
R Language

#r

Table of Contents

About 1

Chapter 1: Getting started with R Language 2

Remarks 2

Editing R Docs on Stack Overflow 2

A few features of R that immigrants from other language may find unusual 2

Examples 2

Installing R 2

Windows only: 2

For Windows 2

For OSX / macOS 3

Alternative 1 3

Alternative 2 3

For Debian, Ubuntu and derivatives 3

For Red Hat and Fedora 3

For Archlinux 4

Hello World! 4

Getting Help 4

Interactive mode and R scripts 4

The interactive mode 4

Using R as a calculator 4

The first plot 6

R scripts 8

Chapter 2: *apply family of functions (functionals) 9

Remarks 9

Members of the *apply Family 9

Examples 9

Use anonymous functions with apply 10

Bulk File Loading 11

Combining multiple `data.frames` (`lapply`, `mapply`) 11

Using built-in functionals 13

Built-in functionals: lapply(), sapply(), and mapply() 13

lapply() 13

sapply() 13

mapply() 13

Using user-defined functionals 14

User-defined functionals 14

Chapter 3: .Rprofile 16

Remarks 16

Examples 16

.Rprofile - the first chunk of code executed 16

Setting your R home directory 16

Setting page size options 16

set the default help type 16

set a site library 16

Set a CRAN mirror 17

Setting the location of your library 17

Custom shortcuts or functions 17

Pre-loading the most useful packages 17

See Also 17

.Rprofile example 17

Startup 18

Options 18

Custom Functions 18

Chapter 4: Aggregating data frames 19

Introduction 19

Examples 19

Aggregating with base R 19

Aggregating with dplyr 20

Aggregating with data.table 21

Chapter 5: Analyze tweets with R 23

Introduction 23

Examples 23

Download Tweets 23

R Libraries 23

Get text of tweets 24

Chapter 6: ANOVA 25

Examples 25

Basic usage of aov() 25

Basic usage of Anova() 25

Chapter 7: Arima Models 27

Remarks 27

Examples 27

Modeling an AR1 Process with Arima 27

Chapter 8: Arithmetic Operators 36

Remarks 36

Examples 36

Range and addition 36

Addition and subtraction 37

Chapter 9: Bar Chart 40

Introduction 40

Examples 40

barplot() function 40

Chapter 10: Base Plotting 48

Parameters 48

Remarks 48

Examples 48

Basic Plot 48

Matplot 51

Histograms 57

Combining Plots 59

par() 59

layout() 60

Density plot 61

Empirical Cumulative Distribution Function 63

Getting Started with R_Plots 64

Chapter 11: Bibliography in RMD 66

Parameters 66

Remarks 66

Examples 67

Specifying a bibliography and cite authors 67

Inline references 68

Citation styles 68

Chapter 12: boxplot 71

Syntax 71

Parameters 71

Examples 71

Create a box-and-whisker plot with boxplot() {graphics} 71

Simple boxplot (Sepal.Length) 72

Boxplot of sepal length grouped by species 72

Bring order 73

Change groups names 74

Small improvements 75

Color 75

Proximity of the box 76

See the summaries which the boxplots are based plot=FALSE 76

Additional boxplot style parameters. 77

Box 77

Median 77

Whisker 77

Staple 77

Outliers 78

Example 78

Chapter 13: caret 80

Introduction 80

Examples 80

Preprocessing 80

Chapter 14: Classes 82

Introduction 82

Remarks 82

Examples 82

Vectors 82

Inspect classes 82

Vectors and lists 83

Chapter 15: Cleaning data 85

Introduction 85

Examples 85

Removing missing data from a vector 85

Removing incomplete rows 85

Chapter 16: Code profiling 87

Examples 87

System.time 87

proc.time() 87

Line Profiling 88

Microbenchmark 89

Benchmarking using microbenchmark 90

Chapter 17: Coercion 92

Introduction 92

Examples 92

Implicit Coercion 92

Chapter 18: Color schemes for graphics 93

Examples 93

viridis - print and colorblind friendly palettes 93

RColorBrewer 96

A handy function to glimse a vector of colors 98

colorspace - click&drag interface for colors 99

basic R color functions 100

Colorblind-friendly palettes 101

Chapter 19: Column wise operation 104

Examples 104

sum of each column 104

Chapter 20: Combinatorics 106

Examples 106

Enumerating combinations of a specified length 106

Without replacement 106

With replacement 106

Counting combinations of a specified length 107

Without replacement 107

With replacement 107

Chapter 21: Control flow structures 108

Remarks 108

Optimizing Structure of For Loops 108

Vectorizing For Loops 109

Examples 110

Basic For Loop Construction 110

Optimal Construction of a For Loop 110

Poorly optimized for loop 111

Well optimized for loop 111

vapply Function 111

colMeans Function 111

Efficiency comparison 111

The Other Looping Constructs: while and repeat 112

The while loop 112

The repeat loop 113

More on break 113

Chapter 22: Creating packages with devtools 115

Introduction 115

Remarks 115

Examples 115

Creating and distributing packages 115

Creation of the documentation 115

Construction of the package skeleton 116

Edition of the package properties 116

1. Package description 116

2. Optional folders 116

Finalization and build 117

Distribution of your package 117

Through Github 117

Through CRAN 117

Creating vignettes 117

Requirements 118

Vignette creation 118

Chapter 23: Creating reports with RMarkdown 119

Examples 119

Printing tables 119

Including LaTeX Preample Commands 121

Including bibliographies 122

Basic R-markdown document structure 123

R-markdown code chunks 123

R-markdown document example 123

Converting R-markdown to other formats 124

Chapter 24: Creating vectors 126

Examples 126

Sequence of numbers 126

seq() 126

Vectors 127

Creating named vectors 129

Expanding a vector with the rep() function 130

Vectors from build in constants: Sequences of letters & month names 131

Chapter 25: Data acquisition 133

Introduction 133

Examples 133

Built-in datasets 133

Example 133

Datasets within packages 134

Gapminder 134

World Population Prospects 2015 - United Nations Population Department 134

Packages to access open databases 134

Eurostat 134

Packages to access restricted data 136

Human Mortality Database 136

Chapter 26: Data frames 139

Syntax 139

Examples 139

Create an empty data.frame 139

Subsetting rows and columns from a data frame 140

Syntax for accessing rows and columns: [, [[, and $ 140

Like a matrix: data[rows, columns] 141

With numeric indexes 141

With column (and row) names 141

Rows and columns together 142

A warning about dimensions: 142

Like a list 142

With single brackets data[columns] 142

With double brackets data[[one_column]] 143

Using $ to access columns 143

Drawbacks of $ for accessing columns 143

Advanced indexing: negative and logical indices 144

Negative indices omit elements 144

Logical vectors indicate specific elements to keep 144

Convenience functions to manipulate data.frames 145

subset 145

transform 145

with and within 145

Introduction 146

Convert data stored in a list to a single data frame using do.call 147

Convert all columns of a data.frame to character class 148

Subsetting Rows by Column Values 148

Chapter 27: data.table 150

Introduction 150

Syntax 150

Remarks 151

Installation and support 151

Loading the package 152

Examples 152

Creating a data.table 152

Build 152

Read in 152

Modify a data.frame 153

Coerce object to data.table 153

Adding and modifying columns 153

Editing entire columns 154

Editing subsets of columns 154

Editing column attributes 155

Special symbols in data.table 155

.SD 155

.SDcols 156

.N 156

Writing code compatible with both data.frame and data.table 157

Differences in subsetting syntax 157

Strategies for maintaining compatibility with data.frame and data.table 158

Setting keys in data.table 159

Chapter 28: Date and Time 162

Introduction 162

Remarks 162

Classes 162

Selecting a date-time format 162

Specialized packages 163

Examples 163

Current Date and Time 163

Go to the End of the Month 164

Go to First Day of the Month 164

Move a date a number of months consistently by months 164

Chapter 29: Date-time classes (POSIXct and POSIXlt) 166

Introduction 166

Remarks 166

Pitfalls 166

Related topics 166

Specialized packages 166

Examples 166

Formatting and printing date-time objects 166

Parsing strings into date-time objects 167

Notes 167

Missing elements 167

Time zones 167

Date-time arithmetic 168

Chapter 30: Debugging 169

Examples 169

Using browser 169

Using debug 170

Chapter 31: Distribution Functions 171

Introduction 171

Remarks 171

Examples 171

Normal distribution 171

Binomial Distribution 172

Chapter 32: dplyr 176

Remarks 176

Examples 176

dplyr's single table verbs 176

Syntax commonalities 176

filter 177

arrange 178

select 179

mutate 180

summarise 181

group_by 181

Putting it all togther 182

summarise multiple columns 182

Subset Observation (Rows) 185

dplyr::filter() - Select a subset of rows in a data frame that meet a logical criteria: 185

dplyr::distinct() - Remove duplicate rows: 185

Aggregating with %>% (pipe) operator 186

Examples of NSE and string variables in dpylr 187

Chapter 33: Expression: parse + eval 188

Remarks 188

Examples 188

Execute code in string format 188

Chapter 34: Extracting and Listing Files in Compressed Archives 189

Examples 189

Extracting files from a .zip archive 189

Listing files in a .zip archive 189

Listing files in a .tar archive 189

Extracting files from a .tar archive 189

Extract all .zip archives in a directory 190

Chapter 35: Factors 191

Syntax 191

Remarks 191

Mapping the integer to the level 192

Modern use of factors 192

Examples 193

Basic creation of factors 193

Consolidating Factor Levels with a List 194

Consolidating levels using factor (factor_approach) 195

Consolidating levels using ifelse (ifelse_approach) 195

Consolidating Factors Levels with a List (list_approach) 195

Benchmarking each approach 196

Factors 196

Changing and reordering factors 197

Rebuilding factors from zero 202

Problem 202

Solution 203

Chapter 36: Fault-tolerant/resilient code 204

Parameters 204

Remarks 204

tryCatch 204

Implications of choosing specific return values of the handler functions 204

"Undesired" warning message 205

Examples 205

Using tryCatch() 205

Function definition using tryCatch 205

Testing things out 206

Investigating the output 207

Chapter 37: Feature Selection in R -- Removing Extraneous Features 208

Examples 208

Removing features with zero or near-zero variance 208

Removing features with high numbers of NA 208

Removing closely correlated features 208

Chapter 38: Formula 210

Examples 210

The basics of formula 210

Create Linear, Quadratic and Second Order Interaction Terms 211

Chapter 39: Fourier Series and Transformations 213

Remarks 213

Examples 214

Fourier Series 214

Chapter 40: Functional programming 221

Examples 221

Built-in Higher Order Functions 221

Chapter 41: Generalized linear models 222

Examples 222

Logistic regression on Titanic dataset 222

Chapter 42: Get user input 225

Syntax 225

Examples 225

User input in R 225

Chapter 43: ggplot2 226

Remarks 226

Examples 226

Scatter Plots 226

Displaying multiple plots 227

Prepare your data for plotting 231

Add horizontal and vertical lines to plot 233

Add one common horizontal line for all categorical variables 233

Add one horizontal line for each categorical variable 233

Add horizontal line over grouped bars 233

Add vertical line 233

Vertical and Horizontal Bar Chart 233

Violin plot 233

Produce basic plots with qplot 233

Chapter 44: GPU-accelerated computing 236

Remarks 236

Examples 236

gpuR gpuMatrix objects 236

gpuR vclMatrix objects 236

Chapter 45: Hashmaps 238

Examples 238

Environments as hash maps 238

Introduction 238

Insertion 238

Key Lookup 239

Inspecting the Hash Map 239

Flexibility 240

Limitations 241

package:hash 242

package:listenv 243

Chapter 46: heatmap and heatmap.2 244

Examples 244

Examples from the official documentation 244

stats::heatmap 244

Example 1 (Basic usage) 244

Example 2 (no column dendrogram (nor reordering) at all) 245

Example 3 ("no nothing") 245

Example 4 (with reorder()) 246

Example 5 (NO reorder()) 247

Example 6 (slightly artificial with color bar, without ordering) 248

Example 7 (slightly artificial with color bar, with ordering) 249

Example 8 (For variable clustering, rather use distance based on cor()) 250

Tuning parameters in heatmap.2 252

Chapter 47: Hierarchical clustering with hclust 258

Introduction 258

Remarks 258

Examples 258

Example 1 - Basic use of hclust, display of dendrogram, plot clusters 258

Example 2 - hclust and outliers 262

Chapter 48: Hierarchical Linear Modeling 265

Examples 265

basic model fitting 265

Chapter 49: I/O for database tables 266

Remarks 266

Specialized packages 266

Examples 266

Reading Data from MySQL Databases 266

General 266

Using limits 266

Reading Data from MongoDB Databases 266

Chapter 50: I/O for foreign tables (Excel, SAS, SPSS, Stata) 268

Examples 268

Importing data with rio 268

Importing Excel files 268

Reading excel files with the xlsx package 269

Reading Excel files with the XLconnect package 269

Reading excel files with the openxlsx package 270

Reading excel files with the readxl package 270

Reading excel files with the RODBC package 271

Reading excel files with the gdata package 272

Read and write Stata, SPSS and SAS files 272

Import or Export of Feather file 273

Chapter 51: I/O for geographic data (shapefiles, etc.) 275

Introduction 275

Examples 275

Import and Export Shapefiles 275

Chapter 52: I/O for raster images 276

Introduction 276

Examples 276

Load a multilayer raster 276

Chapter 53: I/O for R's binary format 278

Examples 278

Rds and RData (Rda) files 278

Enviromments 278

Chapter 54: Implement State Machine Pattern using S4 Class 280

Introduction 280

Examples 280

Parsing Lines using State Machine 280

Chapter 55: Input and output 294

Remarks 294

Examples 294

Reading and writing data frames 294

Writing 294

Reading 294

Further resources 295

Chapter 56: Inspecting packages 296

Introduction 296

Remarks 296

Examples 296

View package information 296

View package's built-in data sets 296

List a package's exported functions 296

View Package Version 296

View Loaded packages in Current Session 297

Chapter 57: Installing packages 298

Syntax 298

Parameters 298

Remarks 298

Related Docs 298

Examples 298

Download and install packages from repositories 298

Using CRAN 298

Using Bioconductor 299

Install package from local source 299

Install packages from GitHub 300

Using a CLI package manager -- basic pacman usage 301

Install local development version of a package 302

Chapter 58: Introduction to Geographical Maps 304

Introduction 304

Examples 304

Basic map-making with map() from the package maps 304

50 State Maps and Advanced Choropleths with Google Viz 308

Interactive plotly maps 309

Making Dynamic HTML Maps with Leaflet 311

Dynamic Leaflet maps in Shiny applications 313

Chapter 59: Introspection 315

Examples 315

Functions for Learning about Variables 315

Chapter 60: JSON 317

Examples 317

JSON to / from R objects 317

Chapter 61: Linear Models (Regression) 319

Syntax 319

Parameters 319

Examples 320

Linear regression on the mtcars dataset 320

Plotting The Regression (base) 321

Weighting 323

Checking for nonlinearity with polynomial regression 325

Quality assessment 328

Using the 'predict' function 329

Chapter 62: Lists 331

Examples 331

Quick Introduction to Lists 331

Introduction to lists 333

Reasons for using lists 333

Convert a list to a vector while keeping empty list elements 334

Serialization: using lists to pass informations 335

Chapter 63: lubridate 337

Syntax 337

Remarks 337

Examples 337

Parsing dates and datetimes from strings with lubridate 338

Dates 338

Datetimes 338

Utility functions 338

Parser functions 339

Parsing date and time in lubridate 339

Manipulating date and time in lubridate 340

Instants 340

Intervals, Durations and Periods 341

Rounding dates 342

Difference between period and duration 343

Time Zones 343

Chapter 64: Machine learning 345

Examples 345

Creating a Random Forest model 345

Chapter 65: Matrices 346

Introduction 346

Examples 346

Creating matrices 346

Chapter 66: Meta: Documentation Guidelines 348

Remarks 348

Examples 348

Making good examples 348

Style 348

Prompts 348

Console output 348

Assignment 348

Code comments 349

Sections 349

Chapter 67: Missing values 350

Introduction 350

Remarks 350

Examples 350

Examining missing data 350

Reading and writing data with NA values 350

Using NAs of different classes 351

TRUE/FALSE and/or NA 351

Omitting or replacing missing values 352

Recoding missing values 352

Removing missing values 353

Excluding missing values from calculations 353

Chapter 68: Modifying strings by substitution 354

Introduction 354

Examples 354

Rearrange character strings using capture groups 354

Eliminate duplicated consecutive elements 354

Chapter 69: Natural language processing 356

Introduction 356

Examples 356

Create a term frequency matrix 356

Chapter 70: Network analysis with the igraph package 358

Examples 358

Simple Directed and Non-directed Network Graphing 358

Chapter 71: Non-standard evaluation and standard evaluation 360

Introduction 360

Examples 360

Examples with standard dplyr verbs 360

Chapter 72: Numeric classes and storage modes 362

Examples 362

Numeric 362

Chapter 73: Object-Oriented Programming in R 364

Introduction 364

Examples 364

S3 364

Chapter 74: Parallel processing 366

Remarks 366

Examples 366

Parallel processing with foreach package 366

Parallel processing with parallel package 367

Random Number Generation 368

mcparallelDo 369

Example 369

Other Examples 369

Chapter 75: Pattern Matching and Replacement 371

Introduction 371

Syntax 371

Remarks 371

Differences from other languages 371

Specialized packages 371

Examples 371

Making substitutions 371

Finding Matches 372

Is there a match? 372

Match locations 372

Matched values 372

Details 373

Summary of matches 373

Single and Global match. 373

Find matches in big data sets 375

Chapter 76: Performing a Permutation Test 376

Examples 376

A fairly general function 376

Chapter 77: Pipe operators (%>% and others) 379

Introduction 379

Syntax 379

Parameters 379

Remarks 379

Packages that use %>% 379

Finding documentation 380

Hotkeys 380

Performance Considerations 380

Examples 380

Basic use and chaining 380

Functional sequences 381

Assignment with %<>% 382

Exposing contents with %$% 382

Using the pipe with dplyr and ggplot2 383

Creating side effects with %T>% 383

Chapter 78: Pivot and unpivot with data.table 385

Syntax 385

Parameters 385

Remarks 385

Examples 385

Pivot and unpivot tabular data with data.table - I 385

Pivot and unpivot tabular data with data.table - II 387

Chapter 79: Probability Distributions with R 389

Examples 389

PDF and PMF for different distributions in R 389

Chapter 80: Publishing 390

Introduction 390

Remarks 390

Examples 390

Formatting tables 390

Printing to plain text 390

Printing delimited tables 390

Further resources 390

Formatting entire documents 391

Further Resources 391

Chapter 81: R code vectorization best practices 392

Examples 392

By row operations 392

Chapter 82: R in LaTeX with knitr 396

Syntax 396

Parameters 396

Remarks 396

Examples 397

R in Latex with Knitr and Code Externalization 397

R in Latex with Knitr and Inline Code Chunks 398

R in LaTex with Knitr and Internal Code Chunks 398

Chapter 83: R Markdown Notebooks (from RStudio) 399

Introduction 399

Examples 399

Creating a Notebook 399

Inserting Chunks 400

Executing Chunk Code 401

Splitting Code into Chunks 401

Execution Progress 402

Executing Multiple Chunks 403

Preview Output 404

Saving and Sharing 404

Chapter 84: R memento by examples 406

Introduction 406

Examples 406

Data types 406

Vectors 406

Matrices 406

Dataframes 406

Lists 406

Environments 407

Plotting (using plot) 407

Commonly used functions 407

Chapter 85: Random Forest Algorithm 409

Introduction 409

Examples 409

Basic examples - Classification and Regression 409

Chapter 86: Random Numbers Generator 411

Examples 411

Random permutations 411

Random number generator's reproducibility 411

Generating random numbers using various density functions 412

Uniform distribution between 0 and 10 412

Normal distribution with 0 mean and standard deviation of 1 412

Binomial distribution with 10 trials and success probability of 0.5 412

Geometric distribution with 0.2 success probability 412

Hypergeometric distribution with 3 white balls, 10 black balls and 5 draws 413

Negative Binomial distribution with 10 trials and success probability of 0.8 413

Poisson distribution with mean and variance (lambda) of 2 413

Exponential distribution with the rate of 1.5 413

Logistic distribution with 0 location and scale of 1 413

Chi-squared distribution with 15 degrees of freedom 413

Beta distribution with shape parameters a=1 and b=0.5 413

Gamma distribution with shape parameter of 3 and scale=0.5 413

Cauchy distribution with 0 location and scale of 1 414

Log-normal distribution with 0 mean and standard deviation of 1 (on log scale) 414

Weibull distribution with shape parameter of 0.5 and scale of 1 414

Wilcoxon distribution with 10 observations in the first sample and 20 in second. 414

Multinomial distribution with 5 object and 3 boxes using the specified probabilities 414

Chapter 87: Randomization 415

Introduction 415

Remarks 415

Examples 415

Random draws and permutations 415

Random permutation 415

Draws without Replacement 416

Draws with Replacement 416

Changing Draw Probabilities 417

Setting the seed 418

Chapter 88: Raster and Image Analysis 419

Introduction 419

Examples 419

Calculating GLCM Texture 419

Mathematical Morphologies 421

Chapter 89: Rcpp 424

Examples 424

Inline Code Compile 424

Rcpp Attributes 424

Extending Rcpp with Plugins 425

Specifying Additional Build Dependencies 426

Chapter 90: Reading and writing strings 427

Remarks 427

Examples 427

Printing and displaying strings 427

Reading from or writing to a file connection 429

Capture output of operating system command 429

Functions which return a character vector 429

Functions which return a data frame 430

Chapter 91: Reading and writing tabular data in plain-text files (CSV, TSV, etc.) 431

Syntax 431

Parameters 431

Remarks 431

Examples 432

Importing .csv files 432

Importing using base R 432

Notes 432

Importing using packages 432

Importing with data.table 433

Notes 434

Importing .tsv files as matrices (basic R) 434

Exporting .csv files 435

Exporting using base R 435

Exporting using packages 435

Import multiple csv files 435

Importing fixed-width files 435

Importing with base R 436

Importing with readr 436

Chapter 92: Recycling 437

Remarks 437

Examples 437

Recycling use in subsetting 437

Chapter 93: Regular Expression Syntax in R 439

Introduction 439

Examples 439

Use `grep` to find a string in a character vector 439

Chapter 94: Regular Expressions (regex) 441

Introduction 441

Remarks 441

Character classes 441

Quantifiers 441

Start and end of line indicators 441

Differences from other languages 441

Additional Resources 442

Examples 442

Eliminating Whitespace 442

Trimming Whitespace 442

Removing Leading Whitespace 442

Removing Trailing Whitespace 443

Removing All Whitespace 443

Validate a date in a "YYYYMMDD" format 443

Validate US States postal abbreviations 444

Validate US phone numbers 444

Escaping characters in R regex patterns 445

Differences between Perl and POSIX regex 446

Look-ahead/look-behind 446

Chapter 95: Reproducible R 447

Introduction 447

Remarks 447

References 447

Examples 447

Data reproducibility 447

dput() and dget() 447

Package reproducibility 448

Chapter 96: Reshape using tidyr 449

Introduction 449

Examples 449

Reshape from long to wide format with spread() 449

Reshape from wide to long format with gather() 450

h21 450

Chapter 97: Reshaping data between long and wide forms 451

Introduction 451

Remarks 451

Helpful packages 451

Examples 451

The reshape function 451

Long to Wide 452

Wide to Long 452

Reshaping data 453

Base R 453

The tidyr package 454

The data.table package 454

Chapter 98: RESTful R Services 455

Introduction 455

Examples 455

opencpu Apps 455

Chapter 99: RMarkdown and knitr presentation 456

Syntax 456

Parameters 456

Remarks 456

Sub options parameters: 456

Examples 460

Rstudio example 460

Adding a footer to an ioslides presentation 460

Chapter 100: RODBC 463

Examples 463

Connecting to Excel Files via RODBC 463

SQL Server Management Database connection to get individual table 463

Connecting to relational databases 463

Chapter 101: roxygen2 464

Parameters 464

Examples 464

Documenting a package with roxygen2 464

Writing with roxygen2 464

Building the documentation 465

Chapter 102: Run-length encoding 466

Remarks 466

Extensions 466

Examples 466

Run-length Encoding with `rle` 466

Identifying and grouping by runs in base R 467

Identifying and grouping by runs in data.table 467

Run-length encoding to compress and decompress vectors 468

Chapter 103: Scope of variables 470

Remarks 470

Examples 470

Environments and Functions 470

Sub functions 471

Global Assignment 471

Explicit Assignment of Environments and Variables 472

Function Exit 472

Packages and Masking 473

Chapter 104: Set operations 474

Remarks 474

Examples 474

Set operators for pairs of vectors 474

Comparing sets 474

Combining sets 474

Set membership for vectors 475

Cartesian or "cross" products of vectors 475

Applying functions to combinations 475

Make unique / drop duplicates / select distinct elements from a vector 476

Measuring set overlaps / Venn diagrams for vectors 476

Chapter 105: Shiny 478

Examples 478

Create an app 478

One file 478

Two files 478

Create ui.R file 478

Create server.R file 479

Radio Button 479

Checkbox Group 479

Select box 480

Launch a Shiny app 481

1. Two files app 481

2. One file app 482

Control widgets 482

Debugging 484

Showcase mode 484

Reactive Log Visualizer 484

Chapter 106: Solving ODEs in R 485

Syntax 485

Parameters 485

Remarks 485

Examples 485

The Lorenz model 485

Lotka-Volterra or: Prey vs. predator 487

ODEs in compiled languages - definition in R 488

ODEs in compiled languages - definition in C 489

ODEs in compiled languages - definition in fortran 490

ODEs in compiled languages - a benchmark test 492

Chapter 107: Spark API (SparkR) 494

Remarks 494

Examples 494

Setup Spark context 494

Setup Spark context in R 494

Get Spark Cluster 494

Cache data 494

Create RDDs (Resilient Distributed Datasets) 495

From dataframe: 495

From csv: 495

Chapter 108: spatial analysis 496

Examples 496

Create spatial points from XY data set 496

Importing a shape file (.shp) 497

rgdal 497

raster 497

tmap 498

Chapter 109: Speeding up tough-to-vectorize code 499

Examples 499

Speeding tough-to-vectorize for loops with Rcpp 499

Speeding tough-to-vectorize for loops by byte compiling 500

Chapter 110: Split function 502

Examples 502

Basic usage of split 502

Using split in the split-apply-combine paradigm 504

Chapter 111: sqldf 506

Examples 506

Basic Usage Examples 506

Chapter 112: Standardize analyses by writing standalone R scripts 508

Introduction 508

Remarks 508

Examples 508

The basic structure of standalone R program and how to call it 508

The first standalone R script 508

Preparing a standalone R script 509

Linux/Mac 509

Windows 509

Using littler to execute R scripts 510

Installing littler 510

From R: 510

Using apt-get (Debian, Ubuntu): 510

Using littler with standard .r scripts 510

Using littler on shebanged scripts 511

Chapter 113: String manipulation with stringi package 512

Remarks 512

Examples 512

Count pattern inside string 512

Duplicating strings 513

Paste vectors 513

Splitting text by some fixed pattern 513

Chapter 114: strsplit function 515

Syntax 515

Examples 515

Introduction 515

Chapter 115: Subsetting 517

Introduction 517

Remarks 517

Examples 518

Atomic vectors 518

Lists 519

Matrices 521

Selecting individual matrix entries by their positions 522

Data frames 523

Other objects 524

Vector indexing 525

Elementwise Matrix Operations 525

Some Functions used with Matrices 526

Chapter 116: Survival analysis 528

Examples 528

Random Forest Survival Analysis with randomForestSRC 528

Introduction - basic fitting and plotting of parametric survival models with the survival 529

Kaplan Meier estimates of survival curves and risk set tables with survminer 530

Chapter 117: Text mining 533

Examples 533

Scraping Data to build N-gram Word Clouds 533

Chapter 118: The character class 537

Introduction 537

Remarks 537

Related topics 537

Examples 537

Coercion 537

Chapter 119: The Date class 538

Remarks 538

Related topics 538

Jumbled notes 538

More notes 538

Examples 538

Formatting Dates 538

Dates 539

Parsing Strings into Date Objects 541

Chapter 120: The logical class 542

Introduction 542

Remarks 542

Shorthand 542

Examples 542

Logical operators 542

Coercion 543

Interpretation of NAs 543

Chapter 121: tidyverse 544

Examples 544

Creating tbl_df’s 544

tidyverse: an overview 544

What is tidyverse? 544

How to use it? 545

What are those packages? 545

Chapter 122: Time Series and Forecasting 547

Remarks 547

Examples 547

Exploratory Data Analysis with time-series data 547

Creating a ts object 548

Chapter 123: Updating R and the package library 550

Examples 550

On Windows 550

Chapter 124: Updating R version 551

Introduction 551

Examples 551

Installing from R Website 551

Updating from within R using installr Package 551

Deciding on the old packages 552

Updating Packages 555

Check R Version 556

Chapter 125: Using pipe assignment in your own package %<>%: How to ? 557

Introduction 557

Examples 557

Putting the pipe in a utility-functions file 557

Chapter 126: Using texreg to export models in a paper-ready way 558

Introduction 558

Remarks 558

Links 558

Examples 558

Printing linear regression results 558

Chapter 127: Variables 560

Examples 560

Variables, data structures and basic Operations 560

Types of data structures 561

Common operations and some cautionary advice 561

Example objects 561

Some vector operations 562

Some vector operation Warnings! 562

Some Matrix operations Warning! 562

"Private" variables 563

Chapter 128: Web Crawling in R 564

Examples 564

Standard scraping approach using the RCurl package 564

Chapter 129: Web scraping and parsing 565

Remarks 565

Legality 565

Examples 565

Basic scraping with rvest 565

Using rvest when login is required 566

Chapter 130: Writing functions in R 568

Examples 568

Named functions 568

Anonymous functions 569

RStudio code snippets 569

Passing column names as argument of a function 570

Chapter 131: xgboost 572

Examples 572

Cross Validation and Tuning with xgboost 572

Credits 575

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version

from: r-language

It is an unofficial and free R Language ebook created for educational purposes. All the content is

extracted from Stack Overflow Documentation, which is written by many hardworking individuals at

Stack Overflow. It is neither affiliated with Stack Overflow nor official R Language.

The content is released under Creative Commons BY-SA, and the list of contributors to each

chapter are provided in the credits section at the end of this book. Images may be copyright of

their respective owners unless otherwise specified. All trademarks and registered trademarks are

the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor

accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/r-language
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with R Language

Remarks

Editing R Docs on Stack Overflow

See the documentation guidelines for general rules when creating documentation.

A few features of R that immigrants from

other language may find unusual

Unlike other languages variables in R need not require type declaration.•

The same variable can be assigned different data types at different instances of time, if

required.

•

Indexing of atomic vectors and lists starts from 1, not 0.•

R arrays (and the special case of matrices) have a dim attribute that sets them apart from R's

"atomic vectors" which have no attributes.

•

A list in R allows you to gather a variety of objects under one name (that is, the name of the

list) in an ordered way. These objects can be matrices, vectors, data frames, even other

lists, etc. It is not even required that these objects are related to each other in any way.

•

Recycling•

Missing values•

Examples

Installing R

You might wish to install RStudio after you have installed R. RStudio is a development

environment for R that simplifies many programming tasks.

Windows only:

Visual Studio (starting from version 2015 Update 3) now features a development environment for

R called R Tools, that includes a live interpreter, IntelliSense, and a debugging module. If you

choose this method, you won't have to install R as specified in the following section.

For Windows

Go to the CRAN website, click on download R for Windows, and download the latest version 1.

https://riptutorial.com/ 2

http://www.riptutorial.com/r/topic/5410/meta--documentation-guidelines
http://www.riptutorial.com/r/topic/5649/recycling
http://www.riptutorial.com/r/topic/3388/missing-values
https://www.rstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/vs/rtvs/
https://cran.r-project.org/bin/windows/base/

of R.

Right-click the installer file and RUN as administrator.2.

Select the operational language for installation.3.

Follow the instructions for installation.4.

For OSX / macOS

Alternative 1

(0. Ensure XQuartz is installed)

Go to the CRAN website and download the latest version of R.1.

Open the disk image and run the installer.2.

Follow the instructions for installation.3.

This will install both R and the R-MacGUI. It will put the GUI in the /Applications/ Folder as R.app

where it can either be double-clicked or dragged to the Doc. When a new version is released, the

(re)-installation process will overwrite R.app but prior major versions of R will be maintained. The

actual R code will be in the /Library/Frameworks/R.Framework/Versions/ directory. Using R within

RStudio is also possible and would be using the same R code with a different GUI.

Alternative 2

Install homebrew (the missing package manager for macOS) by following the instructions on

https://brew.sh/

1.

brew install R2.

Those choosing the second method should be aware that the maintainer of the Mac fork advises

against it, and will not respond to questions about difficulties on the R-SIG-Mac Mailing List.

For Debian, Ubuntu and derivatives

You can get the version of R corresponding to your distro via apt-get. However, this version will

frequently be quite far behind the most recent version available on CRAN. You can add CRAN to

your list of recognized "sources".

sudo apt-get install r-base

You can get a more recent version directly from CRAN by adding CRAN to your sources list.

Follow the directions from CRAN for more details. Note in particular the need to also execute this

so that you can use install.packages(). Linux packages are usually distributed as source files and

need compilation:

sudo apt-get install r-base-dev

https://riptutorial.com/ 3

https://www.xquartz.org/
https://cran.r-project.org/bin/macosx/
https://brew.sh/
http://cran.us.r-project.org/bin/linux/ubuntu/README.html

For Red Hat and Fedora

sudo dnf install R

For Archlinux

R is directly available in the Extra package repo.

sudo pacman -S r

More info on using R under Archlinux can be found on the ArchWiki R page.

Hello World!

"Hello World!"

Also, check out the detailed discussion of how, when, whether and why to print a string.

Getting Help

You can use function help() or ? to access documentations and search for help in R. For even

more general searches, you can use help.search() or ??.

#For help on the help function of R
help()

#For help on the paste function
help(paste) #OR
help("paste") #OR
?paste #OR
?"paste"

Visit https://www.r-project.org/help.html for additional information

Interactive mode and R scripts

The interactive mode

The most basic way to use R is the interactive mode. You type commands and immediately get

the result from R.

Using R as a calculator

https://riptutorial.com/ 4

https://wiki.archlinux.org/index.php/R
http://www.riptutorial.com/r/example/1221/printing-and-displaying-strings
https://www.r-project.org/help.html

Start R by typing R at the command prompt of your operating system or by executing RGui on

Windows. Below you can see a screenshot of an interactive R session on Linux:

This is RGui on Windows, the most basic working environment for R under Windows:

https://riptutorial.com/ 5

https://i.stack.imgur.com/uHqS3.png

After the > sign, expressions can be typed in. Once an expression is typed, the result is shown by

R. In the screenshot above, R is used as a calculator: Type

1+1

to immediately see the result, 2. The leading [1] indicates that R returns a vector. In this case, the

vector contains only one number (2).

The first plot

R can be used to generate plots. The following example uses the data set PlantGrowth, which

comes as an example data set along with R

Type int the following all lines into the R prompt which do not start with ##. Lines starting with ##

are meant to document the result which R will return.

data(PlantGrowth)
str(PlantGrowth)
'data.frame': 30 obs. of 2 variables:
$ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
$ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1 ...

https://riptutorial.com/ 6

https://i.stack.imgur.com/2hsAR.png

anova(lm(weight ~ group, data = PlantGrowth))
Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)
group 2 3.7663 1.8832 4.8461 0.01591 *
Residuals 27 10.4921 0.3886

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
boxplot(weight ~ group, data = PlantGrowth, ylab = "Dry weight")

The following plot is created:

data(PlantGrowth) loads the example data set PlantGrowth, which is records of dry masses of plants

which were subject to two different treatment conditions or no treatment at all (control group). The

data set is made available under the name PlantGrowth. Such a name is also called a Variable.

To load your own data, the following two documentation pages might be helpful:

Reading and writing tabular data in plain-text files (CSV, TSV, etc.)•

I/O for foreign tables (Excel, SAS, SPSS, Stata)•

str(PlantGrowth) shows information about the data set which was loaded. The output indicates that

PlantGrowth is a data.frame, which is R's name for a table. The data.frame contains of two columns

and 30 rows. In this case, each row corresponds to one plant. Details of the two columns are

shown in the lines starting with $: The first column is called weight and contains numbers (num, the

dry weight of the respective plant). The second column, group, contains the treatment that the plant

was subjected to. This is categorial data, which is called factor in R. Read more information about

data frames.

To compare the dry masses of the three different groups, a one-way ANOVA is performed using

anova(lm(...)). weight ~ group means "Compare the values of the column weight, grouping by

the values of the column group". This is called a Formula in R. data = ... specifies the name of the

table where the data can be found.

The result shows, among others, that there exists a significant difference (Column Pr(>F)), p =

0.01591) between some of the three groups. Post-hoc tests, like Tukey's Test, must be performed

to determine which groups' means differ significantly.

https://riptutorial.com/ 7

https://i.stack.imgur.com/fssq4.png
http://www.riptutorial.com/r/topic/9013/variables
http://www.riptutorial.com/r/topic/481/reading-and-writing-tabular-data-in-plain-text-files--csv--tsv--etc--
http://www.riptutorial.com/r/topic/5536/i-o-for-foreign-tables--excel--sas--spss--stata-
http://www.riptutorial.com/r/topic/438/data-frames
http://www.riptutorial.com/r/topic/438/data-frames
http://www.riptutorial.com/r/topic/1061/formula

boxplot(...) creates a box plot of the data. where the values to be plotted come from. weight ~

group means: "Plot the values of the column weight versus the values of the column group. ylab =

... specifies the label of the y axis. More information: Base plotting

Type q() or Ctrl-D to exit from the R session.

R scripts

To document your research, it is favourable to save the commands you use for calculation in a file.

For that effect, you can create R scripts. An R script is a simple text file, containing R commands.

Create a text file with the name plants.R, and fill it with the following text, where some commands

are familiar from the code block above:

data(PlantGrowth)

anova(lm(weight ~ group, data = PlantGrowth))

png("plant_boxplot.png", width = 400, height = 300)
boxplot(weight ~ group, data = PlantGrowth, ylab = "Dry weight")
dev.off()

Execute the script by typing into your terminal (The terminal of your operating system, not an

interactive R session like in the previous section!)

R --no-save <plant.R >plant_result.txt

The file plant_result.txt contains the results of your calculation, as if you had typed them into the

interactive R prompt. Thereby, your calculations are documented.

The new commands png and dev.off are used for saving the boxplot to disk. The two commands

must enclose the plotting command, as shown in the example above. png("FILENAME", width = ...,

height = ...) opens a new PNG file with the specified file name, width and height in pixels.

dev.off() will finish plotting and saves the plot to disk. No output is saved until dev.off() is called.

Read Getting started with R Language online: https://riptutorial.com/r/topic/360/getting-started-

with-r-language

https://riptutorial.com/ 8

http://www.riptutorial.com/r/topic/1377/base-plotting
https://riptutorial.com/r/topic/360/getting-started-with-r-language
https://riptutorial.com/r/topic/360/getting-started-with-r-language

Chapter 2: *apply family of functions

(functionals)

Remarks

A function in the *apply family is an abstraction of a for loop. Compared with the for loops *apply

functions have the following advantages:

Require less code to write.1.

Doesn't have an iteration counter.2.

Doesn't use temporary variables to store intermediate results.3.

However for loops are more general and can give us more control allowing to achieve complex

computations that are not always trivial to do using *apply functions.

The relationship between for loops and *apply functions is explained in the documentation for for

loops.

Members of the *apply Family

The *apply family of functions contains several variants of the same principle that differ based

primarily on the kind of output they return.

function Input Output

apply matrix, data.frame, or
array

vector or matrix (depending on the length of each

element returned)

sapply vector or list
vector or matrix (depending on the length of each

element returned)

lapply vector or list list

vapply vector or `list
vector or matrix (depending on the length of each

element returned) of the user-designated class

mapply
multiple vectors, lists or

a combination
list

See "Examples" to see how each of these functions is used.

Examples

https://riptutorial.com/ 9

http://www.riptutorial.com/r/topic/2201/control-flow-structures
http://www.riptutorial.com/r/topic/2201/control-flow-structures
http://www.riptutorial.com/r/topic/2201/control-flow-structures
http://www.riptutorial.com/r/topic/2201/control-flow-structures

Use anonymous functions with apply

apply is used to evaluate a function (maybe an anonymous one) over the margins of an array or

matrix.

Let's use the iris dataset to illustrate this idea. The iris dataset has measurements of 150

flowers from 3 species. Let's see how this dataset is structured:

> head(iris)

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Now, imagine that you want to know the mean of each of these variables. One way to solve this

might be to use a for loop, but R programmers will often prefer to use apply (for reasons why, see

Remarks):

> apply(iris[1:4], 2, mean)

Sepal.Length Sepal.Width Petal.Length Petal.Width
 5.843333 3.057333 3.758000 1.199333

In the first parameter, we subset iris to include only the first 4 columns, because mean only

works on numeric data.

•

The second parameter value of 2 indicates that we want to work on the columns only (the

second subscript of the r×c array); 1 would give the row means.

•

In the same way we can calculate more meaningful values:

standard deviation
apply(iris[1:4], 2, sd)
variance
apply(iris[1:4], 2, var)

Caveat: R has some built-in functions which are better for calculating column and row sums and

means: colMeans and rowMeans.

Now, let's do a different and more meaningful task: let's calculate the mean only for those values

which are bigger than 0.5. For that, we will create our own mean function.

> our.mean.function <- function(x) { mean(x[x > 0.5]) }
> apply(iris[1:4], 2, our.mean.function)

Sepal.Length Sepal.Width Petal.Length Petal.Width
 5.843333 3.057333 3.758000 1.665347

https://riptutorial.com/ 10

http://stat.ethz.ch/R-manual/R-patched/library/base/html/colSums.html
http://stat.ethz.ch/R-manual/R-patched/library/base/html/colSums.html
http://stat.ethz.ch/R-manual/R-patched/library/base/html/colSums.html

(Note the difference in the mean of Petal.Width)

But, what if we don't want to use this function in the rest of our code? Then, we can use an

anonymous function, and write our code like this:

apply(iris[1:4], 2, function(x) { mean(x[x > 0.5]) })

So, as we have seen, we can use apply to execute the same operation on columns or rows of a

dataset using only one line.

Caveat: Since apply returns very different kinds of output depending on the length of the results of

the specified function, it may not be the best choice in cases where you are not working

interactively. Some of the other *apply family functions are a bit more predictable (see Remarks).

Bulk File Loading

for a large number of files which may need to be operated on in a similar process and with well

structured file names.

firstly a vector of the file names to be accessed must be created, there are multiple options for this:

Creating the vector manually with paste0()

 files <- paste0("file_", 1:100, ".rds")

•

Using list.files() with a regex search term for the file type, requires knowledge of regular

expressions (regex) if other files of same type are in the directory.

 files <- list.files("./", pattern = "\\.rds$", full.names = TRUE)

•

where X is a vector of part of the files naming format used.

lapply will output each response as element of a list.

readRDS is specific to .rds files and will change depending on the application of the process.

my_file_list <- lapply(files, readRDS)

This is not necessarily faster than a for loop from testing but allows all files to be an element of a

list without assigning them explicitly.

Finally, we often need to load multiple packages at once. This trick can do it quite easily by

applying library() to all libraries that we wish to import:

lapply(c("jsonlite","stringr","igraph"),library,character.only=TRUE)

Combining multiple `data.frames` (`lapply`, `mapply`)

https://riptutorial.com/ 11

http://www.riptutorial.com/regex/topic/259/getting-started-with-regular-expressions

In this exercise, we will generate four bootstrap linear regression models and combine the

summaries of these models into a single data frame.

library(broom)

#* Create the bootstrap data sets
BootData <- lapply(1:4,
 function(i) mtcars[sample(1:nrow(mtcars),
 size = nrow(mtcars),
 replace = TRUE),])

#* Fit the models
Models <- lapply(BootData,
 function(BD) lm(mpg ~ qsec + wt + factor(am),
 data = BD))

#* Tidy the output into a data.frame
Tidied <- lapply(Models,
 tidy)

#* Give each element in the Tidied list a name
Tidied <- setNames(Tidied, paste0("Boot", seq_along(Tidied)))

At this point, we can take two approaches to inserting the names into the data.frame.

#* Insert the element name into the summary with `lapply`
#* Requires passing the names attribute to `lapply` and referencing `Tidied` within
#* the applied function.
Described_lapply <-
 lapply(names(Tidied),
 function(nm) cbind(nm, Tidied[[nm]]))

Combined_lapply <- do.call("rbind", Described_lapply)

#* Insert the element name into the summary with `mapply`
#* Allows us to pass the names and the elements as separate arguments.
Described_mapply <-
 mapply(
 function(nm, dframe) cbind(nm, dframe),
 names(Tidied),
 Tidied,
 SIMPLIFY = FALSE)

Combined_mapply <- do.call("rbind", Described_mapply)

If you're a fan of magrittr style pipes, you can accomplish the entire task in a single chain (though

it may not be prudent to do so if you need any of the intermediary objects, such as the model

objects themselves):

library(magrittr)
library(broom)
Combined <- lapply(1:4,
 function(i) mtcars[sample(1:nrow(mtcars),
 size = nrow(mtcars),
 replace = TRUE),]) %>%
 lapply(function(BD) lm(mpg ~ qsec + wt + factor(am), data = BD)) %>%
 lapply(tidy) %>%

https://riptutorial.com/ 12

 setNames(paste0("Boot", seq_along(.))) %>%
 mapply(function(nm, dframe) cbind(nm, dframe),
 nm = names(.),
 dframe = .,
 SIMPLIFY = FALSE) %>%
 do.call("rbind", .)

Using built-in functionals

Built-in functionals: lapply(), sapply(), and

mapply()

R comes with built-in functionals, of which perhaps the most well-known are the apply family of

functions. Here is a description of some of the most common apply functions:

lapply() = takes a list as an argument and applies the specified function to the list.•

sapply() = the same as lapply() but attempts to simplify the output to a vector or a matrix.

vapply() = a variant of sapply() in which the output object's type must be specified.○

•

mapply() = like lapply() but can pass multiple vectors as input to the specified function. Can

be simplified like sapply().

Map() is an alias to mapply() with SIMPLIFY = FALSE.○

•

lapply()

lapply() can be used with two different iterations:

lapply(variable, FUN)•
lapply(seq_along(variable), FUN)•

Two ways of finding the mean of x
set.seed(1)
df <- data.frame(x = rnorm(25), y = rnorm(25))
lapply(df, mean)
lapply(seq_along(df), function(x) mean(df[[x]))

sapply()

sapply() will attempt to resolve its output to either a vector or a matrix.

Two examples to show the different outputs of sapply()
sapply(letters, print) ## produces a vector
x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
sapply(x, quantile) ## produces a matrix

mapply()

https://riptutorial.com/ 13

mapply() works much like lapply() except it can take multiple vectors as input (hence the m for

multivariate).

mapply(sum, 1:5, 10:6, 3) # 3 will be "recycled" by mapply

Using user-defined functionals

User-defined functionals

Users can create their own functionals to varying degrees of complexity. The following examples

are from Functionals by Hadley Wickham:

randomise <- function(f) f(runif(1e3))

lapply2 <- function(x, f, ...) {
 out <- vector("list", length(x))
 for (i in seq_along(x)) {
 out[[i]] <- f(x[[i]], ...)
 }
 out
}

In the first case, randomise accepts a single argument f, and calls it on a sample of Uniform

random variables. To demonstrate equivalence, we call set.seed below:

set.seed(123)
randomise(mean)
#[1] 0.4972778

set.seed(123)
mean(runif(1e3))
#[1] 0.4972778

set.seed(123)
randomise(max)
#[1] 0.9994045

set.seed(123)
max(runif(1e3))
#[1] 0.9994045

The second example is a re-implementation of base::lapply, which uses functionals to apply an

operation (f) to each element in a list (x). The ... parameter allows the user to pass additional

arguments to f, such as the na.rm option in the mean function:

lapply(list(c(1, 3, 5), c(2, NA, 6)), mean)
[[1]]
[1] 3

[[2]]
[1] NA

https://riptutorial.com/ 14

http://adv-r.had.co.nz/Functionals.html

lapply2(list(c(1, 3, 5), c(2, NA, 6)), mean)
[[1]]
[1] 3

[[2]]
[1] NA

lapply(list(c(1, 3, 5), c(2, NA, 6)), mean, na.rm = TRUE)
[[1]]
[1] 3

[[2]]
[1] 4

lapply2(list(c(1, 3, 5), c(2, NA, 6)), mean, na.rm = TRUE)
[[1]]
[1] 3

[[2]]
[1] 4

Read *apply family of functions (functionals) online: https://riptutorial.com/r/topic/3567/-apply-

family-of-functions--functionals-

https://riptutorial.com/ 15

https://riptutorial.com/r/topic/3567/-apply-family-of-functions--functionals-
https://riptutorial.com/r/topic/3567/-apply-family-of-functions--functionals-

Chapter 3: .Rprofile

Remarks

There is a nice chapter on the matter in Efficient R programming

Examples

.Rprofile - the first chunk of code executed

.Rprofile is a file containing R code that is executed when you launch R from the directory

containing the .Rprofile file. The similarly named Rprofile.site, located in R's home directory, is

executed by default every time you load R from any directory. Rprofile.site and to a greater

extend .Rprofile can be used to initialize an R session with personal preferences and various

utility functions that you have defined.

Important note: if you use RStudio, you can have a separate .Rprofile in every RStudio

project directory.

Here are some examples of code that you might include in an .Rprofile file.

Setting your R home directory

set R_home
Sys.setenv(R_USER="c:/R_home") # just an example directory
but don't confuse this with the $R_HOME environment variable.

Setting page size options

options(papersize="a4")
options(editor="notepad")
options(pager="internal")

set the default help type

options(help_type="html")

set a site library

https://riptutorial.com/ 16

https://bookdown.org/csgillespie/efficientR/set-up.html#r-startup

.Library.site <- file.path(chartr("\\", "/", R.home()), "site-library")

Set a CRAN mirror

local({r <- getOption("repos")
 r["CRAN"] <- "http://my.local.cran"
 options(repos=r)})

Setting the location of your library

This will allow you to not have to install all the packages again with each R version update.

library location
.libPaths("c:/R_home/Rpackages/win")

Custom shortcuts or functions

Sometimes it is useful to have a shortcut for a long R expression. A common example of this

setting an active binding to access the last top-level expression result without having to type out

.Last.value:

makeActiveBinding(".", function(){.Last.value}, .GlobalEnv)

Because .Rprofile is just an R file, it can contain any arbitrary R code.

Pre-loading the most useful packages

This is bad practice and should generally be avoided because it separates package loading code

from the scripts where those packages are actually used.

See Also

See help(Startup) for all the different startup scripts, and further aspects. In particular, two system-

wide Profile files can be loaded as well. The first, Rprofile, may contain global settings, the other

file Profile.site may contain local choices the system administrator can make for all users. Both

files are found in the ${RHOME}/etc directory of the R installation. This directory also contains global

files Renviron and Renviron.site which both can be completemented with a local file ~/.Renviron in

the user's home directory.

.Rprofile example

https://riptutorial.com/ 17

Startup

Load library setwidth on start - to set the width automatically.
.First <- function() {
 library(setwidth)
 # If 256 color terminal - use library colorout.
 if (Sys.getenv("TERM") %in% c("xterm-256color", "screen-256color")) {
 library("colorout")
 }
}

Options

Select default CRAN mirror for package installation.
options(repos=c(CRAN="https://cran.gis-lab.info/"))

Print maximum 1000 elements.
options(max.print=1000)

No scientific notation.
options(scipen=10)

No graphics in menus.
options(menu.graphics=FALSE)

Auto-completion for package names.
utils::rc.settings(ipck=TRUE)

Custom Functions

Invisible environment to mask defined functions
.env = new.env()

Quit R without asking to save.
.env$q <- function (save="no", ...) {
 quit(save=save, ...)
}

Attach the environment to enable functions.
attach(.env, warn.conflicts=FALSE)

Read .Rprofile online: https://riptutorial.com/r/topic/4166/-rprofile

https://riptutorial.com/ 18

https://riptutorial.com/r/topic/4166/-rprofile

Chapter 4: Aggregating data frames

Introduction

Aggregation is one of the most common uses for R. There are several ways to do so in R, which

we will illustrate here.

Examples

Aggregating with base R

For this, we will use the function aggregate, which can be used as follows:

aggregate(formula,function,data)

The following code shows various ways of using the aggregate function.

CODE:

df = data.frame(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup =
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5))

sum, grouping by one column
aggregate(value~group, FUN=sum, data=df)

mean, grouping by one column
aggregate(value~group, FUN=mean, data=df)

sum, grouping by multiple columns
aggregate(value~group+subgroup,FUN=sum,data=df)

custom function, grouping by one column
in this example we want the sum of all values larger than 2 per group.
aggregate(value~group, FUN=function(x) sum(x[x>2]), data=df)

OUTPUT:

> df = data.frame(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup =
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5))
> print(df)
 group subgroup value
1 Group 1 A 2.0
2 Group 1 A 2.5
3 Group 2 A 1.0
4 Group 2 A 2.0
5 Group 2 B 1.5
>
> # sum, grouping by one column
> aggregate(value~group, FUN=sum, data=df)
 group value
1 Group 1 4.5

https://riptutorial.com/ 19

2 Group 2 4.5
>
> # mean, grouping by one column
> aggregate(value~group, FUN=mean, data=df)
 group value
1 Group 1 2.25
2 Group 2 1.50
>
> # sum, grouping by multiple columns
> aggregate(value~group+subgroup,FUN=sum,data=df)
 group subgroup value
1 Group 1 A 4.5
2 Group 2 A 3.0
3 Group 2 B 1.5
>
> # custom function, grouping by one column
> # in this example we want the sum of all values larger than 2 per group.
> aggregate(value~group, FUN=function(x) sum(x[x>2]), data=df)
 group value
1 Group 1 2.5
2 Group 2 0.0

Aggregating with dplyr

Aggregating with dplyr is easy! You can use the group_by() and the summarize() functions for this.

Some examples are given below.

CODE:

Aggregating with dplyr
library(dplyr)

df = data.frame(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup =
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5))
print(df)

sum, grouping by one column
df %>% group_by(group) %>% summarize(value = sum(value)) %>% as.data.frame()

mean, grouping by one column
df %>% group_by(group) %>% summarize(value = mean(value)) %>% as.data.frame()

sum, grouping by multiple columns
df %>% group_by(group,subgroup) %>% summarize(value = sum(value)) %>% as.data.frame()

custom function, grouping by one column
in this example we want the sum of all values larger than 2 per group.
df %>% group_by(group) %>% summarize(value = sum(value[value>2])) %>% as.data.frame()

OUTPUT:

> library(dplyr)
>
> df = data.frame(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup =
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5))
> print(df)
 group subgroup value

https://riptutorial.com/ 20

1 Group 1 A 2.0
2 Group 1 A 2.5
3 Group 2 A 1.0
4 Group 2 A 2.0
5 Group 2 B 1.5
>
> # sum, grouping by one column
> df %>% group_by(group) %>% summarize(value = sum(value)) %>% as.data.frame()
 group value
1 Group 1 4.5
2 Group 2 4.5
>
> # mean, grouping by one column
> df %>% group_by(group) %>% summarize(value = mean(value)) %>% as.data.frame()
 group value
1 Group 1 2.25
2 Group 2 1.50
>
> # sum, grouping by multiple columns
> df %>% group_by(group,subgroup) %>% summarize(value = sum(value)) %>% as.data.frame()
 group subgroup value
1 Group 1 A 4.5
2 Group 2 A 3.0
3 Group 2 B 1.5
>
> # custom function, grouping by one column
> # in this example we want the sum of all values larger than 2 per group.
> df %>% group_by(group) %>% summarize(value = sum(value[value>2])) %>% as.data.frame()
 group value
1 Group 1 2.5
2 Group 2 0.0

Aggregating with data.table

Grouping with the data.table package is done using the syntax dt[i, j, by] Which can be read out

loud as: "Take dt, subset rows using i, then calculate j, grouped by by." Within the dt statement,

multiple calculations or groups should be put in a list. Since an alias for list() is .(), both can be

used interchangeably. In the examples below we use .().

CODE:

Aggregating with data.table
library(data.table)

dt = data.table(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup =
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5))
print(dt)

sum, grouping by one column
dt[,.(value=sum(value)),group]

mean, grouping by one column
dt[,.(value=mean(value)),group]

sum, grouping by multiple columns
dt[,.(value=sum(value)),.(group,subgroup)]

custom function, grouping by one column

https://riptutorial.com/ 21

in this example we want the sum of all values larger than 2 per group.
dt[,.(value=sum(value[value>2])),group]

OUTPUT:

> # Aggregating with data.table
> library(data.table)
>
> dt = data.table(group=c("Group 1","Group 1","Group 2","Group 2","Group 2"), subgroup =
c("A","A","A","A","B"),value = c(2,2.5,1,2,1.5))
> print(dt)
 group subgroup value
1: Group 1 A 2.0
2: Group 1 A 2.5
3: Group 2 A 1.0
4: Group 2 A 2.0
5: Group 2 B 1.5
>
> # sum, grouping by one column
> dt[,.(value=sum(value)),group]
 group value
1: Group 1 4.5
2: Group 2 4.5
>
> # mean, grouping by one column
> dt[,.(value=mean(value)),group]
 group value
1: Group 1 2.25
2: Group 2 1.50
>
> # sum, grouping by multiple columns
> dt[,.(value=sum(value)),.(group,subgroup)]
 group subgroup value
1: Group 1 A 4.5
2: Group 2 A 3.0
3: Group 2 B 1.5
>
> # custom function, grouping by one column
> # in this example we want the sum of all values larger than 2 per group.
> dt[,.(value=sum(value[value>2])),group]
 group value
1: Group 1 2.5
2: Group 2 0.0

Read Aggregating data frames online: https://riptutorial.com/r/topic/10792/aggregating-data-

frames

https://riptutorial.com/ 22

https://riptutorial.com/r/topic/10792/aggregating-data-frames
https://riptutorial.com/r/topic/10792/aggregating-data-frames

Chapter 5: Analyze tweets with R

Introduction

(Optional) Every topic has a focus. Tell the readers what they will find here and let future

contributors know what belongs.

Examples

Download Tweets

The first think you need to do is to download tweets. You need to Setup your tweeter account.

Much Information can be found in Internet on how to do it. The following two links were useful for

my Setup (last checked in May 2017)

In particular I found the following two links useful (last checked in May 2017):

Link 1

Link 2

R Libraries

You will need the following R packages

library("devtools")
library("twitteR")
library("ROAuth")

Supposing you have your keys You have to run the following code

api_key <- XXXXXXXXXXXXXXXXXXXXXX
api_secret <- XXXXXXXXXXXXXXXXXXXXXX
access_token <- XXXXXXXXXXXXXXXXXXXXXX
access_token_secret <- XXXXXXXXXXXXXXXXXXXXXX

setup_twitter_oauth(api_key,api_secret)

Change XXXXXXXXXXXXXXXXXXXXXX to your keys (if you have Setup your tweeter account you know

which keys I mean).

Let's now suppose we want to download tweets on coffee. The following code will do it

search.string <- "#coffee"
no.of.tweets <- 1000

https://riptutorial.com/ 23

https://www.credera.com/blog/business-intelligence/twitter-analytics-using-r-part-1-extract-tweets/
http://thinktostart.com/twitter-authentification-with-r/

c_tweets <- searchTwitter(search.string, n=no.of.tweets, lang="en")

You will get 1000 tweets on "coffee".

Get text of tweets

Now we need to access the text of the tweets. So we do it in this way (we also need to clean up

the tweets from special characters that for now we don't need, like emoticons with the sapply

function.)

coffee_tweets = sapply(c_tweets, function(t) t$getText())

coffee_tweets <- sapply(coffee_tweets,function(row) iconv(row, "latin1", "ASCII", sub=""))

and you can check your tweets with the head function.

head(coffee_tweets)

Read Analyze tweets with R online: https://riptutorial.com/r/topic/10086/analyze-tweets-with-r

https://riptutorial.com/ 24

https://riptutorial.com/r/topic/10086/analyze-tweets-with-r

Chapter 6: ANOVA

Examples

Basic usage of aov()

Analysis of Variance (aov) is used to determine if the means of two or more groups differ

significantly from each other. Responses are assumed to be independent of each other, Normally

distributed (within each group), and the within-group variances are assumed equal.

In order to complete the analysis data must be in long format (see reshaping data topic). aov() is a

wrapper around the lm() function, using Wilkinson-Rogers formula notation y~f where y is the

response (independent) variable and f is a factor (categorical) variable representing group

membership. If f is numeric rather than a factor variable, aov() will report the results of a linear

regression in ANOVA format, which may surprise inexperienced users.

The aov() function uses Type I (sequential) Sum of Squares. This type of Sum of Squares tests all

of the (main and interaction) effects sequentially. The result is that the first effect tested is also

assigned shared variance between it and other effects in the model. For the results from such a

model to be reliable, data should be balanced (all groups are of the same size).

When the assumptions for Type I Sum of Squares do not hold, Type II or Type III Sum of Squares

may be applicable. Type II Sum of Squares test each main effect after every other main effect, and

thus controls for any overlapping variance. However, Type II Sum of Squares assumes no

interaction between the main effects.

Lastly, Type III Sum of Squares tests each main effect after every other main effect and every

interaction. This makes Type III Sum of Squares a necessity when an interaction is present.

Type II and Type III Sums of Squares are implemented in the Anova() function.

Using the mtcars data set as an example.

mtCarsAnovaModel <- aov(wt ~ factor(cyl), data=mtcars)

To view summary of ANOVA model:

summary(mtCarsAnovaModel)

One can also extract the coefficients of the underlying lm() model:

coefficients(mtCarsAnovaModel)

Basic usage of Anova()

https://riptutorial.com/ 25

http://www.riptutorial.com/r/topic/2904/reshaping-data-between-long-and-wide-forms

When dealing with an unbalanced design and/or non-orthogonal contrasts, Type II or Type III Sum

of Squares are necessary. The Anova() function from the car package implements these. Type II

Sum of Squares assumes no interaction between main effects. If interactions are assumed, Type

III Sum of Squares is appropriate.

The Anova() function wraps around the lm() function.

Using the mtcars data sets as an example, demonstrating the difference between Type II and Type

III when an interaction is tested.

> Anova(lm(wt ~ factor(cyl)*factor(am), data=mtcars), type = 2)
Anova Table (Type II tests)

Response: wt
 Sum Sq Df F value Pr(>F)
factor(cyl) 7.2278 2 11.5266 0.0002606 ***
factor(am) 3.2845 1 10.4758 0.0032895 **
factor(cyl):factor(am) 0.0668 2 0.1065 0.8993714
Residuals 8.1517 26

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> Anova(lm(wt ~ factor(cyl)*factor(am), data=mtcars), type = 3)
Anova Table (Type III tests)

Response: wt
 Sum Sq Df F value Pr(>F)
(Intercept) 25.8427 1 82.4254 1.524e-09 ***
factor(cyl) 4.0124 2 6.3988 0.005498 **
factor(am) 1.7389 1 5.5463 0.026346 *
factor(cyl):factor(am) 0.0668 2 0.1065 0.899371
Residuals 8.1517 26

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Read ANOVA online: https://riptutorial.com/r/topic/3610/anova

https://riptutorial.com/ 26

https://riptutorial.com/r/topic/3610/anova

Chapter 7: Arima Models

Remarks

The Arima function in the forecast package is more explicit in how it deals with constants, which

may make it easier for some users relative to the arima function in base R.

ARIMA is a general framework for modeling and making predictions from time series data using

(primarily) the series itself. The purpose of the framework is to differentiate short- and long-term

dynamics in a series to improve the accuracy and certainty of forecasts. More poetically, ARIMA

models provide a method for describing how shocks to a system transmit through time.

From an econometric perspective, ARIMA elements are necessary to correct serial correlation and

ensure stationarity.

Examples

Modeling an AR1 Process with Arima

We will model the process

#Load the forecast package
library(forecast)

#Generate an AR1 process of length n (from Cowpertwait & Meltcalfe)
Set up variables
set.seed(1234)
n <- 1000
x <- matrix(0,1000,1)
w <- rnorm(n)

loop to create x
for (t in 2:n) x[t] <- 0.7 * x[t-1] + w[t]
plot(x,type='l')

https://riptutorial.com/ 27

http://i.stack.imgur.com/GBusJ.gif

https://riptutorial.com/ 28

http://i.stack.imgur.com/KNT5j.png

We will fit an Arima model with autoregressive order 1, 0 degrees of differencing, and an MA order

of 0.

#Fit an AR1 model using Arima
fit <- Arima(x, order = c(1, 0, 0))
summary(fit)
Series: x
ARIMA(1,0,0) with non-zero mean

Coefficients:
ar1 intercept
0.7040 -0.0842
s.e. 0.0224 0.1062

sigma^2 estimated as 0.9923: log likelihood=-1415.39
AIC=2836.79 AICc=2836.81 BIC=2851.51

Training set error measures:
ME RMSE MAE MPE MAPE MASE ACF1
Training set -8.369365e-05 0.9961194 0.7835914 Inf Inf 0.91488 0.02263595
Verify that the model captured the true AR parameter

Notice that our coefficient is close to the true value from the generated data

fit$coef[1]
ar1
0.7040085

#Verify that the model eliminates the autocorrelation
acf(x)

https://riptutorial.com/ 29

https://riptutorial.com/ 30

http://i.stack.imgur.com/mlNO4.png

acf(fit$resid)

https://riptutorial.com/ 31

https://riptutorial.com/ 32

http://i.stack.imgur.com/CggZ8.png

#Forecast 10 periods
fcst <- forecast(fit, h = 100)
fcst
 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1001 0.282529070 -0.9940493 1.559107 -1.669829 2.234887
1002 0.173976408 -1.3872262 1.735179 -2.213677 2.561630
1003 0.097554408 -1.5869850 1.782094 -2.478726 2.673835
1004 0.043752667 -1.6986831 1.786188 -2.621073 2.708578
1005 0.005875783 -1.7645535 1.776305 -2.701762 2.713514
...

#Call the point predictions
fcst$mean
Time Series:
Start = 1001
End = 1100
Frequency = 1
 [1] 0.282529070 0.173976408 0.097554408 0.043752667 0.005875783 -0.020789866 -
0.039562711 -0.052778954
 [9] -0.062083302
...

#Plot the forecast
plot(fcst)

https://riptutorial.com/ 33

https://riptutorial.com/ 34

http://i.stack.imgur.com/iI594.png

Read Arima Models online: https://riptutorial.com/r/topic/1725/arima-models

https://riptutorial.com/ 35

https://riptutorial.com/r/topic/1725/arima-models

Chapter 8: Arithmetic Operators

Remarks

Nearly all operators in R are really functions. For example, + is a function defined as function (e1,

e2) .Primitive("+") where e1 is the left-hand side of the operator and e2 is the right-hand side of

the operator. This means it is possible to accomplish rather counterintuitive effects by masking the

+ in base with a user defined function.

For example:

`+` <- function(e1, e2) {e1-e2}

> 3+10
[1] -7

Examples

Range and addition

Let's take an example of adding a value to a range (as it could be done in a loop for example):

3+1:5

Gives:

[1] 4 5 6 7 8

This is because the range operator : has higher precedence than addition operator +.

What happens during evaluation is as follows:

3+1:5•

3+c(1, 2, 3, 4, 5) expansion of the range operator to make a vector of integers.•

c(4, 5, 6, 7, 8) Addition of 3 to each member of the vector.•

To avoid this behavior you have to tell the R interpreter how you want it to order the operations

with () like this:

 (3+1):5

Now R will compute what is inside the parentheses before expanding the range and gives:

 [1] 4 5

https://riptutorial.com/ 36

Addition and subtraction

The basic math operations are performed mainly on numbers or on vectors (lists of numbers).

1. Using single numbers

We can simple enter the numbers concatenated with + for adding and - for subtracting:

> 3 + 4.5
[1] 7.5
> 3 + 4.5 + 2
[1] 9.5
> 3 + 4.5 + 2 - 3.8
[1] 5.7
> 3 + NA
#[1] NA
> NA + NA
#[1] NA
> NA - NA
#[1] NA
> NaN - NA
#[1] NaN
> NaN + NA
#[1] NaN

We can assign the numbers to variables (constants in this case) and do the same operations:

> a <- 3; B <- 4.5; cc <- 2; Dd <- 3.8 ;na<-NA;nan<-NaN
> a + B
[1] 7.5
> a + B + cc
[1] 9.5
> a + B + cc - Dd
[1] 5.7
> B-nan
#[1] NaN
> a+na-na
#[1] NA
> a + na
#[1] NA
> B-nan
#[1] NaN
> a+na-na
#[1] NA

2. Using vectors

In this case we create vectors of numbers and do the operations using those vectors, or

combinations with single numbers. In this case the operation is done considering each element of

the vector:

> A <- c(3, 4.5, 2, -3.8);
> A
[1] 3.0 4.5 2.0 -3.8
> A + 2 # Adding a number

https://riptutorial.com/ 37

[1] 5.0 6.5 4.0 -1.8
> 8 - A # number less vector
[1] 5.0 3.5 6.0 11.8
> n <- length(A) #number of elements of vector A
> n
[1] 4
> A[-n] + A[n] # Add the last element to the same vector without the last element
[1] -0.8 0.7 -1.8
> A[1:2] + 3 # vector with the first two elements plus a number
[1] 6.0 7.5
> A[1:2] - A[3:4] # vector with the first two elements less the vector with elements 3 and 4
[1] 1.0 8.3

We can also use the function sum to add all elements of a vector:

> sum(A)
[1] 5.7
> sum(-A)
[1] -5.7
> sum(A[-n]) + A[n]
[1] 5.7

We must take care with recycling, which is one of the characteristics of R, a behavior that happens

when doing math operations where the length of vectors is different. Shorter vectors in the

expression are recycled as often as need be (perhaps fractionally) until they match the length of

the longest vector. In particular a constant is simply repeated. In this case a Warning is show.

> B <- c(3, 5, -3, 2.7, 1.8)
> B
[1] 3.0 5.0 -3.0 2.7 1.8
> A
[1] 3.0 4.5 2.0 -3.8
> A + B # the first element of A is repeated
[1] 6.0 9.5 -1.0 -1.1 4.8
Warning message:
In A + B : longer object length is not a multiple of shorter object length
> B - A # the first element of A is repeated
[1] 0.0 0.5 -5.0 6.5 -1.2
Warning message:
In B - A : longer object length is not a multiple of shorter object length

In this case the correct procedure will be to consider only the elements of the shorter vector:

> B[1:n] + A
[1] 6.0 9.5 -1.0 -1.1
> B[1:n] - A
[1] 0.0 0.5 -5.0 6.5

When using the sum function, again all the elements inside the function are added.

> sum(A, B)
[1] 15.2
> sum(A, -B)
[1] -3.8
> sum(A)+sum(B)

https://riptutorial.com/ 38

[1] 15.2
> sum(A)-sum(B)
[1] -3.8

Read Arithmetic Operators online: https://riptutorial.com/r/topic/4389/arithmetic-operators

https://riptutorial.com/ 39

https://riptutorial.com/r/topic/4389/arithmetic-operators

Chapter 9: Bar Chart

Introduction

The purpose of the bar plot is to display the frequencies (or proportions) of levels of a factor

variable. For example, a bar plot is used to pictorially display the frequencies (or proportions) of

individuals in various socio-economic (factor) groups(levels-high, middle, low). Such a plot will

help to provide a visual comparison among the various factor levels.

Examples

barplot() function

In barplot, factor-levels are placed on the x-axis and frequencies (or proportions) of various factor-

levels are considered on the y-axis. For each factor-level one bar of uniform width with heights

being proportional to factor level frequency (or proportion) is constructed.

The barplot() function is in the graphics package of the R's System Library. The barplot() function

must be supplied at least one argument. The R help calls this as heights, which must be either

vector or a matrix. If it is vector, its members are the various factor-levels.

To illustrate barplot(), consider the following data preparation:

> grades<-c("A+","A-","B+","B","C")
> Marks<-sample(grades,40,replace=T,prob=c(.2,.3,.25,.15,.1))
> Marks
[1] "A+" "A-" "B+" "A-" "A+" "B" "A+" "B+" "A-" "B" "A+" "A-"
[13] "A-" "B+" "A-" "A-" "A-" "A-" "A+" "A-" "A+" "A+" "C" "C"
[25] "B" "C" "B+" "C" "B+" "B+" "B+" "A+" "B+" "A-" "A+" "A-"
[37] "A-" "B" "C" "A+"
>

A bar chart of the Marks vector is obtained from

> barplot(table(Marks),main="Mid-Marks in Algorithms")

https://riptutorial.com/ 40

Notice that, the barplot() function places the factor levels on the x-axis in the lexicographical order

of the levels. Using the parameter names.arg, the bars in plot can be placed in the order as stated

in the vector, grades.

plot to the desired horizontal axis labels
> barplot(table(Marks),names.arg=grades ,main="Mid-Marks in Algorithms")

Colored bars can be drawn using the col= parameter.

https://riptutorial.com/ 41

https://i.stack.imgur.com/BDqWz.jpg
https://i.stack.imgur.com/Cef5z.png

> barplot(table(Marks),names.arg=grades,col = c("lightblue",
 "lightcyan", "lavender", "mistyrose", "cornsilk"),
 main="Mid-Marks in Algorithms")

A bar chart with horizontal bars can be obtained as follows:

> barplot(table(Marks),names.arg=grades,horiz=TRUE,col = c("lightblue",
 "lightcyan", "lavender", "mistyrose", "cornsilk"),
 main="Mid-Marks in Algorithms")

https://riptutorial.com/ 42

https://i.stack.imgur.com/e5KoJ.jpg

A bar chart with proportions on the y-axis can be obtained as follows:

> barplot(prop.table(table(Marks)),names.arg=grades,col = c("lightblue",
 "lightcyan", "lavender", "mistyrose", "cornsilk"),
 main="Mid-Marks in Algorithms")

The sizes of the factor-level names on the x-axis can be increased using cex.names parameter.

https://riptutorial.com/ 43

https://i.stack.imgur.com/qg4NG.jpg
https://i.stack.imgur.com/15zCn.jpg

> barplot(prop.table(table(Marks)),names.arg=grades,col = c("lightblue",
 "lightcyan", "lavender", "mistyrose", "cornsilk"),
 main="Mid-Marks in Algorithms",cex.names=2)

The heights parameter of the barplot() could be a matrix. For example it could be matrix, where

the columns are the various subjects taken in a course, the rows could be the labels of the grades.

Consider the following matrix:

> gradTab
 Algorithms Operating Systems Discrete Math
 A- 13 10 7
 A+ 10 7 2
 B 4 2 14
 B+ 8 19 12
 C 5 2 5

To draw a stacked bar, simply use the command:

> barplot(gradTab,col = c("lightblue","lightcyan",
 "lavender", "mistyrose", "cornsilk"),legend.text = grades,
 main="Mid-Marks in Algorithms")

https://riptutorial.com/ 44

https://i.stack.imgur.com/ZDXEB.jpg

To draw a juxtaposed bars, use the besides parameter, as given under:

 > barplot(gradTab,beside = T,col = c("lightblue","lightcyan",
 "lavender", "mistyrose", "cornsilk"),legend.text = grades,
 main="Mid-Marks in Algorithms")

https://riptutorial.com/ 45

https://i.stack.imgur.com/h6N2L.jpg

A horizontal bar chart can be obtained using horiz=T parameter:

> barplot(gradTab,beside = T,horiz=T,col = c("lightblue","lightcyan",
 "lavender", "mistyrose", "cornsilk"),legend.text = grades,
 cex.names=.75,main="Mid-Marks in Algorithms")

https://riptutorial.com/ 46

https://i.stack.imgur.com/jZTwk.jpg

Read Bar Chart online: https://riptutorial.com/r/topic/8091/bar-chart

https://riptutorial.com/ 47

https://i.stack.imgur.com/EAp9L.jpg
https://riptutorial.com/r/topic/8091/bar-chart

Chapter 10: Base Plotting

Parameters

Parameter Details

x x-axis variable. May supply either data$variablex or data[,x]

y y-axis variable. May supply either data$variabley or data[,y]

main Main title of plot

sub Optional subtitle of plot

xlab Label for x-axis

ylab Label for y-axis

pch Integer or character indicating plotting symbol

col Integer or string indicating color

type
Type of plot. "p" for points, "l" for lines, "b" for both, "c" for the lines part alone

of "b", "o" for both ‘overplotted’, "h" for ‘histogram’-like (or ‘high-density’) vertical

lines, "s" for stair steps, "S" for other steps, "n" for no plotting

Remarks

The items listed in the "Parameters" section is a small fraction of hte possible parameters that can

be modified or set by the par function. See par for a more complete list. In addition all the graphics

devices, including the system specific interactive graphics devices will have a set of parameters

that can customize the output.

Examples

Basic Plot

A basic plot is created by calling plot(). Here we use the built-in cars data frame that contains the

speed of cars and the distances taken to stop in the 1920s. (To find out more about the dataset,

use help(cars)).

plot(x = cars$speed, y = cars$dist, pch = 1, col = 1,
 main = "Distance vs Speed of Cars",
 xlab = "Speed", ylab = "Distance")

https://riptutorial.com/ 48

We can use many other variations in the code to get the same result. We can also change the

parameters to obtain different results.

with(cars, plot(dist~speed, pch = 2, col = 3,
 main = "Distance to stop vs Speed of Cars",
 xlab = "Speed", ylab = "Distance"))

https://riptutorial.com/ 49

http://i.stack.imgur.com/nF7hY.png

Additional features can be added to this plot by calling points(), text(), mtext(), lines(), grid(),

etc.

plot(dist~speed, pch = "*", col = "magenta", data=cars,
 main = "Distance to stop vs Speed of Cars",
 xlab = "Speed", ylab = "Distance")
mtext("In the 1920s.")
grid(,col="lightblue")

https://riptutorial.com/ 50

http://i.stack.imgur.com/04jUS.png

Matplot

matplot is useful for quickly plotting multiple sets of observations from the same object, particularly

from a matrix, on the same graph.

Here is an example of a matrix containing four sets of random draws, each with a different mean.

xmat <- cbind(rnorm(100, -3), rnorm(100, -1), rnorm(100, 1), rnorm(100, 3))
head(xmat)
[,1] [,2] [,3] [,4]
[1,] -3.072793 -2.53111494 0.6168063 3.780465
[2,] -3.702545 -1.42789347 -0.2197196 2.478416
[3,] -2.890698 -1.88476126 1.9586467 5.268474
[4,] -3.431133 -2.02626870 1.1153643 3.170689
[5,] -4.532925 0.02164187 0.9783948 3.162121
[6,] -2.169391 -1.42699116 0.3214854 4.480305

One way to plot all of these observations on the same graph is to do one plot call followed by

three more points or lines calls.

plot(xmat[,1], type = 'l')
lines(xmat[,2], col = 'red')
lines(xmat[,3], col = 'green')
lines(xmat[,4], col = 'blue')

https://riptutorial.com/ 51

http://i.stack.imgur.com/LFcFM.png

However, this is both tedious, and causes problems because, among other things, by default the

axis limits are fixed by plot to fit only the first column.

Much more convenient in this situation is to use the matplot function, which only requires one call

and automatically takes care of axis limits and changing the aesthetics for each column to make

them distinguishable.

matplot(xmat, type = 'l')

https://riptutorial.com/ 52

https://i.stack.imgur.com/aAMYW.png

Note that, by default, matplot varies both color (col) and linetype (lty) because this increases the

number of possible combinations before they get repeated. However, any (or both) of these

aesthetics can be fixed to a single value...

matplot(xmat, type = 'l', col = 'black')

https://riptutorial.com/ 53

https://i.stack.imgur.com/VH2El.png

...or a custom vector (which will recycle to the number of columns, following standard R vector

recycling rules).

matplot(xmat, type = 'l', col = c('red', 'green', 'blue', 'orange'))

https://riptutorial.com/ 54

https://i.stack.imgur.com/fWKXq.png

Standard graphical parameters, including main, xlab, xmin, work exactly the same way as for plot.

For more on those, see ?par.

Like plot, if given only one object, matplot assumes it's the y variable and uses the indices for x.

However, x and y can be specified explicitly.

matplot(x = seq(0, 10, length.out = 100), y = xmat, type='l')

https://riptutorial.com/ 55

https://i.stack.imgur.com/mcBEO.png

In fact, both x and y can be matrices.

xes <- cbind(seq(0, 10, length.out = 100),
 seq(2.5, 12.5, length.out = 100),
 seq(5, 15, length.out = 100),
 seq(7.5, 17.5, length.out = 100))
matplot(x = xes, y = xmat, type = 'l')

https://riptutorial.com/ 56

https://i.stack.imgur.com/ExiLy.png

Histograms

Histograms allow for a pseudo-plot of the underlying distribution of the data.

hist(ldeaths)

https://riptutorial.com/ 57

https://i.stack.imgur.com/XPEKt.png

hist(ldeaths, breaks = 20, freq = F, col = 3)

https://riptutorial.com/ 58

http://i.stack.imgur.com/4v3fc.png

Combining Plots

It's often useful to combine multiple plot types in one graph (for example a Barplot next to a

Scatterplot.) R makes this easy with the help of the functions par() and layout().

par()

par uses the arguments mfrow or mfcol to create a matrix of nrows and ncols c(nrows, ncols) which

will serve as a grid for your plots. The following example shows how to combine four plots in one

graph:

par(mfrow=c(2,2))
plot(cars, main="Speed vs. Distance")
hist(cars$speed, main="Histogram of Speed")
boxplot(cars$dist, main="Boxplot of Distance")
boxplot(cars$speed, main="Boxplot of Speed")

https://riptutorial.com/ 59

http://i.stack.imgur.com/fDnsy.png

layout()

The layout() is more flexible and allows you to specify the location and the extent of each plot

within the final combined graph. This function expects a matrix object as an input:

layout(matrix(c(1,1,2,3), 2,2, byrow=T))
hist(cars$speed, main="Histogram of Speed")
boxplot(cars$dist, main="Boxplot of Distance")
boxplot(cars$speed, main="Boxplot of Speed")

https://riptutorial.com/ 60

http://i.stack.imgur.com/URhlw.png

Density plot

A very useful and logical follow-up to histograms would be to plot the smoothed density function of

a random variable. A basic plot produced by the command

plot(density(rnorm(100)),main="Normal density",xlab="x")

would look like

https://riptutorial.com/ 61

http://i.stack.imgur.com/YYh7L.png

You can overlay a histogram and a density curve with

x=rnorm(100)
hist(x,prob=TRUE,main="Normal density + histogram")
lines(density(x),lty="dotted",col="red")

which gives

https://riptutorial.com/ 62

http://i.stack.imgur.com/n4M4X.png
http://i.stack.imgur.com/FJDVX.png

Empirical Cumulative Distribution Function

A very useful and logical follow-up to histograms and density plots would be the Empirical

Cumulative Distribution Function. We can use the function ecdf() for this purpose. A basic plot

produced by the command

plot(ecdf(rnorm(100)),main="Cumulative distribution",xlab="x")

would look like

https://riptutorial.com/ 63

Getting Started with R_Plots

Scatterplot•

https://riptutorial.com/ 64

https://i.stack.imgur.com/02wGZ.png

You have two vectors and you want to plot them.

x_values <- rnorm(n = 20 , mean = 5 , sd = 8) #20 values generated from Normal(5,8)
y_values <- rbeta(n = 20 , shape1 = 500 , shape2 = 10) #20 values generated from Beta(500,10)

If you want to make a plot which has the y_values in vertical axis and the x_valuesin horizontal axis,

you can use the following commands:

plot(x = x_values, y = y_values, type = "p") #standard scatter-plot
plot(x = x_values, y = y_values, type = "l") # plot with lines
plot(x = x_values, y = y_values, type = "n") # empty plot

You can type ?plot() in the console to read about more options.

Boxplot•

You have some variables and you want to examine their Distributions

#boxplot is an easy way to see if we have some outliers in the data.

z<- rbeta(20 , 500 , 10) #generating values from beta distribution
z[c(19 , 20)] <- c(0.97 , 1.05) # replace the two last values with outliers
boxplot(z) # the two points are the outliers of variable z.

Histograms•

Easy way to draw histograms

hist(x = x_values) # Histogram for x vector
hist(x = x_values, breaks = 3) #use breaks to set the numbers of bars you want

Pie_charts•

If you want to visualize the frequencies of a variable just draw pie

First we have to generate data with frequencies, for example :

P <- c(rep('A' , 3) , rep('B' , 10) , rep('C' , 7))
t <- table(P) # this is a frequency matrix of variable P
pie(t) # And this is a visual version of the matrix above

Read Base Plotting online: https://riptutorial.com/r/topic/1377/base-plotting

https://riptutorial.com/ 65

https://riptutorial.com/r/topic/1377/base-plotting

Chapter 11: Bibliography in RMD

Parameters

Parameter in YAML header Detail

toc table of contents

number_sections numbering the sections automatically

bibliography path to the bibliography file

csl path to the style file

Remarks

The purpose of this documentation is integrating an academic bibliography in a RMD file.•

To use the documentation given above, you have to install rmarkdown in R via

install.packages("rmarkdown").

•

Sometimes Rmarkdown removes the hyperlinks of the citations. The solution for this is

adding the following code to your YAML header: link-citations: true

•

The bibliography may have any of these formats:•

Format File extension

MODS .mods

BibLaTeX .bib

BibTeX .bibtex

RIS .ris

EndNote .enl

EndNote XML .xml

ISI .wos

MEDLINE .medline

Copac .copac

JSON citeproc .json

https://riptutorial.com/ 66

Examples

Specifying a bibliography and cite authors

The most important part of your RMD file is the YAML header. For writing an academic paper, I

suggest to use PDF output, numbered sections and a table of content (toc).

title: "Writing an academic paper in R"
author: "Author"
date: "Date"
output:
 pdf_document:
 number_sections: yes
toc: yes
bibliography: bibliography.bib

In this example, our file bibliography.bib looks like this:

@ARTICLE{Meyer2000,
 AUTHOR="Bernd Meyer",
 TITLE="A constraint-based framework for diagrammatic reasoning",
 JOURNAL="Applied Artificial Intelligence",
 VOLUME= "14",
 ISSUE = "4",
 PAGES= "327--344",
 YEAR=2000
}

To cite an author mentioned in your .bib file write @ and the bibkey, e.g. Meyer2000.

Introduction

`@Meyer2000` results in @Meyer2000.

`@Meyer2000 [p. 328]` results in @Meyer2000 [p. 328]

`[@Meyer2000]` results in [@Meyer2000]

`[-@Meyer2000]` results in [-@Meyer2000]

Summary

References

Rendering the RMD file via RStudio (Ctrl+Shift+K) or via console rmarkdown::render("<path-to-

your-RMD-file">) results in the following output:

https://riptutorial.com/ 67

pandoc

https://riptutorial.com/ 68

https://i.stack.imgur.com/aldv1.jpg

will use a Chicago author-date format for citations and references. To use another style, you will

need to specify a CSL 1.0 style file in the csl metadata field. In the following a often used citation

style, the elsevier style, is presented (download at https://github.com/citation-style-language/styles

). The style-file has to be stored in the same directory as the RMD file OR the absolute path to the

file has to be submitted.

To use another style then the default one, the following code is used:

title: "Writing an academic paper in R"
author: "Author"
date: "Date"
output:
 pdf_document:
 number_sections: yes
toc: yes
bibliography: bibliography.bib
csl: elsevier-harvard.csl

Introduction

`@Meyer2000` results in @Meyer2000.

`@Meyer2000 [p. 328]` results in @Meyer2000 [p. 328]

`[@Meyer2000]` results in [@Meyer2000]

`[-@Meyer2000]` results in [-@Meyer2000]

Summary

Reference

https://riptutorial.com/ 69

https://github.com/citation-style-language/styles

Notice the differences to the output of example "Specifying a bibliography and cite authors"

Read Bibliography in RMD online: https://riptutorial.com/r/topic/7606/bibliography-in-rmd

https://riptutorial.com/ 70

https://i.stack.imgur.com/pBnr2.jpg
https://riptutorial.com/r/topic/7606/bibliography-in-rmd

Chapter 12: boxplot

Syntax

boxplot(x, ...) # generic function•

boxplot(formula, data = NULL, ..., subset, na.action = NULL) ## S3 method for class

'formula'

•

boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE, notch = FALSE, outline =

TRUE, names, plot = TRUE, border = par("fg"), col = NULL, log = "", pars = list(boxwex =

0.8, staplewex = 0.5, outwex = 0.5), horizontal = FALSE, add = FALSE, at = NULL) ##

Default S3 method

•

Parameters

Parameters Details (source R Documentation)

formula
a formula, such as y ~ grp, where y is a numeric vector of data values to be

split into groups according to the grouping variable grp (usually a factor).

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action
a function which indicates what should happen when the data contain NAs.

The default is to ignore missing values in either the response or the group.

boxwex
a scale factor to be applied to all boxes. When there are only a few groups, the

appearance of the plot can be improved by making the boxes narrower.

plot
if TRUE (the default) then a boxplot is produced. If not, the summaries which

the boxplots are based on are returned.

col
if col is non-null it is assumed to contain colors to be used to colour the bodies

of the box plots. By default they are in the background colour.

Examples

Create a box-and-whisker plot with boxplot() {graphics}

This example use the default boxplot() function and the irisdata frame.

> head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species

https://riptutorial.com/ 71

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Simple boxplot (Sepal.Length)

Create a box-and-whisker graph of a numerical variable

boxplot(iris[,1],xlab="Sepal.Length",ylab="Length(in centemeters)",
 main="Summary Charateristics of Sepal.Length(Iris Data)")

Boxplot of sepal length grouped by species

Create a boxplot of a numerical variable grouped by a categorical variable

boxplot(Sepal.Length~Species,data = iris)

https://riptutorial.com/ 72

https://i.stack.imgur.com/k6A7h.jpg

Bring order

To change order of the box in the plot you have to change the order of the categorical variable's

levels.

For example if we want to have the order virginica - versicolor - setosa

newSpeciesOrder <- factor(iris$Species, levels=c("virginica","versicolor","setosa"))
boxplot(Sepal.Length~newSpeciesOrder,data = iris)

https://riptutorial.com/ 73

https://i.stack.imgur.com/XuMKy.png

Change groups names

If you want to specifie a better name to your groups you can use the Names parameter. It take a

vector of the size of the levels of categorical variable

boxplot(Sepal.Length~newSpeciesOrder,data = iris,names= c("name1","name2","name3"))

https://riptutorial.com/ 74

https://i.stack.imgur.com/O67JY.png

Small improvements

Color

col : add a vector of the size of the levels of categorical variable

boxplot(Sepal.Length~Species,data = iris,col=c("green","yellow","orange"))

https://riptutorial.com/ 75

https://i.stack.imgur.com/NV8nP.png

Proximity of the box

boxwex: set the margin between boxes.

Left boxplot(Sepal.Length~Species,data = iris,boxwex = 0.1)

Right boxplot(Sepal.Length~Species,data = iris,boxwex = 1)

See the summaries which the boxplots are

based plot=FALSE

To see a summary you have to put the paramater plot to FALSE.

Various results are given

https://riptutorial.com/ 76

https://i.stack.imgur.com/TvgfO.png
https://i.stack.imgur.com/qUO0O.png

> boxplot(Sepal.Length~newSpeciesOrder,data = iris,plot=FALSE)
$stats #summary of the numerical variable for the 3 groups
 [,1] [,2] [,3]
[1,] 5.6 4.9 4.3 # extreme value
[2,] 6.2 5.6 4.8 # first quartile limit
[3,] 6.5 5.9 5.0 # median limit
[4,] 6.9 6.3 5.2 # third quartile limit
[5,] 7.9 7.0 5.8 # extreme value

$n #number of observations in each groups
[1] 50 50 50

$conf #extreme value of the notchs
 [,1] [,2] [,3]
[1,] 6.343588 5.743588 4.910622
[2,] 6.656412 6.056412 5.089378

$out #extreme value
[1] 4.9

$group #group in which are the extreme value
[1] 1

$names #groups names
[1] "virginica" "versicolor" "setosa"

Additional boxplot style parameters.

Box

boxlty - box line type•

boxlwd - box line width•

boxcol - box line color•

boxfill - box fill colors•

Median

medlty - median line type ("blank" for no line)•

medlwd - median line widht•

medcol - median line color•

medpch - median point (NA for no symbol)•

medcex - median point size•

medbg - median point background color•

Whisker

whisklty - whisker line type•

whisklwd - whisker line width•

whiskcol - whisker line color•

https://riptutorial.com/ 77

Staple

staplelty - staple line type•

staplelwd - staple line width•

staplecol - staple line color•

Outliers

outlty - outlier line type ("blank" for no line)•

outlwd - outlier line width•

outcol - outlier line color•

outpch - outlier point type (NA for no symbol)•

outcex - outlier point size•

outbg - outlier point background color•

Example

Default and heavily modified plots side by side

par(mfrow=c(1,2))
Default
boxplot(Sepal.Length ~ Species, data=iris)
Modified
boxplot(Sepal.Length ~ Species, data=iris,
 boxlty=2, boxlwd=3, boxfill="cornflowerblue", boxcol="darkblue",
 medlty=2, medlwd=2, medcol="red", medpch=21, medcex=1, medbg="white",
 whisklty=2, whisklwd=3, whiskcol="darkblue",
 staplelty=2, staplelwd=2, staplecol="red",
 outlty=3, outlwd=3, outcol="grey", outpch=NA
)

https://riptutorial.com/ 78

Read boxplot online: https://riptutorial.com/r/topic/1005/boxplot

https://riptutorial.com/ 79

http://i.stack.imgur.com/e7EX0.png
https://riptutorial.com/r/topic/1005/boxplot

Chapter 13: caret

Introduction

caret is an R package that aids in data processing needed for machine learning problems. It

stands for classification and regression training. When building models for a real dataset, there are

some tasks other than the actual learning algorithm that need to be performed, such as cleaning

the data, dealing with incomplete observations, validating our model on a test set, and compare

different models.

caret helps in these scenarios, independent of the actual learning algorithms used.

