765 

With this model, compared to the first class, the 3rd class passengers have about a tenth of the 

odds of survival.

Example of confidence interval for the parameters:

confint(titanic.train) 
 
Waiting for profiling to be done... 
                  2.5 %      97.5 % 
(Intercept)  2.89486872  4.23734280 
pclass2nd   -1.58986065 -0.75987230 
pclass3rd   -2.81987935 -2.05419500 
sexmale     -2.77180962 -2.16528316 
age         -0.05695894 -0.02786211

Exemple of calculating the significance of the overall model:

The test statistic is distributed chi-squared with degrees of freedom equal to the differences in 

degrees of freedom between the current and the null model (i.e., the number of predictor variables 

in the model).

with(titanic.train, pchisq(null.deviance - deviance, df.null - df.residual 
, lower.tail = FALSE)) 
[1] 1.892539e-111

The p-value is near 0, showing a strongly significant model.

Read Generalized linear models online: https://riptutorial.com/r/topic/2892/generalized-linear-

models
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Chapter 42: Get user input

Syntax

variable <- readline(prompt = "Any message for user")•

name <- readline(prompt = "What's your name")•

Examples

User input in R

Sometimes it can be interesting to have a cross-talk between the user and the program, one 

example being the swirl package that had been designed to teach R in R.

One can ask for user input using the readline command:

name <- readline(prompt = "What is your name?")

The user can then give any answer, such as a number, a character, vectors, and scanning the 

result is here to make sure that the user has given a proper answer. For example:

result <- readline(prompt = "What is the result of 1+1?") 
while(result!=2){ 
    readline(prompt = "Wrong answer. What is the result of 1+1?") 
}

However, it is to be noted that this code be stuck in a never-ending loop, as user input is saved as 

a character.

We have to coerce it to a number, using as.numeric:

result <- as.numeric(readline(prompt = "What is the result of 1+1?")) 
while(result!=2){ 
    readline(prompt = "Wrong answer. What is the result of 1+1?") 
}

Read Get user input online: https://riptutorial.com/r/topic/5098/get-user-input
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Chapter 43: ggplot2

Remarks

ggplot2 has its own perfect reference website http://ggplot2.tidyverse.org/.

Most of the time, it is more convenient to adapt the structure or content of the plotted data (e.g. a 

data.frame) than adjusting things within the plot afterwards.

RStudio publishes a very helpful "Data Visualization with ggplot2" cheatsheet that can be found 

here.

Examples

Scatter Plots

We plot a simple scatter plot using the builtin iris data set as follows:

library(ggplot2) 
ggplot(iris, aes(x = Petal.Width, y = Petal.Length, color = Species)) + 
  geom_point()

This gives: 
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Displaying multiple plots

Display multiple plots in one image with the different facet functions. An advantage of this method 

is that all axes share the same scale across charts, making it easy to compare them at a glance. 

We'll use the mpg dataset included in ggplot2.

Wrap charts line by line (attempts to create a square layout):

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point() + 
  facet_wrap(~class)
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Display multiple charts on one row, multiple columns:

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point() + 
  facet_grid(.~class)
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Display multiple charts on one column, multiple rows:

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point() + 
  facet_grid(class~.)
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Display multiple charts in a grid by 2 variables:

ggplot(mpg, aes(x = displ, y = hwy)) + 
  geom_point() + 
  facet_grid(trans~class) #"row" parameter, then "column" parameter
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Prepare your data for plotting

ggplot2 works best with a long data frame. The following sample data which represents the prices 

for sweets on 20 different days, in a format described as wide, because each category has a 

column.

set.seed(47) 
sweetsWide <- data.frame(date      = 1:20, 
                         chocolate = runif(20, min = 2, max = 4), 
                         iceCream  = runif(20, min = 0.5, max = 1), 
                         candy     = runif(20, min = 1, max = 3)) 
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head(sweetsWide) 
##   date chocolate  iceCream    candy 
## 1    1  3.953924 0.5890727 1.117311 
## 2    2  2.747832 0.7783982 1.740851 
## 3    3  3.523004 0.7578975 2.196754 
## 4    4  3.644983 0.5667152 2.875028 
## 5    5  3.147089 0.8446417 1.733543 
## 6    6  3.382825 0.6900125 1.405674

To convert sweetsWide to long format for use with ggplot2, several useful functions from base R, 

and the packages reshape2, data.table and tidyr (in chronological order) can be used:

# reshape from base R 
sweetsLong <- reshape(sweetsWide, idvar = 'date', direction = 'long', 
                      varying = list(2:4), new.row.names = NULL, times = names(sweetsWide)[-
1]) 
 
# melt from 'reshape2' 
library(reshape2) 
sweetsLong <- melt(sweetsWide, id.vars = 'date') 
 
# melt from 'data.table' 
# which is an optimized & extended version of 'melt' from 'reshape2' 
library(data.table) 
sweetsLong <- melt(setDT(sweetsWide), id.vars = 'date') 
 
# gather from 'tidyr' 
library(tidyr) 
sweetsLong <- gather(sweetsWide, sweet, price, chocolate:candy)

The all give a similar result:

head(sweetsLong) 
##   date     sweet    price 
## 1    1 chocolate 3.953924 
## 2    2 chocolate 2.747832 
## 3    3 chocolate 3.523004 
## 4    4 chocolate 3.644983 
## 5    5 chocolate 3.147089 
## 6    6 chocolate 3.382825

See also Reshaping data between long and wide forms for details on converting data between 

long and wide format.

The resulting sweetsLong has one column of prices and one column describing the type of sweet. 

Now plotting is much simpler:

library(ggplot2) 
ggplot(sweetsLong, aes(x = date, y = price, colour = sweet)) + geom_line()
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# sample data

# sample data

# sample data

# sample data

ggplot(data = diamonds, aes(x = cut, fill =color)) +

  ggplot(data = diamonds, aes(x = cut, fill =color)) +

ggplot(diamonds, aes(cut, price)) +

ggplot(diamonds, aes(cut, price)) +

plot()
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function, trying to always plot out your data without requiring too much specifications.

basic qplot

qplot(x = disp, y = mpg, data = mtcars)

adding colors

qplot(x = disp, y = mpg, colour = cyl,data = mtcars)

adding a smoother

qplot(x = disp, y = mpg, geom = c("point", "smooth"), data = mtcars)
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Read ggplot2 online: https://riptutorial.com/r/topic/1334/ggplot2
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Chapter 44: GPU-accelerated computing

Remarks

GPU computing requires a 'platform' which can connect to and utilize the hardware. The two 

primary low-level languages that accomplish this are CUDA and OpenCL. The former requires 

installation of the proprietary NVIDIA CUDA Toolkit and is only applicable on NVIDIA GPUs. The 

latter is both company (e.g. NVIDIA, AMD, Intel) and hardware independent (CPU or GPU) but 

requires the installation of an SDK (software development kit). In order to use a GPU via R you will 

need to install one of these pieces of software first.

Once either the CUDA Toolkit or a OpenCL SDK is installed, you can install an appropriate R 

package. Almost all the R GPU packages are dependent upon CUDA and limited to NVIDIA 

GPUs. These include:

gputools1. 

cudaBayesreg2. 

HiPLARM3. 

gmatrix4. 

There are currently only two OpenCL enabled packages

OpenCL - interface from R to OpenCL1. 

gpuR - general purpose library2. 

Warning - installation can be difficult for different operating systems with different environmental 

variables and GPU platforms.

Examples

gpuR gpuMatrix objects

library(gpuR) 
 
# gpuMatrix objects 
X <- gpuMatrix(rnorm(100), 10, 10) 
Y <- gpuMatrix(rnorm(100), 10, 10) 
 
# transfer data to GPU when operation called 
# automatically copied back to CPU 
Z <- X %*% Y 
 

gpuR vclMatrix objects

library(gpuR) 
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# vclMatrix objects 
X <- vclMatrix(rnorm(100), 10, 10) 
Y <- vclMatrix(rnorm(100), 10, 10) 
 
# data always on GPU 
# no data transfer 
Z <- X %*% Y

Read GPU-accelerated computing online: https://riptutorial.com/r/topic/4680/gpu-accelerated-

computing
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Chapter 45: Hashmaps

Examples

Environments as hash maps

Note: in the subsequent passages, the terms hash map and hash table are used interchangeably 

and refer to the same concept, namely, a data structure providing efficient key lookup through use 

of an internal hash function.

Introduction

Although R does not provide a native hash table structure, similar functionality can be achieved by 

leveraging the fact that the environment object returned from new.env (by default) provides hashed 

key lookups. The following two statements are equivalent, as the hash parameter defaults to TRUE:

H <- new.env(hash = TRUE) 
H <- new.env() 

Additionally, one may specify that the internal hash table is pre-allocated with a particular size via 

the size parameter, which has a default value of 29. Like all other R objects, environments manage 

their own memory and will grow in capacity as needed, so while it is not necessary to request a 

non-default value for size, there may be a slight performance advantage in doing so if the object 

will (eventually) contain a very large number of elements. It is worth noting that allocating extra 

space via size does not, in itself, result in an object with a larger memory footprint:

object.size(new.env()) 
# 56 bytes 
 
object.size(new.env(size = 10e4)) 
# 56 bytes 

Insertion

Insertion of elements may be done using either of the [[<- or $<- methods provided for the 

environment class, but not by using "single bracket" assignment ([<-):

H <- new.env() 
 
H[["key"]] <- rnorm(1) 
 
key2 <- "xyz" 
H[[key2]] <- data.frame(x = 1:3, y = letters[1:3]) 
 
H$another_key <- matrix(rbinom(9, 1, 0.5) > 0, nrow = 3) 
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H["error"] <- 42 
#Error in H["error"] <- 42 : 
#  object of type 'environment' is not subsettable 

Like other facets of R, the first method (object[[key]] <- value) is generally preferred to the 

second (object$key <- value) because in the former case, a variable maybe be used instead of a 

literal value (e.g key2 in the example above).

As is generally the case with hash map implementations, the environment object will not store 

duplicate keys. Attempting to insert a key-value pair for an existing key will replace the previously 

stored value:

H[["key3"]] <- "original value" 
 
H[["key3"]] <- "new value" 
 
H[["key3"]] 
#[1] "new value"

Key Lookup

Likewise, elements may be accessed with [[ or $, but not with [:

H[["key"]] 
#[1] 1.630631 
 
H[[key2]]   ## assuming key2 <- "xyz" 
#   x y 
# 1 1 a 
# 2 2 b 
# 3 3 c 
 
H$another_key 
#       [,1]  [,2]  [,3] 
# [1,]  TRUE  TRUE  TRUE 
# [2,] FALSE FALSE FALSE 
# [3,]  TRUE  TRUE  TRUE 
 
H[1] 
#Error in H[1] : object of type 'environment' is not subsettable

Inspecting the Hash Map

Being just an ordinary environment, the hash map can be inspected by typical means:

names(H) 
#[1] "another_key" "xyz"         "key"         "key3" 
 
ls(H) 
#[1] "another_key" "key"         "key3"        "xyz" 
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str(H) 
#<environment: 0x7828228> 
 
ls.str(H) 
# another_key :  logi [1:3, 1:3] TRUE FALSE TRUE TRUE FALSE TRUE ... 
# key :  num 1.63 
# key3 :  chr "new value" 
# xyz : 'data.frame':    3 obs. of  2 variables: 
#  $ x: int  1 2 3 
#  $ y: chr  "a" "b" "c"

Elements can be removed using rm:

rm(list = c("key", "key3"), envir = H) 
 
ls.str(H) 
# another_key :  logi [1:3, 1:3] TRUE FALSE TRUE TRUE FALSE TRUE ... 
# xyz : 'data.frame':    3 obs. of  2 variables: 
#  $ x: int  1 2 3 
#  $ y: chr  "a" "b" "c"

Flexibility

One of the major benefits of using environment objects as hash tables is their ability to store 

virtually any type of object as a value, even other environments:

H2 <- new.env() 
 
H2[["a"]] <- LETTERS 
H2[["b"]] <- as.list(x = 1:5, y = matrix(rnorm(10), 2)) 
H2[["c"]] <- head(mtcars, 3) 
H2[["d"]] <- Sys.Date() 
H2[["e"]] <- Sys.time() 
H2[["f"]] <- (function() { 
    H3 <- new.env() 
    for (i in seq_along(names(H2))) { 
        H3[[names(H2)[i]]] <- H2[[names(H2)[i]]] 
    } 
    H3 
})() 
 
ls.str(H2) 
# a :  chr [1:26] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" ... 
# b : List of 5 
#  $ : int 1 
#  $ : int 2 
#  $ : int 3 
#  $ : int 4 
#  $ : int 5 
# c : 'data.frame':    3 obs. of  11 variables: 
#  $ mpg : num  21 21 22.8 
#  $ cyl : num  6 6 4 
#  $ disp: num  160 160 108 
#  $ hp  : num  110 110 93 
#  $ drat: num  3.9 3.9 3.85 
#  $ wt  : num  2.62 2.88 2.32 
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#  $ qsec: num  16.5 17 18.6 
#  $ vs  : num  0 0 1 
#  $ am  : num  1 1 1 
#  $ gear: num  4 4 4 
#  $ carb: num  4 4 1 
# d :  Date[1:1], format: "2016-08-03" 
# e :  POSIXct[1:1], format: "2016-08-03 19:25:14" 
# f : <environment: 0x91a7cb8> 
 
ls.str(H2$f) 
# a :  chr [1:26] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" ... 
# b : List of 5 
#  $ : int 1 
#  $ : int 2 
#  $ : int 3 
#  $ : int 4 
#  $ : int 5 
# c : 'data.frame':    3 obs. of  11 variables: 
#  $ mpg : num  21 21 22.8 
#  $ cyl : num  6 6 4 
#  $ disp: num  160 160 108 
#  $ hp  : num  110 110 93 
#  $ drat: num  3.9 3.9 3.85 
#  $ wt  : num  2.62 2.88 2.32 
#  $ qsec: num  16.5 17 18.6 
#  $ vs  : num  0 0 1 
#  $ am  : num  1 1 1 
#  $ gear: num  4 4 4 
#  $ carb: num  4 4 1 
# d :  Date[1:1], format: "2016-08-03" 
# e :  POSIXct[1:1], format: "2016-08-03 19:25:14"

Limitations

One of the major limitations of using environment objects as hash maps is that, unlike many 

aspects of R, vectorization is not supported for element lookup / insertion:

names(H2) 
#[1] "a" "b" "c" "d" "e" "f" 
 
H2[[c("a", "b")]] 
#Error in H2[[c("a", "b")]] : 
#  wrong arguments for subsetting an environment 
 
Keys <- c("a", "b") 
H2[[Keys]] 
#Error in H2[[Keys]] : wrong arguments for subsetting an environment

Depending on the nature of the data being stored in the object, it may be possible to use vapply or 

list2env for assigning many elements at once:

E1 <- new.env() 
invisible({ 
    vapply(letters, function(x) { 
        E1[[x]] <- rnorm(1) 
        logical(0) 
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    }, FUN.VALUE = logical(0)) 
}) 
 
all.equal(sort(names(E1)), letters) 
#[1] TRUE 
 
Keys <- letters 
E2 <- list2env( 
    setNames( 
        as.list(rnorm(26)), 
        nm = Keys), 
    envir = NULL, 
    hash = TRUE 
) 
 
all.equal(sort(names(E2)), letters) 
#[1] TRUE

Neither of the above are particularly concise, but may be preferable to using a for loop, etc. when 

the number of key-value pairs is large.

package:hash

The hash package offers a hash structure in R. However, it terms of timing for both inserts and 

reads it compares unfavorably to using environments as a hash. This documentation simply 

acknowledges its existence and provides sample timing code below for the above stated reasons. 

There is no identified case where hash is an appropriate solution in R code today.

Consider:

# Generic unique string generator 
unique_strings <- function(n){ 
    string_i <- 1 
    string_len <- 1 
    ans <- character(n) 
    chars <- c(letters,LETTERS) 
    new_strings <- function(len,pfx){ 
    for(i in 1:length(chars)){ 
        if (len == 1){ 
        ans[string_i] <<- paste(pfx,chars[i],sep='') 
        string_i <<- string_i + 1 
        } else { 
        new_strings(len-1,pfx=paste(pfx,chars[i],sep='')) 
        } 
        if (string_i > n) return () 
    } 
    } 
    while(string_i <= n){ 
    new_strings(string_len,'') 
    string_len <- string_len + 1 
    } 
    sample(ans) 
} 
 
# Generate timings using an enviornment 
timingsEnv <- plyr::adply(2^(10:15),.mar=1,.fun=function(i){ 
    strings <- unique_strings(i) 
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    ht1 <- new.env(hash=TRUE) 
    lapply(strings, function(s){ ht1[[s]] <<- 0L}) 
    data.frame( 
    size=c(i,i), 
    seconds=c( 
        system.time(for (j in 1:i) ht1[[strings[j]]]==0L)[3]), 
    type = c('1_hashedEnv') 
    ) 
}) 
 
timingsHash <- plyr::adply(2^(10:15),.mar=1,.fun=function(i){ 
    strings <- unique_strings(i) 
    ht <- hash::hash() 
    lapply(strings, function(s) ht[[s]] <<- 0L) 
    data.frame( 
    size=c(i,i), 
    seconds=c( 
        system.time(for (j in 1:i) ht[[strings[j]]]==0L)[3]), 
    type = c('3_stringHash') 
    ) 
})

package:listenv

Although package:listenv implements a list-like interface to environments, its performance relative 

to environments for hash-like purposes is poor on hash retrieval. However, if the indexes are 

numeric, it can be quite fast on retrieval. However, they have other advantages, e.g. compatibility 

with package:future. Covering this package for that purpose goes beyond the scope of the current 

topic. However, the timing code provided here can be used in conjunction with the example for 

package:hash for write timings.

timingsListEnv <- plyr::adply(2^(10:15),.mar=1,.fun=function(i){ 
    strings <- unique_strings(i) 
    le <- listenv::listenv() 
    lapply(strings, function(s) le[[s]] <<- 0L) 
    data.frame( 
    size=c(i,i), 
    seconds=c( 
        system.time(for (k in 1:i) le[[k]]==0L)[3]), 
    type = c('2_numericListEnv') 
    ) 
})

Read Hashmaps online: https://riptutorial.com/r/topic/5179/hashmaps
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Chapter 46: heatmap and heatmap.2

Examples

Examples from the official documentation

stats::heatmap

Example 1 (Basic usage)

require(graphics); require(grDevices) 
x  <- as.matrix(mtcars) 
rc <- rainbow(nrow(x), start = 0, end = .3) 
cc <- rainbow(ncol(x), start = 0, end = .3) 
hv <- heatmap(x, col = cm.colors(256), scale = "column", 
              RowSideColors = rc, ColSideColors = cc, margins = c(5,10), 
              xlab = "specification variables", ylab =  "Car Models", 
              main = "heatmap(<Mtcars data>, ..., scale = \"column\")")

utils::str(hv) # the two re-ordering index vectors 
# List of 4 
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#  $ rowInd: int [1:32] 31 17 16 15 5 25 29 24 7 6 ... 
#  $ colInd: int [1:11] 2 9 8 11 6 5 10 7 1 4 ... 
#  $ Rowv  : NULL 
#  $ Colv  : NULL

Example 2 (no column dendrogram (nor reordering) at all)

heatmap(x, Colv = NA, col = cm.colors(256), scale = "column", 
        RowSideColors = rc, margins = c(5,10), 
        xlab = "specification variables", ylab =  "Car Models", 
        main = "heatmap(<Mtcars data>, ..., scale = \"column\")")

Example 3 ("no nothing")

heatmap(x, Rowv = NA, Colv = NA, scale = "column", 
        main = "heatmap(*, NA, NA) ~= image(t(x))")
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Example 4 (with reorder())

round(Ca <- cor(attitude), 2) 
#            rating complaints privileges learning raises critical advance 
# rating       1.00       0.83       0.43     0.62   0.59     0.16    0.16 
# complaints   0.83       1.00       0.56     0.60   0.67     0.19    0.22 
# privileges   0.43       0.56       1.00     0.49   0.45     0.15    0.34 
# learning     0.62       0.60       0.49     1.00   0.64     0.12    0.53 
# raises       0.59       0.67       0.45     0.64   1.00     0.38    0.57 
# critical     0.16       0.19       0.15     0.12   0.38     1.00    0.28 
# advance      0.16       0.22       0.34     0.53   0.57     0.28    1.00 
symnum(Ca) # simple graphic 
#            rt cm p l rs cr a 
# rating     1 
# complaints +  1 
# privileges .  .  1 
# learning   ,  .  . 1 
# raises     .  ,  . , 1 
# critical             .  1 
# advance          . . .     1 
# attr(,"legend") 
# [1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1 
heatmap(Ca,               symm = TRUE, margins = c(6,6))
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Example 5 (NO reorder())

heatmap(Ca, Rowv = FALSE, symm = TRUE, margins = c(6,6))
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Example 6 (slightly artificial with color bar, without ordering)

cc <- rainbow(nrow(Ca)) 
heatmap(Ca, Rowv = FALSE, symm = TRUE, RowSideColors = cc, ColSideColors = cc, 
    margins = c(6,6))
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Example 7 (slightly artificial with color bar, with ordering)

heatmap(Ca,        symm = TRUE, RowSideColors = cc, ColSideColors = cc, 
    margins = c(6,6))
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Example 8 (For variable clustering, rather use distance 

based on cor())

symnum( cU <- cor(USJudgeRatings) ) 
#      CO I DM DI CF DE PR F O W PH R 
# CONT 1 
# INTG    1 
# DMNR    B 1 
# DILG    + +  1 
# CFMG    + +  B  1 
# DECI    + +  B  B  1 
# PREP    + +  B  B  B  1 
# FAMI    + +  B  *  *  B  1 
# ORAL    * *  B  B  *  B  B 1 
# WRIT    * +  B  *  *  B  B B 1 
# PHYS    , ,  +  +  +  +  + + + 1 
# RTEN    * *  *  *  *  B  * B B *  1 
# attr(,"legend") 
# [1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1 
 
hU <- heatmap(cU, Rowv = FALSE, symm = TRUE, col = topo.colors(16), 
             distfun = function(c) as.dist(1 - c), keep.dendro = TRUE)
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## The Correlation matrix with same reordering: 
round(100 * cU[hU[[1]], hU[[2]]]) 
#      CONT INTG DMNR PHYS DILG CFMG DECI RTEN ORAL WRIT PREP FAMI 
# CONT  100  -13  -15    5    1   14    9   -3   -1   -4    1   -3 
# INTG  -13  100   96   74   87   81   80   94   91   91   88   87 
# DMNR  -15   96  100   79   84   81   80   94   91   89   86   84 
# PHYS    5   74   79  100   81   88   87   91   89   86   85   84 
# DILG    1   87   84   81  100   96   96   93   95   96   98   96 
# CFMG   14   81   81   88   96  100   98   93   95   94   96   94 
# DECI    9   80   80   87   96   98  100   92   95   95   96   94 
# RTEN   -3   94   94   91   93   93   92  100   98   97   95   94 
# ORAL   -1   91   91   89   95   95   95   98  100   99   98   98 
# WRIT   -4   91   89   86   96   94   95   97   99  100   99   99 
# PREP    1   88   86   85   98   96   96   95   98   99  100   99 
# FAMI   -3   87   84   84   96   94   94   94   98   99   99  100

## The column dendrogram: 
utils::str(hU$Colv) 
# --[dendrogram w/ 2 branches and 12 members at h = 1.15] 
#   |--leaf "CONT" 
#   `--[dendrogram w/ 2 branches and 11 members at h = 0.258] 
#      |--[dendrogram w/ 2 branches and 2 members at h = 0.0354] 
#      |  |--leaf "INTG" 
#      |  `--leaf "DMNR" 
#      `--[dendrogram w/ 2 branches and 9 members at h = 0.187] 
#         |--leaf "PHYS" 
#         `--[dendrogram w/ 2 branches and 8 members at h = 0.075] 
#            |--[dendrogram w/ 2 branches and 3 members at h = 0.0438] 
#            |  |--leaf "DILG" 
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#            |  `--[dendrogram w/ 2 branches and 2 members at h = 0.0189] 
#            |     |--leaf "CFMG" 
#            |     `--leaf "DECI" 
#            `--[dendrogram w/ 2 branches and 5 members at h = 0.0584] 
#               |--leaf "RTEN" 
#               `--[dendrogram w/ 2 branches and 4 members at h = 0.0187] 
#                  |--[dendrogram w/ 2 branches and 2 members at h = 0.00657] 
#                  |  |--leaf "ORAL" 
#                  |  `--leaf "WRIT" 
#                  `--[dendrogram w/ 2 branches and 2 members at h = 0.0101] 
#                     |--leaf "PREP" 
#                     `--leaf "FAMI" 

Tuning parameters in heatmap.2

Given:

x  <- as.matrix(mtcars)

One can use heatmap.2 - a more recent optimized version of heatmap, by loading the following 

library:

require(gplots) 
heatmap.2(x)

To add a title, x- or y-label to your heatmap, you need to set the main, xlab and ylab:
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heatmap.2(x, main = "My main title: Overview of car features", xlab="Car features", ylab = 
"Car brands")

If you wish to define your own color palette for your heatmap, you can set the col parameter by 

using the colorRampPalette function:

heatmap.2(x, trace="none", key=TRUE, Colv=FALSE,dendrogram = "row",col = 
colorRampPalette(c("darkblue","white","darkred"))(100))

As you can notice, the labels on the y axis (the car names) don't fit in the figure. In order to fix this, 

the user can tune the margins parameter:

heatmap.2(x, trace="none", key=TRUE,col = 
colorRampPalette(c("darkblue","white","darkred"))(100), margins=c(5,8))
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Further, we can change the dimensions of each section of our heatmap (the key histogram, the 

dendograms and the heatmap itself), by tuning lhei and lwid :
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If we only want to show a row(or column) dendogram, we need to set Colv=FALSE (or Rowv=FALSE) 

and adjust the dendogram parameter:

heatmap.2(x, trace="none", key=TRUE, Colv=FALSE, dendrogram = "row", col = 
colorRampPalette(c("darkblue","white","darkred"))(100), margins=c(5,8), lwid = c(5,15), lhei = 
c(3,15))
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For changing the font size of the legend title,labels and axis, the user needs to set cex.main, 

cex.lab, cex.axis in the par list:

par(cex.main=1, cex.lab=0.7, cex.axis=0.7) 
heatmap.2(x, trace="none", key=TRUE, Colv=FALSE, dendrogram = "row", col = 
colorRampPalette(c("darkblue","white","darkred"))(100), margins=c(5,8), lwid = c(5,15), lhei = 
c(5,15))
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Read heatmap and heatmap.2 online: https://riptutorial.com/r/topic/4814/heatmap-and-heatmap-2
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Chapter 47: Hierarchical clustering with 

hclust

Introduction

The stats package provides the hclust function to perform hierarchical clustering.

Remarks

Besides hclust, other methods are available, see the CRAN Package View on Clustering.

Examples

Example 1 - Basic use of hclust, display of dendrogram, plot clusters

The cluster library contains the ruspini data - a standard set of data for illustrating cluster analysis.

    library(cluster)                ## to get the ruspini data 
    plot(ruspini, asp=1, pch=20)    ## take a look at the data
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hclust expects a distance matrix, not the original data. We compute the tree using the default 

parameters and display it. The hang parameter lines up all of the leaves of the tree along the 

baseline.

    ruspini_hc_defaults <- hclust(dist(ruspini)) 
    dend <- as.dendrogram(ruspini_hc_defaults) 
    if(!require(dendextend)) install.packages("dendextend"); library(dendextend) 
    dend <- color_branches(dend, k = 4) 
    plot(dend)
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Cut the tree to give four clusters and replot the data coloring the points by cluster. k is the desired 

number of clusters.

    rhc_def_4 = cutree(ruspini_hc_defaults,k=4) 
    plot(ruspini, pch=20, asp=1, col=rhc_def_4)
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This clustering is a little odd. We can get a better clustering by scaling the data first.

    scaled_ruspini_hc_defaults = hclust(dist(scale(ruspini))) 
    srhc_def_4 = cutree(scaled_ruspini_hc_defaults,4) 
    plot(ruspini, pch=20, asp=1, col=srhc_def_4)
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The default dissimilarity measure for comparing clusters is "complete". You can specify a different 

measure with the method parameter.

    ruspini_hc_single = hclust(dist(ruspini), method="single")

Example 2 - hclust and outliers

With hierarchical clustering, outliers often show up as one-point clusters.

Generate three Gaussian distributions to illustrate the effect of outliers.

    set.seed(656) 
    x = c(rnorm(150, 0, 1), rnorm(150,9,1), rnorm(150,4.5,1)) 
    y = c(rnorm(150, 0, 1), rnorm(150,0,1), rnorm(150,5,1)) 
    XYdf = data.frame(x,y) 
    plot(XYdf, pch=20)
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Build the cluster structure, split it into three cluster.

    XY_sing = hclust(dist(XYdf), method="single") 
    XYs3 = cutree(XY_sing,k=3) 
    table(XYs3) 
    XYs3 
      1   2   3 
    448   1   1 

hclust found two outliers and put everything else into one big cluster. To get the "real" clusters, 

you may need to set k higher.

    XYs6 = cutree(XY_sing,k=6) 
    table(XYs6) 
    XYs6 
      1   2   3   4   5   6 
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    148 150   1 149   1   1 
    plot(XYdf, pch=20, col=XYs6)

This StackOverflow post has some guidance on how to pick the number of clusters, but be aware 

of this behavior in hierarchical clustering.

Read Hierarchical clustering with hclust online: https://riptutorial.com/r/topic/8084/hierarchical-

clustering-with-hclust
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Chapter 48: Hierarchical Linear Modeling

Examples

basic model fitting

apologies: since I don't know of a channel for discussing/providing feedback on requests for 

improvement, I'm going to put my question here. Please feel free to point out a better place for 

this! @DataTx states that this is "completely unclear, incomplete, or has severe formatting 

problems". Since I don't see any big formatting problems (:-) ), a little bit more guidance about 

what's expected here for improving clarity or completeness, and why what's here is 

unsalvageable, would be useful.

The primary packages for fitting hierarchical (alternatively "mixed" or "multilevel") linear models in 

R are nlme (older) and lme4 (newer). These packages differ in many minor ways but should 

generally result in very similar fitted models.

library(nlme) 
library(lme4) 
m1.nlme <- lme(Reaction~Days,random=~Days|Subject,data=sleepstudy,method="REML") 
m1.lme4 <- lmer(Reaction~Days+(Days|Subject),data=sleepstudy,REML=TRUE) 
all.equal(fixef(m1.nlme),fixef(m1.lme4)) 
## [1] TRUE

Differences to consider:

formula syntax is slightly different•

nlme is (still) somewhat better documented (e.g. Pinheiro and Bates 2000 Mixed-effects 

models in S-PLUS; however, see Bates et al. 2015 Journal of Statistical Software/

vignette("lmer",package="lme4") for lme4)

•

lme4 is faster and allows easier fitting of crossed random effects•

nlme provides p-values for linear mixed models out of the box, lme4 requires add-on packages 

such as lmerTest or afex

•

nlme allows modeling of heteroscedasticity or residual correlations (in space/time/phylogeny)•

The unofficial GLMM FAQ provides more information, although it is focused on generalized linear 

mixed models (GLMMs).

Read Hierarchical Linear Modeling online: https://riptutorial.com/r/topic/3460/hierarchical-linear-

modeling
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Chapter 49: I/O for database tables

Remarks

Specialized packages

RMySQL•

RODBC•

Examples

Reading Data from MySQL Databases

General

Using the package RMySQL we can easily query MySQL as well as MariaDB databases and store 

the result in an R dataframe:

library(RMySQL) 
 
mydb <- dbConnect(MySQL(), user='user', password='password', dbname='dbname',host='127.0.0.1') 
 
queryString <- "SELECT * FROM table1 t1 JOIN table2 t2 on t1.id=t2.id" 
query <- dbSendQuery(mydb, queryString) 
data <- fetch(query, n=-1) # n=-1 to return all results

Using limits

It is also possible to define a limit, e.g. getting only the first 100,000 rows. In order to do so, just 

change the SQL query regarding the desired limit. The mentioned package will consider these 

options. Example:

queryString <- "SELECT * FROM table1 limit 100000"

Reading Data from MongoDB Databases

In order to load data from a MongoDB database into an R dataframe, use the library MongoLite:

# Use MongoLite library: 
#install.packages("mongolite") 
library(jsonlite) 
library(mongolite) 
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# Connect to the database and the desired collection as root: 
db <- mongo(collection = "Tweets", db = "TweetCollector", url = 
"mongodb://USERNAME:PASSWORD@HOSTNAME") 
 
# Read the desired documents i.e. Tweets inside one dataframe: 
documents <- db$find(limit = 100000, skip = 0, fields = '{ "_id" : false, "Text" : true }')

The code connects to the server HOSTNAME as USERNAME with PASSWORD, tries to open the database 

TweetCollector and read the collection Tweets. The query tries to read the field i.e. column Text.

The results is a dataframe with columns as the yielded data set. In case of this example, the 

dataframe contains the column Text, e.g. documents$Text.

Read I/O for database tables online: https://riptutorial.com/r/topic/5537/i-o-for-database-tables
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Chapter 50: I/O for foreign tables (Excel, SAS, 

SPSS, Stata)

Examples

Importing data with rio

A very simple way to import data from many common file formats is with rio. This package 

provides a function import() that wraps many commonly used data import functions, thereby 

providing a standard interface. It works simply by passing a file name or URL to import():

import("example.csv")       # comma-separated values 
import("example.tsv")       # tab-separated values 
import("example.dta")       # Stata 
import("example.sav")       # SPSS 
import("example.sas7bdat")  # SAS 
import("example.xlsx")      # Excel

import() can also read from compressed directories, URLs (HTTP or HTTPS), and the clipboard. A 

comprehensive list of all supported file formats is available on the rio package github repository.

It is even possible to specify some further parameters related to the specific file format you are 

trying to read, passing them directly within the import() function:

import("example.csv", format = ",") #for csv file where comma is used as separator 
import("example.csv", format = ";") #for csv file where semicolon is used as separator

Importing Excel files

There are several R packages to read excel files, each of which using different languages or 

resources, as summarized in the following table:

R package Uses

xlsx Java

XLconnect Java

openxlsx C++

readxl C++

RODBC ODBC

gdata Perl
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For the packages that use Java or ODBC it is important to know details about your system 

because you may have compatibility issues depending on your R version and OS. For instance, if 

you are using R 64 bits then you also must have Java 64 bits to use xlsx or XLconnect.

Some examples of reading excel files with each package are provided below. Note that many of 

the packages have the same or very similar function names. Therefore, it is useful to state the 

package explicitly, like package::function. The package openxlsx requires prior installation of 

RTools.

Reading excel files with the xlsx package

library(xlsx)

The index or name of the sheet is required to import.

xlsx::read.xlsx("Book1.xlsx", sheetIndex=1) 
 
xlsx::read.xlsx("Book1.xlsx", sheetName="Sheet1")

Reading Excel files with the XLconnect 

package

library(XLConnect) 
wb <- XLConnect::loadWorkbook("Book1.xlsx") 
 
# Either, if Book1.xlsx has a sheet called "Sheet1": 
sheet1 <- XLConnect::readWorksheet(wb, "Sheet1") 
# Or, more generally, just get the first sheet in Book1.xlsx: 
sheet1 <- XLConnect::readWorksheet(wb, getSheets(wb)[1])

XLConnect automatically imports the pre-defined Excel cell-styles embedded in Book1.xlsx. This is 

useful when you wish to format your workbook object and export a perfectly formatted Excel 

document. Firstly, you will need to create the desired cell formats in Book1.xlsx and save them, for 

example, as myHeader, myBody and myPcts. Then, after loading the workbook in R (see above):

Headerstyle <- XLConnect::getCellStyle(wb, "myHeader") 
Bodystyle <- XLConnect::getCellStyle(wb, "myBody") 
Pctsstyle <- XLConnect::getCellStyle(wb, "myPcts")

The cell styles are now saved in your R environment. In order to assign the cell styles to certain 

ranges of your data, you need to define the range and then assign the style:

Headerrange <- expand.grid(row = 1, col = 1:8) 
Bodyrange <- expand.grid(row = 2:6, col = c(1:5, 8)) 
Pctrange <- expand.grid(row = 2:6, col = c(6, 7)) 
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XLConnect::setCellStyle(wb, sheet = "sheet1", row = Headerrange$row, 
             col = Headerrange$col, cellstyle = Headerstyle) 
XLConnect::setCellStyle(wb, sheet = "sheet1", row = Bodyrange$row, 
             col = Bodyrange$col, cellstyle = Bodystyle) 
XLConnect::setCellStyle(wb, sheet = "sheet1", row = Pctrange$row, 
             col = Pctrange$col, cellstyle = Pctsstyle)

Note that XLConnect is easy, but can become extremely slow in formatting. A much faster, but more 

cumbersome formatting option is offered by openxlsx.

Reading excel files with the openxlsx 

package

Excel files can be imported with package openxlsx

library(openxlsx) 
 
openxlsx::read.xlsx("spreadsheet1.xlsx", colNames=TRUE, rowNames=TRUE) 
 
#colNames: If TRUE, the first row of data will be used as column names. 
#rowNames: If TRUE, first column of data will be used as row names.

The sheet, which should be read into R can be selected either by providing its position in the sheet 

argument:

openxlsx::read.xlsx("spreadsheet1.xlsx", sheet = 1)

or by declaring its name:

openxlsx::read.xlsx("spreadsheet1.xlsx", sheet = "Sheet1")

Additionally, openxlsx can detect date columns in a read sheet. In order to allow automatic 

detection of dates, an argument detectDates should be set to TRUE:

openxlsx::read.xlsx("spreadsheet1.xlsx", sheet = "Sheet1", detectDates= TRUE)

Reading excel files with the readxl package

Excel files can be imported as a data frame into R using the readxl package.

library(readxl)

It can read both .xls and .xlsx files.

readxl::read_excel("spreadsheet1.xls") 
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readxl::read_excel("spreadsheet2.xlsx")

The sheet to be imported can be specified by number or name.

readxl::read_excel("spreadsheet.xls", sheet = 1) 
readxl::read_excel("spreadsheet.xls", sheet = "summary")

The argument col_names = TRUE sets the first row as the column names.

 readxl::read_excel("spreadsheet.xls", sheet = 1, col_names = TRUE)

The argument col_types can be used to specify the column types in the data as a vector.

readxl::read_excel("spreadsheet.xls", sheet = 1, col_names = TRUE, 
                   col_types = c("text", "date", "numeric", "numeric"))

Reading excel files with the RODBC package

Excel files can be read using the ODBC Excel Driver that interfaces with Windows' Access 

Database Engine (ACE), formerly JET. With the RODBC package, R can connect to this driver 

and directly query workbooks. Worksheets are assumed to maintain column headers in first row 

with data in organized columns of similar types. NOTE: This approach is limited to only 

Windows/PC machines as JET/ACE are installed .dll files and not available on other operating 

systems.

library(RODBC) 
 
xlconn <- odbcDriverConnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *.xlsb)}; 
                             DBQ=C:\\Path\\To\\Workbook.xlsx') 
 
df <- sqlQuery(xlconn, "SELECT * FROM [SheetName$]") 
close(xlconn)

Connecting with an SQL engine in this approach, Excel worksheets can be queried similar to 

database tables including JOIN and UNION operations. Syntax follows the JET/ACE SQL dialect. 

NOTE: Only data access DML statements, specifically SELECT can be run on workbooks, 

considered not updateable queries.

joindf <-  sqlQuery(xlconn, "SELECT t1.*, t2.* FROM [Sheet1$] t1 
                             INNER JOIN [Sheet2$] t2 
                             ON t1.[ID] = t2.[ID]") 
 
uniondf <-  sqlQuery(xlconn, "SELECT * FROM [Sheet1$] 
                              UNION 
                              SELECT * FROM [Sheet2$]")

Even other workbooks can be queried from the same ODBC channel pointing to a current 

workbook:
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otherwkbkdf <- sqlQuery(xlconn, "SELECT * FROM 
                                 [Excel 12.0 Xml;HDR=Yes; 
                                 Database=C:\\Path\\To\\Other\\Workbook.xlsx].[Sheet1$];")

Reading excel files with the gdata package

example here

Read and write Stata, SPSS and SAS files

The packages foreign and haven can be used to import and export files from a variety of other 

statistical packages like Stata, SPSS and SAS and related software. There is a read function for 

each of the supported data types to import the files.

# loading the packages 
library(foreign) 
library(haven) 
library(readstata13) 
library(Hmisc)

Some examples for the most common data types:

# reading Stata files with `foreign` 
read.dta("path\to\your\data") 
# reading Stata files with `haven` 
read_dta("path\to\your\data")

The foreign package can read in stata (.dta) files for versions of Stata 7-12. According to the 

development page, the read.dta is more or less frozen and will not be updated for reading in 

versions 13+. For more recent versions of Stata, you can use either the readstata13 package or 

haven. For readstata13, the files are

# reading recent Stata (13+) files with `readstata13` 
read.dta13("path\to\your\data")

For reading in SPSS and SAS files

# reading SPSS files with `foreign` 
read.spss("path\to\your\data.sav", to.data.frame = TRUE) 
# reading SPSS files with `haven` 
read_spss("path\to\your\data.sav") 
read_sav("path\to\your\data.sav") 
read_por("path\to\your\data.por") 
 
# reading SAS files with `foreign` 
read.ssd("path\to\your\data") 
# reading SAS files with `haven` 
read_sas("path\to\your\data") 
# reading native SAS files with `Hmisc` 
sas.get("path\to\your\data")   #requires access to saslib 
# Reading SA XPORT format ( *.XPT ) files 
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sasxport.get("path\to\your\data.xpt")  # does not require access to SAS executable

The SAScii package provides functions that will accept SAS SET import code and construct a text 

file that can be processed with read.fwf. It has proved very robust for import of large public-

released datasets. Support is at https://github.com/ajdamico/SAScii

To export data frames to other statistical packages you can use the write functions write.foreign()

. This will write 2 files, one containing the data and one containing instructions the other package 

needs to read the data.

# writing to Stata, SPSS or SAS files with `foreign` 
write.foreign(dataframe, datafile, codefile, 
              package = c("SPSS", "Stata", "SAS"), ...) 
write.foreign(dataframe, "path\to\data\file", "path\to\instruction\file", package = "Stata") 
 
# writing to Stata files with `foreign` 
write.dta(dataframe, "file", version = 7L, 
          convert.dates = TRUE, tz = "GMT", 
          convert.factors = c("labels", "string", "numeric", "codes")) 
 
# writing to Stata files with `haven` 
write_dta(dataframe, "path\to\your\data") 
 
# writing to Stata files with `readstata13` 
save.dta13(dataframe, file, data.label = NULL, time.stamp = TRUE, 
  convert.factors = TRUE, convert.dates = TRUE, tz = "GMT", 
  add.rownames = FALSE, compress = FALSE, version = 117, 
  convert.underscore = FALSE) 
 
# writing to SPSS files with `haven` 
write_sav(dataframe, "path\to\your\data")

File stored by the SPSS can also be read with read.spss in this way:

 foreign::read.spss('data.sav', to.data.frame=TRUE, use.value.labels=FALSE, 
                     use.missings=TRUE, reencode='UTF-8') 
# to.data.frame if TRUE: return a data frame 
# use.value.labels if TRUE: convert variables with value labels into R factors with those 
levels 
# use.missings if TRUE: information on user-defined missing values will used to set the 
corresponding values to NA. 
# reencode character strings will be re-encoded to the current locale. The default, NA, means 
to do so in a UTF-8 locale, only.

Import or Export of Feather file

Feather is an implementation of Apache Arrow designed to store data frames in a language 

agnostic manner while maintaining metadata (e.g. date classes), increasing interoperability 

between Python and R. Reading a feather file will produce a tibble, not a standard data.frame.

library(feather) 
 
path <- "filename.feather" 
df <- mtcars 
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write_feather(df, path) 
 
df2 <- read_feather(path) 
 
head(df2) 
##  A tibble: 6 x 11 
##     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1  21.0     6   160   110  3.90 2.620 16.46     0     1     4     4 
## 2  21.0     6   160   110  3.90 2.875 17.02     0     1     4     4 
## 3  22.8     4   108    93  3.85 2.320 18.61     1     1     4     1 
## 4  21.4     6   258   110  3.08 3.215 19.44     1     0     3     1 
## 5  18.7     8   360   175  3.15 3.440 17.02     0     0     3     2 
## 6  18.1     6   225   105  2.76 3.460 20.22     1     0     3     1 
 
head(df) 
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb 
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4 
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4 
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1 
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1 
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2 
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

The current documentation contains this warning:

Note to users: Feather should be treated as alpha software. In particular, the file format 

is likely to evolve over the coming year. Do not use Feather for long-term data storage.

Read I/O for foreign tables (Excel, SAS, SPSS, Stata) online: https://riptutorial.com/r/topic/5536/i-

o-for-foreign-tables--excel--sas--spss--stata-
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Chapter 51: I/O for geographic data 

(shapefiles, etc.)

Introduction

See also Introduction to Geographical Maps and Input and Output

Examples

Import and Export Shapefiles

With the rgdal package it is possible to import and export shapfiles with R. The function readOGR 

can be used to imports shapfiles. If you want to import a file from e.g. ArcGIS the first argument 

dsn is the path to the folder which contains the shapefile. layer is the name of the shapefile without 

the file ending (just map and not map.shp).

library(rgdal) 
readOGR(dsn = "path\to\the\folder\containing\the\shapefile", layer = "map") 

To export a shapefile use thewriteOGR function. The first argument is the spatial object produced in 

R. dsn and layer are the same as above. The obligatory 4. argument is the driver used to generate 

the shapefile. The function ogrDrivers() lists all available drivers. If you want to export a shapfile to 

ArcGis or QGis you could use driver = "ESRI Shapefile".

writeOGR(Rmap, dsn = "path\to\the\folder\containing\the\shapefile", layer = "map", 
         driver = "ESRI Shapefile" )

tmap package has a very convenient function read_shape(), which is a wrapper for rgdal::reagOGR(). 

The read_shape() function simplifies the process of importing a shapefile a lot. On the downside, 

tmap is quite heavy.

Read I/O for geographic data (shapefiles, etc.) online: https://riptutorial.com/r/topic/5538/i-o-for-

geographic-data--shapefiles--etc--
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Chapter 52: I/O for raster images

Introduction

See also Raster and Image Analysis and Input and Output

Examples

Load a multilayer raster

The R-Logo is a multilayer raster file (red, green, blue)

library(raster) 
r <- stack("C:/Program Files/R/R-3.2.3/doc/html/logo.jpg") 
plot(r)

The individual layers of the RasterStack object can be adressed by [[.

plot(r[[1]])
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Read I/O for raster images online: https://riptutorial.com/r/topic/5539/i-o-for-raster-images
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Chapter 53: I/O for R's binary format

Examples

Rds and RData (Rda) files

.rds and .Rdata (also known as .rda) files can be used to store R objects in a format native to R. 

There are multiple advantages of saving this way when contrasted with non-native storage 

approaches, e.g. write.table:

It is faster to restore the data to R•

It keeps R specific information encoded in the data (e.g., attributes, variable types, etc).•

saveRDS/readRDS only handle a single R object. However, they are more flexible than the multi-object 

storage approach in that the object name of the restored object need not be the same as the 

object name when the object was stored.

Using an .rds file, for example, saving the iris dataset we would use:

saveRDS(object = iris, file = "my_data_frame.rds")

To load it data back in:

iris2 <- readRDS(file = "my_data_frame.rds")

To save a multiple objects we can use save() and output as .Rdata.

Example, to save 2 dataframes: iris and cars

save(iris, cars, file = "myIrisAndCarsData.Rdata")

To load:

load("myIrisAndCarsData.Rdata")

Enviromments

The functions save and load allow us to specify the environment where the object will be hosted:

save(iris, cars, file = "myIrisAndCarsData.Rdata", envir = foo  <- new.env()) 
load("myIrisAndCarsData.Rdata", envir = foo) 
foo$cars 
 
save(iris, cars, file = "myIrisAndCarsData.Rdata", envir = foo  <- new.env()) 
load("myIrisAndCarsData.Rdata", envir = foo) 
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foo$cars

Read I/O for R's binary format online: https://riptutorial.com/r/topic/5540/i-o-for-r-s-binary-format
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Chapter 54: Implement State Machine Pattern 

using S4 Class

Introduction

Finite States Machine concepts are usually implemented under Object Oriented Programming 

(OOP) languages, for example using Java language, based on the State pattern defined in GOF 

(refers to the book: "Design Patterns").

R provides several mechanisms to simulate the OO paradigm, let's apply S4 Object System for 

implementing this pattern.

Examples

Parsing Lines using State Machine

Let's apply the State Machine pattern for parsing lines with the specific pattern using S4 Class 

feature from R.

PROBLEM ENUNCIATION

We need to parse a file where each line provides information about a person, using a delimiter (

";"), but some information provided is optional, and instead of providing an empty field, it is 

missing. On each line we can have the following information: Name;[Address;]Phone. Where the 

address information is optional, sometimes we have it and sometimes don’t, for example:

GREGORY BROWN; 25 NE 25TH; +1-786-987-6543 
DAVID SMITH;786-123-4567 
ALAN PEREZ; 25 SE 50TH; +1-786-987-5553

The second line does not provide address information. Therefore the number of delimiters may be 

deferent like in this case with one delimiter and for the other lines two delimiters. Because the 

number of delimiters may vary, one way to atack this problem is to recognize the presence or not 

of a given field based on its pattern. In such case we can use a regular expression for identifying 

such patterns. For example:

Name: "^([A-Z]'?\\s+)* *[A-Z]+(\\s+[A-Z]{1,2}\\.?,? +)*[A-Z]+((-|\\s+)[A-Z]+)*$". For 

example: RAFAEL REAL, DAVID R. SMITH, ERNESTO PEREZ GONZALEZ, 0' CONNOR BROWN, LUIS PEREZ-

MENA, etc.

•

Address: "^\\s[0-9]{1,4}(\\s+[A-Z]{1,2}[0-9]{1,2}[A-Z]{1,2}|[A-Z\\s0-9]+)$". For example: 

11020 LE JEUNE ROAD, 87 SW 27TH. For the sake of simplicity we don't include here the zipcode, 

city, state, but I can be included in this field or adding additional fields.

•

Phone: "^\\s*(\\+1(-|\\s+))*[0-9]{3}(-|\\s+)[0-9]{3}(-|\\s+)[0-9]{4}$". For example: 305-

123-4567, 305 123 4567, +1-786-123-4567.

•
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Notes:

I am considering the most common pattern of US addresses and phones, it can be easy 

extended to consider more general situations.

•

In R the sign "\" has special meaning for character variables, therefore we need to escape 

it.

•

In order to simplify the process of defining regular expressions a good recommendation is to 

use the following web page: regex101.com, so you can play with it, with a given example, 

until you get the expected result for all possible combinations.

•

The idea is to identify each line field based on previously defined patterns. The State pattern 

define the following entities (classes) that collaborate to control the specific behavior (The State 

Pattern is a behavior pattern):

Let's describe each element considering the context of our problem:

Context: Stores the context information of the parsing process, i.e. the current state and 

handles the entire State Machine Process. For each state, an action is executed (handle()), 

but the context delegates it, based on the state, on the action method defined for a particular 

state (handle() from State class). It defines the interface of interest to clients. Our Context 

class can be defined like this:

Attributes: state○

Methods: handle(), ...○

•

State: The abstract class that represents any state of the State Machine. It defines an 

interface for encapsulating the behavior associated with a particular state of the context. It 

can be defined like this:

Attributes: name, pattern○

Methods: doAction(), isState (using pattern attribute verify whether the input argument 

belong to this state pattern or not), …

○

•

Concrete States (state sub-classes): Each subclass of the class State that implements a 

behavior associated with a state of the Context. Our sub-classes are: InitState, NameState, 

AddressState, PhoneState. Such classes just implements the generic method using the specific 

logic for such states. No additional attributes are required.

•

Note: It is a matter of preference how to name the method that carries out the action, handle(), 

doAction() or goNext(). The method name doAction() can be the same for both classes (Stateor 

Context) we preferred to name as handle() in the Context class for avoiding a confusion when 

defining two generic methods with the same input arguments, but different class.
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PERSON CLASS

Using the S4 syntax we can define a Person class like this:

setClass(Class = "Person", 
    slots = c(name = "character", address = "character", phone = "character") 
)

It is a good recommendation to initialize the class attributes. The setClass documentation suggests 

using a generic method labeled as "initialize", instead of using deprecated attributes such as: 

prototype, representation.

setMethod("initialize", "Person", 
  definition = function(.Object, name = NA_character_, 
    address = NA_character_, phone = NA_character_) { 
        .Object@name <- name 
        .Object@address <- address 
        .Object@phone <- phone 
        .Object 
    } 
)

Because the initialize method is already a standard generic method of package methods, we need 

to respect the original argument definition. We can verify it typing on R prompt:

> initialize

It returns the entire function definition, you can see at the top who the function is defined like:

function (.Object, ...) {...}

Therefore when we use setMethod we need to follow exaclty the same syntax (.Object).

Another existing generic method is show, it is equivalent toString() method from Java and it is a 

good idea to have a specific implementation for class domain:

setMethod("show", signature = "Person", 
  definition = function(object) { 
      info <- sprintf("%s@[name='%s', address='%s', phone='%s']", 
        class(object), object@name, object@address, object@phone) 
      cat(info) 
      invisible(NULL) 
  } 
)

Note: We use the same convention as in the default toString() Java implementation.

Let's say we want to save the parsed information (a list of Person objects) into a dataset, then we 

should be able first to convert a list of objects to into something the R can transform (for example 

coerce the object as a list). We can define the following additional method (for more detail about 

this see the post)
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setGeneric(name = "as.list", signature = c('x'), 
    def = function(x) standardGeneric("as.list")) 
 
# Suggestion taken from here: 
# http://stackoverflow.com/questions/30386009/how-to-extend-as-list-in-a-canonical-way-to-s4-
objects 
setMethod("as.list", signature = "Person", 
    definition = function(x) { 
        mapply(function(y) { 
        #apply as.list if the slot is again an user-defined object 
        #therefore, as.list gets applied recursively 
        if (inherits(slot(x,y),"Person")) { 
          as.list(slot(x,y)) 
        } else { 
          #otherwise just return the slot 
          slot(x,y) 
        } 
      }, 
        slotNames(class(x)), 
        SIMPLIFY=FALSE) 
    } 
)

R does not provide a sugar syntax for OO because the language was initially conceived to provide 

valuable functions for Statisticians. Therefore each user method requires two parts: 1) the 

Definition part (via setGeneric) and 2) the implementation part (via setMethod). Like in the above 

example.

STATE CLASS

Following S4 syntax, let's define the abstract State class.

setClass(Class = "State", slots = c(name = "character", pattern = "character")) 
 
setMethod("initialize", "State", 
  definition = function(.Object, name = NA_character_, pattern = NA_character_) { 
      .Object@name <- name 
      .Object@pattern <- pattern 
      .Object 
  } 
) 
 
setMethod("show", signature = "State", 
  definition = function(object) { 
      info <- sprintf("%s@[name='%s', pattern='%s']", class(object), 
          object@name, object@pattern) 
      cat(info) 
      invisible(NULL) 
  } 
) 
 
setGeneric(name = "isState", signature = c('obj', 'input'), 
    def = function(obj, input) standardGeneric("isState")) 
 
setGeneric(name = "doAction", signature = c('obj', 'input', 'context'), 
    def = function(obj, input, context) standardGeneric("doAction"))

Every sub-class from State will have associated a name and pattern, but also a way to identify 
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whether a given input belongs to this state or not (isState() method), and also implement the 

corresponding actions for this state (doAction() method).

In order to understand the process, let's define the transition matrix for each state based on the 

input received:

Input/Current State Init Name Address Phone

Name Name

Address Address

Phone Phone Phone

End End

Note: The cell [row, col]=[i,j] represents the destination state for the current state j, when it 

receives the input i.

It means that under the state Name it can receive two inputs: an address or a phone number. 

Another way to represents the transaction table is using the following UML State Machine 

diagram:
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Let's implement each particular state as a sub-state of the class State

STATE SUB-CLASSES

Init State:

The initial state will be implemented via the following class:

setClass("InitState", contains = "State") 
 
setMethod("initialize", "InitState", 
  definition = function(.Object, name = "init", pattern = NA_character_) { 
      .Object@name <- name 
      .Object@pattern <- pattern 
      .Object 
  } 
) 
 
setMethod("show", signature = "InitState", 
  definition = function(object) { 
      callNextMethod() 
  } 
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)

In R to indicate a class is a sub-class of other class is using the attribute contains and indicating 

the class name of the parent class.

Because the sub-classes just implement the generic methods, without adding additional attributes, 

then the show method, just call the equivalent method from the upper class (via method: 

callNextMethod())

The initial state does not have associated a pattern, it just represents the beginning of the process, 

then we initialize the class with an NA value.

