
Regular Expressions

#regex

Table of Contents

About 1

Chapter 1: Getting started with Regular Expressions 2

Remarks 2

What does 'regular expression' mean? 2

Are all regex actually a regular grammar? 2

Resources 3

Versions 3

PCRE 3

Used by: PHP 4.2.0 (and higher), Delphi XE (and higher), Julia, Notepad++ 3

Perl 3

.NET 4

Languages: C# 4

Java 4

JavaScript 4

Python 4

Oniguruma 5

Boost 5

POSIX 5

Languages: Bash 5

Examples 5

Character Guide 5

Chapter 2: Anchor Characters: Caret (^) 9

Remarks 9

Examples 9

Start of Line 9

When multi-line (?m) modifier is turned off, ^ matches only the input string's beginning: 9

When multi-line (?m) modifier is turned on, ^ matches every line's beginning: 10

Matching empty lines using ^ 10

Escaping the caret character 10

Comparison start of line anchor and start of string anchor 11

Multiline modifier 11

Chapter 3: Anchor Characters: Dollar ($) 13

Remarks 13

Examples 13

Match a letter at the end of a line or string 13

Chapter 4: Atomic Grouping 14

Introduction 14

Remarks 14

Examples 14

Grouping with (?>) 14

Using an Atomic Group 14

Using a Non-Atomic Group 15

Other Example Text 15

Chapter 5: Back reference 17

Examples 17

Basics 17

Ambiguous Backreferences 17

Chapter 6: Backtracking 19

Examples 19

What causes Backtracking? 19

Why can backtracking be a trap? 20

How to avoid it? 20

Chapter 7: Capture Groups 21

Examples 21

Basic Capture Groups 21

Backreferences and Non-Capturing Groups 22

Named Capture Groups 22

Chapter 8: Character classes 24

Remarks 24

Simple classes 24

Common classes 24

Negating classes 24

Examples 25

The basics 25

Match different, similar words 25

Non-alphanumerics matching (negated character class) 25

Non-digits matching (negated character class) 27

Character class and common problems faced by beginner 28

POSIX Character classes 29

Chapter 9: Escaping 32

Examples 32

Raw String Literals 32

Python 32

C++ (11+) 32

VB.NET 32

C# 32

Strings 33

What characters need to be escaped? 33

Backslashes 33

Escaping (outside character classes) 33

Escaping within Character Classes 34

Escaping the Replacement 34

BRE Exceptions 34

/Delimiters/ 35

Chapter 10: Greedy and Lazy quantifiers 36

Parameters 36

Remarks 37

Greediness 37

Laziness 37

Concept of greediness and laziness only exists in backtracking engines 37

Examples 37

Greediness versus Laziness 37

Boundaries with multiple matches 38

Chapter 11: Lookahead and Lookbehind 40

Syntax 40

Remarks 40

Examples 40

Basics 40

Using lookbehind to test endings 40

Simulating variable-length lookbehind with \K 41

Chapter 12: Match Reset: \K 42

Remarks 42

Examples 42

Search and replace using \K operator 42

Chapter 13: Matching Simple Patterns 44

Examples 44

Match a single digit character using [0-9] or \d (Java) 44

Matching various numbers 44

Matching leading/trailing whitespace 45

Trailing spaces 45

Leading spaces 46

Remarks 46

Match any float 46

Selecting a certain line from a list based on a word in certain location 46

Chapter 14: Named capture groups 48

Syntax 48

Remarks 48

Examples 48

What a named capture group looks like 48

Reference a named capture group 48

Chapter 15: Password validation regex 50

Examples 50

A password containing at least 1 uppercase, 1 lowercase, 1 digit, 1 special character and 50

A password containing at least 2 uppercase, 1 lowercase, 2 digits and is of length of at l 51

Chapter 16: Possessive Quantifiers 52

Remarks 52

Examples 52

Basic Use of Possessive Quantifiers 52

Chapter 17: Recursion 53

Remarks 53

Examples 53

Recurse the whole pattern 53

Recurse into a subpattern 53

Subpattern definitions 53

Relative group references 54

Backreferences in recursions (PCRE) 54

Recursions are atomic (PCRE) 54

Chapter 18: Regex modifiers (flags) 56

Introduction 56

Remarks 56

PCRE Modifiers 56

Java Modifiers 56

Examples 57

DOTALL modifier 57

MULTILINE modifier 57

IGNORE CASE modifier 58

VERBOSE / COMMENT / IgnorePatternWhitespace modifier 58

Explicit Capture modifier 59

UNICODE modifier 59

PCRE_DOLLAR_ENDONLY modifier 60

PCRE_ANCHORED modifier 60

PCRE_UNGREEDY modifier 60

PCRE_INFO_JCHANGED modifier 60

PCRE_EXTRA modifier 60

Chapter 19: Regex Pitfalls 62

Examples 62

Why doesn't dot (.) match the newline character ("\n")? 62

Why does a regex skip some closing brackets/parentheses and match them afterwards? 62

Why did it happen? 62

How to prevent this and match exactly to the first quotes? 62

Chapter 20: Regular Expression Engine Types 64

Examples 64

NFA 64

Principle 64

For each match attempt 64

Optimizations 64

Example 64

DFA 66

Principle 66

Implications 66

Example 66

Chapter 21: Substitutions with Regular Expressions 68

Parameters 68

Examples 68

Basics of Substitution 68

Advanced Replacement 70

Chapter 22: Useful Regex Showcase 73

Examples 73

Match a date 73

Match an email address 73

Validate an email address format 74

Check the address exists 74

Huge Regex alternatives 74

Perl Address matching module 74

.Net Address matching module 75

Ruby Address matching module 75

Python Address matching module 75

Match a phone number 75

Match an IP Address 76

Validate a 12hr and 24hr time string 77

Match UK postcode 77

Chapter 23: UTF-8 matchers: Letters, Marks, Punctuation etc. 79

Examples 79

Matching letters in different alphabets 79

Chapter 24: When you should NOT use Regular Expressions 80

Remarks 80

Examples 80

Matching pairs (like parenthesis, brackets…) 80

Simple string operations 80

Parsing HTML (or XML, or JSON, or C code, or…) 81

Chapter 25: Word Boundary 82

Syntax 82

Remarks 82

Additional Resources 82

Examples 82

Match complete word 82

Find patterns at the beginning or end of a word 83

Word boundaries 83

The \b metacharacter 83

Examples: 83

The \B metacharacter 83

Examples: 84

Make text shorter but don't break last word 84

Credits 85

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: regular-expressions

It is an unofficial and free Regular Expressions ebook created for educational purposes. All the
content is extracted from Stack Overflow Documentation, which is written by many hardworking
individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official Regular
Expressions.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/regular-expressions
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Regular
Expressions

Remarks

For many programmers the regex is some sort of magical sword that they throw to solve any kind
of text parsing situation. But this tool is nothing magical, and even though it's great at what it does,
it's not a full featured programming language (i.e. it is not Turing-complete).

What does 'regular expression' mean?

Regular expressions express a language defined by a regular grammar that can be solved by a
nondeterministic finite automaton (NFA), where matching is represented by the states.

A regular grammar is the most simple grammar as expressed by the Chomsky Hierarchy.

Simply said, a regular language is visually expressed by what an NFA can express, and here's a
very simple example of NFA:

And the Regular Expression language is a textual representation of such an automaton. That last
example is expressed by the following regex:

^[01]*1$

Which is matching any string beginning with 0 or 1, repeating 0 or more times, that ends with a 1.
In other words, it's a regex to match odd numbers from their binary representation.

https://riptutorial.com/ 2

http://en.wikipedia.org/wiki/Chomsky_hierarchy
http://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton

Are all regex actually a regular grammar?

Actually they are not. Many regex engines have improved and are using push-down automata,
that can stack up, and pop down information as it is running. Those automata define what's called
context-free grammars in Chomsky's Hierarchy. The most typical use of those in non-regular
regex, is the use of a recursive pattern for parenthesis matching.

A recursive regex like the following (that matches parenthesis) is an example of such an
implementation:

{((?>[^\(\)]+|(?R))*)}

(this example does not work with python's re engine, but with the regex engine, or with the PCRE
engine).

Resources

For more information on the theory behind Regular Expressions, you can refer to the following
courses made available by MIT:

Automata, Computability, and Complexity•
Regular Expressions & Grammars•
Specifying Languages with Regular Expressions and Context-Free Grammars•

When you're writing or debugging a complex regex, there are online tools that can help visualize
regexes as automatons, like the debuggex site.

Versions

PCRE

Version Released

2 2015-01-05

1 1997-06-01

Used by: PHP 4.2.0 (and higher), Delphi XE (and higher), Julia, Notepad++

Perl

https://riptutorial.com/ 3

https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://pypi.python.org/pypi/regex
https://pypi.python.org/pypi/regex
http://www.pcre.org
http://www.pcre.org
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-045j-automata-computability-and-complexity-spring-2011/lecture-notes/MIT6_045JS11_lec04.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-005-elements-of-software-construction-fall-2011/lecture-notes/MIT6_005F11_lec05.pdf
http://www.saylor.org/site/wp-content/uploads/2012/01/CS304-2.1-MIT.pdf
http://debuggex.com
https://lists.exim.org/lurker/message/20150105.162835.0666407a.en.html
http://www.riptutorial.com/php/topic/852/regular-expressions--regexp-pcre-
http://www.riptutorial.com/delphi/topic/599/getting-started-with-embarcadero-delphi
http://www.riptutorial.com/julia-lang/topic/485/getting-started-with-julia-language
http://www.riptutorial.com/notepadplusplus/topic/2940/getting-started-with-notepadplusplus
http://www.riptutorial.com/perl/topic/3108/regular-expressions

Version Released

1 1987-12-18

2 1988-06-05

3 1989-10-18

4 1991-03-21

5 1994-10-17

6 2009-07-28

.NET

Version Released

1 2002-02-13

4 2010-04-12

Languages: C#

Java

Version Released

4 2002-02-06

5 2004-10-04

7 2011-07-07

SE8 2014-03-18

JavaScript

Version Released

1.2 1997-06-11

1.8.5 2010-07-27

Python

https://riptutorial.com/ 4

http://perldoc.perl.org/perlhist.html
https://github.com/perlpilot/perl6-docs/blob/4fe1c6e50c37ba24f1e963de4a58d01efb04e5c9/intro/p6-regex-intro.pod
http://www.riptutorial.com/dot-net/topic/6944/regular-expressions--system-text-regularexpressions-
http://stackoverflow.com/documentation/c%23/717/regular-expressions
http://www.riptutorial.com/java/topic/135/regular-expressions
https://en.wikipedia.org/wiki/Java_version_history
http://www.regular-expressions.info/java.html
http://www.riptutorial.com/javascript/topic/242/regular-expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/1.2
http://www.riptutorial.com/python/topic/632/regular-expressions--regex-

Version Released

1.4 1996-10-25

2.0 2000-10-16

3.0 2008-12-03

3.5.2 2016-06-07

Oniguruma

Version Released

Initial 2002-02-25

5.9.6 2014-12-12

Onigmo 2015-01-20

Boost

Version Released

0 1999-12-14

1.61.0 2016-05-13

POSIX

Version Released

BRE 1997-01-01

ERE 2008-01-01

Languages: Bash

Examples

Character Guide

Note that some syntax elements have different behavior depending on the expression.

https://riptutorial.com/ 5

https://www.python.org/doc/versions/
https://github.com/k-takata/Onigmo/releases
http://www.riptutorial.com/bash/topic/3795/pattern-matching-and-regular-expressions

Syntax Description

?
Match the preceding character or subexpression 0 or 1 times. Also used for non-
capturing groups, and named capturing groups.

* Match the preceding character or subexpression 0 or more times.

+ Match the preceding character or subexpression 1 or more times.

{n} Match the preceding character or subexpression exactly n times.

{min,} Match the preceding character or subexpression min or more times.

{,max} Match the preceding character or subexpression max or fewer times.

{min,max}
Match the preceding character or subexpression at least min times but no more
than max times.

-
When included between square brackets indicates to; e.g. [3-6] matches
characters 3, 4, 5, or 6.

^
Start of string (or start of line if the multiline /m option is specified), or negates a
list of options (i.e. if within square brackets [])

$ End of string (or end of a line if the multiline /m option is specified).

(...)
Groups subexpressions, captures matching content in special variables (\1, \2,
etc.) that can be used later within the same regex, for example (\w+)\s\1\s
matches word repetition

(?<name>

...)
Groups subexpressions, and captures them in a named group

(?:...) Groups subexpressions without capturing

. Matches any character except line breaks (\n, and usually \r).

[...]

Any character between these brackets should be matched once. NB: ^ following
the open bracket negates this effect. - occurring inside the brackets allows a
range of values to be specified (unless it's the first or last character, in which case
it just represents a regular dash).

\
Escapes the following character. Also used in meta sequences - regex tokens
with special meaning.

\$ dollar (i.e. an escaped special character)

\(open parenthesis (i.e. an escaped special character)

\) close parenthesis (i.e. an escaped special character)

https://riptutorial.com/ 6

Syntax Description

* asterisk (i.e. an escaped special character)

\. dot (i.e. an escaped special character)

\? question mark (i.e. an escaped special character)

\[left (open) square bracket (i.e. an escaped special character)

\\ backslash (i.e. an escaped special character)

\] right (close) square bracket (i.e. an escaped special character)

\^ caret (i.e. an escaped special character)

\{ left (open) curly bracket / brace (i.e. an escaped special character)

\| pipe (i.e. an escaped special character)

\} right (close) curly bracket / brace (i.e. an escaped special character)

\+ plus (i.e. an escaped special character)

\A start of a string

\Z end of a string

\z absolute of a string

\b word (alphanumeric sequence) boundary

\1,\2, etc.
back-references to previously matched subexpressions, grouped by (), \1 means
the first match, \2 means second match etc.

[\b] backspace - when \b is inside a character class ([])matches backspace

\B
negated \b - matches at any position between two-word characters as well as at
any position between two non-word characters

\D non-digit

\d digit

\e escape

\f form feed

\n line feed

\r carriage return

https://riptutorial.com/ 7

Syntax Description

\S non-white-space

\s white-space

\t tab

\v vertical tab

\W non-word

\w word (i.e. alphanumeric character)

{...} named character set

| or; i.e. delineates the prior and preceding options.

Read Getting started with Regular Expressions online:
https://riptutorial.com/regex/topic/259/getting-started-with-regular-expressions

https://riptutorial.com/ 8

https://riptutorial.com/regex/topic/259/getting-started-with-regular-expressions

Chapter 2: Anchor Characters: Caret (^)

Remarks

Terminology

The Caret (^) character is also referred to by the following terms:

hat•
control•
uparrow•
chevron•
circumflex accent•

Usage

It has two uses in regular expressions:

To denote the start of the line•
If used immediately after a square bracket ([^) it acts to negate the set of allowed characters
(i.e. [123] means the character 1, 2, or 3 is allowed, whilst the statement [^123] means any
character other than 1, 2, or 3 is allowed.

•

Character Escaping

To express a caret without special meaning, it should be escaped by preceding it with a
backslash; i.e. \^.

Examples

Start of Line

When multi-line (?m) modifier is turned off, ^ matches only the
input string's beginning:

For the regex

^He

The following input strings match:

Hedgehog\nFirst line\nLast line•
Help me, please•
He•

And the following input strings do not match:

https://riptutorial.com/ 9

First line\nHedgehog\nLast line•
IHedgehog•
Hedgehog (due to white-spaces)•

When multi-line (?m) modifier is turned on, ^ matches every
line's beginning:

^He

The above would match any input string that contains a line beginning with He.

Considering \n as the new line character, the following lines match:

Hello•
First line\nHedgehog\nLast line (second line only)•
My\nText\nIs\nHere (last line only)•

And the following input strings do not match:

Camden Hells Brewery•
Helmet (due to white-spaces)•

Matching empty lines using ^

Another typical use case for caret is matching empty lines (or an empty string if the multi-line
modifier is turned off).

In order to match an empty line (multi-line on), a caret is used next to a $ which is another anchor
character representing the position at the end of line (Anchor Characters: Dollar ($)). Therefore,
the following regular expression will match an empty line:

 ^$

Escaping the caret character

If you need to use the ^ character in a character class (Character classes), either put it
somewhere other than the beginning of the class:

[12^3]

Or escape the ^ using a backslash \:

[\^123]

https://riptutorial.com/ 10

http://www.riptutorial.com/regex/topic/1603/anchor-characters--dollar----
http://www.riptutorial.com/regex/topic/1757/character-classes

If you want to match the caret character itself outside a character class, you need to escape it:

\^

This prevents the ^ being interpreted as the anchor character representing the beginning of the
string/line.

Comparison start of line anchor and start of string anchor

While many people think that ^ means the start of a string, it actually means start of a line. For an
actual start of string anchor use, \A.

The string hello\nworld (or more clearly)

hello
world

Would be matched by the regular expressions ^h, ^w and \Ah but not by \Aw

Multiline modifier

By default, the caret ^ metacharacter matches the position before the first character in the string.

Given the string "charsequence" applied against the following patterns: /^char/ & /^sequence/, the
engine will try to match as follows:

/^char/

^ - charsequence○

c - charsequence○

h - charsequence○

a - charsequence○

r - charsequence○

Match Found

•

/^sequence/

^ - charsequence○

s - charsequence○

Match not Found

•

The same behaviour will be applied even if the string contains line terminators, such as \r?\n. Only
the position at the start of the string will be matched.

For example:

/^/g

https://riptutorial.com/ 11

http://www.regular-expressions.info/anchors.html

┊char\r\n
\r\n
sequence

However, if you need to match after every line terminator, you will have to set the multiline mode (
//m, (?m)) within your pattern. By doing so, the caret ^ will match "the beginning of each line",
which corresponds to the position at the beginning of the string and the positions immediately
after1 the line terminators.

1 In some flavors (Java, PCRE, ...), ^ will not match after the line terminator, if the line terminator is the last in the
string.