Examples

Preprocessing

Pre-processing in caret is done through the preProcess() function. Given a matrix or data frame

type object x, preProcess() applies transformations on the training data which can then be applied

to testing data.

The heart of the preProcess() function is the method argument. Method operations are applied in

this order:

Zero-variance filter1.

Near-zero variance filter2.

Box-Cox/Yeo-Johnson/exponential transformation3.

Centering4.

Scaling5.

Range6.

Imputation7.

PCA8.

ICA9.

Spatial Sign10.

Below, we take the mtcars data set and perform centering, scaling, and a spatial sign transform.

auto_index <- createDataPartition(mtcars$mpg, p = .8,
 list = FALSE,
 times = 1)

mt_train <- mtcars[auto_index,]
mt_test <- mtcars[-auto_index,]

process_mtcars <- preProcess(mt_train, method = c("center","scale","spatialSign"))

mtcars_train_transf <- predict(process_mtcars, mt_train)
mtcars_test_tranf <- predict(process_mtcars,mt_test)

https://riptutorial.com/ 80

Read caret online: https://riptutorial.com/r/topic/4271/caret

https://riptutorial.com/ 81

https://riptutorial.com/r/topic/4271/caret

Chapter 14: Classes

Introduction

The class of a data-object determines which functions will process its contents. The class-attribute

is a character vector, and objects can have zero, one or more classes. If there is no class-

attribute, there will still be an implicit class determined by an object's mode. The class can be

inspected with the function class and it can be set or modified by the class<- function. The S3

class system was established early in S's history. The more complex S4 class system was

established later

Remarks

There are several functions for inspecting the "type" of an object. The most useful such function is

class, although sometimes it is necessary to examine the mode of an object. Since we are

discussing "types", one might think that typeof would be useful, but generally the result from mode

will be more useful, because objects with no explicit "class"-attribute will have function dispatch

determined by the "implicit class" determined by their mode.

Examples

Vectors

The most simple data structure available in R is a vector. You can make vectors of numeric

values, logical values, and character strings using the c() function. For example:

c(1, 2, 3)
[1] 1 2 3
c(TRUE, TRUE, FALSE)
[1] TRUE TRUE FALSE
c("a", "b", "c")
[1] "a" "b" "c"

You can also join to vectors using the c() function.

x <- c(1, 2, 5)
y <- c(3, 4, 6)
z <- c(x, y)
z
[1] 1 2 5 3 4 6

A more elaborate treatment of how to create vectors can be found in the "Creating vectors" topic

Inspect classes

Every object in R is assigned a class. You can use class() to find the object's class and str() to

https://riptutorial.com/ 82

http://www.riptutorial.com/r/topic/1088/creating-vectors
http://www.riptutorial.com/r/topic/1088/creating-vectors

see its structure, including the classes it contains. For example:

class(iris)
[1] "data.frame"

str(iris)
'data.frame': 150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 ...

class(iris$Species)
[1] "factor"

We see that iris has the class data.frame and using str() allows us to examine the data inside. The

variable Species in the iris data frame is of class factor, in contrast to the other variables which are

of class numeric. The str() function also provides the length of the variables and shows the first

couple of observations, while the class() function only provides the object's class.

Vectors and lists

Data in R are stored in vectors. A typical vector is a sequence of values all having the same

storage mode (e.g., characters vectors, numeric vectors). See ?atomic for details on the atomic

implicit classes and their corresponding storage modes: "logical", "integer", "numeric" (synonym

"double"), "complex", "character" and "raw". Many classes are simply an atomic vector with a

class attribute on top:

x <- 1826
class(x) <- "Date"
x
[1] "1975-01-01"
 x <- as.Date("1970-01-01")
 class(x)
#[1] "Date"
 is(x,"Date")
#[1] TRUE
 is(x,"integer")
#[1] FALSE
 is(x,"numeric")
#[1] FALSE
 mode(x)
#[1] "numeric"

Lists are a special type of vector where each element can be anything, even another list, hence

the R term for lists: "recursive vectors":

mylist <- list(A = c(5,6,7,8), B = letters[1:10], CC = list(5, "Z"))

Lists have two very important uses:

Since functions can only return a single value, it is common to return complicated results in a •

https://riptutorial.com/ 83

list:

f <- function(x) list(xplus = x + 10, xsq = x^2)

f(7)
$xplus
[1] 17

$xsq
[1] 49

Lists are also the underlying fundamental class for data frames. Under the hood, a data

frame is a list of vectors all having the same length:

L <- list(x = 1:2, y = c("A","B"))
DF <- data.frame(L)
DF
x y
1 1 A
2 2 B
is.list(DF)
[1] TRUE

•

The other class of recursive vectors is R expressions, which are "language"- objects

Read Classes online: https://riptutorial.com/r/topic/3563/classes

https://riptutorial.com/ 84

http://www.riptutorial.com/r/topic/438/data-frames
https://riptutorial.com/r/topic/3563/classes

Chapter 15: Cleaning data

Introduction

Cleaning data in R is paramount to make any analysis. whatever data you have, be it from

measurements taken in the field or scraped from the web it is most probable that you will have to

reshape it, transform it or filter it to make it suitable for your analysis. In this documentation, we will

cover the following topics: - Removing observations with missing data - Factorizing data -

Removing incomplete Rows

Examples

Removing missing data from a vector

First lets create a vector called Vector1:

set.seed(123)
Vector1 <- rnorm(20)

And add missing data to it:

set.seed(123)
Vector1[sample(1:length(Vector1), 5)] <- NA

Now we can use the is.na function to subset the Vector

Vector1 <- Vector1[!is.na(Vector1)]

Now the resulting vector will have removed the NAs of the original Vector1

Removing incomplete rows

There might be times where you have a data frame and you want to remove all the rows that might

contain an NA value, for that the function complete.cases is the best option.

We will use the first 6 rows of the airquality dataset to make an example since it already has NAs

x <- head(airquality)

This has two rows with NAs in the Solar.R column, to remove them we do the following

x_no_NA <- x[complete.cases(x),]

The resulting dataframe x_no_NA will only have complete rows without NAs

https://riptutorial.com/ 85

Read Cleaning data online: https://riptutorial.com/r/topic/8165/cleaning-data

https://riptutorial.com/ 86

https://riptutorial.com/r/topic/8165/cleaning-data

Chapter 16: Code profiling

Examples

System.time

System time gives you the CPU time required to execute a R expression, for example:

system.time(print("hello world"))

[1] "hello world"
user system elapsed
0 0 0

You can add larger pieces of code through use of braces:

system.time({
 library(numbers)
 Primes(1,10^5)
})

Or use it to test functions:

fibb <- function (n) {
 if (n < 3) {
 return(c(0,1)[n])
 } else {
 return(fibb(n - 2) + fibb(n -1))
 }
}

system.time(fibb(30))

proc.time()

At its simplest, proc.time() gives the total elapsed CPU time in seconds for the current process.

Executing it in the console gives the following type of output:

proc.time()

user system elapsed
284.507 120.397 515029.305

This is particularly useful for benchmarking specific lines of code. For example:

t1 <- proc.time()
fibb <- function (n) {
 if (n < 3) {
 return(c(0,1)[n])
 } else {

https://riptutorial.com/ 87

 return(fibb(n - 2) + fibb(n -1))
 }
}
print("Time one")
print(proc.time() - t1)

t2 <- proc.time()
fibb(30)

print("Time two")
print(proc.time() - t2)

This gives the following output:

source('~/.active-rstudio-document')

[1] "Time one"
user system elapsed
0 0 0

[1] "Time two"
user system elapsed
1.534 0.012 1.572

system.time() is a wrapper for proc.time() that returns the elapsed time for a particular

command/expression.

print(t1 <- system.time(replicate(1000,12^2)))
user system elapsed
0.000 0.000 0.002

Note that the returned object, of class proc.time, is slightly more complicated than it appears on

the surface:

str(t1)
Class 'proc_time' Named num [1:5] 0 0 0.002 0 0
..- attr(*, "names")= chr [1:5] "user.self" "sys.self" "elapsed" "user.child" ...

Line Profiling

One package for line profiling is lineprof which is written and maintained by Hadley Wickham. Here

is a quick demonstration of how it works with auto.arima in the forecast package:

library(lineprof)
library(forecast)

l <- lineprof(auto.arima(AirPassengers))
shine(l)

This will provide you with a shiny app, which allows you to delve deeper into every function call.

This enables you to see with ease what is causing your R code to slow down. There is a

screenshot of the shiny app below:

https://riptutorial.com/ 88

https://github.com/hadley/lineprof

Microbenchmark

Microbenchmark is useful for estimating the time taking for otherwise fast procedures. For

example, consider estimating the time taken to print hello world.

system.time(print("hello world"))

[1] "hello world"
user system elapsed
0 0 0

This is because system.time is essentially a wrapper function for proc.time, which measures in

seconds. As printing "hello world" takes less than a second it appears that the time taken is less

than a second, however this is not true. To see this we can use the package microbenchmark:

library(microbenchmark)
microbenchmark(print("hello world"))

Unit: microseconds
expr min lq mean median uq max neval
print("hello world") 26.336 29.984 44.11637 44.6835 45.415 158.824 100

Here we can see after running print("hello world") 100 times, the average time taken was in fact

https://riptutorial.com/ 89

http://i.stack.imgur.com/l0hSh.jpg

44 microseconds. (Note that running this code will print "hello world" 100 times onto the console.)

We can compare this against an equivalent procedure, cat("hello world\n"), to see if it is faster

than print("hello world"):

microbenchmark(cat("hello world\n"))

Unit: microseconds
expr min lq mean median uq max neval
cat("hello world\\n") 14.093 17.6975 23.73829 19.319 20.996 119.382 100

In this case cat() is almost twice as fast as print().

Alternatively one can compare two procedures within the same microbenchmark call:

microbenchmark(print("hello world"), cat("hello world\n"))
Unit: microseconds
expr min lq mean median uq max neval
print("hello world") 29.122 31.654 39.64255 34.5275 38.852 192.779 100
cat("hello world\\n") 9.381 12.356 13.83820 12.9930 13.715 52.564 100

Benchmarking using microbenchmark

You can use the microbenchmark package to conduct "sub-millisecond accurate timing of expression

evaluation".

In this example we are comparing the speeds of six equivalent data.table expressions for updating

elements in a group, based on a certain condition.

More specifically:

A data.table with 3 columns: id, time and status. For each id, I want to find the record

with the maximum time - then if for that record if the status is true, I want to set it to

false if the time is > 7

library(microbenchmark)
library(data.table)

set.seed(20160723)
dt <- data.table(id = c(rep(seq(1:10000), each = 10)),
 time = c(rep(seq(1:10000), 10)),
 status = c(sample(c(TRUE, FALSE), 10000*10, replace = TRUE)))
setkey(dt, id, time) ## create copies of the data so the 'updates-by-reference' don't affect
other expressions
dt1 <- copy(dt)
dt2 <- copy(dt)
dt3 <- copy(dt)
dt4 <- copy(dt)
dt5 <- copy(dt)
dt6 <- copy(dt)

microbenchmark(

 expression_1 = {

https://riptutorial.com/ 90

https://cran.r-project.org/web/packages/microbenchmark/index.html
http://stackoverflow.com/a/35761008/5977215

 dt1[dt1[order(time), .I[.N], by = id]$V1, status := status * time < 7]
 },

 expression_2 = {
 dt2[,status := c(.SD[-.N, status], .SD[.N, status * time > 7]), by = id]
 },

 expression_3 = {
 dt3[dt3[,.N, by = id][,cumsum(N)], status := status * time > 7]
 },

 expression_4 = {
 y <- dt4[,.SD[.N],by=id]
 dt4[y, status := status & time > 7]
 },

 expression_5 = {
 y <- dt5[, .SD[.N, .(time, status)], by = id][time > 7 & status]
 dt5[y, status := FALSE]
 },

 expression_6 = {
 dt6[dt6[, .I == .I[which.max(time)], by = id]$V1 & time > 7, status := FALSE]
 },

 times = 10L ## specify the number of times each expression is evaluated
)

Unit: milliseconds
expr min lq mean median uq max neval
expression_1 11.646149 13.201670 16.808399 15.643384 18.78640 26.321346 10
expression_2 8051.898126 8777.016935 9238.323459 8979.553856 9281.93377 12610.869058 10
expression_3 3.208773 3.385841 4.207903 4.089515 4.70146 5.654702 10
expression_4 15.758441 16.247833 20.677038 19.028982 21.04170 36.373153 10
expression_5 7552.970295 8051.080753 8702.064620 8861.608629 9308.62842 9722.234921 10
expression_6 18.403105 18.812785 22.427984 21.966764 24.66930 28.607064 10

The output shows that in this test expression_3 is the fastest.

References

data.table - Adding and modifying columns

data.table - special grouping symbols in data.table

Read Code profiling online: https://riptutorial.com/r/topic/2149/code-profiling

https://riptutorial.com/ 91

http://www.riptutorial.com/r/example/3708/adding-and-modifying-columns
http://www.riptutorial.com/r/example/6351/special-symbols-in-data-table
https://riptutorial.com/r/topic/2149/code-profiling

Chapter 17: Coercion

Introduction

Coercion happens in R when the type of objects are changed during computation either implicitly

or by using functions for explicit coercion (such as as.numeric, as.data.frame, etc.).

Examples

Implicit Coercion

Coercion happens with data types in R, often implicitly, so that the data can accommodate all the

values. For example,

x = 1:3
x
[1] 1 2 3
typeof(x)
#[1] "integer"

x[2] = "hi"
x
#[1] "1" "hi" "3"
typeof(x)
#[1] "character"

Notice that at first, x is of type integer. But when we assigned x[2] = "hi", all the elements of x

were coerced into character as vectors in R can only hold data of single type.

Read Coercion online: https://riptutorial.com/r/topic/9793/coercion

https://riptutorial.com/ 92

https://riptutorial.com/r/topic/9793/coercion

Chapter 18: Color schemes for graphics

Examples

viridis - print and colorblind friendly palettes

Viridis (named after the chromis viridis fish) is a recently developed color scheme for the Python

library matplotlib (the video presentation by the link explains how the color scheme was

developed and what are its main advantages). It is seamlessly ported to R.

There are 4 variants of color schemes: magma, plasma, inferno, and viridis (default). They are

chosen with the option parameter and are coded as A, B, C, and D, correspondingly. To have an

impression of the 4 color schemes, look at the maps:

https://riptutorial.com/ 93

https://en.wikipedia.org/wiki/Chromis_viridis
http://matplotlib.org/style_changes.html
http://matplotlib.org/style_changes.html
http://matplotlib.org/style_changes.html

https://riptutorial.com/ 94

https://i.stack.imgur.com/YwZHn.jpg

(image souce)

The package can be installed from CRAN or github.

The vignette for viridis package is just brilliant.

Nice feature of the viridis color scheme is integration with ggplot2. Within the package two ggplot2

-specific functions are defined: scale_color_viridis() and scale_fill_viridis(). See the example

below:

library(viridis)
library(ggplot2)

gg1 <- ggplot(mtcars)+
 geom_point(aes(x = mpg, y = hp, color = disp), size = 3)+
 scale_color_viridis(option = "B")+
 theme_minimal()+
 theme(legend.position = c(.8,.8))

gg2 <- ggplot(mtcars)+
 geom_violin(aes(x = factor(cyl), y = hp, fill = factor(cyl)))+
 scale_fill_viridis(discrete = T)+
 theme_minimal()+
 theme(legend.position = 'none')

library(cowplot)
output <- plot_grid(gg1,gg2, labels = c('B','D'),label_size = 20)
print(output)

https://riptutorial.com/ 95

https://github.com/sjmgarnier/viridis
https://cran.r-project.org/web/packages/viridis/index.html
https://github.com/sjmgarnier/viridis
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

https://riptutorial.com/ 96

https://i.stack.imgur.com/1lbdU.png
http://colorbrewer2.org

RColorBrewer is a port of the project for R and provides also colorblind-friendly palettes.

An example of use

colors_vec <- brewer.pal(5, name = 'BrBG')
print(colors_vec)
[1] "#A6611A" "#DFC27D" "#F5F5F5" "#80CDC1" "#018571"

RColorBrewer creates coloring options for ggplot2: scale_color_brewer and scale_fill_brewer.

library(ggplot2)
ggplot(mtcars)+
 geom_point(aes(x = mpg, y = hp, color = factor(cyl)), size = 3)+
 scale_color_brewer(palette = 'Greens')+
 theme_minimal()+
 theme(legend.position = c(.8,.8))

https://riptutorial.com/ 97

A handy function to glimse a vector of colors

Quite often there is a need to glimpse the chosen color palette. One elegant solution is the

following self defined function:

color_glimpse <- function(colors_string){

https://riptutorial.com/ 98

https://i.stack.imgur.com/IJC8Y.png

 n <- length(colors_string)
 hist(1:n,breaks=0:n,col=colors_string)
}

An example of use

color_glimpse(blues9)

colorspace - click&drag interface for colors

The package colorspace provides GUI for selecting a palette. On the call of choose_palette()

function the following window pops-up:

https://riptutorial.com/ 99

https://i.stack.imgur.com/3H5Dp.png

When the palette is chosen, just hit OK and do not forget to store the output in a variable, e.g. pal.

pal <- choose_palette()

The output is a function that takes n (number) as input and produces a color vector of length n

according to the selected palette.

pal(10)
[1] "#023FA5" "#6371AF" "#959CC3" "#BEC1D4" "#DBDCE0" "#E0DBDC" "#D6BCC0" "#C6909A" "#AE5A6D"
"#8E063B"

basic R color functions

Function colors() lists all the color names that are recognized by R. There is a nice PDF where

https://riptutorial.com/ 100

https://i.stack.imgur.com/cTq3W.png
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

one can actually see those colors.

colorRampPalette creates a function that interpolate a set of given colors to create new color

palettes. This output function takes n (number) as input and produces a color vector of length n

interpolating the initial colors.

pal <- colorRampPalette(c('white','red'))
pal(5)
[1] "#FFFFFF" "#FFBFBF" "#FF7F7F" "#FF3F3F" "#FF0000"

Any specific color may be produced with an rgb() function:

rgb(0,1,0)

produces green color.

Colorblind-friendly palettes

Even though colorblind people can recognize a wide range of colors, it might be hard to

differentiate between certain colors.

RColorBrewer provides colorblind-friendly palettes:

library(RColorBrewer)
display.brewer.all(colorblindFriendly = T)

https://riptutorial.com/ 101

The Color Universal Design from the University of Tokyo proposes the following palettes:

#palette using grey

https://riptutorial.com/ 102

https://i.stack.imgur.com/eddZp.png
http://jfly.iam.u-tokyo.ac.jp/color/

cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00",
"#CC79A7")

#palette using black
cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00",
"#CC79A7")

Read Color schemes for graphics online: https://riptutorial.com/r/topic/8005/color-schemes-for-

graphics

https://riptutorial.com/ 103

https://riptutorial.com/r/topic/8005/color-schemes-for-graphics
https://riptutorial.com/r/topic/8005/color-schemes-for-graphics

Chapter 19: Column wise operation

Examples

sum of each column

Suppose we need to do the sum of each column in a dataset

set.seed(20)
df1 <- data.frame(ID = rep(c("A", "B", "C"), each = 3), V1 = rnorm(9), V2 = rnorm(9))
m1 <- as.matrix(df1[-1])

There are many ways to do this. Using base R, the best option would be colSums

colSums(df1[-1], na.rm = TRUE)

Here, we removed the first column as it is non-numeric and did the sum of each column, specifying

the na.rm = TRUE (in case there are any NAs in the dataset)

This also works with matrix

colSums(m1, na.rm = TRUE)

This can be done in a loop with lapply/sapply/vapply

 lapply(df1[-1], sum, na.rm = TRUE)

It should be noted that the output is a list. If we need a vector output

 sapply(df1[-1], sum, na.rm = TRUE)

Or

 vapply(df1[-1], sum, na.rm = TRUE, numeric(1))

For matrices, if we want to loop through columns, then use apply with MARGIN = 1

 apply(m1, 2, FUN = sum, na.rm = TRUE)

There are ways to do this with packages like dplyr or data.table

 library(dplyr)
 df1 %>%
 summarise_at(vars(matches("^V\\d+")), sum, na.rm = TRUE)

https://riptutorial.com/ 104

Here, we are passing a regular expression to match the column names that we need to get the sum

in summarise_at. The regex will match all columns that start with V followed by one or more numbers

(\\d+).

A data.table option is

library(data.table)
setDT(df1)[, lapply(.SD, sum, na.rm = TRUE), .SDcols = 2:ncol(df1)]

We convert the 'data.frame' to 'data.table' (setDT(df1)), specified the columns to be applied the

function in .SDcols and loop through the Subset of Data.table (.SD) and get the sum.

If we need to use a group by operation, we can do this easily by specifying the group by

column/columns

 df1 %>%
 group_by(ID) %>%
 summarise_at(vars(matches("^V\\d+")), sum, na.rm = TRUE)

In cases where we need the sum of all the columns, summarise_each can be used instead of
summarise_at

df1 %>%
 group_by(ID) %>%
 summarise_each(funs(sum(., na.rm = TRUE)))

The data.table option is

setDT(df1)[, lapply(.SD, sum, na.rm = TRUE), by = ID]

Read Column wise operation online: https://riptutorial.com/r/topic/2212/column-wise-operation

https://riptutorial.com/ 105

https://riptutorial.com/r/topic/2212/column-wise-operation

Chapter 20: Combinatorics

Examples

Enumerating combinations of a specified length

Without replacement

With combn, each vector appears in a column:

combn(LETTERS, 3)

Showing only first 10.
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"
[2,] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"
[3,] "C" "D" "E" "F" "G" "H" "I" "J" "K" "L"

With replacement

With expand.grid, each vector appears in a row:

expand.grid(LETTERS, LETTERS, LETTERS)
or
do.call(expand.grid, rep(list(LETTERS), 3))

Showing only first 10.
 Var1 Var2 Var3
1 A A A
2 B A A
3 C A A
4 D A A
5 E A A
6 F A A
7 G A A
8 H A A
9 I A A
10 J A A

For the special case of pairs, outer can be used, putting each vector into a cell:

FUN here is used as a function executed on each resulting pair.
in this case it's string concatenation.
outer(LETTERS, LETTERS, FUN=paste0)

Showing only first 10 rows and columns
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] "AA" "AB" "AC" "AD" "AE" "AF" "AG" "AH" "AI" "AJ"
 [2,] "BA" "BB" "BC" "BD" "BE" "BF" "BG" "BH" "BI" "BJ"

https://riptutorial.com/ 106

 [3,] "CA" "CB" "CC" "CD" "CE" "CF" "CG" "CH" "CI" "CJ"
 [4,] "DA" "DB" "DC" "DD" "DE" "DF" "DG" "DH" "DI" "DJ"
 [5,] "EA" "EB" "EC" "ED" "EE" "EF" "EG" "EH" "EI" "EJ"
 [6,] "FA" "FB" "FC" "FD" "FE" "FF" "FG" "FH" "FI" "FJ"
 [7,] "GA" "GB" "GC" "GD" "GE" "GF" "GG" "GH" "GI" "GJ"
 [8,] "HA" "HB" "HC" "HD" "HE" "HF" "HG" "HH" "HI" "HJ"
 [9,] "IA" "IB" "IC" "ID" "IE" "IF" "IG" "IH" "II" "IJ"
[10,] "JA" "JB" "JC" "JD" "JE" "JF" "JG" "JH" "JI" "JJ"

Counting combinations of a specified length

Without replacement

choose(length(LETTERS), 5)
[1] 65780

With replacement

length(letters)^5
[1] 11881376

Read Combinatorics online: https://riptutorial.com/r/topic/5836/combinatorics

https://riptutorial.com/ 107

https://riptutorial.com/r/topic/5836/combinatorics

Chapter 21: Control flow structures

Remarks

For loops are a flow control method for repeating a task or set of tasks over a domain. The core

structure of a for loop is

for ([index] in [domain]){
 [body]
}

Where

[index] is a name takes exactly one value of [domain] over each iteration of the loop.1.

[domain] is a vector of values over which to iterate.2.

[body] is the set of instructions to apply on each iteration.3.

As a trivial example, consider the use of a for loop to obtain the cumulative sum of a vector of

values.

x <- 1:4
cumulative_sum <- 0
for (i in x){
 cumulative_sum <- cumulative_sum + x[i]
}
cumulative_sum

Optimizing Structure of For Loops

For loops can be useful for conceptualizing and executing tasks to repeat. If not constructed

carefully, however, they can be very slow to execute compared to the preferred used of the apply

family of functions. Nonetheless, there are a handful of elements you can include in your for loop

construction to optimize the loop. In many cases, good construction of the for loop will yield

computational efficiency very close to that of an apply function.

A 'properly constructed' for loop builds on the core structure and includes a statement declaring

the object that will capture each iteration of the loop. This object should have both a class and a

length declared.

[output] <- [vector_of_length]
for ([index] in [length_safe_domain]){
 [output][index] <- [body]
}

To illustrate, let us write a loop to square each value in a numeric vector (this is a trivial example

for illustration only. The 'correct' way of completing this task would be x_squared <- x^2).

https://riptutorial.com/ 108

x <- 1:100
x_squared <- vector("numeric", length = length(x))
for (i in seq_along(x)){
 x_squared[i] <- x[i]^2
}

Again, notice that we first declared a receptacle for the output x_squared, and gave it the class

"numeric" with the same length as x. Additionally, we declared a "length safe domain" using the

seq_along function. seq_along generates a vector of indices for an object that is suited for use in for

loops. While it seems intuitive to use for (i in 1:length(x)), if x has 0 length, the loop will attempt

to iterate over the domain of 1:0, resulting in an error (the 0th index is undefined in R).

Receptacle objects and length safe domains are handled internally by the apply family of functions

and users are encouraged to adopt the apply approach in place of for loops as much as possible.

However, if properly constructed, a for loop may occasionally provide greater code clarity with

minimal loss of efficiency.

Vectorizing For Loops

For loops can often be a useful tool in conceptualizing the tasks that need to be completed within

each iteration. When the loop is completely developed and conceptualized, there may be

advantages to turning the loop into a function.

In this example, we will develop a for loop to calculate the mean of each column in the mtcars

dataset (again, a trivial example as it could be accomplished via the colMeans function).

column_mean_loop <- vector("numeric", length(mtcars))
for (k in seq_along(mtcars)){
 column_mean_loop[k] <- mean(mtcars[[k]])
}

The for loop can be converted to an apply function by rewriting the body of the loop as a function.

col_mean_fn <- function(x) mean(x)
column_mean_apply <- vapply(mtcars, col_mean_fn, numeric(1))

And to compare the results:

identical(column_mean_loop,
 unname(column_mean_apply)) #* vapply added names to the elements
 #* remove them for comparison

The advantages of the vectorized form is that we were able to eliminate a few lines of code. The

mechanics of determining the length and type of the output object and iterating over a length safe

domain are handled for us by the apply function. Additionally, the apply function is a little bit faster

than the loop. The difference of speed is often negligible in human terms depending on the

number of iterations and the complexity of the body.

https://riptutorial.com/ 109

Examples

Basic For Loop Construction

In this example we will calculate the squared deviance for each column in a data frame, in this

case the mtcars.

Option A: integer index

squared_deviance <- vector("list", length(mtcars))
for (i in seq_along(mtcars)){
 squared_deviance[[i]] <- (mtcars[[i]] - mean(mtcars[[i]]))^2
}

squared_deviance is an 11 elements list, as expected.

class(squared_deviance)
length(squared_deviance)

Option B: character index

squared_deviance <- vector("list", length(mtcars))
Squared_deviance <- setNames(squared_deviance, names(mtcars))
for (k in names(mtcars)){
 squared_deviance[[k]] <- (mtcars[[k]] - mean(mtcars[[k]]))^2
}

What if we want a data.frame as a result? Well, there are many options for transforming a list into

other objects. However, and maybe the simplest in this case, will be to store the for results in a

data.frame.

squared_deviance <- mtcars #copy the original
squared_deviance[TRUE]<-NA #replace with NA or do squared_deviance[,]<-NA
for (i in seq_along(mtcars)){
 squared_deviance[[i]] <- (mtcars[[i]] - mean(mtcars[[i]]))^2
}
dim(squared_deviance)
[1] 32 11

The result will be the same event though we use the character option (B).

Optimal Construction of a For Loop

To illustrate the effect of good for loop construction, we will calculate the mean of each column in

four different ways:

Using a poorly optimized for loop1.

Using a well optimized for for loop2.

Using an *apply family of functions3.

Using the colMeans function4.

https://riptutorial.com/ 110

Each of these options will be shown in code; a comparison of the computational time to execute

each option will be shown; and lastly a discussion of the differences will be given.

Poorly optimized for loop

column_mean_poor <- NULL
for (i in 1:length(mtcars)){
 column_mean_poor[i] <- mean(mtcars[[i]])
}

Well optimized for loop

column_mean_optimal <- vector("numeric", length(mtcars))
for (i in seq_along(mtcars)){
 column_mean_optimal <- mean(mtcars[[i]])
}

vapply Function

column_mean_vapply <- vapply(mtcars, mean, numeric(1))

colMeans Function

column_mean_colMeans <- colMeans(mtcars)

Efficiency comparison

The results of benchmarking these four approaches is shown below (code not displayed)

Unit: microseconds
 expr min lq mean median uq max neval cld
 poor 240.986 262.0820 287.1125 275.8160 307.2485 442.609 100 d
 optimal 220.313 237.4455 258.8426 247.0735 280.9130 362.469 100 c
 vapply 107.042 109.7320 124.4715 113.4130 132.6695 202.473 100 a
 colMeans 155.183 161.6955 180.2067 175.0045 194.2605 259.958 100 b

Notice that the optimized for loop edged out the poorly constructed for loop. The poorly

constructed for loop is constantly increasing the length of the output object, and at each change of

the length, R is reevaluating the class of the object.

Some of this overhead burden is removed by the optimized for loop by declaring the type of output

object and its length before starting the loop.

In this example, however, the use of an vapply function doubles the computational efficiency,

largely because we told R that the result had to be numeric (if any one result were not numeric, an

error would be returned).

https://riptutorial.com/ 111

Use of the colMeans function is a touch slower than the vapply function. This difference is

attributable to some error checks performed in colMeans and mainly to the as.matrix conversion

(because mtcars is a data.frame) that weren't performed in the vapply function.

The Other Looping Constructs: while and repeat

R provides two additional looping constructs, while and repeat, which are typically used in

situations where the number of iterations required is indeterminate.

The while loop

The general form of a while loop is as follows,

while (condition) {
 ## do something
 ## in loop body
}

where condition is evaluated prior to entering the loop body. If condition evaluates to TRUE, the

code inside of the loop body is executed, and this process repeats until condition evaluates to

FALSE (or a break statement is reached; see below). Unlike the for loop, if a while loop uses a

variable to perform incremental iterations, the variable must be declared and initialized ahead of

time, and must be updated within the loop body. For example, the following loops accomplish the

same task:

for (i in 0:4) {
 cat(i, "\n")
}
0
1
2
3
4

i <- 0
while (i < 5) {
 cat(i, "\n")
 i <- i + 1
}
0
1
2
3
4

In the while loop above, the line i <- i + 1 is necessary to prevent an infinite loop.

Additionally, it is possible to terminate a while loop with a call to break from inside the loop body:

iter <- 0

https://riptutorial.com/ 112

while (TRUE) {
 if (runif(1) < 0.25) {
 break
 } else {
 iter <- iter + 1
 }
}
iter
#[1] 4

In this example, condition is always TRUE, so the only way to terminate the loop is with a call to

break inside the body. Note that the final value of iter will depend on the state of your PRNG when

this example is run, and should produce different results (essentially) each time the code is

executed.

The repeat loop

The repeat construct is essentially the same as while (TRUE) { ## something }, and has the

following form:

repeat ({
 ## do something
 ## in loop body
})

The extra {} are not required, but the () are. Rewriting the previous example using repeat,

iter <- 0
repeat ({
 if (runif(1) < 0.25) {
 break
 } else {
 iter <- iter + 1
 }
})
iter
#[1] 2

More on break

It's important to note that break will only terminate the immediately enclosing loop. That is, the

following is an infinite loop:

while (TRUE) {
 while (TRUE) {
 cat("inner loop\n")
 break
 }
 cat("outer loop\n")
}

https://riptutorial.com/ 113

With a little creativity, however, it is possible to break entirely from within a nested loop. As an

example, consider the following expression, which, in its current state, will loop infinitely:

while (TRUE) {
 cat("outer loop body\n")
 while (TRUE) {
 cat("inner loop body\n")
 x <- runif(1)
 if (x < .3) {
 break
 } else {
 cat(sprintf("x is %.5f\n", x))
 }
 }
}

One possibility is to recognize that, unlike break, the return expression does have the ability to

return control across multiple levels of enclosing loops. However, since return is only valid when

used within a function, we cannot simply replace break with return() above, but also need to wrap

the entire expression as an anonymous function:

(function() {
 while (TRUE) {
 cat("outer loop body\n")
 while (TRUE) {
 cat("inner loop body\n")
 x <- runif(1)
 if (x < .3) {
 return()
 } else {
 cat(sprintf("x is %.5f\n", x))
 }
 }
 }
})()

Alternatively, we can create a dummy variable (exit) prior to the expression, and activate it via <<-

from the inner loop when we are ready to terminate:

exit <- FALSE
while (TRUE) {
 cat("outer loop body\n")
 while (TRUE) {
 cat("inner loop body\n")
 x <- runif(1)
 if (x < .3) {
 exit <<- TRUE
 break
 } else {
 cat(sprintf("x is %.5f\n", x))
 }
 }
 if (exit) break
}

Read Control flow structures online: https://riptutorial.com/r/topic/2201/control-flow-structures

https://riptutorial.com/ 114

https://riptutorial.com/r/topic/2201/control-flow-structures

Chapter 22: Creating packages with devtools

Introduction

This topic will cover the creation of R packages from scratch with the devtools package.

Remarks

Official R manual for creating packages1.

roxygen2 reference manual2.

devtools reference manual3.

Examples

Creating and distributing packages

This is a compact guide about how to quickly create an R package from your code. Exhaustive

documentations will be linked when available and should be read if you want a deeper knowledge

of the situation. See Remarks for more resources.

The directory where your code stands will be refered as ./, and all the commands are meant to be

executed from a R prompt in this folder.

Creation of the documentation

The documentation for your code has to be in a format which is very similar to LaTeX.

However, we will use a tool named roxygen in order to simplify the process:

install.packages("devtools")
library("devtools")
install.packages("roxygen2")
library("roxygen2")

The full man page for roxygen is available here. It is very similar to doxygen.

Here is a practical sample about how to document a function with roxygen:

#' Increment a variable.
#'
#' Note that the behavior of this function
#' is undefined if `x` is not of class `numeric`.
#'
#' @export
#' @author another guy

https://riptutorial.com/ 115

https://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://roxygen.org/roxygen2-manual.pdf
http://roxygen.org/roxygen2-manual.pdf
https://cran.r-project.org/web/packages/devtools/devtools.pdf
https://cran.r-project.org/web/packages/devtools/devtools.pdf
https://docs.google.com/viewer?docex=1&url=http://roxygen.org/roxygen2-manual.pdf

#' @name Increment Function
#' @title increment
#'
#' @param x Variable to increment
#' @return `x` incremented of 1
#'
#' @seealso `other_function`
#'
#' @examples
#' increment(3)
#' > 4
increment <- function(x) {
 return (x+1)
}

And here will be the result.

It is also recommanded to create a vignette (see the topic Creating vignettes), which is a full guide

about your package.

Construction of the package skeleton

Assuming that your code is written for instance in files ./script1.R and ./script2.R, launch the

following command in order to create the file tree of your package:

package.skeleton(name="MyPackage", code_files=c("script1.R","script2.R"))

Then delete all the files in ./MyPackage/man/. You have now to compile the documentation:

roxygenize("MyPackage")

You should also generate a reference manual from your documentation using R CMD Rd2pdf

MyPackage from a command prompt started in ./.

Edition of the package properties

1. Package description

Modify ./MyPackage/DESCRIPTION according to your needs. The fields Package, Version, License,

Description, Title, Author and Maintainer are mandatory, the other are optional.

If your package depends on others packages, specify them in a field named Depends (R version <

3.2.0) or Imports (R version > 3.2.0).

2. Optional folders

https://riptutorial.com/ 116

https://i.stack.imgur.com/qTbT4.png

Once you launched the skeleton build, ./MyPackage/ only had R/ and man/ subfolders. However, it

can have some others:

data/: here you can place the data that your library needs and that isn't code. It must be

saved as dataset with the .RData extension, and you can load it at runtime with data() and
load()

•

tests/: all the code files in this folder will be ran at install time. If there is any error, the

installation will fail.

•

src/: for C/C++/Fortran source files you need (using Rcpp...).•

exec/: for other executables.•

misc/: for barely everything else.•

Finalization and build

You can delete ./MyPackage/Read-and-delete-me.

As it is now, your package is ready to be installed.

You can install it with devtools::install("MyPackage").

To build your package as a source tarball, you need to execute the following command, from a

command prompt in ./ : R CMD build MyPackage

Distribution of your package

Through Github

Simply create a new repository called MyPackage and upload everything in MyPackage/ to the

master branch. Here is an example.

Then anyone can install your package from github with devtools:

install_package("MyPackage", "your_github_usename")

Through CRAN

Your package needs to comply to the CRAN Repository Policy. Including but not limited to: your

package must be cross-platforms (except some very special cases), it should pass the R CMD check

test.

Here is the submission form. You must upload the source tarball.

Creating vignettes

https://riptutorial.com/ 117

https://www.rdocumentation.org/packages/utils/versions/3.4.1/topics/data
https://www.rdocumentation.org/packages/base/versions/3.4.1/topics/load
https://github.com/klutometis/roxygen
https://www.rdocumentation.org/packages/base/versions/3.4.1/topics/load
https://cran.r-project.org/submit.html

A vignette is a long-form guide to your package. Function documentation is great if you

know the name of the function you need, but it’s useless otherwise. A vignette is like a

book chapter or an academic paper: it can describe the problem that your package is

designed to solve, and then show the reader how to solve it.

Vignettes will be created entirely in markdown.

Requirements

Rmarkdown: install.packages("rmarkdown")•

Pandoc•

Vignette creation

devtools::use_vignette("MyVignette", "MyPackage")

You can now edit your vignette at ./vignettes/MyVignette.Rmd.

The text in your vignette is formatted as Markdown.

The only addition to the original Markdown, is a tag that takes R code, runs it, captures the output,

and translates it into formatted Markdown:

```{r} 
# Add two numbers together 
add <- function(a, b) a + b 
add(10, 20) 
```

Will display as:

Add two numbers together
add <- function(a, b) a + b
add(10, 20)
[1] 30

Thus, all the packages you will use in your vignettes must be listed as dependencies in

./DESCRIPTION.

Read Creating packages with devtools online: https://riptutorial.com/r/topic/10884/creating-

packages-with-devtools

https://riptutorial.com/ 118

https://github.com/jgm/pandoc/releases/tag/1.19.2.1
https://daringfireball.net/projects/markdown/syntax
https://riptutorial.com/r/topic/10884/creating-packages-with-devtools
https://riptutorial.com/r/topic/10884/creating-packages-with-devtools

Chapter 23: Creating reports with RMarkdown

Examples

Printing tables

There are several packages that allow the output of data structures in form of HTML or LaTeX

tables. They mostly differ in flexibility.

Here I use the packages:

knitr•

xtable•

pander•

For HTML documents

title: "Printing Tables"
author: "Martin Schmelzer"
date: "29 Juli 2016"
output: html_document

```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = TRUE) 
library(knitr) 
library(xtable) 
library(pander) 
df <- mtcars[1:4,1:4] 
``` 

Print tables using `kable`
```{r, 'kable'} 
kable(df) 
``` 

Print tables using `xtable`
```{r, 'xtable', results='asis'} 
print(xtable(df), type="html") 
``` 

Print tables using `pander`
```{r, 'pander'} 
pander(df) 
```

https://riptutorial.com/ 119

For PDF documents

title: "Printing Tables"
author: "Martin Schmelzer"
date: "29 Juli 2016"
output: pdf_document

```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = TRUE) 
library(knitr) 
library(xtable) 
library(pander) 
df <- mtcars[1:4,1:4] 
``` 

Print tables using `kable`
```{r, 'kable'} 
kable(df) 
``` 

Print tables using `xtable`
```{r, 'xtable', results='asis'} 
print(xtable(df, caption="My Table")) 
``` 

Print tables using `pander`
```{r, 'pander'} 
pander(df) 
```

https://riptutorial.com/ 120

http://i.stack.imgur.com/FzRA5m.png

How can I stop xtable printing the comment ahead of each table?

options(xtable.comment = FALSE)

Including LaTeX Preample Commands

There are two possible ways of including LaTeX preamble commands (e.g. \usepackage) in a

RMarkdown document.

1. Using the YAML option header-includes:

title: "Including LaTeX Preample Commands in RMarkdown"
header-includes:
 - \renewcommand{\familydefault}{cmss}
 - \usepackage[cm, slantedGreek]{sfmath}
 - \usepackage[T1]{fontenc}
output: pdf_document

```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = TRUE, external=T) 
``` 

Section 1

As you can see, this text uses the Computer Moden Font!

https://riptutorial.com/ 121

http://i.stack.imgur.com/Fo8vzm.png
http://i.stack.imgur.com/U4eqOm.png

2. Including External Commands with includes, in_header

title: "Including LaTeX Preample Commands in RMarkdown"
output:
 pdf_document:
 includes:
 in_header: includes.tex

```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = TRUE, external=T) 
``` 

Section 1

As you can see, this text uses the Computer Modern Font!

Here, the content of includes.tex are the same three commands we included with header-includes.

Writing a whole new template

A possible third option is to write your own LaTex template and include it with template. But this

covers a lot more of the structure than only the preamble.

title: "My Template"
author: "Martin Schmelzer"
output:
 pdf_document:
 template: myTemplate.tex

Including bibliographies

A bibtex catalogue cna easily be included with the YAML option bibliography:. A certain style for

the bibliography can be added with biblio-style:. The references are added at the end of the

document.

title: "Including Bibliography"
author: "John Doe"
output: pdf_document
bibliography: references.bib

Abstract

@R_Core_Team_2016

References

https://riptutorial.com/ 122

Basic R-markdown document structure

R-markdown code chunks

R-markdown is a markdown file with embedded blocks of R code called chunks. There are two

types of R code chunks: inline and block.

Inline chunks are added using the following syntax:

`r 2*2`

They are evaluated and inserted their output answer in place.

Block chunks have a different syntax:

```{r name, echo=TRUE, include=TRUE, ...} 
 
2*2 
 
````

And they come with several possible options. Here are the main ones (but there are many others):

echo (boolean) controls wether the code inside chunk will be included in the document•

include (boolean) controls wether the output should be included in the document•

fig.width (numeric) sets the width of the output figures•

fig.height (numeric) sets the height of the output figures•

fig.cap (character) sets the figure captions•

They are written in a simple tag=value format like in the example above.

R-markdown document example

Below is a basic example of R-markdown file illustrating the way R code chunks are embedded

inside r-markdown.

Title #

This is **plain markdown** text.

https://riptutorial.com/ 123

http://i.stack.imgur.com/WRoNAm.png


```{r code, include=FALSE, echo=FALSE} 
 
# Just declare variables 
 
income <- 1000 
taxes  <- 125 
 
``` 

My income is: `r income ` dollars and I payed `r taxes ` dollars in taxes.

Below is the sum of money I will have left:

```{r gain, include=TRUE, echo=FALSE} 
 
gain <- income-taxes 
 
gain 
 
``` 

```{r plotOutput, include=TRUE, echo=FALSE, fig.width=6, fig.height=6} 
 
pie(c(income,taxes), label=c("income", "taxes")) 
 
```

Converting R-markdown to other formats

The R knitr package can be used to evaluate R chunks inside R-markdown file and turn it into a

regular markdown file.

The following steps are needed in order to turn R-markdown file into pdf/html:

Convert R-markdown file to markdown file using knitr.1.

Convert the obtained markdown file to pdf/html using specialized tools like pandoc.2.

In addition to the above knitr package has wrapper functions knit2html() and knit2pdf() that can

be used to produce the final document without the intermediate step of manually converting it to

the markdown format:

If the above example file was saved as income.Rmd it can be converted to a pdf file using the

following R commands:

library(knitr)
knit2pdf("income.Rmd", "income.pdf")

The final document will be similar to the one below.

https://riptutorial.com/ 124

Read Creating reports with RMarkdown online: https://riptutorial.com/r/topic/4572/creating-reports-

with-rmarkdown

https://riptutorial.com/ 125

https://i.stack.imgur.com/qOiyt.png
https://riptutorial.com/r/topic/4572/creating-reports-with-rmarkdown
https://riptutorial.com/r/topic/4572/creating-reports-with-rmarkdown

Chapter 24: Creating vectors

Examples

Sequence of numbers

Use the : operator to create sequences of numbers, such as for use in vectorizing larger chunks of

your code:

x <- 1:5
x
[1] 1 2 3 4 5

This works both ways

10:4
[1] 10 9 8 7 6 5 4

and even with floating point numbers

1.25:5
[1] 1.25 2.25 3.25 4.25

or negatives

-4:4
#[1] -4 -3 -2 -1 0 1 2 3 4

seq()

seq is a more flexible function than the : operator allowing to specify steps other than 1.

The function creates a sequence from the start (default is 1) to the end including that number.

You can supply only the end (to) parameter

seq(5)
[1] 1 2 3 4 5

As well as the start

seq(2, 5) # or seq(from=2, to=5)
[1] 2 3 4 5

And finally the step (by)

https://riptutorial.com/ 126

seq(2, 5, 0.5) # or seq(from=2, to=5, by=0.5)
[1] 2.0 2.5 3.0 3.5 4.0 4.5 5.0

seq can optionally infer the (evenly spaced) steps when alternatively the desired length of the

output (length.out) is supplied

seq(2,5, length.out = 10)
[1] 2.0 2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 5.0

If the sequence needs to have the same length as another vector we can use the along.with as a

shorthand for length.out = length(x)

x = 1:8
seq(2,5,along.with = x)
[1] 2.000000 2.428571 2.857143 3.285714 3.714286 4.142857 4.571429 5.000000

There are two useful simplified functions in the seq family: seq_along, seq_len, and seq.int.

seq_along and seq_len functions construct the natural (counting) numbers from 1 through N where

N is determined by the function argument, the length of a vector or list with seq_along, and the

integer argument with seq_len.

seq_along(x)
[1] 1 2 3 4 5 6 7 8

Note that seq_along returns the indices of an existing object.

counting numbers 1 through 10
seq_len(10)
[1] 1 2 3 4 5 6 7 8 9 10
indices of existing vector (or list) with seq_along
letters[1:10]
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
seq_along(letters[1:10])
[1] 1 2 3 4 5 6 7 8 9 10

seq.intis the same as seq maintained for ancient compatibility.

There is also an old function sequencethat creates a vector of sequences from a non negative

argument.

sequence(4)
[1] 1 2 3 4
sequence(c(3, 2))
[1] 1 2 3 1 2
sequence(c(3, 2, 5))
[1] 1 2 3 1 2 1 2 3 4 5

Vectors

Vectors in R can have different types (e.g. integer, logical, character). The most general way of

https://riptutorial.com/ 127

defining a vector is by using the function vector().

vector('integer',2) # creates a vector of integers of size 2.
vector('character',2) # creates a vector of characters of size 2.
vector('logical',2) # creates a vector of logicals of size 2.

However, in R, the shorthand functions are generally more popular.

integer(2) # is the same as vector('integer',2) and creates an integer vector with two
elements
character(2) # is the same as vector('integer',2) and creates an character vector with two
elements
logical(2) # is the same as vector('logical',2) and creates an logical vector with two
elements

Creating vectors with values, other than the default values, is also possible. Often the function c()

is used for this. The c is short for combine or concatenate.

c(1, 2) # creates a integer vector of two elements: 1 and 2.
c('a', 'b') # creates a character vector of two elements: a and b.
c(T,F) # creates a logical vector of two elements: TRUE and FALSE.

Important to note here is that R interprets any integer (e.g. 1) as an integer vector of size one. The

same holds for numerics (e.g. 1.1), logicals (e.g. T or F), or characters (e.g. 'a'). Therefore, you

are in essence combining vectors, which in turn are vectors.

Pay attention that you always have to combine similar vectors. Otherwise, R will try to convert the

vectors in vectors of the same type.

c(1,1.1,'a',T) # all types (integer, numeric, character and logical) are converted to the
'lowest' type which is character.

Finding elements in vectors can be done with the [operator.

vec_int <- c(1,2,3)
vec_char <- c('a','b','c')
vec_int[2] # accessing the second element will return 2
vec_char[2] # accessing the second element will return 'b'

This can also be used to change values

vec_int[2] <- 5 # change the second value from 2 to 5
vec_int # returns [1] 1 5 3

Finally, the : operator (short for the function seq()) can be used to quickly create a vector of

numbers.

vec_int <- 1:10
vec_int # returns [1] 1 2 3 4 5 6 7 8 9 10

https://riptutorial.com/ 128

This can also be used to subset vectors (from easy to more complex subsets)

vec_char <- c('a','b','c','d','e')
vec_char[2:4] # returns [1] "b" "c" "d"
vec_char[c(1,3,5)] # returns [1] "a" "c" "e"

Creating named vectors

Named vector can be created in several ways. With c:

xc <- c('a' = 5, 'b' = 6, 'c' = 7, 'd' = 8)

which results in:

> xc
a b c d
5 6 7 8

with list:

xl <- list('a' = 5, 'b' = 6, 'c' = 7, 'd' = 8)

which results in:

> xl
$a
[1] 5

$b
[1] 6

$c
[1] 7

$d
[1] 8

With the setNames function, two vectors of the same length can be used to create a named vector:

x <- 5:8
y <- letters[1:4]

xy <- setNames(x, y)

which results in a named integer vector:

> xy
a b c d
5 6 7 8

As can be seen, this gives the same result as the c method.

https://riptutorial.com/ 129

You may also use the names function to get the same result:

xy <- 5:8
names(xy) <- letters[1:4]

With such a vector it is also possibly to select elements by name:

> xy["c"]
c
7

This feature makes it possible to use such a named vector as a look-up vector/table to match the

values to values of another vector or column in dataframe. Considering the following dataframe:

mydf <- data.frame(let = c('c','a','b','d'))

> mydf
 let
1 c
2 a
3 b
4 d

Suppose you want to create a new variable in the mydf dataframe called num with the correct values

from xy in the rows. Using the match function the appropriate values from xy can be selected:

mydf$num <- xy[match(mydf$let, names(xy))]

which results in:

> mydf
 let num
1 c 7
2 a 5
3 b 6
4 d 8

Expanding a vector with the rep() function

The rep function can be used to repeat a vector in a fairly flexible manner.

repeat counting numbers, 1 through 5 twice
rep(1:5, 2)
[1] 1 2 3 4 5 1 2 3 4 5

repeat vector with incomplete recycling
rep(1:5, 2, length.out=7)
[1] 1 2 3 4 5 1 2

The each argument is especially useful for expanding a vector of statistics of

observational/experimental units into a vector of data.frame with repeated observations of these

https://riptutorial.com/ 130

units.

same except repeat each integer next to each other
rep(1:5, each=2)
[1] 1 1 2 2 3 3 4 4 5 5

A nice feature of rep regarding involving expansion to such a data structure is that expansion of a

vector to an unbalanced panel can be accomplished by replacing the length argument with a

vector that dictates the number of times to repeat each element in the vector:

automated length repetition
rep(1:5, 1:5)
 [1] 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5
hand-fed repetition length vector
rep(1:5, c(1,1,1,2,2))
[1] 1 2 3 4 4 5 5

This should expose the possibility of allowing an external function to feed the second argument of

rep in order to dynamically construct a vector that expands according to the data.

As with seq, faster, simplified versions of rep are rep_len and rep.int. These drop some attributes

that rep maintains and so may be most useful in situations where speed is a concern and

additional aspects of the repeated vector are unnecessary.

repeat counting numbers, 1 through 5 twice
rep.int(1:5, 2)
[1] 1 2 3 4 5 1 2 3 4 5

repeat vector with incomplete recycling
rep_len(1:5, length.out=7)
[1] 1 2 3 4 5 1 2

Vectors from build in constants: Sequences of letters & month names

R has a number of build in constants. The following constants are available:

LETTERS: the 26 upper-case letters of the Roman alphabet•

letters: the 26 lower-case letters of the Roman alphabet•

month.abb: the three-letter abbreviations for the English month names•

month.name: the English names for the months of the year•

pi: the ratio of the circumference of a circle to its diameter•

From the letters and month constants, vectors can be created.

1) Sequences of letters:

> letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v"
"w" "x" "y" "z"

https://riptutorial.com/ 131

> LETTERS[7:9]
[1] "G" "H" "I"

> letters[c(1,5,3,2,4)]
[1] "a" "e" "c" "b" "d"

2) Sequences of month abbreviations or month names:

> month.abb
 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

> month.name[1:4]
[1] "January" "February" "March" "April"

> month.abb[c(3,6,9,12)]
[1] "Mar" "Jun" "Sep" "Dec"

Read Creating vectors online: https://riptutorial.com/r/topic/1088/creating-vectors

https://riptutorial.com/ 132

https://riptutorial.com/r/topic/1088/creating-vectors

Chapter 25: Data acquisition

Introduction

Get data directly into an R session. One of the nice features of R is the ease of data acquisition.

There are several ways data dissemination using R packages.

Examples

Built-in datasets

Rhas a vast collection of built-in datasets. Usually, they are used for teaching purposes to create

quick and easily reproducible examples. There is a nice web-page listing the built-in datasets:

https://vincentarelbundock.github.io/Rdatasets/datasets.html

Example

Swiss Fertility and Socioeconomic Indicators (1888) Data. Let's check the difference in fertility

based of rurality and domination of Catholic population.

library(tidyverse)

swiss %>%
 ggplot(aes(x = Agriculture, y = Fertility,
 color = Catholic > 50))+
 geom_point()+
 stat_ellipse()

https://riptutorial.com/ 133

https://vincentarelbundock.github.io/Rdatasets/datasets.html

library(tidyverse)

library(tidyverse)

eurostat search_eurostat()

https://riptutorial.com/ 134

https://i.stack.imgur.com/RLUcw.png
https://i.stack.imgur.com/txlId.png
https://i.stack.imgur.com/aQtWn.png

, it does not find all the relevant datasets available. This, it's more convenient to browse the code

of a dataset manually at the Eurostat website: Countries Database, or Regional Database. If the

automated download does not work, the data can be grabbed manually at via Bulk Download

Facility.

library(tidyverse)
library(lubridate)
library(forcats)
library(eurostat)
library(geofacet)
library(viridis)
library(ggthemes)
library(extrafont)

download NEET data for countries
neet <- get_eurostat("edat_lfse_22")

neet %>%
 filter(geo %>% paste %>% nchar == 2,
 sex == "T", age == "Y18-24") %>%
 group_by(geo) %>%
 mutate(avg = values %>% mean()) %>%
 ungroup() %>%
 ggplot(aes(x = time %>% year(),
 y = values))+
 geom_path(aes(group = 1))+
 geom_point(aes(fill = values), pch = 21)+
 scale_x_continuous(breaks = seq(2000, 2015, 5),
 labels = c("2000", "'05", "'10", "'15"))+
 scale_y_continuous(expand = c(0, 0), limits = c(0, 40))+
 scale_fill_viridis("NEET, %", option = "B")+
 facet_geo(~ geo, grid = "eu_grid1")+
 labs(x = "Year",
 y = "NEET, %",
 title = "Young people neither in employment nor in education and training in
Europe",
 subtitle = "Data: Eurostat Regional Database, 2000-2016",
 caption = "ikashnitsky.github.io")+
 theme_few(base_family = "Roboto Condensed", base_size = 15)+
 theme(axis.text = element_text(size = 10),
 panel.spacing.x = unit(1, "lines"),
 legend.position = c(0, 0),
 legend.justification = c(0, 0))

https://riptutorial.com/ 135

http://ec.europa.eu/eurostat/data/database
http://ec.europa.eu/eurostat/web/regions/data/database
http://ec.europa.eu/eurostat/estat-navtree-portlet-prod/BulkDownloadListing
http://ec.europa.eu/eurostat/estat-navtree-portlet-prod/BulkDownloadListing

https://riptutorial.com/ 136

https://i.stack.imgur.com/3Ppu7.png
http://www.mortality.org
https://www.demogr.mpg.de/en/

that gathers and pre-process human mortality data for those countries, where more or less reliable

statistics is available.

load required packages
library(tidyverse)
library(extrafont)
library(HMDHFDplus)

country <- getHMDcountries()

exposures <- list()
for (i in 1: length(country)) {
 cnt <- country[i]
 exposures[[cnt]] <- readHMDweb(cnt, "Exposures_1x1", user_hmd, pass_hmd)
 # let's print the progress
 paste(i,'out of',length(country))
} # this will take quite a lot of time

Please note, the arguments user_hmd and pass_hmd are the login credentials at the website of

Human Mortality Database. In order to access the data, one needs to create an account at

http://www.mortality.org/ and provide their own credentials to the readHMDweb() function.

sr_age <- list()

for (i in 1:length(exposures)) {
 di <- exposures[[i]]
 sr_agei <- di %>% select(Year,Age,Female,Male) %>%
 filter(Year %in% 2012) %>%
 select(-Year) %>%
 transmute(country = names(exposures)[i],
 age = Age, sr_age = Male / Female * 100)
 sr_age[[i]] <- sr_agei
}
sr_age <- bind_rows(sr_age)

remove optional populations
sr_age <- sr_age %>% filter(!country %in% c("FRACNP","DEUTE","DEUTW","GBRCENW","GBR_NP"))

summarize all ages older than 90 (too jerky)
sr_age_90 <- sr_age %>% filter(age %in% 90:110) %>%
 group_by(country) %>% summarise(sr_age = mean(sr_age, na.rm = T)) %>%
 ungroup() %>% transmute(country, age=90, sr_age)

df_plot <- bind_rows(sr_age %>% filter(!age %in% 90:110), sr_age_90)

finaly - plot
df_plot %>%
 ggplot(aes(age, sr_age, color = country, group = country))+
 geom_hline(yintercept = 100, color = 'grey50', size = 1)+
 geom_line(size = 1)+
 scale_y_continuous(limits = c(0, 120), expand = c(0, 0), breaks = seq(0, 120, 20))+
 scale_x_continuous(limits = c(0, 90), expand = c(0, 0), breaks = seq(0, 80, 20))+
 xlab('Age')+
 ylab('Sex ratio, males per 100 females')+
 facet_wrap(~country, ncol=6)+
 theme_minimal(base_family = "Roboto Condensed", base_size = 15)+
 theme(legend.position='none',
 panel.border = element_rect(size = .5, fill = NA))

https://riptutorial.com/ 137

http://www.mortality.org/

https://riptutorial.com/ 138

https://i.stack.imgur.com/yypuI.png
https://riptutorial.com/r/topic/10800/data-acquisition

Chapter 26: Data frames

Syntax

data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE,

stringsAsFactors = default.stringsAsFactors())

•

as.data.frame(x, row.names = NULL, optional = FALSE, ...) # generic function•

as.data.frame(x, ..., stringsAsFactors = default.stringsAsFactors()) # S3 method for class

'character'

•

as.data.frame(x, row.names = NULL, optional = FALSE, ..., stringsAsFactors =

default.stringsAsFactors()) # S3 method for class 'matrix'

•

is.data.frame(x)•

Examples

Create an empty data.frame

A data.frame is a special kind of list: it is rectangular. Each element (column) of the list has same

length, and where each row has a "row name". Each column has its own class, but the class of

one column can be different from the class of another column (unlike a matrix, where all elements

must have the same class).

In principle, a data.frame could have no rows and no columns:

> structure(list(character()), class = "data.frame")
NULL
<0 rows> (or 0-length row.names)

But this is unusual. It is more common for a data.frame to have many columns and many rows.

Here is a data.frame with three rows and two columns (a is numeric class and b is character class):

> structure(list(a = 1:3, b = letters[1:3]), class = "data.frame")
[1] a b
<0 rows> (or 0-length row.names)

In order for the data.frame to print, we will need to supply some row names. Here we use just the

numbers 1:3:

> structure(list(a = 1:3, b = letters[1:3]), class = "data.frame", row.names = 1:3)
 a b
1 1 a
2 2 b
3 3 c

https://riptutorial.com/ 139

Now it becomes obvious that we have a data.frame with 3 rows and 2 columns. You can check

this using nrow(), ncol(), and dim():

> x <- structure(list(a = numeric(3), b = character(3)), class = "data.frame", row.names =
1:3)
> nrow(x)
[1] 3
> ncol(x)
[1] 2
> dim(x)
[1] 3 2

R provides two other functions (besides structure()) that can be used to create a data.frame. The

first is called, intuitively, data.frame(). It checks to make sure that the column names you supplied

are valid, that the list elements are all the same length, and supplies some automatically

generated row names. This means that the output of data.frame() might now always be exactly

what you expect:

> str(data.frame("a a a" = numeric(3), "b-b-b" = character(3)))
'data.frame': 3 obs. of 2 variables:
 $ a.a.a: num 0 0 0
 $ b.b.b: Factor w/ 1 level "": 1 1 1

The other function is called as.data.frame(). This can be used to coerce an object that is not a

data.frame into being a data.frame by running it through data.frame(). As an example, consider a

matrix:

> m <- matrix(letters[1:9], nrow = 3)
> m
 [,1] [,2] [,3]
[1,] "a" "d" "g"
[2,] "b" "e" "h"
[3,] "c" "f" "i"

And the result:

> as.data.frame(m)
 V1 V2 V3
1 a d g
2 b e h
3 c f i
> str(as.data.frame(m))
'data.frame': 3 obs. of 3 variables:
 $ V1: Factor w/ 3 levels "a","b","c": 1 2 3
 $ V2: Factor w/ 3 levels "d","e","f": 1 2 3
 $ V3: Factor w/ 3 levels "g","h","i": 1 2 3

Subsetting rows and columns from a data frame

Syntax for accessing rows and columns: [, [[,

https://riptutorial.com/ 140

and $

This topic covers the most common syntax to access specific rows and columns of a data frame.

These are

Like a matrix with single brackets data[rows, columns]

Using row and column numbers○

Using column (and row) names○

•

Like a list:

With single brackets data[columns] to get a data frame○

With double brackets data[[one_column]] to get a vector○

•

With $ for a single column data$column_name•

We will use the built-in mtcars data frame to illustrate.

Like a matrix: data[rows, columns]

With numeric indexes

Using the built in data frame mtcars, we can extract rows and columns using [] brackets with a

comma included. Indices before the comma are rows:

get the first row
mtcars[1,]
get the first five rows
mtcars[1:5,]

Similarly, after the comma are columns:

get the first column
mtcars[, 1]
get the first, third and fifth columns:
mtcars[, c(1, 3, 5)]

As shown above, if either rows or columns are left blank, all will be selected. mtcars[1,] indicates

the first row with all the columns.

With column (and row) names

So far, this is identical to how rows and columns of matrices are accessed. With data.frames, most

of the time it is preferable to use a column name to a column index. This is done by using a

character with the column name instead of numeric with a column number:

get the mpg column
mtcars[, "mpg"]
get the mpg, cyl, and disp columns
mtcars[, c("mpg", "cyl", "disp")]

https://riptutorial.com/ 141

Though less common, row names can also be used:

mtcars["Mazda Rx4",]

Rows and columns together

The row and column arguments can be used together:

first four rows of the mpg column
mtcars[1:4, "mpg"]

2nd and 5th row of the mpg, cyl, and disp columns
mtcars[c(2, 5), c("mpg", "cyl", "disp")]

A warning about dimensions:

When using these methods, if you extract multiple columns, you will get a data frame back.

However, if you extract a single column, you will get a vector, not a data frame under the default

options.

multiple columns returns a data frame
class(mtcars[, c("mpg", "cyl")])
[1] "data.frame"
single column returns a vector
class(mtcars[, "mpg"])
[1] "numeric"

There are two ways around this. One is to treat the data frame as a list (see below), the other is to

add a drop = FALSE argument. This tells R to not "drop the unused dimensions":

class(mtcars[, "mpg", drop = FALSE])
[1] "data.frame"

Note that matrices work the same way - by default a single column or row will be a vector, but if

you specify drop = FALSE you can keep it as a one-column or one-row matrix.

Like a list

Data frames are essentially lists, i.e., they are a list of column vectors (that all must have the

same length). Lists can be subset using single brackets [for a sub-list, or double brackets [[for a

single element.

With single brackets data[columns]

When you use single brackets and no commas, you will get column back because data frames are

lists of columns.

mtcars["mpg"]

https://riptutorial.com/ 142

mtcars[c("mpg", "cyl", "disp")]
my_columns <- c("mpg", "cyl", "hp")
mtcars[my_columns]

Single brackets like a list vs. single brackets like a matrix

The difference between data[columns] and data[, columns] is that when treating the data.frame as a

list (no comma in the brackets) the object returned will be a data.frame. If you use a comma to

treat the data.frame like a matrix then selecting a single column will return a vector but selecting

multiple columns will return a data.frame.

When selecting a single column
like a list will return a data frame
class(mtcars["mpg"])
[1] "data.frame"
like a matrix will return a vector
class(mtcars[, "mpg"])
[1] "numeric"

With double brackets data[[one_column]]

To extract a single column as a vector when treating your data.frame as a list, you can use

double brackets [[. This will only work for a single column at a time.

extract a single column by name as a vector
mtcars[["mpg"]]

extract a single column by name as a data frame (as above)
mtcars["mpg"]

Using $ to access columns

A single column can be extracted using the magical shortcut $ without using a quoted column

name:

get the column "mpg"
mtcars$mpg

Columns accessed by $ will always be vectors, not data frames.

Drawbacks of $ for accessing columns

The $ can be a convenient shortcut, especially if you are working in an environment (such as

RStudio) that will auto-complete the column name in this case. However, $ has drawbacks as

well: it uses non-standard evaluation to avoid the need for quotes, which means it will not work if

your column name is stored in a variable.

my_column <- "mpg"
the below will not work
mtcars$my_column

https://riptutorial.com/ 143

but these will work
mtcars[, my_column] # vector
mtcars[my_column] # one-column data frame
mtcars[[my_column]] # vector

Due to these concerns, $ is best used in interactive R sessions when your column names are

constant. For programmatic use, for example in writing a generalizable function that will be used

on different data sets with different column names, $ should be avoided.

Also note that the default behaviour is to use partial matching only when extracting from recursive

objects (except environments) by $

give you the values of "mpg" column
as "mtcars" has only one column having name starting with "m"
mtcars$m
will give you "NULL"
as "mtcars" has more than one columns having name starting with "d"
mtcars$d

Advanced indexing: negative and logical

indices

Whenever we have the option to use numbers for a index, we can also use negative numbers to

omit certain indices or a boolean (logical) vector to indicate exactly which items to keep.

Negative indices omit elements

mtcars[1,] # first row
mtcars[-1,] # everything but the first row
mtcars[-(1:10),] # everything except the first 10 rows

Logical vectors indicate specific elements to keep

We can use a condition such as < to generate a logical vector, and extract only the rows that meet

the condition:

logical vector indicating TRUE when a row has mpg less than 15
FALSE when a row has mpg >= 15
test <- mtcars$mpg < 15

extract these rows from the data frame
mtcars[test,]

We can also bypass the step of saving the intermediate variable

extract all columns for rows where the value of cyl is 4.
mtcars[mtcars$cyl == 4,]

https://riptutorial.com/ 144

extract the cyl, mpg, and hp columns where the value of cyl is 4
mtcars[mtcars$cyl == 4, c("cyl", "mpg", "hp")]

Convenience functions to manipulate data.frames

Some convenience functions to manipulate data.frames are subset(), transform(), with() and

within().

subset

The subset() function allows you to subset a data.frame in a more convenient way (subset also

works with other classes):

subset(mtcars, subset = cyl == 6, select = c("mpg", "hp"))
 mpg hp
Mazda RX4 21.0 110
Mazda RX4 Wag 21.0 110
Hornet 4 Drive 21.4 110
Valiant 18.1 105
Merc 280 19.2 123
Merc 280C 17.8 123
Ferrari Dino 19.7 175

In the code above we asking only for the lines in which cyl == 6 and for the columns mpg and hp.

You could achieve the same result using [] with the following code:

mtcars[mtcars$cyl == 6, c("mpg", "hp")]

transform

The transform() function is a convenience function to change columns inside a data.frame. For

instance the following code adds another column named mpg2 with the result of mpg^2 to the mtcars

data.frame:

mtcars <- transform(mtcars, mpg2 = mpg^2)

with and within

Both with() and within() let you to evaluate expressions inside the data.frame environment,

allowing a somewhat cleaner syntax, saving you the use of some $ or [].

For example, if you want to create, change and/or remove multiple columns in the airquality

data.frame:

aq <- within(airquality, {
 lOzone <- log(Ozone) # creates new column
 Month <- factor(month.abb[Month]) # changes Month Column
 cTemp <- round((Temp - 32) * 5/9, 1) # creates new column

https://riptutorial.com/ 145

 S.cT <- Solar.R / cTemp # creates new column
 rm(Day, Temp) # removes columns
})

Introduction

Data frames are likely the data structure you will used most in your analyses. A data frame is a

special kind of list that stores same-length vectors of different classes. You create data frames

using the data.frame function. The example below shows this by combining a numeric and a

character vector into a data frame. It uses the : operator, which will create a vector containing all

integers from 1 to 3.

df1 <- data.frame(x = 1:3, y = c("a", "b", "c"))
df1
x y
1 1 a
2 2 b
3 3 c
class(df1)
[1] "data.frame"

Data frame objects do not print with quotation marks, so the class of the columns is not always

obvious.

df2 <- data.frame(x = c("1", "2", "3"), y = c("a", "b", "c"))
df2
x y
1 1 a
2 2 b
3 3 c

Without further investigation, the "x" columns in df1 and df2 cannot be differentiated. The str

function can be used to describe objects with more detail than class.

str(df1)
'data.frame': 3 obs. of 2 variables:
$ x: int 1 2 3
$ y: Factor w/ 3 levels "a","b","c": 1 2 3
str(df2)
'data.frame': 3 obs. of 2 variables:
$ x: Factor w/ 3 levels "1","2","3": 1 2 3
$ y: Factor w/ 3 levels "a","b","c": 1 2 3

Here you see that df1 is a data.frame and has 3 observations of 2 variables, "x" and "y." Then you

are told that "x" has the data type integer (not important for this class, but for our purposes it

behaves like a numeric) and "y" is a factor with three levels (another data class we are not

discussing). It is important to note that, by default, data frames coerce characters to factors.

The default behavior can be changed with the stringsAsFactors parameter:

df3 <- data.frame(x = 1:3, y = c("a", "b", "c"), stringsAsFactors = FALSE)
str(df3)
'data.frame': 3 obs. of 2 variables:

https://riptutorial.com/ 146

$ x: int 1 2 3
$ y: chr "a" "b" "c"

Now the "y" column is a character. As mentioned above, each "column" of a data frame must have

the same length. Trying to create a data.frame from vectors with different lengths will result in an

error. (Try running data.frame(x = 1:3, y = 1:4) to see the resulting error.)

As test-cases for data frames, some data is provided by R by default. One of them is iris, loaded

as follows:

mydataframe <- iris
str(mydataframe)

Convert data stored in a list to a single data frame using do.call

If you have your data stored in a list and you want to convert this list to a data frame the do.call

function is an easy way to achieve this. However, it is important that all list elements have the

same length in order to prevent unintended recycling of values.

dataList <- list(1:3,4:6,7:9)
dataList
[[1]]
[1] 1 2 3

[[2]]
[1] 4 5 6

[[3]]
[1] 7 8 9

dataframe <- data.frame(do.call(rbind, dataList))
dataframe
X1 X2 X3
1 1 2 3
2 4 5 6
3 7 8 9

It also works if your list consists of data frames itself.

dataframeList <- list(data.frame(a = 1:2, b = 1:2, c = 1:2),
 data.frame(a = 3:4, b = 3:4, c = 3:4))
dataframeList
[[1]]
a b c
1 1 1 1
2 2 2 2

[[2]]
a b c
1 3 3 3
2 4 4 4

dataframe <- do.call(rbind, dataframeList)
dataframe

https://riptutorial.com/ 147

a b c
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

Convert all columns of a data.frame to character class

A common task is to convert all columns of a data.frame to character class for ease of

manipulation, such as in the cases of sending data.frames to a RDBMS or merging data.frames

containing factors where levels may differ between input data.frames.

The best time to do this is when the data is read in - almost all input methods that create data

frames have an options stringsAsFactors which can be set to FALSE.

If the data has already been created, factor columns can be converted to character columns as

shown below.

bob <- data.frame(jobs = c("scientist", "analyst"),
 pay = c(160000, 100000), age = c(30, 25))
str(bob)

'data.frame': 2 obs. of 3 variables:
 $ jobs: Factor w/ 2 levels "analyst","scientist": 2 1
 $ pay : num 160000 100000
 $ age : num 30 25

Convert *all columns* to character
bob[] <- lapply(bob, as.character)
str(bob)

 'data.frame': 2 obs. of 3 variables:
 $ jobs: chr "scientist" "analyst"
 $ pay : chr "160000" "1e+05"
 $ age : chr "30" "25"

Convert only factor columns to character
bob[] <- lapply(bob, function(x) {
 if is.factor(x) x <- as.character(x)
 return(x)
})

Subsetting Rows by Column Values

Built in functions can subset rows with columns that meet conditions.

df <- data.frame(item = c(1:10),
 price_Elasticity = c(-0.57667, 0.03205, -0.04904, 0.10342, 0.04029,
 0.0742, 0.1669, 0.0313, 0.22204, 0.06158),
 total_Margin = c(-145062, 98671, 20576, -56382, 207623, 43463, 1235,
 34521, 146553, -74516))

https://riptutorial.com/ 148

To find rows with price_Elasticity > 0:

df[df$price_Elasticity > 0,]

 item price_Elasticity total_Margin
2 2 0.03205 98671
4 4 0.10342 -56382
5 5 0.04029 207623
6 6 0.07420 43463
7 7 0.16690 1235
8 8 0.03130 34521
9 9 0.22204 146553
10 10 0.06158 -74516

subset based on price_Elasticity > 0 and total_Margin > 0:

df[df$price_Elasticity > 0 & df$total_Margin > 0,]

 item price_Elasticity total_Margin
2 2 0.03205 98671
5 5 0.04029 207623
6 6 0.07420 43463
7 7 0.16690 1235
8 8 0.03130 34521
9 9 0.22204 146553

Read Data frames online: https://riptutorial.com/r/topic/438/data-frames

https://riptutorial.com/ 149

https://riptutorial.com/r/topic/438/data-frames

Chapter 27: data.table

Introduction

Data.table is a package that extends the functionality of data frames from base R, particularly

improving on their performance and syntax. See the package's Docs area at Getting started with

data.table for details.

Syntax

DT[i, j, by]
DT[where, select|update|do, by]

•

DT[...][...]
chaining

•

################# Shortcuts, special functions and special symbols inside DT[...]•

.()

in several arguments, replaces list()

•

J()

in i, replaces list()

•

:=

in j, a function used to add or modify columns

•

.N

in i, the total number of rows

in j, the number of rows in a group

•

.I

in j, the vector of row numbers in the table (filtered by i)

•

.SD

in j, the current subset of the data

selected by the .SDcols argument

•

.GRP

in j, the current index of the subset of the data

•

.BY

in j, the list of by values for the current subset of data

•

V1, V2, ...

default names for unnamed columns created in j

•

################# Joins inside DT[...]•

DT1[DT2, on, j]

join two tables

•

i.*

special prefix on DT2's columns after the join

•

by=.EACHI

special option available only with a join

•

DT1[!DT2, on, j]

anti-join two tables

•

DT1[DT2, on, roll, j]•

https://riptutorial.com/ 150

http://www.riptutorial.com/data-table/topic/3389/getting-started-with-data-table
http://www.riptutorial.com/data-table/topic/3389/getting-started-with-data-table

join two tables, rolling on the last column in on=
################# Reshaping, stacking and splitting•

melt(DT, id.vars, measure.vars)

transform to long format

for multiple columns, use measure.vars = patterns(...)

•

dcast(DT, formula)

transform to wide format

•

rbind(DT1, DT2, ...)

stack enumerated data.tables

•

rbindlist(DT_list, idcol)

stack a list of data.tables

•

split(DT, by)

split a data.table into a list

•

################# Some other functions specialized for data.tables•

foverlaps

overlap joins

•

merge

another way of joining two tables

•

set

another way of adding or modifying columns

•

fintersect, fsetdiff, funion, fsetequal, unique, duplicated, anyDuplicated

set-theory operations with rows as elements

•

uniqueN

the number of distinct rows

•

rowidv(DT, cols)

row ID (1 to .N) within each group determined by cols

•

rleidv(DT, cols)

group ID (1 to .GRP) within each group determined by runs of cols

•

shift(DT, n, type=c("lag", "lead"))

apply a shift operator to every column

•

setorder, setcolorder, setnames, setkey, setindex, setattr

modify attributes and order by reference

•

Remarks

Installation and support

To install the data.table package:

install from CRAN
install.packages("data.table")

or install development version
install.packages("data.table", type = "source", repos =
"http://Rdatatable.github.io/data.table")

and to revert from devel to CRAN, the current version must first be removed

https://riptutorial.com/ 151

https://github.com/Rdatatable/data.table/wiki/Installation

remove.packages("data.table")
install.packages("data.table")

The package's official site has wiki pages providing help getting started, and lists of presentations

and articles from around the web. Before asking a question -- here on StackOverflow or anywhere

else -- please read the support page.

Loading the package

Many of the functions in the examples above exist in the data.table namespace. To use them, you

will need to add a line like library(data.table) first or to use their full path, like data.table::fread

instead of simply fread. For help on individual functions, the syntax is help("fread") or ?fread.

Again, if the package is not loaded, use the full name like ?data.table::fread.

Examples

Creating a data.table

A data.table is an enhanced version of the data.frame class from base R. As such, its class()

attribute is the vector "data.table" "data.frame" and functions that work on a data.frame will also

work with a data.table. There are many ways to create, load or coerce to a data.table.

Build

Don't forget to install and activate the data.table package

library(data.table)

There is a constructor of the same name:

DT <- data.table(
 x = letters[1:5],
 y = 1:5,
 z = (1:5) > 3
)
x y z
1: a 1 FALSE
2: b 2 FALSE
3: c 3 FALSE
4: d 4 TRUE
5: e 5 TRUE

Unlike data.frame, data.table will not coerce strings to factors:

sapply(DT, class)
x y z
"character" "integer" "logical"

https://riptutorial.com/ 152

https://github.com/Rdatatable/data.table/wiki
https://github.com/Rdatatable/data.table/wiki/Support

Read in

We can read from a text file:

dt <- fread("my_file.csv")

Unlike read.csv, fread will read strings as strings, not as factors.

Modify a data.frame

For efficiency, data.table offers a way of altering a data.frame or list to make a data.table in-place

(without making a copy or changing its memory location):

example data.frame
DF <- data.frame(x = letters[1:5], y = 1:5, z = (1:5) > 3)
modification
setDT(DF)

Note that we do not <- assign the result, since the object DF has been modified in-place. The class

attributes of the data.frame will be retained:

sapply(DF, class)
x y z
"factor" "integer" "logical"

Coerce object to data.table

If you have a list, data.frame, or data.table, you should use the setDT function to convert to a

data.table because it does the conversion by reference instead of making a copy (which

as.data.table does). This is important if you are working with large datasets.

If you have another R object (such as a matrix), you must use as.data.table to coerce it to a

data.table.

mat <- matrix(0, ncol = 10, nrow = 10)

DT <- as.data.table(mat)
or
DT <- data.table(mat)

Adding and modifying columns

DT[where, select|update|do, by] syntax is used to work with columns of a data.table.

The "where" part is the i argument•

https://riptutorial.com/ 153

The "select|update|do" part is the j argument•

These two arguments are usually passed by position instead of by name.

Our example data below is

mtcars = data.table(mtcars, keep.rownames = TRUE)

Editing entire columns

Use the := operator inside j to assign new columns:

mtcars[, mpg_sq := mpg^2]

Remove columns by setting to NULL:

mtcars[, mpg_sq := NULL]

Add multiple columns by using the := operator's multivariate format:

mtcars[, `:=`(mpg_sq = mpg^2, wt_sqrt = sqrt(wt))]
or
mtcars[, c("mpg_sq", "wt_sqrt") := .(mpg^2, sqrt(wt))]

If the columns are dependent and must be defined in sequence, one way is:

mtcars[, c("mpg_sq", "mpg2_hp") := .(temp1 <- mpg^2, temp1/hp)]

The .() syntax is used when the right-hand side of LHS := RHS is a list of columns.

For dynamically-determined column names, use parentheses:

vn = "mpg_sq"
mtcars[, (vn) := mpg^2]

Columns can also be modified with set, though this is rarely necessary:

set(mtcars, j = "hp_over_wt", v = mtcars$hp/mtcars$wt)

Editing subsets of columns

Use the i argument to subset to rows "where" edits should be made:

mtcars[1:3, newvar := "Hello"]
or

https://riptutorial.com/ 154

set(mtcars, j = "newvar", i = 1:3, v = "Hello")

As in a data.frame, we can subset using row numbers or logical tests. It is also possible to use a

"join" in i, but that more complicated task is covered in another example.

Editing column attributes

Functions that edit attributes, such as levels<- or names<-, actually replace an object with a

modified copy. Even if only used on one column in a data.table, the entire object is copied and

replaced.

To modify an object without copies, use setnames to change the column names of a data.table or

data.frame and setattr to change an attribute for any object.

Print a message to the console whenever the data.table is copied
tracemem(mtcars)
mtcars[, cyl2 := factor(cyl)]

Neither of these statements copy the data.table
setnames(mtcars, old = "cyl2", new = "cyl_fac")
setattr(mtcars$cyl_fac, "levels", c("four", "six", "eight"))

Each of these statements copies the data.table
names(mtcars)[names(mtcars) == "cyl_fac"] <- "cf"
levels(mtcars$cf) <- c("IV", "VI", "VIII")

Be aware that these changes are made by reference, so they are global. Changing them within

one environment affects the object in all environments.

This function also changes the levels in the global environment
edit_levels <- function(x) setattr(x, "levels", c("low", "med", "high"))
edit_levels(mtcars$cyl_factor)

Special symbols in data.table

.SD

.SD refers to the subset of the data.table for each group, excluding all columns used in by.

.SD along with lapply can be used to apply any function to multiple columns by group in a
data.table

We will continue using the same built-in dataset, mtcars:

mtcars = data.table(mtcars) # Let's not include rownames to keep things simpler

Mean of all columns in the dataset by number of cylinders, cyl:

https://riptutorial.com/ 155

mtcars[, lapply(.SD, mean), by = cyl]

cyl mpg disp hp drat wt qsec vs am gear
carb
#1: 6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143
3.428571
#2: 4 26.66364 105.1364 82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909
1.545455
#3: 8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714
3.500000

Apart from cyl, there are other categorical columns in the dataset such as vs, am, gear and carb. It

doesn't really make sense to take the mean of these columns. So let's exclude these columns. This

is where .SDcols comes into the picture.

.SDcols

.SDcols specifies the columns of the data.table that are included in .SD.

Mean of all columns (continuous columns) in the dataset by number of gears gear, and number of

cylinders, cyl, arranged by gear and cyl:

All the continuous variables in the dataset
cols_chosen <- c("mpg", "disp", "hp", "drat", "wt", "qsec")

mtcars[order(gear, cyl), lapply(.SD, mean), by = .(gear, cyl), .SDcols = cols_chosen]

gear cyl mpg disp hp drat wt qsec
#1: 3 4 21.500 120.1000 97.0000 3.700000 2.465000 20.0100
#2: 3 6 19.750 241.5000 107.5000 2.920000 3.337500 19.8300
#3: 3 8 15.050 357.6167 194.1667 3.120833 4.104083 17.1425
#4: 4 4 26.925 102.6250 76.0000 4.110000 2.378125 19.6125
#5: 4 6 19.750 163.8000 116.5000 3.910000 3.093750 17.6700
#6: 5 4 28.200 107.7000 102.0000 4.100000 1.826500 16.8000
#7: 5 6 19.700 145.0000 175.0000 3.620000 2.770000 15.5000
#8: 5 8 15.400 326.0000 299.5000 3.880000 3.370000 14.5500

Maybe we don't want to calculate the mean by groups. To calculate the mean for all the cars in the

dataset, we don't specify the by variable.

mtcars[, lapply(.SD, mean), .SDcols = cols_chosen]

mpg disp hp drat wt qsec
#1: 20.09062 230.7219 146.6875 3.596563 3.21725 17.84875

Note:

It is not necessary to define cols_chosen beforehand. .SDcols can directly take column names•

.SDcols can also directly take a vector of columnnumbers. In the above example this would

be mtcars[, lapply(.SD, mean), .SDcols = c(1,3:7)]

•

https://riptutorial.com/ 156

.N

.N is shorthand for the number of rows in a group.

iris[, .(count=.N), by=Species]

Species count
#1: setosa 50
#2: versicolor 50
#3: virginica 50

Writing code compatible with both data.frame and data.table

Differences in subsetting syntax

A data.table is one of several two-dimensional data structures available in R, besides data.frame,

matrix and (2D) array. All of these classes use a very similar but not identical syntax for subsetting,

the A[rows, cols] schema.

Consider the following data stored in a matrix, a data.frame and a data.table:

ma <- matrix(rnorm(12), nrow=4, dimnames=list(letters[1:4], c('X', 'Y', 'Z')))
df <- as.data.frame(ma)
dt <- as.data.table(ma)

ma[2:3] #---> returns the 2nd and 3rd items, as if 'ma' were a vector (because it is!)
df[2:3] #---> returns the 2nd and 3rd columns
dt[2:3] #---> returns the 2nd and 3rd rows!

If you want to be sure of what will be returned, it is better to be explicit.

To get specific rows, just add a comma after the range:

ma[2:3,] # \
df[2:3,] # }---> returns the 2nd and 3rd rows
dt[2:3,] # /

But, if you want to subset columns, some cases are interpreted differently. All three can be subset

the same way with integer or character indices not stored in a variable.

ma[, 2:3] # \
df[, 2:3] # \
dt[, 2:3] # }---> returns the 2nd and 3rd columns
ma[, c("Y", "Z")] # /
df[, c("Y", "Z")] # /
dt[, c("Y", "Z")] # /

However, they differ for unquoted variable names

https://riptutorial.com/ 157

mycols <- 2:3
ma[, mycols] # \
df[, mycols] # }---> returns the 2nd and 3rd columns
dt[, mycols, with = FALSE] # /

dt[, mycols] # ---> Raises an error

In the last case, mycols is evaluated as the name of a column. Because dt cannot find a column

named mycols, an error is raised.

Note: For versions of the data.table package priorto 1.9.8, this behavior was slightly different.

Anything in the column index would have been evaluated using dt as an environment. So both

dt[, 2:3] and dt[, mycols] would return the vector 2:3. No error would be raised for the second

case, because the variable mycols does exist in the parent environment.

Strategies for maintaining compatibility with

data.frame and data.table

There are many reasons to write code that is guaranteed to work with data.frame and data.table.

Maybe you are forced to use data.frame, or you may need to share some code that you don't know

how will be used. So, there are some main strategies for achieving this, in order of convenience:

Use syntax that behaves the same for both classes.1.

Use a common function that does the same thing as the shortest syntax.2.

Force data.table to behave as data.frame (ex.: call the specific method print.data.frame).3.

Treat them as list, which they ultimately are.4.

Convert the table to a data.frame before doing anything (bad idea if it is a huge table).5.

Convert the table to data.table, if dependencies are not a concern.6.

Subset rows. Its simple, just use the [,] selector, with the comma:

A[1:10,]
A[A$var > 17,] # A[var > 17,] just works for data.table

Subset columns. If you want a single column, use the $ or the [[]] selector:

A$var
colname <- 'var'
A[[colname]]
A[[1]]

If you want a uniform way to grab more than one column, it's necessary to appeal a bit:

B <- `[.data.frame`(A, 2:4)

We can give it a better name
select <- `[.data.frame`
B <- select(A, 2:4)

https://riptutorial.com/ 158

C <- select(A, c('foo', 'bar'))

Subset 'indexed' rows. While data.frame has row.names, data.table has its unique key feature. The

best thing is to avoid row.names entirely and take advantage of the existing optimizations in the

case of data.table when possible.

B <- A[A$var != 0,]
or...
B <- with(A, A[var != 0,]) # data.table will silently index A by var before subsetting

stuff <- c('a', 'c', 'f')
C <- A[match(stuff, A$name),] # really worse than: setkey(A); A[stuff,]

Get a 1-column table, get a row as a vector. These are easy with what we have seen until now:

B <- select(A, 2) #---> a table with just the second column
C <- unlist(A[1,]) #---> the first row as a vector (coerced if necessary)

Setting keys in data.table

Yes, you need to SETKEY pre 1.9.6

In the past (pre 1.9.6), your data.table was sped up by setting columns as keys to the table,

particularly for large tables. [See intro vignette page 5 of September 2015 version, where speed of

search was 544 times better.] You may find older code making use of this setting keys with

'setkey' or setting a 'key=' column when setting up the table.

library(data.table)
DT <- data.table(
 x = letters[1:5],
 y = 5:1,
 z = (1:5) > 3
)

#> DT
x y z
#1: a 5 FALSE
#2: b 4 FALSE
#3: c 3 FALSE
#4: d 2 TRUE
#5: e 1 TRUE

Set your key with the setkey command. You can have a key with multiple columns.

setkey(DT, y)

Check your table's key in tables()

tables()

> tables()
 NAME NROW NCOL MB COLS KEY

https://riptutorial.com/ 159

http://stackoverflow.com/questions/20039335/what-is-the-purpose-of-setting-a-key-in-data-table

[1,] DT 5 3 1 x,y,z y
Total: 1MB

Note this will re-sort your data.

#> DT
x y z
#1: e 1 TRUE
#2: d 2 TRUE
#3: c 3 FALSE
#4: b 4 FALSE
#5: a 5 FALSE

Now it is unnecessary

Prior to v1.9.6 you had to have set a key for certain operations especially joining tables. The

developers of data.table have sped up and introduced a "on=" feature that can replace the

dependency on keys. See SO answer here for a detailed discussion.

In Jan 2017, the developers have written a vignette around secondary indices which explains the

"on" syntax and allows for other columns to be identified for fast indexing.

Creating secondary indices?

In a manner similar to key, you can setindex(DT, key.col) or setindexv(DT, "key.col.string"),

where DT is your data.table. Remove all indices with setindex(DT, NULL).

See your secondary indices with indices(DT).

Why secondary indices?

This does not sort the table (unlike key), but does allow for quick indexing using the "on" syntax.

Note there can be only one key, but you can use multiple secondary indices, which saves having

to rekey and resort the table. This will speed up your subsetting when changing the columns you

want to subset on.

Recall, in example above y was the key for table DT:

DT
x y z
1: e 1 TRUE
2: d 2 TRUE
3: c 3 FALSE
4: b 4 FALSE
5: a 5 FALSE

Let us set x as index
setindex(DT, x)

Use indices to see what has been set
indices(DT)
[1] "x"

fast subset using index and not keyed column

https://riptutorial.com/ 160

http://stackoverflow.com/questions/20039335/what-is-the-purpose-of-setting-a-key-in-data-table
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-secondary-indices-and-auto-indexing.html

DT["c", on ="x"]
#x y z
#1: c 3 FALSE

old way would have been rekeying DT from y to x, doing subset and
perhaps keying back to y (now we save two sorts)
This is a toy example above but would have been more valuable with big data sets

Read data.table online: https://riptutorial.com/r/topic/849/data-table

https://riptutorial.com/ 161

https://riptutorial.com/r/topic/849/data-table

Chapter 28: Date and Time

Introduction

R comes with classes for dates, date-times and time differences; see ?Dates, ?DateTimeClasses,

?difftime and follow the "See Also" section of those docs for further documentation. Related Docs:

Dates and Date-Time Classes.

Remarks

Classes

POSIXct

A date-time class, POSIXct stores time as seconds since UNIX epoch on 1970-01-01 00:00:00

UTC. It is the format returned when pulling the current time with Sys.Time().

•

POSIXlt

A date-time class, stores a list of day, month, year, hour, minute, second, and so on. This is

the format returned by strptime.

•

Date The only date class, stores the date as a floating-point number.•

Selecting a date-time format

POSIXct is the sole option in the tidyverse and world of UNIX. It is faster and takes up less

memory than POSIXlt.

origin = as.POSIXct("1970-01-01 00:00:00", format ="%Y-%m-%d %H:%M:%S", tz = "UTC")

origin
[1] "1970-01-01 UTC"

origin + 47
[1] "1970-01-01 00:00:47 UTC"

as.numeric(origin) # At epoch
0

as.numeric(Sys.time()) # Right now (output as of July 21, 2016 at 11:47:37 EDT)
1469116057

posixlt = as.POSIXlt(Sys.time(), format ="%Y-%m-%d %H:%M:%S", tz = "America/Chicago")

Conversion to POISXct
posixct = as.POSIXct(posixlt)

https://riptutorial.com/ 162

http://www.riptutorial.com/r/topic/9015/the-date-class
http://www.riptutorial.com/r/topic/9027/date-time-classes--posixct-and-posixlt-
http://www.riptutorial.com/r/topic/9027/date-time-classes--posixct-and-posixlt-
http://www.riptutorial.com/r/topic/9027/date-time-classes--posixct-and-posixlt-
http://www.riptutorial.com/r/topic/9015/the-date-class

posixct

Accessing components
posixlt$sec # Seconds 0-61
posixlt$min # Minutes 0-59
posixlt$hour # Hour 0-23
posixlt$mday # Day of the Month 1-31
posixlt$mon # Months after the first of the year 0-11
posixlt$year # Years since 1900.

ct = as.POSIXct("2015-05-25")
lt = as.POSIXlt("2015-05-25")

object.size(ct)
520 bytes
object.size(lt)
1816 bytes

Specialized packages

anytime•

data.table IDate and ITime•

fasttime•

lubridate•

nanotime•

Examples

Current Date and Time

R is able to access the current date, time and time zone:

Sys.Date() # Returns date as a Date object

[1] "2016-07-21"

Sys.time() # Returns date & time at current locale as a POSIXct object

[1] "2016-07-21 10:04:39 CDT"

as.numeric(Sys.time()) # Seconds from UNIX Epoch (1970-01-01 00:00:00 UTC)

[1] 1469113479

Sys.timezone() # Time zone at current location

[1] "Australia/Melbourne"

Use OlsonNames() to view the time zone names in Olson/IANA database on the current system:

str(OlsonNames())
chr [1:589] "Africa/Abidjan" "Africa/Accra" "Africa/Addis_Ababa" "Africa/Algiers"

https://riptutorial.com/ 163

http://www.riptutorial.com/r/topic/2496/lubridate

"Africa/Asmara" "Africa/Asmera" "Africa/Bamako" ...