Now lets to implement the generic methods from the State class:

setMethod(f = "isState", signature = "InitState", 
  definition = function(obj, input) { 
      nameState <- new("NameState") 
      result <- isState(nameState, input) 
      return(result) 
  } 
)

For this particular state (without pattern), the idea it just initializes the parsing process expecting 

the first field will be a name, otherwise it will be an error.

setMethod(f = "doAction", signature = "InitState", 
    definition = function(obj, input, context) { 
        nameState <- new("NameState") 
        if (isState(nameState, input)) { 
            person <- context@person 
            person@name <- trimws(input) 
            context@person <- person 
            context@state <- nameState 
        } else { 
            msg <- sprintf("The input argument: '%s' cannot be identified", input) 
            stop(msg) 
        } 
        return(context) 
    } 
)

The doAction method provides the transition and updates the context with the information 

extracted. Here we are accessing to context information via the @-operator. Instead, we can define 

get/set methods, to encapsulate this process (as it is mandated in OO best practices: 

encapsulation), but that would add four more methods per get-set without adding value for the 

purpose of this example.

It is a good recommendation in all doAction implementation, to add a safeguard when the input 

argument is not properly identified.

Name State

Here is the definition of this class definition:
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setClass ("NameState", contains = "State") 
 
setMethod("initialize","NameState", 
  definition=function(.Object, name="name", 
        pattern = "^([A-Z]'?\\s+)* *[A-Z]+(\\s+[A-Z]{1,2}\\.?,? +)*[A-Z]+((-|\\s+)[A-Z]+)*$") 
{ 
        .Object@pattern <- pattern 
        .Object@name <- name 
        .Object 
  } 
) 
 
setMethod("show", signature = "NameState", 
  definition = function(object) { 
      callNextMethod() 
  } 
)

We use the function grepl for verifying the input belongs to a given pattern.

setMethod(f="isState", signature="NameState", 
  definition=function(obj, input) { 
      result <- grepl(obj@pattern, input, perl=TRUE) 
      return(result) 
  } 
)

Now we define the action to carry out for a given state:

setMethod(f = "doAction", signature = "NameState", 
  definition=function(obj, input, context) { 
      addressState <- new("AddressState") 
      phoneState <- new("PhoneState") 
      person <- context@person 
      if (isState(addressState, input)) { 
          person@address <- trimws(input) 
          context@person <- person 
          context@state <- addressState 
      } else if (isState(phoneState, input)) { 
          person@phone <- trimws(input) 
          context@person <- person 
          context@state <- phoneState 
      } else { 
          msg <- sprintf("The input argument: '%s' cannot be identified", input) 
          stop(msg) 
      } 
      return(context) 
  } 
)

Here we consider to possible transitions: one for Address state and the other one for Phone state. 

In all cases we update the context information:

The person information: address or phone with the input argument.•

The state of the process•

The way to identify the state is to invoke the method: isState() for a particular state. We create a 
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default specific states (addressState, phoneState) and then ask for a particular validation.

The logic for the other sub-classes (one per state) implementation is very similar.

Address State

setClass("AddressState", contains = "State") 
 
setMethod("initialize", "AddressState", 
  definition = function(.Object, name="address", 
    pattern = "^\\s[0-9]{1,4}(\\s+[A-Z]{1,2}[0-9]{1,2}[A-Z]{1,2}|[A-Z\\s0-9]+)$") { 
        .Object@pattern <- pattern 
        .Object@name <- name 
        .Object 
    } 
) 
 
setMethod("show", signature = "AddressState", 
  definition = function(object) { 
      callNextMethod() 
  } 
) 
 
setMethod(f="isState", signature="AddressState", 
    definition=function(obj, input) { 
        result <- grepl(obj@pattern, input, perl=TRUE) 
        return(result) 
    } 
) 
 
setMethod(f = "doAction", "AddressState", 
    definition=function(obj, input, context) { 
        phoneState <- new("PhoneState") 
        if (isState(phoneState, input)) { 
            person <- context@person 
            person@phone <- trimws(input) 
            context@person <- person 
            context@state <- phoneState 
        } else { 
            msg <- sprintf("The input argument: '%s' cannot be identified", input) 
            stop(msg) 
        } 
        return(context) 
    } 
)

Phone State

setClass("PhoneState", contains = "State") 
 
setMethod("initialize", "PhoneState", 
  definition = function(.Object, name = "phone", 
    pattern = "^\\s*(\\+1(-|\\s+))*[0-9]{3}(-|\\s+)[0-9]{3}(-|\\s+)[0-9]{4}$") { 
        .Object@pattern <- pattern 
        .Object@name <- name 
        .Object 
    } 
) 
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setMethod("show", signature = "PhoneState", 
  definition = function(object) { 
      callNextMethod() 
  } 
) 
 
setMethod(f = "isState", signature = "PhoneState", 
    definition = function(obj, input) { 
        result <- grepl(obj@pattern, input, perl = TRUE) 
        return(result) 
    } 
)

Here is where we add the person information into the list of persons of the context.

setMethod(f = "doAction", "PhoneState", 
    definition = function(obj, input, context) { 
        context <- addPerson(context, context@person) 
        context@state <- new("InitState") 
        return(context) 
    } 
)

CONTEXT CLASS

Now the lets to explain the Context class implementation. We can define it considering the 

following attributes:

setClass(Class = "Context", 
     slots = c(state = "State", persons = "list", person = "Person") 
)

Where

state: The current state of the process•

person: The current person, it represents the information we have already parsed from the 

current line.

•

persons: The list of parsed persons processed.•

Note: Optionally, we can add a name to identify the context by name in case we are working with 

more than one parser type.

setMethod(f="initialize", signature="Context", 
  definition = function(.Object) { 
        .Object@state <- new("InitState") 
        .Object@persons <- list() 
        .Object@person <- new("Person") 
        return(.Object) 
    } 
) 
 
setMethod("show", signature = "Context", 
  definition = function(object) { 
      cat("An object of class ", class(object), "\n", sep = "") 
      info <- sprintf("[state='%s', persons='%s', person='%s']", object@state, 
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          toString(object@persons), object@person) 
      cat(info) 
      invisible(NULL) 
  } 
) 
 
setGeneric(name = "handle", signature = c('obj', 'input', 'context'), 
    def = function(obj, input, context) standardGeneric("handle")) 
 
setGeneric(name = "addPerson", signature = c('obj', 'person'), 
    def = function(obj, person) standardGeneric("addPerson")) 
 
setGeneric(name = "parseLine", signature = c('obj', 's'), 
    def = function(obj, s) standardGeneric("parseLine")) 
 
setGeneric(name = "parseLines", signature = c('obj', 's'), 
    def = function(obj, s) standardGeneric("parseLines")) 
 
setGeneric(name = "as.df", signature = c('obj'), 
    def = function(obj) standardGeneric("as.df"))

With such generic methods, we control the entire behavior of the parsing process:

handle(): Will invoke the particular doAction() method of the current state.•

addPerson: Once we reach the end state, we need to add a person to the list of persons we 

have parsed.

•

parseLine(): Parse a single line•

parseLines(): Parse multiple lines (an array of lines)•

as.df(): Extract the information from persons list into a data frame object.•

Let's go on now with the corresponding implementations:

handle() method, delegates on doAction() method from the current state of the context:

setMethod(f = "handle", signature = "Context", 
    definition = function(obj, input) { 
        obj <- doAction(obj@state, input, obj) 
        return(obj) 
    } 
) 
 
setMethod(f = "addPerson", signature = "Context", 
  definition = function(obj, person) { 
      obj@persons <- c(obj@persons, person) 
      return(obj) 
  } 
)

First, we split the original line in an array using the delimiter to identify each element via the R-

function strsplit(), then iterate for each element as an input value for a given state. The handle() 

method returns again the context with the updated information (state, person, persons attribute).

setMethod(f = "parseLine", signature = "Context", 
  definition = function(obj, s) { 
      elements <- strsplit(s, ";")[[1]] 
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      # Adding an empty field for considering the end state. 
      elements <- c(elements, "") 
      n <- length(elements) 
      input <- NULL 
      for (i in (1:n)) { 
        input <- elements[i] 
        obj <- handle(obj, input) 
      } 
      return(obj@person) 
  } 
)

Becuase R makes a copy of the input argument, we need to return the context (obj):

setMethod(f = "parseLines", signature = "Context", 
  definition = function(obj, s) { 
      n <- length(s) 
      listOfPersons <- list() 
      for (i in (1:n)) { 
          ipersons <- parseLine(obj, s[i]) 
          listOfPersons[[i]] <- ipersons 
      } 
      obj@persons <- listOfPersons 
      return(obj) 
  } 
)

The attribute persons is a list of instance of S4 Person class. This something cannot be coerced to 

any standard type because R does not know of to treat an instance of a user defined class. The 

solution is to convert a Person into a list, using the as.list method previously defined. Then we can 

apply this function to each element of the list persons, via the lapply() function. Then in the next 

invocation to lappy() function, now applies the data.frame function for converting each element of 

the persons.list into a data frame. Finally, the rbind() function is called for adding each element 

converted as a new row of the data frame generated (for more detail about this see this post)

# Sugestion taken from this post: 
# http://stackoverflow.com/questions/4227223/r-list-to-data-frame 
setMethod(f = "as.df", signature = "Context", 
  definition = function(obj) { 
    persons <- obj@persons 
    persons.list <- lapply(persons, as.list) 
    persons.ds <- do.call(rbind, lapply(persons.list, data.frame, stringsAsFactors = FALSE)) 
    return(persons.ds) 
  } 
)

PUTTING ALL TOGETHER

Finally, lets to test the entire solution. Define the lines to parse where for the second line the 

address information is missing.

s <- c( 
    "GREGORY BROWN; 25 NE 25TH; +1-786-987-6543", 
    "DAVID SMITH;786-123-4567", 
     "ALAN PEREZ; 25 SE 50TH; +1-786-987-5553" 
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)

Now we initialize the context, and parse the lines:

context <- new("Context") 
context <- parseLines(context, s)

Finally obtain the corresponding dataset and print it:

df <- as.df(context) 
> df 
           name    address           phone 
1 GREGORY BROWN 25 NE 25TH +1-786-987-6543 
2   DAVID SMITH       <NA>    786-123-4567 
3    ALAN PEREZ 25 SE 50TH +1-786-987-5553

Let's test now the show methods:

> show(context@persons[[1]]) 
Person@[name='GREGORY BROWN', address='25 NE 25TH', phone='+1-786-987-6543']

And for some sub-state:

>show(new("PhoneState")) 
PhoneState@[name='phone', pattern='^\s*(\+1(-|\s+))*[0-9]{3}(-|\s+)[0-9]{3}(-|\s+)[0-9]{4}$']

Finally, test the as.list() method:

> as.list(context@persons[[1]]) 
$name 
[1] "GREGORY BROWN" 
 
$address 
[1] "25 NE 25TH" 
 
$phone 
[1] "+1-786-987-6543" 
 
> 

CONCLUSION

This example shows how to implement the State pattern, using one of the available mechanisms 

from R for using the OO paradigm. Nevertheless, the R OO solution is not user-friendly and differs 

so much from other OOP languages. You need to switch your mindset because the syntax is 

completely different, it reminds more the functional programming paradigm. For example instead 

of: object.setID("A1") as in Java/C#, for R you have to invoke the method in this way: 

setID(object, "A1"). Therefore you always have to include the object as an input argument to 

provide the context of the function. On the same way, there is no special this class attribute and 

either a "." notation for accessing methods or attributes of the given class. It is more error prompt 

because to refer a class or methods is done via attribute value ("Person", "isState", etc.).
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Said the above, S4 class solution, requires much more lines of codes than a traditional Java/C# 

languages for doing simple tasks. Anyway, the State Pattern is a good and generic solution for 

such kind of problems. It simplifies the process delegating the logic into a particular state. Instead 

of having a big if-else block for controlling all situations, we have smaller if-else blocks inside on 

each State sub-class implementation for implementing the action to carry out in each state.

Attachment: Here you can download the entire script.

Any suggestion is welcome.

Read Implement State Machine Pattern using S4 Class online: 

https://riptutorial.com/r/topic/9126/implement-state-machine-pattern-using-s4-class
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Chapter 55: Input and output

Remarks

To construct file paths, for reading or writing, use file.path.

Use dir to see what files are in a directory.

Examples

Reading and writing data frames

Data frames are R's tabular data structure. They can be written to or read from in a variety of 

ways.

This example illustrates a couple common situations. See the links at the end for other resources.

Writing

Before making the example data below, make sure you're in a folder you want to write to. Run 

getwd() to verify the folder you're in and read ?setwd if you need to change folders.

set.seed(1) 
for (i in 1:3) 
  write.table( 
    data.frame(id = 1:2, v = sample(letters, 2)), 
    file = sprintf("file201%s.csv", i) 
  )

Now, we have three similarly-formatted CSV files on disk.

Reading

We have three similarly-formatted files (from the last section) to read in. Since these files are 

related, we should store them together after reading in, in a list:

file_names = c("file2011.csv", "file2012.csv", "file2013.csv") 
file_contents = lapply(setNames(file_names, file_names), read.table) 
 
# $file2011.csv 
#   id v 
# 1  1 g 
# 2  2 j 
# 
# $file2012.csv 
#   id v 
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# 1  1 o 
# 2  2 w 
# 
# $file2013.csv 
#   id v 
# 1  1 f 
# 2  2 w

To work with this list of files, first examine the structure with str(file_contents), then read about 

stacking the list with ?rbind or iterating over the list with ?lapply.

Further resources

Check out ?read.table and ?write.table to extend this example. Also:

R binary formats (for tables and other objects)•

Plain-text table formats

comma-delimited CSVs○

tab-delimited TSVs○

Fixed-width formats○

•

Language-agnostic binary table formats

Feather○

•

Foreign table and spreadsheet formats

SAS○

SPSS○

Stata○

Excel○

•

Relational database table formats

MySQL○

SQLite○

PostgreSQL○

•

Read Input and output online: https://riptutorial.com/r/topic/5543/input-and-output
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Chapter 56: Inspecting packages

Introduction

Packages build on base R. This document explains how to inspect installed packages and their 

functionality. Related Docs: Installing packages

Remarks

The Comprehensive R Archive Network (CRAN) is the primary package repository.

Examples

View package information

To retrieve information about dplyr package and its functions' descriptions:

help(package = "dplyr")

No need to load the package first.

View package's built-in data sets

To see built-in data sets from package dplyr

 data(package = "dplyr")

No need to load the package first.

List a package's exported functions

To get the list of functions within package dplyr, we first must load the package:

library(dplyr) 
ls("package:dplyr")

View Package Version

Conditions: package should be at least installed. If not loaded in the current session, not a 

problem.

  ## Checking package version which was installed at past or 
  ## installed currently but not loaded in the current session 
 
  packageVersion("seqinr") 
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  # [1] ‘3.3.3’ 
  packageVersion("RWeka") 
  # [1] ‘0.4.29’

View Loaded packages in Current Session

To check the list of loaded packages

search()

OR

(.packages())

Read Inspecting packages online: https://riptutorial.com/r/topic/7408/inspecting-packages
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Chapter 57: Installing packages

Syntax

install.packages(pkgs, lib, repos, method, destdir, dependencies, ...)•

Parameters

Parameter Details

pkgs
character vector of the names of packages. If repos = NULL, a character 

vector of file paths.

lib character vector giving the library directories where to install the packages.

repos
character vector, the base URL(s) of the repositories to use, can be NULL to 

install from local files

method download method

destdir directory where downloaded packages are stored

dependencies

logical indicating whether to also install uninstalled packages which these 

packages depend on/link to/import/suggest (and so on recursively). Not used 

if repos = NULL.

...
Arguments to be passed to ‘download.file’ or to the functions for binary 

installs on OS X and Windows.

Remarks

Related Docs

Inspecting packages•

Examples

Download and install packages from repositories

Packages are collections of R functions, data, and compiled code in a well-defined format. Public 

(and private) repositories are used to host collections of R packages. The largest collection of R 

packages is available from CRAN.
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Using CRAN

A package can be installed from CRAN using following code:

install.packages("dplyr")

Where "dplyr" is referred to as a character vector.

More than one packages can be installed in one go by using the combine function c() and passing 

a series of character vector of package names:

install.packages(c("dplyr", "tidyr", "ggplot2"))

In some cases, install.packages may prompt for a CRAN mirror or fail, depending on the value of 

getOption("repos"). To prevent this, specify a CRAN mirror as repos argument:

install.packages("dplyr", repos = "https://cloud.r-project.org/") 

Using the repos argument it is also possible to install from other repositories. For complete 

information about all the available options, run ?install.packages.

Most packages require functions, which were implemented in other packages (e.g. the package 

data.table). In order to install a package (or multiple packages) with all the packages, which are 

used by this given package, the argument dependencies should be set to TRUE):

install.packages("data.table", dependencies = TRUE)

Using Bioconductor

Bioconductor hosts a substantial collection of packages related to Bioinformatics. They provide 

their own package management centred around the biocLite function:

    ## Try http:// if https:// URLs are not supported 
    source("https://bioconductor.org/biocLite.R") 
    biocLite()

By default this installs a subset of packages that provide the most commonly used functionality. 

Specific packages can be installed by passing a vector of package names. For example, to install 

RImmPort from Bioconductor:

    source("https://bioconductor.org/biocLite.R") 
    biocLite("RImmPort")

Install package from local source
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To install package from local source file:

install.packages(path_to_source, repos = NULL, type="source") 
 
install.packages("~/Downloads/dplyr-master.zip", repos=NULL, type="source")

Here, path_to_source is absolute path of local source file.

Another command that opens a window to choose downloaded zip or tar.gz source files is:

install.packages(file.choose(), repos=NULL)

Another possible way is using the GUI based RStudio:

Step 1: Go to Tools.

Step 2: Go to Install Packages.

Step 3: In the Install From set it as Package Archive File (.zip; .tar.gz)

Step 4: Then Browse find your package file (say crayon_1.3.1.zip) and after some time (after it 

shows the Package path and file name in the Package Archive tab)

Another way to install R package from local source is using install_local() function from devtools 

package.

library(devtools) 
install_local("~/Downloads/dplyr-master.zip")

Install packages from GitHub

To install packages directly from GitHub use the devtools package:

library(devtools) 
install_github("authorName/repositoryName")

To install ggplot2 from github:

devtools::install_github("tidyverse/ggplot2")

The above command will install the version of ggplot2 that corresponds to the master branch. To 

install from a different branch of a repository use the ref argument to provide the name of the 

branch. For example, the following command will install the dev_general branch of the googleway 

package.

devtools::install_github("SymbolixAU/googleway", ref = "dev_general")
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Another option is to use the ghit package. It provides a lightweight alternative for installing 

packages from github:

install.packages("ghit") 
ghit::install_github("google/CausalImpact")

To install a package that is in a private repository on Github, generate a personal access token 

at http://www.github.com/settings/tokens/ (See ?install_github for documentation on the same). 

Follow these steps:

install.packages(c("curl", "httr"))1. 

config = httr::config(ssl_verifypeer = FALSE)2. 

 install.packages("RCurl") 
 options(RCurlOptions = c(getOption("RCurlOptions"),ssl.verifypeer = FALSE, 
ssl.verifyhost = FALSE ) )

3. 

getOption("RCurlOptions")

You should see the following:

ssl.verifypeer ssl.verifyhost 
 
FALSE          FALSE 

4. 

library(httr) 
set_config(config(ssl_verifypeer = 0L)) 

This prevents the common error: "Peer certificate cannot be authenticated with given CA 

certificates"

5. 

Finally, use the following command to install your package seamlessly

install_github("username/package_name",auth_token="abc")

6. 

Alternatively, set an environment variable GITHUB_PAT, using

Sys.setenv(GITHUB_PAT = "access_token") 
devtools::install_github("organisation/package_name")

The PAT generated in Github is only visible once, i.e., when created initially, so its prudent to save 

that token in .Rprofile. This is also helpful if the organisation has many private repositories.

Using a CLI package manager -- basic pacman usage

pacman is a simple package manager for R.

pacman
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allows a user to compactly load all desired packages, installing any which are missing (and their 

dependencies), with a single command, p_load. pacman does not require the user to type quotation 

marks around a package name. Basic usage is as follows:

p_load(data.table, dplyr, ggplot2)

The only package requiring a library, require, or install.packages statement with this approach is 

pacman itself:

library(pacman) 
p_load(data.table, dplyr, ggplot2)

or, equally valid:

pacman::p_load(data.table, dplyr, ggplot2)

In addition to saving time by requiring less code to manage packages, pacman also facilitates the 

construction of reproducible code by installing any needed packages if and only if they are not 

already installed.

Since you may not be sure if pacman is installed in the library of a user who will use your code (or 

by yourself in future uses of your own code) a best practice is to include a conditional statement to 

install pacman if it is not already loaded:

if(!(require(pacman)) install.packages("pacman") 
pacman::p_load(data.table, dplyr, ggplot2)

Install local development version of a package

While working on the development of an R package it is often necessary to install the latest 

version of the package. This can be achieved by first building a source distribution of the package 

(on the command line)

R CMD build my_package

and then installing it in R. Any running R sessions with previous version of the package loaded will 

need to reload it.

unloadNamespace("my_package") 
library(my_package)

A more convenient approach uses the devtools package to simplify the process. In an R session 

with the working directory set to the package directory

devtools::install()

will build, install and reload the package.
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Read Installing packages online: https://riptutorial.com/r/topic/1719/installing-packages
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Chapter 58: Introduction to Geographical 

Maps

Introduction

See also I/O for geographic data

Examples

Basic map-making with map() from the package maps

The function map() from the package maps provides a simple starting point for creating maps with R.

A basic world map can be drawn as follows:

require(maps) 
map()

The color of the outline can be changed by setting the color parameter, col, to either the character 
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name or hex value of a color:

require(maps) 
map(col = "cornflowerblue")

To fill land masses with the color in col we can set fill = TRUE:

require(maps) 
map(fill = TRUE, col = c("cornflowerblue"))
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A vector of any length may be supplied to col when fill = TRUE is also set:

require(maps) 
map(fill = TRUE, col = c("cornflowerblue", "limegreen", "hotpink"))
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In the example above colors from col are assigned arbitrarily to polygons in the map representing 

regions and colors are recycled if there are fewer colors than polygons.

We can also use color coding to represent a statistical variable, which may optionally be described 

in a legend. A map created as such is known as a "choropleth".

The following choropleth example sets the first argument of map(), which is database to "county" 

and "state" to color code unemployment using data from the built-in datasets unemp and 

county.fips while overlaying state lines in white:

require(maps) 
if(require(mapproj)) {    # mapproj is used for  projection="polyconic" 
  # color US county map by 2009 unemployment rate 
  # match counties to map using FIPS county codes 
  # Based on J's solution to the "Choropleth Challenge" 
  # Code improvements by Hack-R (hack-r.github.io) 
 
  # load data 
  # unemp includes data for some counties not on the "lower 48 states" county 
  # map, such as those in Alaska, Hawaii, Puerto Rico, and some tiny Virginia 
  #  cities 
  data(unemp) 
  data(county.fips) 
 
  # define color buckets 
  colors = c("paleturquoise", "skyblue", "cornflowerblue", "blueviolet", "hotpink", 
"darkgrey") 
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  unemp$colorBuckets <- as.numeric(cut(unemp$unemp, c(0, 2, 4, 6, 8, 10, 100))) 
  leg.txt <- c("<2%", "2-4%", "4-6%", "6-8%", "8-10%", ">10%") 
 
  # align data with map definitions by (partial) matching state,county 
  # names, which include multiple polygons for some counties 
  cnty.fips <- county.fips$fips[match(map("county", plot=FALSE)$names, 
                                      county.fips$polyname)] 
  colorsmatched <- unemp$colorBuckets[match(cnty.fips, unemp$fips)] 
 
  # draw map 
  par(mar=c(1, 1, 2, 1) + 0.1) 
  map("county", col = colors[colorsmatched], fill = TRUE, resolution = 0, 
      lty = 0, projection = "polyconic") 
  map("state", col = "white", fill = FALSE, add = TRUE, lty = 1, lwd = 0.1, 
      projection="polyconic") 
  title("unemployment by county, 2009") 
  legend("topright", leg.txt, horiz = TRUE, fill = colors, cex=0.6) 
}

50 State Maps and Advanced Choropleths with Google Viz

A common question is how to juxtapose (combine) physically separate geographical regions on 

the same map, such as in the case of a choropleth describing all 50 American states (The 

mainland with Alaska and Hawaii juxtaposed).

Creating an attractive 50 state map is simple when leveraging Google Maps. Interfaces to 
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Google's API include the packages googleVis, ggmap, and RgoogleMaps.

require(googleVis) 
 
G4 <- gvisGeoChart(CityPopularity, locationvar='City', colorvar='Popularity', 
                   options=list(region='US', height=350, 
                                displayMode='markers', 
                                colorAxis="{values:[200,400,600,800], 
                                 colors:[\'red', \'pink\', \'orange',\'green']}") 
) 
plot(G4)

The function gvisGeoChart() requires far less coding to create a choropleth compared to older 

mapping methods, such as map() from the package maps. The colorvar parameter allows easy 

coloring of a statistical variable, at a level specified by the locationvar parameter. The various 

options passed to options as a list allow customization of the map's details such as size (height), 

shape (markers), and color coding (colorAxis and colors).

Interactive plotly maps

The plotly package allows many kind of interactive plots, including maps. There are a few ways to 

create a map in plotly. Either supply the map data yourself (via plot_ly() or ggplotly()), use 

plotly's "native" mapping capabilities (via plot_geo() or plot_mapbox()), or even a combination of 

both. An example of supplying the map yourself would be:

library(plotly) 
map_data("county") %>% 
    group_by(group) %>% 
    plot_ly(x = ~long, y = ~lat) %>% 
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    add_polygons() %>% 
    layout( 
        xaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE), 
        yaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE) 
    )

For a combination of both approaches, swap plot_ly() for plot_geo() or plot_mapbox() in the above 

example. See the plotly book for more examples.

The next example is a "strictly native" approach that leverages the layout.geo attribute to set the 

aesthetics and zoom level of the map. It also uses the database world.cities from maps to filter the 

Brazilian cities and plot them on top of the "native" map.

The main variables: pophis a text with the city and its population (which is shown upon mouse 

hover); qis a ordered factor from the population's quantile. ge has information for the layout of the 

maps. See the package documentation for more information.

library(maps) 
dfb <- world.cities[world.cities$country.etc=="Brazil",] 
library(plotly) 
dfb$poph <- paste(dfb$name, "Pop", round(dfb$pop/1e6,2), " millions") 
dfb$q <- with(dfb, cut(pop, quantile(pop), include.lowest = T)) 
levels(dfb$q) <- paste(c("1st", "2nd", "3rd", "4th"), "Quantile") 
dfb$q <- as.ordered(dfb$q) 
 
ge <- list( 
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  scope = 'south america', 
  showland = TRUE, 
  landcolor = toRGB("gray85"), 
  subunitwidth = 1, 
  countrywidth = 1, 
  subunitcolor = toRGB("white"), 
  countrycolor = toRGB("white") 
) 
 
plot_geo(dfb, lon = ~long, lat = ~lat, text = ~poph, 
    marker = ~list(size = sqrt(pop/10000) + 1, line = list(width = 0)), 
    color = ~q, locationmode = 'country names') %>% 
layout(geo = ge, title = 'Populations<br>(Click legend to toggle)')

Making Dynamic HTML Maps with Leaflet

Leaflet is an open-source JavaScript library for making dynamic maps for the web. RStudio wrote 

R bindings for Leaflet, available through its leaflet package, built with htmlwidgets. Leaflet maps 

integrate well with the RMarkdown and Shiny ecosystems.
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The interface is piped, using a leaflet() function to initialize a map and subsequent functions 

adding (or removing) map layers. Many kinds of layers are available, from markers with popups to 

polygons for creating choropleth maps. Variables in the data.frame passed to leaflet() are 

accessed via function-style ~ quotation.

To map the state.name and state.center datasets:

library(leaflet) 
 
data.frame(state.name, state.center) %>% 
    leaflet() %>% 
    addProviderTiles('Stamen.Watercolor') %>% 
    addMarkers(lng = ~x, lat = ~y, 
               popup = ~state.name, 
               clusterOptions = markerClusterOptions())

(Screenshot; click for dynamic version.)
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Dynamic Leaflet maps in Shiny applications

The Leaflet package is designed to integerate with Shiny

In the ui you call leafletOutput() and in the server you call renderLeaflet()

library(shiny) 
library(leaflet) 
 
ui <- fluidPage( 
    leafletOutput("my_leaf") 
) 
 
server <- function(input, output, session){ 
 
    output$my_leaf <- renderLeaflet({ 
 
        leaflet() %>% 
            addProviderTiles('Hydda.Full') %>% 
            setView(lat = -37.8, lng = 144.8, zoom = 10) 
 
    }) 
 
} 
 
shinyApp(ui, server)

However, reactive inputs that affect the renderLeaflet expression will cause the entire map to be 

redrawn each time the reactive element is updated.

Therefore, to modify a map that's already running you should use the leafletProxy() function.

Normally you use leaflet to create the static aspects of the map, and leafletProxy to manage the 

dynamic elements, for example:

library(shiny) 
library(leaflet) 
 
ui <- fluidPage( 
    sliderInput(inputId = "slider", 
                label = "values", 
                min = 0, 
                max = 100, 
                value = 0, 
                step = 1), 
    leafletOutput("my_leaf") 
) 
 
server <- function(input, output, session){ 
    set.seed(123456) 
    df <- data.frame(latitude = sample(seq(-38.5, -37.5, by = 0.01), 100), 
                     longitude = sample(seq(144.0, 145.0, by = 0.01), 100), 
                     value = seq(1,100)) 
 
    ## create static element 
    output$my_leaf <- renderLeaflet({ 
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        leaflet() %>% 
            addProviderTiles('Hydda.Full') %>% 
            setView(lat = -37.8, lng = 144.8, zoom = 8) 
 
    }) 
 
    ## filter data 
    df_filtered <- reactive({ 
        df[df$value >= input$slider, ] 
    }) 
 
    ## respond to the filtered data 
    observe({ 
 
        leafletProxy(mapId = "my_leaf", data = df_filtered()) %>% 
            clearMarkers() %>%   ## clear previous markers 
            addMarkers() 
    }) 
 
} 
 
shinyApp(ui, server)

Read Introduction to Geographical Maps online: https://riptutorial.com/r/topic/1372/introduction-to-

geographical-maps
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Chapter 59: Introspection

Examples

Functions for Learning about Variables

Often in R you'll want to know things about an object or variable you're working with. This can be 

useful when reading someone else's code or even your own, especially when using packages that 

are new to you.

Suppose we create a variable a:

a <- matrix(1:9, 3, 3)

What data type is this? You can find out with

> class(a) 
[1] "matrix"

It's a matrix, so matrix operations will work on it:

> a %*% t(a) 
      [,1] [,2] [,3] 
[1,]   66   78   90 
[2,]   78   93  108 
[3,]   90  108  126 

What are the dimensions of a?

> dim(a) 
[1] 3 3 
> nrow(a) 
[1] 3 
> ncol(a) 
[2] 3

Other useful functions that work for different data types are head, tail, and str:

> head(a, 1) 
     [,1] [,2] [,3] 
[1,]    1    4    7 
> tail(a, 1) 
     [,1] [,2] [,3] 
[3,]    3    6    9 
> str(a) 
int [1:3, 1:3] 1 2 3 4 5 6 7 8 9

These are much more useful for large objects (such as big datasets). str is also great for learning 

about the nesting of lists. Now reshape a like so:
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a <- c(a)

Does the class remain the same?

> class(a) 
[1] "integer"

No, a is not a matrix anymore. I won't get a good answer if I ask for dimensions now:

> dim(a) 
NULL

Instead, I can ask for the length:

> length(a) 
[1] 9

What about now:

> class(a * 1.0) 
[1] "numeric"

Often you may work with data.frames:

a <- as.data.frame(a) 
names(a) <- c("var1", "var2", "var3")

See the variable names:

> names(a) 
[1] "var1" "var2" "var3"

These functions can help many ways when using R.

Read Introspection online: https://riptutorial.com/r/topic/3565/introspection
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Chapter 60: JSON

Examples

JSON to / from R objects

The jsonlite package is a fast JSON parser and generator optimized for statistical data and the 

web. The two main functions used to read and write JSON are fromJSON() and toJSON() 

respecitively, and are designed to work with vectors, matrices and data.frames, and streams of 

JSON from the web.

Create a JSON array from a vector, and vice versa

library(jsonlite) 
 
## vector to JSON 
toJSON(c(1,2,3)) 
# [1,2,3] 
 
fromJSON('[1,2,3]') 
# [1] 1 2 3

Create a named JSON array from a list, and vice versa

toJSON(list(myVec = c(1,2,3))) 
# {"myVec":[1,2,3]} 
 
fromJSON('{"myVec":[1,2,3]}') 
# $myVec 
# [1] 1 2 3

More complex list structures

## list structures 
lst <- list(a = c(1,2,3), 
            b = list(letters[1:6])) 
 
toJSON(lst) 
# {"a":[1,2,3],"b":[["a","b","c","d","e","f"]]} 
 
 
fromJSON('{"a":[1,2,3],"b":[["a","b","c","d","e","f"]]} ') 
# $a 
# [1] 1 2 3 
# 
# $b 
# [,1] [,2] [,3] [,4] [,5] [,6] 
# [1,] "a"  "b"  "c"  "d"  "e"  "f" 

Create JSON from a data.frame, and vice versa

https://riptutorial.com/ 317

https://cran.r-project.org/web/packages/jsonlite/index.html
https://cran.r-project.org/web/packages/jsonlite/index.html


## converting a data.frame to JSON 
df <- data.frame(id = seq_along(1:10), 
                 val = letters[1:10]) 
 
toJSON(df) 
# 
[{"id":1,"val":"a"},{"id":2,"val":"b"},{"id":3,"val":"c"},{"id":4,"val":"d"},{"id":5,"val":"e"},{"id":6,"val":"f"},{"id":7,"val":"g"},{"id":8,"val":"h"},{"id":9,"val":"i"},{"id":10,"val":"j"}]
 
 
## reading a JSON string 
fromJSON('[{"id":1,"val":"a"},{"id":2,"val":"b"},{"id":3,"val":"c"},{"id":4,"val":"d"},{"id":5,"val":"e"},{"id":6,"val":"f"},{"id":7,"val":"g"},{"id":8,"val":"h"},{"id":9,"val":"i"},{"id":10,"val":"j"}]')
 
#     id val 
# 1   1   a 
# 2   2   b 
# 3   3   c 
# 4   4   d 
# 5   5   e 
# 6   6   f 
# 7   7   g 
# 8   8   h 
# 9   9   i 
# 10 10   j

Read JSON direct from the internet

## Reading JSON from URL 
googleway_issues <- fromJSON("https://api.github.com/repos/SymbolixAU/googleway/issues") 
 
googleway_issues$url 
# [1] "https://api.github.com/repos/SymbolixAU/googleway/issues/20" 
"https://api.github.com/repos/SymbolixAU/googleway/issues/19" 
# [3] "https://api.github.com/repos/SymbolixAU/googleway/issues/14" 
"https://api.github.com/repos/SymbolixAU/googleway/issues/11" 
# [5] "https://api.github.com/repos/SymbolixAU/googleway/issues/9" 
"https://api.github.com/repos/SymbolixAU/googleway/issues/5" 
# [7] "https://api.github.com/repos/SymbolixAU/googleway/issues/2"

Read JSON online: https://riptutorial.com/r/topic/2460/json
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Chapter 61: Linear Models (Regression)

Syntax

lm(formula, data, subset, weights, na.action, method = "qr", model = TRUE, x = FALSE, y = 

FALSE, qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset, ...)

•

Parameters

Parameter Meaning

formula

a formula in Wilkinson-Rogers notation; response ~ ... where ... contains terms 

corresponding to variables in the environment or in the data frame specified by 

the data argument

data data frame containing the response and predictor variables

subset
a vector specifying a subset of observations to be used: may be expressed as a 

logical statement in terms of the variables in data

weights analytical weights (see Weights section above)

na.action how to handle missing (NA) values: see ?na.action

method

how to perform the fitting. Only choices are "qr" or "model.frame" (the latter 

returns the model frame without fitting the model, identical to specifying 

model=TRUE)

model whether to store the model frame in the fitted object

x whether to store the model matrix in the fitted object

y whether to store the model response in the fitted object

qr whether to store the QR decomposition in the fitted object

singular.ok
whether to allow singular fits, models with collinear predictors (a subset of the 

coefficients will automatically be set to NA in this case

contrasts

a list of contrasts to be used for particular factors in the model; see the 

contrasts.arg argument of ?model.matrix.default. Contrasts can also be set with 

options() (see the contrasts argument) or by assigning the contrast attributes of 

a factor (see ?contrasts)

offset
used to specify an a priori known component in the model. May also be 

specified as part of the formula. See ?model.offset
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Parameter Meaning

...
additional arguments to be passed to lower-level fitting functions (lm.fit() or 

lm.wfit())

Examples

Linear regression on the mtcars dataset

The built-in mtcars data frame contains information about 32 cars, including their weight, fuel 

efficiency (in miles-per-gallon), speed, etc. (To find out more about the dataset, use help(mtcars)).

If we are interested in the relationship between fuel efficiency (mpg) and weight (wt) we may start 

plotting those variables with:

plot(mpg ~ wt, data = mtcars, col=2)

The plots shows a (linear) relationship!. Then if we want to perform linear regression to determine 

the coefficients of a linear model, we would use the lm function:

fit <- lm(mpg ~ wt, data = mtcars)

The ~ here means "explained by", so the formula mpg ~ wt means we are predicting mpg as 

explained by wt. The most helpful way to view the output is with:

summary(fit)

Which gives the output:

Call: 
lm(formula = mpg ~ wt, data = mtcars) 
 
Residuals: 
    Min      1Q  Median      3Q     Max 
-4.5432 -2.3647 -0.1252  1.4096  6.8727 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)  37.2851     1.8776  19.858  < 2e-16 *** 
wt           -5.3445     0.5591  -9.559 1.29e-10 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.046 on 30 degrees of freedom 
Multiple R-squared:  0.7528,    Adjusted R-squared:  0.7446 
F-statistic: 91.38 on 1 and 30 DF,  p-value: 1.294e-10

This provides information about:

the estimated slope of each coefficient (wt and the y-intercept), which suggests the best-fit •
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prediction of mpg is 37.2851 + (-5.3445) * wt

The p-value of each coefficient, which suggests that the intercept and weight are probably 

not due to chance

•

Overall estimates of fit such as R^2 and adjusted R^2, which show how much of the variation 

in mpg is explained by the model

•

We could add a line to our first plot to show the predicted mpg:

abline(fit,col=3,lwd=2)

It is also possible to add the equation to that plot. First, get the coefficients with coef. Then using 

paste0 we collapse the coefficients with appropriate variables and +/-, to built the equation. Finally, 

we add it to the plot using mtext:

bs <- round(coef(fit), 3) 
lmlab <- paste0("mpg = ", bs[1], 
             ifelse(sign(bs[2])==1, " + ", " - "), abs(bs[2]), " wt ") 
mtext(lmlab, 3, line=-2) 

The result is: 

Plotting The Regression (base)

Continuing on the mtcars example, here is a simple way to produce a plot of your linear regression 

that is potentially suitable for publication.
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First fit the linear model and

fit <- lm(mpg ~ wt, data = mtcars)

Then plot the two variables of interest and add the regression line within the definition domain:

plot(mtcars$wt,mtcars$mpg,pch=18, xlab = 'wt',ylab = 'mpg') 
lines(c(min(mtcars$wt),max(mtcars$wt)), 
as.numeric(predict(fit, data.frame(wt=c(min(mtcars$wt),max(mtcars$wt))))))

Almost there! The last step is to add to the plot, the regression equation, the rsquare as well as the 

correlation coefficient. This is done using the vector function:

rp = vector('expression',3) 
rp[1] = substitute(expression(italic(y) == MYOTHERVALUE3 + MYOTHERVALUE4 %*% x), 
          list(MYOTHERVALUE3 = format(fit$coefficients[1], digits = 2), 
                        MYOTHERVALUE4 = format(fit$coefficients[2], digits = 2)))[2] 
rp[2] = substitute(expression(italic(R)^2 == MYVALUE), 
             list(MYVALUE = format(summary(fit)$adj.r.squared,dig=3)))[2] 
rp[3] = substitute(expression(Pearson-R == MYOTHERVALUE2), 
             list(MYOTHERVALUE2 = format(cor(mtcars$wt,mtcars$mpg), digits = 2)))[2] 
 
legend("topright", legend = rp, bty = 'n')

Note that you can add any other parameter such as the RMSE by adapting the vector function. 

Imagine you want a legend with 10 elements. The vector definition would be the following:

rp = vector('expression',10)

and you will need to defined r[1].... to r[10]

Here is the output:
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Weighting

Sometimes we want the model to give more weight to some data points or examples than others. 

This is possible by specifying the weight for the input data while learning the model. There are 

generally two kinds of scenarios where we might use non-uniform weights over the examples:

Analytic Weights: Reflect the different levels of precision of different observations. For 

example, if analyzing data where each observation is the average results from a geographic 

area, the analytic weight is proportional to the inverse of the estimated variance. Useful 

when dealing with averages in data by providing a proportional weight given the number of 

observations. Source

•

Sampling Weights (Inverse Probability Weights - IPW): a statistical technique for calculating 

statistics standardized to a population different from that in which the data was collected. 

Study designs with a disparate sampling population and population of target inference (target 

population) are common in application. Useful when dealing with data that have missing 

values. Source

•

The lm() function does analytic weighting. For sampling weights the survey package is used to 

build a survey design object and run svyglm(). By default, the survey package uses sampling 

weights. (NOTE: lm(), and svyglm() with family gaussian() will all produce the same point 

estimates, because they both solve for the coefficients by minimizing the weighted least squares. 

They differ in how standard errors are calculated.)

Test Data
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data <- structure(list(lexptot = c(9.1595012302023, 9.86330744180814, 
8.92372556833205, 8.58202430280175, 10.1133857229336), progvillm = c(1L, 
1L, 1L, 1L, 0L), sexhead = c(1L, 1L, 0L, 1L, 1L), agehead = c(79L, 
43L, 52L, 48L, 35L), weight = c(1.04273509979248, 1.01139605045319, 
1.01139605045319, 1.01139605045319, 0.76305216550827)), .Names = c("lexptot", 
"progvillm", "sexhead", "agehead", "weight"), class = c("tbl_df", 
"tbl", "data.frame"), row.names = c(NA, -5L))

Analytic Weights

lm.analytic <- lm(lexptot ~ progvillm + sexhead + agehead, 
                            data = data, weight = weight) 
summary(lm.analytic)

Output

Call: 
lm(formula = lexptot ~ progvillm + sexhead + agehead, data = data, 
    weights = weight) 
 
Weighted Residuals: 
         1          2          3          4          5 
 9.249e-02  5.823e-01  0.000e+00 -6.762e-01 -1.527e-16 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|) 
(Intercept) 10.016054   1.744293   5.742    0.110 
progvillm   -0.781204   1.344974  -0.581    0.665 
sexhead      0.306742   1.040625   0.295    0.818 
agehead     -0.005983   0.032024  -0.187    0.882 
 
Residual standard error: 0.8971 on 1 degrees of freedom 
Multiple R-squared:  0.467, Adjusted R-squared:  -1.132 
F-statistic: 0.2921 on 3 and 1 DF,  p-value: 0.8386

Sampling Weights (IPW)

library(survey) 
data$X <- 1:nrow(data)             # Create unique id 
 
# Build survey design object with unique id, ipw, and data.frame 
des1 <- svydesign(id = ~X,  weights = ~weight, data = data) 
 
# Run glm with survey design object 
prog.lm <- svyglm(lexptot ~ progvillm + sexhead + agehead, design=des1)

Output

Call: 
svyglm(formula = lexptot ~ progvillm + sexhead + agehead, design = des1) 
 
Survey design: 
svydesign(id = ~X, weights = ~weight, data = data) 
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Coefficients: 
             Estimate Std. Error t value Pr(>|t|) 
(Intercept) 10.016054   0.183942  54.452   0.0117 * 
progvillm   -0.781204   0.640372  -1.220   0.4371 
sexhead      0.306742   0.397089   0.772   0.5813 
agehead     -0.005983   0.014747  -0.406   0.7546 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.2078647) 
 
Number of Fisher Scoring iterations: 2

Checking for nonlinearity with polynomial regression

Sometimes when working with linear regression we need to check for non-linearity in the data. 

One way to do this is to fit a polynomial model and check whether it fits the data better than a 

linear model. There are other reasons, such as theoretical, that indicate to fit a quadratic or higher 

order model because it is believed that the variables relationship is inherently polynomial in nature.

Let's fit a quadratic model for the mtcars dataset. For a linear model see Linear regression on the 

mtcars dataset.

First we make a scatter plot of the variables mpg (Miles/gallon), disp (Displacement (cu.in.)), and wt 

(Weight (1000 lbs)). The relationship among mpg and disp appears non-linear.

plot(mtcars[,c("mpg","disp","wt")])
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A linear fit will show that disp is not significant.

fit0 = lm(mpg ~ wt+disp, mtcars) 
summary(fit0) 
 
# Coefficients: 
#            Estimate Std. Error t value Pr(>|t|) 
#(Intercept) 34.96055    2.16454  16.151 4.91e-16 *** 
#wt          -3.35082    1.16413  -2.878  0.00743 ** 
#disp        -0.01773    0.00919  -1.929  0.06362 . 
#--- 
#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
#Residual standard error: 2.917 on 29 degrees of freedom 
#Multiple R-squared:  0.7809,    Adjusted R-squared:  0.7658

Then, to get the result of a quadratic model, we added I(disp^2). The new model appears better 

when looking at R^2 and all variables are significant.

fit1 = lm(mpg ~ wt+disp+I(disp^2), mtcars) 
summary(fit1) 
 
# Coefficients: 
#              Estimate Std. Error t value Pr(>|t|) 
#(Intercept) 41.4019837  2.4266906  17.061  2.5e-16 *** 
#wt          -3.4179165  0.9545642  -3.581 0.001278 ** 
#disp        -0.0823950  0.0182460  -4.516 0.000104 *** 
#I(disp^2)    0.0001277  0.0000328   3.892 0.000561 *** 
#--- 
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#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
#Residual standard error: 2.391 on 28 degrees of freedom 
#Multiple R-squared:  0.8578,    Adjusted R-squared:  0.8426 

As we have three variables, the fitted model is a surface represented by:

mpg = 41.4020-3.4179*wt-0.0824*disp+0.0001277*disp^2

Another way to specify polynomial regression is using poly with parameter raw=TRUE, otherwise 

orthogonal polynomials will be considered (see the help(ploy) for more information). We get the 

same result using:

summary(lm(mpg ~ wt+poly(disp, 2, raw=TRUE),mtcars))

Finally, what if we need to show a plot of the estimated surface? Well there are many options to 

make 3D plots in R. Here we use Fit3d from p3dpackage.

library(p3d) 
Init3d(family="serif", cex = 1) 
Plot3d(mpg ~ disp+wt, mtcars) 
Axes3d() 
Fit3d(fit1)
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Quality assessment

After building a regression model it is important to check the result and decide if the model is 

appropriate and works well with the data at hand. This can be done by examining the residuals 

plot as well as other diagnostic plots.

# fit the model 
fit <- lm(mpg ~ wt, data = mtcars) 
# 
par(mfrow=c(2,1)) 
# plot model object 
plot(fit, which =1:2)

These plots check for two assumptions that were made while building the model:

That the expected value of the predicted variable (in this case mpg) is given by a linear 1. 
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combination of the predictors (in this case wt). We expect this estimate to be unbiased. So 

the residuals should be centered around the mean for all values of the predictors. In this 

case we see that the residuals tend to be positive at the ends and negative in the middle, 

suggesting a non-linear relationship between the variables.

That the actual predicted variable is normally distributed around its estimate. Thus, the 

residuals should be normally distributed. For normally distributed data, the points in a normal 

Q-Q plot should lie on or close to the diagonal. There is some amount of skew at the ends 

here.

2. 

Using the 'predict' function

Once a model is built predict is the main function to test with new data. Our example will use the 

mtcars built-in dataset to regress miles per gallon against displacement:

my_mdl <- lm(mpg ~ disp, data=mtcars) 
my_mdl 
 
Call: 
lm(formula = mpg ~ disp, data = mtcars) 
 
Coefficients: 
(Intercept)         disp 
   29.59985     -0.04122

If I had a new data source with displacement I could see the estimated miles per gallon.

set.seed(1234) 
newdata <- sample(mtcars$disp, 5) 
newdata 
[1] 258.0  71.1  75.7 145.0 400.0 
 
newdf <- data.frame(disp=newdata) 
predict(my_mdl, newdf) 
       1        2        3        4        5 
18.96635 26.66946 26.47987 23.62366 13.11381

The most important part of the process is to create a new data frame with the same column names 

as the original data. In this case, the original data had a column labeled disp, I was sure to call the 

new data that same name.

Caution

Let's look at a few common pitfalls:

not using a data.frame in the new object:

predict(my_mdl, newdata) 
Error in eval(predvars, data, env) : 
   numeric 'envir' arg not of length one

1. 

not using same names in new data frame:2. 
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newdf2 <- data.frame(newdata) 
predict(my_mdl, newdf2) 
Error in eval(expr, envir, enclos) : object 'disp' not found

Accuracy

To check the accuracy of the prediction you will need the actual y values of the new data. In this 

example, newdf will need a column for 'mpg' and 'disp'.

newdf <- data.frame(mpg=mtcars$mpg[1:10], disp=mtcars$disp[1:10]) 
#     mpg  disp 
# 1  21.0 160.0 
# 2  21.0 160.0 
# 3  22.8 108.0 
# 4  21.4 258.0 
# 5  18.7 360.0 
# 6  18.1 225.0 
# 7  14.3 360.0 
# 8  24.4 146.7 
# 9  22.8 140.8 
# 10 19.2 167.6 
 
p <- predict(my_mdl, newdf) 
 
#root mean square error 
sqrt(mean((p - newdf$mpg)^2, na.rm=TRUE)) 
[1] 2.325148

Read Linear Models (Regression) online: https://riptutorial.com/r/topic/801/linear-models--

regression-
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Chapter 62: Lists

Examples

Quick Introduction to Lists

In general, most of the objects you would interact with as a user would tend to be a vector; e.g 

numeric vector, logical vector. These objects can only take in a single type of variable (a numeric 

vector can only have numbers inside it).

A list would be able to store any type variable in it, making it to the generic object that can store 

any type of variables we would need.

Example of initializing a list

exampleList1 <- list('a', 'b') 
exampleList2 <- list(1, 2) 
exampleList3 <- list('a', 1, 2)

In order to understand the data that was defined in the list, we can use the str function.

str(exampleList1) 
str(exampleList2) 
str(exampleList3)

Subsetting of lists distinguishes between extracting a slice of the list, i.e. obtaining a list containing 

a subset of the elements in the original list, and extracting a single element. Using the [ operator 

commonly used for vectors produces a new list.

# Returns List 
exampleList3[1] 
exampleList3[1:2]

To obtain a single element use [[ instead.

# Returns Character 
exampleList3[[1]]

List entries may be named:

exampleList4 <- list( 
    num = 1:3, 
    numeric = 0.5, 
    char = c('a', 'b') 
)

The entries in named lists can be accessed by their name instead of their index.
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exampleList4[['char']]

Alternatively the $ operator can be used to access named elements.

exampleList4$num

This has the advantage that it is faster to type and may be easier to read but it is important to be 

aware of a potential pitfall. The $ operator uses partial matching to identify matching list elements 

and may produce unexpected results.

exampleList5 <- exampleList4[2:3] 
 
exampleList4$num 
# c(1, 2, 3) 
 
exampleList5$num 
# 0.5 
 
exampleList5[['num']] 
# NULL

Lists can be particularly useful because they can store objects of different lengths and of various 

classes.

## Numeric vector 
exampleVector1 <- c(12, 13, 14) 
## Character vector 
exampleVector2 <- c("a", "b", "c", "d", "e", "f") 
## Matrix 
exampleMatrix1 <- matrix(rnorm(4), ncol = 2, nrow = 2) 
## List 
exampleList3 <- list('a', 1, 2) 
 
exampleList6 <- list( 
    num = exampleVector1, 
    char = exampleVector2, 
    mat = exampleMatrix1, 
    list = exampleList3 
) 
exampleList6 
#$num 
#[1] 12 13 14 
# 
#$char 
#[1] "a" "b" "c" "d" "e" "f" 
# 
#$mat 
#          [,1]        [,2] 
#[1,] 0.5013050 -1.88801542 
#[2,] 0.4295266  0.09751379 
# 
#$list 
#$list[[1]] 
#[1] "a" 
# 
#$list[[2]] 
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#[1] 1 
# 
#$list[[3]] 
#[1] 2

Introduction to lists

Lists allow users to store multiple elements (like vectors and matrices) under a single object. You 

can use the list function to create a list:

l1 <- list(c(1, 2, 3), c("a", "b", "c")) 
l1 
## [[1]] 
## [1] 1 2 3 
## 
## [[2]] 
## [1] "a" "b" "c"

Notice the vectors that make up the above list are different classes. Lists allow users to group 

elements of different classes. Each element in a list can also have a name. List names are 

accessed by the names function, and are assigned in the same manner row and column names are 

assigned in a matrix.

names(l1) 
## NULL 
names(l1) <- c("vector1", "vector2") 
l1 
## $vector1 
## [1] 1 2 3 
## 
## $vector2 
## [1] "a" "b" "c"

It is often easier and safer to declare the list names when creating the list object.

l2 <- list(vec = c(1, 3, 5, 7, 9), 
       mat = matrix(data = c(1, 2, 3), nrow = 3)) 
l2 
## $vec 
## [1] 1 3 5 7 9 
## 
## $mat 
##      [,1] 
## [1,]    1 
## [2,]    2 
## [3,]    3 
names(l2) 
## [1] "vec" "mat"

Above the list has two elements, named "vec" and "mat," a vector and matrix, resepcively.

Reasons for using lists
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To the average R user, the list structure may appear to be the one of the more complicated data 

structures to manipulate. There are no guarantees that all the elements within it are of the same 

type; There is no guaranteed structure of how complicated/non-complicated that the list would be 

(An element in a list could be a list)

However, one of the main reasons when to use lists to use it to pass parameters between 

functions.

# Function example which returns a single element numeric vector 
exampleFunction1 <- function(num1, num2){ 
    result <- num1 + num2 
    return(result) 
} 
 
# Using example function 1 
exampleFunction1(1, 2) 
 
# Function example which returns a simple numeric vector 
exampleFunction2 <- function(num1, num2, multiplier){ 
    tempResult1 <- num1 + num2 
    tempResult2 <- tempResult1 * multiplier 
    result <- c(tempResult1, tempResult2) 
    return(result) 
} 
 
# Using example function 2 
exampleFunction2(1, 2, 4)

In the above example, the returned results are just simple numeric vectors. There is no issues to 

pass over such simple vectors.

It is important to note at this point that generally, R functions only return 1 result at a time (You can 

use if conditions to return different results). However, if you intend to create a function which takes 

a set of parameters and returns several type of results such a numeric vector(settings value) and a 

data frame (from the calculation), you would need to dump all these results in a list before 

returning it.

# We will be using mtcars dataset here 
# Function which returns a result that is supposed to contain multiple type of results 
# This can be solved by putting the results into a list 
exampleFunction3 <- function(dataframe, removeColumn, sumColumn){ 
    resultDataFrame <- dataframe[, -removeColumn] 
    resultSum <- sum(dataframe[, sumColumn]) 
    resultList <- list(resultDataFrame, resultSum) 
    return(resultList) 
} 
 
# Using example function 3 
exampleResult <- exampleFunction3(mtcars, 2, 4) 
exampleResult[[1]] 
exampleResult[[2]]

Convert a list to a vector while keeping empty list elements
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When one wishes to convert a list to a vector or data.frame object empty elements are typically 

dropped.