For example:

/^/gm

┊char\r\n

┊\r\n

┊sequence

Some of the regular expression engines that support Multiline modifier:

Java

Pattern pattern = Pattern.compile("(?m)^abc");
Pattern pattern = Pattern.compile("^abc", Pattern.MULTILINE);

•

.NET

var abcRegex = new Regex("(?m)^abc");
var abdRegex = new Regex("^abc", RegexOptions.Multiline)

•

PCRE

/(?m)^abc/
/^abc/m

•

Python 2 & 3 (built-in re module)

abc_regex = re.compile("(?m)^abc");
abc_regex = re.compile("^abc", re.MULTILINE);

•

Read Anchor Characters: Caret (^) online: https://riptutorial.com/regex/topic/452/anchor-
characters--caret----

https://riptutorial.com/ 12

https://docs.oracle.com/javase/tutorial/essential/regex/
https://msdn.microsoft.com/en-us/library/hs600312(v=vs.110).aspx
http://pcre.org/
https://docs.python.org/2/library/re.html
https://docs.python.org/3/library/re.html
https://riptutorial.com/regex/topic/452/anchor-characters--caret----
https://riptutorial.com/regex/topic/452/anchor-characters--caret----

Chapter 3: Anchor Characters: Dollar ($)

Remarks

A great deal of regex engines use a "multi-line" mode in order to search several lines in a file
independently.

Therefore when using $, these engines will match all lines' endings. However, engines that do not
use this kind of multi-line mode will only match the last position of the string provided for the
search.

Examples

Match a letter at the end of a line or string

g$

The above matches one letter (the letter g) at the end of a string in most regex engines (not in
Oniguruma, where the $ anchor matches the end of a line by default, and the m (MULTILINE)
modifier is used to make a . match any characters including line break characters, as a DOTALL
modifier in most other NFA regex flavors). The $ anchor will match the first occurrence of a g letter
before the end of the following strings:

In the following sentences, only the letters in bold match:

Anchors are characters that, in fact, do not match any character in a string

Their goal is to match a specific position in that string.

Bob was helping

But his edit introduced examples that were not matching!

In most regular expression flavors, the $ anchor can also match before a newline character or line
break character (sequence), in a MULTILINE mode, where $ matches at the end of every line
instead of only at the end of a string. For example, using g$ as our regex again, in multiline mode,
the italicised characters in the following string would match:

tvxlt obofh necpu riist g\n aelxk zlhdx lyogu vcbke pzyay wtsea wbrju jztg\n drosf ywhed bykie
lqmzg wgyhc lg\n qewrx ozrvm jwenx

Read Anchor Characters: Dollar ($) online: https://riptutorial.com/regex/topic/1603/anchor-
characters--dollar----

https://riptutorial.com/ 13

http://www.regular-expressions.info/anchors.html
https://github.com/geoffgarside/oniguruma/blob/master/Syntax.txt
http://www.regular-expressions.info/anchors.html
http://www.regular-expressions.info/anchors.html
https://riptutorial.com/regex/topic/1603/anchor-characters--dollar----
https://riptutorial.com/regex/topic/1603/anchor-characters--dollar----

Chapter 4: Atomic Grouping

Introduction

Regular non-capturing groups allow the engine to re-enter the group and attempt to match
something different (such as a different alternation, or match fewer characters when a quantifier is
used).

Atomic groups differ from regular non-capturing groups in that backtracking is forbidden. Once the
group exits, all backtracking information is discarded, so no alternate matches can be attempted.

Remarks

A possessive quantifier behaves like an atomic group in that the engine will be unable to backtrack
over a token or group.

The following are equivalent in terms of functionality, although some will be faster than others:

a*+abc
(?>a*)abc
(?:a+)*+abc
(?:a)*+abc
(?:a*)*+abc
(?:a*)++abc

Examples

Grouping with (?>)

Using an Atomic Group

Atomic groups have the format (?>...) with a ?> after the open paren.

Consider the following sample text:

ABC

The regex will attempt to match starting at position 0 of the text, which is before the A in ABC.

If a case-insensitive expression (?>a*)abc were used, the (?>a*) would match 1 A character,
leaving

BC

as the remaining text to match. The (?>a*) group is exited, and abc is attempted on the remaining

https://riptutorial.com/ 14

http://www.riptutorial.com/regex/topic/5916/possessive-quantifiers

text, which fails to match.

The engine is unable to backtrack into the atomic group, and so the current pass fails. The engine
moves to the next position in the text, which would be at position 1, which is after the A and before
the B of ABC.

The regex (?>a*)abc is attempted again, and (?>a*) matches A 0 times, leaving

BC

as the remaining text to match. The (?>a*) group is exited and abc is attempted, which fails.

Again, the engine is unable to backtrack into the atomic group, and so the current pass fails. The
regex will continue to fail until all positions in the text have been exhausted.

Using a Non-Atomic Group

Regular non-capturing groups have the format (?:...) with a ?: after the open paren.

Given the same sample text, but with the case-insensitive expression (?:a*)abc instead, a match
would occur since backtracking is allowed to occur.

At first, (?:a*) will consume the letter A in the text

ABC

leaving

BC

as the remaining text to match. The (?:a*) group is exited, and abc is attempted on the remaining
text, which fails to match.

The engine backtracks into the (?:a*) group and attempts to match 1 fewer character: Instead of
matching 1 A character, it attempts to match 0 A characters, and the (?:a*) group is exited. This
leaves

ABC

as the remaining text to match. The regex abc is now able to successfully match the remaining
text.

Other Example Text

Consider this sample text, with both atomic and non-atomic groups (again, case-insensitive):

AAAABC

https://riptutorial.com/ 15

The regex will attempt to match starting at position 0 of the text, which is before the first A in AAAABC
.

The pattern using the atomic group (?>a*)abc will be unable to match, behaving almost identically
to the atomic ABC example above: all 4 of the A characters are first matched with (?>a*) (leaving BC
as the remaining text to match), and abc is unable to match on that text. The group is not able to
be re-entered, so the match fails.

The pattern using the non-atomic group (?:a*)abc will be able to match, behaving similarly to the
non-atomic ABC example above: all 4 of the A characters are first matched with (?:a*) (leaving BC as
the remaining text to match), and abc is unable to match on that text. The group is able to be re-
entered, so one fewer A is attempted: 3 A characters are matched instead of 4 (leaving ABC as the
remaining text to match), and abc is able to successfully match on that text.

Read Atomic Grouping online: https://riptutorial.com/regex/topic/8770/atomic-grouping

https://riptutorial.com/ 16

https://riptutorial.com/regex/topic/8770/atomic-grouping

Chapter 5: Back reference

Examples

Basics

Back references are used to match the same text previously matched by a capturing group. This
both helps in reusing previous parts of your pattern and in ensuring two pieces of a string match.

For example, if you are trying to verify that a string has a digit from zero to nine, a separator, such
as hyphens, slashes, or even spaces, a lowercase letter, another separator, then another digit
from zero to nine, you could use a regex like this:

[0-9][-/][a-z][-/][0-9]

This would match 1-a-4, but it would also match 1-a/4 or 1 a-4. If we want the separators to match,
we can use a capture group and a back reference. The back reference will look at the match found
in the indicated capture group, and ensure that the location of the back reference matches exactly.

Using our same example, the regex would become:

[0-9]([-/])[a-z]\1[0-9]

The \1 denotes the first capture group in the pattern. With this small change, the regex now
matches 1-a-4 or 1 a 4 but not 1 a-4 or 1-a/4.

The number to use for your back reference depends on the location of your capture group. The
number can be from one to nine and can be found by counting your capture groups.

([0-9])([-/])[a-z][-/]([0-9])
|--1--||--2--| |--3--|

Nested capture groups change this count slightly. You first count the exterior capture group, then
the next level, and continue until you leave the nest:

(([0-9])([-/]))([a-z])
 |--2--||--3--|
|-------1------||--4--|

Ambiguous Backreferences

Problem: You need to match text of a certain format, for example:

1-a-0
6/p/0
4 g 0

https://riptutorial.com/ 17

http://www.riptutorial.com/regex/topic/660/capture-groups

That's a digit, a separator (one of -, /, or a space), a letter, the same separator, and a zero.

Naïve solution: Adapting the regex from the Basics example, you come up with this regex:

[0-9]([-/])[a-z]\10

But that probably won't work. Most regex flavors support more than nine capturing groups, and
very few of them are smart enough to realize that, since there's only one capturing group, \10 must
be a backreference to group 1 followed by a literal 0. Most flavors will treat it as a backreference to
group 10. A few of those will throw an exception because there is no group 10; the rest will simply
fail to match.

There are several ways to avoid this problem. One is to use named groups (and named
backreferences):

[0-9](?<sep>[-/])[a-z]\k<sep>0

If your regex language supports it, the format \g{n} (where n is a number) can enclose the
backreference number in curly brackets to separate it from any digits after it:

[0-9]([-/])[a-z]\g{1}0

Another way is to use extended regex formatting, separating the elements with insignificant
whitespace (in Java you'll need to escape the space in the brackets):

(?x) [0-9] ([-/]) [a-z] \1 0

If your regex flavor doesn't support those features, you can add unnecessary but harmless syntax,
like a non-capturing group:

[0-9]([-/])[a-z](?:\1)0

...or a dummy quantifier (this is possibly the only circumstance in which {1} is useful):

[0-9]([-/])[a-z]\1{1}0

Read Back reference online: https://riptutorial.com/regex/topic/4072/back-reference

https://riptutorial.com/ 18

http://www.riptutorial.com/regex/example/14186/basics
http://www.riptutorial.com/regex/example/2479/named-capture-groups
https://riptutorial.com/regex/topic/4072/back-reference

Chapter 6: Backtracking

Examples

What causes Backtracking?

To find a match, the regex engine will consume characters one by one. When a partial match
begins, the engine will remember the start position so it can go back in case the following
characters don't complete the match.

If the match is complete, the is no backtracking•
If the match isn't complete, the engine will backtrack the string (like when you rewind an old
tape) to try to find a whole match.

•

For example: \d{3}[a-z]{2} against the string abc123def will be browsed as such:

abc123def
^ Does not match \d
abc123def
 ^ Does not match \d
abc123def
 ^ Does not match \d
abc123def
 ^ Does match \d (first one)
abc123def
 ^ Does match \d (second one)
abc123def
 ^ Does match \d (third one)
abc123def
 ^ Does match [a-z] (first one)
abc123def
 ^ Does match [a-z] (second one)
 MATCH FOUND

Now lets change the regex to \d{2}[a-z]{2} against the same string (abc123def):

abc123def
^ Does not match \d
abc123def
 ^ Does not match \d
abc123def
 ^ Does not match \d
abc123def
 ^ Does match \d (first one)
abc123def
 ^ Does match \d (second one)
abc123def
 ^ Does not match [a-z]
abc123def
 ^ BACKTRACK to catch \d{2} => (23)
abc123def
 ^ Does match [a-z] (first one)
abc123def

https://riptutorial.com/ 19

 ^ Does match [a-z] (second one)
 MATCH FOUND

Why can backtracking be a trap?

Backtracking can be caused by optional quantifiers or alternation constructs, because the regex
engine will try to explore every path. If you run the regex a+b against aaaaaaaaaaaaaa there is no
match and the engine will find it pretty fast.

But if you change the regex to (aa*)+b the number of combinations will grow pretty fast, and most
(not optimized) engines will try to explore all the paths and will take an eternity to try to find a
match or throw a timeout exception. This is called catastrophic backtracking.

Of course, (aa*)+b seems a newbie error but it's here to illustrate the point and sometimes you'll
end up with the same issue but with more complicated patterns.

A more extreme case of catastrophic backtracking occurs with the regex (x+x+)+y (you've probably
seen it before here and here), which needs exponential time to figure out that a string that contains
xs and nothing else (e.g xxxxxxxxxxxxxxxxxxxx) don't match it.

How to avoid it?

Be as specific as possible, reduce as much as possible the possible paths. Note that some regex
matchers are not vulnerable to backtracking, such as those included in awk or grep because they
are based on Thompson NFA.

Read Backtracking online: https://riptutorial.com/regex/topic/977/backtracking

https://riptutorial.com/ 20

http://www.regular-expressions.info/catastrophic.html
https://blog.codinghorror.com/regex-performance/
https://swtch.com/~rsc/regexp/regexp1.html
https://riptutorial.com/regex/topic/977/backtracking

Chapter 7: Capture Groups

Examples

Basic Capture Groups

A group is a section of a regular expression enclosed in parentheses (). This is commonly called
"sub-expression" and serves two purposes:

It makes the sub-expression atomic, i.e. it will either match, fail or repeat as a whole.•
The portion of text it matched is accessible in the remainder of the expression and the rest of
the program.

•

Groups are numbered in regex engines, starting with 1. Traditionally, the maximum group number
is 9, but many modern regex flavors support higher group counts. Group 0 always matches the
entire pattern, the same way surrounding the entire regex with brackets would.

The ordinal number increases with each opening parenthesis, regardless of whether the groups
are placed one-after-another or nested:

foo(bar(baz)?) (qux)+|(bla)
 1 2 3 4

groups and their numbers

After an expression achieves an overall match, all of its groups will be in use - whether a particular
group has managed to match anything or not.

A group can be optional, like (baz)? above, or in an alternative part of the expression that was not
used of the match, like (bla) above. In these cases, non-matching groups simply won't contain any
information.

If a quantifier is placed behind a group, like in (qux)+ above, the overall group count of the
expression stays the same. If a group matches more than once, its content will be the last match
occurrence. However, modern regex flavors allow accessing all sub-match occurrences.

If you wished to retrieve the date and error level of a log entry like this one:

2012-06-06 12:12.014 ERROR: Failed to connect to remote end

You could use something like this:

^(\d{4}-\d{2}-\d{2}) \d{2}:\d{2}.\d{3} (\w*): .*$

This would extract the date of the log entry 2012-06-06 as capture group 1 and the error level ERROR

https://riptutorial.com/ 21

as capture group 2.

Backreferences and Non-Capturing Groups

Since Groups are "numbered" some engines also support matching what a group has previously
matched again.

Assuming you wanted to match something where two equals strings of length three are divided by
a $ you'd use:

(.{3})\$\1

This would match any of the following strings:

"abc$abc"
"a b$a b"
"af $af "
" $ "

If you want a group to not be numbered by the engine, You may declare it non-capturing. A non-
capturing group looks like this:

(?:)

They are particularly useful to repeat a certain pattern any number of times, since a group can
also be used as an "atom". Consider:

(\d{4}(?:-\d{2}){2} \d{2}:\d{2}.\d{3}) (.*)[\r\n]+\1 \2

This will match two logging entries in the adjacent lines that have the same timestamp and the
same entry.

Named Capture Groups

Some regular expression flavors allow named capture groups. Instead of by a numerical index you
can refer to these groups by name in subsequent code, i.e. in backreferences, in the replace
pattern as well as in the following lines of the program.

Numerical indexes change as the number or arrangement of groups in an expression changes, so
they are more brittle in comparison.

For example, to match a word (\w+) enclosed in either single or double quotes (['"]), we could
use:

(?<quote>['"])\w+\k{quote}

Which is equivalent to:

https://riptutorial.com/ 22

(['"])\w+\1

In a simple situation like this a regular, numbered capturing group does not have any draw-backs.

In more complex situations the use of named groups will make the structure of the expression
more apparent to the reader, which improves maintainability.

Log file parsing is an example of a more complex situation that benefits from group names. This is
the Apache Common Log Format (CLF):

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326

The following expression captures the parts into named groups:

(?<ip>\S+) (?<logname>\S+) (?<user>\S+) (?<time>\[[^]]+\]) (?<request>"[^"]+") (?<status>\S+)
(?<bytes>\S+)

The syntax depends on the flavor, common ones are:

(?<name>...)•
(?'name'...)•
(?P<name>...)•

Backreferences:

\k<name>•
\k{name}•
\k'name'•
\g{name}•
(?P=name)•

In the .NET flavor you can have several groups sharing the same name, they will use capture
stacks.

In PCRE you have to explicitly enable it by using the (?J) modifier (PCRE_DUPNAMES), or by using the
branch reset group (?|). Only the last captured value will be accessible though.

(?J)(?<a>...)(?<a>...)
(?|(?<a>...)|(?<a>...))

Read Capture Groups online: https://riptutorial.com/regex/topic/660/capture-groups

https://riptutorial.com/ 23

https://httpd.apache.org/docs/1.3/logs.html#common
http://stackoverflow.com/a/17004406/3764814
http://stackoverflow.com/a/17004406/3764814
https://riptutorial.com/regex/topic/660/capture-groups

Chapter 8: Character classes

Remarks

Simple classes

Regex Matches

[abc] Any of the following characters: a, b, or c

[a-z] Any character from a to z, inclusive (this is called a range)

[0-9] Any digit from 0 to 9, inclusive

Common classes

Some groups/ranges of characters are so often used, they have special abbreviations:

Regex Matches

\w Alphanumeric characters plus the underscore (also referred to as "word characters")

\W Non-word characters (same as [^\w])

\d Digits (wider than [0-9] since include Persian digits, Indian ones etc.)

\D Non-digits (shorter than [^0-9] since reject Persian digits, Indian ones etc.)

\s
Whitespace characters (spaces, tabs, etc...) Note: may vary depending on your
engine/context

\S Non-whitespace characters

Negating classes

A caret (^) after the opening square bracket works as a negation of the characters that follow it.
This will match all characters that are not in the character class.

Negated character classes also match line break characters, therefore if these are not to be
matched, the specific line break characters must be added to the class (\r and/or \n).

https://riptutorial.com/ 24

http://www.riptutorial.com/regex/topic/452/anchor-characters--caret----

Regex Matches

[^AB] Any character other than A and B

[^\d] Any character, except digits

Examples

The basics

Suppose we have a list of teams, named like this: Team A, Team B, ..., Team Z. Then:

Team [AB]: This will match either either Team A or Team B•
Team [^AB]: This will match any team except Team A or Team B•

We often need to match characters that "belong" together in some context or another (like letters
from A through Z), and this is what character classes are for.

Match different, similar words

Consider the character class [aeiou]. This character class can be used in a regular expression to
match a set of similarly spelled words.

b[aeiou]t matches:

bat•
bet•
bit•
bot•
but•

It does not match:

bout•
btt•
bt•

Character classes on their own match one and only one character at a time.

Non-alphanumerics matching (negated character class)

[^0-9a-zA-Z]

This will match all characters that are neither numbers nor letters (alphanumerical characters). If
the underscore character _ is also to be negated, the expression can be shortened to:

[^\w]

https://riptutorial.com/ 25

Or:

\W

In the following sentences:

Hi, what's up?1.