Go to the End of the Month

Let's say we want to go to the last day of the month, this function will help on it:

eom <- function(x, p=as.POSIXlt(x)) as.Date(modifyList(p, list(mon=p$mon + 1, mday=0)))

Test:

x <- seq(as.POSIXct("2000-12-10"),as.POSIXct("2001-05-10"),by="months")
> data.frame(before=x,after=eom(x))
 before after
1 2000-12-10 2000-12-31
2 2001-01-10 2001-01-31
3 2001-02-10 2001-02-28
4 2001-03-10 2001-03-31
5 2001-04-10 2001-04-30
6 2001-05-10 2001-05-31
>

Using a date in a string format:

> eom('2000-01-01')
[1] "2000-01-31"

Go to First Day of the Month

Let's say we want to go to the first day of a given month:

date <- as.Date("2017-01-20")

> as.POSIXlt(cut(date, "month"))
[1] "2017-01-01 EST"

Move a date a number of months consistently by months

Let's say we want to move a given date a numof months. We can define the following function, that

uses the mondate package:

moveNumOfMonths <- function(date, num) {
 as.Date(mondate(date) + num)
}

It moves consistently the month part of the date and adjusting the day, in case the date refers to

the last day of the month.

For example:

Back one month:

https://riptutorial.com/ 164

> moveNumOfMonths("2017-10-30",-1)
[1] "2017-09-30"

Back two months:

> moveNumOfMonths("2017-10-30",-2)
[1] "2017-08-30"

Forward two months:

> moveNumOfMonths("2017-02-28", 2)
[1] "2017-04-30"

It moves two months from the last day of February, therefore the last day of April.

Let's se how it works for backward and forward operations when it is the last day of the month:

> moveNumOfMonths("2016-11-30", 2)
[1] "2017-01-31"
> moveNumOfMonths("2017-01-31", -2)
[1] "2016-11-30"

Because November has 30 days, we get the same date in the backward operation, but:

> moveNumOfMonths("2017-01-30", -2)
[1] "2016-11-30"
> moveNumOfMonths("2016-11-30", 2)
[1] "2017-01-31"

Because January has 31 days, then moving two months from last day of November will get the

last day of January.

Read Date and Time online: https://riptutorial.com/r/topic/1157/date-and-time

https://riptutorial.com/ 165

https://riptutorial.com/r/topic/1157/date-and-time

Chapter 29: Date-time classes (POSIXct and

POSIXlt)

Introduction

R includes two date-time classes -- POSIXct and POSIXlt -- see ?DateTimeClasses.

Remarks

Pitfalls

With POSIXct, midnight will display only the date and time zone, though the full time is still stored.

Related topics

Date and Time•

Specialized packages

lubridate•

Examples

Formatting and printing date-time objects

test date-time object
options(digits.secs = 3)
d = as.POSIXct("2016-08-30 14:18:30.58", tz = "UTC")

format(d,"%S") # 00-61 Second as integer
[1] "30"

format(d,"%OS") # 00-60.99… Second as fractional
[1] "30.579"

format(d,"%M") # 00-59 Minute
[1] "18"

format(d,"%H") # 00-23 Hours
[1] "14"

format(d,"%I") # 01-12 Hours
[1] "02"

https://riptutorial.com/ 166

http://www.riptutorial.com/r/topic/1157/date-and-time

format(d,"%p") # AM/PM Indicator
[1] "PM"

format(d,"%z") # Signed offset
[1] "+0000"

format(d,"%Z") # Time Zone Abbreviation
[1] "UTC"

See ?strptime for details on the format strings here, as well as other formats.

Parsing strings into date-time objects

The functions for parsing a string into POSIXct and POSIXlt take similar parameters and return a

similar-looking result, but there are differences in how that date-time is stored; see "Remarks."

as.POSIXct("11:38", # time string
 format = "%H:%M") # formatting string
[1] "2016-07-21 11:38:00 CDT"
strptime("11:38", # identical, but makes a POSIXlt object
 format = "%H:%M")
[1] "2016-07-21 11:38:00 CDT"

as.POSIXct("11 AM",
 format = "%I %p")
[1] "2016-07-21 11:00:00 CDT"

Note that date and timezone are imputed.

as.POSIXct("11:38:22", # time string without timezone
 format = "%H:%M:%S",
 tz = "America/New_York") # set time zone
[1] "2016-07-21 11:38:22 EDT"

as.POSIXct("2016-07-21 00:00:00",
 format = "%F %T") # shortcut tokens for "%Y-%m-%d" and "%H:%M:%S"

See ?strptime for details on the format strings here.

Notes

Missing elements

If a date element is not supplied, then that from the current date is used.•

If a time element is not supplied, then that from midnight is used, i.e. 0s.•

If no timezone is supplied in either the string or the tz parameter, the local timezone is used.•

Time zones

https://riptutorial.com/ 167

The accepted values of tz depend on the location.

CST is given with "CST6CDT" or "America/Chicago"○

•

For supported locations and time zones use:

In R: OlsonNames()○

Alternatively, try in R: system("cat $R_HOME/share/zoneinfo/zone.tab")○

•

These locations are given by Internet Assigned Numbers Authority (IANA)

List of tz database time zones (Wikipedia)○

IANA TZ Data (2016e)○

•

Date-time arithmetic

To add/subtract time, use POSIXct, since it stores times in seconds

adding/subtracting times - 60 seconds
as.POSIXct("2016-01-01") + 60
[1] "2016-01-01 00:01:00 AEDT"

adding 3 hours, 14 minutes, 15 seconds
as.POSIXct("2016-01-01") + ((3 * 60 * 60) + (14 * 60) + 15)
[1] "2016-01-01 03:14:15 AEDT"

More formally, as.difftime can be used to specify time periods to add to a date or datetime object.

E.g.:

as.POSIXct("2016-01-01") +
 as.difftime(3, units="hours") +
 as.difftime(14, units="mins") +
 as.difftime(15, units="secs")
[1] "2016-01-01 03:14:15 AEDT"

To find the difference between dates/times use difftime() for differences in seconds, minutes,

hours, days or weeks.

using POSIXct objects
difftime(
 as.POSIXct("2016-01-01 12:00:00"),
 as.POSIXct("2016-01-01 11:59:59"),
 unit = "secs")
Time difference of 1 secs

To generate sequences of date-times use seq.POSIXt() or simply seq.

Read Date-time classes (POSIXct and POSIXlt) online: https://riptutorial.com/r/topic/9027/date-

time-classes--posixct-and-posixlt-

https://riptutorial.com/ 168

http://www.iana.org/time-zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
http://www.iana.org/time-zones/repository/releases/tzdata2016e.tar.gz
https://riptutorial.com/r/topic/9027/date-time-classes--posixct-and-posixlt-
https://riptutorial.com/r/topic/9027/date-time-classes--posixct-and-posixlt-

Chapter 30: Debugging

Examples

Using browser

The browser function can be used like a breakpoint: code execution will pause at the point it is

called. Then user can then inspect variable values, execute arbitrary R code and step through the

code line by line.

Once browser() is hit in the code the interactive interpreter will start. Any R code can be run as

normal, and in addition the following commands are present,

Command Meaning

c Exit browser and continue program

f Finish current loop or function \

n Step Over (evaluate next statement, stepping over function calls)

s Step Into (evaluate next statement, stepping into function calls)

where Print stack trace

r Invoke "resume" restart

Q Exit browser and quit

For example we might have a script like,

toDebug <- function() {
 a = 1
 b = 2

 browser()

 for(i in 1:100) {
 a = a * b
 }
}

toDebug()

When running the above script we initially see something like,

Called from: toDebug
Browser[1]>

https://riptutorial.com/ 169

We could then interact with the prompt as so,

Called from: toDebug
Browser[1]> a
[1] 1
Browser[1]> b
[1] 2
Browse[1]> n
debug at #7: for (i in 1:100) {
 a = a * b
}
Browse[2]> n
debug at #8: a = a * b
Browse[2]> a
[1] 1
Browse[2]> n
debug at #8: a = a * b
Browse[2]> a
[1] 2
Browse[2]> Q

browser() can also be used as part of a functional chain, like so:

mtcars %>% group_by(cyl) %>% {browser()}

Using debug

You can set any function for debugging with debug.

debug(mean)
mean(1:3)

All subsequent calls to the function will enter debugging mode. You can disable this behavior with

undebug.

undebug(mean)
mean(1:3)

If you know you only want to enter the debugging mode of a function once, consider the use of

debugonce.

debugonce(mean)
mean(1:3)
mean(1:3)

Read Debugging online: https://riptutorial.com/r/topic/1695/debugging

https://riptutorial.com/ 170

https://riptutorial.com/r/topic/1695/debugging

Chapter 31: Distribution Functions

Introduction

R has many built-in functions to work with probability distributions, with official docs starting at

?Distributions.

Remarks

There are generally four prefixes:

d-The density function for the given distribution•

p-The cumulative distribution function•

q-Get the quantile associated with the given probability•

r-Get a random sample•

For the distributions built into R's base installation, see ?Distributions.

Examples

Normal distribution

Let's use *norm as an example. From the documentation:

dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)

So if I wanted to know the value of a standard normal distribution at 0, I would do

dnorm(0)

Which gives us 0.3989423, a reasonable answer.

In the same way pnorm(0) gives .5. Again, this makes sense, because half of the distribution is to

the left of 0.

qnorm will essentially do the opposite of pnorm. qnorm(.5) gives 0.

Finally, there's the rnorm function:

rnorm(10)

Will generate 10 samples from standard normal.

https://riptutorial.com/ 171

If you want to change the parameters of a given distribution, simply change them like so

rnorm(10, mean=4, sd= 3)

Binomial Distribution

We now illustrate the functions dbinom,pbinom,qbinom and rbinom defined for Binomial distribution.

The dbinom() function gives the probabilities for various values of the binomial variable. Minimally it

requires three arguments. The first argument for this function must be a vector of quantiles(the

possible values of the random variable X). The second and third arguments are the defining

parameters of the distribution, namely, n(the number of independent trials) and p(the probability of

success in each trial). For example, for a binomial distribution with n = 5, p = 0.5, the possible

values for X are 0,1,2,3,4,5. That is, the dbinom(x,n,p) function gives the probability values P(X =

x) for x = 0, 1, 2, 3, 4, 5.

#Binom(n = 5, p = 0.5) probabilities
> n <- 5; p<- 0.5; x <- 0:n
> dbinom(x,n,p)
[1] 0.03125 0.15625 0.31250 0.31250 0.15625 0.03125
#To verify the total probability is 1
> sum(dbinom(x,n,p))
[1] 1
>

The binomial probability distribution plot can be displayed as in the following figure:

> x <- 0:12
> prob <- dbinom(x,12,.5)
> barplot(prob,col = "red",ylim = c(0,.2),names.arg=x,
 main="Binomial Distribution\n(n=12,p=0.5)")

https://riptutorial.com/ 172

https://i.stack.imgur.com/cifQJ.jpg

Note that the binomial distribution is symmetric when p = 0.5. To demonstrate that the binomial

distribution is negatively skewed when p is larger than 0.5, consider the following example:

> n=9; p=.7; x=0:n; prob=dbinom(x,n,p);
> barplot(prob,names.arg = x,main="Binomial Distribution\n(n=9, p=0.7)",col="lightblue")

When p is smaller than 0.5 the binomial distribution is positively skewed as shown below.

> n=9; p=.3; x=0:n; prob=dbinom(x,n,p);
> barplot(prob,names.arg = x,main="Binomial Distribution\n(n=9, p=0.3)",col="cyan")

https://riptutorial.com/ 173

https://i.stack.imgur.com/HvXyP.jpg
https://i.stack.imgur.com/dKqPx.jpg

We will now illustrate the usage of the cumulative distribution function pbinom(). This function can

be used to calculate probabilities such as P(X <= x). The first argument to this function is a

vector of quantiles(values of x).

Calculating Probabilities
P(X <= 2) in a Bin(n=5,p=0.5) distribution
> pbinom(2,5,0.5)
[1] 0.5

The above probability can also be obtained as follows:

P(X <= 2) = P(X=0) + P(X=1) + P(X=2)
> sum(dbinom(0:2,5,0.5))
[1] 0.5

To compute, probabilities of the type: P(a <= X <= b)

P(3<= X <= 5) = P(X=3) + P(X=4) + P(X=5) in a Bin(n=9,p=0.6) dist
> sum(dbinom(c(3,4,5),9,0.6))
[1] 0.4923556
>

Presenting the binomial distribution in the form of a table:

> n = 10; p = 0.4; x = 0:n;
> prob = dbinom(x,n,p)
> cdf = pbinom(x,n,p)
> distTable = cbind(x,prob,cdf)
> distTable
 x prob cdf
 [1,] 0 0.0060466176 0.006046618
 [2,] 1 0.0403107840 0.046357402
 [3,] 2 0.1209323520 0.167289754
 [4,] 3 0.2149908480 0.382280602
 [5,] 4 0.2508226560 0.633103258
 [6,] 5 0.2006581248 0.833761382
 [7,] 6 0.1114767360 0.945238118
 [8,] 7 0.0424673280 0.987705446
 [9,] 8 0.0106168320 0.998322278
[10,] 9 0.0015728640 0.999895142
[11,] 10 0.0001048576 1.000000000
>

The rbinom() is used to generate random samples of specified sizes with a given parameter

values.

Simulation
> xVal<-names(table(rbinom(1000,8,.5)))
> barplot(as.vector(table(rbinom(1000,8,.5))),names.arg =xVal,
 main="Simulated Binomial Distribution\n (n=8,p=0.5)")

https://riptutorial.com/ 174

Read Distribution Functions online: https://riptutorial.com/r/topic/1885/distribution-functions

https://riptutorial.com/ 175

https://i.stack.imgur.com/RNHh5.jpg
https://riptutorial.com/r/topic/1885/distribution-functions

Chapter 32: dplyr

Remarks

dplyr is an iteration of plyr that provides a flexible "verb" based functions to manipulate data in R.

The latest version of dplyr can be downloaded from CRAN using

install.package("dplyr")

The key object in dplyr is a tbl, a representation of a tabular data structure. Currently dplyr (version

0.5.0) supports:

data frames•

data tables•

SQLite•

PostgreSQL/Redshift•

MySQL/MariaDB•

Bigquery•

MonetDB•

data cubes with arrays (partial implementation)•

Examples

dplyr's single table verbs

dplyr introduces a grammar of data manipulation in R. It provides a consistent interface to work

with data no matter where it is stored: data.frame, data.table, or a database. The key pieces of

dplyr are written using Rcpp, which makes it very fast for working with in-memory data.

dplyr's philosophy is to have small functions that do one thing well. The five simple functions (

filter, arrange, select, mutate, and summarise) can be used to reveal new ways to describe data.

When combined with group_by, these functions can be used to calculate group wise summary

statistics.

Syntax commonalities

All these functions have a similar syntax:

The first argument to all these functions is always a data frame•

Columns can be referred directly using bare variable names (i.e., without using $)•

These functions do not modify the original data itself, i.e., they don't have side effects.

Hence, the results should always be saved to an object.

•

We will use the built-in mtcars dataset to explore dplyr's single table verbs. Before converting the

type of mtcars to tbl_df (since it makes printing cleaner), we add the rownames of the dataset as a

https://riptutorial.com/ 176

https://cran.r-project.org/web/packages/dplyr/index.html
http://www.riptutorial.com/r/topic/438/data-frames
http://www.riptutorial.com/r/topic/849/data-table
http://www.riptutorial.com/r/topic/1404/rcpp
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html

column using rownames_to_column function from the tibble package.

library(dplyr) # This documentation was written using version 0.5.0

mtcars_tbl <- as_data_frame(tibble::rownames_to_column(mtcars, "cars"))

examine the structure of data
head(mtcars_tbl)

A tibble: 6 x 12
cars mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#6 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

filter

filter helps subset rows that match certain criteria. The first argument is the name of the

data.frame and the second (and subsequent) arguments are the criteria that filter the data (these

criteria should evaluate to either TRUE or FALSE)

Subset all cars that have 4 cylinders - cyl:

filter(mtcars_tbl, cyl == 4)

A tibble: 11 x 12
cars mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#2 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#3 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#4 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#5 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
... with 6 more rows

We can pass multiple criteria separated by a comma. To subset the cars which have either 4 or 6

cylinders - cyl and have 5 gears - gear:

filter(mtcars_tbl, cyl == 4 | cyl == 6, gear == 5)

A tibble: 3 x 12
cars mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2
#2 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
#3 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6

filter selects rows based on criteria, to select rows by position, use slice. slice takes only 2

arguments: the first one is a data.frame and the second is integer row values.

https://riptutorial.com/ 177

https://cran.r-project.org/web/packages/tibble/index.html

To select rows 6 through 9:

slice(mtcars_tbl, 6:9)

A tibble: 4 x 12
cars mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Valiant 18.1 6 225.0 105 2.76 3.46 20.22 1 0 3 1
#2 Duster 360 14.3 8 360.0 245 3.21 3.57 15.84 0 0 3 4
#3 Merc 240D 24.4 4 146.7 62 3.69 3.19 20.00 1 0 4 2
#4 Merc 230 22.8 4 140.8 95 3.92 3.15 22.90 1 0 4 2

Or:

slice(mtcars_tbl, -c(1:5, 10:n()))

This results in the same output as slice(mtcars_tbl, 6:9)

n() represents the number of observations in the current group

arrange

arrange is used to sort the data by a specified variable(s). Just like the previous verb (and all other

functions in dplyr), the first argument is a data.frame, and consequent arguments are used to sort

the data. If more than one variable is passed, the data is first sorted by the first variable, and then

by the second variable, and so on..

To order the data by horsepower - hp

arrange(mtcars_tbl, hp)

A tibble: 32 x 12
cars mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#2 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#3 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#4 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#5 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#6 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
... with 26 more rows

To arrange the data by miles per gallon - mpg in descending order, followed by number of cylinders -

cyl:

arrange(mtcars_tbl, desc(mpg), cyl)

A tibble: 32 x 12
cars mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#2 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1

https://riptutorial.com/ 178

#3 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#4 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#5 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#6 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
... with 26 more rows

select

select is used to select only a subset of variables. To select only mpg, disp, wt, qsec, and vs from

mtcars_tbl:

select(mtcars_tbl, mpg, disp, wt, qsec, vs)

A tibble: 32 x 5
mpg disp wt qsec vs
<dbl> <dbl> <dbl> <dbl> <dbl>
#1 21.0 160.0 2.620 16.46 0
#2 21.0 160.0 2.875 17.02 0
#3 22.8 108.0 2.320 18.61 1
#4 21.4 258.0 3.215 19.44 1
#5 18.7 360.0 3.440 17.02 0
#6 18.1 225.0 3.460 20.22 1
... with 26 more rows

: notation can be used to select consecutive columns. To select columns from cars through disp

and vs through carb:

select(mtcars_tbl, cars:disp, vs:carb)

A tibble: 32 x 8
cars mpg cyl disp vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Mazda RX4 21.0 6 160.0 0 1 4 4
#2 Mazda RX4 Wag 21.0 6 160.0 0 1 4 4
#3 Datsun 710 22.8 4 108.0 1 1 4 1
#4 Hornet 4 Drive 21.4 6 258.0 1 0 3 1
#5 Hornet Sportabout 18.7 8 360.0 0 0 3 2
#6 Valiant 18.1 6 225.0 1 0 3 1
... with 26 more rows

or select(mtcars_tbl, -(hp:qsec))

For datasets that contain several columns, it can be tedious to select several columns by name.

To make life easier, there are a number of helper functions (such as starts_with(), ends_with(),

contains(), matches(), num_range(), one_of(), and everything()) that can be used in select. To learn

more about how to use them, see ?select_helpers and ?select.

Note: While referring to columns directly in select(), we use bare column names, but quotes

should be used while referring to columns in helper functions.

To rename columns while selecting:

https://riptutorial.com/ 179

select(mtcars_tbl, cylinders = cyl, displacement = disp)

A tibble: 32 x 2
cylinders displacement
<dbl> <dbl>
#1 6 160.0
#2 6 160.0
#3 4 108.0
#4 6 258.0
#5 8 360.0
#6 6 225.0
... with 26 more rows

As expected, this drops all other variables.

To rename columns without dropping other variables, use rename:

rename(mtcars_tbl, cylinders = cyl, displacement = disp)

A tibble: 32 x 12
cars mpg cylinders displacement hp drat wt qsec vs
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0
#2 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0
#3 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1
#4 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1
#5 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0
#6 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1
... with 26 more rows, and 3 more variables: am <dbl>, gear <dbl>, carb <dbl>

mutate

mutate can be used to add new columns to the data. Like all other functions in dplyr, mutate

doesn't add the newly created columns to the original data. Columns are added at the end of the

data.frame.

mutate(mtcars_tbl, weight_ton = wt/2, weight_pounds = weight_ton * 2000)

A tibble: 32 x 14
cars mpg cyl disp hp drat wt qsec vs am gear carb
weight_ton weight_pounds
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
<dbl> <dbl>
#1 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
1.3100 2620
#2 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
1.4375 2875
#3 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
1.1600 2320
#4 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
1.6075 3215
#5 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
1.7200 3440
#6 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
1.7300 3460

https://riptutorial.com/ 180

... with 26 more rows

Note the use of weight_ton while creating weight_pounds. Unlike base R, mutate allows us to refer to

columns that we just created to be used for a subsequent operation.

To retain only the newly created columns, use transmute instead of mutate:

transmute(mtcars_tbl, weight_ton = wt/2, weight_pounds = weight_ton * 2000)

A tibble: 32 x 2
weight_ton weight_pounds
<dbl> <dbl>
#1 1.3100 2620
#2 1.4375 2875
#3 1.1600 2320
#4 1.6075 3215
#5 1.7200 3440
#6 1.7300 3460
... with 26 more rows

summarise

summarise calculates summary statistics of variables by collapsing multiple values to a single value.

It can calculate multiple statistics and we can name these summary columns in the same

statement.

To calculate the mean and standard deviation of mpg and disp of all cars in the dataset:

summarise(mtcars_tbl, mean_mpg = mean(mpg), sd_mpg = sd(mpg),
 mean_disp = mean(disp), sd_disp = sd(disp))

A tibble: 1 x 4
mean_mpg sd_mpg mean_disp sd_disp
<dbl> <dbl> <dbl> <dbl>
#1 20.09062 6.026948 230.7219 123.9387

group_by

group_by can be used to perform group wise operations on data. When the verbs defined above

are applied on this grouped data, they are automatically applied to each group separately.

To find mean and sd of mpg by cyl:

by_cyl <- group_by(mtcars_tbl, cyl)
summarise(by_cyl, mean_mpg = mean(mpg), sd_mpg = sd(mpg))

A tibble: 3 x 3
cyl mean_mpg sd_mpg
<dbl> <dbl> <dbl>

https://riptutorial.com/ 181

#1 4 26.66364 4.509828
#2 6 19.74286 1.453567
#3 8 15.10000 2.560048

Putting it all togther

We select columns from cars through hp and gear, order the rows by cyl and from highest to lowest

mpg, group the data by gear, and finally subset only those cars have mpg > 20 and hp > 75

selected <- select(mtcars_tbl, cars:hp, gear)
ordered <- arrange(selected, cyl, desc(mpg))
by_cyl <- group_by(ordered, gear)
filter(by_cyl, mpg > 20, hp > 75)

Source: local data frame [9 x 6]
Groups: gear [3]

cars mpg cyl disp hp gear
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Lotus Europa 30.4 4 95.1 113 5
#2 Porsche 914-2 26.0 4 120.3 91 5
#3 Datsun 710 22.8 4 108.0 93 4
#4 Merc 230 22.8 4 140.8 95 4
#5 Toyota Corona 21.5 4 120.1 97 3
... with 4 more rows

Maybe we are not interested the intermediate results, we can achieve the same result as above by

wrapping the function calls:

filter(
 group_by(
 arrange(
 select(
 mtcars_tbl, cars:hp
), cyl, desc(mpg)
), cyl
),mpg > 20, hp > 75
)

This can be a little difficult to read. So, dplyr operations can be chained using the pipe %>%

operator. The above code transalates to:

mtcars_tbl %>%
 select(cars:hp) %>%
 arrange(cyl, desc(mpg)) %>%
 group_by(cyl) %>%
 filter(mpg > 20, hp > 75)

summarise multiple columns

dplyr provides summarise_all() to apply functions to all (non-grouping) columns.

https://riptutorial.com/ 182

http://www.riptutorial.com/r/topic/652/pipe-operators------and-others-

To find the number of distinct values for each column:

mtcars_tbl %>%
 summarise_all(n_distinct)

A tibble: 1 x 12
cars mpg cyl disp hp drat wt qsec vs am gear carb
<int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#1 32 25 3 27 22 22 29 30 2 2 3 6

To find the number of distinct values for each column by cyl:

mtcars_tbl %>%
 group_by(cyl) %>%
 summarise_all(n_distinct)

A tibble: 3 x 12
cyl cars mpg disp hp drat wt qsec vs am gear carb
<dbl> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#1 4 11 9 11 10 10 11 11 2 2 3 2
#2 6 7 6 5 4 5 6 7 2 2 3 3
#3 8 14 12 11 9 11 13 14 1 2 2 4

Note that we just had to add the group_by statement and the rest of the code is the same. The

output now consists of three rows - one for each unique value of cyl.

To summarise specific multiple columns, use summarise_at

mtcars_tbl %>%
 group_by(cyl) %>%
 summarise_at(c("mpg", "disp", "hp"), mean)

A tibble: 3 x 4
cyl mpg disp hp
<dbl> <dbl> <dbl> <dbl>
#1 4 26.66364 105.1364 82.63636
#2 6 19.74286 183.3143 122.28571
#3 8 15.10000 353.1000 209.21429

helper functions (?select_helpers) can be used in place of column names to select specific

columns

To apply multiple functions, either pass the function names as a character vector:

mtcars_tbl %>%
 group_by(cyl) %>%
 summarise_at(c("mpg", "disp", "hp"),
 c("mean", "sd"))

or wrap them inside funs:

mtcars_tbl %>%
 group_by(cyl) %>%
 summarise_at(c("mpg", "disp", "hp"),

https://riptutorial.com/ 183

 funs(mean, sd))

A tibble: 3 x 7
cyl mpg_mean disp_mean hp_mean mpg_sd disp_sd hp_sd
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 4 26.66364 105.1364 82.63636 4.509828 26.87159 20.93453
#2 6 19.74286 183.3143 122.28571 1.453567 41.56246 24.26049
#3 8 15.10000 353.1000 209.21429 2.560048 67.77132 50.97689

Column names are now be appended with function names to keep them distinct. In order to

change this, pass the name to be appended with the function:

mtcars_tbl %>%
 group_by(cyl) %>%
 summarise_at(c("mpg", "disp", "hp"),
 c(Mean = "mean", SD = "sd"))

mtcars_tbl %>%
 group_by(cyl) %>%
 summarise_at(c("mpg", "disp", "hp"),
 funs(Mean = mean, SD = sd))

A tibble: 3 x 7
cyl mpg_Mean disp_Mean hp_Mean mpg_SD disp_SD hp_SD
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 4 26.66364 105.1364 82.63636 4.509828 26.87159 20.93453
#2 6 19.74286 183.3143 122.28571 1.453567 41.56246 24.26049
#3 8 15.10000 353.1000 209.21429 2.560048 67.77132 50.97689

To select columns conditionally, use summarise_if:

Take the mean of all columns that are numeric grouped by cyl:

mtcars_tbl %>%
 group_by(cyl) %>%
 summarise_if(is.numeric, mean)

A tibble: 3 x 11
cyl mpg disp hp drat wt qsec
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 4 26.66364 105.1364 82.63636 4.070909 2.285727 19.13727
#2 6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714
#3 8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214
... with 4 more variables: vs <dbl>, am <dbl>, gear <dbl>,
carb <dbl>

However, some variables are discrete, and mean of these variables doesn't make sense.

To take the mean of only continuous variables by cyl:

mtcars_tbl %>%
 group_by(cyl) %>%
 summarise_if(function(x) is.numeric(x) & n_distinct(x) > 6, mean)

A tibble: 3 x 7

https://riptutorial.com/ 184

cyl mpg disp hp drat wt qsec
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 4 26.66364 105.1364 82.63636 4.070909 2.285727 19.13727
#2 6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714
#3 8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214

Subset Observation (Rows)

dplyr::filter() - Select a subset of rows in a data frame that meet

a logical criteria:

dplyr::filter(iris,Sepal.Length>7)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 7.1 3.0 5.9 2.1 virginica
2 7.6 3.0 6.6 2.1 virginica
3 7.3 2.9 6.3 1.8 virginica
4 7.2 3.6 6.1 2.5 virginica
5 7.7 3.8 6.7 2.2 virginica
6 7.7 2.6 6.9 2.3 virginica
7 7.7 2.8 6.7 2.0 virginica
8 7.2 3.2 6.0 1.8 virginica
9 7.2 3.0 5.8 1.6 virginica
10 7.4 2.8 6.1 1.9 virginica
11 7.9 3.8 6.4 2.0 virginica
12 7.7 3.0 6.1 2.3 virginica

dplyr::distinct() - Remove duplicate rows:

distinct(iris, Sepal.Length, .keep_all = TRUE)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.4 2.9 1.4 0.2 setosa
8 4.8 3.4 1.6 0.2 setosa
9 4.3 3.0 1.1 0.1 setosa
10 5.8 4.0 1.2 0.2 setosa
11 5.7 4.4 1.5 0.4 setosa
12 5.2 3.5 1.5 0.2 setosa
13 5.5 4.2 1.4 0.2 setosa
14 4.5 2.3 1.3 0.3 setosa
15 5.3 3.7 1.5 0.2 setosa
16 7.0 3.2 4.7 1.4 versicolor
17 6.4 3.2 4.5 1.5 versicolor
18 6.9 3.1 4.9 1.5 versicolor
19 6.5 2.8 4.6 1.5 versicolor
20 6.3 3.3 4.7 1.6 versicolor
21 6.6 2.9 4.6 1.3 versicolor
22 5.9 3.0 4.2 1.5 versicolor
23 6.0 2.2 4.0 1.0 versicolor
24 6.1 2.9 4.7 1.4 versicolor
25 5.6 2.9 3.6 1.3 versicolor

https://riptutorial.com/ 185

26 6.7 3.1 4.4 1.4 versicolor
27 6.2 2.2 4.5 1.5 versicolor
28 6.8 2.8 4.8 1.4 versicolor
29 7.1 3.0 5.9 2.1 virginica
30 7.6 3.0 6.6 2.1 virginica
31 7.3 2.9 6.3 1.8 virginica
32 7.2 3.6 6.1 2.5 virginica
33 7.7 3.8 6.7 2.2 virginica
34 7.4 2.8 6.1 1.9 virginica
35 7.9 3.8 6.4 2.0 virginica

Aggregating with %>% (pipe) operator

The pipe (%>%) operator could be used in combination with dplyr functions. In this example we

use the mtcars dataset (see help("mtcars") for more information) to show how to sumarize a data

frame, and to add variables to the data with the result of the application of a function.

library(dplyr)
library(magrittr)
df <- mtcars
df$cars <- rownames(df) #just add the cars names to the df
df <- df[,c(ncol(df),1:(ncol(df)-1))] # and place the names in the first column

1. Sumarize the data

To compute statistics we use summarize and the appropriate functions. In this case n() is used for

counting the number of cases.

 df %>%
 summarize(count=n(),mean_mpg = mean(mpg, na.rm = TRUE),
 min_weight = min(wt),max_weight = max(wt))

count mean_mpg min_weight max_weight
#1 32 20.09062 1.513 5.424

2. Compute statistics by group

It is possible to compute the statistics by groups of the data. In this case by Number of cylinders

and Number of forward gears

df %>%
 group_by(cyl, gear) %>%
 summarize(count=n(),mean_mpg = mean(mpg, na.rm = TRUE),
 min_weight = min(wt),max_weight = max(wt))

Source: local data frame [8 x 6]
Groups: cyl [?]

cyl gear count mean_mpg min_weight max_weight
<dbl> <dbl> <int> <dbl> <dbl> <dbl>
#1 4 3 1 21.500 2.465 2.465
#2 4 4 8 26.925 1.615 3.190
#3 4 5 2 28.200 1.513 2.140
#4 6 3 2 19.750 3.215 3.460

https://riptutorial.com/ 186

http://www.riptutorial.com/r/topic/652/pipe-operators------and-others-

#5 6 4 4 19.750 2.620 3.440
#6 6 5 1 19.700 2.770 2.770
#7 8 3 12 15.050 3.435 5.424
#8 8 5 2 15.400 3.170 3.570

Examples of NSE and string variables in dpylr

dplyr uses Non-Standard Evaluation(NSE), which is why we normally can use the variable names

without quotes. However, sometimes during the data pipeline, we need to get our variable names

from other sources such as a Shiny selection box. In case of functions like select, we can just use

select_ to use a string variable to select

variable1 <- "Sepal.Length"
variable2 <- "Sepal.Width"
iris %>%
select_(variable1, variable2) %>%
head(n=5)
Sepal.Length Sepal.Width
1 5.1 3.5
2 4.9 3.0
3 4.7 3.2
4 4.6 3.1
5 5.0 3.6

But if we want to use other features such as summarize or filter we need to use interp function

from lazyeval package

variable1 <- "Sepal.Length"
variable2 <- "Sepal.Width"
variable3 <- "Species"
iris %>%
select_(variable1, variable2, variable3) %>%
group_by_(variable3) %>%
summarize_(mean1 = lazyeval::interp(~mean(var), var = as.name(variable1)), mean2 =
lazyeval::interp(~mean(var), var = as.name(variable2)))
Species mean1 mean2
<fctr> <dbl> <dbl>
1 setosa 5.006 3.428
2 versicolor 5.936 2.770
3 virginica 6.588 2.974

Read dplyr online: https://riptutorial.com/r/topic/4250/dplyr

https://riptutorial.com/ 187

https://riptutorial.com/r/topic/4250/dplyr

Chapter 33: Expression: parse + eval

Remarks

The function parse convert text and files into expressions.

The function eval evaluate expressions.

Examples

Execute code in string format

In this exemple, we want to execute code which is stored in a string format.

the string
str <- "1+1"

A string is not an expression.
is.expression(str)
[1] FALSE

eval(str)
[1] "1+1"

parse convert string into expressions
parsed.str <- parse(text="1+1")

is.expression(parsed.str)
[1] TRUE

eval(parsed.str)
[1] 2

Read Expression: parse + eval online: https://riptutorial.com/r/topic/5746/expression--parse-plus-

eval

https://riptutorial.com/ 188

https://riptutorial.com/r/topic/5746/expression--parse-plus-eval
https://riptutorial.com/r/topic/5746/expression--parse-plus-eval

Chapter 34: Extracting and Listing Files in

Compressed Archives

Examples

Extracting files from a .zip archive

Unzipping a zip archive is done with unzip function from the utils package (which is included in

base R).

unzip(zipfile = "bar.zip", exdir = "./foo")

This will extract all files in "bar.zip" to the "foo" directory, which will be created if necessary. Tilde

expansion is done automatically from your working directory. Alternatively, you can pass the whole

path name to the zipfile.

Listing files in a .zip archive

Listing files in a zip archive is done with unzip function from the utils package (which is included in

base R).

unzip(zipfile = "bar.zip", list = TRUE)

This will list all files in "bar.zip" and extract none. Tilde expansion is done automatically from your

working directory. Alternatively, you can pass the whole path name to the zipfile.

Listing files in a .tar archive

Listing files in a tar archive is done with untar function from the utils package (which is included in

base R).

untar(zipfile = "bar.tar", list = TRUE)

This will list all files in "bar.tar" and extract none. Tilde expansion is done automatically from your

working directory. Alternatively, you can pass the whole path name to the tarfile.

Extracting files from a .tar archive

Extracting files from a tar archive is done with untar function from the utils package (which is

included in base R).

untar(tarfile = "bar.tar", exdir = "./foo")

This will extract all files in "bar.tar" to the "foo" directory, which will be created if necessary. Tilde

https://riptutorial.com/ 189

expansion is done automatically from your working directory. Alternatively, you can pass the whole

path name to the tarfile.

Extract all .zip archives in a directory

With a simple for loop, all zip archives in a directory can be extracted.

for (i in dir(pattern=".zip$"))
 unzip(i)

The dir function produces a character vector of the names of the files in a directory matching the

regex pattern specified by pattern. This vector is looped through with index i, using the unzip

function to extract each zip archive.

Read Extracting and Listing Files in Compressed Archives online:

https://riptutorial.com/r/topic/4323/extracting-and-listing-files-in-compressed-archives

https://riptutorial.com/ 190

https://riptutorial.com/r/topic/4323/extracting-and-listing-files-in-compressed-archives

Chapter 35: Factors

Syntax

factor(x = character(), levels, labels = levels, exclude = NA, ordered = is.ordered(x), nmax =

NA)

1.

Run ?factor or see the documentation online.2.

Remarks

An object with class factor is a vector with a particular set of characteristics.

It is stored internally as an integer vector.1.

It maintains a levels attribute the shows the character representation of the values.2.

Its class is stored as factor3.

To illustrate, let us generate a vector of 1,000 observations from a set of colors.

set.seed(1)
Color <- sample(x = c("Red", "Blue", "Green", "Yellow"),
 size = 1000,
 replace = TRUE)
Color <- factor(Color)

We can observe each of the characteristics of Color listed above:

#* 1. It is stored internally as an `integer` vector
typeof(Color)

[1] "integer"

#* 2. It maintains a `levels` attribute the shows the character representation of the values.
#* 3. Its class is stored as `factor`
attributes(Color)

$levels
[1] "Blue" "Green" "Red" "Yellow"

$class
[1] "factor"

The primary advantage of a factor object is efficiency in data storage. An integer requires less

memory to store than a character. Such efficiency was highly desirable when many computers had

much more limited resources than current machines (for a more detailed history of the motivations

behind using factors, see stringsAsFactors: an Unauthorized Biography). The difference in memory

use can be seen even in our Color object. As you can see, storing Color as a character requires

about 1.7 times as much memory as the factor object.

https://riptutorial.com/ 191

https://stat.ethz.ch/R-manual/R-devel/library/base/html/factor.html
http://simplystatistics.org/2015/07/24/stringsasfactors-an-unauthorized-biography/
http://simplystatistics.org/2015/07/24/stringsasfactors-an-unauthorized-biography/

#* Amount of memory required to store Color as a factor.
object.size(Color)

4624 bytes

#* Amount of memory required to store Color as a character
object.size(as.character(Color))

8232 bytes

Mapping the integer to the level

While the internal computation of factors sees the object as an integer, the desired representation

for human consumption is the character level. For example,

head(Color)

[1] Blue Blue Green Yellow Red Yellow
Levels: Blue Green Red Yellow

is a easier for human comprehension than

head(as.numeric(Color))

[1] 1 1 2 4 3 4

An approximate illustration of how R goes about matching the character representation to the

internal integer value is:

head(levels(Color)[as.numeric(Color)])

[1] "Blue" "Blue" "Green" "Yellow" "Red" "Yellow"

Compare these results to

head(Color)

[1] Blue Blue Green Yellow Red Yellow
Levels: Blue Green Red Yellow

Modern use of factors

In 2007, R introduced a hashing method for characters the reduced the memory burden of

https://riptutorial.com/ 192

character vectors (ref: stringsAsFactors: an Unauthorized Biography). Take note that when we

determined that characters require 1.7 times more storage space than factors, that was calculated

in a recent version of R, meaning that the memory use of character vectors was even more taxing

before 2007.

Owing to the hashing method in modern R and to far greater memory resources in modern

computers, the issue of memory efficiency in storing character values has been reduced to a very

small concern. The prevailing attitude in the R Community is a preference for character vectors

over factors in most situations. The primary causes for the shift away from factors are

The increase of unstructured and/or loosely controlled character data1.

The tendency of factors to not behave as desired when the user forgets she is dealing with a

factor and not a character

2.

In the first case, it makes no sense to store free text or open response fields as factors, as there

will unlikely be any pattern that allows for more than one observation per level. Alternatively, if the

data structure is not carefully controlled, it is possible to get multiple levels that correspond to the

same category (such as "blue", "Blue", and "BLUE"). In such cases, many prefer to manage these

discrepancies as characters prior to converting to a factor (if conversion takes place at all).

In the second case, if the user thinks she is working with a character vector, certain methods may

not respond as anticipated. This basic understanding can lead to confusion and frustration while

trying to debug scripts and codes. While, strictly speaking, this may be considered the fault of the

user, most users are happy to avoid using factors and avoid these situations altogether.

Examples

Basic creation of factors

Factors are one way to represent categorical variables in R. A factor is stored internally as a

vector of integers. The unique elements of the supplied character vector are known as the levels

of the factor. By default, if the levels are not supplied by the user, then R will generate the set of

unique values in the vector, sort these values alphanumerically, and use them as the levels.

 charvar <- rep(c("n", "c"), each = 3)
 f <- factor(charvar)
 f
 levels(f)

> f
[1] n n n c c c
Levels: c n
> levels(f)
[1] "c" "n"

If you want to change the ordering of the levels, then one option to to specify the levels manually:

levels(factor(charvar, levels = c("n","c")))

> levels(factor(charvar, levels = c("n","c")))

https://riptutorial.com/ 193

http://simplystatistics.org/2015/07/24/stringsasfactors-an-unauthorized-biography/
http://simplystatistics.org/2015/07/24/stringsasfactors-an-unauthorized-biography/

[1] "n" "c"

Factors have a number of properties. For example, levels can be given labels:

> f <- factor(charvar, levels=c("n", "c"), labels=c("Newt", "Capybara"))
> f
[1] Newt Newt Newt Capybara Capybara Capybara
Levels: Newt Capybara

Another property that can be assigned is whether the factor is ordered:

> Weekdays <- factor(c("Monday", "Wednesday", "Thursday", "Tuesday", "Friday", "Sunday",
"Saturday"))
> Weekdays
[1] Monday Wednesday Thursday Tuesday Friday Sunday Saturday
Levels: Friday Monday Saturday Sunday Thursday Tuesday Wednesday
> Weekdays <- factor(Weekdays, levels=c("Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday"), ordered=TRUE)
> Weekdays
[1] Monday Wednesday Thursday Tuesday Friday Sunday Saturday
Levels: Monday < Tuesday < Wednesday < Thursday < Friday < Saturday < Sunday

When a level of the factor is no longer used, you can drop it using the droplevels() function:

> Weekend <- subset(Weekdays, Weekdays == "Saturday" | Weekdays == "Sunday")
> Weekend
[1] Sunday Saturday
Levels: Monday < Tuesday < Wednesday < Thursday < Friday < Saturday < Sunday
> Weekend <- droplevels(Weekend)
> Weekend
[1] Sunday Saturday
Levels: Saturday < Sunday

Consolidating Factor Levels with a List

There are times in which it is desirable to consolidate factor levels into fewer groups, perhaps

because of sparse data in one of the categories. It may also occur when you have varying

spellings or capitalization of the category names. Consider as an example the factor

set.seed(1)
colorful <- sample(c("red", "Red", "RED", "blue", "Blue", "BLUE", "green", "gren"),
 size = 20,
 replace = TRUE)
colorful <- factor(colorful)

Since R is case-sensitive, a frequency table of this vector would appear as below.

table(colorful)

colorful
blue Blue BLUE green gren red Red RED
 3 1 4 2 4 1 3 2

https://riptutorial.com/ 194

This table, however, doesn't represent the true distribution of the data, and the categories may

effectively be reduced to three types: Blue, Green, and Red. Three examples are provided. The

first illustrates what seems like an obvious solution, but won't actually provide a solution. The

second gives a working solution, but is verbose and computationally expensive. The third is not an

obvious solution, but is relatively compact and computationally efficient.

Consolidating levels using factor (factor_approach)

factor(as.character(colorful),
 levels = c("blue", "Blue", "BLUE", "green", "gren", "red", "Red", "RED"),
 labels = c("Blue", "Blue", "Blue", "Green", "Green", "Red", "Red", "Red"))

 [1] Green Blue Red Red Blue Red Red Red Blue Red Green Green Green
Blue Red Green
[17] Red Green Green Red
Levels: Blue Blue Blue Green Green Red Red Red
Warning message:
In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else
paste0(labels, :
 duplicated levels in factors are deprecated

Notice that there are duplicated levels. We still have three categories for "Blue", which doesn't

complete our task of consolidating levels. Additionally, there is a warning that duplicated levels are

deprecated, meaning that this code may generate an error in the future.

Consolidating levels using ifelse (ifelse_approach)

factor(ifelse(colorful %in% c("blue", "Blue", "BLUE"),
 "Blue",
 ifelse(colorful %in% c("green", "gren"),
 "Green",
 "Red")))

 [1] Green Blue Red Red Blue Red Red Red Blue Red Green Green Green
Blue Red Green
[17] Red Green Green Red
Levels: Blue Green Red

This code generates the desired result, but requires the use of nested ifelse statements. While

there is nothing wrong with this approach, managing nested ifelse statements can be a tedious

task and must be done carefully.

Consolidating Factors Levels with a List (list_approach)

A less obvious way of consolidating levels is to use a list where the name of each element is the

desired category name, and the element is a character vector of the levels in the factor that should

map to the desired category. This has the added advantage of working directly on the levels

attribute of the factor, without having to assign new objects.

https://riptutorial.com/ 195

levels(colorful) <-
 list("Blue" = c("blue", "Blue", "BLUE"),
 "Green" = c("green", "gren"),
 "Red" = c("red", "Red", "RED"))

 [1] Green Blue Red Red Blue Red Red Red Blue Red Green Green Green
Blue Red Green
[17] Red Green Green Red
Levels: Blue Green Red

Benchmarking each approach

The time required to execute each of these approaches is summarized below. (For the sake of

space, the code to generate this summary is not shown)

Unit: microseconds
 expr min lq mean median uq max neval cld
 factor 78.725 83.256 93.26023 87.5030 97.131 218.899 100 b
 ifelse 104.494 107.609 123.53793 113.4145 128.281 254.580 100 c
 list_approach 49.557 52.955 60.50756 54.9370 65.132 138.193 100 a

The list approach runs about twice as fast as the ifelse approach. However, except in times of

very, very large amounts of data, the differences in execution time will likely be measured in either

microseconds or milliseconds. With such small time differences, efficiency need not guide the

decision of which approach to use. Instead, use an approach that is familiar and comfortable, and

which you and your collaborators will understand on future review.

Factors

Factors are one method to represent categorical variables in R. Given a vector x whose values

can be converted to characters using as.character(), the default arguments for factor() and

as.factor() assign an integer to each distinct element of the vector as well as a level attribute and

a label attribute. Levels are the values x can possibly take and labels can either be the given

element or determined by the user.

To example how factors work we will create a factor with default attributes, then custom levels,

and then custom levels and labels.

standard
factor(c(1,1,2,2,3,3))
[1] 1 1 2 2 3 3
Levels: 1 2 3

Instances can arise where the user knows the number of possible values a factor can take on is

greater than the current values in the vector. For this we assign the levels ourselves in factor().

factor(c(1,1,2,2,3,3),
 levels = c(1,2,3,4,5))
[1] 1 1 2 2 3 3
Levels: 1 2 3 4 5

https://riptutorial.com/ 196

For style purposes the user may wish to assign labels to each level. By default, labels are the

character representation of the levels. Here we assign labels for each of the possible levels in the

factor.

factor(c(1,1,2,2,3,3),
 levels = c(1,2,3,4,5),
 labels = c("Fox","Dog","Cow","Brick","Dolphin"))
[1] Fox Fox Dog Dog Cow Cow
Levels: Fox Dog Cow Brick Dolphin

Normally, factors can only be compared using == and != and if the factors have the same levels.

The following comparison of factors fails even though they appear equal because the factors have

different factor levels.

factor(c(1,1,2,2,3,3),levels = c(1,2,3)) == factor(c(1,1,2,2,3,3),levels = c(1,2,3,4,5))
Error in Ops.factor(factor(c(1, 1, 2, 2, 3, 3), levels = c(1, 2, 3)), :
 level sets of factors are different

This makes sense as the extra levels in the RHS mean that R does not have enough information

about each factor to compare them in a meaningful way.

The operators <, <=, > and >= are only usable for ordered factors. These can represent categorical

values which still have a linear order. An ordered factor can be created by providing the ordered =

TRUE argument to the factor function or just using the ordered function.

x <- factor(1:3, labels = c('low', 'medium', 'high'), ordered = TRUE)
print(x)
[1] low medium high
Levels: low < medium < high

y <- ordered(3:1, labels = c('low', 'medium', 'high'))
print(y)
[1] high medium low
Levels: low < medium < high

x < y
[1] TRUE FALSE FALSE

For more information, see the Factor documentation.

Changing and reordering factors

When factors are created with defaults, levels are formed by as.character applied to the inputs

and are ordered alphabetically.

charvar <- rep(c("W", "n", "c"), times=c(17,20,14))
f <- factor(charvar)
levels(f)
[1] "c" "n" "W"

In some situations the treatment of the default ordering of levels (alphabetic/lexical order) will be

acceptable. For example, if one justs want to plot the frequencies, this will be the result:

https://riptutorial.com/ 197

http://www.riptutorial.com/r/topic/1104/factors

plot(f,col=1:length(levels(f)))

But if we want a different ordering of levels, we need to specify this in the levels or labels

parameter (taking care that the meaning of "order" here is different from ordered factors, see

below). There are many alternatives to accomplish that task depending on the situation.

1. Redefine the factor

When it is possible, we can recreate the factor using the levels parameter with the order we want.

ff <- factor(charvar, levels = c("n", "W", "c"))
levels(ff)
[1] "n" "W" "c"

gg <- factor(charvar, levels = c("W", "c", "n"))
levels(gg)
[1] "W" "c" "n"

When the input levels are different than the desired output levels, we use the labels parameter

which causes the levels parameter to become a "filter" for acceptable input values, but leaves the

final values of "levels" for the factor vector as the argument to labels:

fm <- factor(as.numeric(f),levels = c(2,3,1),

https://riptutorial.com/ 198

https://i.stack.imgur.com/8GNrU.png

 labels = c("nn", "WW", "cc"))
levels(fm)
[1] "nn" "WW" "cc"

fm <- factor(LETTERS[1:6], levels = LETTERS[1:4], # only 'A'-'D' as input
 labels = letters[1:4]) # but assigned to 'a'-'d'
fm
#[1] a b c d <NA> <NA>
#Levels: a b c d

2. Use relevel function

When there is one specific level that needs to be the first we can use relevel. This happens, for

example, in the context of statistical analysis, when a base category is necessary for testing

hypothesis.

g<-relevel(f, "n") # moves n to be the first level
levels(g)
[1] "n" "c" "W"

As can be verified f and g are the same

all.equal(f, g)
[1] "Attributes: < Component “levels”: 2 string mismatches >"
all.equal(f, g, check.attributes = F)
[1] TRUE

3. Reordering factors

There are cases when we need to reorder the levels based on a number, a partial result, a

computed statistic, or previous calculations. Let's reorder based on the frequencies of the levels

table(g)
g
n c W
20 14 17

The reorder function is generic (see help(reorder)), but in this context needs: x, in this case the

factor; X, a numeric value of the same length as x; and FUN, a function to be applied to X and

computed by level of the x, which determines the levels order, by default increasing. The result is

the same factor with its levels reordered.

g.ord <- reorder(g,rep(1,length(g)), FUN=sum) #increasing
levels(g.ord)
[1] "c" "W" "n"

To get de decreasing order we consider negative values (-1)

g.ord.d <- reorder(g,rep(-1,length(g)), FUN=sum)
levels(g.ord.d)
[1] "n" "W" "c"

https://riptutorial.com/ 199

Again the factor is the same as the others.

data.frame(f,g,g.ord,g.ord.d)[seq(1,length(g),by=5),] #just same lines
f g g.ord g.ord.d
1 W W W W
6 W W W W
11 W W W W
16 W W W W
21 n n n n
26 n n n n
31 n n n n
36 n n n n
41 c c c c
46 c c c c
51 c c c c

When there is a quantitative variable related to the factor variable, we could use other functions

to reorder the levels. Lets take the iris data (help("iris") for more information), for reordering the

Species factor by using its mean Sepal.Width.

miris <- iris #help("iris") # copy the data
with(miris, tapply(Sepal.Width,Species,mean))
setosa versicolor virginica
3.428 2.770 2.974

miris$Species.o<-with(miris,reorder(Species,-Sepal.Width))
levels(miris$Species.o)
[1] "setosa" "virginica" "versicolor"

The usual boxplot (say: with(miris, boxplot(Petal.Width~Species)) will show the especies in this

order: setosa, versicolor, and virginica. But using the ordered factor we get the species ordered by

its mean Sepal.Width:

boxplot(Petal.Width~Species.o, data = miris,
 xlab = "Species", ylab = "Petal Width",
 main = "Iris Data, ordered by mean sepal width", varwidth = TRUE,
 col = 2:4)

https://riptutorial.com/ 200

Additionally, it is also possible to change the names of levels, combine them into groups, or add

new levels. For that we use the function of the same name levels.

f1<-f
levels(f1)
[1] "c" "n" "W"
levels(f1) <- c("upper","upper","CAP") #rename and grouping
levels(f1)
[1] "upper" "CAP"

f2<-f1
levels(f2) <- c("upper","CAP", "Number") #add Number level, which is empty
levels(f2)
[1] "upper" "CAP" "Number"
f2[length(f2):(length(f2)+5)]<-"Number" # add cases for the new level
table(f2)
f2

https://riptutorial.com/ 201

https://i.stack.imgur.com/iNmN1.png

upper CAP Number
33 17 6

f3<-f1
levels(f3) <- list(G1 = "upper", G2 = "CAP", G3 = "Number") # The same using list
levels(f3)
[1] "G1" "G2" "G3"
f3[length(f3):(length(f3)+6)]<-"G3" ## add cases for the new level
table(f3)
f3
G1 G2 G3
33 17 7

- Ordered factors

Finally, we know that ordered factors are different from factors, the first one are used to represent

ordinal data, and the second one to work with nominal data. At first, it does not make sense to

change the order of levels for ordered factors, but we can change its labels.

ordvar<-rep(c("Low", "Medium", "High"), times=c(7,2,4))

of<-ordered(ordvar,levels=c("Low", "Medium", "High"))
levels(of)
[1] "Low" "Medium" "High"

of1<-of
levels(of1)<- c("LOW", "MEDIUM", "HIGH")
levels(of1)
[1] "LOW" "MEDIUM" "HIGH"
is.ordered(of1)
[1] TRUE
of1
[1] LOW LOW LOW LOW LOW LOW LOW MEDIUM MEDIUM HIGH HIGH HIGH HIGH

Levels: LOW < MEDIUM < HIGH

Rebuilding factors from zero

Problem

Factors are used to represent variables that take values from a set of categories, known as Levels

in R. For example, some experiment could be characterized by the energy level of a battery, with

four levels: empty, low, normal, and full. Then, for 5 different sampling sites, those levels could be

identified, in those terms, as follows:

full, full, normal, empty, low

Typically, in databases or other information sources, the handling of these data is by arbitrary

integer indices associated with the categories or levels. If we assume that, for the given example,

we would assign, the indices as follows: 1 = empty, 2 = low, 3 = normal, 4 = full, then the 5

samples could be coded as:

4, 4, 3, 1, 2

https://riptutorial.com/ 202

It could happen that, from your source of information, e.g. a database, you only have the encoded

list of integers, and the catalog associating each integer with each level-keyword. How can a factor

of R be reconstructed from that information?

Solution

We will simulate a vector of 20 integers that represents the samples, each of which may have one

of four different values:

set.seed(18)
ii <- sample(1:4, 20, replace=T)
ii

[1] 4 3 4 1 1 3 2 3 2 1 3 4 1 2 4 1 3 1 4 1

The first step is to make a factor, from the previous sequence, in which the levels or categories are

exactly the numbers from 1 to 4.

fii <- factor(ii, levels=1:4) # it is necessary to indicate the numeric levels
fii

[1] 4 3 4 1 1 3 2 3 2 1 3 4 1 2 4 1 3 1 4 1

Levels: 1 2 3 4

Now simply, you have to dress the factor already created with the index tags:

levels(fii) <- c("empty", "low", "normal", "full")
fii

[1] full normal full empty empty normal low normal low empty

[11] normal full empty low full empty normal empty full empty

Levels: empty low normal full

Read Factors online: https://riptutorial.com/r/topic/1104/factors

https://riptutorial.com/ 203

https://riptutorial.com/r/topic/1104/factors

Chapter 36: Fault-tolerant/resilient code

Parameters

Parameter Details

expr

In case the "try part" was completed successfully tryCatch will return the

last evaluated expression. Hence, the actual value being returned in

case everything went well and there is no condition (i.e. a warning or an

error) is the return value of readLines. Note that you don't need to explicilty

state the return value via return as code in the "try part" is not wrapped

insided a function environment (unlike that for the condition handlers for

warnings and error below)

warning/error/etc

Provide/define a handler function for all the conditions that you want to

handle explicitly. AFAIU, you can provide handlers for any type of

conditions (not just warnings and errors, but also custom conditions; see

simpleCondition and friends for that) as long as the name of the

respective handler function matches the class of the respective

condition (see the Details part of the doc for tryCatch).

finally

Here goes everything that should be executed at the very end,

regardless if the expression in the "try part" succeeded or if there was

any condition. If you want more than one expression to be executed, then

you need to wrap them in curly brackets, otherwise you could just have

written finally = <expression> (i.e. the same logic as for "try part".

Remarks

tryCatch

tryCatch returns the value associated to executing expr unless there's a condition: a warning or an

error. If that's the case, specific return values (e.g. return(NA) above) can be specified by

supplying a handler function for the respective conditions (see arguments warning and error in

?tryCatch). These can be functions that already exist, but you can also define them within tryCatch

(as we did above).

Implications of choosing specific return values of the handler functions

As we've specified that NA should be returned in case of an error in the "try part", the third element

in y is NA. If we'd have chosen NULL to be the return value, the length of y would just have been 2

instead of 3 as lapply will simply "ignore/drop" return values that are NULL. Also note that if you

don't specify an explicit return value via return, the handler functions will return NULL (i.e. in case

of an error or a warning condition).

https://riptutorial.com/ 204

"Undesired" warning message

When the third element of our urls vector hits our function, we get the following warning in

addition to the fact that an error occurs (readLines first complains that it can't open the connection

via a warning before actually failing with an error):

Warning message:
 In file(con, "r") : cannot open file 'I'm no URL': No such file or directory

An error "wins" over a warning, so we're not really interested in the warning in this particular case.

Thus we have set warn = FALSE in readLines, but that doesn't seem to have any effect. An

alternative way to suppress the warning is to use

suppressWarnings(readLines(con = url))

instead of

readLines(con = url, warn = FALSE)

Examples

Using tryCatch()

We're defining a robust version of a function that reads the HTML code from a given URL. Robust

in the sense that we want it to handle situations where something either goes wrong (error) or not

quite the way we planned it to (warning). The umbrella term for errors and warnings is condition

Function definition using tryCatch

readUrl <- function(url) {
 out <- tryCatch(

 ##
 # Try part: define the expression(s) you want to "try" #
 ##

 {
 # Just to highlight:
 # If you want to use more than one R expression in the "try part"
 # then you'll have to use curly brackets.
 # Otherwise, just write the single expression you want to try and

 message("This is the 'try' part")
 readLines(con = url, warn = FALSE)
 },

 ##
 # Condition handler part: define how you want conditions to be handled #
 ##

https://riptutorial.com/ 205

 # Handler when a warning occurs:
 warning = function(cond) {
 message(paste("Reading the URL caused a warning:", url))
 message("Here's the original warning message:")
 message(cond)

 # Choose a return value when such a type of condition occurs
 return(NULL)
 },

 # Handler when an error occurs:
 error = function(cond) {
 message(paste("This seems to be an invalid URL:", url))
 message("Here's the original error message:")
 message(cond)

 # Choose a return value when such a type of condition occurs
 return(NA)
 },

 ###
 # Final part: define what should happen AFTER #
 # everything has been tried and/or handled #
 ###

 finally = {
 message(paste("Processed URL:", url))
 message("Some message at the end\n")
 }
)
 return(out)
}

Testing things out

Let's define a vector of URLs where one element isn't a valid URL

urls <- c(
 "http://stat.ethz.ch/R-manual/R-devel/library/base/html/connections.html",
 "http://en.wikipedia.org/wiki/Xz",
 "I'm no URL"
)

And pass this as input to the function we defined above

y <- lapply(urls, readUrl)
Processed URL: http://stat.ethz.ch/R-manual/R-devel/library/base/html/connections.html
Some message at the end

Processed URL: http://en.wikipedia.org/wiki/Xz
Some message at the end

URL does not seem to exist: I'm no URL
Here's the original error message:
cannot open the connection
Processed URL: I'm no URL
Some message at the end

https://riptutorial.com/ 206

Warning message:
In file(con, "r") : cannot open file 'I'm no URL': No such file or directory

Investigating the output

length(y)
[1] 3

head(y[[1]])
[1] "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\">"
[2] "<html><head><title>R: Functions to Manipulate Connections</title>"
[3] "<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\">"
[4] "<link rel=\"stylesheet\" type=\"text/css\" href=\"R.css\">"
[5] "</head><body>"
[6] ""

y[[3]]
[1] NA

Read Fault-tolerant/resilient code online: https://riptutorial.com/r/topic/4060/fault-tolerant-resilient-

code

https://riptutorial.com/ 207

https://riptutorial.com/r/topic/4060/fault-tolerant-resilient-code
https://riptutorial.com/r/topic/4060/fault-tolerant-resilient-code

Chapter 37: Feature Selection in R --

Removing Extraneous Features

Examples

Removing features with zero or near-zero variance

A feature that has near zero variance is a good candidate for removal.

You can manually detect numerical variance below your own threshold:

data("GermanCredit")
variances<-apply(GermanCredit, 2, var)
variances[which(variances<=0.0025)]

Or, you can use the caret package to find near zero variance. An advantage here is that is defines

near zero variance not in the numerical calculation of variance, but rather as a function of rarity:

"nearZeroVar diagnoses predictors that have one unique value (i.e. are zero variance

predictors) or predictors that are have both of the following characteristics: they have

very few unique values relative to the number of samples and the ratio of the frequency

of the most common value to the frequency of the second most common value is

large..."

library(caret)
names(GermanCredit)[nearZeroVar(GermanCredit)]

Removing features with high numbers of NA

If a feature is largely lacking data, it is a good candidate for removal:

library(VIM)
data(sleep)
colMeans(is.na(sleep))

 BodyWgt BrainWgt NonD Dream Sleep Span Gest
0.00000000 0.00000000 0.22580645 0.19354839 0.06451613 0.06451613 0.06451613
 Pred Exp Danger
0.00000000 0.00000000 0.00000000

In this case, we may want to remove NonD and Dream, which each have around 20% missing

values (your cutoff may vary)

Removing closely correlated features

Closely correlated features may add variance to your model, and removing one of a correlated pair

https://riptutorial.com/ 208

might help reduce that. There are lots of ways to detect correlation. Here's one:

library(purrr) # in order to use keep()

select correlatable vars
toCorrelate<-mtcars %>% keep(is.numeric)

calculate correlation matrix
correlationMatrix <- cor(toCorrelate)

pick only one out of each highly correlated pair's mirror image
correlationMatrix[upper.tri(correlationMatrix)]<-0

and I don't remove the highly-correlated-with-itself group
diag(correlationMatrix)<-0

find features that are highly correlated with another feature at the +- 0.85 level
apply(correlationMatrix,2, function(x) any(abs(x)>=0.85))

 mpg cyl disp hp drat wt qsec vs am gear carb
 TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

I'll want to look at what MPG is correlated to so strongly, and decide what to keep and what to

toss. Same for cyl and disp. Alternatively, I might need to combine some strongly correlated

features.

Read Feature Selection in R -- Removing Extraneous Features online:

https://riptutorial.com/r/topic/7561/feature-selection-in-r----removing-extraneous-features

https://riptutorial.com/ 209

https://riptutorial.com/r/topic/7561/feature-selection-in-r----removing-extraneous-features

Chapter 38: Formula

Examples

The basics of formula

Statistical functions in R make heavy use of the so-called Wilkinson-Rogers formula notation1 .

When running model functions like lm for the Linear Regressions, they need a formula. This formula

specifies which regression coefficients shall be estimated.

my_formula1 <- formula(mpg ~ wt)
class(my_formula1)
gives "formula"

mod1 <- lm(my_formula1, data = mtcars)
coef(mod1)
gives (Intercept) wt
37.285126 -5.344472

On the left side of the ~ (LHS) the dependent variable is specified, while the right hand side (RHS)

contains the independent variables. Technically the formula call above is redundant because the

tilde-operator is an infix function that returns an object with formula class:

form <- mpg ~ wt
class(form)
#[1] "formula"

The advantage of the formula function over ~ is that it also allows an environment for evaluation to

be specified:

form_mt <- formula(mpg ~ wt, env = mtcars)

In this case, the output shows that a regression coefficient for wt is estimated, as well as (per

default) an intercept parameter. The intercept can be excluded / forced to be 0 by including 0 or -1

in the formula:

coef(lm(mpg ~ 0 + wt, data = mtcars))
coef(lm(mpg ~ wt -1, data = mtcars))

Interactions between variables a and b can added by included a:b to the formula:

 coef(lm(mpg ~ wt:vs, data = mtcars))

As it is (from a statistical point of view) generally advisable not have interactions in the model

without the main effects, the naive approach would be to expand the formula to a + b + a:b. This

works but can be simplified by writing a*b, where the * operator indicates factor crossing (when

https://riptutorial.com/ 210

http://www.riptutorial.com/r/topic/801/linear-models--regression-

between two factor columns) or multiplication when one or both of the columns are 'numeric':

coef(lm(mpg ~ wt*vs, data = mtcars))

Using the * notation expands a term to include all lower order effects, such that:

coef(lm(mpg ~ wt*vs*hp, data = mtcars))

will give, in addition to the intercept, 7 regression coefficients. One for the three-way interaction,

three for the two-way interactions and three for the main effects.

If one wants, for example, to exclude the three-way interaction, but retain all two-way interactions

there are two shorthands. First, using - we can subtract any particular term:

coef(lm(mpg ~ wt*vs*hp - wt:vs:hp, data = mtcars))

Or, we can use the ^ notation to specify which level of interaction we require:

coef(lm(mpg ~ (wt + vs + hp) ^ 2, data = mtcars))

Those two formula specifications should create the same model matrix.

Finally, . is shorthand to use all available variables as main effects. In this case, the data argument

is used to obtain the available variables (which are not on the LHS). Therefore:

coef(lm(mpg ~ ., data = mtcars))

gives coefficients for the intercept and 10 independent variables. This notation is frequently used

in machine learning packages, where one would like to use all variables for prediction or

classification. Note that the meaning of . depends on context (see e.g. ?update.formula for a

different meaning).

G. N. Wilkinson and C. E. Rogers. Journal of the Royal Statistical Society. Series C (Applied

Statistics) Vol. 22, No. 3 (1973), pp. 392-399

1.

Create Linear, Quadratic and Second Order Interaction Terms

y ~ . : Here . is interpreted as all variables except y in the data frame used in fitting the model. It

is equivalent to the linear combinations of predictor variables. For example y ~ var1 + var2 +
var3+...+var15

y ~ . ^ 2 will give all linear (main effects) and second order interaction terms of the variables in

the data frame. It is equivalent to y ~ var1 + var2 + ...+var15 + var1:var2 + var1:var3 +
var1:var4...and so on

y ~ var1 + var2 + ...+var15 + I(var1^2) + I(var2^2) + I(var3^2)...+I(var15^2) : Here I(var^2)

indicates quadratic polynomial of one variable in the data frame.

y ~ poly(var1, degree = 2) + poly(var2, degree = 2)+...poly(var15, degree = 2)

https://riptutorial.com/ 211

or

y ~ poly(var1, var2, var3,var15, degree = 2) will be equivalent to the above expression.

poly(var1, degree = 2) is equivalent to var1 + I(var1^2).

To get cubic polynomials, use degree = 3 in poly().

There is a caveat in using poly versus I(var, 2), which is after fitting the model, each of them will

produce different coefficients, but the fitted values are equivalent, because they represent different

parameterizations of the same model. It is recommended to use I(var, 2) over poly() to avoid the

summary effect seen in poly().

In summary, to get linear, quadratic and second order interaction terms, you will have an

expression like

y ~ .^2 + I(var1^2) + I(var2^2)+...I(var15^2)

Demo for four variables:

old <- reformulate('y ~ x1+x2+x3+x4')
new <- reformulate(" y ~ .^2 + I(x1^2) + I(x2^2) + I(x3^2) + I(x4^2) ")
tmp <- .Call(stats:::C_updateform, old, new)
terms.formula(tmp, simplify = TRUE)

~y ~ x1 + x2 + x3 + x4 + I(x1^2) + I(x2^2) + I(x3^2) + I(x4^2) +
x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 + x3:x4
attr(,"variables")
list(~y, x1, x2, x3, x4, I(x1^2), I(x2^2), I(x3^2), I(x4^2))
attr(,"factors")
x1 x2 x3 x4 I(x1^2) I(x2^2) I(x3^2) I(x4^2) x1:x2 x1:x3 x1:x4 x2:x3 x2:x4 x3:x4
~y 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x1 1 0 0 0 0 0 0 0 1 1 1 0 0 0
x2 0 1 0 0 0 0 0 0 1 0 0 1 1 0
x3 0 0 1 0 0 0 0 0 0 1 0 1 0 1
x4 0 0 0 1 0 0 0 0 0 0 1 0 1 1
I(x1^2) 0 0 0 0 1 0 0 0 0 0 0 0 0 0
I(x2^2) 0 0 0 0 0 1 0 0 0 0 0 0 0 0
I(x3^2) 0 0 0 0 0 0 1 0 0 0 0 0 0 0
I(x4^2) 0 0 0 0 0 0 0 1 0 0 0 0 0 0
attr(,"term.labels")
[1] "x1" "x2" "x3" "x4" "I(x1^2)" "I(x2^2)" "I(x3^2)" "I(x4^2)"
[9] "x1:x2" "x1:x3" "x1:x4" "x2:x3" "x2:x4" "x3:x4"
attr(,"order")
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>

Read Formula online: https://riptutorial.com/r/topic/1061/formula

https://riptutorial.com/ 212

https://riptutorial.com/r/topic/1061/formula

Chapter 39: Fourier Series and

Transformations

Remarks

The Fourier transform decomposes a function of time (a signal) into the frequencies that make it

up, similarly to how a musical chord can be expressed as the amplitude (or loudness) of its

constituent notes. The Fourier transform of a function of time itself is a complex-valued function of

frequency, whose absolute value represents the amount of that frequency present in the original

function, and whose complex argument is the phase offset of the basic sinusoid in that frequency.

The Fourier transform is called the frequency domain representation of the original signal. The

term Fourier transform refers to both the frequency domain representation and the mathematical

operation that associates the frequency domain representation to a function of time. The Fourier

transform is not limited to functions of time, but in order to have a unified language, the domain of

the original function is commonly referred to as the time domain. For many functions of practical

interest one can define an operation that reverses this: the inverse Fourier transformation, also

called Fourier synthesis, of a frequency domain representation combines the contributions of all

the different frequencies to recover the original function of time.

Linear operations performed in one domain (time or frequency) have corresponding operations in

the other domain, which are sometimes easier to perform. The operation of differentiation in the

time domain corresponds to multiplication by the frequency, so some differential equations are

easier to analyze in the frequency domain. Also, convolution in the time domain corresponds to

ordinary multiplication in the frequency domain. Concretely, this means that any linear time-

invariant system, such as an electronic filter applied to a signal, can be expressed relatively simply

as an operation on frequencies. So significant simplification is often achieved by transforming time

functions to the frequency domain, performing the desired operations, and transforming the result

back to time.

Harmonic analysis is the systematic study of the relationship between the frequency and time

domains, including the kinds of functions or operations that are "simpler" in one or the other, and

has deep connections to almost all areas of modern mathematics.

Functions that are localized in the time domain have Fourier transforms that are spread out across

the frequency domain and vice versa. The critical case is the Gaussian function, of substantial

importance in probability theory and statistics as well as in the study of physical phenomena

exhibiting normal distribution (e.g., diffusion), which with appropriate normalizations goes to itself

under the Fourier transform. Joseph Fourier introduced the transform in his study of heat transfer,

where Gaussian functions appear as solutions of the heat equation.

The Fourier transform can be formally defined as an improper Riemann integral, making it an

integral transform, although this definition is not suitable for many applications requiring a more

sophisticated integration theory.

https://riptutorial.com/ 213

For example, many relatively simple applications use the Dirac delta function, which can be

treated formally as if it were a function, but the justification requires a mathematically more

sophisticated viewpoint. The Fourier transform can also be generalized to functions of several

variables on Euclidean space, sending a function of 3-dimensional space to a function of 3-

dimensional momentum (or a function of space and time to a function of 4-momentum).

This idea makes the spatial Fourier transform very natural in the study of waves, as well as in

quantum mechanics, where it is important to be able to represent wave solutions either as

functions either of space or momentum and sometimes both. In general, functions to which Fourier

methods are applicable are complex-valued, and possibly vector-valued. Still further generalization

is possible to functions on groups, which, besides the original Fourier transform on ℝ or ℝn (viewed
as groups under addition), notably includes the discrete-time Fourier transform (DTFT, group = ℤ), the
discrete Fourier transform (DFT, group = ℤ mod N) and the Fourier series or circular Fourier transform
(group = S1, the unit circle ≈ closed finite interval with endpoints identified). The latter is routinely
employed to handle periodic functions. The Fast Fourier transform (FFT) is an algorithm for computing the
DFT.

Examples

Fourier Series

Joseph Fourier showed that any periodic wave can be represented by a sum of simple sine

waves. This sum is called the Fourier Series. The Fourier Series only holds while the system is

linear. If there is, eg, some overflow effect (a threshold where the output remains the same no

matter how much input is given), a non-linear effect enters the picture, breaking the sinusoidal

wave and the superposition principle.

Sine waves
xs <- seq(-2*pi,2*pi,pi/100)
wave.1 <- sin(3*xs)
wave.2 <- sin(10*xs)
par(mfrow = c(1, 2))
plot(xs,wave.1,type="l",ylim=c(-1,1)); abline(h=0,lty=3)
plot(xs,wave.2,type="l",ylim=c(-1,1)); abline(h=0,lty=3)

Complex Wave
wave.3 <- 0.5 * wave.1 + 0.25 * wave.2
plot(xs,wave.3,type="l"); title("Eg complex wave"); abline(h=0,lty=3)

https://riptutorial.com/ 214

https://riptutorial.com/ 215

http://i.stack.imgur.com/3RhtI.jpg

wave.4 <- wave.3
wave.4[wave.3>0.5] <- 0.5
plot(xs,wave.4,type="l",ylim=c(-1.25,1.25))
title("overflowed, non-linear complex wave")
abline(h=0,lty=3)

https://riptutorial.com/ 216

https://riptutorial.com/ 217

http://i.stack.imgur.com/5lljo.jpg

Also, the Fourier Series only holds if the waves are periodic, ie, they have a repeating pattern (non

periodic waves are dealt by the Fourier Transform, see below). A periodic wave has a frequency f

and a wavelength λ (a wavelength is the distance in the medium between the beginning and end

of a cycle, λ=v/f0, where v is the wave velocity) that are defined by the repeating pattern. A non-

periodic wave does not have a frequency or wavelength.

Some concepts:

The fundamental period, T, is the period of all the samples taken, the time between the first

sample and the last

•

The sampling rate, sr, is the number of samples taken over a time period (aka acquisition

frequency). For simplicity we will make the time interval between samples equal. This time

interval is called the sample interval, si, which is the fundamental period time divided by the

number of samples N. So, si=TN

•

The fundamental frequency, f0, which is 1T. The fundamental frequency is the frequency of

the repeating pattern or how long the wavelength is. In the previous waves, the fundamental

frequency was 12π. The frequencies of the wave components must be integer multiples of

the fundamental frequency. f0 is called the first harmonic, the second harmonic is 2∗f0, the
third is 3∗f0, etc.

•

repeat.xs <- seq(-2*pi,0,pi/100)
wave.3.repeat <- 0.5*sin(3*repeat.xs) + 0.25*sin(10*repeat.xs)
plot(xs,wave.3,type="l")

title("Repeating pattern")
points(repeat.xs,wave.3.repeat,type="l",col="red");
abline(h=0,v=c(-2*pi,0),lty=3)

https://riptutorial.com/ 218

https://riptutorial.com/ 219

http://i.stack.imgur.com/BDauN.jpg

Here’s a R function for plotting trajectories given a fourier series:

plot.fourier <- function(fourier.series, f.0, ts) {
 w <- 2*pi*f.0 trajectory <- sapply(ts, function(t)
fourier.series(t,w))
 plot(ts, trajectory, type="l", xlab="time", ylab="f(t)");
 abline(h=0,lty=3)}

Read Fourier Series and Transformations online: https://riptutorial.com/r/topic/4139/fourier-series-

and-transformations

https://riptutorial.com/ 220

https://riptutorial.com/r/topic/4139/fourier-series-and-transformations
https://riptutorial.com/r/topic/4139/fourier-series-and-transformations

Chapter 40: Functional programming

Examples

Built-in Higher Order Functions

R has a set of built in higher order functions: Map, Reduce, Filter, Find, Position, Negate.

Map applies a given function to a list of values:

words <- list("this", "is", "an", "example")
Map(toupper, words)

Reduce successively applies a binary function to a list of values in a recursive fashion.

Reduce(`*`, 1:10)

Filter given a predicate function and a list of values returns a filtered list containing only values for

whom predicate function is TRUE.

Filter(is.character, list(1,"a",2,"b",3,"c"))

Find given a predicate function and a list of values returns the first value for which the predicate

function is TRUE.

Find(is.character, list(1,"a",2,"b",3,"c"))

Position given a predicate function and a list of values returns the position of the first value in the

list for which the predicate function is TRUE.

Position(is.character, list(1,"a",2,"b",3,"c"))

Negate inverts a predicate function making it return FALSE for values where it returned TRUE and

vice versa.

is.noncharacter <- Negate(is.character)
is.noncharacter("a")
is.noncharacter(mean)

Read Functional programming online: https://riptutorial.com/r/topic/5050/functional-programming

https://riptutorial.com/ 221

https://riptutorial.com/r/topic/5050/functional-programming

Chapter 41: Generalized linear models

Examples

Logistic regression on Titanic dataset

Logistic regression is a particular case of the generalized linear model, used to model

dichotomous outcomes (probit and complementary log-log models are closely related).

The name comes from the link function used, the logit or log-odds function. The inverse function of

the logit is called the logistic function and is given by:

This function takes a value between]-Inf;+Inf[and returns a value between 0 and 1; i.e the logistic

function takes a linear predictor and returns a probability.

Logistic regression can be performed using the glm function with the option family = binomial

(shortcut for family = binomial(link="logit"); the logit being the default link function for the

binomial family).

In this example, we try to predict the fate of the passengers aboard the RMS Titanic.

Read the data:

url <- "http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt"
titanic <- read.csv(file = url, stringsAsFactors = FALSE)

Clean the missing values:

In that case, we replace the missing values by an approximation, the average.

titanic$age[is.na(titanic$age)] <- mean(titanic$age, na.rm = TRUE)

Train the model:

titanic.train <- glm(survived ~ pclass + sex + age,
 family = binomial, data = titanic)

Summary of the model:

summary(titanic.train)

The output:

Call:

https://riptutorial.com/ 222

glm(formula = survived ~ pclass + sex + age, family = binomial, data = titanic)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.6452 -0.6641 -0.3679 0.6123 2.5615

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.552261 0.342188 10.381 < 2e-16 ***
pclass2nd -1.170777 0.211559 -5.534 3.13e-08 ***
pclass3rd -2.430672 0.195157 -12.455 < 2e-16 ***
sexmale -2.463377 0.154587 -15.935 < 2e-16 ***
age -0.042235 0.007415 -5.696 1.23e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 1686.8 on 1312 degrees of freedom
Residual deviance: 1165.7 on 1308 degrees of freedom
AIC: 1175.7

Number of Fisher Scoring iterations: 5

The first thing displayed is the call. It is a reminder of the model and the options specified.•

Next we see the deviance residuals, which are a measure of model fit. This part of output

shows the distribution of the deviance residuals for individual cases used in the model.

•

The next part of the output shows the coefficients, their standard errors, the z-statistic

(sometimes called a Wald z-statistic), and the associated p-values.

The qualitative variables are "dummified". A modality is considered as the reference.

The reference modality can be change with I in the formula.

○

All four predictors are statistically significant at a 0.1 % level.○

The logistic regression coefficients give the change in the log odds of the outcome for a

one unit increase in the predictor variable.

○

To see the odds ratio (multiplicative change in the odds of survival per unit increase in

a predictor variable), exponentiate the parameter.

○

To see the confidence interval (CI) of the parameter, use confint.○

•

Below the table of coefficients are fit indices, including the null and deviance residuals and

the Akaike Information Criterion (AIC), which can be used for comparing model performance.

When comparing models fitted by maximum likelihood to the same data, the smaller

the AIC, the better the fit.

○

One measure of model fit is the significance of the overall model. This test asks

whether the model with predictors fits significantly better than a model with just an

intercept (i.e., a null model).

○

•

Example of odds ratios:

exp(coef(titanic.train)[3])

https://riptutorial.com/ 223

 pclass3rd
0.08797765

With this model, compared to the first class, the 3rd class passengers have about a tenth of the

odds of survival.

Example of confidence interval for the parameters:

confint(titanic.train)

Waiting for profiling to be done...
 2.5 % 97.5 %
(Intercept) 2.89486872 4.23734280
pclass2nd -1.58986065 -0.75987230
pclass3rd -2.81987935 -2.05419500
sexmale -2.77180962 -2.16528316
age -0.05695894 -0.02786211

Exemple of calculating the significance of the overall model:

The test statistic is distributed chi-squared with degrees of freedom equal to the differences in

degrees of freedom between the current and the null model (i.e., the number of predictor variables

in the model).

with(titanic.train, pchisq(null.deviance - deviance, df.null - df.residual
, lower.tail = FALSE))
[1] 1.892539e-111

The p-value is near 0, showing a strongly significant model.

Read Generalized linear models online: https://riptutorial.com/r/topic/2892/generalized-linear-

models

https://riptutorial.com/ 224

https://riptutorial.com/r/topic/2892/generalized-linear-models
https://riptutorial.com/r/topic/2892/generalized-linear-models

Chapter 42: Get user input

Syntax

variable <- readline(prompt = "Any message for user")•

name <- readline(prompt = "What's your name")•

Examples

User input in R

Sometimes it can be interesting to have a cross-talk between the user and the program, one

example being the swirl package that had been designed to teach R in R.

One can ask for user input using the readline command:

name <- readline(prompt = "What is your name?")

The user can then give any answer, such as a number, a character, vectors, and scanning the

result is here to make sure that the user has given a proper answer. For example:

result <- readline(prompt = "What is the result of 1+1?")
while(result!=2){
 readline(prompt = "Wrong answer. What is the result of 1+1?")
}

However, it is to be noted that this code be stuck in a never-ending loop, as user input is saved as

a character.

We have to coerce it to a number, using as.numeric:

result <- as.numeric(readline(prompt = "What is the result of 1+1?"))
while(result!=2){
 readline(prompt = "Wrong answer. What is the result of 1+1?")
}

Read Get user input online: https://riptutorial.com/r/topic/5098/get-user-input

https://riptutorial.com/ 225

http://swirlstats.com/
https://riptutorial.com/r/topic/5098/get-user-input

Chapter 43: ggplot2

Remarks

ggplot2 has its own perfect reference website http://ggplot2.tidyverse.org/.

Most of the time, it is more convenient to adapt the structure or content of the plotted data (e.g. a

data.frame) than adjusting things within the plot afterwards.

RStudio publishes a very helpful "Data Visualization with ggplot2" cheatsheet that can be found

here.

Examples

Scatter Plots

We plot a simple scatter plot using the builtin iris data set as follows:

library(ggplot2)
ggplot(iris, aes(x = Petal.Width, y = Petal.Length, color = Species)) +
 geom_point()

This gives:

https://riptutorial.com/ 226

http://ggplot2.tidyverse.org/
https://www.rstudio.com/wp-content/uploads/2015/12/ggplot2-cheatsheet-2.0.pdf

Displaying multiple plots

Display multiple plots in one image with the different facet functions. An advantage of this method

is that all axes share the same scale across charts, making it easy to compare them at a glance.

We'll use the mpg dataset included in ggplot2.

Wrap charts line by line (attempts to create a square layout):

ggplot(mpg, aes(x = displ, y = hwy)) +
 geom_point() +
 facet_wrap(~class)

https://riptutorial.com/ 227

http://i.stack.imgur.com/02PgG.png

Display multiple charts on one row, multiple columns:

ggplot(mpg, aes(x = displ, y = hwy)) +
 geom_point() +
 facet_grid(.~class)

https://riptutorial.com/ 228

https://i.stack.imgur.com/Tvqe7.png

Display multiple charts on one column, multiple rows:

ggplot(mpg, aes(x = displ, y = hwy)) +
 geom_point() +
 facet_grid(class~.)

https://riptutorial.com/ 229

https://i.stack.imgur.com/SWcEZ.png

Display multiple charts in a grid by 2 variables:

ggplot(mpg, aes(x = displ, y = hwy)) +
 geom_point() +
 facet_grid(trans~class) #"row" parameter, then "column" parameter

https://riptutorial.com/ 230

https://i.stack.imgur.com/j3iCI.png

Prepare your data for plotting

ggplot2 works best with a long data frame. The following sample data which represents the prices

for sweets on 20 different days, in a format described as wide, because each category has a

column.

set.seed(47)
sweetsWide <- data.frame(date = 1:20,
 chocolate = runif(20, min = 2, max = 4),
 iceCream = runif(20, min = 0.5, max = 1),
 candy = runif(20, min = 1, max = 3))

https://riptutorial.com/ 231

https://i.stack.imgur.com/dD1kw.png

head(sweetsWide)
date chocolate iceCream candy
1 1 3.953924 0.5890727 1.117311
2 2 2.747832 0.7783982 1.740851
3 3 3.523004 0.7578975 2.196754
4 4 3.644983 0.5667152 2.875028
5 5 3.147089 0.8446417 1.733543
6 6 3.382825 0.6900125 1.405674

To convert sweetsWide to long format for use with ggplot2, several useful functions from base R,

and the packages reshape2, data.table and tidyr (in chronological order) can be used:

reshape from base R
sweetsLong <- reshape(sweetsWide, idvar = 'date', direction = 'long',
 varying = list(2:4), new.row.names = NULL, times = names(sweetsWide)[-
1])

melt from 'reshape2'
library(reshape2)
sweetsLong <- melt(sweetsWide, id.vars = 'date')

melt from 'data.table'
which is an optimized & extended version of 'melt' from 'reshape2'
library(data.table)
sweetsLong <- melt(setDT(sweetsWide), id.vars = 'date')

gather from 'tidyr'
library(tidyr)
sweetsLong <- gather(sweetsWide, sweet, price, chocolate:candy)

The all give a similar result:

head(sweetsLong)
date sweet price
1 1 chocolate 3.953924
2 2 chocolate 2.747832
3 3 chocolate 3.523004
4 4 chocolate 3.644983
5 5 chocolate 3.147089
6 6 chocolate 3.382825

See also Reshaping data between long and wide forms for details on converting data between

long and wide format.

The resulting sweetsLong has one column of prices and one column describing the type of sweet.

Now plotting is much simpler:

library(ggplot2)
ggplot(sweetsLong, aes(x = date, y = price, colour = sweet)) + geom_line()

https://riptutorial.com/ 232

http://www.riptutorial.com/r/topic/2904/reshaping-data-between-long-and-wide-forms

sample data

sample data

sample data

sample data

ggplot(data = diamonds, aes(x = cut, fill =color)) +

 ggplot(data = diamonds, aes(x = cut, fill =color)) +

ggplot(diamonds, aes(cut, price)) +

ggplot(diamonds, aes(cut, price)) +

plot()

https://riptutorial.com/ 233

https://i.stack.imgur.com/yRHYz.png
http://i.stack.imgur.com/HxBMW.png
http://i.stack.imgur.com/enjge.png
http://i.stack.imgur.com/ePoVp.png
http://i.stack.imgur.com/vAWBd.png
http://i.stack.imgur.com/i1SpM.png
http://i.stack.imgur.com/TMYiP.png
http://i.stack.imgur.com/fkpvR.png
https://i.stack.imgur.com/XBMJh.png

function, trying to always plot out your data without requiring too much specifications.

basic qplot

qplot(x = disp, y = mpg, data = mtcars)

adding colors

qplot(x = disp, y = mpg, colour = cyl,data = mtcars)

adding a smoother

qplot(x = disp, y = mpg, geom = c("point", "smooth"), data = mtcars)

https://riptutorial.com/ 234

http://i.stack.imgur.com/mqTAR.png
http://i.stack.imgur.com/V1K5E.png

Read ggplot2 online: https://riptutorial.com/r/topic/1334/ggplot2

https://riptutorial.com/ 235

http://i.stack.imgur.com/zr5jq.png
https://riptutorial.com/r/topic/1334/ggplot2

Chapter 44: GPU-accelerated computing

Remarks

GPU computing requires a 'platform' which can connect to and utilize the hardware. The two

primary low-level languages that accomplish this are CUDA and OpenCL. The former requires

installation of the proprietary NVIDIA CUDA Toolkit and is only applicable on NVIDIA GPUs. The

latter is both company (e.g. NVIDIA, AMD, Intel) and hardware independent (CPU or GPU) but

requires the installation of an SDK (software development kit). In order to use a GPU via R you will

need to install one of these pieces of software first.

Once either the CUDA Toolkit or a OpenCL SDK is installed, you can install an appropriate R

package. Almost all the R GPU packages are dependent upon CUDA and limited to NVIDIA

GPUs. These include:

gputools1.

cudaBayesreg2.

HiPLARM3.

gmatrix4.

There are currently only two OpenCL enabled packages

OpenCL - interface from R to OpenCL1.

gpuR - general purpose library2.

Warning - installation can be difficult for different operating systems with different environmental

variables and GPU platforms.

Examples

gpuR gpuMatrix objects

library(gpuR)

gpuMatrix objects
X <- gpuMatrix(rnorm(100), 10, 10)
Y <- gpuMatrix(rnorm(100), 10, 10)

transfer data to GPU when operation called
automatically copied back to CPU
Z <- X %*% Y

gpuR vclMatrix objects

library(gpuR)

https://riptutorial.com/ 236

https://cran.r-project.org/web/packages/gputools/index.html
https://cran.r-project.org/web/packages/cudaBayesreg/index.html
https://cran.r-project.org/web/packages/HiPLARM/index.html
https://cran.r-project.org/web/packages/gmatrix/index.html
https://cran.r-project.org/web/packages/OpenCL/index.html
https://cran.r-project.org/web/packages/gpuR/index.html

vclMatrix objects
X <- vclMatrix(rnorm(100), 10, 10)
Y <- vclMatrix(rnorm(100), 10, 10)

data always on GPU
no data transfer
Z <- X %*% Y

Read GPU-accelerated computing online: https://riptutorial.com/r/topic/4680/gpu-accelerated-

computing

https://riptutorial.com/ 237

https://riptutorial.com/r/topic/4680/gpu-accelerated-computing
https://riptutorial.com/r/topic/4680/gpu-accelerated-computing

Chapter 45: Hashmaps

Examples

Environments as hash maps

Note: in the subsequent passages, the terms hash map and hash table are used interchangeably

and refer to the same concept, namely, a data structure providing efficient key lookup through use

of an internal hash function.

Introduction

Although R does not provide a native hash table structure, similar functionality can be achieved by

leveraging the fact that the environment object returned from new.env (by default) provides hashed

key lookups. The following two statements are equivalent, as the hash parameter defaults to TRUE:

H <- new.env(hash = TRUE)
H <- new.env()

Additionally, one may specify that the internal hash table is pre-allocated with a particular size via

the size parameter, which has a default value of 29. Like all other R objects, environments manage

their own memory and will grow in capacity as needed, so while it is not necessary to request a

non-default value for size, there may be a slight performance advantage in doing so if the object

will (eventually) contain a very large number of elements. It is worth noting that allocating extra

space via size does not, in itself, result in an object with a larger memory footprint:

object.size(new.env())
56 bytes

object.size(new.env(size = 10e4))
56 bytes

Insertion

Insertion of elements may be done using either of the [[<- or $<- methods provided for the

environment class, but not by using "single bracket" assignment ([<-):

H <- new.env()

H[["key"]] <- rnorm(1)

key2 <- "xyz"
H[[key2]] <- data.frame(x = 1:3, y = letters[1:3])

H$another_key <- matrix(rbinom(9, 1, 0.5) > 0, nrow = 3)

https://riptutorial.com/ 238

https://en.wikipedia.org/wiki/Hash_table

H["error"] <- 42
#Error in H["error"] <- 42 :
object of type 'environment' is not subsettable

Like other facets of R, the first method (object[[key]] <- value) is generally preferred to the

second (object$key <- value) because in the former case, a variable maybe be used instead of a

literal value (e.g key2 in the example above).