This can be problematic which a list is created of a desired length are created with some empty 

values (e.g. a list with n elements is created to be added to an m x n matrix, data.frame, or 

data.table). It is possible to losslessly convert a list to a vector however, retaining empty elements:

res <- list(character(0), c("Luzhuang", "Laisu", "Peihui"), character(0), 
    c("Anjiangping", "Xinzhai", "Yongfeng"), character(0), character(0), 
    c("Puji", "Gaotun", "Banjingcun"), character(0), character(0), 
    character(0)) 
res

[[1]] 
character(0) 
 
[[2]] 
[1] "Luzhuang" "Laisu"    "Peihui" 
 
[[3]] 
character(0) 
 
[[4]] 
[1] "Anjiangping" "Xinzhai"     "Yongfeng" 
 
[[5]] 
character(0) 
 
[[6]] 
character(0) 
 
[[7]] 
[1] "Puji"       "Gaotun"     "Banjingcun" 
 
[[8]] 
character(0) 
 
[[9]] 
character(0) 
 
[[10]] 
character(0)

res <- sapply(res, function(s) if (length(s) == 0) NA_character_ else paste(s, collapse = " 
")) 
res

 [1] NA                             "Luzhuang Laisu Peihui"        NA 
"Anjiangping Xinzhai Yongfeng" NA 
 
 [6] NA                             "Puji Gaotun Banjingcun"       NA 
NA                             NA

Serialization: using lists to pass informations
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There exist cases in which it is necessary to put data of different types together. In Azure ML for 

example, it is necessary to pass informations from a R script module to another one exclusively 

throught dataframes. Suppose we have a dataframe and a number:

> df 
       name height        team fun_index title age         desc Y 
1    Andrea    195       Lazio        97     6  33   eccellente 1 
2      Paja    165  Fiorentina        87     6  31       deciso 1 
3      Roro    190       Lazio        65     6  28       strano 0 
4    Gioele     70       Lazio       100     0   2    simpatico 1 
5     Cacio    170    Juventus        81     3  33         duro 0 
6     Edola    171       Lazio        72     5  32     svampito 1 
7    Salami    175       Inter        75     3  30  doppiopasso 1 
8    Braugo    180       Inter        79     5  32          gjn 0 
9     Benna    158    Juventus        80     6  28     esaurito 0 
10   Riggio    182       Lazio        92     5  31     certezza 1 
11 Giordano    185        Roma        79     5  29        buono 1 
 
> number <- "42"

We can access to this information:

> paste(df$name[4],"is a",df3$team[4], "supporter." ) 
[1] "Gioele is a  Lazio supporter." 
> paste("The answer to THE question is", number ) 
[1] "The answer to THE question is 42"

In order to put different types of data in a dataframe we have to use the list object and the 

serialization. In particular we have to put the data in a generic list and then put the list in a 

particular dataframe:

l <- list(df,number) 
dataframe_container <- data.frame(out2 = as.integer(serialize(l, connection=NULL)))

Once we have stored the information in the dataframe, we need to deserialize it in order to use it:

#----- unserialize ----------------------------------------+ 
unser_obj <- unserialize(as.raw(dataframe_container$out2)) 
#----- taking back the elements----------------------------+ 
df_mod        <- unser_obj[1][[1]] 
number_mod    <- unser_obj[2][[1]]

Then, we can verify that the data are transfered correctly:

> paste(df_mod$name[4],"is a",df_mod$team[4], "supporter." ) 
[1] "Gioele is a  Lazio supporter." 
> paste("The answer to THE question is", number_mod ) 
[1] "The answer to THE question is 42"

Read Lists online: https://riptutorial.com/r/topic/1365/lists
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Chapter 63: lubridate

Syntax

ymd_hms(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"))•

now(tzone = "")•

interval(start, end, tzone = attr(start, "tzone"))•

duration(num = NULL, units = "seconds", ...)•

period(num = NULL, units = "second", ...)•

Remarks

To install package from CRAN:

install.packages("lubridate")

To install development version from Github:

library(devtools) 
# dev mode allows testing of development packages in a sandbox, without interfering 
# with the other packages you have installed. 
dev_mode(on=T) 
install_github("hadley/lubridate") 
dev_mode(on=F)

To get vignettes on lubridate package:

vignette("lubridate")

To get help about some function foo:

help(foo)     # help about function foo 
?foo          # same thing 
 
# Example 
# help("is.period") 
# ?is.period

To get examples for a function foo:

example("foo") 
 
# Example 
# example("interval")

Examples
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Parsing dates and datetimes from strings with lubridate

The lubridate package provides convenient functions to format date and datetime objects from 

character strings. The functions are permutations of

Letter Element to parse Base R equivalent

y year %y, %Y

m (with y and d) month %m, %b, %h, %B

d day %d, %e

h hour %H, %I%p

m (with h and s) minute %M

s seconds %S

e.g. ymd() for parsing a date with the year followed by the month followed by the day, e.g. "2016-

07-22", or ymd_hms() for parsing a datetime in the order year, month, day, hours, minutes, seconds, 

e.g. "2016-07-22 13:04:47".

The functions are able to recognize most separators (such as /, -, and whitespace) without 

additional arguments. They also work with inconsistent separators.

Dates

The date functions return an object of class Date.

library(lubridate) 
 
mdy(c(' 07/02/2016 ', '7 / 03 / 2016', ' 7 / 4 / 16 ')) 
## [1] "2016-07-02" "2016-07-03" "2016-07-04" 
 
ymd(c("20160724","2016/07/23","2016-07-25"))    # inconsistent separators 
## [1] "2016-07-24" "2016-07-23" "2016-07-25"

Datetimes

Utility functions

Datetimes can be parsed using ymd_hms variants including ymd_hm and ymd_h. All datetime functions 

can accept a tz timezone argument akin to that of as.POSIXct or strptime, but which defaults to 
"UTC"
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instead of the local timezone.

The datetime functions return an object of class POSIXct.

x <- c("20160724 130102","2016/07/23 14:02:01","2016-07-25 15:03:00") 
ymd_hms(x, tz="EST") 
## [1] "2016-07-24 13:01:02 EST" "2016-07-23 14:02:01 EST" 
## [3] "2016-07-25 15:03:00 EST" 
 
ymd_hms(x) 
## [1] "2016-07-24 13:01:02 UTC" "2016-07-23 14:02:01 UTC" 
## [3] "2016-07-25 15:03:00 UTC"

Parser functions

lubridate also includes three functions for parsing datetimes with a formatting string like as.POSIXct 

or strptime:

Function Output Class Formatting strings accepted

parse_date_time POSIXct

Flexible. Will accept strptime-style with % or lubridate 

datetime function name style, e.g "ymd hms". Will accept 

a vector of orders for heterogeneous data and guess 

which is appropriate.

parse_date_time2
Default 

POSIXct; if lt = 

TRUE, POSIXlt

Strict. Accepts only strptime tokens (with or without %) 

from a limited set.

fast_strptime
Default POSIXlt; 

if lt = FALSE, 

POSIXct

Strict. Accepts only %-delimited strptime tokens with 

delimiters (-, /, :, etc.) from a limited set.

x <- c('2016-07-22 13:04:47', '07/22/2016 1:04:47 pm') 
 
parse_date_time(x, orders = c('mdy Imsp', 'ymd hms')) 
## [1] "2016-07-22 13:04:47 UTC" "2016-07-22 13:04:47 UTC" 
 
x <- c('2016-07-22 13:04:47', '2016-07-22 14:47:58') 
 
parse_date_time2(x, orders = 'Ymd HMS') 
## [1] "2016-07-22 13:04:47 UTC" "2016-07-22 14:47:58 UTC" 
 
fast_strptime(x, format = '%Y-%m-%d %H:%M:%S') 
## [1] "2016-07-22 13:04:47 UTC" "2016-07-22 14:47:58 UTC"

parse_date_time2 and fast_strptime use a fast C parser for efficiency.

See ?parse_date_time for formatting tokens.

Parsing date and time in lubridate
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Lubridate provides ymd() series of functions for parsing character strings into dates. The letters y, 

m, and d correspond to the year, month, and day elements of a date-time.

mdy("07-21-2016")                 # Returns Date 
 
## [1] "2016-07-21" 
 
mdy("07-21-2016", tz = "UTC")     # Returns a vector of class POSIXt 
 
## "2016-07-21 UTC" 
 
dmy("21-07-2016")                 # Returns Date 
 
## [1] "2016-07-21" 
 
dmy(c("21.07.2016", "22.07.2016")) # Returns vector of class Date 
 
## [1] "2016-07-21" "2016-07-22"

Manipulating date and time in lubridate

date <- now() 
date 
## "2016-07-22 03:42:35 IST" 
 
year(date) 
## 2016 
 
minute(date) 
## 42 
 
wday(date, label = T, abbr = T) 
# [1] Fri 
# Levels: Sun < Mon < Tues < Wed < Thurs < Fri < Sat 
 
day(date) <- 31 
## "2016-07-31 03:42:35 IST" 
 
# If an element is set to a larger value than it supports, the difference 
#  will roll over into the next higher element 
day(date) <- 32 
## "2016-08-01 03:42:35 IST"

Instants

An instant is a specific moment in time. Any date-time object that refers to a moment of time is 

recognized as an instant. To test if an object is an instant, use is.instant.

library(lubridate) 
 
today_start <- dmy_hms("22.07.2016 12:00:00", tz = "IST") # default tz="UTC" 
today_start 
## [1] "2016-07-22 12:00:00 IST" 
is.instant(today_start) 
## [1] TRUE 
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now_dt <- ymd_hms(now(), tz="IST") 
now_dt 
## [1] "2016-07-22 13:53:09 IST" 
is.instant(now_dt) 
## [1] TRUE 
 
is.instant("helloworld") 
## [1] FALSE 
is.instant(60) 
## [1] FALSE

Intervals, Durations and Periods

Intervals are simplest way of recording timespans in lubridate. An interval is a span of time that 

occurs between two specific instants.

# create interval by substracting two instants 
today_start <- ymd_hms("2016-07-22 12-00-00", tz="IST") 
today_start 
## [1] "2016-07-22 12:00:00 IST" 
today_end <- ymd_hms("2016-07-22 23-59-59", tz="IST") 
today_end 
## [1] "2016-07-22 23:59:59 IST" 
span <- today_end - today_start 
span 
## Time difference of 11.99972 hours 
as.interval(span, today_start) 
## [1] 2016-07-22 12:00:00 IST--2016-07-22 23:59:59 IST 
 
# create interval using interval() function 
span <- interval(today_start, today_end) 
[1] 2016-07-22 12:00:00 IST--2016-07-22 23:59:59 IST

Durations measure the exact amount of time that occurs between two instants.

duration(60, "seconds") 
## [1] "60s" 
 
duration(2, "minutes") 
## [1] "120s (~2 minutes)"

Note: Units larger than weeks are not used due to their variability.

Durations can be created using dseconds, dminutes and other duration helper functions. 

Run ?quick_durations for complete list.

dseconds(60) 
## [1] "60s" 
 
dhours(2) 
## [1] "7200s (~2 hours)" 
 
dyears(1) 
## [1] "31536000s (~365 days)"
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Durations can be subtracted and added to instants to get new instants.

today_start + dhours(5) 
## [1] "2016-07-22 17:00:00 IST" 
 
today_start + dhours(5) + dminutes(30) + dseconds(15) 
## [1] "2016-07-22 17:30:15 IST"

Durations can be created from intervals.

as.duration(span) 
[1] "43199s (~12 hours)"

Periods measure the change in clock time that occurs between two instants.

Periods can be created using period function as well other helper functions like seconds, hours, etc. 

To get a complete list of period helper functions, Run ?quick_periods.

period(1, "hour") 
## [1] "1H 0M 0S" 
 
hours(1) 
## [1] "1H 0M 0S" 
 
period(6, "months") 
## [1] "6m 0d 0H 0M 0S" 
 
months(6) 
## [1] "6m 0d 0H 0M 0S" 
 
years(1) 
## [1] "1y 0m 0d 0H 0M 0S"

is.period function can be used to check if an object is a period.

is.period(years(1)) 
## [1] TRUE 
 
is.period(dyears(1)) 
## [1] FALSE

Rounding dates

now_dt <- ymd_hms(now(), tz="IST") 
now_dt 
## [1] "2016-07-22 13:53:09 IST"

round_date() takes a date-time object and rounds it to the nearest integer value of the specified 

time unit.

round_date(now_dt, "minute") 
## [1] "2016-07-22 13:53:00 IST" 
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round_date(now_dt, "hour") 
## [1] "2016-07-22 14:00:00 IST" 
 
round_date(now_dt, "year") 
## [1] "2017-01-01 IST"

floor_date() takes a date-time object and rounds it down to the nearest integer value of the 

specified time unit.

floor_date(now_dt, "minute") 
## [1] "2016-07-22 13:53:00 IST" 
 
floor_date(now_dt, "hour") 
## [1] "2016-07-22 13:00:00 IST" 
 
floor_date(now_dt, "year") 
## [1] "2016-01-01 IST"

ceiling_date() takes a date-time object and rounds it up to the nearest integer value of the 

specified time unit.

ceiling_date(now_dt, "minute") 
## [1] "2016-07-22 13:54:00 IST" 
 
ceiling_date(now_dt, "hour") 
## [1] "2016-07-22 14:00:00 IST" 
 
ceiling_date(now_dt, "year") 
## [1] "2017-01-01 IST"

Difference between period and duration

Unlike durations, periods can be used to accurately model clock times without knowing when 

events such as leap seconds, leap days, and DST changes occur.

start_2012 <- ymd_hms("2012-01-01 12:00:00") 
## [1] "2012-01-01 12:00:00 UTC" 
 
# period() considers leap year calculations. 
start_2012 + period(1, "years") 
## [1] "2013-01-01 12:00:00 UTC" 
 
# Here duration() doesn't consider leap year calculations. 
start_2012 + duration(1) 
## [1] "2012-12-31 12:00:00 UTC"

Time Zones

with_tz returns a date-time as it would appear in a different time zone.

nyc_time <- now("America/New_York") 
nyc_time 
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## [1] "2016-07-22 05:49:08 EDT" 
 
# corresponding Europe/Moscow time 
with_tz(nyc_time, tzone = "Europe/Moscow") 
## [1] "2016-07-22 12:49:08 MSK"

force_tz returns a the date-time that has the same clock time as x in the new time zone.

nyc_time <- now("America/New_York") 
nyc_time 
## [1] "2016-07-22 05:49:08 EDT" 
 
force_tz(nyc_time, tzone = "Europe/Moscow") # only timezone changes 
## [1] "2016-07-22 05:49:08 MSK"

Read lubridate online: https://riptutorial.com/r/topic/2496/lubridate
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Chapter 64: Machine learning

Examples

Creating a Random Forest model

One example of machine learning algorithms is the Random Forest alogrithm (Breiman, L. (2001). 

Random Forests. Machine Learning 45(5), p. 5-32). This algorithm is implemented in R according 

to Breiman's original Fortran implementation in the randomForest package.

Random Forest classifier objects can be created in R by preparing the class variable as factor, 

which is already apparent in the iris data set. Therefore we can easily create a Random Forest 

by:

library(randomForest) 
 
rf <- randomForest(x = iris[, 1:4], 
                   y = iris$Species, 
                   ntree = 500, 
                   do.trace = 100) 
 
rf 
 
# Call: 
#   randomForest(x = iris[, 1:4], y = iris$Species, ntree = 500,      do.trace = 100) 
# Type of random forest: classification 
# Number of trees: 500 
# No. of variables tried at each split: 2 
# 
# OOB estimate of  error rate: 4% 
# Confusion matrix: 
#   setosa versicolor virginica class.error 
# setosa         50          0         0        0.00 
# versicolor      0         47         3        0.06 
# virginica       0          3        47        0.06

parameters Description

x a data frame holding the describing variables of the classes

y
the classes of the individual obserbations. If this vector is factor, a 

classification model is created, if not a regression model is created.

ntree The number of individual CART trees built

do.trace every ith step, the out-of-the-box errors overall and for each class are returned

Read Machine learning online: https://riptutorial.com/r/topic/8326/machine-learning
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Chapter 65: Matrices

Introduction

Matrices store data

Examples

Creating matrices

Under the hood, a matrix is a special kind of vector with two dimensions. Like a vector, a matrix 

can only have one data class. You can create matrices using the matrix function as shown below.

matrix(data = 1:6, nrow = 2, ncol = 3) 
##      [,1] [,2] [,3] 
## [1,]    1    3    5 
## [2,]    2    4    6

As you can see this gives us a matrix of all numbers from 1 to 6 with two rows and three columns. 

The data parameter takes a vector of values, nrow specifies the number of rows in the matrix, and 

ncol specifies the number of columns. By convention the matrix is filled by column. The default 

behavior can be changed with the byrow parameter as shown below:

matrix(data = 1:6, nrow = 2, ncol = 3, byrow = TRUE) 
##      [,1] [,2] [,3] 
## [1,]    1    2    3 
## [2,]    4    5    6

Matrices do not have to be numeric – any vector can be transformed into a matrix. For example:

matrix(data = c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE), nrow = 3, ncol = 2) 
##      [,1]  [,2] 
## [1,] TRUE FALSE 
## [2,] TRUE FALSE 
## [3,] TRUE FALSE 
matrix(data = c("a", "b", "c", "d", "e", "f"), nrow = 3, ncol = 2) 
##      [,1] [,2] 
## [1,] "a"  "d" 
## [2,] "b"  "e" 
## [3,] "c"  "f"

Like vectors matrices can be stored as variables and then called later. The rows and columns of a 

matrix can have names. You can look at these using the functions rownames and colnames. As 

shown below, the rows and columns don't initially have names, which is denoted by NULL. 

However, you can assign values to them.

mat1 <- matrix(data = 1:6, nrow = 2, ncol = 3, byrow = TRUE) 
rownames(mat1) 
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## NULL 
colnames(mat1) 
## NULL 
rownames(mat1) <- c("Row 1", "Row 2") 
colnames(mat1) <- c("Col 1", "Col 2", "Col 3") 
mat1 
##       Col 1 Col 2 Col 3 
## Row 1     1     2     3 
## Row 2     4     5     6

It is important to note that similarly to vectors, matrices can only have one data type. If you try to 

specify a matrix with multiple data types the data will be coerced to the higher order data class.

The class, is, and as functions can be used to check and coerce data structures in the same way 

they were used on the vectors in class 1.

class(mat1) 
## [1] "matrix" 
is.matrix(mat1) 
## [1] TRUE 
as.vector(mat1) 
## [1] 1 4 2 5 3 6

Read Matrices online: https://riptutorial.com/r/topic/9019/matrices
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Chapter 66: Meta: Documentation Guidelines

Remarks

To discuss editing the R tag Docs, visit the R chat.

Examples

Making good examples

Most of the guidance for creating good examples for Q&A carries over into the documentation.

Make it minimal and get to the point. Complications and digressions are counterproductive.•

Include both working code and prose explaining it. Neither one is sufficient on its own.•

Don't rely on external sources for data. Generate data or use the datasets library if possible:

library(help = "datasets")

•

There are some additional considerations in the context of Docs:

Refer to built-in docs like ?data.frame whenever relevant. The SO Docs are not an attempt to 

replace the built-in docs. It is important to make sure new R users know that the built-in docs 

exist as well as how to find them.

•

Move content that applies to multiple examples to the Remarks section.•

Style

Prompts

If you want your code to be copy-pastable, remove prompts such as R>, >, or + at the beginning of 

each new line. Some Docs authors prefer to not make copy-pasting easy, and that is okay.

Console output

Console output should be clearly distinguished from code. Common approaches include:

Include prompts on input (as seen when using the console).•

Comment out all output, with # or ## starting each line.•

Print as-is, trusting the leading [1] to make the output stand out from the input.•

Add a blank line between code and console output.•
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Assignment

= and <- are fine for assigning R objects. Use white space appropriately to avoid writing code that 

is difficult to parse, such as x<-1 (ambiguous between x <- 1 and x < -1)

Code comments

Be sure to explain the purpose and function of the code itself. There isn't any hard-and-fast rule on 

whether this explanation should be in prose or in code comments. Prose may be more readable 

and allows for longer explanations, but code comments make for easier copy-pasting. Keep both 

options in mind.

Sections

Many examples are short enough to not need sections, but if you use them, start with H1.

Read Meta: Documentation Guidelines online: https://riptutorial.com/r/topic/5410/meta--

documentation-guidelines
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Chapter 67: Missing values

Introduction

When we don't know the value a variable takes, we say its value is missing, indicated by NA.

Remarks

Missing values are represented by the symbol NA (not available). Impossible values (e.g., as a 

result of sqrt(-1)) are represented by the symbol NaN (not a number).

Examples

Examining missing data

anyNA reports whether any missing values are present; while is.na reports missing values 

elementwise:

vec <- c(1, 2, 3, NA, 5) 
 
anyNA(vec) 
# [1] TRUE 
is.na(vec) 
# [1] FALSE FALSE FALSE  TRUE FALSE

ìs.na returns a logical vector that is coerced to integer values under arithmetic operations (with 

FALSE=0, TRUE=1). We can use this to find out how many missing values there are:

sum(is.na(vec)) 
# [1] 1

Extending this approach, we can use colSums and is.na on a data frame to count NAs per column:

colSums(is.na(airquality)) 
#   Ozone Solar.R    Wind    Temp   Month     Day 
#      37       7       0       0       0       0 

The naniar package (currently on github but not CRAN) offers further tools for exploring missing 

values.

Reading and writing data with NA values

When reading tabular datasets with the read.* functions, R automatically looks for missing values 

that look like "NA". However, missing values are not always represented by NA. Sometimes a dot (.

), a hyphen(-) or a character-value (e.g.: empty) indicates that a value is NA. The na.strings 

parameter of the read.* function can be used to tell R which symbols/characters need to be 
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treated as NA values:

read.csv("name_of_csv_file.csv", na.strings = "-")

It is also possible to indicate that more than one symbol needs to be read as NA:

read.csv('missing.csv', na.strings = c('.','-'))

Similarly, NAs can be written with customized strings using the na argument to write.csv. Other 

tools for reading and writing tables have similar options.

Using NAs of different classes

The symbol NA is for a logical missing value:

class(NA) 
#[1] "logical"

This is convenient, since it can easily be coerced to other atomic vector types, and is therefore 

usually the only NA you will need:

x <- c(1, NA, 1) 
class(x[2]) 
#[1] "numeric"

If you do need a single NA value of another type, use NA_character_, NA_integer_, NA_real_ or 

NA_complex_. For missing values of fancy classes, subsetting with NA_integer_ usually works; for 

example, to get a missing-value Date:

class(Sys.Date()[NA_integer_]) 
# [1] "Date"

TRUE/FALSE and/or NA

NA is a logical type and a logical operator with an NA will return NA if the outcome is ambiguous. 

Below, NA OR TRUE evaluates to TRUE because at least one side evaluates to TRUE, however NA OR 

FALSE returns NA because we do not know whether NA would have been TRUE or FALSE

NA | TRUE 
# [1] TRUE 
# TRUE | TRUE is TRUE and FALSE | TRUE is also TRUE. 
 
NA | FALSE 
# [1] NA 
# TRUE | FALSE is TRUE but FALSE | FALSE is FALSE. 
 
NA & TRUE 
# [1] NA 
# TRUE & TRUE is TRUE but FALSE & TRUE is FALSE. 
 

https://riptutorial.com/ 351

http://www.riptutorial.com/r/example/19700/reading-and-writing-data-frames
http://www.riptutorial.com/r/example/19700/reading-and-writing-data-frames


NA & FALSE 
# [1] FALSE 
# TRUE & FALSE is FALSE and FALSE & FALSE is also FALSE.

These properties are helpful if you want to subset a data set based on some columns that contain 

NA.

df <- data.frame(v1=0:9, 
                 v2=c(rep(1:2, each=4), NA, NA), 
                 v3=c(NA, letters[2:10])) 
 
df[df$v2 == 1 & !is.na(df$v2), ] 
#  v1 v2   v3 
#1  0  1 <NA> 
#2  1  1    b 
#3  2  1    c 
#4  3  1    d 
 
df[df$v2 == 1, ] 
     v1 v2   v3 
#1     0  1 <NA> 
#2     1  1    b 
#3     2  1    c 
#4     3  1    d 
#NA   NA NA <NA> 
#NA.1 NA NA <NA>

Omitting or replacing missing values

Recoding missing values

Regularly, missing data isn't coded as NA in datasets. In SPSS for example, missing values are 

often represented by the value 99.

num.vec <- c(1, 2, 3, 99, 5) 
num.vec 
## [1]  1  2  3 99  5

It is possible to directly assign NA using subsetting

num.vec[num.vec == 99] <- NA

However, the preferred method is to use is.na<- as below. The help file (?is.na) states:

is.na<- may provide a safer way to set missingness. It behaves differently for factors, 

for example.

is.na(num.vec) <- num.vec == 99

Both methods return
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num.vec 
## [1]  1  2  3 NA  5

Removing missing values

Missing values can be removed in several ways from a vector:

num.vec[!is.na(num.vec)] 
num.vec[complete.cases(num.vec)] 
na.omit(num.vec) 
## [1] 1 2 3 5

Excluding missing values from calculations

When using arithmetic functions on vectors with missing values, a missing value will be returned:

mean(num.vec) # returns: [1] NA

The na.rm parameter tells the function to exclude the NA values from the calculation:

mean(num.vec, na.rm = TRUE) # returns: [1] 2.75 
 
# an alternative to using 'na.rm = TRUE': 
mean(num.vec[!is.na(num.vec)]) # returns: [1] 2.75

Some R functions, like lm, have a na.action parameter. The default-value for this is na.omit, but 

with options(na.action = 'na.exclude') the default behavior of R can be changed.

If it is not necessary to change the default behavior, but for a specific situation another na.action is 

needed, the na.action parameter needs to be included in the function call, e.g.:

 lm(y2 ~ y1, data = anscombe, na.action = 'na.exclude')

Read Missing values online: https://riptutorial.com/r/topic/3388/missing-values
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Chapter 68: Modifying strings by substitution

Introduction

sub and gsub are used to edit strings using patterns. See Pattern Matching and Replacement for 

more on related functions and Regular Expressions for how to build a pattern.

Examples

Rearrange character strings using capture groups

If you want to change the order of a character strings you can use parentheses in the pattern to 

group parts of the string together. These groups can in the replacement argument be addresed 

using consecutive numbers.

The following example shows how you can reorder a vector of names of the form "surname, 

forename" into a vector of the form "forename surname".

library(randomNames) 
set.seed(1) 
 
strings <- randomNames(5) 
strings 
# [1] "Sigg, Zachary"        "Holt, Jake"           "Ortega, Sandra"       "De La Torre, 
Nichole" 
# [5] "Perkins, Donovon" 
 
sub("^(.+),\\s(.+)$", "\\2 \\1", strings) 
# [1] "Zachary Sigg"        "Jake Holt"           "Sandra Ortega"       "Nichole De La Torre" 
# [5] "Donovon Perkins" 

If you only need the surname you could just address the first pairs of parentheses.

sub("^(.+),\\s(.+)", "\\1", strings) 
# [1] "Sigg"        "Holt"        "Ortega"      "De La Torre" "Perkins" 

Eliminate duplicated consecutive elements

Let's say we want to eliminate duplicated subsequence element from a string (it can be more than 

one). For example:

2,14,14,14,19

and convert it into:

2,14,19
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Using gsub, we can achieve it:

gsub("(\\d+)(,\\1)+","\\1", "2,14,14,14,19") 
[1] "2,14,19"

It works also for more than one different repetition, for example:

 > gsub("(\\d+)(,\\1)+", "\\1", "2,14,14,14,19,19,20,21") 
[1] "2,14,19,20,21"

Let's explain the regular expression:

(\\d+): A group 1 delimited by () and finds any digit (at least one). Remember we need to 

use the double backslash (\\) here because for a character variable a backslash represents 

special escape character for literal string delimiters (\" or \'). \d\ is equivalent to: [0-9].

1. 

,: A punctuation sign: , (we can include spaces or any other delimiter)2. 

\\1: An identical string to the group 1, i.e.: the repeated number. If that doesn't happen, then 

the pattern doesn't match.

3. 

Let's try a similar situation: eliminate consecutive repeated words:

one,two,two,three,four,four,five,six

Then, just replace \d by \w, where \w matches any word character, including: any letter, digit or 

underscore. It is equivalent to [a-zA-Z0-9_]:

> gsub("(\\w+)(,\\1)+", "\\1", "one,two,two,three,four,four,five,six") 
[1] "one,two,three,four,five,six" 
> 

Then, the above pattern includes as a particular case duplicated digits case.

Read Modifying strings by substitution online: https://riptutorial.com/r/topic/9219/modifying-strings-

by-substitution
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Chapter 69: Natural language processing

Introduction

Natural language processing (NLP) is the field of computer sciences focused on retrieving 

information from textual input generated by human beings.

Examples

Create a term frequency matrix

The simplest approach to the problem (and the most commonly used so far) is to split sentences 

into tokens. Simplifying, words have abstract and subjective meanings to the people using and 

receiving them, tokens have an objective interpretation: an ordered sequence of characters (or 

bytes). Once sentences are split, the order of the token is disregarded. This approach to the 

problem in known as bag of words model.

A term frequency is a dictionary, in which to each token is assigned a weight. In the first example, 

we construct a term frequency matrix from a corpus corpus (a collection of documents) with the 

R package tm.

require(tm) 
doc1 <- "drugs hospitals doctors" 
doc2 <- "smog pollution environment" 
doc3 <- "doctors hospitals healthcare" 
doc4 <- "pollution environment water" 
corpus <- c(doc1, doc2, doc3, doc4) 
tm_corpus <- Corpus(VectorSource(corpus))

In this example, we created a corpus of class Corpus defined by the package tm with two functions 

Corpus and VectorSource, which returns a VectorSource object from a character vector. The object 

tm_corpus is a list our documents with additional (and optional) metadata to describe each 

document.

str(tm_corpus) 
List of 4 
 $ 1:List of 2 
  ..$ content: chr "drugs hospitals doctors" 
  ..$ meta   :List of 7 
  .. ..$ author       : chr(0) 
  .. ..$ datetimestamp: POSIXlt[1:1], format: "2017-06-03 00:31:34" 
  .. ..$ description  : chr(0) 
  .. ..$ heading      : chr(0) 
  .. ..$ id           : chr "1" 
  .. ..$ language     : chr "en" 
  .. ..$ origin       : chr(0) 
  .. ..- attr(*, "class")= chr "TextDocumentMeta" 
  ..- attr(*, "class")= chr [1:2] "PlainTextDocument" "TextDocument" 
[truncated]
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Once we have a Corpus, we can proceed to preprocess the tokens contained in the Corpus to 

improve the quality of the final output (the term frequency matrix). To do this we use the tm 

function tm_map, which similarly to the apply family of functions, transform the documents in the 

corpus by applying a function to each document.

tm_corpus <- tm_map(tm_corpus, tolower) 
tm_corpus <- tm_map(tm_corpus, removeWords, stopwords("english")) 
tm_corpus <- tm_map(tm_corpus, removeNumbers) 
tm_corpus <- tm_map(tm_corpus, PlainTextDocument) 
tm_corpus <- tm_map(tm_corpus, stemDocument, language="english") 
tm_corpus <- tm_map(tm_corpus, stripWhitespace) 
tm_corpus <- tm_map(tm_corpus, PlainTextDocument)

Following these transformations, we finally create the term frequency matrix with

tdm <- TermDocumentMatrix(tm_corpus)

which gives a

<<TermDocumentMatrix (terms: 8, documents: 4)>> 
Non-/sparse entries: 12/20 
Sparsity           : 62% 
Maximal term length: 9 
Weighting          : term frequency (tf)

that we can view by transforming it to a matrix

as.matrix(tdm) 
 
           Docs 
Terms       character(0) character(0) character(0) character(0) 
  doctor               1            0            1            0 
  drug                 1            0            0            0 
  environ              0            1            0            1 
  healthcar            0            0            1            0 
  hospit               1            0            1            0 
  pollut               0            1            0            1 
  smog                 0            1            0            0 
  water                0            0            0            1

Each row represents the frequency of each token - that as you noticed have been stemmed (e.g. 

environment to environ) - in each document (4 documents, 4 columns).

In the previous lines, we have weighted each pair token/document with the absolute frequency 

(i.e. the number of instances of the token that appear in the document).

Read Natural language processing online: https://riptutorial.com/r/topic/10119/natural-language-

processing
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Chapter 70: Network analysis with the igraph 

package

Examples

Simple Directed and Non-directed Network Graphing

The igraph package for R is a wonderful tool that can be used to model networks, both real and 

virtual, with simplicity. This example is meant to demonstrate how to create two simple network 

graphs using the igraph package within R v.3.2.3.

Non-Directed Network

The network is created with this piece of code:

g<-graph.formula(Node1-Node2, Node1-Node3, Node4-Node1) 
plot(g)

Directed Network

dg<-graph.formula(Tom-+Mary, Tom-+Bill, Tom-+Sam, Sue+-Mary, Bill-+Sue) 
plot(dg)

This code will then generate a network with arrows:

https://riptutorial.com/ 358



Code example of how to make a double sided arrow:

dg<-graph.formula(Tom-+Mary, Tom-+Bill, Tom-+Sam, Sue+-Mary, Bill++Sue) 
plot(dg)

Read Network analysis with the igraph package online: https://riptutorial.com/r/topic/4851/network-

analysis-with-the-igraph-package
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Chapter 71: Non-standard evaluation and 

standard evaluation

Introduction

Dplyr and many modern libraries in R use non-standard evaluation (NSE) for interactive 

programming and standard evaluation (SE) for programming1.

For instance, the summarise() function use non-standard evaluation but relies on the summarise_() 

which uses standard evaluation.

The lazyeval library makes it easy to turn standard evaluation function into NSE functions.

Examples

Examples with standard dplyr verbs

NSE functions should be used in interactive programming. However, when developping new 

functions in a new package, it's better to use SE version.

Load dplyr and lazyeval :

library(dplyr) 
library(lazyeval)

Filtering

NSE version

filter(mtcars, cyl == 8) 
filter(mtcars, cyl < 6) 
filter(mtcars, cyl < 6 & vs == 1)

SE version (to be use when programming functions in a new package)

filter_(mtcars, .dots = list(~ cyl == 8)) 
filter_(mtcars, .dots = list(~ cyl < 6)) 
filter_(mtcars, .dots = list(~ cyl < 6, ~ vs == 1))

Summarise

NSE version

summarise(mtcars,  mean(disp)) 
summarise(mtcars,  mean_disp = mean(disp))
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SE version

summarise_(mtcars, .dots = lazyeval::interp(~ mean(x), x = quote(disp))) 
summarise_(mtcars, .dots = setNames(list(lazyeval::interp(~ mean(x), x = quote(disp))), 
"mean_disp")) 
summarise_(mtcars, .dots = list("mean_disp" = lazyeval::interp(~ mean(x), x = quote(disp))))

Mutate

NSE version

mutate(mtcars, displ_l = disp / 61.0237)

SE version

mutate_( 
    .data = mtcars, 
    .dots = list( 
        "displ_l" = lazyeval::interp( 
                        ~ x / 61.0237, x = quote(disp) 
            ) 
         ) 
)

Read Non-standard evaluation and standard evaluation online: 

https://riptutorial.com/r/topic/9365/non-standard-evaluation-and-standard-evaluation
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Chapter 72: Numeric classes and storage 

modes

Examples

Numeric

Numeric represents integers and doubles and is the default mode assigned to vectors of numbers. 

The function is.numeric() will evaluate whether a vector is numeric. It is important to note that 

although integers and doubles will pass is.numeric(), the function as.numeric() will always attempt 

to convert to type double.

x <- 12.3 
y <- 12L 
 
#confirm types 
typeof(x) 
[1] "double" 
typeof(y) 
[1] "integer" 
 
# confirm both numeric 
is.numeric(x) 
[1] TRUE 
is.numeric(y) 
[1] TRUE 
 
# logical to numeric 
as.numeric(TRUE) 
[1] 1 
 
# While TRUE == 1, it is a double and not an integer 
is.integer(as.numeric(TRUE)) 
[1] FALSE

Doubles are R's default numeric value. They are double precision vectors, meaning that they take 

up 8 bytes of memory for each value in the vector. R has no single precision data type and so all 

real numbers are stored in the double precision format.

is.double(1) 
TRUE 
is.double(1.0) 
TRUE 
is.double(1L) 
FALSE

Integers are whole numbers that can be written without a fractional component. Integers are 

represented by a number with an L after it. Any number without an L after it will be considered a 

double.
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typeof(1) 
[1] "double" 
class(1) 
[1] "numeric" 
typeof(1L) 
[1] "integer" 
class(1L) 
[1] "integer"

Though in most cases using an integer or double will not matter, sometimes replacing doubles 

with integers will consume less memory and operational time. A double vector uses 8 bytes per 

element while an integer vector uses only 4 bytes per element. As the size of vectors increases, 

using proper types can dramatically speed up processes.

#  test speed on lots of arithmetic 
microbenchmark( 
  for( i in 1:100000){ 
  2L * i 
  10L + i 
}, 
 
for( i in 1:100000){ 
  2.0 * i 
  10.0 + i 
} 
) 
Unit: milliseconds 
                                          expr      min       lq     mean   median       uq 
max neval 
 for (i in 1:1e+05) {     2L * i     10L + i } 40.74775 42.34747 50.70543 42.99120 65.46864 
94.11804   100 
   for (i in 1:1e+05) {     2 * i     10 + i } 41.07807 42.38358 53.52588 44.26364 65.84971 
83.00456   100

Read Numeric classes and storage modes online: https://riptutorial.com/r/topic/9018/numeric-

classes-and-storage-modes
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Chapter 73: Object-Oriented Programming in 

R

Introduction

This documentation page describes the four object systems in R and their high-level similarities 

and differences. Greater detail on each individual system can be found on its own topic page.

The four systems are: S3, S4, Reference Classes, and S6.

Examples

S3

The S3 object system is a very simple OO system in R.

Every object has an S3 class. It can be get (got?) with the function class.

> class(3) 
[1] "numeric"

It can also be set with the function class:

> bicycle <- 2 
> class(bicycle) <- 'vehicle' 
> class(bicycle) 
[1] "vehicle"

It can also be set with the function attr:

> velocipede <- 2 
> attr(velocipede, 'class') <- 'vehicle' 
> class(velocipede) 
[1] "vehicle"

An object can have many classes:

> class(x = bicycle) <- c('human-powered vehicle', class(x = bicycle)) 
> class(x = bicycle) 
[1] "human-powered vehicle" "vehicle" 

When using a generic function, R uses the first element of the class that has an available generic.

For example:

> summary.vehicle <- function(object, ...) { 
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+   message('this is a vehicle') 
+ } 
> summary(object = my_bike) 
this is a vehicle

But if we now define a summary.bicycle:

> summary.bicycle <- function(object, ...) { 
+   message('this is a bicycle') 
+ } 
> summary(object = my_bike) 
this is a bicycle

Read Object-Oriented Programming in R online: https://riptutorial.com/r/topic/9723/object-oriented-

programming-in-r
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Chapter 74: Parallel processing

Remarks

Parallelization on remote machines require libraries to be downloaded on each machine. Prefer 

package::function() calls. Several packages have parallelization natively built-in, including caret, 

pls and plyr.

Microsoft R Open (Revolution R) also uses multi-threaded BLAS/LAPACK libraries which 

intrinsically parallelizes many common functions.

Examples

Parallel processing with foreach package

The foreach package brings the power of parallel processing to R. But before you want to use multi 

core CPUs you have to assign a multi core cluster. The doSNOW package is one possibility.

A simple use of the foreach loop is to calculate the sum of the square root and the square of all 

numbers from 1 to 100000.

library(foreach) 
library(doSNOW) 
 
cl <- makeCluster(5, type = "SOCK") 
registerDoSNOW(cl) 
 
f <- foreach(i = 1:100000, .combine = c, .inorder = F) %dopar% { 
    k <- i ** 2 + sqrt(i) 
    k 
} 

The structure of the output of foreach is controlled by the .combine argument. The default output 

structure is a list. In the code above, c is used to return a vector instead. Note that a calculation 

function (or operator) such as "+" may also be used to perform a calculation and return a further 

processed object.

It is important to mention that the result of each foreach-loop is the last call. Thus, in this example 

k will be added to the result.

Parameter Details

.combine
combine Function. Determines how the results of the loop are combined. 

Possible values are c, cbind, rbind, "+", "*"...

.inorder

if TRUE the result is ordered according to the order of the iteration vairable (here i

). If FALSE the result is not ordered. This can have postive effects on computation 

time.
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Parameter Details

.packages
for functions which are provided by any package except base, like e.g. mass, 

randomForest or else, you have to provide these packages with c("mass", 
"randomForest")

Parallel processing with parallel package

The base package parallel allows parallel computation through forking, sockets, and random-

number generation.

Detect the number of cores present on the localhost:

parallel::detectCores(all.tests = FALSE, logical = TRUE)

Create a cluster of the cores on the localhost:

parallelCluster <- parallel::makeCluster(parallel::detectCores())

First, a function appropriate for parallelization must be created. Consider the mtcars dataset. A 

regression on mpg could be improved by creating a separate regression model for each level of cyl.

data <- mtcars 
yfactor <- 'cyl' 
zlevels <- sort(unique(data[[yfactor]])) 
datay <- data[,1] 
dataz <- data[,2] 
datax <- data[,3:11] 
 
 
fitmodel <- function(zlevel, datax, datay, dataz) { 
  glm.fit(x = datax[dataz == zlevel,], y = datay[dataz == zlevel]) 
}

Create a function that can loop through all the possible iterations of zlevels. This is still in serial, 

but is an important step as it determines the exact process that will be parallelized.

fitmodel <- function(zlevel, datax, datay, dataz) { 
  glm.fit(x = datax[dataz == zlevel,], y = datay[dataz == zlevel]) 
} 
 
 
for (zlevel in zlevels) { 
  print("*****") 
  print(zlevel) 
  print(fitmodel(zlevel, datax, datay, dataz)) 
}

Curry this function:

worker <- function(zlevel) { 
    fitmodel(zlevel,datax, datay, dataz) 
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  }

Parallel computing using parallel cannot access the global environment. Luckily, each function 

creates a local environment parallel can access. Creation of a wrapper function allows for 

parallelization. The function to be applied also needs to be placed within the environment.

wrapper <- function(datax, datay, dataz) { 
  # force evaluation of all paramters not supplied by parallelization apply 
  force(datax) 
  force(datay) 
  force(dataz) 
  # these variables are now in an enviroment accessible by parallel function 
 
  # function to be applied also in the environment 
  fitmodel <- function(zlevel, datax, datay, dataz) { 
    glm.fit(x = datax[dataz == zlevel,], y = datay[dataz == zlevel]) 
  } 
 
  # calling in this environment iterating over single parameter zlevel 
  worker <- function(zlevel) { 
    fitmodel(zlevel,datax, datay, dataz) 
  } 
  return(worker) 
}

Now create a cluster and run the wrapper function.

parallelcluster <- parallel::makeCluster(parallel::detectCores()) 
models <- parallel::parLapply(parallelcluster,zlevels, 
                              wrapper(datax, datay, dataz))

Always stop the cluster when finished.

parallel::stopCluster(parallelcluster)

The parallel package includes the entire apply() family, prefixed with par.

Random Number Generation

A major problem with parallelization is the used of RNG as seeds. Random numbers by the 

number are iterated by the number of operations from either the start of the session or the most 

recent set.seed(). Since parallel processes arise from the same function, it can use the same 

seed, possibly causing identical results! Calls will run in serial on the different cores, provide no 

advantage.

A set of seeds must be generated and sent to each parallel process. This is automatically done in 

some packages (parallel, snow, etc.), but must be explicitly addressed in others.

s <- seed 
for (i in 1:numofcores) { 
    s <- nextRNGStream(s) 
    # send s to worker i as .Random.seed 
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}

Seeds can be also be set for reproducibility.

clusterSetRNGStream(cl = parallelcluster, iseed)

mcparallelDo

The mcparallelDo package allows for the evaluation of R code asynchronously on Unix-alike (e.g. 

Linux and MacOSX) operating systems. The underlying philosophy of the package is aligned with 

the needs of exploratory data analysis rather than coding. For coding asynchrony, consider the 

future package.

Example

Create data

data(ToothGrowth)

Trigger mcparallelDo to perform analysis on a fork

mcparallelDo({glm(len ~ supp * dose, data=ToothGrowth)},"interactionPredictorModel")

Do other things, e.g.

binaryPredictorModel <- glm(len ~ supp, data=ToothGrowth) 
gaussianPredictorModel <- glm(len ~ dose, data=ToothGrowth)

The result from mcparallelDo returns in your targetEnvironment, e.g. .GlobalEnv, when it is 

complete with a message (by default)

summary(interactionPredictorModel)

Other Examples

# Example of not returning a value until we return to the top level 
for (i in 1:10) { 
  if (i == 1) { 
    mcparallelDo({2+2}, targetValue = "output") 
  } 
  if (exists("output")) print(i) 
} 
 
# Example of getting a value without returning to the top level 
for (i in 1:10) { 
  if (i == 1) { 
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    mcparallelDo({2+2}, targetValue = "output") 
  } 
  mcparallelDoCheck() 
  if (exists("output")) print(i) 
}

Read Parallel processing online: https://riptutorial.com/r/topic/1677/parallel-processing
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Chapter 75: Pattern Matching and 

Replacement

Introduction

This topic covers matching string patterns, as well as extracting or replacing them. For details on 

defining complicated patterns see Regular Expressions.

Syntax

grep("query", "subject", optional_args)•

grepl("query", "subject", optional_args)•

gsub("(group1)(group2)", "\\group#", "subject")•

Remarks

Differences from other languages

Escaped regex symbols (like \1) are must be escaped a second time (like \\1), not only in the 

pattern argument, but also in the replacement to sub and gsub.

By default, the pattern for all commands (grep, sub, regexpr) is not Perl Compatible Regular 

Expression (PCRE) so some things like lookarounds are not supported. However, each function 

accepts a perl=TRUE argument to enable them. See the R Regular Expressions topic for details.

Specialized packages

stringi•

stringr•

Examples

Making substitutions

# example data 
test_sentences <- c("The quick brown fox quickly", "jumps over the lazy dog")

Let's make the brown fox red:
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sub("brown","red", test_sentences) 
#[1] "The quick red fox quickly"       "jumps over the lazy dog"

Now, let's make the "fast" fox act "fastly". This won't do it:

sub("quick", "fast", test_sentences) 
#[1] "The fast red fox quickly"       "jumps over the lazy dog"

sub only makes the first available replacement, we need gsub for global replacement:

gsub("quick", "fast", test_sentences) 
#[1] "The fast red fox fastly"       "jumps over the lazy dog"

See Modifying strings by substitution for more examples.

Finding Matches

# example data 
test_sentences <- c("The quick brown fox", "jumps over the lazy dog") 

Is there a match?

grepl() is used to check whether a word or regular expression exists in a string or character 

vector. The function returns a TRUE/FALSE (or "Boolean") vector.

Notice that we can check each string for the word "fox" and receive a Boolean vector in return.

grepl("fox", test_sentences) 
#[1]  TRUE FALSE

Match locations

grep takes in a character string and a regular expression. It returns a numeric vector of 

indexes.This will return which sentence contains the word "fox" in it.

grep("fox", test_sentences) 
#[1] 1

Matched values

To select sentences that match a pattern:

# each of the following lines does the job: 
test_sentences[grep("fox", test_sentences)] 
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test_sentences[grepl("fox", test_sentences)] 
grep("fox", test_sentences, value = TRUE) 
# [1] "The quick brown fox"

Details

Since the "fox" pattern is just a word, rather than a regular expression, we could improve 

performance (with either grep or grepl) by specifying fixed = TRUE.

grep("fox", test_sentences, fixed = TRUE) 
#[1] 1

To select sentences that don't match a pattern, one can use grep with invert = TRUE; or follow 

subsetting rules with -grep(...) or !grepl(...).

In both grepl(pattern, x) and grep(pattern, x), the x parameter is vectorized, the pattern 

parameter is not. As a result, you cannot use these directly to match pattern[1] against x[1], 

pattern[2] against x[2], and so on.

Summary of matches

After performing the e.g. the grepl command, maybe you want to get an overview about how many 

matches where TRUE or FALSE. This is useful e.g. in case of big data sets. In order to do so run the 

summary command:

# example data 
test_sentences <- c("The quick brown fox", "jumps over the lazy dog") 
 
# find matches 
matches <- grepl("fox", test_sentences) 
 
# overview 
summary(matches)

Single and Global match.

When working with regular expressions one modifier for PCRE is g for global match.

In R matching and replacement functions have two version: first match and global match:

sub(pattern,replacement,text) will replace the first occurrence of pattern by replacement in 

text

•

gsub(pattern,replacement,text) will do the same as sub but for each occurrence of pattern•

regexpr(pattern,text) will return the position of match for the first instance of pattern•

gregexpr(pattern,text) will return all matches.•
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Some random data:

set.seed(123) 
teststring <- paste0(sample(letters,20),collapse="") 
 
# teststring 
#[1] "htjuwakqxzpgrsbncvyo"

Let's see how this works if we want to replace vowels by something else:

sub("[aeiouy]"," ** HERE WAS A VOWEL** ",teststring) 
#[1] "htj ** HERE WAS A VOWEL** wakqxzpgrsbncvyo" 
 
gsub("[aeiouy]"," ** HERE WAS A VOWEL** ",teststring) 
#[1] "htj ** HERE WAS A VOWEL** w ** HERE WAS A VOWEL** kqxzpgrsbncv ** HERE WAS A VOWEL**  ** 
HERE WAS A VOWEL** "

Now let's see how we can find a consonant immediately followed by one or more vowel:

regexpr("[^aeiou][aeiou]+",teststring) 
#[1] 3 
#attr(,"match.length") 
#[1] 2 
#attr(,"useBytes") 
#[1] TRUE

We have a match on position 3 of the string of length 2, i.e: ju

Now if we want to get all matches:

gregexpr("[^aeiou][aeiou]+",teststring) 
#[[1]] 
#[1]  3  5 19 
#attr(,"match.length") 
#[1] 2 2 2 
#attr(,"useBytes") 
#[1] TRUE

All this is really great, but this only give use positions of match and that's not so easy to get what is 

matched, and here comes regmatches it's sole purpose is to extract the string matched from 

regexpr, but it has a different syntax.

Let's save our matches in a variable and then extract them from original string:

matches <- gregexpr("[^aeiou][aeiou]+",teststring) 
regmatches(teststring,matches) 
#[[1]] 
#[1] "ju" "wa" "yo"

This may sound strange to not have a shortcut, but this allow extraction from another string by the 

matches of our first one (think comparing two long vector where you know there's is a common 

pattern for the first but not for the second, this allow an easy comparison):
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teststring2 <- "this is another string to match against" 
regmatches(teststring2,matches) 
#[[1]] 
#[1] "is" " i" "ri"

Attention note: by default the pattern is not Perl Compatible Regular Expression, some things like 

lookarounds are not supported, but each function presented here allow for perl=TRUE argument to 

enable them.

Find matches in big data sets

In case of big data sets, the call of grepl("fox", test_sentences) does not perform well. Big data 

sets are e.g. crawled websites or million of Tweets, etc.

The first acceleration is the usage of the perl = TRUE option. Even faster is the option fixed = TRUE. 

A complete example would be:

# example data 
test_sentences <- c("The quick brown fox", "jumps over the lazy dog") 
 
grepl("fox", test_sentences, perl = TRUE) 
#[1]  TRUE FALSE

In case of text mining, often a corpus gets used. A corpus cannot be used directly with grepl. 

Therefore, consider this function:

searchCorpus <- function(corpus, pattern) { 
  return(tm_index(corpus, FUN = function(x) { 
    grepl(pattern, x, ignore.case = TRUE, perl = TRUE) 
  })) 
} 

Read Pattern Matching and Replacement online: https://riptutorial.com/r/topic/1123/pattern-

matching-and-replacement
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Chapter 76: Performing a Permutation Test

Examples

A fairly general function

We will use the built in tooth growth dataset. We are interested in whether there is a statistically 

significant difference in tooth growth when the guinea pigs are given vitamin C vs orange juice.

Here's the full example:

teethVC = ToothGrowth[ToothGrowth$supp == 'VC',] 
teethOJ = ToothGrowth[ToothGrowth$supp == 'OJ',] 
 
permutationTest = function(vectorA, vectorB, testStat){ 
  N = 10^5 
  fullSet = c(vectorA, vectorB) 
  lengthA = length(vectorA) 
  lengthB = length(vectorB) 
  trials <- replicate(N, 
                      {index <- sample(lengthB + lengthA, size = lengthA, replace = FALSE) 
                      testStat((fullSet[index]), fullSet[-index])  } ) 
  trials 
} 
vec1 =teethVC$len; 
vec2 =teethOJ$len; 
subtractMeans = function(a, b){ return (mean(a) - mean(b))} 
result = permutationTest(vec1, vec2, subtractMeans) 
observedMeanDifference = subtractMeans(vec1, vec2) 
result = c(result, observedMeanDifference) 
hist(result) 
abline(v=observedMeanDifference, col = "blue") 
pValue = 2*mean(result <= (observedMeanDifference)) 
pValue

After we read in the CSV, we define the function

permutationTest = function(vectorA, vectorB, testStat){ 
  N = 10^5 
  fullSet = c(vectorA, vectorB) 
  lengthA = length(vectorA) 
  lengthB = length(vectorB) 
  trials <- replicate(N, 
                      {index <- sample(lengthB + lengthA, size = lengthA, replace = FALSE) 
                      testStat((fullSet[index]), fullSet[-index])  } ) 
  trials 
}

This function takes two vectors, and shuffles their contents together, then performs the function 

testStat on the shuffled vectors. The result of teststat is added to trials, which is the return 

value.

It does this N = 10^5 times. Note that the value N could very well have been a parameter to the 

https://riptutorial.com/ 376

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/ToothGrowth.html


function.

This leaves us with a new set of data, trials, the set of means that might result if there truly is no 

relationship between the two variables.

Now to define our test statistic:

subtractMeans = function(a, b){ return (mean(a) - mean(b))}

Perform the test:

result = permutationTest(vec1, vec2, subtractMeans)

Calculate our actual observed mean difference:

observedMeanDifference = subtractMeans(vec1, vec2)

Let's see what our observation looks like on a histogram of our test statistic.

hist(result) 
abline(v=observedMeanDifference, col = "blue")

It doesn't look like our observed result is very likely to occur by random chance...

We want to calculate the p-value, the likeliehood of the original observed result if their is no 

relationship between the two variables.

pValue = 2*mean(result >= (observedMeanDifference))

Let's break that down a bit:

result >= (observedMeanDifference)
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Will create a boolean vector, like:

FALSE TRUE FALSE FALSE TRUE FALSE ...

With TRUE every time the value of result is greater than or equal to the observedMean.

The function mean will interpret this vector as 1 for TRUE and 0 for FALSE, and give us the percentage 

of 1's in the mix, ie the number of times our shuffled vector mean difference surpassed or equalled 

what we observed.

Finally, we multiply by 2 because the distribution of our test statistic is highly symmetric, and we 

really want to know which results are "more extreme" than our observed result.

All that's left is to output the p-value, which turns out to be 0.06093939. Interpretation of this value is 

subjective, but I would say that it looks like Vitamin C promotes tooth growth quite a lot more than 

Orange Juice does.

Read Performing a Permutation Test online: https://riptutorial.com/r/topic/3216/performing-a-

permutation-test
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Chapter 77: Pipe operators (%>% and others)

Introduction

Pipe operators, available in magrittr, dplyr, and other R packages, process a data-object using a 

sequence of operations by passing the result of one step as input for the next step using infix-

operators rather than the more typical R method of nested function calls.

Note that the intended aim of pipe operators is to increase human readability of written code. See 

Remarks section for performance considerations.

Syntax

lhs %>% rhs # pipe syntax for rhs(lhs)•

lhs %>% rhs(a = 1) # pipe syntax for rhs(lhs, a = 1)•

lhs %>% rhs(a = 1, b = .) # pipe syntax for rhs(a = 1, b = lhs)•

lhs %<>% rhs # pipe syntax for lhs <- rhs(lhs)•

lhs %$% rhs(a) # pipe syntax for with(lhs, rhs(lhs$a))•

lhs %T>% rhs # pipe syntax for { rhs(lhs); lhs }•

Parameters

lhs rhs

A value or the magrittr placeholder. A function call using the magrittr semantics

Remarks

Packages that use %>%

The pipe operator is defined in the magrittr package, but it gained huge visibility and popularity 

with the dplyr package (which imports the definition from magrittr). Now it is part of tidyverse, 

which is a collection of packages that "work in harmony because they share common data 

representations and API design".

The magrittr package also provides several variations of the pipe operator for those who want 

more flexibility in piping, such as the compound assignment pipe %<>%, the exposition pipe %$%, and 

the tee operator %T>%. It also provides a suite of alias functions to replace common functions that 

have special syntax (+, [, [[, etc.) so that they can be easily used within a chain of pipes.
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Finding documentation

As with any infix operator (such as +, *, ^, &, %in%), you can find the official documentation if you put 

it in quotes: ?'%>%' or help('%>%') (assuming you have loaded a package that attaches pkg:magrittr

).

Hotkeys

There is a special hotkey in RStudio for the pipe operator: Ctrl+Shift+M (Windows & Linux), 

Cmd+Shift+M (Mac).

Performance Considerations

While the pipe operator is useful, be aware that there is a negative impact on performance due 

mainly to the overhead of using it. Consider the following two things carefully when using the pipe 

operator:

Machine performance (loops)•

Evaluation (object %>% rm() does not remove object)•

Examples

Basic use and chaining

The pipe operator, %>%, is used to insert an argument into a function. It is not a base feature of the 

language and can only be used after attaching a package that provides it, such as magrittr. The 

pipe operator takes the left-hand side (LHS) of the pipe and uses it as the first argument of the 

function on the right-hand side (RHS) of the pipe. For example:

library(magrittr) 
 
1:10 %>% mean 
# [1] 5.5 
 
# is equivalent to 
mean(1:10) 
# [1] 5.5

The pipe can be used to replace a sequence of function calls. Multiple pipes allow us to read and 

write the sequence from left to right, rather than from inside to out. For example, suppose we have 

years defined as a factor but want to convert it to a numeric. To prevent possible information loss, 

we first convert to character and then to numeric:

years <- factor(2008:2012) 
 
# nesting 
as.numeric(as.character(years)) 
 
# piping 
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years %>% as.character %>% as.numeric

If we don't want the LHS (Left Hand Side) used as the first argument on the RHS (Right Hand 

Side), there are workarounds, such as naming the arguments or using . to indicate where the 

piped input goes.