I can't wait for 2017!!!2.

The following characters match:

,, , ', ? and the end of line character.1.

', , ! and the end of line character.2.

UNICODE NOTE
Note that some flavors with Unicode character properties support may interpret \w and \W as
[\p{L}\p{N}_] and [^\p{L}\p{N}_] which means other Unicode letters and numeric characters will
be included as well (see PCRE docs). Here is a PCRE \w test:

In .NET, \w = [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Lm}\p{Mn}\p{Nd}\p{Pc}], and note it does not match
\p{Nl} and \p{No} unlike PCRE (see the \w .NET documentation):

https://riptutorial.com/ 26

http://pcre.org/pcre.txt
https://regex101.com/r/Z7OKm0/1/
https://regex101.com/r/Z7OKm0/1/
https://regex101.com/r/Z7OKm0/1/
https://i.stack.imgur.com/ryTcm.png
http://regexstorm.net/tester?p=%5E%5cw%2b&i=%5cw+%3d+%5b%5cp%7BLl%7D%5cp%7BLu%7D%5cp%7BLt%7D%5cp%7BLo%7D%5cp%7BLm%7D%5cp%7BMn%7D%5cp%7BNd%7D%5cp%7BPc%7D%5d+(no+%5cp%7BNl%7D%2c+%5cp%7BNo%7D+as+PCRE)%0d%0a%EF%AC%94%C4%85%D1%84r%EF%BD%97%E1%BD%A3%E1%BB%B7%E1%B5%BA%E1%B4%94%E1%B4%89%D5%BE%D4%8D%D3%B9%D3%A1%D2%81%CA%AB+-+Ll%2c+lowercase+letters+(some)%0d%0aA%C3%82%C4%9E%C6%8E%C6%97%C7%8A%CE%94%CE%98%CE%A3%CF%A2%D0%89%D0%A9%D1%AC%D3%B2%D4%BD%E1%82%B5%E1%8E%BF%E1%8F%89%E1%8F%AF%D4%8C%E2%84%AC%E2%B0%8F%EF%BC%B2%F0%9D%90%96+-+Lu%2c+uppercase+letters+(some)%0d%0a%C7%85%C7%88%C7%8B%C7%B2%E1%BE%88%E1%BE%89%E1%BE%8A%E1%BE%8B%E1%BE%8C%E1%BE%8D%E1%BE%8E%E1%BE%8F%E1%BE%98%E1%BE%99%E1%BE%9A%E1%BE%9B%E1%BE%9C%E1%BE%9D%E1%BE%9E%E1%BE%9F%E1%BE%A8%E1%BE%A9%E1%BE%AA%E1%BE%AB%E1%BE%AC%E1%BE%AD%E1%BE%AE%E1%BE%AF%E1%BE%BC%E1%BF%8C%E1%BF%BC+-+Lt%2c+titlecase+letters+(all)%0d%0a%C7%83%C2%BA%E0%A4%8C%DF%A9%D7%94%D7%B2%D8%A8%DC%A2+++-+Lo%2c+other+letters+(some)%0d%0a%CA%B0%CA%B7%CB%87%CB%A3%DF%B4%DF%B5%E0%BB%86%E1%B1%BD%E1%B5%82%E1%B5%92%E1%B5%9D%E1%B6%A3%E2%82%90%E3%80%B1%EA%80%95%EA%9C%9B%EF%BD%B0+-+Lm%2c+Modifier+letters+(some)%0d%0ae%D2%87c%CD%A2a%CC%A8+Mn%2c+nonspacing+mark+(some)%0d%0a09%D9%A1%D9%A8%DF%81%DF%88%E0%A9%AE%E0%AD%AA%E0%AF%A8%E0%AF%AB%E0%B5%AB%E0%B9%95%E0%BC%A5%E1%9F%A8%E1%A7%95%E1%B1%95%EF%BC%95+Nd%2c+decimal+digit+number+(some)%0d%0a_%E2%80%BF%E2%81%80%E2%81%94%EF%B8%B3%EF%B8%B4%EF%B9%8D%EF%B9%8E%EF%B9%8F%EF%BC%BF+-+Pc%2c+connector+punctuation&o=m
http://regexstorm.net/tester?p=%5E%5cw%2b&i=%5cw+%3d+%5b%5cp%7BLl%7D%5cp%7BLu%7D%5cp%7BLt%7D%5cp%7BLo%7D%5cp%7BLm%7D%5cp%7BMn%7D%5cp%7BNd%7D%5cp%7BPc%7D%5d+(no+%5cp%7BNl%7D%2c+%5cp%7BNo%7D+as+PCRE)%0d%0a%EF%AC%94%C4%85%D1%84r%EF%BD%97%E1%BD%A3%E1%BB%B7%E1%B5%BA%E1%B4%94%E1%B4%89%D5%BE%D4%8D%D3%B9%D3%A1%D2%81%CA%AB+-+Ll%2c+lowercase+letters+(some)%0d%0aA%C3%82%C4%9E%C6%8E%C6%97%C7%8A%CE%94%CE%98%CE%A3%CF%A2%D0%89%D0%A9%D1%AC%D3%B2%D4%BD%E1%82%B5%E1%8E%BF%E1%8F%89%E1%8F%AF%D4%8C%E2%84%AC%E2%B0%8F%EF%BC%B2%F0%9D%90%96+-+Lu%2c+uppercase+letters+(some)%0d%0a%C7%85%C7%88%C7%8B%C7%B2%E1%BE%88%E1%BE%89%E1%BE%8A%E1%BE%8B%E1%BE%8C%E1%BE%8D%E1%BE%8E%E1%BE%8F%E1%BE%98%E1%BE%99%E1%BE%9A%E1%BE%9B%E1%BE%9C%E1%BE%9D%E1%BE%9E%E1%BE%9F%E1%BE%A8%E1%BE%A9%E1%BE%AA%E1%BE%AB%E1%BE%AC%E1%BE%AD%E1%BE%AE%E1%BE%AF%E1%BE%BC%E1%BF%8C%E1%BF%BC+-+Lt%2c+titlecase+letters+(all)%0d%0a%C7%83%C2%BA%E0%A4%8C%DF%A9%D7%94%D7%B2%D8%A8%DC%A2+++-+Lo%2c+other+letters+(some)%0d%0a%CA%B0%CA%B7%CB%87%CB%A3%DF%B4%DF%B5%E0%BB%86%E1%B1%BD%E1%B5%82%E1%B5%92%E1%B5%9D%E1%B6%A3%E2%82%90%E3%80%B1%EA%80%95%EA%9C%9B%EF%BD%B0+-+Lm%2c+Modifier+letters+(some)%0d%0ae%D2%87c%CD%A2a%CC%A8+Mn%2c+nonspacing+mark+(some)%0d%0a09%D9%A1%D9%A8%DF%81%DF%88%E0%A9%AE%E0%AD%AA%E0%AF%A8%E0%AF%AB%E0%B5%AB%E0%B9%95%E0%BC%A5%E1%9F%A8%E1%A7%95%E1%B1%95%EF%BC%95+Nd%2c+decimal+digit+number+(some)%0d%0a_%E2%80%BF%E2%81%80%E2%81%94%EF%B8%B3%EF%B8%B4%EF%B9%8D%EF%B9%8E%EF%B9%8F%EF%BC%BF+-+Pc%2c+connector+punctuation&o=m
http://regexstorm.net/tester?p=%5E%5cw%2b&i=%5cw+%3d+%5b%5cp%7BLl%7D%5cp%7BLu%7D%5cp%7BLt%7D%5cp%7BLo%7D%5cp%7BLm%7D%5cp%7BMn%7D%5cp%7BNd%7D%5cp%7BPc%7D%5d+(no+%5cp%7BNl%7D%2c+%5cp%7BNo%7D+as+PCRE)%0d%0a%EF%AC%94%C4%85%D1%84r%EF%BD%97%E1%BD%A3%E1%BB%B7%E1%B5%BA%E1%B4%94%E1%B4%89%D5%BE%D4%8D%D3%B9%D3%A1%D2%81%CA%AB+-+Ll%2c+lowercase+letters+(some)%0d%0aA%C3%82%C4%9E%C6%8E%C6%97%C7%8A%CE%94%CE%98%CE%A3%CF%A2%D0%89%D0%A9%D1%AC%D3%B2%D4%BD%E1%82%B5%E1%8E%BF%E1%8F%89%E1%8F%AF%D4%8C%E2%84%AC%E2%B0%8F%EF%BC%B2%F0%9D%90%96+-+Lu%2c+uppercase+letters+(some)%0d%0a%C7%85%C7%88%C7%8B%C7%B2%E1%BE%88%E1%BE%89%E1%BE%8A%E1%BE%8B%E1%BE%8C%E1%BE%8D%E1%BE%8E%E1%BE%8F%E1%BE%98%E1%BE%99%E1%BE%9A%E1%BE%9B%E1%BE%9C%E1%BE%9D%E1%BE%9E%E1%BE%9F%E1%BE%A8%E1%BE%A9%E1%BE%AA%E1%BE%AB%E1%BE%AC%E1%BE%AD%E1%BE%AE%E1%BE%AF%E1%BE%BC%E1%BF%8C%E1%BF%BC+-+Lt%2c+titlecase+letters+(all)%0d%0a%C7%83%C2%BA%E0%A4%8C%DF%A9%D7%94%D7%B2%D8%A8%DC%A2+++-+Lo%2c+other+letters+(some)%0d%0a%CA%B0%CA%B7%CB%87%CB%A3%DF%B4%DF%B5%E0%BB%86%E1%B1%BD%E1%B5%82%E1%B5%92%E1%B5%9D%E1%B6%A3%E2%82%90%E3%80%B1%EA%80%95%EA%9C%9B%EF%BD%B0+-+Lm%2c+Modifier+letters+(some)%0d%0ae%D2%87c%CD%A2a%CC%A8+Mn%2c+nonspacing+mark+(some)%0d%0a09%D9%A1%D9%A8%DF%81%DF%88%E0%A9%AE%E0%AD%AA%E0%AF%A8%E0%AF%AB%E0%B5%AB%E0%B9%95%E0%BC%A5%E1%9F%A8%E1%A7%95%E1%B1%95%EF%BC%95+Nd%2c+decimal+digit+number+(some)%0d%0a_%E2%80%BF%E2%81%80%E2%81%94%EF%B8%B3%EF%B8%B4%EF%B9%8D%EF%B9%8E%EF%B9%8F%EF%BC%BF+-+Pc%2c+connector+punctuation&o=m
https://docs.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#WordCharacter
https://docs.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions#WordCharacter

Note that for some reason, Unicode 3.1 lowercase letters (like) are not matched.

Java's (?U)\w will match a mix of what \w matches in PCRE and .NET:

Non-digits matching (negated character class)

[^0-9]

This will match all characters that are not ASCII digits.

If Unicode digits are also to be negated, the following expression can be used, depending on your
flavor/language settings:

[^\d]

This can be shortened to:

\D

You may need to enable Unicode character properties support explicitly by using the u modifier or

https://riptutorial.com/ 27

https://i.stack.imgur.com/Yft8i.png
https://i.stack.imgur.com/HAQjP.png

programmatically in some languages, but this may be non-obvious. To convey the intent explicitly,
the following construct can be used (when support is available):

\P{N}

Which by definition means: any character which is not a numeric character in any script. In a
negated character range, you may use:

[^\p{N}]

In the following sentences:

Hi, what's up?1.

I can't wait for 2017!!!2.

The following characters will be matched:

,, , ', ?, the end of line character and all letters (lowercase and uppercase).1.

', , !, the end of line character and all letters (lowercase and uppercase).2.

Character class and common problems faced by beginner

1. Character Class

Character class is denoted by []. Content inside a character class is treated as single character
separately. e.g. suppose we use

[12345]

In the example above, it means match 1 or 2 or 3 or 4 or 5 . In simple words, it can be
understood as or condition for single characters (stress on single character)

1.1 Word of caution

In character class, there is no concept of matching a string. So, if you are using regex [cat],
it does not mean that it should match the word cat literally but it means that it should match
either c or a or t. This is a very common misunderstanding existing among people who are
newer to regex.

•

Sometimes people use | (alternation) inside character class thinking it will act as OR
condition which is wrong. e.g. using [a|b] actually means match a or | (literally) or b.

•

2. Range in character class

Range in character class is denoted using - sign. Suppose we want to find any character within
English alphabets A to Z. This can be done by using the following character class

[A-Z]

https://riptutorial.com/ 28

This could be done for any valid ASCII or unicode range. Most commonly used ranges include [A-
Z], [a-z] or [0-9]. Moreover these ranges can be combined in character class as

[A-Za-z0-9]

This means that match any character in the range A to Z or a to z or 0 to 9. The ordering can be
anything. So the above is equivalent to [a-zA-Z0-9] as long as the range you define is correct.

2.1 Word of caution

Sometimes when writing ranges for A to Z people write it as [A-z]. This is wrong in most
cases because we are using z instead of Z. So this denotes match any character from ASCII
range 65 (of A) to 122 (of z) which includes many unintended character after ASCII range 90
(of Z). HOWEVER, [A-z] can be used to match all [a-zA-Z] letters in POSIX-style regex
when collation is set for a particular language. [["ABCEDEF[]_abcdef" =~ ([A-z]+)]] && echo
"${BASH_REMATCH[1]}" on Cygwin with LC_COLLATE="en_US.UTF-8" yields ABCEDF. If you set
LC_COLLATE to C (on Cygwin, done with export), it will give the expected ABCEDEF[]_abcdef.

•

Meaning of - inside character class is special. It denotes range as explained above. What if
we want to match - character literally? We can't put it anywhere otherwise it will denote
ranges if it is put between two characters. In that case we have to put - in starting of
character class like [-A-Z] or in end of character class like [A-Z-] or escape it if you want to
use it in middle like [A-Z\-a-z].

•

3. Negated character class

Negated character class is denoted by [^..]. The caret sign ^ denotes match any character except
the one present in character class. e.g.

[^cat]

means match any character except c or a or t.

3.1 Word of caution

The meaning of caret sign ^ maps to negation only if its in the starting of character class. If
its anywhere else in character class it is treated as literal caret character without any special
meaning.

•

Some people write regex like [^]. In most regex engines, this gives an error. The reason
being when you are using ^ in the starting position, it expects at least one character that
should be negated. In JavaScript though, this is a valid construct matching anything but
nothing, i.e. matches any possible symbol (but diacritics, at least in ES5).

•

POSIX Character classes

POSIX character classes are predefined sequences for a certain set of characters.

https://riptutorial.com/ 29

Character class Description

[:alpha:] Alphabetic characters

[:alnum:] Alphabetic characters and digits

[:digit:] Digits

[:xdigit:] Hexadecimal digits

[:blank:] Space and Tab

[:cntrl:] Control characters

[:graph:] Visible characters (anything except spaces and control characters)

[:print:] Visible characters and spaces

[:lower:] Lowercase letters

[:upper:] Uppercase letters

[:punct:] Punctuation and symbols

[:space:] All whitespace characters, including line breaks

Additional character classes my be available depending on the implementation and/or locale.

Character class Description

[:<:] Beginning of word

[:>:] End of word

[:ascii:] ASCII Characters

[:word:] Letters, digits and underscore. Equivalent to \w

To use the inside a bracket sequence (aka. character class), you should also include the square
brackets. Example:

[[:alpha:]]

This will match one alphabetic character.

[[:digit:]-]{2}

This will match 2 characters, that are either digits or -. The following will match:

--•

https://riptutorial.com/ 30

11•
-2•
3-•

More information is available on: Regular-expressions.info

Read Character classes online: https://riptutorial.com/regex/topic/1757/character-classes

https://riptutorial.com/ 31

http://www.regular-expressions.info/posixbrackets.html
https://riptutorial.com/regex/topic/1757/character-classes

Chapter 9: Escaping

Examples

Raw String Literals

It's best for readability (and your sanity) to avoid escaping the escapes. That's where raw strings
literals come in. (Note that some languages allow delimiters, which are preferred over strings
usually. But that's another section.)

They usually work the same way as this answer describes:

[A] backslash, \, is taken as meaning "just a backslash" (except when it comes right
before a quote that would otherwise terminate the literal) -- no "escape sequences" to
represent newlines, tabs, backspaces, form-feeds, and so on.

Not all languages have them, and those that do use varying syntax. C# actually calls them
verbatim string literals, but it's the same thing.

Python

pattern = r"regex"

pattern = r'regex'

C++ (11+)

The syntax here is extremely versatile. The only rule is to use a delimiter that does not appear
anywhere in the regex. If you do that, no additional escaping is necessary for anything in the
string. Note that the parenthesis () are not part of the regex:

pattern = R"delimiter(regex)delimiter";

VB.NET

Just use a normal string. Backslashes are ALWAYS literals.

C#

https://riptutorial.com/ 32

http://stackoverflow.com/a/2081708/6083675
https://msdn.microsoft.com/en-us/library/ms228362.aspx#Anchor_3
http://stackoverflow.com/a/13155483/6083675

pattern = @"regex";

Note that this syntax also allows "" (two double quotes) as an escaped form of ".

Strings

In most programming languages, in order to have a backslash in a string generated from a string
literal, each backslash must be doubled in the string literal. Otherwise, it will be interpreted as an
escape for the next character.

Unfortunately, any backslash required by the regex must be a literal backslash. This is why it
becomes necessary to have "escaped escapes" (\\) when regexes are generated from string
literals.

In addition, quotes (" or ') in the string literal may need to be escaped, depending on which
surround the string literal. In some languages, it is possible to use either style of quotes for a string
(choose the most readable one for escaping the entire string literal).

In some languages (e.g.: Java <=7), regexes cannot be expressed directly as literals such as /\w/;
they must be generated from strings, and normally string literals are used - in this case, "\\w". In
these cases, literal characters such as quotes, backslashes, etc. need to be escaped. The easiest
way to accomplish this may be by using a tool (like RegexPlanet). This specific tool is designed for
Java, but it will work for any language with a similar string syntax.

What characters need to be escaped?

Character escaping is what allows certain characters (reserved by the regex engine for
manipulating searches) to be literally searched for and found in the input string. Escaping depends
on context, therefore this example does not cover string or delimiter escaping.

Backslashes

Saying that backslash is the "escape" character is a bit misleading. Backslash escapes and
backslash brings; it actually toggles on or off the metacharacter vs. literal status of the character in
front of it.