As is generally the case with hash map implementations, the environment object will not store

duplicate keys. Attempting to insert a key-value pair for an existing key will replace the previously

stored value:

H[["key3"]] <- "original value"

H[["key3"]] <- "new value"

H[["key3"]]
#[1] "new value"

Key Lookup

Likewise, elements may be accessed with [[or $, but not with [:

H[["key"]]
#[1] 1.630631

H[[key2]] ## assuming key2 <- "xyz"
x y
1 1 a
2 2 b
3 3 c

H$another_key
[,1] [,2] [,3]
[1,] TRUE TRUE TRUE
[2,] FALSE FALSE FALSE
[3,] TRUE TRUE TRUE

H[1]
#Error in H[1] : object of type 'environment' is not subsettable

Inspecting the Hash Map

Being just an ordinary environment, the hash map can be inspected by typical means:

names(H)
#[1] "another_key" "xyz" "key" "key3"

ls(H)
#[1] "another_key" "key" "key3" "xyz"

https://riptutorial.com/ 239

str(H)
#<environment: 0x7828228>

ls.str(H)
another_key : logi [1:3, 1:3] TRUE FALSE TRUE TRUE FALSE TRUE ...
key : num 1.63
key3 : chr "new value"
xyz : 'data.frame': 3 obs. of 2 variables:
$ x: int 1 2 3
$ y: chr "a" "b" "c"

Elements can be removed using rm:

rm(list = c("key", "key3"), envir = H)

ls.str(H)
another_key : logi [1:3, 1:3] TRUE FALSE TRUE TRUE FALSE TRUE ...
xyz : 'data.frame': 3 obs. of 2 variables:
$ x: int 1 2 3
$ y: chr "a" "b" "c"

Flexibility

One of the major benefits of using environment objects as hash tables is their ability to store

virtually any type of object as a value, even other environments:

H2 <- new.env()

H2[["a"]] <- LETTERS
H2[["b"]] <- as.list(x = 1:5, y = matrix(rnorm(10), 2))
H2[["c"]] <- head(mtcars, 3)
H2[["d"]] <- Sys.Date()
H2[["e"]] <- Sys.time()
H2[["f"]] <- (function() {
 H3 <- new.env()
 for (i in seq_along(names(H2))) {
 H3[[names(H2)[i]]] <- H2[[names(H2)[i]]]
 }
 H3
})()

ls.str(H2)
a : chr [1:26] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" ...
b : List of 5
$: int 1
$: int 2
$: int 3
$: int 4
$: int 5
c : 'data.frame': 3 obs. of 11 variables:
$ mpg : num 21 21 22.8
$ cyl : num 6 6 4
$ disp: num 160 160 108
$ hp : num 110 110 93
$ drat: num 3.9 3.9 3.85
$ wt : num 2.62 2.88 2.32

https://riptutorial.com/ 240

$ qsec: num 16.5 17 18.6
$ vs : num 0 0 1
$ am : num 1 1 1
$ gear: num 4 4 4
$ carb: num 4 4 1
d : Date[1:1], format: "2016-08-03"
e : POSIXct[1:1], format: "2016-08-03 19:25:14"
f : <environment: 0x91a7cb8>

ls.str(H2$f)
a : chr [1:26] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" ...
b : List of 5
$: int 1
$: int 2
$: int 3
$: int 4
$: int 5
c : 'data.frame': 3 obs. of 11 variables:
$ mpg : num 21 21 22.8
$ cyl : num 6 6 4
$ disp: num 160 160 108
$ hp : num 110 110 93
$ drat: num 3.9 3.9 3.85
$ wt : num 2.62 2.88 2.32
$ qsec: num 16.5 17 18.6
$ vs : num 0 0 1
$ am : num 1 1 1
$ gear: num 4 4 4
$ carb: num 4 4 1
d : Date[1:1], format: "2016-08-03"
e : POSIXct[1:1], format: "2016-08-03 19:25:14"

Limitations

One of the major limitations of using environment objects as hash maps is that, unlike many

aspects of R, vectorization is not supported for element lookup / insertion:

names(H2)
#[1] "a" "b" "c" "d" "e" "f"

H2[[c("a", "b")]]
#Error in H2[[c("a", "b")]] :
wrong arguments for subsetting an environment

Keys <- c("a", "b")
H2[[Keys]]
#Error in H2[[Keys]] : wrong arguments for subsetting an environment

Depending on the nature of the data being stored in the object, it may be possible to use vapply or

list2env for assigning many elements at once:

E1 <- new.env()
invisible({
 vapply(letters, function(x) {
 E1[[x]] <- rnorm(1)
 logical(0)

https://riptutorial.com/ 241

 }, FUN.VALUE = logical(0))
})

all.equal(sort(names(E1)), letters)
#[1] TRUE

Keys <- letters
E2 <- list2env(
 setNames(
 as.list(rnorm(26)),
 nm = Keys),
 envir = NULL,
 hash = TRUE
)

all.equal(sort(names(E2)), letters)
#[1] TRUE

Neither of the above are particularly concise, but may be preferable to using a for loop, etc. when

the number of key-value pairs is large.

package:hash

The hash package offers a hash structure in R. However, it terms of timing for both inserts and

reads it compares unfavorably to using environments as a hash. This documentation simply

acknowledges its existence and provides sample timing code below for the above stated reasons.

There is no identified case where hash is an appropriate solution in R code today.

Consider:

Generic unique string generator
unique_strings <- function(n){
 string_i <- 1
 string_len <- 1
 ans <- character(n)
 chars <- c(letters,LETTERS)
 new_strings <- function(len,pfx){
 for(i in 1:length(chars)){
 if (len == 1){
 ans[string_i] <<- paste(pfx,chars[i],sep='')
 string_i <<- string_i + 1
 } else {
 new_strings(len-1,pfx=paste(pfx,chars[i],sep=''))
 }
 if (string_i > n) return ()
 }
 }
 while(string_i <= n){
 new_strings(string_len,'')
 string_len <- string_len + 1
 }
 sample(ans)
}

Generate timings using an enviornment
timingsEnv <- plyr::adply(2^(10:15),.mar=1,.fun=function(i){
 strings <- unique_strings(i)

https://riptutorial.com/ 242

https://cran.r-project.org/package=hash
https://rpubs.com/rpierce/hashBenchmarks

 ht1 <- new.env(hash=TRUE)
 lapply(strings, function(s){ ht1[[s]] <<- 0L})
 data.frame(
 size=c(i,i),
 seconds=c(
 system.time(for (j in 1:i) ht1[[strings[j]]]==0L)[3]),
 type = c('1_hashedEnv')
)
})

timingsHash <- plyr::adply(2^(10:15),.mar=1,.fun=function(i){
 strings <- unique_strings(i)
 ht <- hash::hash()
 lapply(strings, function(s) ht[[s]] <<- 0L)
 data.frame(
 size=c(i,i),
 seconds=c(
 system.time(for (j in 1:i) ht[[strings[j]]]==0L)[3]),
 type = c('3_stringHash')
)
})

package:listenv

Although package:listenv implements a list-like interface to environments, its performance relative

to environments for hash-like purposes is poor on hash retrieval. However, if the indexes are

numeric, it can be quite fast on retrieval. However, they have other advantages, e.g. compatibility

with package:future. Covering this package for that purpose goes beyond the scope of the current

topic. However, the timing code provided here can be used in conjunction with the example for

package:hash for write timings.

timingsListEnv <- plyr::adply(2^(10:15),.mar=1,.fun=function(i){
 strings <- unique_strings(i)
 le <- listenv::listenv()
 lapply(strings, function(s) le[[s]] <<- 0L)
 data.frame(
 size=c(i,i),
 seconds=c(
 system.time(for (k in 1:i) le[[k]]==0L)[3]),
 type = c('2_numericListEnv')
)
})

Read Hashmaps online: https://riptutorial.com/r/topic/5179/hashmaps

https://riptutorial.com/ 243

https://cran.r-project.org/package=listenv
https://rpubs.com/rpierce/hashBenchmarks
https://riptutorial.com/r/topic/5179/hashmaps

Chapter 46: heatmap and heatmap.2

Examples

Examples from the official documentation

stats::heatmap

Example 1 (Basic usage)

require(graphics); require(grDevices)
x <- as.matrix(mtcars)
rc <- rainbow(nrow(x), start = 0, end = .3)
cc <- rainbow(ncol(x), start = 0, end = .3)
hv <- heatmap(x, col = cm.colors(256), scale = "column",
 RowSideColors = rc, ColSideColors = cc, margins = c(5,10),
 xlab = "specification variables", ylab = "Car Models",
 main = "heatmap(<Mtcars data>, ..., scale = \"column\")")

utils::str(hv) # the two re-ordering index vectors
List of 4

https://riptutorial.com/ 244

http://i.stack.imgur.com/I5iOz.png

$ rowInd: int [1:32] 31 17 16 15 5 25 29 24 7 6 ...
$ colInd: int [1:11] 2 9 8 11 6 5 10 7 1 4 ...
$ Rowv : NULL
$ Colv : NULL

Example 2 (no column dendrogram (nor reordering) at all)

heatmap(x, Colv = NA, col = cm.colors(256), scale = "column",
 RowSideColors = rc, margins = c(5,10),
 xlab = "specification variables", ylab = "Car Models",
 main = "heatmap(<Mtcars data>, ..., scale = \"column\")")

Example 3 ("no nothing")

heatmap(x, Rowv = NA, Colv = NA, scale = "column",
 main = "heatmap(*, NA, NA) ~= image(t(x))")

https://riptutorial.com/ 245

http://i.stack.imgur.com/CTUrG.png

Example 4 (with reorder())

round(Ca <- cor(attitude), 2)
rating complaints privileges learning raises critical advance
rating 1.00 0.83 0.43 0.62 0.59 0.16 0.16
complaints 0.83 1.00 0.56 0.60 0.67 0.19 0.22
privileges 0.43 0.56 1.00 0.49 0.45 0.15 0.34
learning 0.62 0.60 0.49 1.00 0.64 0.12 0.53
raises 0.59 0.67 0.45 0.64 1.00 0.38 0.57
critical 0.16 0.19 0.15 0.12 0.38 1.00 0.28
advance 0.16 0.22 0.34 0.53 0.57 0.28 1.00
symnum(Ca) # simple graphic
rt cm p l rs cr a
rating 1
complaints + 1
privileges . . 1
learning , . . 1
raises . , . , 1
critical . 1
advance . . . 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
heatmap(Ca, symm = TRUE, margins = c(6,6))

https://riptutorial.com/ 246

http://i.stack.imgur.com/S9ghV.png

Example 5 (NO reorder())

heatmap(Ca, Rowv = FALSE, symm = TRUE, margins = c(6,6))

https://riptutorial.com/ 247

http://i.stack.imgur.com/eTnUi.png

Example 6 (slightly artificial with color bar, without ordering)

cc <- rainbow(nrow(Ca))
heatmap(Ca, Rowv = FALSE, symm = TRUE, RowSideColors = cc, ColSideColors = cc,
 margins = c(6,6))

https://riptutorial.com/ 248

http://i.stack.imgur.com/V4BQv.png

Example 7 (slightly artificial with color bar, with ordering)

heatmap(Ca, symm = TRUE, RowSideColors = cc, ColSideColors = cc,
 margins = c(6,6))

https://riptutorial.com/ 249

http://i.stack.imgur.com/TUNBF.png

Example 8 (For variable clustering, rather use distance

based on cor())

symnum(cU <- cor(USJudgeRatings))
CO I DM DI CF DE PR F O W PH R
CONT 1
INTG 1
DMNR B 1
DILG + + 1
CFMG + + B 1
DECI + + B B 1
PREP + + B B B 1
FAMI + + B * * B 1
ORAL * * B B * B B 1
WRIT * + B * * B B B 1
PHYS , , + + + + + + + 1
RTEN * * * * * B * B B * 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1

hU <- heatmap(cU, Rowv = FALSE, symm = TRUE, col = topo.colors(16),
 distfun = function(c) as.dist(1 - c), keep.dendro = TRUE)

https://riptutorial.com/ 250

http://i.stack.imgur.com/0npYN.png

The Correlation matrix with same reordering:
round(100 * cU[hU[[1]], hU[[2]]])
CONT INTG DMNR PHYS DILG CFMG DECI RTEN ORAL WRIT PREP FAMI
CONT 100 -13 -15 5 1 14 9 -3 -1 -4 1 -3
INTG -13 100 96 74 87 81 80 94 91 91 88 87
DMNR -15 96 100 79 84 81 80 94 91 89 86 84
PHYS 5 74 79 100 81 88 87 91 89 86 85 84
DILG 1 87 84 81 100 96 96 93 95 96 98 96
CFMG 14 81 81 88 96 100 98 93 95 94 96 94
DECI 9 80 80 87 96 98 100 92 95 95 96 94
RTEN -3 94 94 91 93 93 92 100 98 97 95 94
ORAL -1 91 91 89 95 95 95 98 100 99 98 98
WRIT -4 91 89 86 96 94 95 97 99 100 99 99
PREP 1 88 86 85 98 96 96 95 98 99 100 99
FAMI -3 87 84 84 96 94 94 94 98 99 99 100

The column dendrogram:
utils::str(hU$Colv)
--[dendrogram w/ 2 branches and 12 members at h = 1.15]
|--leaf "CONT"
`--[dendrogram w/ 2 branches and 11 members at h = 0.258]
|--[dendrogram w/ 2 branches and 2 members at h = 0.0354]
| |--leaf "INTG"
| `--leaf "DMNR"
`--[dendrogram w/ 2 branches and 9 members at h = 0.187]
|--leaf "PHYS"
`--[dendrogram w/ 2 branches and 8 members at h = 0.075]
|--[dendrogram w/ 2 branches and 3 members at h = 0.0438]
| |--leaf "DILG"

https://riptutorial.com/ 251

http://i.stack.imgur.com/DCsSU.png

| `--[dendrogram w/ 2 branches and 2 members at h = 0.0189]
| |--leaf "CFMG"
| `--leaf "DECI"
`--[dendrogram w/ 2 branches and 5 members at h = 0.0584]
|--leaf "RTEN"
`--[dendrogram w/ 2 branches and 4 members at h = 0.0187]
|--[dendrogram w/ 2 branches and 2 members at h = 0.00657]
| |--leaf "ORAL"
| `--leaf "WRIT"
`--[dendrogram w/ 2 branches and 2 members at h = 0.0101]
|--leaf "PREP"
`--leaf "FAMI"

Tuning parameters in heatmap.2

Given:

x <- as.matrix(mtcars)

One can use heatmap.2 - a more recent optimized version of heatmap, by loading the following

library:

require(gplots)
heatmap.2(x)

To add a title, x- or y-label to your heatmap, you need to set the main, xlab and ylab:

https://riptutorial.com/ 252

https://i.stack.imgur.com/YxiM2.png

heatmap.2(x, main = "My main title: Overview of car features", xlab="Car features", ylab =
"Car brands")

If you wish to define your own color palette for your heatmap, you can set the col parameter by

using the colorRampPalette function:

heatmap.2(x, trace="none", key=TRUE, Colv=FALSE,dendrogram = "row",col =
colorRampPalette(c("darkblue","white","darkred"))(100))

As you can notice, the labels on the y axis (the car names) don't fit in the figure. In order to fix this,

the user can tune the margins parameter:

heatmap.2(x, trace="none", key=TRUE,col =
colorRampPalette(c("darkblue","white","darkred"))(100), margins=c(5,8))

https://riptutorial.com/ 253

https://i.stack.imgur.com/EY9Gd.png

Further, we can change the dimensions of each section of our heatmap (the key histogram, the

dendograms and the heatmap itself), by tuning lhei and lwid :

https://riptutorial.com/ 254

https://i.stack.imgur.com/BUpAg.png

If we only want to show a row(or column) dendogram, we need to set Colv=FALSE (or Rowv=FALSE)

and adjust the dendogram parameter:

heatmap.2(x, trace="none", key=TRUE, Colv=FALSE, dendrogram = "row", col =
colorRampPalette(c("darkblue","white","darkred"))(100), margins=c(5,8), lwid = c(5,15), lhei =
c(3,15))

https://riptutorial.com/ 255

https://i.stack.imgur.com/irLBJ.png

For changing the font size of the legend title,labels and axis, the user needs to set cex.main,

cex.lab, cex.axis in the par list:

par(cex.main=1, cex.lab=0.7, cex.axis=0.7)
heatmap.2(x, trace="none", key=TRUE, Colv=FALSE, dendrogram = "row", col =
colorRampPalette(c("darkblue","white","darkred"))(100), margins=c(5,8), lwid = c(5,15), lhei =
c(5,15))

https://riptutorial.com/ 256

https://i.stack.imgur.com/pc2ui.png

Read heatmap and heatmap.2 online: https://riptutorial.com/r/topic/4814/heatmap-and-heatmap-2

https://riptutorial.com/ 257

https://i.stack.imgur.com/TMwhv.png
https://riptutorial.com/r/topic/4814/heatmap-and-heatmap-2

Chapter 47: Hierarchical clustering with

hclust

Introduction

The stats package provides the hclust function to perform hierarchical clustering.

Remarks

Besides hclust, other methods are available, see the CRAN Package View on Clustering.

Examples

Example 1 - Basic use of hclust, display of dendrogram, plot clusters

The cluster library contains the ruspini data - a standard set of data for illustrating cluster analysis.

 library(cluster) ## to get the ruspini data
 plot(ruspini, asp=1, pch=20) ## take a look at the data

https://riptutorial.com/ 258

https://cran.r-project.org/view=Cluster

hclust expects a distance matrix, not the original data. We compute the tree using the default

parameters and display it. The hang parameter lines up all of the leaves of the tree along the

baseline.

 ruspini_hc_defaults <- hclust(dist(ruspini))
 dend <- as.dendrogram(ruspini_hc_defaults)
 if(!require(dendextend)) install.packages("dendextend"); library(dendextend)
 dend <- color_branches(dend, k = 4)
 plot(dend)

https://riptutorial.com/ 259

https://i.stack.imgur.com/pWyXD.png

Cut the tree to give four clusters and replot the data coloring the points by cluster. k is the desired

number of clusters.

 rhc_def_4 = cutree(ruspini_hc_defaults,k=4)
 plot(ruspini, pch=20, asp=1, col=rhc_def_4)

https://riptutorial.com/ 260

https://i.stack.imgur.com/6SEFG.png

This clustering is a little odd. We can get a better clustering by scaling the data first.

 scaled_ruspini_hc_defaults = hclust(dist(scale(ruspini)))
 srhc_def_4 = cutree(scaled_ruspini_hc_defaults,4)
 plot(ruspini, pch=20, asp=1, col=srhc_def_4)

https://riptutorial.com/ 261

https://i.stack.imgur.com/kb3MZ.png

The default dissimilarity measure for comparing clusters is "complete". You can specify a different

measure with the method parameter.

 ruspini_hc_single = hclust(dist(ruspini), method="single")

Example 2 - hclust and outliers

With hierarchical clustering, outliers often show up as one-point clusters.

Generate three Gaussian distributions to illustrate the effect of outliers.

 set.seed(656)
 x = c(rnorm(150, 0, 1), rnorm(150,9,1), rnorm(150,4.5,1))
 y = c(rnorm(150, 0, 1), rnorm(150,0,1), rnorm(150,5,1))
 XYdf = data.frame(x,y)
 plot(XYdf, pch=20)

https://riptutorial.com/ 262

https://i.stack.imgur.com/oScYH.png

Build the cluster structure, split it into three cluster.

 XY_sing = hclust(dist(XYdf), method="single")
 XYs3 = cutree(XY_sing,k=3)
 table(XYs3)
 XYs3
 1 2 3
 448 1 1

hclust found two outliers and put everything else into one big cluster. To get the "real" clusters,

you may need to set k higher.

 XYs6 = cutree(XY_sing,k=6)
 table(XYs6)
 XYs6
 1 2 3 4 5 6

https://riptutorial.com/ 263

https://i.stack.imgur.com/c5uMw.png

 148 150 1 149 1 1
 plot(XYdf, pch=20, col=XYs6)

This StackOverflow post has some guidance on how to pick the number of clusters, but be aware

of this behavior in hierarchical clustering.

Read Hierarchical clustering with hclust online: https://riptutorial.com/r/topic/8084/hierarchical-

clustering-with-hclust

https://riptutorial.com/ 264

https://i.stack.imgur.com/6QIK4.png
http://stackoverflow.com/questions/15376075/cluster-analysis-in-r-determine-the-optimal-number-of-clusters/15376462#15376462
https://riptutorial.com/r/topic/8084/hierarchical-clustering-with-hclust
https://riptutorial.com/r/topic/8084/hierarchical-clustering-with-hclust

Chapter 48: Hierarchical Linear Modeling

Examples

basic model fitting

apologies: since I don't know of a channel for discussing/providing feedback on requests for

improvement, I'm going to put my question here. Please feel free to point out a better place for

this! @DataTx states that this is "completely unclear, incomplete, or has severe formatting

problems". Since I don't see any big formatting problems (:-)), a little bit more guidance about

what's expected here for improving clarity or completeness, and why what's here is

unsalvageable, would be useful.

The primary packages for fitting hierarchical (alternatively "mixed" or "multilevel") linear models in

R are nlme (older) and lme4 (newer). These packages differ in many minor ways but should

generally result in very similar fitted models.

library(nlme)
library(lme4)
m1.nlme <- lme(Reaction~Days,random=~Days|Subject,data=sleepstudy,method="REML")
m1.lme4 <- lmer(Reaction~Days+(Days|Subject),data=sleepstudy,REML=TRUE)
all.equal(fixef(m1.nlme),fixef(m1.lme4))
[1] TRUE

Differences to consider:

formula syntax is slightly different•

nlme is (still) somewhat better documented (e.g. Pinheiro and Bates 2000 Mixed-effects

models in S-PLUS; however, see Bates et al. 2015 Journal of Statistical Software/

vignette("lmer",package="lme4") for lme4)

•

lme4 is faster and allows easier fitting of crossed random effects•

nlme provides p-values for linear mixed models out of the box, lme4 requires add-on packages

such as lmerTest or afex

•

nlme allows modeling of heteroscedasticity or residual correlations (in space/time/phylogeny)•

The unofficial GLMM FAQ provides more information, although it is focused on generalized linear

mixed models (GLMMs).

Read Hierarchical Linear Modeling online: https://riptutorial.com/r/topic/3460/hierarchical-linear-

modeling

https://riptutorial.com/ 265

http://tinyurl.com/glmmFAQ.html
https://riptutorial.com/r/topic/3460/hierarchical-linear-modeling
https://riptutorial.com/r/topic/3460/hierarchical-linear-modeling

Chapter 49: I/O for database tables

Remarks

Specialized packages

RMySQL•

RODBC•

Examples

Reading Data from MySQL Databases

General

Using the package RMySQL we can easily query MySQL as well as MariaDB databases and store

the result in an R dataframe:

library(RMySQL)

mydb <- dbConnect(MySQL(), user='user', password='password', dbname='dbname',host='127.0.0.1')

queryString <- "SELECT * FROM table1 t1 JOIN table2 t2 on t1.id=t2.id"
query <- dbSendQuery(mydb, queryString)
data <- fetch(query, n=-1) # n=-1 to return all results

Using limits

It is also possible to define a limit, e.g. getting only the first 100,000 rows. In order to do so, just

change the SQL query regarding the desired limit. The mentioned package will consider these

options. Example:

queryString <- "SELECT * FROM table1 limit 100000"

Reading Data from MongoDB Databases

In order to load data from a MongoDB database into an R dataframe, use the library MongoLite:

Use MongoLite library:
#install.packages("mongolite")
library(jsonlite)
library(mongolite)

https://riptutorial.com/ 266

http://www.riptutorial.com/r/topic/2471/rodbc
https://cran.r-project.org/web/packages/RMySQL/index.html
https://github.com/jeroen/mongolite

Connect to the database and the desired collection as root:
db <- mongo(collection = "Tweets", db = "TweetCollector", url =
"mongodb://USERNAME:PASSWORD@HOSTNAME")

Read the desired documents i.e. Tweets inside one dataframe:
documents <- db$find(limit = 100000, skip = 0, fields = '{ "_id" : false, "Text" : true }')

The code connects to the server HOSTNAME as USERNAME with PASSWORD, tries to open the database

TweetCollector and read the collection Tweets. The query tries to read the field i.e. column Text.

The results is a dataframe with columns as the yielded data set. In case of this example, the

dataframe contains the column Text, e.g. documents$Text.

Read I/O for database tables online: https://riptutorial.com/r/topic/5537/i-o-for-database-tables

https://riptutorial.com/ 267

https://riptutorial.com/r/topic/5537/i-o-for-database-tables

Chapter 50: I/O for foreign tables (Excel, SAS,

SPSS, Stata)

Examples

Importing data with rio

A very simple way to import data from many common file formats is with rio. This package

provides a function import() that wraps many commonly used data import functions, thereby

providing a standard interface. It works simply by passing a file name or URL to import():

import("example.csv") # comma-separated values
import("example.tsv") # tab-separated values
import("example.dta") # Stata
import("example.sav") # SPSS
import("example.sas7bdat") # SAS
import("example.xlsx") # Excel

import() can also read from compressed directories, URLs (HTTP or HTTPS), and the clipboard. A

comprehensive list of all supported file formats is available on the rio package github repository.

It is even possible to specify some further parameters related to the specific file format you are

trying to read, passing them directly within the import() function:

import("example.csv", format = ",") #for csv file where comma is used as separator
import("example.csv", format = ";") #for csv file where semicolon is used as separator

Importing Excel files

There are several R packages to read excel files, each of which using different languages or

resources, as summarized in the following table:

R package Uses

xlsx Java

XLconnect Java

openxlsx C++

readxl C++

RODBC ODBC

gdata Perl

https://riptutorial.com/ 268

https://cran.r-project.org/web/packages/rio/index.html
https://github.com/leeper/rio

For the packages that use Java or ODBC it is important to know details about your system

because you may have compatibility issues depending on your R version and OS. For instance, if

you are using R 64 bits then you also must have Java 64 bits to use xlsx or XLconnect.

Some examples of reading excel files with each package are provided below. Note that many of

the packages have the same or very similar function names. Therefore, it is useful to state the

package explicitly, like package::function. The package openxlsx requires prior installation of

RTools.

Reading excel files with the xlsx package

library(xlsx)

The index or name of the sheet is required to import.

xlsx::read.xlsx("Book1.xlsx", sheetIndex=1)

xlsx::read.xlsx("Book1.xlsx", sheetName="Sheet1")

Reading Excel files with the XLconnect

package

library(XLConnect)
wb <- XLConnect::loadWorkbook("Book1.xlsx")

Either, if Book1.xlsx has a sheet called "Sheet1":
sheet1 <- XLConnect::readWorksheet(wb, "Sheet1")
Or, more generally, just get the first sheet in Book1.xlsx:
sheet1 <- XLConnect::readWorksheet(wb, getSheets(wb)[1])

XLConnect automatically imports the pre-defined Excel cell-styles embedded in Book1.xlsx. This is

useful when you wish to format your workbook object and export a perfectly formatted Excel

document. Firstly, you will need to create the desired cell formats in Book1.xlsx and save them, for

example, as myHeader, myBody and myPcts. Then, after loading the workbook in R (see above):

Headerstyle <- XLConnect::getCellStyle(wb, "myHeader")
Bodystyle <- XLConnect::getCellStyle(wb, "myBody")
Pctsstyle <- XLConnect::getCellStyle(wb, "myPcts")

The cell styles are now saved in your R environment. In order to assign the cell styles to certain

ranges of your data, you need to define the range and then assign the style:

Headerrange <- expand.grid(row = 1, col = 1:8)
Bodyrange <- expand.grid(row = 2:6, col = c(1:5, 8))
Pctrange <- expand.grid(row = 2:6, col = c(6, 7))

https://riptutorial.com/ 269

XLConnect::setCellStyle(wb, sheet = "sheet1", row = Headerrange$row,
 col = Headerrange$col, cellstyle = Headerstyle)
XLConnect::setCellStyle(wb, sheet = "sheet1", row = Bodyrange$row,
 col = Bodyrange$col, cellstyle = Bodystyle)
XLConnect::setCellStyle(wb, sheet = "sheet1", row = Pctrange$row,
 col = Pctrange$col, cellstyle = Pctsstyle)

Note that XLConnect is easy, but can become extremely slow in formatting. A much faster, but more

cumbersome formatting option is offered by openxlsx.

Reading excel files with the openxlsx

package

Excel files can be imported with package openxlsx

library(openxlsx)

openxlsx::read.xlsx("spreadsheet1.xlsx", colNames=TRUE, rowNames=TRUE)

#colNames: If TRUE, the first row of data will be used as column names.
#rowNames: If TRUE, first column of data will be used as row names.

The sheet, which should be read into R can be selected either by providing its position in the sheet

argument:

openxlsx::read.xlsx("spreadsheet1.xlsx", sheet = 1)

or by declaring its name:

openxlsx::read.xlsx("spreadsheet1.xlsx", sheet = "Sheet1")

Additionally, openxlsx can detect date columns in a read sheet. In order to allow automatic

detection of dates, an argument detectDates should be set to TRUE:

openxlsx::read.xlsx("spreadsheet1.xlsx", sheet = "Sheet1", detectDates= TRUE)

Reading excel files with the readxl package

Excel files can be imported as a data frame into R using the readxl package.

library(readxl)

It can read both .xls and .xlsx files.

readxl::read_excel("spreadsheet1.xls")

https://riptutorial.com/ 270

readxl::read_excel("spreadsheet2.xlsx")

The sheet to be imported can be specified by number or name.

readxl::read_excel("spreadsheet.xls", sheet = 1)
readxl::read_excel("spreadsheet.xls", sheet = "summary")

The argument col_names = TRUE sets the first row as the column names.

 readxl::read_excel("spreadsheet.xls", sheet = 1, col_names = TRUE)

The argument col_types can be used to specify the column types in the data as a vector.

readxl::read_excel("spreadsheet.xls", sheet = 1, col_names = TRUE,
 col_types = c("text", "date", "numeric", "numeric"))

Reading excel files with the RODBC package

Excel files can be read using the ODBC Excel Driver that interfaces with Windows' Access

Database Engine (ACE), formerly JET. With the RODBC package, R can connect to this driver

and directly query workbooks. Worksheets are assumed to maintain column headers in first row

with data in organized columns of similar types. NOTE: This approach is limited to only

Windows/PC machines as JET/ACE are installed .dll files and not available on other operating

systems.

library(RODBC)

xlconn <- odbcDriverConnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *.xlsb)};
 DBQ=C:\\Path\\To\\Workbook.xlsx')

df <- sqlQuery(xlconn, "SELECT * FROM [SheetName$]")
close(xlconn)

Connecting with an SQL engine in this approach, Excel worksheets can be queried similar to

database tables including JOIN and UNION operations. Syntax follows the JET/ACE SQL dialect.

NOTE: Only data access DML statements, specifically SELECT can be run on workbooks,

considered not updateable queries.

joindf <- sqlQuery(xlconn, "SELECT t1.*, t2.* FROM [Sheet1$] t1
 INNER JOIN [Sheet2$] t2
 ON t1.[ID] = t2.[ID]")

uniondf <- sqlQuery(xlconn, "SELECT * FROM [Sheet1$]
 UNION
 SELECT * FROM [Sheet2$]")

Even other workbooks can be queried from the same ODBC channel pointing to a current

workbook:

https://riptutorial.com/ 271

otherwkbkdf <- sqlQuery(xlconn, "SELECT * FROM
 [Excel 12.0 Xml;HDR=Yes;
 Database=C:\\Path\\To\\Other\\Workbook.xlsx].[Sheet1$];")

Reading excel files with the gdata package

example here

Read and write Stata, SPSS and SAS files

The packages foreign and haven can be used to import and export files from a variety of other

statistical packages like Stata, SPSS and SAS and related software. There is a read function for

each of the supported data types to import the files.

loading the packages
library(foreign)
library(haven)
library(readstata13)
library(Hmisc)

Some examples for the most common data types:

reading Stata files with `foreign`
read.dta("path\to\your\data")
reading Stata files with `haven`
read_dta("path\to\your\data")

The foreign package can read in stata (.dta) files for versions of Stata 7-12. According to the

development page, the read.dta is more or less frozen and will not be updated for reading in

versions 13+. For more recent versions of Stata, you can use either the readstata13 package or

haven. For readstata13, the files are

reading recent Stata (13+) files with `readstata13`
read.dta13("path\to\your\data")

For reading in SPSS and SAS files

reading SPSS files with `foreign`
read.spss("path\to\your\data.sav", to.data.frame = TRUE)
reading SPSS files with `haven`
read_spss("path\to\your\data.sav")
read_sav("path\to\your\data.sav")
read_por("path\to\your\data.por")

reading SAS files with `foreign`
read.ssd("path\to\your\data")
reading SAS files with `haven`
read_sas("path\to\your\data")
reading native SAS files with `Hmisc`
sas.get("path\to\your\data") #requires access to saslib
Reading SA XPORT format (*.XPT) files

https://riptutorial.com/ 272

sasxport.get("path\to\your\data.xpt") # does not require access to SAS executable

The SAScii package provides functions that will accept SAS SET import code and construct a text

file that can be processed with read.fwf. It has proved very robust for import of large public-

released datasets. Support is at https://github.com/ajdamico/SAScii

To export data frames to other statistical packages you can use the write functions write.foreign()

. This will write 2 files, one containing the data and one containing instructions the other package

needs to read the data.

writing to Stata, SPSS or SAS files with `foreign`
write.foreign(dataframe, datafile, codefile,
 package = c("SPSS", "Stata", "SAS"), ...)
write.foreign(dataframe, "path\to\data\file", "path\to\instruction\file", package = "Stata")

writing to Stata files with `foreign`
write.dta(dataframe, "file", version = 7L,
 convert.dates = TRUE, tz = "GMT",
 convert.factors = c("labels", "string", "numeric", "codes"))

writing to Stata files with `haven`
write_dta(dataframe, "path\to\your\data")

writing to Stata files with `readstata13`
save.dta13(dataframe, file, data.label = NULL, time.stamp = TRUE,
 convert.factors = TRUE, convert.dates = TRUE, tz = "GMT",
 add.rownames = FALSE, compress = FALSE, version = 117,
 convert.underscore = FALSE)

writing to SPSS files with `haven`
write_sav(dataframe, "path\to\your\data")

File stored by the SPSS can also be read with read.spss in this way:

 foreign::read.spss('data.sav', to.data.frame=TRUE, use.value.labels=FALSE,
 use.missings=TRUE, reencode='UTF-8')
to.data.frame if TRUE: return a data frame
use.value.labels if TRUE: convert variables with value labels into R factors with those
levels
use.missings if TRUE: information on user-defined missing values will used to set the
corresponding values to NA.
reencode character strings will be re-encoded to the current locale. The default, NA, means
to do so in a UTF-8 locale, only.

Import or Export of Feather file

Feather is an implementation of Apache Arrow designed to store data frames in a language

agnostic manner while maintaining metadata (e.g. date classes), increasing interoperability

between Python and R. Reading a feather file will produce a tibble, not a standard data.frame.

library(feather)

path <- "filename.feather"
df <- mtcars

https://riptutorial.com/ 273

https://github.com/ajdamico/SAScii
https://github.com/wesm/feather
https://arrow.apache.org/

write_feather(df, path)

df2 <- read_feather(path)

head(df2)
A tibble: 6 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

head(df)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

The current documentation contains this warning:

Note to users: Feather should be treated as alpha software. In particular, the file format

is likely to evolve over the coming year. Do not use Feather for long-term data storage.

Read I/O for foreign tables (Excel, SAS, SPSS, Stata) online: https://riptutorial.com/r/topic/5536/i-

o-for-foreign-tables--excel--sas--spss--stata-

https://riptutorial.com/ 274

https://riptutorial.com/r/topic/5536/i-o-for-foreign-tables--excel--sas--spss--stata-
https://riptutorial.com/r/topic/5536/i-o-for-foreign-tables--excel--sas--spss--stata-

Chapter 51: I/O for geographic data

(shapefiles, etc.)

Introduction

See also Introduction to Geographical Maps and Input and Output

Examples

Import and Export Shapefiles

With the rgdal package it is possible to import and export shapfiles with R. The function readOGR

can be used to imports shapfiles. If you want to import a file from e.g. ArcGIS the first argument

dsn is the path to the folder which contains the shapefile. layer is the name of the shapefile without

the file ending (just map and not map.shp).

library(rgdal)
readOGR(dsn = "path\to\the\folder\containing\the\shapefile", layer = "map")

To export a shapefile use thewriteOGR function. The first argument is the spatial object produced in

R. dsn and layer are the same as above. The obligatory 4. argument is the driver used to generate

the shapefile. The function ogrDrivers() lists all available drivers. If you want to export a shapfile to

ArcGis or QGis you could use driver = "ESRI Shapefile".

writeOGR(Rmap, dsn = "path\to\the\folder\containing\the\shapefile", layer = "map",
 driver = "ESRI Shapefile")

tmap package has a very convenient function read_shape(), which is a wrapper for rgdal::reagOGR().

The read_shape() function simplifies the process of importing a shapefile a lot. On the downside,

tmap is quite heavy.

Read I/O for geographic data (shapefiles, etc.) online: https://riptutorial.com/r/topic/5538/i-o-for-

geographic-data--shapefiles--etc--

https://riptutorial.com/ 275

http://www.riptutorial.com/r/topic/1372/introduction-to-geographical-maps
http://www.riptutorial.com/r/topic/5543/input-and-output
https://riptutorial.com/r/topic/5538/i-o-for-geographic-data--shapefiles--etc--
https://riptutorial.com/r/topic/5538/i-o-for-geographic-data--shapefiles--etc--

Chapter 52: I/O for raster images

Introduction

See also Raster and Image Analysis and Input and Output

Examples

Load a multilayer raster

The R-Logo is a multilayer raster file (red, green, blue)

library(raster)
r <- stack("C:/Program Files/R/R-3.2.3/doc/html/logo.jpg")
plot(r)

The individual layers of the RasterStack object can be adressed by [[.

plot(r[[1]])

https://riptutorial.com/ 276

http://www.riptutorial.com/r/topic/3726/raster-and-image-analysis
http://www.riptutorial.com/r/topic/5543/input-and-output
http://i.stack.imgur.com/9jVrN.png

Read I/O for raster images online: https://riptutorial.com/r/topic/5539/i-o-for-raster-images

https://riptutorial.com/ 277

http://i.stack.imgur.com/tOgqL.png
https://riptutorial.com/r/topic/5539/i-o-for-raster-images

Chapter 53: I/O for R's binary format

Examples

Rds and RData (Rda) files

.rds and .Rdata (also known as .rda) files can be used to store R objects in a format native to R.

There are multiple advantages of saving this way when contrasted with non-native storage

approaches, e.g. write.table:

It is faster to restore the data to R•

It keeps R specific information encoded in the data (e.g., attributes, variable types, etc).•

saveRDS/readRDS only handle a single R object. However, they are more flexible than the multi-object

storage approach in that the object name of the restored object need not be the same as the

object name when the object was stored.

Using an .rds file, for example, saving the iris dataset we would use:

saveRDS(object = iris, file = "my_data_frame.rds")

To load it data back in:

iris2 <- readRDS(file = "my_data_frame.rds")

To save a multiple objects we can use save() and output as .Rdata.

Example, to save 2 dataframes: iris and cars

save(iris, cars, file = "myIrisAndCarsData.Rdata")

To load:

load("myIrisAndCarsData.Rdata")

Enviromments

The functions save and load allow us to specify the environment where the object will be hosted:

save(iris, cars, file = "myIrisAndCarsData.Rdata", envir = foo <- new.env())
load("myIrisAndCarsData.Rdata", envir = foo)
foo$cars

save(iris, cars, file = "myIrisAndCarsData.Rdata", envir = foo <- new.env())
load("myIrisAndCarsData.Rdata", envir = foo)

https://riptutorial.com/ 278

foo$cars

Read I/O for R's binary format online: https://riptutorial.com/r/topic/5540/i-o-for-r-s-binary-format

https://riptutorial.com/ 279

https://riptutorial.com/r/topic/5540/i-o-for-r-s-binary-format

Chapter 54: Implement State Machine Pattern

using S4 Class

Introduction

Finite States Machine concepts are usually implemented under Object Oriented Programming

(OOP) languages, for example using Java language, based on the State pattern defined in GOF

(refers to the book: "Design Patterns").

R provides several mechanisms to simulate the OO paradigm, let's apply S4 Object System for

implementing this pattern.

Examples

Parsing Lines using State Machine

Let's apply the State Machine pattern for parsing lines with the specific pattern using S4 Class

feature from R.

PROBLEM ENUNCIATION

We need to parse a file where each line provides information about a person, using a delimiter (

";"), but some information provided is optional, and instead of providing an empty field, it is

missing. On each line we can have the following information: Name;[Address;]Phone. Where the

address information is optional, sometimes we have it and sometimes don’t, for example:

GREGORY BROWN; 25 NE 25TH; +1-786-987-6543
DAVID SMITH;786-123-4567
ALAN PEREZ; 25 SE 50TH; +1-786-987-5553

The second line does not provide address information. Therefore the number of delimiters may be

deferent like in this case with one delimiter and for the other lines two delimiters. Because the

number of delimiters may vary, one way to atack this problem is to recognize the presence or not

of a given field based on its pattern. In such case we can use a regular expression for identifying

such patterns. For example:

Name: "^([A-Z]'?\\s+)* *[A-Z]+(\\s+[A-Z]{1,2}\\.?,? +)*[A-Z]+((-|\\s+)[A-Z]+)*$". For

example: RAFAEL REAL, DAVID R. SMITH, ERNESTO PEREZ GONZALEZ, 0' CONNOR BROWN, LUIS PEREZ-

MENA, etc.

•

Address: "^\\s[0-9]{1,4}(\\s+[A-Z]{1,2}[0-9]{1,2}[A-Z]{1,2}|[A-Z\\s0-9]+)$". For example:

11020 LE JEUNE ROAD, 87 SW 27TH. For the sake of simplicity we don't include here the zipcode,

city, state, but I can be included in this field or adding additional fields.

•

Phone: "^\\s*(\\+1(-|\\s+))*[0-9]{3}(-|\\s+)[0-9]{3}(-|\\s+)[0-9]{4}$". For example: 305-

123-4567, 305 123 4567, +1-786-123-4567.

•

https://riptutorial.com/ 280

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/State_pattern
http://adv-r.had.co.nz
https://en.wikipedia.org/wiki/State_pattern
https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html

Notes:

I am considering the most common pattern of US addresses and phones, it can be easy

extended to consider more general situations.

•

In R the sign "\" has special meaning for character variables, therefore we need to escape

it.

•

In order to simplify the process of defining regular expressions a good recommendation is to

use the following web page: regex101.com, so you can play with it, with a given example,

until you get the expected result for all possible combinations.

•

The idea is to identify each line field based on previously defined patterns. The State pattern

define the following entities (classes) that collaborate to control the specific behavior (The State

Pattern is a behavior pattern):

Let's describe each element considering the context of our problem:

Context: Stores the context information of the parsing process, i.e. the current state and

handles the entire State Machine Process. For each state, an action is executed (handle()),

but the context delegates it, based on the state, on the action method defined for a particular

state (handle() from State class). It defines the interface of interest to clients. Our Context

class can be defined like this:

Attributes: state○

Methods: handle(), ...○

•

State: The abstract class that represents any state of the State Machine. It defines an

interface for encapsulating the behavior associated with a particular state of the context. It

can be defined like this:

Attributes: name, pattern○

Methods: doAction(), isState (using pattern attribute verify whether the input argument

belong to this state pattern or not), …

○

•

Concrete States (state sub-classes): Each subclass of the class State that implements a

behavior associated with a state of the Context. Our sub-classes are: InitState, NameState,

AddressState, PhoneState. Such classes just implements the generic method using the specific

logic for such states. No additional attributes are required.

•

Note: It is a matter of preference how to name the method that carries out the action, handle(),

doAction() or goNext(). The method name doAction() can be the same for both classes (Stateor

Context) we preferred to name as handle() in the Context class for avoiding a confusion when

defining two generic methods with the same input arguments, but different class.

https://riptutorial.com/ 281

https://regex101.com
https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html

PERSON CLASS

Using the S4 syntax we can define a Person class like this:

setClass(Class = "Person",
 slots = c(name = "character", address = "character", phone = "character")
)

It is a good recommendation to initialize the class attributes. The setClass documentation suggests

using a generic method labeled as "initialize", instead of using deprecated attributes such as:

prototype, representation.

setMethod("initialize", "Person",
 definition = function(.Object, name = NA_character_,
 address = NA_character_, phone = NA_character_) {
 .Object@name <- name
 .Object@address <- address
 .Object@phone <- phone
 .Object
 }
)

Because the initialize method is already a standard generic method of package methods, we need

to respect the original argument definition. We can verify it typing on R prompt:

> initialize

It returns the entire function definition, you can see at the top who the function is defined like:

function (.Object, ...) {...}

Therefore when we use setMethod we need to follow exaclty the same syntax (.Object).

Another existing generic method is show, it is equivalent toString() method from Java and it is a

good idea to have a specific implementation for class domain:

setMethod("show", signature = "Person",
 definition = function(object) {
 info <- sprintf("%s@[name='%s', address='%s', phone='%s']",
 class(object), object@name, object@address, object@phone)
 cat(info)
 invisible(NULL)
 }
)

Note: We use the same convention as in the default toString() Java implementation.

Let's say we want to save the parsed information (a list of Person objects) into a dataset, then we

should be able first to convert a list of objects to into something the R can transform (for example

coerce the object as a list). We can define the following additional method (for more detail about

this see the post)

https://riptutorial.com/ 282

http://stackoverflow.com/questions/30386009/how-to-extend-as-list-in-a-canonical-way-to-s4-objects

setGeneric(name = "as.list", signature = c('x'),
 def = function(x) standardGeneric("as.list"))

Suggestion taken from here:
http://stackoverflow.com/questions/30386009/how-to-extend-as-list-in-a-canonical-way-to-s4-
objects
setMethod("as.list", signature = "Person",
 definition = function(x) {
 mapply(function(y) {
 #apply as.list if the slot is again an user-defined object
 #therefore, as.list gets applied recursively
 if (inherits(slot(x,y),"Person")) {
 as.list(slot(x,y))
 } else {
 #otherwise just return the slot
 slot(x,y)
 }
 },
 slotNames(class(x)),
 SIMPLIFY=FALSE)
 }
)

R does not provide a sugar syntax for OO because the language was initially conceived to provide

valuable functions for Statisticians. Therefore each user method requires two parts: 1) the

Definition part (via setGeneric) and 2) the implementation part (via setMethod). Like in the above

example.

STATE CLASS

Following S4 syntax, let's define the abstract State class.

setClass(Class = "State", slots = c(name = "character", pattern = "character"))

setMethod("initialize", "State",
 definition = function(.Object, name = NA_character_, pattern = NA_character_) {
 .Object@name <- name
 .Object@pattern <- pattern
 .Object
 }
)

setMethod("show", signature = "State",
 definition = function(object) {
 info <- sprintf("%s@[name='%s', pattern='%s']", class(object),
 object@name, object@pattern)
 cat(info)
 invisible(NULL)
 }
)

setGeneric(name = "isState", signature = c('obj', 'input'),
 def = function(obj, input) standardGeneric("isState"))

setGeneric(name = "doAction", signature = c('obj', 'input', 'context'),
 def = function(obj, input, context) standardGeneric("doAction"))

Every sub-class from State will have associated a name and pattern, but also a way to identify

https://riptutorial.com/ 283

whether a given input belongs to this state or not (isState() method), and also implement the

corresponding actions for this state (doAction() method).

In order to understand the process, let's define the transition matrix for each state based on the

input received:

Input/Current State Init Name Address Phone

Name Name

Address Address

Phone Phone Phone

End End

Note: The cell [row, col]=[i,j] represents the destination state for the current state j, when it

receives the input i.

It means that under the state Name it can receive two inputs: an address or a phone number.

Another way to represents the transaction table is using the following UML State Machine

diagram:

https://riptutorial.com/ 284

https://en.wikipedia.org/wiki/UML_state_machine

Let's implement each particular state as a sub-state of the class State

STATE SUB-CLASSES

Init State:

The initial state will be implemented via the following class:

setClass("InitState", contains = "State")

setMethod("initialize", "InitState",
 definition = function(.Object, name = "init", pattern = NA_character_) {
 .Object@name <- name
 .Object@pattern <- pattern
 .Object
 }
)

setMethod("show", signature = "InitState",
 definition = function(object) {
 callNextMethod()
 }

https://riptutorial.com/ 285

https://i.stack.imgur.com/gToF2.png

)

In R to indicate a class is a sub-class of other class is using the attribute contains and indicating

the class name of the parent class.

Because the sub-classes just implement the generic methods, without adding additional attributes,

then the show method, just call the equivalent method from the upper class (via method:

callNextMethod())

The initial state does not have associated a pattern, it just represents the beginning of the process,

then we initialize the class with an NA value.

Now lets to implement the generic methods from the State class:

setMethod(f = "isState", signature = "InitState",
 definition = function(obj, input) {
 nameState <- new("NameState")
 result <- isState(nameState, input)
 return(result)
 }
)

For this particular state (without pattern), the idea it just initializes the parsing process expecting

the first field will be a name, otherwise it will be an error.

setMethod(f = "doAction", signature = "InitState",
 definition = function(obj, input, context) {
 nameState <- new("NameState")
 if (isState(nameState, input)) {
 person <- context@person
 person@name <- trimws(input)
 context@person <- person
 context@state <- nameState
 } else {
 msg <- sprintf("The input argument: '%s' cannot be identified", input)
 stop(msg)
 }
 return(context)
 }
)

The doAction method provides the transition and updates the context with the information

extracted. Here we are accessing to context information via the @-operator. Instead, we can define

get/set methods, to encapsulate this process (as it is mandated in OO best practices:

encapsulation), but that would add four more methods per get-set without adding value for the

purpose of this example.

It is a good recommendation in all doAction implementation, to add a safeguard when the input

argument is not properly identified.

Name State

Here is the definition of this class definition:

https://riptutorial.com/ 286

setClass ("NameState", contains = "State")

setMethod("initialize","NameState",
 definition=function(.Object, name="name",
 pattern = "^([A-Z]'?\\s+)* *[A-Z]+(\\s+[A-Z]{1,2}\\.?,? +)*[A-Z]+((-|\\s+)[A-Z]+)*$")
{
 .Object@pattern <- pattern
 .Object@name <- name
 .Object
 }
)

setMethod("show", signature = "NameState",
 definition = function(object) {
 callNextMethod()
 }
)

We use the function grepl for verifying the input belongs to a given pattern.

setMethod(f="isState", signature="NameState",
 definition=function(obj, input) {
 result <- grepl(obj@pattern, input, perl=TRUE)
 return(result)
 }
)

Now we define the action to carry out for a given state:

setMethod(f = "doAction", signature = "NameState",
 definition=function(obj, input, context) {
 addressState <- new("AddressState")
 phoneState <- new("PhoneState")
 person <- context@person
 if (isState(addressState, input)) {
 person@address <- trimws(input)
 context@person <- person
 context@state <- addressState
 } else if (isState(phoneState, input)) {
 person@phone <- trimws(input)
 context@person <- person
 context@state <- phoneState
 } else {
 msg <- sprintf("The input argument: '%s' cannot be identified", input)
 stop(msg)
 }
 return(context)
 }
)

Here we consider to possible transitions: one for Address state and the other one for Phone state.

In all cases we update the context information:

The person information: address or phone with the input argument.•

The state of the process•

The way to identify the state is to invoke the method: isState() for a particular state. We create a

https://riptutorial.com/ 287

default specific states (addressState, phoneState) and then ask for a particular validation.

The logic for the other sub-classes (one per state) implementation is very similar.

Address State

setClass("AddressState", contains = "State")

setMethod("initialize", "AddressState",
 definition = function(.Object, name="address",
 pattern = "^\\s[0-9]{1,4}(\\s+[A-Z]{1,2}[0-9]{1,2}[A-Z]{1,2}|[A-Z\\s0-9]+)$") {
 .Object@pattern <- pattern
 .Object@name <- name
 .Object
 }
)

setMethod("show", signature = "AddressState",
 definition = function(object) {
 callNextMethod()
 }
)

setMethod(f="isState", signature="AddressState",
 definition=function(obj, input) {
 result <- grepl(obj@pattern, input, perl=TRUE)
 return(result)
 }
)

setMethod(f = "doAction", "AddressState",
 definition=function(obj, input, context) {
 phoneState <- new("PhoneState")
 if (isState(phoneState, input)) {
 person <- context@person
 person@phone <- trimws(input)
 context@person <- person
 context@state <- phoneState
 } else {
 msg <- sprintf("The input argument: '%s' cannot be identified", input)
 stop(msg)
 }
 return(context)
 }
)

Phone State

setClass("PhoneState", contains = "State")

setMethod("initialize", "PhoneState",
 definition = function(.Object, name = "phone",
 pattern = "^\\s*(\\+1(-|\\s+))*[0-9]{3}(-|\\s+)[0-9]{3}(-|\\s+)[0-9]{4}$") {
 .Object@pattern <- pattern
 .Object@name <- name
 .Object
 }
)

https://riptutorial.com/ 288

setMethod("show", signature = "PhoneState",
 definition = function(object) {
 callNextMethod()
 }
)

setMethod(f = "isState", signature = "PhoneState",
 definition = function(obj, input) {
 result <- grepl(obj@pattern, input, perl = TRUE)
 return(result)
 }
)

Here is where we add the person information into the list of persons of the context.

setMethod(f = "doAction", "PhoneState",
 definition = function(obj, input, context) {
 context <- addPerson(context, context@person)
 context@state <- new("InitState")
 return(context)
 }
)

CONTEXT CLASS

Now the lets to explain the Context class implementation. We can define it considering the

following attributes:

setClass(Class = "Context",
 slots = c(state = "State", persons = "list", person = "Person")
)

Where

state: The current state of the process•

person: The current person, it represents the information we have already parsed from the

current line.

•

persons: The list of parsed persons processed.•

Note: Optionally, we can add a name to identify the context by name in case we are working with

more than one parser type.

setMethod(f="initialize", signature="Context",
 definition = function(.Object) {
 .Object@state <- new("InitState")
 .Object@persons <- list()
 .Object@person <- new("Person")
 return(.Object)
 }
)

setMethod("show", signature = "Context",
 definition = function(object) {
 cat("An object of class ", class(object), "\n", sep = "")
 info <- sprintf("[state='%s', persons='%s', person='%s']", object@state,

https://riptutorial.com/ 289

 toString(object@persons), object@person)
 cat(info)
 invisible(NULL)
 }
)

setGeneric(name = "handle", signature = c('obj', 'input', 'context'),
 def = function(obj, input, context) standardGeneric("handle"))

setGeneric(name = "addPerson", signature = c('obj', 'person'),
 def = function(obj, person) standardGeneric("addPerson"))

setGeneric(name = "parseLine", signature = c('obj', 's'),
 def = function(obj, s) standardGeneric("parseLine"))

setGeneric(name = "parseLines", signature = c('obj', 's'),
 def = function(obj, s) standardGeneric("parseLines"))

setGeneric(name = "as.df", signature = c('obj'),
 def = function(obj) standardGeneric("as.df"))

With such generic methods, we control the entire behavior of the parsing process:

handle(): Will invoke the particular doAction() method of the current state.•

addPerson: Once we reach the end state, we need to add a person to the list of persons we

have parsed.

•

parseLine(): Parse a single line•

parseLines(): Parse multiple lines (an array of lines)•

as.df(): Extract the information from persons list into a data frame object.•

Let's go on now with the corresponding implementations:

handle() method, delegates on doAction() method from the current state of the context:

setMethod(f = "handle", signature = "Context",
 definition = function(obj, input) {
 obj <- doAction(obj@state, input, obj)
 return(obj)
 }
)

setMethod(f = "addPerson", signature = "Context",
 definition = function(obj, person) {
 obj@persons <- c(obj@persons, person)
 return(obj)
 }
)

First, we split the original line in an array using the delimiter to identify each element via the R-

function strsplit(), then iterate for each element as an input value for a given state. The handle()

method returns again the context with the updated information (state, person, persons attribute).

setMethod(f = "parseLine", signature = "Context",
 definition = function(obj, s) {
 elements <- strsplit(s, ";")[[1]]

https://riptutorial.com/ 290

 # Adding an empty field for considering the end state.
 elements <- c(elements, "")
 n <- length(elements)
 input <- NULL
 for (i in (1:n)) {
 input <- elements[i]
 obj <- handle(obj, input)
 }
 return(obj@person)
 }
)

Becuase R makes a copy of the input argument, we need to return the context (obj):

setMethod(f = "parseLines", signature = "Context",
 definition = function(obj, s) {
 n <- length(s)
 listOfPersons <- list()
 for (i in (1:n)) {
 ipersons <- parseLine(obj, s[i])
 listOfPersons[[i]] <- ipersons
 }
 obj@persons <- listOfPersons
 return(obj)
 }
)

The attribute persons is a list of instance of S4 Person class. This something cannot be coerced to

any standard type because R does not know of to treat an instance of a user defined class. The

solution is to convert a Person into a list, using the as.list method previously defined. Then we can

apply this function to each element of the list persons, via the lapply() function. Then in the next

invocation to lappy() function, now applies the data.frame function for converting each element of

the persons.list into a data frame. Finally, the rbind() function is called for adding each element

converted as a new row of the data frame generated (for more detail about this see this post)

Sugestion taken from this post:
http://stackoverflow.com/questions/4227223/r-list-to-data-frame
setMethod(f = "as.df", signature = "Context",
 definition = function(obj) {
 persons <- obj@persons
 persons.list <- lapply(persons, as.list)
 persons.ds <- do.call(rbind, lapply(persons.list, data.frame, stringsAsFactors = FALSE))
 return(persons.ds)
 }
)

PUTTING ALL TOGETHER

Finally, lets to test the entire solution. Define the lines to parse where for the second line the

address information is missing.

s <- c(
 "GREGORY BROWN; 25 NE 25TH; +1-786-987-6543",
 "DAVID SMITH;786-123-4567",
 "ALAN PEREZ; 25 SE 50TH; +1-786-987-5553"

https://riptutorial.com/ 291

http://stackoverflow.com/questions/4227223/r-list-to-data-frame

)

Now we initialize the context, and parse the lines:

context <- new("Context")
context <- parseLines(context, s)

Finally obtain the corresponding dataset and print it:

df <- as.df(context)
> df
 name address phone
1 GREGORY BROWN 25 NE 25TH +1-786-987-6543
2 DAVID SMITH <NA> 786-123-4567
3 ALAN PEREZ 25 SE 50TH +1-786-987-5553

Let's test now the show methods:

> show(context@persons[[1]])
Person@[name='GREGORY BROWN', address='25 NE 25TH', phone='+1-786-987-6543']

And for some sub-state:

>show(new("PhoneState"))
PhoneState@[name='phone', pattern='^\s*(\+1(-|\s+))*[0-9]{3}(-|\s+)[0-9]{3}(-|\s+)[0-9]{4}$']

Finally, test the as.list() method:

> as.list(context@persons[[1]])
$name
[1] "GREGORY BROWN"

$address
[1] "25 NE 25TH"

$phone
[1] "+1-786-987-6543"

>

CONCLUSION

This example shows how to implement the State pattern, using one of the available mechanisms

from R for using the OO paradigm. Nevertheless, the R OO solution is not user-friendly and differs

so much from other OOP languages. You need to switch your mindset because the syntax is

completely different, it reminds more the functional programming paradigm. For example instead

of: object.setID("A1") as in Java/C#, for R you have to invoke the method in this way:

setID(object, "A1"). Therefore you always have to include the object as an input argument to

provide the context of the function. On the same way, there is no special this class attribute and

either a "." notation for accessing methods or attributes of the given class. It is more error prompt

because to refer a class or methods is done via attribute value ("Person", "isState", etc.).

https://riptutorial.com/ 292

Said the above, S4 class solution, requires much more lines of codes than a traditional Java/C#

languages for doing simple tasks. Anyway, the State Pattern is a good and generic solution for

such kind of problems. It simplifies the process delegating the logic into a particular state. Instead

of having a big if-else block for controlling all situations, we have smaller if-else blocks inside on

each State sub-class implementation for implementing the action to carry out in each state.

Attachment: Here you can download the entire script.

Any suggestion is welcome.

Read Implement State Machine Pattern using S4 Class online:

https://riptutorial.com/r/topic/9126/implement-state-machine-pattern-using-s4-class

https://riptutorial.com/ 293

https://www.sugarsync.com/pf/D309535_3_7753221989
https://riptutorial.com/r/topic/9126/implement-state-machine-pattern-using-s4-class

Chapter 55: Input and output

Remarks

To construct file paths, for reading or writing, use file.path.

Use dir to see what files are in a directory.

Examples

Reading and writing data frames

Data frames are R's tabular data structure. They can be written to or read from in a variety of

ways.

This example illustrates a couple common situations. See the links at the end for other resources.

Writing

Before making the example data below, make sure you're in a folder you want to write to. Run

getwd() to verify the folder you're in and read ?setwd if you need to change folders.

set.seed(1)
for (i in 1:3)
 write.table(
 data.frame(id = 1:2, v = sample(letters, 2)),
 file = sprintf("file201%s.csv", i)
)

Now, we have three similarly-formatted CSV files on disk.

Reading

We have three similarly-formatted files (from the last section) to read in. Since these files are

related, we should store them together after reading in, in a list:

file_names = c("file2011.csv", "file2012.csv", "file2013.csv")
file_contents = lapply(setNames(file_names, file_names), read.table)

$file2011.csv
id v
1 1 g
2 2 j

$file2012.csv
id v

https://riptutorial.com/ 294

http://www.riptutorial.com/r/topic/438/data-frames

1 1 o
2 2 w

$file2013.csv
id v
1 1 f
2 2 w

To work with this list of files, first examine the structure with str(file_contents), then read about

stacking the list with ?rbind or iterating over the list with ?lapply.

Further resources

Check out ?read.table and ?write.table to extend this example. Also:

R binary formats (for tables and other objects)•

Plain-text table formats

comma-delimited CSVs○

tab-delimited TSVs○

Fixed-width formats○

•

Language-agnostic binary table formats

Feather○

•

Foreign table and spreadsheet formats

SAS○

SPSS○

Stata○

Excel○

•

Relational database table formats

MySQL○

SQLite○

PostgreSQL○

•

Read Input and output online: https://riptutorial.com/r/topic/5543/input-and-output

https://riptutorial.com/ 295

http://www.riptutorial.com/r/topic/5540/i-o-for-r-s-binary-format
http://www.riptutorial.com/r/topic/481/reading-and-writing-tabular-data-in-plain-text-files--csv--tsv--etc--
http://www.riptutorial.com/r/topic/5536/i-o-for-foreign-tables--excel--sas--spss--stata-
http://www.riptutorial.com/r/topic/5537/i-o-for-database-tables
https://riptutorial.com/r/topic/5543/input-and-output

Chapter 56: Inspecting packages

Introduction

Packages build on base R. This document explains how to inspect installed packages and their

functionality. Related Docs: Installing packages

Remarks

The Comprehensive R Archive Network (CRAN) is the primary package repository.

Examples

View package information

To retrieve information about dplyr package and its functions' descriptions:

help(package = "dplyr")

No need to load the package first.

View package's built-in data sets

To see built-in data sets from package dplyr

 data(package = "dplyr")

No need to load the package first.

List a package's exported functions

To get the list of functions within package dplyr, we first must load the package:

library(dplyr)
ls("package:dplyr")

View Package Version

Conditions: package should be at least installed. If not loaded in the current session, not a

problem.

 ## Checking package version which was installed at past or
 ## installed currently but not loaded in the current session

 packageVersion("seqinr")

https://riptutorial.com/ 296

http://www.riptutorial.com/r/topic/1719/installing-packages
https://cran.r-project.org/web/packages/

 # [1] ‘3.3.3’
 packageVersion("RWeka")
 # [1] ‘0.4.29’

View Loaded packages in Current Session

To check the list of loaded packages

search()

OR

(.packages())

Read Inspecting packages online: https://riptutorial.com/r/topic/7408/inspecting-packages

https://riptutorial.com/ 297

https://riptutorial.com/r/topic/7408/inspecting-packages

Chapter 57: Installing packages

Syntax

install.packages(pkgs, lib, repos, method, destdir, dependencies, ...)•

Parameters

Parameter Details

pkgs
character vector of the names of packages. If repos = NULL, a character

vector of file paths.

lib character vector giving the library directories where to install the packages.

repos
character vector, the base URL(s) of the repositories to use, can be NULL to

install from local files

method download method

destdir directory where downloaded packages are stored

dependencies

logical indicating whether to also install uninstalled packages which these

packages depend on/link to/import/suggest (and so on recursively). Not used

if repos = NULL.

...
Arguments to be passed to ‘download.file’ or to the functions for binary

installs on OS X and Windows.

Remarks

Related Docs

Inspecting packages•

Examples

Download and install packages from repositories

Packages are collections of R functions, data, and compiled code in a well-defined format. Public

(and private) repositories are used to host collections of R packages. The largest collection of R

packages is available from CRAN.

https://riptutorial.com/ 298

http://www.riptutorial.com/r/topic/7408/inspecting-packages
http://r-pkgs.had.co.nz/description.html

Using CRAN

A package can be installed from CRAN using following code:

install.packages("dplyr")

Where "dplyr" is referred to as a character vector.

More than one packages can be installed in one go by using the combine function c() and passing

a series of character vector of package names:

install.packages(c("dplyr", "tidyr", "ggplot2"))

In some cases, install.packages may prompt for a CRAN mirror or fail, depending on the value of

getOption("repos"). To prevent this, specify a CRAN mirror as repos argument:

install.packages("dplyr", repos = "https://cloud.r-project.org/")

Using the repos argument it is also possible to install from other repositories. For complete

information about all the available options, run ?install.packages.

Most packages require functions, which were implemented in other packages (e.g. the package

data.table). In order to install a package (or multiple packages) with all the packages, which are

used by this given package, the argument dependencies should be set to TRUE):

install.packages("data.table", dependencies = TRUE)

Using Bioconductor

Bioconductor hosts a substantial collection of packages related to Bioinformatics. They provide

their own package management centred around the biocLite function:

 ## Try http:// if https:// URLs are not supported
 source("https://bioconductor.org/biocLite.R")
 biocLite()

By default this installs a subset of packages that provide the most commonly used functionality.

Specific packages can be installed by passing a vector of package names. For example, to install

RImmPort from Bioconductor:

 source("https://bioconductor.org/biocLite.R")
 biocLite("RImmPort")

Install package from local source

https://riptutorial.com/ 299

https://cran.r-project.org/
https://cran.r-project.org/mirrors.html
https://www.bioconductor.org

To install package from local source file:

install.packages(path_to_source, repos = NULL, type="source")

install.packages("~/Downloads/dplyr-master.zip", repos=NULL, type="source")

Here, path_to_source is absolute path of local source file.

Another command that opens a window to choose downloaded zip or tar.gz source files is:

install.packages(file.choose(), repos=NULL)

Another possible way is using the GUI based RStudio:

Step 1: Go to Tools.

Step 2: Go to Install Packages.

Step 3: In the Install From set it as Package Archive File (.zip; .tar.gz)

Step 4: Then Browse find your package file (say crayon_1.3.1.zip) and after some time (after it

shows the Package path and file name in the Package Archive tab)

Another way to install R package from local source is using install_local() function from devtools

package.

library(devtools)
install_local("~/Downloads/dplyr-master.zip")

Install packages from GitHub

To install packages directly from GitHub use the devtools package:

library(devtools)
install_github("authorName/repositoryName")

To install ggplot2 from github:

devtools::install_github("tidyverse/ggplot2")

The above command will install the version of ggplot2 that corresponds to the master branch. To

install from a different branch of a repository use the ref argument to provide the name of the

branch. For example, the following command will install the dev_general branch of the googleway

package.

devtools::install_github("SymbolixAU/googleway", ref = "dev_general")

https://riptutorial.com/ 300

Another option is to use the ghit package. It provides a lightweight alternative for installing

packages from github:

install.packages("ghit")
ghit::install_github("google/CausalImpact")

To install a package that is in a private repository on Github, generate a personal access token

at http://www.github.com/settings/tokens/ (See ?install_github for documentation on the same).

Follow these steps:

install.packages(c("curl", "httr"))1.

config = httr::config(ssl_verifypeer = FALSE)2.

 install.packages("RCurl")
 options(RCurlOptions = c(getOption("RCurlOptions"),ssl.verifypeer = FALSE,
ssl.verifyhost = FALSE))

3.

getOption("RCurlOptions")

You should see the following:

ssl.verifypeer ssl.verifyhost

FALSE FALSE

4.

library(httr)
set_config(config(ssl_verifypeer = 0L))

This prevents the common error: "Peer certificate cannot be authenticated with given CA

certificates"

5.

Finally, use the following command to install your package seamlessly

install_github("username/package_name",auth_token="abc")

6.

Alternatively, set an environment variable GITHUB_PAT, using

Sys.setenv(GITHUB_PAT = "access_token")
devtools::install_github("organisation/package_name")

The PAT generated in Github is only visible once, i.e., when created initially, so its prudent to save

that token in .Rprofile. This is also helpful if the organisation has many private repositories.

Using a CLI package manager -- basic pacman usage

pacman is a simple package manager for R.

pacman

https://riptutorial.com/ 301

http://www.github.com/settings/tokens/

allows a user to compactly load all desired packages, installing any which are missing (and their

dependencies), with a single command, p_load. pacman does not require the user to type quotation

marks around a package name. Basic usage is as follows:

p_load(data.table, dplyr, ggplot2)

The only package requiring a library, require, or install.packages statement with this approach is

pacman itself:

library(pacman)
p_load(data.table, dplyr, ggplot2)

or, equally valid:

pacman::p_load(data.table, dplyr, ggplot2)

In addition to saving time by requiring less code to manage packages, pacman also facilitates the

construction of reproducible code by installing any needed packages if and only if they are not

already installed.

Since you may not be sure if pacman is installed in the library of a user who will use your code (or

by yourself in future uses of your own code) a best practice is to include a conditional statement to

install pacman if it is not already loaded:

if(!(require(pacman)) install.packages("pacman")
pacman::p_load(data.table, dplyr, ggplot2)

Install local development version of a package

While working on the development of an R package it is often necessary to install the latest

version of the package. This can be achieved by first building a source distribution of the package

(on the command line)

R CMD build my_package

and then installing it in R. Any running R sessions with previous version of the package loaded will

need to reload it.

unloadNamespace("my_package")
library(my_package)

A more convenient approach uses the devtools package to simplify the process. In an R session

with the working directory set to the package directory

devtools::install()

will build, install and reload the package.

https://riptutorial.com/ 302

http://www.riptutorial.com/r/example/5556/install-package-from-local-source

Read Installing packages online: https://riptutorial.com/r/topic/1719/installing-packages

https://riptutorial.com/ 303

https://riptutorial.com/r/topic/1719/installing-packages

Chapter 58: Introduction to Geographical

Maps

Introduction

See also I/O for geographic data

Examples

Basic map-making with map() from the package maps

The function map() from the package maps provides a simple starting point for creating maps with R.

A basic world map can be drawn as follows:

require(maps)
map()

The color of the outline can be changed by setting the color parameter, col, to either the character

https://riptutorial.com/ 304

http://www.riptutorial.com/r/topic/5538/i-o-for-geographic-data--shapefiles--etc--
https://i.stack.imgur.com/iuQzF.png

name or hex value of a color:

require(maps)
map(col = "cornflowerblue")

To fill land masses with the color in col we can set fill = TRUE:

require(maps)
map(fill = TRUE, col = c("cornflowerblue"))

https://riptutorial.com/ 305

https://i.stack.imgur.com/ekrPZ.png

A vector of any length may be supplied to col when fill = TRUE is also set:

require(maps)
map(fill = TRUE, col = c("cornflowerblue", "limegreen", "hotpink"))

https://riptutorial.com/ 306

https://i.stack.imgur.com/ZxndI.png

In the example above colors from col are assigned arbitrarily to polygons in the map representing

regions and colors are recycled if there are fewer colors than polygons.

We can also use color coding to represent a statistical variable, which may optionally be described

in a legend. A map created as such is known as a "choropleth".

The following choropleth example sets the first argument of map(), which is database to "county"

and "state" to color code unemployment using data from the built-in datasets unemp and

county.fips while overlaying state lines in white:

require(maps)
if(require(mapproj)) { # mapproj is used for projection="polyconic"
 # color US county map by 2009 unemployment rate
 # match counties to map using FIPS county codes
 # Based on J's solution to the "Choropleth Challenge"
 # Code improvements by Hack-R (hack-r.github.io)

 # load data
 # unemp includes data for some counties not on the "lower 48 states" county
 # map, such as those in Alaska, Hawaii, Puerto Rico, and some tiny Virginia
 # cities
 data(unemp)
 data(county.fips)

 # define color buckets
 colors = c("paleturquoise", "skyblue", "cornflowerblue", "blueviolet", "hotpink",
"darkgrey")

https://riptutorial.com/ 307

https://i.stack.imgur.com/oRkaq.png

 unemp$colorBuckets <- as.numeric(cut(unemp$unemp, c(0, 2, 4, 6, 8, 10, 100)))
 leg.txt <- c("<2%", "2-4%", "4-6%", "6-8%", "8-10%", ">10%")

 # align data with map definitions by (partial) matching state,county
 # names, which include multiple polygons for some counties
 cnty.fips <- county.fips$fips[match(map("county", plot=FALSE)$names,
 county.fips$polyname)]
 colorsmatched <- unemp$colorBuckets[match(cnty.fips, unemp$fips)]

 # draw map
 par(mar=c(1, 1, 2, 1) + 0.1)
 map("county", col = colors[colorsmatched], fill = TRUE, resolution = 0,
 lty = 0, projection = "polyconic")
 map("state", col = "white", fill = FALSE, add = TRUE, lty = 1, lwd = 0.1,
 projection="polyconic")
 title("unemployment by county, 2009")
 legend("topright", leg.txt, horiz = TRUE, fill = colors, cex=0.6)
}

50 State Maps and Advanced Choropleths with Google Viz

A common question is how to juxtapose (combine) physically separate geographical regions on

the same map, such as in the case of a choropleth describing all 50 American states (The

mainland with Alaska and Hawaii juxtaposed).

Creating an attractive 50 state map is simple when leveraging Google Maps. Interfaces to

https://riptutorial.com/ 308

https://i.stack.imgur.com/oDlru.png
http://stackoverflow.com/questions/25530358/how-do-you-create-a-50-state-map-instead-of-just-lower-48

Google's API include the packages googleVis, ggmap, and RgoogleMaps.

require(googleVis)

G4 <- gvisGeoChart(CityPopularity, locationvar='City', colorvar='Popularity',
 options=list(region='US', height=350,
 displayMode='markers',
 colorAxis="{values:[200,400,600,800],
 colors:[\'red', \'pink\', \'orange',\'green']}")
)
plot(G4)

The function gvisGeoChart() requires far less coding to create a choropleth compared to older

mapping methods, such as map() from the package maps. The colorvar parameter allows easy

coloring of a statistical variable, at a level specified by the locationvar parameter. The various

options passed to options as a list allow customization of the map's details such as size (height),

shape (markers), and color coding (colorAxis and colors).

Interactive plotly maps

The plotly package allows many kind of interactive plots, including maps. There are a few ways to

create a map in plotly. Either supply the map data yourself (via plot_ly() or ggplotly()), use

plotly's "native" mapping capabilities (via plot_geo() or plot_mapbox()), or even a combination of

both. An example of supplying the map yourself would be:

library(plotly)
map_data("county") %>%
 group_by(group) %>%
 plot_ly(x = ~long, y = ~lat) %>%

https://riptutorial.com/ 309

http://i.stack.imgur.com/qmGX8.png

 add_polygons() %>%
 layout(
 xaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE),
 yaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE)
)

For a combination of both approaches, swap plot_ly() for plot_geo() or plot_mapbox() in the above

example. See the plotly book for more examples.

The next example is a "strictly native" approach that leverages the layout.geo attribute to set the

aesthetics and zoom level of the map. It also uses the database world.cities from maps to filter the

Brazilian cities and plot them on top of the "native" map.

The main variables: pophis a text with the city and its population (which is shown upon mouse

hover); qis a ordered factor from the population's quantile. ge has information for the layout of the

maps. See the package documentation for more information.

library(maps)
dfb <- world.cities[world.cities$country.etc=="Brazil",]
library(plotly)
dfb$poph <- paste(dfb$name, "Pop", round(dfb$pop/1e6,2), " millions")
dfb$q <- with(dfb, cut(pop, quantile(pop), include.lowest = T))
levels(dfb$q) <- paste(c("1st", "2nd", "3rd", "4th"), "Quantile")
dfb$q <- as.ordered(dfb$q)

ge <- list(

https://riptutorial.com/ 310

https://i.stack.imgur.com/jl343.png
https://cpsievert.github.io/plotly_book/maps.html
https://plot.ly/r/reference/#layout-geo
https://plot.ly/r/reference/#layout-geo

 scope = 'south america',
 showland = TRUE,
 landcolor = toRGB("gray85"),
 subunitwidth = 1,
 countrywidth = 1,
 subunitcolor = toRGB("white"),
 countrycolor = toRGB("white")
)

plot_geo(dfb, lon = ~long, lat = ~lat, text = ~poph,
 marker = ~list(size = sqrt(pop/10000) + 1, line = list(width = 0)),
 color = ~q, locationmode = 'country names') %>%
layout(geo = ge, title = 'Populations
(Click legend to toggle)')

Making Dynamic HTML Maps with Leaflet

Leaflet is an open-source JavaScript library for making dynamic maps for the web. RStudio wrote

R bindings for Leaflet, available through its leaflet package, built with htmlwidgets. Leaflet maps

integrate well with the RMarkdown and Shiny ecosystems.

https://riptutorial.com/ 311

https://plot.ly/r/reference/#layout-geo
http://leafletjs.com/
http://rstudio.github.io/leaflet/
http://rstudio.github.io/leaflet/
http://www.htmlwidgets.org/showcase_leaflet.html
http://rmarkdown.rstudio.com/
http://shiny.rstudio.com/

The interface is piped, using a leaflet() function to initialize a map and subsequent functions

adding (or removing) map layers. Many kinds of layers are available, from markers with popups to

polygons for creating choropleth maps. Variables in the data.frame passed to leaflet() are

accessed via function-style ~ quotation.

To map the state.name and state.center datasets:

library(leaflet)

data.frame(state.name, state.center) %>%
 leaflet() %>%
 addProviderTiles('Stamen.Watercolor') %>%
 addMarkers(lng = ~x, lat = ~y,
 popup = ~state.name,
 clusterOptions = markerClusterOptions())

(Screenshot; click for dynamic version.)

https://riptutorial.com/ 312

http://www.riptutorial.com/r/topic/652/pipe-operators------and-others-
http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/state.html
http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/state.html
http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/state.html
http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/state.html
https://alistaire47.github.io/leaflet/leaflet.nb.html
https://alistaire47.github.io/leaflet/leaflet.nb.html
https://alistaire47.github.io/leaflet/leaflet.nb.html

Dynamic Leaflet maps in Shiny applications

The Leaflet package is designed to integerate with Shiny

In the ui you call leafletOutput() and in the server you call renderLeaflet()

library(shiny)
library(leaflet)

ui <- fluidPage(
 leafletOutput("my_leaf")
)

server <- function(input, output, session){

 output$my_leaf <- renderLeaflet({

 leaflet() %>%
 addProviderTiles('Hydda.Full') %>%
 setView(lat = -37.8, lng = 144.8, zoom = 10)

 })

}

shinyApp(ui, server)

However, reactive inputs that affect the renderLeaflet expression will cause the entire map to be

redrawn each time the reactive element is updated.

Therefore, to modify a map that's already running you should use the leafletProxy() function.

Normally you use leaflet to create the static aspects of the map, and leafletProxy to manage the

dynamic elements, for example:

library(shiny)
library(leaflet)

ui <- fluidPage(
 sliderInput(inputId = "slider",
 label = "values",
 min = 0,
 max = 100,
 value = 0,
 step = 1),
 leafletOutput("my_leaf")
)

server <- function(input, output, session){
 set.seed(123456)
 df <- data.frame(latitude = sample(seq(-38.5, -37.5, by = 0.01), 100),
 longitude = sample(seq(144.0, 145.0, by = 0.01), 100),
 value = seq(1,100))

 ## create static element
 output$my_leaf <- renderLeaflet({

https://riptutorial.com/ 313

https://rstudio.github.io/leaflet/
https://rstudio.github.io/leaflet/shiny.html

 leaflet() %>%
 addProviderTiles('Hydda.Full') %>%
 setView(lat = -37.8, lng = 144.8, zoom = 8)

 })

 ## filter data
 df_filtered <- reactive({
 df[df$value >= input$slider,]
 })

 ## respond to the filtered data
 observe({

 leafletProxy(mapId = "my_leaf", data = df_filtered()) %>%
 clearMarkers() %>% ## clear previous markers
 addMarkers()
 })

}

shinyApp(ui, server)

Read Introduction to Geographical Maps online: https://riptutorial.com/r/topic/1372/introduction-to-

geographical-maps

https://riptutorial.com/ 314

http://i.stack.imgur.com/uw6G6.png
https://riptutorial.com/r/topic/1372/introduction-to-geographical-maps
https://riptutorial.com/r/topic/1372/introduction-to-geographical-maps

Chapter 59: Introspection

Examples

Functions for Learning about Variables

Often in R you'll want to know things about an object or variable you're working with. This can be

useful when reading someone else's code or even your own, especially when using packages that

are new to you.

Suppose we create a variable a:

a <- matrix(1:9, 3, 3)

What data type is this? You can find out with

> class(a)
[1] "matrix"

It's a matrix, so matrix operations will work on it:

> a %*% t(a)
 [,1] [,2] [,3]
[1,] 66 78 90
[2,] 78 93 108
[3,] 90 108 126

What are the dimensions of a?

> dim(a)
[1] 3 3
> nrow(a)
[1] 3
> ncol(a)
[2] 3

Other useful functions that work for different data types are head, tail, and str:

> head(a, 1)
 [,1] [,2] [,3]
[1,] 1 4 7
> tail(a, 1)
 [,1] [,2] [,3]
[3,] 3 6 9
> str(a)
int [1:3, 1:3] 1 2 3 4 5 6 7 8 9

These are much more useful for large objects (such as big datasets). str is also great for learning

about the nesting of lists. Now reshape a like so:

https://riptutorial.com/ 315

a <- c(a)

Does the class remain the same?

> class(a)
[1] "integer"

No, a is not a matrix anymore. I won't get a good answer if I ask for dimensions now:

> dim(a)
NULL

Instead, I can ask for the length:

> length(a)
[1] 9

What about now:

> class(a * 1.0)
[1] "numeric"

Often you may work with data.frames:

a <- as.data.frame(a)
names(a) <- c("var1", "var2", "var3")

See the variable names:

> names(a)
[1] "var1" "var2" "var3"

These functions can help many ways when using R.

Read Introspection online: https://riptutorial.com/r/topic/3565/introspection

https://riptutorial.com/ 316

https://riptutorial.com/r/topic/3565/introspection

Chapter 60: JSON

Examples

JSON to / from R objects

The jsonlite package is a fast JSON parser and generator optimized for statistical data and the

web. The two main functions used to read and write JSON are fromJSON() and toJSON()

respecitively, and are designed to work with vectors, matrices and data.frames, and streams of

JSON from the web.

Create a JSON array from a vector, and vice versa

library(jsonlite)

vector to JSON
toJSON(c(1,2,3))
[1,2,3]

fromJSON('[1,2,3]')
[1] 1 2 3

Create a named JSON array from a list, and vice versa

toJSON(list(myVec = c(1,2,3)))
{"myVec":[1,2,3]}

fromJSON('{"myVec":[1,2,3]}')
$myVec
[1] 1 2 3

More complex list structures

list structures
lst <- list(a = c(1,2,3),
 b = list(letters[1:6]))

toJSON(lst)
{"a":[1,2,3],"b":[["a","b","c","d","e","f"]]}

fromJSON('{"a":[1,2,3],"b":[["a","b","c","d","e","f"]]} ')
$a
[1] 1 2 3

$b
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] "a" "b" "c" "d" "e" "f"

Create JSON from a data.frame, and vice versa

https://riptutorial.com/ 317

https://cran.r-project.org/web/packages/jsonlite/index.html
https://cran.r-project.org/web/packages/jsonlite/index.html

converting a data.frame to JSON
df <- data.frame(id = seq_along(1:10),
 val = letters[1:10])

toJSON(df)

[{"id":1,"val":"a"},{"id":2,"val":"b"},{"id":3,"val":"c"},{"id":4,"val":"d"},{"id":5,"val":"e"},{"id":6,"val":"f"},{"id":7,"val":"g"},{"id":8,"val":"h"},{"id":9,"val":"i"},{"id":10,"val":"j"}]

reading a JSON string
fromJSON('[{"id":1,"val":"a"},{"id":2,"val":"b"},{"id":3,"val":"c"},{"id":4,"val":"d"},{"id":5,"val":"e"},{"id":6,"val":"f"},{"id":7,"val":"g"},{"id":8,"val":"h"},{"id":9,"val":"i"},{"id":10,"val":"j"}]')

id val
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
6 6 f
7 7 g
8 8 h
9 9 i
10 10 j

Read JSON direct from the internet

Reading JSON from URL
googleway_issues <- fromJSON("https://api.github.com/repos/SymbolixAU/googleway/issues")

googleway_issues$url
[1] "https://api.github.com/repos/SymbolixAU/googleway/issues/20"
"https://api.github.com/repos/SymbolixAU/googleway/issues/19"
[3] "https://api.github.com/repos/SymbolixAU/googleway/issues/14"
"https://api.github.com/repos/SymbolixAU/googleway/issues/11"
[5] "https://api.github.com/repos/SymbolixAU/googleway/issues/9"
"https://api.github.com/repos/SymbolixAU/googleway/issues/5"
[7] "https://api.github.com/repos/SymbolixAU/googleway/issues/2"

Read JSON online: https://riptutorial.com/r/topic/2460/json

https://riptutorial.com/ 318

https://riptutorial.com/r/topic/2460/json

Chapter 61: Linear Models (Regression)

Syntax

lm(formula, data, subset, weights, na.action, method = "qr", model = TRUE, x = FALSE, y =

FALSE, qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset, ...)

•

Parameters

Parameter Meaning

formula

a formula in Wilkinson-Rogers notation; response ~ ... where ... contains terms

corresponding to variables in the environment or in the data frame specified by

the data argument

data data frame containing the response and predictor variables

subset
a vector specifying a subset of observations to be used: may be expressed as a

logical statement in terms of the variables in data

weights analytical weights (see Weights section above)

na.action how to handle missing (NA) values: see ?na.action

method

how to perform the fitting. Only choices are "qr" or "model.frame" (the latter

returns the model frame without fitting the model, identical to specifying

model=TRUE)

model whether to store the model frame in the fitted object

x whether to store the model matrix in the fitted object

y whether to store the model response in the fitted object

qr whether to store the QR decomposition in the fitted object

singular.ok
whether to allow singular fits, models with collinear predictors (a subset of the

coefficients will automatically be set to NA in this case

contrasts

a list of contrasts to be used for particular factors in the model; see the

contrasts.arg argument of ?model.matrix.default. Contrasts can also be set with

options() (see the contrasts argument) or by assigning the contrast attributes of

a factor (see ?contrasts)

offset
used to specify an a priori known component in the model. May also be

specified as part of the formula. See ?model.offset

https://riptutorial.com/ 319

Parameter Meaning

...
additional arguments to be passed to lower-level fitting functions (lm.fit() or

lm.wfit())

Examples

Linear regression on the mtcars dataset

The built-in mtcars data frame contains information about 32 cars, including their weight, fuel

efficiency (in miles-per-gallon), speed, etc. (To find out more about the dataset, use help(mtcars)).

If we are interested in the relationship between fuel efficiency (mpg) and weight (wt) we may start

plotting those variables with:

plot(mpg ~ wt, data = mtcars, col=2)

The plots shows a (linear) relationship!. Then if we want to perform linear regression to determine

the coefficients of a linear model, we would use the lm function:

fit <- lm(mpg ~ wt, data = mtcars)

The ~ here means "explained by", so the formula mpg ~ wt means we are predicting mpg as

explained by wt. The most helpful way to view the output is with:

summary(fit)

Which gives the output:

Call:
lm(formula = mpg ~ wt, data = mtcars)

Residuals:
 Min 1Q Median 3Q Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
wt -5.3445 0.5591 -9.559 1.29e-10 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

This provides information about:

the estimated slope of each coefficient (wt and the y-intercept), which suggests the best-fit •

https://riptutorial.com/ 320

http://www.riptutorial.com/r/topic/438/data-frames

prediction of mpg is 37.2851 + (-5.3445) * wt

The p-value of each coefficient, which suggests that the intercept and weight are probably

not due to chance

•

Overall estimates of fit such as R^2 and adjusted R^2, which show how much of the variation

in mpg is explained by the model

•

We could add a line to our first plot to show the predicted mpg:

abline(fit,col=3,lwd=2)

It is also possible to add the equation to that plot. First, get the coefficients with coef. Then using

paste0 we collapse the coefficients with appropriate variables and +/-, to built the equation. Finally,

we add it to the plot using mtext:

bs <- round(coef(fit), 3)
lmlab <- paste0("mpg = ", bs[1],
 ifelse(sign(bs[2])==1, " + ", " - "), abs(bs[2]), " wt ")
mtext(lmlab, 3, line=-2)

The result is:

Plotting The Regression (base)

Continuing on the mtcars example, here is a simple way to produce a plot of your linear regression

that is potentially suitable for publication.

https://riptutorial.com/ 321

https://i.stack.imgur.com/5q9yW.png

First fit the linear model and

fit <- lm(mpg ~ wt, data = mtcars)

Then plot the two variables of interest and add the regression line within the definition domain:

plot(mtcars$wt,mtcars$mpg,pch=18, xlab = 'wt',ylab = 'mpg')
lines(c(min(mtcars$wt),max(mtcars$wt)),
as.numeric(predict(fit, data.frame(wt=c(min(mtcars$wt),max(mtcars$wt))))))

Almost there! The last step is to add to the plot, the regression equation, the rsquare as well as the

correlation coefficient. This is done using the vector function:

rp = vector('expression',3)
rp[1] = substitute(expression(italic(y) == MYOTHERVALUE3 + MYOTHERVALUE4 %*% x),
 list(MYOTHERVALUE3 = format(fit$coefficients[1], digits = 2),
 MYOTHERVALUE4 = format(fit$coefficients[2], digits = 2)))[2]
rp[2] = substitute(expression(italic(R)^2 == MYVALUE),
 list(MYVALUE = format(summary(fit)$adj.r.squared,dig=3)))[2]
rp[3] = substitute(expression(Pearson-R == MYOTHERVALUE2),
 list(MYOTHERVALUE2 = format(cor(mtcars$wt,mtcars$mpg), digits = 2)))[2]

legend("topright", legend = rp, bty = 'n')

Note that you can add any other parameter such as the RMSE by adapting the vector function.

Imagine you want a legend with 10 elements. The vector definition would be the following:

rp = vector('expression',10)

and you will need to defined r[1].... to r[10]

Here is the output:

https://riptutorial.com/ 322

Weighting

Sometimes we want the model to give more weight to some data points or examples than others.

This is possible by specifying the weight for the input data while learning the model. There are

generally two kinds of scenarios where we might use non-uniform weights over the examples:

Analytic Weights: Reflect the different levels of precision of different observations. For

example, if analyzing data where each observation is the average results from a geographic

area, the analytic weight is proportional to the inverse of the estimated variance. Useful

when dealing with averages in data by providing a proportional weight given the number of

observations. Source

•

Sampling Weights (Inverse Probability Weights - IPW): a statistical technique for calculating

statistics standardized to a population different from that in which the data was collected.

Study designs with a disparate sampling population and population of target inference (target

population) are common in application. Useful when dealing with data that have missing

values. Source

•

The lm() function does analytic weighting. For sampling weights the survey package is used to

build a survey design object and run svyglm(). By default, the survey package uses sampling

weights. (NOTE: lm(), and svyglm() with family gaussian() will all produce the same point

estimates, because they both solve for the coefficients by minimizing the weighted least squares.

They differ in how standard errors are calculated.)

Test Data

https://riptutorial.com/ 323

http://i.stack.imgur.com/l3Ach.png
http://surveyanalysis.org/wiki/Different_Types_of_Weights
https://en.wikipedia.org/wiki/Inverse_probability_weighting

data <- structure(list(lexptot = c(9.1595012302023, 9.86330744180814,
8.92372556833205, 8.58202430280175, 10.1133857229336), progvillm = c(1L,
1L, 1L, 1L, 0L), sexhead = c(1L, 1L, 0L, 1L, 1L), agehead = c(79L,
43L, 52L, 48L, 35L), weight = c(1.04273509979248, 1.01139605045319,
1.01139605045319, 1.01139605045319, 0.76305216550827)), .Names = c("lexptot",
"progvillm", "sexhead", "agehead", "weight"), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -5L))

Analytic Weights

lm.analytic <- lm(lexptot ~ progvillm + sexhead + agehead,
 data = data, weight = weight)
summary(lm.analytic)

Output

Call:
lm(formula = lexptot ~ progvillm + sexhead + agehead, data = data,
 weights = weight)

Weighted Residuals:
 1 2 3 4 5
 9.249e-02 5.823e-01 0.000e+00 -6.762e-01 -1.527e-16

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.016054 1.744293 5.742 0.110
progvillm -0.781204 1.344974 -0.581 0.665
sexhead 0.306742 1.040625 0.295 0.818
agehead -0.005983 0.032024 -0.187 0.882

Residual standard error: 0.8971 on 1 degrees of freedom
Multiple R-squared: 0.467, Adjusted R-squared: -1.132
F-statistic: 0.2921 on 3 and 1 DF, p-value: 0.8386

Sampling Weights (IPW)

library(survey)
data$X <- 1:nrow(data) # Create unique id

Build survey design object with unique id, ipw, and data.frame
des1 <- svydesign(id = ~X, weights = ~weight, data = data)

Run glm with survey design object
prog.lm <- svyglm(lexptot ~ progvillm + sexhead + agehead, design=des1)

Output

Call:
svyglm(formula = lexptot ~ progvillm + sexhead + agehead, design = des1)

Survey design:
svydesign(id = ~X, weights = ~weight, data = data)

https://riptutorial.com/ 324

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.016054 0.183942 54.452 0.0117 *
progvillm -0.781204 0.640372 -1.220 0.4371
sexhead 0.306742 0.397089 0.772 0.5813
agehead -0.005983 0.014747 -0.406 0.7546

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 0.2078647)

Number of Fisher Scoring iterations: 2

Checking for nonlinearity with polynomial regression

Sometimes when working with linear regression we need to check for non-linearity in the data.