# example with grepl 
# its syntax: 
# grepl(pattern, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE) 
 
# note that the `substring` result is the *2nd* argument of grepl 
grepl("Wo", substring("Hello World", 7, 11)) 
 
# piping while naming other arguments 
"Hello World" %>% substring(7, 11) %>% grepl(pattern = "Wo") 
 
# piping with . 
"Hello World" %>% substring(7, 11) %>% grepl("Wo", .) 
 
# piping with . and curly braces 
"Hello World" %>% substring(7, 11) %>% { c(paste('Hi', .)) } 
#[1] "Hi World" 
 
#using LHS multiple times in argument with curly braces and . 
"Hello World" %>% substring(7, 11) %>% { c(paste(. ,'Hi', .)) } 
#[1] "World Hi World"

Functional sequences

Given a sequence of steps we use repeatedly, it's often handy to store it in a function. Pipes allow 

for saving such functions in a readable format by starting a sequence with a dot as in:

. %>% RHS

As an example, suppose we have factor dates and want to extract the year:

library(magrittr) # needed to include the pipe operators 
library(lubridate) 
read_year <- . %>% as.character %>% as.Date %>% year 
 
# Creating a dataset 
df <- data.frame(now = "2015-11-11", before = "2012-01-01") 
#          now     before 
# 1 2015-11-11 2012-01-01 
 
# Example 1: applying `read_year` to a single character-vector 
df$now %>% read_year 
# [1] 2015 
 
# Example 2: applying `read_year` to all columns of `df` 
df %>% lapply(read_year) %>% as.data.frame  # implicit `lapply(df, read_year) 
#    now before 
# 1 2015   2012 
 
# Example 3: same as above using `mutate_all` 
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library(dplyr) 
df %>% mutate_all(funs(read_year)) 
# if an older version of dplyr use `mutate_each` 
#    now before 
# 1 2015   2012

We can review the composition of the function by typing its name or using functions:

read_year 
# Functional sequence with the following components: 
# 
#  1. as.character(.) 
#  2. as.Date(.) 
#  3. year(.) 
# 
# Use 'functions' to extract the individual functions. 

We can also access each function by its position in the sequence:

read_year[[2]] 
# function (.) 
# as.Date(.)

Generally, this approach may be useful when clarity is more important than speed.

Assignment with %<>%

The magrittr package contains a compound assignment infix-operator, %<>%, that updates a value 

by first piping it into one or more rhs expressions and then assigning the result. This eliminates the 

need to type an object name twice (once on each side of the assignment operator <-). %<>% must 

be the first infix-operator in a chain:

library(magrittr) 
library(dplyr) 
 
df <- mtcars

Instead of writing

df <- df %>% select(1:3) %>% filter(mpg > 20, cyl == 6)

or

df %>% select(1:3) %>% filter(mpg > 20, cyl == 6) -> df

The compound assignment operator will both pipe and reassign df:

df %<>% select(1:3) %>% filter(mpg > 20, cyl == 6)

Exposing contents with %$%
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The exposition pipe operator, %$%, exposes the column names as R symbols within the left-hand 

side object to the right-hand side expression. This operator is handy when piping into functions 

that do not have a data argument (unlike, say, lm) and that don't take a data.frame and column 

names as arguments (most of the main dplyr functions).

The exposition pipe operator %$% allows a user to avoid breaking a pipeline when needing to refer 

to column names. For instance, say you want to filter a data.frame and then run a correlation test 

on two columns with cor.test:

library(magrittr) 
library(dplyr) 
mtcars %>% 
  filter(wt > 2) %$% 
  cor.test(hp, mpg) 
 
#> 
#>  Pearson's product-moment correlation 
#> 
#> data:  hp and mpg 
#> t = -5.9546, df = 26, p-value = 2.768e-06 
#> alternative hypothesis: true correlation is not equal to 0 
#> 95 percent confidence interval: 
#>  -0.8825498 -0.5393217 
#> sample estimates: 
#>        cor 
#> -0.7595673

Here the standard %>% pipe passes the data.frame through to filter(), while the %$% pipe exposes 

the column names to cor.test().

The exposition pipe works like a pipe-able version of the base R with() functions, and the same 

left-hand side objects are accepted as inputs.

Using the pipe with dplyr and ggplot2

The %>% operator can also be used to pipe the dplyr output into ggplot. This creates a unified 

exploratory data analysis (EDA) pipeline that is easily customizable. This method is faster than 

doing the aggregations internally in ggplot and has the added benefit of avoiding unnecessary 

intermediate variables.

library(dplyr) 
library(ggplot) 
 
 
diamonds %>% 
    filter(depth > 60) %>% 
    group_by(cut) %>% 
    summarize(mean_price = mean(price)) %>% 
    ggplot(aes(x = cut, y = mean_price)) + 
        geom_bar(stat = "identity")

Creating side effects with %T>%
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Some functions in R produce a side effect (i.e. saving, printing, plotting, etc) and do not always 

return a meaningful or desired value.

%T>% (tee operator) allows you to forward a value into a side-effect-producing function while 

keeping the original lhs value intact. In other words: the tee operator works like %>%, except the 

return values is lhs itself, and not the result of the rhs function/expression.

Example: Create, pipe, write, and return an object. If %>% were used in place of %T>% in this 

example, then the variable all_letters would contain NULL rather than the value of the sorted 

object.

all_letters <- c(letters, LETTERS) %>% 
    sort %T>% 
    write.csv(file = "all_letters.csv") 
 
read.csv("all_letters.csv") %>% head() 
#   x 
# 1 a 
# 2 A 
# 3 b 
# 4 B 
# 5 c 
# 6 C

Warning: Piping an unnamed object to save() will produce an object named . when loaded into the 

workspace with load(). However, a workaround using a helper function is possible (which can also 

be written inline as an anonymous function).

all_letters <- c(letters, LETTERS) %>% 
    sort %T>% 
    save(file = "all_letters.RData") 
 
load("all_letters.RData", e <- new.env()) 
 
get("all_letters", envir = e) 
# Error in get("all_letters", envir = e) : object 'all_letters' not found 
 
get(".", envir = e) 
#  [1] "a" "A" "b" "B" "c" "C" "d" "D" "e" "E" "f" "F" "g" "G" "h" "H" "i" "I" "j" "J" 
# [21] "k" "K" "l" "L" "m" "M" "n" "N" "o" "O" "p" "P" "q" "Q" "r" "R" "s" "S" "t" "T" 
# [41] "u" "U" "v" "V" "w" "W" "x" "X" "y" "Y" "z" "Z" 
 
# Work-around 
save2 <- function(. = ., name, file = stop("'file' must be specified")) { 
  assign(name, .) 
  call_save <- call("save", ... = name, file = file) 
  eval(call_save) 
} 
 
all_letters <- c(letters, LETTERS) %>% 
    sort %T>% 
    save2("all_letters", "all_letters.RData")

Read Pipe operators (%>% and others) online: https://riptutorial.com/r/topic/652/pipe-operators----

--and-others-
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Chapter 78: Pivot and unpivot with data.table

Syntax

Melt with melt(DT, id.vars=c(..), variable.name="CategoryLabel", value.name="Value")•

Cast with dcast(DT, LHS ~ RHS, value.var="Value", fun.aggregate=sum)•

Parameters

Parameter Details

id.vars tell melt which columns to retain

variable.name tell melt what to call the column with category labels

value.name
tell melt what to call the column that has values associated with category 

labels

value.var tell dcast where to find the values to cast in columns

formula
tell dcast which columns to retain to form a unique record identifier (LHS) and 

which one holds the category labels (RHS)

fun.aggregate
specify the function to use when the casting operation generates a list of 

values in each cell

Remarks

Much of what goes into conditioning data to build models or visualizations can be accomplished 

with data.table. As compare to other options, data.table offers advantages of speed and flexibility.

Examples

Pivot and unpivot tabular data with data.table - I

Convert from wide form to long form

Load data USArrests from datasets.

data("USArrests") 
head(USArrests) 
 
           Murder Assault UrbanPop Rape 
Alabama      13.2     236       58 21.2 
Alaska       10.0     263       48 44.5 
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Arizona       8.1     294       80 31.0 
Arkansas      8.8     190       50 19.5 
California    9.0     276       91 40.6 
Colorado      7.9     204       78 38.7

Use ?USArrests to find out more. First, convert to data.table. The names of states are row names in 

the original data.frame.

library(data.table) 
DT <- as.data.table(USArrests, keep.rownames=TRUE)

This is data in the wide form. It has a column for each variable. The data can also be stored in 

long form without loss of information. The long form has one column that stores the variable 

names. Then, it has another column for the variable values. The long form of USArrests looks like 

so.

            State    Crime  Rate 
  1:       Alabama   Murder  13.2 
  2:        Alaska   Murder  10.0 
  3:       Arizona   Murder   8.1 
  4:      Arkansas   Murder   8.8 
  5:    California   Murder   9.0 
 --- 
196:      Virginia     Rape  20.7 
197:    Washington     Rape  26.2 
198: West Virginia     Rape   9.3 
199:     Wisconsin     Rape  10.8 
200:       Wyoming     Rape  15.6

We use the melt function to switch from wide form to long form.

DTm <- melt(DT) 
names(DTm) <- c("State", "Crime", "Rate")

By default, melt treats all columns with numeric data as variables with values. In USArrests, the 

variable UrbanPop represents the percentage urban population of a state. It is different from the 

other variabes, Murder, Assault and Rape, which are violent crimes reported per 100,000 people. 

Suppose we want to retain UrbanPop column. We achieve this by setting id.vars as follows.

DTmu <- melt(DT, id.vars=c("rn", "UrbanPop" ), 
             variable.name='Crime', value.name = "Rate") 
names(DTmu)[1] <- "State"

Note that we have specified the names of the column containing category names (Murder, 

Assault, etc.) with variable.name and the column containing the values with value.name. Our data 

looks like so.

             State UrbanPop  Crime Rate 
  1:       Alabama       58 Murder 13.2 
  2:        Alaska       48 Murder 10.0 
  3:       Arizona       80 Murder  8.1 
  4:      Arkansas       50 Murder  8.8 
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  5:    California       91 Murder  9.0

Generating summaries with with split-apply-combine style approach is a breeze. For example, to 

summarize violent crimes by state?

DTmu[, .(ViolentCrime = sum(Rate)), by=State]

This gives:

        State ViolentCrime 
1:    Alabama        270.4 
2:     Alaska        317.5 
3:    Arizona        333.1 
4:   Arkansas        218.3 
5: California        325.6 
6:   Colorado        250.6

Pivot and unpivot tabular data with data.table - II

Convert from long form to wide form

To recover data from the previous example, use dcast like so.

DTc <- dcast(DTmu, State + UrbanPop ~ Crime)

This gives the data in the original wide form.

             State UrbanPop Murder Assault Rape 
 1:        Alabama       58   13.2     236 21.2 
 2:         Alaska       48   10.0     263 44.5 
 3:        Arizona       80    8.1     294 31.0 
 4:       Arkansas       50    8.8     190 19.5 
 5:     California       91    9.0     276 40.6

Here, the formula notation is used to specify the columns that form a unique record identifier (LHS) 

and the column containing category labels for new column names (RHS). Which column to use for 

the numeric values? By default, dcast uses the first column with numerical values left over when 

from the formula specification. To make explicit, use the parameter value.var with column name.

When the operation produces a list of values in each cell, dcast provides a fun.aggregate method to 

handle the situation. Say I am interested in states with similar urban population when investigating 

crime rates. I add a column Decile with computed information.

DTmu[, Decile := cut(UrbanPop, quantile(UrbanPop, probs = seq(0, 1, by=0.1)))] 
levels(DTmu$Decile) <- paste0(1:10, "D")

Now, casting Decile ~ Crime produces multiple values per cell. I can use fun.aggregate to 

determine how these are handled. Both text and numerical values can be handle this way.
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dcast(DTmu, Decile ~ Crime, value.var="Rate", fun.aggregate=sum)

This gives:

dcast(DTmu, Decile ~ Crime, value.var="Rate", fun.aggregate=mean)

This gives:

             State UrbanPop  Crime Rate Decile 
  1:       Alabama       58 Murder 13.2     4D 
  2:        Alaska       48 Murder 10.0     2D 
  3:       Arizona       80 Murder  8.1     8D 
  4:      Arkansas       50 Murder  8.8     2D 
  5:    California       91 Murder  9.0    10D

There are multiple states in each decile of the urban population. Use fun.aggregate to specify how 

these should be handled.

dcast(DTmu, Decile ~ Crime, value.var="Rate", fun.aggregate=sum)

This sums over the data for like states, giving the following.

    Decile Murder Assault  Rape 
 1:     1D   39.4     808  62.6 
 2:     2D   35.3     815  94.3 
 3:     3D   22.6     451  67.7 
 4:     4D   54.9     898 106.0 
 5:     5D   42.4     758 107.6 

Read Pivot and unpivot with data.table online: https://riptutorial.com/r/topic/6934/pivot-and-

unpivot-with-data-table
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Chapter 79: Probability Distributions with R

Examples

PDF and PMF for different distributions in R

PMF FOR THE BINOMIAL DISTRIBUTION

Suppose that a fair die is rolled 10 times. What is the probability of throwing exactly two sixes?

You can answer the question using the dbinom function:

> dbinom(2, 10, 1/6) 
[1] 0.29071

PMF FOR THE POISSON DISTRIBUTION

The number of sandwhich ordered in a restaurant on a given day is known to follow a Poisson 

distribution with a mean of 20. What is the probability that exactly eighteen sandwhich will be 

ordered tomorrow?

You can answer the question with the dpois function:

> dpois(18, 20) 
[1] 0.08439355

PDF FOR THE NORMAL DISTRIBUTION

To find the value of the pdf at x=2.5 for a normal distribution with a mean of 5 and a standard 

deviation of 2, use the command:

> dnorm(2.5, mean=5, sd=2) 
[1] 0.09132454

Read Probability Distributions with R online: https://riptutorial.com/r/topic/4333/probability-

distributions-with-r
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Chapter 80: Publishing

Introduction

There are many ways of formatting R code, tables and graphs for publishing.

Remarks

R users often want to publish analysis and results in a reproducible way. See Reproducible R for 

details.

Examples

Formatting tables

Here, "table" is meant broadly (covering data.frame, table,

Printing to plain text

Printing (as seen in the console) might suffice for a plain-text document to be viewed in 

monospaced font:

Note: Before making the example data below, make sure you're in an empty folder you can write 

to. Run getwd() and read ?setwd if you need to change folders.

..w = options()$width 
options(width = 500) # reduce text wrapping 
sink(file = "mytab.txt") 
   summary(mtcars) 
sink() 
options(width = ..w) 
rm(..w)

Printing delimited tables

Writing to CSV (or another common format) and then opening in a spreadsheet editor to apply 

finishing touches is another option:

Note: Before making the example data below, make sure you're in an empty folder you can write 

to. Run getwd() and read ?setwd if you need to change folders.

write.csv(mtcars, file="mytab.csv")

https://riptutorial.com/ 390

http://www.riptutorial.com/r/topic/4087/reproducible-r


Further resources

knitr::kable•

stargazer•
tables::tabular•

texreg•

xtable•

Formatting entire documents

Sweave from the utils package allows for formatting code, prose, graphs and tables together in a 

LaTeX document.

Further Resources

Knitr and RMarkdown•

Read Publishing online: https://riptutorial.com/r/topic/9039/publishing
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Chapter 81: R code vectorization best 

practices

Examples

By row operations

The key in vectorizing R code, is to reduce or eliminate "by row operations" or method dispatching 

of R functions.

That means that when approaching a problem that at first glance requires "by row operations", 

such as calculating the means of each row, one needs to ask themselves:

What are the classes of the data sets I'm dealing with?•

Is there an existing compiled code that can achieve this without the need of repetitive 

evaluation of R functions?

•

If not, can I do these operation by columns instead by row?•

Finally, is it worth spending a lot of time on developing complicated vectorized code instead 

of just running a simple apply loop? In other words, is the data big/sophisticated enough that 

R can't handle it efficiently using a simple loop?

•

Putting aside the memory pre-allocation issue and growing object in loops, we will focus in this 

example on how to possibly avoid apply loops, method dispatching or re-evaluating R functions 

within loops.

A standard/easy way of calculating mean by row would be:

apply(mtcars, 1, mean) 
          Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive   Hornet 
Sportabout             Valiant          Duster 360 
           29.90727            29.98136            23.59818            38.73955 
53.66455            35.04909            59.72000 
          Merc 240D            Merc 230            Merc 280           Merc 280C          Merc 
450SE          Merc 450SL         Merc 450SLC 
           24.63455            27.23364            31.86000            31.78727 
46.43091            46.50000            46.35000 
 Cadillac Fleetwood Lincoln Continental   Chrysler Imperial            Fiat 128         Honda 
Civic      Toyota Corolla       Toyota Corona 
           66.23273            66.05855            65.97227            19.44091 
17.74227            18.81409            24.88864 
   Dodge Challenger         AMC Javelin          Camaro Z28    Pontiac Firebird           Fiat 
X1-9       Porsche 914-2        Lotus Europa 
           47.24091            46.00773            58.75273            57.37955 
18.92864            24.77909            24.88027 
     Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
           60.97182            34.50818            63.15545            26.26273 

But can we do better? Lets's see what happened here:
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First, we converted a data.frame to a matrix. (Note that his happens within the apply function.) 

This is both inefficient and dangerous. a matrix can't hold several column types at a time. 

Hence, such conversion will probably lead to loss of information and some times to 

misleading results (compare apply(iris, 2, class) with str(iris) or with sapply(iris, class)

).

1. 

Second of all, we performed an operation repetitively, one time for each row. Meaning, we 

had to evaluate some R function nrow(mtcars) times. In this specific case, mean is not a 

computationally expensive function, hence R could likely easily handle it even for a big data 

set, but what would happen if we need to calculate the standard deviation by row (which 

involves an expensive square root operation)? Which brings us to the next point:

2. 

We evaluated the R function many times, but maybe there already is a compiled version of 

this operation?

3. 

Indeed we could simply do:

rowMeans(mtcars) 
          Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive   Hornet 
Sportabout             Valiant          Duster 360 
           29.90727            29.98136            23.59818            38.73955 
53.66455            35.04909            59.72000 
          Merc 240D            Merc 230            Merc 280           Merc 280C          Merc 
450SE          Merc 450SL         Merc 450SLC 
           24.63455            27.23364            31.86000            31.78727 
46.43091            46.50000            46.35000 
 Cadillac Fleetwood Lincoln Continental   Chrysler Imperial            Fiat 128         Honda 
Civic      Toyota Corolla       Toyota Corona 
           66.23273            66.05855            65.97227            19.44091 
17.74227            18.81409            24.88864 
   Dodge Challenger         AMC Javelin          Camaro Z28    Pontiac Firebird           Fiat 
X1-9       Porsche 914-2        Lotus Europa 
           47.24091            46.00773            58.75273            57.37955 
18.92864            24.77909            24.88027 
     Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
           60.97182            34.50818            63.15545            26.26273 

This involves no by row operations and therefore no repetitive evaluation of R functions. However, 

we still converted a data.frame to a matrix. Though rowMeans has an error handling mechanism and 

it won't run on a data set that it can't handle, it's still has an efficiency cost.

rowMeans(iris) 
Error in rowMeans(iris) : 'x' must be numeric

But still, can we do better? We could try instead of a matrix conversion with error handling, a 

different method that will allow us to use mtcars as a vector (because a data.frame is essentially a 

list and a list is a vector).

Reduce(`+`, mtcars)/ncol(mtcars) 
 [1] 29.90727 29.98136 23.59818 38.73955 53.66455 35.04909 59.72000 24.63455 27.23364 31.86000 
31.78727 46.43091 46.50000 46.35000 66.23273 66.05855 
[17] 65.97227 19.44091 17.74227 18.81409 24.88864 47.24091 46.00773 58.75273 57.37955 18.92864 
24.77909 24.88027 60.97182 34.50818 63.15545 26.26273
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Now for possible speed gain, we lost column names and error handling (including NA handling).

Another example would be calculating mean by group, using base R we could try

aggregate(. ~ cyl, mtcars, mean) 
cyl      mpg     disp        hp     drat       wt     qsec        vs        am     gear 
carb 
1   4 26.66364 105.1364  82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909 
1.545455 
2   6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143 
3.428571 
3   8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714 
3.500000

Still, we are basically evaluating an R function in a loop, but the loop is now hidden in an internal C 

function (it matters little whether it is a C or an R loop).

Could we avoid it? Well there is a compiled function in R called rowsum, hence we could do:

rowsum(mtcars[-2], mtcars$cyl)/table(mtcars$cyl) 
mpg     disp        hp     drat       wt     qsec        vs        am     gear     carb 
4 26.66364 105.1364  82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909 1.545455 
6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143 3.428571 
8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714 3.500000

Though we had to convert to a matrix first too.

A this point we may question whether our current data structure is the most appropriate one. Is a 

data.frame is the best practice? Or should one just switch to a matrix data structure in order to gain 

efficiency?

By row operations will get more and more expensive (even in matrices) as we start to evaluate 

expensive functions each time. Lets us consider a variance calculation by row example.

Lets say we have a matrix m:

set.seed(100) 
m <- matrix(sample(1e2), 10) 
m 
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 
 [1,]    8   33   39   86   71  100   81   68   89    84 
 [2,]   12   16   57   80   32   82   69   11   41    92 
 [3,]   62   91   53   13   42   31   60   70   98    79 
 [4,]   66   94   29   67   45   59   20   96   64     1 
 [5,]   36   63   76    6   10   48   85   75   99     2 
 [6,]   18    4   27   19   44   56   37   95   26    40 
 [7,]    3   24   21   25   52   51   83   28   49    17 
 [8,]   46    5   22   43   47   74   35   97   77    65 
 [9,]   55   54   78   34   50   90   30   61   14    58 
[10,]   88   73   38   15    9   72    7   93   23    87

One could simply do:
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apply(m, 1, var) 
[1]  871.6556  957.5111  699.2111  941.4333 1237.3333  641.8222  539.7889  759.4333  500.4889 
1255.6111

On the other hand, one could also completely vectorize this operation by following the formula of 

variance

RowVar <- function(x) { 
  rowSums((x - rowMeans(x))^2)/(dim(x)[2] - 1) 
} 
RowVar(m) 
[1]  871.6556  957.5111  699.2111  941.4333 1237.3333  641.8222  539.7889  759.4333  500.4889 
1255.6111

Read R code vectorization best practices online: https://riptutorial.com/r/topic/3327/r-code-

vectorization-best-practices
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Chapter 82: R in LaTeX with knitr

Syntax

<<internal-code-chunk-name, options...>>=

# R Code Here

@

1. 

\Sexpr{ #R Code Here }2. 

<< read-external-R-file >>=

read_chunk('r-file.R')

@

<<external-code-chunk-name, options...>>=

@

3. 

Parameters

Option Details

echo (TRUE/FALSE) - whether to include R source code in the output file

message
(TRUE/FALSE) - whether to include messages from the R source execution in the 

output file

warning
(TRUE/FALSE) - whether to include warnings from the R source execution in the 

output file

error
(TRUE/FALSE) - whether to include errors from the R source execution in the 

output file

cache (TRUE/FALSE) - whether to cache the results of the R source execution

fig.width (numeric) - width of the plot generated by the R source execution

fig.height (numeric) - height of the plot generated by the R source execution

Remarks

Knitr is a tool that allows us to interweave natural language (in the form of LaTeX) and source 

code (in the form of R). In general, the concept of interspersing natural language and source code 

is called literate programming. Since knitr files contain a mixture of LaTeX (traditionally housed in 

.tex files) and R (traditionally housed in .R files) a new file extension called R noweb (.Rnw) is 

required. .Rnw files contain a mixture of LaTeX and R code.

Knitr allows for the generation of statistical reports in PDF format and is a key tool for achieving 

reproducable research.
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Compiling .Rnw files to a PDF is a two step process. First, we need to know how to execute the R 

code and capture the output in a format that a LaTeX compiler can understand (a process called 

'kniting'). We do this using the knitr package. The command for this is shown below, assuming you 

have installed the knitr package:

Rscript -e "library(knitr); knit('r-noweb-file.Rnw')

This will generate a normal .tex file (called r-noweb.tex in this example) which can then be turned 

into a PDF file using:

pdflatex r-noweb-file.tex

Examples

R in Latex with Knitr and Code Externalization

Knitr is an R package that allows us to intermingle R code with LaTeX code. One way to achieve 

this is external code chunks. External code chunks allow us to develop/test R Scripts in an R 

development environment and then include the results in a report. It is a powerful organizational 

technique. This approach is demonstrated below.

# r-noweb-file.Rnw 
\documentclass{article} 
 
 <<echo=FALSE,cache=FALSE>>= 
 knitr::opts_chunk$set(echo=FALSE,  cache=TRUE) 
 knitr::read_chunk('r-file.R') 
 @ 
 
\begin{document} 
This is an Rnw file (R noweb).  It contains a combination of LateX and R. 
 
One we have called the read\_chunk command above we can reference sections of code in the r-
file.R script. 
 
<<Chunk1>>= 
@ 
\end{document}

When using this approach we keep our code in a separate R file as shown below.

## r-file.R 
## note the specific comment style of a single pound sign followed by four dashes 
 
# ---- Chunk1 ---- 
 
print("This is R Code in an external file") 
 
x <- seq(1:10) 
y <- rev(seq(1:10)) 
plot(x,y)
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R in Latex with Knitr and Inline Code Chunks

Knitr is an R package that allows us to intermingle R code with LaTeX code. One way to achieve 

this is inline code chunks. This apporach is demonstrated below.

# r-noweb-file.Rnw 
\documentclass{article} 
\begin{document} 
This is an Rnw file (R noweb).  It contains a combination of LateX and R. 
 
<<my-label>>= 
print("This is an R Code Chunk") 
x <- seq(1:10) 
@ 
 
Above is an internal code chunk. 
We can access data created in any code chunk inline with our LaTeX code like this. 
The length of array x is \Sexpr{length(x)}. 
 
\end{document}

R in LaTex with Knitr and Internal Code Chunks

Knitr is an R package that allows us to intermingle R code with LaTeX code. One way to achieve 

this is internal code chunks. This apporach is demonstrated below.

# r-noweb-file.Rnw 
\documentclass{article} 
\begin{document} 
This is an Rnw file (R noweb).  It contains a combination of LateX and R. 
 
<<code-chunk-label>>= 
print("This is an R Code Chunk") 
x <- seq(1:10) 
y <- seq(1:10) 
plot(x,y)  # Brownian motion 
@ 
 
\end{document}

Read R in LaTeX with knitr online: https://riptutorial.com/r/topic/4334/r-in-latex-with-knitr
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Chapter 83: R Markdown Notebooks (from 

RStudio)

Introduction

An R Notebook is an R Markdown document with chunks that can be executed independently and 

interactively, with output visible immediately beneath the input. They are similar to R Markdown 

documents with the exception of results being displayed in the R Notebook creation/edit mode 

rather than in the rendered output. Note: R Notebooks are new feature of RStudio and are only 

available in version 1.0 or higher of RStudio.

Examples

Creating a Notebook

You can create a new notebook in RStudio with the menu command File -> New File -> R 

Notebook 

If you don't see the option for R Notebook, then you need to update your version of RStudio. For 

installation of RStudio follow this guide 
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Inserting Chunks

Chunks are pieces of code that can be executed interactively. In-order to insert a new chunk by 

clicking on the insert button present on the notebook toolbar and select your desired code 

platform (R in this case, since we want to write R code). Alternatively we can use keyboard 

shortcuts to insert a new chunk Ctrl + Alt + I (OS X: Cmd + Option + I) 
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Executing Chunk Code

You can run the current chunk by clicking Run current Chunk (green play button) present on 

the right side of the chunk. Alternatively we can use keyboard shortcut Ctrl + Shift + Enter (OS X: 

Cmd + Shift + Enter)

The output from all the lines in the chunk will appear beneath the chunk.

Splitting Code into Chunks

Since a chunk produces its output beneath the chunk, when having multiple lines of code in a 
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single chunk that produces multiples outputs it is often helpful to split into multiple chunks such 

that each chunk produces one output.

To do this, select the code to you want to split into a new chunk and press Ctrl + Alt + I (OS X: 

Cmd + Option + I) 

Execution Progress

When you execute code in a notebook, an indicator will appear in the gutter to show you execution 

progress. Lines of code which have been sent to R are marked with dark green; lines which have 

not yet been sent to R are marked with light green.

https://riptutorial.com/ 402

https://i.stack.imgur.com/U1Bwc.jpg


Executing Multiple Chunks

Running or Re-Running individual chunks by pressing Run for all the chunks present in a 

document can be painful. We can use Run All from the Insert menu in the toolbar to Run all the 

chunks present in the notebook. Keyboard shortcut is Ctrl + Alt + R (OS X: Cmd + Option + R)

There’s also a option Restart R and Run All Chunks command (available in the Run menu on 

the editor toolbar), which gives you a fresh R session prior to running all the chunks.

We also have options like Run All Chunks Above and Run All Chunks Below to run chunks 

Above or Below from a selected chunk. 
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Preview Output

Before rendering the final version of a notebook we can preview the output. Click on the Preview 

button on the toolbar and select the desired output format.

You can change the type of output by using the output options as "pdf_document" or 

"html_notebook" 

Saving and Sharing

When a notebook .Rmd is saved, an .nb.html file is created alongside it. This file is a self-contained 

HTML file which contains both a rendered copy of the notebook with all current chunk outputs 
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(suitable for display on a website) and a copy of the notebook .Rmd itself.

More info can be found at RStudio docs

Read R Markdown Notebooks (from RStudio) online: https://riptutorial.com/r/topic/10728/r-

markdown-notebooks--from-rstudio-
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Chapter 84: R memento by examples

Introduction

This topic is meant to be a memento about the R language without any text, with self-explanatory 

examples.

Each example is meant to be as succint as possible.

Examples

Data types

Vectors

a <- c(1, 2, 3) 
b <- c(4, 5, 6) 
mean_ab <- (a + b) / 2 
 
d <- c(1, 0, 1) 
only_1_3 <- a[d == 1]

Matrices

mat <- matrix(c(1,2,3,4), nrow = 2, ncol = 2) 
dimnames(mat) <- list(c(), c("a", "b", "c")) 
mat[,] == mat

Dataframes

df <- data.frame(qualifiers = c("Buy", "Sell", "Sell"), 
                symbols = c("AAPL", "MSFT", "GOOGL"), 
                values = c(326.0, 598.3, 201.5)) 
df$symbols == df[[2]] 
df$symbols == df[["symbols"]] 
df[[2, 1]] == "AAPL"

Lists

l <- list(a = 500, "aaa", 98.2) 
length(l)       == 3 
class(l[1])     == "list" 
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class(l[[1]])   == "numeric" 
class(l$a)      == "numeric"

Environments

env <- new.env() 
env[["foo"]] = "bar" 
env2 <- env 
env2[["foo"]] = "BAR" 
 
env[["foo"]] == "BAR" 
get("foo", envir = env) == "BAR" 
rm("foo", envir = env) 
env[["foo"]] == NULL

Plotting (using plot)

# Creates a 1 row - 2 columns format 
par(mfrow=c(1,2)) 
 
plot(rnorm(100), main = "Graph 1", ylab = "Normal distribution") 
grid() 
legend(x = 40, y = -1, legend = "A legend") 
 
plot(rnorm(100), main = "Graph 2", type = "l") 
abline(v = 50)

Result:

Commonly used functions
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# Create 100 standard normals in a vector 
x <- rnorm(100, mean = 0, sd = 1) 
 
# Find the lenght of a vector 
length(x) 
 
# Compute the mean 
mean(x) 
 
# Compute the standard deviation 
sd(x) 
 
# Compute the median value 
median(x) 
 
# Compute the range (min, max) 
range(x) 
 
# Sum an iterable 
sum(x) 
 
# Cumulative sum (x[1], x[1]+x[2], ...) 
cumsum(x) 
 
# Display the first 3 elements 
head(3, x) 
 
# Display min, 1st quartile, median, mean, 3rd quartile, max 
summary(x) 
 
# Compute successive difference between elements 
diff(x) 
 
# Create a range from 1 to 10 step 1 
1:10 
 
# Create a range from 1 to 10 step 0.1 
seq(1, 10, 0.1) 
 
# Print a string 
print("hello world")

Read R memento by examples online: https://riptutorial.com/r/topic/10827/r-memento-by-

examples

https://riptutorial.com/ 408

https://riptutorial.com/r/topic/10827/r-memento-by-examples
https://riptutorial.com/r/topic/10827/r-memento-by-examples


Chapter 85: Random Forest Algorithm

Introduction

RandomForest is an ensemble method for classification or regression that reduces the chance of 

overfitting the data. Details of the method can be found in the Wikipedia article on Random 

Forests. The main implementation for R is in the randomForest package, but there are other 

implementations. See the CRAN view on Machine Learning.

Examples

Basic examples - Classification and Regression

    ######  Used for both Classification and Regression examples 
    library(randomForest) 
    library(car)            ## For the Soils data 
    data(Soils) 
 
    ###################################################### 
    ##    RF Classification Example 
    set.seed(656)            ## for reproducibility 
    S_RF_Class = randomForest(Gp ~ ., data=Soils[,c(4,6:14)]) 
    Gp_RF = predict(S_RF_Class, Soils[,6:14]) 
    length(which(Gp_RF != Soils$Gp))            ## No Errors 
 
    ## Naive Bayes for comparison 
    library(e1071) 
    S_NB  = naiveBayes(Soils[,6:14], Soils[,4]) 
    Gp_NB = predict(S_NB, Soils[,6:14], type="class") 
    length(which(Gp_NB != Soils$Gp))            ## 6 Errors

This example tested on the training data, but illustrates that RF can make very good models.

    ###################################################### 
    ##    RF Regression Example 
    set.seed(656)            ## for reproducibility 
    S_RF_Reg = randomForest(pH ~ ., data=Soils[,6:14]) 
    pH_RF = predict(S_RF_Reg, Soils[,6:14]) 
 
    ## Compare Predictions with Actual values for RF and Linear Model 
    S_LM = lm(pH ~ ., data=Soils[,6:14]) 
    pH_LM = predict(S_LM, Soils[,6:14]) 
    par(mfrow=c(1,2)) 
    plot(Soils$pH, pH_RF, pch=20, ylab="Predicted", main="Random Forest") 
    abline(0,1) 
    plot(Soils$pH, pH_LM, pch=20, ylab="Predicted", main="Linear Model") 
    abline(0,1)
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Read Random Forest Algorithm online: https://riptutorial.com/r/topic/8088/random-forest-algorithm
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Chapter 86: Random Numbers Generator

Examples

Random permutations

To generate random permutation of 5 numbers:

sample(5) 
# [1] 4 5 3 1 2

To generate random permutation of any vector:

sample(10:15) 
# [1] 11 15 12 10 14 13

One could also use the package pracma

randperm(a, k) 
# Generates one random permutation of k of the elements a, if a is a vector, 
# or of 1:a if a is a single integer. 
# a: integer or numeric vector of some length n. 
# k: integer, smaller as a or length(a). 
 
# Examples 
library(pracma) 
randperm(1:10, 3) 
[1] 3 7 9 
 
randperm(10, 10) 
[1]  4  5 10  8  2  7  6  9  3  1 
 
randperm(seq(2, 10, by=2)) 
[1]  6  4 10  2  8

Random number generator's reproducibility

When expecting someone to reproduce an R code that has random elements in it, the set.seed() 

function becomes very handy. For example, these two lines will always produce different output 

(because that is the whole point of random number generators):

> sample(1:10,5) 
[1]  6  9  2  7 10 
> sample(1:10,5) 
[1]  7  6  1  2 10

These two will also produce different outputs:

> rnorm(5) 
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[1]  0.4874291  0.7383247  0.5757814 -0.3053884  1.5117812 
> rnorm(5) 
[1]  0.38984324 -0.62124058 -2.21469989  1.12493092 -0.04493361

However, if we set the seed to something identical in both cases (most people use 1 for simplicity), 

we get two identical samples:

> set.seed(1) 
> sample(letters,2) 
[1] "g" "j" 
> set.seed(1) 
> sample(letters,2) 
[1] "g" "j"

and same with, say, rexp() draws:

> set.seed(1) 
> rexp(5) 
[1] 0.7551818 1.1816428 0.1457067 0.1397953 0.4360686 
> set.seed(1) 
> rexp(5) 
[1] 0.7551818 1.1816428 0.1457067 0.1397953 0.4360686

Generating random numbers using various density functions

Below are examples of generating 5 random numbers using various probability distributions.

Uniform distribution between 0 and 10

runif(5, min=0, max=10) 
[1] 2.1724399 8.9209930 6.1969249 9.3303321 2.4054102

Normal distribution with 0 mean and standard deviation of 1

rnorm(5, mean=0, sd=1) 
[1] -0.97414402 -0.85722281 -0.08555494 -0.37444299  1.20032409

Binomial distribution with 10 trials and success probability 

of 0.5

rbinom(5, size=10, prob=0.5) 
[1] 4 3 5 2 3

Geometric distribution with 0.2 success probability

rgeom(5, prob=0.2) 
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[1] 14  8 11  1  3

Hypergeometric distribution with 3 white balls, 10 black balls 

and 5 draws

rhyper(5, m=3, n=10, k=5) 
[1] 2 0 1 1 1

Negative Binomial distribution with 10 trials and success 

probability of 0.8

rnbinom(5, size=10, prob=0.8) 
[1] 3 1 3 4 2

Poisson distribution with mean and variance (lambda) of 2

rpois(5, lambda=2) 
[1] 2 1 2 3 4

Exponential distribution with the rate of 1.5

rexp(5, rate=1.5) 
[1] 1.8993303 0.4799358 0.5578280 1.5630711 0.6228000

Logistic distribution with 0 location and scale of 1

rlogis(5, location=0, scale=1) 
[1]  0.9498992 -1.0287433 -0.4192311  0.7028510 -1.2095458

Chi-squared distribution with 15 degrees of freedom

rchisq(5, df=15) 
[1] 14.89209 19.36947 10.27745 19.48376 23.32898

Beta distribution with shape parameters a=1 and b=0.5

rbeta(5, shape1=1, shape2=0.5) 
[1] 0.1670306 0.5321586 0.9869520 0.9548993 0.9999737

Gamma distribution with shape parameter of 3 and scale=0.5
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rgamma(5, shape=3, scale=0.5) 
[1] 2.2445984 0.7934152 3.2366673 2.2897537 0.8573059

Cauchy distribution with 0 location and scale of 1

rcauchy(5, location=0, scale=1) 
[1] -0.01285116 -0.38918446  8.71016696 10.60293284 -0.68017185

Log-normal distribution with 0 mean and standard deviation 

of 1 (on log scale)

rlnorm(5, meanlog=0, sdlog=1) 
[1] 0.8725009 2.9433779 0.3329107 2.5976206 2.8171894

Weibull distribution with shape parameter of 0.5 and scale of 

1

rweibull(5, shape=0.5, scale=1) 
[1] 0.337599112 1.307774557 7.233985075 5.840429942 0.005751181

Wilcoxon distribution with 10 observations in the first 

sample and 20 in second.

rwilcox(5, 10, 20) 
[1] 111  88  93 100 124

Multinomial distribution with 5 object and 3 boxes using the 

specified probabilities

rmultinom(5, size=5, prob=c(0.1,0.1,0.8)) 
     [,1] [,2] [,3] [,4] [,5] 
[1,]    0    0    1    1    0 
[2,]    2    0    1    1    0 
[3,]    3    5    3    3    5

Read Random Numbers Generator online: https://riptutorial.com/r/topic/1578/random-numbers-

generator
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Chapter 87: Randomization

Introduction

The R language is commonly used for statistical analysis. As such, it contains a robust set of 

options for randomization. For specific information on sampling from probability distributions, see 

the documentation for distribution functions.

Remarks

Users who are coming from other programming languages may be confused by the lack of a rand 

function equivalent to what they may have experienced before. Basic random number generation 

is done using the r* family of functions for each distribution (see the link above). Random numbers 

drawn uniformly from a range can be generated using runif, for "random uniform". Since this also 

looks suspiciously like "run if", it is often hard to figure out for new R users.

Examples

Random draws and permutations

The sample command can be used to simulate classic probability problems like drawing from an 

urn with and without replacement, or creating random permutations.

Note that throughout this example, set.seed is used to ensure that the example code is 

reproducible. However, sample will work without explicitly calling set.seed.

Random permutation

In the simplest form, sample creates a random permutation of a vector of integers. This can be 

accomplished with:

set.seed(1251) 
sample(x = 10) 
 
[1]  7  1  4  8  6  3 10  5  2  9

When given no other arguments, sample returns a random permutation of the vector from 1 to x. 

This can be useful when trying to randomize the order of the rows in a data frame. This is a 

common task when creating randomization tables for trials, or when selecting a random subset of 

rows for analysis.

library(datasets) 
set.seed(1171) 
iris_rand <- iris[sample(x = 1:nrow(iris)),] 
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> head(iris) 
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
1          5.1         3.5          1.4         0.2  setosa 
2          4.9         3.0          1.4         0.2  setosa 
3          4.7         3.2          1.3         0.2  setosa 
4          4.6         3.1          1.5         0.2  setosa 
5          5.0         3.6          1.4         0.2  setosa 
6          5.4         3.9          1.7         0.4  setosa 
 
> head(iris_rand) 
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 
145          6.7         3.3          5.7         2.5  virginica 
5            5.0         3.6          1.4         0.2     setosa 
85           5.4         3.0          4.5         1.5 versicolor 
137          6.3         3.4          5.6         2.4  virginica 
128          6.1         3.0          4.9         1.8  virginica 
105          6.5         3.0          5.8         2.2  virginica

Draws without Replacement

Using sample, we can also simulate drawing from a set with and without replacement. To sample 

without replacement (the default), you must provide sample with a set to be drawn from and the 

number of draws. The set to be drawn from is given as a vector.

set.seed(7043) 
sample(x = LETTERS,size = 7) 
 
[1] "S" "P" "J" "F" "Z" "G" "R"

Note that if the argument to size is the same as the length of the argument to x, you are creating a 

random permutation. Also note that you cannot specify a size greater than the length of x when 

doing sampling without replacement.

set.seed(7305) 
sample(x = letters,size = 26) 
 
[1] "x" "z" "y" "i" "k" "f" "d" "s" "g" "v" "j" "o" "e" "c" "m" "n" "h" "u" "a" "b" "l" "r" 
"w" "t" "q" "p" 
 
sample(x = letters,size = 30) 
Error in sample.int(length(x), size, replace, prob) : 
  cannot take a sample larger than the population when 'replace = FALSE'

This brings us to drawing with replacement.

Draws with Replacement

To make random draws from a set with replacement, you use the replace argument to sample. By 

default, replace is FALSE. Setting it to TRUE means that each element of the set being drawn from 

may appear more than once in the final result.
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set.seed(5062) 
sample(x = c("A","B","C","D"),size = 8,replace = TRUE) 
 
[1] "D" "C" "D" "B" "A" "A" "A" "A"

Changing Draw Probabilities

By default, when you use sample, it assumes that the probability of picking each element is the 

same. Consider it as a basic "urn" problem. The code below is equivalent to drawing a colored 

marble out of an urn 20 times, writing down the color, and then putting the marble back in the urn. 

The urn contains one red, one blue, and one green marble, meaning that the probability of drawing 

each color is 1/3.

set.seed(6472) 
sample(x = c("Red","Blue","Green"), 
       size = 20, 
       replace = TRUE)

Suppose that, instead, we wanted to perform the same task, but our urn contains 2 red marbles, 1 

blue marble, and 1 green marble. One option would be to change the argument we send to x to 

add an additional Red. However, a better choice is to use the prob argument to sample.

The prob argument accepts a vector with the probability of drawing each element. In our example 

above, the probability of drawing a red marble would be 1/2, while the probability of drawing a blue 

or a green marble would be 1/4.

set.seed(28432) 
sample(x = c("Red","Blue","Green"), 
       size = 20, 
       replace = TRUE, 
       prob = c(0.50,0.25,0.25))

Counter-intuitively, the argument given to prob does not need to sum to 1. R will always transform 

the given arguments into probabilities that total to 1. For instance, consider our above example of 

2 Red, 1 Blue, and 1 Green. You can achieve the same results as our previous code using those 

numbers:

set.seed(28432) 
frac_prob_example <- sample(x = c("Red","Blue","Green"), 
                            size = 200, 
                            replace = TRUE, 
                            prob = c(0.50,0.25,0.25)) 
 
set.seed(28432) 
numeric_prob_example <- sample(x = c("Red","Blue","Green"), 
                               size = 200, 
                               replace = TRUE, 
                               prob = c(2,1,1)) 
 
> identical(frac_prob_example,numeric_prob_example) 
[1] TRUE
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The major restriction is that you cannot set all the probabilities to be zero, and none of them can 

be less than zero.

You can also utilize prob when replace is set to FALSE. In that situation, after each element is drawn, 

the proportions of the prob values for the remaining elements give the probability for the next draw. 

In this situation, you must have enough non-zero probabilities to reach the size of the sample you 

are drawing. For example:

set.seed(21741) 
sample(x = c("Red","Blue","Green"), 
       size = 2, 
       replace = FALSE, 
       prob = c(0.8,0.19,0.01))

In this example, Red is drawn in the first draw (as the first element). There was an 80% chance of 

Red being drawn, a 19% chance of Blue being drawn, and a 1% chance of Green being drawn.

For the next draw, Red is no longer in the urn. The total of the probabilities among the remaining 

items is 20% (19% for Blue and 1% for Green). For that draw, there is a 95% chance the item will 

be Blue (19/20) and a 5% chance it will be Green (1/20).

Setting the seed

The set.seed function is used to set the random seed for all randomization functions. If you are 

using R to create a randomization that you want to be able to reproduce, you should use set.seed 

first.

set.seed(1643) 
samp1 <- sample(x = 1:5,size = 200,replace = TRUE) 
 
set.seed(1643) 
samp2 <- sample(x = 1:5,size = 200,replace = TRUE) 
 
> identical(x = samp1,y = samp2) 
[1] TRUE

Note that parallel processing requires special treatment of the random seed, described more 

elsewhere.

Read Randomization online: https://riptutorial.com/r/topic/9574/randomization
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Chapter 88: Raster and Image Analysis

Introduction

See also I/O for Raster Images

Examples

Calculating GLCM Texture

Gray Level Co-Occurrence Matrix (Haralick et al. 1973) texture is a powerful image feature for 

image analysis. The glcm package provides a easy-to-use function to calculate such texutral 

features for RasterLayer objects in R.

library(glcm) 
library(raster) 
 
r <- raster("C:/Program Files/R/R-3.2.3/doc/html/logo.jpg") 
plot(r)

Calculating GLCM textures in one direction

rglcm <- glcm(r, 
              window = c(9,9), 
              shift = c(1,1), 
              statistics = c("mean", "variance", "homogeneity", "contrast", 
                             "dissimilarity", "entropy", "second_moment") 
              ) 
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plot(rglcm)

Calculation rotation-invariant texture features

The textural features can also be calculated in all 4 directions (0°, 45°, 90° and 135°) and then 

combined to one rotation-invariant texture. The key for this is the shift parameter:

rglcm1 <- glcm(r, 
              window = c(9,9), 
              shift=list(c(0,1), c(1,1), c(1,0), c(1,-1)), 
              statistics = c("mean", "variance", "homogeneity", "contrast", 
                             "dissimilarity", "entropy", "second_moment") 
              ) 
 
plot(rglcm1)
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Mathematical Morphologies

The package mmand provides functions for the calculation of Mathematical Morphologies for n-

dimensional arrays. With a little workaround, these can also be calculated for raster images.

library(raster) 
library(mmand) 
 
r <- raster("C:/Program Files/R/R-3.2.3/doc/html/logo.jpg") 
plot(r)
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At first, a kernel (moving window) has to be set with a size (e.g. 9x9) and a shape type (e.g. disc, 

box or diamond)

sk <- shapeKernel(c(9,9), type="disc")

Afterwards, the raster layer has to be converted into an array wich is used as input for the erode() 

function.

rArr <- as.array(r, transpose = TRUE) 
rErode <- erode(rArr, sk) 
rErode <- setValues(r, as.vector(aperm(rErode)))

Besides erode(), also the morphological functions dilate(), opening() and closing() can be applied 

like this.

plot(rErode)
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Read Raster and Image Analysis online: https://riptutorial.com/r/topic/3726/raster-and-image-

analysis
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Chapter 89: Rcpp

Examples

Inline Code Compile

Rcpp features two functions that enable code compilation inline and exportation directly into R: 

cppFunction() and evalCpp(). A third function called sourceCpp() exists to read in C++ code in a 

separate file though can be used akin to cppFunction().

Below is an example of compiling a C++ function within R. Note the use of "" to surround the 

source.

# Note - This is R code. 
# cppFunction in Rcpp allows for rapid testing. 
require(Rcpp) 
 
# Creates a function that multiples each element in a vector 
# Returns the modified vector. 
cppFunction(" 
NumericVector exfun(NumericVector x, int i){ 
x = x*i; 
return x; 
}") 
 
# Calling function in R 
exfun(1:5, 3)

To quickly understand a C++ expression use:

# Use evalCpp to evaluate C++ expressions 
evalCpp("std::numeric_limits<double>::max()") 
## [1] 1.797693e+308

Rcpp Attributes

Rcpp Attributes makes the process of working with R and C++ straightforward. The form of 

attributes take:

// [[Rcpp::attribute]]

The use of attributes is typically associated with:

// [[Rcpp::export]]

that is placed directly above a declared function header when reading in a C++ file via sourceCpp().

Below is an example of an external C++ file that uses attributes.
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// Add code below into C++ file Rcpp_example.cpp 
 
#include <Rcpp.h> 
using namespace Rcpp; 
 
// Place the export tag right above function declaration. 
// [[Rcpp::export]] 
double muRcpp(NumericVector x){ 
 
    int n = x.size(); // Size of vector 
    double sum = 0; // Sum value 
 
    // For loop, note cpp index shift to 0 
    for(int i = 0; i < n; i++){ 
        // Shorthand for sum = sum + x[i] 
        sum += x[i]; 
    } 
 
    return sum/n; // Obtain and return the Mean 
} 
 
// Place dependent functions above call or 
// declare the function definition with: 
double muRcpp(NumericVector x); 
 
// [[Rcpp::export]] 
double varRcpp(NumericVector x, bool bias = true){ 
 
    // Calculate the mean using C++ function 
    double mean = muRcpp(x); 
    double sum = 0; 
 
    int n = x.size(); 
 
    for(int i = 0; i < n; i++){ 
        sum += pow(x[i] - mean, 2.0); // Square 
    } 
 
    return sum/(n-bias); // Return variance 
}

To use this external C++ file within R, we do the following:

require(Rcpp) 
 
# Compile File 
sourceCpp("path/to/file/Rcpp_example.cpp") 
 
# Make some sample data 
x = 1:5 
 
all.equal(muRcpp(x), mean(x)) 
## TRUE 
 
all.equal(varRcpp(x), var(x)) 
## TRUE

Extending Rcpp with Plugins
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Within C++, one can set different compilation flags using:

 // [[Rcpp::plugins(name)]]

List of the built-in plugins:

// built-in C++11 plugin 
// [[Rcpp::plugins(cpp11)]] 
 
// built-in C++11 plugin for older g++ compiler 
// [[Rcpp::plugins(cpp0x)]] 
 
// built-in C++14 plugin for C++14 standard 
// [[Rcpp::plugins(cpp14)]] 
 
// built-in C++1y plugin for C++14 and C++17 standard under development 
// [[Rcpp::plugins(cpp1y)]] 
 
// built-in OpenMP++11 plugin 
// [[Rcpp::plugins(openmp)]]

Specifying Additional Build Dependencies

To use additional packages within the Rcpp ecosystem, the correct header file may not be Rcpp.h 

but Rcpp<PACKAGE>.h (as e.g. for RcppArmadillo). It typically needs to be imported and then the 

dependency is stated within

// [[Rcpp::depends(Rcpp<PACKAGE>)]]

Examples:

// Use the RcppArmadillo package 
// Requires different header file from Rcpp.h 
#include <RcppArmadillo.h> 
// [[Rcpp::depends(RcppArmadillo)]] 
 
// Use the RcppEigen package 
// Requires different header file from Rcpp.h 
#include <RcppEigen.h> 
// [[Rcpp::depends(RcppEigen)]]

Read Rcpp online: https://riptutorial.com/r/topic/1404/rcpp
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Chapter 90: Reading and writing strings

Remarks

Related Docs:

Get user input•

Examples

Printing and displaying strings

R has several built-in functions that can be used to print or display information, but print and cat 

are the most basic. As R is an interpreted language, you can try these out directly in the R 

console:

print("Hello World") 
#[1] "Hello World" 
cat("Hello World\n") 
#Hello World

Note the difference in both input and output for the two functions. (Note: there are no quote-

characters in the value of x created with x <- "Hello World". They are added by print at the output 

stage.)

cat takes one or more character vectors as arguments and prints them to the console. If the 

character vector has a length greater than 1, arguments are separated by a space (by default):

cat(c("hello", "world", "\n")) 
#hello world

Without the new-line character (\n) the output would be:

cat("Hello World") 
#Hello World> 

The prompt for the next command appears immediately after the output. (Some consoles such as 

RStudio's may automatically append a newline to strings that do not end with a newline.)

print is an example of a "generic" function, which means the class of the first argument passed is 

detected and a class-specific method is used to output. For a character vector like "Hello World", 

the result is similar to the output of cat. However, the character string is quoted and a number [1] 

is output to indicate the first element of a character vector (In this case, the first and only element):

print("Hello World") 
#[1] "Hello World"
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This default print method is also what we see when we simply ask R to print a variable. Note how 

the output of typing s is the same as calling print(s) or print("Hello World"):

s <- "Hello World" 
s 
#[1] "Hello World"

Or even without assigning it to anything:

"Hello World" 
#[1] "Hello World"

If we add another character string as a second element of the vector (using the c() function to c

oncatenate the elements together), then the behavior of print() looks quite a bit different from that 

of cat:

print(c("Hello World", "Here I am.")) 
#[1] "Hello World" "Here I am."

Observe that the c() function does not do string-concatenation. (One needs to use paste for that 

purpose.) R shows that the character vector has two elements by quoting them separately. If we 

have a vector long enough to span multiple lines, R will print the index of the element starting each 

line, just as it prints [1] at the start of the first line.

c("Hello World", "Here I am!", "This next string is really long.") 
#[1] "Hello World"                      "Here I am!" 
#[3] "This next string is really long."

The particular behavior of print depends on the class of the object passed to the function.

If we call print an object with a different class, such as "numeric" or "logical", the quotes are 

omitted from the output to indicate we are dealing with an object that is not character class:

print(1) 
#[1] 1 
print(TRUE) 
#[1] TRUE

Factor objects get printed in the same fashion as character variables which often creates 

ambiguity when console output is used to display objects in SO question bodies. It is rare to use 

cat or print except in an interactive context. Explicitly calling print() is particularly rare (unless 

you wanted to suppress the appearance of the quotes or view an object that is returned as 

invisible by a function), as entering foo at the console is a shortcut for print(foo). The interactive 

console of R is known as a REPL, a "read-eval-print-loop". The cat function is best saved for 

special purposes (like writing output to an open file connection). Sometimes it is used inside 

functions (where calls to print() are suppressed), however using cat() inside a function to 

generate output to the console is bad practice. The preferred method is to message() or 

warning() for intermediate messages; they behave similarly to cat but can be optionally 

suppressed by the end user. The final result should simply returned so that the user can assign it 
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to store it if necessary.

message("hello world") 
#hello world 
suppressMessages(message("hello world"))

Reading from or writing to a file connection

Not always we have liberty to read from or write to a local system path. For example if R code 

streaming map-reduce must need to read and write to file connection. There can be other 

scenarios as well where one is going beyond local system and with advent of cloud and big data, 

this is becoming increasingly common. One of the way to do this is in logical sequence.

Establish a file connection to read with file() command ("r" is for read mode):

conn <- file("/path/example.data", "r") #when file is in local system 
conn1 <- file("stdin", "r") #when just standard input/output for files are available

As this will establish just file connection, one can read the data from these file connections as 

follows:

line <- readLines(conn, n=1, warn=FALSE)

Here we are reading the data from file connection conn line by line as n=1. one can change value of 

n (say 10, 20 etc.) for reading data blocks for faster reading (10 or 20 lines block read in one go). 

To read complete file in one go set n=-1.

After data processing or say model execution; one can write the results back to file connection 

using many different commands like writeLines(),cat() etc. which are capable of writing to a file 

connection. However all of these commands will leverage file connection established for writing. 

This could be done using file() command as:

conn2 <- file("/path/result.data", "w") #when file is in local system 
conn3 <- file("stdout", "w") #when just standard input/output for files are available

Then write the data as follows:

writeLines("text",conn2, sep = "\n")

Capture output of operating system command

Functions which return a character vector

Base R has two functions for invoking a system command. Both require an additional parameter to 

capture the output of the system command.
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system("top -a -b -n 1", intern = TRUE) 
system2("top", "-a -b -n 1", stdout = TRUE)

Both return a character vector.