In order to use a literal backslash anywhere in a regex, it must be escaped by another backslash.

Escaping (outside character classes)

There are several characters that need to be escaped to be taken literally (at least outside char
classes):

Brackets: []•
Parentheses: ()•
Curly braces: {}•
Operators: *, +, ?, |•

https://riptutorial.com/ 33

https://msdn.microsoft.com/en-us/library/362314fe.aspx
http://www.regexplanet.com/advanced/java/index.html
http://www.riptutorial.com/regex/example/15849/-delimiters-
http://www.riptutorial.com/regex/example/15849/-delimiters-

Anchors: ^, $•
Others: ., \•
In order to use a literal ^ at the start or a literal $ at the end of a regex, the character must be
escaped.

•

Some flavors only use ^ and $ as metacharacters when they are at the start or end of the
regex respectively. In those flavors, no additional escaping is necessary. It's usually just best
to escape them anyway.

•

Escaping within Character Classes

It's best practice to escape square brackets ([and]) when they appear as literals in a char
class. Under certain conditions, it's not required, depending on the flavor, but it harms
readability.

•

The caret, ^, is a meta character when put as the first character in a char class: [^aeiou].
Anywhere else in the char class, it is just a literal character.

•

The dash, -, is a meta character, unless it's at the beginning or end of a character class. If
the first character in the char class is a caret ^, then it will be a literal if it is the second
character in the char class.

•

Escaping the Replacement

There are also rules for escaping within the replacement, but none of the rules above apply. The
only metacharacters are $ and \, at least when $ can be used to reference capture groups (like $1
for group 1). To use a literal $, escape it: \$5.00. Likewise \: C:\\Program Files\\.

BRE Exceptions

While ERE (extended regular expressions) mirrors the typical, Perl-style syntax, BRE (basic
regular expressions) has significant differences when it comes to escaping:

There is different shorthand syntax. All of the \d, \s, \w and so on is gone. Instead, it has its
own syntax (which POSIX confusingly calls "character classes"), like [:digit:]. These
constructs must be within a character class.

•

There are few metacharacters (., *, ^, $) that can be used normally. ALL of the other
metacharacters must be escaped differently:

•

Braces {}

a{1,2} matches a{1,2}. To match either a or aa, use a\{1,2\}•

Parentheses ()

(ab)\1 is invalid, since there is no capture group 1. To fix it and match abab use \(ab\)\1•

Backslash

https://riptutorial.com/ 34

http://codegolf.stackexchange.com/a/47435

Inside char classes (which are called bracket expressions in POSIX), backslash is not a
metacharacter (and does not need escaping). [\d] matches either \ or d.

•

Anywhere else, escape as usual.•

Other

+ and ? are literals. If the BRE engine supports them as metacharacters, they must be
escaped as \? and \+.

•

/Delimiters/

Many languages allow regex to be enclosed or delimited between a couple of specific characters,
usually the forward slash /.

Delimiters have an impact on escaping: if the delimiter is / and the regex needs to look for /
literals, then the forward slash must be escaped before it can be a literal (\/).

Excessive escaping harms readability, so it's important to consider the available options:

Javascript is unique because it allows forward slash as a delimiter, but nothing else (although it
does allow stringified regexes).

Perl1

Perl, for example, allows almost anything to be a delimiter. Even Arabic characters:

$str =~ m ش ش

Specific rules are mentioned in Perl's documentation.

PCRE allows two types of delimiters: matched delimiters and bracket-style delimiters. Matched
delimiters make use of a single character's pair, while bracket-style delimiters make use of a
couple of characters which represents an opening and closing pair.

Matching delimiters: !"#$%&'*+,./:;=?@^_`|~-•
Bracket-style delimiters: (), {}, [], <>•

Read Escaping online: https://riptutorial.com/regex/topic/4524/escaping

https://riptutorial.com/ 35

http://stackoverflow.com/questions/23438047
http://perldoc.perl.org/perlop.html#Regexp-Quote-Like-Operators
http://php.net/manual/en/regexp.reference.delimiters.php
https://riptutorial.com/regex/topic/4524/escaping

Chapter 10: Greedy and Lazy quantifiers

Parameters

Quantifiers Description

? Match the preceding character or subexpression 0 or 1 times (preferably 1).

*
Match the preceding character or subexpression 0 or more times (as many
as possible).

+
Match the preceding character or subexpression 1 or more times (as many
as possible).

{n} Match the preceding character or subexpression exactly n times.

{min,}
Match the preceding character or subexpression min or more times (as
many as possible).

{0,max}
Match the preceding character or subexpression max or fewer times (as
close to max as possible).

{min,max}
Match the preceding character or subexpression at least min times but no
more than max times (as close to max as possible).

Lazy
Quantifiers

Description

?? Match the preceding character or subexpression 0 or 1 times (preferably 0).

*?
Match the preceding character or subexpression 0 or more times (as few as
possible).

+?
Match the preceding character or subexpression 1 or more times (as few as
possible).

{n}?
Match the preceding character or subexpression exactly n times. No
difference between greedy and lazy version.

{min,}?
Match the preceding character or subexpression min or more times (as
close to min as possible).

{0,max}?
Match the preceding character or subexpression max or fewer times (as few
as possible).

{min,max}?
Match the preceding character or subexpression at least min times but no
more than max times (as close to min as possible).

https://riptutorial.com/ 36

Remarks

Greediness

A greedy quantifier always attempts to repeat the sub-pattern as many times as possible before
exploring shorter matches by backtracking.

Generally, a greedy pattern will match the longest possible string.

By default, all quantifiers are greedy.

Laziness

A lazy (also called non-greedy or reluctant) quantifier always attempts to repeat the sub-pattern as
few times as possible, before exploring longer matches by expansion.

Generally, a lazy pattern will match the shortest possible string.

To make quantifiers lazy, just append ? to the existing quantifier, e.g. +?, {0,5}?.

Concept of greediness and laziness only exists in
backtracking engines

The notion of greedy/lazy quantifier only exists in backtracking regex engines. In non-backtracking
regex engines or POSIX-compliant regex engines, quantifiers only specify the upper bound and
lower bound of the repetition, without specifying how to find the match -- those engines will always
match the left-most longest string regardless.

Examples

Greediness versus Laziness

Given the following input:

aaaaaAlazyZgreeedyAlaaazyZaaaaa

We will use two patterns: one greedy: A.*Z, and one lazy: A.*?Z. These patterns yield the following
matches:

A.*Z yields 1 match: AlazyZgreeedyAlaaazyZ (examples: Regex101, Rubular)•
A.*?Z yields 2 matches: AlazyZ and AlaaazyZ (examples: Regex101, Rubular)•

First focus on what A.*Z does. When it matched the first A, the .*, being greedy, then tries to match
as many . as possible.

https://riptutorial.com/ 37

https://regex101.com/r/nQ9zR2/1
http://www.rubular.com/r/DaCxx2twp7
https://regex101.com/r/xU9nO4/1
http://www.rubular.com/r/WgbFXq1U7h

aaaaaAlazyZgreeedyAlaaazyZaaaaa
 ________________________/
 A.* matched, Z can't match

Since the Z doesn't match, the engine backtracks, and .* must then match one fewer .:

aaaaaAlazyZgreeedyAlaaazyZaaaaa
 _______________________/
 A.* matched, Z can't match

This happens a few more times, until it finally comes to this:

aaaaaAlazyZgreeedyAlaaazyZaaaaa
 __________________/
 A.* matched, Z can now match

Now Z can match, so the overall pattern matches:

aaaaaAlazyZgreeedyAlaaazyZaaaaa
 ___________________/
 A.*Z matched

By contrast, the reluctant (lazy) repetition in A.*?Z first matches as few . as possible, and then
taking more . as necessary. This explains why it finds two matches in the input.

Here's a visual representation of what the two patterns matched:

aaaaaAlazyZgreeedyAlaaazyZaaaaa
 ____/l ______/l l = lazy
 _________g_________/ g = greedy

Example based on answer made by polygenelubricants.

The POSIX standard does not include the ? operator, so many POSIX regex engines do not have
lazy matching. While refactoring, especially with the "greatest trick ever", may help match in some
cases, the only way to have true lazy matching is to use an engine that supports it.

Boundaries with multiple matches

When you have an input with well defined boundaries and are expecting more than one match in
your string, you have two options:

Using lazy quantifiers;•
Using a negated character class.•

Consider the following:

You have a simple templating engine, you want to replace substrings like $[foo] where foo can be
any string. You want to replace this substring with whatever based on the part between the [].

https://riptutorial.com/ 38

http://stackoverflow.com/a/3075532/2084643
http://stackoverflow.com/users/276101
http://stackoverflow.com/a/1103177/6083675
http://www.rexegg.com/regex-best-trick.html

You can try something like \$\[(.*)\], and then use the first capture group.

The problem with this is if you have a string like something $[foo] lalala $[bar] something else
your match will be

something $[foo] lalala $[bar] something else
 | ______CG1______/|
 _______Match______/

The capture group being foo] lalala $[bar which may or may not be valid.

You have two solutions

Using laziness: In this case making * lazy is one way to go about finding the right things. So
you change your expression to \$\[(.*?)\]

1.

Using negated character class : [^\]] you change your expression to \$\[([^\]]*)\].2.

In both solutions, the result will be the same:

something $[foo] lalala $[bar] something else
 | _/| | _/|
 ____/ ____/

With the capture group being respectively foo and bar.

Using negated character class reduces backtracking issue and may save your CPU a lot of time
when it comes to large inputs.

Read Greedy and Lazy quantifiers online: https://riptutorial.com/regex/topic/429/greedy-and-lazy-
quantifiers

https://riptutorial.com/ 39

https://riptutorial.com/regex/topic/429/greedy-and-lazy-quantifiers
https://riptutorial.com/regex/topic/429/greedy-and-lazy-quantifiers

Chapter 11: Lookahead and Lookbehind

Syntax

Positive lookahead: (?=pattern)•
Negative lookahead: (?!pattern)•
Positive lookbehind: (?<=pattern)•
Negative lookbehind: (?<!pattern)•

Remarks

Not supported by all regex engines.

Additionally, many regex engines limit the patterns inside lookbehinds to fixed-length strings. For
example the pattern (?<=a+)b should match the b in aaab but throws an error in Python.

Capturing groups are allowed and work as expected, including backreferences. The
lookahead/lookbehind itself is not a capturing group, however.

Examples

Basics

A positive lookahead (?=123) asserts the text is followed by the given pattern, without including
the pattern in the match. Similarly, a positive lookbehind (?<=123) asserts the text is preceded by
the given pattern. Replacing the = with ! negates the assertion.

Input: 123456

123(?=456) matches 123 (positive lookahead)•
(?<=123)456 matches 456 (positive lookbehind)•
123(?!456) fails (negative lookahead)•
(?<!123)456 fails (negative lookbehind)•

Input: 456

123(?=456) fails•
(?<=123)456 fails•
123(?!456) fails•
(?<!123)456 matches 456•

Using lookbehind to test endings

A lookbehind can be used at the end of a pattern to ensure it ends or not in a certain way.

https://riptutorial.com/ 40

([a-z]+|[A-Z]+)(?<!) matches sequences of only lowercase or only uppercase words while
excluding trailing whitespace.

Simulating variable-length lookbehind with \K

Some regex flavors (Perl, PCRE, Oniguruma, Boost) only support fixed-length lookbehinds, but
offer the \K feature, which can be used to simulate variable-length lookbehind at the start of a
pattern. Upon encountering a \K, the matched text up to this point is discarded, and only the text
matching the part of the pattern following \K is kept in the final result.

ab+\Kc

Is equivalent to:

(?<=ab+)c

In general, a pattern of the form:

(subpattern A)\K(subpattern B)

Ends up being similar to:

(?<=subpattern A)(subpattern B)

Except when the B subpattern can match the same text as the A subpattern - you could end up
with subtly different results, because the A subpattern still consumes the text, unlike a true
lookbehind.

Read Lookahead and Lookbehind online: https://riptutorial.com/regex/topic/639/lookahead-and-
lookbehind

https://riptutorial.com/ 41

https://riptutorial.com/regex/topic/639/lookahead-and-lookbehind
https://riptutorial.com/regex/topic/639/lookahead-and-lookbehind

Chapter 12: Match Reset: \K

Remarks

Regex101 defines \K functionality as:

\K resets the starting point of the reported match. Any previously consumed characters
are no longer included in the final match

The \K escape sequence is supported by several engines, languages or tools, such as:

boost (since ???)•
grep -P ← uses PCRE•
Oniguruma (since 5.13.3)•
PCRE (since 7.2)•
Perl (since 5.10.0)•
PHP (since 5.2.4)•
Ruby (since 2.0.0)•

...and (so far) not supported by:

.NET•
awk•
bash•
GNU•
ICU•
Java•
Javascript•
Notepad++•
Objective-C•
POSIX•
Python•
Qt/QRegExp•
sed•
Tcl•
vim•
XML•
XPath•

Examples

Search and replace using \K operator

Given the text:

https://riptutorial.com/ 42

https://github.com/k-takata/Onigmo/blob/master/README
http://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions
http://search.cpan.org/~rgarcia/perl/pod/perl5100delta.pod
http://php.net/manual/en/regexp.reference.escape.php
http://stackoverflow.com/questions/3417644/translate-perl-regex-to-net
http://userguide.icu-project.org/strings/regexp
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

foo: bar

I would like to replace anything following "foo: " with "baz", but I want to keep "foo: ". This could be
done with a capturing group like this:

s/(foo:).*/$1baz/

Which results in the text:

foo: baz

Example 1

or we could use \K, which "forgets" all that it has previously matched, with a pattern like this:

s/foo: \K.*/baz/

The regex matches "foo: " and then encounters the \K, the previously match characters are taken
for granted and left by the regex meaning that only the string matched by .* will be replaced by
"baz", resulting in the text:

foo: baz

Example 2

Read Match Reset: \K online: https://riptutorial.com/regex/topic/1338/match-reset---k

https://riptutorial.com/ 43

https://regex101.com/r/zS8oP4/1
https://regex101.com/r/zS8oP4/2
https://riptutorial.com/regex/topic/1338/match-reset---k

Chapter 13: Matching Simple Patterns

Examples

Match a single digit character using [0-9] or \d (Java)

[0-9] and \d are equivalent patterns (unless your Regex engine is unicode-aware and \d also
matches things like ②). They will both match a single digit character so you can use whichever notation
you find more readable.

Create a string of the pattern you wish to match. If using the \d notation, you will need to add a
second backslash to escape the first backslash.

String pattern = "\\d";

Create a Pattern object. Pass the pattern string into the compile() method.

Pattern p = Pattern.compile(pattern);

Create a Matcher object. Pass the string you are looking to find the pattern in to the matcher()
method. Check to see if the pattern is found.

Matcher m1 = p.matcher("0");
m1.matches(); //will return true

Matcher m2 = p.matcher("5");
m2.matches(); //will return true

Matcher m3 = p.matcher("12345");
m3.matches(); //will return false since your pattern is only for a single integer

Matching various numbers

[a-b] where a and b are digits in the range 0 to 9

[3-7] will match a single digit in the range 3 to 7.

Matching multiple digits

\d\d will match 2 consecutive digits
\d+ will match 1 or more consecutive digits
\d* will match 0 or more consecutive digits
\d{3} will match 3 consecutive digits
\d{3,6} will match 3 to 6 consecutive digits
\d{3,} will match 3 or more consecutive digits

The \d in the above examples can be replaced with a number range:

https://riptutorial.com/ 44

[3-7][3-7] will match 2 consecutive digits that are in the range 3 to 7
[3-7]+ will match 1 or more consecutive digits that are in the range 3 to 7
[3-7]* will match 0 or more consecutive digits that are in the range 3 to 7
[3-7]{3} will match 3 consecutive digits that are in the range 3 to 7
[3-7]{3,6} will match 3 to 6 consecutive digits that are in the range 3 to 7
[3-7]{3,} will match 3 or more consecutive digits that are in the range 3 to 7

You can also select specific digits:

[13579] will only match "odd" digits
[02468] will only match "even" digits
1|3|5|7|9 another way of matching "odd" digits - the | symbol means OR

Matching numbers in ranges that contain more than one digit:

\d|10 matches 0 to 10 single digit OR 10. The | symbol means OR
[1-9]|10 matches 1 to 10 digit in range 1 to 9 OR 10
[1-9]|1[0-5] matches 1 to 15 digit in range 1 to 9 OR 1 followed by digit 1 to 5
\d{1,2}|100 matches 0 to 100 one to two digits OR 100

Matching numbers that divide by other numbers:

\d*0 matches any number that divides by 10 - any number ending in 0
\d*00 matches any number that divides by 100 - any number ending in 00
\d*[05] matches any number that divides by 5 - any number ending in 0 or 5
\d*[02468] matches any number that divides by 2 - any number ending in 0,2,4,6 or 8

matching numbers that divide by 4 - any number that is 0, 4 or 8 or ends in 00, 04, 08, 12, 16, 20,
24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92 or 96

[048]|\d*(00|04|08|12|16|20|24|28|32|36|40|44|48|52|56|60|64|68|72|76|80|84|88|92|96)

This can be shortened. For example, instead of using 20|24|28 we can use 2[048]. Also, as the
40s, 60s and 80s have the same pattern we can include them: [02468][048] and the others have a
pattern too [13579][26]. So the whole sequence can be reduce to:

[048]|\d*([02468][048]|[13579][26]) - numbers divisible by 4

Matching numbers that don't have a pattern like those divisible by 2,4,5,10 etc can't always be
done succinctly and you usually have to resort to a range of numbers. For example matching all
numbers that divide by 7 within the range of 1 to 50 can be done simple by listing all those
numbers:

7|14|21|28|35|42|49

or you could do it this way

7|14|2[18]|35|4[29]

Matching leading/trailing whitespace

https://riptutorial.com/ 45

Trailing spaces

\s*$: This will match any (*) whitespace (\s) at the end ($) of the text

Leading spaces

^\s*: This will match any (*) whitespace (\s) at the beginning (^) of the text

Remarks

\s is a common metacharacter for several RegExp engines, and is meant to capture whitespace
characters (spaces, newlines and tabs for example). Note: it probably won't capture all the
unicode space characters. Check your engines documentation to be sure about this.

Match any float

[\+\-]?\d+(\.\d*)?