One way to do this is to fit a polynomial model and check whether it fits the data better than a

linear model. There are other reasons, such as theoretical, that indicate to fit a quadratic or higher

order model because it is believed that the variables relationship is inherently polynomial in nature.

Let's fit a quadratic model for the mtcars dataset. For a linear model see Linear regression on the

mtcars dataset.

First we make a scatter plot of the variables mpg (Miles/gallon), disp (Displacement (cu.in.)), and wt

(Weight (1000 lbs)). The relationship among mpg and disp appears non-linear.

plot(mtcars[,c("mpg","disp","wt")])

https://riptutorial.com/ 325

http://www.riptutorial.com/r/example/2738/linear-regression-on-the-mtcars-dataset
http://www.riptutorial.com/r/example/2738/linear-regression-on-the-mtcars-dataset

A linear fit will show that disp is not significant.

fit0 = lm(mpg ~ wt+disp, mtcars)
summary(fit0)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
#(Intercept) 34.96055 2.16454 16.151 4.91e-16 ***
#wt -3.35082 1.16413 -2.878 0.00743 **
#disp -0.01773 0.00919 -1.929 0.06362 .
#---
#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#Residual standard error: 2.917 on 29 degrees of freedom
#Multiple R-squared: 0.7809, Adjusted R-squared: 0.7658

Then, to get the result of a quadratic model, we added I(disp^2). The new model appears better

when looking at R^2 and all variables are significant.

fit1 = lm(mpg ~ wt+disp+I(disp^2), mtcars)
summary(fit1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
#(Intercept) 41.4019837 2.4266906 17.061 2.5e-16 ***
#wt -3.4179165 0.9545642 -3.581 0.001278 **
#disp -0.0823950 0.0182460 -4.516 0.000104 ***
#I(disp^2) 0.0001277 0.0000328 3.892 0.000561 ***
#---

https://riptutorial.com/ 326

https://i.stack.imgur.com/rT8kS.png

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#Residual standard error: 2.391 on 28 degrees of freedom
#Multiple R-squared: 0.8578, Adjusted R-squared: 0.8426

As we have three variables, the fitted model is a surface represented by:

mpg = 41.4020-3.4179*wt-0.0824*disp+0.0001277*disp^2

Another way to specify polynomial regression is using poly with parameter raw=TRUE, otherwise

orthogonal polynomials will be considered (see the help(ploy) for more information). We get the

same result using:

summary(lm(mpg ~ wt+poly(disp, 2, raw=TRUE),mtcars))

Finally, what if we need to show a plot of the estimated surface? Well there are many options to

make 3D plots in R. Here we use Fit3d from p3dpackage.

library(p3d)
Init3d(family="serif", cex = 1)
Plot3d(mpg ~ disp+wt, mtcars)
Axes3d()
Fit3d(fit1)

https://riptutorial.com/ 327

https://i.stack.imgur.com/Tuodn.png

Quality assessment

After building a regression model it is important to check the result and decide if the model is

appropriate and works well with the data at hand. This can be done by examining the residuals

plot as well as other diagnostic plots.

fit the model
fit <- lm(mpg ~ wt, data = mtcars)

par(mfrow=c(2,1))
plot model object
plot(fit, which =1:2)

These plots check for two assumptions that were made while building the model:

That the expected value of the predicted variable (in this case mpg) is given by a linear 1.

https://riptutorial.com/ 328

https://i.stack.imgur.com/tHoK5.jpg

combination of the predictors (in this case wt). We expect this estimate to be unbiased. So

the residuals should be centered around the mean for all values of the predictors. In this

case we see that the residuals tend to be positive at the ends and negative in the middle,

suggesting a non-linear relationship between the variables.

That the actual predicted variable is normally distributed around its estimate. Thus, the

residuals should be normally distributed. For normally distributed data, the points in a normal

Q-Q plot should lie on or close to the diagonal. There is some amount of skew at the ends

here.

2.

Using the 'predict' function

Once a model is built predict is the main function to test with new data. Our example will use the

mtcars built-in dataset to regress miles per gallon against displacement:

my_mdl <- lm(mpg ~ disp, data=mtcars)
my_mdl

Call:
lm(formula = mpg ~ disp, data = mtcars)

Coefficients:
(Intercept) disp
 29.59985 -0.04122

If I had a new data source with displacement I could see the estimated miles per gallon.

set.seed(1234)
newdata <- sample(mtcars$disp, 5)
newdata
[1] 258.0 71.1 75.7 145.0 400.0

newdf <- data.frame(disp=newdata)
predict(my_mdl, newdf)
 1 2 3 4 5
18.96635 26.66946 26.47987 23.62366 13.11381

The most important part of the process is to create a new data frame with the same column names

as the original data. In this case, the original data had a column labeled disp, I was sure to call the

new data that same name.

Caution

Let's look at a few common pitfalls:

not using a data.frame in the new object:

predict(my_mdl, newdata)
Error in eval(predvars, data, env) :
 numeric 'envir' arg not of length one

1.

not using same names in new data frame:2.

https://riptutorial.com/ 329

newdf2 <- data.frame(newdata)
predict(my_mdl, newdf2)
Error in eval(expr, envir, enclos) : object 'disp' not found

Accuracy

To check the accuracy of the prediction you will need the actual y values of the new data. In this

example, newdf will need a column for 'mpg' and 'disp'.

newdf <- data.frame(mpg=mtcars$mpg[1:10], disp=mtcars$disp[1:10])
mpg disp
1 21.0 160.0
2 21.0 160.0
3 22.8 108.0
4 21.4 258.0
5 18.7 360.0
6 18.1 225.0
7 14.3 360.0
8 24.4 146.7
9 22.8 140.8
10 19.2 167.6

p <- predict(my_mdl, newdf)

#root mean square error
sqrt(mean((p - newdf$mpg)^2, na.rm=TRUE))
[1] 2.325148

Read Linear Models (Regression) online: https://riptutorial.com/r/topic/801/linear-models--

regression-

https://riptutorial.com/ 330

https://riptutorial.com/r/topic/801/linear-models--regression-
https://riptutorial.com/r/topic/801/linear-models--regression-

Chapter 62: Lists

Examples

Quick Introduction to Lists

In general, most of the objects you would interact with as a user would tend to be a vector; e.g

numeric vector, logical vector. These objects can only take in a single type of variable (a numeric

vector can only have numbers inside it).

A list would be able to store any type variable in it, making it to the generic object that can store

any type of variables we would need.

Example of initializing a list

exampleList1 <- list('a', 'b')
exampleList2 <- list(1, 2)
exampleList3 <- list('a', 1, 2)

In order to understand the data that was defined in the list, we can use the str function.

str(exampleList1)
str(exampleList2)
str(exampleList3)

Subsetting of lists distinguishes between extracting a slice of the list, i.e. obtaining a list containing

a subset of the elements in the original list, and extracting a single element. Using the [operator

commonly used for vectors produces a new list.

Returns List
exampleList3[1]
exampleList3[1:2]

To obtain a single element use [[instead.

Returns Character
exampleList3[[1]]

List entries may be named:

exampleList4 <- list(
 num = 1:3,
 numeric = 0.5,
 char = c('a', 'b')
)

The entries in named lists can be accessed by their name instead of their index.

https://riptutorial.com/ 331

exampleList4[['char']]

Alternatively the $ operator can be used to access named elements.

exampleList4$num

This has the advantage that it is faster to type and may be easier to read but it is important to be

aware of a potential pitfall. The $ operator uses partial matching to identify matching list elements

and may produce unexpected results.

exampleList5 <- exampleList4[2:3]

exampleList4$num
c(1, 2, 3)

exampleList5$num
0.5

exampleList5[['num']]
NULL

Lists can be particularly useful because they can store objects of different lengths and of various

classes.

Numeric vector
exampleVector1 <- c(12, 13, 14)
Character vector
exampleVector2 <- c("a", "b", "c", "d", "e", "f")
Matrix
exampleMatrix1 <- matrix(rnorm(4), ncol = 2, nrow = 2)
List
exampleList3 <- list('a', 1, 2)

exampleList6 <- list(
 num = exampleVector1,
 char = exampleVector2,
 mat = exampleMatrix1,
 list = exampleList3
)
exampleList6
#$num
#[1] 12 13 14

#$char
#[1] "a" "b" "c" "d" "e" "f"

#$mat
[,1] [,2]
#[1,] 0.5013050 -1.88801542
#[2,] 0.4295266 0.09751379

#$list
#$list[[1]]
#[1] "a"

#$list[[2]]

https://riptutorial.com/ 332

#[1] 1

#$list[[3]]
#[1] 2

Introduction to lists

Lists allow users to store multiple elements (like vectors and matrices) under a single object. You

can use the list function to create a list:

l1 <- list(c(1, 2, 3), c("a", "b", "c"))
l1
[[1]]
[1] 1 2 3

[[2]]
[1] "a" "b" "c"

Notice the vectors that make up the above list are different classes. Lists allow users to group

elements of different classes. Each element in a list can also have a name. List names are

accessed by the names function, and are assigned in the same manner row and column names are

assigned in a matrix.

names(l1)
NULL
names(l1) <- c("vector1", "vector2")
l1
$vector1
[1] 1 2 3

$vector2
[1] "a" "b" "c"

It is often easier and safer to declare the list names when creating the list object.

l2 <- list(vec = c(1, 3, 5, 7, 9),
 mat = matrix(data = c(1, 2, 3), nrow = 3))
l2
$vec
[1] 1 3 5 7 9

$mat
[,1]
[1,] 1
[2,] 2
[3,] 3
names(l2)
[1] "vec" "mat"

Above the list has two elements, named "vec" and "mat," a vector and matrix, resepcively.

Reasons for using lists

https://riptutorial.com/ 333

To the average R user, the list structure may appear to be the one of the more complicated data

structures to manipulate. There are no guarantees that all the elements within it are of the same

type; There is no guaranteed structure of how complicated/non-complicated that the list would be

(An element in a list could be a list)

However, one of the main reasons when to use lists to use it to pass parameters between

functions.

Function example which returns a single element numeric vector
exampleFunction1 <- function(num1, num2){
 result <- num1 + num2
 return(result)
}

Using example function 1
exampleFunction1(1, 2)

Function example which returns a simple numeric vector
exampleFunction2 <- function(num1, num2, multiplier){
 tempResult1 <- num1 + num2
 tempResult2 <- tempResult1 * multiplier
 result <- c(tempResult1, tempResult2)
 return(result)
}

Using example function 2
exampleFunction2(1, 2, 4)

In the above example, the returned results are just simple numeric vectors. There is no issues to

pass over such simple vectors.

It is important to note at this point that generally, R functions only return 1 result at a time (You can

use if conditions to return different results). However, if you intend to create a function which takes

a set of parameters and returns several type of results such a numeric vector(settings value) and a

data frame (from the calculation), you would need to dump all these results in a list before

returning it.

We will be using mtcars dataset here
Function which returns a result that is supposed to contain multiple type of results
This can be solved by putting the results into a list
exampleFunction3 <- function(dataframe, removeColumn, sumColumn){
 resultDataFrame <- dataframe[, -removeColumn]
 resultSum <- sum(dataframe[, sumColumn])
 resultList <- list(resultDataFrame, resultSum)
 return(resultList)
}

Using example function 3
exampleResult <- exampleFunction3(mtcars, 2, 4)
exampleResult[[1]]
exampleResult[[2]]

Convert a list to a vector while keeping empty list elements

https://riptutorial.com/ 334

When one wishes to convert a list to a vector or data.frame object empty elements are typically

dropped.

This can be problematic which a list is created of a desired length are created with some empty

values (e.g. a list with n elements is created to be added to an m x n matrix, data.frame, or

data.table). It is possible to losslessly convert a list to a vector however, retaining empty elements:

res <- list(character(0), c("Luzhuang", "Laisu", "Peihui"), character(0),
 c("Anjiangping", "Xinzhai", "Yongfeng"), character(0), character(0),
 c("Puji", "Gaotun", "Banjingcun"), character(0), character(0),
 character(0))
res

[[1]]
character(0)

[[2]]
[1] "Luzhuang" "Laisu" "Peihui"

[[3]]
character(0)

[[4]]
[1] "Anjiangping" "Xinzhai" "Yongfeng"

[[5]]
character(0)

[[6]]
character(0)

[[7]]
[1] "Puji" "Gaotun" "Banjingcun"

[[8]]
character(0)

[[9]]
character(0)

[[10]]
character(0)

res <- sapply(res, function(s) if (length(s) == 0) NA_character_ else paste(s, collapse = "
"))
res

 [1] NA "Luzhuang Laisu Peihui" NA
"Anjiangping Xinzhai Yongfeng" NA

 [6] NA "Puji Gaotun Banjingcun" NA
NA NA

Serialization: using lists to pass informations

https://riptutorial.com/ 335

There exist cases in which it is necessary to put data of different types together. In Azure ML for

example, it is necessary to pass informations from a R script module to another one exclusively

throught dataframes. Suppose we have a dataframe and a number:

> df
 name height team fun_index title age desc Y
1 Andrea 195 Lazio 97 6 33 eccellente 1
2 Paja 165 Fiorentina 87 6 31 deciso 1
3 Roro 190 Lazio 65 6 28 strano 0
4 Gioele 70 Lazio 100 0 2 simpatico 1
5 Cacio 170 Juventus 81 3 33 duro 0
6 Edola 171 Lazio 72 5 32 svampito 1
7 Salami 175 Inter 75 3 30 doppiopasso 1
8 Braugo 180 Inter 79 5 32 gjn 0
9 Benna 158 Juventus 80 6 28 esaurito 0
10 Riggio 182 Lazio 92 5 31 certezza 1
11 Giordano 185 Roma 79 5 29 buono 1

> number <- "42"

We can access to this information:

> paste(df$name[4],"is a",df3$team[4], "supporter.")
[1] "Gioele is a Lazio supporter."
> paste("The answer to THE question is", number)
[1] "The answer to THE question is 42"

In order to put different types of data in a dataframe we have to use the list object and the

serialization. In particular we have to put the data in a generic list and then put the list in a

particular dataframe:

l <- list(df,number)
dataframe_container <- data.frame(out2 = as.integer(serialize(l, connection=NULL)))

Once we have stored the information in the dataframe, we need to deserialize it in order to use it:

#----- unserialize --+
unser_obj <- unserialize(as.raw(dataframe_container$out2))
#----- taking back the elements----------------------------+
df_mod <- unser_obj[1][[1]]
number_mod <- unser_obj[2][[1]]

Then, we can verify that the data are transfered correctly:

> paste(df_mod$name[4],"is a",df_mod$team[4], "supporter.")
[1] "Gioele is a Lazio supporter."
> paste("The answer to THE question is", number_mod)
[1] "The answer to THE question is 42"

Read Lists online: https://riptutorial.com/r/topic/1365/lists

https://riptutorial.com/ 336

https://riptutorial.com/r/topic/1365/lists

Chapter 63: lubridate

Syntax

ymd_hms(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"))•

now(tzone = "")•

interval(start, end, tzone = attr(start, "tzone"))•

duration(num = NULL, units = "seconds", ...)•

period(num = NULL, units = "second", ...)•

Remarks

To install package from CRAN:

install.packages("lubridate")

To install development version from Github:

library(devtools)
dev mode allows testing of development packages in a sandbox, without interfering
with the other packages you have installed.
dev_mode(on=T)
install_github("hadley/lubridate")
dev_mode(on=F)

To get vignettes on lubridate package:

vignette("lubridate")

To get help about some function foo:

help(foo) # help about function foo
?foo # same thing

Example
help("is.period")
?is.period

To get examples for a function foo:

example("foo")

Example
example("interval")

Examples

https://riptutorial.com/ 337

Parsing dates and datetimes from strings with lubridate

The lubridate package provides convenient functions to format date and datetime objects from

character strings. The functions are permutations of

Letter Element to parse Base R equivalent

y year %y, %Y

m (with y and d) month %m, %b, %h, %B

d day %d, %e

h hour %H, %I%p

m (with h and s) minute %M

s seconds %S

e.g. ymd() for parsing a date with the year followed by the month followed by the day, e.g. "2016-

07-22", or ymd_hms() for parsing a datetime in the order year, month, day, hours, minutes, seconds,

e.g. "2016-07-22 13:04:47".

The functions are able to recognize most separators (such as /, -, and whitespace) without

additional arguments. They also work with inconsistent separators.

Dates

The date functions return an object of class Date.

library(lubridate)

mdy(c(' 07/02/2016 ', '7 / 03 / 2016', ' 7 / 4 / 16 '))
[1] "2016-07-02" "2016-07-03" "2016-07-04"

ymd(c("20160724","2016/07/23","2016-07-25")) # inconsistent separators
[1] "2016-07-24" "2016-07-23" "2016-07-25"

Datetimes

Utility functions

Datetimes can be parsed using ymd_hms variants including ymd_hm and ymd_h. All datetime functions

can accept a tz timezone argument akin to that of as.POSIXct or strptime, but which defaults to
"UTC"

https://riptutorial.com/ 338

instead of the local timezone.

The datetime functions return an object of class POSIXct.

x <- c("20160724 130102","2016/07/23 14:02:01","2016-07-25 15:03:00")
ymd_hms(x, tz="EST")
[1] "2016-07-24 13:01:02 EST" "2016-07-23 14:02:01 EST"
[3] "2016-07-25 15:03:00 EST"

ymd_hms(x)
[1] "2016-07-24 13:01:02 UTC" "2016-07-23 14:02:01 UTC"
[3] "2016-07-25 15:03:00 UTC"

Parser functions

lubridate also includes three functions for parsing datetimes with a formatting string like as.POSIXct

or strptime:

Function Output Class Formatting strings accepted

parse_date_time POSIXct

Flexible. Will accept strptime-style with % or lubridate

datetime function name style, e.g "ymd hms". Will accept

a vector of orders for heterogeneous data and guess

which is appropriate.

parse_date_time2
Default

POSIXct; if lt =

TRUE, POSIXlt

Strict. Accepts only strptime tokens (with or without %)

from a limited set.

fast_strptime
Default POSIXlt;

if lt = FALSE,

POSIXct

Strict. Accepts only %-delimited strptime tokens with

delimiters (-, /, :, etc.) from a limited set.

x <- c('2016-07-22 13:04:47', '07/22/2016 1:04:47 pm')

parse_date_time(x, orders = c('mdy Imsp', 'ymd hms'))
[1] "2016-07-22 13:04:47 UTC" "2016-07-22 13:04:47 UTC"

x <- c('2016-07-22 13:04:47', '2016-07-22 14:47:58')

parse_date_time2(x, orders = 'Ymd HMS')
[1] "2016-07-22 13:04:47 UTC" "2016-07-22 14:47:58 UTC"

fast_strptime(x, format = '%Y-%m-%d %H:%M:%S')
[1] "2016-07-22 13:04:47 UTC" "2016-07-22 14:47:58 UTC"

parse_date_time2 and fast_strptime use a fast C parser for efficiency.

See ?parse_date_time for formatting tokens.

Parsing date and time in lubridate

https://riptutorial.com/ 339

Lubridate provides ymd() series of functions for parsing character strings into dates. The letters y,

m, and d correspond to the year, month, and day elements of a date-time.

mdy("07-21-2016") # Returns Date

[1] "2016-07-21"

mdy("07-21-2016", tz = "UTC") # Returns a vector of class POSIXt

"2016-07-21 UTC"

dmy("21-07-2016") # Returns Date

[1] "2016-07-21"

dmy(c("21.07.2016", "22.07.2016")) # Returns vector of class Date

[1] "2016-07-21" "2016-07-22"

Manipulating date and time in lubridate

date <- now()
date
"2016-07-22 03:42:35 IST"

year(date)
2016

minute(date)
42

wday(date, label = T, abbr = T)
[1] Fri
Levels: Sun < Mon < Tues < Wed < Thurs < Fri < Sat

day(date) <- 31
"2016-07-31 03:42:35 IST"

If an element is set to a larger value than it supports, the difference
will roll over into the next higher element
day(date) <- 32
"2016-08-01 03:42:35 IST"

Instants

An instant is a specific moment in time. Any date-time object that refers to a moment of time is

recognized as an instant. To test if an object is an instant, use is.instant.

library(lubridate)

today_start <- dmy_hms("22.07.2016 12:00:00", tz = "IST") # default tz="UTC"
today_start
[1] "2016-07-22 12:00:00 IST"
is.instant(today_start)
[1] TRUE

https://riptutorial.com/ 340

now_dt <- ymd_hms(now(), tz="IST")
now_dt
[1] "2016-07-22 13:53:09 IST"
is.instant(now_dt)
[1] TRUE

is.instant("helloworld")
[1] FALSE
is.instant(60)
[1] FALSE

Intervals, Durations and Periods

Intervals are simplest way of recording timespans in lubridate. An interval is a span of time that

occurs between two specific instants.

create interval by substracting two instants
today_start <- ymd_hms("2016-07-22 12-00-00", tz="IST")
today_start
[1] "2016-07-22 12:00:00 IST"
today_end <- ymd_hms("2016-07-22 23-59-59", tz="IST")
today_end
[1] "2016-07-22 23:59:59 IST"
span <- today_end - today_start
span
Time difference of 11.99972 hours
as.interval(span, today_start)
[1] 2016-07-22 12:00:00 IST--2016-07-22 23:59:59 IST

create interval using interval() function
span <- interval(today_start, today_end)
[1] 2016-07-22 12:00:00 IST--2016-07-22 23:59:59 IST

Durations measure the exact amount of time that occurs between two instants.

duration(60, "seconds")
[1] "60s"

duration(2, "minutes")
[1] "120s (~2 minutes)"

Note: Units larger than weeks are not used due to their variability.

Durations can be created using dseconds, dminutes and other duration helper functions.

Run ?quick_durations for complete list.

dseconds(60)
[1] "60s"

dhours(2)
[1] "7200s (~2 hours)"

dyears(1)
[1] "31536000s (~365 days)"

https://riptutorial.com/ 341

Durations can be subtracted and added to instants to get new instants.

today_start + dhours(5)
[1] "2016-07-22 17:00:00 IST"

today_start + dhours(5) + dminutes(30) + dseconds(15)
[1] "2016-07-22 17:30:15 IST"

Durations can be created from intervals.

as.duration(span)
[1] "43199s (~12 hours)"

Periods measure the change in clock time that occurs between two instants.

Periods can be created using period function as well other helper functions like seconds, hours, etc.

To get a complete list of period helper functions, Run ?quick_periods.

period(1, "hour")
[1] "1H 0M 0S"

hours(1)
[1] "1H 0M 0S"

period(6, "months")
[1] "6m 0d 0H 0M 0S"

months(6)
[1] "6m 0d 0H 0M 0S"

years(1)
[1] "1y 0m 0d 0H 0M 0S"

is.period function can be used to check if an object is a period.

is.period(years(1))
[1] TRUE

is.period(dyears(1))
[1] FALSE

Rounding dates

now_dt <- ymd_hms(now(), tz="IST")
now_dt
[1] "2016-07-22 13:53:09 IST"

round_date() takes a date-time object and rounds it to the nearest integer value of the specified

time unit.

round_date(now_dt, "minute")
[1] "2016-07-22 13:53:00 IST"

https://riptutorial.com/ 342

round_date(now_dt, "hour")
[1] "2016-07-22 14:00:00 IST"

round_date(now_dt, "year")
[1] "2017-01-01 IST"

floor_date() takes a date-time object and rounds it down to the nearest integer value of the

specified time unit.

floor_date(now_dt, "minute")
[1] "2016-07-22 13:53:00 IST"

floor_date(now_dt, "hour")
[1] "2016-07-22 13:00:00 IST"

floor_date(now_dt, "year")
[1] "2016-01-01 IST"

ceiling_date() takes a date-time object and rounds it up to the nearest integer value of the

specified time unit.

ceiling_date(now_dt, "minute")
[1] "2016-07-22 13:54:00 IST"

ceiling_date(now_dt, "hour")
[1] "2016-07-22 14:00:00 IST"

ceiling_date(now_dt, "year")
[1] "2017-01-01 IST"

Difference between period and duration

Unlike durations, periods can be used to accurately model clock times without knowing when

events such as leap seconds, leap days, and DST changes occur.

start_2012 <- ymd_hms("2012-01-01 12:00:00")
[1] "2012-01-01 12:00:00 UTC"

period() considers leap year calculations.
start_2012 + period(1, "years")
[1] "2013-01-01 12:00:00 UTC"

Here duration() doesn't consider leap year calculations.
start_2012 + duration(1)
[1] "2012-12-31 12:00:00 UTC"

Time Zones

with_tz returns a date-time as it would appear in a different time zone.

nyc_time <- now("America/New_York")
nyc_time

https://riptutorial.com/ 343

[1] "2016-07-22 05:49:08 EDT"

corresponding Europe/Moscow time
with_tz(nyc_time, tzone = "Europe/Moscow")
[1] "2016-07-22 12:49:08 MSK"

force_tz returns a the date-time that has the same clock time as x in the new time zone.

nyc_time <- now("America/New_York")
nyc_time
[1] "2016-07-22 05:49:08 EDT"

force_tz(nyc_time, tzone = "Europe/Moscow") # only timezone changes
[1] "2016-07-22 05:49:08 MSK"

Read lubridate online: https://riptutorial.com/r/topic/2496/lubridate

https://riptutorial.com/ 344

https://riptutorial.com/r/topic/2496/lubridate

Chapter 64: Machine learning

Examples

Creating a Random Forest model

One example of machine learning algorithms is the Random Forest alogrithm (Breiman, L. (2001).

Random Forests. Machine Learning 45(5), p. 5-32). This algorithm is implemented in R according

to Breiman's original Fortran implementation in the randomForest package.

Random Forest classifier objects can be created in R by preparing the class variable as factor,

which is already apparent in the iris data set. Therefore we can easily create a Random Forest

by:

library(randomForest)

rf <- randomForest(x = iris[, 1:4],
 y = iris$Species,
 ntree = 500,
 do.trace = 100)

rf

Call:
randomForest(x = iris[, 1:4], y = iris$Species, ntree = 500, do.trace = 100)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 2

OOB estimate of error rate: 4%
Confusion matrix:
setosa versicolor virginica class.error
setosa 50 0 0 0.00
versicolor 0 47 3 0.06
virginica 0 3 47 0.06

parameters Description

x a data frame holding the describing variables of the classes

y
the classes of the individual obserbations. If this vector is factor, a

classification model is created, if not a regression model is created.

ntree The number of individual CART trees built

do.trace every ith step, the out-of-the-box errors overall and for each class are returned

Read Machine learning online: https://riptutorial.com/r/topic/8326/machine-learning

https://riptutorial.com/ 345

https://riptutorial.com/r/topic/8326/machine-learning

Chapter 65: Matrices

Introduction

Matrices store data

Examples

Creating matrices

Under the hood, a matrix is a special kind of vector with two dimensions. Like a vector, a matrix

can only have one data class. You can create matrices using the matrix function as shown below.

matrix(data = 1:6, nrow = 2, ncol = 3)
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

As you can see this gives us a matrix of all numbers from 1 to 6 with two rows and three columns.

The data parameter takes a vector of values, nrow specifies the number of rows in the matrix, and

ncol specifies the number of columns. By convention the matrix is filled by column. The default

behavior can be changed with the byrow parameter as shown below:

matrix(data = 1:6, nrow = 2, ncol = 3, byrow = TRUE)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

Matrices do not have to be numeric – any vector can be transformed into a matrix. For example:

matrix(data = c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE), nrow = 3, ncol = 2)
[,1] [,2]
[1,] TRUE FALSE
[2,] TRUE FALSE
[3,] TRUE FALSE
matrix(data = c("a", "b", "c", "d", "e", "f"), nrow = 3, ncol = 2)
[,1] [,2]
[1,] "a" "d"
[2,] "b" "e"
[3,] "c" "f"

Like vectors matrices can be stored as variables and then called later. The rows and columns of a

matrix can have names. You can look at these using the functions rownames and colnames. As

shown below, the rows and columns don't initially have names, which is denoted by NULL.

However, you can assign values to them.

mat1 <- matrix(data = 1:6, nrow = 2, ncol = 3, byrow = TRUE)
rownames(mat1)

https://riptutorial.com/ 346

NULL
colnames(mat1)
NULL
rownames(mat1) <- c("Row 1", "Row 2")
colnames(mat1) <- c("Col 1", "Col 2", "Col 3")
mat1
Col 1 Col 2 Col 3
Row 1 1 2 3
Row 2 4 5 6

It is important to note that similarly to vectors, matrices can only have one data type. If you try to

specify a matrix with multiple data types the data will be coerced to the higher order data class.

The class, is, and as functions can be used to check and coerce data structures in the same way

they were used on the vectors in class 1.

class(mat1)
[1] "matrix"
is.matrix(mat1)
[1] TRUE
as.vector(mat1)
[1] 1 4 2 5 3 6

Read Matrices online: https://riptutorial.com/r/topic/9019/matrices

https://riptutorial.com/ 347

https://riptutorial.com/r/topic/9019/matrices

Chapter 66: Meta: Documentation Guidelines

Remarks

To discuss editing the R tag Docs, visit the R chat.

Examples

Making good examples

Most of the guidance for creating good examples for Q&A carries over into the documentation.

Make it minimal and get to the point. Complications and digressions are counterproductive.•

Include both working code and prose explaining it. Neither one is sufficient on its own.•

Don't rely on external sources for data. Generate data or use the datasets library if possible:

library(help = "datasets")

•

There are some additional considerations in the context of Docs:

Refer to built-in docs like ?data.frame whenever relevant. The SO Docs are not an attempt to

replace the built-in docs. It is important to make sure new R users know that the built-in docs

exist as well as how to find them.

•

Move content that applies to multiple examples to the Remarks section.•

Style

Prompts

If you want your code to be copy-pastable, remove prompts such as R>, >, or + at the beginning of

each new line. Some Docs authors prefer to not make copy-pasting easy, and that is okay.

Console output

Console output should be clearly distinguished from code. Common approaches include:

Include prompts on input (as seen when using the console).•

Comment out all output, with # or ## starting each line.•

Print as-is, trusting the leading [1] to make the output stand out from the input.•

Add a blank line between code and console output.•

https://riptutorial.com/ 348

http://chat.stackoverflow.com/rooms/25312/r-public
http://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example

Assignment

= and <- are fine for assigning R objects. Use white space appropriately to avoid writing code that

is difficult to parse, such as x<-1 (ambiguous between x <- 1 and x < -1)

Code comments

Be sure to explain the purpose and function of the code itself. There isn't any hard-and-fast rule on

whether this explanation should be in prose or in code comments. Prose may be more readable

and allows for longer explanations, but code comments make for easier copy-pasting. Keep both

options in mind.

Sections

Many examples are short enough to not need sections, but if you use them, start with H1.

Read Meta: Documentation Guidelines online: https://riptutorial.com/r/topic/5410/meta--

documentation-guidelines

https://riptutorial.com/ 349

http://stackoverflow.com/editing-help#headers
https://riptutorial.com/r/topic/5410/meta--documentation-guidelines
https://riptutorial.com/r/topic/5410/meta--documentation-guidelines

Chapter 67: Missing values

Introduction

When we don't know the value a variable takes, we say its value is missing, indicated by NA.

Remarks

Missing values are represented by the symbol NA (not available). Impossible values (e.g., as a

result of sqrt(-1)) are represented by the symbol NaN (not a number).

Examples

Examining missing data

anyNA reports whether any missing values are present; while is.na reports missing values

elementwise:

vec <- c(1, 2, 3, NA, 5)

anyNA(vec)
[1] TRUE
is.na(vec)
[1] FALSE FALSE FALSE TRUE FALSE

ìs.na returns a logical vector that is coerced to integer values under arithmetic operations (with

FALSE=0, TRUE=1). We can use this to find out how many missing values there are:

sum(is.na(vec))
[1] 1

Extending this approach, we can use colSums and is.na on a data frame to count NAs per column:

colSums(is.na(airquality))
Ozone Solar.R Wind Temp Month Day
37 7 0 0 0 0

The naniar package (currently on github but not CRAN) offers further tools for exploring missing

values.

Reading and writing data with NA values

When reading tabular datasets with the read.* functions, R automatically looks for missing values

that look like "NA". However, missing values are not always represented by NA. Sometimes a dot (.

), a hyphen(-) or a character-value (e.g.: empty) indicates that a value is NA. The na.strings

parameter of the read.* function can be used to tell R which symbols/characters need to be

https://riptutorial.com/ 350

http://www.riptutorial.com/r/topic/438/data-frames
https://github.com/njtierney/naniar

treated as NA values:

read.csv("name_of_csv_file.csv", na.strings = "-")

It is also possible to indicate that more than one symbol needs to be read as NA:

read.csv('missing.csv', na.strings = c('.','-'))

Similarly, NAs can be written with customized strings using the na argument to write.csv. Other

tools for reading and writing tables have similar options.

Using NAs of different classes

The symbol NA is for a logical missing value:

class(NA)
#[1] "logical"

This is convenient, since it can easily be coerced to other atomic vector types, and is therefore

usually the only NA you will need:

x <- c(1, NA, 1)
class(x[2])
#[1] "numeric"

If you do need a single NA value of another type, use NA_character_, NA_integer_, NA_real_ or

NA_complex_. For missing values of fancy classes, subsetting with NA_integer_ usually works; for

example, to get a missing-value Date:

class(Sys.Date()[NA_integer_])
[1] "Date"

TRUE/FALSE and/or NA

NA is a logical type and a logical operator with an NA will return NA if the outcome is ambiguous.

Below, NA OR TRUE evaluates to TRUE because at least one side evaluates to TRUE, however NA OR

FALSE returns NA because we do not know whether NA would have been TRUE or FALSE

NA | TRUE
[1] TRUE
TRUE | TRUE is TRUE and FALSE | TRUE is also TRUE.

NA | FALSE
[1] NA
TRUE | FALSE is TRUE but FALSE | FALSE is FALSE.

NA & TRUE
[1] NA
TRUE & TRUE is TRUE but FALSE & TRUE is FALSE.

https://riptutorial.com/ 351

http://www.riptutorial.com/r/example/19700/reading-and-writing-data-frames
http://www.riptutorial.com/r/example/19700/reading-and-writing-data-frames

NA & FALSE
[1] FALSE
TRUE & FALSE is FALSE and FALSE & FALSE is also FALSE.

These properties are helpful if you want to subset a data set based on some columns that contain

NA.

df <- data.frame(v1=0:9,
 v2=c(rep(1:2, each=4), NA, NA),
 v3=c(NA, letters[2:10]))

df[df$v2 == 1 & !is.na(df$v2),]
v1 v2 v3
#1 0 1 <NA>
#2 1 1 b
#3 2 1 c
#4 3 1 d

df[df$v2 == 1,]
 v1 v2 v3
#1 0 1 <NA>
#2 1 1 b
#3 2 1 c
#4 3 1 d
#NA NA NA <NA>
#NA.1 NA NA <NA>

Omitting or replacing missing values

Recoding missing values

Regularly, missing data isn't coded as NA in datasets. In SPSS for example, missing values are

often represented by the value 99.

num.vec <- c(1, 2, 3, 99, 5)
num.vec
[1] 1 2 3 99 5

It is possible to directly assign NA using subsetting

num.vec[num.vec == 99] <- NA

However, the preferred method is to use is.na<- as below. The help file (?is.na) states:

is.na<- may provide a safer way to set missingness. It behaves differently for factors,

for example.

is.na(num.vec) <- num.vec == 99

Both methods return

https://riptutorial.com/ 352

num.vec
[1] 1 2 3 NA 5

Removing missing values

Missing values can be removed in several ways from a vector:

num.vec[!is.na(num.vec)]
num.vec[complete.cases(num.vec)]
na.omit(num.vec)
[1] 1 2 3 5

Excluding missing values from calculations

When using arithmetic functions on vectors with missing values, a missing value will be returned:

mean(num.vec) # returns: [1] NA

The na.rm parameter tells the function to exclude the NA values from the calculation:

mean(num.vec, na.rm = TRUE) # returns: [1] 2.75

an alternative to using 'na.rm = TRUE':
mean(num.vec[!is.na(num.vec)]) # returns: [1] 2.75

Some R functions, like lm, have a na.action parameter. The default-value for this is na.omit, but

with options(na.action = 'na.exclude') the default behavior of R can be changed.

If it is not necessary to change the default behavior, but for a specific situation another na.action is

needed, the na.action parameter needs to be included in the function call, e.g.:

 lm(y2 ~ y1, data = anscombe, na.action = 'na.exclude')

Read Missing values online: https://riptutorial.com/r/topic/3388/missing-values

https://riptutorial.com/ 353

https://riptutorial.com/r/topic/3388/missing-values

Chapter 68: Modifying strings by substitution

Introduction

sub and gsub are used to edit strings using patterns. See Pattern Matching and Replacement for

more on related functions and Regular Expressions for how to build a pattern.

Examples

Rearrange character strings using capture groups

If you want to change the order of a character strings you can use parentheses in the pattern to

group parts of the string together. These groups can in the replacement argument be addresed

using consecutive numbers.

The following example shows how you can reorder a vector of names of the form "surname,

forename" into a vector of the form "forename surname".

library(randomNames)
set.seed(1)

strings <- randomNames(5)
strings
[1] "Sigg, Zachary" "Holt, Jake" "Ortega, Sandra" "De La Torre,
Nichole"
[5] "Perkins, Donovon"

sub("^(.+),\\s(.+)$", "\\2 \\1", strings)
[1] "Zachary Sigg" "Jake Holt" "Sandra Ortega" "Nichole De La Torre"
[5] "Donovon Perkins"

If you only need the surname you could just address the first pairs of parentheses.

sub("^(.+),\\s(.+)", "\\1", strings)
[1] "Sigg" "Holt" "Ortega" "De La Torre" "Perkins"

Eliminate duplicated consecutive elements

Let's say we want to eliminate duplicated subsequence element from a string (it can be more than

one). For example:

2,14,14,14,19

and convert it into:

2,14,19

https://riptutorial.com/ 354

http://www.riptutorial.com/r/topic/1123/pattern-matching-and-replacement
http://www.riptutorial.com/r/topic/5748/regular-expressions--regex-

Using gsub, we can achieve it:

gsub("(\\d+)(,\\1)+","\\1", "2,14,14,14,19")
[1] "2,14,19"

It works also for more than one different repetition, for example:

 > gsub("(\\d+)(,\\1)+", "\\1", "2,14,14,14,19,19,20,21")
[1] "2,14,19,20,21"

Let's explain the regular expression:

(\\d+): A group 1 delimited by () and finds any digit (at least one). Remember we need to

use the double backslash (\\) here because for a character variable a backslash represents

special escape character for literal string delimiters (\" or \'). \d\ is equivalent to: [0-9].

1.

,: A punctuation sign: , (we can include spaces or any other delimiter)2.

\\1: An identical string to the group 1, i.e.: the repeated number. If that doesn't happen, then

the pattern doesn't match.

3.

Let's try a similar situation: eliminate consecutive repeated words:

one,two,two,three,four,four,five,six

Then, just replace \d by \w, where \w matches any word character, including: any letter, digit or

underscore. It is equivalent to [a-zA-Z0-9_]:

> gsub("(\\w+)(,\\1)+", "\\1", "one,two,two,three,four,four,five,six")
[1] "one,two,three,four,five,six"
>

Then, the above pattern includes as a particular case duplicated digits case.

Read Modifying strings by substitution online: https://riptutorial.com/r/topic/9219/modifying-strings-

by-substitution

https://riptutorial.com/ 355

https://riptutorial.com/r/topic/9219/modifying-strings-by-substitution
https://riptutorial.com/r/topic/9219/modifying-strings-by-substitution

Chapter 69: Natural language processing

Introduction

Natural language processing (NLP) is the field of computer sciences focused on retrieving

information from textual input generated by human beings.

Examples

Create a term frequency matrix

The simplest approach to the problem (and the most commonly used so far) is to split sentences

into tokens. Simplifying, words have abstract and subjective meanings to the people using and

receiving them, tokens have an objective interpretation: an ordered sequence of characters (or

bytes). Once sentences are split, the order of the token is disregarded. This approach to the

problem in known as bag of words model.

A term frequency is a dictionary, in which to each token is assigned a weight. In the first example,

we construct a term frequency matrix from a corpus corpus (a collection of documents) with the

R package tm.

require(tm)
doc1 <- "drugs hospitals doctors"
doc2 <- "smog pollution environment"
doc3 <- "doctors hospitals healthcare"
doc4 <- "pollution environment water"
corpus <- c(doc1, doc2, doc3, doc4)
tm_corpus <- Corpus(VectorSource(corpus))

In this example, we created a corpus of class Corpus defined by the package tm with two functions

Corpus and VectorSource, which returns a VectorSource object from a character vector. The object

tm_corpus is a list our documents with additional (and optional) metadata to describe each

document.

str(tm_corpus)
List of 4
 $ 1:List of 2
 ..$ content: chr "drugs hospitals doctors"
 ..$ meta :List of 7
 $ author : chr(0)
 $ datetimestamp: POSIXlt[1:1], format: "2017-06-03 00:31:34"
 $ description : chr(0)
 $ heading : chr(0)
 $ id : chr "1"
 $ language : chr "en"
 $ origin : chr(0)
 - attr(*, "class")= chr "TextDocumentMeta"
 ..- attr(*, "class")= chr [1:2] "PlainTextDocument" "TextDocument"
[truncated]

https://riptutorial.com/ 356

Once we have a Corpus, we can proceed to preprocess the tokens contained in the Corpus to

improve the quality of the final output (the term frequency matrix). To do this we use the tm

function tm_map, which similarly to the apply family of functions, transform the documents in the

corpus by applying a function to each document.

tm_corpus <- tm_map(tm_corpus, tolower)
tm_corpus <- tm_map(tm_corpus, removeWords, stopwords("english"))
tm_corpus <- tm_map(tm_corpus, removeNumbers)
tm_corpus <- tm_map(tm_corpus, PlainTextDocument)
tm_corpus <- tm_map(tm_corpus, stemDocument, language="english")
tm_corpus <- tm_map(tm_corpus, stripWhitespace)
tm_corpus <- tm_map(tm_corpus, PlainTextDocument)

Following these transformations, we finally create the term frequency matrix with

tdm <- TermDocumentMatrix(tm_corpus)

which gives a

<<TermDocumentMatrix (terms: 8, documents: 4)>>
Non-/sparse entries: 12/20
Sparsity : 62%
Maximal term length: 9
Weighting : term frequency (tf)

that we can view by transforming it to a matrix

as.matrix(tdm)

 Docs
Terms character(0) character(0) character(0) character(0)
 doctor 1 0 1 0
 drug 1 0 0 0
 environ 0 1 0 1
 healthcar 0 0 1 0
 hospit 1 0 1 0
 pollut 0 1 0 1
 smog 0 1 0 0
 water 0 0 0 1

Each row represents the frequency of each token - that as you noticed have been stemmed (e.g.

environment to environ) - in each document (4 documents, 4 columns).

In the previous lines, we have weighted each pair token/document with the absolute frequency

(i.e. the number of instances of the token that appear in the document).

Read Natural language processing online: https://riptutorial.com/r/topic/10119/natural-language-

processing

https://riptutorial.com/ 357

https://riptutorial.com/r/topic/10119/natural-language-processing
https://riptutorial.com/r/topic/10119/natural-language-processing

Chapter 70: Network analysis with the igraph

package

Examples

Simple Directed and Non-directed Network Graphing

The igraph package for R is a wonderful tool that can be used to model networks, both real and

virtual, with simplicity. This example is meant to demonstrate how to create two simple network

graphs using the igraph package within R v.3.2.3.

Non-Directed Network

The network is created with this piece of code:

g<-graph.formula(Node1-Node2, Node1-Node3, Node4-Node1)
plot(g)

Directed Network

dg<-graph.formula(Tom-+Mary, Tom-+Bill, Tom-+Sam, Sue+-Mary, Bill-+Sue)
plot(dg)

This code will then generate a network with arrows:

https://riptutorial.com/ 358

Code example of how to make a double sided arrow:

dg<-graph.formula(Tom-+Mary, Tom-+Bill, Tom-+Sam, Sue+-Mary, Bill++Sue)
plot(dg)

Read Network analysis with the igraph package online: https://riptutorial.com/r/topic/4851/network-

analysis-with-the-igraph-package

https://riptutorial.com/ 359

https://riptutorial.com/r/topic/4851/network-analysis-with-the-igraph-package
https://riptutorial.com/r/topic/4851/network-analysis-with-the-igraph-package

Chapter 71: Non-standard evaluation and

standard evaluation

Introduction

Dplyr and many modern libraries in R use non-standard evaluation (NSE) for interactive

programming and standard evaluation (SE) for programming1.

For instance, the summarise() function use non-standard evaluation but relies on the summarise_()

which uses standard evaluation.

The lazyeval library makes it easy to turn standard evaluation function into NSE functions.

Examples

Examples with standard dplyr verbs

NSE functions should be used in interactive programming. However, when developping new

functions in a new package, it's better to use SE version.

Load dplyr and lazyeval :

library(dplyr)
library(lazyeval)

Filtering

NSE version

filter(mtcars, cyl == 8)
filter(mtcars, cyl < 6)
filter(mtcars, cyl < 6 & vs == 1)

SE version (to be use when programming functions in a new package)

filter_(mtcars, .dots = list(~ cyl == 8))
filter_(mtcars, .dots = list(~ cyl < 6))
filter_(mtcars, .dots = list(~ cyl < 6, ~ vs == 1))

Summarise

NSE version

summarise(mtcars, mean(disp))
summarise(mtcars, mean_disp = mean(disp))

https://riptutorial.com/ 360

https://cran.r-project.org/web/packages/dplyr/vignettes/nse.html

SE version

summarise_(mtcars, .dots = lazyeval::interp(~ mean(x), x = quote(disp)))
summarise_(mtcars, .dots = setNames(list(lazyeval::interp(~ mean(x), x = quote(disp))),
"mean_disp"))
summarise_(mtcars, .dots = list("mean_disp" = lazyeval::interp(~ mean(x), x = quote(disp))))

Mutate

NSE version

mutate(mtcars, displ_l = disp / 61.0237)

SE version

mutate_(
 .data = mtcars,
 .dots = list(
 "displ_l" = lazyeval::interp(
 ~ x / 61.0237, x = quote(disp)
)
)
)

Read Non-standard evaluation and standard evaluation online:

https://riptutorial.com/r/topic/9365/non-standard-evaluation-and-standard-evaluation

https://riptutorial.com/ 361

https://riptutorial.com/r/topic/9365/non-standard-evaluation-and-standard-evaluation

Chapter 72: Numeric classes and storage

modes

Examples

Numeric

Numeric represents integers and doubles and is the default mode assigned to vectors of numbers.

The function is.numeric() will evaluate whether a vector is numeric. It is important to note that

although integers and doubles will pass is.numeric(), the function as.numeric() will always attempt

to convert to type double.

x <- 12.3
y <- 12L

#confirm types
typeof(x)
[1] "double"
typeof(y)
[1] "integer"

confirm both numeric
is.numeric(x)
[1] TRUE
is.numeric(y)
[1] TRUE

logical to numeric
as.numeric(TRUE)
[1] 1

While TRUE == 1, it is a double and not an integer
is.integer(as.numeric(TRUE))
[1] FALSE

Doubles are R's default numeric value. They are double precision vectors, meaning that they take

up 8 bytes of memory for each value in the vector. R has no single precision data type and so all

real numbers are stored in the double precision format.

is.double(1)
TRUE
is.double(1.0)
TRUE
is.double(1L)
FALSE

Integers are whole numbers that can be written without a fractional component. Integers are

represented by a number with an L after it. Any number without an L after it will be considered a

double.

https://riptutorial.com/ 362

typeof(1)
[1] "double"
class(1)
[1] "numeric"
typeof(1L)
[1] "integer"
class(1L)
[1] "integer"

Though in most cases using an integer or double will not matter, sometimes replacing doubles

with integers will consume less memory and operational time. A double vector uses 8 bytes per

element while an integer vector uses only 4 bytes per element. As the size of vectors increases,

using proper types can dramatically speed up processes.

test speed on lots of arithmetic
microbenchmark(
 for(i in 1:100000){
 2L * i
 10L + i
},

for(i in 1:100000){
 2.0 * i
 10.0 + i
}
)
Unit: milliseconds
 expr min lq mean median uq
max neval
 for (i in 1:1e+05) { 2L * i 10L + i } 40.74775 42.34747 50.70543 42.99120 65.46864
94.11804 100
 for (i in 1:1e+05) { 2 * i 10 + i } 41.07807 42.38358 53.52588 44.26364 65.84971
83.00456 100

Read Numeric classes and storage modes online: https://riptutorial.com/r/topic/9018/numeric-

classes-and-storage-modes

https://riptutorial.com/ 363

https://riptutorial.com/r/topic/9018/numeric-classes-and-storage-modes
https://riptutorial.com/r/topic/9018/numeric-classes-and-storage-modes

Chapter 73: Object-Oriented Programming in

R

Introduction

This documentation page describes the four object systems in R and their high-level similarities

and differences. Greater detail on each individual system can be found on its own topic page.

The four systems are: S3, S4, Reference Classes, and S6.

Examples

S3

The S3 object system is a very simple OO system in R.

Every object has an S3 class. It can be get (got?) with the function class.

> class(3)
[1] "numeric"

It can also be set with the function class:

> bicycle <- 2
> class(bicycle) <- 'vehicle'
> class(bicycle)
[1] "vehicle"

It can also be set with the function attr:

> velocipede <- 2
> attr(velocipede, 'class') <- 'vehicle'
> class(velocipede)
[1] "vehicle"

An object can have many classes:

> class(x = bicycle) <- c('human-powered vehicle', class(x = bicycle))
> class(x = bicycle)
[1] "human-powered vehicle" "vehicle"

When using a generic function, R uses the first element of the class that has an available generic.

For example:

> summary.vehicle <- function(object, ...) {

https://riptutorial.com/ 364

+ message('this is a vehicle')
+ }
> summary(object = my_bike)
this is a vehicle

But if we now define a summary.bicycle:

> summary.bicycle <- function(object, ...) {
+ message('this is a bicycle')
+ }
> summary(object = my_bike)
this is a bicycle

Read Object-Oriented Programming in R online: https://riptutorial.com/r/topic/9723/object-oriented-

programming-in-r

https://riptutorial.com/ 365

https://riptutorial.com/r/topic/9723/object-oriented-programming-in-r
https://riptutorial.com/r/topic/9723/object-oriented-programming-in-r

Chapter 74: Parallel processing

Remarks

Parallelization on remote machines require libraries to be downloaded on each machine. Prefer

package::function() calls. Several packages have parallelization natively built-in, including caret,

pls and plyr.

Microsoft R Open (Revolution R) also uses multi-threaded BLAS/LAPACK libraries which

intrinsically parallelizes many common functions.

Examples

Parallel processing with foreach package

The foreach package brings the power of parallel processing to R. But before you want to use multi

core CPUs you have to assign a multi core cluster. The doSNOW package is one possibility.

A simple use of the foreach loop is to calculate the sum of the square root and the square of all

numbers from 1 to 100000.

library(foreach)
library(doSNOW)

cl <- makeCluster(5, type = "SOCK")
registerDoSNOW(cl)

f <- foreach(i = 1:100000, .combine = c, .inorder = F) %dopar% {
 k <- i ** 2 + sqrt(i)
 k
}

The structure of the output of foreach is controlled by the .combine argument. The default output

structure is a list. In the code above, c is used to return a vector instead. Note that a calculation

function (or operator) such as "+" may also be used to perform a calculation and return a further

processed object.

It is important to mention that the result of each foreach-loop is the last call. Thus, in this example

k will be added to the result.

Parameter Details

.combine
combine Function. Determines how the results of the loop are combined.

Possible values are c, cbind, rbind, "+", "*"...

.inorder

if TRUE the result is ordered according to the order of the iteration vairable (here i

). If FALSE the result is not ordered. This can have postive effects on computation

time.

https://riptutorial.com/ 366

https://mran.revolutionanalytics.com/

Parameter Details

.packages
for functions which are provided by any package except base, like e.g. mass,

randomForest or else, you have to provide these packages with c("mass",
"randomForest")

Parallel processing with parallel package

The base package parallel allows parallel computation through forking, sockets, and random-

number generation.

Detect the number of cores present on the localhost:

parallel::detectCores(all.tests = FALSE, logical = TRUE)

Create a cluster of the cores on the localhost:

parallelCluster <- parallel::makeCluster(parallel::detectCores())

First, a function appropriate for parallelization must be created. Consider the mtcars dataset. A

regression on mpg could be improved by creating a separate regression model for each level of cyl.

data <- mtcars
yfactor <- 'cyl'
zlevels <- sort(unique(data[[yfactor]]))
datay <- data[,1]
dataz <- data[,2]
datax <- data[,3:11]

fitmodel <- function(zlevel, datax, datay, dataz) {
 glm.fit(x = datax[dataz == zlevel,], y = datay[dataz == zlevel])
}

Create a function that can loop through all the possible iterations of zlevels. This is still in serial,

but is an important step as it determines the exact process that will be parallelized.

fitmodel <- function(zlevel, datax, datay, dataz) {
 glm.fit(x = datax[dataz == zlevel,], y = datay[dataz == zlevel])
}

for (zlevel in zlevels) {
 print("*****")
 print(zlevel)
 print(fitmodel(zlevel, datax, datay, dataz))
}

Curry this function:

worker <- function(zlevel) {
 fitmodel(zlevel,datax, datay, dataz)

https://riptutorial.com/ 367

 }

Parallel computing using parallel cannot access the global environment. Luckily, each function

creates a local environment parallel can access. Creation of a wrapper function allows for

parallelization. The function to be applied also needs to be placed within the environment.

wrapper <- function(datax, datay, dataz) {
 # force evaluation of all paramters not supplied by parallelization apply
 force(datax)
 force(datay)
 force(dataz)
 # these variables are now in an enviroment accessible by parallel function

 # function to be applied also in the environment
 fitmodel <- function(zlevel, datax, datay, dataz) {
 glm.fit(x = datax[dataz == zlevel,], y = datay[dataz == zlevel])
 }

 # calling in this environment iterating over single parameter zlevel
 worker <- function(zlevel) {
 fitmodel(zlevel,datax, datay, dataz)
 }
 return(worker)
}

Now create a cluster and run the wrapper function.

parallelcluster <- parallel::makeCluster(parallel::detectCores())
models <- parallel::parLapply(parallelcluster,zlevels,
 wrapper(datax, datay, dataz))

Always stop the cluster when finished.

parallel::stopCluster(parallelcluster)

The parallel package includes the entire apply() family, prefixed with par.

Random Number Generation

A major problem with parallelization is the used of RNG as seeds. Random numbers by the

number are iterated by the number of operations from either the start of the session or the most

recent set.seed(). Since parallel processes arise from the same function, it can use the same

seed, possibly causing identical results! Calls will run in serial on the different cores, provide no

advantage.

A set of seeds must be generated and sent to each parallel process. This is automatically done in

some packages (parallel, snow, etc.), but must be explicitly addressed in others.

s <- seed
for (i in 1:numofcores) {
 s <- nextRNGStream(s)
 # send s to worker i as .Random.seed

https://riptutorial.com/ 368

}

Seeds can be also be set for reproducibility.

clusterSetRNGStream(cl = parallelcluster, iseed)

mcparallelDo

The mcparallelDo package allows for the evaluation of R code asynchronously on Unix-alike (e.g.

Linux and MacOSX) operating systems. The underlying philosophy of the package is aligned with

the needs of exploratory data analysis rather than coding. For coding asynchrony, consider the

future package.

Example

Create data

data(ToothGrowth)

Trigger mcparallelDo to perform analysis on a fork

mcparallelDo({glm(len ~ supp * dose, data=ToothGrowth)},"interactionPredictorModel")

Do other things, e.g.

binaryPredictorModel <- glm(len ~ supp, data=ToothGrowth)
gaussianPredictorModel <- glm(len ~ dose, data=ToothGrowth)

The result from mcparallelDo returns in your targetEnvironment, e.g. .GlobalEnv, when it is

complete with a message (by default)

summary(interactionPredictorModel)

Other Examples

Example of not returning a value until we return to the top level
for (i in 1:10) {
 if (i == 1) {
 mcparallelDo({2+2}, targetValue = "output")
 }
 if (exists("output")) print(i)
}

Example of getting a value without returning to the top level
for (i in 1:10) {
 if (i == 1) {

https://riptutorial.com/ 369

https://cran.r-project.org/package=future

 mcparallelDo({2+2}, targetValue = "output")
 }
 mcparallelDoCheck()
 if (exists("output")) print(i)
}

Read Parallel processing online: https://riptutorial.com/r/topic/1677/parallel-processing

https://riptutorial.com/ 370

https://riptutorial.com/r/topic/1677/parallel-processing

Chapter 75: Pattern Matching and

Replacement

Introduction

This topic covers matching string patterns, as well as extracting or replacing them. For details on

defining complicated patterns see Regular Expressions.

Syntax

grep("query", "subject", optional_args)•

grepl("query", "subject", optional_args)•

gsub("(group1)(group2)", "\\group#", "subject")•

Remarks

Differences from other languages

Escaped regex symbols (like \1) are must be escaped a second time (like \\1), not only in the

pattern argument, but also in the replacement to sub and gsub.

By default, the pattern for all commands (grep, sub, regexpr) is not Perl Compatible Regular

Expression (PCRE) so some things like lookarounds are not supported. However, each function

accepts a perl=TRUE argument to enable them. See the R Regular Expressions topic for details.

Specialized packages

stringi•

stringr•

Examples

Making substitutions

example data
test_sentences <- c("The quick brown fox quickly", "jumps over the lazy dog")

Let's make the brown fox red:

https://riptutorial.com/ 371

http://www.riptutorial.com/r/topic/5748/regular-expressions--regex-
http://www.riptutorial.com/topic/259
http://www.riptutorial.com/r/topic/5748/regular-expressions--regex-
http://www.riptutorial.com/r/topic/1670/string-manipulation-with-stringi-package

sub("brown","red", test_sentences)
#[1] "The quick red fox quickly" "jumps over the lazy dog"

Now, let's make the "fast" fox act "fastly". This won't do it:

sub("quick", "fast", test_sentences)
#[1] "The fast red fox quickly" "jumps over the lazy dog"

sub only makes the first available replacement, we need gsub for global replacement:

gsub("quick", "fast", test_sentences)
#[1] "The fast red fox fastly" "jumps over the lazy dog"

See Modifying strings by substitution for more examples.

Finding Matches

example data
test_sentences <- c("The quick brown fox", "jumps over the lazy dog")

Is there a match?

grepl() is used to check whether a word or regular expression exists in a string or character

vector. The function returns a TRUE/FALSE (or "Boolean") vector.

Notice that we can check each string for the word "fox" and receive a Boolean vector in return.

grepl("fox", test_sentences)
#[1] TRUE FALSE

Match locations

grep takes in a character string and a regular expression. It returns a numeric vector of

indexes.This will return which sentence contains the word "fox" in it.

grep("fox", test_sentences)
#[1] 1

Matched values

To select sentences that match a pattern:

each of the following lines does the job:
test_sentences[grep("fox", test_sentences)]

https://riptutorial.com/ 372

http://www.riptutorial.com/r/example/6831/single-and-global-match-
http://www.riptutorial.com/r/topic/9219/modifying-strings-by-substitution

test_sentences[grepl("fox", test_sentences)]
grep("fox", test_sentences, value = TRUE)
[1] "The quick brown fox"

Details

Since the "fox" pattern is just a word, rather than a regular expression, we could improve

performance (with either grep or grepl) by specifying fixed = TRUE.

grep("fox", test_sentences, fixed = TRUE)
#[1] 1

To select sentences that don't match a pattern, one can use grep with invert = TRUE; or follow

subsetting rules with -grep(...) or !grepl(...).

In both grepl(pattern, x) and grep(pattern, x), the x parameter is vectorized, the pattern

parameter is not. As a result, you cannot use these directly to match pattern[1] against x[1],

pattern[2] against x[2], and so on.

Summary of matches

After performing the e.g. the grepl command, maybe you want to get an overview about how many

matches where TRUE or FALSE. This is useful e.g. in case of big data sets. In order to do so run the

summary command:

example data
test_sentences <- c("The quick brown fox", "jumps over the lazy dog")

find matches
matches <- grepl("fox", test_sentences)

overview
summary(matches)

Single and Global match.

When working with regular expressions one modifier for PCRE is g for global match.

In R matching and replacement functions have two version: first match and global match:

sub(pattern,replacement,text) will replace the first occurrence of pattern by replacement in

text

•

gsub(pattern,replacement,text) will do the same as sub but for each occurrence of pattern•

regexpr(pattern,text) will return the position of match for the first instance of pattern•

gregexpr(pattern,text) will return all matches.•

https://riptutorial.com/ 373

http://www.riptutorial.com/r/topic/1686/subsetting
http://www.riptutorial.com/r/topic/3327/r-code-vectorization-best-practices

Some random data:

set.seed(123)
teststring <- paste0(sample(letters,20),collapse="")

teststring
#[1] "htjuwakqxzpgrsbncvyo"

Let's see how this works if we want to replace vowels by something else:

sub("[aeiouy]"," ** HERE WAS A VOWEL** ",teststring)
#[1] "htj ** HERE WAS A VOWEL** wakqxzpgrsbncvyo"

gsub("[aeiouy]"," ** HERE WAS A VOWEL** ",teststring)
#[1] "htj ** HERE WAS A VOWEL** w ** HERE WAS A VOWEL** kqxzpgrsbncv ** HERE WAS A VOWEL** **
HERE WAS A VOWEL** "

Now let's see how we can find a consonant immediately followed by one or more vowel:

regexpr("[^aeiou][aeiou]+",teststring)
#[1] 3
#attr(,"match.length")
#[1] 2
#attr(,"useBytes")
#[1] TRUE

We have a match on position 3 of the string of length 2, i.e: ju

Now if we want to get all matches:

gregexpr("[^aeiou][aeiou]+",teststring)
#[[1]]
#[1] 3 5 19
#attr(,"match.length")
#[1] 2 2 2
#attr(,"useBytes")
#[1] TRUE

All this is really great, but this only give use positions of match and that's not so easy to get what is

matched, and here comes regmatches it's sole purpose is to extract the string matched from

regexpr, but it has a different syntax.

Let's save our matches in a variable and then extract them from original string:

matches <- gregexpr("[^aeiou][aeiou]+",teststring)
regmatches(teststring,matches)
#[[1]]
#[1] "ju" "wa" "yo"

This may sound strange to not have a shortcut, but this allow extraction from another string by the

matches of our first one (think comparing two long vector where you know there's is a common

pattern for the first but not for the second, this allow an easy comparison):

https://riptutorial.com/ 374

teststring2 <- "this is another string to match against"
regmatches(teststring2,matches)
#[[1]]
#[1] "is" " i" "ri"

Attention note: by default the pattern is not Perl Compatible Regular Expression, some things like

lookarounds are not supported, but each function presented here allow for perl=TRUE argument to

enable them.

Find matches in big data sets

In case of big data sets, the call of grepl("fox", test_sentences) does not perform well. Big data

sets are e.g. crawled websites or million of Tweets, etc.

The first acceleration is the usage of the perl = TRUE option. Even faster is the option fixed = TRUE.

A complete example would be:

example data
test_sentences <- c("The quick brown fox", "jumps over the lazy dog")

grepl("fox", test_sentences, perl = TRUE)
#[1] TRUE FALSE

In case of text mining, often a corpus gets used. A corpus cannot be used directly with grepl.

Therefore, consider this function:

searchCorpus <- function(corpus, pattern) {
 return(tm_index(corpus, FUN = function(x) {
 grepl(pattern, x, ignore.case = TRUE, perl = TRUE)
 }))
}

Read Pattern Matching and Replacement online: https://riptutorial.com/r/topic/1123/pattern-

matching-and-replacement

https://riptutorial.com/ 375

https://riptutorial.com/r/topic/1123/pattern-matching-and-replacement
https://riptutorial.com/r/topic/1123/pattern-matching-and-replacement

Chapter 76: Performing a Permutation Test

Examples

A fairly general function

We will use the built in tooth growth dataset. We are interested in whether there is a statistically

significant difference in tooth growth when the guinea pigs are given vitamin C vs orange juice.

Here's the full example:

teethVC = ToothGrowth[ToothGrowth$supp == 'VC',]
teethOJ = ToothGrowth[ToothGrowth$supp == 'OJ',]

permutationTest = function(vectorA, vectorB, testStat){
 N = 10^5
 fullSet = c(vectorA, vectorB)
 lengthA = length(vectorA)
 lengthB = length(vectorB)
 trials <- replicate(N,
 {index <- sample(lengthB + lengthA, size = lengthA, replace = FALSE)
 testStat((fullSet[index]), fullSet[-index]) })
 trials
}
vec1 =teethVC$len;
vec2 =teethOJ$len;
subtractMeans = function(a, b){ return (mean(a) - mean(b))}
result = permutationTest(vec1, vec2, subtractMeans)
observedMeanDifference = subtractMeans(vec1, vec2)
result = c(result, observedMeanDifference)
hist(result)
abline(v=observedMeanDifference, col = "blue")
pValue = 2*mean(result <= (observedMeanDifference))
pValue

After we read in the CSV, we define the function

permutationTest = function(vectorA, vectorB, testStat){
 N = 10^5
 fullSet = c(vectorA, vectorB)
 lengthA = length(vectorA)
 lengthB = length(vectorB)
 trials <- replicate(N,
 {index <- sample(lengthB + lengthA, size = lengthA, replace = FALSE)
 testStat((fullSet[index]), fullSet[-index]) })
 trials
}

This function takes two vectors, and shuffles their contents together, then performs the function

testStat on the shuffled vectors. The result of teststat is added to trials, which is the return

value.

It does this N = 10^5 times. Note that the value N could very well have been a parameter to the

https://riptutorial.com/ 376

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/ToothGrowth.html

function.

This leaves us with a new set of data, trials, the set of means that might result if there truly is no

relationship between the two variables.

Now to define our test statistic:

subtractMeans = function(a, b){ return (mean(a) - mean(b))}

Perform the test:

result = permutationTest(vec1, vec2, subtractMeans)

Calculate our actual observed mean difference:

observedMeanDifference = subtractMeans(vec1, vec2)

Let's see what our observation looks like on a histogram of our test statistic.

hist(result)
abline(v=observedMeanDifference, col = "blue")

It doesn't look like our observed result is very likely to occur by random chance...

We want to calculate the p-value, the likeliehood of the original observed result if their is no

relationship between the two variables.

pValue = 2*mean(result >= (observedMeanDifference))

Let's break that down a bit:

result >= (observedMeanDifference)

https://riptutorial.com/ 377

https://i.stack.imgur.com/o7gFh.png

Will create a boolean vector, like:

FALSE TRUE FALSE FALSE TRUE FALSE ...

With TRUE every time the value of result is greater than or equal to the observedMean.

The function mean will interpret this vector as 1 for TRUE and 0 for FALSE, and give us the percentage

of 1's in the mix, ie the number of times our shuffled vector mean difference surpassed or equalled

what we observed.

Finally, we multiply by 2 because the distribution of our test statistic is highly symmetric, and we

really want to know which results are "more extreme" than our observed result.

All that's left is to output the p-value, which turns out to be 0.06093939. Interpretation of this value is

subjective, but I would say that it looks like Vitamin C promotes tooth growth quite a lot more than

Orange Juice does.

Read Performing a Permutation Test online: https://riptutorial.com/r/topic/3216/performing-a-

permutation-test

https://riptutorial.com/ 378

https://riptutorial.com/r/topic/3216/performing-a-permutation-test
https://riptutorial.com/r/topic/3216/performing-a-permutation-test

Chapter 77: Pipe operators (%>% and others)

Introduction

Pipe operators, available in magrittr, dplyr, and other R packages, process a data-object using a

sequence of operations by passing the result of one step as input for the next step using infix-

operators rather than the more typical R method of nested function calls.

Note that the intended aim of pipe operators is to increase human readability of written code. See

Remarks section for performance considerations.

Syntax

lhs %>% rhs # pipe syntax for rhs(lhs)•

lhs %>% rhs(a = 1) # pipe syntax for rhs(lhs, a = 1)•

lhs %>% rhs(a = 1, b = .) # pipe syntax for rhs(a = 1, b = lhs)•

lhs %<>% rhs # pipe syntax for lhs <- rhs(lhs)•

lhs %$% rhs(a) # pipe syntax for with(lhs, rhs(lhs$a))•

lhs %T>% rhs # pipe syntax for { rhs(lhs); lhs }•

Parameters

lhs rhs

A value or the magrittr placeholder. A function call using the magrittr semantics

Remarks

Packages that use %>%

The pipe operator is defined in the magrittr package, but it gained huge visibility and popularity

with the dplyr package (which imports the definition from magrittr). Now it is part of tidyverse,

which is a collection of packages that "work in harmony because they share common data

representations and API design".

The magrittr package also provides several variations of the pipe operator for those who want

more flexibility in piping, such as the compound assignment pipe %<>%, the exposition pipe %$%, and

the tee operator %T>%. It also provides a suite of alias functions to replace common functions that

have special syntax (+, [, [[, etc.) so that they can be easily used within a chain of pipes.

https://riptutorial.com/ 379

https://blog.rstudio.org/2016/09/15/tidyverse-1-0-0/

Finding documentation

As with any infix operator (such as +, *, ^, &, %in%), you can find the official documentation if you put

it in quotes: ?'%>%' or help('%>%') (assuming you have loaded a package that attaches pkg:magrittr

).

Hotkeys

There is a special hotkey in RStudio for the pipe operator: Ctrl+Shift+M (Windows & Linux),

Cmd+Shift+M (Mac).

Performance Considerations

While the pipe operator is useful, be aware that there is a negative impact on performance due

mainly to the overhead of using it. Consider the following two things carefully when using the pipe

operator:

Machine performance (loops)•

Evaluation (object %>% rm() does not remove object)•

Examples

Basic use and chaining

The pipe operator, %>%, is used to insert an argument into a function. It is not a base feature of the

language and can only be used after attaching a package that provides it, such as magrittr. The

pipe operator takes the left-hand side (LHS) of the pipe and uses it as the first argument of the

function on the right-hand side (RHS) of the pipe. For example:

library(magrittr)

1:10 %>% mean
[1] 5.5

is equivalent to
mean(1:10)
[1] 5.5

The pipe can be used to replace a sequence of function calls. Multiple pipes allow us to read and

write the sequence from left to right, rather than from inside to out. For example, suppose we have

years defined as a factor but want to convert it to a numeric. To prevent possible information loss,

we first convert to character and then to numeric:

years <- factor(2008:2012)

nesting
as.numeric(as.character(years))

piping

https://riptutorial.com/ 380

https://www.rstudio.com/products/rstudio/

years %>% as.character %>% as.numeric

If we don't want the LHS (Left Hand Side) used as the first argument on the RHS (Right Hand

Side), there are workarounds, such as naming the arguments or using . to indicate where the

piped input goes.

example with grepl
its syntax:
grepl(pattern, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE)

note that the `substring` result is the *2nd* argument of grepl
grepl("Wo", substring("Hello World", 7, 11))

piping while naming other arguments
"Hello World" %>% substring(7, 11) %>% grepl(pattern = "Wo")

piping with .
"Hello World" %>% substring(7, 11) %>% grepl("Wo", .)

piping with . and curly braces
"Hello World" %>% substring(7, 11) %>% { c(paste('Hi', .)) }
#[1] "Hi World"

#using LHS multiple times in argument with curly braces and .
"Hello World" %>% substring(7, 11) %>% { c(paste(. ,'Hi', .)) }
#[1] "World Hi World"

Functional sequences

Given a sequence of steps we use repeatedly, it's often handy to store it in a function. Pipes allow

for saving such functions in a readable format by starting a sequence with a dot as in:

. %>% RHS

As an example, suppose we have factor dates and want to extract the year:

library(magrittr) # needed to include the pipe operators
library(lubridate)
read_year <- . %>% as.character %>% as.Date %>% year

Creating a dataset
df <- data.frame(now = "2015-11-11", before = "2012-01-01")
now before
1 2015-11-11 2012-01-01

Example 1: applying `read_year` to a single character-vector
df$now %>% read_year
[1] 2015

Example 2: applying `read_year` to all columns of `df`
df %>% lapply(read_year) %>% as.data.frame # implicit `lapply(df, read_year)
now before
1 2015 2012

Example 3: same as above using `mutate_all`

https://riptutorial.com/ 381

library(dplyr)
df %>% mutate_all(funs(read_year))
if an older version of dplyr use `mutate_each`
now before
1 2015 2012

We can review the composition of the function by typing its name or using functions:

read_year
Functional sequence with the following components:

1. as.character(.)
2. as.Date(.)
3. year(.)

Use 'functions' to extract the individual functions.

We can also access each function by its position in the sequence:

read_year[[2]]
function (.)
as.Date(.)

Generally, this approach may be useful when clarity is more important than speed.

Assignment with %<>%

The magrittr package contains a compound assignment infix-operator, %<>%, that updates a value

by first piping it into one or more rhs expressions and then assigning the result. This eliminates the

need to type an object name twice (once on each side of the assignment operator <-). %<>% must

be the first infix-operator in a chain:

library(magrittr)
library(dplyr)

df <- mtcars

Instead of writing

df <- df %>% select(1:3) %>% filter(mpg > 20, cyl == 6)

or

df %>% select(1:3) %>% filter(mpg > 20, cyl == 6) -> df

The compound assignment operator will both pipe and reassign df:

df %<>% select(1:3) %>% filter(mpg > 20, cyl == 6)

Exposing contents with %$%

https://riptutorial.com/ 382

The exposition pipe operator, %$%, exposes the column names as R symbols within the left-hand

side object to the right-hand side expression. This operator is handy when piping into functions

that do not have a data argument (unlike, say, lm) and that don't take a data.frame and column

names as arguments (most of the main dplyr functions).

The exposition pipe operator %$% allows a user to avoid breaking a pipeline when needing to refer

to column names. For instance, say you want to filter a data.frame and then run a correlation test

on two columns with cor.test:

library(magrittr)
library(dplyr)
mtcars %>%
 filter(wt > 2) %$%
 cor.test(hp, mpg)

#>
#> Pearson's product-moment correlation
#>
#> data: hp and mpg
#> t = -5.9546, df = 26, p-value = 2.768e-06
#> alternative hypothesis: true correlation is not equal to 0
#> 95 percent confidence interval:
#> -0.8825498 -0.5393217
#> sample estimates:
#> cor
#> -0.7595673

Here the standard %>% pipe passes the data.frame through to filter(), while the %$% pipe exposes

the column names to cor.test().

The exposition pipe works like a pipe-able version of the base R with() functions, and the same

left-hand side objects are accepted as inputs.

Using the pipe with dplyr and ggplot2

The %>% operator can also be used to pipe the dplyr output into ggplot. This creates a unified

exploratory data analysis (EDA) pipeline that is easily customizable. This method is faster than

doing the aggregations internally in ggplot and has the added benefit of avoiding unnecessary

intermediate variables.

library(dplyr)
library(ggplot)

diamonds %>%
 filter(depth > 60) %>%
 group_by(cut) %>%
 summarize(mean_price = mean(price)) %>%
 ggplot(aes(x = cut, y = mean_price)) +
 geom_bar(stat = "identity")

Creating side effects with %T>%

https://riptutorial.com/ 383

Some functions in R produce a side effect (i.e. saving, printing, plotting, etc) and do not always

return a meaningful or desired value.

%T>% (tee operator) allows you to forward a value into a side-effect-producing function while

keeping the original lhs value intact. In other words: the tee operator works like %>%, except the

return values is lhs itself, and not the result of the rhs function/expression.

Example: Create, pipe, write, and return an object. If %>% were used in place of %T>% in this

example, then the variable all_letters would contain NULL rather than the value of the sorted

object.

all_letters <- c(letters, LETTERS) %>%
 sort %T>%
 write.csv(file = "all_letters.csv")

read.csv("all_letters.csv") %>% head()
x
1 a
2 A
3 b
4 B
5 c
6 C

Warning: Piping an unnamed object to save() will produce an object named . when loaded into the

workspace with load(). However, a workaround using a helper function is possible (which can also

be written inline as an anonymous function).

all_letters <- c(letters, LETTERS) %>%
 sort %T>%
 save(file = "all_letters.RData")

load("all_letters.RData", e <- new.env())

get("all_letters", envir = e)
Error in get("all_letters", envir = e) : object 'all_letters' not found

get(".", envir = e)
[1] "a" "A" "b" "B" "c" "C" "d" "D" "e" "E" "f" "F" "g" "G" "h" "H" "i" "I" "j" "J"
[21] "k" "K" "l" "L" "m" "M" "n" "N" "o" "O" "p" "P" "q" "Q" "r" "R" "s" "S" "t" "T"
[41] "u" "U" "v" "V" "w" "W" "x" "X" "y" "Y" "z" "Z"

Work-around
save2 <- function(. = ., name, file = stop("'file' must be specified")) {
 assign(name, .)
 call_save <- call("save", ... = name, file = file)
 eval(call_save)
}

all_letters <- c(letters, LETTERS) %>%
 sort %T>%
 save2("all_letters", "all_letters.RData")

Read Pipe operators (%>% and others) online: https://riptutorial.com/r/topic/652/pipe-operators----

--and-others-

https://riptutorial.com/ 384

https://riptutorial.com/r/topic/652/pipe-operators------and-others-
https://riptutorial.com/r/topic/652/pipe-operators------and-others-

Chapter 78: Pivot and unpivot with data.table

Syntax

Melt with melt(DT, id.vars=c(..), variable.name="CategoryLabel", value.name="Value")•

Cast with dcast(DT, LHS ~ RHS, value.var="Value", fun.aggregate=sum)•

Parameters

Parameter Details

id.vars tell melt which columns to retain

variable.name tell melt what to call the column with category labels

value.name
tell melt what to call the column that has values associated with category

labels

value.var tell dcast where to find the values to cast in columns

formula
tell dcast which columns to retain to form a unique record identifier (LHS) and

which one holds the category labels (RHS)

fun.aggregate
specify the function to use when the casting operation generates a list of

values in each cell

Remarks

Much of what goes into conditioning data to build models or visualizations can be accomplished

with data.table. As compare to other options, data.table offers advantages of speed and flexibility.

Examples

Pivot and unpivot tabular data with data.table - I

Convert from wide form to long form

Load data USArrests from datasets.

data("USArrests")
head(USArrests)

 Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5

https://riptutorial.com/ 385

Arizona 8.1 294 80 31.0
Arkansas 8.8 190 50 19.5
California 9.0 276 91 40.6
Colorado 7.9 204 78 38.7

Use ?USArrests to find out more. First, convert to data.table. The names of states are row names in

the original data.frame.

library(data.table)
DT <- as.data.table(USArrests, keep.rownames=TRUE)

This is data in the wide form. It has a column for each variable. The data can also be stored in

long form without loss of information. The long form has one column that stores the variable

names. Then, it has another column for the variable values. The long form of USArrests looks like

so.

 State Crime Rate
 1: Alabama Murder 13.2
 2: Alaska Murder 10.0
 3: Arizona Murder 8.1
 4: Arkansas Murder 8.8
 5: California Murder 9.0

196: Virginia Rape 20.7
197: Washington Rape 26.2
198: West Virginia Rape 9.3
199: Wisconsin Rape 10.8
200: Wyoming Rape 15.6

We use the melt function to switch from wide form to long form.

DTm <- melt(DT)
names(DTm) <- c("State", "Crime", "Rate")

By default, melt treats all columns with numeric data as variables with values. In USArrests, the

variable UrbanPop represents the percentage urban population of a state. It is different from the

other variabes, Murder, Assault and Rape, which are violent crimes reported per 100,000 people.

Suppose we want to retain UrbanPop column. We achieve this by setting id.vars as follows.

DTmu <- melt(DT, id.vars=c("rn", "UrbanPop"),
 variable.name='Crime', value.name = "Rate")
names(DTmu)[1] <- "State"

Note that we have specified the names of the column containing category names (Murder,

Assault, etc.) with variable.name and the column containing the values with value.name. Our data

looks like so.

 State UrbanPop Crime Rate
 1: Alabama 58 Murder 13.2
 2: Alaska 48 Murder 10.0
 3: Arizona 80 Murder 8.1
 4: Arkansas 50 Murder 8.8

https://riptutorial.com/ 386

 5: California 91 Murder 9.0

Generating summaries with with split-apply-combine style approach is a breeze. For example, to

summarize violent crimes by state?

DTmu[, .(ViolentCrime = sum(Rate)), by=State]

This gives:

 State ViolentCrime
1: Alabama 270.4
2: Alaska 317.5
3: Arizona 333.1
4: Arkansas 218.3
5: California 325.6
6: Colorado 250.6

Pivot and unpivot tabular data with data.table - II

Convert from long form to wide form

To recover data from the previous example, use dcast like so.

DTc <- dcast(DTmu, State + UrbanPop ~ Crime)

This gives the data in the original wide form.

 State UrbanPop Murder Assault Rape
 1: Alabama 58 13.2 236 21.2
 2: Alaska 48 10.0 263 44.5
 3: Arizona 80 8.1 294 31.0
 4: Arkansas 50 8.8 190 19.5
 5: California 91 9.0 276 40.6

Here, the formula notation is used to specify the columns that form a unique record identifier (LHS)

and the column containing category labels for new column names (RHS). Which column to use for

the numeric values? By default, dcast uses the first column with numerical values left over when

from the formula specification. To make explicit, use the parameter value.var with column name.

When the operation produces a list of values in each cell, dcast provides a fun.aggregate method to

handle the situation. Say I am interested in states with similar urban population when investigating

crime rates. I add a column Decile with computed information.

DTmu[, Decile := cut(UrbanPop, quantile(UrbanPop, probs = seq(0, 1, by=0.1)))]
levels(DTmu$Decile) <- paste0(1:10, "D")

Now, casting Decile ~ Crime produces multiple values per cell. I can use fun.aggregate to

determine how these are handled. Both text and numerical values can be handle this way.

https://riptutorial.com/ 387

dcast(DTmu, Decile ~ Crime, value.var="Rate", fun.aggregate=sum)

This gives:

dcast(DTmu, Decile ~ Crime, value.var="Rate", fun.aggregate=mean)

This gives:

 State UrbanPop Crime Rate Decile
 1: Alabama 58 Murder 13.2 4D
 2: Alaska 48 Murder 10.0 2D
 3: Arizona 80 Murder 8.1 8D
 4: Arkansas 50 Murder 8.8 2D
 5: California 91 Murder 9.0 10D

There are multiple states in each decile of the urban population. Use fun.aggregate to specify how

these should be handled.

dcast(DTmu, Decile ~ Crime, value.var="Rate", fun.aggregate=sum)

This sums over the data for like states, giving the following.

 Decile Murder Assault Rape
 1: 1D 39.4 808 62.6
 2: 2D 35.3 815 94.3
 3: 3D 22.6 451 67.7
 4: 4D 54.9 898 106.0
 5: 5D 42.4 758 107.6

Read Pivot and unpivot with data.table online: https://riptutorial.com/r/topic/6934/pivot-and-

unpivot-with-data-table

https://riptutorial.com/ 388

https://riptutorial.com/r/topic/6934/pivot-and-unpivot-with-data-table
https://riptutorial.com/r/topic/6934/pivot-and-unpivot-with-data-table

Chapter 79: Probability Distributions with R

Examples

PDF and PMF for different distributions in R

PMF FOR THE BINOMIAL DISTRIBUTION

Suppose that a fair die is rolled 10 times. What is the probability of throwing exactly two sixes?

You can answer the question using the dbinom function:

> dbinom(2, 10, 1/6)
[1] 0.29071

PMF FOR THE POISSON DISTRIBUTION

The number of sandwhich ordered in a restaurant on a given day is known to follow a Poisson

distribution with a mean of 20. What is the probability that exactly eighteen sandwhich will be

ordered tomorrow?

You can answer the question with the dpois function:

> dpois(18, 20)
[1] 0.08439355

PDF FOR THE NORMAL DISTRIBUTION

To find the value of the pdf at x=2.5 for a normal distribution with a mean of 5 and a standard

deviation of 2, use the command:

> dnorm(2.5, mean=5, sd=2)
[1] 0.09132454

Read Probability Distributions with R online: https://riptutorial.com/r/topic/4333/probability-

distributions-with-r

https://riptutorial.com/ 389

https://riptutorial.com/r/topic/4333/probability-distributions-with-r
https://riptutorial.com/r/topic/4333/probability-distributions-with-r

Chapter 80: Publishing

Introduction

There are many ways of formatting R code, tables and graphs for publishing.

Remarks

R users often want to publish analysis and results in a reproducible way. See Reproducible R for

details.

Examples

Formatting tables

Here, "table" is meant broadly (covering data.frame, table,

Printing to plain text

Printing (as seen in the console) might suffice for a plain-text document to be viewed in

monospaced font:

Note: Before making the example data below, make sure you're in an empty folder you can write

to. Run getwd() and read ?setwd if you need to change folders.

..w = options()$width
options(width = 500) # reduce text wrapping
sink(file = "mytab.txt")
 summary(mtcars)
sink()
options(width = ..w)
rm(..w)

Printing delimited tables

Writing to CSV (or another common format) and then opening in a spreadsheet editor to apply

finishing touches is another option:

Note: Before making the example data below, make sure you're in an empty folder you can write

to. Run getwd() and read ?setwd if you need to change folders.

write.csv(mtcars, file="mytab.csv")

https://riptutorial.com/ 390

http://www.riptutorial.com/r/topic/4087/reproducible-r

Further resources

knitr::kable•

stargazer•
tables::tabular•

texreg•

xtable•

Formatting entire documents

Sweave from the utils package allows for formatting code, prose, graphs and tables together in a

LaTeX document.

Further Resources

Knitr and RMarkdown•

Read Publishing online: https://riptutorial.com/r/topic/9039/publishing

https://riptutorial.com/ 391

http://www.riptutorial.com/r/topic/9037/using-texreg-to-export-models-in-a-paper-ready-way
https://riptutorial.com/r/topic/9039/publishing

Chapter 81: R code vectorization best

practices

Examples

By row operations

The key in vectorizing R code, is to reduce or eliminate "by row operations" or method dispatching

of R functions.

That means that when approaching a problem that at first glance requires "by row operations",

such as calculating the means of each row, one needs to ask themselves:

What are the classes of the data sets I'm dealing with?•

Is there an existing compiled code that can achieve this without the need of repetitive

evaluation of R functions?

•

If not, can I do these operation by columns instead by row?•

Finally, is it worth spending a lot of time on developing complicated vectorized code instead

of just running a simple apply loop? In other words, is the data big/sophisticated enough that

R can't handle it efficiently using a simple loop?

•

Putting aside the memory pre-allocation issue and growing object in loops, we will focus in this

example on how to possibly avoid apply loops, method dispatching or re-evaluating R functions

within loops.

A standard/easy way of calculating mean by row would be:

apply(mtcars, 1, mean)
 Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet
Sportabout Valiant Duster 360
 29.90727 29.98136 23.59818 38.73955
53.66455 35.04909 59.72000
 Merc 240D Merc 230 Merc 280 Merc 280C Merc
450SE Merc 450SL Merc 450SLC
 24.63455 27.23364 31.86000 31.78727
46.43091 46.50000 46.35000
 Cadillac Fleetwood Lincoln Continental Chrysler Imperial Fiat 128 Honda
Civic Toyota Corolla Toyota Corona
 66.23273 66.05855 65.97227 19.44091
17.74227 18.81409 24.88864
 Dodge Challenger AMC Javelin Camaro Z28 Pontiac Firebird Fiat
X1-9 Porsche 914-2 Lotus Europa
 47.24091 46.00773 58.75273 57.37955
18.92864 24.77909 24.88027
 Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
 60.97182 34.50818 63.15545 26.26273

But can we do better? Lets's see what happened here:

https://riptutorial.com/ 392

First, we converted a data.frame to a matrix. (Note that his happens within the apply function.)

This is both inefficient and dangerous. a matrix can't hold several column types at a time.

Hence, such conversion will probably lead to loss of information and some times to

misleading results (compare apply(iris, 2, class) with str(iris) or with sapply(iris, class)

).

1.

Second of all, we performed an operation repetitively, one time for each row. Meaning, we

had to evaluate some R function nrow(mtcars) times. In this specific case, mean is not a

computationally expensive function, hence R could likely easily handle it even for a big data

set, but what would happen if we need to calculate the standard deviation by row (which

involves an expensive square root operation)? Which brings us to the next point:

2.

We evaluated the R function many times, but maybe there already is a compiled version of

this operation?

3.

Indeed we could simply do:

rowMeans(mtcars)
 Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet
Sportabout Valiant Duster 360
 29.90727 29.98136 23.59818 38.73955
53.66455 35.04909 59.72000
 Merc 240D Merc 230 Merc 280 Merc 280C Merc
450SE Merc 450SL Merc 450SLC
 24.63455 27.23364 31.86000 31.78727
46.43091 46.50000 46.35000
 Cadillac Fleetwood Lincoln Continental Chrysler Imperial Fiat 128 Honda
Civic Toyota Corolla Toyota Corona
 66.23273 66.05855 65.97227 19.44091
17.74227 18.81409 24.88864
 Dodge Challenger AMC Javelin Camaro Z28 Pontiac Firebird Fiat
X1-9 Porsche 914-2 Lotus Europa
 47.24091 46.00773 58.75273 57.37955
18.92864 24.77909 24.88027
 Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
 60.97182 34.50818 63.15545 26.26273

This involves no by row operations and therefore no repetitive evaluation of R functions. However,

we still converted a data.frame to a matrix. Though rowMeans has an error handling mechanism and

it won't run on a data set that it can't handle, it's still has an efficiency cost.

rowMeans(iris)
Error in rowMeans(iris) : 'x' must be numeric

But still, can we do better? We could try instead of a matrix conversion with error handling, a

different method that will allow us to use mtcars as a vector (because a data.frame is essentially a

list and a list is a vector).

Reduce(`+`, mtcars)/ncol(mtcars)
 [1] 29.90727 29.98136 23.59818 38.73955 53.66455 35.04909 59.72000 24.63455 27.23364 31.86000
31.78727 46.43091 46.50000 46.35000 66.23273 66.05855
[17] 65.97227 19.44091 17.74227 18.81409 24.88864 47.24091 46.00773 58.75273 57.37955 18.92864
24.77909 24.88027 60.97182 34.50818 63.15545 26.26273

https://riptutorial.com/ 393

Now for possible speed gain, we lost column names and error handling (including NA handling).

Another example would be calculating mean by group, using base R we could try

aggregate(. ~ cyl, mtcars, mean)
cyl mpg disp hp drat wt qsec vs am gear
carb
1 4 26.66364 105.1364 82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909
1.545455
2 6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143
3.428571
3 8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714
3.500000

Still, we are basically evaluating an R function in a loop, but the loop is now hidden in an internal C

function (it matters little whether it is a C or an R loop).

Could we avoid it? Well there is a compiled function in R called rowsum, hence we could do:

rowsum(mtcars[-2], mtcars$cyl)/table(mtcars$cyl)
mpg disp hp drat wt qsec vs am gear carb
4 26.66364 105.1364 82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909 1.545455
6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143 3.428571
8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714 3.500000

Though we had to convert to a matrix first too.

A this point we may question whether our current data structure is the most appropriate one. Is a

data.frame is the best practice? Or should one just switch to a matrix data structure in order to gain

efficiency?

By row operations will get more and more expensive (even in matrices) as we start to evaluate

expensive functions each time. Lets us consider a variance calculation by row example.

Lets say we have a matrix m:

set.seed(100)
m <- matrix(sample(1e2), 10)
m
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 8 33 39 86 71 100 81 68 89 84
 [2,] 12 16 57 80 32 82 69 11 41 92
 [3,] 62 91 53 13 42 31 60 70 98 79
 [4,] 66 94 29 67 45 59 20 96 64 1
 [5,] 36 63 76 6 10 48 85 75 99 2
 [6,] 18 4 27 19 44 56 37 95 26 40
 [7,] 3 24 21 25 52 51 83 28 49 17
 [8,] 46 5 22 43 47 74 35 97 77 65
 [9,] 55 54 78 34 50 90 30 61 14 58
[10,] 88 73 38 15 9 72 7 93 23 87

One could simply do:

https://riptutorial.com/ 394

apply(m, 1, var)
[1] 871.6556 957.5111 699.2111 941.4333 1237.3333 641.8222 539.7889 759.4333 500.4889
1255.6111

On the other hand, one could also completely vectorize this operation by following the formula of

variance

RowVar <- function(x) {
 rowSums((x - rowMeans(x))^2)/(dim(x)[2] - 1)
}
RowVar(m)
[1] 871.6556 957.5111 699.2111 941.4333 1237.3333 641.8222 539.7889 759.4333 500.4889
1255.6111

Read R code vectorization best practices online: https://riptutorial.com/r/topic/3327/r-code-

vectorization-best-practices

https://riptutorial.com/ 395

https://riptutorial.com/r/topic/3327/r-code-vectorization-best-practices
https://riptutorial.com/r/topic/3327/r-code-vectorization-best-practices

Chapter 82: R in LaTeX with knitr

Syntax

<<internal-code-chunk-name, options...>>=

R Code Here

@

1.

\Sexpr{ #R Code Here }2.

<< read-external-R-file >>=

read_chunk('r-file.R')

@

<<external-code-chunk-name, options...>>=

@

3.

Parameters

Option Details

echo (TRUE/FALSE) - whether to include R source code in the output file

message
(TRUE/FALSE) - whether to include messages from the R source execution in the

output file

warning
(TRUE/FALSE) - whether to include warnings from the R source execution in the

output file

error
(TRUE/FALSE) - whether to include errors from the R source execution in the

output file

cache (TRUE/FALSE) - whether to cache the results of the R source execution

fig.width (numeric) - width of the plot generated by the R source execution

fig.height (numeric) - height of the plot generated by the R source execution

Remarks

Knitr is a tool that allows us to interweave natural language (in the form of LaTeX) and source

code (in the form of R). In general, the concept of interspersing natural language and source code

is called literate programming. Since knitr files contain a mixture of LaTeX (traditionally housed in

.tex files) and R (traditionally housed in .R files) a new file extension called R noweb (.Rnw) is

required. .Rnw files contain a mixture of LaTeX and R code.