  [1] "top - 08:52:03 up 70 days, 15:09,  0 users,  load average: 0.00, 0.00, 0.00" 
  [2] "Tasks: 125 total,   1 running, 124 sleeping,   0 stopped,   0 zombie" 
  [3] "Cpu(s):  0.9%us,  0.3%sy,  0.0%ni, 98.7%id,  0.1%wa,  0.0%hi,  0.0%si,  0.0%st" 
  [4] "Mem:  12194312k total,  3613292k used,  8581020k free,   216940k buffers" 
  [5] "Swap: 12582908k total,  2334156k used, 10248752k free,  1682340k cached" 
  [6] "" 
  [7] "  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND            " 
  [8] "11300 root      20   0 1278m 375m 3696 S  0.0  3.2 124:40.92 trala              " 
  [9] " 6093 user1     20   0 1817m 269m 1888 S  0.0  2.3  12:17.96 R                  " 
 [10] " 4949 user2     20   0 1917m 214m 1888 S  0.0  1.8  11:16.73 R                  "

For illustration, the UNIX command top -a -b -n 1 is used. This is OS specific and may 

need to be amended to run the examples on your computer.

Package devtools has a function to run a system command and capture the output without an 

additional parameter. It also returns a character vector.

devtools::system_output("top", "-a -b -n 1") 

Functions which return a data frame

The fread function in package data.table allows to execute a shell command and to read the 

output like read.table. It returns a data.table or a data.frame.

fread("top -a -b -n 1", check.names = TRUE) 
       PID     USER PR NI  VIRT  RES  SHR S X.CPU X.MEM     TIME.         COMMAND 
  1: 11300     root 20  0 1278m 375m 3696 S     0   3.2 124:40.92           trala 
  2:  6093    user1 20  0 1817m 269m 1888 S     0   2.3  12:18.56               R 
  3:  4949    user2 20  0 1917m 214m 1888 S     0   1.8  11:17.33               R 
  4:  7922    user3 20  0 3094m 131m 1892 S     0   1.1  21:04.95               R

Note, that fread automatically has skipped the top 6 header lines.

Here the parameter check.names = TRUE was added to convert %CPU, %MEN, and TIME+ to 

syntactically valid column names.

Read Reading and writing strings online: https://riptutorial.com/r/topic/5541/reading-and-writing-

strings
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Chapter 91: Reading and writing tabular data 

in plain-text files (CSV, TSV, etc.)

Syntax

read.csv(file, header = TRUE, sep = ",", quote = """, dec = ".", fill = TRUE, comment.char = 

"", ...)

•

read.csv2(file, header = TRUE, sep = ";", quote = """, dec = ",", fill = TRUE, comment.char = 

"", ...)

•

readr::read_csv(file, col_names = TRUE, col_types = NULL, locale = default_locale(), na = 

c("", "NA"), comment = "", trim_ws = TRUE, skip = 0, n_max = -1, progress = interactive())

•

data.table::fread(input, sep="auto", sep2="auto", nrows=-1L, header="auto", 

na.strings="NA", stringsAsFactors=FALSE, verbose=getOption("datatable.verbose"), 

autostart=1L, skip=0L, select=NULL, drop=NULL, colClasses=NULL, 

integer64=getOption("datatable.integer64"), # default: "integer64" dec=if (sep!=".") "." else 

",", col.names, check.names=FALSE, encoding="unknown", strip.white=TRUE, 

showProgress=getOption("datatable.showProgress"), # default: TRUE 

data.table=getOption("datatable.fread.datatable") # default: TRUE )

•

Parameters

Parameter Details

file name of the CSV file to read

header logical: does the .csv file contain a header row with column names?

sep character: symbol that separates the cells on each row

quote character: symbol used to quote character strings

dec character: symbol used as decimal separator

fill logical: when TRUE, rows with unequal length are filled with blank fields.

comment.char
character: character used as comment in the csv file. Lines preceded by this 

character are ignored.

... extra arguments to be passed to read.table

Remarks
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Note that exporting to a plain text format sacrifices much of the information encoded in the data 

like variable classes for the sake of wide portability. For cases that do not require such portability, 

a format like .RData or Feather may be more useful.

Input/output for other types of files is covered in several other topics, all linked from Input and 

output.

Examples

Importing .csv files

Importing using base R

Comma separated value files (CSVs) can be imported using read.csv, which wraps read.table, but 

uses sep = "," to set the delimiter to a comma.

# get the file path of a CSV included in R's utils package 
csv_path <- system.file("misc", "exDIF.csv", package = "utils") 
 
# path will vary based on installation location 
csv_path 
## [1] "/Library/Frameworks/R.framework/Resources/library/utils/misc/exDIF.csv" 
 
df <- read.csv(csv_path) 
 
df 
##    Var1 Var2 
## 1  2.70    A 
## 2  3.14    B 
## 3 10.00    A 
## 4 -7.00    A

A user friendly option, file.choose, allows to browse through the directories:

df <- read.csv(file.choose())

Notes

Unlike read.table, read.csv defaults to header = TRUE, and uses the first row as column 

names.

•

All these functions will convert strings to factor class by default unless either as.is = TRUE or 

stringsAsFactors = FALSE.

•

The read.csv2 variant defaults to sep = ";" and dec = "," for use on data from countries 

where the comma is used as a decimal point and the semicolon as a field separator.

•

Importing using packages
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The readr package's read_csv function offers much faster performance, a progress bar for large 

files, and more popular default options than standard read.csv, including stringsAsFactors = FALSE.

library(readr) 
 
df <- read_csv(csv_path) 
 
df 
## # A tibble: 4 x 2 
##    Var1  Var2 
##   <dbl> <chr> 
## 1  2.70     A 
## 2  3.14     B 
## 3 10.00     A 
## 4 -7.00     A

Importing with data.table

The data.table package introduces the function fread. While it is similar to read.table, fread is 

usually faster and more flexible, guessing the file's delimiter automatically.

# get the file path of a CSV included in R's utils package 
csv_path <- system.file("misc", "exDIF.csv", package = "utils") 
 
# path will vary based on R installation location 
csv_path 
## [1] "/Library/Frameworks/R.framework/Resources/library/utils/misc/exDIF.csv" 
 
dt <- fread(csv_path) 
 
dt 
##     Var1 Var2 
## 1:  2.70    A 
## 2:  3.14    B 
## 3: 10.00    A 
## 4: -7.00    A

Where argument input is a string representing:

the filename (e.g. "filename.csv"),•

a shell command that acts on a file (e.g. "grep 'word' filename"), or•

the input itself (e.g. "input1, input2 \n A, B \n C, D").•

fread returns an object of class data.table that inherits from class data.frame, suitable for use with 

the data.table's usage of []. To return an ordinary data.frame, set the data.table parameter to 

FALSE:

df <- fread(csv_path, data.table = FALSE) 
 
class(df) 
## [1] "data.frame" 
 
df 
##    Var1 Var2 
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## 1  2.70    A 
## 2  3.14    B 
## 3 10.00    A 
## 4 -7.00    A

Notes

fread does not have all same options as read.table. One missing argument is na.comment, 

which may lead in unwanted behaviors if the source file contains #.

•

fread uses only " for quote parameter.•

fread uses few (5) lines to guess variables types.•

Importing .tsv files as matrices (basic R)

Many people don't make use of file.path when making path to a file. But if you are working across 

Windows, Mac and Linux machines it's usually good practice to use it for making paths instead of 

paste.

FilePath <- file.path(AVariableWithFullProjectPath,"SomeSubfolder","SomeFileName.txt.gz") 
 
Data <- as.matrix(read.table(FilePath, header=FALSE, sep ="\t"))

Generally this is sufficient for most people.

Sometimes it happens the matrix dimensions are so large that procedure of memory allocation 

must be taken into account while reading in the matrix, which means reading in the matrix line by 

line.

Take the previous example, In this case FilePath contains a file of dimension 8970 8970 with 79% 

of the cells containing non-zero values.

system.time(expr=Data<-as.matrix(read.table(file=FilePath,header=FALSE,sep=" ") ))

system.time says 267 seconds were taken to read the file.

   user  system elapsed 
265.563   1.949 267.563

Similarly this file can be read line by line,

FilePath <- "SomeFile" 
connection<- gzfile(FilePath,open="r") 
TableList <- list() 
Counter <- 1 
system.time(expr= while ( length( Vector<-as.matrix(scan(file=connection, sep=" ", nlines=1, 
quiet=TRUE)) ) > 0 ) { 
    TableList[[Counter]]<-Vector 
    Counter<-Counter+1 
}) 
   user  system elapsed 
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165.976   0.060 165.941 
close(connection) 
system.time(expr=(Data <- do.call(rbind,TableList))) 
   user  system elapsed 
  0.477   0.088   0.565

There's also the futile.matrix package which implements a read.matrix method, the code itself will 

reveal itself to be the same thing as described in example 1.

Exporting .csv files

Exporting using base R

Data can be written to a CSV file using write.csv():

write.csv(mtcars, "mtcars.csv")

Commonly-specified parameters include row.names = FALSE and na = "".

Exporting using packages

readr::write_csv is significantly faster than write.csv and does not write row names.

library(readr) 
 
write_csv(mtcars, "mtcars.csv")

Import multiple csv files

files = list.files(pattern="*.csv") 
data_list = lapply(files, read.table, header = TRUE)

This read every file and adds it to a list. Afterwards, if all data.frame have the same structure they 

can be combined into one big data.frame:

df <- do.call(rbind, data_list)

Importing fixed-width files

Fixed-width files are text files in which columns are not separated by any character delimiter, like , 

or ;, but rather have a fixed character length (width). Data is usually padded with white spaces.

An example:
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Column1 Column2   Column3           Column4Column5 
1647    pi        'important'       3.141596.28318 
1731    euler     'quite important' 2.718285.43656 
1979    answer    'The Answer.'     42     42

Let's assume this data table exists in the local file constants.txt in the working directory.

Importing with base R

df <- read.fwf('constants.txt', widths = c(8,10,18,7,8), header = FALSE, skip = 1) 
 
df 
#>     V1     V2                 V3         V4        V5 
#> 1 1647     pi         'important'   3.14159   6.28318 
#> 2 1731  euler   'quite important'   2.71828   5.43656 
#> 3 1979 answer       'The Answer.'   42        42.0000

Note:

Column titles don't need to be separated by a character (Column4Column5)•

The widths parameter defines the width of each column•

Non-separated headers are not readable with read.fwf()•

Importing with readr

library(readr) 
 
df <- read_fwf('constants.txt', 
               fwf_cols(Year = 8, Name = 10, Importance = 18, Value = 7, Doubled = 8), 
               skip = 1) 
df 
#> # A tibble: 3 x 5 
#>    Year    Name        Importance    Value  Doubled 
#>    <int>   <chr>           <chr>     <dbl>    <dbl> 
#> 1  1647      pi       'important'  3.14159  6.28318 
#> 2  1731   euler 'quite important'  2.71828  5.43656 
#> 3  1979  answer     'The Answer.' 42.00000 42.00000

Note:

readr's fwf_* helper functions offer alternative ways of specifying column lengths, including 

automatic guessing (fwf_empty)

•

readr is faster than base R•

Column titles cannot be automatically imported from data file•

Read Reading and writing tabular data in plain-text files (CSV, TSV, etc.) online: 

https://riptutorial.com/r/topic/481/reading-and-writing-tabular-data-in-plain-text-files--csv--tsv--etc--
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Chapter 92: Recycling

Remarks

What is recycling in R

Recycling is when an object is automatically extended in certain operations to match the length of 

another, longer object.

For example, the vectorised addition results in the following:

c(1,2,3) + c(1,2,3,4,5,6) 
[1] 2 4 6 5 7 9

Because of the recycling, the operation that actually happened was:

c(1,2,3,1,2,3) + c(1,2,3,4,5,6)

In cases where the longer object is not a multiple of the shorter one, a warning message is 

presented:

c(1,2,3) + c(1,2,3,4,5,6,7) 
[1] 2 4 6 5 7 9 8 
Warning message: 
In c(1, 2, 3) + c(1, 2, 3, 4, 5, 6, 7) : 
  longer object length is not a multiple of shorter object length

Another example of recycling:

matrix(nrow =5, ncol = 2, 1:5 ) 
     [,1] [,2] 
[1,]    1    1 
[2,]    2    2 
[3,]    3    3 
[4,]    4    4 
[5,]    5    5

Examples

Recycling use in subsetting

Recycling can be used in a clever way to simplify code.

Subsetting

If we want to keep every third element of a vector we can do the following:
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my_vec <-   c(1,2,3,4,5,6,7,8,9,10) 
my_vec[c(TRUE, FALSE)] 
 
[1] 1 3 5 7 9

Here the logical expression was expanded to the length of the vector.

We can also perform comparisons using recycling:

my_vec <-   c("foo", "bar", "soap", "mix") 
my_vec == "bar" 
 
[1] FALSE  TRUE FALSE FALSE

Here "bar" gets recycled.

Read Recycling online: https://riptutorial.com/r/topic/5649/recycling
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Chapter 93: Regular Expression Syntax in R

Introduction

This document introduces the basics of regular expressions as used in R. For more information 

about R's regular expression syntax, see ?regex. For a comprehensive list of regular expression 

operators, see this ICU guide on regular expressions.

Examples

Use `grep` to find a string in a character vector

# General syntax: 
# grep(<pattern>, <character vector>) 
 
mystring <- c('The number 5', 
              'The number 8', 
              '1 is the loneliest number', 
              'Company, 3 is', 
              'Git SSH tag is git@github.com', 
              'My personal site is www.personal.org', 
              'path/to/my/file') 
 
grep('5', mystring) 
# [1] 1 
grep('@', mystring) 
# [1] 5 
grep('number', mystring) 
# [1] 1 2 3

x|y means look for "x" or "y"

grep('5|8', mystring) 
# [1] 1 2 
grep('com|org', mystring) 
# [1] 5 6

. is a special character in Regex. It means "match any character"

grep('The number .', mystring) 
# [1] 1 2

Be careful when trying to match dots!

tricky <- c('www.personal.org', 'My friend is a cyborg') 
grep('.org', tricky) 
# [1] 1 2

To match a literal character, you have to escape the string with a backslash (\). However, R tries 
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to look for escape characters when creating strings, so you actually need to escape the backslash 

itself (i.e. you need to double escape regular expression characters.)

grep('\.org', tricky) 
# Error: '\.' is an unrecognized escape in character string starting "'\." 
grep('\\.org', tricky) 
# [1] 1

If you want to match one of several characters, you can wrap those characters in brackets ([])

grep('[13]', mystring) 
# [1] 3 4 
grep('[@/]', mystring) 
# [1] 5 7

It may be useful to indicate character sequences. E.g. [0-4] will match 0, 1, 2, 3, or 4, [A-Z] will 

match any uppercase letter, [A-z] will match any uppercase or lowercase letter, and [A-z0-9] will 

match any letter or number (i.e. all alphanumeric characters)

grep('[0-4]', mystring) 
# [1] 3 4 
grep('[A-Z]', mystring) 
# [1] 1 2 4 5 6

R also has several shortcut classes that can be used in brackets. For instance, [:lower:] is short 

for a-z, [:upper:] is short for A-Z, [:alpha:] is A-z, [:digit:] is 0-9, and [:alnum:] is A-z0-9. Note 

that these whole expressions must be used inside brackets; for instance, to match a single digit, 

you can use [[:digit:]] (note the double brackets). As another example, [@[:digit:]/] will match 

the characters @, / or 0-9.

grep('[[:digit:]]', mystring) 
# [1] 1 2 3 4 
grep('[@[:digit:]/]', mystring) 
# [1] 1 2 3 4 5 7

Brackets can also be used to negate a match with a carat (^). For instance, [^5] will match any 

character other than "5".

grep('The number [^5]', mystring) 
# [1] 2

Read Regular Expression Syntax in R online: https://riptutorial.com/r/topic/9743/regular-

expression-syntax-in-r
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Chapter 94: Regular Expressions (regex)

Introduction

Regular expressions (also called "regex" or "regexp") define patterns that can be matched against 

a string. Type ?regex for the official R documentation and see the Regex Docs for more details. 

The most important 'gotcha' that will not be learned in the SO regex/topics is that most R-regex 

functions need the use of paired backslashes to escape in a pattern parameter.

Remarks

Character classes

"[AB]" could be A or B•

"[[:alpha:]]" could be any letter•

"[[:lower:]]" stands for any lower-case letter. Note that "[a-z]" is close but doesn't match, 

e.g., ú.

•

"[[:upper:]]" stands for any upper-case letter. Note that "[A-Z]" is close but doesn't match, 

e.g., Ú.

•

"[[:digit:]]" stands for any digit : 0, 1, 2, ..., or 9 and is equivalent to "[0-9]".•

Quantifiers

+, * and ? apply as usual in regex. -- + matches at least once, * matches 0 or more times, and ? 

matches 0 or 1 time.

Start and end of line indicators

You can specify the position of the regex in the string :

"^..." forces the regular expression to be at the beginning of the string•

"...$" forces the regular expression to be at the end of the string•

Differences from other languages

Please note that regular expressions in R often look ever-so-slightly different from regular 

expressions used in other languages.

R requires double-backslash escapes (because "\" already implies escaping in general in R 

strings), so, for example, to capture whitespace in most regular expression engines, one 

•
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simply needs to type \s, vs. \\s in R.

UTF-8 characters in R should be escaped with a capital U, e.g. [\U{1F600}] and [\U1F600] 

match , whereas in, e.g., Ruby, this would be matched with a lower-case u.

•

Additional Resources

The following site reg101 is a good place for checking online regex before using it R-script.

The R Programmming wikibook has a page dedicated to text processing with many examples 

using regular expressions.

Examples

Eliminating Whitespace

string <- '    some text on line one; 
and then some text on line two     '

Trimming Whitespace

"Trimming" whitespace typically refers to removing both leading and trailing whitespace from a 

string. This may be done using a combination of the previous examples. gsub is used to force the 

replacement over both the leading and trailing matches.

Prior to R 3.2.0

gsub(pattern = "(^ +| +$)", 
     replacement = "", 
     x = string) 
 
[1] "some text on line one; \nand then some text on line two"

R 3.2.0 and higher

trimws(x = string) 
 
[1] "some text on line one; \nand then some text on line two"

Removing Leading Whitespace

Prior to R 3.2.0

sub(pattern = "^ +", 
    replacement = "", 
    x = string) 
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[1] "some text on line one; \nand then some text on line two     "

R 3.2.0 and higher

trimws(x = string, 
       which = "left") 
 
[1] "some text on line one; \nand then some text on line two     "

Removing Trailing Whitespace

Prior to R 3.2.0

sub(pattern = " +$", 
    replacement = "", 
    x = string) 
 
[1] "    some text on line one; \nand then some text on line two"

R 3.2.0 and higher

trimws(x = string, 
       which = "right") 
 
[1] "    some text on line one; \nand then some text on line two"

Removing All Whitespace

gsub(pattern = "\\s", 
     replacement = "", 
     x = string) 
 
[1] "sometextonlineone;andthensometextonlinetwo"

Note that this will also remove white space characterse such as tabs (\t), newlines (\r and \n), 

and spaces.

Validate a date in a "YYYYMMDD" format

It is a common practice to name files using the date as prefix in the following format: YYYYMMDD, for 

example: 20170101_results.csv. A date in such string format can be verified using the following 

regular expression:

\\d{4}(0[1-9]|1[012])(0[1-9]|[12][0-9]|3[01])

The above expression considers dates from year: 0000-9999, months between: 01-12 and days 01-

31.
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For example:

> grepl("\\d{4}(0[1-9]|1[012])(0[1-9]|[12][0-9]|3[01])", "20170101") 
[1] TRUE 
> grepl("\\d{4}(0[1-9]|1[012])(0[1-9]|[12][0-9]|3[01])", "20171206") 
[1] TRUE 
> grepl("\\d{4}(0[1-9]|1[012])(0[1-9]|[12][0-9]|3[01])", "29991231") 
[1] TRUE

Note: It validates the date syntax, but we can have a wrong date with a valid syntax, for example: 

20170229 (2017 it is not a leap year).

> grepl("\\d{4}(0[1-9]|1[012])(0[1-9]|[12][0-9]|3[01])", "20170229") 
[1] TRUE

If you want to validate a date, it can be done via this user defined function:

is.Date <- function(x) {return(!is.na(as.Date(as.character(x), format = '%Y%m%d')))}

Then

> is.Date(c("20170229", "20170101", 20170101)) 
[1] FALSE  TRUE  TRUE

Validate US States postal abbreviations

The following regex includes 50 states and also Commonwealth/Territory (see www.50states.com):

regex <- 
"(A[LKSZR])|(C[AOT])|(D[EC])|(F[ML])|(G[AU])|(HI)|(I[DLNA])|(K[SY])|(LA)|(M[EHDAINSOT])|(N[EVHJMYCD])|(MP)|(O[HKR])|(P[WAR])|(RI)|(S[CD])|(T[NX])|(UT)|(V[TIA])|(W[AVIY])"

For example:

> test <- c("AL", "AZ", "AR", "AJ", "AS", "DC", "FM", "GU","PW", "FL", "AJ", "AP") 
> grepl(us.states.pattern, test) 
 [1]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE 
> 

Note:

If you want to verify only the 50 States, then we recommend to use the R-dataset: state.abb from 

state, for example:

> data(state) 
> test %in% state.abb 
[1]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE 

We get TRUE only for 50-States abbreviations: AL, AZ, AR, FL.

Validate US phone numbers
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The following regular expression:

us.phones.regex <- "^\\s*(\\+\\s*1(-?|\\s+))*[0-9]{3}\\s*-?\\s*[0-9]{3}\\s*-?\\s*[0-9]{4}$" 

Validates a phone number in the form of: +1-xxx-xxx-xxxx, including optional leading/trailing blanks 

at the beginning/end of each group of numbers, but not in the middle, for example: +1-xxx-xxx-xx 

xx is not valid. The - delimiter can be replaced by blanks: xxx xxx xxx or without delimiter: 

xxxxxxxxxx. The +1 prefix is optional.

Let's check it:

us.phones.regex <- "^\\s*(\\+\\s*1(-?|\\s+))*[0-9]{3}\\s*-?\\s*[0-9]{3}\\s*-?\\s*[0-9]{4}$" 
 
phones.OK <- c("305-123-4567", "305 123 4567", "+1-786-123-4567", 
    "+1 786 123 4567", "7861234567", "786 - 123   4567", "+ 1 786 - 123   4567") 
 
phones.NOK <- c("124-456-78901", "124-456-789", "124-456-78 90", 
    "124-45 6-7890", "12 4-456-7890")

Valid cases:

> grepl(us.phones.regex, phones.OK) 
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
> 

Invalid cases:

 > grepl(us.phones.regex, phones.NOK) 
[1] FALSE FALSE FALSE FALSE FALSE 
> 

Note:

\\s Matches any space, tab or newline character•

Escaping characters in R regex patterns

Since both R and regex share the escape character ,"\", building correct patterns for grep, sub, 

gsub or any other function that accepts a pattern argument will often need pairing of backslashes. If 

you build a three item character vector in which one items has a linefeed, another a tab character 

and one neither, and hte desire is to turn either the linefeed or the tab into 4-spaces then a single 

backslash is need for the construction, but tpaired backslashes for matching:

x <- c( "a\nb", "c\td", "e    f") 
x  # how it's stored 
   #  [1] "a\nb"   "c\td"   "e    f" 
cat(x)   # how it will be seen with cat 
#a 
#b c    d e    f 
 
gsub(patt="\\n|\\t", repl="    ", x) 
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#[1] "a    b" "c    d" "e    f"

Note that the pattern argument (which is optional if it appears first and only needs partial spelling) 

is the only argument to require this doubling or pairing. The replacement argument does not 

require the doubling of characters needing to be escaped. If you wanted all the linefeeds and 4-

space occurrences replaces with tabs it would be:

gsub("\\n|    ", "\t", x) 
#[1] "a\tb" "c\td" "e\tf"

Differences between Perl and POSIX regex

There are two ever-so-slightly different engines of regular expressions implemented in R. The 

default is called POSIX-consistent; all regex functions in R are also equipped with an option to turn 

on the latter type: perl = TRUE.

Look-ahead/look-behind

perl = TRUE enables look-ahead and look-behind in regular expressions.

"(?<=A)B" matches an appearance of the letter B only if it's preceded by A, i.e. "ABACADABRA" 

would be matched, but "abacadabra" and "aBacadabra" would not.

•

Read Regular Expressions (regex) online: https://riptutorial.com/r/topic/5748/regular-expressions--

regex-
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Chapter 95: Reproducible R

Introduction

With 'Reproducibility' we mean that someone else (perhaps you in the future) can repeat the steps 

you performed and get the same result. See the Reproducible Research Task View.

Remarks

To create reproducible results, all sources of variation need to be fixed. For instance, if a 

(pseudo)random number generator is used, the seed needs to be fixed if you want to recreate the 

same results. Another way to reduce variation is to combine text and computation in the same 

document.

References

Peng, R. D. (2011). Reproducible Research in Computational. Science, 334(6060), 

1226–1227. http://doi.org/10.1126/science.1213847

•

Peng, Roger D. Report Writing for Data Science in R. Leanpub, 2015. 

https://leanpub.com/reportwriting.

•

Examples

Data reproducibility

dput() and dget()

The easiest way to share a (preferable small) data frame is to use a basic function dput(). It will 

export an R object in a plain text form.

Note: Before making the example data below, make sure you're in an empty folder you can write 

to. Run getwd() and read ?setwd if you need to change folders.

dput(mtcars, file = 'df.txt')

Then, anyone can load the precise R object to their GlobalEnvironment using the dget() function.

df <- dget('df.txt')

For larger R objects, there are a number of ways of saving them reproducibly. See Input and 

output .
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Package reproducibility

Package reproducibility is a very common issue in reproducing some R code. When various 

packages get updated, some interconnections between them may break. The ideal solution for the 

problem is to reproduce the image of the R code writer's machine on your computer at the date 

when the code was written. And here comes checkpoint package.

Starting from 2014-09-17, the authors of the package make daily copies of the whole CRAN 

package repository to their own mirror repository -- Microsoft R Archived Network. So, to avoid 

package reproduciblity issues when creating a reproducible R project, all you need is to:

Make sure that all your packages (and R version) are up-to-date.1. 

Include checkpoint::checkpoint('YYYY-MM-DD') line in your code.2. 

checkpoint will create a directory .checkpoint in your R_home directory ("~/"). To this technical 

directory it will install all the packages, that are used in your project. That means, checkpoint looks 

through all the .R files in your project directory to pick up all the library() or require() calls and 

install all the required packages in the form they existed at CRAN on the specified date.

PRO You are freed from the package reproducibility issue. 

CONTRA For each specified date you have to download and install all the packages that are used 

in a certain project that you aim to reproduce. That may take quite a while.

Read Reproducible R online: https://riptutorial.com/r/topic/4087/reproducible-r
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Chapter 96: Reshape using tidyr

Introduction

tidyr has two tools for reshaping data: gather (wide to long) and spread (long to wide).

See Reshaping data for other options.

Examples

Reshape from long to wide format with spread()

library(tidyr) 
 
## example data 
set.seed(123) 
df <- data.frame( 
  name = rep(c("firstName", "secondName"), each=4), 
  numbers = rep(1:4, 2), 
  value = rnorm(8) 
) 
df 
#         name numbers       value 
# 1  firstName       1 -0.56047565 
# 2  firstName       2 -0.23017749 
# 3  firstName       3  1.55870831 
# 4  firstName       4  0.07050839 
# 5 secondName       1  0.12928774 
# 6 secondName       2  1.71506499 
# 7 secondName       3  0.46091621 
# 8 secondName       4 -1.26506123

We can "spread" the 'numbers' column, into separate columns:

spread(data = df, 
       key = numbers, 
       value = value) 
#      name          1          2         3           4 
# 1  firstName -0.5604756 -0.2301775 1.5587083  0.07050839 
# 2 secondName  0.1292877  1.7150650 0.4609162 -1.26506123

Or spread the 'name' column into separate columns:

spread(data = df, 
       key = name, 
       value = value) 
#   numbers   firstName secondName 
# 1       1 -0.56047565  0.1292877 
# 2       2 -0.23017749  1.7150650 
# 3       3  1.55870831  0.4609162 
# 4       4  0.07050839 -1.2650612

https://riptutorial.com/ 449

http://www.riptutorial.com/r/topic/2904/reshaping-data-between-long-and-wide-forms


Reshape from wide to long format with gather()

library(tidyr) 
 
## example data 
df <- read.table(text ="  numbers  firstName secondName 
1       1  1.5862639  0.4087477 
2       2  0.1499581  0.9963923 
3       3  0.4117353  0.3740009 
4       4 -0.4926862  0.4437916", header = T) 
df 
#   numbers  firstName secondName 
# 1       1  1.5862639  0.4087477 
# 2       2  0.1499581  0.9963923 
# 3       3  0.4117353  0.3740009 
# 4       4 -0.4926862  0.4437916

We can gather the columns together using 'numbers' as the key column:

gather(data = df, 
       key = numbers, 
       value = myValue) 
#   numbers    numbers    myValue 
# 1       1  firstName  1.5862639 
# 2       2  firstName  0.1499581 
# 3       3  firstName  0.4117353 
# 4       4  firstName -0.4926862 
# 5       1 secondName  0.4087477 
# 6       2 secondName  0.9963923 
# 7       3 secondName  0.3740009 
# 8       4 secondName  0.4437916

Read Reshape using tidyr online: https://riptutorial.com/r/topic/9195/reshape-using-tidyr
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Chapter 97: Reshaping data between long 

and wide forms

Introduction

In R, tabular data is stored in data frames. This topic covers the various ways of transforming a 

single table.

Remarks

Helpful packages

Reshaping, stacking and splitting with data.table•

Reshape using tidyr•

splitstackshape•

Examples

The reshape function

The most flexible base R function for reshaping data is reshape. See ?reshape for its syntax.

# create unbalanced longitudinal (panel) data set 
set.seed(1234) 
df <- data.frame(identifier=rep(1:5, each=3), 
                 location=rep(c("up", "down", "left", "up", "center"), each=3), 
                 period=rep(1:3, 5), counts=sample(35, 15, replace=TRUE), 
                 values=runif(15, 5, 10))[-c(4,8,11),] 
df 
 
   identifier location period counts   values 
1           1       up      1      4 9.186478 
2           1       up      2     22 6.431116 
3           1       up      3     22 6.334104 
5           2     down      2     31 6.161130 
6           2     down      3     23 6.583062 
7           3     left      1      1 6.513467 
9           3     left      3     24 5.199980 
10          4       up      1     18 6.093998 
12          4       up      3     20 7.628488 
13          5   center      1     10 9.573291 
14          5   center      2     33 9.156725 
15          5   center      3     11 5.228851

Note that the data.frame is unbalanced, that is, unit 2 is missing an observation in the first period, 

while units 3 and 4 are missing observations in the second period. Also, note that there are two 

variables that vary over the periods: counts and values, and two that do not vary: identifier and 
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location.

Long to Wide

To reshape the data.frame to wide format,

# reshape wide on time variable 
df.wide <- reshape(df, idvar="identifier", timevar="period", 
                   v.names=c("values", "counts"), direction="wide") 
df.wide 
   identifier location values.1 counts.1 values.2 counts.2 values.3 counts.3 
1           1       up 9.186478        4 6.431116       22 6.334104       22 
5           2     down       NA       NA 6.161130       31 6.583062       23 
7           3     left 6.513467        1       NA       NA 5.199980       24 
10          4       up 6.093998       18       NA       NA 7.628488       20 
13          5   center 9.573291       10 9.156725       33 5.228851       11

Notice that the missing time periods are filled in with NAs.

In reshaping wide, the "v.names" argument specifies the columns that vary over time. If the 

location variable is not necessary, it can be dropped prior to reshaping with the "drop" argument. 

In dropping the only non-varying / non-id column from the data.frame, the v.names argument 

becomes unnecessary.

reshape(df, idvar="identifier", timevar="period", direction="wide", 
        drop="location")

Wide to Long

To reshape long with the current df.wide, a minimal syntax is

reshape(df.wide, direction="long")

However, this is typically trickier:

# remove "." separator in df.wide names for counts and values 
names(df.wide)[grep("\\.", names(df.wide))] <- 
              gsub("\\.", "", names(df.wide)[grep("\\.", names(df.wide))])

Now the simple syntax will produce an error about undefined columns.

With column names that are more difficult for the reshape function to automatically parse, it is 

sometimes necessary to add the "varying" argument which tells reshape to group particular 

variables in wide format for the transformation into long format. This argument takes a list of 

vectors of variable names or indices.

reshape(df.wide, idvar="identifier", 
        varying=list(c(3,5,7), c(4,6,8)), direction="long")
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In reshaping long, the "v.names" argument can be provided to rename the resulting varying 

variables.

Sometimes the specification of "varying" can be avoided by use of the "sep" argument which tells 

reshape what part of the variable name specifies the value argument and which specifies the time 

argument.

Reshaping data

Often data comes in tables. Generally one can divide this tabular data in wide and long formats. In 

a wide format, each variable has its own column.

Person Height [cm] Age [yr]

Alison 178 20

Bob 174 45

Carl 182 31

However, sometimes it is more convenient to have a long format, in which all variables are in one 

column and the values are in a second column.

Person Variable Value

Alison Height [cm] 178

Bob Height [cm] 174

Carl Height [cm] 182

Alison Age [yr] 20

Bob Age [yr] 45

Carl Age [yr] 31

Base R, as well as third party packages can be used to simplify this process. For each of the 

options, the mtcars dataset will be used. By default, this dataset is in a long format. In order for the 

packages to work, we will insert the row names as the first column.

mtcars # shows the dataset 
data <- data.frame(observation=row.names(mtcars),mtcars)

Base R

There are two functions in base R that can be used to convert between wide and long format: 
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stack() and unstack().

long <- stack(data) 
long # this shows the long format 
wide <- unstack(long) 
wide # this shows the wide format

However, these functions can become very complex for more advanced use cases. Luckily, there 

are other options using third party packages.

The tidyr package

This package uses gather() to convert from wide to long and spread() to convert from long to wide.

library(tidyr) 
long <- gather(data, variable, value, 2:12) # where variable is the name of the 
# variable column, value indicates the name of the value column and 2:12 refers to 
# the columns to be converted. 
long # shows the long result 
wide <- spread(long,variable,value) 
wide # shows the wide result (~data)

The data.table package

The data.table package extends the reshape2 functions and uses the function melt() to go from 

wide to long and dcast() to go from long to wide.

library(data.table) 
long <- melt(data,'observation',2:12,'variable', 'value') 
long # shows the long result 
wide <- dcast(long, observation ~ variable) 
wide # shows the wide result (~data)

Read Reshaping data between long and wide forms online: 

https://riptutorial.com/r/topic/2904/reshaping-data-between-long-and-wide-forms
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Chapter 98: RESTful R Services

Introduction

OpenCPU uses standard R packaging to develop, ship and deploy web applications.

Examples

opencpu Apps

The official website contain good exemple of apps: https://www.opencpu.org/apps.html

The following code is used to serve a R session:

library(opencpu) 
opencpu$start(port = 5936)

After this code is executed, you can use URLs to access the functions of the R session. The result 

could be XML, html, JSON or some other defined formats.

For exemple, the previous R session can be accessed by a cURL call:

#curl uses http post method for -X POST or -d "arg=value" 
curl http://localhost:5936/ocpu/library/MASS/scripts/ch01.R -X POST 
curl http://localhost:5936/ocpu/library/stats/R/rnorm -d "n=10&mean=5"

The call is asynchronous, meaning that the R session is not blocked while waiting for the call to 

finish (contrary to shiny).

The call result is kept in a temporary session stored in /ocpu/tmp/

An exemple of how to retrieve the temporary session:

curl https://public.opencpu.org/ocpu/library/stats/R/rnorm -d n=5 
/ocpu/tmp/x009f9e7630/R/.val 
/ocpu/tmp/x009f9e7630/stdout 
/ocpu/tmp/x009f9e7630/source 
/ocpu/tmp/x009f9e7630/console 
/ocpu/tmp/x009f9e7630/info

x009f9e7630 is the name of the session.

Pointing to /ocpu/tmp/x009f9e7630/R/.val will return the value resulting of rnorm(5), 

/ocpu/tmp/x009f9e7630/R/console will return the content of the console of rnorm(5), etc..

Read RESTful R Services online: https://riptutorial.com/r/topic/8323/restful-r-services
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Chapter 99: RMarkdown and knitr 

presentation

Syntax

Header:

YAML format, used when the script is compile to define general parameter and 

metadata

○

•

Parameters

Parameter definition

title the title of the document

author The author of the document

date The date of the document: Can be "r format(Sys.time(), '%d %B, %Y')"

author The author of the document

output
The output format of the document: at least 10 format available. For html 

document, html_output. For PDF document, pdf_document, ..

Remarks

Sub options parameters:

sub-option description html pdf word odt rtf md github ioslides slidy beamer

citation_package

The LaTeX 

package to 

process 

citations, natbib, 

biblatex or none

X X X

code_folding

Let readers to 

toggle the 

display of R 

code, "none", 

"hide", or "show"

X
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sub-option description html pdf word odt rtf md github ioslides slidy beamer

colortheme
Beamer color 

theme to use
X

css

CSS file to use 

to style 

document

X X X

dev

Graphics device 

to use for figure 

output (e.g. 

"png")

X X X X X X X

duration

Add a 

countdown timer 

(in minutes) to 

footer of slides

X

fig_caption

Should figures 

be rendered with 

captions?

X X X X X X X

fig_height, 

fig_width

Default figure 

height and width 

(in inches) for 

document

X X X X X X X X X X

highlight

Syntax 

highlighting: 

"tango", 

"pygments", 

"kate","zenburn", 

"textmate"

X X X X X

includes

File of content to 

place in 

document 

(in_header, 

before_body, 

after_body)

X X X X X X X X

incremental

Should bullets 

appear one at a 

time (on 

presenter 

mouse clicks)?

X X X

Save a copy of keep_md X X X X X X
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sub-option description html pdf word odt rtf md github ioslides slidy beamer

.md file that 

contains knitr 

output

keep_tex

Save a copy of 

.tex file that 

contains knitr 

output

X X

latex_engine

Engine to render 

latex, or 

""pdflatex", 

"xelatex", 

lualatex"

X X

lib_dir

Directory of 

dependency 

files to use 

(Bootstrap, 

MathJax, etc.)

X X X

mathjax

Set to local or a 

URL to use a 

local/URL 

version of 

MathJax to 

render

X X X

md_extensions

Markdown 

extensions to 

add to default 

definition or R 

Markdown

X X X X X X X X X X

number_sections

Add section 

numbering to 

headers

X X

pandoc_args

Additional 

arguments to 

pass to Pandoc

X X X X X X X X X X

preserve_yaml

Preserve YAML 

front matter in 

final document?

X
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sub-option description html pdf word odt rtf md github ioslides slidy beamer

reference_docx

docx file whose 

styles should be 

copied when 

producing docx 

output

X

self_contained

Embed 

dependencies 

into the doc

X X X

slide_level

The lowest 

heading level 

that defines 

individual slides

X

smaller

Use the smaller 

font size in the 

presentation?

X

smart

Convert straight 

quotes to curly, 

dashes to em-

dashes, ... to 

ellipses, etc.

X X X

template

Pandoc 

template to use 

when rendering 

file

X X X X X

theme

Bootswatch or 

Beamer theme 

to use for page

X X

toc

Add a table of 

contents at start 

of document

X X X X X X X

toc_depth

The lowest level 

of headings to 

add to table of 

contents

X X X X X X

Float the table of 

contents to the 

left of the main 

toc_float X
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sub-option description html pdf word odt rtf md github ioslides slidy beamer

content

Examples

Rstudio example

This is a script saved as .Rmd, on the contrary of r scripts saved as .R.

To knit the script, either use the render function or use the shortcut button in Rstudio.

--- 
title: "Rstudio exemple of a rmd file" 
author: 'stack user' 
date: "22 July 2016" 
output: html_document 
--- 
 
The header is used to define the general parameters and the metadata. 
 
## R Markdown 
 
This is an R Markdown document. 
It is a script written in markdown with the possibility to insert chunk of R code in it. 
To insert R code, it needs to be encapsulated into inverted quote. 
 
Like that for a long piece of code: 
 
```{r cars} 
summary(cars) 
``` 
 
And like ``r cat("that")`` for small piece of code. 
 
## Including Plots 
 
You can also embed plots, for example: 
 
```{r echo=FALSE} 
plot(pressure) 
```

Adding a footer to an ioslides presentation

Adding a footer is not natively possible. Luckily, we can make use of jQuery and CSS to add a 

footer to the slides of an ioslides presentation rendered with knitr. First of all we have to include 

the jQuery plugin. This is done by the line

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.2/jquery.min.js"></script>

Now we can use jQuery to alter the DOM (document object model) of our presentation. In other 

words: we alter the HTML structure of the document. As soon as the presentation is loaded (
$(document).ready(function() { ... })
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), we select all slides, that do not have the class attributes .title-slide, .backdrop, or .segue and 

add the tag <footer></footer> right before each slide is 'closed' (so before </slide>). The attribute 

label carries the content that will be displayed later on.

All we have to do now is to layout our footer with CSS:

After each <footer> (footer::after):

display the content of the attribute label•

use font size 12•

position the footer (20 pixels from the bottom of the slide and 60 pxs from the left)•

(the other properties can be ignored but might have to be modified if the presentation uses a 

different style template).

--- 
title: "Adding a footer to presentaion slides" 
author: "Martin Schmelzer" 
date: "26 Juli 2016" 
output: ioslides_presentation 
--- 
 
```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = FALSE) 
``` 
 
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.2/jquery.min.js"></script> 
 
<script> 
    $(document).ready(function() { 
      $('slide:not(.title-slide, .backdrop, .segue)').append('<footer label=\"My amazing 
footer!\"></footer>'); 
    }) 
</script> 
 
<style> 
  footer:after { 
    content: attr(label); 
    font-size: 12pt; 
    position: absolute; 
    bottom: 20px; 
    left: 60px; 
    line-height: 1.9; 
  } 
</style> 
 
 
## Slide 1 
 
This is slide 1. 
 
## Slide 2 
 
This is slide 2 
 
# Test 
 
## Slide 3 
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And slide 3.

The result will look like this:

Read RMarkdown and knitr presentation online: https://riptutorial.com/r/topic/2999/rmarkdown-

and-knitr-presentation
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Chapter 100: RODBC

Examples

Connecting to Excel Files via RODBC

While RODBC is restricted to Windows computers with compatible architecture between R and any 

target RDMS, one of its key flexibilities is to work with Excel files as if they were SQL databases.

require(RODBC) 
con = odbcConnectExcel("myfile.xlsx") # open a connection to the Excel file 
sqlTables(con)$TABLE_NAME # show all sheets 
df = sqlFetch(con, "Sheet1") # read a sheet 
df = sqlQuery(con, "select * from [Sheet1 $]") # read a sheet (alternative SQL syntax) 
close(con) # close the connection to the file

SQL Server Management Database connection to get individual table

Another use of RODBC is in connecting with SQL Server Management Database. We need to 

specify the 'Driver' i.e. SQL Server here, the database name "Atilla" and then use the sqlQuery to 

extract either the full table or a fraction of it.

library(RODBC) 
cn  <- odbcDriverConnect(connection="Driver={SQL 
Server};server=localhost;database=Atilla;trusted_connection=yes;") 
tbl <- sqlQuery(cn, 'select top 10 * from table_1')

Connecting to relational databases

library(RODBC) 
con <- odbcDriverConnect("driver={Sql Server};server=servername;trusted connection=true") 
dat <- sqlQuery(con, "select * from table"); 
close(con)

This will connect to a SQL Server instance. For more information on what your connection string 

should look like, visit connectionstrings.com

Also, since there's no database specified, you should make sure you fully qualify the object you're 

wanting to query like this databasename.schema.objectname

Read RODBC online: https://riptutorial.com/r/topic/2471/rodbc
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Chapter 101: roxygen2

Parameters

Parameter details

author Author of the package

examples The following lines will be examples on how to use the documented function

export To export the function - i.e. make it callable by users of the package

import Package(s) namespace(s) to import

importFrom Functions to import from the package (first name of the list)

param Parameter of the function to document

Examples

Documenting a package with roxygen2

Writing with roxygen2

roxygen2 is a package created by Hadley Wickham to facilitate documentation.

It allows to include the documentation inside the R script, in lines starting by #'. The different 

parameters passed to the documentation start with an @, for example the creator of a package will 

by written as follow:

#' @author The Author

For example, if we wanted to document the following function:

mean<-function(x) sum(x)/length(x)

We will want to write a small description to this function, and explain the parameters with the 

following (each line will be explained and detailed after):

#' Mean 
#' 
#' A function to compute the mean of a vector 
#' @param x A numeric vector 
#' @keyword mean 
#' @importFrom base sum 
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#' @export 
#' @examples 
#' mean(1:3) 
#' \dontrun{ mean(1:1e99) } 
mean<-function(x) sum(x)/length(x)

The first line #' Mean is the title of the documentation, the following lines make the corpus.•

Each parameter of a function must be detailed through a relevant @param. @export indicated 

that this function name should be exported, and thus can be called when the package is 

loaded.

•

@keyword provides relevant keywords when looking for help•

@importFrom lists all functions to import from a package that will be used in this function or in 

you package. Note that importing the complete namespace of a package can be done with 
@import

•

The examples are then written below the @example tag.

The first one will be evaluated when the package is built;○

The second one will not - usually to prevent long computations - due to the \dontrun 

command.

○

•

Building the documentation

The documentation can be created using devtools::document(). Note also that devtools::check() 

will automatically create a documentation and will report missing arguments in the documentation 

of functions as warnings.

Read roxygen2 online: https://riptutorial.com/r/topic/5171/roxygen2
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Chapter 102: Run-length encoding

Remarks

A run is a consecutive sequence of repeated values or observations. For repeated values, R's 

"run-length encoding" concisely describes a vector in terms of its runs. Consider:

dat <- c(1, 2, 2, 2, 3, 1, 4, 4, 1, 1)

We have a length-one run of 1s; then a length-three run of 2s; then a length-one run of 3s; and so 

on. R's run-length encoding captures all the lengths and values of a vector's runs.

Extensions

A run can also refer to consecutive observations in a tabular data. While R doesn't have a natural 

way of encoding these, they can be handled with rleid from the data.table package (currently a 

dead-end link).

Examples

Run-length Encoding with `rle`

Run-length encoding captures the lengths of runs of consecutive elements in a vector. Consider 

an example vector:

dat <- c(1, 2, 2, 2, 3, 1, 4, 4, 1, 1)

The rle function extracts each run and its length:

r <- rle(dat) 
r 
# Run Length Encoding 
#   lengths: int [1:6] 1 3 1 1 2 2 
#   values : num [1:6] 1 2 3 1 4 1

The values for each run are captured in r$values:

r$values 
# [1] 1 2 3 1 4 1

This captures that we first saw a run of 1's, then a run of 2's, then a run of 3's, then a run of 1's, 

and so on.

The lengths of each run are captured in r$lengths:
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r$lengths 
# [1] 1 3 1 1 2 2

We see that the initial run of 1's was of length 1, the run of 2's that followed was of length 3, and 

so on.

Identifying and grouping by runs in base R

One might want to group their data by the runs of a variable and perform some sort of analysis. 

Consider the following simple dataset:

(dat <- data.frame(x = c(1, 1, 2, 2, 2, 1), y = 1:6)) 
#   x y 
# 1 1 1 
# 2 1 2 
# 3 2 3 
# 4 2 4 
# 5 2 5 
# 6 1 6

The variable x has three runs: a run of length 2 with value 1, a run of length 3 with value 2, and a 

run of length 1 with value 1. We might want to compute the mean value of variable y in each of the 

runs of variable x (these mean values are 1.5, 4, and 6).

In base R, we would first compute the run-length encoding of the x variable using rle:

(r <- rle(dat$x)) 
# Run Length Encoding 
#   lengths: int [1:3] 2 3 1 
#   values : num [1:3] 1 2 1

The next step is to compute the run number of each row of our dataset. We know that the total 

number of runs is length(r$lengths), and the length of each run is r$lengths, so we can compute 

the run number of each of our runs with rep:

(run.id <- rep(seq_along(r$lengths), r$lengths)) 
# [1] 1 1 2 2 2 3

Now we can use tapply to compute the mean y value for each run by grouping on the run id:

data.frame(x=r$values, meanY=tapply(dat$y, run.id, mean)) 
#   x meanY 
# 1 1   1.5 
# 2 2   4.0 
# 3 1   6.0

Identifying and grouping by runs in data.table

The data.table package provides a convenient way to group by runs in data. Consider the 

following example data:
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library(data.table) 
(DT <- data.table(x = c(1, 1, 2, 2, 2, 1), y = 1:6)) 
#    x y 
# 1: 1 1 
# 2: 1 2 
# 3: 2 3 
# 4: 2 4 
# 5: 2 5 
# 6: 1 6

The variable x has three runs: a run of length 2 with value 1, a run of length 3 with value 2, and a 

run of length 1 with value 1. We might want to compute the mean value of variable y in each of the 

runs of variable x (these mean values are 1.5, 4, and 6).

The data.table rleid function provides an id indicating the run id of each element of a vector:

rleid(DT$x) 
# [1] 1 1 2 2 2 3

One can then easily group on this run ID and summarize the y data:

DT[,mean(y),by=.(x, rleid(x))] 
#    x rleid  V1 
# 1: 1     1 1.5 
# 2: 2     2 4.0 
# 3: 1     3 6.0

Run-length encoding to compress and decompress vectors

Long vectors with long runs of the same value can be significantly compressed by storing them in 

their run-length encoding (the value of each run and the number of times that value is repeated). 

As an example, consider a vector of length 10 million with a huge number of 1's and only a small 

number of 0's:

set.seed(144) 
dat <- sample(rep(0:1, c(1, 1e5)), 1e7, replace=TRUE) 
table(dat) 
#       0       1 
#     103 9999897 

Storing 10 million entries will require significant space, but we can instead create a data frame with 

the run-length encoding of this vector:

rle.df <- with(rle(dat), data.frame(values, lengths)) 
dim(rle.df) 
# [1] 207   2 
head(rle.df) 
#   values lengths 
# 1      1   52818 
# 2      0       1 
# 3      1  219329 
# 4      0       1 
# 5      1  318306 
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# 6      0       1

From the run-length encoding, we see that the first 52,818 values in the vector are 1's, followed by 

a single 0, followed by 219,329 consecutive 1's, followed by a 0, and so on. The run-length 

encoding only has 207 entries, requiring us to store only 414 values instead of 10 million values. 

As rle.df is a data frame, it can be stored using standard functions like write.csv.

Decompressing a vector in run-length encoding can be accomplished in two ways. The first 

method is to simply call rep, passing the values element of the run-length encoding as the first 

argument and the lengths element of the run-length encoding as the second argument:

decompressed <- rep(rle.df$values, rle.df$lengths)

We can confirm that our decompressed data is identical to our original data:

identical(decompressed, dat) 
# [1] TRUE

The second method is to use R's built-in inverse.rle function on the rle object, for instance:

rle.obj <- rle(dat)                            # create a rle object here 
class(rle.obj) 
# [1] "rle" 
 
dat.inv <- inverse.rle(rle.obj)               # apply the inverse.rle on the rle object

We can confirm again that this produces exactly the original dat:

identical(dat.inv, dat) 
# [1] TRUE

Read Run-length encoding online: https://riptutorial.com/r/topic/1133/run-length-encoding
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Chapter 103: Scope of variables

Remarks

The most common pitfall with scope arises in parallelization. All variables and functions must be 

passed into a new environment that is run on each thread.

Examples

Environments and Functions

Variables declared inside a function only exist (unless passed) inside that function.

x <- 1 
 
foo <- function(x) { 
    y <- 3 
    z <- x + y 
    return(z) 
} 
 
y

Error: object 'y' not found

Variables passed into a function and then reassigned are overwritten, but only inside the function.

foo <- function(x) { 
    x <- 2 
    y <- 3 
    z <- x + y 
    return(z) 
} 
 
foo(1) 
x

5

1

Variables assigned in a higher environment than a function exist within that function, without being 

passed.

foo <- function() { 
    y <- 3 
    z <- x + y 
    return(z) 
} 
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foo()

4

Sub functions

Functions called within a function (ie subfunctions) must be defined within that function to access 

any variables defined in the local environment without being passed.

This fails:

bar <- function() { 
    z <- x + y 
    return(z) 
} 
 
foo <- function() { 
    y <- 3 
    z <- bar() 
    return(z) 
} 
 
foo()

Error in bar() : object 'y' not found

This works:

foo <- function() { 
 
    bar <- function() { 
        z <- x + y 
        return(z) 
    } 
 
    y <- 3 
    z <- bar() 
    return(z) 
} 
 
foo()

4

Global Assignment

Variables can be assigned globally from any environment using <<-. bar() can now access y.

bar <- function() { 
    z <- x + y 
    return(z) 
} 
 
foo <- function() { 
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    y <<- 3 
    z <- bar() 
    return(z) 
} 
 
foo()

4

Global assignment is highly discouraged. Use of a wrapper function or explicitly calling variables 

from another local environment is greatly preferred.

Explicit Assignment of Environments and Variables

Environments in R can be explicitly call and named. Variables can be explicitly assigned and call 

to or from those environments.

A commonly created environment is one which encloses package:base or a subenvironment within 

package:base.

e1 <- new.env(parent = baseenv()) 
e2 <- new.env(parent = e1)

Variables can be explicitly assigned and call to or from those environments.

assign("a", 3, envir = e1) 
   get("a", envir = e1) 
   get("a", envir = e2)

3

3

Since e2 inherits from e1, a is 3 in both e1 and e2. However, assigning a within e2 does not change 

the value of a in e1.

assign("a", 2, envir = e2) 
   get("a", envir = e2) 
   get("a", envir = e1)

3

2

Function Exit

The on.exit() function is handy for variable clean up if global variables must be assigned.

Some parameters, especially those for graphics, can only be set globally. This small function is 

common when creating more specialized plots.
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new_plot <- function(...) { 
 
     old_pars <- par(mar = c(5,4,4,2) + .1, mfrow = c(1,1)) 
     on.exit(par(old_pars)) 
     plot(...) 
 }

Packages and Masking

Functions and objects in different packages may have the same name. The package loaded later 

will 'mask' the earlier package and a warning message will be printed. When calling the function by 

name, the function from the most recently loaded package will be run. The earlier function can be 

accessed explicitly.

library(plyr) 
library(dplyr)

Attaching package: ‘dplyr’

The following objects are masked from ‘package:plyr’:

arrange, count, desc, failwith, id, mutate, rename, summarise, summarize

The following objects are masked from ‘package:stats’:

filter, lag

The following objects are masked from ‘package:base’:

intersect, setdiff, setequal, union

When writing code, it is always best practice to call functions explicitly using package::function() 

specifically to avoid this issue.

Read Scope of variables online: https://riptutorial.com/r/topic/3138/scope-of-variables
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Chapter 104: Set operations

Remarks

A set contains only one copy of each distinct element. Unlike some other programming languages, 

base R does not have a dedicated data type for sets. Instead, R treats a vector like a set by taking 

only its distinct elements. This applies to the set operators, setdiff, intersect, union, setequal and 

%in%. For v %in% S, only S is treated as a set, however, not the vector v.

For a true set data type in R, the Rcpp package provides some options.

Examples

Set operators for pairs of vectors

Comparing sets

In R, a vector may contain duplicated elements:

v = "A" 
w = c("A", "A")

However, a set contains only one copy of each element. R treats a vector like a set by taking only 

its distinct elements, so the two vectors above are regarded as the same:

setequal(v, w) 
# TRUE

Combining sets

The key functions have natural names:

x = c(1, 2, 3) 
y = c(2, 4) 
 
union(x, y) 
# 1 2 3 4 
 
intersect(x, y) 
# 2 
 
setdiff(x, y) 
# 1 3

These are all documented on the same page, ?union.
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Set membership for vectors

The %in% operator compares a vector with a set.

v = "A" 
w = c("A", "A") 
 
w %in% v 
# TRUE TRUE 
 
v %in% w 
# TRUE

Each element on the left is treated individually and tested for membership in the set associated 

with the vector on the right (consisting of all its distinct elements).

Unlike equality tests, %in% always returns TRUE or FALSE:

c(1, NA) %in% c(1, 2, 3, 4) 
# TRUE FALSE

The documentation is at ?`%in%`.

Cartesian or "cross" products of vectors

To find every vector of the form (x, y) where x is drawn from vector X and y from Y, we use 

expand.grid:

X = c(1, 1, 2) 
Y = c(4, 5) 
 
expand.grid(X, Y) 
 
#   Var1 Var2 
# 1    1    4 
# 2    1    4 
# 3    2    4 
# 4    1    5 
# 5    1    5 
# 6    2    5

The result is a data.frame with one column for each vector passed to it. Often, we want to take the 

Cartesian product of sets rather than to expand a "grid" of vectors. We can use unique, lapply and 

do.call:

m = do.call(expand.grid, lapply(list(X, Y), unique)) 
 
#   Var1 Var2 
# 1    1    4 
# 2    2    4 
# 3    1    5 
# 4    2    5
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Applying functions to combinations

If you then want to apply a function to each resulting combination f(x,y), it can be added as 

another column:

m$p = with(m, Var1*Var2) 
#   Var1 Var2  p 
# 1    1    4  4 
# 2    2    4  8 
# 3    1    5  5 
# 4    2    5 10

This approach works for as many vectors as we need, but in the special case of two, it is 

sometimes a better fit to have the result in a matrix, which can be achieved with outer:

uX = unique(X) 
uY = unique(Y) 
 
outer(setNames(uX, uX), setNames(uY, uY), `*`) 
 
#   4  5 
# 1 4  5 
# 2 8 10

For related concepts and tools, see the combinatorics topic.