This will match any signed float, if you don't want signs or are parsing an equation remove [\+\-]?
so you have \d+(\.\d+)?

Explanation:

\d+ matches any integer•
()? means the contents of the parentheses are optional but always have to appear together•
'\.' matches '.', we have to escape this since '.' normally matches any character•

So this expression will match

5
+5
-5
5.5
+5.5
-5.5

Selecting a certain line from a list based on a word in certain location

I have the following list:

1. Alon Cohen
2. Elad Yaron
3. Yaron Amrani
4. Yogev Yaron

I want to select the first name of the guys with the Yaron surname.

https://riptutorial.com/ 46

https://en.wikipedia.org/wiki/Whitespace_character#Unicode

Since I don't care about what number it is I'll just put it as whatever digit it is and a matching dot
and space after it from the beginning of the line, like this: ^[\d]+\.\s.

Now we'll have to match the space and the first name, since we can't tell whether it's capital or
small letters we'll just match both: [a-zA-Z]+\s or [a-Z]+\s and can also be [\w]+\s.

Now we'll specify the required surname to get only the lines containing Yaron as a surname (at the
end of the line): \sYaron$.

Putting this all together ^[\d]+\.\s[\w]+\sYaron$.

Live example: https://regex101.com/r/nW4fH8/1

Read Matching Simple Patterns online: https://riptutorial.com/regex/topic/343/matching-simple-
patterns

https://riptutorial.com/ 47

https://regex101.com/r/nW4fH8/1
https://riptutorial.com/regex/topic/343/matching-simple-patterns
https://riptutorial.com/regex/topic/343/matching-simple-patterns

Chapter 14: Named capture groups

Syntax

Build a named capture group (X being the pattern you want to capture):

(?'name'X) (?X) (?PX)

•

Reference a named capture group:

${name} \{name} g\{name}

•

Remarks

Python and Java don't allow multiple groups to use the same name.

Examples

What a named capture group looks like

Given the flavors, the named capture group may looks like this:

(?'name'X)
(?<name>X)
(?P<name>X)

With X being the pattern you want to capture. Let's consider the following string:

Once upon a time there was a pretty little girl...

Once upon a time there was a unicorn with an hat...

Once upon a time there was a boat with a pirate flag...

In which I want to capture the subject (in italic) of every lines. I'll use the following expression .*
was a (?<subject>[\w]+)[.]{3}.

The matching result will hold:

MATCH 1
subject [29-47] `pretty little girl`
MATCH 2
subject [80-99] `unicorn with an hat`
MATCH 3
subject [132-155] `boat with a pirate flag`

Reference a named capture group

https://riptutorial.com/ 48

As you may (or not) know, you can reference a capture group with:

$1

1 being the group number.

In the same way, you can reference a named capture group with:

${name}
\{name}
g\{name}

Let's take the preceding example and replace the matches with

The hero of the story is a ${subject}.

The result we will obtain is:

The hero of the story is a pretty little girl.
The hero of the story is a unicorn with an hat.
The hero of the story is a boat with a pirate flag.

Read Named capture groups online: https://riptutorial.com/regex/topic/744/named-capture-groups

https://riptutorial.com/ 49

https://riptutorial.com/regex/topic/744/named-capture-groups

Chapter 15: Password validation regex

Examples

A password containing at least 1 uppercase, 1 lowercase, 1 digit, 1 special
character and have a length of at least of 10

As the characters/digits can be anywhere within the string, we require lookaheads. Lookaheads
are of zero width meaning they do not consume any string. In simple words the position of
checking resets to the original position after each condition of lookahead is met.

Assumption :- Considering non-word characters as special

^(?=.{10,}$)(?=.*[a-z])(?=.*[A-Z])(?=.*[0-9])(?=.*\W).*$

Before proceeding to explanation, let's take a look how the regex ^(?=.*[a-z]) works (length is not
considered here) on string 1$d%aA

Image Credit :- https://regex101.com/

Things to notice

Checking is started from beginning of the string due to anchor tag ^.•
The position of checking is being reset to the starting after condition of lookahead is met.•

Regex Breakdown

^ #Starting of string
 (?=.{10,}$) #Check there is at least 10 characters in the string.
 #As this is lookahead the position of checking will reset to starting again
 (?=.*[a-z]) #Check if there is at least one lowercase in string.
 #As this is lookahead the position of checking will reset to starting again
 (?=.*[A-Z]) #Check if there is at least one uppercase in string.
 #As this is lookahead the position of checking will reset to starting again
 (?=.*[0-9]) #Check if there is at least one digit in string.
 #As this is lookahead the position of checking will reset to starting again

https://riptutorial.com/ 50

http://i.stack.imgur.com/ehu4F.png
https://regex101.com/

 (?=.*\W) #Check if there is at least one special character in string.
 #As this is lookahead the position of checking will reset to starting again
.*$ #Capture the entire string if all the condition of lookahead is met. This is not required
if only validation is needed

We can also use the non-greedy version of the above regex

^(?=.{10,}$)(?=.*?[a-z])(?=.*?[A-Z])(?=.*?[0-9])(?=.*?\W).*$

A password containing at least 2 uppercase, 1 lowercase, 2 digits and is of
length of at least 10

This can be done with a bit of modification in the above regex

 ^(?=.{10,}$)(?=(?:.*?[A-Z]){2})(?=.*?[a-z])(?=(?:.*?[0-9]){2}).*$

or

 ^(?=.{10,}$)(?=(?:.*[A-Z]){2})(?=.*[a-z])(?=(?:.*[0-9]){2}).*

Let's see how a simple regex ^(?=(?:.*?[A-Z]){2}) works on string abcAdefD

Image Credit :- https://regex101.com/

Read Password validation regex online: https://riptutorial.com/regex/topic/5340/password-
validation-regex

https://riptutorial.com/ 51

http://i.stack.imgur.com/DPQ6G.png
https://regex101.com/
https://riptutorial.com/regex/topic/5340/password-validation-regex
https://riptutorial.com/regex/topic/5340/password-validation-regex

Chapter 16: Possessive Quantifiers

Remarks

NB Emulating possessive quantifiers

Examples

Basic Use of Possessive Quantifiers

Possessive quantifiers are another class of quantifiers in many regex flavours that allow
backtracking to, effectively, be disabled for a given token. This can help improve performance, as
well as preventing matches in certain cases.

The class of possessive quantifiers can be distinguished from lazy or greedy quantifiers by the
addition of a + after the quantifier, as seen below:

Quantifier Greedy Lazy Possessive

Zero or more * *? *+

One or more + +? ++

Zero or one ? ?? ?+

Consider, for instance, the two patterns ".*" and ".*+", operating on the string "abc"d. In both
cases, the " at the beginning of the string is matched, but after that the two patterns will have
different behaviours and outcomes.

The greedy quantifier will then slurp the rest of the string, abc"d. Because this does not match the
pattern, it will then backtrack and drop the d, leaving the quantifier containing abc". Because this
still does not match the pattern, the quantifier will drop the ", leaving it containing only abc. This
matches the pattern (as the " is matched by a literal, rather than the quantifier), and the regex
reports success.

The possessive quantifier will also slurp the rest of the string, but, unlike the greedy quantifier, it
will not backtrack. Since its contents, abc"d, do not permit the rest of the pattern of the match, the
regex will stop and report failure to match.

Because the possessive quantifiers do not do backtracking, they can result in a significant
performance increase on long or complex patterns. They can, however, be dangerous (as
illustrated above) if one is not aware of how, precisely, quantifiers work internally.

Read Possessive Quantifiers online: https://riptutorial.com/regex/topic/5916/possessive-quantifiers

https://riptutorial.com/ 52

http://stackoverflow.com/q/5537513/256431
https://riptutorial.com/regex/topic/5916/possessive-quantifiers

Chapter 17: Recursion

Remarks

Recursion is mostly available in Perl-compatible flavors, such as:

Perl•
PCRE•
Oniguruma•
Boost•

Examples

Recurse the whole pattern

The construct (?R) is equivalent to (?0) (or \g<0>) - it lets you recurse the whole pattern:

<(?>[^<>]+|(?R))+>

This will match properly balanced angle brackets with any text in-between the brackets, like
<ac<d>e>.

Recurse into a subpattern

You can recurse into a subpattern using the following constructs (depending on the flavor),
assuming n is a capturing group number, and name the name of a capturing group.

(?n)•
\g<n>•
\g'0'•
(?&name)•
\g<name>•
\g'name'•
(?P>name)•

The following pattern:

 \[(?<angle><(?&angle)*+>)*\]

Will match text such as: [<<><>><>] - well balanced angle brackets within square brackets.
Recursion is often used for balanced constructs matching.

Subpattern definitions

The (?(DEFINE)...) construct lets you define subpatterns you may reference later through recursion.
When encountered in the pattern it will not be matched against.

https://riptutorial.com/ 53

This group should contain named subpattern definitions, which will be accessible only through
recursion. You can define grammars this way:

(?x) # ignore pattern whitespace
(?(DEFINE)
 (?<string> ".*?")
 (?<number> \d+)
 (?<value>
 \s* (?:
 (?&string)
 | (?&number)
 | (?&list)
) \s*
)
 (?<list> \[(?&value) (?: , (?&value))* \])
)
^(?&value)$

This pattern will validate text like the following:

[42, "abc", ["foo", "bar"], 10]

Note how a list can contain one or more values, and a value can itself be a list.

Relative group references

Subpatterns can be referenced with their relative group number:

(?-1) will recurse into the previous group•
(?+1) will recurse into the next group•

Also usable with the \g<N> syntax.

Backreferences in recursions (PCRE)

In PCRE, matched groups used for backreferences before a recursion are kept in the recursion.
But after the recursion they all reset to what they were before entering it. In other words, matched
groups in the recursion are all forgotten.

For example:

(?J)(?(DEFINE)(\g{a}(?<a>b)\g{a}))(?<a>a)\g{a}(?1)\g{a}

matches

aaabba

Recursions are atomic (PCRE)

In PCRE, it doesn't trackback after the first match for a recursion is found. So

https://riptutorial.com/ 54

(?(DEFINE)(aaa|aa|a))(?1)ab

doesn't match

aab

because after it matched aa in the recursion, it never try again to match only a.

Read Recursion online: https://riptutorial.com/regex/topic/739/recursion

https://riptutorial.com/ 55

https://riptutorial.com/regex/topic/739/recursion

Chapter 18: Regex modifiers (flags)

Introduction

Regular expression patterns are often used with modifiers (also called flags) that redefine regex
behavior. Regex modifiers can be regular (e.g. /abc/i) and inline (or embedded) (e.g. (?i)abc).
The most common modifiers are global, case-insensitive, multiline and dotall modifiers. However,
regex flavors differ in the number of supported regex modifiers and their types.

Remarks

PCRE Modifiers

Modifier Inline Description

PCRE_CASELESS (?i) Case insensitive match

PCRE_MULTILINE (?m) Multiple line matching

PCRE_DOTALL (?s) . matches new lines

PCRE_ANCHORED (?A) Meta-character ^ matches only at the start

PCRE_EXTENDED (?x) White-spaces are ignored

PCRE_DOLLAR_ENDONLY n/a Meta-character $ matches only at the end

PCRE_EXTRA (?X) Strict escape parsing

PCRE_UTF8 Handles UTF-8 characters

PCRE_UTF16 Handles UTF-16 characters

PCRE_UTF32 Handles UTF-32 characters

PCRE_UNGREEDY (?U) Sets the engine to lazy matching

PCRE_NO_AUTO_CAPTURE (?:) Disables auto-capturing groups

Java Modifiers

Modifier (Pattern.###) Value Description

UNIX_LINES 1 Enables Unix lines mode.

https://riptutorial.com/ 56

https://stackoverflow.com/questions/16064527/pattern-unix-lines-in-regex-with-java

Modifier (Pattern.###) Value Description

CASE_INSENSITIVE 2 Enables case-insensitive matching.

COMMENTS 4 Permits whitespace and comments in a pattern.

MULTILINE 8 Enables multiline mode.

LITERAL 16 Enables literal parsing of the pattern.

DOTALL 32 Enables dotall mode.

UNICODE_CASE 64 Enables Unicode-aware case folding.

CANON_EQ 128 Enables canonical equivalence.

UNICODE_CHARACTER_CLASS 256
Enables the Unicode version of Predefined
character classes and POSIX character classes.

Examples

DOTALL modifier

A regex pattern where a DOTALL modifier (in most regex flavors expressed with s) changes the
behavior of . enabling it to match a newline (LF) symbol:

/cat (.*?) dog/s

This Perl-style regex will match a string like "cat fled from\na dog" capturing "fled from\na" into
Group 1.

An inline version: (?s) (e.g. (?s)cat (.*?) dog)

Note: In Ruby, the DOTALL modifier equivalent is m, Regexp::MULTILINE modifier (e.g. /a.*b/m).

Note: JavaScript does not provide a DOTALL modifier, so a . can never be allowed to match a
newline character. In order to achieve the same effect, a workaround is necessary, e. g.
substituting all the .s with a catch-all character class like [\S\s], or a not nothing character class
[^] (however, this construct will be treated as an error by all other engines, and is thus not
portable).

MULTILINE modifier

Another example is a MULTILINE modifier (usually expressed with m flag (not in Oniguruma (e.g.
Ruby) that uses m to denote a DOTALL modifier)) that makes ^ and $ anchors match the start/end
of a line, not the start/end of the whole string.

/^My Line \d+$/gm

https://riptutorial.com/ 57

http://ruby-doc.org/core-2.1.1/Regexp.html#class-Regexp-label-Character+Classes
http://ruby-doc.org/core-2.1.1/Regexp.html#class-Regexp-label-Character+Classes

will find all lines that start with My Line, then contain a space and 1+ digits up to the line end.

An inline version: (?m) (e.g. (?m)^My Line \d+$)

NOTE: In Oniguruma (e.g. in Ruby), and also in almost any text editors supporting regexps, the ^
and $ anchors denote line start/end positions by default. You need to use \A to define the whole
document/string start and \z to denote the document/string end. The difference between the \Z
and \z is that the former can match before the final newline (LF) symbol at the end of the string
(e.g. /\Astring\Z/ will find a match in "string\n") (except Python, where \Z behavior is equal to \z
and \z anchor is not supported).

IGNORE CASE modifier

The common modifier to ignore case is i:

/fog/i

will match Fog, foG, etc.

The inline version of the modifier looks like (?i).

Notes:

In Java, by default, case-insensitive matching assumes that only characters in the US-ASCII
charset are being matched. Unicode-aware case-insensitive matching can be enabled by
specifying the UNICODE_CASE flag in conjunction with this (CASE_INSENSITIVE) flag. (e.g. Pattern p =
Pattern.compile("YOUR_REGEX", Pattern.CASE_INSENSITIVE | Pattern.UNICODE_CASE);). Some more on
this can be found at Case-Insensitive Matching in Java RegEx. Also, UNICODE_CHARACTER_CLASS can
be used to make matching Unicode aware.

VERBOSE / COMMENT / IgnorePatternWhitespace modifier

The modifier that allows using whitespace inside some parts of the pattern to format it for better
readability and to allow comments starting with #:

/(?x)^ # start of string
 (?=\D*\d) # the string should contain at least 1 digit
 (?!\d+$) # the string cannot consist of digits only
 \# # the string starts with a hash symbol
 [a-zA-Z0-9]+ # the string should have 1 or more alphanumeric symbols
 $ # end of string
/

Example of a string: #word1here. Note the # symbol is escaped to denote a literal # that is part of a
pattern.

Unescaped white space in the regular expression pattern is ignored, escape it to make it a part of
the pattern.

Usually, the whitespace inside character classes ([...]) is treated as a literal whitespace, except

https://riptutorial.com/ 58

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
https://blogs.oracle.com/xuemingshen/entry/case_insensitive_matching_in_java
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#UNICODE_CHARACTER_CLASS

in Java.

Also, it is worth mentioning that in PCRE, .NET, Python, Ruby Oniguruma, ICU, Boost regex
flavors one can use (?#:...) comments inside the regex pattern.

Explicit Capture modifier

This is a .NET regex specific modifier expressed with n. When used, unnamed groups (like (\d+))
are not captured. Only valid captures are explicitly named groups (e.g. (?<name> subexpression)).

(?n)(\d+)-(\w+)-(?<id>\w+)

will match the whole 123-1_abc-00098, but (\d+) and (\w+) won't create groups in the resulting
match object. The only group will be ${id}. See demo.

UNICODE modifier

The UNICODE modifier, usually expressed as u (PHP, Python) or U (Java), makes the regex
engine treat the pattern and the input string as Unicode strings and patterns, make the pattern
shorthand classes like \w, \d, \s, etc. Unicode-aware.

/\A\p{L}+\z/u

is a PHP regex to match strings that consist of 1 or more Unicode letters. See the regex demo.

Note that in PHP, the /u modifier enables the PCRE engine to handle strings as UTF8 strings (by
turning on PCRE_UTF8 verb) and make the shorthand character classes in the pattern Unicode aware
(by enabling PCRE_UCP verb, see more at pcre.org).

Pattern and subject strings are treated as UTF-8. This modifier is available from
PHP 4.1.0 or greater on Unix and from PHP 4.2.3 on win32. UTF-8 validity of the
pattern and the subject is checked since PHP 4.3.5. An invalid subject will cause the
preg_* function to match nothing; an invalid pattern will trigger an error of level
E_WARNING. Five and six octet UTF-8 sequences are regarded as invalid since PHP
5.3.4 (resp. PCRE 7.3 2007-08-28); formerly those have been regarded as valid UTF-
8.

In Python 2.x, the re.UNICODE only affects the pattern itself: Make \w, \W, \b, \B, \d, \D, \s and \S
dependent on the Unicode character properties database.