Knitr allows for the generation of statistical reports in PDF format and is a key tool for achieving

reproducable research.

https://riptutorial.com/ 396

https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Reproducibility#Reproducible_research

Compiling .Rnw files to a PDF is a two step process. First, we need to know how to execute the R

code and capture the output in a format that a LaTeX compiler can understand (a process called

'kniting'). We do this using the knitr package. The command for this is shown below, assuming you

have installed the knitr package:

Rscript -e "library(knitr); knit('r-noweb-file.Rnw')

This will generate a normal .tex file (called r-noweb.tex in this example) which can then be turned

into a PDF file using:

pdflatex r-noweb-file.tex

Examples

R in Latex with Knitr and Code Externalization

Knitr is an R package that allows us to intermingle R code with LaTeX code. One way to achieve

this is external code chunks. External code chunks allow us to develop/test R Scripts in an R

development environment and then include the results in a report. It is a powerful organizational

technique. This approach is demonstrated below.

r-noweb-file.Rnw
\documentclass{article}

 <<echo=FALSE,cache=FALSE>>=
 knitr::opts_chunk$set(echo=FALSE, cache=TRUE)
 knitr::read_chunk('r-file.R')
 @

\begin{document}
This is an Rnw file (R noweb). It contains a combination of LateX and R.

One we have called the read_chunk command above we can reference sections of code in the r-
file.R script.

<<Chunk1>>=
@
\end{document}

When using this approach we keep our code in a separate R file as shown below.

r-file.R
note the specific comment style of a single pound sign followed by four dashes

---- Chunk1 ----

print("This is R Code in an external file")

x <- seq(1:10)
y <- rev(seq(1:10))
plot(x,y)

https://riptutorial.com/ 397

https://en.wikipedia.org/wiki/Literate_programming

R in Latex with Knitr and Inline Code Chunks

Knitr is an R package that allows us to intermingle R code with LaTeX code. One way to achieve

this is inline code chunks. This apporach is demonstrated below.

r-noweb-file.Rnw
\documentclass{article}
\begin{document}
This is an Rnw file (R noweb). It contains a combination of LateX and R.

<<my-label>>=
print("This is an R Code Chunk")
x <- seq(1:10)
@

Above is an internal code chunk.
We can access data created in any code chunk inline with our LaTeX code like this.
The length of array x is \Sexpr{length(x)}.

\end{document}

R in LaTex with Knitr and Internal Code Chunks

Knitr is an R package that allows us to intermingle R code with LaTeX code. One way to achieve

this is internal code chunks. This apporach is demonstrated below.

r-noweb-file.Rnw
\documentclass{article}
\begin{document}
This is an Rnw file (R noweb). It contains a combination of LateX and R.

<<code-chunk-label>>=
print("This is an R Code Chunk")
x <- seq(1:10)
y <- seq(1:10)
plot(x,y) # Brownian motion
@

\end{document}

Read R in LaTeX with knitr online: https://riptutorial.com/r/topic/4334/r-in-latex-with-knitr

https://riptutorial.com/ 398

https://riptutorial.com/r/topic/4334/r-in-latex-with-knitr

Chapter 83: R Markdown Notebooks (from

RStudio)

Introduction

An R Notebook is an R Markdown document with chunks that can be executed independently and

interactively, with output visible immediately beneath the input. They are similar to R Markdown

documents with the exception of results being displayed in the R Notebook creation/edit mode

rather than in the rendered output. Note: R Notebooks are new feature of RStudio and are only

available in version 1.0 or higher of RStudio.

Examples

Creating a Notebook

You can create a new notebook in RStudio with the menu command File -> New File -> R

Notebook

If you don't see the option for R Notebook, then you need to update your version of RStudio. For

installation of RStudio follow this guide

https://riptutorial.com/ 399

http://www.riptutorial.com/r/topic/360/getting-started-with-r-language

Inserting Chunks

Chunks are pieces of code that can be executed interactively. In-order to insert a new chunk by

clicking on the insert button present on the notebook toolbar and select your desired code

platform (R in this case, since we want to write R code). Alternatively we can use keyboard

shortcuts to insert a new chunk Ctrl + Alt + I (OS X: Cmd + Option + I)

https://riptutorial.com/ 400

https://i.stack.imgur.com/NLTv4.png

Executing Chunk Code

You can run the current chunk by clicking Run current Chunk (green play button) present on

the right side of the chunk. Alternatively we can use keyboard shortcut Ctrl + Shift + Enter (OS X:

Cmd + Shift + Enter)

The output from all the lines in the chunk will appear beneath the chunk.

Splitting Code into Chunks

Since a chunk produces its output beneath the chunk, when having multiple lines of code in a

https://riptutorial.com/ 401

https://i.stack.imgur.com/n9WZH.jpg

single chunk that produces multiples outputs it is often helpful to split into multiple chunks such

that each chunk produces one output.

To do this, select the code to you want to split into a new chunk and press Ctrl + Alt + I (OS X:

Cmd + Option + I)

Execution Progress

When you execute code in a notebook, an indicator will appear in the gutter to show you execution

progress. Lines of code which have been sent to R are marked with dark green; lines which have

not yet been sent to R are marked with light green.

https://riptutorial.com/ 402

https://i.stack.imgur.com/U1Bwc.jpg

Executing Multiple Chunks

Running or Re-Running individual chunks by pressing Run for all the chunks present in a

document can be painful. We can use Run All from the Insert menu in the toolbar to Run all the

chunks present in the notebook. Keyboard shortcut is Ctrl + Alt + R (OS X: Cmd + Option + R)

There’s also a option Restart R and Run All Chunks command (available in the Run menu on

the editor toolbar), which gives you a fresh R session prior to running all the chunks.

We also have options like Run All Chunks Above and Run All Chunks Below to run chunks

Above or Below from a selected chunk.

https://riptutorial.com/ 403

https://i.stack.imgur.com/K6Nxj.jpg

Preview Output

Before rendering the final version of a notebook we can preview the output. Click on the Preview

button on the toolbar and select the desired output format.

You can change the type of output by using the output options as "pdf_document" or

"html_notebook"

Saving and Sharing

When a notebook .Rmd is saved, an .nb.html file is created alongside it. This file is a self-contained

HTML file which contains both a rendered copy of the notebook with all current chunk outputs

https://riptutorial.com/ 404

https://i.stack.imgur.com/ivArF.jpg

(suitable for display on a website) and a copy of the notebook .Rmd itself.

More info can be found at RStudio docs

Read R Markdown Notebooks (from RStudio) online: https://riptutorial.com/r/topic/10728/r-

markdown-notebooks--from-rstudio-

https://riptutorial.com/ 405

http://rmarkdown.rstudio.com/r_notebooks.html
https://riptutorial.com/r/topic/10728/r-markdown-notebooks--from-rstudio-
https://riptutorial.com/r/topic/10728/r-markdown-notebooks--from-rstudio-

Chapter 84: R memento by examples

Introduction

This topic is meant to be a memento about the R language without any text, with self-explanatory

examples.

Each example is meant to be as succint as possible.

Examples

Data types

Vectors

a <- c(1, 2, 3)
b <- c(4, 5, 6)
mean_ab <- (a + b) / 2

d <- c(1, 0, 1)
only_1_3 <- a[d == 1]

Matrices

mat <- matrix(c(1,2,3,4), nrow = 2, ncol = 2)
dimnames(mat) <- list(c(), c("a", "b", "c"))
mat[,] == mat

Dataframes

df <- data.frame(qualifiers = c("Buy", "Sell", "Sell"),
 symbols = c("AAPL", "MSFT", "GOOGL"),
 values = c(326.0, 598.3, 201.5))
df$symbols == df[[2]]
df$symbols == df[["symbols"]]
df[[2, 1]] == "AAPL"

Lists

l <- list(a = 500, "aaa", 98.2)
length(l) == 3
class(l[1]) == "list"

https://riptutorial.com/ 406

class(l[[1]]) == "numeric"
class(l$a) == "numeric"

Environments

env <- new.env()
env[["foo"]] = "bar"
env2 <- env
env2[["foo"]] = "BAR"

env[["foo"]] == "BAR"
get("foo", envir = env) == "BAR"
rm("foo", envir = env)
env[["foo"]] == NULL

Plotting (using plot)

Creates a 1 row - 2 columns format
par(mfrow=c(1,2))

plot(rnorm(100), main = "Graph 1", ylab = "Normal distribution")
grid()
legend(x = 40, y = -1, legend = "A legend")

plot(rnorm(100), main = "Graph 2", type = "l")
abline(v = 50)

Result:

Commonly used functions

https://riptutorial.com/ 407

https://i.stack.imgur.com/UOTw4.jpg

Create 100 standard normals in a vector
x <- rnorm(100, mean = 0, sd = 1)

Find the lenght of a vector
length(x)

Compute the mean
mean(x)

Compute the standard deviation
sd(x)

Compute the median value
median(x)

Compute the range (min, max)
range(x)

Sum an iterable
sum(x)

Cumulative sum (x[1], x[1]+x[2], ...)
cumsum(x)

Display the first 3 elements
head(3, x)

Display min, 1st quartile, median, mean, 3rd quartile, max
summary(x)

Compute successive difference between elements
diff(x)

Create a range from 1 to 10 step 1
1:10

Create a range from 1 to 10 step 0.1
seq(1, 10, 0.1)

Print a string
print("hello world")

Read R memento by examples online: https://riptutorial.com/r/topic/10827/r-memento-by-

examples

https://riptutorial.com/ 408

https://riptutorial.com/r/topic/10827/r-memento-by-examples
https://riptutorial.com/r/topic/10827/r-memento-by-examples

Chapter 85: Random Forest Algorithm

Introduction

RandomForest is an ensemble method for classification or regression that reduces the chance of

overfitting the data. Details of the method can be found in the Wikipedia article on Random

Forests. The main implementation for R is in the randomForest package, but there are other

implementations. See the CRAN view on Machine Learning.

Examples

Basic examples - Classification and Regression

 ###### Used for both Classification and Regression examples
 library(randomForest)
 library(car) ## For the Soils data
 data(Soils)

 ##
 ## RF Classification Example
 set.seed(656) ## for reproducibility
 S_RF_Class = randomForest(Gp ~ ., data=Soils[,c(4,6:14)])
 Gp_RF = predict(S_RF_Class, Soils[,6:14])
 length(which(Gp_RF != Soils$Gp)) ## No Errors

 ## Naive Bayes for comparison
 library(e1071)
 S_NB = naiveBayes(Soils[,6:14], Soils[,4])
 Gp_NB = predict(S_NB, Soils[,6:14], type="class")
 length(which(Gp_NB != Soils$Gp)) ## 6 Errors

This example tested on the training data, but illustrates that RF can make very good models.

 ##
 ## RF Regression Example
 set.seed(656) ## for reproducibility
 S_RF_Reg = randomForest(pH ~ ., data=Soils[,6:14])
 pH_RF = predict(S_RF_Reg, Soils[,6:14])

 ## Compare Predictions with Actual values for RF and Linear Model
 S_LM = lm(pH ~ ., data=Soils[,6:14])
 pH_LM = predict(S_LM, Soils[,6:14])
 par(mfrow=c(1,2))
 plot(Soils$pH, pH_RF, pch=20, ylab="Predicted", main="Random Forest")
 abline(0,1)
 plot(Soils$pH, pH_LM, pch=20, ylab="Predicted", main="Linear Model")
 abline(0,1)

https://riptutorial.com/ 409

https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest
https://cran.r-project.org/view=MachineLearning

Read Random Forest Algorithm online: https://riptutorial.com/r/topic/8088/random-forest-algorithm

https://riptutorial.com/ 410

https://i.stack.imgur.com/ieM8R.png
https://riptutorial.com/r/topic/8088/random-forest-algorithm

Chapter 86: Random Numbers Generator

Examples

Random permutations

To generate random permutation of 5 numbers:

sample(5)
[1] 4 5 3 1 2

To generate random permutation of any vector:

sample(10:15)
[1] 11 15 12 10 14 13

One could also use the package pracma

randperm(a, k)
Generates one random permutation of k of the elements a, if a is a vector,
or of 1:a if a is a single integer.
a: integer or numeric vector of some length n.
k: integer, smaller as a or length(a).

Examples
library(pracma)
randperm(1:10, 3)
[1] 3 7 9

randperm(10, 10)
[1] 4 5 10 8 2 7 6 9 3 1

randperm(seq(2, 10, by=2))
[1] 6 4 10 2 8

Random number generator's reproducibility

When expecting someone to reproduce an R code that has random elements in it, the set.seed()

function becomes very handy. For example, these two lines will always produce different output

(because that is the whole point of random number generators):

> sample(1:10,5)
[1] 6 9 2 7 10
> sample(1:10,5)
[1] 7 6 1 2 10

These two will also produce different outputs:

> rnorm(5)

https://riptutorial.com/ 411

[1] 0.4874291 0.7383247 0.5757814 -0.3053884 1.5117812
> rnorm(5)
[1] 0.38984324 -0.62124058 -2.21469989 1.12493092 -0.04493361

However, if we set the seed to something identical in both cases (most people use 1 for simplicity),

we get two identical samples:

> set.seed(1)
> sample(letters,2)
[1] "g" "j"
> set.seed(1)
> sample(letters,2)
[1] "g" "j"

and same with, say, rexp() draws:

> set.seed(1)
> rexp(5)
[1] 0.7551818 1.1816428 0.1457067 0.1397953 0.4360686
> set.seed(1)
> rexp(5)
[1] 0.7551818 1.1816428 0.1457067 0.1397953 0.4360686

Generating random numbers using various density functions

Below are examples of generating 5 random numbers using various probability distributions.

Uniform distribution between 0 and 10

runif(5, min=0, max=10)
[1] 2.1724399 8.9209930 6.1969249 9.3303321 2.4054102

Normal distribution with 0 mean and standard deviation of 1

rnorm(5, mean=0, sd=1)
[1] -0.97414402 -0.85722281 -0.08555494 -0.37444299 1.20032409

Binomial distribution with 10 trials and success probability

of 0.5

rbinom(5, size=10, prob=0.5)
[1] 4 3 5 2 3

Geometric distribution with 0.2 success probability

rgeom(5, prob=0.2)

https://riptutorial.com/ 412

[1] 14 8 11 1 3

Hypergeometric distribution with 3 white balls, 10 black balls

and 5 draws

rhyper(5, m=3, n=10, k=5)
[1] 2 0 1 1 1

Negative Binomial distribution with 10 trials and success

probability of 0.8

rnbinom(5, size=10, prob=0.8)
[1] 3 1 3 4 2

Poisson distribution with mean and variance (lambda) of 2

rpois(5, lambda=2)
[1] 2 1 2 3 4

Exponential distribution with the rate of 1.5

rexp(5, rate=1.5)
[1] 1.8993303 0.4799358 0.5578280 1.5630711 0.6228000

Logistic distribution with 0 location and scale of 1

rlogis(5, location=0, scale=1)
[1] 0.9498992 -1.0287433 -0.4192311 0.7028510 -1.2095458

Chi-squared distribution with 15 degrees of freedom

rchisq(5, df=15)
[1] 14.89209 19.36947 10.27745 19.48376 23.32898

Beta distribution with shape parameters a=1 and b=0.5

rbeta(5, shape1=1, shape2=0.5)
[1] 0.1670306 0.5321586 0.9869520 0.9548993 0.9999737

Gamma distribution with shape parameter of 3 and scale=0.5

https://riptutorial.com/ 413

rgamma(5, shape=3, scale=0.5)
[1] 2.2445984 0.7934152 3.2366673 2.2897537 0.8573059

Cauchy distribution with 0 location and scale of 1

rcauchy(5, location=0, scale=1)
[1] -0.01285116 -0.38918446 8.71016696 10.60293284 -0.68017185

Log-normal distribution with 0 mean and standard deviation

of 1 (on log scale)

rlnorm(5, meanlog=0, sdlog=1)
[1] 0.8725009 2.9433779 0.3329107 2.5976206 2.8171894

Weibull distribution with shape parameter of 0.5 and scale of

1

rweibull(5, shape=0.5, scale=1)
[1] 0.337599112 1.307774557 7.233985075 5.840429942 0.005751181

Wilcoxon distribution with 10 observations in the first

sample and 20 in second.

rwilcox(5, 10, 20)
[1] 111 88 93 100 124

Multinomial distribution with 5 object and 3 boxes using the

specified probabilities

rmultinom(5, size=5, prob=c(0.1,0.1,0.8))
 [,1] [,2] [,3] [,4] [,5]
[1,] 0 0 1 1 0
[2,] 2 0 1 1 0
[3,] 3 5 3 3 5

Read Random Numbers Generator online: https://riptutorial.com/r/topic/1578/random-numbers-

generator

https://riptutorial.com/ 414

https://riptutorial.com/r/topic/1578/random-numbers-generator
https://riptutorial.com/r/topic/1578/random-numbers-generator

Chapter 87: Randomization

Introduction

The R language is commonly used for statistical analysis. As such, it contains a robust set of

options for randomization. For specific information on sampling from probability distributions, see

the documentation for distribution functions.

Remarks

Users who are coming from other programming languages may be confused by the lack of a rand

function equivalent to what they may have experienced before. Basic random number generation

is done using the r* family of functions for each distribution (see the link above). Random numbers

drawn uniformly from a range can be generated using runif, for "random uniform". Since this also

looks suspiciously like "run if", it is often hard to figure out for new R users.

Examples

Random draws and permutations

The sample command can be used to simulate classic probability problems like drawing from an

urn with and without replacement, or creating random permutations.

Note that throughout this example, set.seed is used to ensure that the example code is

reproducible. However, sample will work without explicitly calling set.seed.

Random permutation

In the simplest form, sample creates a random permutation of a vector of integers. This can be

accomplished with:

set.seed(1251)
sample(x = 10)

[1] 7 1 4 8 6 3 10 5 2 9

When given no other arguments, sample returns a random permutation of the vector from 1 to x.

This can be useful when trying to randomize the order of the rows in a data frame. This is a

common task when creating randomization tables for trials, or when selecting a random subset of

rows for analysis.

library(datasets)
set.seed(1171)
iris_rand <- iris[sample(x = 1:nrow(iris)),]

https://riptutorial.com/ 415

http://www.riptutorial.com/r/topic/1885/distribution-functions

> head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

> head(iris_rand)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
145 6.7 3.3 5.7 2.5 virginica
5 5.0 3.6 1.4 0.2 setosa
85 5.4 3.0 4.5 1.5 versicolor
137 6.3 3.4 5.6 2.4 virginica
128 6.1 3.0 4.9 1.8 virginica
105 6.5 3.0 5.8 2.2 virginica

Draws without Replacement

Using sample, we can also simulate drawing from a set with and without replacement. To sample

without replacement (the default), you must provide sample with a set to be drawn from and the

number of draws. The set to be drawn from is given as a vector.

set.seed(7043)
sample(x = LETTERS,size = 7)

[1] "S" "P" "J" "F" "Z" "G" "R"

Note that if the argument to size is the same as the length of the argument to x, you are creating a

random permutation. Also note that you cannot specify a size greater than the length of x when

doing sampling without replacement.

set.seed(7305)
sample(x = letters,size = 26)

[1] "x" "z" "y" "i" "k" "f" "d" "s" "g" "v" "j" "o" "e" "c" "m" "n" "h" "u" "a" "b" "l" "r"
"w" "t" "q" "p"

sample(x = letters,size = 30)
Error in sample.int(length(x), size, replace, prob) :
 cannot take a sample larger than the population when 'replace = FALSE'

This brings us to drawing with replacement.

Draws with Replacement

To make random draws from a set with replacement, you use the replace argument to sample. By

default, replace is FALSE. Setting it to TRUE means that each element of the set being drawn from

may appear more than once in the final result.

https://riptutorial.com/ 416

set.seed(5062)
sample(x = c("A","B","C","D"),size = 8,replace = TRUE)

[1] "D" "C" "D" "B" "A" "A" "A" "A"

Changing Draw Probabilities

By default, when you use sample, it assumes that the probability of picking each element is the

same. Consider it as a basic "urn" problem. The code below is equivalent to drawing a colored

marble out of an urn 20 times, writing down the color, and then putting the marble back in the urn.

The urn contains one red, one blue, and one green marble, meaning that the probability of drawing

each color is 1/3.

set.seed(6472)
sample(x = c("Red","Blue","Green"),
 size = 20,
 replace = TRUE)

Suppose that, instead, we wanted to perform the same task, but our urn contains 2 red marbles, 1

blue marble, and 1 green marble. One option would be to change the argument we send to x to

add an additional Red. However, a better choice is to use the prob argument to sample.

The prob argument accepts a vector with the probability of drawing each element. In our example

above, the probability of drawing a red marble would be 1/2, while the probability of drawing a blue

or a green marble would be 1/4.

set.seed(28432)
sample(x = c("Red","Blue","Green"),
 size = 20,
 replace = TRUE,
 prob = c(0.50,0.25,0.25))

Counter-intuitively, the argument given to prob does not need to sum to 1. R will always transform

the given arguments into probabilities that total to 1. For instance, consider our above example of

2 Red, 1 Blue, and 1 Green. You can achieve the same results as our previous code using those

numbers:

set.seed(28432)
frac_prob_example <- sample(x = c("Red","Blue","Green"),
 size = 200,
 replace = TRUE,
 prob = c(0.50,0.25,0.25))

set.seed(28432)
numeric_prob_example <- sample(x = c("Red","Blue","Green"),
 size = 200,
 replace = TRUE,
 prob = c(2,1,1))

> identical(frac_prob_example,numeric_prob_example)
[1] TRUE

https://riptutorial.com/ 417

The major restriction is that you cannot set all the probabilities to be zero, and none of them can

be less than zero.

You can also utilize prob when replace is set to FALSE. In that situation, after each element is drawn,

the proportions of the prob values for the remaining elements give the probability for the next draw.

In this situation, you must have enough non-zero probabilities to reach the size of the sample you

are drawing. For example:

set.seed(21741)
sample(x = c("Red","Blue","Green"),
 size = 2,
 replace = FALSE,
 prob = c(0.8,0.19,0.01))

In this example, Red is drawn in the first draw (as the first element). There was an 80% chance of

Red being drawn, a 19% chance of Blue being drawn, and a 1% chance of Green being drawn.

For the next draw, Red is no longer in the urn. The total of the probabilities among the remaining

items is 20% (19% for Blue and 1% for Green). For that draw, there is a 95% chance the item will

be Blue (19/20) and a 5% chance it will be Green (1/20).

Setting the seed

The set.seed function is used to set the random seed for all randomization functions. If you are

using R to create a randomization that you want to be able to reproduce, you should use set.seed

first.

set.seed(1643)
samp1 <- sample(x = 1:5,size = 200,replace = TRUE)

set.seed(1643)
samp2 <- sample(x = 1:5,size = 200,replace = TRUE)

> identical(x = samp1,y = samp2)
[1] TRUE

Note that parallel processing requires special treatment of the random seed, described more

elsewhere.

Read Randomization online: https://riptutorial.com/r/topic/9574/randomization

https://riptutorial.com/ 418

https://riptutorial.com/r/topic/9574/randomization

Chapter 88: Raster and Image Analysis

Introduction

See also I/O for Raster Images

Examples

Calculating GLCM Texture

Gray Level Co-Occurrence Matrix (Haralick et al. 1973) texture is a powerful image feature for

image analysis. The glcm package provides a easy-to-use function to calculate such texutral

features for RasterLayer objects in R.

library(glcm)
library(raster)

r <- raster("C:/Program Files/R/R-3.2.3/doc/html/logo.jpg")
plot(r)

Calculating GLCM textures in one direction

rglcm <- glcm(r,
 window = c(9,9),
 shift = c(1,1),
 statistics = c("mean", "variance", "homogeneity", "contrast",
 "dissimilarity", "entropy", "second_moment")
)

https://riptutorial.com/ 419

http://www.riptutorial.com/r/topic/5539/i-o-for-raster-images
https://en.wikipedia.org/wiki/Co-occurrence_matrix
http://i.stack.imgur.com/yBLGi.png

plot(rglcm)

Calculation rotation-invariant texture features

The textural features can also be calculated in all 4 directions (0°, 45°, 90° and 135°) and then

combined to one rotation-invariant texture. The key for this is the shift parameter:

rglcm1 <- glcm(r,
 window = c(9,9),
 shift=list(c(0,1), c(1,1), c(1,0), c(1,-1)),
 statistics = c("mean", "variance", "homogeneity", "contrast",
 "dissimilarity", "entropy", "second_moment")
)

plot(rglcm1)

https://riptutorial.com/ 420

http://i.stack.imgur.com/YBnub.png

Mathematical Morphologies

The package mmand provides functions for the calculation of Mathematical Morphologies for n-

dimensional arrays. With a little workaround, these can also be calculated for raster images.

library(raster)
library(mmand)

r <- raster("C:/Program Files/R/R-3.2.3/doc/html/logo.jpg")
plot(r)

https://riptutorial.com/ 421

http://i.stack.imgur.com/U0SHY.png

At first, a kernel (moving window) has to be set with a size (e.g. 9x9) and a shape type (e.g. disc,

box or diamond)

sk <- shapeKernel(c(9,9), type="disc")

Afterwards, the raster layer has to be converted into an array wich is used as input for the erode()

function.

rArr <- as.array(r, transpose = TRUE)
rErode <- erode(rArr, sk)
rErode <- setValues(r, as.vector(aperm(rErode)))

Besides erode(), also the morphological functions dilate(), opening() and closing() can be applied

like this.

plot(rErode)

https://riptutorial.com/ 422

http://i.stack.imgur.com/cuCPz.png

Read Raster and Image Analysis online: https://riptutorial.com/r/topic/3726/raster-and-image-

analysis

https://riptutorial.com/ 423

http://i.stack.imgur.com/mAuCt.png
https://riptutorial.com/r/topic/3726/raster-and-image-analysis
https://riptutorial.com/r/topic/3726/raster-and-image-analysis

Chapter 89: Rcpp

Examples

Inline Code Compile

Rcpp features two functions that enable code compilation inline and exportation directly into R:

cppFunction() and evalCpp(). A third function called sourceCpp() exists to read in C++ code in a

separate file though can be used akin to cppFunction().

Below is an example of compiling a C++ function within R. Note the use of "" to surround the

source.

Note - This is R code.
cppFunction in Rcpp allows for rapid testing.
require(Rcpp)

Creates a function that multiples each element in a vector
Returns the modified vector.
cppFunction("
NumericVector exfun(NumericVector x, int i){
x = x*i;
return x;
}")

Calling function in R
exfun(1:5, 3)

To quickly understand a C++ expression use:

Use evalCpp to evaluate C++ expressions
evalCpp("std::numeric_limits<double>::max()")
[1] 1.797693e+308

Rcpp Attributes

Rcpp Attributes makes the process of working with R and C++ straightforward. The form of

attributes take:

// [[Rcpp::attribute]]

The use of attributes is typically associated with:

// [[Rcpp::export]]

that is placed directly above a declared function header when reading in a C++ file via sourceCpp().

Below is an example of an external C++ file that uses attributes.

https://riptutorial.com/ 424

// Add code below into C++ file Rcpp_example.cpp

#include <Rcpp.h>
using namespace Rcpp;

// Place the export tag right above function declaration.
// [[Rcpp::export]]
double muRcpp(NumericVector x){

 int n = x.size(); // Size of vector
 double sum = 0; // Sum value

 // For loop, note cpp index shift to 0
 for(int i = 0; i < n; i++){
 // Shorthand for sum = sum + x[i]
 sum += x[i];
 }

 return sum/n; // Obtain and return the Mean
}

// Place dependent functions above call or
// declare the function definition with:
double muRcpp(NumericVector x);

// [[Rcpp::export]]
double varRcpp(NumericVector x, bool bias = true){

 // Calculate the mean using C++ function
 double mean = muRcpp(x);
 double sum = 0;

 int n = x.size();

 for(int i = 0; i < n; i++){
 sum += pow(x[i] - mean, 2.0); // Square
 }

 return sum/(n-bias); // Return variance
}

To use this external C++ file within R, we do the following:

require(Rcpp)

Compile File
sourceCpp("path/to/file/Rcpp_example.cpp")

Make some sample data
x = 1:5

all.equal(muRcpp(x), mean(x))
TRUE

all.equal(varRcpp(x), var(x))
TRUE

Extending Rcpp with Plugins

https://riptutorial.com/ 425

Within C++, one can set different compilation flags using:

 // [[Rcpp::plugins(name)]]

List of the built-in plugins:

// built-in C++11 plugin
// [[Rcpp::plugins(cpp11)]]

// built-in C++11 plugin for older g++ compiler
// [[Rcpp::plugins(cpp0x)]]

// built-in C++14 plugin for C++14 standard
// [[Rcpp::plugins(cpp14)]]

// built-in C++1y plugin for C++14 and C++17 standard under development
// [[Rcpp::plugins(cpp1y)]]

// built-in OpenMP++11 plugin
// [[Rcpp::plugins(openmp)]]

Specifying Additional Build Dependencies

To use additional packages within the Rcpp ecosystem, the correct header file may not be Rcpp.h

but Rcpp<PACKAGE>.h (as e.g. for RcppArmadillo). It typically needs to be imported and then the

dependency is stated within

// [[Rcpp::depends(Rcpp<PACKAGE>)]]

Examples:

// Use the RcppArmadillo package
// Requires different header file from Rcpp.h
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

// Use the RcppEigen package
// Requires different header file from Rcpp.h
#include <RcppEigen.h>
// [[Rcpp::depends(RcppEigen)]]

Read Rcpp online: https://riptutorial.com/r/topic/1404/rcpp

https://riptutorial.com/ 426

https://cloud.r-project.org/web/packages/RcppArmadillo/index.html
https://riptutorial.com/r/topic/1404/rcpp

Chapter 90: Reading and writing strings

Remarks

Related Docs:

Get user input•

Examples

Printing and displaying strings

R has several built-in functions that can be used to print or display information, but print and cat

are the most basic. As R is an interpreted language, you can try these out directly in the R

console:

print("Hello World")
#[1] "Hello World"
cat("Hello World\n")
#Hello World

Note the difference in both input and output for the two functions. (Note: there are no quote-

characters in the value of x created with x <- "Hello World". They are added by print at the output

stage.)

cat takes one or more character vectors as arguments and prints them to the console. If the

character vector has a length greater than 1, arguments are separated by a space (by default):

cat(c("hello", "world", "\n"))
#hello world

Without the new-line character (\n) the output would be:

cat("Hello World")
#Hello World>

The prompt for the next command appears immediately after the output. (Some consoles such as

RStudio's may automatically append a newline to strings that do not end with a newline.)

print is an example of a "generic" function, which means the class of the first argument passed is

detected and a class-specific method is used to output. For a character vector like "Hello World",

the result is similar to the output of cat. However, the character string is quoted and a number [1]

is output to indicate the first element of a character vector (In this case, the first and only element):

print("Hello World")
#[1] "Hello World"

https://riptutorial.com/ 427

http://www.riptutorial.com/r/topic/5098/get-user-input
https://en.wikipedia.org/wiki/Interpreted_language

This default print method is also what we see when we simply ask R to print a variable. Note how

the output of typing s is the same as calling print(s) or print("Hello World"):

s <- "Hello World"
s
#[1] "Hello World"

Or even without assigning it to anything:

"Hello World"
#[1] "Hello World"

If we add another character string as a second element of the vector (using the c() function to c

oncatenate the elements together), then the behavior of print() looks quite a bit different from that

of cat:

print(c("Hello World", "Here I am."))
#[1] "Hello World" "Here I am."

Observe that the c() function does not do string-concatenation. (One needs to use paste for that

purpose.) R shows that the character vector has two elements by quoting them separately. If we

have a vector long enough to span multiple lines, R will print the index of the element starting each

line, just as it prints [1] at the start of the first line.

c("Hello World", "Here I am!", "This next string is really long.")
#[1] "Hello World" "Here I am!"
#[3] "This next string is really long."

The particular behavior of print depends on the class of the object passed to the function.

If we call print an object with a different class, such as "numeric" or "logical", the quotes are

omitted from the output to indicate we are dealing with an object that is not character class:

print(1)
#[1] 1
print(TRUE)
#[1] TRUE

Factor objects get printed in the same fashion as character variables which often creates

ambiguity when console output is used to display objects in SO question bodies. It is rare to use

cat or print except in an interactive context. Explicitly calling print() is particularly rare (unless

you wanted to suppress the appearance of the quotes or view an object that is returned as

invisible by a function), as entering foo at the console is a shortcut for print(foo). The interactive

console of R is known as a REPL, a "read-eval-print-loop". The cat function is best saved for

special purposes (like writing output to an open file connection). Sometimes it is used inside

functions (where calls to print() are suppressed), however using cat() inside a function to

generate output to the console is bad practice. The preferred method is to message() or

warning() for intermediate messages; they behave similarly to cat but can be optionally

suppressed by the end user. The final result should simply returned so that the user can assign it

https://riptutorial.com/ 428

to store it if necessary.

message("hello world")
#hello world
suppressMessages(message("hello world"))

Reading from or writing to a file connection

Not always we have liberty to read from or write to a local system path. For example if R code

streaming map-reduce must need to read and write to file connection. There can be other

scenarios as well where one is going beyond local system and with advent of cloud and big data,

this is becoming increasingly common. One of the way to do this is in logical sequence.

Establish a file connection to read with file() command ("r" is for read mode):

conn <- file("/path/example.data", "r") #when file is in local system
conn1 <- file("stdin", "r") #when just standard input/output for files are available

As this will establish just file connection, one can read the data from these file connections as

follows:

line <- readLines(conn, n=1, warn=FALSE)

Here we are reading the data from file connection conn line by line as n=1. one can change value of

n (say 10, 20 etc.) for reading data blocks for faster reading (10 or 20 lines block read in one go).

To read complete file in one go set n=-1.

After data processing or say model execution; one can write the results back to file connection

using many different commands like writeLines(),cat() etc. which are capable of writing to a file

connection. However all of these commands will leverage file connection established for writing.

This could be done using file() command as:

conn2 <- file("/path/result.data", "w") #when file is in local system
conn3 <- file("stdout", "w") #when just standard input/output for files are available

Then write the data as follows:

writeLines("text",conn2, sep = "\n")

Capture output of operating system command

Functions which return a character vector

Base R has two functions for invoking a system command. Both require an additional parameter to

capture the output of the system command.

https://riptutorial.com/ 429

system("top -a -b -n 1", intern = TRUE)
system2("top", "-a -b -n 1", stdout = TRUE)

Both return a character vector.

 [1] "top - 08:52:03 up 70 days, 15:09, 0 users, load average: 0.00, 0.00, 0.00"
 [2] "Tasks: 125 total, 1 running, 124 sleeping, 0 stopped, 0 zombie"
 [3] "Cpu(s): 0.9%us, 0.3%sy, 0.0%ni, 98.7%id, 0.1%wa, 0.0%hi, 0.0%si, 0.0%st"
 [4] "Mem: 12194312k total, 3613292k used, 8581020k free, 216940k buffers"
 [5] "Swap: 12582908k total, 2334156k used, 10248752k free, 1682340k cached"
 [6] ""
 [7] " PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND "
 [8] "11300 root 20 0 1278m 375m 3696 S 0.0 3.2 124:40.92 trala "
 [9] " 6093 user1 20 0 1817m 269m 1888 S 0.0 2.3 12:17.96 R "
 [10] " 4949 user2 20 0 1917m 214m 1888 S 0.0 1.8 11:16.73 R "

For illustration, the UNIX command top -a -b -n 1 is used. This is OS specific and may

need to be amended to run the examples on your computer.

Package devtools has a function to run a system command and capture the output without an

additional parameter. It also returns a character vector.

devtools::system_output("top", "-a -b -n 1")

Functions which return a data frame

The fread function in package data.table allows to execute a shell command and to read the

output like read.table. It returns a data.table or a data.frame.

fread("top -a -b -n 1", check.names = TRUE)
 PID USER PR NI VIRT RES SHR S X.CPU X.MEM TIME. COMMAND
 1: 11300 root 20 0 1278m 375m 3696 S 0 3.2 124:40.92 trala
 2: 6093 user1 20 0 1817m 269m 1888 S 0 2.3 12:18.56 R
 3: 4949 user2 20 0 1917m 214m 1888 S 0 1.8 11:17.33 R
 4: 7922 user3 20 0 3094m 131m 1892 S 0 1.1 21:04.95 R

Note, that fread automatically has skipped the top 6 header lines.

Here the parameter check.names = TRUE was added to convert %CPU, %MEN, and TIME+ to

syntactically valid column names.

Read Reading and writing strings online: https://riptutorial.com/r/topic/5541/reading-and-writing-

strings

https://riptutorial.com/ 430

https://riptutorial.com/r/topic/5541/reading-and-writing-strings
https://riptutorial.com/r/topic/5541/reading-and-writing-strings

Chapter 91: Reading and writing tabular data

in plain-text files (CSV, TSV, etc.)

Syntax

read.csv(file, header = TRUE, sep = ",", quote = """, dec = ".", fill = TRUE, comment.char =

"", ...)

•

read.csv2(file, header = TRUE, sep = ";", quote = """, dec = ",", fill = TRUE, comment.char =

"", ...)

•

readr::read_csv(file, col_names = TRUE, col_types = NULL, locale = default_locale(), na =

c("", "NA"), comment = "", trim_ws = TRUE, skip = 0, n_max = -1, progress = interactive())

•

data.table::fread(input, sep="auto", sep2="auto", nrows=-1L, header="auto",

na.strings="NA", stringsAsFactors=FALSE, verbose=getOption("datatable.verbose"),

autostart=1L, skip=0L, select=NULL, drop=NULL, colClasses=NULL,

integer64=getOption("datatable.integer64"), # default: "integer64" dec=if (sep!=".") "." else

",", col.names, check.names=FALSE, encoding="unknown", strip.white=TRUE,

showProgress=getOption("datatable.showProgress"), # default: TRUE

data.table=getOption("datatable.fread.datatable") # default: TRUE)

•

Parameters

Parameter Details

file name of the CSV file to read

header logical: does the .csv file contain a header row with column names?

sep character: symbol that separates the cells on each row

quote character: symbol used to quote character strings

dec character: symbol used as decimal separator

fill logical: when TRUE, rows with unequal length are filled with blank fields.

comment.char
character: character used as comment in the csv file. Lines preceded by this

character are ignored.

... extra arguments to be passed to read.table

Remarks

https://riptutorial.com/ 431

Note that exporting to a plain text format sacrifices much of the information encoded in the data

like variable classes for the sake of wide portability. For cases that do not require such portability,

a format like .RData or Feather may be more useful.

Input/output for other types of files is covered in several other topics, all linked from Input and

output.

Examples

Importing .csv files

Importing using base R

Comma separated value files (CSVs) can be imported using read.csv, which wraps read.table, but

uses sep = "," to set the delimiter to a comma.

get the file path of a CSV included in R's utils package
csv_path <- system.file("misc", "exDIF.csv", package = "utils")

path will vary based on installation location
csv_path
[1] "/Library/Frameworks/R.framework/Resources/library/utils/misc/exDIF.csv"

df <- read.csv(csv_path)

df
Var1 Var2
1 2.70 A
2 3.14 B
3 10.00 A
4 -7.00 A

A user friendly option, file.choose, allows to browse through the directories:

df <- read.csv(file.choose())

Notes

Unlike read.table, read.csv defaults to header = TRUE, and uses the first row as column

names.

•

All these functions will convert strings to factor class by default unless either as.is = TRUE or

stringsAsFactors = FALSE.

•

The read.csv2 variant defaults to sep = ";" and dec = "," for use on data from countries

where the comma is used as a decimal point and the semicolon as a field separator.

•

Importing using packages

https://riptutorial.com/ 432

http://stat.ethz.ch/R-manual/R-devel/library/base/html/readRDS.html
https://github.com/wesm/feather
http://www.riptutorial.com/r/topic/5543/input-and-output
http://www.riptutorial.com/r/topic/5543/input-and-output

The readr package's read_csv function offers much faster performance, a progress bar for large

files, and more popular default options than standard read.csv, including stringsAsFactors = FALSE.

library(readr)

df <- read_csv(csv_path)

df
A tibble: 4 x 2
Var1 Var2
<dbl> <chr>
1 2.70 A
2 3.14 B
3 10.00 A
4 -7.00 A

Importing with data.table

The data.table package introduces the function fread. While it is similar to read.table, fread is

usually faster and more flexible, guessing the file's delimiter automatically.

get the file path of a CSV included in R's utils package
csv_path <- system.file("misc", "exDIF.csv", package = "utils")

path will vary based on R installation location
csv_path
[1] "/Library/Frameworks/R.framework/Resources/library/utils/misc/exDIF.csv"

dt <- fread(csv_path)

dt
Var1 Var2
1: 2.70 A
2: 3.14 B
3: 10.00 A
4: -7.00 A

Where argument input is a string representing:

the filename (e.g. "filename.csv"),•

a shell command that acts on a file (e.g. "grep 'word' filename"), or•

the input itself (e.g. "input1, input2 \n A, B \n C, D").•

fread returns an object of class data.table that inherits from class data.frame, suitable for use with

the data.table's usage of []. To return an ordinary data.frame, set the data.table parameter to

FALSE:

df <- fread(csv_path, data.table = FALSE)

class(df)
[1] "data.frame"

df
Var1 Var2

https://riptutorial.com/ 433

http://www.inside-r.org/packages/cran/data.table/docs/fread

1 2.70 A
2 3.14 B
3 10.00 A
4 -7.00 A

Notes

fread does not have all same options as read.table. One missing argument is na.comment,

which may lead in unwanted behaviors if the source file contains #.

•

fread uses only " for quote parameter.•

fread uses few (5) lines to guess variables types.•

Importing .tsv files as matrices (basic R)

Many people don't make use of file.path when making path to a file. But if you are working across

Windows, Mac and Linux machines it's usually good practice to use it for making paths instead of

paste.

FilePath <- file.path(AVariableWithFullProjectPath,"SomeSubfolder","SomeFileName.txt.gz")

Data <- as.matrix(read.table(FilePath, header=FALSE, sep ="\t"))

Generally this is sufficient for most people.

Sometimes it happens the matrix dimensions are so large that procedure of memory allocation

must be taken into account while reading in the matrix, which means reading in the matrix line by

line.

Take the previous example, In this case FilePath contains a file of dimension 8970 8970 with 79%

of the cells containing non-zero values.

system.time(expr=Data<-as.matrix(read.table(file=FilePath,header=FALSE,sep=" ")))

system.time says 267 seconds were taken to read the file.

 user system elapsed
265.563 1.949 267.563

Similarly this file can be read line by line,

FilePath <- "SomeFile"
connection<- gzfile(FilePath,open="r")
TableList <- list()
Counter <- 1
system.time(expr= while (length(Vector<-as.matrix(scan(file=connection, sep=" ", nlines=1,
quiet=TRUE))) > 0) {
 TableList[[Counter]]<-Vector
 Counter<-Counter+1
})
 user system elapsed

https://riptutorial.com/ 434

165.976 0.060 165.941
close(connection)
system.time(expr=(Data <- do.call(rbind,TableList)))
 user system elapsed
 0.477 0.088 0.565

There's also the futile.matrix package which implements a read.matrix method, the code itself will

reveal itself to be the same thing as described in example 1.

Exporting .csv files

Exporting using base R

Data can be written to a CSV file using write.csv():

write.csv(mtcars, "mtcars.csv")

Commonly-specified parameters include row.names = FALSE and na = "".

Exporting using packages

readr::write_csv is significantly faster than write.csv and does not write row names.

library(readr)

write_csv(mtcars, "mtcars.csv")

Import multiple csv files

files = list.files(pattern="*.csv")
data_list = lapply(files, read.table, header = TRUE)

This read every file and adds it to a list. Afterwards, if all data.frame have the same structure they

can be combined into one big data.frame:

df <- do.call(rbind, data_list)

Importing fixed-width files

Fixed-width files are text files in which columns are not separated by any character delimiter, like ,

or ;, but rather have a fixed character length (width). Data is usually padded with white spaces.

An example:

https://riptutorial.com/ 435

Column1 Column2 Column3 Column4Column5
1647 pi 'important' 3.141596.28318
1731 euler 'quite important' 2.718285.43656
1979 answer 'The Answer.' 42 42

Let's assume this data table exists in the local file constants.txt in the working directory.

Importing with base R

df <- read.fwf('constants.txt', widths = c(8,10,18,7,8), header = FALSE, skip = 1)

df
#> V1 V2 V3 V4 V5
#> 1 1647 pi 'important' 3.14159 6.28318
#> 2 1731 euler 'quite important' 2.71828 5.43656
#> 3 1979 answer 'The Answer.' 42 42.0000

Note:

Column titles don't need to be separated by a character (Column4Column5)•

The widths parameter defines the width of each column•

Non-separated headers are not readable with read.fwf()•

Importing with readr

library(readr)

df <- read_fwf('constants.txt',
 fwf_cols(Year = 8, Name = 10, Importance = 18, Value = 7, Doubled = 8),
 skip = 1)
df
#> # A tibble: 3 x 5
#> Year Name Importance Value Doubled
#> <int> <chr> <chr> <dbl> <dbl>
#> 1 1647 pi 'important' 3.14159 6.28318
#> 2 1731 euler 'quite important' 2.71828 5.43656
#> 3 1979 answer 'The Answer.' 42.00000 42.00000

Note:

readr's fwf_* helper functions offer alternative ways of specifying column lengths, including

automatic guessing (fwf_empty)

•

readr is faster than base R•

Column titles cannot be automatically imported from data file•

Read Reading and writing tabular data in plain-text files (CSV, TSV, etc.) online:

https://riptutorial.com/r/topic/481/reading-and-writing-tabular-data-in-plain-text-files--csv--tsv--etc--

https://riptutorial.com/ 436

https://riptutorial.com/r/topic/481/reading-and-writing-tabular-data-in-plain-text-files--csv--tsv--etc--

Chapter 92: Recycling

Remarks

What is recycling in R

Recycling is when an object is automatically extended in certain operations to match the length of

another, longer object.

For example, the vectorised addition results in the following:

c(1,2,3) + c(1,2,3,4,5,6)
[1] 2 4 6 5 7 9

Because of the recycling, the operation that actually happened was:

c(1,2,3,1,2,3) + c(1,2,3,4,5,6)

In cases where the longer object is not a multiple of the shorter one, a warning message is

presented:

c(1,2,3) + c(1,2,3,4,5,6,7)
[1] 2 4 6 5 7 9 8
Warning message:
In c(1, 2, 3) + c(1, 2, 3, 4, 5, 6, 7) :
 longer object length is not a multiple of shorter object length

Another example of recycling:

matrix(nrow =5, ncol = 2, 1:5)
 [,1] [,2]
[1,] 1 1
[2,] 2 2
[3,] 3 3
[4,] 4 4
[5,] 5 5

Examples

Recycling use in subsetting

Recycling can be used in a clever way to simplify code.

Subsetting

If we want to keep every third element of a vector we can do the following:

https://riptutorial.com/ 437

https://cran.r-project.org/doc/manuals/r-release/R-intro.html#The-recycling-rule

my_vec <- c(1,2,3,4,5,6,7,8,9,10)
my_vec[c(TRUE, FALSE)]

[1] 1 3 5 7 9

Here the logical expression was expanded to the length of the vector.

We can also perform comparisons using recycling:

my_vec <- c("foo", "bar", "soap", "mix")
my_vec == "bar"

[1] FALSE TRUE FALSE FALSE

Here "bar" gets recycled.

Read Recycling online: https://riptutorial.com/r/topic/5649/recycling

https://riptutorial.com/ 438

https://riptutorial.com/r/topic/5649/recycling

Chapter 93: Regular Expression Syntax in R

Introduction

This document introduces the basics of regular expressions as used in R. For more information

about R's regular expression syntax, see ?regex. For a comprehensive list of regular expression

operators, see this ICU guide on regular expressions.

Examples

Use `grep` to find a string in a character vector

General syntax:
grep(<pattern>, <character vector>)

mystring <- c('The number 5',
 'The number 8',
 '1 is the loneliest number',
 'Company, 3 is',
 'Git SSH tag is git@github.com',
 'My personal site is www.personal.org',
 'path/to/my/file')

grep('5', mystring)
[1] 1
grep('@', mystring)
[1] 5
grep('number', mystring)
[1] 1 2 3

x|y means look for "x" or "y"

grep('5|8', mystring)
[1] 1 2
grep('com|org', mystring)
[1] 5 6

. is a special character in Regex. It means "match any character"

grep('The number .', mystring)
[1] 1 2

Be careful when trying to match dots!

tricky <- c('www.personal.org', 'My friend is a cyborg')
grep('.org', tricky)
[1] 1 2

To match a literal character, you have to escape the string with a backslash (\). However, R tries

https://riptutorial.com/ 439

https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
http://userguide.icu-project.org/strings/regexp

to look for escape characters when creating strings, so you actually need to escape the backslash

itself (i.e. you need to double escape regular expression characters.)

grep('\.org', tricky)
Error: '\.' is an unrecognized escape in character string starting "'\."
grep('\\.org', tricky)
[1] 1

If you want to match one of several characters, you can wrap those characters in brackets ([])

grep('[13]', mystring)
[1] 3 4
grep('[@/]', mystring)
[1] 5 7

It may be useful to indicate character sequences. E.g. [0-4] will match 0, 1, 2, 3, or 4, [A-Z] will

match any uppercase letter, [A-z] will match any uppercase or lowercase letter, and [A-z0-9] will

match any letter or number (i.e. all alphanumeric characters)

grep('[0-4]', mystring)
[1] 3 4
grep('[A-Z]', mystring)
[1] 1 2 4 5 6

R also has several shortcut classes that can be used in brackets. For instance, [:lower:] is short

for a-z, [:upper:] is short for A-Z, [:alpha:] is A-z, [:digit:] is 0-9, and [:alnum:] is A-z0-9. Note

that these whole expressions must be used inside brackets; for instance, to match a single digit,

you can use [[:digit:]] (note the double brackets). As another example, [@[:digit:]/] will match

the characters @, / or 0-9.

grep('[[:digit:]]', mystring)
[1] 1 2 3 4
grep('[@[:digit:]/]', mystring)
[1] 1 2 3 4 5 7

Brackets can also be used to negate a match with a carat (^). For instance, [^5] will match any

character other than "5".

grep('The number [^5]', mystring)
[1] 2

Read Regular Expression Syntax in R online: https://riptutorial.com/r/topic/9743/regular-

expression-syntax-in-r

https://riptutorial.com/ 440

https://riptutorial.com/r/topic/9743/regular-expression-syntax-in-r
https://riptutorial.com/r/topic/9743/regular-expression-syntax-in-r

Chapter 94: Regular Expressions (regex)

Introduction

Regular expressions (also called "regex" or "regexp") define patterns that can be matched against

a string. Type ?regex for the official R documentation and see the Regex Docs for more details.

The most important 'gotcha' that will not be learned in the SO regex/topics is that most R-regex

functions need the use of paired backslashes to escape in a pattern parameter.

Remarks

Character classes

"[AB]" could be A or B•

"[[:alpha:]]" could be any letter•

"[[:lower:]]" stands for any lower-case letter. Note that "[a-z]" is close but doesn't match,

e.g., ú.

•

"[[:upper:]]" stands for any upper-case letter. Note that "[A-Z]" is close but doesn't match,

e.g., Ú.

•

"[[:digit:]]" stands for any digit : 0, 1, 2, ..., or 9 and is equivalent to "[0-9]".•

Quantifiers

+, * and ? apply as usual in regex. -- + matches at least once, * matches 0 or more times, and ?

matches 0 or 1 time.

Start and end of line indicators

You can specify the position of the regex in the string :

"^..." forces the regular expression to be at the beginning of the string•

"...$" forces the regular expression to be at the end of the string•

Differences from other languages

Please note that regular expressions in R often look ever-so-slightly different from regular

expressions used in other languages.

R requires double-backslash escapes (because "\" already implies escaping in general in R

strings), so, for example, to capture whitespace in most regular expression engines, one

•

https://riptutorial.com/ 441

http://www.riptutorial.com/r/topic/1123/pattern-matching-and-replacement
http://www.riptutorial.com/r/topic/1123/pattern-matching-and-replacement
http://www.riptutorial.com/topic/259

simply needs to type \s, vs. \\s in R.

UTF-8 characters in R should be escaped with a capital U, e.g. [\U{1F600}] and [\U1F600]

match , whereas in, e.g., Ruby, this would be matched with a lower-case u.

•

Additional Resources

The following site reg101 is a good place for checking online regex before using it R-script.

The R Programmming wikibook has a page dedicated to text processing with many examples

using regular expressions.

Examples

Eliminating Whitespace

string <- ' some text on line one;
and then some text on line two '

Trimming Whitespace

"Trimming" whitespace typically refers to removing both leading and trailing whitespace from a

string. This may be done using a combination of the previous examples. gsub is used to force the

replacement over both the leading and trailing matches.

Prior to R 3.2.0

gsub(pattern = "(^ +| +$)",
 replacement = "",
 x = string)

[1] "some text on line one; \nand then some text on line two"

R 3.2.0 and higher

trimws(x = string)

[1] "some text on line one; \nand then some text on line two"

Removing Leading Whitespace

Prior to R 3.2.0

sub(pattern = "^ +",
 replacement = "",
 x = string)

https://riptutorial.com/ 442

https://regex101.com
https://en.wikibooks.org/wiki/R_Programming/Text_Processing

[1] "some text on line one; \nand then some text on line two "

R 3.2.0 and higher

trimws(x = string,
 which = "left")

[1] "some text on line one; \nand then some text on line two "

Removing Trailing Whitespace

Prior to R 3.2.0

sub(pattern = " +$",
 replacement = "",
 x = string)

[1] " some text on line one; \nand then some text on line two"

R 3.2.0 and higher

trimws(x = string,
 which = "right")

[1] " some text on line one; \nand then some text on line two"

Removing All Whitespace

gsub(pattern = "\\s",
 replacement = "",
 x = string)

[1] "sometextonlineone;andthensometextonlinetwo"

Note that this will also remove white space characterse such as tabs (\t), newlines (\r and \n),

and spaces.

Validate a date in a "YYYYMMDD" format

It is a common practice to name files using the date as prefix in the following format: YYYYMMDD, for

example: 20170101_results.csv. A date in such string format can be verified using the following

regular expression:

\\d{4}(0[1-9]|1[012])(0[1-9]|[12][0-9]|3[01])

The above expression considers dates from year: 0000-9999, months between: 01-12 and days 01-

31.

https://riptutorial.com/ 443

For example:

> grepl("\\d{4}(0[1-9]|1[012])(0[1-9]|[12][0-9]|3[01])", "20170101")
[1] TRUE
> grepl("\\d{4}(0[1-9]|1[012])(0[1-9]|[12][0-9]|3[01])", "20171206")
[1] TRUE
> grepl("\\d{4}(0[1-9]|1[012])(0[1-9]|[12][0-9]|3[01])", "29991231")
[1] TRUE

Note: It validates the date syntax, but we can have a wrong date with a valid syntax, for example:

20170229 (2017 it is not a leap year).

> grepl("\\d{4}(0[1-9]|1[012])(0[1-9]|[12][0-9]|3[01])", "20170229")
[1] TRUE

If you want to validate a date, it can be done via this user defined function:

is.Date <- function(x) {return(!is.na(as.Date(as.character(x), format = '%Y%m%d')))}

Then

> is.Date(c("20170229", "20170101", 20170101))
[1] FALSE TRUE TRUE

Validate US States postal abbreviations

The following regex includes 50 states and also Commonwealth/Territory (see www.50states.com):

regex <-
"(A[LKSZR])|(C[AOT])|(D[EC])|(F[ML])|(G[AU])|(HI)|(I[DLNA])|(K[SY])|(LA)|(M[EHDAINSOT])|(N[EVHJMYCD])|(MP)|(O[HKR])|(P[WAR])|(RI)|(S[CD])|(T[NX])|(UT)|(V[TIA])|(W[AVIY])"

For example:

> test <- c("AL", "AZ", "AR", "AJ", "AS", "DC", "FM", "GU","PW", "FL", "AJ", "AP")
> grepl(us.states.pattern, test)
 [1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
>

Note:

If you want to verify only the 50 States, then we recommend to use the R-dataset: state.abb from

state, for example:

> data(state)
> test %in% state.abb
[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

We get TRUE only for 50-States abbreviations: AL, AZ, AR, FL.

Validate US phone numbers

https://riptutorial.com/ 444

http://www.50states.com/abbreviations.htm

The following regular expression:

us.phones.regex <- "^\\s*(\\+\\s*1(-?|\\s+))*[0-9]{3}\\s*-?\\s*[0-9]{3}\\s*-?\\s*[0-9]{4}$"

Validates a phone number in the form of: +1-xxx-xxx-xxxx, including optional leading/trailing blanks

at the beginning/end of each group of numbers, but not in the middle, for example: +1-xxx-xxx-xx

xx is not valid. The - delimiter can be replaced by blanks: xxx xxx xxx or without delimiter:

xxxxxxxxxx. The +1 prefix is optional.

Let's check it:

us.phones.regex <- "^\\s*(\\+\\s*1(-?|\\s+))*[0-9]{3}\\s*-?\\s*[0-9]{3}\\s*-?\\s*[0-9]{4}$"

phones.OK <- c("305-123-4567", "305 123 4567", "+1-786-123-4567",
 "+1 786 123 4567", "7861234567", "786 - 123 4567", "+ 1 786 - 123 4567")

phones.NOK <- c("124-456-78901", "124-456-789", "124-456-78 90",
 "124-45 6-7890", "12 4-456-7890")

Valid cases:

> grepl(us.phones.regex, phones.OK)
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE
>

Invalid cases:

 > grepl(us.phones.regex, phones.NOK)
[1] FALSE FALSE FALSE FALSE FALSE
>

Note:

\\s Matches any space, tab or newline character•

Escaping characters in R regex patterns

Since both R and regex share the escape character ,"\", building correct patterns for grep, sub,

gsub or any other function that accepts a pattern argument will often need pairing of backslashes. If

you build a three item character vector in which one items has a linefeed, another a tab character

and one neither, and hte desire is to turn either the linefeed or the tab into 4-spaces then a single

backslash is need for the construction, but tpaired backslashes for matching:

x <- c("a\nb", "c\td", "e f")
x # how it's stored
 # [1] "a\nb" "c\td" "e f"
cat(x) # how it will be seen with cat
#a
#b c d e f

gsub(patt="\\n|\\t", repl=" ", x)

https://riptutorial.com/ 445

#[1] "a b" "c d" "e f"

Note that the pattern argument (which is optional if it appears first and only needs partial spelling)

is the only argument to require this doubling or pairing. The replacement argument does not

require the doubling of characters needing to be escaped. If you wanted all the linefeeds and 4-

space occurrences replaces with tabs it would be:

gsub("\\n| ", "\t", x)
#[1] "a\tb" "c\td" "e\tf"

Differences between Perl and POSIX regex

There are two ever-so-slightly different engines of regular expressions implemented in R. The

default is called POSIX-consistent; all regex functions in R are also equipped with an option to turn

on the latter type: perl = TRUE.

Look-ahead/look-behind

perl = TRUE enables look-ahead and look-behind in regular expressions.

"(?<=A)B" matches an appearance of the letter B only if it's preceded by A, i.e. "ABACADABRA"

would be matched, but "abacadabra" and "aBacadabra" would not.

•

Read Regular Expressions (regex) online: https://riptutorial.com/r/topic/5748/regular-expressions--

regex-

https://riptutorial.com/ 446

https://riptutorial.com/r/topic/5748/regular-expressions--regex-
https://riptutorial.com/r/topic/5748/regular-expressions--regex-

Chapter 95: Reproducible R

Introduction

With 'Reproducibility' we mean that someone else (perhaps you in the future) can repeat the steps

you performed and get the same result. See the Reproducible Research Task View.

Remarks

To create reproducible results, all sources of variation need to be fixed. For instance, if a

(pseudo)random number generator is used, the seed needs to be fixed if you want to recreate the

same results. Another way to reduce variation is to combine text and computation in the same

document.

References

Peng, R. D. (2011). Reproducible Research in Computational. Science, 334(6060),

1226–1227. http://doi.org/10.1126/science.1213847

•

Peng, Roger D. Report Writing for Data Science in R. Leanpub, 2015.

https://leanpub.com/reportwriting.

•

Examples

Data reproducibility

dput() and dget()

The easiest way to share a (preferable small) data frame is to use a basic function dput(). It will

export an R object in a plain text form.

Note: Before making the example data below, make sure you're in an empty folder you can write

to. Run getwd() and read ?setwd if you need to change folders.

dput(mtcars, file = 'df.txt')

Then, anyone can load the precise R object to their GlobalEnvironment using the dget() function.

df <- dget('df.txt')

For larger R objects, there are a number of ways of saving them reproducibly. See Input and

output .

https://riptutorial.com/ 447

https://cran.r-project.org/web/views/ReproducibleResearch.html
http://doi.org/10.1126/science.1213847
https://leanpub.com/reportwriting
http://www.riptutorial.com/r/topic/5543/input-and-output
http://www.riptutorial.com/r/topic/5543/input-and-output

Package reproducibility

Package reproducibility is a very common issue in reproducing some R code. When various

packages get updated, some interconnections between them may break. The ideal solution for the

problem is to reproduce the image of the R code writer's machine on your computer at the date

when the code was written. And here comes checkpoint package.

Starting from 2014-09-17, the authors of the package make daily copies of the whole CRAN

package repository to their own mirror repository -- Microsoft R Archived Network. So, to avoid

package reproduciblity issues when creating a reproducible R project, all you need is to:

Make sure that all your packages (and R version) are up-to-date.1.

Include checkpoint::checkpoint('YYYY-MM-DD') line in your code.2.

checkpoint will create a directory .checkpoint in your R_home directory ("~/"). To this technical

directory it will install all the packages, that are used in your project. That means, checkpoint looks

through all the .R files in your project directory to pick up all the library() or require() calls and

install all the required packages in the form they existed at CRAN on the specified date.

PRO You are freed from the package reproducibility issue.

CONTRA For each specified date you have to download and install all the packages that are used

in a certain project that you aim to reproduce. That may take quite a while.

Read Reproducible R online: https://riptutorial.com/r/topic/4087/reproducible-r

https://riptutorial.com/ 448

https://riptutorial.com/r/topic/4087/reproducible-r

Chapter 96: Reshape using tidyr

Introduction

tidyr has two tools for reshaping data: gather (wide to long) and spread (long to wide).

See Reshaping data for other options.

Examples

Reshape from long to wide format with spread()

library(tidyr)

example data
set.seed(123)
df <- data.frame(
 name = rep(c("firstName", "secondName"), each=4),
 numbers = rep(1:4, 2),
 value = rnorm(8)
)
df
name numbers value
1 firstName 1 -0.56047565
2 firstName 2 -0.23017749
3 firstName 3 1.55870831
4 firstName 4 0.07050839
5 secondName 1 0.12928774
6 secondName 2 1.71506499
7 secondName 3 0.46091621
8 secondName 4 -1.26506123

We can "spread" the 'numbers' column, into separate columns:

spread(data = df,
 key = numbers,
 value = value)
name 1 2 3 4
1 firstName -0.5604756 -0.2301775 1.5587083 0.07050839
2 secondName 0.1292877 1.7150650 0.4609162 -1.26506123

Or spread the 'name' column into separate columns:

spread(data = df,
 key = name,
 value = value)
numbers firstName secondName
1 1 -0.56047565 0.1292877
2 2 -0.23017749 1.7150650
3 3 1.55870831 0.4609162
4 4 0.07050839 -1.2650612

https://riptutorial.com/ 449

http://www.riptutorial.com/r/topic/2904/reshaping-data-between-long-and-wide-forms

Reshape from wide to long format with gather()

library(tidyr)

example data
df <- read.table(text =" numbers firstName secondName
1 1 1.5862639 0.4087477
2 2 0.1499581 0.9963923
3 3 0.4117353 0.3740009
4 4 -0.4926862 0.4437916", header = T)
df
numbers firstName secondName
1 1 1.5862639 0.4087477
2 2 0.1499581 0.9963923
3 3 0.4117353 0.3740009
4 4 -0.4926862 0.4437916

We can gather the columns together using 'numbers' as the key column:

gather(data = df,
 key = numbers,
 value = myValue)
numbers numbers myValue
1 1 firstName 1.5862639
2 2 firstName 0.1499581
3 3 firstName 0.4117353
4 4 firstName -0.4926862
5 1 secondName 0.4087477
6 2 secondName 0.9963923
7 3 secondName 0.3740009
8 4 secondName 0.4437916

Read Reshape using tidyr online: https://riptutorial.com/r/topic/9195/reshape-using-tidyr

https://riptutorial.com/ 450

https://riptutorial.com/r/topic/9195/reshape-using-tidyr

Chapter 97: Reshaping data between long

and wide forms

Introduction

In R, tabular data is stored in data frames. This topic covers the various ways of transforming a

single table.

Remarks

Helpful packages

Reshaping, stacking and splitting with data.table•

Reshape using tidyr•

splitstackshape•

Examples

The reshape function

The most flexible base R function for reshaping data is reshape. See ?reshape for its syntax.

create unbalanced longitudinal (panel) data set
set.seed(1234)
df <- data.frame(identifier=rep(1:5, each=3),
 location=rep(c("up", "down", "left", "up", "center"), each=3),
 period=rep(1:3, 5), counts=sample(35, 15, replace=TRUE),
 values=runif(15, 5, 10))[-c(4,8,11),]
df

 identifier location period counts values
1 1 up 1 4 9.186478
2 1 up 2 22 6.431116
3 1 up 3 22 6.334104
5 2 down 2 31 6.161130
6 2 down 3 23 6.583062
7 3 left 1 1 6.513467
9 3 left 3 24 5.199980
10 4 up 1 18 6.093998
12 4 up 3 20 7.628488
13 5 center 1 10 9.573291
14 5 center 2 33 9.156725
15 5 center 3 11 5.228851

Note that the data.frame is unbalanced, that is, unit 2 is missing an observation in the first period,

while units 3 and 4 are missing observations in the second period. Also, note that there are two

variables that vary over the periods: counts and values, and two that do not vary: identifier and

https://riptutorial.com/ 451

http://www.riptutorial.com/r/topic/438/data-frames
http://www.riptutorial.com/data-table/topic/4117/reshaping--stacking-and-splitting
http://www.riptutorial.com/r/topic/9195/reshape-using-tidyr

location.

Long to Wide

To reshape the data.frame to wide format,

reshape wide on time variable
df.wide <- reshape(df, idvar="identifier", timevar="period",
 v.names=c("values", "counts"), direction="wide")
df.wide
 identifier location values.1 counts.1 values.2 counts.2 values.3 counts.3
1 1 up 9.186478 4 6.431116 22 6.334104 22
5 2 down NA NA 6.161130 31 6.583062 23
7 3 left 6.513467 1 NA NA 5.199980 24
10 4 up 6.093998 18 NA NA 7.628488 20
13 5 center 9.573291 10 9.156725 33 5.228851 11

Notice that the missing time periods are filled in with NAs.

In reshaping wide, the "v.names" argument specifies the columns that vary over time. If the

location variable is not necessary, it can be dropped prior to reshaping with the "drop" argument.

In dropping the only non-varying / non-id column from the data.frame, the v.names argument

becomes unnecessary.

reshape(df, idvar="identifier", timevar="period", direction="wide",
 drop="location")

Wide to Long

To reshape long with the current df.wide, a minimal syntax is

reshape(df.wide, direction="long")

However, this is typically trickier:

remove "." separator in df.wide names for counts and values
names(df.wide)[grep("\\.", names(df.wide))] <-
 gsub("\\.", "", names(df.wide)[grep("\\.", names(df.wide))])

Now the simple syntax will produce an error about undefined columns.

With column names that are more difficult for the reshape function to automatically parse, it is

sometimes necessary to add the "varying" argument which tells reshape to group particular

variables in wide format for the transformation into long format. This argument takes a list of

vectors of variable names or indices.

reshape(df.wide, idvar="identifier",
 varying=list(c(3,5,7), c(4,6,8)), direction="long")

https://riptutorial.com/ 452

In reshaping long, the "v.names" argument can be provided to rename the resulting varying

variables.

Sometimes the specification of "varying" can be avoided by use of the "sep" argument which tells

reshape what part of the variable name specifies the value argument and which specifies the time

argument.

Reshaping data

Often data comes in tables. Generally one can divide this tabular data in wide and long formats. In

a wide format, each variable has its own column.

Person Height [cm] Age [yr]

Alison 178 20

Bob 174 45

Carl 182 31

However, sometimes it is more convenient to have a long format, in which all variables are in one

column and the values are in a second column.

Person Variable Value

Alison Height [cm] 178

Bob Height [cm] 174

Carl Height [cm] 182

Alison Age [yr] 20

Bob Age [yr] 45

Carl Age [yr] 31

Base R, as well as third party packages can be used to simplify this process. For each of the

options, the mtcars dataset will be used. By default, this dataset is in a long format. In order for the

packages to work, we will insert the row names as the first column.

mtcars # shows the dataset
data <- data.frame(observation=row.names(mtcars),mtcars)

Base R

There are two functions in base R that can be used to convert between wide and long format:

https://riptutorial.com/ 453

stack() and unstack().

long <- stack(data)
long # this shows the long format
wide <- unstack(long)
wide # this shows the wide format

However, these functions can become very complex for more advanced use cases. Luckily, there

are other options using third party packages.

The tidyr package

This package uses gather() to convert from wide to long and spread() to convert from long to wide.

library(tidyr)
long <- gather(data, variable, value, 2:12) # where variable is the name of the
variable column, value indicates the name of the value column and 2:12 refers to
the columns to be converted.
long # shows the long result
wide <- spread(long,variable,value)
wide # shows the wide result (~data)

The data.table package

The data.table package extends the reshape2 functions and uses the function melt() to go from

wide to long and dcast() to go from long to wide.

library(data.table)
long <- melt(data,'observation',2:12,'variable', 'value')
long # shows the long result
wide <- dcast(long, observation ~ variable)
wide # shows the wide result (~data)

Read Reshaping data between long and wide forms online:

https://riptutorial.com/r/topic/2904/reshaping-data-between-long-and-wide-forms

https://riptutorial.com/ 454

https://riptutorial.com/r/topic/2904/reshaping-data-between-long-and-wide-forms

Chapter 98: RESTful R Services

Introduction

OpenCPU uses standard R packaging to develop, ship and deploy web applications.

Examples

opencpu Apps

The official website contain good exemple of apps: https://www.opencpu.org/apps.html

The following code is used to serve a R session:

library(opencpu)
opencpu$start(port = 5936)

After this code is executed, you can use URLs to access the functions of the R session. The result

could be XML, html, JSON or some other defined formats.

For exemple, the previous R session can be accessed by a cURL call:

#curl uses http post method for -X POST or -d "arg=value"
curl http://localhost:5936/ocpu/library/MASS/scripts/ch01.R -X POST
curl http://localhost:5936/ocpu/library/stats/R/rnorm -d "n=10&mean=5"

The call is asynchronous, meaning that the R session is not blocked while waiting for the call to

finish (contrary to shiny).

The call result is kept in a temporary session stored in /ocpu/tmp/

An exemple of how to retrieve the temporary session:

curl https://public.opencpu.org/ocpu/library/stats/R/rnorm -d n=5
/ocpu/tmp/x009f9e7630/R/.val
/ocpu/tmp/x009f9e7630/stdout
/ocpu/tmp/x009f9e7630/source
/ocpu/tmp/x009f9e7630/console
/ocpu/tmp/x009f9e7630/info

x009f9e7630 is the name of the session.

Pointing to /ocpu/tmp/x009f9e7630/R/.val will return the value resulting of rnorm(5),

/ocpu/tmp/x009f9e7630/R/console will return the content of the console of rnorm(5), etc..

Read RESTful R Services online: https://riptutorial.com/r/topic/8323/restful-r-services

https://riptutorial.com/ 455

https://www.opencpu.org/
https://www.opencpu.org/apps.html
https://riptutorial.com/r/topic/8323/restful-r-services

Chapter 99: RMarkdown and knitr

presentation

Syntax

Header:

YAML format, used when the script is compile to define general parameter and

metadata

○

•

Parameters

Parameter definition

title the title of the document

author The author of the document

date The date of the document: Can be "r format(Sys.time(), '%d %B, %Y')"

author The author of the document

output
The output format of the document: at least 10 format available. For html

document, html_output. For PDF document, pdf_document, ..

Remarks

Sub options parameters:

sub-option description html pdf word odt rtf md github ioslides slidy beamer

citation_package

The LaTeX

package to

process

citations, natbib,

biblatex or none

X X X

code_folding

Let readers to

toggle the

display of R

code, "none",

"hide", or "show"

X

https://riptutorial.com/ 456

sub-option description html pdf word odt rtf md github ioslides slidy beamer

colortheme
Beamer color

theme to use
X

css

CSS file to use

to style

document

X X X

dev

Graphics device

to use for figure

output (e.g.

"png")

X X X X X X X

duration

Add a

countdown timer

(in minutes) to

footer of slides

X

fig_caption

Should figures

be rendered with

captions?

X X X X X X X

fig_height,

fig_width

Default figure

height and width

(in inches) for

document

X X X X X X X X X X

highlight

Syntax

highlighting:

"tango",

"pygments",

"kate","zenburn",

"textmate"

X X X X X

includes

File of content to

place in

document

(in_header,

before_body,

after_body)

X X X X X X X X

incremental

Should bullets

appear one at a

time (on

presenter

mouse clicks)?

X X X

Save a copy of keep_md X X X X X X

https://riptutorial.com/ 457

sub-option description html pdf word odt rtf md github ioslides slidy beamer

.md file that

contains knitr

output

keep_tex

Save a copy of

.tex file that

contains knitr

output

X X

latex_engine

Engine to render

latex, or

""pdflatex",

"xelatex",

lualatex"

X X

lib_dir

Directory of

dependency

files to use

(Bootstrap,

MathJax, etc.)

X X X

mathjax

Set to local or a

URL to use a

local/URL

version of

MathJax to

render

X X X

md_extensions

Markdown

extensions to

add to default

definition or R

Markdown

X X X X X X X X X X

number_sections

Add section

numbering to

headers

X X

pandoc_args

Additional

arguments to

pass to Pandoc

X X X X X X X X X X

preserve_yaml

Preserve YAML

front matter in

final document?

X

https://riptutorial.com/ 458

sub-option description html pdf word odt rtf md github ioslides slidy beamer

reference_docx

docx file whose

styles should be

copied when

producing docx

output

X

self_contained

Embed

dependencies

into the doc

X X X

slide_level

The lowest

heading level

that defines

individual slides

X

smaller

Use the smaller

font size in the

presentation?

X

smart

Convert straight

quotes to curly,

dashes to em-

dashes, ... to

ellipses, etc.

X X X

template

Pandoc

template to use

when rendering

file

X X X X X

theme

Bootswatch or

Beamer theme

to use for page

X X

toc

Add a table of

contents at start

of document

X X X X X X X

toc_depth

The lowest level

of headings to

add to table of

contents

X X X X X X

Float the table of

contents to the

left of the main

toc_float X

https://riptutorial.com/ 459

sub-option description html pdf word odt rtf md github ioslides slidy beamer

content

Examples

Rstudio example

This is a script saved as .Rmd, on the contrary of r scripts saved as .R.

To knit the script, either use the render function or use the shortcut button in Rstudio.

title: "Rstudio exemple of a rmd file"
author: 'stack user'
date: "22 July 2016"
output: html_document

The header is used to define the general parameters and the metadata.

R Markdown

This is an R Markdown document.
It is a script written in markdown with the possibility to insert chunk of R code in it.
To insert R code, it needs to be encapsulated into inverted quote.

Like that for a long piece of code:

```{r cars} 
summary(cars) 
``` 

And like ``r cat("that")`` for small piece of code.

Including Plots

You can also embed plots, for example:

```{r echo=FALSE} 
plot(pressure) 
```

Adding a footer to an ioslides presentation

Adding a footer is not natively possible. Luckily, we can make use of jQuery and CSS to add a

footer to the slides of an ioslides presentation rendered with knitr. First of all we have to include

the jQuery plugin. This is done by the line

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.2/jquery.min.js"></script>

Now we can use jQuery to alter the DOM (document object model) of our presentation. In other

words: we alter the HTML structure of the document. As soon as the presentation is loaded (
$(document).ready(function() { ... })

https://riptutorial.com/ 460

), we select all slides, that do not have the class attributes .title-slide, .backdrop, or .segue and

add the tag <footer></footer> right before each slide is 'closed' (so before </slide>). The attribute

label carries the content that will be displayed later on.

All we have to do now is to layout our footer with CSS:

After each <footer> (footer::after):

display the content of the attribute label•

use font size 12•

position the footer (20 pixels from the bottom of the slide and 60 pxs from the left)•

(the other properties can be ignored but might have to be modified if the presentation uses a

different style template).

title: "Adding a footer to presentaion slides"
author: "Martin Schmelzer"
date: "26 Juli 2016"
output: ioslides_presentation

```{r setup, include=FALSE} 
knitr::opts_chunk$set(echo = FALSE) 
``` 

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.2/jquery.min.js"></script>

<script>
 $(document).ready(function() {
 $('slide:not(.title-slide, .backdrop, .segue)').append('<footer label=\"My amazing
footer!\"></footer>');
 })
</script>

<style>
 footer:after {
 content: attr(label);
 font-size: 12pt;
 position: absolute;
 bottom: 20px;
 left: 60px;
 line-height: 1.9;
 }
</style>

Slide 1

This is slide 1.

Slide 2

This is slide 2

Test

Slide 3

https://riptutorial.com/ 461

And slide 3.

The result will look like this:

Read RMarkdown and knitr presentation online: https://riptutorial.com/r/topic/2999/rmarkdown-

and-knitr-presentation

https://riptutorial.com/ 462

http://i.stack.imgur.com/ioNUE.png
https://riptutorial.com/r/topic/2999/rmarkdown-and-knitr-presentation
https://riptutorial.com/r/topic/2999/rmarkdown-and-knitr-presentation

Chapter 100: RODBC

Examples

Connecting to Excel Files via RODBC

While RODBC is restricted to Windows computers with compatible architecture between R and any

target RDMS, one of its key flexibilities is to work with Excel files as if they were SQL databases.

require(RODBC)
con = odbcConnectExcel("myfile.xlsx") # open a connection to the Excel file
sqlTables(con)$TABLE_NAME # show all sheets
df = sqlFetch(con, "Sheet1") # read a sheet
df = sqlQuery(con, "select * from [Sheet1 $]") # read a sheet (alternative SQL syntax)
close(con) # close the connection to the file

SQL Server Management Database connection to get individual table

Another use of RODBC is in connecting with SQL Server Management Database. We need to

specify the 'Driver' i.e. SQL Server here, the database name "Atilla" and then use the sqlQuery to

extract either the full table or a fraction of it.

library(RODBC)
cn <- odbcDriverConnect(connection="Driver={SQL
Server};server=localhost;database=Atilla;trusted_connection=yes;")
tbl <- sqlQuery(cn, 'select top 10 * from table_1')

Connecting to relational databases

library(RODBC)
con <- odbcDriverConnect("driver={Sql Server};server=servername;trusted connection=true")
dat <- sqlQuery(con, "select * from table");
close(con)

This will connect to a SQL Server instance. For more information on what your connection string

should look like, visit connectionstrings.com

Also, since there's no database specified, you should make sure you fully qualify the object you're

wanting to query like this databasename.schema.objectname

Read RODBC online: https://riptutorial.com/r/topic/2471/rodbc

https://riptutorial.com/ 463

http://connectionstrings.com
https://riptutorial.com/r/topic/2471/rodbc

Chapter 101: roxygen2

Parameters

Parameter details

author Author of the package

examples The following lines will be examples on how to use the documented function

export To export the function - i.e. make it callable by users of the package

import Package(s) namespace(s) to import

importFrom Functions to import from the package (first name of the list)

param Parameter of the function to document

Examples

Documenting a package with roxygen2

Writing with roxygen2

roxygen2 is a package created by Hadley Wickham to facilitate documentation.

It allows to include the documentation inside the R script, in lines starting by #'. The different

parameters passed to the documentation start with an @, for example the creator of a package will

by written as follow:

#' @author The Author

For example, if we wanted to document the following function:

mean<-function(x) sum(x)/length(x)

We will want to write a small description to this function, and explain the parameters with the

following (each line will be explained and detailed after):

#' Mean
#'
#' A function to compute the mean of a vector
#' @param x A numeric vector
#' @keyword mean
#' @importFrom base sum

https://riptutorial.com/ 464

https://cran.r-project.org/package=roxygen2

#' @export
#' @examples
#' mean(1:3)
#' \dontrun{ mean(1:1e99) }
mean<-function(x) sum(x)/length(x)

The first line #' Mean is the title of the documentation, the following lines make the corpus.•

Each parameter of a function must be detailed through a relevant @param. @export indicated

that this function name should be exported, and thus can be called when the package is

loaded.

•

@keyword provides relevant keywords when looking for help•

@importFrom lists all functions to import from a package that will be used in this function or in

you package. Note that importing the complete namespace of a package can be done with
@import

•

The examples are then written below the @example tag.

The first one will be evaluated when the package is built;○

The second one will not - usually to prevent long computations - due to the \dontrun

command.

○

•

Building the documentation

The documentation can be created using devtools::document(). Note also that devtools::check()

will automatically create a documentation and will report missing arguments in the documentation

of functions as warnings.

Read roxygen2 online: https://riptutorial.com/r/topic/5171/roxygen2

https://riptutorial.com/ 465

https://riptutorial.com/r/topic/5171/roxygen2

Chapter 102: Run-length encoding

Remarks

A run is a consecutive sequence of repeated values or observations. For repeated values, R's

"run-length encoding" concisely describes a vector in terms of its runs. Consider:

dat <- c(1, 2, 2, 2, 3, 1, 4, 4, 1, 1)

We have a length-one run of 1s; then a length-three run of 2s; then a length-one run of 3s; and so

on. R's run-length encoding captures all the lengths and values of a vector's runs.

Extensions

A run can also refer to consecutive observations in a tabular data. While R doesn't have a natural

way of encoding these, they can be handled with rleid from the data.table package (currently a

dead-end link).

Examples

Run-length Encoding with `rle`

Run-length encoding captures the lengths of runs of consecutive elements in a vector. Consider

an example vector:

dat <- c(1, 2, 2, 2, 3, 1, 4, 4, 1, 1)

The rle function extracts each run and its length:

r <- rle(dat)
r
Run Length Encoding
lengths: int [1:6] 1 3 1 1 2 2
values : num [1:6] 1 2 3 1 4 1

The values for each run are captured in r$values:

r$values
[1] 1 2 3 1 4 1

This captures that we first saw a run of 1's, then a run of 2's, then a run of 3's, then a run of 1's,

and so on.

The lengths of each run are captured in r$lengths:

https://riptutorial.com/ 466

http://www.riptutorial.com/asp-net-mvc/example/4117/binding-to-objects
http://www.riptutorial.com/asp-net-mvc/example/4117/binding-to-objects
http://www.riptutorial.com/asp-net-mvc/example/4117/binding-to-objects

r$lengths
[1] 1 3 1 1 2 2

We see that the initial run of 1's was of length 1, the run of 2's that followed was of length 3, and

so on.

Identifying and grouping by runs in base R

One might want to group their data by the runs of a variable and perform some sort of analysis.

Consider the following simple dataset:

(dat <- data.frame(x = c(1, 1, 2, 2, 2, 1), y = 1:6))
x y
1 1 1
2 1 2
3 2 3
4 2 4
5 2 5
6 1 6

The variable x has three runs: a run of length 2 with value 1, a run of length 3 with value 2, and a

run of length 1 with value 1. We might want to compute the mean value of variable y in each of the

runs of variable x (these mean values are 1.5, 4, and 6).

In base R, we would first compute the run-length encoding of the x variable using rle:

(r <- rle(dat$x))
Run Length Encoding
lengths: int [1:3] 2 3 1
values : num [1:3] 1 2 1

The next step is to compute the run number of each row of our dataset. We know that the total

number of runs is length(r$lengths), and the length of each run is r$lengths, so we can compute

the run number of each of our runs with rep:

(run.id <- rep(seq_along(r$lengths), r$lengths))
[1] 1 1 2 2 2 3

Now we can use tapply to compute the mean y value for each run by grouping on the run id:

data.frame(x=r$values, meanY=tapply(dat$y, run.id, mean))
x meanY
1 1 1.5
2 2 4.0
3 1 6.0

Identifying and grouping by runs in data.table

The data.table package provides a convenient way to group by runs in data. Consider the

following example data:

https://riptutorial.com/ 467

library(data.table)
(DT <- data.table(x = c(1, 1, 2, 2, 2, 1), y = 1:6))
x y
1: 1 1
2: 1 2
3: 2 3
4: 2 4
5: 2 5
6: 1 6

The variable x has three runs: a run of length 2 with value 1, a run of length 3 with value 2, and a

run of length 1 with value 1. We might want to compute the mean value of variable y in each of the

runs of variable x (these mean values are 1.5, 4, and 6).

The data.table rleid function provides an id indicating the run id of each element of a vector:

rleid(DT$x)
[1] 1 1 2 2 2 3

One can then easily group on this run ID and summarize the y data:

DT[,mean(y),by=.(x, rleid(x))]
x rleid V1
1: 1 1 1.5
2: 2 2 4.0
3: 1 3 6.0

Run-length encoding to compress and decompress vectors

Long vectors with long runs of the same value can be significantly compressed by storing them in

their run-length encoding (the value of each run and the number of times that value is repeated).

As an example, consider a vector of length 10 million with a huge number of 1's and only a small

number of 0's:

set.seed(144)
dat <- sample(rep(0:1, c(1, 1e5)), 1e7, replace=TRUE)
table(dat)
0 1
103 9999897

Storing 10 million entries will require significant space, but we can instead create a data frame with

the run-length encoding of this vector:

rle.df <- with(rle(dat), data.frame(values, lengths))
dim(rle.df)
[1] 207 2
head(rle.df)
values lengths
1 1 52818
2 0 1
3 1 219329
4 0 1
5 1 318306

https://riptutorial.com/ 468

6 0 1

From the run-length encoding, we see that the first 52,818 values in the vector are 1's, followed by

a single 0, followed by 219,329 consecutive 1's, followed by a 0, and so on. The run-length

encoding only has 207 entries, requiring us to store only 414 values instead of 10 million values.

As rle.df is a data frame, it can be stored using standard functions like write.csv.

Decompressing a vector in run-length encoding can be accomplished in two ways. The first

method is to simply call rep, passing the values element of the run-length encoding as the first

argument and the lengths element of the run-length encoding as the second argument:

decompressed <- rep(rle.df$values, rle.df$lengths)

We can confirm that our decompressed data is identical to our original data:

identical(decompressed, dat)
[1] TRUE

The second method is to use R's built-in inverse.rle function on the rle object, for instance:

rle.obj <- rle(dat) # create a rle object here
class(rle.obj)
[1] "rle"

dat.inv <- inverse.rle(rle.obj) # apply the inverse.rle on the rle object

We can confirm again that this produces exactly the original dat:

identical(dat.inv, dat)
[1] TRUE

Read Run-length encoding online: https://riptutorial.com/r/topic/1133/run-length-encoding

https://riptutorial.com/ 469

https://riptutorial.com/r/topic/1133/run-length-encoding

Chapter 103: Scope of variables

Remarks

The most common pitfall with scope arises in parallelization. All variables and functions must be

passed into a new environment that is run on each thread.

Examples

Environments and Functions

Variables declared inside a function only exist (unless passed) inside that function.

x <- 1

foo <- function(x) {
 y <- 3
 z <- x + y
 return(z)
}

y

Error: object 'y' not found

Variables passed into a function and then reassigned are overwritten, but only inside the function.

foo <- function(x) {
 x <- 2
 y <- 3
 z <- x + y
 return(z)
}

foo(1)
x

5

1

Variables assigned in a higher environment than a function exist within that function, without being

passed.

foo <- function() {
 y <- 3
 z <- x + y
 return(z)
}

https://riptutorial.com/ 470

foo()

4

Sub functions

Functions called within a function (ie subfunctions) must be defined within that function to access

any variables defined in the local environment without being passed.

This fails:

bar <- function() {
 z <- x + y
 return(z)
}

foo <- function() {
 y <- 3
 z <- bar()
 return(z)
}

foo()

Error in bar() : object 'y' not found

This works:

foo <- function() {

 bar <- function() {
 z <- x + y
 return(z)
 }

 y <- 3
 z <- bar()
 return(z)
}

foo()

4

Global Assignment

Variables can be assigned globally from any environment using <<-. bar() can now access y.

bar <- function() {
 z <- x + y
 return(z)
}

foo <- function() {

https://riptutorial.com/ 471

 y <<- 3
 z <- bar()
 return(z)
}

foo()

4

Global assignment is highly discouraged. Use of a wrapper function or explicitly calling variables

from another local environment is greatly preferred.

Explicit Assignment of Environments and Variables

Environments in R can be explicitly call and named. Variables can be explicitly assigned and call

to or from those environments.

A commonly created environment is one which encloses package:base or a subenvironment within

package:base.

e1 <- new.env(parent = baseenv())
e2 <- new.env(parent = e1)

Variables can be explicitly assigned and call to or from those environments.

assign("a", 3, envir = e1)
 get("a", envir = e1)
 get("a", envir = e2)

3

3

Since e2 inherits from e1, a is 3 in both e1 and e2. However, assigning a within e2 does not change

the value of a in e1.

assign("a", 2, envir = e2)
 get("a", envir = e2)
 get("a", envir = e1)

3

2

Function Exit

The on.exit() function is handy for variable clean up if global variables must be assigned.

Some parameters, especially those for graphics, can only be set globally. This small function is

common when creating more specialized plots.

https://riptutorial.com/ 472

new_plot <- function(...) {

 old_pars <- par(mar = c(5,4,4,2) + .1, mfrow = c(1,1))
 on.exit(par(old_pars))
 plot(...)
 }

Packages and Masking

Functions and objects in different packages may have the same name. The package loaded later

will 'mask' the earlier package and a warning message will be printed. When calling the function by

name, the function from the most recently loaded package will be run. The earlier function can be

accessed explicitly.

library(plyr)
library(dplyr)

Attaching package: ‘dplyr’

The following objects are masked from ‘package:plyr’:

arrange, count, desc, failwith, id, mutate, rename, summarise, summarize

The following objects are masked from ‘package:stats’:

filter, lag

The following objects are masked from ‘package:base’:

intersect, setdiff, setequal, union

When writing code, it is always best practice to call functions explicitly using package::function()

specifically to avoid this issue.

Read Scope of variables online: https://riptutorial.com/r/topic/3138/scope-of-variables

https://riptutorial.com/ 473

https://riptutorial.com/r/topic/3138/scope-of-variables

Chapter 104: Set operations

Remarks

A set contains only one copy of each distinct element. Unlike some other programming languages,

base R does not have a dedicated data type for sets. Instead, R treats a vector like a set by taking

only its distinct elements. This applies to the set operators, setdiff, intersect, union, setequal and

%in%. For v %in% S, only S is treated as a set, however, not the vector v.

For a true set data type in R, the Rcpp package provides some options.

Examples

Set operators for pairs of vectors

Comparing sets

In R, a vector may contain duplicated elements:

v = "A"
w = c("A", "A")

However, a set contains only one copy of each element. R treats a vector like a set by taking only

its distinct elements, so the two vectors above are regarded as the same:

setequal(v, w)
TRUE

Combining sets

The key functions have natural names:

x = c(1, 2, 3)
y = c(2, 4)

union(x, y)
1 2 3 4

intersect(x, y)
2

setdiff(x, y)
1 3

These are all documented on the same page, ?union.

https://riptutorial.com/ 474

http://stackoverflow.com/a/23015853/

Set membership for vectors

The %in% operator compares a vector with a set.

v = "A"
w = c("A", "A")

w %in% v
TRUE TRUE

v %in% w
TRUE

Each element on the left is treated individually and tested for membership in the set associated

with the vector on the right (consisting of all its distinct elements).

Unlike equality tests, %in% always returns TRUE or FALSE:

c(1, NA) %in% c(1, 2, 3, 4)
TRUE FALSE

The documentation is at ?`%in%`.

Cartesian or "cross" products of vectors

To find every vector of the form (x, y) where x is drawn from vector X and y from Y, we use

expand.grid:

X = c(1, 1, 2)
Y = c(4, 5)

expand.grid(X, Y)

Var1 Var2
1 1 4
2 1 4
3 2 4
4 1 5
5 1 5
6 2 5

The result is a data.frame with one column for each vector passed to it. Often, we want to take the

Cartesian product of sets rather than to expand a "grid" of vectors. We can use unique, lapply and

do.call:

m = do.call(expand.grid, lapply(list(X, Y), unique))

Var1 Var2
1 1 4
2 2 4
3 1 5
4 2 5

https://riptutorial.com/ 475

Applying functions to combinations

If you then want to apply a function to each resulting combination f(x,y), it can be added as

another column:

m$p = with(m, Var1*Var2)
Var1 Var2 p
1 1 4 4
2 2 4 8
3 1 5 5
4 2 5 10

This approach works for as many vectors as we need, but in the special case of two, it is

sometimes a better fit to have the result in a matrix, which can be achieved with outer:

uX = unique(X)
uY = unique(Y)

outer(setNames(uX, uX), setNames(uY, uY), `*`)

4 5
1 4 5
2 8 10

For related concepts and tools, see the combinatorics topic.

Make unique / drop duplicates / select distinct elements from a vector

unique drops duplicates so that each element in the result is unique (only appears once):

x = c(2, 1, 1, 2, 1)

unique(x)
2 1

Values are returned in the order they first appeared.

duplicated tags each duplicated element:

duplicated(x)
FALSE FALSE TRUE TRUE TRUE

anyDuplicated(x) > 0L is a quick way of checking whether a vector contains any duplicates.

Measuring set overlaps / Venn diagrams for vectors

To count how many elements of two sets overlap, one could write a custom function:

xtab_set <- function(A, B){
 both <- union(A, B)

https://riptutorial.com/ 476

 inA <- both %in% A
 inB <- both %in% B
 return(table(inA, inB))
}

A = 1:20
B = 10:30

xtab_set(A, B)

inB
inA FALSE TRUE
FALSE 0 10
TRUE 9 11

A Venn diagram, offered by various packages, can be used to visualize overlap counts across

multiple sets.