Make unique / drop duplicates / select distinct elements from a vector

unique drops duplicates so that each element in the result is unique (only appears once):

x = c(2, 1, 1, 2, 1) 
 
unique(x) 
# 2 1

Values are returned in the order they first appeared.

duplicated tags each duplicated element:

duplicated(x) 
# FALSE FALSE TRUE TRUE TRUE

anyDuplicated(x) > 0L is a quick way of checking whether a vector contains any duplicates.

Measuring set overlaps / Venn diagrams for vectors

To count how many elements of two sets overlap, one could write a custom function:

xtab_set <- function(A, B){ 
    both    <-  union(A, B) 
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    inA     <-  both %in% A 
    inB     <-  both %in% B 
    return(table(inA, inB)) 
} 
 
A = 1:20 
B = 10:30 
 
xtab_set(A, B) 
 
#        inB 
# inA     FALSE TRUE 
#   FALSE     0   10 
#   TRUE      9   11

A Venn diagram, offered by various packages, can be used to visualize overlap counts across 

multiple sets.

Read Set operations online: https://riptutorial.com/r/topic/1383/set-operations
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Chapter 105: Shiny

Examples

Create an app

Shiny is an R package developed by RStudio that allows the creation of web pages to interactively 

display the results of an analysis in R.

There are two simple ways to create a Shiny app:

in one .R file, or•

in two files: ui.R and server.R.•

A Shiny app is divided into two parts:

ui: A user interface script, controlling the layout and appearance of the application.•

server: A server script which contains code to allow the application to react.•

One file

library(shiny) 
 
# Create the UI 
ui <- shinyUI(fluidPage( 
    # Application title 
    titlePanel("Hello World!") 
)) 
 
# Create the server function 
server <- shinyServer(function(input, output){}) 
 
# Run the app 
shinyApp(ui = ui, server = server)

Two files

Create ui.R file

library(shiny) 
 
# Define UI for application 
shinyUI(fluidPage( 
  # Application title 
  titlePanel("Hello World!") 
))
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Create server.R file

library(shiny) 
 
# Define server logic 
shinyServer(function(input, output){})

Radio Button

You can create a set of radio buttons used to select an item from a list.

It's possible to change the settings :

selected : The initially selected value (character(0) for no selection)•

inline : horizontal or vertical•

width•

It is also possible to add HTML.

library(shiny) 
 
ui <- fluidPage( 
  radioButtons("radio", 
               label = HTML('<FONT color="red"><FONT size="5pt">Welcome</FONT></FONT><br> 
<b>Your favorite color is red ?</b>'), 
               choices = list("TRUE" = 1, "FALSE" = 2), 
               selected = 1, 
               inline = T, 
               width = "100%"), 
  fluidRow(column(3, textOutput("value")))) 
 
 
server <- function(input, output){ 
  output$value <- renderPrint({ 
    if(input$radio == 1){return('Great !')} 
     else{return("Sorry !")}})} 
 
shinyApp(ui = ui, server = server)

Checkbox Group

Create a group of checkboxes that can be used to toggle multiple choices independently. The 

server will receive the input as a character vector of the selected values.
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library(shiny) 
 
ui <- fluidPage( 
  checkboxGroupInput("checkGroup1", label = h3("This is a Checkbox group"), 
                 choices = list("1" = 1, "2" = 2, "3" = 3), 
                 selected = 1), 
  fluidRow(column(3, verbatimTextOutput("text_choice"))) 
  ) 
 
 
server <- function(input, output){ 
  output$text_choice <- renderPrint({ 
    return(paste0("You have chosen the choice ",input$checkGroup1))}) 
} 
 
shinyApp(ui = ui, server = server)

It's possible to change the settings :

label : title•

choices : selected values•

selected : The initially selected value (NULL for no selection)•

inline : horizontal or vertical•

width•

It is also possible to add HTML.

Select box

Create a select list that can be used to choose a single or multiple items from a list of values.

library(shiny) 
 
ui <- fluidPage( 
  selectInput("id_selectInput", 
          label = HTML('<B><FONT size="3">What is your favorite color ?</FONT></B>'), 
          multiple = TRUE, 
          choices = list("red" = "red", "green" = "green", "blue" = "blue", "yellow" = 
"yellow"), 
          selected = NULL), 
  br(), br(), 
  fluidRow(column(3, textOutput("text_choice")))) 
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server <- function(input, output){ 
  output$text_choice <- renderPrint({ 
    return(input$id_selectInput)}) 
} 
 
shinyApp(ui = ui, server = server)

It's possible to change the settings :

label : title•

choices : selected values•

selected : The initially selected value (NULL for no selection)•

multiple : TRUE or FALSE•

width•

size•

selectize: TRUE or FALSE (for use or not selectize.js, change the display)•

It is also possible to add HTML.

Launch a Shiny app

You can launch an application in several ways, depending on how you create you app. If your app 

is divided in two files ui.R and server.R or if all of your app is in one file.

1. Two files app

Your two files ui.R and server.Rhave to be in the same folder. You could then launch your app by 

running in the console the shinyApp() function and by passing the path of the directory that 

contains the Shiny app.

shinyApp("path_to_the_folder_containing_the_files") 

You can also launch the app directly from Rstudio by pressing the Run App button that appear on 

Rstudio when you an ui.R or server.R file open. 
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Or you can simply write runApp() on the console if your working directory is Shiny App directory.

2. One file app

If you create your in one R file you can also launch it with the shinyApp() function.

inside of your code :•

library(shiny) 
 
ui <- fluidPage() #Create the ui 
server <- function(input, output){} #create the server 
 
shinyApp(ui = ui, server = server) #run the App

in the console by adding path to a .R file containing the Shiny application with the paramter 

appFile:

•

shinyApp(appFile="path_to_my_R_file_containig_the_app")

Control widgets

Function Widget

actionButton Action Button

checkboxGroupInput A group of check boxes

checkboxInput A single check box

dateInput A calendar to aid date selection

dateRangeInput A pair of calendars for selecting a date range

fileInput A file upload control wizard

helpText Help text that can be added to an input form

numericInput A field to enter numbers

radioButtons A set of radio buttons

selectInput A box with choices to select from

sliderInput A slider bar

submitButton A submit button

textInput A field to enter text
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library(shiny) 
 
# Create the UI 
ui <- shinyUI(fluidPage( 
  titlePanel("Basic widgets"), 
 
  fluidRow( 
 
    column(3, 
           h3("Buttons"), 
           actionButton("action", label = "Action"), 
           br(), 
           br(), 
           submitButton("Submit")), 
 
    column(3, 
           h3("Single checkbox"), 
           checkboxInput("checkbox", label = "Choice A", value = TRUE)), 
 
    column(3, 
           checkboxGroupInput("checkGroup", 
                              label = h3("Checkbox group"), 
                              choices = list("Choice 1" = 1, 
                                             "Choice 2" = 2, "Choice 3" = 3), 
                              selected = 1)), 
 
    column(3, 
           dateInput("date", 
                     label = h3("Date input"), 
                     value = "2014-01-01")) 
  ), 
 
  fluidRow( 
 
    column(3, 
           dateRangeInput("dates", label = h3("Date range"))), 
 
    column(3, 
           fileInput("file", label = h3("File input"))), 
 
    column(3, 
           h3("Help text"), 
           helpText("Note: help text isn't a true widget,", 
                    "but it provides an easy way to add text to", 
                    "accompany other widgets.")), 
 
    column(3, 
           numericInput("num", 
                        label = h3("Numeric input"), 
                        value = 1)) 
  ), 
 
  fluidRow( 
 
    column(3, 
           radioButtons("radio", label = h3("Radio buttons"), 
                        choices = list("Choice 1" = 1, "Choice 2" = 2, 
                                       "Choice 3" = 3),selected = 1)), 
 
    column(3, 
           selectInput("select", label = h3("Select box"), 
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                       choices = list("Choice 1" = 1, "Choice 2" = 2, 
                                      "Choice 3" = 3), selected = 1)), 
 
    column(3, 
           sliderInput("slider1", label = h3("Sliders"), 
                       min = 0, max = 100, value = 50), 
           sliderInput("slider2", "", 
                       min = 0, max = 100, value = c(25, 75)) 
    ), 
 
    column(3, 
           textInput("text", label = h3("Text input"), 
                     value = "Enter text...")) 
  ) 
 
)) 
 
# Create the server function 
server <- shinyServer(function(input, output){}) 
 
# Run the app 
shinyApp(ui = ui, server = server)

Debugging

debug() and debugonce() won't work well in the context of most Shiny debugging. However, 

browser() statements inserted in critical places can give you a lot of insight into how your Shiny 

code is (not) working. See also: Debugging using browser()

Showcase mode

Showcase mode displays your app alongside the code that generates it and highlights lines of 

code in server.R as it runs them.

There are two ways to enable Showcase mode:

Launch Shiny app with the argument display.mode = "showcase", e.g., runApp("MyApp", 

display.mode = "showcase").

•

Create file called DESCRIPTION in your Shiny app folder and add this line in it: DisplayMode: 

Showcase.

•

Reactive Log Visualizer

Reactive Log Visualizer provides an interactive browser-based tool for visualizing reactive 

dependencies and execution in your application. To enable Reactive Log Visualizer, execute 

options(shiny.reactlog=TRUE) in R console and or add that line of code in your server.R file. To 

start Reactive Log Visualizer, hit Ctrl+F3 on Windows or Command+F3 on Mac when your app is 

running. Use left and right arrow keys to navigate in Reactive Log Visualizer.

Read Shiny online: https://riptutorial.com/r/topic/2044/shiny
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Chapter 106: Solving ODEs in R

Syntax

ode(y, times, func, parms, method, ...)•

Parameters

Parameter Details

y (named) numeric vector: the initial (state) values for the ODE system

times
time sequence for which output is wanted; the first value of times must be the 

initial time

func
name of the function that computes the values of the derivatives in the ODE 

system

parms (named) numeric vector: parameters passed to func

method the integrator to use, by default: lsoda

Remarks

Note that it is necessary to return the rate of change in the same ordering as the specification of 

the state variables. In example "The Lorenz model" this means, that in the function "Lorenz" 

command

return(list(c(dX, dY, dZ)))

has the same order as the definition of the state variables

yini <- c(X = 1, Y = 1, Z = 1)

Examples

The Lorenz model

The Lorenz model describes the dynamics of three state variables, X, Y and Z. The model 

equations are:
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The initial conditions are:

and a, b and c are three parameters with

library(deSolve) 
 
## ----------------------------------------------------------------------------- 
## Define R-function 
## ---------------------------------------------------------------------------- 
 
Lorenz <- function (t, y, parms) { 
  with(as.list(c(y, parms)), { 
    dX <- a * X + Y * Z 
    dY <- b * (Y - Z) 
    dZ <- -X * Y + c * Y - Z 
 
    return(list(c(dX, dY, dZ))) 
  }) 
} 
 
## ----------------------------------------------------------------------------- 
## Define parameters and variables 
## ----------------------------------------------------------------------------- 
 
parms <- c(a = -8/3, b = -10, c = 28) 
yini <- c(X = 1, Y = 1, Z = 1) 
times <- seq(from = 0, to = 100, by = 0.01) 
 
 
## ----------------------------------------------------------------------------- 
## Solve the ODEs 
## ----------------------------------------------------------------------------- 
 
out <- ode(y = yini, times = times, func = Lorenz, parms = parms) 
 
## ----------------------------------------------------------------------------- 
## Plot the results 
## ----------------------------------------------------------------------------- 
 
plot(out, lwd = 2) 
plot(out[,"X"], out[,"Y"], 
     type = "l", xlab = "X", 
     ylab = "Y", main = "butterfly")
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Lotka-Volterra or: Prey vs. predator

library(deSolve) 
 
## ----------------------------------------------------------------------------- 
## Define R-function 
## ----------------------------------------------------------------------------- 
 
LV <- function(t, y, parms) { 
    with(as.list(c(y, parms)), { 
 
        dP <- rG * P * (1 - P/K) - rI * P * C 
        dC <- rI * P * C * AE - rM * C 
 
        return(list(c(dP, dC), sum = C+P)) 
    }) 
} 
 
## ----------------------------------------------------------------------------- 
## Define parameters and variables 
## ----------------------------------------------------------------------------- 
 
parms <- c(rI = 0.2, rG = 1.0, rM = 0.2, AE = 0.5, K = 10) 
yini <- c(P = 1, C = 2) 
times <- seq(from = 0, to = 200, by = 1) 
 
## ----------------------------------------------------------------------------- 
## Solve the ODEs 
## ----------------------------------------------------------------------------- 
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out <- ode(y = yini, times = times, func = LV, parms = parms) 
 
## ----------------------------------------------------------------------------- 
## Plot the results 
## ----------------------------------------------------------------------------- 
 
matplot(out[ ,1], out[ ,2:4], type = "l", xlab = "time", ylab = "Conc", 
        main = "Lotka-Volterra", lwd = 2) 
legend("topright", c("prey", "predator", "sum"), col = 1:3, lty = 1:3)

ODEs in compiled languages - definition in R

library(deSolve) 
 
## ----------------------------------------------------------------------------- 
## Define parameters and variables 
## ----------------------------------------------------------------------------- 
 
eps <- 0.01; 
M <- 10 
k <- M * eps^2/2 
L <- 1 
L0 <- 0.5 
r <- 0.1 
w <- 10 
g <- 1 
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parameter <- c(eps = eps, M = M, k = k, L = L, L0 = L0, r = r, w = w, g = g) 
 
yini <- c(xl = 0, yl = L0, xr = L, yr = L0, 
          ul = -L0/L, vl = 0, 
          ur = -L0/L, vr = 0, 
          lam1 = 0, lam2 = 0) 
 
 
times <- seq(from = 0, to = 3, by = 0.01) 
 
## ----------------------------------------------------------------------------- 
## Define R-function 
## ----------------------------------------------------------------------------- 
 
caraxis_R <- function(t, y, parms) { 
  with(as.list(c(y, parms)), { 
 
    yb <- r * sin(w * t) 
    xb <- sqrt(L * L - yb * yb) 
    Ll <- sqrt(xl^2 + yl^2) 
    Lr <- sqrt((xr - xb)^2 + (yr - yb)^2) 
 
    dxl <- ul; dyl <- vl; dxr <- ur; dyr <- vr 
 
    dul  <- (L0-Ll) * xl/Ll      + 2 * lam2 * (xl-xr) + lam1*xb 
    dvl  <- (L0-Ll) * yl/Ll      + 2 * lam2 * (yl-yr) + lam1*yb - k * g 
 
    dur  <- (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr) 
    dvr  <- (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k * g 
 
    c1   <- xb * xl + yb * yl 
    c2   <- (xl - xr)^2 + (yl - yr)^2 - L * L 
 
    return(list(c(dxl, dyl, dxr, dyr, dul, dvl, dur, dvr, c1, c2))) 
  }) 
}

ODEs in compiled languages - definition in C

sink("caraxis_C.c") 
cat(" 
/* suitable names for parameters and state variables */ 
 
#include <R.h> 
#include <math.h> 
static double parms[8]; 
 
#define eps parms[0] 
#define m   parms[1] 
#define k   parms[2] 
#define L   parms[3] 
#define L0  parms[4] 
#define r   parms[5] 
#define w   parms[6] 
#define g   parms[7] 
 
/*---------------------------------------------------------------------- 
 initialising the parameter common block 
---------------------------------------------------------------------- 
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*/ 
void init_C(void (* daeparms)(int *, double *)) { 
  int N = 8; 
  daeparms(&N, parms); 
    } 
/* Compartments */ 
 
#define xl y[0] 
#define yl y[1] 
#define xr y[2] 
#define yr y[3] 
#define lam1 y[8] 
#define lam2 y[9] 
 
/*---------------------------------------------------------------------- 
 the residual function 
---------------------------------------------------------------------- 
*/ 
void caraxis_C (int *neq, double *t, double *y, double *ydot, 
              double *yout, int* ip) 
{ 
  double yb, xb, Lr, Ll; 
 
  yb  = r * sin(w * *t) ; 
  xb  = sqrt(L * L - yb * yb); 
  Ll  = sqrt(xl * xl + yl * yl) ; 
  Lr  = sqrt((xr-xb)*(xr-xb) + (yr-yb)*(yr-yb)); 
 
  ydot[0] = y[4]; 
  ydot[1] = y[5]; 
  ydot[2] = y[6]; 
  ydot[3] = y[7]; 
 
  ydot[4] = (L0-Ll) * xl/Ll + lam1*xb + 2*lam2*(xl-xr)    ; 
  ydot[5] = (L0-Ll) * yl/Ll + lam1*yb + 2*lam2*(yl-yr) - k*g; 
  ydot[6] = (L0-Lr) * (xr-xb)/Lr      - 2*lam2*(xl-xr)       ; 
  ydot[7] = (L0-Lr) * (yr-yb)/Lr      - 2*lam2*(yl-yr) - k*g   ; 
 
  ydot[8]  = xb * xl + yb * yl; 
  ydot[9]  = (xl-xr) * (xl-xr) + (yl-yr) * (yl-yr) - L*L; 
 
} 
", fill = TRUE) 
sink() 
system("R CMD SHLIB caraxis_C.c") 
dyn.load(paste("caraxis_C", .Platform$dynlib.ext, sep = "")) 
dllname_C <- dyn.load(paste("caraxis_C", .Platform$dynlib.ext, sep = ""))[[1]]

ODEs in compiled languages - definition in fortran

sink("caraxis_fortran.f") 
cat(" 
c---------------------------------------------------------------- 
c Initialiser for parameter common block 
c---------------------------------------------------------------- 
       subroutine init_fortran(daeparms) 
 
        external daeparms 
        integer, parameter :: N = 8 
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        double precision parms(N) 
        common /myparms/parms 
 
        call daeparms(N, parms) 
        return 
        end 
 
c---------------------------------------------------------------- 
c rate of change 
c---------------------------------------------------------------- 
        subroutine caraxis_fortran(neq, t, y, ydot, out, ip) 
        implicit none 
        integer          neq, IP(*) 
        double precision t, y(neq), ydot(neq), out(*) 
        double precision eps, M, k, L, L0, r, w, g 
        common /myparms/ eps, M, k, L, L0, r, w, g 
 
        double precision xl, yl, xr, yr, ul, vl, ur, vr, lam1, lam2 
        double precision yb, xb, Ll, Lr, dxl, dyl, dxr, dyr 
        double precision dul, dvl, dur, dvr, c1, c2 
 
c expand state variables 
         xl = y(1) 
         yl = y(2) 
         xr = y(3) 
         yr = y(4) 
         ul = y(5) 
         vl = y(6) 
         ur = y(7) 
         vr = y(8) 
         lam1 = y(9) 
         lam2 = y(10) 
 
         yb = r * sin(w * t) 
         xb = sqrt(L * L - yb * yb) 
         Ll = sqrt(xl**2 + yl**2) 
         Lr = sqrt((xr - xb)**2 + (yr - yb)**2) 
 
         dxl = ul 
         dyl = vl 
         dxr = ur 
         dyr = vr 
 
         dul = (L0-Ll) * xl/Ll      + 2 * lam2 * (xl-xr) + lam1*xb 
         dvl = (L0-Ll) * yl/Ll      + 2 * lam2 * (yl-yr) + lam1*yb - k*g 
         dur = (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr) 
         dvr = (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k*g 
 
         c1  = xb * xl + yb * yl 
         c2  = (xl - xr)**2 + (yl - yr)**2 - L * L 
 
c function values in ydot 
         ydot(1)  = dxl 
         ydot(2)  = dyl 
         ydot(3)  = dxr 
         ydot(4)  = dyr 
         ydot(5)  = dul 
         ydot(6)  = dvl 
         ydot(7)  = dur 
         ydot(8)  = dvr 
         ydot(9)  = c1 
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         ydot(10) = c2 
        return 
        end 
", fill = TRUE) 
 
sink() 
system("R CMD SHLIB caraxis_fortran.f") 
dyn.load(paste("caraxis_fortran", .Platform$dynlib.ext, sep = "")) 
dllname_fortran <- dyn.load(paste("caraxis_fortran", .Platform$dynlib.ext, sep = ""))[[1]]

ODEs in compiled languages - a benchmark test

When you compiled and loaded the code in the three examples before (ODEs in compiled 

languages - definition in R, ODEs in compiled languages - definition in C and ODEs in compiled 

languages - definition in fortran) you are able to run a benchmark test.

library(microbenchmark) 
 
R <- function(){ 
  out <- ode(y = yini, times = times, func = caraxis_R, 
             parms = parameter) 
} 
 
 
C <- function(){ 
  out <- ode(y = yini, times = times, func = "caraxis_C", 
             initfunc = "init_C", parms = parameter, 
             dllname = dllname_C) 
} 
 
fortran <- function(){ 
  out <- ode(y = yini, times = times, func = "caraxis_fortran", 
             initfunc = "init_fortran", parms = parameter, 
             dllname = dllname_fortran) 
}

Check if results are equal:

all.equal(tail(R()), tail(fortran())) 
all.equal(R()[,2], fortran()[,2]) 
all.equal(R()[,2], C()[,2])

Make a benchmark (Note: On your machine the times are, of course, different):

bench <- microbenchmark::microbenchmark( 
  R(), 
  fortran(), 
  C(), 
  times = 1000 
) 
 
summary(bench) 
 
     expr         min        lq       mean     median         uq        max neval cld 
      R()   31508.928 33651.541 36747.8733 36062.2475 37546.8025 132996.564  1000   b 
fortran()     570.674   596.700   686.1084   637.4605   730.1775   4256.555  1000  a 
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      C()     562.163   590.377   673.6124   625.0700   723.8460   5914.347  1000  a 

We see clearly, that R is slow in contrast to the definition in C and fortran. For big models it's worth 

to translate the problem in a compiled language. The package cOde is one possibility to translate 

ODEs from R to C.

Read Solving ODEs in R online: https://riptutorial.com/r/topic/7448/solving-odes-in-r
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Chapter 107: Spark API (SparkR)

Remarks

The SparkR package let's you work with distributed data frames on top of a Spark cluster. These 

allow you to do operations like selection, filtering, aggregation on very large datasets. SparkR 

overview SparkR package documentation

Examples

Setup Spark context

Setup Spark context in R

To start working with Sparks distributed dataframes, you must connect your R program with an 

existing Spark Cluster.

library(SparkR) 
sc <- sparkR.init() # connection to Spark context 
sqlContext <- sparkRSQL.init(sc) # connection to SQL context

Here are infos how to connect your IDE to a Spark cluster.

Get Spark Cluster

There is an Apache Spark introduction topic with install instructions. Basically, you can employ a 

Spark Cluster locally via java (see instructions) or use (non-free) cloud applications (e.g. Microsoft 

Azure [topic site], IBM).

Cache data

What:

Caching can optimize computation in Spark. Caching stores data in memory and is a special case 

of persistence. Here is explained what happens when you cache an RDD in Spark.

Why:

Basically, caching saves an interim partial result - usually after transformations - of your original 

data. So, when you use the cached RDD, the already transformed data from memory is accessed 

without recomputing the earlier transformations.

How:

Here is an example how to quickly access large data (here 3 GB big csv) from in-memory storage 
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when accessing it more then once:

library(SparkR) 
# next line is needed for direct csv import: 
Sys.setenv('SPARKR_SUBMIT_ARGS'='"--packages" "com.databricks:spark-csv_2.10:1.4.0" "sparkr-
shell"') 
sc <- sparkR.init() 
sqlContext <- sparkRSQL.init(sc) 
 
# loading 3 GB big csv file: 
train <- read.df(sqlContext, "/train.csv", source = "com.databricks.spark.csv", inferSchema = 
"true") 
cache(train) 
system.time(head(train)) 
# output: time elapsed: 125 s. This action invokes the caching at this point. 
system.time(head(train)) 
# output: time elapsed: 0.2 s (!!)

Create RDDs (Resilient Distributed Datasets)

From dataframe:

mtrdd <- createDataFrame(sqlContext, mtcars)

From csv:

For csv's, you need to add the csv package to the environment before initiating the Spark context:

Sys.setenv('SPARKR_SUBMIT_ARGS'='"--packages" "com.databricks:spark-csv_2.10:1.4.0" "sparkr-
shell"') # context for csv import read csv -> 
sc <- sparkR.init() 
sqlContext <- sparkRSQL.init(sc)

Then, you can load the csv either by infering the data schema of the data in the columns:

train <- read.df(sqlContext, "/train.csv", header= "true", source = 
"com.databricks.spark.csv", inferSchema = "true")

Or by specifying the data schema beforehand:

 customSchema <- structType( 
    structField("margin", "integer"), 
    structField("gross", "integer"), 
    structField("name", "string")) 
 
 train <- read.df(sqlContext, "/train.csv", header= "true", source = 
"com.databricks.spark.csv", schema = customSchema)

Read Spark API (SparkR) online: https://riptutorial.com/r/topic/5349/spark-api--sparkr-
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Chapter 108: spatial analysis

Examples

Create spatial points from XY data set

When it comes to geographic data, R shows to be a powerful tool for data handling, analysis and 

visualisation.

Often, spatial data is avaliable as an XY coordinate data set in tabular form. This example will 

show how to create a spatial data set from an XY data set.

The packages rgdal and sp provide powerful functions. Spatial data in R can be stored as 

Spatial*DataFrame (where * can be Points, Lines or Polygons).

This example uses data which can be downloaded at OpenGeocode.

At first, the working directory has to be set to the folder of the downloaded CSV data set. 

Furthermore, the package rgdal has to be loaded.

setwd("D:/GeocodeExample/") 
library(rgdal)

Afterwards, the CSV file storing cities and their geographical coordinates is loaded into R as a 
data.frame

xy <- read.csv("worldcities.csv", stringsAsFactors = FALSE)

Often, it is useful to get a glimpse of the data and its structure (e.g. column names, data types 

etc.).

head(xy) 
str(xy)

This shows that the latitude and longitude columns are interpreted as character values, since they 

hold entries like "-33.532". Yet, the later used function SpatialPointsDataFrame() which creates the 

spatial data set requires the coordinate values to be of the data type numeric. Thus the two 

columns have to be converted.

xy$latitude <- as.numeric(xy$latitude) 
xy$longitude <- as.numeric(xy$longitude)

Few of the values cannot be converted into numeric data and thus, NA values are created. They 

have to be removed.

xy <- xy[!is.na(xy$longitude),]
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Finally, the XY data set can be converted into a spatial data set. This requires the coordinates and 

the specification of the Coordinate Refrence System (CRS) in which the coordinates are stored.

xySPoints <- SpatialPointsDataFrame(coords = c(xy[,c("longitude", "latitude")]), 
proj4string = CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"), 
data = xy 
)

The basic plot function can easily be used to sneak peak the produced spatial points.

plot(xySPoints, pch = ".")

Importing a shape file (.shp)

rgdal

ESRI shape files can easily be imported into R by using the function readOGR() from the rgdal 

package.

library(rgdal) 
shp <- readORG(dsn = "/path/to/your/file", layer = "filename")

It is important to know, that the dsn must not end with / and the layer does not allow the file ending 

(e.g. .shp)

raster
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Another possible way of importing shapefiles is via the raster library and the shapefile function:

library(raster) 
shp <- shapefile("path/to/your/file.shp")

Note how the path definition is different from the rgdal import statement.

tmap

tmap package provides a nice wrapper for the rgdal::readORG function.

library(tmap) 
sph <- read_shape("path/to/your/file.shp")

Read spatial analysis online: https://riptutorial.com/r/topic/2093/spatial-analysis
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Chapter 109: Speeding up tough-to-vectorize 

code

Examples

Speeding tough-to-vectorize for loops with Rcpp

Consider the following tough-to-vectorize for loop, which creates a vector of length len where the 

first element is specified (first) and each element x_i is equal to cos(x_{i-1} + 1):

repeatedCosPlusOne <- function(first, len) { 
  x <- numeric(len) 
  x[1] <- first 
  for (i in 2:len) { 
    x[i] <- cos(x[i-1] + 1) 
  } 
  return(x) 
}

This code involves a for loop with a fast operation (cos(x[i-1]+1)), which often benefit from 

vectorization. However, it is not trivial to vectorize this operation with base R, since R does not 

have a "cumulative cosine of x+1" function.

One possible approach to speeding this function would be to implement it in C++, using the Rcpp 

package:

library(Rcpp) 
cppFunction("NumericVector repeatedCosPlusOneRcpp(double first, int len) { 
  NumericVector x(len); 
  x[0] = first; 
  for (int i=1; i < len; ++i) { 
    x[i] = cos(x[i-1]+1); 
  } 
  return x; 
}")

This often provides significant speedups for large computations while yielding the exact same 

results:

all.equal(repeatedCosPlusOne(1, 1e6), repeatedCosPlusOneRcpp(1, 1e6)) 
# [1] TRUE 
system.time(repeatedCosPlusOne(1, 1e6)) 
#    user  system elapsed 
#   1.274   0.015   1.310 
system.time(repeatedCosPlusOneRcpp(1, 1e6)) 
#    user  system elapsed 
#   0.028   0.001   0.030 

In this case, the Rcpp code generates a vector of length 1 million in 0.03 seconds instead of 1.31 
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seconds with the base R approach.

Speeding tough-to-vectorize for loops by byte compiling

Following the Rcpp example in this documentation entry, consider the following tough-to-vectorize 

function, which creates a vector of length len where the first element is specified (first) and each 

element x_i is equal to cos(x_{i-1} + 1):

repeatedCosPlusOne <- function(first, len) { 
  x <- numeric(len) 
  x[1] <- first 
  for (i in 2:len) { 
    x[i] <- cos(x[i-1] + 1) 
  } 
  return(x) 
}

One simple approach to speeding up such a function without rewriting a single line of code is byte 

compiling the code using the R compile package:

library(compiler) 
repeatedCosPlusOneCompiled <- cmpfun(repeatedCosPlusOne)

The resulting function will often be significantly faster while still returning the same results:

all.equal(repeatedCosPlusOne(1, 1e6), repeatedCosPlusOneCompiled(1, 1e6)) 
# [1] TRUE 
system.time(repeatedCosPlusOne(1, 1e6)) 
#    user  system elapsed 
#   1.175   0.014   1.201 
system.time(repeatedCosPlusOneCompiled(1, 1e6)) 
#    user  system elapsed 
#   0.339   0.002   0.341 

In this case, byte compiling sped up the tough-to-vectorize operation on a vector of length 1 million 

from 1.20 seconds to 0.34 seconds.

Remark

The essence of repeatedCosPlusOne, as the cumulative application of a single function, can be 

expressed more transparently with Reduce:

iterFunc <- function(init, n, func) { 
  funcs <- replicate(n, func) 
  Reduce(function(., f) f(.), funcs, init = init, accumulate = TRUE) 
} 
repeatedCosPlusOne_vec <- function(first, len) { 
  iterFunc(first, len - 1, function(.) cos(. + 1)) 
}

repeatedCosPlusOne_vec may be regarded as a "vectorization" of repeatedCosPlusOne. However, it can 

be expected to be slower by a factor of 2:
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library(microbenchmark) 
microbenchmark( 
  repeatedCosPlusOne(1, 1e4), 
  repeatedCosPlusOne_vec(1, 1e4) 
) 
#> Unit: milliseconds 
#>                              expr       min        lq     mean   median       uq      max 
neval cld 
#>      repeatedCosPlusOne(1, 10000)  8.349261  9.216724 10.22715 10.23095 11.10817 14.33763 
100  a 
#>  repeatedCosPlusOne_vec(1, 10000) 14.406291 16.236153 17.55571 17.22295 18.59085 24.37059 
100   b

Read Speeding up tough-to-vectorize code online: https://riptutorial.com/r/topic/1203/speeding-up-

tough-to-vectorize-code
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Chapter 110: Split function

Examples

Basic usage of split

split allows to divide a vector or a data.frame into buckets with regards to a factor/group 

variables. This ventilation into buckets takes the form of a list, that can then be used to apply 

group-wise computation (for loops or lapply/sapply).

First example shows the usage of split on a vector:

Consider following vector of letters:

testdata <- c("e", "o", "r", "g", "a", "y", "w", "q", "i", "s", "b", "v", "x", "h", "u")

Objective is to separate those letters into voyels and consonants, ie split it accordingly to letter type.

Let's first create a grouping vector:

 vowels <- c('a','e','i','o','u','y') 
 letter_type <- ifelse(testdata %in% vowels, "vowels", "consonants") 

Note that letter_type has the same length that our vector testdata. Now we can split this test 

data in the two groups, vowels and consonants :

split(testdata, letter_type) 
#$consonants 
#[1] "r" "g" "w" "q" "s" "b" "v" "x" "h" 
 
#$vowels 
#[1] "e" "o" "a" "y" "i" "u"

Hence, the result is a list which names are coming from our grouping vector/factor letter_type.

split has also a method to deal with data.frames.

Consider for instance iris data:

data(iris)

By using split, one can create a list containing one data.frame per iris specie (variable: Species):

> liris <- split(iris, iris$Species) 
> names(liris) 
[1] "setosa"     "versicolor" "virginica" 
> head(liris$setosa) 
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
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1          5.1         3.5          1.4         0.2  setosa 
2          4.9         3.0          1.4         0.2  setosa 
3          4.7         3.2          1.3         0.2  setosa 
4          4.6         3.1          1.5         0.2  setosa 
5          5.0         3.6          1.4         0.2  setosa 
6          5.4         3.9          1.7         0.4  setosa

(contains only data for setosa group).

One example operation would be to compute correlation matrix per iris specie; one would then use 

lapply:

> (lcor <- lapply(liris, FUN=function(df) cor(df[,1:4]))) 
 
    $setosa 
             Sepal.Length Sepal.Width Petal.Length Petal.Width 
Sepal.Length    1.0000000   0.7425467    0.2671758   0.2780984 
Sepal.Width     0.7425467   1.0000000    0.1777000   0.2327520 
Petal.Length    0.2671758   0.1777000    1.0000000   0.3316300 
Petal.Width     0.2780984   0.2327520    0.3316300   1.0000000 
 
$versicolor 
             Sepal.Length Sepal.Width Petal.Length Petal.Width 
Sepal.Length    1.0000000   0.5259107    0.7540490   0.5464611 
Sepal.Width     0.5259107   1.0000000    0.5605221   0.6639987 
Petal.Length    0.7540490   0.5605221    1.0000000   0.7866681 
Petal.Width     0.5464611   0.6639987    0.7866681   1.0000000 
 
$virginica 
             Sepal.Length Sepal.Width Petal.Length Petal.Width 
Sepal.Length    1.0000000   0.4572278    0.8642247   0.2811077 
Sepal.Width     0.4572278   1.0000000    0.4010446   0.5377280 
Petal.Length    0.8642247   0.4010446    1.0000000   0.3221082 
Petal.Width     0.2811077   0.5377280    0.3221082   1.0000000

Then we can retrieve per group the best pair of correlated variables: (correlation matrix is 

reshaped/melted, diagonal is filtered out and selecting best record is performed)

> library(reshape) 
> (topcor <- lapply(lcor, FUN=function(cormat){ 
   correlations <- melt(cormat,variable_name="correlatio); 
   filtered <- correlations[correlations$X1 != correlations$X2,]; 
   filtered[which.max(filtered$correlation),] 
})) 
 
$setosa 
           X1           X2     correlation 
2 Sepal.Width Sepal.Length       0.7425467 
 
$versicolor 
            X1           X2     correlation 
12 Petal.Width Petal.Length       0.7866681 
 
$virginica 
            X1           X2     correlation 
3 Petal.Length Sepal.Length       0.8642247

https://riptutorial.com/ 503



Note that one computations are performed on such groupwise level, one may be interested in 

stacking the results, which can be done with:

> (result <- do.call("rbind", topcor)) 
 
                     X1           X2     correlation 
setosa      Sepal.Width Sepal.Length       0.7425467 
versicolor  Petal.Width Petal.Length       0.7866681 
virginica  Petal.Length Sepal.Length       0.8642247

Using split in the split-apply-combine paradigm

A popular form of data analysis is split-apply-combine, in which you split your data into groups, 

apply some sort of processing on each group, and then combine the results.

Let's consider a data analysis where we want to obtain the two cars with the best miles per gallon 

(mpg) for each cylinder count (cyl) in the built-in mtcars dataset. First, we split the mtcars data 

frame by the cylinder count:

(spl <- split(mtcars, mtcars$cyl)) 
# $`4` 
#                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb 
# Datsun 710     22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1 
# Merc 240D      24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2 
# Merc 230       22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2 
# Fiat 128       32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1 
# ... 
# 
# $`6` 
#                 mpg cyl  disp  hp drat    wt  qsec vs am gear carb 
# Mazda RX4      21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4 
# Mazda RX4 Wag  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4 
# Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1 
# Valiant        18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1 
# ... 
# 
# $`8` 
#                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb 
# Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 
# Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4 
# Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3 
# Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3 
# ...

This has returned a list of data frames, one for each cylinder count. As indicated by the output, we 

could obtain the relevant data frames with spl$`4`, spl$`6`, and spl$`8` (some might find it more 

visually appealing to use spl$"4" or spl[["4"]] instead).

Now, we can use lapply to loop through this list, applying our function that extracts the cars with 

the best 2 mpg values from each of the list elements:

(best2 <- lapply(spl, function(x) tail(x[order(x$mpg),], 2))) 
# $`4` 
#                 mpg cyl disp hp drat    wt  qsec vs am gear carb 
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# Fiat 128       32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1 
# Toyota Corolla 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1 
# 
# $`6` 
#                 mpg cyl disp  hp drat    wt  qsec vs am gear carb 
# Mazda RX4 Wag  21.0   6  160 110 3.90 2.875 17.02  0  1    4    4 
# Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1 
# 
# $`8` 
#                    mpg cyl disp  hp drat    wt  qsec vs am gear carb 
# Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2 
# Pontiac Firebird  19.2   8  400 175 3.08 3.845 17.05  0  0    3    2

Finally, we can combine everything together using rbind. We want to call rbind(best2[["4"]], 

best2[["6"]], best2[["8"]]), but this would be tedious if we had a huge list. As a result, we use:

do.call(rbind, best2) 
#                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb 
# 4.Fiat 128          32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1 
# 4.Toyota Corolla    33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1 
# 6.Mazda RX4 Wag     21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4 
# 6.Hornet 4 Drive    21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1 
# 8.Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 
# 8.Pontiac Firebird  19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2

This returns the result of rbind (argument 1, a function) with all the elements of best2 (argument 2, 

a list) passed as arguments.

With simple analyses like this one, it can be more compact (and possibly much less readable!) to 

do the whole split-apply-combine in a single line of code:

do.call(rbind, lapply(split(mtcars, mtcars$cyl), function(x) tail(x[order(x$mpg),], 2)))

It is also worth noting that the lapply(split(x,f), FUN) combination can be alternatively framed 

using the ?by function:

by(mtcars, mtcars$cyl, function(x) tail(x[order(x$mpg),], 2)) 
do.call(rbind, by(mtcars, mtcars$cyl, function(x) tail(x[order(x$mpg),], 2)))

Read Split function online: https://riptutorial.com/r/topic/1073/split-function
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Chapter 111: sqldf

Examples

Basic Usage Examples

sqldf() from the package sqldf allows the use of SQLite queries to select and manipulate data in 

R. SQL queries are entered as character strings.

To select the first 10 rows of the "diamonds" dataset from the package ggplot2, for example:

data("diamonds") 
head(diamonds)

# A tibble: 6 x 10 
  carat       cut color clarity depth table price     x     y     z 
  <dbl>     <ord> <ord>   <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl> 
1  0.23     Ideal     E     SI2  61.5    55   326  3.95  3.98  2.43 
2  0.21   Premium     E     SI1  59.8    61   326  3.89  3.84  2.31 
3  0.23      Good     E     VS1  56.9    65   327  4.05  4.07  2.31 
4  0.29   Premium     I     VS2  62.4    58   334  4.20  4.23  2.63 
5  0.31      Good     J     SI2  63.3    58   335  4.34  4.35  2.75 
6  0.24 Very Good     J    VVS2  62.8    57   336  3.94  3.96  2.48

require(sqldf) 
sqldf("select * from diamonds limit 10")

   carat       cut color clarity depth table price    x    y    z 
1   0.23     Ideal     E     SI2  61.5    55   326 3.95 3.98 2.43 
2   0.21   Premium     E     SI1  59.8    61   326 3.89 3.84 2.31 
3   0.23      Good     E     VS1  56.9    65   327 4.05 4.07 2.31 
4   0.29   Premium     I     VS2  62.4    58   334 4.20 4.23 2.63 
5   0.31      Good     J     SI2  63.3    58   335 4.34 4.35 2.75 
6   0.24 Very Good     J    VVS2  62.8    57   336 3.94 3.96 2.48 
7   0.24 Very Good     I    VVS1  62.3    57   336 3.95 3.98 2.47 
8   0.26 Very Good     H     SI1  61.9    55   337 4.07 4.11 2.53 
9   0.22      Fair     E     VS2  65.1    61   337 3.87 3.78 2.49 
10  0.23 Very Good     H     VS1  59.4    61   338 4.00 4.05 2.39

To select the first 10 rows where for the color "E":

sqldf("select * from diamonds where color = 'E' limit 10")

   carat       cut color clarity depth table price    x    y    z 
1   0.23     Ideal     E     SI2  61.5    55   326 3.95 3.98 2.43 
2   0.21   Premium     E     SI1  59.8    61   326 3.89 3.84 2.31 
3   0.23      Good     E     VS1  56.9    65   327 4.05 4.07 2.31 
4   0.22      Fair     E     VS2  65.1    61   337 3.87 3.78 2.49 
5   0.20   Premium     E     SI2  60.2    62   345 3.79 3.75 2.27 
6   0.32   Premium     E      I1  60.9    58   345 4.38 4.42 2.68 
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7   0.23 Very Good     E     VS2  63.8    55   352 3.85 3.92 2.48 
8   0.23 Very Good     E     VS1  60.7    59   402 3.97 4.01 2.42 
9   0.23 Very Good     E     VS1  59.5    58   402 4.01 4.06 2.40 
10  0.23      Good     E     VS1  64.1    59   402 3.83 3.85 2.46

Notice in the example above that quoted strings within the SQL query are quoted using '' if the 

overall query is quoted with "" (this also works in reverse).

Suppose that we wish to add a new column to count the number of Premium cut diamonds over 1 

carat:

sqldf("select count(*) from diamonds where carat > 1 and color = 'E'")

  count(*) 
1     1892

Results of created values can also be returned as new columns:

sqldf("select *, count(*) as cnt_big_E_colored_stones from diamonds where carat > 1 and color 
= 'E' group by clarity")

  carat       cut color clarity depth table price    x    y    z 
cnt_big_E_colored_stones 
1  1.30      Fair     E      I1  66.5    58  2571 6.79 6.75 4.50 
65 
2  1.28     Ideal     E      IF  60.7    57 18700 7.09 6.99 4.27 
28 
3  2.02 Very Good     E     SI1  59.8    59 18731 8.11 8.20 4.88 
499 
4  2.03   Premium     E     SI2  61.5    59 18477 8.24 8.16 5.04 
666 
5  1.51     Ideal     E     VS1  61.5    57 18729 7.34 7.40 4.53 
158 
6  1.72 Very Good     E     VS2  63.4    56 18557 7.65 7.55 4.82 
318 
7  1.20     Ideal     E    VVS1  61.8    56 16256 6.78 6.87 4.22 
52 
8  1.55     Ideal     E    VVS2  62.5    55 18188 7.38 7.40 4.62 
106

If one would be interested what is the max price of the diamond according to the cut:

sqldf("select cut,  max(price) from diamonds group by cut") 
 
        cut max(price) 
1      Fair      18574 
2      Good      18788 
3     Ideal      18806 
4   Premium      18823 
5 Very Good      18818

Read sqldf online: https://riptutorial.com/r/topic/2100/sqldf

https://riptutorial.com/ 507

https://riptutorial.com/r/topic/2100/sqldf


Chapter 112: Standardize analyses by writing 

standalone R scripts

Introduction

If you want to routinely apply an R analysis to a lot of separate data files, or provide a repeatable 

analysis method to other people, an executable R script is a user-friendly way to do so. Instead of 

you or your user having to call R and execute your script inside R via source(.) or a function call, 

your user may simply call the script itself as if it was a program.

Remarks

To represent the standard input-/output channels, use the functions file("stdin") (input from 

terminal or other program via pipe), stdout() (standard output) and stderr() (standard error). Note 

that while there is the function stdin(), it can not be used when supplying a ready-made script to 

R, because it will read the next lines of that script instead of user input.

Examples

The basic structure of standalone R program and how to call it

The first standalone R script

Standalone R scripts are not executed by the program R (R.exe under Windows), but by a program 

called Rscript (Rscript.exe), which is included in your R installation by default.

To hint at this fact, standalone R scripts start with a special line called Shebang line, which holds 

the following content: #!/usr/bin/env Rscript. Under Windows, an additional measure is needed, 

which is detailled later.

The following simple standalone R script saves a histogram under the file name "hist.png" from 

numbers it receives as input:

#!/usr/bin/env Rscript 
 
# User message (\n = end the line) 
cat("Input numbers, separated by space:\n") 
# Read user input as one string (n=1 -> Read only one line) 
input <- readLines(file('stdin'), n=1) 
# Split the string at each space (\\s == any space) 
input <- strsplit(input, "\\s")[[1]] 
# convert the obtained vector of strings to numbers 
input <- as.numeric(input) 
 
# Open the output picture file 
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png("hist.png",width=400, height=300) 
# Draw the histogram 
hist(input) 
# Close the output file 
dev.off()

You can see several key elements of a standalone R script. In the first line, you see the Shebang 

line. Followed by that, cat("....\n") is used to print a message to the user. Use file("stdin") 

whenever you want to specify "User input on console" as a data origin. This can be used instead 

of a file name in several data reading functions (scan, read.table, read.csv,...). After the user input 

is converted from strings to numbers, the plotting begins. There, it can be seen, that plotting 

commands which are meant to be written to a file must be enclosed in two commands. These are 

in this case png(.) and dev.off(). The first function depends on the desired output file format (other 

common choices being jpeg(.) and pdf(.)). The second function, dev.off() is always required. It 

writes the plot to the file and ends the plotting process.

Preparing a standalone R script

Linux/Mac

The standalone script's file must first be made executable. This can happen by right-clicking the 

file, opening "Properties" in the opening menu and checking the "Executable" checkbox in the 

"Permissions" tab. Alternatively, the command

chmod +x PATH/TO/SCRIPT/SCRIPTNAME.R

can be called in a Terminal.

Windows

For each standalone script, a batch file must be written with the following contents:

"C:\Program Files\R-XXXXXXX\bin\Rscript.exe" "%~dp0\XXXXXXX.R" %*

A batch file is a normal text file, but which has a *.bat extension except a *.txt extension. Create 

it using a text editor like notepad (not Word) or similar and put the file name into quotation marks 

"FILENAME.bat") in the save dialog. To edit an existing batch file, right-click on it and select "Edit".

You have to adapt the code shown above everywhere XXX... is written:

Insert the correct folder where your R installation resides•

Insert the correct name of your script and place it into the same directory as this batch file.•

Explanation of the elements in the code: The first part "C:\...\Rscript.exe" tells Windows where to 

find the Rscript.exe program. The second part "%~dp0\XXX.R" tells Rscript to execute the R script 

you've written which resides in the same folder as the batch file (%~dp0 stands for the batch file 
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folder). Finally, %* forwards any command line arguments you give to the batch file to the R script.

If you double-click on the batch file, the R script is executed. If you drag files on the batch file, the 

corresponding file names are given to the R script as command line arguments.

Using littler to execute R scripts

littler (pronounced little r) (cran) provides, besides other features, two possibilities to run R scripts 

from the command line with littler's r command (when one works with Linux or MacOS).

Installing littler

From R:

install.packages("littler")

The path of r is printed in the terminal, like

You could link to the 'r' binary installed in 
'/home/*USER*/R/x86_64-pc-linux-gnu-library/3.4/littler/bin/r' 
from '/usr/local/bin' in order to use 'r' for scripting.

To be able to call r from the system's command line, a symlink is needed:

ln -s /home/*USER*/R/x86_64-pc-linux-gnu-library/3.4/littler/bin/r /usr/local/bin/r

Using apt-get (Debian, Ubuntu):

sudo apt-get install littler

Using littler with standard .r scripts

With r from littler it is possible to execute standalone R scripts without any changes to the script. 

Example script:

# User message (\n = end the line) 
cat("Input numbers, separated by space:\n") 
# Read user input as one string (n=1 -> Read only one line) 
input <- readLines(file('stdin'), n=1) 
# Split the string at each space (\\s == any space) 
input <- strsplit(input, "\\s")[[1]] 
# convert the obtained vector of strings to numbers 
input <- as.numeric(input) 
 
# Open the output picture file 
png("hist.png",width=400, height=300) 
# Draw the histogram 
hist(input) 
# Close the output file 
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dev.off()

Note that no shebang is at the top of the scripts. When saved as for example hist.r, it is directly 

callable from the system command:

r hist.r

Using littler on shebanged scripts

It is also possible to create executable R scripts with littler, with the use of the shebang

#!/usr/bin/env r

at the top of the script. The corresponding R script has to be made executable with chmod +X 

/path/to/script.r and is directly callable from the system terminal.

Read Standardize analyses by writing standalone R scripts online: 

https://riptutorial.com/r/topic/9937/standardize-analyses-by-writing-standalone-r-scripts
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Chapter 113: String manipulation with stringi 

package

Remarks

To install package simply run:

install.packages("stringi")

to load it:

require("stringi")

Examples

Count pattern inside string

With fixed pattern

stri_count_fixed("babab", "b") 
# [1] 3 
stri_count_fixed("babab", "ba") 
# [1] 2 
stri_count_fixed("babab", "bab") 
# [1] 1

Natively:

length(gregexpr("b","babab")[[1]]) 
# [1] 3 
length(gregexpr("ba","babab")[[1]]) 
# [1] 2 
length(gregexpr("bab","babab")[[1]]) 
# [1] 1

function is vectorized over string and pattern:

stri_count_fixed("babab", c("b","ba")) 
# [1] 3 2 
stri_count_fixed(c("babab","bbb","bca","abc"), c("b","ba")) 
# [1] 3 0 1 0

A base R solution:

sapply(c("b","ba"),function(x)length(gregexpr(x,"babab")[[1]])) 
# b ba 

https://riptutorial.com/ 512



# 3  2

With regex

First example - find a and any character after

Second example - find a and any digit after

stri_count_regex("a1 b2 a3 b4 aa", "a.") 
# [1] 3 
stri_count_regex("a1 b2 a3 b4 aa", "a\\d") 
# [1] 2

Duplicating strings

stri_dup("abc",3) 
# [1] "abcabcabc"

A base R solution that does the same would look like this:

paste0(rep("abc",3),collapse = "") 
# [1] "abcabcabc"

Paste vectors

stri_paste(LETTERS,"-", 1:13) 
# [1] "A-1"  "B-2"  "C-3"  "D-4"  "E-5"  "F-6"  "G-7"  "H-8"  "I-9"  "J-10" "K-11" "L-12" "M-
13" 
# [14] "N-1"  "O-2"  "P-3"  "Q-4"  "R-5"  "S-6"  "T-7"  "U-8"  "V-9"  "W-10" "X-11" "Y-12" "Z-
13"

Natively, we could do this in R via:

> paste(LETTERS,1:13,sep="-") 
 #[1] "A-1"  "B-2"  "C-3"  "D-4"  "E-5"  "F-6"  "G-7"  "H-8"  "I-9"  "J-10" "K-11" "L-12" "M-
13" 
 #[14] "N-1"  "O-2" "P-3"  "Q-4"  "R-5"  "S-6"  "T-7"  "U-8"  "V-9"  "W-10" "X-11" "Y-12" "Z-
13"

Splitting text by some fixed pattern

Split vector of texts using one pattern:

stri_split_fixed(c("To be or not to be.", "This is very short sentence.")," ") 
# [[1]] 
# [1] "To"  "be"  "or"  "not" "to"  "be." 
# 
# [[2]] 
# [1] "This"      "is"        "very"      "short"     "sentence."
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Split one text using many patterns:

stri_split_fixed("Apples, oranges and pineaplles.",c(" ", ",", "s")) 
# [[1]] 
# [1] "Apples,"     "oranges"     "and"         "pineaplles." 
# 
# [[2]] 
# [1] "Apples"                   " oranges and pineaplles." 
# 
# [[3]] 
# [1] "Apple"          ", orange"       " and pineaplle" "." 

Read String manipulation with stringi package online: https://riptutorial.com/r/topic/1670/string-

manipulation-with-stringi-package
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Chapter 114: strsplit function

Syntax

strsplit(•

x•

split•

fixed = FALSE•

perl = FALSE•

useBytes = FALSE)•

Examples

Introduction

strsplit is a useful function for breaking up a vector into an list on some character pattern. With 

typical R tools, the whole list can be reincorporated to a data.frame or part of the list might be used 

in a graphing exercise.

Here is a common usage of strsplit: break a character vector along a comma separator:

temp <- c("this,that,other", "hat,scarf,food", "woman,man,child") 
# get a list split by commas 
myList <- strsplit(temp, split=",") 
# print myList 
myList 
[[1]] 
[1] "this"  "that"  "other" 
 
[[2]] 
[1] "hat"   "scarf" "food" 
 
[[3]] 
[1] "woman" "man"   "child"

As hinted above, the split argument is not limited to characters, but may follow a pattern dictated 

by a regular expression. For example, temp2 is identical to temp above except that the separators 

have been altered for each item. We can take advantage of the fact that the split argument 

accepts regular expressions to alleviate the irregularity in the vector.

temp2 <- c("this, that, other", "hat,scarf ,food", "woman; man ; child") 
myList2 <- strsplit(temp2, split=" ?[,;] ?") 
myList2 
[[1]] 
[1] "this"  "that"  "other" 
 
[[2]] 
[1] "hat"   "scarf" "food" 
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[[3]] 
[1] "woman" "man"   "child"

Notes:

breaking down the regular expression syntax is out of scope for this example.1. 

Sometimes matching regular expressions can slow down a process. As with many R 

functions that allow the use of regular expressions, the fixed argument is available to tell R to 

match on the split characters literally.

2. 

Read strsplit function online: https://riptutorial.com/r/topic/2762/strsplit-function
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Chapter 115: Subsetting

Introduction

Given an R object, we may require separate analysis for one or more parts of the data contained 

in it. The process of obtaining these parts of the data from a given object is called subsetting.

Remarks

Missing values:

Missing values (NAs) used in subsetting with [ return NA since a NA index

picks an unknown element and so returns NA in the corresponding element..

The "default" type of NA is "logical" (typeof(NA)) which means that, as any "logical" vector used in 

subsetting, will be recycled to match the length of the subsetted object. So x[NA] is equivalent to 

x[as.logical(NA)] which is equivalent to x[rep_len(as.logical(NA), length(x))] and, consequently, 

it returns a missing value (NA) for each element of x. As an example:

x <- 1:3 
x[NA] 
## [1] NA NA NA

While indexing with "numeric"/"integer" NA picks a single NA element (for each NA in index):

x[as.integer(NA)] 
## [1] NA 
 
x[c(NA, 1, NA, NA)] 
## [1] NA  1 NA NA

Subsetting out of bounds:

The [ operator, with one argument passed, allows indices that are > length(x) and returns NA for 

atomic vectors or NULL for generic vectors. In contrast, with [[ and when [ is passed more 

arguments (i.e. subsetting out of bounds objects with length(dim(x)) > 2) an error is returned:

(1:3)[10] 
## [1] NA 
(1:3)[[10]] 
## Error in (1:3)[[10]] : subscript out of bounds 
as.matrix(1:3)[10] 
## [1] NA 
as.matrix(1:3)[, 10] 
## Error in as.matrix(1:3)[, 10] : subscript out of bounds 
list(1, 2, 3)[10] 
## [[1]] 
## NULL 
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list(1, 2, 3)[[10]] 
## Error in list(1, 2, 3)[[10]] : subscript out of bounds

The behaviour is the same when subsetting with "character" vectors, that are not matched in the 

"names" attribute of the object, too:

c(a = 1, b = 2)["c"] 
## <NA> 
##   NA 
list(a = 1, b = 2)["c"] 
## <NA> 
## NULL

Help topics:

See ?Extract for further information.

Examples

Atomic vectors

Atomic vectors (which excludes lists and expressions, which are also vectors) are subset using the 

[ operator:

# create an example vector 
v1 <- c("a", "b", "c", "d") 
 
# select the third element 
v1[3] 
## [1] "c"

The [ operator can also take a vector as the argument. For example, to select the first and third 

elements:

v1 <- c("a", "b", "c", "d") 
 
v1[c(1, 3)] 
## [1] "a" "c"

Some times we may require to omit a particular value from the vector. This can be achieved using 

a negative sign(-) before the index of that value. For example, to omit to omit the first value from 

v1, use v1[-1]. This can be extended to more than one value in a straight forward way. For 

example, v1[-c(1,3)].