An inline version: (?u) in Python, (?U) in Java. For example:

print(re.findall(ur"(?u)\w+", u"Dąb")) # [u'D\u0105b']
print(re.findall(r"\w+", u"Dąb")) # [u'D', u'b']

System.out.println("Dąb".matches("(?U)\\w+")); // true
System.out.println("Dąb".matches("\\w+")); // false

https://riptutorial.com/ 59

http://regexstorm.net/tester?p=(%3fn)(%5cd%2b)-(%5cw%2b)-(%3f%3cid%3e%5cw%2b)&i=123-1_abc-00098&o=ixcs
https://regex101.com/r/dX1cR2/1
http://php.net/manual/en/reference.pcre.pattern.modifiers.php
http://php.net/manual/en/reference.pcre.pattern.modifiers.php
http://php.net/manual/en/reference.pcre.pattern.modifiers.php
http://php.net/manual/en/reference.pcre.pattern.modifiers.php
http://www.pcre.org/pcre.txt
https://docs.python.org/2/library/re.html#re.UNICODE

PCRE_DOLLAR_ENDONLY modifier

The PCRE-compliant PCRE_DOLLAR_ENDONLY modifier that makes the $ anchor match at the
very end of the string (excluding the position before the final newline in the string).

/^\d+$/D

is equal to

/^\d+\z/

and matches a whole string that consists of 1 or more digits and will not match "123\n", but will
match "123".

PCRE_ANCHORED modifier

Another PCRE-compliant modifier expressed with /A modifier. If this modifier is set, the pattern is
forced to be "anchored", that is, it is constrained to match only at the start of the string which is
being searched (the "subject string"). This effect can also be achieved by appropriate constructs in
the pattern itself, which is the only way to do it in Perl.

/man/A

is the same as

/^man/

PCRE_UNGREEDY modifier

The PCRE-compliant PCRE_UNGREEDY flag expressed with /U. It switches greediness inside a
pattern: /a.*?b/U = /a.*b/ and vice versa.

PCRE_INFO_JCHANGED modifier

One more PCRE modifier that allows the use of duplicate named groups.

NOTE: only inline version is supported - (?J), and must be placed at the start of the pattern.

If you use

/(?J)\w+-(?:new-(?<val>\w+)|\d+-empty-(?<val>[^-]+)-collection)/

the "val" group values will be never empty (will always be set). A similar effect can be achieved
with branch reset though.

PCRE_EXTRA modifier

https://riptutorial.com/ 60

http://php.net/manual/en/reference.pcre.pattern.modifiers.php
http://php.net/manual/en/reference.pcre.pattern.modifiers.php
http://php.net/manual/en/reference.pcre.pattern.modifiers.php
http://php.net/manual/en/reference.pcre.pattern.modifiers.php

A PCRE modifier that causes an error if any backslash in a pattern is followed by a letter that has
no special meaning. By default, a backslash followed by a letter with no special meaning is treated
as a literal.

E.g.

/big\y/

will match bigy, but

/big\y/X

will throw an exception.

Inline version: (?X)

Read Regex modifiers (flags) online: https://riptutorial.com/regex/topic/5138/regex-modifiers--
flags-

https://riptutorial.com/ 61

https://riptutorial.com/regex/topic/5138/regex-modifiers--flags-
https://riptutorial.com/regex/topic/5138/regex-modifiers--flags-

Chapter 19: Regex Pitfalls

Examples

Why doesn't dot (.) match the newline character ("\n")?

.* in regex basically means "catch everything until the end of input".

So, for simple strings, like hello world, .* works perfectly. But if you have a string representing, for
example, lines in a file, these lines would be separated by a line separator, such as \n (newline)
on Unix-like systems and \r\n (carriage return and newline) on Windows.

By default in most regex engines, . doesn't match newline characters, so the matching stops at
the end of each logical line. If you want . to match really everything, including newlines, you need
to enable "dot-matches-all" mode in your regex engine of choice (for example, add re.DOTALL flag
in Python, or /s in PCRE.

Why does a regex skip some closing brackets/parentheses and match them
afterwards?

Consider this example:

He went into the cafe "Dostoevski" and said: "Good evening."

Here we have two sets of quotes. Let's assume we want to match both, so that our regex matches
at "Dostoevski" and "Good evening."

At first, you could be tempted to keep it simple:

".*" # matches a quote, then any characters until the next quote

But it doesn't work: it matches from the first quote in "Dostoevski" and until the closing quote in
"Good evening.", including the and said: part. Regex101 demo

Why did it happen?

This happens because the regex engine, when it encounters .*, "eats up" all of the input to the
very end. Then, it needs to match the final ". So, it "backs off" from the end of the match, letting go
of the matched text until the first " is found - and it is, of course, the last " in the match, at the end
of "Good evening." part.

How to prevent this and match exactly to the first quotes?

Use [^"]*. It doesn't eat all the input - only until the first ", just as needed. Regex101 demo

https://riptutorial.com/ 62

https://docs.python.org/3/library/re.html#re.DOTALL
http://php.net/manual/en/reference.pcre.pattern.modifiers.php
https://regex101.com/r/zvb3J1/3
https://regex101.com/r/zvb3J1/4

Read Regex Pitfalls online: https://riptutorial.com/regex/topic/10747/regex-pitfalls

https://riptutorial.com/ 63

https://riptutorial.com/regex/topic/10747/regex-pitfalls

Chapter 20: Regular Expression Engine
Types

Examples

NFA

A NFA (Nondeterministic Finite Automaton) engine is driven by the pattern.

Principle

The regex pattern is parsed into a tree.

The current position pointer is set to the start of the input string, and a match is attempted at this
position. If the match fais, the position is incremented to the next character in the string and
another match is attempted from this position. This process is repeated until a match is found or
the end of the input string is reached.

For each match attempt

The algorithm works by performing a traversal of the pattern tree for a given starting position. As it
progresses through the tree, it updates the current input position by consuming matching
characters.

If the algorithm encounters a tree node which does not match the input string at the current
position, it will have to backtrack. This is performed by going back to the parent node in the tree,
resetting the current input position to the value it had upon entering the parent node, and trying the
next alternative branch.

If the algorithm manages to exit the tree, it reports a successful match. Otherwise, when all
possibilities have been tried, the match fails.

Optimizations

Regex engines usually apply some optimizations for better performance. For instance, if they
determine that a match must start with a given character, they will attempt a match only at those
positions in the input string where that character appears.

Example

https://riptutorial.com/ 64

Match a(b|c)a against the input string abeacab:

The pattern tree could looks something like:

CONCATENATION
 EXACT: a
 ALTERNATION
 EXACT: b
 EXACT: c
 EXACT: a

The match processes as follows:

a(b|c)a abeacab
^ ^

a is found in the input string, consume it and proceed to the next item in the pattern tree: the
alternation. Try the first possibility: an exact b.

a(b|c)a abeacab
 ^ ^

b is found, so the alternation succeeds, consume it and proceed to the next item in the
concatenation: an exact a:

a(b|c)a abeacab
 ^ ^

a is not found at the expected position. Backtrack to the alternation, reset the input position to the
value it had upon entering the alternation for the first time, and try the second alternative:

a(b|c)a abeacab
 ^ ^

c is not found at this position. Backtrack to the concatenation. There are no other possibilities to try
at this point, so there is no match at the start of the string.

Attempt a second match at the next input position:

a(b|c)a abeacab
^ ^

a does not match there. Attempt another match at the next position:

a(b|c)a abeacab
^ ^

No luck either. Advance to the next position.

https://riptutorial.com/ 65

a(b|c)a abeacab
^ ^

a matches, so consume it and enter the alternation:

a(b|c)a abeacab
 ^ ^

b does not match. Attempt the second alternative:

a(b|c)a abeacab
 ^ ^

c matches, so consume it and advance to the next item in the concatenation:

a(b|c)a abeacab
 ^ ^

a matches, and the end of the tree has been reached. Report a successful match:

a(b|c)a abeacab
 _/

DFA

A DFA (Deterministic Finite Automaton) engine is driven by the input.

Principle

The algorithm scans through the input string once, and remembers all possible paths in the regex
which could match. For instance, when an alternation is encountered in the pattern, two new paths
are created and attempted independently. When a given path does not match, it is dropped from
the possibilities set.

Implications

The matching time is bounded by the input string size. There is no backtracking, and the engine
can find multiple matches simultaneously, even overlapping matches.

The main drawback of this method is the reduced feature set which can be supported by the
engine, compared to the NFA engine type.

Example

https://riptutorial.com/ 66

Match a(b|c)a against abadaca:

abadaca a(b|c)a
^ ^ Attempt 1 ==> CONTINUE

abadaca a(b|c)a
 ^ ^ Attempt 2 ==> FAIL
 ^ Attempt 1.1 ==> CONTINUE
 ^ Attempt 1.2 ==> FAIL

abadaca a(b|c)a
 ^ ^ Attempt 3 ==> CONTINUE
 ^ Attempt 1.1 ==> MATCH

abadaca a(b|c)a
 ^ ^ Attempt 4 ==> FAIL
 ^ Attempt 3.1 ==> FAIL
 ^ Attempt 3.2 ==> FAIL

abadaca a(b|c)a
 ^ ^ Attempt 5 ==> CONTINUE

abadaca a(b|c)a
 ^ ^ Attempt 6 ==> FAIL
 ^ Attempt 5.1 ==> FAIL
 ^ Attempt 5.2 ==> CONTINUE

abadaca a(b|c)a
 ^ ^ Attempt 7 ==> CONTINUE
 ^ Attempt 5.2 ==> MATCH

abadaca a(b|c)a
 ^ ^ Attempt 7.1 ==> FAIL
 ^ Attempt 7.2 ==> FAIL

Read Regular Expression Engine Types online: https://riptutorial.com/regex/topic/2861/regular-
expression-engine-types

https://riptutorial.com/ 67

https://riptutorial.com/regex/topic/2861/regular-expression-engine-types
https://riptutorial.com/regex/topic/2861/regular-expression-engine-types

Chapter 21: Substitutions with Regular
Expressions

Parameters

Inline Description

$number Substitutes the substring matched by group number.

${name} Substitutes the substring matched by a named group name.

$$ Escaped '$' character in the result (replacement) string.

$& ($0) Replaces with the whole matched string.

$+ ($&) Substitutes the matched text to the last group captured.

$` Substitutes all the matched text with every non-matched text before the match.

$' Substitutes all the matched text with every non-matched text after the match.

$_ Substitutes all the matched text to the entire string.

Note:
Italic terms means the strings are volatile (May vary depending on your regex
flavor).

Examples

Basics of Substitution

One of the most common and useful ways to replace text with regex is by using Capture Groups.
Or even a Named Capture Group, as a reference to store, or replace the data.

There are two terms pretty look alike in regex's docs, so it may be important to never mix-up
Substitutions (i.e. $1) with Backreferences (i.e. \1). Substitution terms are used in a replacement
text; Backreferences, in the pure Regex expression. Even though some programming languages
accept both for substitutions, it's not encouraging.

Let's we say we have this regex: /hello(\s+)world/i. Whenever $number is referenced (in this case,
$1), the whitespaces matched by \s+ will be replaced instead.
The same result will be exposed with the regex: /hello(?<spaces>\s+)world/i. And as we have a
named group here, we can also use ${spaces}.

In this same example, we can also use $0 or $& (Note: $& may be used as $+ instead, meaning to
retrieve the LAST capture group in other regex engines), depending on the regex flavor you're

https://riptutorial.com/ 68

http://www.riptutorial.com/regex/example/2479/named-capture-groups
http://www.riptutorial.com/regex/example/2154/basic-capture-groups
http://www.riptutorial.com/regex/example/2479/named-capture-groups
http://www.riptutorial.com/regex/topic/4072/back-reference

working with, to get the whole matched text. (i.e. $& shall return hEllo woRld for the string: hEllo
woRld of Regex!)

Take a look at this simple example of substitution using John Lennon's adapted quote by using the
$number and the ${name} syntax:

Simple capture group example:

Named capture group example:

https://riptutorial.com/ 69

https://i.stack.imgur.com/PzHql.png

Advanced Replacement

Some programming languages have its own Regex peculiarities, for example, the $+ term (in C#,
Perl, VB etc.) which replaces the matched text to the last group captured.

Example:

using System;
using System.Text.RegularExpressions;

public class Example
{
 public static void Main()
 {
 string pattern = @"\b(\w+)\s\1\b";
 string substitution = "$+";
 string input = "The the dog jumped over the fence fence.";
 Console.WriteLine(Regex.Replace(input, pattern, substitution,
 RegexOptions.IgnoreCase));
 }
}
// The example displays the following output:
// The dog jumped over the fence.

Example from Microsoft Official's Developer Network [1]

Other rare substitution terms are $` and $':

$` = Replaces matches to the text before the matching string
$' = Replaces matches to the text after the matching string

Due to this fact, these replacements strings should do their work like this:

https://riptutorial.com/ 70

https://i.stack.imgur.com/uie5e.png
https://msdn.microsoft.com/en-us/library/ewy2t5e0(v=vs.110).aspx?cs-save-lang=1&cs-lang=csharp#Anchor_7

Regex: /part2/
Input: "part1part2part3"
Replacement: "$`"
Output: "part1part1part3" //Note that part2 was replaced with part1, due &` term

Regex: /part2/
Input: "part1part2part3"
Replacement: "$'"
Output: "part1part3part3" //Note that part2 was replaced with part3, due &' term

Here is an example of these substitutions working on a piece of javascript:

var rgx = /middle/;
var text = "Your story must have a beginning, middle, and end"
console.log(text.replace(rgx, "$`"));
//Logs: "Your story must have a beginning, Your story must have a beginning, , and end"
console.log(text.replace(rgx, "$'"))
//Logs: "Your story must have a beginning, , and end, and end"

There is also the term $_ which retrieves the whole matched text instead:

Regex: /part2/
Input: "part1part2part3"
Replacement: "$_"
Output: "part1part1part2part3part3" //Note that part2 was replaced with part1part2part3,
 // due $_ term

Converting this to VB would give us this:

Imports System.Text.RegularExpressions

Module Example
 Public Sub Main()
 Dim input As String = "ABC123DEF456"
 Dim pattern As String = "\d+"
 Dim substitution As String = "$_"
 Console.WriteLine("Original string: {0}", input)
 Console.WriteLine("String with substitution: {0}", _
 Regex.Replace(input, pattern, substitution))
 End Sub
End Module
' The example displays the following output:
' Original string: ABC123DEF456
' String with substitution: ABCABC123DEF456DEFABC123DEF456

Example from Microsoft Official's Developer Network [2]

And the last but not least substitution term is $$, which translated to a regex expression would be
the same as \$ (An escaped version of the literal $).

If you want to match a string like this: USD: $3.99 for example, and want to store the 3.99, but
replace it as $3.99 with only one regex, you may use:

Regex: /USD:\s+\$([\d.]+)/

https://riptutorial.com/ 71

https://msdn.microsoft.com/en-us/library/ewy2t5e0(v=vs.110).aspx?cs-save-lang=1&cs-lang=csharp#Anchor_8

Input: "USD: $3.99"
Replacement: "$$$1"
To Store: "$1"
Output: "$3.99"
Stored: "3.99"

If you want to test this with Javascript, you may use the code:

var rgx = /USD:\s+\$([\d.]+)/;
var text = "USD: $3.99";
var stored = parseFloat(rgx.exec(text)[1]);
console.log(stored); //Logs 3.99
console.log(text.replace(rgx, "$$$1")); //Logs $3.99

References

[1]: Substituting the Last Captured Group
[2]: Substituting the Entire Input String

Read Substitutions with Regular Expressions online:
https://riptutorial.com/regex/topic/9852/substitutions-with-regular-expressions

https://riptutorial.com/ 72

https://msdn.microsoft.com/en-us/library/ewy2t5e0(v=vs.110).aspx?cs-save-lang=1&cs-lang=csharp#Anchor_7
https://msdn.microsoft.com/en-us/library/ewy2t5e0(v=vs.110).aspx?cs-save-lang=1&cs-lang=csharp#Anchor_8
https://riptutorial.com/regex/topic/9852/substitutions-with-regular-expressions

Chapter 22: Useful Regex Showcase

Examples

Match a date

You should remember that regex was designed for matching a date (or not). Saying that a date is
valid is a much more complicated struggle, since it will require a lot of exception handling (see
leap year conditions).

Let's start by matching the month (1 - 12) with an optional leading 0:

0?[1-9]|1[0-2]

To match the day, also with an optional leading 0:

0?[1-9]|[12][0-9]|3[01]

And to match the year (let's just assume the range 1900 - 2999):

(?:19|20)[0-9]{2}

The separator can be a space, a dash, a slash, empty, etc. Feel free to add anything you feel may
be used as a separator:

[-\\/]?

Now you concatenate the whole thing and get:

(0?[1-9]|1[0-2])[-\\/]?(0?[1-9]|[12][0-9]|3[01])[-/]?(?:19|20)[0-9]{2} // MMDDYYYY
(0?[1-9]|[12][0-9]|3[01])[-\\/]?(0?[1-9]|1[0-2])[-/]?(?:19|20)[0-9]{2} // DDMMYYYY
(?:19|20)[0-9]{2}[-\\/]?(0?[1-9]|1[0-2])[-/]?(0?[1-9]|[12][0-9]|3[01]) // YYYYMMDD

If you want to be a bit more pedantic, you can use a back reference to be sure that the two
separators will be the same:

(0?[1-9]|1[0-2])([-\\/]?)(0?[1-9]|[12][0-9]|3[01])\2(?:19|20)[0-9]{2} // MMDDYYYY
 ^ refer to [-/]
(0?[1-9]|[12][0-9]|3[01])([-\\/]?)(0?[1-9]|1[0-2])\2(?:19|20)[0-9]{2} // DDMMYYYY
(?:19|20)[0-9]{2}([-\\/]?)(0?[1-9]|1[0-2])\2(0?[1-9]|[12][0-9]|3[01]) // YYYYMMDD

Match an email address

Matching an email address within a string is a hard task, because the specification
defining it, the RFC2822, is complex making it hard to implement as a regex. For more
details why it is not a good idea to match an email with a regex, please refer to the

https://riptutorial.com/ 73

https://en.wikipedia.org/wiki/Leap_year#Algorithm
https://www.ietf.org/rfc/rfc2822.txt

antipattern example when not to use a regex: for matching emails. The best advice to
note from that page is to use a peer reviewed and widely library in your favorite
language to implement this.

Validate an email address format

When you need to rapidly validate an entry to make sure it looks like an email, the best option is to
keep it simple:

^\S{1,}@\S{2,}\.\S{2,}$

That regex will check that the mail address is a non-space separated sequence of characters of
length greater than one, followed by an @, followed by two sequences of non-spaces characters of
length two or more separated by a .. It's not perfect, and might validate invalid addresses
(according to the format), but most importantly, it's not invalidating valid addresses.