Read Set operations online: https://riptutorial.com/r/topic/1383/set-operations

https://riptutorial.com/ 477

https://riptutorial.com/r/topic/1383/set-operations

Chapter 105: Shiny

Examples

Create an app

Shiny is an R package developed by RStudio that allows the creation of web pages to interactively

display the results of an analysis in R.

There are two simple ways to create a Shiny app:

in one .R file, or•

in two files: ui.R and server.R.•

A Shiny app is divided into two parts:

ui: A user interface script, controlling the layout and appearance of the application.•

server: A server script which contains code to allow the application to react.•

One file

library(shiny)

Create the UI
ui <- shinyUI(fluidPage(
 # Application title
 titlePanel("Hello World!")
))

Create the server function
server <- shinyServer(function(input, output){})

Run the app
shinyApp(ui = ui, server = server)

Two files

Create ui.R file

library(shiny)

Define UI for application
shinyUI(fluidPage(
 # Application title
 titlePanel("Hello World!")
))

https://riptutorial.com/ 478

https://cran.r-project.org/web/packages/shiny/index.html
https://www.rstudio.com/home/

Create server.R file

library(shiny)

Define server logic
shinyServer(function(input, output){})

Radio Button

You can create a set of radio buttons used to select an item from a list.

It's possible to change the settings :

selected : The initially selected value (character(0) for no selection)•

inline : horizontal or vertical•

width•

It is also possible to add HTML.

library(shiny)

ui <- fluidPage(
 radioButtons("radio",
 label = HTML('Welcome

Your favorite color is red ?'),
 choices = list("TRUE" = 1, "FALSE" = 2),
 selected = 1,
 inline = T,
 width = "100%"),
 fluidRow(column(3, textOutput("value"))))

server <- function(input, output){
 output$value <- renderPrint({
 if(input$radio == 1){return('Great !')}
 else{return("Sorry !")}})}

shinyApp(ui = ui, server = server)

Checkbox Group

Create a group of checkboxes that can be used to toggle multiple choices independently. The

server will receive the input as a character vector of the selected values.

https://riptutorial.com/ 479

http://i.stack.imgur.com/Xj5UC.png

library(shiny)

ui <- fluidPage(
 checkboxGroupInput("checkGroup1", label = h3("This is a Checkbox group"),
 choices = list("1" = 1, "2" = 2, "3" = 3),
 selected = 1),
 fluidRow(column(3, verbatimTextOutput("text_choice")))
)

server <- function(input, output){
 output$text_choice <- renderPrint({
 return(paste0("You have chosen the choice ",input$checkGroup1))})
}

shinyApp(ui = ui, server = server)

It's possible to change the settings :

label : title•

choices : selected values•

selected : The initially selected value (NULL for no selection)•

inline : horizontal or vertical•

width•

It is also possible to add HTML.

Select box

Create a select list that can be used to choose a single or multiple items from a list of values.

library(shiny)

ui <- fluidPage(
 selectInput("id_selectInput",
 label = HTML('What is your favorite color ?'),
 multiple = TRUE,
 choices = list("red" = "red", "green" = "green", "blue" = "blue", "yellow" =
"yellow"),
 selected = NULL),
 br(), br(),
 fluidRow(column(3, textOutput("text_choice"))))

https://riptutorial.com/ 480

http://i.stack.imgur.com/LcpI1.png

server <- function(input, output){
 output$text_choice <- renderPrint({
 return(input$id_selectInput)})
}

shinyApp(ui = ui, server = server)

It's possible to change the settings :

label : title•

choices : selected values•

selected : The initially selected value (NULL for no selection)•

multiple : TRUE or FALSE•

width•

size•

selectize: TRUE or FALSE (for use or not selectize.js, change the display)•

It is also possible to add HTML.

Launch a Shiny app

You can launch an application in several ways, depending on how you create you app. If your app

is divided in two files ui.R and server.R or if all of your app is in one file.

1. Two files app

Your two files ui.R and server.Rhave to be in the same folder. You could then launch your app by

running in the console the shinyApp() function and by passing the path of the directory that

contains the Shiny app.

shinyApp("path_to_the_folder_containing_the_files")

You can also launch the app directly from Rstudio by pressing the Run App button that appear on

Rstudio when you an ui.R or server.R file open.

https://riptutorial.com/ 481

http://i.stack.imgur.com/rYCsz.png
http://i.stack.imgur.com/zietn.png

Or you can simply write runApp() on the console if your working directory is Shiny App directory.

2. One file app

If you create your in one R file you can also launch it with the shinyApp() function.

inside of your code :•

library(shiny)

ui <- fluidPage() #Create the ui
server <- function(input, output){} #create the server

shinyApp(ui = ui, server = server) #run the App

in the console by adding path to a .R file containing the Shiny application with the paramter

appFile:

•

shinyApp(appFile="path_to_my_R_file_containig_the_app")

Control widgets

Function Widget

actionButton Action Button

checkboxGroupInput A group of check boxes

checkboxInput A single check box

dateInput A calendar to aid date selection

dateRangeInput A pair of calendars for selecting a date range

fileInput A file upload control wizard

helpText Help text that can be added to an input form

numericInput A field to enter numbers

radioButtons A set of radio buttons

selectInput A box with choices to select from

sliderInput A slider bar

submitButton A submit button

textInput A field to enter text

https://riptutorial.com/ 482

library(shiny)

Create the UI
ui <- shinyUI(fluidPage(
 titlePanel("Basic widgets"),

 fluidRow(

 column(3,
 h3("Buttons"),
 actionButton("action", label = "Action"),
 br(),
 br(),
 submitButton("Submit")),

 column(3,
 h3("Single checkbox"),
 checkboxInput("checkbox", label = "Choice A", value = TRUE)),

 column(3,
 checkboxGroupInput("checkGroup",
 label = h3("Checkbox group"),
 choices = list("Choice 1" = 1,
 "Choice 2" = 2, "Choice 3" = 3),
 selected = 1)),

 column(3,
 dateInput("date",
 label = h3("Date input"),
 value = "2014-01-01"))
),

 fluidRow(

 column(3,
 dateRangeInput("dates", label = h3("Date range"))),

 column(3,
 fileInput("file", label = h3("File input"))),

 column(3,
 h3("Help text"),
 helpText("Note: help text isn't a true widget,",
 "but it provides an easy way to add text to",
 "accompany other widgets.")),

 column(3,
 numericInput("num",
 label = h3("Numeric input"),
 value = 1))
),

 fluidRow(

 column(3,
 radioButtons("radio", label = h3("Radio buttons"),
 choices = list("Choice 1" = 1, "Choice 2" = 2,
 "Choice 3" = 3),selected = 1)),

 column(3,
 selectInput("select", label = h3("Select box"),

https://riptutorial.com/ 483

 choices = list("Choice 1" = 1, "Choice 2" = 2,
 "Choice 3" = 3), selected = 1)),

 column(3,
 sliderInput("slider1", label = h3("Sliders"),
 min = 0, max = 100, value = 50),
 sliderInput("slider2", "",
 min = 0, max = 100, value = c(25, 75))
),

 column(3,
 textInput("text", label = h3("Text input"),
 value = "Enter text..."))
)

))

Create the server function
server <- shinyServer(function(input, output){})

Run the app
shinyApp(ui = ui, server = server)

Debugging

debug() and debugonce() won't work well in the context of most Shiny debugging. However,

browser() statements inserted in critical places can give you a lot of insight into how your Shiny

code is (not) working. See also: Debugging using browser()

Showcase mode

Showcase mode displays your app alongside the code that generates it and highlights lines of

code in server.R as it runs them.

There are two ways to enable Showcase mode:

Launch Shiny app with the argument display.mode = "showcase", e.g., runApp("MyApp",

display.mode = "showcase").

•

Create file called DESCRIPTION in your Shiny app folder and add this line in it: DisplayMode:

Showcase.

•

Reactive Log Visualizer

Reactive Log Visualizer provides an interactive browser-based tool for visualizing reactive

dependencies and execution in your application. To enable Reactive Log Visualizer, execute

options(shiny.reactlog=TRUE) in R console and or add that line of code in your server.R file. To

start Reactive Log Visualizer, hit Ctrl+F3 on Windows or Command+F3 on Mac when your app is

running. Use left and right arrow keys to navigate in Reactive Log Visualizer.

Read Shiny online: https://riptutorial.com/r/topic/2044/shiny

https://riptutorial.com/ 484

http://www.riptutorial.com/r/example/5482/using-browser
http://www.riptutorial.com/r/example/5482/using-browser
http://shiny.rstudio.com/articles/display-modes.html
http://shiny.rstudio.com/reference/shiny/latest/showReactLog.html
https://riptutorial.com/r/topic/2044/shiny

Chapter 106: Solving ODEs in R

Syntax

ode(y, times, func, parms, method, ...)•

Parameters

Parameter Details

y (named) numeric vector: the initial (state) values for the ODE system

times
time sequence for which output is wanted; the first value of times must be the

initial time

func
name of the function that computes the values of the derivatives in the ODE

system

parms (named) numeric vector: parameters passed to func

method the integrator to use, by default: lsoda

Remarks

Note that it is necessary to return the rate of change in the same ordering as the specification of

the state variables. In example "The Lorenz model" this means, that in the function "Lorenz"

command

return(list(c(dX, dY, dZ)))

has the same order as the definition of the state variables

yini <- c(X = 1, Y = 1, Z = 1)

Examples

The Lorenz model

The Lorenz model describes the dynamics of three state variables, X, Y and Z. The model

equations are:

https://riptutorial.com/ 485

The initial conditions are:

and a, b and c are three parameters with

library(deSolve)

Define R-function
--

Lorenz <- function (t, y, parms) {
 with(as.list(c(y, parms)), {
 dX <- a * X + Y * Z
 dY <- b * (Y - Z)
 dZ <- -X * Y + c * Y - Z

 return(list(c(dX, dY, dZ)))
 })
}

Define parameters and variables

parms <- c(a = -8/3, b = -10, c = 28)
yini <- c(X = 1, Y = 1, Z = 1)
times <- seq(from = 0, to = 100, by = 0.01)

Solve the ODEs

out <- ode(y = yini, times = times, func = Lorenz, parms = parms)

Plot the results

plot(out, lwd = 2)
plot(out[,"X"], out[,"Y"],
 type = "l", xlab = "X",
 ylab = "Y", main = "butterfly")

https://riptutorial.com/ 486

Lotka-Volterra or: Prey vs. predator

library(deSolve)

Define R-function

LV <- function(t, y, parms) {
 with(as.list(c(y, parms)), {

 dP <- rG * P * (1 - P/K) - rI * P * C
 dC <- rI * P * C * AE - rM * C

 return(list(c(dP, dC), sum = C+P))
 })
}

Define parameters and variables

parms <- c(rI = 0.2, rG = 1.0, rM = 0.2, AE = 0.5, K = 10)
yini <- c(P = 1, C = 2)
times <- seq(from = 0, to = 200, by = 1)

Solve the ODEs

https://riptutorial.com/ 487

https://i.stack.imgur.com/Rr3Jv.png

out <- ode(y = yini, times = times, func = LV, parms = parms)

Plot the results

matplot(out[,1], out[,2:4], type = "l", xlab = "time", ylab = "Conc",
 main = "Lotka-Volterra", lwd = 2)
legend("topright", c("prey", "predator", "sum"), col = 1:3, lty = 1:3)

ODEs in compiled languages - definition in R

library(deSolve)

Define parameters and variables

eps <- 0.01;
M <- 10
k <- M * eps^2/2
L <- 1
L0 <- 0.5
r <- 0.1
w <- 10
g <- 1

https://riptutorial.com/ 488

https://i.stack.imgur.com/inQWC.png

parameter <- c(eps = eps, M = M, k = k, L = L, L0 = L0, r = r, w = w, g = g)

yini <- c(xl = 0, yl = L0, xr = L, yr = L0,
 ul = -L0/L, vl = 0,
 ur = -L0/L, vr = 0,
 lam1 = 0, lam2 = 0)

times <- seq(from = 0, to = 3, by = 0.01)

Define R-function

caraxis_R <- function(t, y, parms) {
 with(as.list(c(y, parms)), {

 yb <- r * sin(w * t)
 xb <- sqrt(L * L - yb * yb)
 Ll <- sqrt(xl^2 + yl^2)
 Lr <- sqrt((xr - xb)^2 + (yr - yb)^2)

 dxl <- ul; dyl <- vl; dxr <- ur; dyr <- vr

 dul <- (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
 dvl <- (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k * g

 dur <- (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
 dvr <- (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k * g

 c1 <- xb * xl + yb * yl
 c2 <- (xl - xr)^2 + (yl - yr)^2 - L * L

 return(list(c(dxl, dyl, dxr, dyr, dul, dvl, dur, dvr, c1, c2)))
 })
}

ODEs in compiled languages - definition in C

sink("caraxis_C.c")
cat("
/* suitable names for parameters and state variables */

#include <R.h>
#include <math.h>
static double parms[8];

#define eps parms[0]
#define m parms[1]
#define k parms[2]
#define L parms[3]
#define L0 parms[4]
#define r parms[5]
#define w parms[6]
#define g parms[7]

/*--
 initialising the parameter common block
--

https://riptutorial.com/ 489

*/
void init_C(void (* daeparms)(int *, double *)) {
 int N = 8;
 daeparms(&N, parms);
 }
/* Compartments */

#define xl y[0]
#define yl y[1]
#define xr y[2]
#define yr y[3]
#define lam1 y[8]
#define lam2 y[9]

/*--
 the residual function
--
*/
void caraxis_C (int *neq, double *t, double *y, double *ydot,
 double *yout, int* ip)
{
 double yb, xb, Lr, Ll;

 yb = r * sin(w * *t) ;
 xb = sqrt(L * L - yb * yb);
 Ll = sqrt(xl * xl + yl * yl) ;
 Lr = sqrt((xr-xb)*(xr-xb) + (yr-yb)*(yr-yb));

 ydot[0] = y[4];
 ydot[1] = y[5];
 ydot[2] = y[6];
 ydot[3] = y[7];

 ydot[4] = (L0-Ll) * xl/Ll + lam1*xb + 2*lam2*(xl-xr) ;
 ydot[5] = (L0-Ll) * yl/Ll + lam1*yb + 2*lam2*(yl-yr) - k*g;
 ydot[6] = (L0-Lr) * (xr-xb)/Lr - 2*lam2*(xl-xr) ;
 ydot[7] = (L0-Lr) * (yr-yb)/Lr - 2*lam2*(yl-yr) - k*g ;

 ydot[8] = xb * xl + yb * yl;
 ydot[9] = (xl-xr) * (xl-xr) + (yl-yr) * (yl-yr) - L*L;

}
", fill = TRUE)
sink()
system("R CMD SHLIB caraxis_C.c")
dyn.load(paste("caraxis_C", .Platform$dynlib.ext, sep = ""))
dllname_C <- dyn.load(paste("caraxis_C", .Platform$dynlib.ext, sep = ""))[[1]]

ODEs in compiled languages - definition in fortran

sink("caraxis_fortran.f")
cat("
c--
c Initialiser for parameter common block
c--
 subroutine init_fortran(daeparms)

 external daeparms
 integer, parameter :: N = 8

https://riptutorial.com/ 490

 double precision parms(N)
 common /myparms/parms

 call daeparms(N, parms)
 return
 end

c--
c rate of change
c--
 subroutine caraxis_fortran(neq, t, y, ydot, out, ip)
 implicit none
 integer neq, IP(*)
 double precision t, y(neq), ydot(neq), out(*)
 double precision eps, M, k, L, L0, r, w, g
 common /myparms/ eps, M, k, L, L0, r, w, g

 double precision xl, yl, xr, yr, ul, vl, ur, vr, lam1, lam2
 double precision yb, xb, Ll, Lr, dxl, dyl, dxr, dyr
 double precision dul, dvl, dur, dvr, c1, c2

c expand state variables
 xl = y(1)
 yl = y(2)
 xr = y(3)
 yr = y(4)
 ul = y(5)
 vl = y(6)
 ur = y(7)
 vr = y(8)
 lam1 = y(9)
 lam2 = y(10)

 yb = r * sin(w * t)
 xb = sqrt(L * L - yb * yb)
 Ll = sqrt(xl**2 + yl**2)
 Lr = sqrt((xr - xb)**2 + (yr - yb)**2)

 dxl = ul
 dyl = vl
 dxr = ur
 dyr = vr

 dul = (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
 dvl = (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k*g
 dur = (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
 dvr = (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k*g

 c1 = xb * xl + yb * yl
 c2 = (xl - xr)**2 + (yl - yr)**2 - L * L

c function values in ydot
 ydot(1) = dxl
 ydot(2) = dyl
 ydot(3) = dxr
 ydot(4) = dyr
 ydot(5) = dul
 ydot(6) = dvl
 ydot(7) = dur
 ydot(8) = dvr
 ydot(9) = c1

https://riptutorial.com/ 491

 ydot(10) = c2
 return
 end
", fill = TRUE)

sink()
system("R CMD SHLIB caraxis_fortran.f")
dyn.load(paste("caraxis_fortran", .Platform$dynlib.ext, sep = ""))
dllname_fortran <- dyn.load(paste("caraxis_fortran", .Platform$dynlib.ext, sep = ""))[[1]]

ODEs in compiled languages - a benchmark test

When you compiled and loaded the code in the three examples before (ODEs in compiled

languages - definition in R, ODEs in compiled languages - definition in C and ODEs in compiled

languages - definition in fortran) you are able to run a benchmark test.

library(microbenchmark)

R <- function(){
 out <- ode(y = yini, times = times, func = caraxis_R,
 parms = parameter)
}

C <- function(){
 out <- ode(y = yini, times = times, func = "caraxis_C",
 initfunc = "init_C", parms = parameter,
 dllname = dllname_C)
}

fortran <- function(){
 out <- ode(y = yini, times = times, func = "caraxis_fortran",
 initfunc = "init_fortran", parms = parameter,
 dllname = dllname_fortran)
}

Check if results are equal:

all.equal(tail(R()), tail(fortran()))
all.equal(R()[,2], fortran()[,2])
all.equal(R()[,2], C()[,2])

Make a benchmark (Note: On your machine the times are, of course, different):

bench <- microbenchmark::microbenchmark(
 R(),
 fortran(),
 C(),
 times = 1000
)

summary(bench)

 expr min lq mean median uq max neval cld
 R() 31508.928 33651.541 36747.8733 36062.2475 37546.8025 132996.564 1000 b
fortran() 570.674 596.700 686.1084 637.4605 730.1775 4256.555 1000 a

https://riptutorial.com/ 492

 C() 562.163 590.377 673.6124 625.0700 723.8460 5914.347 1000 a

We see clearly, that R is slow in contrast to the definition in C and fortran. For big models it's worth

to translate the problem in a compiled language. The package cOde is one possibility to translate

ODEs from R to C.

Read Solving ODEs in R online: https://riptutorial.com/r/topic/7448/solving-odes-in-r

https://riptutorial.com/ 493

https://i.stack.imgur.com/sC2pP.png
https://riptutorial.com/r/topic/7448/solving-odes-in-r

Chapter 107: Spark API (SparkR)

Remarks

The SparkR package let's you work with distributed data frames on top of a Spark cluster. These

allow you to do operations like selection, filtering, aggregation on very large datasets. SparkR

overview SparkR package documentation

Examples

Setup Spark context

Setup Spark context in R

To start working with Sparks distributed dataframes, you must connect your R program with an

existing Spark Cluster.

library(SparkR)
sc <- sparkR.init() # connection to Spark context
sqlContext <- sparkRSQL.init(sc) # connection to SQL context

Here are infos how to connect your IDE to a Spark cluster.

Get Spark Cluster

There is an Apache Spark introduction topic with install instructions. Basically, you can employ a

Spark Cluster locally via java (see instructions) or use (non-free) cloud applications (e.g. Microsoft

Azure [topic site], IBM).

Cache data

What:

Caching can optimize computation in Spark. Caching stores data in memory and is a special case

of persistence. Here is explained what happens when you cache an RDD in Spark.

Why:

Basically, caching saves an interim partial result - usually after transformations - of your original

data. So, when you use the cached RDD, the already transformed data from memory is accessed

without recomputing the earlier transformations.

How:

Here is an example how to quickly access large data (here 3 GB big csv) from in-memory storage

https://riptutorial.com/ 494

http://spark.apache.org/
https://spark.apache.org/docs/latest/sparkr.html
https://spark.apache.org/docs/latest/sparkr.html
https://spark.apache.org/docs/1.5.1/api/R/
https://spark.apache.org/docs/1.6.0/sparkr.html#starting-up-from-rstudio
http://www.riptutorial.com/apache-spark/topic/833/getting-started-with-apache-spark
http://spark.apache.org/docs/latest/
https://azure.microsoft.com/en-us/services/hdinsight/apache-spark/
https://azure.microsoft.com/en-us/services/hdinsight/apache-spark/
http://www.riptutorial.com/topic/1060
http://www.ibm.com/analytics/us/en/technology/spark/
http://stackoverflow.com/a/28983767/3889242

when accessing it more then once:

library(SparkR)
next line is needed for direct csv import:
Sys.setenv('SPARKR_SUBMIT_ARGS'='"--packages" "com.databricks:spark-csv_2.10:1.4.0" "sparkr-
shell"')
sc <- sparkR.init()
sqlContext <- sparkRSQL.init(sc)

loading 3 GB big csv file:
train <- read.df(sqlContext, "/train.csv", source = "com.databricks.spark.csv", inferSchema =
"true")
cache(train)
system.time(head(train))
output: time elapsed: 125 s. This action invokes the caching at this point.
system.time(head(train))
output: time elapsed: 0.2 s (!!)

Create RDDs (Resilient Distributed Datasets)

From dataframe:

mtrdd <- createDataFrame(sqlContext, mtcars)

From csv:

For csv's, you need to add the csv package to the environment before initiating the Spark context:

Sys.setenv('SPARKR_SUBMIT_ARGS'='"--packages" "com.databricks:spark-csv_2.10:1.4.0" "sparkr-
shell"') # context for csv import read csv ->
sc <- sparkR.init()
sqlContext <- sparkRSQL.init(sc)

Then, you can load the csv either by infering the data schema of the data in the columns:

train <- read.df(sqlContext, "/train.csv", header= "true", source =
"com.databricks.spark.csv", inferSchema = "true")

Or by specifying the data schema beforehand:

 customSchema <- structType(
 structField("margin", "integer"),
 structField("gross", "integer"),
 structField("name", "string"))

 train <- read.df(sqlContext, "/train.csv", header= "true", source =
"com.databricks.spark.csv", schema = customSchema)

Read Spark API (SparkR) online: https://riptutorial.com/r/topic/5349/spark-api--sparkr-

https://riptutorial.com/ 495

https://github.com/databricks/spark-csv
https://riptutorial.com/r/topic/5349/spark-api--sparkr-

Chapter 108: spatial analysis

Examples

Create spatial points from XY data set

When it comes to geographic data, R shows to be a powerful tool for data handling, analysis and

visualisation.

Often, spatial data is avaliable as an XY coordinate data set in tabular form. This example will

show how to create a spatial data set from an XY data set.

The packages rgdal and sp provide powerful functions. Spatial data in R can be stored as

Spatial*DataFrame (where * can be Points, Lines or Polygons).

This example uses data which can be downloaded at OpenGeocode.

At first, the working directory has to be set to the folder of the downloaded CSV data set.

Furthermore, the package rgdal has to be loaded.

setwd("D:/GeocodeExample/")
library(rgdal)

Afterwards, the CSV file storing cities and their geographical coordinates is loaded into R as a
data.frame

xy <- read.csv("worldcities.csv", stringsAsFactors = FALSE)

Often, it is useful to get a glimpse of the data and its structure (e.g. column names, data types

etc.).

head(xy)
str(xy)

This shows that the latitude and longitude columns are interpreted as character values, since they

hold entries like "-33.532". Yet, the later used function SpatialPointsDataFrame() which creates the

spatial data set requires the coordinate values to be of the data type numeric. Thus the two

columns have to be converted.

xy$latitude <- as.numeric(xy$latitude)
xy$longitude <- as.numeric(xy$longitude)

Few of the values cannot be converted into numeric data and thus, NA values are created. They

have to be removed.

xy <- xy[!is.na(xy$longitude),]

https://riptutorial.com/ 496

http://www.opengeocode.org/download/worldcities.zip

Finally, the XY data set can be converted into a spatial data set. This requires the coordinates and

the specification of the Coordinate Refrence System (CRS) in which the coordinates are stored.

xySPoints <- SpatialPointsDataFrame(coords = c(xy[,c("longitude", "latitude")]),
proj4string = CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"),
data = xy
)

The basic plot function can easily be used to sneak peak the produced spatial points.

plot(xySPoints, pch = ".")

Importing a shape file (.shp)

rgdal

ESRI shape files can easily be imported into R by using the function readOGR() from the rgdal

package.

library(rgdal)
shp <- readORG(dsn = "/path/to/your/file", layer = "filename")

It is important to know, that the dsn must not end with / and the layer does not allow the file ending

(e.g. .shp)

raster

https://riptutorial.com/ 497

http://i.stack.imgur.com/M69h8.png

Another possible way of importing shapefiles is via the raster library and the shapefile function:

library(raster)
shp <- shapefile("path/to/your/file.shp")

Note how the path definition is different from the rgdal import statement.

tmap

tmap package provides a nice wrapper for the rgdal::readORG function.

library(tmap)
sph <- read_shape("path/to/your/file.shp")

Read spatial analysis online: https://riptutorial.com/r/topic/2093/spatial-analysis

https://riptutorial.com/ 498

https://riptutorial.com/r/topic/2093/spatial-analysis

Chapter 109: Speeding up tough-to-vectorize

code

Examples

Speeding tough-to-vectorize for loops with Rcpp

Consider the following tough-to-vectorize for loop, which creates a vector of length len where the

first element is specified (first) and each element x_i is equal to cos(x_{i-1} + 1):

repeatedCosPlusOne <- function(first, len) {
 x <- numeric(len)
 x[1] <- first
 for (i in 2:len) {
 x[i] <- cos(x[i-1] + 1)
 }
 return(x)
}

This code involves a for loop with a fast operation (cos(x[i-1]+1)), which often benefit from

vectorization. However, it is not trivial to vectorize this operation with base R, since R does not

have a "cumulative cosine of x+1" function.

One possible approach to speeding this function would be to implement it in C++, using the Rcpp

package:

library(Rcpp)
cppFunction("NumericVector repeatedCosPlusOneRcpp(double first, int len) {
 NumericVector x(len);
 x[0] = first;
 for (int i=1; i < len; ++i) {
 x[i] = cos(x[i-1]+1);
 }
 return x;
}")

This often provides significant speedups for large computations while yielding the exact same

results:

all.equal(repeatedCosPlusOne(1, 1e6), repeatedCosPlusOneRcpp(1, 1e6))
[1] TRUE
system.time(repeatedCosPlusOne(1, 1e6))
user system elapsed
1.274 0.015 1.310
system.time(repeatedCosPlusOneRcpp(1, 1e6))
user system elapsed
0.028 0.001 0.030

In this case, the Rcpp code generates a vector of length 1 million in 0.03 seconds instead of 1.31

https://riptutorial.com/ 499

seconds with the base R approach.

Speeding tough-to-vectorize for loops by byte compiling

Following the Rcpp example in this documentation entry, consider the following tough-to-vectorize

function, which creates a vector of length len where the first element is specified (first) and each

element x_i is equal to cos(x_{i-1} + 1):

repeatedCosPlusOne <- function(first, len) {
 x <- numeric(len)
 x[1] <- first
 for (i in 2:len) {
 x[i] <- cos(x[i-1] + 1)
 }
 return(x)
}

One simple approach to speeding up such a function without rewriting a single line of code is byte

compiling the code using the R compile package:

library(compiler)
repeatedCosPlusOneCompiled <- cmpfun(repeatedCosPlusOne)

The resulting function will often be significantly faster while still returning the same results:

all.equal(repeatedCosPlusOne(1, 1e6), repeatedCosPlusOneCompiled(1, 1e6))
[1] TRUE
system.time(repeatedCosPlusOne(1, 1e6))
user system elapsed
1.175 0.014 1.201
system.time(repeatedCosPlusOneCompiled(1, 1e6))
user system elapsed
0.339 0.002 0.341

In this case, byte compiling sped up the tough-to-vectorize operation on a vector of length 1 million

from 1.20 seconds to 0.34 seconds.

Remark

The essence of repeatedCosPlusOne, as the cumulative application of a single function, can be

expressed more transparently with Reduce:

iterFunc <- function(init, n, func) {
 funcs <- replicate(n, func)
 Reduce(function(., f) f(.), funcs, init = init, accumulate = TRUE)
}
repeatedCosPlusOne_vec <- function(first, len) {
 iterFunc(first, len - 1, function(.) cos(. + 1))
}

repeatedCosPlusOne_vec may be regarded as a "vectorization" of repeatedCosPlusOne. However, it can

be expected to be slower by a factor of 2:

https://riptutorial.com/ 500

library(microbenchmark)
microbenchmark(
 repeatedCosPlusOne(1, 1e4),
 repeatedCosPlusOne_vec(1, 1e4)
)
#> Unit: milliseconds
#> expr min lq mean median uq max
neval cld
#> repeatedCosPlusOne(1, 10000) 8.349261 9.216724 10.22715 10.23095 11.10817 14.33763
100 a
#> repeatedCosPlusOne_vec(1, 10000) 14.406291 16.236153 17.55571 17.22295 18.59085 24.37059
100 b

Read Speeding up tough-to-vectorize code online: https://riptutorial.com/r/topic/1203/speeding-up-

tough-to-vectorize-code

https://riptutorial.com/ 501

https://riptutorial.com/r/topic/1203/speeding-up-tough-to-vectorize-code
https://riptutorial.com/r/topic/1203/speeding-up-tough-to-vectorize-code

Chapter 110: Split function

Examples

Basic usage of split

split allows to divide a vector or a data.frame into buckets with regards to a factor/group

variables. This ventilation into buckets takes the form of a list, that can then be used to apply

group-wise computation (for loops or lapply/sapply).

First example shows the usage of split on a vector:

Consider following vector of letters:

testdata <- c("e", "o", "r", "g", "a", "y", "w", "q", "i", "s", "b", "v", "x", "h", "u")

Objective is to separate those letters into voyels and consonants, ie split it accordingly to letter type.

Let's first create a grouping vector:

 vowels <- c('a','e','i','o','u','y')
 letter_type <- ifelse(testdata %in% vowels, "vowels", "consonants")

Note that letter_type has the same length that our vector testdata. Now we can split this test

data in the two groups, vowels and consonants :

split(testdata, letter_type)
#$consonants
#[1] "r" "g" "w" "q" "s" "b" "v" "x" "h"

#$vowels
#[1] "e" "o" "a" "y" "i" "u"

Hence, the result is a list which names are coming from our grouping vector/factor letter_type.

split has also a method to deal with data.frames.

Consider for instance iris data:

data(iris)

By using split, one can create a list containing one data.frame per iris specie (variable: Species):

> liris <- split(iris, iris$Species)
> names(liris)
[1] "setosa" "versicolor" "virginica"
> head(liris$setosa)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species

https://riptutorial.com/ 502

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

(contains only data for setosa group).

One example operation would be to compute correlation matrix per iris specie; one would then use

lapply:

> (lcor <- lapply(liris, FUN=function(df) cor(df[,1:4])))

 $setosa
 Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 0.7425467 0.2671758 0.2780984
Sepal.Width 0.7425467 1.0000000 0.1777000 0.2327520
Petal.Length 0.2671758 0.1777000 1.0000000 0.3316300
Petal.Width 0.2780984 0.2327520 0.3316300 1.0000000

$versicolor
 Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 0.5259107 0.7540490 0.5464611
Sepal.Width 0.5259107 1.0000000 0.5605221 0.6639987
Petal.Length 0.7540490 0.5605221 1.0000000 0.7866681
Petal.Width 0.5464611 0.6639987 0.7866681 1.0000000

$virginica
 Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 0.4572278 0.8642247 0.2811077
Sepal.Width 0.4572278 1.0000000 0.4010446 0.5377280
Petal.Length 0.8642247 0.4010446 1.0000000 0.3221082
Petal.Width 0.2811077 0.5377280 0.3221082 1.0000000

Then we can retrieve per group the best pair of correlated variables: (correlation matrix is

reshaped/melted, diagonal is filtered out and selecting best record is performed)

> library(reshape)
> (topcor <- lapply(lcor, FUN=function(cormat){
 correlations <- melt(cormat,variable_name="correlatio);
 filtered <- correlations[correlations$X1 != correlations$X2,];
 filtered[which.max(filtered$correlation),]
}))

$setosa
 X1 X2 correlation
2 Sepal.Width Sepal.Length 0.7425467

$versicolor
 X1 X2 correlation
12 Petal.Width Petal.Length 0.7866681

$virginica
 X1 X2 correlation
3 Petal.Length Sepal.Length 0.8642247

https://riptutorial.com/ 503

Note that one computations are performed on such groupwise level, one may be interested in

stacking the results, which can be done with:

> (result <- do.call("rbind", topcor))

 X1 X2 correlation
setosa Sepal.Width Sepal.Length 0.7425467
versicolor Petal.Width Petal.Length 0.7866681
virginica Petal.Length Sepal.Length 0.8642247

Using split in the split-apply-combine paradigm

A popular form of data analysis is split-apply-combine, in which you split your data into groups,

apply some sort of processing on each group, and then combine the results.

Let's consider a data analysis where we want to obtain the two cars with the best miles per gallon

(mpg) for each cylinder count (cyl) in the built-in mtcars dataset. First, we split the mtcars data

frame by the cylinder count:

(spl <- split(mtcars, mtcars$cyl))
$`4`
mpg cyl disp hp drat wt qsec vs am gear carb
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
...

$`6`
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
...

$`8`
mpg cyl disp hp drat wt qsec vs am gear carb
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
...

This has returned a list of data frames, one for each cylinder count. As indicated by the output, we

could obtain the relevant data frames with spl$`4`, spl$`6`, and spl$`8` (some might find it more

visually appealing to use spl$"4" or spl[["4"]] instead).

Now, we can use lapply to loop through this list, applying our function that extracts the cars with

the best 2 mpg values from each of the list elements:

(best2 <- lapply(spl, function(x) tail(x[order(x$mpg),], 2)))
$`4`
mpg cyl disp hp drat wt qsec vs am gear carb

https://riptutorial.com/ 504

https://www.jstatsoft.org/article/view/v040i01/v40i01.pdf

Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

$`6`
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

$`8`
mpg cyl disp hp drat wt qsec vs am gear carb
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Pontiac Firebird 19.2 8 400 175 3.08 3.845 17.05 0 0 3 2

Finally, we can combine everything together using rbind. We want to call rbind(best2[["4"]],

best2[["6"]], best2[["8"]]), but this would be tedious if we had a huge list. As a result, we use:

do.call(rbind, best2)
mpg cyl disp hp drat wt qsec vs am gear carb
4.Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
4.Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
6.Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
6.Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
8.Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
8.Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2

This returns the result of rbind (argument 1, a function) with all the elements of best2 (argument 2,

a list) passed as arguments.

With simple analyses like this one, it can be more compact (and possibly much less readable!) to

do the whole split-apply-combine in a single line of code:

do.call(rbind, lapply(split(mtcars, mtcars$cyl), function(x) tail(x[order(x$mpg),], 2)))

It is also worth noting that the lapply(split(x,f), FUN) combination can be alternatively framed

using the ?by function:

by(mtcars, mtcars$cyl, function(x) tail(x[order(x$mpg),], 2))
do.call(rbind, by(mtcars, mtcars$cyl, function(x) tail(x[order(x$mpg),], 2)))

Read Split function online: https://riptutorial.com/r/topic/1073/split-function

https://riptutorial.com/ 505

https://riptutorial.com/r/topic/1073/split-function

Chapter 111: sqldf

Examples

Basic Usage Examples

sqldf() from the package sqldf allows the use of SQLite queries to select and manipulate data in

R. SQL queries are entered as character strings.

To select the first 10 rows of the "diamonds" dataset from the package ggplot2, for example:

data("diamonds")
head(diamonds)

A tibble: 6 x 10
 carat cut color clarity depth table price x y z
 <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

require(sqldf)
sqldf("select * from diamonds limit 10")

 carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4.00 4.05 2.39

To select the first 10 rows where for the color "E":

sqldf("select * from diamonds where color = 'E' limit 10")

 carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
5 0.20 Premium E SI2 60.2 62 345 3.79 3.75 2.27
6 0.32 Premium E I1 60.9 58 345 4.38 4.42 2.68

https://riptutorial.com/ 506

7 0.23 Very Good E VS2 63.8 55 352 3.85 3.92 2.48
8 0.23 Very Good E VS1 60.7 59 402 3.97 4.01 2.42
9 0.23 Very Good E VS1 59.5 58 402 4.01 4.06 2.40
10 0.23 Good E VS1 64.1 59 402 3.83 3.85 2.46

Notice in the example above that quoted strings within the SQL query are quoted using '' if the

overall query is quoted with "" (this also works in reverse).

Suppose that we wish to add a new column to count the number of Premium cut diamonds over 1

carat:

sqldf("select count(*) from diamonds where carat > 1 and color = 'E'")

 count(*)
1 1892

Results of created values can also be returned as new columns:

sqldf("select *, count(*) as cnt_big_E_colored_stones from diamonds where carat > 1 and color
= 'E' group by clarity")

 carat cut color clarity depth table price x y z
cnt_big_E_colored_stones
1 1.30 Fair E I1 66.5 58 2571 6.79 6.75 4.50
65
2 1.28 Ideal E IF 60.7 57 18700 7.09 6.99 4.27
28
3 2.02 Very Good E SI1 59.8 59 18731 8.11 8.20 4.88
499
4 2.03 Premium E SI2 61.5 59 18477 8.24 8.16 5.04
666
5 1.51 Ideal E VS1 61.5 57 18729 7.34 7.40 4.53
158
6 1.72 Very Good E VS2 63.4 56 18557 7.65 7.55 4.82
318
7 1.20 Ideal E VVS1 61.8 56 16256 6.78 6.87 4.22
52
8 1.55 Ideal E VVS2 62.5 55 18188 7.38 7.40 4.62
106

If one would be interested what is the max price of the diamond according to the cut:

sqldf("select cut, max(price) from diamonds group by cut")

 cut max(price)
1 Fair 18574
2 Good 18788
3 Ideal 18806
4 Premium 18823
5 Very Good 18818

Read sqldf online: https://riptutorial.com/r/topic/2100/sqldf

https://riptutorial.com/ 507

https://riptutorial.com/r/topic/2100/sqldf

Chapter 112: Standardize analyses by writing

standalone R scripts

Introduction

If you want to routinely apply an R analysis to a lot of separate data files, or provide a repeatable

analysis method to other people, an executable R script is a user-friendly way to do so. Instead of

you or your user having to call R and execute your script inside R via source(.) or a function call,

your user may simply call the script itself as if it was a program.

Remarks

To represent the standard input-/output channels, use the functions file("stdin") (input from

terminal or other program via pipe), stdout() (standard output) and stderr() (standard error). Note

that while there is the function stdin(), it can not be used when supplying a ready-made script to

R, because it will read the next lines of that script instead of user input.

Examples

The basic structure of standalone R program and how to call it

The first standalone R script

Standalone R scripts are not executed by the program R (R.exe under Windows), but by a program

called Rscript (Rscript.exe), which is included in your R installation by default.

To hint at this fact, standalone R scripts start with a special line called Shebang line, which holds

the following content: #!/usr/bin/env Rscript. Under Windows, an additional measure is needed,

which is detailled later.

The following simple standalone R script saves a histogram under the file name "hist.png" from

numbers it receives as input:

#!/usr/bin/env Rscript

User message (\n = end the line)
cat("Input numbers, separated by space:\n")
Read user input as one string (n=1 -> Read only one line)
input <- readLines(file('stdin'), n=1)
Split the string at each space (\\s == any space)
input <- strsplit(input, "\\s")[[1]]
convert the obtained vector of strings to numbers
input <- as.numeric(input)

Open the output picture file

https://riptutorial.com/ 508

png("hist.png",width=400, height=300)
Draw the histogram
hist(input)
Close the output file
dev.off()

You can see several key elements of a standalone R script. In the first line, you see the Shebang

line. Followed by that, cat("....\n") is used to print a message to the user. Use file("stdin")

whenever you want to specify "User input on console" as a data origin. This can be used instead

of a file name in several data reading functions (scan, read.table, read.csv,...). After the user input

is converted from strings to numbers, the plotting begins. There, it can be seen, that plotting

commands which are meant to be written to a file must be enclosed in two commands. These are

in this case png(.) and dev.off(). The first function depends on the desired output file format (other

common choices being jpeg(.) and pdf(.)). The second function, dev.off() is always required. It

writes the plot to the file and ends the plotting process.

Preparing a standalone R script

Linux/Mac

The standalone script's file must first be made executable. This can happen by right-clicking the

file, opening "Properties" in the opening menu and checking the "Executable" checkbox in the

"Permissions" tab. Alternatively, the command

chmod +x PATH/TO/SCRIPT/SCRIPTNAME.R

can be called in a Terminal.

Windows

For each standalone script, a batch file must be written with the following contents:

"C:\Program Files\R-XXXXXXX\bin\Rscript.exe" "%~dp0\XXXXXXX.R" %*

A batch file is a normal text file, but which has a *.bat extension except a *.txt extension. Create

it using a text editor like notepad (not Word) or similar and put the file name into quotation marks

"FILENAME.bat") in the save dialog. To edit an existing batch file, right-click on it and select "Edit".

You have to adapt the code shown above everywhere XXX... is written:

Insert the correct folder where your R installation resides•

Insert the correct name of your script and place it into the same directory as this batch file.•

Explanation of the elements in the code: The first part "C:\...\Rscript.exe" tells Windows where to

find the Rscript.exe program. The second part "%~dp0\XXX.R" tells Rscript to execute the R script

you've written which resides in the same folder as the batch file (%~dp0 stands for the batch file

https://riptutorial.com/ 509

folder). Finally, %* forwards any command line arguments you give to the batch file to the R script.

If you double-click on the batch file, the R script is executed. If you drag files on the batch file, the

corresponding file names are given to the R script as command line arguments.

Using littler to execute R scripts

littler (pronounced little r) (cran) provides, besides other features, two possibilities to run R scripts

from the command line with littler's r command (when one works with Linux or MacOS).

Installing littler

From R:

install.packages("littler")

The path of r is printed in the terminal, like

You could link to the 'r' binary installed in
'/home/*USER*/R/x86_64-pc-linux-gnu-library/3.4/littler/bin/r'
from '/usr/local/bin' in order to use 'r' for scripting.

To be able to call r from the system's command line, a symlink is needed:

ln -s /home/*USER*/R/x86_64-pc-linux-gnu-library/3.4/littler/bin/r /usr/local/bin/r

Using apt-get (Debian, Ubuntu):

sudo apt-get install littler

Using littler with standard .r scripts

With r from littler it is possible to execute standalone R scripts without any changes to the script.

Example script:

User message (\n = end the line)
cat("Input numbers, separated by space:\n")
Read user input as one string (n=1 -> Read only one line)
input <- readLines(file('stdin'), n=1)
Split the string at each space (\\s == any space)
input <- strsplit(input, "\\s")[[1]]
convert the obtained vector of strings to numbers
input <- as.numeric(input)

Open the output picture file
png("hist.png",width=400, height=300)
Draw the histogram
hist(input)
Close the output file

https://riptutorial.com/ 510

http://dirk.eddelbuettel.com/code/littler.html
https://cran.r-project.org/web/packages/littler/index.html

dev.off()

Note that no shebang is at the top of the scripts. When saved as for example hist.r, it is directly

callable from the system command:

r hist.r

Using littler on shebanged scripts

It is also possible to create executable R scripts with littler, with the use of the shebang

#!/usr/bin/env r

at the top of the script. The corresponding R script has to be made executable with chmod +X

/path/to/script.r and is directly callable from the system terminal.

Read Standardize analyses by writing standalone R scripts online:

https://riptutorial.com/r/topic/9937/standardize-analyses-by-writing-standalone-r-scripts

https://riptutorial.com/ 511

https://riptutorial.com/r/topic/9937/standardize-analyses-by-writing-standalone-r-scripts

Chapter 113: String manipulation with stringi

package

Remarks

To install package simply run:

install.packages("stringi")

to load it:

require("stringi")

Examples

Count pattern inside string

With fixed pattern

stri_count_fixed("babab", "b")
[1] 3
stri_count_fixed("babab", "ba")
[1] 2
stri_count_fixed("babab", "bab")
[1] 1

Natively:

length(gregexpr("b","babab")[[1]])
[1] 3
length(gregexpr("ba","babab")[[1]])
[1] 2
length(gregexpr("bab","babab")[[1]])
[1] 1

function is vectorized over string and pattern:

stri_count_fixed("babab", c("b","ba"))
[1] 3 2
stri_count_fixed(c("babab","bbb","bca","abc"), c("b","ba"))
[1] 3 0 1 0

A base R solution:

sapply(c("b","ba"),function(x)length(gregexpr(x,"babab")[[1]]))
b ba

https://riptutorial.com/ 512

3 2

With regex

First example - find a and any character after

Second example - find a and any digit after

stri_count_regex("a1 b2 a3 b4 aa", "a.")
[1] 3
stri_count_regex("a1 b2 a3 b4 aa", "a\\d")
[1] 2

Duplicating strings

stri_dup("abc",3)
[1] "abcabcabc"

A base R solution that does the same would look like this:

paste0(rep("abc",3),collapse = "")
[1] "abcabcabc"

Paste vectors

stri_paste(LETTERS,"-", 1:13)
[1] "A-1" "B-2" "C-3" "D-4" "E-5" "F-6" "G-7" "H-8" "I-9" "J-10" "K-11" "L-12" "M-
13"
[14] "N-1" "O-2" "P-3" "Q-4" "R-5" "S-6" "T-7" "U-8" "V-9" "W-10" "X-11" "Y-12" "Z-
13"

Natively, we could do this in R via:

> paste(LETTERS,1:13,sep="-")
 #[1] "A-1" "B-2" "C-3" "D-4" "E-5" "F-6" "G-7" "H-8" "I-9" "J-10" "K-11" "L-12" "M-
13"
 #[14] "N-1" "O-2" "P-3" "Q-4" "R-5" "S-6" "T-7" "U-8" "V-9" "W-10" "X-11" "Y-12" "Z-
13"

Splitting text by some fixed pattern

Split vector of texts using one pattern:

stri_split_fixed(c("To be or not to be.", "This is very short sentence.")," ")
[[1]]
[1] "To" "be" "or" "not" "to" "be."

[[2]]
[1] "This" "is" "very" "short" "sentence."

https://riptutorial.com/ 513

Split one text using many patterns:

stri_split_fixed("Apples, oranges and pineaplles.",c(" ", ",", "s"))
[[1]]
[1] "Apples," "oranges" "and" "pineaplles."

[[2]]
[1] "Apples" " oranges and pineaplles."

[[3]]
[1] "Apple" ", orange" " and pineaplle" "."

Read String manipulation with stringi package online: https://riptutorial.com/r/topic/1670/string-

manipulation-with-stringi-package

https://riptutorial.com/ 514

https://riptutorial.com/r/topic/1670/string-manipulation-with-stringi-package
https://riptutorial.com/r/topic/1670/string-manipulation-with-stringi-package

Chapter 114: strsplit function

Syntax

strsplit(•

x•

split•

fixed = FALSE•

perl = FALSE•

useBytes = FALSE)•

Examples

Introduction

strsplit is a useful function for breaking up a vector into an list on some character pattern. With

typical R tools, the whole list can be reincorporated to a data.frame or part of the list might be used

in a graphing exercise.

Here is a common usage of strsplit: break a character vector along a comma separator:

temp <- c("this,that,other", "hat,scarf,food", "woman,man,child")
get a list split by commas
myList <- strsplit(temp, split=",")
print myList
myList
[[1]]
[1] "this" "that" "other"

[[2]]
[1] "hat" "scarf" "food"

[[3]]
[1] "woman" "man" "child"

As hinted above, the split argument is not limited to characters, but may follow a pattern dictated

by a regular expression. For example, temp2 is identical to temp above except that the separators

have been altered for each item. We can take advantage of the fact that the split argument

accepts regular expressions to alleviate the irregularity in the vector.

temp2 <- c("this, that, other", "hat,scarf ,food", "woman; man ; child")
myList2 <- strsplit(temp2, split=" ?[,;] ?")
myList2
[[1]]
[1] "this" "that" "other"

[[2]]
[1] "hat" "scarf" "food"

https://riptutorial.com/ 515

[[3]]
[1] "woman" "man" "child"

Notes:

breaking down the regular expression syntax is out of scope for this example.1.

Sometimes matching regular expressions can slow down a process. As with many R

functions that allow the use of regular expressions, the fixed argument is available to tell R to

match on the split characters literally.

2.

Read strsplit function online: https://riptutorial.com/r/topic/2762/strsplit-function

https://riptutorial.com/ 516

https://riptutorial.com/r/topic/2762/strsplit-function

Chapter 115: Subsetting

Introduction

Given an R object, we may require separate analysis for one or more parts of the data contained

in it. The process of obtaining these parts of the data from a given object is called subsetting.

Remarks

Missing values:

Missing values (NAs) used in subsetting with [return NA since a NA index

picks an unknown element and so returns NA in the corresponding element..

The "default" type of NA is "logical" (typeof(NA)) which means that, as any "logical" vector used in

subsetting, will be recycled to match the length of the subsetted object. So x[NA] is equivalent to

x[as.logical(NA)] which is equivalent to x[rep_len(as.logical(NA), length(x))] and, consequently,

it returns a missing value (NA) for each element of x. As an example:

x <- 1:3
x[NA]
[1] NA NA NA

While indexing with "numeric"/"integer" NA picks a single NA element (for each NA in index):

x[as.integer(NA)]
[1] NA

x[c(NA, 1, NA, NA)]
[1] NA 1 NA NA

Subsetting out of bounds:

The [operator, with one argument passed, allows indices that are > length(x) and returns NA for

atomic vectors or NULL for generic vectors. In contrast, with [[and when [is passed more

arguments (i.e. subsetting out of bounds objects with length(dim(x)) > 2) an error is returned:

(1:3)[10]
[1] NA
(1:3)[[10]]
Error in (1:3)[[10]] : subscript out of bounds
as.matrix(1:3)[10]
[1] NA
as.matrix(1:3)[, 10]
Error in as.matrix(1:3)[, 10] : subscript out of bounds
list(1, 2, 3)[10]
[[1]]
NULL

https://riptutorial.com/ 517

list(1, 2, 3)[[10]]
Error in list(1, 2, 3)[[10]] : subscript out of bounds

The behaviour is the same when subsetting with "character" vectors, that are not matched in the

"names" attribute of the object, too:

c(a = 1, b = 2)["c"]
<NA>
NA
list(a = 1, b = 2)["c"]
<NA>
NULL

Help topics:

See ?Extract for further information.

Examples

Atomic vectors

Atomic vectors (which excludes lists and expressions, which are also vectors) are subset using the

[operator:

create an example vector
v1 <- c("a", "b", "c", "d")

select the third element
v1[3]
[1] "c"

The [operator can also take a vector as the argument. For example, to select the first and third

elements:

v1 <- c("a", "b", "c", "d")

v1[c(1, 3)]
[1] "a" "c"

Some times we may require to omit a particular value from the vector. This can be achieved using

a negative sign(-) before the index of that value. For example, to omit to omit the first value from

v1, use v1[-1]. This can be extended to more than one value in a straight forward way. For

example, v1[-c(1,3)].

> v1[-1]
[1] "b" "c" "d"
> v1[-c(1,3)]
[1] "b" "d"

On some occasions, we would like to know, especially, when the length of the vector is large,

https://riptutorial.com/ 518

index of a particular value, if it exists:

> v1=="c"
[1] FALSE FALSE TRUE FALSE
> which(v1=="c")
[1] 3

If the atomic vector has names (a names attribute), it can be subset using a character vector of

names:

v <- 1:3
names(v) <- c("one", "two", "three")

v
one two three
1 2 3

v["two"]
two
2

The [[operator can also be used to index atomic vectors, with differences in that it accepts a

indexing vector with a length of one and strips any names present:

v[[c(1, 2)]]
Error in v[[c(1, 2)]] :
attempt to select more than one element in vectorIndex

v[["two"]]
[1] 2

Vectors can also be subset using a logical vector. In contrast to subsetting with numeric and

character vectors, the logical vector used to subset has to be equal to the length of the vector

whose elements are extracted, so if a logical vector y is used to subset x, i.e. x[y], if length(y) <

length(x) then y will be recycled to match length(x):

v[c(TRUE, FALSE, TRUE)]
one three
1 3

v[c(FALSE, TRUE)] # recycled to 'c(FALSE, TRUE, FALSE)'
two
2

v[TRUE] # recycled to 'c(TRUE, TRUE, TRUE)'
one two three
1 2 3

v[FALSE] # handy to discard elements but save the vector's type and basic structure
named integer(0)

Lists

A list can be subset with [:

https://riptutorial.com/ 519

l1 <- list(c(1, 2, 3), 'two' = c("a", "b", "c"), list(10, 20))
l1
[[1]]
[1] 1 2 3

$two
[1] "a" "b" "c"

[[3]]
[[3]][[1]]
[1] 10

[[3]][[2]]
[1] 20

l1[1]
[[1]]
[1] 1 2 3

l1['two']
$two
[1] "a" "b" "c"

l1[[2]]
[1] "a" "b" "c"

l1[['two']]
[1] "a" "b" "c"

Note the result of l1[2] is still a list, as the [operator selects elements of a list, returning a smaller

list. The [[operator extracts list elements, returning an object of the type of the list element.

Elements can be indexed by number or a character string of the name (if it exists). Multiple

elements can be selected with [by passing a vector of numbers or strings of names. Indexing with

a vector of length > 1 in [and [[returns a "list" with the specified elements and a recursive subset

(if available), respectively:

l1[c(3, 1)]
[[1]]
[[1]][[1]]
[1] 10

[[1]][[2]]
[1] 20

[[2]]
[1] 1 2 3

Compared to:

l1[[c(3, 1)]]
[1] 10

which is equivalent to:

https://riptutorial.com/ 520

l1[[3]][[1]]
[1] 10

The $ operator allows you to select list elements solely by name, but unlike [and [[, does not

require quotes. As an infix operator, $ can only take a single name:

l1$two
[1] "a" "b" "c"

Also, the $ operator allows for partial matching by default:

l1$t
[1] "a" "b" "c"

in contrast with [[where it needs to be specified whether partial matching is allowed:

l1[["t"]]
NULL
l1[["t", exact = FALSE]]
[1] "a" "b" "c"

Setting options(warnPartialMatchDollar = TRUE), a "warning" is given when partial matching

happens with $:

l1$t
[1] "a" "b" "c"
Warning message:
In l1$t : partial match of 't' to 'two'

Matrices

For each dimension of an object, the [operator takes one argument. Vectors have one dimension

and take one argument. Matrices and data frames have two dimensions and take two arguments,

given as [i, j] where i is the row and j is the column. Indexing starts at 1.

a sample matrix
mat <- matrix(1:6, nrow = 2, dimnames = list(c("row1", "row2"), c("col1", "col2", "col3")))

mat
col1 col2 col3
row1 1 3 5
row2 2 4 6

mat[i,j] is the element in the i-th row, j-th column of the matrix mat. For example, an i value of 2

and a j value of 1 gives the number in the second row and the first column of the matrix. Omitting

i or j returns all values in that dimension.

mat[, 3]
row1 row2
5 6

https://riptutorial.com/ 521

mat[1,]
col1 col2 col3
1 3 5

When the matrix has row or column names (not required), these can be used for subsetting:

mat[, 'col1']
row1 row2
1 2

By default, the result of a subset will be simplified if possible. If the subset only has one dimension,

as in the examples above, the result will be a one-dimensional vector rather than a two-

dimensional matrix. This default can be overriden with the drop = FALSE argument to [:

This selects the first row as a vector
class(mat[1,])
[1] "integer"

Whereas this selects the first row as a 1x3 matrix:
class(mat[1, , drop = F])
[1] "matrix"

Of course, dimensions cannot be dropped if the selection itself has two dimensions:

mat[1:2, 2:3] ## A 2x2 matrix
col2 col3
row1 3 5
row2 4 6

Selecting individual matrix entries by their positions

It is also possible to use a Nx2 matrix to select N individual elements from a matrix (like how a

coordinate system works). If you wanted to extract, in a vector, the entries of a matrix in the (1st

row, 1st column), (1st row, 3rd column), (2nd row, 3rd column), (2nd row, 1st column) this can be

done easily by creating a index matrix with those coordinates and using that to subset the matrix:

mat
col1 col2 col3
row1 1 3 5
row2 2 4 6

ind = rbind(c(1, 1), c(1, 3), c(2, 3), c(2, 1))
ind
[,1] [,2]
[1,] 1 1
[2,] 1 3
[3,] 2 3
[4,] 2 1

mat[ind]
[1] 1 5 6 2

https://riptutorial.com/ 522

In the above example, the 1st column of the ind matrix refers to rows in mat, the 2nd column of ind

refers to columns in mat.

Data frames

Subsetting a data frame into a smaller data frame can be accomplished the same as

subsetting a list.

> df3 <- data.frame(x = 1:3, y = c("a", "b", "c"), stringsAsFactors = FALSE)

> df3
x y
1 1 a
2 2 b
3 3 c

> df3[1] # Subset a variable by number
x
1 1
2 2
3 3

> df3["x"] # Subset a variable by name
x
1 1
2 2
3 3

> is.data.frame(df3[1])
TRUE

> is.list(df3[1])
TRUE

Subsetting a dataframe into a column vector can be accomplished using double brackets [[]]

or the dollar sign operator $.

> df3[[2]] # Subset a variable by number using [[]]
[1] "a" "b" "c"

> df3[["y"]] # Subset a variable by name using [[]]
[1] "a" "b" "c"

> df3$x # Subset a variable by name using $
[1] 1 2 3

> typeof(df3$x)
"integer"

> is.vector(df3$x)
TRUE

Subsetting a data as a two dimensional matrix can be accomplished using i and j terms.

> df3[1, 2] # Subset row and column by number
[1] "a"

https://riptutorial.com/ 523

> df3[1, "y"] # Subset row by number and column by name
[1] "a"

> df3[2,] # Subset entire row by number
x y
2 2 b

> df3[, 1] # Subset all first variables
[1] 1 2 3

> df3[, 1, drop = FALSE]
x
1 1
2 2
3 3

Note: Subsetting by j (column) alone simplifies to the variable's own type, but subsetting by i

alone returns a data.frame, as the different variables may have different types and classes. Setting

the drop parameter to FALSE keeps the data frame.

> is.vector(df3[, 2])
TRUE

> is.data.frame(df3[2,])
TRUE

> is.data.frame(df3[, 2, drop = FALSE])
TRUE

Other objects

The [and [[operators are primitive functions that are generic. This means that any object in R

(specifically isTRUE(is.object(x)) --i.e. has an explicit "class" attribute) can have its own specified

behaviour when subsetted; i.e. has its own methods for [and/or [[.

For example, this is the case with "data.frame" (is.object(iris)) objects where [.data.frame and

[[.data.frame methods are defined and they are made to exhibit both "matrix"-like and "list"-like

subsetting. With forcing an error when subsetting a "data.frame", we see that, actually, a function

[.data.frame was called when we -just- used [.

iris[invalidArgument,]
Error in `[.data.frame`(iris, invalidArgument,) :
object 'invalidArgument' not found

Without further details on the current topic, an example[method:

x = structure(1:5, class = "myClass")
x[c(3, 2, 4)]
[1] 3 2 4
'[.myClass' = function(x, i) cat(sprintf("We'd expect '%s[%s]' to be returned but this a
custom `[` method and should have a `?[.myClass` help page for its behaviour\n",
deparse(substitute(x)), deparse(substitute(i))))

https://riptutorial.com/ 524

x[c(3, 2, 4)]
We'd expect 'x[c(3, 2, 4)]' to be returned but this a custom `[` method and should have a
`?[.myClass` help page for its behaviour
NULL

We can overcome the method dispatching of [by using the equivalent non-generic .subset (and

.subset2 for [[). This is especially useful and efficient when programming our own "class"es and

want to avoid work-arounds (like unclass(x)) when computing on our "class"es efficiently (avoiding

method dispatch and copying objects):

.subset(x, c(3, 2, 4))
[1] 3 2 4

Vector indexing

For this example, we will use the vector:

> x <- 11:20
> x
 [1] 11 12 13 14 15 16 17 18 19 20

R vectors are 1-indexed, so for example x[1] will return 11. We can also extract a sub-vector of x

by passing a vector of indices to the bracket operator:

> x[c(2,4,6)]
[1] 12 14 16

If we pass a vector of negative indices, R will return a sub-vector with the specified indices

excluded:

> x[c(-1,-3)]
[1] 12 14 15 16 17 18 19 20

We can also pass a boolean vector to the bracket operator, in which case it returns a sub-vector

corresponding to the coordinates where the indexing vector is TRUE:

> x[c(rep(TRUE,5),rep(FALSE,5))]
[1] 11 12 13 14 15 16

If the indexing vector is shorter than the length of the array, then it will be repeated, as in:

> x[c(TRUE,FALSE)]
[1] 11 13 15 17 19
> x[c(TRUE,FALSE,FALSE)]
[1] 11 14 17 20

Elementwise Matrix Operations

Let A and B be two matrices of same dimension. The operators +,-,/,*,^ when used with matrices

https://riptutorial.com/ 525

of same dimension perform the required operations on the corresponding elements of the matrices

and return a new matrix of the same dimension. These operations are usually referred to as

element-wise operations.

Operator A op B Meaning

+ A + B Addition of corresponding elements of A and B

- A - B Subtracts the elements of B from the corresponding elements of A

/ A / B Divides the elements of A by the corresponding elements of B

* A * B Multiplies the elements of A by the corresponding elements of B

^ A^(-1) For example, gives a matrix whose elements are reciprocals of A

For "true" matrix multiplication, as seen in Linear Algebra, use %*%. For example, multiplication of A

with B is: A %*% B. The dimensional requirements are that the ncol() of A be the same as nrow() of B

Some Functions used with Matrices

Function Example Purpose

nrow() nrow(A) determines the number of rows of A

ncol() ncol(A) determines the number of columns of A

rownames() rownames(A) prints out the row names of the matrix A

colnames() colnames(A) prints out the column names of the matrix A

rowMeans() rowMeans(A) computes means of each row of the matrix A

colMeans() colMeans(A) computes means of each column of the matrix A

upper.tri() upper.tri(A) returns a vector whose elements are the upper

triangular matrix of square matrix A

lower.tri() lower.tri(A) returns a vector whose elements are the lower

triangular matrix of square matrix A

det() det(A) results in the determinant of the matrix A

solve() solve(A) results in the inverse of the non-singular matrix A

diag() diag(A)
returns a diagonal matrix whose off-diagnal elemts are zeros

and

https://riptutorial.com/ 526

Function Example Purpose

diagonals are the same as that of the square matrix A

t() t(A) returns the the transpose of the matrix A

eigen() eigen(A) retuens the eigenvalues and eigenvectors of the matrix A

is.matrix() is.matrix(A)
returns TRUE or FALSE depending on whether A is a matrix or

not.

as.matrix() as.matrix(x) creates a matrix out of the vector x

Read Subsetting online: https://riptutorial.com/r/topic/1686/subsetting

https://riptutorial.com/ 527

https://riptutorial.com/r/topic/1686/subsetting

Chapter 116: Survival analysis

Examples

Random Forest Survival Analysis with randomForestSRC

Just as the random forest algorithm may be applied to regression and classification tasks, it can

also be extended to survival analysis.

In the example below a survival model is fit and used for prediction, scoring, and performance

analysis using the package randomForestSRC from CRAN.

require(randomForestSRC)

set.seed(130948) #Other seeds give similar comparative results
x1 <- runif(1000)
y <- rnorm(1000, mean = x1, sd = .3)
data <- data.frame(x1 = x1, y = y)
head(data)

 x1 y
1 0.9604353 1.3549648
2 0.3771234 0.2961592
3 0.7844242 0.6942191
4 0.9860443 1.5348900
5 0.1942237 0.4629535
6 0.7442532 -0.0672639

(modRFSRC <- rfsrc(y ~ x1, data = data, ntree=500, nodesize = 5))

 Sample size: 1000
 Number of trees: 500
 Minimum terminal node size: 5
 Average no. of terminal nodes: 208.258
No. of variables tried at each split: 1
 Total no. of variables: 1
 Analysis: RF-R
 Family: regr
 Splitting rule: mse
 % variance explained: 32.08
 Error rate: 0.11

x1new <- runif(10000)
ynew <- rnorm(10000, mean = x1new, sd = .3)
newdata <- data.frame(x1 = x1new, y = ynew)

survival.results <- predict(modRFSRC, newdata = newdata)
survival.results

 Sample size of test (predict) data: 10000

https://riptutorial.com/ 528

https://en.wikipedia.org/wiki/Random_forest
https://cran.r-project.org/web/packages/randomForestSRC/index.html

 Number of grow trees: 500
 Average no. of grow terminal nodes: 208.258
 Total no. of grow variables: 1
 Analysis: RF-R
 Family: regr
 % variance explained: 34.97
 Test set error rate: 0.11

Introduction - basic fitting and plotting of parametric survival models with the

survival package

survival is the most commonly used package for survival analysis in R. Using the built-in lung

dataset we can get started with Survival Analysis by fitting a regression model with the survreg()

function, creating a curve with survfit(), and plotting predicted survival curves by calling the

predict method for this package with new data.

In the example below we plot 2 predicted curves and vary sex between the 2 sets of new data, to

visualize its effect:

require(survival)
s <- with(lung,Surv(time,status))

sWei <- survreg(s ~ as.factor(sex)+age+ph.ecog+wt.loss+ph.karno,dist='weibull',data=lung)

fitKM <- survfit(s ~ sex,data=lung)
plot(fitKM)

lines(predict(sWei, newdata = list(sex = 1,
 age = 1,
 ph.ecog = 1,
 ph.karno = 90,
 wt.loss = 2),
 type = "quantile",
 p = seq(.01, .99, by = .01)),
 seq(.99, .01, by =-.01),
 col = "blue")

lines(predict(sWei, newdata = list(sex = 2,
 age = 1,
 ph.ecog = 1,
 ph.karno = 90,
 wt.loss = 2),
 type = "quantile",
 p = seq(.01, .99, by = .01)),
 seq(.99, .01, by =-.01),
 col = "red")

https://riptutorial.com/ 529

Kaplan Meier estimates of survival curves and risk set tables with survminer

Base plot

install.packages('survminer')
source("https://bioconductor.org/biocLite.R")
biocLite("RTCGA.clinical") # data for examples

https://riptutorial.com/ 530

http://i.stack.imgur.com/G0SCt.jpg

library(RTCGA.clinical)
survivalTCGA(BRCA.clinical, OV.clinical,
 extract.cols = "admin.disease_code") -> BRCAOV.survInfo
library(survival)
fit <- survfit(Surv(times, patient.vital_status) ~ admin.disease_code,
 data = BRCAOV.survInfo)
library(survminer)
ggsurvplot(fit, risk.table = TRUE)

More advanced

ggsurvplot(
 fit, # survfit object with calculated statistics.
 risk.table = TRUE, # show risk table.
 pval = TRUE, # show p-value of log-rank test.
 conf.int = TRUE, # show confidence intervals for
 # point estimaes of survival curves.
 xlim = c(0,2000), # present narrower X axis, but not affect
 # survival estimates.
 break.time.by = 500, # break X axis in time intervals by 500.
 ggtheme = theme_RTCGA(), # customize plot and risk table with a theme.
 risk.table.y.text.col = T, # colour risk table text annotations.
 risk.table.y.text = FALSE # show bars instead of names in text annotations
 # in legend of risk table
)

https://riptutorial.com/ 531

https://i.stack.imgur.com/jlOBX.png

Based on

http://r-addict.com/2016/05/23/Informative-Survival-Plots.html

Read Survival analysis online: https://riptutorial.com/r/topic/3788/survival-analysis

https://riptutorial.com/ 532

https://i.stack.imgur.com/JlSiu.png
http://r-addict.com/2016/05/23/Informative-Survival-Plots.html
https://riptutorial.com/r/topic/3788/survival-analysis

Chapter 117: Text mining

Examples

Scraping Data to build N-gram Word Clouds

The following example utilizes the tm text mining package to scrape and mine text data from the

web to build word clouds with symbolic shading and ordering.

require(RWeka)
require(tau)
require(tm)
require(tm.plugin.webmining)
require(wordcloud)

Scrape Google Finance ---
googlefinance <- WebCorpus(GoogleFinanceSource("NASDAQ:LFVN"))

Scrape Google News --
lv.googlenews <- WebCorpus(GoogleNewsSource("LifeVantage"))
p.googlenews <- WebCorpus(GoogleNewsSource("Protandim"))
ts.googlenews <- WebCorpus(GoogleNewsSource("TrueScience"))

Scrape NYTimes --
lv.nytimes <- WebCorpus(NYTimesSource(query = "LifeVantage", appid = nytimes_appid))
p.nytimes <- WebCorpus(NYTimesSource("Protandim", appid = nytimes_appid))
ts.nytimes <- WebCorpus(NYTimesSource("TrueScience", appid = nytimes_appid))

Scrape Reuters --
lv.reutersnews <- WebCorpus(ReutersNewsSource("LifeVantage"))
p.reutersnews <- WebCorpus(ReutersNewsSource("Protandim"))
ts.reutersnews <- WebCorpus(ReutersNewsSource("TrueScience"))

Scrape Yahoo! Finance ---
lv.yahoofinance <- WebCorpus(YahooFinanceSource("LFVN"))

Scrape Yahoo! News --
lv.yahoonews <- WebCorpus(YahooNewsSource("LifeVantage"))
p.yahoonews <- WebCorpus(YahooNewsSource("Protandim"))
ts.yahoonews <- WebCorpus(YahooNewsSource("TrueScience"))

Scrape Yahoo! Inplay --
lv.yahooinplay <- WebCorpus(YahooInplaySource("LifeVantage"))

Text Mining the Results ---
corpus <- c(googlefinance, lv.googlenews, p.googlenews, ts.googlenews, lv.yahoofinance,
lv.yahoonews, p.yahoonews,
ts.yahoonews, lv.yahooinplay) #lv.nytimes, p.nytimes, ts.nytimes,lv.reutersnews,
p.reutersnews, ts.reutersnews,

inspect(corpus)
wordlist <- c("lfvn", "lifevantage", "protandim", "truescience", "company", "fiscal",
"nasdaq")

ds0.1g <- tm_map(corpus, content_transformer(tolower))
ds1.1g <- tm_map(ds0.1g, content_transformer(removeWords), wordlist)

https://riptutorial.com/ 533

ds1.1g <- tm_map(ds1.1g, content_transformer(removeWords), stopwords("english"))
ds2.1g <- tm_map(ds1.1g, stripWhitespace)
ds3.1g <- tm_map(ds2.1g, removePunctuation)
ds4.1g <- tm_map(ds3.1g, stemDocument)

tdm.1g <- TermDocumentMatrix(ds4.1g)
dtm.1g <- DocumentTermMatrix(ds4.1g)

findFreqTerms(tdm.1g, 40)
findFreqTerms(tdm.1g, 60)
findFreqTerms(tdm.1g, 80)
findFreqTerms(tdm.1g, 100)

findAssocs(dtm.1g, "skin", .75)
findAssocs(dtm.1g, "scienc", .5)
findAssocs(dtm.1g, "product", .75)

tdm89.1g <- removeSparseTerms(tdm.1g, 0.89)
tdm9.1g <- removeSparseTerms(tdm.1g, 0.9)
tdm91.1g <- removeSparseTerms(tdm.1g, 0.91)
tdm92.1g <- removeSparseTerms(tdm.1g, 0.92)

tdm2.1g <- tdm92.1g

Creates a Boolean matrix (counts # docs w/terms, not raw # terms)
tdm3.1g <- inspect(tdm2.1g)
tdm3.1g[tdm3.1g>=1] <- 1

Transform into a term-term adjacency matrix
termMatrix.1gram <- tdm3.1g %*% t(tdm3.1g)

inspect terms numbered 5 to 10
termMatrix.1gram[5:10,5:10]
termMatrix.1gram[1:10,1:10]

Create a WordCloud to Visualize the Text Data ---------------------------
notsparse <- tdm2.1g
m = as.matrix(notsparse)
v = sort(rowSums(m),decreasing=TRUE)
d = data.frame(word = names(v),freq=v)

Create the word cloud
pal = brewer.pal(9,"BuPu")
wordcloud(words = d$word,
 freq = d$freq,
 scale = c(3,.8),
 random.order = F,
 colors = pal)

https://riptutorial.com/ 534

Note the use of random.order and a sequential pallet from RColorBrewer, which allows the

programmer to capture more information in the cloud by assigning meaning to the order and

coloring of terms.

Above is the 1-gram case.

We can make a major leap to n-gram word clouds and in doing so we’ll see how to make almost

any text-mining analysis flexible enough to handle n-grams by transforming our TDM.

The initial difficulty you run into with n-grams in R is that tm, the most popular package for text

mining, does not inherently support tokenization of bi-grams or n-grams. Tokenization is the

process of representing a word, part of a word, or group of words (or symbols) as a single data

element called a token.

Fortunately, we have some hacks which allow us to continue using tm with an upgraded tokenizer.

There’s more than one way to achieve this. We can write our own simple tokenizer using the

textcnt() function from tau:

tokenize_ngrams <- function(x, n=3)
return(rownames(as.data.frame(unclass(textcnt(x,method="string",n=n)))))

or we can invoke RWeka's tokenizer within tm:

BigramTokenize
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))

From this point you can proceed much as in the 1-gram case:

Create an n-gram Word Cloud --
tdm.ng <- TermDocumentMatrix(ds5.1g, control = list(tokenize = BigramTokenizer))

https://riptutorial.com/ 535

http://i.stack.imgur.com/hdGVE.png

dtm.ng <- DocumentTermMatrix(ds5.1g, control = list(tokenize = BigramTokenizer))

Try removing sparse terms at a few different levels
tdm89.ng <- removeSparseTerms(tdm.ng, 0.89)
tdm9.ng <- removeSparseTerms(tdm.ng, 0.9)
tdm91.ng <- removeSparseTerms(tdm.ng, 0.91)
tdm92.ng <- removeSparseTerms(tdm.ng, 0.92)

notsparse <- tdm91.ng
m = as.matrix(notsparse)
v = sort(rowSums(m),decreasing=TRUE)
d = data.frame(word = names(v),freq=v)

Create the word cloud
pal = brewer.pal(9,"BuPu")
wordcloud(words = d$word,
 freq = d$freq,
 scale = c(3,.8),
 random.order = F,
 colors = pal)

The example above is reproduced with permission from Hack-R's data science blog. Additional

commentary may be found in the original article.

Read Text mining online: https://riptutorial.com/r/topic/3579/text-mining

https://riptutorial.com/ 536

http://i.stack.imgur.com/SKLQ2.png
http://hack-r.com/n-gram-wordclouds-in-r/
https://riptutorial.com/r/topic/3579/text-mining

Chapter 118: The character class

Introduction

Characters are what other languages call 'string vectors.'

Remarks

Related topics

Patterns

Regular Expressions (regex)•

Pattern Matching and Replacement•

strsplit function•

Input and output

Reading and writing strings•

Examples

Coercion

To check whether a value is a character use the is.character() function. To coerce a variable to a

character use the as.character() function.

x <- "The quick brown fox jumps over the lazy dog"
class(x)
[1] "character"
is.character(x)
[1] TRUE

Note that numerics can be coerced to characters, but attempting to coerce a character to numeric

may result in NA.

as.numeric("2")
[1] 2
as.numeric("fox")
[1] NA
Warning message:
NAs introduced by coercion

Read The character class online: https://riptutorial.com/r/topic/9017/the-character-class

https://riptutorial.com/ 537

http://www.riptutorial.com/r/topic/5748/regular-expressions--regex-
http://www.riptutorial.com/r/topic/1123/pattern-matching-and-replacement
http://www.riptutorial.com/r/topic/2762/strsplit-function
http://www.riptutorial.com/r/topic/5541/reading-and-writing-strings
https://riptutorial.com/r/topic/9017/the-character-class

Chapter 119: The Date class

Remarks

Related topics

Date and Time•

Jumbled notes

Date: Stores time as number of days since UNIX epoch on 1970-01-01. with negative values

for earlier dates.

•

It is represented as an integer (however, it is not enforced in the internal representation)•

They are always printed following the rules of the current Gregorian calendar, even though

the calendar was not in use a long time ago.

•

It doesn't keep track of timezones, so it should not be used to truncate the time out of POSIXct

or POSIXlt objects.

•

sys.Date() returns an object of class Date•

More notes

lubridate's ymd, mdy, etc. are alternatives to as.Date that also parse to Date class; see Parsing

dates and datetimes from strings with lubridate.

•

data.table's experimental IDate class is derived from and is mostly interchangeable with

Date, but is stored as integer instead of double.

•

Examples

Formatting Dates

To format Dates we use the format(date, format="%Y-%m-%d") function with either the POSIXct (given

from as.POSIXct()) or POSIXlt (given from as.POSIXlt())

d = as.Date("2016-07-21") # Current Date Time Stamp

format(d,"%a") # Abbreviated Weekday
[1] "Thu"

format(d,"%A") # Full Weekday
[1] "Thursday"

format(d,"%b") # Abbreviated Month
[1] "Jul"

https://riptutorial.com/ 538

http://www.riptutorial.com/r/topic/1157/date-and-time
https://github.com/hadley/lubridate
http://www.riptutorial.com/r/topic/1157/date-and-time/date-and-time/7018/parsing-dates-and-datetimes-from-strings-with-lubridate
http://www.riptutorial.com/r/topic/1157/date-and-time/date-and-time/7018/parsing-dates-and-datetimes-from-strings-with-lubridate
https://github.com/Rdatatable/data.table/wiki

format(d,"%B") # Full Month
[1] "July"

format(d,"%m") # 00-12 Month Format
[1] "07"

format(d,"%d") # 00-31 Day Format
[1] "21"

format(d,"%e") # 0-31 Day Format
[1] "21"

format(d,"%y") # 00-99 Year
[1] "16"

format(d,"%Y") # Year with Century
[1] "2016"

For more, see ?strptime.

Dates

To coerce a variable to a date use the as.Date() function.

> x <- as.Date("2016-8-23")
> x
[1] "2016-08-23"
> class(x)
[1] "Date"

The as.Date() function allows you to provide a format argument. The default is %Y-%m-%d, which is

Year-month-day.

> as.Date("23-8-2016", format="%d-%m-%Y") # To read in an European-style date
[1] "2016-08-23"

The format string can be placed either within a pair of single quotes or double quotes. Dates are

usually expressed in a variety of forms such as: "d-m-yy" or "d-m-YYYY" or "m-d-yy" or "m-d-YYYY" or

"YYYY-m-d" or "YYYY-d-m". These formats can also be expressed by replacing "-" by "/". Furher,

dates are also expressed in the forms, say, "Nov 6, 1986" or "November 6, 1986" or "6 Nov, 1986"

or "6 November, 1986" and so on. The as.Date() function accepts all such character strings and

when we mention the appropriate format of the string, it always outputs the date in the form "YYYY-

m-d".

Suppose we have a date string "9-6-1962" in the format "%d-%m-%Y".

It tries to interprets the string as YYYY-m-d

> as.Date("9-6-1962")
[1] "0009-06-19" #interprets as "%Y-%m-%d"
>

https://riptutorial.com/ 539

as.Date("9/6/1962")
[1] "0009-06-19" #again interprets as "%Y-%m-%d"
>
It has no problem in understanding, if the date is in form YYYY-m-d or YYYY/m/d

> as.Date("1962-6-9")
[1] "1962-06-09" # no problem
> as.Date("1962/6/9")
[1] "1962-06-09" # no problem
>

By specifying the correct format of the input string, we can get the desired results. We use the

following codes for specifying the formats to the as.Date() function.

Format Code Meaning

%d day

%m month

%y year in 2-digits

%Y year in 4-digits

%b abbreviated month in 3 chars

%B full name of the month

Consider the following example specifying the format parameter:

> as.Date("9-6-1962",format="%d-%m-%Y")
[1] "1962-06-09"
>

The parameter name format can be omitted.

> as.Date("9-6-1962", "%d-%m-%Y")
[1] "1962-06-09"
>

Some times, names of the months abbreviated to the first three characters are used in the writing

the dates. In which case we use the format specifier %b.

> as.Date("6Nov1962","%d%b%Y")
[1] "1962-11-06"
>

Note that, there are no either '-' or '/' or white spaces between the members in the date string.

The format string should exactly match that input string. Consider the following example:

> as.Date("6 Nov, 1962","%d %b, %Y")

https://riptutorial.com/ 540

[1] "1962-11-06"
>

Note that, there is a comma in the date string and hence a comma in the format specification too.

If comma is omitted in the format string, it results in an NA. An example usage of %B format specifier

is as follows:

> as.Date("October 12, 2016", "%B %d, %Y")
[1] "2016-10-12"
>
> as.Date("12 October, 2016", "%d %B, %Y")
[1] "2016-10-12"
>

%y format is system specific and hence, should be used with caution. Other parameters used with

this function are origin and tz(time zone).

Parsing Strings into Date Objects

R contains a Date class, which is created with as.Date(), which takes a string or vector of strings,

and if the date is not in ISO 8601 date format YYYY-MM-DD, a formatting string of strptime-style

tokens.

as.Date('2016-08-01') # in ISO format, so does not require formatting string
[1] "2016-08-01"

as.Date('05/23/16', format = '%m/%d/%y')
[1] "2016-05-23"

as.Date('March 23rd, 2016', '%B %drd, %Y') # add separators and literals to format
[1] "2016-03-23"

as.Date(' 2016-08-01 foo') # leading whitespace and all trailing characters are ignored
[1] "2016-08-01"

as.Date(c('2016-01-01', '2016-01-02'))
[1] "2016-01-01" "2016-01-02"

Read The Date class online: https://riptutorial.com/r/topic/9015/the-date-class

https://riptutorial.com/ 541

https://riptutorial.com/r/topic/9015/the-date-class

Chapter 120: The logical class

Introduction

Logical is a mode (and an implicit class) for vectors.

Remarks

Shorthand

TRUE, FALSE and NA are the only values for logical vectors; and all three are reserved words. T and F

can be shorthand for TRUE and FALSE in a clean R session, but neither T nor F are reserved, so

assignment of non-default values to those names can set users up for difficulties.

Examples

Logical operators

There are two sorts of logical operators: those that accept and return vectors of any length

(elementwise operators: !, |, &, xor()) and those that only evaluate the first element in each

argument (&&, ||). The second sort is primarily used as the cond argument to the if function.

Logical Operator Meaning Syntax

! Not !x

& element-wise (vectorized) and x & y

&& and (single element only) x && y

| element-wise (vectorized) or x | y

|| or (single element only) x || y

xor element-wise (vectorized) exclusive OR xor(x,y)

Note that the || operator evaluates the left condition and if the left condition is TRUE the right side

is never evaluated. This can save time if the first is the result of a complex operation. The &&

operator will likewise return FALSE without evaluation of the second argument when the first

element of the first argument is FALSE.

> x <- 5
> x > 6 || stop("X is too small")

https://riptutorial.com/ 542

Error: X is too small
> x > 3 || stop("X is too small")
[1] TRUE

To check whether a value is a logical you can use the is.logical() function.

Coercion

To coerce a variable to a logical use the as.logical() function.

> x <- 2
> z <- x > 4
> z
[1] FALSE
> class(x)
[1] "numeric"
> as.logical(2)
[1] TRUE

When applying as.numeric() to a logical, a double will be returned. NA is a logical value and a

logical operator with an NA will return NA if the outcome is ambiguous.

Interpretation of NAs

See Missing values for details.

> TRUE & NA
[1] NA
> FALSE & NA
[1] FALSE
> TRUE || NA
[1] TRUE
> FALSE || NA
[1] NA

Read The logical class online: https://riptutorial.com/r/topic/9016/the-logical-class

https://riptutorial.com/ 543

http://www.riptutorial.com/r/topic/3388/missing-values
https://riptutorial.com/r/topic/9016/the-logical-class

Chapter 121: tidyverse

Examples

Creating tbl_df’s

A tbl_df (pronounced tibble diff) is a variation of a data frame that is often used in tidyverse

packages. It is implemented in the tibble package.

Use the as_data_frame function to turn a data frame into a tbl_df:

library(tibble)
mtcars_tbl <- as_data_frame(mtcars)

One of the most notable differences between data.frames and tbl_dfs is how they print:

A tibble: 32 x 11
 mpg cyl disp hp drat wt qsec vs am gear carb
* <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
... with 22 more rows

The printed output includes a summary of the dimensions of the table (32 x 11)•

It includes the type of each column (dbl)•

It prints a limited number of rows. (To change this use options(tibble.print_max = [number])).•

Many functions in the dplyr package work naturally with tbl_dfs, such as group_by().

tidyverse: an overview

What is tidyverse?

tidyverse is the fast and elegant way to turn basic R into an enhanced tool, redesigned by

Hadley/Rstudio. The development of all packages included in tidyverse follow the principle rules of

The tidy tools manifesto. But first, let the authors describe their masterpiece:

The tidyverse is a set of packages that work in harmony because they share common

data representations and API design. The tidyverse package is designed to make it

easy to install and load core packages from the tidyverse in a single command.

https://riptutorial.com/ 544

http://www.riptutorial.com/r/topic/438/data-frames
https://cran.r-project.org/package=tibble
https://github.com/tidyverse
https://mran.microsoft.com/web/packages/tidyverse/vignettes/manifesto.html

The best place to learn about all the packages in the tidyverse and how they fit

together is R for Data Science. Expect to hear more about the tidyverse in the coming

months as I work on improved package websites, making citation easier, and providing

a common home for discussions about data analysis with the tidyverse.

(source))

How to use it?

Just with the ordinary R packages, you need to install and load the package.

install.package("tidyverse")
library("tidyverse")

The difference is, on a single command a couple of dozens of packages are installed/loaded. As a

bonus, one may rest assured that all the installed/loaded packages are of compatible versions.

What are those packages?

The commonly known and widely used packages:

ggplot2: advanced data visualisation SO_doc•

dplyr: fast (Rcpp) and coherent approach to data manipulation SO_doc•

tidyr: tools for data tidying SO_doc•

readr: for data import.•

purrr: makes your pure functions purr by completing R's functional programming tools with

important features from other languages, in the style of the JS packages underscore.js,

lodash and lazy.js.

•

tibble: a modern re-imagining of data frames.•

magrittr: piping to make code more readable SO_doc•

Packages for manipulating specific data formats:

hms: easily read times•

stringr: provide a cohesive set of functions designed to make working with strings as easy as

posssible

•

lubridate: advanced date/times manipulations SO_doc•

forcats: advanced work with factors.•

Data import:

DBI: defines a common interface between the R and database management systems

(DBMS)

•

haven: easily import SPSS, SAS and Stata files SO_doc•

httr: the aim of httr is to provide a wrapper for the curl package, customised to the demands

of modern web APIs

•

https://riptutorial.com/ 545

https://blog.rstudio.org/2016/09/15/tidyverse-1-0-0/
http://ggplot2.org/
http://www.riptutorial.com/r/topic/1334/ggplot2
https://github.com/hadley/dplyr
http://www.riptutorial.com/r/topic/1404/rcpp
http://www.riptutorial.com/r/topic/4250/dplyr
https://github.com/tidyverse/tidyr
http://www.riptutorial.com/r/topic/2904/reshaping-data-between-long-and-wide-forms
https://github.com/tidyverse/readr
https://github.com/hadley/purrr
https://github.com/tidyverse/tibble
https://github.com/tidyverse/magrittr
http://www.riptutorial.com/r/topic/652/pipe-operators------and-others-
https://github.com/rstats-db/hms
https://github.com/tidyverse/stringr
https://github.com/hadley/lubridate
http://www.riptutorial.com/r/topic/2496/lubridate
https://github.com/tidyverse/forcats
http://www.riptutorial.com/r/topic/1104/factors
https://github.com/rstats-db/DBI
https://github.com/tidyverse/haven
http://www.riptutorial.com/r/example/4824/read-and-write-stata--spss-and-sas-files
https://github.com/hadley/httr/

jsonlite: a fast JSON parser and generator optimized for statistical data and the web•

readxl: read.xls and .xlsx files without need for dependency packages SO_doc•

rvest: rvest helps you scrape information from web pages SO_doc•

xml2: for XML•

And modelling:

modelr: provides functions that help you create elegant pipelines when modelling•

broom: easily extract the models into tidy data•

Finally, tidyverse suggest the use of:

knitr: the amazing general-purpose literate programming engine, with lightweight API's

designed to give users full control of the output without heavy coding work. SO_docs: one,

two

•

rmarkdown: Rstudio's package for reproducible programming. SO_docs: one, two, three,

four

•

Read tidyverse online: https://riptutorial.com/r/topic/1395/tidyverse

https://riptutorial.com/ 546

https://github.com/jeroenooms/jsonlite
https://github.com/hadley/readxl
http://www.riptutorial.com/r/example/4445/importing-excel-files
https://github.com/hadley/rvest
http://www.riptutorial.com/r/topic/2890/web-scraping-and-parsing
https://github.com/hadley/xml2
https://github.com/hadley/modelr
https://github.com/tidyverse/broom
https://github.com/yihui/knitr
http://www.riptutorial.com/cplusplus/topic/589/loops4
http://www.riptutorial.com/r/topic/4334/r-in-latex-with-knitr
http://rmarkdown.rstudio.com/
http://www.riptutorial.com/cplusplus/topic/589/loops
http://www.riptutorial.com/r/topic/7606/bibliography-in-rmd
http://www.riptutorial.com/r/topic/4087/reproducible-r
http://www.riptutorial.com/r/topic/4572/creating-reports-with-rmarkdown
https://riptutorial.com/r/topic/1395/tidyverse

Chapter 122: Time Series and Forecasting

Remarks

Forecasting and time-series analysis may be handled with commonplace functions from the stats

package, such as glm() or a large number of specialized packages. The CRAN Task View for

time-series analysis provides a detailed listing of key packages by topic with short descriptions.

Examples

Exploratory Data Analysis with time-series data

data(AirPassengers)
class(AirPassengers)

1 "ts"

In the spirit of Exploratory Data Analysis (EDA) a good first step is to look at a plot of your time-

series data:

plot(AirPassengers) # plot the raw data
abline(reg=lm(AirPassengers~time(AirPassengers))) # fit a trend line

https://riptutorial.com/ 547

https://cran.r-project.org/web/views/TimeSeries.html
http://i.stack.imgur.com/LnYZb.png
http://i.stack.imgur.com/LnYZb.png

For further EDA we examine cycles across years:

cycle(AirPassengers)

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 1 2 3 4 5 6 7 8 9 10 11 12
1950 1 2 3 4 5 6 7 8 9 10 11 12
1951 1 2 3 4 5 6 7 8 9 10 11 12
1952 1 2 3 4 5 6 7 8 9 10 11 12
1953 1 2 3 4 5 6 7 8 9 10 11 12
1954 1 2 3 4 5 6 7 8 9 10 11 12
1955 1 2 3 4 5 6 7 8 9 10 11 12
1956 1 2 3 4 5 6 7 8 9 10 11 12
1957 1 2 3 4 5 6 7 8 9 10 11 12
1958 1 2 3 4 5 6 7 8 9 10 11 12
1959 1 2 3 4 5 6 7 8 9 10 11 12
1960 1 2 3 4 5 6 7 8 9 10 11 12

boxplot(AirPassengers~cycle(AirPassengers)) #Box plot across months to explore seasonal
effects

Creating a ts object

Time series data can be stored as a ts object. ts objects contain information about seasonal

frequency that is used by ARIMA functions. It also allows for calling of elements in the series by

date using the window command.

#Create a dummy dataset of 100 observations
x <- rnorm(100)

https://riptutorial.com/ 548

http://i.stack.imgur.com/5ZvRj.png

#Convert this vector to a ts object with 100 annual observations
x <- ts(x, start = c(1900), freq = 1)

#Convert this vector to a ts object with 100 monthly observations starting in July
x <- ts(x, start = c(1900, 7), freq = 12)

 #Alternatively, the starting observation can be a number:
 x <- ts(x, start = 1900.5, freq = 12)

#Convert this vector to a ts object with 100 daily observations and weekly frequency starting
in the first week of 1900
x <- ts(x, start = c(1900, 1), freq = 7)

#The default plot for a ts object is a line plot
plot(x)

#The window function can call elements or sets of elements by date

 #Call the first 4 weeks of 1900
 window(x, start = c(1900, 1), end = (1900, 4))

 #Call only the 10th week in 1900
 window(x, start = c(1900, 10), end = (1900, 10))

 #Call all weeks including and after the 10th week of 1900
 window(x, start = c(1900, 10))

It is possible to create ts objects with multiple series:

#Create a dummy matrix of 3 series with 100 observations each
x <- cbind(rnorm(100), rnorm(100), rnorm(100))

#Create a multi-series ts with annual observation starting in 1900
x <- ts(x, start = 1900, freq = 1)

#R will draw a plot for each series in the object
plot(x)

Read Time Series and Forecasting online: https://riptutorial.com/r/topic/2701/time-series-and-

forecasting

https://riptutorial.com/ 549

https://riptutorial.com/r/topic/2701/time-series-and-forecasting
https://riptutorial.com/r/topic/2701/time-series-and-forecasting

Chapter 123: Updating R and the package

library

Examples

On Windows

Default installation of R on Windows stored files (and thus library) on a dedicated folder per R

version on program files.

That means that by default, you would work with several versions of R in parallel and thus

separate libraries.

If this not what you want and you prefer to always work with a single R instance you wan't to

gradually update, it is recommended to modify the R installation folder. In wizard, just specify this

folder (I personally use c:\stats\R). Then, for any upgrade, one possibility is to overwrite this R.

Whether you also want to upgrade (all) packages is a delicate choice as it may break some of your

code (this appeared for me with the tmpackage). You may:

First make a copy of all your library before upgrading packages•

Maintain your own source packages repository, for instance using package miniCRAN•

If you want to upgrade all packages - without any check, you can call use packageStatus as in:

pkgs <- packageStatus() # choose mirror
upgrade(pkgs)

Finally, there exists a very convenient package to perform all operations, namely installr, even

coming with a dedicated gui. If you want to use gui, you must use Rgui and not load the package

in RStudio. Using the package with code is as simple as:

install.packages("installr") # install
setInternet2(TRUE) # only for R versions older than 3.3.0
installr::updateR() # updating R.