> v1[-1] 
[1] "b" "c" "d" 
> v1[-c(1,3)] 
[1] "b" "d"

On some occasions, we would like to know, especially, when the length of the vector is large, 

https://riptutorial.com/ 518



index of a particular value, if it exists:

> v1=="c" 
[1] FALSE FALSE  TRUE FALSE 
> which(v1=="c") 
[1] 3

If the atomic vector has names (a names attribute), it can be subset using a character vector of 

names:

v <- 1:3 
names(v) <- c("one", "two", "three") 
 
v 
##  one   two three 
##    1     2     3 
 
v["two"] 
## two 
##   2

The [[ operator can also be used to index atomic vectors, with differences in that it accepts a 

indexing vector with a length of one and strips any names present:

v[[c(1, 2)]] 
## Error in v[[c(1, 2)]] : 
##  attempt to select more than one element in vectorIndex 
 
v[["two"]] 
## [1] 2

Vectors can also be subset using a logical vector. In contrast to subsetting with numeric and 

character vectors, the logical vector used to subset has to be equal to the length of the vector 

whose elements are extracted, so if a logical vector y is used to subset x, i.e. x[y], if length(y) < 

length(x) then y will be recycled to match length(x):

v[c(TRUE, FALSE, TRUE)] 
##  one three 
##    1     3 
 
v[c(FALSE, TRUE)]  # recycled to 'c(FALSE, TRUE, FALSE)' 
## two 
##   2 
 
v[TRUE]   # recycled to 'c(TRUE, TRUE, TRUE)' 
##  one   two three 
##    1     2     3 
 
v[FALSE]   # handy to discard elements but save the vector's type and basic structure 
## named integer(0)

Lists

A list can be subset with [:
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l1 <- list(c(1, 2, 3), 'two' = c("a", "b", "c"), list(10, 20)) 
l1 
## [[1]] 
## [1] 1 2 3 
## 
## $two 
## [1] "a" "b" "c" 
## 
## [[3]] 
## [[3]][[1]] 
## [1] 10 
## 
## [[3]][[2]] 
## [1] 20 
 
l1[1] 
## [[1]] 
## [1] 1 2 3 
 
l1['two'] 
## $two 
## [1] "a" "b" "c" 
 
l1[[2]] 
## [1] "a" "b" "c" 
 
l1[['two']] 
## [1] "a" "b" "c"

Note the result of l1[2] is still a list, as the [ operator selects elements of a list, returning a smaller 

list. The [[ operator extracts list elements, returning an object of the type of the list element.

Elements can be indexed by number or a character string of the name (if it exists). Multiple 

elements can be selected with [ by passing a vector of numbers or strings of names. Indexing with 

a vector of length > 1 in [ and [[ returns a "list" with the specified elements and a recursive subset 

(if available), respectively:

l1[c(3, 1)] 
## [[1]] 
## [[1]][[1]] 
## [1] 10 
## 
## [[1]][[2]] 
## [1] 20 
## 
## 
## [[2]] 
## [1] 1 2 3

Compared to:

l1[[c(3, 1)]] 
## [1] 10

which is equivalent to:

https://riptutorial.com/ 520



l1[[3]][[1]] 
## [1] 10

The $ operator allows you to select list elements solely by name, but unlike [ and [[, does not 

require quotes. As an infix operator, $ can only take a single name:

l1$two 
## [1] "a" "b" "c"

Also, the $ operator allows for partial matching by default:

l1$t 
## [1] "a" "b" "c"

in contrast with [[ where it needs to be specified whether partial matching is allowed:

l1[["t"]] 
## NULL 
l1[["t", exact = FALSE]] 
## [1] "a" "b" "c"

Setting options(warnPartialMatchDollar = TRUE), a "warning" is given when partial matching 

happens with $:

l1$t 
## [1] "a" "b" "c" 
## Warning message: 
## In l1$t : partial match of 't' to 'two'

Matrices

For each dimension of an object, the [ operator takes one argument. Vectors have one dimension 

and take one argument. Matrices and data frames have two dimensions and take two arguments, 

given as [i, j] where i is the row and j is the column. Indexing starts at 1.

## a sample matrix 
mat <- matrix(1:6, nrow = 2, dimnames = list(c("row1", "row2"), c("col1", "col2", "col3"))) 
 
mat 
#      col1 col2 col3 
# row1    1    3    5 
# row2    2    4    6

mat[i,j] is the element in the i-th row, j-th column of the matrix mat. For example, an i value of 2 

and a j value of 1 gives the number in the second row and the first column of the matrix. Omitting 

i or j returns all values in that dimension.

mat[ , 3] 
## row1 row2 
##    5    6 
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mat[1, ] 
# col1 col2 col3 
#    1    3    5 

When the matrix has row or column names (not required), these can be used for subsetting:

mat[ , 'col1'] 
# row1 row2 
#    1    2 

By default, the result of a subset will be simplified if possible. If the subset only has one dimension, 

as in the examples above, the result will be a one-dimensional vector rather than a two-

dimensional matrix. This default can be overriden with the drop = FALSE argument to [:

## This selects the first row as a vector 
class(mat[1, ]) 
# [1] "integer" 
 
## Whereas this selects the first row as a 1x3 matrix: 
class(mat[1, , drop = F]) 
# [1] "matrix"

Of course, dimensions cannot be dropped if the selection itself has two dimensions:

mat[1:2, 2:3]  ## A 2x2 matrix 
#      col2 col3 
# row1    3    5 
# row2    4    6

Selecting individual matrix entries by their positions

It is also possible to use a Nx2 matrix to select N individual elements from a matrix (like how a 

coordinate system works). If you wanted to extract, in a vector, the entries of a matrix in the (1st 

row, 1st column), (1st row, 3rd column), (2nd row, 3rd column), (2nd row, 1st column) this can be 

done easily by creating a index matrix with those coordinates and using that to subset the matrix:

mat 
#      col1 col2 col3 
# row1    1    3    5 
# row2    2    4    6 
 
ind = rbind(c(1, 1), c(1, 3), c(2, 3), c(2, 1)) 
ind 
#      [,1] [,2] 
# [1,]    1    1 
# [2,]    1    3 
# [3,]    2    3 
# [4,]    2    1 
 
mat[ind] 
# [1] 1 5 6 2
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In the above example, the 1st column of the ind matrix refers to rows in mat, the 2nd column of ind 

refers to columns in mat.

Data frames

Subsetting a data frame into a smaller data frame can be accomplished the same as 

subsetting a list.

> df3 <- data.frame(x = 1:3, y = c("a", "b", "c"), stringsAsFactors = FALSE) 
 
> df3 
##   x y 
## 1 1 a 
## 2 2 b 
## 3 3 c 
 
> df3[1]   # Subset a variable by number 
##   x 
## 1 1 
## 2 2 
## 3 3 
 
> df3["x"]   # Subset a variable by name 
##   x 
## 1 1 
## 2 2 
## 3 3 
 
> is.data.frame(df3[1]) 
## TRUE 
 
> is.list(df3[1]) 
## TRUE

Subsetting a dataframe into a column vector can be accomplished using double brackets [[ ]] 

or the dollar sign operator $.

> df3[[2]]    # Subset a variable by number using [[ ]] 
## [1] "a" "b" "c" 
 
> df3[["y"]]  # Subset a variable by name using [[ ]] 
## [1] "a" "b" "c" 
 
> df3$x    # Subset a variable by name using $ 
## [1] 1 2 3 
 
> typeof(df3$x) 
## "integer" 
 
> is.vector(df3$x) 
## TRUE

Subsetting a data as a two dimensional matrix can be accomplished using i and j terms.

> df3[1, 2]    # Subset row and column by number 
## [1] "a" 
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> df3[1, "y"]  # Subset row by number and column by name 
## [1] "a" 
 
> df3[2, ]     # Subset entire row by number 
##   x y 
## 2 2 b 
 
> df3[ , 1]    # Subset all first variables 
## [1] 1 2 3 
 
> df3[ , 1, drop = FALSE] 
##   x 
## 1 1 
## 2 2 
## 3 3

Note: Subsetting by j (column) alone simplifies to the variable's own type, but subsetting by i 

alone returns a data.frame, as the different variables may have different types and classes. Setting 

the drop parameter to FALSE keeps the data frame.

> is.vector(df3[, 2]) 
## TRUE 
 
> is.data.frame(df3[2, ]) 
## TRUE 
 
> is.data.frame(df3[, 2, drop = FALSE]) 
## TRUE

Other objects

The [ and [[ operators are primitive functions that are generic. This means that any object in R 

(specifically isTRUE(is.object(x)) --i.e. has an explicit "class" attribute) can have its own specified 

behaviour when subsetted; i.e. has its own methods for [ and/or [[.

For example, this is the case with "data.frame" (is.object(iris)) objects where [.data.frame and 

[[.data.frame methods are defined and they are made to exhibit both "matrix"-like and "list"-like 

subsetting. With forcing an error when subsetting a "data.frame", we see that, actually, a function 

[.data.frame was called when we -just- used [.

iris[invalidArgument, ] 
## Error in `[.data.frame`(iris, invalidArgument, ) : 
##   object 'invalidArgument' not found

Without further details on the current topic, an example[ method:

x = structure(1:5, class = "myClass") 
x[c(3, 2, 4)] 
## [1] 3 2 4 
'[.myClass' = function(x, i) cat(sprintf("We'd expect '%s[%s]' to be returned but this a 
custom `[` method and should have a `?[.myClass` help page for its behaviour\n", 
deparse(substitute(x)), deparse(substitute(i)))) 
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x[c(3, 2, 4)] 
## We'd expect 'x[c(3, 2, 4)]' to be returned but this a custom `[` method and should have a 
`?[.myClass` help page for its behaviour 
## NULL

We can overcome the method dispatching of [ by using the equivalent non-generic .subset (and 

.subset2 for [[). This is especially useful and efficient when programming our own "class"es and 

want to avoid work-arounds (like unclass(x)) when computing on our "class"es efficiently (avoiding 

method dispatch and copying objects):

.subset(x, c(3, 2, 4)) 
## [1] 3 2 4

Vector indexing

For this example, we will use the vector:

> x <- 11:20 
> x 
 [1] 11 12 13 14 15 16 17 18 19 20

R vectors are 1-indexed, so for example x[1] will return 11. We can also extract a sub-vector of x 

by passing a vector of indices to the bracket operator:

> x[c(2,4,6)] 
[1] 12 14 16

If we pass a vector of negative indices, R will return a sub-vector with the specified indices 

excluded:

> x[c(-1,-3)] 
[1] 12 14 15 16 17 18 19 20

We can also pass a boolean vector to the bracket operator, in which case it returns a sub-vector 

corresponding to the coordinates where the indexing vector is TRUE:

> x[c(rep(TRUE,5),rep(FALSE,5))] 
[1] 11 12 13 14 15 16

If the indexing vector is shorter than the length of the array, then it will be repeated, as in:

> x[c(TRUE,FALSE)] 
[1] 11 13 15 17 19 
> x[c(TRUE,FALSE,FALSE)] 
[1] 11 14 17 20

Elementwise Matrix Operations

Let A and B be two matrices of same dimension. The operators +,-,/,*,^ when used with matrices 
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of same dimension perform the required operations on the corresponding elements of the matrices 

and return a new matrix of the same dimension. These operations are usually referred to as 

element-wise operations.

Operator A op B Meaning

+ A + B Addition of corresponding elements of A and B

- A - B Subtracts the elements of B from the corresponding elements of A

/ A / B Divides the elements of A by the corresponding elements of B

* A * B Multiplies the elements of A by the corresponding elements of B

^ A^(-1) For example, gives a matrix whose elements are reciprocals of A

For "true" matrix multiplication, as seen in Linear Algebra, use %*%. For example, multiplication of A 

with B is: A %*% B. The dimensional requirements are that the ncol() of A be the same as nrow() of B

Some Functions used with Matrices

Function Example Purpose

nrow() nrow(A) determines the number of rows of A

ncol() ncol(A) determines the number of columns of A

rownames() rownames(A) prints out the row names of the matrix A

colnames() colnames(A) prints out the column names of the matrix A

rowMeans() rowMeans(A) computes means of each row of the matrix A

colMeans() colMeans(A) computes means of each column of the matrix A

upper.tri() upper.tri(A) returns a vector whose elements are the upper

triangular matrix of square matrix A

lower.tri() lower.tri(A) returns a vector whose elements are the lower

triangular matrix of square matrix A

det() det(A) results in the determinant of the matrix A

solve() solve(A) results in the inverse of the non-singular matrix A

diag() diag(A)
returns a diagonal matrix whose off-diagnal elemts are zeros 

and
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Function Example Purpose

diagonals are the same as that of the square matrix A

t() t(A) returns the the transpose of the matrix A

eigen() eigen(A) retuens the eigenvalues and eigenvectors of the matrix A

is.matrix() is.matrix(A)
returns TRUE or FALSE depending on whether A is a matrix or 

not.

as.matrix() as.matrix(x) creates a matrix out of the vector x

Read Subsetting online: https://riptutorial.com/r/topic/1686/subsetting
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Chapter 116: Survival analysis

Examples

Random Forest Survival Analysis with randomForestSRC

Just as the random forest algorithm may be applied to regression and classification tasks, it can 

also be extended to survival analysis.

In the example below a survival model is fit and used for prediction, scoring, and performance 

analysis using the package randomForestSRC from CRAN.

require(randomForestSRC) 
 
set.seed(130948) #Other seeds give similar comparative results 
x1   <- runif(1000) 
y    <- rnorm(1000, mean = x1, sd = .3) 
data <- data.frame(x1 = x1, y = y) 
head(data)

         x1          y 
1 0.9604353  1.3549648 
2 0.3771234  0.2961592 
3 0.7844242  0.6942191 
4 0.9860443  1.5348900 
5 0.1942237  0.4629535 
6 0.7442532 -0.0672639

(modRFSRC <- rfsrc(y ~ x1, data = data, ntree=500, nodesize = 5))

                             Sample size: 1000 
                     Number of trees: 500 
          Minimum terminal node size: 5 
       Average no. of terminal nodes: 208.258 
No. of variables tried at each split: 1 
              Total no. of variables: 1 
                            Analysis: RF-R 
                              Family: regr 
                      Splitting rule: mse 
                % variance explained: 32.08 
                          Error rate: 0.11

x1new   <- runif(10000) 
ynew    <- rnorm(10000, mean = x1new, sd = .3) 
newdata <- data.frame(x1 = x1new, y = ynew) 
 
survival.results <- predict(modRFSRC, newdata = newdata) 
survival.results

  Sample size of test (predict) data: 10000 
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                Number of grow trees: 500 
  Average no. of grow terminal nodes: 208.258 
         Total no. of grow variables: 1 
                            Analysis: RF-R 
                              Family: regr 
                % variance explained: 34.97 
                 Test set error rate: 0.11

Introduction - basic fitting and plotting of parametric survival models with the 

survival package

survival is the most commonly used package for survival analysis in R. Using the built-in lung 

dataset we can get started with Survival Analysis by fitting a regression model with the survreg() 

function, creating a curve with survfit(), and plotting predicted survival curves by calling the 

predict method for this package with new data.

In the example below we plot 2 predicted curves and vary sex between the 2 sets of new data, to 

visualize its effect:

require(survival) 
s <- with(lung,Surv(time,status)) 
 
sWei  <- survreg(s ~ as.factor(sex)+age+ph.ecog+wt.loss+ph.karno,dist='weibull',data=lung) 
 
fitKM <- survfit(s ~ sex,data=lung) 
plot(fitKM) 
 
lines(predict(sWei, newdata = list(sex      = 1, 
                                   age      = 1, 
                                   ph.ecog  = 1, 
                                   ph.karno = 90, 
                                   wt.loss  = 2), 
                                 type = "quantile", 
                                 p    = seq(.01, .99, by = .01)), 
                                 seq(.99, .01, by        =-.01), 
                                 col = "blue") 
 
lines(predict(sWei, newdata = list(sex      = 2, 
                                   age      = 1, 
                                   ph.ecog  = 1, 
                                   ph.karno = 90, 
                                   wt.loss  = 2), 
                                 type = "quantile", 
                                 p    = seq(.01, .99, by = .01)), 
                                 seq(.99, .01, by        =-.01), 
                                 col = "red")
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Kaplan Meier estimates of survival curves and risk set tables with survminer

Base plot

install.packages('survminer') 
source("https://bioconductor.org/biocLite.R") 
biocLite("RTCGA.clinical") # data for examples 
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library(RTCGA.clinical) 
survivalTCGA(BRCA.clinical, OV.clinical, 
             extract.cols = "admin.disease_code") -> BRCAOV.survInfo 
library(survival) 
fit <- survfit(Surv(times, patient.vital_status) ~ admin.disease_code, 
               data = BRCAOV.survInfo) 
library(survminer) 
ggsurvplot(fit, risk.table = TRUE)

More advanced

ggsurvplot( 
   fit,                     # survfit object with calculated statistics. 
   risk.table = TRUE,       # show risk table. 
   pval = TRUE,             # show p-value of log-rank test. 
   conf.int = TRUE,         # show confidence intervals for 
                            # point estimaes of survival curves. 
   xlim = c(0,2000),        # present narrower X axis, but not affect 
                            # survival estimates. 
   break.time.by = 500,     # break X axis in time intervals by 500. 
   ggtheme = theme_RTCGA(), # customize plot and risk table with a theme. 
 risk.table.y.text.col = T, # colour risk table text annotations. 
  risk.table.y.text = FALSE # show bars instead of names in text annotations 
                            # in legend of risk table 
)
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Based on

http://r-addict.com/2016/05/23/Informative-Survival-Plots.html

Read Survival analysis online: https://riptutorial.com/r/topic/3788/survival-analysis
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Chapter 117: Text mining

Examples

Scraping Data to build N-gram Word Clouds

The following example utilizes the tm text mining package to scrape and mine text data from the 

web to build word clouds with symbolic shading and ordering.

require(RWeka) 
require(tau) 
require(tm) 
require(tm.plugin.webmining) 
require(wordcloud) 
 
# Scrape Google Finance --------------------------------------------------- 
googlefinance <- WebCorpus(GoogleFinanceSource("NASDAQ:LFVN")) 
 
# Scrape Google News ------------------------------------------------------ 
lv.googlenews <- WebCorpus(GoogleNewsSource("LifeVantage")) 
p.googlenews  <- WebCorpus(GoogleNewsSource("Protandim")) 
ts.googlenews <- WebCorpus(GoogleNewsSource("TrueScience")) 
 
# Scrape NYTimes ---------------------------------------------------------- 
lv.nytimes <- WebCorpus(NYTimesSource(query = "LifeVantage", appid = nytimes_appid)) 
p.nytimes  <- WebCorpus(NYTimesSource("Protandim", appid = nytimes_appid)) 
ts.nytimes <- WebCorpus(NYTimesSource("TrueScience", appid = nytimes_appid)) 
 
# Scrape Reuters ---------------------------------------------------------- 
lv.reutersnews <- WebCorpus(ReutersNewsSource("LifeVantage")) 
p.reutersnews  <- WebCorpus(ReutersNewsSource("Protandim")) 
ts.reutersnews <- WebCorpus(ReutersNewsSource("TrueScience")) 
 
# Scrape Yahoo! Finance --------------------------------------------------- 
lv.yahoofinance <- WebCorpus(YahooFinanceSource("LFVN")) 
 
# Scrape Yahoo! News ------------------------------------------------------ 
lv.yahoonews <- WebCorpus(YahooNewsSource("LifeVantage")) 
p.yahoonews  <- WebCorpus(YahooNewsSource("Protandim")) 
ts.yahoonews <- WebCorpus(YahooNewsSource("TrueScience")) 
 
# Scrape Yahoo! Inplay ---------------------------------------------------- 
lv.yahooinplay <- WebCorpus(YahooInplaySource("LifeVantage")) 
 
# Text Mining the Results ------------------------------------------------- 
corpus <- c(googlefinance, lv.googlenews, p.googlenews, ts.googlenews, lv.yahoofinance, 
lv.yahoonews, p.yahoonews, 
ts.yahoonews, lv.yahooinplay) #lv.nytimes, p.nytimes, ts.nytimes,lv.reutersnews, 
p.reutersnews, ts.reutersnews, 
 
inspect(corpus) 
wordlist <- c("lfvn", "lifevantage", "protandim", "truescience", "company", "fiscal", 
"nasdaq") 
 
ds0.1g <- tm_map(corpus, content_transformer(tolower)) 
ds1.1g <- tm_map(ds0.1g, content_transformer(removeWords), wordlist) 
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ds1.1g <- tm_map(ds1.1g, content_transformer(removeWords), stopwords("english")) 
ds2.1g <- tm_map(ds1.1g, stripWhitespace) 
ds3.1g <- tm_map(ds2.1g, removePunctuation) 
ds4.1g <- tm_map(ds3.1g, stemDocument) 
 
tdm.1g <- TermDocumentMatrix(ds4.1g) 
dtm.1g <- DocumentTermMatrix(ds4.1g) 
 
findFreqTerms(tdm.1g, 40) 
findFreqTerms(tdm.1g, 60) 
findFreqTerms(tdm.1g, 80) 
findFreqTerms(tdm.1g, 100) 
 
findAssocs(dtm.1g, "skin", .75) 
findAssocs(dtm.1g, "scienc", .5) 
findAssocs(dtm.1g, "product", .75) 
 
tdm89.1g <- removeSparseTerms(tdm.1g, 0.89) 
tdm9.1g  <- removeSparseTerms(tdm.1g, 0.9) 
tdm91.1g <- removeSparseTerms(tdm.1g, 0.91) 
tdm92.1g <- removeSparseTerms(tdm.1g, 0.92) 
 
tdm2.1g <- tdm92.1g 
 
# Creates a Boolean matrix (counts # docs w/terms, not raw # terms) 
tdm3.1g <- inspect(tdm2.1g) 
tdm3.1g[tdm3.1g>=1] <- 1 
 
# Transform into a term-term adjacency matrix 
termMatrix.1gram <- tdm3.1g %*% t(tdm3.1g) 
 
# inspect terms numbered 5 to 10 
termMatrix.1gram[5:10,5:10] 
termMatrix.1gram[1:10,1:10] 
 
# Create a WordCloud to Visualize the Text Data --------------------------- 
notsparse <- tdm2.1g 
m = as.matrix(notsparse) 
v = sort(rowSums(m),decreasing=TRUE) 
d = data.frame(word = names(v),freq=v) 
 
# Create the word cloud 
pal = brewer.pal(9,"BuPu") 
wordcloud(words = d$word, 
          freq = d$freq, 
          scale = c(3,.8), 
          random.order = F, 
          colors = pal)
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Note the use of random.order and a sequential pallet from RColorBrewer, which allows the 

programmer to capture more information in the cloud by assigning meaning to the order and 

coloring of terms.

Above is the 1-gram case.

We can make a major leap to n-gram word clouds and in doing so we’ll see how to make almost 

any text-mining analysis flexible enough to handle n-grams by transforming our TDM.

The initial difficulty you run into with n-grams in R is that tm, the most popular package for text 

mining, does not inherently support tokenization of bi-grams or n-grams. Tokenization is the 

process of representing a word, part of a word, or group of words (or symbols) as a single data 

element called a token.

Fortunately, we have some hacks which allow us to continue using tm with an upgraded tokenizer. 

There’s more than one way to achieve this. We can write our own simple tokenizer using the 

textcnt() function from tau:

tokenize_ngrams <- function(x, n=3) 
return(rownames(as.data.frame(unclass(textcnt(x,method="string",n=n)))))

or we can invoke RWeka's tokenizer within tm:

# BigramTokenize 
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))

From this point you can proceed much as in the 1-gram case:

# Create an n-gram Word Cloud ---------------------------------------------- 
tdm.ng <- TermDocumentMatrix(ds5.1g, control = list(tokenize = BigramTokenizer)) 
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dtm.ng <- DocumentTermMatrix(ds5.1g, control = list(tokenize = BigramTokenizer)) 
 
# Try removing sparse terms at a few different levels 
tdm89.ng <- removeSparseTerms(tdm.ng, 0.89) 
tdm9.ng  <- removeSparseTerms(tdm.ng, 0.9) 
tdm91.ng <- removeSparseTerms(tdm.ng, 0.91) 
tdm92.ng <- removeSparseTerms(tdm.ng, 0.92) 
 
notsparse <- tdm91.ng 
m = as.matrix(notsparse) 
v = sort(rowSums(m),decreasing=TRUE) 
d = data.frame(word = names(v),freq=v) 
 
# Create the word cloud 
pal = brewer.pal(9,"BuPu") 
wordcloud(words = d$word, 
          freq = d$freq, 
          scale = c(3,.8), 
          random.order = F, 
          colors = pal)

The example above is reproduced with permission from Hack-R's data science blog. Additional 

commentary may be found in the original article.

Read Text mining online: https://riptutorial.com/r/topic/3579/text-mining
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Chapter 118: The character class

Introduction

Characters are what other languages call 'string vectors.'

Remarks

Related topics

Patterns

Regular Expressions (regex)•

Pattern Matching and Replacement•

strsplit function•

Input and output

Reading and writing strings•

Examples

Coercion

To check whether a value is a character use the is.character() function. To coerce a variable to a 

character use the as.character() function.

x <- "The quick brown fox jumps over the lazy dog" 
class(x) 
[1] "character" 
is.character(x) 
[1] TRUE

Note that numerics can be coerced to characters, but attempting to coerce a character to numeric 

may result in NA.

as.numeric("2") 
[1] 2 
as.numeric("fox") 
[1] NA 
Warning message: 
NAs introduced by coercion 

Read The character class online: https://riptutorial.com/r/topic/9017/the-character-class
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Chapter 119: The Date class

Remarks

Related topics

Date and Time•

Jumbled notes

Date: Stores time as number of days since UNIX epoch on 1970-01-01. with negative values 

for earlier dates.

•

It is represented as an integer (however, it is not enforced in the internal representation)•

They are always printed following the rules of the current Gregorian calendar, even though 

the calendar was not in use a long time ago.

•

It doesn't keep track of timezones, so it should not be used to truncate the time out of POSIXct 

or POSIXlt objects.

•

sys.Date() returns an object of class Date•

More notes

lubridate's ymd, mdy, etc. are alternatives to as.Date that also parse to Date class; see Parsing 

dates and datetimes from strings with lubridate.

•

data.table's experimental IDate class is derived from and is mostly interchangeable with 

Date, but is stored as integer instead of double.

•

Examples

Formatting Dates

To format Dates we use the format(date, format="%Y-%m-%d") function with either the POSIXct (given 

from as.POSIXct()) or POSIXlt (given from as.POSIXlt())

d = as.Date("2016-07-21") # Current Date Time Stamp 
 
format(d,"%a")            # Abbreviated Weekday 
## [1] "Thu" 
 
format(d,"%A")            # Full Weekday 
## [1] "Thursday" 
 
format(d,"%b")            # Abbreviated Month 
## [1] "Jul" 
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format(d,"%B")            # Full Month 
## [1] "July" 
 
format(d,"%m")            # 00-12 Month Format 
## [1] "07" 
 
format(d,"%d")            # 00-31 Day Format 
## [1] "21" 
 
format(d,"%e")            # 0-31 Day Format 
## [1] "21" 
 
format(d,"%y")            # 00-99 Year 
## [1] "16" 
 
format(d,"%Y")            # Year with Century 
## [1] "2016"

For more, see ?strptime.

Dates

To coerce a variable to a date use the as.Date() function.

> x <- as.Date("2016-8-23") 
> x 
[1] "2016-08-23" 
> class(x) 
[1] "Date"

The as.Date() function allows you to provide a format argument. The default is %Y-%m-%d, which is 

Year-month-day.

> as.Date("23-8-2016", format="%d-%m-%Y") # To read in an European-style date 
[1] "2016-08-23"

The format string can be placed either within a pair of single quotes or double quotes. Dates are 

usually expressed in a variety of forms such as: "d-m-yy" or "d-m-YYYY" or "m-d-yy" or "m-d-YYYY" or 

"YYYY-m-d" or "YYYY-d-m". These formats can also be expressed by replacing "-" by "/". Furher, 

dates are also expressed in the forms, say, "Nov 6, 1986" or "November 6, 1986" or "6 Nov, 1986" 

or "6 November, 1986" and so on. The as.Date() function accepts all such character strings and 

when we mention the appropriate format of the string, it always outputs the date in the form "YYYY-

m-d".

Suppose we have a date string "9-6-1962" in the format "%d-%m-%Y".

# 
# It tries to interprets the string as YYYY-m-d 
# 
> as.Date("9-6-1962") 
[1] "0009-06-19"       #interprets as "%Y-%m-%d" 
> 
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as.Date("9/6/1962") 
[1] "0009-06-19"       #again interprets as "%Y-%m-%d" 
> 
# It has no problem in understanding, if the date is in form  YYYY-m-d or YYYY/m/d 
# 
> as.Date("1962-6-9") 
[1] "1962-06-09"        # no problem 
> as.Date("1962/6/9") 
[1] "1962-06-09"        # no problem 
> 

By specifying the correct format of the input string, we can get the desired results. We use the 

following codes for specifying the formats to the as.Date() function.

Format Code Meaning

%d day

%m month

%y year in 2-digits

%Y year in 4-digits

%b abbreviated month in 3 chars

%B full name of the month

Consider the following example specifying the format parameter:

> as.Date("9-6-1962",format="%d-%m-%Y") 
[1] "1962-06-09" 
>

The parameter name format can be omitted.

> as.Date("9-6-1962", "%d-%m-%Y") 
[1] "1962-06-09" 
>

Some times, names of the months abbreviated to the first three characters are used in the writing 

the dates. In which case we use the format specifier %b.

> as.Date("6Nov1962","%d%b%Y") 
[1] "1962-11-06" 
>

Note that, there are no either '-' or '/' or white spaces between the members in the date string. 

The format string should exactly match that input string. Consider the following example:

> as.Date("6 Nov, 1962","%d %b, %Y") 
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[1] "1962-11-06" 
>

Note that, there is a comma in the date string and hence a comma in the format specification too. 

If comma is omitted in the format string, it results in an NA. An example usage of %B format specifier 

is as follows:

> as.Date("October 12, 2016", "%B %d, %Y") 
[1] "2016-10-12" 
> 
> as.Date("12 October, 2016", "%d %B, %Y") 
[1] "2016-10-12" 
> 

%y format is system specific and hence, should be used with caution. Other parameters used with 

this function are origin and tz( time zone).

Parsing Strings into Date Objects

R contains a Date class, which is created with as.Date(), which takes a string or vector of strings, 

and if the date is not in ISO 8601 date format YYYY-MM-DD, a formatting string of strptime-style 

tokens.

as.Date('2016-08-01')    # in ISO format, so does not require formatting string 
## [1] "2016-08-01" 
 
as.Date('05/23/16', format = '%m/%d/%y') 
## [1] "2016-05-23" 
 
as.Date('March 23rd, 2016', '%B %drd, %Y')    # add separators and literals to format 
## [1] "2016-03-23" 
 
as.Date('  2016-08-01  foo')    # leading whitespace and all trailing characters are ignored 
## [1] "2016-08-01" 
 
as.Date(c('2016-01-01', '2016-01-02')) 
# [1] "2016-01-01" "2016-01-02"

Read The Date class online: https://riptutorial.com/r/topic/9015/the-date-class

https://riptutorial.com/ 541

https://riptutorial.com/r/topic/9015/the-date-class


Chapter 120: The logical class

Introduction

Logical is a mode (and an implicit class) for vectors.

Remarks

Shorthand

TRUE, FALSE and NA are the only values for logical vectors; and all three are reserved words. T and F 

can be shorthand for TRUE and FALSE in a clean R session, but neither T nor F are reserved, so 

assignment of non-default values to those names can set users up for difficulties.

Examples

Logical operators

There are two sorts of logical operators: those that accept and return vectors of any length 

(elementwise operators: !, |, &, xor()) and those that only evaluate the first element in each 

argument (&&, ||). The second sort is primarily used as the cond argument to the if function.

Logical Operator Meaning Syntax

! Not !x

& element-wise (vectorized) and x & y

&& and (single element only) x && y

| element-wise (vectorized) or x | y

|| or (single element only) x || y

xor element-wise (vectorized) exclusive OR xor(x,y)

Note that the || operator evaluates the left condition and if the left condition is TRUE the right side 

is never evaluated. This can save time if the first is the result of a complex operation. The && 

operator will likewise return FALSE without evaluation of the second argument when the first 

element of the first argument is FALSE.

> x <- 5 
> x > 6 || stop("X is too small") 
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Error: X is too small 
> x > 3 || stop("X is too small") 
[1] TRUE

To check whether a value is a logical you can use the is.logical() function.

Coercion

To coerce a variable to a logical use the as.logical() function.

> x <- 2 
> z <- x > 4 
> z 
[1] FALSE 
> class(x) 
[1] "numeric" 
> as.logical(2) 
[1] TRUE

When applying as.numeric() to a logical, a double will be returned. NA is a logical value and a 

logical operator with an NA will return NA if the outcome is ambiguous.

Interpretation of NAs

See Missing values for details.

> TRUE & NA 
[1] NA 
> FALSE & NA 
[1] FALSE 
> TRUE || NA 
[1] TRUE 
> FALSE || NA 
[1] NA

Read The logical class online: https://riptutorial.com/r/topic/9016/the-logical-class
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Chapter 121: tidyverse

Examples

Creating tbl_df’s

A tbl_df (pronounced tibble diff) is a variation of a data frame that is often used in tidyverse 

packages. It is implemented in the tibble package.

Use the as_data_frame function to turn a data frame into a tbl_df:

library(tibble) 
mtcars_tbl <- as_data_frame(mtcars)

One of the most notable differences between data.frames and tbl_dfs is how they print:

# A tibble: 32 x 11 
     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
*  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
1   21.0     6 160.0   110  3.90 2.620 16.46     0     1     4     4 
2   21.0     6 160.0   110  3.90 2.875 17.02     0     1     4     4 
3   22.8     4 108.0    93  3.85 2.320 18.61     1     1     4     1 
4   21.4     6 258.0   110  3.08 3.215 19.44     1     0     3     1 
5   18.7     8 360.0   175  3.15 3.440 17.02     0     0     3     2 
6   18.1     6 225.0   105  2.76 3.460 20.22     1     0     3     1 
7   14.3     8 360.0   245  3.21 3.570 15.84     0     0     3     4 
8   24.4     4 146.7    62  3.69 3.190 20.00     1     0     4     2 
9   22.8     4 140.8    95  3.92 3.150 22.90     1     0     4     2 
10  19.2     6 167.6   123  3.92 3.440 18.30     1     0     4     4 
# ... with 22 more rows

The printed output includes a summary of the dimensions of the table (32 x 11)•

It includes the type of each column (dbl)•

It prints a limited number of rows. (To change this use options(tibble.print_max = [number])).•

Many functions in the dplyr package work naturally with tbl_dfs, such as group_by().

tidyverse: an overview

What is tidyverse?

tidyverse is the fast and elegant way to turn basic R into an enhanced tool, redesigned by 

Hadley/Rstudio. The development of all packages included in tidyverse follow the principle rules of 

The tidy tools manifesto. But first, let the authors describe their masterpiece:

The tidyverse is a set of packages that work in harmony because they share common 

data representations and API design. The tidyverse package is designed to make it 

easy to install and load core packages from the tidyverse in a single command.
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The best place to learn about all the packages in the tidyverse and how they fit 

together is R for Data Science. Expect to hear more about the tidyverse in the coming 

months as I work on improved package websites, making citation easier, and providing 

a common home for discussions about data analysis with the tidyverse.

(source))

How to use it?

Just with the ordinary R packages, you need to install and load the package.

install.package("tidyverse") 
library("tidyverse")

The difference is, on a single command a couple of dozens of packages are installed/loaded. As a 

bonus, one may rest assured that all the installed/loaded packages are of compatible versions.

What are those packages?

The commonly known and widely used packages:

ggplot2: advanced data visualisation SO_doc•

dplyr: fast (Rcpp) and coherent approach to data manipulation SO_doc•

tidyr: tools for data tidying SO_doc•

readr: for data import.•

purrr: makes your pure functions purr by completing R's functional programming tools with 

important features from other languages, in the style of the JS packages underscore.js, 

lodash and lazy.js.

•

tibble: a modern re-imagining of data frames.•

magrittr: piping to make code more readable SO_doc•

Packages for manipulating specific data formats:

hms: easily read times•

stringr: provide a cohesive set of functions designed to make working with strings as easy as 

posssible

•

lubridate: advanced date/times manipulations SO_doc•

forcats: advanced work with factors.•

Data import:

DBI: defines a common interface between the R and database management systems 

(DBMS)

•

haven: easily import SPSS, SAS and Stata files SO_doc•

httr: the aim of httr is to provide a wrapper for the curl package, customised to the demands 

of modern web APIs

•

https://riptutorial.com/ 545

https://blog.rstudio.org/2016/09/15/tidyverse-1-0-0/
http://ggplot2.org/
http://www.riptutorial.com/r/topic/1334/ggplot2
https://github.com/hadley/dplyr
http://www.riptutorial.com/r/topic/1404/rcpp
http://www.riptutorial.com/r/topic/4250/dplyr
https://github.com/tidyverse/tidyr
http://www.riptutorial.com/r/topic/2904/reshaping-data-between-long-and-wide-forms
https://github.com/tidyverse/readr
https://github.com/hadley/purrr
https://github.com/tidyverse/tibble
https://github.com/tidyverse/magrittr
http://www.riptutorial.com/r/topic/652/pipe-operators------and-others-
https://github.com/rstats-db/hms
https://github.com/tidyverse/stringr
https://github.com/hadley/lubridate
http://www.riptutorial.com/r/topic/2496/lubridate
https://github.com/tidyverse/forcats
http://www.riptutorial.com/r/topic/1104/factors
https://github.com/rstats-db/DBI
https://github.com/tidyverse/haven
http://www.riptutorial.com/r/example/4824/read-and-write-stata--spss-and-sas-files
https://github.com/hadley/httr/


jsonlite: a fast JSON parser and generator optimized for statistical data and the web•

readxl: read.xls and .xlsx files without need for dependency packages SO_doc•

rvest: rvest helps you scrape information from web pages SO_doc•

xml2: for XML•

And modelling:

modelr: provides functions that help you create elegant pipelines when modelling•

broom: easily extract the models into tidy data•

Finally, tidyverse suggest the use of:

knitr: the amazing general-purpose literate programming engine, with lightweight API's 

designed to give users full control of the output without heavy coding work. SO_docs: one, 

two

•

rmarkdown: Rstudio's package for reproducible programming. SO_docs: one, two, three, 

four

•

Read tidyverse online: https://riptutorial.com/r/topic/1395/tidyverse
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Chapter 122: Time Series and Forecasting

Remarks

Forecasting and time-series analysis may be handled with commonplace functions from the stats 

package, such as glm() or a large number of specialized packages. The CRAN Task View for 

time-series analysis provides a detailed listing of key packages by topic with short descriptions.

Examples

Exploratory Data Analysis with time-series data

data(AirPassengers) 
class(AirPassengers)

1 "ts"

In the spirit of Exploratory Data Analysis (EDA) a good first step is to look at a plot of your time-

series data:

plot(AirPassengers) # plot the raw data 
abline(reg=lm(AirPassengers~time(AirPassengers))) # fit a trend line
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For further EDA we examine cycles across years:

cycle(AirPassengers)

     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1949   1   2   3   4   5   6   7   8   9  10  11  12 
1950   1   2   3   4   5   6   7   8   9  10  11  12 
1951   1   2   3   4   5   6   7   8   9  10  11  12 
1952   1   2   3   4   5   6   7   8   9  10  11  12 
1953   1   2   3   4   5   6   7   8   9  10  11  12 
1954   1   2   3   4   5   6   7   8   9  10  11  12 
1955   1   2   3   4   5   6   7   8   9  10  11  12 
1956   1   2   3   4   5   6   7   8   9  10  11  12 
1957   1   2   3   4   5   6   7   8   9  10  11  12 
1958   1   2   3   4   5   6   7   8   9  10  11  12 
1959   1   2   3   4   5   6   7   8   9  10  11  12 
1960   1   2   3   4   5   6   7   8   9  10  11  12

boxplot(AirPassengers~cycle(AirPassengers)) #Box plot across months to explore seasonal 
effects

Creating a ts object

Time series data can be stored as a ts object. ts objects contain information about seasonal 

frequency that is used by ARIMA functions. It also allows for calling of elements in the series by 

date using the window command.

#Create a dummy dataset of 100 observations 
x <- rnorm(100) 
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#Convert this vector to a ts object with 100 annual observations 
x <- ts(x, start = c(1900), freq = 1) 
 
#Convert this vector to a ts object with 100 monthly observations starting in July 
x <- ts(x, start = c(1900, 7), freq = 12) 
 
    #Alternatively, the starting observation can be a number: 
    x <- ts(x, start = 1900.5, freq = 12) 
 
#Convert this vector to a ts object with 100 daily observations and weekly frequency starting 
in the first week of 1900 
x <- ts(x, start = c(1900, 1), freq = 7) 
 
#The default plot for a ts object is a line plot 
plot(x) 
 
#The window function can call elements or sets of elements by date 
 
    #Call the first 4 weeks of 1900 
    window(x, start = c(1900, 1), end = (1900, 4)) 
 
    #Call only the 10th week in 1900 
    window(x, start = c(1900, 10), end = (1900, 10)) 
 
    #Call all weeks including and after the 10th week of 1900 
    window(x, start = c(1900, 10)) 

It is possible to create ts objects with multiple series:

#Create a dummy matrix of 3 series with 100 observations each 
x <- cbind(rnorm(100), rnorm(100), rnorm(100)) 
 
#Create a multi-series ts with annual observation starting in 1900 
x <- ts(x, start = 1900, freq = 1) 
 
#R will draw a plot for each series in the object 
plot(x)

Read Time Series and Forecasting online: https://riptutorial.com/r/topic/2701/time-series-and-

forecasting

https://riptutorial.com/ 549

https://riptutorial.com/r/topic/2701/time-series-and-forecasting
https://riptutorial.com/r/topic/2701/time-series-and-forecasting


Chapter 123: Updating R and the package 

library

Examples

On Windows

Default installation of R on Windows stored files (and thus library) on a dedicated folder per R 

version on program files.

That means that by default, you would work with several versions of R in parallel and thus 

separate libraries.

If this not what you want and you prefer to always work with a single R instance you wan't to 

gradually update, it is recommended to modify the R installation folder. In wizard, just specify this 

folder (I personally use c:\stats\R). Then, for any upgrade, one possibility is to overwrite this R. 

Whether you also want to upgrade (all) packages is a delicate choice as it may break some of your 

code (this appeared for me with the tmpackage). You may:

First make a copy of all your library before upgrading packages•

Maintain your own source packages repository, for instance using package miniCRAN•

If you want to upgrade all packages - without any check, you can call use packageStatus as in:

pkgs <- packageStatus()  # choose mirror 
upgrade(pkgs)

Finally, there exists a very convenient package to perform all operations, namely installr, even 

coming with a dedicated gui. If you want to use gui, you must use Rgui and not load the package 

in RStudio. Using the package with code is as simple as:

install.packages("installr") # install 
setInternet2(TRUE) # only for R versions older than 3.3.0 
installr::updateR() # updating R.

I refer to the great documentation https://www.r-statistics.com/tag/installr/ and specifically the step 

by step process with screenshots on Windows:https://www.r-statistics.com/2015/06/a-step-by-

step-screenshots-tutorial-for-upgrading-r-on-windows/

Note that still I advocate using a single directory, ie. removing reference to the R version in 

installation folder name.

Read Updating R and the package library online: https://riptutorial.com/r/topic/4088/updating-r-

and-the-package-library

https://riptutorial.com/ 550

https://www.r-statistics.com/tag/installr/
https://www.r-statistics.com/2015/06/a-step-by-step-screenshots-tutorial-for-upgrading-r-on-windows/
https://www.r-statistics.com/2015/06/a-step-by-step-screenshots-tutorial-for-upgrading-r-on-windows/
https://riptutorial.com/r/topic/4088/updating-r-and-the-package-library
https://riptutorial.com/r/topic/4088/updating-r-and-the-package-library


Chapter 124: Updating R version

Introduction

Installing or Updating your Software will give access to new features and bug fixes. Updating your 

R installation can be done in a couple of ways. One Simple way is go to R website and download 

the latest version for your system.

Examples

Installing from R Website

To get the latest release go to https://cran.r-project.org/ and download the file for your operating 

system. Open the downloaded file and follow the on-screen installation steps. All the settings can 

be left on default unless you want to change a certain behaviour.

Updating from within R using installr Package

You can also update R from within R by using a handy package called installr.

Open R Console (NOT RStudio, this doesn't work from RStudio) and run the following code to 

install the package and initiate update.

install.packages("installr") 
library("installr") 
updateR()
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Deciding on the old packages

Once the installation is finished click the Finish button.

Now it asks if you want to copy your packages fro the older version of R to Newer version of R. 

Once you choose yes all the package are copied to the newer version of R.
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After that you can choose if you still want to keep the old packages or delete.
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You can even move your Rprofile.site from older version to keep all your customised settings.

https://riptutorial.com/ 554

https://i.stack.imgur.com/zK6L9.png


Updating Packages

You can update your installed packages once the updating of R is done.
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Once its done Restart R and enjoy exploring.

Check R Version

You can check R Version using the console

version

Read Updating R version online: https://riptutorial.com/r/topic/10729/updating-r-version
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Chapter 125: Using pipe assignment in your 

own package %<>%: How to ?

Introduction

In order to use the pipe in a user-created package, it must be listed in the NAMESPACE like any 

other function you choose to import.

Examples

Putting the pipe in a utility-functions file

One option for doing this is to export the pipe from within the package itself. This may be done in 

the 'traditional' zzz.R or utils.R files that many packages utilise for useful little functions that are 

not exported as part of the package. For example, putting:

#' Pipe operator 
#' 
#' @name %>% 
#' @rdname pipe 
#' @keywords internal 
#' @export 
#' @importFrom magrittr %>% 
#' @usage lhs \%>\% rhs 
NULL

Read Using pipe assignment in your own package %<>%: How to ? online: 

https://riptutorial.com/r/topic/10547/using-pipe-assignment-in-your-own-package-------how-to--
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Chapter 126: Using texreg to export models 

in a paper-ready way

Introduction

The texreg package helps to export a model (or several models) in a neat paper-ready way. The 

result may be exported as HTML or .doc (MS Office Word).

Remarks

Links

CRAN page•

Examples

Printing linear regression results

# models 
fit1 <- lm(mpg ~ wt, data = mtcars) 
fit2 <- lm(mpg ~ wt+hp, data = mtcars) 
fit3 <- lm(mpg ~ wt+hp+cyl, data = mtcars) 
 
# export to html 
texreg::htmlreg(list(fit1,fit2,fit3),file='models.html') 
 
 
# export to doc 
texreg::htmlreg(list(fit1,fit2,fit3),file='models.doc')

The result looks like a table in a paper.
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There are several additional handy parameters in texreg::htmlreg() function. Here is a use case 

for the most helpful parameters.

# export to html 
texreg::htmlreg(list(fit1,fit2,fit3),file='models.html', 
                single.row = T, 
                custom.model.names = LETTERS[1:3], 
                leading.zero = F, 
                digits = 3)

Which result in a table like this

Read Using texreg to export models in a paper-ready way online: 

https://riptutorial.com/r/topic/9037/using-texreg-to-export-models-in-a-paper-ready-way
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Chapter 127: Variables

Examples

Variables, data structures and basic Operations

In R, data objects are manipulated using named data structures. The names of the objects might 

be called "variables" although that term does not have a specific meaning in the official R 

documentation. R names are case sensitive and may contain alphanumeric characters(a-z,A-z,0-9

), the dot/period(.) and underscore(_). To create names for the data structures, we have to follow 

the following rules:

Names that start with a digit or an underscore (e.g. 1a), or names that are valid numerical 

expressions (e.g. .11), or names with dashes ('-') or spaces can only be used when they are 

quoted: `1a` and `.11`. The names will be printed with backticks:

 list( '.11' ="a") 
 #$`.11` 
 #[1] "a"

•

All other combinations of alphanumeric characters, dots and underscores can be used freely, 

where reference with or without backticks points to the same object.

•

Names that begin with . are considered system names and are not always visible using the 

ls()-function.

•

There is no restriction on the number of characters in a variable name.

Some examples of valid object names are: foobar, foo.bar, foo_bar, .foobar

In R, variables are assigned values using the infix-assignment operator <-. The operator = can 

also be used for assigning values to variables, however its proper use is for associating values 

with parameter names in function calls. Note that omitting spaces around operators may create 

confusion for users. The expression a<-1 is parsed as assignment (a <- 1) rather than as a logical 

comparison (a < -1).

> foo <- 42 
> fooEquals = 43

So foo is assigned the value of 42. Typing foo within the console will output 42, while typing 

fooEquals will output 43.

> foo 
[1] 42 
> fooEquals 
[1] 43
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The following command assigns a value to the variable named x and prints the value 

simultaneously:

> (x <- 5) 
[1] 5 
# actually two function calls: first one to `<-`; second one to the `()`-function 
> is.function(`(`) 
[1] TRUE  # Often used in R help page examples for its side-effect of printing.

It is also possible to make assignments to variables using ->.

> 5 -> x 
> x 
[1] 5 
> 

Types of data structures

There are no scalar data types in R. Vectors of length-one act like scalars.

Vectors: Atomic vectors must be sequence of same-class objects.: a sequence of numbers, 

or a sequence of logicals or a sequence of characters. v <- c(2, 3, 7, 10), v2 <- c("a", "b", 

"c") are both vectors.

•

Matrices: A matrix of numbers, logical or characters. a <- matrix(data = c(1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11, 12), nrow = 4, ncol = 3, byrow = F). Like vectors, matrix must be made of 

same-class elements. To extract elements from a matrix rows and columns must be 

specified: a[1,2] returns [1] 5 that is the element on the first row, second column.

•

Lists: concatenation of different elements mylist <- list (course = 'stat', date = 
'04/07/2009', num_isc = 7, num_cons = 6, num_mat = as.character(c(45020, 45679, 46789, 
43126, 42345, 47568, 45674)), results = c(30, 19, 29, NA, 25, 26 ,27) ). Extracting 

elements from a list can be done by name (if the list is named) or by index. In the given 

example mylist$results and mylist[[6]] obtains the same element. Warning: if you try 

mylist[6], R wont give you an error, but it extract the result as a list. While mylist[[6]][2] is 

permitted (it gives you 19), mylist[6][2] gives you an error.

•

data.frame: object with columns that are vectors of equal length, but (possibly) different 

types. They are not matrices. exam <- data.frame(matr = as.character(c(45020, 45679, 46789, 
43126, 42345, 47568, 45674)), res_S = c(30, 19, 29, NA, 25, 26, 27), res_O = c(3, 3, 1, NA, 
3, 2, NA), res_TOT = c(30,22,30,NA,28,28,27)). Columns can be read by name exam$matr, 

exam[, 'matr'] or by index exam[1], exam[,1]. Rows can also be read by name exam['rowname', 

] or index exam[1,]. Dataframes are actually just lists with a particular structure (rownames-

attribute and equal length components)

•

Common operations and some cautionary advice

Default operations are done element by element. See ?Syntax for the rules of operator precedence. 

Most operators (and may other functions in base R) have recycling rules that allow arguments of 

unequal length. Given these objects:
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Example objects

> a <- 1 
> b <- 2 
> c <- c(2,3,4) 
> d <- c(10,10,10) 
> e <- c(1,2,3,4) 
> f <- 1:6 
> W <- cbind(1:4,5:8,9:12) 
> Z <- rbind(rep(0,3),1:3,rep(10,3),c(4,7,1))

Some vector operations

> a+b # scalar + scalar 
[1] 3 
> c+d # vector + vector 
[1] 12 13 14 
> a*b # scalar * scalar 
[1] 2 
> c*d # vector * vector (componentwise!) 
[1] 20 30 40 
> c+a # vector + scalar 
[1] 3 4 5 
> c^2 # 
[1]  4  9 16 
> exp(c) 
[1]  7.389056 20.085537 54.598150

Some vector operation Warnings!

> c+e # warning but.. no errors, since recycling is assumed to be desired. 
[1] 3 5 7 6 
Warning message: 
In c + e : longer object length is not a multiple of shorter object length

R sums what it can and then reuses the shorter vector to fill in the blanks... The warning was given 

only because the two vectors have lengths that are not exactly multiples. c+f # no warning 

whatsoever.

Some Matrix operations Warning!

> Z+W # matrix + matrix #(componentwise) 
> Z*W # matrix* matrix#(Standard product is always componentwise)

To use a matrix multiply: V %*% W
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> W + a # matrix+ scalar is still componentwise 
     [,1] [,2] [,3] 
[1,]    2    6   10 
[2,]    3    7   11 
[3,]    4    8   12 
[4,]    5    9   13 
 
> W + c # matrix + vector... : no warnings and R does the operation in a column-wise manner 
     [,1] [,2] [,3] 
[1,]    3    8   13 
[2,]    5   10   12 
[3,]    7    9   14 
[4,]    6   11   16

"Private" variables

A leading dot in a name of a variable or function in R is commonly used to denote that the variable 

or function is meant to be hidden.

So, declaring the following variables

> foo <- 'foo' 
> .foo <- 'bar'

And then using the ls function to list objects will only show the first object.

> ls() 
[1] "foo"

However, passing all.names = TRUE to the function will show the 'private' variable

> ls(all.names = TRUE) 
[1] ".foo"          "foo" 

Read Variables online: https://riptutorial.com/r/topic/9013/variables
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Chapter 128: Web Crawling in R

Examples

Standard scraping approach using the RCurl package

We try to extract imdb top chart movies and ratings

R> library(RCurl) 
R> library(XML) 
R> url <- "http://www.imdb.com/chart/top" 
R> top <- getURL(url) 
R> parsed_top <- htmlParse(top, encoding = "UTF-8") 
R> top_table <- readHTMLTable(parsed_top)[[1]] 
R> head(top_table[1:10, 1:3]) 
 
 
Rank & Title IMDb Rating 
1 1. The Shawshank Redemption (1994) 9.2 
2 2. The Godfather (1972) 9.2 
3 3. The Godfather: Part II (1974) 9.0 
4 4. The Dark Knight (2008) 8.9 
5 5. Pulp Fiction (1994) 8.9 
6 6. The Good, the Bad and the Ugly (1966) 8.9 
7 7. Schindler’s List (1993) 8.9 
8 8. 12 Angry Men (1957) 8.9 
9 9. The Lord of the Rings: The Return of the King (2003) 8.9 
10 10. Fight Club (1999) 8.8

Read Web Crawling in R online: https://riptutorial.com/r/topic/4336/web-crawling-in-r
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Chapter 129: Web scraping and parsing

Remarks

Scraping refers to using a computer to retrieve the code of a webpage. Once the code is obtained, 

it must be parsed into a useful form for further use in R.

Base R does not have many of the tools required for these processes, so scraping and parsing are 

typically done with packages. Some packages are most useful for scraping (RSelenium, httr, curl, 

RCurl), some for parsing (XML, xml2), and some for both (rvest).

A related process is scraping a web API, which unlike a webpage returns data intended to be 

machine-readable. Many of the same packages are used for both.

Legality

Some websites object to being scraped, whether due to increased server loads or concerns about 

data ownership. If a website forbids scraping in it Terms of Use, scraping it is illegal.

Examples

Basic scraping with rvest

rvest is a package for web scraping and parsing by Hadley Wickham inspired by Python's 

Beautiful Soup. It leverages Hadley's xml2 package's libxml2 bindings for HTML parsing.

As part of the tidyverse, rvest is piped. It uses

xml2::read_html to scrape the HTML of a webpage,•

which can then be subset with its html_node and html_nodes functions using CSS or XPath 

selectors, and

•

parsed to R objects with functions like html_text and html_table.•

To scrape the table of milestones from the Wikipedia page on R, the code would look like

library(rvest) 
 
url <- 'https://en.wikipedia.org/wiki/R_(programming_language)' 
 
        # scrape HTML from website 
url %>% read_html() %>% 
    # select HTML tag with class="wikitable" 
    html_node(css = '.wikitable') %>% 
    # parse table into data.frame 
    html_table() %>% 
    # trim for printing 
    dplyr::mutate(Description = substr(Description, 1, 70)) 
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##    Release       Date                                                  Description 
## 1     0.16            This is the last alpha version developed primarily by Ihaka 
## 2     0.49 1997-04-23 This is the oldest source release which is currently availab 
## 3     0.60 1997-12-05 R becomes an official part of the GNU Project. The code is h 
## 4   0.65.1 1999-10-07 First versions of update.packages and install.packages funct 
## 5      1.0 2000-02-29 Considered by its developers stable enough for production us 
## 6      1.4 2001-12-19 S4 methods are introduced and the first version for Mac OS X 
## 7      2.0 2004-10-04 Introduced lazy loading, which enables fast loading of data 
## 8      2.1 2005-04-18 Support for UTF-8 encoding, and the beginnings of internatio 
## 9     2.11 2010-04-22                          Support for Windows 64 bit systems. 
## 10    2.13 2011-04-14 Adding a new compiler function that allows speeding up funct 
## 11    2.14 2011-10-31 Added mandatory namespaces for packages. Added a new paralle 
## 12    2.15 2012-03-30 New load balancing functions. Improved serialization speed f 
## 13     3.0 2013-04-03 Support for numeric index values 231 and larger on 64 bit sy

While this returns a data.frame, note that as is typical for scraped data, there is still further data 

cleaning to be done: here, formatting dates, inserting NAs, and so on.