Check the address exists

The only reliable way to check that an email is valid is to check for its existence. There used to be
the VRFY SMTP command that has been designed for that purpose, but sadly, after being abused
by spammers it's now not available anymore.

So the only way you're left with to check that the mail is valid and exists is to actually send an e-
mail to that address.

Huge Regex alternatives

Though, it's not impossible to validate an address email using a regex. The only issues is that the
closer to the specification those regexes will be, the bigger they will be and as a consequency they
are impossibly hard to read and maintain. Below, you'll find example of such more accurate regex
that are being used in some libraries.

The following regex are given for documentation and learning purposes, copy pasting
them in your code is a bad idea. Instead, use that library directly, so you can rely on
upstream code and peer developers to keep your email parsing code up to date and
maintained.

Perl Address matching module

The best examples of such regex are in some languages standard libraries. For example, there's
one from the RFC::RFC822::Address module in the Perl library that tries to be as accurate as possible
according to the RFC. For your curiosity you can find a version of that regex at this URL, that has
been generated from the grammar, and if you're tempted to copy paste it, here's quote from the
regex' author:

"I do not maintain the regular expression [linked]. There may be bugs in it that have

https://riptutorial.com/ 74

http://stackoverflow.com/documentation/regex/4527/when-you-should-not-use-regular-expressions/15856/parsing-email-addresses-or-an-url-or-iban-number-or-credit-card-number-or#t=201607301200162540574
http://stackoverflow.com/a/566121/1290438
http://stackoverflow.com/a/566121/1290438
https://metacpan.org/pod/Mail::RFC822::Address
https://metacpan.org/pod/Mail::RFC822::Address
http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html

already been fixed in the Perl module."

.Net Address matching module

Another, shorter variant is the one used by the .Net standard library in the EmailAddressAttribute
module:

^((([a-z]|\d|[!#\$%&'*\+\-\/=\?\^_`{\|}~]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])+(\.([a-
z]|\d|[!#\$%&'*\+\-\/=\?\^_`{\|}~]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-
\uFFEF])+)*)|((\x22)((((\x20|\x09)*(\x0d\x0a))?(\x20|\x09)+)?(([\x01-\x08\x0b\x0c\x0e-
\x1f\x7f]|\x21|[\x23-\x5b]|[\x5d-\x7e]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])|(\\([\x01-
\x09\x0b\x0c\x0d-\x7f]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-
\uFFEF]))))*(((\x20|\x09)*(\x0d\x0a))?(\x20|\x09)+)?(\x22)))@((([a-z]|\d|[\u00A0-\uD7FF\uF900-
\uFDCF\uFDF0-\uFFEF])|(([a-z]|\d|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])([a-z]|\d|-
|\.|_|~|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])*([a-z]|\d|[\u00A0-\uD7FF\uF900-
\uFDCF\uFDF0-\uFFEF])))\.)+(([a-z]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])|(([a-z]|[\u00A0-
\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])([a-z]|\d|-|\.|_|~|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-
\uFFEF])*([a-z]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])))\.?$

But even if it's shorter it's still too big to be readable and easily maintainable.

Ruby Address matching module

In ruby a composition of regex are being used in the rfc822 module to match an address. This is a
neat idea, as in case bugs are found, it will be easier to pinpoint the regex part to change and fix it.

Python Address matching module

As a counter example, the python email parsing module is not using a regex, but instead
implements it using a parser.

Match a phone number

Here's how to match a prefix code (a + or (00), then a number from 1 to 1939, with an optional
space):
This doesn't look for a valid prefix but something that might be a prefix. See the full list of prefixes

(?:00|\+)?[0-9]{4}

Then, as the entire phone number length is, at most, 15, we can look for up to 14 digits:
At least 1 digit is spent for the prefix

[0-9]{1,14}

The numbers may contains spaces, dots, or dashes and may be grouped by 2 or 3.

(?:[.-][0-9]{3}){1,5}

With the optional prefix:

https://riptutorial.com/ 75

http://referencesource.microsoft.com/#System.ComponentModel.DataAnnotations/DataAnnotations/EmailAddressAttribute.cs,54
http://referencesource.microsoft.com/#System.ComponentModel.DataAnnotations/DataAnnotations/EmailAddressAttribute.cs,54
http://referencesource.microsoft.com/#System.ComponentModel.DataAnnotations/DataAnnotations/EmailAddressAttribute.cs,54
https://github.com/mspanc/rfc822/blob/master/lib/rfc822.rb
https://github.com/python/cpython/blob/2d264235f6e066611b412f7c2e1603866e0f7f1b/Lib/email/_parseaddr.py#L260-L317
https://en.wikipedia.org/wiki/List_of_country_calling_codes#Tree_list

(?:(?:00|\+)?[0-9]{4})?(?:[.-][0-9]{3}){1,5}

If you want to match a specific country format, you can use this search query and add the country,
the question has certainly already been asked.

Match an IP Address

IPv4

To match IPv4 address format, you need to check for numbers [0-9]{1,3} three times {3}
separated by periods \. and ending with another number.

^(?:[0-9]{1,3}\.){3}[0-9]{1,3}$

This regular expression is too simple - if you want to it to be accurate, you need to check that the
numbers are between 0 and 255, with the regex above accepting 444 in any position. You want to
check for 250-255 with 25[0-5], or any other 200 value 2[0-4][0-9], or any 100 value or less with
[01]?[0-9][0-9]. You want to check that it is followed by a period \. three times {3} and then once
without a period.

^(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$

IPv6

IPv6 addresses take the form of 8 16-bit hex words delimited with the colon (:) character. In this
case, we check for 7 words followed by colons, followed by one that is not. If a word has leading
zeroes, they may be truncated, meaning each word may contain between 1 and 4 hex digits.

^(?:[0-9a-fA-F]{1,4}:){7}[0-9a-fA-F]{1,4}$

This, however, is insufficient. As IPv6 addresses can become quite "wordy", the standard specifies
that zero-only words may be replaced by ::. This may only be done once in an address (for
anywhere between 1 and 7 consecutive words), as it would otherwise be indeterminate. This
produces a number of (rather nasty) variations:

^::(?:[0-9a-fA-F]{1,4}:){0,6}[0-9a-fA-F]{1,4}$
^[0-9a-fA-F]{1,4}::(?:[0-9a-fA-F]{1,4}:){0,5}[0-9a-fA-F]{1,4}$
^[0-9a-fA-F]{1,4}:[0-9a-fA-F]{1,4}::(?:[0-9a-fA-F]{1,4}:){0,4}[0-9a-fA-F]{1,4}$
^(?:[0-9a-fA-F]{1,4}:){0,2}[0-9a-fA-F]{1,4}::(?:[0-9a-fA-F]{1,4}:){0,3}[0-9a-fA-F]{1,4}$
^(?:[0-9a-fA-F]{1,4}:){0,3}[0-9a-fA-F]{1,4}::(?:[0-9a-fA-F]{1,4}:){0,2}[0-9a-fA-F]{1,4}$
^(?:[0-9a-fA-F]{1,4}:){0,4}[0-9a-fA-F]{1,4}::(?:[0-9a-fA-F]{1,4}:)?[0-9a-fA-F]{1,4}$
^(?:[0-9a-fA-F]{1,4}:){0,5}[0-9a-fA-F]{1,4}::[0-9a-fA-F]{1,4}$
^(?:[0-9a-fA-F]{1,4}:){0,6}[0-9a-fA-F]{1,4}::$

Now, putting it all together (using alternation) yields:

^(?:[0-9a-fA-F]{1,4}:){7}[0-9a-fA-F]{1,4}$|
^::(?:[0-9a-fA-F]{1,4}:){0,6}[0-9a-fA-F]{1,4}$|

https://riptutorial.com/ 76

http://stackoverflow.com/search?q=phone+number+%5Bregex%5D

^[0-9a-fA-F]{1,4}::(?:[0-9a-fA-F]{1,4}:){0,5}[0-9a-fA-F]{1,4}$|
^[0-9a-fA-F]{1,4}:[0-9a-fA-F]{1,4}::(?:[0-9a-fA-F]{1,4}:){0,4}[0-9a-fA-F]{1,4}$|
^(?:[0-9a-fA-F]{1,4}:){0,2}[0-9a-fA-F]{1,4}::(?:[0-9a-fA-F]{1,4}:){0,3}[0-9a-fA-F]{1,4}$|
^(?:[0-9a-fA-F]{1,4}:){0,3}[0-9a-fA-F]{1,4}::(?:[0-9a-fA-F]{1,4}:){0,2}[0-9a-fA-F]{1,4}$|
^(?:[0-9a-fA-F]{1,4}:){0,4}[0-9a-fA-F]{1,4}::(?:[0-9a-fA-F]{1,4}:)?[0-9a-fA-F]{1,4}$|
^(?:[0-9a-fA-F]{1,4}:){0,5}[0-9a-fA-F]{1,4}::[0-9a-fA-F]{1,4}$|
^(?:[0-9a-fA-F]{1,4}:){0,6}[0-9a-fA-F]{1,4}::$

Be sure to write it out in multiline mode and with a pile of comments so whoever is inevitably
tasked with figuring out what this means doesn't come after you with a blunt object.

Validate a 12hr and 24hr time string

For a 12hour time format one can use:

^(?:0?[0-9]|1[0-2])[-:][0-5][0-9]\s*[ap]m$

Where

(?:0?[0-9]|1[0-2]) is the hour•
[-:] is the separator, which can be adjusted to fit your need•
[0-5][0-9] is the minute•
\s*[ap]m followed any number of whitespace characters, and am or pm•

If you need the seconds:

^(?:0?[0-9]|1[0-2])[-:][0-5][0-9][-:][0-5][0-9]\s*[ap]m$

For a 24hr time format:

^(?:[01][0-9]|2[0-3])[-:h][0-5][0-9]$

Where:

(?:[01][0-9]|2[0-3]) is the hour•
[-:h] the separator, which can be adjusted to fit your need•
[0-5][0-9] is the minute•

With the seconds:

^(?:[01][0-9]|2[0-3])[-:h][0-5][0-9][-:m][0-5][0-9]$

Where [-:m] is a second separator, replacing the h for hours with an m for minutes, and [0-5][0-9]
is the second.

Match UK postcode

Regex to match postcodes in UK

https://riptutorial.com/ 77

https://en.wikipedia.org/wiki/Postcodes_in_the_United_Kingdom

The format is as follows, where A signifies a letter and 9 a digit:

Format Coverage Example

Cell Cell

AA9A 9AA
WC postcode area; EC1–EC4, NW1W, SE1P,
SW1

EC1A 1BB

A9A 9AA E1W, N1C, N1P W1A 0AX

A9 9AA, A99 9AA B, E, G, L, M, N, S, W M1 1AE, B33 8TH

AA9 9AA, AA99
9AA

All other postcodes
CR2 6XH, DN55
1PT

(GIR 0AA)|((([A-Z-[QVX]][0-9][0-9]?)|(([A-Z-[QVX]][A-Z-[IJZ]][0-9][0-9]?)|(([A-Z-[QVX]][0-
9][A-HJKPSTUW])|([A-Z-[QVX]][A-Z-[IJZ]][0-9][ABEHMNPRVWXY])))) [0-9][A-Z-[CIKMOV]]{2})

Where first part:

 (GIR 0AA)|((([A-Z-[QVX]][0-9][0-9]?)|(([A-Z-[QVX]][A-Z-[IJZ]][0-9][0-9]?)|(([A-Z-[QVX]][0-
9][A-HJKPSTUW])|([A-Z-[QVX]][A-Z-[IJZ]][0-9][ABEHMNPRVWXY]))))

Second:

[0-9][A-Z-[CIKMOV]]{2})

Read Useful Regex Showcase online: https://riptutorial.com/regex/topic/3605/useful-regex-
showcase

https://riptutorial.com/ 78

https://riptutorial.com/regex/topic/3605/useful-regex-showcase
https://riptutorial.com/regex/topic/3605/useful-regex-showcase

Chapter 23: UTF-8 matchers: Letters, Marks,
Punctuation etc.

Examples

Matching letters in different alphabets

Examples below are given in Ruby, but same matchers should be available in any modern
language.

Let’s say we have the string "AℵNaïve", produced by Messy Artificial Intelligence. It consists of
letters, but generic \w matcher won’t match much:

▶ "AℵNaïve"[/\w+/]
#⇒ "A"

The correct way to match Unicode letter with combining marks is to use \X to specify a grapheme
cluster. There is a caveat for Ruby, though. Onigmo, the regex engine for Ruby, still uses the old
definition of a grapheme cluster. It is not yet updated to Extended Grapheme Cluster as defined in
Unicode Standard Annex 29.

So, for Ruby we could have a workaround: \p{L} will do almost fine, save for it fails on combined
diacritical accent on i:

▶ "AℵNaïve"[/\p{L}+/]
#⇒ "AℵNai"

By adding the “Mark symbols” to the expression, we can finally match everything:

▶ "AℵNaïve"[/[\p{L}\p{M}]+/]
#⇒ "AℵNaïve"

Read UTF-8 matchers: Letters, Marks, Punctuation etc. online:
https://riptutorial.com/regex/topic/1527/utf-8-matchers--letters--marks--punctuation-etc-

https://riptutorial.com/ 79

https://github.com/k-takata/Onigmo/issues/46
https://github.com/k-takata/Onigmo/issues/46
http://perldoc.perl.org/5.12.4/perlrebackslash.html#Misc
http://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries
https://riptutorial.com/regex/topic/1527/utf-8-matchers--letters--marks--punctuation-etc-

Chapter 24: When you should NOT use
Regular Expressions

Remarks

Because regular expressions are limited to either a regular grammar or a context-free grammar,
there are many common misuses of regular expressions. So in this topic there are a few example
of when you should NOT use regular expressions, but use your favorite language instead.

Some people, when confronted with a problem, think:
“I know, I'll use regular expressions.”
Now they have two problems.
— Jamie Zawinski

Examples

Matching pairs (like parenthesis, brackets…)

Some regex engines (such as .NET) can handle context-free expressions, and will work it out. But
that's not the case for most standard engines. And even if they do, you'll end up having a complex
hard-to-read expression, whereas using a parsing library could make the job easier.

How to find all possible regex matches in python?•

Simple string operations

Because Regular Expressions can do a lot, it is tempting to use them for the simplest operations.
But using a regex engine has a cost in memory and processor usage: you need to compile the
expression, store the automaton in memory, initialize it and then feed it with the string to run it.

And there are many cases where it's just not necessary to use it! Whatever your language of
choice is, it always has the basic string manipulation tools. So, as a rule, when there's a tool to do
an action in your standard library, use that tool, not a regex:

split a string?•

For example the following snippet works in Python, Ruby and Javascript:

'foo.bar'.split('.')

Which is easier to read and understand, as well as much more efficient than the (somehow)
equivalent regular expression:

(\w+)\.(\w+)

https://riptutorial.com/ 80

http://regex.info/blog/2006-09-15/247
http://stackoverflow.com/questions/23654329/how-to-find-all-possible-regex-matches-in-python

Strip trailing spaces?•

The same applies to trailing spaces!

'foobar '.strip() # python or ruby
'foobar '.trim() // javascript

Which would be equivalent to the following expression:

([^\n]*)\s*$ # keeping \1 in the substitution

Parsing HTML (or XML, or JSON, or C code, or…)

If you want to extract something from a webpage (or any representation/programming language),
a regex is the wrong tool for the task. You should instead use your language's libraries to achieve
the task.

If you want to read HTML, or XML, or JSON, just use the library that parses it properly and serves
it as usable objects in your favorite language! You'll end up with readable and more maintainable
code, and you won't end up

RegEx match open tags except XHTML self-contained tags•
Python parsing HTML Using Regular Expressions•
is there a regex to generate all integers for a certain programming language•

Read When you should NOT use Regular Expressions online:
https://riptutorial.com/regex/topic/4527/when-you-should-not-use-regular-expressions

https://riptutorial.com/ 81

http://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454#1732454
http://stackoverflow.com/questions/23548523/python-parsing-html-using-regular-expressions/23548604#23548604
http://stackoverflow.com/questions/28933020/is-there-a-regex-to-generate-all-integers-for-a-certain-programming-language/28933318#28933318
https://riptutorial.com/regex/topic/4527/when-you-should-not-use-regular-expressions

Chapter 25: Word Boundary

Syntax

POSIX style, end of word: [[:>:]]•
POSIX style, start of word: [[:<:]]•
POSIX style, word boundary: [[:<:][:>:]]•
SVR4/GNU, end of word: \>•
SVR4/GNU, start of word: \<•
Perl/GNU, word boundary: \b•
Tcl, end of word: \M•
Tcl, start of word: \m•
Tcl, word boundary: \y•
Portable ERE, start of word: (^|[^[:alnum:]_])•
Portable ERE, end of word: ([^[:alnum:]_]|$)•

Remarks

Additional Resources

POSIX chapter on regular expressions•
Perl regular expression documentation•
Tcl re_syntax manual page•
GNU grep backslash expressions•
BSD re_format•
More reading•

Examples

Match complete word

\bfoo\b

will match the complete word with no alphanumeric and _ preceding or following by it.

Taking from regularexpression.info

There are three different positions that qualify as word boundaries:

Before the first character in the string, if the first character is a word character.1.
After the last character in the string, if the last character is a word character.2.
Between two characters in the string, where one is a word character and the
other is not a word character.

3.

https://riptutorial.com/ 82

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html
http://perldoc.perl.org/perlre.html
http://www.tcl.tk/man/tcl8.6/TclCmd/re_syntax.htm
https://www.gnu.org/software/grep/manual/html_node/The-Backslash-Character-and-Special-Expressions.html
http://man.openbsd.org/OpenBSD-current/man7/re_format.7
http://www.regular-expressions.info/wordboundaries.html
http://www.regular-expressions.info/wordboundaries.html

The term word character here means any of the following

Alphabet([a-zA-Z])1.
Number([0-9])2.
Underscore _3.

In short, word character = \w = [a-zA-Z0-9_]

Find patterns at the beginning or end of a word

Examine the following strings:

foobarfoo
bar
foobar
barfoo

the regular expression bar will match all four strings,•
\bbar\b will only match the 2nd,•
bar\b will be able to match the 2nd and 3rd strings, and•
\bbar will match the 2nd and 4th strings.•

Word boundaries

The \b metacharacter

To make it easier to find whole words, we can use the metacharacter \b. It marks the beginning
and the end of an alphanumeric sequence*. Also, since it only serves to mark this locations, it
actually matches no character on its own.