I refer to the great documentation https://www.r-statistics.com/tag/installr/ and specifically the step

by step process with screenshots on Windows:https://www.r-statistics.com/2015/06/a-step-by-

step-screenshots-tutorial-for-upgrading-r-on-windows/

Note that still I advocate using a single directory, ie. removing reference to the R version in

installation folder name.

Read Updating R and the package library online: https://riptutorial.com/r/topic/4088/updating-r-

and-the-package-library

https://riptutorial.com/ 550

https://www.r-statistics.com/tag/installr/
https://www.r-statistics.com/2015/06/a-step-by-step-screenshots-tutorial-for-upgrading-r-on-windows/
https://www.r-statistics.com/2015/06/a-step-by-step-screenshots-tutorial-for-upgrading-r-on-windows/
https://riptutorial.com/r/topic/4088/updating-r-and-the-package-library
https://riptutorial.com/r/topic/4088/updating-r-and-the-package-library

Chapter 124: Updating R version

Introduction

Installing or Updating your Software will give access to new features and bug fixes. Updating your

R installation can be done in a couple of ways. One Simple way is go to R website and download

the latest version for your system.

Examples

Installing from R Website

To get the latest release go to https://cran.r-project.org/ and download the file for your operating

system. Open the downloaded file and follow the on-screen installation steps. All the settings can

be left on default unless you want to change a certain behaviour.

Updating from within R using installr Package

You can also update R from within R by using a handy package called installr.

Open R Console (NOT RStudio, this doesn't work from RStudio) and run the following code to

install the package and initiate update.

install.packages("installr")
library("installr")
updateR()

https://riptutorial.com/ 551

https://cran.r-project.org/
https://cran.r-project.org/

Deciding on the old packages

Once the installation is finished click the Finish button.

Now it asks if you want to copy your packages fro the older version of R to Newer version of R.

Once you choose yes all the package are copied to the newer version of R.

https://riptutorial.com/ 552

https://i.stack.imgur.com/UMl3T.png

After that you can choose if you still want to keep the old packages or delete.

https://riptutorial.com/ 553

https://i.stack.imgur.com/ytDqh.png

You can even move your Rprofile.site from older version to keep all your customised settings.

https://riptutorial.com/ 554

https://i.stack.imgur.com/zK6L9.png

Updating Packages

You can update your installed packages once the updating of R is done.

https://riptutorial.com/ 555

https://i.stack.imgur.com/ffK8W.png

Once its done Restart R and enjoy exploring.

Check R Version

You can check R Version using the console

version

Read Updating R version online: https://riptutorial.com/r/topic/10729/updating-r-version

https://riptutorial.com/ 556

https://i.stack.imgur.com/rQbIt.png
https://riptutorial.com/r/topic/10729/updating-r-version

Chapter 125: Using pipe assignment in your

own package %<>%: How to ?

Introduction

In order to use the pipe in a user-created package, it must be listed in the NAMESPACE like any

other function you choose to import.

Examples

Putting the pipe in a utility-functions file

One option for doing this is to export the pipe from within the package itself. This may be done in

the 'traditional' zzz.R or utils.R files that many packages utilise for useful little functions that are

not exported as part of the package. For example, putting:

#' Pipe operator
#'
#' @name %>%
#' @rdname pipe
#' @keywords internal
#' @export
#' @importFrom magrittr %>%
#' @usage lhs \%>\% rhs
NULL

Read Using pipe assignment in your own package %<>%: How to ? online:

https://riptutorial.com/r/topic/10547/using-pipe-assignment-in-your-own-package-------how-to--

https://riptutorial.com/ 557

https://riptutorial.com/r/topic/10547/using-pipe-assignment-in-your-own-package-------how-to--

Chapter 126: Using texreg to export models

in a paper-ready way

Introduction

The texreg package helps to export a model (or several models) in a neat paper-ready way. The

result may be exported as HTML or .doc (MS Office Word).

Remarks

Links

CRAN page•

Examples

Printing linear regression results

models
fit1 <- lm(mpg ~ wt, data = mtcars)
fit2 <- lm(mpg ~ wt+hp, data = mtcars)
fit3 <- lm(mpg ~ wt+hp+cyl, data = mtcars)

export to html
texreg::htmlreg(list(fit1,fit2,fit3),file='models.html')

export to doc
texreg::htmlreg(list(fit1,fit2,fit3),file='models.doc')

The result looks like a table in a paper.

https://riptutorial.com/ 558

https://cran.r-project.org/package=texreg

There are several additional handy parameters in texreg::htmlreg() function. Here is a use case

for the most helpful parameters.

export to html
texreg::htmlreg(list(fit1,fit2,fit3),file='models.html',
 single.row = T,
 custom.model.names = LETTERS[1:3],
 leading.zero = F,
 digits = 3)

Which result in a table like this

Read Using texreg to export models in a paper-ready way online:

https://riptutorial.com/r/topic/9037/using-texreg-to-export-models-in-a-paper-ready-way

https://riptutorial.com/ 559

https://i.stack.imgur.com/M8GyJ.png
https://i.stack.imgur.com/wMN7q.png
https://riptutorial.com/r/topic/9037/using-texreg-to-export-models-in-a-paper-ready-way

Chapter 127: Variables

Examples

Variables, data structures and basic Operations

In R, data objects are manipulated using named data structures. The names of the objects might

be called "variables" although that term does not have a specific meaning in the official R

documentation. R names are case sensitive and may contain alphanumeric characters(a-z,A-z,0-9

), the dot/period(.) and underscore(_). To create names for the data structures, we have to follow

the following rules:

Names that start with a digit or an underscore (e.g. 1a), or names that are valid numerical

expressions (e.g. .11), or names with dashes ('-') or spaces can only be used when they are

quoted: `1a` and `.11`. The names will be printed with backticks:

 list('.11' ="a")
 #$`.11`
 #[1] "a"

•

All other combinations of alphanumeric characters, dots and underscores can be used freely,

where reference with or without backticks points to the same object.

•

Names that begin with . are considered system names and are not always visible using the

ls()-function.

•

There is no restriction on the number of characters in a variable name.

Some examples of valid object names are: foobar, foo.bar, foo_bar, .foobar

In R, variables are assigned values using the infix-assignment operator <-. The operator = can

also be used for assigning values to variables, however its proper use is for associating values

with parameter names in function calls. Note that omitting spaces around operators may create

confusion for users. The expression a<-1 is parsed as assignment (a <- 1) rather than as a logical

comparison (a < -1).

> foo <- 42
> fooEquals = 43

So foo is assigned the value of 42. Typing foo within the console will output 42, while typing

fooEquals will output 43.

> foo
[1] 42
> fooEquals
[1] 43

https://riptutorial.com/ 560

The following command assigns a value to the variable named x and prints the value

simultaneously:

> (x <- 5)
[1] 5
actually two function calls: first one to `<-`; second one to the `()`-function
> is.function(`(`)
[1] TRUE # Often used in R help page examples for its side-effect of printing.

It is also possible to make assignments to variables using ->.

> 5 -> x
> x
[1] 5
>

Types of data structures

There are no scalar data types in R. Vectors of length-one act like scalars.

Vectors: Atomic vectors must be sequence of same-class objects.: a sequence of numbers,

or a sequence of logicals or a sequence of characters. v <- c(2, 3, 7, 10), v2 <- c("a", "b",

"c") are both vectors.

•

Matrices: A matrix of numbers, logical or characters. a <- matrix(data = c(1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12), nrow = 4, ncol = 3, byrow = F). Like vectors, matrix must be made of

same-class elements. To extract elements from a matrix rows and columns must be

specified: a[1,2] returns [1] 5 that is the element on the first row, second column.

•

Lists: concatenation of different elements mylist <- list (course = 'stat', date =
'04/07/2009', num_isc = 7, num_cons = 6, num_mat = as.character(c(45020, 45679, 46789,
43126, 42345, 47568, 45674)), results = c(30, 19, 29, NA, 25, 26 ,27)). Extracting

elements from a list can be done by name (if the list is named) or by index. In the given

example mylist$results and mylist[[6]] obtains the same element. Warning: if you try

mylist[6], R wont give you an error, but it extract the result as a list. While mylist[[6]][2] is

permitted (it gives you 19), mylist[6][2] gives you an error.

•

data.frame: object with columns that are vectors of equal length, but (possibly) different

types. They are not matrices. exam <- data.frame(matr = as.character(c(45020, 45679, 46789,
43126, 42345, 47568, 45674)), res_S = c(30, 19, 29, NA, 25, 26, 27), res_O = c(3, 3, 1, NA,
3, 2, NA), res_TOT = c(30,22,30,NA,28,28,27)). Columns can be read by name exam$matr,

exam[, 'matr'] or by index exam[1], exam[,1]. Rows can also be read by name exam['rowname',

] or index exam[1,]. Dataframes are actually just lists with a particular structure (rownames-

attribute and equal length components)

•

Common operations and some cautionary advice

Default operations are done element by element. See ?Syntax for the rules of operator precedence.

Most operators (and may other functions in base R) have recycling rules that allow arguments of

unequal length. Given these objects:

https://riptutorial.com/ 561

Example objects

> a <- 1
> b <- 2
> c <- c(2,3,4)
> d <- c(10,10,10)
> e <- c(1,2,3,4)
> f <- 1:6
> W <- cbind(1:4,5:8,9:12)
> Z <- rbind(rep(0,3),1:3,rep(10,3),c(4,7,1))

Some vector operations

> a+b # scalar + scalar
[1] 3
> c+d # vector + vector
[1] 12 13 14
> a*b # scalar * scalar
[1] 2
> c*d # vector * vector (componentwise!)
[1] 20 30 40
> c+a # vector + scalar
[1] 3 4 5
> c^2 #
[1] 4 9 16
> exp(c)
[1] 7.389056 20.085537 54.598150

Some vector operation Warnings!

> c+e # warning but.. no errors, since recycling is assumed to be desired.
[1] 3 5 7 6
Warning message:
In c + e : longer object length is not a multiple of shorter object length

R sums what it can and then reuses the shorter vector to fill in the blanks... The warning was given

only because the two vectors have lengths that are not exactly multiples. c+f # no warning

whatsoever.

Some Matrix operations Warning!

> Z+W # matrix + matrix #(componentwise)
> Z*W # matrix* matrix#(Standard product is always componentwise)

To use a matrix multiply: V %*% W

https://riptutorial.com/ 562

> W + a # matrix+ scalar is still componentwise
 [,1] [,2] [,3]
[1,] 2 6 10
[2,] 3 7 11
[3,] 4 8 12
[4,] 5 9 13

> W + c # matrix + vector... : no warnings and R does the operation in a column-wise manner
 [,1] [,2] [,3]
[1,] 3 8 13
[2,] 5 10 12
[3,] 7 9 14
[4,] 6 11 16

"Private" variables

A leading dot in a name of a variable or function in R is commonly used to denote that the variable

or function is meant to be hidden.

So, declaring the following variables

> foo <- 'foo'
> .foo <- 'bar'

And then using the ls function to list objects will only show the first object.

> ls()
[1] "foo"

However, passing all.names = TRUE to the function will show the 'private' variable

> ls(all.names = TRUE)
[1] ".foo" "foo"

Read Variables online: https://riptutorial.com/r/topic/9013/variables

https://riptutorial.com/ 563

https://riptutorial.com/r/topic/9013/variables

Chapter 128: Web Crawling in R

Examples

Standard scraping approach using the RCurl package

We try to extract imdb top chart movies and ratings

R> library(RCurl)
R> library(XML)
R> url <- "http://www.imdb.com/chart/top"
R> top <- getURL(url)
R> parsed_top <- htmlParse(top, encoding = "UTF-8")
R> top_table <- readHTMLTable(parsed_top)[[1]]
R> head(top_table[1:10, 1:3])

Rank & Title IMDb Rating
1 1. The Shawshank Redemption (1994) 9.2
2 2. The Godfather (1972) 9.2
3 3. The Godfather: Part II (1974) 9.0
4 4. The Dark Knight (2008) 8.9
5 5. Pulp Fiction (1994) 8.9
6 6. The Good, the Bad and the Ugly (1966) 8.9
7 7. Schindler’s List (1993) 8.9
8 8. 12 Angry Men (1957) 8.9
9 9. The Lord of the Rings: The Return of the King (2003) 8.9
10 10. Fight Club (1999) 8.8

Read Web Crawling in R online: https://riptutorial.com/r/topic/4336/web-crawling-in-r

https://riptutorial.com/ 564

https://riptutorial.com/r/topic/4336/web-crawling-in-r

Chapter 129: Web scraping and parsing

Remarks

Scraping refers to using a computer to retrieve the code of a webpage. Once the code is obtained,

it must be parsed into a useful form for further use in R.

Base R does not have many of the tools required for these processes, so scraping and parsing are

typically done with packages. Some packages are most useful for scraping (RSelenium, httr, curl,

RCurl), some for parsing (XML, xml2), and some for both (rvest).

A related process is scraping a web API, which unlike a webpage returns data intended to be

machine-readable. Many of the same packages are used for both.

Legality

Some websites object to being scraped, whether due to increased server loads or concerns about

data ownership. If a website forbids scraping in it Terms of Use, scraping it is illegal.

Examples

Basic scraping with rvest

rvest is a package for web scraping and parsing by Hadley Wickham inspired by Python's

Beautiful Soup. It leverages Hadley's xml2 package's libxml2 bindings for HTML parsing.

As part of the tidyverse, rvest is piped. It uses

xml2::read_html to scrape the HTML of a webpage,•

which can then be subset with its html_node and html_nodes functions using CSS or XPath

selectors, and

•

parsed to R objects with functions like html_text and html_table.•

To scrape the table of milestones from the Wikipedia page on R, the code would look like

library(rvest)

url <- 'https://en.wikipedia.org/wiki/R_(programming_language)'

 # scrape HTML from website
url %>% read_html() %>%
 # select HTML tag with class="wikitable"
 html_node(css = '.wikitable') %>%
 # parse table into data.frame
 html_table() %>%
 # trim for printing
 dplyr::mutate(Description = substr(Description, 1, 70))

https://riptutorial.com/ 565

https://github.com/hadley/rvest
https://www.crummy.com/software/BeautifulSoup/
https://github.com/hadley/xml2
http://xmlsoft.org/
http://www.riptutorial.com/r/topic/652/pipe-operators------and-others-
https://en.wikipedia.org/wiki/R_(programming_language)

Release Date Description
1 0.16 This is the last alpha version developed primarily by Ihaka
2 0.49 1997-04-23 This is the oldest source release which is currently availab
3 0.60 1997-12-05 R becomes an official part of the GNU Project. The code is h
4 0.65.1 1999-10-07 First versions of update.packages and install.packages funct
5 1.0 2000-02-29 Considered by its developers stable enough for production us
6 1.4 2001-12-19 S4 methods are introduced and the first version for Mac OS X
7 2.0 2004-10-04 Introduced lazy loading, which enables fast loading of data
8 2.1 2005-04-18 Support for UTF-8 encoding, and the beginnings of internatio
9 2.11 2010-04-22 Support for Windows 64 bit systems.
10 2.13 2011-04-14 Adding a new compiler function that allows speeding up funct
11 2.14 2011-10-31 Added mandatory namespaces for packages. Added a new paralle
12 2.15 2012-03-30 New load balancing functions. Improved serialization speed f
13 3.0 2013-04-03 Support for numeric index values 231 and larger on 64 bit sy

While this returns a data.frame, note that as is typical for scraped data, there is still further data

cleaning to be done: here, formatting dates, inserting NAs, and so on.

Note that data in a less consistently rectangular format may take looping or other further munging

to successfully parse. If the website makes use of jQuery or other means to insert content,

read_html may be insufficient to scrape, and a more robust scraper like RSelenium may be

necessary.

Using rvest when login is required

I common problem encounter when scrapping a web is how to enter a userid and password to log

into a web site.

In this example which I created to track my answers posted here to stack overflow. The overall

flow is to login, go to a web page collect information, add it a dataframe and then move to the next

page.

library(rvest)

#Address of the login webpage
login<-
"https://stackoverflow.com/users/login?ssrc=head&returnurl=http%3a%2f%2fstackoverflow.com%2f"

#create a web session with the desired login address
pgsession<-html_session(login)
pgform<-html_form(pgsession)[[2]] #in this case the submit is the 2nd form
filled_form<-set_values(pgform, email="*****", password="*****")
submit_form(pgsession, filled_form)

#pre allocate the final results dataframe.
results<-data.frame()

#loop through all of the pages with the desired info
for (i in 1:5)
{
 #base address of the pages to extract information from
 url<-"http://stackoverflow.com/users/**********?tab=answers&sort=activity&page="
 url<-paste0(url, i)
 page<-jump_to(pgsession, url)

https://riptutorial.com/ 566

 #collect info on the question votes and question title
 summary<-html_nodes(page, "div .answer-summary")
 question<-matrix(html_text(html_nodes(summary, "div"), trim=TRUE), ncol=2, byrow = TRUE)

 #find date answered, hyperlink and whether it was accepted
 dateans<-html_node(summary, "span") %>% html_attr("title")
 hyperlink<-html_node(summary, "div a") %>% html_attr("href")
 accepted<-html_node(summary, "div") %>% html_attr("class")

 #create temp results then bind to final results
 rtemp<-cbind(question, dateans, accepted, hyperlink)
 results<-rbind(results, rtemp)
}

#Dataframe Clean-up
names(results)<-c("Votes", "Answer", "Date", "Accepted", "HyperLink")
results$Votes<-as.integer(as.character(results$Votes))
results$Accepted<-ifelse(results$Accepted=="answer-votes default", 0, 1)

The loop in this case is limited to only 5 pages, this needs to change to fit your application. I

replaced the user specific values with ******, hopefully this will provide some guidance for you

problem.

Read Web scraping and parsing online: https://riptutorial.com/r/topic/2890/web-scraping-and-

parsing

https://riptutorial.com/ 567

https://riptutorial.com/r/topic/2890/web-scraping-and-parsing
https://riptutorial.com/r/topic/2890/web-scraping-and-parsing

Chapter 130: Writing functions in R

Examples

Named functions

R is full of functions, it is after all a functional programming language, but sometimes the precise

function you need isn't provided in the Base resources. You could conceivably install a package

containing the function, but maybe your requirements are just so specific that no pre-made

function fits the bill? Then you're left with the option of making your own.

A function can be very simple, to the point of being being pretty much pointless. It doesn't even

need to take an argument:

one <- function() { 1 }
one()
[1] 1

two <- function() { 1 + 1 }
two()
[1] 2

What's between the curly braces { } is the function proper. As long as you can fit everything on a

single line they aren't strictly needed, but can be useful to keep things organized.

A function can be very simple, yet highly specific. This function takes as input a vector (vec in this

example) and outputs the same vector with the vector's length (6 in this case) subtracted from

each of the vector's elements.

vec <- 4:9
subtract.length <- function(x) { x - length(x) }
subtract.length(vec)
[1] -2 -1 0 1 2 3

Notice that length() is in itself a pre-supplied (i.e. Base) function. You can of course use a

previously self-made function within another self-made function, as well as assign variables and

perform other operations while spanning several lines:

vec2 <- (4:7)/2

msdf <- function(x, multiplier=4) {
 mult <- x * multiplier
 subl <- subtract.length(x)
 data.frame(mult, subl)
}

msdf(vec2, 5)
 mult subl
1 10.0 -2.0
2 12.5 -1.5

https://riptutorial.com/ 568

https://en.wikipedia.org/wiki/Functional_programming#R
http://www.riptutorial.com/r/topic/1719/installing-packages

3 15.0 -1.0
4 17.5 -0.5

multiplier=4 makes sure that 4 is the default value of the argument multiplier, if no value is given

when calling the function 4 is what will be used.

The above are all examples of named functions, so called simply because they have been given

names (one, two, subtract.length etc.)

Anonymous functions

An anonymous function is, as the name implies, not assigned a name. This can be useful when

the function is a part of a larger operation, but in itself does not take much place. One frequent

use-case for anonymous functions is within the *apply family of Base functions.

Calculate the root mean square for each column in a data.frame:

df <- data.frame(first=5:9, second=(0:4)^2, third=-1:3)

apply(df, 2, function(x) { sqrt(sum(x^2)) })
 first second third
15.968719 18.814888 3.872983

Create a sequence of step-length one from the smallest to the largest value for each row in a

matrix.

x <- sample(1:6, 12, replace=TRUE)
mat <- matrix(x, nrow=3)

apply(mat, 1, function(x) { seq(min(x), max(x)) })

An anonymous function can also stand on its own:

(function() { 1 })()
[1] 1

is equivalent to

f <- function() { 1 })
f()
[1] 1

RStudio code snippets

This is just a small hack for those who use self-defined functions often.

Type "fun" RStudio IDE and hit TAB.

https://riptutorial.com/ 569

The result will be a skeleton of a new function.

name <- function(variables) {

}

One can easily define their own snippet template, i.e. like the one below

name <- function(df, x, y) {
 require(tidyverse)
 out <-
 return(out)
}

The option is Edit Snippets in the Global Options -> Code menu.

Passing column names as argument of a function

Sometimes one would like to pass names of columns from a data frame to a function. They may

be provided as strings and used in a function using [[. Let's take a look at the following example,

which prints to R console basic stats of selected variables:

basic.stats <- function(dset, vars){
 for(i in 1:length(vars)){
 print(vars[i])
 print(summary(dset[[vars[i]]]))
 }
}

basic.stats(iris, c("Sepal.Length", "Petal.Width"))

As a result of running above given code, names of selected variables and their basic summary

statistics (minima, first quantiles, medians, means, third quantiles and maxima) are printed in R

console. The code dset[[vars[i]]] selects i-th element from the argument vars and selects a

corresponding column in declared input data set dset. For example, declaring

https://riptutorial.com/ 570

https://i.stack.imgur.com/gA8QV.png

iris[["Sepal.Length"]] alone would print the Sepal.Length column from the iris data set as a

vector.

Read Writing functions in R online: https://riptutorial.com/r/topic/7937/writing-functions-in-r

https://riptutorial.com/ 571

https://riptutorial.com/r/topic/7937/writing-functions-in-r

Chapter 131: xgboost

Examples

Cross Validation and Tuning with xgboost

library(caret) # for dummyVars
library(RCurl) # download https data
library(Metrics) # calculate errors
library(xgboost) # model

Load data from UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets.html)
urlfile <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data'
x <- getURL(urlfile, ssl.verifypeer = FALSE)
adults <- read.csv(textConnection(x), header=F)

adults <-read.csv('https://archive.ics.uci.edu/ml/machine-learning-
databases/adult/adult.data', header=F)
names(adults)=c('age','workclass','fnlwgt','education','educationNum',
 'maritalStatus','occupation','relationship','race',
 'sex','capitalGain','capitalLoss','hoursWeek',
 'nativeCountry','income')
clean up data
adults$income <- ifelse(adults$income==' <=50K',0,1)
binarize all factors
library(caret)
dmy <- dummyVars(" ~ .", data = adults)
adultsTrsf <- data.frame(predict(dmy, newdata = adults))

what we're trying to predict adults that make more than 50k
outcomeName <- c('income')
list of features
predictors <- names(adultsTrsf)[!names(adultsTrsf) %in% outcomeName]

play around with settings of xgboost - eXtreme Gradient Boosting (Tree) library
https://github.com/tqchen/xgboost/wiki/Parameters
max.depth - maximum depth of the tree
nrounds - the max number of iterations

take first 10% of the data only!
trainPortion <- floor(nrow(adultsTrsf)*0.1)

trainSet <- adultsTrsf[1:floor(trainPortion/2),]
testSet <- adultsTrsf[(floor(trainPortion/2)+1):trainPortion,]

smallestError <- 100
for (depth in seq(1,10,1)) {
 for (rounds in seq(1,20,1)) {

 # train
 bst <- xgboost(data = as.matrix(trainSet[,predictors]),
 label = trainSet[,outcomeName],
 max.depth=depth, nround=rounds,
 objective = "reg:linear", verbose=0)
 gc()

https://riptutorial.com/ 572

 # predict
 predictions <- predict(bst, as.matrix(testSet[,predictors]),
outputmargin=TRUE)
 err <- rmse(as.numeric(testSet[,outcomeName]), as.numeric(predictions))

 if (err < smallestError) {
 smallestError = err
 print(paste(depth,rounds,err))
 }
 }
}

cv <- 30
trainSet <- adultsTrsf[1:trainPortion,]
cvDivider <- floor(nrow(trainSet) / (cv+1))

smallestError <- 100
for (depth in seq(1,10,1)) {
 for (rounds in seq(1,20,1)) {
 totalError <- c()
 indexCount <- 1
 for (cv in seq(1:cv)) {
 # assign chunk to data test
 dataTestIndex <- c((cv * cvDivider):(cv * cvDivider + cvDivider))
 dataTest <- trainSet[dataTestIndex,]
 # everything else to train
 dataTrain <- trainSet[-dataTestIndex,]

 bst <- xgboost(data = as.matrix(dataTrain[,predictors]),
 label = dataTrain[,outcomeName],
 max.depth=depth, nround=rounds,
 objective = "reg:linear", verbose=0)
 gc()
 predictions <- predict(bst, as.matrix(dataTest[,predictors]),
outputmargin=TRUE)

 err <- rmse(as.numeric(dataTest[,outcomeName]),
as.numeric(predictions))
 totalError <- c(totalError, err)
 }
 if (mean(totalError) < smallestError) {
 smallestError = mean(totalError)
 print(paste(depth,rounds,smallestError))
 }
 }
}

Test both models out on full data set

trainSet <- adultsTrsf[1:trainPortion,]

assign everything else to test
testSet <- adultsTrsf[(trainPortion+1):nrow(adultsTrsf),]

bst <- xgboost(data = as.matrix(trainSet[,predictors]),
 label = trainSet[,outcomeName],
 max.depth=4, nround=19, objective = "reg:linear", verbose=0)
pred <- predict(bst, as.matrix(testSet[,predictors]), outputmargin=TRUE)
rmse(as.numeric(testSet[,outcomeName]), as.numeric(pred))

https://riptutorial.com/ 573

bst <- xgboost(data = as.matrix(trainSet[,predictors]),
 label = trainSet[,outcomeName],
 max.depth=3, nround=20, objective = "reg:linear", verbose=0)
pred <- predict(bst, as.matrix(testSet[,predictors]), outputmargin=TRUE)
rmse(as.numeric(testSet[,outcomeName]), as.numeric(pred))

Read xgboost online: https://riptutorial.com/r/topic/3239/xgboost

https://riptutorial.com/ 574

https://riptutorial.com/r/topic/3239/xgboost

Credits

S.

No
Chapters Contributors

1
Getting started with

R Language

42-, akraf, Ale, Andrea Cirillo, Andrew Brēza, Axeman,

Community, Craig Vermeer, d.b, dotancohen, Francesco Dondi,

Frank, G5W, George Bonebright, GForce, Giorgos K, Gregor,

H. Pauwelyn, kartoffelsalat, kdopen, Konrad Rudolph, L.V.Rao,

lmckeogh, Lovy, Matt, mnoronha, pitosalas, polka, Rahul Saini,

RetractedAndRetired, russellpierce, Steve_Corrin, theArun,

Thomas, torina, user2100721, while

2

*apply family of

functions

(functionals)

Benjamin, FisherDisinformation, Gavin Simpson, jcb, Karolis

Koncevičius, kneijenhuijs, Maximilian Kohl, nrussell, omar,

Robert, seasmith, zacdav

3 .Rprofile
42-, Dirk Eddelbuettel, ikashnitsky, Karolis Koncevičius, Nikos

Alexandris, Stedy, Thomas

4
Aggregating data

frames
Florian, Frank

5
Analyze tweets with

R
Umberto

6 ANOVA Ben Bolker, DataTx, kneijenhuijs

7 Arima Models Andrew Bryk, Steve_Corrin

8 Arithmetic Operators
Batanichek, FisherDisinformation, Matt Sandgren, Robert,

russellpierce, Tensibai

9 Bar Chart L.V.Rao

10 Base Plotting

42-, Alexey Shiklomanov, catastrophic-failure,

FisherDisinformation, Frank, Giorgos K, K.Daisey, maRtin,

MichaelChirico, RamenChef, Robert, symbolrush

11 Bibliography in RMD J_F, RamenChef

12 boxplot Carlos Cinelli, Christophe D., Karolis Koncevičius, L.V.Rao

13 caret highBandWidth, Steve_Corrin

14 Classes
42-, AkselA, David Heckmann, dayne, Frank, Gregor, Jaap,

kneijenhuijs, L.V.Rao, Nathan Werth, Steve_Corrin

https://riptutorial.com/ 575

https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/3082472/akraf
https://riptutorial.com/contributor/5101926/ale
https://riptutorial.com/contributor/4186427/andrea-cirillo
https://riptutorial.com/contributor/1472253/andrew-breza
https://riptutorial.com/contributor/1472253/andrew-breza
https://riptutorial.com/contributor/4341440/axeman
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/8802/craig-vermeer
https://riptutorial.com/contributor/7128934/d-b
https://riptutorial.com/contributor/343302/dotancohen
https://riptutorial.com/contributor/5160450/francesco-dondi
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4752675/g5w
https://riptutorial.com/contributor/5113617/george-bonebright
https://riptutorial.com/contributor/6500578/gforce
https://riptutorial.com/contributor/7175779/giorgos-k
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/4551041/h--pauwelyn
https://riptutorial.com/contributor/2082782/kartoffelsalat
https://riptutorial.com/contributor/943010/kdopen
https://riptutorial.com/contributor/1968/konrad-rudolph
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/6864606/lmckeogh
https://riptutorial.com/contributor/3250340/lovy
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/359219/pitosalas
https://riptutorial.com/contributor/4165272/polka
https://riptutorial.com/contributor/827921/rahul-saini
https://riptutorial.com/contributor/4117603/retractedandretired
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/4662189/thearun
https://riptutorial.com/contributor/2338862/thomas
https://riptutorial.com/contributor/4949653/torina
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/919800/while
https://riptutorial.com/contributor/1017276/benjamin
https://riptutorial.com/contributor/3272279/fisherdisinformation
https://riptutorial.com/contributor/429846/gavin-simpson
https://riptutorial.com/contributor/4024810/jcb
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/3578190/kneijenhuijs
https://riptutorial.com/contributor/3889242/maximilian-kohl
https://riptutorial.com/contributor/1869097/nrussell
https://riptutorial.com/contributor/1040498/omar
https://riptutorial.com/contributor/2824732/robert
https://riptutorial.com/contributor/5228718/seasmith
https://riptutorial.com/contributor/4604054/zacdav
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/143305/dirk-eddelbuettel
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1172302/nikos-alexandris
https://riptutorial.com/contributor/1172302/nikos-alexandris
https://riptutorial.com/contributor/163809/stedy
https://riptutorial.com/contributor/2338862/thomas
https://riptutorial.com/contributor/8037249/florian
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/556014/umberto
https://riptutorial.com/contributor/190277/ben-bolker
https://riptutorial.com/contributor/2962786/datatx
https://riptutorial.com/contributor/3578190/kneijenhuijs
https://riptutorial.com/contributor/3911324/andrew-bryk
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/5018792/batanichek
https://riptutorial.com/contributor/3272279/fisherdisinformation
https://riptutorial.com/contributor/6512989/matt-sandgren
https://riptutorial.com/contributor/2824732/robert
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/3627607/tensibai
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/2477097/alexey-shiklomanov
https://riptutorial.com/contributor/2874779/catastrophic-failure
https://riptutorial.com/contributor/3272279/fisherdisinformation
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/7175779/giorgos-k
https://riptutorial.com/contributor/5869104/k-daisey
https://riptutorial.com/contributor/3491151/martin
https://riptutorial.com/contributor/3576984/michaelchirico
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2824732/robert
https://riptutorial.com/contributor/4706952/symbolrush
https://riptutorial.com/contributor/6045390/j-f
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3216713/carlos-cinelli
https://riptutorial.com/contributor/5002186/christophe-d-
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/429850/highbandwidth
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/4272725/aksela
https://riptutorial.com/contributor/4420776/david-heckmann
https://riptutorial.com/contributor/1623354/dayne
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/2204410/jaap
https://riptutorial.com/contributor/3578190/kneijenhuijs
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/4912229/nathan-werth
https://riptutorial.com/contributor/2269255/steve-corrin

15 Cleaning data Derek Corcoran

16 Code profiling Ben Bolker, Glen Moutrie, Jav, SymbolixAU, USER_1

17 Coercion d.b

18
Color schemes for

graphics
ikashnitsky, munirbe

19
Column wise

operation
akrun

20 Combinatorics Frank, Karolis Koncevičius

21
Control flow

structures
Benjamin, David Arenburg, nrussell, Robert, Steve_Corrin

22
Creating packages

with devtools
Frank, Lovy

23
Creating reports with

RMarkdown
ikashnitsky, Karolis Koncevičius, Martin Schmelzer

24 Creating vectors
alistaire, bartektartanus, Jaap, Karsten W., lmo, Rich Scriven,

Robert, Robin Gertenbach, smci, takje

25 Data acquisition ikashnitsky

26 Data frames

Alex, Andrea Ianni , Batanichek, Carlos Cinelli, Christophe D.,

DataTx, David Arenburg, David Robinson, dayne, Frank,

Gregor, Hack-R, kaksat, R. Schifini, scoa, Sumedh, Thomas,

Tomás Barcellos, user2100721

27 data.table

akrun, Allen Wang, bartektartanus, cderv, David, David

Arenburg, Dean MacGregor, Eric Lecoutre, Frank, Jaap, jogo, L

Co, leogama, Mallick Hossain, micstr, Nathan Werth, oshun,

Peter Humburg, Sowmya S. Manian, stanekam, Steve_Corrin,

Sumedh, Tensibai, user2100721, Uwe

28 Date and Time

AkselA, alistaire, Angelo, coatless, David Leal, Dean

MacGregor, Frank, kneijenhuijs, MichaelChirico, scoa,

SymbolixAU, takje, theArun, thelatemail

29

Date-time classes

(POSIXct and

POSIXlt)

AkselA, alistaire, coatless, Frank, MichaelChirico, SymbolixAU,

thelatemail

30 Debugging James Elderfield, russellpierce

Distribution 31 FisherDisinformation, Frank, L.V.Rao, tenCupMaximum

https://riptutorial.com/ 576

https://riptutorial.com/contributor/3808018/derek-corcoran
https://riptutorial.com/contributor/190277/ben-bolker
https://riptutorial.com/contributor/4303504/glen-moutrie
https://riptutorial.com/contributor/5913922/jav
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/3851145/user-1
https://riptutorial.com/contributor/7128934/d-b
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/7462968/munirbe
https://riptutorial.com/contributor/3732271/akrun
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1017276/benjamin
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/1869097/nrussell
https://riptutorial.com/contributor/2824732/robert
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3250340/lovy
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1777111/martin-schmelzer
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/2125442/bartektartanus
https://riptutorial.com/contributor/2204410/jaap
https://riptutorial.com/contributor/216064/karsten-w-
https://riptutorial.com/contributor/4895725/lmo
https://riptutorial.com/contributor/3063910/rich-scriven
https://riptutorial.com/contributor/2824732/robert
https://riptutorial.com/contributor/5426909/robin-gertenbach
https://riptutorial.com/contributor/202229/smci
https://riptutorial.com/contributor/3768552/takje
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/5143048/alex
https://riptutorial.com/contributor/5097722/andrea-ianni--
https://riptutorial.com/contributor/5097722/andrea-ianni--
https://riptutorial.com/contributor/5018792/batanichek
https://riptutorial.com/contributor/3216713/carlos-cinelli
https://riptutorial.com/contributor/5002186/christophe-d-
https://riptutorial.com/contributor/2962786/datatx
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/712603/david-robinson
https://riptutorial.com/contributor/1623354/dayne
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/4931020/kaksat
https://riptutorial.com/contributor/1730017/r--schifini
https://riptutorial.com/contributor/4132844/scoa
https://riptutorial.com/contributor/5338586/sumedh
https://riptutorial.com/contributor/2338862/thomas
https://riptutorial.com/contributor/6167055/tomas-barcellos
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/3732271/akrun
https://riptutorial.com/contributor/4408787/allen-wang
https://riptutorial.com/contributor/2125442/bartektartanus
https://riptutorial.com/contributor/3436535/cderv
https://riptutorial.com/contributor/3048453/david
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/1818713/dean-macgregor
https://riptutorial.com/contributor/5558861/eric-lecoutre
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/2204410/jaap
https://riptutorial.com/contributor/5414452/jogo
https://riptutorial.com/contributor/899665/l-co
https://riptutorial.com/contributor/899665/l-co
https://riptutorial.com/contributor/3738764/leogama
https://riptutorial.com/contributor/5056851/mallick-hossain
https://riptutorial.com/contributor/4606130/micstr
https://riptutorial.com/contributor/4912229/nathan-werth
https://riptutorial.com/contributor/4718512/oshun
https://riptutorial.com/contributor/3990677/peter-humburg
https://riptutorial.com/contributor/5371744/sowmya-s--manian
https://riptutorial.com/contributor/3006597/stanekam
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/5338586/sumedh
https://riptutorial.com/contributor/3627607/tensibai
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/3817004/uwe
https://riptutorial.com/contributor/4272725/aksela
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/120440/angelo
https://riptutorial.com/contributor/1345455/coatless
https://riptutorial.com/contributor/6237093/david-leal
https://riptutorial.com/contributor/1818713/dean-macgregor
https://riptutorial.com/contributor/1818713/dean-macgregor
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3578190/kneijenhuijs
https://riptutorial.com/contributor/3576984/michaelchirico
https://riptutorial.com/contributor/4132844/scoa
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/3768552/takje
https://riptutorial.com/contributor/4662189/thearun
https://riptutorial.com/contributor/496803/thelatemail
https://riptutorial.com/contributor/4272725/aksela
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/1345455/coatless
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3576984/michaelchirico
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/496803/thelatemail
https://riptutorial.com/contributor/1488801/james-elderfield
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/3272279/fisherdisinformation
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/2896857/tencupmaximum

Functions

32 dplyr
4444, Alihan Zıhna, ikashnitsky, Robert, skoh, Sumedh,

theArun

33
Expression: parse +

eval
YCR

34

Extracting and

Listing Files in

Compressed

Archives

catastrophic-failure, Jeff

35 Factors

42-, Benjamin, dash2, Frank, Gavin Simpson, JulioSergio,

kneijenhuijs, Nathan Werth, omar, Rich Scriven, Robert,

Steve_Corrin

36

Fault-

tolerant/resilient

code

Rappster

37

Feature Selection in

R -- Removing

Extraneous Features

Joy

38 Formula 42-, Axeman, Qaswed, Sathish

39
Fourier Series and

Transformations
Hack-R

40
Functional

programming
Karolis Koncevičius

41
Generalized linear

models
Ben Bolker, YCR

42 Get user input Ashish, DeveauP

43 ggplot2

akraf, Alex, alistaire, Andrea Cirillo, Artem Klevtsov, Axeman,

baptiste, blmoore, Boern, gitblame, ikashnitsky, Jaap, jmax, loki

, Matt, Mine Cetinkaya-Rundel, Paolo, smci, Steve_Corrin,

Sumedh, Taylor Ostberg, theArun, void, YCR, Yun Ching

44
GPU-accelerated

computing
cdeterman

45 Hashmaps nrussell, russellpierce

46
heatmap and

heatmap.2
AndreyAkinshin, Nanami

https://riptutorial.com/ 577

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/4831458/alihan-zihna
https://riptutorial.com/contributor/4831458/alihan-zihna
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/2824732/robert
https://riptutorial.com/contributor/3905630/skoh
https://riptutorial.com/contributor/5338586/sumedh
https://riptutorial.com/contributor/4662189/thearun
https://riptutorial.com/contributor/4911229/ycr
https://riptutorial.com/contributor/2874779/catastrophic-failure
https://riptutorial.com/contributor/7071093/jeff
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/1017276/benjamin
https://riptutorial.com/contributor/3603486/dash2
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/429846/gavin-simpson
https://riptutorial.com/contributor/1873888/juliosergio
https://riptutorial.com/contributor/3578190/kneijenhuijs
https://riptutorial.com/contributor/4912229/nathan-werth
https://riptutorial.com/contributor/1040498/omar
https://riptutorial.com/contributor/3063910/rich-scriven
https://riptutorial.com/contributor/2824732/robert
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/989691/rappster
https://riptutorial.com/contributor/3361900/joy
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/4341440/axeman
https://riptutorial.com/contributor/6256241/qaswed
https://riptutorial.com/contributor/1691723/sathish
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/190277/ben-bolker
https://riptutorial.com/contributor/4911229/ycr
https://riptutorial.com/contributor/4149615/ashish
https://riptutorial.com/contributor/5779570/deveaup
https://riptutorial.com/contributor/3082472/akraf
https://riptutorial.com/contributor/5143048/alex
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/4186427/andrea-cirillo
https://riptutorial.com/contributor/1863950/artem-klevtsov
https://riptutorial.com/contributor/4341440/axeman
https://riptutorial.com/contributor/471093/baptiste
https://riptutorial.com/contributor/1274516/blmoore
https://riptutorial.com/contributor/1701600/boern
https://riptutorial.com/contributor/3679857/gitblame
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/2204410/jaap
https://riptutorial.com/contributor/3574501/jmax
https://riptutorial.com/contributor/3250126/loki
https://riptutorial.com/contributor/8072054/matt
https://riptutorial.com/contributor/5157940/mine-cetinkaya-rundel
https://riptutorial.com/contributor/7264964/paolo
https://riptutorial.com/contributor/202229/smci
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/5338586/sumedh
https://riptutorial.com/contributor/4747836/taylor-ostberg
https://riptutorial.com/contributor/4662189/thearun
https://riptutorial.com/contributor/1029287/void
https://riptutorial.com/contributor/4911229/ycr
https://riptutorial.com/contributor/3741048/yun-ching
https://riptutorial.com/contributor/3204250/cdeterman
https://riptutorial.com/contributor/1869097/nrussell
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/184842/andreyakinshin
https://riptutorial.com/contributor/787279/nanami

47
Hierarchical

clustering with hclust
Frank, G5W, Tal Galili

48
Hierarchical Linear

Modeling
Ben Bolker

49
I/O for database

tables
Frank, JHowIX, SommerEngineering

50

I/O for foreign tables

(Excel, SAS, SPSS,

Stata)

42-, Alex, alistaire, Andrea Cirillo, Carlos Cinelli, Charmgoggles

, Crops, Frank, Jaap, Jeromy Anglim, kaksat, Ken S.,

kitman0804, lmo, Miha, Parfait, polka, Thomas

51

I/O for geographic

data (shapefiles,

etc.)

Alex, Frank, ikashnitsky

52 I/O for raster images Frank, loki

53
I/O for R's binary

format
Frank, ikashnitsky, Mario, russellpierce, zacdav, zx8754

54

Implement State

Machine Pattern

using S4 Class

David Leal

55 Input and output Frank

56 Inspecting packages Frank, Sowmya S. Manian

57 Installing packages

Aaghaz Hussain, akraf, alko989, Andrew Brēza, Artem Klevtsov

, Arun Balakrishnan, Christophe D., CL., Frank, gitblame, Hack-

R, hongsy, Jaap, kaksat, kneijenhuijs, lmckeogh, loki, Marc

Brinkmann, Miha, Peter Humburg, Pragyaditya Das, Raj

Padmanabhan, seasmith, SymbolixAU, theArun, user890739,

xamgore, zx8754

58
Introduction to

Geographical Maps

4444, AkselA, alistaire, beetroot, Carson, Frank, Hack-R,

HypnoGenX, Robert, russellpierce, SymbolixAU, symbolrush

59 Introspection Jason

60 JSON SymbolixAU

61
Linear Models

(Regression)

Amstell, Ben Bolker, Carl, Carlos Cinelli, David Robinson,

fortune_p, Frank, highBandWidth, ikashnitsky, jaySf, Robert,

russellpierce, thelatemail, USER_1, WAF

62 Lists
Andrea Ianni , BarkleyBG, dayne, Frank, Hack-R, Hairizuan

Noorazman, Peter Humburg, RamenChef

https://riptutorial.com/ 578

https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4752675/g5w
https://riptutorial.com/contributor/256662/tal-galili
https://riptutorial.com/contributor/190277/ben-bolker
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/993882/jhowix
https://riptutorial.com/contributor/2258393/sommerengineering
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/5143048/alex
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/4186427/andrea-cirillo
https://riptutorial.com/contributor/3216713/carlos-cinelli
https://riptutorial.com/contributor/5573955/charmgoggles
https://riptutorial.com/contributor/3223138/crops
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/2204410/jaap
https://riptutorial.com/contributor/180892/jeromy-anglim
https://riptutorial.com/contributor/4931020/kaksat
https://riptutorial.com/contributor/6256482/ken-s-
https://riptutorial.com/contributor/3494669/kitman0804
https://riptutorial.com/contributor/4895725/lmo
https://riptutorial.com/contributor/4623381/miha
https://riptutorial.com/contributor/1422451/parfait
https://riptutorial.com/contributor/4165272/polka
https://riptutorial.com/contributor/2338862/thomas
https://riptutorial.com/contributor/5143048/alex
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3250126/loki
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/3412012/mario
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/4604054/zacdav
https://riptutorial.com/contributor/680068/zx8754
https://riptutorial.com/contributor/6237093/david-leal
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/5371744/sowmya-s--manian
https://riptutorial.com/contributor/4089949/aaghaz-hussain
https://riptutorial.com/contributor/3082472/akraf
https://riptutorial.com/contributor/2195555/alko989
https://riptutorial.com/contributor/1472253/andrew-breza
https://riptutorial.com/contributor/1472253/andrew-breza
https://riptutorial.com/contributor/1863950/artem-klevtsov
https://riptutorial.com/contributor/5101752/arun-balakrishnan
https://riptutorial.com/contributor/5002186/christophe-d-
https://riptutorial.com/contributor/2706569/cl-
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3679857/gitblame
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/6619250/hongsy
https://riptutorial.com/contributor/2204410/jaap
https://riptutorial.com/contributor/4931020/kaksat
https://riptutorial.com/contributor/3578190/kneijenhuijs
https://riptutorial.com/contributor/6864606/lmckeogh
https://riptutorial.com/contributor/3250126/loki
https://riptutorial.com/contributor/7708237/marc-brinkmann
https://riptutorial.com/contributor/7708237/marc-brinkmann
https://riptutorial.com/contributor/4623381/miha
https://riptutorial.com/contributor/3990677/peter-humburg
https://riptutorial.com/contributor/3564318/pragyaditya-das
https://riptutorial.com/contributor/8167209/raj-padmanabhan
https://riptutorial.com/contributor/8167209/raj-padmanabhan
https://riptutorial.com/contributor/5228718/seasmith
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/4662189/thearun
https://riptutorial.com/contributor/890739/user890739
https://riptutorial.com/contributor/3160483/xamgore
https://riptutorial.com/contributor/680068/zx8754
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/4272725/aksela
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/3283824/beetroot
https://riptutorial.com/contributor/1583084/carson
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/6082538/hypnogenx
https://riptutorial.com/contributor/2824732/robert
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/4706952/symbolrush
https://riptutorial.com/contributor/2019896/jason
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/4104728/amstell
https://riptutorial.com/contributor/190277/ben-bolker
https://riptutorial.com/contributor/4564432/carl
https://riptutorial.com/contributor/3216713/carlos-cinelli
https://riptutorial.com/contributor/712603/david-robinson
https://riptutorial.com/contributor/4564247/fortune-p
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/429850/highbandwidth
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/6574038/jaysf
https://riptutorial.com/contributor/2824732/robert
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/496803/thelatemail
https://riptutorial.com/contributor/3851145/user-1
https://riptutorial.com/contributor/1948347/waf
https://riptutorial.com/contributor/5097722/andrea-ianni--
https://riptutorial.com/contributor/5097722/andrea-ianni--
https://riptutorial.com/contributor/6263364/barkleybg
https://riptutorial.com/contributor/1623354/dayne
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/6621237/hairizuan-noorazman
https://riptutorial.com/contributor/6621237/hairizuan-noorazman
https://riptutorial.com/contributor/3990677/peter-humburg
https://riptutorial.com/contributor/6392939/ramenchef

63 lubridate alistaire, Angelo, Frank, gitblame, Hendrik, scoa

64 Machine learning loki

65 Matrices dayne, Frank

66

Meta:

Documentation

Guidelines

Frank, Gregor, Stephen Leppik, Steve_Corrin

67 Missing values

Amit Kohli, Artem Klevtsov, Axeman, Eric Lecoutre, Frank,

Gregor, Jaap, kitman0804, lmo, seasmith, Steve_Corrin,

theArun, user2100721

68
Modifying strings by

substitution
Alex, David Leal, Frank

69
Natural language

processing
CptNemo

70

Network analysis

with the igraph

package

Boysenb3rry

71

Non-standard

evaluation and

standard evaluation

PAC

72
Numeric classes and

storage modes
Frank, Steve_Corrin

73
Object-Oriented

Programming in R
Jon Ericson, rcorty

74 Parallel processing Artem Klevtsov, jameselmore, K.Daisey, lmo, loki, russellpierce

75
Pattern Matching

and Replacement

Abdou, Alex, Artem Klevtsov, David Arenburg, David Leal,

Frank, Gavin Simpson, Jaap, NWaters, R. Schifini,

SommerEngineering, Steve_Corrin, Tensibai, thelatemail,

user2100721

76
Performing a

Permutation Test
Stephen Leppik, tenCupMaximum

42-, Alexandru Papiu, Alihan Zıhna, alistaire, AndreyAkinshin,

Artem Klevtsov, Atish, Axeman, Benjamin, Carlos Cinelli,

CMichael, DrPositron, Franck Dernoncourt, Frank, Gal Dreiman

, Gavin Simpson, Gregor, ikashnitsky, James McCalden, Kay

Brodersen, Matt, polka, RamenChef, Ryan Hilbert, Sam Firke,

seasmith, Shawn Mehan, Simplans, Spacedman, SymbolixAU,

77
Pipe operators

(%>% and others)

https://riptutorial.com/ 579

https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/120440/angelo
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3679857/gitblame
https://riptutorial.com/contributor/5618426/hendrik
https://riptutorial.com/contributor/4132844/scoa
https://riptutorial.com/contributor/3250126/loki
https://riptutorial.com/contributor/1623354/dayne
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/2883603/amit-kohli
https://riptutorial.com/contributor/1863950/artem-klevtsov
https://riptutorial.com/contributor/4341440/axeman
https://riptutorial.com/contributor/5558861/eric-lecoutre
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/2204410/jaap
https://riptutorial.com/contributor/3494669/kitman0804
https://riptutorial.com/contributor/4895725/lmo
https://riptutorial.com/contributor/5228718/seasmith
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/4662189/thearun
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/5143048/alex
https://riptutorial.com/contributor/6237093/david-leal
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/1707938/cptnemo
https://riptutorial.com/contributor/6049524/boysenb3rry
https://riptutorial.com/contributor/1967500/pac
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/1438/jon-ericson
https://riptutorial.com/contributor/1150080/rcorty
https://riptutorial.com/contributor/1863950/artem-klevtsov
https://riptutorial.com/contributor/2584876/jameselmore
https://riptutorial.com/contributor/5869104/k-daisey
https://riptutorial.com/contributor/4895725/lmo
https://riptutorial.com/contributor/3250126/loki
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/3135417/abdou
https://riptutorial.com/contributor/5143048/alex
https://riptutorial.com/contributor/1863950/artem-klevtsov
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/6237093/david-leal
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/429846/gavin-simpson
https://riptutorial.com/contributor/2204410/jaap
https://riptutorial.com/contributor/4561056/nwaters
https://riptutorial.com/contributor/1730017/r--schifini
https://riptutorial.com/contributor/2258393/sommerengineering
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/3627607/tensibai
https://riptutorial.com/contributor/496803/thelatemail
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/2896857/tencupmaximum
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/2759654/alexandru-papiu
https://riptutorial.com/contributor/4831458/alihan-zihna
https://riptutorial.com/contributor/4831458/alihan-zihna
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/184842/andreyakinshin
https://riptutorial.com/contributor/1863950/artem-klevtsov
https://riptutorial.com/contributor/1681641/atish
https://riptutorial.com/contributor/4341440/axeman
https://riptutorial.com/contributor/1017276/benjamin
https://riptutorial.com/contributor/3216713/carlos-cinelli
https://riptutorial.com/contributor/3124909/cmichael
https://riptutorial.com/contributor/4257137/drpositron
https://riptutorial.com/contributor/395857/franck-dernoncourt
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3580365/gal-dreiman
https://riptutorial.com/contributor/429846/gavin-simpson
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/1563472/james-mccalden
https://riptutorial.com/contributor/1042406/kay-brodersen
https://riptutorial.com/contributor/1042406/kay-brodersen
https://riptutorial.com/contributor/2641576/matt
https://riptutorial.com/contributor/4165272/polka
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2884225/ryan-hilbert
https://riptutorial.com/contributor/4470365/sam-firke
https://riptutorial.com/contributor/5228718/seasmith
https://riptutorial.com/contributor/5113071/shawn-mehan
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/211116/spacedman
https://riptutorial.com/contributor/5977215/symbolixau

thelatemail, tomw, TriskalJM, user2100721

78
Pivot and unpivot

with data.table
Sun Bee

79
Probability

Distributions with R
Pankaj Sharma

80 Publishing Frank

81
R code vectorization

best practices
Axeman, David Arenburg, snaut

82 R in LaTeX with knitr JHowIX

83

R Markdown

Notebooks (from

RStudio)

dmail

84
R memento by

examples
Lovy

85
Random Forest

Algorithm
G5W

86
Random Numbers

Generator

bartektartanus, FisherDisinformation, Karolis Koncevičius, Miha

, mnoronha

87 Randomization TARehman

88
Raster and Image

Analysis
Frank, loki

89 Rcpp Artem Klevtsov, coatless, Dirk Eddelbuettel

90
Reading and writing

strings

42-, 4444, abhiieor, cdrini, dotancohen, Frank, Gregor, kdopen,

Rich Scriven, Thomas, Uwe

91

Reading and writing

tabular data in plain-

text files (CSV, TSV,

etc.)

a.powell, Aaghaz Hussain, abhiieor, Alex, alistaire, Andrea

Cirillo, bartektartanus, Carl Witthoft, Carlos Cinelli, catastrophic-

failure, cdrini, Charmgoggles, Crops, DaveRGP, David

Arenburg, Dawny33, Derwin McGeary, EDi, Eric Lecoutre,

FoldedChromatin, Frank, Gavin Simpson, gitblame, Hairizuan

Noorazman, herbaman, ikashnitsky, Jaap, Jeromy Anglim,

JHowIX, joeyreid, Jordan Kassof, K.Daisey, kitman0804,

kneijenhuijs, lmo, loki, Miha, PAC, polka, russellpierce, Sam

Firke, stats-hb, Thomas, Uwe, zacdav, zelite, zx8754

92 Recycling Frank, USER_1

https://riptutorial.com/ 580

https://riptutorial.com/contributor/496803/thelatemail
https://riptutorial.com/contributor/770431/tomw
https://riptutorial.com/contributor/4433546/triskaljm
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/2998993/sun-bee
https://riptutorial.com/contributor/5487987/pankaj-sharma
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4341440/axeman
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/1999873/snaut
https://riptutorial.com/contributor/993882/jhowix
https://riptutorial.com/contributor/8160248/dmail
https://riptutorial.com/contributor/3250340/lovy
https://riptutorial.com/contributor/4752675/g5w
https://riptutorial.com/contributor/2125442/bartektartanus
https://riptutorial.com/contributor/3272279/fisherdisinformation
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/1953718/karolis-koncevicius
https://riptutorial.com/contributor/4623381/miha
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/1332389/tarehman
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3250126/loki
https://riptutorial.com/contributor/1863950/artem-klevtsov
https://riptutorial.com/contributor/1345455/coatless
https://riptutorial.com/contributor/143305/dirk-eddelbuettel
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/1582413/abhiieor
https://riptutorial.com/contributor/2317712/cdrini
https://riptutorial.com/contributor/343302/dotancohen
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/943010/kdopen
https://riptutorial.com/contributor/3063910/rich-scriven
https://riptutorial.com/contributor/2338862/thomas
https://riptutorial.com/contributor/3817004/uwe
https://riptutorial.com/contributor/6419513/a-powell
https://riptutorial.com/contributor/4089949/aaghaz-hussain
https://riptutorial.com/contributor/1582413/abhiieor
https://riptutorial.com/contributor/5143048/alex
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/4186427/andrea-cirillo
https://riptutorial.com/contributor/4186427/andrea-cirillo
https://riptutorial.com/contributor/2125442/bartektartanus
https://riptutorial.com/contributor/884372/carl-witthoft
https://riptutorial.com/contributor/3216713/carlos-cinelli
https://riptutorial.com/contributor/2874779/catastrophic-failure
https://riptutorial.com/contributor/2874779/catastrophic-failure
https://riptutorial.com/contributor/2317712/cdrini
https://riptutorial.com/contributor/5573955/charmgoggles
https://riptutorial.com/contributor/3223138/crops
https://riptutorial.com/contributor/2902740/davergp
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/4993513/dawny33
https://riptutorial.com/contributor/5230146/derwin-mcgeary
https://riptutorial.com/contributor/511399/edi
https://riptutorial.com/contributor/5558861/eric-lecoutre
https://riptutorial.com/contributor/1390752/foldedchromatin
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/429846/gavin-simpson
https://riptutorial.com/contributor/3679857/gitblame
https://riptutorial.com/contributor/6621237/hairizuan-noorazman
https://riptutorial.com/contributor/6621237/hairizuan-noorazman
https://riptutorial.com/contributor/4101927/herbaman
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/2204410/jaap
https://riptutorial.com/contributor/180892/jeromy-anglim
https://riptutorial.com/contributor/993882/jhowix
https://riptutorial.com/contributor/4529074/joeyreid
https://riptutorial.com/contributor/5903623/jordan-kassof
https://riptutorial.com/contributor/5869104/k-daisey
https://riptutorial.com/contributor/3494669/kitman0804
https://riptutorial.com/contributor/3578190/kneijenhuijs
https://riptutorial.com/contributor/4895725/lmo
https://riptutorial.com/contributor/3250126/loki
https://riptutorial.com/contributor/4623381/miha
https://riptutorial.com/contributor/1967500/pac
https://riptutorial.com/contributor/4165272/polka
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/4470365/sam-firke
https://riptutorial.com/contributor/4470365/sam-firke
https://riptutorial.com/contributor/1392529/stats-hb
https://riptutorial.com/contributor/2338862/thomas
https://riptutorial.com/contributor/3817004/uwe
https://riptutorial.com/contributor/4604054/zacdav
https://riptutorial.com/contributor/1952996/zelite
https://riptutorial.com/contributor/680068/zx8754
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3851145/user-1

93
Regular Expression

Syntax in R
Alexey Shiklomanov

94
Regular Expressions

(regex)
42-, Benjamin, David Leal, etienne, Frank, MichaelChirico, PAC

95 Reproducible R Charmgoggles, Frank, ikashnitsky

96 Reshape using tidyr
Charmgoggles, Frank, Jeromy Anglim, SymbolixAU,

user2100721

97

Reshaping data

between long and

wide forms

Charmgoggles, David Arenburg, demonplus, Frank, Jeromy

Anglim, kneijenhuijs, lmo, Steve_Corrin, SymbolixAU, takje,

user2100721, zx8754

98 RESTful R Services YCR

99
RMarkdown and

knitr presentation
Martin Schmelzer, YCR

100 RODBC akrun, Hack-R, Parfait, Tim Coker

101 roxygen2 DeveauP, PAC

102 Run-length encoding Frank, josliber, Psidom

103 Scope of variables Artem Klevtsov, K.Daisey, RamenChef

104 Set operations DeveauP, FisherDisinformation, Frank

105 Shiny
alistaire, CClaire, Christophe D., JvH, russellpierce,

SymbolixAU, tuomastik, zx8754

106 Solving ODEs in R J_F

107 Spark API (SparkR) Maximilian Kohl

108 spatial analysis beetroot, ikashnitsky, loki, maRtin

109
Speeding up tough-

to-vectorize code
egnha, josliber

110 Split function
Eric Lecoutre, etienne, josliber, Sathish, Tensibai, thelatemail,

user2100721

111 sqldf Hack-R, Miha

112

Standardize

analyses by writing

standalone R scripts

akraf, herbaman

https://riptutorial.com/ 581

https://riptutorial.com/contributor/2477097/alexey-shiklomanov
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/1017276/benjamin
https://riptutorial.com/contributor/6237093/david-leal
https://riptutorial.com/contributor/5202253/etienne
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3576984/michaelchirico
https://riptutorial.com/contributor/1967500/pac
https://riptutorial.com/contributor/5573955/charmgoggles
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/5573955/charmgoggles
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/180892/jeromy-anglim
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/5573955/charmgoggles
https://riptutorial.com/contributor/3001626/david-arenburg
https://riptutorial.com/contributor/462639/demonplus
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/180892/jeromy-anglim
https://riptutorial.com/contributor/180892/jeromy-anglim
https://riptutorial.com/contributor/3578190/kneijenhuijs
https://riptutorial.com/contributor/4895725/lmo
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/3768552/takje
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/680068/zx8754
https://riptutorial.com/contributor/4911229/ycr
https://riptutorial.com/contributor/1777111/martin-schmelzer
https://riptutorial.com/contributor/4911229/ycr
https://riptutorial.com/contributor/3732271/akrun
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/1422451/parfait
https://riptutorial.com/contributor/88066/tim-coker
https://riptutorial.com/contributor/5779570/deveaup
https://riptutorial.com/contributor/1967500/pac
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/3093387/josliber
https://riptutorial.com/contributor/4983450/psidom
https://riptutorial.com/contributor/1863950/artem-klevtsov
https://riptutorial.com/contributor/5869104/k-daisey
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5779570/deveaup
https://riptutorial.com/contributor/3272279/fisherdisinformation
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/5545837/cclaire
https://riptutorial.com/contributor/5002186/christophe-d-
https://riptutorial.com/contributor/4401741/jvh
https://riptutorial.com/contributor/169095/russellpierce
https://riptutorial.com/contributor/5977215/symbolixau
https://riptutorial.com/contributor/5524090/tuomastik
https://riptutorial.com/contributor/680068/zx8754
https://riptutorial.com/contributor/6045390/j-f
https://riptutorial.com/contributor/3889242/maximilian-kohl
https://riptutorial.com/contributor/3283824/beetroot
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/3250126/loki
https://riptutorial.com/contributor/3491151/martin
https://riptutorial.com/contributor/5768077/egnha
https://riptutorial.com/contributor/3093387/josliber
https://riptutorial.com/contributor/5558861/eric-lecoutre
https://riptutorial.com/contributor/5202253/etienne
https://riptutorial.com/contributor/3093387/josliber
https://riptutorial.com/contributor/1691723/sathish
https://riptutorial.com/contributor/3627607/tensibai
https://riptutorial.com/contributor/496803/thelatemail
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/4623381/miha
https://riptutorial.com/contributor/3082472/akraf
https://riptutorial.com/contributor/4101927/herbaman

113
String manipulation

with stringi package
bartektartanus, FisherDisinformation

114 strsplit function lmo

115 Subsetting

42-, Agriculturist, alexis_laz, alistaire, dayne, Frank, Gavin

Simpson, Gregor, L.V.Rao, Mario, mrip, RamenChef, smci,

user2100721, zx8754

116 Survival analysis 42-, Axeman, Hack-R, Marcin Kosiński

117 Text mining Hack-R

118 The character class Frank, Steve_Corrin

119 The Date class
alistaire, coatless, Frank, L.V.Rao, MichaelChirico,

Steve_Corrin

120 The logical class 42-, Frank, Gregor, L.V.Rao, Steve_Corrin

121 tidyverse
David Robinson, egnha, Frank, ikashnitsky, RamenChef,

Sumedh

122
Time Series and

Forecasting

Andras Deak, Andrew Bryk, coatless, Hack-R, JGreenwell,

Pankaj Sharma, Steve_Corrin, μ Muthupandian

123
Updating R and the

package library
Eric Lecoutre

124 Updating R version dmail

125

Using pipe

assignment in your

own package %<>%:

How to ?

RobertMc

126

Using texreg to

export models in a

paper-ready way

Frank, ikashnitsky

127 Variables 42-, Ale, Axeman, Craig Vermeer, Frank, L.V.Rao, lmckeogh

128 Web Crawling in R Pankaj Sharma

129
Web scraping and

parsing
alistaire, Dave2e

130
Writing functions in

R
AkselA, ikashnitsky, kaksat

https://riptutorial.com/ 582

https://riptutorial.com/contributor/2125442/bartektartanus
https://riptutorial.com/contributor/3272279/fisherdisinformation
https://riptutorial.com/contributor/4895725/lmo
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/4052161/agriculturist
https://riptutorial.com/contributor/2414948/alexis-laz
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/1623354/dayne
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/429846/gavin-simpson
https://riptutorial.com/contributor/429846/gavin-simpson
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/3412012/mario
https://riptutorial.com/contributor/2588184/mrip
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/202229/smci
https://riptutorial.com/contributor/2100721/user2100721
https://riptutorial.com/contributor/680068/zx8754
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/4341440/axeman
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/3857701/marcin-kosinski
https://riptutorial.com/contributor/3857701/marcin-kosinski
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/1345455/coatless
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/3576984/michaelchirico
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/903061/gregor
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/712603/david-robinson
https://riptutorial.com/contributor/5768077/egnha
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/5338586/sumedh
https://riptutorial.com/contributor/5067311/andras-deak
https://riptutorial.com/contributor/3911324/andrew-bryk
https://riptutorial.com/contributor/1345455/coatless
https://riptutorial.com/contributor/3604745/hack-r
https://riptutorial.com/contributor/4667934/jgreenwell
https://riptutorial.com/contributor/5487987/pankaj-sharma
https://riptutorial.com/contributor/2269255/steve-corrin
https://riptutorial.com/contributor/3881239/--muthupandian
https://riptutorial.com/contributor/3881239/--muthupandian
https://riptutorial.com/contributor/5558861/eric-lecoutre
https://riptutorial.com/contributor/8160248/dmail
https://riptutorial.com/contributor/4296028/robertmc
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/1855677/42-
https://riptutorial.com/contributor/5101926/ale
https://riptutorial.com/contributor/4341440/axeman
https://riptutorial.com/contributor/8802/craig-vermeer
https://riptutorial.com/contributor/1191259/frank
https://riptutorial.com/contributor/6911592/l-v-rao
https://riptutorial.com/contributor/6864606/lmckeogh
https://riptutorial.com/contributor/5487987/pankaj-sharma
https://riptutorial.com/contributor/4497050/alistaire
https://riptutorial.com/contributor/5792244/dave2e
https://riptutorial.com/contributor/4272725/aksela
https://riptutorial.com/contributor/4638884/ikashnitsky
https://riptutorial.com/contributor/4931020/kaksat

131 xgboost Hack-R

https://riptutorial.com/ 583

https://riptutorial.com/contributor/3604745/hack-r

	About
	Chapter 1: Getting started with R Language
	Remarks

	Editing R Docs on Stack Overflow
	A few features of R that immigrants from other language may find unusual
	Examples
	Installing R

	Windows only:

	For Windows
	For OSX / macOS
	Alternative 1
	Alternative 2

	For Debian, Ubuntu and derivatives
	For Red Hat and Fedora
	For Archlinux
	Hello World!
	Getting Help
	Interactive mode and R scripts

	The interactive mode
	Using R as a calculator
	The first plot

	R scripts
	Chapter 2: *apply family of functions (functionals)
	Remarks

	Members of the *apply Family
	Examples
	Use anonymous functions with apply
	Bulk File Loading
	Combining multiple `data.frames` (`lapply`, `mapply`)
	Using built-in functionals

	Built-in functionals: lapply(), sapply(), and mapply()
	lapply()
	sapply()
	mapply()
	Using user-defined functionals
	User-defined functionals

	Chapter 3: .Rprofile
	Remarks
	Examples
	.Rprofile - the first chunk of code executed

	Setting your R home directory
	Setting page size options
	set the default help type
	set a site library
	Set a CRAN mirror
	Setting the location of your library
	Custom shortcuts or functions
	Pre-loading the most useful packages
	See Also
	.Rprofile example
	Startup
	Options
	Custom Functions

	Chapter 4: Aggregating data frames
	Introduction
	Examples
	Aggregating with base R
	Aggregating with dplyr
	Aggregating with data.table

	Chapter 5: Analyze tweets with R
	Introduction
	Examples
	Download Tweets

	R Libraries
	Get text of tweets

	Chapter 6: ANOVA
	Examples
	Basic usage of aov()
	Basic usage of Anova()

	Chapter 7: Arima Models
	Remarks
	Examples
	Modeling an AR1 Process with Arima

	Chapter 8: Arithmetic Operators
	Remarks
	Examples
	Range and addition
	Addition and subtraction

	Chapter 9: Bar Chart
	Introduction
	Examples
	barplot() function

	Chapter 10: Base Plotting
	Parameters
	Remarks
	Examples
	Basic Plot
	Matplot
	Histograms
	Combining Plots

	par()
	layout()
	Density plot
	Empirical Cumulative Distribution Function
	Getting Started with R_Plots

	Chapter 11: Bibliography in RMD
	Parameters
	Remarks
	Examples
	Specifying a bibliography and cite authors
	Inline references
	Citation styles

	Chapter 12: boxplot
	Syntax
	Parameters
	Examples
	Create a box-and-whisker plot with boxplot() {graphics}

	Simple boxplot (Sepal.Length)
	Boxplot of sepal length grouped by species
	Bring order
	Change groups names
	Small improvements
	Color
	Proximity of the box

	See the summaries which the boxplots are based plot=FALSE
	Additional boxplot style parameters.
	Box
	Median

	Whisker
	Staple
	Outliers
	Example
	Chapter 13: caret
	Introduction
	Examples
	Preprocessing

	Chapter 14: Classes
	Introduction
	Remarks
	Examples
	Vectors
	Inspect classes
	Vectors and lists

	Chapter 15: Cleaning data
	Introduction
	Examples
	Removing missing data from a vector
	Removing incomplete rows

	Chapter 16: Code profiling
	Examples
	System.time
	proc.time()
	Line Profiling
	Microbenchmark
	Benchmarking using microbenchmark

	Chapter 17: Coercion
	Introduction
	Examples
	Implicit Coercion

	Chapter 18: Color schemes for graphics
	Examples
	viridis - print and colorblind friendly palettes
	RColorBrewer
	A handy function to glimse a vector of colors
	colorspace - click&drag interface for colors
	basic R color functions
	Colorblind-friendly palettes

	Chapter 19: Column wise operation
	Examples
	sum of each column

	Chapter 20: Combinatorics
	Examples
	Enumerating combinations of a specified length

	Without replacement
	With replacement
	Counting combinations of a specified length

	Without replacement
	With replacement
	Chapter 21: Control flow structures
	Remarks

	Optimizing Structure of For Loops
	Vectorizing For Loops
	Examples
	Basic For Loop Construction
	Optimal Construction of a For Loop

	Poorly optimized for loop
	Well optimized for loop
	vapply Function
	colMeans Function
	Efficiency comparison
	The Other Looping Constructs: while and repeat

	The while loop
	The repeat loop
	More on break

	Chapter 22: Creating packages with devtools
	Introduction
	Remarks
	Examples
	Creating and distributing packages

	Creation of the documentation
	Construction of the package skeleton
	Edition of the package properties
	1. Package description
	2. Optional folders

	Finalization and build
	Distribution of your package
	Through Github
	Through CRAN
	Creating vignettes

	Requirements
	Vignette creation
	Chapter 23: Creating reports with RMarkdown
	Examples
	Printing tables
	Including LaTeX Preample Commands
	Including bibliographies
	Basic R-markdown document structure

	R-markdown code chunks
	R-markdown document example
	Converting R-markdown to other formats

	Chapter 24: Creating vectors
	Examples
	Sequence of numbers
	seq()
	Vectors
	Creating named vectors
	Expanding a vector with the rep() function
	Vectors from build in constants: Sequences of letters & month names

	Chapter 25: Data acquisition
	Introduction
	Examples
	Built-in datasets

	Example
	Datasets within packages

	Gapminder
	World Population Prospects 2015 - United Nations Population Department
	Packages to access open databases

	Eurostat
	Packages to access restricted data

	Human Mortality Database
	Chapter 26: Data frames
	Syntax
	Examples
	Create an empty data.frame
	Subsetting rows and columns from a data frame

	Syntax for accessing rows and columns: [, [[, and $
	Like a matrix: data[rows, columns]
	With numeric indexes
	With column (and row) names
	Rows and columns together
	A warning about dimensions:

	Like a list
	With single brackets data[columns]
	With double brackets data[[one_column]]

	Using $ to access columns
	Drawbacks of $ for accessing columns

	Advanced indexing: negative and logical indices
	Negative indices omit elements
	Logical vectors indicate specific elements to keep
	Convenience functions to manipulate data.frames

	subset
	transform
	with and within
	Introduction
	Convert data stored in a list to a single data frame using do.call
	Convert all columns of a data.frame to character class
	Subsetting Rows by Column Values

	Chapter 27: data.table
	Introduction
	Syntax
	Remarks

	Installation and support
	Loading the package
	Examples
	Creating a data.table

	Build
	Read in
	Modify a data.frame
	Coerce object to data.table
	Adding and modifying columns

	Editing entire columns
	Editing subsets of columns
	Editing column attributes
	Special symbols in data.table

	.SD
	.SDcols
	.N
	Writing code compatible with both data.frame and data.table

	Differences in subsetting syntax
	Strategies for maintaining compatibility with data.frame and data.table
	Setting keys in data.table

	Chapter 28: Date and Time
	Introduction
	Remarks

	Classes
	Selecting a date-time format
	Specialized packages
	Examples
	Current Date and Time
	Go to the End of the Month
	Go to First Day of the Month
	Move a date a number of months consistently by months

	Chapter 29: Date-time classes (POSIXct and POSIXlt)
	Introduction
	Remarks

	Pitfalls
	Related topics
	Specialized packages
	Examples
	Formatting and printing date-time objects
	Parsing strings into date-time objects

	Notes
	Missing elements
	Time zones
	Date-time arithmetic

	Chapter 30: Debugging
	Examples
	Using browser
	Using debug

	Chapter 31: Distribution Functions
	Introduction
	Remarks
	Examples
	Normal distribution
	Binomial Distribution

	Chapter 32: dplyr
	Remarks
	Examples
	dplyr's single table verbs

	Syntax commonalities
	filter
	arrange
	select
	mutate
	summarise
	group_by
	Putting it all togther
	summarise multiple columns
	Subset Observation (Rows)
	dplyr::filter() - Select a subset of rows in a data frame that meet a logical criteria:
	dplyr::distinct() - Remove duplicate rows:
	Aggregating with %>% (pipe) operator
	Examples of NSE and string variables in dpylr

	Chapter 33: Expression: parse + eval
	Remarks
	Examples
	Execute code in string format

	Chapter 34: Extracting and Listing Files in Compressed Archives
	Examples
	Extracting files from a .zip archive
	Listing files in a .zip archive
	Listing files in a .tar archive
	Extracting files from a .tar archive
	Extract all .zip archives in a directory

	Chapter 35: Factors
	Syntax
	Remarks

	Mapping the integer to the level
	Modern use of factors
	Examples
	Basic creation of factors
	Consolidating Factor Levels with a List

	Consolidating levels using factor (factor_approach)
	Consolidating levels using ifelse (ifelse_approach)
	Consolidating Factors Levels with a List (list_approach)
	Benchmarking each approach
	Factors
	Changing and reordering factors
	Rebuilding factors from zero
	Problem
	Solution

	Chapter 36: Fault-tolerant/resilient code
	Parameters
	Remarks
	tryCatch
	Implications of choosing specific return values of the handler functions
	"Undesired" warning message

	Examples
	Using tryCatch()

	Function definition using tryCatch
	Testing things out
	Investigating the output

	Chapter 37: Feature Selection in R -- Removing Extraneous Features
	Examples
	Removing features with zero or near-zero variance
	Removing features with high numbers of NA
	Removing closely correlated features

	Chapter 38: Formula
	Examples
	The basics of formula
	Create Linear, Quadratic and Second Order Interaction Terms

	Chapter 39: Fourier Series and Transformations
	Remarks
	Examples
	Fourier Series

	Chapter 40: Functional programming
	Examples
	Built-in Higher Order Functions

	Chapter 41: Generalized linear models
	Examples
	Logistic regression on Titanic dataset

	Chapter 42: Get user input
	Syntax
	Examples
	User input in R

	Chapter 43: ggplot2
	Remarks
	Examples
	Scatter Plots
	Displaying multiple plots
	Prepare your data for plotting
	Add horizontal and vertical lines to plot

	Add one common horizontal line for all categorical variables
	Add one horizontal line for each categorical variable
	Add horizontal line over grouped bars
	Add vertical line
	Vertical and Horizontal Bar Chart
	Violin plot
	Produce basic plots with qplot

	Chapter 44: GPU-accelerated computing
	Remarks
	Examples
	gpuR gpuMatrix objects
	gpuR vclMatrix objects

	Chapter 45: Hashmaps
	Examples
	Environments as hash maps

	Introduction
	Insertion
	Key Lookup
	Inspecting the Hash Map
	Flexibility
	Limitations
	package:hash
	package:listenv

	Chapter 46: heatmap and heatmap.2
	Examples
	Examples from the official documentation

	stats::heatmap
	Example 1 (Basic usage)
	Example 2 (no column dendrogram (nor reordering) at all)
	Example 3 ("no nothing")
	Example 4 (with reorder())
	Example 5 (NO reorder())
	Example 6 (slightly artificial with color bar, without ordering)
	Example 7 (slightly artificial with color bar, with ordering)
	Example 8 (For variable clustering, rather use distance based on cor())
	Tuning parameters in heatmap.2

	Chapter 47: Hierarchical clustering with hclust
	Introduction
	Remarks
	Examples
	Example 1 - Basic use of hclust, display of dendrogram, plot clusters
	Example 2 - hclust and outliers

	Chapter 48: Hierarchical Linear Modeling
	Examples
	basic model fitting

	Chapter 49: I/O for database tables
	Remarks

	Specialized packages
	Examples
	Reading Data from MySQL Databases

	General
	Using limits
	Reading Data from MongoDB Databases

	Chapter 50: I/O for foreign tables (Excel, SAS, SPSS, Stata)
	Examples
	Importing data with rio
	Importing Excel files

	Reading excel files with the xlsx package
	Reading Excel files with the XLconnect package
	Reading excel files with the openxlsx package
	Reading excel files with the readxl package
	Reading excel files with the RODBC package
	Reading excel files with the gdata package
	Read and write Stata, SPSS and SAS files
	Import or Export of Feather file

	Chapter 51: I/O for geographic data (shapefiles, etc.)
	Introduction
	Examples
	Import and Export Shapefiles

	Chapter 52: I/O for raster images
	Introduction
	Examples
	Load a multilayer raster

	Chapter 53: I/O for R's binary format
	Examples
	Rds and RData (Rda) files
	Enviromments

	Chapter 54: Implement State Machine Pattern using S4 Class
	Introduction
	Examples
	Parsing Lines using State Machine

	Chapter 55: Input and output
	Remarks
	Examples
	Reading and writing data frames

	Writing
	Reading
	Further resources
	Chapter 56: Inspecting packages
	Introduction
	Remarks
	Examples
	View package information
	View package's built-in data sets
	List a package's exported functions
	View Package Version
	View Loaded packages in Current Session

	Chapter 57: Installing packages
	Syntax
	Parameters
	Remarks

	Related Docs
	Examples
	Download and install packages from repositories

	Using CRAN
	Using Bioconductor
	Install package from local source
	Install packages from GitHub
	Using a CLI package manager -- basic pacman usage
	Install local development version of a package

	Chapter 58: Introduction to Geographical Maps
	Introduction
	Examples
	Basic map-making with map() from the package maps
	50 State Maps and Advanced Choropleths with Google Viz
	Interactive plotly maps
	Making Dynamic HTML Maps with Leaflet
	Dynamic Leaflet maps in Shiny applications

	Chapter 59: Introspection
	Examples
	Functions for Learning about Variables

	Chapter 60: JSON
	Examples
	JSON to / from R objects

	Chapter 61: Linear Models (Regression)
	Syntax
	Parameters
	Examples
	Linear regression on the mtcars dataset
	Plotting The Regression (base)
	Weighting
	Checking for nonlinearity with polynomial regression
	Quality assessment
	Using the 'predict' function

	Chapter 62: Lists
	Examples
	Quick Introduction to Lists
	Introduction to lists
	Reasons for using lists
	Convert a list to a vector while keeping empty list elements
	Serialization: using lists to pass informations

	Chapter 63: lubridate
	Syntax
	Remarks
	Examples
	Parsing dates and datetimes from strings with lubridate

	Dates
	Datetimes
	Utility functions
	Parser functions
	Parsing date and time in lubridate
	Manipulating date and time in lubridate
	Instants
	Intervals, Durations and Periods
	Rounding dates
	Difference between period and duration
	Time Zones

	Chapter 64: Machine learning
	Examples
	Creating a Random Forest model

	Chapter 65: Matrices
	Introduction
	Examples
	Creating matrices

	Chapter 66: Meta: Documentation Guidelines
	Remarks
	Examples
	Making good examples
	Style

	Prompts
	Console output
	Assignment
	Code comments
	Sections
	Chapter 67: Missing values
	Introduction
	Remarks
	Examples
	Examining missing data
	Reading and writing data with NA values
	Using NAs of different classes
	TRUE/FALSE and/or NA
	Omitting or replacing missing values

	Recoding missing values
	Removing missing values
	Excluding missing values from calculations
	Chapter 68: Modifying strings by substitution
	Introduction
	Examples
	Rearrange character strings using capture groups
	Eliminate duplicated consecutive elements

	Chapter 69: Natural language processing
	Introduction
	Examples
	Create a term frequency matrix

	Chapter 70: Network analysis with the igraph package
	Examples
	Simple Directed and Non-directed Network Graphing

	Chapter 71: Non-standard evaluation and standard evaluation
	Introduction
	Examples
	Examples with standard dplyr verbs

	Chapter 72: Numeric classes and storage modes
	Examples
	Numeric

	Chapter 73: Object-Oriented Programming in R
	Introduction
	Examples
	S3

	Chapter 74: Parallel processing
	Remarks
	Examples
	Parallel processing with foreach package
	Parallel processing with parallel package
	Random Number Generation
	mcparallelDo

	Example
	Other Examples
	Chapter 75: Pattern Matching and Replacement
	Introduction
	Syntax
	Remarks

	Differences from other languages
	Specialized packages
	Examples
	Making substitutions
	Finding Matches

	Is there a match?
	Match locations
	Matched values
	Details
	Summary of matches
	Single and Global match.
	Find matches in big data sets

	Chapter 76: Performing a Permutation Test
	Examples
	A fairly general function

	Chapter 77: Pipe operators (%>% and others)
	Introduction
	Syntax
	Parameters
	Remarks
	Packages that use %>%
	Finding documentation
	Hotkeys
	Performance Considerations

	Examples
	Basic use and chaining
	Functional sequences
	Assignment with %<>%
	Exposing contents with %$%
	Using the pipe with dplyr and ggplot2
	Creating side effects with %T>%

	Chapter 78: Pivot and unpivot with data.table
	Syntax
	Parameters
	Remarks
	Examples
	Pivot and unpivot tabular data with data.table - I
	Pivot and unpivot tabular data with data.table - II

	Chapter 79: Probability Distributions with R
	Examples
	PDF and PMF for different distributions in R

	Chapter 80: Publishing
	Introduction
	Remarks
	Examples
	Formatting tables

	Printing to plain text
	Printing delimited tables
	Further resources
	Formatting entire documents

	Further Resources
	Chapter 81: R code vectorization best practices
	Examples
	By row operations

	Chapter 82: R in LaTeX with knitr
	Syntax
	Parameters
	Remarks
	Examples
	R in Latex with Knitr and Code Externalization
	R in Latex with Knitr and Inline Code Chunks
	R in LaTex with Knitr and Internal Code Chunks

	Chapter 83: R Markdown Notebooks (from RStudio)
	Introduction
	Examples
	Creating a Notebook
	Inserting Chunks
	Executing Chunk Code

	Splitting Code into Chunks
	Execution Progress

	Executing Multiple Chunks
	Preview Output
	Saving and Sharing

	Chapter 84: R memento by examples
	Introduction
	Examples
	Data types

	Vectors
	Matrices
	Dataframes
	Lists
	Environments
	Plotting (using plot)
	Commonly used functions

	Chapter 85: Random Forest Algorithm
	Introduction
	Examples
	Basic examples - Classification and Regression

	Chapter 86: Random Numbers Generator
	Examples
	Random permutations
	Random number generator's reproducibility
	Generating random numbers using various density functions

	Uniform distribution between 0 and 10
	Normal distribution with 0 mean and standard deviation of 1
	Binomial distribution with 10 trials and success probability of 0.5
	Geometric distribution with 0.2 success probability
	Hypergeometric distribution with 3 white balls, 10 black balls and 5 draws
	Negative Binomial distribution with 10 trials and success probability of 0.8
	Poisson distribution with mean and variance (lambda) of 2
	Exponential distribution with the rate of 1.5
	Logistic distribution with 0 location and scale of 1
	Chi-squared distribution with 15 degrees of freedom
	Beta distribution with shape parameters a=1 and b=0.5
	Gamma distribution with shape parameter of 3 and scale=0.5
	Cauchy distribution with 0 location and scale of 1
	Log-normal distribution with 0 mean and standard deviation of 1 (on log scale)
	Weibull distribution with shape parameter of 0.5 and scale of 1
	Wilcoxon distribution with 10 observations in the first sample and 20 in second.
	Multinomial distribution with 5 object and 3 boxes using the specified probabilities

	Chapter 87: Randomization
	Introduction
	Remarks
	Examples
	Random draws and permutations

	Random permutation
	Draws without Replacement
	Draws with Replacement
	Changing Draw Probabilities
	Setting the seed

	Chapter 88: Raster and Image Analysis
	Introduction
	Examples
	Calculating GLCM Texture
	Mathematical Morphologies

	Chapter 89: Rcpp
	Examples
	Inline Code Compile
	Rcpp Attributes
	Extending Rcpp with Plugins
	Specifying Additional Build Dependencies

	Chapter 90: Reading and writing strings
	Remarks
	Examples
	Printing and displaying strings
	Reading from or writing to a file connection
	Capture output of operating system command

	Functions which return a character vector
	Functions which return a data frame
	Chapter 91: Reading and writing tabular data in plain-text files (CSV, TSV, etc.)
	Syntax
	Parameters
	Remarks
	Examples
	Importing .csv files

	Importing using base R
	Notes

	Importing using packages
	Importing with data.table
	Notes
	Importing .tsv files as matrices (basic R)
	Exporting .csv files

	Exporting using base R
	Exporting using packages
	Import multiple csv files
	Importing fixed-width files

	Importing with base R
	Importing with readr
	Chapter 92: Recycling
	Remarks
	Examples
	Recycling use in subsetting

	Chapter 93: Regular Expression Syntax in R
	Introduction
	Examples
	Use `grep` to find a string in a character vector

	Chapter 94: Regular Expressions (regex)
	Introduction
	Remarks

	Character classes
	Quantifiers
	Start and end of line indicators
	Differences from other languages
	Additional Resources
	Examples
	Eliminating Whitespace

	Trimming Whitespace
	Removing Leading Whitespace
	Removing Trailing Whitespace
	Removing All Whitespace
	Validate a date in a "YYYYMMDD" format
	Validate US States postal abbreviations
	Validate US phone numbers
	Escaping characters in R regex patterns
	Differences between Perl and POSIX regex

	Look-ahead/look-behind

	Chapter 95: Reproducible R
	Introduction
	Remarks

	References
	Examples
	Data reproducibility

	dput() and dget()
	Package reproducibility

	Chapter 96: Reshape using tidyr
	Introduction
	Examples
	Reshape from long to wide format with spread()
	Reshape from wide to long format with gather()

	h21

	Chapter 97: Reshaping data between long and wide forms
	Introduction
	Remarks

	Helpful packages
	Examples
	The reshape function

	Long to Wide
	Wide to Long
	Reshaping data

	Base R
	The tidyr package
	The data.table package
	Chapter 98: RESTful R Services
	Introduction
	Examples
	opencpu Apps

	Chapter 99: RMarkdown and knitr presentation
	Syntax
	Parameters
	Remarks

	Sub options parameters:
	Examples
	Rstudio example
	Adding a footer to an ioslides presentation

	Chapter 100: RODBC
	Examples
	Connecting to Excel Files via RODBC
	SQL Server Management Database connection to get individual table
	Connecting to relational databases

	Chapter 101: roxygen2
	Parameters
	Examples
	Documenting a package with roxygen2

	Writing with roxygen2
	Building the documentation
	Chapter 102: Run-length encoding
	Remarks

	Extensions
	Examples
	Run-length Encoding with `rle`
	Identifying and grouping by runs in base R
	Identifying and grouping by runs in data.table
	Run-length encoding to compress and decompress vectors

	Chapter 103: Scope of variables
	Remarks
	Examples
	Environments and Functions
	Sub functions
	Global Assignment
	Explicit Assignment of Environments and Variables
	Function Exit
	Packages and Masking

	Chapter 104: Set operations
	Remarks
	Examples
	Set operators for pairs of vectors

	Comparing sets
	Combining sets
	Set membership for vectors
	Cartesian or "cross" products of vectors

	Applying functions to combinations
	Make unique / drop duplicates / select distinct elements from a vector
	Measuring set overlaps / Venn diagrams for vectors

	Chapter 105: Shiny
	Examples
	Create an app

	One file
	Two files
	Create ui.R file
	Create server.R file
	Radio Button
	Checkbox Group
	Select box
	Launch a Shiny app

	1. Two files app
	2. One file app
	Control widgets
	Debugging

	Showcase mode
	Reactive Log Visualizer
	Chapter 106: Solving ODEs in R
	Syntax
	Parameters
	Remarks
	Examples
	The Lorenz model
	Lotka-Volterra or: Prey vs. predator
	ODEs in compiled languages - definition in R
	ODEs in compiled languages - definition in C
	ODEs in compiled languages - definition in fortran
	ODEs in compiled languages - a benchmark test

	Chapter 107: Spark API (SparkR)
	Remarks
	Examples
	Setup Spark context

	Setup Spark context in R
	Get Spark Cluster
	Cache data
	Create RDDs (Resilient Distributed Datasets)

	From dataframe:
	From csv:

	Chapter 108: spatial analysis
	Examples
	Create spatial points from XY data set
	Importing a shape file (.shp)

	rgdal
	raster
	tmap
	Chapter 109: Speeding up tough-to-vectorize code
	Examples
	Speeding tough-to-vectorize for loops with Rcpp
	Speeding tough-to-vectorize for loops by byte compiling

	Chapter 110: Split function
	Examples
	Basic usage of split
	Using split in the split-apply-combine paradigm

	Chapter 111: sqldf
	Examples
	Basic Usage Examples

	Chapter 112: Standardize analyses by writing standalone R scripts
	Introduction
	Remarks
	Examples
	The basic structure of standalone R program and how to call it

	The first standalone R script
	Preparing a standalone R script
	Linux/Mac
	Windows
	Using littler to execute R scripts

	Installing littler
	From R:
	Using apt-get (Debian, Ubuntu):

	Using littler with standard .r scripts
	Using littler on shebanged scripts

	Chapter 113: String manipulation with stringi package
	Remarks
	Examples
	Count pattern inside string
	Duplicating strings
	Paste vectors
	Splitting text by some fixed pattern

	Chapter 114: strsplit function
	Syntax
	Examples
	Introduction

	Chapter 115: Subsetting
	Introduction
	Remarks
	Examples
	Atomic vectors
	Lists
	Matrices
	Selecting individual matrix entries by their positions
	Data frames
	Other objects
	Vector indexing
	Elementwise Matrix Operations

	Some Functions used with Matrices

	Chapter 116: Survival analysis
	Examples
	Random Forest Survival Analysis with randomForestSRC
	Introduction - basic fitting and plotting of parametric survival models with the survival package
	Kaplan Meier estimates of survival curves and risk set tables with survminer

	Chapter 117: Text mining
	Examples
	Scraping Data to build N-gram Word Clouds

	Chapter 118: The character class
	Introduction
	Remarks

	Related topics
	Examples
	Coercion

	Chapter 119: The Date class
	Remarks

	Related topics
	Jumbled notes
	More notes
	Examples
	Formatting Dates
	Dates
	Parsing Strings into Date Objects

	Chapter 120: The logical class
	Introduction
	Remarks

	Shorthand
	Examples
	Logical operators
	Coercion
	Interpretation of NAs

	Chapter 121: tidyverse
	Examples
	Creating tbl_df’s
	tidyverse: an overview

	What is tidyverse?
	How to use it?
	What are those packages?
	Chapter 122: Time Series and Forecasting
	Remarks
	Examples
	Exploratory Data Analysis with time-series data
	Creating a ts object

	Chapter 123: Updating R and the package library
	Examples
	On Windows

	Chapter 124: Updating R version
	Introduction
	Examples
	Installing from R Website
	Updating from within R using installr Package
	Deciding on the old packages
	Updating Packages
	Check R Version

	Chapter 125: Using pipe assignment in your own package %<>%: How to ?
	Introduction
	Examples
	Putting the pipe in a utility-functions file

	Chapter 126: Using texreg to export models in a paper-ready way
	Introduction
	Remarks

	Links
	Examples
	Printing linear regression results

	Chapter 127: Variables
	Examples
	Variables, data structures and basic Operations

	Types of data structures
	Common operations and some cautionary advice

	Example objects
	Some vector operations
	Some vector operation Warnings!
	Some Matrix operations Warning!
	"Private" variables

	Chapter 128: Web Crawling in R
	Examples
	Standard scraping approach using the RCurl package

	Chapter 129: Web scraping and parsing
	Remarks

	Legality
	Examples
	Basic scraping with rvest
	Using rvest when login is required

	Chapter 130: Writing functions in R
	Examples
	Named functions
	Anonymous functions
	RStudio code snippets
	Passing column names as argument of a function

	Chapter 131: xgboost
	Examples
	Cross Validation and Tuning with xgboost

	Credits