Note that data in a less consistently rectangular format may take looping or other further munging 

to successfully parse. If the website makes use of jQuery or other means to insert content, 

read_html may be insufficient to scrape, and a more robust scraper like RSelenium may be 

necessary.

Using rvest when login is required

I common problem encounter when scrapping a web is how to enter a userid and password to log 

into a web site.

In this example which I created to track my answers posted here to stack overflow. The overall 

flow is to login, go to a web page collect information, add it a dataframe and then move to the next 

page.

library(rvest) 
 
#Address of the login webpage 
login<-
"https://stackoverflow.com/users/login?ssrc=head&returnurl=http%3a%2f%2fstackoverflow.com%2f" 
 
#create a web session with the desired login address 
pgsession<-html_session(login) 
pgform<-html_form(pgsession)[[2]]  #in this case the submit is the 2nd form 
filled_form<-set_values(pgform, email="*****", password="*****") 
submit_form(pgsession, filled_form) 
 
#pre allocate the final results dataframe. 
results<-data.frame() 
 
#loop through all of the pages with the desired info 
for (i in 1:5) 
{ 
  #base address of the pages to extract information from 
  url<-"http://stackoverflow.com/users/**********?tab=answers&sort=activity&page=" 
  url<-paste0(url, i) 
  page<-jump_to(pgsession, url) 
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  #collect info on the question votes and question title 
  summary<-html_nodes(page, "div .answer-summary") 
  question<-matrix(html_text(html_nodes(summary, "div"), trim=TRUE), ncol=2, byrow = TRUE) 
 
  #find date answered, hyperlink and whether it was accepted 
  dateans<-html_node(summary, "span") %>% html_attr("title") 
  hyperlink<-html_node(summary, "div a") %>% html_attr("href") 
  accepted<-html_node(summary, "div") %>% html_attr("class") 
 
  #create temp results then bind to final results 
  rtemp<-cbind(question, dateans, accepted, hyperlink) 
  results<-rbind(results, rtemp) 
} 
 
#Dataframe Clean-up 
names(results)<-c("Votes", "Answer", "Date", "Accepted", "HyperLink") 
results$Votes<-as.integer(as.character(results$Votes)) 
results$Accepted<-ifelse(results$Accepted=="answer-votes default", 0, 1)

The loop in this case is limited to only 5 pages, this needs to change to fit your application. I 

replaced the user specific values with ******, hopefully this will provide some guidance for you 

problem.

Read Web scraping and parsing online: https://riptutorial.com/r/topic/2890/web-scraping-and-

parsing
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Chapter 130: Writing functions in R

Examples

Named functions

R is full of functions, it is after all a functional programming language, but sometimes the precise 

function you need isn't provided in the Base resources. You could conceivably install a package 

containing the function, but maybe your requirements are just so specific that no pre-made 

function fits the bill? Then you're left with the option of making your own.

A function can be very simple, to the point of being being pretty much pointless. It doesn't even 

need to take an argument:

one <- function() { 1 } 
one() 
[1] 1 
 
two <- function() { 1 + 1 } 
two() 
[1] 2

What's between the curly braces { } is the function proper. As long as you can fit everything on a 

single line they aren't strictly needed, but can be useful to keep things organized.

A function can be very simple, yet highly specific. This function takes as input a vector (vec in this 

example) and outputs the same vector with the vector's length (6 in this case) subtracted from 

each of the vector's elements.

vec <- 4:9 
subtract.length <- function(x) { x - length(x) } 
subtract.length(vec) 
[1] -2 -1  0  1  2  3

Notice that length() is in itself a pre-supplied (i.e. Base) function. You can of course use a 

previously self-made function within another self-made function, as well as assign variables and 

perform other operations while spanning several lines:

vec2 <- (4:7)/2 
 
msdf <- function(x, multiplier=4) { 
    mult <- x * multiplier 
    subl <- subtract.length(x) 
    data.frame(mult, subl) 
} 
 
msdf(vec2, 5) 
  mult subl 
1 10.0 -2.0 
2 12.5 -1.5 
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3 15.0 -1.0 
4 17.5 -0.5

multiplier=4 makes sure that 4 is the default value of the argument multiplier, if no value is given 

when calling the function 4 is what will be used.

The above are all examples of named functions, so called simply because they have been given 

names (one, two, subtract.length etc.)

Anonymous functions

An anonymous function is, as the name implies, not assigned a name. This can be useful when 

the function is a part of a larger operation, but in itself does not take much place. One frequent 

use-case for anonymous functions is within the *apply family of Base functions.

Calculate the root mean square for each column in a data.frame:

df <- data.frame(first=5:9, second=(0:4)^2, third=-1:3) 
 
apply(df, 2, function(x) { sqrt(sum(x^2)) }) 
    first    second     third 
15.968719 18.814888  3.872983 

Create a sequence of step-length one from the smallest to the largest value for each row in a 

matrix.

x <- sample(1:6, 12, replace=TRUE) 
mat <- matrix(x, nrow=3) 
 
apply(mat, 1, function(x) { seq(min(x), max(x)) })

An anonymous function can also stand on its own:

(function() { 1 })() 
[1] 1

is equivalent to

f <- function() { 1 }) 
f() 
[1] 1

RStudio code snippets

This is just a small hack for those who use self-defined functions often. 

Type "fun" RStudio IDE and hit TAB.

https://riptutorial.com/ 569



The result will be a skeleton of a new function.

name <- function(variables) { 
 
}

One can easily define their own snippet template, i.e. like the one below

name <- function(df, x, y) { 
        require(tidyverse) 
        out <- 
        return(out) 
}

The option is Edit Snippets in the Global Options -> Code menu.

Passing column names as argument of a function

Sometimes one would like to pass names of columns from a data frame to a function. They may 

be provided as strings and used in a function using [[. Let's take a look at the following example, 

which prints to R console basic stats of selected variables:

basic.stats <- function(dset, vars){ 
    for(i in 1:length(vars)){ 
        print(vars[i]) 
        print(summary(dset[[vars[i]]])) 
    } 
} 
 
basic.stats(iris, c("Sepal.Length", "Petal.Width"))

As a result of running above given code, names of selected variables and their basic summary 

statistics (minima, first quantiles, medians, means, third quantiles and maxima) are printed in R 

console. The code dset[[vars[i]]] selects i-th element from the argument vars and selects a 

corresponding column in declared input data set dset. For example, declaring 
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iris[["Sepal.Length"]] alone would print the Sepal.Length column from the iris data set as a 

vector.

Read Writing functions in R online: https://riptutorial.com/r/topic/7937/writing-functions-in-r
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Chapter 131: xgboost

Examples

Cross Validation and Tuning with xgboost

library(caret) # for dummyVars 
library(RCurl) # download https data 
library(Metrics) # calculate errors 
library(xgboost) # model 
 
############################################################################### 
# Load data from UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets.html) 
urlfile <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data' 
x <- getURL(urlfile, ssl.verifypeer = FALSE) 
adults <- read.csv(textConnection(x), header=F) 
 
# adults <-read.csv('https://archive.ics.uci.edu/ml/machine-learning-
databases/adult/adult.data', header=F) 
names(adults)=c('age','workclass','fnlwgt','education','educationNum', 
                'maritalStatus','occupation','relationship','race', 
                'sex','capitalGain','capitalLoss','hoursWeek', 
                'nativeCountry','income') 
# clean up data 
adults$income <- ifelse(adults$income==' <=50K',0,1) 
# binarize all factors 
library(caret) 
dmy <- dummyVars(" ~ .", data = adults) 
adultsTrsf <- data.frame(predict(dmy, newdata = adults)) 
############################################################################### 
 
# what we're trying to predict adults that make more than 50k 
outcomeName <- c('income') 
# list of features 
predictors <- names(adultsTrsf)[!names(adultsTrsf) %in% outcomeName] 
 
# play around with settings of xgboost - eXtreme Gradient Boosting (Tree) library 
# https://github.com/tqchen/xgboost/wiki/Parameters 
# max.depth - maximum depth of the tree 
# nrounds - the max number of iterations 
 
# take first 10% of the data only! 
trainPortion <- floor(nrow(adultsTrsf)*0.1) 
 
trainSet <- adultsTrsf[ 1:floor(trainPortion/2),] 
testSet <- adultsTrsf[(floor(trainPortion/2)+1):trainPortion,] 
 
smallestError <- 100 
for (depth in seq(1,10,1)) { 
        for (rounds in seq(1,20,1)) { 
 
                # train 
                bst <- xgboost(data = as.matrix(trainSet[,predictors]), 
                               label = trainSet[,outcomeName], 
                               max.depth=depth, nround=rounds, 
                               objective = "reg:linear", verbose=0) 
                gc() 
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                # predict 
                predictions <- predict(bst, as.matrix(testSet[,predictors]), 
outputmargin=TRUE) 
                err <- rmse(as.numeric(testSet[,outcomeName]), as.numeric(predictions)) 
 
                if (err < smallestError) { 
                        smallestError = err 
                        print(paste(depth,rounds,err)) 
                } 
        } 
} 
 
cv <- 30 
trainSet <- adultsTrsf[1:trainPortion,] 
cvDivider <- floor(nrow(trainSet) / (cv+1)) 
 
smallestError <- 100 
for (depth in seq(1,10,1)) { 
        for (rounds in seq(1,20,1)) { 
                totalError <- c() 
                indexCount <- 1 
                for (cv in seq(1:cv)) { 
                        # assign chunk to data test 
                        dataTestIndex <- c((cv * cvDivider):(cv * cvDivider + cvDivider)) 
                        dataTest <- trainSet[dataTestIndex,] 
                        # everything else to train 
                        dataTrain <- trainSet[-dataTestIndex,] 
 
                        bst <- xgboost(data = as.matrix(dataTrain[,predictors]), 
                                       label = dataTrain[,outcomeName], 
                                       max.depth=depth, nround=rounds, 
                                       objective = "reg:linear", verbose=0) 
                        gc() 
                        predictions <- predict(bst, as.matrix(dataTest[,predictors]), 
outputmargin=TRUE) 
 
                        err <- rmse(as.numeric(dataTest[,outcomeName]), 
as.numeric(predictions)) 
                        totalError <- c(totalError, err) 
                } 
                if (mean(totalError) < smallestError) { 
                        smallestError = mean(totalError) 
                        print(paste(depth,rounds,smallestError)) 
                } 
        } 
} 
 
########################################################################### 
# Test both models out on full data set 
 
trainSet <- adultsTrsf[ 1:trainPortion,] 
 
# assign everything else to test 
testSet <- adultsTrsf[(trainPortion+1):nrow(adultsTrsf),] 
 
bst <- xgboost(data = as.matrix(trainSet[,predictors]), 
               label = trainSet[,outcomeName], 
               max.depth=4, nround=19, objective = "reg:linear", verbose=0) 
pred <- predict(bst, as.matrix(testSet[,predictors]), outputmargin=TRUE) 
rmse(as.numeric(testSet[,outcomeName]), as.numeric(pred)) 
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bst <- xgboost(data = as.matrix(trainSet[,predictors]), 
               label = trainSet[,outcomeName], 
               max.depth=3, nround=20, objective = "reg:linear", verbose=0) 
pred <- predict(bst, as.matrix(testSet[,predictors]), outputmargin=TRUE) 
rmse(as.numeric(testSet[,outcomeName]), as.numeric(pred))

Read xgboost online: https://riptutorial.com/r/topic/3239/xgboost
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theArun

33
Expression: parse + 

eval
YCR

34

Extracting and 

Listing Files in 

Compressed 

Archives

catastrophic-failure, Jeff

35 Factors

42-, Benjamin, dash2, Frank, Gavin Simpson, JulioSergio, 

kneijenhuijs, Nathan Werth, omar, Rich Scriven, Robert, 

Steve_Corrin

36

Fault-

tolerant/resilient 

code

Rappster

37

Feature Selection in 

R -- Removing 

Extraneous Features

Joy

38 Formula 42-, Axeman, Qaswed, Sathish

39
Fourier Series and 

Transformations
Hack-R

40
Functional 

programming
Karolis Koncevičius

41
Generalized linear 

models
Ben Bolker, YCR

42 Get user input Ashish, DeveauP

43 ggplot2

akraf, Alex, alistaire, Andrea Cirillo, Artem Klevtsov, Axeman, 

baptiste, blmoore, Boern, gitblame, ikashnitsky, Jaap, jmax, loki

, Matt, Mine Cetinkaya-Rundel, Paolo, smci, Steve_Corrin, 

Sumedh, Taylor Ostberg, theArun, void, YCR, Yun Ching

44
GPU-accelerated 

computing
cdeterman

45 Hashmaps nrussell, russellpierce

46
heatmap and 

heatmap.2
AndreyAkinshin, Nanami
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47
Hierarchical 

clustering with hclust
Frank, G5W, Tal Galili

48
Hierarchical Linear 

Modeling
Ben Bolker

49
I/O for database 

tables
Frank, JHowIX, SommerEngineering

50

I/O for foreign tables 

(Excel, SAS, SPSS, 

Stata)

42-, Alex, alistaire, Andrea Cirillo, Carlos Cinelli, Charmgoggles

, Crops, Frank, Jaap, Jeromy Anglim, kaksat, Ken S., 

kitman0804, lmo, Miha, Parfait, polka, Thomas

51

I/O for geographic 

data (shapefiles, 

etc.)

Alex, Frank, ikashnitsky

52 I/O for raster images Frank, loki

53
I/O for R's binary 

format
Frank, ikashnitsky, Mario, russellpierce, zacdav, zx8754

54

Implement State 

Machine Pattern 

using S4 Class

David Leal

55 Input and output Frank

56 Inspecting packages Frank, Sowmya S. Manian

57 Installing packages

Aaghaz Hussain, akraf, alko989, Andrew Brēza, Artem Klevtsov

, Arun Balakrishnan, Christophe D., CL., Frank, gitblame, Hack-

R, hongsy, Jaap, kaksat, kneijenhuijs, lmckeogh, loki, Marc 

Brinkmann, Miha, Peter Humburg, Pragyaditya Das, Raj 

Padmanabhan, seasmith, SymbolixAU, theArun, user890739, 

xamgore, zx8754

58
Introduction to 

Geographical Maps

4444, AkselA, alistaire, beetroot, Carson, Frank, Hack-R, 

HypnoGenX, Robert, russellpierce, SymbolixAU, symbolrush

59 Introspection Jason

60 JSON SymbolixAU

61
Linear Models 

(Regression)

Amstell, Ben Bolker, Carl, Carlos Cinelli, David Robinson, 

fortune_p, Frank, highBandWidth, ikashnitsky, jaySf, Robert, 

russellpierce, thelatemail, USER_1, WAF

62 Lists
Andrea Ianni , BarkleyBG, dayne, Frank, Hack-R, Hairizuan 

Noorazman, Peter Humburg, RamenChef
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63 lubridate alistaire, Angelo, Frank, gitblame, Hendrik, scoa

64 Machine learning loki

65 Matrices dayne, Frank

66

Meta: 

Documentation 

Guidelines

Frank, Gregor, Stephen Leppik, Steve_Corrin

67 Missing values

Amit Kohli, Artem Klevtsov, Axeman, Eric Lecoutre, Frank, 

Gregor, Jaap, kitman0804, lmo, seasmith, Steve_Corrin, 

theArun, user2100721

68
Modifying strings by 

substitution
Alex, David Leal, Frank

69
Natural language 

processing
CptNemo

70

Network analysis 

with the igraph 

package

Boysenb3rry

71

Non-standard 

evaluation and 

standard evaluation

PAC

72
Numeric classes and 

storage modes
Frank, Steve_Corrin

73
Object-Oriented 

Programming in R
Jon Ericson, rcorty

74 Parallel processing Artem Klevtsov, jameselmore, K.Daisey, lmo, loki, russellpierce

75
Pattern Matching 

and Replacement

Abdou, Alex, Artem Klevtsov, David Arenburg, David Leal, 

Frank, Gavin Simpson, Jaap, NWaters, R. Schifini, 

SommerEngineering, Steve_Corrin, Tensibai, thelatemail, 

user2100721

76
Performing a 

Permutation Test
Stephen Leppik, tenCupMaximum

42-, Alexandru Papiu, Alihan Zıhna, alistaire, AndreyAkinshin, 

Artem Klevtsov, Atish, Axeman, Benjamin, Carlos Cinelli, 

CMichael, DrPositron, Franck Dernoncourt, Frank, Gal Dreiman

, Gavin Simpson, Gregor, ikashnitsky, James McCalden, Kay 

Brodersen, Matt, polka, RamenChef, Ryan Hilbert, Sam Firke, 

seasmith, Shawn Mehan, Simplans, Spacedman, SymbolixAU, 

77
Pipe operators 

(%>% and others)
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thelatemail, tomw, TriskalJM, user2100721

78
Pivot and unpivot 

with data.table
Sun Bee

79
Probability 

Distributions with R
Pankaj Sharma

80 Publishing Frank

81
R code vectorization 

best practices
Axeman, David Arenburg, snaut

82 R in LaTeX with knitr JHowIX

83

R Markdown 

Notebooks (from 

RStudio)

dmail

84
R memento by 

examples
Lovy

85
Random Forest 

Algorithm
G5W

86
Random Numbers 

Generator

bartektartanus, FisherDisinformation, Karolis Koncevičius, Miha

, mnoronha

87 Randomization TARehman

88
Raster and Image 

Analysis
Frank, loki

89 Rcpp Artem Klevtsov, coatless, Dirk Eddelbuettel

90
Reading and writing 

strings

42-, 4444, abhiieor, cdrini, dotancohen, Frank, Gregor, kdopen, 

Rich Scriven, Thomas, Uwe

91

Reading and writing 

tabular data in plain-

text files (CSV, TSV, 

etc.)

a.powell, Aaghaz Hussain, abhiieor, Alex, alistaire, Andrea 

Cirillo, bartektartanus, Carl Witthoft, Carlos Cinelli, catastrophic-

failure, cdrini, Charmgoggles, Crops, DaveRGP, David 

Arenburg, Dawny33, Derwin McGeary, EDi, Eric Lecoutre, 

FoldedChromatin, Frank, Gavin Simpson, gitblame, Hairizuan 

Noorazman, herbaman, ikashnitsky, Jaap, Jeromy Anglim, 

JHowIX, joeyreid, Jordan Kassof, K.Daisey, kitman0804, 

kneijenhuijs, lmo, loki, Miha, PAC, polka, russellpierce, Sam 

Firke, stats-hb, Thomas, Uwe, zacdav, zelite, zx8754

92 Recycling Frank, USER_1

https://riptutorial.com/ 580

https://riptutorial.com/contributor/496803/thelatemail
https://riptutorial.com/contributor/770431/tomw
https://riptutorial.com/contributor/4433546/triskaljm
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/2998993/sun-bee
https://riptutorial.com/contributor/5487987/pankaj-sharma
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4341440/axeman
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/1999873/snaut
https://riptutorial.com/contributor/993882/jhowix
https://riptutorial.com/contributor/8160248/dmail
https://riptutorial.com/contributor/3250340/lovy
https://riptutorial.com/contributor/4752675/g5w
https://riptutorial.com/contributor/2125442/bartektartanus
https://riptutorial.com/contributor/3272279/fisherdisinformation
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/4623381/miha
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1332389/tarehman
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3250126/loki
https://riptutorial.com/contributor/1863950/artem-klevtsov
https://riptutorial.com/contributor/1345455/coatless
https://riptutorial.com/contributor/143305/dirk-eddelbuettel
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1582413/abhiieor
https://riptutorial.com/contributor/2317712/cdrini
https://riptutorial.com/contributor/343302/dotancohen
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/943010/kdopen
https://riptutorial.com/contributor/3063910/rich-scriven
https://riptutorial.com/contributor/2338862/thomas
https://riptutorial.com/contributor/3817004/uwe
https://riptutorial.com/contributor/6419513/a-powell
https://riptutorial.com/contributor/4089949/aaghaz-hussain
https://riptutorial.com/contributor/1582413/abhiieor
https://riptutorial.com/contributor/5143048/alex
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/4186427/andrea-cirillo
https://riptutorial.com/contributor/4186427/andrea-cirillo
https://riptutorial.com/contributor/2125442/bartektartanus
https://riptutorial.com/contributor/884372/carl-witthoft
https://riptutorial.com/contributor/3216713/carlos-cinelli
https://riptutorial.com/contributor/2874779/catastrophic-failure
https://riptutorial.com/contributor/2874779/catastrophic-failure
https://riptutorial.com/contributor/2317712/cdrini
https://riptutorial.com/contributor/5573955/charmgoggles
https://riptutorial.com/contributor/3223138/crops
https://riptutorial.com/contributor/2902740/davergp
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/4993513/dawny33
https://riptutorial.com/contributor/5230146/derwin-mcgeary
https://riptutorial.com/contributor/511399/edi
https://riptutorial.com/contributor/5558861/eric-lecoutre
https://riptutorial.com/contributor/1390752/foldedchromatin
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/429846/gavin-simpson
https://riptutorial.com/contributor/3679857/gitblame
https://riptutorial.com/contributor/6621237/hairizuan-noorazman
https://riptutorial.com/contributor/6621237/hairizuan-noorazman
https://riptutorial.com/contributor/4101927/herbaman
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/2204410/jaap
https://riptutorial.com/contributor/180892/jeromy-anglim
https://riptutorial.com/contributor/993882/jhowix
https://riptutorial.com/contributor/4529074/joeyreid
https://riptutorial.com/contributor/5903623/jordan-kassof
https://riptutorial.com/contributor/5869104/k-daisey
https://riptutorial.com/contributor/3494669/kitman0804
https://riptutorial.com/contributor/3578190/kneijenhuijs
https://riptutorial.com/contributor/4895725/lmo
https://riptutorial.com/contributor/3250126/loki
https://riptutorial.com/contributor/4623381/miha
https://riptutorial.com/contributor/1967500/pac
https://riptutorial.com/contributor/4165272/polka
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/4470365/sam-firke
https://riptutorial.com/contributor/4470365/sam-firke
https://riptutorial.com/contributor/1392529/stats-hb
https://riptutorial.com/contributor/2338862/thomas
https://riptutorial.com/contributor/3817004/uwe
https://riptutorial.com/contributor/4604054/zacdav
https://riptutorial.com/contributor/1952996/zelite
https://riptutorial.com/contributor/680068/zx8754
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3851145/user-1


93
Regular Expression 

Syntax in R
Alexey Shiklomanov

94
Regular Expressions 

(regex)
42-, Benjamin, David Leal, etienne, Frank, MichaelChirico, PAC

95 Reproducible R Charmgoggles, Frank, ikashnitsky

96 Reshape using tidyr
Charmgoggles, Frank, Jeromy Anglim, SymbolixAU, 

user2100721

97

Reshaping data 

between long and 

wide forms

Charmgoggles, David Arenburg, demonplus, Frank, Jeromy 

Anglim, kneijenhuijs, lmo, Steve_Corrin, SymbolixAU, takje, 

user2100721, zx8754

98 RESTful R Services YCR

99
RMarkdown and 

knitr presentation
Martin Schmelzer, YCR

100 RODBC akrun, Hack-R, Parfait, Tim Coker

101 roxygen2 DeveauP, PAC

102 Run-length encoding Frank, josliber, Psidom

103 Scope of variables Artem Klevtsov, K.Daisey, RamenChef

104 Set operations DeveauP, FisherDisinformation, Frank

105 Shiny
alistaire, CClaire, Christophe D., JvH, russellpierce, 

SymbolixAU, tuomastik, zx8754

106 Solving ODEs in R J_F

107 Spark API (SparkR) Maximilian Kohl

108 spatial analysis beetroot, ikashnitsky, loki, maRtin

109
Speeding up tough-

to-vectorize code
egnha, josliber

110 Split function
Eric Lecoutre, etienne, josliber, Sathish, Tensibai, thelatemail, 

user2100721

111 sqldf Hack-R, Miha

112

Standardize 

analyses by writing 

standalone R scripts

akraf, herbaman

https://riptutorial.com/ 581

https://riptutorial.com/contributor/2477097/alexey-shiklomanov
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/1017276/benjamin
https://riptutorial.com/contributor/6237093/david-leal
https://riptutorial.com/contributor/5202253/etienne
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3576984/michaelchirico
https://riptutorial.com/contributor/1967500/pac
https://riptutorial.com/contributor/5573955/charmgoggles
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/5573955/charmgoggles
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/180892/jeromy-anglim
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/5573955/charmgoggles
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/180892/jeromy-anglim
https://riptutorial.com/contributor/180892/jeromy-anglim
https://riptutorial.com/contributor/3578190/kneijenhuijs
https://riptutorial.com/contributor/4895725/lmo
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/3768552/takje
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/680068/zx8754
https://riptutorial.com/contributor/4911229/ycr
https://riptutorial.com/contributor/1777111/martin-schmelzer
https://riptutorial.com/contributor/4911229/ycr
https://riptutorial.com/contributor/3732271/akrun
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/1422451/parfait
https://riptutorial.com/contributor/88066/tim-coker
https://riptutorial.com/contributor/5779570/deveaup
https://riptutorial.com/contributor/1967500/pac
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3093387/josliber
https://riptutorial.com/contributor/4983450/psidom
https://riptutorial.com/contributor/1863950/artem-klevtsov
https://riptutorial.com/contributor/5869104/k-daisey
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5779570/deveaup
https://riptutorial.com/contributor/3272279/fisherdisinformation
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/5545837/cclaire
https://riptutorial.com/contributor/5002186/christophe-d-
https://riptutorial.com/contributor/4401741/jvh
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/5524090/tuomastik
https://riptutorial.com/contributor/680068/zx8754
https://riptutorial.com/contributor/6045390/j-f
https://riptutorial.com/contributor/3889242/maximilian-kohl
https://riptutorial.com/contributor/3283824/beetroot
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/3250126/loki
https://riptutorial.com/contributor/3491151/martin
https://riptutorial.com/contributor/5768077/egnha
https://riptutorial.com/contributor/3093387/josliber
https://riptutorial.com/contributor/5558861/eric-lecoutre
https://riptutorial.com/contributor/5202253/etienne
https://riptutorial.com/contributor/3093387/josliber
https://riptutorial.com/contributor/1691723/sathish
https://riptutorial.com/contributor/3627607/tensibai
https://riptutorial.com/contributor/496803/thelatemail
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/4623381/miha
https://riptutorial.com/contributor/3082472/akraf
https://riptutorial.com/contributor/4101927/herbaman


113
String manipulation 

with stringi package
bartektartanus, FisherDisinformation

114 strsplit function lmo

115 Subsetting

42-, Agriculturist, alexis_laz, alistaire, dayne, Frank, Gavin 

Simpson, Gregor, L.V.Rao, Mario, mrip, RamenChef, smci, 

user2100721, zx8754

116 Survival analysis 42-, Axeman, Hack-R, Marcin Kosiński

117 Text mining Hack-R

118 The character class Frank, Steve_Corrin

119 The Date class
alistaire, coatless, Frank, L.V.Rao, MichaelChirico, 

Steve_Corrin

120 The logical class 42-, Frank, Gregor, L.V.Rao, Steve_Corrin

121 tidyverse
David Robinson, egnha, Frank, ikashnitsky, RamenChef, 

Sumedh

122
Time Series and 

Forecasting

Andras Deak, Andrew Bryk, coatless, Hack-R, JGreenwell, 

Pankaj Sharma, Steve_Corrin, μ Muthupandian

123
Updating R and the 

package library
Eric Lecoutre

124 Updating R version dmail

125

Using pipe 

assignment in your 

own package %<>%: 

How to ?

RobertMc

126

Using texreg to 

export models in a 

paper-ready way

Frank, ikashnitsky

127 Variables 42-, Ale, Axeman, Craig Vermeer, Frank, L.V.Rao, lmckeogh

128 Web Crawling in R Pankaj Sharma

129
Web scraping and 

parsing
alistaire, Dave2e

130
Writing functions in 

R
AkselA, ikashnitsky, kaksat

https://riptutorial.com/ 582

https://riptutorial.com/contributor/2125442/bartektartanus
https://riptutorial.com/contributor/3272279/fisherdisinformation
https://riptutorial.com/contributor/4895725/lmo
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/4052161/agriculturist
https://riptutorial.com/contributor/2414948/alexis-laz
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/1623354/dayne
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/429846/gavin-simpson
https://riptutorial.com/contributor/429846/gavin-simpson
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/3412012/mario
https://riptutorial.com/contributor/2588184/mrip
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/202229/smci
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/680068/zx8754
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/4341440/axeman
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/3857701/marcin-kosinski
https://riptutorial.com/contributor/3857701/marcin-kosinski
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/1345455/coatless
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/3576984/michaelchirico
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/712603/david-robinson
https://riptutorial.com/contributor/5768077/egnha
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5338586/sumedh
https://riptutorial.com/contributor/5067311/andras-deak
https://riptutorial.com/contributor/3911324/andrew-bryk
https://riptutorial.com/contributor/1345455/coatless
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/5487987/pankaj-sharma
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/3881239/--muthupandian
https://riptutorial.com/contributor/3881239/--muthupandian
https://riptutorial.com/contributor/5558861/eric-lecoutre
https://riptutorial.com/contributor/8160248/dmail
https://riptutorial.com/contributor/4296028/robertmc
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/5101926/ale
https://riptutorial.com/contributor/4341440/axeman
https://riptutorial.com/contributor/8802/craig-vermeer
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/6864606/lmckeogh
https://riptutorial.com/contributor/5487987/pankaj-sharma
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/5792244/dave2e
https://riptutorial.com/contributor/4272725/aksela
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/4931020/kaksat


131 xgboost Hack-R

https://riptutorial.com/ 583

https://riptutorial.com/contributor/3604745/hack-r

	About
	Chapter 1: Getting started with R Language
	Remarks

	Editing R Docs on Stack Overflow
	A few features of R that immigrants from other language may find unusual
	Examples
	Installing R

	Windows only:

	For Windows
	For OSX / macOS
	Alternative 1
	Alternative 2

	For Debian, Ubuntu and derivatives
	For Red Hat and Fedora
	For Archlinux
	Hello World!
	Getting Help
	Interactive mode and R scripts

	The interactive mode
	Using R as a calculator
	The first plot

	R scripts
	Chapter 2: *apply family of functions (functionals)
	Remarks

	Members of the *apply Family
	Examples
	Use anonymous functions with apply
	Bulk File Loading
	Combining multiple `data.frames` (`lapply`, `mapply`)
	Using built-in functionals


	Built-in functionals: lapply(), sapply(), and mapply()
	lapply()
	sapply()
	mapply()
	Using user-defined functionals
	User-defined functionals

	Chapter 3: .Rprofile
	Remarks
	Examples
	.Rprofile - the first chunk of code executed


	Setting your R home directory
	Setting page size options
	set the default help type
	set a site library
	Set a CRAN mirror
	Setting the location of your library
	Custom shortcuts or functions
	Pre-loading the most useful packages
	See Also
	.Rprofile example
	Startup
	Options
	Custom Functions

	Chapter 4: Aggregating data frames
	Introduction
	Examples
	Aggregating with base R
	Aggregating with dplyr
	Aggregating with data.table


	Chapter 5: Analyze tweets with R
	Introduction
	Examples
	Download Tweets


	R Libraries
	Get text of tweets

	Chapter 6: ANOVA
	Examples
	Basic usage of aov()
	Basic usage of Anova()


	Chapter 7: Arima Models
	Remarks
	Examples
	Modeling an AR1 Process with Arima


	Chapter 8: Arithmetic Operators
	Remarks
	Examples
	Range and addition
	Addition and subtraction


	Chapter 9: Bar Chart
	Introduction
	Examples
	barplot() function


	Chapter 10: Base Plotting
	Parameters
	Remarks
	Examples
	Basic Plot
	Matplot
	Histograms
	Combining Plots

	par()
	layout()
	Density plot
	Empirical Cumulative Distribution Function
	Getting Started with R_Plots


	Chapter 11: Bibliography in RMD
	Parameters
	Remarks
	Examples
	Specifying a bibliography and cite authors
	Inline references
	Citation styles


	Chapter 12: boxplot
	Syntax
	Parameters
	Examples
	Create a box-and-whisker plot with boxplot() {graphics}


	Simple boxplot (Sepal.Length)
	Boxplot of sepal length grouped by species
	Bring order
	Change groups names
	Small improvements
	Color
	Proximity of the box

	See the summaries which the boxplots are based plot=FALSE
	Additional boxplot style parameters.
	Box
	Median

	Whisker
	Staple
	Outliers
	Example
	Chapter 13: caret
	Introduction
	Examples
	Preprocessing


	Chapter 14: Classes
	Introduction
	Remarks
	Examples
	Vectors
	Inspect classes
	Vectors and lists


	Chapter 15: Cleaning data
	Introduction
	Examples
	Removing missing data from a vector
	Removing incomplete rows


	Chapter 16: Code profiling
	Examples
	System.time
	proc.time()
	Line Profiling
	Microbenchmark
	Benchmarking using microbenchmark


	Chapter 17: Coercion
	Introduction
	Examples
	Implicit Coercion


	Chapter 18: Color schemes for graphics
	Examples
	viridis - print and colorblind friendly palettes
	RColorBrewer
	A handy function to glimse a vector of colors
	colorspace - click&drag interface for colors
	basic R color functions
	Colorblind-friendly palettes


	Chapter 19: Column wise operation
	Examples
	sum of each column


	Chapter 20: Combinatorics
	Examples
	Enumerating combinations of a specified length


	Without replacement
	With replacement
	Counting combinations of a specified length

	Without replacement
	With replacement
	Chapter 21: Control flow structures
	Remarks

	Optimizing Structure of For Loops
	Vectorizing For Loops
	Examples
	Basic For Loop Construction
	Optimal Construction of a For Loop

	Poorly optimized for loop
	Well optimized for loop
	vapply Function
	colMeans Function
	Efficiency comparison
	The Other Looping Constructs: while and repeat

	The while loop
	The repeat loop
	More on break

	Chapter 22: Creating packages with devtools
	Introduction
	Remarks
	Examples
	Creating and distributing packages


	Creation of the documentation
	Construction of the package skeleton
	Edition of the package properties
	1. Package description
	2. Optional folders

	Finalization and build
	Distribution of your package
	Through Github
	Through CRAN
	Creating vignettes


	Requirements
	Vignette creation
	Chapter 23: Creating reports with RMarkdown
	Examples
	Printing tables
	Including LaTeX Preample Commands
	Including bibliographies
	Basic R-markdown document structure

	R-markdown code chunks
	R-markdown document example
	Converting R-markdown to other formats

	Chapter 24: Creating vectors
	Examples
	Sequence of numbers
	seq()
	Vectors
	Creating named vectors
	Expanding a vector with the rep() function
	Vectors from build in constants: Sequences of letters & month names


	Chapter 25: Data acquisition
	Introduction
	Examples
	Built-in datasets


	Example
	Datasets within packages

	Gapminder
	World Population Prospects 2015 - United Nations Population Department
	Packages to access open databases

	Eurostat
	Packages to access restricted data

	Human Mortality Database
	Chapter 26: Data frames
	Syntax
	Examples
	Create an empty data.frame
	Subsetting rows and columns from a data frame


	Syntax for accessing rows and columns: [, [[, and $
	Like a matrix: data[rows, columns]
	With numeric indexes
	With column (and row) names
	Rows and columns together
	A warning about dimensions:

	Like a list
	With single brackets data[columns]
	With double brackets data[[one_column]]

	Using $ to access columns
	Drawbacks of $ for accessing columns


	Advanced indexing: negative and logical indices
	Negative indices omit elements
	Logical vectors indicate specific elements to keep
	Convenience functions to manipulate data.frames

	subset
	transform
	with and within
	Introduction
	Convert data stored in a list to a single data frame using do.call
	Convert all columns of a data.frame to character class
	Subsetting Rows by Column Values


	Chapter 27: data.table
	Introduction
	Syntax
	Remarks

	Installation and support
	Loading the package
	Examples
	Creating a data.table


	Build
	Read in
	Modify a data.frame
	Coerce object to data.table
	Adding and modifying columns

	Editing entire columns
	Editing subsets of columns
	Editing column attributes
	Special symbols in data.table

	.SD
	.SDcols
	.N
	Writing code compatible with both data.frame and data.table

	Differences in subsetting syntax
	Strategies for maintaining compatibility with data.frame and data.table
	Setting keys in data.table

	Chapter 28: Date and Time
	Introduction
	Remarks

	Classes
	Selecting a date-time format
	Specialized packages
	Examples
	Current Date and Time
	Go to the End of the Month
	Go to First Day of the Month
	Move a date a number of months consistently by months


	Chapter 29: Date-time classes (POSIXct and POSIXlt)
	Introduction
	Remarks

	Pitfalls
	Related topics
	Specialized packages
	Examples
	Formatting and printing date-time objects
	Parsing strings into date-time objects


	Notes
	Missing elements
	Time zones
	Date-time arithmetic


	Chapter 30: Debugging
	Examples
	Using browser
	Using debug


	Chapter 31: Distribution Functions
	Introduction
	Remarks
	Examples
	Normal distribution
	Binomial Distribution


	Chapter 32: dplyr
	Remarks
	Examples
	dplyr's single table verbs


	Syntax commonalities
	filter
	arrange
	select
	mutate
	summarise
	group_by
	Putting it all togther
	summarise multiple columns
	Subset Observation (Rows)
	dplyr::filter() - Select a subset of rows in a data frame that meet a logical criteria:
	dplyr::distinct() - Remove duplicate rows:
	Aggregating with %>% (pipe) operator
	Examples of NSE and string variables in dpylr


	Chapter 33: Expression: parse + eval
	Remarks
	Examples
	Execute code in string format


	Chapter 34: Extracting and Listing Files in Compressed Archives
	Examples
	Extracting files from a .zip archive
	Listing files in a .zip archive
	Listing files in a .tar archive
	Extracting files from a .tar archive
	Extract all .zip archives in a directory


	Chapter 35: Factors
	Syntax
	Remarks

	Mapping the integer to the level
	Modern use of factors
	Examples
	Basic creation of factors
	Consolidating Factor Levels with a List

	Consolidating levels using factor (factor_approach)
	Consolidating levels using ifelse (ifelse_approach)
	Consolidating Factors Levels with a List (list_approach)
	Benchmarking each approach
	Factors
	Changing and reordering factors
	Rebuilding factors from zero
	Problem
	Solution


	Chapter 36: Fault-tolerant/resilient code
	Parameters
	Remarks
	tryCatch
	Implications of choosing specific return values of the handler functions
	"Undesired" warning message

	Examples
	Using tryCatch()

	Function definition using tryCatch
	Testing things out
	Investigating the output

	Chapter 37: Feature Selection in R -- Removing Extraneous Features
	Examples
	Removing features with zero or near-zero variance
	Removing features with high numbers of NA
	Removing closely correlated features


	Chapter 38: Formula
	Examples
	The basics of formula
	Create Linear, Quadratic and Second Order Interaction Terms


	Chapter 39: Fourier Series and Transformations
	Remarks
	Examples
	Fourier Series


	Chapter 40: Functional programming
	Examples
	Built-in Higher Order Functions


	Chapter 41: Generalized linear models
	Examples
	Logistic regression on Titanic dataset


	Chapter 42: Get user input
	Syntax
	Examples
	User input in R


	Chapter 43: ggplot2
	Remarks
	Examples
	Scatter Plots
	Displaying multiple plots
	Prepare your data for plotting
	Add horizontal and vertical lines to plot


	Add one common horizontal line for all categorical variables
	Add one horizontal line for each categorical variable
	Add horizontal line over grouped bars
	Add vertical line
	Vertical and Horizontal Bar Chart
	Violin plot
	Produce basic plots with qplot

	Chapter 44: GPU-accelerated computing
	Remarks
	Examples
	gpuR gpuMatrix objects
	gpuR vclMatrix objects


	Chapter 45: Hashmaps
	Examples
	Environments as hash maps

	Introduction
	Insertion
	Key Lookup
	Inspecting the Hash Map
	Flexibility
	Limitations
	package:hash
	package:listenv


	Chapter 46: heatmap and heatmap.2
	Examples
	Examples from the official documentation


	stats::heatmap
	Example 1 (Basic usage)
	Example 2 (no column dendrogram (nor reordering) at all)
	Example 3 ("no nothing")
	Example 4 (with reorder())
	Example 5 (NO reorder())
	Example 6 (slightly artificial with color bar, without ordering)
	Example 7 (slightly artificial with color bar, with ordering)
	Example 8 (For variable clustering, rather use distance based on cor())
	Tuning parameters in heatmap.2


	Chapter 47: Hierarchical clustering with hclust
	Introduction
	Remarks
	Examples
	Example 1 - Basic use of hclust, display of dendrogram, plot clusters
	Example 2 - hclust and outliers


	Chapter 48: Hierarchical Linear Modeling
	Examples
	basic model fitting


	Chapter 49: I/O for database tables
	Remarks

	Specialized packages
	Examples
	Reading Data from MySQL Databases


	General
	Using limits
	Reading Data from MongoDB Databases

	Chapter 50: I/O for foreign tables (Excel, SAS, SPSS, Stata)
	Examples
	Importing data with rio
	Importing Excel files


	Reading excel files with the xlsx package
	Reading Excel files with the XLconnect package
	Reading excel files with the openxlsx package
	Reading excel files with the readxl package
	Reading excel files with the RODBC package
	Reading excel files with the gdata package
	Read and write Stata, SPSS and SAS files
	Import or Export of Feather file

	Chapter 51: I/O for geographic data (shapefiles, etc.)
	Introduction
	Examples
	Import and Export Shapefiles


	Chapter 52: I/O for raster images
	Introduction
	Examples
	Load a multilayer raster


	Chapter 53: I/O for R's binary format
	Examples
	Rds and RData (Rda) files
	Enviromments


	Chapter 54: Implement State Machine Pattern using S4 Class
	Introduction
	Examples
	Parsing Lines using State Machine


	Chapter 55: Input and output
	Remarks
	Examples
	Reading and writing data frames


	Writing
	Reading
	Further resources
	Chapter 56: Inspecting packages
	Introduction
	Remarks
	Examples
	View package information
	View package's built-in data sets
	List a package's exported functions
	View Package Version
	View Loaded packages in Current Session


	Chapter 57: Installing packages
	Syntax
	Parameters
	Remarks

	Related Docs
	Examples
	Download and install packages from repositories


	Using CRAN
	Using Bioconductor
	Install package from local source
	Install packages from GitHub
	Using a CLI package manager -- basic pacman usage
	Install local development version of a package

	Chapter 58: Introduction to Geographical Maps
	Introduction
	Examples
	Basic map-making with map() from the package maps
	50 State Maps and Advanced Choropleths with Google Viz
	Interactive plotly maps
	Making Dynamic HTML Maps with Leaflet
	Dynamic Leaflet maps in Shiny applications


	Chapter 59: Introspection
	Examples
	Functions for Learning about Variables


	Chapter 60: JSON
	Examples
	JSON to / from R objects


	Chapter 61: Linear Models (Regression)
	Syntax
	Parameters
	Examples
	Linear regression on the mtcars dataset
	Plotting The Regression (base)
	Weighting
	Checking for nonlinearity with polynomial regression
	Quality assessment
	Using the 'predict' function


	Chapter 62: Lists
	Examples
	Quick Introduction to Lists
	Introduction to lists
	Reasons for using lists
	Convert a list to a vector while keeping empty list elements
	Serialization: using lists to pass informations


	Chapter 63: lubridate
	Syntax
	Remarks
	Examples
	Parsing dates and datetimes from strings with lubridate


	Dates
	Datetimes
	Utility functions
	Parser functions
	Parsing date and time in lubridate
	Manipulating date and time in lubridate
	Instants
	Intervals, Durations and Periods
	Rounding dates
	Difference between period and duration
	Time Zones


	Chapter 64: Machine learning
	Examples
	Creating a Random Forest model


	Chapter 65: Matrices
	Introduction
	Examples
	Creating matrices


	Chapter 66: Meta: Documentation Guidelines
	Remarks
	Examples
	Making good examples
	Style


	Prompts
	Console output
	Assignment
	Code comments
	Sections
	Chapter 67: Missing values
	Introduction
	Remarks
	Examples
	Examining missing data
	Reading and writing data with NA values
	Using NAs of different classes
	TRUE/FALSE and/or NA
	Omitting or replacing missing values


	Recoding missing values
	Removing missing values
	Excluding missing values from calculations
	Chapter 68: Modifying strings by substitution
	Introduction
	Examples
	Rearrange character strings using capture groups
	Eliminate duplicated consecutive elements


	Chapter 69: Natural language processing
	Introduction
	Examples
	Create a term frequency matrix


	Chapter 70: Network analysis with the igraph package
	Examples
	Simple Directed and Non-directed Network Graphing


	Chapter 71: Non-standard evaluation and standard evaluation
	Introduction
	Examples
	Examples with standard dplyr verbs


	Chapter 72: Numeric classes and storage modes
	Examples
	Numeric


	Chapter 73: Object-Oriented Programming in R
	Introduction
	Examples
	S3


	Chapter 74: Parallel processing
	Remarks
	Examples
	Parallel processing with foreach package
	Parallel processing with parallel package
	Random Number Generation
	mcparallelDo


	Example
	Other Examples
	Chapter 75: Pattern Matching and Replacement
	Introduction
	Syntax
	Remarks

	Differences from other languages
	Specialized packages
	Examples
	Making substitutions
	Finding Matches


	Is there a match?
	Match locations
	Matched values
	Details
	Summary of matches
	Single and Global match.
	Find matches in big data sets

	Chapter 76: Performing a Permutation Test
	Examples
	A fairly general function


	Chapter 77: Pipe operators (%>% and others)
	Introduction
	Syntax
	Parameters
	Remarks
	Packages that use %>%
	Finding documentation
	Hotkeys
	Performance Considerations

	Examples
	Basic use and chaining
	Functional sequences
	Assignment with %<>%
	Exposing contents with %$%
	Using the pipe with dplyr and ggplot2
	Creating side effects with %T>%


	Chapter 78: Pivot and unpivot with data.table
	Syntax
	Parameters
	Remarks
	Examples
	Pivot and unpivot tabular data with data.table - I
	Pivot and unpivot tabular data with data.table - II


	Chapter 79: Probability Distributions with R
	Examples
	PDF and PMF for different distributions in R


	Chapter 80: Publishing
	Introduction
	Remarks
	Examples
	Formatting tables


	Printing to plain text
	Printing delimited tables
	Further resources
	Formatting entire documents

	Further Resources
	Chapter 81: R code vectorization best practices
	Examples
	By row operations


	Chapter 82: R in LaTeX with knitr
	Syntax
	Parameters
	Remarks
	Examples
	R in Latex with Knitr and Code Externalization
	R in Latex with Knitr and Inline Code Chunks
	R in LaTex with Knitr and Internal Code Chunks


	Chapter 83: R Markdown Notebooks (from RStudio)
	Introduction
	Examples
	Creating a Notebook
	Inserting Chunks
	Executing Chunk Code

	Splitting Code into Chunks
	Execution Progress

	Executing Multiple Chunks
	Preview Output
	Saving and Sharing


	Chapter 84: R memento by examples
	Introduction
	Examples
	Data types


	Vectors
	Matrices
	Dataframes
	Lists
	Environments
	Plotting (using plot)
	Commonly used functions

	Chapter 85: Random Forest Algorithm
	Introduction
	Examples
	Basic examples - Classification and Regression


	Chapter 86: Random Numbers Generator
	Examples
	Random permutations
	Random number generator's reproducibility
	Generating random numbers using various density functions

	Uniform distribution between 0 and 10
	Normal distribution with 0 mean and standard deviation of 1
	Binomial distribution with 10 trials and success probability of 0.5
	Geometric distribution with 0.2 success probability
	Hypergeometric distribution with 3 white balls, 10 black balls and 5 draws
	Negative Binomial distribution with 10 trials and success probability of 0.8
	Poisson distribution with mean and variance (lambda) of 2
	Exponential distribution with the rate of 1.5
	Logistic distribution with 0 location and scale of 1
	Chi-squared distribution with 15 degrees of freedom
	Beta distribution with shape parameters a=1 and b=0.5
	Gamma distribution with shape parameter of 3 and scale=0.5
	Cauchy distribution with 0 location and scale of 1
	Log-normal distribution with 0 mean and standard deviation of 1 (on log scale)
	Weibull distribution with shape parameter of 0.5 and scale of 1
	Wilcoxon distribution with 10 observations in the first sample and 20 in second.
	Multinomial distribution with 5 object and 3 boxes using the specified probabilities

	Chapter 87: Randomization
	Introduction
	Remarks
	Examples
	Random draws and permutations


	Random permutation
	Draws without Replacement
	Draws with Replacement
	Changing Draw Probabilities
	Setting the seed

	Chapter 88: Raster and Image Analysis
	Introduction
	Examples
	Calculating GLCM Texture
	Mathematical Morphologies


	Chapter 89: Rcpp
	Examples
	Inline Code Compile
	Rcpp Attributes
	Extending Rcpp with Plugins
	Specifying Additional Build Dependencies


	Chapter 90: Reading and writing strings
	Remarks
	Examples
	Printing and displaying strings
	Reading from or writing to a file connection
	Capture output of operating system command


	Functions which return a character vector
	Functions which return a data frame
	Chapter 91: Reading and writing tabular data in plain-text files (CSV, TSV, etc.)
	Syntax
	Parameters
	Remarks
	Examples
	Importing .csv files


	Importing using base R
	Notes

	Importing using packages
	Importing with data.table
	Notes
	Importing .tsv files as matrices (basic R)
	Exporting .csv files


	Exporting using base R
	Exporting using packages
	Import multiple csv files
	Importing fixed-width files

	Importing with base R
	Importing with readr
	Chapter 92: Recycling
	Remarks
	Examples
	Recycling use in subsetting


	Chapter 93: Regular Expression Syntax in R
	Introduction
	Examples
	Use `grep` to find a string in a character vector


	Chapter 94: Regular Expressions (regex)
	Introduction
	Remarks

	Character classes
	Quantifiers
	Start and end of line indicators
	Differences from other languages
	Additional Resources
	Examples
	Eliminating Whitespace

	Trimming Whitespace
	Removing Leading Whitespace
	Removing Trailing Whitespace
	Removing All Whitespace
	Validate a date in a "YYYYMMDD" format
	Validate US States postal abbreviations
	Validate US phone numbers
	Escaping characters in R regex patterns
	Differences between Perl and POSIX regex

	Look-ahead/look-behind

	Chapter 95: Reproducible R
	Introduction
	Remarks

	References
	Examples
	Data reproducibility

	dput() and dget()
	Package reproducibility


	Chapter 96: Reshape using tidyr
	Introduction
	Examples
	Reshape from long to wide format with spread()
	Reshape from wide to long format with gather()

	h21

	Chapter 97: Reshaping data between long and wide forms
	Introduction
	Remarks

	Helpful packages
	Examples
	The reshape function

	Long to Wide
	Wide to Long
	Reshaping data


	Base R
	The tidyr package
	The data.table package
	Chapter 98: RESTful R Services
	Introduction
	Examples
	opencpu Apps


	Chapter 99: RMarkdown and knitr presentation
	Syntax
	Parameters
	Remarks

	Sub options parameters:
	Examples
	Rstudio example
	Adding a footer to an ioslides presentation


	Chapter 100: RODBC
	Examples
	Connecting to Excel Files via RODBC
	SQL Server Management Database connection to get individual table
	Connecting to relational databases


	Chapter 101: roxygen2
	Parameters
	Examples
	Documenting a package with roxygen2


	Writing with roxygen2
	Building the documentation
	Chapter 102: Run-length encoding
	Remarks

	Extensions
	Examples
	Run-length Encoding with `rle`
	Identifying and grouping by runs in base R
	Identifying and grouping by runs in data.table
	Run-length encoding to compress and decompress vectors


	Chapter 103: Scope of variables
	Remarks
	Examples
	Environments and Functions
	Sub functions
	Global Assignment
	Explicit Assignment of Environments and Variables
	Function Exit
	Packages and Masking


	Chapter 104: Set operations
	Remarks
	Examples
	Set operators for pairs of vectors


	Comparing sets
	Combining sets
	Set membership for vectors
	Cartesian or "cross" products of vectors

	Applying functions to combinations
	Make unique / drop duplicates / select distinct elements from a vector
	Measuring set overlaps / Venn diagrams for vectors

	Chapter 105: Shiny
	Examples
	Create an app


	One file
	Two files
	Create ui.R file
	Create server.R file
	Radio Button
	Checkbox Group
	Select box
	Launch a Shiny app

	1. Two files app
	2. One file app
	Control widgets
	Debugging


	Showcase mode
	Reactive Log Visualizer
	Chapter 106: Solving ODEs in R
	Syntax
	Parameters
	Remarks
	Examples
	The Lorenz model
	Lotka-Volterra or: Prey vs. predator
	ODEs in compiled languages - definition in R
	ODEs in compiled languages - definition in C
	ODEs in compiled languages - definition in fortran
	ODEs in compiled languages - a benchmark test


	Chapter 107: Spark API (SparkR)
	Remarks
	Examples
	Setup Spark context

	Setup Spark context in R
	Get Spark Cluster
	Cache data
	Create RDDs (Resilient Distributed Datasets)

	From dataframe:
	From csv:

	Chapter 108: spatial analysis
	Examples
	Create spatial points from XY data set
	Importing a shape file (.shp)


	rgdal
	raster
	tmap
	Chapter 109: Speeding up tough-to-vectorize code
	Examples
	Speeding tough-to-vectorize for loops with Rcpp
	Speeding tough-to-vectorize for loops by byte compiling


	Chapter 110: Split function
	Examples
	Basic usage of split
	Using split in the split-apply-combine paradigm


	Chapter 111: sqldf
	Examples
	Basic Usage Examples


	Chapter 112: Standardize analyses by writing standalone R scripts
	Introduction
	Remarks
	Examples
	The basic structure of standalone R program and how to call it


	The first standalone R script
	Preparing a standalone R script
	Linux/Mac
	Windows
	Using littler to execute R scripts

	Installing littler
	From R:
	Using apt-get (Debian, Ubuntu):

	Using littler with standard .r scripts
	Using littler on shebanged scripts

	Chapter 113: String manipulation with stringi package
	Remarks
	Examples
	Count pattern inside string
	Duplicating strings
	Paste vectors
	Splitting text by some fixed pattern


	Chapter 114: strsplit function
	Syntax
	Examples
	Introduction


	Chapter 115: Subsetting
	Introduction
	Remarks
	Examples
	Atomic vectors
	Lists
	Matrices
	Selecting individual matrix entries by their positions
	Data frames
	Other objects
	Vector indexing
	Elementwise Matrix Operations

	Some Functions used with Matrices

	Chapter 116: Survival analysis
	Examples
	Random Forest Survival Analysis with randomForestSRC
	Introduction - basic fitting and plotting of parametric survival models with the survival package
	Kaplan Meier estimates of survival curves and risk set tables with survminer


	Chapter 117: Text mining
	Examples
	Scraping Data to build N-gram Word Clouds


	Chapter 118: The character class
	Introduction
	Remarks

	Related topics
	Examples
	Coercion


	Chapter 119: The Date class
	Remarks

	Related topics
	Jumbled notes
	More notes
	Examples
	Formatting Dates
	Dates
	Parsing Strings into Date Objects


	Chapter 120: The logical class
	Introduction
	Remarks

	Shorthand
	Examples
	Logical operators
	Coercion
	Interpretation of NAs


	Chapter 121: tidyverse
	Examples
	Creating tbl_df’s
	tidyverse: an overview


	What is tidyverse?
	How to use it?
	What are those packages?
	Chapter 122: Time Series and Forecasting
	Remarks
	Examples
	Exploratory Data Analysis with time-series data
	Creating a ts object


	Chapter 123: Updating R and the package library
	Examples
	On Windows


	Chapter 124: Updating R version
	Introduction
	Examples
	Installing from R Website
	Updating from within R using installr Package
	Deciding on the old packages
	Updating Packages
	Check R Version


	Chapter 125: Using pipe assignment in your own package %<>%: How to ?
	Introduction
	Examples
	Putting the pipe in a utility-functions file


	Chapter 126: Using texreg to export models in a paper-ready way
	Introduction
	Remarks

	Links
	Examples
	Printing linear regression results


	Chapter 127: Variables
	Examples
	Variables, data structures and basic Operations

	Types of data structures
	Common operations and some cautionary advice

	Example objects
	Some vector operations
	Some vector operation Warnings!
	Some Matrix operations Warning!
	"Private" variables

	Chapter 128: Web Crawling in R
	Examples
	Standard scraping approach using the RCurl package


	Chapter 129: Web scraping and parsing
	Remarks

	Legality
	Examples
	Basic scraping with rvest
	Using rvest when login is required


	Chapter 130: Writing functions in R
	Examples
	Named functions
	Anonymous functions
	RStudio code snippets
	Passing column names as argument of a function


	Chapter 131: xgboost
	Examples
	Cross Validation and Tuning with xgboost


	Credits