*: It is common to call an alphanumeric sequence a word, since we can catch it's characters with a
\w (the word characters class). This can be misleading, though, since \w also includes numbers
and, in most flavors, the underscore.

Examples:

Regex Input Matches?

\bstack\b stackoverflow No, since there's no ocurrence of the whole word stack

\bstack\b foo stack bar Yes, since there's nothing before nor after stack

\bstack\b stack!overflow Yes: there's nothing before stack and !is not a word character

\bstack stackoverflow Yes, since there's nothing before stack

overflow\b stackoverflow Yes, since there's nothing after overflow

https://riptutorial.com/ 83

The \B metacharacter

This is the opposite of \b, matching against the location of every non-boundary character. Like \b,
since it matches locations, it matches no character on its own. It is useful for finding non whole
words.

Examples:

Regex Input Matches?

\Bb\B abc Yes, since b is not surrounded by word boundaries.

\Ba\B abc No, a has a word boundary on its left side.

a\B abc Yes, a does not have a word boundary on its right side.

\B,\B a,,,b
Yes, it matches the second comma because \B will also match the space
between two non-word characters (it should be noted that there is a word
boundary to the left of the first comma and to the right of the second).

Make text shorter but don't break last word

To make long text at most N characters long but leave last word intact, use .{0,N}\b pattern:

^(.{0,N})\b.*

Read Word Boundary online: https://riptutorial.com/regex/topic/1539/word-boundary

https://riptutorial.com/ 84

http://stackoverflow.com/a/6664167/4504895
http://stackoverflow.com/a/6664167/4504895
http://stackoverflow.com/a/6664167/4504895
https://riptutorial.com/regex/topic/1539/word-boundary

Credits

S.
No

Chapters Contributors

1
Getting started with
Regular Expressions

0rkan, Addison, balpha, Community, Confiqure, Ibrahim, J F,
JelmerS, JohnLBevan, Kendra, Laurel, Maria Deleva, Mariano,
Mateus, mnoronha, Rudy M, Stephen Leppik, Tot Zam, TylerH,
Wolf, Yaron, zmo

2
Anchor Characters:
Caret (^)

CPHPython, Eder, J F, JohnLBevan, Jojodmo, knut, Mateus,
Mike H-R, Mr. Deathless, nhahtdh, revo, rgoliveira, Tom Lord,
zb226

3
Anchor Characters:
Dollar ($)

ArtOfCode, CPHPython, hjpotter92, Kendra, rubayet.R, Tom
Lord, UNagaswamy, Wiktor Stribiżew

4 Atomic Grouping OnlineCop

5 Back reference Alan Moore, Kendra, OnlineCop

6 Backtracking dorukayhan, Mike, Miljen Mikic, SQB, Thomas Ayoub, Vituel

7 Capture Groups Addison, Alan Moore, Lucas Trzesniewski, Tomalak, Vogel612

8 Character classes
Acey, CPHPython, Dmitry Bychenko, HamZa, kdhp, Lucas
Trzesniewski, Maria Deleva, RamenChef, rgoliveira,
rock321987, Wiktor Stribiżew

9 Escaping CPHPython, David Knipe, Laurel

10
Greedy and Lazy
quantifiers

0rkan, Confiqure, David Knipe, GradientByte, Laurel, Mario,
Mark Stewart, Nathan Arthur, nhahtdh, phatfingers,
sweaver2112, Thomas Ayoub, Tim Pietzcker

11
Lookahead and
Lookbehind

BoppreH, hwnd, Lucas Trzesniewski, Maria Deleva, Wiktor
Stribiżew

12 Match Reset: \K nhahtdh, Wiktor Stribiżew, Will Barnwell

13
Matching Simple
Patterns

balpha, GradientByte, Graham, Joe, Mariano, rgoliveira, Tot
Zam, Yaron

14
Named capture
groups

Thomas Ayoub

15
Password validation
regex

rock321987

https://riptutorial.com/ 85

https://riptutorial.com/contributor/2084643/0rkan
https://riptutorial.com/contributor/2656614/addison
https://riptutorial.com/contributor/115866/balpha
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/6765312/ibrahim
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/4911585/jelmers
https://riptutorial.com/contributor/361842/johnlbevan
https://riptutorial.com/contributor/2607247/kendra
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/6408723/maria-deleva
https://riptutorial.com/contributor/5290909/mariano
https://riptutorial.com/contributor/7225971/mateus
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/5947891/rudy-m
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/2756409/tylerh
https://riptutorial.com/contributor/2932052/wolf
https://riptutorial.com/contributor/1835621/yaron
https://riptutorial.com/contributor/1290438/zmo
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/495011/eder
https://riptutorial.com/contributor/5244995/j-f
https://riptutorial.com/contributor/361842/johnlbevan
https://riptutorial.com/contributor/2767207/jojodmo
https://riptutorial.com/contributor/676874/knut
https://riptutorial.com/contributor/7225971/mateus
https://riptutorial.com/contributor/966097/mike-h-r
https://riptutorial.com/contributor/424180/mr--deathless
https://riptutorial.com/contributor/1400768/nhahtdh
https://riptutorial.com/contributor/1020526/revo
https://riptutorial.com/contributor/4176370/rgoliveira
https://riptutorial.com/contributor/1954610/tom-lord
https://riptutorial.com/contributor/1529709/zb226
https://riptutorial.com/contributor/3160466/artofcode
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/1190388/hjpotter92
https://riptutorial.com/contributor/2607247/kendra
https://riptutorial.com/contributor/5699613/rubayet-r
https://riptutorial.com/contributor/1954610/tom-lord
https://riptutorial.com/contributor/1954610/tom-lord
https://riptutorial.com/contributor/1588032/unagaswamy
https://riptutorial.com/contributor/3832970/wiktor-stribizew
https://riptutorial.com/contributor/3832970/wiktor-stribizew
https://riptutorial.com/contributor/801098/onlinecop
https://riptutorial.com/contributor/20938/alan-moore
https://riptutorial.com/contributor/2607247/kendra
https://riptutorial.com/contributor/801098/onlinecop
https://riptutorial.com/contributor/6304349/dorukayhan
https://riptutorial.com/contributor/2281169/mike
https://riptutorial.com/contributor/1460628/miljen-mikic
https://riptutorial.com/contributor/2936460/sqb
https://riptutorial.com/contributor/2307070/thomas-ayoub
https://riptutorial.com/contributor/2004857/vituel
https://riptutorial.com/contributor/2656614/addison
https://riptutorial.com/contributor/20938/alan-moore
https://riptutorial.com/contributor/3764814/lucas-trzesniewski
https://riptutorial.com/contributor/18771/tomalak
https://riptutorial.com/contributor/1803692/vogel612
https://riptutorial.com/contributor/1569974/acey
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/2319407/dmitry-bychenko
https://riptutorial.com/contributor/1401975/hamza
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/3764814/lucas-trzesniewski
https://riptutorial.com/contributor/3764814/lucas-trzesniewski
https://riptutorial.com/contributor/6408723/maria-deleva
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/4176370/rgoliveira
https://riptutorial.com/contributor/1996394/rock321987
https://riptutorial.com/contributor/3832970/wiktor-stribizew
https://riptutorial.com/contributor/3832970/wiktor-stribizew
https://riptutorial.com/contributor/6225838/cphpython
https://riptutorial.com/contributor/2064808/david-knipe
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/2084643/0rkan
https://riptutorial.com/contributor/903291/confiqure
https://riptutorial.com/contributor/2064808/david-knipe
https://riptutorial.com/contributor/3484756/gradientbyte
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/409744/mario
https://riptutorial.com/contributor/4178262/mark-stewart
https://riptutorial.com/contributor/937377/nathan-arthur
https://riptutorial.com/contributor/1400768/nhahtdh
https://riptutorial.com/contributor/1031887/phatfingers
https://riptutorial.com/contributor/244811/sweaver2112
https://riptutorial.com/contributor/2307070/thomas-ayoub
https://riptutorial.com/contributor/20670/tim-pietzcker
https://riptutorial.com/contributor/252218/boppreh
https://riptutorial.com/contributor/2206004/hwnd
https://riptutorial.com/contributor/3764814/lucas-trzesniewski
https://riptutorial.com/contributor/6408723/maria-deleva
https://riptutorial.com/contributor/3832970/wiktor-stribizew
https://riptutorial.com/contributor/3832970/wiktor-stribizew
https://riptutorial.com/contributor/3832970/wiktor-stribizew
https://riptutorial.com/contributor/1400768/nhahtdh
https://riptutorial.com/contributor/3832970/wiktor-stribizew
https://riptutorial.com/contributor/3832970/wiktor-stribizew
https://riptutorial.com/contributor/5216668/will-barnwell
https://riptutorial.com/contributor/115866/balpha
https://riptutorial.com/contributor/3484756/gradientbyte
https://riptutorial.com/contributor/1180438/graham
https://riptutorial.com/contributor/4832389/joe
https://riptutorial.com/contributor/5290909/mariano
https://riptutorial.com/contributor/4176370/rgoliveira
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/4660897/tot-zam
https://riptutorial.com/contributor/1835621/yaron
https://riptutorial.com/contributor/2307070/thomas-ayoub
https://riptutorial.com/contributor/1996394/rock321987

16
Possessive
Quantifiers

Mark Hurd, Sebastian Lenartowicz

17 Recursion Keith Hall, Laurel, Lucas Trzesniewski, user23013

18
Regex modifiers
(flags)

Eder, Mateus, Tim Pietzcker, Wiktor Stribiżew

19 Regex Pitfalls BrightOne

20
Regular Expression
Engine Types

Lucas Trzesniewski, Markus Jarderot

21
Substitutions with
Regular Expressions

Mateus

22
Useful Regex
Showcase

depperm, Devid Farinelli, Echelon, Herb, Kendra, Matas
Vaitkevicius, nhahtdh, Sebastian Lenartowicz, Steve Chambers,
Thomas Ayoub, Tomasz Jakub Rup, zmo

23
UTF-8 matchers:
Letters, Marks,
Punctuation etc.

mudasobwa

24
When you should
NOT use Regular
Expressions

dorukayhan, Kendra, zmo

25 Word Boundary
cdm, jonathanking, kdhp, Maria Deleva, Peter G, rgoliveira,
Tushar

https://riptutorial.com/ 86

https://riptutorial.com/contributor/256431/mark-hurd
https://riptutorial.com/contributor/5103620/sebastian-lenartowicz
https://riptutorial.com/contributor/4473405/keith-hall
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/3764814/lucas-trzesniewski
https://riptutorial.com/contributor/3998030/user23013
https://riptutorial.com/contributor/495011/eder
https://riptutorial.com/contributor/7225971/mateus
https://riptutorial.com/contributor/20670/tim-pietzcker
https://riptutorial.com/contributor/3832970/wiktor-stribizew
https://riptutorial.com/contributor/3832970/wiktor-stribizew
https://riptutorial.com/contributor/6591347/brightone
https://riptutorial.com/contributor/3764814/lucas-trzesniewski
https://riptutorial.com/contributor/22364/markus-jarderot
https://riptutorial.com/contributor/7225971/mateus
https://riptutorial.com/contributor/3462319/depperm
https://riptutorial.com/contributor/4695325/devid-farinelli
https://riptutorial.com/contributor/337392/echelon
https://riptutorial.com/contributor/1889116/herb
https://riptutorial.com/contributor/2607247/kendra
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1509764/matas-vaitkevicius
https://riptutorial.com/contributor/1400768/nhahtdh
https://riptutorial.com/contributor/5103620/sebastian-lenartowicz
https://riptutorial.com/contributor/1063716/steve-chambers
https://riptutorial.com/contributor/2307070/thomas-ayoub
https://riptutorial.com/contributor/5493302/tomasz-jakub-rup
https://riptutorial.com/contributor/1290438/zmo
https://riptutorial.com/contributor/2035262/mudasobwa
https://riptutorial.com/contributor/6304349/dorukayhan
https://riptutorial.com/contributor/2607247/kendra
https://riptutorial.com/contributor/1290438/zmo
https://riptutorial.com/contributor/4663542/cdm
https://riptutorial.com/contributor/2780645/jonathanking
https://riptutorial.com/contributor/4206439/kdhp
https://riptutorial.com/contributor/6408723/maria-deleva
https://riptutorial.com/contributor/4504895/peter-g
https://riptutorial.com/contributor/4176370/rgoliveira
https://riptutorial.com/contributor/2025923/tushar

	About
	Chapter 1: Getting started with Regular Expressions
	Remarks

	What does 'regular expression' mean?
	Are all regex actually a regular grammar?
	Resources
	Versions
	PCRE
	Used by: PHP 4.2.0 (and higher), Delphi XE (and higher), Julia, Notepad++

	Perl
	.NET
	Languages: C#

	Java
	JavaScript
	Python
	Oniguruma
	Boost
	POSIX
	Languages: Bash

	Examples
	Character Guide

	Chapter 2: Anchor Characters: Caret (^)
	Remarks
	Examples
	Start of Line

	When multi-line (?m) modifier is turned off, ^ matches only the input string's beginning:
	When multi-line (?m) modifier is turned on, ^ matches every line's beginning:
	Matching empty lines using ^
	Escaping the caret character
	Comparison start of line anchor and start of string anchor
	Multiline modifier

	Chapter 3: Anchor Characters: Dollar ($)
	Remarks
	Examples
	Match a letter at the end of a line or string

	Chapter 4: Atomic Grouping
	Introduction
	Remarks
	Examples
	Grouping with (?>)

	Using an Atomic Group
	Using a Non-Atomic Group
	Other Example Text

	Chapter 5: Back reference
	Examples
	Basics
	Ambiguous Backreferences

	Chapter 6: Backtracking
	Examples
	What causes Backtracking?
	Why can backtracking be a trap?

	How to avoid it?
	Chapter 7: Capture Groups
	Examples
	Basic Capture Groups
	Backreferences and Non-Capturing Groups
	Named Capture Groups

	Chapter 8: Character classes
	Remarks

	Simple classes
	Common classes
	Negating classes
	Examples
	The basics
	Match different, similar words
	Non-alphanumerics matching (negated character class)
	Non-digits matching (negated character class)
	Character class and common problems faced by beginner
	POSIX Character classes

	Chapter 9: Escaping
	Examples
	Raw String Literals

	Python
	C++ (11+)
	VB.NET
	C#
	Strings
	What characters need to be escaped?
	Backslashes
	Escaping (outside character classes)
	Escaping within Character Classes
	Escaping the Replacement
	BRE Exceptions
	/Delimiters/

	Chapter 10: Greedy and Lazy quantifiers
	Parameters
	Remarks
	Greediness
	Laziness
	Concept of greediness and laziness only exists in backtracking engines
	Examples
	Greediness versus Laziness
	Boundaries with multiple matches

	Chapter 11: Lookahead and Lookbehind
	Syntax
	Remarks
	Examples
	Basics
	Using lookbehind to test endings
	Simulating variable-length lookbehind with \K

	Chapter 12: Match Reset: \K
	Remarks
	Examples
	Search and replace using \K operator

	Chapter 13: Matching Simple Patterns
	Examples
	Match a single digit character using [0-9] or \d (Java)
	Matching various numbers
	Matching leading/trailing whitespace

	Trailing spaces
	Leading spaces
	Remarks
	Match any float
	Selecting a certain line from a list based on a word in certain location

	Chapter 14: Named capture groups
	Syntax
	Remarks
	Examples
	What a named capture group looks like
	Reference a named capture group

	Chapter 15: Password validation regex
	Examples
	A password containing at least 1 uppercase, 1 lowercase, 1 digit, 1 special character and have a length of at least of 10
	A password containing at least 2 uppercase, 1 lowercase, 2 digits and is of length of at least 10

	Chapter 16: Possessive Quantifiers
	Remarks
	Examples
	Basic Use of Possessive Quantifiers

	Chapter 17: Recursion
	Remarks
	Examples
	Recurse the whole pattern
	Recurse into a subpattern
	Subpattern definitions
	Relative group references
	Backreferences in recursions (PCRE)
	Recursions are atomic (PCRE)

	Chapter 18: Regex modifiers (flags)
	Introduction
	Remarks

	PCRE Modifiers
	Java Modifiers
	Examples
	DOTALL modifier
	MULTILINE modifier
	IGNORE CASE modifier
	VERBOSE / COMMENT / IgnorePatternWhitespace modifier
	Explicit Capture modifier
	UNICODE modifier
	PCRE_DOLLAR_ENDONLY modifier
	PCRE_ANCHORED modifier
	PCRE_UNGREEDY modifier
	PCRE_INFO_JCHANGED modifier
	PCRE_EXTRA modifier

	Chapter 19: Regex Pitfalls
	Examples
	Why doesn't dot (.) match the newline character ("\n")?
	Why does a regex skip some closing brackets/parentheses and match them afterwards?

	Why did it happen?
	How to prevent this and match exactly to the first quotes?

	Chapter 20: Regular Expression Engine Types
	Examples
	NFA

	Principle
	For each match attempt
	Optimizations
	Example
	DFA

	Principle
	Implications
	Example
	Chapter 21: Substitutions with Regular Expressions
	Parameters
	Examples
	Basics of Substitution
	Advanced Replacement

	Chapter 22: Useful Regex Showcase
	Examples
	Match a date
	Match an email address

	Validate an email address format
	Check the address exists
	Huge Regex alternatives
	Perl Address matching module
	.Net Address matching module
	Ruby Address matching module
	Python Address matching module
	Match a phone number
	Match an IP Address
	Validate a 12hr and 24hr time string
	Match UK postcode

	Chapter 23: UTF-8 matchers: Letters, Marks, Punctuation etc.
	Examples
	Matching letters in different alphabets

	Chapter 24: When you should NOT use Regular Expressions
	Remarks
	Examples
	Matching pairs (like parenthesis, brackets…)
	Simple string operations
	Parsing HTML (or XML, or JSON, or C code, or…)

	Chapter 25: Word Boundary
	Syntax
	Remarks
	Additional Resources
	Examples
	Match complete word
	Find patterns at the beginning or end of a word
	Word boundaries

	The \b metacharacter
	Examples:
	The \B metacharacter
	Examples:
	Make text shorter but don't break last word

	Credits

